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PREFACE

At least one vacuum-tube oscillator is used in virtually every trans-
mitter or receiver for radio, television, and radar. Oscillators are,
therefore, of considerable economic as well as theoretical interest.
Although they are discussed in many periodicals and books, there
appears to be a genuine need for a connected discussion of the design
and operation of these devices.

In this book I have attempted to present a systematic and reason-
ably complete treatment of the many factors which affect the behavior
of vacuum-tube oscillators. The viewpoint of design is favored over
that of analysis because it represents the basic purpose of engineering
and because the ability to design is a priori proof of competence in
analysis. It might appear that the subject is unreasonably specialized
and that a lack of material would exist. Actually, just the reverse is
true. The subject touches on a great variety of topics in electronics,
circuit theory, and dynamics; and an extensive literature exists. In
fact, the selection and the organization of this material have been the
principal tasks in writing this book.

The execution of this project, which was conceived more than ten
years ago, has been delayed by a number of events. Because the
general understanding of the subject has been considerably advanced
by many workers and because I have gained in experience, the treat-
ment has profited considerably by the delay. Relatively little of the
work here presented is original, and virtually all has been previously
published. However, the material has been too scattered to be effec-
tively available; and the viewpoints and notations used have been so
divergent as to impede greatly the understanding of the work accom-
plished. I hope that the treatment in this book may overcome most
of these difficulties by use of a uniform notation and several coordinated
viewpoints developed in a logical sequence.

A clear and adequate exposition of the behavior of oscillators is the
objective of my book, and mathematics has been employed freely
where it is helpful. Wherever possible, relationships have been
developed from fundamental considerations. In certain sections,
however, the development has been omitted as impractically long or
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difficult, and the pertinent results are merely stated. The level of
the treatment is directed toward the graduate of the usual four-year
course in electrical engineering. It therefore appears that the book
should be useful as a textbook for a senior or graduate course, as well
as for the guidance of practicing engineers.

As far as practical, I have made the treatment of each chapter self-
sufficient, so that the book may serve as a useful reference work and so
that an instructor may adjust a course to the needs of his students and
the time available. However, the subject is so interrelated that this
objective has not been completely met; and in any event the first five
chapters are needed as the basis for the following material. A reason-
able familiarity with the characteristics of ordinary vacuum tubes is
assumed, and little is said about this subject.

In the interest of keeping the length and cost of this book within
reason it was necessary to omit much interesting and important mate-
rial. Specifically, microwave oscillators are not discussed because
they are already treated in several books.

A fairly extensive but by no means exhaustive bibliography is
included as an aid to the worker who wishes a more detailed treatment
than that offered here. I am aware that first-class work in numerous
phases of this subject has been, and probably is being, done in every
country of the world. However, nearly every important point has
been competently discussed in English. Accordingly the bibliography
contains a relatively small number of references to foreign periodicals,
because language difficulties and library limitations make these
unavailable to so many individuals.

The MKS system is used in all analytic work, although apparatus
dimensions are sometimes given in inches and feet, in conformity to
current practice. The abbreviations, symbols, network terminology,
and graphical representations used conform to the Standards of the
Institute of Radio Engineers. Consistent with that usage, the term
phasor rather than vector is used to designate the complex quantities
which represent sinusoidal voltages and currents. I have used the
symbol « to represent the value of by-pass condensers, and choke coils
to indicate that the corresponding admittance or impedance is effec-
tively infinite. The interpretation of schematic diagrams is consid-
erably expedited by this notation, because attention can immediately
be focused upon the elements which actually control the beha-
vior of the system. With the same objective, I have, where practical,
emphasized the frequency-controlling elements or resonator.

So many workers have contributed to the subject that it is quite
impossible to make adequate acknowledgment. However, I am






Ptk et e ek e ek pd
00 3 & Ot = W N —~ O

© 0 NN D o W N

CONTENTS

List of Symbols

- Introduction S
- Transient Behavior of Linear Systems

Negative Resistance Oscillators
Nonlinear Oscillations

- Feedback Systems and Stability Criteria
- Resonators

- Linear Oscillators

Conventional Harmonic Oscillators
Crystal-Controlled Oscillators

- Intermittent Behavior .

+ Operation at High-Power Levels

« Practical Relaxation Oscillators

+ Locking and Synchronization

- Frequency Multiplication and Division
- Tube and Thermal Noise

- Modulation of Oscillators

- Automatic Frequency Control . .
- Long-Line and Multiple-Resonance Effects

Bibliography .
Name Index

Subject Index

xi

xiii

13

29

42

64

83
126
158
197
227
246
265
311
340
367
384
414
430
451
465

469






"AEOOR L DD W®R NN R e %ﬁ:dql‘“%’ﬂ_‘m

n
-

SYMBOLS

The nonlinearity of a saw-tooth wave

A ratio .

A number or ratio .

Power .

Pressure of gas .

Probability . .

Performance Index (a.ntnresona.nt resnstance)
Root of auxiliary equation

The time derivative operator (d/dt) .

Parts per million

Selectivity or quality fa.ctor of a resonant system .

Electric charge or quantity
Modulation frequency .

A resistance (general) .

The capacitance ratio of a quartz crystal
Plate resistance (of a vacuum tube) .
Amplitude stability

Frequency stability

Temperature coefficient of a resonator
Sensitivity of a thermistor

Network configuration

Period of a recurrent wave
Temperature

The time variable .

A thickness .

A function

A variable proportxonal to voltage

A variable

Voltage (general)

Energy, stored (Joules)

A width . .o

Reactance (general)

A variable

Admittance (general)

A variable .

Impedance (general)

A variable

Damping factor or decrement (nepers per second)

Hyperbolic frequency coefficient .

Feedback ratio (usually a small number)
The phase constant of a transmission line
Increase of plate resistance in class C operation
An angle .

Transit-angle loss in a kIystron

Grid-circuit rectification parameter (Ec/Egm)
Logarithmic decrement (nepers per cycle)
A dimensionless increment

A selectivity parameter (equa.l to —-1 /Q)

A number N
Dielectric constant (rela.tnve)

PAGE FIRST USED
270
131

20
147
88
372
115
15
25
86
20
13
234
8
117
75
11
11
11
127
23
1
11
13
117
24
44
11
14
384
117
39
44
40
77
34
119
15
15
66
443
162
322
382
163
20
144
50
348
88






INTRODUCTION

1.1 What an oscillator does

The vacuum-tube oscillator is an extremely versatile device for the
production of alternating electric currents. The currents so produced
are usually periodic, and often substantially sinusoidal. The useful
power output and incidental losses are provided by a power input,
which is ordinarily a direct current. The efficiency is commonly very
low, in the order of a few per cent. In high-power applications, how-
ever, where efficiency is important it is possible to obtain values of
efficiency well over 50 per cent.

The most important feature of the vacuum-tube oscillator is the
great range of frequencies which may be produced. Frequencies as
low as a hundredth of a cycle per second and as high as 50 billion cycles
per second are now readily produced. Past experience indicates that
both limits will be extended further.

In most applications a vacuum-tube oscillator serves primarily as a
timing device. That is, the period or duration, T, of each cycle is of
basic importance. Ordinarily this property is expressed in the inverse
form as a frequency, f, in cycles per second according to the basic
relationship

f=1T. (1.1)

For purposes of analysis a related quantity, w, is more convenient.
This quantity, which is measured in radians per second, is given by
the familiar equation

w = 2=xf. (1.2)

The quantity w is often referred to as angular frequency, or simply as
frequency when no misunderstanding is likely to occur.

In a great many applications it is important that the frequency be
very nearly constant. The degree to which constant frequency is
approached is referred to as frequency stability. Frequency stability
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TYPES OF OSCILLATORS 3

transit time of the electrons themselves. These transit-time magne-
trons are highly efficient and powerful oscillators; but a particular
tube is capable of operating over only a relatively narrow frequency
band.

The efiects of electron inertia are employed in almost all microwave
oscillators. Tubes such as the klystron, which employ velocity
modulation instead of magnetic fields, have been highly successful,
especially as continuous wave generators at low power levels.

In addition to high-vacuum tubes there is a large and growing list'-of
electronic devices which are useful as oscillators in certain circum-
stances. Of these, the gas-filled tube, such as the thyratron, is prob-
ably most important. (The oscillating arc, once widely used, is now
virtually obsolete.) The transistor,**®* a semiconducting triode
employing a germanium crystal,?? appears very promising for the genera-
tion of oscillations in the low-power and medium-frequency region.
Although they are not strictly vacuum tubes, these devices are included
in the present treatment because they are closely related in operation,
are useful, and in some cases serve to illustrate basic principles.

1.3 Types of oscillators

Oscillators may be divided into two broad classes, harmonzic oscillators
and relaration oscillators. A majority of ordinary oscillators are
harmonic oscillators, which are characterized by nearly sinusoidal wave
forms and a relatively stable frequency of operation. They ordinarily
employ a tuned circuit or other appropriate resonator.f Relaxation
oscillators are characterized by wave forms which are markedly non-
sinusoidal and by a relatively unstable frequency of operation. They
usually have a period or frequency which is principally determined by
a resistance-capacitance product.

Ordinarily, a particular oscillator can be readily assigned to one or
the other class. In certain cases, however, the identification is not
clear, because the performance and circuit configuration of the two
classes merge smoothly together. In such cases the identification is
best made in terms of the roots associated with the differential equation
which describes the system.

Harmonic oscillators may be further classified as linear and non-
linear. Linear oscillators have the important property that all

* For all numbered references see the bibliography at the end of the book.

t The term resonator is used in a broad sense to include devices which have one
or more natural frequencies. Tuned circuits of inductance and capacitance,
sections of transmission lines, microwave cavity resonators, and piezoelectric
crystals are important examples of electrical resonators.






AMPLIFIER VIEWPOINT 5

In oscillators such as those used in induction heating the efficiency
of power conversion is of principal importance. In such devices the
driving system and load must be so matched that a large fraction of
the power supplied as direct current is delivered as alternating current
in the load. The resonator function is now secondary and serves
only to exercise reasonable control over the frequency. A large
value of @ is still desirable, because it facilitates frequency control
with a minimum loss of power. Great stability with respect to tem-
perature, etc., is rarely needed in such apparatus.

. 1.5 Amplifier viewpoint

Many problems in connection with the behavior of oscillators are best
treated by thinking of the system as a modified amplifier. A basic
property of any amplifier is that the power output is greater than the

Load
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Frc. 1.1. Oscillator represented as a self-energized amplifier.

input. Accordingly, it appears that we could obtain a considerable
power output in the absence of any separately supplied input by sub-
stituting a suitable fraction of the output for this separate input. The
situation is illustrated in Fig. 1.1.

This concept is fundamentally correct and, when suitably elaborated,
is extremely useful. In the first place, it immediately points out that
this sort of oscillator is representable as a closed ring, around which a
signal is transmitted in one direction. Many of the difficulties in the
study of oscillators arise from the fact that such a ring has no beginning
or no end.

Most amplifiers have the property that the power output exceeds
the power input over a considerable band of frequencies. Accordingly,
this concept, based upon conservation of energy, is inadequate to
account for the frequency of an oscillator, for it would suggest that a
desired output frequency could be obtained by supplying and later
removing it.

The situation is clarified by noting that the signal which is returned
from the output to replace the original input must be of the correct
phase as well as magnitude. In practical systems the phase varies
rather rapidly with frequency. Therefore, a given system satisfies
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currents. The resonator, in this case a simple tuned circuit or tank,
discriminates against the harmonics so that the voltages are nearly
sinusoidal.

In one class of linear oscillators the limiting action is produced by
one or more thermally sensitive resistors called thermistors. A small
tungsten-filament lamp is suitable for such application. In these
circuits the lamp resistance, and hence the circuit loss, is a function of
the effective current, as required for limiting. However, the thermal
inertia of the filament is such that the resistance is almost constant
over any one cycle so that little distortion of the wave form results.

In another class of linear oscillators the limiting action is provided by
a slowly varying bias applied to a suitable electrode of the tube, as in
an amplifier with automatic output control. A proper choice of
elements and biases leads to adequate limiter action without distortion.

1.7 Equilibrium conditions

In the system of Fig. 1.2 it is clear that equilibrium can exist only if
certain relationships exist between the gains and phase shifts of the
several sections. - The loss of the limiter plus the loss of the resonator
must equal the gain of the amplifier, or the wave will ckange in ampli-
tude until this condition is met. Similarly, the phase shift in the
resonator must be zero since the limiter and amplifier have already
been assumed to have zero phase shift. The frequency of operation
will automatically adjust itself to meet this condition. The dual
condition of zero net gain and zero phase shift is known as Bark-
hausen’s condition for oscillation.

1.8 The negative resistance viewpoint

It is well known that a system of inductances and capacitances can
oscillate if given an initial shock. However, in a passive system such
oscillations rapidly disappear or decay with the passage of time
because of the resistance which is present in all coils and to a lesser
degree in all condensers. It is clear that this decay could be avoided if
the positive resistance of the coil and condenser could be canceled by
addition of a suitable negative resistance. This principle is employed
in negative resistance oscillators, such as the dynatron, which use a
type of vacuum tube approximating a single negative resistance to
annul the losses of an associated coil and condenser and so produce
continuous oscillations.

The negative resistance viewpoint is convenient in the mathematical
study of oscillatory systems because the equation which describes the
behavior of a resistance, positive or negative, is so simple. It is neces-






THE CLOCK ANALOGY 9

It is profitable and enlightening to compare oscillators with clocks
because the operation of a mechanical device is more familiar and is
much more readily observed. Furthermore, mechanical timekeepers
have been carried to a very high state of development by the work of
many skilled investigators over a period of more than two hundred
years.

The heart of a mechanical timekeeper is the pendulum or balance
wheel, which corresponds to the resonator in its electrical counterpart.
Every effort is made to see that the period is constant, independent of
aging, temperature, barometric pressure, etc. In portable devices,
such as watches and chronometers, where the restoring force must be
provided by a spring, the balance wheel is used. Greater accuracy is
provided by the pendulum, whose period depends upon the length and
the constant of gravity. Maintaining the pendulum and associated
parts at constant temperature ensures that the length is constant.
Evacuating the system greatly reduces the energy loss of the swinging
pendulum, and ensures that the operation will be independent of
atmospheric pressure and humidity.

The driving system of a mechanical timekeeper also corresponds
closely to that of an electrical oscillator. In clocks, a constant prime
driving force is provided by weights, which correspond to the B supply.
Energy is delivered from the primary source to the resonator at appro-
priate intervals by means of the escapement or its analogue, the
vacuum tube.

In both systems a counting mechanism must be added to indicate
the total number of cycles which the resonator describes. In mechani-
cal systems this is conveniently incorporated in the gear train, which
transforms the great force and short travel of the source into the
delicate force over a great total distance required at the escapement.
In electronic clocks the desired result must be achieved in a more
complicated way, because the total charge drawn from the B battery
is not a satisfactory measure of the number of cycles. Moreover,
since the period of electric oscillators is ordinarily very short compared
to that of mechanical clocks, the counting process is substantially
more difficult. The customary procedure is to divide the frequency,
that is, take groups of cycles, by successive small integral factors until
the frequency is low enough to operate the synchronous motor of an
ordinary type of electric clock, which in turn employs gears for the
final reduction.

It has long been known that the period of a pendulum is not affected
if a large force is applied for a very short interval when the pendulum
is at the center of its swing. Clock escapements are adjusted to meet
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ance, and assorted network parameters. In most practical oscillators
the output is nearly proportional to one of the applied voltages, and is
aearly independent of other parameters. In other oscillators the
output depends upon the resistance of, and hence the temperature of,
a thermally sensitive resistor. In these oscillators the output depends
upon the ambient temperature and to a small extent upon other
factors.

The equation which will be taken as defining amplitude stability,
Sy, is
_ du/u
T da/A’

where A represents the amplitude of oscillation, expressible in voltage
or current at the output or other point, and u represents a circuit
parameter or applied voltage. On this basis a large value of S, for a
specified du corresponds to a small value of dA and therefore repre-
sents the desirable situation of a high degree of stability.

M (1.3)

1.11 Frequency stability

Most oscillator applications require only a very moderate degree of
amplitude stability. The frequency requirement, on the other hand,
is usually exacting and is often extremely severe. In fact, the search
for frequency stability represents a great proportion of all the work
which has gone into the development of vacuum-tube oscillators.

Virtually every parameter of the system has some effect on the
operating frequency of an oscillator. In general, however, the fre-
quency is principally controlled by a resonator or phase controlling
unit, and depends only slightly upon other influences. It is therefore
appropriate to define frequency stability, Sg, in terms of Fig. 1.2 by
the equation

d¢

- dw/wg’

where wg is the natural frequency, and dw is the frequency change
produced by a change of phase shift, d¢, external to the resonator.

From this definition it is clear that frequency is referred to the
natural frequency of the resonator, which is inferred to be absolutely
stable. Accordingly, eq. 1.4 serves to measure the frequency stability
of elements external to the resonator, that is, of the driving system.
Changes in the natural frequency of the resonator are conveniently
expressed by simple derivatives, such as

ST = dwo/dT, (1_5)

Se

(1.4)






TRANSIENT BEHAVIOR OF
LINEAR SYSTEMS

This chapter is devoted to a review of the transient behavior of
several simple linear systems; the inclusion of such familiar material is
justified by the fact that it forms the foundation of several later sec-
tions. Particularly interesting, and perhaps less well understood, are
the responses found when certain of the circuit elements take on nega-
tive values. The concept of a complex frequency is formulated and
discussed; and suitable notations are introduced, to be extended and
developed in subsequent chapters. Readers who wish additional
information on the subject of transients, particularly the physical
interpretation, are referred to the paper by Dudley.”®

2.1 Resistance and capacitance

The simplest possible transient occurs when an initially charged con-
denser is allowed to discharge through a pure resistor. It is well
known!?® that the charge ¢ remaining in the condenser at any time ¢
after the circuit is closed is represented by

q = goe V", (2.1

where qq is the initial charge, R is the resistance, and C is the capaci-
tance. of the circuit. This result evidently applies only for positive
values of ¢ because, prior to closing the circuit, ¢ = go by definition.
One is ordinarily concerned only with positive values of R and C;
however, eq. 2.1 is not so restricted, and it is instructive to plot it for
positive and negative values of both R and ¢.

It will be noted from Fig. 2.1 that the graphs of ¢q/go versus ¢ are
symmetrical and that they extend smoothly into negative values of
time. This feature corresponds to the physical fact that the circuit
behavior at positive values of time would have been unaltered had the
initial charge ¢o been appropriately changed and the switch closed at an
earlier instant.

13






RESISTANCE, INDUCTANCE, AND CAPACITANCE 15

through the coil L, which is assumed to have zero resistance. On
this basis, no voltage exists across C and G until the switch is opened.

At the instant { = 0 the switch is opened, and a transient is initiated.
Following conventional methods of transient analysis, one may show
that the current 7 at any later time is represented by the differential
equation

d*

LC —
dt?

+GL%+i=Q (2.2)

which has a solution of the form
1= Kleplt + ngpzl, (23)

where K; and K, are constants which may be determined from the
initial conditions,

1 = a + jo, (2.4)
and
P2 = a — jw. (2.5)
Substitution of the network parameters yields
a=—G/2C, (2.6)
wo = V'1/LC, 2.7)
and
1 G B
w—\/m—m—j- (2.8)

The quantities p; and p, are the roots of the algebraic auxiliary
equation which has the same coefficients as eq. 2.2, the differential
equation of the system. The real component, «, is called the decre-
ment or damping factor; it expresses the rate at which the transient
current increases or decreases with time. Because the transients in
passive systems always decrease with time, « is negative in such
systems. The imaginary component, w, exists only if the conductance
is sufficiently small; it represents the natural angular velocity or
frequency of the system, and is reduced to wo, the undamped natural
frequency if G = 0.

If the conductance is sufficiently small, that is,

G <2VC/L, (2.9)

the circuit is oscillalory or underdamped, and the current may be

written
1 = Ie™*cos wt + (a/w) sin wt)]. (2.10)
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Fig. 2.3. Variation of current in inductor of parallel GCL circuit (L =1, C = 1).
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VARIATION OF THE p ROOTS 19

illustrate this point, the loci of p1 and p; are plotted in Fig. 2.4, where
the arrowheads indicate increasing G, and the circle has unit diameter
because C = L = 1. To clarify the relation between the roots and
the system behavior a number of points from Figs. 2.3 and 2.4 are
given in Table 2.1. The nature of this relationship is further clarified
by Table 2.2.

Positive real frequency axis

Path of p, L o7\ AN~ Pathofp,

T T 1

T T
Negative real p axis ~\ 3 218 ‘) 7 Positive real p axis

4|56

Negative real frequency axis
F1G. 2.4. Variation of the p-roots in the complex plane as G is varied.
The four divisions of Table 2.2 include all simple oscillatory systems,

electrical or otherwise. Regions I and II, passive systems, have
been extensively studied and are not of principal interest here. Region

TABLE 2.2
RELATIONSHIP BETWEEN p-RooTs AND GCL SysTeEM BEHAVIOR

Region No. I 11 II1 v

Wave Form | Nonoscillatory | Oscillatory | Oscillatory | Nonoscillatory
decaying decaying expanding | expanding

w Imaginary Real Real Imaginary

B Real Imaginary |Imaginary | Real

System Type Passive Active

a Negative Positive

III covers systems which generate expanding sine waves. It is there-
fore identified with harmonic oscillators, as discussed in Chapter 1,
and serves to define the limits of that class.* Region IV includes

* It will be recalled that the action of the limiter in physical systems serves to
alter the average conductance as the level of oscillation increases, thereby avoid-

ing the absurdity of unlimited amplitude. This consideration applies also to the
nonoscillatory active systems of region IV.
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cal resonators, is

Total energy stored in the system
m
Energy lost per cycle from the system

Q=2 (2.18)
Because Q is a constant, characteristic of the system, it is necessary
that the energy losses and storage decrease similarly with time.
In low-Q systems the rate of energy loss is not uniform, and the loss
per cycle is comparable to the total stored energy. Nevertheless, as
may be shown by direct integration, eq. 2.18 is applicable provided the
numerator is taken as the average of the energy stored during the period
of one full cycle.

The selectivity parameter @ is also useful in describing the steady-
state behavior of a system. Under steady-state conditions the energy
loss is supplied by an external source, and eq. 2.18 is applicable pro-
vided the denominator is interpreted as the energy supplied. Apply-
ing this definition to Fig. 2.2, we have

Q = wC/G, (2.19)

V2
2r ave 77
where V is interpreted as the rms voltage and @ is assumed to be high.
This expression is the dual of the familiar wL/R of the series-tuned
circuit. It is readily shown that @ as given by eq. 2.19 represents
the ratio of the antiresonant natural frequency, wo, to the difference
between the two frequencies at which the phase angle of admittance
becomes 45°. 7 sl
Substituting eq. 2.6 to eliminate C/G yields the useful expression,
which is correct for all values of @ and types of systems,

Q = —w/2a. (2.20)

This definition is interpreted in Fig. 2.4, where the angle ¢ between the
horizontal axis and one of the conjugate roots is

¢ = tan™! ( — w/a). (2.21)

In these terms
Q = 1 tan ¢. (2.22)

Finally, the damping factor @ may be eliminated between egs. 2.17 and
2.20 to yield the useful relation

Q = (0/2f3) = 7/. (2.23)

Consistent with accepted conventions, the selectivity @ and the
logarithmic decrement & of a passive circuit are taken as positive,
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of a single distinct nonreducible inductance or capacitance increases
by one the number of initial conditions which must be specified ; hence
the order of the differential equations must also increase by one.
Repetition of this process shows that the order of each of the differ-
ential equations is equal to the total number of distinet inductances
and capacitances present in the network. (For the present purposes,
the effect of mutual inductance in physical transformers is most con-
veniently included by use of the equivalent T or II configuration.)
The foregoing ideas are illustrated in Fig. 2.5, which shows a four-
mesh circuit containing six reactive elements. This system evidently
requires a differential equation of the sixth order to describe any of its
currents or voltages. But there can be no more than four degrees of
freedom, because the four mesh currents shown are sufficient to specify

L2 Cg
L, YRR N Y E R
=, Ry Ly

Rl R3

Fi16. 2.5. Four-mesh, ladder-type network.

completely the behavior of the system. We might be led to the incor-
rect conclusion that the system requires a differential equation of the
eighth order (2n) from the fact that each of the meshes drawn con-
tains both inductance and capacitance. However, it is possible to
draw four independent meshes of which two involve only one type of
reactance, so that the number six is correct in the present case.

Regardless of which of the currents (or voltages) is solved for, the
same differential equation will be obtained. The auxiliary algebraic
equation will be of the sixth degree and will have as solutions the six
p-roots, which describe the properties of the system.

2.7 Modes of oscillation or motion

If an electrical (or mechanical) system is free from resistance (or
friction) an initial direct or oscillating current continues undiminished
with the passage of time. Such systems are sufficiently well approxi-
mated in practice by low-loss circuits that the results obtained from the
idealized system are useful.

The basic idea of modes of oscillation is illustrated in Fig. 2.6.
Foster’s reactance theorem°! indicates that there are two frequencies at
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and
aw® = —1/khRLC?. (2.35)

The relationship which must exist between the resistances is found
by equating eq. 2.35 to the product of eq. 2.33 and the square of eq.
2.34. Upon expanding the immediate result and collecting terms, a
second-degree equation is obtained in k£ and R:

L + 2hL + h*L + kL + khR’C(1 4+ h + k) = 0. (2.36)

Inspection shows that this equation can be satisfied only if £ is nega-
tive, as was previously indicated from physical reasoning.
Because w is assumed to be a real number, it follows from eq. 2.34
that
k| > h+ 1. (2.37)

Finally, the additional requirement that the factor « is negative may
be imposed. If this were not so, a simple exponential term expanding
without limit as time went on would be present, and sustained oscilla-
tions would not exist in any practical sense. The condition a < 0,
when applied to eq. 2.35, shows that B must be negative, because k
is negative. Physically, this condition indicates that an expanding
transient will result if a negative resistance completes the mesh con-
taining the two positive capacitances. It follows that sustained
oscillations can exist only if the coil resistance R is negative and the
condenser resistance kR is positive.

The interpretation of the results is simplified by making the further

substitution
«wL/R = Q, (2.38)

which makes Q negative if R is negative. Multiplying eq. 2.36 by
w’L, substituting eq. 2.38 and the square of eq. 2.34, we obtain
Q= 1+h+k
V—k—(1+h)?®

A still further restriction on k is now recognized, in that the de-

nominator of eq. 2.39 can be real only if
|k > (1 + R)2 (2.40)
The rapidity with which the undesired transient decays may now be

expressed by substituting eq. 2.38 and 2.34 in eq. 2.35 to obtain a
ratio between the magnitudes of the real and the imaginary roots,

(2.39)

o —1 —-Q
w  WhKRLC® ~ w*khL2C? (241)









30 NEGATIVE RESISTANCE OSCILLATORS

cally, it is the resistance which would be observed by superimposing a
very small alternating current upon the direct current at the point in
question. The simple ratio e/7 is much less useful and will not be dis-
cussed further.

It should be noted that no mention of the time variable was made
in the preceding discussion. Fortunately, the volt-ampere character-
istics of vacuum tubes and other useful negative resistance devices are
substantially independent of time. That is, the points of a curve
such as that of Fig. 3.1 are traced out in exactly the same manner
whether the current and voltage are varied rapidly or slowly. In
fact, a nonlinear device is identified as a resistance by the fact that the

o

— Current

Ohms or volts ——
o

r______
\
3

Fia. 3.1. Nonlinear volt-ampere curve.

voltage is a single-valued function of the current or vice versa.** A
general nonlinear impedance, in contrast, does not have this property
and comprises a linear or nonlinear resistance in conjunction with a
linear or nonlinear reactance.

It should be recognized that no physical device constitutes a perfect
nonlinear resistance, any more than a physical coil constitutes an
ideal inductance.6-138.257 In both cases parasitic effects are present
and become important if the frequency is carried sufficiently high.
These parasitic effects are quite complicated to analyze and are
ignored whenever possible. They ordinarily set the upper limit on
the frequency which a particular form of oscillator may produce, and
are important only at frequencies near that limit.

Negative resistance characteristics fall into two distinet and impor-
tant classes. When, asin Fig. 3.1, the voltage is a single-valued func-
tion of the current, the characteristic and the deviece which it repre-
sents are referred to as current-controlled. Devicesin which the current
is a single-valued function of the voltage are referred to as voltage-
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controlled. No negative resistance device can possess a volt-ampere
characteristic which satisfies both conditions, because this would
require the slope to be negative over an unlimited range of current
and voltage. Such a device would be capable of supplying infinite
power to a suitable load, in obvious violation of the principle of con-
servation of energy.

No device is known which fails to fall into one of the two classes,
but the existence of such a behavior is regarded as possible. A volt-
ampere characteristic which is not single-valued with respect to either
variable is shown in Fig. 3.2. It is interesting to note that the charac-
teristic sketched is stable with respect to a constant voltage in series
with a fixed resistance which lies in the range between the values cor-
responding to the dotted lines. Therefore, such a characteristic, if it

Fi1c. 3.2. Hypothetical characteristic.

existed, could actually be observed and plotted. It appears safe to
predict that such a characteristic, even if available, would be of quite
limited usefulness.

3.2 Negative resistance devices

A great variety of devices possess a region of negative slope in their
volt-ampere characteristic; that is, they possess the property of
dynamic negative resistance. Two of the more important of these are
described in the following paragraphs.

The Transitron. A conventional pentode, when connected to pro-
duce a two-terminal negative resistance, is referred to as a transi-
tron.45 219 A suitable arrangement and the corresponding character-
istic are shown in Fig. 3.3. Because the operation is sufficiently similar
to that for which tubes are designed, the governing tube parameters are
normally held to reasonable tolerances in manufacture. Therefore,
tubes of one type, at least from a given manufacturer, produce transi-
tron characteristics which are quite similar.

The shape of the characteristic depends upon the action of the
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frequency, because p is nonlinear. A second approximation is now
obtained by the knowledge that » must contain at least small harmonic
voltages because of the harmonics in ¢ which flow in the known imped-
ance of the resonant circuit. Moreover, in the normal arrangement
shown, the harmonic currents flow principally through the condenser
so that the harmonic voltages are effectively in quadrature with the
fundamental voltage.

The crucial step in the argument is based upon the modulating
properties of a general nonlinear impedance subjected to two or more
frequencies. It is well known that if a voltage containing a group
of frequencies f1, f9, f3, f4, etc., is applied to a general nonlinear imped-

|

+
0 U 2 v p Cx
i
(a) b
Fic. 3.5. Negative resistance oscillator: (a) general form and (b) specific
arrangement.

ance the resulting current will contain, among the array of all possible
harmonic and sum-and-difference terms, the following frequencies:

fo =, fa — fo, fa — fa, fo — 3f1, fa — 2fs, f4 — 3f1, f3 — 4fy,
f4 - 5f1, ete.

In the present case, f; may be taken as the fundamental frequency,
f2 as the second harmonic, ete. Accordingly, all the terms enumerated
above represent current of fundamental frequency contributed by the
nonlinearity of the characteristic. Moreover, the phase of the har-
monic voltages is such that these additional components of funda-
mental current are in quadrature with the principal one. Therefore,
tn a nonlinear resistance at the fundamental frequency the current and
voltage are not 1n phase if harmonics are present. That is, nonlinearity
gives to a resistance the essential properties of a reactance. Excellent
general discussions of this property have been given by Peterson23¢
and by Espley.?’

Returning to the negative-resistance oscillator, we see that the
action of the harmonic voltages upon the nonlinear resistance will
produce an effective phase shift between the fundamental components
of v and 7. Accordingly, the next approximation involves a change, in
this case a lowering, of the frequency and a readjustment of the volt-
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ance is lost. Therefore, it is possible for the harmonic currents to be
very large in comparison to the fundamental component. This fact,
which has sometimes been overlooked, is important in explaining
the behavior of negative-resistance oscillators. The variation of

Current
wave

Voltage wave l

F1c. 3.6. Construction yielding the current wave corresponding to an assumed
sinusoidal voltage.

fundamental current with voltage is shown in Fig. 3.7. It is seen
that the tube current is substantially proportional to the voltage for
small values, but rapidly decreases to zero as the voltage is further
increased.

< Tube
g
3
[&]
Tuned circult_. A
- /_
—_— /
Amplitude |

Fi16. 3.7. Variation with amplitude of the real components of current at funda-
mental frequency.

The equilibrium amplitude is indicated by point 4, where the real
component of fundamental-frequency current is equal to that produced
by the tube. This balance is not affected by harmonics produced in
the tube or the resulting frequency shift unless the resonator presents
an appreciable resistive component to the harmonic currents. Should
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this be true, the fundamental-frequency current produced by inter-
modulation in the nonlinear device is not in quadrature with the basic
term and the effective value of negative resistance changes.

3.6 Calculations of frequency

Several methods exist for calculating the extent to which the frequency
is modified by the presence of harmonic currents.!41% 217 One of the
simplest is due to Groszkowski,!?! who makes use of the fact that the
negative resistance device is, by its basic nature, unable to store
energy. Thisfact is represented in terms of Fig. 3.5 by the equation

Sﬁz‘dv =0, 3.1)

which states that over any closed cycle the net energy is zero. This is
necessarily true if the current is a single-valued function of the voltage,
and could be true in a special case for a multiple-valued function such
as that shown in Fig. 3.2. The important thing, however, is that it
must, by definition, be true for any voltage-controlled negative
resistance.

The next step is to assume that the voltage and current waves are
periodic and are expressible in the usual form of the Fourier series,

1= 2 I, sin (awt + ¢4) (3.2)
a=1
and
b = z Vs sin (bot + ¢3), 3.3)
b =1

where o is the actual operating frequency and ¢ and ¢ represent phase
displacements. A necessary consequence of eq. 3.3 is the equation

o

dy = z bwVy cos (but + ¥3) dt. (3.4)

b=1

Substitution in eq. 3.1 with proper attention to the limits yields

o, ®

Sﬁidv —0= L o/ 2 bwl Vi sin (awt + ¢s) cos (bt +ys) d2, (3.5)

a=1,b=1

where the double summation is taken to include all possible products.
Because the series are known to be absolutely convergent for the func-
tions of present interest it is possible to interchange the order of sum-
mation and integration and to apply a well-known trigonometric
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identity to obtain

@,

0= Y #boleVs [ (sin [(a+ bt + g0 + il
a=1,b=1
+ sin [(@ — b)wt + ¢pa — ¢pl} dt. (3.6)

This integral is zero for all terms in which a # b, because the integral
describes a discrete number of complete cycles in the range of interest
and thus represents no net area. Therefore, terms in which a = b are
rejected, and the substitution of a for b is made to permit complete
evaluation of the integral. ‘

©

0= Y jaul.Vs [ sin (200t + ¢a + ¥l
a=1
+ sin [¢a - ‘I/a]} dt. (37)

The time variable term again can make no contribution over a
complete cycle, so the expression reduces to

@

0= ) $aul.V, (sin (6 — Vo))

a=1

2
= (3.8)
w

Division by the various quantities which are independent of a leads
to an important result

o

0= Z al Ve sin (¢a — Va). (3.9)

a=1]

Although the expression just derived does not give the operating
frequency explicitly, it does permit calculation of this frequency for
any particular circuit. The first step in this procedure is to substitute

0, = ¢ — '/’a, (310)

which represents the phase angle of the tuned circuit at the funda-
mental and harmonic frequencies. Moreover, reference to Fig. 3.5a
shows that

Vesin 8, = 1,X,, (3.11)

where X, is the reactance of the tuned circuit. Therefore eq. 3.9
reduces to

@

0= 2 al 2X,. (3.12)

a=1
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by eq. 3.23
1 — ¢ =0.01. (3.24)

That is, the operating frequency differs from the natural frequency by
one per cent.
By a corresponding analysis based on impedances and currents we

may obtain
2 2

1 ©voa — Ng
1_,5=2722a§=:2FT (3.25)

where the new parameter is defined by
Ng = Ia/Ilt (326)

Because the amplitude of oscillation, and hence the ratios of har-
monics to the fundamental current, is established by the conductivity
G and the negative resistance characteristic, we may interpret eq.
3.25 as showing that the frequency deviation due to nonlinearity
varies inversely with the square of the resonator . This is a very
important and general conclusion.

PROBLEMS

8.1. Show that the definitions of resistance in Section 3.1 are equivalent.

8.2. Consider a volt-ampere curve similar to that of Fig. 3.4b but having the
shape of one full sinusoidal cycle. Evaluate e¢/i and de/di with respect to the
center as an operating point.

8.3. Assuming that the above volt-ampere characteristic covers a total range of
100 volts and has a maximum negative conductance of 200 micromhos, and that
the associated passive conductance is 100 micromhos, calculate the amplitude of
oscillation by the method of Section 3.5.

8.4. Using eq. 3.25 and the current distribution associated with Prob. 3.3,
calculate the fractional frequency shift which exists if the passive circuit has a @
of 50.

8.6. In a general way, show why a simple series-resonant circuit cannot produce
stable oscillations if connected to a voltage-controlled negative resistance.
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sufficient to represent this characteristic symbolically as
i1 = F(v), (4.1)

where v represents the difference between the instantaneous potential
and a bias voltage V. The other elements of Fig. 4.1 are readily
identified with the passive linear tank circuit. All capacitances,
including those of the tube, coil, and wiring, are lumped in C. All
losses, including those of the coil, condenser, and any useful load, are

0.01

Plate current
iy, amperes

T

10 20 vV, 30 40 50
Plate potential V, volts

o
(=4

F16. 4.2. Characteristic of a tetrode as a dynatron (idealized).

accounted for by the shunt conductance G. The inductance of the
system is represented by L.

4.2 The differential equation

The differential equation which describes this system may be written
in several forms. For present purposes, however, it is most convenient
to use the form which results from application of Kirchhoff’s current
law

F(v) + C(dv/dt) + Gv + ¢ = 0, (4.2)

where ¢, the current through L, is related to the voltage across the
system by the auxiliary equation

v = L(di/dt). 4.3)
4.3 Solution by isoclines

The differential equations above involve both current and voltage,
which vary with respect to time. Ordinarily we would eliminate
either v or ¢ between these equations and proceed to determine the
variation of the other with respect to time. In the present case,
however, the undefined function F greatly complicates this procedure.
Accordingly, it is expedient to eliminate the time variable and study
the relationship between v and ¢, following a method devised by
Liénard'® and explained very clearly by le Corbeiller.®¢ The result-
ing plot is appropriately called a cyclogram.
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k is fixed by eq. 4.8, G is known, and F(u) differs from the known F(v)
only by a change of abscissa. The resulting plot of —f(u) in Fig. 4.3
is somewhat flatter than the original F(») because the positive con-
ductance G partially annuls the negative conductance of the electronic
device. Moreover, a change in the ordinate scale to conform to the
new abscissa is necessary. The curve is translated so that the origin
of Fig. 4.3 corresponds to Vg, which is usually chosen near the center
of the negative slope region. The numerical values used in Fig. 4.3

001
()
g
510005
T a
e
-f(U)
b c
=25 -125 o 0 d 12|R 25
I T 1
-001 Wes u 0 0005 001
~0.005
. -001

F16. 4.3. Construction of isoclines.

correspond to those of Fig. 4.2 with the additional parameters G =
2 X 10~* mho (5000 ohms), L = 2.5 X 102 henry, C = 4 X 10710
farad, and k = V/ L/C = 2500. These parameters were chosen in
conjunction with the negative resistance characteristic, which has a
value of —2500 ohms at Vy, to correspond to reference point 6 of
Figs. 2.3 and 2.4. The associated oscillation, although considerable
distorted, is harmonic in character.

The point a anywhere on the plane is now chosen arbitrarily, and
construction lines are drawn as shown. It is seen that the length of the
line segments are given by

bc = u; ad = i; and ac = i + f(v). (4.12)
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From eq. 4.11 we know that the slope is given by
di/dv = —be/ac. (4.13)

Thus, the slope of the segment ba is the negative reciprocal of that
called for in eq. 4.13. It is easily shown, by use of similar triangles or

otherwise, that the slope of the segment ae, which is perpendicular to

ba is exactly —bc/ac as required. It should be noted that this con-
struction is correct only if the coordinates are such that v = 1 and 1 = 1
occupy an equal distance. The significant fact is that whenever ¢ and
U have the values corresponding to point a the values are changing
in such a way that the ¢ vs. U curve is tangent to ae.

The isoclines, of which ae is only one example, are easily con-
structed by means of ruler and compasses as follows: (1) Select an
arbitrary value of usuch asd. (2) Draw a vertical line corresponding
to this value of u. (3) From the intersection of this line with the
function curve, draw a horizontal line to the 7 axis. (4) Using this
point, such as b, strike a series of short ares which intersect the original
vertical line. All these arcs cross the vertical line at the correct
angle and are therefore isoclines. Figure 4.4 shows a complete set of
isoclines constructed on the same coordinates as Fig. 4.3.

4.5 The cyclogram

It remains to determine the direction or sense of rotation which cor-
responds to an increase of the time variable. This is found by refer-
ence to eq. 4.3, which shows that an increase, that is, positive incre-
ment, in time requires an increase, that is, positive increment in 2
whenever » and, hence, U is positive. This requires upward motion in
the right half plane. Hence counterclockwise rotation in Fig. 4.4 cor-
responds to tncreasing time.

The entire performance of the system, including the build-up from
arbitrary starting conditions and the steady state, is described by
isoclines such as those of Fig. 4.4, which shows the behavior that follows
from two different starting conditions. These curves are called cyclo-
grams. Note in particular that the steady state corresponds to a
closed curve which is nearly symmetrical and approximately circular.
The closed curve is exactly symmetrical if the original F(») is sym-
metrical about the operating point. It approaches a circle as the
function —f(u) approaches the horizontal axis. It will later be seen
that a nearly circular cyclogram is associated with a quasilinear
system in which £ is relatively small.
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4.6 Effect of parameters

Our previous investigation of linear systems showed that the behavior
is greatly affected by the relative value of the circuit parameters. A
corresponding situation exists in nonlinear systems, as shown by inspec-
tion of eqs 4.6, 4.8, and 4.11. The horizontal scale of Fig. 4.3, and
hence the shape of the nonlinear curve and the distribution of the
isoclines, is governed by the value of k£, which in turn is governed by the
L/C ratio, and is closely related to the damping factor «. In making
these comparisons it should be further noted by eq. 4.3 that v and ¢ are
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F16. 4.4. Isocline diagram for harmonic oscillation. Fig. 4.5. Isocline diagram
for relaxation oscillation.

related by the inductance L. Accordingly, variation of L and C leads
to a number of changes in the circuit behavior.

To illustrate the effect of a significant change of parameters, let
us preserve the conductance G and the characteristic of the electronic
device. The choice of L = 4 X 1072 henry and C = 2.5 X 10711
farad yields k = 40,000 and leads to a considerably different behavior,
as shown in Fig. 4.5. These parameters correspond to reference
point 8 of Figs. 2.3 and 2.4, and therefore represent a case of relaxation
oscillation.

Several marked differences exist between Figs. 4.4 and 4.5. Most
conspicuous is the marked change in the scales of 7, and U, with conse-
quent emphasis of the ordinate scale. The actual voltage excursion is
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rate at which the cyclogram is described and thereby permits the
current and voltage wave forms with respect to time to be constructed
by integration. Although somewhat tedious and inelegant, this
method has the merit of practicality in many cases.

4.8 Van der Pol’s equation

Important contributions to the nonlinear theory of oscillations have
been made by van der Pol.??? His method is analytical rather than
graphical, and accordingly is limited to negative-resistance character-
istics which are capable of mathematical expression throughout the
range of interest. Quite frequently, oscillators are operated near

e i=—av+bv?

_ _— Uo
i, =(G-ajv +bvd Ti v, '
~2.0 -10 u 1.0 \/—2.o|
/ E/ T v Th 2h
|

/ —

Fi16. 4.6. Cubic volt-ampere characteristic and related functions.

the middle of the negative-resistance region of the electronic device.
In such cases a simple cubic equation of the form

i =F@) = —av + b® (4.20)

gives a fair approximation over the region of interest. Such a charac-
teristic is shown in Fig. 4.6. The cubic representation is a very rough
approximation to typical experimental curves such as that of Fig.
4.2, and results obtained thereby cannot be expected to explain all
observed effects. However, a great deal of useful information is
obtained by the study of this particular case. And the complexity
of treating a more general case is such as to exclude it from this book.

The differential equation most suitable for this development is
obtained directly from eq. 4.20 and Fig. 4.1:

—av + bv® + C(dv/dt) + Gv + (1/L) /v dt=0. (421)
Differentiating and multiplying by L gives
LC(d%/dt?) + [L(G — a) + 3bLv®(dv/dt) + v = 0. (4.22)

This differential equation is basic but involves coefficients which are
inconveniently complicated. By several successive changes of vari-
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ables it is possible to obtain coefficients which are much simpler. This
procedure is desirable because it substantially reduces the difficulty of
solving the differential equation.

The first step in this reduction is a change in the time variable
accomplished by the substitutions

T = wgt, (423)
where L
wo = 1/VLC. (4.24)
Introduction of this variable leads to*

2 —_
d (a=GLdv 3L ,dv +0=0. (4.25)

dr? VLCe dr  NLe dr
The next step is the simplification of the second term by substitution of
the variable

e=(a—G) VL/C = (- Qul = (a— G)/wl, (4.26)

which defines e as the reciprocal of the negative @ of the system, exclud-
ing the nonlinear term b. The magnitude of e will therefore determine
the rate at which oscillations expand or shrink, and whether they will
be harmonic or relaxation in character. Substitution of € yields

d? d L ,d
;;)—ed—:+3b\/%v2d—3+v=0. (4.27)

The remaining step in the simplification involves a change in the

dependent variable
v = hu, (4.28)

where

h2

h = V(a — G)/3b. (4.29)

" 3 VIL/C

* This result may be obtained by a very general mathematical procedure.
However, elementary methods serve to justify the present use. Differentiating

eq. 4.23 gives
wodt = dr.

Combination with the differential of voltage yields
dy/dt = wo(dy/dr).
Differentiation with respect to ¢ gives

d  dav
ar " “®atar

2
w2 2.
* 3,2

w2 39
drdr
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The resulting differential equation, generally referred to as van der
Pol’s equation, is fundamental, and describes a wide variety of systems

d*u du
i e(l — u?) 5 +u =0. (4.30)
4.9 Solution of van der Pol’s equation

Van der Pol in his original paper®?? offered two independent methods of

solving eq. 4.30. These are now generally referred to as the methods
of variation of parameters and equivalent linearization. A good dis-
cussion of available methods of solution is presented by Keller.1¢s

The following paragraphs present a solution by the method of varia-
tion of parameters. In this method it is assumed that the conductance
term is equivalent to a linear conductance which depends upon the
amplitude of oscillation. The analysis involves separation of the
original second-order differential equation into two distinct first-order
differential equations, one of which determines the amplitude and the
other the frequency of oscillation. In the present case the analysis
begins by assuming that the voltage across the antiresonant circuit of
Fig. 4.1 may be expressed by the equation

v = hA(r) rcosT or u = A(r)-cosr, (4.31)

where A(7) represents an amplitude which varies relatively slowly with
respect to time. Specifically, the amplitude shall not vary appreciably
during any one cycle. This statement is expressed mathematically
by the inequality

dA/dr K A. (4.32)

To justify this assumption it is necessary to restrict the conductance
parameter e to small values by the additional inequality

e KL 1. (4.33)

This restriction is of great importance because it limits the study to
systems which produce harmonic oscillations. Such systems are
referred to as quasi-linear because the nonlinear conductance or
resistance terms are small compared to the associated susceptance (or
reactance) terms, even though the conductance (or resistance) charac-
teristic itself is quite curved in the region of interest. Alternatively,
we may say that a quasi-linear system is also a high-Q system because
the stored energy is large compared to the energy gain or loss per
cycle.

The analysis proceeds by noting that the solution assumed in eq.
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which leads to the simple differential equation
d
T re@—1 =0 (4.42)
dr

The solution of this equation, as found by ordinary methods, is
z =3[ 4 C0) (4.43)

where 74 is the constant of integration, which depends upon the initial
conditions, and e is the base of natural logarithms. Elimination of
leads to

4

= m‘(’—""o) (4.44)

A2
and
2cosT

u

which describe the complete process of build-up and steady state of
oscillation.

If, as is usually the case, oscillations start from a small amplitude
1t is necessary to assign 74 a large positive magnitude. The denomina-
tor then has a large initial magnitude, which decreases with time to a
final value of unity. During the period of small amplitude the
exponential term is large compared to one, and the oscillation takes
the approximate form

u = 2[e"v%[e? cos 7. (4.46)

The significant factor in this equation is the exponent er/2 which gives
the rate at which the oscillations expand with respect to time. The
correctness of this result is readily verified directly from eq. 4.30,
since in the interval in question u? is negligible compared to one.
Substitution of the original variables leads to the final result

_ [4fea -G cos (wol + ¢o)
(50 et e

where the parameter ¢, takes account of the oscillation phase at the
initial instant specified by t,. In terms of the original parameters,
the final peak amplitude v, is given by

vo = hdy = 2h = \/g (@ — G)/b. (4.48)
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and has a magnitude which depends upon the voltage. Therefore, in
terms of the fundamental frequency the nonlinear resistance may be
replaced by a linear resistance, provided the magnitude is suitably chosen
for the voltage in question. This is the basic idea of the method of
equivalent linearization. To apply this idea to oscillators it is neces-
sary to generalize it to include the effect of a nonsinusoidal voltage
wave, which consists of fundamental and harmonic terms. Again
the current wave contains terms of fundamental and harmonic fre-
quencies. However, as shown in Chapter 3, the current and voltage
of fundamental frequency are no longer in phase. Accordingly, the
nonlinear resistance now requires a reactance as well as a resistance
for its complete representation. Nevertheless, for any specified
combination of fundamental and harmonic voltages, there is a linear
impedance which draws the same fundamental current as does the
nonlinear resistance. This impedance may be used as an undeter-
mined coefficient, subject to final evaluation, to determine the fre-
quency and amplitude of the steady state of oscillation.

This method as given by van der Pol3?? will now be applied to solve
eq. 4.30 for the steady-state oscillation. The first step is to multiply
each term by u dr and to integrate over the not-yet-determined period
of one full cycle:

[} 2 ] ‘] 8
/ud%‘dr—/ eud—"d«r+feu3d—“dr+/ udr =0, (4.51)
o dr ()} dr 0 dr 0

where 0 is an angle nearly equal to 2z which corresponds to one full
period. The second and third terms vanish, as is easily shown by
noting that

udu = } d(u?), (4.52a)

widu = Ld(u), (4.52b)

and by definition u has the same value at the beginning and end of any
period.
The trial solution
u=Acosr (4.53)

identically satisfies the remaining terms of eq. 4.51, without restriction
on A save that it be constant. Therefore, to the order of approxima-
tion that the voltage wave is cosinusoidal, the operating frequency is
equal to the natural frequency of the resonator.

The amplitude is determined by multiplying each term of eq. 4.30 by
the quantity (du/dr)dr and integrating over the cycle
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Use of the relation 7 = wt, transforms this expression to

wl=2x 2 wt=2rx
1 (d
/ — —u) wo dt = [ , Weodt (4.62)

t=0 wo? \di t=

The next step is to assume that the voltage wave is represented by the
Fourier series

u = z A, cos (awt + ), (4.63)
a=1
whose derivative is
du ‘o .
prini (,Zl awA, sin (awt + ¢,). (4.64)

Substitution in eq. 4.62 and integration yields

RN 2 24 9 NS 2
— a’wA,? = rw A2 4.65
wo 021 ’ azl ( )

which leads to the compact and important expression

a= ® Aa2
= Z—— (4.66)

2 a’4,?

a=1

Consistent with the notation of Chapter 3, let
© = two. (4.67)

Forming 1 — w?/we? and using eq. 4.67, we have

(a® — 1)A,2 ,
1 — g2 =20 ) (4.68)
a4 ,?
a=1

where the combination of infinite sums is justified on the basis of
absolute convergence from physical considerations. Although this
result was derived on the basis of a cubic characteristic, it is correct
for a single-valued characteristic of any shape. With the notation

ma = Aa/A 1, (4~69)
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eq. 4.68 reduces to

ma?(a® — 1)
1 — 52 = o8=2 . (4.70)

a= o

1+ 2 a’mg?
a=2

Because the assumed system is quasi-linear, the harmonics in the volt-
age wave are small. For this reason the infinite sum in the denomina-
tor is negligible compared to unity, and eq. 4.70 reduces to eq. 3.23,
of ,the previous chapter, as it should.

The frequency correction may also be expressed in terms of the Q of
the system and the magnitude of the curvature of the original cubic
function. It is known from eq. 4.47 that the voltage is given approxi-
mately by _—

v = vy oS woT = V4 (@ — G)/b €OS wor. (4.71)

On this basis, the current wave through the nonlinear resistance is,
by eq. 4.20,

i = —avy cos wot + bug® cos? wyt, (4.72)
which reduces to

1= (%bvoa - avo) cos wol — %bvos cos 3wot. (473)

In terms of eq. 3.26,

ny = 13/i1 = —bve®/(3bve® — 4a) = — % (a — G)/G.  (4.74)
Thus,
1 —¢=(a— G)?/(16QGY), (4.75)
where »
Q = wC/G = (1/G) VC/L (4.76)
is a property of the passive elements only, and
a—G@=¢VC/L. (4.77)
Combining yields
1 — ¢ = /16, 4.78)

which is in agreement with a result given by Kryloff and Bogoliuboff!??
on page 40 of their book. Because e is the reciprocal of the small-
signal selectivity @, it is clear that @ should be kept high if good fre-
quency stability is required.
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4.12 Relaxation oscillations

In Chapter 2 it was shown that critical damping in the parallel circuit
of @, C, and L occurs when the total conductance satisfies the equation

G =2VC/L. (4.79)

The boundary between harmonic and relaxation oscillations was
defined as the negative of this value. In the present case the total
conductance at small signals is given by (G — a). Consistent with
eq. 4.77, relaxation oscillations* will occur if and only if

€> 2. (4.80)

Specifically, if condition 4.80 is satisfied a small disturbance will
increase without reversal until its magnitude is sufficient to involve
the nonlinearity of the characteristic. If ¢>> 2, the first cycle is
almost identical with all the following cycles. Experimental data
showing the variation of oscillator behavior as ¢ is varied and a very
clear discussion of the effects involved are given by Appleton and
van der Pol.13

Unfortunately, the mathematics of relaxation oscillations is in a
most unsatisfactory state of development. For reasons that are not
obvious, the methods just outlined, and all other known methods, fail
to yield useful solutions. From practical experience, as well as from
the cyclogram method, it is known that the solution is periodic, and
that a Fourier series containing only a few terms gives a good approxi-
mation to the wave shape which is generated. However, the period
does not depend in any simple way upon the circuit parameters, and
no practical analytic means has been found for evaluating either the
period or the relative amplitude and phase of the components.

The wave form produced by a typical relaxation oscillator is shown
in Fig. 4.8. It is seen to be characterized by regions of small slope
alternating with regions of large slope. This property forms the basis
of a partial mathematical solution, which gives a certain amount of
‘insight into the behavior. Because the region designated I in Fig.
4.8 is nearly straight, the second derivative (curvature) term is small,
and the behavior is governed principally by the second and third
terms of eq. 4.30. Neglecting the first term of eq. 4.30 for treatment

* Van der Pol in a basic paper3?® gives an excellent discussion of the fundamental
properties of relaxation oscillators. Cyclograms and an analytic treatment similar
to that given here are presented. However, it is inferred that ¢ = 1 is the bound-
ary condition; and the apparantly erroneous statement is made that a finite value
of inductance is required for any form of oscillation.
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integrates directly to
du/dr = e(u + K,) — e(u?/3). (4.84)
This expression is not readily integrated, but is capable of useful

interpretation. In particular it shows that the slope du/dr must be
zero for

u+ K, = u%/3. (4.85)
Making the additional arbitrary assumption that K; = —1 reduces
this expression to
3u — 3 = u?, (4.86)
which is satisfied approximately by
u = —2.104. (4.87)

Near the middle of region I1I, %2 is small compared to one; and it is
possible to simplify eq. 4.84 by omission of the last term. The
remaining equation is readily integrated to yield

u = Kqe" — K,. (4.88)

The new constant, K, gives a choice of sign or direction but is other-
wise not important because it is interchangeable with a shift of the
T axis.

The plot of this equation for K = —1, ¢ = 20, and K; = —1 as
before is shown in Fig. 4.9b. The marked change in abscissa scale with
respect to Fig. 4.9a is especially noteworthy because it indicates the
extent to which different terms of the original equation vary in impor-
tance during the oscillation cycle. In the range —3 < u < %, cor-
responding to region III of Fig. 4.8, eq. 4.88 is a relatively good
approximation to the actual behavior of the system.

Figure 4.10 shows the results of a point-by-point calculation of eq.
4.84. 1t is, of course, indistinguishable from Fig. 4.9 in the central
region, and satisfies the condition of eq. 4.87. Superimposed upon this
figure are the data of Fig. 4.9a, adjusted to the same abscissa scale
and arbitrarily made to coincide at u = 1. It is seen that the several
curves which have been calculated can be fitted together to describe
substantially the entire cycle of Fig. 4.8.

Additional insight into the situation is gained by reference to Fig.
4.6. Tt is seen that, for |u| > 1, the dynamic resistance of the total
system is positive. In this region, therefore, the system is semistable;
and the process of decay or relaxation occurs at a relatively slow rate.
as |u\ decreases toward unity, the dynamic resistance increases toward
infinity; that is, the decay current becomes independent of the voltage.
At ’u| = 1 a marked change occurs, corresponding to the transition









53

FEEDBACK SYSTEMS AND
STABILITY CRITERIA

This chapter is devoted to an outline of existing feedback theory with
particular emphasis upon the way it affects oscillators. This material
is included for two reasons. (1) Negative feedback is applied directly
in a number of oscillator circuits in the interest of stability. (2)
Existing theory is highly developed and is sufficiently general to include
cases of positive as well as negative feedback.

5.1 Nature of the problem

It is well known that vacuum tubes are neither as linear nor as stable
as might be desired for many applications. In amplifiers, nonlinearity
leads to nonlinear distortion and intermodulation effects; whereas
changes of the parameters lead to variation of gain, impedance, and
frequency response. Corresponding difficulties appear in oscillators
and other devices which employ vacuum tubes. Because it has not
proved feasible to construct vacuum tubes which are substantially
free from these defects, much work has been done to develop circuits
in which the important properties are insensitive to the variations of
the parameters of the tubes employed.

In amplifiers it is possible to secure a remarkable reduction in the
degree of nonlinear distortion by properly returning a portion of the
output signal to the input terminals. The advantages of this arrange-
ment, which is referred to as inverse or negative feedback, appear
first to have been recognized by H. S. Black.?® The mathematics of
feedback systems has been extensively studied by H. Nyquist,??
H. W. Bode,* and others.208 237

A relatively large amount of feedback must be applied to an ampli-
fier if a significant improvement in stability and linearity is to be
secured. It then becomes difficult to avoid oscillations, which would
seriously interfere with the operation of the circuit as an amplifier.

64
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Much of the work which has gone into the analysis of feedback systems
has been directed toward overcoming this tendency toward uncon-
trolled oscillation. Fortunately, the analysis is sufficiently general to
be a substantial aid when oscillation is desired as well as when it is to
be avoided.

In amplifiers, as well as in oscillators, it is necessary to define the
system under consideration with considerable care before we can make
exact statements about it. For instance, the output load impedance
may or may not be considered a portion of the amplifier, depending
upon the conditions. Asan example, consider a phonograph amplifier,
which receives a small signal from the pickup device and delivers a
much larger signal to the loudspeaker; here it would appear that
neither pickup nor loudspeaker was part of the amplifier. However,
the performance of the loudspeaker will depend upon the internal
impedance of the device which drivesit. Therefore, we must consider
both pickup and amplifier in determining this impedance. Also, the
behavior of the pickup depends upon the impedance into which it
works. Therefore, the loudspeaker as a load must be considered as
part of the amplifier in so far as it affects the input impedance.

When feedback is used the input and output impedances are likely
to depend upon the associated load and source impedances, respec-
tively. Moreover, the behavior of the amplifier itself may be con-
siderably affected by these impedances. For example, an amplifier
which operates quite satisfactorily under normal conditions may
oscillate if the load or the source is disconnected. Therefore, in defin-
ing the amount of feedback and other properties, it is usually necessary
to consider the entire amplifier system.

5.2 Effects of feedback

The various aspects of feedback are conveniently discussed with
reference to Fig. 5.1, which shows a conventional amplifier in which
feedback is produced by the relatively high impedance Zs. This
arrangement is referred to as shunt or voltage feedback because the
feedback path is connected in shunt with both input and output
circuits and because the feedback action depends upon voltage rather
than current.

The analysis assumes that the system is substantially linear for a
sufficiently small input voltage V3. If the system is stable, this
assumption is justifiable; if unstable, the analysis serves only to indi-
cate that fact. To simplify the analysis it is further assumed that
Z, is very large.

The amplification or gain without feedback, p, is readily determined by
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this grid, a voltage uV, would be produced at the output terminals,
and a voltage SuV, would be developed at the point where the cut
was made. Moreover, it is seen that the ratio of returned to supplied
signal would be the same and equal to uB if the circuit had been
opened at some other point.

It should be pointed out that Fig. 5.1 represents a single-loop feed-
back system in which the loop transmission is zero if Zs is open or if
any of the vacuum tubes is disabled. Conversely, a multiple-loop
feedback system is one in which feedback may occur through two or
more distinet paths. Multiple-loop systems are quite complicated
and are discussed further only in the final section of this chapter.

A single-loop system is absolutely stable if the feedback loop is opened at
any point; therefore, uB ts a measure of the behavior which will result when
the loop is closed.

5.3 Increase of stability

In the absence of feedback the overall amplification of an amplifier
depends directly upon the condition of the tubes and the various
related elements. Where several tubes are used in tandem, the
amplification may vary rather drastically because all the tubes are
likely to respond in the same way to such effects as heater voltage,
plate voltage, or aging; and the overall amplification involves these
separate effects as a product. This is represented mathematically by
eq. 5.1 in which the amplification u involves k as a direct factor.

One of the most important properties of feedback is its ability to
improve stability. The truth of this statement can be seen in a gen-
eral way by rewriting eq. 5.5 in the form

1
[ —
SNV ©0)
It is practical to establish the condition 8>> 1/u, in which case the
amplification with feedback, u’ is substantially equal to (—1/8) and
hence is nearly independent of the condition of the tubes and in fact
of everything except 8, which involves only Z3 and Z;.

The improvement in stability is determined quantitatively by com-
paring the differential fractions du/x and du’/u’. The fractional form
of the differential is appropriate because we are interested in the ratio
rather than in the absolute amount by which amplification is reduced.
Differentiating eq. 5.5 leads to

_ (I = pp)du + uB du

d !
. (1 — pp)?

6.7
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which, when divided by eq. 5.5, yields

w _ 1 (5.8)

This is an important relationship because it shows that feedback has
improved the stability, or reduced the variation of the amplification
due to any cause, by exactly the same factor that it reduced the
amplification itself. The improvement results from the fact that, with
feedback present, the overall amplification depends principally upon
passive elements, Z3 and Z;s in the present example, which can be made
much more stable than vacuum tubes.

In practice, the improvement of stability and other benefits of
feedback are secured by first designing an amplifier which has an
amplification considerably in excess of that actually desired. The
excess amplification is then exchanged for improved stability, linearity,
etc., by application of suitable negative feedback, based upon stable
linear elements. However, there are grave practical difficulties in
securing large amounts of negative feedback, especially across wide
intervals of frequency, so that we should not enter lightly into such
an undertaking.

5.4 Reduction of noise, hum, and distortion

Feedback may be employed to reduce the voltages which appear in
the output due to distortion, hum, and certain forms of noise. We can
prove this statement by referring to Fig. 5.1 and assuming that the
output contains an undesired term, Vs, in addition to the desired sig-
nal, kV,. In the absence of feedback the output voltage is given by

Vo= (Vs + kVy) Zy/(Zy + Z,). (5.9)

When feedback is applied the output of both desired and undesired
voltages is divided by the factor (1 — uB) as shown by insertion of V;
in the equations which lead to eq. 5.5.

The useful signal output may now be restored to the value which
would have existed in the absence of feedback either by increasing the
input signal or by adding at.the input a low level amplifier which s
free from distortion, hum, and noise.

In practice, this increase of amplification is usually incorporated
within the feedback path so that the pertinent comparison is between
two amplifiers which have equal overall amplification and differ in
the presence or absence of feedback. Because the added amplification
system operates at a small signal level, it is relatively easy to meet



MODIFICATION OF INPUT AND OUTPUT IMPEDANCES 69

the requirement of negligible distortion. Therefore it is quite practical
by use of feedback to reduce distortion to the extent of the factor
(1 — uB), which may be made large.

Feedback is equally effective in reducing harmonic distortion or
intermodulation effects which result from the simultaneous presence
of signals, whether the distortion arises in the output tube or in any
other tube of the amplifier. Such reduction is of considerable impor-
tance, especially if none of the tubes is driven to the overload point
and if several signals are present, as in telephone repeater amplifiers.
If, however, some tube is overloaded, so that a violent curvature in
the operating characteristic is involved, the action of feedback may
produce objectionable intermodulation effects and harmonic distortion
terms which would not otherwise be produced.

The conduction of vacuum tubes results from the motion of electrons
in the space between the cathode and the anode. Because electrons
carry a finite charge and are emitted in a random manner, the current
flow is not perfectly smooth, but fluctuates in an irregular manner
about some average value. This phenomenon, which is referred to as
tube noise, is discussed more fully in Chapter 15. It sets a lower limit
on the magnitude of signals which may be amplified by means of
vacuum tubes. Ordinarily, the limit is established in the first tube
where the signal is smallest.

We may readily show that feedback is unable to reduce noise pro-
duced in the first tube by comparing a feedback amplifier with one
which does not employ feedback. We assume that both have equal
amplification, that both employ the same input circuit and tube, and
that all the noise is produced by the first tube of each amplifier.
Because of the equality of amplification, both amplifiers produce the
same output from a given input signal. And both produce equal
noise outputs because the intrinsically higher amplification factor of
the feedback system leads to a proportionally higher noise value.
When both the amplification and the noise values are divided by the
factor (1 — uB) they correspond exactly to those of the nonfeedback
amplifier. Thus we conclude that feedback is of no help in reducing
notse produced in the input stage.

5.5 Modification of input and output impedances

Feedback has a profound influence upon the effective input and output
impedances of an amplifier. We may show that this is true by refer-
ence to Fig. 5.1. In the absence of feedback, the output impedance is
simply Z,. That is, a current Vo/Z, will flow as a consequence of
applying a voltage V, to the output terminals when V3 is zero. When
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When the negative feedback path is not effectively in parallel with
the positive one the combination constitutes a multiple-loop feedback
system. The general treatment of such systems is quite complicated,
but practical cases are ordinarily sufficiently simple to permit solution
by a slight extension of the methods already presented. The most
common example of such a simpler system is a linear oscillator in which
the cathode resistor is not by-passed and so constitutes a negative-
feedback element.

In any event it is necessary to use considerable care in the analysis
of feedback systems, particularly those in which several paths exist.
The following sections, which are devoted to a study of the stability of
feedback systems, illustrate some useful techniques for the analysis of
such problems.

5.7 Conditions for oscillation

It was shown in Chapter 2 that a system will generate spontaneous
oscillations if and only if the characteristic equation has roots in the
right half plane. Unfortunately, this criterion of stability is not a con-
venient one for use in the design and analysis of regenerative arrange-
ments because a very large amount of work is required to calculate the
roots of typical systems and because the position of the roots offers
little or no guide for improving the performance if unsatisfactory.3®
It has been found that the loop transmission uB provides a far more
satisfactory criterion for the design of feedback devices. Compared to
the system roots, uf has the advantage that it can be measured directly,
so that the existence of any unintentional coupling effects may be
detected if present, and that the effect of a given parameter change
may be readily predicted. The first accurate statement of the rela-
tion between stability and loop transmission is due to H. Nyquist.228
However, a simpler proof and useful extensions of his results have
been developed by Bode.?* The boundary between oscillation and
nonoscillation is of interest in connection with both amplifiers and
oscillators. However, in amplifiers a large scalar magnitude of (ug) is
necessary, whereas in oscillators a smaller feedback is often adequate.

5.8 The (u8) diagram

The preceding sections have shown that a feedback system is unstable
(that is, it may produce an output with no input) if

uB = 1. (5.12)

Moreover, ordinary experience would predict expanding oscillations if
(uB) were real and greater than unity; this prediction is ordinarily
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difficulty may arise with the conditional case of Fig. 5.3a but, as the
point (1,0) is mot encircled, the system is actually stable! This
stability is, however, only conditional because the plot will encircle the
critical point if the loop amplification is reduced by a factor of about
two. Moreover, in many systems of this kind sustained oscillations
will result if the system is given an initial disturbance large enough to
introduce nonlinearity through overloading.

The fact that small signals decrease rather than increase in a con-
ditionally stable system may be traced to the behavior of expanding
sinusoidal waves. The reversed curvature of the Nyquist plot of Fig.
5.3a in the region of 2w, is associated with a circuit behavior which

— 45

(a) (b

F16. 5.3. Nyquist plots: (a) conditionally stable system and (b) absolutely stable
gystem.

tends to damp out rather than enlarge an oscillation near that fre-
quency. In this connection it should be noted that sustained oscilla-
tions which result from a reduction of (u8) will occur at a frequency
near wo whereas the inner crossover of Fig. 5.3a is at a frequency near
2wg. The discussion of oscillation build-up in Chapter 18 will help to
clarify this behavior.

5.10 Basis of the criterion

The rigorous proof of Nyquist’s criterion requires extensive manipu-
lation of complex variables and a familiarity with the theory of con-
tour integration which is beyond the scope of this book. The inter-
ested reader should refer to Bode?* for this material. It is, however,
possible to explain the ideas involved and to give the results a degree
of plausibility.

Nyquist’s criterion depends upon a relationship between the phasor
plot of (uB8) at various real sinusoidal frequencies and the location of
the system roots in the complex frequency plane as discussed in
Chapter 2. In fact, the Nyquist plot is a transformation of the points
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justify the assumption of linearity. With these restrictions it is clear
that the grid voltage is a fraction M/L of the plate voltage, and
that the system is correctly represented in Fig. 5.5b, where r, is the
plate resistance and g,, is the transconductance. Because the same
current would be drawn by a suitable negative resistance, it is pos-
sible to simplify the equivalent circuit still further to the form of
Fig. 5.6.

_o M
I—gmLV

i I ——

(a) (b)

F1c. 5.5. Tuned plate oscillator: (a) circuit diagram and (b) equivalent circuit.

L -L/Mg_ Sn R -

LAl

F1c. 5.6. System equivalent to tuned plate oscillator.

Inspection of this figure shows that the roots are pure imaginary if
the total conductance vanishes, that is, if

1/rp + 1/R — Mgm/L = 0. (5.13)

As shown in Chapter 2, the roots will be complex with negative real
part if

2V C/L > (1/rp + 1/R — Mgn/L) > 0 (5.14)
and complex with positive real part if
-2V C/L < (1/r, + 1/R — Mg,/L) < 0. (5.15)

Harmonic oscillations, therefore, correspond to transconductance
values lying between the limits

L(1/rp +1/R + 2V C/L) > Mgm > L(1/r, + 1/R). (5.16)
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simple relationship between the frequency scale on the Nyquist plot
and the location of the complex roots. The procedure is facilitated by
use of the substitutions

wo = 1/VLC, (5.21)
w = wy(l — §), (5.22)
G =1/r, + 1/R, (5.23)
and
Q = 1/GuoL. (5.24)

With these substitutions the roots become

a + jo =% (Mgnwo® — G/C) £ j Vwe® — 3} (Mgnwo® — G/C)2
(5.25)

Because, for any prescribed wy, the roots vary along the arc of a circle,
it 1s sufficient to specify «. Eliminating Mg, between eqs. 5.20 and
5.25 yields

2a/wy + G/woC )
woL(G + juC + 1/joL)

Elimination of C with introduction of eqs. 5.22 and 5.24 leads to

(u8) = 2o /wo + 1/Q
woL[G + (1 — §)/wol) + 1/j(1 — Ewol]
_ 1 4+ 2Qa/wy ,
T 14+5Q(1 — 8 — /(1 — 8

which shows that the Nyquist plot is uniquely expressed in terms of
the angular position of the root, the @ of the passive portion of the
circuit and the frequency variable £.

The desired relationship is most conveniently expressed by assigning
a fixed small value to £ and exploring the contour described. If ¢
is restricted to small values we may use the approximate relation

(uB) = (5.26)

(5.27)

1+£=1/01 -9 (5.28)
to obtain ’
_ 1 + 2Ql.!/wo.
(uB) = 1= o0t (5.29)

Converting to rectangular coordinates by use of

uB8) = z + jy, (5.30)
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mation under any conditions in which the Nyquist plot resembles the
circular form of Fig. 5.8.

5.12 Frequency and amplitude stability

The Nyquist diagram for a system is very helpful in calculating, or at
least estimating, the frequency stability. The calculations are exact
if the system is linear, and give an excellent approximation in quasi-
linear, that is, high-Q nonlinear systems.

As a first step toward the determination of frequency stability,
we must note that the shape of the Nyquist plot may change in two
basically different ways as the loop gain is reduced by the action of the
limiter. If the limiter is independent of the resonator the diagram

Low level Excess level Low level
_—Operating
Operating level level
oo )
Excess level
(a) ()

F1c. 5.9. Nyquist plots at various levels: (g) limiter isolated and (b) limiter
and resonator combined in bridge.

simply shrinks, as shown in Fig. 5.9a. If, however, the limiter and
the resonator are combined, as in the Meacham or Wien bridge circuits,
the diagram is displaced laterally without appreciably changing its
size, as shown in Fig. 5.9b. If we know the behavior of the Nyquist
diagram with changes in amplitude, we may find the frequency
stability from the diagram which corresponds to a very low amplitude
level. Otherwise, we must use the diagram which corresponds to
the desired operating level, and therefore passes through the critical
point (1, 0).

The construction is shown in Fig. 5.10a. The frequencies wo and
wo + dw corresponding respectively to the critical point (1, 0) and to a
point displaced by a small angle ¢ are observed. Then, from the basic
formula given in Chapter 1, the frequency stability with respect to
phase shifts external to the resonator is

_%¢

S}' - 8(0/000

(5.35)
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useful in connection with two-terminal oscillators, to which Nyquist’s
criterion is not applicable.

The conditions for applying the test in its first form are shown in
Fig. 5.11a. The network is opened at some point a, as indicated,
and the impedance between the opened points is observed as a function
of frequency. If the polar plot of impedance, for all frequencies from
— o to + o does not encircle the origin and if the system is stable with
the terminals open, then it is also stable with the terminals short circuited.

il

\
Al

Il

(a)
Fia. 5.11. Llewellyn’s criterion: (a) direct test; and (b) modified test.

In the alternative form the admittance between two points in the
network, as shown in Fig. 5.11b, is measured as a function of frequency.
Then if the polar plot of admittance for all frequencies from — o to
+ « does not encircle the origin and if the system is stable with the ter-
minals short circuited, then it is also stable with the terminals open
circuited.

We see that Llewellyn’s criterion is closely related to Nyquist’s.
Therefore, it should be possible to relate the shape of the Llewellyn
plot to the position of the complex roots and to the amplitude and fre-
quency stability of the system. These relationships are not developed
here because they are not used in the following sections.

Taken together, the relationships developed in this chapter provide
a very powerful means for the analysis and the design of feedback
systems, whether the objective is a stable amplifier or a reliable oscil-
lator. These relationships are used and extended to treat multiply-
resonant systems in Chapter 18.

PROBLEMS

5 1. Show how to measure the loop transmission of a feedback amplifier.

6.2. Sketch a single-loop and a multiple-loop feedback system.

5.3. Explain why fractional derivatives are used in eq. 5.8

6.4. Verify the argument of Section 5.4 that distortion is reduced in the ratio

1 — uh).
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may be thought of either in terms of the energy loss per cycle of the
free oscillation or the energy which must be supplied per cycle in the
steady state.

The latter viewpoint is the more profitable for our present purpose in
that it establishes on a general basis the desirability of a high Q.
Because a high @ resonator requires less driving power than a correspond-
ing low Q resonator, its frequency is less affected by a given fractional
change in the driving system. However, the frequency stability of a
given system is seldom appreciably improved by an improvement of
the resonator alone unless the driving system is readjusted to take
advantage of the decreased losses.

These ideas are interpreted in terms of Fig. 6.2, which was analyzed
in Chapter 4. Corresponding to prescribed values of L, R, and C,

Resonator

Driving system

|
|
|
I
i

Negative

L R : resistance
|
|

R c | I
) |
C 1 I
!
Fia. 6.1. Series resonance. Fic. 6.2. Negative resistance oscillator.

sustained oscillations will occur only if the negative resistance device,
which is inherently nonlinear, has an incremental negative resistance
larger than R. The operating frequency differs somewhat from the
natural frequency of L and C because of intermodulation effects, and
therefore changes with variations of the nonlinear characteristics.

If the resonator @ is increased by reducing R without making any
other change, the frequency stability is not greatly improved and may
actually be degraded, because the relationship of the reactances to the
driving system is unchanged. If, however, the resonator @ isincreased
by increasing both of the reactances, leaving R unchanged, the fre-
quency stability is improved proportionally.

From the foregoing discussion we may draw this important con-
clusion: The essential properties of a resonator are its natural frequency
f, its selectivity Q, and its characteristic impedance Z. The natural
frequency is the frequency which would result if the driving system
were nonreactive; the selectivity controls the extent to which the fre-
quency is affected by a given imperfection of the driving system;
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and the characteristic impedance determines the impedance level
which the driving system should have.

As shown in the preceding example, a reduction of the losses of a
given resonator ordinarily affects the impedance level as well as the Q
because the reactances tend to remain constant. Therefore, as
previously shown, it is ordinarily necessary either to modify the driving
system or to provide an impedance transformer in order to take
advantage of a loss reduction in a resonator. Failure to observe this
principle is responsible for many experimental observations in which
frequency stability is not improved by reduction of resonator losses. 138
The characteristic impedance of a resonator is its resistance at the
operating frequency. Series resonant systems usually have character-
istic impedances much lower than those of antiresonant systems.

At any one instant a given resonator has only the three properties
just enumerated. However, the engineering need is for frequencies
which remain constant over considerable intervals of time and in spite
of various disturbing influences. We must, therefore, determine the
extent to which such changes affect the natural frequency of resonators.

To a greater or lesser extent the natural frequency, as well as the
selectivity and impedance, of a given resonator is affected by every
feature of its environment. However, the requirements on constancy
of frequency are so much more severe than those on selectivity and
impedance that a resonator which has satisfactory frequency stability
rarely fails to meet other stability requirements. Principal factors
affecting frequency are the ambient temperature, atmospheric pres-
sure, and relative humidity. Other factors include electric and mag-
netic fields, various forms of radiation, gravitational attraction, ampli-
tude of oscillation, and the passage of time. These several variables
affect different resonators in different ways and to different extents.
They are discussed.in the following paragraphs. It should be noted
that a high-Q resonator may be greatly affected by temperature or
other influences and that a low-@ resonator may be quite stable. That
is, the two properties are essentially independent.

6.2 The ideal resonator

In the previous section it was shown that the selectivity of a resonator
determines the ease with which it may be driven, and that the imped-
ance level must be suitably matched to the driving circuit for best
results, that is, best frequency stability. A high Q is therefore desir-
able in the interest of making the frequency insensitive to variations in
the driving system. To maintain constancy, the natural frequency
must not be affected by the passage of time or variations such as
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temperature and humidity. To ensure that operation will occur at
the natural frequency and that the response will be simple and sym-
metrical the resonator must have only one principal response in the
region of interest.

We may therefore conclude that the ideal resonator is characterized
by the following:

(1) A natural frequency which is appropriate.

(2) A value of Q approaching infinity.

(3) An impedance level suitable to available driving circuits.

(4) A natural frequency which does not change with time, tempera-
ture, or other uncontrolled variables.

(5) Freedom from additional resonances which would affect the
behavior at the desired frequency.

6.3 Thermal and secular effects

The ambient temperature affects the frequency of every known form
of resonator, but the extent of this influence varies enormously. In a
poorly constructed LC circuit the effect may be as large as forty parts
per million per degree centigrade,* whereas in a GT cut quartz crystal
operating in the region of 40°C the effect may well be some 10,000
times smaller.

The behavior of a more or less typical LC resonator is shown in
Fig. 6.3. It is seen that the frequency is not a single-valued function
of the temperature, but depends in a rather complicated way upon the
previous history as well. In fact, the frequency is ordinarily a func-
tion of the present temperature, of all past temperatures, and the
present time rate of change of temperature. It is therefore difficult to
speak in precise terms about temperature stability.

However, it is possible to construct resonators in which these para-
sitic effects are quite small; and it is highly desirable to do so because
of the superior performance obtained. In such resonators the fre-
quency is, at least effectively, a single-valued function of temperature,
so that a definite slope or temperature coefficient exists at each tem-
perature. Such behavior, which is referred to as cyclie, is shown in
Fig. 6.4. In this case the frequency varies in a parabolic manner,
while its slope or coefficient varies linearly with the temperature 7.
Clearly it is absurd to speak of the temperature coefficient of this
resonator without also specifying the temperature in question. In the

* The abbreviation ppm will be used to represent parts per million, and all tem-
peratures will be given in degrees centigrade throughout this book, except in a
few cages where the corresponding absolute scale, °K, is more appropriate.
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frequency of air dielectric LC or cavity resonators is a function of these
variables. Moreover, the mechanical dimensions of coil forms and
condenser supports are often affected by humidity. Precise control of
frequency is therefore possible only if suitable precautions are taken
in the construction of the elements. Vacuum impregnation and her-
metic sealing are two widely-used methods.

The dielectric constant of dry air at 0°C and normal atmospheric
pressure is 1.000583. It varies with the density, composition, and
relative humidity.®®¢ For dry air the dielectric constant e, is given by
the equation
0.00021P

T + 273 6.2)

& =1+
where P is the pressure expressed in millimeters of mercury and T is
the temperature (°C). Humidity further affects the dielectric con-
stant, as shown in Table 6.1. Superposition may be used to combine
the effects of pressure, temperature, and humidity.

TABLE 6.1
ErrecT oF HUMIDITY AND TEMPERATURE UPON THE RELATIVE DIELECTRIC
CONSTANT OF AIR AT STANDARD PRESSURE
(¢ =14 h X 1078, where h is the tabulated value)

Temp., Relative Humidity .
OC 6

0%| 10%|20% |30% | 40% |50% |60% | 70% |80% | 90% [100%,
—40 |682/682 [682 |682 |682 |682 |682 |682. (682 |682 |682
—30 |655/655.1/655.2(655.2/655.3/655.4(655.5(655.6(655.6/655.7|655.8
—20 (629(629.2|629.5(629.7|629.9/630.2(630.4630.6/630.9/631.1/631.3
—10 |605(605.6(606.1|606.7/607.2(607.8(608.4/608.9/609.5/610 |610.6
0 [583|584.3)585.5|586.8|588.1|589.3|590. 6/591.9|593.2/594.4(595.7
+10 (562|564.5|566.9(569.4/571.8/574.3|576.8|579.2|581.7|584.1/586.6
+20 |543|547.6/552.1|556.6|561.1|565.6(570.2/574.7|579.2/585.8/588.3
+30 [525(532.9|540.9|548.8(556.8|564.7|572.7|580.6|588.6/596.5/604.5
+40 1508(521.4(534.8/548.2(561.6/575 |588.4/601.8/615.2/628.6|642
+50 |493|514.7(536.4/558.1(579.8|601.5(623.2|644.9|666.6/688.3|710
+60 |478/512 |546 |580 |614 |648 (682 (716 |750 |784 |818
+70 |464|515.5/567.0|618.5/670 (721.5773 |824.51876 927.5979
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Composition is important principally because dry ice is sometimes
used in tests to produce the low temperatures required to simulate field
conditions. This procedure may lead to serious error in frequency,
because at normal atmospheric pressure and temperature the dielectric
constant increases approximately 375 ppm in a linear manner as dry
air is replaced by 100 per cent carbon dioxide.
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Humidity has an additional effect which may be both serious and
unsuspected. Films of moisture form on the surfaces of metals and
other materials under such conditions that no true condensation is
possible. Such films not only degrade the insulation resistance of
apparatus but also affect the equivalent spacing of an air condenser.
The variation is small, but can be significant in precise apparatus.

Cavity resonators are ordinarily filled with a dry gas, usually nitro-
gen, and completely sealed. They are then immune to the effects
of humidity. They are also insensitive to pressure if the walls are
sufficiently thick so as to avoid mechanical distortion. Coils and
condensers may also be sealed to good advantage, but it is frequently
sufficient to impregnate them under vacuum with a suitable highly-
fluid wax or plastic.

Sealing, or impregnation, is desirable not only because it stabilizes
the frequency but also because it increases and stabilizes the values of
Q and of voltage breakdown. Special precautions must be taken if
the apparatus is to operate under conditions of high humidity because
damage due to mold and corrosion is greatly accelerated.!?* 246  Spe-
cial precautions are also necessary to avoid arcing between terminals
in components which must operate at low pressure due to high altitude.

6.5 Properties of condensers

In a majority of oscillators the resonator consists of a combination
of coils and condensers. Because the reactive elements are very
different in construction and properties it is appropriate to discuss
them separately. Condensers are discussed first, because they are
substantially free from losses and are somewhat simpler in behavior.
Those who wish a general review of components are referred to Ter-
man’s Handbook,;**? and those who wish a more comprehensive treat-
ment of condensers should read the books by Brotherton?® or Coursey.5¢
It is assumed that the reader has a fair knowledge of the properties
and construction of typical components; and emphasis is placed upon
the performance of components applicable to the present problem.
For fixed condensers the silvered-mica construction is very desirable
because of its low temperature coefficient and good secular stability.
Blocks of high-grade ruby mica, ordinarily imported from India, are
first cut and split into thin sheets of suitable area and thickness.
These are then coated on both sides with a thin layer of metal, usually
silver, by vacuum evaporation or similar means. Several of these
sheets are stacked to build up the desired capacitance, and leads are
attached by soldering to the exposed area of the electrodes. Finally,
the assembly is packaged as a unit, ordinarily by surrounding the
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attack, etc. However, the dielectric behavior of some of these
materials, notably barium titanate, is very complicated, so that we
must exercise some discrimination in choosing a ceramic capacitor.205

Ceramic materials which include compounds of titanium have two
exceptional properties. The values of dielectric constant are far
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F1g. 6.5. Typical temperature coefficient curves for group A ceramic dielectrics
at a frequency of 1 Mec.

higher than those of ordinary materials, and the temperature coefficient
is negative. Large values of the dielectric constant are desirable
because they lead to large capacitances in compact, light, noninductive
structures. Negative temperature coefficients are desirable because
they permit partial compensation of the positive coefficients, character-
istic of most coils.

The ceramic materials which are most useful in the present applica-
tion are prepared by mixing titanium dioxide with other more con-
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F1a. 6.8. Variation with temperature of power factor and insulation resistance
of typical ceramic condenser units.

ventional compounds. The principal characteristics of a number of
these ceramic materials, known to the trade as Group A, are presented
in Table 6.2. Values for mica and for fused quartz are included for
comparison. The principal characteristics of Group A ceramics,
which are ordinarily designated in terms of the nominal temperature
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coefficients, are presented in Figs. 6.5 to 6.8. In Fig. 6.6 the range of
variation indicated depends more upon process variations than upon
the nominal temperature coefficient of the material.

Ceramic materials based on titanium dioxide but having still larger
values of dielectric constant and negative temperature coefficients are
available under the trade designation Group B. They may be used
when a very large temperature compensating effect must be obtained
in a small capacitance, but they have inferior values of power factor
and of stability, and are generally undesirable for frequency control.

A number of ceramics known to the trade as Group C are based upon
barium titanate. They have values of dielectric constant in excess of
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F1G. 6.9. Construction of a 50 uuf vacuum capacitor (simplified). Parts, which
are assembled by welding, are: A, evacuation tube; B, end cap; C, fernico end cup;
D, borosilicate glass body; and E, copper cylinders.

1000, but they are nonlinear and behave in a complicated manner with
respect to temperature and frequency. They should therefore be
avoided except for by-pass purposes.

Ceramic condensers are commonly manufactured in tubular or disk
form. The electrodes are ordinarily produced by application of a
metallic suspension which becomes integral with the dielectric when
the unit is again fired to a temperature which fuses the metal. Leads
are attached by soldering to the metallic electrodes, and the unit is
finished by application of a waterproof wax or plastic coating. Con-
densers based on Group A dielectrics are generally available in the
capacitance range of 1 to 1000 uuf. Capacitances up to about 0.03 pf
are commonly available in Group B and Group C materials, but are
subject to wide variations, as previously mentioned.

The techniques which permit the mass production of vacuum tubes
are employed in the production of the vacuum capacitor. Because the
dielectric is vacuum, these condensers are free from any inherent
dielectric instability. Such capacitance changes as do occur result
entirely from dimensional changes of the supporting structure. A
temperature coefficient of +30 ppm per °C is typical of commercial
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which warp the shape of the assembly and modify the capacitance.
This difficulty is alleviated by constructing the condenser so as to
have a good thermal conductivity and by insulating the entire assembly
from ambient changes. Both these steps tend to reduce the tempera-
ture gradients which can exist.

Contact to the rotor is ordinarily made by means of a wiping or
sliding spring. Unless the construction and the materials are carefully
chosen, this contact will give trouble in the form of a high and variable
resistance. This difficulty may be prevented by means of an elastic
spring or pigtail, provided that the condenser is not capable of con-
tinuous rotation and that the appreciable and variable self-inductance
of the pigtail is tolerable.

Soldered, brazed, or welded contacts throughout are greatly favored
in the interest of long and reliable service. In addition, it is often
necessary or desirable to electroplate all surfaces so as to prevent
deterioration due to corrosion.

Paper condensers are not often used for frequency control. As
ordinarily constructed, they have relatively poor secular stability
and complicated and noncyclic behavior with respect to temperature.
In addition, the power factor is poor and varies with respect to tem-
perature and frequency. However, new materials and construction
techniques offer promise of at least alleviating these limitations.3!
The performance of several types of paper condensers is shown in Fig.
6.10. The reason for avoiding these units, especially if low tempera-
tures are encountered, is evident from these curves.

The technique of depositing metal directly upon dielectric paper for
the construction of condensers has only recently been developed.*
Condensers made with metalized paper are remarkably compact and
light in terms of their capacitance and voltage rating; and they have
the virtue of being self-healing if punctured by a voltage surge. How-
ever, both the equivalent series resistance and the shunt leakage con-
ductance tend to be high; and it appears unlikely that these units will
be significantly better than other paper capacitors for frequency
control.

The remarkable advances in the field of plastics have led to the
possibility of constructing condensers with a plastic film as the dielec-
tric. The general construction is the same as that of paper condensers,
but the performance with respect to frequency and temperature is
markedly superior. Moreover, plastic materials are subject to excel-
lent manufacturing control, so that desirable results, when once

* Information on the properties of such paper is available from Smith Paper,
Inc., Lee, Mass.
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to 1000 henries may be obtained. The useful frequency range is
about 20 to 20,000 cycles, and the Q value ranges from about 5 to 50.

At frequencies above a few kilocycles the eddy current losses in
laminated iron cores are so large as to be prohibitive. However, cores
made of finely divided iron powder or dust suspended in an insulating
binder are useful to much higher frequencies of the order of 50 Me.
Ordinarily, the binder is some sort of plastic, and the mixture is molded
under high pressure to an appropriate geometrical form. The mag-
netic properties of the final core depend upon the size and composition
of the magnetic particles and the relative volume of iron and insulator.
Effective permeabilities usually range from about 5 to 200.

Powdered-iron cores for use at frequencies upwards of one mega-
cycle are ordinarily made in the form of a circular cylinder. Although
the effective permeability is rarely in excess of ten, such cores are
useful because they contribute to the values of @ and coupling coef-
ficient which may be realized, and facilitate inductance adjust-
ment. An excellent discussion of the properties and measurement
of powdered-iron cores is given in papers by Foster and Newton,®® and
by Jaderholm.!8

At frequencies of the order of 50 k¢ the core is commonly made
toroidal, and the winding is uniformly distributed over its surface.
The flux is almost entirely confined to the core so that the inductance
is essentially independent of everything except the effective permeabil-
ity. Moreover, a very high coupling coefficient between separate
windings may be achieved; and undesired magnetic couplings to other
circuits may be made negligibly small. The temperature coefficient
may be made small and cyclic if the magnetic material is properly
processed. Direct current should be avoided if possible; and other
influences on the inductances are ordinarily negligible. Inductance
values ranging from about one millihenry to one henry and @ values in
the order of 150 are readily obtained in toroidal dust core coils.

Comparable results are achieved by interchanging the positions of
the iron and copper. A multiple-layer coil, often of the universal
form discussed in the following paragraph, is associated with a pair
of molded cores which are shaped so as to produce a closed path to
the magnetic flux. The principal advantage of this construction is
the relative ease with which the windings may be made and adjusted.

In the frequency range of about 10 ke to one Mec and for induct-
ances of about 100 uh to 100 mh the ‘“‘universal”’ winding produces
compact coils satisfactory for many purposes. Selectivity values
as high as 250 are obtained, particularly when suitable powered-
iron cores are associated with coils carefully wound of litz wire.
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temperature coefficient of inductance is still likely to be large. Such
coils are necessarily of low inductance and therefore useful only at
high frequencies, and at such frequencies the conductor thickness
required for mechanical stability is many times the skin depth.
Accordingly, the resistance change associated with a change of tem-
perature will cause an appreciable change of current distribution and
therefore of inductance.

That the self-inductance of a conductor is affected by skin effect,
which is in turn a function of conductivity, is readily shown in terms
of a coaxial structure. At very low frequencies the current flows
uniformly throughout the cross section of the conductors, whereas at
very high frequencies the current flow is confined to a shallow surface
layer. Over some range of intermediate frequencies the current
partially penetrates the conductors.'®® In this range the penetration,
and hence the inductance, is sensitive to both frequency and resistivity.
Because the resistivity of good conductors increases rapidly with
increase of temperature, the inductance also increases with tempera-
ture. The temperature coefficient of resistivity of copper is about
4000 ppm per °C, and the temperature coefficient of inductance due
to this cause alone may readily be as high as 100 ppm per °C.123. 309

A coil will possess cyclic behavior with respect to temperature only
if there is no relative motion between the conductor and its support.
The temperature coefficient will be low only if the dimensions are
substantially constant and if the current distribution is independent of
temperature. These several objectives are met in a coil made by
depositing a thin helix of silver on the surface of a fused-quartz rod or
tube. The thermal coefficient of linear expansion of fused quartz is
exceptionally low, approximately 14 ppm per °C. The quartz form
will control the dimensions of the finished coil because of the good
adherence which can be secured and because of the relatively large
volume of the quartz with respect to the silver. The film should be
very thin in comparison to the radius, but not appreciably thinner
than the skin depth of silver at the operating frequency. If the
metal has a thickness of 1.5 skin depths the current distribution will
be virtually independent of temperature and the value of @ will
be about 10 per cent higher than that obtained with a much thicker
conductor.33?: 342

Excellent coils may also be made by depositing silver or other
metals on the surface of glass* or ceramic forms in cylindrical, toroidal,
or other shapes. High conductivity and good adherence in the

* Coils made by depositing silver on the surface of a tube of pyrex glass are

available on a commercial basis from the Corning Glass Works. See Bulletin
ES-100, Electronic Sales Department, Corning Glass Works, Corning, New York.
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to minimum inductance is readily made larger than ten to one, by
the methods previously discussed. Moreover, in typical applications
the impedance level is lower than that in a condenser-tuned oscillator,
so that small capacitance changes inherent in vacuum tubes produce
considerably less frequency shift. The principal drawback arises
because the sliding contacts tend to give erratic performance, especially
after the unit is exposed to dust and oxidation.

Because it is difficult and expensive to produce coils which have low
or negative temperature coefficients of inductance, the use of negative-
coefficient condensers for compensation has received considerable
attention. Although simple in concept, the method presents serious
problems in application. No significant compensation is possible
unless the several elements are cyclic and have good secular stability.
Moreover, from a production viewpoint, the method is worthless unless
the characteristics of the several elements are reproducible within a
range which is considerably narrower than the individual coefficients,
and is less than the total performance tolerance. Finally, if the fre-
quency must be adjustable by tuning, the temperature coefficient of
the adjustable element must be independent of its setting. If, for
example, a coil having a temperature coefficient of 10 ppm per °C is to
be compensated and tuned by a variable condenser, the condenser
including any padding must have a coefficient of —10 ppm per °C at
all settings. This fact greatly restricts the usefulness of negative
coefficient fixed condensers for temperature compensation.s® 275 292

6.7 The butterfly circuit

Several tuned circuits, exceptionally useful for ultrahigh frequencies,
have been devised by Karplus!®® and others of the General Radio
Company. They are commonly referred to as butterfly circuits,
because of the shape of the rotor, as shown in Fig. 6.11. An anti-
resonant impedance is developed between points 1 and 2 of this figure.
The structure may be thought of as two variable condensers in series
shunted by two single-turn inductors in parallel. However, the
equivalent inductance is not constant because the rotor serves as
a short-circuited secondary which reduces the inductance as it is
unmeshed to reduce the capacitance. The behavior of the unit of
Fig. 6.11 is shown in Table 6.3 and in the curves of Fig. 6.12. The
characteristic impedance is quite suitable for operation with typical
vacuum tubes and is remarkably constant.

Because of the symmetry of the structure it is unnecessary to provide
contact to the rotor, so that no sliding contact is present. It is there-
fore possible to drive the rotor continuously at very high speeds for
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TABLE 6.3
BEBAVIOR OF A BUTTERFLY CIRCUIT
Parameter Symbol Range Nature of Variation

Frequency f 200-1100 Mec n?

Inductance L 0.011-0.0041 ph n!
Capacitance C 48-5 upf n=8
Selectivity Q 650-300 n!

Series resistance R =wL/Q 0.023-0.095 ohm n?

Ratio L/C 15.2-28.6 ohms n

Impedance Z = QL/C 9800-8600 ohms Constant

at unwanted frequencies which are not simply related to the principal
resonance. These undesired modes of resonance can ordinarily be
suppressed or avoided, and in any event they are present in almost all
forms of high-frequency resonators.

6.8 Transmission lines

Parallel-wire or coaxial transmission lines have been used as resonators
for a long time, and information concerning their properties is com-
monly available.?® This section will therefore be limited to a brief
discussion of their application to oscillators and a compilation of
formulas.

The parallel structure is inherently balanced, is convenient, and
gives good performance, especially at moderate frequencies. The
coaxial structure is inherently unbalanced and less convenient but
has superior mechanical stability and is preferable at the highest fre-
quencies because it is completely shielded. It therefore does not
couple to adjoining apparatus or lose energy by radiation.

The arrangement most widely used is a line a quarter wavelength
long at the frequency of interest, short-circuited at the far end. Near
this frequency the line approximates a high-Q antiresonant circuit.
However, a lumped antiresonant circuit has only one response, whereas
the transmission line also gives a comparable response at 3, 5, 7, etc.,
times the frequency of the lowest antiresonance. Occasionally these
higher order responses are used in oscillators; in which case special
precautions are necessary to ensure that oscillation occurs at the desired
rather than some other frequency.

Because circuits are commonly designed on the basis of lumped
circuits, the equivalent circuit of Fig. 6.13 is convenient.2®® In this
connection it may be noted that, subject to a fized inner radius of the
outer conductor, an air-filled coaxial line of a given conductivity has a
maximum value of @ for a diameter ratio of 3.592, corresponding to a
characteristic impedance of 76.64 ohms, However, with the same
outer conductor a substantially higher antiresonant impedance is
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obtained with a smaller inner conductor corresponding to a diameter
ratio of 9.185 and a characteristic impedance of 132.9 ohms. These
and other useful relationships are very clearly presented by Smith.28?

Subject to fized center lo center spacing D, parallel wire lines have a
maximum value of @ when each conductor has a diameter d which is

Zy, a, B v
R =} =
C
e —]
L = 81Zy/x% Zy = x/L/2C
C=1/2Zw I/v = = /LC
if {R = Zo/al or { Bl =x/2

wo = Pv a = B8/2Q
Q = B/2a Q@ = R/woL

F1a. 6.13. Equivalence between line and lumped circuit.

D/2, corresponding to a characteristic impedance of 158 ochms.3°® The
maximum antiresonant impedance occurs for d = D/4, corresponding
to a characteristic impedance of 347 ohms. In all the foregoing
developments it was assumed that the short circuit at the end has
negligible impedance. This is not true in all cases, and a suitable
correction is necessary, as shown in the following section.

Short  Position If, as is often the case, the anti-

circuit  of tap resonant impedance is larger than that

Line desired, the appropriate impedance

v transformation is readily obtained by

Relative connecting to the resonator at some

v=Fk sin Bx  voltage intermediate length. The situation is

shown in Fig. 6.14 in terms of the free

Relative oscillation of a parallel wire line. If

/ impedance  the @ is reasonably high, the voltage
2,=K sin? 3x . . . . . :

distribution is accurately sinusoidal,

F16.6.14. Impedancetransforma- and the equivalent impedance trans-

tion obtained by means of a tap
on a quarter-wave line.

formation is therefore deseribed by a
factor of the form (sine?). Impedance

transformations in excess of ten to one are readily obtained in this
way, usually with a marked improvement of frequency stability with
respect to the driving system. The same effect is readily obtained in a
coaxial structure by means of a hole or slot in the outer conductor.
Transmission lines may be made quite stable with respect to time
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and temperature. The thermal coefficient is equal to the linear
coefficient of the material unless some distortion of shape occurs as a
result of unequal expansion. With careful construction and choice
of materials it is possible to reduce the temperature coefficient to a
few parts per million per degree centigrade.

6.9 Cavity resonators

At frequencies in excess of about 100 Mc the unavoidable parasitic
inductances and capacitances of leads and terminals become com-
parable with those of the desired elements. Poor frequency stability
is ordinarily observed because the parasitic elements are not under
control, and radiation losses are sufficient to be troublesome. It
is clear that the radiation losses would vanish and that the other
difficulties would be greatly reduced if the resonant circuits were made
self-shielding. Cavity resonators which are inherently self-shielding
and have very creditable values of @ are logical for this application.
A particularly lucid account of the basic features of cavity resonators is
given by Pierce and Shepherd on page 622 of their article.?!

Cavity resonators may be thought of as the logical development from
transmission lines. In fact, a half-wave coaxial line short-circuited at
both ends is an important form of cavity resonator. The coaxial half-
wave resonator is ordinarily long compared to its diameter and is
employed in its dominant or lowest-frequency mode of resonance,
which is the usual transverse electromagnetic mode in which the elec-
tric field is radial, and the magnetic field consists of circles concentric
with the conductors. The magnetic field is most intense at the ends
where the coaxial conductors are connected by disks, whereas the elec-
tric field is most intense halfway between. As in all resonators, the
total energy is nearly constant; therefore, the electric and magnetic
fields are in time quadrature.

The coaxial structure just described also resonates at three times the
frequency previously described as a 3\ line. And in addition to this
series of modes it is capable of resonating in many other modes, which
are not in simple harmonic relation to the dominant frequency. A
major problem of cavity design, therefore, is to obtain operation at
the desired frequency or mode and to avoid the effects of other resonant
modes. This subject already has an extensive literature and is far
too complicated for treatment here.?#® It should, however, be noted
that the problem of unwanted modes of oscillation arises in quartz
crystal units as well as in cavity resonators; and that similar although
less severe problems exist in connection with transmission lines,
butterfly circuits, and even complicated LC circuits.



108 RESONATORS

Where very large values of @ are required, particularly at frequencies
upwards of 3000 Mec, the TE,,; circular electric modes in hollow cylin-
drical cavities are useful. These modes have the desirable property
that tuning may be achieved without the use of sliding contacts.
Moreover Kinzer'’> has shown that, at a specified frequency, a pre-
scribed high @ is obtained in the smallest possible volume by a TE¢1,
mode in a right circular cylinder. This is of importance because he
has also shown that the total number of possible modes is approxi-
mately proportional to the volume; therefore, the problem of suppress-
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Fi16. 6.15. Couplings to cavity resonators: (a) coaxial cable with probe coupled

to TM 10 mode in a hollow circular cavity; (b) coaxial cable with loop coupled to

TEM mode in coaxial cavity; (c) rectangular wave guide coupled to TEg11 mode

in circular cavity by round iris; and (d) rectangular wave guide coupled to TEj;
mode in circular cavity by slit iris.

ing or avoiding undesired modes of resonance is greatly simplified by a
reduction of volume.

Because the walls of a cavity provide complete shielding, it is neces-
sary to pierce the wall in one or more places to provide the necessary
couplings.!?” As indicated in Fig. 6.15, there are three principal means
for coupling to a cavity resonator. The probe may be thought of as
coupling to the electric field within the cavity, and is therefore most
suitable for use with modes which have a strong electric field per-
pendicular to the metal wall at some point. It is unsuited to TEg;
modes in which the electric field is paralled to all boundaries. The
loop may be thought of as coupling to the magnetic field and should
therefore lie in a plane perpendicular to it. Loops are suitable for
coupling to nearly all modes if properly located and oriented. The
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iris coupling also couples to the magnetic field at the wall of the
cavity and is suitable for use with wave guides at the higher microwave
frequencies. The slit iris is particularly desirable because it produces
a minimum disturbance of the cavity boundary. The slit should be
parallel to the magnetic field in both cavity and guide, and the coupling
depends almost entirely on the length of the slit.

6.10 Resonator theorems

A number of general theorems apply to the behavior of resonators,
Their presentation is logical at this point because they involve multiple
responses and other ideas which have been developed in the previous
sections. However, they apply to simple as well as complicated
systems and give considerable insight into a variety of situations.

The principle of similitude is a special case of the Buckingham?® pi
theorem.!®® In the present context it states that all natural fre-
quencies of a resonator system are increased by a factor N if all the
dimensions are decreased by a factor N and vice versa. The applica-
tion to quartz crystals and cavity resonators is obvious. It applies
with equal validity to ordinary LC resonators, and since we can readily
show that the capacitance of a parallel-plate condenser of a given shape
is proportional to its linear dimensions we may conclude that the same
statement applies to all condensers and all coils. The principle is
very helpful in calculations of temperature coefficients and in modify-
ing apparatus for operation at another frequency.

In the form given, the principle of similitude tells nothing about the
change of selectivity with dimensions. However, in cavity resonators
where the wall thickness is large compared to the skin depth, the
selectivity, @, of a given mode associated with a given metal varies
inversely with the square root of the frequency or directly with the
square root of the dimension. The same principle applies to single-
layer solenoids associated with high Q condensers, provided all the
coil loss is due to imperfect conductivity rather than dielectric losses.

Because the natural frequency of all types of resonators is dependent
upon the dimensions, we are concerned with the coefficient of thermal
expansion of various materials. Table 6.4 gives the expansion coef-
ficients of a number of selected materials. It is seen that large tem-
perature coefficients of frequency and noncyclic behavior will result
unless materials and design are chosen with considerable care.

A second theorem, related to Foster’s reactance theorem,!%! is that,
if losses are neglected,'®* 2°® the behavior of any resonator may be
represented in terms of any one of the equivalent circuits of Fig. 6.16.
In this connection it should be noted that an infinite number of ele-



110 RESONATORS

ments are required for the complete representation of distributed
systems such as cavity resonators.???

From a practical standpoint, the theorem just stated needs some
amendment. Analysis indicates that in a specified cavity resonator
each mode has a certain natural frequency and a certain value of Q.

TABLE 6.4

LINEAR EXPANSION OF MISCELLANEOUS MATERIALS
(Parts per million per °C at 20°C)

Aluminum +23 Hard rubber +50 Polystyrene +70
Bakelite +50 Invar +0.9 Porcelain +4
Brass +19 Lucite +80 Pyrex +3
Catalin +20 Magnesium +25 Silver +19
Celluloid +110 Mica +3 Solder +25
Copper +16 Monel +14 Steatite +8
Ebonite +84 Nickel +12 Steel +11
Fused quartz +40.5 Nylon +100 Tantalum +6.5
Glass +8 Platinum +9 Tungsten +4
Graphite +6 Polyethylene <190 Vycor +0.8

Moreover, in perfect rectangular, eylindrical, and spherical cavities
the modes are orthogonal in the sense that any one can exist in the
absence of the others. It is also known that the resonant frequencies
change in an orderly way as the dimensions are modified and that the
Q of each mode changes quite slowly with such tuning. We are there-
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Fi16. 6.16. Equivalent circuits for idealized resonators.

fore led to identify LC pairs of the equivalent network with particular
modes within the cavity. This useful idea requires some qualifica-
tion. In the first place, the relative impedance levels of the various
circuit branches depends upon the extent to which the given input
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device is coupled to the mode in question. Even more important, any
departure from the ideal geometrical shape introduces couplings
between the elements of the equivalent circuit.

An equivalent circuit applicable to a physical loop-coupled cavity
is shown in Fig. 6.17. The couplings are represented as magnetic
fields within the cavity. They are ordinarily quite small and hence
are negligible except where two modes have nearly identical fre-
quencies. Then, complicated coupled-circuit effects are observed,
and the effective Q of the system is likely to be seriously degraded.
The control or avoidance of these couplings is one of the major prob-
lems in designing cavity and quartz-crystal resonators. If a given
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F1gc. 6.17. Equivalent circuit of a practical resonator. The condensers are
assumed to vary at different rates with respect to a common tuning control.

mode is not excited by the coupling device, it will be observed only
by its influence on other modes which have external coupling, when
the two are simultaneously resonant. This situation may be treated
by allowing the impedance level in the appropriate arm of Fig. 6.17 to
approach infinity or by representing the mode in question as an
isolated resonant loop magnetically coupled to the rest of the systems.

6.11 Piezoelectricity

It is well known that certain crystalline substances are piezoelectric,
that is, they change their dimensions when subjected to an electric
field, and conversely generate an electric field when subjected to
mechanical strain. The effect is distinet from electrostriction in that
the deformation is proportional to the applied field and reverses with
reversal of polarity. Piezoelectricity is of concern to us because it
offers an excellent means of electromechanical coupling whereby the
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When an alternating electrical voltage is applied to the terminals of a
crystal unit, an alternating electric field is created in the quartz
between the electrodes, and a corresponding displacement current
flows. Small alternating forces are set up in the volume of the quartz
as the result of these displacement currents, but no considerable
response occurs unless the electrical frequency corresponds very
closely to a frequency of mechanical resonance of the quartz plate.
In this event a considerable mechanical vibration occurs, and the
current observed in the external circuit is greatly affected. As we
might anticipate, the relative magnitude of this effect is greater if the
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¢ Crystal o % .
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F16. 6.18. Methods of mounting crystal plates: (a) with air gap, (b) pressure
mounted; (¢) plated and wire mounted, and (d) plated and mounted at the edges.

electrodes are close to the crystal, if the crystal has a large piezoelectric
coupling factor, and if the mechanical vibration is not restrained. Itis
further observed that the piezoelectric coupling factor differs from
material to material and depends upon the angles at which the plate is
cut from the natural crystal. Imperfections in the crystal from which
the plate was cut may affect either or both the mechanical vibration
and the piezoelectric coupling.

From the discussion of Section 6.10 it is seen that the equivalent
circuit of a quartz crystal unit has the form of Fig. 6.19, in which the
heavy lines govern the behavior in the region of the desired response,
and the remaining branches describe other responses. In this con-
nection it should be noted that this equivalent circuit of the crystal
resonator was independently identified by Van Dyke3’?* before the
general resonator theorems were derived. Ordinarily, the principal
mesh is sufficient for analysis of the operation of a crystal unit over
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In B, C, and D elements the temperature at which the temperature
coefficient becomes zero, called the turning point, may be varied over a
range of about 50°C by variation of the orientation angle.?'® That is,
the curves may be shifted along the temperature scale without greatly
changing their shapes. In A and G elements, on the contrary, the
curve tends to rotate about the midpoint, without significant change of
the temperature range covered. Other elements behave in a manner
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Fi1G. 6.22. Temperature characteristics of typical erystal units.

similar to the B, C, and D, but the temperature range over which the
turning point may be adjusted is somewhat less. In elements of all
kinds the cost is greatly increased if the temperature characteristic and
nominal frequency must be controlled to very close limits.

The size of a practical crystal plate is limited by weight and avail-
ability on the upper side and by power dissipation, fragility, and
techniques on the lower side. Operation over a wide frequency range
is obtained by choosing the mode of vibration in addition to the dimen-
sions of the plate. Approximate frequency ranges over which various
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TABLE 6.5

Useful Freq. Cap.t C,, Ly, Ry, PI§, Typical . . Typical
Cut | Mode* Range Equationt | Ratio puf henries ohms ohms Q Orientation Dimensions
~ 7lwsf 2.62 X 10° s (yz!)35°21° w = 0.95] = 20t
A ts 1-20 M¢ 166/t 250 Tor —lwﬂ 100 10 50,000 or (yz1)35°21/ w = 1.05 — 39
B 24 20ws | 10.5 X 109 . (yzl) — 48°57" |w = 1.021 = 24 4t
B | 1.5-30 Mc | 256/t 650 o | 100 | 10 50,000 | - (uzh) — 480570 | = 1.020 = 24 4t
108 orer
108 ‘ (y=1)37°55 L
c | s 300-1000 ke | 307/1 350 T 233t 1,000 | 10 20,000 or (LIS 1w = 1 = 200
_ 43 (yz1) — 52°40°
D | 200-500 ke | 207/1 w00 |72 5008 1,000 | 108 20,000 | Gz — 5224001, ) = oy
38.3
E | 50-200 ke | 2821 125 | S 6602 1,000 | 10¢ 20,000 | (zyt)5° w =015 = 10t
F e 50-200 ke 256/1 130 '33—1] 840¢ 1,000 108 20,000 (zyt) — 18° w = 0.15l = 10t
G e 80-500 ke 337/1 350 ‘17522 167t 100 10¢ 200,000]| | (yzlt)51°14’/45° w =117 = 20t
- 5001/12 1.79 " 50 — 015 =1
H wf 4-50 ke or 75/1 190 o 14,200t 10,000 10 20,000 (zyl)5 w ot
_ 560¢/12 0.0254 " . o —01 =
JT | 1-10 ke or 11.2/1 200 G 108¢ 10,000 10 20,000 (zyt)5° pair w . 5t
e 50-500 ke | 280/1 wo | 55| ssx 1,000 | 105 | 20,000 | (euth)8/36° w = 0.4 = 51
N wf 4-50 ke 560104[22/! 900 (-)";42 105, 000¢ 10,000 108 20,000 (zytl)8°/50° w =0.12] = 10¢
or 67.
97lwf 2.62n3 X 10° I
% — 2 £ A Y 4 (yzl)35°21 =1 =60t
A ots 15-100 M¢ 166n/t 250n 107Tn? e 100 10 75,000 or (yzw)35°217 w

*ts = thickness shear, fs = face shear, ¢ = extensional, wf = width flexure, ¢/ = thickness flexure.
t Frequency in kilocycles corresponding to the governing dimension in centimeters.
1 Capacitance ratio, ro = Cs/Ch.
Into A uniform load capacitance of 32 uuf, now commonly used.
Carefully mounted in vacuum.
The J element is a cemented symmetrical pair of right and left-hand elements
** Using the mechanical overtone n of thickness shear.
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larger than the maximum value of the varying field. However, the
basic length, the natural frequency, and the electromechanical cou-
pling vary somewhat with variations of the biasing field.

Magnetostriction resonators have not been widely used, although
they possess certain advantages over quartz or other alternates,
especially at frequencies of a few kilocycles. This limited use is due
in part to the difficulty of procuring and mounting suitable rods and
in part to inherent difficulties associated with the smallness of the
electromechanical coupling.

The equivalent circuit of a magnetostriction resonator is shown in
Fig. 6.23. It differs from that of a quartz crystal in that the shunting
capacitance is replaced by an inductance and resistance in parallel.
These account for the reactance and losses of the winding in the absence
of vibration of therod, whereas the high-Q branch, L1, R, and 'y, accounts

Support at node Ly

R, L,
R,

G
F1e. 6.23. Magnetostriction resonator and equivalent circuit.

for the desired response due to mechanical vibration. The inductance
ratio L;/Lq, together with the @ of the mechanical response, plays an
important part in determining the characteristics which may be
obtained. In available units this ratio is relatively high, in the order
of 5000. The Q of the mechanical resonance is approximately 10,000;
under these conditions we may show that the net reactance of the
system is never capacitive. A corresponding situation exists in
quartz crystals operated at a high mechanical overtone, and in both
cases the driving system must be carefully designed if the output
frequency is to be under adequate control of the mechanical vibration.
In magnetostriction resonators this difficulty is sometimes evaded by
using two coils so that the system acts as a highly selective four-ter-
minal network.

The frequency of a simple bar vibrating in the extensional mode
depends upon the length, density, and elastic constant of the material.
In ordinary materials these quantities vary with temperature to an
objectionable degree. However, Ide!®® has shown that an alloy of
8 per cent chromium, 37 per cent nickel, and 55 per cent iron has the
relatively excellent response indicated in Fig. 6.24.
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Cheapest and most generally available is the tungsten filament lamp.
The common feature of all tungsten lamps is that the resistance at
incandescence is about ten times as great as that at room temperature.
In oscillators it is undesirable to use this full range because of the
relatively high power required to produce incandescence and because of
the limited operating life which results. However, small filaments are
raised to a temperature of about 900°K (corresponding to a dull red)
by a power of only a few milliwatts. At this temperature the resist-
ance is about four times that at room temperature, and the life is
virtually unlimited.

7.2 Lamp characteristics

Tungsten filament lamps are manufactured in a great variety of
physical forms for operation throughout a wide range of voltages and
currents. For the present purposes, however, we need consider only
lamps of small physical size designed for relatively low voltages and
currents. The properties of interest are the resistance; its variation
with respect to the current, voltage, or power; and the thermal time
constant of the filament. The thermal time constant for a slender
filament rated at about 30 ma is of the order of 0.02 second. For a
somewhat heavier filament rated at 200 ma this increases to about
0.06 second.

Different points along the filament operate at quite different tem-
peratures because of unequal radiation losses and the cooling effect
of lead and support wires. For this reason the variation of overall
resistance, which may conveniently be expressed with respect to the
applied voltage, is relatively complicated. The variation of resistance
with applied voltage for representative lamps is shown in Fig. 7.1.
Voltage, rather than current or power, is chosen for the abscissa
because the lamp voltage is closely proportional to the output voltage
in a number of important thermistor-controlled oscillators. Log-
arithmic scales for both voltage and resistance are chosen to accommo-
date a wide range of variables and because fractional rather than
absolute changes are of interest. The principal axes of voltage and
resistance are supplemented by diagonals of power which are very
helpful in actual design. It is seen that a great impedance range is
available, and that a marked increase of resistance is obtainable with
relatively small power dissipation. An example of the use of these
curves follows in Section 7.5.

An important property of a thermistor is the sensitivity s defined*

* Our 2 is comparable to the parameter 75 used by Aigrain and Williams.* How-
ever, they refer the resistance to the current rather than the voltage.
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siderable range of ambient temperature. The added thermistor must
have a power rating or heat exchange rate which is large compared to
that of the primary thermistor so that its resistance will be governed
solely by the ambient temperature and not by the oscillation ampli-
tude. If this added thermistor is to appear in an arm adjacent to the
primary thermistor—the usual case—it should have a thermal coef-
ficient of the same sign but smaller than that of the primary thermistor.
Becker et al.?? describe such arrangements in some detail.

The thermal time constant of semiconductive thermistors tends to be
somewhat longer than that of lamps. The unit of Fig. 7.3 has a time
constant of about 0.1 second, and is stated to be satisfactory for use
in oscillators at frequencies above about 100 cycles.

7.4 A thermistor bridge oscillator

The oscillator shown in Fig. 7.4 is capable of excellent performance in
that the output is nearly constant in amplitude and frequency and is
virtually free from harmonics. The system is particularly convenient

Turns ratio Turns ratio
lin N:1
——O
Output
s —

Tungsten filament
lamps

F16. 7.4. Lamp bridge oscillator.

for analytic purposes because the amplifier, limiter, and resonator
functions are performed by separate portions of the circuit and because
linear equations are adequate to deseribe the performance.

When the circuit is first energized, the lamp filaments are cold and
have a relatively low resistance so that the bridge circuit is far from
balance and has little loss. If the transformers are suitably wound and
connected a considerable loop gain exists, and oscillations build up at
the natural frequency of the resonator, that is, the tuned grid circuit.
The oscillatory currents heat the filaments, thereby increasing their
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Since the plate current is given by
2I/N = gmnVs;, (7.3)

the condition of sustained oscillation is obtained by eliminating I and
V3 to give
2 =gumN(R — r) = gnnNR(1 — r/R). (7.4)

7.5 Design parameters for bridge oscillator

The substitution of numerical values is frequently helpful in inter-
preting analytic results. Reasonable values for the present example
are g, = 2000 micromhos, R = 200 ohms, N = 20, and =»n = 40.
Substitution in eq. 7.4 yields

2 =40 X 20 X 0.002 X 200(1 — r/R), (7.5)

which requires
r = 198.667 ohms. (7.6)

The Western Electric type Al Switchboard Lamp is suitable for this
application. As shown in Fig. 7.1, the resistance reaches 200 ohms at
a voltage of about 1.3 volts. In thisregion the curve is closely approxi-
mated by the empirical equation

r = 180E%, | .7

where E is the lamp voltage. The sensitivity, s, which corresponds to
the exponent is thus equal to 0.4. Substitution of eq. 7.6 into eq.
7.7 requires that

E = 1.27 volts. (7.8)

The remaining circuit voltages are readily seen to be Vy = 51, Vo =
2.55, V3 = 0.008, and V; = 0.32 volt, values which are consistent with
highly linear class A amplification. Under the assumptions made, the
frequency is identical with the natural frequency of the grid circuit.
In a practical circuit this condition is very closely approximated.

The operation of this circuit can be analyzed from another view-
point which offers certain advantages. The curve of Fig. 7.6 shows
the variation of the output V3 of the lamp bridge as a function of the
applied voltage V. The output first increases linearly with the input,
but decreases from this relation as the temperature of the lamps
increases. The output reaches a maximum, then decreases rapidly
toward zero as the input is further increased, passing through zero
and reversing in phase as the input is increased through that value
which balances the bridge.

Because the amplifier is linear, the voltages Vo and V3 are propor-
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from ambient temperature effects, and the limited power available
from a small tube let us operate the lamp at a resistance of 10 ohms, a
voltage of 0.25 volt, and a current of 25 ma. It is appropriate to
allow about 10 ohms additional resistance for the coil losses so that
R; = 20 ohms. The reasonable assumption that the plate coil has an
inherent @ of 100, together with a resistance of 10 ohms at a frequency
of one megacycle, fixes the value of inductance by the relation

2r X 10°L; = 10 X 100 henries (7.26)
50
L, = Ly = 159 ph. (7.27)
Using eq. 7.23, we find
C1 = 159 ppuf. (7.28)
Then, from eq. 7.25,
M = 9.15 ph. (7.29)

Because the lamp resistance is 10 ohms only when the rms lamp current
is 25 ma, the rms grid voltage is by eqgs. 7.17 and 7.29,

¥V = 1.44 volts rms. (7.30)

The corresponding plate voltage is closely equal to the voltage across
L,, which by eq. 7.18 is

Vo = 25 volts rms. (7.31)

A plate supply of 150 volts with a grid bias of 4 volts, which leads to
an average current of 6 ma and calls for a self-bias resistor of 666
ohms, is appropriate. The direct current is small enough so that it
does not contribute appreciably to heating the lamp. It is seen that
all the element values are entirely reasonable in magnitude, and that
the voltages are consistent with linear operating conditions.

In practice, there are a number of distributed capacitances which
were not included in the analysis. Moreover, the dielectric losses of
the coil are not effectively in series with the lamp. For these reasons
it is usually necessary to adjust Lj experimentally to a value somewhat
smaller than L, for best frequency stability.

Although slightly more complicated, the oscillator of Fig. 7.4 is
superior to that of Fig. 7.7 in several respects. First, it is much less
critical with respect to the values of the elements, because the rela-
tively large loss normally designed into the bridge will accommodate
considerable variations of transconductance and transformer perform-
ance. For the same reason, the amplitude of the output is more nearly
constant. Finally, the frequency of the bridge oscillator is inherently



138 LINEAR OSCILLATORS

independent of the lamp resistance, so that no frequency stabilizing
reactor is necessary.

7.8 Amplitude stability of tuned plate oscillator

The amplitude stability of the linear tuned plate oscillator is readily
determined by methods already established. Since in practice the
amplification factor of a triode is much more constant than the plate
resistance, it is appropriate to differentiate eq. 7.25, regarding only
rp and R, as variables. If the notation of Fig. 7.8 is used, the resulting
equation is

drp/rp» + dRy/Ry = 0. (7.32)

The resistance R; represents the sum of the lamp resistance, which
may be designated r, and the coil resistance, which may be represented
by the constant k. With this substitution and use of eq. 7.1 we obtain

drp/rp = —dr/Ry = —(sr/R))(dv/v), (7.33)
where » represents the lamp voltage itself, and is given by
v = I,r. (7.34)
Differentiation of this expression leads to
dv/v = dl/I, + dr/r. (7.35)

Because large values of @ are commonly used, the output voltage, V,
is almost proportional to /,, so differentiation of eq. 7.18 leads (with
only a very small error) to

dVo/Vo = dI /1. (7.36)

The overall amplitude stability now becomes

drp/Tp —srdv/v —sr
SA = =

T dVo/Ve  Rildv/v — dr/r) (1 — s)(r + k)

Substituting in this equation the values r = k = 10 used in the exam-
ple in the preceding section and the sensitivity s = 0.7 corresponding
to the selected operating point in Fig. 7.1, we have for the amplitude
stability the relatively low value of 1.15. The negative sign arises
from the fact that an increase in output is associated with a decrease of
the plate resistance.

(7.37)

7.9 The Wien bridge oscillator

A circuit which has proved exceptionally convenient for variable fre-
quency oscillators in the audio range? is shown in Fig. 7.9. Itisa
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linear, thermistor-controlled oscillator, which has excellent amplitude
control. Although many variations are practical and are some-
times used,® the arrangement shown is ordinarily regarded as most
advantageous.

The key feature of this oscillator is the slightly modified Wien
bridge which serves as both limiter and equivalent resonator. It is
well known that such a bridge is balanced, provided

Ry = 1/wC,, (7.38)
and
R, = 2r. (7.39)

Oscillation occurs at a frequency such that eq. 7.38 is satisfied to an
accuracy limited only by the presence of unavoidable phase shifts in

Output

Fic. 7.9. Wien bridge oscillator.

other parts of the circuit. The equilibrium amplitude is such as to
heat the lamp nearly, but not quite, to a resistance consistent with
eq. 7.39. In practice, R, is usually large compared to R, so as to
obtain audio frequencies with practical values of capacitance.

The Wien bridge may be connected in several ways, of which only
one yields suitable oscillations under any particular set of conditions.
It is therefore necessary to examine the system behavior with some
care.?®® The essential facts are presented in a Nyquist diagram

“determined from the following equations, based on the equivalent
circuit of Fig. 7.10:
V=V, -V, (7.40)
Vl(T + R:}_) = VoT, (741)
and
-V Ri/(1 + jwCiRy)
°R1/(1 + juC\Ry) + mRy + 1/junCy

V, (7.42)
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or
V()/V2 =1 + m —I'- jmelRl + l/n + l/jamCIRl. (743)
Elimination of V; and V; yields
1 1

- s (7.44
1+m+ 1/n+4 jomCiRy + 1/jonC1Ry - 1 + Ro/r ( )

Vi/Vo =

which may be put in the symbolic form

1
Vi3/Vo = o+ jbo + 1Jjco - d. (7.45)

This equation is in the form of a ratio of phasor voltages and therefore
determines a Nyquist diagram. The denominator of the first term
corresponds to a straight vertical line in the complex plane. There-

Vo

Fi1G. 7.10. Generalized Wien bridge.

fore, the complete expression 7.45 represents a circle of diameter 1/a
displaced from the origin by the distance d. Two cases, one for d
small, the other for d large, are shown in Fig. 7.11. In both cases,
increasing frequency corresponds to clockwise rotation. Because m
and n are inherently positive, the constant a always exceeds one, and
the circle diameter is less than one. Therefore, from eq. 7.45 the circle
will cross the axis to the right of the origin only if the ratio R,/r is of
the order of one. In particular, an increase in r also increases d and
shifts the entire diagram to the left. Since a shift to the left corre-
sponds to a reduction of loop gain, a thermistor having a positive tem-
perature coefficient of resistance must be used as r, to secure proper
limiting action (that is, reduction of loop gain with increase of ampli-
tude). Alternatively, a negative coeflicient thermistor may be used
in the R, position if r is replaced by a fixed resistor.

The two vacuum tubes produce no net phase reversal and thus serve
only to magnify Fig. 7.11 without changing its shape or frequency scale.
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Accordingly, with appropriate scale change, this constitutes a universal
Nyquist plot for the system. Stable oscillations are anticipated if
is a positive-coefficient thermistor. The diagram readily encircles the
point (1, 0) for small amplitudes, but with increase of amplitude the
diagram is displaced to the left so as to pass through the point (1, 0).
This behavior is in interesting contrast to that of the oscillator of Fig.
7.4, whose Nyquist diagram shrinks radially as the limiter takes effect.
Inspection of eq. 7.45 shows that each point on the circle of Fig. 7.11
corresponds to a specific frequency and vice versa. When d is nearly
equal to 1/a, therefore, a relatively small change in frequency results
in a large loop phase shift. This property is common to all bridge
circuits which are nearly balanced and are sensitive to frequency. It

w increasing

Fic. 7.11. Nyquist diagrams.

is desirable in oscillators because unavoidable phase shifts in the
amplifier (driver) unit are automatically corrected by a slight change
of frequency.

A bridge composed of fixed linear elements also has this desirable
property of phase magnification. However, it is impractical to achieve
the desired accuracy of balance because of changes of element values
with respect to age, temperature, etc. Moreover, a separate limiter
would be required in any event. Therefore, the use of a thermistor as
one arm of the frequency-controlling bridge must be regarded as a
necessity in any practical bridge oscillator.

Ordinarily, the tube adjacent to the bridge in Fig. 7.9 is adjusted for
large linear voltage amplification of a small signal. Care must be
taken to see that the total direct cathode current does not contribute
too much heat to the thermistor, which is commonly a 3-watt, 120-volt
tungsten-filament lamp. The other tube is designed as a linear power
amplifier. However, it must operate into a relatively low impedance
and must produce a sufficiently large alternating current to heat the
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terms of the series resonant circuit shown, although, in practice, the
latter is usually replaced by a quartz crystal.

The inherently low harmonic output produced by the tube is further
reduced by the action of the tuned input and output transformers.
The thermistor produces limiting with negligible harmonic distortion
because the circuit is ordinarily used only at frequencies above the
audible, where the resistance is unable to vary appreciably during any
one cycle. In the circuit described in Meacham’s original paper
the second and third harmonics were respectively 67 and 80 db below
the fundamental. Because three of its arms are pure resistors, the
bridge can approach balance only at the series-resonant frequency,

(i
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Fi1G6. 7.12. The Meacham bridge-stabilized oscillator.

where the reactance of the fourth arm vanishes. Under balanced
conditions the bridge is purely resistive.

During oscillation, the amplitude must adjust itself so that the loss
of the bridge is equal to the gain of the amplifier. Also, the frequency
of oscillation must adjust itself so that the phase shift of the bridge is
equal and opposite to that of the amplifier, which is adjusted by means
of input, output, and interstage networks to have as small a phase
shift as possible. With the simplifying assumptions that the amplifier
input impedance is large compared to the bridge resistances and that
no phase shifts exist, it is possible to describe the system by means of
relatively simple equations:

Vo = uVs (7.46)
and
Ry R
Ve =V [ — :ly 7.47
s~V | Bt By Bt B) (7.47)

where u is the effective voltage gain of the amplifier.
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Because the bridge is operated at a condition very near balance, it is
convenient to express the situation in terms of 8, the degree of unbal-
ance, defined by
RsR,

B

Ri=(1—3%) (7.48)

Introducing & (which equals zero when the bridge is balanced) into
eq. 7.47 and then using eq. 7.46, we obtain

- [ R R ]
—F 1—-8&R3+R R34+ R

= uR 1 - 1 7.49)
e [R+R3—5R3 R+R3] (7.49.

Because & is very small we may write to an adequate approximation

1
— =1 é. .
— =1+ (7.50)
Use of this approximation in a slightly modified form converts eq. 7.49
to

L= uk [R &T;ﬁm - (11: T :32] i (Ie—ilzzse? @51)
If an equal-arm bridge is used,
R; = R. (7.52)
For this relationship eq. 7.51 requires that
pé = 4. (7.53)

The equal-arm condition is desirable because, consistent with a pre-
scribed value of p, it leads to maximum amplitude and frequency
stability. If the equality of eq. 7.52 is not achieved, an increase of
the product ué is required for oscillation. Thus, when

R; = 4R or R/4, (7.54)
the required unbalance is increased to
ué = 6.25. (7.55)

In a typical example p = 400 and R; = R; then 6 = 0.01, and oscil-
lation occurs when R, is only one per cent below the value which pro-
duces exact balance. Where the absolute maximum in performance
must be achieved, the amplifier unit may consist of two or even three
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tubes in conjunction with transformers and interstage elements,
carefully adjusted with respect to the overall gain and phase-shift
characteristics. Ordinarily, however, a single tube in conjunction
with tightly coupled, high impedance input and output transformers is
sufficient. Suitable transformers for frequencies in the region of
100 ke usually employ toroidal cores of powdered iron. Accordingly,
the design of the bridge represents the chief problem. Several
questions as to the proportioning of the bridge are discussed in the
following section.

7.11 Design of the Meacham bridge

The principal requirements which govern the design of the bridge
circuit are these. (1) A maximum possible rate of change of phase

N ]+ _
v, v,
+ -
_ Bridge
+ _ output
V.. Vs
— + J+

F1c. 7.13. Bridge circuit.

shift with respect to frequency is desired to minimize the change of
frequency which results from a change of amplifier phase. (2) In
terms of ratios, a maximum change of bridge loss for a small specified
change of thermistor resistance is desired to minimize the change of
output which results from a change of amplifier gain. (3) A certain
maximum amount of current or power is safely allowable in the resona-
tor, especially when a quartz crystal is used. (4) A certain minimum
amount of power or current is required to operate the lamp thermistor.

The phase magnification will be calculated first in terms of the bridge
circuit of Fig. 7.13 and the associated phasor diagram of Fig. 7.14,
in which the magnitude of the unbalance has been exaggerated for the
sake of clarity. The governing equations are

VS = V3 - V], (756)

Vi(R1 + Rs) = ViR, (7.57)

and
Vi(R3 + R + jouL + 1/j0C) = V,R;. (7.58)
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should be a continuous single-valued function of the bias. Chapter 10
shows that the criterion just described is sufficient but not necessary,
and is indeed rather severe. However, it is met in the circuit of
Fig. 7.16, provided the bias on the third grid is such that operation
occurs at the inflection point of the transfer characteristic (maximum
transconductance).

PROBLEMS

7.1. Calculate the curve corresponding to Fig. 7.6 for a bridge of E1 lamps and
50-ohm resistors.

7.2. Using the above bridge, design an oscillator to operate at 300 ke, using
N =n = 30 and g» = 5000 micromhos.

7.3. Calculate the amplitude stability and operating voltages of the above
oscillator.

7.4. Calculate for your design the frequency deviation which will result if the
grid capacitance is increased by one micromicrofard.

7.8. Verify the correctness of eq. 7.73 and defend the associated assumptions.

7.6. Verify the correctness of eq. 7.75.

7.7. It would appear that the frequency stability of the Meacham oscillator with
respect to changes of tube capacitance could be reduced by addition of a stable
padding capacitance. Prove that this is not true.

7.8. Discuss the use of unequal impedance levels in grid and plate circuits in
the interest of frequency stability.



3

CONVENTIONAL HARMONIC
OSCILLATORS

Chapter 7 has described in some detail a number of linear oscillator
circuits, which generate waves of great purity having good amplitude
and frequency stability. However, the circuits most widely used in
practical apparatus operate in a markedly nonlinear manner. The
present discussion is devoted to a presentation of these widely used
circuits and their properties; it has been deferred to this point in order
to present the extensive background which is necessary to the under-
standing of a number of important features of such circuits.

This chapter is concerned principally with low-power oscillators
which operate at ordinary frequencies, have moderate values of ampli-
tude and frequency stability, and are characterized by simplicity and
economy. However, most of the results are independent of frequency.
The problems which are peculiar to high-power levels are discussed
separately in a later chapter.

The exact analysis of nonlinear systems is so difficult and cumber-
some that some alternative must be found if useful engineering results
are to be obtained. On the other hand, some form of analysis is
necessary if the performance of existing oscillators is to be understood
and if new circuits are to be designed intelligently. The following
analysis is based on idealized class C operation; it is a form of the
method of equivalent linearization discussed in Chapter 4. No
effort is made to obtain a frequency correction term.

8.1 The tuned plate oscillator

The circuit of the conventional tuned plate oscillator is shown in

Fig. 8.1. The schematic diagram is a very close approximation

to the actual physical system, the principal idealization being the repre-

sentation of the load as a pure shunt resistor R. In actual operation

some grid current always flows, but if R, is relatively high the effects
158
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of grid current are negligible. The tube is assumed to have an ideal-
ized cutoff characteristic. That is, the curves of plate voltage versus

grid voltage, with plate current as parameter, are assumed to be uni-
formly spaced parallel straight lines with slope equal to —u as shown

in Fig. 8.2.
- . urp rg
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Fi1G. 8.1. Tuned plate oscillator.
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F1c. 8.2. Idealized triode characteristics and paths of operation.

The analysis is begun by assuming that the tube has a small negative
bias, consistent with class A operation, and that the circuit parameters
are adjusted so that oscillations just begin. With this idealization it is
possible to employ linear equations, which at the natural frequency of
L and C take the form

ep/eg = L/M and e, = ueR/ (R + 1p). (8.1)
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we may establish an artificial driving voltage

B = (Eﬂm — Epm/u) = E{lm(1 — h/u). (8.5)
Using the variable § = «t, we may express the current. as
i = gm(E' cos 6§ + Ey), (8.6)
where
Eq = (Ey/u — Eo) (8.7
is the amount by which the bias differs from the cutoff value.
20 T 1000
-
Ipm/lb Ipm/lb// 3 500
. V o
17 / ) 100 3
ian /1 ’-’ =
1.50 / /[ on/1s 20 £
,"/ 10
1.25 =i 5
- /(B=i,,,,./l,,,,,— 2
10 r oi .
2R 38285 ke
- Half-conduction an(;e, 0,

F16.8.3. Calculation of platecurrent. Fic. 8.4. Parameters for idealized class
C operation.

The fundamental component of the plate current, is evaluated by use
of the Fourier series expression

1 27. 2 )rA
=_ ip COS B db = — . 2 cos 8 d#. (8.8)

Iom
T T

Because the current is zero and eq. 8.4 does not apply over part of the
cycle, it is desirable to modify the limits by use of the new variable

6, = cos™! (Ey/E"), (8.9)

which represents half the angle over which plate current is conducted.
The maximum value of the fundamental component of plate current

1S now
2m [
Tom = _9_[) (E’ cos 6 + E;) cos 6d6 (8.10)

™
Integration and substitution of limits yields, after simplification,

20, — sin 26, _ gmB’ (8.11)
2r N Bp ’ )

Ipm = guE’
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voltage. The corresponding grid resistance r, is usually about one
thousand ohms. Evidently, the ratio of this resistance to that of the
grid leak will determine the bias developed and the extent to which
the grid is driven positive.

Following the indicated analysis, we find that the equivalent a-c
grid resistance R, is equal to B,r, where §3,; is defined by eq. 8.12 in
terms of 6, the angle of grid current conduction. Unfortunately, this
form for the expression is inconvenient and may lead to serious error
in numerical work. Therefore, the results presented in the curves of
Fig. 8.5 are recommended for ordinary use.

1.0 [ I I T 2.0
s’f/
gﬁ'
=
08 = 16
//
& at
§ 0.6 297 1.2
~ gl oSl o
&) E./Egm >/ LA TTR./R, 53
I o4 [~y
=04 4 0.8
/ |
0.2 0.4
0 | o
1 2 5 10 20 50 100 200 500 1000

Ratio of grid leak to grid resistance, R, /r,

Fi1:c. 8.5. Effect of grid rectification.

When the grid leak is subjected to an alternating as well as a direct
voltage, as in the circuit of Fig. 8.6, an additional power loss is incurred.
This has no effect upon the rectified bias, but increases by one the
value of the ratio R./R,. 1If, for example, we have R./r, = 100,
the ratio R./R, is equal to 2.8.

Returning to the circuit of Fig. 8.1, we find that grid rectification
has two principal effects. First, there is an additional loading which
may be accounted for by substituting for R, in eq. 8.2, the quantity

L*RR, _ R’RR,
M?R + L’R, R + h’R,
Second, the extent to which the grid is driven positive must be taken
into account by writing

R = (8.16)

E. = 'YEgm, (817)
where v is given by Fig. 8.5.
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8.4 Prediction of the amplitude of oscillation

The amplitude of oscillation in the tuned plate circuit may be predicted
by appropriately combining the information now available. From
eq. 8.2, modified to account for R, by means of Fig. 8.5, we may
determine the parameter 8, and hence the conduction angle §,. Then
from eq. 8.15 or Fig. 8.4, we may obtain the additional parameter B.
These are sufficient to determine the amplitude as shown in the follow-
ing paragraph.

Using eqs. 8.4, 8.7, 8.9, 8.15, and 8.17 we may eliminate E,, E.,
E,,. and 6, to obtain the maximum alternating plate voltage

_ 18,E,
(I-‘- - h)(B - Bp) + #'Yﬁp

It is seen that the amplitude is proportional to Ej, increases with
increase of A, and is affected by 8,, B, u, and v. In class B operation,
where B = 8, = 2, the expression simplifies to

hE,

Epm = (819)
wy

(8.18)

m

which is readily checked by direct calculation.

Because egs. 8.18 and 8.19 do not depend upon the circuit configura-
tion, and because the development involves only the assumption that
grid and plate voltages are sinusoidal and 180° out of phase, they may be
applied to any circuit which meets this condition; that is, they areapplica-
ble to nearly all practical oscillators.

The amplitude of oscillation just calculated represents a stable
equilibrium in most practical cases. That thisistrue maybe shown by
assuming that the amplitude is momentarily increased (or decreased)
by some external influence. A consideration of the class C process
shows that there is a strong tendency for the amplitude to return to its
original value.

There are, however, two situations in which stability may be lacking.
In high-power oscillators where maximum efficiency and power output
are desired the grid is driven considerably positive with respect to
the cathode, and may even become positive with respect to the plate. -
Under these conditions secondary emission of electrons may occur,
the grid current is greatly increased, and the plate current is reduced.
Because the situation differs widely from that assumed in the fore-
going analysis the results may be in great error. More is said of this
in Chapter 11. Under other conditions the time constant of the grid
circuit is excessive compared to the envelope time constant of the
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tuned circuit. We may then observe intermittent oscillations, dis-
cussed in detail in Chapter 10.

8.5 Illustrative design of tuned plate oscillator

To illustrate the application of the equations developed above, let us
design an oscillator to operate at a frequency of one megacycle and
yield a relatively large output from a 6J5 triode. The approximate
parameters of this particular tube are u = 20, r, = 8000 ohms, gm =
2500 micromhos, and 7, = 1000 ohms. We may choose as reasonable
values the additional parameters E, = 300 volts, » = 6.0, 8, = 60°,
and v = 0.70. With these values we have, from Fig. 8.4, 8 = 5.0 and
B = 2.5. Therefore, from eq. 8.17, we have

E,m = 256 peak volts, (8.20)

from which we obtain E,,, = 42.66 and E. = 29.9 volts. The curves

of Fig. 8.5, together with r, = 1000, yield the grid leak resistance

R, = 15r, = 15,000 ohms and R, = R./1.3 = 11,500 ohms.
Introducing 8, and R’ into eq. 8.2, we have

R’ = 17,170 ohms. (8.21)

Now using & and eq. 8.16, we have as the actual plate load R = 17,900
ohms,

If we select as a reasonable value of capacitance C = 120 uuf, we
find for resonance at one megacycle L = 210 ywh and M = 35 uh.
Assuming a selectivity of @ = 100, we find that the equivalent shunt
resistance of the coil is R, = QwL = 132,000 ohms. FEvidently, the
power delivered to the useful load is reduced by that lost in the coil.
Correcting for this effect, we have an equivalent load resistance of
20,800 ohms. The maximum alternating plate current is 256,/17,100
or 15.0 ma. The average plate current is, from Fig. 8.4, 15.0/1.80 =
8.33 ma. The useful power output is 256%/(2 X 20,800) or 1.57 watts.
The efficiency, which is relatively high, is (1.57 X 103)/(300 X 8.33)
= 62.5 per cent. The design is completed by selection of a grid con-
denser, which should be large compared to the internal capacitance of
the tube; C, = 200 uuf is a suitable value.

8.6 The Colpitts oscillator

The circuit diagram of a practical form of the Colpitts oscillator is
shown in Fig. 8.6. In fundamental principles, this circuit differs
very little from the tuned plate oscillator just described, but a number
of practical differences exist. The grid leak is connected directly from
grid to cathode so that an a-c as well as a d-c¢ loss will occur unless a
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suitable choke is used in series with it. Both the plate and grid are
returned directly to ground through the condensers C, and C, of the
resonator or tank. Thisis an advantage, because the highly distorted
grid and plate currents, characteristic of high-efficiency operation,
can return to the cathode without impedance from coil resistance or
leakage reactance. However, if the frequency is to be adjustable, the
two condensers should be varied in such a way as to preserve their
ratio; otherwise the excitation ratio and performance are modified
with tuning.

The conditions for oscillation are conveniently determined with
reference to the generalized circuit of Fig. 8.7. Using the principle of

Yo
———MMA——E,

-|m -

e
Rn=1/G,, (l0ad) a
AW ——— =

Fic. 8.6. Shunt-fed Colpitts Fic.8.7. General oscillator eir-
circuit. cuit.

equivalent linearization in the form of the preceding sections, we may
write the phasor nodal equations

EY,+Y, —EY, =0, (8.22)

—E¥n + Ex(Yp, + Yu) = —Eggn', (8.23)

in which Y., Y,, and Y, are taken to include the internal admittances
of the vacuum tube, and ¢,’ represents the effective transconductance,

defined by
gm' = gm/Bp- (824)

Elimination of the voltage variables yields the generally useful

equation
: —gm’ =Y, + Y, + (Y,Y,/Ym). (8.25)

Neglecting the grid-plate capacitance in the Colpitts oscillator of
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Fig. 8.6, and representing the total conductances of grid and plate
circuits by G, and G,, respectively, we may write

Y, =G, + juCy; Y, = Gp + jwCp; and Y, = Gm + (1/jwLl).  (8.26)
Substitution of these values in eq. 8.24 yields
—gn’ = Gy + jwC; + Gp + juCp

" JoL(G,Gp — w?CyCp + juG,C,y + JwGeCh)
1 4+ jwlGn
In each of the admittances, the real part is small compared to the
imaginary part. Therefore, negligible error is produced when several

squared terms are neglected in rationalizing the last term of eq. 8.27 to
obtain by separation of real and imaginary parts

C, + Cp = w?LC,Cp — @ L¥Gm(G,Cr + GoCp) . (8.28)

(8.27)

and
gn’ = =G, — Gy + «’L(G,Cp + G,Cy) + w*L¥GnC,C,. (8.29)

In typical situations the last term of eq. 8.28 is very small compared
to the others, and the operating frequency represents series resonance
of L with C; and C,. Using this value of w, together with the excita-
tion ratio

. h = Epm/Egm = Cy/cp) (8.30)
we obtain from eq. 8.29 the gain equation
g’ = hGp + Go/h + Gu(h + 1)%/h. (8.31)

If a pentode is used, @, is effectively zero; moreover, the term G,/h
may often be made negligible. Under these circumstances the effec-
tive transconductance required for oscillation with a fixed value of G,
reduces to a minimum value of 4G,, for an excitation ratio of unity.
Equation 8.31 is useful in adjusting the impedance level of the circuit
because the last two terms represent the total admittance presented as
load to the plate of the vacuum tube. With this modification, the
amplitude of oscillation may be predicted by use of eq. 8.18. As
previously noted, the two condensers should be varied in the same
ratio if the excitation ratio is to remain constant as the frequency is
varied.

~ 8.7 The Hartley oscillator

The circuit diagram of the series-fed Hartley oscillator is shown in
Fig. 8.8. It is seen to bear considerable resemblance to both the
tuned plate and the Colpitts circuits. It differs from the tuned plate
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oscillator principally in that the grid leak is in shunt and that the
tank condenser and load resistance are connected across the entire
coil rather than the plate section only. The circuit will operate if
there is no mutual inductance between the two sections of inductance.
However, it is much simpler to construct the coil as a single continuous
tapped winding, and this is almost always done because the overall
efficiency and performance are considerably improved thereby. The
coupling coefficient between the two portions of the coil should be
made as large as possible, because the leakage may be represented as an
inductance in series with the cathode lead. Such an inductance inter-
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WA — c‘l‘ t
= o = - -
| oot i
L
1t =
"
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F16. 8.8. Series-fed Hartley cir- F1c. 8.9. Tuned grid oscillator

cuit.

feres with efficient class C operation. This circuit has the practical
advantages that it is readily tuned by means of a single variable con-
denser, and that the total number of components is small.

The operating frequency is very nearly that of resonance between C
and the total inductance, and the excitation ratio h is the effective
turns ratio of the coil. The general eq. 8.25 or the specific eq. 8.31
developed in the preceding section may be used to calculate the con-
ditions for oscillation; eq. 8.18 may again be used to predict the
amplitude.

When the Hartley circuit is used to generate large amounts of power
it is customary to modify the circuit to employ shunt feed such as that
shown in Fig. 8.6. An additional choke and blocking condenser are
required, but the tank now has no direct potential to ground, and
therefore constitutes much less of a hazard to operating personnel.
The same objective is achieved in various ways in almost all high-
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we obtain
w’L,(1 + 26w/w) = (1 — 8C,/C, + h + k)/C,. (8.37)

The value of L, is eliminated by means of eq. 8.34 to obtain

e . — 8.38

w Cy 2+ 2h + 2k (8:38)

It is clear at this point that large values of h, k, and C, are desirable
in order to reduce the frequency deviation; however, these values are
limited by the fact that only a given transconductance is available to
produce oscillation. To determine the extent to which C, may be

1Tl

1

F1c. 8.11. Clapp’s resonator.

increased we must obtain an expression for the conductance of the
resonator. Referring to Fig. 8.11, we may write

R./X = XGn, (8.39)
and
X =1/0Cy+ 1/wCp = (1 + h)/wC,. (8.40)
Neglecting grid and plate circuit losses in eq. 8.31, we have
gm' = Gm(h + 1)2/h = R.(h + 1)2/X?h. (8.41)
Introducing the selectivity
Q= "-‘Le/Re; (842)
we obtain
g’ = wCo(1 + h + k)/Qh. (8.43)

Combination of eqs. 8.38 and 8.43 to eliminate C,, yields the important

result
dw/w = — wsC,/2Qhgn’. (8.44)

Because the parameter k, which fixes the value of C3, disappears in
the final substitution, we conclude that in itself the added capacitor C;
contributes nothing to frequency stability. That 1s, subject to a fixed
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the several leakage inductances inherent in the arrangement and is not
readily controlled.

Closely related to the circuits of Meissner and Clapp is that due to
Lampkin!®! and illustrated in Fig. 8.13. As in the Clapp circuit, the
size of the coil and condenser is chosen on the basis of @, tuning range,
and convenience; the tube is then attached in such a way as to produce
oscillation with a minimum of disturbance of the natural frequency.
The present arrangement is most desirable at low and moderate
frequencies, where relatively tight coupling may be produced. If

M,

IHTE
t
)}
o

+—

M,

Fia. 8.12. Meissner oscillator.

F16. 8.13. Lampkin’s oscillator.

tight coupling is not achieved the circuit is likely to generate spurious
oscillations at some relatively high frequency which depends upon the
leakage inductance.

8.11 The tuned grid-tuned plate circuit

A circuit which is the basis of the familiar Miller crystal oscillator is
shown in Fig. 8.14. Its analysis is of further interest because triode
amplifiers and frequency multipliers often generate undesired oscilla-
tions in accordance with the design principles of this circuit. Such
oscillations do not have good frequency stability because the grid-
plate capacitance of the tube is an important element in the frequency-
determining circuit; however, relatively good stability may be obtained
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by adding a stable capacitance to C3 and reproportioning the other
elements. The circuit may be interpreted as a Hartley oscillator in
which the mutual inductance has become zero and the effective
inductance of each coil has been increased by partial tuning.

8

R

n

Fic. 8.14. Tuned grid—tuned plate circuit.
Referring to Fig. 8.7, we may substitute
Yn = jBm = juCs,

Y, = jB, = jwCs + 1/jwL,, (8.45)
and
Y, = G, + jB, = Gy + juC; + 1/juLy.

Substituting in eq. 8.25 and taking advantage of the fact that Y,, and
Y, are pure imaginary, we have

Bmgm/ + Gl(Bg + Bm) = 0, (846)
and
1/Bm + 1/B, + 1/B, = 0. (8.47)

The first of these equations represents the transconductance required
for oscillation, and shows that B, and B,, must be of opposite sign;
that is, the grid circuit must be inductive. The second equation shows
that oscillations are sustained at the frequency at which the reactive
elements alone produce a resonant loop.

Introducing the excitation ratio, which is

h = — (By + Bw)/Bun, (8.48)
we may reduce the loop gain equation to the form

gml = }IGL (849)
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provided the usual precautions to avoid frequency change due to the
load are observed.

8.13 The Franklin oscillator

A circuit due to Franklin!®? which has excellent frequency stability
is shown in Fig. 8.16. Although developed independently, it differs
from the Gunn circuit mainly in that the two tuned circuits are
replaced by load resistors, and that the resonator is very loosely
eoupled to the resulting driving system because C; and C, have
capacitances of only about 1 uuf each.!®® Limiting occurs principally
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Fic. 8.16. The Franklin oscillator.

in the tube at the left, and the other tube may well be provided with a
cathode biasing resistor to increase the impedance which the grid
presents to Cy. This is desirable because the grid conductance in
conjunction with the input capacitance affects the phase angle of the
equivalent voltage divider, thereby affecting the frequency.

At frequencies near 500 ke, where the circuit is usually operated, the
load resistances may be made so small with respect to the associated
capacitances that the phase shift in each stage is substantially 180°.
The operating frequency is then very nearly the natural frequency of
the resonant circuit. The arrangement has the advantages that tun-
ing may be accomplished by means of a single variable inductor or
capacitor, and that one side of the tuned circuit is directly grounded.
In the original models the tuned circuit was a relatively massive unit
constructed with great care so as to minimize drift due to aging and
temperature change.’® However, the same congtruction could be
used profitably with other circuits, so that the merits of the circuit
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purpose. Beam tubes, which almost always have internal connections,
are objectionable on the same basis, although the direct capacitance is
frequently small enough to be tolerable. Pentodes with available
suppressor leads operate well in this circuit if the suppressor is con-
nected to a fixed (by-passed) potential equal to the maximum alter-
nating voltage of the cathode. Shielding is preserved, and conduction
occurs at times when the cathode and suppressor are at practically
the same potential.

In summary, the optimum tube for Fig. 8.18 is a tetrode with
excellent shielding, a large ratio of plate to screen current, high trans-
conductance, and a high ratio between the safe plate voltage and the
required screen voltage. Available tubes such as the 24A and 36

Tank

Output circuit
circuit

iaREth

ST TR + 'lmwlmﬂ
J:—”’——— -

=3 ©

Output
circuit

F16. 8.18. Electron-coupled Hart- F1c. 8.19. Electron-coupled pentode
ley oscillator. oscillator.

approximate these objectives reasonably well. Pentodes with separate
suppressor leads are equally desirable and more commonly available.
When a pentode with internal suppressor connection must be used a
neutralization scheme similar to one described in a following paragraph
may be employed.

An essentially different form of electron coupling is shown in Fig.
8.19. The cathode is grounded and the second or screen grid is used
as an equivalent plate in a tuned plate oscillator. In this circuit
the current which flows through the tank circuit to produce oscilla-
tions is not the entire cathode current but is only the fraction thereof
captured by the screen. The effective transconductance to be used
in calculating the performance is given by the approximate relation

gm' = (gm/Bp) * (Lea/Iy), (8.50)

where g., is the normal control-grid-to plate transconductance, 8, is
the class C parameter given in Fig. 8.4, and the average screen and
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ments for accomplishing this objective. Unity coupling between the
coils of the Hartley or tuned plate oscillator would clearly meet this
requirement, and Llewellyn also shows how to obtain the desired effect
without actually obtaining perfect magnetic coupling. In the stand-
ard Colpitts oscillator, for example, the desired phase relationship is
obtained by the addition of a small inductance in series with the plate
or grid leads.

The analysis leads to the following logical procedure: (1) Use the
lowest ratio of L/C consistent with the situation. (2) Use the largest
practical grid leak in order to obtain a large value of effective grid
resistance.* (3) Obtain the highest practical coefficient of coupling
between the coils if magnetic coupling is used. (4) Use a compensat-
ing reactor to correct the remaining departure from 180° phase.
Llewellyn and others have obtained very stable oscillators following
this procedure.

The foregoing discussion does not, include the effects of intermodula-
tion, as discussed in Chapter 4. In most class C oscillators the equiv-
alent reactance due to intermodulation is quite small. Since the
harmonic content is nearly independent of the applied voltage, the
frequency variation with respect to applied voltage due to this cause is
relatively unimportant, in marked contrast to the dynatron and
related oscillators. Additional information on this subject is pre-
sented by Jefferson.15¢

8.17 Resistance stabilization of frequency

Oscillators employing resistance stabilization can be made to produce
remarkably constant frequency, especially in or somewhat above the
audio range. A Hartley oscillator employing resistance stabilization
is shown in Fig. 8.21. The coil is tightly coupled and has a large
value of @, and the L/C ratio is low. The grid bias is fixed at a value
slightly below the optimum value for class A operation. The feed-
back resistor R;, which is high compared to the plate resistance of
the tube, is adjusted to a value only slightly smaller than that cor-
responding to the threshold of oscillation. Under these conditions
the tube operates with low distortion, the voltage across the tuned
circuit is very nearly free from harmonics, and the frequency is quite
insensitive to the conditions of the tube and to variations of the applied
voltage. )
Although the superior performance of such oscillators is in large
part due to the care with which they are ordinarily built and operated,

* Intermittent behavior, which may occur if the grid leak is too large, is discussed
in Chapter 10.
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much more conveniently. A very simple circuit for obtaining oscilla-
tions in a resistance-capacitance circuit was described by Ginzton and
Hollingsworth, ! and is shown in Fig. 8.22.

At first glance it may seem surprising that such a circuit can generate
harmonic oscillations. It is well known that a passive circuit of
resistance and capacitance is completely incapable of oscillation, and is
characterized by roots which are real and negative. As shown in
Chapter 5, however, the addition of gain or negative resistance in the
form of a vacuum tube greatly modifies this situation. For appropri-
ate values of the parameters the roots become pure imaginary, and
the Nyquist plot passes through the point (1, 0) corresponding to
sustained oscillation.

c Cc I=g,E,

E, E, E, E,

9}
o}
9}

—0

(u) (b)

Fig. 8.22. Phase shift oscillator: (a) circuit arrangement, and (b) equivalent
circuit.

The conditions for sustained oscillation may be determined by means
of linear equations in connection with the equivalent circuit of Fig.
8.22b. As in other oscillators, the actual gain provided is in excess of
that calculated, and nonlinear operation results. However, the oper-
ating frequency corresponds very closely to the calculated value,
and the gain equation serves as a basis for the design of practical
circuits.

The algebra presented by Ginzton and Hollingsworth is relatively
complicated, and is omitted here in the interest of space. However,
the results of their caleulations for a variety of circuit arrangements are
presented in Fig. 8.23. Throughout this figure the symbol A repre-
sents the amplification which would be observed for the given tube
operating with the load resistor R,. That is,

A = uR/(Ry + 15). (8.51)
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voltage Vo in terms of Fig. 8.29. This voltage applied through a simi-
lar bridge to T'; and T4 produces an output which may be thought of
as Vi. A single rather than double reversal of phase in the loop is
secured by taking the output from T3 rather than T, as would be
required for symmetry.

The general method is applicable over the frequency range 0.01
to 107 cycles, although it appears unlikely that the entire range should
be attempted in a single unit. The frequency is stable to about 2 per
cent and may be set to an accuracy of about one-half per cent. The
tracking requirement on the two-gang potentiometer is not severe.
Excellent wave form is preserved by use of a thermistor amplitude con-
trol, and the output is maintained substantially constant over the
entire frequency range by means of a suitable equalizer and additional
thermistor.

PROBLEMS

8.1. A triode oscillator similar to that of Section 8.5 has the parameters u = 70,
r, = 105 r, = 103, E, = 250, h = 10, 8, = 50° and v = 0.75. Calculate the
operating conditions, grid leak resistance, and resonator parameters, assuming no
useful power output, » = 107 and @ = 50.

8.2. Repeat Prob. 8.1 for a Colpitts oscillator.

8.3. Develop the loop-gain equation for the tuned-grid oscillator, assuming the
grid coil is shunt-loaded and taking account of grid rectification.

8.4. Referring to the numerical example of Section 8.5, calculate the frequency
deviation produced by adding one micromicrofarad to the plate capacitance.

8.6. Referring to the numerical example of Section 8.9, calculate the frequency
deviation produced by adding one micromicrofarad to the grid capacitance.

8.6. Develop a numerical example of a Meissner oscillator corresponding to
Prob. 8.1.

8.7. Develop a numerical example of the Franklin oscillator based on pentodes
with gm = 2000, a 500-kc resonator with @ = 150 and C = 1000uuf, and coupling
condensers of one micromicrofarad each.

8.8. Explain clearly why the transconductance available to produce oscillation
is different in the circuits of Figs. 8.18 and 8.19.

8.9. Verify the results presented in the last line of Fig. 8.23.
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CRYSTAL-CONTROLLED
OSCILLATORS

Crystal-controlled oscillators are characterized by the use of a
piezoelectric crystal rather than a tuned circuit as the frequency-
determining element. Logically, therefore, they are merely har-
monic oscillators, and might well be classified with the other oscil-
lators of that group. They are treated separately here because
their properties are significantly different from those of other oscil-
lators and because separate treatment is customary. The outstand-
ing property of crystal-controlled oscillators is an exceptional degree
of frequency stability. This is a direct result of the high @ and low
temperature coefficient of the crystal unit employed. The differ-
ence, although of degree rather than of kind, is so great as to justify
separate consideration.

Because the frequency is principally determined by the crystal, it is
possible to obtain relatively simple expressions for frequency stability
by combining appropriate partial derivatives. This procedure is
illustrated in the following sections.

The subject matter of the chapter was arranged with a view to pre-
senting a number of useful ideas in a logical order. It is perhaps unfor-
tunate that the most widely used circuits operate in a relatively com-
plicated manner and are therefore described near the end. The
reader who wishes an independent and fairly elementary discussion of
crystal oscillators is referred to the paper by Anderson.?

9.1 The transformer-coupled oscillator

The circuit of Fig. 9.1 is chosen to introduce the subject of crystal

oscillators because it illustrates several basic and important ideas.

Although applicable over a wide range of frequencies, it is most useful

at frequencies between about 20 and 150 Mec in conjunction with

crystals operating at series resonance on an overtone of the thickness-
197
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load is represented as a resistor in shunt with the plate transformer;
however, it will be shown that a tuned load circuit, magnetically
coupled to the plate coil, has several important practical advantages.
Finally, it is assumed that the holder capacitance, Cy, of the crystal is
negligible or is compensated by methods described later.

Analysis of the conditions for oscillation is facilitated by reference to
Fig. 9.1b, in which the crystal is replaced by its series resistance, and
the useful load and grid-circuit losses are referred to the low side of the
transformers. It is convenient and desirable to introduce at this time
the Q degradation factor D, which is the ratio of the intrinsic selectivity
of the crystal to its selectivity in the circuit. This parameter may be
thought of as the inverse of the Q@ magnification factor of the Meacham
bridge, and is useful in the analysis of many oscillator circuits. In the
present, case it takes the form

D = (R1+R2+R3)/R1= 1+ m+ n. (91)

Because the tube operates in class C with grid current, and because
transit-time loading is important at the higher frequencies, the tube
requires an appreciable driving power, which is represented by R, in
Fig. 9.1b. Because the plate load impedance represented by R3 is
limited by stability and other considerations, the power gain of the
tube is always finite and may be rather low. The equilibrium ampli-
tude is established in the grid circuit; thus, it is appropriate to express
the power in terms of the rms grid voltage. On this basis, the grid
driving power, useful power output, and power dissipated in the crystal
are, respectively,

P, = V02/N22mR1, (92)

Py = V,2(1 + m)?/N,2m?nR,, (9.3)
and

Pc = Vg2/N22m2R1. (94)

The power gain G of the tube is a convenient and important parameter,
it is given by

G=Pi+P.4+Py)/Pai=1+1/m+ (1 + m)?/mn. (9.5)

In previous discussions it has been assumed that the power-handling
capacity of the resonator was, or could readily be made, adequate. In
crystal oscillators this is rarely true, and the ratio of output to crystal
power must be large if any considerable power output is to be obtained.
In the present circuit this important ratio is

Po/P. = (1 + m)?/n = GD — G — D. (9.6)
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It is evidently increased by making m large and n small, and can be
relatively large only if both G and D are considerably in excess of unity.

The foregoing relationships all assume that oscillation occurs at the
series resonant frequency, a desirable condition. With this assump-
tion we may show that the transconductance required for sustained
oscillation, that is, unity loop gain is

gm’ = D/RiN\Nnm. 9.7)

Other parameters of interest are the impedances faced by the plate and
grid, which are, respectively,

R, = Ni*Ri(n + mn)/(1 + m + n), (9.8)
and
Ry = N2’Ri(m + mn)/(1 + m + n). (9.9)

9.2 Design considerations in the transformer-coupled oscillator

There are at least three important objectives which govern the design
of this and other crystal oscillator circuits, namely: (1) good frequency
stability; (2) large power output; and (3) ability to operate with crys-
tals having substantially different frequencies. It will be shown that
best frequency stability is achieved by obtaining appropriately low
products DR, and DR, that best power output requires increases of
R, and R, at a sacrifice of frequency stability, and that operation with
crystals varying over the widest possible band of frequencies requires
that R, and R, be decreased, again at a sacrifice of frequency stability.
In Section 7.13, on the Meacham oscillator, it was shown that the
variation of loop phase shift with respect to frequency is directly
proportional to the effective @ of the resonator, and that the phase
shift produced by an increment in plate or grid capacitance is directly
proportional to the associated impedance. Therefore, consistent with
any given crystal @ and tube transconductance, best frequency stabil-
ity is obtained by proportioning the circuit so as to minimize the
products of resistance and @ degradation. If we assume that the
plate capacitance is k times more stable than the grid capacitance, we

should set
R, = kR,. (9.10)

The problem, then, is to minimize the product DR, consistent with
eq. 9.7. Combination of egs. 9.1, 9.7, 9.8, and 9.9 with 9.10 yields

R,D = (Vk/gn)(1 + m + n) V1 + m)1 + n)/mn. (9.11)

From the symmetry of this relationship we see that the minimum value
will occur only if m = n. With this substitution the derivative of eq.
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9.11 is equal to zero, provided
m=n=3+V2 (9.12)

That is, maxtmum frequency stability with respect to incremental varia-
tions of grid or plate capacitance exists of m =n, D = 1 + V2 and
N, = Vk N,. Because eq. 9.12 corresponds to a low ratio (only 4.12)
of output to crystal power, it is often desirable to deviate from the
optimum conditions. Fortunately, the maximum is a broad one so
that a great increase in power ratio is obtained at a small sacrifice in
stability. For example, R,D is increased only 29 per cent by setting
n = 0.3 and m = 1.5, in which case Po/P, = 21.

The frequency stability of the transformer-coupled oscillator with
respect to increments of grid (or plate) capacitance is readily deter-
mined from eqs. 7.76 and 7.80. Note that ¢ is smaller, not larger,
than 4. The resulting expression is

aCy _ 2Q

dw/w - wDR,

The ability of the circuit to operate with crystals having different

frequencies depends mainly upon the phase shift introduced by the

plate and grid capacitances, hence upon R, and R,. Therefore, it is

desirable to make R, and R, as small as possible consistent with the

specified value of g,,’. Substitution of eqs. 9.1 and 9.7 in eqgs. 9.8 and
9.9 yields

(9.13)

N1 1 + m
L Ry (9.14)
and
Ng 1 + n
R (9.15)

These expressions have no minimum, but approach 1/¢,’ as m and n
become large. Evidently, there is little profit in giving either m or
n a value in excess of 4, which degrades the frequency stability by a
factor slightly less than 2. When the grid and plate capacitances
are unequal the impedances should be adjusted so that the RC prod-
ucts, and hence the bandwidths, are approximately equal.

In the circuit of Fig. 9.1 the loop phase shift of the system, exclusive
of the crystal, departs rapidly from zero if the frequency deviates
from that to which the plate and grid circuit are tuned. However,
it is possible to make the loop phase shift quite small over a consider-
able frequency band by removing the physical load resistor and
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crystal having a series resistance B; = 100 ohms. A 6AKS5 pentode
having its effective transconductance reduced to 2000 from the nominal
value of 5000 micromhos is suitable. The input and output capaci-
tances are about equal, but the grid circuit capacitance is considerably
the less stable. Therefore, as a compromise between stability and
wide-band operation, let us set k = 2in eq. 9.10. The choicesn = 0.3
and m = 1.5, corresponding to Py/P, = 21, also represent a reasonable
compromise between stability and power output. The foregoing
assumptions yield as the operating conditions: R, = 1900, R, = 950,
R3; = 30, By = 150 ohms; N, = 8.42 and N, = 3.70.

Assuming @ = 10,000, an increment of 1 uuf in the grid capacitance
or 14 upf in the plate capacitance will lower the frequency by 58 ppm.
If limiting occurs at 3 rms grid volts, the power output and the crystal
power are, respectively, 61 and 2.92 mw. A supply voltage of 75 for
screen and plate is approximately correct. The plate load should be
provided by inductive coupling. The grid impedance will be at least
partially provided by rectification and transit-time effects; but addi-
tional conductance may be required. The effects of crystal-holder and
grid-plate capacitance are balanced if Cy and C,, have the reasonable
values 7.5 and 0.24 uuf. For a more detailed treatment of high-
frequency oscillators the reader is referred to a report prepared for the
Signal Corps by the author.%*

9.3 The C.I. meter circuit

The circuit of Fig. 9.2 was developed for the measurement of the
effective series resistance of crystal units in an arrangement called the

1 worr—
0
R, =C C; =
. A
. . 40( T 1!“““}

Fic. 9.2, The C.I. meter circuit.

“crystal impedance meter.”” The measurement is based upon a
substitution procedure in which the frequency and amplitude of oscil-
lation are unchanged when the crystal is replaced by a resistance or
specified resistance-capacitance combination. Other oscillator circuits
may also be used for this purpose, but the present circuit is particularly
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potentiometer action of C, and C4. The principal advantage of this
circuit over Fig. 9.1 is that no tapped coils are required. The dis-
advantage is that the resulting system is somewhat less flexible and
stable. The equations previously developed apply reasonably
accurately provided the equivalent transformer ratios are taken as

N1 =Cy4/(Ca+C.) and N, =C./(C.+ Cyp). 9.17)
9.4 The grounded-grid circuit

A very simple series-mode circuit is due to Butler®! and shown in Fig,.
9.4. It may be thought of as a special form of transformer-coupled
oscillator in which no phase reversal is necessary and one transformer
may be omitted. Although operable at ordinary frequencies, this

i

(a)
F1a. 9.4. Grounded-grid series-mode oscillator: (a) schematic and (b) equivalent
circuit.

circuit is rarely employed except at relatively high frequencies and in
conjunction with overtone crystals.

The tube may be thought of as a grounded-grid, class C amplifier,
and as such delivers a plate current which is equal to the current
injected at the cathode. Desirable operation, therefore, requires
that a considerable fraction of the total plate current flow through the
load resistor R, and that this loss be compensated by the current
step-up ratio of the autotransformer. Asis well known, the impedance
presented to the crystal by the cathode is nearly the reciprocal of the
effective transconductance—a few hundred ohms in typical tubes.
The circuit therefore operates quite well with crystals having series
resistances as high as a thousand ohms. Limiting occurs, as in other
class C oscillators, as a result of the bias developed by rectification in
the grid circuit. However, an additional tendency to limit arises
from the fact that grid current is necessarily robbed from that delivered
to the plate.
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tube. Therefore, it is hard to obtain a large ratio of output to crystal
power without seriously degrading the frequency stability. It is
readily shown that the approximate form of eq. 9.6 also applies to the
grounded-grid circuit. Thus, we see that values of G in excess of ten
and values of D around three are required to obtain a favorable ratio of
output to crystal power. However, the frequency stability is degraded
by increase of either parameter, so that a compromise is necessary.

In spite of this limitation, the grounded-grid circuit is capable of
excellent frequency stability because the plate capacitance is relatively
stable, the cathode impedance very low, and the crystal @ not unduly
degraded. Ordinarily, the impedance faced by the cathode is so low
that frequency instability due to variation of the cathode capacitance
is relatively unimportant. When this is true, best frequency stability
is obtained by proportioning the circuit so as to minimize the DR,
product. No detailed analysis is offered; however, results obtained in
connection with the transformer-coupled oscillator indicate that the
value is not critical and good results are obtained if D = 3. Provided
u is relatively large, it is readily shown from eq. 9.18 that R reaches a
minimum when N = 2. This condition is conducive to frequency
stability and broad-band operation on a crystal-substitution basis.

Under some circumstances the impedance Ry presented by the tube
is either too high or too low for suitable operation with the available
crystal. In this case an additional impedance transformation at the
cathode is desirable. This is most conveniently obtained by sub-
stituting a suitable tightly coupled autotransformer for the cathode
choke, the total inductance antiresonating the cathode capacitance.
A significant improvement in operation may sometimes be obtained in
this way.

The band over which operation is obtained by crystal substitution is
greatly increased if the load is suitably tuned and inductively coupled
to the plate coil. The resulting bandwidth is comparable with that
of the transformer-coupled circuit because the advantage of one
transformer is compensated by the higher impedance level which it
must have. Also, crystal compensation may be achieved by shunting
a coil across the crystal or by providing magnetic coupling between the
plate and cathode coils.

A numerical example, based on the 6J4 triode, serves to illustrate
these points. The normal value of 4 = 55 is preserved, but the plate
resistance is increased from the nominal value of 5000 to 11,000 ohms
by class C operation. A crystal resistance of 50 ohms at 50 Mec is
fairly typical. Choosing a turns ratio N = 9, we have B = 1660 and
Ry = 222 ohms; also, D = 5.4 and G = 5.9. The ratio of output to
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F1a. 9.6. Series-mode crystal oscillators: (a) transitron form and (b) feedback
form.
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Fra. 9.7. Compensated transitron series-mode oscillator: (a) schematic and (b)
Nyquist plot.

to these assumptions, the coupling and suppressor circuits act as a
compensated voltage divider having no phase shift and a constant
voltage ratio.

The total impedance presented to the screen grid is a simple multiple
of the impedance of each circuit, and the Nyquist plot for the system
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is a true circle as shown by the solid line of Fig. 9.7b. It is readily
shown that the diameter of this circle is given by

|luBlo = gmR2R3/(Ro + Ra + Rs). (9.26)

To avoid uncontrolled oscillations, the resistance values are chosen so
that the diameter is somewhat less than one.

If the crystal is now restored to the system, the behavior will be
unchanged except at frequencies near the resonant frequency of the
series arm. At the resonant frequency, however, Ry is shunted by the
substantially lower resistance R, of .the crystal arm, and the Nyquist
plot is modified by the subsidiary circle shown dotted in Fig. 9.7b.
Oscillation will occur at or very near the resonant frequency of the
crystal because the modified Nyquist plot encircles the critical point.

Reexamination of the preceding material shows that the operation
will not be adversely affected if the three antiresonant circuits differ
somewhat in Q. In particular, the tuning of either the screen or
suppressor circuit may be very broad compared to that of the others
with no effect upon the shape of the Nyquist plot. By a relatively
simple differentiation it may be shown that the Nyquist plot, in the
absence of R;, will cross the real axis at only one frequency provided

RgRa( )
< - =
Co < 7 \&, + + + 9.27)

That is, spurious oscillations will not occur if eq. 9.27 is satisfied and
if eq. 9.26 is less than unity.

As an illustration let us design an oscillator for a frequency of 159
Me, using an overtone crystal having a holder capacitance of 5 upuf
and a series resistance of 1000 ohms. The most suitable available tube
is the 6AS6, which has a suppressor-to-screen transconductance of
1600 micromhos. Assuming that the irreducible circuit capacitances
are Co = C3 = 10 puf and that Cy is increased to 10 uuf by the screen-
to-suppressor capacitance, we find that eq. 9.27 is satisfied if R, = R3
and Ro S 273R2

Providing a 3-db margin against undesired oscillation, we have from
eq. 9.26, R = R3; = 2090 ohms and Ry = 5700 ohms. At the crystal
frequency, however, R, and R, are effectively in parallel, and the loop
transmission determined from eq. 9.25 is 1.39, a value which offers
reasonable margin. The required inductances are 0.1 uh each.

9.7 The Pierce circuit

The crystal oscillators previously described have in common the
property that the crystal is employed as a series-resonant element hav-
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that the load capacitance faced by the crystal is given by
1/C. = 1/Cy + 1/Cp, + 1/0C,. (9.28)
The increment in C; produced by an increment in €, may be written
1/(Cz + 8Cz) = 1/(Cy + 8Cy) + 1/Cp 4+ 1/Cs. (9.29)

Taking advantage of the fact that the increments are small, we have by
division

8C2/Cz = (8Cy/Cy) - (C2/Cy). (9.30)
Repeating the substitutions of eq. 8.33,
Cy, = hC, = kC3, (9.31)
we have the useful relation
Co, =C.(1 +h+k). (9.32)

Therefore, we have
8C; = 8C;/(1 + h + k)2 (9.33)

Again referring to Fig. 9.8, we see that oscillation will occur at the
frequency represented by

w’Ly = 1/Cy + 1/(Co + Cy). (9.34)
The frequency increment produced by a small change in C, becomes
l 1 CI+CO+C::+6C:
(1 + dw/w)?Ly = - =
@t S = Gt G Co 60, T CilCo + G + 5Ca)
(9.35)

Using eq. 9.34 and neglecting second-order terms because the incre-
ment is small, we have

b _ —C18C: ‘
w  2(Co+ C)(Cr + Co+ Ca)

Introducing eq. 9.33 to eliminate 5C;, we obtain the important result

5_(.0 _ ——Clan .
o  2(1 4 h+ k)%Co + C)(C1 + Co + C2)

We see that a small value of C and large values of h, k, and C; are
desirable in the interest of frequency stability. The extent to which
these variables may be controlled is now determined by introducing
the conductance terms.

To obtain a relationship between the effective series resistance R,
and the internal resistance R of the erystal, we equate the admittances.

(9.36)

(9.37)
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Therefore, even if P, is small, a considerable ratio of output to crystal
power is obtainable only if the effective @ of the crystal is greatly
degraded.

9.10 Illustrative design of Pierce oscillator

Let us design a crystal oscillator employing the 6SJ7 pentode (nominal
gm = 1600) and a CR-18/U (military) crystal unit at 3.0 Mc. The
crystal chosen has the small temperature coefficient characteristic of
the AT cut, and is designed to operate into a load capacitance C; of
32 uuf. It has a maximum effective series resistance R, of 175 ohms.
Assuming that C; has negligible reactance, and that an excitation ratio
h = 3 is to be used, we may determine from eq. 9.43 the operating
transconductance which is 339 micromhos. (This value is appropriate
to the chosen tube; however, had R, been smaller or the nominal trans-
conductance larger, it would have been desirable to assign a finite
value to C;.) Consistent with eq. 9.32, we have C, = 128 uuf and
Cp = 42.7 upf. The design is completed by providing a high-imped-
ance plate choke coil and suitable grid leak and condenser. Inspection
of eq. 8.31 shows that a plate conductance of one micromho and a grid
conductance of 9 micromhos will each add 3 micromhos to the trans-
conductance required for oscillation. These values exist if the plate
choke has an inductance of 2.5 mh with a @ of about 20 and if the grid
leak has a resistance of 330,000 ohms. A grid condenser of about
100 upf capacitance is suitable.

In the event that an appreciable power output is required, we must
add a useful load G,. The choice of 100 micromhos for the load
increases the transconductance requirements by 300 micromhos to a
total of 639. Assuming that the amplitude is 5 rms grid volts,
the crystal power is 25.4 mw, and the power output is 22.5 mw. Only
by using a higher transconductance tube or a lower resistance crystal
may we obtain a larger ratio of output to crystal power.

9.11 The Miller circuit

The circuit shown in Fig. 9.9 is commonly designated the Miller crystal
oscillator. It has the advantages that one terminal of the erystal is
directly grounded, that the crystal is isolated from the plate voltage,
and that very few parts are required. In fact, the circuit will ordi-
narily operate on the basis of grid-plate capacitance even if no physical
condenser C is supplied.

As in the Pierce circuit, the crystal operates at a frequency to which
its reactance is positive. Thus the circuit corresponds to the form of
the familiar Hartley oscillator in which no mutual inductance is



























10

INTERMITTENT BEHAVIOR

It is well known that harmonic oscillators of all sorts may generate
intermittent rather than continuous oscillations. This behavior is
desired in the superregenerative receiver, and in a few other special
applications, but is ordinarily a nuisance to be avoided. Intermittent
operation may arise in almost any kind of oscillator, but it is observed
most frequently in microwave triode oscillators and in linear oscillators
designed for a high degree of amplitude stability. The occurrence of
the effect is known to depend upon the relative proportions of the
various circuit elements, particularly those controlling the time con-
stant of the limiter. Therefore, we must look to the proportions rather
than the configuration of an oscillator for an understanding of the
phenomenon.

The general nature of the problem is conveniently discussed in
terms of the tuned plate oscillator described in Chapter 8 (Section 1).
With suitable element values this arrangement is capable of producing
highly stable harmonic oscillations of reasonably sinusoidal form.
As shown in Chapter 12, however, the same configuration with different
element values can operate as a blocking oscillator and is then capable
of producing well-defined pulses of quite nonsinusoidal wave form.
Finally, with a still different set of values, this configuration is capable
of generating intermittent oscillations having the general characteris-
tics shown in Fig. 10.1. Ordinarily, but not necessarily, the tube is
completely cut off for a large fraction of the cycle; only in exceptional
cases does the oscillation envelope approximate a sinusoid.

Because the same system is capable of three distinct kinds of
behavior or ‘‘states,” it is clear that the performance must be
representable by some sort of triple-point diagram, as indicated in Fig.
10.2. Our knowledge of this matter is very meager, but the diagram
is useful in a qualitative way. On the basis of the principal roots. of
the system, we have already identified in Chapter 2 the boundary
designated (1) between harmonic and relaxation oscillations. The
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than the grid signal under these conditions so that the value of C,
required for stability is considerably smaller than that indicated by
eq. 10.6.

The direct approach just described applies to all sorts of oscillators
in which the loop gain is expressible in terms of the bias applied to
some electrode of a vacuum tube. However, the method is incon-
venient where several distinct time constants are present; and it is
completely inapplicable to thermistor-controlled oscillators.

10.2 Stability in automatic output control systems

The transitron oscillator of Fig. 10.5 serves to illustrate a simple
though incomplete criterion for stability. Let us suppose that the
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F1g. 10.5. Transitron oscillator with simple automatic output control.

first grid is disconnected from the bias resistor R; and is supplied by a
variable direct voltage v. The voltage e across R; is then observed as
a measure of the amplitude of the desired

oscillation. Depending upon whether or
not the tube operates about an inflection ' R
point of its equivalent negative resistance Level of

’ e

characteristic, the amplitude represented interest
by e may take the continuous or discontin-
uous forms shown in Fig. 10.6.

If the characteristic is continuous, as shown
by the heavy line, then the automatic output
control system will be stable no matter how F16.10.6. Response of

. e R automatic output control

large the amplitude stability is made, provided | 1.4 '+ Cow variation
the control system responds at a sufficrently of bias.
slow rate. This is evidently a sufficient but
not a necessary condition. However, it is directly useful in a number
of situations, and serves as a guide toward the design of stable sys-
tems even when more elaborate criteria are employed.
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observed. Moreover, Llewellyn’s criterion is not usually applicable
on an experimental basis because it requires the action of the com-
plete system. If intermittent oscillation is possible it will probably
occur so as to make the test both futile and impossible. On an
analytic basis, however, this criterion is valuable because it permits
calculation of the behavior of a proposed system and points the way
to modifications which will avoid any indicated instability.

A somewhat more favorable example of the application of Llewellyn’s
test is offered by the circuit of Fig. 10.5. Again, it is convenient to
assume that the test oscillator is connected in series with the bias
resistor R;. And again the impedance seen at very low and at very
high frequencies is equal to R because of amplitude controlling feed-
back and the action of C,, respectively. At intermediate frequencies
the voltage across C, lags the applied voltage. The oscillation ampli-
tude in the tuned circuit still further lags this bias voltage so that the
rectified current may well be more than 90° out of phase with the test
voltage. The resulting plot has the same general shape as that of Fig.
10.8. The following sections show how to calculate the behavior of
this system and show also that the system is absolutely stable for all
values of the parameters.

10.4 A Time-variable system

The question as to whether or not a particular oscillator will operate
intermittently may be approached through a study of a simple system
involving a time-variable conductance, as shown in Fig. 10.9. We
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F16. 10.9. Behavior of time-variable circuit.

assume that the conductance is alternately positive and negative, of
equal value and for equal periods. An oscillation, if started by
external means, will persist at a constant average amplitude expo-
nentially increasing and decreasing as indicated. The oscillation
may be thought of as amplitude modulated, with maximum amplitude
at the instant of conductance reversal. Moreover, the degree of
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10.5 Use of Nyquist’s criterion

The ideas just developed are directly applicable to the problem of
self-modulation in the transitron oscillator with the modified automatic
output control shown in Fig. 10.11. The key relationship is Nyquist’s
criterion, described in Chapter 5, which is applied to the bias system.
If the system is free from self-modulation, there will be no alternating
voltage on the inner grid of the tube or in the associated elements.
Therefore, we may open the gain control loop at the grid, or at any
other point which is free from alternating current in the desired operat-
ing condition, and apply Nyquist’s test. The system will be unstable
in the sense that alternating voltages corresponding to self-modulation
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Fi1G. 10.11, Modified automatic output control oscillator.

will be generated in the final system if and only if the Nyquist plot
encircles the eritical point, (1, 0).

The application of the test is indicated by the dotted lines. The
auxiliary bias source E., has such a value that the negative conductance
of the tube exactly balances the positive conductance of the system.
It is assumed that the oscillation in the plate circuit has the desired
amplitude, in which case the direct voltage developed across the bias
resistor R; is equal to E.. Subject to these conditions a very small
alternating test voltage V,, of variable frequency is injected in series
with E.. Asshown in the previous pages, the oscillation at the desired
frequency o will be amplitude modulated at the test frequency g.
Rectification in the bias diode reproduces the modulation signal, which
is modified in amplitude and phase by the action of the RC filter and
returned to the test detector.

If we imagine conducting this test, we find that at low frequencies
the oscillation envelope is very large compared to V; and leads it by
90°. The rectifier polarity is such that the alternating voltage at e
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is positve when the envelope is a maximum. Therefore, we may say
that, as the test frequency approaches zero, the loop gain approaches
infinity at a phase angle of 90°lead. As the test frequency is increased,
the modulation index in the tuned circuit steadily decreases. More-
over, the filter in the bias system produces attenuation and phase shift,
which in the present case cannot exceed 180°. The corresponding
Nyquist plot of e/V; is shown in Fig. 10.12a. Evidently the system is
unstable. If, however, the filter section composed of B, and C; were
removed, the Nyquist plot would take the form shown in Fig. 10.12b,
and the system would be absolutely stable regardless of element values.

Let us explore the requirement
for stability of the complete sys-
tem of Fig. 10.11. It is assumed
that a negative voltage increment
V, applied to the first grid modi-
fies the effective conductance of
the tuned circuit by an increment,

Positive
frequencies

/
/
]
!

frequencies

i g. That is,
(1,0 /i {0
/,’ \ g =kV,. (10.11)
,/ ,'l Then, when an alternating test
/ / signal is used, the plate voltage
/ Negative /s wave has the general form given

by eq. 10.7. Because the frac-
tional modulation is restricted to

small values, the control system
acts as a linear rectifier, so that
the signal delivered to the resist-
ance-capacitance filter is directly
proportional to the output voltage and to the fractional modula-
tion. The effect of the filter is most readily treated by assuming
that the two sections have equal time constants, are effectively in
tandem, and do not have appreciable interaction. Converting from
trigonometric to exponential form, we may write

e = komVo/(1 + jqC1R))?

where k, is a factor which depends upon the transformer ratio and rec-
tifier action. Eliminating ¢ between eqgs. 10.10 and 10.11 with proper
consideration of the phase angle yields

lel = —]2qu

(a) Unstable (b) Stable

Fre. 10.12. Nyquist plot for bias
voltage.

(10.12)

(10.13)

Finally, eliminating m yields as an expression for the complete Nyquist
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diagram the equality
e/V1 = jkiksVo/29C(1 + jgCiR1)*. (10.14)

The Nyquist diagram will intersect the positive real axis at a frequency
such that

1 = ¢qC1Ry (10.15)

and will pass through the point (1, 0) provided that
k1k2Vo = 49C = 4C/C1R,. (10.16)
Values of the k1k2V, product larger than given by eq. 10.16 produce

instability.

A large k1kqVo product, which is desirable in the interest of ampli-
tude stability, may be obtained only by increasing C or by decreasing
R or C;. Increase of C with a given tube is evidently possible only
by increasing the @ of the tank circuit. Reduction in C, and R,
increases the speed of the control system??! and is desirable, but only to
the extent that it does not degrade the filtering action of these elements,
which must be preserved in order to maintain frequency stability.

10.6 Example of stability calculation

To illustrate the method, let us calculate the stability condition for a
transitron oscillator using the 6SJ7 triode at a frequency of 1.59
Mec (0 = 107). The tube readily produces a negative conductance of
200 micromhos. Therefore, we assume that the coil and bias system
produce a positive conductance of 200 micromhos. If the effec-
tive Q of the passive tank is 100, we may find C = 2000 upf from the
relationship

wC = Qgo. (10.17)

With typical plate and screen biases the desired operating point will
be found for E, = —2 volts, and %, will be in the order of 50 X 10~°
mho per volt. The other parameter in a typical circuit is ko = 1;
if we assume the reasonable values C; = 1000 ppf and V, = 10 volts,
we have for marginal stability B, = 16,000 ohms.

A substantially smaller value would be advisable in a practical
design in the interest of providing a margin of safety. Moreover, in
the interest, of lowering the loading applied to the tuned circuit through
the diode, it is desirable to make R, substantially larger than R, and
to adjust C; accordingly.

10.7 Extension of Nyquist’s criterion

The foregoing analysis is satisfactory for the study of two-terminal
(negative resistance) oscillators and may be extended to treat all sorts
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lamp bridge oscillator, shown in Chapter 7 as Fig. 7.4. It is assumed
that the lamp bridge is symmetrical and operates at a loss in the order
of 40 db, and that the input and output transformers are tightly
coupled and have equal values of working Q. Here, as in many
analyses, it is convenient to open the loop at the plate terminal of
the tube. The modulation transmitted from the plate to the lamp
bridge will be reduced and shifted in phase by the selectivity of the
tuned circuit. This is shown in Fig. 10.14, which is reduced to polar
form in Fig. 10.15a. Evidently this effect will be compounded by the
selectivity of the identical grid filter. '

The behavior of the lamp bridge requires special study. It is clear,
however, from the discussion of Chapter 7 that modulation of very
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Fi1G. 10.14. Envelope transmission of a single tuned circuit.

low frequency will be reversed in phase and greatly magnified, because
this is the basic property of a good limiter. Moreover, for sufficiently
high modulating frequencies the thermal inertia of the lamps will be
such that the input and output waves are similar, and no change of the
modulation envelope will occur. At intermediate frequencies the
situation is more complicated. The heat supplied is partly stored in
the thermal capacity of the filament, partly dissipated by conduction
and radiation. Because the fractional modulation is small, however,
we may neglect nonlinear effects and consider only linear terms in heat
loss and storage. On this basis, we know that the lamps reach their
maximum resistance somewhat later than the current envelope reaches
its maximum, so that the envelope phase is shifted forward. From
these considerations we would anticipate the behavior shown in Fig.
10.15b, and confirmed by experimental measurements. The frequency
scale is very approximate, but gives the correct order of magnitude for
typical switchboard lamps such as the Al.

The envelope Nyquist diagram is constructed by combining the data
of Fig. 10.15b with the square of that of Fig. 10.15a. However, it is
necessary to assign a value to the frequency parameter w/@Q before pro-
ceeding, because the shape as well as the frequency scale of the final
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slightly when the steady input is increased a moderate amount.
Therefore, at low frequencies the envelope is reduced and not reversed
in phase. At very high modulating frequencies the bias is unable to
follow the amplitude, and the envelope is amplified because a small
fractional increase in grid voltage produces a large fractional increase
in plate current. The behavior at intermediate frequencies is shown
in the semicircle of Fig. 10.16a.

The complete Nyquist diagram is obtained by combining Figs.
10.15¢ and 10.16a with suitable attention to the frequency scales.
The values of w/Q used formerly in Fig. 10.15¢ are used to obtain the
two curves, one stable the other unstable, in Fig. 10.16b.

10.9 Behavior of system roots

The preliminary discussion given in Section 10.1 is worthy of further
study because it provides a relationship between intermittent behavior
and the characteristic roots of the system equation. Subject to the
assumption that the grid bias is equal to the peak alternating grid
voltage, the criterion developed as eq. 10.6 is expressible as

1/R\Cy = oy 2> ay = 7f/Q. (10.18)

That is, the decay rate of the bias system must be as great as that of
the tuned circuit. Or, in terms of the complex plane, the single real
root associated with the bias system must lie to the left of the con-
jugate roots associated with the resonator to avoid generation of inter-
mittent oscillations.

The situation just described suggests that the addition of the
transconductance of the tube shifts the three roots equally to the right.
If the conjugate roots reach the axis first, the system generates con-
tinuous waves. If the single root reaches the axis first, a behavior
related to relaxation oscillation occurs, and intermittent waves are
produced.

An additional feature of this analysis is that it gives at least some
information as to the relationship between intermittent and relaxation
oscillation. Consistent with the analysis of Section 8.20, which
ignored the grid-circuit time constant, the tuned plate circuit will
generate relaxation rather than harmonic oscillations if the trans-
conductance exceeds a minimum value given by the equation

gmM/L — G > 2VC/L. : (10.19)

In terms of the natural frequency and effective @ of the tuned circuit
t his is equivalent to the expression
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low-pass filter represent the limiting behavior. If the altenuation is
increased (or gain reduced) more slowly with respect to frequency the
phase shift will betorrespondingly decreased, and a positive margin for
stability established.

The use of this cutoff characteristic is well illustrated by an example
in connection with the Meacham oscillator. The analysis of the
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Fia. 10.17. Envelope characteristics of a Meacham oscillator.

Meacham oscillator is complicated by the fact that the lamp bridge
serves as both resonator and limiter, and that the thermal properties
of the lamp are neither well known nor readily expressible in terms of
an equivalent circuit. Let us suppose, however, that the envelope
behavior of a particular Meacham oscillator has the form shown by the
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Fic. 10.18. Meacham oscillator with auxiliary control.

solid line in Fig. 10.17. Intermittent operation is indicated, because
the phase shift exceeds 180° at the frequency of zero loop gain. Such
behavior would be avoided if the characteristics could be modified to
the form shown by the dotted lines.

The indicated change may not be accomplished by modifying the
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bridge, because this would jeopardize the frequency stability of the
system. It may, however, be obtained by the addition of an auxiliary
control circuit as shown in Fig. 10.18. The added dlements, consisting
of the diode, L;, Ry, C1, and C, come into play only if there is a tend-
ency toward intermittent operation, and do not affect the desired
behavior of the frequency stabilizing bridge. Because they are sub-
ject to no other restriction, they are readily proportioned so as to
obtain the desired modification of the envelope behavior.

10.11 Control of intermittent oscillation

Under certain circumstances it is desirable to produce self-modulation.
In a signal generator, for example, the amplitude of oscillation is usu-
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F16. 10.19. A self-modulating linear oscillator.
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ally modulated in a more or less sinusoidal manner. Let us consider
the possibility of generating such a wave in a single vacuum tube.
Evidently the Nyquist diagram and the envelope Nyquist diagram
must both encircle the critical point if a modulated wave is to be
produced. Moreover, the system must provide means for limiting the
general amplitude of oscillation and the degree of modulation if desir-
able results are to be obtained. A circuit which provides such means
is shown in Fig. 10.19.

The basic circuit, is a tuned plate oscillator in which the operating
frequency is set by Cs and Lg, and limiting is accomplished by means
of the back-biased balanced rectifier. The elements in the bias system
are such that envelope instability will be produced at a modulating
frequency corresponding to Cs and Ls.  As self-modulation is produced
and increases in amplitude, the tungsten lamp heats and tends to
balance the bridge circuit, thus reducing the envelope gain at this
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applications, especially at the higher frequencies, is given by Marcum
and Kinn, 2%

There is, of course, no sharp line between low and high power.
However, the following discussion is generally pertinent to oscillators
in which the applied voltage exceeds 1000 volts or the power generated
is in excess of 100 watts.

In most heating applications the characteristics of the load change
drastically during the process. In such cases it is impossible to main-
tain an optimum load impedance at all times, and the coupling system
is necessarily a rather rough compromise. The operating frequency
has a marked tendency to vary during the process, and this variation
can be used as an aid in impedance matching if it is permissible from
other considerations.

At the present time the industrial application of high-frequency
heating may be divided into two district categories. Metals, which
are good conductors, are heated by magnetic induction, and the process
is referred to as induction heating. Other materials, which act as
dielectrics, are heated by placing them in an electric field produced
between metal conductors, and the process is referred to as dielectric

heating.

11.2 Choice of circuit

The frequency range, type of vacuum tube, and application will
ordinarily exclude certain circuit configurations as unsuitable. It is
necessary to choose between several remaining circuits of more or less
equal merits, but the choice can normally be made rather easily. The
simplest possible circuit is desirable in the interest of economy and
compactness. These considerations, although applicable in other
situations, are especially important here because of the expense and
bulk of components suitable for operation at high-power levels. For
the safety of operating personnel it is very desirable that there should
be no direct voltage between the main tuned circuit and ground.
Finally, the tuned circuit should include a capacitance directly between
the plate and cathode. Such a condenser produces a low impedance
for the high-frequency components present in the short pulses of plate
current which must exist if high efficiency is to be obtained. A
serious loss in efficiency may result if this precaution is ignored.
Circuits possessing some or all of these desirable properties are
illustrated and discussed in the following paragraphs. Meters for
observing the direct plate voltage and grid and plate direct currents
are indicated, because they are often essential. The shunt-fed Col-
pitts oscillator of Fig. 11.1 is widely used because it is sufficiently
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output, and a general instability of voltages and currents. With
some experience, we may recognize their presence by noting changes in
the average grid current when a dielectric rod or probe is moved about
in the region of the grid and plate terminals of the tube. This is
possible because the high-frequency parasitic oscillations are much
more sensitive to an added dielectric than are the desired oscillations.

The suppression of parasitic oscillations is a difficult problem, and
no general solution exists; each case must be treated individually.
However, an early diagnosis of the difficulty and an appreciation of the
general mechanism are very helpful in effecting a cure. A wave-
meter, or other indicator, to show the presence and frequency of the
oscillations, together with a rectifier and oscilloscope to determine the
envelope wave shape, are very helpful in determining the nature of the
parasite and any progress toward its suppression.

7NN

F1c. 11.5. Parasitic oscillations on grid voltage waves due to: (a) grid-plate feed-
back and (b) dynatron action of grid.

Under some circumstances the resonator formed by the parasitic
reactances of the plate and grid leads is sufficiently favorable so that
unwanted oscillations occur to the exclusion of the desired frequency.
This situation is not common and is readily recognized by the absence
of output at or near the intended frequency. Modification of the
circuit to produce the desired output may or may not lead to the
periodic parasitic effects previously discussed.

Intermittent operation, as discussed in Chapter 10, is rarely found
in high-power systems because the operating frequencies are such that
there is little difficulty in making the time constant of the grid bias
system sufficiently short. However, the possibility of intermittent
operation exists and should be considered whenever a new system is
being designed or an abnormal effect is observed.

11.7 Resonator loading

In high-power oscillators, as in others, it is desirable to employ a
resonator with the highest practical inherent ¢.. High efficiency and a
large power output are then obtained by lowering the working @ by
means of a relatively heavy loading. The situation may be studied by
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systems is given by Brown#*® and Mittelman,?!? and pertinent analytlc
relations are advanced by Kunz.!78

The problems of securing an adequate impedance match for dielectric
heating appears to be somewhat simpler than those associated with
induction heating. Two facts contribute to this situation. First, the
general impedance level of the dielectric load is much more nearly equal
to the optimum load for the tube than is that produced in induction
heating. Second, and perhaps more important, the properties of the
load are very different from those of the electrodes. Therefore, it is
relatively easy to obtain high efficiency in the energy-transfer process.

The principal difficulty experienced in dielectric heating is associated
with the large and essentially parallel electrodes which are commonly
used. The required high voltage can be maintained across the result-
ing substantial capacitance only by provision of a large circulating
current. When such a system is coupled to the main tank circuit
there is a marked tendency toward frequency instability, especially if a
transmission line of any appreciable length is interposed. More is said
of this problem in Chapter 18. A good general discussion of dielectric
heating is given by Winlund.34?

11.10 Interference

Regardless of the purpose for which it was designed, a high-power
oscillator will radiate a considerable amount of power and thus cause
radio interference unless adequate precautions are taken. The pro-
duction of such interference is illegal as well as antisocial and must
be avoided. Two avenues are open to the designer, but neither is
especially attractive. One possibility is to choose a frequency within
the rather few and very narrow bands* allocated to industrial and
diathermy applications; in this case the overall frequency stability
must be extremely high. This requirement is so severe that it is
virtually necessary to employ a quartz crystal, either as the reference
element in an automatic frequency control system or in a low-power
oscillator followed by amplifiers, which may also be frequency multi-
pliers. The use of automatic frequency control is discussed in Chapter
17, and its application to radio-frequency heating has been described
by Rambo.2®¢ The use of a crystal oscillator followed by amplifiers is
described by Norton.?2¢

The alternate procedure, which must be employed if these fre-
quencies are not used, is to provide sufficient shielding and filtering so
that the radiation is negligible. Such shielding and filtering must be

* At this time the bands open to industry are 13.6525 to 13.6675, 27.185 to
27.455 and 40.95 to 41.00 Mec.
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are that for dielectric heating a much larger amount of power must be
handled through the power line filters, and a factory production line
must pass through part of the shielded enclosure. In general, it is
found that a double shield of copper or bronze screen wire (fly screen)
or of the coarser hardware cloth provides the most practical arrange-
ment. The two shields are separated by several inches and as far as
possible are electrically isolated. Water pipes, signal or lighting
circuits, or other conductors should not be allowed to pass through the
enclosure if any other arrangement is possible because they serve as a
transmission line to couple the interior to the exterior space. Neces-
sary piping may be bonded to one or both screens, and circuits may be
shielded or filtered. Construction details which may prove helpful
are given by Swan 303

Doors or other openings are to be avoided as far as possible because
they present a difficult problem of contacts. Metal weather stripping
has been used with reasonable success, but it is difficult to secure and
maintain the required continuity of electrical contact in a busy instal-
lation. In some situations, doors may be avoided by using relatively
small shielded tunnels which extend from the main enclosure. Unfor-
tunately, as shown by Linder,!*® the attenuation rate is rather low,
about 10 db for each unit length equal to the widest dimension of the
opening.

11.12 Cyclotron oscillators

The cyclotron, devised by E. O. Lawrence, has proved a very important
tool for atomic research. A basic part of the cyclotron is a source of
radio frequency applied to the semicircular cavities generally referred
to as the ‘dees.” In contemporary instruments, the dees are
excited with a potential of about 10 kv at a frequency near 10 Mec.
Because the dees have an area of many square feet, and a consequent
capacitance of several hundred uuf, a large circulating current and
considerable power input is required to produce the desired voltage.
Moreover, many cyclotrons employ a frequency-modulated excitation
in order to supply still larger values of energy to the particles being
accelerated. Frequency modulation is effective because it compen-
sates for the effects of the relativistic increase of particle mass associ-
ated with high velocity, but considerably complicates the electrical
design. .

In early cyclotrons the dees were excited symmetrically with respect
to ground by attaching them to the ends of a balanced transmission
line as indicated in Fig. 11.9a. This arrangement has certain advan-
tages, but is difficult to shield; and unless the system is appropriately
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rapidly and itself decreases as the condenser voltage approaches V.
The discharge ends when the current drops to a small fraction of a milli-
ampere, which is inadequate to maintain ionization. The ionization
virtually disappears within a few microseconds; and the gas tube
remains nonconducting until the current through R again charges the
condenser to a voltage V), at which time another discharge begins
and the cycle is repeated. '

In practice, the operation differs in several details from that just
described. First, because of residual self-inductance in the circuit,
the discharge current does not rise to such a large value as previously
indicated, and correspondingly persists until the condenser is dis-
charged to a voltage below V. More important, as shown by Reich,?”
the dynamic characteristic of a glow tube is not the same as the static
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Fig. 12.3. Wave form generated by gas tube oscillator.

characteristic. The high degree of ionization established during the
early part of the discharge persists long enough to allow the condenser
to discharge to a voltage V,, considerably less than V,. Finally,
sufficient ionization may persist through the charging interval to
reduce the striking voltage V1 to a lower value V;. The wave form
which results when these effects are considered is shown by the dotted
line of Fig. 12.3. It has a longer period and a greater amplitude than
the other but is very similar in shape. Note that the first discharge
cycle is barely distinguishable from all which follow, a characteristic
property of extreme relaxation oscillations.

In its present form the circuit is of little practical importance, but
it forms the basis of the thyratron oscillator described in Section 12.4
and widely used as the sweep circuit in oscilloscopes. Moreover, it

thermionic emission, thereby changing the discharge from a glow to an arc. How-
ever, because of the small amount of energy stored in the condenser, the discharge
ends before the arc phenomenon sets in.
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serves to illustrate a number of basic concepts which are useful in the
analysis of more complicated systems.

12.2 The saw-tooth wave

For obvious reasons, the wave shape generated by the gas tube oscil-
lator is referred to as a saw tooth. Because the voltage variation is
approximately linear with time throughout a large fraction of the total
period, such a wave is suitable as a sweep or time base for instruments
such as.the cathode ray oscilloscope. The properties of the wave
shown in Fig. 12.4 will be discussed from this viewpoint.

The total time or period, T, of the recurrent wave is divided into
two parts, the period of trace, {1, and the period of flyback, to. Ordi-
narily, the period of flyback should be made as small as possible in
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Fic. 12.4. Imperfect positive saw-tooth wave.

comparison to the period 7, because it serves no useful purpose and
often confuses the image produced on the oscilloscope screen. The
amplitude, V, is clearly a peak-to-peak voltage. It must therefore be

equal to 2 V/2 times the rms value of a sine wave which will produce a
trace of equal length on an oscilloscope screen.

The wave of Fig. 12.4 is designated positive because the slope of the
useful trace is positive. The positive polarity is easiest to generate in
practice because of the direction of conduction in ordinary electron
tubes. The slope during the useful period of the wave should ideally
be constant so as to produce a uniform velocity of the oscilloscope
beam. Since a constant slope is a property of a straight line, this
property is referred to as linearity. The degree of nonlinearity is
expressed by the number of per cent which the minimum slope falls
below the maximum slope in the useful region. The nonlinearity of
Fig. 12.4 is 50 per cent because the initial slope is unity and the final
slope is only one-half. A nonlinearity of 5 per cent is tolerable in
nearly all applications.

The degree of linearity of the useful period may be expressed in an
alternative manner, which is sometimes more convenient. This is
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longer than that of the 884, and the behavior is more sensitive to
ambient temperature. It will not, therefore, be considered further
here.

Figure 12.5b shows a circuit which is widely used to generate a posi-
tive saw-tooth wave as a time base, or sweep, for cathode ray oscillo-
scopes. The general operation of this circuit is very similar to that
of the gas tube oscillator described in Section 12.1. The differences are
these. (1) The use of a hot cathode provides a steady source of
current, greatly reducing the voltage drop in the tube. (2) The
initiation of conduction is under grid control so that jitter is very
small. (3) The control action of the grid provides a convenient means

(Ef=6.3 volts)
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Fic. 12.5. Thyratron triode sweep: (a) control characteristic and (b) circuit.

for varying the period and amplitude of the wave and is therefore very
useful in synchronizing the sweep with an externally injected voltage.
The topic of synchronization is, however, deferred for a unified discus-
sion in Chapter 13.

The manrer in which the grid affects the breakdown or striking
voltage in the 884 is shown in Fig, 12.5a. With this information and
the equations already developed it is possible to design a sweep circuit
to meet specified operating requirements.

12.5 Illustrative design of thyratron oscillator

Suppose that a saw tooth having a frequency of one kilocycle and a
nonlinearity no greater than 20 per cent is to be generated with a type
884 gas triode. The first step is to choose a suitable value of grid bias.
It is clear that a large bias will lead to a large output voltage but will
also require a large value of V), to produce reasonable linearity. A low
bias, on the other hand, is likely to lead to excessive jitter. A bias of
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where G is the suppressor-to-screen transconductance and r, is the
dynamic screen resistance. To obtain well-defined relaxation oscilla-
tions we should decrease C'; and increase R, and R; so that the thresh-
old of oscillation corresponds to a transconductance some ten times
less than the actual value. The general nature of the oscillation cycle
is determined by making the idealizing assumptions that C; is zero
and that R, is very large compared to R..

Let us suppose that no voltage exists across R; so that the sup-
pressor is at a potential V., and that a steady current flows through
R, to the screen grid. If, from this reference, the screen current is
assumed to increase slightly it requires that the screen voltage will
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F1c. 12.6. Van der Pol relaxation oscillator: (a) circuit diagram and (b) equiva-
lent circuit.

decrease and the suppressor voltage will be driven negative by the
action of R, and (), respectively. Because the negative voltage on the
suppressor diverts electrons from the plate to the screen, the action is
cumulative, and a rapid transition takes place which ends only when
the screen draws the entire cathode current and the suppressor is
biased far beyond its cutoff value. An interval of relaxation now fol-
lows in which the suppressor bias decreases toward V. by discharge of
C,, through R, and the parallel combination of R and the screen grid.
When the suppressor bias has decreased sufficiently, plate current
again flows and the screen current begins to drop. The resulting
increase of screen voltage is again cumulative and the reverse transi-
tion takes place. The end of this transition finds the suppressor posi-
tive with respect to the cathode, the screen voltage considerably
increased, and the plate current larger than the screen current. A
second relaxation interval now follows, during which the suppressor
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resistors have been shorted for a long time and that the short circuit is
removed at time ¢{ = 0. By symmetry, both tubes are conducting
equal and considerable values of plate current in an unstable equi-
librium. If for any reason the plate current of one tube decreases
slightly its plate potential increases, with a corresponding increase of
the potential of the other grid. It is readily seen that the unbalance
is cumulative and that it will continue until one tube is cut off and
the other tube is conducting an abnormally large current. This state
of affairs persists while the potentials of both grids relax toward
zero. When the tube which was previously cut off is again able to con-
duct, it will drop the grid potential of the other tube, reversing the
cumulative process just described. The intervals of transition are
readily made very short, but are not zero. The duration of this inter-
val is of considerable importance and is discussed later. The intervals
of relaxation may be controlled between quite wide limits.

Figure 12.11b shows the wave forms of the grid and plate voltage in
one tube of a symmetrical multivibrator; the wave form in the other
tube is identical but displaced a half period in time. The negative
excursions of grid and plate voltage are equal, as indicated. These
curves are readily duplicated experimentally by using coupling con-
densers which are large compared to the parasitic capacitances of the
circuits, grid leaks which are large compared to the plate resistors,
and tubes having a relatively low value of u.

12.12 Analysis of the multivibrator

Because its operation is inherently very nonlinear, and because many
factors influence its behavior, the multivibrator defies exact and com-
plete analysis. However, we can obtain a reasonably accurate picture
of the operation by examining the several sections of the cycle. The
present analysis follows the general approach of Kiebert and Inglis.!#?
A somewhat more elaborate analysis is given by Webb and Becker.??

Because the resistance of a positive grid is low compared to that
of a typical grid leak, the grid bias of the conducting tube is always
very nearly zero when a transition begins. Correspondingly, the plate
voltage is closely equal to the value determined from the static charac-
teristic for zero bias with the given supply voltage and load resistor.
In the other tube, the plate voltage is equal to the supply voltage, and
the grid bias is equal to the cutoff value. We assume that the plate
load resistors are small compared to the grid leaks.

Because the transition occurs in a very short time, it is possible to
treat it as a switching operation. On this basis, the conditions which
exist immediately thereafter can be calculated by the methods of
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12.17 Other symmetrical multivibrators

The multivibrator has been the subject of extensive development,
and a large number of useful variations of the basic circuit have been
devised. Some of the more important are described in this section.

Perhaps the simplest variation of the multivibrator is the sub-
stitution of pentodes for triodes. As previously mentioned, this does
not in principle increase the ra-
pidity of the transitions. How- Region B
ever, the extensive use of pen-
todes in other applications has

L

led to the development of tubes \

which are quite desirable in mul- *\ Load line
tivibrators.. Moreover, the knee | .

region in the plate current char- \ e,
acteristic is favorable to fre- Region A

quency stability in that the grid
excursion is readily made almost
equal to the applied plate voltage. Unfortunately, there is a marked
tendency for the circuit to fail to oscillate when this is done. In
this undesired stable condition, corresponding to Fig. 12.20, both
grids are at zero bias and both plates are at a low voltage which is
independent of the grid voltage. This condition, which is particularly

F1a. 12.20. Pentode characteristics.

Fi1G. 12.21. Screen-coupled pentode multivibrator.

likely to occur with positive grid return, can be upset by a vigorous
transient. However, the necesgity of providing a starting impulse is so
undesirable that this arrangement is rarely used.

An important variation of the pentode multivibrator is shown in
Fig, 12.21. The feedback coupling is provided by the screen and
control grids, and positive grid return is used in the interest of fre-
quency stability. The output voltage may be taken from either
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or both plate circuits. The desirable feature of this arrangement is
that the output wave may be made remarkably square. This useful
behavior depends upon a property of pentodes which is illustrated
in Fig. 12.20. For low values of plate voltage the plate current
depends principally upon the plate voltage and is virtually inde-
pendent of screen and control grid voltages. Therefore, the over-
shoot characteristic of the plate voltage wave of the triode is absent.
Rounding of the leading edge of the wave form is avoided by limiting
the plate load resistors to a low value, which in turn requires the
use of a low plate supply voltage. This arrangement is used in many
commercial square-wave generators. '

F16. 12.22. Symmetrical cathode-coupled multivibrator.

An important form of multivibrator depends for its action upon
cathode coupling, as shown in Fig. 12.22. An exceptional feature of
this circuit is that the timing action occurs in the cathode circuit,
and is independent of the grid leaks and coupling capacitors, which
should be effectively infinite. This is possible because there is no grid
current, and desirable in the interest of allowing the cathode circuit
to have complete control of the period, which then depends upon the
coupling capacitor C and the plate and cathode resistors. An advan-
tage of this circuit is that relatively high frequencies may be produced
with convenient values of the circuit parameters and without the loss
of loop gain which is encountered in the conventional multivibrator.

The analysis is facilitated by assuming that the cathode resistors are
large compared to the reciprocal of the transconductance (Rigns > 1).
As previously stated, the grid leaks and condensers are assumed to be
effectively infinite. The plate load resistors are assumed to be equal
and will presently be assigned a value somewhat smaller than the
cathode resistors. Each tube conducts an average current ¢o; and
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during its active period carries a current which decreases in a nearly
linear manner from 2iy 4+ 7; to 2¢{p — ;. Typical wave forms are
shown in Fig. 12.23.

The operating cycle may be explained by assuming that T';, which
previously carried a current (2iy — 1), has just ceased to conduct.
Accordingly, the potential of the plate of Ty and of the grid of T,
is suddenly increased by an amount (22p — 7;)R,. Moreover, the
cathode potential of T'; increases by substantially this amount, as does
the cathode potential of T; by the action of C,. The potentials of
the grid and cathode of T now remain constant for an interval during
which the cathode potential of 7' relaxes toward zero by action of Ry
and Cy.

Volts

Time

Frc. 12.23. Wave forms in cathode-coupled multivibrator.

The discharge path includes C; and Ry of T;. Because the cathode
potential of T» is nearly constant during this interval, the time con-
stant of this relaxation is simply RxCy. Simultaneously, the potentials
of the plate of T'; and hence of the grid of 7T increase, because the
decrease in currents in R, of T, and R; of T, must be equal. The
interval comes to an end when the grid and cathode potentials of T,
reach the cutoff value; whereupon T, becomes conducting and T
is cut off.

The quantitative behavior of the cathode-coupled multivibrator
may be approximated by a procedure similar to that used in con-
junction with the ordinary multivibrator. During the time that a
particular tube conducts, its grid potential and hence cathode poten-
tial are substantially constant. However, the cathode current, which
equals the plate current, changes in an approximately linear manner in
conformity with the relaxation of the cathode condenser. Let us
represent the average current flowing through the cathode resistor of
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circuit has not been calculated; however, it is probably somewhat
superior to that of the conventional multivibrator. In any event,
the wave forms are not appreciably rounded because of the low imped-
ance levels. Moreover, the frequency is insensitive to tube conditions
because the grids are not driven positive and because a large amount
of negative feedback is provided in the cathode circuit. For the same
reason it is relatively easy to maintain equality between the conduction
intervals of the two tubes. It is clear that the advantages of cathode
coupling may be preserved when pentodes are used, and that very
square output waves may still be obtained by the use of the form of
plate clipping described in connection with Fig. 12.21.

12.18 Asymmetrical multivibrators

In the preceding sections we have assumed that the tubes and com-
ponents are entirely symmetrical. Such a condition is never achieved
exactly and is rarely approximated. However, the operation of the
various circuits is not greatly affected unless the departure from sym-
metry is quite marked. The duration and magnitude of the voltages
and currents at corresponding points are unequal, but the overall
behavior is little affected. The principal effect from the practical
standpoint is that for particular ratios of “off” and “on” time
certain harmonics disappear from the output. For this reason it is
unwise to attempt to use high-order harmonies from multivibrators.
This topic is discussed more fully in Chapter 14.

For certain applications it is desirable to operate the multivibrator
asymmetrically so that one tube draws current longer than the other.??
In moderation, this effect is readily achieved in the standard circuit
configuration by making one grid leak or condenser (or both) con-
siderably larger than the other. However, as the degree of asym-
metry is made large many problems arise. The basic difficulty is
that the longer relaxation time must be prepared for during the shorter
conduction period. This topic is discussed at length by Chances?
(pages 179 fi. of his book) and will not be considered in detail here.
In general, however, if a symmetrical multivibrator using fairly low
values of grid leaks can be made to operate at the shorter of the two
intervals, the desired operation is secured if one grid leak is increased
to lengthen the corresponding conduction period. Increase of a
coupling capacitance is not suitable because the initial charge as well
as the discharge is upset. The cathode-coupled multivibrator of the
previous section preserves much of its desirable behavior if rendered
asymmetrical. Here too, however, some care must be given to the
circuit proportions.
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when the voltage equals about 110 volts, at which time tube T'; begins
to conduct and the grid is driven negative to 60 volts to commence the
alternate timing interval.

In spite of the asymmetry of the connections, the conduction periods
are almost identical. When T’; is cut off, the relaxation is clearly that
of C in series with R, and R,. When T, is conducting, the circuit is
modified by the effective plate resistance, given by the formula

p' = 1p(1 + Rigm), (12.41)

which is 400,000 ohms in the present case, and since B, > R, the effect
is entirely negligible. Any asymmetry observed in the conduction
intervals is due to inequality in the cutoff characteristics of the tubes.
The circuit is attractive because an output may be taken from a
low-resistance R, in the plate lead of T';, without affecting the opera-
tion and because the grid of 7T, is available for synchronization or
other control. Finally, the voltage wave at the plate of T, is quite
square and free from overshoot. Additional information concerning
this and related circuits is given by Pullen,?*® Glegg,''* and Newitt.?20

12.19 The blocking oscillator

Figure 12.25 shows an important relaxation oscillator, now commonly
referred to as the blocking oscillator. The configuration is virtually

i 1:¢ turns ratio .

7» ' (\ i»
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|

Vb Ve

(0) (b
Fic. 12.25. The blocking oscillator: (a) circuit and (b) typical wave forms.
identical with that of the tuned plate oscillator, previously described,

but the operation is quite different because of the difference in the
values of the parameters. In particular, the plate and grid windings
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are tightly coupled, usually by means of a laminated iron core. The
inductances are relatively large, and the capacitances are as small as
possible. An exceptional feature of the blocking oscillator is the large
peak power which may be generated with a small tube. A momentary
power output of 100 watts from a tube such as the 6J5 is typical.
Overheating does not occur because the plate current is zero dur-
ing a very large fraction of the total time. The circuit, which has
received extensive development, appears first to have been devised
by Vecchiacchi.®¥! Additional discussion and analysis is given by
Last!®® and Benjamin.?®

Slightly idealized wave forms representing the conduction interval
in a typical blocking oscillator are shown in Fig. 12.253b. The plate
voltage drops to a small fraction of the supply value, the grid is driven
to a large positive voltage, and large plate and grid currents flow.
During the interval of conduction the grid-to-plate transconductance is
very low and the grid loses control of the plate current; conduction
ceases where the grid regains control. This usually occurs when the
charge accumulated in C, by the large grid current is sufficient to bias
the system so that the grid is no longer more positive than the plate.
At the end of the conduction interval the tube remains cut off for a
considerable relaxation period while the charge stored in C, leaks off
through R,. In typical circuits the conduction and relaxation periods
are about one microsecond and one millisecond, respectively.

The operation of the blocking oscillator is complicated. Analysis
of the operation is difficult because of nonlinearity in the tube and
probably in the transformer as well. The empirical approach is also
difficult because it is very hard to isolate and control the important
parameters. However, the following statements appear to be ade-
quately established by experience. In all cases it is assumed that only
one parameter is varied at a time.

(1) The relaxation period is directly proportional to E,.

(2) Both the conduction and relaxation periods increase with
increase of C,, but not proportionally.

(3) The conduction period increases with increase of the self-
inductance of the transformer.

(4) More core material is required if the output power or con-
duction period is increased; otherwise saturation interferes with the
operation.

(5) The conduction period will be shortened if the cathode emission
of the tube is sufficiently reduced by lowering the heater voltage.

(6) Damping must be provided by means of a load resistor or by
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core losses; otherwise the conduction interval is followed by violent
oscillations.

(7) The steepness of the voltage waves is controlled by parasitic
capacitances in the tube and transformer, and by leakage.

Pulse voltages of a kilovolt or more at power levels of several kilo-
watts may be obtained by using a transmitting tube such as the 829
in a blocking oscillator. Such an arrangement is greatly favored in
compact low-power radar systems because of the resulting high
efficiency and economy of parts.

12.20 Analysis of the blocking oscillator

In Chapter 7, it was shown that relaxation oscillations will occur in
the circuit of Fig. 12.26, provided

uM > r5(2 V' LsC + Lo/R + Ly/r,). (12.42)

This information is applicable, because we may identify Fig. 12.26
with the blocking oscillator of Fig. 12.25. Subject tothe assumption of
unity coupling, we have M = Lq/¢,
where ¢ i1s the turns ratio of the
transformer. Moreover, the total
effective capacitance is given by
C = Cy+ Cy/¢% Eliminating M
in eq. 12.42 yields as the condition
for relaxation oscillation

g > (I + r,/R + 2r, V' C/Lo).
(12.43)

£
Ti
In Chapter 2 it was shown that " :

Vg

while the tube is cut off the plate Fi6. 12.26. Analysis of pulse length.

circuit is critically damped, provided R = 3 V' Ly/C. However, a
heavier damping is desirable, and we shall assume that

R =%++VLyC. (12.44)

With this substitution and the choice R = 4r,, suitable for typical
triodes, eq. 12.43 becomes

p> 5.5¢. (12.45)

This condition is readily satisfied by conventional triodes in conjunc-
tion with transformers having turns ratios near one.
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emphasize the properties of present interest and to simplify the calcu-
lations; they are, however, essentially correct. The exceptional
feature of these curves, which are obtainable only by pulse techniques
because of the large values of power dissipation involved, is that the
plate current is independent of the grid voltage if the grid is more positive
than the plate. It is this fact which permits the tube to conduct a sub-
stantially constant current for a finite interval.

Provided v, > v, the characteristics of the vacuum tube may be
represented approximately by the equations

1 = Jp¥ (12.47)
and
Te = 11 = Gcle — Golb, (12.48)

where g¢,, g., and g, represent the self-conductances of plate and grid,
and the transfer conductance of the grid, respectively. Moreover, we
may write .

Vp = Vb — 9, (1249)

v, = v/ — v, (12.50)
and

i = 12 + v/R. (12.51)

Solving simultaneously, we have at the beginning of the interval of
conduction

v ' ngc + ¢2Vb/R - ¢gcvd.
* T $YR + ¢%g, + bgs + g:

As a numerical example consistent with Fig. 12.27, let us substitute
V, = 200 and vy = 10 volts, R = 2000 ohms, ¢ = 2, g, = 0.006,
ge = 0.004, and g, = 0.002 mho. These values correspond to the load
line shown and lead to vy’ = 32.9 volts. The corresponding param-
eters are v’ = 167.1 volts, v,/ = 73.6 volts, 7,/ = 228, 7;’ = 114, and
2’ = 198 ma.

During the conduction interval the grid has negligible control over
the plate current, which tends to remain constant because of the low
dynamic plate resistance. However, both the grid current and the
voltage decrease rapidly for two separate reasons. First, the large
grid current charges C,, thereby increasing v4 and reducing v.. Second,
because the self-inductances of the transformer are finite, the relation-
ship represented by eq. 12.46 is departed from to a degree given by

(12.52)

v = Lodiy/dt — M diy/dt. (12.53)









TABLE 12.1. TrANsrFORMERS FOR USELIN BLOCKING OSCILLATORS

Rad. Lab. | W’hse Winding Load, Pulse GE Winding Pulse Raytheon Winding Pulse!
Number* | Numbert Turns} Obms | Length, ps | Number§ Turns} Length, us Number Turns} Length, us
132-AW P1 32-32-32 250 | 0.3to1.5| 68 G 505 | B2-74/82-74 0.5t0 10 | UX 7307" 50-50-50/50-50-50 ( 0.1 to 5
132-BW P2 32-32-32-10 200 | 0.3to 1.5 | 68 G 627 | 140-140/140-70 1to 20 UX 7350 50-50-50/50-560-50 | 0.1to 5
132-DW P3 20-20-20 300 | 0.1t00.5| 68 G 709 | 150-150/150-150 | 1 to 20 UX 7852 32-32-32 0.3to 1.5
134-BW P4 140-140/140-70 | 1500 [ 1to 5 68 G 712 | 150-150/150-150 | 1 to 20 UX 7853 32-32-32 0.3t0 1.5
134-CW P5 140-140-70 1200 [ 1to 5 68 G 813 | 37-74/74-111 0.5to 10 | UX 8091 70-70-140 1to5
134-EW P6 50-50-25 800 | 0.3to 1.5 | 68 G B28 | 140-140/140-70 1to 20 UX 8082 40~40-80 0.5t0 2
145-CW P7 125-125-125 500 [ 1to S 68 G 979 | 140-140/140-70 1 to 20 UX 8205 60-60-80 1tos
145-EW P8 150-150-150 800 | 1to S 80 G 240 | 150-150/150-150 | 1 to 20 UX 8413 140-140/140-70 1to5
166-AW P9 90-90-135 800 | 1to 5 80 G 459 | 50-100-70 1to 20 UX 8406| 50-50-50/50-50-50 | 0.1 to 5
176-AW P10 70-70-140 1000 | 1to 5 80 G 587 | 100-100-100 0.5 to 10 | Utab No.

187-AW P11 40-40-80 400 | 0.5 to 2 80 G 754 | 125-75-50 1to6 OA 18| 50-50-50/50-50-50 | 0.1to 5
224-AW P12 35-35-35-10 1000 | 0.1t0 0.5 | 713 0884 | 20-20-20 0.1to2 OA 15%» 80-80/80-80 1to 50

* These twelve designs originated at the M.L.T. Radiation Laboratory.
The suffix *'2'’ is sometimes used to indicate that the Hypersil core stock is
0.002 inch ratber than 0.003 inch thick.

1 Made by Specialty Transformer division of Westinghouse Electric Cor-
poration, Sharon, Pa. Depending upon the impregnation and mounting, the
type number is preceded by 1, 4, or 7. Rated at 8 maximum duty of 0.002,
although 8 larger value should be safe at lower levels.

t The number of turns in each separate winding is given.
indicates windings on the opposite leg of a simple core.

§ Made by the Specialty Transformer division of the General Electric Com-
pany, Fort Wayne, Ind. The wide range of pulse durations represents a
difference of rating rather than of construction. R .

Il These units appear to be identical in essential characteristics. The wide
range of pulse duration is achieved by variation of the manner in which the
windings are connected.

The slant bar

9 The Utah OA 18 is the basis of a long series of sealed transformers which
differ in internal connection and inductance tolerance. The X139 uses only
two windings on one leg; the X143 uses three windings on one leg. The X124
uses all windings in three series-aiding pairs; the X146 differs from it only in
that one pair of windings is ignored. The X148 uses all windings in two series-
aiding groups. The X140 uses four series-aiding coils and two separate coils;
whereas the X138 uses series-aiding groups of two and four coils. A green
dot indicates a close tolerance on primary inductance, a yellow dot is inter-
mediate, and a red dot indicates a relatively wide tolerance. The 9280 and
9262 are equivalent to the X124.

*3 The X154 and X166 transformers are based on the OA 15 design. These
and nearly all other Utah designs are currently available from Fisher Engineer-
ing, Inc., Maple Grove Road, Huntington, Ind. Certain of the Utab designs
are also manufactured by Chicago Transformer Company and United Trans-
former Company.
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could not exceed 460 volts. Consistent with the assumption of eq.
12.57 there would be no overshoot because no energy was assumed to
have been stored. In practice there is usually an appreciable over-
shoot, but the magnitude of this effect can be kept within tolerable
limits.

The wave forms produced by practical blocking oscillators are
seriously degraded by leakage inductance, distributed capacitance,
and saturation in the transformer. Moreover, if the core laminations
are too thick, the resulting eddy currents excessively reduce the
transient inductance of the windings. These effects are so pronounced
in the transformers commonly used in television sweep circuits that
the wave form is smoothed to the approximate form of a single sinu-
soidal cycle. In view of these effects, and contrary to our definitions,
Maloff and Epstein20® assert that the blocking oscillator is not a
relaxation oscillator.

The performance of a blocking oscillator is greatly affected by the
construction of the transformer, which ordinarily employs several
single-layer windings on one or both legs of a small core of thin mag-
netic laminations or ribbon. The design of such transformers is a
complicated matter, based very largely upon empirical procedures.
1t is therefore desirable to use a ready-made unit whenever possible.
To facilitate experimental work, the properties of some transformers
which have been manufactured in quantity are presented in Table
12.1.

12.22 Variations of the blocking oscillator

A number of variations of the blocking oscillator exist. One of these,
shown in Fig. 12.28a, employs coupling between the plate and cathode
circuits, and uses the tube as a grounded-grid amplifier. In this
arrangement the grid is substantially at ground potential and the flow
of plate current drives the cathode negative with respect to the grid.
Because the cathode impedance is low, it is necessary to use a step-
down ratio between plate and cathode. The plate winding ordinarily
has two or three times as many turns as the cathode winding. The
remarkable feature of this circuit is that the maximum voltage devel-
oped across the load R is considerably larger than V,. This situation
exists because the cathode is driven negative with respect to ground
by the transformer action. And, as already shown, a quasistable state
can exist only if the plate is negative with respect to the grid, which in
turn is negative with respect to ground by the amount of the bias.
This arrangement is good on the basis of parasitic capacitances, because
one end of each winding is effectively at ground potential and because
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may be made relatively fast. Electron coupling has the usual advan-
tage of isolating the timing functions from the load circuit; here it
permits the generation of powerful negative pulses which are quite
free from oscillations or overshoot.

FElectron coupling may also be obtained by using the screen of a
pentode as an equivalent plate, in a grounded cathode circuit. How-
ever, the reduced transconductance which is inherent in this arrange-
ment seriously limits the performance.

A circuit due to Kobayashi,!’® which is related to Puckle’s sweep, is
shown in Fig. 12.28¢c. The circuit differs from the ordinary blocking
oscillator in that the grid is returned to a fixed positive voltage, and
the relaxation occurs in the cathode circuit. The operating cycle is
readily explained on the basis of the previous work. The charge
placed on C; by preceding cycles leaks off through R, until the con-
denser voltage approaches V.. At this point plate current begins to
flow, and the regenerative action drives the grid positive. The large
cathode current which results from the combined grid and plate cur-
rents rapidly charges C; toward the supply voltage V5.

As with the normal blocking oscillator, the conduction interval will
end by the action of the transformer itself if no other influence is
present. This is the desired condition in the present case. The
transformer is so proportioned that the conduction interval is no
longer than the allowable flyback time. The cathode condenser is
chosen so that the total charge delivered by the cathode will produce a
suitable increase of cathode voltage, the desired value depending
upon considerations of linearity, ete. Finally, R;, which may be
replaced by a pentode in the interest of linearity, is chosen to give the
desired sweep period consistent with the capacitance of Cj and the
voltage excursion already fixed.

Few data are available concerning this circuit, but it appears that
the arrangement should be capable of producing a relatively large
sweep voltage with exceptionally short flyback time over a wide range
of frequencies. For extremely high frequencies, it should be superior
to Puckle’s sweep in that even larger values of grid and plate current
are realizable.

PROBLEMS

12.1. Derive eqs. 12.3, 12.5, and 12.6.

12.2. A thyratron oscillator similar to that of Section 12.5 has values V3 = 150,
Vi =20, and Vy = 500 volts; C = 1000 uuf, Ry = 300, and R = 107 ohms.
Calculate the period, and flyback time, the amplitude, and nonlinearity and dis-
placement error.

12.3. In Fig. 12.6, C = 10~° farads, R; = 2 X 10% and R; = 2 X 10° ohms,
and Vp = 200 volts. Calculate the wave form and periods, using the curves of
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simple harmonic relationship exists between the two frequencies. In
relaxation oscillators the tendency toward synchronization is so strong
that frequency ratios as great as ten to one are commonly employed.

If the injected signal is derived from a second oscillator, there will
be a reaction which tends to modify the amplitude and frequency of its
oscillation. That is, when two separate oscillators are coupled
together, both are affected. This phenomenon was probably first
noted by Huygens, who discovered that two similar clocks hung on
the same wall tend to synchronize and operate at the same rate. This
effect, which is discussed toward the end of this chapter, was originally
described in a very clear and thorough paper by E. V. Appleton.!?

13.1 Locking in a linear oscillator

The lamp bridge oscillator discussed in several previous chapters is
chosen to illustrate the analysis of thermistor-controlled linear oscil-
lators. The arrangement shown in Fig. 13.1 has been chosen to
simplify the analysis. We assume that the grid and plate impedances
of the tube are very high, and that the tuned grid circuit provides the

Untuned

-0
R
Output
\%
N:

1
] ‘] -~

Fi6. 13.1. Synchronization in lamp bridge oscillator.

entire selectivity of the system. In the absence of an injected signal,
the circuit oscillates at a frequency Fo determined by the LC combina-
tion. The amplitude of oscillation is such that a voltage V, exists
across the lamp bridge, and a voltage E exists in the grid circuit.

Before proceeding further, it is appropriate to note that the lamp
bridge ordinarily is nearly balanced. Therefore, for a voltage V5 only
slightly larger than V, the bridge will reach balance, and the voltage E
returned to the grid will be zero. Accordingly, if the synchronizing
signal is sinusoidal with an amplitude E; = Ej; such that the output
voltage V = V3, there will be no output signal of frequency Fq pro-
duced regardless of the injected frequency F’.

Let us now assume that the synchronizing signal has a frequency
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F’' = Fy and that E; is in phase with E, and is arbitrarily varied in
amplitude. Under these circumstances the feedback action of the
oscillator serves to stabilize the output voltage, as indicated by Fig.
13.2. It is seen that for E; > Ex the phase of the feedback voltage is
reversed, and the system is degenerative rather than regenerative.
The output is, of course, a sine wave of frequency Fo.

The crucial step in the argument, arises when we consider a shift
in the phase of the injected voltage. The situation is shown by the
phasor diagram of Fig. 13.3. It is seen that the returned voltage E
is more nearly in phase with total grid voltage than is the injected
voltage, and that the oscillation will quickly pull itself into phase with
E,.

E,
E
E E,

0 [

0

E, I}\ ] E+E;=E,

F1c. 13.2. Variation of F16.13.3. Phase shift associated with synchro-
feedback with synchro- nization.
nizing voltage for F’ =

F,.

The phase relationship shown in Fig. 13.3 can remain fixed only if
the synchronizing frequency F’ differs from the natural frequency of
the system to such an extent that the loop phase shift is just equal
to 0. Under these circumstances the entire system operates at the
input frequency F’, and there is no output at the natural frequency F.
So long as the input is large enough to produce synchronization, the
output is nearly constant, independent of E,, and identical to it in
frequency. Such operation is referred to as locked oscillation and is
useful in numerous applications.

13.2 Quantitative requirements for locking

The conditions which may arise as the amplitude and frequency of the
synchronizing voltage are varied are conveniently studied by use of the
modified phasor diagram of Fig. 13.4. At any specified frequency F’
there is a unique phase angle 8 between E and (E + E,) as determined
by the selectivity of the system. Therefore, there is a certain mini-
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period of the difference frequency between F’ and F is short compared
to the time constant of the lamp bridge, there is no interaction, and
the total power output V (at two frequencies) is exactly normal because
the loop gain must be unity for the production of Fy. The boundary
of synchronization corresponding to the above equations is plotted in
Fig. 13.5.

T o=
Output contains only F'

E,/E
7 //1‘ oé/ . IM 7.
/ / Output contains / Output contains
/FandFo/ FandF//<
) )

1 1 1 1 1
l-g 1-—Q 1-55 1-10 1.0 1435 l+2Q 1+35 Q ]+Q
F'[F,

\*N

F1G. 13.5. Voltage required for synchronization at various frequencies.

When E,; exceeds the minimum value which produces synchroniza-
tion, the output voltage is somewhat increaséd. It is clear that the
output is constant at the value V = V; for all values of F’ if E, = Ej
because the lamp bridge is balanced, and no regeneration occurs. The
behavior at other frequencies may be obtained by use of the amplitude
stability factor developed in Section 7.6. In the notation of Chapter 7
we may write

V = NRg»(E + E)), (13.3)
which upon differentiation yields
dV = NR[gm dE + (E + E1)dgn). (13.4)

Combining these equations with the basic definition of amplitude
stability, and assuming E; constant, we have

dV  dgm gmdE + (E + Ey)dgn
8,5 =Un_g 13.5
VS T (E+Eden (18.5)
or
dE Vv
R .
Sa E1E) v (13.6)

Provided the limiter has a linear characteristic in the operating region,
as indicated in Fig. 13.2, we may write

_ Ve = V)

T 1+ J tan 6 (13.7)
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Fq represents about three-fourths and that at F’ represents one-half of
the reference (V) value. The power represented by F, falls off
rapidly as F’ approaches F.

At first sight it might appear that the power output at frequency Fq
would be constant for a given value of E, as long as F’ lay outside the
range of synchronization. Actually, however, there is feedback at
the synchronizing frequency as well as at the natural frequency,
so that the output at F’ increases and that at Fy diminishes as F’
approaches Fy,.

Subject to the assumptions made, the foregoing analysis indicates
that no hysteresis is present. That is, if at some suitable frequency
F’, E, is increased, the voltage at which Fy disappears should not
differ from the voltage at which F reappears when E| is again reduced.

2.0
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I
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0.90 0.95 1.00 F/Fo 1.05 1.10

Fi1G. 13.6. Variation of output voltage under synchronization (Q = 50, S, = 10).

In practice, however, there may be some hysteresis, especially if the
time constant of the lamps is not long compared to the period of the
difference between Fg and F’.

Finally, we may readily account for any selectivity which exists
between the point at which the synchronizing voltage is injected and
the thermistor limiter. Both the attenuation and the phase shift
which occur at frequencies away from the natural frequency require an
increase in the magnitude of the synchronizing voltage. Equation
13.1 still applies, but eq. 13.2 must be modified to account for the
increased phase shift.

13.3 Synchronization in a linear bias-controlled oscillator

As a second example of the synchronization of a linear oscillator let us
consider the system of Fig. 7.16. Again, we assume that the time
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and
F =Fy+ rF, — zF,, (13.14)

where Ay and F, are the values observed for z = 0.
The compensation theorem is used to obtain expressions in terms of
voltage instead of impedance. The desired equation is

E, = Ize 7 or z = (Ey/Ip)e’, (13.15)

where I is the current which flows through z when z = 0, and ¢ (later
identified) is a function of time. The compensation theorem, although
normally limited to linear systems, is valid here because the system is
subject to equivalent linearization.

The derivative coefficients are now combined in complex form to
obtain compliance coefficients

Ci= A, +jA, = VA2 + A2 " = C® (13.16)
and
Cr=F,+jF, = VF2+F,2e"® = Cpe’® (13.17)
where
tan « = A;/A, and tan 8 = F./F,. (13.18)

Multiplying eq. 13.15 by egs. 13.16 and 13.17, and taking the real
parts, we have

(Real)(zC,) = rA, + zA, = A — Ay = C.(E /1) cos (¢ + a),
(13.19)
and

(Real)(zCp) = 7F. + zF, = F — Fy = Cx(Ey/I,) cos (¢ + B).
(13.20)

The variation of ¢ is now defined by the relationship

1d¢ ., -
s F' —F = (F' — Fo) — (F — Fy).
(13.21)
This expression is given physical signifi- E,

cance in the phasor diagram of Fig. 13.9. pis. 13.9. Condition of
Consistent with eq. 13.15, ¢ may be taken  partial synchronization.
as’ the instantaneous phase angle between

the injected signal and the voltage of self-oscillation. This phase
angle ¢ will tend toward a constant under conditions of synchroni-
zation but will vary periodically in the absence of synchronization.
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litude or frequency of the synchronizing signal, disappears at a rate
corresponding to a time constant of

- 1 B 1
2rkEy V1 — a®  2xf V1/a% — 1

(13.32)

It should be noted that v and ¢ themselves are not governed by eq.
13.32, which applies to the entire function given by eq. 13.30. How-
ever, the decay of ¢ is monotonic rather than oscillatory, and occurs at
a rate which is nearly equal to that of eq. 13.32 unless the parameter a
approaches one.

This decay rate is important because it is a measure of the rapidity
with which a locked oscillator can follow a frequency-modulated wave.
Evidently, the period ,, of a highest modulating frequency should be
large compared to eq. 13.32 if serious distortion is to be avoided.

Synchronization is lost if the input signal is inadequate. When a
is slightly larger than 1 corresponding to eq. 13.28b, the behavior of y
and ¢ becomes complicated and interesting. Over a large portion
of the cycle the cos vy term in eq. 13.27 is negative and nearly equal to a,
so that dy is small. The portion of the eycle in which the cosine term
is positive is described in a relatively short time because of the rela-
tively large derivative term. Integration of eq. 13.27 subject to the
restriction a > 1 leads to

2
Ve —1

tan—! [\/Z 1 tan g] = tp + 27kE;yt (13.33)

or

tan ~ = \/a t1 tan [% Va® —1(t+ 2""‘7E1t)]- (13.34)

Under these circumstances v and hence ¢ is a continuously varying
function of time. Moreover, at uniform intervals of time, the quantity

b\ A AN A\
VNGV VAR

b)

F1e. 13.10. Frequency perturbation in the region of synchronization of a non-
linear oscillator.

in brackets will reach values of 0, 7/2, r, 3r/2, etc. The tangent of
these angles is successively 0, «, 0, — o, etc. Accordingly, v also
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The linearity of the characteristic depends upon the phase relation-
ships which exist between the several circuits. If, at the midfre-
quency, the voltage induced in the load circuit by the signal is in
quadrature with that produced by the oscillator, it is clear that the
total amplitude will change more or less linearly as the phase of the
synchronizing voltage varies through a moderate angle in the center
of the locking range. Such a phase relationship may be obtained in
the circuit of Fig. 13.13a if the coupling paths are appropriately
adjusted. However, the arrangement is inherently insensitive because
the maximum output voltage is no larger than the input voltage.

A more useful approach to the detector problem is obtained by
returning to the analysis of Section 13.5. It is seen that the output
amplitude will vary linearly with frequency if « = 8 in eqs. 13.19 and
13.20; this requires that

Az/A, = F./F,. (13.41)

Moreover, large values of the amplitude coefficients are desirable
in the interest of sensitivity. That is, the amplitude should be made
as sensitive as possible to impedance changes at the driving point.

In a practical detector the average plate current rather than the
amplitude of oscillation is of principal concern, because it offers a
convenient means for delivering the signal output without resorting to
an additional rectifier. A figure of merit for a locked oscillator can
therefore be established on this basis. First we assume that the
injected signal is small compared to the voltage of self-oscillation so
that we may rewrite eq. 13.1 in the form

E,JE > . (13.42)

Moreover, the maximum possible increment in plate current within
the range of synchronization is

dI
o = — 6. (13.43)

Combining these expressions yields

oI < Erdl

<2 (13.44)

Thus, for a given injected voltage E;, the sensitivity increases with a
decrease of the returned voltage E and with an increase of the deriva-
tive dl/d6. That is, to obtain high sensitivity, the tube should have a
large transconductance, and the Nyquist diagram for the circuit should
come as close as possible to coinciding with the positive real axis.
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13.13 Synchronization of relaxation oscillators

Relaxation oscillators are readily synchronized by signals of all sorts.
The injected wave form may be sinusoidal, or in the form of pulses,
and the injected frequency may be equal or unequal to that produced,
so long as some reasonably simple frequency ratio exists. Synchroni-
zation in a ratio such as 2:1 may be maintained over a considerable

- + v,

R,

T =

Up

I

L

Fi16, 13.16. Symmetrical multivibrator arranged for synchronization at an odd
subharmonic.

‘/b-———~ —_———— — — —p——

g

F1G. 13.17. Wave forms in either tube of Fig. 13.16. Corresponding waves dis-
placed one half cycle are observed in the other tube.

range of the input frequency, in the order of +25 per cent. In this
respect the performance considerably exceeds that of the conventional
locked oscillator. However, consistent with synchronization at a
given operating frequency, the permissible variation of the tube
characteristics is not appreciably different from that of a conventional
oscillator.

The multivibrator is selected to illustrate the synchronization
of relaxation oscillators because it demonstrates all the important
principles, and because it is the most, widely used in this application; a
typical arrangement is shown in Fig. 13.16. A symmetrical triode
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maximum slope of the total synchronizing voltage, v,, shall equal the
slope of the natural grid relaxation in the cutoff region.

If the amplitude of the plate voltage excursion, or the time constant
of the grid circuit, or the period of the injected wave is assumed to
vary instead of the ecritical bias, a similar situation exists. In all
cases, the synchronizing voltage should be equal to or slightly larger
than that which leads to zero slope near the cutoff point. The
behavior in the region of cutoff is the same in all cases, and is cor-
rectly represented by Fig. 13.19.

Fi16. 13.19. Enlargement showing effect of variation of cutoff bias on phase of
synchronization. Maximum, normal, and minimum values of cutoff bias and of
natural period are indicated.

In most applications the frequency of the synchronizing voltage is
quite constant, and the multivibrator is used to obtain harmonic
and/or subharmonic frequencies. The firmest possible lock is desired
to avoid the possibility of operation at an incorrect frequency due to
loss of synchronization, and to minimize the timing errors associated
with changes of phase within the range of synchronization. These
objectives are best met by making the natural frequency of the multi-
vibrator as stable as possible and by using the largest practical syn-
chronizing voltage. The use of positive grid leak return, as discussed
in Chapter 12, is desirable because it improves the inherent frequency
stability and also permits the use of a larger synchronizing voltage.
In at least some cases, it appears that even better results would be
obtained with the symmetrical cathode-coupled multivibrator.

13.15 Synchronization with nonsinusoidal waves

In harmonic oscillators the synchronizing voltage is usually sinusoidal
and a small simple multiple of the operating frequency. In relaxation
oscillators, on the other hand, the synchronizing voltage is often



SYNCHRONIZATION WITH NONSINUSOIDAL WAVES 337

markedly nonsinusoidal. An important practical example is the series
or chain of multivibrators, commonly used in frequency standards as
frequency dividers. The primary oscillator ordinarily operates at a
frequency of 100 ke, and successive multivibrators operate at fre-
quencies such as 25, 5, and 1 ke. The first multivibrator is syn-
chronized by a sinusoidal wave derived from the primary oscillator,
but the other multivibrators are synchronized by waves derived from
preceding multivibrators. Fortunately, nonsinusoidal waves are
favorable for synchronization, and a good phase lock is associated with
a large slope of the voltage wave. The situation is illustrated in
Fig. 13.20, which indicates that a square wave is favorable, but that

Syncnronizing wave

F16. 13.20. Synchronization of multivibrator by nonsinusoidal wave forms.

a sloped-off square wave is preferable because it permits greater mar-
gin against premature triggering, and that a negative saw-tooth wave of
suitable amplitude is ideal. The sloped-off square wave produces a
slightly smaller margin against variation of the cutoff bias than does
the triangle and requires an increase of the free-running period. Best
results are obtained when the time constant of the relaxation is
about one-third the period of the square wave, as indicated. As
previously noted, synchronization is produced at the grid of the cutoff
tube, but the actual synchronizing voltage wave form may be greatly
affected by loop transmission.

The arrangement of Fig. 13.16 is unsuitable for the injection of
nonsinusoidal waves because the high resistance of the grid leaks in
conjunction with stray capacitances to ground degrades the slope
obtainable. Small capacitances, of the order of 10 puf, coupling the
synchronizing voltage directly to the multivibrator grids are frequently
used but are somewhat objectionable because they increase the total
effective capacitance to ground in the synchronized multivibrator.
Both the speed of transition and the harmonic content of the output
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Fi16. 13.21. Faulty synchronization by short pulses.

frequency; otherwise the synchronizing frequency will be greatly
amplified as the transition is approached. This behavior seriously
interferes with the desired synchronization.

PROBLEMS

13.1. In an absolutely linear system the principle of superposition may be used
to prove that the addition of a signal has no effect on existing voltages and currents.
Reconcile this with the fact that the lamp bridge oscillator is readily synchronized.

18.2. Show that the situation corresponding to E,’”’ in Fig. 13.4 is unstable.

13.3. Calculate curves for Fo and F’ corresponding to Fig. 13.6 for @ = 100,
SA = 100, and EI/EB = 0.1.

13.4. Indicate how the curves of Prob. 13.3 would be affected if the amplitude
were limited on a total-peak-voltage rather than power basis.

18.5. Show by a sketch like Fig. 13.8 how a class C oscillator can lock at two-
thirds of the input frequency.

13.6. In connection with eq. 13.15, show why the compensation theorem may be
used.

13.7. Identify Adler’s mechanical model with the behavior shown in Figs. 13.10
and 13.11.

13.8. Verify eq. 13.37 and justify the conclusion that a locked oscillator does
not distort a FM signal, provided synchronization is never lost.

18.9. Verify eq. 13.40 and interpret it in terms of practical locked oscillators for
the amplification of FM signals.

13.10. Following the discussion of Section 13.10, design a locked oscillator which
will be a sensitive detector of FM signals.

13.11. By wave form sketches show why balanced synchronization favors odd
frequency ratios and unbalanced synchronization even ratios in multivibrators.

18.12. Show that Fig. 13.19 represents the optimum synchronizing condition
with respect to changes of amplitude and natural period as well as to change of the
cutoff bias.

13.18. Sketch a circuit arrangement by which waves like those of Fig. 13.20 may
actually be produced without seriously affecting the operation of the multivibrator.
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period of the desired wave. It is therefore highly important to avoid
jitter and to control the harmonic content of any wave whose fre-
quency is to be multiplied. Frequency division, on the other hand,
involves multiplication of time. Imperfections in the input wave
therefore tend to vanish rather than be magnified when this process is
employed.

Depending upon whether or not a balanced frequency multiplier is
used, energy is delivered to the tuned output circuit only once or twice
per input cycle. A high effective @ in the resonant circuit is therefore
desirable, especially if the order of multiplication is large; otherwise,
the output voltage wave form will be amplitude modulated at the
input period. Extreme values of @ are required if the order of multi-
plication is large and if only a single tuned circuit is used.

The question of time delay or phase lock arises in all methods of
frequency composition. The requirements vary greatly with the
particular application; but in all cases it is desirable that the input
and output waves have a phase relationship which is stable and
independent of element values, because a changing phase constitutes
a frequency error.

14.3 Methods of frequency multiplication

Frequency multiplication is a special case of modulation, as may
be seen by setting m or f = 0 in eq. 14.1. Therefore, in principle, we
may obtain any desired frequency multiplication by applying a
sinusoidal voltage to a nonlinear impedance. In practice, the situation
is much less simple, because the output so achieved is often too small or
too contaminated with other frequencies to be useful. A great variety
of arrangements have been employed to alleviate these difficulties.
Useful arrangements may be catalogued roughly, according to the
source of nonlinearity, as follows: (1) passive structures using non-
linear elements operating according to eq. 14.1; (2) active unilateral
structures (vacuum tubes without feedback); (3) active stable struc-
tures (vacuum tubes with limited feedback); and (4) unstable struc-
tures (free running systems). All depend upon the use of tuned cir-
cuits to select the desired output frequency.

An additional basis for classifying frequency multipliers depends
upon whether a single frequency or a group of harmonically related
frequencies is desired at the output. A single frequency at reasonably
high power and efficiency is desired in multipliers for radio trans-
mitters. On the other hand, uniformity of output at a large number
of harmonics is the principal requirement on multipliers for frequency
measurement.
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14.4 A diode frequency multiplier

Perhaps the simplest frequency multiplier is the full-wave rectifier
circuit of Fig. 14.1a. The primary circuit is tuned to series resonance
at the driving frequency f, and the secondary circuit is tuned to anti-
resonance at the desired harmonic nf. Figure 14.1b shows the various
wave forms which exist in this system for n = 2 under the assumption
that the transformer and rectifiers are ideal, that the primary has the
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FiG. 14.1. Rectifier frequency multiplier: (a) circuit and (b) wave forms.

same number of turns as the total secondary, and that both the pri-
mary and the secondary constitute high-Q systems. Under these
assumptions the system approaches 100 per cent efficiency, and we may
evaluate the input resistance by use of the principle of conservation of
energy. The second-harmonic content of a rectified sine wave is
readily determined by use of Fourier analysis. According to the
Federal Handbook,?? page 287, we have

iy = 8i,/3r. (14.2q)
Therefore, the effective input impedance R, is given by

R, = 0.72R,. (14.2b)
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The assumptions made in the foregoing analysis are approximated
reasonably well in practice, and efficiencies in excess of 50 per cent
may be realized at most frequencies.

It should be noted that the system of Fig. 14.1 is not limited to
frequency doubling. In theory, all even harmonics are present in the
current wave, and may be obtained by suitable tuning of the secondary
circuit. In practice, the magnitude of the current falls off rapidly
with the order of harmonic, and the parasitic losses become excessive.
For n = 4, the effective input resistance, under the assumption of
100 per cent efficiency is given by

R, = 0.0288R;. (14.3)

In this case, however, the assumption of 100 per cent efficiency is
unjustifiable because the desired current is so small compared to the
associated undesired circulating currents that serious losses cannot be
avoided.
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Fi1c. 14.2. Properties of various diodes.

The performance of this circuit depends greatly upon the characteris-
tics of the rectifier or diode employed. The back or leakage resistance
must be large and the forward resistance low compared to the load
resistance R if efficient operation is to be secured. Vacuum diodes,
such as the 6ALS5, are suitable for operation up to frequencies of the
order of 500 Me, and give good performance with load resistors of the
order of 5000 ohms. Germanium diodes, such as the 1N52, require no
heater power, but are restricted to somewhat lower frequencies and
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efficiencies. They also operate best with loads of the order of 5000
ohms. Silicon diodes are useful at frequencies as high as 25,000 Mec,
but are limited to one or two volts and are characterized by poor
efficiency. The average characteristics of typical diodes are shown in
Fig. 14.2. 'The reverse conductivity of electronic diodes is negligible.
The reverse conductivity of the 1N21 is far from negligible but cannot
be shown on the scales chosen.

F16. 14.3. Approximation to hysteresis curve of a saturable core.

Provided the rectifiers are linear, that is, have different fixed resist-
ances in the forward and back directions, the output is proportional
to the input. This condition is never exactly fullfiled in practice, but
is closely approximated by vacuum diodes operated with large signals
and relatively high load impedances. This proportionality between
output and input is important in many applications, notably as a part
of the stable regenerative frequency dividers described later in this
chapter.

14.5 Frequency multiplication by magnetic saturation

It is well known that nonlinearity due to magnetic saturation in
iron-core coils results in the production of harmonics; and this effect
has been intentionally employed by many workers. However,
developments in magnetic materials have greatly increased the
efficiency and frequency range of such devices. The characteristic
features of materials, such as Permalloy, Mumetal, Orthonol, and
Deltamax, are that the initial permeability is large, the hysteresis
loop is narrow,!® and the saturation is very sharp, as indicated in
Fig. 14.3. Because the self-inductance of a coil depends upon the
slope of the B-H curve of its core, it follows that a coil having a core
of these materials will have an inductance which changes sharply
and by a large ratio as the current is varied. This property has been






MAGNETIC MULTIPLIER FOR A SINGLE FREQUENCY 347

must be incurred in the reactive elements. Efficiencies of the order
of 20 per cent may be anticipated under these conditions.

In practice, the losses in the input and output filters increase with
the order, n, of the harmonic required, and the losses in the nonlinear
coil increase with both f and n, so that the method becomes unattrac-
tive for orders of n above about 50 or for output frequencies in excess
of about 5 Me.

It is desirable to proportion R, and C, with respect to L’ so as to
obtain critical damping, thus bringing the discharge to an end in the
shortest possible time. The primary inductance L; must be large
compared to the unsaturated inductance L in order to insure that
the primary current will be substantially sinusoidal. The power level
at which the desired operation will occur is roughly proportional to the
mass of the saturable core and the frequency, whereas the values of
L and L' and hence the impedance level of the various circuits may be
adjusted by the number of turns used in the winding.

If the driving current is truly sinusoidal, the successive positive and
negative pulses of current are accurately uniform in magnitude and
spacing, as is necessary if high-order harmonics are to be selected. In
this respect the saturable reactor is superior to electronic devices for
harmonic production. The operation of this circuit has been analyzed
in detail by Peterson;2?® and additional information on the subject is
given by Tucker.?

14.6 Magnetic multiplier for a single frequency

As stated in the preceding section, the saturable reactor is particularly
favorable for the simultaneous generation of a group of odd harmonics.
However, it can be used with reasonable success for the generation of a
single harmonic. Peculiarly enough, the analysis of the operation for
a single frequency is considerably more complicated than that for a
group of frequencies. The difficulty arises from the fact that the
output circuit must be tuned to the desired frequency, and that this
tuned circuit is subjected to both a periodic (nonsinusoidal) driving
voltage and a periodic variation of its inductance. A very lucid
explanation of those effects has been given by Guillemin and Rumsey.'?*

Guillemin used a saturable reactance in the form of a transformer
with unity turns ratio, but equivalent results would have been obtained
by adding in series with Cy, an inductance Ls, to resonate it at the
desired frequency. The addition of this inductance serves to restrict
the current through Rs to a single frequency, n times the input fre-
quency f. Therefore, no large spike of current, such as that of Fig.
14.4b, can flow at any point in the circuit.






FREQUENCY MULTIPLICATION WITH TUBES 349

period must correspond to that of the driving voltage. This view-
point is adequate to explain all the observed facts, including the pro-
duction of even harmonics, and permits reasonably satisfactory
calculations of performance.

On the basis of such calculations, supplemented by extensive experi-
mental work, Guillemin states that optimum efficiency and wave form
are observed when the parameters are adjusted to meet the approxi-
mate formula

iy = 1.5i1/n. (14.4)

Under these conditions the current through the nonlinear coil must
have at least two maxima and minima per cycle (and may have as
many as four zeros per cycle). An experimental 5:1 magnetic fre-
quency multiplier tested by Guillemin had an efficiency of 30 per cent.

Magnetic frequency multipliers tend to generate only odd harmonics
because the B-H curve is symmetric; however, even harmonics may
be generated by supplying a suitable magnetic bias. This method is
quite practical when a relatively high multiplication is desired, but
requires an inconveniently large bias if n = 2. If, for example, the
sixth harmonic is desired the bias should be chosen so that five and then
seven half cycles of output are produced between excitations.

Although highly reliable and capable of good efficiency, frequency
multipliers of the magnetic type do not yield an output which is pro-
portional to the input. Ordinarily, the output is zero until some
critical input is exceeded, then jumps to a considerable value, and
remains relatively constant as the input is further increased. This
behavior is undesirable in some situations but is quite satisfactory in
others.

Frequency multipliers based upon nonlinear dielectrics have not
been developed to a point such that design information and per-
formance may be reported. However, it appears that excellent per-
formance to frequencies up to about 10® can be anticipated. A
material having a very sharp-cornered curve of D vs. E, analogous to
the saturation curve of Fig. 14.3, is required. There is reason to
believe that every material having this desired dielectric behavior is
both crystalline and piezoelectric. Therefore, the mechanical reso-
nance of the nonlinear element may be used to select the desired
frequency.

14.8 Frequency multiplication by means of vacuum tubes

The use of vacuum tubes as frequency multipliers is well known.
Ordinarily, the vacuum tube is operated in class C with relatively large
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values of bias and driving voltage. Under these conditions the plate
current flows in short pulses, and it is possible for the tuned plate
circuit to describe several complete cycles during each cycle of the
driving voltage. The arrangement and typical wave forms are shown
in Fig. 14.6. It is immediately apparent that a specified vacuum tube
as a multiplier cannot give as large values of efficiency and power

(a)

Fi1c. 14.6. Class C frequency tripler: (a) circuit and (b) wave forms for Q = 27.

output as it does as an amplifier because of the unfavorable angle of
conduction. Under the conditions shown, the plate draws current
for more than half of the output cycle in spite of the large values of
both direct and alternating grid voltage indicated.

Sarbacher?” has shown that the efficiency of class C amplifiers and
frequency multipliers is considerably improved by injection of har-
monic voltages in the grid and plate circuits. In the grid circuit, the
harmonic should be phased so as to sharpen the positive peak, shorten-
ing the period of conduction. In the plate circuit the harmonic
should be oppositely phased so as to broaden the negative peak, thus
permitting a long period of conduction without loss of efficiency
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due to a high voltage drop in the tube. The simplest method of
injecting a harmonic in the grid circuit is by feedback from the plate.

In triodes, which are commonly used for frequency multipliers, a con-
siderable amount of feedback normally exists through the grid-plate
capacitance. However, at the output frequency the grid circuit is
nearly a pure capacitance so that the feedback is negative, that is,
tends to broaden rather than sharpen the grid voltage peaks. The
feedback phase can be reversed by the addition of a small inductance
in series with the grid tuning condenser. Self-oscillation will-occur if
too large a value is used; but a considerable increase in efficiency and
output may be secured before instability occurs.

It should be pointed out that the circuit of Fig. 14.6 is capable of
self-oscillation, as a tuned grid, tuned plate circuit, even without the
addition of an inductance. However, difficulty of this kind is rarely
observed because circuit parameters which are consistent with efficient
amplification are unfavorable to oscillation. This is one of several
aspects of the operation of frequency multipliers which has been
investigated by Page?®® and Brown.*? Very useful curves showing the
relative magnitude of the first ten harmonic currents as a function of
the conduction angle are presented by Furst.106

Output frequencies up to about 1000 Mc may be obtained by means
of more or less conventional triodes and pentodes operating as class C
frequency multipliers. Still higher frequencies up to at least 25,000
Mc may be obtained by means of two-gap klystrons operating on
essentially the same principles. The multiplication factor obtainable
with a single tube is, however, limited to a small number, usually
two or three, because of the drastic loss of efficiency which is associated
with Jarger factors. The klystron is considerably more favorable in
this respect, a frequency ratio of ten being quite practical.

Balanced multipliers are often used, especially when the require-
ments are severe. The two tubes are driven in push-pull so that two
current pulses are obtained per cycle. If an even harmonic is desired,
the plates are connected in parallel; if odd, in push-pull. Provided
perfect symmetry exists, odd harmonics are absent in the output of
the parallel arrangement and even harmonics are absent in the other.
In practice, the balance is never perfect, but the problem of filtering
the output is considerably simplified.

It is known that in a frequency multiplier the load impedance and
working @ should be higher than in a corresponding class C amplifier.
The analysis of Section 11.7 may be extended to show that, if the cur-
rent pulses are sufficiently short, maximum output is obtained when

Q= nQer/2, where Qq is the intrinsic selectivity and » is the
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dividers. The first class contains elements which are nonlinear but
time invariant. These are identified by the fact that the reactance is
expressible as a single-valued function of the current or voltage only.
Nonlinear inductors and capacitors are examples of such elements.
The second class contains elements which are linear but time variant.
They are identified by the fact that the reactance is expressible as a
single-valued function of time and is independent of current or voltage.
Air condensers and air-core variometers, driven by an external motor,
are examples of such elements. Excellent discussions of nonlinear and
time variable systems are given by Bennett3° and Kingston.!™

In frequency division systems the variable reactance must be a suit-
able periodic function of time, but it makes no difference whether this
periodicity is achieved by electrical or by mechanical means. Accord-
ingly, the choice of type of element will depend upon the frequency to
be produced and whether the available power is in mechanical or
electrical form. For simplicity of exposition the discussion will begin
with time-variable elements, although practical frequency dividers
always use nonlinear elements.

14,11 Oscillations in a circuit containing a time-variable
inductance

Let us examine the behavior of a linear series-resonant circuit in

which the inductance varies periodically about an average value as a

function of time, according to the equation

L
Lo = (1 + b sin 2wt) (14.5)

where 2w represents the angular velocity of the driving force. The
circuit diagram is shown in Fig. 14.8¢. From Chapter 2 we write
immediately for the free oscillation, the differential equation for the
electric charge gq,

L d%/dt* + R dq/dt + ¢D(1 + b sin 2wt) = 0, (14.6)

where the term involving R sin 2wt is neglected in comparison to the
others. Substitutions similar to those used in Chapter 4 are helpful
in simplifying this equation. We write

wo? = D/L, (14.7)

k = R/L, (14.8)

and
bwo* = —2a. (14.9)
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generated frequency is exactly half the frequency of reactance varia-
tion. More important to our present purpose, the same output is
observed if the reactance variation is produced by means of a non-
linear inductance under the influence of a driving current instead of
mechanically.

The behavior of this system of Fig. 14.8b may be interpreted from
the generator viewpoint. Provided a current flows, an emf is induced
in both the stationary and the moving coils by the relative motion.
For convenience, we shall consider only the emf induced in the moving
coil, because reciprocity proves that an equal voltage is induced in the
fixed coil. The situation at various points of the cycle are shown in
Fig. 14.8¢c where, for convenience, the rotor is represented by an arrow
perpendicular to its coil, and is referred to a fixed coil with vertical
axis. It is seen that, although the rotor describes 720 mechanical
degrees per cycle of the output current, the voltage generated aids
the current flow most of the time. The equations which represent
the generator viewpoint are readily manipulated to yield eq. 14.22.

14.12 A passive magnetic frequency divider

A particularly simple and elegant arrangement for producing frequency
division by means of magnetic saturation in a passive system has been
described by McCreary!®® and is shown in Fig. 14.9. Laminations of
a thickness and magnetic material appropriate to the frequency of
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(a) ()

F16. 14.9. Magnetic frequency divider: (a) laminations and winding and (b)
wave forms for 2:1 ratio.

interest are punched in the form shown and are wound with separate,
mutually perpendicular coils. This arrangement eliminates virtually
all direct mutual inductance between the input and output circuits;
accordingly, the behavior?® depends almost entirely upon saturation,
which occurs only in the central portion of the core.

The direct current bias, which is secured by the rectifier of Fig. 14.9,
is appropriate to the generation of even submultiples of frequency as
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filter to the amplifier. However, the loop 1s closed so the assumed fre-
quency must be equal to the output frequency, which can only happen
if fi = f/2.

The operation is not dependent upon the phase shifts of the amp-
lifier, filter or modulator, since a suitable shift of the phase of the
input voltage will compensate for any shift phase assumed to exist in
these units; moreover, the system is self-starting. For a small fixed
value of input at f the conversion loss of the modulator is a constant.
Therefore, if the gain of the amplifier including the filter is greater than
this constant loss, the level of fractional frequency will increase

10 ke
output
4 ke
input 2 ke

output

e

F16. 14.12. Circuit diagram of regenerative frequency divider.

exponentially with time until overload occurs. If, as is ordinarily
done, the averload is made to occur in the modulator, the output wave
form is good, and the amplifier operates well within its linear range.
Although the modulator is saturated with respect to the regenerated
signal at f/2 it may still be linear in its conversion from the input at f
to its output at /2. Over a considerable range, therefore, the output
and input are closely proportional in amplitude. Finally, the phase
shift between input and output is practically independent. of the level
and is quite insensitive to the condition of the tube and modulator;
moreover, it is possible to obtain additional simply related frequencies,
which are produced in the modulator, by addition of suitable tuned
circuits.

A practical circuit for obtaining 2 and 10 ke from a 4-kc source
is shown in Fig. 14.12. The 10-ke¢ output is due to the third-order
modulation process, discussed in the next paragraph. Using a low-
power tube in the unit, Miller obtained power outputs well in excess
of one milliwatt at both frequencies, and very good linearity between
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Fia. 14 13. Stable class C system: (a) schematic, () amplifier wave form, and
(c) wave forms as 2:1 divider.

resembles that of Sterky’s?*¢ divider, but the circuit requires only one
rather than two tubes, and the division ratio may be greater than two.
The tuned circuit should have a moderate value of @ (for example, 20),
and an impedance consistent with efficient class C operation of the
tube. The grid is biased substantially beyond cutoff, and the trans-
former coupling is reduced to the point that oscillation would occur
only if the bias were reduced to the point of class A operation. Under
these conditions the circuit is absolutely stable in the sense that it
cannot produce an output in the absence of an input.
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been obtained by Builder.#® Using a type 885 gas tube in conjunction
with a stable tuned circuit, he is able to produce a free-running oscilla-
tor which has excellent intrinsic frequency stability, but is subject
to synchronization over a considerable range of input voltage and a
moderate range of input frequency.

Norrman??4 has shown that frequency division by ratios as great as
10:1 may be reliably obtained by means of synchronized LC oscil-
lators. He recommends the use of large excitation ratios and large
L/C ratios, which lead to highly distorted wave forms and relatively
poor inherent frequency stability. Under these conditions the syn-
chronizing voltage is quite effective in controlling the operating
frequency.

Schmidt?’! has obtained results comparable to those of Norrman by
means of phase-shift oscillators. Frequency ratios up to 7:1 are found
to be entirely practical. For many experimental purposes the phase-
shift arrangement is preferable because resistances and condensers are
easier to obtain and adjust than are coils.

14.17 Frequency division by counting

The frequency dividers described in the previous sections are all
based on the premise that the input wave is essentially periodic and
reasonably stable in frequency. Some waves of practical interest do
not meet those conditions. It is still possible to obtain an analogous
operation by means of various schemes, depending upon the counting of
cycles of impulses. A circuit which is basic to this art is the well-
known Eccles-Jordan?®! trigger or “flip-flop’”’ circuit, which differs
from the multivibrator only in that the coupling condensers are
shunted by resistors and the grid leaks are returned to relatively large
negative biases. The conditions are such that the circuit is in stable
equilibrium with either tube conducting, in which case the other tube
is permanently cut off by the action of the coupling and grid leak
resistors.

If a series of suitable negative pulses is injected into the grid circuit
through the synchronizing condenser it will be found that the cutoff
versus conducting state is reversed once for each pulse. That is, two
pulses must be injected to cause the circuit to return to its original
condition and thus complete one cycle. Therefore, this circuit consti-
tutes an absolutely stable, frequency halver. The fact that a pulse
injected symmetrically will cause the circuit to ‘“flip” depends
upon the fact that the two coupling condensers assume quite different
charges during the interval between pulses. As the triggering pulse
decreases to zero, the two grids therefore return toward zero bias at
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TUBE AND THERMAL NOISE

It is well known that the small voltages and currents generated by the
thermal agitation of electrons within solid conductors and the cor-
responding random emission of electrons within vacuum tubes set a
lower limit on the magnitude of electrical signals which may be ampli-
fied and detected. These undesired voltages and currents consist of
small pulses which occur at completely irregular times; and may
therefore be thought of as comprising all possible steady-state fre-
quencies. They are commonly referred to as noise because they
produce a smooth continuous sound if amplified and presented in
acoustical form by means of a loudspeaker. They are sometimes
referred to as ‘“snow’’ or “grass’ in connection with television or
radar systems where the signal is presented in visual form by means of
an oscilloscope tube. Good general discussions of noise are given by
Llewellyn!*t and Moullin.2!8

It is not so commonly realized that noise voltages also affect the
operation of oscillators. It is true that in most oscillator applications
the effects of noise are quite small; but in some cases, for example in
microwave oscillators used in superheterodyne receivers, the noise side-
bands seriously restrict the choice of the intermediate frequency. And
in systems employing pulse time modulation the overall signal to noise
ratio is affected by the influence of tube noise on the time of build-up
of oscillation.

15.1 Review of thermal noise

The thermal agitation of the molecules of a gas, the so-called Brownian
movement, is well known, and is fundamental to an understanding of
the behavior of gases. The individual molecules move in all directions
and with various velocities, experiencing collisions with each other and
with the walls of the container. An increase in the temperature of
the gas increases the average velocity of the molecules, which leads to
an increase in the pressure exerted on the surrounding walls. A simi-
367
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R at Ideal band pass filter
temperature T of bandwidth B R

F16. 15.1. Transfer of power due to thermal noise.

system such as this, the maximum power available is equal to V2/4R.
Therefore, the equivalent open-circuit voltage is given by

V%/4R = KTB volts®. (15.2)

This result is itself often convenient, but is principally important
because it leads to an equation applicable in situations where a sharp
cutoff does not exist. The expression then becomes

V? = 4KT [” R df volts?, (15.3)

where R, a function of frequency, is the equivalent series resistance of
the network at temperature 7°.

Alternatively, we may regard a physical resistor as a noise-free
resistance in shunt with a constant-current noise generator. Con-
sistent with the foregoing expressions, the effective current from this
source may be written in terms of the conductance G

I? = AGKTB amperes? (15.4)
or

I = 4KT jom G df amperes?. (15.5)

Equation 15.5 is the more general; eq. 15.4 applies only when the edges
of the frequency band are well defined.

Because most apparatus operates at a temperature close to 300°K
we may substitute this value to obtain simple results useful in normal
situations. We have, corresponding to eqs. 15.1, 15.3, and 15.5,
respectively,

P = 4.1 X 10~ watts per cycle, (15.6)

ab300°K | V2 =164 %1072 [“Rdfvolts?,  (15.7)

12

16.4 X 1072 L"’ G df amperes®.  (15.8)

Stated in another way, the power available from a pure resistor at
300°K is 204 db below one watt per cycle of bandwidth.
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FiG. 15.2. Typical specimen of random noise.

dv 2/2v2
PR = e ? . 15.11
V\Vor (15.11)

This is the so-called normal-distribution equation, symmetrical about
a maximum at » = 0. The probability that at a given instant the
absolute voltage is less than v, is expressed by the integral

ro d .
PRy = 2/ L v, (15.12)
0

e
vV Vor

These functions are plotted in Fig. 15.3.
When a noise signal is passed through a low-pass filter, its frequency
spectrum is changed in accordance with the properties of the filter.
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F1c. 15.3. Probability distributions: pr is the probability that the instantaneous
voltage lies between v and v + dv or that the envelope of filtered thermal noise
exceeds v. PR, is the prabability that the instantaneous signal is less than .

It is ordinarily assumed that the filter has an extremely sharp cutoff
characteristic. (Such a cutoff characteristic is necessarily associated
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with an extremely large phase shift in the cutoff region, but this has no
effect upon noise spectrum calculations because the phase is assumed
to be random.) In consideration of wave shapes and probability
functions the phase characteristic enters, in that it sets a limit to the
rate at which the filtered wave may change with respect to time.
This is illustrated in Fig. 15.4, which shows the wave form of typical
filtered noise. The principal change from Fig. 15.2 is a general round-

o JJJ\\«NN\A (Jf\w A/\VW -
Ny SV

Fi1c. 15.4. Random noise passed through a low-pass filter.

ing-off of all peaks without any significant change in the slower varia-
tions. At first glance this rounding-off of peaks would seem to reduce
the probability of large instantaneous voltages. However, it reduces
the rms voltage in the same ratio, so that eqs. 15.11 and 15.12 and
the curves of Fig. 15.3 may still be used for this case.

When noise is passed through a relatively narrow band-pass filter the
character is markedly changed, as indicated in Fig. 15.5. The

Fic. 15.5. Random noise passed through a band-pass filter.

individual cycles are now similar in period and shape, but differ in
amplitude in a random manner. This behavior is most conveniently
expressed in terms of the envelope which passes through the suec-
cessive maxima of the wave itself. The probability that a given
maximum is less than some specified fraction of the rms value is of
the same form as eq. 15.11 and is represented by PR in Fig. 15.3.
This function is of interest because it is later used to calculate the
magnitude of jitter in the starting time of pulsed oscillators.
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sist of filtered thermal noise and will have a spectrum governed by
the selectivity of the filter (grid circuit), as shown in curve a of Fig.
15.7. Asshown in Fig. 15.5, a spectrum such as this corresponds to a
voltage wave which resembles a sinusoid of frequency fo, but has
successive cycles which differ somewhat in amplitude and in period.
Moreover, the differences are of a random nature, but on the average
are proportional to the bandwidth transmitted through the filter.

R 1.0
2Q f 2Q Q
fo

F1c. 15.7. Variation of output spectrum with change of amplifier gain. Legend
(8) po = pe, B = 0;(b) po = 0.707n,, B = 0.707/pc;and (c) po = 0.50u., B = 1.5/u,.

The width of the noise spectrum decreases rapidly as the inherent
gain of the amplifier is reduced, and regeneration occurs through the
resulting unbalance of the lamp bridge. In Chapter § it was shown
that feedback modifies the gain of an amplifier by the factor (1 — uB).
In the present case 8is the loss in the lamp bridge and is independent of
frequency, whereas u is the gain of the amplifier-filter combination.

The parameters p and 8 may be defined by reference to Fig. 15.6b.
If the lamp bridge were removed and a voltage » in series with a resistor
R were applied to the input of the filter, then a voltage V = u» would
be developed across another resistor equal to R connected across the
output of the amplifier. Alternatively, if the amplifier were turned off
and a voltage V applied at its output terminals, a voltage 8V would
appear across the input terminals of the filter.

In the active system of Fig. 15.6b, both V and » contain many fre-
quencies, and it is necessary to proceed with caution. However, we
know that the output power is substantially equal to the value Py
which balances the bridge. Therefore, we may write

1 0
Py = —ﬁ Vdf. (15.13)

As long as uf is less than one, it is certain that we may treat the
system as a stable feedback amplifier with thermal noise having a
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uniform spectral distribution as its only input. The gain u of this
amplifier may be written

14 I o
-~ #1 —3 = )
v 1 —uB  po/u — noB

(15.14)

where the inherent selectivity of the filter relates the gain to the refer-
ence value pug at the midband frequency fo by the equation

— #0 -
L= 11200 — Jo/fe (15.15)

Elimination of u leads to an equation in noise voltages

_ KoV B
= T = o 1 2500 — fo)/fo (15.16)

Inspection of this equation shows that the output noise power will fall
to half its maximum value at two frequencies separated by the noise
bandwidth

B = (1 — uB)fo/Q- (15.17)

Substitution of these equations into eq. 15.13 and use of the absolute
value to obtain power yield the equation

2,2 © 2
KoV fo" df
Py = . 15.18

¢ RQ2A B® + 4(f — fo)* (1519
Replacing f — fo by &f, changing limits, and rearranging, we have with
the help of eq. 15.2

Py = 548 X 107%T

uo%’/” (B/2) df (15.19)

BQ* Jo B4 + (of)*
Integrating by formula 480 of B. O. Peirce’s book??, we obtain
Po = 5.48 X 103729 T _ 561 5 1073 7290, (1599

o= 548 X BQ® 2 8.61 X BQ? ( )
Ordinarily the bandwidth is the parameter of principal interest; it is
given explicitly by
po*fo’T

QP

where p, is the amplification at the nominal operating frequency fo,

P, is the total power output, and 7 is the effective absolute temperature
of the lamp bridge.

B = 8.61

X 10723 cyecles, 15.21)
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herd, 2! is about 50,000 times higher than that contributed by thermal
noise in the resonator. The corresponding noise bandwidth is 81
cycles. This value is consistent with the familiar observation that an
audible beat tone is not ordinarily obtainable from such oscillators,
and is believed to be substantially correct in spite of the fact that the
rapid inherent limiting action of such oscillators removes practically
all the amplitude modulation implicit in the development. A sub-
stantially narrower spectrum may be produced by the negative-feed-
back frequency stabilization schemes described in Chapter 17, because
both slow and rapid frequency deviations are corrected thereby.
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F1c. 15.8. Effect of noise sidebands in a superheterodyne receiver.

The reduction of the limiting sensitivity of a superheterodyne
receiver due to noise in the local (beat) oscillator is studied with refer-
ence to Fig. 15.8, in which f, represents the nominal frequency of the
local oscillator and f; and f, represent the limits of the band of signals
to be received. The main part of the receiver gain is provided by a
very selective intermediate frequency amplifier which transmits the
required band of signals and has its response centered at f;. Unless
suitable precautions are taken, tmage signals lying in the frequency
band between f3 and f4 will also be received; and even if a filter is used
to reject external signals in this band, it will not remove corresponding
noise signals produced by the local oscillator.

To obtain the true noise power delivered to the amplifier by the
action of the local oscillator, we should sum the products of the
amplitudes of all signals whose difference frequencies lie within the pass
band of the amplifier, and should take into account the properties of
the modulator. However, we are interested in the relative rather
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nential manner as the stored energy is expended in the conductance.
Therefore, sudden changes in amplitude require large amounts of
positive or negative power. In practice, this means that oscillators
which are to be modulated rapidly must employ low-@ circuits and
high transconductance tubes.

.+ Loh
r ]

Fic. 16.1. Generalized oscillator.

If the frequency rather than the amplitude of the oscillation is to
be changed, we must concern ourselves with susceptances rather than
with conductances. Let us suppose that the frequency is to be caused
to change or deviate somewhat from its original value fo to £fo. This
deviation will occur if the driving system provides a suitable sus-
ceptance B’ in addition to the negative conductance @' required to
maintain the oscillation. The total susceptance required of the driv-
ing system may now be determined by equating the total current to
zero. Designating the total admittance of N as

Y' =G + jB, (16.3)
we have
VY' = V(@' +jB') = —V(G + jtwoC + 1/jtwol), (16.4)
where
wy = l/\/ LC and Q = woC/G. (165)
Separating real and imaginary terms yields
@ = -G (16.6)
and
B' = —#GQ + GQ/¢. (16.7)
Because £ = 1 this becomes
B’ =2GQ(1 — ¥§). (16.8)

This expression is of considerable interest because it relates the power
to the reactive volt-amperes which must be supplied in frequency
modulation. From eqs. 16.6 and 16.8, it is clear that the two will be
equal and the phase angle in N will be 45° when

£—1=1/2Q. (16.9)
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The question as to how rapidly the frequency may be changed
is most conveniently examined by imagining that the susceptance
of N is suddenly changed by the addition of a positive (or negative)
uncharged condenser at an instant when the voltage is zero. Such a
change does not produce a transient, and all following cycles have a
longer (or shorter) period in terms of the frequency deviation. We
therefore conclude that very rapid changes in frequency are possible.
However, under the particular conditions assumed, eq. 16.2 shows that
until the driving system adds the required stored energy, the amplitude
will decrease by the same factor (1 — #) by which the frequency is
decreased.

An adequate discussion of the various ideas involved in frequency
modulation is beyond the scope of the present treatment. Arguimbau!®
gives a very compact and enlightening discussion of the subject,
which is even more fully covered by Hund.!#®

Phase modulation is closely related to frequency modulation, and is
readily added to a constant-frequency signal by variable phase-shift
networks. Free-running oscillators do not directly yield phase modu-
lation. However, a phase-modulated signal is readily produced by
means of a locked oscillator in which the natural frequency is varied
and the synchronizing signal has a constant frequency. The sub-
ject is somewhat beyond our present purpose and is not discussed
further.

16.2 Keying

The simplest possible form of wireless communication involves an
oscillator which is successively energized and de-energized by means of
a switch or key. The presence or absence of an output signal, in con-
junction with an appropriate code, permits the communication of
information. Such keying represents the simplest possible form of
modulation, and is applicable to all kinds of oscillators.

We may imagine that oscillation is established the instant that power
is applied to the circuit, and that the oscillations die out instantly when
the key is opened. In practice, however, the situation is considerably
more complicated. Oscillations do not build up instantly when the
key is closed nor do they cease instantly when the key is opened.
Moreover, the frequency and amplitude of oscillation may change
during operation in the ‘“key down” interval; and the behavior
does not repeat itself exactly upon successive closures of the key, as
shown in the previous chapter. These various effects set a limit to
the amount of information which can be transmitted in a given interval
of time.
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A tuned-plate oscillator with a key in the B lead serves to illustrate
the basic ideas. If the key remains open for any appreciable interval,
the various voltages and currents in the system decay to negligible
values and the system comes to rest. When the key is closed, the
tube (which has no negative bias) draws a considerable current. This
current will initially flow through the tank condenser, but later trans-

Fic. 16.2. Wave forms during build up of oscillation.

fers to the plate coil and associated load resistor. The polarity of
the coupled windings is such that the grid tends to be driven positive
by the increasing current in the plate coil, and regeneration occurs.
Accordingly, oscillation at the natural frequency of the tank circuit
is excited, but the initial amplitude is small. The general behavior is
correctly shown in Fig. 16.2; however, exact calculation of this interval
is quite difficult because of the effects of nonlinearity. Grid loading
is more important during this interval than it is during the steady
state, and the variation of bias complicates the situation.

16.3 Coherent and incoherent oscillations

The operation just described and illustrated is coherent. That is,
the phase of the generated wave has a fixed relationship to the instant
at which the power is applied. Under these circumstances the wave
forms of Fig. 16.2 will be exactly reproduced each time the key is
closed; and it would be possible to obtain a stationary figure on an
oscilloscope if the keying were periodic and the sweep were triggered
from the keying mechanism. Coherent operation is important in a
number of applications, usually those involving rapidly repeated off-on
periods. In particular, certain radar systems discriminate between
fixed and moving targets by means of coherent pulses.

The opposite behavior, known as incoherent operation, may be pro-
duced in the same circuit by a change of the point of keying. Let the
key, in series with a small resistance, now be connected across the tuned
circuit, so that oscillation occurs when the key is open rather than
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16.4 Keying wave forms

We have seen that it is very difficult to produce an oscillation envelope
which rises instantly from zero to full amplitude when the key is
closed, or falls instantly to zero when the key is opened. Fortunately,
such a performance is rarely desirable because the sharp steps in the
envelope correspond to a wide spectrum of sideband frequencies.
These sidebands occupy an unnecessary bandwidth, at the risk of
interfering with other services in adjacent channels. The required
bandwidth decreases with a decrease of the sharpness; so the question
arises as to how much the envelope may be rounded off before the
intelligibility of the signal is seriously degraded.

The question evidently is an aspect of the general problem of infor-
mation theory, as developed by Shannon??® and others. Tt is, there-

Relalive amplitude

05 06
Time relative to a dot cycle

Fi16. 16.3. Envelope wave form corresponding to barely readable keying.

fore, impossible to make a rigorous statement except in terms of signal-
ing speed, noise, and bandwidth. However, listening tests reported
by this author®? indicate that in a keyed signal received through a
typical communication receiver, the intelligibility has just begun to
be seriously degraded when the pulse shape is distorted to the extent
indicated in Fig. 16.3. It is particularly important that the signal
decay rapidly at the end of each character because the logarithmic
character of the sensitivity of the ear makes the signal appear to hang
on until the amplitude is quite small. It is interesting that the signal
is more pleasing to the ear when some rounding is present than when
the corners are square, because transient effects produce the sensation
of a click at the beginning and end of each character.

In this connection it may be helpful to note that, according to
accepted standards for wireless telegraphy, the interval between
characters is equal to the duration of one dot, the duration of a dash is
equal to the space between letters, which is three times the duration of
a dot, and the space between words is five times the duration of a dot.
The standard (International) code is such that when average English
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relay controlled by a manual key or other device. At high signaling
speeds, that is, in excess of about 30 words per minute, it is necessary
to employ some form of automatic keyer. The keying signal may be
applied to the oscillator in a great variety of ways; however, it is
ordinarily desirable to key in a grid rather than a plate circuit in
order to reduce the voltage and current which the key must handle.

16.5 Pulse modulation

Magnetrons and other microwave oscillators are often operated on a
pulsed basis, which is characterized by the fact that the interval of
operation is very short compared to the interval between pulses. In
this way it is possible to obtain peak powers of the order of a megawatt
from relatively small tubes. The method is widely used in radar,
loran, ionosphere investigation, and pulse communication. In
principle, it is equivalent to the keying process already discussed.
In practice, it differs because of the relatively long interval between
pulses, because of the various requirements on pulse shape, and because
of the keying properties of the oscillators themselves.

Magnetrons are ordinarily modulated by applying a large negative
pulse to the cathode by means of a suitable pulse transformer. The
anode is grounded to the remainder of the system through the output
circuit and is not readily pulsed. The pulse transformer is similar to
those discussed in connection with the blocking oscillator in Chapter
12 but is much larger and better insulated, because it must transmit
the full level of power supplied to the oscillator, often in excess of one
million watts.

High-power triodes and klystrons are often pulsed in the same way
as magnetrons. However, they may also be modulated by means of a
signal applied to the control grid. The principal advantage of grid
keying is the great reduction in the power required of the modulation
source; a disadvantage is that secondary emission and related effects
in high-power triodes sometimes cause the grid to lose control of the
plate current. Under these conditions an excessive plate current lows
and the system is inoperative. Methods for generating the high-power
pulses used in radar and similar systems are discussed by Seddon?™#
and by Glasoe and Lebacqz!!* and will not be described here.

16.6 The start-stop oscillator

In certain applications (for example, radar range calibrators) it is neces-
sary togenerate pulses which are coherent with the control signal and of
uniform amplitude. Such generators are referred to as start-stop
oscillators. The basic difficulty is one of energy storage; just as much
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energy must be stored in the resonator during the off period as during
the operating period if the first cycle is to be of full amplitude. This
difficulty is overcome in the circuit due to Chance?® by passing a con-
stant current through the tuned circuit, as shown in Fig. 16.5a.
During the off period, T'; operates at substantially zero bias, and a
considerable current flows through L. Oscillation ecannot oceur
because the tuned circuit is shunted by the low dynamic impedance of

ey .
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keying pulse
¢ L Output
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F16. 16.5. Start-stop oscillator: (a) circuit, (b) output with T, inactive, and
(¢) output with T active and Ry correctly adjusted.

T, as a cathode follower. When T, is cut off by a negative keying
pulse the current through L tends to be suddenly stopped, and a
transient oscillation is excited in the tuned circuit. The oscillation
would decay exponentially as shown in Fig. 16.5b were it not for the
action of tube T'5, which operates in class A and acts as a negative
resistance to supply the energy lost in the positive resistance of L.
When the cathode resistor R, is properly adjusted, the amplitude of
oscillation is quite constant over a large number of cycles. Accurate
adjustment of R} is necessary, however, because no limiting process
is provided. Oscillation is terminated very quickly at the end of the
keying pulse by the heavy damping provided by the cathode of T,
when its conduction is restored. Evidently, the principal LC circuit
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should have the highest possible values of @ and frequency stability
in the interest of a uniform output at a constant frequency.

The basic circuit of Fig. 16.5 is capable of a number of useful modifi-
cations. By use of a pentode for T it is possible to add a load in the
plate circuit and thus obtain an additional output signal in phase
opposition or quadrature with the original output. Moreover, by an
extention of the method, it is possible to use a quartz crystal instead
of an LC resonator. However, the large intrinsic capacitance ratio
of quartz resonators makes it difficult to start and stop the oscillation
rapidly or in precisely constant phase. The difficulty of starting may
be understood by noting that a large direct voltage is required to
produce in the quartz a mechanical deformation equal to that produced
by a small alternating voltage at the resonant frequency. Similarly,
the oscillations of a vibrating crystal are not stopped by connecting
its electrodes to either an open or a short circuit. A conductance
equal to the susceptance of the crystal shunt capacitance produces
relatively high damping, but it is not always practical to produce this
value. Details of a crystal controlled start-stop oscillator are given
by Chance.5®

The performance of the circuit of Fig. 16.5 at high frequencies is
unsatisfactory because the transient voltage produced decreases
linearly as L is decreased. To alleviate this difficulty Easton®® has
used a condenser discharged through a thyratron to induce a large
transient in L by means of mutual inductance. With this arrange-
ment at 20 Mc he has obtained coherent, constant amplitude, pulses
as large as 80 volts peak.

16.7 Amplitude modulation

The first system of radio communication which was capable of trans-
mitting speech and music employed amplitude modulation. That is,
the magnitude but not the frequency of the wave being transmitted was
controlled or modulated in accordance with the audible signal. Most
forms of the vacuum-tube oscillator are readily amplitude-modulated
because the output is approximately proportional to some reference
voltage. In such oscillators, the output becomes modulated if the
reference voltage is varied about its mean value according to some
signal having a relatively low frequency.

In practice, it is desirable that the change in amplitude is directly
proportional to the modulation voltage, and that the operating fre-
quency is unaffected by the addition of modulation. Linearity ade-
quate for most applications may be obtained by careful design and
adjustment. If necessary, it may be further improved to any required
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power required from the modulation source. It is readily shown that
the instantaneous peak power drawn from the modulator is more than
twice the average power in the modulated signal delivered to the
useful load. In high-power applications this requires the use of large
and expensive tubes and transformers.

Modulation by means of a variable grid bias is not satisfactory in
normal class C oscillators because of the bias developed across the grid
leak. Application of a voltage in series with the grid leak affects the
average grid current somewhat but has relatively little effect on the
amplitude of oscillation. However, the resistance stabilized oscillator,
in which no grid leak is used and limiting occurs by the large con-
ductance associated with the grid being driven positive, can be grid-
modulated with reasonable linearity by a small driving power.

In tetrodes or pentodes, the screen grid offers a convenient means
for amplitude modulating a normal class C oscillator. The screen
grid voltage rather than the plate voltage determines the cutoff voltage
of the grid, and hence the amplitude of oscillation. The plate efficiency
in the absence of modulation cannot exceed 50 per cent with this
arrangement, and it is difficult to obtain a high degree of linearity.
However, the modulating power required is only about one-tenth of
that required for plate modulation, and the circuit is simple and readily
adjusted. Tubes in which the current and voltage of the plate are
large compared to those of the screen grid, typically beam tetrodes, are
most desirable in this circuit.

Pentodes may also be modulated by a signal connected in series with
a negative bias source in the lead to the suppressor grid. Such a
signal affects the effective transconductance of the tube and hence the
conduction angle of operation rather than the cutoff bias. The result-
ing amplitude modulation is not very linear, and is accompanied by a
rather large power dissipation at the screen grid of the tube; the
method is therefore of limited usefulness.

Where a very high degree of linearity in the modulation of an oscil-
lator is required, the linear oscillator with automatic output control is
preferred. The stabilizing factor should be fairly large in the interest
of linearity, and the time constant of the bias control system should be
short so that high frequencies in the modulation will be accurately
followed. The Q of the resonator must not be too high in relation to
the oscillation and modulation frequencies; otherwise the level of oscil-
lation is unable to fall rapidly enough. If the @ is low enough to
allow the required decay rate, the level of oscillation can be made to
rise rapidly enough, provided the tube is still linear, when the bias
control acts to call for double the normal transconductance. Finally,
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there should be a good margin of envelope stability to avoid transients
in the modulation envelope. The frequency stability is likely to be
good because of the linear operation of the tube.

Velocity-modulation oscillators may be amplitude-modulated by
means of a grid which controls the currentin theelectronbeam. Under
favorable conditions the modulation is fairly linear, and the associated
frequency modulation small. Such oscillators may be keyed or pulsed .
by this method, by switching off and on the accelerating voltage, or
by stepping the accelerating or reflector voltage between oscillating
and nonoscillating values. Velocity-modulation oscillators tend to
have a relatively long build-up time; therefore, they may be unsatis-
factory for the generation of short pulses.

Magnetrons are difficult to modulate. Variation of the magnetic
field is difficult and produces undesirable effects, and variation of the
applied voltage produces instability and frequency modulation.
However, magnetrons have rapid rise time and operate well at high
voltages; therefore, they are well adapted to the generation of high-
power pulses. Amplitude modulation of good depth and linearity
has been produced by Donal and Bush?” by means of a variable elec-
tronic conductance, which, in conjunction with a fixed absorbing load
and suitable networks, controls the power delivered by a magnetron to
the useful load. However, the process is rather inefficient; only 60
per cent of the available power is delivered to the useful load at the
peak of the modulation cycle. The variable electronic conductance is
produced in a separate tube which employs controlled electron beams.

16.8 Frequency modulation

Amplitude-modulated oscillators are little used because it is easy to
add amplitude modulation to a continuous wave of constant frequency
and very hard to remove frequency modulation if once introduced.
For the same essential reasons frequency-modulated oscillators are
rather widely used. It is relatively hard to add frequency modulation
to a continuous wave, and it is easy to remove any amplitude modula-
tion which may accidently accompany the desired frequency modula-
tion. Whether the development of the Phasitron?® and the Serrasoid”?
methods of frequency-modulating a continuous wave will greatly
modify the situation remains to be seen.

The simplest imaginable means of modulating the frequency of an
oscillator is to vary mechanically the capacitance (or inductance) of the
tuned circuit. This is done in a variety of ways for a number of useful
applications. In certain signal generators an ordinary variable con-
denser is driven by a motor. Moreover, O’Brien??® has shown that
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speech communication is possible by coupling a condenser microphone
to the tuned circuit of a lumped-circuit oscillator, or by using a dia-
phragm in the cavity resonator of a microwave oscillator as a micro-
phone. Frequency deviations of the order of +100 kc are readily
produced in this way if suitable precautions are taken.

Relatively little use has been made of nonlinear reactances for the
. frequency modulation of oscillators. However, it is known that the
inductance of an iron-core coil can be substantially altered by intro-
duction of a signal current. Less well known, but perhaps more useful,
is the fact that a substantial change in the capacitance of commercial
high-K (group C) ceramic condensers is produced by application
of a direct potential of a few hundred volts. It appears that these
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F1G. 16.6. Use of reactance tube to frequency modulate an oscillator.

materials may be used to produce frequency modulation in a variety
of situations where more complicated arrangements are now com-
monly employed.

The circuit of Fig. 16.6 illustrates a simple electronic means of modu-
lating the frequency of an oscillator. The reactance tube, usually a
pentode in which the plate and grid voltages are in quadrature, acts
as a variable reactance which changes the frequency of oscillation.
In its simplest form the phase-shifting network consists of a resistance
and a capacitance having a relatively high reactance, as shown by the
dotted lines of Fig. 16.6. The effective reactance of the tuned circuit
is changed by varying the transconductance of the reactance tube,
usually by varying its grid bias. The reader is referred to a funda-
mental paper by Travis®'® for a discussion of the reactance tube and
other methods of frequency modulation. Additional design informa-
tion is given by Chireix,® Hund,'? and by Young and Beck.?%5?

It is convenient and informative to think of the oscillator tube as
furnishing the in-phase or real volt-amperes to the load resistor while
the reactance tube provides the quadrature or reactive volt-amperes
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conductance into increments of input susceptance. Probably the
simplest, circuit for converting a variable conductance into a variable
susceptance is shown in Fig. 16.7. The associated plot shows the
variation of the admittance as the conductance is varied from zero
to infinity. As is well known, the locus is a semicircle, and in the
region of the point Gy = jwC; an increment in G, results in a positive
increment, in B and no change in G. To establish the numerical rela-
tionship, we write the admittance equation

1 _ JwC\Gy )
1/Gy + 1/juCy; Gy + joCy

To determine the effect of an increment in G; from the assumed
condition, we substitute

Y=G+jB= (16.10)

Gy = wCr(1 + 8), (16.11)
to obtain
JoCi(1 + 8) 1+ 81 +51 + 39
B et ol L7 A . )
T+o+41 7' 2425+ 8 (16.12)
Expanding and neglecting terms in §* we have
Y = 30C:(1 + 51 + 79), (16.13)

which shows that G is unafiected and the fractional increment in B is
equal to the fractional increment in G;.

The extent to which the conductance G; may be varied from the
reference value may be limited by either the variation of resulting
conductance or by departure of the resulting susceptance from pro-
portionality. Both limits may be examined by means of eq. 16 12,
which can be separated and expanded in series to yield

wC1
G = oy (16.14)
and
B=Sisn (16.15)

It is seen that both are decreased from their maximum value by the
same factor in the denominator. The allowable variation thus
depends upon the particular requirements to be met; however, the
value 8§ = 0.1 leads to an error of only 0.25 per cent, which is almost
always tolerable.

A variety of other network configurations also have the property
of changing a conductance increment into a susceptance increment.
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therefore,
1 —¢=125/29Q. (16.22)

Thusif § = 0.1 and @ = 50, the greatest possible fractional frequency
deviation is +0.001.

Any physical dissipation in the tank circuit will lower still further
the working selectivity and hence the general frequency stability.
In view of these considerations, this method of generating frequency-
modulated waves does not appear particularly attractive. Perhaps its
greatest advantage is that the phase-shifting network may readily be
made to give an impedance transformation so that a given tube can
be utilized most efficiently, as in the circuit of Montgomery.2!

It may be well to point out that finding a circuit in which the fre-
quency deviation is proportional to a conductance change is much
easier than the complementary problem of finding an electronic device
in which a conductance change is proportional to an applied voltage.
Nearly all the circuit complexity found in practical frequency modula-
tors is associated with the latter problem, which has been discussed in
some detail by Reich.?*?

16.10 Frequency modulation of resistance-capacitance oscil-
lators

Because the frequency of a resistance-capacitance oscillator depends
upon the value of two or more resistances in the circuit and because a
vacuum tube may be made to act as a variable resistance, it is rela-

First tube
of oscillator

Resistance tube =

F1c. 16.8. Frequency modulation of Wien bridge oscillator.

tively easy to modulate the frequency of such oscillators. Chang,®
who appears to have done the first work in this field, used the Wien
bridge arrangement and varied the grid-to-ground resistance by means
of a variable transconductance tube, referred to as the resistance tube.
The essential features of his arrangement are shown in Fig. 16.8.
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the method has the advantage that thre average frequency depends
principally upon the properties of the tuned circuits, which can be
made quite stable.

Velocity modulation oscillators may be frequency modulated by
varying the accelerating or reflector voltages. The resulting change
of phase shift due to transit time results in frequency modulation,
which may be made quite linear and free from amplitude variation.

Magnetrons may be frequency-modulated by addition of controlled
electron beams between the vanes and parallel to the axis of the system.
Such electron beams add a pure variable susceptance to the resonator,
hence produce substantially pure and linear frequency modulation.
Magnetrons and other oscillators may also be frequency-modulated by
means of an external electronic susceptance based on electron beam
techniques and operating on the principle of the reactance tube. The
interested reader is referred to the work of Kilgore, Shulman, and
Kurshan.!68

16.12 The reactance-tube oscillator

It has often been observed that a tube intended as a reactance tube
may oscillate if the phase shifting network is incorrectly adjusted.
This is readily explained because the tube will produce an effective
negative conductance if the grid voltage is more than 90° out of phase
with the plate voltage. Following this idea, Chang and Rideouts®
have devised a very simple single-tube frequency-modulated oscillator
which should be useful in many applications.

The analysis is based upon a generalized reactance tube, with an
impedance Z; between grid and plate and Z, between grid and cathode.
The plate-to-cathode admittance is readily shown to be

1 1 ngQ

Y=—— 4= :
Z,+2, r, Z,+4+12Z,

(16.23)

Omitting the first term to obtain the contribution of the tube, and
writing

ZIZT2ZQ = Ae’® = A cos 0 + jA sin 6, (16.24)
we have
Y, = 1_ gmA cos 0 + jgmA sin 0 = 1 + g, (16.25)
Tp R, X,

The terms R, and X, represent the tube on the basis of two impedances
in parallel. The resistance B, will be negative if r, is relatively\arge
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and if cos 8 is negative, which requires that Z, and Z, have reactances
of opposite sign.

L.
T -

(@) ®)

Fi1a. 16.13. Two forms of the reactance-tube oscillator.

Two forms of the reactance-tube oscillator are shown in Fig. 16.13.
The equations that apply to the circuit of form a are

1 gmCo(LpR, + LyRp)]—%
f= —_— [1 ] 16.26
2 \/L,,Cp(l + a) CpLyp(l + a) ( )
and
o= RyCp(Ly, — Lg) + CpLPQ/CDTp — CPQLpRp/CO) (16.27)
LPLQ
where
a = (Co/Cp)(1 + Ly/Ly). (16.28)
Similar equations applying to the circuit of Fig. 16.13b are
V1+b gmLoR, 1%
= ——11+4 M] 16.29
o x/ch,,[ Lo(1 + b) (16.29)
and
_ (Lo + Lyp)(RpCy/Ly — Cy/Cpryp) (Cp + Cy)(By + Ro)
gm - + )
L, L.
(16.30)
where
b = (Ly/Lo)(1 + C,/C,). (16.31)

Both sets of equations show that the frequency depends upon the
effective transconductance, and that the variation is substantially
linear for moderate frequency deviations. However, in the first case
the frequency decreases with an increase of transconductance, whereas
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F16. 16.16. Preferred form of conductance variation.

conductance is small. In particular, if the conductance varies linearly
with time from a large positive to a large negative value the selectivity

curve has the form
wiC \

A= Age 4673 (16.32)

where A, is the midband amplification, 4 is the amplification at an
angular frequency differing from the midband by w, and C and @ are,
respectively, the total capacitance and conductance of the resonator as
shown in Fig. 16.14.

16.15 Noise in the superregenerative amplifier

Under favorable circumstances, the signal-to-noise ratio of a super-
regenerative receiver is very good, because the needed selectivity is
produced directly in the input circuit. Moreover, the system is
inherently insensitive to isolated noise impulses, such as those pro-
duced by automobile ignition systems, because it is not affected unless
the pulse occurs near the end of the reception period, and because the
system does not saturate. However, as pointed out by Bradley,3®
the signal-to-noise ratio is seriously degraded if the quench wave form
does not have the property of holding the total conductance low or zero
for a considerable portion of the cycle, as shown in Fig. 16.16.

16.16 The logarithmic mode

If the amplification interval is extended without modifying the
build-up rate, the system will overload during each cycle as shown in
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Fig. 16.17. However, the saturation level will be reached sooner, and
therefore the average output will be increased, if the signal is increased.
It can be shown that the area enclosed by the oscillation envelope
increases as the logarithm of the instantaneous input. This leads to
marked distortion of an amplitude-modulated wave, particularly near
the troughs of modulation where the instantaneous amplitude is small.
It is therefore not ordinarily desirable.

~
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F16.16.17. Oscillation envelopes for three signal levels applied to a superregenera-
tive system in the logarithmic mode.

A circuit which operates as a superregenerative amplifier will also
serve as a demodulator if any portion of the circuit acts as a rectifier.
This nearly always happens in a practical circuit, although not always
in an efficient manner. Limiting usually occurs by grid rectification,
so the average grid current may be used as an output. The average
plate current usually shows a corresponding variation at a higher
power level.

The preceding discussion has assumed that the quenching signal is
supplied from a separate source, preferably a relaxation oscillator yield-
ing a suitable wave shape. However, the quenching action can also be
obtained by causing the superregenerative oscillator to operate inter-
mittently as discussed in Chapter 10. This method has the advantage
that the system passes through the condition of zero net conductance
rather slowly so that the selectivity is good. It has the disadvantage
that the quench frequency is quite sensitive to the level of the input
signal and that it is difficult to design a circuit which performs all
the necessary functions simultaneously and well.

The reader is referred to Stockman?®” for a good discussion of appli-
cations of superregeneration, and to Kalmus'®! for several operating
circuits. Additional information concerning the theory of operation is
given by Frink,!%¢ Glucksman,!!® and Riebman.?6?

PROBLEMS

16.1. An oscillator has a passive @ of 100 and is to be frequency-modulated
+1 per cent. How many reactive volt-amperes are required if the power output is
10 mw?
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is held constant with respect to a stable resonator or oscillator by
means of automatic frequency control.23231!  In practice, this is often
accomplished by slowly varying the bias of the reactance tube so that
both slow and fast variations of frequency are controlled by the same
electrode.

In the microwaveregion, automatic frequency control isemployed for
a somewhat different reason. At these frequencies, oscillators and
highly stable resonators exist separately, but it is difficult to combine
them; and satisfactory four-terminal amplifiers are unavailable.
Under these circumstances it is often more convenient to refer the
frequency to a cavity indirectly by automatic frequency control
rather than directly by methods discussed in the previous chapters.

In induction heating and other industrial applications it is often
expedient to generate the required output directly in a high-power
oscillator which is held within the allowable frequency tolerance by
means of an automatic frequency control system. The advantage of
this arrangement is that a minimum number of high-frequency, high-
power components is required.

17.2 Discriminators

Discriminator circuits have received extensive development in con-
nection with receivers for frequency-modulated signals.100-103 The
simplest possible discriminator is a tuned circuit operated slightly away
- from its natural frequency. If such a circuit is subjected to a signal
of constant amplitude but variable frequency, the output depends upon

®)

Fic. 17.1. Frequency discriminator based on two circuita tuned to different
frequencies: (a) circuit and (b) typical response.

the frequency. In radio receivers we ordinarily use a limiter, in which
the output is independent of the input amplitude, to provide a sub-
stantially constant signal to the discriminator; but in automatic
frequency control oscillators this limiting function is usually inherently
present.

A basic form of symmetrical frequency discriminator is shown in
Fig. 17.1. It is seen that the output voltage is zero at a frequency
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sented in Fig. 17.9. The signal delivered from the directional coupler
to the “magic tee” of the discriminator divides between the cavity
and a crystal driven by an auxiliary 30-Me oscillator. The sidebands
produced by this modulation process, supplemented by the phase-
shifted signal from the cavity, again divide in the “magic tee,’”’ half
being lost in the termination of the directional coupler and half meet-
ing in the detector crystal to re-establish a 30-Me signal in which the
phase depends upon the relation of the output frequency to the cavity
tuning. This new signal is amplified by well-known techniques,!*?

l ¥

High gain Amplifier
e 30-Mc Phase
30-Mc Amplifier [« . - and -
Amplifier oscillator phase shifter discriminator
-~ [~ Modulator crystal Termination
[ ——e A — |/
_io \\\ AWW\ Y
Detector A = \\——\\ I
<tal WW > = Stabilized
cry v === = oscillator
\ Directional
Useful load coupler

F16. 17.9. Microwave frequency stabilization system of Tuller, Gallaway, and
Zaffarano.

and is recombined with the amplified, phase-shifted signal from the
"30-Mc oscillator to produce a rectified voltage which depends upon
the frequency delivered to the master cavity.

The action of the modulating crystal may also be thought of as due
to a variable reflection coefficient. If the modulating crystal and the
cavity are suitably coupled to their wave guides, they present matched
impedances to the magic tee if the 30-Mc signal is absent and if the
output frequency corresponds to the natural frequency of the cavity.
When the 30-Mec signal is applied, the resistance of the modulating
crystal is periodically increased and decreased about the matching
value, and a signal of the form shown in Fig. 17.10a is delivered to the
rectifying crystal, which is also matched to the wave guide source for
maximum response. The crucial fact is that the phase of the high-
frequency signal reverses at each point where the envelope passes
through zero. The signal delivered to the rectifying crystal by the
cavity is directly proportional to the degree of detuning, but reverses in
phase as the frequency passes through resonance. It is shown in
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differs considerably from that of the systems described so far. Figure
17.11 shows the block diagram of such a system, which has been used
successfully by Hershberger!® in connection with the ammonia
resonator.!' An auxiliary (search) oscillator is frequency-modulated
in a saw-tooth manner, and part of this signal is passed through the
ammonia cell. Because the rate at which the frequency is varied is low
compared to the rejection band of the ammonia chamber, the effect
may be considered from a quasi-stationary viewpoint; and it is seen
that the signal delivered to the phase detector will drop to a minimum

| o‘:fceﬁ,':t’;, || Ammoniacell |—»|  Detector Amplifier
Y
Sawtooth Useful Stapilized «— Phase detector
generator output oscillator

'

Lo{  Modulator  |— Ba"dﬁ'lféf“m" »|  Detector Amplifier

F1c. 17.11. Block diagram of automatic frequency control system based on time
coincidence.

at the instant when the auxiliary oscillator reaches the natural fre-
quency of the ammonia. The beat frequency produced by mixing the
signals of the auxiliary and main oscillators is frequency-modulated
in the same manner as that delivered to the ammonia cell; therefore,
by giving the networks of the band rejection filter a response similar
to that of the ammonia, it is possible to deliver similar signals to the
two inputs of the phase detector. The phase detector consists of
circuits such that the polarity and magnitude of the output voltage
depends upon the relative timing of the signals received from the two
inputs. Therefore, the master oscillator is stabilized at a frequency
which differs from that of the ammonia resonance by the relatively low
frequency at which the characteristic of the band-rejection filter is
centered.

The sensitivity which can be achieved in this way is probably
somewhat inferior to that which can be produced by the method
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described in the previous section. However, very creditable per-
formance is possible. Values of D = 70 millivolts per Mc¢ and of
BC = 2 Me per volt are typical of results which have been attained.
If an amplification factor of A = 1400 is supplied in the form of a
d-c amplifier, the overall stabilizing factor becomes 100.

A desirable modification of the time coincidence method employs a
quartz crystal oscillator with frequency multipliers to replace the

Frequency Ammonia Amplifier and
multiplier g cell Detector pulse shaper
x 8
A +
20838 +0.12 Mc 23,870.410.96 Mc ,L
Modulator and Frequency
—> frequency modulated Sawtootth Phase detector
multiplier oscillator generator
x 11
\
13.8*0.12 Mc
Modulator ) B_and ) - Detector Amplifier and
rejection filter K pulse shaper
T 125 Mc 1.310.12 Mc
270 Mc ]
Frequency Frequency 100 kc crystal Reactance
— | multiplier multiplier oscillator tube BB
x 2700 x 125

t

Fre. 17.12. Block diagram of improved time coincidence automatic frequency
control system.

stabilized reflex oscillator. This arrangement, which is shown in
block diagram in Fig. 17.12, has the advantage of excellent short-term
stability as well as the absolute long-term stability inherent in the
ammonia resonance. The erystal oscillator is so proportioned that the
frequency can be adjusted over a narrow range by the signal applied to
the reactance tube.

In the present case a relatively low-frequency oscillator is subjected
to the saw-tooth frequency modulation, and the network which simu-
lates the response of the ammonia cell operates at a frequency of only
about 1.3 Mc where it is easy to control the response. The frequency
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free from spurious frequency components which would lead to undesir-
able extraneous responses in the associated radio receiver.

PROBLEMS

17.1. Discuss the applications of automatic frequency control in terms of actual
gsystems.

17.2. Why is the limiter needed in automatic frequency control systems for
radio receivers but not for oscillators?

17.3. The primary @ in Fig. 17.2 is 200, V, = 10, and V, = V. = 5 rms volts.
Calculate the output in the region of the center frequency which is one megacycle.

17.4. Discuss the relative advantages of mechanical and electronic frequency-
correcting devices.

17.5. Show that eq. 17.1 is correct and explain its application.

17.6. Show how to apply eq. 17.1 to the system of Fig. 17.9, taking into account
the modulating properties of the crystals, etc.

17.7. Obtain an equation corresponding to 17.1 for the time-coincidence method
of automatic frequency control.

17.8. Discuss the design of a synthesis system similar to that of Fig. 17.13.
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admittances rather than impedances because they apply naturally to
parallel resonant circuits, which are shown to be essential for stable
operation with voltage-controlled negative resistance devices. Thus
the use of admittance is desirable because nearly all electronic devices
are of this parallel type.

18.2 The complex frequency plane

The phenomena under consideration are most conveniently treated in
terms of the complex frequency plane,'*” which was introduced in
Chapter 2. These ideas are reviewed and extended with reference to
Fig. 18.1a, which shows the roots of a lightly damped passive cireuit
which is singly resonant at w;. It is recalled that the vertical axis is

| @ BA Increasing w
o, Fjw, -1 ] '
W= w,
Roots
0 - > G
- —w,
(a) (b)

Fic. 18.1. (a) The complex frequency plane where the variable is p = a + jw.
(b) The complex admittance plane where the variableis Y = G + jB.

the axis of real frequencies, and that all steady-state measurements
involve real frequencies. If the network in question has a parallel
resonant configuration, we find that the admittance reaches a minimum
and the susceptance is zero for a frequency equal to w as shown in Fig.
18.1b. This is the familiar behavior at antiresonance and governs the
steady-state performance of an oscillator controlled by this resonator.

During build-up and decay of oscillation we are concerned with
waves which increase or decrease exponentially with respect to time.
Such transients are of relatively short duration, and we find it possible
to evade their treatment in most situations. Here, however, they
are of primary interest. In a basic sense these transients are not
short; a typical oscillator describes several hundred complete cycles
while the amplitude is building up to its normal value from the level of
thermal noise.

Our clue to the situation lies in the transient decay of the passive
antiresonant circuit when open-circuited and given an initial dis-
turbance. As we have seen the wave produced has a frequency w;
and a damping factor ), as plotted in Fig. 18.1a. This natural fre-
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quency o is nearly but not quite equal to the steady-state frequency
of unity power factor designated wo. The important fact is that the
circuit has zero admittance to a wave having the complex frequency
ay + jwi. This s true because voltage exists across the circuit in the
absence of an external current.

From this basic observation we draw the correct generalization that
the conductance of the circuit is decreased if we shift to the left and is
increased if we shift to the right in the p plane. The validity of this
statement is substantiated when we reflect that a point in the right
half of the plane corresponds to a wave which is expanding in amplitude

+0.41— +0.8————
5/ ;‘%g/ 5] T“?Z“I/
S a=201,
+0.2 1= +0.2
/// // «°
-02 | —-01 y 0 T +,ci1 +02 08 09 )// 10]w 11 12
— I—
] ////02- = // -02
/// y e / :
,/,// S 001 [10 4
// /—0‘4 4/ -04

(a) b

Fic. 18.2. Variation of G and B with p = @ + jw in a parallel resonant cir-
cuit. The admittance is ¥ = G + jB = 0.01 + a + jw + (a — jo)/(a? + w?).
(Q = 100.)

with time. To create such a wave it is necessary to supply energy for
storage in the reactive elements as well as that for cycle-by-cycle
dissipation. Thus, we may think of a given circuit as being heavily
damped to an expanding wave and lightly damped to a decaying wave.
To demonstrate the latter point we have only to add a separate con-
ductance to the antiresonant circuit previously considered. Again,
assuming an initial disturbance and decaying transient of the entire
system, the original circuit must be viewed as the generator or source
which drives the added conductance. Additional insight is gained
from Fig. 18.2, which shows the conductance and the susceptance
of a high-Q antiresonant circuit as a function of p. It is seen that G is
nearly proportional to « and that B is nearly proportional to (w — wg)
in the region of interest.

An important characteristic of the functions which describe the
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behavior of physical networks is that they are analytic. For example,
the admittance of the antiresonant circuit is an analytic function of
the complex frequency. Analytic functions have the important
property that the derivative is uniquely defined and is independent of
the direction in which it is taken, as shown by Sokolnikoff.?*! Associ-
ated with a unique derivative are the Cauchy-Riemann equations,
which for our purposes may be written

0G/da = dB/dw and 0B/da = —IG/dw. (18.1)
Substituting
Y =G + jB, (18.2)
we obtain
Y /3a = —j Y /dw. (18.3)

This seemingly abstract relationship justifies a simple geometrical
construction which gives the approximate impedance of a network to
expanding or decaying waves from a knowledge of its behavior at
real frequencies. In a parallel resonant circuit the admittance at any
real frequency w is

Y =G + juC + 1/juL. (18.4)

To a wave expanding at the rate of « nepers per second the admittance
at the frequency w is

Y1 =Y + a(dY/da) = G + juC + 1/joL + «(C + 1/w’L), (18.5)

subject to the restriction that « is not too large. It is seen that the
susceptance is unchanged while the effective conductance is increased
by an amount proportional to «, as indicated in Fig. 18.2.

In a general case the admittance change due to an increment in « is
numerically equal to the admittance change due to an increment in w
and is directed 90° to the right thereof. Thus, given the real-frequency
admattance plot of any network, we need only divide off the curve in con-
venient uniform small increments in frequency and rotate these segments
90° <n order to determine the admittance to an expanding wave. Natural
units of radians per second and nepers per second are used.

18.3 A doubly resonant system

The essential features of multiple resonance are illustrated by the
negative resistance oscillator of Fig. 18.3. Two parallel-loaded anti-
resonant circuits in series are connected to a voltage-controlled nega-
tive resistance provided by a transitron. It will be assumed that the
antiresonant circuits are not coupled and that they have comparable
values of impedance, selectivity, and natural frequency. The behavior
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of this composite tank is explored most conveniently by adding the
impedances of the separate circuits, as shown. The susceptance of
the overall circuit is obtained by inversion and is indicated in polar and
rectangular form in Fig. 18.4. It is seen that the susceptance (or
reactance) is zero at three separate real frequencies, and that the con-
ductance is considerably higher at the central frequency w; than at the
others. Superimposed upon these diagrams is the negative of the
inherently negative conductance contributed by the tube. Consistent
with the usual situation, it is assumed that the effective value of this
conductance decreases with increase of the amplitude of oscillation.

-IF-IIIII\ITHMI

Fic. 18.3. Transitron oscillator with two degrees of freedom (a) circuit, (b)
impedance of circuit one, (¢) impedance of circuit two, and (d) total resonator
impedance.

() () (d)

This is indicated by the heavy arrow in Fig. 18.4a. The problem is to
determine what frequency or frequencies will be produced by this
system.

Let us suppose that the system is energized without an appreciable
starting transient so that oscillation will build up from the level of
thermal noise. For a considerable period the system is essentially
linear because the oscillations are still small, and it is thus possible
to apply the principle of superposition. On this basis we may calculate
the transient behavior of the composite system and find that the two
pairs of conjugate roots now lie in the right rather than the left half
plane. Therefore, two separate waves having frequencies close to
w; and ws and expanding with time are produced.*

When the amplitudes approach the limiting level the effects of non-
linearity become important. The analysis of this situation becomes

® This is true provided the net negative conductance is relatively small as will
be discussed more fully in a later paragraph.
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quite complex and will not be given here. In general, however, the
average negative conductance is reduced by overload, and the two
separate oscillations compete for the reduced energy which is available.
Van der Pol®'® has shown that, provided the negative conductance is
representable by a linear and a cubic term, one or the other of these
frequencies will be suppressed. Within reasonably wide limits of the
circuit variables it is possible for either frequency to gain control and
suppress the other. Ordinarily, the oscillation which is first to reach
a large amplitude will persist.

From our study of noise we know that the initial level of these two
oscillations will depend upon the instant at which the system was
Maximum
B |~ electronic ~
admittance

+

i

- Gor B
Z
£

(a) ()]

F1a. 18.4. Admittance of total resonator: (a) complex admittance plane and (b)
variation with frequency.

energized, so that upon repetition of the experiment we would expect a
randomness, corresponding to jitter, as to which frequency is first to
reach a large amplitude and so suppress the other. By careful adjust-
ment of the circuit parameters it is possible to achieve a condition in
which the two frequencies are equally probable, and the occurrence
corresponds to the flipping of a coin. However, a relatively small dis-
turbance of the adjustment leads to a great change in the probability,
so that one or the other frequency practically ceases to appear.
A substantially larger disturbance of the adjustment is necessary
before the favored frequency is able to suppress the other when once
established (for example, by short-circuiting the favored antiresonant
branch).

Because experimental results generally conform to the results
obtained by van der Pol’s simplified analysis, his assumptions were
lost sight of, and it was generally believed that no nonlinear oscillator
of this type could simultaneously produce sustained oscillations at two
frequencies. However, analytical work by Skinner?* shows that the
simultaneous production of two unrelated frequencies is possible,
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provided the negative resistance device has a relatively complicated
shape involving at least a fifth-order term in the power series expres-
sion. The correctness of this analysis was experimentally confirmed
with a transition oscillator equivalent to Fig. 18.3a. A similar effect
in microwave reflex oscillators has been observed by Huggins.?¢®¢ The
possibility of producing such oscillations is of considerable theoretical
interest and may find some practical applications as well.

18.4 Tuning hysteresis in a doubly resonant system

The coupled circuit of Fig. 18.5 is capable of yielding the same essential
characteristics as that of Fig. 18.3, and is much more common in prac-
tice. It is chosen for the present discussion because it illustrates the
effect in a much more natural manner. It is readily shown that the
admittance facing the tube will have the form of the solid line in Fig.
18.5, provided the coupling is considerably greater than critical and

0 —>
AN >
—— P o e

1] (b)

F1c. 18.5. Oscillation hysteresis in a doubly resonant oscillator using coupled
circuits: (a) circuit, (b) tuning hysteresis, (c) resonator susceptance, and (d)
amplitude characteristics.

the primary is suitably tuned. Under these conditions the oscillation
will oceur at w; or wy with equal probability if the circuit is repeatedly
switched off and on. Let us see what happens when the tuning is
disturbed.

Variation of the primary tuning by means of a capacitance variation
is considered first. Subject to the idealization made in the circuit
representation, the only effect is that the primary susceptance is raised
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or lowered by an amount proportional to the capacitance increment
and the frequency. Therefore, an increase in capacitance will raise
the susceptance curve and tilt it somewhat to the left, as shown in
Fig. 18.5¢, greatly favoring the lower frequency. If the system is
initially oscillating at the higher frequency, it will continue to do so*
until the susceptance curve is raised sufficiently to have only one inter-
section with the horizontal axis. At this time the oscillation will
abruptly change to the lower frequency, as shown in Fig. 18.5b, and

+ B of primary only~
G of primary only -

Gor B

ACZ

F1c. 18.6. Oscillation hysteresis with respect to secondary tuning.

the amplitude will increase somewhat because of the decrease of con-
ductance. If the tuning is restored to its initial condition, the fre-
quency will increase only slightly, and a sudden jump will not be
observed until the tuning again reaches the point of producing a single
intersection between the real axis and the susceptance curve. Under
the conditions assumed, there is a considerable interval of frequencies
which cannot be obtained by primary tuning. Moreover, the ampli-
tude changes considerably with tuning because of variation of the
conductance facing the tube, as shown in Fig, 18.5d.

Detailed information as to the cycle-by-cycle behavior during the
transition is not available. However, it is certain that the changeover
is not instantaneous, because a considerable shift of stored energy is

* Provided the conductance does not vary too greatly in the range of interest.
No simple statement of the critical value is available.
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published: Stable oscillation can occur only if the admittance curve of the
resonator crossesthe negative of the conductance curve of the electronic device
in such a way that the admitiance increment produced by a positive incre-
ment of frequency in the resonator appears righi-handed with respect to
the increment of conductance produced by an increase in the level of
osctllation. In terms of Fig. 18.4 stable oscillations can occur at w; or
ws, but would be impossible at w3 even if the negative electronic admit-
tance were larger. It is seen that the latter statement applies to
both resonant and antiresonant behavior and to both current and
voltage-controlled electronic devices. Moreover, it is equivalent to
the criterion presented in the preceding paragraph.

To prove the validity of these criteria we turn to the concept of com-
plex frequencies and analytic network functions developed in the first
section of this chapter. We may represent any form of oscillator by a
nonlinear negative conductance Y, (the electronic device) in parallel
with a linear but frequency-sensitive admittance ¥, (the circuit). The
condition for oscillation is of course

Y.+ Y.=0. (18.6)

To test the stability of an oscillation satisfying eq. 18.6 we assume that
the amplitude A and the frequency « of operation are modified by
increments dA and dw, respectively. The oscillation is stable only if
the assumed increments decrease with time. The principle of equiva-
lent linearization is used implicitly by the assumption that the admit-
tance of the electronic device is a pure real quantity, independent of
frequency but dependent upon the amplitude of oscillation.

It should be noted that eq. 18.6 is satisfied, not only during sustained
oscillation, but at all times. For example, Y, is relatively large during
the build-up interval in a simple parallel tuned oscillator. Equilibrium
exists, nevertheless, because the effective positive conductance of the
tuned circuit increases while the wave is expanding and energy is being
stored.

In terms of the assumed increments, eq. 18.6 takes the form

(18.7)

which with the substraction of eq. 18.6 yields

gdAﬁ-&dw—}-]%dw-f- Gda—{—j—da—O (18.8)
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are tuned to the same frequency, we may write the admittance of the
load at a frequency wo + dw as

Y.=Yo+352C1dow = Yo(l + j2C1dw/Yy). (18.23)
The substitution of the load Q,
Qr = woC1/Y,, (18.24)

permits writing the input admittance of the line in the form

Y, = (1 4 j2Q, dw/wyp) cos Bl + j sin Bl_
V7 0 os Bl + j(1 + 72Q. dw/w) sin Al

Because the behavior is most favorable when the line length is an odd

number m of quarter wavelengths at the operating frequency, we may
substitute at the frequency wp + dw the values

cos Bl = 3mnr dw/wo and sin B = 1. (18.26)

(18.25)

The input admittance thus becomes
mr dw/wy + 72(1 — mnrQ, dw/wo).

Y ),=Y
! o dw/wo — 4Q, dw/wo+ j2

(18.27)

The susceptance, obtained by rationalizing and neglecting second-
order terms, is
2mr dw/wy — 8Q1 dw/wy — 2mm dw/wg

B Y T e — a0 e 44 D /e
(18.28)

Loops will be avoided if the sum of this term and 2C dw is positive.
Using this condition and defining @ = woC/Y,, we have for stability
the simple relationship @ > Q;.

In the course of the development, the parameter m representing
the number of quarter wavelengths of the line disappeared. This is
proper, because m does not affect the criterion for a cusp at the operat-
ing frequency; however, the possibility of other crossings must be
investigated separately.

It would appear that some general criterion must exist for the
absence of loops in the admittance characteristic of this system.
Unfortunately, none has been found, although Wheeler:¢! has con-
tributed some useful results towards this end.

18.8 Oscillation build-up with transmission line

Very interesting and rather complicated phenomena are observed
when pulse modulation is applied to an oscillator loaded through a
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of the line itself. Thus we see that there is no contradiction between
the alternative viewpoints.

18.9 Rate of build-up

The admittance plot offers a convenient means of estimating the rate
at which oscillations expand and the manner in which limiting occurs.
This construction, which is also due to Pierce and Shepherd,?#! is shown
in Fig. 18.11. In the example illustrated the build-up rate for small
oscillations is 3.4, and the curve of Fig. 18.11b has the form A = A%
to the left of r = 2. At this time the relative amplitude is one (for
the value of A, assumed) and reference to curve a shows that the
exponent should be decreased to @« = 2.8. The curve between A = 1
and A = 2 is therefore drawn with this reduced expansion rate. A

&

w

Amplitude, \

Al\ \\3 \2 %\?

Build-fup
rate,
a 0 "1 727314

Conductance

Susceptance
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Relative amplitude, A
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Relative time,
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FiG. 18.11. Graphical calculation of the rate of oscillation build up: (a) admit-
tance plane and (b) build-up curve.

repetition of this process permits us to approximate the actual build-up
curve to any desired degree of exactness, provided sufficiently small
increments of time or amplitude are chosen.

The construction just described may be thought of as an example of
the method of isoclines. It has been illustrated in terms of a singly
resonant system, but also applies to multiply resonant systems, pro-
vided we give separate treatment to oscillation in each of the possible
modes.

18.10 Pulling

The term pulling has been used in a variety of connections with respect
to oscillators. However, it is most widely used to express the fre-
quency change produced in microwave oscillators by a variation in
the load impedance. As used here, it applies to oscillators of all kinds
and frequencies. In oscillators which are loaded by means of a long
transmission line it is possible to simplify the problem somewhat by
specifying the frequency change in terms of the voltage standing wave
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Clapp oscillator, 169, 214
Class C frequency divider, 362
Class C frequency multiplier, 350
Class C operation of tube, 158, 160,
162, 249
Clicks, key, 390
Clock analogy, 8
Code, 389
Coherent oscillation, 387, 393
Coils, iron core, 98
self-supporting, 100
solenoidal, 100
universal, 99
Colpitts oscillator, 165, 213, 248
Compensation, temperature, 103
Compensation theorem, 321
Complex frequency, 13, 431
Complex variable, 73
Condensers, air, 94
paper, 95
plastic, 95
properties, 89
vacuum, 93
Conditional stability, 232
Conduction interval, blocking oscil-
lator, 302, 304
multivibrator, 282, 296
pentode sweep, 277
Puckle’s sweep, 279
van der Pol oscillator, 275
Coupled circuits, multiple resonance in,
436
Coupled modes, 25
Coupling (to cavity resonator), 108
Coupling circuits, load, 202, 258, 260
Critical damping, 16
Crystal control, 261
Crystal impedance meter oscillator, 203
Crystal oscillator, 197, 261, 426
Crystal unit (resonator), 112
Crystal units, aging, 114
cuts, 116
mounting, 113
Performance Index, 115
power limitations, 117
properties, 119
temperature coefficient, 114
Current-controlled negative resistance,
30
Cuts, quartz crystal, 116

SURJECT INDEX

Cyeclic behavior, coils, 99, 101
condensers, 94
resonators, 86
Cyclogram, 43, 46, 47, 48
Cyclotron oscillators, 257, 263

Damping factor, 15, 20, 21
Decade oscillator, 192
Decaying wave, 432
Decrement, 15, 20, 21
Degradation of crystal @, 198, 199, 206
Degrees of freedom, 22
Deionization time, 270
De Laup oscillator, 186
Delay in transmission lines, 446
Deltamax, 345
Detection of FM by locked oscillator,
328, 330
Diathermy, 246, 257
frequencies assigned, 261
Dielectric, nonlinear, 349
Dielectric constant of air, 88
Dielectric heating, 246, 247, 257
frequencies, 261
interference, 262
Diode characteristics, 344
Diode frequency multiplier, 343
Directional coupler, 423
Discriminator, 405, 428
audio, 417
basic, 414
microwave, 417
practical, 417
Distortion, reduction due to feedback,
68
Dominant mode, 107
Doubly resonant system, 433, 436, 447
Driving gystem, 9, 83
Dual, 14
Dynamic resistance, 29
Dynatron, 32
characteristic, 33
oscillations, 253

Efficiency, of class C operation, 257
of oscillators, 249
Electron, emitted,!370
free, 368
inertia, 3
transit time, 246, 382
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Electron coupling, in blocking oscillator,
308
in crystal oscillator, 224
general, 177, 208
neutralization for, 180
Electrostriction, 111, 120
Element, quartz crystal, 116
Emission of cathodes, 251
Envelope (of oscillation), 54
Envelope stability, 230, 231, 237, 396
Envelope transmission, class C ampli-
fier, 240
thermistor bridge, 240
tuned circuit, 239
Equation roots, 187, 189
Equivalent circuit, general resonator,
110
magnetostriction rod, 121
quartz crystal, 114
Equivalent linearization, 51, 54, 158,
166, 181, 321, 439, 449
Evaporation, vacuum, 112
Excitation ratio, 160, 166, 167, 168, 174,
217, 219
Expansion coefficients of materials, 110
Expanding wave, 16, 19, 22, 432, 447

Feedback, effects of, 67
multiple loop, 67
negative, 64
positive, 70
shunt, 65
voltage, 65
Feedback oscillator, 4
Filament voltage, 251
Fleming-Williams’ sweep circuit, 277
Flip-flop, 265, 365
Four-terminal oscillator, 4
Forks, tuning, 122
Franklin oscillator, 176
Free electrons, 368
Freedom, degrees of, 22
Frequencies assigned to industrial and
diathermy use, 261
Frequency (of negative resistance oscil-
lator), 38
Frequency change due to load, 177
Frequency composition, 340
Frequency correction, 56
Frequency definition, 1

47

Frequency division, 281, 319, 340,
352-365
Frequency modulation, receivers, 415
Frequency multiplication, 281, 349-
352, 427
by electron coupling, 181, 208, 224
Frequency perturbation during syn-
chronization, 323
Frequency range of oscillators, 1
Frequency stability, 2, 11, 79, 146, 158
cathode-coupled oscillator, 210
Clapp’s oscillator, 171
crystal oscillator, 197
decade oscillator, 192
Franklin oscillator, 176
grounded-grid oscillator, 207
Gunn oscillator, 175
Meacham oscillator, 148, 150
Miller oscillator, 220
multivibrator, 286
Pierce oscillator, 214
phase shift oscillator, 185
reactance stabilized oscillator, 181
related to resonator loss, 255
resistance stabilized oscillator, 182
transformer-coupled oscillator, 201,
203
under modulation, 394
Frequency stabilizing methods, 379
Frequency synthesis, 428

Gain without feedback, 65
Gas tube oscillator, 266
General oscillator circuit, 166
Glow-discharge tube, 266
““Grass,” 367

Grid current, 162

Grid emission, 250

Grid modulation, 395

Grid rectification, 163

Grid resistance, 163
Grounded-grid oscillator, 205
Grounded-grid blocking oscillator, 307
Gunn’s oscillator, 175

Hangover, 409
Harmonic content, Meacham oscillator,
143
automatic output control oscillator,
156
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Magic tee, 417, 423
Magnetic, frequency divider, 357
materials, 306, 341, 345
saturation, 345
Magnetostriction, 12 ©
Magnetron, 2, 383, 391, 406, 430
Meacham oscillator, 142-150, 243
Mechanical model of synchronization,
324
Meissner oscillator, 172, 264
Mesh, 22
Metalized paper, 95
Mica condensers, 89
Microwave oscillators, 227, 230, 264,
311, 382, 418-425, 448
Microwaves, 109, 388
Miller crystal oscillator, 218
Miller’s frequency divider, 360
Mode, coupled, 25
dominant, 107
normal, 24
orthogonal, 24
unwanted, 107
Modulation, amplitude, 384, 393, 396,
406
frequency, 384, 385, 396, 397, 402
grid, 395
keying, 386
phase, 386
plate, 394
pulse, 381, 391
Modulator, 191
Molecular, beam, 124
resonance, 10, 83, 123, 417, 425, 427
Mounting of crystal plates, 113
Multiple-loop feedback, 67
Multiple resonance, 430-440
Multivibrator, 278, 281-299
analysis of operation, 283
asymmetrical, 297
cathode-coupled, 294
effect of imperfect cutoff, 292
frequency divider, 337, 364
frequency stability, 286
numerical example, 285
optimum voltage for synchronization,
335
period, 284, 288
positive grid return, 288
screen-coupled, 293

Multivibrator, starting characteristics
293
transfer time, 291
Mumetal, 345

Natural frequency, 6, 11, 15, 84
Negative feedback, 64
Negative resistance, 7, 8, 14, 29
characteristics of pentode, 275
current-controlled, 30, 438
oscillator, 84
viewpoint, 7
voltage-controlled, 30, 438
Neon lamp as oscillator, 266
Neutralization in electron-coupled os-
cillator, 179
Node, 22
equations, 166
Noise, 269, 367-383
bandwidth, 369, 376
current, 369
equivalent resistance of tube, 370
filtered, 372-375
klystron, 378, 382, 388
local oscillator, 379
magnetron, 383, 388
power, 368
pulsed oscillator, 380
reduction by feedback, 68
Schottky, 370
shot, 370
sidebands, 374
spectrum, 372, 375
superregenerative amplifier, 411
thermal, 368
time distribution, 371
transit time, 371
typical oscillator, 378
voltage, 369
vacuum-tube, 370
wave-form, 372, 373
Nonlinear, capacitance, 354, 420
coil, 420
condenser, 354, 420
dielectric, 349
inductance, 354
oscillation, 3, 42-63
reactance, 341, 346, 397
Nonlinearity in automatic output con-
trol oscillator, 155






SUBJECT INDEX

Remote cutoff in multivibrator, 292
Repeated transients, 348
Resistance, dynamic, 29
negative, see Negative resistance
Resistance-capacitance oscillator, 72,
81, 82, 402
Resistance tube, 402
Resonance, spurious, 105, 107, 108
Resonator, cavity, 83, 107
ideal, 85
general, 3, 6
high power, 257
loading, 254
losses, 255
molecular, 83
quartz, 83
Resonator theorems, 109
Rochelle salt, 112
Roots, position, 74
real, 26
related to Nyquist plot, 74
system, 15, 18, 431, 447

Saturable reactance, 346, 397
Saw-tooth wave, 268, 277
Schottky noise, 370
Secondary emission, electron, 2, 250
Secular variation (in resonators), 86
Selectivity (quality factor), 4, 5, 20, 21,
84, 98, 198, 199, 206, 217

Self-modulating oscillator, 244
Semiconducting thermistor, 129
Semiconducting triode, 3
Series feed, 168, 249
Series-mode crystal oscillators, 210
Series resonance of quartz crystal, 197
Serrasoid, 396
“Seven-league” oscillator, 193, 402
Shielding, 261, 263
Shot noise, 370
Shunt feed, 168, 247, 259
Sidebands, noise, 374

telegraphy, 389
Silicon diodes, 404
Silicone, 98
Similitude, 109
Single-loop feedback, 67
Single-valued function, 30
Skin effect, 101, 258
“Snow,”” 367

475

Solenoid, 100
Space charge, electron, 370
Spurious oscillation, 172, 212, 249, 253
Spurious resonance, 105
Sputtering, cathode, 112
Square-wave generators, 294, 299
Stability, absolute, 72
amplitude, 10, 79
conditional, 72
frequency, 11, 79
improved by feedback, 68
operating point, 438
Stabilization of frequency, by reactance,
181
by resistance, 182
Standing wave ratio, 442, 448
Start-stop oscillator, 391
Striking voltage, 266
Sub-cycle ringer, 340, 358
Subharmonie, 319, 327, 352
Superheterodyne, 379, 414
Superregeneration, 408
linear mode, 409
logarithmic mode, 411
noise, 411
selectivity, 409
Suppression, of intermittant oscillation,
242-244
of parasitic oscillation, 253
Suppressor grid, characteristic of, 275
modulation, 395
Sweep circuit, 265, 267, 268, 271, 276,
278, 307, 309
Synchronization, 191, 271, 281, 311-338
Synthesis of frequency, 428
System roots related to envelope be-
havior, 241

Temperature coefficient, of capacitance,
88
of frequency, 86, 114, 176
of resistance, 130
Temperature compensation, 103
Thermal noise, 368, 431
Thermistor, 7, 126-129
Thermistor-controlled oscillators, 131,
231, 238, 239, 312, 374, 378
Thermistor sensitivity, 127
Thumps, key, 389
Thyratron oscillator, 270






