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PREFACE

At least one vacuum-tube oscillator is used in virtually every trans­
mitter or receiver for radio, television, and radar. Oscillators are, 
therefore, of considerable economic as well as theoretical interest. 
Although they are discussed in many periodicals and books, there 
appears to be a genuine need for a connected discussion of the design 
and operation of these devices.

In this book I have attempted to present a systematic and reason­
ably complete treatment of the many factors which affect the behavior 
of vacuum-tube oscillators. The viewpoint of design is favored over 
that of analysis because it represents the basic purpose of engineering 
and because the ability to design is a priori proof of competence in 
analysis. It might appear that the subject is unreasonably specialized 
and that a lack of material would exist. Actually, just the reverse is 
true. The subject touches on a great variety of topics in electronics, 
circuit theory, and dynamics; and an extensive literature exists. In 
fact, the selection and the organization of this material have been the 
principal tasks in writing this book. '

The execution of this project, which was conceived more than ten 
years ago, has been delayed by a number of events. Because the 
general understanding of the subject has been considerably advanced 
by many workers and because I have gained in experience, the treat­
ment has profited considerably by the delay. Relatively little of the 
work here presented is original, and virtually all has been previously 
published. However, the material has been too scattered to be effec­
tively available; and the viewpoints and notations used have been so 
divergent as to impede greatly the understanding of the work accom­
plished. I hope that the treatment in this book may overcome most 
of these difficulties by use of a uniform notation and several coordinated 
viewpoints developed in a logical sequence.

A clear and adequate exposition of the behavior of oscillators is the 
objective of my book, and mathematics has been employed freely 
where it is helpful. Wherever possible, relationships have been 
developed from fundamental considerations. In certain sections, 
however, the development has been omitted as impractically long or 
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viii PREFACE
difficult, and the pertinent results are merely stated. The level of
the treatment is directed toward the graduate of the usual four-year
course in electrical engineering. It therefore appears that the book
should be useful as a textbook for a senior or graduate course, as well
as for the guidance of practicing engineers.

As far as practical, I have made the treatment of each chapter self- 
sufficient, so that the book may serve as a useful reference work and so 
that an instructor may adjust a course to the needs of his students and 
the time available. However, the subject is so interrelated that this 
objective has not been completely met; and in any event the first five 
chapters are needed as the basis for the following material. A reason­
able familiarity with the characteristics of ordinary vacuum tubes is 
assumed, and little is said about this subject.

In the interest of keeping the length and cost of this book within 
reason it was necessary to omit much interesting and important mate­
rial. Specifically, microwave oscillators are not discussed because 
they are already treated in several books.

A fairly extensive but by no means exhaustive bibliography is 
included as an aid to the worker who wishes a more detailed treatment 
than that offered here. I am aware that first-class work in numerous 
phases of this subject has been, and probably is being, done in every 
country of the world. However, nearly every important point has 
been competently discussed in English. Accordingly the bibliography 
contains a relatively small number of references to foreign periodicals, 
because language difficulties and library limitations make these 
unavailable to so many individuals.

The MKS system is used in all analytic work, although apparatus 
dimensions are sometimes given in inches and feet, in conformity to 
current practice. The abbreviations, symbols, network terminology, 
and graphical representations used conform to the Standards of the 
Institute of Radio Engineers. Consistent with that usage, the term 
phasor rather than vector is used to designate the complex quantities 
which represent sinusoidal voltages and currents. I have used the 
symbol co to represent the value of by-pass condensers, and choke coils 
to indicate that the corresponding admittance or impedance is effec­
tively infinite. The interpretation of schematic diagrams is consid­
erably expedited by this notation, because attention can immediately 
be focused upon the elements which actually control the beha­
vior of the system. With the same objective, I have, where practical, 
emphasized the frequency-controlling elements or resonator.

So many workers have contributed to the subject that it is quite 
impossible to make adequate acknowledgment. However, I am 
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particularly indebted to Professor J. B. Russell of Columbia University 
for his constructive criticism of the manuscript. I have also been 
greatly aided by the works of J. R. Pierce and H. W. Bode and by 
discussions with my brother, J. O. Edson, all of the Bell Telephone 
Laboratories. Finally, I am indebted to the Georgia Institute of 
Technology for a policy which made it possible to do this work while 
there.

William A. Edson 
Stanford, California
November, 1952
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INTRODUCTION

1.1 What an oscillator does
The vacuum-tube oscillator is an extremely versatile device for the 
production of alternating electric currents. The currents so produced 
are usually periodic, and often substantially sinusoidal. The useful 
power output and incidental losses are provided by a power input, 
which is ordinarily a direct current. The efficiency is commonly very 
low, in the order of a few per cent. In high-power applications, how­
ever, where efficiency is important it is possible to obtain values of 
efficiency well over 50 per cent.

The most important feature of the vacuum-tube oscillator is the 
great range of frequencies ‘Which may be produced. Frequencies as 
low as a hundredth of a cycle per second and as high as 50 billion cycles 
per second are now readily produced. Past experience indicates that 
both limits will be extended further.

In most applications a vacuum-tube oscillator serves primarily as a 
timing device. That is, the period or duration, T, of each cycle is of 
basic importance. Ordinarily this property is expressed in the inverse 
form as a frequency, /, in cycles per second according to the basic 
relationship

f = 7T. (1.1)

For purposes of analysis a related quantity, w, is more convenient. 
This quantity, which is measured in radians per second, is given by 
the familiar equation

w = 2xf. (1.2)

The quantity w is often referred to as angular frequency, or simply as 
frequency when no misunderstanding is likely to occur.

In a great many applications it is important that the frequency be 
very nearly constant. The degree to which constant frequency is 
approached is referred to as frequency stability. Frequency stability 
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2 INTRODUCTION
is ordinarily expressed by the statement that under specified conditions 
the frequency will not depart from a specified value by more than a 
certain fraction or per cent. For example, it is illegal for the carrier 
frequency of a commercial broadcast station to depart from its assigned 
value by more than 20 cycles.* The oscillator in a station whose 
assigned frequency is one megacycle must therefore have a frequency 
stability of 20 parts per million or two parts in 105 with respect to 
all causes, and for considerable intervals of time. Over a period of a 
few minutes the frequency of such an oscillator is likely to be constant 
to a few parts in 107. Oscillators exist which have a short-time 
stability of a few parts in 1010.

Where the efficient generation of electric power from a prime mover 
is required, rotating machines such as the alternator are still the most 
desirable. However, the frequency range which is conveniently and 
efficiently generated in this way is quite limited. Frequencies of 
even a few kilocycles are now more efficiently generated by electronic 
than by machine methods.

1.2 Devices for producing oscillations
The high-vacuum tube is the only device now known for generating 
continuous waves at the higher frequencies, and it is the most flexible 
device for producing oscillations of a variety of wave forms and fre­
quencies. High-vacuum tubes exist in a great variety of forms and 
employ a comparable variety of operating principles. Of these the 
triode is oldest and simplest, and remains one of the most useful. The 
tetrode has been largely superseded by the pentode, which is fre­
quently useful in oscillators that must achieve great frequency stability 
or must simultaneously perform several functions.

Electrons produced by secondary emission have been employed in 
the dynatron and may prove to be useful in oscillators based upon 
electron multiplier schemes. To date, however, no form of secondary 
emission device has been found satisfactory in oscillator applications.

The motion of electrons in a high-vacuum tube can be controlled by 
means of a magnetic field instead of, or in conjunction with, electric 
fields. The split-anode cylindrical magnetron is an example of such a 
device, which, in connection with a suitable circuit, efficiently produces 
oscillations over a very wide band of frequencies. In the microwave 
magnetron, developed so intensively for military radar, the action of 
electric and magnetic fields is supplemented by the actual inertia or

* The terms cycles, kilocycles, etc., are used throughout this book as abbrevia­
tions for the longer terms cycles per second, kilocycles per second, etc. This is 
standard usage in the profession and is defended on the basis of expediency.
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transit time of the electrons themselves. These transit-time magne­
trons are highly efficient and powerful oscillators; but a particular
tube is capable of operating over only a relatively narrow frequency
band.

The effects of electron inertia are employed in almost all microwave 
oscillators. Tubes such as the klystron, which employ velocity 
modulation instead of magnetic fields, have been highly successful, 
especially as continuous wave generators at low power levels.

In addition to high-vacuum tubes there is a large and growing list of 
electronic devices which are useful as oscillators in certain circum­
stances. Of these, the gas-filled tube, such as the thyratron, is prob­
ably most important. (The oscillating arc, once widely used, is now 
virtually obsolete.) The transistor,335’ * a semiconducting triode 
employing a germanium crystal,20 appears very promising for the genera­
tion of oscillations in the low-power and medium-frequency region. 
Although they are not strictly vacuum tubes, these devices are included 
in the present treatment because they are closely related in operation, 
are useful, and in some cases serve to illustrate basic principles.

1.3 Types of oscillators
Oscillators may be divided into two broad classes, harmonic oscillators 
and relaxation oscillators. A majority of ordinary oscillators are 
harmonic oscillators, which are characterized by nearly sinusoidal wave 
forms and a relatively stable frequency of operation. They ordinarily 
employ a tuned circuit or other appropriate resonator.! Relaxation 
oscillators are characterized by wave forms which are markedly non- 
sinusoidal and by a relatively unstable frequency of operation. They 
usually have a period or frequency which is principally determined by 
a resistance-capacitance product.

Ordinarily, a particular oscillator can be readily assigned to one or 
the other class. In certain cases, however, the identification is not 
clear, because the performance and circuit configuration of the two 
classes merge smoothly together. In such cases the identification is 
best made in terms of the roots associated with the differential equation 
which describes the system.

Harmonic oscillators may be further classified as linear and non­
linear. Linear oscillators have the important property that all 

* For all numbered references see the bibliography at the end of the book.
t The term resonator is used in a broad sense to include devices which have one 

or more natural frequencies. Tuned circuits of inductance and capacitance, 
sections of transmission lines, microwave cavity resonators, and piezoelectric 
crystals are important examples of electrical resonators.



4 INTRODUCTION
voltages and currents in the oscillating circuit are very nearly sinu­
soidal, Such oscillators are desirable because the output is virtually 
free from harmonics and because the frequency of operation is quite 
stable. The mathematical analysis of linear oscillators is much 
simpler than that of nonlinear oscillators. Accordingly the study of 
such oscillators is an aid to understanding the more complex behavior 
of nonlinear systems.

The distinction between linear and nonlinear oscillators is not sharp. 
It will be shown that no oscillator can be absolutely linear; accordingly, 
the distinction is one of degree rather than of kind. In this book the 
term linear will be reserved for systems which are specifically designed 
to reduce harmonics; all other systems will be classed as nonlinear. 
Most practical oscillators are harmonic but nonlinear.

It is convenient to distinguish between two-terminal or negative 
resistance and four-terminal or feedback oscillators. Two-terminal 
oscillators are identified with electronic devices which produce a 
dynamic negative resistance between two accessible terminals. In a 
four-terminal oscillator the electronic device has three or more acces­
sible terminals. Such a system may be drawn as an amplifier with 
its output connected to its input, as suggested by the term feedback.

Oscillators may also be classified on several other bases, including 
the frequency of operation, the circuit configuration, the type of elec­
tronic device used, and the type of resonator. These classifications 
are often convenient but are evidently not fundamental.

1.4 Fundamental principles of harmonic oscillators
A harmonic oscillator comprises two fundamental elements, the resona­
tor and the driving system. To these a third element, the useful load 
system, is usually added. Because an actual oscillator consists of a 
number of components, a question of identifying components with 
functions arises. In general the resonator is readily identified. The 
remaining components, specifically including the electronic device, 
are identified with the driving system except for those which are 
assignable to a useful load. In most cases this identification is rela­
tively straightforward.

In oscillators which must produce a very stable frequency the 
resonator must have a natural frequency which is sensibly constant 
with respect to temperature, the passage of time, etc. It is further 
necessary that the driving system and useful load shall not appreciably 
affect this frequency. The latter is facilitated if the resonator has 
inherently low losses or high selectivity, Q, and if the load absorbs very 
little power.
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In oscillators such as those used in induction heating the efficiency 
of power conversion is of principal importance. In such devices the 
driving system and load must be so matched that a large fraction of 
the power supplied as direct current is delivered as alternating current 
in the load. The resonator function is now secondary and serves 
only to exercise reasonable control over the frequency. A large 
value of Q is still desirable, because it facilitates frequency control 
with a minimum loss of power. Great stability with respect to tem­
perature, etc., is rarely needed in such apparatus.

. 1.5 Amplifier viewpoint
Many problems in connection with the behavior of oscillators are best 
treated by thinking of the system as a modified amplifier. A basic 
property of any amplifier is that the power output is greater than the

Fro. 1.1. Oscillator represented as a self-energized amplifier.

input. Accordingly, it appears that we could obtain a considerable 
power output in the absence of any separately supplied input by sub­
stituting a suitable fraction of the output for this separate input. The 
situation is illustrated in Fig. 1.1.

This concept is fundamentally correct and, when suitably elaborated, 
is extremely useful. In the first place, it immediately points out that 
this sort of oscillator is representable as a closed ring, around which a 
signal is transmitted in one direction. Many of the difficulties in the 
study of oscillators arise from the fact that such a ring has no beginning 
or no end.

Most amplifiers have the property that the power output exceeds 
the power input over a considerable band of frequencies. Accordingly, 
this concept, based upon conservation of energy, is inadequate to 
account for the frequency of an oscillator, for it would suggest that a 
desired output frequency could be obtained by supplying and later 
removing it.

The situation is clarified by noting that the signal which is returned 
from the output to replace the original input must be of the correct 
phase as well as magnitude. In practical systems the phase varies 
rather rapidly with frequency. Therefore, a given system satisfies 
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both phase and amplitude conditions at only one frequency (or occa­
sionally several discrete frequencies). Subject to certain other 
restrictions which will be developed in later chapters, stable oscilla­
tions will occur at the frequency for which the returned signal is equal 
to and in phase with the original signal. The amplifier viewpoint is 
presented very lucidly by Horton.144

1.6 Functional diagram
The analysis of a feedback harmonic oscillator is extended and facili­
tated by the block diagram of Fig. 1.2. In this diagram the driving 
system has been further divided into an amplifier and a limiter. This 
division is desirable because it emphasizes two important properties 
which the driving system must have. It must be an amplifier or the

Fig. 1.2. Functional diagram of feedback oscillator, 

losses inherent in the other functions will bring the system to rest; 
and its amplification must decrease as the level of oscillation increases 
or the system will never reach an equilibrium. The four functions 
are basic, but the order in which they are performed is different in 
different practical systems.

In Fig. 1.2 the amplifier is assumed to be ideal in that its phase shift 
is zero and its amplification is independent of the frequency and level of 
the signal. The resonator is assumed to be linear and to have some 
definite natural frequency, with suitable associated variation of 
attenuation and phase shift with respect to frequency. (An ordinary 
bandpass filter has such properties.) The load is a simple linear 
impedance. The limiter is assumed to have zero phase shift and to 
have at all frequencies a loss which increases with increase of the volt­
age supplied to it. Although the limiter is fundamentally nonlinear, 
its losses may change so slowly with time that it produces little dis­
tortion of the wave which it transmits.

In most oscillators the vacuum tube functions both as amplifier and 
as limiter. The operation is substantially the same as that of a class C 
amplifier, so adjusted that the output is almost independent of the 
input. Such operation is characterized by relatively large harmonic
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currents. The resonator, in this case a simple tuned circuit or tank, 
discriminates against the harmonics so that the voltages are nearly 
sinusoidal.

In one class of linear oscillators the limiting action is produced by 
one or more thermally sensitive resistors called thermistors. A small 
tungsten-filament lamp is suitable for such application. In these 
circuits the lamp resistance, and hence the circuit loss, is a function of 
the effective current, as required for limiting. However, the thermal 
inertia of the filament is such that the resistance is almost constant 
over any one cycle so that little distortion of the wave form results.

In another class of linear oscillators the limiting action is provided by 
a slowly varying bias applied to a suitable electrode of the tube, as in 
an amplifier with automatic output control. A proper choice of 
elements and biases leads to adequate limiter action without distortion.

1.7 Equilibrium conditions
In the system of Fig. 1.2 it is clear that equilibrium can exist only if 
certain relationships exist between the gains and phase shifts of the 
several sections. The loss of the limiter plus the loss of the resonator 
must equal the gain of the amplifier, or the wave will change in ampli­
tude until this condition is met. Similarly, the phase shift in the 
resonator must be zero since the limiter and amplifier have already 
been assumed to have zero phase shift. The frequency of operation 
will automatically adjust itself to meet this condition. The dual 
condition of zero net gain and zero phase shift is known as Bark­
hausen’s condition for oscillation.

1.8 The negative resistance viewpoint
It is well known that a system of inductances and capacitances can 
oscillate if given an initial shock. However, in a passive system such 
oscillations rapidly disappear or decay with the passage of time 
because of the resistance which is present in all coils and to a lesser 
degree in all condensers. It is clear that this decay could be avoided if 
the positive resistance of the coil and condenser could be canceled by 
addition of a suitable negative resistance. This principle is employed 
in negative resistance oscillators, such as the dynatron, which use a 
type of vacuum tube approximating a single negative resistance to 
annul the losses of an associated coil and condenser and so produce 
continuous oscillations.

The negative resistance viewpoint is convenient in the mathematical 
study of oscillatory systems because the equation which describes the 
behavior of a resistance, positive or negative, is so simple. It is neces-
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sary to have this viewpoint in the study of all oscillators which are not
representable as amplifiers. This includes all oscillators which employ
true two-terminal negative resistance devices. Moreover, it is possible
to have this viewpoint in the study of all types of oscillators, even
those which are also representable as amplifiers.

A very simple negative resistance oscillator is represented by Fig. 
1.3, which shows a passive series resonant circuit represented as L, 
R, and C in conjunction with a negative resistance device d^ignated p. 
Any slight disturbance in the system, such as the closing of a switch 
or the thermal agitation of electrons in the conductors, will lead to 
oscillations which increase with time, provided p is negative and greater 
than R.

Fig. 1.3. Oscillatory circuit.

Such a system will produce useful results only if the oscillations build 
up to and remain at some stable amplitude. As in the four-terminal 
oscillator already discussed, equilibrium can result from the action of 
nonlinearity. In the present example this limiting action must take 
place in the negative-resistance device. Moreover, it is clear that the 
effective negative resistance must become smaller as the level of oscilla­
tion increases if stable oscillation is to result. The property of 
negative resistance is possessed by the arc and other current-controlled 
negative-resistance devices. More is said of this matter in the 
chapters which follow.

1.9 The clock analogy
It has already been mentioned that the period or frequency of an oscil­
lator is one of its most important properties. Therefore, an oscillator 
needs only the addition of a cycle-counting device to be a timekeeper. 
Briefly, an oscillator is the electronic counterpart of a mechanical 
clock. Moreover, an electronic clock employing a specially treated 
quartz plate as an electromechanical resonator in a suitable oscillator 
is, over a period of weeks, a better timekeeper than any mechanical 
clock.
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It is profitable and enlightening to compare oscillators with clocks 
because the operation of a mechanical device is more familiar and is 
much more readily observed. Furthermore, mechanical timekeepers 
have been carried to a very high state of development by the work of 
many skilled investigators over a period of more than two hundred 
years.

The heart of a mechanical timekeeper is the pendulum or balance 
wheel, which corresponds to the resonator in its electrical counterpart. 
Every effort is made to see that the period is constant, independent of 
aging, temperature, barometric pressure, etc. In portable devices, 
such as watches and chronometers, where the restoring force must be 
provided by a spring, the balance wheel is used. Greater accuracy is 
provided by the pendulum, whose period depends upon the length and 
the constant of gravity. Maintaining the pendulum and associated 
parts at constant temperature ensures that the length is constant. 
Evacuating the system greatly reduces the energy loss of the swinging 
pendulum, and ensures that the operation will be independent of 
atmospheric pressure and humidity.

The driving system of a mechanical timekeeper also corresponds 
closely to that of an electrical oscillator. In clocks, a constant prime 
driving force is provided by weights, which correspond to the B supply. 
Energy is delivered from the primary source to the resonator at appro­
priate intervals by means of the escapement or its analogue, the 
vacuum tube.

In both systems a counting mechanism must be added to indicate 
the total number of cycles which the resonator describes. In mechani­
cal systems this is conveniently incorporated in the gear train, which 
transforms the great force and short travel of the source into the 
delicate force over a great total distance required at the escapement. 
In electronic clocks the desired result must be achieved in a more 
complicated way, because the total charge drawn from the B battery 
is not a satisfactory measure of the number of cycles. Moreover, 
since the period of electric oscillators is ordinarily very short compared 
to that of mechanical clocks, the counting process is substantially 
more difficult. The customary procedure is to divide the frequency, 
that is, take groups of cycles, by successive small integral factors until 
the frequency is low enough to operate the synchronous motor of an 
ordinary type of electric clock, which in turn employs gears for the 
final reduction.

It has long been known that the period of a pendulum is not affected 
if a large force is applied for a very short interval when the pendulum 
is at the center of its swing. Clock escapements are adjusted to meet
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this condition, which is known as Airy’s* criterion, as nearly as pos­
sible. Moreover, in the most refined form of mechanical clocks (Shortt
clocks) energy is supplied to the pendulum only once during thirty
complete cycles.

It is seen that the escapement corresponds to extreme class C opera­
tion in an electrical oscillator. Careful consideration of the factors 
involved shows that the desired condition in the electrical case is for 
the pulse of plate current to flow at the instant when the alternating 
voltage is a maximum and the circulating current in the antiresonant 
circuit is zero.

It is worth noting that the tubes of the Meacham oscillator, most 
stable known timekeeper, operate in class A. Energy is thus delivered 
to the resonator smoothly throughout each cycle. No mechanism is 
known for achieving the mechanical analogue of this operation, but 
it is interesting to speculate upon the performance which might be 
achieved in this way.

Mention should also be made of the electronic system popularly 
referred to as the atomic clock. In this system a vacuum-tube oscil­
lator has its frequency controlled by means of the molecular resonance 
of ammonia gas, which is maintained at reduced pressure in a wave 
guide system. The important property of this device is that resonant 
frequencies of this sort appear to be constants of nature, not subject 
to aging, and substantially independent of parasitic effects, such as 
temperature, pressure, and magnetic fields. Accordingly it appears 
that an absolute and highly accurate standard of time is within reach.

Although the atomic clock in its present form is extremely com­
plicated and difficult to maintain, it appears that a reasonable amount 
of development should lead to a workable and reliable system. In 
conjunction with standards of length based upon spectral lines in the 
visible region it should offer a substantial improvement in the stand­
ards basic to all physical measurements.

1.10 Amplitude stability4
Ordinarily we wish an oscillator to deliver a wave of constant ampli­
tude, frequency, and wave shape. Since all physical oscillators depart 
to some extent from this ideal, it is desirable to establish a measure of 
this departure for comparing the desirability of alternative oscillators.

The extent to which an oscillator approaches constancy of output 
in the face of various disturbances is referred to as amplitude stability. 
Ordinarily, the factors which influence the output amplitude are 
applied voltages, ambient temperature, tube condition, load imped-

* After Sir George Airy, who stated this principle in 1827.
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ance, and assorted network parameters. In most practical oscillators 
the output is nearly proportional to one of the applied voltages, and is 
iiearly independent of other parameters. In other oscillators the 
output depends upon the resistance of, and hence the temperature of, 
a thermally sensitive resistor. In these oscillators the output depends 
upon the ambient temperature and to a small extent upon other 
factors.

The equation which will be taken as defining amplitude stability, 
SA, is

a du/u
A = dA/A (1-3)

where A represents the amplitude of oscillation, expressible in voltage 
or current at the output or other point, and u represents a circuit 
parameter or applied voltage. On this basis a large value of SA for a 
specified du corresponds to a small value of dA and therefore repre­
sents the desirable situation of a high degree of stability.

1-11 Frequency stability
Most oscillator applications require only a very moderate degree of 
amplitude stability. The frequency requirement, on the other hand, 
is usually exacting and is often extremely severe. In fact, the search 
for frequency stability represents a great proportion of all the work 
which has gone into the development of vacuum-tube oscillators.

Virtually every parameter of the system has some effect on the 
operating frequency of an oscillator. In general, however, the fre­
quency is principally controlled by a resonator or phase controlling 
unit, and depends only slightly upon other influences. It is therefore 
appropriate to define frequency stability, Sr, in terms of Fig. 1.2 by 
the equation

_ d<(>
F du/^’ (1.4)

where wo is the natural frequency, and dw is the frequency change 
produced by a change of phase shift, d<j>, external to the resonator.

From this definition it is clear that frequency is referred to the 
natural frequency of the resonator, which is inferred to be absolutely 
stable. Accordingly, eq. 1.4 serves to measure the frequency stability 
of elements external to the resonator, that is, of the driving system. 
Changes in the natural frequency of the resonator are conveniently 
expressed by simple derivatives, such asNr = dt^^/dT, (1.5) 
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where ST represents the frequency coefficient of the resonator with 
respect to the ambient temperature T.

PROBLEMS
1.1. Which of the following have the general properties of an oscillator: (a) 

A vacuum windshield wiper, (6) a buzzer, (c) a gas turbine, (d) a Ki “buzz 
bomb,” (e) an air compressor, (/) a hydraulic ram, (g) an air hammer, (h) a 
steam whistle?

1.2. Of the above "oscillators,” which are relaxation in character, which 
harmonic?

1.3. What basic condition must exist in a harmonic oscillator? Explain.
1.4. From the amplifier viewpoint, how must the gain vary with signal level if 

oscillations are to build up smoothly to a stable amplitude from some small dis­
turbance? If stable oscillations result only from a large initial shock?
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TRANSIENT BEHAVIOR OF
LINEAR SYSTEMS

This chapter is devoted to a review of the transient behavior of 
several simple linear systems; the inclusion of such familiar material is 
justified by the fact that it forms the foundation of several later sec­
tions. Particularly interesting, and perhaps less well understood, are 
the responses found when certain of the circuit elements take on nega­
tive values. The concept of a complex frequency is formulated and 
discussed; and suitable notations are introduced, to be extended and 
developed in subsequent chapters. Readers who wish additional 
information on the subject of transients, particularly the physical 
interpretation, are referred to the paper by Dudley.79

2.1 Resistance and capacitance
The simplest possible transient occurs when an initially charged con­
denser is allowed to discharge through a pure resistor. It is well 
known179 that the charge q remaining in the condenser at any time t 
after the circuit is closed is represented by

q = qoe-t/RC, (2.1)
where qo is the initial charge, R is the resistance, and C is the capaci­
tance of the circuit. This result evidently applies only for positive 
values of t because, prior to closing the circuit, q = qa by definition. 
One is ordinarily concerned only with positive values of R and C; 
however, eq. 2.1 is not so restricted, and it is instructive to plot it for 
positive and negative values of both R and t.

It will be noted from Fig. 2.1 that the graphs of q/q0 versus t are 
symmetrical and that they extend smoothly into negative values of 
time. This feature corresponds to the physical fact that the circuit 
behavior at positive values of time would have been unaltered had the 
initial charge qo been appropriately changed and the switch closed at an 
earlier instant.

13
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Inspection of eq. 2.1 shows that the charge will increase with positive 

increase of time if either (but not both) R or C is negative. Moreover, 
the behavior at negative values of t with both circuit elements positive 
is exactly the same as that at positive values of i with the resistive 
element negative. In this and subsequent discussions, emphasis is 
placed on negative values of R but not on negative values of C or L, 
since the latter do not appear in the physical systems of interest

Fig. 2.1. Variation of charge in resistance-capacitance circuit (C = 1).

and because equivalent results may be secured by use of positive 
reactances in conjunction with negative resistances, as proved by 
Verman,332 and by Bode34 on page 187 of his book.

2.2 Resistance, inductance, and capacitance
The resistance-capacitance system considered in Section 2.1 may be 
generalized by adding an inductance either in series or in parallel.

Fig. 2.2. Parallel form of circuit.

The parallel form of connection is chosen in preference to the series 
arrangement because of closer conformity to actual oscillator systems.

The circuit of Fig. 2.2 is the dual* or inverse of the series RLC circuit 
treated in nearly every textbook on transients. Provided the switch 
has been closed for a long time, a current I = V /R will be flowing

* The reader who is unfamiliar with the principle of duality is referred to Gardner 
and Barnes,109 page 46, or Bode,34 page 196. Useful related ideas are presented by 
Selgin.277
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through the coil L, which is assumed to have zero resistance. On 
this basis, no voltage exists across C and G until the switch is opened.

At the instant t = 0 the switch is opened, and a transient is initiated. 
Following conventional methods of transient analysis, one may show 
that the current i at any later time is represented by the differential 
equation

diLC—2 + GL- + i = 0, (2.2)
CLli (lb

which has a solution of the form
i = (2.3)

where Ki and K2 are constants which may be determined from the 
initial conditions,

pi = a + jo>, (2.4)
and

Pi = ot — jos. (2.5)
Substitution of the network parameters yields

a = -G/2C, (2.6)

w0 = Vf/LC, (2.7)
and

The quantities pi and p2 are the roots of the algebraic auxiliary 
equation which has the same coefficients as eq. 2.2, the differential 
equation of the system. The real component, a, is called the decre­
ment or damping factor; it expresses the rate at which the transient 
current increases or decreases with time. Because the transients in 
passive systems always decrease with time, a is negative in such 
systems. The imaginary component, w, exists only if the conductance 
is sufficiently small; it represents the natural angular velocity or 
frequency of the system, and is reduced to wo, the undamped natural 
frequency if G = 0.

If the conductance is sufficiently small, that is,

G < 2 Vc/L, (2.9)

the circuit is oscillatory or underdamped, and the current may be 
written

i — Ie at[cos w/ + (a/w) sin wZ]. (2.10)
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If the conductance is large, corresponding to

G > 2 Vc/L, (2.11)

the circuit is overdamped, and the current is more conveniently repre­
sented by

i = Ie~“¿[cosh pt -f- (a/p) sinh pt], (2.12)
Finally, in the case of critical damping when

G = 2 Vc/L, (2.13)

the current is most readily calculated from the expression
i = Ze-“*[1 + at]. (2.14)

The relationships represented by eqs. 2.10, 2.12, and 2.14 are most 
conveniently examined by letting L = C = 1, so that critical damping 
corresponds to G = 2. The behavior which results when G is assigned 
typical positive and negative values is shown in Fig. 2.3. As in Fig. 
2.1, the extrapolation to negative values of time is interpreted as the 
behavior which would have occurred had the transient begun earlier 
and from different initial conditions. Moreover, the symmetry of 
the diagram is such that the value of i is unaffected if the signs of G 
and t are both reversed.

In the present connection, critical damping means that the current 
in the coil is extinguished at the most rapid possible rate. However, 
it should be noted that the common voltage v may be extinguished at an 
arbitrarily rapid rate by making G sufficiently large, and that a large 
value of G provides the most effective damping if the transient results 
from an initial charge in C rather than a current in L. Therefore, it is 
necessary to qualify the familiar statement that the critical damping 
resistance is one which brings a system to rest in the shortest possible 
time.

By analogy with the statement that the current in L is extinguished 
at the maximum possible rate by setting G = 2, one might anticipate 
that the current in the coil would increase at the greatest possible 
rate if G = —2. This is not correct. Corresponding to any fixed 
positive value of t, the values of both i and v can be made arbitrarily 
large by making the negative conductance sufficiently large. This 
behavior, which may be anticipated by inspection of the negative time 
extrapolation of passive systems, is explainable on both physical and 
mathematical bases.

From the physical standpoint, the condenser and negative con­
ductance form an unstable combination (with time constant inversely
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18 TRANSIENT BEHAVIOR OF LINEAR SYSTEMS
proportional to G), initially held at rest by the low impedance of the 
external circuit. When the switch is opened, the unstable combination 
is released and is excited by the coil current. The resulting rapid 
increase of voltage across the condenser and negative conductance 
then overwhelms the coil, causing the current i to reverse and then 
rapidly increase without limit.

The mathematical viewpoint turns attention to the roots pi and p2 
of the algebraic auxiliary to the differential equation. When these 
roots are negative and real, the behavior of the network is ultimately 
governed by the smaller root because this root is associated with the 
more slowly decaying current or voltage. For positive real values of 
the roots (produced by negative G) the reverse is true. Here the 
behavior is governed primarily by the larger root, which corresponds 
to the more rapidly increasing quantity. This point will be made 
increasingly clear in the following section.

The curves of Fig. 2.3, like those of Fig. 2.1, have been plotted for 
negative as well as positive values of time. It is seen that the behavior 
for t less than zero is quite simple for the oscillatory cases, whether of 
the expanding or the contracting form. The behavior of nonoscilla- 
tory systems is somewhat more complex and requires careful treatment.

In all cases the behavior at positive values of time would be exactly 
duplicated by closing the switch at some negative instant provided the 
charge on C and the current through L at that instant were suitably 
chosen. However, for nonoscillatory conditions the required modifica­
tion of the initial conditions is very great. Under all conditions the 
value of i is unaffected in eqs. 2.10, 2.12, and 2.14 when both a and t are 
reversed in sign.
2.3 Variation of the p roots
The system roots, pi and p2l are important because they furnish a 
very good index to the behavior of the corresponding system. To

TABLE 2.1
P-Roots of GOL Equation for L = C = 1

Reference
Point G Pi P2

1 00 -oo + j'O o + jo
2 8 -7.85 +j0 -0.15 + JO
3 2 -1 + jo — 1 + JO
4 li -0.25 +JO.968 -0.25 -JO.968
5 0 0 + J1 0 - JI
6 “li +0.25 +J0.968 +0.25 - JO.968
7 — 2 +1 + J0 + 1 + jo
8 -8 +0.15 +j'O +7.85 + J0
9 — 00 0 + jO + «> + jo



illustrate this point, the loci of pi and P2 are plotted in Fig. 2.4, where
the arrowheads indicate increasing G, and the circle has unit diameter
because C = L = 1. To clarify the relation between the roots and
the system behavior a number of points from Figs. 2.3 and 2.4 are
given in Table 2.1. The nature of this relationship is further clarified
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Fig. 2.4. Variation of the p-roots in the complex plane as G is varied.

The four divisions of Table 2.2 include all simple oscillatory systems, 
electrical or otherwise. Regions I and II, passive systems, have 
been extensively studied and are not of principal interest here. RegionTABLE 2.2

Relationship between p-Roots and GCL System Behavior

Region No. I II III IV

Wave Form Nonoscillatory 
decaying

Oscillatory 
decaying

Oscillatory 
expanding

Nonoscillatory 
expanding

Cd Imaginary Real Real Imaginary

ß Real Imaginary Imaginary Real

System Type Passive Active

a Negative Positive

III covers systems which generate expanding sine waves. It is there­
fore identified with harmonic oscillators, as discussed in Chapter 1, 
and serves to define the limits of that class.* Region IV includes

* It will be recalled that the action of the limiter in physical systems serves to 
alter the average conductance as the level of oscillation increases, thereby avoid­
ing the absurdity of unlimited amplitude. This consideration applies also to the 
nonoscillatory active systems of region IV.
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systems which generate a nonreversing exponentially increasing wave. 
Such systems—characterized by the fact that the p-roots are (pure) 
real and positive—are known as relaxation oscillators.

2.4 Decrement and selectivity
At this juncture it is desirable to define and correlate a number of useful 
terms which apply to oscillatory or resonant systems. Some of these 
definitions pertain to the free oscillation of a system and are most 
readily expressed in terms of the transient behavior. Others apply 
to forced oscillations—that is, the a-c-steady state—and are best 
expressed in those terms.

Damping Factor or Time Decrement. The quantity a, defined by 
eq. 2.6 and governing the time rate of change of amplitude in eq. 2.10, 
is known as the damping factor. Evidently, in one second the system 
coordinate (current, voltage, etc.) will increase or decrease in amplitude 
by the factor

ii/io = ea or a = In (ti/i'o). (2.15)

Since the natural logarithm of the ratio of two associated quantities is 
by definition their level difference in nepers, the time decrement a has 
the dimensions of nepers per second.

Logarithmic or Cyclic Decrement. In many applications of oscillatory 
waves the decay per second is less important than that per cycle, 
which is represented by the logarithmic decrement

5 = In (A/A+i) nepers per cycle, (2.16)

where in and in+i are the amplitudes of any two successive cycles. 
Because there are f cycles per second we see that

— a=f8 nepers per second. (2.17)

Selectivity or Quality Factor. The selectivity Q of an oscillatory 
or resonant system is a widely used and important index of circuit 
behavior. Because the loss in available condensers is much lower 
than that in available coils, there is a marked tendency to associate a 
quality factor with individual circuit elements—especially coils. 
In a strict sense, however, Q is a property of the complete resonant 
system. Several definitions of Q are in general use. All are equiva­
lent when correctly applied, even in connection with heavily damped 
systems. The following paragraphs are devoted to a comparison of 
these definitions.

A definition of Q, applicable to any simple oscillatory system, and 
particularly convenient in connection with cavity and electromechani-
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cal resonators, is
q _ 2 Total energy stored in the system 

Energy lost per cycle from the system

Because Q is a constant, characteristic of the system, it is necessary 
that the energy losses and storage decrease similarly with time. 
In low-Q systems the rate of energy loss is not uniform, and the loss 
per cycle is comparable to the total stored energy. Nevertheless, as 
may be shown by direct integration, eq. 2.18 is applicable provided the 
numerator is taken as the average of the energy stored during the period 
of one full cycle.

The selectivity parameter Q is also useful in describing the steady­
state behavior of a system. Under steady-state conditions the energy 
loss is supplied by an external source, and eq. 2.18 is applicable pro­
vided the denominator is interpreted as the energy supplied. Apply­
ing this definition to Fig. 2.2, we have

CT2Q = = (219)

where V is interpreted as the rms voltage and Q is assumed to be high. 
This expression is the dual of the familiar uL/R of the series-tuned 
circuit. It is readily shown that Q as given by eq. 2.19 represents 
the ratio of the antiresonant natural frequency, a>o, to the difference 
between the two frequencies at which the phase angle of admittance 
becomes 45°.

Substituting eq. 2.6 to eliminate C/G yields the useful expression, 
which is correct for all values of Q and types of systems,

Q = —w/2a. (2.20)
This definition is interpreted in Fig. 2.4, where the angle between the 
horizontal axis and one of the conjugate roots is

<t> = tan-1 ( — w/a). (2.21)
In these terras

Q = % tan 4>. (2.22)
Finally, the damping factor a may be eliminated between eqs. 2.17 and 
2.20 to yield the useful relation

Q = (w/2/á) = ir/8. (2.23)

Consistent with accepted conventions, the selectivity Q and the 
logarithmic decrement 8 of a passive circuit are taken as positive, 
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whereas the damping factor a is negative. Conversely, Q is negative 
when a is positive.

2.5 Degrees of freedom
The number of degrees of freedom of a system—electrical, mechanical, 
or otherwise—is equal to the least number of variables which will 
uniquely specify} the behavior of the system.160 For example, 
knowledge of the charge as a function of time in any single-mesh 
electrical circuit permits specification of all currents, voltages, energies, 
and powers. Therefore, any single-mesh280 electrical system has 
a single degree of freedom, because its complete behavior can be 
described in terms of a single variable or coordinate. Similarly, the 
behavior of a group of electrical elements connected in parallel between 
two junction points or nodes12i is completely specified by the potential 
difference between these nodes as a function of time ; therefore, such a 
parallel group possesses but a single degree of freedom.

In more complicated circuits the number of degrees of freedom is 
not immediately evident because it is necessary to use the least number 
of variables which will completely describe the system. The con­
ventional Kirchhoff equations, and the related mesh and nodal equa­
tions, ordinarily involve a number of equations and variables con­
siderably in excess of the minimum. Therefore, a comparison of the 
results obtained by the various methods of analysis becomes requisite 
in order to select the appropriate minimum number. Fortunately, 
this requirement seldom presents serious difficulty in the study of 
oscillators.

2.6 Order of the differential equation
In general, the transient behavior of a system of any sort may be 
described by a set of differential equations, subject to the initial and 
boundary conditions corresponding to the original disturbance. The 
minimum required number of these differential equations must 
evidently be equal to the number of degrees of freedom of the system, 
to conform with the definition given in the preceding section.

In a single-mesh system there can be at most a single equivalent 
inductance and a single equivalent capacitance; and in a system of n 
independent meshes there can be at most n distinct equivalent induc­
tances and n equivalent capacitances. In the single-mesh case it is 
clear, and in the n-mesh case it can readily be shown, that the order of 
each of the n differential equations which describe the behavior of the 
system cannot be greater than 2n.

Starting from a single-mesh circuit, it is easy to see that the addition
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of a single distinct nonreducible inductance or capacitance increases 
by one the number of initial conditions which must be specified; hence 
the order of the differential equations must also increase by one. 
Repetition of this process shows that the order of each of the differ­
ential equations is equal to the total number of distinct inductances 
and capacitances present in the network. (For the present purposes, 
the effect of mutual inductance in physical transformers is most con­
veniently included by use of the equivalent T or II configuration.)

The foregoing ideas are illustrated in Fig. 2.5, which shows a four- 
mesh circuit containing six reactive elements. This system evidently 
requires a differential equation of the sixth order to describe any of its 
currents or voltages. But there can be no more than four degrees of 
freedom, because the four mesh currents shown are sufficient to specify

L2 C2

Fig. 2.5. Four-mesh, ladder-type network.

completely the behavior of the system. We might be led to the incor­
rect conclusion that the system requires a differential equation of the 
eighth order (2n) from the fact that each of the meshes drawn con­
tains both inductance and capacitance. However, it is possible to 
draw four independent meshes of which two involve only one type of 
reactance, so that the number six is correct in the present case.

Regardless of which of the currents (or voltages) is solved for, the 
same differential equation will be obtained. The auxiliary algebraic 
equation will be of the sixth degree and will have as solutions the six 
p-roots, which describe the properties of the system.

2.7 Modes of oscillation or motion
If an electrical (or mechanical) system is free from resistance (or 
friction) an initial direct or oscillating current continues undiminished 
with the passage of time. Such systems are sufficiently well approxi­
mated in practice by low-loss circuits that the results obtained from the 
idealized system are useful.

The basic idea of modes of oscillation is illustrated in Fig. 2.6. 
Foster’s reactance theorem101 indicates that there are two frequencies at
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which an externally applied generator produces no line current. One 
of these is sufficiently lower than the natural frequency of Li and Ci so 
that the net inductive susceptance of the L\C\ combination equals the 
capacitive susceptance of LiCi', the other is sufficiently higher than 
the natural frequency of Li and Ci to produce the converse effect. 
If the free circuit is set into oscillation at either of these frequencies 
there will be a unique relationship between the magnitude and phase 
of the currents and voltages in various elements. This combination 
of effects is referred to as a mode of oscillation. Because the system is 
linear the two modes are independent and have no interaction. How­
ever, if both modes are simultaneously excited the currents and volt­
ages in the several elements will contain both frequencies super­
imposed, and beat effects will appear. Thus the total energy of the 
system may be transferred back and forth between the elements or 
meshes, as shown by Howe.145

Fig. 2.6. Two-mesh loss-free circuit. Fig. 2.7. Bridge circuit.

An additional useful idea is conveyed by Fig. 2.7, which represents 
a bridge circuit of equal capacitances. Under these circumstances 
the elements L\ and Li are conjugate because current flowing in one 
produces no current in the other. This system has two natural fre­
quencies or modes of vibration which are normal or orthogonal in that 
current can exist in Li without producing current in Li, and vice 
versa.

The concept of normal modes is particularly important in cavity and 
quartz crystal resonators. In these devices the term mode is used to 
designate a particular pattern of electromagnetic fields or mechanical 
motions in space. Such modes are normal provided the existence of 
one does not tend to excite the other. Following Sokolnikoff,291 
page 81, modes designated m and n are orthogonal provided that

HfUmUndv = 0, (2.24)

where Um and Un are functions which represent the field or motion; 
and the integral is carried out throughout the volume of the resonator. 
In simple symmetrical cavities all modes are normal. In quartz
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crystal resonators, however, modes are often coupled and therefore are
not normal owing to the nature of the boundaries and the crystalline
properties of the material.

Consistent with this concept, each distinct mode of oscillation has a 
distinct value of Q, most easily expressed in terms of the angular loca­
tion of the p-roots. However, when coupling is present there is an 
interchange of energy accompanied by beats which make it difficult or 
impossible to apply any concept of Q. Normal modes are, by defini­
tion, free from this difficulty and therefore have uniquely defined 
values of Q. This is a very convenient and important property.

Because the order of the differential equation is equal to the number 
of independent reactive elements in an electric circuit, and because the 
number of modes of oscillation is equal to the number of pairs of 
reactive elements, it follows that the number of modes is equal to 
half the order of the equation, neglecting fractional remainders.

In many circuits resistance plays an important part and cannot be 
neglected. To such circuits the concept of modes of oscillation is 
greatly complicated by the fact that the number of complex roots 
may be considerably smaller than the number of independent reactive 
elements. Although we may still associate a mode of oscillation with 
each pair of conjugate roots, the mode concept rapidly becomes less 
exact and less useful as Q decreases.

2.8 A system with three p-roots
As shown by the foregoing discussion, an electrical system which con­
tains three nonreducible reactive elements has an associated algebraic

Fig. 2.8. Two-mesh dissipative circuit.

equation with three separate roots. No restriction exists as to 
whether reactive elements are inductive or capacitive. A simple 
system of this kind, which is capable of a very close physical approxi­
mation, is illustrated in Fig. 2.8. The equations which describe the 
transient behavior are conveniently written in terms of the differ­
entiating operator

p = d/dt. (2.25)
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In this notation we have

« = (/? + pL)^, (2.26)
v = (kR + l/pC)i2, (2.27)

and
ii + ii + (phC)v = 0. (2.28)

Elimination of the currents leads to:
v vnC) x lp n + hPCv = o, (2.29)R + pL 1 + kRpC

which becomes upon expansion
41 + p(kRC + hRC + RC) + p/LC + hLC + khR2C2)

+ p^khRLC2)] = 0. (2.30)
This differential equation in v will have a solution of exponential 

form, provided the exponents satisfy eq. 2.30, now regarded as an 
algebraic equation in p. It is known from the theory of algebraic 
equations that eq. 2.30 has three roots, at least one of which is real.264 
The other two roots are either real or a conjugate complex pair.

It is instructive to examine the circumstances under which eq. 2.30 
has a pair of pure imaginary roots, because this situation corresponds 
to the condition of sustained oscillation in the physical circuit. To be 
consistent with previous work, all the reactive elements are assumed to 
be positive, so that L, C, and h are positive quantities. Physical 
consideration indicates that one resistance—and hence the factor k— 
must then be negative in order to maintain steady oscillations. The 
analysis is facilitated by assuming that the multiplier of v in eq. 2.30 
is factorable in the form

(p — oi)(p + fa') (p — fa) = 0, (2.31)
where a and w represent, respectively, the real and imaginary roots.

The expansion of eq. 2.31 yields a new third-degree equation in p:
p3 — p^a + pw2 — aw2 = 0. (2.32)

The corresponding coefficients in eqs. 2.30 and 2.32 must evidently be 
made equal, so that we have

L + hL + khR^C 
khRLC J (2.33)

I k -fi h -)- 1
y khLC ’ (2.34)
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and
aw2 = -A/khRLC\ (2.35)

The relationship which must exist between the resistances is found 
by equating eq. 2.35 to the product of eq. 2.33 and the square of eq. 
2.34. Upon expanding the immediate result and collecting terms, a 
second-degree equation is obtained in k and R :

L -f- 2hL T h^L -|- kL T khR^Ctf -|- h 4- k) =0. (2.36)
Inspection shows that this equation can be satisfied only if k is nega­
tive, as was previously indicated from physical reasoning.

Because w is assumed to be a real number, it follows from eq. 2.34 
that

|fc| > h + 1. (2.37)
Finally, the additional requirement that the factor a is negative may 

be imposed. If this were not so, a simple exponential term expanding 
without limit as time went on would be present, and sustained oscilla­
tions would not exist in any practical sense. The condition a < 0, 
when applied to eq. 2.35, shows that R must be negative, because k 
is negative. Physically, this condition indicates that an expanding 
transient will result if a negative resistance completes the mesh con­
taining the two positive capacitances. It follows that sustained 
oscillations can exist only if the coil resistance R is negative and the 
condenser resistance kR is positive.

The interpretation of the results is simplified by making the further 
substitution

uL/R = Q, (2.38)
which makes Q negative if R is negative. Multiplying eq. 2.36 by 
u2L, substituting eq. 2.38 and the square of eq. 2.34, we obtain

Q — f h k 
” V-k-(l + h)2

A still further restriction on k is now recognized, in that the de­
nominator of eq. 2.39 can be real only if

\k\ > (1 + À)2. (2.40)
The rapidity with which the undesired transient decays may now be 

expressed by substituting eq. 2.38 and 2.34 in eq. 2.35 to obtain a 
ratio between the magnitudes of the real and the imaginary roots,

“ = __ zl__  . __ z2__ (2 41)
w ^3hkRLC2 ML2C2 V ;
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which reduces to

a —Qkh
- = G—FT---- 777 nepers per radian.u (k + h+iy

(2.42)

In a system which is to produce sinusoidal waves it is ordinarily 
desirable to make the reactive terms large compared to the resistive 
terms. This corresponds to a large numerical value in eq. 2.39. 
Avoiding the degenerate case in which h = 0 and k = — 1 by making h 
considerably larger than one, and satisfying eq. 2.40, we find that the 
numerator of eq. 2.39 is approximately proportional to k. Large 
values of Q are therefore to be secured by making k nearly equal to 
-(1 + A)\

A numerical example serves to clarify the ideas involved. Let 
h = 9 and k = —101 ; whereupon, from eq. 2.39,

Q = -91 (2.43)
From eq. 2.34,

1 / —91 1
w = = °-316 -%=• (2.44)

\LC '—909 VLC

The decay rate is, from eq. 2.42,

a -91 X 101 X 9
(-91)2

= —9.96 nepers per radian. (2-45)u
That is, the simple transient decays through 2ir X 9.96 = 62.7 

nepers during the period of a single cycle of the desired oscillation. 
It should be noted that in the present case the ratio of a to expresses 
the behavior of two different signals, not the rate of decay of a sinusoid.

In practical oscillators a real root in addition to the desired pair of 
imaginary roots is often present. The foregoing discussion, therefore, 
has considerable interest. In actual circuits, however, it is seldom 
necessary or practical to make a/to so large.

PROBLEMS
2.1. Derive eq. 2.1.
2.2. Derive the equation corresponding to eq. 2.1 for the transient in an RL 

network.
2.3. Sketch and interpret the curves corresponding to Fig. 2.1 for the RL 

network.
2.4. Set up and solve the differential equation for the current i in Fig 2.2.
2.5. Prove that eq. 2.18 is correct even if Q is low.
2.6. Express a and 6 in decibel notation.
2.7. Prepare a table relating Q, bandwidth, a, 6, and the decibel equivalents of 

the latter.
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NEGATIVE RESISTANCE
OSCILLATORS

Before proceeding further with purely analytical work it seems 
desirable to examine some physical problems. Such a procedure 
serves to justify the mathematical methods used, which might other­
wise appear arbitrary and somewhat artificial. Moreover, the 
physical principles developed serve as a very useful guide in establish­
ing and understanding the mathematical solutions.

3.1 Negative resistance
In a linear circuit the d-c resistance of any element or branch may be 
defined uniquely as the ratio of the terminal voltage to the current. 
This definition may be extended to include alternating currents by tak­
ing the resistance as the real part of the phasor ratio of the voltage to 
the current. Moreover, it is easy to show that this definition is 
equivalent to the ratio of the power dissipated to the square of the 
effective current, a definition which is sometimes more convenient in 
application.

In nonlinear systems an acceptable definition is far less simple. 
Some of the difficulties are apparent from inspection of Fig. 3.1, which 
shows an idealized volt-ampere characteristic similar to that of a glow 
discharge. The voltage is a single-valued function of the current, but 
not vice versa. It is therefore possible to show as additional single­
valued functions of the current, the ratio e/i and the slope or derivative 
deI di. It is seen that the ratio e/i varies greatly with variation of 
the current but at least is always positive. The slope, on the other 
hand, is not only quite variable but is actually negative over a con­
siderable range of current.

The quantity de/di, which has the dimensions of a resistance, is 
called the dynamic resistance and is very useful in oscillator theory 
and in all kinds of problems related to nonlinear resistances. Physi- 
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cally, it is the resistance which would be observed by superimposing a 
very small alternating current upon the direct current at the point in 
question. The simple ratio e/i is much less useful and will not be dis­
cussed further.

It should be noted that no mention of the time variable was made 
in the preceding discussion. Fortunately, the volt-ampere character­
istics of vacuum tubes and other useful negative resistance devices are 
substantially independent of time. That is, the points of a curve 
such as that of Fig. 3.1 are traced out in exactly the same manner 
whether the current and voltage are varied rapidly or slowly. In 
fact, a nonlinear device is identified as a resistance by the fact that the

voltage is a single-valued function of the current or vice versa.44 A 
general nonlinear impedance, in contrast, does not have this property 
and comprises a linear or nonlinear resistance in conjunction with a 
linear or nonlinear reactance.

It should be recognized that no physical device constitutes a perfect 
nonlinear resistance, any more than a physical coil constitutes an 
ideal inductance.46 138' 257 In both cases parasitic effects are present 
and become important if the frequency is carried sufficiently high. 
These parasitic effects are quite complicated to analyze and are 
ignored whenever possible. They ordinarily set the upper limit on 
the frequency which a particular form of oscillator may produce, and 
are important only at frequencies near that limit.

Negative resistance characteristics fall into two distinct and impor­
tant classes. When, as in Fig. 3.1, the voltage is a single-valued func­
tion of the current, the characteristic and the device which it repre­
sents are referred to as current-controlled. Devices in which the current 
is a single-valued function of the voltage are referred to as voltage- 
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controlled. No negative resistance device can possess a volt-ampere 
characteristic which satisfies both conditions, because this would 
require the slope to be negative over an unlimited range of current 
and voltage. Such a device would be capable of supplying infinite 
power to a suitable load, in obvious violation of the principle of con­
servation of energy.

No device is known which fails to fall into one of the two classes, 
but the existence of such a behavior is regarded as possible. A volt­
ampere characteristic which is not single-valued with respect to either 
variable is shown in Fig. 3.2. It is interesting to note that the charac­
teristic sketched is stable with respect to a constant voltage in series 
with a fixed resistance which lies in the range between the values cor­
responding to the dotted lines. Therefore, such a characteristic, if it

Fig. 3.2. Hypothetical characteristic.

existed, could actually be observed and plotted. It appears safe to 
predict that such a characteristic, even if available, would be of quite 
limited usefulness.

3.2 Negative resistance devices
A great variety of devices possess a region of negative slope in their 
volt-ampere characteristic; that is, they possess the property of 
dynamic negative resistance. Two of the more important of these are 
described in the following paragraphs.

The Transitron. A conventional pentode, when connected to pro­
duce a two-terminal negative resistance, is referred to as a transi­
tron.45’ 219 A suitable arrangement and the corresponding character­
istic are shown in Fig. 3.3. Because the operation is sufficiently similar 
to that for which tubes are designed, the governing tube parameters are 
normally held to reasonable tolerances in manufacture. Therefore, 
tubes of one type, at least from a given manufacturer, produce transi­
tron characteristics which are quite similar.

The shape of the characteristic depends upon the action of the
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suppressor grid in diverting electrons from the plate to the screen. 
The behavior is conveniently explained by remembering that, pro­
vided V < Vo, no electrons can be captured by the suppressor; there­
fore, the total cathode current is equal to Ii + I, and is governed 
almost entirely by the potentials of the control and screen grids as an 
equivalent triode.

For values of V substantially less than Vo, the suppressor grid is so 
negative with respect to the cathode that no electrons can reach the 
plate, and 7i is zero. When V = Vo the suppressor is at cathode 
potential, and the plate current Zi is relatively large in comparison 
with I. In ordinary tubes the suppressor grid has considerably more

(a) (b)

Fig. 3.3. Pentode as a transitron: (a) circuit arrangement and (b) volt-ampere 
characteristic.

control over the plate current than does the screen, so there is a region 
in which increase of screen (and suppressor) potential results in a 
decrease of screen current. The resulting characteristic represents a 
voltage-controlled negative resistance as shown. The greatest 
(negative) slope corresponds to the minimum value of negative 
resistance, which lies in the range of 500 to 10,000 ohms for present­
day tubes. For values of V > Vo the suppressor is positive with 
respect to the cathode and draws current. This somewhat affects 
the shape of the characteristic curves in this region, as indicated in 
Fig. 3.3.

The coupling battery Vo is inconvenient and undesirable in practical 
systems. It is replaced, without significantly modifying the action, 
by a coupling condenser from screen to suppressor and a grid leak 
from suppressor to cathode. A suitable negative bias is built up by 
rectification, exactly as at the control grid in more conventional 
circuits.

The Dynatron. A vacuum tube which produces a negative resistance 
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by the secondary emission of electrons from the plate is called a 
dynatron.148 A tetrode connected as a dynatron is shown in Fig. 
3.4. The shape of the characteristic curve depends upon the proper­
ties of secondary emission. For low values of the plate voltage v 
the energy with which electrons from the cathode strike the plate is 
insufficient to dislodge secondary electrons. Thus the plate retains 
essentially all the electrons which strike it, and the current increases 
approximately as the three-halves power of the voltage v, according to 
Child’s law. At Vi, which is usually about 10 volts, the plate collects 
nearly all the electrons which pass through the screen grid.

When the plate voltage is increased beyond Vi, the velocity with 
which electrons strike the plate is also increased, and some of them are 
able to dislodge other secondary electrons, which are attracted from

(a) (&)

Fig. 3.4. Dynatron oscillator: (a) circuit arrangement, and (6) nonlinear 
characteristic.

the plate to the more positive screen grid. These electrons serve to 
decrease the plate current, producing a corresponding increase of 
screen current. The number of secondary electrons steadily increases 
with increase of plate voltage until at V2 it equals the number of 
primary electrons, and the net plate current is zero. For a range of 
plate voltages the plate current can actually become negative, with the 
screen current exceeding the cathode current. In practice, this situa­
tion may lead to difficulty with excessive heating of the screen, which is 
ordinarily designed to carry only a relatively small current.

As the voltage of the plate approaches the screen voltage V3 there 
are still plenty of secondary electrons, but they are no longer able to 
reach the screen, and are forced to return to the plate. For plate 
voltages greater than V3 the plate current and screen current approach 
constant values, as is desired in ordinary applications.

The control grid serves as a convenient means of controlling the 
total number of electrons which leave the cathode. The principal 
effect of the control grid voltage E is to change the current scale of 
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the plate characteristic. The fact that it changes the slope of the 
curve without substantially changing the shape is useful in a number 
of applications.

3.3 The dynatron oscillator
A very simple and convenient oscillator results from the combination 
of a suitable antiresonant circuit with a vacuum tube operated as a 
dynatron.108’273 It is shown in Chapter 18 that sustained oscilla­
tions are produced only when an antiresonant circuit is associated 
with a voltage-controlled negative resistance device or when a resonant 
circuit is associated with a current-controlled negative resistance 
device. Figure 3.4a shows a complete dynatron oscillator with appro­
priate biasing batteries and by-pass condensers. The effects of 
unavoidable dissipation in the plate coil, together with any useful 
load, are accounted for by the shunt conductance G. The inductance 
and capacitance are thus represented as loss-free. A line having a 
slope which is the negative of G, commonly called the load line, is 
shown superimposed upon the associated volt-ampere characteristic. 
It is seen that the load line is less steep than the dynatron character­
istic at the operating point, Vj. Therefore, the negative resistance of 
the tube is numerically smaller than the positive resistance of the 
tuned circuit or tank. Under these circumstances, as was shown in 
Chapter 2, oscillations, if once started, will build up or increase with 
the passage of time.

The final amplitude which will be reached by these oscillations and 
the exact frequency which will be produced depend upon both the 
shape of the volt-ampere curve and the element values in the resonant 
circuit. That is, both the final frequency and the amplitude depend 
upon the nonlinearity of the characteristic curve of the negative 
resistance device.

3.4 Intermodulation
The general nature of the problem of frequency departure in dynatron 
and other negative resistance oscillators may be understood by refer­
ence to well-known modulation theory. The explanation is most 
conveniently conducted in terms of successive approximations with 
reference to Fig. 3.5a, in which Z is a passive linear circuit and p is a 
nonlinear negative resistance.

A first approximation to the true condition of operation is that v is a 
sinusoidal voltage at the resonant frequency. A necessary conse­
quence of this assumption is that the current wave i contains sub­
stantial components of harmonic frequency as well as of fundamental 
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frequency, because p is nonlinear. A second approximation is now 
obtained by the knowledge that v must contain at least small harmonic 
voltages because of the harmonics in i which flow in the known imped­
ance of the resonant circuit. Moreover, in the normal arrangement 
shown, the harmonic currents flow principally through the condenser 
so that the harmonic voltages are effectively in quadrature with the 
fundamental voltage.

The crucial step in the argument is based upon the modulating 
properties of a general nonlinear impedance subjected to two or more 
frequencies. It is well known that if a voltage containing a group 
of frequencies/i, fa, fa, fi, etc., is applied to a general nonlinear imped-

Fig. 3.5. Negative resistance oscillator: (a) general form and (6) specific 
arrangement.

ance the resulting current will contain, among the array of all possible 
harmonic and sum-and-difference terms, the following frequencies:

fi — fi, fs — fz, fi — fs, fi — 3/i, fa — 2/2, ft — 3/i, fa — 4/i,
fi — 5/i, etc.

In the present case, /1 may be taken as the fundamental frequency, 
fa as the second harmonic, etc. Accordingly, all the terms enumerated 
above represent current of fundamental frequency contributed by the 
nonlinearity of the characteristic. Moreover, the phase of the har­
monic voltages is such that these additional components of funda­
mental current are in quadrature with the principal one. Therefore, 
in a nonlinear resistance at the fundamental frequency the current and 
voltage are not in phase if harmonics are present. That is, nonlinearity 
gives to a resistance the essential properties of a reactance. Excellent 
general discussions of this property have been given by Peterson236 
and by Espley.87

Returning to the negative-resistance oscillator, we see that the 
action of the harmonic voltages upon the nonlinear resistance will 
produce an effective phase shift between the fundamental components 
of v and i. Accordingly, the next approximation involves a change, in 
this case a lowering, of the frequency and a readjustment of the volt­
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ages and currents. With a sufficient number of trials, it is possible to 
determine a voltage wave of such frequency, amplitude, and harmonic 
content that the current which results from the application of this 
wave to the nonlinear negative resistance is equal and opposite to that 
which results when it is applied to the resonant circuit. The process 
for determining the amplitude and details for determining the fre­
quency are presented in the following section.

3.5 Calculation of amplitude
It is clear that stable oscillations can exist only if the power supplied 
per cycle by the negative resistance p is equal to the power dissipated 
per cycle in the positive conductance G, and if the reactive currents in 
the coil and condenser are in equilibrium.49 The conditions which 
lead to this balance are found by assuming an amplitude and phase of 
oscillation, determining the associated unbalance, and correcting the 
assumption in such a way as to obtain a better approximation. If, 
as is usually true, the Q of the resonant circuit is fairly high, it is 
appropriate to assume that the operating frequency is equal to the 
resonant frequency and that the voltage wave is sinusoidal. This 
assumption calls for a unique value of sinusoidal current in the resonant 
circuit and for a different and nonsinousoidal value of current in the 
negative resistance device. However, the circuit connections are 
such that these currents must be equal in the oscillating condition. 
Therefore, it is necessary to modify the assumed voltage wave to a 
slightly nonsinusoidal form to produce equilibrium. The procedure of 
successive approximations is used because of the difficulty of a direct 
analytical solution.

It is convenient to start the process by assuming various magnitudes 
of sinusoidal voltage at the resonant frequency and determining the 
current waves which result. An example of the process used is shown 
in Fig. 3.6. Horizontal and vertical time scales are drawn in con­
junction with the volt-ampere characteristic, and a sinusoidal voltage 
wave of reasonable magnitude is assumed. The corresponding current 
wave is markedly distorted and has a prominent third harmonic. 
Choice of a somewhat larger voltage wave would have resulted in a 
much more distorted wave with even greater harmonic content. It is 
important to note that the magnitude of the fundamental component 
of the current wave actually decreases with increase of voltage, whereas 
the magnitude of the harmonic currents increases. In fact, there is 
some critical voltage amplitude for which the fundamental component 
of current actually vanishes; for still larger amplitudes the phase of 
the fundamental current reverses and the property of negative resist-
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ance is lost. Therefore, it is possible for the harmonic currents to be
very large in comparison to the fundamental component. This fact,
which has sometimes been overlooked, is important in explaining
the behavior of negative-resistance oscillators. The variation of

Fig. 3.6. Construction yielding the current wave corresponding to an assumed 
sinusoidal voltage.

fundamental current with voltage is shown in Fig. 3.7. It is seen 
that the tube current is substantially proportional to the voltage for 
small values, but rapidly decreases to zero as the voltage is further 
increased.

Fig. 3.7. Variation with amplitude of the real components of current at funda­
mental frequency.

The equilibrium amplitude is indicated by point A, where the real 
component of fundamental-frequency current is equal to that produced 
by the tube. This balance is not affected by harmonics produced in 
the tube or the resulting frequency shift unless the resonator presents 
an appreciable resistive component to the harmonic currents. Should 
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this be true, the fundamental-frequency current produced by inter­
modulation in the nonlinear device is not in quadrature with the basic 
term and the effective value of negative resistance changes.

3.6 Calculations of frequency
Several methods exist for calculating the extent to which the frequency 
is modified by the presence of harmonic currents.1419' 217 One of the 
simplest is due to Groszkowski,121 who makes use of the fact that the 
negative resistance device is, by its basic nature, unable to store 
energy. This fact is represented in terms of Fig. 3.5 by the equation

fidv=O, (3.1)

which states that over any closed cycle the net energy is zero. This is 
necessarily true if the current is a single-valued function of the voltage, 
and could be true in a special case for a multiple-valued function such 
as that shown in Fig. 3.2. The important thing, however, is that it 
must, by definition, be true for any voltage-controlled negative 
resistance.

The next step is to assume that the voltage and current waves are 
periodic and are expressible in the usual form of the Fourier series,

OO

i = la sin (awt + <f>a) (3.2)
a = 1

and
00

v = Vb sin (bwt + ^j), (3.3)
b = 1

where w is the actual operating frequency and </> and represent phase 
displacements. A necessary consequence of eq. 3.3 is the equation

eo

dv = bwVb cos (but + /t) dt. (3.4)
b = i

Substitution in eq. 3.1 with proper attention to the limits yields
00 ( 00

i dv = 0 = bwIaVb sin (a&t + <j>a) cos (but + V'b) dt, (3.5)

where the double summation is taken to include all possible products. 
Because the series are known to be absolutely convergent for the func­
tions of present interest it is possible to interchange the order of sum­
mation and integration and to apply a well-known trigonometric 
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identity to obtain

00 , 00

0 = ib^IaVb {sin [(a + b)a>t + 0O + ^b]
a = M>=l

+ sin [(a — b)cùt + il>a — 0j] I dt. (3-6)

This integral is zero for all terms in which a b, because the integral 
describes a discrete number of complete cycles in the range of interest 
and thus represents no net area. Therefore, terms in which a b are 
rejected, and the substitution of a for b is made to permit complete 
evaluation of the integral.

0 = iauIaVa
a = 1

Jo lsin + 0a + 0a]

+ sin [<t>a - 0a]} dt. (3.7)

The time variable term again can make no contribution over a 
complete cycle, so the expression reduces to

0 = ) ^ao>IaVa {sin (0O — 0 a)]---- (3.8)

Division by the various quantities which are independent of a leads 
to an important result

0=2, a^aVa sin (0O — 0a). 
a = 1

(3.9)

Although the expression just derived does not give the operating 
frequency explicitly, it does permit calculation of this frequency for 
any particular circuit. The first step in this procedure is to substitute

0a 0a, (3.10)

which represents the phase angle of the tuned circuit at the funda­
mental and harmonic frequencies. Moreover, reference to Fig. 3.5a 
shows that

Ua sin 0a IaXa, (3.11)

where Xa is the reactance of the tuned circuit. Therefore eq. 3.9 
reduces to

00

0 = al2xa. (3.12)
3=1
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Alternatively, we may use the admittance form and write

Ia sin 6a = VaBa, (3.13)
which leads to

ao

0=2 aVa2Ba, (3.14)
a - 1

where Ba is the susceptance of the tuned circuit.
Equations 3.12 and 3.14 show that the presence of harmonics will 

always reduce the frequency in a simple tuned circuit. This is true 
because the impedance or admittance is capacitive at all harmonic 
frequencies. A summation to zero in eqs. 3.12 or 3.14 is therefore 
possible only if X or B has the opposite sign at the operating frequency, 
which must be below the resonant frequency.

3.7 Application to a simple circuit
The simple tuned circuit of Fig. 3.5b has an admittance of the form

Y=G + X + ^-- (3.15)

The susceptance or imaginary part is simply
B = uC - 1/wL. (3.16)

The substitutions
coo = 1/LC, (3.17)

zu = al&o! (3.18)
and

Q = woC/G, (3.19)
together with the fact that f = 1, reduce the susceptance expression to

B(O) = QG(a2 — l)/a (a 1) (3.20)
and

Bi = QG^ - l/{) = 2QG(i - 1). (3.21)
The additional substitution

ma = Va/Vi (3.22)
reduces eq. 3.14 to

1 - £ = I 2 m“2(a2 -1)- 

a = 2

(3.23)

As a numerical example, let the voltage wave contain only a third 
harmonic component, which is 5 per cent of the fundamental. Then



That is, the operating frequency differs from the natural frequency by
one per cent.

By a corresponding analysis based on impedances and currents we
may obtain
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by eq. 3.23 1 - f = 0.01. (3.24)

where the new parameter is defined by
Ha 1a!'ll- (3.26)

Because the amplitude of oscillation, and hence the ratios of har­
monics to the fundamental current, is established by the conductivity 
G and the negative resistance characteristic, we may interpret eq. 
3.25 as showing that the frequency deviation due to nonlinearity 
varies inversely with the square of the resonator Q. This is a very 
important and general conclusion.

PROBLEMS
3.1. Show that the definitions of resistance in Section 3.1 are equivalent.
3.2. Consider a volt-ampere curve similar to that of Fig. 3.4b but having the 

shape of one full sinusoidal cycle. Evaluate e/i and de,di with respect to the 
center as an operating point.

3.3. Assuming that the above volt-ampere characteristic covers a total range of 
100 volts and has a maximum negative conductance of 200 micromhos, and that 
the associated passive conductance is 100 micromhos, calculate the amplitude of 
oscillation by the method of Section 3.5.

3.4. Using eq. 3.25 and the current distribution associated with Prob. 3.3, 
calculate the fractional frequency shift which exists if the passive circuit has a Q 
of 50.

3.5. In a general way, show why a simple series-resonant circuit cannot produce 
stable oscillations if connected to a voltage-controlled negative resistance.
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NONLINEAR OSCILLATIONS

In the foregoing chapters it has become clear that much may be 
learned about oscillators by suitable use of linear equations. It has 
also developed, however, that many important phenomena require 
nonlinear equations for their analysis. This chapter is devoted to a 
development of some of the simpler aspects of nonlinear behavior. 
The reader who wishes additional material on this extensive subject is 
referred to the books by Minorsky211 and by Kryloff and Bogoliuboff.177

4.1 A nonlinear system

It is convenient to proceed by generalizing the system treated in 
Chapter 2 to include a single nonlinear negative resistance. Such a

Fig. 4.1. Nonlinear oscillatory circuit.

circuit is shown in Fig. 4.1. The negative resistance may be identified 
with a dynatron or a pentode connected as a transitron, as described 
in the previous chapter. All known negative resistance devices have 
the property of nonlinearity if the amplitude of oscillation is sufficiently 
large. Otherwise, an indefinitely large amount of power could be 
drawn by a suitable load, a violation of the principle of conservation of 
energy.

The analysis begins with the characteristic of a typical negative 
resistance device, as shown in Fig. 4.2. The curve, which may be 
obtained experimentally, is relatively complicated and is not repre­
sentable by any simple equation. For our present purposes it is 
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sufficient to represent this characteristic symbolically as

ii = F(v), (4.1)
where v represents the difference between the instantaneous potential 
and a bias voltage Vo- The other elements of Fig. 4.1 are readily 
identified with the passive linear tank circuit. All capacitances, 
including those of the tube, coil, and wiring, are lumped in C. All 
losses, including those of the coil, condenser, and any useful load, are

accounted for by the shunt conductance G. The inductance of the 
system is represented by L.

4.2 The differential equation
The differential equation which describes this system may be written 
in several forms. For present purposes, however, it is most convenient 
to use the form which results from application of Kirchhoff’s current 
law

FÇv) + C(dv/dt) + Gv + i = 0, (4.2)
where i, the current through L, is related to the voltage across the 
system by the auxiliary equation

v = L{di/dt). (4.3)
4.3 Solution by isoclines
The differential equations above involve both current and voltage, 
which vary with respect to time. Ordinarily we would eliminate 
either v or i between these equations and proceed to determine the 
variation of the other with respect to time. In the present case, 
however, the undefined function F greatly complicates this procedure. 
Accordingly, it is expedient to eliminate the time variable and study 
the relationship between v and i, following a method devised by 
Liénard189 and explained very clearly by le Corbeiller.186 The result­
ing plot is appropriately called a cyclogram.
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The elimination of t is accomplished by use of the derivative identity

dv/dt = (dv/dx) ■ (dx/dt), (4.4)
where x is any variable. In the present case it is convenient to use

x = i. (4.5)
In addition it is desirable to use a constant multiplier to change the 
voltage variable such that

v = ku. (4.6)
With these substitutions eq. 4.2 becomes

F(ku) + (k^C/L) • {du/di)u + Gku + i = 0. (4.7)
By choosing

k = VL/C (4.8)
and

/(u) = F(ku) + Gku, (4.9)
and transposing, we obtain

du/di = — [i +/(u)]/u (4.10)
or

di/du = —u/{i +/(u)]. (4.11)
In eq. 4.11 the slope di/du is determined as soon as the variables i 

and u are specified. Moreover, the form is such that this slope may 
be determined very rapidly on a graphical basis.

The basic idea is simple and may be stated as follows: If the cur­
rent and voltage at any instant assume values i and u, then from eq. 
4.11 we can readily calculate the slope di/du and hence the incre­
mentally different values which i and u will have some short time 
later. By sufficient repetition of this process and use of finite incre­
ments it is possible to determine completely the variation of i and u 
from any assumed initial conditions.

In practice it is much more convenient to construct slope lines, 
called isoclines, from a large number of arbitrarily chosen starting 
points. Because these fines form a characteristic pattern, it is rela­
tively easy to trace out the curve which will develop from any chosen 
starting point.

4.4 Isocline diagram
An isocline diagram having coordinates u and i is shown in Fig. 4.3. 
The first step in the construction is to plot the negative quantity —/(u) 
versus u. This presents no basic difficulty because the constant
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k is fixed by eq. 4.8, G is known, and F(u) differs from the known F(v) 
only by a change of abscissa. The resulting plot of —/(u) in Fig. 4.3 
is somewhat flatter than the original F(v) because the positive con­
ductance G partially annuls the negative conductance of the electronic 
device. Moreover, a change in the ordinate scale to conform to the 
new abscissa is necessary. The curve is translated so that the origin 
of Fig. 4.3 corresponds to To, which is usually chosen near the center 
of the negative slope region. The numerical values used in Fig. 4.3 

correspond to those of Fig. 4.2 with the additional parameters G = 
2 X 10—4 mho (5000 ohms), L = 2.5 X 10—3 henry, C = 4 X 10—10 
farad, and k = y/L/C = 2500. These parameters were chosen in 
conjunction with the negative resistance characteristic, which has a 
value of —2500 ohms at Vo, to correspond to reference point 6 of 
Figs. 2.3 and 2.4. The associated oscillation, although considerable 
distorted, is harmonic in character.

The point a anywhere on the plane is now chosen arbitrarily, and 
construction lines are drawn as shown. It is seen that the length of the 
line segments are given by

bc = u; ad = i; and ac = i +/(u). (4.12)
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From eq. 4.11 we know that the slope is given by

di/dn = —bc/ac. (4.13)

Thus, the slope of the segment ba is the negative reciprocal of that 
called for in eq. 4.13. It is easily shown, by use of similar triangles or 
otherwise, that the slope of the segment ae, which is perpendicular to 
ba, is exactly —bc/ac as required. It should be noted that this con­
struction is correct only if the coordinates are such that u = 1 and i = 1 
occupy an equal distance. The significant fact is that whenever i and 
u have the values corresponding to point a the values are changing 
in such a way that the i vs. u curve is tangent to ae.

The isoclines, of which ae is only one example, are easily con­
structed by means of ruler and compasses as follows: (1) Select an 
arbitrary value of u such as d. (2) Draw a vertical line corresponding 
to this value of u. (3) From the intersection of this line with the 
function curve, draw a horizontal line to the i axis. (4) Using this 
point, such as b, strike a series of short arcs which intersect the original 
vertical line. All these arcs cross the vertical line at the correct 
angle and are therefore isoclines. Figure 4.4 shows a complete set of 
isoclines constructed on the same coordinates as Fig. 4.3.

4.5 The cyclogram

It remains to determine the direction or sense of rotation which cor­
responds to an increase of the time variable. This is found by refer­
ence to eq. 4.3, which shows that an increase, that is, positive incre­
ment, in time requires an increase, that is, positive increment in i 
whenever v and, hence, u is positive. This requires upward motion in 
the right half plane. Hence counterclockwise rotation in Fig. 4-4 cor­
responds to increasing time.

The entire performance of the system, including the build-up from 
arbitrary starting conditions and the steady state, is described by 
isoclines such as those of Fig. 4.4, which shows the behavior that follows 
from two different starting conditions. These curves are called cyclo­
grams. Note in particular that the steady state corresponds to a 
closed curve which is nearly symmetrical and approximately circular. 
The closed curve is exactly symmetrical if the original F(v) is sym­
metrical about the operating point. It approaches a circle as the 
function — /(u) approaches the horizontal axis. It will later be seen 
that a nearly circular cyclogram is associated with a quasilinear 
system in which k is relatively small.
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4.6 Effect of parameters
Our previous investigation of linear systems showed that the behavior 
is greatly affected by the relative value of the circuit parameters. A 
corresponding situation exists in nonlinear systems, as shown by inspec­
tion of eqs 4.6, 4.8, and 4.11. The horizontal scale of Fig. 4.3, and 
hence the shape of the nonlinear curve and the distribution of the 
isoclines, is governed by the value of k, which in turn is governed by the 
L/C ratio, and is closely related to the damping factor a. In making 
these comparisons it should be further noted by eq. 4.3 that v and i are 

Fig. 4.4. Isocline diagram for harmonic oscillation. Fig. 4.5. Isocline diagram 
for relaxation oscillation.

related by the inductance L. Accordingly, variation of L and C leads 
to a number of changes in the circuit behavior.

To illustrate the effect of a significant change of parameters, let 
us preserve the conductance G and the characteristic of the electronic 
device. The choice of L = 4 X IO-2 henry and C = 2.5 X 10—11 
farad yields k = 40,000 and leads to a considerably different behavior, 
as shown in Fig. 4.5. These parameters correspond to reference 
point 8 of Figs. 2.3 and 2.4, and therefore represent a case of relaxation 
oscillation.

Several marked differences exist between Figs. 4.4 and 4.5. Most 
conspicuous is the marked change in the scales of i, and u, with conse­
quent emphasis of the ordinate scale. The actual voltage excursion is
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comparable in the two cases, but the coil current, which is magnified
in the former, is much smaller in the latter. Finally, the cyclogram,
which is approximately circular in the former, is almost rectangular in
the latter.

4.7 Angular velocities
The question arises as to the time rate at which the cyclogram is 
described. This may be answered in part by defining the angle

6 = tan-1(i'/u). (4.14)
The time derivative of this angle is

dd v(di/dt) — i(dv/dt) , „ ,
“ = 37 = ---------2 , -2-------- (4.15)dt u2 + t

Equations 4.3 and 4.8 yield

di/dt = kv/L = NL/C ■ v/L = wou, (4.16)
where the undamped angular velocity is defined as

wo = \/VlC. (4.17)
Equation 4.2 may be solved for dv/dt, and by suitable substitutions 
yields

dv/dt = -[i + /(u)]/fcC = -w0[f +/(u)]. (4.18)
With these substitutions the angular velocity takes the form

w = wo (1 + (4.19)

In the quasilinear (high Q) case, the term/(u) is always small com­
pared to i, and the last term of eq. 4.19 is thus negligible. The cor­
responding cyclogram is nearly circular, and is traced out at a uniform 
angular velocity equal to w0.

In the heavily damped case, corresponding to relaxation oscillations, 
the situation is less simple. As we might anticipate from other experi­
ence, the angular velocity is nonuniform. Because the denominator 
of eq. 4.19 is approximately constant, the greatest angular velocity 
occurs in the regions where the product of i and /(u) is a maximum. 
It should be noted that the angular velocity can be either larger or 
smaller than wo. Furthermore, w equals wo at the crossings of the 
axes, where i and /(tj) are respectively zero.

In summary, the method of isoclines yields a cyclogram for any 
possible negative-resistance oscillator. Equation 4.19 gives the time
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rate at which the cyclogram is described and thereby permits the
current and voltage wave forms with respect to time to be constructed
by integration. Although somewhat tedious and inelegant, this
method has the merit of practicality in many cases.

4.8 Van der Pol’s equation
Important contributions to the nonlinear theory of oscillations have 
been made by van der Pol.322 His method is analytical rather than 
graphical, and accordingly is limited to negative-resistance character­
istics which are capable of mathematical expression throughout the 
range of interest. Quite frequently, oscillators are operated near

Fig. 4.6. Cubic volt-ampere characteristic and related functions.

the middle of the negative-resistance region of the electronic device. 
In such cases a simple cubic equation of the form

i = F(v) = — av -|- bv3 (4.20)
gives a fair approximation over the region of interest. Such a charac­
teristic is shown in Fig. 4.6. The cubic representation is a very rough 
approximation to typical experimental curves such as that of Fig.
4.2 , and results obtained thereby cannot be expected to explain all 
observed effects. However, a great deal of useful information is 
obtained by the study of this particular case. And the complexity 
of treating a more general case is such as to exclude it from this book.

The differential equation most suitable for this development is 
obtained directly from eq. 4.20 and Fig. 4.1:

-av + bv3 + C(dv/dt) + Gv + (1/L) [vdt = 0. (4.21)

Differentiating and multiplying by L gives
LC^v/dT) + [L(G - a) + SbLv^dv/dt) + v = 0. (4.22)

This differential equation is basic but involves coefficients which are 
inconveniently complicated. By several successive changes of vari-
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ables it is possible to obtain coefficients which are much simpler. This
procedure is desirable because it substantially reduces the difficulty of
solving the differential equation.

The first step in this reduction is a change in the time variable
accomplished by the substitutions

t = wat, 
where

«0 = i/VZc.
Introduction of this variable leads to*

d2v (a - G)L dv 3bL . dv+ ~=v2- + v = 0.
dr2 x/LC dr x/LC dr

(4.23)

(4.24)

(4.25)

The next step is the simplification of the second term by substitution of 
the variable

e = (a - G) Vl/C = (a — G)woL = (a - G)/w0C, (4.26)
which defines e as the reciprocal of the negative Q of the system, exclud­
ing the nonlinear term b. The magnitude of e will therefore determine 
the rate at which oscillations expand or shrink, and whether they will 
be harmonic or relaxation in character. Substitution of « yields

d2v
dr2

dv , L ,dv« — + 36 J- v — + v = 0. dr V C dr (4.27)

The remaining step in the simplification involves a change in the 
dependent variable

v = hu, (4.28)
where

h2 =----- or h = V(a- G)/3b. (4.29)
36 X/L/C

* This result may be obtained by a very general mathematical procedure. 
However, elementary methods serve to justify the present use. Differentiating 
eq. 4.23 gives

a>adt = dr.

Combination with the differential of voltage yields

dv/dt = u^dv/dr/

Differentiation with respect to t gives
d^v d dv , d dv „d^v
dt2, dt dr dr dr dr*
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The resulting differential equation, generally referred to as van der 
Pol’s equation, is fundamental, and describes a wide variety of systems

d~u „ du- e(l - w2) — + u = 0. (4.30)
dr dr

4.9 Solution of van der Pol’s equation
Van der Pol in his original paper322 offered two independent methods of 
solving eq. 4.30. These are now generally referred to as the methods 
of variation of parameters and equivalent linearization. A good dis­
cussion of available methods of solution is presented by Keller.186

The following paragraphs present a solution by the method of varia­
tion of parameters. In this method it is assumed that the conductance 
term is equivalent to a linear conductance which depends upon the 
amplitude of oscillation. The analysis involves separation of the 
original second-order differential equation into two distinct first-order 
differential equations, one of which determines the amplitude and the 
other the frequency of oscillation. In the present case the analysis 
begins by assuming that the voltage across the antiresonant circuit of 
Fig. 4.1 may be expressed by the equation

v = /iA(r) ■ cos r or u = A(r) • cos t, (4.31)

where A(r) represents an amplitude which varies relatively slowly with 
respect to time. Specifically, the amplitude shall not vary appreciably 
during any one cycle. This statement is expressed mathematically 
by the inequality

dA/dr«A. (4.32)

To justify this assumption it is necessary to restrict the conductance 
parameter e to small values by the additional inequality

e « 1. (4.33)

This restriction is of great importance because it limits the study to 
systems which produce harmonic oscillations. Such systems are 
referred to as quasi-linear because the nonlinear conductance or 
resistance terms are small compared to the associated susceptance (or 
reactance) terms, even though the conductance (or resistance) charac­
teristic itself is quite curved in the region of interest. Alternatively, 
we may say that a quasi-linear system is also a high-Q system because 
the stored energy is large compared to the energy gain or loss per 
cycle.

The analysis proceeds by noting that the solution assumed in eq.
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4.31 leads as a necessary consequence to the equality

u3 = A3 cos3 r = A3 (I cos t + | cos 3r). (4.34)
Furthermore, differentiation of eq. 4.31 with appropriate neglect of 
higher order derivatives of A yields

du t . dA— = — A sm r 4—— cos r (4.35)dr dr
and

d2w . „ dA .— —A cos r — 2 — sin r. (4.36)dr1 dr
An additional relationship which will be needed in testing the solution 
is obtained by differentiating eq. 4.34 and neglecting a number of small 
terms to obtain

^^=-|A3sinr. (4.37)
dr

Equating this to the formal derivative 3u2 du/dr leads to the desired 
relation

u2 f A3 sin r. (4.38)dr
The neglect in eq. 4.37 of terms which are only moderately small is 
justified by the fact that eq. 4.38 will in turn be multiplied by a factor, 
e, which is itself small. Substitution of eq. 4.35, 4.36, and 4.38 into 
4.30 yields

(
dA \ ( . . dA , , „ . \— A cos r — 2 — sm t I — 11 —A sm t + — cos r + f A sin r I dr / \ dr /

+ (A cos r) = 0. (4.39)

The first and last terms cancel, which indicates that, to the present 
approximation, the frequency is equal to the natural frequency of the 
resonator. Furthermore, the term e^dA/dr) cost is negligible com­
pared to the remaining terms. Multiplication by A and division by 
sin r permits writing the equation

(A2) - e (A2 - 1 A4) = 0, (4.40)dr
which represents the variation of the amplitude A with respect to 
time. Solution of this equation is facilitated by the temporary 
substitution

A2 = l/x (4.41)
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which leads to the simple differential equation

y + e (i - I) = 0.
(IT

(4.42)
The solution of this equation, as found by ordinary methods, is

x = i [1 + (4.43)

where to is the constant of integration, which depends upon the initial 
conditions, and e is the base of natural logarithms. Elimination of x 
leads to

4
(4-44>

and
2COST (A AES

u = = > (4.45)
Vl + (T^^

which describe the complete process of build-up and steady state of 
oscillation.

If, as is usually the case, oscillations start from a small amplitude 
it is necessary to assign t0 a large positive magnitude. The denomina­
tor then has a large initial magnitude, which decreases with time to a 
final value of unity. During the period of small amplitude the 
exponential term is large compared to one, and the oscillation takes 
the approximate form

u = 2[e-‘r«/2][eeT/2] cos t. (4.46)

The significant factor in this equation is the exponent er/2 which gives 
the rate at which the oscillations expand with respect to time. The 
correctness of this result is readily verified directly from eq. 4.30, 
since in the interval in question w2 is negligible compared to one.

Substitution of the original variables leads to the final result

4
3

COS (woi + d>o)
g— (t—t0)(a— G)/cy (4-47)

where the parameter </>o takes account of the oscillation phase at the 
initial instant specified by t0. In terms of the original parameters, 
the final peak amplitude v0 is given by

v0 = hA0 = 2h = (a — G)/b. (4.48)* o



54 NONLINEAR OSCILLATIONS
Until the amplitude v reaches the value v2 = 7(a — G)/b, the net
resistance is negative throughout the cycle. For amplitudes larger
than v2 the net resistance is positive at each peak, and the rate of
expansion is checked. The initial rate of build-up, consistent with
eq. 4.46, is governed by the exponent

tr (a — G)L t (a — G)
2 “ 2 VLC VLC " 2C 1 (4.49)

which is recognized as the result achieved by linear analysis in Chapter 
2. The oscillation envelope, as given by eq. 4.47, is plotted in Fig. 
4.7. It is seen that the choice of the time variable is such that the 
oscillation reaches 0.707 of its maximum value at the instant t = to.

Fig. 4.7. Envelope of oscillation.

It is interesting to determine the point of zero slope of the character­
istic i = F(v) — Gv. From eq. 4.20 we may write for the total con­
duction current

ic = (G — a)v — bv3. (4.50a)
Setting the derivative equal to zero gives

difidv = 0 = a — G — 3bi>2, (4.505)
which yields as the point of zero slope in Fig. 4.6

v — V (a — G)/3b = h or u = 1. (4.50c)

4.10 Method of equivalent linearization177
The current which flows when a nonlinear resistance is subjected to 
a sinusoidal voltage may be resolved by means of Fourier’s series into a 
fundamental term which has the same frequency as the voltage, plus 
harmonic terms in which the frequency is an integral multiple of the 
fundamental. The fundamental current is in phase with the voltage 
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and has a magnitude which depends upon the voltage. Therefore, in 
terms of the fundamental frequency the nonlinear resistance may be 
replaced by a linear resistance, provided the magnitude is suitably chosen 
for the voltage in question. This is the basic idea of the method of 
equivalent linearization. To apply this idea to oscillators it is neces­
sary to generalize it to include the effect of a nonsinusoidal voltage 
wave, which consists of fundamental and harmonic terms. Again 
the current wave contains terms of fundamental and harmonic fre­
quencies. However, as shown in Chapter 3, the current and voltage 
of fundamental frequency are no longer in phase. Accordingly, the 
nonlinear resistance now requires a reactance as well as a resistance 
for its complete representation. Nevertheless, for any specified 
combination of fundamental and harmonic voltages, there is a linear 
impedance which draws the same fundamental current as does the 
nonlinear resistance. This impedance may be used as an undeter­
mined coefficient, subject to final evaluation, to determine the fre­
quency and amplitude of the steady state of oscillation.

This method as given by van der Pol322 will now be applied to solve 
eq. 4.30 for the steady-state oscillation. The first step is to multiply 
each term by u dr and to integrate over the not-yet-determined period 
of one full cycle:

/ U dr — eu— dr + I eu3 — dr + U2 dr = 0, (4.51) Jo dr Jo dr Jo dr Jo

where 0 is an angle nearly equal to 2?r which corresponds to one full 
period. The second and third terms vanish, as is easily shown by 
noting that

u du = | d(u2), (4.52a)

u3du = Id^), (4.526)

and by definition u has the same value at the beginning and end of any 
period.

The trial solution
u = A cos r (4.53)

identically satisfies the remaining terms of eq. 4.51, without restriction 
on A save that it be constant. Therefore, to the order of approxima­
tion that the voltage wave is cosinusoidal, the operating frequency is 
equal to the natural frequency of the resonator.

The amplitude is determined by multiplying each term of eq. 4.30 by 
the quantity {du/dr) dr and integrating over the cycle
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(edud2u i9 (du\2 fe -t/duX2

V Ta dr — « ( y I dr + I eu2 I — I dr
o dr dr Jo \dr/ Jo \dr/

CO J
+ / u — dr = 0. (4.54)

Jo dr

The last definite integral vanishes by direct integration to the form 
u2/2 as in eq. 4.51. The first integral is evaluated by use of the
identity

1 d /du\2 du d2u
5 dr \dr/ dr dr2 (4.55)

which reduces the integral to that of an exact derivative, 
leads to

Integration

(4.56)

which is zero by periodicity. The two remaining integrals are evalu­
ated by substitution of eq. 4.53,

A2 sin2 r dr = A4 cos2 r sin2 t dr. (4.57)

The evaluation of the left integral is well known. Since by eq. 4.53, 
0 = 2tt, the equation reduces to

7T = A2 (tt — sin4 t c/tJ-. (4.58)

Integration by means of Peirce’s235 formula 483 reduces the last term 
to 3tt/4 so that the amplitude becomes

A2 = 4 or A = 2, (4.59)
which is consistent with the steady-state value given by eq. 4.44.

4.11 Frequency correction
The method of equivalent linearization next introduces a correction of 
the frequency term by a variant of the method presented in the previ­
ous chapter. Integrating the first term of eq. 4.51 by parts yields

T = 6 du 7 — du.
= 0 dr (4.60)

Because du ¡dr must be periodic with the same period as u, it follows 
that the integrated term is zero, so that eq. 4.51 reduces to

T=edu , — du
= o dr u2 dr. (4.61)
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Use of the relation r = wof, transforms this expression to

J u>t = 0 u2ù}q dt. (4.62)

The next step is to assume that the voltage wave is represented by the 
Fourier series

a — co

u = 2 Aa cos (out + 0a), (4.63)
a = 1

whose derivative is
d a= 00

— = — / wAa sin (awt + 0«). (4.64)
dt

a = 1

Substitution in eq. 4.62 and integration yields
a = ao a = co

— 2 a2u2Aa2 = ra0 2 Aa2, (4.65)

which leads to the compact and important expression

a = 1

(4.66)

Consistent with the notation of Chapter 3, let
w = (4.67)

Forming 1 — w2/“o2 and using eq. 4.67, we have
a = oo

2 (a2 - ihV
1 - $2 = „----------- - (4.68)

2 a2X2
a = 1

where the combination of infinite sums is justified on the basis of 
absolute convergence from physical considerations. Although this 
result was derived on the basis of a cubic characteristic, it is correct 
for a single-valued characteristic of any shape. With the notation

ma = Aa/A lt (4.69)
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eq. 4.68 reduces to

a = 90
mo2(a2 - 1)

1 - J2 = --------- (4.70)
1 + a2m02

a = 2

Because the assumed system is quasi-linear, the harmonics in the volt­
age wave are small. For this reason the infinite sum in the denomina­
tor is negligible compared to unity, and eq. 4.70 reduces to eq. 3.23, 
ofathe previous chapter, as it should.

The frequency correction may also be expressed in terms of the Q of 
the system and the magnitude of the curvature of the original cubic 
function. It is known from eq. 4.47 that the voltage is given approxi­
mately by

v = v0 cos wot = Vf (a - G)/b cos “or. (4.71)

On this basis, the current wave through the nonlinear resistance is, 
by eq. 4.20,

i = —avo cos wot + hue3 cos3 wot, (4-72)
which reduces to

i = (%bvo3 — avo) cos wot — ibvoS cos 3woi. (4.73)

In terms of eq. 3.26,

n3 = ii/ii = — bvo2/(3bvoi - 4a) = — i (a - G)/G. (4.74)
Thus,

1 - ^ = (a - G)2/(16QG2), (4.75)
where

Q = w0C/G = (l/(?) N^C/L (4.76)

is a property of the passive elements only, and

a - G = e Vc/L (4.77)
Combining yields

1 - £ = «716, (4.78)

which is in agreement with a result given by Kryloff and Bogoliuboff177 
on page 40 of their book. Because e is the reciprocal of the small­
signal selectivity Q, it is clear that Q should be kept high if good fre­
quency stability is required.
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4.12 Relaxation oscillations
In Chapter 2 it was shown that critical damping in the parallel circuit 
of G, C, and L occurs when the total conductance satisfies the equation

G = 2 VCJL- (4.79)

The boundary between harmonic and relaxation oscillations was 
defined as the negative of this value. In the present case the total 
conductance at small signals is given by (G — a). Consistent with 
eq. 4.77, relaxation oscillations* will occur if and only if

e > 2. (4.80)

Specifically, if condition 4.80 is satisfied a small disturbance will 
increase without reversal until its magnitude is sufficient to involve 
the nonlinearity of the characteristic. If 2, the first cycle is 
almost identical with all the following cycles. Experimental data 
showing the variation of oscillator behavior as e is varied and a very 
clear discussion of the effects involved are given by Appleton and 
van der Pol.13

Unfortunately, the mathematics of relaxation oscillations is in a 
most unsatisfactory state of development. For reasons that are not 
obvious, the methods just outlined, and all other known methods, fail 
to yield useful solutions. From practical experience, as well as from 
the cyclogram method, it is known that the solution is periodic, and 
that a Fourier series containing only a few terms gives a good approxi­
mation to the wave shape which is generated. However, the period 
does not depend in any simple way upon the circuit parameters, and 
no practical analytic means has been found for evaluating either the 
period or the relative amplitude and phase of the components.

The wave form produced by a typical relaxation oscillator is shown 
in Fig. 4.8. It is seen to be characterized by regions of small slope 
alternating with regions of large slope. This property forms the basis 
of a partial mathematical solution, which gives a certain amount of 
insight into the behavior. Because the region designated I in Fig. 
4.8 is nearly straight, the second derivative (curvature) term is small, 
and the behavior is governed principally by the second and third 
terms of eq. 4.30. Neglecting the first term of eq. 4.30 for treatment

* Van der Pol in a basic paper320 gives an excellent discussion of the fundamental 
properties of relaxation oscillators. Cyclograms and an analytic treatment similar 
to that given here are presented. However, it is inferred that e = 1 is the bound­
ary condition; and the apparantly erroneous statement is made that a finite value 
of inductance is required for any form of oscillation.
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of region I leads to

e(l — u2){du/dr) = u or (1 — u2)(du/u) — dt/e. (4.81)

Direct integration of this equation gives

In u — u2 ¡2 = r/e K or In u2 — u2 = 2r/e + 2K, (4.82) 

where K, the constant of integration, involves the displacement of the 
time scale. It is convenient to set K = 0 for a sample calculation.

(a ) (6)
Fig. 4.9. Plot of: (a) 20 In u — 10u2 = t; and (6) a = 1 — e20r.

The additional arbitrary choice « = 20 (ten times the critical value) 
leads to the curve of Fig. 4.9a. It is seen that eq. 4.82 gives a good fit 
to the curve of Fig. 4.8, not only through region I, but also by accident 
through region II. This close fit arises because under the chosen 
assumptions the derivative term must pass from positive to negative 
through infinity as u passes through one.

In region III the function itself is relatively small, and is negligible 
compared to the slope and curvature terms, which are both large. To 
explore this region use eq. 4.30 with the last term omitted. The 
resulting equation

d2u/dT2 = e^du/dr) — eu\du/dr), (4.83) 
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integrates directly to
du/dr = e(u + KJ - t(u3/3f (4.84)

This expression is not readily integrated, but is capable of useful 
interpretation. In particular it shows that the slope du/dr must be 
zero for u + Ki = w3/3. (4.85)
Making the additional arbitrary assumption that Ki = — 1 reduces 
this expression to

3u — 3 = u3, (4.86)

which is satisfied approximately by
u = -2.104. (4.87)

Near the middle of region III, u2 is small compared to one; and it is 
possible to simplify eq. 4.84 by omission of the last term. The 
remaining equation is readily integrated to yield

u = - Ki. (4.88)

The new constant, K^, gives a choice of sign or direction but is other­
wise not important because it is interchangeable with a shift of the r axis.

The plot of this equation for = — 1, e = 20, and Ki = —1 as 
before is shown in Fig. 4.9b. The marked change in abscissa scale with 
respect to Fig. 4.9a is especially noteworthy because it indicates the 
extent to which different terms of the original equation vary in impor­
tance during the oscillation cycle. In the range — | < u < cor­
responding to region III of Fig. 4.8, eq. 4.88 is a relatively good 
approximation to the actual behavior of the system.

Figure 4.10 shows the results of a point-by-point calculation of eq. 
4.84. It is, of course, indistinguishable from Fig. 4.9b in the central 
region, and satisfies the condition of eq. 4.87. Superimposed upon this 
figure are the data of Fig. 4.9a, adjusted to the same abscissa scale 
and arbitrarily made to coincide at u = 1. It is seen that the several 
curves which have been calculated can be fitted together to describe 
substantially the entire cycle of Fig. 4.8.

Additional insight into the situation is gained by reference to Fig. 
4.6. It is seen that, for |u| > 1, the dynamic resistance of the total 
system is positive. In this region, therefore, the system is semistable; 
and the process of decay or relaxation occurs at a relatively slow rate, 
as |w| decreases toward unity, the dynamic resistance increases toward 
infinity; that is, the decay current becomes independent of the voltage. 
At |u| = 1 a marked change occurs, corresponding to the transition 



62 NONLINEAR OSCILLATIONS
between the curves of Fig. 4.10. When |u| becomes slightly less than 
one, the behavior is governed almost entirely by the interaction of 
the condenser and negative resistance (Fig. 4.1). The condenser 
voltage changes at a very rapid rate, which would be exponential 
except for the effects of the curvature of the characteristic. This 
behavior has already been presented mathematically in eqs. 4.83 and 
4.84.

It is interesting to note from Fig. 4.6 that the value of i is the same 
for u = — 1 and u = +2. This fact, together with eq. 4.87, strongly 
suggests that the rapid voltage excursion just described actually does

take place between the limits —1 and +2 or, alternatively, +1 and 
—2. In the region 1 < |w| <2 the behavior is, as previously noted, 
governed principally by the inductance and resistance. The charge 
on the capacitance decreases relatively slowly by a factor of two.

The total (normalized) period may be calculated approximately by 
use of the information already tabulated. From Fig. 4.9a it is clear 
that a period ri = 16.1 is required for u to decay from 2.0 to 1.0. The 
period required for u to reverse from +1.0 to —2.0 is approximately 
r2 = 0.2 from the isocline plot of Fig. 4.10. Adding and doubling 
these figures yields t0 = 32.6 for the total period. That is, for e = 20 
the total period is approximately 32.6/2tt or 5.2 times the period of the 
resonant circuit itself. This result agrees to within about 20 per cent 
with other theoretical and experimental results.

4.13 Summary

In this chapter we have explored some of the simpler aspects of the 
mathematics of nonlinear systems. In spite of the numerous simplify-
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ing assumptions made, the relationships are complicated. The treat­
ment of relaxation oscillations is even less satisfactory, because no 
single expression is adequate to describe the entire cycle of the gener­
ated wave.

In later chapters the same general methods will be used to explore 
the behavior of other systems, such as those with more than one 
resonant frequency, and those which oscillate at an integral fraction 
of an externally applied voltage. It is hoped that the mathematical 
methods now available will sometime be refined to facilitate a more 
complete analysis of these important practical systems.

PROBLEMS
4.1. Substituting i = 0.01 sin 50v in eq. 4.1 and letting G — 10-4, L = 10“3> 

and C = 10-10, calculate isoclines and a cyclogram like those of Fig. 4.4.
4.2. Repeat Prob. 1, changing only L = 10—l, and C = 10—12.
4.3. Evaluate the angular velocity at 45° intervals in Prob. 4.1.
4.4. Verify eq. 4.35.
4.5. Verify eq. 4.37.
4.6. Verify eq. 4.505.
4.7. Verify eq. 4.58.
4.8. Repeat the derivation of eq. 4.66, justifying the procedure.
4.9. Evaluate e in Problems 4.1 and 4.2.
4.10. Following the method of Section 4.11, derive the wave form associated 

with a = 11 X 10~6, b = 1 X 10-9, G = 1 X 10~s, L = 1, and C = 10-11.



5
FEEDBACK SYSTEMS AND

STABILITY CRITERIA

This chapter is devoted to an outline of existing feedback theory with 
particular emphasis upon the way it affects oscillators. This material 
is included for two reasons. (1) Negative feedback is applied directly 
in a number of oscillator circuits in the interest of stability. (2) 
Existing theory is highly developed and is sufficiently general to include 
cases of positive as well as negative feedback.

5.1 Nature of the problem
It is well known that vacuum tubes are neither as linear nor as stable 
as might be desired for many applications. In amplifiers, nonlinearity 
leads to nonlinear distortion and intermodulation effects; whereas 
changes of the parameters lead to variation of gain, impedance, and 
frequency response. Corresponding difficulties appear in oscillators 
and other devices which employ vacuum tubes. Because it has not 
proved feasible to construct vacuum tubes which are substantially 
free from these defects, much work has been done to develop circuits 
in which the important properties are insensitive to the variations of 
the parameters of the tubes employed.

In amplifiers it is possible to secure a remarkable reduction in the 
degree of nonlinear distortion by properly returning a portion of the 
output signal to the input terminals. The advantages of this arrange­
ment, which is referred to as inverse or negative feedback, appear 
first to have been recognized by H. S. Black.33 The mathematics of 
feedback systems has been extensively studied by H. Nyquist,228 
H. W. Bode,34 and others.208,237

A relatively large amount of feedback must be applied to an ampli­
fier if a significant improvement in stability and linearity is to be 
secured. It then becomes difficult to avoid oscillations, which would 
seriously interfere with the operation of the circuit as an amplifier.

64
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Much of the work which has gone into the analysis of feedback systems
has been directed toward overcoming this tendency toward uncon­
trolled oscillation. Fortunately, the analysis is sufficiently general to
be a substantial aid when oscillation is desired as well as when it is to
be avoided.

In amplifiers, as well as in oscillators, it is necessary to define the 
system under consideration with considerable care before we can make 
exact statements about it. For instance, the output load impedance 
may or may not be considered a portion of the amplifier, depending 
upon the conditions. As an example, consider a phonograph amplifier, 
which receives a small signal from the pickup device and delivers a 
much larger signal to the loudspeaker; here it would appear that 
neither pickup nor loudspeaker was part of the amplifier. However, 
the performance of the loudspeaker will depend upon the internal 
impedance of the device which drives it. Therefore, we must consider 
both pickup and amplifier in determining this impedance. Also, the 
behavior of the pickup depends upon the impedance into which it 
works. Therefore, the loudspeaker as a load must be considered as 
part of the amplifier in so far as it affects the input impedance.

When feedback is used the input and output impedances are likely 
to depend upon the associated load and source impedances, respec­
tively. Moreover, the behavior of the amplifier itself may be con­
siderably affected by these impedances. For example, an amplifier 
which operates quite satisfactorily under normal conditions may 
oscillate if the load or the source is disconnected. Therefore, in defin­
ing the amount of feedback and other properties, it is usually necessary 
to consider the entire amplifier system.

5.2 Effects of feedback
The various aspects of feedback are conveniently discussed with 
reference to Fig. 5.1, which shows a conventional amplifier in which 
feedback is produced by the relatively high impedance Z5. This 
arrangement is referred to as shunt or voltage feedback because the 
feedback path is connected in shunt with both input and output 
circuits and because the feedback action depends upon voltage rather 
than current.

The analysis assumes that the system is substantially linear for a 
sufficiently small input voltage V3. If the system is stable, this 
assumption is justifiable; if unstable, the analysis serves only to indi­
cate that fact. To simplify the analysis it is further assumed that 
Zi is very large.

The amplification or gain without feedback, u, is readily determined by



66 FEEDBACK SYSTEMS AND STABILITY CRITERIA
assuming Zj = By consideration of the output circuit as a
potentiometer, we see that

M = V2/V3 = kZ4/(Z2 + Z4), (5.1)

where k is the intrinsic amplification factor. In typical situations 
the voltage amplification is large (V2» Vi), and Z6 is large compared 
to all other impedances in the system (except perhaps Zi).

The magnitude of the voltage returned or fed back is measured by 
the parameter

d = Z3/Z5, (5.2)

which is seen to be the fraction of the output voltage which is applied 
to the input circuit.

Fig. 5.1. Amplifier with shunt feedback.

The amplification p! which exists when feedback is present is 
obtained from the two relations

V2/V! = kZ4/(Z2 + Z4) (5.3)
and

V4 = V3 + 0V2. (5.4)

Eliminating Vi and using eq. 5.1, we have
/ = V2/V3 = M/(l - Md). (5.5)

It is seen that m' becomes infinite when the product pB is equal to 
unity; this special condition corresponds to oscillation, because a 
finite output exists in the absence of an input.

The product ^d represents the loop transmission of the system and is 
a very important quantity. For reasons presented later, it often 
provides a more convenient criterion of stability than does the position 
of the system roots. The nature of this product is clarified by inquiry 
as to how it could be measured. From Fig. 5.1 it is seen that if the 
grid lead of the input vacuum tube were cut and a signal Vo applied to
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this grid, a voltage gV0 would be produced at the output terminals,
and a voltage /3/iV0 would be developed at the point where the cut
was made. Moreover, it is seen that the ratio of returned to supplied
signal would be the same and equal to pfi if the circuit had been
opened at some other point.

It should be pointed out that Fig. 5.1 represents a single-loop feed­
back system in which the loop transmission is zero if Z 5 is open or if 
any of the vacuum tubes is disabled. Conversely, a multiple-loop 
feedback system is one in which feedback may occur through two or 
more distinct paths. Multiple-loop systems are quite complicated 
and are discussed further only in the final section of this chapter.

A single-loop system is absolutely stable if the feedback loop is opened at 
any point; therefore, yP is a measure of the behavior which will result when 
the loop is closed.

5.3 Increase of stability
In the absence of feedback the overall amplification of an amplifier 
depends directly upon the condition of the tubes and the various 
related elements. Where several tubes are used in tandem, the 
amplification may vary rather drastically because all the tubes are 
likely to respond in the same way to such effects as heater voltage, 
plate voltage, or aging; and the overall amplification involves these 
separate effects as a product. This is represented mathematically by 
eq. 5.1 in which the amplification u involves k as a direct factor.

One of the most important properties of feedback is its ability to 
improve stability. The truth of this statement can be seen in a gen­
eral way by rewriting eq. 5.5 in the form

1
(1/m) - fi

(5.6)

It is practical to establish the condition /3 1/jx, in which case the
amplification with feedback, / is substantially equal to ( —1//3) and 
hence is nearly independent of the condition of the tubes and in fact 
of everything except fi, which involves only Z3 and Z5.

The improvement in stability is determined quantitatively by com­
paring the differential fractions dp/y and dp' /p'. The fractional form 
of the differential is appropriate because we are interested in the ratio 
rather than in the absolute amount by which amplification is reduced. 
Differentiating eq. 5.5 leads to

, , (1 — ui/dy 4- pfi dp
-------— (5.7)
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which, when divided by eq. 5.5, yields

~ (5.8)
M 1 — gp g

This is an important relationship because it shows that feedback has 
improved the stability, or reduced the variation of the amplification 
due to any cause, by exactly the same factor that it reduced the 
amplification itself. The improvement results from the fact that, with 
feedback present, the overall amplification depends principally upon 
passive elements, Z3 and Zs in the present example, which can be made 
muchmore stable than vacuum tubes.

In practice, the improvement of stability and other benefits of 
feedback are secured by first designing an amplifier which has an 
amplification considerably in excess of that actually desired. The 
excess amplification is then exchanged for improved stability, linearity, 
etc., by application of suitable negative feedback, based upon stable 
linear elements. However, there are grave practical difficulties in 
securing large amounts of negative feedback, especially across wide 
intervals of frequency, so that we should not enter lightly into such 
an undertaking.

5.4 Reduction of noise, hum, and distortion
Feedback may be employed to reduce the voltages which appear in 
the output due to distortion, hum, and certain forms of noise. We can 
prove this statement by referring to Fig. 5.1 and assuming that the 
output contains an undesired term, V5, in addition to the desired sig­
nal, kVi. In the absence of feedback the output voltage is given byV2 = (V5 + kVj) Z4/(Z2 + Z4). (5.9)
When feedback is applied the output of both desired and undesired 
voltages is divided by the factor (1 — g/3) as shown by insertion of VB 
in the equations which lead to eq. 5.5.

The useful signal output may now be restored to the value which 
would have existed in the absence of feedback either by increasing the 
input signal or by adding at the input a low level amplifier which is 
free from distortion, hum, and noise.

In practice, this increase of amplification is usually incorporated 
within the feedback path so that the pertinent comparison is between 
two amplifiers which have equal overall amplification and differ in 
the presence or absence of feedback. Because the added amplification 
system operates at a small signal level, it is relatively easy to meet
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the requirement of negligible distortion. Therefore it is quite practical 
by use of feedback to reduce distortion to the extent of the factor 
(1 — uft), which may be made large.

Feedback is equally effective in reducing harmonic distortion or 
intermodulation effects which result from the simultaneous presence 
of signals, whether the distortion arises in the output tube or in any 
other tube of the amplifier. Such reduction is of considerable impor­
tance, especially if none of the tubes is driven to the overload point 
and if several signals are present, as in telephone repeater amplifiers. 
If, however, some tube is overloaded, so that a violent curvature in 
the operating characteristic is involved, the action of feedback may 
produce objectionable intermodulation effects and harmonic distortion 
terms which would not otherwise be produced.

The conduction of vacuum tubes results from the motion of electrons 
in the space between the cathode and the anode. Because electrons 
carry a finite charge and are emitted in a random manner, the current 
flow is not perfectly smooth, but fluctuates in an irregular manner 
about some average value. This phenomenon, which is referred to as 
tube noise, is discussed more fully in Chapter 15. It sets a lower limit 
on the magnitude of signals which may be amplified by means of 
vacuum tubes. Ordinarily, the limit is established in the first tube 
where the signal is smallest.

We may readily show that feedback is unable to reduce noise pro­
duced in the first tube by comparing a feedback amplifier with one 
which does not employ feedback. We assume that both have equal 
amplification, that both employ the same input circuit and tube, and 
that all the noise is produced by the first tube of each amplifier. 
Because of the equality of amplification, both amplifiers produce the 
same output from a given input signal. And both produce equal 
noise outputs because the intrinsically higher amplification factor of 
the feedback system leads to a proportionally higher noise value. 
When both the amplification and the noise values are divided by the 
factor (1 — nd) they correspond exactly to those of the nonfeedback 
amplifier. Thus we conclude that feedback is of no help in reducing 
noise produced in the input stage.

5.5 Modification of input and output impedances
Feedback has a profound influence upon the effective input and output 
impedances of an amplifier. We may show that this is true by refer­
ence to Fig. 5.1. In the absence of feedback, the output impedance is 
simply Z2. That is, a current V2/Z2 will flow as a consequence of 
applying a voltage V2 to the output terminals when V3 is zero. When 



70 FEEDBACK SYSTEMS AND STABILITY CRITERIA
feedback is present, however, the application of V2 results in a voltage,

Vi = 0V2 (5.10)
at the input terminals. The voltage effective in producing current in 
Z2 is now V2 — k/3V2, and the effective output impedance is

Zo = Z2/(l - k0). (5.11)

Because the product k/3, which is closely related to is negative and 
large compared to unity, the output impedance is greatly reduced.

Analysis of other feedback systems shows that in general the shunt 
connection at input or output decreases the associated impedance 
whereas the series connection increases the impedance. Moreover, 
bridge or hybrid-coil arrangements lead to finite impedances of con­
venient magnitude which are almost independent of the condition of 
the associated vacuum tubes.

5.6 Positive and negative feedback combined

Oscillators are sometimes designed and analyzed from the viewpoint 
that a positive feedback path sufficient to produce oscillation is added 
to an amplifier system stabilized by means of negative feedback.46 
It is argued that the negative feedback amplifier, taken as a unit, is 
highly stable and linear. Therefore, the positive feedback path need 
have a transmission only slightly in excess of some minimum value in 
order to ensure that oscillation will persist even if the performance of 
the tubes is considerably degraded by age or substitution. At this 
point there is a great temptation to conclude that the resulting oscilla­
tions will be substantially linear because of the action of negative 
feedback. This is not true unless the feedback paths include a thermis­
tor or similar device suitable for producing linear oscillations. The 
difficulty lies in the fact that overload must produce a very large 
reduction of tube performance before the gain of a stabilized amplifier 
is appreciably reduced.

Assuming that two feedback paths are effectively in parallel, and 
consist only of linear elements, as is usually the case, we can see that 
these paths are equivalent to a single more complicated linear circuit. 
Ordinarily, the total feedback path constitutes a bridge circuit in 
which a considerable increase in the effective selectivity is produced as 
the balanced condition is approached. Usually, it is much easier to 
obtain a correct interpretation of the operation of such systems by 
treating the entire feedback system as one unit and the unstabilized 
amplifier as another. This viewpoint has been ably presented by Post 
and Pit.242
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When the negative feedback path is not effectively in parallel with 
the positive one the combination constitutes a multiple-loop feedback 
system. The general treatment of such systems is quite complicated, 
but practical cases are ordinarily sufficiently simple to permit solution 
by a slight extension of the methods already presented. The most 
common example of such a simpler system is a linear oscillator in which 
the cathode resistor is not by-passed and so constitutes a negative­
feedback element.

In any event it is necessary to use considerable care in the analysis 
of feedback systems, particularly those in which several paths exist. 
The following sections, which are devoted to a study of the stability of 
feedback systems, illustrate some useful techniques for the analysis of 
such problems.

5.7 Conditions for oscillation

It was shown in Chapter 2 that a system will generate spontaneous 
oscillations if and only if the characteristic equation has roots in the 
right half plane. Unfortunately, this criterion of stability is not a con­
venient one for use in the design and analysis of regenerative arrange­
ments because a very large amount of work is required to calculate the 
roots of typical systems and because the position of the roots offers 
little or no guide for improving the performance if unsatisfactory.36

It has been found that the loop transmission Md provides a far more 
satisfactory criterion for the design of feedback devices. Compared to 
the system roots, Md has the advantage that it can be measured directly, 
so that the existence of any unintentional coupling effects may be 
detected if present, and that the effect of a given parameter change 
may be readily predicted. The first accurate statement of the rela­
tion between stability and loop transmission is due to H. Nyquist.228 
However, a simpler proof and useful extensions of his results have 
been developed by Bode.34 The boundary between oscillation and 
nonoscillation is of interest in connection with both amplifiers and 
oscillators. However, in amplifiers a large scalar magnitude of (Md) is 
necessary, whereas in oscillators a smaller feedback is often adequate.

5.8 The (y?) diagram
The preceding sections have shown that a feedback system is unstable 
(that is, it may produce an output with no input) if

Md = I- (5.12)

Moreover, ordinary experience would predict expanding oscillations if 
(Md) were real and greater than unity; this prediction is ordinarily



72 FEEDBACK SYSTEMS AND STABILITY CRITERIA
but not always correct. The exact situation is expressed in terms of a 
Nyquist plot such as that of Fig. 5.2, which shows in polar form the 
locus of the loop transmission (gfi) as the real frequency u is varied 
from — «> to + oo. *

It is seen that the loop transmission is real and exceeds unity at 
both a positive and a negative frequency near 1.5 ^o- Therefore, it is 
correctly anticipated that oscillation will occur at about this frequency.

A significantly different and more complicated situation is shown in 
Fig. 5.3a. Although there are two positive (and two negative) fre­
quencies at which the loop transmission is real and greater than unity, 
the system is actually stable! That is, there are no roots in the right

Fig. 5.2. A resistance-capacitance oscillator: (a) circuit, and (b) Nyquist plot 
with approximate frequency scale in arbitrary units.

half of the complex plane, and small oscillations decrease rather than 
increase with time.

5.9 Nyquist’s criterion
The results of the foregoing discussion are compactly stated as follows: 
A single-loop feedback system is stable if and only if the Nyquist plot 
of the loop transmission {yd), in the frequency range — ® < w < <», 
does not encircle the point {1,0).

It is apparent that a system having a Nyquist plot such as that of 
Fig. 5.35 must be absolutely stable, because there is no frequency at 
which {pp) is real and as large as unity. And it is clear that a system 
such as that of Fig. 5.2 is unstable, that is, will oscillate. A slight

* In this and other Nyquist diagrams a dotted line indicates negative frequencies. 
The inclusion of negative frequencies is required only in systems such as that of 
Fig. 5.2, in which finite transmission exists at zero frequency, and it is necessary to 
close the curve in order to establish whether or not the critical point is encircled. 
In all cases the diagram is symmetrical about the horizontal axis, and negative 
frequencies are physically indistinguishable from positive frequencies, so that no 
additional effort is required.
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difficulty may arise with the conditional case of Fig. 5.3a but, as the 
point (1,0) is not encircled, the system is actually stable! This 
stability is, however, only conditional because the plot will encircle the 
critical point if the loop amplification is reduced by a factor of about 
two. Moreover, in many systems of this kind sustained oscillations 
will result if the system is given an initial disturbance large enough to 
introduce nonlinearity through overloading.

The fact that small signals decrease rather than increase in a con­
ditionally stable system may be traced to the behavior of expanding 
sinusoidal waves. The reversed curvature of the Nyquist plot of Fig. 
5.3a in the region of 2w0 is associated with a circuit behavior which

Fig. 5.3. Nyquist plots: (a) conditionally stable system and (5) absolutely stable 
system.

tends to damp out rather than enlarge an oscillation near that fre­
quency. In this connection it should be noted that sustained oscilla­
tions which result from a reduction of (m3) will occur at a frequency 
near a>o whereas the inner crossover of Fig. 5.3a is at a frequency near 
2wo. The discussion of oscillation build-up in Chapter 18 will help to 
clarify this behavior.

5.10 Basis of the criterion
The rigorous proof of Nyquist’s criterion requires extensive manipu­
lation of complex variables and a familiarity with the theory of con­
tour integration which is beyond the scope of this book. The inter­
ested reader should refer to Bode34 for this material. It is, however, 
possible to explain the ideas involved and to give the results a degree 
of plausibility.

Nyquist’s criterion depends upon a relationship between the phasor 
plot of (m3) at various real sinusoidal frequencies and the location of 
the system roots in the complex frequency plane as discussed in 
Chapter 2. In fact, the Nyquist plot is a transformation of the points 
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on the vertical (real frequency) axis of the p plane. Somewhat less 
obviously, the point (1, 0) in the Nyquist plot is identified with the 
roots of the equation representing the loop transmission.

The situation is clarified by reference to Fig. 5.4, which shows a 
complex frequency plane and associated Nyquist plot. Traversing 
the Nyquist plot with increasing frequency we find that the critical 
point is constantly on the right until infinite frequency is reached. 
Correspondingly, the root is constantly on the right as the real fre­
quency axis of Fig. 5.45 is traversed (upward) with increasing fre­
quency. If, on the other hand, the roots had existed in the left half

Fig. 5.4. Example of Nyquist’s criterion for an unstable system: (a) Nyquist 
plot and (b) complex frequency plane. Arrow heads indicate increasing frequency.

of the p plane there could have been no encirclement of the critical 
point in Fig. 5.4a.

5.11 Correlation between the Nyquist plot and root position
The proof of Nyquist’s criterion shows that there must be a relationship 
between the Nyquist plot and the position of the roots in the complex 
plane. As stated, the criterion tells only whether or not there are 
roots with positive real parts, on the basis of encirclement of the point 
(1, 0). Because it is often desirable to know the location or value of 
the roots of the system, it would be very convenient if the Nyquist 
plot could be made to yield this information. Experience indicates 
that, although this is possible on a rough basis, it is impractical to 
obtain any very exact information in this way.

The problem, which has been studied by Vazsonyi330 from a some­
what different viewpoint, may be approached by reference to the 
tuned plate oscillator shown in Fig. 5.5. This particular circuit is 
chosen because of its simplicity and the symmetry of the associated 
equations. It is assumed that the grid is negatively biased so as to 
draw no current, and that tests are made at a sufficiently low level to
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justify the assumption of linearity. With these restrictions it is clear 
that the grid voltage is a fraction M/L oi the plate voltage, and 
that the system is correctly represented in Fig. 5.55, where rp is the 
plate resistance and gm is the transconductance. Because the same 
current would be drawn by a suitable negative resistance, it is pos­
sible to simplify the equivalent circuit still further to the form of 
Fig. 5.6.

Fig. 5.5. Tuned plate oscillator: (a) circuit diagram and (5) equivalent circuit.

Fig. 5.6. System equivalent to tuned plate oscillator.

Inspection of this figure shows that the roots are pure imaginary if 
the total conductance vanishes, that is, if

l/rp + Ï/R - Mgm/L = 0. (5.13)

As shown in Chapter 2, the roots will be complex with negative real 
part if

2 VC/L > (l/rp + 1/R - Mgm/L) > 0 (5.14)

and complex with positive real part if

-2 Vc/E < (l/rp + 1/R - Mgm/L) < 0. (5.15)

Harmonic oscillations, therefore, correspond to transconductance 
values lying between the limits

L(l/rp + 1/R + 2 Vc/L) > Mgm > L(l/rp + 1/R). (5.16)
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The ratio n, of the upper to the lower limit of gm, is

, , 2x/c/L
" = 1 + l/rp +~/R (5-17)

This ratio may be made relatively large by choosing a tuned circuit 
with a high Q, and a tube with a high plate resistance. This choice is 
desirable, because it ensures that the wave form will remain reasonably 
sinusoidal and the frequency will be nearly constant even though the 
transconductance varies appreciably.

(a)

Fig. 5.7. Arrangement for evaluation of loop transmission: (a) actual and (6) 
equivalent.

I=SmV,

(b)

The roots of the system of Fig. 5.6 are. as shown in Chapter 2,
Pi = a + jw = Mgm/2LC — 1/2RC — l/2rpC

+ j x/l/LC^(Mgm/2LC - 1/2ÄC - l/2rpC)2 (5.18) 
and
p2 = a- jw = Mgn/2LC - 1/2RC - l/2rpC

- j x/l/LC - (Mgm/2LC - 1/2RC - l/2rpC)2. (5.19)

The loop transmission of Fig. 5.5 is calculated with reference to the 
equivalent circuit of Fig. 5.7. It is readily shown that the loop 
transmission is

F2 = __________ Mgm___________
Fi + 1/Ä + jwC + 1/jwL) (5.20)

Inspection of this equation shows that the magnitude is directly pro­
portional to gm, that the phase angle is zero if wC = 1/wL, and that 
the phase angle is ±45° if wC — \/wL = ±(l/rp + \/R}. Moreover, 
it is easy to show that the Nyquist plot has the form of a circle.

For this particular system it is possible to calculate a relatively 
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simple relationship between the frequency scale on the Nyquist plot 
and the location of the complex roots. The procedure is facilitated by 
use of the substitutions

o>0 = X/VlC, (5.21)

w = w0(l - f), (5.22)
G = l/rp + L/R, (5.23)

and
Q = 1/GwoL. (5.24)

With these substitutions the roots become

a + ju = i (Mgmu02 — G/C) + j Na>o2 — 1 — G/C)2.
(5.25)

Because, for any prescribed o>o, the roots vary along the arc of a circle, 
it is sufficient to specify a. Eliminating Mgm between eqs. 5.20 and 
5.25 yields

z . 2a/u0+G/oi0C
UW = —r/r- □ ■ i i /• r\ (5-26)&aL(G + jaiC 4- 1/juL)

Elimination of C with introduction of eqs. 5.22 and 5.24 leads to

. ._____________ 2a/o>o 4~ 1/Q___________
aioL[G 4-/(1 — ^/^oL) 4- l/j(l — £)^oL]

= 1 4- 2Qa/a>o, 
1+jQ(i - f) - W(i - i)

which shows that the Nyquist plot is uniquely expressed in terms of 
the angular position of the root, the Q of the passive portion of the 
circuit and the frequency variable £.

The desired relationship is most conveniently expressed by assigning 
a fixed small value to £ and exploring the contour described. If £ 
is restricted to small values we may use the approximate relation 

1 4- £ = 1/(1 - £) (5.28)
to obtain

1 4” 2Qdi/c0n
™ ™

Converting to rectangular coordinates by use of
(m3) = x 4- jy, (5.30)
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we may expand eq. 5.29 to obtain

x + jy - j2Q& + 2Q£y = 1 + 2Q^0. (5.31)
The relation

y/x = 2Q£, (5.32)

which results when the imaginary terms are equated may be used to 
eliminate Q in eq. 5.31. With this substitution we have

x + y2/x = 1 + ay/te^o (5.33)
or

a/“o = ^x2/y + y - x/y). (5.34)

The location of roots is illustrated in Fig. 5.8, which shows an arbi­
trarily chosen Nyquist plot of the circular shape required by eq. 5.20.

Fig. 5.8. Determination of roots from Nyquist plot.

In this example x = 5, y = ü)0 = 1000, o> = 990, and ? = 0.010.
Consistent with eq. 5.34, a/<v0 = 0.40, and the system roots are 400 ± 
JIOOO. An oscillator having these properties would have relatively 
poor performance as to wave form and frequency stability, but would 
exhibit a very rapid rate of build-up at the beginning of oscillation.

It is emphasized that the foregoing analysis is accurate only under 
the assumed conditions. However, it yields useful qualitative infor­
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mation under any conditions in which the Nyquist plot resembles the 
circular form of Fig. 5.8.

5.12 Frequency and amplitude stability
The Nyquist diagram for a system is very helpful in calculating, or at 
least estimating, the frequency stability. The calculations are exact 
if the system is linear, and give an excellent approximation in quasi- 
linear, that is, high-Q nonlinear systems.

As a first step toward the determination of frequency stability, 
we must note that the shape of the Nyquist plot may change in two 
basically different ways as the loop gain is reduced by the action of the 
limiter. If the limiter is independent of the resonator the diagram

Fig. 5.9. Nyquist plots at various levels: (a) limiter isolated and (6) limiter 
and resonator combined in bridge.

simply shrinks, as shown in Fig. 5.9a. If, however, the limiter and 
the resonator are combined, as in the Meacham or Wien bridge circuits, 
the diagram is displaced laterally without appreciably changing its 
size, as shown in Fig. 5.96. If we know the behavior of the Nyquist 
diagram with changes in amplitude, we may find the frequency 
stability from the diagram which corresponds to a very low amplitude 
level. Otherwise, we must use the diagram which corresponds to 
the desired operating level, and therefore passes through the critical 
point (1, 0).

The construction is shown in Fig. 5.10a. The frequencies wo and 
w0 + Sw corresponding respectively to the critical point (1, 0) and to a 
point displaced by a small angle hep are observed. Then, from the basic 
formula given in Chapter 1, the frequency stability with respect to 
phase shifts external to the resonator is

S = 
F Sw/wq
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provided 5</> is taken sufficiently small. In practice, this approxima­
tion is entirely satisfactory, and the frequency stability of a system is 
readily predicted by inspection of the frequency scale of the Nyquist 
plot. A high degree of frequency stability is seen to correspond to a 
Nyquist plot in which the frequency scale is very open.

The amplitude stability is determined in a somewhat different man­
ner, for it depends upon the rate at which the plot in the region of 
(1, 0), shrinks with increase of amplitude. The curves corresponding 
to two slightly different known amplitudes of signal are drawn, as in

Fig. 5.10. Determination of stability factors from Nyquist plot: (a) frequency 
stability and (&) amplitude stability.

Fig. 5.10b, and the difference ox between the horizontal intercepts is 
noted. The amplitude stability is then given by

A high degree of amplitude stability is seen to correspond to a system 
of Nyquist plots which for small differences of signal level are widely 
separated in the region of (1, 0).

Because it is quite tedious to obtain data for Nyquist plots at 
various amplitude levels, the amplitude relationship is less generally 
useful than the frequency relationship. Fortunately, frequency 
stability is ordinarily more important than amplitude stability, so this 
is not a matter of grave importance.

5.13 Llewellyn’s criterion
An additional criterion which is sometimes convenient for testing 
the stability of linear systems was stated intuitively by Llewellyn and 
has since been verified by Bode34 on page 165 of his book and dry 
Chu.62 It is applicable to linear systems of all classes, but is most
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useful in connection with two-terminal oscillators, to which Nyquist’s
criterion is not applicable.

The conditions for applying the test in its first form are shown in 
Fig. 5.11a. The network is opened at some point a, as indicated, 
and the impedance between the opened points is observed as a function 
of frequency. If the polar plot of impedance, for all frequencies from 
— oo to + «> does not encircle the origin and if the system is stable with 
the terminals open, then it is also stable with the terminals short circuited.

Fig. 5.11. Llewellyn’s criterion: (a) direct test; and (6) modified test.
(b)

In the alternative form the admittance between two points in the 
network, as shown in Fig. 5.116, is measured as a function of frequency. 
Then if the polar plot of admittance for all frequencies from — « to 
+ =o does not encircle the origin and if the system is stable with the ter­
minals short circuited, then it is also stable with the terminals open 
circuited.

We see that Llewellyn’s criterion is closely related to Nyquist’s. 
Therefore, it should be possible to relate the shape of the Llewellyn 
plot to the position of the complex roots and to the amplitude and fre­
quency stability of the system. These relationships are not developed 
here because they are not used in the following sections.

Taken together, the relationships developed in this chapter provide 
a very powerful means for the analysis and the design of feedback 
systems, whether the objective is a stable amplifier or a reliable oscil­
lator. These relationships are used and extended to treat multiply- 
resonant systems in Chapter 18.

PROBLEMS
5 1. Show how to measure the loop transmission of a feedback amplifier.
5.2. Sketch a single-loop and a multiple-loop feedback system.
5.3. Explain why fractional derivatives are used in eq. 5.8
5.4. Verify the argument of Section 5.4 that distortion is reduced in the ratio 

(1 - m3).
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5.5. Discuss the use of feedback in connection with tube noise in the input 

stage.
5.6. Discuss the significance of negative frequencies in conjunction with the 

Nyquist diagram.

Problem 5.7
5.7. Calculate the system roots for the circuit shown, assuming for convenience 

that the impedance of each RC section is high compared to that of the adjacent 
one.

5.8. Calculate the Nyquist diagram for the above system under the same 
assumptions.

5.9. Calculate the Llewellyn plot for the above system at the terminals of the 
grid condenser.
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RESONATORS

Resistance-capacitance oscillators, although important, are not 
capable of extreme frequency stability; all other oscillators use some 
form of resonator. As stated in Chapter 1, a complete oscillator 
consists of a resonator and an associated driving system. This 
chapter is devoted to a discussion of resonators which are suitable for 
oscillators. The features which would characterize an ideal resonator 
are enumerated as a basis for evaluating realizable units.

The most flexible and generally useful resonator is composed of a 
condenser and coil. By varying the size, shape, and number of turns 
in conjunction with the permeability of the core it is possible to con­
struct useful coils over a remarkable range of inductance. Similarly, 
variations in the construction of condensers lead to a wide range of 
useful capacitance. Inductance-capacitance resonators may, there­
fore, be constructed for operation over a very wide range of impedances 
and frequencies. Where extreme frequency stability is required the 
mechanical vibrations of a quartz plate are profitably employed. 
In the microwave region electrical cavity resonators or molecular 
resonance devices are most suitable. Considerations which govern 
the choice of a resonator are developed in the following sections.

6.1 General properties of resonators
The properties of resonators are conveniently discussed in terms of the 
circuit of Fig. 6.1, which shows the series combination of an inductance 
and a capacitance. The losses, which are always present to some 
degree, and are usually due mainly to the coil, are represented by the 
resistance. The properties of this circuit are, of course, completely 
specified when the three element values are given. In particular, the 
value of Q and the resonant frequency are known from the formulas of 
Chapter 2. As noted there, the transient oscillations of the free 
circuit have a frequency which is slightly different from that at which 
the largest steady-state response occurs. Moreover, the value of Q

83
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may be thought of either in terms of the energy loss per cycle of the
free oscillation or the energy which must be supplied per cycle in the
steady state.

The latter viewpoint is the more profitable for our present purpose in 
that it establishes on a general basis the desirability of a high Q. 
Because a high Q resonator requires less driving power than a correspond­
ing low Q resonator, its frequency is less affected by a given fractional 
change in the driving system. However, the frequency stability of a 
given system is seldom appreciably improved by an improvement of 
the resonator alone unless the driving system is readjusted to take 
advantage of the decreased losses.

These ideas are interpreted in terms of Fig. 6.2, which was analyzed 
in Chapter 4. Corresponding to prescribed values of L, R, and C, 

Fig. 6.2. Negative resistance oscillator.

sustained oscillations will occur only if the negative resistance device, 
which is inherently nonlinear, has an incremental negative resistance 
larger than R. The operating frequency differs somewhat from the 
natural frequency of L and C because of intermodulation effects, and 
therefore changes with variations of the nonlinear characteristics.

If the resonator Q is increased by reducing R without making any 
other change, the frequency stability is not greatly improved and may 
actually be degraded, because the relationship of the reactances to the 
driving system is unchanged. If, however, the resonator Q is increased 
by increasing both of the reactances, leaving R unchanged, the fre­
quency stability is improved proportionally.

From the foregoing discussion we may draw this important con­
clusion : The essential properties of a resonator are its natural frequency 
f, its selectivity Q, and its characteristic impedance Z. The natural 
frequency is the frequency which would result if the driving system 
were nonreactive ; the selectivity controls the extent to which the fre­
quency is affected by a given imperfection of the driving system;
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and the characteristic impedance determines the impedance level
which the driving system should have.

As shown in the preceding example, a reduction of the losses of a 
given resonator ordinarily affects the impedance level as well as the Q 
because the reactances tend to remain constant. Therefore, as 
previously shown, it is ordinarily necessary either to modify the driving 
system or to provide an impedance transformer in order to take 
advantage of a loss reduction in a resonator. Failure to observe this 
principle is responsible for many experimental observations in which 
frequency stability is not improved by reduction of resonator losses.136 
The characteristic impedance of a resonator is its resistance at the 
operating frequency. Series resonant systems usually have character­
istic impedances much lower than those of antiresonant systems.

At any one instant a given resonator has only the three properties 
just enumerated. However, the engineering need is for frequencies 
which remain constant over considerable intervals of time and in spite 
of various disturbing influences. We must, therefore, determine the 
extent to which such changes affect the natural frequency of resonators.

To a greater or lesser extent the natural frequency, as well as the 
selectivity and impedance, of a given resonator is affected by every 
feature of its environment. However, the requirements on constancy 
of frequency are so much more severe than those on selectivity and 
impedance that a resonator which has satisfactory frequency stability 
rarely fails to meet other stability requirements. Principal factors 
affecting frequency are the ambient temperature, atmospheric pres­
sure, and relative humidity. Other factors include electric and mag­
netic fields, various forms of radiation, gravitational attraction, ampli­
tude of oscillation, and the passage of time. These several variables 
affect different resonators in different ways and to different extents. 
They are discussed in the following paragraphs. It should be noted 
that a high-Q resonator may be greatly affected by temperature or 
other influences and that a low-Q resonator may be quite stable. That 
is, the two properties are essentially independent.

6.2 The ideal resonator
In the previous section it was shown that the selectivity of a resonator 
determines the ease with which it may be driven, and that the imped­
ance level must be suitably matched to the driving circuit for best 
results, that is, best frequency stability. A high Q is therefore desir­
able in the interest of making the frequency insensitive to variations in 
the driving system. To maintain constancy, the natural frequency 
must not be affected by the passage of time or variations such as
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temperature and humidity. To ensure that operation will occur at
the natural frequency and that the response will be simple and sym­
metrical the resonator must have only one principal response in the
region of interest.

We may therefore conclude that the ideal resonator is characterized 
by the following:

(1) A natural frequency which is appropriate.
(2) A value of Q approaching infinity.
(3) An impedance level suitable to available driving circuits.
(4) A natural frequency which does not change with time, tempera­

ture, or other uncontrolled variables.
(5) Freedom from additional resonances which would affect the 

behavior at the desired frequency.

6.3 Thermal and secular effects

The ambient temperature affects the frequency of every known form 
of resonator, but the extent of this influence varies enormously. In a 
poorly constructed LC circuit the effect may be as large as forty parts 
per million per degree centigrade, * whereas in a GT cut quartz crystal 
operating in the region of 40°C the effect may well be some 10,000 
times smaller.

The behavior of a more or less typical LC resonator is shown in 
Fig. 6.3. It is seen that the frequency is not a single-valued function 
of the temperature, but depends in a rather complicated way upon the 
previous history as well. In fact, the frequency is ordinarily a func­
tion of the present temperature, of all past temperatures, and the 
present time rate of change of temperature. It is therefore difficult to 
speak in precise terms about temperature stability.

However, it is possible to construct resonators in which these para­
sitic effects are quite small; and it is highly desirable to do so because 
of the superior performance obtained. In such resonators the fre­
quency is, at least effectively, a single-valued function of temperature, 
so that a definite slope or temperature coefficient exists at each tem­
perature. Such behavior, which is referred to as cyclic, is shown in 
Fig. 6.4. In this case the frequency varies in a parabolic manner, 
while its slope or coefficient varies linearly with the temperature T. 
Clearly it is absurd to speak of the temperature coefficient of this 
resonator without also specifying the temperature in question. In the

* The abbreviation ppm will be used to represent parts per million, and all tem­
peratures will be given in degrees centigrade throughout this book, except in a 
few cases where the corresponding absolute scale, °K, is more appropriate.
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d fdA = dV 

dT \dT/ dT2 = constant. (6.1)
Because resonators rarely behave so simply, it is ordinarily necessary 
to refer to the actual response curve when precise statements are to 
be made. The measurement of such small frequency changes is diffi­
cult, but adequate methods have been developed.188

Resonators which are insensitive to temperature are desirable be­
cause it is difficult to prevent temperature changes in operating appara-

Fig. 6.3. Variation of the frequency of an LC resonator with slow changes of 
temperature.

Fig. 6.4. Temperature variation of the frequency of a BT cut quartz crystal 
resonator.

tus. In spite of important advances in the construction of constant­
temperature ovens, they are still too bulky and expensive for use in 
ordinary apparatus.

In most resonators the natural (and thus operating) frequency 
changes with the passage of time, even if the temperature and other 
conditions are maintained constant. This secular or time variation 
is often referred to as aging or drift. It is present to a greater or lesser 
extent in all known resonators, but may be held to a minimum by the 
choice of materials which are inherently stable. Quartz, ceramics, 
and most metals have good secular stability, whereas most plastics 
do not.

6.4 Humidity and other effects
The conductivity, dielectric constant, and dielectric strength of air 
are affected by its pressure and humidity. Therefore, the resonant 
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frequency of air dielectric LC or cavity resonators is a function of these 
variables. Moreover, the mechanical dimensions of coil forms and 
condenser supports are often affected by humidity. Precise control of 
frequency is therefore possible only if suitable precautions are taken 
in the construction of the elements. Vacuum impregnation and her­
metic sealing are two widely-used methods.

The dielectric constant of dry air at 0°C and normal atmospheric 
pressure is 1.000583. It varies with the density, composition, and 
relative humidity.86 For dry air the dielectric constant er is given by 
the equation 

ft — 1 +
0.00021P
T + 273’ (6-2)

where P is the pressure expressed in millimeters of mercury and T is 
the temperature (°C). Humidity further affects the dielectric con­
stant, as shown in Table 6.1. Superposition may be used to combine 
the effects of pressure, temperature, and humidity.

TABLE 6.1
Effect of Humidity and Temperatube upon the Relative Dielectric 

Constant of Air at Standard Pressure
(er = 1 + h X 10“6, where h is the tabulated value)

Temp., 
°C

Relative Humidity
th

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

-40 682 682 682 682 682 682 682 682. 682 682 682 0
-30 655 655.1 655.2 655.2 655.3 655.4 655.5 655.6 655.6 655.7 655.8 0.08
-20 629 629.2 629.5 629.7 629.9 630.2 630.4 630.6 630.9 631.1 631.3 0.23
-10 605 605.6 606.1 606.7 607.2 607.8 608.4 608.9 609.5 610 610.6 0.56

0 583 584.3 585.5 586.8 588.1 589.3 590.6 591.9 593.2 594.4 595.7 1.27
+10 562 564.5 566.9 569.4 571.8 574.3 576.8 579.2 581.7 584.1 586.6 2.46
+20 543 547.6 552.1 556.6 561.1 565.6 570.2 574.7 579.2 585.8 588.3 4.53
+30 525 532.9 540.9 548.8 556.8 564.7 572.7 580.6 588.6 596.5 604.5 7.95
+40 508 521.4 534.8 548.2 561.6 575 588.4 601.8 615.2 628.6 642 13.4
+50 493 514.7 536.4 558.1 579.8 601.5 623.2 644.9 666.6 688.3 710 21.7
+60 478 512 546 580 614 648 682 716 750 784 818 34.0
+70 464 515.5 567.0 618.5 670 721.5 773 824.5 876 927.5 979 51.5

Composition is important principally because dry ice is sometimes 
used in tests to produce the low temperatures required to simulate field 
conditions. This procedure may lead to serious error in frequency, 
because at normal atmospheric pressure and temperature the dielectric 
constant increases approximately 375 ppm in a linear manner as dry 
air is replaced by 100 per cent carbon dioxide.
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Humidity has an additional effect which may be both serious and 

unsuspected. Films of moisture form on the surfaces of metals and 
other materials under such conditions that no true condensation is 
possible. Such films not only degrade the insulation resistance of 
apparatus but also affect the equivalent spacing of an air condenser. 
The variation is small, but can be significant in precise apparatus.

Cavity resonators are ordinarily filled with a dry gas, usually nitro­
gen, and completely sealed. They are then immune to the effects 
of humidity. They are also insensitive to pressure if the walls are 
sufficiently thick so as to avoid mechanical distortion. Coils and 
condensers may also be sealed to good advantage, but it is frequently 
sufficient to impregnate them under vacuum with a suitable highly- 
fluid wax or plastic.

Sealing, or impregnation, is desirable not only because it stabilizes 
the frequency but also because it increases and stabilizes the values of 
Q and of voltage breakdown. Special precautions must be taken if 
the apparatus is to operate under conditions of high humidity because 
damage due to mold and corrosion is greatly accelerated.132' 248 Spe­
cial precautions are also necessary to avoid arcing between terminals 
in components which must operate at low pressure due to high altitude.

6.5 Properties of condensers
In a majority of oscillators the resonator consists of a combination 
of coils and condensers. Because the reactive elements are very 
different in construction and properties it is appropriate to discuss 
them separately. Condensers are discussed first, because they are 
substantially free from losses and are somewhat simpler in behavior. 
Those who wish a general review of components are referred to Ter­
man’s Handbook;307 and those who wish a more comprehensive treat­
ment of condensers should read the books by Brotherton39 or Coursey.88 
It is assumed that the reader has a fair knowledge of the properties 
and construction of typical components; and emphasis is placed upon 
the performance of components applicable to the present problem.

For fixed condensers the silvered-mica construction is very desirable 
because of its low temperature coefficient and good secular stability. 
Blocks of high-grade ruby mica, ordinarily imported from India, are 
first cut and split into thin sheets of suitable area and thickness. 
These are then coated on both sides with a thin layer of metal, usually 
silver, by vacuum evaporation or similar means. Several of these 
sheets are stacked to build up the desired capacitance, and leads are 
attached by soldering to the exposed area of the electrodes. Finally, 
the assembly is packaged as a unit, ordinarily by surrounding the 
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actual condenser with a body of high-grade thermosetting plastic. 
This construction leads to a very low value of parasitic inductance.

Mica has high secular stability and an inherently low temperature 
coefficient of capacitance. These desirable properties are preserved 
in the present construction by applying the electrodes directly to the 
material. In typical specimens the temperature coefficient of capaci­
tance61 is substantially constant at a value +20 ppm per °C over the 
range —60 to +80°. The power factor is very low, of the order of 
0.02 per cent. Silvered mica condensers are commercially available 
in capacitances ranging from about 5 to 5000 The effects of 
aging are so small as to be negligible in most applications.

Ordinary mica condensers are constructed of alternate layers of 
mica and metal foil. Their stability is inferior to that of silvered-mica 
units because the electrodes are not in such intimate contact with the 
surfaces of the mica. However, they are entirely satisfactory in many 
situations where the stability requirements are only moderate. Com­
pact units having capacitances in the range of 5 to 10,000 jugf are 
generally available, and larger capacitances can be procured. Mica 
condensers of either construction have low losses and excellent d-c 
insulation. In typical units the power factor is substantially less 
than 0.1 per cent. Direct-current leakage is usually due principally to 
currents over the surface of the plastic jacket. It is therefore com­
parable to other leakage currents and is almost always negligible.

TABLE 6.2
Electrical Properties of Some Solid Dielectrics at 25°C

Material
Power factor 
at One Me, 

%
er

Temperature 
Coefficient, 

ppm/°C

Volume 
Conductivity, 
mhos/meter

Mica 0.015 6 +20 5 X IO“16
Fused quartz 0.015 4.4 2 X IO"17

(P100) 12 + 100
P30 16 +30
NP0 30 0 IO“9

Group A ceramics N30 0 02 31 -30
based on ( N80 °,02 36 -80 lO

titanium N150 ' 0 05 41 -150
dioxide N220 0 05 45 -220 lu

N330 50 -330
N470 60 -470

lN750J 85 -750
Titanium dioxide 0.05 85 -750

A variety of ceramic materials are now being used as dielectrics for 
condensers. In general, ceramic bodies have good secular stability 
and are not greatly affected by temperature, humidity, chemical
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attack, etc. However, the dielectric behavior of some of these
materials, notably barium titanate, is very complicated, so that we
must exercise some discrimination in choosing a ceramic capacitor.205

Ceramic materials which include compounds of titanium have two
exceptional properties. The values of dielectric constant are far

Fig. 6.5. Typical temperature coefficient curves for group A ceramic dielectrics 
at a frequency of 1 Me.

higher than those of ordinary materials, and the temperature coefficient 
is negative. Large values of the dielectric constant are desirable 
because they lead to large capacitances in compact, light, noninductive 
structures. Negative temperature coefficients are desirable because 
they permit partial compensation of the positive coefficients, character­
istic of most coils.

The ceramic materials which are most useful in the present applica­
tion are prepared by mixing titanium dioxide with other more con-
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Fig. 6.6. Behavior of typical Group A ceramic dielectrics at 25°C.

Temperature coefficient, ppm /’C

Fig. 6.7
Temperature,°C

Fig. 6.8
Fig. 6.7. Variation of temperature coefficient of Group A ceramic materials with 
frequency. Average coefficient over the range +25 to +85°C is shown for nominal 

0 and —750 coefficient materials.
Fig. 6.8. Variation with temperature of power factor and insulation resistance 

of typical ceramic condenser units.

ventional compounds. The principal characteristics of a number of 
these ceramic materials, known to the trade as Group A, are presented 
in Table 6.2. Values for mica and for fused quartz are included for 
comparison. The principal characteristics of Group A ceramics, 
which are ordinarily designated in terms of the nominal temperature
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coefficients, are presented in Figs, 6.5 to 6.8. In Fig. 6.6 the range of
variation indicated depends more upon process variations than upon
the nominal temperature coefficient of the material.

Ceramic materials based on titanium dioxide but having still larger 
values of dielectric constant and negative temperature coefficients are 
available under the trade designation Group B. They may be used 
when a very large temperature compensating effect must be obtained 
in a small capacitance, but they have inferior values of power factor 
and of stability, and are generally undesirable for frequency control.

A number of ceramics known to the trade as Group C are based upon 
barium titanate. They have values of dielectric constant in excess of

Fig. 6.9. Construction of a 50 ^/if vacuum capacitor (simplified). Parts, which 
are assembled by welding, are: A, evacuation tube; B, end cap; C, fernico end cup;

D, borosilicate glass body; and E, copper cylinders.

1000, but they are nonlinear and behave in a complicated manner with 
respect to temperature and frequency. They should therefore be 
avoided except for by-pass purposes.

Ceramic condensers are commonly manufactured in tubular or disk 
form. The electrodes are ordinarily produced by application of a 
metallic suspension which becomes integral with the dielectric when 
the unit is again fired to a temperature which fuses the metal. Leads 
are attached by soldering to the metallic electrodes, and the unit is 
finished by application of a waterproof wax or plastic coating. Con­
densers based on Group A dielectrics are generally available in the 
capacitance range of 1 to 1000 ppf. Capacitances up to about 0.03 pf 
are commonly available in Group B and Group C materials, but are 
subject to wide variations, as previously mentioned.

The techniques which permit the mass production of vacuum tubes 
are employed in the production of the vacuum capacitor. Because the 
dielectric is vacuum, these condensers are free from any inherent 
dielectric instability. Such capacitance changes as do occur result 
entirely from dimensional changes of the supporting structure. A 
temperature coefficient of +30 ppm per °C is typical of commercial
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units.94 However, it appears that much smaller or even negative
coefficients could be obtained by careful choice of materials and the use
of differential expansion effects. The construction of a typical vacuum
capacitor is shown in Fig. 6.9.

These capacitors have exceptionally low losses, typified by a power 
factor of 0.01 per cent at one megacycle, and show good secular stabil­
ity. Atmospheric pressure and humidity affect only the exterior of 
the condenser and therefore have extremely little effect. The gravest 
faults of the construction shown are that the practical range of capaci­
tance is rather small, perhaps 10 to 100 ppf, and the size is somewhat 
large.

Air dielectric condensers are also almost always variable, because 
suitable fixed condensers are more easily constructed in other ways. 
Variable air condensers have been the subject of extensive development 
and have been brought to a high stage of perfection. A wide variety 
of curves relating capacitance to rotor position may be obtained by 
shaping the rotor plates, and in large units the maximum capacitances 
may be as much as forty times the minimum. Maximum capacitances 
ordinarily lie in the range of 5 to 1000 ppf. The power factor may be 
made low, ordinarily less than 0.1 per cent, by the choice of suitable 
dielectric materials to support the stator. And, finally, proper 
design119,310 leads to a temperature coefficient which is small for all 
settings of the rotor. For these reasons adjustable frequency oscil­
lators are almost always tuned by means of variable condensers.

The actual design of stable variable condensers is quite complicated, 
but the objective can be stated fairly simply. The shape and tem­
perature coefficients of all the members used in the mechanical assem­
bly should be such that there is no change of shape as a result of 
unavoidable changes of dimensions with temperature. If this objec­
tive is met, the behavior will be cyclic, and the temperature coefficient 
of capacitance will be equal to the coefficient of linear expansion, which 
is fairly small. If this objective is not met, the relative shape and 
spacing of the plates will change, and the capacitance variation with 
temperature will be complicated and ordinarily considerably increased. 
However, a very low or negative temperature coefficient may be 
secured in a condenser which has an aluminum frame and stator, and a 
rotor made partly from aluminum and partly from invar.283

The fact that a variable, or other, condenser is relatively stable 
with respect to slow temperature variations does not guarantee that 
it will be stable with respect to rapid temperature changes. The 
unequal temperature distributions which inevitably accompany rapid 
temperature changes are likely to produce differentials of expansion
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which warp the shape of the assembly and modify the capacitance.
This difficulty is alleviated by constructing the condenser so as to
have a good thermal conductivity and by insulating the entire assembly
from ambient changes. Both these steps tend to reduce the tempera­
ture gradients which can exist.

Contact to the rotor is ordinarily made by means of a wiping or 
sliding spring. Unless the construction and the materials are carefully 
chosen, this contact will give trouble in the form of a high and variable 
resistance. This difficulty may be prevented by means of an elastic 
spring or pigtail, provided that the condenser is not capable of con­
tinuous rotation and that the appreciable and variable self-inductance 
of the pigtail is tolerable.

Soldered, brazed, or welded contacts throughout are greatly favored 
in the interest of long and reliable service. In addition, it is often 
necessary or desirable to electroplate all surfaces so as to prevent 
deterioration due to corrosion.

Paper condensers are not often used for frequency control. As 
ordinarily constructed, they have relatively poor secular stability 
and complicated and noncyclic behavior with respect to temperature. 
In addition, the power factor is poor and varies with respect to tem­
perature and frequency. However, new materials and construction 
techniques offer promise of at least alleviating these limitations.81 
The performance of several types of paper condensers is shown in Fig. 
6.10. The reason for avoiding these units, especially if low tempera­
tures are encountered, is evident from these curves.

The technique of depositing metal directly upon dielectric paper for 
the construction of condensers has only recently been developed.* 
Condensers made with metalized paper are remarkably compact and 
light in terms of their capacitance and voltage rating; and they have 
the virtue of being self-healing if punctured by a voltage surge. How­
ever, both the equivalent series resistance and the shunt leakage con­
ductance tend to be high; and it appears unlikely that these units will 
be significantly better than other paper capacitors for frequency 
control.

The remarkable advances in the field of plastics have led to the 
possibility of constructing condensers with a plastic film as the dielec­
tric. The general construction is the same as that of paper condensers, 
but the performance with respect to frequency and temperature is 
markedly superior. Moreover, plastic materials are subject to excel­
lent manufacturing control, so that desirable results, when once

* Information on the properties of such paper is available from Smith Paper, 
Inc., Lee, Mass.
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Fig. 6.10. Behavior of paper condensers impregnated with different fluids. 
Inerteen is a chlorinated biphenyl. Special Inerteen contains an addition of 
polychloroethyl benzene. (Redrawn by permission of authors and editor from 
L. J. Berberich, C. V. Fields, and R. E. Marbury, “ Characteristics of Chlorinated 
Impregnants in Direct-Current Paper Capacitors,” Proc. I.R.E., 33, 389-397 

[1945].)
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Fig. 6.10 (Continued)
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achieved, should be accurately reproducible. In combination with
silicone23 impregnants these materials offer considerable promise.

Available compact commercial units have temperature coefficients 
of capacitance of +700 and —500 ppm per °C, capacitance values 
ranging from about 50 to 10,000 and are useful up to 75°C. The 
power factor is about 0.03 per cent, and the capacitance is substanti­
ally independent of frequency.

Condensers employing a thin film of glass for the dielectric have also 
been developed in the last few years. They are known to stand quite 
high voltages and to operate successfully at temperatures in excess of 
300°C. It appears that they may have excellent secular and at least 
fair thermal stability.

6.6 Properties of inductors

Inductors exist in a great variety of forms and sizes. However, only 
a few types of construction lead to coils which are sufficiently stable 
to be useful for frequency-control purposes.310 Because the losses in 
physical coils are nearly always large compared to those in condensers, 
the Q of LC resonators depends almost entirely on the coil loss, and it 
is customary to speak of the Q of a coil with the understanding that a 
loss-free condenser is used. This somewhat loose practice is followed 
here because it is convenient and almost universal.

The design of an inductance coil is a relatively complicated problem 
because of the many factors which must be considered.276 The desired 
inductance must be obtained and must be stable with respect to time, 
temperature, etc; the effective Q must be high and reasonably stable; 
and the parasitic capacitance must not be too large. Finally, require­
ments on mutual inductance or coupling coefficient exist in many cases.

Very large inductances are required only for low-frequency applica­
tions. They are most readily obtained in multilayer coils of solid 
wire wound on laminated iron cores. The construction differs from 
that used in ordinary power transformers only in that the core material 
and lamination thickness are chosen with unusual care, and that a 
controlled air gap is ordinarily employed. The inductance depends 
principally upon the number of turns, the effective permeability of 
the core material, and upon the length of the air gap; variations of 
the geometry of the winding have very little effect. The stability of a 
given coil therefore depends mainly on the properties of the core and 
the manner in which the air gap varies. It is necessary to limit both 
direct and alternating currents through the coil; otherwise saturation 
may greatly change the effective inductance. Moderately good 
thermal and secular stability in inductance values ranging from 0.1
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to 1000 henries may be obtained. The useful frequency range is
about 20 to 20,000 cycles, and the Q value ranges from about 5 to 50.

At frequencies above a few kilocycles the eddy current losses in 
laminated iron cores are so large as to be prohibitive. However, cores 
made of finely divided iron powder or dust suspended in an insulating 
binder are useful to much higher frequencies of the order of 50 Me. 
Ordinarily, the binder is some sort of plastic, and the mixture is molded 
under high pressure to an appropriate geometrical form. The mag­
netic properties of the final core depend upon the size and composition 
of the magnetic particles and the relative volume of iron and insulator. 
Effective permeabilities usually range from about 5 to 200.

Powdered-iron cores for use at frequencies upwards of one mega­
cycle are ordinarily made in the form of a circular cylinder. Although 
the effective permeability is rarely in excess of ten, such cores are 
useful because they contribute to the values of Q and coupling coef­
ficient which may be realized, and facilitate inductance adjust­
ment. An excellent discussion of the properties and measurement 
of powdered-iron cores is given in papers by Foster and Newton," and 
by Jaderholm.166

At frequencies of the order of 50 kc the core is commonly made 
toroidal, and the winding is uniformly distributed over its surface. 
The flux is almost entirely confined to the core so that the inductance 
is essentially independent of everything except the effective permeabil­
ity. Moreover, a very high coupling coefficient between separate 
windings may be achieved; and undesired magnetic couplings to other 
circuits may be made negligibly small. The temperature coefficient 
may be made small and cyclic if the magnetic material is properly 
processed. Direct current should be avoided if possible; and other 
influences on the inductances are ordinarily negligible. Inductance 
values ranging from about one millihenry to one henry and Q values in 
the order of 150 are readily obtained in toroidal dust core coils.

Comparable results are achieved by interchanging the positions of 
the iron and copper. A multiple-layer coil, often of the universal 
form discussed in the following paragraph, is associated with a pair 
of molded cores which are shaped so as to produce a closed path to 
the magnetic flux. The principal advantage of this construction is 
the relative ease with which the windings may be made and adjusted.

In the frequency range of about 10 kc to one Me and for induct­
ances of about 100 gh to 100 mh the “universal” winding produces 
compact coils satisfactory for many purposes. Selectivity values 
as high as 250 are obtained, particularly when suitable powered- 
iron cores are associated with coils carefully wound of litz wire. 
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The construction is not particularly conducive to good thermal 
or secular stability because the winding is self-supporting, and any 
change in temperature or humidity is likely to change the size and 
relative location of the various turns. However, the stability of 
typical coils, particularly those which are impregnated with a good 
wax or plastic, is quite good.118 A relatively simple but fairly pre­
cise machine is required for producing this sort of winding, and the 
setting of the various adjustments involves a considerable amount 
of mathematics.1621 283

The single-layer solenoid is the most flexible and generally use­
ful form of coil in the frequency range of about 50 kc to 50 Me. Pow­
dered-iron cores are often used to improve the Q, especially in small 
coils, or to provide a convenient means for adjusting the self-induct­
ance. Inductance adjustment may also be secured by means of con­
ducting cores, such as copper, which act as short-circuited secondaries. 
However, it is best to avoid all such cores where good stability is 
required.

The inductance of an air core solenoid depends only upon the num­
ber of turns and the geometry, because the permeability of air differs 
from that of vacuum by only 25 parts in 109. However, the geometry 
of a physical coil is not readily subject to exact control. Moreover, 
the self-inductance of a given structure varies with the resistivity of 
the conductor and with frequency because of current redistribution 
due to skin and proximity effects. Since the resistivity of most 
materials changes rapidly with temperature, the inductance of a given 
coil may, at a given frequency, be sensitive to temperature even 
though no change of dimension occurs. The problem, therefore, is to 
design a coil in which the dimensions are independent of time, tem­
perature, and atmospheric conditions and the current distribution is 
independent of temperature over the range of temperatures and fre­
quencies in question.

Self-supported coils are sometimes made by winding a metal rod 
or tube in the form of a solenoid. One end is then rigidly supported, 
and the connection to the other end is made by means of a flexible 
lead such as copper braid. This construction results in reasonably 
stable coils having relatively low losses, but is unsuitable where severe 
vibration is encountered. The use of additional supports greatly 
reduces the difficulties due to vibration, but introduces new difficulties 
in controlling the temperature coefficients of the various members used. 
If a single support is used and if the metal is carefully annealed by 
repeated temperature cycles, the shape of the coil will not change with 
change of temperature, and all the dimensions will change according 
to the linear temperature coefficient of the metal. However, the 
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temperature coefficient of inductance is still likely to be large. Such 
coils are necessarily of low inductance and therefore useful only at 
high frequencies, and at such frequencies the conductor thickness 
required for mechanical stability is many times the skin depth. 
Accordingly, the resistance change associated with a change of tem­
perature will cause an appreciable change of current distribution and 
therefore of inductance.

That the self-inductance of a conductor is affected by skin effect, 
which is in turn a function of conductivity, is readily shown in terms 
of a coaxial structure. At very low frequencies the current flows 
uniformly throughout the cross section of the conductors, whereas at 
very high frequencies the current flow is confined to a shallow surface 
layer. Over some range of intermediate frequencies the current 
partially penetrates the conductors.169 In this range the penetration, 
and hence the inductance, is sensitive to both frequency and resistivity. 
Because the resistivity of good conductors increases rapidly with 
increase of temperature, the inductance also increases with tempera­
ture. The temperature coefficient of resistivity of copper is about 
4000 ppm per °C, and the temperature coefficient of inductance due 
to this cause alone may readily be as high as 100 ppm per °C.123' 309

A coil will possess cyclic behavior with respect to temperature only 
if there is no relative motion between the conductor and its support. 
The temperature coefficient will be low only if the dimensions are 
substantially constant and if the current distribution is independent of 
temperature. These several objectives are met in a coil made by 
depositing a thin helix of silver on the surface of a fused-quartz rod or 
tube. The thermal coefficient of linear expansion of fused quartz is 
exceptionally low, approximately ppm per °C. The quartz form 
will control the dimensions of the finished coil because of the good 
adherence which can be secured and because of the relatively large 
volume of the quartz with respect to the silver. The film should be 
very thin in comparison to the radius, but not appreciably thinner 
than the skin depth of silver at the operating frequency. If the 
metal has a thickness of 1.5 skin depths the current distribution will 
be virtually independent of temperature and the value of Q will 
be about 10 per cent higher than that obtained with a much thicker 
conductor.339’ 342

Excellent coils may also be made by depositing silver or other 
metals on the surface of glass* or ceramic forms in cylindrical, toroidal, 
or other shapes. High conductivity and good adherence in the

* Coils made by depositing silver on the surface of a tube of pyrex glass are 
available on a commercial basis from the Corning Glass Works. See Bulletin 
ES-100, Electronic Sales Department, Corning Glass Works, Corning, New York. 
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metallic film, and good thermal and secular stability in the form are 
desirable, but ridges or grooves of any sort in the form are to be avoided 
because they promote nonuniform current distribution with consequent 
loss of Q and thermal stability. The conductor should occupy the 
largest practical fraction of the surface of the form in the interest of a 
high Q. One way of achieving this objective is to apply the metal 
uniformly over the entire surface and then grind a fine helical cut to 
produce the winding. However, the spacing between adjacent turns 
must not be too small or the distributed capacitance is excessive. 
The same general objectives are met in a coil produced by winding a 
very thin ribbon of copper or silver under tension on an unglazed 
ceramic form. With proper care this construction leads to a cyclic 
thermal behavior and good secular and thermal stability.

Variable inductances are rarely used in oscillators which must have 
good frequency stability, because it is difficult to achieve the necessary 
mechanical and electrical stability. They are occasionally useful 
where requirements are not severe or as an incremental adjustment.

An inductance ratio of about ten to one associated with a uniformly 
high Q may be obtained by inserting a suitable powdered-iron core 
into a long slender solenoid or “progressive universal wound” coil. 
When such a coil is associated with a fixed capacity, the frequency 
variation may be made almost linear with respect to the core position. 
This arrangement has been used in both commercial and military 
radio receivers and is capable of meeting fairly exacting requirements. 
It appears to be most suitable at frequencies of a few megacycles. 
The arrangement has the advantage that there are no moving contacts 
in the entire tuned circuit.

The variometer construction, widely used in early radios, is still 
occasionally used in variable-frequency oscillators. Relatively wide 
frequency ranges can be covered, but the construction is inherently 
expensive and presents serious problems of stability.

A useful continuously variable inductance may be obtained by 
sliding a contact along the conductor of a single-layer solenoid (helix) 
or a plane multiturn spiral. The entire coil is rotated about its axis, 
while an auxiliary mechanism guides the contactor longitudinally or 
radially so as to “track” the conductor as it slides by. Contact 
to one end of the coil is made by a suitable slip-ring or similar arrange­
ment, and the unused portion is ordinarily short-circuited to avoid 
undesired coupled-circuit effects. This arrangement, which has 
received considerable commercial development, has the advantages of a 
long effective scale, typically more than ten complete rotations. The 
distributed capacitance of the coil is small, and the ratio of maximum 
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to minimum inductance is readily made larger than ten to one, by 
the methods previously discussed. Moreover, in typical applications 
the impedance level is lower than that in a condenser-tuned oscillator, 
so that small capacitance changes inherent in vacuum tubes produce 
considerably less frequency shift. The principal drawback arises 
because the sliding contacts tend to give erratic performance, especially 
after the unit is exposed to dust and oxidation.

Because it is difficult and expensive to produce coils which have low 
or negative temperature coefficients of inductance, the use of negative­
coefficient condensers for compensation has received considerable 
attention. Although simple in concept, the method presents serious 
problems in application. No significant compensation is possible 
unless the several elements are cyclic and have good secular stability. 
Moreover, from a production viewpoint, the method is worthless unless 
the characteristics of the several elements are reproducible within a 
range which is considerably narrower than the individual coefficients, 
and is less than the total performance tolerance. Finally, if the fre­
quency must be adjustable by tuning, the temperature coefficient of 
the adjustable element must be independent of its setting. If, for 
example, a coil having a temperature coefficient of 10 ppm per °C is to 
be compensated and tuned by a variable condenser, the condenser 
including any padding must have a coefficient of —10 ppm per °C at 
all settings. This fact greatly restricts the usefulness of negative 
coefficient fixed condensers for temperature compensation.60- 276- 292

6.7 The butterfly circuit
Several tuned circuits, exceptionally useful for ultrahigh frequencies, 
have been devised by Karplus163 and others of the General Radio 
Company. They are commonly referred to as butterfly circuits, 
because of the shape of the rotor, as shown in Fig. 6.11. An anti- 
resonant impedance is developed between points 1 and 2 of this figure. 
The structure may be thought of as two variable condensers in series 
shunted by two single-turn inductors in parallel. However, the 
equivalent inductance is not constant because the rotor serves as 
a short-circuited secondary which reduces the inductance as it is 
unmeshed to reduce the capacitance. The behavior of the unit of 
Fig. 6.11 is shown in Table 6.3 and in the curves of Fig. 6.12. The 
characteristic impedance is quite suitable for operation with typical 
vacuum tubes and is remarkably constant.

Because of the symmetry of the structure it is unnecessary to provide 
contact to the rotor, so that no sliding contact is present. It is there­
fore possible to drive the rotor continuously at very high speeds for
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special frequency-modulation applications. Moreover, the paths of
current flow are such that no soldered, welded, or other contacts are
involved. The secular stability of frequency and of Q and the uni­
formity between units are therefore very good. The temperature
coefficient of frequency is comparable to the linear expansion of the

Fig. 6.11. Components of butterfly circuit for 220-1100 Me. The parts are, 
respectively: (a) stator plate, (b) stator spacer, (c) rotor plate, (d) rotor spacer.

Five rotor and six stator plates used. Drawn about half size.

material, typically +20 ppm per °C for brass. By shaping the rotor 
plates it is possible to control the variation of frequency with respect 
to angle of rotation, much as in ordinary variable condensers.

A number of variations of the basic butterfly circuit have been 
devised for various applications. Karplus describes several, including 
coaxial structures well adapted to operate with disk-seal tubes of the 
“lighthouse” variety. A somewhat different structure having the 
same useful properties is due to Summerhayes.302 Perhaps the most 
important limitation of butterfly structures is a tendency to resonate
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Behavior of a Butterfly CircuitParameter Symbol Range Nature of VariationFrequency / 200-1100 Me n2Inductance L 0.011-0.0041 ph n-1Capacitance C 48-5 ppi n~sSelectivity Q 650-300 n"1Series resistance R = wL/Q 0.023-0.095 ohm n2Ratio L/C 15.2-28.6 ohms nImpedance Z = QL/C 9800-8600 ohms Constant

at unwanted frequencies which are not simply related to the principal 
resonance. These undesired modes of resonance can ordinarily be 
suppressed or avoided, and in any event they are present in almost all 
forms of high-frequency resonators.

6.8 Transmission lines
Parallel-wire or coaxial transmission lines have been used as resonators 
for a long time, and information concerning their properties is com­
monly available.308 This section will therefore be limited to a brief 
discussion of their application to oscillators and a compilation of 
formulas.

The parallel structure is inherently balanced, is convenient, and 
gives good performance, especially at moderate frequencies. The 
coaxial structure is inherently unbalanced and less convenient but 
has superior mechanical stability and is preferable at the highest fre­
quencies because it is completely shielded. It therefore does not 
couple to adjoining apparatus or lose energy by radiation.

The arrangement most widely used is a line a quarter wavelength 
long at the frequency of interest, short-circuited at the far end. Near 
this frequency the line approximates a high-Q antiresonant circuit. 
However, a lumped antiresonant circuit has only one response, whereas 
the transmission line also gives a comparable response at 3, 5, 7, etc., 
times the frequency of the lowest antiresonance. Occasionally these 
higher order responses are used in oscillators; in which case special 
precautions are necessary to ensure that oscillation occurs at the desired 
rather than some other frequency.

Because circuits are commonly designed on the basis of lumped 
circuits, the equivalent circuit of Fig. 6.13 is convenient.268 In this 
connection it may be noted that, subject to a fixed inner radius of the 
outer conductor, an air-filled coaxial line of a given conductivity has a 
maximum value of Q for a diameter ratio of 3.592, corresponding to a 
characteristic impedance of 76.64 ohms. However, with the same 
outer conductor a substantially higher antiresonant impedance is



106 RESONATORS
obtained with a smaller inner conductor corresponding to a diameter
ratio of 9.185 and a characteristic impedance of 132.9 ohms. These
and other useful relationships are very clearly presented by Smith.289

Subject to fixed center to center spacing D, parallel wire lines have a
maximum value of Q when each conductor has a diameter d which is

Zo, a, ß, v 
o

ÎL = 8lZ0/^v
C = l/2Zov
R = Zo/al

= ßvQ = ß/2a
iZü ir VL/2C 

l/v = Jr s/LC 
ßl = ir/2 
« = ß/2Q 
Q = R/uiüL

I

Fia. 6.13. Equivalence between line and lumped circuit.

D/2, corresponding to a characteristic impedance of 158 ohms.306 The 
maximum antiresonant impedance occurs for d = D/4, corresponding 
to a characteristic impedance of 347 ohms. In all the foregoing 
developments it was assumed that the short circuit at the end has 
negligible impedance. This is not true in all cases, and a suitable 
correction is necessary, as shown in the following section.
Short Position

Fia. 6.14. Impedance transforma­
tion obtained by means of a tap 

on a quarter-wave line.

If, as is often the case, the anti­
resonant impedance is larger than that 
desired, the appropriate impedance 
transformation is readily obtained by 
connecting to the resonator at some 
intermediate length. The situation is 
shown in Fig. 6.14 in terms of the free 
oscillation of a parallel wire line. If 
the Q is reasonably high, the voltage 
distribution is accurately sinusoidal, 
and the equivalent impedance trans­
formation is therefore described by a 
factor of the form (sine2). Impedance 

transformations in excess of ten to one are readily obtained in this 
way, usually with a marked improvement of frequency stability with 
respect to the driving system. The same effect is readily obtained in a 
coaxial structure by means of a hole or slot in the outer conductor.

Transmission fines may be made quite stable with respect to time
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and temperature. The thermal coefficient is equal to the linear
coefficient of the material unless some distortion of shape occurs as a
result of unequal expansion. With careful construction and choice
of materials it is possible to reduce the temperature coefficient to a
few parts per million per degree centigrade.

6.9 Cavity resonators
At frequencies in excess of about 100 Me the unavoidable parasitic 
inductances and capacitances of leads and terminals become com­
parable with those of the desired elements. Poor frequency stability 
is ordinarily observed because the parasitic elements are not under 
control, and radiation losses are sufficient to be troublesome. It 
is clear that the radiation losses would vanish and that the other 
difficulties would be greatly reduced if the resonant circuits were made 
self-shielding. Cavity resonators which are inherently self-shielding 
and have very creditable values of Q are logical for this application. 
A particularly lucid account of the basic features of cavity resonators is 
given by Pierce and Shepherd on page 622 of their article.241

Cavity resonators may be thought of as the logical development from 
transmission lines. In fact, a half-wave coaxial line short-circuited at 
both ends is an important form of cavity resonator. The coaxial half­
wave resonator is ordinarily long compared to its diameter and is 
employed in its dominant or lowest-frequency mode of resonance, 
which is the usual transverse electromagnetic mode in which the elec­
tric field is radial, and the magnetic field consists of circles concentric 
with the conductors. The magnetic field is most intense at the ends 
where the coaxial conductors are connected by disks, whereas the elec­
tric field is most intense halfway between. As in all resonators, the 
total energy is nearly constant; therefore, the electric and magnetic 
fields are in time quadrature.

The coaxial structure just described also resonates at three times the 
frequency previously described as a f X line. And in addition to this 
series of modes it is capable of resonating in many other modes, which 
are not in simple harmonic relation to the dominant frequency. A 
major problem of cavity design, therefore, is to obtain operation at 
the desired frequency or mode and to avoid the effects of other resonant 
modes. This subject already has an extensive literature and is far 
too complicated for treatment here.346 It should, however, be noted 
that the problem of unwanted modes of oscillation arises in quartz 
crystal units as well as in cavity resonators; and that similar although 
less severe problems exist in connection with transmission lines, 
butterfly circuits, and even complicated LC circuits.



108 RESONATORS
Where very large values of Q are required, particularly at frequencies 

upwards of 3000 Me, the TE^ circular electric modes in hollow cylin­
drical cavities are useful. These modes have the desirable property 
that tuning may be achieved without the use of sliding contacts. 
Moreover Kinzer172 has shown that, at a specified frequency, a pre­
scribed high Q is obtained in the smallest possible volume by a TEOin 
mode in a right circular cylinder. This is of importance because he 
has also shown that the total number of possible modes is approxi­
mately proportional to the volume; therefore, the problem of suppress-

Fig. 6.15. Couplings to cavity resonators: (a) coaxial cable with probe coupled 
to TAfoio mode in a hollow circular cavity; (b) coaxial cable with loop coupled to 
TEM mode in coaxial cavity; (c) rectangular wave guide coupled to TEan mode 
in circular cavity by round iris; and (d) rectangular wave guide coupled to TEon 

mode in circular cavity by slit iris.

ing or avoiding undesired modes of resonance is greatly simplified by a 
reduction of volume.

Because the walls of a cavity provide complete shielding, it is neces­
sary to pierce the wall in one or more places to provide the necessary 
couplings.127 As indicated in Fig. 6.15, there are three principal means 
for coupling to a cavity resonator. The probe may be thought of as 
coupling to the electric field within the cavity, and is therefore most 
suitable for use with modes which have a strong electric field per­
pendicular to the metal wall at some point. It is unsuited to TEqi 
modes in which the electric field is paralled to all boundaries. The 
loop may be thought of as coupling to the magnetic field and should 
therefore lie in a plane perpendicular to it. Loops are suitable for 
coupling to nearly all modes if properly located and oriented. The 
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iris coupling also couples to the magnetic field at the wall of the 
cavity and is suitable for use with wave guides at the higher microwave 
frequencies. The slit iris is particularly desirable because it produces 
a minimum disturbance of the cavity boundary. The slit should be 
parallel to the magnetic field in both cavity and guide, and the coupling 
depends almost entirely on the length of the slit.

6.10 Resonator theorems
A number of general theorems apply to the behavior of resonators. 
Their presentation is logical at this point because they involve multiple 
responses and other ideas which have been developed in the previous 
sections. However, they apply to simple as well as complicated 
systems and give considerable insight into a variety of situations.

The principle of similitude is a special case of the Buckingham76 pi 
theorem.160 In the present context it states that all natural fre­
quencies of a resonator system are increased by a factor N if all the 
dimensions are decreased by a factor N and vice versa. The applica­
tion to quartz crystals and cavity resonators is obvious. It applies 
with equal validity to ordinary LC resonators, and since we can readily 
show that the capacitance of a parallel-plate condenser of a given shape 
is proportional to its linear dimensions we may conclude that the same 
statement applies to all condensers and all coils. The principle is 
very helpful in calculations of temperature coefficients and in modify­
ing apparatus for operation at another frequency.

In the form given, the principle of similitude tells nothing about the 
change of selectivity with dimensions. However, in cavity resonators 
where the wall thickness is large compared to the skin depth, the 
selectivity, Q, of a given mode associated with a given metal varies 
inversely with the square root of the frequency or directly with the 
square root of the dimension. The same principle applies to single­
layer solenoids associated with high Q condensers, provided all the 
coil loss is due to imperfect conductivity rather than dielectric losses.

Because the natural frequency of all types of resonators is dependent 
upon the dimensions, we are concerned with the coefficient of thermal 
expansion of various materials. Table 6.4 gives the expansion coef­
ficients of a number of selected materials. It is seen that large tem­
perature coefficients of frequency and noncyclic behavior will result 
unless materials and design are chosen with considerable care.

A second theorem, related to Foster’s reactance theorem,101 is that, 
if losses are neglected,199-200 the behavior of any resonator may be 
represented in terms of any one of the equivalent circuits of Fig. 6.16. 
In this connection it should be noted that an infinite number of ele-
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ments are required for the complete representation of distributed
systems such as cavity resonators.270

From a practical standpoint, the theorem just stated needs some
amendment. Analysis indicates that in a specified cavity resonator
each mode has a certain natural frequency and a certain value of Q.TABLE 6.4

Linear Expansion of Miscellaneous Materials (Parts per million per °C at 20°C)Aluminum +23 Hard rubber +50 Polystyrene +70Bakelite +50 Invar +0.9 Porcelain +4Brass + 19 Lucite +80 Pyrex +3Catalin +20 Magnesium +25 Silver + 19Celluloid + 110 Mica +3 Solder +25Copper + 16 Monel + 14 Steatite +8Ebonite +84 Nickel + 12 Steel + 11Fused quartz +0.5 Nylon + 100 Tantalum +6.5Glass +8 Platinum +9 Tungsten +4Graphite +6 Polyethylene + 190 Vycor +0.8
Moreover, in perfect rectangular, cylindrical, and spherical cavities 
the modes are orthogonal in the sense that any one can exist in the 
absence of the others. It is also known that the resonant frequencies 
change in an orderly way as the dimensions are modified and that the 
Q of each mode changes quite slowly with such tuning. We are there-

Fig. 6.16. Equivalent circuits for idealized resonators.

fore led to identify LC pairs of the equivalent network with particular 
modes within the cavity. This useful idea requires some qualifica­
tion. In the first place, the relative impedance levels of the various 
circuit branches depends upon the extent to which the given input
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device is coupled to the mode in question. Even more important, any
departure from the ideal geometrical shape introduces couplings
between the elements of the equivalent circuit.

An equivalent circuit applicable to a physical loop-coupled cavity 
is shown in Fig. 6.17. The couplings are represented as magnetic 
fields within the cavity. They are ordinarily quite small and hence 
are negligible except where two modes have nearly identical fre­
quencies. Then, complicated coupled-circuit effects are observed, 
and the effective Q of the system is likely'to be seriously degraded. 
The control or avoidance of these couplings is one of the major prob­
lems in designing cavity and quartz-crystal resonators. If a given

Fig. 6.17. Equivalent circuit of a practical resonator. The condensers are 
assumed to vary at different rates with respect to a common tuning control.

mode is not excited by the coupling device, it will be observed only 
by its influence on other modes which have external coupling, when 
the two are simultaneously resonant. This situation may be treated 
by allowing the impedance level in the appropriate arm of Fig. 6.17 to 
approach infinity or by representing the mode in question as an 
isolated resonant loop magnetically coupled to the rest of the systems.

6.11 Piezoelectricity
It is well known that certain crystalline substances are piezoelectric, 
that is, they change their dimensions when subjected to an electric 
field, and conversely generate an electric field when subjected to 
mechanical strain. The effect is distinct from electrostriction in that 
the deformation is proportional to the applied field and reverses with 
reversal of polarity. Piezoelectricity is of concern to us because it 
offers an excellent means of electromechanical coupling whereby the
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mechanical resonance of a solid body may control the frequency of an
electrical oscillator.

Rochelle salt has a very large piezoelectric response and is widely 
used in electromechanical transducers such as phonograph pickups. 
However, crystalline quartz is the only piezoelectric material used to 
any considerable extent for oscillator applications. This material, 
which occurs rather commonly in nature, has a relatively large piezo­
electric coefficient, is little affected by ordinary chemicals, and has 
excellent secular stability. The internal visocosity is very low, so 
that mechanical vibrations have a high inherent Q, and the crystalline 
structure is such that resonators having very low temperature coef­
ficients may be produced. This combination of desirable properties 
is so exceptional that it appears quite unlikely that crystalline quartz 
will ever be replaced for the precise control of frequency. However, 
recent work47 offers great promise that high-grade crystals may be 
produced synthetically from low-grade quartz in such quantity that 
importation from Brazil, the present principal source, may no longer 
be necessary. Dr. W. G. Cady52 has contributed greatly to our under­
standing of the fundamental principles of piezoelectricity, and Dr. 
Heising137 and others of the Bell Telephone Laboratories have done 
most of the work toward the practical application of crystal units for 
frequency control. The subject is so extensive and specialized that 
we can present only a few of the most important results. Papers by 
Van Dyke,325, 326 Watanabe,336 George,110 and others serve to indicate 
the methods used and give typical numerical data.

6.12 General properties of crystal units
In the present connection, a crystal unit comprises a block of crystal­
line quartz supported between suitable electrodes so as to be usable in 
an oscillator. Ordinarily, the quartz has the form of a thin rectangular 
parallelepiped or circular disk, but long slender bars,182 cylinders, 
and even toroidal shapes have been used. The electrodes are usually 
parallel metal plates close to or touching the faces of the quartz plate, 
but in many units the metal is actually deposited on the surface of 
the quartz by vacuum evaporation, cathode sputtering, or chemical 
reaction. The quartz plate and its electrodes are supported in some 
sort of holder which provides means for connection to the electrical 
circuit and protects the crystal from mechanical damage. The 
holder is usually hermetically sealed to exclude dust and moisture, 
and is often evacuated as well, to reduce damping by acoustic absorp­
tion. Several typical electrode arrangements for crystal units are 
shown in Fig. 6.18.



GENERAL PROPERTIES OF CRYSTAL UNITS 113

When an alternating electrical voltage is applied to the terminals of a 
crystal unit, an alternating electric field is created in the quartz 
between the electrodes, and a corresponding displacement current 
flows. Small alternating forces are set up in the volume of the quartz 
as the result of these displacement currents, but no considerable 
response occurs unless the electrical frequency corresponds very 
closely to a frequency of mechanical resonance of the quartz plate. 
In this event a considerable mechanical vibration occurs, and the 
current observed in the external circuit is greatly affected. As we 
might anticipate, the relative magnitude of this effect is greater if the

Fig. 6.18. Methods of mounting crystal plates: (a) with air gap, (6) pressure 
mounted; (c) plated and wire mounted, and (d) plated and mounted at the edges.

electrodes are close to the crystal, if the crystal has a large piezoelectric 
coupling factor, and if the mechanical vibration is not restrained. It is 
further observed that the piezoelectric coupling factor differs from 
material to material and depends upon the angles at which the plate is 
cut from the natural crystal. Imperfections in the crystal from which 
the plate was cut may affect either or both the mechanical vibration 
and the piezoelectric coupling.

From the discussion of Section 6.10 it is seen that the equivalent 
circuit of a quartz crystal unit has the form of Fig. 6.19, in which the 
heavy lines govern the behavior in the region of the desired response, 
and the remaining branches describe other responses. In this con­
nection it should be noted that this equivalent circuit of the crystal 
resonator was independently identified by Van Dyke324 before the 
general resonator theorems were derived. Ordinarily, the principal 
mesh is sufficient for analysis of the operation of a crystal unit over
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the range of interest, and the remaining branches of the network are
ignored. The extra responses are present, however, and often affect
the measured response.

Natural quartz stones or crystals are rarely perfect throughout their 
volume. It is therefore necessary to select the region of quartz as 
well as the angles of cut in order to secure a satisfactory resonator. In 
addition to ordinary cracks, quartz crystals are subject to inclusions 
and twinning. Inclusions usually are fine bubbles within the solid 
volume of the material, and may be filled with a gas, liquid, solid, or 
a mixture. They are avoided as far as possible because they introduce 
mechanical damping, thereby degrading the Q of the finished resonator, 
and because they tend to reduce the amplitude of vibration which may 
be used without risk of fracture. Twinning is a local reversal of the

Fig. 6.19. Equivalent circuit of a quartz crystal unit.

sign of the piezoelectric coupling and is due to a change of the inherent 
crystal structure into its mirror image or a reversal of the entire crystal 
orientation. Twinned plates are to be avoided because the piezoelec­
tric action of the separate regions tends to cancel, thus decreasing the 
overall coupling, and because the temperature coefficient of frequency 
is likely to be adversely affected.

The temperature coefficient of a quartz crystal unit depends upon 
the proportions and orientation of the block and upon the mechanical 
vibration employed. A great deal of work has gone into the study of 
these factors and some remarkably stable units have resulted. The 
secular stability of a quartz crystal depends greatly upon the methods 
used in its fabrication. The usual grinding process leaves the sur­
faces covered with fine pits and scratches and in a state of stress similar 
to that which is employed in cutting ordinary window glass. Unless 
this disoriented and partially dislodged surface material is removed 
with extreme care it will gradually loosen and separate from the 
finished unit, ordinarily raising the frequency. Mechanical scrubbing, 
chemical etching, optical polishing, and baking244 have been used to 
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alleviate this effect, and it now constitutes a problem only in the most 
exacting applications.

In the region of its principal mechanical resonance the impedance 
of a quartz crystal varies in the manner shown roughly in Fig. 6.20. 
It is seen that there are two frequencies at which the reactance is zero, 
corresponding to unity power factor, and that the resistance is very 
low at one and very high at the other. In a general way, the lower 
frequency, at which the low impedance is observed, is referred to as 
the series resonant frequency, and the higher frequency corresponding 
to the high impedance is called the antiresonant frequency. In 
practical oscillators the crystal is sometimes operated at or near the 
series resonant frequency as in the Meacham oscillator. Ordinarily, 
however, the crystal is in parallel with an external capacitance, called

the load capacitance, and the effective antiresonance of this combination 
is employed. The antiresonant resistance developed is referred to as 
the performance index, abbreviated PI. The equivalent circuit of 
Fig. 6.19 is important because, in this limited frequency region, it has a 
response which is closely equal to that of the actual crystal. Given 
the equivalent circuit, it is always possible to calculate the response, 
and vice versa.

6.13 Detailed properties of crystal units
From the application standpoint, a crystal unit is characterized by 
its frequency, selectivity, impedance level, capacitance ratio, and 
temperature coefficient. The following paragraphs discuss these 
parameters for the designs now in common use. The fundamental 
parameters are supplemented by auxiliary data, which are useful in 
selecting a crystal for a particular practical application. It is to be 
hoped that future developments will lead to still more desirable units.
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Figure 6.21 shows the orientation* of the more widely used crystal 

resonator plates in terms of the natural axes of the parent crystal. 
It must be remembered that there are three distinct pairs of X and Y 
axes, so that a desired orientation may be obtained in three different 
ways from a given stone. It may be helpful to note that AT and CT 
cuts are nearly parallel to one of the three pyramidal caps of a perfect 
natural crystal. The precise angular measurements required to 
obtain desired orientations are made by means of x-rays and polarized 
light.

Fig. 6.21. Orientation and motion of the principal crystal elements.

Although every cut is capable of vibrating in many different ways, 
most of which have considerable piezoelectric coupling, desirable 
temperature characteristics are obtained only when the vibration and 
the cut are appropriately related. A crystal element consists of a plate 
or bar cut in a prescribed way from the natural stone and vibrating 
in a particular manner. Thus an A element consists of a plate having 
the AT orientationt or cut and vibrating in thickness shear. The 
dotted lines of Fig. 6.21 show the mechanical vibration used in the 
more important crystal elements. The only vibrations of any practical

* The notation of Fig. 6.21 follows that of “Standards on Piezoelectric Crys­
tals,” Proc. I.R.E., 37, 1378 (1949).

t Similarly, the B element corresponds to the BT cut, etc.; however, the E and 
F elements do not correspond to the little-used ET and FT cuts, which are approxi­
mately CT and DT plates operated on a mechanical overtone. 
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utility which are not shown are the mechanical overtones of the thick­
ness shear mode, which are employed in some A and B type units. 
Both even and odd overtones may exist, but only odd overtones have 
appreciable piezoelectric coupling. These overtones bear nearly, but 
not exactly, integral ratios to the fundamental frequency.

Although quartz is not isotropic, the dielectric constant is sub­
stantially independent of direction and equal to 4.54. Therefore, if 
edge effects are neglected, the shunting capacitance of any fully plated 
crystal unit is given by the formula

Co = 4.54e0A/D farads or 0AQ2lw/t ppf, (6.3) 
where A is in square meters and D is in meters, while I, w, and t are 
in centimeters. The equivalent series capacitance is smaller than the 
value above by the inherent capacitance ratio r0 and is therefore given 
by the equation

Ci = CoAo = O.4O2Zw/iro ppf. (6.4)
The resistance depends very greatly upon the mounting used and 

other details of manufacture. Because Q values vary less with fre­
quency area, etc., than resistance values it is convenient to obtain the 
resistance from the defining equation

Ri = = l/mC\Q. (6.5)

Like other components, crystals may be damaged by excessively 
large values of current or voltage. In thickness-shear elements such 
as A or B, the limit is usually set by overheating. In typical units it 
is safe to dissipate continuously a power as great as 25 milliwatts, 
although an appreciable frequency change due to the resulting tem­
perature rise may be observed. In other plates the limit is likely to be 
set by fracture or by excessive change of frequency, presumably due to 
nonlinearity in the mounting. For example, a typical 100-kc G type 
element shows a frequency change of 10 ppm when the current reaches 
a value of the order of one milliampere per centimeter of width. It 
appears that the current per unit width is a useful criterion in all 
extensional vibrations and may serve approximately for other modes; 
and that densities in excess of a few milliamperes per centimeter are 
to be avoided.

The effect of temperature upon the natural frequency of the various 
crystal elements is shown in Fig. 6.22. The curves are idealized in 
that they represent the response of a plate accurately cut from a sub­
stantially perfect block of quartz. Units achieved in quantity pro­
duction vary somewhat from these curves.
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In B, C, and D elements the temperature at which the temperature 

coefficient becomes zero, called the turning point, may be varied over a 
range of about 50°C by variation of the orientation angle.213 That is, 
the curves may be shifted along the temperature scale without greatly 
changing their shapes. In A and G elements, on the contrary, the 
curve tends to rotate about the midpoint, without significant change of 
the temperature range covered. Other elements behave in a manner

similar to the B, C, and D, but the temperature range over which the 
turning point may be adjusted is somewhat less. In elements of all 
kinds the cost is greatly increased if the temperature characteristic and 
nominal frequency must be controlled to very close limits.

The size of a practical crystal plate is limited by weight and avail­
ability on the upper side and by power dissipation, fragility, and 
techniques on the lower side. Operation over a wide frequency range 
is obtained by choosing the mode of vibration in addition to the dimen­
sions of the plate. Approximate frequency ranges over which various



TABLE 6.5
Properties of Various Crystal Cuts

Cut Mode* Useful
Range

Freq. 
Equation t

Cap.t 
Ratio

Ci, 
M^f

Lb 
henries

Rb 
ohms

PI}. 
ohms

Typical 
Q Orientation Typical 

Dimensions

A Is 1-20 Me 166// 250
97lwf 2,62 X 10» 100 10» 50.000 (yx035°21' w = 0.951 = 29/

107 Iwf* or (yzw)35°21f w = 1.05/ = 32/

B is 1.5-30 Me 256/i 650
24.2lwf 10.5 X 10» 100 10» 50,000 (yxl) - 48°57' w - 1.02/ - 24.4/

107 Iwf* or (yzw) — 48°57' w = 0.98/ = 24.8/

C ft 300-1000 kc 307// 350
108 
tf2

233/ 1,000 10» 20,000 (y^/)37055' 
or (2/zw)37c’55' w = I = 20/

D fs 200-500 kc 207/1 400
43
tf2 590/ 1,000 10» 20,000 (yxl) - 52°40' 

or (yzw) — 52°40' w - I = 201

E e 50-200 kc 282/Z 125
38.3 
tf2 660/ 1,000 10» 20,000 (xvttS0 w = 0.15/ = 10/

F e 50-200 kc 256/? 130
30,1 
tf2

840/ 1,000 10» 20,000 (xyt) — 18° w = 0.15/ = 10/

G e 80-500 kc 337/? 350
152
if2

167/ 100 10“ 200,00011 (yxlf)51°14'/45o w = 1.17? = 20/

H wf 4-50 kc 500w/I2 
or 75//

190
1.79 
tf2

14,200/ 10,000 10’ 20,000 (xyl)5° w = 0.15/ = 10/

If 1-10 kc 560///2 
or 11.2/1 200

0.0254 
IP

10’/ 10,000 10“ 20,000 (xyt)5Q pair w = 0.1/ = 5/

M e 50-500 kc 280/1 190
66.4 
tf2

382/ 1,000 10» 20,000 (xj/IDS’/SS0 w = 0.4/ = 5i

N wf 4-50 kc 5d0w/l* 900
0,242

105,000/ 10,000 10’ 20,000 (xyil)8Q/50° w = 0.12? = 10/
or 67.2/1 if2

2.62n» X 10»15-100 Me 166n// 250n*
97lwf

100 10“ 75,000 (WXD35O21' w = I — 60/
107n3 Iwf* or (yzw)35°21/

* ts = thickness shear, /« = face shear, e = extensional, wf = width flexure, tf = thickness flexure, 
t Frequency in kilocycles corresponding to the governing dimension in centimeters.
j Capacitance ratio, tq = CVCi.

Into a uniform load capacitance of 32 mA, now commonly used.
Carefully mounted in vacuum.
The J element is a cemented symmetrical pair of right and left-hand elements
Using the mechanical overtone n of thickness shear.
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elements are applicable, together with other properties, are given in
Table 6.5.*

The symbols used in the orientation columns have a relatively 
simple interpretation. The resonator is a rectangular parallelepiped 
of thickness t, length I, and width w, respectively. The first two 
letters in parentheses represent, in order, the natural axes of the quartz 
crystal along which the thickness and length of the resonator lie before 
rotation. The third letter in the parentheses represents the dimension 
of the resonator which serves as axis for the first rotation. The 
fourth letter, when present, indicates the dimension which serves as 
axis for the second rotation. The angles which follow represent the 
magnitude and direction of the rotation angles. It is seen that these 
expressions are in agreement with Fig. 6.21.

The data of Table 6.5 are reasonably accurate except for the resist­
ance and PI values, which are correct only in order of magnitude. 
Moreover, the temperature characteristics, capacitance ratios, and 
frequency constants are subject to considerable variation due to 
deliberate or accidental variations of orientation and relative dimen­
sions. However, the compilation does show orders of magnitude, 
and contrasts the behavior of different units.

6.14 Magnetostriction resonators

The usefulness of quartz crystals as resonators stems from the fact 
that quartz is piezoelectric.! Another important class of resonators is 
based upon the property of magnetostriction.344 This property is 
observed in a number of pure metals and alloys, notably those based 
on nickel, as a dependence of the mechanical dimension upon the mag­
netic condition. In a typical magnetostriction resonator,239 applica­
tion of a longitudinal magnetic field results in a shortening of a rela­
tively long bar of the metal. However, the behavior depends greatly 
upon the material and the relative orientation of the field. Moreover, 
because the dimensional change is independent of the direction of the 
applied field, a simple proportionality cannot exist between cause and 
effect; and the dimensional change usually varies approximately as 
the square of the field. This difficulty is ordinarily avoided by bias­
ing the material with a constant magnetic field which is substantially

* Substantially all the data for Table 6.5 and Figs. 6.21 and 6.22 was obtained 
by the Bell Telephone Laboratories and is taken from the section prepared by Dr. 
R. A. Sykes for the Prentice-Hall Handbook on Electrical Communication.

t Electrostriction has not found application in resonators because the electro­
mechanical coupling is much inferior to that provided by piezoelectricity, and is 
inadequate for most purposes.
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larger than the maximum value of the varying field. However, the 
basic length, the natural frequency, and the electromechanical cou­
pling vary somewhat with variations of the biasing field.

Magnetostriction resonators have not been widely used, although 
they possess certain advantages over quartz or other alternates, 
especially at frequencies of a few kilocycles. This limited use is due 
in part to the difficulty of procuring and mounting suitable rods and 
in part to inherent difficulties associated with the smallness of the 
electromechanical coupling.

The equivalent circuit of a magnetostriction resonator is shown in 
Fig. 6.23. It differs from that of a quartz crystal in that the shunting 
capacitance is replaced by an inductance and resistance in parallel. 
These account for the reactance and losses of the winding in the absence 
of vibration of the rod, whereas the high-Q branch, Li, Ri and C i, accounts

Fig. 6.23. Magnetostriction resonator and equivalent circuit.

for the desired response due to mechanical vibration. The inductance 
ratio Li/Lq, together with the Q of the mechanical response, plays an 
important part in determining the characteristics which may be 
obtained. In available units this ratio is relatively high, in the order 
of 5000. The Q of the mechanical resonance is approximately 10,000; 
under these conditions we may show that the net reactance of the 
system is never capacitive. A corresponding situation exists in 
quartz crystals operated at a high mechanical overtone, and in both 
cases the driving system must be carefully designed if the output 
frequency is to be under adequate control of the mechanical vibration. 
In magnetostriction resonators this difficulty is sometimes evaded by 
using two coils so that the system acts as a highly selective four-ter­
minal network.

The frequency of a simple bar vibrating in the extensional mode 
depends upon the length, density, and elastic constant of the material. 
In ordinary materials these quantities vary with temperature to an 
objectionable degree. However, Ide163 has shown that an alloy of 
8 per cent chromium, 37 per cent nickel, and 55 per cent iron has the 
relatively excellent response indicated in Fig. 6.24.
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Recent work at the Armour Research Foundation has been directed

toward producing magnetostriction resonators useful at frequencies in
the order of a megacycle. Details of this work are not available, but
it appears to have met with a reasonable degree of success.

Fig. 6.24. Temperature characteristic of a magnetostriction resonator using 
extensional mode: (a) alloy annealed and operated in a field of 13,500 ampere turns 
per meter and (b) alloy quenched and operated in a field of 8100 ampere-turns 

per meter.

6.15 Tuning forks
The simple tuning fork has been used as a standard of frequency for 
acoustics and music for a long time and has received extensive develop­
ment. It was, therefore, one of the first mechanical resonators to 
be used with electric circuits. In the earliest work the fork was driven 
magnetically by varying the current in an appropriate electromagnet 
and executed its control by opening and closing an electric contact 
in the driving circuit, as in an ordinary buzzer. This arrangement 
was never very satisfactory because of contact troubles and the 
mechanical loading due to the contact. Considerably better results 
were obtained when the contact was replaced by a pressure-sensitive 
resistance, similar to the ordinary carbon microphone. In fact, such 
units are still used to some extent because of their simplicity, compact­
ness, and moderate power requirements.

Modern precise tuning fork resonators222 are mounted in vacuum to 
avoid damping due to the air, are mechanically isolated from the 
support in such a way that very little energy is lost in the mounting, 
and are constructed of a material which leads to a very low tempera­
ture coefficient of frequency. A typical construction is shown in 
Fig. 6.25. One tine is driven by the varying pull of an electromagnet, 
while the other tine generates an alternating voltage in a second coil by 
its motion in conjunction with a permanent magnetic field.184 Thus 
the unit acts as a four-terminal network in which the principal trans­
mission takes place through the mechanical motion of the fork. The 
minimum loss is of the order of 40 db, but this presents no great 
difficulty because adequate gain may be secured by means of a single 
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vacuum tube with suitable transformers.223 However, there is some 
difficulty with undesired oscillation because of direct magnetic coupling 
through the fork and permanent magnet.

Tuning forks have been built for frequencies of about 100 to 10,000 
cycles, and have a typical Q value of about 10,000. Temperature 
stabilities of the order of 0.1 ppm per °C have been achieved in some 
cases by careful choice of materials and construction, but a much larger

Fig. 6.26. Temperature characteristic of a tuning fork resonator.

coefficient is typical. The temperature characteristic of a good mod­
em fork is shown in Fig. 6.26.

6.16 Molecular resonance
The resonators so far described are relative rather than absolute; 
that is, the natural frequency depends upon dimensions or other 
properties which are under control. An entirely different situation 
exists with respect to atomic and molecular resonances.

It has been known for a long time that the optical frequencies (or 
wavelengths) characteristic of various atoms are absolute, highly 
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stable, and virtually independent of all known influences. However, 
this knowledge was of little use to the oscillator art because of the 
tremendous frequencies (order of 1015) involved. Later it was dis­
covered that ammonia and a number of other gases show selective 
absorption effects at frequencies of the order of 20,000 Me. The 
ammonia response at 23,870.127 ± 0.003 Me is particularly strong 
and has been extensively studied at the Bureau of Standards and else­
where.11,139 The sharpness of response corresponds to a selectivity 
of about 100,000; and the central frequency appears to be absolutely 
independent of everything except static electric and magnetic fields, 
which are readily reduced to values producing negligible error.

The simplest device for making use of this effect is a section of 
rectangular wave guide with inside dimensions approximately one- 
half by one centimeter. The guide is fitted with air-tight mica windows 
and filled with dry ammonia gas at a pressure of about 10-5 atmos­
phere. Under these circumstances the unit acts as a band-rejection 
wave filter having, per meter length, a fixed loss of about one decibel 
and a variable loss increasing sharply by several additional decibels 
at the critical frequency. Alternative arrangements employ wave 
guides of enlarged cross section or cavity resonators in which the 
intrinsic Q is low compared to 100,000.

The sharpness of the response is degraded if the gas pressure or the 
electric field intensity becomes too high, presumably because of inter­
action between the molecules. Therefore, it is necessary to maintain 
a low and fairly uniform pressure and to limit the signal applied. 
Everything else being equal, it appears that the permissible power level 
is directly proportional to the number of molecules, hence the gas 
volume. Therefore, in cavity-type absorption resonators a large 
rather than a small ratio of volume to inherent selectivity is desirable.

At the present time circuits for use with this form of resonator are 
somewhat complicated and troublesome to maintain. However, the 
method shows promise of providing a standard of frequency, and time, 
which is superior to anything yet developed.

A still more exact standard of frequency exists in the molecular 
beam.166 A beam of molecules of a suitable material is produced by 
evaporation and is projected through an evacuated region where it is 
subjected to alternating electric and magnetic fields. When the 
frequency of these fields has a particular value, characteristic of the 
molecule in question, the beam is strongly deflected. Exceptional 
features of this arrangement are the sharpness of discrimination, which 
corresponds to a Q of 107, and the fact that the critical frequency 
depends solely upon the kind of molecules used. The molecular 
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beam, therefore, offers an absolute standard of frequency substantially 
superior even to the molecular resonance. However, from the practi­
cal standpoint it seems even farther from use as a working standard of 
frequency.

PROBLEMS
6.1. An antiresonant circuit has a capacitance of 1000 Mgf, a Q of 200, and a 

natural frequency of one megacycle. What is its impedance level? What 
properties must an associated driving system have?

6.2. In a cavity resonator operating at 30°C and standard pressure the humidity 
changes from 20to 70 per cent. What is the fractional change of natural frequency ?

6.3. In Prob. 6.2, half of the air (at 20 per cent humidity) is replaced by carbon 
dioxide. What is the fractional change of natural frequency?

6.4. Prove that the temperature coefficient of capacitance of a condenser is equal 
to the linear coefficient of its material if the shape is the same at all temperatures.

6.5. Repeat Prob. 6.4 for an inductance.
6.6. A coaxial conductor is made of copper. The center conductor has a 

diameter of one centimeter and the outer tube has inner and outer diameters of 
2 and 3 cm respectively. By suitable references determine the inductance per 
meter at very low and very high frequencies and the frequency region where the 
transition occurs (at 30°C).

6.7. A simple cavity resonator is made of brass. What is its temperature 
coefficient of frequency? Explain.

6.8. Design a coaxial quarter-wave resonator in which the temperature coef­
ficient of frequency is canceled by differential expansion of aluminum and steel.

6.9. How might one distinguish between piezoelectricity and electrostriction: 
between piezomagnetism and magnetostriction?

6.10. A quartz crystal has parameters, Ri = 400 ohms, Li = 200 henries, 
Ci = 0.02 firf, and Co = 7^+- What is its performance index (PI) with a load 
capacitance of 30 M^f?
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A great majority of the oscillators in practical use are nonlinear; 
that is, the vacuum tube simultaneously serves as amplifier and limiter. 
In such oscillators the current through the tube is far from sinusoidal, 
although the voltage wave forms are often almost pure because of 
the filtering action of tuned circuits. The use of the tube as limiter 
is effective and economical; and such oscillators adequately meet most 
application requirements. However, where the highest order of fre­
quency and amplitude stability is required or where harmonics must 
be avoided and reliable operation over long intervals is needed, the 
linear oscillator is used.

Two principal classes of linear oscillators exist. In one, limiting is 
accomplished by means of a thermistor, that is, a thermally sensitive 
resistor. In a thermistor-controlled oscillator the amplitude of oscilla­
tion may be made almost independent of the condition of the vacuum 
tube and its bias voltages; however, it is necessarily dependent upon 
the ambient temperature. In the second class are electronically con­
trolled oscillators in which the gain is varied as a function of amplitude 
by an auxiliary device in such a way that no appreciable non-linearity 
is produced. Certain multiple-grid tubes designed primarily for fre­
quency conversion have characteristics suitable for accomplishing this 
end. In electronically controlled oscillators the amplitude depends 
mainly upon some reference voltage.

7.1 Thermistors for oscillator use
Thermistors are elements in which the resistance is a function of tem­
perature but not of the instantaneous current. They are therefore well 
suited for use as limiters in oscillators because, for any but the lowest 
frequencies, thermal inertia prevents the temperature, and hence the 
resistance, from changing appreciably during any one cycle of the oscilla­
tion. The resistance is therefore a function of the oscillation amplitude 
but is linear from the standpoint of waveform distortion.

Two types of thermistors are commonly used in oscillator circuits.
126
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Cheapest and most generally available is the tungsten filament lamp. 
The common feature of all tungsten lamps is that the resistance at 
incandescence is about ten times as great as that at room temperature. 
In oscillators it is undesirable to use this full range because of the 
relatively high power required to produce incandescence and because of 
the limited operating life which results. However, small filaments are 
raised to a temperature of about 900°K (corresponding to a dull red) 
by a power of only a few milliwatts. At this temperature the resist­
ance is about four times that at room temperature, and the life is 
virtually unlimited.

7.2 Lamp characteristics
Tungsten filament lamps are manufactured in a great variety of 
physical forms for operation throughout a wide range of voltages and 
currents. For the present purposes, however, we need consider only 
lamps of small physical size designed for relatively low voltages and 
currents. The properties of interest are the resistance; its variation 
with respect to the current, voltage, or power; and the thermal time 
constant of the filament. The thermal time constant for a slender 
filament rated at about 30 ma is of the order of 0.02 second. For a 
somewhat heavier filament rated at 200 ma this increases to about 
0.06 second.

Different points along the filament operate at quite different tem­
peratures because of unequal radiation losses and the cooling effect 
of lead and support wires. For this reason the variation of overall 
resistance, which may conveniently be expressed with respect to the 
applied voltage, is relatively complicated. The variation of resistance 
with applied voltage for representative lamps is shown in Fig. 7.1. 
Voltage, rather than current or power, is chosen for the abscissa 
because the lamp voltage is closely proportional to the output voltage 
in a number of important thermistor-controlled oscillators. Log­
arithmic scales for both voltage and resistance are chosen to accommo­
date a wide range of variables and because fractional rather than 
absolute changes are of interest. The principal axes of voltage and 
resistance are supplemented by diagonals of power which are very 
helpful in actual design. It is seen that a great impedance range is 
available, and that a marked increase of resistance is obtainable with 
relatively small power dissipation. An example of the use of these 
curves follows in Section 7.5.

An important property of a thermistor is the sensitivity s defined*
* Our s is comparable to the parameter used by Aigrain and Williams.4 How­

ever, they refer the resistance to the current rather than the voltage.
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where E is the terminal voltage and r is the resistance. It is seen that
s is simply the slope when the curve is plotted to logarithmic scales.

by the ratio
dr/r tf(log r) 

dE/E = d(log E)’ (7.1)

Accordingly, attention is focused upon the steepest part of the curves 
of Fig. 7.1. Fortunately, the slope is near its maximum value over a 
wide region of low power input, so that long life is to be expected.

Two additional practical problems need to be considered, especially 
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if quantity production is anticipated. Because lamps are manu­
factured in large numbers at small cost, there is a considerable varia­
tion between units; the circuit design must take account of this 
resistance variation, which is typically about +20 per cent for a given 
voltage. Unfortunately, because the sensitivity s is only about one- 
half for typical lamps the resistance variation may result in an output 
voltage variation as great as ±40 per cent; a variation of more than 
two to one! When lamps are designed for illumination, there is no 
substantial contact problem, and the filament is often connected to 
the lead-in wire by a simple hook-clamp joint. Although this arrange­
ment is satisfactory for lighting, it is likely to give trouble in an oscilla­
tor. In other lamps the filament is connected by spot welding or by 
pressing it into the softer lead-in wire. Neither of these constructions 
should give contact trouble. However, all lamps in which the filament 
has additional supporting hooks are subject to slight instabilities 
because the support wires short-circuit one or more of the tiny coils 
of the filament.

7.3 Semiconducting thermistors
Materials whose conductivity is much less than that of typical 
metals, but is much greater than that of good insulators, are called 
semiconductors. Carbon, silicon, and germanium are familiar exam­
ples of semiconductors. The behavior of semiconductors is very 
complicated and cannot be discussed here. It is sufficient to note 
that the number of mobile charges or current carriers, and hence the 
conductivity, is quite sensitive to the amount of impurity present, to 
the temperature, and to other influences such as radiation. Most 
semiconductors have high negative temperature coefficients of resist­
ance. The thermal variation of resistivity of a typical semiconducting 
material is compared with that of tungsten in Fig. 7.2. This property 
is employed in semiconducting thermistors. (I

Thermistor units are manufactured for electrical application24 in 
two distinct classes. Simplest are the self-heated thermistors which 
are simple two-terminal elements, comparable with lamps. More 
complicated and versatile are the separately heated thermistors in 
which the temperature may be controlled by heat generated in a coil of 
resistance wire associated with the semiconductor. The latter 
arrangement permits the control of very small signals by currents in an 
entirely separate network, and is desirable in a number of situations. 
Commercial units are quite small and resemble other circuit elements 
in general appearance. The characteristic of a sensitive self-heated 
thermistor designed for oscillator application is shown in Fig. 7.3.
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Its resistance variation is opposite to and much greater than that of
tungsten; however, this advantage is considerably offset by the marked
effect of ambient temperature.

In a linear oscillator the gain is independent of the signal level, 
and is ordinarily quite insensitive to the ambient temperature. There­
fore, equilibrium will demand a unique value of resistance and hence a 
unique temperature of the thermistor. Because the heat loss from 
the thermistor is a function of the ambient temperature, it is clear 
that the power, and hence the oscillation amplitude required to main­
tain the equilibrium, also depends upon the ambient temperature.
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Fig. 7.2. Resistivity of a semicon- Fig. 7.3. Characteristics of a semicon­
ductor. ducting thermistor.

In thermistors which operate near 1000°K, the principal heat loss is 
by radiation, which is little affected by the ambient. However, when 
the operation temperature is near 400°K the heat loss is largely by 
conduction, and is greatly affected by the ambient, as shown in Fig. 
7.3. Unfortunately, semiconducting thermistors tend to drift in 
value if subjected to excessive temperatures, so that it is difficult to 
eliminate the temperature effect.

The undesirable effect of ambient temperature on the output of 
thermistor-controlled oscillators may, however, be greatly reduced by 
a balancing method. Ordinarily, the oscillator employs a bridge cir­
cuit in which the thermistor resistance substantially equals a fixed 
resistance. If the fixed resistance is replaced by a suitable second 
thermistor, then a first-order balance may be obtained over a con­
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siderable range of ambient temperature. The added thermistor must 
have a power rating or heat exchange rate which is large compared to 
that of the primary thermistor so that its resistance will be governed 
solely by the ambient temperature and not by the oscillation ampli­
tude. If this added thermistor is to appear in an arm adjacent to the 
primary thermistor—the usual case—it should have a thermal coef­
ficient of the same sign but smaller than that of the primary thermistor. 
Becker et al.27 describe such arrangements in some detail.

The thermal time constant of semiconductive thermistors tends to be 
somewhat longer than that of lamps. The unit of Fig. 7.3 has a time 
constant of about 0.1 second, and is stated to be satisfactory for use 
in oscillators at frequencies above about 100 cycles.

7.4 A thermistor bridge oscillator
The oscillator shown in Fig. 7.4 is capable of excellent performance in 
that the output is nearly constant in amplitude and frequency and is 
virtually free from harmonics. The system is particularly convenient

for analytic purposes because the amplifier, limiter, and resonator 
functions are performed by separate portions of the circuit and because 
linear equations are adequate to describe the performance.

When the circuit is first energized, the lamp filaments are cold and 
have a relatively low resistance so that the bridge circuit is far from 
balance and has little loss. If the transformers are suitably wound and 
connected a considerable loop gain exists, and oscillations build up at 
the natural frequency of the resonator, that is, the tuned grid circuit. 
The oscillatory currents heat the filaments, thereby increasing their 
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resistance and bringing the bridge nearer to balance. This action 
reduces the net loop gain, and decreases the rate at which the oscilla­
tions expand. Equilibrium is reached when the loss of the lamp bridge 
equals the gain of the rest of the system. It is practical to adjust the 
element values so that the equilibrium amplitude is considerably below 
the overload point of the tube, which then operates in a conservative 
class A condition.

The fact that limiting can be achieved without distortion is due to 
the thermal inertia of the lamp filaments. Although the temperature 
(and hence the resistance) changes rapidly enough to maintain equilib­
rium, the temperature does not change appreciably during any one 
cycle. Therefore, with respect to the oscillatory current, the lamp acts 
like an adjustable linear resistor rather than a nonlinear resistor.

Fig. 7.5. Equivalent circuit.
In the most exact sense the foregoing statements are only approxi­

mate. For, no matter how high the frequency of oscillation and how 
slow the thermal response of the lamp, there is necessarily some 
variation of resistance during the cycle, and therefore some distortion 
of the wave. If the frequency is in order of 100 kc, the variation is 
extremely small and the distortion is less than that inherent in the 
vacuum tube. At the lower audio frequencies, on the other hand, the 
resistance of ordinary lamp filaments does vary appreciably over the 
cycle, and significant distortion occurs.

To facilitate analysis of the lamp bridge oscillator, we assume that 
the plate resistance of the tube is infinite; that the output transformer 
is so tightly coupled as to be effectively ideal; that the input trans­
former has finite inductance but negligible loss and leakage; and that 
the loop gain is so large that the bridge is nearly balanced. These 
conditions are used to obtain Fig. 7.5 in which the transformer turns 
ratios correspond to Fig. 7.4. The governing equations are linear and 
relatively simple, in part because the tuned grid circuit is assumed to 
have no losses. Because of the symmetry of the bridge the driving 
current divides equally so that

V3 = I(R - r). (7.2)
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Since the plate current is given by

21/N = gmnVa, (7.3)
the condition of sustained oscillation is obtained by eliminating 1 and 
Va to give

2 = gmnN(R - r) = (zmnWE(l - r/R). (7.4)

7.5 Design parameters for bridge oscillator
The substitution of numerical values is frequently helpful in inter­
preting analytic results. Reasonable values for the present example 
are gm = 2000 micromhos, R = 200 ohms, N = 20, and n = 40. 
Substitution in eq. 7.4 yields

2 = 40 X 20 X 0.002 X 200(1 - r/R), (7.5)
which requires

r = 198.667 ohms. (7.6)
The Western Electric type Al Switchboard Lamp is suitable for this 

application. As shown in Fig. 7.1, the resistance reaches 200 ohms at 
a voltage of about 1.3 volts. In this region the curve is closely approxi­
mated by the empirical equation

r = 180E0-4, (7.7)
where E is the lamp voltage. The sensitivity, s, which corresponds to 
the exponent is thus equal to 0.4. Substitution of eq. 7.6 into eq. 
7.7 requires that

E = 1.27 volts. (7.8)
The remaining circuit voltages are readily seen tobeFi = 51, Fo = 
2.55, 73 = 0.008, and V2 = 0.32 volt, values which are consistent with 
highly linear class A amplification. Under the assumptions made, the 
frequency is identical with the natural frequency of the grid circuit. 
In a practical circuit this condition is very closely approximated.

The operation of this circuit can be analyzed from another view­
point which offers certain advantages. The curve of Fig. 7.6 shows 
the variation of the output V3 of the lamp bridge as a function of the 
applied voltage Vo- The output first increases linearly with the input, 
but decreases from this relation as the temperature of the lamps 
increases. The output reaches a maximum, then decreases rapidly 
toward zero as the input is further increased, passing through zero 
and reversing in phase as the input is increased through that value 
which balances the bridge.

Because the amplifier is linear, the voltages Fo and Vs are propor-
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tional to each other. This relationship is represented in Fig. 7.6 by 
the dot-dash line which has a slope equal to the reciprocal of the volt­
age amplification. The condition of sustained oscillation corresponds 
to the intersection of the dot-dash line with the characteristic curve 
of the lamp bridge. This construction shows clearly that a large 
change in the amplifier gain, corresponding to a large change in the

slope of the dot-dash line, will produce only a small fractional change 
in the output voltage Vo. That is, the system has a large value of 
amplitude stability.

7.6 Amplitude stability of bridge oscillator
The preceding discussion of the bridge oscillator has shown, in a general 
way, that a large change in the tube transconductance produces only a 
small change in the output voltage, Vo- This general idea can be 
reduced to a quantitative relationship by the following mathematical 
process. We begin by noting from Fig. 7.5 that the lamp voltage, E, is 
related to the amplifier output voltage Toby the simple expression

E = Vor/(R + r). (7.9)

If we multiply eq. 7.9 by (R + r) and take differentials, considering E, 
Vo, and r as variables, we obtain

(72 + r)dE + E dr = Vodr + r dV0. (7.10)

Division by eq. 7.9 and use of the fact that the bridge is almost bal­
anced so that r and R are nearly equal yield

dE/E - | dr/r = dV0/V0. (7.11)

The loop gain eq. 7.4 is now differentiated with respect to gm and r to 
obtain

gmdr = (R - r)dgm or dr/r = {R/r - 1) dgm/gm. (7.12)
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Combining eq. 7.1 with eq. 7.11 and 7.12 yields

(1/s - i) (R/r - 1) dgm/gm = dVQ/V0. (7 A3)

The amplitude stability with respect to transconductance is defined in 
Chapter 1 as

S. - U-H)d V o/ F o

Using eq. 7.4 to eliminate r from eq. 7.13 permits rewriting the ampli­
tude stability as

R 4^"’ - - 2>- <7'15>2 — s 2/nNgm 2 — s

It is clear that the amplitude stability approaches zero as the product 
nNRgm decreases toward two (the threshold of oscillation) and that it 
approaches infinity as s approaches two. We see by substituting 
numbers from the previous example, where the lamp sensitivity s 
was 0.4, that SA may become quite high in practical cases,

0.4
Sa = — (40 X 20 X 0.002 X 200 - 2) = 79.5. (7.16)

1.6

That is, a 0.795-db change in transconductance would result in only 
0.01-db change of output.

7.7 A linear tuned plate oscillator

A simple linear oscillator which has several interesting features is 
shown in Fig. 7.7. It differs from the conventional tuned plate triode 
oscillator in that the grid bias is produced in the cathode rather than 
the grid circuit, and by the addition of the lamp and inductance Ls-*  
The lamp serves to stabilize the amplitude by reducing the Q and 
impedance of the tuned circuit as the amplitude of oscillation increases. 
The compensating inductance serves to make the operating fre­
quency independent of the lamp resistance, as shown in eq. 7.24 
below. The cathode resistor, when adequately by-passed, provides a 
bias suitable for class A operation. Tests show that the amplitude and 
frequency stability are good and that the output is substantially free 
from harmonics.

* Except for the addition of the lamp, this circuit is identical with that of 
Mallett.201 The operation, however, is quite different, because the addition of 
Li may actually degrade frequency stability when strong harmonics are present.
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The conditions for oscillation are determined by reference to Fig.

7.8. Because there is no grid current, we may write.
V ^WIu (7.17)
Vo = 11^! + (7.18)
12 = (7.19)

and
(rp + >L3)(Ii + I2) = (mV - Vo). (7.20)

Elimination of the current and voltage variables yields

Tp + 7^3 + jwrpCiRi — w2L3CiEi — w2LiCirp
— jwALiL3C\ = juMp — Ri — juLr. (7.21)

The real terms must form a separate equation
Ei + rp = w"(L3CiEi + LiCiTp), (7.22)

which becomes independent of Ei and reduces to
l/a>2 = LiCi (7.23)

provided
Li = L3. (7.24)

The equation based on the imaginary terms of eq. 
with eqs. 7.23 and 7.24

7.21 becomes

M = (Li + rpC\R-i)/M. (7.25)
It defines the gain and resistance conditions which must be met for 
oscillations to exist.

Suppose that a frequency of one megacycle is to be produced, using 
the familiar 6J5 triode with rp = 7500 and m = 20. A suitable lamp 
is the type 48 (or 49) switchboard lamp having characteristics shown 
in Fig. 7.1. As a reasonable compromise between sensitivity, freedom 
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from ambient temperature effects, and the limited power available 
from a small tube let us operate the lamp at a resistance of 10 ohms, a 
voltage of 0.25 volt, and a current of 25 ma. It is appropriate to 
allow about 10 ohms additional resistance for the coil losses so that 
Ri = 20 ohms. The reasonable assumption that the plate coil has an 
inherent Q of 100, together with a resistance of 10 ohms at a frequency 
of one megacycle, fixes the value of inductance by the relation

2ir X 106Li = 10 X 100 henries (7.26)
so

Li = L3 = 159 /zh. (7.27)
Using eq. 7.23, we find

Ci = 159 ppi. (7.28)
Then, from eq. 7.25,

M = 9.15 ph. (7.29)

Because the lamp resistance is 10 ohms only when the rms lamp current 
is 25 ma, the rms grid voltage is by eqs. 7.17 and 7.29,

V = 1.44 volts rms. (7.30)

The corresponding plate voltage is closely equal to the voltage across 
Li, which by eq. 7.18 is

To = 25 volts rms. (7.31)A plate supply of 150 volts with a grid bias of 4 volts, which leads to 
an average current of 6 ma and calls for a self-bias resistor of 666 
ohms, is appropriate. The direct current is small enough so that it 
does not contribute appreciably to heating the lamp. It is seen that 
all the element values are entirely reasonable in magnitude, and that 
the voltages are consistent with linear operating conditions.

In practice, there are a number of distributed capacitances which 
were not included in the analysis. Moreover, the dielectric losses of 
the coil are not effectively in series with the lamp. For these reasons 
it is usually necessary to adjust L3 experimentally to a value somewhat 
smaller than L\ for best frequency stability.

Although slightly more complicated, the oscillator of Fig. 7.4 is 
superior to that of Fig. 7.7 in several respects. First, it is much less 
critical with respect to the values of the elements, because the rela­
tively large loss normally designed into the bridge will accommodate 
considerable variations of transconductance and transformer perform­
ance. For the same reason, the amplitude of the output is more nearly 
constant. Finally, the frequency of the bridge oscillator is inherently
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independent of the lamp resistance, so that no frequency stabilizing
reactor is necessary.

7.8 Amplitude stability of tuned plate oscillator
The amplitude stability of the linear tuned plate oscillator is readily 
determined by methods already established. Since in practice the 
amplification factor of a triode is much more constant than the plate 
resistance, it is appropriate to differentiate eq. 7.25, regarding only 
rp and Ai as variables. If the notation of Fig. 7.8 is used, the resulting 
equation is

drp/rp + dR\/R\ = 0. (7.32)
The resistance represents the sum of the lamp resistance, which 
may be designated r, and the coil resistance, which may be represented 
by the constant k. With this substitution and use of eq. 7.1 we obtain

drp/rp = —dr/Ry = — (sr/Rf) (dv/v), (7.33)
where v represents the lamp voltage itself, and is given by

v = hr. (7.34)
Differentiation of this expression leads to

dv/v = dh/h + dr/r. (7.35)
Because large values of Q are commonly used, the output voltage, To 
is almost proportional to h, so differentiation of eq. 7.18 leads (with 
only a very small error) to

dVq/Vq = dh/h- (7.36)
The overall amplitude stability now becomes

= drp/rp = — sr dv/v = -sr
x dVo/Vo Ri(dv/v — dr/r) (1 — s)(r + k)

Substituting in this equation the values r = k = 10 used in the exam­
ple in the preceding section and the sensitivity s = 0.7 corresponding 
to the selected operating point in Fig. 7.1, we have for the amplitude 
stability the relatively low value of 1.15. The negative sign arises 
from the fact that an increase in output is associated with a decrease of 
the plate resistance.

7.9 The Wien bridge oscillator
A circuit which has proved exceptionally convenient for variable fre­
quency oscillators in the audio range26 is shown in Fig. 7.9. It is a
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linear, thermistor-controlled oscillator, which has excellent amplitude
control. Although many variations are practical and are some­
times used,164 the arrangement shown is ordinarily regarded as most
advantageous.

The key feature of this oscillator is the slightly modified Wien 
bridge which serves as both limiter and equivalent resonator. It is 
well known that such a bridge is balanced, provided

Ei = 1/wCi, (7.38)
and

Ri = 2r. (7.39)
Oscillation occurs at a frequency such that eq. 7.38 is satisfied to an 
accuracy limited only by the presence of unavoidable phase shifts in

Fig. 7.9. Wien bridge oscillator.

other parts of the circuit. The equilibrium amplitude is such as to 
heat the lamp nearly, but not quite, to a resistance consistent with 
eq. 7.39. In practice, Ei is usually large compared to Ri, so as to 
obtain audio frequencies with practical values of capacitance.

The Wien bridge may be connected in several ways, of which only 
one yields suitable oscillations under any particular set of conditions. 
It is therefore necessary to examine the system behavior with some 
care.338 The essential facts are presented in a Nyquist diagram 
determined from the following equations, based on the equivalent 
circuit of Fig. 7.10:

V3 = V2 - Vu (7.40)
Vdr + Ri) = Vor, 

and
„ „ E^l + jwCiRi)

Ei/(1 + j&CiRi) + mRi + 1/jwnCi

(7.41)

(7.42)
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or

Vo/V2 = 1 + m + jcomC 1R1 + 1 /n + l/fixnCiRi. (7.43)
Elimination of Vj and Va yields

11
V3/V0 1-y m-f-1/n jumCiRi f-1/jomCiRi 1 + R^/r (7.44)

which may be put in the symbolic form

V3/Vo a + Jòw + \/f<M (7.45)

This equation is in the form of a ratio of phasor voltages and therefore 
determines a Nyquist diagram. The denominator of the first term 
corresponds to a straight vertical line in the complex plane. There­

fore, the complete expression 7.45 represents a circle of diameter 1/a 
displaced from the origin by the distance d. Two cases, one for d 
small, the other for d large, are shown in Fig. 7.11. In both cases, 
increasing frequency corresponds to clockwise rotation. Because m 
and n are inherently positive, the constant a always exceeds one, and 
the circle diameter is less than one. Therefore, from eq. 7.45 the circle 
will cross the axis to the right of the origin only if the ratio R^/r is of 
the order of one. In particular, an increase in r also increases d and 
shifts the entire diagram to the left. Since a shift to the left corre­
sponds to a reduction of loop gain, a thermistor having a positive tem­
perature coefficient of resistance must be used as r, to secure proper 
limiting action (that is, reduction of loop gain with increase of ampli­
tude). Alternatively, a negative coefficient thermistor may be used 
in the R2 position if r is replaced by a fixed resistor.

The two vacuum tubes produce no net phase reversal and thus serve 
only to magnify Fig. 7.11 without changing its shape or frequency scale. 
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Accordingly, with appropriate scale change, this constitutes a universal 
Nyquist plot for the system. Stable oscillations are anticipated if r 
is a positive-coefficient thermistor. The diagram readily encircles the 
point (1, 0) for small amplitudes, but with increase of amplitude the 
diagram is displaced to the left so as to pass through the point (1, 0). 
This behavior is in interesting contrast to that of the oscillator of Fig. 
7.4, whose Nyquist diagram shrinks radially as the limiter takes effect.

Inspection of eq. 7.45 shows that each point on the circle of Fig. 7.11 
corresponds to a specific frequency and vice versa. When d is nearly 
equal to 1/a, therefore, a relatively small change in frequency results 
in a large loop phase shift. This property is common to all bridge 
circuits which are nearly balanced and are sensitive to frequency. It

is desirable in oscillators because unavoidable phase shifts in the 
amplifier (driver) unit are automatically corrected by a slight change 
of frequency.

A bridge composed of fixed linear elements also has this desirable 
property of phase magnification. However, it is impractical to achieve 
the desired accuracy of balance because of changes of element values 
with respect to age, temperature, etc. Moreover, a separate limiter 
would be required in any event. Therefore, the use of a thermistor as 
one arm of the frequency-controlling bridge must be regarded as a 
necessity in any practical bridge oscillator.

Ordinarily, the tube adjacent to the bridge in Fig. 7.9 is adjusted for 
large linear voltage amplification of a small signal. Care must be 
taken to see that the total direct cathode current does not contribute 
too much heat to the thermistor, which is commonly a 3-watt, 120-volt 
tungsten-filament lamp. The other tube is designed as a linear power 
amplifier. However, it must operate into a relatively low impedance 
and must produce a sufficiently large alternating current to heat the 
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thermistor. The cathode by-pass condenser must be omitted from 
the voltage amplifier in order to preserve the desired bridge operation; 
and it is commonly omitted from the power amplifier to avoid difficulty 
with phase shifts at the lower frequencies. The time constant of the 
coupling circuit C3R3 (of Fig. 7.9) can be made sufficient to avoid low- 
frequency phase shift without serious difficulty. However, because 
r and R2 have a resistance of only a few thousand ohms, it is necessary 
to use for C2 a relatively large capacitance (such as 40 pf) to avoid 
excessive phase shift at low frequencies. An additional problem is 
to secure suitable operating conditions in the power amplifier without 
reducing R^ so far that it produces a serious effective shunt across the 
bridge. This problem is alleviated, at the expense of the coupling 
problem, by lowering the bridge impedance. A considerable advan­
tage is secured by setting n = 2 and m = % in Fig. 7.10, in which case 
balance occurs for R2 = r.

Finally, it is possible to interchange the reactive arms of the Wien 
bridge. This arrangement can be used in the oscillator of Fig. 7.9, 
provided the cathode and grid leads are reversed to account for the 
reversal of phase and if r is a negative-coefficient thermistor. In 
practice, the connection of the cathode into the reactive arm of the 
bridge leads to intolerable difficulties with d-c conditions in the first 
tube, and is never used.

A number of other linear resistance capacitance oscillators exist.282 
However, they possess few features not already discussed, and are 
omitted here.

7.10 The Meacham bridge oscillator
The circuit which produces oscillations of the greatest frequency stabil­
ity yet recorded is due to L. A. Meacham ;209 it is used in the frequency 
standards of the Bell System, the National Bureau of Standards, and 
the British Post Office. The essential features of the circuit are shown 
in Fig. 7.12. A tuned amplifier provides a relatively high gain at 
zero phase shift. The bridge, which is the heart of the circuit, provides 
the combined functions of limiter and resonator. As will presently be 
shown, the balancing action of the bridge tends to increase the effective 
Q of the series resonant circuit by magnifying the phase shift produced 
as a result of any frequency deviation. Consequently, a considerable 
phase shift in the driving system produces only a very small shift in 
the operating frequency. This action is also present in the Wien 
bridge oscillator just described, but the stability of available RC ele­
ments is so poor that it offers little advantage in the Wien circuit. 
The operation of the Meacham circuit is conveniently explained in 
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terms of the series resonant circuit shown, although, in practice, the 
latter is usually replaced by a quartz crystal.

The inherently low harmonic output produced by the tube is further 
reduced by the action of the tuned input and output transformers. 
The thermistor produces limiting with negligible harmonic distortion 
because the circuit is ordinarily used only at frequencies above the 
audible, where the resistance is unable to vary appreciably during any 
one cycle. In the circuit described in Meacham’s original paper 
the second and third harmonics were respectively 67 and 80 db below 
the fundamental. Because three of its arms are pure resistors, the 
bridge can approach balance only at the series-resonant frequency,

Fig. 7.12. The Meacham bridge-stabilized oscillator, 

where the reactance of the fourth arm vanishes. Under balanced 
conditions the bridge is purely resistive.

During oscillation, the amplitude must adjust itself so that the loss 
of the bridge is equal to the gain of the amplifier. Also, the frequency 
of oscillation must adjust itself so that the phase shift of the bridge is 
equal and opposite to that of the amplifier, which is adjusted by means 
of input, output, and interstage networks to have as small a phase 
shift as possible. With the simplifying assumptions that the amplifier 
input impedance is large compared to the bridge resistances and that 
no phase shifts exist, it is possible to describe the system by means of 
relatively simple equations:

Vo = MV5 (7.46)
and

V5 = Vo ----- —--------------- ------ > (7 47)L(Ei + E2) (E3 + E)J k }
where g is the effective voltage gain of the amplifier.
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Because the bridge is operated at a condition very near balance, it is

convenient to express the situation in terms of b, the degree of unbal­
ance, defined by

Ri = (1 - 2) (7.48)zi

Introducing 5 (which equals zero when the bridge is balanced) into 
eq. 7.47 and then using eq. 7.46, we obtain

, r r r
L(1 — 8)Ra + R Ra + R.

= R + R3 — SRa ~ R + Rs. ‘ (7’49)

Because 5 is very small we may write to an adequate approximation

=1 + 5. (7.50)1 — 0
Use of this approximation in a slightly modified form converts eq. 7.49 
to

1 = pR R + Ra + òRs 
(R + Æ3)2

R + Ra _ . RRa 
(R + Æ3)2J - M ' (R + Ra)2 (7.51)

If an equal-arm bridge is used,

Ra = R- (7.52)
For this relationship eq. 7.51 requires that

p8 = 4. (7.53)
The equal-arm condition is desirable because, consistent with a pre­
scribed value of p, it leads to maximum amplitude and frequency 
stability. If the equality of eq. 7.52 is not achieved, an increase of 
the product p8 is required for oscillation. Thus, when

Ra = 472 or R/4, (7.54)

the required unbalance is increased to

p8 = 6.25. (7.55)

In a typical example p = 400 and R3 = R; then 5 = 0.01, and oscil­
lation occurs when R1 is only one per cent below the value which pro­
duces exact balance. Where the absolute maximum in performance 
must be achieved, the amplifier unit may consist of two or even three
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tubes in conjunction with transformers and interstage elements, 
carefully adjusted with respect to the overall gain and phase-shift 
characteristics. Ordinarily, however, a single tube in conjunction 
with tightly coupled, high impedance input and output transformers is 
sufficient. Suitable transformers for frequencies in the region of 
100 kc usually employ toroidal cores of powdered iron. Accordingly, 
the design of the bridge represents the chief problem. Several 
questions as to the proportioning of the bridge are discussed in the 
following section.

7.11 Design of the Meacham bridge
The principal requirements which govern the design of the bridge 
circuit are these. (1) A maximum possible rate of change of phase

shift with respect to frequency is desired to minimize the change of 
frequency which results from a change of amplifier phase. (2) In 
terms of ratios, a maximum change of bridge loss for a small specified 
change of thermistor resistance is desired to minimize the change of 
output which results from a change of amplifier gain. (3) A certain 
maximum amount of current or power is safely allowable in the resona­
tor, especially when a quartz crystal is used. (4) A certain minimum 
amount of power or current is required to operate the lamp thermistor.

The phase magnification will be calculated first in terms of the bridge 
circuit of Fig. 7.13 and the associated phasor diagram of Fig. 7.14, 
in which the magnitude of the unbalance has been exaggerated for the 
sake of clarity. The governing equations are

v5 = V3 - Vlt (7.56)
Vi(R! + = VoRi, (7.57)

and
V3(R3 + R + juL + 1/jwC) = V0R3. (7.58)
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Fig. 7.14. Phasor diagram of Meacham bridge.

A complete solution, although practical, is unnecessary, because 
interest is confined to conditions near the balance point, which is 
reached when

$ = 0 = </, = o (7.59)
and

RiR = R2R3. (7.60)

For conditions of small phase shift we may write

tan 0 = 0, tan 0=0, and tan 0 = 0. (7.61)

The use of similar triangles then yields

0/0 = Vo/V4 and 0/0 = F3/75. (7.62)

Division yields

0/0 = F3F4/F0V6 = (F3/Fo)(F4/Fo)(Fo/F5)
= (F3/Fo)(F4/Fo)g. (7.63) 

But

F3/F0 = R3/(R + Rs) and F4/F0 = R/{R + E3). (7.64)

Therefore, we may use eq. 7.51 to obtain the relationship

0/0 = 1/8, (7.65)

which is important because it proves that a bridge which yields optimum 
frequency stability also yields optimum amplitude stability and vice versa.

7.12 Parameters for optimum stability
The proportioning of the bridge is affected by the power rating of the 
resonator and the power required by the thermistor. In systems 
designed for the greatest frequency stability, the resonator is a GT 
cut quartz crystal, and must be operated at a power level substantially 
lower than that required by the lamp. Therefore, it is often necessary 
to use a bridge composed of unequal arms.
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It is assumed that the power rating Pi and elements of the resonator 

are fixed, and that the thermistor requires a specific power Pi for its 
operation but that its resistance may be chosen at will. Consistent 
with usual conditions, it is also assumed that the grid and plate 
resistances of the tube are effectively infinite, and that the associated 
transformers have negligible loss. However, the impedance levels 
(number of turns) of the high impedance windings of the transformers 
are limited by parasitic capacitance and other considerations, and this 
fact must be considered in the analysis.

The design problem now reduces to choosing Ri, Ri, and R^ so as to 
obtain the smallest fractional unbalance 3 and hence the greatest 
possible amplitude stability consistent with a given transconductance 
gm, prescribed plate and grid circuit impedances, and power levels 
consistent with resonator and lamp limitations.

Near the balance point we may write

Pi = Vi7Ei and P^ = U42/F. (7.66)

Introducing the dimensionless parameter k, and taking advantage of 
the fact that Vi = U3, we may obtain the relationship

k2 = F1/P4 = R3/R2. (7.67)

Near balance the grid and plate impedances are, respectively,

= n2(Ei + Rs)(Ri + R)/(R + Ri + Ri + Rf) (7.68) 
and

ZP = N2(Ri + E2)(2?3 + R)/(R + Ri + Ri + P3). (7.69)

Consistent with the assumed conditions, we may calculate p as defined 
in eq. 7.46 in terms of gm, Zg, Zp, and the bridge resistances. Sub­
stitution of the resulting expression in eq. 7.51 yields the useful 
relationship

1 W BR3 y/Ri + Ri y/R + R3
S “ ’-vz'v ' <r + r,^' VrTTr.' VrTrI

Introduction of the parameter

m = R3/R,

(7.70)

(7.71)

and use of eqs. 7.60 and 7.67 reduces this expression to

1/3 = gm Vza VZp + l)(m + k2). (7.72)
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Differentiating to minimize 8 shows that the conditions for greatest
stability are

Ei = R, Ri = R/k, and R3 = kR. (7.73)

Like other typical conditions for minima, eq. 7.73 is relatively broad.
It sometimes happens that current rather than power is the impor­

tant parameter in limiting the performance of the bridge thermistor. 
This condition is represented by the equation

7i/Ei = KF JR. (7.74)

Under these conditions differentiation for a minimum value of 8 
leads to the relationships

E3 = R and Ei = E2 = R/K. J Go)

At the present time it is possible to produce 100-kc crystals which 
have resistances of about 10 ohms and Q values in excess of 106, 
but, unfortunately, such crystals are adversely affected by currents in 
excess of a hundred microamperes. On the other hand, the power and 
current required to actuate a tungsten filament thermistor do not 
continue to decrease as the diameter and length of the filament are 
reduced. The El lamp operating at a resistance of 30 ohms appears 
to approximate the limit which can be reached in this way. There­
fore, it is not always possible to employ the optimum relationships. 
The relationships developed in the following section indicate the 
extent to which performance is sacrificed by such a compromise.

7.13 Amplitude and frequency stability
Conditions for optimum stability were established in the preceding 
sections; it remains to show what actual stability factors result when 
these conditions are met. Because the frequency stability is of princi­
pal concern it will be treated first.

In terms of the simple tuned circuit of Fig. 7.13 the phase shift d<t> is 
related to the selectivity of the resonator at frequencies near resonance 
by the equation

d<j> = 2Qdo>/<i!. (7.76)

Moreover, from eq. 7.65, we have

dj> = 8 d6. (7.77)

Therefore, consistent with Chapter 1, we have as the frequency 
stability with respect to amplifier phase shift the relationship
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„ = de = 2Q 

dw/w 8 (7.78)

In terms of Fig. 7.12, with eq. 7.72, this reduces to

¿7 = 2Q?m fiZg VZP km
(m + l)(m + k2) (7.79)

In practice, increments in the amplifier phase shift 0 usually result 
from variation of the plate-to-ground and grid-to-ground capacitances 
of the vacuum tube. It is therefore appropriate to investigate this 
relationship. In the normal operating condition the grid faces a pure 
resistance equal to Zg. The phase angle dd which results from a capaci­
tance increment dC is, therefore,

dO — Zgw dC, (7.80)

where the angle and its tangent are taken as equal. The frequency 
stability with respect to the grid capacitance therefore is

/„ _____ km______
dw/w wZg8 w p 9 (m + l)(m +fc2)

This equation shows that, with respect to grid capacitance variations, 
the frequency stability is increased by increasing the plate impedance 
and decreasing the grid impedance. However, it is clear that eq. 
7.81 (with Zp and Zg inverted) also represents stability with respect 
to Cp; therefore, a compromise is necessary.

In typical pentodes the grid capacitance is about ten times less 
stable than the plate capacitance. Therefore, typical random deviations 
in these capacitances will produce the smallest total frequency deviations 
if the contributions are made equal by letting Zp = IQ Zg.

The amplitude stability is obtained by differentiating eq. 7.57 to 
obtain

Ri dV i + Vj dRi + R2 dVi = Ri dV0 + Vo dRi. (7.82)

Division by eq. 7.57 yields

dV i VidRi dRi , dV g 
Vi + Vo Ri ~ Ri Vo (7.83)

Substitution of eq. 7.1 and the parameter m yields

dV0 
Vo 1 + m

dV i
Vi'

1 + m — s (7.84)
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Differentiation of eq. 7.51 and its reuse leads to

dp dò—>
Ò

(7.85)

in which gm may be substituted for p because only the fractional varia­
tion is of interest. Making this substitution and introducing the 
derivative of eq. 7.48 gives

R dRi — —dò R2R3. (7.86)

Finally, introducing the value of 8 from eq. 7.70 gives

dgm! dm 
dVo/Vo

skm
(1 + m — s/m + k?) (7.87)

7.14 Numerical example

Let us design a single-tube Meacham oscillator using the type 6AC7 
pentode at a frequency of 100 kc. Reasonable numerical values are:

R = 100 ohms h = 2 ma max. in crystal
Q = 105 (quartz crystal) h = 8 ma min. in lamp

Zg = 104 ohms gm - 0.01 mho
Zp = 108 ohms

If eq. 7.75 were followed, we would have R3 = 100 ohms and Ri = 
R2 = 25 ohms. However, no available lamp has this resistance and 
from Fig. 7.1 we choose as most suitable the El lamp with a resistance 
of 50 ohms and a current of 8 ma at 0.4 volt. As a compromise 
between eq. 7.73 and 7.75 we choose R3 = 200 ohms and R2 = 25 
ohms.

From eqs. 7.68 and 7.69 we have n = 10.9 and N = 34.6. Con­
sistent with the bridge currents and resistances we have Vo = 0.6 
volt corresponding to the conservative rms plate voltage of 24.5. 
Because the tube has a voltage gain of 1000, the grid voltage is only 
24.5 mv.

From eq. 7.70 we have 5 = 0.0168, corresponding by eq. 7.65 to a 
phase or Q magnification of 59.8. Thus by eq. 7.78 the frequency 
stability against phase shift is 1.2 X 107. That is, the frequency will 
change only one part in 108 if the amplifier introduces a phase shift of 
0.12 radian (about 7°). By eq. 7.80, capacitance increment of about 
6 ppf in the grid circuit (or 0.6 ppf in the plate) would produce this 
phase shift.
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The amplitude stability is obtained from eq. 7.87. The value

s = 0.5 obtained from Fig. 7.1 yields SA = 35.8. That is, a trans­
conductance change of 3.58 db would result in a change of only 0.1 db
in the output.7.15 Automatic output control
At approximately the same time Arguimbau14 in America and Grosz- 
kowski122 in Poland announced independently the invention of a 
linear oscillator in which the gain of the vacuum tube is controlled to 
produce amplitude limiting by means of a bias derived from the output 
signal. A similar principle had already been used to stabilize the 
output of an amplifier subjected to a variable input signal. The terms 
automatic volume control (avc) or, preferably, automatic output con­
trol (aoc) are used to identify both amplifiers and oscillators of this 
kind. Oscillators of this sort compare favorably with the Meacham 
in regard to amplitude stability and purity of wave form. They are 
inferior to the Meacham in frequency stability because they lack the 
phase-magnifying property of the bridge circuit.

The electronic problem common to all automatic output devices is 
to provide a tube in which the transconductance may be varied through 
a considerable range by means of a bias voltage, without at the same 
time introducing intolerable nonlinearity and signal distortion. In 
amplifiers for radio receivers the problem is not difficult because the 
linearity requirements are moderate and because the control may be 
exercised in early stages where the signal amplitude is very small. 
A conventional remote cutoff (variable transconductance) pentode 
with both signal and control bias applied to the first grid meets this 
need very nicely.

In an oscillator, we ordinarily wish to produce signals approaching 
the power rating of the tube. Moreover, the problem of providing a 
suitable control bias is complicated if the amplitude of oscillation 
must be small. Because the remote cutoff pentode is ill fitted to the 
present application we are led to investigate the properties of other 
types of tubes. The closest parallel to the present problem in the 
existing art appears to be the volume expander,262 sometimes used to 
increase the dynamic range of recorded speech of music. Volume 
expanders sometimes employ thermistors in circuits similar to those 
already described in this chapter. Of greater present interest, how­
ever, are the electronic expanders which employ pentagrid tubes, 
such as the 6L7, 6SA7, 6SB7-Y and FM-1000. All these tubes have 
the common feature that the plate current is a function of the potential 
of the first and third grids, whereas the second and fourth grids are 
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internally connected to serve as a positive screen, and the fifth grid 
serves as a simple suppressor. The essential fact, which is ably pre­
sented by Wing,347 is that, for a fixed screen voltage, the plate current 
may be represented by a simple product, ip = FJQ -F(e3), where 
F(ef) depends only upon the voltage of the first grid, and FJ3) depends 
only upon the voltage of the third grid.

The 6L7 is a double-ended tube in which the first grid (cap connec­
tion) has a remote cutoff characteristic whereas the third grid is 
designed for sharp cutoff. The 6SA7 and 6SB7-Y are single-ended 

Fig. 7.15. Characteristics of a typical FM-1000. Conditions Egi = 0, Eg2 = 
Egi = +100, Ep > +40 volts. (Courtesy Philco Corporation.)

tubes in which the cutoff characteristics of the first and third grids 
are reversed from the 6L7. The FM-1000 is a single-ended tube of 
the lock-in type. The characteristics of both the first and the third 
grids are essentially linear; and the fifth (suppressor) grid may also 
be used as a control electrode, though its effective transconductance is 
quite low. In all these tubes the cathode current depends principally 
upon the potentials of the first and second grids. Although the plate 
current is substantially independent of the plate voltage, as in other 
multiple-grid tubes, it is affected by the potential of the third grid, 
which controls the fraction of the cathode current which escapes the 
screens and reaches the plate. Characteristics of the FM-1000 are 
shown in Fig. 7.15. It is seen that signals having a peak amplitude of 
several volts may be applied to the third (or first) grid, and that by 
means of a reasonable bias on the first (or third) grid the transcon­
ductance to the plate may be reduced from about 1300 micromhos to 
zero without producing serious nonlinearity. Moreover, both grids 
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are negatively biased so that they require negligible current and power 
for operation.

7.16 An automatic output control oscillator
A great variety of oscillators employing automatic control have been 
constructed. All the essential principles are, however, illustrated by 
the circuit of Fig. 7.16, which differs from a conventional tuned plate 
oscillator only by the choice of the tube and the manner in which bias 
is applied to the first and third grids. For small oscillations the peak 
voltage induced in the auxiliary coil L3 is less than that of the bias 
battery VB, and no current flows through the rectifier. The first

Fig. 7.16. Automatic output control oscillator.

grid, therefore, is at cathode potential, and the plate current and 
transconductance are normal. The tube operates as a linear amplifier, 
and the oscillations are sinusoids which expand with time.

As the amplitude of oscillation increases, the voltage induced in L3 
increases proportionally and presently reaches a value in excess of VB. 
Rectification then occurs, and the resulting current through the high 
resistance R biases the first grid negative with respect to the cathode. 
This bias voltage reduces the cathode current, with the result that the 
effective transconductance drops to such a value that the loop trans­
mission is (1,0). The equilibrium is stable because a reduction in 
amplitude results in an increase of transconductance, and vice versa. 
It is readily shown that the condition for sustained oscillation is

gmRiMi = L3. (7.88)

The wave forms of both voltage and current are nearly sinusoidal 
if the circuit constants are properly chosen. Fortunately, the calcula­
tion of the parameters is greatly facilitated by the fact that the tube
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operates in a linear fashion in such a manner that its properties may
be calculated from the curves of Fig. 7.15.

The design of the bias system involves several factors which are not 
capable of exact specification. However, the FM-1000 will operate 
well if the following conditions are realized: Fo = 10 volts rms, VB = 1 
volt rms, Fi = —2 volts, and Vs = +10 volts. Moreover, these 
conditions are readily obtained with circuit elements of convenient 
size.

7.17 Amplitude stability of controlled oscillator
Like other linear oscillators, the automatic output control system is 
capable of good amplitude stability. The extent of this stabilization 
may be evaluated by using the equations already developed. From 
Fig. 7.16 we may write

M2F0 = Li(F„ - Fx). (7.89)
Since a change in the tube parameters will affect only Fo and Fj, we 
may differentiate to obtain

M2dV0 = -LidVi. (7.90)
In the desired operating region the transconductance, gm (between 
third grid and plate), may be expected to vary in a linear manner 
with the bias voltage, Fi, according to the simple relation

Qm = go + kVi, (7.91)
which when differentiated yields

dgm = kdVi. (7.92)
If the circuit parameters do not vary, a change in output can occur 

only if a change in the inherent properties of the tube tends to modify 
gm, thus necessitating a modification of Fi to restore gm to the value 
required by eq. 7.88. The fractional change of the inherent tube 
transconductance may thus be written

dgm  kRiMi dVi 
— — —- •

The amplitude stability, SA) is then by definition
„ dgmlgm kVaM2 kV0RiM3M2
¿a = /T. = ---- z— =-----------------------y-s----- ’ (7.94)dVa/Vo gmLi Li

which shows the desirability of large values of k, Ri, and M2, and of the 
ratio M3:Li.
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7.18 Illustrative design

Suppose that a frequency of one megacycle is to be generated, that 
coils having a Q of 100 are available, and that the plate swing is to be 
40 peak volts. The FM-1000 is chosen for the reasons already given, 
although comparable results may be obtained with other pentagrid 
types. The nominal transconductance is about 1300 micromhos, 
but allowance for variation of circuit parameters and the gain-reducing 
action of the third grid requires that this be approximately halved to 
500, for a margin of safety. The static characteristics of Fig. 7.15 
indicate that a high degree of linearity will be achieved by use of a 
plate load resistance of 50,000 ohms with a screen bias of +100 volts 
and a bias of —3 volts on the third grid.

If no useful power is to be drawn, the load resistance will consist 
solely of the coil losses which, on the basis of Q = 100, fixes the react­
ance of Li and C\ at 500 ohms, corresponding to an inductance of 
approximately 80 gh and a capacitance of approximately 320 ppi. 
The mutual inductance is then found by eq. 7.88 to be 3.2 /+. Con­
sistent with this value, a peak alternating plate voltage of 40 volts 
leads to a control grid voltage of Vg = 1.6 volts.

Inspection of Fig. 7.15 shows that the required transconductance 
will be obtained provided Fi = — 2.2 volts. In the interest of ampli­
tude stability let us choose Ffl = +20 volts, which with eq. 7.89 calls 
for Mi = 44.4 gh. The curves of Fig. 7.15 show that k has the value 
0.0003 in the region of interest. Use of this value in eq. 7.94 gives as 
the amplitude stability the value SA = 13.5.

An important feature of all automatic output control oscillators is 
that the amplitude is substantially independent of the tube parameters 
and plate voltage but varies in a nearly linear fashion with the control 
voltage VB. When an accurately constant output is required it is 
therefore necessary to stabilize this voltage in an adequate manner. 
Alternatively, it is possible to modulate the amplitude of oscillation by 
deliberate variation of VB. More is said of this matter in Chapter 16.

7.19 Design considerations

The automatic output control oscillator just discussed involves several 
questions which have not been answered. Perhaps first among these 
is the nature and magnitude of nonlinearities present. This question 
may, for the system of Fig. 7.16, be divided into three questions, con­
cerning the vacuum tube, the rectifier, and the RC bias holding system. 
The vacuum tube may, in principle, be made linear to any prescribed 
degree by suitable construction, choice of operating voltages, and
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restriction of amplitude. In practice, the degree of linearity may be
made quite good, so that with the aid of the tuned circuit it is reason­
able to expect all harmonic voltages to be at least 50 db down from
the fundamental.

The simple rectifier shown loads the resonator with a current which 
flows through L3 in short pulses. It therefore tends to introduce 
harmonics in the output, and to degrade the frequency stability as 
shown in Chapters 3 and 4. In principle, this effect can be made 
negligibly small by increasing the bias resistor to a value sufficiently 
large in comparison with the tank resistance R^. This increase is not 
always practical, but there are other means for obtaining the bias 
voltage which do not reflect nonlinearity into the tuned circuit. Two 
such means which immediately suggest themselves are the use of a 
buffer amplifier in conjunction with a diode or the so-called infinite 
impedance (cathode-follower) detector.

The bias-holding system is readily controlled to meet its principal 
requirement, that the bias shall not change enough during the period 
of any one cycle to affect appreciably the tube transconductance. The 
effect is readily calculable in terms of the transfer characteristics of 
the tube and may be made adequately small in practice.

A second basic problem is the separation of signal paths. The 
previous discussion assumes that the first grid introduces only a 
control bias, completely free from voltage at the oscillation frequency. 
In practice, it is not only impossible to achieve such a perfect separa­
tion but even difficult to secure an adequate one. Because the signal 
which leaks through the bias system is likely to be substantially out of 
phase with that deliberately returned to the third grid, the operating 
frequency is likely to differ from the resonator frequency by an amount 
which varies with the degree of control being exercised. This difficulty 
may be alleviated by the use of a symmetrical (push-pull) rectifier 
which tends to balance out the oscillation frequency and by use of 
additional filtering elements which attenuate this frequency without 
unduly affecting the time constant and low-frequency behavior of the 
system.

A third problem is inherent stability, discussed at much greater 
length in Chapter 10. For the present it is sufficient to say that 
intermittent oscillation, which often occurs in bias-controlled oscil­
lators, will be avoided if the RC time constant is very long and if the 
operating conditions are such that the loop gain at the operating fre­
quency steadily decreases with increase of oscillation amplitude for a 
fixed control bias. The latter criterion is readily tested by manually 
adjusting the bias and observing the amplitude of oscillation, which
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should be a continuous single-valued function of the bias. Chapter 10 
shows that the criterion just described is sufficient but not necessary, 
and is indeed rather severe. However, it is met in the circuit of 
Fig. 7.16, provided the bias on the third grid is such that operation 
occurs at the inflection point of the transfer characteristic (maximum 
transconductance).

PROBLEMS
7.1. Calculate the curve corresponding to Fig. 7.6 for a bridge of El lamps and 

50-ohm resistors.
7.2. Using the above bridge, design an oscillator to operate at 300 kc, using 

N = n = 30 and gm = 5000 micromhos.
7.3. Calculate the amplitude stability and operating voltages of the above 

oscillator.
7.4. Calculate for your design the frequency deviation which will result if the 

grid capacitance is increased by one micromicrofard.
7.5. Verify the correctness of eq. 7.73 and defend the associated assumptions.
7.6. Verify the correctness of eq. 7.75.
7.7. It would appear that the frequency stability of the Meacham oscillator with 

respect to changes of tube capacitance could be reduced by addition of a stable 
padding capacitance. Prove that this is not true.

7.8. Discuss the use of unequal impedance levels in grid and plate circuits in 
the interest of frequency stability.
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CONVENTIONAL HARMONIC

OSCILLATORS

Chapter 7 has described in. some detail a number of linear oscillator 
circuits, which generate waves of great purity having good amplitude 
and frequency stability. However, the circuits most widely used in 
practical apparatus operate in a markedly nonlinear manner. The 
present discussion is devoted to a presentation of these widely used 
circuits and their properties; it has been deferred to this point in order 
to present the extensive background which is necessary to the under­
standing of a number of important features of such circuits.

This chapter is concerned principally with low-power oscillators 
which operate at ordinary frequencies, have moderate values of ampli­
tude and frequency stability, and are characterized by simplicity and 
economy. However, most of the results are independent of frequency. 
The problems which are peculiar to high-power levels are discussed 
separately in a later chapter.

The exact analysis of nonlinear systems is so difficult and cumber­
some that some alternative must be found if useful engineering results 
are to be obtained. On the other hand, some form of analysis is 
necessary if the performance of existing oscillators is to be understood 
and if new circuits are to be designed intelligently. The following 
analysis is based on idealized class C operation; it is a form of the 
method of equivalent linearization discussed in Chapter 4. No 
effort is made to obtain a frequency correction term.

8.1 The tuned plate oscillator
The circuit of the conventional tuned plate oscillator is shown in 
Fig. 8.1. The schematic diagram is a very close approximation 
to the actual physical system, the principal idealization being the repre­
sentation of the load as a pure shunt resistor R. In actual operation 
some grid current always flows, but if Rc is relatively high the effects 

158
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of grid current are negligible. The tube is assumed to have an ideal­
ized cutoff characteristic. That is, the curves of plate voltage versus
grid voltage, with plate current as parameter, are assumed to be uni­
formly spaced parallel straight lines with slope equal to — g as shown
in Fig. 8.2.

Fig. 8.1. Tuned plate oscillator.

Fig. 8.2. Idealized triode characteristics and paths of operation.

The analysis is begun by assuming that the tube has a small negative 
bias, consistent with class A operation, and that the circuit parameters 
are adjusted so that oscillations just begin. With this idealization it is 
possible to employ linear equations, which at the natural frequency of 
L and C take the form

ep/eg = L/M and ep = pegR/(R + rp). (8.1)
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Eliminating the amplitudes to obtain the conditions for sustained 
oscillation, we have

p = (R + r^L/RM or rP/R = pM/L — 1, (8.2)

where p and M, as well as the other parameters, are taken as positive.
The amplitude of oscillation is readily obtained from Fig. 8.2. The 

assumption that Re is very large ensures that the grid cannot be driven 
appreciably positive, since otherwise large grid currents would flow. 
Moreover, the tube cannot be driven appreciably beyond cutoff, 
because the loop gain condition of eq. 8.2 would be violated. Finally, 
eg and ep are exactly in phase opposition by the assumptions made, 
so that the path of operation becomes a straight line of slope —L/M 
centered on Eb and terminating on the boundaries ib = 0 and ec = 0. 
The grid bias will automatically adjust itself to meet this condition. 
The resulting path of operation is designated A in Fig. 8.2.

The operating condition just described is evidently unstable and 
undesirable, because any decrease in R or p will cause the oscillations to 
stop. We therefore need to explore the consequences of modifying 
the parameters in such a way as to secure a margin of safety. This is 
conveniently treated by assuming that p, rp, M, and L are fixed and 
that R is increased. It is clear that the small-signal loop gain is now 
larger than one, so that the amplitude will tend to increase. When 
this occurs the bias will also increase, and plate current will flow during 
only part of each cycle. It will be shown that both the amplitude of 
oscillation and the portion of each cycle during which plate current 
flows are determined when R is specified.

8.2 Class C operation

The equilibrium condition which corresponds to a particular value of R 
is best obtained by a method due to Everitt.88- 89 The calculation is 
based on the tube idealization already shown in Fig. 8.2. That 
is, the instantaneous plate current ib of Fig. 8.3 is represented by the 
expression

= (c& + /fp = + eb/p) (8.3)

subject to the physical restriction that ib cannot be negative. The 
principal assumption of this method is that the alternating grid and plate 
voltages are sinusoidal and 180° out of phase. Introducing the excita­
tion ratio h which is characteristic of the circuit and defined by

A = Epm!Egm, (8.4)
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we may establish an artificial driving voltage

E' = (Egm — Epm/p) = Egm(l — h/p). (8.5)
Using the variable 0 = at, we may express the current as

ib = gm(E' cos 6 + Eo), (8.6)
where

Eo = (Eb/p - Ec) (8.7)

is the amount by which the bias differs from the cutoff value.

Fig. 8.3. Calculation of plate current. Fig. 8.4. Parameters for idealized class 
C operation.

The fundamental component of the plate current is evaluated by use 
of the Fourier series expression

1 P*
I pm = - I ib COS 0 dô 

IT Jo
' ib cos 6 dô. o (8.8)

Because the current is zero and eq. 8.4 does not apply over part of the 
cycle, it is desirable to modify the limits by use of the new variable

0P = cos 1 (Eo/E'), (8.9)
which represents half the angle over which plate current is conducted. 
The maximum value of the fundamental component of plate current 
is now

2a m P"
Ipm =---- / (E' cos 0 + Eo) cos 0 d0 (8.10)IT JO

Integration and substitution of limits yields, after simplification,
T „ ~ SÌn 20P
I pm — ymP o

Ziv ßp
(8.11)
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where

The parameter dp is useful in all kinds of class C calculations; its 
variation with 6P and some related parameters are given in Fig. 8.4. 
The principal result of the foregoing analysis is that in class C operation 
the effective transconductance is decreased and the effective plate resistance 
is increased by the factor dp- The transconductance reduction is 
immediately apparent. The increase in plate resistance is demon­
strated by setting Egm = 0 (h = co ) in eq. 8.5.

By an integration similar to that of eq. 8.8 we may show that the 
average component of plate current is given by

n = (8.13)TT

and that the maximum instantaneous plate current is

ibm = gmE'(l - cos 0p). (8.14)

An additional relationship which is often useful is shown in Fig. 8.4 
and is given by

B = ~ = dpi! - cos dp). (8.15)
* pm

8.3 Effect of grid current
The current which is rectified in the grid circuit flows through the 
grid leak to produce the bias. If the resistance of the grid leak is high 
compared to other circuit impedances, the grid is never driven appreci­
ably positive and the associated power loss is small. The equilib­
rium amplitude of oscillation is readily calculated, and the associated 
operation is conducive to good frequency stability but small power 
output.

A substantially greater power output is obtained by lowering the 
grid leak resistance to a value comparable to the plate load impedance. 
The losses in the grid circuit are somewhat increased by this change, 
but the power output is increased by a much larger amount. The 
losses in the grid circuit and the corresponding effective grid circuit 
impedance, Rg, may be calculated by a process similar to that employed 
in the previous section.

Experimental results show that, in typical triodes and pentodes, the 
current drawn by the control grid when positive is approximately pro­
portional to the grid voltage and not greatly affected by the plate
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voltage. The corresponding grid resistance rg is usually about one 
thousand ohms. Evidently, the ratio of this resistance to that of the 
grid leak will determine the bias developed and the extent to which 
the grid is driven positive.

Following the indicated analysis, we find that the equivalent a-c 
grid resistance Rg is equal to &grg, where Bg is defined by eq. 8.12 in 
terms of 6g, the angle of grid current conduction. Unfortunately, this 
form for the expression is inconvenient and may lead to serious error 
in numerical work. Therefore, the results presented in the curves of 
Fig. 8.5 are recommended for ordinary use.

Ratio of grid leak to grid resistance, Rc/rg

Fig. 8.5. Effect of grid rectification.

When the grid leak is subjected to an alternating as well as a direct 
voltage, as in the circuit of Fig. 8.6, an additional power loss is incurred. 
This has no effect upon the rectified bias, but increases by one the 
value of the ratio Rc/Rg. If, for example, we have RJrg = 100, 
the ratio Rc/Rg is equal to 2.8.

Returning to the circuit of Fig. 8.1, we find that grid rectification 
has two principal effects. First, there is an additional loading which 
may be accounted for by substituting for R, in eq. 8.2, the quantity

L2RRg h2RRg rn 4 ,
~ M2R I T2R ~ 7? । pi? (8.16)irl Hi | J—J tig ti I lb tig

Second, the extent to which the grid is driven positive must be taken 
into account by writing

Ec = yEgm, (8.17)

where y is given by Fig. 8.5.
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8.4 Prediction of the amplitude of oscillation
The amplitude of oscillation in the tuned plate circuit may be predicted 
by appropriately combining the information now available. From 
eq. 8.2, modified to account for Rg, by means of Fig. 8.5, we may 
determine the parameter 8P and hence the conduction angle 0P. Then 
from eq. 8.15 or Fig. 8.4, we may obtain the additional parameter B. 
These are sufficient to determine the amplitude as shown in the follow­
ing paragraph.

Using eqs. 8.4, 8.7, 8.9, 8.15, and 8.17 we may eliminate Eo, Ee, 
Egm and 0P to obtain the maximum alternating plate voltage

Epm = ----------- ------------------- (8.18)P (p - h){B - pp) + yypp

It is seen that the amplitude is proportional to Ej, increases with 
increase of h, and is affected by Pp, B, p, and y. In class B operation, 
where B = Bp = 2, the expression simplifies to

Epm = —, (8.19)
PT

which is readily checked by direct calculation.
Because eqs. 8.18 and 8.19 do not depend upon the circuit configura­

tion, and because the development involves only the assumption that 
grid and plate voltages are sinusoidal and 180° out of phase, they may be 
applied to any circuit which meets this condition; that is, they are applica­
ble to nearly all practical oscillators.

The amplitude of oscillation just calculated represents a stable 
equilibrium in most practical cases. That this is true may be shown by 
assuming that the amplitude is momentarily increased (or decreased) 
by some external influence. A consideration of the class C process 
shows that there is a strong tendency for the amplitude to return to its 
original value.

There are, however, two situations in which stability may be lacking. 
In high-power oscillators where maximum efficiency and power output 
are desired the grid is driven considerably positive with respect to 
the cathode, and may even become positive with respect to the plate. 
Under these conditions secondary emission of electrons may occur, 
the grid current is greatly increased, and the plate current is reduced. 
Because the situation differs widely from that assumed in the fore­
going analysis the results may be in great error. More is said of this 
in Chapter 11. Under other conditions the time constant of the grid 
circuit is excessive compared to the envelope time constant of the
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tuned circuit. We may then observe intermittent oscillations, dis­
cussed in detail in Chapter 10.

8.5 Illustrative design of tuned plate oscillator
To illustrate the application of the equations developed above, let us 
design an oscillator to operate at a frequency of one megacycle and 
yield a relatively large output from a 6J5 triode. The approximate 
parameters of this particular tube are g = 20, rp = 8000 ohms, gm = 
2500 micromhos, and rg = 1000 ohms. We may choose as reasonable 
values the additional parameters Eb = 300 volts, h = 6.0, 0p = 60°, 
and y = 0.70. With these values we have, from Fig. 8.4, 0 = 5.0 and 
B = 2.5. Therefore, from eq. 8.17, we have

Epm = 256 peak volts, (8.20)
from which we obtain Egm = 42.66 and Ec = 29.9 volts. The curves 
of Fig. 8.5, together with rg = 1000, yield the grid leak resistance 
Re = 15rg = 15,000 ohms and Rg = Ec/1.3 = 11,500 ohms.

Introducing ^p and R' into eq. 8.2, we have
R' = 17,170 ohms. (8.21)

Now using h and eq. 8.16, we have as the actual plate load R = 17,900 
ohms.

If we select as a reasonable value of capacitance C = 120 ggf, we 
find for resonance at one megacycle L = 210 gh and M = 35 gh. 
Assuming a selectivity of Q = 100, we find that the equivalent shunt 
resistance of the coil is RL = = 132,000 ohms. Evidently, the
power delivered to the useful load is reduced by that lost in the coil. 
Correcting for this effect, we have an equivalent load resistance of 
20,800 ohms. The maximum alternating plate current is 256/17,100 
or 15.0 ma. The average plate current is, from Fig. 8.4, 15.0/1.80 = 
8.33 ma. The useful power output is 2562/(2 X 20,800) or 1.57 watts. 
The efficiency, which is relatively high, is (1.57 X 103)/(300 X 8.33) 
= 62.5 per cent. The design is completed by selection of a grid con­
denser, which should be large compared to the internal capacitance of 
the tube; Cc = 200 ggf is a suitable value.

8.6 The Colpitts oscillator

The circuit diagram of a practical form of the Colpitts oscillator is 
shown in Fig. 8.6. In fundamental principles, this circuit differs 
very little from the tuned plate oscillator just described, but a number 
of practical differences exist. The grid leak is connected directly from 
grid to cathode so that an a-c as well as a d-c loss will occur unless a 
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suitable choke is used in series with it. Both the plate and grid are 
returned directly to ground through the condensers Cp and Cg of the 
resonator or tank. This is an advantage, because the highly distorted 
grid and plate currents, characteristic of high-efficiency operation, 
can return to the cathode without impedance from coil resistance or 
leakage reactance. However, if the frequency is to be adjustable, the 
two condensers should be varied in such a way as to preserve their 
ratio; otherwise the excitation ratio and performance are modified 
with tuning.

The conditions for oscillation are conveniently determined with 
reference to the generalized circuit of Fig. 8.7. Using the principle of

Fig. 8.6. Shunt-fed Colpitts Fig. 8.7. General oscillator cir- 
circuit. cuit.

equivalent linearization in the form of the preceding sections, we may 
write the phasor nodal equations

Efl(Ys + Ym) - EpYm = 0, (8.22)

— EgTm + Ep(Yp + Ym) = — ~Eggm', (8.23)

in which Ym, Yp, and YB are taken to include the internal admittances 
of the vacuum tube, and gm' represents the effective transconductance, 
defined by

gm = gm/dp- (8.24)

Elimination of the voltage variables yields the generally useful 
equation

-gm' = ?P + Y0 + (Y„W. (8.25)

Neglecting the grid-plate capacitance in the Colpitts oscillator of 
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Fig. 8.6, and representing the total conductances of grid and plate 
circuits by Gg and Gp, respectively, we may write

Yg = Gg 4- faCy, Yp = Gp + faCp; and Ym = Gm + (1/juL). (8.26)

Substitution of these values in eq. 8.24 yields

—gm = Gg + juCg + Gp + faCp
faL(GgGp - PCgCp + j^pCg + J^Cp)

+ '-----------------I—i • rn------------ '1 + JUlLGm
In each of the admittances, the real part is small compared to the 
imaginary part. Therefore, negligible error is produced when several 
squared terms are neglected in rationalizing the last term of eq. 8.27 to 
obtain by separation of real and imaginary parts

Cg+Cp = PLCgCp - PL2Gm(GgCp + GpCg) (8.28) 
and gm' = -Gp - Gg + PL(GgCp + GpCg) + PL2GmCpCg. (8.29)

In typical situations the last term of eq. 8.28 is very small compared 
to the others, and the operating frequency represents series resonance 
of L with Cg and Cp. Using this value of u, together with the excita­
tion ratio h = Epm/Egm = CgICp, (8.30)

we obtain from eq. 8.29 the gain equation

gm = hGp + Gg/h + Gm(h 4- 1)2/A. (8.31)

If a pentode is used, Gp is effectively zero; moreover, the term Gg/h 
may often be made negligible. Under these circumstances the effec­
tive transconductance required for oscillation with a fixed value of Gm 
reduces to a minimum value of 4Gm for an excitation ratio of unity. 
Equation 8.31 is useful in adjusting the impedance level of the circuit 
because the last two terms represent the total admittance presented as 
load to the plate of the vacuum tube. With this modification, the 
amplitude of oscillation may be predicted by use of eq. 8.18. As 
previously noted, the two condensers should be varied in the same 
ratio if the excitation ratio is to remain constant as the frequency is 
varied.

" 8.7 The Hartley oscillator
The circuit diagram of the series-fed Hartley oscillator is shown in 
Fig. 8.8. It is seen to bear considerable resemblance to both the 
tuned plate and the Colpitts circuits. It differs from the tuned plate



168 CONVENTIONAL HARMONIC OSCILLATORS
oscillator principally in that the grid leak is in shunt and that the 
tank condenser and load resistance are connected across the entire 
coil rather than the plate section only. The circuit will operate if 
there is no mutual inductance between the two sections of inductance. 
However, it is much simpler to construct the coil as a single continuous 
tapped winding, and this is almost always done because the overall 
efficiency and performance are considerably improved thereby. The 
coupling coefficient between the two portions of the coil should be 
made as large as possible, because the leakage may be represented as an 
inductance in series with the cathode lead. Such an inductance inter­

Fig. 8.8. Series-fed Hartley cir­
cuit.

Fig. 8.9. Tuned grid oscillator

feres with efficient class C operation. This circuit has the practical 
advantages that it is readily tuned by means of a single variable con­
denser, and that the total number of components is small.

The operating frequency is very nearly that of resonance between C 

and the total inductance, and the excitation ratio h is the effective 
turns ratio of the coil. The general eq. 8.25 or the specific eq. 8.31 
developed in the preceding section may be used to calculate the con­
ditions for oscillation; eq. 8.18 may again be used to predict the 
amplitude.

When the Hartley circuit is used to generate large amounts of power 
it is customary to modify the circuit to employ shunt feed such as that 
shown in Fig. 8.6. An additional choke and blocking condenser are 
required, but the tank now has no direct potential to ground, and 
therefore constitutes much less of a hazard to operating personnel. 
The same objective is achieved in various ways in almost all high-
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power oscillator applications. Additional discussion of the Hartley
oscillator is given by Heising135 and Record and Stiles.263

8.8 The tuned grid oscillator
An oscillator circuit which is occasionally useful is shown in Fig. 8.9. 
It is seen to differ from the tuned plate oscillator only in that the load 
and tuning condenser are transferred from the plate to the grid coils. 
It is, therefore, also closely related to the Hartley circuit. All three 
of these circuits become identical, except for impedance levels, as 
the coupling coefficient of the coils becomes unity. Of the three, 
however, this circuit suffers the most from imperfect coupling. Its 
principal advantage is that one end of the tank may be grounded.

The operating frequency is very close to the natural frequency of L 
and C, provided proper account is taken of the effects of parasitic grid 
and plate capacitances. The effective plate load impedance R' is

R' = Rh2, (8.32)
where the excitation ratio h is the turns ratio of the plate to the grid 
coil. Using this relation and eq. 8,31, we may calculate the amplitude 
and frequency of oscillation by the method developed for the tuned 
plate oscillator.

8.9 The Clapp oscillator
An oscillator circuit having exceptional practical advantages has been 
described by Clapp.63 The circuit diagram, shown in Fig. 8.10, dif­
fers from the Colpitts oscillator of Fig. 8.6 in three respects. A pen­
tode is used instead of a triode, the plate rather than the cathode is at 
a-c ground potential, and the tank coil, L, is replaced by the series 
combination of Le and C3. The tank change is the important one, 
although the others are necessary to obtain the frequency stability 
which thereby arises. An incidental advantage of the system is that 
it is readily tunable over considerable frequency ranges by means of 
the single condenser C3.

The best frequency stability obtainable with this arrangement is 
theoretically equal to that of an ordinary Colpitts oscillator employing 
the same tube and a coil of equal Q. The difference Ues in the fact 
that the Clapp arrangement lends itself to a much closer realization of 
the theoretical limit.

The analysis of the Clapp oscillator is facilitated by assuming that 
the effective plate resistance of the tube is infinite, that grid circuit 
losses are negligible, and that the effective transconductance is repre­
sented by gm'. In typical oscillators operating in class C the effective 
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transconductance is only about one fifth of the nominal value. How­
ever our purpose is to determine the effect upon frequency stability 
of the added capacitor C3; and it is therefore appropriate to assume 
that gm' is a prescribed constant. The relatively long analysis* which 
follows is included because it gives considerable insight into the 
behavior of all kinds of oscillators, and because it is directly applicable 
to the important Pierce crystal oscillator.

The problem to be solved is this. Assuming that the Clapp circuit 
is to oscillate with a given transconductance gm', and that the coil has a 
specified value of Q, how shall Cg, CP, and C3 be adjusted so that an

Fig. 8.10. Clapp’s oscillator.

arbitrary increment in Cg or Cp produces the smallest frequency 
deviation?

The analysis starts by making the substitutions

Cg = hCp = kC3. (8.33)

At the normal operating frequency we see that

fLe = 1/C3 + 1/CP + 1/Cg = (k + h+ 1)/Cg. (8.34)

Now if the grid capacitance increases by an amount 8Cg the frequency 
changes to a value represented by

(w + 8^Le = 1/CP + 1/C3 + l/(Cg + 8CJ. (8.35)
Neglecting second-order terms and using the approximation valid for 
small values of x,

1/(1 + x) = 1 - x, (8.36)
* The following analysis is almost identical with that of Gouriet,117 which, how­

ever, did not come to the author’s attention until the present section was completed.



THE CLAPP OSCILLATOR 171
we obtain

w2Le(l + 25«/«) = (1 - bCg/Cg + h + k)/Cg. (8.37)

The value of Le is eliminated by means of eq. 8.34 to obtain

3“ oCa 1 z
w “ “ 2 + 2À + 2k (8’38)

It is clear at this point that large values of h, k, and Cg are desirable 
in order to reduce the frequency deviation; however, these values are 
limited by the fact that only a given transconductance is available to 
produce oscillation. To determine the extent to which Cg may be

increased we must obtain an expression for the conductance of the 
resonator. Referring to Fig. 8.11, we may write

Re/X = XGm (8.39)
and 

X = l/uCg + 1/wCp = (1 + h)/o>Cg. (8.40)

Neglecting grid and plate circuit losses in eq. 8.31, we have 

gm' = Gm(h + 1)2/A = Rffh + l^/X^h. (8.41)

Introducing the selectivity
Q = uLe/Re, (8.42)

we obtain 
gm = <^CB(1 + h + k)/Qh. (8.43)

Combination of eqs. 8.38 and 8.43 to eliminate Cg yields the important 
result

3w/“ = — (¿8Cg/2Qhgm' • (8.44)

Because the parameter k, which fixes the value of C$, disappears in 
the final substitution, we conclude that in itself the added capacitor C3 
contributes nothing to frequency stability. That is, subject to a fixed 
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value of Q, a properly proportioned Colpitts oscillator is just as stable 
as a properly proportioned Clapp oscillator. However, the Clapp 
arrangement is much the more flexible, because the inductance value 
may be chosen on the basis of convenience, selectivity, stability, com­
patibility with available tuning condensers, etc. The impedance 
level presented to the tube may then be adjusted for best operation by 
means of Cg and Cp. In this way all the important parameters are 
under good engineering control. In the Colpitts oscillator, on the 
other hand, the reactances required for optimum stability are often 
impracticably small; and an attempt to realize the calculated values is 
frustrated by poor values of Q, impracticably large variable condensers, 
and other similar limitations.

The development of eq. 8.44 is such that by substituting 8CP for 
8Cg the same expression may be used to determine frequency changes 
due to increments of plate capacitance. Assuming that Cp and Cg 
are subject to equal random deviations, we obtain best results by 
setting h = 1. In many cases, however, Cp is about ten times more 
stable than Cg. When this is true the smallest total frequency devia­
tion results when h = -\/10 — 3.

A numerical example may be helpful. Suppose then a frequency of 
159 kc (co = 106) is to be generated by a 6SJ7. It is assumed that the 
nominal transconductance of 1600 micromhos is reduced to an effective 
value of 200 by class C operation, and that coils having a selectivity 
Q = 200 are available. From eq. 8.43 we have the values Cg = 5000 
ppi, Cp = 1667 ppi, C3 = 250 ppi, and Le = 4.8 mh, corresponding to 
the choice k = 20 and h = 3. These values are quite appropriate at 
the given frequency and are consistent with the assumed value of Q.

In the ordinary Colpitts circuit we have k = 1; therefore, consistent 
with h = 3, Cg = 30,000 ppi, Cp = 10,000 ppi, and L4 = 133.3 gh. 
This value of inductance is too low to be convenient at the given fre­
quency, and in any event the large values of capacitance preclude 
tuning over any appreciable frequency range.

8.10 The Meissner circuit
A circuit which is principally of historical interest is the Meissner, 
shown in Fig. 8.12. It reduces to the Hartley oscillator if the coupling 
coefficients are unity and if the number of turns in L is equal to the 
total number of turns in the grid and plate coils. It provides d-c 
isolation of the tank and flexibility in the choice of impedance level at 
the price of additional complexity and a serious tendency to oscillate 
at undesired frequencies which depend upon parasitic inductances and 
capacitances. This tendency toward spurious oscillation results from 
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the several leakage inductances inherent in the arrangement and is not 
readily controlled.

Closely related to the circuits of Meissner and Clapp is that due to 
Lampkin181 and illustrated in Fig. 8.13. As in the Clapp circuit, the 
size of the coil and condenser is chosen on the basis of Q, tuning range, 
and convenience; the tube is then attached in such a way as to produce 
oscillation with a minimum of disturbance of the natural frequency. 
The present arrangement is most desirable at low and moderate 
frequencies, where relatively tight coupling may be produced. If

Fig. 8.12. Meissner oscillator.

Fig. 8.13. Lampkin’s oscillator.

tight coupling is not achieved the circuit is likely to generate spurious 
oscillations at some relatively high frequency which depends upon the 
leakage inductance.

8.11 The tuned grid-tuned plate circuit
A circuit which is the basis of the familiar Miller crystal oscillator is 
shown in Fig. 8.14. Its analysis is of further interest because triode 
amplifiers and frequency multipliers often generate undesired oscilla­
tions in accordance with the design principles of this circuit. Such 
oscillations do not have good frequency stability because the grid­
plate capacitance of the tube is an important element in the frequency- 
determining circuit ; however, relatively good stability may be obtained 
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by adding a stable capacitance to C3 and reproportioning the other 
elements. The circuit may be interpreted as a Hartley oscillator in 
which the mutual inductance has become zero and the effective 
inductance of each coil has been increased by partial tuning.

Fig. 8.14. Tuned grid-tuned plate circuit.

Referring to Fig. 8.7, we may substitute

Ym jBm

Y g = /Bg = + 1/jaiLi, (8.45)
and

Yp = Gp + jBp = Gi + j&Ci + L/juL-t.

Substituting in eq. 8.25 and taking advantage of the fact that Ym and 
Tg are pure imaginary, we have

Bmgm' + Gi{Bg + Bm) = 0, (8.46)
and

1/Bm + L/Bg + 1/BP = 0. (8.47)

The first of these equations represents the transconductance required 
for oscillation, and shows that Bg and Bm must be of opposite sign; 
that is, the grid circuit must be inductive. The second equation shows 
that oscillations are sustained at the frequency at which the reactive 
elements alone produce a resonant loop.

Introducing the excitation ratio, which is

h = - (Bg + Bm)/Bm, (8.48)

we may reduce the loop gain equation to the form

Çm' = 5G1. (8.49)
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In practical oscillator circuits the losses in the grid circuit are usually

small but not always negligible. The analysis is considerably compli­
cated by including these losses, which have as their principal conse­
quences an increase in the required transconductance and a slight
modification of the operating frequency.

8.12 The Gunn circuit
An interesting circuit which secures phase reversal by the use of two 
tubes was described by Gunn.126 The arrangement, as shown in Fig. 
8.15, is symmetrical, and requires well-shielded tetrodes or pentodes for 
best results. Because the power output is not large, and two con-

Fig. 8.15. The Gunn oscillator.

densers must be varied in tuning, its use is limited to applications 
where frequency stability is the primary concern. Gunn explained 
its operation in terms of an infinite series process considering suc­
cessive transmissions around the loop, but it appears that the more 
conventional analyses also apply here, and that his analysis could 
be applied to any oscillator. Whether the frequency stability is 
actually superior to that of a properly adjusted one-tube oscillator 
remains dubious.

Since the two stages are identical, the small-signal voltage gain of 
each need be only slightly in excess of unity. Even with low trans­
conductance tubes, this permits the use of quite low impedance tank 
circuits with correspondingly large values of the C/L ratio. The 
frequency shift which will result from a given change in tube capaci­
tance or harmonic content may thus be made very small. The output, 
which is not large, may be taken at any convenient point in the circuit, 
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provided the usual precautions to avoid frequency change due to the 
load are observed.

8.13 The Franklin oscillator
A circuit due to Franklin102 which has excellent frequency stability 
is shown in Fig. 8.16. Although developed independently, it differs 
from the Gunn circuit mainly in that the two tuned circuits are 
replaced by load resistors, and that the resonator is very loosely 
coupled to the resulting driving system because Ci and C2 have 
capacitances of only about 1 ppf each.180 Limiting occurs principally

Fig. 8.16. The Franklin oscillator.

in the tube at the left, and the other tube may well be provided with a 
cathode biasing resistor to increase the impedance which the grid 
presents to C2. This is desirable because the grid conductance in 
conjunction with the input capacitance affects the phase angle of the 
equivalent voltage divider, thereby affecting the frequency.

At frequencies near 500 kc, where the circuit is usually operated, the 
load resistances may be made so small with respect to the associated 
capacitances that the phase shift in each stage is substantially 180°. 
The operating frequency is then very nearly the natural frequency of 
the resonant circuit. The arrangement has the advantages that tun­
ing may be accomplished by means of a single variable inductor or 
capacitor, and that one side of the tuned circuit is directly grounded. 
In the original models the tuned circuit was a relatively massive unit 
constructed with great care so as to minimize drift due to aging and 
temperature change.186 However, the same construction could be 
used profitably with other circuits, so that the merits of the circuit
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and of the resonator should be considered separately. In both this
and the Gunn circuit it may prove desirable to use a tapped coil as
indicated by the dotted line. This preserves the advantages of a low
impedance level without requiring an inordinately large tuning con­
denser, as discussed in Sections 8.9 and 8.10.

8.14 Electron coupling
In simple triode oscillators the operating frequency varies appreciably 
with load impedance. The effect is always present, and takes on 
troublesome magnitudes when the frequency must be accurately con­
trolled or the tube must be operated for maximum output. This 

Fig. 8.17. Choice of ground point.

difficulty is greatly reduced by the use of multiple-grid tubes such as 
tetrodes, beam tetrodes, or pentodes. A basic property of these 
tubes, is that all the electrode currents are independent of the plate 
voltage, provided the plate is sufficiently positive with respect to the 
cathode. To see how this property may be exploited let us examine the 
effect of grounding different points in an oscillator.

Figure 8.17 shows a shunt-fed Hartley oscillator grounded respec­
tively at the cathode, grid, and plate. For clarity, an actual physical 
ground is shown in each case, although the direct potential of the 
cathode ordinarily is small or zero for practical reasons. Here, as in 
a preceding section, the operation of the oscillator is not affected 
by the choice of the grounding point, since the energy transfer depends 
only upon the relative voltages of the various tube electrodes. Practi­
cal oscillators employ all three arrangements; however, the grounded 
plate arrangement is of the greatest present interest.
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The next step in the development is to replace the triode by a cor­

responding ideal tetrode in which the screen and plate are connected 
together. It is seen that no change in operation is involved. The 
crucial step is that there will be no change in operation if the screen and 
plate voltages differ in any manner whatever, so long as the plate voltage 
never becomes too small. Therefore a load having any phase angle 
whatever, or tuned to an entirely different frequency, may be con­
nected in the plate lead without affecting the frequency or amplitude 
of oscillation. Oscillator circuits using this idea were introduced by 
Dow78 and are called electron coupled.

To obtain perfect decoupling it is necessary that perfect screening 
exist between the plate and the control grid. If coupling external to 
the electron stream is present it allows the load impedance to affect 
directly the operating frequency. If coupling exists within the elec­
tron stream the dynamic plate conductance is not zero, and additional 
coupling between load and resonator is introduced. Practical tetrodes 
and pentodes achieve a close approximation to such ideal shielding.

8.15 Design of electron-coupled oscillators
The principle of electron coupling can be applied to almost every 
form of oscillator, ordinarily with good results. However, certain 
precautions must be taken if the full advantage of the method is to 
be obtained. The electron-coupled Hartley oscillator of Fig. 8.18 
serves to illustrate the discussion. In the first place, the maximum 
alternating voltage in the output circuit must not exceed Ebi or the 
plate voltage will fall below the screen voltage during part of the cycle. 
Such a situation is objectionable because the plate current is affected 
by the plate voltage in this region. Therefore, the impedance of the 
plate circuit must be chosen with suitable regard for the applied volt­
ages and the actual amplitude of oscillation.

Because the cathode current is not affected by the plate voltage, 
the oscillator portion of the circuit may be designed from a knowledge 
of the tube as an equivalent triode, without regard to the division of 
the current between screen and plate electrodes. Specifically, the 
full transconductance of the tube is available for feedback, in contrast with 
other arrangements to be described later. Although practical designs 
are ordinarily achieved by cut and try, it is clear that a method differ­
ing only in detail from that used in connection with the tuned plate 
oscillator may be used to obtain adequate engineering results.

Finally, pentodes with the suppressor internally connected to the 
cathode are not desirable in this circuit because the direct capacitance 
introduced between plate and cathode at least partially defeats the 
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purpose. Beam tubes, which almost always have internal connections, 
are objectionable on the same basis, although the direct capacitance is 
frequently small enough to be tolerable. Pentodes with available 
suppressor leads operate well in this circuit if the suppressor is con­
nected to a fixed (by-passed) potential equal to the maximum alter­
nating voltage of the cathode. Shielding is preserved, and conduction 
occurs at times when the cathode and suppressor are at practically 
the same potential.

In summary, the optimum tube for Fig. 8.18 is a tetrode with 
excellent shielding, a large ratio of plate to screen current, high trans­
conductance, and a high ratio between the safe plate voltage and the 
required screen voltage. Available tubes such as the 24A and 36

Fig. 8.18. Electron-coupled Hart- Fig. 8.19. Electron-coupled pentode 
ley oscillator. oscillator.

approximate these objectives reasonably well. Pentodes with separate 
suppressor leads are equally desirable and more commonly available. 
When a pentode with internal suppressor connection must be used a 
neutralization scheme similar to one described in a following paragraph 
may be employed.

An essentially different form of electron coupling is shown in Fig. 
8.19. The cathode is grounded and the second or screen grid is used 
as an equivalent plate in a tuned plate oscillator. In this circuit 
the current which flows through the tank circuit to produce oscilla­
tions is not the entire cathode current but is only the fraction thereof 
captured by the screen. The effective transconductance to be used 
in calculating the performance is given by the approximate relation

gm = (Sm/Pp) ■ (8.50)

where gm is the normal control-grid-to plate transconductance, Pp is 
the class C parameter given in Fig. 8.4, and the average screen and 
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plate currents are evaluated at some representative point on the 
characteristic.

In designing this circuit it is desirable to use an abnormally low 
value of the excitation ratio, in the order of h = so as to obtain 
adequate voltages in the control grid circuit without producing large 
voltages in the screen circuit. Otherwise, adequate values of plate 
current are not produced because the instantaneous screen voltage is 
reduced too greatly from its average value. The power output of 
this circuit is good, because the alternating plate voltage may be 
allowed to approach the total B voltage. As in the circuit of Fig.

Fig. 8.20. Capacitance compensated electron-coupled tetrode oscillator, 

(C3/C4 = h = Cg/Cp).

8.18 , however, the load impedance must be suitably controlled or the 
proper operating range will be exceeded.

Finally, a good shield between screen and plate is required. Other­
wise, the alternating voltage in the plate circuit would react upon the 
frequency of oscillation through the direct screen to plate capacitance. 
Pentodes having a relatively fine suppressor mesh are preferred for this 
circuit because of their superior shielding. Internal connection is 
acceptable because both cathode and suppressor are to be grounded.

If a suitable pentode is unavailable, the desired result may be 
obtained by means of a bridge balance. The method is applicable 
to any of the conventional configurations but is most readily explained 
in terms of the Colpitts circuit of Fig. 8.20. Under the specified 
conditions, the oscillations present in the control and screen grid circuit 
would deliver no current to the plate circuit except through the actual 
electron stream because the contributions through C4 and C3 cancel. 
By reciprocity, therefore, reactances which may exist in the plate 
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circuit are unable to affect the frequency or amplitude of the oscilla­
tions in the controlling circuit. Ordinarily, C4 represents only the 
unavoidable internal capacitance of the tube and C3 is a small neutral­
izing condenser adjusted for the desired balance. The pentode 
arrangement of Fig. 8.19 is preferable to the balanced arrangement of 
Fig. 8.20 because of the larger plate voltages which may be employed 
and because of the difficulty of achieving and preserving a suitable 
balance.

The basic principles of Figs. 8.18, 8.19, and 8.20 may be applied 
with minor changes to a great variety of oscillators. In all cases, 
the output circuit may be tuned to a harmonic of the frequency being 
generated. If the tube is operating well into class C, as is usually the 
case, the output is a substantial fraction of that which would have 
been obtained at the fundamental. The design of the load circuit 
requires a knowledge of the desired component of plate current, which 
may be obtained by applying Fourier analysis to the actual plate 
current wave.

8.16 Reactance stabilization of frequency
Both theory and experiment show that the frequency stability of 
practical oscillators is improved by the use of small L/C ratios in the 
tank circuits. However, where tuning by means of a variable con­
denser is necessary, or for various other reasons, it may not be possible 
to achieve the required stability in this way. In such cases the reac­
tance stabilization of Llewellyn192 is useful.

Llewellyn’s analysis is based upon the principle of equivalent 
linearization, although the term was not in general use at that time. 
He assumed that the tank circuit is entirely free from loss, so that the 
power produced in the plate circuit equals the power lost in the grid 
circuit, principally in the grid leak. As shown in Section 8.4, the 
amplitude of oscillation will automatically adjust itself to such a value 
that the loop gain and phase requirements are satisfied. The idealiza­
tions of that section lead to values of plate and grid resistance which 
are independent of the applied voltage, but in actual oscillators these 
resistances change somewhat with the amplitude of oscillation. In 
general, the frequency of oscillation depends somewhat upon the 
resistances as well as the reactances present in the circuit. Therefore, 
changes in the applied voltages will lead to a change in frequency by 
changing the values of the tube resistances.

If, however, the grid and plate voltages are exactly 180° out of phase, 
the frequency is independent of the equivalent tube resistances and hence 
of the applied voltage. Llewellyn’s paper shows a variety of arrange- 
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merits for accomplishing this objective. Unity coupling between the 
coils of the Hartley or tuned plate oscillator would clearly meet this 
requirement, and Llewellyn also shows how to obtain the desired effect 
without actually obtaining perfect magnetic coupling. In the stand­
ard Colpitts oscillator, for example, the desired phase relationship is 
obtained by the addition of a small inductance in series with the plate 
or grid leads.

The analysis leads to the following logical procedure: (1) Use the 
lowest ratio of L/C consistent with the situation. (2) Use the largest 
practical grid leak in order to obtain a large value of effective grid 
resistance.* (3) Obtain the highest practical coefficient of coupling 
between the coils if magnetic coupling is used. (4) Use a compensat­
ing reactor to correct the remaining departure from 180° phase. 
Llewellyn and others have obtained very stable oscillators following 
this procedure.

The foregoing discussion does not include the effects of intermodula­
tion, as discussed in Chapter 4. In most class C oscillators the equiv­
alent reactance due to intermodulation is quite small. Since the 
harmonic content is nearly independent of the applied voltage, the 
frequency variation with respect to applied voltage due to this cause is 
relatively unimportant, in marked contrast to the dynatron and 
related oscillators. Additional information on this subject is pre­
sented by Jefferson.156

8.17 Resistance stabilization of frequency
Oscillators employing resistance stabilization can be made to produce 
remarkably constant frequency, especially in or somewhat above the 
audio range. A Hartley oscillator employing resistance stabilization 
is shown in Fig. 8.21. The coil is tightly coupled and has a large 
value of Q, and the L/C ratio is low. The grid bias is fixed at a value 
slightly below the optimum value for class A operation. The feed­
back resistor Ri, which is high compared to the plate resistance of 
the tube, is adjusted to a value only slightly smaller than that cor­
responding to the threshold of oscillation. Under these conditions 
the tube operates with low distortion, the voltage across the tuned 
circuit is very nearly free from harmonics, and the frequency is quite 
insensitive to the conditions of the tube and to variations of the applied 
voltage.

Although the superior performance of such oscillators is in large 
part due to the care with which they are ordinarily built and operated,

* Intermittent behavior, which may occur if the grid leak is too large, is discussed 
in Chapter 10. 
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the feedback resistor contributes to this performance in two ways. It 
provides a very practical and reproducible means for controlling the 
feedback to a value near the threshold of regeneration, and it isolates 
the tuned circuit from the plate of the tube, thereby improving the 
wave form and minimizing the reaction of varying plate resistance 
upon the output frequency. Because of the fixed bias and the absence 
of a grid leak the amplitude of oscillation is limited in a way which is 
quite different from that in other oscillators. During oscillation 
build-up the operation is almost linear, and the ordinary exponential 
expansion occurs; the grid draws no current, and the plate current 
increases very slightly because of unavoidable curvature in the tube 
characteristics. The amplitude stabilizes at such a value that the 
grid is driven positive at the peak of each cycle, at which point the

Fig. 8.21. Resistance-stabilized Hartley oscillator.

marked loading in the grid circuit rapidly decreases the loop gain. 
The average bias is fixed by the battery so that a small change in 
amplitude produces a relatively great change in grid circuit loss. 
Accordingly the amplitude stability is quite good.

Terman305 recommends the use of a triode having low plate resistance 
and an amplification factor between 6 and 10 in conjunction with a 
center-tapped, tightly coupled, high Q coil. The recommended feed­
back resistor has a value between two and five times the plate resist­
ance. Finally, the plate choke and the blocking condenser should 
have reactances respectively very high and very low compared to the 
plate resistance. It appears probable that desirable results could 
also be obtained with a pentode if the plate choke were replaced by a 
suitable load resistor.

8.18 Phase shift oscillators

Inconveniently large coils and condensers are required to generate the 
lower audio frequencies in ordinary LC oscillators. The use of resist­
ance and capacitance permits the generation of these frequencies 
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much more conveniently. A very simple circuit for obtaining oscilla­
tions in a resistance-capacitance circuit was described by Ginzton and 
Hollingsworth,111 and is shown in Fig. 8.22.

At first glance it may seem surprising that such a circuit can generate 
harmonic oscillations. It is well known that a passive circuit of 
resistance and capacitance is completely incapable of oscillation, and is 
characterized by roots which are real and negative. As shown in 
Chapter 5, however, the addition of gain or negative resistance in the 
form of a vacuum tube greatly modifies this situation. For appropri­
ate values of the parameters the roots become pure imaginary, and 
the Nyquist plot passes through the point (1, 0) corresponding to 
sustained oscillation.

Fig. 8.22. Phase shift oscillator: (a) circuit arrangement, and (b) equivalent 
circuit.

The conditions for sustained oscillation may be determined by means 
of linear equations in connection with the equivalent circuit of Fig. 
8.226. As in other oscillators, the actual gain provided is in excess of 
that calculated, and nonlinear operation results. However, the oper­
ating frequency corresponds very closely to the calculated value, 
and the gain equation serves as a basis for the design of practical 
circuits.

The algebra presented by Ginzton and Hollingsworth is relatively 
complicated, and is omitted here in the interest of space. However, 
the results of their calculations for a variety of circuit arrangements are 
presented in Fig. 8.23. Throughout this figure the symbol A repre­
sents the amplification which would be observed for the given tube 
operating with the load resistor R^. That is,

A = pRL/(RL + rp). (8.51)
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The arrangements which employ condensers in shunt are particu­

larly attractive for variable-frequency oscillators because variable 
condensers usually have a grounded common rotor connection. And 
variable condensers are preferred to variable resistors because they 
are much more stable and reproducible. Moreover, the gain equation 
is unaffected if all condensers are varied alike because the frequency 
readjusts itself so that the susceptances are not varied. It is important 
to note that in this, as in other RC oscillators, the frequency varies inversely 
with the RC product so that relatively wide frequency ratios are easily 
covered.

Fig. 8.23. Equations for design of phase shift oscillators.

Phase Shifting Network Frequency of Oscillation Required Amplification

hi t it t. it~r .TO 1
2irfi,RC 29

°H( tHt l(~r°.. vR*
_________ 1

16 + 10 ^r+3^

r~l( dho .. TO _________ 1 14 + 3 (£+4~-)

2^0,^  ̂

• 4+3€t

^714^352^,(+342 + 84^^)

i4 + 3Gr

o
50

%

JH

yr

2irRC
29

o TCTCTCT?
V10/7

2x RC 18.4

It is easy to show that the amplification A required for oscillation is 
decreased by the use of more RC networks in tandem and by pro­
gressively increasing the impedance level of the networks. The 
results which may be secured in this way are discussed by Johnson.169 
Additional design information is given in papers by Hinton,140 Sulzer,301 
Vaughan,329 and Artz.17

The results of Fig. 8.23 do not include the effects of grid-to-plate or 
other capacitances in the tube. These are sure to become important 
at high frequencies, and may be significant at the upper audio fre­
quencies if very high impedances are used to obtain such frequencies 
with variable air condensers of moderate capacitance.

The frequency stability of phase shift oscillators is adequate for
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nearly all audio frequency applications. The frequency is quite 
insensitive to the applied voltage if the tube is operated with only 
moderate gain margin. And the use of good components renders the 
frequency reasonably stable with respect to temperature and aging.

Related to the phase shift oscillators are the polyphase resistance­
capacitance oscillators of Bartlett.22 These are useful in a few special 
applications where polyphase sinusoidal currents of variable frequency 
are required. A great variety of such arrangements are possible.

8.19 The DeLaup oscillator
A resistance-capacitance oscillator of exceptional simplicity has been 
devised by DeLaup.75 The circuit arrangement, shown in Fig. 8.24,

(a) (b)

Fig. 8.24. Resistance-capacitance oscillator using negative transconductance: 
(a) circuit diagram and (b) simplified equivalent circuit.

is identical with that of the van der Pol relaxation oscillator described 
in Chapter 12. It is of little practical importance because the fre­
quency stability and wave form are very poor unless the parameters are 
controlled within narrow limits. It is discussed because analysis of 
this critical behavior serves to explain the behavior of other oscillators.

The simplified equivalent circuit is shown in Fig. 8.246, where R3 
represents the parallel combination of R2 with the dynamic screen 
grid resistance of the tube. The use of gm for the transconductance 
from suppressor to screen grid leads to the group of equations :

iR3 (8.52)

(8.53)iR3 = iiRi +
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Differentiating eq. 8.53 and substituting to eliminate the current and
voltage variables, we obtain as the differential equation of the system

and

3 mt = ¿3 = A + ¿2 + Ì- (8.54)

d2i 
dt2 CiRz CiRi CiRi

Um
Ci.

di i
dt CiCiRiRi

(8.55)

The substitutions
Ci = nCr,

2 _ 1
“° CiCiRiRi

(8.56)

(8.57)

and
m = aoÆiCi = —^—7 (8.58)

1 1 1

reduce the differential equation to the form 

d2i ( w0 , wo—5 + i mwo 4------ 1-------- — I
dt \ m mn Ci/

di <>.~ + a>o t = 0. 
dt

(8.59)

It is readily shown that sustained oscillations occur if the coefficient of 
the first derivative is zero and that their frequency is given by eq. 8.57.

For other values of the transconductance the oscillations expand or 
contract exponentially and the period is increased. Consistent with 
Chapter 2, we find that the roots of the auxiliary equation traverse a 
circle in the complex plane and are displaced from the horizontal axis 
by an angle <f> given by

, / Am/n2
0-tan-’J 2 ,'2-1 (8.60)

' (m n + m + n)2(l — ky
where

, m2nRiqm
k = —----- 8.611 + n + m2n

represents the ratio of the actual transconductance to that required 
for sustained oscillation.

The angle 0 can be real, corresponding to sinusoidal oscillations, 
only if the fraction in eq. 8.60 is greater than one. This will be true 
over the widest range of the gain variable k if

m = 1 and n » 1. (8.62)
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These relationships justify the usual procedure of making

Ri » R3 and RiC3 = R2C2 = l/wo- (8.63)

Subject to these conditions 0 is real, provided

0 < k < 2. (8.64)

Decaying sinusoidal waves are produced if 0 < k < 1, expanding 
sinusoidal waves are produced if 1 < k < 2, and relaxation oscillations 
are produced if k > 2.

Figure 8.25 shows Nyquist plots and the system roots for the circuit 
of Fig. 8.24 having parameters consistent with eq. 8.62. Condition A

Fig. 8.25. Properties of the circuit of Fig. 8.24: (a) Nyquist plot and (b) position 
of roots in complex plane.

represents sustained oscillation (k = 1) whereas B and C represent 
k = % and k = 2, respectively.

8.20 Nyquist diagrams and system roots
The analysis of the preceding section has used the roots of the auxiliary 
equation to explain the otherwise puzzling fact that the DeLaup oscil­
lator is very critical as to the transconductance of the tube. The 
same general analysis is now applied to other oscillators. The tuned 
plate oscillator, which has already been extensively studied, is treated 
first.

If the grid leak-condenser combination of Fig. 8.1 is replaced by 
a fixed bias battery, we may obtain the Nyquist diagram by inspection. 
The plot is a circle with diameter proportional to the amplification 
factor of the tube and a frequency scale uniquely fixed by the effective 
Q of the tank circuit. It therefore differs from that of the DeLaup 
oscillator only in that the rate of change of phase with respect to 
frequency is much greater. As shown in Chapter 5, this behavior is 
associated with roots much nearer the real frequency axis and cor­
respondingly improved frequency stability.
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The extent to which p may be increased above the value correspond­
ing to the threshold of oscillation before relaxation oscillations occur is 
of importance. That it is a large ratio is inferred from the Nyquist 
plot. The exact ratio is obtained by finding the roots of the auxiliary 
equations.

Referring to eq. 5.25, we see that the roots are pure real provided

W = - G/C)2, (8.65)

where G = l/r„ + 1/R, and ag2 = i/LC. Similarly the roots are 
pure imaginary corresponding to the threshold of oscillation, provided

Mgm«J = G/C. (8.66)

Taking the ratio of these two transconductances, we have

k = 1 + Z^C/G. (8.67)

The last factor is recognized as twiee the selectivity of the tuned 
circuit as loaded by the dynamic plate resistance. Therefore, we 
conclude that relaxation oscillation can occur in a tuned plate oscillator 
only if the transconductance exceeds the threshold value by the factor 
(1 + 2Q), which is readily made large in practical systems, so that a 
generous margin exists.

Occasionally we wish to damp the oscillation of a tuned circuit by 
means of a vacuum tube. This can be accomplished by reversing the 
sign of M or gm in eq. 8.65; critical damping results when this reversed 
equation is satisfied.

Actual oscillators are almost never so simple as the system used to 
develop these results. Consideration of the grid leak and condenser 
combination always leads to an additional negative real root. More­
over, additional meshes in the system and roots in the corresponding 
equation are contributed by the effects of parasitic inductance or 
capacitance and imperfect coupling in realizable transformers. How­
ever, the results obtained give a correct general idea of the situation 
in the more usual forms of oscillators.

The phase shift oscillator presents an intermediate situation. 
Treatment of the general case will not be attempted because algebraic 
difficulties cloud the results unduly. If, however, we premise that 
each section of the phase shift network of Fig. 8.22 has an impedance 
large compared to that of the preceding one, we can obtain the Nyquist 
plot and the roots reasonably simply.

The differential equations for the several meshes of the system, using 
p = d/dt, have the common form

64/^3 = C3A2 = c2/ci = 1 + i/pCR. (8.68) 
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Assuming that rp » RL or that RL represents the parallel value of the 
two resistors, we have

«4 = -gmeiRL- (8.69)

Elimination of the voltage variable leads to the system equation

(1 + 1/pCR)3 + gmRL = 0. (8.70)

As is well known, this equation may also be interpreted as the auxiliary 
equation which yields the desired roots. Let us examine it in this

Fig. 8.26. Variation of roots of phase shift oscillator (plot of p relative to 1/CR).
Fig. 8.27. Nyquist diagram for a three-section phase shift oscillator.

Fig. 8.27.

light. First, with the tube off, corresponding to gm = 0, the root is 
triple and has the anticipated value

p = — 1/CR. (8.71)

For the value of transconductance which corresponds to the threshold 
of oscillation, p must be a pure imaginary, whereas the other coef­
ficients of eq. 8.70 are pure real. This is possible provided the cubed 
quantity represents a complex number having an angle of 60°. That 
is, if

±7P = -----X^CR
(8.72)

Substitution shows that eq. 8.72 satisfies eq. 8.70, provided gmRL = 8.
As gm is varied from zero to infinity, the three roots at — 1/CR 

separate, tracing the paths shown in Fig. 8.26, and reconverge at the 
origin. The exceptional feature of this circuit, which behaves differently 
from any previously studied, is that it cannot generate relaxation oscilla­
tions because p cannot become real and positive.

The Nyquist diagram for the phase shift oscillator is readily plotted 
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because it represents three times the phase and attenuation character­
istic of a single RC section, modified by a negative factor A, which is 
the inherent amplification of the tube, as shown in Fig. 8.27. It is an 
interesting fact, which may or may not have significance, that for the 
systems here studied there is a considerable resemblance between the 
Nyquist plot and the path traced by the roots as the transconductance 
is varied.

8.21 Beat-frequency oscillators
A beat-frequency or heterodyne oscillator consists of two separate 
oscillators and a modulator or mixer for producing an output at the 
difference (or occasionally the sum) of these frequencies. The arrange­
ment is widely used for generating audio frequencies, but is also 
applicable to a variety of other applications for measurement and 
signaling. Arbitrarily low frequencies can be produced in this way 
provided that adequate measures are taken to avoid synchronization 
between the two oscillators; however, the resulting frequency stability 
is relatively poor. To obtain reasonable stability it is customary to 
make the two oscillators as stable and as nearly identical as possible. 
Thus the two drift in a similar manner, and the difference is relatively 
constant. Ordinarily, the frequency of the oscillators is about ten 
times the maximum output frequency.

A major problem in the design of heterodyne oscillators is the 
elimination of spurious frequencies in the output. Unless suitable 
precautions are taken, the output of each oscillator contains the com­
plete series of harmonics, and the modulator produces all possible 
sum and difference frequencies. If we represent the oscillator funda­
mental frequencies as a and b, respectively, and assume a > b, we 
find in addition to the desired difference frequency a — b, components 
at 2a — 2b, 3a — 3b, 3b — 2a, etc. A great many other frequencies 
are also produced, but are so remote that they are readily removed by 
means of filters. The terms such as 2a — 2b are most readily sup­
pressed by designing the oscillators so that they produce practically 
pure sinusoids, and by designing the modulator so that it produces 
only sum and difference frequencies. Linear oscillators are suitable 
from the standpoint of frequency stability and low harmonic constant. 
A multiple-grid tube, such as the FM-1000, in which the input is 
applied to separate electrodes each of which exerts a linear control over 
the electron stream is suitable for the modulator. The detailed design 
of heterodyne oscillators is beyond the purpose of this work. The 
interested reader is referred to papers by Slonziewski,288 Moore,215 and 
Kirby.173
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8.22 Decade oscillators
An oscillator which is convenient for many purposes is arranged so 
that the operating frequency may be set by means of additive decade 
dials similar to those used in ordinary resistance boxes.85 A very high 
accuracy of setting is achieved in this way without recourse to elaborate 
dial mechanisms; though the actual frequency stability is evidently 
no better than that inherent in the circuit. The method depends 
upon the fact that the frequency of resistance-capacitance oscillators 
varies inversely with some RC product or directly with the reciprocal 
product of conductance and stiffness GD. A decade oscillator results 
if an appropriate decade of conductance or stiffness is used. Such 
decades may be made by connecting resistors in parallel or capacitors 
in series by switching arrangements appropriate respectively to 
capacitance and resistance decades.

If, for example, the phase shift circuit of the fifth line of Fig. 8.23 is 
to be used, it is appropriate to use three-gang switches to vary the three 
stiffness decades required. Because only four separate capacitors 
are required for each decade, the number of elements required is not 
prohibitive. The same objective is reached in the Wien bridge oscil­
lator of Chapter 7 by means of only two stiffness decades. An oscil­
lator employing this arrangement has been described by Young.351
8.23 Low-frequency oscillators
Oscillators of the phase shift variety are readily adjusted to operate at 
frequencies as low as about 10 cycles; and substantially lower fre­
quencies may be generated in this way if suitable precautions are 
taken. The most important single factor is leakage, which may occur 
in the condensers or in the associated elements and leads. The series 
capacitor arrangement indicated in Fig. 8.22 is preferred at low fre­
quencies because it is little affected by parasitic capacitances and leak­
age conductances. Using this arrangement and a thermistor amplitude 
control, Fleming94 has produced a calibrated oscillator having low 
harmonic output and good stability in the frequency range of 0.9 
to 10,000 cycles.

At still lower frequencies it is possible to employ the thermal time 
constant of a thermistor as the frequency-controlling parameter. 
Using a 400-^1 condenser and a Western Electric 1-B thermistor, 
Stone298 has produced oscillations variable over the frequency band of 
0.02 to 0.1 cycle. A relatively pure wave form at an adjustable- 
frequency is obtained by varying the feedback provided through a d-c 
amplifier.

Oscillations lower in frequency by another order of magnitude may
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be obtained by means of capacitances and mechanical relays. Because
the system is inherently nonlinear, a pure wave form is obtained only
if adequate filtering is provided. Means for producing such oscilla­
tions are described by Ives.’64

8.24 Wide-range oscillators
Although it is possible to obtain a frequency which varies over a wide 
ratio by means of the heterodyne method, it is sometimes desirable to 
achieve the same result in a different way. Methods for directly 
producing oscillations over wide-frequency ratios have been devised 
by Anderson7 and by Willoner and Tihelka.346

The oscillator due to Willoner and Tihelka is of the phase shift type, 
as shown in Fig. 8.28, but it uses an artificial line of inductance and 
capacitance rather than of resistance and capacitance. The trans­
former produces a stepdown so that the line may operate at a conven­
ient impedance level; it does not produce a phase reversal. Limiting 
is produced in the tungsten lamp, which is heated by the alternating 
current fed to the phase-shifting line. Oscillation occurs at a fre­
quency such that 180° phase shift is produced in the portion of line 
included in the oscillating loop in accordance with the setting of the 
potentiometer P. It appears that an even wider range of adjustment 
could be secured by means of a sliding contact on a continuously dis­
tributed line.

The “seven league” oscillator of F. B. Anderson7 achieves a com­
parable result in a somewhat different manner. The basic element of 
this system is a bridge in which the transmission through a complicated 
RC network is partially balanced by a simple voltage divider. The 
general configuration and response of the bridge is shown in Fig. 8.29. 
By properly proportioning the six RC combination it is possible to 
secure the characteristic indicated, in which Vo, the component ofN3 in 
quadrature with is almost constant over a very wide band of frequencies. 
Therefore, for each setting of the potentiometer and associated voltage 
V2, the frequency adjusts itself so that the desired quadrature relation­
ship exists. Oscillation is obtained by using two of these bridges in 
tandem to secure the 180° phase reversal required in ordinary vacuum 
tubes. The frequency of oscillation varies approximately logarithmi­
cally with the setting of a linear potentiometer.

The actual circuit configuration, shown in Fig. 8.30, is somewhat 
complicated by the fact that vacuum tubes are used to obtain high 
impedances to prevent interaction between bridge arms. Tubes Ti 
and T2 serve as a two-input amplifier to take the required difference 
V3 — V2 = Vo. The output of Ti represents the amplified quadrature



Fig. 8.28. Oscillator covering the frequency band 100 to 10,000 cycles. Each section of the potentiometer P has a resistance of 
1500 ohms.
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Fig. 8.30. Seven-league oscillator using 6AK5 tubes and covering the frequency range 20 cycles to 3 Me. (Reproduced with permis­
sion of author and editor from F. B. Anderson, "Seven League Oscillator,” Proc. I.R.E., 39,881-890 [1951]).
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voltage Vo in terms of Fig. 8.29. This voltage applied through a simi­
lar bridge to T3 and Ti produces an output which may be thought of 
as Vi. A single rather than double reversal of phase in the loop is 
secured by taking the output from T3 rather than T^, as would be 
required for symmetry.

The general method is applicable over the frequency range 0.01 
to 107 cycles, although it appears unlikely that the entire range should 
be attempted in a single unit. The frequency is stable to about 2 per 
cent and may be set to an accuracy of about one-half per cent. The 
tracking requirement on the two-gang potentiometer is not severe. 
Excellent wave form is preserved by use of a thermistor amplitude con­
trol, and the output is maintained substantially constant over the 
entire frequency range by means of a suitable equalizer and additional 
thermistor.

PROBLEMS
8.1. A triode oscillator similar to that of Section 8.5 has the parameters m = 70, 

r„ = 105, ra = 10*, Ei — 250, h = 10, ftp = 50°, and 7 = 0.75. Calculate the 
operating conditions, grid leak resistance, and resonator parameters, assuming no 
useful power output, o> = 107 and Q = 50.

8.2. Repeat Prob. 8.1 for a Colpitts oscillator.
8.3. Develop the loop-gain equation for the tuned-grid oscillator, assuming the 

grid coil is shunt-loaded and taking account of grid rectification.
8.4. Referring to the numerical example of Section 8.5, calculate the frequency 

deviation produced by adding one micromicrofarad to the plate capacitance.
8.5. Referring to the numerical example of Section 8.9, calculate the frequency 

deviation produced by adding one micromicrofarad to the grid capacitance.
8.6. Develop a numerical example of a Meissner oscillator corresponding to 

Prob. 8.1.
8.7. Develop a numerical example of the Franklin oscillator based on pentodes 

with gm = 2000, a 500-kc resonator with Q = 150 and C = lOOO^^f, and coupling 
condensers of one micromicrofarad each.

8.8. Explain clearly why the transconductance available to produce oscillation 
is different in the circuits of Figs. 8.18 and 8.19.

8.9. Verify the results presented in the last line of Fig. 8.23.
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CRYSTAL-CONTROLLED
OSCILLATORS

Crystal-controlled oscillators are characterized by the use of a 
piezoelectric crystal rather than a tuned circuit as the frequency­
determining element. Logically, therefore, they are merely har­
monic oscillators, and might well be classified with the other oscil­
lators of that group. They are treated separately here because 
their properties are significantly different from those of other oscil­
lators and because separate treatment is customary. The outstand­
ing property of crystal-controlled oscillators is an exceptional degree 
of frequency stability. This is a direct result of the high Q and low 
temperature coefficient of the crystal unit employed. The differ­
ence, although of degree rather than of kind, is so great as to justify 
separate consideration.

Because the frequency is principally determined by the crystal, it is 
possible to obtain relatively simple expressions for frequency stability 
by combining appropriate partial derivatives. This procedure is 
illustrated in the following sections.

The subject matter of the chapter was arranged with a view to pre­
senting a number of useful ideas in a logical order. It is perhaps unfor­
tunate that the most widely used circuits operate in a relatively com­
plicated manner and are therefore described near the end. The 
reader who wishes an independent and fairly elementary discussion of 
crystal oscillators is referred to the paper by Anderson.8

9.1 The transformer-coupled oscillator
The circuit of Fig. 9.1 is chosen to introduce the subject of crystal 
oscillators because it illustrates several basic and important ideas. 
Although applicable over a wide range of frequencies, it is most useful 
at frequencies between about 20 and 150 Me in conjunction with 
crystals operating at series resonance on an overtone of the thickness-

197



198 CRYSTADCONTROLLED OSCILLATORS
shear vibration.206 To obtain these frequencies the capacitances of 
the grid and plate circuits are reduced to the minimum possible value, 
and the transformers consist of small single-layer air-core solenoids. 
The autotransformer arrangement is favored because it leads to a desir­
able high coupling coefficient between low- and high-impedance wind­
ings. The tube operates in class C with grid-circuit limiting, and the 
useful load is represented by the resistor R in shunt with the plate

(a)

(b)

Fig. 9.1. Transformer-coupled oscillator: (a) schematic and (6) idealization for 
analysis.

transformer. The operation differs from that of the Meacham circuit 
largely by the fact that the circuit resistances degrade rather than 
enhance the effective value of crystal Q.

It is assumed that the tube is a pentode operating in class C, with 
the effective transconductance reduced to gm' by bias resulting from 
grid current, and that the transformers are loss-free, have negligible 
leakage inductance, and are resonant with the associated plate and 
grid capacitances at the operating frequency. Fortunately, the effect 
of leakage inductances present in physical transformers is small and 
can be canceled by assigning an appropriate value to Cd. The useful
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load is represented as a resistor in shunt with the plate transformer; 
however, it will be shown that a tuned load circuit, magnetically- 
coupled to the plate coil, has several important practical advantages. 
Finally, it is assumed that the holder capacitance, Co, of the crystal is 
negligible or is compensated by methods described later.

Analysis of the conditions for oscillation is facilitated by reference to 
Fig. 9.15, in which the crystal is replaced by its series resistance, and 
the useful load and grid-circuit losses are referred to the low side of the 
transformers. It is convenient and desirable to introduce at this time 
the Q degradation factor D, which is the ratio of the intrinsic selectivity 
of the crystal to its selectivity in the circuit. This parameter may be 
thought of as the inverse of the Q magnification factor of the Meacham 
bridge, and is useful in the analysis of many oscillator circuits. In the 
present case it takes the form

D = (Ri + R2 + R3)/Ri = 1 + m + n. (9.1)

Because the tube operates in class C with grid current, and because 
transit-time loading is important at the higher frequencies, the tube 
requires an appreciable driving power, which is represented by R2 in 
Fig. 9.15. Because the plate load impedance represented by R3 is 
limited by stability and other considerations, the power gain of the 
tube is always finite and may be rather low. The equilibrium ampli­
tude is established in the grid circuit; thus, it is appropriate to express 
the power in terms of the rms grid voltage. On this basis, the grid 
driving power, useful power output, and power dissipated in the crystal 
are, respectively,

Pd = Vg/N^mRi, (9.2)

Po = V2(l + m)2IN^m2nRi, (9.3)
and

Pc = Vf/NWh (9.4)

The power gain G of the tube is a convenient and important parameter; 
it is given by

G = (Pd + Pc + Po)/Pd = 1 + 1/m + (1 + m)2/mn. (9.5)

In previous discussions it has been assumed that the power-handling 
capacity of the resonator was, or could readily be made, adequate. In 
crystal oscillators this is rarely true, and the ratio of output to crystal 
power must be large if any considerable power output is to be obtained. 
In the present circuit this important ratio is

Po/P„ = (1 + m)2¡n = GD - G - D. (9.6)
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It is evidently increased by making m large and n small, and can be 
relatively large only if both G and D are considerably in excess of unity.

The foregoing relationships all assume that oscillation occurs at the 
series resonant frequency, a desirable condition. With this assump­
tion we may show that the transconductance required for sustained 
oscillation, that is, unity loop gain is

gm = D/RiNiNinm. (9.7)
Other parameters of interest are the impedances faced by the plate and 
grid, which are, respectively,

Rp = Ni'Rffn + mn)/(l + m + n), (9.8)
and

Rg = Nz2Ri(m + mn)/(l + m + n). (9.9)

9.2 Design considerations in the transformer-coupled oscillator 

There are at least three important objectives which govern the design 
of this and other crystal oscillator circuits, namely: (1) good frequency 
stability; (2) large power output; and (3) ability to operate with crys­
tals having substantially different frequencies. It will be shown that 
best frequency stability is achieved by obtaining appropriately low 
products DRP and DRg, that best power output requires increases of 
Rp and Rg at a sacrifice of frequency stability, and that operation with 
crystals varying over the widest possible band of frequencies requires 
that Rp and Rg be decreased, again at a sacrifice of frequency stability.

In Section 7.13, on the Meacham oscillator, it was shown that the 
variation of loop phase shift with respect to frequency is directly 
proportional to the effective Q of the resonator, and that the phase 
shift produced by an increment in plate or grid capacitance is directly 
proportional to the associated impedance. Therefore, consistent with 
any given crystal Q and tube transconductance, best frequency stabil­
ity is obtained by proportioning the circuit so as to minimize the 
products of resistance and Q degradation. If we assume that the 
plate capacitance is k times more stable than the grid capacitance, we 
should set

Rp = kRg. (9.10)
The problem, then, is to minimize the product DRP consistent with 
eq. 9.7. Combination of eqs. 9.1, 9.7, 9.8, and 9.9 with 9.10 yields

RpD = (y/k/gm^O. + m + n) V\1 + m)(l + n)/mn. (9.11)
From the symmetry of this relationship we see that the minimum value 
will occur only if m = n. With this substitution the derivative of eq.
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9.11 is equal to zero, provided

m = n = ^x/2. (9.12)

That is, maximum frequency stability with respect to incremental varia­
tions of grid or plate capacitance exists if m = n, D = 1 + x/z and 
Ni = x/k N2. Because eq. 9.12 corresponds to a low ratio (only 4.12) 
of output to crystal power, it is often desirable to deviate from the 
optimum conditions. Fortunately, the maximum is a broad one so 
that a great increase in power ratio is obtained at a small sacrifice in 
stability. For example, RPD is increased only 29 per cent by setting 
n = 0.3 and m = 1.5, in which case PJPC = 21.

The frequency stability of the transformer-coupled oscillator with 
respect to increments of grid (or plate) capacitance is readily deter­
mined from eqs. 7.76 and 7.80. Note that </> is smaller, not larger, 
than 6. The resulting expression is

dCg = 2Q 
du/iv u>DRg

(9.13)

The ability of the circuit to operate with crystals having different 
frequencies depends mainly upon the phase shift introduced by the 
plate and grid capacitances, hence upon Rp and Rg. Therefore, it is 
desirable to make Rp and Rg as small as possible consistent with the 
specified value of gm'. Substitution of eqs. 9.1 and 9.7 in eqs. 9.8 and 
9.9 yields

and

Rg —

Rp =
Nr 1 + m

(9.14)
Ni mgm'

Ni 1 + n
(9.15)

Ni ng J

These expressions have no minimum, but approach 1 /gj as m and n 
become large. Evidently, there is little profit in giving either m or 
n a value in excess of 4, which degrades the frequency stability by a 
factor slightly less than 2. When the grid and plate capacitances 
are unequal the impedances should be adjusted so that the RC prod­
ucts, and hence the bandwidths, are approximately equal.

In the circuit of Fig. 9.1 the loop phase shift of the system, exclusive 
of the crystal, departs rapidly from zero if the frequency deviates 
from that to which the plate and grid circuit are tuned. However, 
it is possible to make the loop phase shift quite small over a consider­
able frequency band by removing the physical load resistor and 
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coupling a suitably tuned load to the plate winding. The method is 
not applicable to the grid circuit because the conduction and capaci­
tance of the grid are not separable. Therefore, it is often desirable to 
make the natural bandwidth of the grid circuit somewhat greater 
than that of the plate circuit; and it is sometimes possible to over­
compensate the plate circuit.

The bandwidth over which the phase shift may be controlled is 
limited by the impedance level and capacitance of the plate circuit. 
The necessary design relationships may be derived directly129 or by 
applying the band-pass transformation to the familiar shunt-peaked 
video interstage network. However, the following rules, based on 
that procedure, are sufficient in ordinary situations. (1) The total 
useful bandwidth wb is 3/(4RpCPY (2) The primary and secondary 
are both tuned to w0, the geometric mean of the useful band. (3) 
The secondary selectivity Q is (3/4)w0RPCp. (4) The primary to 
secondary coupling coefficient k is 1/a/1 + (4/3)Q2. (5) The phase 
shift reaches 20°, and the gain rises about 2 db at the edges of the band. 
A useful bandwidth of 20 Me may be obtained with the 6AK5 pentode 
in a carefully adjusted circuit.

Because the grid (or plate) transformer must produce a phase 
reversal, it is possible to balance the effects of grid-plate and crystal­
holder capacitance. It is readily shown that the required relationship 
is

Co = NiN2Cgp. (9.16)

Fortunately, this relationship is consistent with reasonable values of 
circuit parameters. When this condition is approximated the circuit 
has little tendency to generate spurious oscillations of any kind.

Alternatively, the effect of Co may be largely eliminated by anti­
resonating it at the operating frequency with a low-Q coil. Finally, 
this physical inductance may be eliminated by providing a suitable 
degree of magnetic coupling between plate and grid transformers.

Limiting ordinarily occurs in the conventional manner by rectifica­
tion in the grid circuit. However, if the grid circuit impedance is 
made low in the interest of frequency stability or broad-band opera­
tion, the level of limiting may be too high for the crystal unit. This 
difficulty may sometimes be avoided by lowering the plate (not 
screen) voltage to a value near the knee of the pentode characteristic. 
The effective transconductance then decreases rapidly with increase 
of amplitude so that limiting occurs ever though the grid is never 
driven to cutoff.

A numerical example may prove helpful. Let us assume a 70-Mc 
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crystal having a series resistance Ri = 100 ohms. A 6AK5 pentode 
having its effective transconductance reduced to 2000 from the nominal 
value of 5000 micromhos is suitable. The input and output capaci­
tances are about equal, but the grid circuit capacitance is considerably 
the less stable. Therefore, as a compromise between stability and 
wide-band operation, let us set k = 2 in eq. 9.10. The choices n = 0.3 
and m = 1.5, corresponding to Pq/Pc = 21, also represent a reasonable 
compromise between stability and power output. The foregoing 
assumptions yield as the operating conditions: Rp = 1900, Rg = 950, 
R3 = 30, R2 = 150 ohms; Vi = 8.42 and N2 = 3.70.

Assuming Q = 10,000, an increment of 1 ggf in the grid capacitance 
or % in the plate capacitance will lower the frequency by 58 ppm. 
If limiting occurs at 3 rms grid volts, the power output and the crystal 
power are, respectively, 61 and 2.92 mw. A supply voltage of 75 for 
screen and plate is approximately correct. The plate load should be 
provided by inductive coupling. The grid impedance will be at least 
partially provided by rectification and transit-time effects; but addi­
tional conductance may be required. The effects of crystal-holder and 
grid-plate capacitance are balanced if Co and Cgp have the reasonable 
values 7.5 and 0.24 ggf. For a more detailed treatment of high- 
frequency oscillators the reader is referred to a report prepared for the 
Signal Corps by the author.84

9.3 The C.I. meter circuit
The circuit of Fig. 9.2 was developed for the measurement of the 
effective series resistance of crystal units in an arrangement called the

“crystal impedance meter.” The measurement is based upon a 
substitution procedure in which the frequency and amplitude of oscil­
lation are unchanged when the crystal is replaced by a resistance or 
specified resistance-capacitance combination. Other oscillator circuits 
may also be used for this purpose, but the present circuit is particularly 
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suitable because the tuned circuits remove the harmonic currents 
which might otherwise flow through the substitution resistor and 
thereby produce error. Conversely, the present circuit is useful for 
applications other than measurement.

The circuit may be viewed as a transformer-coupled oscillator in 
which the required impedance transformations and phase reversal are 
provided by a pair of quarter-wave artificial transmission lines con­
nected in tandem. Moreover, R2 and R3 are normally so low that C2 
and C3 have negligible effect and may be omitted.

It is well known that a quarter-wave loss-free transmission line has 
the property of impedance inversion. Therefore, high values of 
plate and grid impedance are associated with low values of Ra and R2. 
Moreover, the impedances faced by the crystal are very low provided the

Fig. 9.3. Alternative form of transformer-coupled oscillator.

impedances of grid and plate are very high. It is in this one respect 
that the present circuit differs most significantly from the transformer- 
coupled circuit.

The load resistor R3 has a value of about 10 ohms in typical situa­
tions. Because such a resistance is rarely identifiable with a useful 
load, we are led to examine other arrangements. Usually, it is desired 
to drive another vacuum tube serving as an amplifier or frequency 
multiplier. Although it is possible to connect the amplifier grid to 
the oscillator plate, it is undesirable to do so because of the associated 
Q degradation and increased capacitance. It is preferable to use a 
second artificial line, which develops a suitable grid-driving voltage by 
series resonance, joining the lines at the terminals of C3. Appropri­
ately interpreted, the equations developed in connection with the 
transformer-coupled oscillator apply also to the C.I. meter circuit.

Another useful variation of the transformer-coupled oscillator is 
shown in Fig. 9.3. The phase relationships correspond to those of 
Fig. 9.1, the required reversal being produced by resonance of Lg with 
Cc and Cg. The voltage delivered to the crystal is reduced by the
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potentiometer action of Ce and Cd- The principal advantage of this
circuit over Fig. 9.1 is that no tapped coils are required. The dis­
advantage is that the resulting system is somewhat less flexible and
stable. The equations previously developed apply reasonably
accurately provided the equivalent transformer ratios are taken as

Ai = Cd/(Cd + Ce) and Ni = Cc/(Cc + Cg). (9.17)
9.4 The grounded-grid circuit
A very simple series-mode circuit is due to Butler51 and shown in Fig. 
9.4. It may be thought of as a special form of transformer-coupled 
oscillator in which no phase reversal is necessary and one transformer 
may be omitted. Although operable at ordinary frequencies, this

(a) (b)
Fig. 9.4. Grounded-grid series-mode oscillator: (a) schematic and (b) equivalent 

circuit.

circuit is rarely employed except at relatively high frequencies and in 
conjunction with overtone crystals.

The tube may be thought of as a grounded-grid, class C amplifier, 
and as such delivers a plate current which is equal to the current 
injected at the cathode. Desirable operation, therefore, requires 
that a considerable fraction of the total plate current flow through the 
load resistor R, and that this loss be compensated by the current 
step-up ratio of the autotransformer. As is well known, the impedance 
presented to the crystal by the cathode is nearly the reciprocal of the 
effective transconductance—a few hundred ohms in typical tubes. 
The circuit therefore operates quite well with crystals having series 
resistances as high as a thousand ohms. Limiting occurs, as in other 
class C oscillators, as a result of the bias developed by rectification in 
the grid circuit. However, an additional tendency to limit arises 
from the fact that grid current is necessarily robbed from that delivered 
to the plate.
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To analyze the circuit, we assume that the cathode-to-ground 

capacitance is small or tuned out by the cathode choke, that the direct 
plate-to-cathode capacitance is negligible, that the plate transformer 
has negligible leakage inductance, and that the plate circuit is tuned 
to the frequency at which the crystal is series resonant. The trans­
former is assumed to be ideal, with a turns ratio of N, and the effects of 
grid current are neglected. With these idealizations, which are 
reasonably approximated 
oscillation may be written

R =

where rp' represents the 
increased by class C operation. Low values of R are desirable where 
good frequency stability must be obtained at a high operating fre­
quency, but larger values of power output are obtained when R is 
comparable to rp. Low values of rp' and Ri and a large value g are 
favorable.

The impedance Rt presented to the crystal by the tube is simply

in practice, the conditions for sustained

N\rp'+ Rr + pRG ,018.
(¡V _ +1-7)’ (918>

effective plate resistance of the tube as

Vi = rp (N - 1)R
NI g + 1 + (g + 1)N (9.19)

The first term, which is often considerably larger than the second, is 
nearly equal to the reciprocal of the effective transconductance.

The impedance R2 presented to the other terminal of the crystal is 
obtained by taking the parallel combination of the load impedance 
and the effective plate resistance of the tube, as modified by the turns 
ratio of the transformer. The exact value involves a complicated 
expression that is not justified in practice, because the value is closely 
bounded by the relations

Rrp ft c — 
N2(R + rp) 2 N2' (9.20)

It is ordinarily possible and desirable to make R2 substantially smaller 
than Ri or R^.

The crystal Q degradation factor isRi + Rt + Ri . Rt
Ri “ + R?‘ (9.21)

The most serious limitation of this circuit is that the power gain of a 
grounded-grid amplifier cannot exceed the amplification factor of the 
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tube. Therefore, it is hard to obtain a large ratio of output to crystal 
power without seriously degrading the frequency stability. It is 
readily shown that the approximate form of eq. 9.6 also applies to the 
grounded-grid circuit. Thus, we see that values of G in excess of ten 
and values of D around three are required to obtain a favorable ratio of 
output to crystal power. However, the frequency stability is degraded 
by increase of either parameter, so that a compromise is necessary.

In spite of this limitation, the grounded-grid circuit is capable of 
excellent frequency stability because the plate capacitance is relatively 
stable, the cathode impedance very low, and the crystal Q not unduly 
degraded. Ordinarily, the impedance faced by the cathode is so low 
that frequency instability due to variation of the cathode capacitance 
is relatively unimportant. When this is true, best frequency stability 
is obtained by proportioning the circuit so as to minimize the DRP 
product. No detailed analysis is offered; however, results obtained in 
connection with the transformer-coupled oscillator indicate that the 
value is not critical and good results are obtained if D = 3. Provided 
p is relatively large, it is readily shown from eq. 9.18 that R reaches a 
minimum when N = 2. This condition is conducive to frequency 
stability and broad-band operation on a crystal-substitution basis.

Under some circumstances the impedance Rk presented by the tube 
is either too high or too low for suitable operation with the available 
crystal. In this case an additional impedance transformation at the 
cathode is desirable. This is most conveniently obtained by sub­
stituting a suitable tightly coupled autotransformer for the cathode 
choke, the total inductance antiresonating the cathode capacitance. 
A significant improvement in operation may sometimes be obtained in 
this way.

The band over which operation is obtained by crystal substitution is 
greatly increased if the load is suitably tuned and inductively coupled 
to the plate coil. The resulting bandwidth is comparable with that 
of the transformer-coupled circuit because the advantage of one 
transformer is compensated by the higher impedance level which it 
must have. Also, crystal compensation may be achieved by shunting 
a coil across the crystal or by providing magnetic coupling between the 
plate and cathode coils.

A numerical example, based on the 6J4 triode, serves to illustrate 
these points. The normal value of p = 55 is preserved, but the plate 
resistance is increased from the nominal value of 5000 to 11,000 ohms 
by class C operation. A crystal resistance of 50 ohms at 50 Me is 
fairly typical. Choosing a turns ratio N = 9, we have R = 1660 and 
Ric = 222 ohms; also, D — 5.4 and G = 5.9. The ratio of output to 
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crystal power is thus 20.6. Assuming that the effective value of 
crystal current is 5 ma, the output and crystal power are, respectively, 
26 and 1.25 mw.

9.5 The cathode-coupled oscillator
The cathode-coupled circuit of Fig. 9.5 is popular because of its 
economy of parts, ease of adjustment, and excellent performance. 
One tube, Ti serves as a cathode follower to drive the crystal from 
a low impedance without the use of a physical transformer. The other 
tube, Ti, serves as a grounded-grid amplifier. The tuned circuit in 
the plate lead of Ti serves to select the general frequency of operation 
if the crystal is capable of oscillating in several different modes; with 
this single limitation the crystal has almost complete control over the 
frequency. Limiting usually occurs by rectification at the grid of the 
cathode follower.

A considerable power output at the operating frequency or at one of 
its lower harmonics may be taken from the tuned circuit in the plate of 
Ti. The shielding effect of the suppressor and screen grids is such 
that the tuning and impedance level of this circuit have little effect 
upon the oscillation; and it is therefore possible to choose these ele­
ments for maximum output.

A triode may be substituted for pentode Ti with little or no loss of 
performance because the control grid is grounded. And a triode is 
entirely satisfactory as a cathode follower provided the load circuit is 
omitted. In fact, a triode may, with some care, be used for the 
cathode follower even when the load circuit is used, provided the latter 
is tuned to a harmonic of the operating frequency and does not have 
too high an impedance. Triodes are favored principally because of 
the compactness achieved by the use of a dual tube.

Details to be considered in the design of this oscillator are indicated 
in Fig. 9.55. The entire system will operate at zero phase shift and 
hence at the natural frequency of the series arm of the crystal, provided

l/w02 = LeC0 = LkCk2 = LpiCpi (9.22)

and provided the capacitances of the cathode follower are related on 
the basis of a resistance-capacitance voltage divider. The internal 
impedance of T\ is nearly equal to l/gmi, and the load impedance is 
substantially equal to Ri + l/gm2- Therefore, there will be no phase 
«shift, provided

gmliRl + l/^m2) = Cki/Cgki. (9.23)
Limiting still occurs in the grid circuit of Ti, and suitable values of 
resistance and capacitance are indicated. The cathode bias of both
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tubes has been removed by the presence of the compensating coils, 
so that it is appropriate to bias T2 by means of a grid leak and con­
denser as indicated. Under these conditions the same alternating 
current flows in both tubes. Denoting this current by I, we find that 
the grid voltage of Ti is given by

Vei = IRp2. (9.24)
By the cathode follower principle of eq. 9.23, the cathode voltage of 
T3 is

y Vgi(Rl + l/ffmz)
Mi - „—TV} TT7 (9.25)

Rl + l/Oml + l/gm2

The principal advantage of the cathode-coupled oscillator is its 
simplicity; the principal disadvantage is that two tubes are required to 
obtain the performance given by one tube in other circuits. Moreover, 
the cathode impedance of available tubes is upwards of 100 ohms; 
therefore the circuit does not perform well with low-resistance crystals. 
In most situations a one-tube oscillator followed by a buffer amplifier 
will exceed the power output and frequency stability of a cathode- 
coupled oscillator.

9.6 Series-mode circuits for high-impedance crystals
Circuits given by Heegner134 and suitable for use with high-impedance 
crystals are shown in Fig. 9.6. They differ principally in the manner in 
which the required phase relationship is obtained. In both circuits 
the sum of Rg and RL should be made as small as practical in the inter­
est of frequency stability. Both circuits will oscillate at the frequency 
of the tuned circuit if the crystal is short-circuited or replaced with a 
corresponding resistance. Also, both will operate successfully if the 
tuned circuit is omitted, provided the loop gain is not excessive and 
the crystal has a small value of shunt capacitance. However, there is 
a marked tendency to produce relaxation oscillations, for the circuits 
correspond respectively to the van der Pol and the multivibrator.

The modified form of Fig. 9.6a shown in Fig. 9.7 is useful up to fre­
quencies in the neighborhood of 150 Me. It is described in some detail 
because it illustrates clearly an important principle, applicable with 
some modification to most high-frequency oscillators. We first 
assume that the crystal is replaced by a fixed capacitance equal to its 
shunt capacitance, and that Co represents the total effective capaci­
tance from screen to suppressor. We further assume that C2 and C3 
represent total capacitances to ground and that the three circuits are 
tuned to the crystal frequency and have the same value of Q. Subject
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Fig. 9.7. Compensated transitron series-mode oscillator: (a) schematic and (6) 
Nyquist plot.

to these assumptions, the coupling and suppressor circuits act as a 
compensated voltage divider having no phase shift and a constant 
voltage ratio.

The total impedance presented to the screen grid is a simple multiple 
of the impedance of each circuit, and the Nyquist plot for the system
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is a true circle as shown by the solid line of Fig. 9.76. It is readily 
shown that the diameter of this circle is given by

|m0|o — gmRiRJiRo + R2 + RzY (9.26)

To avoid uncontrolled oscillations, the resistance values are chosen so 
that the diameter is somewhat less than one.

If the crystal is now restored to the system, the behavior will be 
unchanged except at frequencies near the resonant frequency of the 
series arm. At the resonant frequency, however, Ro is shunted by the 
substantially lower resistance Ri of .the crystal arm, and the Nyquist 
plot is modified by the subsidiary circle shown dotted in Fig. 9.76. 
Oscillation will occur at or very near the resonant frequency of the 
crystal because the modified Nyquist plot encircles the critical point.

Reexamination of the preceding material shows that the operation 
will not be adversely affected if the three antiresonant circuits differ 
somewhat in Q. In particular, the tuning of either the screen or 
suppressor circuit may be very broad compared to that of the others 
with no effect upon the shape of the Nyquist plot. By a relatively 
simple differentiation it may be shown that the Nyquist plot, in the 
absence of Ri, will cross the real axis at only one frequency provided

R^. (C, .C, C, CA
c" - ~r; \r, + R, + Ro + R J <9'27)

That is, spurious oscillations will not occur if eq. 9.27 is satisfied and 
if eq. 9.26 is less than unity.

As an illustration let us design an oscillator for a frequency of 159 
Me, using an overtone crystal having a holder capacitance of 5 ppi 
and a series resistance of 1000 ohms. The most suitable available tube 
is the 6AS6, which has a suppressor-to-screen transconductance of 
1600 micromhos. Assuming that the irreducible circuit capacitances 
are C2 — C3 = 10 ppi and that Co is increased to 10 ppi by the screen- 
to-suppressor capacitance, we find that eq. 9.27 is satisfied if R2 = R3 

and Ro < 2.73R2.
Providing a 3-db margin against undesired oscillation, we have from 

eq. 9.26, R2 = R3 = 2090 ohms and Ro = 5700 ohms. At the crystal 
frequency, however, Ro and Ri are effectively in parallel, and the loop 
transmission determined from eq. 9.25 is 1.39, a value which offers 
reasonable margin. The required inductances are 0.1 gh each.

9.7 The Pierce circuit
The crystal oscillators previously described have in common the 
property that the crystal is employed as a series-resonant element hav-
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ing a relatively low impedance. Such oscillators are finding increasing 
use because they operate over a very wide range of frequencies and 
because they possess excellent frequency stability, which is due, at 
least in part, to the fact that the crystal is little affected by increments 
in shunt capacitance. The great majority of crystal oscillators, how­
ever, employ the crystal in effective antiresonance with an external 
capacitance called the load capacitance. This is referred to as opera­
tion in the parallel mode. The following paragraphs describe several 
important parallel-mode oscillators.

Figure 9.8 shows a circuit, now generally referred to as the Pierce 
crystal oscillator, which is characterized by extreme simplicity and 
economy of parts. It has the desirable properties that it will operate

(a) (b)

Fig. 9.8. The Pierce circuit: (a) schematic and (&) idealization for analysis, 

under the control of crystals having widely different frequencies, and 
that no output is produced if the crystal is absent or defective. These 
features are particularly important in military apparatus, where 
operating frequencies must be changed quickly and with a minimum of 
adjustments.

In a typical Pierce oscillator C3 has a negligible reactance and is 
provided to isolate the crystal from the plate voltage; the grid leak 
resistance Rc is of the order of 100,000 ohms; and Cg and Cp are of thé 
order of 50 ppi each. The use of a low-resistance coil in parallel with 
the load resistor is appropriate when a considerable power output is 
required. When a very small amplitude of oscillation is tolerable or 
desirable the choke may be omitted; and best frequency stability is 
obtained by retaining the coil and removing the load resistor.

Analysis is facilitated by noting that the circuit reduces to the 
familiar Colpitts configuration if the crystal and C3 are replaced by a 
coil; therefore, the equations developed in Chapter 8 are applicable. 
Oscillation occurs at the frequency at which the crystal is antiresonant



214 CRYSTAL-CONTROLLED OSCILLATORS
with Cg and Cp in series; and the tank or resonator impedance is simply 
the Performance Index {PI) of the crystal in conjunction with this 
capacitance.

If Cg and Cp are equally stable, the frequency stability is greatest 
when Cg = Cp. However, Cg is usually the less stable, and should 
therefore be padded to several times Cp. This increase of the excita­
tion ratio leads to an increased amplitude and power output which may 
cause excessive heating of the crystal. The reader who desires 
additional information about this circuit is referred to the work of 
Boella,35 Fair,90 Koga,176 Terry,308 Wheeler,340 and Wright.360

9.8 Frequency stability of the Pierce circuit

The frequency stability of the Pierce circuit with respect to increments 
of plate or grid capacitance may be determined by an extension of the 
analysis developed in Chapter 8 in connection with the Clapp circuit. 
The analysis assumes that the direct plate-to-grid capacitance is 
negligible, that the plate resistance is very high, that no useful power 
output is taken, and that losses in the grid circuit are negligible; these 
assumptions are well approximated by a pentode in an appropriate 
circuit.

The previous chapter shows that C3 does not affect the frequency 
stability (of the Clapp circuit), provided the inductance is suitably 
chosen; however. C3 does provide a very useful means of impedance 
transformation. In the present case, when a quartz crystal is sub­
stituted for a physical coil, C3 serves a similar function, but its impor­
tance is increased by the fact that a given crystal must face its specified 
load capacitance Cx in order to operate at its rated frequency. Because 
the equivalent inductance of the crystal is thus fixed, C3 provides the 
only convenient means of adjusting the impedance level for best 
operation.

We see that Figs. 8.11 and 9.86 are equivalent provided the imped­
ance of the crystal at its operating frequency is represented by Re in 
series with Xe = wLe. Following the method formerly used, let us 
investigate the frequency deviation produced by an arbitrary incre­
ment in Cg (or Cp), finally introducing the transconductance require­
ments to determine the optimum relationship between Cg, Cp, and C3.

The frequency increment is calculated on the basis of the reactive 
elements only. The work is facilitated by obtaining an expression for 
the effective capacitance facing the crystal terminals and combining 
this with an appropriate expression for the frequency change produced 
by an increment in this load capacitance. From Fig. 9.86 we see 
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that the load capacitance faced by the crystal is given by

l/Cx = 1/Cg + 1/CP + 1/C3. (9.28)

The increment in Cx produced by an increment in Cg may be written

1/(CX + 8CX) = 1/(CB + 8Cg) + 1/CP + 1/C3. (9.29)

Taking advantage of the fact that the increments are small, we have by 
division

8CX/CX = (8Cg/Cg) • (Cx/Cg). (9.30)

Repeating the substitutions of eq. 8.33,

Cg = hCv = kC3, (9.31)

we have the useful relation

Cg = Cx(l +h + k). (9.32)
Therefore, we have

8CX = 3^/(1 + h + k)2. (9.33)

Again referring to Fig. 9.8, we see that oscillation will occur at the 
frequency represented by

= 1/Ci + l/(Co + Cx). (9.34)

The frequency increment produced by a small change in Cx becomes

2f1 1 x /'2r 1 _|__________ 1______  = Ci + Co + Cx + 8CX“ ( + 1 Ci + Cq + Cx + c^Co +Cx + •

(9.35)

Using eq. 9.34 and neglecting second-order terms because the incre­
ment is small, we have

8a —Ci8Cx
= 2(Co + CxffCi + Co + CJ (9.36)

Introducing eq. 9.33 to eliminate 8CX, we obtain the important result

8a —C\bCg
w 2(1 + h + k)2(Co + Cx)(Ci + Co + Cx) (9.37)

We see that a small value of Ci and large values of h, k, and Cx are 
desirable in the interest of frequency stability. The extent to which 
these variables may be controlled is now determined by introducing 
the conductance terms.

To obtain a relationship between the effective series resistance Re 
and the internal resistance Ri of the crystal, we equate the admittances.
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R, + jX, + Ri + fah + 1/faCi' (9.38)

Introducing the inherent selectivity and capacitance ratio of the 
crystal

Q = aiLi/Ri and r = Cq/Ci, (9.39)
we have

Rt ~ jX, _ <*Ci/Q + JœCi(l ~ uVi) 
Re2 + Xe2 JWT 1 + (1 - ^LiCi)2 + 1/Q2 (9.40)

Taking the real parts, and neglecting R2 and 1/Q2 in comparison to 
the associated terms, we have

Re uC i
X? = Q(1 - w^Ci)2' (9.41)

With use of eq. 9.33 to eliminate the equivalent reactance, we have
= (C, + rC i)2

‘ QwCiCx2
(9.42)

Combination of eqs. 8.39, 8.40, and 8.41 with eq. 9.42 yields as the 
conditions for oscillation

, R^c2 v (i + 6 + fc)2
9m — , tipo Uxh h (9.43)

Elimination of Re between eqs. 9.42 and 9.43 yields with eq. 9.36 the 
frequency stability

8<ii oiòCg (Co + Cx) 
or 2Qhgm' (Ci + Co + Cx)

(9.44)

In a typical crystal, Ci is very small compared to Co + Cx; hence the 
last term may be taken as unity, and the expression is identical with 
eq. 8.44 developed for the Clapp and Colpitts circuits. Therefore, 
we are led to suspect that the relationship is quite basic and applies to 
a variety of situations.

It is interesting to note that the capacitance ratios r, h, and k all 
disappear in the final result, which is therefore applicable to the con­
ventional Pierce circuit in which C3 has negligible reactance.

9.9 Power output and crystal dissipation in the Pierce oscillator
A practical oscillator is often required to deliver an appreciable power 
output; however, the frequency stability is degraded if the load sub­
stantially affects the conditions of oscillation or if the crystal is driven 
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too hard. It is therefore appropriate to investigate the equations 
which govern these relationships.

The effective plate-to-grid conductance provided by the crystal, 
which may be obtained from eqs. 8.31 and 9.43, is

Gm = RfiCf • (9.45)
(1 -f- ft)

Therefore, we may represent the power loss in the crystal by

Pc = + h7Gm = Vg2Rew2Cx\l + h + k7, (9.46)

where Vg is the rms value of the alternating grid voltage.
A useful power output is obtained by adding an effective plate-to- 

ground conductance Gp and increasing the effective transconductance 
in conformity with eq. 8.31 to maintain oscillation. The useful 
power output is evidently

Po = h^Gp. (9.47)

The important ratio of power output to crystal power is thus given by

7 = ___ _____ (9 48)Pc Rew2Cx\l + h + k)2 1 ’
It is increased by increase of the excitation ratio h and by decrease of 
the capacitance ratio k, the load capacitance Cx, the crystal resistance Re, and the frequency. However, the product w2Re is nearly inde­
pendent of frequency in typical crystals; and Cx is seldom under the 
control of the circuit designer. Because the value of Gp which may 
be used is seriously limited by available transconductance, the power 
ratio is limited in practical circuits to values in the neighborhood of ten.

Additional insight into the operation of the Pierce oscillator is 
obtained by introducing the power gain and Q degradation factors. 
The tube driving power, neglected in the preceding discussion, is 
given by Pd = V2Gg, (9.49)

and the power gain is as before

G = 1 + PfiPd + Pc/Pd- (9.50)

That the effective Q of the crystal is degraded by plate and grid con­
ductances is easily seen by rendering the tube inactive; the extent of 
this degradation is

D = 1 + P0/Pc + Pd/Pc- (9.51)
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Therefore, even if Pd is small, a considerable ratio of output to crystal 
power is obtainable only if the effective Q of the crystal is greatly 
degraded.

9.10 Illustrative design of Pierce oscillator
Let us design a crystal oscillator employing the 6SJ7 pentode (nominal 
gm = 1600) and a CR-18/U (military) crystal unit at 3.0 Me. The 
crystal chosen has the small temperature coefficient characteristic of 
the AT cut, and is designed to operate into a load capacitance Cx of 
32 ppi. It has a maximum effective series resistance Re of 175 ohms. 
Assuming that C3 has negligible reactance, and that an excitation ratio 
h = 3 is to be used, we may determine from eq. 9.43 the operating 
transconductance which is 339 micromhos. (This value is appropriate 
to the chosen tube ; however, had Re been smaller or the nominal trans­
conductance larger, it would have been desirable to assign a finite 
value to C3.) Consistent with eq. 9.32, we have Ca = 128 ppi and 
Cp = 42.7 ppi. The design is completed by providing a high-imped­
ance plate choke coil and suitable grid leak and condenser. Inspection 
of eq. 8.31 shows that a plate conductance of one micromho and a grid 
conductance of 9 micromhos will each add 3 micromhos to the trans­
conductance required for oscillation. These values exist if the plate 
choke has an inductance of 2.5 mh with a Q of about 20 and if the grid 
leak has a resistance of 330,000 ohms. A grid condenser of about 
100 ppi capacitance is suitable.

In the event that an appreciable power output is required, we must 
add a useful load Gp. The choice of 100 micromhos for the load 
increases the transconductance requirements by 300 micromhos to a 
total of 639. Assuming that the amplitude is 5 rms grid volts, 
the crystal power is 25.4 mw, and the power output is 22.5 mw. Only 
by using a higher transconductance tube or a lower resistance crystal 
may we obtain a larger ratio of output to crystal power.

9.11 The Miller circuit
The circuit shown in Fig. 9.9 is commonly designated the Miller crystal 
oscillator. It has the advantages that one terminal of the crystal is 
directly grounded, that the crystal is isolated from the plate voltage, 
and that very few parts are required. In fact, the circuit will ordi­
narily operate on the basis of grid-plate capacitance even if no physical 
condenser C is supplied.

As in the Pierce circuit, the crystal operates at a frequency to which 
its reactance is positive. Thus the circuit corresponds to the form of 
the familiar Hartley oscillator in which no mutual inductance is 
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employed. Like the Pierce circuit, it has the desirable feature that 
no output is produced in the absence of a suitable crystal. However, 
it is unlike the Pierce in that the plate inductance must be readjusted 
if a crystal of substantially different frequency is substituted. This is 
a fairly serious practical drawback, because the frequency as well as 
the frequency stability and general operating condition of the tube 
are affected by the adjustment of the plate inductance. In practice, 
the plate inductance is usually replaced by an inductance in parallel 
with a variable capacitance. The effective inductance is thus con­
siderably larger than the actual value, and is readily adjusted by the 
capacitance. This arrangement possesses the additional advantage 
that the capacitor offers a low-impedance path to harmonic currents, 
thus considerably improving the wave form produced. Moreover, it

Fig. 9.9. The Miller circuit

makes it possible to operate crystals on a mechanical overtone. Crys­
tals tend to oscillate at their fundamental frequency when placed in 
the Pierce circuit because the fundamental mode usually produces a 
higher performance index than do the overtone modes.

The conditions for oscillation are the same as those already devel­
oped in Chapter 8 for the Colpitts circuit. Consistent with the nota­
tion of that chapter, let Gg and Gp account for losses in the grid and 
plate circuits, respectively, and let the equivalent inductance of the 
crystal be Le, conforming with the expression

J = \/CxLe. (9.52)

Provided circuit losses are not excessive, oscillation occurs at the series 
resonant frequency of L, C and Le, represented by

w2 = L/C(L + Le). (9.53)

The excitation ratio is, as usual,

h = Vp/Vg = L/Le. (9.54)
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These equations may be combined to obtain the useful relationship

C = Cx/(1 + h). (9.55)

Because there is no direct plate to grid conductance, eq. 8.31 reduces to

dm — hGp + Gg/h. (9.56)

It is seen that the required transconductance may be made very small 
by increasing h, provided Gp is very small; and for fixed values of Gp 
and Gg the required transconductance reaches a minimum if h is such 
that the last two terms of eq. 9.56 are equal.

The power relationships in the Miller oscillator are considerably 
more favorable than in the Pierce because the crystal is subjected to 
only the alternating grid voltage. Assuming the coil losses are negligi­
ble and the dynamic plate resistance is high, we may write for the 
output power

Po = VP2GP. (9.57)

The power lost in the crystal, neglecting grid circuit losses, is

Pc = Vg2Gg. (9.58)
Taking the ratio of these terms, with use of eq. 9.54, yields

Po/Pc = h2Gp/Gg. (9.59)
Under favorable conditions the power ratio may approach 100. This is 
desirable if a considerable power output is required.68

If the grid losses are not negligible they may be taken into account 
by representing the total grid conductance as the sum of the crystal 
and tube conductance Gg = Gc + G^. (9.60)
The power loss in the crystal is now

Pc = Vg2Gc. (9.61)
The effective Q of the crystal is degraded by the factor

D = 1 + Gd/Gc, (9.62)
where the effect of the plate circuit losses is neglected, as it usually 
may be. With these substitutions it is easy to show that the ratio of 
output to crystal power takes the familiar form

Po/Pc = GD — G — D. (9.63)

9.12 Frequency stability of the Miller circuit
The frequency stability of the Miller circuit with respect to capacitance 
variations may be investigated by methods similar to those used for 
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the Pierce circuit. However, the analysis is more complicated because 
the grid-cathode, grid-plate, and plate-cathode capacitances affect 
the frequency in quite different ways.

The grid-cathode capacitance is treated most simply because it is 
directly in parallel with the crystal, forming a part of the load capaci­
tance; therefore, an increment 8Cg is an increment 8CX in the load 
capacitance, and eq. 9.36 is directly applicable.

To determine the effect of variations in the grid-plate capacitance we 
combine eqs. 9.52 and 9.53, obtaining

Cx = 0/(1 - a2LC). 
Differentiation yields

(1 - <M)8C + a2LC8C Cx2 
0Cx “ (1 - M)2 ~ C2

(9.64)

(9.65)

where differentials in a are neglected in comparison to the others.
Combination with eq. 9.36 and 9.55 yields

8a —Oj(l + h)28C
= 2(O0 + CX)2 ’ (9.66)

where Oi is neglected in comparison to Co. Unfortunately, the use of a 
large excitation ratio, although conducive to a large output, is unfavor­
able to frequency stability.

The frequency deviation associated with a change in L is obtained 
by differentiating eq. 9.64 with respect to that variable

„ a2C28L
5Cx ~ (1 - JLC)2'

Combined with eq. 9.36 and 9.64 this gives
8a -C^^SL -hCxCi8L 
a " 2(Co + Cx)2 ~ 2L(C0 + Cx)2

(9.67)

(9.68)

A detailed analysis of the effect of an incremental plate-to-ground 
capacitance is somewhat tedious. However, by analogy with the 
Colpitts circuit, we anticipate that the frequency deviation will be 
h2 times larger than that produced by an equal capacitance increment 
in the grid circuit.

9.13 Impedance-inverting circuits
It is well known that any loss-free network which produces a phase 
shift of 90° has the property of impedance inversion. That is, the 
input impedance increases when the terminating impedance decreases 
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and vice versa. This property is readily demonstrated in terms of the 
artificial line of Fig. 9.10a. At an appropriate frequency wo, the 
characteristic impedance of the line may be represented by

Zo = moL = 1/woC. (9.69)
At this frequency the input impedance is

Zin = Z02/Z. (9.70)
The correctness of this formula is easily verified, and is evident for 
Z = 0 and Z = oo.

The property of impedance inversion may be applied to crystal 
oscillators by identifying the terminal impedance with a quartz

Fig. 9.10. Impedance-inverting networks: (a) quarter-wave artificial line and (b) 
line with crystal.

crystal unit as shown in Fig. 9.106. It is assumed that the crystal 
holder capacitance constitutes one of the line capacitances, and that 
the line inductance is adjusted to produce 90° phase shift at the 
resonant frequency of the crystal. At this particular frequency the 
reactances of the series arm cancel, and the input impedance is given 
by 9.70, where Z = Rp At a slightly higher frequency the series 
arm of the crystal is inductive, and its impedance is considerably 
increased. Therefore, the input impedance is lowered and rendered 
capacitive. Because of the large value of Q, the entire resonance of 
the series arm occurs in so small a frequency interval that the param­
eters of the artificial line may be considered constant. Thus, the 
artificial line inverts a series resonance into an effective antiresonance. 
Moreover, if ZQ is substantially larger than Rb as it should be, the 
impedance level is considerably increased.

It is usually desirable to add a resistor equal to Za across the crystal 
terminals. This has no serious effect upon the crystal response, and 
avoids a large antiresonant impedance which would otherwise occur 
at w = V2 wo due to the elements of the line itself. Finally, the other 
line capacitor C may be identified with the input capacitance of the 
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vacuum tube. If, as often happens, the tube and crystal capacitances 
are nearly equal, the visible system reduces to a single inductor, usually 
associated with a damping resistor.

The question immediately arises as to what should be done when 
the tube and crystal capacitances are unequal. In turn, we inquire 
whether the line viewpoint is fundamental or whether other element 
values are useful. These questions may be answered, but the analysis, 
is too long to justify inclusion. The main result is that the line 
viewpoint, although not essential, is very convenient, and that any 
considerable deviation from the parameters so determined is undesir­
able. Where some deviation is necessary we should adjust L to 
resonate with C at or very near w0; variations in Co from the nominal 
value are unimportant because Co is shunted by the relatively low 
impedance Ri.

9.14 Impedance-inverting oscillators
The impedance-inverting networks described in the previous section 
permit a crystal to develop an effective antiresonant impedance at the 
frequency of resonance of the series arm. They are, therefore, usable 
in any circuit, such as the Pierce or the Miller, which requires anti­
resonant conditions for operation. They are, however, also useful in 
several other circuits. In the C.I. meter circuit, for example, the 
impedance transformations between the tube and the crystal are made 
by means of impedance-inverting quarter-wave sections. These 
arrangements are not restricted to the fundamental mode of the crystal 
and, in fact, work very well with third and fifth overtone crystals.

A simple circuit which uses an impedance-inverting network on a 
two-terminal basis is shown in Fig. 9.11. The artificial line, consisting 
of the inductance L and the two equal capacitances C, has a character­
istic impedance equal to the terminating resistor R. This impedance 
level is made somewhat lower than the minimum value of negative 
resistance produced by the tube so that parasitic oscillations will not be 
produced by the line. The series resonant resistance Ri of the crystal 
is substantially smaller than R so that the tube will face a relatively 
high impedance at the series resonant frequency, and oscillation will 
result. As previously noted, the tube and crystal may provide part 
or all of the design capacitances C. Moreover, the behavior is not 
greatly affected if the crystal-shunting capacitance differs somewhat 
from C.

The present circuit is simple to adjust and is capable of excellent 
frequency stability, but is characterized by relatively low values of 
efficiency and power output. It appears probable that a substantial
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increase in power output or a useful power output at harmonic fre­
quencies could be obtained by adding an electron-coupled load in the 
plate circuit and by increasing the plate voltage.

Fig. 9.11. Impedance-inverting transitron oscillator.

9.15 Electron coupling
Electron coupling is sometimes used in crystal oscillators for the 
same reasons that it is used in other circuits, that is, to render the 
frequency independent of the load and to give frequency multiplica­
tion. In addition, it facilitates the generation of a large power output 
without overheating the crystal. Any crystal oscillator which operates 
satisfactorily with a triode may be converted to electron coupling by 
arranging the elements so that the plate is by-passed to ground. A 
pentode with plate load and by-passed screen is then substituted. 
Alternatively, the cathode and suppressor may be grounded and the 
screen used as oscillator plate.

The electron-coupled form of Miller oscillator, shown in Fig. 9.12, 
and commonly designated the tri-tet, is capable of delivering a large 
power output with good frequency stability. In a well-shielded 
pentode having the suppressor suitably by-passed (not connected to 
the cathode) the plate circuit is isolated from the oscillator circuit to 
a very high degree; and the load circuit may be tuned to the funda­
mental or a harmonic frequency without affecting the operation. In 
less well-shielded tubes the effect of plate tuning may be great enough 
to damage the crystal, so that it is customary to restrict the output to 
harmonics of the crystal frequency. The capacitance between the 
control and screen grids is often appropriate to oscillation, but may 
need to be increased in some cases. The parameters should be chosen 
so that the alternating voltage on the grid is considerably in excess of 
twice that on the cathode, and is sufficient to produce class C operation
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Fig. 9.12. The tri-tet oscillator. The cathode circuit is tuned to a frequency 
above that of the crystal so as to be inductive.

(b)

Fig. 9.13. Grounded-plate oscillators: (a) with triode and (&) with pentode.
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without exceeding the crystal rating. The electron-coupled Pierce 
circuit yields comparable results and is somewhat simpler to adjust.

At higher frequencies a variant of the grounded-grid series-mode 
oscillator is convenient; a suitable arrangement appears in Fig. 9.13. 
A large fraction of the alternating cathode current passes through Rk, 
the remainder being transmitted through the crystal to drive the grid. 
Good operation results if the grid circuit impedance is a few thousand 
ohms, if the impedance presented to the crystal by the transformer is 
approximately equal to Ri, and if Rk is adjusted for class C operation. 
The plate circuit is thoroughly isolated from the crystal and may be 
adjusted for a relatively large power output at either fundamental or a 
harmonic frequency. The circuit may be analyzed by methods similar 
to those used in Section 9.4.

It is emphasized that electron coupling does not violate the GD-G-D 
relationship established in connection with the Miller and transformer- 
coupled oscillators. In no case is the ratio of output to crystal power 
greater than that obtainable from the same tube in an appropriate 
transformer-coupled oscillator. However, electron coupling does 
minimize frequency changes due to susceptances in the load circuit and 
does facilitate harmonic operation. Moreover, it simplifies the prob­
lem of obtaining the necessary power and impedance relationship in 
practical oscillators.

PROBLEMS
9.1. Derive eqs. 9.7, 9.8, and 9.9.
9.2. Derive eq. 9.12 and defend the assumptions made in its derivation.
9.3. Verify eq. 9.16.
9.4. Calculate the performance of a transformer-coupled pentode crystal oscil­

lator differing from the numerical example in section 9.2 only in that k = 1 and 
m = n = 3.

9-5. The C.I. meter circuit is to operate at 50 Me with a pentode having an effec­
tive transconductance of 2000 micromhos and a crystal having a resistance of 70 
ohms and a Q of 10,000. Using eq. 9.69, calculate element values and frequency 
stability with respect to an increment of grid-circuit capacitance.

9.6. Derive eq. 9.23.
9.7. A cathode-coupled oscillator is to employ a 100-ohm crystal with two 6J4 

triodes. In Fig. 9.5b the cathode choke is replaced by a 100-ohm resistor. Calcu­
late a tank impedance for Tj which will cause T-, to operate in class A with a 
transconductance of 10,000 micromhos and Ti in class B (5000 Mmhos). Discuss 
the way in which limiting occurs and the resulting operation.

9.8. Derive eq. 9.27, using the low-pass (inductance-free) analogue.
9.9. Calculate the frequency change produced by a one-micromicrofarad incre­

ment of grid capacitance in the oscillator of Section 9.10.
9.10. A particular pentode as a transitron produces a minimum negative resist­

ance of 4000 ohms. Design an impedance-inverting oscillator, using this tube with 
a 5-Mc crystal having a series resistance of 100 ohms.
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10

It is well known that harmonic oscillators of all sorts may generate 
intermittent rather than continuous oscillations. This behavior is 
desired in the superregenerative receiver, and in a few other special 
applications, but is ordinarily a nuisance to be avoided. Intermittent 
operation may arise in almost any kind of oscillator, but it is observed 
most frequently in microwave triode oscillators and in linear oscillators 
designed for a high degree of amplitude stability. The occurrence of 
the effect is known to depend upon the relative proportions of the 
various circuit elements, particularly those controlling the time con­
stant of the limiter. Therefore, we must look to the proportions rather 
than the configuration of an oscillator for an understanding of the 
phenomenon.

The general nature of the problem is conveniently discussed in 
terms of the tuned plate oscillator described in Chapter 8 (Section 1). 
With suitable element values this arrangement is capable of producing 
highly stable harmonic oscillations of reasonably sinusoidal form. 
As shown in Chapter 12, however, the same configuration with different 
element values can operate as a blocking oscillator and is then capable 
of producing well-defined pulses of quite nonsinusoidal wave .form. 
Finally, with a still different set of values, this configuration is capable 
of generating intermittent oscillations having the general characteris­
tics shown in Fig. 10.1. Ordinarily, but not necessarily, the tube is 
completely cut off for a large fraction of the cycle; only in exceptional 
cases does the oscillation envelope approximate a sinusoid.

Because the same system is capable of three distinct kinds of 
behavior or “states,” it is clear that the performance must be 
representable by some sort of triple-point diagram, as indicated in Fig. 
10.2. Our knowledge of this matter is very meager, but the diagram 
is useful in a qualitative way. On the basis of the principal roots of 
the system, we have already identified in Chapter 2 the boundary 
designated (1) between harmonic and relaxation oscillations. The

227



228 INTERMITTENT BEHAVIOR

following paragraphs will define the boundary designated (2) between
harmonic and intermittent oscillations. Little is now known of the
boundary between relaxation and intermittent behavior or, in fact,
of the region near the center of the diagram; and it is for this reason
that only a portion of the first and second boundaries is drawn heavy.

Fig. 10.2. Diagram relating behavior of a tuned plate oscillator to the element 
values.

Fortunately, practical circuits ordinarily operate at regions remote 
from these boundaries.

10.1 Direct approach to intermittent operation
In simple oscillators it is possible to obtain a useful and essentially 
correct picture of intermittent behavior in terms of the exponential 
decay of a signal. Suppose that the tuned plate oscillator of Fig. 10.3 
is operating in a class C manner, and that the assumed operating 
condition is to be tested for stability. In principle, we should assume
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that the amplitude of oscillation is suddenly decreased by an incre­
mental amount and determine whether this increment increases or 
decreases with time. The assumed operating condition is stable only 
if the deviation decreases.*

In practice, it is sufficient, and far more convenient, to assume that 
one pulse of plate current is artificially removed from the system. 
Both the alternating grid voltage and the grid bias decrease expo­
nentially with time, at rates which depend upon the properties of 
the tuned circuit and of the grid bias system, respectively. Depend­
ing upon the relation between these two rates, the following pulse of 
plate current may be larger or smaller than normal. Intermittent 
operation will not occur if the pulse is of normal size or larger, and will

Fig. 10.3. Tuned plate oscillator.

occur if it is appreciably smaller than normal, although the exact 
condition for stability is not readily defined.

The idea described in the foregoing paragraph is illustrated in Fig. 
10.4. Following an assumed steady state, one pulse of plate current is 
omitted. The grid bias now decays in a manner described by the 
equation

vc = Vce-l/R^. (10.1)
If, as is usually the case, the fractional decay per cycle is small, we 
may use the approximation

log (1 + x) = x (10.2)
to obtain for the bias change during one cycle

Svc = -V'/fR^. (10.3)
The alternating grid voltage decays in a similar manner because of 
losses in the tuned circuit. As shown in Chapter 2, the change in the

* The problem has been studied from a somewhat different viewpoint by van 
Slooten”7- 128 and Gladwin.112
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peak alternating grid voltage during one cycle is

bvg = — Vgtr/Q (10.4)
where Q is the operating selectivity of the tuned circuit. It is clear 
that the following pulse of plate current will be unchanged if these 
two voltage increments are equal. Therefore, the system will not 
operate intermittently if

IV/KiCi > Vgir/Q. (10.5)
In a self-biased oscillator the bias is never larger than the peak alter­
nating grid voltage, and is often nearly equal to it. Using this

Fig. 10.4. Decay of signals in tuned plate oscillator.

approximate equality, we obtain a simpler though slightly optimistic 
relationship for stability

Q > rrfRiCi. (10.6)
If, for example / = IO6, Rk = 105, and Q = 100, instability will occur 
only if Ci exceeds IOOO/tt = 318 uuf. Thè difficulty with microwave 
oscillators is apparent from a second example. Using f = 109, Ri = 
103, and Q = 100, we anticipate instability if Ci exceeds 31.8 ppf. 
A larger value of grid leak is very desirable in the interest of obtaining 
a reasonable bias, and is obtainable only if Q can be raised, because 
Ci cannot be appreciably decreased without also reducing its effective­
ness in delivering the oscillation signal to the grid of the tube. It 
should be noted, moreover, that the grid bias is substantially smaller
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than the grid signal under these conditions so that the value of C\ 
required for stability is considerably smaller than that indicated by 
eq. 10.6.

The direct approach just described applies to all sorts of oscillators 
in which the loop gain is expressible in terms of the bias applied to 
some electrode of a vacuum tube. However, the method is incon­
venient where several distinct time constants are present; and it is 
completely inapplicable to thermistor-controlled oscillators.

10.2 Stability in automatic output control systems
The transitron oscillator of Fig. 10.5 serves to illustrate a simple 
though incomplete criterion for stability. Let us suppose that the

Fig. 10.6. Response of 
automatic output control 
oscillator to slow variation 

of bias.

Fig. 10.5. Transitron oscillator with simple automatic output control.

first grid is disconnected from the bias resistor Ri and is supplied by a 
variable direct voltage v. The voltage e across Ri is then observed as 
a measure of the amplitude of the desired 
oscillation. Depending upon whether or 
not the tube operates about an inflection 
point of its equivalent negative resistance 
characteristic, the amplitude represented 
by e may take the continuous or discontin­
uous forms shown in Fig. 10.6.

If the characteristic is continuous, as shown 
by the heavy line, then the automatic output 
control system will be stable no matter how 
large the amplitude stability is made, provided 
the control system responds at a sufficiently 
slow rate. This is evidently a sufficient but 
not a necessary condition. However, it is directly useful in a number 
of situations, and serves as a guide toward the design of stable sys­
tems even when more elaborate criteria are employed.
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10.3 Llewellyn’s criterion
The ideas developed in the preceding sections may be expressed in a 
more formal and exact way by means of Llewellyn’s criterion, as given 
in Chapter 5. The procedure depends upon the fact that in every 
electronically limited oscillator, a direct voltage or current dependent 
upon the amplitude of oscillation is found at some point in the circuit. 
In the desired operating condition this direct voltage or current is 
constant, whereas it becomes pulsating or alternating if intermittent 
operation occurs. The problem, therefore, reduces to one of deter­
mining if these unwanted alternating voltages or currents will spon­
taneously occur. That is, the problem reduces to the normal one of 
testing for simple stability of a system, with suitable care to restrict 
the test to points where the desired oscillation is not observed.

Fig. 10.7. Stability plot for 
Llewellyn’s criterion.

Fig. 10.8. Conditional stabil­
ity in terms of Llewellyn’s 

criterion.

The test may be applied to the tuned plate oscillator of Fig. 10.3 
by connecting a zero-resistance alternator directly in series with the 
grid leak Ri. The impedance seen by this alternator at various 
frequencies is observed and plotted in polar form as shown in Fig. 10.7. 
The system is stable if the plot for increasing positive real frequencies 
does not encircle the origin in the clockwise direction. Stable and 
unstable cases are shown. At very low frequencies the resistance 
seen by the generator is nearly equal to Ri because limiting in the oscil­
lator produces a nearly constant bias voltage. At very high fre­
quencies the resistance is also equal to Ri because Ci is an effective 
short circuit. At intermediate frequencies the voltage developed 
across C produces amplitude modulation which reacts upon the bias 
by the action of the tuned circuit. The combined phase shifts produce 
a component of negative resistance which may exceed Ri.

In practice, Llewellyn’s criterion is equivalent to the statement that 
a pure negative resistance must not be observed in the bias system at 
any real frequency. The two statements differ only in the case of 
conditional stability, illustrated in Fig. 10.8 but virtually never
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observed. Moreover, Llewellyn’s criterion is not usually applicable 
on an experimental basis because it requires the action of the com­
plete system. If intermittent oscillation is possible it will probably 
occur so as to make the test both futile and impossible. On an 
analytic basis, however, this criterion is valuable because it permits 
calculation of the behavior of a proposed system and points the way 
to modifications which will avoid any indicated instability.

A somewhat more favorable example of the application of Llewellyn’s 
test is offered by the circuit of Fig. 10.5. Again, it is convenient to 
assume that the test oscillator is connected in series with the bias 
resistor And again the impedance seen at very low and at very 
high frequencies is equal to Ri because of amplitude controlling feed­
back and the action of Ci, respectively. At intermediate frequencies 
the voltage across Ci lags the applied voltage. The oscillation ampli­
tude in the tuned circuit still further lags this bias voltage so that the 
rectified current may well be more than 90° out of phase with the test 
voltage. The resulting plot has the same general shape as that of Fig. 
10.8. The following sections show how to calculate the behavior of 
this system and show also that the system is absolutely stable for all 
values of the parameters.

10.4 A Time-variable system

The question as to whether or not a particular oscillator will operate 
intermittently may be approached through a study of a simple system 
involving a time-variable conductance, as shown in Fig. 10.9. We 

Fig. 10.9. Behavior of time-variable circuit.

assume that the conductance is alternately positive and negative, of 
equal value and for equal periods. An oscillation, if started by 
external means, will persist at a constant average amplitude expo­
nentially increasing and decreasing as indicated. The oscillation 
may be thought of as amplitude modulated, with maximum amplitude 
at the instant of conductance reversal. Moreover, the degree of
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modulation increases with the value of the conductance used and the
duration of the period of its reversal.

A similar situation exists if the conductance is varied sinusoidally 
rather than in a square-wave manner about zero. Following the 
analysis presented by Arguimbau15 on pages 324 ff. of his book, we 
assume that the voltage wave may be represented by the equation

v = v0 (1 + m cos qt) cos at, (10.7)

where w is the natural frequency of the tuned circuit, q is the modula­
tion frequency, and m is the modulation fraction, which must be less 
than one for sinusoidal modulation, and is here assumed to be very 
small compared to one. Let us investigate the conductance variation 

Conductance
0

Fig. 10.10. Sinusoidal time variation.

which would produce such a wave. From Chapter 2 we know that the 
amplitude of free oscillations of a parallel circuit decay according to 
the equation

da/a = — g dl/2C, (10.8)

where a represents the instantaneous amplitude and g the instan­
taneous conductance. From eq. 10.7 we obtain by differentiation

da/a= — mq sin qtdl. (10.9)

Combining terms yields
g = 2mqC sin qt. (10.10)

This conductance variation is plotted together with the assumed 
voltage wave in Fig. 10.10. It is seen that the modulation envelope 
leads the conductance variation by 90° in phase, and that for a given 
modulation index the conductance is directly proportional to the 
capacitance and the modulating frequency. Expressed in another 
way, m cannot remain small as q approaches zero no matter how small 
q is.
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10.5 Use of Nyquist’s criterion
The ideas just developed are directly applicable to the problem of 
self-modulation in the transitron oscillator with the modified automatic 
output control shown in Fig. 10.11. The key relationship is Nyquist’s 
criterion, described in Chapter 5, which is applied to the bias system. 
If the system is free from self-modulation, there will be no alternating 
voltage on the inner grid of the tube or in the associated elements. 
Therefore, we may open the gain control loop at the grid, or at any 
other point which is free from alternating current in the desired operat­
ing condition, and apply Nyquist’s test. The system will be unstable 
in the sense that alternating voltages corresponding to self-modulation

Fig. 10.11. Modified automatic output control oscillator.

will be generated in the final system if and only if the Nyquist plot 
encircles the critical point, (1, 0).

The application of the test is indicated by the dotted lines. The 
auxiliary bias source Ec, has such a value that the negative conductance 
of the tube exactly balances the positive conductance of the system. 
It is assumed that the oscillation in the plate circuit has the desired 
amplitude, in which case the direct voltage developed across the bias 
resistor Rr is equal to Ec. Subject to these conditions a very small 
alternating test voltage Ui, of variable frequency is injected in series 
with Ec. As shown in the previous pages, the oscillation at the desired 
frequency w will be amplitude modulated at the test frequency q. 
Rectification in the bias diode reproduces the modulation signal, which 
is modified in amplitude and phase by the action of the RC filter and 
returned to the test detector.

If we imagine conducting this test, we find that at low frequencies 
the oscillation envelope is very large compared to Vi and leads it by 
90°. The rectifier polarity is such that the alternating voltage at e
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bias

(b) Stable 

plot forFig. 10.12. Nyquist 
voltage.

is positve when the envelope is a maximum. Therefore, we may say 
that, as the test frequency approaches zero, the loop gain approaches 
infinity at a phase angle of 90° lead. As the test frequency is increased, 
the modulation index in the tuned circuit steadily decreases. More­
over, the filter in the bias system produces attenuation and phase shift, 
which in the present case cannot exceed 180°. The corresponding 
Nyquist plot of e/Vi is shown in Fig. 10.12a. Evidently the system is 
unstable. If, however, the filter section composed of R2 and Ci were 
removed, the Nyquist plot would take the form shown in Fig. 10.125, 
and the system would be absolutely stable regardless of element values.

Let us explore the requirement 
for stability of the complete sys­
tem of Fig. 10.11. It is assumed 
that a negative voltage increment 
V i applied to the first grid modi­
fies the effective conductance of 
the tuned circuit by an increment 
g. That is,

g = kiV^. (10.11)
Then, when an alternating test 
signal is used, the plate voltage 
wave has the general form given 
by eq. 10.7. Because the frac­
tional modulation is restricted to 
small values, the control system 
acts as a linear rectifier, so that 
the signal delivered to the resist­
ance-capacitance filter is directly 
e and to the fractional modula­

tion. The effect of the filter is most readily treated by assuming 
that the two sections have equal time constants, are effectively in 
tandem, and do not have appreciable interaction. Converting from 
trigonometric to exponential form, we may write

e = k2mV0/(l + jqCrRi)2 (10.12)

proportional to the output

where k2 is a factor which depends upon the transformer ratio and rec­
tifier action. Eliminating g between eqs. 10.10 and 10.11 with proper 
consideration of the phase angle yields

kiV 1 = —j2mqC. (10.13)

Finally, eliminating m yields as an expression for the complete Nyquist 
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diagram the equality

e/Fi = jkykiV^qCkl + jqCiRi)2. (10.14)
The Nyquist diagram will intersect the positive real axis at a frequency 
such that

1 = qCiRi (10.15)
and will pass through the point (1, 0) provided that

kik2V0 = 4qC = 4C/CiRi. (10.16)
Values of the product larger than given by eq. 10.16 produce 
instability.

A large fcikaVo product, which is desirable in the interest of ampli­
tude stability, may be obtained only by increasing C or by decreasing 
Ri or Ci. Increase of C with a given tube is evidently possible only 
by increasing the Q of the tank circuit. Reduction in Ci and Ri 
increases the speed of the control system221 and is desirable, but only to 
the extent that it does not degrade the filtering action of these elements, 
which must be preserved in order to maintain frequency stability.

10.6 Example of stability calculation
To illustrate the method, let us calculate the stability condition for a 
transitron oscillator using the 6SJ7 triode at a frequency of 1.59 
Me (a) = 107). The tube readily produces a negative conductance of 
200 micromhos. Therefore, we assume that the coil and bias system 
produce a positive conductance of 200 micromhos. If the effec­
tive Q of the passive tank is 100, we may find C = 2000 ppf from the 
relationship

uC = Qga. (10.17)
With typical plate and screen biases the desired operating point will 
be found for Ec = — 2 volts, and ki will be in the order of 50 X 10—6 
mho per volt. The other parameter in a typical circuit is k2 = 1; 
if we assume the reasonable values Ci = 1000 ppf and Vo = 10 volts, 
we have for marginal stability Ri = 16,000 ohms.

A substantially smaller value would be advisable in a practical 
design in the interest of providing a margin of safety. Moreover, in 
the interest of lowering the loading applied to the tuned circuit through 
the diode, it is desirable to make Ri substantially larger than R2 and 
to adjust Ci accordingly.

10.7 Extension of Nyquist’s criterion
The foregoing analysis is satisfactory for the study of two-terminal 
(negative resistance) oscillators and may be extended to treat all sorts 
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of circuits in which the effective resistance or transconductance may 
be expressed in terms of a bias voltage. In fact, it is the only known 
method for studying the tendency toward self-modulation in two- 
terminal oscillators. However, the analysis is somewhat cumbersome 
in some cases, and is completely inapplicable to thermistor-controlled 
oscillators. Moreover, it is completely impractical from the experi­
mental viewpoint because it assumes that the average level of oscilla­
tion will remain constant at the desired value throughout the test.

An analysis which is free from these defects and which applies to all 
types of feedback oscillators is based upon an extension of Nyquist’s 
criterion.82 It is assumed that the criterion is applicable, not only 
to a simple voltage or current, but also to envelope functions. Sub­
ject to this assumption, it may be used to determine whether or not a 
modulation envelope of some sort will be generated.

Fig. 10.13. Test for self-modulation.

The test or analysis is conducted in terms of Fig. 10.13. The 
normal oscillating loop is opened and a source and receiver are inserted, 
with appropriate precaution as to matching impedances. The source 
is then adjusted to such an amplitude and frequency that the voltage 
delivered to the detector is exactly equal in magnitude and phase to 
that supplied. This is evidently the desired operating condition, the 
stability of which is to be tested. The required test is obtained by 
superimposing a very small amplitude modulation of variable fre­
quency upon the source voltage, and observing the transmission of the 
envelope of this modulation.

If, at some frequency, the output envelope is in phase with and larger 
than that supplied we anticipate that the system will generate self­
modulation at or near this frequency. More exactly, self-modulation is 
to be anticipated if the polar plot of envelope transmission encircles the 
point (1, 0).

The experimental execution of this test would doubtless be quite dif­
ficult and is not recommended. But, unlike the previously described 
tests, it is basically possible because the system under test is absolutely 
stable, and is therefore responsive to measurement. As with the other 
tests, however, the principal application is one of analysis as an aid 
to design.

The use of this extended criterion is nicely illustrated in terms of the 
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lamp bridge oscillator, shown in Chapter 7 as Fig. 7.4. It is assumed 
that the lamp bridge is symmetrical and operates at a loss in the order 
of 40 db, and that the input and output transformers are tightly 
coupled and have equal values of working Q. Here, as in many 
analyses, it is convenient to open the loop at the plate terminal of 
the tube. The modulation transmitted from the plate to the lamp 
bridge will be reduced and shifted in phase by the selectivity of the 
tuned circuit. This is shown in Fig. 10.14, which is reduced to polar 
form in Fig. 10.15a. Evidently this effect will be compounded by the 
selectivity of the identical grid filter.

The behavior of the lamp bridge requires special study. It is clear, 
however, from the discussion of Chapter 7 that modulation of very

Fig. 10.14. Envelope transmission of a single tuned circuit.

low frequency will be reversed in phase and greatly magnified, because 
this is the basic property of a good limiter. Moreover, for sufficiently 
high modulating frequencies the thermal inertia of the lamps will be 
such that the input and output waves are similar, and no change of the 
modulation envelope will occur. At intermediate frequencies the 
situation is more complicated. The heat supplied is partly stored in 
the thermal capacity of the filament, partly dissipated by conduction 
and radiation. Because the fractional modulation is small, however, 
we may neglect nonlinear effects and consider only linear terms in heat 
loss and storage. On this basis, we know that the lamps reach their 
maximum resistance somewhat later than the current envelope reaches 
its maximum, so that the envelope phase is shifted forward. From 
these considerations we would anticipate the behavior shown in Fig. 
10.155, and confirmed by experimental measurements. The frequency 
scale is very approximate, but gives the correct order of magnitude for 
typical switchboard lamps such as the Al.

The envelope Nyquist diagram is constructed by combining the data 
of Fig. 10.155 with the square of that of Fig. 10.15a. However, it is 
necessary to assign a value to the frequency parameter w/Q before pro­
ceeding, because the shape as well as the frequency scale of the final
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plot depend upon this ratio. The results of two choices of this
parameter are shown in Fig. 10.15c. As in the previous examples,
stability is favored by increasing the selectivity of the tuned circuit
or the speed of the limiter circuit.

(a) (b)
Fig. 10.15. (a) Transmission of filter; (5) transmission of bridge; and (c) Ny­

quist diagrams showing stability if u/Q = 5 and instability if u/Q = 50.

10.8 Application of the tuned plate oscillator
The tuned plate oscillator has already received extensive treatment in 
earlier sections. It is therefore chosen as a second example of the 
application of the extended Nyquist criterion. In terms of Fig. 10.3 
it is assumed for the analysis that the plate lead is opened and an 

Fig. 10.16. (a) Envelope transmission of a grid-leak-biased class C amplifier 
and (b) envelope Nyquist diagram.

equivalent load is substituted. In terms of the current delivered, the 
plate and grid envelope voltages behave as shown in Fig. 10.15a, 
where Q is the actual selectivity of the plate circuit including plate 
and grid conductances. The variation of the bias voltage may be 
taken account of by considering the tube as a class C amplifier. It is 
well known that the output of a typical class C amplifier increases only 
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slightly when the steady input is increased a moderate amount. 
Therefore, at low frequencies the envelope is reduced and not reversed 
in phase. At very high modulating frequencies the bias is unable to 
follow the amplitude, and the envelope is amplified because a small 
fractional increase in grid voltage produces a large fractional increase 
in plate current. The behavior at intermediate frequencies is shown 
in the semicircle of Fig. 10.16a.

The complete Nyquist diagram is obtained by combining Figs. 
10.15a and 10.16a with suitable attention to the frequency scales. 
The values of a/Q used formerly in Fig. 10.15c are used to obtain the 
two curves, one stable the other unstable, in Fig. 10.165.

10.9 Behavior of system roots
The preliminary discussion given in Section 10.1 is worthy of further 
study because it provides a relationship between intermittent behavior 
and the characteristic roots of the system equation. Subject to the 
assumption that the grid bias is equal to the peak alternating grid 
voltage, the criterion developed as eq. 10.6 is expressible as

1/RiCt = ai > a2 = irf/Q. (10.18)

That is, the decay rate of the bias system must be as great as that of 
the tuned circuit. Or, in terms of the complex plane, the single real 
root associated with the bias system must lie to the left of the con­
jugate roots associated with the resonator to avoid generation of inter­
mittent oscillations.

The situation just described suggests that the addition of the 
transconductance of the tube shifts the three roots equally to the right. 
If the conjugate roots reach the axis first, the system generates con­
tinuous waves. If the single root reaches the axis first, a behavior 
related to relaxation oscillation occurs, and intermittent waves are 
produced.

An additional feature of this analysis is that it gives at least some 
information as to the relationship between intermittent and relaxation 
oscillation. Consistent with the analysis of Section 8.20, which 
ignored the grid-circuit time constant, the tuned plate circuit will 
generate relaxation rather than harmonic oscillations if the trans­
conductance exceeds a minimum value given by the equation

gmM/L — G>2 Vc/L. (10.19)

In terms of the natural frequency and effective Q of the tuned circuit 
t his is equivalent to the expression
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1 + 2Q 2gm > -7^7 > —7 if Q » 1, (W.20)

where the latter form is an approximation valid for large values of Q. 
A comparison of eq. 10.20 with eq. 10.18, which also assumes a reason­
ably high Q, shows no contradiction. Therefore, we may conclude that 
a system which simultaneously satisfies these relationships as equalities 
corresponds to the triple point of Fig. 10.2; continuous harmonic 
oscillations will be generated if gm and the product RiCi are below the 
critical values; intermittent harmonic oscillations will be generated if 
gm is below and RiCi is above the critical value; and relaxation oscilla­
tions will be generated if gm is above the critical value.

In practice, the situation is not so simple as the preceding paragraph 
implies, and it is doubtful whether a good experimental check of these 
predictions would be obtained. The principal difficulty is associated 
with the fact that the various results are based upon linear equations. 
These equations give good approximations to the behavior of the 
system for some ranges of the variables, but are subject to serious 
error in the present case. Notably, the effective Q of the resonator 
and the effective decay rate of the bias circuit are both greatly affected 
by grid current.

10.10 Suppression of intermittent oscillation
The preceding sections have been principally concerned with methods 
for predicting whether or not a given system will oscillate intermit­
tently. That is, the viewpoint has been one of analysis. In the 
present section we shall consider the more difficult problem of syn­
thesis, that is, designing systems which are free from intermittent 
behavior.

The procedure to be followed is based upon the extended Nyquist 
criterion and upon methods developed in connection with feedback 
amplifiers. It has been shown by Bode34 on pages 303 ff. of his book 
that in minimum phase shift systems there is a unique relationship 
between attenuation and phase shift. This principle is directly 
applicable to the present problem, because the networks in question 
are almost always of the minimum phase shift type.

In terms of the extended Nyquist plot, the envelope transmission 
for the system of interest always has a phase shift of 180° at zero 
frequency. Ordinarily this is associated with a considerable gain or 
amplification. The problem, therefore, is to reduce this gain to zero 
in such a way that the phase shift does not change by as much as 180°. 
The idealized attenuation and phase shift of a full section of prototype
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low-pass filter represent the limiting behavior. If the attenuation is 
increased (or gain reduced) more slowly with respect to frequency the 
phase shift will be Correspondingly decreased, and a positive margin for 
stability established.

The use of this cutoff characteristic is well illustrated by an example 
in connection with the Meacham oscillator. The analysis of the

Fig. 10.17. Envelope characteristics of a Meacham oscillator.

Meacham oscillator is complicated by the fact that the lamp bridge 
serves as both resonator and limiter, and that the thermal properties 
of the lamp are neither well known nor readily expressible in terms of 
an equivalent circuit. Let us suppose, however, that the envelope 
behavior of a particular Meacham oscillator has the form shown by the

Fig. 10.18. Meacham oscillator with auxiliary control.

solid line in Fig. 10.17. Intermittent operation is indicated, because 
the phase shift exceeds 180° at the frequency of zero loop gain. Such 
behavior would be avoided if the characteristics could be modified to 
the form shown by the dotted lines.

The indicated change may not be accomplished by modifying the 
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bridge, because this would jeopardize the frequency stability of the 
system. It may, however, be obtained by the addition of an auxiliary 
control circuit as shown in Fig. 10.18. The added dements, consisting 
of the diode, Li, Ri, Ci, and C2, come into play only if there is a tend­
ency toward intermittent operation, and do not affect the desired 
behavior of the frequency stabilizing bridge. Because they are sub­
ject to no other restriction, they are readily proportioned so as to 
obtain the desired modification of the envelope behavior.

10.11 Control of intermittent oscillation
Under certain circumstances it is desirable to produce self-modulation. 
In a signal generator, for example, the amplitude of oscillation is usu­

Fig. 10.19. A self-modulating linear oscillator.

ally modulated in a more or less sinusoidal manner. Let us consider 
the possibility of generating such a wave in a single vacuum tube. 
Evidently the Nyquist diagram and the envelope Nyquist diagram 
must both encircle the critical point if a modulated wave is to be 
produced. Moreover, the system must provide means for limiting the 
general amplitude of oscillation and the degree of modulation if desir­
able results are to be obtained. A circuit which provides such means 
is shown in Fig. 10.19.

The basic circuit is a tuned plate oscillator in which the operating 
frequency is set by Cg and L6, and limiting is accomplished by means 
of the back-biased balanced rectifier. The elements in the bias system 
are such that envelope instability will be produced at a modulating 
frequency corresponding to Cb and Lb. As self-modulation is produced 
and increases in amplitude, the tungsten lamp heats and tends to 
balance the bridge circuit, thus reducing the envelope gain at this
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frequency. Accordingly, it is possible to obtain a substantially sinu­
soidal wave modulated in a sinusoidal manner from a single tube.

10.12 Summary
Several different criteria for the presence or absence of intermittent 
operation in various types of oscillators have been presented. None 
is applicable to every possible type of oscillator, but the extended 
Nyquist criterion appears to be most convenient and generally flexible. 
It has the advantages that the degree of amplitude stability is directly 
represented by the plot, and that conventional feedback ideas and 
formulas are directly applicable. Moreover, it applies to all types of 
oscillators which may be represented as feedback systems, and there­
fore includes the transitron class.

It should be noted that in all the analyses we assume that the 
resonator Q is at least moderately high. This underlying assumption 
is clear in the direct approach but is somewhat concealed in the others. 
In the case of the extended Nyquist method it enters by the assumption 
that the response of a tuned circuit is symmetrical on a linear frequency 
scale, as shown in Fig. 10.14, so that upper and lower sidebands are 
treated in a similar manner. If this is not true, the lower sideband 
may reach zero frequency before the loop transmission is negligible, 
and marked distortion of the envelope occurs.

The several criteria are convenient as a method of predicting and 
calculating intermittent behavior in various oscillators, but are more 
useful as a guide to designing or modifying systems so as to avoid such 
behavior.

PROBLEMS
10.1. A Hartley oscillator operates at 3 Me with an effective Q of 27. If the 

grid leak resistance is 20,000 ohms, how large a grid condenser may be used without 
producing intermittent oscillation?

10.2. Show how to apply the analysis of Section 10.1 to the transformer-coupled 
pentode crystal oscillator.

10.3. Calculate curves corresponding to Fig. 10.9 for a frequency of 2 Me, 
provided the effective Q varies from +82 to —82 at a 200 kc rate.

10.4. A particular lamp has a thermal time constant of 0.10 second when oper­
ated with 50-ohm resistors in a bridge which is nearly enough balanced so the input 
is twenty times the output voltage. Calculate the curve corresponding to Fig. 
10.156.

10.5. Show how to apply the analysis of Section 10.7 to the Colpitts oscillator.
10.6. Show how to apply the analysis of Section 10.7 to the transformer-coupled 

pentode crystal oscillator.
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OPERATION AT
HIGH-POWER LEVELS

11.1 Introduction
The foregoing chapters have been mainly concerned with general 
principles which apply with equal validity to oscillators operating at 
any frequency or power level. This chapter is devoted to a discussion 
of the special problems which arise when the power output is relatively 
large but the frequency is low enough to be consistent with lumped 
circuit techniques. However, a few problems peculiar to high-fre­
quency applications are discussed in the closing section. A particu­
larly clear discussion of the effects of electron transit time is given by 
Sloane and James.287

There are several reasons for giving the present topic separate treat­
ment, all related to the fact that tubes and components suitable for 
high-power operation are both bulky and expensive. Accordingly, 
these parts are ordinarily operated at conditions much closer to the 
breakdown point than is common in low-power systems. It is there­
fore necessary to design with considerable care. Efficiency is impor­
tant, both because of the cost of primary power and because it is 
difficult to dissipate the heat produced by wasted power. Since 
excessive heat is the greatest enemy of tubes and other components, 
this is a matter of primary concern. Moreover, oscillators used in 
industrial applications are subject to rough handling, operation by 
untrained people, and exposure to dust and moisture. Accordingly, 
they will perform in a satisfactory manner only if the construction is 
rugged, and if adequate precautions are taken to avoid damage by 
improper operation.

High-power oscillators are used in several applications, notably 
dielectric and induction heating, l8'41 diathermy, and in connection 
with cyclotrons. The economic importance of these applications is 
already large and is growing rapidly. A discussion of some of these 

246
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applications, especially at the higher frequencies, is given by Marcum
and Kinn.204

There is, of course, no sharp line between low and high power. 
However, the following discussion is generally pertinent to oscillators 
in which the applied voltage exceeds 1000 volts or the power generated 
is in excess of 100 watts.

In most heating applications the characteristics of the load change 
drastically during the process. In such cases it is impossible to main­
tain an optimum load impedance at all times, and the coupling system 
is necessarily a rather rough compromise. The operating frequency 
has a marked tendency to vary during the process, and this variation 
can be used as an aid in impedance matching if it is permissible from 
other considerations.

At the present time the industrial application of high-frequency 
heating may be divided into two district categories. Metals, which 
are good conductors, are heated by magnetic induction, and the process 
is referred to as induction heating. Other materials, which act as 
dielectrics, are heated by placing them in an electric field produced 
between metal conductors, and the process is referred to as dielectric 
heating.

11.2 Choice of circuit
The frequency range, type of vacuum tube, and application will 
ordinarily exclude certain circuit configurations as unsuitable. It is 
necessary to choose between several remaining circuits of more or less 
equal merits, but the choice can normally be made rather easily. The 
simplest possible circuit is desirable in the interest of economy and 
compactness. These considerations, although applicable in other 
situations, are especially important here because of the expense and 
bulk of components suitable for operation at high-power levels. For 
the safety of operating personnel it is very desirable that there should 
be no direct voltage between the main tuned circuit and ground. 
Finally, the tuned circuit should include a capacitance directly between 
the plate and cathode. Such a condenser produces a low impedance 
for the high-frequency components present in the short pulses of plate 
current which must exist if high efficiency is to be obtained. A 
serious loss in efficiency may result if this precaution is ignored.

Circuits possessing some or all of these desirable properties are 
illustrated and discussed in the following paragraphs. Meters for 
observing the direct plate voltage and grid and plate direct currents 
are indicated, because they are often essential. The shunt-fed Col­
pitts oscillator of Fig. 11.1 is widely used because it is sufficiently



248 OPERATION AT HIGH-POWER LEVELS
flexible to meet most requirements and because the coil requires no 
tap. The tuning condensers Cg and Cp must be of low-loss construc­
tion and adequate to support the alternating grid and plate voltages, 
respectively. They are not subjected to direct voltage. The block­
ing condensers Cc and Cb must also be of low-loss construction and 
must withstand the direct grid and plate voltages. They should have 
sufficient capacitance so that they support no appreciable alternating 
voltages; that is, they should have upwards of ten times the capaci­
tance of the tuning condensers. The by-pass condenser Cd is desirable 
when the grid choke coil Lc does not have a suitably large impedance.

Fig. 11.1. Shunt-fed Colpitts oscillator.

If Le is inadequate and Cd is omitted, there may be a considerable loss 
of a-c power in the grid leak Rc. Because the direct grid voltage is 
rarely high, it is often cheaper to add the condenser than to improve 
the coil. Similar comments apply to the plate circuit condenser Ca, 
but in this case the investment is not trivial because of the high voltage 
involved; however, a capacitance at this point is ordinarily necessary 
as part of the power supply filter, and it can often be made to serve 
this additional purpose. The resistor Rd serves only to preclude the 
accumulation of undesired static charge on the coil L; it may, therefore, 
have a relatively high resistance.

Figure 11.2 shows a series-fed form of the tuned plate oscillator. It 
does not require a plate choke coil or grid tuning condenser. On the 
other hand, it does require inductive coupling to the main coil, and 
may sacrifice some efficiency because of the impedance presented by
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the associated leakage inductance to pulses of grid current. The well- 
insulated filament transformer does not ordinarily present any par­
ticular problem.

Symmetrical (push-pull) arrangements are often used because they 
permit the use of smaller tubes for a given power output, and because 
they yield convenient mechanical arrangements. Symmetry favors 
efficient operation and economy of parts, and somewhat reduces the 
tendency to produce parasitic oscillations, discussed later in this 

Fig. 11.2. Series-fed tuned plate oscillator.

chapter. Symmetrical versions of nearly all the standard oscillator 
circuits are readily devised.

11.3 Operating conditions of the tube
The vacuum tube (or tubes) represents one of the major investments in 
a high-power system. Moreover, it has the shortest operating life, 
and ordinarily accounts for most of the power loss. It is, therefore, 
appropriate to examine its operation with some care. The cost of 
large tubes is such that the interest on this investment is a relatively 
large item in total operating cost. Unless primary power is unusually 
expensive, therefore, it is most economical to operate the tube so as to 
obtain the greatest possible power output consistent with satisfactory 
life. The adjustment which gives maximum plate circuit efficiency 
usually reduces the power output by too large an amount to be per­
missible. The reader is referred to the excellent analysis of From­
mer,105 who assumes that the tube is operated at the maximum power 
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output consistent with its rating. Methods for making detailed calcu­
lations of current waves, power output, and efficiency from experi­
mental characteristics of a given vacuum tube have been presented by 
Prince,246 Everitt,88 Sarbacher,266'267 and Chaffee and Kimball,64 and 
will not be duplicated here.

High-vacuum triodes having amplification factors in the range of 8 
to 50 are used almost to the exclusion of all other types in the genera­
tion of large amounts of power. Advances in the construction of 
tetrodes have led to some relatively high-power tubes, but the cost is 
substantially higher than that of comparable triodes. Tetrodes are 
used at the higher frequencies, or in other special situations where the 
additional cost can be justified.

The tube manufacturer ordinarily furnishes data on maximum safe 
values of plate dissipation, grid dissipation, and plate-supply voltage. 
The problem, therefore, is to choose the grid bias, alternating plate and 
grid voltages, and plate load impedance which lead to the largest 
possible power output consistent with these limitations. The problem 
differs from that of designing a class C amplifier only in that the grid 
driving power, which must be supplied by the output, should be made 
as small as possible, and that the chosen operating condition must 
satisfy the conditions of stability. Otherwise, the actual operating 
point will differ from the intended one.

The most characteristic feature of high-efficiency operation is that 
the plate current must flow in short pulses during the intervals when 
the plate-to-cathode voltage is much smaller than the supply voltage. 
The required large values of current are obtainable only if the grid is 
driven far positive during these intervals. An important problem 
which arises from such operation is that of secondary emission of 
electrons from the grid and plate. Secondary emission from the plate 
is rarely serious, because the electrons liberated from the plate must 
return to it unless the grid is more positive. The characteristics of 
modern tubes are such that excessive driving power and loss of output 
are observed before the grid voltage exceeds the minimum plate 
voltage.

11.4 Grid emission
A far greater hazard is presented by secondary emission from the grid. 
Some secondary emission is produced in all known materials when they 
are bombarded by electrons having velocities corresponding to voltages 
in the approximate range of 10 to 500 volts. Because the plate voltage 
is greater than the grid voltage during the interval of interest, many of 
these electrons leave the grid and are captured by the plate. Second­



GRID EMISSION 251
ary emission in moderation is an asset, because it decreases the grid 
current and increases the plate current so as to improve plate circuit 
efficiency and somewhat decrease grid losses. Thus, if it could be 
adequately controlled, secondary emission from the grid would be a 
useful asset. The grid loss does not decrease as much as might be 
anticipated, however, because the electrons which leave the grid have 
lower velocities, and hence lower energies, than those which strike it.

In practice it is impossible to exert a good control over secondary 
emission, and it is necessary to suppress the phenomenon as much as 
possible. The tube manufacturer does this by a careful choice of 
the material used for the grid and by a special treatment given the

Fig. 11.3. Typical grid characteristics 
of tube having secondary emission.

Fig. 11.4. Effect of filament voltage 
upon the emission and life of a pure 

tungsten filament.

surface of this material; the user must do his part by a suitable choice 
of operating conditions. The most important factor in controlling 
this difficulty is the effective plate load conductance. If the con­
ductance is made too large, the alternating plate voltage is reduced 
and a much larger fraction of the secondary electrons released by the 
grid is captured by the plate. Secondary emission exerts an appre­
ciable influence, even in conservative operation, by sharpening the 
pulse of plate current and correspondingly broadening the grid current 
pulse. Figure 11.3 indicates that this should occur, for the curves 
show that the grid current is likely to pass through a maximum as 
the grid voltage increases and the plate voltage decreases in the 
normal cycle.

If uncontrolled, secondary emission at the grid may lead to the 
destructive phenomenon of blocking. If an excessive load (conduct­
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ance) is applied to an operating oscillator, the grid current may be 
negative over a sufficient portion of the cycle to reverse the total 
average current. When this occurs, the bias produced by the grid 
leak is reversed and the grid and plate currents rise together to values 
which will destroy the tube unless a protective device opens the plate 
circuit in a very short time. It should be noted that the phenomenon 
is completely unrelated to intermittent operation, discussed in the 
previous chapter, or to the operation of the blocking oscillator of the 
following chapter. Improvements in vacuum tubes have made 
blocking much less of a hazard than it was at earlier times, but the 
problem is fundamental in nature and will probably never be com­
pletely solved.

11.5 Cathode limitations
The maximum instantaeous current which may be drawn is also limited 
by the properties of the cathode. Depending upon the construction, 
several different effects may occur. If the cathode is a pure tungsten 
filament the current will be sharply limited so that the total cathode 
current wave will have a flat top. The tube is not injured if this 
occurs, and a slight increase in the filament voltage may provide the 
required current at a corresponding decrease in operating life. The 
relationship between life, emission, and voltage is shown in Fig. 11.4. 
It is rarely necessary or desirable to exceed the rated filament voltage, 
and it is often desirable to operate at a substantially reduced voltage 
because of the increased life expectancy.

The thoriated tungsten filament behaves in quite a different way. 
The operating temperature is such that evaporation of tungsten does 
not control the useful life of the tube, which ends by depletion of the 
supply of thorium in the outer layers of the filament. The migration 
of thorium from the interior to the surface of the filament is a rather 
critical process, which is upset if the temperature is either too high or 
too low. Moreover, the emission is rapidly reduced if the current 
exceeds the normal emission, and is not always capable of restoration. 
For these reasons it is necessary to operate such tubes within the 
specified tolerances of the nominal heater voltage and to design the 
circuit for a peak instantaneous current which is not more than half 
the normal emission. The oxide-coated cathode is not ordinarily 
found in high-power tubes. However, it too must be operated as 
nearly as possible to the rated temperature.

High-power oscillators which must operate where line voltage fluc­
tuations are extreme should be provided with some sort of automatic 
voltage regulator for the filament circuits. The additional investment
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is small in terms of the saving effected through increase of tube life
and reduction of maintenance problems. Useful practical rules for
extending the life of high-power tubes are given by Dailey.69

11.6 Parasitic oscillations
High-power, medium-frequency oscillators are particularly subject to 
trouble from parasitic or spurious oscillations, although the difficulty is 
by no means unknown in other systems. In its most common form, 
the undesired oscillation has a frequency much higher than the desired 
one and is intermittent in character. Once, or possibly twice, during 
the desired operating cycle the conditions of the vacuum tube are 
favorable to the parasitic oscillation, which because of its high fre­
quency is able to build up to a considerable amplitude and execute 
many cycles before the conditions change sufficiently to end it.

At least three distinct mechanisms tend to cause such oscillations. 
In the first, the tube operates as a normal regenerative triode. The 
resonant circuit consists of the parasitic inductances and capacitances 
of the internal and external leads to the tube, whereas the coil and 
condenser which were intended to be the tank elements serve as a 
power coupling filter. Oscillations of this nature are sensitive to the 
geometry of both plate and grid leads, and to the surface resistance of 
the conductors. Two separate pulses of oscillation are likely to occur 
during each cycle of the desired wave because conditions to the parasite 
are most favorable when the grid voltage is slightly negative but the 
plate current is still rather high.

The second mechanism for producing oscillation is the dynatron 
action of the positive grid. Under more or less typical operating 
conditions, the incremental resistance of the grid can be negative, as 
shown in Fig. 11.3. Oscillations will therefore occur if the grid 
circuit, with respect to the cathode and plate, presents a sufficiently 
high antiresonant impedance. This can readily occur, especially if 
the grid lead is relatively long. The oscillations are sensitive to the 
geometry of the grid lead, but may be affected by other connections 
because the effective path returns to both the cathode and the plate.

Finally, electron transit time may result in Barkhausen oscillations if 
the grid is positive with respect to both cathode and plate. Bark­
hausen oscillations rarely occur as parasites unless the tube is a tetrode 
or pentode, in which case the electrons tend to oscillate with respect 
to the screen grid. Wave forms typical of parasitic oscillation are 
shown in Fig. 11.5.

Parasitic oscillations should be anticipated in any new system.107 
They tend to produce excessive heating of the tube, reduced power 
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output, and a general instability of voltages and currents. With 
some experience, we may recognize their presence by noting changes in 
the average grid current when a dielectric rod or probe is moved about 
in the region of the grid and plate terminals of the tube. This is 
possible because the high-frequency parasitic oscillations are much 
more sensitive to an added dielectric than are the desired oscillations.

The suppression of parasitic oscillations is a difficult problem, and 
no general solution exists; each case must be treated individually. 
However, an early diagnosis of the difficulty and an appreciation of the 
general mechanism are very helpful in effecting a cure. A wave­
meter, or other indicator, to show the presence and frequency of the 
oscillations, together with a rectifier and oscilloscope to determine the 
envelope wave shape, are very helpful in determining the nature of the 
parasite and any progress toward its suppression.

(a) (b)
Fig. 11.5. Parasitic oscillations on grid voltage waves due to: (a) grid-plate feed­

back and (6) dynatron action of grid.

Under some circumstances the resonator formed by the parasitic 
reactances of the plate and grid leads is sufficiently favorable so that 
unwanted oscillations occur to the exclusion of the desired frequency. 
This situation is not common and is readily recognized by the absence 
of output at or near the intended frequency. Modification of the 
circuit to produce the desired output may or may not lead to the 
periodic parasitic effects previously discussed.

Intermittent operation, as discussed in Chapter 10, is rarely found 
in high-power systems because the operating frequencies are such that 
there is little difficulty in making the time constant of the grid bias 
system sufficiently short. However, the possibility of intermittent 
operation exists and should be considered whenever a new system is 
being designed or an abnormal effect is observed.

11.7 Resonator loading
In high-power oscillators, as in others, it is desirable to employ a 
resonator with the highest practical inherent Q. High efficiency and a 
large power output are then obtained by lowering the working Q by 
means of a relatively heavy loading. The situation may be studied by 
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Fig. 11.6a, in which it is assumed that g represents the irreducible loss 
of the coil, and that G represents the useful load. Losses in the con­
denser are nearly always negligible, but may be accounted for in g if 
necessary. The unloaded selectivity of the resonator is assumed to be 
given as a basic design parameter, and should be as high as possible. 
It is represented by the equation

Qo = u>oC/g = l/g&oL. (11.1)
The loaded or working Q takes account of the useful load and is lower 
than Qo- It is given by

Q = uoC/(g + G) = l/woL(g + G). (11.2)
The operating frequency is assumed to be prescribed and is expressed 
by the standard equation

uo2 = 1/LC. (11.3)
The useful power output Po, is readily expressed in terms of the rms 

plate voltage V by
Po = GV2. (11.4)

The ratio of Po to the total power produced by the tube may be called 
the resonator or circuit efficiency tic and is given by

yc = G/(G + g). (11.5)

Evidently, the resonator efficiency steadily increases as G is made large 
compared to g. However, the sum (G + g) should remain constant to 
provide proper loading for the tube, as observed by Osborne231 and 
discussed in Section 11.3. Therefore, G may be increased only by 
decreasing g, which by eq. 11.1 requires a decrease in C and an increase 
in L. The frequency stability is evidently degraded by a reduction 
of the effective Q of the resonator, and the efficiency of the tube is 
affected in a complicated manner. Some information on this subject is 
given by the following analysis, which is based on the work of Offner.230 
However, it is shown later that an increase in effective Q does not 
necessarily increase tube efficiency, and that an optimum value 
probably exists.

The analysis is referred to Fig. 11.65, which shows the plate voltage 
wave form of a class C oscillator or amplifier. Because of the decre­
ment inherent in a heavily damped circuit, the plate voltage is higher 
at the instant when conduction begins than it would otherwise be. 
Therefore, the efficiency with which the tube converts power from 
direct to alternating current decreases with decrease of the working Q. 
Consistent with the analysis of Chapter 2 the alternating voltage
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across the tuned circuit will increase during one cycle by the amount 

V - SV TV

Because SV is small compared to V in all cases of interest, we may use 
the approximation formula to obtain

SV/V = ir/Q. (11.7)

The calculation of the magnitude of this effect is facilitated by 
assuming that the plate current flows in short rectangular pulses, as 
shown. On this basis the actual plate voltage will follow a linear 
transition between the smaller and larger sinusoidal waves as indicated.

Fig. 11.6. (a) Parallel representation of resonator, (6) effect of decrement with 
short pulses, and (c) effect of detuning with rounded pulses.

For a given plate current wave, the efficiency is directly proportional 
to V. Therefore, the tube efficiency is decreased by the ratio

Sm = tt/2Q, (11.8)

where the factor 2 is introduced to account for the averaging which 
takes place as the voltage difference is linearly decreased by the con­
stant plate current which flows during each pulse. Evidently, plate 
current does not flow in rectangular pulses. However, if the pulses are 
short, their shape is immaterial, as may be seen by reference to the 
familiar problem of charging a condenser from a constant-voltage 
source. In both cases half the available energy is lost regardless of 
how the operation is conducted.

Assuming that the tube operates under fixed conditions, with very 
short current pulses the largest useful output will correspond to the 
maximum of the product t]cVt = n- Using eqs. 11.2, 11.5, and 11.8, 
we have

7 = (1 - ^/2QKQo - Q)vM, (1E9)

where is the tube efficiency for an infinite value of Q. Setting the 
derivative with respect to Q equal to zero to obtain the maximum 
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total efficiency yields

Qo^ = 2Q2 or Q = VrrQ0/2. (11.10)

In practice, the pulses of plate current are rarely short compared to 
the total period, and the results of the foregoing analysis are mislead­
ing. The situation is illustrated in Fig. 11.6c, in which the resonator is 
tuned to a frequency somewhat higher than the operating frequency. 
Under the assumed conditions the plate voltage remains nearly con­
stant at a low value during the interval of conduction, and the efficiency 
is actually higher than it would be if the resonator Q were infinite.

A re-examination of the situation indicates that the important 
parameters are the impedance of the tube, the frequency, and the 
capacitance of the resonator. It makes little difference to the present 
topic whether the load is directly or inductively coupled. Experi­
mental work tends to confirm this conclusion. A considerable accu­
mulation of data indicates that a working Q in the neighborhood of 15 
gives good results in most practical situations.

11.8 Resonator design

Oscillators intended for induction heating of metals ordinarily operate 
in the frequency range of 200 to 550 kc. For such oscillators a suitable 
resonator consists of a capacitance of the order of 500 uA and an 
inductance of the order of 50 /rh. The capacitance is ordinarily 
provided in a mica condenser, which is mounted in a substantial case 
and constructed to withstand the considerable values of voltage and 
current to which it is subjected. The inductance ordinarily takes the 
form of a single-layer solenoid. The conductor which makes up the 
winding is often tubular for cooling.

Oscillators intended for dielectric heating usually operate in the 
frequency range of 2 to 25 Me. Especially at the upper end of this 
range, the use of lumped circuits becomes difficult, and resonators 
based upon distributed circuits, such as transmission lines, are often 
used. Cyclotrons, which operate in this frequency range, ordinarily 
employ the load circuit, which is constructed as a resonant transmis­
sion line, as the resonator. The arrangement used in typical cyclo­
trons is of considerable interest, and is discussed more fully toward the 
end of the chapter. Oscillators intended for diathermy ordinarily 
operate in the neighborhood of 25 Me, and differ from those used for 
dielectric heating principally in that their power output is relatively 
small.

In addition to the electrical characteristics described in the previous 
section, the resonator of a high-power oscillator must possess several 
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other properties. Ordinarily, the construction involves a number of 
compromises between theory and practice. As shown in the preceding 
paragraphs, a large value of Q is desirable from every possible stand­
point. However, the mechanical construction must be such that the 
inductance and Q are stable in spite of any dirt and rough handling to 
which the unit may be subjected. Because considerable heat is dis­
sipated in the coil in spite of its high Q, it is desirable to provide cooling 
so that the resistance and loss will not be further increased by excessive 
temperature. Ordinarily, the desired cooling is most conveniently 
effected by winding the coil from metal tubing and circulating cooling 
water through it.

It is readily shown from skin effect formulas339, 342 that for a given 
outer diameter at a given high frequency the resistance of a tubular 
conductor reaches a minimum when the wall thickness t given by

t = Ih/Vxfpa meters, (11-11)

where MKS units are used throughout. For copper at 30°C the cor­
responding expression is

t = 4/ V/ inches. (11.12)

When this relationship is satisfied, the resistance is about 90 per cent 
of that of a solid rod having the same outer diameter. It is rarely 
practical to use this formula directly because the walls are too thin; 
however, Teare and Schatz304 show that substantially the same 
resistance is obtained if the interior of the tube is partially or entirely 
filled with iron. Therefore, a desirable 10 per cent increase in Q may 
be obtained by making the tank coil of copper-plated steel tubing 
rather than of solid tubing. At the frequencies of present interest it is 
entirely practical to produce plating controlled to the desired thickness. 
An additional Q increase of 3 per cent may be secured by using silver 
rather than copper for the plating.

11.9 Coupling circuits

It is rarely practical to attach the load directly to the main tank 
circuit because the load impedance is unsuitable for direct application 
to the tube. The impedance of metals is quite low, and has an induc­
tive component, so that a voltage step-down and capacitive phase 
correction is suitable. The impedance of dielectric materials, such as 
wood, is relatively high and is associated with a capacitive reactance. 
Therefore, a voltage step-up and inductive phase correction is required. 
Because the two problems are quite different they are discussed
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separately. The problems associated with induction heating appear
to have received the more complete analysis and are discussed first.

The factors which govern the choice of frequency and the general 
problem of induction heating are ably discussed by Kinn.170 He 
favors the shunt-fed tuned plate oscillator, which is shown in con­
junction with several load circuits in Fig. 11.7. In this connection it 
should be noted that it is often desirable to heat several objects 
simultaneously with a given oscillator. It is therefore practical to 
connect the load circuits in series or parallel as best suits the individual 
situation.

Ordinarily, the circulating current in the main coil is too small to 
produce the desired result. When this is true, a capacitor of fairly

M (b) (c)
Fig. 11.7. Simplified tuned plate oscillator with various load arrangements: 
(a) series connection of load, (b) partly tuned load, and (c) current transformer to 

load.

small voltage rating, as shown in Fig. 11.76, can be added to obtain a 
considerable increase in current. However, instability will occur if 
the added capacitance is too large, because the tuned system will 
develop two resonant frequencies, as discussed in Chapter 18. The 
use of a closely coupled transformer, as shown in Fig. 11.7c, to produce 
the required current step-down is ordinarily preferable.

The problem of coupling the load circuit to the tank circuit has been 
investigated by Roberds.264 He favors the use of a transformer 
coupled to the entire tank coil, and he presents a construction which is 
stable and efficient. In a typical model the primary consists of a 
single-layer solenoid of twenty turns of |-inch copper tubing having a 
diameter of 6 inches and a length of 8 inches. The secondary is a 
single turn in the form of a sheet of copper about 9 inches wide and 21 
inches long wrapped around the solenoid, but spaced from it by about 
f inch and having a gap, as shown in Fig. 11.8. To provide cooling, 
water is circulated through the primary and through copper tubes 
soldered to the secondary, thus avoiding the increased losses which 
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would occur if the temperature and resistance were allowed to rise. 
The primary inductance is about 6 ph, which is suitable for application 
in a typical system at a frequency of about 5 Me. A relatively high 
coupling coefficient of the order of 75 per cent can be obtained in this 
way.

A major problem in practical systems is obtaining sufficiently 
low values of contact resistance. Welded or soldered joints of large 
cross section and suitable shape should be used wherever possible. 
Mechanical joints are to be avoided, but where used should provide

Fig. 11.8. Coupling transformer for induction heating.

high contact pressure over a large area. A numerical example may 
serve to emphasize the point. In the transformer just described the 
primary reactance at 5 Me is about 180 ohms. The secondary react­
ance is about 400 [= (20)2] times smaller or about / ohm. To pro­
duce a selectivity of 100, the total resistance of the secondary must 
not exceed 0.005 ohm! Evidently the resistance of a single joint 
should be small compared to this total.

An additional practical problem is the inductance of the leads which 
connect the load coil to the secondary of the main transformer. This 
inductance serves to reduce the effective coupling coefficient of the 
system, thus destroying much of the advantage gained in the special 
transformer construction. This difficulty is alleviated by reducing 
the length of the leads and extending the copper sheet which forms the 
secondary to provide most of the lead length required. The use of a 
parallel capacitor as close as possible to the work is recommended as a 
last resort. Additional information on the practical design of coupling
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systems is given by Brown40 and Mittelman,212 and pertinent analytic
relations are advanced by Kunz.178

The problems of securing an adequate impedance match for dielectric 
heating appears to be somewhat simpler than those associated with 
induction heating. Two facts contribute to this situation. First, the 
general impedance level of the dielectric load is much more nearly equal 
to the optimum load for the tube than is that produced in induction 
heating. Second, and perhaps more important, the properties of the 
load are very different from those of the electrodes. Therefore, it is 
relatively easy to obtain high efficiency in the energy-transfer process.

The principal difficulty experienced in dielectric heating is associated 
with the large and essentially parallel electrodes which are commonly 
used. The required high voltage can be maintained across the result­
ing substantial capacitance only by provision of a large circulating 
current. When such a system is coupled to the main tank circuit 
there is a marked tendency toward frequency instability, especially if a 
transmission line of any appreciable length is interposed. More is said 
of this problem in Chapter 18. A good general discussion of dielectric 
heating is given by Winlund.348

11.10 Interference
Regardless of the purpose for which it was designed, a high-power 
oscillator will radiate a considerable amount of power and thus cause 
radio interference unless adequate precautions are taken. The pro­
duction of such interference is illegal as well as antisocial and must 
be avoided. Two avenues are open to the designer, but neither is 
especially attractive. One possibility is to choose a frequency within 
the rather few and very narrow bands* allocated to industrial and 
diathermy applications; in this case the overall frequency stability 
must be extremely high. This requirement is so severe that it is 
virtually necessary to employ a quartz crystal, either as the reference 
element in an automatic frequency control system or in a low-power 
oscillator followed by amplifiers, which may also be frequency multi­
pliers. The use of automatic frequency control is discussed in Chapter 
17, and its application to radio-frequency heating has been described 
by Rambo.260 The use of a crystal oscillator followed by amplifiers is 
described by Norton.228

The alternate procedure, which must be employed if these fre­
quencies are not used, is to provide sufficient shielding and filtering so 
that the radiation is negligible. Such shielding and filtering must be

* At this time the bands open to industry are 13.6525 to 13.6675, 27.185 to 
27.455 and 40.95 to 41.00 Me.
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effective over a substantial band of frequencies in order to suppress 
the relatively strong harmonics which are produced in high-efficiency 
operation, but this rarely adds any considerable problem. Moreover, 
Klingaman and Williams174 observe that radiation is rarely a problem 
in induction heating units operating at frequencies below 400 kc. 
This favorable situation occurs because the load circuit, although 
exposed, is very small compared to the wavelength; and coupling 
circuits which give high efficiency of power transfer automatically 
discriminate against harmonics. Therefore, at frequencies below 
about 400 kc, we may anticipate freedom from interference if the 
oscillator unit is enclosed in a well-fitted metal cabinet, and if the parts 
are laid out so that power leads are not unnecessarily coupled to the 
oscillating circuit. In this connection it is interesting to note that a 
significant improvement in efficiency is observed if a thin copper lining 
is added to an iron cabinet. The superior conductivity of copper 
reduces the losses which exist when the fields produced by the oscilla­
tory circuit are confined by shielding.

11.11 Shielding
The gravest interference problem is experienced in dielectric heating 
applications where frequencies upwards of 2 Me have proved to be 
most useful. The difficulty is aggravated by the facts that the load 
circuit is ordinarily a large parallel-plate condenser operating at high 
voltage and that the ability of a given conductor to radiate increases 
with frequency. Still further, the interwinding capacitance of power 
transformers provides a relatively low impedance path at these fre­
quencies, so that radiation from power supply leads is also troublesome. 
Shielding and filtering are necessary unless the frequency is restricted 
to one of the assigned bands.

In a high-power, high-frequency installation the total attenuation 
to be provided by the combined action of shielding and power line 
filtering may be as high as 100 db. Such a large attenuation can be 
obtained only if care is given to the design and construction. When­
ever possible, the entire system should be treated as an integral unit. 
Even a thin piece of metal sheet or screen wire is adequate to prevent 
direct penetration of the field. The problem, therefore, is entirely 
one of apertures.127 A very narrow slit will produce a large leak if 
its length is at all great. Therefore, all seams or door edges must 
make contact throughout their length.

The situation corresponds in virtually every detail to that of build­
ing a shielded room in which sensitive receivers may be tested in 
proximity to high-power sources of interference. The only differences 
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are that for dielectric heating a much larger amount of power must be 
handled through the power line filters, and a factory production line 
must pass through part of the shielded enclosure. In general, it is 
found that a double shield of copper or bronze screen'wire (fly screen) 
or of the coarser hardware cloth provides the most practical arrange­
ment. The two shields are separated by several inches and as far as 
possible are electrically isolated. Water pipes, signal or lighting 
circuits, or other conductors should not be allowed to pass through the 
enclosure if any other arrangement is possible because they serve as a 
transmission line to couple the interior to the exterior space. Neces­
sary piping may be bonded to one or both screens, and circuits may be 
shielded or filtered. Construction details which may prove helpful 
are given by Swan.303

Doors or other openings are to be avoided as far as possible because 
they present a difficult problem of contacts. Metal weather stripping 
has been used with reasonable success, but it is difficult to secure and 
maintain the required continuity of electrical contact in a busy instal­
lation. In some situations, doors may be avoided by using relatively 
small shielded tunnels which extend from the main enclosure. Unfor­
tunately, as shown by Linder,190 the attenuation rate is rather low, 
about 10 db for each unit length equal to the widest dimension of the 
opening.

11.12 Cyclotron oscillators
The cyclotron, devised by E. 0. Lawrence, has proved a very important 
tool for atomic research. A basic part of the cyclotron is a source of 
radio frequency applied to the semicircular cavities generally referred 
to as the “dees.” In contemporary instruments, the dees are 
excited with a potential of about 10 kv at a frequency near 10 Me. 
Because the dees have an area of many square feet, and a consequent 
capacitance of several hundred ppi, a large circulating current and 
considerable power input is required to produce the desired voltage. 
Moreover, many cyclotrons employ a frequency-modulated excitation 
in order to supply still larger values of energy to the particles being 
accelerated. Frequency modulation is effective because it compen­
sates for the effects of the relativistic increase of particle mass associ­
ated with high velocity, but considerably complicates the electrical 
design.

In early cyclotrons the dees were excited symmetrically with respect 
to ground by attaching them to the ends of a balanced transmission 
line as indicated in Fig. 11.9a. This arrangement has certain advan­
tages, but is difficult to shield; and unless the system is appropriately 
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shielded excessive energy losses result from radiation and from eddy 
currents in the magnet poles. The unbalanced system shown in 
Fig. 11.96 is favored because the fields are completely confined, and a 
favorable current distribution results. The structure is a form of 
cavity resonator and is closely related to a coaxial section, short- 
circuited at one end and open-circuited but shielded at the other. By 
using copper throughout, and by distributing the current over a large 
surface area, it is possible to obtain values of Q well in excess of 1000; 
this is a very desirable situation, because large values of Q are associ­
ated with low driving power requirements.

Because the evacuated dee structure constitutes a resonator having 
characteristics superior to those readily achieved in other ways, it is

Fig. 11.9. Cyclotron dees excited by equivalent quarter-wave lines: (a) open 
symmetrical structure and (b) enclosed unsymmetrical arrangement.

ordinarily used as the principal resonator of the driving oscillator, 
which is coupled to it by means of loops or similar devices. The cir­
cuit arrangement may be identified roughly with the Meissner oscilla­
tor of Chapter 8, but it corresponds much more closely to the grid­
separation arrangement used in microwave oscillators.

PROBLEMS
11.1. In induction heating of a nonmagnetic metal the efficiency of power trans­

fer from the coil to the load depends on the conductivity ratio of the coil and load 
metals. Prove that the efficiency cannot exceed 50 per cent if the metals are alike.

11.2. Distinguish between intermittent oscillation, true blocking, and the action 
of the blocking oscillator of Chapter 12.

11.3. Sketch schematic diagrams illustrating how several different kinds of 
parasitic oscillations can be produced, and state rough criteria for the presence or 
absence of such oscillations.

11.4. Sketch apparatus and circuits suitable for the detection and identifica­
tion of parasitic oscillations.

11.5. Review and criticize the development leading up to eq. 11.10, and the 
associated discussion of Fig. 11.6c.

11.6. Discuss the problem of shielding a 100-kw oscillator which drives a 25- 
Mc dielectric heating press which is 5 X 10 feet in area.

11.7. Execute a rough design for a 15 Me oscillator to develop a voltage of 8 
kv across an unbalanced cyclotron dee system having a Q of 800 and an equivalent 
capacitance of 200 ^f.
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PRACTICAL RELAXATION
OSCILLATORS

The preceding chapters have shown that a particular circuit con­
figuration may produce either relaxation or harmonic oscillations, 
depending only upon the relative magnitudes of the parameters. 
Moreover, the behavior of the system varies continuously and smoothly 
through the transition region. It may appear somewhat artificial, 
therefore, to discuss relaxation oscillators as a separate topic. The 
justification for this procedure stems from the fact that practical 
circuits virtually never operate in the region of transition between 
relaxation and harmonic oscillations. Circuits which are intended to 
produce sinusoidal waves ordinarily have an intrinsic Q larger than 
10, corresponding in the notation of Chapter 3 to e < 0.2. On the 
other hand, systems designed to produce distorted waves character­
istic of relaxation oscillations ordinarily are excessively overdamped, 
corresponding to « > 20. Because of the wide variation in the param­
eters, the behavior of corresponding configurations is so different that 
a shift of viewpoint is virtually necessary.

The following sections are devoted to a discussion and analysis 
of the more familiar and useful relaxation oscillators, including the 
multivibrator, blocking oscillator, and several sweep circuits. Con­
sistent with the purpose of the book, the discussion has been limited 
to circuits which produce sustained oscillations without application 
of an external signal. Many interesting and important circuits, such 
as the Phantastron64,197 and the flip-flop, which require an external 
triggering voltage, have therefore been omitted. The Eccles-Jordan 
trigger circuit is closely related to the multivibrator. It is discussed 
in connection with its use for frequency division in Chapter 13. A 
very complete account of such circuits, as well as true relaxation oscil­
lators, is given by Puckle248 and by Chance67 et al. The interested 
reader is referred to these books.

265
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12.1 The gas tube oscillator
Of relaxation oscillators, none is simpler in configuration than that 
shown in Fig. 12.1* The explanation of its operation is also simple, 
provided we do not pry too closely into the internal mechanism of 
conduction within the tube itself. The gas tube is of the cold-cathode 
glow-discharge type, either an ordinary neon lamp (without associated 
resistor), or preferably one of the more uniform diodes designed as 
voltage regulators. Such tubes are characterized by the fact that they 
conduct an entirely negligible current until the terminal voltage 
exceeds a particular value, Vi, called the striking voltage, which is 
sufficient to produce ionization leading to conduction. Then, the 
terminal voltage drops abruptly to a second value, V2, appreciably

Fig. 12.1. Gas tube oscillator. Fig. 12.2. Static characteristic of
VR75.

lower than Vi. The equilibrium conditions depend upon the resist­
ance of the test circuit. The characteristics of a typical VR75, 
observed under static conditions, are shown in Fig. 12.2.

The behavior of the circuit of Fig. 12.1 may now be discussed, 
subject to several assumptions: that the dynamic characteristic is the 
same as the static characteristics, that Vb is substantially larger 
than Vi, that R is of the order of a megohm, and that C is of the order 
of 1000 ppi. When the circuit is energized at t = 0 the voltage v 
rises from zero toward Vb along a simple exponential curve, as indi­
cated in Fig. 12.3. When the striking voltage is reached, ions form in 
the gas tube and the condenser begins to discharge. Because the 
tube is directly connected to the condenser, there can be no instan­
taneous change of the tube terminal voltage. Accordingly, by Fig. 
12.2, the current will rise to a value of about 200 ma as rapidly as 
cumulative ionization will permit, ordinarily a small fraction of a 
microsecond, f This large current discharges the condenser very

* The standard I.R.E. symbol used to represent the gas diode is somewhat mis­
leading in that the cathode, represented by the small circle, is actually a large 
cylinder whereas the anode is a slender rod.

f Such a large current would, if continued, heat the cathode to the point of
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rapidly and itself decreases as the condenser voltage approaches V2. 
The discharge ends when the current drops to a small fraction of a milli­
ampere, which is inadequate to maintain ionization. The ionization 
virtually disappears within a few microseconds; and the gas tube 
remains nonconducting until the current through R again charges the 
condenser to a voltage Ui, at which time another discharge begins 
and the cycle is repeated.

In practice, the operation differs in several details from that just 
described. First, because of residual self-inductance in the circuit, 
the discharge current does not rise to such a large value as previously 
indicated, and correspondingly persists until the condenser is dis­
charged to a voltage below V2. More important, as shown by Reich,257 
the dynamic characteristic of a glow tube is not the same as the static

Fig. 12.3. Wave form generated by gas tube oscillator.

characteristic. The high degree of ionization established during the 
early part of the discharge persists long enough to allow the condenser 
to discharge to a voltage V4, considerably less than V2. Finally, 
sufficient ionization may persist through the charging interval to 
reduce the striking voltage Fi to a lower value V3. The wave form 
which results when these effects are considered is shown by the dotted 
line of Fig. 12.3. It has a longer period and a greater amplitude than 
the other but is very similar in shape. Note that the first discharge 
cycle is barely distinguishable from all which follow, a characteristic 
property of extreme relaxation oscillations.

In its present form the circuit is of little practical importance, but 
it forms the basis of the thyratron oscillator described in Section 12.4 
and widely used as the sweep circuit in oscilloscopes. Moreover, it

thermionic emission, thereby changing the discharge from a glow to an arc. How­
ever, because of the small amount of energy stored in the condenser, the discharge 
ends before the arc phenomenon sets in.
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serves to illustrate a number of basic concepts which are useful in the 
analysis of more complicated systems.

12.2 The saw-tooth wave
For obvious reasons, the wave shape generated by the gas tube oscil­
lator is referred to as a saw tooth. Because the voltage variation is 
approximately linear with time throughout a large fraction of the total 
period, such a wave is suitable as a sweep or time base for instruments 
such as <the cathode ray oscilloscope. The properties of the wave 
shown in Fig. 12.4 will be discussed from this viewpoint.

The total time or period, T, of the recurrent wave is divided into 
two parts, the period of trace, ti, and the period of flyback, t2. Ordi­
narily, the period of flyback should be made as small as possible in

Fig. 12.4. Imperfect positive saw-tooth wave.

comparison to the period T, because it serves no useful purpose and 
often confuses the image produced on the oscilloscope screen. The 
amplitude, V, is clearly a peak-to-peak voltage. It must therefore be 
equal to 2 times the rms value of a sine wave which will produce a 
trace of equal length on an oscilloscope screen.

The wave of Fig. 12.4 is designated positive because the slope of the 
useful trace is positive. The positive polarity is easiest to generate in 
practice because of the direction of conduction in ordinary electron 
tubes. The slope during the useful period of the wave should ideally 
be constant so as to produce a uniform velocity of the oscilloscope 
beam. Since a constant slope is a property of a straight line, this 
property is referred to as linearity. The degree of nonlinearity is 
expressed by the number of per cent which the minimum slope falls 
below the maximum slope in the useful region. The nonlinearity of 
Fig. 12.4 is 50 per cent because the initial slope is unity and the final 
slope is only one-half. A nonlinearity of 5 per cent is tolerable in 
nearly all applications.

The degree of linearity of the useful period may be expressed in an 
alternative manner, which is sometimes more convenient. This is
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referred to as the displacement error by Puckle248 and is illustrated in 
the second cycle of Fig. 12.4. It is defined as the greatest fractional 
departure between the actual wave and an ideal wave which coincides 
with it at beginning and end. That is, the displacement error, D is 
given by the equation

D = SV/V. (12.1)

For reasonable degrees of curvature the greatest departure is indis­
tinguishable from the departure at the middle of the trace. Other 
useful information concerning the properties of saw-tooth waves is 
given Ify von Ardenne.333

The ideal saw-tooth wave is characterized by a rise which is linear 
with time, a flyback time, which is negligible, and successive cycles 
which are identical. The waves generated by practical oscillators 
differ from this ideal not only because of nonlinearity and finite fly­
back time but also because successive cycles differ in amplitude and 
period. This difference between successive cycles is commonly 
referred to by the inelegant term jitter, which is used here in the absence 
of an acceptable substitute. Because jitter is usually of a random 
nature, it must be treated by statistical methods such as those used in 
the treatment of electrical noise; however, the deviations of period and 
of amplitude will each have some sort of average or rms value. Logi­
cally, the average jitter in period and amplitude should be expressed as 
fractions of the average total period and amplitude. In practice, 
however, jitter is usually expressed in absolute units of time or voltage.

12.3 The wave produced by the gas tube circuit
The gas tube circuit can produce a wave which approaches the-ideal 
saw tooth in that the flyback time is short compared to the trace, and 
the degrees of nonlinearity and jitter are small. The calculations are 
relatively simple, because the tube is inactive during the trace interval. 
Figures 12.1 and 12.3 show that in the steady state the output voltage 
during each trace is described by the equation

v = ^{1 - e—(12.2)

For any single trace we may choose the time origin so that v = V4 at 
t = 0. Then by substituting the time h at which v = V3, we may 
find as the relationship between the circuit parameters and the trace 
period — v.\ii = RC-ln(-^------41- (12.3)

\ Kb — K 3/
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The time of flyback is not readily calculated exactly. However, 

the condenser charging current cannot exceed Vb/R and is therefore 
limited to a few hundred microamperes, whereas the discharge current 
was shown to be of the order of one hundred milliamperes. Because 
the same net charge is transferred in charge and discharge, it follows 
that the trace time, ti, is about one thousand times as long as the fly­
back time t2.

The nonlinearity of the trace is readily found by using the fact that 
the slope is directly proportional to (7b — r). Thus we have

(7b - 74) - (7b - 73) = 7 .
(7b - 74) 7b - 74

By expanding eq. 12.3 in series and neglecting higher order terms, we 
have as an approximation useful when the nonlinearity is small,

N = h/RC. (12.5)
It is clear that nonlinearity is reduced by making 7b large compared to 
7 and 74.

The displacement error is found by substituting t = <i/2 in eq. 12.2 
and comparing the value with £ (73 + 74). The result is somewhat 
complicated in its general form, but takes the simple form

D = N/8, (12.6)
provided the nonlinearity is small enough to justify the series expan­
sion leading to eq. 12.5.

As a numerical example let 7b = 300, 73 = 90, and 74 = 60 volts. 
Then, by eqs. 12.5 and 12.6 the nonlinearity and displacement error 
are, respectively, 0.125 and 0.015.

Jitter is present principally because the breakdown voltage, 73, is not 
stable. The breakdown voltage depends upon the number of ions 
present at that instant, and therefore varies with the amount of cosmic 
and other radiation. Operation of the gas tube in a generous supply 
of visible or ultraviolet light serves to reduce the jitter to a very small 
value.

12.4 The thyratron oscillator
The hot-cathode gas-filled triode or thyratron is substantially superior 
to the glow-discharge diode in respect to flexibility and internal resist­
ance. Even a small tube, such as the 884, will conduct a momentary 
current of 300 ma with only 16 volts’ drop; whereas the 2050 tetrode 
has the even more remarkable instantaneous rating of 10 amp. at 8 
volts’ drop. The deionization time of the 2050, however, is rather
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longer than that of the 884, and the behavior is more sensitive to 
ambient temperature. It will not, therefore, be considered further 
here.

Figure 12.55 shows a circuit which is widely used to generate a posi­
tive saw-tooth wave as a time base, or sweep, for cathode ray oscillo­
scopes. The general operation of this circuit is very similar to that 
of the gas tube oscillator described in Section 12.1. The differences are 
these. (1) The use of a hot cathode provides a steady source of 
current, greatly reducing the voltage drop in the tube. (2) The 
initiation of conduction is under grid control so that jitter is very 
small. (3) The control action of the grid provides a convenient means

Fig. 12.5. Thyratron triode sweep: (a) control characteristic and (6) circuit.

for varying the period and amplitude of the wave and is therefore very 
useful in synchronizing the sweep with an externally injected voltage. 
The topic of synchronization is, however, deferred for a unified discus­
sion in Chapter 13.

The manner in which the grid affects the breakdown or striking 
voltage in the 884 is shown in Fig. 12.5a. With this information and 
the equations already developed it is possible to design a sweep circuit 
to meet specified operating requirements.

12.5 Illustrative design of thyratron oscillator
Suppose that a saw tooth having a frequency of one kilocycle and a 
nonlinearity no greater than 20 per cent is to be generated with a type 
884 gas triode. The first step is to choose a suitable value of grid bias. 
It is clear that a large bias will lead to a large output voltage but will 
also require a large value of Vb to produce reasonable linearity. A low 
bias, on the other hand, is likely to lead to excessive jitter. A bias of
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10 volts corresponding in Fig. 12.3 to a starting voltage, V3, of 96 volts 
is chosen as a reasonable compromise. Since the conduction takes 
place and ends at P4 = 16 volts, the output voltage amplitude is 
fixed at V = 96 — 16 = 80 volts. By eq. 12.4 and the choice N = 20 
per cent the supply voltage, Vb, is fixed at Vb = 16 + (5 X 80) = 
416 volts. The current-limiting resistor Ri is fixed by V3 and the fact 
that the current shall not exceed 300 ma to Ri = (96 — 16)/0.3 = 
267 ohms.

As previously shown, the ratio of trace to flyback time will be 
approximately equal to the ratio R/Rr. The choice of R = one 
megohm, which is consistent with characteristics of the tube and com­
mon usage, leads to a desirably high ratio of trace to flyback time of 
about ti/t2 = 106/267 = 3750. The capacitance C is evaluated by 
means of eq. 12.3. Since a frequency of one kilocycle corresponds to a 
period of 0.001 second we have C = 5000 ppi. The only remaining 
parameter to be determined is the grid resistor, R2, which serves to 
protect the grid from excessive currents, and as an impedance for the 
injection of a synchronizing signal if one is used. A resistance of 
100,000 ohms is consistent with good practice and meets the require­
ment that the grid current shall not exceed one milliampere.

The greatest frequency which can be generated with this circuit is 
about 50 kc because of the time required to deionize the thyratron. 
Frequencies as low as one cycle per minute may be obtained if great 
care is taken to prevent leakage internal and external to the condenser.

12.6 The van der Pol oscillator

A simple circuit which produces relaxation oscillations by means of a 
single high-vacuum pentode is shown in Fig. 12.6. It was originally 
devised by van der Pol320 in 1926, and is of interest because several 
important practical circuits have been derived from it. The same con­
figuration (with the addition of a shunting condenser Ci) has already 
been presented in Fig. 8.24, and its behavior as a harmonic oscillator is 
discussed in Section 8.19. The symbols and notation developed there 
are preserved ; however, the relationship between the circuit parameters 
is modified here so as to obtain a large loop gain and thereby produce 
relaxation oscillations. Because the resulting behavior is highly 
nonlinear, it is impractical to analyze the system except in a qualitative 
way.

In terms of the equivalent circuit of Fig. 12.6, the threshold of 
oscillation was shown in Chapter 8 to correspond to

G = 1/R2 + 1/Ri + l/rp + Ci/CrRi, (12.7)



THE VAN DER POL OSCILLATOR 273
where G is the suppressor-to-screen transconductance and rp is the 
dynamic screen resistance. To obtain well-defined relaxation oscilla­
tions we should decrease Ci and increase Ri and Ri so that the thresh­
old of oscillation corresponds to a transconductance some ten times 
less than the actual value. The general nature of the oscillation cycle 
is determined by making the idealizing assumptions that Ci is zero 
and that Ri is very large compared to R2.

Let us suppose that no voltage exists across Ri so that the sup­
pressor is at a potential VC) and that a steady current flows through 
R2 to the screen grid. If, from this reference, the screen current is 
assumed to increase slightly it requires that the screen voltage will

Fig. 12.6. Van der Pol relaxation oscillator: (a) circuit diagram and (6) equiva­
lent circuit.

decrease and the suppressor voltage will be driven negative by the 
action of Ri and Ci, respectively. Because the negative voltage on the 
suppressor diverts electrons from the plate to the screen, the action is 
cumulative, and a rapid transition takes place which ends only when 
the screen draws the entire cathode current and the suppressor is 
biased far beyond its cutoff value. An interval of relaxation now fol­
lows in which the suppressor bias decreases toward Vc by discharge of 
Ci, through Ri and the parallel combination of Ry and the screen grid.

When the suppressor bias has decreased sufficiently, plate current 
again flows and the screen current begins to drop. The resulting 
increase of screen voltage is again cumulative and the reverse transi­
tion takes place. The end of this transition finds the suppressor posi­
tive with respect to the cathode, the screen voltage considerably 
increased, and the plate current larger than the screen current. A 
second relaxation interval now follows, during which the suppressor
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again drifts towards the bias voltage Vc, the screen potential decreases, 
and the plate current decreases. This relaxation tends to be more 
rapid than the former because the considerable conductivity of the 
suppressor grid, which is now positive with respect to the cathode, is 
added to that of Ri.

The cycle is completed when the suppressor voltage returns to such 
a value that the suppressor-to-screen transconductance is sufficient to 
produce a net loop gain. The screen and suppressor voltages again 
change in the negative direction at an accelerating rate until the plate 
current is zero, and the suppressor is far negative. The wave forms 

vb---------------------------------------------------------------------------------------------------------------

Fig. 12.7. Voltage wave forms in van der Pol oscillator.

generated under these conditions are shown in Fig. 12.7, corresponding 
to experimental data of Page and Curtis.234

12.7 Analysis of the van der Pol circuit
It will be recalled from Chapter 4 that no genuinely practicable solu­
tion has been found for van der Pol’s equation. Since the present 
circuit is somewhat more complicated, particularly in the volt-ampere 
characteristic, than that previously described, its analytic treatment 
will not be attempted. The following qualitative discussion, however, 
serves to describe the principal features of the oscillation.

The actual oscillation differs from the idealization just presented 
principally because of the effect of parasitic capacitances to ground. 
Since these are ordinarily small compared to Ci, they can be lumped 
into a single capacitance as shown by C2 in Fig. 12.6. This parasitic 
capacitance slows down the transitions and somewhat rounds the 
corners of the wave, from the form indicated in Fig. 12.7.

Calculation of the amplitude and period of the wave which will be 
generated by a given system is rather difficult. However, the liberal 
use of approximations permits us to obtain results which represent 
the operation sufficiently accurately to be useful. The discussion is 
based upon Fig. 12.8, which shows the variation of screen-grid current 
with screen voltage for various values of suppressor voltage. The 
dotted curves represent the variation which the screen current would
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have if the suppressor and screen were varied so as to maintain their 
potential difference constant. A load line starting at Vb with a 
slope corresponding to R2 is added.

Conditions which exist when the suppressor is biased beyond cutoff 
are represented by the point A, where the vertical displacement 
between A and the dotted load line represents the discharge current 
through Ci. As the suppressor bias decreases by relaxation of Ci 
through Ri a condition is reached at which plate current begins to 
flow, but the transconductance of the suppressor is inadequate to take 
control. The transconductance of the suppressor increases very 
rapidly in the interval represented by the arc AB until at B thejoop

Fig. 12.8. Operation of van der Pol oscillator.

gain is just unity. The transition now continues with cumulative 
acceleration along the line of a constant potential difference to point 
C, where the sum of the screen and suppressor currents meets the load 
line. In principle, the path for positive values of the - suppressor 
deviates somewhat from that indicated, but the deviation is small 
because the charge which can accumulate in Ci by the action of sup­
pressor current during the transition is negligible.

This transition occurs at a nonuniform rate which is difficult to 
calculate or specify. However, the minimum possible time would be 
equal to that required for the current corresponding to point B to 
charge the stray capacitance C2 to a voltage corresponding to the 
potential difference between B and C. If, for example, the current at 
B is 7 ma, the potential difference v between B and C is 50 volts, and 
C2 is lOggf, then the minimum possible transition time is t = q/i = 
0.07 gs. A considerably longer interval is to be expected in practice.
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A second period of relaxation from C to D now follows, during which 

the charge on Ci increases by conduction through Ri and the sup­
pressor grid. The screen current increases somewhat as the suppressor 
current decreases and as the potential difference between the two 
increases. Nothing in the nature of a cutoff occurs, but over much of 
this interval the screen current is almost independent of the suppressor 
voltage. The duration of this relaxation period may, in principle, 
be computed from the knowledge of the initial and final voltages of the 
suppressor, and the currents which flow through Ri and the sup­
pressor. The suppressor voltage corresponding to point B is known 
from the curves, as is the transition voltage from B to C, so that 
the initial suppressor voltage is known (and is relatively high). The 
final suppressor voltage appears on the curves at D, and the suppressor 
current may be estimated from tube characteristics.

The relaxation interval ends when point D is reached. At D the 
loop gain is again exactly zero, and the reverse transition begins, again 
along a path of constant potential difference to point A. The rate and 
interval of this transition are also complicated, but the time required 
is longer than that previously calculated. The nature and duration of 
the final relaxation period are relatively simple. The suppressor grid 
is so negative that no plate current flows, and relaxation of its potential 
toward Fc occurs by current flow through Ci, Ri, and R2. The 
initial value of suppressor potential is readily arrived at from knowl­
edge of the suppressor voltage at D and the total transition voltage 
from D to A.

In practice, the calculations just indicated are rarely or never made 
because of the difficulty and uncertainty involved. However, they 
serve to clarify the operation of the device and to illustrate methods 
which are useful in the analysis of all relaxation oscillators.

12.8 A pentode sweep circuit
In the van der Pol oscillator just described the plate current flows 
in a series of nearly rectangular pulses, which may be made short com­
pared to the interval if desired. Moreover, it is clear that the opera­
tion just described would not be affected if a sufficiently small imped­
ance were placed in series with the plate lead. For example, a series of 
small negative pulses of voltage could be obtained by placing a resistor 
in series with the plate. If the resistor were replaced by a suitable 
parallel RC combination it is clear that a positive saw-tooth voltage 
wave could result from the integrating action of the combination. 
Such an arrangement is not very useful because of its small output, 
but it logically leads us to the next step in the development.
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At about the same time Reich268 and Fleming-Williams95 inde­

pendently devised saw-tooth generators having the circuit configura­
tion of Fig. 12.9, which differs from Fig. 12.6 only in that the sup­
pressor bias is zero, the plate voltage is increased, and the plate resistor 
and condenser are added. In this and several other circuits the 
operation is unaffected whether C3 is returned to ground or to the 
positive end of the load resistor; however, the ground connection is 
usually preferred from mechanical and d-c considerations.

Although the circuit diagram of Fig. 12.9 is very similar to that 
of the van der Pol circuit just described, the operation is much more 
complicated. The additional time constant equal to R3C3, inherent in

Fig. 12.9. Pentode sweep circuit.

the new system, affects the cycle because, for small values of the plate 
voltage, the screen current is affected by the plate voltage. In the 
operating cycle just described, the periods of relaxation and conduction 
are controlled by the parameters of the screen and suppressor circuits, 
whereas in the present circuit the desired mode is one in which the 
period is controlled by the parameters of the plate circuit.

To obtain the desired operation let Ci be very large compared to C3, 
which in turn should be large compared to the stray capacitance 
C2. Moreover, let Ri be at least as large as the load resistor R3, 
which is likely to be somewhat larger than R2. The operation is 
explained by assuming the desired state of affairs and then demon­
strating its validity. We assume that the suppressor voltage is zero, 
the screen voltage is relatively high, and the plate and screen currents 
are high. Under these conditions the charge on C3 is rapidly reduced 
toward zero because the current drawn by the tube is much larger 
than that flowing through R3. This condition ends when the plate
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voltage falls to the knee of the pentode characteristic (usually about 50 
volts), at which point the plate current decreases, the screen current 
increases, and the resulting drop of screen voltage acts through Cr 
to cut off the plate current in a very short time.

In the next interval two different relaxation processes race for con­
trol. The charge on C\ decreases through R3 and R2; and the charge 
on C3 increases by the flow of current through R3 and the B supply. 
However, because the time constant of the plate circuit has been made 
small compared to that of the suppressor circuit, the plate voltage 
rises to a considerable value before the suppressor bias decreases 
appreciably. If the screen resistor R2 is suited to the characteristics of 
the tube, the plate voltage will reach a point at which the suppressor 
voltage no longer produces cutoff, and plate current will again flow. 
The current which goes to the plate is principally robbed from the 
screen so that the screen current decreases, the potentials increase, 
and the tube is driven into a condition of high conduction with the 
suppressor slightly positive, thus completing the cycle. An output 
of the order of 100 volts over a wide range of frequency is readily 
produced.

The linearity of the output can be made excellent if Vb2 is large. 
Likewise, very short flyback times may be secured by using a large 
resistance for R3 and by using a tube which draws relatively large cur­
rents. A tube having a large ratio of plate-to-screen current is desir­
able because it permits rapid discharge of C3 without consuming exces­
sive current during the remainder of the cycle.

Finally, the analysis indicates that the time constant of the sup­
pressor circuit need not be greatly in excess of that of the plate circuit. 
In fact, partial relaxation of the suppressor bias is advantageous in 
timing the period. Stability at a fixed frequency, therefore, is 
improved by a proper proportioning of these two time constants. 
Where a widely variable period is desired the original conditions are 
preferable, because the period is then defined by and directly propor­
tional to the plate circuit time constant.

12.9 Puckle’s sweep
A circuit247 which, with some refinements, can generate a saw-tooth 
wave of excellent linearity and short flyback time, is shown in Fig. 
12.10. A carefully designed circuit using high transconductance 
tubes has produced saw-tooth waves having a fundamental frequency 
in excess of 5 Me, and a flyback time approximately one-tenth of the 
period. The circuit is related to the multivibrator, but depends upon 
the principle of the cathode follower for its excellent performance.
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It differs from the multivibrator in that the plate of one tube is con­
nected directly to the grid of the other and that the period is fixed by a
single resistance-capacitance combination in the cathode of Ti. The
product CiRz is large compared to the desired period.

The oscillation is explained by noting that throughout most of the 
cycle Ti is at zero bias while Ti is cut off. It is therefore necessary 
to make R\ relatively large in order to avoid excessive current flow 
in T2. An initial charge in Ci leaks off gradually through the high 
resistance Ri so that T\ begins to conduct. The resulting potential 
drop which develops across R3 is transferred to the grid of T2 and 
causes a reduction of current in Ti. The resulting increase in the 
plate potential of T2 and the grid potential of Ti increases the con­
duction of Ti and accelerates the first transition, which ends with T2
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Fig. 12.10. Puckle’s sweep.

biased far beyond cutoff and Ti carrying a large current, the grid being 
returned to B+ through R4.

Provided the cathode of Ti has adequate emission, as is usually 
the case, this condition will persist until Ci is charged to a potential 
approaching Ft. As this potential is approached, the current through 
R3 and R4 decreases until the drop across R3 is no longer sufficient to 
hold Ti cutoff. The re-initiation of current flow in T2 reverses the 
transition previously described and restores the system to the initial 
condition in which Ti is cutoff and T2 is conducting.

During the relatively short interval when Ti is conducting, a con­
siderable charge is placed upon Ci, increasing its voltage to a value 
approaching that of the supply. This charge must decrease by con­
duction through R4 to a value such that the voltage across Ci is com­
parable to the plate voltage of T2 before T\ can again conduct. Thus, 
a negative saw tooth is generated, the sweep period corresponding to 
the relaxation of RiCi and the flyback corresponding to the conduction 
of Ti.
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The flyback time can be made very short. At operating frequencies 

of about one kilocycle a flyback time of about one microsecond is 
typical; at higher frequencies it can be reduced to about PS- The 
linearity may be made reasonably good by proportioning the param­
eters so that the operating period is only a small fraction of the time 
constant RiCi. This may be achieved by choosing elements and plate 
voltages such that during the relaxation interval the grid-to-ground 
potential in Ti is a fairly large fraction of the plate-to-ground potential.

This circuit has a number of desirable features. The output voltage 
is generated across a relatively large capacitance Ci, so that moderate 
capacitances in the load circuit do not degrade the wave shape and only 
slightly affect the frequency. Moreover, the output frequency can be 
varied between extremely wide limits simply by varying Ci. In 
practice, Ci is ordinarily switched in steps of about 3 to 1, and smaller 
frequency intervals are obtained by variation of Ri. The amplitude 
of the output is fixed by the applied voltage and tube parameters; it is 
therefore nearly independent of the frequency.

Because the cathode of Ti is not grounded but constitutes the 
output terminal, problems of cathode-to-heater potential arise. In 
most tubes this potential difference should never exceed 100 volts. 
Where large outputs are required it may be necessary to use a separate 
heater supply for this tube. And, as in other cathode followers, there 
is the possibility of hum in the output because of coupling between 
the heater and cathode. Somewhat similar to Puckle’s sweep and 
useful in certain circumstances are the saw-tooth generators described 
by Cocking,65 Malling,202 and Sing.284

12.10 Refinements of Puckle’s sweep
The linearity and high-frequency performance of the circuit just 
described leave much to be desired; they may be greatly improved by 
substituting a pentode for Ri and another pentode for T2. Because 
the plate current of a pentode is substantially independent of the plate 
voltage, the slope of the output voltage wave is nearly constant. Sub­
stitution of a pentode as T2 minimizes the undesirable effects of grid­
plate capacitance, thus decreasing the flyback time. Moreover, the 
suppressor grid of T2 provides a convenient terminal for injection of a 
synchronizing voltage.

When frequencies in excess of a megacycle must be generated, the 
principal difficulty is in obtaining an adequately short flyback time 
and a satisfactory means of synchronization. Use of a pentode in 
place of Ri is not necessary because the period must be short com­
pared to RiCi, and tolerable linearity automatically results. The 



THE MULTIVIBRATOR 281
necessary speed of operation is obtained by using high-transconduct­
ance pentodes for both Ti and T2 and by reducing all parasitic capaci­
tances to the smallest possible values. Synchronization may be 
achieved by injection of a signal on the screen-grid of Ti. This elec­
trode is shielded by the first and third grids; therefore, the synchroniz­
ing voltage is not superimposed upon the output saw tooth by direct 
capacitance coupling, as it is in most alternative arrangements.

12.11 The multivibrator
The symmetrical multivibrator, devised by Abraham and Block,1 is 
probably the best-known and most widely used form of relaxation

Fig. 12.II. Symmetrical multivibrator: (a) circuit, and (3) waveforms.

oscillator. The basic circuit, shown in Fig. 12.11a, has been modified 
in a great number of ways by many workers and for a variety of pur­
poses. Important applications include frequency multiplication, 
frequency division, generation of square and other wave forms, and 
timing functions. A useful summary of multivibrator information is 
given by Mather.207

The arrangement corresponds to a two-stage resistance-capacitance 
amplifier with output returned to the input. If we take account of 
the parasitic capacitances to ground, it is easy to show that the Nyquist 
plot has the form of a circle passing through the origin and centered on 
the real axis. The large diameter and open frequency scale of the 
circle immediately indicate that relaxation oscillations should occur. 
As with most relaxation oscillators, the operating frequency bears no 
simple relation to the frequency at which the Nyquist plot crosses the 
real-frequency axis.

The oscillation is conveniently explained by assuming that both grid 



282 PRACTICAL RELAXATION OSCILLATORS
resistors have been shorted for a long time and that the short circuit is 
removed at time t = 0. By symmetry, both tubes are conducting 
equal and considerable values of plate current in an unstable equi­
librium. If for any reason the plate current of one tube decreases 
slightly its plate potential increases, with a corresponding increase of 
the potential of the other grid. It is readily seen that the unbalance' 
is cumulative and that it will continue until one tube is cut off and 
the other tube is conducting an abnormally large current. This state 
of affairs persists while the potentials of both grids relax toward 
zero. When the tube which was previously cut off is again able to con­
duct, it will drop the grid potential of the other tube, reversing the 
cumulative process just described. The intervals of transition are 
readily made very short, but are not zero. The duration of this inter­
val is of considerable importance and is discussed later. The intervals 
of relaxation may be controlled between quite wide limits.

Figure 12.115 shows the wave forms of the grid and plate voltage in 
one tube of a symmetrical multivibrator; the wave form in the other 
tube is identical but displaced a half period in time. The negative 
excursions of grid and plate voltage are equal, as indicated. These 
curves are readily duplicated experimentally by using coupling con­
densers which are large compared to the parasitic capacitances of the 
circuits, grid leaks which are large compared to the plate resistors, 
and tubes having a relatively low value of p.

12.12 Analysis of the multivibrator
Because its operation is inherently very nonlinear, and because many 
factors influence its behavior, the multivibrator defies exact and com­
plete analysis. However, we can obtain a reasonably accurate picture 
of the operation by examining the several sections of the cycle. The 
present analysis follows the general approach of Kiebert and Inglis.167 
A somewhat more elaborate analysis is given by Webb and Becker.337

Because the resistance of a positive grid is low compared to that 
of a typical grid leak, the grid bias of the conducting tube is always 
very nearly zero when a transition begins. Correspondingly, the plate 
voltage is closely equal to the value determined from the static charac­
teristic for zero bias with the given supply voltage and load resistor. 
In the other tube, the plate voltage is equal to the supply voltage, and 
the grid bias is equal to the cutoff value. We assume that the plate 
load resistors are small compared to the grid leaks.

Because the transition occurs in a very short time, it is possible to 
treat it as a switching operation. On this basis, the conditions which 
exist immediately thereafter can be calculated by the methods of 
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ordinary transient theory. The blocking condensers are sufficiently 
large so that their charge cannot change appreciably during the trans­
fer time; therefore, ordinary exponential relaxations must occur in the 
interval following the transition.

The analysis is based on Fig. 12.12. The ideal rectifier is included 
to represent the fact that the grid draws current only when positive. 
The symbol fp represents the resistance which would draw the same 
current as the given tube with zero grid bias, whereas fg is an average 
value of the resistance of the grid when positive under the conditions 
that the plate is fed from Vb through the load resistor.

(a) (b)

Fig. 12.12. Analysis of multivibrator: (a) equivalent circuit; (b) Th^venin 
representation, and (c) wave form.

We first assume that the switch has been open for a long time. It is 
clear that no currents are flowing, that vc = 0, that vb = Vb, and 
that the voltage across C is also equal to Vb. When the switch is 
closed, vb drops to a value lower than Vb, vc assumes a negative value, 
and a discharge current begins to flow through C, Rg, and the parallel 
combination of rp and RL. No current flows in fg because of the polar­
ity of the discharge. The use of Th^venin’s theorem leads to the 
modified equivalent circuit of Fig. 12.126. Immediately following 
the closing of the switch, it is clear that vc has the maximum negative 
value

fpVb T7 RiVb 
^cm - ID t DTp + Rb Tp + Rl
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Consistent with ordinary transient behavior, vc relaxes exponentially 
toward zero with a time constant

To = C
rpRl \ 

fp + Rl) (12.9)

The half period of the generated wave may now be calculated, because 
the next transition will occur when the grid voltage vc relaxes to the 
cutoff value

vc = Vco = Vb/u. (12.10)

The total period T of the oscillation is then given by the equation

T = 2C Rg +
rpRr \ . 

-------“ ) mrP + Rj
uRl 

fP + Rl
(12.11)

Experiment confirms that this equation for the period is quite accurate 
if the effects of parasitic capacitance are negligible.

The behavior of the system during the remaining portion of the 
cycle is calculated by assuming that the switch is opened when eq. 12.10 
is satisfied. The situation is shown in Fig. 12.13. The condenser cur­
rent is now reversed and enlarged because fg, which is relatively low, 
becomes effective. The voltage which existed across the condenser 
when the switch was opened is given by the equation

fi
rpVb _ y ir _|tPRl 

fp + Rl co\ R^p+Rl)
(12.12)

where the first term represents the voltage which would ultimately 
have existed and the second term accounts for the voltages still existing 
across the resistors. Often part or all of the last term is negligible. 
Neglecting this term and the conductivity of Rg in comparison to fg, 
we see that the grid voltage immediately after the switch is opened has 
a maximum positive value

, _ TZ fp / fg \ _ ______VbfgRL_____
fem Vb I 1 _ /> / \ । r> / i- i r, \ / - I r> (12.13)\ rp + RJ \rg + Rl/ (rp + Ry(rg + RL)

Because rg is small, this voltage decays relatively rapidly with the 
exponential time constant

Tt = C(fg + RL). (12.14)

Because Ti is ordinarily a magnitude smaller than To the relaxation 
goes through some ten time constants, and vc becomes vanishingly 
small, as originally assumed.

Under the foregoing assumptions, the plate voltage wave would be 
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rectangular and the grid wave a simple exponential. However, this 
is known to be incorrect; the discrepancy is removed by noting that the 
plate current increases and plate voltage decreases during the short 
interval when the grid is driven positive. The magnitude of this 
correction for the plate voltage wave is readily calculated, under the 
assumption of linearity, by use of eq. 12.13 with the effective amplifica­
tion of the tube to obtain

f RiTgVb pRl

” (fp + R^g + Rff) fp + Rt- (12.15)

However, this correction must be applied with caution, especially if 
the plate load resistor is high, because then the condition of linearity 

Fig. 12.13. Relaxation of positive Fig. 12.14. Details of multivi- 
grid. brator wave.

is violated and eq. 12.15 yields too large a result. The same correction, 
subject to the same caution, should be applied to eq. 12.8 to obtain a 
corrected maximum negative grid excursion. The periods and other 
amplitudes are little affected because of the rapidity with which the 
positive grid bias disappears. The detailed wave shape corresponding 
to these calculations is shown in Fig. 12.14.

12.13 Numerical example
A typical symmetrical multivibrator employs a pair of 6J5 triodes (or 
the equivalent duals 6SN7 or 6F8G) in a circuit having the param­
eters Rl = 15,000 ohms, Rg = one megohm, C = 1000 ppf, and 
Vt = 250 volts. The chosen tube at the given voltage has the 
approximate values fp = 10,000 ohms, fg = 1000 ohms, and p = 20. 
By eq. 12.11 we have, as the total period, 5 milliseconds, representing 
a frequency of 200 cycles. The maximum negative and positive grid 
voltages are by eqs. 12.8 and 12.13 respectively Vcm = —150 volts and 
VCm' = +9.4 volts. Applying the correction of eq. 12.15 we have
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= 104 volts; however, this is absurd because it represents a 

negative plate voltage. Inspection of the actual rather than the 
idealized characteristics of the tube shows that the plate voltage will 
fall to a minimum of about 30. The time constants To and Ti are 
respectively 1.006 and 0.011 millisecond. That is, the time during 
which the grid is positive is indeed a very small portion of the total 
period.

12.14 Frequency stability of multivibrator
It is well known that the frequency of the multivibrator is not very 
stable, and that it is readily controlled by injection of an external sig­
nal. In almost every case, howeverLthe natural frequency should be 
stable so that the response to a given influence is predictable. It is 
therefore important to examine the operation with a view to rendering 
the natural frequency constant. Because the resistance and capaci­
tance values are quite stable, the problem is to proportion the circuit 
in such a way that the frequency is unaffected when the parameters of 
the tube change under the influence of applied voltage, aging, or 
replacement.

The equivalent plate resistance fp is an extremely variable param­
eter, sensitive to aging, heater voltage, plate voltage, and interchange 
of tubes. It is therefore desirable to choose parameters such that the 
half period as given by eq. 12.11 is insensitive to fp. Inspection of the 
various terms shows that this result will be achieved if

RL»fp (12.16)
and

Rg»fp. (12.17)
Moreover, the desired relationship between To and Ti requires that

Rg» Rl. (12.18)
Because the value of Rg is limited by leakage currents within the tube 
and by the need to produce high frequencies with reasonable values of 
C, it is often necessary to make fp quite low to satisfy eq. 12.16. Low- 
resistance tubes are therefore desirable from this viewpoint.

The amplification factor of a given tube is relatively insensitive to 
applied voltages and to aging, and different tubes of a given type differ 
less in this than in other parameters; however, the value of g is not 
truly constant. Therefore, the ratio Vb/Vc0 in eq. 12.10 is not a con­
stant, nor is its magnitude a matter of indifference. The preferred 
value of g, which is closely equal to Vb/Vc0, can be derived from eq. 
12.11. Assuming that eqs. 12.16 and 12.18 are satisfied, we may write
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eq. 12.11 in the form

T = k In (Vb/Vco\ (12.19)

where k = 2CRg. The change of period which will result from a 
small variation in the cutoff voltage, which might result from a change 
in contact potential or emission velocity, is

K co
(12.20)

The fractional change of period, which we wish to minimize, is

dT = _ dVc0
T - Vco In W^o)' (12.21)

The desired minimum corresponds to a maximum of the previous 
denominator; differentiation yields as the optimum condition

Vb = 2.71 Vc0 or ju = 2.71. (12.22)

That is, under the assumptions 12.16 and 12.18, the frequency is least 
affected by a prescribed change in Vco when p = 2.71. Such a low 
value of p is consistent with obtaining the desired low values of rp. 
Moreover the fractional change in p from tube to tube is lower in 
low-g than in high-p tubes because it is less sensitive to the position of 
the grid with respect to cathode and plate. Because tubes having 
the desired characteristics are not commonly available, it is fortunate 
that the same result can be achieved with ordinary tubes by the simple 
circuit change, described in the following section.

12.15 Positive grid return
The poor frequency stability which is characteristic of high-g triodes 
in the conventional multivibrator circuit is readily understood in 
terms of Fig. 12.15, which shows (curve a) that a small change in 
Vco will produce a large change in the period. A great improvement 
in stability would result if the voltage could be made to decrease 
linearly rather than exponentially with time. We are led immediately 
to the positive grid return as a means of approximating this objective.* 
The arrangement is shown in Fig. 1?. 16. It is seen that the grids now 
relax toward a voltage which is positive rather than zero and that the 
period is considerably shortened thereby. The successive steps in 
obtaining the original period with improved stability are represented

* The positive return was devised by the author in 1940 and was evidently 
invented still earlier by Bartelink.21 It has probably been independently dis­
covered by many other workers in the field.
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Fig. 12.15. Grid relaxation: (a) normal resistor and zero return voltage (&) same 
resistor and positive return voltage, and (c) higher resistor and positive return 

voltage.

Fig. 12.16. Symmetrical multivibrator with positive grid return voltage.

by curves b and c in Fig. 12.15. Re-examination of the development 
of eq. 12.11 with use of eq. 12.8 shows that the total period is now
given by

T = 2C Rg
rpRL

Tp + Rl-
ln

VsRl

,fp + Rl
(12.23)

As before, frequency stability is favored by making fp small. Parallel­
ing the development of eq. 12.22, we conclude that for optimum fre­
quency stability

Vb + Vc = 2.71(FCO + Vc). (12.24)
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If, as is usually the case, Vca is negligible with respect to the other 
terms, the criterion for best frequency stability reduces to

Vb = 1.71Fe. (12.25)

However, the optimum is reasonably broad, and it is customary to let 
Vb = Vc- This is convenient and has the advantage that any drift 
occurs equally in both voltages. Moreover, when Vb = Vc, specified 
values of Rg and C lead to somewhat higher frequencies than cor­
respond to eq. 12.25. The equation for the total period when Vb = Vc 
becomes

T = \ACRg or, roughly, T = V2 CRg. (12.26)

When suitable positive grid return is used and the impedance 
inequalities of eqs. 12.16 and 12.18 are observed, the frequency stability 
of the symmetrical multivibrator is reasonably good. Frequency 
variations due to aging and voltage changes are of the order of one 
per cent and those due to interchange of tubes are only a few per cent. 
Positive return of the grid leaks does not result in excessive currents or 
dissipation because of the large resistances used. The average grid 
current is usually only a fraction of a milliampere, and the plate cur­
rent is little affected, the positive bias helping to make the effective 
plate resistance small. Thus, although the arrangement is startling 
at first glance, it is entirely consistent with conservative long-life 
operation of the tubes. The return of the grid leaks to an adjustable 
positive voltage provides a very convenient and practical way of vary­
ing the period of a multivibrator without affecting the symmetry or 
general form of the output wave. Data on this and other features of 
multivibrator behavior are given by Bertram.32

12.16 Transfer time in the multivibrator
As with the van der Pol and other relaxation oscillators, the rapidity 
of transfer from one tube to the other in the multivibrator is limited by 
parasitic capacitance. The complete behavior is very complicated, 
but it is possible to obtain a reasonable approximation by methods 
similar to those already described.* The analysis begins with exam­
ination of Fig. 12.17, which represents the multivibrator having posi­
tive grid return. Let us study the transition in which ceases to 
conduct and Ti becomes conducting.

By assuming that both tubes have idealized cutoff characteristics 
and by limiting ourselves to the interval during which both tubes oper-

* An equivalent result is obtained by a comparable argument in Waveforms," 
pages 174 ff.
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ate in the linear negative-grid region, we may obtain a tractable equa­
tion. If the coupling capacitances are large compared to all others, their 
charge and potential difference cannot change during the transition.

Fig. 12.17. Symmetrical multivibrator with stray capacitances.

Therefore, only two variable potentials need be considered. Let 
be the amount by which the second grid is more positive than the 
cutoff value and v2 be the departure of the second plate from the 
initial (B+) value. Use of p for d/dt and the substitutions

Co = Cg + Cp (12.27)
and

Cm = 2Cc (12.28)
yield as the differential equations for the system
p^i(Go + Cm) + vi(1/Rl + l/rp + 1/Rg)

— pv2Cm + v2gm = 0 (12.29) 
and
pviCm -I- Vigm + pv2(Co + Cm)

+ ^(W + l/rP + 1/Rg) = 0. (12.30)

Elimination of the voltage variables and the additional substitution
G = 1/7?l + l/rp + l/rg (12.31)

yields the system equation applicable during the transition
G + 2pCm + pCo = gm. (12.32)

This equation has as the root which governs the rapidity of the 
transition

p = (gm- G)/(Co + 2Cm). (12.33)
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The voltage variation during the transition may be calculated on the 

basis of a knowledge of Vi and its rate of change at the beginning of the 
interval. From previous sections we know that at t = 0, tq = Vc0 
and

dvjdt = (Vb + VcJ/CrRg. (12.34)

This equation takes account of the positive grid return but neglects 
the effect of plate and load resistances. Using eq. 12.33, we have 

^1=^0 + aept and dvjdt = apept. (12.35)

Combination of the foregoing equation requires that a = — vb so that 
the variation of vi during the transition is described by

(Ui, + Fe)(C0 + 2Cm) / [^^]\Di =---- ——--------—------  I -1 + eLc.+2c-j 1. (12.36)
ClRgldm G) \ /

These conditions can hold only until iq = Fco or until v2 = —Vc0, 
whichever occurs first. Because zq has an initial time derivative 
whereas v2 has none, it appears that v2 will not precede iq; and con­
sideration of the symmetry of the system urges that the two limits will 
be reached nearly simultaneously. The total transition time tr is 
then given by the equation

_ Cp + 2Cm / VcoRg(gm ~ G) \
gm — G \(Fj, + Vco)(Co + 2Cm))

where the initial value vb is neglected in comparison to Vco.
To illustrate the application of this equation we shall substitute 

parameters corresponding to the example already given. For a 
6SN7 tube associated with typical socket and wiring, we have rp = 
8000 ohms, gm = 2500 micromhos, Cc = 4, Cp = 6, Cg = 8, Co = 14, 
and Cm = 8 ppi. Corresponding to previous values, G = 193 micro­
mhos; with Vb = 250 and Vc0 = 16 volts, eq. 12.37 yields U = 0.4 ps. 
This result is in good agreement with experimental values, if in making 
such a comparison we recall that the majority of the actual transition 
occurs during the latter portion of this interval, as shown in Fig. 12.18. 
It should also be noted that the positive grid return speeds the transi­
tion somewhat by increasing the initial slope, but that this effect is 
small.

For most applications the rate of the transition is the important 
parameter. From eq. 12.33 it is seen that a large value of transcon­
ductance accompanied by a small value of total capacitance is desir­
able. Thus the figure of merit of a tube for this purpose is closely
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related to the figure of merit for video amplification. There is, how­
ever, a distinction of some importance. In video amplifiers the stage 
gain is greater than one, or no useful purpose would be served. There­
fore, grid-to-plate capacitance is relatively important, and the per­
formance of a given basic tube is improved by inserting a grounded 
screen between grid and plate to obtain a tetrode. In the multi­
vibrator this is not true. Because each tube operates at unity gain 
during the transition, there is no profit in converting from a triode to a 
tetrode. For a plane-parallel tube, the removal of Cm by means of a 
grounded shield would at best increase both input and output capaci­
tances by Cm/2 and leave eq. 12.33 unchanged. In practice, the total 

Time, ms

Fig. 12.18. Calculated wave forms dur­
ing transition in multivibrator.

Fig. 12.19. Enlarged view of 
cutoff region.

capacitance would surely be somewhat increased and the transition 
slowed down. The use of pentodes is, however, sometimes desirable 
for other reasons, as discussed in a later section.

One additional feature of the transition should be mentioned. 
Because the cutoff in physical tubes is never sharp there is an additional 
interval to consider. In the tube which has been cut off, the plate 
current rises at first along a curve rather than as a sharp break, as 
shown in Fig. 12.19. Therefore, there is an interval during which the 
tube draws current but has a transconductance insufficient to produce 
unit loop gain. This interval evidently is short in time and provides a 
merging section between the two exponential curves already calcu­
lated. The effect is of importance only in connection with syn­
chronization, as discussed in Chapter 13. In all cases a sharp cutoff 
is preferable to a remote one, and in some cases the difference is of 
vital importance.
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12.17 Other symmetrical multivibrators

The multivibrator has been the subject of extensive development, 
and a large number of useful variations of the basic circuit have been 
devised. Some of the more important are described in this section.

Perhaps the simplest variation of the multivibrator is the sub­
stitution of pentodes for triodes, 
not in principle increase the ra­
pidity of the transitions. How­
ever, the extensive use of pen­
todes in other applications has 
led to the development of tubes 
which are quite desirable in mul­
tivibrators. Moreover, the knee 
region in the plate current char­
acteristic is favorable to fre­
quency stability in that the grid 
excursion is readily made almost 
equal to the applied plate voltage, 
tendency for the circuit to fail ti 

As previously mentioned, this does

Fig. 12.20. Pentode characteristics.

Unfortunately, there is a marked 
oscillate when this is done. In

this undesired stable condition, corresponding to Fig. 12.20, both 
grids are at zero bias and both plates are at a low voltage which is 
independent of the grid voltage. This condition, which is particularly 

Fig. 12.21. Screen-coupled pentode multivibrator.

likely to occur with positive grid return, can be upset by a vigorous 
transient. However, the necessity of providing a starting impulse is so 
undesirable that this arrangement is rarely used.

An important variation of the pentode multivibrator is shown in 
Fig. 12.21. The feedback coupling is provided by the screen and 
control grids, and positive grid return is used in the interest of fre­
quency stability. The output voltage may be taken from either 
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or both plate circuits. The desirable feature of this arrangement is 
that the output wave may be made remarkably square. This useful 
behavior depends upon a property of pentodes which is illustrated 
in Fig. 12.20. For low values of plate voltage the plate current 
depends principally upon the plate voltage and is virtually inde­
pendent of screen and control grid voltages. Therefore, the over­
shoot characteristic of the plate voltage wave of the triode is absent. 
Rounding of the leading edge of the wave form is avoided by limiting 
the plate load resistors to a low value, which in turn requires the 
use of a low plate supply voltage. This arrangement is used in many 
commercial square-wave generators.

Fig. 12,22. Symmetrical cathode-coupled multivibrator.

An important form of multivibrator depends for its action upon 
cathode coupling, as shown in Fig. 12.22. An exceptional feature of 
this circuit is that the timing action occurs in the cathode circuit, 
and is independent of the grid leaks and coupling capacitors, which 
should be effectively infinite. This is possible because there is no grid 
current, and desirable in the interest of allowing the cathode circuit 
to have complete control of the period, which then depends upon the 
coupling capacitor C and the plate and cathode resistors. An advan­
tage of this circuit is that relatively high frequencies may be produced 
with convenient values of the circuit parameters and without the loss 
of loop gain which is encountered in the conventional multivibrator.

The analysis is facilitated by assuming that the cathode resistors are 
large compared to the reciprocal of the transconductance (Ricdm^ 1)- 
As previously stated, the grid leaks and condensers are assumed to be 
effectively infinite. The plate load resistors are assumed to be equal 
and will presently be assigned a value somewhat smaller than the 
cathode resistors. Each tube conducts an average current io', and 



OTHER SYMMETRICAL MULTIVIBRATORS 295
during its active period carries a current which decreases in a nearly 
linear manner from 2z'o + fi to 2i'o — ii. Typical wave forms are 
shown in Fig. 12.23.

The operating cycle may be explained by assuming that Ti, which 
previously carried a current (2z0 — ¿1), has just ceased to conduct. 
Accordingly, the potential of the plate of T\ and of the grid of T2 
is suddenly increased by an amount (2zo — ii)Rp. Moreover, the 
cathode potential of T2 increases by substantially this amount, as does 
the cathode potential of T\ by the action of Ck- The potentials of 
the grid and cathode of T2 now remain constant for an interval during 
which the cathode potential of T\ relaxes toward zero by action of Rk 
and Ck.

Volts

Fig. 12.23. Wave forms in cathode-coupled multivibrator.

The discharge path includes Ck and Rk of Ti. Because the cathode 
potential of T2 is nearly constant fluring this interval, the time con­
stant of this relaxation is simply RkCk- Simultaneously, the potentials 
of the plate of T2 and hence of the grid of Ti increase, because the 
decrease in currents in Rp of T2 and Rk of Ti must be equal. The 
interval comes to an end when the grid and cathode potentials of Ti 
reach the cutoff value; whereupon Ti becomes conducting and T2 
is cut off.

The quantitative behavior of the cathode-coupled multivibrator 
may be approximated by a procedure similar to that used in con­
junction with the ordinary multivibrator. During the time that a 
particular tube conducts, its grid potential and hence cathode poten­
tial are substantially constant. However, the cathode current, which 
equals the plate current, changes in an approximately linear manner in 
conformity with the relaxation of the cathode condenser. Let us 
represent the average current flowing through the cathode resistor of 
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the conducting tube as ib. Then, the total cathode (and plate) cur­
rent decreases from (2z0 + ii) to (2i0 — i'i) during the conduction 
interval. Therefore, in the nonconducting tube the cathode potential 
drops by 2iiRA, and the grid potential increases by 2iiRp, by action of 
the coupling condenser. Conduction will recommence when the sum 
of the above excursions is (approximately) equal to the sum of the 
transitions produced at the beginning of the cutoff interval. That is, 
when

2ii(RP + Rfi) = iiRk + (2?q + ii)Rp 
or (12.38)

io/h = (Rp + Rfi/^Rp.

Moreover, the period t of conduction by one tube is given approxi­
mately by the relation based upon relaxation of current in the cathode 
resistor of the cutoff tube

t = RkCk In f10 +-^ = 2RkCk ii/io, (13.39) 
Vo — 21/

where the latter form is based on the series approximation valid if 
ii « io- The overall period, T, may be obtained by combining the 
previous equations to obtain

T = 2t = 8RkCkRp/(Rk + Rp). (12.40)
The total period reduces simply to RkCk provided Rk = 7RP, a relation­
ship which is suitable for typical operation.

The operation of the circuit is illustrated by a numerical example, 
which corresponds to values indicated on Fig. 12.23. The tube is 
the 6SN7 dual triode, and the circuit parameters are Vb = 250 volts, 
Vc = 67 volts, Ck = 1000 ppf, Rk = 20,000 ohms, and Rp = 2800 
ohms (Rk/7 approximately). The values 2q = 4 ma and ii = 1 ma 
lead to the potentials shown. Reference to the static characteristics 
of this tube show that a plate current of 9 ma (2i0 + ii) corresponds to 
a plate voltage of 145 volts and a negative bias of 3 volts. The plate 
current is reduced to 7 ma (2i0 — ii) at a plate voltage of 150 by about 
an additional volt of grid bias. The only serious discrepancy in the 
previous discussion arises from the assumption implicit in eq. 12.38 
that the operating and cutoff biases are equal. Actually, the cutoff 
voltage in the present case is about 12 rather than 3 volts, and the 
period will be about 10 per cent shorter than indicated.

It will be noted that the full period corresponding to eq. 12.40 is 
only 20 microseconds, corresponding to a fundamental frequency of 
50 kc, and that much shorter periods could be obtained without the 
use of unreasonable element values. The transition speed of this 
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circuit has not been calculated; however, it is probably somewhat 
superior to that of the conventional multivibrator. In any event, 
the wave forms are not appreciably rounded because of the low imped­
ance levels. Moreover, the frequency is insensitive to tube conditions 
because the grids are not driven positive and because a large amount 
of negative feedback is provided in the cathode circuit. For the same 
reason it is relatively easy to maintain equality between the conduction 
intervals of the two tubes. It is clear that the advantages of cathode 
coupling may be preserved when pentodes are used, and that very 
square output waves may still be obtained by the use of the form of 
plate clipping described in connection with Fig. 12.21.

12.18 Asymmetrical multivibrators
In the preceding sections we have assumed that the tubes and com­
ponents are entirely symmetrical. Such a condition is never achieved 
exactly and is rarely approximated. However, the operation of the 
various circuits is not greatly affected unless the departure from sym­
metry is quite marked. The duration and magnitude of the voltages 
and currents at corresponding points are unequal, but the overall 
behavior is little affected. The principal effect from the practical 
standpoint is that for particular ratios of “off” and “on” time 
certain harmonics disappear from the output. For this reason it is 
unwise to attempt to use high-order harmonics from multivibrators. 
This topic is discussed more fully in Chapter 14.

For certain applications it is desirable to operate the multivibrator 
asymmetrically so that one tube draws current longer than the other.93 
In moderation, this effect is readily achieved in the standard circuit 
configuration by making one grid leak or condenser (or both) con­
siderably larger than the other. However, as the degree of asym­
metry is made large many problems arise. The basic difficulty is 
that the longer relaxation time must be prepared for during the shorter 
conduction period. This topic is discussed at length by Chance67 
(pages 179 ff. of his book) and will not be considered in detail here. 
In general, however, if a symmetrical multivibrator using fairly low 
values of grid leaks can be made to operate at the shorter of the two 
intervals, the desired operation is secured if one grid leak is increased 
to lengthen the corresponding conduction period. Increase of a 
coupling capacitance is not suitable because the initial charge as well 
as the discharge is upset. The cathode-coupled multivibrator of the 
previous section preserves much of its desirable behavior if rendered 
asymmetrical. Here too, however, some care must be given to the 
circuit proportions.



298 PRACTICAL RELAXATION OSCILLATORS
An inherently asymmetrical multivibrator is shown in Fig. 12.24. 

It is seen that the circuit would be stable and that both tubes would 
draw reasonable and nearly equal currents if Ra were shorted. The 
corresponding conditions of voltage and current approximate the 
average of the values which occur during operation. Use of Nyquist’s 
test shows that the circuit is unstable. Application of a small positive 
voltage to the grid of Ti would produce a nearly equal voltage rise at 
its cathode and hence at the cathode of T2. The resulting loss of 
current in T2 would produce a large positive voltage returned to the 
grid of Ti, through C.

Volts

Fig. 12.24. Asymmetrical cathode-coupled multivibrator: (a) circuit and (6) 
wave forms.

Values suitable for operation with the 6SN7 dual triode are Rg = 
106, Rl = 104, Rk = 2 X 104 ohms, C = 1000 ppf, Vb = 250, and 
Vc = 100 volts. The operation is best understood in terms of the 
voltage waves of Fig. 12.246. During one interval, the grid of T\ 
is held negative by action of the plate circuit of T2, which draws a 
constant current. The magnitude of this current is quite insensitive 
to the condition of the tube because of the marked stabilizing action of 
the large cathode resistor. When the grid has relaxed to about 92 
volts, conduction in Ti is resumed. The corresponding reduction of 
current in T2 is regenerative through the plate circuit, and in a short 
time T2 is completely cut off and the grid of Ti is driven some 50 
volts positive by the action of the coupling condenser. However, the 
grid of Ti does not draw current during this interval because the 
cathode voltage rises very rapidly. During the next interval the grid 
relaxes downward toward Vc (100 volts). This timing period ends
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when the voltage equals about 110 volts, at which time tube T2 begins
to conduct and the grid is driven negative to 60 volts to commence the
alternate timing interval.

In spite of the asymmetry of the connections, the conduction periods 
are almost identical. When T2 is cut off, the relaxation is clearly that 
of C in series with Rg and RL. When T2 is conducting, the circuit is 
modified by the effective plate resistance, given by the formula

rff = rp(l + Rkgm), (12.41)

which is 400,000 ohms in the present case, and since Rg » RL the effect 
is entirely negligible. Any asymmetry observed in the conduction 
intervals is due to inequality in the cutoff characteristics of the tubes.

The circuit is attractive because an output may be taken from a 
low-resistance R2 in the plate lead of T\, without affecting the opera­
tion and because the grid of T2 is available for synchronization or 
other control. Finally, the voltage wave at the plate of T2 is quite 
square and free from overshoot. Additional information concerning 
this and related circuits is given by Pullen,249 Glegg,114 and Newitt.220

12.19 The blocking oscillator
Figure 12.25 shows an important relaxation oscillator, now commonly 
referred to as the blocking oscillator. The configuration is virtually

Fig. 12.25. The blocking oscillator: (a) circuit and (&) typical wave forms.

identical with that of the tuned plate oscillator, previously described, 
but the operation is quite different because of the difference in the 
values of the parameters. In particular, the plate and grid windings 
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are tightly coupled, usually by means of a laminated iron core. The 
inductances are relatively large, and the capacitances are as small as 
possible. An exceptional feature of the blocking oscillator is the large 
peak power which may be generated with a small tube. A momentary 
power output of 100 watts from a tube such as the 6J5 is typical. 
Overheating does not occur because the plate current is zero dur­
ing a very large fraction of the total time. The circuit, which has 
received extensive development, appears first to have been devised 
by Vecchiacchi.331 Additional discussion and analysis is given by 
Last’83 and Benjamin.29

Slightly idealized wave forms representing the conduction interval 
in a typical blocking oscillator are shown in Fig. 12.255. The plate 
voltage drops to a small fraction of the supply value, the grid is driven 
to a large positive voltage, and large plate and grid currents flow. 
During the interval of conduction the grid-to-plate transconductance is 
very low and the grid loses control of the plate current; conduction 
ceases where the grid regains control. This usually occurs when the 
charge accumulated in Cg by the large grid current is sufficient to bias 
the system so that the grid is no longer more positive than the plate. 
At the end of the conduction interval the tube remains cut off for a 
considerable relaxation period while the charge stored in Cg leaks off 
through Rg. In typical circuits the conduction and relaxation periods 
are about one microsecond and one millisecond, respectively.

The operation of the blocking oscillator is complicated. Analysis 
of the operation is difficult because of nonlinearity in the tube and 
probably in the transformer as well. The empirical approach is also 
difficult because it is very hard to isolate and control the important 
parameters. However, the following statements appear to be ade­
quately established by experience. In all cases it is assumed that only 
one parameter is varied at a time.

(1) The relaxation period is directly proportional to Rg.
(2) Both the conduction and relaxation periods increase with 

increase of Cg, but not proportionally.
(3) The conduction period increases with increase of the self­

inductance of the transformer.
(4) More core material is required if the output power or con­

duction period is increased; otherwise saturation interferes with the 
operation.

(5) The conduction period will be shortened if the cathode emission 
of the tube is sufficiently reduced by lowering the heater voltage.

(6) Damping must be provided by means of a load resistor or by 
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core losses; otherwise the conduction interval is followed by violent 
oscillations.

(7) The steepness of the voltage waves is controlled by parasitic 
capacitances in the tube and transformer, and by leakage.

Pulse voltages of a kilovolt or more at power levels of several kilo­
watts may be obtained by using a transmitting tube such as the 829 
in a blocking oscillator. Such an arrangement is greatly favored in 
compact low-power radar systems because of the resulting high 
efficiency and economy of parts.

12.20 Analysis of the blocking oscillator
In Chapter 7, it was shown that relaxation oscillations will occur in 
the circuit of Fig. 12.26, provided

uM > rp(2 L2C + Li/R + L2/rPY (12.42)

This information is applicable, because we may identify Fig. 12.26 
with the blocking oscillator of Fig. 12.25. Subject to the assumption of
unity coupling, we have M = L2/0, 
where 0 is the turns ratio of the 
transformer. Moreover, the total 
effective capacitance is given by 
C = C2 + Ci/02. Eliminating M 
in eq. 12.42 yields as the condition 
for relaxation oscillation

M > 0(1 + rp/R + 2rp Vc/Li).

(12.43)

In Chapter 2 it was shown that 
while the tube is cut off the plate Fig. 12.26. Analysis of pulse length.

circuit is critically damped, provided R = | y/L^/C. However, a 
heavier damping is desirable, and we shall assume that

R — x y/Li/C. (12.44)

With this substitution and the choice R = %rp, suitable for typical 
triodes, eq. 12.43 becomes

M > 5.50. (12.45)

This condition is readily satisfied by conventional triodes in conjunc­
tion with transformers having turns ratios near one.
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Although an exact analysis is impractical, we may obtain useful 

information about the operating cycle of the blocking oscillator by 
means of suitable approximations. Let us first explore the pulse 
length, that is, conduction interval. On the basis of experimental 
data and experience with the multivibrator we anticipate that the 
parasitic capacitances are unimportant and that the governing factors 
are the transformer, the condenser Cg, the tube, the supply voltage, 
and possibly the load resistor. Unity coupling between the windings 
is assumed, because of the tight coupling commonly used in trans­
formers for this purpose.

Fig. 12.27. Approximate constant-current curves of 6J5.

Conduction begins at the instant, t = 0, when the grid bias voltage 
vd falls to the cutoff value Vco. The first small increment of plate 
current induces a positive voltage in the grid winding which increases 
the conduction, and the plate current increases rapidly and expo­
nentially with time. In a very short interval the grid is driven positive 
and both plate and grid draw quite large currents. Because of the 
short time involved there can be no appreciable storage of energy by 
establishment of flux in the transformer. Therefore, we may write

¿1 = <j>i2. (12.46)
The extent to which the grid is driven positive and the magnitude 

of ii and i2 can only be determined by reference to the characteristic 
of the vacuum tube used. Figure 12.27 shows the properties of the 6J5 
or 6SN7. The characteristics shown are somewhat idealized to
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emphasize the properties of present interest and to simplify the calcu­
lations; they are, however, essentially correct. The exceptional 
feature of these curves, which are obtainable only by pulse techniques 
because of the large values of power dissipation involved, is that the 
plate current is independent of the grid voltage if the grid is more positive 
than the plate. It is this fact which permits the tube to conduct a sub­
stantially constant current for a finite interval.

Provided vc > vb, the characteristics of the vacuum tube may be 
represented approximately by the equations

ib = gPVb (12.47)
and

ic = h = ffcVc — gbVb, (12.48)

where gp> gc, and gb represent the self-conductances of plate and grid, 
and the transfer conductance of the grid, respectively. Moreover, we 
may write

vb = Vb — v, (12.49)

vc = v/<fr — vdl (12.50)
and

ib = ii + v/R. (12.51)

Solving simultaneously, we have at the beginning of the interval of 
conduction

, _ Ybgc + <j>2Vb/R — <hgcVd _ 
b ^/R + <t>lgJ> + 4>gb + ge

As a numerical example consistent with Fig. 12.27, let us substitute 
Vb = 200 and vd = 10 volts, R = 2000 ohms, 0 = 2, gp = 0.006, 
gc = 0.004, and gb = 0.002 mho. These values correspond to the load 
line shown and lead to vb' = 32.9 volts. The corresponding param­
eters are v' = 167.1 volts, vf = 73.6 volts, if = 228, if = 114, and 
if = 198 ma.

During the conduction interval the grid has negligible control over 
the plate current, which tends to remain constant because of the low 
dynamic plate resistance. However, both the grid current and the 
voltage decrease rapidly for two separate reasons. First, the large 
grid current charges Cg, thereby increasing vd and reducing vc. Second, 
because the self-inductances of the transformer are finite, the relation­
ship represented by eq. 12 46 is departed from to a degree given by 

v = L2di2/dt — M dijdt. (12.53)
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If the grid condenser is large, Vd will remain substantially constant. 
Moreover, because the transformer is assumed to have unity coupling, 
the relationship between plate and grid voltages represented by the load 
line of Fig. 12.27 is preserved. The operating point simply travels 
to the right along the load line until the condition vb = vc is reached, 
at which time the conduction ceases. Because v does not change by a 
large amount during this interval, we may obtain a good approxima­
tion to the conduction interval by the use of simple increments. The 
currents which correspond to the intersection of vb = vc with the load 
line may be represented by ib" and i”. With this substitution the 
approximate value of the inductance-controlled pulse length is

t = (12 54) 
v

In the numerical example cited, conduction ceases when vb = vc = 
60 volts, at which point ib" = 360, ii" = 120, and i2" = 290 ma. 
Substitution of v = 150 as a rough average value and, using L2 = 3.2 
and M = 1.6 mh in eq. 12.54, we have from the initial and final current 
values the inductance-controlled pulse duration Z = 4.6 gs.

When the grid condenser is relatively small it exercises the main con­
trol over the pulse length. When this is true, we can obtain a fair 
approximation to the pulse duration by assuming that the transformer 
inductances are infinite. The pulse will end when Vd increases to some 
new value Vd" which satisfies eq. 12.52 at some point where vb" = v"'. 
The resulting condition may be shown to be

/1 <Z> + 1 \vd"' = Vb I - - )• (12.55)
\<Z> R4>gP + Rgs — Rgc + </>/

Moreover the charge must represent the accumulation of grid current 
according to the expression

Vd" ~ vd = W i (12.56)
Gg JO

The associated variation of voltages is represented in Fig. 12.27.
Consistent with the same numerical example we have vi" = 72.7, 

vb" = 18.18, and v = 181.8 volts, and ¿i = 36.36, i2 = 18.18, and 
ib = 109.1 ma. Assuming that the grid current decreases linearly with 
time, we may use the average to approximate the condenser-controlled 
pulse duration

1 = 2C° ^-"+1 (12>57)
T
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Further assuming that Co = 2000 mii, a typical value, we have, from
eq. 12.57, t = 0.95 gs. In practice, both Cg and L2 influence the pulse
duration. However, one or the other parameter usually exerts the
main control so that a good approximation to the behavior may be
obtained from eqs. 12.54 or 12.57, whichever is appropriate.

The pulse length of a blocking oscillator may, within Emits, be con­
trolled by means of a delay line which is substituted for Cg in Fig. 
12.25a. The line is open-circuited at both ends except for the high 
impedance of the grid leak. Provided the line has a suitable imped­
ance and the transformer is capable of creating pulses somewhat 
longer than the desired value, the pulse length will correspond to the 
round-trip time of the line. Conduction ceases because the bias 
voltage Vd approximately doubles at the instant when the wave 
reflected by the open circuit returns to the input end of the line.

12.21 Rise time and overshoot
The preceding discussion has inferred that the plate potential drops 
instantly when conduction begins and rises instantly when it ceases. 
Actually, of course, this is not true because of parasitic capacitance, 
leakage inductance, and other distributed elements. However, the 
transitions may be made very rapid because of the low impedance 
levels and large effective transconductance which exist during the 
pulse. As a crude approximation we may write for the rise time in 
Fig. 12.26

Returning to the numerical example, where C = 50 X 10—12, v = 167, 
ib = 198, and fi = 228, we have tr = 0.026 jus, a reasonable value. 
It is possible to make more accurate calculations of rise time, but the 
circuit parameters are rarely known well enough to justify the extra 
effort.

At the end of the conduction interval the energy stored in the trans­
former inductance is dissipated in the load resistor R. The sudden 
termination of ii and ib causes a decrease in i2 and a consequent 
reversal of i3 and v. The magnitude of the reverse voltage developed 
across C and R is readily calculated by transient theory. Moreover, 
we can immediately set an upper bound on this reverse voltage or 
overshoot by ignoring C and using the continuity of current in an 
inductance.

Consistent with the 4.6 jus pulse of eq. 12.54 we find that the current 
transferred to the resistor is (290 — 120/2) ma and the reverse voltage



TABLE 12.1. Transformers for Userin Blocking Oscillators

Rad. Lab. 
Number*

W’hse 
Numberf

Winding 
Turnst

Load, 
Ohms

Pulse 
Length, ns GE

Number §
Winding 
Turnst

Pulse 
Length, /is

Raytheon 
Number

Winding 
Turnst

Pulse I
Length, ns

132-AW Pl 32-32-32 250 0.3 to 1.5 68 G 505 82-74/82-74 0.5 to 10 UX 730711 50-50-50/50-50-50 0.1 to 5
132-BW P2 32-32-32-10 200 0.3 to 1.5 68 G 627 140-140/140-70 1 to 20 UX 7350 50-50-50/50-50-50 0.1 to 5
132-DW P3 20-20-20 300 0.1 to 0.5 68 G 709 150-150/150-150 1 to 20 UX 7852 32-32-32 0.3 to 1.5
134-BW P4 140-140/140-70 1500 1 to 5 68 G 712 150-150/150-150 1 to 20 UX 7853 32-32-32 0.3 to 1.5
134-CW P5 140-140-70 1200 1 to 5 68 G 813 37-74/74-111 0.5 to 10 UX 8091 70-70-140 1 to 5
134-EW P6 50-50-25 800 0.3 to 1.5 68 G 828 140-140/140-70 1 to 20 UX 8092 40-40-80 0.5 to 2
145-CW P7 125-125-125 500 1 to 5 68 G 979 140-140/140-70 1 to 20 UX 8205 60-60-80 1 to 5
145-EW P8 150-150-150 800 1 to 5 80 G 240 150-150/150-150 1 to 20 UX 8413 140-140/140-70 1 to 5
166-AW P9 90-90-135 800 1 to 5 80 G 459 50-100-70 1 to 20 UX 849611 50-50-50/50-50-50 0.1 to 5
176-AW P10 70-70-140 1000 1 to 5 80 G 587 100-100-100 0.5 to 10 Utah No.
187-AW Pll 40-40-80 400 0.5 to 2 80 G 754 125-75-50 1 to 6 OA 1811.1 50-50-50/50-50-50 0 .1 to 5
224-AW P12 35-35-35-10 1000 0.1 to 0.5 713 0884 20-20-20 0.1 to 2 OA 15** 80-80/80-80 1 to 50

* These twelve designs originated at the M.I.T. Radiation Laboratory. 
The suffix “2” is sometimes used to indicate that the Hypersil core stock is 
0.002 inch rather than 0.003 inch thick.

+ Made by Specialty Transformer division of Westinghouse Electric Cor­
poration, Sharon, Pa. Depending upon the impregnation and mounting, the 
type number is preceded by 1, 4, or 7. Rated at a maximum duty of 0.002, 
although a larger value should be safe at lower levels.

J The number of turns in each separate winding is given. The slant bar 
indicates windings on the opposite leg of a simple core.

§ Made by the Specialty Transformer division of the General Electric Com­
pany, Fort Wayne, Ind. The wide range of pulse durations represents a 
difference of rating rather than of construction.

|| These units appear to be identical in essential characteristics. The wide 
range of pulse duration is achieved by variation of the manner in which the 
windings are connected.

Tf The Utah OA 18 is the basis of a long series of sealed transformers which 
differ in internal connection and inductance tolerance. The X139 uses only 
two windings on one leg; the X143 uses three windings on one leg. The X124 
uses all windings in three series-aiding pairs; the X146 differs from it only in 
that one pair of windings is ignored. The X148 uses all windings in two series- 
aiding groups. The X140 uses four series-aiding coils and two separate coils; 
whereas the X138 uses series-aiding groups of two and four coils. A green 
dot indicates a close tolerance on primary inductance, a yellow dot is inter­
mediate, and a red dot indicates a relatively wide tolerance. The 9280 and 
9262 are equivalent to the X124.

♦♦ The X154 and X166 transformers are based on the OA 15 design. These 
and nearly all other Utah designs are currently available from Fisher Engineer­
ing, Inc., Maple Grove Road, Huntington, Ind. Certain of the Utah designs 
are also manufactured by Chicago Transformer Company and United Trans­
former Company.
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could not exceed 460 volts. Consistent with the assumption of eq. 
12.57 there would be no overshoot because no energy was assumed to 
have been stored. In practice there is usually an appreciable over­
shoot, but the magnitude of this effect can be kept within tolerable 
limits.

The wave forms produced by practical blocking oscillators are 
seriously degraded by leakage inductance, distributed capacitance, 
and saturation in the transformer. Moreover, if the core laminations 
are too thick, the resulting eddy currents excessively reduce the 
transient inductance of the windings. These effects are so pronounced 
in the transformers commonly used in television sweep circuits that 
the wave form is smoothed to the approximate form of a single sinu­
soidal cycle. In view of these effects, and contrary to our definitions, 
Maloff and Epstein203 assert that the blocking oscillator is not a 
relaxation oscillator.

The performance of a blocking oscillator is greatly affected by the 
construction of the transformer, which ordinarily employs several 
single-layer windings on one or both legs of a small core of thin mag­
netic laminations or ribbon. The design of such transformers is a 
complicated matter, based very largely upon empirical procedures. 
It is therefore desirable to use a ready-made unit whenever possible. 
To facilitate experimental work, the properties of some transformers 
which have been manufactured in quantity are presented in Table 
12.1.
12.22 Variations of the blocking oscillator
A number of variations of the blocking oscillator exist. One of these, 
shown in Fig. 12.28a, employs coupling between the plate and cathode 
circuits, and uses the tube as a grounded-grid amplifier. In this 
arrangement the grid is substantially at ground potential and the flow 
of plate current drives the cathode negative with respect to the grid. 
Because the cathode impedance is low, it is necessary to use a step­
down ratio between plate and cathode. The plate winding ordinarily 
has two or three times as many turns as the cathode winding. The 
remarkable feature of this circuit is that the maximum voltage devel­
oped across the load R is considerably larger than V?,. This situation 
exists because the cathode is driven negative with respect to ground 
by the transformer action. And, as already shown, a quasistable state 
can exist only if the plate is negative with respect to the grid, which in 
turn is negative with respect to ground by the amount of the bias. 
This arrangement is good on the basis of parasitic capacitances, because 
one end of each winding is effectively at ground potential and because
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the grid serves as a grounded shield between plate and cathode. More­
over, for reasons that are not well understood, the operating cycle is 
relatively insensitive to tube and voltage variations.

The grounded-plate form of the blocking oscillator is shown in Fig. 
12.285. The arrangement shown suffers the disadvantage that the 
rapidity of transfer is degraded by the relatively large cathode-to-

Fig. 12.28. Variations of the blocking oscillator: (a) grounded grid, (6) grounded 
plate, and (c) Kobayashi’s sweep.

ground capacitance and by direct grid-to-ground capacitances. How­
ever, these effects can be minimized by careful layout and by feeding 
the heater through appropriate chokes.

The advantage of the grounded-plate connection is that elec­
tron coupling is readily achieved by substitution of a pentode with 
by-passed screen grid and with a suitable load in series with the plate. 
Because the full transconductance is available, the transition rates
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may be made relatively fast. Electron coupling has the usual advan­
tage of isolating the timing functions from the load circuit; here it
permits the generation of powerful negative pulses which are quite
free from oscillations or overshoot.

Electron coupling may also be obtained by using the screen of a 
pentode as an equivalent plate, in a grounded cathode circuit. How­
ever, the reduced transconductance which is inherent in this arrange­
ment seriously limits the performance.

A circuit due to Kobayashi,176 which is related to Puckle’s sweep, is 
shown in Fig. 12.28c. The circuit differs from the ordinary blocking 
oscillator in that the grid is returned to a fixed positive voltage, and 
the relaxation occurs in the cathode circuit. The operating cycle is 
readily explained on the basis of the previous work. The charge 
placed on Ck by preceding cycles leaks off through Rk until the con­
denser voltage approaches Vc. At this point plate current begins to 
flow, and the regenerative action drives the grid positive. The large 
cathode current which results from the combined grid and plate cur­
rents rapidly charges Ck toward the supply voltage Vj.

As with the normal blocking oscillator, the conduction interval will 
end by the action of the transformer itself if no other influence is 
present. This is the desired condition in the present case. The 
transformer is so proportioned that the conduction interval is no 
longer than the allowable flyback time. The cathode condenser is 
chosen so that the total charge delivered by the cathode will produce a 
suitable increase of cathode voltage, the desired value depending 
upon considerations of linearity, etc. Finally, Rk, which may be 
replaced by a pentode in the interest of linearity, is chosen to give the 
desired sweep period consistent with the capacitance of Ck and the 
voltage excursion already fixed.

Few data are available concerning this circuit, but it appears that 
the arrangement should be capable of producing a relatively large 
sweep voltage with exceptionally short flyback time over a wide range 
of frequencies. For extremely high frequencies, it should be superior 
to Puckle’s sweep in that even larger values of grid and plate current 
are realizable.

PROBLEMS
12.1. Derive eqs. 12.3, 12.5, and 12.6.
12.2. A thyratron oscillator similar to that of Section 12.5 has values Vj = 150, 

Vt = 20, and Vo = 500 volts; C = 1000 ppf, Ri = 300, and R = 107 ohms. 
Calculate the period, and flyback time, the amplitude, and nonlinearity and dis­
placement error.

12.3. In Fig. 12.6, C = 10-9 farads, Rj = 2 X 104, and Ri = 2 X 106 ohms, 
and Vd = 200 volts. Calculate the wave form and periods, using the curves of 
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Fig. 12.8 and assuming that the third grid has an effective resistance of 5000 ohms 
when positive.

12.4. Discuss the design of Buckle’s sweep, giving special emphasis to the ways 
in which the conduction of Ti may be brought to an end.

12.5. Referring to Section 12.13, determine the period and wave forms produced 
by a 6SN7 provided C = 500 ppi, RL = 104 and Ra = 106 ohms, and Vb = 300 
volts.

12.6. Repeat Prob. 12.5, assuming the grid leaks are returned to +300 volts.
12.7. Taking characteristics of the 6SJ7 from a tube handbook, design a multi­

vibrator like Fig. 12.21 to generate 30 volts output at a frequency of 5 kc.
12.8. Design a multivibrator corresponding to Fig. 12.22 to generate a 20-kc 

wave with the 6SN7 tube, Vb = 300 volts and Rk = 25,000 ohms.
12.9. Calculate the frequency and wave forms produced by the multivibrator 

given as a numerical example in Section 12.19.
12.10. Verify eqs. 12.54 and 12.57.
12.11. Under the assumptions made in Section 12.20 show that the actual plate 

voltage tends to decrease during conduction if the pulse duration is controlled by 
Cg; to increase if it is controlled by the transformer inductance.

12.12. The 6SJ7 pentode is to be used in an electron-coupled blocking oscillator 
corresponding to Fig. 12.286. Discuss the parameters which must be specified in 
order to obtain desirable operation.



13

LOCKING AND
SYNCHRONIZATION

This chapter is concerned with the behavior of an oscillator which is 
subjected to a signal injected from an external source. The per­
formance depends greatly upon the frequency, amplitude, and shape of 
the injected wave, and the characteristics of the oscillator itself. In 
general, however, the output contains a component of the injected 
frequency. And in many cases the original frequency of oscillation 
becomes equal or harmonically related to the injected frequency.

The terms locking and synchronization are used interchangeably to 
designate the interaction between two oscillators or between an oscil­
lator and a separately supplied signal. The term pulling, although 
sometimes used in this connection, is reserved here to designate the 
effect of the load impedance upon the operating frequency, especially 
in microwave oscillators. An oscillator is said to be locked if the out­
put frequency contains only the input frequency and its harmonics. 
If the injected signal is inadequate to produce locking, the output con­
tains both the injected and the generated frequency.

Synchronization is important as a nuisance effect in beat-frequency 
oscillators and similar devices where a relatively small difference 
frequency is desired. It is usefully employed in frequency-modulation 
receivers and related devices as a means of amplification and limiting. 
As long as the input signal is sufficiently large to produce synchroniza­
tion, the output is substantially constant in magnitude and contains 
a single frequency equal to that of the input. Finally, a locked oscil­
lator may serve as a detector of frequency-modulated waves, if the 
average current in some part of the system is made a function of the 
input frequency.

In linear oscillators the injected signal affects the operating fre­
quency only if the two frequencies are nearly equal. But in ordinary 
harmonic oscillators there is an appreciable effect if any reasonably 
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simple harmonic relationship exists between the two frequencies. In 
relaxation oscillators the tendency toward synchronization is so strong 
that frequency ratios as great as ten to one are commonly employed.

If the injected signal is derived from a second oscillator, there will 
be a reaction which tends to modify the amplitude and frequency of its 
oscillation. That is, when two separate oscillators are coupled 
together, both are affected. This phenomenon was probably first 
noted by Huygens, who discovered that two similar clocks hung on 
the same wall tend to synchronize and operate at the same rate. This 
effect, which is discussed toward the end of this chapter, was originally 
described in a very clear and thorough paper by E. V. Appleton.12

13.1 Locking in a linear oscillator
The lamp bridge oscillator discussed in several previous chapters is 
chosen to illustrate the analysis of thermistor-controlled linear oscil­
lators. The arrangement shown in Fig. 13.1 has been chosen to 
simplify the analysis. We assume that the grid and plate impedances 
of the tube are very high, and that the tuned grid circuit provides the

Fig. 13.1. Synchronization in lamp bridge oscillator.

entire selectivity of the system. In the absence of an injected signal, 
the circuit oscillates at a frequency Fo determined by the LC combina­
tion. The amplitude of oscillation is such that a voltage To exists 
across the lamp bridge, and a voltage Eo exists in the grid circuit.

Before proceeding further, it is appropriate to note that the lamp 
bridge ordinarily is nearly balanced. Therefore, for a voltage VB only 
slightly larger than Eq the bridge will reach balance, and the voltage E 
returned to the grid will be zero. Accordingly, if the synchronizing 
signal is sinusoidal with an amplitude Ei = EB such that the output 
voltage V = VB, there will be no output signal of frequency Fo pro­
duced regardless of the injected frequency F'.

Let us now assume that the synchronizing signal has a frequency 
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F' = Fo and that Ei is in phase with E, and is arbitrarily varied in 
amplitude. Under these circumstances the feedback action of the 
oscillator serves to stabilize the output voltage, as indicated by Fig. 
13.2. It is seen that for Ei > EB the phase of the feedback voltage is 
reversed, and the system is degenerative rather than regenerative. 
The output is, of course, a sine wave of frequency Fq.

The crucial step in the argument arises when we consider a shift 
in the phase of the injected voltage. The situation is shown by the 
phasor diagram of Fig. 13.3. It is seen that the returned voltage E 
is more nearly in phase with total grid voltage than is the injected 
voltage, and that the oscillation will quickly pull itself into phase with

Fig. 13.2. Variation of Fig. 13.3. Phase shift associated with synchro­
feedback with synchro- nization.
nizing voltage for F’ =

Fo.

The phase relationship shown in Fig. 13.3 can remain fixed only if 
the synchronizing frequency F' differs from the natural frequency of 
the system to such an extent that the loop phase shift is just equal 
to 9. Under these circumstances the entire system operates at the 
input frequency F', and there is no output at the natural frequency Fo. 

So long as the input is large enough to produce synchronization, the 
output is nearly constant, independent of Ei, and identical to it in 
frequency. Such operation is referred to as locked oscillation and is 
useful in numerous applications.

13.2 Quantitative requirements for locking
The conditions which may arise as the amplitude and frequency of the 
synchronizing voltage are varied are conveniently studied by use of the 
modified phasor diagram of Fig. 13.4. At any specified frequency F' 

there is a unique phase angle 0 between E and (E + Ei) as determined 
by the selectivity of the system. Therefore, there is a certain mini­
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mum synchronizing voltage E/, in quadrature with E, required to 
produce locking. If the synchronizing voltage is below this value the 
output will contain both F' and Fq, and the total output power is the 
same as if no synchronizing signal were supplied. If the synchroniz­
ing voltage exceeds E/, as shown by Ef' in Fig. 13.4, there are two

Fig. 13.4. Calculation of voltage required for synchronization.

possible phase relationships which satisfy the stated requirements. 
However, the position shown by E/" is unstable because it requires an 
unnecessarily large value of E. If the synchronizing voltage is made 
larger than the balance value EB, the phase of the returned voltage E 
is reversed.

The calculation of the minimum voltage which will produce syn­
chronization is relatively simple because in the marginal case E + Ei 
must equal Eo for all values of 0 in order to maintain the loop gain 
at zero. Therefore, provided Ei < Eo, the governing equation is

Ei/Eq = sin 0. (13.1)
The phase shift 0 is produced by the tuned grid circuit. Because 

this circuit has a moderately high Q we may use the approximate 
expression.*

a . (13.2)
r o

When Ei is below the value required for synchronization, the output 
contains both frequencies as previously noted. Provided that the

* An expression corresponding to eqs. 13.1 and 13.2 for the region where 0 = 
tan 9 is obtained by Aigrain and Williams.6
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period of the difference frequency between F' and Fa is short compared 
to the time constant of the lamp bridge, there is no interaction, and 
the total power output V (at two frequencies) is exactly normal because 
the loop gain must be unity for the production of Fo. The boundary 
of synchronization corresponding to the above equations is plotted in 
Fig. 13.5.

Fig. 13.5. Voltage required for synchronization at various frequencies.

When Er exceeds the minimum value which produces synchroniza­
tion, the output voltage is somewhat increased. It is clear that the 
output is constant at the value V = VB for all values of F' if Er = EB 
because the lamp bridge is balanced, and no regeneration occurs. The 
behavior at other frequencies may be obtained by use of the amplitude 
stability factor developed in Section 7.6. In the notation of Chapter 7 
we may write

V = WfiWE + Ej), (13.3)
which upon differentiation yields

dV = NR[gm dE + (E + E^d^]. (13.4)
Combining these equations with the basic definition of amplitude 
stability, and assuming Ei constant, we have

S -V
= dgm

9 m.
_ « gmdE + (E + Er)dgm 

" (E + Et)^ (13.5)
or

& = 1 -
dE V

(E + Ex) dV (13.6)

Provided the limiter has a linear characteristic in the operating region, 
as indicated in Fig. 13.2, we may write

k(VB - V),
1 + j tan 9 (13.7)
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where the factor k depends upon the amplitude stability factor, and 
the denominator term accounts for transmission through the tuned cir­
cuit. The parameter k is in turn evaluated by noting that in the 
absence of a synchronizing signal we may differentiate eq. 13.7 to 
obtain

dE = —k dV. (13.8)
Together with eq. 13.6 this yields

8a - 1 = k
V

E + Ei
,VB

= kK (13.9)

Elimination of k and E between eqs. 13.7 and 13.9 gives as the output 
voltage

V = VB^ 1 + (1 + J tan 0)Ei/EB 
8A + j tan 0 (13.10)

which is valid only provided a single output frequency is present. 
This expression reduces to the identity V = VB if Ei = EB as it should. 
A plot of this expression for SA = 10 and Q = 50 is shown in Fig. 
13.6.*

In the upper curve, corresponding to | Ei/EB\ = 2, the output is at a 
single frequency equal to F', and decreases in magnitude as the natural 
frequency is approached. For the second case, |Ei/Eb| = 1, the out­
put contains only the frequency F' and is constant in magnitude. 
In the lower curve, where |Xi/XB| = two frequencies are present 
over most of the range. When F' is remote from Fq, the output at

* In using eq. 13.10 it is necessary to remember that Ei and V are not in phase. 
That is, Ei/Eb must be treated as a complex number. Computation is facilitated 
by use of the substitutions \Ei/Eb\ = c and Ej/Eb = a + jb, which require c2 = 
a2 + b2. With these substitutions, eq. 13.10 becomes

V y Sa — 1 + a — b tan 0 + j(b + a tan 6)

Vb Sa + j tan 0

Because the new variable Y is a real number, we may expand and separately equate 
real and imaginary parts to obtain

YSa = Sa — 1 + a — b tan 0 and Y tan 0 = b — a tan 0.
Solving for tan 0 yields

tan 0 = b/(Y + a) = (a + Sa — 1 — YSA^/b.
Cross multiplication and introduction of c2 yields

c2 = Y(a + Sa - 1 - YSa) + a(SA - 1 - YSa).

It is now possible to calculate a explicitly by substitution of known values of c 
and Y. Use of 6 = Vc2 — a2 permits calculation of tan 0, which, with eq. 13.2, 
yields the output at F'.



A LINEAR BIAS-CONTROLLED OSCILLATOR 317
Fq represents about three-fourths and that at F' represents one-half of 
the reference (1+) value. The power represented by Fo falls off 
rapidly as F' approaches Fo.

At first sight it might appear that the power output at frequency Fq 
would be constant for a given value of as long as F' lay outside the 
range of synchronization. Actually, however, there is feedback at 
the synchronizing frequency as well as at the natural frequency, 
so that the output at F' increases and that at Fo diminishes as F' 
approaches Fo.

Subject to the assumptions made, the foregoing analysis indicates 
that no hysteresis is present. That is, if at some suitable frequency 
F', Ei is increased, the voltage at which Fo disappears should not 
differ from the voltage at which Fo reappears when Ei is again reduced.

Fig. 13.6. Variation of output voltage under synchronization (Q = 50, Sa = 10).

In practice, however, there may be some hysteresis, especially if the 
time constant of the lamps is not long compared to the period of the 
difference between Fo and F'.

Finally, we may readily account for any selectivity which exists 
between the point at which the synchronizing voltage is injected and 
the thermistor limiter. Both the attenuation and the phase shift 
which occur at frequencies away from the natural frequency require an 
increase in the magnitude of the synchronizing voltage. Equation 
13.1 still applies, but eq. 13.2 must be modified to account for the 
increased phase shift.

13.3 Synchronization in a linear bias-controlled oscillator
As a second example of the synchronization of a linear oscillator let us 
consider the system of Fig. 7.16. Again, we assume that the time 
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constant of the rectifier system is long compared to the period which 
corresponds to the difference between the natural and the synchroniz­
ing frequency.

A careful comparison of this and the previously studied systems 
shows that they operate in an identical manner under all conditions 
which lead to a single output frequency. If the synchronizing signal 
is relatively large, the transconductance of the tube is depressed to a 
point which will not support self-oscillation, and the system serves as a 
simple stabilized amplifier. If the synchronizing signal is small but 
near the natural frequency there is an addition of voltages as shown in 
Fig. 13.3.

The only novelty is observed when the injected voltage is inadequate 
to produce synchronization. If this case, two output frequencies are 
observed as before, but the amplitude sum is now constant on a 
voltage rather than a power basis, because the rectifier serves as a peak­
reading voltmeter. Therefore, the total power output is depressed in 
this region; and as the natural frequency departs from the syn­
chronizing frequency, the output at the natural frequency increases 
somewhat more slowly than in the termistor oscillator. A similar 
effect is observed in most nonlinear oscillators, which also tend to be 
limited by peak voltage rather than by power.

It should again be noted that linear oscillators synchronize only 
with signals of a frequency very near to their natural frequencies. No 
effect is produced if the injected signal is a multiple or submultiple of 
the natural frequency unless the level is raised to such a point that 
nonlinear operation is produced.

13.4 Synchronization in an ordinary harmonic oscillator
Unlike linear oscillators, ordinary harmonic oscillators are syn­
chronized by signals which are related in any simple manner to the 
natural frequency. Before studying these more complex cases, how­
ever, let us examine the behavior when the frequencies are nearly 
equal. The system to be studied is the ordinary tuned plate oscillator. 
Analytically, the most important difference between this oscillator 
and the ones previously studied is that the time constant of the limiter 
is very short compared to the period of the highest difference fre­
quency of interest. Physically, this means that limiting takes.place 
cycle by cycle rather than over a period of many cycles. In such oscil­
lators, the behavior will follow rapid variations in the frequency or 
amplitude of the synchronizing signal, whereas linear oscillators 
respond much more slowly and are subject to transient effects, which 
may prove quite undesirable.
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Within the range of synchronization, the behavior of a nonlinear 

oscillator is very similar to that of a linear oscillator; all the voltage 
waves are nearly sinusoidal, and the plate current, although flowing 
in pulses, has its timing or phase set by the sum of the returned and 
the injected voltage. Under typical operating conditions the output 
voltage V is substantially unchanged by the addition of the syn­
chronizing voltage. The alternating grid voltage and the grid bias 
increase about equally, and the average and effective plate current are 
little affected. The situation is illustrated in Fig. 13.7, which shows 
typical operating wave forms.

Fig. 13.7. Synchronization at fundamental frequency in a class C oscillator.

Inspection of Fig. 13.7 shows that the synchronizing voltage is 
effective only during the short interval of conduction. Therefore, 
any other signal which coincides with the indicated sine wave over the 
period of interest would give the same result. The double frequency 
input wave of Fig. 13.8 is seen to approximate this condition, and 
is found to produce a strong locking tendency. The input frequency is 
the second harmonic of the oscillator frequency; or, alternatively, the 
oscillator operates at a subharmonic of the input. As might be antici­
pated from the wave forms, the tendency to synchronize decreases as 
the frequency ratio is increased, but ratios as high as ten to one may 
be used under special conditions.

There is also a tendency to lock when the input is at a submultiple 
of the oscillator frequency or is related to it by a simple ratio such as 
3:2. However, the lock is never strong, and the conditions are too 
complicated and specialized to warrant treatment here. The inter­
ested reader is referred to the work of van der Pol,322 Tucker,315’ 315 
and Schaffner.269 David70’71 has shown that the synchronization of
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microwave oscillators is governed by the same principles which 
apply at lower frequencies.

In linear oscillators the natural frequency of oscillation is not per­
turbed by the synchronizing signal. The amplitude of the self-oscilla­
tion merely decreases smoothly toward zero as synchronization is 
approached. In nonlinear oscillators the behavior is considerably 
more complex. As synchronization is approached, the self-generated

Fig. 13.8. Synchronization at a aubharmonic frequency in a class C oscillator.

frequency is drawn toward that of the injected signal and becomes 
modulated. The difference frequency, which exists as a physical 
beat, is described in a markedly nonuniform manner. The following 
analysis is limited to an injected signal which is small in comparison to 
the self-generated signal at the corresponding point in the system.

13.5 The differential equation of synchronization
The first step in the analysis, which follows that of Huntoon and 
Weiss,161 is to assume that the synchronizing emf in the grid circuit is 
replaced by an incremental impedance z = r + jx. The output volt­
age and frequency are then affected by this small impedance according 
to the derivatives

dV
dr

dF „ 
— = F, 
dr

-dV
dx

— Ax,
— dF
dx

= Fx (13.11)
where the derivatives are evaluated forz = r + jx = 0. (13.12)
The output voltage and frequency corresponding to any small z are 
then given to the first order by

A = Ao + rAr — xAx (13.13)
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F = Fo + rFr - xFXl (13.14)

where A 0 and Fa are the values observed for z = 0.
The compensation theorem is used to obtain expressions in terms of 

voltage instead of impedance. The desired equation is

Ej = loze-7* or z = (Ei/Io)e>0, (13.15)

where Io is the current which flows through z when z = 0, and 0 (later 
identified) is a function of time. The compensation theorem, although 
norm.ally limited to linear systems, is valid here because the system is 
subject to equivalent linearization.

The derivative coefficients are now combined in complex form to 
obtain compliance coefficients

C, = Ar + jAx = VAr2 + A2 eia = CAeia (13.16) 
and

C? = Fr+jFx = Vft2 + Fx2 e’s = (13.17)
where

tan a = Ax/Ar and tan d = Fx/Fr. (13.18)

Multiplying eq. 13.15 by eqs. 13.16 and 13.17, and taking the real 
parts, we have

(Real)(zCA) = rAr + xAx = A — Ao = Ca(Ei/Io) cos (0 + a),
(13.19) 

and
(Real) (zCp) = rFr + xFx = F — Fo = Cr(Ei/Io) cos (0 + d)-

(13.20)
The variation of 0 is now defined by the relationship

1 d± = F’ _ p = (F' - Fo) - (F - Fo). 
2ir at

(13.21)
This expression is given physical signifi­

cance in the phasor diagram of Fig. 13.9. 
Consistent with eq. 13.15, <f> may be taken 
as; the instantaneous phase angle between 
the injected signal and the voltage of self-oscillation. This phase 
angle 0 will tend toward a constant under conditions of synchroni­
zation but will vary periodically in the absence of synchronization.
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The changes of variable

f = F’ — Fo, (13.22)

y = 4> + ß> (13.23)
k = CF/I0, (13.24)

and
a = f/kEr, (13.25)

inserted in eqs. 13.20 and 13.21 lead to the important differential 
equations

= f- kErwy (13.26)2ir at
and

---- —---- = 2vkEi dt. (13.27)a — cos 7
The solution of eq. 13.27 is a simple damped function provided

a < 1 (13.28a)
but is periodic and relatively complicated if

a > 1. (13.286)

13.6 Solution of the differential equation
The aperiodic solution a < 1, corresponding to eq. 13.28a, is under­
taken first. By using formula 300 of Peirce’s book,235 subject to 
a < 1, eq. 13.27 may be integrated to yield

1 InV^l — a2 v/l + a)/(l — a) + tan (7/2)
V(1 + a)/(l — a) — tan (7/2).

= to + ZvkEit

(13.29)or
•\/(l + a)/(l — a) — tan (7/2) (13 30)
V(1 + a)/(l - a) + tan (7/2) ?

where K = e-Vi-a1» js the constant of integration. The steady 
state of synchronization corresponds to

a = cos 7, (13.31)

as may be seen directly from eq. 13.26 or which can be obtained from 
eq. 13.30 by setting t = «.

A transient, which might arise from a sudden change in the amp-
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litude or frequency of the synchronizing signal, disappears at a rate 
corresponding to a time constant of

2xkEi Vl - a2 2xf Vl/a2 - 1
(13.32)

It should be noted that y and </> themselves are not governed by eq. 
13.32, which applies to the entire function given by eq. 13.30. How­
ever, the decay of <f> is monotonic rather than oscillatory, and occurs at 
a rate which is nearly equal to that of eq. 13.32 unless the parameter a 
approaches one.

This decay rate is important because it is a measure of the rapidity 
with which a locked oscillator can follow a frequency-modulated wave. 
Evidently, the period tm of a highest modulating frequency should be 
large compared to eq. 13.32 if serious distortion is to be avoided.

Synchronization is lost if the input signal is inadequate. When a 
is slightly larger than 1 corresponding to eq. 13.28b, the behavior of y 
and 0 becomes complicated and interesting. Over a large portion 
of the cycle the cos y term in eq. 13.27 is negative and nearly equal to a, 
so that dy is small. The portion of the cycle in which the cosine term 
is positive is described in a relatively short time because of the rela­
tively large derivative term. Integration of eq. 13.27 subject to the 
restriction a > 1 leads to

or

— to + 2xkE it (13.33)

— 1 (¿o -|- 2xkEit) (13.34)

Under these circumstances y and hence is a continuously varying 
function of time. Moreover, at uniform intervals of time, the quantity 

(a) (b)

Fig. 13.10. Frequency perturbation in the region of synchronization of a non­
linear oscillator.

in brackets will reach values of 0, x/2, x, 3x/2, etc. The tangent of 
these angles is successively 0, «>, 0, — », etc. Accordingly, y also
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reaches 0, ir/2, ir, 3ir/2, etc., at uniform time intervals. At inter­
mediate values of time the relationship is more complicated; therefore, 
the beat produced is ordinarily quite nonsinusoidal. The wave forms 
of beat notes corresponding to eq. 13.34 are plotted in Fig. 13.10 for a 
value of a slightly greater than one and for 3 = 0 and r/2.

Fig. 13.11. Wave form of beat note: Fig. 13.12. Mechanical model of
(a) for 3 = 0 and (b) for 3 = «72. synchronization.

The average beat frequency is readily obtained. Because one cycle 
of y corresponds to an interval of ir in the quantity in brackets, in eq. 
13.34, we may write for the actual beat frequency

f = kEi Va2 - 1 = f Vl - 1/a2, (13.35)
which approaches f for large values of a. For smaller values of a, 
however, the beat frequency rapidly drops to zero as shown in Fig. 
13.11. This behavior is in marked contrast to that of linear oscillators 
in which no such frequency perturbation occurs.

13.7 A mechanical model
Adler,2 in an important paper, presents a very elegant mechanical 
model to illustrate the synchronizing action described by eq. 13.26. 
A cylinder containing a viscous fluid is imagined to rotate about a 
horizontal axis as shown in Fig. 13.12. A pendulum or vane, sup­
ported at the center of rotation, is acted upon by the rotating fluid and 
by the restoring force of gravity. The angular velocity of the drum 
with respect to the stationary observer may be taken as 2ir/ radians per 
second. Thus, the pendulum experiences a clockwise torque due to

1 dthe fluid proportional to f--------— and a clockwise or counterclock- 2?r dt
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wise force due to gravity proportional to cos 0, as shown. The 
effects of inertia are assumed to be negligible; therefore, subject to 
d = 0, the differential equation for this system is the same as eq. 13.26.

If the cylinder is rotated uniformly at a slow speed, the pendulum 
assumes a fixed small angle, as indicated. If the velocity is suddenly 
increased, a transient will occur, during which the pendulum moves 
without oscillation to a new equilibrium position. If the velocity is 
increased above a critical value, corresponding to a = 1 in the previous 
work, the pendulum is carried above the horizontal position, equi­
librium is destroyed, and the pendulum begins to rotate. However, 
the velocity is relatively slow as the pendulum is raised by the fluid, and 
is much greater as the pendulum falls under the combined force of the 
fluid and of gravity.

If the angular velocity is further increased, the viscous force becomes 
large compared to that of gravity, and the pendulum is carried along 
at an almost uniform rate. However, the pendulum never quite 
reaches the velocity of the drum.

13.8 Application as a limiting amplifier
A locked oscillator may be used as a limiting amplifier in a receiver for 
frequency-modulated signals. In this application a relatively large 
and constant output at the frequency of a small input signal is desired. 
A rapid response is necessary because the input frequency changes 
according to the modulation of the transmitter. Moreover, it is 
desirable that the output be substantially unaffected by other signals 
or noise having frequencies near that of the desired signal. A locked 
oscillator has all these properties to a rather remarkable degree.

With this objective in mind, let us examine the behavior of a locked 
oscillator. We must use a nonlinear oscillator having cycle-by-cycle 
limiting to obtain the required rapidity of response, which must be 
sufficient to follow the highest frequency present in the modulation. 
The situation is comparable to that of establishing the cutoff of a 
single-section RC filter in terms of its time constant. Using this 
analogy, we observe the point of 3 db loss and 45° phase shift for

R = —or = 2kRC = 2irh, (13.36a) 
2ir/iC fi

where fi is taken as the highest modulating frequency. On this basis 
with eq. 13.32, we may write

2ir«i = r > —/ 1 (13.366)
fi f Vl/a2 - 1
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As before, f represents the difference between the injected and the 

natural frequency. Let the oscillator be tuned to the nominal carrier 
frequency, and let fm represent the maximum instantaneous excursion 
of the frequency modulation. We require, consistent with eq. 13.36b,

- i > (fM2
2 / 1

Or a I + (fM2' (13.37)

Because/i (the speech bandwidth) is always small compared to fm (the 
maximum modulation excursion) in practical systems, the restriction is 
substantially equivalent to the restriction a < 1. Physically, this 
means that the response will be adequately rapid if the oscillator holds 
in step over the entire frequency range. And in practice it is desirable 
to provide a reasonable margin such as two to one, in this range, in 
the interest of certainty of synchronization. That is, it is desirable to 
restrict ourselves to the condition a <

The design therefore reduces to the problem of obtaining the largest 
possible output voltage consistent with synchronization across the 
band by a prescribed small signal. The situation is conveniently 
discussed in terms of the tuned plate oscillator. Evidently, a large 
voltage amplification and a small rate of change of phase with fre­
quency are desired. A high-/* tube with a large load impedance R 
and a small plate capacitance C is indicated.

Let us assume a pentode with a total effective load impedance equal 
to R and an effective transconductance of gm. We may then write

V = gmRE. (13.38)
In the oscillator in question, the compliance coefficients are most 
conveniently obtained directly. The situation corresponds to syn­
chronization in a linear oscillator, and eq. 13.1 is applicable, with the 
additional condition that 6 is small. Equations 13.1 and 13.2 there­
fore correspond to

Ei/E = 2tym/aFo, (13.39)

where fm represents the maximum instantaneous frequency deviation, 
and a represents, as before, the margin above minimum synchroniza­
tion. Elimination of E and Q in terms of the plate capacitance yields

V/Ei = agm/4xCfm. (13.40)

It should be noted particularly that the load resistance and carrier 
frequency do not appear in eq. 13.40, and that the ordinary video­
amplifier figure of merit gm/C applies.
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Therefore, the effective voltage amplification which may be obtained 

is independent of the operating frequency, proportional to the trans­
conductance, and inversely proportional to the effective capacitance 
and the band of synchronization. For this reason locked oscillators 
are often worked on a subharmonic basis in order to reduce the syn­
chronizing band required. Moreover, it should be noticed that the 
operating frequency is not a matter of complete indifference; for, if 
it is made too low, the oscillations may fail to be harmonic, in which 
case the basic assumptions would be violated.

As a numerical example let us choose a 6SJ7 pentode operated in 
moderate class C and receiving the commercial FM band of +75 kc. 
Reasonable values of the parameters are gm = 500 micromhos, a = 
and C — 15 ppi. Then we have, by eq. 13.40, V/Ei = 17.7.

The resulting equivalent amplification is quite small, being com­
parable to that obtained in the same tube as a linear amplifier. More­
over, a large input signal would be required, so the particular example 
is clearly impractical. However, the 6AH6 pentode used under similar 
circumstances would yield an amplification of about 400 because of its 
higher transconductance and lower plate capacitance. Beers28 has 
obtained an effective gain of 30 from an oscillator locked at one-fifth 
the driving frequency and used as an amplifier and limiter in a fre­
quency-modulation receiver.

13.9 Increase in the synchronizing sensitivity
The factor which limits the bandwidth over which synchronization 
may be maintained is the phase shift in the tuned circuit or circuits. 
Evidently, any modification which would reduce the rate of change of 
phase shift would correspondingly broaden the band of synchroniza­
tion. Carnahan and Kalmus63 have used for this purpose a circuit 
which, except for the crystal, is identical to the broad-band grounded- 
grid crystal-controlled oscillator of Chapter 9. Moreover, the design 
considerations are substantially identical. In the present case, how­
ever, the coupling to the auxiliary tuned circuit should not exceed 
the critical value; otherwise the circuit will be capable of operating at 
either of two separate frequencies, and synchronization with small 
signals will be lost.

The phase characteristic of coupled circuits is not readily expressed 
in simple equations. However, it is easy to show that the bandwidth 
over which the phase remains less than some small fixed quantity, 
such as half a degree, is increased by at least a factor of ten by the 
addition of the coupled load. On this basis the 6SJ7 and the 6AH6 are 
capable of effective gain values of 177 and 4000, respectively, for 
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the present FM band. If the output voltage were restricted to 10 
volts in each case, the required input would be 55 and 2.5 millivolts, 
respectively.

These are attractive values of amplification, but they can be 
obtained only by careful design and construction. In particular, the 
coupled circuits must be accurately tuned to the same frequency, 
the plate tuning must be accomplished by a variable inductance to 
maintain the minimum possible value of capacitance, and the coef­
ficient of coupling must be accurately controlled. These practical 
difficulties restrict the use of this scheme to rather special applications.

13.10 The locked oscillator as a detector of frequency modu­
lation

The use of a locked oscillator as a detector of frequency modulation 
depends upon the fact that the average current at some point in the 
system may be made a function of the injected frequency. It appears 
that this application was first suggested by Woodyard,348 although the 
arrangement which he used had been described earlier by Appleton.12 
The circuit tested by Woodyard is shown in Fig. 13.13a.

(a)
Fig. 13.13. Detection of frequency modulation: (a) circuit and (6) response.

Figure 13.136 shows that the response observed in the independent 
coupled circuit is remarkably similar to that of a conventional dis­
criminator, as described in Chapter 17. The central portion of the 
characteristic is quite linear, and the slope is independent of the 
magnitude of the input signal. However, the length of the linear 
region, which corresponds to the range of synchronization, is approxi­
mately proportional to the input voltage.
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The linearity of the characteristic depends upon the phase relation­

ships which exist between the several circuits. If, at the midfre­
quency, the voltage induced in the load circuit by the signal is in 
quadrature with that produced by the oscillator, it is clear that the 
total amplitude will change more or less linearly as the phase of the 
synchronizing voltage varies through a moderate angle in the center 
of the locking range. Such a phase relationship may be obtained in 
the circuit of Fig. 13.13a if the coupling paths are appropriately 
adjusted. However, the arrangement is inherently insensitive because 
the maximum output voltage is no larger than the input voltage.

A more useful approach to the detector problem is obtained by 
returning to the analysis of Section 13.5. It is seen that the output 
amplitude will vary linearly with frequency if a = d in eqs. 13.19 and 
13.20; this requires that

Ax/Ar = Fx/Fr. (13.41)
Moreover, large values of the amplitude coefficients are desirable 
in the interest of sensitivity. That is, the amplitude should be made 
as sensitive as possible to impedance changes at the driving point.

In a practical detector the average plate current rather than the 
amplitude of oscillation is of principal concern, because it offers a 
convenient means for delivering the signal output without resorting to 
an additional rectifier. A figure of merit for a locked oscillator can 
therefore be established on this basis. First we assume that the 
injected signal is small compared to the voltage of self-oscillation so 
that we may rewrite eq. 13.1 in the form

E^E > 6. (13.42)
Moreover, the maximum possible increment in plate current within 
the range of synchronization is

(13.43)T disi = — e.
dO

Combining these expressions yields

81 <
Eidl 
E d&

(13.44)

Thus, for a given injected voltage Ei, the sensitivity increases with a 
decrease of the returned voltage E and with an increase of the deriva­
tive dl/dd. That is, to obtain high sensitivity, the tube should have a 
large transconductance, and the Nyquist diagram for the circuit should 
come as close as possible to coinciding with the positive real axis.
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That this is a legitimate and valid criterion becomes more apparent if 
we recall that Er is constant as the frequency, and hence 9, is varied. 
Finally, if the tube operates in class C, the average and the funda­
mental frequency components of the plate current are proportional.

13.11 A pentagrid detector for frequency modulation
The use of a locked oscillator as a detector of frequency-modulated 
waves has been reduced to practice by Bradley.37 His arrangement is 
shown in Fig. 13.14. The oscillating circuit consists of the cathode 
and first grid operating in an electron-coupled arrangement with 
respect to the other electrodes as an effective grounded plate. The 
input signal, applied to the third grid, controls the division of electrons 
between the second grid and the plate, as in other pentagrid applica­
tions. The plate current, as influenced by both the first and the third

Fig. 13.14. A practical frequency-modulation detector, using the FM-1000 as a 
locked oscillator.

grids, is passed through a second tuned circuit and the audio load 
circuit. This second resonant circuit is tuned to approximately the 
operating frequency and is heavily damped so that its phase angle 
changes relatively slowly with frequency. By this arrangement the 
synchronizing voltage is amplified before being injected into the oscil­
latory circuit, and a stabilizing action due to feedback results.

The tube operates in class C, preferably at such an amplitude that 
current flows only in relatively short pulses. Depending upon the 
phase of the injected signal with respect to the oscillation, the mag­
nitude but not the phase of the plate current pulses is affected. This 
dependence is illustrated in Fig. 13.15, in which the normal situation 
is represented by (b). That is, if the input signal is at the mean fre­
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quency, the pulse of plate current flows at the instant of zero input, 
and its magnitude is the same as if no input were present.

The tuning and coupling of the circuits are such that the voltage 
induced in the oscillator circuit B by circuit A is in quadrature with 
that due to the self-oscillation. Therefore, the phase relationships 
and hence the oscillating frequency depend upon the amplitude of the 
plate current pulses. The amplitude of oscillation is practically 
constant because of the specified quadrature relationship. The 
equilibrium is most conveniently expressed by assuming a particular 
amplitude of the plate current pulses and a corresponding average 
plate current. A particular phase condition, and hence frequency, in 
the self-oscillating system corresponds to this plate current and will

(a) (b) (c)

Fig. 13.15. Variation of the amplitude of plate current pulses due to phase shift 
between signal and self-oscillation.

exist only if the incoming signal has the same frequency and a sufficient 
amplitude to produce the assumed current. The proportionality 
between the average plate current and the operating frequency is 
fundamental and is the basis of the excellent linearity which can be 
obtained. A variation of the amplitude of the input signal merely 
modifies the phase relationship with the self-oscillation but cannot 
appreciably change the effective or average plate current. In several 
respects the operation of this detector is similar to the more compli­
cated negative feedback system devised by J. G. Chaffee.55

The above circuit employing the FM-1000 tube at an intermediate 
frequency of about 10 Me was tested and found to lock across the full 
standard 75-kc deviation with an input signal of about one-half volt 
rms. The output for this deviation is 20 volts peak to peak, and the 
distortion is negligible. Moreover, amplitude modulation is sup­
pressed by some 50 db. That is, the performance is in every respect 
equal or superior to that of conventional discriminator detectors.

13.12 Interaction of two similar oscillators
In the foregoing analysis it has been assumed that the oscillator under 
study has no effect upon the source of the synchronizing voltage. 
This situation is approximated in practice if the driving oscillator is 
very powerful and is loosely coupled to the locked oscillator or if 
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a unilateral amplifier provides the coupling. The locked oscillator in a 
radio receiver is an excellent example of loose coupling. However, 
in some cases two similar oscillators in proximity operate at nearly 
the same frequency. The coupling present, whether it is by accident 
or design, will set a lower limit to the frequency difference which may 
exist between them.

To investigate this situation let us suppose that two tuned plate 
oscillators are coupled in such a way that the total grid voltage of oscil­
lator 1 is represented by Ei" + E', and the total grid voltage of 
oscillator 2 is represented by E/ + E", where E represents a self­
generated voltage and Ei a coupling voltage. Subject to the assumed 
condition of reciprocity we have

E"/Ei' = K'/Ki'. (13.45)

Let us further assume that the two are locked so that a single fre­
quency is produced. Because each oscillator is drawn toward this 
common frequency, it follows that the operating frequency must 
necessarily lie between the natural frequencies of the two separate 
oscillators. Synchronization can be maintained only over such a 
range that neither oscillator experiences a phase shift in excess of 
90°. Assuming that the two oscillators are equally powerful and the 
coupling is small so that 9 = sin 0, we may use eq. 13.1 to establish 
the limit of synchronization. It is seen that synchronization will be 
lost when each oscillator differs from the output frequency by an 
amount equal to its own synchronizing limit.

It is interesting to note that the total synchronizing range is in­
creased if the amplitude of the second oscillator is either raised or 
lowered from the condition of equality. If, for example, the voltage 
level of one oscillator is doubled, the extent to which it can be drawn 
into synchronization is cut in half, but the extent to which it can 
influence the other oscillator is doubled. In general, the total range 
over which synchronization can be produced subject to a given coupling 
between specified oscillators is proportional to E'/E" + E"/E', as 
confirmed experimentally by Appleton.12

The effects which occur outside the range of synchronization are 
similar to those already described, but are more complicated because 
neither frequency is generated in a uniform manner. It is significant, 
however, that the frequencies differ by a smaller amount than they 
would in the absence of coupling, and that this effect is opposite to the 
well-known effect of coupling upon the natural frequencies of passive 
linear circuits.
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13.13 Synchronization of relaxation oscillators
Relaxation oscillators are readily synchronized by signals of all sorts. 
The injected wave form may be sinusoidal, or in the form of pulses, 
and the injected frequency may be equal or unequal to that produced, 
so long as some reasonably simple frequency ratio exists. Synchroni­
zation in a ratio such as 2:1 may be maintained over a considerable

Fig. 13.16. Symmetrical multivibrator arranged for synchronization at an odd 
subharmonic.

Fig. 13.17. Wave forms in either tube of Fig. 13.16. Corresponding waves dis­
placed one half cycle are observed in the other tube.

range of the input frequency, in the order of ±25 per cent. In this 
respect the performance considerably exceeds that of the conventional 
locked oscillator. However, consistent with synchronization at a 
given operating frequency, the permissible variation of the tube 
characteristics is not appreciably different from that of a conventional 
oscillator.

The multivibrator is selected to illustrate the synchronization 
of relaxation oscillators because it demonstrates all the important 
principles, and because it is the most widely used in this application; a 
typical arrangement is shown in Fig. 13.16. A symmetrical triode 
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multivibrator is used, and the grid leaks are returned to B+ through 
the symmetrical windings of a transformer which injects the syn­
chronizing voltage. Wave forms corresponding to operation on a 
fifth subharmonic are shown in Fig. 13.17, in which it is assumed that 
the cutoff bias is substantially zero. The use of a balanced syn­
chronizing voltage for odd frequency ratios is desirable because it 
leads to an appropriate slope of the grid voltage at both transitions of 
the circuit. For the same reason, an unbalanced or parallel synchroniz­
ing voltage is favored when even frequency ratios are desired.

The action of the synchronizing voltage can be interpreted from 
either of two viewpoints, both of which have merit. We may employ 
the principle of superposition and obtain the actual voltage at the 
grid by adding the (attenuated) injected wave to that normally 
present; alternatively, we may regard the synchronizing voltage as a 
variable return voltage, which affects the instantaneous slope of the 
grid circuit relaxation. Although the synchronizing voltage developed 
at the grid of the conducting tube is relatively small, because of the 
low impedance associated with zero bias, the effect is important 
because of the large effective amplification.

The superposition method is easiest to use for numerical work. 
Because the synchronizing voltage usually has a frequency several 
times that of the operating frequency, the impedance of the grid con­
densers of Fig. 13.16 is low compared to that of the plate load resistors. 
Therefore, the synchronizing voltage delivered to the grid of the cutoff 
tube is related to the injected voltage by the ratio

vg' = viRe/(Re + Rg), (13.46)
where

Re = RlTp/(Rl + Tp), (13.47)

and rp is the dynamic plate resistance of the conducting tube oper­
ating at zero bias. The voltage delivered to the conducting grid is 
approximately

Vgi = V^Tg/Rg. (13.48)

where rg is the dynamic resistance of the grid at zero bias. As a 
result of this voltage and the amplifying action of the tube the direct 
synchronizing voltage vg' on the cutoff grid will be supplemented by 
a voltage

Vg" = vigmrgRe/Rg, (13.49)

where gm is the transconductance of the conducting tube.
With the balanced synchronizing arrangement of Fig. 13.16, the 
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direct and amplified voltages represented by eqs. 13.46 and 13.49 add 
in phase, reducing the requirement on the applied voltage iq. How­
ever, when division by an even frequency ratio is desired, the syn­
chronizing voltage should be applied in like phase to the two grid 
leaks. In this case the direct and amplified voltages are out of phase, 
and a larger synchronizing voltage is required. More serious is the 
fact that in typical situations Rg » Re and gmrg is of the order of one 
so that vg and vg", the direct and amplified voltages, are comparable. 
When such a partial balance exists, a relatively large change of effective 
synchronizing voltage may result from a moderate change of tube 
parameters. In cathode-coupled multivibrators, on the other hand, 
the conducting tube operates at negative bias, and the amplified 
voltage is large compared to the direct synchronizing voltage. Thus, 
their behavior with respect to synchronization is more stable than that 
of ordinary multivibrators.

13.14 Optimum synchronizing voltage
There is an optimum amplitude for the synchronizing voltage; a small 
voltage produces synchronization only over a narrow range of fre­
quency or circuit parameters, and a large voltage leads to operation at 
an entirely different frequency. This effect is illustrated in Fig. 13.18, 
which shows locking at the third 
rather than the fifth subharmonic.

The magnitude of the optimum 
synchronizing voltage is explored in 
terms of a variation of the effective 
cutoff voltage, which affects the nat­
ural period of the multivibrator. As
in other oscillators, such a variation F1G‘ 1318‘ synchroniz-
leads to a shift of phase between the 
injected and generated waves. Loss of synchronization occurs when 
the phase shift amounts to 90° with respect to the synchronizing fre­
quency, as shown in Fig. 13.19. The critical voltage at which the 
transition occurs is now regarded as a variable, whereas in previous 
figures it has been regarded as constant and substantially zero.

It is seen that premature triggering cannot occur unless the slope of 
the grid voltage wave is negative at certain points. The condition in 
which the slope becomes zero once per cycle is shown in Fig. 13.19 and 
is regarded as a practical optimum, although a slightly larger range of 
synchronization may be secured by increasing both the injected voltage 
and the natural period of the multivibrator. In terms of super­
position, this corresponds rather closely to the condition that the 
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maximum slope of the total synchronizing voltage, vg, shall equal the 
slope of the natural grid relaxation in the cutoff region.

If the amplitude of the plate voltage excursion, or the time constant 
of the grid circuit, or the period of the injected wave is assumed to 
vary instead of the critical bias, a similar situation exists. In all 
cases, the synchronizing voltage should be equal to or slightly larger 
than that which leads to zero slope near the cutoff point. The 
behavior in the region of cutoff is the same in all cases, and is cor­
rectly represented by Fig. 13.19.

Fig. 13.19. Enlargement showing effect of variation of cutoff bias on phase of 
synchronization. Maximum, normal, and minimum values of cutoff bias and of 

natural period are indicated.

In most applications the frequency of the synchronizing voltage is 
quite constant, and the multivibrator is used to obtain harmonic 
and/or subharmonic frequencies. The firmest possible lock is desired 
to avoid the possibility of operation at an incorrect frequency due to 
loss of synchronization, and to minimize the timing errors associated 
with changes of phase within the range of synchronization. These 
objectives are best met by making the natural frequency of the multi­
vibrator as stable as possible and by using the largest practical syn­
chronizing voltage. The use of positive grid leak return, as discussed 
in Chapter 12, is desirable because it improves the inherent frequency 
stability and also permits the use of a larger synchronizing voltage. 
In at least some cases, it appears that even better results would be 
obtained with the symmetrical cathode-coupled multivibrator.

13.15 Synchronization with nonsinusoidal waves
In harmonic oscillators the synchronizing voltage is usually sinusoidal 
and a small simple multiple of the operating frequency. In relaxation 
oscillators, on the other hand, the synchronizing voltage is often 
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markedly nonsinusoidal. An important practical example is the series 
or chain of multivibrators, commonly used in frequency standards as 
frequency dividers. The primary oscillator ordinarily operates at a 
frequency of 100 kc, and successive multivibrators operate at fre­
quencies such as 25, 5, and 1 kc. The first multivibrator is syn­
chronized by a sinusoidal wave derived from the primary oscillator, 
but the other multivibrators are synchronized by waves derived from 
preceding multivibrators. Fortunately, nonsinusoidal waves are 
favorable for synchronization, and a good phase lock is associated with 
a large slope of the voltage wave. The situation is illustrated in 
Fig. 13.20, which indicates that a square wave is favorable, but that

Synchronizing wave Uk

Fig. 13.20. Synchronization of multivibrator by nonsinusoidal wave forms.

a sloped-off square wave is preferable because it permits greater mar­
gin against premature triggering, and that a negative saw-tooth wave of 
suitable amplitude is ideal. The sloped-off square wave produces a 
slightly smaller margin against variation of the cutoff bias than does 
the triangle and requires an increase of the free-running period. Best 
results are obtained when the time constant of the relaxation is 
about one-third the period of the square wave, as indicated. As 
previously noted, synchronization is produced at the grid of the cutoff 
tube, but the actual synchronizing voltage wave form may be greatly 
affected by loop transmission.

The arrangement of Fig. 13.16 is unsuitable for the injection of 
nonsinusoidal waves because the high resistance of the grid leaks in 
conjunction with stray capacitances to ground degrades the slope 
obtainable. Small capacitances, of the order of 10 upf, coupling the 
synchronizing voltage directly to the multivibrator grids are frequently 
used but are somewhat objectionable because they increase the total 
effective capacitance to ground in the synchronized multivibrator. 
Both the speed of transition and the harmonic content of the output 
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suffer. Moreover, the synchronized multivibrator often reacts upon 
the source in such a way as to complicate the operation. This effect 
is most easily suppressed by using a vacuum tube as a unilateral 
coupling element to separate successive multivibrators. However, by 
additional design effort, it is usually possible to achieve the desired 
isolation without use of a vacuum tube. Excellent practical data on 
this subject are given by Gordon.116

The symmetrical pentode multivibrator may be synchronized by 
means of signals applied to the suppressor grids. Because the sup­
pressor of the cutoff tube has no effect, the amplified signal from the 
active tube must be used. Therefore, negative pulses, or preferably 
a positive saw-tooth wave, should be provided. No appreciable signal 
is returned to the synchronizing source because the suppressor grids 
are not active in the regenerative action of the multivibrator cycle.

As previously stated, sweep circuits, blocking oscillators, and other 
relaxation oscillators are readily synchronized by means similar to 
those just described. However, most of these circuits have only one 
rather than two comparable relaxation intervals, therefore, the prob­
lem is somewhat simplified because only one synchronizing signal need 
be supplied.

Before leaving the subject of synchronizationin relaxation oscillators 
we should note that the preceding discussion is somewhat over­
simplified. As shown in Chapter 12, the transition does not occur 
instantly when the grid voltage reaches the cutoff bias. There is a 
degenerative interval during which plate current flows but the loop 
gain is less than unity, and a succeeding regenerative interval during 
which the loop gain is greater than unity and the transition is in 
process. If the synchronizing frequency is high, or if the synchroniz­
ing voltage is a single short pulse, the grid may be driven past cutoff 
into the degenerative or even the regenerative region and again with­
drawn without causing a complete transition. This action is shown in 
an enlarged view of the cutoff region of Fig. 13.21. This and other 
properties of the multivibrator are discussed in a series of three papers 
by Shenk.281

The effects of imperfect synchronization are particularly likely 
to be observed when a blocking oscillator is used as a high-ratio fre­
quency divider. In such applications a firm phase lock is desired 
although the exact frequency ratio is unimportant. Unless the tran­
sition interval of the relaxation oscillator is short compared to the 
period of the synchronizing wave, the results are likely to be very 
unsatisfactory. Furthermore, it is highly desirable that the relaxation 
oscillator have no natural frequencies comparable to the synchronizing
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frequency; otherwise the synchronizing frequency will be greatly 
amplified as the transition is approached. This behavior seriously 
interferes with the desired synchronization.

PROBLEMS
13.1. In an absolutely linear system the principle of superposition may be used 

to prove that the addition of a signal has no effect on existing voltages and currents. 
Reconcile this with the fact that the lamp bridge oscillator is readily synchronized.

13.2. Show that the situation corresponding to Ei" in Fig. 13.4 is unstable.
13.3. Calculate curves for Ft, and F' corresponding to Fig. 13.6 for Q = 100, 

Sa = 100, and EJEB =0.1.
13.4. Indicate how the curves of Prob. 13.3 would be affected if the amplitude 

were limited on a total-peak-voltage rather than power basis.
13.5. Show by a sketch like Fig. 13.8 how a class C oscillator can lock at two- 

thirds of the input frequency.
13.6. In connection with eq. 13.15, show why the compensation theorem may be 

used.
13.7. Identify Adler’s mechanical model with the behavior shown in Figs. 13.10 

and 13.11.
13.8. Verify eq. 13.37 and justify the conclusion that a locked oscillator does 

not distort a FM signal, provided synchronization is never lost.
13.9. Verify eq. 13.40 and interpret it in terms of practical locked oscillators for 

the amplification of FM signals.
13.10. Following the discussion of Section 13.10, design a locked oscillator which 

will be a sensitive detector of FM signals.
13.11. By wave form sketches show why balanced synchronization favors odd 

frequency ratios and unbalanced synchronization even ratios in multivibrators.
13.12. Show that Fig. 13.19 represents the optimum synchronizing condition 

with respect to changes of amplitude and natural period as well as to change of the 
cutoff bias.

13.13. Sketch a circuit arrangement by which waves like those of Fig. 13.20 may 
actually be produced without seriously affecting the operation of the multivibrator.
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FREQUENCY MULTIPLICATION
AND DIVISION

14.1 Applications

In a variety of circumstances which arise in practice it is desirable to 
produce a given frequency indirectly rather than directly. It is then 
appropriate to use frequency multiplication or division, together with 
modulation for addition and subtraction of frequency if need be. 
These various techniques are often lumped together and called fre­
quency synthesis or frequency composition.

There are at least four situations when frequency composition 
methods are appropriate: (1) when the available power is in the form 
of an alternating rather than a direct current; (2) when the desired 
signal must have an exact frequency relationship to an available sig­
nal; (3) when resonators having suitable characteristics are not avail­
able at the desired frequency, but are available at some lower or higher 
frequency; and (4) when a large number of distinct frequencies are 
to be produced from a small number of stable resonators. The sub­
cycle ringers employed in the telephone plant to provide 20-cycle 
ringing current from the 60-cycle power line are an example of (1). 
The harmonic generators used in long-distance telephone systems to 
produce an exactly related group of carrier frequencies are an example 
of (2). The frequency dividers used to operate a low-frequency elec­
tric clock motor from a high-frequency quartz crystal oscillator in 
standard-frequency systems are an example of (3). The “crystal 
saver” units133 used in certain military radio systems are an example 
of (4).

Considerable emphasis is placed upon devices which do not employ 
vacuum tubes. Such devices are very desirable in practice because 
they are compact, rugged, reliable, and require no power supply other 
than the signal.

340
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14.2 Fundamental principles
It is well known that the response of a linear system contains only 
those frequencies which are present in the driving force. Therefore, 
all systems of frequency composition must be based upon nonlinearity 
in one or more of the elements. Ordinarily, it is desirable to employ 
only one nonlinear element in a given unit in order to simplify the 
functioning and analysis. In theory, the nonlinear device may exist 
as a resistance, capacitance, or inductance, and may appear as a self 
or as a mutual element. All these possibilities have been reduced to 
practice on a more or less general scale.

Nonlinear resistances are widely used in the form of rectifiers such 
as vacuum or germanium diodes, varistors such as copper oxide or 
thyrite, and vacuum tubes. Of these, vacuum tubes are the most con­
venient because the presence of the grid offers great flexibility and 
because, as active rather than passive impedances, they are capable of 
amplification. Nonlinear inductances, both self and mutual, have 
long been used as amplifiers, modulators, and frequency multipliers 
and dividers. The use of these nonlinear devices has recently been 
greatly expanded because of improvements in magnetic materials141,294 
and a better understanding of design considerations. Nonlinear 
capacitances suitable for circuit application have only recently become 
available, largely through the work of von Hippel334 and Roberts,265 
and they have as yet found little use. It appears, however, that 
dielectrics such as barium titanate and barium strontium titanate323 
have properties which will make them useful as nonlinear capacitances 
over a very wide range of frequencies.

The use of modulation by means of a nonlinear impedance to obtain 
sums and differences of frequencies is adequately covered in many 
places87, 307 and will not be treated here. The essential fact is that 
if voltages at two frequencies F and / are applied to a nonlinear ele­
ment, an output is available at any frequency /o which satisfies the 
equation

fo = nF + mf, (14.1)

where m and n are positive or negative integers. It is worth men­
tioning in this connection that positive and negative frequencies are 
not physically distinguishable.

Before proceeding, we should note that multiplication of frequency 
is division of time. That is, the period of the original wave is sub­
divided into n equal periods where n is the order of multiplication. 
Clearly, this will not be possible if the periods of successive half 
cycles of the original wave differ by an amount comparable with the
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period of the desired wave. It is therefore highly important to avoid 
jitter and to control the harmonic content of any wave whose fre­
quency is to be multiplied. Frequency division, on the other hand, 
involves multiplication of time. Imperfections in the input wave 
therefore tend to vanish rather than be magnified when this process is 
employed.

Depending upon whether or not a balanced frequency multiplier is 
used, energy is delivered to the tuned output circuit only once or twice 
per input cycle. A high effective Q in the resonant circuit is therefore 
desirable, especially if the order of multiplication is large; otherwise, 
the output voltage wave form will be amplitude modulated at the 
input period. Extreme values of Q are required if the order of multi­
plication is large and if only a single tuned circuit is used.

The question of time delay or phase lock arises in all methods of 
frequency composition. The requirements vary greatly with the 
particular application; but in all cases it is desirable that the input 
and output waves have a phase relationship which is stable and 
independent of element values, because a changing phase constitutes 
a frequency error.

14.3 Methods of frequency multiplication
Frequency multiplication is a special case of modulation, as may 
be seen by setting m or f = 0 in eq. 14.1. Therefore, in principle, we 
may obtain any desired frequency multiplication by applying a 
sinusoidal voltage to a nonlinear impedance. In practice, the situation 
is much less simple, because the output so achieved is often too small or 
too contaminated with other frequencies to be useful. A great variety 
of arrangements have been employed to alleviate these difficulties. 
Useful arrangements may be catalogued roughly, according to the 
source of nonlinearity, as follows: (1) passive structures using non­
linear elements operating according to eq. 14.1; (2) active unilateral 
structures (vacuum tubes without feedback); (3) active stable struc­
tures (vacuum tubes with limited feedback); and (4) unstable struc­
tures (free running systems). All depend upon the use of tuned cir­
cuits to select the desired output frequency.

An additional basis for classifying frequency multipliers depends 
upon whether a single frequency or a group of harmonically related 
frequencies is desired at the output. A single frequency at reasonably 
high power and efficiency is desired in multipliers for radio trans­
mitters. On the other hand, uniformity of output at a large number 
of harmonics is the principal requirement on multipliers for frequency 
measurement.
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14.4 A diode frequency multiplier
Perhaps the simplest frequency multiplier is the full-wave rectifier 
circuit of Fig. 14.1a. The primary circuit is tuned to series resonance 
at the driving frequency f, and the secondary circuit is tuned to anti­
resonance at the desired harmonic nf. Figure 14.1b shows the various 
wave forms which exist in this system for n = 2 under the assumption 
that the transformer and rectifiers are ideal, that the primary has the

Fig. 14.1. Rectifier frequency multiplier: (a) circuit and (6) wave forms.

same number of turns as the total secondary, and that both the pri­
mary and the secondary constitute high-Q systems. Under these 
assumptions the system approaches 100 per cent efficiency, and we may 
evaluate the input resistance by use of the principle of conservation of 
energy. The second-harmonic content of a rectified sine wave is 
readily determined by use of Fourier analysis. According to the 
Federal Handbook22 page 287, we have

i2 = 8ii/3ir.

Therefore, the effective input impedance Ri is given by

Ri — 0.72R2.

(14.2a)
(14.2b)
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The assumptions made in the foregoing analysis are approximated 
reasonably well in practice, and efficiencies in excess of 50 per cent 
may be realized at most frequencies.

It should be noted that the system of Fig. 14.1 is not limited to 
frequency doubling. In theory, all even harmonics are present in the 
current wave, and may be obtained by suitable tuning of the secondary 
circuit. In practice, the magnitude of the current falls off rapidly 
with the order of harmonic, and the parasitic losses become excessive. 
For n = 4, the effective input resistance, under the assumption of 
100 per cent efficiency is given by

Ri = 0.0288R2. (14.3)
In this case, however, the assumption of 100 per cent efficiency is 
unjustifiable because the desired current is so small compared to the 
associated undesired circulating currents that serious losses cannot be 
avoided.

The performance of this circuit depends greatly upon the characteris­
tics of the rectifier or diode employed. The back or leakage resistance 
must be large and the forward resistance low compared to the load 
resistance R2 if efficient operation is to be secured. Vacuum diodes, 
such as the 6AL5, are suitable for operation up to frequencies of the 
order of 500 Me, and give good performance with load resistors of the 
order of 5000 ohms. Germanium diodes, such as the 1N52, require no 
heater power, but are restricted to somewhat lower frequencies and
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efficiencies. They also operate best with loads of the order of 5000 
ohms. Silicon diodes are useful at frequencies as high as 25,000 Me, 
but are limited to one or two volts and are characterized by poor 
efficiency. The average characteristics of typical diodes are shown in 
Fig. 14.2. The reverse conductivity of electronic diodes is negligible. 
The reverse conductivity of the 1N21 is far from negligible but cannot 
be shown on the scales chosen.

Fig. 14.3. Approximation to hysteresis curve of a saturable core.

Provided the rectifiers are linear, that is, have different fixed resist­
ances in the forward and back directions, the output is proportional 
to the input. This condition is never exactly fullfiled in practice, but 
is closely approximated by vacuum diodes operated with large signals 
and relatively high load impedances. This proportionality between 
output and input is important in many applications, notably as a part 
of the stable regenerative frequency dividers described later in this 
chapter.

14.5 Frequency multiplication by magnetic saturation

It is well known that nonlinearity due to magnetic saturation in 
iron-core coils results in the production of harmonics; and this effect 
has been intentionally employed by many workers. However, 
developments in magnetic materials have greatly increased the 
efficiency and frequency range of such devices. The characteristic 
features of materials, such as Permalloy, Mumetal, Orthonol, and 
Deltamax, are that the initial permeability is large, the hysteresis 
loop is narrow,10 and the saturation is very sharp, as indicated in 
Fig. 14.3. Because the self-inductance of a coil depends upon the 
slope of the B-H curve of its core, it follows that a coil having a core 
of these materials will have an inductance which changes sharply 
and by a large ratio as the current is varied. This property has been 
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employed by Peterson238 in a very efficient circuit to generate a group 
of harmonics for a carrier-frequency telephone system. The basic 
circuit is shown in Fig. 14.4a.

The input circuit is series tuned to the driving frequency, /, which 
is 4 kc in the system cited. It presents a high impedance to all har­
monics; therefore the current through this mesh is substantially 
sinusoidal. Harmonics which might be present in the source do not 
affect the operation, and harmonics generated in the nonlinear coil 
are not lost in this mesh.

<b)

Fig. 14.4. Harmonic generator using saturable reactor: (a) circuit and (6) wave 
forms.

During part of the cycle the primary current is low, L is free from 
saturation, and its inductance is relatively high. In this period C2 
acquires a considerable charge which is suddenly dissipated through 
R2 and L when the region of saturation is reached. The resulting 
highly peaked current wave through R2 is rich in odd harmonics. 
If, therefore, R2 is replaced by a group of filters, with their inputs in 
parallel, each tuned to a different harmonic, these separate loads will 
each receive one of the odd harmonics of the input frequency. Quartz 
crystal filters are employed to obtain the required low loss and high 
selectivity. By correct proportioning of R, C2, and the saturated 
inductance L', the pulses may be made quite short compared to the 
total period, and the power available in the first twenty or so harmonics 
is substantially uniform. An overall efficiency as high as 75 per cent 
was observed when several dozens of harmonics were taken from a 
driving frequency of 4 kc. When only one or two harmonics are 
desired the efficiency is considerably degraded because the sharply 
peaked current wave cannot be used directly, and additional losses
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must be incurred in the reactive elements. Efficiencies of the order 
of 20 per cent may be anticipated under these conditions.

In practice, the losses in the input and output filters increase with 
the order, n, of the harmonic required, and the losses in the nonlinear 
coil increase with both f and n, so that the method becomes unattrac­
tive for orders of n above about 50 or for output frequencies in excess 
of about 5 Me.

It is desirable to proportion R2 and C2 with respect to L' so as to 
obtain critical damping, thus bringing the discharge to an end in the 
shortest possible time. The primary inductance Li must be large 
compared to the unsaturated inductance L in order to insure that 
the primary current will be substantially sinusoidal. The power level 
at which the desired operation will occur is roughly proportional to the 
mass of the saturable core and the frequency, whereas the values of 
L and L' and hence the impedance level of the various circuits may be 
adjusted by the number of turns used in the winding.

If the driving current is truly sinusoidal, the successive positive and 
negative pulses of current are accurately uniform in magnitude and 
spacing, as is necessary if high-order harmonics are to be selected. In 
this respect the saturable reactor is superior to electronic devices for 
harmonic production. The operation of this circuit has been analyzed 
in detail by Peterson;238 and additional information on the subject is 
given by Tucker.314

14.6 Magnetic multiplier for a single frequency
As stated in the preceding section, the saturable reactor is particularly 
favorable for the simultaneous generation of a group of odd harmonics. 
However, it can be used with reasonable success for the generation of a 
single harmonic. Peculiarly enough, the analysis of the operation for 
a single frequency is considerably more complicated than that for a 
group of frequencies. The difficulty arises from the fact that the 
output circuit must be tuned to the desired frequency, and that this 
tuned circuit is subjected to both a periodic (nonsinusoidal) driving 
voltage and a periodic variation of its inductance. A very lucid 
explanation of those effects has been given by Guillemin and Rumsey.125

Guillemin used a saturable reactance in the form of a transformer 
with unity turns ratio, but equivalent results would have been obtained 
by adding in series with C2 an inductance L2, to resonate it at the 
desired frequency. The addition of this inductance serves to restrict 
the current through R2 to a single frequency, n times the input fre­
quency f. Therefore, no large spike of current, such as that of Fig. 
14.46, can flow at any point in the circuit.
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For purposes of analysis it is convenient first to assume that the 

secondary circuit is open and that the maximum inductance, L, of 
the nonlinear coil is small compared to Li. If the maximum value of 
the primary current is considerably larger than Io, the current at which 
the self-inductance of the nonlinear coil drops from L to L', the voltage 
across the nonlinear coil must take the form of Fig. 14.5a. The 
Fourier analysis of such a voltage wave shows that it contains only odd 
harmonics of f. However, the coefficient of any particular harmonic is 
rather sensitive to the fraction e of the total time which the coil 
is unsaturated. This, in turn, is seen to depend upon the primary 
current.

Fig. 14.5. Analysis of magnetic frequency multiplier: (a) idealized open-circuit 
voltage across coil, (5) synthesis of coil voltage by addition of step functions, and 

(c) variation of total secondary inductance.

In principle, the Fourier series approach gives a complete solu­
tion to the operation of this device. In practice, however, we wish 
to obtain a considerable power output at the harmonic frequency nf, 
and this is possible only if the secondary current, i2, has a considerable 
amplitude. Unfortunately, the assumptions underlying the analysis 
are now invalid because the secondary current interacts with the 
primary current to modify the shape and duration of the pulses of 
emf. An alternative approach is therefore desirable.

14.7 Repeated transients

The operation of the single-frequency magnetic multiplier may also 
be analyzed from the viewpoint of a succession of transient disturb­
ances. The secondary is then considered to be a series resonant 
circuit subjected to a succession of alternating steps of emf and to 
corresponding steps of total self-inductance as shown in Fig. 14.56 and 
14.5c. It is clear that the natural frequency of the secondary is 
periodically shifted by this change of inductance, but that the overall 
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period must correspond to that of the driving voltage. This view­
point is adequate to explain all the observed facts, including the pro­
duction of even harmonics, and permits reasonably satisfactory 
calculations of performance.

On the basis of such calculations, supplemented by extensive experi­
mental work, Guillemin states that optimum efficiency and wave form 
are observed when the parameters are adjusted to meet the approxi­
mate formula

¿2 = 1.5ii/n. (14.4)

Under these conditions the current through the nonlinear coil must 
have at least two maxima and minima per cycle (and may have as 
many as four zeros per cycle). An experimental 5:1 magnetic fre­
quency multiplier tested by Guillemin had an efficiency of 30 per cent.

Magnetic frequency multipliers tend to generate only odd harmonics 
because the B-H curve is symmetric; however, even harmonics may 
be generated by supplying a suitable magnetic bias. This method is 
quite practical when a relatively high multiplication is desired, but 
requires an inconveniently large bias if n = 2. If, for example, the 
sixth harmonic is desired the bias should be chosen so that five and then 
seven half cycles of output are produced between excitations.

Although highly reliable and capable of good efficiency, frequency 
multipliers of the magnetic type do not yield an output which is pro­
portional to the input. Ordinarily, the output is zero until some 
critical input is exceeded, then jumps to a considerable value, and 
remains relatively constant as the input is further increased. This 
behavior is undesirable in some situations but is quite satisfactory in 
others.

Frequency multipliers based upon nonlinear dielectrics have not 
been developed to a point such that design information and per­
formance may be reported. However, it appears that excellent per­
formance to frequencies up to about 108 can be anticipated. A 
material having a very sharp-cornered curve of D vs. E, analogous to 
the saturation curve of Fig. 14.3, is required. There is reason to 
believe that every material having this desired dielectric behavior is 
both crystalline and piezoelectric. Therefore, the mechanical reso­
nance of the nonlinear element may be used to select the desired 
frequency.

14.8 Frequency multiplication by means of vacuum tubes
The use of vacuum tubes as frequency multipliers is well known. 
Ordinarily, the vacuum tube is operated in class C with relatively large 
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values of bias and driving voltage. Under these conditions the plate 
current flows in short pulses, and it is possible for the tuned plate 
circuit to describe several complete cycles during each cycle of the 
driving voltage. The arrangement and typical wave forms are shown 
in Fig. 14.6. It is immediately apparent that a specified vacuum tube 
as a multiplier cannot give as large values of efficiency and power

Fig. 14.6. Class C frequency tripler: (a) circuit and (6) wave forms for Q = 27.

output as it does as an amplifier because of the unfavorable angle of 
conduction. Under the conditions shown, the plate draws current 
for more than half of the output cycle in spite of the large values of 
both direct and alternating grid voltage indicated.

Sarbacher267 has shown that the efficiency of class C amplifiers and 
frequency multipliers is considerably improved by injection of har­
monic voltages in the grid and plate circuits. In the grid circuit, the 
harmonic should be phased so as to sharpen the positive peak, shorten­
ing the period of conduction. In the plate circuit the harmonic 
should be oppositely phased so as to broaden the negative peak, thus 
permitting a long period of conduction without loss of efficiency 
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due to a high voltage drop in the tube. The simplest method of 
injecting a harmonic in the grid circuit is by feedback from the plate.

In triodes, which are commonly used for frequency multipliers, a con­
siderable amount of feedback normally exists through the grid-plate 
capacitance. However, at the output frequency the grid circuit is 
nearly a pure capacitance so that the feedback is negative, that is, 
tends to broaden rather than sharpen the grid voltage peaks. The 
feedback phase can be reversed by the addition of a small inductance 
in series with the grid tuning condenser. Self-oscillation will occur if 
too large a value is used; but a considerable increase in efficiency and 
output may be secured before instability occurs.

It should be pointed out that the circuit of Fig. 14.6 is capable of 
self-oscillation, as a tuned grid, tuned plate circuit, even without the 
addition of an inductance. However, difficulty of this kind is rarely 
observed because circuit parameters which are consistent with efficient 
amplification are unfavorable to oscillation. This is one of several 
aspects of the operation of frequency multipliers which has been 
investigated by Page233 and Brown.42 Very useful curves showing the 
relative magnitude of the first ten harmonic currents as a function of 
the conduction angle are presented by Furst.106

Output frequencies up to about 1000 Me may be obtained by means 
of more or less conventional triodes and pentodes operating as class C 
frequency multipliers. Still higher frequencies up to at least 25,000 
Me may be obtained by means of two-gap klystrons operating on 
essentially the same principles. The multiplication factor obtainable 
with a single tube is, however, limited to a small number, usually 
two or three, because of the drastic loss of efficiency which is associated 
with larger factors. The klystron is considerably more favorable in 
this respect, a frequency ratio of ten being quite practical.

Balanced multipliers are often used, especially when the require­
ments are severe. The two tubes are driven in push-pull so that two 
current pulses are obtained per cycle. If an even harmonic is desired, 
the plates are connected in parallel; if odd, in push-pull. Provided 
perfect symmetry exists, odd harmonics are absent in the output of 
the parallel arrangement and even harmonics are absent in the other. 
In practice, the balance is never perfect, but the problem of filtering 
the output is considerably simplified.

It is known that in a frequency multiplier the load impedance and 
working Q should be higher than in a corresponding class C amplifier. 
The analysis of Section 11.7 may be extended to show that, if the cur­
rent pulses are sufficiently short, maximum output is obtained when 
Q = VnQox/2, where Qo is the intrinsic selectivity and n is the
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multiplication factor. However, the condition of short pulses is 
rarely even approximated, and empirical design is usually necessary. 
The problem is a complicated one: but experience indicates the wisdom 
of using two or more coupled circuits having the highest practical value 
of Q. The use of such highly selective filters suppresses a large num­
ber of undesired frequencies, which are likely to cause trouble in 
practical systems.

Frequency multiplication is sometimes obtained by means of a 
blocking oscillator synchronized with the input signal. This method 
has the advantage that both even and odd harmonics are generated 
at a reasonable power level because of the large peak power produced. 
The multivibrator is commonly used for the same purpose; however, 
the amplitude of high-order harmonics is very sensitive to the sym­
metry of the output wave, and the general power level is much smaller 
than in the blocking oscillator. All such arrangements suffer the 
drawback that an output is produced in the absence of a driving signal, 
and erratic results are produced when the input is inadequate to 
ensure complete synchronization.

14.9 Principles of frequency division
The principles which govern frequency division are quite similar to 
those already discussed in connection with multiplication. As pre­
viously pointed out, both procedures depend upon nonlinearity and 
can be carried out in a variety of ways. Although frequency division 
is probably the easier process because it does not involve interpolation 
in time, it is probably less familiar to most readers. One important 
difference should be noted. Harmonic frequencies are generated in 
nonlinear impedances when driven sinusoidally, whether resonant cir­
cuits are present or absent, and may be selected in a variety of ways, 
whereas subharmoic frequencies are generated in nonlinear impedances 
when driven sinusoidally only if suitable resonant circuits are present; 
the resonant circuit must therefore be regarded as part of the source 
rather than as a selection device. Moreover, harmonics are generated in 
passive systems, whether the nonlinearity is in resistance, inductance, 
or capacitance, whereas subharmonics are not generated in passive 
systems where the only nonlinearity is in resistance. Because suitable 
nonlinear inductances and capacitances have been available only 
recently, the preceding statement was formerly equivalent to saying 
that subharmonics could not be generated in passive circuits. How­
ever, present materials are sufficiently promising that a lively develop­
ment in passive frequency dividers is anticipated.

One additional remark, in the nature of a caution, is appropriate.
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In passive nonlinear resistive devices the frequencies produced are 
certain to be simply related to the driving frequency. In systems 
involving nonlinear reactance, on the other hand, it is possible to 
produce all manner of frequencies even though the system is passive. 
These new frequencies need not be integrally related to the supply 
frequency but are consistent with the modulation eq. 14.1 (where fo 
is the driving force) and only arise at resonant frequencies of the . 
system. The reader who wishes to pursue this interesting subject is 
referred to the work of Hartley,130 Hus- .
sey,162 van der Ziel,328 and North.226 I

It should be noted that frequency divi- [
sion is by no means uncommon in everyday I
experience. Perhaps the most universal 
example of the phenomenon is “pumping” |
a swing. It is well known that, given an I
initial start, we can increase the amplitude 
of our oscillation by lowering the center of I
gravity at the point of greatest displace- 
ment and raising it at the point of greatest 
velocity. In practice, the change of posi- Fig. 14.7. Motion in pump- 
tion is necessarily accomplished at a finite ing a swing'
rate; and it is sufficient to supply energy only during one-half the 
cycle, but the principle is still the same.

That energy is delivered to the system is readily demonstrated, 
because the individual works against centrifugal force as he raises his 
body near the center of the motion; whereas he lowers himself at a 
time of low velocity when the force is much less. In the absence of 
friction this energy can only go to increase the amplitude of oscillation. 
The situation is illustrated by Fig. 14.7, which shows a somewhat 
idealized path of the center of gravity. The path is very similar to 
the familiar Lissajous figure for a 2:1 frequency ratio, as it should be 
since two full cycles of “pumping” are performed per cycle of the 
main oscillation.

Frequency dividing systems may be roughly catalogued according to 
the operating principle as follows: (1) passive structures using non­
linear reactive elements; (2) active stable structures using any form of 
nonlinear element; (3) unstable (free-running) structures; and (4) 
devices based upon counting.

14.10 Variation of reactive elements
Two distinct but closely related classes of elements may be used to 
produce the energy transfer which is basic to passive frequency 



354 FREQUENCY MULTIPLICATION AND DIVISION
dividers. The first class contains elements which are nonlinear but 
time invariant. These are identified by the fact that the reactance is 
expressible as a single-valued function of the current or voltage only. 
Nonlinear inductors and capacitors are examples of such elements. 
The second class contains elements which are linear but time variant. 
They are identified by the fact that the reactance is expressible as a 
single-valued function of time and is independent of current or voltage. 
Air condensers and air-core variometers, driven by an external motor, 
are examples of such elements. Excellent discussions of nonlinear and 
time variable systems are given by Bennett30 and Kingston.171

In frequency division systems the variable reactance must be a suit­
able periodic function of time, but it makes no difference whether this 
periodicity is achieved by electrical or by mechanical means. Accord­
ingly, the choice of type of element will depend upon the frequency to 
be produced and whether the available power is in mechanical or 
electrical form. For simplicity of exposition the discussion will begin 
with time-variable elements, although practical frequency dividers 
always use nonlinear elements.

14.11 Oscillations in a circuit containing a time-variable 
inductance

Let us examine the behavior of a linear series-resonant circuit in 
which the inductance varies periodically about an average value as a 
function of time, according to the equation

L(t) = n Ta (14-5)(1+6 sin 2ut)

where 2<a represents the angular velocity of the driving force. The 
circuit diagram is shown in Fig. 14.8a. From Chapter 2 we write 
immediately for the free oscillation, the differential equation for the 
electric charge q,

L d^q/df + R dq/dt + qD(l + 6 sin 2o>7) = 0, (14.6)

where the term involving R sin 2wi is neglected in comparison to the 
others. Substitutions similar to those used in Chapter 4 are helpful 
in simplifying this equation. We write

u02 = D/L, (14.7)

k = R/L, (14.8)
and

6«>02 = -2a. (14.9)
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(c)

Fig. 14.8. Circuit with time-variable inductance: (a) circuit, (&) mechanical 
arrangement, and (c) generation of voltage.

With these substitutions the differential equation simplifies* to
d2g/dt2 + kdq/dt + q(a>o2 — 2a sin 2d) = 0. (14.10)

In spite of its apparent simplicity this differential equation does not 
possess a general closed solution expressible by a finite number of 
terms. However, experience indicates the existence of steady oscilla­
tions of nearly sihusoidal form. Accordingly a series solution is 
attempted in the form
q = A i sin d + A 3 sin 3d + A 5 sin 5d + • • •

+ Bi cos d + B3 cos 3d + B$ cos 5d + • • • . (14.11)
If we obtain the first and second derivatives of this quantity and 
substitute them in eq. 14.10 we may test the validity of the solution by 
separately equating to zero the coefficients of the sine and cosine terms 
at the various frequencies. It should be noted that the product of 
sines which thus arises in the last term of eq. 14.10 accounts for sum

* This equation is closely related to the Mathieu and Hill equations. A dis­
cussion of these equations pertinent to this book is given by van der Pol and 
Strutt.321 The present treatment is the electrical paraphase of a vibration prob­
lem treated on page 84 of Rayleigh’s book.251
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and difference frequencies, and it is this fact which necessitates the 
series expansion. When the appropriate substitutions and trigono-
metric reductions are made, we are led to the following 
equations:

series offa02 -(wo2 —(«Q2 -
(wq2 —

w2)A i — kuBi — aBi + aB 3 

w2)Bi + kwAi — aA1 — aAa 
9w2)A3 — 8kuB3 — aBr + aBb 
9w2)B3 + 3kwA3 + aA i — aAb

= 0,= 0,= 0,= 0,
(14.12)
(14.13)
(14.14)
(14.15)

(w02 - 25w2)A6 - 5kuBa - aB3 + aBj = 0, (14.16)
(w02 - 25w2)B5 + 5kuAb + aA3 - aAi = 0. (14.17)

This formidable array of equations is readily reduced by use of the 
known facts that the oscillation is nearly sinusoidal, that is, A i » A 3 
» A8 and Bi » B3 » B&. Neglecting A3 and B3 in eqs. 14.12 and 
14.13, and taking the product, leads to the equality:

(wq2 — w2)2 = a2 — k2u2. (14.18)

Since the left side of this equation is inherently positive, we may write
a > ku, (14.19)

which establishes the fractional inductance variation required to 
produce sustained oscillation. Moreover, if A3 and B3 are sufficiently 
small, we may write to a good approximation

w = wo (14.20)
and

a = ku. (14.21)

In terms of the original variables, the drive requirement is
b = R/uaL = 1/Q, (14.22)

where Q has its normal significance of selectivity. Subject to this 
condition, an oscillation of frequency w will be sustained constant at 
any arbitrary initial amplitude by the inductance variation at 2w. 
A larger value of b will produce expanding oscillations which will 
presently overload the system and reduce b or Q to the value required 
by eq. 14.22.

It will be noted that the system just described is more accurately a 
magnetic, shaft-driven generator than a frequency divider, because 
the input is supplied by a uniformly rotating shaft. However, the 
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generated frequency is exactly half the frequency of reactance varia­
tion. More important to our present purpose, the same output is 
observed if the reactance variation is produced by means of a non­
linear inductance under the influence of a driving current instead of 
mechanically.

The behavior of this system of Fig. 14.86 may be interpreted from 
the generator viewpoint. Provided a current flows, an emf is induced 
in both the stationary and the moving coils by the relative motion. 
For convenience, we shall consider only the emf induced in the moving 
coil, because reciprocity proves that an equal voltage is induced in the 
fixed coil. The situation at various points of the cycle are shown in 
Fig. 14.8c where, for convenience, the rotor is represented by an arrow 
perpendicular to its coil, and is referred to a fixed coil with vertical 
axis. It is seen that, although the rotor describes 720 mechanical 
degrees per cycle of the output current, the voltage generated aids 
the current flow most of the time. The equations which represent 
the generator viewpoint are readily manipulated to yield eq. 14.22.

14.12 A passive magnetic frequency divider
A particularly simple and elegant arrangement for producing frequency 
division by means of magnetic saturation in a passive system has been 
described by McCreary196 and is shown in Fig. 14.9. Laminations of 
a thickness and magnetic material appropriate to the frequency of

(a) (b)

Fig. 14.9. Magnetic frequency divider: (a) laminations and winding and (6) 
wave forms for 2:1 ratio.

interest are punched in the form shown and are wound with separate, 
mutually perpendicular coils. This arrangement eliminates virtually 
all direct mutual inductance between the input and output circuits; 
accordingly, the behavior26 depends almost entirely upon saturation, 
which occurs only in the central portion of the core.

The direct current bias, which is secured by the rectifier of Fig. 14.9, 
is appropriate to the generation of even submultiples of frequency as 
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shown by the wave forms. The curves indicate a small degree of 
saturation consistent with the mathematical relationships previously 
developed. As with the magnetic multiplier, however, efficiency is 
greatly increased by high degrees of saturation. It is seen that, 
because of saturation in the common portion of the core, the self­
inductance of the secondary describes one full cycle about its average 
value per cycle of the input wave. Consistent with the previous sec­
tion, therefore, an output frequency equal to half the input frequency 
will be observed, provided the secondary is suitably tuned and is not 
excessively loaded.

Odd submultiples may be obtained with the same apparatus by 
omitting the bias in the primary circuit and by suitably retuning the 
secondary. In this case the common portion of the core is saturated 
twice per cycle of the input frequency so that the secondary inductance 
varies at twice its former rate. Evidently, therefore, a 3:1 frequency 
division corresponds to a 6:1 division with respect to self-inductance. 
A 4:1 frequency division has also been obtained with this circuit by 
suitable tuning of the secondary and application of a primary bias. 
Both the 4:1 and 3:1 devices require auxiliary starting devices, 
whereas the 2:1 unit is completely self-starting.

The 2:1 divider at 60 cycles input is capable of efficiencies of the 
order of 70 per cent, and the output is relatively insensitive to input 
voltage or output current. Moreover, the power-handling capacity 
of a given core is not greatly different from that of a corresponding 
30-cycle transformer. The performance of the 3:1 divider is sub­
stantially inferior in every respect, and that of the 4:1 divider is still 
worse. Therefore, a chain of 2:1 dividers is usually preferable to a 
smaller number of high-order dividers.

14.13 The subcycle ringer
Closely related to McCreary’s divider is the Loraine Sub-Cycle*  
Ringer193 widely used in telephone plants to provide the low-frequency 
current to ring subscribers’ telephones. In its 2:1 form it differs 
from Fig. 14.9a principally in that the saturable core is made from 
conventional “E” laminations, with the input winding on the cen­
ter leg. The output windings are balanced so that none of the 
input frequency is induced in the secondary, and vice versa. Like 
McCreary’s 2:1 (30-cycle) unit, it employs a rectifier to bias the core 
and is completely self-starting.

The 3:1 (20-cycle) Sub-Cycle is illustrated in Fig. 14.10 and ex-

* The term Sub-Cycle is a trademark of the Loraine Products Corporation.
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(c)

Fig. 14.10. Twenty-cycle Sub-Cycle ringer: (a) simplified circuit, (b) actual 
circuit, and (c) wave forms.

plained in terms of the simplified schematic diagram. The condenser 
C is chosen to resonate the unsaturated inductance of the nonlinear 
coil at approximately one-third of the supply frequency. The opera­
tion is initiated by short-circuiting the saturable coil for an instant 
when the applied voltage is relatively large. The charge which is 
thus transferred to the condenser initiates oscillations at the fractional 
frequency, and these are maintained by the mechanism indicated in 
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Fig. 14.10c. Near each peak of the low-frequency current, the core 
saturates by the combined action of the two currents present. The 
corresponding low inductance permits the flow of a large current which 
charges the condenser in a polarity suitable to sustain the oscillations. 
That is, near the peak of each third half cycle of input voltage the 
inductance saturates and a pulse of current favorable to the fractional 
frequency is drawn from the source. This method of frequency divi­
sion appears to have been invented by Fallou91 and has been studied by 
Spitzer293 and others.

The commercial 3:1 Sub-Cycle employs the circuit shown in Fig. 
14.105, which features an automatic starting relay. In the absence of 
20-cycle output, the relay contacts close and deliver a starting tran­
sient. As soon as an output is established, the current through Ci 
is sufficient to hold the relay open. The operation is substantially 
the same as that of the simplified arrangement described, but the 
step-up ratio of the nonlinear output transformer permits the use of a 
smaller value of the capacitor Ci and facilitates control of voltage and 
impedance levels. The output condenser C2 serves to protect the 
device against excessive loads by limiting the output current. Once 
started, this device is very stable and operates with good values of 
efficiency and regulation.

14.14 A stable regenerative frequency divider
The frequency divider due to R. L. Miller210 is a good example of the 
class of stable, nonpassive frequency dividers, devised by Horton143 
and discussed by Fortescue.98 They are identified by the fact that the 
output is zero in the absence of an input, and is usually nearly propor­
tional to the input. The basic principle of this device is illustrated

Fig. 14.11. Miller’s 2:1 frequency divider.

in Fig. 14.11. The key feature is the balanced modulator, which 
delivers a voltage to the selective filter only if voltages are simultaneously 
applied to its two “inputs.” In the absence of the input signal f, 
therefore, there is no loop transmission, and the system is absolutely 
stable. When an input is supplied, the modulator will convert any 
assumed frequency/i into a frequency/ — /i, and deliver it through the 
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filter to the amplifier. However, the loop is closed so the assumed fre­
quency must be equal to the output frequency, which can only happen 
if A =7/2.

The operation is not dependent upon the phase shifts of the amp­
lifier, filter or modulator, since a suitable shift of the phase of the 
input voltage will compensate for any shift phase assumed to exist in 
these units; moreover, the system is self-starting. For a small fixed 
value of input at / the conversion loss of the modulator is a constant. 
Therefore, if the gain of the amplifier including the filter is greater than 
this constant loss, the level of fractional frequency will increase

FtG. 14.12. Circuit diagram of regenerative frequency divider.

exponentially with time until overload occurs. If, as is ordinarily 
done, the overload is made to occur in the modulator, the output wave 
form is good, and the amplifier operates well within its linear range. 
Although the modulator is saturated with respect to the regenerated 
signal at 7/2 it may still be linear in its conversion from the input at / 
to its output at 7/2. Over a considerable range, therefore, the output 
and input are closely proportional in amplitude. Finally, the phase 
shift between input and output is practically independent of the level 
and is quite insensitive to the condition of the tube and modulator; 
moreover, it is possible to obtain additional simply related frequencies, 
which are produced in the modulator, by addition of suitable tuned 
circuits.

A practical circuit for obtaining 2 and 10 kc from a 4-kc source 
is shown in Fig. 14.12. The 10-kc output is due to the third-order 
modulation process, discussed in the next paragraph. Using a low- 
power tube in the unit, Miller obtained power outputs well in excess 
of one milliwatt at both frequencies, and very good linearity between 
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the input and the 2-kc output. The input frequency could be varied 
over nearly an octave without loss of the dividing property, and at the 
limits the output disappeared rather than occurring at the wrong 
frequency.

Several important variants of this circuit were described by Miller. 
In one the modulator is designed to work in a more complicated manner 
according to the relationship

/o = f - m/i, (14-23)
where fo is the output frequency, fi is the frequency returned to the 
modulator, and f is the input frequency. This equation is seen to 
satisfy the loop conditions of Fig. 14.11 if fo = fi = f/8 and m = 2. 
Therefore, the original arrangement is not limited to division by two. 
However, it is not self-starting for ratios above two, because the output 
of a modulator representable by eq. 14.23 varies as the square of the 
voltage at ji. Therefore, the loop gain approaches zero as the output 
approaches zero. Operation is obtained by providing a relatively 
generous gain margin in the operating condition and by giving the 
circuit a starting transient.

In the other variant of this general system, Miller inserted a fre­
quency multiplier with associated filter between the amplifier and the 
modulator to obtain division by ratios in excess of two. Provided the 
multiplier has, at small amplitudes, an output proportional to the 
input, the resulting system is self-starting. For example, a self­
starting three-to-one frequency divider results from the combination 
of a rectifier-type frequency doubler with suitable filters and a linear 
modulator. At least in principle, we should be able to extend this 
method to higher orders of division. This matter is of some theoretical 
interest, because, to the author’s knowledge, this is the only way of 
obtaining a completely stable self-starting frequency divider having a 
ratio larger than two. It is very desirable that a frequency divider be 
self-starting; otherwise a starting transient must be supplied after 
each interruption of operation, and no output is observed if the input 
falls below some critical value. Following the general method used by 
Miller, Stansel296 has devised stable frequency dividers in which the 
modulation process is performed by vacuum tubes and in which the 
input frequency may be as high as 50 Me. Lyons194 proposes to 
extend the method to microwaves, at frequencies as high as 24,000 Me.

14.15 A stable class C frequency divider
The configuration of a practical stable frequency divider which 
requires no separate modulator is shown in Fig. 14.13. Its operation
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Fig. 14.13. Stable class C system: (a) schematic, (b) amplifier wave form, and 
(c) wave forms as 2:1 divider.

resembles that of Sterky’s296 divider, but the circuit requires only one 
rather than two tubes, and the division ratio may be greater than two. 
The tuned circuit should have a moderate value of Q (for example, 20), 
and an impedance consistent with efficient class C operation of the 
tube. The grid is biased substantially beyond cutoff, and the trans­
former coupling is reduced to the point that oscillation would occur 
only if the bias were reduced to the point of class A operation. Under 
these conditions the circuit is absolutely stable in the sense that it 
cannot produce an output in the absence of an input.
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If an input is supplied at the frequency / and if the output circuit is 

tuned to the same frequency, the system acts as a stable regenerative 
amplifier. Wave forms typical of such operation are shown in Fig. 
14.136. Because plate current flows during only a small portion of 
the cycle, it is clear that the same output could be obtained with a 
very different form of grid voltage wave. In particular, the same 
output is produced if the frequency of the input wave is doubled, and 
the amplitude slightly increased as shown in Fig. 14.13c. That is, 
the system operates efficiently as a 2:1 frequency divider. The 
addition of a grid leak and condenser is desirable as in other class C 
systems so that the bias will increase with increase of input. In 
principle, the method is capable of extension to any frequency ratio; 
in practice ratios in excess of about 3:1 are difficult to control. An 
alternate form of stable vacuum tube frequency divider has been 
devised by Groszkowski.120 However, it suffers the basic disadvantage 
that the power output is less than the power input.

14.16 Free-running frequency dividers
The synchronized multivibrator, discussed in Chapter 13, is probably 
the most widely used form of frequency divider. Its simplicity and 
ease of adjustment largely compensate for its faults, which are that an 
output is present in the absence of an input, and that the output fre­
quency may not be correct even when the input is normal.

The design of multivibrators for frequency division has been exten­
sively studied by Andrew,9 Shenk,281 and others, but it appears that 
certain aspects of the problem are still obscure, especially when the 
transition interval is not short compared to the period of the injected 
wave. At moderate frequencies the transition may be made suf­
ficiently sharp and the following design procedure is appropriate. (1) 
Design the multivibrator to run free as stably as possible at the desired 
fraction of the synchronizing frequency. This will ordinarily inyolve 
the use of large plate load resistances and positive return of the grid 
leaks. (2) Adjust the amplitude of the synchronizing voltage so 
that its maximum slope is equal to the slope of the unmodified grid 
voltage in the region of cutoff. This is desirable because it leads to 
maximum tolerance of the actual cutoff voltage without loss of syn­
chronization at the desired frequency; whereas, a larger value of syn­
chronizing voltage could cause the transition to occur too early. As 
shown in Chapter 13, the wave form of the synchronizing voltage is 
important. A square wave is slightly superior to a sinusoid, a “slop­
ing off” square wave is substantially better, and a saw tooth is ideal.

Frequency division by means of a stabilized relaxation oscillator has 



FREQUENCY DIVISION BY COUNTING 365
been obtained by Builder.48 Using a type 885 gas tube in conjunction 
with a stable tuned circuit, he is able to produce a free-running oscilla­
tor which has excellent intrinsic frequency stability, but is subject 
to synchronization over a considerable range of input voltage and a 
moderate range of input frequency.

Norrman224 has shown that frequency division by ratios as great as 
10:1 may be reliably obtained by means of synchronized LC oscil­
lators. He recommends the use of large excitation ratios and large 
L/C ratios, which lead to highly distorted wave forms and relatively 
poor inherent frequency stability. Under these conditions the syn­
chronizing voltage is quite effective in controlling the operating 
frequency.

Schmidt271 has obtained results comparable to those of Norrman by 
means of phase-shift oscillators. Frequency ratios up to 7:1 are found 
to be entirely practical. For many experimental purposes the phase­
shift arrangement is preferable because resistances and condensers are 
easier to obtain and adjust than are coils.

14.17 Frequency division by counting
The frequency dividers described in the previous sections are all 
based on the premise that the input wave is essentially periodic and 
reasonably stable in frequency. Some waves of practical interest do 
not meet those conditions. It is still possible to obtain an analogous 
operation by means of various schemes, depending upon the counting of 
cycles of impulses. A circuit which is basic to this art is the well- 
known Eccles-Jordan81 trigger or “flip-flop” circuit, which differs 
from the multivibrator only in that the coupling condensers are 
shunted by resistors and the grid leaks are returned to relatively large 
negative biases. The conditions are such that the circuit is in stable 
equilibrium with either tube conducting, in which case the other tube 
is permanently cut off by the action of the coupling and grid leak 
resistors.

If a series of suitable negative pulses is injected into the grid circuit 
through the synchronizing condenser it will be found that the cutoff 
versus conducting state is reversed once for each pulse. That is, two 
pulses must be injected to cause the circuit to return to its original 
condition and thus complete one cycle. Therefore, this circuit consti­
tutes an absolutely stable, frequency halver. The fact that a pulse 
injected symmetrically will cause the circuit to “flip” depends 
upon the fact that the two coupling condensers assume quite different 
charges during the interval between pulses. As the triggering pulse 
decreases to zero, the two grids therefore return toward zero bias at 
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different rates. The tube which was formerly nonconducting easily 
wins the race and thereby holds the other tube in a nonconducting 
condition until the next triggering pulse appears.

By using a chain of n of these circuits, as is commonly done in 
radiation-measuring equipment, it is possible to obtain an output 
transition as a consequence of 2” input pulses, whether these are dis­
tributed uniformly or nonuniformly in time.

Moreover, by reasonably simple modifications of this circuit, it is 
possible to provide units which divide by ten or other factors, not 
necessarily powers of two. Davis72 describes free-running multi­
vibrators based on these methods which are capable of dividing fre­
quencies by fractional ratios. The art of frequency division by count­
ing has become quite extensive, but is somewhat beyond the scope 
of this book. A good treatment of the subject is to be found in Chap­
ters 16 and 17 of Waveforms^ and in papers by Sharpless279 and 
Regener.256' 266

PROBLEMS
14.1. Why is the tuned circuit necessary in the primary of practical rectifier­

type frequency doublers? Explain.
14.2. Verify eqs. 14.2a and 14.3.
14.3. Design a frequency doubler to yield a 2-Mc output, using the 6AL5 diode, 

a 5000-ohm load, and coil having a Q of 100. Justify the element values chosen 
and calculate the overall efficiency. (Assume the diode has a fixed forward 
resistance of 200 ohms.)

14.4. Explain the detailed operation of the frequency multiplier of Fig. 14.4.
14.5. Show why the output of a magnetic frequency multiplier is zero until the 

input is increased to some critical level.
14.6. Sketch an arrangement for obtaining frequency tripling with nonlinear 

condensers.
14.7. Explain the observed fact that one or both "coasting” cycles of Fig. 

14.6 may be of larger amplitude than the cycle of conduction.
14.8. Derive eq. 14.22 by treating Fig. 14.86 as an induction alternator, assum­

ing an initial excitation.
14.9. Sketch an arrangement for obtaining 2:1 frequency division with non­

linear condensers.
14.10. Discuss the design and operation of a stable class C triode frequency 

halver.
14.11. Design a practical "flip-flop” frequency halver, using the 6SN7 tri­

ode with a common cathode resistor to avoid the need for a negative bias supply. 
Show how to inject either positive or negative triggering pulses, and justify the 
element values chosen.
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15

It is well known that the small voltages and currents generated by the 
thermal agitation of electrons within solid conductors and the cor­
responding random emission of electrons within vacuum tubes set a 
lower limit on the magnitude of electrical signals which may be ampli­
fied and detected. These undesired voltages and currents consist of 
small pulses which occur at completely irregular times; and may 
therefore be thought of as comprising all possible steady-state fre­
quencies. They are commonly referred to as noise because they 
produce a smooth continuous sound if amplified and presented in 
acoustical form by means of a loudspeaker. They are sometimes 
referred to as “snow” or “grass” in connection with television or 
radar systems where the signal is presented in visual form by means of 
an oscilloscope tube. Good general discussions of noise are given by 
Llewellyn191 and Moullin.218

It is not so commonly realized that noise voltages also affect the 
operation of oscillators. It is true that in most oscillator applications 
the effects of noise are quite small; but in some cases, for example in 
microwave oscillators used in superheterodyne receivers, the noise side­
bands seriously restrict the choice of the intermediate frequency. And 
in systems employing pulse time modulation the overall signal to noise 
ratio is affected by the influence of tube noise on the time of build-up 
of oscillation.

15.1 Review of thermal noise
The thermal agitation of the molecules of a gas, the so-called Brownian 
movement, is well known, and is fundamental to an understanding of 
the behavior of gases. The individual molecules move in all directions 
and with various velocities, experiencing collisions with each other and 
with the walls of the container. An increase in the temperature of 
the gas increases the average velocity of the molecules, which leads to 
an increase in the pressure exerted on the surrounding walls. A simi-

367
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lar situation exists within solid electrical conductors; but in this case
the moving particles are free electrons, and most of the collisions are
with the fixed portions of the molecules of the substance rather than
with other electrons.

Because a moving charge constitutes an electric current, and pro­
duces voltage in a system of finite resistance, it is clear that the thermal 
agitation of electrons in a conductor must produce a random electric 
voltage across its terminals. The truth of this statement has been 
amply confirmed by both theory and experiment. One means of 
calculating the magnitude of the effect, originated by Nyquist,227 
assumes that an ideal microphone, perhaps of the condenser type, is 
located in a gas at T° absolute temperature. The microphone imped­
ance is matched by means of an ideal transformer to a resistor R. We 
know that the Brownian movement of the gas will generate small 
voltages in the microphone, and that the resulting currents will heat 
the resistor. Evidently, thermal equilibrium is possible only if the 
resistor R returns an equal amount of energy to the gas through the 
microphone as a loudspeaker, so that both the resistor and the gas 
remain at temperature T°. By this means it is possible to calculate 
the voltage or power generated in a resistor at a given temperature. 
This voltage is referred to as Johnson157 noise after its discoverer.

It is immediately clear that the power must be independent of both 
the material and magnitude of the resistor R, because the power 
delivered by the microphone is constant as long as the load presents an 
impedance match, which may always be accomplished by a suitable 
choice of the transformer. It would also be anticipated that the power 
interchange would be greater if the microphone were capable of trans­
mitting a wide band of frequencies than if it were limited to a narrow 
band. The derivation, which is tedious, is omitted here and the result 
is stated as follows: The power P delivered by a resistor at an absolute 
temperature T° to an equal resistor (at any temperature) is given by

P — KTB watts, (15-1)

where K = 1.37 X 10"23 joules per degree is Boltzmann’s constant, 
and B is the bandwidth of the coupling system, in cycles per second, 
as indicated in Fig. 15.1. The second resistor will return a power cor­
responding to its own temperature, which is usually nearly the same 
as that of the first. (Some carbon resistors have noise properties in 
excess of that given by eq. 15.1, but this effect is of little interest in 
the present situation.)

It is often desirable to express the magnitude of this effect in terms 
of voltage instead of power. This is readily done because, in a linear
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I" o O

R at > Ideal band pass filter
temperature T > of bandwidth B

I------------------------- o o

Fig. 15.1. Transfer of power due to thermal noise.

system such as this, the maximum power available is equal to V2/4R. 
Therefore, the equivalent open-circuit voltage is given by

V74E = KTB volts2. (15.2)
This result is itself often convenient, but is principally important 
because it leads to an equation applicable in situations where a sharp 
cutoff does not exist. The expression then becomes

V2 = 4KT f0“ Rdf volts2, (15.3)

where R, a function of frequency, is the equivalent series resistance of 
the network at temperature T°.

Alternatively, we may regard a physical resistor as a noise-free 
resistance in shunt with a constant-current noise generator. Con­
sistent with the foregoing expressions, the effective current from this 
source may be written in terms of the conductance G

I2 = 4GKTB amperes2 (15-4)
or

I2 = 4KT G df amperes2. (15.5)

Equation 15.5 is the more general; eq. 15.4 applies only when the edges 
of the frequency band are well defined.

Because most apparatus operates at a temperature close to 300°K 
we may substitute this value to obtain simple results useful in normal 
situations. We have, corresponding to eqs. 15.1, 15.3, and 15.5, 
respectively,

I
P = 4.1 X IO-21 watts per cycle, (15.6)

V2 = 16.4 X IO"21 Rdf volts2, (15.7)

I2 = 16.4 X IO-21 G df amperes2. (15.8)

Stated in another way, the power available from a pure resistor at 
300°K is 204 db below one watt per cycle of bandwidth.
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15.2 Noise in conventional vacuum tubes
As in passive resistors, noise is produced in vacuum tubes because 
electricity is not capable of unlimited division. In vacuum tubes, how­
ever, noise is produced because the current flow produced by a stream 
of electrons is necessarily discontinuous rather than because of thermal 
agitation. Tube noise is frequently referred to as shot noise, especially 
if space charge is absent. It is also referred to as Schottky272 noise 
after its discoverer. The noise figure of a triode is quite high if the 
applied voltages are such that all the electrons emitted from the 
cathode reach the plate. Ordinarily, however, the potentials are 
such that most of the electrons emitted return to the cathode, and a 
dense cloud or space change of electrons forms near by. The effect 
of this space change is to cushion the motion of the individual elec­
trons, thus greatly reducing the noise produced. In tetrodes and 
pentodes the noise voltage is somewhat larger than in triodes because 
the space charge is less effective in smoothing the random manner in 
which electrons divide between the plate and the screen grid.

It is convenient and customary to express the noise produced by a 
vacuum tube in terms of that due to thermal agitation in an equivalent 
resistor in the grid circuit. The resistance in the grid circuit is 
increased from zero to such a value that the power indicated at the 
output of the amplifier just doubles. When this condition prevails, 
the tube and resistor contribute equal amounts of noise, and the value 
of the grid resistor is the noise rating of the tube under the particular 
operating conditions chosen. The noise voltages due to the tube and 
the resistor add on an rms or power basis—a situation which results 
from the fact that both are random in character so that there is no 
possibility of systematic addition of the peak values.

Fortunately, the equivalent noise resistance of typical vacuum tubes 
is represented to an accuracy adequate for most purposes by very 
simple formulas. Harris128 has shown that for triodes operating with 
complete cathode emission the equivalent noise resistance Req is given 
by

Req = 2.5/gm, (15.9)
where gm is the nominal transconductance in mhos.

For pentodes we must include an additional noise term due to screen 
grid current. The corresponding equation is

Reg = 2.5 + > (15.10)
k L 9m -
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where gm is the grid-to-plate transconductance in mhos; and Ip, 1^, and 
Igi are, respectively, plate, cathode, and screen current in amperes. 
It is assumed that the cathode current is the sum of the screen and 
plate currents. These equations show the desirability of a large value 
of transconductance and a small value of screen current where noise is 
of importance. In commercial tubes operated at relatively low fre­
quencies the equivalent noise resistance ranges from about 200 to 
5000 ohms.

This method of rating the noise output of vacuum tubes may seem 
somewhat arbitrary, but it is actually quite convenient. Its particular 
merit is that it points directly to the requirements on input trans­
formers. In a typical amplifier application a very small signal is 
available from a source having a fixed resistance at approximately room 
temperature. Nothing can be done to improve the signal with respect 
to the noise produced by this resistance, but a voltage step-up in the 
input transformer will serve to make both signal and thermal noise 
large compared to tube noise. Evidently, this objective is met if the 
source presents through the transformer a resistance large compared 
to the equivalent noise resistance of the tube. Adequate resistances 
are readily obtained at low frequencies where moderate bandwidths 
are required, but are rarely obtainable in high-frequency, broad-band 
amplifiers. Moreover, Thompson et al.312 show that the input loading 
due to transit-time effects and lead losses at high frequencies con­
tributes noise in addition to that corresponding to Re9.

15.3 Noise from the viewpoint of time distribution
The foregoing sections have pointed out that ordinary forms of noise 
may be regarded as possessing an infinite number of frequencies hav­
ing no systematic phase relationship and possessing uniform infini­
tesimal amplitude. The results found above are useful in many 
situations, but need to be supplemented by information as to the actual 
time variation of voltage and current. A very comprehensive statis­
tical treatment of noise effects has been given by Rice,260 and the most 
important of these results have been collected in a form more readily 
useful to engineers by Pierce.240

A typical example of a noise voltage is given in Fig. 15.2. The 
variation is entirely random in character, there being no definite 
period, amplitude, shape, or slope. Therefore, all statements con­
cerning the behavior must be made in terms of statistics. Such state­
ments, however, can be very exact and meaningful. If, for example, 
the noise voltage has an rms value V, then the probability that the 
voltage at a given instant lies between v and v + dv is given by
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Fig. 15.2. Typical specimen of random noise.

PR = (15.11)

This is the so-called normal-distribution equation, symmetrical about 
a maximum at v = 0. The probability that at a given instant the 
absolute voltage is less than Vo is expressed by the integral

pitl = 2 f—(15.12) 
Jo vV2ir

These functions are plotted in Fig. 15.3.
When a noise signal is passed through a low-pass filter, its frequency 

spectrum is changed in accordance with the properties of the filter.

Fig. 15.3. Probability distributions: pr is the probability that the instantaneous 
voltage lies between v and v + dv or that the envelope of filtered thermal noise 

exceeds v. PRi is the probability that the instantaneous signal is less than v.

It is ordinarily assumed that the filter has an extremely sharp cutoff 
characteristic. (Such a cutoff characteristic is necessarily associated
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with an extremely large phase shift in the cutoff region, but this has no 
effect upon noise spectrum calculations because the phase is assumed 
to be random.) In consideration of wave shapes and probability 
functions the phase characteristic enters, in that it sets a limit to the 
rate at which the filtered wave may change with respect to time. 
This is illustrated in Fig. 15.4, which shows the wave form of typical 
filtered noise. The principal change from Fig. 15.2 is a general round-

Fig. 15.4. Random noise passed through a low-pass filter.

ing-off of all peaks without any significant change in the slower varia­
tions. At first glance this rounding-off of peaks would seem to reduce 
the probability of large instantaneous voltages. However, it reduces 
the rms voltage in the same ratio, so that eqs. 15.11 and 15.12 and 
the curves of Fig. 15.3 may still be used for this case.

When noise is passed through a relatively narrow band-pass filter the 
character is markedly changed, as indicated in Fig. 15.5. The

Fig. 15.5. Random noise passed through a band-pass filter.

individual cycles are now similar in period and shape, but differ in 
amplitude in a random manner. This behavior is most conveniently 
expressed in terms of the envelope which passes through the suc­
cessive maxima of the wave itself. The probability that a given 
maximum is less than some specified fraction of the rms value is of 
the same form as eq. 15.11 and is represented by PR in Fig. 15.3. 
This function is of interest because it is later used to calculate the 
magnitude of jitter in the starting time of pulsed oscillators.
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15.4 Noise sidebands during sustained oscillation
It is ordinarily assumed that a conventional vacuum-tube oscillator 
generates a truly periodic wave representable as a fundamental fre­
quency and a series of harmonics. This representation, although 
adequate in most situations, is not completely correct. A better inter­
pretation is obtained by a study of the lamp bridge oscillator repro­
duced in Fig. 15.6. It is assumed that the output transformer is

Fig. 15.6. Lamp bridge oscillator: (a) schematic and (b) block diagram

untuned and has a bandwidth large compared to that of the input 
circuit, which in turn is supposed to have an impedance large com­
pared to the equivalent noise resistance of the vacuum tube. The 
latter condition ensures that any noise present in the output will come 
from thermal agitation in the lamp bridge rather than from the vacuum 
tube.

If the gain of the amplifier is very high (probably requiring ad­
ditional tubes) a condition will be reached in which the lamp bridge is 
exactly balanced. The entire input to the amplifier will be provided 
by the thermal noise of the balanced lamp bridge, which will be some­
what increased by the elevated temperature of the tungsten filaments. 
Under this balanced condition, represented by Me, the output will con­



NOISE SIDEBANDS DURING SUSTAINED OSCILLATION 375
sist of filtered thermal noise and will have a spectrum governed by 
the selectivity of the filter (grid circuit), as shown in curve a of Fig. 
15.7. As shown in Fig. 15.5, a spectrum such as this corresponds to a 
voltage wave which resembles a sinusoid of frequency /o, but has 
successive cycles which differ somewhat in amplitude and in period. 
Moreover, the differences are of a random nature, but on the average 
are proportional to the bandwidth transmitted through the filter.

Fig. 15.7. Variation of output spectrum with change of amplifier gain. Legend 
(a) go = Me 3 = 0; (b) mo = 0.707m«, 3 = 0.707/M«;and (c) mo = 0.50m«, 3 = 1.5/m«-

The width of the noise spectrum decreases rapidly as the inherent 
gain of the amplifier is reduced, and regeneration occurs through the 
resulting unbalance of the lamp bridge. In Chapter 5 it was shown 
that feedback modifies the gain of an amplifier by the factor (1 — m3)- 
In the present case 3 is the loss in the lamp bridge and is independent of 
frequency, whereas m is the gain of the amplifier-filter combination.

The parameters m and 3 may be defined by reference to Fig. 15.65. 
If the lamp bridge were removed and a voltage v in series with a resistor 
R were applied to the input of the filter, then a voltage V = pv would 
be developed across another resistor equal to R connected across the 
output of the amplifier. Alternatively, if the amplifier were turned off 
and a voltage V applied at its output terminals, a voltage 37 would 
appear across the input terminals of the filter.

In the active system of Fig. 15.65, both V and v contain many fre­
quencies, and it is necessary to proceed with caution. However, we 
know that the output power is substantially equal to the value Po 
which balances the bridge. Therefore, we may write

po = ^( V2df. (15.13)
R Jo

As long as m3 is less than one, it is certain that we may treat the 
system as a stable feedback amplifier with thermal noise having a
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uniform spectral distribution as its only input. The gain m of this
amplifier may be written

“ = Ml = i------ a = —7-------- a (15.14)v 1 — uB no/n — mop
where the inherent selectivity of the filter relates the gain to the refer­
ence value go at the midband frequency/o by the equation

= ________ Mo________
M 1 + 2jQ(J

Elimination of m leads to an equation in noise voltages

V ='
1 - mo^ + 2jQ(f - f0)/f0

Inspection of this equation shows that the output noise power will fall 
to half its maximum value at two frequencies separated by the noise 
bandwidth

B = (1 - mo/WQ- (15.17)
Substitution of these equations into eq. 15.13 and use of the absolute 
value to obtain power yield the equation

Movr fo^df
RQ2 Jo B2 + 4(f-f0)2 ( ■ }

Replacing / — f0 by 8f, changing limits, and rearranging, we have with 
the help of eq. 15.2

^ = 548 X 10-^^ P ■ (1519)Ro 5.48 X 10 1 bq2 Jo + (s/)2 (15.19)

Integrating by formula 480 of B. 0. Peirce’s book235, we obtain
2/2 2/2

Po = 5.48 X 10-23?1 • £ = 8.61 X IO“23 T (15.20)
BQ 2 BQ

Ordinarily the bandwidth is the parameter of principal interest; it is 
given explicitly by

2/ 2/71
B = 8.61 °2° X 10“23 cycles, (15.21)

Q~P o

where mo is the amplification at the nominal operating frequency /o, 
Po is the total power output, and T is the effective absolute temperature 
of the lamp bridge.
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In reviewing the derivation it should be noted that the basic assump­

tion that uP is smaller than one was never violated. In fact, eq. 15.19 
is satisfied only if (1 — uoP) is a positive but very small quantity. 
Thus we are led to the rather remarkable conclusion that the lamp 
bridge oscillator is merely an amplifier which automatically raises its 
gain to such a value that thermal noise is amplified sufficiently to 
operate the limiter. Moreover, this conclusion is readily extended to 
all linear oscillators; and the same general concept is applicable to 
ordinary nonlinear oscillators. In some cases, particularly at the 
higher frequencies, the tube rather than a circuit element contributes 
the principal source of noise, but the same general situation prevails.

In particular, the output is not a pure sinusoid accompanied by 
noise sidebands, because both the period and the amplitude are sub­
ject to random variations. It may, however, be thought of as a 
sinusoid subjected to noise modulation of both its amplitude and fre­
quency. It is seen that the purity of the wave increases with increase 
of output and selectivity, and with decrease of frequency and inherent 
noise. Thus, under imaginable circumstances, we might need to 
generate oscillations at an undesirably high level and then attenuate 
them in order to achieve a satisfactorily narrow spectrum.

However, we must accept these results with some reservations, 
because of the action of the limiter. As a following numerical example 
will show, the noise bandwidth of typical oscillators is very narrow. 
Therefore, the amplitude tends to change very slowly, and the limiter 
is able to remove practically all the amplitude modulation of the type 
shown in Fig. 15.5. That is, our assumption that the thermistors 
have constant resistance must be somehow amended. It appears, 
however, that phase or frequency modulation cannot be removed in this 
way, so that a considerable noise bandwidth remains. The output 
spectrum depends upon the speed of the limiter in relation to the band­
width indicated by eq. 15.21, and is therefore rather complicated. 
The output wave corresponds to that obtained by passing smooth 
noise through a filter having the characteristics represented by eq. 
15.21 in tandem with a linear automatic-output-control amplifier hav­
ing an appropriate response speed.

The noise bandwidth corresponding to eq. 15.21 increases as g0 is 
decreased and uoP is simultaneously increased, as shown in Fig. 15.7. 
In this connection it is instructive to note that if yo is increased above 
the critical value the bridge is unbalanced with reversed phase, nega­
tive feedback results, and the noise spectrum becomes even wider to 
correspond to the increased effective pass band of the amplifier.

It is interesting to calculate the noise bandwidth of a typical lamp 
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bridge oscillator, for which the following parameters are representative:
T = 500°K, bo — 100, /o = 106 cycles, Q = 100, Po = 10-2 watts.
The corresponding noise bandwidth is very narrow
B = 8.61 X 10“23 X 500 X 104 X 1012 X IO-4 X 102

= 4.3 X 10~6 cycles. (15.22)
The noise spectrum is considerably affected if both input and output 

transformers are tuned. Assuming that the two circuits have equal 
selectivity, we find that for any particular deviation from the midband 
frequency the attenuation in decibels or nepers is doubled from that of 
a single circuit. Therefore, the bandwidth defined by eq. 15.21 must 
be interpreted as between 6 db (one quarter maximum power) points 
rather than the original 3 db. As in other situations involving tuned 
circuits in tandem, the selectivity near the center of the band is not 
greatly affected, but the “skirt selectivity,” that is, attenuation at 
relatively remote frequencies, is greatly increased. This is ordinarily 
desirable.

We may also derive eq. 15.21 by considering an oscillator as a dis­
sipative tuned circuit in parallel with a negative noise-free conduct­
ance, identified with the vacuum tube. Therefore uo = 1- The 
advantage of this development (omitted for brevity), is that it applies 
to any oscillator representable as a linear feedback system driving a 
single antiresonant circuit.

The calculation of noise bandwidth in nonlinear oscillators is very 
difficult. Evidently, however, the contribution due to linear elements 
is independent of the driving system. Because tube noise is propor­
tional to transconductance (eq. 15.9), and because the time average of 
transconductance must be just sufficient to maintain oscillation, it is 
concluded that the contribution of tube noise is also constant as opera­
tion is shifted from class A into class C. That is, eq. 15.21 is applicable 
to all sorts of single-resonator oscillators.

15.5 Significance of noise bandwidth
At the present time the greatest practical importance of noise side­
bands is in connection with the local oscillators used in microwave 
radar receivers. Let us first calculate the bandwidth of a reflex oscil­
lator, using eq. 15.21, which should apply because the structure repre­
sents a single antiresonant circuit driven by the negative resistance 
of an electron stream. Typical values are: bo = 1, fo = 1010 cycles, 
Po = 10—2 watts, Q = 400, T = 15 X 106oK. The exceptional value 
of T is introduced to take account of the fact that the noise power 
of such tubes, as given on page 675 of the article by Pierce and Shep­
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herd,241 is about 50,000 times higher than that contributed by thermal 
noise in the resonator. The corresponding noise bandwidth is 81 
cycles. This value is consistent with the familiar observation that an 
audible beat tone is not ordinarily obtainable from such oscillators, 
and is believed to be substantially correct in spite of the fact that the 
rapid inherent limiting action of such oscillators removes practically 
all the amplitude modulation implicit in the development. A sub­
stantially narrower spectrum may be produced by the negative-feed­
back frequency stabilization schemes described in Chapter 17, because 
both slow and rapid frequency deviations are corrected thereby.

Fig. 15.8. Effect of noise sidebands in a superheterodyne receiver.

The reduction of the limiting sensitivity of a superheterodyne 
receiver due to noise in the local (beat) oscillator is studied with refer­
ence to Fig. 15.8, in which fo represents the nominal frequency of the 
local oscillator and/i and/2 represent the limits of the band of signals 
to be received. The main part of the receiver gain is provided by a 
very selective intermediate frequency amplifier which transmits the 
required band of signals and has its response centered at fi. Unless 
suitable precautions are taken, image signals lying in the frequency 
band between/3 and/4 will also be received; and even if a filter is used 
to reject external signals in this band, it will not remove corresponding 
noise signals produced by the local oscillator.

To obtain the true noise power delivered to the amplifier by the 
action of the local oscillator, we should sum the products of the 
amplitudes of all signals whose difference frequencies lie within the pass 
band of the amplifier, and should take into account the properties of 
the modulator. However, we are interested in the relative rather
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than the absolute noise power, and the large concentration of power
near/o makes it possible to obtain a good approximation to this value
by summing noise components between fi and f2 and doubling the
result to take account of the image response.

The doubled noise power in the frequency band f2 — /i is obtained 
by combining eqs. 15.19 and 15.20 in the form

= 2P0 (B/2) df
8 ir Jh-A (B/2)2 + bf2 

Integration yields

p 2P0r _,fi — fo -ifa ~ fo 
'• = 7F “b/T-“*" F/T 

The substitutions
fi — fo = fa and f2 — fo = fb

(15.23)

(15.24)

(15.25)

and the fact that these quantities are large compared to B permit use of 
the relations

to obtain
tan (tt/2 — </>)= cot </> = 1/tan <b = 1/<I>

^PpB 1 1
ir L/fc fa-

(15.26)

(15.27)

In a typical radar application fb and fa are respectively, 25 and 35 Me, 
and the power delivered to the converter, represented by Po, is 10-3 
watts. Corresponding to a bandwidth of 81 cycles, the total side band 
noise power is 2.9 X 10“10 watts. This value is known to be about 
one hundred times too high; the discrepancy is attributed to the fact 
that the limiting action of reflex oscillators is so rapid that the ampli­
tude disturbances implicit in eq. 15.27 are not actually present.

15.6 Influence of noise upon the initiation of oscillation
When a system having negative resistance is given an initial transient, 
the resulting oscillations increase in amplitude exponentially with 
time until nonlinearity sets in to limit the amplitude. In the absence 
of an initial transient such a system might remain at rest indefinitely. 
In practical oscillators, a relatively large transient usually accom­
panies the switching operation which renders the system active, and 
oscillations build up rapidly to their final value. In some cases, how­
ever, this starting transient is absent or negligible, and oscillations 
build up from the small random transients which constitute tube or 
thermal noise.

From the nature of noise it is clear that many separate impulses will
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join in starting the oscillation, and that the time which elapses from 
the instant when the system is rendered active until the oscillation 
reaches a prescribed relatively large amplitude will be somewhat 
random. This randomness is referred to as jitter, and is important in 
systems which employ pulse-time modulation for the communication 
of information because it may seriously degrade the overall signal-to- 
noise ratio. The oscillation envelopes which would be observed if 
such an oscillator were repeatedly turned off and on are shown in 
Fig. 15.9 It is noted that jitter associated with the decay, which can 
be no greater than the period of a high-frequency cycle, is usually much 
less than the jitter associated with build-up. This fact has been used 
to advantage in some commercial systems.

Fig. 15.9. Jitter in the oscillation envelope of a pulsed oscillator.

We may obtain a measure of this uncertainty of pulse time by a 
relatively simple analysis. No claim is made for the rigor of the 
process, but the result agrees with that calculated by Dr. C. R. Shan­
non and reported by Pierce and Shepherd.241 We start with the 
assumption that the resonator itself has a relatively high Q and that 
the system when rendered active is linear for oscillations ranging in 
amplitude from zero to a value large compared to the noise level. 
Under these circumstances the initial oscillations will expand according 
to the simple equation

A = Aoeat, (15.28)
where Ao is the amplitude in voltage or current at the time t = 0 
when the system is turned on and a is the increment rate in nepers per 
second.

We are to imagine that the turn-on process is repeated many times, 
and to determine the average deviation of the group of results. Before 
the system is turned on, the voltage across the resonator behaves as 
filtered thermal noise as pictured in Fig. 15.5. The magnitude of the 
envelope at the instant of turn-on may, therefore, be substituted for 
Ao in eq. 15.28.

By referring to curve pr of Fig. 15.3, we see that in 75 per cent of the
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trials Ao will lie above 0.77F and in only 25 per cent of the trials will 
it lie above 1.65F. Thus, half the total cases fall within a ratio of 
1.65/0.77 = 2.14 of starting voltage. This ratio corresponds to a 
difference of 0.76 neper, which means that the probable error from the 
average is 0.76/2 = 0.38 neper. In terms of the time to required to 
build up to a prescribed amplitude, the probable error is

8to = 0.38/a seconds. (15.29)

Specifically, in a large number of repetitions, half will occur within bto 
of the average value. It should be noted that a is the build-up rate in 
nepers per second which applies when the signal is at the level of noise. 
Changes in a as overload is approached do not affect the timing error.

Evidently, jitter can be suppressed completely only if the start­
ing pulse is such as to produce a transient larger than noise or if a 
suitable pilot signal is supplied. Jitter may be minimized by increas­
ing a to the practical limit, preferably by achieving a high effective 
transconductance.

15.7 Noise in microwave oscillators
It has already been stated that velocity-modulation tubes are consider­
ably more noisy than conventional tubes operating under space charge 
conditions. The factors which affect the noise produced in two-gap or 
reflex klystrons are even more complicated and numerous than those 
pertaining to triodes or pentodes. However, it is again possible to 
obtain simple expressions which are adequate for most applications.

In a typical velocity-modulated oscillator the cathode operates under 
a condition of complete space charge, and the total current flowing in 
the region between the cathode and first grid is considerably smoothed 
by space charge. However, this smoothing action does not extend to 
the gap, where the space charge is quite small. Although the situa­
tions are not exactly equivalent, it is found that the equation for noise 
in a temperature-limited diode is also reasonably accurate for klystrons. 
That is,

P = 2eIoRB watts, (15.30)

where P is the power delivered to the resistor R, which shunts the 
electronic gap or grids, e is the electron charge, Io is the beam current, 
and B is the bandwidth in cycles per second. In case the electron 
transit time is an appreciable fraction of a cycle at the operating fre­
quency, this result must be multiplied by a factor y, where

sin (0/2)
(*/2)

(15.31)



PROBLEMS 383

and 0 is the transit angle. In oscillators of the reflex type electrons 
traverse the gap twice Although additional possibilities of space 
charge smoothing exist, it appears that little smoothing actually occurs; 
and a satisfactory approximation for the noise power is obtained by 
doubling eq. 15.30. Experimental data on noise in klystrons are given 
by Pierce and Shepherd.241

The mechanisms which produce noise in magnetrons are not yet 
adequately understood. However, it is known that magnetrons are 
quite noisy, and that noise production is intimately associated with the 
reactions which produce oscillation. A low-power experimental 
magnetron had a noise power of about 10-3 watts over a bandwidth 
of 3 Me. This is an exceptionally high figure corresponding to an 
equivalent temperature of 4 X 1011 °K. It appears that interactions 
equivalent to electron collisions contribute to the high degree of dis­
order represented by such figures.

PROBLEMS
15.1. A 10,000-ohm resistor at 300°K is shunted by 100 puf; calculate the effec­

tive noise voltage by use of eq. 15.3.
16.2. Show that the result of Prob. 15.1 is unchanged if any loss-free inductance 

is added in shunt.
16.3. Calculate the noise power available from a 1000-ohm resistor at 300°K 

over a 4000-cycle bandwidth.
15.4. Referring to a tube handbook and eqs. 15.9 and 15.10, calculate the 

equivalent noise resistance for the 6J4 and 6J5 triodes and 6SJ7 and 6AC7 pen­
todes under typical operating conditions.

16.6. How would the signal of Fig. 15.2 be affected by transmission through a 
high-pass filter? Sketch and explain your result.

16.6. Derive eq. 15.21 by assuming that a resistor at temperature T is shunted 
by a loss-free coil and condenser and by a noise-free negative conductance (vacuum 
tube) sufficient to sustain oscillation.

15.7. Discuss the interpretation of noise bandwidth in connection with limiting 
speeds in practical oscillators. Is it legitimate to think of noise superimposed 
upon a pure sinusoid; and, if so, why?

15.8. Verify the development of eq. 15.29.
16.9. Discuss jitter in an oscillator in which the starting transient is just equal 

to the average noise level.
16.10. An oscillator is “primed” with a small constant sinusoidal voltage 

at its natural frequency. It is then pulsed by a voltage of random phase with 
respect to the “priming” voltage. Discuss the variation of starting jitter as 
the “priming” voltage is varied above and below the noise level.
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It is well known that information cannot be transmitted by a con­
tinuous current or by a steady sinusoidal wave. Only by varying the 
magnitude or polarity of a general wave or the magnitude, frequency, 
or phase of a sinusoidal wave is it possible to communicate. All such 
variations are referred to as modulation. The amplitude-modulated 
waves used in ordinary broadcasting are now usually obta'ned from a 
modulated amplifier in conjunction with an unmodulated crystal oscil­
lator; but directly modulated oscillators still find many applications. 
The present treatment is restricted to modulation produced in the 
oscillator itself.

16.1 General principles of modulation
Before preceeding with a discussion of specific methods of modulation 
it is well to consider the general principles involved and the basic 
limitations which exist. It is convenient to refer the discussion to the 
arrangement of Fig. 16.1 in which L, C, and G represent a passive 
resonator including any useful load, and N represents the driving 
system. In the condition of sustained oscillation, power is dissipated 
in the conductance G, depending upon the amplitude according to the 
relation

P = GV2, (16.1)

where V is the rms voltage. This power is necessarily supplied by the 
driving system N. In addition, if N has negligible susceptance, there 
is a fixed amount of energy in the amount

W = CV2 (16.2)

exchanged between the coil and the condenser.
In order to change the amplitude of oscillation it is necessary to 

change the stored energy as well as the rate at which it is supplied. 
If the supply is removed, the amplitude falls off in the familiar expo- 

384
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nential manner as the stored energy is expended in the conductance. 
Therefore, sudden changes in amplitude require large amounts of 
positive or negative power. In practice, this means that oscillators 
which are to be modulated rapidly must employ low-Q circuits and 
high transconductance tubes.

Fig. 16.1. Generalized oscillator.

If the frequency rather than the amplitude of the oscillation is to 
be changed, we must concern ourselves with susceptances rather than 
with conductances. Let us suppose that the frequency is to be caused 
to change or deviate somewhat from its original value fo to ^fo- This 
deviation will occur if the driving system provides a suitable sus­
ceptance B' in addition to the negative conductance G' required to 
maintain the oscillation. The total susceptance required of the driv­
ing system may now be determined by equating the total current to 
zero. Designating the total admittance of N as

Y' = G' + jB', (16.3)
we have

VY' = V(G' + jB') = -V(G+ j^woC + 1/J^oL), (16.4)
where

wo = 1/VlC and Q = w0C/G. (16.5)
Separating real and imaginary terms yields

G' = —G (16.6)
and

B’ = -&Q +GQ/C (16.7)
Because f = 1 this becomes

B' = 2GQ(1 - £). (16.8)
This expression is of considerable interest because it relates the power 
to the reactive volt-amperes which must be supplied in frequency 
modulation. From eqs. 16.6 and 16.8, it is clear that the two will be 
equal and the phase angle in N will be 45° when

« - 1 = 1/2Q. (16.9)
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The question as to how rapidly the frequency may be changed 

is most conveniently examined by imagining that the susceptance 
of N is suddenly changed by the addition of a positive (or negative) 
uncharged condenser at an instant when the voltage is zero. Such a 
change does not produce a transient, and all following cycles have a 
longer (or shorter) period in terms of the frequency deviation. We 
therefore conclude that very rapid changes in frequency are possible. 
However, under the particular conditions assumed, eq. 16.2 shows that 
until the driving system adds the required stored energy, the amplitude 
will decrease by the same factor (1 — £) by which the frequency is 
decreased.

An adequate discussion of the various ideas involved in frequency 
modulation is beyond the scope of the present treatment. Arguimbau15 
gives a very compact and enlightening discussion of the subject, 
which is even more fully covered by Hund.149

Phase modulation is closely related to frequency modulation, and is 
readily added to a constant-frequency signal by variable phase-shift 
networks. Free-running oscillators do not directly yield phase modu­
lation. However, a phase-modulated signal is readily produced by 
means of a locked oscillator in which the natural frequency is varied 
and the synchronizing signal has a constant frequency. The sub­
ject is somewhat beyond our present purpose and is not discussed 
further.

16.2 Keying
The simplest possible form of wireless communication involves an 
oscillator which is successively energized and de-energized by means of 
a switch or key. The presence or absence of an output signal, in con­
junction with an appropriate code, permits the communication of 
information. Such keying represents the simplest possible form of 
modulation, and is applicable to all kinds of oscillators.

We may imagine that oscillation is established the instant that power 
is applied to the circuit, and that the oscillations die out instantly when 
the key is opened. In practice, however, the situation is considerably 
more complicated. Oscillations do not build up instantly when the 
key is closed nor do they cease instantly when the key is opened. 
Moreover, the frequency and amplitude of oscillation may change 
during operation in the “key down” interval; and the behavior 
does not repeat itself exactly upon successive closures of the key, as 
shown in the previous chapter. These various effects set a limit to 
the amount of information which can be transmitted in a given interval 
of time.
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A tuned-plate oscillator with a key in the B+ lead serves to illustrate 

the basic ideas. If the key remains open for any appreciable interval, 
the various voltages and currents in the system decay to negligible 
values and the system comes to rest. When the key is closed, the 
tube (which has no negative bias) draws a considerable current. This 
current will initially flow through the tank condenser, but later trans-

Fig. 16.2. Wave forms during build up of oscillation.

fers to the plate coil and associated load resistor. The polarity of 
the coupled windings is such that the grid tends to be driven positive 
by the increasing current in the plate coil, and regeneration occurs. 
Accordingly, oscillation at the natural frequency of the tank circuit 
is excited, but the initial amplitude is small. The general behavior is 
correctly shown in Fig. 16.2; however, exact calculation of this interval 
is quite difficult because of the effects of nonlinearity. Grid loading 
is more important during this interval than it is during the steady 
state, and the variation of bias complicates the situation.

16.3 Coherent and incoherent oscillations
The operation just described and illustrated is coherent. That is, 
the phase of the generated wave has a fixed relationship to the instant 
at which the power is applied. Under these circumstances the wave 
forms of Fig. 16.2 will be exactly reproduced each time the key is 
closed; and it would be possible to obtain a stationary figure on an 
oscilloscope if the keying were periodic and the sweep were triggered 
from the keying mechanism. Coherent operation is important in a 
number of applications, usually those involving rapidly repeated off-on 
periods. In particular, certain radar systems discriminate between 
fixed and moving targets by means of coherent pulses.

The opposite behavior, known as incoherent operation, may be pro­
duced in the same circuit by a change of the point of keying. Let the 
key, in series with a small resistance, now be connected across the tuned 
circuit, so that oscillation occurs when the key is open rather than 
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closed. Again, the alternating voltage will die out and the grid bias 
will disappear if the system is inoperative for a substantial period. 
However, the tube will be subject to the full plate voltage, and a 
considerable current will flow. When the key is opened there will 
be no sharp transient because the current to the tube will already be 
flowing through the negligible resistance of the plate coil. Oscillations 
will therefore build up from the tiny random variations of plate cur­
rent associated with noise, and the phase will have no systematic rela­
tionship to the instant at which the key was opened.

We may now predict whether a given keying operation will produce 
coherent or incoherent waves: Oscillations will be coherent if and only 
if the transient produced in the resonator by the action of the key in 
energizing the system is large compared to the simultaneously present 
noise level. When the two are comparable there will be considerable 
randomness in the starting phase, but a definite concentration around 
an average phase will exist.

In microwave oscillators it is extremely difficult to produce coherent 
oscillations because inherent noise levels are relatively high and 
because practical keying devices produce very small transient effects 
in these systems on account of the filtering effect of parasitic induct­
ances and capacitances. One method of producing coherent pulses at 
micro wave frequencies is to “prime” the oscillator with a sus­
tained sinusoidal frequency at or very near the desired frequency. If 
the externally supplied signal is substantially larger than the noise 
level of the oscillator, the phase of the pulses will be accurately fixed 
with respect to the supplied signal, not to the keying impulses. If 
the signal level is reduced, the starting time is more and more affected 
by the random character of the noise, and the degree of jitter increases. 
Moreover, in magnetrons and perhaps in klystrons, the noise level 
appears to change during the starting interval. Therefore the 
behavior is quite complicated. Readers who wish to pursue this 
matter further are referred to the work of David.70,71

In triode oscillators at ordinary frequencies, on the other hand, it is 
difficult to produce incoherent oscillations, because noise levels are 
quite low and transient effects relatively high. In the example cited 
earlier, coherent operation might still result from the small change of 
current in the coil. This would occur because unavoidable resistance 
in the coil would cause some current to flow through the key and 
associated resistance. This particular difficulty could be substantially 
reduced by transferring the key to the grid coil, but an appreciable 
transient might still be produced by the action of grid current or 
contact or thermal emfs.
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16.4 Keying wave forms

We have seen that it is very difficult to produce an oscillation envelope 
which rises instantly from zero to full amplitude when the key is 
closed, or falls instantly to zero when the key is opened. Fortunately, 
such a performance is rarely desirable because the sharp steps in the 
envelope correspond to a wide spectrum of sideband frequencies. 
These sidebands occupy an unnecessary bandwidth, at the risk of 
interfering with other services in adjacent channels. The required 
bandwidth decreases with a decrease of the sharpness; so the question 
arises as to how much the envelope may be rounded off before the 
intelligibility of the signal is seriously degraded.

The question evidently is an aspect of the general problem of infor­
mation theory, as developed by Shannon278 and others. It is, there-

Fig. 16.3. Envelope wave form corresponding to barely readable keying.

fore, impossible to make a rigorous statement except in terms of signal­
ing speed, noise, and bandwidth. However, listening tests reported 
by this author83 indicate that in a keyed signal received through a 
typical communication receiver, the intelligibility has just begun to 
be seriously degraded when the pulse shape is distorted to the extent 
indicated in Fig. 16.3. It is particularly important that the signal 
decay rapidly at the end of each character because the logarithmic 
character of the sensitivity of the ear makes the signal appear to hang 
on until the amplitude is quite small. It is interesting that the signal 
is more pleasing to the ear when some rounding is present than when 
the corners are square, because transient effects produce the sensation 
of a click at the beginning and end of each character.

In this connection it may be helpful to note that, according to 
accepted standards for wireless telegraphy, the interval between 
characters is equal to the duration of one dot, the duration of a dash is 
equal to the space between letters, which is three times the duration of 
a dot, and the space between words is five times the duration of a dot. 
The standard (International) code is such that when average English 
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sentences are being transmitted at the rate of one word per minute the 
dot corresponds to seconds, and a “dot cycle” consisting of a 
dot and a space occupies 3 seconds. Because the essential features of 
Fig. 16.3 can be produced by inclusion of only fundamental, second, 
and third harmonic terms, it follows that a channel width of approxi­
mately one cycle per second must be allotted to each word per minute 
transmitted.

Several additional practical difficulties are sometimes observed when 
oscillators are keyed. The frequency may change with the rise and fall 
of oscillation during each cycle, the average frequency may drift 
depending upon the fraction of the time which the key is closed, and 
the amplitude may change in an undesirable manner for the same 
reasons. Frequency stability is achieved by the same methods which 
are applicable to continuous oscillators. That is, the circuit con­
figuration, element values, and components must be chosen to meet 
the requirements dictated by the particular application. The use of a 
quartz crystal is often the simplest solution to the problem of obtaining

Fig. 16.4. Envelope wave forms showing clicks due to filter transients, 

satisfactory frequency stability. Even when a high-Q crystal is used, 
it is possible to obtain keying speeds in excess of 150 words per minute 
(50 dot cycles per second) if the operating frequency is above one 
megacycle; this speed is adequate for most applications.

The rate of decay of the signal is most readily controlled through the 
Q of the passive system. However, a compromise may be necessary 
to satisfy frequency-stability requirements. The rate of build-up is 
then adjusted through the transconductance of the tube and the 
amount of feedback provided.

Amplitude disturbances of the general form indicated in Fig. 16.4 
are referred to as key clicks or thumps. As shown by Lee187 they are 
usually caused by simple transients in the LC circuits of power supply 
or decoupling filters. Additional filtering and damping at appropriate 
points in the circuit will suppress the trouble, but in high-power 
systems these changes may be relatively expensive.

At low signaling speeds and low power levels it is practical to 
employ a manually operated key such as that used in ordinary teleg­
raphy. At higher power levels it is desirable to employ a keying 
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relay controlled by a manual key or other device. At high signaling 
speeds, that is, in excess of about 30 words per minute, it is necessary 
to employ some form of automatic keyer. The keying signal may be 
applied to the oscillator in a great variety of ways; however, it is 
ordinarily desirable to key in a grid rather than a plate circuit in 
order to reduce the voltage and current which the key must handle.

16.5 Pulse modulation
Magnetrons and other microwave oscillators are often operated on a 
pulsed basis, which is characterized by the fact that the interval of 
operation is very short compared to the interval between pulses. In 
this way it is possible to obtain peak powers of the order of a megawatt 
from relatively small tubes. The method is widely used in radar, 
loran, ionosphere investigation, and pulse communication. In 
principle, it is equivalent to the keying process already discussed. 
In practice, it differs because of the relatively long interval between 
pulses, because of the various requirements on pulse shape, and because 
of the keying properties of the oscillators themselves.

Magnetrons are ordinarily modulated by applying a large negative 
pulse to the cathode by means of a suitable pulse transformer. The 
anode is grounded to the remainder of the system through the output 
circuit and is not readily pulsed. The pulse transformer is similar to 
those discussed in connection with the blocking oscillator in Chapter 
12 but is much larger and better insulated, because it must transmit 
the full level of power supplied to the oscillator, often in excess of one 
million watts.

High-power triodes and klystrons are often pulsed in the same way 
as magnetrons. However, they may also be modulated by means of a 
signal applied to the control grid. The principal advantage of grid 
keying is the great reduction in the power required of the modulation 
source; a disadvantage is that secondary emission and related effects 
in high-power triodes sometimes cause the grid to lose control of the 
plate current. Under these conditions an excessive plate current flows 
and the system is inoperative. Methods for generating the high-power 
pulses used in radar and similar systems are discussed by Seddon274 
and by Glasoe and Lebacqz113 and will not be described here.

16.6 The start-stop oscillator
In certain applications (for example, radar range calibrators) it is neces­
sary to generate pulses which are coherent with the control signal and of 
uniform amplitude. Such generators are referred to as start-stop 
oscillators. The basic difficulty is one of energy storage; just as much
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energy must be stored in the resonator during the off period as during
the operating period if the first cycle is to be of full amplitude. This
difficulty is overcome in the circuit due to Chance66 by passing a con­
stant current through the tuned circuit, as shown in Fig. 16.5a.

During the off period, T\ operates at substantially zero bias, and a 
considerable current flows through L. Oscillation cannot occur 
because the tuned circuit is shunted by the low dynamic impedance of

Fig. 16.5. Start-stop oscillator: (a) circuit, (6) output with T2 inactive, and 
(c) output with T2 active and Rk correctly adjusted.

Ti as a cathode follower. When Ti is cut off by a negative keying 
pulse the current through L tends to be suddenly stopped, and a 
transient oscillation is excited in the tuned circuit. The oscillation 
would decay exponentially as shown in Fig. 16.56 were it not for the 
action of tube T2, which operates in class A and acts as a negative 
resistance to supply the energy lost in the positive resistance of L. 
When the cathode resistor Rk is properly adjusted, the amplitude of 
oscillation is quite constant over a large number of cycles. Accurate 
adjustment of Rk is necessary, however, because no limiting process 
is provided. Oscillation is terminated very quickly at the end of the 
keying pulse by the heavy damping provided by the cathode of Ti 
when its conduction is restored. Evidently, the principal LC circuit
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should have the highest possible values of Q and frequency stability
in the interest of a uniform output at a constant frequency.

The basic circuit of Fig. 16.5 is capable of a number of useful modifi­
cations. By use of a pentode for T2 it is possible to add a load in the 
plate circuit and thus obtain an additional output signal in phase 
opposition or quadrature with the original output. Moreover, by an 
extention of the method, it is possible to use a quartz crystal instead 
of an LC resonator. However, the large intrinsic capacitance ratio 
of quartz resonators makes it difficult to start and stop the oscillation 
rapidly or in precisely constant phase. The difficulty of starting may 
be understood by noting that a large direct voltage is required to 
produce in the quartz a mechanical deformation equal to that produced 
by a small alternating voltage at the resonant frequency. Similarly, 
the oscillations of a vibrating crystal are not stopped by connecting 
its electrodes to either an open or a short circuit. A conductance 
equal to the susceptance of the crystal shunt capacitance produces 
relatively high damping, but it is not always practical to produce this 
value. Details of a crystal controlled start-stop oscillator are given 
by Chance.56

The performance of the circuit of Fig. 16.5 at high frequencies is 
unsatisfactory because the transient voltage produced decreases 
linearly as L is decreased. To alleviate this difficulty Easton80 has 
used a condenser discharged through a thyratron to induce a large 
transient in L by means of mutual inductance. With this arrange­
ment at 20 Me he has obtained coherent, constant amplitude, pulses 
as large as 80 volts peak.

16.7 Amplitude modulation
The first system of radio communication which was capable of trans­
mitting speech and music employed amplitude modulation. That is, 
the magnitude but not the frequency of the wave being transmitted was 
controlled or modulated in accordance with the audible signal. Most 
forms of the vacuum-tube oscillator are readily amplitude-modulated 
because the output is approximately proportional to some reference 
voltage. In such oscillators, the output becomes modulated if the 
reference voltage is varied about its mean value according to some 
signal having a relatively low frequency.

In practice, it is desirable that the change in amplitude is directly 
proportional to the modulation voltage, and that the operating fre­
quency is unaffected by the addition of modulation. Linearity ade­
quate for most applications may be obtained by careful design and 
adjustment. If necessary, it may be further improved to any required
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degree by the addition of negative feedback, using a highly linear
rectifier to demodulate a portion of the output to be combined in
opposition with the original modulating signal, as explained by Bode34
on page 493 of his book.

Frequency stability may be obtained by the use of a stable high-Q 
resonator, and by avoiding the use of components which are affected by 
voltage or temperature. However, the selectivity which may be used 
is limited by the rapidity with which the amplitude must vary when 
high modulating frequencies are involved. And the internal capaci­
tances of practical tubes always vary somewhat with both voltage and 
temperature. Therefore, in practice, it is very difficult to secure 
adequate frequency stability with respect to either long-term drift or 
variation over the modulation cycle. It is for this reason that most 
amplitude-modulated transmitters use a continuous low-level oscil­
lator, usually crystal-controlled, followed by a modulated amplifier.

For applications where a moderate amount of frequency instability 
may be tolerated the modulated oscillator is very convenient and 
effective. The several varieties of conventional harmonic oscillators 
are about equally desirable, the properties of the tube and the various 
impedance levels being far more important than the circuit con­
figuration in determining the efficiency and linearity of operation.

The fact that the amplitude of a particular oscillator varies linearly 
with some slowly varied applied voltage does not guarantee that it will 
be satisfactory for speech modulation. If the circuit Q is high, the 
decrement rate may be so small that the amplitude is unable to follow 
the more rapid variations in the signal, and only the lower speech 
frequencies will be present in the output. This requirement is most 
conveniently expressed by the statement that the tuned circuit in its 
operating condition must pass a band of frequencies somewhat in 
excess of twice the highest modulating frequency in order to account 
for both upper and lower sidebands.

It will be recalled from the analysis of Chapter 8 that the amplitude 
of a typical class C oscillator is directly proportional to the applied 
plate voltage. Therefore, it is merely necessary to add the modulating 
voltage to the plate supply voltage, usually by means of a transformer 
in series with the B supply. On purely physical grounds, it is clear 
that oscillation will be completely suppressed during part of each cycle 
if the peak modulating voltage is larger than the steady voltage Eb. 
Moreover, difficulties with nonlinearity and frequency modulation are 
markedly reduced if the peak modulating voltage is held substantially 
smaller than Eb.

The principal drawback of this arrangement is the large amount of
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power required from the modulation source. It is readily shown that
the instantaneous peak power drawn from the modulator is more than
twice the average power in the modulated signal delivered to the
useful load. In high-power applications this requires the use of large
and expensive tubes and transformers.

Modulation by means of a variable grid bias is not satisfactory in 
normal class C oscillators because of the bias developed across the grid 
leak. Application of a voltage in series with the grid leak affects the 
average grid current somewhat but has relatively little effect on the 
amplitude of oscillation. However, the resistance stabilized oscillator, 
in which no grid leak is used and limiting occurs by the large con­
ductance associated with the grid being driven positive, can be grid- 
modulated with reasonable linearity by a small driving power.

In tetrodes or pentodes, the screen grid offers a convenient means 
for amplitude modulating a normal class C oscillator. The screen 
grid voltage rather than the plate voltage determines the cutoff voltage 
of the grid, and hence the amplitude of oscillation. The plate efficiency 
in the absence of modulation cannot exceed 50 per cent with this 
arrangement, and it is difficult to obtain a high degree of linearity. 
However, the modulating power required is only about one-tenth of 
that required for plate modulation, and the circuit is simple and readily 
adjusted. Tubes in which the current and voltage of the plate are 
large compared to those of the screen grid, typically beam tetrodes, are 
most desirable in this circuit.

Pentodes may also be modulated by a signal connected in series with 
a negative bias source in the lead to the suppressor grid. Such a 
signal affects the effective transconductance of the tube and hence the 
conduction angle of operation rather than the cutoff bias. The result­
ing amplitude modulation is not very linear, and is accompanied by a 
rather large power dissipation at the screen grid of the tube; the 
method is therefore of limited usefulness.

Where a very high degree of linearity in the modulation of an oscil­
lator is required, the linear oscillator with automatic output control is 
preferred. The stabilizing factor should be fairly large in the interest 
of linearity, and the time constant of the bias control system should be 
short so that high frequencies in the modulation will be accurately 
followed. The Q of the resonator must not be too high in relation to 
the oscillation and modulation frequencies; otherwise the level of oscil­
lation is unable to fall rapidly enough. If the Q is low enough to 
allow the required decay rate, the level of oscillation can be made to 
rise rapidly enough, provided the tube is still linear, when the bias 
control acts to call for double the normal transconductance. Finally,
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there should be a good margin of envelope stability to avoid transients
in the modulation envelope. The frequency stability is likely to be
good because of the linear operation of the tube.

Velocity-modulation oscillators may be amplitude-modulated by 
means of a grid which controls the current in the electron beam. Under 
favorable conditions the modulation is fairly linear, and the associated 
frequency modulation small. Such oscillators may be keyed or pulsed 
by this method, by switching off and on the accelerating voltage, or 
by stepping the accelerating or reflector voltage between oscillating 
and nonoscillating values. Velocity-modulation oscillators tend to 
have a relatively long build-up time; therefore, they may be unsatis­
factory for the generation of short pulses.

Magnetrons are difficult to modulate. Variation of the magnetic 
field is difficult and produces undesirable effects, and variation of the 
applied voltage produces instability and frequency modulation. 
However, magnetrons have rapid rise time and operate well at high 
voltages; therefore, they are well adapted to the generation of high- 
power pulses. Amplitude modulation of good depth and linearity 
has been produced by Donal and Bush77 by means of a variable elec­
tronic conductance, which, in conjunction with a fixed absorbing load 
and suitable networks, controls the power delivered by a magnetron to 
the useful load. However, the process is rather inefficient; only 60 
per cent of the available power is delivered to the useful load at the 
peak of the modulation cycle. The variable electronic conductance is 
produced in a separate tube which employs controlled electron beams.

16.8 Frequency modulation
Amplitude-modulated oscillators are little used because it is easy to 
add amplitude modulation to a continuous wave of constant frequency 
and very, hard to remove frequency modulation if once introduced. 
For the same essential reasons frequency-modulated oscillators are 
rather widely used. It is relatively hard to add frequency modulation 
to a continuous wave, and it is easy to remove any amplitude modula­
tion which may accidently accompany the desired frequency modula­
tion. Whether the development of the Phasitron3 and the Serrasoid73 
methods of frequency-modulating a continuous wave will greatly 
modify the situation remains to be seen.

The simplest imaginable means of modulating the frequency of an 
oscillator is to vary mechanically the capacitance (or inductance) of the 
tuned circuit. This is done in a variety of ways for a number of useful 
applications. In certain signal generators an ordinary variable con­
denser is driven by a motor. Moreover, O’Brien229 has shown that
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speech communication is possible by coupling a condenser microphone
to the tuned circuit of a lumped-circuit oscillator, or by using a dia­
phragm in the cavity resonator of a microwave oscillator as a micro­
phone. Frequency deviations of the order of ±100 kc are readily
produced in this way if suitable precautions are taken.

Relatively little use has been made of nonlinear reactances for the 
frequency modulation of oscillators. However, it is known that the 
inductance of an iron-core coil can be substantially altered by intro­
duction of a signal current. Less well known, but perhaps more useful, 
is the fact that a substantial change in the capacitance of commercial 
high-K (group C) ceramic condensers is produced by application 
of a direct potential of a few hundred volts. It appears that these

Fig. 16.6. Use of reactance tube to frequency modulate an oscillator.

materials may be used to produce frequency modulation in a variety 
of situations where more complicated arrangements are now com­
monly employed.

The circuit of Fig. 16.6 illustrates a simple electronic means of modu­
lating the frequency of an oscillator. The reactance tube, usually a 
pentode in which the plate and grid voltages are in quadrature, acts 
as a variable reactance which changes the frequency of oscillation. 
In its simplest form the phase-shifting network consists of a resistance 
and a capacitance having a relatively high reactance, as shown by the 
dotted lines of Fig. 16.6. The effective reactance of the tuned circuit 
is changed by varying the transconductance of the reactance tube, 
usually by varying its grid bias. The reader is referred to a funda­
mental paper by Travis313 for a discussion of the reactance tube and 
other methods of frequency modulation. Additional design informa­
tion is given by Chireix,60 Hund,150 and by Young and Beck.352

It is convenient and informative to think of the oscillator tube as 
furnishing the in-phase or real volt-amperes to the load resistor while 
the reactance tube provides the quadrature or reactive volt-amperes 
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required for the deviation of the actual frequency from the natural 
frequency of the tank circuit. When the proper relationship between 
real and quadrature volt-amperes is maintained, the amplitude is 
quite constant as the frequency is varied. Evidently, the rating of 
the oscillator tube depends only upon the power output, whereas the 
rating of the reactance tube depends upon the reactances of the tank 
circuit and is proportional to the power output and the frequency 
deviation. Thus, the reactance tube must be larger than the oscillator 
tube if the power output is small and the required frequency deviation 
is large. Moreover, because both tubes operate at the oscillation 
frequency and voltage, they must have comparable characteristics 
with respect to high-frequency performance and voltage breakdown.

Ordinarily, the oscillator tube operates in class C with relatively 
high efficiency. The reactance tube, on the other hand, usually 
operates in class A in order to obtain the desired degree of linearity. 
This is possible because the capacitance which couples the signal to 
the grid has an impedance which is very large compared to the grid 
resistor. If the reactance tube is a pentode with a remote cutoff or a 
suitable pentagrid type, the transconductance may be made to vary 
in a nearly linear manner with respect to the bias applied to a high- 
impedance grid. Although the reactance tube is in wide use, the 
author feels that it is inferior in performance and general desirabil­
ity to several of the alternative methods of frequency modulation 
described in following sections.

16.9 Frequency modulation by resistance variation
The vacuum tube is intrinsically a resistive rather than a reactive 
device. Therefore, the reactance-tube arrangement suffers rather

Fig. 16.7. Frequency modulation by conductance variation.

serious practical limitations. For this reason, several workers have 
devised alternative systems for obtaining frequency modulation. In 
general these schemes depend upon the fact that a loss-free network 
producing a 45° phase shift translates increments of load resistance or 
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conductance into increments of input susceptance. Probably the 
simplest circuit for converting a variable conductance into a variable 
susceptance is shown in Fig. 16.7. The associated plot shows the 
variation of the admittance as the conductance is varied from zero 
to infinity. As is well known, the locus is a semicircle, and in the 
region of the point Gi = jaCi an increment in Gi results in a positive 
increment in B and no change in G. To establish the numerical rela­
tionship, we write the admittance equation

Y = G + jB = / = (16.10)
1/Gi + I/jaCi Gi +jaCi

To determine the effect of 
condition, we substitute

Gi 
to obtain

an increment in Gi from the

= <oCi(l + 3),

assumed

(16.11)

jaCSl + 3) _ (1 + 3)(1 + jl +j8)
1 + 8 + jl 1 2 + 28 + 82 (16.12)

Expanding and neglecting terms in 32, we have
Y = ^(l +jT +j8), (16.13)

which shows that G is unaffected and the fractional increment in B is 
equal to the fractional increment in Gi.

The extent to which the conductance Gi may be varied from the 
reference value may be limited by either the variation of resulting 
conductance or by departure of the resulting susceptance from pro­
portionality. Both limits may be examined by means of eq. 16 12, 
which can be separated and expanded in series to yield

and

aCi 
' 2 + 82/2

üA(1 + 3)
2 + 82/2 ’

(16.14)

(16.15)

It is seen that both are decreased from their maximum value by the 
same factor in the denominator. The allowable variation thus 
depends upon the particular requirements to be met; however, the 
value 3 = 0.1 leads to an error of only 0.25 per cent, which is almost 
always tolerable.

A variety of other network configurations also have the property 
of changing a conductance increment into a susceptance increment. 
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Since it is impractical to investigate all the possibilities, we naturally 
seek a general proposition which applies to all. The needed relation­
ship is provided by Bode,34 who proves that the admittance or imped­
ance of any physical network describes a circle (or straight line) in 
the complex plane if a single element is varied at a fixed frequency. 
The locus of Fig. 16.76 is an example of this theorem.

It is readily seen that the circle can be centered on the imaginary 
axis only if the network is nondissipative, except for Gi. On this basis, 
by a development similar to that following eq. 16.10, it may be shown 
that in the region of the operating point the change in reactive volt­
amperes at the input is always equal to the change in resistive volt­
amperes at the output. Moreover, the change in the input suscept­
ance is numerically equal to the nominal input conductance multiplied 
by the fractional change in the load conductance. Therefore, a large 
change in input susceptance is unavoidably associated with a large 
constant input loading, that is, low Q.

The situation may be clarified by reference to Fig. 16.7c. The appro­
priate equations are

2 = 1

“° L(C + Ci/2) (16.16)

1 ÖJ

(16.18)

and

woL(G + Gi/2) 2G + Gi
Assuming that Gi may deviate from its nominal value by some small 
fraction S without producing excessive amplitude modulation or non­
linearity of frequency response, we may obtain the frequency deviation 
by writing 

t2 2 _ _______ 1________  
? LC + (1 + 8)LCi/2

Employing eq. 16.16, we have
_ 2 = 2LC + LCi 

k 2LC + (1 + S)LCi

Factoring and using £ = 1 yield
. _________ 8LCi_______ ______ 3

5 “ 4LC + 2(1 + 8)LCi “ 2 + 4C/C1

Moreover, if G is negligible, the selectivity of the system reduces to
Q = 1 + 2C/Ci\ (16.21)

(16.19)

(16.20)
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therefore,

1 - £ = S/2Q- (16.22)
Thus if 6 =0.1 and Q = 50, the greatest possible fractional frequency 
deviation is ±0.001.

Any physical dissipation in the tank circuit will lower still further 
the working selectivity and hence the general frequency stability. 
In view of these considerations, this method of generating frequency- 
modulated waves does not appear particularly attractive. Perhaps its 
greatest advantage is that the phase-shifting network may readily be 
made to give an impedance transformation so that a given tube can 
be utilized most efficiently, as in the circuit of Montgomery.214

It may be well to point out that finding a circuit in which the fre­
quency deviation is proportional to a conductance change is much 
easier than the complementary problem of finding an electronic device 
in which a conductance change is proportional to an applied voltage. 
Nearly all the circuit complexity found in practical frequency modula­
tors is associated with the latter problem, which has been discussed in 
some detail by Reich.259

16.10 Frequency modulation of resistance-capacitance oscil­
lators

Because the frequency of a resistance-capacitance oscillator depends 
upon the value of two or more resistances in the circuit and because a 
vacuum tube may be made to act as a variable resistance, it is rela-

Fig. 16.8. Frequency modulation of Wien bridge oscillator.

tively easy to modulate the frequency of such oscillators. Chang,58 
who appears to have done the first work in this field, used the Wien 
bridge arrangement and varied the grid-to-ground resistance by means 
of a variable transconductance tube, referred to as the resistance tube. 
The essential features of his arrangement are shown in Fig. 16.8. 
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Provided that the resistance tube has a large amplification factor, and 
the physical cathode resistor is large, the effective cathode resistance is 
equal to the reciprocal of the transconductance. In turn, the operat­
ing frequency is proportional to the square root of the transconduc­
tance. Over a moderate range, the frequency deviation is substanti­
ally proportional to the deviation of the transconductance from its 
mean value, which in turn is proportional to the modulating signal in a 
supercontrol tube such as the 6SK7. Chang presents experimental 
curves showing reasonably linear frequency deviations of about 
+ 400 kc at center frequencies of 3 and 8 Me.

The principal disadvantage of this arrangement is that the loop gain, 
and hence the amplitude of oscillation, varies greatly over the modula­
tion cycle. The use of a thermistor in such oscillators is unwise 
because the thermal time constant is likely to be too great to follow 
the modulation. The difficulty may be avoided by using a second 
resistance tube suitably proportioned and located so as to preserve the 
loop gain, but the arrangement is rather complicated. Likewise the 
output may be passed through a limiter and filter to obtain a uniform 
output, but additional components are required, and the method fails 
if a frequency ratio in excess of 2:1 is involved.

A considerably simpler approach to the problem was taken by Artz,17 
who used an oscillator of the phase shift rather than the Wien bridge 
type. This is desirable because, as shown in Chapter 8, circuits which 
employ 180° phase shift are incapable of producing relaxation oscilla­
tions, whereas those based on the Wien bridge readily do so. The 
circuit diagram of such an oscillator, using a pentagrid for the resist­
ance tube, is shown in Fig. 16.9.

The essential fact is that, in a suitable network, the variation of a 
single resistance varies the frequency associated with a 180° phase 
shift without varying the loop gain. Fortunately, the rate of fre­
quency change is a maximum for the resistance at which the loop gain 
reaches its maximum. And a 2:1 frequency ratio, accompanied by 
only a one-decibel change in loop transmission, is produced by a 
resistance change of about 5:1. Under suitable conditions the result­
ing amplitude modulation is much less than one decibel. The inter­
ested reader is referred to Artz’s paper for design details.*

Ames6 has produced frequency-modulated signals in which the 
maximum-to-minimum frequency ratio is in excess of 100:1. His 
method is closely related to Artz’ method, and the wide frequency 
ratio is obtained by simultaneously varying the resistance in all four

*The operation may also be explained by considering the oscillating loop to 
have two alternate paths, one through C, one variable through the 6SJ7. 
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sections of the phase shift network. The total number of tubes used 
is large, because a dual triode is used in each of the four sections.

The “seven league” oscillator of Anderson7 described in Chapter 
8 is capable of even wider frequency modulation than that of Ames, 
and requires fewer tubes. It is only necessary to vary the effective 
transconductance of the two tubes fed from the ganged potentiometer. 
However, the frequency varies logarithmically with the transmission 
through this path; therefore, linear frequency modulation will be 
produced only if a suitable exponential characteristic is obtained in 
the transfer characteristic of the tubes used. Although the cir­
cuit can produce design difficulty when wide frequency ratios are

Oscillator tube — Resistance tube

Fig. 16.9. Frequency-modulated phase shift oscillator.

attempted, it appears very favorable for more moderate frequency 
excursions, because the loop gain of the oscillation path may be made 
very nearly uniform over a considerable frequency band. Therefore, 
the output may be made substantially uniform and free from harmonics.

Additional work on the frequency modulation of resistance-capaci­
tance oscillators has been done by McGaughan and Leslie.198 They 
produced frequency deviations as great as ±50 per cent, with very 
little distortion or amplitude modulation; but the circuits used are 
somewhat complicated.

The frequency of relaxation oscillators such as multivibrators may 
also be modulated over a considerable range and in quite a linear 
manner. This is most simply achieved by returning the grid leaks to a 
suitable positive voltage in series with the modulating signal. This 
works very well when the modulating frequency is quite low compared 
to the operating frequency, but may lead to difficulty with synchroni­
zation if the modulating frequency is comparable to the operating 
frequency. Experimental results are reported by Sturtevant.300

16.11 Frequency modulation by a variable phase shift
The common characteristic of the circuits so far described is that 
separate tubes provide the real and the imaginary volt-amperes to the 
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tuned circuit. Therefore, all such circuits are essentially nonsym- 
metrical. De Lange74 has recognized the possibility of distributing 
the burden so that two tubes contribute equally. His experimental 
circuit yields ±3 Me deviation about a center frequency of 65 Me. 
Amplitude modulation is small, and the second and third harmonic 
outputs are, respectively, 32 and 37 db below the fundamental.

A simplified schematic of the arrangement is shown in Fig. 16.10. 
The limiter in the interstage circuit, a pair of 1N28 silicon crystal

Fig. 16.10. Symmetrical frequency-modulated oscillator.

diodes, serves to limit the amplitude of oscillation and minimize 
amplitude modulation. The 6AK5 amplifier produces a phase reversal 
and needed gain; however, both of these functions could be performed 
by a transformer if the center and deviation frequencies were somewhat 
lower.

The essential feature of the operation is shown by the phasor dia­
gram of Fig. 16.11. The amplifier produces a phase shift of 180° at the 
center frequency, where the phase shifting networks RiLi and R2Cj 
are adjusted to produce equal and opposite phase shifts; thus the 
total loop phase shift is zero provided the two 6AK5 tubes are biased 
equally. When the bias is unbalanced by the modulating signal, 
the outputs of the two tubes are unequal, and the loop phase shift is 
disturbed. The resulting frequency shift is in such a direction as to 
restore zero phase.
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Results comparable to those of De Lange but at a somewhat lower 
frequency have been achieved by Bruck,43 who uses a dual triode in the 
symmetrical circuit shown in Fig. 16.12. The operation depends upon 
the phase shift introduced by the coupled circuits, which operate as a 
frequency discriminator, as discussed in the following chapter. In 
the absence of a modulating signal, the two grids receive equal alter­
nating voltages displaced about 90° in phase, so that two pulses of 
cathode current are delivered per cycle. The grid leaks are relatively

Fig. 16.11. Phasor diagram of variable phase shifter.

Fig. 16.12. Frequency-modulated oscillator of Bruck.

large so that the grids are not driven appreciably positive. When a 
signal is applied, the pulses due to one tube tend to decrease and those 
due to the other tend to increase; the loop phase shift is disturbed and 
the frequency changes. The discriminator acts, not only as a phase 
shifting network, but also as a sort of negative-feedback device, 
because a frequency shift results in such a change of the relative mag­
nitude of the alternating voltages as to tend to equalize the conduction 
of the two tubes. Therefore, the linearity of modulation depends 
largely upon the characteristics of the discriminator, which can be 
made quite linear. In addition to simplicity and economy of parts,
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the method has the advantage that the average frequency depends
principally upon the properties of the tuned circuits, which can be
made quite stable.

Velocity modulation oscillators may be frequency modulated by 
varying the accelerating or reflector voltages. The resulting change 
of phase shift due to transit time results in frequency modulation, 
which may be made quite linear and free from amplitude variation.

Magnetrons may be frequency-modulated by addition of controlled 
electron beams between the vanes and parallel to the axis of the system. 
Such electron beams add a pure variable susceptance to the resonator, 
hence produce substantially pure and linear frequency modulation. 
Magnetrons and other oscillators may also be frequency-modulated by 
means of an external electronic susceptance based on electron beam 
techniques and operating on the principle of the reactance tube. The 
interested reader is referred to the work of Kilgore, Shulman, and 
Kurshan.168

16.12 The reactance-tube oscillator
It has often been observed that a tube intended as a reactance tube 
may oscillate if the phase shifting network is incorrectly adjusted. 
This is readily explained because the tube will produce an effective 
negative conductance if the grid voltage is more than 90° out of phase 
with the plate voltage. Following this idea, Chang and Rideout69 
have devised a very simple single-tube frequency-modulated oscillator 
which should be useful in many applications.

The analysis is based upon a generalized reactance tube, with an 
impedance Zi between grid and plate and Z2 between grid and cathode. 
The plate-to-cathode admittance is readily shown to be

1 , £
Zi + Z2 rp Zi + Z2

(16.23)

Omitting the first term to obtain the contribution of the tube, and 
writing

——= Ae16 = A cos 0 + jA sin 3, (16.24)Zi + Z2
we have

1 1 iY( =------gmA cos 3 + jgmA sin 3 = — + — • (16.25)
Tp Kt

The terms Rt and Xt represent the tube on the basis of two impedances 
in parallel. The resistance Rt will be negative if rp is relatively large
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and if cos 9 is negative, which requires that Zj and Z2 have reactances 
of opposite sign.

(a) (6)
Fig. 16.13. Two forms of the reactance-tube oscillator.

Two forms of the reactance-tube oscillator are shown in Fig. 16.13. 
The equations that apply to the circuit of form a are

-HQmCo(LpRg + LgRp)

and
2 VlpCp(1 + a) CpLp(l + a) (16.26)1 +

_ RpCp(Lp - Lg) + CpL^/Corp - Cp^LpRp/Co
Qm " l^g

where
(16.27)

a = (C0/Cp)(l + Lg/Lp). (16.28)
Similar equations applying to the circuit of Fig. 16.135 are

f= V1 +5
2tt \ LpCp 

and

QmLpRg

Lo(l + 5)
(16.29)1 +

(Lo + Lp)(RpCg/Lp - Cg/Cprp) , (Cp + C„)(Rg + Ro)gm =--------- T----------------------- 1------------- ?------------ ’
(16.30) 

where

5 = (Lp/L0)(l + Cp/Cg). (16.31)
Both sets of equations show that the frequency depends upon the 

effective transconductance, and that the variation is substantially 
linear for moderate frequency deviations. However, in the first case 
the frequency decreases with an increase of transconductance, whereas
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in the second case it increases. The problem, therefore, is to obtain 
a variation in transconductance without producing an undesirable 
change in amplitude. Moreover, as previously noted, in typical class 
C oscillators the effective transconductance adjusts itself to the value 
which satisfies the loop-gain equation; and the application of an 
external bias is ineffective.

In the present circuit the tube operates in a nearly linear manner 
with an externally applied negative bias. By a proper choice of the 
operating point, a variation of the control grid bias affects the trans­
conductance and plate resistance oppositely and in such a ratio as to 
satisfy eqs. 16.27 and 16.30. Thus, the operating frequency is a 
substantially linear function of the voltage applied to a negatively 
biased grid. Experimental oscillators using the 6L6G beam tube 
gave substantially constant output and nearly linear frequency modu­
lation of +2 per cent about a midfrequency of 1.5 Me. The actual 
circuits differ from those shown only by the addition of feed chokes 
and blocking condensers for application of the direct and modulating 
voltage.

It is interesting to note that the locked oscillator of Bradley” 
(Fig. 13.14), although designed for another purpose, is also a one-tube 
frequency-modulated oscillator. This circuit may be explained in 
terms of the reactance tube concept, or thought of in the same light 
as the oscillators of De Lange or Chang and Rideout. The single-tube 
frequency-modulated oscillator of Johnson158 is very similar to that of 
Bradley, though it appears to have been developed from a somewhat 
different viewpoint.

16.13 Superregeneration
The principle of superregeneration was introduced by E. H. Arm­
strong16 in 1922, but was not generally understood until much later. 
Its application has been greatly retarded by this lack of information. 
The subject is discussed here, because the method is based upon the 
initiation of oscillation in the presence of noise and a small signal. The 
principle may be used to obtain both detection and amplification and 
is applicable to signals modulated in a variety of ways. Moreover, a 
given circuit configuration may operate in quite different ways, 
depending upon the relative values of the parameters.

Probably the simplest application of superregeneration is as an 
amplifier in what is called the linear mode. The fundamental func­
tions are indicated in Fig. 16.14. The external conductance g, repre­
sentative of the action of the vacuum tube, is periodically varied from 
positive to negative by the action of the quench source. It is assumed
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that the conductance g is changed suddenly, but that no appreciable 
shock excitation results. Under these circumstances, oscillations 
build up exponentially from the level which existed in the resonator at 
the time of turn-on. The initial level depends upon the signal, here 
represented by a constant-current source, and any noise which may be 
present. If the conductance is not maintained negative for too long 
an interval, the system will remain linear, and the maximum oscillation 
level reached will be directly proportional to the input signal. The 
nature of this variation is indicated in Fig. 16.15.

Fig. 16.14. Essential functions of a superregenerative amplifier.

Constant 
current 
signal 
source

Fig. 16.15. Amplitude variation in linear mode as an amplifier.

From this picture it is immediately clear that the total conductance 
must have a positive average value; otherwise the decay during the 
quench interval would be insufficient to balance the build-up during the 
amplification interval, and the average amplitude would increase 
until saturation due to nonlinearity set in. In practice, the self­
oscillation should be allowed to decay below the noise level during 
each quench cycle. Otherwise the voltage which governs the next 
build-up includes both the incoming signal and portions of the previous 
oscillation. Such a situation is referred to as hangover, and is undesir­
able because it degrades the sensitivity of the system as well as pro­
duces undesirable undulations in the selectivity characteristic.

16.14 Selectivity of the superregenerative amplifier
Subject to the assumption that the previous oscillation has decayed 
below the noise level and that the conductance varies in a square-wave 



410 MODULATION OF OSCILLATORS
manner, the selectivity of the system shown in Fig. 16.14 is sub­
stantially equal to the selectivity of the total system during the quench 
interval. In particular, if G is zero over this interval, the selectivity 
is simply the selectivity of the passive tuned circuit. To show this 
we may imagine the frequency of the signal to be varied from the 
natural frequency of the resonator, in which case the voltage effective 
in starting the oscillation decreases according to the selectivity of the 
passive system.

If the amplitude of the input signal is varied slowly with time, the 
peaks of the resulting envelopes of oscillation will vary accordingly. 
Therefore, the system serves as a linear amplifier of unmodulated or 
amplitude-modulated waves.

As the frequency of the signal modulation is increased, the successive 
samples of the modulated input signal, obtained by the quench process, 
differ more and more in amplitude. Provided the other parts of the 
system respond adequately, it is clear that no difficulty will be experi­
enced as long as several samples are taken over each modulation cycle. 
It is plausible, and can be demonstrated, that no serious distortion of 
any kind occurs until the modulation frequency is half of the quench 
frequency. Filters in one form or another are used to remove high- 
frequency components, thus producing a smooth output. This situa­
tion rarely leads to difficulty in practice, because the quench frequency 
must be considerably higher than the highest modulation frequency 
to be received in order to avoid direct interference from this source.

We are now in a position to see how a variation of the quench wave 
form affects the selectivity. Suppose that the total conductance has 
the form shown in Fig. 16.16. The reduction of the conductance of 
the tuned circuit during the reception interval is desirable because it 
leads to a high selectivity and a larger starting voltage from a given 
signal. The large negative conductance during the amplification 
period is desirable because it leads to a rapid expansion of the signal, 
thus giving more time for quenching and amplification. Finally, 
the large positive conductance leads to rapid and complete quenching. 
In practice, it is very difficult to approximate this wave form, and it is 
often undesirable to do so because of the excessive selectivity produced.

The performance of other conductance variations was investigated 
by H. A. Wheeler and reported by Hazeltine131 et al. in a very informa­
tive paper. The interesting feature of this work is that the overall 
selectivity depends to some extent upon the conductance during the 
amplification interval as well as upon that during the reception. In 
practical systems the net conductance always passes through zero at a 
finite rate, and the selectivity is most affected by the interval when the
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conductance is small. In particular, if the conductance varies linearly 
with time from a large positive to a large negative value the selectivity 
curve has the form -I—I

A=Aoe (16.32)

where Ao is the midband amplification, A is the amplification at an 
angular frequency differing from the midband by w, and C and G are, 
respectively, the total capacitance and conductance of the resonator as 
shown in Fig. 16.14.

16.15 Noise in the superregenerative amplifier
Under favorable circumstances, the signal-to-noise ratio of a super­
regenerative receiver is very good, because the needed selectivity is 
produced directly in the input circuit. Moreover, the system is 
inherently insensitive to isolated noise impulses, such as those pro­
duced by automobile ignition systems, because it is not affected unless 
the pulse occurs near the end of the reception period, and because the 
system does not saturate. However, as pointed out by Bradley,38 
the signal-to-noise ratio is seriously degraded if the quench wave form 
does not have the property of holding the total conductance low or zero 
for a considerable portion of the cycle, as shown in Fig. 16.16.

16.16 The logarithmic mode
If the amplification interval is extended without modifying the 
build-up rate, the system will overload during each cycle as shown in
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Fig. 16.17. However, the saturation level will be reached sooner, and 
therefore the average output will be increased, if the signal is increased. 
It can be shown that the area enclosed by the oscillation envelope 
increases as the logarithm of the instantaneous input. This leads to 
marked distortion of an amplitude-modulated wave, particularly near 
the troughs of modulation where the instantaneous amplitude is small. 
It is therefore not ordinarily desirable.

Fig. 16.17. Oscillation envelopes for three signal levels applied to a superregenera- 
tive system in the logarithmic mode.

A circuit which operates as a superregenerative amplifier will also 
serve as a demodulator if any portion of the circuit acts as a rectifier. 
This nearly always happens in a practical circuit, although not always 
in an efficient manner. Limiting usually occurs by grid rectification, 
so the average grid current may be used as an output. The average 
plate current usually shows a corresponding variation at a higher 
power level.

The preceding discussion has assumed that the quenching signal is 
supplied from a separate source, preferably a relaxation oscillator yield­
ing a suitable wave shape. However, the quenching action can also be 
obtained by causing the superregenerative oscillator to operate inter­
mittently as discussed in Chapter 10. This method has the advantage 
that the system passes through the condition of zero net conductance 
rather slowly so that the selectivity is good. It has the disadvantage 
that the quench frequency is quite sensitive to the level of the input 
signal and that it is difficult to design a circuit which performs all 
the necessary functions simultaneously and well.

The reader is referred to Stockman297 for a good discussion of appli­
cations of superregeneration, and to Kalmus161 for several operating 
circuits. Additional information concerning the theory of operation is 
given by Frink,104 Glucksman,116 and Riebman.263

PROBLEMS
16.1. An oscillator has a passive Q of 100 and is to be frequency-modulated 

± 1 per cent. How many reactive volt-amperes are required if the power output is 
10 mw?
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16.2. If a circuit is to transmit 100 words per minute, what minimum bandwidth 
is required? Consistent with Fig. 16.3, what time constants are allowable?

16.3. Discuss the basic problem of a start-stop oscillator and show how Chance’s 
circuit solves it.

16.4. Sketch a circuit for plate-modulating a tuned-plate triode oscillator and 
discuss power and element relationships.

16.6. Show how screen-grid modulation may be applied to a beam tetrode and 
discuss the Enearity and efficiency which may be obtained.

16.6. Discuss the design of the frequency modulated oscillator of Artz (Section 
16.10).

16.7. Draw a circuit for producing frequency-modulated square waves with a 
multivibrator, and discuss the use of filters to obtain sinusoidal output waves.

16.8. Discuss the operation of De Lange’s oscillator.
16.9. Discuss the operation of Bruck’s oscillator.
16.10. Justify by physical reasoning the general form of eq. 16.32.
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17.1 Purpose of automatic frequency control
Under ordinary circumstances, it is customary to employ a resonator 
in conjunction with an amplifier or negative resistance device to 
produce oscillations. Under certain circumstances, however, it is 
desirable to employ an automatic frequency control system in which a 
relatively unstable oscillator is constrained to operate at the desired 
frequency by means of a feedback system. The essential features of 
such a system include the oscillator which generates a signal, the dis­
criminator which produces a response that depends upon the deviation 
from the desired frequency, and a correction mechanism which causes 
the deviation to decrease.

Automatic frequency control was devised by Travis313 to simplify 
the design and tuning of high-frequency radio receivers in which a 
high degree of selectivity is achieved by the superheterodyne method. 
The full selectivity available by this method is obtained only if the 
local oscillator is, and remains, accurately tuned to a frequency which 
differs from that of the transmitter by the intermediate frequency of 
the receiver. Such accurate tuning can be achieved more cheaply 
and easily by means of automatic frequency control than by careful 
manual adjustment of a highly stable beat oscillator. Also, automatic 
frequency control has the additional advantage that the desired fre­
quency difference is maintained, even if the transmitter frequency 
varies somewhat. In communication systems the transmitter fre­
quency rarely varies to an appreciable extent, but in radar systems this 
is not always true; and automatic frequency control has been found an 
effective solution to the problem of keeping the radar system properly 
tuned.261

Automatic frequency control is used in many frequency-modulation 
transmitters. In this application the instantaneous frequency is 
varied about the average value by means of a reactance tube or other­
wise, as described in Chapter 16. The average frequency, however,

414
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is held constant with respect to a stable resonator or oscillator by
means of automatic frequency control.232,311 In practice, this is often
accomplished by slowly varying the bias of the reactance tube so that
both slow and fast variations of frequency are controlled by the same
electrode.

In the microwave region, automatic frequency control is employed for 
a somewhat different reason. At these frequencies, oscillators and 
highly stable resonators exist separately, but it is difficult to combine 
them; and satisfactory four-terminal amplifiers are unavailable. 
Under these circumstances it is often more convenient to refer the 
frequency to a cavity indirectly by automatic frequency control 
rather than directly by methods discussed in the previous chapters.

In induction heating and other industrial applications it is often 
expedient to generate the required output directly in a high-power 
oscillator which is held within the allowable frequency tolerance by 
means of an automatic frequency control system. The advantage of 
this arrangement is that a minimum number of high-frequency, high- 
power components is required.

17.2 Discriminators

Discriminator circuits have received extensive development in con­
nection with receivers for frequency-modulated signals.100 103 The 
simplest possible discriminator is a tuned circuit operated slightly away 
from its natural frequency. If such a circuit is subjected to a signal 
of constant amplitude but variable frequency, the output depends upon

Fig. 17.1. Frequency discriminator based on two circuits tuned to different 
frequencies: (a) circuit and (b) typical response.

the frequency. In radio receivers we ordinarily use a limiter, in which 
the output is independent of the input amplitude, to provide a sub­
stantially constant signal to the discriminator; but in automatic 
frequency control oscillators this limiting function is usually inherently 
present.

A basic form of symmetrical frequency discriminator is shown in 
Fig. 17.1. It is seen that the output voltage is zero at a frequency
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lying between the natural frequencies of the two tuned circuits, and 
varies almost linearly with frequency in this region. It again decreases 
toward zero at frequencies remote from the useful range. Although 
capable of excellent performance, this arrangement is rarely used, 
because it is difficult to maintain the required relationships between 
the selectivity and the tuning of the resonant circuits, and because the 
output is not grounded at either end.

To avoid these difficulties, we may employ the arrangement indi­
cated in Fig. 17.2, in which the transformers are assumed to be lossless. 
At the center frequency Li and Ci are resonant so that the current 
flowing in this mesh is in phase with V. Therefore the voltages Vi 
and V2 are in quadrature with V, and hence with Va, as shown in 
Fig. 17.25. Assuming that the rectifiers are ideal and the load resistors

Fig. 17.2. Frequency discriminator based upon tuned circuit and phase quadra­
ture: (a) circuit and (b) phasor diagram.

are sufficiently large, the voltages Vi and V2 are equal and opposite, 
and no net output is produced. At a frequency slightly different 
fron/that of resonance there is a phase shift in the tuned circuit, and 
the phasor diagram takes the form indicated by the dotted lines. 
Under these circumstances the rectified voltages are unequal, and a 
net output is produced. By appropriate choice of the primary 
selectivity and the transformer turns ratio it is possible to obtain a 
highly linear discriminator characteristic of the form shown in Fig. 
17.1b.

The circuit just described is the prototype of most practical dis­
criminators, but is capable of still further simplification, as indicated 
in Fig. 17.3. Two similar circuits are tuned to the same frequency, 
and are magnetically coupled as shown. In this arrangement the 
voltages induced in the center-tapped coil remain in phase with the 
driving voltage V, and the relative shifts corresponding to Fig. 17.2b 
are produced by the selectivity of this secondary circuit. The selec­
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tivity of the primary coil does not contribute essentially to the opera­
tion, but does affect the linearity of the resulting characteristic. 
Arguimbau15 has shown that identical results may be had from the 
circuits represented in Figs. 17.1 and 17.3, and there is reason to believe 
that very similar results are obtained from the circuit of Fig. 17.2. 
Extensive use has shown that the arrangement of Fig. 17.3 is readily 
manufactured, highly reliable, and capable of excellent performance. 
Additional discussion of discriminators is given by Sturley.299

Fig. 17.3. A practical and widely used discriminator circuit.

Crain67 has shown that a response very similar to that of Fig. 17.15 
may be obtained from a suitable RC network, which has very reason­
able element values for frequencies in the audio range. The ratio 
detector of Seeley and Avins276 employs a circuit somewhat similar to 
that of Fig. 17.3, to obtain the combined actions of detector and limiter 
in receivers of frequency-modulated signals. It does not, however, 
discriminate against slow amplitude changes, so it has no special 
advantages for the present application.

17.3 Microwave discriminators
In the microwave region it is impractical to employ ordinary lumped- 
circuit techniques. However, wave guides and cavity or molecular 
resonators may be employed to produce results equivalent to those 
just described. An arrangement due to Rideout262 and illustrated in 
Fig. 17.4 is a good example of such a microwave discriminator. The 
operation corresponds to that represented in Fig. 17.2. The resonant 
cavity replaces the tuned circuit, the hybrid junction318 or “magic 
tee” replaces the pair of transformers for voltage addition, and the 
phase shifter in the auxiliary wave guide facilitates establishment of the 
desired phase relationship.
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The cavity shown is rectangular, and has dimensions appropriate to 

the TEin mode, but other shapes and modes may be used. It is 
highly desirable that its apertures be of approximately equal size and 
coincide with the walls of the two associated sections of wave guide. 
The transmission of the auxiliary path is insensitive to frequency and 
is adjusted to have a magnitude equal to or somewhat greater than 
that through the cavity. The desired performance is most con­
veniently obtained by proportioning the hybrid junction so as to pro­
vide an impedance match between the auxiliary guide and the two 
crystal rectifiers. The transmission through the auxiliary wave 
guide is then controlled by the nature and size of the aperture between

Fig. 17.4. Microwave frequency discriminator of Rideout.

it and the principal wave guide. The crucial feature is that the signal 
delivered to the rectifiers through the cavity at its natural frequency 
is in time quadrature with that through the auxiliary path.

Pound243 has devised a microwave discriminator which employs a 
cavity with a single aperture and operates in a manner substantially 
different from that of the Rideout discriminator. Two hybrid junc­
tions of the “magic tee” form are used, as shown in Fig. 17.5. 
The wave-guide arrangement is indicated schematically rather than 
pictorially, using the convention that opposite arms of each junction 
are conjugate. Therefore, half of the input power goes to the useful 
load, and half is propagated toward the right to the second junction, 
where it again divides. At frequencies remote from its natural fre­
quency, the cavity appears as a short circuit at its coupling aperture, 
and with the path lengths shown the signals returned to this second 
junction are 90° out of phase. Under these circumstances equal signals 
are propagated right and left at the second junction. The 3-db
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attenuator is provided so that the signal output of crystal detector
2 is equal to that provided by detector 1, which receives only half of
the power propagated to the left, the other half being returned to
the source.

The same behavior occurs at the natural frequency of the cavity, 
where the aperture again appears as a virtual short circuit. At fre­
quencies slightly removed from the natural frequency, however, the

Frequency deviation, Me
(a) (W

Fig. 17.5. Microwave frequency discriminator using two magic tee junctions: 
(a) arrangement and (b) performance.

cavity has an appreciable susceptance, and the phase relationship and 
power division at the second junction are upset. The outputs from 
the two detectors are no longer equal, and the difference voltage takes 
the characteristic form shown in the associated curve. The values are 
representative of the results which can be expected from a power 
input of a few milliwatts with a cavity having a Q of about 10,000 at a 
frequency of 10,000 Me.

17.4 Automatic frequency control systems
An automatic frequency control system results when a discriminator 
is associated with an oscillator in such a way that the oscillator fre­
quency is controlled by the discriminator response. The mechanism 
of control may take many forms, but ordinarily it is either mechanical 
or electrical. In a typical mechanical arrangement a variable con­
denser is tuned by a small motor which responds to an amplified signal 
supplied by the discriminator. Such systems respond relatively 
slowly but are usually arranged so that, in the event of failure in the 
control system, the condenser remains at its previous position; thus 
the frequency drifts off only very slowly. This property is very 
desirable in situations where the reference signal is transmitted by 
radio or wire, and is therefore subject to occasional interruption, 
because the system merely “waits” until new frequency correction 
information is received. Systems involving mechanical correction 
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of frequency are well adapted to frequency-modulation transmitters 
and to industrial applications in which the load and other frequency­
determining factors are not subject to sudden changes. The system 
described by Morrison216 is an excellent example of this class.

In most applications, however, a rapid frequency correction is 
desirable. This is particularly true where microwave oscillators are 
involved, because they are subject to rapid and erratic frequency 
deviations. In all such cases an electrical method of control is suitable. 
In velocity modulation oscillators the necessary frequency-correcting 
mechanism already exists, in that the frequency is quite sensitive to 
some applied voltage. In other oscillators a correcting mechanism 
must ordinarily be added. The three principal mechanisms, nonlinear

Fig. 17.6. Typical automatic frequency control system. The voltage gain of 
the amplifier is A; the response of the reactance tube is B mhos per volt; the control 
factor of the oscillator is C cycles per mho; and the discriminator response is D volts 

per cycle deviation.

coil, nonlinear condenser, and reactance tube, have already been 
described in Chapter 16 and will not be discussed further. It is, 
however, appropriate to note that microwave triode oscillators are 
not readily frequency-modulated, and that the electron-beam methods 
described for modulating magnetrons may prove to be the best avail­
able mechanisms for this purpose.

The arrangement of a typical automatic frequency control system is 
shown in block diagram in Fig. 17.6. The discriminator produces a 
signal which indicates the direction and magnitude of the deviation 
from the desired frequency. This signal, although usually a direct 
voltage, may also be an alternating voltage in which the direction of 
the deviation is conveyed by the relative phase. The associated 
amplifier serves only to increase the accuracy with which the frequency 
is controlled. A reactance tube is indicated as the mechanism which 
causes the oscillator to tend toward the desired frequency, but the 
system will operate in the same general way if any of the other mechan­
isms is substituted.

17.5 Analysis of automatic frequency control
It is seen from Fig. 17.6 that an automatic frequency control arrange­
ment constitutes one form of single-loop feedback system. Analysis 
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is facilitated if we assume that the discriminator has the simple output 
characteristic of Fig. 17.1 and that a reactance tube is used, but the 
results apply with minor changes to other arrangements. The 
behavior of the system is most conveniently studied by opening the 
path at the output of the discriminator.

Let us assume that a small voltage E is supplied to the deviation 
signal amplifier and that the resulting signal AE is applied to the 
reactance tube. The resulting change of susceptance (or reactance) 
may be represented by ABE-, it affects the oscillation frequency by an 
amount A BCE. Finally the discriminator produces a response volt­
age V given by

V = ABODE. (17.1)

Evidently, the product ABCD represents the loop transmission, and 
corresponds to the factor p8 discussed in Chapter 5. Therefore, we 
conclude that the inherent frequency stability is enhanced by the factor 
1 — ABCD. Likewise, the system will generate spontaneous fre­
quency modulation by undesired oscillation if the stabilizing loop does 
not satisfy the Nyquist condition.

Pound243 has tested a system operating at about 9000 Me which 
differs from Fig. 17.6 only in that the discriminator is a microwave 
bridge of the type shown in Fig. 17.5, and the reactance tube is unneces­
sary because the reflex oscillator used has a frequency-sensitive 
repeller. In his system the d-c amplifier has an effective gain of 
A = 600; the frequency sensitivity of the tube corresponds to a 
product BC = 1 Me per volt; and the discriminator has a response of 
D = 1 volt per Me. Thus, the stabilizing factor, as given by eq. 
17.1, is 600. If, for example, a temperature change causes the inherent 
frequency of the oscillator to change by 600 kc, the operating frequency 
changes by only one kilocycle. Moreover; the response has a time con­
stant of the order of one millisecond; thus rapid as well as slow fre­
quency deviations are corrected.

If the automatic frequency control system has no nonlinearity 
except that of the limiter, the output frequency will vary in the 
manner indicated in Fig. 17.7, as the natural frequency of the oscillator 
is varied manually. It is seen that the frequency changes very slowly 
in the central region, but that the tuning rate is greatly increased at 
more remote frequencies. Under the conditions shown a considerable 
amount of hysteresis exists, and the frequency tends to “snap in” 
as the correct tuning is approached. For the same reason the fre­
quency “snaps out” as the tuning direction is reversed.

The form of hysteresis just described is usually tolerable and is 
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sometimes desirable. In cases when it is undesirable, however, it may 
be avoided by use of a discriminator having a monotonic response as 
shown in Fig. 17.8a. Such a response may be obtained by combination 
of two (or more) discriminators such that the slope of the second is 
positive and greater than the negative slope of the first throughout the 
region of interest. The extra complication of the discriminator circuit 
may readily be justifiable in a system which must meet exacting 
requirements.

Fig. 17.7. Construction yielding response of automatic frequency control system 
as inherent frequency of oscillator is varied. The discriminator response is 

represented in terms of actual frequency correction produced.

(a)

Fig. 17.8. Effect of modified discriminator: (a) discriminator response and (6) 
tuning characteristic.

17.6 Use of alternating current for the stabilizing signal
The system described in the previous sections has two important 
practical limitations. Rectifiers, particularly microwave crystals, are 
considerably more noisy at low frequencies than in a corresponding 
band at higher frequencies; and d-c amplifiers are much less stable and 
convenient than equivalent tuned amplifiers. Both difficulties are 
alleviated by use of alternating current at a suitable intermediate­
frequency.

A system of this sort, having certain advantages over that originally 
devised by Pound, has been developed by Tuller et al.317 and is pre­
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sented in Fig. 17.9. The signal delivered from the directional coupler 
to the “magic tee” of the discriminator divides between the cavity 
and a crystal driven by an auxiliary 30-Mc oscillator. The sidebands 
produced by this modulation process, supplemented by the phase- 
shifted signal from the cavity, again divide in the “magic tee,” half 
being lost in the termination of the directional coupler and half meet­
ing in the detector crystal to re-establish a 30-Mc signal in which the 
phase depends upon the relation of the output frequency to the cavity 
tuning. This new signal is amplified by well-known techniques,142

Fig. 17.9. Microwave frequency stabilization system of Tuller, Gallaway, and 
Zaffarano.

and is recombined with the amplified, phase-shifted signal from the 
30-Mc oscillator to produce a rectified voltage which depends upon 
the frequency delivered to the master cavity.

The action of the modulating crystal may also be thought of as due 
to a variable reflection coefficient. If the modulating crystal and the 
cavity are suitably coupled to their wave guides, they present matched 
impedances to the magic tee if the 30-Mc signal is absent and if the 
output frequency corresponds to the natural frequency of the cavity. 
When the 30-Mc signal is applied, the resistance of the modulating 
crystal is periodically increased and decreased about the matching 
value, and a signal of the form shown in Fig. 17.10a is delivered to the 
rectifying crystal, which is also matched to the wave guide source for 
maximum response. The crucial fact is that the phase of the high- 
frequency signal reverses at each point where the envelope passes 
through zero. The signal delivered to the rectifying crystal by the 
cavity is directly proportional to the degree of detuning, but reverses in 
phase as the frequency passes through resonance. It is shown in 
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Fig. 17.106. Thus the combined wave has a 30-Mc component in 
the envelope such that rectification produces a signal which, by 
magnitude and phase, indicates the degree of detuning of the cavity. 
It also contains a strong 60-Mc component which is removed by 
filtering.

The phase-sensitive detector may correspond to Fig. 17.2 or may 
simply be a multiple-grid tube in which the signals are injected on 
separate control electrodes. If, for example, the oscillator signal is 
applied to the suppressor of a pentode, the average plate current will be 
proportionately increased or decreased by an in-phase or counter-phase 
voltage on the first grid.

Fig. 17.10. Signals in alternating-current stabilizing system: (a) output due to 
modulation of crystal, (6) output due to detuning of cavity, and (c) sum of two 

outputs.

The arrangement described has the great advantage that the only 
critical paths, to and opposite the cavity, may be made of equal length. 
Therefore, the system operates without readjustment save of the cavity 
and the reflex oscillator over the full range of the latter’s tuning. The 
particular system tested operated over the entire 8500 to 9600 Me 
range of the 2K25 oscillator used. The directional coupler serves to 
deliver nearly all the oscillator output to the useful load and also masks 
the cavity discriminator from the oscillator to an extent which is 
sufficient to ensure that undesirable direct pulling does not occur.

The degree of frequency stabilization which may be achieved in this 
way is very high. Numerical data are lacking, but it appears that 
stabilizing factors in the order of 105 may be attained in practical 
systems. By this means it is possible to produce frequencies of the 
order of 9000 Me which have a total bandwidth of less than 25 cycles 
due to noise and residual hum. It is to be noted that the stability of 
the output frequency is independent of that of the 30-Mc auxiliary 
oscillator so long as the latter does not contribute appreciable phase 
error through the selectivity of the intermediate frequency amplifier.

17.7 The time coincidence method
It is possible to achieve automatic frequency control by a feedback 
method which involves phase or time coincidence in a manner which 
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differs considerably from that of the systems described so far. Figure 
17.11 shows the block diagram of such a system, which has been used 
successfully by Hershberger139 in connection with the ammonia 
resonator.11 An auxiliary (search) oscillator is frequency-modulated 
in a saw-tooth manner, and part of this signal is passed through the 
ammonia cell. Because the rate at which the frequency is varied is low 
compared to the rejection band of the ammonia chamber, the effect 
may be considered from a quasi-stationary viewpoint; and it is seen 
that the signal delivered to the phase detector will drop to a minimum

Fig. 17.11. Block diagram of automatic frequency control system based on time 
coincidence.

at the instant when the auxiliary oscillator reaches the natural fre­
quency of the ammonia. The beat frequency produced by mixing the 
signals of the auxiliary and main oscillators is frequency-modulated 
in the same manner as that delivered to the ammonia cell; therefore, 
by giving the networks of the band rejection filter a response similar 
to that of the ammonia, it is possible to deliver similar signals to the 
two inputs of the phase detector. The phase detector consists of 
circuits such that the polarity and magnitude of the output voltage 
depends upon the relative timing of the signals received from the two 
inputs. Therefore, the master oscillator is stabilized at a frequency 
which differs from that of the ammonia resonance by the relatively low 
frequency at which the characteristic of the band-rejection filter is 
centered.

The sensitivity which can be achieved in this way is probably 
somewhat inferior to that which can be produced by the method 
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described in the previous section. However, very creditable per­
formance is possible. Values of D = 70 millivolts per Me and of 
BC = 2 Me per volt are typical of results which have been attained. 
If an amplification factor of A = 1400 is supplied in the form of a 
d-c amplifier, the overall stabilizing factor becomes 100.

A desirable modification of the time coincidence method employs a 
quartz crystal oscillator with frequency multipliers to replace the

Fig. 17.12. Block diagram of improved time coincidence automatic frequency
control system.

stabilized reflex oscillator. This arrangement, which is shown in 
block diagram in Fig. 17.12, has the advantage of excellent short-term 
stability as well as the absolute long-term stability inherent in the 
ammonia resonance. The crystal oscillator is so proportioned that the 
frequency can be adjusted over a narrow range by the signal applied to 
the reactance tube.

In the present case a relatively low-frequency oscillator is subjected 
to the saw-tooth frequency modulation, and the network which simu­
lates the response of the ammonia cell operates at a frequency of only 
about 1.3 Me where it is easy to control the response. The frequency 
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multipliers are so arranged as to produce a frequency-modulated signal 
which sweeps through the ammonia cell about one hundred times per 
second. The pulses generated in this way are compared in the phase 
detector circuit with similar pulses produced by the sweep of the 
corresponding low frequency through the band-rejection filter; and 
the resulting output is used to modify the frequency of the master 
oscillator. The stabilizing factor which can be produced in this way 
is not significantly better than that of the simpler time coincidence 
method, but the superior inherent stability of the basic oscillator leads 
to improved performance over both long and short periods.

The time coincidence method appears awkward and cumbersome, 
and one is led to ask why it is used. The answer depends upon the 
peculiar properties of the wave-guide type of ammonia resonator. 
Because the molecular resonance of ammonia acts as a rejector rather 
than selector of the natural frequency, one finds it necessary to balance 
its transmission against that of some nonselective system. Unfor­
tunately a shifting reference exists, because the nonresonant loss and 
phase shift of the ammonia path vary with the length of the wave 
guide and the pressure of the gas. Efforts to employ the steep phase 
shift characteristics of the ammonia resonance in structures such as 
that of Fig. 17.4 are difficult because the reference condition is too 
unstable.

Smith290 and his co-workers have succeeded in escaping some of 
these difficulties by employing balanced low-Q cavities in a discrimina­
tor similar to that of Fig. 17.5. Because one cavity is filled with 
ammonia while the other is filled with air, the absorption characteristic 
of the ammonia may be retained while the effects of mechanical 
expansion and variable gas pressure are largely balanced.

In an experimental system the cavities consisted of rectangular 
wave guides approximately by 1 cm in section and 2 meters long. 
The system corresponded to Fig. 17.5a, and a discriminator response 
very similar to Fig. 17.55 was observed. The discriminator gave a 
response of D = 32 millivolts per Me, and a d-c amplifier gain of 
A = 2000 was achieved. With the oscillator used, the control 
response corresponded to a product BC = 2 Me per volt. The 
stabilization factor was thus 128.

Smith recognized that a larger stabilization factor could be attained 
by use of alternating current for the control method, and that more 
compact cavities might give superior results. It appears that further 
advantages could be secured through the use of the symmetrical 
arrangement due to Tuller as illustrated in Fig. 17.9, and by substitu­
tion of a crystal oscillator with frequency multipliers for the klystron.
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17.8 Frequency synthesis by automatic frequency control
An ingeneous application of automatic frequency control in an aircraft 
radio receiver has been described by Hedeman.133 The fundamental 
problem is to produce a large number (120) of accurately controlled 
frequencies (±70 ppm) by means of a small number of quartz crystals. 
The required frequencies can be obtained by simple modulation 
processes involving sums and differences, but the elimination of unde­
sirable modulation products is prohibitively difficult. Therefore, it 
was decided to use a variable-frequency oscillator, constrained to 
operate at the desired frequency by means of an automatic frequency

control system which was insensitive to the undesired modulation 
products. The block diagram of the system is shown in Fig. 17.13.

The discriminator operates at a frequency near one megacycle using 
the circuit of Fig. 17.3, and is constructed with exceptional care so as 
to minimize drift of the center frequency. The variable oscillator, 
which operates over a band 24 Me wide in the 100-Mc region, is con­
trolled by means of a variable condenser which is supplemented by a 
reactance tube (not shown) for fine tuning. A total of 120 frequencies 
uniformly spaced by 200 kc over a 24-Mc band is obtained by means 
of ten quartz crystals, the choice of up to seven harmonics of each 
crystal frequency, and the use of two discriminators. It is emphasized 
that the use of automatic frequency control does not contribute to 
either the basic frequency stability or to the number of frequencies 
obtained; however, it does facilitate generation of a wave completely
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free from spurious frequency components which would lead to undesir­
able extraneous responses in the associated radio receiver.

PROBLEMS
17.1. Discuss the applications of automatic frequency control in terms of actual 

systems.
17.2. Why is the limiter needed in automatic frequency control systems for 

radio receivers but not for oscillators?
17.3. The primary Q in Fig. 17.2 is 200, Vo = 10, and Vb = Vc = 5 rms volts. 

Calculate the output in the region of the center frequency which is one megacycle.
17.4. Discuss the relative advantages of mechanical and electronic frequency­

correcting devices.
17.5. Show that eq. 17.1 is correct and explain its application.
17.6. Show how to apply eq. 17.1 to the system of Fig. 17.9, taking into account 

the modulating properties of the crystals, etc.
17.7. Obtain an equation corresponding to 17.1 for the time-coincidence method 

of automatic frequency control.
17.8. Discuss the design of a synthesis system similar to that of Fig. 17.13.
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LONG-LINE AND
MULTIPLE-RESONANCE EFFECTS

18.1 Introduction
The foregoing discussions have, with a few exceptions, assumed that 
the resonator has a single response. It is ordinarily desirable to main­
tain this condition because it greatly simplifies the behavior of the sys­
tem. In many important cases, however, it is impossible to produce a 
suitable resonator having a single response over a frequency band. 
We must, therefore, consider the behavior of these more complicated 
systems with a view to taking advantage of any attractive features 
and to avoiding the more troublesome ones.

Multiple-resonance effects are readily produced at low frequencies 
by means of coupled circuits or circuits involving several coils and 
condensers. Any finite number n of antiresonant (or resonant) fre­
quencies can be produced by using n distinct inductances in suitable 
combination with n capacitances in a lumped circuit. Mutual induct­
ance is not necessary but is often convenient for this purpose. An 
infinite number of responses, ordinarily at frequencies related in an 
orderly but nonharmonic series, is associated with any form of dis­
tributed system or periodic structure. Quartz crystals, cavity 
resonators, and electrical transmission lines are the most important 
distributed systems which have application to oscillators.

Particularly interesting and complex effects are observed when the 
system includes lumped elements connected by low-loss electrically 
long transmission lines. An important example of such a system is a 
microwave magnetron coupled to an antenna by means of a con­
siderable length of wave guide.286 The example cited is still further 
complicated by the fact that the magnetron is pulsed rather than 
operated continuously. It is therefore necessary to study the tran­
sient as well as the steady state response of these systems.

The discussion in the following sections is expressed in terms of
430
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admittances rather than impedances because they apply naturally to 
parallel resonant circuits, which are shown to be essential for stable 
operation with voltage-controlled negative resistance devices. Thus 
the use of admittance is desirable because nearly all electronic devices 
are of this parallel type.

18.2 The complex frequency plane
The phenomena under consideration are most conveniently treated in 
terms of the complex frequency plane,147 which was introduced in 
Chapter 2. These ideas are reviewed and extended with reference to 
Fig. 18.1a, which shows the roots of a lightly damped passive circuit 
which is singly resonant at wi. It is recalled that the vertical axis is 

Fig. 18.1. (a) The complex frequency plane where the variable is p = a + 
(b) The complex admittance plane where the variable is Y = G + jB.

the axis of real frequencies, and that all steady-state measurements 
involve real frequencies. If the network in question has a parallel 
resonant configuration, we find that the admittance reaches a minimum 
and the susceptance is zero for a frequency equal to wo as shown in Fig. 
18.16. This is the familiar behavior at antiresonance and governs the 
steady-state performance of an oscillator controlled by this resonator.

During build-up and decay of oscillation we are concerned with 
waves which increase or decrease exponentially with respect to time. 
Such transients are of relatively short duration, and we find it possible 
to evade their treatment in most situations. Here, however, they 
are of primary interest. In a basic sense these transients are not 
short; a typical oscillator describes several hundred complete cycles 
while the amplitude is building up to its normal value from the level of 
thermal noise.

Our clue to the situation lies in the transient decay of the passive 
antiresonant circuit when open-circuited and given an initial dis­
turbance. As we have seen the wave produced has a frequency wi 
and a damping factor as plotted in Fig. 18.1a. This natural fre-
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quency w4 is nearly but not quite equal to the steady-state frequency 
of unity power factor designated wo- The important fact is that the 
circuit has zero admittance to a wave having the complex frequency 
«1 + jwi- This is true because voltage exists across the circuit in the 
absence of an external current.

From this basic observation we draw the correct generalization that 
the conductance of the circuit is decreased if we shift to the left and is 
increased if we shift to the right in the p plane. The validity of this 
statement is substantiated when we reflect that a point in the right 
half of the plane corresponds to a wave which is expanding in amplitude

Fig. 18.2. Variation of G and B with p = a + jo> in a parallel resonant cir­
cuit. The admittance is Y = G + jB = 0.01 + a + + (a — ja)/(a1 + a1).

(Q = 100.)

with time. To create such a wave it is necessary to supply energy for 
storage in the reactive elements as well as that for cycle-by-cycle 
dissipation. Thus, we may think of a given circuit as being heavily 
damped to an expanding wave and lightly damped to a decaying wave. 
To demonstrate the latter point we have only to add a separate con­
ductance to the antiresonant circuit previously considered. Again, 
assuming an initial disturbance and decaying transient of the entire 
system, the original circuit must be viewed as the generator or source 
which drives the added conductance. Additional insight is gained 
from Fig. 18.2, which shows the conductance and the susceptance 
of a high-Q antiresonant circuit as a function of p. It is seen that G is 
nearly proportional to a and that B is nearly proportional to (w — wo) 
in the region of interest.

An important characteristic of the functions which describe the
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behavior of physical networks is that they are analytic. For example, 
the admittance of the antiresonant circuit is an analytic function of 
the complex frequency. Analytic functions have the important 
property that the derivative is uniquely defined and is independent of 
the direction in which it is taken, as shown by Sokolnikoff.291 Associ­
ated with a unique derivative are the Cauchy-Riemann equations, 
which for our purposes may be written

dG/da = dB/du and dB/da = — dG/du. (18.1)
Substituting

Y = G + jB, (18.2)
we obtain

dY/da = —jdY/du. (18.3)

This seemingly abstract relationship justifies a simple geometrical 
construction which gives the approximate impedance of a network to 
expanding or decaying waves from a knowledge of its behavior at 
real frequencies. In a parallel resonant circuit the admittance at any 
real frequency u is

Y = G + juC + 1/faL. (18.4)

To a wave expanding at the rate of a nepers per second the admittance 
at the frequency u is

Fi = Y + a(dY/da) = G + juC + L/juL + a(C + l/o>2L), (18.5)

subject to the restriction that a is not too large. It is seen that the 
susceptance is unchanged while the effective conductance is increased 
by an amount proportional to a, as indicated in Fig. 18.2.

In a general case the admittance change due to an increment in a is 
numerically equal to the admittance change due to an increment in u 
and is directed 90° to the right thereof. Thus, given the real-frequency 
admittance plot of any network, we need only divide off the curve in con­
venient uniform small increments in frequency and rotate these segments 
90° in order to determine the admittance to an expanding wave. Natural 
units of radians per second and nepers per second are used.18.3 A doubly resonant system
The essential features of multiple resonance are illustrated by the 
negative resistance oscillator of Fig. 18.3. Two parallel-loaded anti­
resonant circuits in series are connected to a voltage-controlled nega­
tive resistance provided by a transitron. It will be assumed that the 
antiresonant circuits are not coupled and that they have comparable 
values of impedance, selectivity, and natural frequency. The behavior
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of this composite tank is explored most conveniently by adding the 
impedances of the separate circuits, as shown. The susceptance of 
the overall circuit is obtained by inversion and is indicated in polar and 
rectangular form in Fig. 18.4. It is seen that the susceptance (or 
reactance) is zero at three separate real frequencies, and that the con­
ductance is considerably higher at the central frequency ¿o3 than at the 
others. Superimposed upon these diagrams is the negative of the 
inherently negative conductance contributed by the tube. Consistent 
with the usual situation, it is assumed that the effective value of this 
conductance decreases with increase of the amplitude of oscillation.

Fig. 18.3. Transitron oscillator with two degrees of freedom (a) circuit, (b) 
impedance of circuit one, (c) impedance of circuit two, and (d) total resonator 

impedance.

This is indicated by the heavy arrow in Fig. 18.4a. The problem is to 
determine what frequency or frequencies will be produced by this 
system.

Let us suppose that the system is energized without an appreciable 
starting transient so that oscillation will build up from the level of 
thermal noise. For a considerable period the system is essentially 
linear because the oscillations are still small, and it is thus possible 
to apply the principle of superposition. On this basis we may calculate 
the transient behavior of the composite system and find that the two 
pairs of conjugate roots now lie in the right rather than the left half 
plane. Therefore, two separate waves having frequencies close to 
«1 and «2 and expanding with time are produced.*

When the amplitudes approach the limiting level the effects of non­
linearity become important. The analysis of this situation becomes

• This is true provided the net negative conductance is relatively small as will 
be discussed more fully in a later paragraph.
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quite complex and will not be given here. In general, however, the 
average negative conductance is reduced by overload, and the two 
separate oscillations compete for the reduced energy which is available. 
Van der Pol319 has shown that, provided the negative conductance is 
representable by a linear and a cubic term, one or the other of these 
frequencies will be suppressed. Within reasonably wide limits of the 
circuit variables it is possible for either frequency to gain control and 
suppress the other. Ordinarily, the oscillation which is first to reach 
a large amplitude will persist.

From our study of noise we know that the initial level of these two 
oscillations will depend upon the instant at which the system was

Fig. 18.4. Admittance of total resonator: (a) complex admittance plane and (6) 
variation with frequency.

energized, so that upon repetition of the experiment we would expect a 
randomness, corresponding to jitter, as to which frequency is first to 
reach a large amplitude and so suppress the other. By careful adjust­
ment of the circuit parameters it is possible to achieve a condition in 
which the two frequencies are equally probable, and the occurrence 
corresponds to the flipping of a coin. However, a relatively small dis­
turbance of the adjustment leads to a great change in the probability, 
so that one or the other frequency practically ceases to appear. 
A substantially larger disturbance of the adjustment is necessary 
before the favored frequency is able to suppress the other when once 
established (for example, by short-circuiting the favored antiresonant 
branch).

Because experimental results generally conform to the results 
obtained by van der Pol’s simplified analysis, his assumptions were 
lost sight of, and it was generally believed that no nonlinear oscillator 
of this type could simultaneously produce sustained oscillations at two 
frequencies. However, analytical work by Skinner285 shows that the 
simultaneous production of two unrelated frequencies is possible,
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provided the negative resistance device has a relatively complicated 
shape involving at least a fifth-order term in the power series expres­
sion. The correctness of this analysis was experimentally confirmed 
with a transition oscillator equivalent to Fig. 18.3a. A similar effect 
in microwave reflex oscillators has been observed by Huggins.146 The 
possibility of producing such oscillations is of considerable theoretical 
interest and may find some practical applications as well.

18.4 Tuning hysteresis in a doubly resonant system
The coupled circuit of Fig. 18.5 is capable of yielding the same essential 
characteristics as that of Fig. 18.3, and is much more common in prac­
tice. It is chosen for the present discussion because it illustrates the 
effect in a much more natural manner. It is readily shown that the 
admittance facing the tube will have the form of the solid line in Fig. 
18.5, provided the coupling is considerably greater than critical and

Fig. 18.5. Oscillation hysteresis in a doubly resonant oscillator using coupled 
circuits: (a) circuit, (b) tuning hysteresis, (c) resonator susceptance, and (d) 

amplitude characteristics.

the primary is suitably tuned. Under these conditions the oscillation 
will occur at wj or w2 with equal probability if the circuit is repeatedly 
switched off and on. Let us see what happens when the tuning is 
disturbed.

Variation of the primary tuning by means of a capacitance variation 
is considered first. Subject to the idealization made in the circuit 
representation, the only effect is that the primary susceptance is raised
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or lowered by an amount proportional to the capacitance increment 
and the frequency. Therefore, an increase in capacitance will raise 
the susceptance curve and tilt it somewhat to the left, as shown in 
Fig. 18.5c, greatly favoring the lower frequency. If the system is 
initially oscillating at the higher frequency, it will continue to do so* 
until the susceptance curve is raised sufficiently to have only one inter­
section with the horizontal axis. At this time the oscillation will 
abruptly change to the lower frequency, as shown in Fig. 18.56, and

Fig. 18.6. Oscillation hysteresis with respect to secondary tuning.

the amplitude will increase somewhat because of the decrease of con­
ductance. If the tuning is restored to its initial condition, the fre­
quency will increase only slightly, and a sudden jump will not be 
observed until the tuning again reaches the point of producing a single 
intersection between the real axis and the susceptance curve. Under 
the conditions assumed, there is a considerable interval of frequencies 
which cannot be obtained by primary tuning. Moreover, the ampli­
tude changes considerably with tuning because of variation of the 
conductance facing the tube, as shown in Fig, 18.5d.

Detailed information as to the cycle-by-cycle behavior during the 
transition is not available. However, it is certain that the changeover 
is not instantaneous, because a considerable shift of stored energy is

* Provided the conductance does not vary too greatly in the range of interest. 
No simple statement of the critical value is available.
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involved. Fortunately, the matter is of limited interest because 
hysteresis is undesirable and is avoided as far as possible.

Hysteresis is also observed when the secondary is tuned. However, 
the analysis is somewhat more complicated because the conductance 
as well as the susceptance is affected when the secondary condenser is 
varied. The manner of these variations is shown in Fig. 18.6. If we 
start with the secondary tuned to a relatively low frequency (curve 1), 
the oscillation frequency is first raised (curves 2 and 3) and then 
slightly lowered as the.secondary capacitance is decreased. When the 
critical point (curve 4) is passed, the frequency suddenly decreases to 
somewhat less that the original value. Further decrease of the second­
ary capacitance raises the frequency toward the original value; how­
ever, with a finite range of secondary tuning there is a narrow band of 
frequencies near the center of the range which cannot be produced.

18.5 Stable and unstable operating points
In Chapter 3 it was stated on intuitive grounds that parallel resonant 
systems are required for oscillation with voltage-controlled negative 
resistances and that series resonant systems are appropriate to 
current-controlled negative resistances. It is evidently necessary to 
extend these concepts somewhat in order to treat multiply-resonant 
systems, in which both resonance and antiresonance occur within 
relatively small frequency intervals.

The issue was avoided in Fig. 18.4 by choosing the parameters so 
that the negative conductance was sufficient to produce oscillation at 
either of the antiresonant frequencies but was insufficient at the 
resonant frequency. However, practical situations exist in which 
the resonant and antiresonant admittance are nearly equal and are 
both smaller than the maximum negative conductance available 
from the electronic device. It is therefore necessary to determine the 
conditions under which stable sustained oscillations can exist.

The answer is implicit in Fig. 18.4 and may be stated in two ways, 
corresponding to the two admittance representations used. Ford and 
Korman97 have given one criterion in terms of the frequency variable; 
a system is potentially capable of stable oscillation with a voltage-controlled 
negative conductance (or resistance) provided B = 0 and dB/dw > 0, 
where B is the net susceptance facing the negative conductance device. 
Stable oscillation is impossible under the same conditions if SB/da < 0. 
Similarly, with a current-controlled negative conductance (or resist­
ance) stable oscillation is possible only if B = 0 and dB/da < 0.

The alternative criterion, expressed in terms of the admittance 
plane, is due to J. R. Pierce and is not believed to have been previously
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published: Stable oscillation can occur only if the admittance curve of the 
resonator crosses the negative of the conductance curve of the electronic device 
in such a way that the admittance increment produced by a positive incre­
ment of frequency in the resonator appears right-handed with respect to 
the increment of conductance produced by an increase in the level of 
oscillation. In terms of Fig. 18.4 stable oscillations can occur at ¿01 or 
oj2, but would be impossible at o3 even if the negative electronic admit­
tance were larger. It is seen that the latter statement applies to 
both resonant and antiresonant behavior and to both current and 
voltage-controlled electronic devices. Moreover, it is equivalent to 
the criterion presented in the preceding paragraph.

To prove the validity of these criteria we turn to the concept of com­
plex frequencies and analytic network functions developed in the first 
section of this chapter. We may represent any form of oscillator by a 
nonlinear negative conductance Ye (the electronic device) in parallel 
with a linear but frequency-sensitive admittance Y c (the circuit). The 
condition for oscillation is of course

Ye + Yc = 0. (18.6)

To test the stability of an oscillation satisfying eq. 18.6 we assume that 
the amplitude A and the frequency co of operation are modified by 
increments dA and dco, respectively. The oscillation is stable only if 
the assumed increments decrease with time. The principle of equiva­
lent linearization is used implicitly by the assumption that the admit­
tance of the electronic device is a pure real quantity, independent of 
frequency but dependent upon the amplitude of oscillation.

It should be noted that eq. 18.6 is satisfied, not only during sustained 
oscillation, but at all times. For example, Ye is relatively large during 
the build-up interval in a simple parallel tuned oscillator. Equilibrium 
exists, nevertheless, because the effective positive conductance of the 
tuned circuit increases while the wave is expanding and energy is being 
stored.

In terms of the assumed increments, eq. 18.6 takes the form

d Ye d Yc d Yc
Ye + — dA + Yc + —‘ do + —cda = 0, (18.7)

dA do da

which with the substraction of eq. 18.6 yields

A- dA + S da + y “A iu + da + j È? da = 0. (13.8) 
dA dm dm da da
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The imaginary part, together with eq. 18.1, gives

dB , dG , 
— aw = — da, 
dw dw

(18.9)

which, when substituted in the real part of eq. 18.8, yields

or

BB dYe , 
------TT dA + dw SA

dA _ (dG/dw)2 + (dB/dw)2 
da (dB/dw) (dFe/dA)

(18.10)

(18.11)

Stability requires that dA/da be negative, so that an increase in ampli­
tude is associated with a decaying wave, and vice versa. That is, the 
left member of eq. 18.11 must be inherently positive, as is the numera­
tor of the right. Therefore, stability requires that dB/dos and dYJdA 
be either both positive or both negative. Since Ye is inherently negative, 
this means that the magnitude of Ye must decrease with increase of A for 
stability if dB/da: is positive, and vice versa. Thus the stated criteria 
are established.

The requirement just developed is entirely consistent with elemen­
tary reasoning. If, with an antiresonant system, the negative con­
ductance increases with amplitude the expansion rate then increases 
rather than decreases with amplitude, and no limiting process occurs. 
Presently the negative conductance is so large as to correspond to 
relaxation oscillation and the stored energy is converted into a one­
way transient. Depending upon the properties of the system, the 
oscillation then may cease entirely or may continue in an entirely 
different mode.

18.6 Load connected through a transmission line
In microwave oscillators and in certain dielectric heating installations, 
the load is connected to the oscillator by means of a transmission line 
of appreciable length. It is therefore appropriate to investigate the 
behavior of such systems. It is convenient to begin the discussion by 
assuming that the load is a pure conductance and later to generalize 
the results, rather than to begin with a general treatment. The 
arrangement in question is shown in Fig. 18.7, in which the trans­
mission line is of physical length I, has a characteristic admittance 
Yq, and is assumed to be loss-free. The following discussion closely 
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follows that given on page 524 of the article by Pierce and Shep­
herd.241 Lythall195 reaches essentially the same conclusions by a 
similar procedure.

If the characteristic admittance of the line is equal to that of the 
load, the line has no effect, and the ease degenerates to the ordinary one. 
In general, however, there is a considerable mismatch, and the input 
admittance of the line varies in a regular manner with frequency 
according to the familiar transmission line equations. The situation is 
illustrated in the admittance plot of Fig. 18.8a, which assumes that 
the load conductance is twice that of the line. In order to combine 
these plots it is necessary to specify a relationship between the length

- -------- I

Fig. 18.7. Oscillator loaded through a transmission line.

of the line and the susceptance of the tuned circuits. One useful 
parameter is the Q value which the resonator would have if the line 
were matched. That is,

Q = u0C/Y0 = l/w0LY0. (18.12)

A second desirable parameter is the length I expressed in terms of a 
corresponding number of wavelengths at the frequency o>0.

Figure 18.86 illustrates the situation which exists when Q = 100 
and a line 50 wavelengths long is terminated in twice its characteristic 
conductance, so that the voltage-standing-wave-ratio is two. It is 
seen that the response is similar to that of Fig. 18.4a and that oscilla­
tion hysteresis will occur if we attempt to tune the circuit by means of 
L or C. In particular, those frequencies for which dB/du is negative 
simply cannot be produced under these conditions if we make the 
usual assumption that Ye is voltage-controlled. The situation differs 
from that of the coupled circuit principally in that the phenomenon 
repeats itself at uniform frequency intervals as the line corresponds to 
successive even and odd multiples of a half wavelength. The variation 
with tuning corresponds very closely to a simple sliding of the diagram 
up or down relative to the axis.
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Fig. 18.8. Admittance diagram of system of Fig. 18.7: (a) line and load and (b) 
line, load, and resonator. (Reproduced by permission of author and editor from 
J. R. Pierce and W. G. Shepherd, “Reflex Oscillators,” Bell System Tech. J., 26, 

460-681 [1947].)

Fig. 18.9. Admittance of a tuned load 
coupled to resonator by a X/4 line. Q of 
load is 200, and Q of resonator is 100. 
(Reproduced by permission of author and 
editor from J. R. Pierce, and W. G. Shepherd, 
“Reflex Oscillators,” Bell System Tech J., 

26, 460-681 [1947].)
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Either one or three intersections between the real axis and the circuit 

admittance may exist.* However, one of the three intersections is 
unstable, so that at most two frequencies may be favored for a given 
tuning; and, as mentioned previously, the two will exist simultaneously 
only if the electronic device possesses quite unusual properties. If 
the system Q were lower, the loops would be more nearly circular and 
would be much closer together. Under these conditions there may 
be four or more frequencies which satisfy the conditions of oscillation; 
such situations are of academic interest only.

It is clear that loops in the admittance characteristic will be removed 
by a sort of stretching process if the Q is raised sufficiently. The same 
result is obtained if the load is sufficiently accurately matched to the 
line, since in the limit the effect of the line vanishes. Let us therefore 
determine the conditions required for stability, that is, the absence of 
loops. The first step in this process is to write for the input admittance 
of a lossless line of length I the expression

v = v (Yr/Yo) cos fl + j sin fl
1 ° cos 0L + j(Yr/Yo) sin fl

Introducing for the voltage standing wave ratio on the line the real 
variable v defined by

a = Yr/Y0, (18.14)
and substituting

fl = wl/v = x, (18.15)
we may differentiate with respect to w, obtaining

dYi Z(cos x + j<r sin x)(j cos x — a sin x) 
dw ° i>(cos x + ja sin x)2

Yo
I (a cos x + j sin x)(ja cos x — sin x)

(18.16)

v(cos x + ja sin x)2
From inspection of Fig. 18.8 we see that loops will be avoided (and 
a sharp cusp will be formed) if in the above equation the negative 
maximum of the imaginary part is less than the positive susceptance 
derivative for the tuned circuit. Moreover, this condition will occur 
when the real part of Fi is a maximum, that is, when sin x is zero. 
Making this substitution greatly simplifies the expression to the useful 
form

dBi/dw = FOZ(1 - *2)A. (18.17)
* Two intersections exist when the loop is tangent to the real axis, but this 

case is of little interest.
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In the operating region the derivative of the susceptance of the tuned 
circuit is simply

dB/da ~ 2C. (18.18)
Stability is ensured if the sum of eqs. 18.17 and 18.18 is positive, which 
occurs if

2C > Y0l(a2 - l)/y. (18.19)
We may now use eq. 18.12 and recall that sin x is zero only if

x — mr (18.20)
to show that the criterion for stability of oscillation becomes

Q > mtt^2 - l)/2, (18.21)
where n is an integer representing the number of half wavelengths in 
the line.

In microwave oscillators loaded through wave guides the situation is 
restricted somewhat more severely because the phase changes more 
rapidly with frequency in wave guides than it does in ordinary lines. 
In this case the criterion becomes

mr (a2 — 1)
(i8-22)

where / is the operating frequency and /o is the frequency of cutoff in 
the guide.

18.7 Tuned load at end of a transmission line
Ordinarily, the load coupled to an oscillator by a transmission line is 
more or less sharply tuned. It is therefore appropriate to extend the 
analysis of the previous section to include an inductance Li and a 
capacitance Ci in parallel with the load, which for simplicity is assumed 
to match the line. Intuitively, we should expect the simplest behavior 
if the load susceptances are small, the oscillator susceptances high, 
and the line relatively short. The analysis is complicated by the fact 
that the standing wave ratio of the line increases rapidly as the fre­
quency departs from the natural frequency of and Ci. Therefore, 
the admittance presented to the resonator varies through extreme 
limits and may readily produce instability. An example calculated by 
Pierce and Shepherd241 is presented in Fig. 18.9.

The loop shown is evidently the only one which can cross the real 
axis. It is therefore of some interest to determine the conditions 
under which this loop degenerates into a cusp. The procedure is 
similar to one used previously. Assuming that the load and resonator
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are tuned to the same frequency, we may write the admittance of the 
load at a frequency wo + du as

Yl = Ko + j2Ci du = Ko(l + J2Ci du/Y0). (18.23)
The substitution of the load Q,

Ql = uoCi/Yo, (18.24)
permits writing the input admittance of the line in the form

y =v C1 + du/up) cos @1 + j sin 01
1 ° cos 01 + j(l + j2QL du/uo) sin Bl

Because the behavior is most favorable when the line length is an odd 
number m of quarter wavelengths at the operating frequency, we may 
substitute at the frequency wo + du the values

cos fil = du/up and sin 01 = 1.
The input admittance thus becomes

_ y mirdu/up +j‘2(l — rnirQL du/up) 
1 ° m~ du/up — 4QL du/up-p j2

(18.26)

(18.27)

The susceptance, obtained by rationalizing and neglecting second- 
order terms, is

Bi = Ko
2mir du/uo — 8Qi du/uo — 2m7r du/uo 

(mir — 4QL)\du/up)2 + 4
— 2YqQl du/uo.

(18.28)
Loops will be avoided if the sum of this term and 2C du is positive. 
Using this condition and defining Q = u0C/Y0, we have for stability 
the simple relationship Q > QL.

In the course of the development, the parameter m representing 
the number of quarter wavelengths of the line disappeared. This is 
proper, because m does not affect the criterion for a cusp at the operat­
ing frequency; however, the possibility of other crossings must be 
investigated separately.

It would appear that some general criterion must exist for the 
absence of loops in the admittance characteristic of this system. 
Unfortunately, none has been found, although Wheeler341 has con­
tributed some useful results towards this end.

18.8 Oscillation build-up with transmission line
Very interesting and rather complicated phenomena are observed 
when pulse modulation is applied to an oscillator loaded through a
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long transmission line. Several viewpoints are useful, but that of 
direct time delay is probably simplest. It is a fundamental property 
of transmission lines, and indeed of all sorts of delay systems, that no 
information as to the far end termination can be secured in a time 
shorter than the round-trip travel time. Therefore, if a pulsed oscil­
lator is connected to its load by a line having a time delay G, the behavior 
during the initial period of 2t0 is completely independent of the load 
admittance. At the end of this interval the reflection of the initiation 
of oscillation is returned to the resonator in accordance with the reflec­
tion coefficient of the load and the attenuation, if any, of the line. 
The returned signal may conveniently be thought of as a synchroniz­
ing voltage from a source having the line impedance.

Because the first signal to reach the load is expanding with time, 
the load circuit will appear to have a power factor nearer unity than it 
does to a continuous wave. Thus, the signal which is first returned to 
the oscillator is small and expands in a somewhat complicated manner 
with time. The reaction produced by this wave depends upon its 
amplitude and phase with respect to that currently being generated; 
and progressive changes of amplitude and frequency are likely to 
result from this interaction. Ultimately, of course, the frequency and 
amplitude must satisfy the balance of conductance and susceptance on 
a steady-state basis as represented by Fig. 18.4.

An alternative viewpoint, as presented by Pierce and Shepherd,241 
serves to supplement that of reflection. Consistent with the first 
section of this chapter, the admittance of a given network to an 
expanding wave differs in a simple known manner from the ordinary 
value associated with a continuous wave. This is illustrated in Fig. 
18.10, which shows the behavior of a looped admittance curve to 
waves having several different rates of expansion. The construction 
depends upon eq. 18.3 and is readily applied to any admittance curve 
for which the frequency scale is given. The important result is that 
loops tend to disappear from the admittance plot as a increases.

Following this viewpoint, if the build-up rate is sufficient to suppress 
the loop in the admittance characteristic, the oscillation builds up as a 
simple single-frequency exponential until the amplitude is sufficient to 
produce nonlinearity and reduce the build-up rate to the point at 
which a cusp appears in the admittance characteristic. The oscillation 
may now continue along one or the other branch of the admittance 
curve, depending upon dissymmetry of the characteristic and upon a 
random factor, which may include the phase of oscillation at the time 
overload occurs.

This viewpoint agrees very well with that of reflection in connection
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with long lines. It is equally applicable to doubly tuned lumped cir­
cuits, but an apparent contradiction needs to be resolved. In an 
earlier discussion it was stated that two frequencies are present during 
the early stages of oscillation, and that their relative amplitude, based 
on thermal or other noise, contributes to the manner in which the 
final frequency is determined. This is true only if the build-up rate 
is small enough that a loop remains in the admittance curve. If the 
conditions are such as to remove this loop the complex roots merge 
and a single frequency is generated.

A remarkable situation exists when the round-trip delay time of the 
line to the load is greater than the duration of the oscillator pulse. 
Under these circumstances the amplitude and frequency are absolutely

Fig. 18.10. Suppression of loops by rapid expansion of oscillations.

independent of the load impedance, regardless of how slowly or how 
rapidly the oscillations build up or of any other considerations. More­
over, in microwave radar systems it is at least nearly practical to take 
advantage of this fact. Any substantial advance in the art, either 
toward shorter pulses or lower attenuation for a given line delay, 
would render the method quite practical.

This phenomenon may also be explained in terms of the complex 
frequency concept. The input admittance of the line, which is neces­
sarily quite long, will be represented by a complicated curve having 
very many loops in the admittance plane. In the region of the operat­
ing frequency, however, these loops will be substantially circular and 
described at a uniform rate as the frequency varies. Under these 
circumstances a very small expansion rate a will shrink these circles 
to the central point which corresponds to the characteristic admittance
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of the line itself. Thus we see that there is no contradiction between 
the alternative viewpoints.

18.9 Rate of build-up
The admittance plot offers a convenient means of estimating the rate 
at which oscillations expand and the manner in which limiting occurs. 
This construction, which is also due to Pierce and Shepherd,241 is shown 
in Fig. 18.11. In the example illustrated the build-up rate for small 
oscillations is 3.4, and the curve of Fig. 18.116 has the form A = Aoe3’4r 
to the left of r = 2. At this time the relative amplitude is one (for 
the value of Ao assumed) and reference to curve a shows that the 
exponent should be decreased to a = 2.8. The curve between A = 1 
and A = 2 is therefore drawn with this reduced expansion rate. A

Amplitude,
aa

4 3 21

Build-/up 
rate,/ 
a 0 '1

Conductance

(a)

Fig. 18.11. Graphical calculation of the rate of oscillation build up: (a) admit­
tance plane and (&) build-up curve.

repetition of this process permits us to approximate the actual build-up 
curve to any desired degree of exactness, provided sufficiently small 
increments of time or amplitude are chosen.

The construction just described may be thought of as an example of 
the method of isoclines. It has been illustrated in terms of a singly 
resonant system, but also applies to multiply resonant systems, pro­
vided we give separate treatment to oscillation in each of the possible 
modes.

18.10 Pulling

The term pulling has been used in a variety of connections with respect 
to oscillators. However, it is most widely used to express the fre­
quency change produced in microwave oscillators by a variation in 
the load impedance. As used here, it applies to oscillators of all kinds 
and frequencies. In oscillators which are loaded by means of a long 
transmission line it is possible to simplify the problem somewhat by 
specifying the frequency change in terms of the voltage standing wave
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ratio on the line. In particular, the “pulling figure” of a micro­
wave oscillator is defined as the maximum frequency excursion pro­
duced by a voltage standing wave ratio of 1.50, which is varied arbi­
trarily in phase angle. In general, it is necessary to specify pulling 
somewhat more explicitly in terms of the separate fractional frequency 
deviations resulting from resistive and reactive variations in the load. 
Pulling is closely related to frequency stability and to the possibility 
of multiple frequencies. At the boundary between single and multiple 
response the frequency stability is zero and the pulling figure infinite. 
This is the desired condition in locked oscillators, but otherwise very 
undesirable.

(a) (b)

Fig. 18.12. Pulling in lumped resonant systems: (a) singly resonant system and 
(b) coupled circuits.

Pulling may be studied with reference to Fig. 18.12a, which repre­
sents a system with lumped constants. The susceptances of Ci and 
Li are assumed to be part of the load and thus distinct from the 
resonator L — C, although all are directly in parallel. Such separa­
tion, although rather artificial in this case, becomes quite real when the 
load is isolated from the resonator by a transmission line or by the 
action of mutual inductance. Assuming that the load is tuned to 
the operating frequency, we may write

■7 = 1/LiCi = o>02 = 1/LC,

and
Ql = tuoCi/Gi — 1/aioLiGi, 

Q = aoC/Gi = 1/aoLGi.

(18.29)

(18.30)

(18.31)

On the basis of equivalent linearization, the operating frequency is 
entirely independent of Gi, although the amplitude is affected in a 
manner which depends upon the saturation characteristics of the 
electronic device. In turn, the amplitude is entirely independent of 
the load susceptances, whereas the frequency is directly affected. An 
increment dCi in the load capacitance produces a frequency increment
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du given by

du dCi
uq 2(C + Ci) (18.32)

This may be converted to the form
du Ql dCi

2(Q + Ql) Ci (18.33)

Similarly a variation in the 
deviation

load inductance produces a frequency

du Q l dL i
a>o 2(Q + Qf) Li (18.34)

From these expressions it is clear that a small value of Ql and a large 
value of Q are desirable in the interest of minimizing pulling.

A special case of pulling has already been studied in Chapter 16 in 
connection with frequency modulation. By using a 45° network it is 
possible to establish conditions in which the frequency is unaffected 
by an increment in load susceptance but is markedly affected by the 
load conductance. For the intended purpose this arrangement is 
entirely suitable, but it has no particular merits for general application. 
The effects of pulling in coupled circuits may be studied by reference to 
Fig. 18.126. However, the analysis is quite complex, and no generally 
useful formulas are available.

PROBLEMS
18.1. A series LRC circuit has a Q of 200 at its resonant frequency u = 10B. 

Calculate its impedance to the following complex (p) frequencies: 0+jl0B, 
0 + jl.01 X 10B, 103 + J10B, 103 + jl.01 X 10B.

18.2. In Fig. 18.3a the two circuits have equal values of impedance and a selec­
tivity of 100. Their natural frequencies are, respectively, u = 99 and 101. Cal­
culate the impedance plot corresponding to 18.3d for real frequencies and for a wave 
having a = 1.

18.3. In Fig. 18.5a each of the tuned circuits each has a Q of 50, and the 
coupling coefficient is 0.04. Calculate the relative frequency variation which will 
result from tuning the primary circuit.

18.4. In Fig. 18.7 the loading parameter is Q = 25, <r = 2, and n = 12.1 at 
the natural frequency of the resonator. Calculate the locus corresponding to Fig. 
18.8b.

18.5. Verify Fig. 18.9, adding a frequency scale to your curve; then demonstrate 
how the loop is eliminated if the wave is expanding with time.

18.6. A simple antiresonant circuit having a Q of 200 at a = 10B is associated 
with a negative conductance which at low levels is five times sufficient to produce 
oscillation. Assuming that the effective negative conductance varies inversely 
with the level, calculate the oscillation build-up as in Section 18.9.



BIBLIOGRAPHY

1. Abraham, H., and E. Block, “Sur la mésure en valuer absolue des périodes des
oscillations électriques de haute fréquence,” Compt. rend., 168, 1105-1108
(1919).

2. Adler, R., “Locking Phenomena in Oscillators,” Proc. I.R.E., 34, 351-357 
(1946).

3. Adler, R., “A New System of Frequency Modulation,” Proc. I.R.E., 35, 
25-31 (1947).

4. Aigrain, P. R., and E. M. Williams, “Theory of Amplitude Stabilized Oscil­
lators,” Proc. I.R.E., 36, 16-19 (1948).

5. Aigrain, P. R., and E. M. Williams, “Pseudosynchronization in Amplitude 
Stabilized Oscillators,” Proc. I.R.E, 36, 800-801 (1948).

6. Ames, M. E., “Wide Range Deviable Oscillator,” Electronics, 22, 96-100 
(May 1949).

7. Anderson, F. B., "Seven-League Oscillator,” Proc. I.R.E., 39, 881-890 
(1951).

8. Anderson, J. E., “Frequency Characteristics of Piezoelectric Oscillators,” 
Electronics, 11, 22-24 (August 1938).

9. Andrew, V. J., “The Adjustment of the Multivibrator for Frequency Divi­
sion,” Proc. I.R.E., 19, 1911-1917 (1931).

10. Anon., “Improved Material for Magnetic Amplifiers,” Electronics, 21, 
128 (August 1948).

11. Anon., "Stable Time and Frequency Standard,” Electronics, 22, 82-84 
(April 1949).

12. Appleton, E. V., "The Automatic Synchronization of Triode Oscillators,” 
Proc. Camb. Phil. Soc., 21, 231-248 (1922-1923).

13. Appleton, E. V., and B. van der Pol, “On the Form of Free Triode Vibra­
tions,” Phil. Mag., 42, 201-220 (1921).

14. Arguimbau, L. B., “An Oscillator Having a Linear Operating Characteristic,” 
Proc. I.R.E., 21, 14-28 (1933).

15. Arguimbau, L. B., Vacuum-tube Circuits, John Wiley, New York (1948).
16. Armstrong E. H., “Some Recent Developments of Regenerative Circuits,” 

Proc. I.R.E., 10, 244-260 (1922).
17. Artz, M., "Frequency Modulation of Resistance-Capacitance Oscillators,” 

Proc. I.R.E., 32, 409-414 (1944).
18. Babat, G., and M. Losinsky, “Power Oscillators,” Wireless Eng., 17, 16-18 

(1940).
19. Bakker, C. J. and C. J. Boers, “On the Influence of the Nonlinearity of the 

Characteristics on the Frequency of Dynatron and Triode Oscillators,” 
Physica, 3, 649-665 (1936).

20. Bardeen, J., and W. H. Brattain, “The Transistor, a Semi-Conductor 
Triode,” Phys. Rev., 74, 230 (1948).

21. Bartelink, E. H. B “A Wide-Band Square-Wave Generator,” Trans. 
A.I.E.E., 60, 371-376 (1941).

451



452 BIBLIOGRAPHY
22. Bartlett, R. M., "A’-Phase Resistance-Capacitance Oscillators," Proc.

I.R.E., 33, 541-545 (1945).
23. Bass, S. L., and T. A. Kauppi, "Silicones—A New Class of High Polymers

of Interest to the Radio Industry,” Proc. I.R.E., 33, 441-447 (1945).
24. Batcher, R. R., “Thermistors in Electronic Circuits,” Electronic Inds., 4, 

76-80 (January 1945).
25. Bauer, B., “Design Notes on the Resistance-Capacity Oscillator Circuit,” 

Hewlett-Packard J. (November and December 1949).
26. Beck, F. J., and J. M. Kelly, “Magnetization in Perpendicularly Superposed 

Direct and Alternating Fields,” J. Appl. Physics, 19, 551-562 (1948).
27. Becker, J. A., C. B. Green, and G. L. Pearson, “Properties and Uses of 

Thermistors—Thermally Sensitive Resistors,” Trans. A.I.E.E., 65, 711-725 
(1946).

28. Beers, G. L., “A Frequency-Dividing Locked-in-Oscillator Frequency- 
Modulation Receiver,” Proc. I.R.E., 22, 730-737 (1944).

29. Benjamin, R., “Blocking Oscillators,” Part IIIA, J. I.E.E., 93, 1159-1175 
(1946).

30. Bennett, W. R., “A General Review of Linear Varying Parameter and Non­
linear Circuit Analysis,” Proc. I.R.E., 38, 259-263 (1950).

31. Berberich, L. J., C. V. Fields, and R. E. Marbury, "Characteristics of 
Chlorinated Impregnants in Direct-Current Paper Capacitors,” Proc. I.R.E., 
33, 389-397 (1945).

32. Bertram, S., "The Degenerative Positive-Bias Multivibrator,” Proc. I.R.E., 
36, 277-280 (1948).

33. Black, H. S., “Stabilized Feedback Amplifiers,” Bell System Tech. J., 13, 
1-18 (1934); also Elec. Eng., 53, 114 (1934).

34. Bode, H. W., Network Analysis and Feedback Amplifier Design, D. Van 
Nostrand, New York (1945).

35. Boella, M., “Performance of Piezo-Oscillators and the Influence of the 
Decrement of the Quartz on the Frequency of Oscillations,” Proc. I.R.E., 
19, 1252 (1931).

36. Bothwell, F. E., “Nyquist Diagrams and the Routh-Hurwitz Stability 
Criterion,” Proc. I.R.E., 38, 1345-1348 (1950).

37. Bradley, W. E., “Single Stage F-M Detector,” Electronics, 19, 88-91 (October 
1946).

38. Bradley, W. E., " Superregenerative Detection Theory,” Electronics, 21, 
96-98 (September 1948).

39. Brotherton, M., Capacitors, D. Van Nostrand, New York (1946).
40. Brown, G. H., “Efficiency of Induction Heating Coils,” Electronics, 17, 124- 

129 (August 1944).
41. Brown, G. H., C. N. Hoyler, and R. A. Bierwith, Theory and Application of 

Radio Frequency Heating, D. Van Nostrand, New York (1947).
42. Brown, R. H., “Harmonic Amplifier Design,” Proc. I.R.E., 35, 771-777 

(1947).
43. Bruck, G. S., “Simplified Frequency Modulation,” Proc. I.R.E., 34, 458 

(1946).
44. Brunetti, C., “The Clarification of Average Negative Resistance with Exten­

sion of Its Use,” Proc. I.R.E., 25, 1593-1616 (1937).
45. Brunetti, C., “The Transitron Oscillator,” Proc. I.R.E., 27, 88-94 (1939).
46. Brunetti, C., and L. Greenough, "Some Characteristics of a Stable Negative 

Resistance,” Proc. I.R.E., 30, 542-546 (1942).



BIBLIOGRAPHY 453

47. Buehler, E., and A. C. Walker, "Growing Quartz Crystals,” Sei. Monthly,
69, 148-155 (1949).

48. Builder, G., “A Stabilized Frequency Divider,” Proc. I.R.E., 29, 177-181
(1941).

49. Burgess, R. E., “Oscillator Power Relations,” Wireless Eng., 23, 237-240 
(1946).

50. Bushby, R. W., "Thermal Frequency Drift Compensation,” Proc. I.R.E., 
30, 546-553 (1942).

51. Butler, F., "Series Resonant Crystal Oscillators,” Wireless Eng., 23,1 (1946).
52. Cady, W. G., Piezoelectricity, McGraw-Hill, New York (1946).
53. Carnahan, C. W., and H. P. Kalmus, "Synchronized Oscillators as F-M 

Receiver Limiters,” Electronics, 17, 108-111 (August 1944).
54. Chaffee, E. L., and C. N. Kimball, “A Method of Determining the Operat­

ing Characteristics of a Power Oscillator,” J. Franklin Inst., 221, 237 (1936).
55. Chaffee, J. G., "The Application of Negative Feedback to Frequency- 

Modulat:on Systems,” Bell System Tech. J., 18, 404-437 (1939); also Proc. 
I.R.E., 27, 317-331 (1939).

56. Chance, B., “Some Precision Circuit Techniques Used in Wave Form 
Generation and Time Measurement,” Rev. Sei. Instruments, 17, 396-415 
(1946).

57. Chance, B., etai., Waveforms, McGraw Hill, New York (1949).
58. Chang, C. K., “A Frequency-Modulated Resistance-Capacitance Oscillator,” 

Proc. I.R.E., 31, 22-25 (1943).
59. Chang, H., and V. C. Rideout, "The Reactance Tube Oscillator,” Proc. 

I.R.E., 37, 1330-1331 (1949); also 1096 (1950).
60. Chireix, H., et al., U. S. Patent 2,076,264.
61. Christopher, A. J., and J. A. Kater, "Mica Capacitors for Carrier Telephone 

Systems,” Elec. Eng. (Transactions Sect.), 65, 670-673 (1946).
62. Chu, E. L., “Notes on the Stability of Linear Networks,” Proc. I.R.E., 32, 

630-637 (1944).
63. Clapp, J. K., “An Inductance-Capacitance Oscillator of Unusual Frequency 

Stability,” Proc. I.R.E., 36, 356-358; also 1261 (1948).
64. Close, R. N., and M. T. Lebenbaum, “Design of Phantastron Time-Delay 

Circuits,” Electronics, 21, 100-107 (April 1948).
65. Cocking, W. T., “Linear Saw-Tooth Oscillator,” Wireless World, 52, 176-178 

(June 1946).
66. Coursey, R., Electrical Condensers, Pitman, London (1927).
67. Crain, H. M., "Low-Frequency Discriminator,” Electronics, 22, 96-97 (June 

1949).
68. Crossley, A., “Piezo-Electric Crystal-Controlled Transmitters,” Proc. 

I.R.E., 15, 9-36 (1927).
69. Dailey, H. J., “Rules for Prolonging Tube Life,” Electronics, 16, 76-78 (April 

1943).
70. David, E. E., Jr., Locking Phenomena in Microwave Oscillators, Technical 

Report 63, April 8, 1948, Research Laboratory of Electronics, Massachusetts 
Institute of Technology.

71. David, E. E., Jr., Some Aspects of RF Phase Control in Microwave Oscillators, 
Technical Report 100, June 11,1949, Research Laboratory of Electronics, 
Massachusetts Institute of Technology.

72. Davis, K. H., “Multivibrator Step-Down by Fractional Ratios,” Bell Lab. 
Record, 26, 114 (March 1948).



454 BIBLIOGRAPHY
73. Day, J. R., “Serrasoid F-M Modulator,” Electronics, 21, 72-76 (October

1948).
74. De Lange, O. E., “A Variable Phase-Shift Frequency-Modulated Oscillator,” 

Proc. I.R.E., 37, 1328-1330 (1949).
75. De Laup, S., “Sine Waves in R-C Oscillators,” Electronics, 14, 34-36 (January 

1941).
76. Doherty, R. E., and E. G. Keller, Mathematics of Modern Engineering, John 

Wiley, New York (1936).
77. Donal, J. S., and R. R. Bush, “A Spiral-Beam Method for the Amplitude 

Modulation of Magnetrons,” Proc. I.R.E., 37, 375-382 (1949).
78. Dow, J. B., “A Recent Development in Vacuum-Tube Oscillator Circuits,” 

Proc. I.R.E., 19, 2095-2108 (1931).
79. Dudley, B., “Introduction to Transients,” Electronics, 17, 132 (August 1944).
80. Easton, A., “Pulse-Modulated Oscillator,” Electronics, 20, 124-129 (March 

1947).
81. Eccles, W. H., and F. W. Jordan, “Trigger Relay,” Radio Rev., 1, 143 (Octo­

ber 1919).
82. Edson, W. A., “Intermittent Behavior in Oscillators,” Bell System Tech. 

J., 24, 1-22 (1945).
83. Edson, W. A., et al., The Keying Properties of Quartz Crystal Oscillators, 

Final Report on Signal Corps Contract W36-039-sc-32100, Georgia Institute 
of Technology, State Engineering Experiment Station, Atlanta, Ga. 
(December 1947).

84. Edson, W. A., et al., High Frequency Crystal-Controlled Oscillator Circuits, 
Final Report on Signal Corps Contract W36-039-sc-36841, Georgia Institute 
of Technology, State Engineering Experiment Station, Atlanta, Ga. (Decem­
ber 1950).

85. Edwards, C. M., “A Precision Decade Oscillator for 20 Cycles to 200 Kilo­
cycles,” Proc. I.R.E., 39, 277-278 (1951).

86. Eltgroth, G. V., “Frequency Stability of Tuned Circuits,” Electronics, 17, 
118 (February 1944).

87. Espley, D. C., “Harmonic Production and Cross Modulation in Thermionic 
Valves with Resistive Loads,” Proc. I.R.E., 22, 781-790 (1934).

88. Everitt, W. L., “Optimum Operating Conditions for Class C Amplifiers,” 
Proc. I.R.E., 22, 152-176 (1934).

89. Everitt, W. L„ Communication Engineering, McGraw Hill, New York 
(2nd ed., 1937).

90. Fair, I. E., “Piezo Electric Crystals in Oscillator Circuits,” Bell System Tech. 
J., 24, 161-216 (1945).

91. Fallou, J., “Sur un demultiplicateur de fréquence statique,” Rev. gén. eléc. 
19, 987-991 (1926).

92. Federal Telephone and Radio Corp., Reference Data for Radio Engineers, 
New York (2nd ed., 1946).

93. Feinberg, R., “Symmetrical and Asymmetrical Multivibrators,” Wireless 
Eng., 26, 153-158 and 326-330 (1949).

94. Fleming, L., “Thermistor-Regulated Low-Frequency Oscillator,” Electronics, 
19, 97-99 (October 1946).

95. Fleming-Williams, B. C., “A Single-Valve Time-Base Circuit,” Wireless Eng., 
17, 161-163 (1940).

96. Floyd, G. H., “Vacuum Capacitors,”Proc. I.R.E., 32,463-470 (1944).



BIBLIOGRAPHY 455

97. Ford, J. R., and N. I. Korman, "Stability and Frequency Pulling of Loaded
Unstabilized Oscillators,” Proc. I.R.E., 34, 794-799 (1946).

98. Fortescue, R. L., “Quasi-Stable Frequency Dividing Circuits," J. I.E.E.,
84, 693-698 (1939).

99. Foster, D. E., and A. E. Newton, “Measurements of Iron Cores at Radio 
Frequencies,” Proc. I.R.E., 29, 266-276 (1941).

100. Foster, D. E., and S. W. Seeley, "Automatic Tuning, Simplified Circuits 
and Design Practice,” Proc. I.R.E., 25, 289-313 (1937).

101. Foster, R. M., “A Reactance Theorem,” Bell System Tech. J., 3, 259-269 
(1924).

102. ' Franklin, C. S., British Patents 335,526 and 369,575.
103. Freeman, R. L., “Improvements in AFC Circuits,” Electronics, 9, 20-23 

(November 1936).
104. Frink, F. W., "The Basic Principles of Superregenerative Reception,” Proc. 

I.R.E., 26, 76-107 (1938).
105. Frommer, J. C., “A Graphical Method to Find the Optimal Operating Con­

ditions of Triodes as Class C Telegraph Transmitters,” Proc. I.R.E., 30, 
519-525 (1942).

106. Furst, U. R., “Harmonic Analysis of Overbiased Amplifiers,” Electronics, 
17, 143-144 (March 1944).

107. Fyler, G. W., "Parasites and Instability in Radio Transmitters, ” Proc. I.R.E., 
23, 985-1012 (1935).

108. Gager, F. M., and J. B. Russell, Jr., “A Quantitative Study of the Dynatron,” 
Proc. I.R.E., 23, 1536-1566 (1935).

109. Gardner, M. F., and J. L. Barnes, Transients in Ldnear Systems, v. I, John 
Wiley, New York (1942).

110. George, W. D., M. C. Selby, and R. Scolnik, “Precision Measurement of 
Electrical Characteristics of Quartz-Crystal Units,” Proc. I.R.E., 36, 1122- 
1131 (1948).

111. Ginzton, E. L., and L. M. Hollingsworth, “Phase-Shift Oscillators,” Proc. 
I.R.E., 29, 43-49 (1941); also corrections, 32, 641 (1944).

112. Gladwin, A. S., “Oscillation Amplitude in Simple Valve Oscillators,” Wireless 
Eng., 26, 159-170 and 201-209 (1949).

113. Glasoe, G. N., and J. V. Lebacqz, Pulse Generators, McGraw-Hill, New York 
(1948).

114. Glegg, K., “Cathode-Coupled Multivibrator Operation,” Proc. I.R.E., 
38, 655-675 (1950).

115. Glucksman, H. A., “Superregeneration—An Analysis of the Linear Mode,” 
Proc. I.R.E., 37, 500-504 (1949).

116. Gordon, J. F., "A New Angular-Velocity-Modulation System Employing 
Pulse Techniques,” Proc. I.R.E., 34, 328-334 (1946).

117. Gouriet, G. G., “High Stability Oscillator,” Wireless Eng., 27,105-112 (1950).
118. Griffiths, W. H. F., “Recent Improvements in Air Cored Inductances,” 

Wireless Eng., 19, 8-19 and 56-63 (1942).
119. Griffiths, W. H. F., “The Temperature Compensation of Condensers,” 

Wireless Eng., 19, 101-111 and 148-157 (1942).
120. Groszkowski, J., "Frequency Division,” Proc. I.R.E., 18,1960-1970 (1930).
121. Groszkowski, J., "The Interdependence of Frequency Variation and Har­

monic Content, and the Problem of Constant-Frequency Oscillators,” Proc. 
I.R.E., 21, 958-981 (1933).



456 BIBLIOGRAPHY
122. Groszkowski, J., “Oscillators with Automatic Control of the Threshold of

Regeneration,” Proc. I.R.E., 22, 145-151 (1934).
123. Groszkowski, J., “The Temperature Coefficient of Inductance,” Proc. I.R.E.,

25, 448-464 (1937).
124. Guillemin, E. A., Communication Networks, v. I, John Wiley, New York 

(1931).
125. Guillemin, E. A., and P. T. Rumsey, “Frequency Multiplication by Shock 

Excitation,” Proc. I.R.E., 17, 629-651 (1929).
126. Gunn, R., “A New Frequency-Stabilized Oscillator System,” Proc. I.R.E., 18, 

1560-1574 (1930).
127. Harries, J. H. O., “Apertures in Cavities,” Electronics, 19,132-135 (December 

1946).
128. Harris, W. A., “Space-Charge Limited Current Fluctuations in Vacuum- 

Tube Amplifiers and Input Systems,” R.C.A. Rev., 5, 505-524 (1941).
129. Harrison, A. E., and N. W. Mather, “Graphical Analysis of Tuned Coupled 

Circuits,” Proc. I.R.E., 37, 1015-1020 (1949).
130. Hartley, R. V. L., “Oscillations in Systems with Non-linear Reactance,” 

Bell System Tech. J., 15, 424-440 (1936).
131. Hazeltine, A., D. Richman, and B. D. Laughlin, “Superregenerator Design,” 

Electronics, 21, 95-102 (September 1948).
132. Healy, C. P., and J. C. Niven, “Mould and Humidity in Radio and Signals 

Equipment,” Proc. I.R.E., 33, 300-306 (1945).
133. Hedeman, W. R., “Few Crystals Control Many Channels,” Electronics, 21, 

118-121 (March 1948).
134. Heegner, K., “ Gekoppelte'Selbsterregte Elektrische Kreise and Kristel- 

lozillatoren,” E.N.T., 15, 364 (1938).
135. Heising, R. A., “The Audion Oscillator,” Phys. Rev., 16, 216-237 (1920).
136. Heising, R. A., “Stability in High Frequency Oscillators,” Proc. I.R.E., 

31, 595-600 (1943).
137. Heising, R. A., Quartz Crystals for Electrical Circuits, D. Van Nostrand, New 

York (1946).
138. Herold, E. W., “Negative Resistance and Devices for Obtaining It,” Proc. 

I.R.E., 23, 1201-1223 (1935).
139. Hershberger, W. D., and L. E. Norton, “Frequency Stabilization with 

Microwave Spectral Lines,” R.C.A. Rev., 9, 38-49 (1948).
140. Hinton, W. R., “The Design of R-C Oscillator Phase-Shifting Networks,” 

Electronic Eng., 22, 13-17 (1950).
141. Holubow, H., “DC Saturable Reactors for Control Purposes,” Electronic 

Ind., 4, 76-79 (March 1943).
142. Hopper, A. L., and S. E. Miller, “Considerations in the Design of a Radar 

Intermediate-Frequency Amplifier,” Proc. I.R.E., 35, 1208-1220 (1947).
143. Horton, J. W., United States Patent 1,690,299.
144. Horton, J. W., “Vacuum-Tube Oscillators,” Bell System Tech. J., 3, 508-524 

(1924).
145. Howe, G. W. O., “Natural and Resonant Frequencies of Coupled Circuits,” 

Wireless Eng., 18, 221-223 (1941).
146. Huggins, W. H., “Multifrequency Bunching in Reflex Klystrons,” Proc. 

I.R.E., 35, 1518 (1947).
147. Huggins, W. H., “The Potential Analogue in Network Synthesis and Analy­

sis,” Publication E 5066, Air Force Cambridge Research Laboratories, Cam­
bridge, Mass. (March 1951).



BIBLIOGRAPHY 457
148. Hull, A. W., “The Dynatron, a Vacuum Tube Possessing Negative Resist­

ance,” Proc. I.R.E., 6, 5-36 (1918).
149. Hund, A., Frequency Modulation, McGraw-Hill, New York (1942).
150. Hund, A., “Reactance Tubes in Frequency Modulation Applications,”

Electronics, 16, 68 (October 1942).
151. Huntoon, R. D., and A. Weiss, “Synchronization of Oscillators,” Proc. I.R.E., 

36, 1415-1423 (1947).
152. Hussey, L. W., and L. R. Wrathall, “Oscillations in an Electromechanical 

System,” Bell System Tech. J., 16, 441—445 (1936).
153. Ide, J. M., “Magnetostrictive Alloys with Low Temperature Coefficients of 

Frequency,” Proc. I.R.E., 22, 177-190 (1934).
154. Ives, R. L., “The Relay Oscillator and Related Devices,” J. Franklin Inst., 

242, 243-277 (1946).
155. Jaderholm, H. W., “Iron Powder Cores and Coils,” Proc. I.R.E., 33, 904 

(1945).
156. Jefferson, H., “Stabilization of Feedback Oscillators,” Wireless Eng., 22, 

384-389 (1945).
157. Johnson, J. B., “Thermal Agitation of Electricity in Conductors,” Phys. 

Rev., 32, 97-109 (1928).
158. Johnson, K. C., “Single-Valve Frequency-Modulated Oscillator,” Wireless 

World, 66, 122-123 and 168-170 (1949).
159. Johnson, R. W., “Extending the Frequency Range of the Phase-Shift 

Oscillator,” Proc. I.R.E., 33, 597-602 (1945).
160. Johnson, W. C., Mathematical and Physical Principles of Engineering Analysis, 

McGraw-Hill, New York (1944).
161. Kalmus, H. P., “Some Notes on Superregeneration with Particular Emphasis 

on Its Possibilities for Frequency Modulation,” Proc. I.R.E., 32, 591-600 
(1944).

162. Kantor, M., “Theory and Design of Progressive and Ordinary Universal 
Windings,” Proc. I.R.E., 35, 1563-1570 (1947).

163. Karplus, E., “Wide-Range Tuned Circuits and Oscillators for High Fre­
quencies,” Proc. I.R.E., 33, 426—441 (1945).

164. Keithley, J. F., “Low-Frequency Oscillator,” Electronics, 21, 108-109 
September 1948).

165. Keller, E. G., “Analytical Methods of Solving Discrete Nonlinear Prob­
lems in Electrical Engineering,” Trans. A.I.E.E., 60, 1194-1200 (1941).

166. Kellogg, J. B. M., and S. Millman, "Molecular Beam Magnetic Resonance 
Method,” Rev. Mod. Phys., 18, 323-352 (1946).

167. Kiebert, M. V., and A. F. Inglis, “Multivibrator Circuits,” Proc. I.R.E., 33, 
534-539 (1945).

168. Kilgore, G. R., C. I. Shulman, and J. Kurshan, “A Frequency Modulated 
Magnetron for Super-High Frequencies,” Proc. I.R.E., 36, 657-664 (1947).

169. E. W. Kimbark, Electrical Transmission of Power and Signals, John Wiley, 
New York (1949).

170. Kinn, T. P., “Vacuum-Tube Radio-Frequency-Generator Characteristics 
and Application to Induction Heating Problems,” Proc. I.R.E., 33, 640-657 
(1945).

171. Kingston, R. H., “Resonant Circuits with Time-Varying Parameters,” 
Proc. I.R.E., 37, 1478-1481 (1949).

172. Kinzer, J. P., and I. G. Wilson, “Some Results on Cylindrical Cavity Resona­
tors,” Bell System Tech. J., 26, 410—445 (1947).



458 BIBLIOGRAPHY
173. Kirby, T., “Twin Oscillator,” Electronics, 22, 170 (October 1949).
174. Klingaman, G. W., and G. H. Williams, “Shielding of Dielectric Heating

Installations,” Electronics, 18, 106-109 (May 1945).
175. Kobayashi, M., U. S. Patent 1,913, 449.
176. Koga, I., “Characteristics of Piezo-Electric Quartz Oscillators,” Proc. I.R.E., 

18, 1935-1959 (1930).
177. Kryloff, N., and N. Bogoliuboff, Introduction to Non-Linear Mechanics, 

Princeton University Press (1943).
178. Kunz, K. S., “Bilinear Transformations Applied to the Tuning of the Output 

Network of a Transmitter,” Proc. I.R.E., 37, 1211-1217 (1949).
179. Kurtz, E. B., and G. F. Corcoran, Introduction to Electric Transients, John 

Wiley, New York (1935).
180. Ladner, A. W., and C. R. Stoner, Short-Wave Wireless Communication, John 

Wiley, New York (5th ed., 1950).
181. Lampkin, G. F., “An Improvement in Constant Frequency Oscillators,” 

Proc. I.R.E., 27, 199-201 (1939).
182. Lane, C. E., “Duplex Crystals,” Bell Lab. Record, 24, 59-62 (1946).
183. Last, E., “Blocking Oscillator,” Electronics, 18, 184 (October 1945).
184. Lawson, H. W., “Precision Tuning Fork With Vacuum-Tube Drive,” Gen. 

Radio Expt., 20, 1-5 (September 1945).
185. Lea, N., “Notes on the Stability of L-C Oscillators,” J. I.E.E., 92, 261-274 

(1945).
186. le Corbeiller, Ph., “The Nonlinear Theory of the Maintenance of Oscil­

lations,” J. I.E.E., 79, 361-368 (1936).
187. Lee, R., “Radio Telegraph Keying Transients,” Proc. I.R.E., 22, 213-215 

(1934).
188. Leonard, S. C., “Measurement of Minute Changes of Capacitance and In­

ductance,” Electronics, 11, 18 (March 1938).
189. Liénard, A., “Étude des oscillations entretenus,” Rev. gén. élec., 23, 901-946 

(1928).
190. Linder, E. G., “Attenuation of Electromagnetic Fields in Pipes Smaller 

Than the Critical Size,” Proc. I.R.E., 30, 554-556 (1942).
191. Llewellyn, F. B., “A Study of Noise in Vacuum Tubes and Attached Cir­

cuits,” Proc. I.R.E., 18, 243-265 (1930).
192. Llewellyn, F. B., “Constant-Frequency Oscillators,” Proc. I.R.E., 19, 2063- 

2094 (1931).
193. Loraine Products Corp., Loraine, Ohio, Bulletin 153.
194. Lyons, H., “Microwave Frequency Dividers,” J. Appl. Phys., 21, 59-60 

(1950).
195. Lythall, W. B., “Frequency Instability of Pulsed Transmitters with Long 

Wave Guides,” J. I.E.E., 93 (part IIIA), 1081-1089 (1946).
196. McCreary, H. J., “The Magnetic Cross Valve and Its Application to Sub­

frequency Power Generation,” Proc. Natl. Elec. Conf., 5, 450-466 (1949).
197. McDade, J. R., "The Phantastron Control Circuit,” Elec. Eng., 67, 974-977 

(1948).
198. McGaughan, H. S., and C. B. Leslie, “A Resistance-Tuned Frequency- 

Modulated Oscillator for Audio Frequency Applications,” Proc. I.R.E., 35, 
974-978 (1947).

199. McLean, W. R., "The Reactance Theorem for a Resonator,” Proc. I.R.E., 
33, 539-541 (1945).



BIBLIOGRAPHY 459

200. Maa, D. Y., “A General Reactance Theorem for Electrical, Mechanical, and
Acoustical Systems,” Proc. I.R.E., 31, 365-371 (1943).

201. Mallett, E., “Frequency Stabilization of Valve Oscillators,” J. I.E.E., 68,
2063-2094 (1930); also Wireless Sect., 6, 124 (1930).

202. Malling, L. M., “Triode Linear Saw-tooth-Current Oscillator,” Proc. I.R.E., 
32, 753-757 (1944).

203. Maloff, I. G. and D. W. Epstein, Electron Optics in Television, McGraw-Hill, 
New York (1938).

204. Marcum, 3., and T. P. Kinn, “Heating with Microwaves,” Electronics, 20, 
82-85 (March 1947).

205. Marks, B. H., “Ceramic Dielectric Materials,” Electronics, 21, 116-120 
(August 1948).

206. Mason, W, P., and I. E. Fair, “A New Direct Crystal-Controlled Oscillator 
for Ultra-Short Wave Frequencies,” Proc. I.R.E., 30, 464-472 (1942).

207. Mather, N. W., “Multivibrator Circuits,” Electronics, 19, 136-138 (October 
1946).

208. Maxwell, J. C., “On Governors,” Proc. Roy Soc., 16, 270-283 (1868).
209. Meacham, L. A., “The Bridge Stabilized Oscillator,” Bell System Tech. J., 

17, 574-590 (1938); also Proc. I.R.E., 26, 1278-1294 (1938).
210. Miller, R. L., “Fractional-Frequency Generators Utilizing Regenerative 

Modulation,” Proc. I.R.E., 27, 446-456 (1939).
211. Minorsky, N., Introduction to Nonlinear Mechanics, J. W. Edwards, Ann 

Arbor, Mich. (1947).
212. Mittelman, E., “Load Matching in Electronic Heating,” Electronics, 18, 110- 

115 (February 1945).
213. Modrak, P., “Small Temperature Coefficient of Frequency Quartz Plates,” 

Wireless Eng., 16, 6-15 (1939).
214. Montgomery, B. E., “An Inductively Coupled Frequency Modulator,” 

Proc. I.R.E., 29, 559-563 (1941).
215. Moore, 3. B., “Design of Stable Heterodyne Oscillators,” Electronics, 18, 

116-118 (October 1945).
216. Morrison, J. T., “A New Broadcast Transmitter Circuit Design for Fre­

quency Modulation,” Proc. I.R.E., 28, 444-449 (1940).
217. Moullin, E. B., “Effect of Curvature of the Characteristic on Frequency of 

Dynatron Generators,” J. I.E.E., 73, 186 (1933).
218. Moullin, E. B., Spontaneous Fluctuations of Voltage, Oxford, London (1938).
219. Muller, W., “Transitron Oscillator for High Stability,” Electronic Inds., 

4, 110 (December 1945).
220. Newitt, J. H., “R-C Oscillator Performance,” Electronics, 17, 126 (March 

1944).
221. Nolle, A. W., “Adjustment Speed of Automatic Control Systems,” Proc. 

I.R.E., 36, 911-916 (1948).
222. Norrman, E., “A Precision Tuning Fork Frequency Standard,” Proc. I.R.E., 

20, 1715-1731 (1932).
223. Norrman, E., “Tuning Fork Stabilization,” Electronics, 13, 15-17 (January 

1940).
224. Norrman, E., “The Inductance-Capacitance Oscillator as a Frequency 

Divider,” Proc. I.R.E., 34, 799-803 (1946).
225. North, H. Q., “Properties of Welded Contact Germanium Rectifiers,” 

J. Appl. Phys., 17, 912-923 (1946).



460 BIBLIOGRAPHY
226. Norton, R. L., “Crystal Controlled Diathermy,” Electronics, 19, 113-115

(October 1946).
227. Nyquist, H., “Thermal Agitation of Electric Charge in Conductors,” Phys.

Rev., 32, 110-113 (1928).
228. Nyquist, H., “Regeneration Theory,” Bell System Tech. J., 11, 126-147 

(1932).
229. O’Brien, E. J., “A Coupled-Circuit Frequency Modulator,” Proc. I.R.E., 

32, 348-350 (1944).
230. Offner, F. F., “The Effect of Q on Power-Amplifier Efficiency,” Proc. I.R.E., 

34, 896-897 (1946).
231. Osborn, P. H., “A Study of Class B and Class C Amplifier Tank Circuits,” 

Proc. I.R.E., 20, 813-834 (1932).
232. Ostlund, E. M., A. R. Vallerino, and M. Silver, “Center-Frequency-Stabi­

lized Frequency Modulation Systems,” Proc. I.R.E., 35, 1144-1147 (1947).
233. Page, R. M., “An Investigation of the Phenomena of Frequency Multiplica­

tion, as Used in Tube Transmitters,” Proc. I.R.E., 17,1649-1655 (1929).
234. Page, R. M., and W. E. Curtis, “The van der Pol Four-Electrode Relaxation 

Oscillator,” Proc. I.R.E., 18, 1921-1929 (1930).
235. Peirce, B. O., A Short Table of Integrals, Ginn & Co., Boston (2nd rev. ed., 

1910).
236. Peterson, E., “Impedance of a Non-Linear Circuit Element,” Trans. A.I.E.E., 

46, 528 (1923).
237. Peterson, E., J. G. Kreer, and L. A. Ware, “Regeneration Theory and 

Experiment,” Proc. I.R.E., 22, 1191-1210 (1934).
238. Peterson, E., J. M. Manley, and L. R. Wrathall, “ Magnetic Generation 

of a Group of Harmonics,” Bell System Tech. J., 16, 436-455 (1937).
239. Pierce, G. W., “ Magnétostriction Oscillators,” Proc. I.R.E., 17, 42-88 

(1929).
240. Pierce, J. R., “Noise in Resistances and Electron Streams,” Bell System Tech. 

J., 27, 158-174 (1948).
241. Pierce, J. R., and W. G. Shepherd, “Reflex Oscillators,” Bell System Tech. J., 

26, 460-681 (1947).
242. Post, E. J., and H. F. Pit, “Alternate Ways in the Analysis of a Feedback 

Oscillator and Its Applications,” Proc. I.R.E., 39, 169-174 (1951).
243. Pound, R. V., “Frequency Stabilization of Microwave Oscillators,” Proc. 

I.R.E., 35, 1405-1415 (1947).
244. Prichard, A. C., M. A. A. Druesne, and D. G. McCaa, “Increase in Q Value 

and Reduction in Aging of Quartz Crystal Blanks,” Proc. I.R.E., 38, 314 
(1950).

245. Prince, D. C., “Vacuum Tubes as Power Oscillators,” Proc. I.R.E., 11, 275- 
315, 405-435, and 527-550 (1923).

246. Proshauer, R., and H. E. Smith, “Fungus and Moisture Protection,” Elec­
tronics, 18, 119-123 (May 1945).

247. Puckle, O. S., “A Time Base Employing Hard Valves,” J. Television Soc. 
London, 2, 147 (1936).

248. Puckle, O. S., Time Bases, John Wiley, New York (2nd ed., 1951).
249. Pullen, K. A., “The Cathode-Coupled Amplifier,” Proc. I.R.E., 24, 402-405 

(1946).
250. Rambo, S. I., “AFC for RF Heating,” Electronics, 19, 120-122 (April 1946).
251. Rayleigh, Lord, Theory of Sound, v. 1, Macmillan, London (1926).



BIBLIOGRAPHY 461

252. R.C.A. Application Note 53.
253. Record, F. A., and J. L. Stiles, “An Analytical Demonstration of Hartley

Oscillator Action,” Proc. I.R.E., 31, 281-287 (1943).
254. Reddick, H. W., and F. H. Miller, Advanced Mathematics for Engineers,

John Wiley, New York (2nd ed., 1947).
255. Regener, V. H., “Decade Counting Circuits,” Rev. Sei. Instruments, 17, 

185-189 (1946).
256. Regener, V. H., "Reversible Decade Counting Circuits,” Rev. Sei. Instru­

ments, 17, 375-376 (1946).
257. Reich, H. J., Theory and Applications of Electron Tubes, McGraw-Hill, New 

York (1939).
258. Reich, H. J., “Trigger Circuits,” Electronics, 12, 14-17 (August 1939).
259. Reich, H. J., “The Use of Vacuum Tubes as Variable Impedance Elements,” 

Proc. I.R.E., 30, 288-293 (1942).
260. Rice, S. O., “Mathematical Analysis of Random Noise,” Bell System Tech. 

J., 23, 282-332 (1944) and 24, 46-156 (1945).
261. Ridenour, L. N., Radar System Engineering, McGraw-Hill, New York (1947).
262. Rideout, V. C., “Automatic Frequency Control of Microwave Oscillators,” 

Proc. I.R.E., 35, 767-771 (1947).
263. Riebman, Leon, “Theory of the Superregenerative Amplifier,” Proc. I.R.E., 

37, 29-33 (1949).
264. Roberds, W. D., “Problems in the Design of High-Frequency Heating Equip­

ment,” Proc. I.R.E., 34, 489-500 (1946).
265. Roberts, S., “Dielectric and Piezoelectric Properties of Barium Titanate,” 

Phys. Rev., 71, (2nd ser.), 890 (1947).
266. Sarbacher, R. I., “Graphical Determination of Power Amplifier Perform­

ance,” Electronics, 16, 52 (December 1942).
267. Sarbacher, R. I., "Power-Tube Performance in Class C Amplifiers and Fre­

quency Multipliers as Influenced by Harmonic Voltage,” Proc. I.R.E., 31, 
607-625 (1943).

268. Sarbacher, R. I., and W. A. Edson, Hyper and Ultra-High Frequency Engi­
neering, John Wiley, New York (1943).

269. Schaffner, H., Range of Synchronization of Subharmonic External Resonance, 
Report from E. E. Research Laboratory, University of Illinois (1949).

270. Schelkunoff, S. A., “Representation of Impedance Functions in Terms of 
Resonant Frequencies,” Proc. I.R.E., 32, 83-90 (1944).

271. Schmidt, C. R., “Frequency Division with Phase-Shift Oscillators,” Elec­
tronics, 23, 111-113 (June 1950).

272. Schottky, W., “Spontaneous Current Fluctuations in Electron Streams,” 
Ann. Physik, VI, 541-547 (1918).

273. Scroggie, M. G., “Applications of the Dynatron,” Wireless Eng., 10, 527-540 
(1933).

274. Seddon, J. C., “Square Wave Keying of Oscillators,” Electronics, 23, 162 
(February 1950).

275. Seeley, S. W., and E. I. Anderson, “U-H-F Oscillator Frequency-Stability 
Considerations,” R.C.A. Rev., 6, 77-88 (1940).

276. Seeley, S. W., and J. Avins, "The Ratio Detector,” R.C.A. Rev., 8, 201-236 
(1947).

277. Selgin, P. J., Electrical Transmission in the Steady State, McGraw-Hill, 
New York (1946).



462 BIBLIOGRAPHY
278. Shannon, C. E., "Communication in the Presence of Noise,” Proc. I.R.E., 37,

10-21 (1949).
279. Sharpless, T. K., “High Speed N-Scale Counters,” Electronics, 21, 122-125

(March 1948).
280. Shea, T. E., Transmission Networks and Wave Filters, D. Van Nostrand, 

New York (1929).
281. Shenk, E. R., “The Multivibrator, Applied Theory and Design,” Electronics, 

17, 136-141, 140-145, 138-142 (January, February, March 1944).
282. Shepherd, W. G., and R. O. Wise, “Variable-Frequency Bridge-Type Fre­

quency-Stabilized Oscillators,” Proc. I.R.E., 31, 256- 269 (1943).
283. Simon, A. W., “On the Theory of the Progressive Universal Winding,” 

Proc. I.R.E., 33, 868-871 (1945).
284. Sing, C., "Series Sawtooth Oscillator,” Electronics, 23, 178 (August 1950).
285. Skinner, L. V., Criteria for Stability in Circuits Containing Non-Linear 

Resistance, Doctor’s Thesis, University of Illinois (1948).
286. Slater, J. C., "Microwave Electronics,” Rev. Mod. Phys., 18, 441-512 

(1946).
287. Sloane, R. W., and E. G. James, "Transit Time Effects in Diodes in Pic­

torial Form,” J. I.E.E., 79, 291-296 (1936).
288. Slonziewski, T., “High-Accuracy Heterodyne Oscillators,” Bell System Tech. 

J., 19, 407 (1940).
289. Smith, P. H., “Optimum Coax Diameters,” Electronics, 23, 111 (February 

1950).
290. Smith, W. V., J. L. G. de Guevedo, R. L. Carter, and W. S. Bennett, “Fre­

quency Stabilization of Micro wave Oscillators by Spectrum Lines,” J. Appl. 
Phys., 18, 1112 (1947), and 19, 831 (1948).

291. Sokolnikoff, I. S., and E. S., Higher Mathematics for Engineers and Physicists, 
McGraw-Hill, New York (1948).

292. Soucy, C. I., “Temperature Coefficients in Electronic Circuits,” Electronics, 
21,117-121 (January 1948).

293. Spitzer, C. F., “Sustained Subharmonic Response of Non-Linear Series 
Circuits,” J. Appl. Phys., 16, 105-110 (1945).

294. Spring, W. S., “Characteristics of Deltamax,” Electronics, 22, 152 (June 
1949).

295. Stansel, F. R., “A Secondary Frequency Standard Using Regenerative Fre­
quency-Dividing Circuits,” Proc. I.R.E., 30, 157-162 (1942).

296. Sterky, H., “Frequency Multiplication and Division,” Proc. I.R.E., 26, 
1153-1174 (1937).

297. Stockman, H., “Superregenerative Circuit Applications,” Electronics, 21, 
1153-1174 (1937).

298. Stone, J. E., “An Ultra-Low Frequency Oscillator,” Electronics, 23, 94-95 
(Jan. 1950).

299. Sturley, K. R.,' “The Phase Discriminator,” Wireless Eng., 21, 72-78 (1944).
300. Sturtevant, M., “A Voltage Controlled Multivibrator,” Electronics, 22, 144 

(October 1949).
301. Sulzer, P. G., “The Tapered Phase-Shift Oscillator,” Proc. I.R.E., 36, 1302- 

1305 (1948).
302. Summerhayes, H. R., “A 260 to 350 Megacycle Converter Unit,” Proc. 

I.R.E., 31, 252 (1943).
303. Swan, A. G., “Radiation from R-F Heating Generators,” Electronics, 19, 

162 (May 1946).



BIBLIOGRAPHY 463
304. Teare, B. R., Jr., and E. R. Schatz, “Copper-Covered Steel Wire at Radio

Frequencies,” Proc. I.R.E., 32, 397-403 (1944).
305. Terman, F. E., “Resistance Stabilized Oscillators,” Electronics, 6, 190

(July 1933).
306. Terman, F. E., “Resonant Lines in Radio Circuits,” Elec. Eng., 63, 1046 

(1934).
307. Terman, F. E., Radio Engineers Handbook, McGraw-Hill, New York (1943).
308. Terry, E. M., “The Dependence of the Frequency of Quartz Piezo-Electric 

Oscillators upon Circuit Constants,” Proc. I.R.E., 16, 1486 (1928).
309. Thomas, H. A., “The Dependence on Frequency of the Temperature Coeffi­

cient of Inductance of Coils,” J. I.E.E., 84, 101-112 (1939).
310. Thomas, H. A., Theory and Design of Valve Oscillators, Chapman & Hall, 

London (2nd ed., 1951).
311. Thomas, H. P., and R. H. Williamson, “A Commerical 50-kilowatt Fre­

quency-Modulation Broadcast Transmitting Station,” Proc. I.R.E., 29, 
537-545 (1941).

312. Thompson, B. J., D. O. North, and W. A. Harris, “Fluctuations in Space- 
Charge-Limited Currents at Moderately High Frequencies,” R.C.A. Rev., 6, 
114-124 (1941).

313. Travis, C., “Automatic Frequency Control,” Proc. I.R.E., 23, 1125-1141 
(1935).

314. Tucker, D. G., “The Generation of Groups of Harmonics,” Electronic Eng., 
15, 232-237 (1942).

315. Tucker, D. G., “The Synchronization of Oscillators,” Electronic Eng., 15, 
412-418 and 457-461 (1943); also 16, 26-30 and 114-117 (1944).

316. Tucker, D. G., “Forced Oscillations in Oscillator Circuits and the Syn­
chronization of Oscillators,” J. I.E.E., 92, 226-233 (Part III), (1945).

317. Tuller, W. G., W. C. Galloway, and F. P. Zaffarano, “Recent Developments 
in Frequency Stabilization of Microwave Oscillators,” Proc. I.R.E., 36, 794- 
800 (1948).

318. Tyrrell, W. A., “Hybrid Circuits for Microwaves,” Proc. I.R.E., 35, 1294— 
1306 (1947).

319. van der Pol, B., “On Oscillation Hysteresis in a Triode Generator with Two 
Degrees of Freedom,” Phil. Mag., 43, 700-719 (1922).

320. van der Pol, B., “On Relaxation Oscillations,” Phil. Mag., 2, 978-992 (1926).
321. van der Pol, B., and M. J. O. Strutt, "On the Stability of the Solutionsof 

Mathieu’s Equation,” Phil. Mag., 5, 18-38 (1928).
322. van der Pol B., “The Nonlinear Theory of Electric Oscillations,” Proc. I.R.E., 

22, 1051-1086 (1934).
323. van der Ziel, A., “On the Mixing Properties of Nonlinear Condensers," J. 

Appl. Phy., 19, 999-1006 (1948).
324. Van Dyke, K. S., “The Electric Network Equivalent of a Piezoelectric Res­

onator” (abst.), Phys. Rev., 26, 895 (1925).
325. Van Dyke, K. S., "A Determination of Some of the Properties of the Piezo­

electric Quartz Resonator,” Proc. I.R.E., 23, 386-392 (1935).
326. Van Dyke, K. S., "The Standardization of Quartz Crystal Units,” Proc. 

I.R.E., 33, 15-20 (1945).
327. van Slooten, J., “The Stability of a Triode Oscillator with Grid-Condenser 

and Leak,” Wireless Eng., 16, 16-19 (1939).
328. van Slooten, J., “Stability and Instability in Triode Oscillators,” Philips 

Tech. Rev., 7, 40-45 and 171-177 (1942).



464 BIBLIOGRAPHY
329. Vaughan, W. C., “Phase Shift Oscillator,” Wireless Eng., 26, 391-399 (1949).
330. Vazsonyi, A., “A Generalization of Nyquist’s Stability Criteria,” J. Appl.

Phys., 20, 863-867 (1949).
331. Vecchiacchi, F., “Oscillations in the Circuit of a Strongly Damped Triode,”

Proc. I.R.E., 19, 856-872 (1931).
332. Verman, L. C., “Negative Circuit Constants,” Proc. I.R.E., 19, 676-681 

(1931).
333. von Ardenne, M., “Distortion of Saw-Tooth Wave Forms,” Electronics, 10, 

36-38 (November 1937).
334. von Hippel, A., R. G. Breckenridge, R. G. Chesley, and L. Tiza, Ind. and 

Eng. Chem., 38, 1097 (1946).
335. Wallace, R. L., and W. J. Pietenpol, “Some Properties and Applications of 

n-p-n Transistors,” Proc. I.R.E., 39, 753-767 (1951).
336. Watanabe, Y., “The Piezoelectric Resonator in High-Frequency Oscilla­

tion Circuits,” Proc. I.R.E., 18, 695-717 and 862-893 (1930).
337. Webb, H. W., and G. E. Becker, “Theory of the Multivibrator,” J. Appl. 

Phys., 15, 825-834 (1944).
338. Whale, H. A., “Optimum Conditions for an R-C Oscillator,” Electronics, 

21, 178 (February 1948).
339. Wheeler, H. A., “Formulas for the Skin Effect,” Proc. I.R.E., 30, 412-424 

(1942).
340. Wheeler, L. P., “Analysis of a Piezoelectric Oscillator Circuit,” Proc. I.R.E., 

19, 627 (1931).
341. Wheeler, M. S., “Frequency Contours for Microwave Oscillator with Res­

onant Load,” Proc. I.R.E., 37, 1332-1336 (1949).
342. Whinnery, J. R., “Skin Effect Charts and Formulas,” Electronics, 15, 44-48 

(Feb. 1942).
343. Williams, E., “A Valve Oscillator Theorem,” Wireless Eng., 20, 489-491 

(1943).
344. Williams, S. R., Magnetic Phenomena, McGraw-Hill, New York (1931).
345. Willoner, G., and F. Tihelka, “A Phase-Shift Oscillator with Wide-Range 

Tuning,” Proc. I.R.E., 36, 1096-1100 (1948).
346. Wilson, I. G., C. W. Schramm, and J. P. Kinzer, “High-Q Resonant Cavities 

for Microwave Testing,” Bell System Tech. J., 25, 408-434 (1946).
347. Wing, A. H., “On the Theory of Tubes with Two Control Grids,” Proc. 

I.R.E., 29, 121-136 (1941).
348. Winlund, E. S., “Electronic Heating in the Furniture Industry,” Electronics, 

19, 108-113 (May 1946).
349. Woodyard, J. R., “Application of the Auto-Synchronized Oscillator to Fre­

quency Demodulation,” Proc. I.R.E., 25, 610-619 (1937).
350. Wright, J. W., “The Piezoelectric Crystal Oscillator,” Proc. I.R.E., 17, 

127 (1929).
351. Young, C. H., “A Precise Decade Oscillator,” Bell Lab. Record, 28, 487-489 

(1950).
352. Young, J. D., and H. M. Beck, "Design Equations for Reactance Tube Cir­

cuits,” Proc. I.R.E., 37, 1078-1082 (1949).



NAME INDEX

Chang, H., 406, 408
Child, C. D., 33
Chireix, H., 397
Chu, E. L., 80
Clapp, J. K., 169, 173, 214, 216
Cocking, W. T., 280
Colpitts, E. H., 165, 169, 182, 213, 216,

221, 247
Coursey, P. R., 89
Curtis, W. F., 274
Crain, H. M., 417

Dailey, H. J., 253
David, E. E., Jr., 319, 388
Davis, K. H., 366
De Lange, O. E., 404, 408
De Laup, S., 186
Donal, J. S., 396
Dow, J. B., 178
Dudley, B., 13

Easton, A., 393
Eccles, W. H., 265, 365
Edson, W. A., 203, 238, 389
Epstein, D. W., 307
Espley, D. C., 35
Everitt, W. L., 160, 250

Fair, I. E., 214
Fallou, J., 360
Fleming, L., 192
Fleming-Williams, B. C., 277
Ford, J. R., 438
Fortescue, R. L., 360
Foster, D. E., 99
Foster, R. M., 23, 109
Fourier, J. B. J., 38, 54, 57, 59, 161,

181, 343, 348
Franklin, C. S., 176
Frink, F. W., 412
Frommer, J. C., 249
Furst, U. R-, 351

Galloway, W. C., 423
Gardner, M. F., 14
George, W. D., 112

465

Abraham, H., 281
Adler, R., 324
Aigrain, P. R., 314
Airy, G., 10
Ames, M. E., 402, 403
Anderson, F. B., 193, 403
Anderson, J. E., 197
Andrew, V. J., 364
Appleton, E. V., 59, 312, 328, 332
Arguimbau, L. B., 151, 234, 386, 417
Armstrong, E. H., 408
Artz, M., 185, 402
Avins, J., 417

Barkhausen, H., 7, 253
Barnes, J. L., 14
Bartlett, R. M., 186
Beck, F. J., 397
Becker, J. A., 131, 282
Beers, G. L., 327
Benjamin, R., 300
Bennett, W. R., 354
Bertram, S., 289
Black, H. S., 64
Bloch, E., 281
Bode, H. W., 14, 64, 71, 73, 80, 242, 394
Boella, M., 214
Bogoliuboff, N., 42, 58
Boltzmann, L., 368
Bradley, W. E., 330, 408, 411
Brotherton, M., 89
Brown, G. H. 261
Brown, R. H., 351
Bruck, G. G., 405
Buckingham, E., 109
Builder, G., 365
Bush, R. R., 396
Butler, F., 205

Cady, W. G., 112
Carnahan, C. W., 327
Cauchy, A. L., 433
Chaffee, E. L., 250
Chaffee, J. G., 331
Chance, B., 265, 297, 392, 393
Chang, C. K., 401



466 NAME INDEX
Ginzton, E. L., 184
Gladwin, A. S., 229
Glasoe, G. M., 391
Glegg, K., 299
Glucksnian, H. A., 412
Gordon, J. F., 338
Gouriet, G. G., 170
Groszkowski, J., 38, 151, 364
Guillemin, E. A., 347
Gunn, R., 175

Kinzer, J. P., 108
Kirby, T., 191
Kirchhoff, G., 22, 43
Klingaman, G. W., 262
Kobayashi, M., 309
Koga, I., 214
Korman, N. I., 438
Kryloff, N., 42, 58
Kunz, K. S., 261
Kurshan, J., 406

Harris, W. A., 370
Hartley, R. V. L., 167, 169, 174, 177,

182, 218, 353
Hazeltine, L. A., 410
Hedeman, W. R., 428
Heegner, K., 210
Heising, R. A., 112, 169
Hershberger, W. D., 425
Hill, G. W., 355
Hinton, W. R., 185
Hollingsworth, L. M., 184
Horton, J. W., 6, 360
Howe, G. W. O., 24

Lampkin, G. F., 173
Last, E., 300
Lawrence, E. O., 263
Lebacqz, J. V., 391
le Corbeiller, Ph., 43
Lee, R., 390
Leslie, C. B., 403
Li/nard, A., 43
Linder, E. G., 263
Llewellyn, F. B., 80, 181, 232, 367
Lyons, H., 362
LythaU, W. B., 441

Huggins, W. H., 436
Hund, A., 386, 397
Huntoon, R. D., 320
Hussey, L. W., 353
Huygens, C., 312

McCreary, H. J., 357
McGaughon, H. S., 403
Mallett, E., 135
Malling, L. M., 280
Maloff, I. G., 307
Marcum, J., 247

Ide, J. M., 121
Inglis, A. F., 282
Ives, R. L., 193

Mather, N. W., 281
Mathieu, E. L., 355
Meacham, L. A., 10, 79, 115, 142, 151,

198, 199, 200, 243
Jaderholm, H. W., 99
James, E. G., 246
Jefferson, H., 182
Johnson, J. B., 368
Johnson, K. C., 408
Johnson, R. W., 185
Jordon, F. W., 265, 365

Meissner, E. R., 172, 264
Müler, J. M., 173, 218, 220, 223, 225,

226
Müler, R. L., 360, 362
Minorsky, N., 42
Mittelman, E., 261
Montgomery, B. E., 401
Moore, J. B., 191

Kalmus, H. P., 327, 412
Karplus, E., 103
Keller, E. G., 51
Kiebert, M. V., 282
Kilgore, G. R., 406
Kimball, C. N., 250
Kingston, R. H., 354
Kinn, T. P., 247, 259

Morrison, J. T., 420
Moullin, E. B., 367

Newitt, J. H., 299
Newton, A. E., 99
Norrman, E., 365
North, H. Q., 353
Norton, R. L., 261



NAME INDEX 467

Nyquist, H., 64, 71, 72, 73, 79, 139, 184, 
188, 212, 235, 236, 237, 238, 239, 242, 
368, 421

Sing, C., 280
Skinner, L. V., 435
Sloane, R. W., 246
Slonziewski, T., 191

O’Brien, E. J., 396
Offner, F. F., 255
Osborn, P. H., 235

Smith, P. H., 106
Smith, W. V., 427
Sokolnikoff, I. S., 24, 433
Spitzer, C. F., 360

Page, R. M., 274, 351
Peirce, B. 0., 56, 322, 376
Peterson, E., 35, 346, 347
Pierce, G. W., 170, 212, 218, 220, 223, 

226
Pierce, J. R., 107, 371, 378, 381, 438, 

441, 448
Pit, H. F., 70
Post, E. J., 70
Pound, R. V., 418, 421, 422
Prince, D. C., 250
Puckle, O. S., 265, 269, 278, 280, 309
Pullen, K. A., 299

Stansel, F. R., 362
Sterky, H., 363
Stiles, J. L., 169
Stockman, H., 412
Stone, J. E., 192
Strutt, M. J. O., 355
Sturley, K. R., 417
Sturtevant, M., 403
Sulzer, P. G., 185
Summerhayes, H. R., 104
Swan, A. G., 263
Sykes, R. A., 120

Rambo, S. I., 261
Rayleigh, Lord, 355
Record, F. A., 169
Regener, V. H., 366
Reich, H. J., 267, 277, 401
Rice, S. O., 371
Rideout, V. C., 406, 408, 417
Riebman, L., 412
Riemann, B., 433
Roberds, W, D., 259
Roberts, S., 341
Rumsey, P. T., 347

Teare, B. R., Jr., 258
Terman, F. E., 89, 183
Terry, E. M., 214
Th6venin, M. L., 283
Thompson, B. J., 371
Tihelka, F., 193
Travis, C., 397, 414
Tucker, D. G., 319, 347
Tuller, W. G., 422, 423, 427

van der Pol, B., 49, 51, 55, 59, 186, 210,
272, 274, 276, 319, 355, 435

van der Ziel, A., 353
Sarbacher, R. I., 250, 350
Schaffner, H., 319
Schatz, E. R., 258
Schmidt, C. R., 365
Schottky, W., 370
Seddon, J. C., 391
Seeley, S. W., 417
Selgin, P. J., 14
Shannon, C. E., 381, 389
Sharpless, T. K., 366
Shenk, E. R., 338, 364
Shepherd, W. G., 107, 378, 381, 383,

441, 448
Shortt, W. H., 10
Shulman, C. I., 406

Van Dyke, K. S., 112, 113 
van Slooten, J., 229 
Vaughan, W. C., 185 
Vazsonyi, A., 74 
Vecchiacchi, F., 300 
Verman, L. C., 14 
von Ardenne, M., 369 
von Hippel, A., 341

Watanabe, Y., 112
Webb, H. W., 282
Weiss, A,, 320
Wheeler, H. A., 410
Wheeler, L. P., 214
Wheeler, M. S., 445



468 NAME INDEX
Wien, W., 79, 138, 192, 401, 402
Williams, E. M., 314
Williams, G. H., 262
Willoner, G., 193
Wing, A. H., 152
Winlund, E. S., 261

Woodyard, J. R., 328
Wright, J. W., 214

Young, C. H., 192, 397

Zaffarano, F. P., 423



SUBJECT INDEX

Aging, of crystal units, 114
of resonators, 86, 87, 176

Air condensers, 94
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Amplitude stability factor, 316
Analytic functions, 433
Angular velocity, 48
Apertures, 262
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Asymmetrical multivibrator, 297
Atomic clock, 10
Audio frequency oscillator, 138, 182,

184, 191, 192, 193
Automatic frequency control, alter­

nating current for, 422
analysis of, 420
basic principles, 414
discriminator, 415
hysteresis, 421
microwaves, 421, 423
molecular resonance, 425
synthesis of frequency, 428
systems, 419
time coincidence method, 425

Automatic output control, 151
Automatic output control oscillator,

153, 155, 231, 235, 317
Automatic volume control, 151, 153

Balanced frequency multipliers, 351
Balanced oscillators, 249
Barium titanate, 90, 341
Barkhausen oscillations, 253
Barkhausen's condition, 7
Beam, molecular, 124
Beat-frequency oscillator, 191

Blocking (due to grid current), 251
Blocking oscillator, analysis of pulse 

length, 301-304
electron-coupled, 308
load line, 304
overshoot, 305
rise time, 305
transformers for, 306
transition time, 305
variations, 307

Boltzmann's constant, 368
Bradley’s locked oscillator, 330
Broad-band crystal oscillator, 202, 207
Broad-band synchronization, 327
Brownian movement, 367
Build-up of oscillation, 54, 387, 411, 

431, 448
in multiple resonance system, 445
rate calculated, 448

Butterfly circuit, 103

Capacitance (of a crystal unit), 117
Capacitance compensation, crystal os­

cillator, 202, 207, 212
electron coupled oscillator, 180

Capacitance instability, 149
Capacitance ratio of crystal unit, 117, 

216
Capacitors, air, 94

paper, 95
plastic, 95
properties, 89
vacuum, 93

Carbon dioxide (effect on frequency), 88
Cathode-coupled multivibrator, 294, 

297
Cathode-coupled oscillator, 208
Cathode follower, 278, 294, 392
Cathode limitations, 252
Cathode materials, 252
Cavity resonator, 107, 264, 417

multiple resonance in, 430
Ceramic condensers, 90, 397
Characteristic impedance, 84
Child's law, 33
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Clapp oscillator, 169, 214
Class C frequency divider, 362
Class C frequency multiplier, 350
Class C operation of tube, 158, 160,

162, 249
Clicks, key, 390
Clock analogy, 8
Code, 389
Coherent oscillation, 387, 393
Coils, iron core, 98

self-supporting, 100
solenoidal, 100
universal, 99

Colpitts oscillator, 165, 213, 248
Compensation, temperature, 103
Compensation theorem, 321
Complex frequency, 13, 431
Complex variable, 73
Condensers, air, 94

paper, 95
plastic, 95
properties, 89
vacuum, 93

Conditional stability, 232
Conduction interval, blocking oscil­

lator, 302, 304
multivibrator, 282, 296
pentode sweep, 277
Puckle’s sweep, 279
van der Pol oscillator, 275

Coupled circuits, multiple resonance in,
436

Coupled modes, 25
Coupling (to cavity resonator), 108
Coupling circuits, load, 202, 258, 260
Critical damping, 16
Crystal control, 261
Crystal impedance meter oscillator, 203
Crystal oscillator, 197, 261, 426
Crystal unit (resonator), 112
Crystal units, aging, 114

cuts, 116
mounting, 113
Performance Index, 115
power limitations, 117
properties, 119
temperature coefficient, 114

Current-controlled negative resistance,
30

Cuts, quartz crystal, 116

Cyclic behavior, coils, 99, 101
condensers, 94
resonators, 86

Cyclogram, 43, 46, 47, 48
Cyclotron oscillators, 257, 263

Damping factor, 15, 20, 21
Decade oscillator, 192
Decaying wave, 432
Decrement, 15, 20, 21
Degradation of crystal Q, 198, 199, 206
Degrees of freedom, 22
Deionization time, 270
De Laup oscillator, 186
Delay in transmission lines, 446
Deltamax, 345
Detection of FM by locked oscillator,

328, 330
Diathermy, 246, 257

frequencies assigned, 261
Dielectric, nonlinear, 349
Dielectric constant of air, 88
Dielectric heating, 246, 247, 257

frequencies, 261
interference, 262

Diode characteristics, 344
Diode frequency multiplier, 343
Directional coupler, 423
Discriminator, 405, 428

audio, 417
basic, 414
microwave, 417
practical, 417

Distortion, reduction due to feedback,
68

Dominant mode, 107
Doubly resonant system, 433, 436, 447
Driving system, 9, 83
Dual, 14
Dynamic resistance, 29
Dynatron, 32

characteristic, 33
oscillations, 253

Efficiency, of class C operation, 257
of oscillators, 249

Electron, emitted/370
free, 368
inertia, 3
transit time, 246, 382
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Electron coupling, in blocking oscillator, 
308

in crystal oscillator, 224
general, 177, 208
neutralization for, 180

Electrostriction, 111, 120
Element, quartz crystal, 116
Emission of cathodes, 251
Envelope (of oscillation), 54
Envelope stability, 230, 231, 237, 396
Envelope transmission, class C ampli­

fier, 240
thermistor bridge, 240
tuned circuit, 239

Equation roots, 187, 189
Equivalent circuit, general resonator,

110
magnetostriction rod, 121
quartz crystal, 114

Equivalent linearization, 51, 54, 158,
166, 181, 321, 439, 449

Evaporation, vacuum, 112
Excitation ratio, 160, 166, 167, 168, 174,

217, 219
Expansion coefficients of materials, 110
Expanding wave, 16, 19, 22, 432, 447

Feedback, effects of, 67
multiple loop, 67
negative, 64
positive, 70
shunt, 65
voltage, 65

Feedback oscillator, 4
Filament voltage, 251
Fleming-Williams’ sweep circuit, 277
Flip-flop, 265, 365
Four-terminal oscillator, 4
Forks, tuning, 122
Franklin oscillator, 176
Free electrons, 368
Freedom, degrees of, 22
Frequencies assigned to industrial and

diathermy use, 261
Frequency (of negative resistance oscil­

lator), 38
Frequency change due to load, 177
Frequency composition, 340
Frequency correction, 56
Frequency definition, 1

Frequency division, 281, 319, 340, 
352-365

Frequency modulation, receivers, 415
Frequency multiplication, 281, 349-

352, 427
by electron coupling, 181, 208, 224 

Frequency perturbation during syn­
chronization, 323

Frequency range of oscillators, 1
Frequency stability, 2, 11, 79, 146, 158

cathode-coupled oscillator, 210
Clapp’s oscillator, 171
crystal oscillator, 197
decade oscillator, 192
Franklin oscillator, 176
grounded-grid oscillator, 207
Gunn oscillator, 175
Meacham oscillator, 148, 150
Miller oscillator, 220
multivibrator, 286
Pierce oscillator, 214
phase shift oscillator, 185
reactance stabilized oscillator, 181
related to resonator loss, 255
resistance stabilized oscillator, 182
transformer-coupled oscillator, 201, 

203
under modulation, 394

Frequency stabilizing methods, 379
Frequency synthesis, 428

Gain without feedback, 65
Gas tube oscillator, 266
General oscillator circuit, 166
Glow-discharge tube, 266
“Grass,” 367
Grid current, 162
Grid emission, 250
Grid modulation, 395
Grid rectification, 163
Grid resistance, 163
Grounded-grid oscillator, 205
Grounded-grid blocking oscillator, 307
Gunn’s oscillator, 175

Hangover, 409
Harmonic content, Meacham oscillator, 

143
automatic output control oscillator, 

156
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Harmonic content, negative resistance 

oscillator, 37
Harmonic currents, path for, 166
Harmonic generator, 340-346
Harmonic operation, electron-coupled 

oscillators, 181
Harmonic oscillations, 3, 19, 47, 75, 188, 

228
Harmonic oscillators, conventional, 159, 

265
as frequency divider, 365
synchronization, 311, 318

Hartley oscillator, 167, 169, 174, 177,
182, 218

Heterodyne oscillator, 191
High-frequency oscillators, 197, 210, 

212, 250
crystal-controlled, 226

High-power operation, 246
Humidity (effect on frequency), 88
Hybrid junction, 417, 423
Hypersil, 306
Hysteresis, in locking, 317

tuning, 421, 436

Impedance, characteristic, 84
Impedance inversion by transmission 

line, 204, 221
Impedance-inverting oscillators, 223
Impedance transformation by resonant 

line, 106
Imperfect cutoff in multivibrator, 292
Impregnation of coils, 89
Inclusions in quartz, 114
Incoherent oscillation, 387
Inductance, variable, 102
Induction heating, 246, 247, 257, 263

frequencies, 261
Inductors, properties, 98
Inerteen, 96
Inertia, electron, 3, 246, 382
Information theory, 389
Input impedance, effect of feedback, 69
Instability, capacitance, 149
Interaction (locking) between two os­

cillators, 331
Interference, radio, 261
Intermediate frequency, 379, 414, 422
Intermittent operation, 156, 227-244,

412

Intermodulation, 34
Invar, 94
Ionization, 266
Iris coupling to cavity resonator, 108
Iron core coils, 98
Isocline, 43-49

Jitter, 269, 342, 373, 381

Keying, clicks, 390
oscillators, 386
speed, 389

Klystron, 351, 378, 382, 391, 406, 425,
427

Kobayashi’s sweep, 309

Lamp, tungsten, 127
Lamp-bridge oscillator, 131, 239, 312,

374, 378
Lampkin’s oscillator, 173
Life of vacuum tubes, 251
Limiter, 6, 7, 415
Limiting action, 133, 140, 151, 158

cycle-by-cycle, 318, 325
grid conduction, 183

Limiting amplifier, oscillator as, 325
Linear oscillator, 3, 126, 135, 227

synchronization, 311, 317
tuned plate, 135

Linearity, effect of feedback, 68
output of frequency divider, 361
pentode sweep circuit, 278

Llewellyn’s criterion, 80
envelope stability, 232

Load, 4, 5, 6, 202, 258, 260
Load capacitance in crystal oscillators,

213
Load coupling circuits, 202, 258, 260
Load line, 34
Local oscillator, noise, 379

superheterodyne, 414
Locking, see Synchronization
Long-line effects, general, 430

microwave, 440
Loop coupling to cavity resonator, 108
Loop transmission, 66, 71, 74, 421
Losses in resonator, 255
Low-frequency oscillators, 192
Low-pass filter characteristics, 243
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Magic tee, 417, 423
Magnetic, frequency divider, 357

materials, 306, 341, 345
saturation, 345

Magnetostriction, 12 0
Magnetron, 2, 383, 391, 406, 430
Meacham oscillator, 142-150, 243
Mechanical model of synchronization,

324
Meissner oscillator, 172, 264
Mesh, 22
Metalized paper, 95
Mica condensers, 89
Microwave oscillators, 227, 230, 264,

311, 382, 418-425, 448
Microwaves, 109, 388
Miller crystal oscillator, 218
Miller’s frequency divider, 360
Mode, coupled, 25

dominant, 107
normal, 24
orthogonal, 24
unwanted, 107

Modulation, amplitude, 384, 393, 396,
406

frequency, 384, 385, 396, 397, 402
grid, 395
keying, 386
phase, 386
plate, 394
pulse, 381, 391

Modulator, 191
Molecular, beam, 124

resonance, 10, 83, 123, 417, 425, 427
Mounting of crystal plates, 113
Multiple-loop feedback, 67
Multiple resonance, 430-440
Multivibrator, 278, 281-299

analysis of operation, 283
asymmetrical, 297
cathode-coupled, 294
effect of imperfect cutoff, 292
frequency divider, 337, 364
frequency stability, 286
numerical example, 285
optimum voltage for synchronization,

335
period, 284, 288
positive grid return, 288
screen-coupled, 293

Multivibrator, starting characteristics 
293

transfer time, 291
Mumetal, 345

Natural frequency, 6, 11, 15, 84
Negative feedback, 64
Negative resistance, 7, 8, 14, 29

characteristics of pentode, 275
current-controlled, 30, 438
oscillator, 84
viewpoint, 7
voltage-controlled, 30, 438

Neon lamp as oscillator, 266
Neutralization in electron-coupled os­

cillator, 179
Node, 22

equations, 166
Noise, 269, 367-383

bandwidth, 369, 376
current, 369
equivalent resistance of tube, 370
filtered, 372-375
klystron, 378, 382, 388
local oscillator, 379
magnetron, 383, 388
power, 368
pulsed oscillator, 380
reduction by feedback, 68
Schottky, 370
shot, 370
sidebands, 374
spectrum, 372, 375
superregenerative amplifier, 411
thermal, 368
time distribution, 371
transit time, 371
typical oscillator, 378
voltage, 369
vacuum-tube, 370
wave-form, 372, 373

Nonlinear, capacitance, 354, 420
coil, 420
condenser, 354, 420
dielectric, 349
inductance, 354
oscillation, 3, 42-63
reactance, 341, 346, 397

Nonlinearity in automatic output con­
trol oscillator, 155
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Normal modes, 24
Nyquist, criterion, 72, 421

diagram, 72-74, 78-80, 139-141, 188-
190, 236, 240, 281

envelope criterion, 235-237
plot related to roots, 74

Optimum wave form for synchroniza­
tion, 337

Order (of the differential equation), 22
Orientation of crystal plates, 116
Orthogonal modes, 24
Orthonol, 345
Output impedance, effect of feedback, 69
Output power, see Power output
Overdamped, 16
Overshoot in blocking oscillator, 305
Overtone of quartz crystal, 197

Paper condensers, 95
Parallel-mode crystal oscillators, 213
Parasitic, capacitance, 107

inductance, 107
oscillations, 249, 253

Pentagrid tubes, 151
Pentode sweep circuit, 276
Performance Index of quartz crystal, 

115, 214
Period, definition, 1

of relation oscillation, 62
of wave, 9, 268

Permalloy, 345
Permeability of air, 100
Perturbation of frequency in synchron­

ization, 323
Phantastron, 265
Phase com pensation in crystal oscillator,

202, 207
Phase lock, 342
Phase magnification of bridge, 141, 146
Phase shift oscillator, 183, 189, 365, 402
Phasitron, 396
Pi theorem, 109
Pierce crystal oscillator, 212-218
Piezoelectricity, 111
Plastic condensers, 95
Plate modulation, 395
Positive grid return (in multivibrator), 

287
Positive and negative feedback, 70

Power dissipated in quartz crystal, 199, 
201, 207, 214, 216, 220

Power gain in tube, 198, 199, 206, 217
Power output, crystal oscillator, 199, 

201, 207
design for, 246-264
Miller oscillator, 220 z
Pierce oscillator, 216
tuned plate oscillator, 165

“Priming,” 388
Probability, 372
Probe coupling to cavity resonator, 108
Puckle’s sweep, 278
Pulling, 311, 448
Pulse transformer, blocking oscillator, 

306
high-power, 391

Pulsed operation, 373, 446
Push-pull oscillators, 249

Quality factor (Q), 4, 5, 20, 21, 31,^8^ 
degradation, 198, 199, 206, 217

Quartz, crystalline, 112
dielectric properties, 90, 117
expansion coefficient, 101, 110
inclusions, 114
orientation, 116
twinning, 114

Quartz crystal element, 83, 86, 116, 261,
430

Quasi-linear, 46, 48, 58
Quench, 409

Radio interference, 261
Reactance, nonlinear, 341
Reactance stabilization of frequency,

181
Reactance tube, 397, 406, 414, 420
Reactance tube oscillator, 406
Rectification of bias, 156
Reflex oscillator, 378, 382, 436
Regenerative stable frequency divider, 

360
Reich’s sweep circuit, 277
Relaxation oscillation, 3, 20, 47, 59, 62, 

188-190, 228, 241, 301, 307
Relaxation oscillator, design, 265-310

frequency modulation, 403
period, 62
synchronization, 312, 333, 337
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Remote cutoff in multivibrator, 292
Repeated transients, 348
Resistance, dynamic, 29

negative, see Negative resistance
Resistance-capacitance oscillator, 72,

81, 82, 402
Resistance tube, 402
Resonance, spurious, 105, 107, 108
Resonator, cavity, 83, 107

ideal, 85
general, 3, 6
high power, 257
loading, 254
losses, 255
molecular, 83
quartz, 83

Resonator theorems, 109
Rochelle salt, 112
Roots, position, 74

real, 26
related to Nyquist plot, 74
system, 15, 18, 431, 447

Saturable reactance, 346, 397
Saw-tooth wave, 268, 277
Schottky noise, 370
Secondary emission, electron, 2, 250
Secular variation (in resonators), 86
Selectivity (quality factor), 4, 5, 20, 21, 

84, 98, 198, 199, 206, 217
Self-modulating oscillator, 244
Semiconducting thermistor, 129
Semiconducting triode, 3
Series feed, 168, 249
Series-mode crystal oscillators, 210
Series resonance of quartz crystal, 197
Serrasoid, 396
“Seven-league” oscillator, 193, 402
Shielding, 261, 263
Shot noise, 370
Shunt feed, 168, 247, 259
Sidebands, noise, 374

telegraphy, 389
Silicon diodes, 404
Silicone, 98
Similitude, 109
Single-loop feedback, 67
Single-valued function, 30
Skin effect, 101, 258
“Snow,” 367

Solenoid, 100
Space charge, electron, 370
Spurious oscillation, 172, 212, 249, 253
Spurious resonance, 105
Sputtering, cathode, 112
Square-wave generators, 294, 299
Stability, absolute, 72

amplitude, 10, 79
conditional, 72
frequency, 11, 79
improved by feedback, 68
operating point, 438

Stabilization of frequency, by reactance,
181

by resistance, 182
Standing wave ratio, 442, 448
Start-stop oscillator, 391
Striking voltage, 266
Sub-cycle ringer, 340, 358
Subharmonic, 319, 327, 352
Superheterodyne, 379, 414
Superregeneration, 408

linear mode, 409
logarithmic mode, 411
noise, 411
selectivity, 409

Suppression, of intermittant oscillation, 
242-244

of parasitic oscillation, 253
Suppressor grid, characteristic of, 275

modulation, 395
Sweep circuit, 265, 267, 268, 271, 276,

278, 307, 309
Synchronization, 191, 271, 281, 311-338
Synthesis of frequency, 428
System roots related to envelope be­

havior, 241

Temperature coefficient, of capacitance, 
88

of frequency, 86, 114, 176
of resistance, 130

Temperature compensation, 103
Thermal noise, 368, 431
Thermistor, 7, 126-129
Thermistor-controlled oscillators, 131,

231, 238, 239, 312, 374, 378
Thermistor sensitivity, 127
Thumps, key, 389
Thyratron oscillator, 270
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Time base, 268
Time constant, tungsten lamps, 127 

semiconducting thermistor, 131
Time-variable conductance, 233, 409
Time-variable reactance, 354
Titanium dioxide, 90
Transconductance, effect of class C 

operation, 158-162
effect of electron coupling, 178, 179

Transfer (transition) time, blocking 
oscillator, 305

cathode-coupled multivibrator, 296
conventional multivibrator, 282, 291
pentode sweep circuit, 277
Buckle’s sweep, 278
van der Pol oscillator, 275

Transformation of impedance by reso­
nant line, 106

Transformer-coupled oscillator, 197
Transformers for blocking oscillators, 

306
Transient effects, 431
Transients, repeated, 348
Transistor, 3
Transit time, electron, 246, 253, 371,

382
Transitron, 31, 32, 231, 434
Transmission lines, 105, 430-447
Trigger circuit, 265, 365
Triode frequency multiplier, 350
Tri-tet oscillator, 224
Tuned grid oscillator, 169

Tuned plate oscillator, 75, 158, 165, 188, 
227-232, 240, 249, 259

Tuned plate-tuned grid oscillator, 173
Tungsten lamp, 127
Tuning forks, 122
Tuning hysteresis, 436
Turning point in quartz crystals, 118
Twinning in quartz, 114
Two-terminal oscillator, 4

Underdamped, 15
Universal winding, 99
Unwanted oscillation, 172, 212, 249, 253
Unwanted resonance, 105

van der Pol oscillator, 272
detailed analysis, 274
general operation, 273

Vacuum condenser, 93
Variable condenser, 7
Variable inductance, 102
Variation of parameters, 51, 52
Velocity, angular, 48
Velocity modulation, 396
Voltage-controlled negative resistance, 

30
Volume expander, 151

Wide-range oscillators, 193
Wien bridge oscillator, 138, 192, 401

X-ray orientation, 116


