unis minin

SOURREROOK OF ELECTRONIC CIRRUITS

McGraw-Hill Book Company

SOURCEBOOK OF EIECTRONIC CIRCUITS

By JOHN MARKUS

Manager, Information Research
McGraw-Hill, Inc.
A virtual desk-top retrieval center for engineers, designers, and technicians in all areas of electronics, this first book of its kind contains over 3,000 electronic circuits, complete with values of all components. A distillation of circuit knowledge accumulated over the past ten years, it conveniently brings together material from many diverse sources, such as articles and technical papers, magazines, books, government journals, and other publications in the field.
The majority of circuits shown are recent semiconductor designs, but important electron-tube circuits are adequately represented because there are still many applications where only tubes can do the required job. Included with each circuit is a concise description of its significant features, performance data, and operating characteristics, so that you can quickly choose the circuit that most closely meets your needs. With each description is a citation giving the original source in which the circuit is described in detail. Thus you know in a matter of minutes where to find complete information on the circuit you select, including essential construction and adjustment details, design precautions, and other application data.
A comprehensive index gives you quick access to circuits listed either by type, performance, application, or popular name. Presented in a logical sequence for quick retrieval, with all the circuits in a given category arranged side by side, the volume includes chapters dealing exclusively with such specialized topics as . . . scanner circuits ... simulator circuits . . . flash circuits . . . clock circuits . . . medical circuits . . . automotive circuits . . . infrared circuits . . . current control circuits . . . and many more.
The cost of each circuit to the purchaser of this sourcebook is less than one cent apiece, making it the most economical reference in electronics. More important, its unique coverage of circuit component values often eliminates the need to look up descriptive information in the original source. And with values for one application as a starting point, it's much easier to modify a circuit for a new application.
(continued on back flap)
(continued from front flap)

JOHN MARKUS has been associated with McGraw-Hill since 1943, when he joined the editorial staff of ELECTRONICS magazine. As a feature editor, he was responsible for many special state-of-the-art reports in the field of electronics, including one which received a Jesse H. Neal Editorial Award for outstanding journalism. He later served as Technical Director of the Technical Information Research Staff of the McGraw-Hill Book Company, where he was involved in the application of electronic techniques to the mechanization of information publishing systems. Currently Manager of Information Research for Mc-Graw-Hill, Inc., he serves as a consultant to all McGraw-Hill divisions on nontraditional publishing and information retrieval, with emphasis on computer composition of directories and indexes.
A Senior Member of the Institute of Electrical and Electronics Engineers, Mr. Markus is also a member of the Association for Computing Machinery and the editorial board of AMERICAN DOCUMENTATION. He is the author, co-author, or editor of more than a dozen McGraw-Hill books, including ELECTRONICS FOR ENGINEERS, ELECTRONICS MANUAL FOR RADIO ENGINEERS, ELECTRONICS FOR COMMUNICATION ENGINEERS, HANDBOOK OF INDUSTRIAL ELECTRONIC CIRCUITS, HANDBOOK OF ELECTRONIC CONTROL CIRCUITS, HOW TO MAKE MORE MONEY IN YOUR, TV SERVICING BUSINESS, TELEVISION AND RADIO REPAIRING, and WHAT ELECTRONICS DOES. He is editor-inchief of the McGraw-Hill TV, Radio, and Audio Servicing Course and the author of over 100 published articles, including more than 30 in the McGRAW-HILL ENCYCLOPEDIA OF SCIENCE AND TECHNOLOGY.

SOURCEBOOK OF

 ELECTRONIC

 ELECTRONIC CIRCUITS

 CIRCUITS}

Over 3,000 modern electronic circuits complete with values of all parts, organized in 100 logical chapters for quick reference and convenient browsing

JOHN MARKUS

Manager, Information Research, McGraw-Hill, Inc.
Senior Member, Institute of Electrical and Electronics Engineers
Editorial Board, American Documentation Institute
Editorial Board, Annual Review of Information Science and Technology

Copyright © 1968 by McGraw-Hill, Inc. All Rights Reserved. Printed in the United States of America. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. Library of Congress Catalog Card Number 67-15037 40443

Preface

More than 3,000 electronic circuits, published largely within the past five years, are presented here in 100 logically organized chapters for convenient reference and browsing by practical electronic engineers and technicians. Circuits in a given category are arranged side by side for easy comparison and selection, much as at a smorgasbord table. Each circuit has the values of all significant components, an identifying title, a concise description of circuit function, performance data, and application ideas. This information will generally be sufficient for use as a starting point in redesigning a circuit to meet other requirements. For those who need further information, each circuit also has a citation giving the title of the original article, its author, and its exact location in the original publication.

Engineering libraries, particularly in foreign countries, will find this volume a highly acceptable substitute for the original sources when facing limitations on budgets or shelf space. Most users will find that sufficient information is given with each circuit to meet their needs, thereby making a file of original sources unnecessary.

For the average circuit search, start with the alphabetically arranged table of contents at the front of the book. This will show almost at a glance the chapters that are most likely to contain the desired type of circuit. The random arrangement of circuits within a chapter encourages the browsing that so often turns up an unexpectedly valuable idea.
If a chapter search fails to give the exact circuit needed, use the back-of-book index. Here the circuits are indexed in depth under a variety of type and application names, combined with hundreds of see and See also cross references that will speed comprehensive searching for a particular circuit even when it is combined with other circuits. The result is a desktop information-retrieval system for the most significant transistor and tube circuits developed in recent years. With it, you can retrieve a desired circuit within a matter of minutes, as compared to the hours or days usually required to get results from costly computer-based information systems.

One goal of this book is to provide a maximum of circuit information in minimum space. Accordingly, there is an absolute minimum of repetition in each circuit description. To get maximum information, the chapter title, the bold-face circuit heading, and the original title in the citation should be read along with the description and the circuit itself.
On those few occasions when additional information is desired, most users will go to a library for the original source of a circuit. The citations therefore give vol-
ume and issue number for publications, in accordance with the preferences of librarians. For those who have their own files, the equivalent years and issue dates for the two most frequently cited publications-Electronics and EEE-can be quickly determined from handy tables following the table of contents. Here also are listed the abbreviations most frequently used on the diagrams and in the text, with meanings.

The values of the important components are given for every circuit, since these help an engineer to read the circuit and redesign it for his own needs. The development of a working circuit for a new application is speeded tremendously when the design work can be started with a working circuit, instead of starting from scratch. Research and experimentation are thereby cut to a minimum, so that even a single use of this pioneering circuit-retrieval search book could pay for its initial cost many times over.

Although the majority of the circuits are recent semiconductor designs, important new electron-tube circuits are adequately represented because there are still many applications where only tubes can do the required job.
Never before have so many circuits, complete with values, been collected in a single volume for such convenient reference, to provide the desired circuit within minutes and at the same time tell where further information on it can be obtained. Results are obtained in only a fraction of the time that would be required to scan the hundreds of magazines and books from which this volume was compiled.
To the original publications cited in this volume and to their authors and editors should go the real credit for making possible this contribution to the advancement of electronic circuit design. Particular credit goes to publisher Jim Randolph and editor Lewis Young of Electronics for recognizing the importance of easy retrieval of the many valuable circuit design articles they have published. Specific credit must be given also to George Rostky, editor of $E E E$, for approving the inclusion of diagrams from his famous "Circuit Design Award" section. Other sources, equally appreciated but too numerous to mention here, are credited in the individual citations.
To artist and orchid-hybridizer Jack Quint, more active than ever in Florida retirement, goes full credit for arranging the thousands of circuits on these pages so well, each unmistakably associated with its own text.

John Markus

Contents

Preface v

1. Alarm circuits 1
2. Amplifier circuits 8
3. Analog circuits 30
4. Audio circuits 38
5. Automatic frequency control circuits 54
6. Automatic gain control circuits 57
7. Automotive circuits 65
8. Battery charging circuits 72
9. Beacon circuits 76
10. Bridge circuits 81
11. Capacitance control circuits 85
12. Cathode ray circuits 89
13. Character generator circuits 100
14. Chopper circuits 103
15. Clock circuits 109
16. Comparator circuits 114
17. Computer circuits 120
18. Control circuits 127
19. Converter circuits 138
20. Counter circuits-objects 148
21. Counter circuits-pulses 151
22. Current control circuits 167
23. D-c amplifier circuits 172
24. Delay circuits 178
25. Demodulator circuits 190
26. Differential amplifier circuits 193
27. Diseriminator circuits 200
28. Display circuits 204
29. Electronic heating circuits 209
30. Electronic music circuits 213
31. Filter circuits 216
32. Flash circuits 223
33. Flip-flop circuits 231
34. Frequency divider circuits 240
35. Frequency measuring circuits 246
36. Frequency modulation circuits 250
37. Frequency multiplier circuits 256
38. Function generafor circuits 265
39. Gate circuits 269
40. I-f amplifier circuits 281
41. Infrared circuits 289
42. Integrated circuits 295
43. Integrator circuits 306
44. Inverter circuits 313
45. Latching circuits 327
46. Limiter circults 330
47. Logic circuits 335
48. Magnetic amplifier circuits 350
49. Measuring circuits 356
50. Medical circuits 377
51. Modulator circuits 393
52. Motor control circuits 404
53. Multiplier circuits 413
54. Multivibrator circults 417
55. Noise circuits 439
56. Oscillator circuits 447
57. Phase control circuits 465
58. Photoelectric circuits 475
59. Photography circuits 485
60. Power supply circuits 491
61. Preamplifier circuits 497
62. Protection circuits 501
63. Pulse amplifier circuits 511
64. Pulse generator circuits 516
65. Pulse height analyzer circuits 533
66. Pulse processing circuits 537
67. Pulse shaping circuits 541
68. Radar circuits 545
69. Radiation circuits 558
70. Receiver circuits 568
71. Recorder circuits 581
72. Regulated power supply circuits 588
73. Remote control circuits 615
74. Sampling circuits 623
75. Sawtooth generator circuits 629
76. Scanner circuits 639
77. Servo circuits 643
78. Shift register circuits 664
79. Signal generator circuits 669
80. Simulator circuits 677
81. Staircase generator circuits 685
82. Stereo circuits 689
83. Sweep circuits 696
84. Switching circuits 703
85. Tape recorder circuits 714
86. Telemetry circuits 723
87. Television camera circuits 734
88. Television circuits-black-and-white 739
89. Television circuits-color 747
90. Temperature control circuits 755
91. Test circuits 764
92. Timer circuits 783
93. Transceiver circuits 792
94. Transmitter circuits 796
95. Trigger circuits 807
96. Tuner circuits 821
97. Ulirasonic circuits 825
98. Video circuits 838
99. Voltage measuring circuits 850
100. Welding circuits 859
Index 865

ABBREVIATIONS USED

a-c alternating current	gto gate turnoff	na nanoampere	rfi radio frequency
adf automatic direction	hr hour	nipo negative input	interference
finder	Hz hertz	positive output	rms root mean square
a-f audio frequency	IC integroted circuit	npn negafive-positive-	rpm revolutions per minute
afc automatic frequency	i-f intermediate frequency	negative	RTL resistor-transistor logic
control	iff identification friend or	nrz nonreturn-to-zero	rz return-to-zero
age automatic gain control	foe	nsec nanosecond	scope oscilloscope
a-m amplitude modulation	K kilohm	nw nanowatt	scr silicon controlled
amp ampere	kc kilocycle	pam pulse-amplitude	rectifier
bed binary coded decimal	kv kilovolt	modulation	scs silicon controlled switch
C Centigrade	kw kilowatt	pcm pulse-code modulation	sec second
CB Citizens Band	ma milliampere	pf picofarad	s/n signal-to-noise
CCTV closed-circuit	Me megacycle	pino positive input negative	sq cm square centimeter
television	meg megohm	output	ssb single sideband
cm centimeter	mfd microfarad	p-m phase modulation	sync synchronizing
cps eycle per second	mh millihenry	pnp positive-negative-	td tunnel diode
er cathode-ray	MHz megohertz	positive	t-r transmit-receive
cro cathode-ray oscilloscope	microamp microampere	pnpn positive-negative-	tv television
crt cathode-ray tube	microsec microsecond	positive-negative	twt traveling-wave tube
c-w continuous-wave	mil 0.001 inch	p-p peak-to-peak	uhf ultrahigh frequency
db decibel	millimicrosec milli-	ppm pulse per minute	ujt unijunction transistor
dbm decibels above	microsecond	pps pulse per second	v voli
1 milliwatt	millisec millisecond	preamp preamplifier	v-a volt-ampere
d-c direct current	mm millimeter	prf pulse repetition	vco voltage-controlled
DCTL diode-capacitor-	mmfd micromicrofarad	frequency	oscillator
transistor logic	mono monostable	prr pulse repetition rate	vfo variable-frequency
ecg electrocardiograph	multivibrator	pwm pulse width	oscillator
eeg electroencephalo.	mos fet metal-oxide	modulation	vhf very high frequency
graph	semiconductor field-effect	RC resistor-capacitor	vif very low frequency
fet field effect transistor	transistor	RCTL resistor-capacitor-	vswr voltage standing
$f \cdot m \quad$ frequency modulation	mti moving target indicator	transistor logic	wave ratio
$f t$ feet	mv millivoli	RDTL resistor-diode-	vu volume unit
ge gigacycle	mvbr multivibrator	transistor logie	w watt
G-M Geiger-Muller	mw milliwatt	r-f radio frequency	

GUIDE TO VOLUME AND ISSUE NUMBER

ELECTRONIC5

Vol.	Year
31	1958
32	1959
33	1960
34	1961
35	1962
36	1963
37	1964
37	1964
38	1965
39	1966
40	1967

Date of

Issue No. 1	Frequency
Jan. 3	Every 7 days
Jan. 2	Every 7 days
Jan. 1	Every 7 days
Jan. 6	Every 7 days
Jan. 5	Every 7 days
Jan. 4	Every 7 days
Jan. 3	Every 7 days
Mar. 23 (No. 12)	Every 14 days
Jan. 11	Every 14 days
Jan. 10	Every 14 days
Jan. 9	Every 14 days

EEE

10	1962
11	1963
12	1964
13	1965
14	1966
15	1967

CHAPTER 1

Alarm Circuits

INTRUDER ALARM-Circuit responds to break or short in loop of foil or wire encircling areo to be protected, by reacting to chonge in
normol current droin of 500 microomp fram 1.5-v bottery in protector loop. Circuit is reset after an alarm by opening $\$ 1$ momentar-
ily.-W. Vollenweider, Low-Current Alormr Electronics, 39:5, p 105-106.

rate-of-rise heat alarm with delayThermocauple senses rise in temperature of machinery ar heat of fire, and feeds servo null-balance recarder having repeater slidewire. Output of slidewire is differentiated by

C1-R1 ond compored with reference rise rate valtoge at grid of V1B. When omplified difference at autput of V2 switches Schmith trigger V3, V4A canducts and energizes K1. Additional triode and relays provide time
delay for alarm lomp.-T. L. Greenwood, Indicator Warns of Excessive Rise Rates, Electronics, 35:7, p 54-56.

SIREN PREAMPLIFIER-Supplies signals to remote power amplifiers and loudspeakers of fire and civil defense systems. Input con be from electronic siren generator, magnetic tape, or microphone.-W. F. Ferguson, High-Powered Audio Alarm Systems, Electronics, 33:16, p 70-72.

TRIP-WIRE ALARM-Control circuit furns converter, transmitter, and modulator on through relay confacts, to make 1,6B0-kc hybrid trans-
mitter send tone-modulated signals to central station when trip wire is broken by avalanche. Daylight on photocell initiates test
transmission daily.-G. Neal and S. A. Stone, Hybrid Telemeter Defects Avalanches, Electronics, 34:SO, p 72-73.

CODER MATRIX-Circuit shows portion of coder matrix associated with microwave sysfem false alarm circuits, having switches $\$ 3$ and S6.-J. B. Bullock, Pulse-Coded Foult Alorm in Microwave Systems, Electronics, 33:1, p 82-84.

FAULT-SENSING SWITCH-When fault in microwave system has effect of closing switch 3 , gated delay shortens output pulse for that function when binary input signals are nega-tive.-J. B. Bullock, Pulse-Coded Fault Alarm in Microwave Systems, Electronics, 33:1, p 82-84.

ALARM LAMP DRIVER-Lamp receives power only when combination of signals from binary stages and mubr is correct combination of polarities to represent microwave system fault to be indicated by remotely located lamp.-J. B. Bullock, Pulse-Coded Fault Alarm in Microwave Systems, Electronics, 33:1, p 82-84.

SIREN WARBLE GENERATOR-Generates singletone and warble signals, Blocking oscillators Q3 and Q4, having slightly different frequencies, are frequency-modulated by triangular-
wave output of low-frequency mubr Q1-Q2, to produce siren-type wail.-W. F. Ferguson, High-Powered Audio Alarm Systems, Electronics, 33:16, P 70-72.

COMPUTER FAULT ALARM-Audible alarm system gives distinctive indication of fault location in digital computer and data processing equipment. Horn and collision signal sounds are generated by electronic circuits
shown, for monitoring rwo circuits. Mixing these two signals produces battle stations sound for monitoring third circuit.-S. Fierston, Alarm Circuit Warns of Faults in Digital Systems, Electronics, 32:27, p 48-49.

VHF INTRUSION ALARM-Based on fact thot object moving toward or oway from antenna causes phase relationship of radiated and reflected waves to shift through 2 pi radians af antenna for each half-wavelength of movement. Varying phase changes amplitude of oscillation, defected by circuit and used to

Purn on alarm. Drift in oscillator grid voltage activates timing motor which adjusts degree of coupling between oscillator tank and antenna, to make alarm self-adjusting.-G. A. Whitlow, VHF Intrusion Alarm is Self-Adjusting, Electronics, 32:35, p 62-66.

TRANSIENT PULSE DETECTOR-Determines occurrence of single spike pulse having maximum amplifude of 50 v of 2 ma and duration of 1 millisec. Spike pulse is stepped down by transformer to 5 v at 20 ma , which is sufficient to fire GE ClO scr, causing $28-\mathrm{v}$ lamp
to come on. When reset button is pressed, scr cuts off, lamp goes out, and circuit is ready for another spike. Cl is 0.1 mfd and CR1 is IN270.-Transient Spike Pulse Detector, "Electronic Circuit Design Handbook," Mactier Pub. Corp., N.Y., p 204.

SIREN POWER AMPLIFIER-Four-transistor class AB audio amplifier delivers 200 w to four loudspeakers. Standby power drain is 12 w .

Input is obtoined from warble generotor.-W. F. Ferguson, High-Powered Audio Alorm Sysferns, Electronics, 33:16, p 70-72.

MULTIPLE-INPUT OVERVOLTAGE ALARMLamp load of each silicon-controlled switch lights when its input exceeds threshold voltoge, to identify input that is responsible for pulling in relay that sounds alarm or shuts down equipment. Lamps also serve to suppress rote effect.-R. A. Stasior, How to Sup press Rate Effect in PNPN Devices, Electronics, 37:2, p 30-33.

VARYING-FREQUENCY OSCILLATOR-Output frequency of alarm tone generator chonges continuously. With suitable amplifier and loudspeaker, can easily be heard in noisy environments where single tone or amplitudemodulated tone would go unnoticed.-A. Mall, Varying-Frequency Warning Alarm, EEE, 12:7, p 25.

SHORT-CIRCUIT ALARM-Sounds on olorm if a short occurs between any two of five different voltage buses or between any bus and ground. Used in checking complicated pointto point backplane wiring for computers, to defect wiring errors or solder splashes.-J. J. Russo, Short-Circuit Alarm, EEE, 13:6, p 66-68.

LOW-VOLTAGE ALARM-Two-fransistor alarm senses $0.2-v$ drop in telephone system and furns on local or remote signalling apparatus. If relay and R3 are inferchanged, circuil will

WAILING SIREN-CI is discharged periodically by uji Q1, which resets voltage-controlled oscillator to beginning of its frequency sweep. Controlled oscillator also
serves as power amplifier, to reduce number of components required. Circuit draws 10 ma from 9-v battery.-F. J. Harris, Simple Wailing Siren Circuit, EEE, 14:6, p 94.

VOLTAGE-SENSING ALARM-silicon controlled switch is triggered by input signal more than $1 \vee$ above or below ground.-'Transistor Manual," Seventh Edition, General Electric Co., 1964, p 425.

INFRARED BURGLAR ALARM-Has electronically modulated infrared light source and synchronous phase-sensitive demodulator pickup unit. Pulsed-light technique overcomes ad-
verse effects of continuous or varying ambient light. Alarm goes off if power supply or inm terconnecting wires are tampered with. Floating 12-v baftery fakes over load only if
power supply fails. CI funes TI to $55-$ eps oscillator frequency.-S. Bagno and J. Fasal, Intruder Alarm Uses Phase-Sensillve Detector, Electronics, 31:7, p 102-105.

DIFFERENTIAL-VOLTAGE ALARM-Detector circuit with high sensitivity and stability, fallowed by audio amplifier, serves as differential voliage or current alarm. Input may be d-c or low-frequency a-c. Output is dis-
tinctive series of audio beeps or continuous tone, occurring only when preselected polarity unbalance is present at input.-C. E. Miller, Differential-Voltage or Current Alarm Circuit, EEE, 12:7, P 25.

GYRO FAULT ALARM-Circuit sounds alarm if gyro wheel is locked up, as indicated by input signal remaining at high current or voltage level for longer than preset interval. Circuit can also be used as pulse-level dis-criminator,-R. L. Sazpansky, Pulse-Level Discriminator and fault Indicator, EEE, 13:B, P 68.

200-MC R-F RADIATION DETECTOR-Gives 1,800-cps alarm tone when signal is picked Up by coil or by small slot antenna serving as sensor.-"Transistor Manual," Seventh Edition, General Electric Co., 1964, p 363.

MISSING-PULSE DETECTOR-Warning light comes on to indicate occasional skipping of timing pulse or gate trigger having 20-pps rate, with durations ranging from 2 microsec to $\mathbf{3 0}$ millisec. Detector is triggered if interval between any two pulses exceeds 75 millisec, and must then be reset by pushbutton.- H . S. Reichard, Missing Pulse Defector, EEE, 10:6, p 35.

PULSE AND D-C MONITOR-Indicates presence of continuous train of pulses, obsence of one or more pulses in train, and dropout of dec level beyond predetermined time interval. Uses controlled monostable mubr. With d-c inputs, C2 is shorted. With values shown for R1 and C1, output occurs 1.07 millisec after last pulse.-Pulse and DC Monitor Circuit, "Electronic Circuit Design Handbook," Mactier Pub. Corp., N.Y., p 201.

MULTIPLE-INPUT ALARM-Any of soveral inputs will pull in common alarm relay, with corresponding lamp giving visual indication of triggered circuit. For higher-current lamps, use 3N81 silicon controlled switches.-"Transistor Manual," Seventh Edition, General Electric Co., 1964, p 425.

LAMP BURNOUT ALARM-Used when photocells and lamps are employed to detect end of magnetic tape, load point, or bad spot. Failure of lamp can cause serious trouble in magnetic tape handler. With circuit shown, when lamp burns out, transistor can no
longer energize relay, and relay contact closes to actuate alarm at computer console. -J. E. Kienle and R. W. Wooldridge, Photocell Lamp Burnout Warning Circuit, EEE, 10:8, p 27-28.

SIGNAL-POWERED ALARM RECEIVER-On arrival of corrier signal at frequency to which antenna and input are tuned, transistor pulls in relay, applying battery power to horn or light. No power is drawn from battery during standby time. For signals below 50 Mc ,
best pickup is obtained with single-wire antenna 150 feet long, at right angles to line-of-sight path and as high as possible.-L. R. Crump, Radio Waves Power Transistor Circuits, Electronics, 31:19, p 63-65.

LIGHT DETECTOR-Gives 1,800 -cps alarm tone when illumination on photocell exceeds predetermined level, which can be below 0.1 foot-candle near 5,500 angstroms.-'TTransistor Manual," Seventh Edition, General Electric Co., 1964, p 363.

RESISTANCE-TRIGGERED ALARM-Silicon controlled switch is triggered when temperature-, light-, or radiation-sensitive resistor Rs up to 1 meg drops below value of preset potentiometer. Interchanging Rs and potentiometer will trigger alarm on increase in sensing re-sistor.-"Transistor Manual," Seventh Edition, General Electric Co., 1964, p 425.

SIGNAL DROPOUT DETECTOR-Used to provide indication of momentary dropout of d-c, a-c, or pulse input signal. Time between disappearance of signal and indication of fault is
adjustable. Output signal remains until scs is turned off by momentarily opening reset switch.-'Transistor Manual," Seventh Edition, General Electric Co., 1964, p 336.

ELECTRONIC DOORBELL-Single unijunction transistor oscillates at different tone for each door.-"Transistor Manual," Seventh Edition, General Electric Co., 1964, p 380.

CHAPTER 2 Amplifier Circuits

100-MC FET AMPLIFIER-Low-cost insulatedgate fet circuit can handle signals up to several volts in uhf range, with inherently low cross-modulation distortion.-Low-Cost Power Boostar, Electronics, 37:14, p 29-30.

DISCRIMINATOR AMPLIFIER-Direct-coupled voltage amplifier with a-c coupling af input and output has loop gain of 36 for bandwidth of 1 Mc, including low-impedance ohm output impedance, with stabilized gain
driver Q10.-R. Cuikay and T. Callahan, Orbiting Observatory to Measure Stars' Dim Light, Electronics, 37:9, p 28-31.

COMPLEMENTARY-TRANSISTOR AMPLIFIERBootstrapping and negative feedback provide 220,000-ohm input impedance and 60,000-

over wide femperature range.-L. J. Ernst, Complementary Amplifier Offers High Input Impedance, Electronics, 37:16, p 92-93.

60 DB GAIN AT 1 CPS TO 1 MC-Direct coupled a-c amplifier with feedback and currentderived stabilization uses only two capacitors. -P. Laakmann, Direct Coupling Shrinks Amplifier Size and Cost, Electronics, 36:12, p 66-68.

RESPONSE BELOW 2 CPS-With input resistance of 1,000 meg, piezoelectric gage amplifier gives gain choices of 1,3 , or 10 for loads above 2,500 ohms. Decade input switch can provide choice of shunt capacitances for trimming sensitivity of gages.-Extending Piezoelectric Gage L-F Response, Electronics, 36:4, p 100-103.

250-MC 12-W POWER AMPLIFIER-Commen= emitter circuits operating class C serve for driver and parallel-connected power amplifier
tranaistors. Totel gain is $12 \mathrm{db} .-\mathrm{N}$. Downs and B. van Sutphin, Solid-State Transmitter

Ready fer UHF Telemetry, Electronics, 37:17, p 76-80.

UNNEUTRALIZED MOS FET-Low drain-gate capacitance is needed for high power gaing
obove 2 Mc from common-source mos fet.G. G. Luettgenau and S. H. Bornes, Designing

CURRENT-DERIVED STABILIZATION-Bridgederived stabilization in direct-coupled a-c omplifier provides current sensitivity of 0.1
microamp per ma of oufput current.-P. Laakmann, Direct Coupling Shrinks Amplifier Size and Cost, Electronics, 36:12, p 66-68.

BROADBAND WITH GAIN OF 1,350-Metaloxide semiconductor transistors (p -mosts) in Darlington configuration give high input impedance and low output impedance from 5 cps to 72 kc .-F. M. Wanlass, Novel FieldEffect Device Provides Broadband Gain, Electronics, 36:44, p 30-33.

With Low-Noise MOS FETs: A Litfle Different Buf No Harder, Electronics, 37:31, p 53-58.

SOURCE FOLIOWER WITH REDUCED GATE-TODRAIN CAPACITANCE-Diode DI gives maximum a-c bootstrapping of gate bias resistance while providing required dec bias. Emitterfollower Q2 couples to drain of fet Q1 a signal in phase with input, to give extremely low input capocitance.-T. R. Bignall, How to Get Maximum Input Impedance with FieldEffect Transistors, Electronics, 36:10, p 44-46.

SOURCE FOLLOWER USES BOOTSTRAPPINGBandwidth is 10 cps to 10 kc , d-c input impedance is 10 meg, and input impedance at 10 kc is above 1 meg for input signals from 1 mv to $10 \mathrm{mv} .-T$. R. Bignoll, How to Get Maximum Input Impedance with Field-Effect Transistors, Electronics, 36:10, p 44-46.

NEUTRALIZED MOS FET-Delivers power gain of 20 db of 100 Mc , with common-source
connection.-G. G. Luettgenau and S. H. Barnes, Designing With Low-Noise MOS FETs: A Litfle

Different Bup No Harder, Electronics, 37:31, P 53-58.

UNITY-GAIN BUFFER-Positive gain of Unity is obtained with high input impedance, low output impedance, negligible phase shift, and without phase reversal. Can be used for iso-
lating resolvers from loads.-D. K. Phillips, Unity-Gain Buffer Acquires Precision by Feedback, Electronics, 36:51, p 36-37.

GROUNDED-GRID BROADBAND-Groundedcothode preamplifier has plate load that pravides increasing gain with increasing frequency to drive following two tubes in cas-
cade. Both source and load impedances are 50 ohms.-Broadband VHF Amplifier Covers 30 to $\mathbf{2 6 0}$ Mc Range, Electronics, 35:4, p 102.

STABILIZED DIRECT-COUPLED A-C AMPLIFIER -Current-derived stabilization gives simple amplifier using only one capacitor. Adding C2 improves stability but lowers cutoff fre-quency.-P. Laakmann, Direct Coupling Shrinks Amplifier Size and Cost, Electronics, 36:12, p 66-68.

WIDEBAND FET-Feedback and bootstrapping techniques give overall input capacitance of 0.4 pf for 30 -pf gate copacitance of fet. Transistor serves as source follower.-B. Down, Using Feedback in FET Circuit to Reduce Input Capacitance, Electronics, 37:31, p 63-65.

FET SOURCE-FOLLOWER-Voltage-divider biasing increases input impedance. R3 provides nagative feedback.-B. Down, Using Feedback in FET Circuit ta Reduce Input Capacitance, Electronics, 37:31, p 63-65.

LOW-NOISE FET AMPLIFIER-Age feedback extends input level to 150 mv .- L . E. Clark, E. B. Mack, and R. C. Hejhall, Highlights af

Small-Signal Circuit Design, Electronics, 36:49, p 46-50.

CASCODE FOLLOWER-Output is 20 v peak-ta-peak into 1,000 ohms, dawn to 5 cps , with high stability.-R. W. Johnson, Circuit with a

SMALL-SIGNAL 60-MC-Epitaxial 2N743 is operated comman-emitter of signal frequency and common-base for biasing. Unneutralized
gain per sfage is 17 db .-D. Hall, Using Epitaxial Transistors in Switching and R-F Circuits, Electronics, 34:13, p 52-53.

50-MEG INPUT IMPEDANCE-Feedback from duce Input Capacitance, Electronics, 37:31, Q2 to fet Q1 boasts input impedance.-B. P 63-65.

60-MC LOW-NOISE-Noise figure is only 6 db for generator resistance of 150 ohms.-D. Hall, Using Epitaxial Transistors in Switching and R-F Circuits, Electronics, 34:13, p 52-53.

30-MC LOW-NOISE-Noise figure is anly 4 db for generator resistance of $\mathbf{2 0 0}$ ohms.-D. Hall, Using Epitaxial Transistors in Switching and R-F Circuits, Electronics, 34:13, p 52-53.

MAGNETICALLY CONTROLLED TRANSISTOR-
Uncapped pnp germanium alloy junctian transistor placed in strong magnetic field shows gain variation with flux density, with direcfion and amount of gain depending an direction of magnetic field.-R. W. Lade et al., Magnetic Fieids Vary Transistor Gain, Electronics, 34:5, p 68-70.

Down, Using Feedback in FET Circuit ta Re-

CONSTANT GAIN-Differential amplifier Q2Q3 regulates bias of Q1 to keep gain con-
stant despite variations in load or in circuit components.-R. C. Lovigne and L. L. Klein-
berg, Amplifier Gain is Constont Despite Changes in Load, Electronics, 38:13, p 75-77.

CASCODE MOS FET-Power gain is slightly higher thon for neutralized common-source stage.-G. G. Luetigenau and S. H. Barnes,

Designing With Low-Noise MOS FETs: A Litfle Different But No Horder, Electronics, 37:31, p 53-58.

30-MC LINEAR SSB-Power gain is 13 db ond output is 8 w peok envelope power.-L. E. Clark, E. B. Mack, and R. C. Hejhall, High-

COMPOUNDED EMITTER-FOLLOWER-Compounded emitter-follower with feedback, operated as complementary pair, gives higher input impedance, higher gain, and lower output impedance thon conventional emitter-follower.-T. K. Hemingway and J. Willis, Transistor Pairs Improve Emitter-Follower Performance, Electronics, 35:21, p 48-49.

MODIFIED EMITTER-SQUARED FOLLOWERComplementory transistor orrangement of feedback amplifier is modified to reduce shunting effect of R3 by opplying positive feedbock voltage that ortificiolly increases volue of R3. -T. K. Hemingway and J. Willis, Transistor Pairs Improve Emitter-Follower Performance, Electronics, 35:21, p 48-49.

FET MICROPOWER-Voltage gain is 60 db from 1 cps to 30 kc , with 0.5 v rms moximum
output voltage, for power drain under 100 microwatts. First three iransistors should be
matched.-J. S. Sherwin, An FET Micropower Amplifier, Electronics, 37:31, p 74-75.

TWO-STAGE MOS FET-Poir of 3N98 tronsistors give voltoge gain of 10 with low output impedonce.-D. M. Griswold, Undersionding ond Using the MOS FET, Electronics, 37:31, p 66-70.

BROADBAND IMPEDANCE TRANSFORMERDorlington circuit gives unity goin from d-c up to several Mc, using ony complementory poir of tronsistors hoving sufficiently high goin and cutoff frequency.-l. Ingemarsson, Dorlington Maintains Constant Unity Gain, Electronics, 38:22, p 69.

200-MC FET NEUTRALIZED AMPLIFIER-Capacifor C5 between drain and gate provides neutralization by nullifying feedback. Neutralized stable gain at 250 Mc is 8 db . Bondwidth is

12 Mc.-P. E. Kolk and I. A. Maloff, The Field-Effect Transistor os High-Frequency Amplifier, Electronics, 37:31, p 71-74.

REMOTE GAIN CONTROL-Permits adjusting gain of wideband amplifier over full range from moximum to zero with two-wire lowvoltage line up to 1,000 feet long. Contral and signol circuits are completely isoloted. Components shown give maximum gain of 1.-R. S. Young, Amplifier with Remote Gain Confrol, EEE, 12:B, p 71.

NONLINEAR FEEDBACK LOOP-Type WE4IA copper-oxide varistor for Rf in feedback loop gives rodically different voltoge-gain choracteristic than silicon diode for Rf, but both
give exponential response and increose dyteristic than silicon diode for $R f$, but both
give exponential response and increose dynamic ronge.-J. C. Looney, Designing Amplifiers with Nonlinear Feedback, Electronics, 34:13, p 46-49.
 Cont

LOW-SUPPLY-VOLTAGE VHF-Good high-frequency parameters of epitaxial mesa transisfor give high gain and efficiency at supply voltage of only 12 v . Output is 0.5 w at 70
Mc.-D. Hall, Using Epitaxial Transistors in Switching and R-F Circuits, Electronics, 34:13, p 52-53.
 pling copacitors but requires additional bias supply.-D. M. Griswold, Understanding and Using the MOS FET, Electronics, 37:31, p 6670.

VOLTAGE-CONTROLLED ATTENUATOR-CON aftenuote input signals 70 db when mos fet is followed by high-impedonce load such as
common-source mos fet amplifier.-D. M. Griswold, Understanding ond Using the MOS FET, Electronics, 37:31, p 66-70.

MOS FET WITH NPN-FET input stage serves as high-fo-low impedonce tronsformer for power transistor and gives very high power
gain.-D. M. Griswold, Understanding and Using the MOS FET, Electronics, 37:31, p 6670.

$L_{1}, L_{2} 18$ turns B8W 3004 Minductor; L_{2} topped $13 / 4$ turns from ground.

TUNED 10-MC AMPLIFIER WITHOUT NEU-TRALIZATION-Low reverse transfer of cascode connection makes possible stable operation of common-source fet. Transducer gains are 20.6
db and 25.3 db for 2N2497 and 2N2499 re-spectively.--Texas Instruments Inc., "Solid-State Communications," McGraw-Hill, N.Y., 1966, p 142.

100-MEG INPUT IMPEDANCE-Variation of Darlington connection gives low-noise omplifier with high input impedance. Thermal and shot noise are much lower than flicker, leakage, and surface noise.-I. Levine, High Input Impedance Transistor Circuits, Electronics, 33:36, p 50-52.

CATHODE FOLLOWER WITH 0.99963 GAINUsed to couple high-impedance source to low-impedance output without attenuating or loading source signal. Output impedance is 50 ohms and response is flat within 3 db from d-c to 250 kc . Circuit delivers outputs from -140 to $+210 v$ of -0.8 to +2 ma . Feedback through pentode helps maintain unlty gain.-Cathode-Follower Gain Approaches Unity, Electronics, 31:1, p 94-96.

SECONDARY-EMISSION-PENTODE CATHODE FOLLOWER-Circuit is enhanced by connecting dynode back to cathode. Uses degenerative feedback, to achieve high-performance impedance transformation. Can be used to match high-impedance source to low-impedance load.-E. J. Martin, Jr., How to Use the Secondary-Emission Pentode, Electronics, 33:41, p 60-63.

TEMPERATURE-COMPENSATED DARLINGTONModified Darlington includes iwo diodes and additional resistor. With these, temperature changes up to $50^{\circ} \mathrm{C}$ have no effect on out-put.-R. C. Going, Temperature-Stabilized Darlington, EEE, 11:7, p 28-29.

TRIODE CATHODE FOLLOWER-Effective gain stability factor is approximately equal to reciprocal of amplification factor of tube.-G. M. Davidson and R. F. Brady, Unity-Gain Amplifier Offers High Stability, Electronics, 33:9, p 66-67.

BOOSTING INPUT IMPEDANCE-Circuit shows how voltage gain in transistor amplifier can be exchanged for input impedance through use of negative feedback. At same time, valtage gain is made more independent of transistor parameters.-Feedback Increases Input Impedance, Electronics, 32:11, p 150-153.

$$
L_{2}-\text { "14 tinned wire } 11 / 2 \text { turns } 1 / 2 \text { " } 1 . D
$$

$$
1 / 3^{\prime \prime} \text { spacing. }
$$

160-MC 750-MW POWER STAGE-Pi matching networks af input and output optimize transistor performance in class C operation. Efficiency is 25% and 3 -db bandwidth is 15

CABLE-DRIVING AMPLIFIER-Used between wideband infegrator and $185-o h m$ cable. With voltage gain of 3 , bandwidth is 18 Mc without overshoot for pulse signals.-S. Berglund

STABLE SUPERREGENERATIVE-Agc circuit transforms grid-pulsed superregenerative amplifier VI into noncritical circuit that is stable for long periods when controlled by pulse
generator V4-V5, which in turn is controlled by external trigger pulse source.-J. H. Kuck, Automatic Gain Control for Superregenerative Amplifiers, Electronics, 34:29, p 76-79.

STABILIZING GAIN-Use of negative feedback in four-stage direct-coupled amplifier keeps gain constant within 1 db of 40 db from 6 cps to 300 kc . Input impedance is 8 meg and output impedance is 600 ohms.-Feedback Increases Input Impedance, Electronics, 32:11, p 150-153.

ISOLATION AMPLIFIER-Gain stability and input impedance are much better than conventional cathode follower. Feedback capacitor goes between triode grids, but may also go between grid of VIB and cathode of VIA.G. M. Davidson and R. F. Brady, Unity-Gain Amplifier Offers High Stability, Electronics, 33:9, p 66-67.

ISOLATION AMPLIFIER-Effective gain stability factor is approximately equal to reciprocal of product of amplification factors of two halves of tube. Gives high fransmission accuracy, with high input impedance,-G. M. Davidson and R. F. Brady, Unity-Gain Amplifier Offers High Stability, Electronics, 33:9, p 66-67.

SOLAR-CELL AMPLIFIER-Used with multiaperture solar cells to generate 10 strobe pulses. Eight circuits with cells are needed to generate 80 strobe pulses for reading
conventional punched card.-G. R. Hearn, Multi-Aperture Solar Cell Amplifier, EEE, 14:4, p 43-44.

6.5-CPS AMPLIFIER-Consists of three triode stages (V2A, V2B, and V3A). Peaks at about 6.5 cps , with 18 db attenuation af each octove. Double-T rejection filter between V2A and V2B attenuates any 60 -cps pickup. Overall gain is $B O \mathrm{db}$. Phase inverter V3B provides 180° out-of-phase signal for full-wave
phase-sensitive bridge rectifier that uses reference signal. Output is rectified error signal for infrared analyzer used to detect leaks in automobile air-suspension systems.-P. G. Balko, Infrared Finds Auto Suspension Leaks, Electronics, 31:49, p 82-85.

445-KC TUNNEL-DIODE AMPLIFIER-Hos opproximotely 20 db gain.-I. A. Lesk, N. Holonyok, Jr., and U. 5. Dovidsohn, The Tunnel Diode-Circuits and Applicotions, Electronics, 32:48, p 60-64.

HIGH-GAIN VOLTAGE STABILIZER-Use of constont-current diode as collector load increases overoll goin of omplifier from 500 to
about 700.-T. K. Hemingway, Applications of the Constant-Current Diode, Electronics, 34:42, p 60-63.

HIGH-INPUT-IMPEDANCE A-C AMPLIFIERGives input impedance of 30 meg without sacrificing bandwidth or noise performance. Voltage gain is 40 db . Technique involves

60-CPS BANDSTOP AMPLIFIER-With fot as output buffer to give near-infinite load impedance, twin-T notch filter gives up to 50 db atfenuation at notch frequency.-FET's and RC Networks (Siliconix od), Electronics, 39:4, p 71.
bootstrapping fet Q1 and using fixed bios for its gate. Q2 is operated grounded-base to reduce Miller capacitance of field effect at high frequencies.-Texas Instruments Inc.,
"Transistor Circuit Design," McGraw-Hill, N.Y. 1963, p 520.

VOLTAGE-TUNED 60 TO 90 MC-Gives over 40 db gain with 50 -ohm source and load. Untuned input ollows constant source impedance over tunable frequency range of silicon

XA585 voltage-variable capacitance diodes, with excellent stability and tracking.-Texas Instruments Inc., ''Solid-5tote Communicafions," McGraw-Hill, N.Y., 1966, p 297.

A-C COUPLED CASCODE-Circuit is uniquely suited to increasing bandwidth of low-noise amplifier by reducing Miller effect and permitting independent adjustment of operating conditions for optimum noise performance.Texas Instruments Inc., "Solid-State Communications," McGraw-Hill, N.Y., 1966, p 143.

30-MC DOUBLE-TUNED-Proper loading provides good stability along with gain of 21 db per stage, despite inherent instability of

2N2996 of this frequency. Total power gain is thus 63 db , for noise figure of 2.3 db and bandwidth of 3 Mc.-Texas Instruments Inc.,
"Solid-State Communications," McGraw-Hill, N.Y., 1966, p 310.

WIDEBAND UNITY-GAIN FET-Input impedance is about 100 meg , and response is within 3 db from below 10 cps to 1 Mc for 100 K generator resistance.-Texas Instruments Inc., "Solid-State Communications," McGrow-Hill, N.Y., 1966, p 296.

$\mathrm{C}_{1}=300 \cdot \mathrm{pf}$ undipped ceramic copocitor
Byposs capocilors = Aerovox Hi. 0 Ef4, $1000 \mathrm{pf}, 1000$ v
$\mathrm{C}_{1}=1.8 .13 \mathrm{pf}$, set of 7 pf
$t_{1}=0.014 \mu \mathrm{~h}$: copper strip, $1 / 32^{\prime \prime} \times 5 / 16^{\prime \prime}$, bent to $7 / 16^{\prime \prime}$ dism. $Q_{1}=200$
$t_{1}=0.035 \mu \mathrm{~h}$: copper strip, $1 / 32^{\prime \prime} \times 3 / 8^{\prime \prime}$, bent to $3 / 4^{\prime \prime}$ diam. $Q_{1}=300$
250-MC R-F FOR MILITARY VHF BAND-Gives 12.5 db gain and noise figure of only 5 db , with excellent stability.-Texas Instruments Inc., "Solid-State Communications," McGrawHill, N.Y., 1966, p 297.

0.08 and $0.1 \mu \mathrm{~h}$ coils are 3 and 4 turns respectively of No. 18 tinned bus wire, $1 / 4^{\prime \prime}$ diameter
$0.01 \mu \mathrm{~h}$ coil is 1 turn of NO. 00 enameled wire, $3 / 8^{\prime \prime}$ diameter.

100-MC CASCADED-Uses mismatch design technique to obtain desired overall gain of
37.5 db at bandwidth of 9 Mc for three cascaded stages.-Texas Instruments Inc.,
"Transistor Circuit Design," McGraw-Hill, N.Y., 1963, p 290.

WIDEBAND AMPLIFIER-Twin-T amplifier is used between crystal defector and cro of microwave spectrometer for studying electron resonance phenomenon in paramagnetic ma-ferials.-R. R. Unterberger, Microwave Spectrometer Tests Electron Resonance, Electronics, 32:11, p 142-144.

DOUBLE-BOOTSTRAPPED FET-Bath droin ond source are boofstropped in 6-db high-inputimpedance omplifier, to reduce effect of fet capacitances so they are insignificont compared to stray circuit copocitonces at input terminal. 10-K pot provides gain compensation odjustment.-L. J. Sevin, Jr., "Field-Effect Transistors," McGraw-Hill, N.Y., 1965, p 69.

173-MC POWER AMPLIFIER-Uses two 2N1141's in parallel to deliver average of 400 mw , with power gain of 11.5 db and collector efficiency of $\mathbf{4 2 \%}$. Has excellent largesignal performance.-Texas Instruments Inc., "Solid-State Communications," McGraw-Hill, N.Y., 1966, p 320.

THREE-FET A-C AMPLIFIER-Can be used in applications requiring omplification of microvolt signols, as in ultrasensitive preamps for null defectors, medical research equipment, recorders, oscilloscopes, and low-level transducers. With 100 K generator resistance, am= plifier 3 -db bandwidth is 1 cps to 40 kc .-L. J. Sevin, Jr., "Field-Effect Transistors," McGrawHill, N.Y., 196S, p 107.

SIGNAL VOLTAGE STABILIZER-Main amplifier is followed by emitter-followers to reduce fraction of d-c load current flowing in collector load of amplifier. In this conventional arrangement, overall gain is only about 500.
-T. K. Hemingway, Applications of the Con-stant-Current Diode, Electronics, 34:42, p 6063.

4.7-MC DRIVER AND AMPLIFIER-Commonemitter connection gives good power gain with collector-emitter voltage of 20 v , though
gain varies with frequency.-Texas Instruments Inc., "Solid-State Communications," McGraw-Hill, N.Y., 1966, p 316.

CASCADED EMITTER-FOLLOWER WITH CURRENT BIAS-Improved frequency response is obtained by biasing OI with current generator in emitter leg. Input impedance is 6 meg. Frequency response is within 3 db from 10 cps to 1 Mc .-Texas Instruments Inc., "Solid-State Communications," MeGraw-Hill, N.Y., 1966, p 181.

HIGH VOLTAGE GAIN-Provides gain of
3,500 into 10 meg load, by operating transistor in common-base configuration and using constant-current source in collector circuit. Circuit is balanced, so either transistor can operate as gain stage while other serves as current source. Feedback overcomes problem of critical dec bias.-A. J. Adler, HighGain Amplifier, EEE, 11:8, p 31.

LOW-LEVEL 1 CPS TO 500 KC -Features include input impedance above 30 meg and noise figure below 3 db over wide range of generator resistances. Bootstrapping of input stage enhances high input impedance of fet. Will operate down to 1 cps without need for large capacitors. Upper frequency limit is 500 kc for generator resistance of 100 K . Voltage gain is stable within 0.5 db of 40 , from -55 to $+125^{\circ} \mathrm{C}$.-Texas Instruments Inc., "Solid-State Communications," McGraw-Hill, N.Y., 1966, p 290.

LOW SOURCE IMPEDANCE-Tubes V1 and V2 provide single-phase inversion with output impedance below 0.5 ohm over $50-k c$ passband when feedback loop is closed. Output of V2 feeds identical combination V3-V4 to provide second output in phase with input to V1. Trim adjustment is provided to insure unity gain for both outputs. Used in automatic doppler cycle counter for measuring position and velocity of missiles.-B. E. Keiser, Digital-Counter Techniques Increase Doppler Uses, Electronics, 32:21, p 46-50.

RC-COUPLED FET AMPLIFIER-Used to drive high-impedance headphones in optical communication system. Series peaking capacitors CA and CB compensate for high-frequency inadequacies in rest of system. No large electrolytics are needed. Without peaking capacitors, amplifier voltage gain is about 400 and upper and lower break frequencies are 17 cps and 35 kc.-L. J. Sevin, Jr., "Field-Effect Transistors," McGraw-Hill, N.Y., 1965, p 64.

500-MC NEUTRALIZED AMPLIFIER-Smali-signal circuit provides 17 db gain and noise figure of only 3 db . Inpuf impedance is 51 ohms and output impedance is 1,300 ohms in parallel with 1.8 pf. Neutralizing voltage is obtained from coupling loop L3, which is silver-plated strip of beryllium copper running parallel to $\mathbf{L 2}$.-Texas Instruments Inc., "Solid-State Communications," McGraw-Hill, N.Y., 1966, p 299.

COMPLEMENTARY CURRENT MULTIPLIER-Use of complementary fransistor Q4 increases current multiplication and increases gain at emitfer of Q2 by raising effective value of RE2. This higher gain makes bootstrapping

more effective. Input impedance is 25 meg. Response is 50 cps to 1 Mc .-Texos Instruments Inc., "Solid-State Communications," MeGraw-Hill, N.Y., 1966, p 183.

PREFERRED HIGH-LEVEL CATHODE FOLLOWER -Used to isolate critical circuits from their loads, because it has high input impedance and low output impedance. Not suited for driving low-impedance transmission line, because tube would be severely overioaded. Plate voltage depends on tube used.-NBS, "Handbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. I, Electron Tube Circuits, 1963, PC 43, p 43-2.

COMPLEMENTARY-TRANSISTOR DARLINGTON - Use of complementary transistors virtually eliminates undesired offset voltages through cancelling action. Germanium transistors may
be used in place of silicon units shown.cancelling action. Germanium transistors may R. C. Going, Temperature-Stabilized Darlingfon, EEE, 11:7, p 28-29.

Q MULTIPLIER-Circuit Q in single-cail arrangement is insensitive to drift in tronsistor parameters, permitting use in filter and oscillator

BASIC DARLINGTON-When used as betasquaring circuit, chief drawback is severe change in offset voltage with temperature. If base-emitter voltage varies about 2 mv per degree $\mathrm{C}, 25^{\circ} \mathrm{C}$ temperature change can give output change of 50 mv per stage.R. C. Going, Temperature-Stabilized Darlington, EEE, 11:7, p 28-29.
design.-J. R. Woodbury, Simple Transistor QMultiplier or Oscillator, Electronics, 35:22, p 53-54.

L;: SILVER-PLATED BRASS ROD-1 9/I6"LENGTH,I/4"DIA. L_{2} :SILVER-PLATED BRASS ROD-2 $1 / 8^{\prime \prime}$ LENGTH,1/4" DIA.

500-MC SMALL-SIGNAL-Uses $2 N 3570$ silicon transistor to give 16 db gain.-Texas Instru-
ments Inc., "Solid-State Communications," McGraw-Hill, N.Y., 1966, p 259.

HIGH INPUT IMPEDANCE FROM 100 CPS TO $\mathbf{2 3 0}$ KC-For transducers requiring input impedance above 1 meg. Requires only single power supply, for direct coupling of lowlevel high-impedance sources. Voltoge goin is stable within 0.05 db of 20 db from -25 to $+125^{\circ} \mathrm{C}$. Power gain is 46 db and power consumption is only 65 mw .-Texas Instruments Inc., "Solid-State Communications," McGraw-Hill, N.Y., 1966, p 294.

60-MC AMPLIFIER-Design equations are given ond example worked out for 10-Mc bandwidth of 60 Mc and gain of 11.5 db , using 2N743. $L 1$ is 1.5 turns of No. 14 wire and 12 is 2 turns, both 0.25 inch in diameter. VEE is 5 v.-Texas Instruments Inc., "Solid-State Communications," McGraw-Hill, N.Y., 1966, P 87.

INFINITE INPUT RESISTANCE-Uses metal oxide semiconductor field effect transistor as buffer to give input impedonce of 10^{15} ohms. Amplifier gain is unity within 0.1% for 100K load. When adjusted, output equals inpu: within 10 mv over allowable range of 10 v obove or below ground.-A. D. Delogrange. Amplifier Provides 10^{15}-Ohm Input Resistance, Electronics, 39:17, p 99.

STABLE 600-MC CASCODE-Gives high gain without external capacitor to neutralize negofive feedback of collector-base junction.- M. D. Wood, Cascode Amplifier Stabilized by Reducing Interna! Feedback, Electronics, 38:11, p 70.

GAIN-CONTROLLED LOG AMPLIFIER-Bosed on fact that gain of common-emitter fet stage is almost inversely proportional to emitter resistance, and resistance of fet operating below cutoff is linear function of grid voltage. Can be used as age amplifier and os multiplier.-Y. J. Lubkin, Gain Controlled Log Amplifier, EEE, 10:9, p 91.

450-MC R-F AMPLIFIER-Gives overage power gain of 8.6 db , bandwidth of 48 Mc , and noise figure of 6 db . Uses linear active net-
work, designed with linvill chort. Lead inductance was minimized by removing most of the Teflon from TO-18 socket so only thin
disk, approximately chassis thickness, remains. -Texas Instruments Inc., "Solid-State Communications," McGraw-Hill, N.Y., 1966, p 97.

100-DB AMPLIFIER—Used in distortion monitor to drive indicating vtvm.-G. H. Smith, Distortion Monitor Checks Linear Amplifier Characteristics, Electronics, 34:27, p 57-59.

DIODE-STABILIZED BIAS-Posifive shunt feedback cancels shunt impedance of bias network and fransistor. REI is made small to obtain gain of 10 ; as o result, input impe. dance is limited to 1.5 meg . Excellent bias stability is obtoined. Three diodes compensofe for variations in base-emitfer voltage of A1, and negative d-c feedback from RE2 further increases bias stability. Response is flat within 3 db from 100 cps to 500 kc .Texas Instruments Inc., "Solid-Stote Communications," McGraw-Hill, N.Y., 1966, p 184.

PASSIVE REDUNDANCY IN A-C AMPLIFIERUses two amplifiers connected in parallel on individual-stage bosis, with IK isolation resistors between stages. Amplifier is operational type having closed-loop gain of 10 , open-loop gain of 1,000 , and 3-db open-loop frequency response from 30 to $1,500 \mathrm{cps}$. Both open-loop gain and frequency response are functions of failure mode of circuit, with most types of failure offecting performance only slightly.-T. B. Booker, Designing Redundant Analog Amplifiers, EEE, 13:2, p 55-59.

ADJUSTABLE INPUT IMPEDANCE-Q4, Q1, ond Q2 in negative feedback loop encompass Q2 and Q3 in positive loop, to give stable amplifier with input conductance of zero (infinite impedance) and unity gain for almost any output load, with output of 10 v p-p at 1 ma . -R. L. Willett, Positive and Negative Feedback Multiply Amplifier Input Impedance, Electronics, 34:27, p 52-53.

4-W WIDE-BAND AMPLIFIER-Uses complementary fronsistors for operation Up to 100 ke with low distortion. Output is class B. All leads should be kept short, to minimize tendency to ascillote.-N. Freyling, "A 4-Watt Wide-Band Solid-State Amplifier," Motorola Application Note AN-209, Mar. 1966.

16-KC COMPENSATED OPERATIONAL AMPLI-FIER-Uses pentode V2A as voltage amplifier to provide up to 140 v peak signals of grid of output cathode follower V2A. Will go up to 50 kc without compensation.-H. Koerner, How to Extend Operational Amplifier Response, Electronics, 33:46, p 90-91.

50-KC OPERATIONAL AMPLIFIER-Develops full rated output of 100 v into 10,000 -ohm load up to 50 kc . Open-loop gain is 36 db . -H. Koerner, How to Extend Operational Amplifier Response, Electronics, 33:46, P 9091.

CONSTANT-CURRENT DIODE AS COLLECTOR LOAD-Gain is 45 with 4.7 K resistive load, and increases to 750 with CCD as load. Gain-reducing effect of external load paralleling CCD can be eliminated by using emitterfollower to isolate load from collector circuit. -T. K. Hemingway, Applications of the Con-stant-Current Diode, Electronics, 34:42, p 6063.

INDUCTANCE DATA		
COIL NO	AIR DUX NO	NO IURNS
l_{1}	404	5
l_{1}	408	2
l_{3}	404	3

250-MC POWER AMPLIFIER-Gives good performance for both small and large signals. -Texas Instruments Inc., "Solid-State Communications," McGraw-Hill, N.Y., 1966, p 320.

ADJUSTABLE-BANDWIDTH AMPLIFIER-Bandwidth can be varied from 190 so 280 kc by varying bias voltage on varicap diades between 0 and 10 v . Used in frequency-response equalization and other system appli-
cations requiring automatically adjustable bandwidth in low-pass circuit.-M. G. Wilson, Low-pass Amplifier with Adjustable Bandwidth, Electronics, 39:11, p 90-91.

50-MC POWER AMPLIFIER-Power output is UP to 1 w and collector efficiency above $\mathbf{5 0 \%}$ for common-base operation.-Texas Instrumenfs Inc., "Solid-State Communications," McGraw-Hill, N.Y., 1966, P 317.

CHAPTER 3

Analog Circuits

ANALOG DIFFERENTIAL AMPLIFIER-Input impedance is above 300,000 ohms and output impedance 1 ohm, in d-c amplifier for analog input channel. Q3 and Q4 provide gain and phase inversion for feedback through
complementary emitter-follower Q5-Q6 to differential amplifier Q1-Q2.-N. Aron and C. Granger, Analog-To-Digital Converter Uses Transfluxors, Electronics, 35:20, p 62-66.

SUMMING AND WEIGHTING NETWORK-Consists of eight identical circuirs. Precise value of direct current from constont-current source, fed into first node of resistive ladder network, produces $2.5-\mathrm{v}$ step at summing and weighting network output, or half of maximum analog input of $5 \mathrm{v},-\mathrm{W}$. B. Towles, Transistorized Analog-Digital Converter, Electronics, 31:31, p 90-93.

FOLDER AND STRETCHER

fluxor in analog-digital converter that produces six-bir binary Gray code.-N. Aron and C. Granger, Analog-To-Digital Converter

Uses Transfluxors, Electronics, 35:20, p 62-66.

DIGITAL-ANALOG CONVERTER-Converts binary digits to analog form.-K. H. Brackney and D. R. Gosch, Pulse Comparator Circuit

Measures Frequency Jifter, Electronics, 34:27, p 54-56.

LOGIC CONTROL VOLTAGE
LADDER-TYPE NETWORK DECODER-Transistor replaces spdt switch for binary conversion of analog signal. Transistor's own saturation valtage (shown as ground for simplicity) serves as lower reference, while diode provides upper reference. Chief drawback is poor temperature stability.-C. R. Pearman and A. E. Popodi, How to Design High-Speed D-A Converters, Electronics, 37:8, p 28-32.

DIGITAL VOLTMETER CALIBRATOR-Colibration voltages of 100,10 , and $1 v$ are derived from referance voltoge, for use in calibrating digital voltmeter in which analog

ELEVEN-BIT DECODER-Well-regulated transisfor power supply and binary-weighted network of precision wire-wound resistors give high-precision conversion of 11 -bit digital value to current analog. Output goes to magnetic modulator. Regulated 320-v supply
(not shown) uses silicon junction diodes in full-wave bridge, with silicon zener diade as reference.-N. Aron, Precise Converter Takes Current Analog of Digital Voltage Pulses, Electronics, 35:32, p 68-71.

VIDEO PROCESSOR-Analog video input from closed-circuit iv microscope is converted to binary video output by difference amplifier Q1-Q2, squaring amplifier Q3, pulse shaper Q4, and emitter-follower Q5 which buffers

R-C nefwork from Schmitf trigger Q6-Q7.N. F. Izzo and W. Coles, Blood-Cell Scanner Identifies Rare Cells, Electronics, 35:17, P 52-57.

THREE DIODES PROVIDE B 5TATES-Three different funnel diodes, each switching at a different input voltage level, act together to convert analog input valtage to digital form. -B. Rabinovici and J. Klapper, Designing Tunnel-Diode Circuits Using Composite Characteristics, Electronics, 35:7, p 46-4B.

50-MC SAMPLING AND THRESHOLD CIRCUIT -Threshold funnel diode receives signal current to be sampled and interrogation pulses repeating af 50 Mc . Diode fires when signal current is below threshold loval, making memory tunnel diode switch into its highvoltage state. Current level differences of less than 50 microamp can be resolved in 0.3 nsec, sufficient for converting input into six bits corresponding to 64 levels.-H. R. Schindler, Semiconductor Circuits in a UHF Digital Converter, Electronics, 36:35, p 37-40.

WEIGHTING CIRCUIT-Circuit introduces precise amount of current into point P within few nsec in response to output of threshold funnel diode, contributing to accurate conversion of wideband analog signals into 64 levels that are described by six bits of binary language.-H. R. Schindler, Semiconductor Circuits in a UHF Digital Converter, Electronics, 36:35, P 37-40.

TUNNEL DIODES READ 5-APERTURE CORECircuit also controls switching of binary weighted current generators used in analogdigital converter.-W. G. Trabold, Tunnel Diodes Save Parts-Continuous Readout of Magnetic Cores, Electronics, 36:36, p 38-39.

COMPUTE AMPLIFIER-Converts digital output of reference switch for serial decoder to equivalent analog voltoge ond holds voltage
for transfer to hold amplifier.-R. M. Centner ond J. R. Wilkinson, New Approoch to Serial Decoding Eliminates Static Storoge, Electron-

POLARITY DETECTOR-Q1-Q2 amplify negative analog somples greater thon 100 mv , to provide sharp pulse output for driving monostoble mvbr in analog-digital converter. -N. Aron and C. Granger, Analog-To-Digitol Converter Uses Transfluxors, Electronics, 35:20, p 62-66.

AUXILIARY BLOCK ORIVER
ENCODER-Used between transfluxor and digital shift register of converter that changes
analog inputs to six-bit binary Gray code. Converter Uses Transfluxors, Electronics, 35:20, -N. Aron ond C. Granger, Anolog-To-Digital p 62-66.

\qquad

TEN-BIT D/A CONVERTER-Ten identical stages (three ore shown) use selected 2N2501 transistors and matched FA2054 clamping diodes to convert digital signals to equivalent analog volfages for driving servomotors, pen recorders, and deffection circuits af oscillo-scapes.-C. R. Pearman and A. D. Popodi, How to Dasign High-Speed D-A Converters, Electronics, 37:8, P 28-32.

VOLTAGE-TO-TIME CONVERTER-Produces out put pulse whose width is accurately proportional to unknown input valtage. Pulses are then used to gate clock pulses into digital counters for voltage readout. Conversion occurs each time converter is switched on by monostable mubr. Thyratron resets counters ofter each conversion,-B. Barker and M. McMahan, Digital Voltmeter Employs Voltage-To-Time Converter, Electronics, 34:18, p 67-69.

POTENTIOMETER ERROR COMPUTER-Compensation technique eliminates need for precise high-gain isolation amplifiers when linear potentiometers are used as precision voltage dividers in analog computing circuits. Error is reduced by factor of 100.-M. Kanner, How to Reduce Errors in Loaded Potentiometers, Electronics, 32:34, p 34-35.

RANDOM-PULSE CONVERTER-Transfarms ran-
dom information, as from radiation counter and micrometearite defector, info analog form
suitable for multiplexing, and provides memory between events.-O. B. King, Multiplexing Techniques far Satellite Applications, Elec-

COMPARATOR-Comparator action begins when summing and weighting output exceeds analog input and negative pulse is coupled
through C1. Trailing edge of blocking oscillator pulse activates reset-rate generator.W. B. Towles, Transistorized Analog-Digital

PULSE WIDTH TO ANALOG DEMODULATORCircuit integrates incoming pulse and holds final value until next pulse arrives. Output then refurns to zero for next integration.

Output range is 0 to $10 \vee$ for input pulse width range of 0 to 1 microsec.-D. Knowlton, Modulated Pulse Width Converted to Analog Voltage, Electronics, 3B:20, p 99-100.

SET PULSE OUT SHIFT PULSEIN SHIFT SARYINIAL

CODING DIGIT CARD-Initiate pulse starts coding in digit card of analog-digital converter and ultimately provides positive shift-carry pulse for next card. Codes inputs up to 5 v
at maximum sampling rate of 5,000 inputs per second with 0.5% accuracy. Eight binarydigit result is shifted out serially at 100,000 digits per second.-W. B. Towles, Transistor-

Converter, Electronics, 31:31, p 90-93.

TEMPERATURE-COMPENSATED DECODERMatched diodes in ladder-type network decoder change one reference voltage of transistor switch to compensate for temperature effects.-C. R. Pearman and A. E. Popodi, How to Design High-Speed D-A Converters, Electronics, 37:B, P 28-32.

ANALOG SAMPLE-HOLD CIRCUIT-Uses diode bridge as switching circuit. Operational amplifier A delivers maximum current of 10 ma . Chopper-stabilized operational amplifier B delivers 100 v af 10 ma.-T. A. Brubaker, Precision Analog Memory Has Extended Frequency Response, Electronits, 34:39, p 141 143.

SAMPLER AND MULTIPLEXER-Sample of signal input voltage is fed to output when sampling pulse from external digital timing matrix is applied to primary of pulse transformer through Q3.-N. Aron and C. Granger, Analog-To-Digital Converter Uses Transfluxors, Electronics, 35:20, p 62-66.

REFERENCE SWITCH-Provides low-zero-offsef S-microsec pulses with stabilized amplitude, obtained from synchronous flip-flop. Output pulses switch from zero to -5 v , for driving compute and hold amplifiers of serial de-coder.-R. M. Centner and J. R. Wilkinson, New Approach to Serial Decoding Eliminates Static Storage, Electronics, 35:34, p 32-35.

HOLD AMPLIFIER-Samples output of compute amplifier at end of each word, to provide dec output for serial decoder and permit time-
sharing of computer amplifier. Full-scale out- Eliminates Static Storage, Electronics, 35:34, put is $-10 \vee$ d-c.-R. M. Centner and J. R. p 32-35. Wilkinson, New Approach to Serial Decoding

CHAPTER 4 Audio Circuits

SINGLE-FET CASCODE-Costs less than two-fet version, but has somewhat poorer stability. Voltage gain is 500 for 33,000 -ohm output
impedance.-8. Smith, Low-Noise FETs Sound Good To Circuit Designers, Electronics, 37:31, P 58-62.

TUNED A-F-R2 funes three-step ladder network of feedback loop from 800 to 1,000 cps. Circuit is stable. Used in a-c bridge.-J. F. Delpech, Simple Circuit Tunes Audio Amplifier, Electronics, 38:6, p 84-85.

DRIVER FOR FADER-Can be operated either in free-running mode ar in triggered or gated mode, to produce control voltage that will drive electronic fader. Correction network at lower right transfers control voltage to fader and minimizes switching transient.-E. de Boer, Electronic Fader for Auditory Research, Electronics, 33:50, p 85-87.

ELECTRONIC FADER-Used to fade audio signals on and off without producing audible switching transients. Signals from matching network of driver are applied to points A and B.-E. de Boer, Electronic Fader for Audifory Research, Electronics, 33:50, p 85-87.

2-STAGE R-C COUPLED AUDIO AMPLIFIERInput impedance for basic circuit is about 1,300 ohms. Design equations are given.assembly for each pair of output tubes is
"Transistor Manual," Seventh Edition, General Electric Co., 1964, p 242.

20-W SINGLE-ENDED PUSH-PULL OUTPUTDaubling number of output power tubes doubles power output and halves loudspeaker impedance requirement. Seporate cathode R-C
recammended, but only ane double choke is required. All pentodes are 6CW5.-J. Rodrigues De Miranda, Push-Pull Amplifiers Drive Speaker Directly, Electronics, 31:29, p 76-79.

100-MEG INPUT RESISTANCE-High d-c input resistance is obtained with grounded-collector circuit operating under starved conditions. A-c input impedances of 100 meg are obtainable at audio frequencies, as required for photoconductive devices.-8. M. Bramson, Starved Transistors Raise D-C Input Resistance, Electronics, 32:5, p 54-55.

PHONO PREAMP-Two planar passivated silicon transistors give RIAA equalization for ceramic cartridge.-General Electric Co. (ad), Electronics, 37:17, p 38.

1-WATT FET AUDIO AMPLIFIER-Valiage am plifier is followed by split-load phase inverter and push-pull output stage. Emitter-followers
drive output stage to improve frequency response, with coupling through nonelectrolytic capacitars.-L. J. Sevin, Jr., "Field-Effect Tran-
sistors," McGraw-Hill, N.Y., 1965, p 98.

COMPLEMENTARY-SYMMETRY AUDIO AMPLI-FIER-Provides nearly maximum power theoretically available from single dac supply. Distortion is low. Large feedbacks, both a-c and $d-c$, make amplifier insensitive to unbal-
ance of output transistors.-R. S. Richards, How to Design Transformerless Audio-Frequency Power Amplifiers, Electronics, 35:46, p 50-52.

10-W SINGLE-ENDED PUSH-PULL OUTPUTFeeds vaice coil directly, making output transformer unnecessary. First preamplifying stage has positive feedback to point af oscillation, while amplifier and output stages have nega-
five feedback. Circuit has low distortion, fiat response, and only a fow degrees of phase shift over audio range.-J. Rodrigues De Miranda, Push-Pull Amplifiers Drive Speaker Directly, Electronics, 31:29, p 76-79.

Q MULTIPLIER-Circuit shows three channels of multi-channal selective a-f amplifier (190, 216.5 , and 235 cps) using various coil-capacitor combinations with transistor \mathbf{Q} multiplier to provide staggered resonant frequencies. Used in frequency-selective calling systoms.G. B. Miller, Transistor Q Multiplier for Audio Frequencies, Electronics, 31:19, p 79-81.

PREFERRED POWER AMPLIFIER-For 6AQ5W, with plate supply of 250 v , output is 115 v ta transformer at 2.21 w for 6 v rms input. For 5902 , with plate supply of 150 v , output ta transformer is 75 v at 0.8 w for 5 v rms input.-NBS, "Handbook Preferred Circuits Navy Aeronautical Electranic Equipment," Vol. I, Electron Tube Circuits, 1963, PC 61, p 61-2.

6-V PHONO AMPLIFIER-Provides 300 mw af 10\% distortian. Bass control R1 and treble
cantrol R2 are 50K linear taper. Volume contral R3 is 10K audio taper.-'Transistor Man-
ual," Seventh Edition, General Electric Ca., 1964, p 376.

BASIC CLASS-B PUSH-PULL OUTPUT-Design procedures are given. Resistor in emitter leads prevent thermal runaway when ambi-
ent temperature is below $55^{\circ} \mathrm{C}$.-"Tronsistor Manual," Seventh Edition, General Electric Co., 1964, p 242.

10-W DIRECT-COUPLED POWER AMPLIFIERHas excellent low-frequency response, along with d-c feedback for temperature stabilizafion of all stages, Q2 and Q3 operate class B in Darlington connection to increase current gain. Fuses protect output transistors against confinuous sine-wave output above 10 kc . Power response at $1 \mathbf{w}$ is flat from 30 eps ta 15 kc .-"Transistor Manual," Seventh Edition, General Electric Co., 1964, p 260.
 Seventh Edition, General Electric Co., 1964, p 377.

ZONED PUBLIC ADDRESS IN PLANE-Uses single preamplifier and up to five power amplifiers and speakers to distribute sound uni-
formly throughout seating area of plane. Air-ground output switch acts on all amplifiers simultaneously to compensate for dif-

HI-FI FET PREAMP-Breakdown voltage of commercial fet's is extended by using direct-
coupled cascode connection with low-cost germanium transistor.-L. J. Sevin, Jr., "Field-

Effect Transistors," McGraw-Hill, N.Y., 1965, p 73.

PREAMPLIFIER FOR DYNAMIC PICKUP-ACcepts signal from variable-reluctance cartridge. Includes RIAA frequency-correcting network, variable bass and treble compensation, volume control, and loudness confrol that attenuates midfrequencies as loudness level is decreased, to emphasize lows and highs during soft musical passages.-R. Minton, Designing High-Quality A-F Transistor Amplifers, Electronics, 32:24, p 60-61.

STABLE AUDIO AMPLIFIER-Provides low input and output impedances, along with stable gain for wide range of transistor parameters and thus for temperature and supply voltage variations, as required for sound level meter. -W. V. Richings and B. J. White, Transistorized Sound Leval Meter, Electronics, 33:25, p 64-66.

8-W SILICON-TRANSISTOR POWER AMPLIFIER -Output impedance is 0.5 ohm, for good speaker damping. Response is down only 3 db at 86 kc . Power response is flat within
0.33 db from 30 cps to 15 kc at 6 w output. -'TTransistor Manual," Seventh Edition, General Electric Co., 1964, p 263.

A-F OUTPUT TRANSISTOR PROTECTION-When oulput of 3-w audio amplifier is short-cir-
cuited, profection circuit reduces overall gain by 20 db.-E. Segatis, Circuit Protects Ampli-
fier Against Short Circuit, Electronics, 37:23, p 61-62.

RESISTORS: All V/2 wolt, TI Type CDI/2MR CAPACITORS:
$\mathrm{C}_{1}-0.1$ If
$\mathrm{C}_{2}-5.6 \mu \mathrm{f}$-TI Type SCM 565BP035C4
$\mathrm{C}_{3}, \mathrm{C}_{6}$, $\mathrm{C}_{7}-220 \mathrm{yf}-\mathrm{TI}$ Type SCM 227HPOIOC4
$\mathrm{C}_{4}, \mathrm{C}_{5}-1.0$ дf - TI Type SCM 105FP035C4
C_{8}-10nf-TI Type SCM 1068P020C4
$\mathrm{C}_{9}-68 \mathrm{yf}$-TI Type SCM 686GP015C4

60-DB LOW-NOISE FET AMPLIFIER-Gives maximum valtage gain of 60 db , canstant within 0.5 db fram -55 ta $+125^{\circ} \mathrm{C}$ with built-in gain adjustment. Has gaad law-fre-
quency respanse, olang with extremely law naise, as little as 5 db af 10 cps . Used with law-level transducers, null defectors, recorders, ascillascopes, and medical research equip-
ment.-Texas Instruments Inc., "Solid-State Cammunicatians," McGraw-Hill, N.Y., 1966, p 293.

TAPE-MICROPHONE PREAMP-Uses silican planar npn transistars, making it necessary ta have temperature-campensating resistor in emitter circuit of first stage. Naise level is 66 db belaw reference leval autput with weighted measurement. Frequency respanse is flat within 0.25 db from 30 cps ta 15 kc , and tatal harmanic distartion is 0.01% at 1.2 v autput.-"'Transistar Manual," Seventh Edition, General Electric Ca., 1964, p 256.

RESISTORS-ALL I/2 walt, TI type CDI/2 Mr CAPACITORS $\mathrm{Cl}_{1} \mathrm{C}_{3}, \mathrm{C}_{5}, \mathrm{C}_{6}-2 \mu \mathrm{f}$, TI type SCM 225FPO20C4
$\mathrm{C}_{2}, \mathrm{C}_{4}-20 \mu \mathrm{f}$, TI type SCM2268P015C4
$\mathrm{C}_{7}-20 \mathrm{Pf}, \mathrm{TI}$ type SCM226GP035C4

Texas Instruments Inc., "Salid-State Commu-

LOW-LEVEL LOW-NOISE HIGH-GAIN-Gives gains up ta $1,000(60 \mathrm{db}$) for high-impedance transducer applications, with typical naise figure of 1 db at emitter currents belaw 1
micraamp and generator resistance above 1 mey. Such performance was previausly available anly with vacuum tubes and field-effect transistars. Ideal far space applicatians.-
nicatians," McGraw-Hill, N.Y., 1966, p 291.

TWO-FET CASCODE-Gives high audio voltage gain (40 db), high impedance, low-noise operation, and good temperature stability with low supply voltage. Q3 serves as load re-sisfance.-B. Smith, Low-Noise FETs Sound Good To Circuit Designers, Electronics, 37:31, P 58-62.

THREE-STAGE CASCADED COMMON-EMITTERGives current goin of 90 db at 1 kc . Output voltage swing is 2 v peak-to-peak. All tron-
sistors ore 2 N1565. Values of C 1 and C2 depend upon frequency response desired; typical values ore 10 and 100 mfd respectively.

2.5-W TRANSFORMERLESS AMPLIFIER-Uses aconomical transistors and diodes. Requires 330 mv input for full output. Total harmonic distortion of 1 kc is less than 1% of full output.-"Transistor Manual," Seventh Edition, General Electric Co., 1964, p 266.

LOW-COST LINE-OPERATED PHONO-Provides 1 w output with only two transistors. High input impedance (above $10,000 \mathrm{meg}$) of fet permits direct drive by high-output cortridge, while MJ2252 npn silicon transistor operates directly from 120 v dec output of simple power supply using Motorola 1 N4004 surmetic silicon rectifier. Volues are: C1-100 mfd ; C2-0.1 mfd; C3-100 mfd, 3v; R1-330; R2-10K; R3-3K; R4-1 meg; R5-5K; R6100K; R7-33.-D. L. Wollesen, "A Line Operated Solid State Phonograph Amplifier," Motorola Application Note AN-183, Feb. 1966.

SINGLE-ENDED CLASS-B OUTPUT-High-fidelity 10-w amplifier uses capacitors and diodes to couple class A driver to single-ended class B
output feeding $16-0 h m$ speaker. Input stages are equalized for RIAA curve. Frequency response is flat within 1.5 db from 30 to
$15,000 \mathrm{cps} .-H$. C. Lin and B. H. White, Sin-gle-Ended Amplifiers for Class B Operation, Electronics, 32:22, p B6-87.

BUILDING-BLOCK AMPLIFIER-Has voltage gain of 1,000 and gain-bandwidth product of 15 Mc . High-fidelity audio preamp can be designed with two such packages, one with equalization network and one with tone contral network.-L. J. Sevin, Jr., "Field-Effect Transistors," McGraw.Hill, N.Y., 1965, p 74.
 dio amplifier output stage with high power-fo-cost ratio, with no need for transformer coupling to speaker coil.-Texas Instruments Inc., "Solid-State Communications," McGrawHill, N.Y., 1966, p 315.

15-W TRANSFORMERLE5S AMPLIFIER-Uses additional input stage to increase input impedance from 3K to over 200K. Power fre-
quency response is flat within 0.5 db from 20 eps to 20 kc . Output impedance is less than 0.3 ohms, for good speaker damping,
and harmonic distortion af full power is less than 0.25%.--"Transistor Manual," Seventh Edition, General Electric Co., 1964, p 269.

LOW-NOISE AUDIO AMPLIFIER-Power gain is 44 db , input impedance 440,000 ohms, and hum and noise 57 db down for 3-db frequency response of 20 to 100,000 cps.-L. E. Clark, E. B. Mack, and R. C. Hejhall, Highlights of Small-Signal Circuit Design, Electronics, 36:49, p 46-50.

12-W TRANSFORMERLESS AMPLIFIER-Uses two transistors in parallel for each of the outputs, to cut saturation resistance in half and thereby increase power output. Parallel operation also serves to reduce distortion. Operating efficiency is 67% at 12 w .-"Transistor Manual," Seventh Edition, General Electric Co., 1964, p 267.

12-V AUDIO AMPLIFIER-Input sensitivity is 10 to 20 mv for 0.5 w output. Maximum power output af 10% harmonic distortion is 500 mw . Design calculations are given."Transistor Manual," Seventh Edition, General Electric Co., 1964, p 246.

TWO-STAGE CASCADED COMMON-EMITTERDesign procedure is given for low-devel amplifier that is one of the most-used circuits in all transistor applications, for boosting milli-volt-range signals to workable level of soveral volts. Capacitance coupling is used for a-c operation along with d-c stability. Total power gain is 64 db . Voliage gain is 1,000 . -Texas Instruments Inc., "Transistor Circuit Design," McGraw-Hill, N.Y., 1963, p 198.

FET-PNP DARLINGTON-P-channel fet is combined with pnp transistor in equivalent to Darlington connection, for use with high-input-impedance low-frequency transducers. Spot noise figure is 7 db at 10 cps ond 3 db af 100 cps . Broadband noise figure from 10 cps to 10 kc is 1.7 db with 200 K generator resistance.-Texas Instruments Inc., "SolidState Communications," MeGraw-Hill, N.Y., 1966, p 136.

CAPACITOR MIKE PREAMP-Fet provides required high input impedance. C̀an easily be mounted in microphone. Emitter-follower with output impedance of about 100 ohms will
drive 500 feet of microphone cable without appreciably affecting frequency response.-L. J. Sevin, Jr., "Field-Effect Transistors," McGraw-Hill, N.Y., 1965, p 75.

BOOTSTRAP FET-Input impedance is high at low frequencies (180 meg at 10 cps), but drops to 3 meg at 10 kc . High collector current contributes to high over-all noise level.B. Smith, Low-Noise FETs Sound Good To Circuit Designers, Electronics, 37:31, p 58-62.

TUNABLE SUBAUDIO AMPLIFIER-Commercial dec amplifier with twin-T feedback funing element funes from 0.5 to 100 cps , for analyzing low-frequency components of complex waveforms.-J. M. Reece, Subaudio Tunable Amplifier, Electronics, 32:45, p 72-74.

UNDERWATER PREAMPLIFIER-Used in package with hydrophone for meosuring ambient ocean noise over periods of months, as one basis for sonar system design. Output is fed through cable poir to shore installation.-J. V. Schaefer, Remote Preamplifiers for Under Ocean Work, Electronics, 33:28, p 60-62.

MOS FET AMPLIFIER-Circuit drows only 6 microamp while providing voltoge gain over 200.-G. G. Luettgenau and S. H. Barnes, Designing With Low-Noise MOS FETs: A Little Different But No Harder, Electronics, 37:31, P 53-58.

TONE CONTROL-Unlike bipolar tronsistor, fet maintoins full dynamic range while loading R-C tone control network.-FET's and RC Networks (Siliconix ad), Electronics, 39:4, p 71.

CLASS-AB PUSH-PULL AUDIO-Sensistor R1 in a-c coupled driver compensates for effects of temperature on amplifier gain. Negative feedback stabilizes frequency and phase re-
sponse. Circuit drives $\mathbf{2 0}$ decoders in Mercury spacecraft command receiver.-R. Elliott, First Details on Mercury Spacecraft Command Receiver, Electronics, 36:5, p 32-35.

100-350 CPS RECEIVER-Input signal from electrodes of crevosse defector is oftenuoted to suitoble leval at constant impedance of 1,000 ohms by T-pod and passed to 2N107 preamplifier whose supply voltage is stabilized at 5.8 v by reversed $\mathbf{T} 1620$ silicon diode shunt operating at zener point. Signal is then fed through bondpass L-C filter to amplifier, driver, and final 355 class A stage that drives recorder pen motor and relay meter.-H. P. Van Eckhordt, Crevosse Detecfor Blazes Glacial Trails, Electronics, 31:3, P 63-65.

SYNTHETIC PUSH-PULL-Single transistor in sliding class-A outpui requires no input tronsformer, while approximating push-pull closs-B output stage.--J. A. Worcester, One-Transistor "PPush-Pull," Electronics, 32:24, p 74.

DARLINGTON AMPLIFIER-Useful Up to 100 kc, but high input impedance makes it parricularly desirable for oudio preamps. Gives goin of two stages with dissipation of only one.-L. Pollock and R. Gutteridge, Latest Design Techniques for Linear Microcircuits, Electronics, 35:41, P 47-49.

BASS BOOST OR LOUDNESS CONTROL-OPerates on output of preomp. Gives operator independent control of level of boss or amount of bass boost desired. May also be used as loudness control.-"Transistor Manual," Seventh Edition, General Electric Co., 1964, p 254.

25-W CLASS-B POWER AMPLIFIER-Uses bal- is temperature-stobilized.-R. Minton, Designanced negotive feedback, with input Q5 and ing High-Quality A-F Transistor Amplifiers, driver Q6 operating closs A. Output stage Electronics, 32:24, p 60-61.

PREFERRED AUDIO POWER AMPLIFIER-Delivers 2 w with less thon 5% distortion to suitably matched load. If push-pull fubes ore dynamically matched, screen and cathode
bypass capacitors C4 and C5 may be omitted. -NBS, "Handbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. I, Electron Tube Circuits, 1963, PC 64, P 64-2.

45-W A-F OUTPUT-Operates with convection cooling over temperature range of -10 to $+50^{\circ} \mathrm{C}$. Forword voltage drop of diodes decreases with increasing temperature, to hold
emitter currents essentially consfant. Uses quasicomplementary symmetry.-M. B. Herscher, Designing Transistor A-F Power Amplifiers, Electronics, 31:15, p 96-99.

REDUCING ODD-HARMONIC DISTORTION-Grid-plate transfer characteristic of class-B amplifier is linearized to eliminate harsh oddharmonic distortion, through use of compen-
sation network having nonlinear fransfer function. Distortion is cut to 2.6% at 16 w output.-B. Sklar, Reducing Distortion in Class-B Amplifiers, Electronics, 32:21, p 54-56.

45-W SERIE5-TYPE POWER AMPLIFIER-Uses split-load phase inverter, capacitance-coupled to common-collector class B driver, which in turn is direct-coupled to class- B commonemitter output stage. Driver and output stages are each in series for d-c collector supply. No transformers are required.-M. B. Herscher, Designing Transistor A-F Power Amplifiers, Electronics, 31:15, p 96-99.

NPN PHONO PREAMP-Input of 6 mv at 1 kc from magnetic cartridge gives 1 v output, which is 15 db below clipping level and 72 db above unweighted noise level. RIAA

FET OUTPUT STAGE-Bootstrapped input, Darlington driver, and White follower give valtage gain of ane, input impedance of 1
equalized autput is within 1 db fram 40 cps to 12 kc .-"Transistor Manual," Seventh Edifion, General Electric Co., 1964, p 257.

meg, and output impedance of 10 ohms.-B. Smith, Law-Noise FETs Sound Goad To Circuit Designers, Electranics, 37:31, p 58-62.

50-W TWO-STAGE OUTPUT-Produces over $50-\mathrm{w}$ rms audio power and has simple drive requirements.-High-Power Nu-Base Germanium Transistors (Delco Radio ad), Electronics, 39:7, p 20-21.

SINGLE-STAGE AUDIO AMPLIFIER-Design procedure is given for basic transistor stage."Transistor Manual," Seventh Edition, General Electric Ca., 1964, p 241.

CHAPTER 5

Automatic Frequency Control Circuits

MICROWAVE KLYSTRON AFC-Uses signal from discriminator of $6,000-\mathrm{Mc}$ microwave receiver to stabilize frequency of local-oscillator klystron. Balanced silicon-diode input chopper lattice is excited at 3.5 kc , but only
error signal from discriminator will unbalance network and pass 3.5 kc on to error ampli-fier.-M. C. Harp, Nanvacuum Devices Control Klystrons, Electronics, 32:7, p 68-70.

EMITTER-CURRENT-CONTROL 40-MC AFC OS-CILLATOR-Error signal, usually derived from external discriminator, is applied in series with base bias network to give sensitivity of about 1.5 Mc per v and nearly straight volt-age-frequency characteristic.-T. P. Prouty, Using Varactors to Extend Frequency-Control Range, Electronics, 36:45, p 48-49.

VARACTOR-CONTROLLED 40-MC OSCILLATOR -Oscillofor fransistor also acts as a d-e amplifier between ofc input and varactor diode to give electronic tuning over range of 11 Mc with sensitivity of 5.8 Mc per v.-T. P. Prouty, Using Varactors to Extend Frequency-Control Range, Electronics, 36:45, p 48-49.

COLLECTOR-VOLTAGE-CONTROL AFC OSCIL-LATOR-Afc input signal acts through series resistor to vary collector valtage of $40-\mathrm{Mc}$ oscillator. Sensifivity is 2.5 Mc per \mathbf{v}. Bias network odjustment is critical.-T. P. Prouty, Using Varactors to Extend Frequency-Control Range, Electronics, 36:45, p 48-49. AMPLIFIER

SEARCH STOPPER

SWEEP GENERATOR

THYRATRON AFC FOR AIRBORNE RADARUses Weiss discriminator, which for lorge bandwidths is easier to adjust thon Foster-

Seeley, and requires no special i-f transformer. Employs two thyratrons to generate required control voltage for repeller of klystron.
-NBS, "Hondbook Preferred Circuits Novy Aeronautical Electronic Equipment," Vol. I, Electron Tube Circuits, 1963, p N13-4.

PHANTASTRON AFC-Pentode is astable phantastron during radar search, and d-c amplifier during lock-on when pentode furnishes
direct control of klystron repeller.-NBS, "Handbook Preferred Circuits Navy Aeronavtical Electronic Equipment," Vol. 1, Electron

DIODE-PHANTASTRON AFC FOR AIRBORNE RADAR—Pentode is astable phantastron during search and d-c amplifier during lock-an. Operation is nearly independent of tube characteristics. Provides tight control of local oscillator frequency because during lock-on, pentode furnishes direct control of klystron repeller.-NBS, "Handbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. 1, Electron Tube Circuits, 1963, p N13-6.

CRYSTAL DISCRIMINATOR IN AFC LOOPGives narrow bandwidth of 23-Mc crystal frequency, for controlling drift of voltagecontrolled oscillator.-F. L. Carroll, How to Achieve Stability in Space Telemetry, Electronics, 37:4, p 32-35.

THYRATRON AFC FOR AIRBORNE RADARUses Foster-Seeley discriminator to produce series of pulses varying from zero at crossover to maximum of 0.5 to $2 v$ af frequency of maximum response. Polarity may be either positive or negative, depending on whether incoming signal is above or below crossover frequency, and can be changed by reversing the diodes. Two thyratrons generafe required control voltage for repeller of klystron.-NBS, "Handbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. 1, Electron Tube Circuits, 1963, p N13-4.

CHAPTER 6

Automatic Gain Control Circuits

AMPLIFIED AGC-Uses d-c amplifier in age circuit to keep output of communication receiver more nearly constant despite widely varying input signal.-NBS, "Handbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. 1, Electron Tube Circuits, 1963, p N12-4.

AMPLIFIED AGC-Uses d-c amplifier in agc circuit to keep output of communication receiver more nearly constant despite widely varying input signal. One drawback of amplified age is that when d-c amplifier plate current drops, bias voltage at its cathode in-
creases age output and thereby reduces gain of controlled stages.-NBS, "Handbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. 1, Electron Tube Circuits, 1963, p N12-4.

CASCADED AGC-Double-conversion i-f uses two separate agc amplifiers to get good tem-
perature stability and low noise figure with transistor amplifiers.-J. S. Brown, Improving

Gain Control of Transistor Amplifiers, Electronics, 34:17, p 10B-110.

VOLTAGE-CONTROLLED GAIN-Response of two-transistor a-e amplifier, controlled by dec voltage, can be made linear by adding suitable feedback. With no d-c control voltage on base of Q1, both transistors are saturated, and effective shunt resistance of circuit is about 500,000 ohms. When d-e control voltage is increased positively until Q1 is cut off, effective shunt resistance drops to 200,000 ohms.-L. C. Bowers, Aftenuator Controls Amplifier Gain, Electronics, 34:39, p 150-153.

TYPICAL PERFORMANCE
$V_{C B}=-6 v \quad I C=-2 m a$
GAIN $=27 \mathrm{db}$
N.F. $<3 \mathrm{db}$

TI-5t AIR DUX * 516
TAPPED 4t FROM THE COLLECTOR

70-MC NEUTRALIZED GAIN-CONTROLLED AM-PLIFIER-Gain is 27 db , with typical noise figure below 3 db . RC for reverse gain control is $\mathbf{0}$ ohms, and for forward gain control
is 1,000 ohms. Reverse control range is 35 db , and forward gain control is 47 db .Texas Instruments Inc., "Solid-State Communications," McGraw-Hill, N.Y., 1966, p 215.

AUDIO AGC FOR 40-DB RANGE-Automatic gain-adjusting amplifier produces constant output for speech leval variations up to 40
db. Infelligibility of speech is ensured by allowing instantaneous peaks to remain.-l.
E. Getgen, Amplifier Compensates for Speech-

Level Variations, Electronics, 33:31, P 103106.

450-MC GAIN-CONTROLLED STAGE-Has gain of 8 db with typical noise figure of 4 db . Reverse gain control is 21 db for collector current of 20 microamp, and forward gain control is 26 db at 7 ma collector current.Texas Instruments Inc., "Solid-State Communications," McGraw-Hill, N.Y., 1966, p 220.

30-MC HYBRID GAIN CONTROL-Q2 acts as variable impedance to give emitter degeneration, which is a form of external gain control. Q2 also controls collector current of Q1 to give reverse gain control action, which is internal gain contral. Gain control range is 33 db , with $2: 1$ change in bandwidth.-Texas Instruments Inc., "Solid-State Communicafions," McGraw-Hill, N.Y., 1966, p 222.

SIGNAL LEVEL CONTROLS GAIN-Amplifier is used with nonlinear circuit elements to get D-versus-log E characteristic approximating that of positive color film being scanned. When no signal is applied to grid of VI , all diodes in its cathode circuits are conducting, equivalent cathode resistance is lowest, and
stage gain is highest. As signal level increases, diodes V4 through V9 successively stop conducting, with V9 turning off last to make stage gain a minimum.-R. M. Farber and K. M. St. John, Scanner Analyzes Color Content of Movie Film, Electronics, 34:48, P 38-41.

BACK-PORCH KEYED AGC-Composite of d-c coupling for dark scenes and a-c coupling for bright scenes, with age referenced to backporch (blanking level) rather than to sync fips, approaches ideal compromise for automatic control of iv picture.-L. Solomon, Naw Tubes and Circuits for Consumer Electronics, Electronics, 36:2, p 47-49.

30-MC GAIN-CONTROLLED TETRODE-Collector voltoge and current are kept constont and gain is chonged in occordance with bose-2 current. Gain is 21 db , and typical noise figure is 60 db .-Texos Instruments Inc., "SolidState Communications," McGraw-Hill, N.Y., 1966, P 213.

O-MC GAIN-CONTROLLED STAGE-Gain is 15 db . Typical noise figure is 5 db . Reverse gain control range is 25 db from collector current of 1.5 ma to 20 microamp . Provides 20 db of forword gain control.-Texas Instruments Inc., "Solid-State Communications," McGraw-Hill, N.Y., 1966, p 211.

SLICER AND GATE FOR AGC-When peak-topeok value of input signal exceeds preset reference voltage, slicer Q2 conducts, making Q4 opply amplified signal to Schmitt trigger
for squaring. Q7 then delivers output gote that chonges fixed-goin amplifier to unity gain to give effect of fast agc for monopulse radar amplifier.-W. W. Smith, Fast AGC

Amplifier Locks Monopulse Radar on Torget, Electronics, 36:39, p 34-36.

LOW-NOISE LOW-LEVEL AUDIO AGC-Q1 and Q2 are active amplifier elements. Agc range is 60 db , maximum output signal is $1 \mathbf{v}$, and
maximum Input signal is 2 mv . Noite figure is 6 db . Age circuit here uses shunting diode D1.-Texas Instruments Inc., "Transistor Cir-
cuit Design," McGraw-Hill, N.Y., 1963, p 179.

PREFERRED AGC AND SQUELCH CONTROLFurnishes bios valiage for r-f and i-f stages of receiver, to minimize chonges in output volume as input signal fades or as receiver is tuned to station hoving different signal strength. Additional output controls squelch fube that suppresses background noise in
absence of input signal. Maximum i-f input is 7 v rms. Moximum d-c output level is -27 v for miniature tube and $-3 S \mathrm{v}$ for subminiature.-NBS, "Handbook Preferred Circuits Navy Aeronoutical Electronic Equipment," Vol. I, Electron Tube Circuits, 1963, PC 63, p 63-2.

PREFERRED SQUELCH-Used in sensitive receivers hoving agc, to suppress objectionable increase in noise output when no signal is present, os when receiving intermittent tronsmissions. Uses d-c amplifier that is added to grid circuit of first audio stage to bias it
beyond cutoff and thereby silence it until usable signol arrives.-NBS, "Handbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. I, Electron Tube Circuits, 1963, PC 64, p 64-2.

BRIDGE WITH AGC FOR ON DIODE-Input signal is opplied in push-pull to two diodes, then combined by two copocitors. Reduction of oge bios increases oftenuotion of signal by bridge.-W. A. Rheinfelder, Designing Automatic Gain Contral Systems, EEE, 13:1, p S3-57.

FET FOR AGC-Uses 2 N 2498 fet os variableemitfer resistor in common-emitter transistor omplifier. Low-current 2 N 3328 is used to supply constant emitter bios current and hove very light dynomic loading on emitfer for maximum age range. Since variable resistor is copocitor-coupled to emitter of tronsistor, there is no chonge in bias current when strong age voltage is suddenly opplied. Absence of transient thump makes circuit desiroble for broadcast speech compressors.L. J. Sevin, Jr., "Field-Effect Transistors," McGrow-Hill, N.Y., 1965, p 78.

AGC FOR WIDE-BAND I-F-2N417 transisior is gain control element for $10-\mathrm{Mc}$ tuned i-f amplifier using transistor coscode circuit.

Bandwidth is 1.25 Mc and maximum goin is $91 \mathrm{db} .-J$. F. Perkins, Transistor Cascode Circuit Improves Automatic Goin Control in Am-

PREVENTING CLIPPING IN CONTROLLED STAGE-Agc bias controls negative current feedback in each controlled i-f stage. Diode D2 prevents clipping when forward bios falls below peak value of signal.-P. V. Sparks, Servo Filter and Gain Control Improve Automatic Direction Finder, Electronics, 34:23, p 110-113.

CASCODE I-F WITH AGC-Q3 is gain control
element for cascode combination Q1-Q2 in
10-Mc i-f amplifier,-J. F. Perkins, Transistor Coscode Circuit Improves Automatic Gain Control in Amplifiers, Elecfronics, 34:22, p 49-51.

AGC WITH DIODE T-NETWORK VARICAP-Voltage-controlled capacitor circuit minimizes effect of shunt capacitance, thus reducing resonance peaks and preventing regeneration, but insertion loss is high ($B \mathrm{db}$).-W. A. Rheinfelder, Designing Automatic Gain Control Systems, EEE, 13:1, p 53-57.

BRIDGE WITH AGC ON BOTH DIODES-Agc is opplied to center top of transformer, to furn one diode off while other is being furned on. Attenuation can be 40 db over bandwidth up to 250 Me with age blics of 0.5 to 3 v . Insertion loss is only a fow $\mathrm{db} .-\mathrm{W}$. A. Rheinfelder, Designing Automatic Gain Control Systoms, EEE, 13:1, p 53-57.

200-MC GAIN-CONTROLLED STAGE-Has gain of 17 db with typical noise figure of 3 db , 24 db of forward gain control, and 33 db of reverse gain control.-Texas Instruments Inc., "Solid-State Communications," McGrawHill, N.Y., 1966, p 218.

LI $=1 / 4^{\prime \prime} \times 1 / 32^{\prime \prime}$ COPPER STRAP BENT AS SHOWN ABOVE.
L2=2 \uparrow \# 22 SOLDEREZE CLOSE WOUND ON C.T.C. PLS62C4L/200 63 NO SLUG.

AGC WITH VARICAP-Basic valtage-controlled copacitor circuit uses capacitance variation with voltage of back-biased diode constructed to have large capacitance changes, such as Varicap. Circuits give different insertion losses and gain changes. Left: 5 db insertion loss and 16 db gain control range for agc bias
of 15 v . Center: 2 db loss and 11 db gain range. Right: 7 db loss and 18 db gain range. All can be reasonably flat for 200Mc bandwidth.-W. A. Rheinfelder, Designing Automatic Gain Control Systems, EEE, 13:1, p 53-57.

AGC WITH VARICAP DIODE BRIDGE-Uses voltage-controlled capacitors to provide very large gain control range, greater than 30 db . -W. A. Rheinfelder, Designing Autamatic Gain Control Systems, EEE, 13:1, p 53-57.

AGC FOR ADF-Gives uniform receiver response over wide dynamic range of input signal levels. Output of third i-f stage Q2 is applied across age diode D1.-P. V. Sparks, Servo Filter and Gain Control Improve Automotic Direction Finder, Electronics, 34:23, P 110-113.

SIMPLE AGC-Used to keep output of communication receiver relatively constant with varying input signals.-NBS, "Handbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. 1, Electron Tube Circuits, 1963, p N12-4.

DIODE T-ATTENUATOR AGC-All three diodes ore simultoneously controlled, to give excellent age action over control range of 20 db , olthough insertion loss is high. Frequency response is excellent up to $150-\mathrm{Mc}$ cutoff.-W. A. Rheinfelder, Designing Automatic Gain Control Systems, EEE, 13:1, p 53-57.

DOUBLE-GATED AGC-Uses zener diode to supply standing bias for age bus.-W. A. Rheinfelder, Designing Automatic Gain Control Systems, EEE, 13:1, p 53-57.

CHAPTER 7

Automotive Circuits

AUDIBLE TURN-SIGNAL INDICATOR-Produces two different tones in synchronism with turnsignal floshers. Diodes prevent short-circuit. For autos with positive ground.-'Transistor Manual," Seventh Edition, General Electric Co., 1964, p 381.

AUTO TACHOMETER-Connects to automobile circuit at battery and at distributor contact points. Zener diode D2 limits maximum charging voltage across C2.-J. A. Irvine, No Moving Parts in Auto Tachometer, Electronics, 39:9, p 77-78.

GAS-TUBE AUTO IGNITION-Thyratron V2 discharges Cl through spark coil $\mathbf{T 3}$ to provide ignition spark each time points open and
magnetic field of trigger transformer $\mathbf{T 2}$ collopses. Field is built up in T1-T2 by power transistor Q1 when points close again.-H. P.

Quinn, Gas Tubes and Transistor for Electronic Ignition, Electronics, 34:S0, p 62-64.

SCS SINGLE-PULSE GENERATOR-Gives one output pulse for each positive-going input. Can be used as tachometer, power loss detector, or peak detector.-"Transistor Manual," Seventh Edition, General Electric Co., 1964, p 434.

HEADLIGHT DIMMER-Will hold low beam setting even when approaching driver dims his headlights. Restores high beam only when light is completely removed from photocell.

Street lights therefore keep system on a low beam. Used in Autronic Eye.-W. E. Bushor, Electronics and the American Automobile, Electronics, 31:47, p 73-79.

MAGNETIC-TAPE CONTROL OF ENGINE-Auto engine parameters are recorded during road tests, and tapes are then used to program laboratory engine to simulate further tests. Synchronous switches Q2-Q3 and Q4-QS, driven by line-frequency square-wave gener-
ator, operate as line-synchronous spdt switch, to place tape signal and lab-engine feedback signal on line alternotely and synchronously with line voltage. Frequency-measuring circuit develops dec voltage proportional to input frequency. Output is used to drive two-
phase motor that controls lab engine param-eter.-V. C. Vanderbilt and C. L. Zimmer, Magnetic Tape Recorder Programs Engine Dynamometer Tests, Electronics, 33:51, p 74-77.

HIGH-PRECISION AUTO TACHOMETER-FOT auto ignition system having 12-v negative ground. Gives ultralinear readings on meter scale.-"Transistor Manual," Seventh Edition, General Electric Co., 1964, p 380.

GATED AMPLITUDE RATIO INDICATOR-AcCUrately measures cylinder gas temperature as function of engine-cycle phase angle, by using amplitude discriminator to indicate ratio of two infrared radiation intensities emitted
by gas at two known wavelengths. Discrimination is accomplished by amplifying 0.1% slice of radiation signal.-R. R. Bockemuehl, Gated Ratio Indicator Aids Engine Research, Electronics, 32:13, p 64-65.

FUEL-PUMP OSCILLATOR-Silicon transistor serves as switch that eliminates arcing contacts, permitting use of pump in explosive atmosphere, even inside fuel tank. Power transistor is in blocking oscillator circuit for driving solenoid plunger assembly of commercial electric fuel pump. Feedback winding was added to drive coil. Ratio of solenoid coil furns to feedback turns should be 4 to 1 to insure proper starting in cold weather. -H. F. Weber, "Transistor Operated Fuel Pump Eliminates Arcing Contacts and Commutator Brushes," Motorola Application Note AN-175, Feb. 1966.

STAIRCASE INTEGRATOR FOR ROTATION ANALYZER-Used ta observe relationship of crankshaft angle in gasoline engines to cy!. inder pressure and ignition timing. Parameters under study are indicated by angular
displacement of rotating disk and are converted into signals for cro display. Magnetic drum is coupled to shaft under fest. Ferritecoated fiber disk with 1° magnetically recorded markers is source for pulses that are
amplified for staircase integrating amplifier that feeds cro.-G. E. Edens, Stairstep Integrater Analyzes Rotation, Electronics, 31:13, p 41-43.

PASSIVE TACHOMETER-Circuit is placed in series with ignition coil to pick up ignition pulses and feed them to integrating ratemeter calibrated in rpm. Number of pulses per shaft revolution depends on number of cylinders.-F. Trainor, Unique Engine Tachometer Uses only Passive Components, Electronics, 35:30, p 40-41.

AUTO-LOCKING GATE FOR TACHOMETER DIS-
PLAY-Permits pulses to pass to display unit during gating period. Display can be held for 5, 10, or 15 sec by switching different capacitors into delay mubr. Additional 200millisec delay gives time for counting fubes to return to zero.-J. K. Goodwin, Digital Tachometer Aids in Turbine Design, Electronics, 32:15, p 58-61.

AUTO IGNITION-Capacitive-discharge ignifion system uses scr as switch. Transistors
serve as d-c to d-c converter.-R. Van Houten For Cars, Electronics, 37:26, p 68-72. and J. C. Schweitzer, A New Ignition System
can be made from oid loudspeaker, mounted so fan blades of generator pass between pickup coil and permanent magnet. Coil mounting should be aluminum to maintain calibration that is made with commercial ta-chometer.-K. M. Bronscome, Engine Tachomefer, EEE, 10:9, p 27.

ZERO-POWER ENGINE TACHOMETER-Requires no bottery or other power source. Coil from 10K relay serves as pickup for mounting near rotating magnets of flywheal of outboard motor or magneto. When rotating magnets are not available, as in most automotive engines, variable-reluctance pickup is used. This

1-PPS GATE-OPENING TIMER-Produces pulses af 1 -sec infervals to control gate of 400,000 rpm digital tachometer. Crystal oscillator
produces 10 -ke signal. Dekatrons are used to divide this to l-pps output.-J. K. Goodwin, Digital Tachometer Aids in Turbine Design,

TACHOMETER AMPLIFIER-Unijunction transisfor is basis of simple, inexpensive tachometer amplifier or frequency meter. Each negative input pulse of sufficient amplitude triggers uit, so capacitor is discharged through uit. Capacitor is then recharged through d-c ammeter by current having sawtooth waveform that minimizes flutter of low frequencies. -7 . P. Sylvan, Frequency Meter-Tachometer Amplifier, EEE, 10:8, p 25-26.

TRANSDUCER D-C AMPLIFIER-Bank 1 of 24channel telemetry sampling switch feeds transducer outputs in sequence to heat-stabilized low-drift d-c amplifier. Output goes to bank 2, for feeding f-m subcarrier oscillator, which in turn amplitude-modulates uhf transmitter. -A. Potton, Telemetry System for Testing Automobiles, Electronics, 33:43, p 57-59.

LINE-TRIGGERED SQUARE-WAVE GENERATOR -Bistable multivibrator Q1-Q2 is triggered by II through master phasing network R1-C1. R2 adjusts duty cycle. Output signal goes to frequency comparator that makes lab engine
duplicate parameters recorded on magnetic tope during actual road run.-V. C. Vanderbilt and C. L. Zimmer, Magnetic Tape Recorder Programs Engine Dynomometer Tests, Electronies, 33:51, p 74-77.

400,000-RPM TACHOMETER DISPLAY-Has five Dekatron tubes arranged in cascade. Nega-five-going pulses from plate of gating tube
are fed to $\mathbf{3 0 - m i c r o s e c}$ one-shot mvbr V10 Tefrode thyratron refurns Dekatron to zero at end of counting period.-J. K. Goodwin, Dig-
ital Tachometer Aids in Turbine Design, Electronics, 32:1S, p 58-61.

HIGH-VOLTAGE PULSE GENERATOR-Squarewave input to transistor Q1 triggers scr on and off, inducing high-voltage damped-oscillation pulse in secondary of TI . Used for auto ignition and other applications requiring up to $\mathbf{3 0} \mathrm{kv}$ from 0 to $\mathbf{4 0 0}$ times per second. -D. R. Grafhom, Now the Gate Turnoff Switch Speeds Up D-C Switching, Electronics, 37:12, p 64-71.

AMPLITUDE DISCRIMINATOR-High-speed trigger with adjustable bios network and cathode-follower output serves as amplitude discriminator for tachometer that responds to pulses produced by gamma radiation sources on sealed-in rotating parts not directly coupled to input or output shofts of transmissions or turbines.-R. R. Bockemuehl and P. W. Wood, Unique Two-Channel Tachometer uses Radioisolopes, Electronics, 35:49, p 4445.

120-W, 300-V D-C AUTO CONVERTER-For 12v auto systems. Develops square-wave voltoge at 200 cps , for conversion to 300 v d-c by silicon-diode bridge rectifier. Each switching transistor requires 7 -inch-square sheet of $1 / 3$ th-inch oluminum as heat sink.-W. E, Bushor, Electronics and the American Automobile, Electronics, 31:47, p 73-79.

HEADLIGHT DIMMER-Autamatically switches from high to low beam when oncaming headlight strikes photocell. Driver may dim lights manually at any time and leave them dim. When lights have been dimmed automatically, momentary reduction of light on photocell will not cause return to high beam. $-W$. E. Bushor, Electronits and the American Automobile, Electronics, 31:47, p 73-79.

CHAPTER 8

Battery Charging Circuits

12-V BATTERY CHARGER CONTROL-Ujt with R1, R2, R3, and C1 form relaxotion oscillotor thot gets power from battery being chorged ond serves to trigger scr through TI. When required firing voltoge of unijunction, as de. termined by bottery voltage, exceeds breok-
down of zener DI, uit con no longer oscillote, ond chorging ceoses. R2 controls cutoff point. Chorger is protected becouse scr connot conduct under conditions of short-circuit, opencircuit, or reverse polarity connection to botfery. Volues ore: R1-3.9K; R2-2.5K; R3—
3.3K; Cl-0.25 mfd; DI-IN753 zener, 6.2 v , 400 mw ; SCR-MCR 808-3; UJT-2N2160.-R. Wechsler, "A Unique Battery Chorger Control Circuit," Motorola Applicotion Note AN-179, Feb. 1966.

QUASI-CONSTANT-CURRENT BATTERY CHARG-ER-Circuit monitors state of charge of battery while charging of constont high rate, then transfers automatically to constant-current trickle charge when battery is fully chorged. -A. Anton, Comparator Controls Battery Charging Rate, Electronics, 37:12, p 72.

CHARGER CONTROL WITH REFERENCE BAT-TERY-Developed to insure constant d-c supply for rotary converters if ship's power supply fails. Confrol circuit operates SWI af proper time intervals. B2, in series with B1 with polority opposing, supplies reference voltage. When storage battery needs charge, gas tube ignites to pull in RL and initiate charging cy-cle.-V. Zeluff and J. Markus, "Electronics Manual for Radio Engineers," McGraw-Hill, N.Y., 1949, p 545.

AUTOMATIC REGULATOR UNIT

THYRATRON CONTROLS CHARGER RECTIFIERAutomatic regulator turns charger off when battery voltage exceeds predetermined value,
and turns charger on again automatically of any desired lower voltage from 5 to 7.5 v . Line voltage changes do not affect adjustment.-
J. Markus and V. Zeluff, "Handbook of Industrial Electronic Circuits," McGrow-Hill, N.Y., 1948, p 257.

REGULATOR FOR PORTABLE CRO-Mainfains constant 10-v output from 12-v nickel-cadmium battery, from external d-c voliages up to 35 v , or from $117 \cdot \mathrm{v}$ a-c line. Includes batfery-charging circuit, in which thermistor RI senses rise in battery femperature and turns off charger when battery is fully charged. -O. 5vehaug and J. R. Kobbe, Battery-Operofed Transistor Oscilloscope, Electronics, 33:12, p 80-83.

30 W-sEC 5UPPLY WITH CHARGER-Charges copocitor to $300 \vee$ in 8 to 12 sec through series-line voltage doubler. Battery drain is 750 ma peak and 150 ma idling. Uses transistor collector-base junction in full-wave recfifier circuit to charge nickel-cadmium battery from stepped-down a-c voltage across N1 and N2. Converter operates as 120-cps squarewave switch so same transformer may be used for 60 -cps charging voltage. Battery provides up to 300 flashes.-H. A. Manoogian, Transistor Photoflash Power Converters, Electronics, 31:35, p 29-31.

WELDER BATTERY CHARGER-During overnight charging of battery used to maintain equal amplitude output current pulses for welder, circuit senses whether battery voltage is obove or below required value for load current of

1 amp. If low, one-shot timer is actuated, to charge battery for preset interval. Voltage is then measured again, and charging repeated if necessary. If voltage is too high, load remains on until battery voltage drops
to point where charger is actuated again.-F. T. Marcellino and A. A. Dargis, Circuit Keeps Voltage Constant for Welder Battery, Electronics, 38:21, p 88.

CONSTANT-CURRENT BATTERY CHARGER-Thy-ratron-controlled motor drives phasing control rheostat to give fully automatic charging of 502 -v storage cells at constant rate of 2 amp . -J. Markus and V. Zeluff, "Handbook of Industrial Electronic Control Circuits," McGrawHill, N.Y., 1956, p 150.

CHARGER CONTROL WITH REGULATED D-C REFERENCE-Eliminates need for separate reference battery. Control fires thyratron to pull in or out and initiate charging cycle when battery voltage drops.-V. Zeluff and J. Markus, "Electronics Manual for Radio Engineers," McGraw-Hill, N.Y., 1949, p 545.

SCR BATTERY-CHARGING REGULATOR-Can charge 12-v battery af up to 6 -amp rate. When battery voltage reaches charged level, charging scr shuts off, and trickle charge determined by R4 flows.-"Silicon Controlled Rectifier Manual," Third Edition, General Electric Co., 1964, p 109.

CHAPTER Beacon Circuits

PULSE-CODED 100-WATT BEACON-Push-pull power oscillator with transmission-line tank gives good frequency stability of $\mathbf{2 2 0}$ to $\mathbf{2 6 0}$ Mc. Encoder uses capacitor charge and discharge to cut off V1 at intervals giving pairs of 10 -microsec pulses to aid in recovery of spocecraft.-J. G. Richter, Redesigning Project Mercury Beocons, Electronics, 35:3, p 50-52.

SOLID-STATE MARKER-BEACON RECEIVERThree colored lamps glow in sequence during instrument landing system opproach os 75. Mc receiver passes over three morker beacons modulated of $400,1,300$, and $3,000 \mathrm{cps}$ re-
spectively. Four-pole Butterworth filter ahead of first stoge suppresses spurious response to 77.25-Mc corrier of television chonel 5. Single r-f stage isolates separate $68.75-\mathrm{Mc}$ crystal controlled oscillator from antenna. Age ac-
comodates signols from 300 microvolts to 50 mv.-J. G. Robertson, Light-Airplane MarkerBeacon Receiver, Electronics, 37:3, p 33-33.

I-LIGHT AIRBORNE MARKER BEACON-Dualconversion $75-\mathrm{Mc}$ receiver has high first i-f for good image rejection and lower second i-f for stable gain. Responds to any of three modulating frequencies (3,000 cps airwoys, 400-cps outer runway, and $1,300-\mathrm{eps}$ middle runway).-R. G. Erdmann, Transistor Dual Conversion for Marker-Beacon Receivers, Electronics, 32:19, p 59-61.

SOS ON TWO FREQUENCIES-Transistors and tubes are combined for maximum power efficiency at $5-\mathrm{w}$ output. Operates on $500-\mathrm{kc}$ and $8.326-\mathrm{Mc}$ distross frequencies. Code-wheel-operated photoelectric flip-flop automatically switches bands and keys transmitter in SOS code.-H. B. Weisbecker, Distress Transmitter is Hybrid, Electronics, 31:31, p 98-100.

GATED-DIODE BEACON MODULATOR-Re.
places hydrogen-thyratron line-pulsing modulators formerly used to plate-pulse pencil
triode in beacon transmitter. Moximum pulse rote is 5,000 pps. $-W$. H. Lob, Solid-State Pulse Modulator, Electranics, 33:30, p 72-74

3-LIGHT MARKER-BEACON ADAPTER-Separates the three marker beacon madulating frequencies and converts them to voltages for operating three color-coded lights in aircraft. When added to one-light receiver, adapter requires anly two more electronic switches, in addition to loss amplifier and filters.-R. G. Erdmann, Transistor Dual Conversion for Marker-Beacon Receivers, Electronics, 32:19, p 59-61.

CRASH-RESISTANT BEACON-Designed to withstand shocks up to $1,100 \mathrm{~g}$ and extreme environments, 5.7-1b beacon is thrown free of crashing aircraft and automatically storts transmitting pulse-modulated $\mathbf{2 4 3 - M c}$ distress signal.-D. M. Makow, Rodio Beacon Helps Locote Aircraft Crashes, Electranics, 33:4, p 54-56.

SIGNAL-POWERED TRANSPONDER-Power received at frequency of tuned antenna circuit energizes crystal transistor stage, to make it oscillate at a different frequency. Con be used in aircraft or vehicle to make it radiate position-determining signal when interrogated by powerful tronsmitter at base station.-l. R. Crump, Radio Waves Power Transistor Circuits, Electranics, 31:19, p 63-65.

CHAPTER 10

Bridge Circuits

PULSE HEIGHT DETECTOR-Photodiode held against screen of scope unbalances bridge when illuminated by pulse on screen. Bridge output can control another scope for displaying and measuring pulses whose amplitude and period vary randomly.-l. Baird, Pulse Frequency Measured by Photoconductor and Scopes, Electronics, 38:13, p 77.

PHASE-DIFFERENCE BRIDGE-Develops dec error voltage proportional to phase difference between two applied signals, one of which is 60 -cps line-frequency reference. Can also
correct oscillator outputs and serve as pulsewidth discriminator.-D. P. Dorsey, Transistor Bridge Detector, EEE, 13:1, p 75.

DIODE SAMPIING BRIDGE-Uses diode matched quad with blocking-oscillator driving circuit. Negative input pulse triggers oscillator, generating pulse abaut 100 nsec wide, to forward-bias bridge diodes and reduce impedance between terminals 1 and 2 to about 5 ohms. Between pulses, diodes are reversebiased by capacitor charge and impedance between terminals rises to 1,000 meg.-"Transistor Manual," Seventh Edition, General Electric Co., 1964, p 450.

CASCODE ADDER-Gives gain of 600 when used as null detector of $400-\mathrm{eps}$ impedance bridge, with measuring accuracy of one part per million.-W. A. Rhinehart and L. Mourlam, FET Performs Well in Balancing Act, Electronics, 38:19, p 88-92.

OPTOELECTRONIC BRIDGE ELEMENT-Lomp with rheostot varies resistance of photocell over ronge of 100 to 10,000 ohms to give stable nonreactive resistance element for r-f

SCR CONTROL-Firing angle and trigger level ore controlled by magnetoresistor bridge,-R.
bridge.-R. H. Wagner, Voriable R-F Resistor Attained With Photocell, Electronics, 37:26, p 67.

M. Gitlin, Mognetoresistors Isolate Load From Control Circuit, Electronics, 38:3, p 54-59.

TRANSISTOR BRIDGE SWITCHES MICROVOLT SIGNALS-Circuit approaches infinite impedance during off condition by lowering emit-ter-fo-collector conductance gop to zero. Conventional resef flip-flop controls on and
off operation of series-connected npn ond pnp bridge transistors.-M. V. Kalfaian, Transistor Bridge Switches Microvolis, Electronics, 37:1, p 60.

SELF-BALANCING TORQUE INDICATOR-Uses shunt bridge balancing technique. Amplifier and servo motor that drive 50 -ohm balancing pot RB are standard commerciol units. Highly stable power supply and reference voltage are not needed.-C. H. Haakona, Shunt Bridge Balancing in Strain-Gage Indicators, Electronics, 32:30, p 50-51.

CRYSTAL-PARAMETER BRIDGE-Bridge plugs into crystal socket of standard crystal impedance meter, and crystal under test plugs into bridge. Only other instruments needed for measuring equivalent parameters of overtone crystals for 75 to 200 Me are frequancy meter and null-indicating meter,-D. W. Robertson, Plug-in Bridge Checks VHF Quartz Crystals, Electronics, 31:19, p 82-85.

D-C LEVEL SHIFTER-Bridge R1D5R2D6 and two transistors in dec negative-feedback loop deliver output signal that is replica of input but af lower impedance and shifted in d-c voltage level a predetermined amount.-J. Willis, High Precision D-C Level Shifter Reduces Output Impedance, Electronics, 36:18, p 65-68.

INPUT PULSE UNBALANCES BRIDGE-Trigger pulse causes opposite resistance variations in magnetoresistors M1 and M2, to give 1 v output for 25 -ma pulse current.-R. M. Gitlin, Magnetoresistors Isolate Load From Control Circuit, Electronics, 38:3, p 60-61.

PULSE CLAMP-Clamps pulses in millivolt range to any d-c level even though pulses are below barrier potentials. Also used for sampling pulse amplitudes and for storing sampled amplitude in memory copacitor.-A. J. Koll, E. Bleckner, and O. C. Srygley, Semiconductor Clamp Handles Millivolt Signals, Electronics, 33:35, p 64-65.

TRANSDUCER VOLTAGE-RESISTANCE CON-VERTER-D-c voltage output of transducer is converted to a-c voltage by fet in one leg of bridge that controls $\mathrm{f}-\mathrm{m}$ oscillator. Arrange-
ment converts tronsducer in effect to variable resistor, simplifying measurement of many parameters in data acquisition system.-A. R. Greenfield and W. H. McCloskey, FET Converts

Tronsducer for Use in A-C Bridge, Electronics, 39:3, p 84-85.

CHAPTER 11

Capacitance Control Circuits

TOUCH-CONTROLLED SWITCH-Normal 30 to 100-pf capacitance of human body furns lamp on and off. Touching on antenna loads highimpedance network, reducing neon-lamp os-
cillator voltage below level required for firing four-layer pnpn germanium alloy transistor, and current that was shunted to ground through transistor now operates relay, turn-
ing on lamp. Touching off antenna reverses all conditions.-s. B. Groy, Home and Auto Controls, Electronics, 36:19, p 52-66.

CAPACITANCE-TYPE AIRCRAFT FUEL GAGEIndicates weight of fuel rather than volume. Uses self-balancing bridge, with concentrictube capacitor mounted vertically in cell of tank to serve as one arm. With fuel in tank, servo drives bridge-rebalance potentiometer
and indicator to new position corresponding to amount of fuel in tank.-J. Markus and V. Zeluff, "Handbook of Industrial Electronic Control Circuits," McGraw-Hill, N.Y., 1956, p 21.

PROXIMITY SWITCH-Sensor plate and C2 form capacitive voltage divider across a-c supply. Value of C2 depends on proximity to sensor plate of human body, grounded object, or other reasonably conductive object. When voltage across C1 exceeds breakdown of neon, C1 and C2 discharge through ser gate, causing scr to trigger and energize load. Latching action is obtained by driving scr anode circuit with d-c, for such applications as elevator floor selector buttons and door safety controls.-"Silicon Controlled Rectifier Manval," Third Edition, General Electric Co., 1964, p 122.

BALANCED-CAPACITANCE FENCE ALARMSets off alarm when anyone approaches barbed wire fence around power plant or substation. Automatically corrects for capacitance changes due to weed growth and
changing weather conditions. Two separate antennas and two oscillators are used, with lines along fence serving as part of tuning capacitance of each oscillator. Mixer produces beats befween harmonics. Frequency-
selective network in low a-f range produces dec voltages that trigger relay fubes and actuate alarm relays.-J. Markus, "Handbook of Electronic Control Circuits," McGraw-Hill, N.Y., 1959, P 1.

CONTROLLING EXTRUSION OF PLASTIC ON WIRE-Uses sensing probe as one arm of capacitance bridge that is normally balanced with respect to 10-kc phase-shift oscillator signal. Oscillator outpui is compared with bridge unbalance in mixer that determines directional error. Output of mixer is amplified to control servo-driven rheostat which in turn
controls speed at which wire is pulled, to hold copocitance within desired limits. Sensing electrode is water trough, with water in contact with extruded insulation to form one side of unknown capacitor. Wire is grounded to form other side.-J. Markus and V. Zeluff, "Handbook of Industrial Electronic Control Circuits," Mc-Graw-Hill, N.Y., 1956, p 18.

CAPACITANCE TRANSDUCER FOR $30,000-R P M$ TACHOMETER-R-f oscillator is adjusted to oscillate feebly anywhere between 500 and $2,000 \mathrm{kc}$. When pickup capacitance increases, it shunts oscillator feedback circuit more, reducing its r-f output voltage. Resulting drop in a-c component of rectified r-f carrier is
amplified to drive tachometer or frequency meter. Pickup is mounted close to moving blades on shaft whose speed is being meas-ured.-J. Markus and V. Zeluff, "Handbook of Industrial Electronic Control Circuits," McGraw-Hill, N.Y., 1956, p 17.

BODY-CAPACITANCE ALARM-Detects intruder by sensing body capacirance. Oscillator Q1 feeds 20 kc to capacitance bridge that contains Cl , which is capacitance to ground of protected cabinet. When unbalanced, bridge feeds 20-kc signal to amplifier Q2, whose
output goes to phase-sensitive defector DID2, which converts unbalance signal into d-c voltage for amplification by Q3. At balance, Q4 and QS send about 1 mo through relay K1 to keep it energized. When intruder approaches protected cabinet, output of phase-
sensitive detector becomes more negative, causing K1 to drop out and sound an alarm. -S. M. Bagno, Sensitive Capacitance Intruder Alarm, Electronics, 33:38, p 65-67.

SENSING CANE FOR BLIND-Capacitancesensing probe in tip of cane changes frequency of one oscillator in accordance with distance from ground, curb, or holes, to make beat-frequency oscillator produce audio tone in headset worn by blind person.-J. Markus and V. Zeluff, "Handbook of Industrial Electronic Control Circuits," McGraw-Hill, N.Y., 19S6, p 24.

IN-CIRCUIT CAPACITOR TESTER-Permits checking capacitors dynamically for opens or shorts without disconnecting them. Indicator light is turned on for both faults.-E. L. Major, In-Circuit Capacitor Tester, EEE, 13:3, p 47.

ELECTRONIC CAPACITOR-Two-ferminal circuit provides capacitance values from 0.1 to 100 mfd, continuously variable in three ranges.

Voltage rating is +10 v and frequency range is d-c to 4 Sps . Used in low-pass RC filter with adjustable cutoff frequency, in waveform
analyzer.-D. L. Bergman, Electronic Capacitor is Continuously Variable, Electronics, 38: 21, p 89.

CHAPTER 12

Cathode Ray Circuits

CRO LEVEL-CONTROLLED STROBE-Variable input level determines part of telemetry signal that is selected for cathode-ray display. Output of Schmitt trigger Q2-Q3 is square wave with repetition rate determined by time-

CRO SWEEP TRIGGER-Base of Q1 is grounded once during each revolution by commutafor segment of gyro balancer, to make circuit produce sharp pulse that triggers oscilloscope sweep.-F. W. Kear, Electronic System for Balancing Gyro Wheals, Electronics, 33:43, p 82-85.

TWO-SIGNAL DISPLAY-Electronic switch samples two video signals and modulates crt beam so both waveforms appear simultane-
ously on screen. Matched diodes D1 and D2 serve as switches for the positive 2-v video signals.-A. E. Popodi, Reliable Reperioire Of

DEFLECTING 22-INCH CRT AT 50 KC-Circuit provides 5 -amp peak-to-peak yoke current for full 70° deffection of analog computer display. Rapid collector furnoff minimizes retrace time. Two B-211 diodes, series-connected as

dampers, must be matched for voltage divi-sion.-R. S. Hartz and R. C. Allen, Reliable Circuit Supplies High Peak Deflection Voltages, Electronics, 35:41, p 54-55.

HIGH VOLTAGE FOR PORTABLE CRO-Derives 3.3 kv for post-accelerating anode from 20 kc high-voltage oscillator supply.-O. Svehaug and J. R. Kobbe, Battery-Operated Transistor Oscilloscope, Electronics, 33:12, p 80-83.

AXIS-CROSSING DETECTOR-Used in weaksignal detectors and in theoretical studies of noise. Samples time intervals between posi-tive-going and negative-going zero crossings,
to establish on interval gate whose width equals time interval of desired weak signal. Oufput goes to cro for viewing of interval gate.-A. J. Rainal, Digital Measurement of

Axis-Crossing Infervals, Electronics, 33:23, p 88-91.

Z-AXIS MARKER GENERATOR-Circuif pravides high-intensity dot marker on trace at any desired frequency in range from 8 ta 22 Mc , in two overlapping ranges, with better than 1% long-term accuracy. Z-axis pulse is generated when external swept r-f oscillator passes through frequency to which tank circuit is tuned.-D. J. Odorizzi, Z-Axis Marker Generator for Bandpass Circuit Alignment, Electronics, 33:26, p 108-110.

RASTER DISPLAY-Sixteen digital words can be displayed simultaneously on ordinary scope, for troubleshooting in data processors.

Sweep generators are controlled by twobbit gap between words.-B. S. White, Circuit Converts One-Trace Scopes to Raster Display,

FOCUS-COIL REGULATOR-Regulation is 0.5\% for current range of 220 to $\mathbf{2 7 0} \mathbf{~ m a}$, for magnetic facus cail of cri, between $25^{\circ} \mathrm{C}$ and
$65^{\circ} \mathrm{C}$.-A. E. Popadi, Reliable Repertoire Of Display Circuits, Electranics, 36:2, p 60-66.

LIGHT-PEN AMPLIFIER-Consists of four twotransistor wideband-amplifier modules, each with inverse feedback to hold current gain at 21 with high stability. Interstage coupling networks raise lower cutoff frequency to 500 cps, to provide some rejection of 120-cps room light picked up by photodiode.-B. M. Gurley and C. E. Woodward, Light-Pen Links Computer to Operator, Electranics, 32:47, P 85-87.

STRETCHING FAST PULSES BY SAMPLINGAttachment for canventianal scope samples instantaneous amplitude of signals at different instonts of time and recanstructs original
shape by peak-detecting amplified and stretched samples. Permits resalving pulse rise times as short as $1 / 3$ nanosecond with repetition rates up to $50 \mathrm{kc} .-\mathrm{J}$. J. Amadei,

Canverting Oscillascapes for Fast Rise Time Sampling, Electronics, 33:26, p 96-99.

TRANSISTOR BETA DISPLAY-Falloff in beta with increasing collector current is displayed on auxiliary cro over range of 0 to $\mathbf{2 0 0} \mathbf{~ m a}$,
for constant collector voltages up to 8 v.-R. Zuleeg and J. Lindmayer, Sweep Equipment

Displays Transisfor Beta, Electronics, 31:49, p 100-101.

RASTER VERTICAL SWEEP-Q1 in shaper triggers intensifier pulse for test oscilloscope using tv-type scanning, while remainder of
circuit generates vertical sweep for scope used to measure time intervals in range of 0.5 to 100 microsec with time resolution of
0.05 microsec.-R. P. Rufer and W. A. Karlotski, Use Raster Oscilloscopes for Faster Time Measurements, Electronics, 35:52, p 38-42.

TUNNEL-DIODE CURVE-TRACER-Positive half of $60-\mathrm{cps}$ a-c voltage is applied to tunnel diode and to horizontal deflection amplifier of cro, and voltage across RS, proportional to diode current, is applied to vertical input. Arrangement gives display of complete characteristic throughout negative-resistance re-gion.-J. A. Narud and T. A. Fyfe, Tunnel Diode Curve-Tracer is Stable in NegativeResistance Region, Electronics, 34:18, p 74-75.

PORTABLE CRO TRIGGER INPUT AMPLIFIERSchmitt trigger mubr Q3-Q4 is modifled by R1, R2, and C1 to give stable presentation of 2 Mc, with synchronization up to 4 Mc .-O. Svehaug and J. R. Kobbe, Battery-Operated Transistor Oscilloscope, Electronics, 33:12, P 80-83.

D-C TO 100-MC DEFLECTION AMPLIFIER-Gain is constant within 3 db of 40 db over entire

100-Mc bandwidth, for driving electrostatic deflection plates of oscilloscope.-L. L. Kos-
sakowski, Designing a D-C to 100-MC Deflection Amplifer, Electronics, 35:17, p 64-66.

PPI GROUND PULSE BLANKER-Used in backscatter receiver to produce gating pulse that can be applied to screen grid of final i-f stage to remove bright ground pulse (occurring because receiver is fed from transmitting anfenna by way of transmit-receive switch) from ppi screen.-K. Perry, Reducing Interference in lonospheric Sounding, 33:22, Electronics, P 118-120.

PORTABLE CRO UNBLANKING AMPLIFIERSupplies signal to furn on crt during sweep. Hold-off circuit insures that trace starts from
same point on every sweep.-O. Svehaug and J. R. Kobbe, Battery-Operated Transistor Oscilloscope, Electronics, 33:12, p 80-83.
 two different intensities for symbols on crt. -A. E. Popodi, Reliable Repertoire Of Display Circuits, Electronics, 38:2, P 60-66.

AMPLIFIER FOR MARKER GENERATOR-Triode V2A amplifies brightening pulse generated by marker circuit, and foeds amplified pulse to V2B for mixing with fixed or variable external marker pulse so both are applied to Zaxis of scope.-D. J. Odorizxi, Z-Axis Marker Generator for Bandpass Circuit Alignment, Electronics, 33:26, p 108-110.

STROBE PULSE GENERATOR-Constant-amplitude sawtaoth fram timebase of display unit is fed to one cantrol grid of Schmitt trigger V1, whose output triggers one-shot mubr to produce gating pulse 0.1 millisec wide that
also identifies strobed channel on cri by brightening trace af that point.-A. Potfon, Telemetry System for Testing Automobiles, Electronics, 33:43, p 57-59.

HORIZONTAL DRIVE-Three field-effect transistars give 45 db valtage gain for l-cps triangular wave in horizontal deflection circuit of crt.-F. J. Murphree and J. H. Hammond Jr., High-gain D-C Amplifier Drives CRT Display, Electronics, 37:19, p S3.

ALIGNMENT CORRECTION-Circuit developed for correcting alignment inaccuracies between electrostatic deflection plates and face of
cathode-ray tube gives output varying from 0 to $+3.5 \vee$ when input varies from 0 to-4 v.-F. E. Smith, Buffer Amplifier Supplies Bi-
polar Output, Electranics, 37:21, p 75.

RASTER VERTICAL TRIGGERING GENERATOROutput pulse width of blocking oscillator Q1 is over 3.5 microsec, determined by Tl and C2. Q2 couples this pulse to output H for use as unsynchronized output, while Q3 with 400-kc sync input serves with D2 as coincidence gate to give output only when both sync and gate pulses are present.-R. P. Rufer and W. A. Karlotski, Use Raster Oscilloscopes for Faster Time Measurements, Electronics, 35: 52, P 38-42.

UHF SYNCHRONIZER-Simple tunnel-diode circuit can synchronize any scope to any constant frequency up to signal-bandwidth limits of scope, even though bandwidths are greator than cro sync circuits can handle. Upper frequency limit of circuit is at least 1.2 gc . Diode oscillates at frequency controlled primarily by L1, but will lock onto uhf input signal and deliver exact subharmonic of inpui. Can provide countdowns af ratios exceeding 100:1.-F. M. Carlson, Tunnel-Diode UHF Synchronizer, EEE, 12:2, p 109.
 42.

TRACE INTENSIFIER-Designed to convert weak positive-going pulse to negative-going pulse with $15 \vee$ minimum amplitude, as required commercial oscilloscope. Minimum input amplitude is $\mathbf{2 5 0} \mathbf{~ m v . - L . ~ J . ~ B r o c a t o , ~ S c o p e - T r a c e ~}$ Intensification Converter, EEE, 13:2, p 62-63. on cathode of A-scope radar presentation on

CALIBRATOR FOR PORTABLE CRO-Generates $40-m v$ square wave at 2 kc . Provides swing of 30 v of each crt defection plate.-O.

Svehaug and J. R. Kobbe, Battery-Operated Transistor Oscilloscope, Electronics, 33:12, P

PORTABLE CRO HORIZONTAL AMPLIFIER-BaIanced circuit includes temperature compensofion. Closing 51 provides magnification of 5 on screen. Bandwidth is 1 Mc .-O. Svehaug and J. R. Kobbe, Battery-Operated Transistor Oscilloscope, Electronics, 33:12, p 80-83.

GYRO VIBRATION AMPLIFIER-Vibrotion resulting from imbalance is sensed by inductive transducer that produces sine wave which is amplified by circuit and displayed on cro.-F. W. Kear, Electronic System for Bolancing Gyro Wheels, Electronics, 33:43, P 82-85.

RASTER TIMING GENERATOR-Crystal oscillafor (2 Mc) triggers blocking oscilator $\mathbf{Q 4}$ that counts down by 5 to produce 400 -kc timing
pulses for test oscilloscope using tv-type scan-ning.-R. P. Rufer and W. A. Karlotski, Use Raster Oscilloscopes for Faster Time Measure-
ments, Electronics, 35:52, P 38-42.

TRACE BRIGHTNESS EQUALIZER-Amplitude of signal to be displayed controls scope brightness by changing voltage on cathode of crt. Low-level signal and high-voltage pulses are automatically adjusted as to brightness, so both traces appear equally bright on photow graphic film.-J. K. Goodwin, Circuit Evens Scope Brightness, Electronics, 31:51, p 96-98.

Z-AXIS MODULATION-Pulse amplifier allows crt beam-intensity modulation from 3-v logic levels. Requires only single -150 v supply. Intended as modification for Tektronix oscil-loscope.-J. H. Cormack, Pulse Amplifier for Beam Intensity Modulation, EEE, 14:1, p 63.

SYNC BLOCKING OSCILLATOR-Free-running period of grounded-emitter stage is made to lock in with frequency of pulse generator, to provide synchronizing signal for conventional oscilloscope during tests of high-speed computer circuits.-l. Neumann, Transistorized Generator for Pulse Circuit Design, Electronics, 32:14, P 47-49.

NEON CRT BIAS REGULATOR-Neon lamp serves as bias regulator for grid 1 of oscilloscope crt and as pilot lamp.-More GlowLamp Circuits, EEE, 12:2, p 106-108.

LIGHT-PEN PREAMP-Raises signal level of germanium photodiode before it is fed through coax to main amplifier. Special decoupling in callector circuit allows power and signal to be supplied simultaneously over single coaxial cable.-B. M. Gurley and C. E. Woodward, Light-Pen Links Computer to Op. erafor, Electronics, 32:47, p 85-87.

Z-AXIS AMPLIFIER-Accepts clipped video signal of microwave interferometer system and intensity-modulates electron beam of oscillo-scope.-H. L. Bunn, Determining Electron Density and Distribution in Plasmas, Electronics, 34:14, p 71-75.

UNBLANKING PULSE GENERATOR-Unblanking signal is produced by repeated amplificafion and clipping of 500 -eps signal from antenna synchro driver. Square-wave output is applied to control grid of display crt. Balancing controls are adjusted so unblanking strobe line starts from center.-R. T. Wolfram, Improved Communications Using Groundseatter Propagation, Electronics, 33:44, p 74-78.

CHAPTER 13

Character Generator Circuits

CHARACTER GENERATOR-Pulsed oscillator, used in producing alphanumeric display characters from combinations of circles, half-circles, and ellipses, is transient-free. Sinusoidal oscillatar Q2 starts with full amplitude and stops in less than one cycle.-A. E. Popodi, Reliable Repertoire Of Display Circuits, Electronics, 38:2, p 60-66.

SYMBOL GENERATOR-Combines sine and co-
sine woves of ten harmonic generators to produce X and \mathbf{Y} waveforms for alphanumeric character generator.-K. E. Perry and E. J. Aho, Radar-Computer Traces Alphanumeric Characters, Electronics, 34:26, p 75-79.

CRT NUMBER GENERATOR-Lissajous patterns on crt form numerals 0 to 9 that appear to be handwritten. Vertical and horizontal wave-
shapes used to produce a number are continuously applied to pair of number gates. Gates open when excited by high-voltage r-f
transformer, permitting waveforms to pass through to crt deflection plates and create pattern on screen. All waveshapes are de-

 $\mathrm{X}^{\prime}(\mathrm{O}) \quad \begin{aligned} & \text { TO } \mathrm{X} \text { DEFL } \\ & +1 \\ & \text { OF SECONDARY TURNS FOR }\end{aligned}$

ANALOG CHARACTER GENERATOR-Displays numeric characters 1 through 7 on cathoderay tube by deflecting spot to trace out each character continuously. X and Y deflection voltages are obtained by combining sine and cosine terms of first five harmonics of 30-ke fundamental. Transistorized gated oscillators, flip-flop serial counfers, and emitfer-followers feed 10 toroidal transformers having one set of secondary windings for each character.K. E. Perry and E. J. Aho, Generafing Characters for Cathode-Ray Readout, Electronics, 31:1, p 72-75.

CHARACTER-GENERATOR DEFLECTION SWITCH -Coarse deflection system uses 32 identical power transistor cirsuits in switching configuration to drive low-inductance main deflection yoke. Half of these control X deflection to give 16 discrete positions, and the remainder serve for \mathbf{Y} deflection.-K. E. Perry and E. J. Aho, Radar-Computer Display Traces Alphanumeric Charactars, Electronics, 34:26, p 75-79.

(I)

(2) Lnsun

(1) YM刁

rived from 60-eps centertopped sine-wave source. Reliobility is insured through use of passive elements (resistors, capacitors, and
diodes) and standard techniques of clipping, limiting, and/or phase shifting to generate required waveshapes.-R. L. White, Forming

Handwritten-like Digits on CRT Display, Electronics, 32:11, p 138-140.

SHOCK-EXCITED SINE-WAVE OSCILLATORRectongulor pulse turns on five identicol harmonic generotors for olphonumeric chorocter
generotor.-K. E. Perry and E. J. Aho, RodorComputer Disploy Troces Alphonumeric Chorocters, Electronics, 34:26, p 75-79.

SHOCK-EXCITED COSINE-WAVE OSCILLATOR-
Single 34.1-microsec ring commond furns on five identical hormonic generafors for olphanumeric choracter generator.-K. E. Perry and
E. J. Aho, Rodar-Computer Display Traces Alphonumeric Choracters, Electronics, 34:26, p 75-79.

CHARACTER DEFLECTION AMPLIFIER-Converts X or Y voltoge woveform into equivolent current woveform of up to 0.5 amp peak to peok, to drive low-inductonce defection yoke of cathode-ray charocter generotor.-K. E. Perry ond E. J. Aho, Radar-Computer Disploy Troces Alphanumeric Characters, Electronics, 34:26, p 75-79.

CHAPTER 14

Chopper Circuits

PENTODE CHOPPER-Designed for use as first stage of wide-bond omplifier (d-c up to several kc). Design procedure is given. For $150-$ v plate supply, typical values are R2 $=100$ ohms, R4 $=5 \mathrm{~K}, \mathrm{R} 3=110 \mathrm{~K}, \mathrm{RI}=15 \mathrm{~K}$ with IN34A diode, $\mathbf{R 5}=1 \mathrm{meg}, \mathrm{Rg}=1 \mathrm{~K}$, and $\mathbf{C 1}$ depends on lowest frequency to be omplified. -D. G. Knox, Electronic Chopper, EEE, 10:11, p 27-28.

400-CPS MECHANICAL CHOPPER AMPLIFIER
-Chopper modulates incoming d-c signal for o-c amplification, then demodulates output synchronously. Conversion goin is above 5,000 . Suitable for high-gain low-level straingage thermocouple, and similar signals where omplifier drift must be minimized without using regulated power supply.-L. S. Klivans, D-C Amplifiers for Control Systems, Electronics, 31:47, p 96-100.

$$
\begin{aligned}
& \text { HYBRID D-C OPERATIONAL AMPLIFIER-Uses } \\
& \text { Goldberg chopper-stabilized principle for d-c } \\
& \text { drift correction. D-e gain is } 900,000 \text {, input } \\
& \text { across } 10,000 \text {-ohm load of } 0 \text { to } 800 \text { cps.-R. L. } \\
& \text { io Withstand Missile Environments, Electronics, }
\end{aligned}
$$

SUMMING CHOPPING AMPLIFIER-D-c operafional amplifier is connected as summing amplifier with two inputs. Input-output relationship is independent of amplifier characteristics because amplifier gain is sufficiently high and effects of d-c drift in transistor cir-
cuits are sufficiently small. D-c and low-frequency components are amplified in chopper amplifier and integrating amplifier, while high-frequency o-c components go through preamplifier. The two signals are combined and further boosted by power amplifier. In-
tegrating section has time constant of 12 sec , determined by C2-R3.-W. Hochwald and F. H. Gerhard, D-C Operational Amplifier With Tronsistor Chopper, Electronics, 32:17, p 94 96.

500-W VARIABLE PULSE WIDTH REGULATOR -Chopper transistor supplies pulse-widthmodulated pulses to overaging circuif and filter. Filter output voltage is compored to external reference voltage by magnetic amplifier, which changes pulse width to decrease
doviation. Chopper is driven by iwo-fronsisfor square-wave oscillator modulated by magnetic amplifier.-P. Balthasar, New Transistor Regulator Handles 500-Watt Outputs, Electronics, 35:38, p 48-49.

CHOPPER-TYPE REGULATOR-To obtain 10 v af 1 amp from satellite solar cell supply with 97\% efficiency, differential amplifier in com-
parator stage produces error valtage to confrol Schmitt frigger, driver, and pass switch. This achieves regulation by chopping current
flow into filter for discrete intervals.-C. Andren, High-Efficiency Voltage Regulator, Elecfronics, 37:23, p 64-5.

ASYNCHRONOUS SQUARE-WAVE CHOPPERUsed to interrupt or chop square wave generated with or in between regular system clock pulses, at specified times. Clock pulses are applied to bases of Q1 and Q4. Can be
used to generate unblanking pulses without rise time deterioration, for intensifying sine and cosine waves on a radar display.-J. McGruder, Square Wave Chopper, EEE, 10:12, P 26-27.

SHUNT FET CHOPPER-Shunt connection of silicon fet gives excellent performance because on resistance is only 20 ohms and drain-gate leakage current is less than 0.1 nanoamp.Six More Semiconductor Advances from TI, (Texas Instruments ad), EEE, 14:8, p 120-121.

PHOTOCONDUCTIVE CHOPPER-Combines low noise level with resistance to vibration. R1 prevents burnup of photocell. R2 gives maximum conversion efficiency at sefting of about 2.2 meg. Cl averages $d-c$ input signal fluctuations so they do not exceed 120-cps chopping frequency of light source.-R. G. Seed, Chopper Uses New Photocells, Electronics, 31 21, p 90-98.

PRINTED-CIRCUIT CHOPPER-Uses conventional Bright chopper connected to reference supply through coupler, constructed on ceramic chip. Q1 and Q4 are 2N914 motched pairs, Q2 and Q3 are 2N2412, and QS and Q6 are 2N914. All diodes are IN914.-D. D. Robinson, Application of Integrated Circuits: An Evolutionary Approach, EEE, 12:4, p 42-47.

NORMALLY-OFF GTO CHOPPER-Small trigger at input generates high-power pulse with duration determined by time constant R2-C1. Gate-furnoff controlled rectifier in this circuit will chop 1 kw at 1 kc .-J. W. Motto, Jr., Switching Circuits Using the Gate Turnoff Controlled Rectifier, EEE, 13:3, p 52-55.

JONES CHOPPER FOR BATTERY-POWERED VEHICLE-Uses variable-frequency constant-pulse-width system that starts reliably and provides smooth acceleration. At low speeds, on time of chopper, in series with d-c series
motor, is much less than off time so average motor voltage is low. Potentiometer R2 controls ratio of on to off times for speed control. -"Silicon Controlled Rectifier Manual," Third Edition, General Electric Co., 1964, p 173.

ARNOLD CHOPPERS A-175

MULTITRACE CRO DISPLAY-Allows simultaneous presentation of desired pulse and of limit voltage levels. Choppers operate 45° out of phase, which provides approximately
equal brightness for both parts of display.D. F. Frost and R. M. Zilberstein, Multitrace Display Device, EEE, 10:B, p 27.

HYBRID D-C FEEDBACK AMPLIFIER-Used for calibrating a-c ammeters and valtmeters directly to standard cell. Use of tubes with
chopper amplifier gives good temperature sta-
bility. Output to thermocouple is 7.5 ma .-E.
A. Gilbert, Feedback Circuits for A-C Instru-

OPTOELECTRONIC CHOPPER WITH NEONSUsed with amplifier of sensitive potentiometer recorder. Diodes D1 and D2 shori-circuit
lamps on alternate half-cycles. Photoelectric chopping eliminates stray inferference from a-c line and minimizes heat dissipation prob-
lems.-W. Moore, Photoconductors Chop D-C Signal Levels, Electronics, 38:9, p 61-62.

GATE-TURNOFF D-C CHOPPER-Will chop 1 kw af 1 kc. Ratio of on time to off time can be adjusted to contral power, voliage, temperature, and other parameters. Shunt circuit allows larger currents to be chopped.-J. W. Motto, Jr., Switching Circuits Using the Gate Turnoff Controlled Rectifier, EEE, 13:3, P 5255.

HALL-GENERATOR CHOPPER AMPLIFIER-D-C signal voltage to be chopped is applied as
control current of Hall generator. Magnetic signal voltage to be chopped is opplied as
contral current of Hall generator. Magnetic field for generator is pulsed at 60 cps by driver circuit. Output is pulsating dec voltage that is product of the two inputs. Error in
input d-c versus output a-c is 2.5% for temthat is product of the two inputs. Error in
input d-c versus output a-c is 2.5% for temperature range of -20 to $50^{\circ} \mathrm{C}$. Can be used
as $d-c, ~ a-c$, or r-f microammeter.-T. J. Marperature range of -20 to $50^{\circ} \mathrm{C}$. Can be used
as d-c, a-c, or r-f microammeter.-T. J. Marcus, Highly Sensitive Electronic Chopper, Electronics, 32:40, p 67-68.

NORMALLY-ON GTO CHOPPER-Small trigger at input removes applied voltage from load for duration of time constant R2-C1. Handles 1 kw at 1 ke.-J. W. Motto, Jr., Switching Circuits Using the Gate Turnoff Controlled Rectifier, EEE, 13:3, P 52-55.

GATE TURNOFF CHOPS 28 V AT $100 \mathrm{KC}-5 a t-$ urable transformer and gate furnoff scr give simple 100-kc chopper in which potentiometer R2 controls on-fo-off timer.-D. R. Grafham, Now the Gate Turnoff 5 witch Speeds UP D-C 5witching, Electronics, 37:12, P 64-71.

FET AMPLIFIER WITH MECHANICAL CHOPPER -Gives readings down to 10 nanovolts, with
wideband response, because of remarkably low noise performance. Chopper frequency
can be up to 1,500 cps.-Airpax Electronics (ad), Electronics, 39:15, p 170.

CHAPTER 15 Clock Circuits

25-NSEC 0.5-AMP CLOCK PULSE GENERATOR -Used in computer circuits to set timing for array of circuits. Mubr Q1-Q2 triggers pulse

100-KC CLOCK FOR COUNTER-Stable fixedfrequency Pierce oscillator becomes transistorized Clopp oscillotor when crystal is replaced by high-Q L-C funer.-W. D. Fryer, How to Design Low Cost Audio Filters, Electronics, 32:15, p 68-70.
100-KC CLOCK FOR COUNTER-Stable fixedfrequency Pierce oscillator becomes fransistor-

5-MC CRYSTAL FREQUENCY CONTROL-CI provides fine frequency control of 5 -Mc primary frequency standard, when driven by 100-cps control signol from cesium beom tube. This will chonge frequency up to 2.5 cps ,
sufficient for short-time drifts over several days. When Cl reaches either and of its range, cam closes $\mathbf{S 1}$ or $\mathbf{S 2}$ ond energizes drive motor M1 for C2. Large copocitor is then driven in direction thot will moke smoll
capacitor refurn to middle of its ronge. $-\mathbf{W}$. A. Mainberger, Primory Frequency Standard Using Resonant Cesium, Electronics, 31:45, p 80-85.

CLOCK PULSE AMPLIFIER-Generates clock pulses for driving all flip-flops in magnetic drum timing channel system, and generates digit square-wave signals used in Manchester conversion network of writing amplifier. Ex-
ternal signal generator provides desired fre quency for time track.-A. J. Strassman and R. E. Keeter, Clock Track Recorder For Memory Drum, Electronics, 32:41, p 74-76.

CRYSTAL-CONTROLLED MVBR-Simplicity and stability make circuit useful as system clock. Will oscillate af 1 Mc over supply voltage range of 2 to 30 v . Output is rounded square wave, of any frequency from 3 kc to 10 Mc depending on crystal used.-J. Freeman, Crystal Controlled Multivibrator, EEE, 13:6, P 65.

MEGAPULSE GENERATOR-Provides up to 18Me pulses for dynamic testing of high-speed digital computers. Can be used as clocking system. Major frequency changes in selfbiased Hartley oscillator V6 are made with
plug-in coils 11 , and fine changes with C4 Positive output pulses, continuously variable between 0 and 20 v , are generated in four output channels, in 10-microsec bursts or with 0 to 10 microsec blanks between strings of
pulses when gated by pulse generator.-R. W. Buchanan and B. Kautz, Dynamic Testing of Computer Building Blocks, Electronics, 32: 33, p 66-68.

CESIUM CLOCK SYNTHESIZER-Crystal 5-Mc oscillator is monitored by natural resonance frequency of cesium ($9,192.63184 \mathrm{Mc}$) to get primary frequency standard. Output signals are 100 kc and $1,5,10$, and 100 Mc , with accuracy of one part in one billion. Starting with $5 \mathrm{Mc}, 9,180 \mathrm{Mc}$ is achieved as harmonic by direct multiplication. Remaining 12.631840 Mc is obtained from 5-Mc source by frequency multiplication, division, and mixing. Circuit shows input section of synthesizer used for this purpose.-W. A. Mainberger, Primary Frequency Standard Using Resonant Cesium, Electronics, 31:45, p 80-85.

CLOCK OUTPUT DRIVER-Driver transistor Q1 is pulsed on at preset time, to supply drive current to gate of scr so it applies current to load. When scr fires, D1 is back-biased, re-

MOTOR-CONTROLLING MIXER-Used to lock erystal oscillator frequency to standard-frequency signals from WWV. Circuit mixes clock and WWV frequencies (fed to tubes at left and right) in Nygaard discriminator arrangement, which delivers two outputs, each equal to difference frequency but differing 90°
in phase. These output signals are amplified for synchronous motor that drives trimmer capacitor of crystal oscillator in servo loop that brings difference frequency to zero.-K. Nygaard, Atomic Clock Accuracy for Crystal Oscillators, Electronics, 33:46, p 82-83.

CLOCK OSCILLATOR-Q1 and Q2 form oscillator section of time-base generator, and Q3Q4 serve as pulse shaper. Q1 is groundedbase voltage amplifier with iuned collector load. Q2 matches impedance of Q1 collector
circuit to crystal. Output amplitude is limited by zener diode D1.-R. S. Reed, Rugged Arm-ing-Fuzing Timer for Atomic Artillery Missile, Electronics, 34:38, p 48-51.

SIMPLE WWV CHECK-Permits making accurate check of local frequency standard quickly and easily by direct comparison with WWV signals. Uses one receiver. Two signals, at 0 and 180°, are obtained from local standard clock. Switch 12AU7 alternately connects one triode detector output and 0° signal slmultaneously to antenna, and then other triode detector output simultaneously with 180° signal. Doppler error is minimized by averaging hourly 3 -minute readings over B-hour period. Accuracy is one part in $100,000,000$. -J . F . Brumbach, Fast WWV Check of Frequency Stondard, Electronics, 32:13, p 76-79.

5ETTING CLOCK TO WWV-Locally generated pulses can be easily synchronized with pulses from WWV to sef clocks associated with frequency standard. Changes in period of pulses from counter-type frequency dividers are

FOUR-PHASE 12-MC CLOCK-To minimize jitter of synchronizing signals, fundamental frequency is chosen af one-eighth of clock rate or 1.5 Mc . Oscillator output is fed through two doubler stages and split into three chan-
nels, each having additional doubler followed by power amplifier, to provide low output impedance at any reasonable power level.G. O. Olson, Design of High-Frequency Clock Pulse Generators, Electronics, 32:35, p 56-57.

PHASE SYNCHRONIZER-Used to synchronize 2,500-cps local time standard with that of transmitting end of wire-line system. When zero crossings of pulses do not coincide, orror signal is produced which, after amplification, is applied to motor that rotates phase shifter until there is phase synchronization between local clock and incoming information. This insures sampling of recovered information at middle of incoming bit.-J. L. Hollis, Sending Digital Data Ovar Narrow-Band Lines, Electronics, 32:23, p 72-74.

CLOCK PULSE GENERATOR-Derives pulse from reading head that scans data track of mag-netic-spoke disk memory, eliminating need for separate timing track. Generates pulse for each magnetic spoke passing over gap of head, regardless of whether spoke is written with 1 or O.-T. C. Chen and O. B. Stram, Digital Memory System Keeps Circuits Simple, Electronics, 32:11, p 130-133.

809.11-KC CLOCK OSCILLATOR-Crystal-controlled oscillator V1A and shaping circuit V18 produce pulses with repetition rate equal to frequency of crystal oscillator.-H. Vantine Jr. and E. C. Johnson, Modified Transceivers Compute Distance, Electronics, 31:37, p 94-98.

SYNCHRONIZING 3.3-MC CLOCK TO 300-PPS TRIGGER-Synchronizes crystal-controlled train of $3.3-\mathrm{Mc}$ clock pulses to unrelated sync trigger having nominal repetition rate of 300
pulses per second, to provide constant delay between end of sync pulse and first clock pulse.-P. Danzer, Synchronized, Crystol-Controlled Oscillator, EEE, 12:5, p 90.

SIDEREAL REGENERATIVE OSCILLATOR-Compares synchronous clock motor speed af 30sec intervals with pendulum-driven master sidereal-time clock. Motor runs slightly faster than sidereal time. If too fast at checking time, check capocitor of input of V1 is closed

to reduce frequency of oscillation and speed of motor to bring it back into coincidence with master.-C. N. Kingston, Radio Telescope Sees 2 Billion Light Years, Electronics, 31:23, P 70-75.

ELECTRONIC CHRONOMETER-Trimmers permit adjusting timing by a few seconds per year. Major error is due to aging of quartz crystal. Tunnel diodes divide $100-\mathrm{kc}$ crystal frequency
by 2,000 to give 50-cps output for driving motor of clock.-R. L. Watters, Tunnel Diodes Control Quartz-Crystal Chronometer, Electronics, 34:39, p 129-131.

10-MC CLOCK OSCILLATOR-Output through cathode follower is split into three channels (two are not shown) to get clock pulses at three phases.-G. O. Olson, Design of HighFrequency Clock Pulse Generators, Electronics, 32:35, p 56-57.

THREE-PHASE 10-MC CLOCK-Used in digital computer circuit testing when recirculation of pulses and pulse regeneration and shaping are required. Delay line provides required impedance match.-R. W. Buchanan and B. Kautz, Dynamic Testing of Computer Building Blocks, Electronics, 32:33, p 66-68.

CLOCK RING COUNTER-Switching element is silicon controlled switch that approximates flip-flop, furning on when low-leval positive pulse is applied to its base, and remaining of until turned off by negative pulse. Used as memory device to retain registered count until next input pulse makes bit transfer to following stage.-R. S. Reed, Rugged ArmingFuzing Timer for Atomic Artillery Missile, Electronics, 34:38, p 48-51.

CHAPTER 16 Comparator Circuits

COMPARATOR FOR SOLID-STATE DIGITAL VOLTMETER-Circuit determines when output of ramp generator crosses $0 \vee$ and crosses unknown voltage. Transistor Q5 isolates mono Q1-Q2 from output logic. Transistors Q3 and Q4 provide constant current for charging C1 linearly to produce high-occurocy romp.-R. C. Weinberg, Modified Ramp Generator Develops High D-C Input Impedance, Electronics, 37:8, p 33-35.

CHARACTER READER-Circuit shows one channel of solar-cell signal amplifier and section
of switching block for experimental character recognition system.-P. H. Howard, Feedback

System Detects 1\% Amplitude Difference, Electronics, 38:10, p 68-70.

PULSE ANALYZER-Either positive or negative pulses equal to or greater than adjustable threshold voltage operate relay, thus meas-
uring pulse height of either polarity. Responds to pulse widths as narrow as 50 nsec. Q1 responds to positive pulses, and Q2 to
negative pulses.-O. B. Laug, Pulse Voltage Comparator Measures Height of Positive or Negative Pulses, Electronics, 34:36, p 70-71.

CHOPPER TRANSISTORS SIMULATE SPDT SWITCH-Comparator chopper senses difference between reference voltage and control
signal while drawing very little current from reference. Sine-wave drive frequency is determined by C2 and C3, which should have

2 to 1 ratio.-J. S. Mac Dougall, Servo Comparator Amplifier Handles High Voltages, Electronics, 37:22, p 75-76.

RECEIVING DISTRIBUTOR-Converts fope-code input to S-bit parallel code af five convenfional flip-flops. Rising sweep volfage successively friggers six comparator stages. If line
signal is positive of triggering time, flip-flop corresponding to triggered comparator is set to its one state. Used in high-speed electrostatic printer in which each of 72 print heads
has 3 S print pins.-R. E. West, High-Speed Readout for Data Processing, Electronics, 32: 22, p 83-85.

DIFFERENTIAL VOLTAGE COMPARATOR-If the two input signals are within preset differential voltage, relay is not actuated and GO indicator comes on. When the two signals differ $t 00$ much, relay is actuated and NO.GO indication is provided. Used in comparing telemetered data received from satellite vehicle. -P. A. Walter, Differential Voltage Comparafor, EEE, 10:B, p 24-25.

STABILIZED LOW-FREQUENCY OSCILLATORTransistors Q1 and Q4 compare charging voltages of mubr timing capacitors C1 and C2 to fixed reference voltage. When a capacitor voltage is greater than reference voltage, its
comparator switches its bistable mvbr to opposite state, so capacitor is discharged by dump transistor. Arrangement makes output frequency essentially independent of temperature from $-25^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$, for frequency

* temperature stable resistors
range of 0.01 to $100,000 \mathrm{cps}$.-J. D. Long, Novel Differential Amplifier Stabilizes Multivibrator, Electronics, 35:24, p 53-54.

AUTOPILOT COMPARATOR-ALARM-Activates alarm or disengages autopilot when signals from dual accelerometers differ appreciably,
indicating malfunction.-C. W. McWilliams, Designing Safety Into Automatic Pilot Systems, Electronics, 31:45, p 69-71.

CONTROL AMPLIFIER-Converts output of 20ke chopper to d-c error signal. Amplifier output is rectified by diodes rather than demodulated, since polarity of error is of no concern.-J. W. Higginbotham and H. H. Douglass, Voltage Comparator with High-Speed Switches, Electronics, 32:5, p 56-58.

TWO-STAGE SWITCH-D-c output from carrier amplifier triggers switch consisting of twosfage complementary-coupled nonlinear amplifier, with zener diode in series with input to minimize drift, when difference between two d-c voltages exceeds preset threshold voltages of as little as 100 microvolts for only 300 microsec. Can handle 2 amp. R1 is 100,000 ohms and R2 is 100 ohms.-J. W. Higginbotham and H. H. Douglass, Voltage Comparator with High-Speed Switches, Electronics, 32:5, p 56-58.

20-KC CHOPPER-5quare-loop-core oscillator drives chopper af UP to 20 kc for continuously monitoring two d-c voltages.-J. W. Higginbotham and H. H. Douglass, Voltage Comparator with High-Speed Switches, Electronics, 32:5, p 56-58.

PULSE COINCIDENCE DETECTOR-Detects coincidences between pulses of random length and spacing occurring in two separate chan-
nels, to permit counting only pulses that do not overlap.-K. R. Whittington and G. Robson, Novel Anticoincidence Circuit Detects

VOLTAGE-LEVEL MONITOR-Over-or-under circuit provides output signal when d-c input voltage is over 12 v or under 6 v , for monitoring or alorm purposes, with no output during desired on condition.-M. Merlen and D. Grassman, Interrogator Circuit Can Tell Good Data from Bad, Electronics, 37:20, p 58-59.

GO-NO-GO VOLTAGE COMPARATOR-Unknown voltage is compared to standard voltage within preset voltage limits. Circuit is sensitive enough to detect 0.5 v difference.Transistor Go-No-Go Voltage Comparator, "Electronic Circuit Design Handbook," Mactier Pub. Corp., N.Y., p 87.

BILATERAL-TRANSISTOR COMPARATOR-Used as voltage comparator by connecting one input to some reference level and allowing second input to vary. Can also serve as digital comparator in digital computer, to oscertain when two numbers become equal. Output drops to zero when numbers in digital form are equal.-Comparator Uses Bilateral Transistor, "Electronic Circuit Design Handbook," Mactier Pub. Corp., N.Y., p 91.

AMPLITUDE COMPARATOR-Uses minimumhysteresis Schmitt trigger ($\mathbf{3 0} \mathbf{~ m v}$ hysteresis) to compare voltage at input 8 with that at input A. Can also be used as variable Schmitt trigger in which input B determines trigger voliage.-M. A. Smither and W. E. Zrubek, Variable Schmitt, Amplitude Comparator, EEE, 14:7, p 106.

PULSE COMPARATOR FOR TAPE READER-With hole in front of photocell, negative pulse into comparator is much larger than positive drive pulse obtained from GaAs lamp circuit, and comparator delivers negative output pulse. With no hole and no negative pulse, comparator output is positive but same magnitude, because amplifier negative pulses are twice as large as positive input pulses.-R. F. Broom and C. Hilsum, Diode Lamp Makes Tape Readers Faster, Electronics, 36:20, p 44-45.

VIDEO SELECTOR-Selects largest of several positive-going video signals as positive-going
output to 95 -ohm load. Circuit gain is about
3 db.-A. E. Popodi, Reliable Repertaire Of

Display Circuits, Electronics, 38:2, p 60-66.

CHAPTER 17

Computer Circuits

THIN-FILM MEMORY READOUT-High-gain amplifier has gain of 65 db and produces saturated output for cro.-5. Feinstein and H. J.

Weber, Electrical Readout from Thin Ferromagnetic Films, Electronics, 33:31, p 100-102.

RECIPROCAL CIRCUIT-Output is inversely proportional to input. Article gives design procedure based on use of diodes, resistors, and d-c voltage supplies.-A. Gill, Procedure for Designing Reciprocal Computer Circuits, Electronics, 33:21, p 92-93.

ARITHMETIC CELL-Uses 27 resistively-coupled funnel diodes, powered from three-phase
pulse supply. Repetition rate is 1 Mc.-T. eration, Electronics, 33:5, p 55-59. Maguire, Computers Head for $1,000-\mathrm{Mc}$ Op-

CLOCK GATE-Provides effective gating with negligible insertion loss. Used as part of clock driver for developing and testing large
digital computers.-S. Schoen, Transistors Provide Computer Clock Signals, Electronics, 32:9, p 70-72.

HALF-ADDER-Uses four-point matrix of pnp junction switching transistors, with bases and emitters cross-connected. Input A can be switched to base of Q1 or Q2. Input B can be switched between two alternate sets of emitters. For any input switch position, only one transistor is conducting.-F. B. Maynard, Half-Adders Drive Simultaneous Computer, Electronics, 31:29, p B0-B2.

DRIVE FOR THIN-FILM MEMORY-Has single pulse output when input blocking oscillator is triggered by single positive-going pulse, for driving film alternately from one remanence to another in astatic loop.-S. Feinstain and H. J. Weber, Electrical Readout from Thin Ferromagnetic Films, Electronics, 33:31, p 100-102.

MEMORY DRIVER AND READOUT AMPLIFIERUsed with funnel-diode memory operating af

S Mc.-S. Takahashi and O. Ishii, High-Speed 34:42, p 66-68.
Memory Uses Tunnel Diode Circuit, Electronics,

MATRIX READOUT-Used for data reduction in telephone traffic data recorder system to permit recording all information on a call as one entry. Coincidence circuit Q1-Q2 provides reliable sensing of matrix output in
presence of noise generated by rotary switches and relays.-J. W. Blanchard, E. C. Bellee, and J. Smith, Ferrite Memories Simplify Telephone Data Analysis, Electronics, 32:41, p 68-70.

MEMORY STROBING-PULSE GATE-Used in generating precisely defined strobes for co-incident-current memory. Uses drive-sampling core instead of clock signal to produce strobe at time when signal-to-noise ratio is highest. -A. H. Ashley and E. U. Cohler, Solving Noise Problems in Digital Computer Memories, Electronics, 33:13, p 72-74.

INHIBIT DRIVER-Used in coincident-current digital data buffer memory.-D. Haagens, Compact Memories Have Flexible Capacities, Electronics, 32:40, p 50-53.

TIME-SHARED TROUBLESHOOTER SCOP̄E-Oscilloscope modifications shown permit computer to control cro display for diagnosing
trouble in faulty section of time-sharing computer while users continue working with computer.-J. T. Quatse, Time-5hared Trouble-
shooter Repairs Computers On-Line, Electronics, 39:2, p 97-101.

FULL ADDER-Made by joining two halfadders. Push-pull inverting amplifiers serve as switches to provide complotely automatic operation. Carry from full adder can derive from either half-section but never both. No inhibitor signal is required to suppress unwanted sum signal.-F. B. Maynard, HalfAdders Drive Simultaneous Computer, Elactronics, 31:29, p B0-82.

BUFFER MEMORY SENSE AMPLIFIER-Usez coincident-current technique. Full-wave rectifier is required at secondary of transformer because sense output can be of either polarity. Enabling signal turns on sense amplifier, to permit discrimination between memory core outputs during unload and load cycles. - D. Haagens, Compact Memories Have Flexible Capacities, Electronics, 32:40, p 50-53.

THIN-FILM MEMORY DRIVER-Generates 1amp pulses with 35 ansec rise and fall times, af rates UP to 1 Mc , for driving 2,560-bit memory plane using 2,000-angstrom nickel-
iron films.-E. E. Bittmann, Thin Magnetic Film Memories for High-Speed Computers, Electronics, 34:9, p 39-41.

THIN-FILM CURRENT DRIVER-Three 2N576 driver transistors in parallel, each rated 400 ma, deliver l-amp pulses with 0.15 microsec rise time. Three 2N5BO pnp transistors in parallel serve as current switches.-E. E. Bittmann, Using Thin Films in High-Speed Memories, Electronics, 32:23, p 55-57.

THIN-FILM SENSE AMPLIFIER-Common-base input stage matches low input impedance of sense winding. $5-m v$ input signal is boosted to 3-v level. Zener diodes shift d-c levels of output signal to desired 0 to +3 v level.-E. E. Biftmann, Using Thin Films in High-Speed Memories, Electronics, 32:23, p 55-57.

SENSE AMPLIFIER AND GATE-Uses drivesampling core to generate precisely defined strobes for coincident-current memory.-A. H.

Ashley and E. U. Cohler, Solving Naise Problems in Digital Computer Memories, Electronics, 33:13, p 72-74.

SENSE AMPLIFIER READS MEMORY DATASmall signals stored in thin-film memory are amplified while rejecting noise from partially
selected bits on same sense line. Circuit is completely isolated differential amplifier operating from low-impedance source.-A. A.

Fleischer and E. Johnson, New Digital Conversion Method Provides Nanosecond Resolution, Electronics, 36:18, p 55-57.

DISK READ-WRITE-Magnetic head is transformer of iwin-triode blocking oscillator circuit used with aluminum disk having radial magnetic spokes that can store from 50 to 100 words.-T. C. Chen and O. B. Stram, Digital Memory System Keeps Circuits Simple, Electronics, 32:11, p 130-133.

MARKER PULSE GENERATOR—Uses blocking oscillator to generate digit pulses of word being stored in magnetic-spoke disk memory, as well as for generation of index marker pulses.-T. C. Chen and O. B. Stram, Digital Memory System Keeps Circuits Simple, Eleetronics, 32:11, p 130-133.

PULSE SHAPER FOR 600-KC CLOCK-Oscillator input through Q1 switches Q2 on, and same input through Q3 switches Q2 off after fixed
delay, to produce desired rectangular clock pulse.-S. Schoen, Transistors Provide Computer Clock Signals, Electronics, 32:9, p 70-72.

CHOKE-CONTROLLED DIFFERENTIATOR-Uses inductance to control on time of transistor. Can also be used as spralghforward pulse inverter. Input pulse is wider than output
pulse.-W. M. Carey, Using Inductive Control in Computer Circuits, Electronics, 32:38, p 3133.

AMPLIFIER FOR 10-NSEC PULSES-Requires accurately wound pulse transformer in which secondary is close-wound over end of primary that is a-c ground, with accurate control of unsymmetrical distributed capacitance,
to serve as building block of 50 -megapulse computer. Commercial equivalent of L-5447 is 2 N769 or 2N976.-K. H. Konkle and J. E. Laynor, Key to Foster Computers: Ten-Nanosecond Amplifier, Electronics, 35:50, p 39-41.

MAGNETIC REGISTER-Basis of storage is magnetization time. Four ferrite cores will
store one decimal digit under control of one clock pulse.-A. A. Jaecklin, Storing Complete

Decimal Digits with One Clock Pulse, Electronics, 34:11, p 50-53.

CHAPTER 18

Control Circuits

LIQUID-DENSITY GAGE-Peltier-effect semiconductor thermoelements maintain uniform cooling temperatures required for accurate specific gravity measurements. Null-position detecting circuit uses differential transformer

SPARK MACHINING CONTROL-Servo-controlled high-power electric spark machine produces repeated discharges between tool electrode and workpiece to cause erosion of metal to desired shape. Power source is 4.5-ky three-phase rectifier providing peak discharge current of $4,500 \mathrm{amp}$ af pulse repetition rate of 2,880 pps. Rotary gap is used for pulse switching.-E. M. Williams and C. P. Porterfield, Spark Machine Tool has Servo Control, Electronics, 31:43, p 90-92.

HOTE: ALL RESISTORS I/2 WATT
SCR LAMP BRIGHTNESS CONTROL-Will control up to 1.6 amp rms while operating directly from power line, yet is sufficiently compact to fit into base of common household lamp socket.-Low-Cost, Low-Power SCR's to Invade Commercial Market, EEE, 13:8, p 21-22.

NUCLEAR REACTOR REGULATOR CONTROL-Feedbock-fype regulotor holds magnet currents constant for control rods, at yolues set by R9 to 0.6 omp . When selected rods must be tripped for certain tests, regulator buses for these rods are connected to -10 v , to drop the rods. Amplifier uses +10 v supply as reference to hold output of -2 v.-E. J. Wade and D. S. Davidson, How Transistor Circuits Protect Atomic Reactors, Electronics, 31:29, p 73-75.

PREHEATING PROGRAMMED LAMPS-Minimixes thermal stresses on lamps and controls when programmed oparation is repetifive for large number of cycles. Uit control circuit provides preheating of lamp by triggering light-activated scr late in each half-

SPARK MACHINING SERVO DRIVE-Positioning information is derived fram gop voltage, fed to integrating eircuit through diode V1, and resulting output fed through V2 to cath-ode-coupled push-pull d-c amplifier that excites field of omplidyne generator to move tool electrade foward ar away from workpiece, as required to permit sparkover at voltage selected for mochining conditions desired. Used chiefly for work on high-temperature alloys and otherwise unmachinable ma-terials.-E. M. Williams and C. P. Porterfield, Spark Machine Tool has Servo Control, Electronics, 31:43, p 90-92.

NUCLEAR REACTOR STARTUP CONTROL-logarithmic and period amplifiers provide required wide indicating range without switching. Use of lag diode VI_{I} in series back to back with V2 provides nonlinear element in which effects of chonges in cathode temperature and supply voltage are balanced out. V1 drives log amplifier consisting of balanced electrometer tubes V3 and V4, differential stage Q1-Q2, and cascaded emitter-followers Q3 and Q4. Period amplifier is a feedbacktype differentiating circuit.-E. J. Wade and D. S. Davidson, Transistor Amplifiers for Reactor Controls, Electronics, 32:21, P 52-53.

AUTOPILOT GYRO CONTROL-Flip-flop Q1-Q2 controls breakdown of zener diode D2. At breakdown, D2 has low impedance, shunting 180,000-ohm trigger resistor and reducing input to five-stage dec omplifier Q3-Q7. Overall voltage gain is 27 . Demodulator is bistable flip-flop Q11-Q12 and series switching
transistors Q8-Q9, giving no-signal d-c output of 9 v . This level is modulated 3 v for maximum in-phase or out-of-phase error signals from gyros.-J. H. Porter, Miniofurized Autopilot System for Missiles, Electronics, 33:
43, p 60-64.

DUAL-FUNCTION BISTABLE SCRAM-Portion ot right of dotted lines acts as regulator that holds constant voltage on output circuit until tripping of control rods is called for by nuclear radiation detector. Outputs of bistable circuits are connected through and gates so that, if desired, two input signals ore necessary before trip signal is generoted. Malfunction in ion chombers or failure of circuit companent can make reactor exceed maximum critical assembly condition and generote trip signal that drops contral rods.-E. J. Wade and D. S. Dovidson, How Transistor Circuits Protect Atomic Reactors, Electronics, 31:29, 73-75.

JET AUTOPILOT CONTROL-Adder-atienuator amplifier decreases gain slowly, allowing new control modes to be set up without undesirable oircraft motion or bumps, when iet pilat changes to different flight control
mode, as from mach control to attitude control or altitude control. Relay KB allows new mode to be set up, and output then increases to normal. When pilot operates foding switch (not shown), relay cantact KA
closes and 90 v dec is opplied to fading circuit. Fodeout time constont is 0.5 sec and fade-in time constant 0.3 sec.-L. D. Fry, Taking the Bumps Out of Automatic Flight Contral, Electronics, 32:32, p 106-109.

FILM-BREAK DETECTOR-Photographic film in processor is run through resonant acoustic chamber in which presence of film offects energy transfer between crystal transducers. Chonge in transducer output when film breaks is used to operate relay through amplifier and detector, to control automatic film processor and thereby minimize rethreading and film spoilage. Can also be used to detect bubbles in rubber tubing during blood transfusions, and detect similar changes in other films, liquids, and gases.-E. L. Withey and R. G. Seed, Acoustic Covity Detects Breaks in Film, Electronics, 31:13, p 50-51.

SATURATING-MVBR ON-OFF CONTROL-Used with relays and other electromechanical devices where current ratio must be 10 between on and off conditions. Operation is some os Eccles-Jordan, except that current drive for holding Q2 on is furnished through R2 and R3 rather than through Q1 collector load. Designed for reloy that is energized by 8 ma ond drops out af 0.5 ma . Trigger input should be between 14 and 20 v , with rise time of 10 microsec. Input circuit needs 5 millisec to recover from positive signal before next trigger is applied. 2N333 has been dropped from Preferred List, but 2 N335 con be used if operating point is adjusted for its higher beta.-NBS, "Handbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. II, Semiconductor Device Circuits, PSC 17 (originally PC 251), p 17-2.

MACHINE-GUN CONTROL OSCILLATOR-Phose-shift oscillotor firing circuit for airborne $\mathbf{2 0 - m m}$ guns permits operation anywhere in
range of 600 to 900 rounds per minute. Accuracy is improved by adjusting firing rate away from natural gun-mount vibration fre-
quency.-M. Halio, Firing Circuits Trigger Airborne Machine Guns, Electronics, 31:31, P 86-89.

PROXIMITY CONTROL-Gain of Hartley oscillator is set so oscillation is maintained only when Q of resonant circuit is normal. When ferrous or nonferrous materials come near pickup coit, Q is reduced, oscillation stops, and output tube conducts, to pull in relay for counting or for controlling industrial machinery. Can be set for operating range of from 1/8th inch to 1 foot.-D. Elam, Proximity Tronsducer Uses Rapid Relay, Electronics, 31:25, p 73.

ROCKET ROLL CONTROL-Signol from rollchannel demodulator is shaped for twosection switching amplifier that energizes roll
jet reloys.-R. E. King and H. Low, Solid-State Guidance For Able-Series Rockets, Electronics, 33:5, p 60-63.

20-CHANNEL DECODER FOR AUDIO TONES-L-C filter in each decoder is funed to channel tone, with $35-\mathrm{db}$ adjacent-channal rejection.

Rectified output of detector DI drives twostage d-c amplifier having relay load. Used in Mercury spacecroft command receiver.-R.

Elliott, First Details on Mercury Spacecraft Command Receiver, Electronics, 36:5, p 32-35.

SCR LAMP DIMMER-Can easily be built into lamp socket or fixture.-J. Eimbinder, SCRs in The Consumer Market, EEE, 14:8, p 100-103.

TRIAC LAMP DIMMER-Can easily be built into lamp socket or fixture. Uses minimum number of components.-J. Eimbinder, SCRs In the Consumer Market, EEE, 14:8, p 100-103.

VOICE-OPERATED MACHINE CONTROL-Circuif rejects ambient noise or normal speech but responds to sharply spoken commands during emergency, to open motor circuit of mochine fool. Asymmetry demodulator rejects sym-
metrical noise while accepting speech vowels having strong asymmetry.-W. C. Dersch, Speech Operates Safety Switch, Electronics, 36:25, p 78-82.

UNDERCURRENT-OVERCURRENT PROTECTION -Guards against improper operation of control amplifier in nuclear reactor scram system. If rod currents vary beyond predetermined limits, circuit initiates reactor scram. Either transistor may open relay coil circuit.-E. J. Wade and D. S. Davidson, How Transistor Circuits Protect Alomic Reactors, Electronics, 31:29, p 73-75.
 ,

CORES ACTUATE RELAY-When d-c supply voltage equals reference voltage, no direct current flows through the control windings of saturable reactors, reactance of 400 -eps winding is high, and voltage across rectifier bridge is high enough to pull in relay. When supply voltage increases or decreases, difference voltage causes core saturation that reduces reactance, allowing relay to drop out. Neon indicator lamp may be used in place of rectifier bridge.-M. C. Herzig and D. C. Colbert, Voltage Monitor Needs Only Two Saturable Cores, Electronics, 36:23, p 50-51.

CONVEYOR MONITOR-Will shut down conveyor line rapidly to prevent catastrophic jam, while ignoring small self-clearing pileups. Each time light beam is interrupted, light-activated ser is briefly commutated by a-c line. Cl starts to charge but is shorted to zero as light is restored. If light path is blocked more than a few millisec, Cl continues to charge and fires SCR1 to stop con-veyor.-"Silicon Controlled Rectifier Manual," Third Edition, General Electric Co., 1964, p 214.

METAL-FORMING CONTROL-Determines yield point by sensing when tension and elongafion begin increasing af different rate during stretching and forming. Elongation signal
comes from potentiometer RI, linked to ram of hydraulic relief valve. Tension signal comes from strain-gage bridge that delivers 0 to 10 mv at 60 cps . At yield point,

MOTOR TRANSIENT ANTICIPATOR-Disconnects battery supply of sensitive counters for preset interval during switching period of nearby air conditioner, to avoid extraneous counts by switching transients from compressor motor and control relays.-C. H. Harris, Motor Transient Anticipator, EEE, 13:5, p 45-46.

$R_{1}{ }^{\circ}=24$ to $36 \mathrm{~K} \Omega-$ Resistor adjusted for the Lowest Desired Level $\mathrm{C}_{1}=.47 \mu \mathrm{~F}, 30 \mathrm{~V}$, metallized paper $\pm 20 \%$
$\mathrm{C}_{2}=.47 \mu \mathrm{~F}, 12 \mathrm{~V}$, metallized paper $\quad \pm 20 \%$
$R_{2}=10 \mathrm{~K} \Omega, 2 / 4 \mathrm{~W}, \pm 10 \% \quad \mathrm{SCR}=\mathrm{K}-1040$. Hoffman
$\mathrm{TD}=\mathrm{T}-1077$. Hofiman $\quad \mathrm{Rh}=250 \mathrm{~K}$ \& linear rheostat, $1 / 2$ watt

FULL-WAVE TD-SCR CONTROL-Use of funnel diode between gate and cathode of each scr improves control performance of scr, to give triggering range of 10° to 175°. Input sensor Rh may be photocell or any other resistive transducer.-TD/SCR Combos for Sale, EEE, 12:3, p 62-64.

system lowars tension as dies are applied to metal. At end of cycle, operator opens stop switch, resetting relays that are energized by power line.-G. J. Crowdes, Automatic Con-
trols for Matal Working Machines, Electronics,
32: 10, p 4i-43.

GYRO TORQUING SWITCH-Flip-flop Q1-Q2 controls Q3 driving switching transistor Q4. Trigger signals from telemetry receiver programmer control stote of flip-flop. Can poss 400 -cps square wave with $10-v$ peak.-J. H. Porter, Miniaturized Autopilot System for Missiles, Electronics, 33:43, p 60-64.

TIME-DELAYED SCHMITT AS SENSOR-Provides delay in sensor control until industrial process and system are started up and in normal operating mode. Delay is obtained with R-C network in additional tronsistor stage Q3. Photocell and R1 are interchangeable depending on polarity of control required from output.-L. T. Medveson, Time-Delayed Schmift Sensor, EEE, 14:7, p 104.

FLUORESCENT-LAMP DIMMER-Conventionol photoflosh trigger circuit R-C-T2 gives relioble starting for lamp currents down to 1 ma. High-voltage trigger pulse is applied to foil strip or wire loop gaing oround lamp. Transistor can be 2N1047, with resistance values chosen to provide required d-c operafing voltages.-L. L. Blackmer and A. T. Wright, Tondem-Tronsistor Circuit Regulates Fluorescent Lamp, Electronics, 34:17, p 114-116.

FLUORESCENT-LAMP DIMMER-Tondem circuit with omplifier stages requires anly 0.4 mo at B v to drive $15-w$ fluorescent lamp at rated 300 mo while providing range of about 200 to 1 in luminance control. Conventional photoflash trigger gives reliable starting for lamp currents down to 1 ma.-L. L. Blackmer and A. T. Wright, Tandem-Transistor Circuit Regulates Fluorescent Lamp, Electronics, 34:17, p 114-116.

ZERO-CROSSING SYNCHRONIZER-Used to synchronize firing circuit of scr's with zero crossing points of sinusoidal o-c line voltage, to initiate new timing cycle at each zero crossing and thereby permit precise control
of o-c power delivered to load. In temperature control system, circuit held liquid within $0.001^{\circ} \mathrm{C}$ of set point despite wide ambient temperature range.-J. D. Reed, Zero-Crossing Sync Circuit for SCR's, EEE, 12:8, p 74.

LIQUID LEVEL CONTROL-Operationol trigger has sufficient sensitivity even for distilled water and alcohol, to control level within 1 mm.-P. Lefferts, Operational Trigger For Precise Control, Electronics, 37:28, p 50-55.

SENSITIVE RELAY CONTROL-Reflex circuit ensures full use of available gain of two-stage relay control amplifier using 12AT7 iwintriode. Tube V2 controls relay in its plate circuit and also serves as a-c amplifier, increasing over-all sensitivity by factor approximately equal to a-c gain. Performs best about $\mathbf{4 0 0} \mathbf{~ c p s}$.-Sensitive Relay Control Amplifier, "Electronic Circuir Design Handbook," Mactier Pub. Corp., N.Y., p 103.

SCR LIGHT DIMMER-Provides full range of brightness control for up to 500 w of lamps. Uit Q1 provides furn-on pulses for scr.-L. Stern, "Thyristors Provide New Opportunities for Electronic Applications in the Home," Motorola Application Note AN-141, Dec. 1965.

CHAPTER 19
 Converter Circuits

CB CONVERTER-Uses funnel-diode oscillator. -'Transistor Manual," Seventh Edition, General Electric Co., 1964, P 358.

BALANCED-INPUT MIXER-Used with fre-quency-independent antennas to provide noise cancellation as balanced-input convert-
er.-C. Strother, Jr. and C. R. Lundquist, Bal-inverter-Frequency-Insensitive Balanced Converfer, Electronics, 35:44, p 46-47.

30 TO 325 V D-C-Use of transistors with high alpha cutoff frequency, along with loading networks across output bridge rectifiers,
minimizes switching spikes in output. Con-trol-loop amplifier provides overall regulation. -C. J. Biggerstaff, Reducing Spikes in D-C to

D-C Converier Outputs, Electronics, 34:42, p 64-65.

4SO MC TO 105 MC WITH 2N2415-Two-stage r-f amplifier has power gain of 20 db , noise figure of 4.5 db , and bandwidth of 10 Mc . 2N1407 local oscillator operates af 34S Mc.

Conversion gain of mixer is 12 db . Total anfenna to i-f conversion goin is 32 db .Texas Instruments Inc., "Solid-State Communications," McGraw-Hill, N.Y., 1966, p 307.

CB TRANSMITTER MIXER-Requires only one crystal per channel in 27-Mc citizens band radiotelephones, by combining beating oscillator with balanced mixer. Receiver local oscillator signal and even harmonics of beating oscillator frequency are cancelled in tuned symmetrical plate circuit.-M. E. Baird, Mixer Circuit Lowers Radiotelephone Costs, Electronics, 34:47, p 71.

450 MC TO 105 MC WITH 2N2996-Local Colpitts oscillator operates at 345 Mc ; it can deliver 5 mw , but only 1 mw is required by
oscillator-stabilizing buffer for good mixing action. R-f stage ahead of converter provides power gain of 13 db at noise figure
of only 5.9 db.-Texas Instruments Inc., "Solid-State Communications," MeGraw-Hill, N.Y., 1966, p 305.

TRANSDUCER-DRIVEN CRYSTAL OSCILLATOR
-Sensitive $\mathbf{7 0 - M c}$ one-fube oscillator feeds local and remote tank circuits to which capacitive or inductive transducers may be connected, for conversion of displacement, temperature, pressure, and other variables to corresponding changes in d-c output voltage. Will give up to 250 v change per micromicrofarad of transducer capacitance change.-L. J. Rogers, Sensitive Transducers Use One-Tube Crystal Oscillator, Electronics, 32:40, p 48-49.

420-MC OSCILLATOR-MIXER-Common-base mixer is used with $480-\mathrm{Mc}$ oscillotor to give $60-\mathrm{Mc}$ i-f output, with 10 db average conversion gain.-Texas Instruments Inc., "Transistor Circuit Design," McGraw-Hill, N.Y., 1963, p 327.

VOLTAGE-CONTROLLED OSCILLATOR-Simple circuit, using feedback to maintain accuracy, converts 0 to 3 v d-c linearly to 0 to 400 cps.

Uses differentiol amplifier that amplifies difference befween input and feedback signals and feeds frequency-determining output to

Shockley four-layer diode oscillator.-J. D. Long, Feedback Linearizes Voliage-To-Frequency Converter, Electronics, 34:35, p 48.

NEGATIVE-IMPEDANCE CONVERTER-Increoses circuit Q by foctor of 4 or more in tuned audio circuits by reducing circuit losses.-W. P. Delaney, New Woy to Multiply Q with Tronsistors, Electronics, 35:28, p 48-49.

RINGING-CHOKE CONVERTER-REGULATORSteps up 32-v d-c pulses to 2,500-v d-c pulses, with regulation of 0.02%, achieved by sam-
pling output and feeding it back to comparision circuit. Uses unijunction transistor Q3 with Q4 for pulse generation.-J. F. Howell,

Ringing Choke Simplifies D-C to D-C Conversion, Electronics, 39:8, p 90-92.

EIGHT-PULSE GENERATOR-With 32-microsec gate following blocking oscillator, produces eight pulses at 4.5 -microsec intervals of output of emitter-follower.-W. W. Grannemann et al., Pulse-Height-to-Digital Signal Converter, Electronics, 33:2, p 58-60.

PULSE-HEIGHT-TO-TIME CONVERTER-OUtPut width is proportionol to input height. Lost stage of constont-current charge circuit can be eliminated if output impedance can be high.-D. N. Corson ond S. K. Dhawan, Dota Conversion Circuits for Earth Satellite Telemetry, Electronics, 33:3, p 82-84.

30 MC TO 5.5 MC-Single fransistor serves as mixer to give $5.5-\mathrm{Mc}$ i-f signol from $30-\mathrm{Mc}$ signal input and $\mathbf{3 5 . 5}$.-Mc oscillotor input. Output is 100 mv for $10-\mathrm{mv}$ signal input, with $630-\mathrm{mv}$ oscillator signal.-Texas Instruments Inc., "Solid-Stote Communicotions," McGrow-Hill, N.Y., 1966, p 300.

VOLTAGE TO FREQUENCY CONVERTER-Q4 supplies charging current for \mathbf{C} in relaxation oscillator Q5. Differential amplifier Q1-Q2 compares charging current with input voliage. Difference signal, amplified by Q3, controls charging current through Q4 and thus makes oufput frequency proportional to input voltage. For 0 to $+5 v$ input, output is 0 to 100 cps with 0.1% linearity.-W. H. Voelker, Transistor Circuit Converts Voltage to Reguloted Frequency, Electronics, 37:29, p 73-74.

D-C TO D-C-Free-running multivibrator (250 kc) generates unidirectional squore waves hoving omplitude of d-c input voltage. R-C
circuit of oufput blocks average volue of unidirectional pulse, and standard diode-copacitor voltage multiplier boosts output volt-
age to desired new value.-A. J. Durocher, D-c Voltage Converter Needs No Tronsformer, Electronics, 37:28, p 64-65.

LOGIC-LEVEL CONVERTER-Converts from $+18 /-8 \times$ logic levels of some frequency converters ond other digitol test equipment to
commonly used $0 /-6 \mathrm{v}$ logic levels of dotologging system.-C. M. Jockson, Logic-Level Converter, EEE, 12:9, p 61.
 portional to oscillotor voltage, permitting use
for agc.-G. G. Luetigenou ond S. H. Barnes, Designing With Low-Noise MOS FETs: A Litlle

Different But No Harder, Electronics, 37:31, p 53-58.

VOLTAGE TO PULSE-WIDTH CONVERTER-Converts d-c level linearly to pulse width at preset frequency. Used os switching-type series d-c regulator. Cl is selected to give desired preset frequency, and R1O, R1I, and R12 are chosen for desired voltage division of input.-M. C. Ellis, Linear Voltage to Duty-Cycle Converter, EEF, 12:3, p 72.

LI - 4 TURNS * $18-3 / 8^{\prime \prime}$ ID, APPROX. I/2"LONG
L2-4 TURNS * $18-3 /$ ® $^{-1} \mathrm{ID}$, APPROX, $1 / 2^{" L}$ LONG
L3-8 I/2" TURNS $18-3 / 8^{\prime \prime}$ ID, APPROX. $3 / 4^{\prime \prime}$ LONG TAPPED AT $\$$ TURNS LIL2 - COUPLED END TO END. SPACED ~ $1 / 8^{\circ}$ APART
RI - DEPENOS ON SUPPLY VOLTAGE. SELECT FOR BIAS OF APPROX. 135 MV ACROSS 200』 RESISTOR.

88-108 MC F-M CONVERTER WITH AFC-Var-iable-capacitance diode provides frequency control of tunnel-diode oscillator.-"Transistor Manual," Seventh Edition, General Electric Co., 1964, p 361.

CRYSTAL-CONTROLLED CB CONVERTER-Uses funnel-diode oscillator.--"Transistor Manual," Seventh Edition, General Electric Co., 1964, p 358.

COMMUNITY-TV UP CONVERTER-Uses tun-nel-diode oscillator.-"Transistor Manual," Seventh Edition, General Electric Co., 1964, p 359.

FREQUENCY-TO-VOLTAGE CONVERTER-Linear staircase generator delivers dec output voltage proportional to repetition frequency of input pulses while rejecting short-duration spurious noise pulses.-M. Merlen and D. Grossman, Interrogator Circuit Can Tell Good Data from Bad, Electronics, 37:20, p 58-59.

FREQUENCY TO D-C CONVERTER-Used in place of costly frequency moter for frequency measurements from 10 cps to 1 Mc , having almost any input waveform. Overall accuracy is 3%. Medium-power $12-v$ zener should be used to stabilize supply voltage.-T. Mollinga, Frequency-fo-DC Converier for Lab Measurements, EEE, 12:8, P 84.

SINE TO SAWTOOTH OR SQUARE WAVESChanges 50 to 17,000 eps sine waves to either waveform, using only power of signal itself. Sawtooth is obtained from sine wave by linear charging of capacitors. Switch pos-
ition 1 covers 50 ta $2,000 \mathrm{cps}$, and positian 2 1,800 to $17,000 \mathrm{cps}$. CR3 and CR4 are 1RC 60.1505 zener diodes (8 v 0.1 v).M. W. Raybin, Converts Sine Waves to Sawfooth or Square Waves, EEE, 10:11, p 28.

CIVIL AIR PATROL CONVERTER-Tunnel-diode oscillator in self-oscillating converter permits reception on aviation band with auto radio. -"Transistor Manual," Seventh Edition, General Electric Co., 1964, p 358.

CHAPTER 20 Counter Circuits-Objects

27-MC RECEIVER FOR TONE-MODULATED
DATA-Two selective omplifiers, one funed to 400 cps and other to $1,400 \mathrm{cps}$, drive relays K3 and K4 to control printing register for recording remote events such as passage of birds through infrared curtain.-P. A. Tove and J. Czekajewski, Infrared Curfain System Detects and Counts Moving Objects, Electronics, 34:31, p 40-43.

BUTTON AND BEAD COUNTER-Tiny objects passing befare photodiode are counted by Schmitt trigger and four binary stages af up
FIRST THREE I LAST BINARY STAGE
LAST BINARY STAGE

$$
\text { x }-2+2
$$

ELDD
ELECTROMECHANICAL COUNTER
READOUT READOUT

AMPLIFIER-DRIVER SPEEDS UP COUNTERArrangement using neon coupling between fubes can increase operating speed of welldesigned electromechanical counter up to 2.5 times, by providing combination of pulsed and sliding overvolting.-R. L. Ives, Circuit Modifications for Boosting Counter Speed, Electronics, 33:7, p 112-114.

SPEED.TRIPLING COUNTER DRIVE-Increased speed of $25-c p s$ electromechanical counter to 75 cps without affecting accuracy of count. Circuit arrangement simplifies power supply requirements. Zener diodes eliminate need for bios supply.-R. L. Ives, Circuit Modificafions for Boosting Counter Speed, Electronics, 33:7, p 112-114.

GUNSHOT COUNTER-Loudspeaker serves as microphone for picking up loud noises such as from blasts, noisy auto engines, and children on rolier skates. Each input shack wave drives grid of 144 negative and fires 1 D21 strobotron, thereby dumping charge on 2-mfd capacitor from plate to ground through counter. Operates af up to 40 shots per second, fast enough for most automatic weapons fire.-R. L. Ives, Shot Counter Uses Strobotron, Electronics, 31:33, p 94-96.

NEON INDICATOR SCALER-8affery-powered stage uses binary scaling circuit with nonsoturated temperature-compensated transistors, as elements of scale-of-64 circuit driving 4-digit mechanical register.-F. E. Armstrong, Battery Powered Portable Scaler, Electronics, 33:19, p 74-75.

UNITS COUNTER RESISTORS $\pm 7 \%$ TOTAL EXCURSION $1 / 4$ WATT TENS COUNTER CAPACITORS $\pm 10 \%$ 150V D-C WORKING UNLESS OTHERWISE STATED

CONVEYOR COUNTER-Senses objects as small as 0.2 sq cm on moving conveyor at
speeds up to 25 pps.-G. Jeynes, Using ColdCathode Tubes to Count and Store, Electron-
ics, 38:8, p 80-89.

SHIFT REGISTER-Memory chain of 16 miniature logic tubes (three shown) serves as
counter for weighing and batching. -M . E. Bond, Cold-Cathode Tubes as Triggers, Elec-

MECHANICAL COUNTER SPEEDUP-Vacuumtube circuit doubles speed of counter, with minimum of overheating and other damage to counter coil and mechanism. Operation depends on pulsed overvolting for a limited time, along with some sliding overvolting wherein excess voltage is applied to coil when circuit is first completed, then reduced so it drops below normal operating voltage during pull-in time.-R. L. Ives, Circuif Modifications for Boosting Counter Speed, Electronics, 33:7, p 112-114.

ANTIDUPLICATION CIRCUIT-Diodes absorb flyback and prevent duplicate counts when categorized information is fed to banks of electromechanical counters.-R. L. Ives, Reducing Errors in Category Counters, Electronics, 35:23, p 54-57.

INFRARED-CURTAIN BIRD COUNTER-System registers appearance of bats and other mov ing objects moving through curtain of infrared
light. Logic circuit defermines direction of pravel. Direction and pass time are automatically printed by mechanical register K1.-P. A.

Tove and J. Czekajewski, Infrared Curtain System Datects and Counts Moving Objects, Electronics, 34:31, p 40-43.

CHAPTER 21

Counter Circuits-Pulses

ADF DEGREE-INDICATING COUNTER-VI is used in conventional pulse-forming circuit to drive counter V2. Each counter tube is connected to next by half of 12AT7. When first counter passes zero, pulse at its output is fed to next counter.-J. F. Hatch and D. W. G. Byatt, Direction Finder with Automatic Readout, Electronics, 32:16, p 62-64.

BIQUINARY DECADE WITH NIXIE INDICA-TORS-Transistor terminals 0 to 9 represent cannections to Nixie indicator, which requires
no buffers. Counting rate can exceed 500 Mc , permit easy conversion to bed.-R. Engelusing 2N2708 transistors. Bi-quinary decade connections, shown af right and in table,
permit easy conversion to bed.-R. Engel-
mann, B-Quinary Scaling: Accuracy and Simplicity at 500 Mc , Electronics, 36:46, p 34-36.

HIGH-SPEED BUFFERED FLIP-FLOP-Buffering increases load-handling capacity and insures occurate counting of $10-\mathrm{Mc}$ clock frequencies.
-D. L. Nepveux, Digital Circuits Achieve Automatic Control of Radar Range Tracking, Electronics, 34:52, p 46-50.

MULTIJUNCTION SEMICONDUCTOR AS DECADE COUNTER-Experimental equivalent of cold-cothode counter tube, developed in Poland, can serve also as staircase waveform generator. Although circuit shown, with five p-n junctions on one side of n-type semiconductor bar, gives only count of five before transistor restores initial state, decade counter would have ten junctions on bar.-A. Ambroziak, Semiconductor Analog of a ColdCathode Counter Tube, Electronics, 35:6, p 46-47.

10-CHANNEL MULTIPLEXER-Basic counter consists of ten modified bistable mvbr stages, Q1 through Q20, coupled in usual ring manner and driven continuously by timing oscil-
lator Q31. Used for multiplexing conventional or random pulse inputs from Explorer VII satellite. Eight channels serve for information inputs, and fixed levels of 0 and
110% are applied to other two channels for frame identification.-O. B. King, Multiplexing Techniques for Satellite Applications, Electronics, 32:44, p 58-62.

BINARY WITH STEERING-CIRCUIT TRANSIS-TOR-Input goes to steering transistor that reploces two back-to-back diodes normally used to drive bases of binary transistors through capacitive coupling. Four-transistor binary flip-flop reduces total quiescent drain on bafferies.-R.W. Rochelle, Cyclops Cores Simplify Earth-Satellite Circuits, Electronics, 31:9, p 56-63.

BIQUINARY COUNTER WITH READOUTSimplified driver circuits require only seven transistors rather than ten, when used with
special Amperex ZM1032 fube.-Biquinary Indicator Uses 7 Transistors, Electronics, 36:28, p 58.

STEERING FOR REVERSIBLE DECADE COUNTER -Consists of four R-C coupled complementary saturated flip-flops Q1-Q8. Symmetrical npn
steering transistors Q9 through Q16, coupled between collectors of flip-flops, are used as trigger current amplifiers and for steering
when couniing up or down.-R. D. Carlan, Steering Circuits Control Reversible Counters, Electronics, 33:1, p 86-88.

4-KC SCALER-Drives glow tube of moximum possible rate. Uses single-shot mvbr ond step-up tronsformer Q1 to obtoin 300-v pulses required to drive glow tube. Single

HYBRID RING COUNTER-Counts reliably up to about 500 kc , with trigger amplitude of 4.5 v. All stages ore identical.-G. A. Dunn
and N. C. Hekimian, Tube-Transistor Hybrids Provide Design Economy, Electronics, 32:23, p 68-70.
drive pulse is fed simultoneously to both guides of tube.-H. A. Kompf, Increosing Counting System Reliability, Electronics, 32:37, p 112-113.

40,000-CPS DECADE COUNTER-Basic building block in counter is bistable mvbr which produces binary counts. Operates over wide range of operating voltages and tempera-tures.-Decade Counter is Flexible, Reliable, Electronics, $31: 49$, p 104-106.

DRIVE TUBE ANODE

NUMBER TUBE
 os Triggers, Electronics, 38:7, p 76-85.

eighth count; at ninth count, stages 1 and 4 generate positive leading coincidence trigger and apply it to stages 2 and 3 to change them from 0 to 1 , so all stages are at 1 on count 9. Next count then clears all stages to
0. Dash-dot lines show connections for

COUNTING UP TO 50 KC -Input stage is Schmitt trigger Q1-Q2. Diode at input of interstage transistor amplifier Q3 clips base of cathode pulse.-K. Apel and P. Berweger, Miniature Gas-Filled Tubes For High-Speed Counting, Electronics, 33:8, p 46-47.

COUNTING UP TO 100 KC -Uses miniature gas-filled decade counters that provide visual indication of count along with high reliability. Schmitt-frigger input feeds mono between
counter fubes. Can produce output after desired count if caunter is initially raset to complement of the desired number.-K. Apel and P. Berweger, Miniature Gas-Filled Tubes For

High-Speed Counting, Electronics, 33:8, P 46-47.

COUNT STORAGE-Magnetron beam-switching tube and fransfer tube together serve to sample and store accumulated count and provide multioutput functions without stopping original count or losing input information during readout.-R. W. Wolfe, Decade Decimal Counter Speeds Printed Readout, Electronics, 31:3, p 88-90.

BINARY COUNTER-Basic binory circuit can be used alone as at A for counting up to 130 kc . Two circuits connected as at B give flip-flop operotion, while one circuif with

HIGH-SPEED BCD COUNTER-Eliminotion of capocitively coupled feedbock increoses operating speed to maximum repetition rote of
flip-flop stoges. By modifying circuit os shown in heovy lines and adding diode DI, circuit returns to initial stote at count of 10
rother than 16.-P. Word, Modified Decade Counter Eliminotes Components, Electronics, 38:25, p 74-75.

REVERSIBLE TEN-STAGE RING COUNTER-Can be operated above 100 kc . Reversible operation requires binary control, such as by bistable mvbr, to determine direction. Upper transistors are 2N414 and lower are 2N488. Other resistors are IK.-N. C. Hekimian, PNP. NPN CIRCUITS: New Look af a Familior Connection, Electronics, 35:47, p 42-46.

GAS-TUBE RING COUNTER-Uses Philips trigger fubes in decode counter hoving moximum speed of 2,500 pps. Bios developed af cothode is fed through G to prime following stage. Readout display can be Burroughs Nixie HB106 or other numerical indicotor. -P. G. Hodgson, Cold-Cathode RingeCounter Drives Numerical Indicator, Electronics, 33:14, p 80.

ALL CAPACITANCE VALUES ARE IN MICROFARADS ALL RELAYS ARE C.P. CLARE TYPE RP764IG2
UP OR DOWN-Scr ring counter shifts up or Only conducting stoge draws power.-1. G. Down, Electronics, 38:18. P B4-85. down in 3 millisec without missing count.

COMMAND TIME COUNTER-Used with timelogic matrix to store command times for mis-sile-launching and guidance-control systems. -W. R. Johnston, Multioperture-Core Counters Give Nondestructive 5toroge Readout, Electronics, 34:24, p 62-64.

RING-OF-7 COUNTER-Uses surface-barrier transistors in arrangement wherein pattern of four on stages is stepped olong ring, permitting maximum number of stages in ring to be much higher than in conventionol rings. -W. Carlson, Ring Counter hos Increased Count Capocity, Electronics, 31:15, p B9-91.

ZERO SET FOR 90-DIODE MATRIX-Each pulse input to flip-flop advances counter one posifion. Single-transistor amplifiers A1-AO drive glow indicator tube serving as readout. For

reset to zero, positive pulse is opplied to base of transistor in zero amplifier, to furn its tronsistor on and turn all other amplifier
$+60 \mathrm{~V}$
transistors off.-R. W. Wolfe, Diode Matrix Shrinks Decimal Counter, Electronics, 35:13, P 50-52.

BUFFER-Used batween ring counters when readout number has several digits, to make final stage of one counter fire first stage of next counter while resetting first counter.F. W. Kear, Digital Control Uses Unijunction Transistors, Electronics, 34:18, p 79-80.

CURRENT-ECONOMIZING DESIGN-Used in 15-stage counter. Circuit is conventional, but to economize on current, only first three stages operate with relatively high collector currents; for these, R1 and R2 +R3 are 5,600 ohms and transistors are 2N496. Subsequent stages use OC201 transistors and increasingly higher values of collector load, up to 22,000 ohms for Bth stage.-J. Ackroyd, Orbiting Spectrometer Plots Solar X-Rays, Electronics, 34:43, p 55-57.

ANODE-TRIGGERED RING COUNTER-Triggered by coupling emitters of transistors Q1 to common bus, to permit both forward and
reverse operation. Use of pnp-npn pairs reduces power requirements, improves load capacity, increases speed, and simplifies cir-
cuits.-N. C. Hekimian, PNP-NPN CIRCUITS: Now Look af a Familiar Connection, ElecPronics, 35:47, p 42-46.

RING COUNTER WITH VISUAL READOUTUses only six components per stage. Combining of counter and indicator functions gives low battery drain. After reset button is released, $0.22-\mathrm{mfd}$ capacitor insures that first stage furns on. Current is drawn by stage only when lamp is on. Any number of stages may be included in ring.-"Transistor Manual," Seventh Edition, General Electric Co., 1964, p 203.

1-KC SCALER-Glow-tube counter provides driving pulses of about 100 v , using two amplifiers in cascade, both saturated when no signals are present.-H. A. Kampf, Increasing Counting System Reliability, Electronics, 32:37, p 112-113.

TRANSISTORIZED THYRATRON RING COUNTER -Each bistable circuit has two opposito-symmetry germanium transistors, two diodes, and four resistors. Additional transistor Q3 trans-
fers conducting stage to next position when actuated by transfer pulse. Absence of capacitors gives high-speed operation. No bias current is required from ON stage to keep
othar atages cut off.-J. A. Pecar, Ring Counter Uses Transistors, Electronics, 34:4, p 49-51.

SCS BINARY COUNTER-Stages ore triggered by positive-going edge of input. Silicon controlled switch is furned on at cathode gate, and furned off af anode gate.-"Transistor Manual," Seventh Edition, General Electric Co., 1964, p 429.

RING-OF-10 COUNTER-Based on stepping of recognizable sequence of and off stages along ring at each count pulse, in contrast to conventional ring counters having only one on stage to hold off all other stages. Circuit gives partial diagram, and article gives wiring table for remaining stages. Four on stages are stepped along ring. Time constants of gating circuits limit count rate to 240 kc , but components with faster time constants permit operation up to 1 Mc. Ring of 13 is upper limit.-W. Carlson, Ring Counter has Increased Count Capacity, Capacity, Electronics, 31:1S, p 89-91.

$R_{1}=18 \mathrm{ohms}$
$D_{3}, D_{4}, D_{6}=B D-4(G E)$
$R_{2}=1.1 \mathrm{~K}$
$L_{1}=0.68 \mu \mathrm{~h}$
$R_{z}=68 \mathrm{ohms}$
$L_{2}=62 \mu \mathrm{~h}$
$R_{4}=68$ ohms
$L_{z}=56 \mu \mathrm{~h}$
$R_{6}=470 \mathrm{ohms}$
$V_{a}=200 \mathrm{mv} \pm 10$ percent $R_{s}=130$ ohms $\quad V_{b}^{a}=500 \mathrm{mv} \pm 20$ percent $\boldsymbol{R}_{7}=51 \mathrm{ohms}$
$\begin{aligned} V_{b} & =500 \mathrm{~m} \\ C & =82 \mathrm{pf}\end{aligned}$
$R_{\mathrm{s}}=10 \mathrm{~K}$
MULTI-SCALE COUNTER-Changing value of $\mathbf{L 2}$ changes scale factor in range of 2 to B. Circuit operates to 10 Mc at scale of S.C. A. Budde, One-Stage Scaler Needs No Complex Feedback, Electronics, 36:39, P 32-33.

BIDIRECTIONAL MULTIDECADE COUNTERSingle sign-determining circuit ahead of in-
put to tens stage provides gating signals for every decade, to handle rapid reversal of
count direction.-L. C. Burnett, Reversible Decade Counter, Electronics, 35:9, p 46.

DECIMAL-CODED COUNTER-Addition of one core and one diode per decade converts straight-binary counter to decimal-coded counter.-W. R. Johnston, Multioperture-Core Counters Give Nondestructive Storage Readout, Electronics, 34:24, p 62-64.

VARIABLE-TIMING RING COUNTER-Shift pulses are generated by unijunction transistors, with interval between pulses defermined by CT and RT. RT con have different value for each stage of counter, as shown.-"Transistor Manual,"Seventh Edition, General Electric Co., 1984, p 430.

LOW-POWER RING COUNTER-Requires only 6 mw at 1.5 v . Reset pulse turns on first stage with its trailing edge.-"Transistor Manual," Seventh Edition, General Electric Co., 1964, P 431.

1-MC COUNTER-Increasing counting speed to this value requires special hydrogen gas in sounter tubes and reduction of tube capacitances. Monostable mvbr V1-V2 is triggered by 5-v negative pulses. Cathode resistors of V3 are bridged by capacitors to reduce effects of capacitive coupling between main and auxiliary cathodes.-K. Apel and P. Berweger, Miniature Gas-Filled Tubes For High-Speed Counting, Electronics, 33:B, p 46-47.

UJT BISTABLE RING COUNTER-Operates up to $40,000 \mathrm{cps}$, with trigger pulse widths between 6 and 9 microsec.-T. P. Sylvan, Bistable Circuits Using Unijunction Transistors, Electronics, 31:51, p 89-91.

SYNC CIRCUIT FOR QUINARY SCALER-Timebase signal at 500 Mc turns Q1 on and Q2 off at timing rate. Negative 1 -v start signal applied to base of Q1 makes $500-\mathrm{Mc}$ signal appear at collector of Q2 to serve as output for one af quinary scalers. Two scalers in parallel can measure time accurately to within 1 nsec.-R. Englemann, Quinary Scalers: Measure Time Intervals Digitally, Electranics, 37:5, p 34-36.

PULSE COUNTER-Unijunction transistor QI serves as counter, with other counter stages being identical. Q3 and Q4 energize and lock readout circuit unfil quench pulse is applied after noxt counting cycle.-F. W. Kear, Unijunction Transistor Pulse-Circuit Design, Electranics, 35:21, P 58-60.

RING COUNTER USES GATE TURNOFFS-Closing of set pulse input switch furns on first gto, applying voliage to its lamp load. Each shift pulse input then transfers conduction to

UNIJUNCTION RING COUNTER- Provides switching for readaut and control applicafions, including data display for airborne digital instrumentation. Q5-Q6 provide re-setting.-F. W. Kear, Digital Control Uses Unijunctian Transistors, Electranics, 34:18, p 79-80.

BASE-GATED BINARY-Input counting rate is up to 70 Mc . Saturating transistor gate minimizes turnoff and turnon delay. Flip-flop transition is completed in less than 16 mil -limicrosec.-High-Speed Switching Transistors (CBS Electronics ad), Electronics, 33:39, p 45.

TRANSFORMER-CONTROLLED COUNTER-Uses conventional linear transformer in convenfional bistable flip-flop to store information. -W. M. Carey, Using Inductive Control in Computer Circuits, Electronics, 32:3B, p 31-33.

BEAM-SWITCHING DECADE-Counter is cleared when reset tube cuts off series triode in cathode of beam-switching fube. Circuit presents high impedance to initiating gate, as required for resetting several decades.-R. W. Wolfe, Decade Decimal Counter Speeds Printed Readout, Electronics, 31:3, p B8-90.

[^0]

FLIP-FLIP RING COUNTER-Complementary mubr, in which Q1 and Q2 are either both on or both off, gives low power drain. Strong negative pulse applied to base of Q2 of first stage gives reset.-J. E. Russell, Ten Signals af a Glance, Electronics, 37:19, p 54-57.

LOW-LEVEL 5-MC TUNNEL-DIODE-With IN2933 germanium tunnel diode, power consumption is only 525 microwatts par transisfor and binary stage. Circuit voliage and resistances are such that only one funnel diode is in high-voltage state at a time. Silicon transistors, for coupling, can be pnp or npn.-E. Gottlieb and J. Giorgis, Tunnel-Diode Switching Circuits, Electronics, 36:27, P 26-31.

NIXIE-TUBE RING COUNTER-Uses silicon controlled switches.-"Transistor Manual," General Electric Co., 1964, p 430.

7-DIGIT BINARY COUNTER-Stores pulses received from oscillator gate. 12Bth pulse resets counter to zero. Complete binary counter consists of seven cascaded bistable multivibrators, transformer-friggered.-W. W. Grannemann of al, Pulse-Height-fo-Digital Signal Converter, Electronics, 33:2, p 58-60.

CHAPTER 22
 Current Control Circuits

TO RECTIFIER TRANSFORMER

LASER MODULATOR CURRENT CONTROLWhen modulator or pumping current for laser is lost, output voltage of pulse transformer II will rise to limit set by zener D12, which then conducts to make Q2 and Q3
absorb current not required by energy storage capacitors.-S. J. Grabowski, Pulse Power Supply Design for Laser Pumping, Electronics, 36:51, p 33-35.

CONSTANT-CURRENT REGULATOR-Uses transistor as variable series resistor. Current will remain within $\mathbf{1 0 \%}$ of $\mathbf{1 0 ~ m a ~ f r o m ~ s h o r t - c i r c u i t ~}$
up to maximum load of 400 ohms. - "Zener Diode Handbook," International Rectifier Corp., 1960, p 59.

CURRENT AMPLITUDE DETECTOR-Used to indicate when pulsed drive currenis for memory array exceed tolerance limits. Can detect current pulse deviation of 10 ma from l.2-amp current level. RE is adjusted to vary current clamping level.-H. M. Winters and J. P. Shuba, Current Amplitude Detector, EEE, 12:11, p 68-70.

1-MA CONSTANT-CURRENT SCR SOURCEUse of high-breakdown-voltage 2N1599 scr gives $\mathbf{0 . 2 5 \%}$ regulation at 1 ma for input voltages of 10 to 400 v . Output current can be adjusted up to 10%. Differential amplifier Q1-Q2 compares sampled oufput current with voltage across reference zener.-R. H. Crawford, 400-Volf SCR Constant-Current Source, EEE, 12:3, p 74.

TEMPERATURE-C OMPENSATED CURRENT SOURCE-Presents 1,000 meg of output impedance while supplying up to 200 no of tem-perature-compensated current. Germanium diodes serve as compensating network drawing 1.3 ma . Based on fact that matched transistor pairs have base-current femperature coefficients that are predictable as function of operating current.-C. C. Hanson, Low-Drift Current Generator Compensates for Temperature, Electronics, 39:12, p 108-109.

CONSTANT-CURRENT SUPPLY-Used to measure resistivity of semiconductors rapidly and accurately. Switch gives choice of $0.5,5$, and 50 ma . Values are read from dial settings rather than meters, to increase accuracy.P. J. Olshefski, Constant-Current Generator Measures Semiconductor Resistance, Electronics, 34:47, p 63.

AUTO GENERATOR REGULATOR-Limits maximum generator current to safe value, prevents current flow from battery through generator when generator voltage falls below battery voltage, and regulates vaitage.L. D. Clements, Solid-State Generator Regulator for Autos, Electronics, 33:8, p 52-54.

D-C SUPPLY FOR FLUOURESCENT LAMPSLamp operates directly from d-c supply, without a-c conversion. Transistors form constantcurrent source that controls lamp current. Q3 is controlled by Schmits trigger Q1-Q2. When lamp current exceeds preset value, voltage drop across 5.6 -ohm resistor furns on Q1, thereby furning off Q2 and Q3. When lamp current falls, Q3 comes on again. To start, pushbutton closes circuit through lamp heaters and shunts 5.6 -ohm resistor to give faster heating. When button is released, voltage surge caused by series inductor ignites lamp. Control circuit then varies lamp current 25% above and below its average value of l-kc rate. Regulator losses are only 3 w.-D. B. Hoisington, Direct Current Regulator Drives Fluorescent Lamps, Electronics, 39:17, p 94-95.

CONSTANT-CURRENT CAPACITOR CHARGER -Firing angle of a-c supply voltage is decreased in steps after each supply cycle, to match charging rate of $360-\mathrm{mfd}$ capacitor for 30-kw plasma pinch space engine, so current pulses have identical average peak of 8.6 amp.-F. Ellern, Capacitance Chargers for Space Employ Controlled Rectifiers, Electronics, 36:41, p 32-33.

CONSTANT-CURRENT GENERATOR-Provides 2.8 microamp, regulated within 0.75% over range of -20 to $+60^{\circ} \mathrm{C}$, to feed emitters of low-level differential amplifier. Circuit compensates for base-emitter voltage change with temperature.-M. Wolpert and D. Spooner, Temperature-Compensated ConstantCurrent Generotor, EEE, 12:12, p 58.

TRANSISTOR OVERLOAD PROTECTION-Current greater thon 3 amp flowing through 0.47 -ohm resistor in emitfer of current-switch ing transistor Q1 drops voltage on base of Q2, causing Q2, Q3, and Q4 to saturate, Q3 opens circuit immediately and keeps it open for duration of overload. For complete shortcircuits, Q4 latches K2 to provide positive protection.-F. W. Kear, Fast-Response Overload Protection, Electronics, 33:7, p 125.

50,000-AMP SINGLE-PULSE CURRENT SWITCH -Simple triggered-gap switch operates at voltages down to 1 ky to control switching with time jitter of only 0.1 microsec between successive pulses. Can be used for mognetron testing, surge-current generator, and flashlamp source. Output of trigger generator is damped sine wave having sufficient amplitude to break down gap in switch ond initiate current pulse. V1 and V2 serve as shorpener for triggering pulse.-E. H. Cullington, W. G. Chace, and R. L. Morgan, Low-Voltage Trigger Controls High Currents, Electronics, 31:15, p 86-88.
 Reference amplifier, consisting of integrated zener diode and npn transistor, acts with Q2 to maintain constant reference voltage across R4. Current through R4 equals load current except for relatively small base currents of Q2 and Q3. Current drift over 15 hours is less than 0.01%.-"Transistor Manual," Seventh Edition, General Electric Co., 1964, p 233.

TEMPERATURE - COMPENSATED CONSTANTCURRENT GENERATOR-Reverse voltage characteristic of zener, in conjunction with base-
emitter characteristic of transistor, stabilizes collector current by maintaining constant voltage ocross R from -55 to $+25^{\circ} \mathrm{C}$.-Tem-
perature-Compensated Constant Current Generator, "Electronic Circuit Design Handbook," Mactier Pub. Corp., N.Y., 1965, p 169.

CURRENT REGULATOR FOR $0-100$ MA-Con-stant-current Currector diode and shunting zener diode together maintain constont current over extremes of input voltage for both normal and shorted loads.-N. Welsh, How Diodes Keep Current to Constant Value, Electronics, 36:4, p 74-78.

CONSTANT-CURRENT CONTROL-Uses pnp and npn current sources connected to regulate each other's reference. Values shown are for 1 ma , but R1 and R2 can be changed to give other constant value of current. Applied voltage must be at least B v.-F. C. Allen, Two-Terminal Constant-Current Device, EEE, 13:10, p 71-72.

CONSTANT-CURRENT DIODE AS COLLECTOR LOAD-Current-limited Currector diode isolates transistor amplifier output from changes in supply voltage and serves also as collector load impedance. Gain is over 60 db at 50 to $100 \mathrm{kc} .-\mathrm{N}$. Welsh, How Diodes Keep Current to Constant Value, Electronics, 36:4, p 74-78.

CHAPTER 23

D-C Amplifier Circuits

CHOPPER-TYPE DATA AMPLIFIER-Coraful design of transistor circuits between chopper input ond chopper output gives goin stability
within 0.01% for long-term operotion (1,000 hours) from 15 to $35^{\circ} \mathrm{C}$. Linearity is equolly precise for normal output range of plus or
minus 10 v.-F. Offner, Tronsistorized Dota Amplifier Has High Gain-Stability, Electronics, 33:27, p 55-57.

COMPLEMENTARY - P A IR LOW - LEVEL-Dual transistors provide extremely high gain, to give greater stability with fewer stages. Circuit has low drift and high common-mode rejection (120 db) for either differential or single-ended outputs. Differential input impedance is 500K minimum, gain-bandwidth product is 5 Mc , and low-frequency voltage gain is 68 db .-Texas Instruments Inc., "Solid-State Cammunications," McGraw-Hill, N.Y., 1966, p 290.

UNITY-GAIN TEMPERATURE-STABLE D-C AMP-LIFIER-Two bootstrapped cathode followers are combined to form differential input stage, where one gate serves as feedback input and other as signal input. Field effect transistors Q1 and Q2 are matched.-Texas Instruments Inc., "Solid-State Communications," McGraw-Hill, N.Y., 1966, p 139.

FET UNITY-GAIN D-C AMPLIFIER-Each base of 2N2641 dual transistor is driven by sourcefollower fet's Q1 and Q2. Q1 performs impedance transformation, while Q2 closes feedback loop and tends to eancel changes in parameters due to temperature variatians. -L. J. Sovin, Jr., "Field-Effect Transistors," McGraw-Hill, N.Y., 1965, p 102.

LOW DRIFT WITHOUT CHOPPER-Developed for airborne or missile telemetry. Gain is adjustable. Has wide frequency response, high common-mode rejection factor, and high input impedance, olong with gain stability of 0.75% over wide temperature range.-R. D. Middlobrook and A. D. Taylor, Differontial Amplifier with Regulator Achieves High Stability, Low Drifi, Electronics, 34:30, p 56-59.

ULTRAHIGH-IMPEDANCE AMPLIFIER-Bridgebalanced series-compensated d-c amplifier using ordinory vacuum tubes gives input im-
pedance of 250,000 meg, for precise voltage measurements without loading high-impedance circuits.-J. Morrison, For Precise Meas-
urements An Ulirahigh Impedance Amplifier, Electronics, 35:40, p 49.

CONTROL FOR VOLTAGE-TUNED OSCILLATOR -Input d-c control voltage required by SiC varistors of voltage-tuned oscillator is boosted by d-c amplifier stages that produce two control voltages (at A and B) for SiC varistors of phase-shift oscillator circuit, changing their a-c resistance and thereby oscillator frequency.-M. Uno, Varistor Network Controls Voltage-Tuned Oscillator, Electronics, 34:30, p 44-47.

ACTIVE REDUNDANT D-C AMPLIFIER-Test carrier signal is added to input of normal amplifier A1. When failure occurs in A1, defector senses absence of test carrier and causes relay K to change over to amplifior A2. Both amplifiers are differential type, having apen-laop gain of 1,000 and closedloop gain of 10. Open-loop response is flat to about 2 kc , and closed-loop response exfends beyond $5 \mathrm{kc} .-\mathrm{T}$. B. Hooker, Designing Redundant Analog Amplifiers, EEE, 13:2, p 55-59.

HIGH-INPUT-Z UNITY-GAIN-Source-output connection provides feedback. Cascode inpul stage has high gain, as required for good amplifier gain accuracy. Upper cutoff is 5,000 ke for 10,000 -ohm generator resistance.Texas Instruments Inc., "Solid-State Communications," McGrow-Hill, N.Y., 1966, p 141.

HIGH INPUT IMPEDANCE-Gives current gain of 1,000 , voltage gain of 40 , input impedance of 0.4 meg , and good short-term temperature stability. Output stage is battery-coupled.-D. Schuster, D-C Transistor Amplifier for High-Impedance Input, Electronics, 31:9, p 64-66.

INPUT CHANGE RATE TRIGGERED RELAYSensitive and stable d-c amplifier operates relay only on rapid changes of input voltage, yet is immune to drift. Will also operate on a-c signal, which is the same as rapidly changing d-c signal.-Rate Circuit, "Electronic Circuit Design Handbook," Mactier Pub. Corp., N.Y., 1965, p 239.

STRAIN-GAGE AMPLIFIER-Battery-powered circuit for low-impedance transducers has voltage gain up to 10,000 with low noise and
low drift.-D-C Amplifier uses Solion Tetrodes, Electronics, 35:39, p 108.

400-CPS SUMMING AND POWER AMPLIFIER -Used in either 60 or 400 -cps control systems in which several signals must be summed and amplified in precise manner. Also used for broadband equalization when load impedance is below 25,000 ohms and
phase lag must be minimum. Phase shift is less than 5° from d-c to 400 cps . Open-loop gain is above 5,000 .-L. S. Klivans, D-C Amplifiers for Control Systems, Electronics, 31:47, p 96-100.

OPERATIONAL D.C AMPLIFIER-Ideal for control systems and analog computers because of broad passband and large control-system respanse characteristic. Open-loop gain above 15,000 . Output swings 100 v into 20,000-ohm laad. Can be used from dec ta 20 ke af unity closed-loop gain.-l. S. Klivans, D-C Amplifiers for Control Systems, Electronics, 31:47, p 96-100.

STARVED D-C AMPLIFIER-Serves as wideband input stage for chopper-stabilized amplifier that resalves 10 microvolts. Bandwidth is 100 kc , equivalent input noise is less than 10 microvalts rms, and input current is only B nanaamperes.-Starved DC Amplifier Has Low Noise, High Z, "Electronic Circuit Design Handbook," Mactier Pub. Corp., N.Y., 1965, p 108.

POWER-SUMMING D-C AMPLIFIER-Openloop gain is 2,000 and maximum voltage swing is 10 v info 2,000-ohm load. Maximum closed-loop gain should be 50 for gaod stability. Used for straight resistance summing of several input signals.-l. S. Klivans, D-C Amplifiers for Control Systems, Electronics, 31:47, p 96-100.

TELEMETRY SUMMING AMPLIFIER-Uses differential dual-friode first stage, voltage amplifier, and current and voltage-limited cathode fallower to give output swing of 5 v above and below 0 . Open-loop gain of 2,000 is obtained with positive feedback in last two stages. Used to isolate transducers and to amplify d-c or low-frequency signals in airborne or ground-based telemetry systems.L. S. Klivans, D-C Amplifiers for Cantral Systems, Electronics, 31:47, p 96-100.

CURRENT-SUMMING OPERATIONAL AMPLI-FIER-Uses current-summing to hold voltage af input node R1 at 0 v . With more than ane input, there is exact summation of inputs, with no interaction. As sine-wave amplifier, gain is 1,000 , and bandwidth for transistors shown is d-e to 20 kc .-C. J. Ulrick, Minimum= Interaction Summing Amplifier, EEE, 12:2, P 30.

CHAPTER 24 Delay Circuits

VOLTAGE-CONTROLLED DELAY GENERATOR -Accuracy is 0.7%, with high stability. Used in radar range tracker, which requires accurate voltage analog of time between out-
going pulse and incoming echo.-C. K. Friend and S. Udalov, Stabilized Delay Circuit Provides High Accurocy, Electronics, 34:15, P 78-80.
 input and output delays are variable from
1.5 to 1,500 millisec. Moximum turn-on delay cannot exceed duration of input pulse.
-C. R. Mora, Delay Circuir Varies Turn-on, Turn-off, Electronics, 39:7, p 92-93.

DUAL DELAY-Two-transistor circuit produces pulses of finite width that start finite time pulses of finite width that start finite time
ofter reference pulse. Initial delay is determined by R1-R2-C1 and pulse width by
C2-R4.-H. P. Brockman, Circuit Provides Dual termined by R1-R2-C1 and pulse width by
C2-R4.-H. P. Brockman, Circuit Provides Dual Delay, Electronics, 32:18, p 62-65.

SOLID-STATE DELAY WITH A-C OUTPUTTiming sequence is initiated by switch, which applies power to uit circuit. When emitter voltage of ujt reaches peak point, C1 remains charged and uit oscillates af high frequency. Resulting pulses turn on $\mathrm{scr}^{\prime} \mathrm{s}$ through pulse transformer, applying voltage to load.-"Transistor Manual," Seventh Edition, General Electric Co., 1964, P 322.

VARIABLE DELAY FOR ANALOG SIMULATION -Uses thick-walled ferrite cores to store voltage levels as fux levels.-W. C. Till and
W. H. Ko, Versatile Analog Storage uses Ferrite Cores, Electronics, 35:39, p 60-63.

MEASURING NEARLY SIMULTANEOUS EVENTS -Used for measuring 12 events that can be as close together as 20 nsec and as far
apart as 200 nsec. Twelve identical circuits, one for each trigger, drive magnefosfrictive delay line for serializing events.-R. P. Rufre,

How to Measure Simultaneous Events with Magnefostrictive Delay Lines, EEE, 14:5, p 44-49.

LONG DELAYS-Delays up to 2 hours are obtained, using unijunction transistor Q1 as trigger for scr and $\mathbf{Q 2}_{2}$ as free-running oscillator. Only 2 na through timing resistor R1 will provide triggering.-D. V. Jones, Quick-On-The-Trigger Design, Electronics, 38:12, p 105-110.

RELAY DELAY-Unijunction transistor is used ta delay operatian of relay from 0.5 sec to 3 minutes. CT-RT determine delay interval. -D. V. Jones, Quick-On-The-Trigger Design, Electronics, 38:12, p 105-110.

SCR TIME DELAY-Unijunction fransistor Q1 and low-cost scr D1 give time delay of 0.4 millisec ta 4 minutes, adiustable by CT-RT.D. V. Jones, Quick-On-The-Trigger Design, Electronics, 38:12, p 105-110.

SIX-STEP RING DELAY-When double-triode blocking oscillator is fired by input trigger, it delivers 0.6 -micrasec pulse into 1 -microsec deloy line which, in turn, delivers pulse to next delay line. After sixth delay, pulse is used as trigger for next ring unit.-M. T. Nadir, Microsecond Sampler Handles 126 Channels, Electronics, 32:4, p 36-39.

PREFERRED FAST-RECOVERY PHANTASTRON DELAY-Generates rectangular waveform whose duration is almost directly proporfional to control signal. Used to produce movable markers on radar display and to time-madulate pulse in accordance with variable quantities such as antenna position. Maximum recovery time is 40 microsec. Control signal is 20 to 240 v , input 1 is -15 v , and input 2 is +20 v . Output 1 is +60 v and output 2 is $-10 \mathrm{v} .-$ NBS, "Handbook Preferred Circuits Novy Aeronautical Electronic Equipment," Vol. I, Electron Tube Circuits, 1963, PC 57, p 57-2.

MONOSTABLE DELAY-Designed to perform delay function in digital lagic circuits for camputer, control, and communication equipa ment. Choice of feedbock capacitor $\mathbf{C 1}$ gives delay range from 2 microsec to 100 millisec. R3 may be made variable for further adjustment of time delay.-NBS, "Handbaok Preferred Circuits Navy Aeronautical Electranic Equipment," Vol. II, Semlconductor Device Circuits, PSC 10 (originally PC 213), p 10-2.

SLOW-MAKE RELAY-Circuif energizes relay with delay controlled by R2-C1 after driving pulse is applied. Relay de-energizes the instont driving pulse is removed.-P. Haas, Timing Circuits Contral Reloys, Electronics, 38:6, p 85.

6 MSEC TO 1.5 SEC-Provides continuously varioble deloy hoving good setfobility over entire ronge due to use of single log-topered pot RI.-S. G. Freshour, Wide-Ronge Varioble Deloy Circuit, EEE, 14:3, p 62.

220-MICROSEC PHANTASTRON DELAY-Timing accuracy of 1% is ochieved by odding
temperoture-correcting feotures to bosic solidstote circuit.-S. R. Porris and D. A. Stoar,

Highly Accurate Phontostron Deloy Circuit, Electronics, 33:43, p 72-74.

DELAY MULTIPLIER-Addition of silicon unijunction transistor Q3 to conventional monostable mubr expands time delay two orders of magnitude.-M. P. Humblet, Unijunction Transistor Multiplies Monostable's Pulsewidth, Electronics, 35:26, p 74-75.

SCR-UJT TIME DELAY-Timing interval is initiated by applying power, and is determined by RT-CT. At end of interval, unijunction transistor triggers silicon controlled rectifier, to apply essentially full supply voltage to load. Delay range is from 0.4 millisec to 1 minute.-"Tronsistor Manual," Seventh EdiHlon, General Electric Co., 1964, p 321.

BASIC 4-TRANSISTOR PHANTASTRON-Article traces operotion and analyzes sources of fiming errors.-S. R. Parris and D. A. Staar, Highly Accurate Phantastron Delay Circuit, Electronics, 33:43, p 72-74.

NONPRECISE PHANTASTRON VARIABLE DE-LAY-Used to delay beginning of crt sweep for expanded display. Provides three ranges: 0 to 5, 60, and 200 miles. Circuit is basically cathode-coupled phantastron, with additional coupling by refurning suppressor and screen to same divider. Cathode follower reduces recovery time and provides low-impedance point for range switching,-NBS, "Handbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. 1, Electron Tube Circuits, 1963, p N9-3.
 LAY-Used to delay beginning of ert sweep for expanded display. Range is 5 to 175 miles. Trailing edge of screen waveform is differentiated and used to trigger blocking oscillator through trigger amplifier.-NBS, "Handbook Preferred Circuifs Navy Aeronautical Electronic Equipment," Vol. 1, Electron Tube Circuits, 1963, p N9-3.

NONPRECISE PHANTASTRON VARIABLE DE-LAY-is triggered by positive pulse on suppressor instead of negative pulse on plate. Crystal diode prevents interruption of phantastron operation by trailing edge of trig. ger. Used to delay beginning of crt sweep for expanded display. Delay range is 0 to 190 miles.-NBS, "Handbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. 1, Electron Tube Circuits, 1963, p ${ }^{\text {Na-3 }}$.

0 to 2,440-MICROSEC PHANTASTRON DELAY
-ls triggered by gating mvbr. Receives confrol voltage from ten-furn potentiomater calibrated in distance units. Output drives blocking oscillator through transformer. Accuracy is about 1% of delay setting.-NBS, "Handbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. 1, Electron Tube Circuits, 1963, p N9-2.

FAST RECOVERY-Addition of C2 to basic circuit reduced recovery fime from 2 microsec
to 0.5 microsec. Used in computers.-L. C. Radzik and J. J. Curtis, Adding A Com-
ponent Reduces Recovery Time, Electronics, 3B:2, p 78-79.

FAST-RECHARGING PHANTASTRON-Rechorging of solid-stole phontostron deloy copocitor is reduced to 5 microsec by oddition of Q7. Circuit of $\mathbf{Q 7}$ is inoperative during all other parts of cycle, including quiescent state. -S. R. Parris and D. A. Staar, Highly Accurate Phantastron Delay Circuit, Electronics, 33:43, p 72-74.

MODIFIED PHANTASTRON INTEGRATOR-Addition of input emitter-follower Q1 increases open-loop current gain of integrator and provides increased accuracy and linearity.S. R. Porris and D. A. Staar, Highly Accurote Phantostron Delay Circuit, Electronics, 33:43, p 72-74.

FOUR-MINUTE DELAY-Uji switch gives accuracy of 1% for time deloys in range of 1 to 4 minutes, over range of $10^{\circ} \mathrm{C}$ above and
below $25^{\circ} \mathrm{C}$. R1 controls omount of delay.E. G. McCoy, Accurate Time Deloys up to Four Minutes, EEE, 11:10, p 31.

HIGH-VOLTAGE PULSE DELAY-Diode input network isolates base of Q1 from input when input pulse voltages exceed maximum rated emliter-to-base reverse voltage of inputinverting digital pulse delay circuit.-R. A. Karlin, One-Transistor Multi Delays Digital Pulses, Electronics, 38:17, p 85-86.

FIXED BOOTSTRAP DELAY-Used to provlde buffer interval between sync and video information in radar relay transmitter. Requires gate at least as long as 30 -microsec delay. Accuracy is only 10%.-NBS, "Handbook Preforred Circuits Navy Aeronautical Electronic Equipment," Vol. 1, Electron Tube Circuits, 1963, p N9-1.

1-HR TIME DELAY-Achieved by periodically sampling voltage on timing capacitor, using sampling pulse generated by 2 -cps ujt relaxation oscillator. Between samples, timing capacitor is isolated from emitter of ujt by low-leakage planar silicon diodes.-'"Transistor Manual," Seventh Edition, General Electric Co., 1964, p 321.

SLOW-BREAK RELAY-R3-C1 determine period thot relay remains energized after input pulse is removed.-P. Haas, Timing Circuits Control Relays, Electronics, 38:6, p 85.

ISOLATING-DIODE MONO MVBR-Addition of diode DI to conventional delay circuit reduces fiming variations otherwise encounfered in production runs. Supply voltage change of 10% causes timing change of only 1\%-D. E. Haselwood, Monostable Multivibrators with Stoble Delay Times, Electronics, 34:49, p 64-65.

INPUT-INVERTING DELAY-Input voltage, supply voltage EBB, and R1-C1 determine delay time for digital pulses.-R. A. Korlin, OneTransistor Multi Delays Digital Pulses, Electronics, 38:17, p 85-86.

FIXED MVBR DELAY-Used to provide buffer interval between sync and video information in radar relay transmitter. Can be triggered by pulse. Accuracy of 30 -microsec delay is only about 10\%.-NBS, "Handbook Prefarred Circuits Navy Aeronautical Electronic Equipment," Vol. 1, Electron Tube Circuits, 1963, P N9-1.

S0-350 MICROSEC BOOTSTRAP DELAY-Provides continuously variable delay. Requires mubr to generate necassary gate, and two amplifier stages following comparator diode to sharpen output waveform.-NBS, "Handbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. 1, Electron Tube Circuits, 1963, p N9-2.

LOAD CURRENT DELAY-Silican controlled switch circuit delays start of load current far interval of 0.5 RC after switch is thrown."Transistor Manual," Seventh Edition, General Electric Co., 1964, p 435.

A-C OPERATED TIME DELAY-Switch is normally closed, charging C and blocking scs. Deloy is initiated by apening switch. After delay interval, determined by R, C, and potentiometer, silicon controlled switch conducts on alternate half-cycles.-"Transistor Manual," Seventh Edition, General Electric Co., 1964, p 435.

NOM. TIME $=158 \mathrm{mSEC} \quad 25^{\circ} \mathrm{C} I_{C O} \leq 2.5 \mu \mathrm{~A}$ TRANSISTOR $\beta \geq 80$

CONVENTIONAL MONO MVBR-Requires bulky capacitors and large timing resistors to get accurate delay times of 1 to 300 millisec. Ideal for laboratory use, but gives problems with mass production.-D. E. Haselwood, Monostable Multivibrators with Stable Delay Times, Electronics, 34:49, p 64-65.

PRECISION SCR DELAY-Gives time delays over 3 minutes without need for tantalum or electrolytic capacitor. Timing capacitor Cl can be mylar unit. Applicatian af power initiates timing of power, which is determined by R1-C1. At end of interval, 2N494C fires ather scr, ta place supply valtage acrass load.-D. V. Jones, Precisian Salid-State Delay Circuit, EEE, 11:12, p 26-27.

MICROCOULOMETER-CONTROLLED TIME DE-LAY-Gives delay accuracies of 1% for infervals from 30 sec to 350 hr . Delay interval ends when mercury in capillary glass tube is completely plated onto switching electrode of microcoulometer. With two delays in series, one can be resef while other is in timing mode, to give automatic reset.-Time-Delay Circuit Gives 1-Percent Accuracy, EEE, 13:9, p 94.

UJT RELAY-OPERATING DELAY-When switch is closed, copacitor charges to voltage at which unijunction triggers, then discharges through unijunction transistor and relay after time delay determined by RT, which is about 1 sec of delay for each 10K of resistance."Transistor Manual," Seventh Edition, General Electric Co., 1964, p 320.

PRECISION TIME DELAY-Used as range gate delay in doppler radar boxcar circuit, as ex-panded-range indicator sweep, and for generation of gate waveforms. Output jitter is less than 4 nsec over delay range of 3 to 35 microsec. Negative-going output pulse is 9 v peak. Reliability is achieved chiefly through isolation of timing network R4-R5-C1 during timing interval.-P. E. Harris, Insuring Stability in Time Delay Multivibrators, Electronics, 33:15, p 73.

50-350 MICROSEC PHANTASTRON DELAYGives 0.5% accuracy. Phantastron furnishes own gate and does not require omplifier to trigger blocking oscillator at output.-NBS, 'Handbook Preferred Circuits Navy Aeronautical Electronic Equipmen!," Vol. 1, Electron Tube Circuits, 1963, p N9-2.

DELAYED-DROPOUT RELAY TIMER-Keeps reloy energized for preset time of up to 10 sec after relay is pulled in by momentarily closing switch.-"Transistor Manual," Seventh Edition, General Electric Co., 1964, p 324.

0 to 2,440-MICROSEC BOOTSTRAP DELAYIs triggered by gating mvbr. Receives cantrol voltage from ten-turn potentiometer calibrated in distance units. Output drives blocking oscillator through transformer. Accuracy
is about 1% of delay setting.-NBS, "Handbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. 1, Electron Tube Circuits, 1963, p N9-2.

RING DELAY STARTING UNIT-Consists of blocking oscillator and 3-microsec delay line. Ring start switch fires blocking oscillator once and starts ring. Ring stop switch opens oscillator input to stop ring delay from oscil-lating.-M. T. Nadir, Microsecond Sampler Handles 126 Channels, Electronics, 32:4, P 36-39.

INTEGRATOR OF SOLID-STATE PHANTASTRON -Q2 and Q3 provide open-loop gain, while R4 and C1 are feedback elements.-S. R. Parris and D. A. Staar, Highly Accurate Phantostron Delay Circuit, Electronics, 33:43, P 72-74.

DECOUPLING FOR PULSE DELAY-Coupling circuit ahead of input-inverting digital pulse delay prevents CI from loading driving collector and decreases noise sensitivity.-R. A. Karlin, One-Transistor Multi Delays Digital Pulses, Electronics, 38:17, p 85-86.

MONOSTABLE MVBR DELAY-Prevents certain circuits from operating until proper time and generates and shopes required output pulses. Is triggered by positive pulse produced by input differentiating circuit. Circuits are cas-
caded, and second stage starts its delay coincident with trailing edge of first delay output pulse.-W. W. Grannemann ef al, Pulse-Height-to-Digital Signal Converter, Electronics, 33:2, p 58-60.

LOAD CURRENT TURNOFF DELAY-Input pulse turns off silicon controlled switch, which triggers ofter delay of approximately RC."Transistor Manual," Seventh Edition, General Electric Co., 1964, p 435.

CHAPTER 25 Demodulator Circuits

PHASE-SENSITIVE DEMODULATOR-Used in iceberg-defecting microwave radiometer. Faraday rotational ferrite switch alternately feeds calibrating noise source and ocean or iceberg signal through video amplifier to double-bridge demodulator. Output is d-c voltage proportional to change in antenna temperature, positive for warm signals from iceberg and negative for apparently colder sea water. Mrbr (125 cps) supplies reference voltage and ferrite drive signal.-T. V. Seling and D. K. Nance, Sensitive Microwave Radiometer Defects Small Icebergs, Electronics, 34:19, p 72-75.

D-C FROM F-M-Mean d-c level, directly proportional to number of pulses per unit time, is read on mater for $f-m$ data recorded on magnetic tape.-K. R. Whittington, Simple F-M Demodulafor for Audio Frequencies, Electronics, 35:48, p 89.

TRANSFORMERLESS FULL-WAVE DETECTOREach half-cycle of input sine wave produces negative half-cycle at output. Both input and output are referenced to ground. Operat-
ing range is from $\mathrm{d}-\mathrm{e}$ to $10 \mathrm{Mc} .-\mathrm{C}$. Yarker, Full-Wave Defector Without Transformer, Electronics, 39:15, p. 100-101.

SYNCHRONOUS DEMODULATOR FOR COHERENT PULSE DOPPLER RADAR-C-w output of coherent oscillator is applied to control grid of one beam-deflection fube, and radar receiver i-f output is applied to control grid of other tube in push-pull, so i.f signal and modulation products are in push-pull at the two anodes while c-w signal components are in same phase and are hence cancelled in following pulse difference amplifiers.-J. B. Theiss, More Target Data with Sideband Coherent Radar, Electronics, 36:3, p 40-43.

HIGH-LINEAR!TY PHASE DEMODULATOR-I-f signal is amplified by Q1, clipped by Q2-Q3, and resulting square wave phase-demodulated in coincidence circuit Q4-QS which alsa
receives similarly clipped 455-kc reference signal. Demodulated output of Q6 is reshaped by clipper Q7-QB, to give symmetrical output with linearity for deviations up to

85 deg.-W. H. Casson and C. C. Hall, New Phase-Tracking Demodulator Will Not Lock on Sidebands, Electronics, 36:6, P 52-55.

8OXCAR ENVELOPE DETECTOR-Gives accurate recovery of one-polarity modulation envelope by approximating envelope in level steps between successive peaks of wavetrain. -J. L. Markwalter, 8oxcar Envelope Defector, EEE, 12:9, p 62-63.

SMOOTHED D-C FROM F-M-Mean d-c level, derived from f-m data on magnetic tape, undergoes R-C smoothing in three-transistor pulse-counting demodulator circuit so output can be fed to cro.-K. R. Whittington, Simple F-M Demodulator for Audio Frequencies, Eleefronics, 35:48, p 89.

DUAL DETECTORS PREVENT LOCKING ON SIDE8ANDS-Anfisideband circuit rejects sideband locking while telemetry tracking loop is automatically searching for signals around i-f value. Circuit also provides both p-m and a-m demodulation. Emitfer-follower Q1, receiving i-f signal, feeds discriminator Q6-Q7 through limiters Q2-Q3 and Q4-Q5. For 455kc input, d-c outputs of diode detectors cancel at base of Q8. For lower or higher frequencies, difference voltage serves to apply antisideband error signal to loop filter through Q9 or Q10.-W. H. Casson and C. C. Hall, New Phase-Tracking Demodulator Will Not Lock on Sidebands, Electronics, 36:6, p S2-55.

SYNCHRONOUS DETECTOR-Linear defection permits variation of bandwidth after detection in pcm receivers. Also used as a-m defector and for measuring phase and ampli-

PULSED DEMODULATOR-Used to provide voltage to modulating anode of klystron power amplifier at control rates above 10 cps, in system that controls output power of uhf tropospheric communications links in accordance with received signal of opposite end of link, to compensate for fading.-L. P. Yeh, Loop Controls Scatter Power to Offset Fading, Electronics, 32:5, p 60-62.

CHAPTER 26 Differential Amplifier Circuits

DIFFERENTIAL D-C AMPLIFIER CONTROLS 230-KC C-W RADAR OSCILLATOR-Combined output of two detectors in dual-mode cavity, having typical discriminator S curve, is amplified by four transistors in differential d-c circuit and applied to oscillator through emit-ter-follower to make output voltage swing up to 20%. Voltage sextupler applies step-up voltage to reflector of klystron, to maintain klystron frequency constont within 0.2 Mc.H. D. Raynes, C-W Radar Measures Artillery Ballistics, Electronics, 37:1, P 31-33.

D.C AMPLIFIER SERVES AS VOLTAGE REGU-LATOR-Output voltoge of series pass transistor Q1 is compared to input voltage serving as reference voltage by differential amplifier Q2 and voriations are fed back to reduce difference. Feedback ratio of 0.67 gives overall gain of 1.3 ond 10 -ohm output im-pedance.-W. S. Zukowsky, Aligning Saturn Missile's Guidonce System, Electronics, 37:8, p 26-27.

NO-CHOPPER DIFFERENTIAL AMPLIFIER-Stable voltage gain is $\mathbf{1 , 0 0 0}$. Current source Q2 $_{2}$ provides bias for input stage. Amplification
is linear within 10 microvalts over $100^{\circ} \mathrm{C}$ range.-D. F. Hilbiber, Stable Differentiol Amplifier Designed Without Choppers, Elec-
tronics, 38:2, p 73-75.

UNITY-GAIN DIFFERENTIAL D-C AMPLIFIERNegative feedback with differential input and single-ended output give gain stability of 1.0000 for output of 1.2 v across 100 -ohm load, for use in battery-powered transistor leak-age-current tester.-A. T. Ashby, T. R. 5haifer, and H. R. Hegner, Testing Transistors In-Circuit, Electronics, 37:17, p 53-56.

DIFFERENTIAL AMPLIFIER—Use of transistor in place of emitter resistor gives tenfold increase in impedance of emitter circuit, up to 200,000 ohms, while using only 1% of substrate area that would be needed by film resistor of this size.-R. Hirschfeld, IC's Improve Differential Amplifiers-and Vice Versa, Electronics, 3B:16, p 75-79.

DIFFERENTIAL CURRENT AMPLIFIER-Uses You Can Breadboard Your Own, Electronics, eight npn transistors and eight diodes.-D. D. 37:27, p. 58-64. Robinson, Linear Microcircuits Scarce? Now

WIDE-DYNAMIC-RANGE DIFFERENTIAL AMP. LIFIER-Used in omplifying and meosuring smoll differences between two lorge voltages, either of which may be up to 100 v above ground. Amplification of difference voltage is 250. Frequency response is within 3 db from dee to 250 kc.-D. D. Dovis, High Dynamic Range Differential Amplifier, Electronics, 31:5, p 64-66.

51-DB POWER GAIN FOR AUTOPILOT-Two differential stages, Q1-Q2 and Q3-Q4, drive two emitfer-followers Q5 and Q6 which in turn drive valve coils in pitch and yaw channels of autopilot.-J. H. Porter, Miniaturized Autopilot System for Missiles, Electronics, 33:43, p 60-64.

F-M LIMITER-Four differential-amplifier integrated circuits serve as $\mathbf{6 0 - M c}$ i-f f-m limiter
having 6-Mc bandwidth and 80 db power gain.-R. Hirschfeld, IC's Improve Differential

Amplifiers-and Vice Versa, Electronics, 38:16, p 75-79.

DIFFERENTIAL AMPLIFIER-Single-stage configuration for monolithic construction uses bleeder resistors with Darlington input transistors to increase bandwidth and gain. Current source is biased from separate bias resistor to increase output amplitude. Mini-
mum differential voltage gain of Micronet 203 version is 100 and minimum bandwidth is 500 kc -C. L. Heizman and D. G. Paterson, Circuit Analysis: A Monolithic Integrated Operational Amplifier, EEE, 13:5, p 80-84.

TWO-STAGE DIFFERENTIAL AMPLIFIER WITH
COMMON-MODE FEEDBACK-Feedback ar-
rangement provides significant reduction in
temperature drift of bias circuits. Volioge
gains of several thousand are possible.-
"Transistor Manual," Seventh Edition, Gen-
TWO-STAGE DIFFERENTIAL AMPLIFIER WITH
COMMON-MODE FEEDBACK-Feedback ar-
rangement provides significant reduction in
temperature drift of bias circuits. Voltoge
gains of several thousand are possible.-
"Transistor Manual," Seventh Edition, Gen-
TWO-STAGE DIFFERENTIAL AMPLIFIER WITH
COMMON-MODE FEEDBACK-Feedback or-
rangement provides significant reduction in
temperature drift of bias circuits. Voltoge
gains of several thousand are possible.-
"Transistor Manual," Seventh Edition, Gen-
TWO-STAGE DIFFERENTIAL AMPLIFIER WITH
COMMON-MODE FEEDBACK-Feedback ar-
rangement provides significant reduction in
temperature drift of bias circuits. Voltoge
gains of several thousand are possible.-
"Transistor Manual," Seventh Edition, Gen-
TWO-STAGE DIFFERENTIAL AMPLIFIER WITH
COMMON-MODE FEDBACK-Feedback ar-
rangement provides significant reduction in
temperature drift of bias circuits. Voltoge
gains of several thousand are possible.-
"Transistor Manual," Seventh Edition, Gen-
TWO-STAGE DIFFERENTIAL AMPLIFIER WITH
COMMON-MODE FEEDBACK-Feedback ar-
rangement provides significant reduction in
temperature drift of bias circuits. Voltoge
gains of several thousand are possible.-
"Transistor Manual," Seventh Edition, General Electric Co., 1964, p 119.

BALANCED DIFFERENTIAL OPERATIONAL AM-PLIFIER-Open-loop gain is above 5,000 into 10,000 -ohm load. Good stability and summing accuracy are obtained with closedloop gains of 0.1 to 100 . Provides $50-\mathrm{v}$ output voltage swing for integrating or differentiating in control systems. Phase lag of 5° of 20 eps with closed-loop ggin of 10 precludes use in high-frequency control systems. -L. S. Klivans, D-C Amplifiers for Control Systems, Electronics, 31:47, p 96-100.

CANCELLING POWER SUPPLY VARIATIONSDifferential amplifiers in cascade cancel output error caused by supply fluctuations, to permit low-leval signal amplification.-J. Holtzman, Reducing Errors Caused by PowerSupply Variations, Electronics, 32:29, p 5455.

HARMONIC MIXER-MC-1110 differentialamplifier integrated circuit cancels odd-order harmonics while mixing. Local oscillator op-
erates at half of mixing frequency. Con- Amplifiers-and Vice Versa, Electronics, 38:16, version gain is 33 db from 120 Mc to 10.7 p 75-79.
Mc.-R. Hirschfeld, IC's Improve Differential

VARIABLE-GAIN DIFFERENTIAL AMPLIFIER-RI controls gain. High dynamic impedance of constant-current source gives differential amplifier Q1-Q2 high common-mode rejection

INTEGRATED-CIRCUIT DIFFERENTIAL AMPLI-FIER-Comman-mode output is 0.5 mv peak-to-peak, differential gain is 540 , and com-mon-made rejection is 120 db at 60 cps in Amelco D13001 monolithic infegrated circuit. -T. Prasser, How to Measure DifferentialAmplifier Common-Mode Rejection, EEE, 12:7, p 74-75.

CHAPTER 27

Discriminator Circuits

PHASE DISCRIMINATOR-Will deliver halfwave pulses to one of two loads, as determined by 0 or 180° difference between input signal and reference source. Useful where different devices, such as heating and cooling equipment, are to be actuated by change of signal phase.-A Phase Discriminator, "Electronic Circuit Design Handbook," Mactier Pub. Corp., N.Y., 196S, p BB.

CHANNEL SELECTOR REPLACES TUNING DE-VICES-By sensing leading edges of input signals, discriminator having two monostable
multivibrators, inverter, and two and gates provides output for desired channel frequency in radio, television, telemetry, and
digital control systems.-J. H. Firestone, Gated Pulses Yield Selected Frequency Outputs, Electronics, 36:S1, p 38-40.
 hart and L. Mourlam, FET Performs Well In Balancing Act, Electronics, 38:19, p 88-92.

MONO AND PRF DISCRIMINATOR-Monostable multivibrator can be electronically adjusted to vary output pulse width over range of 0.2 microsec to several seconds. By adding feedback path shown in dashed lines, circuit also serves as pulse repetition frequency discriminator in which d-c output voltage is function of frequency from 3 cps to 300 kc.-G. Richwell, Wide-Range Monostable, PRF Discriminator, EEE, 13:8, p 67.

TWO-STAGE A-F DISCRIMINATOR-Circuit first shifts phase of incoming signai in proportion to its frequency deviation, then pro-
duces d-c voltage proportional to phase shift. Used to measure wow and flutter of disk and tape recorders having prerecorded
audio signal.-J. F. Delpech, Audio Discriminator Measures Large Frequency Changes, Electronics, 39:9, p 76-77.

PHASE LOCK-Uses fip-flop, filter, and d-e level shift to phasedock low-frequency oscillator to a desired frequency. Trigger from master frequency source is fed in af B, and trigger from phase-locked frequency is fed to A. Used to sync ujit sawiooth generator to aperote at 10 times the 16 -cps center frequency af B.-H. Anway, Phase-locked Frequency Discriminator, EEE, 14:3, p 61.

VOLTAGE-CONTROLLED $0-1 \mathrm{KC}$ OSCILLATOR -Pulse-counting discriminator in feedback loop gives adequate linearity for computing
applications. As input voltage rises from 0 to 10 mv , oscillator output frequency rises proportionally.-N. W. Bell and V. Chiunti,

Voltage-Controlled Oscillator Uses Negative Feedback, Electronics, 35:11, p 64-65.

PRF DISCRIMINATOR-Requires pulse-Irain burst of only two successive pulses to determine prf above or below given limit. Two such circuits with nond gate can indicate presence of given prf within 0.1% or within 1 cps of 1 kc . Input pulses are first given standard width and amplitude by one-shat.-G. Richwell, PRF Discriminator, EEE, 13:7, p 41.

PULSE-COUNTING F-M DISCRIMINATORBased on inherent stability of tunnel diode as converter oscillator in f-m receiver for strong-signal locations. Uses $200-k c$ i-f center frequency as input.-D. Hubbard, PulseCounter FM Discriminator Design, EEE, 10:7, p 44-49.

ALTERNATOR FREQUENCY CONTROL-Servo discriminator measures phase with respect to preadjusted components, making accuraty a function of initial setting. At 400 cps , d-c output is 100 mv for frequency deviation of 0.5 cps. Absolute accuracy is 0.125% be-
iween -55 and $+100^{\circ} \mathrm{C}$ ambient. Used as error-sensing device with servo drive in feedback control loop of constant-speed transmission for aircraft alternators.-R. Hill, Discriminator Controls Aircraft Alternator, Electronics, 31:41, p 94-95.

DIFFERENTIAL DISCRIMINATOR-Tunnel diades serve as current level detectors, allow. ing detection of serial bit information while praviding common-mode rejection of noise.

Used in system for transmitting phase-moduulated digital data over telephone line. Original pulse waveforms are restored by dlodes. -F. Salter, Differential Discriminator Rejects

Comman-Mode Noise, Electronics, 39:15, p 101-102.

CHAPTER 28 Display Circuits

IO-STATE RING COUNTER-Flip-flop drives ring-of-five stage that in furn drives diode matrix which translates each stored decimal number to electroluminescent display segment code.-R. C. Lyman and C. I. Jones, Electroluminescent Panels for Automatic Displays, Electronics, 32:28, p 44-47.

citor. Leading edge of received echo is aligned by delay control with crt reference line, and delay fime in millisec is read directly from dial.-L. H. Dulberger, Sonar to

BINARY CHANNEL FOR EL DISPLAY-Information is transmitted to decoding unit and display board in series of pulse bursts, each containing entire information to be dis-
played, for ropid error correction if informotion is garbled during transmission. System can use pair of wires for transmission, hoving sufficient bandwidth to pass pulse burst.

Informotion is introduced by opening 59 in tronsmitter.--R. C. Lyman and C. I. Jones, Electroluminescent Panels for Automatic Displays, Electronics, 32:28, p 44-47.

ANALOG-TYPE RATIO COMPUTER-Computes and automatically displays on oscilloscope the ratio of two time-varying quantities, such as noise suppression factor of tube
shot noise. Five main parts are sompler, shoper of ramp or step in each channel, amplifude comparafor, converter for final indicator, and timing unit that provides
sampling signal.-J. Tamiya, Automatic Display of Noise Suppression Factor, Electronics, 33:6, p 55-S7.

NUMERICAL DISPLAY-Either cold-cathode trigger tubes or fransistors drive 10 -digit cold-cathode indicator tube.-M. A. MacDougall, Using the Cold-Cathode Tube: Part 1, Electronics, 38:6, p 78-82.

PULSE-COINCIDENCE CONTROL-Coincidence of incoming code with reference pulse causes cold-cathode code iubes to fire in accordance with binary number present, for driving display panel containing eight sections each having 30 miniafure fluorescent lamps.-T. S. Pick and A. Readman, Photoelectric Scanners Control Bus Traffic, Electronics, 32:2B, p 50-51.

CCTV DISPLAYS VOLTAGES AS BAR GRAPHS -No change is necessary in closed-circuit television monitor. Switch gives choice of bar graph or picture display. Horizontal
ano Compar rator
lines can be electronically positioned on screen as go and no-go limits. Display conversion system has counter that commutates up to $\mathbf{2 0}$ low-frequency analog voltages on

LOGIC ORIVER
to common bus feeding comparator input shown.-D. Cohen, Converter Produces Television Bar Display, Electronics, 34:44, p 45-47.

FOUR-ELECTRODE NEON-On-off indicator for transistorized flip-flop operates on voltage differential of 6 v.-A. Erikson, French

Components Getting Smaller, Electronics, 34:11, p 24-25.

LAMP READOUT INVERSION-Used if lamp output is required with switch open, or if two lamp outputs are required (one lamp coming on for switch open and the other for switch closed). All lamps are type 39, rated $6.3 v$ at 0.36 amp. With ser off, voltage across $L 1$ and $L 2$ was $0.8 \quad v$ with $6.3 v$
across L3, with no visible light from 11 and L2. With scr on, there is about 6.3 v across $L 1$ and L2, with no visible output from L3.-Inversion Technique for Incondescent Lamp Readouts, "Electronic Circuit Design Handbook," Mactier Pub. Corp., N.Y., 1965, p 208.

GAS-TUBE READOUT-Thyratron display tubes (Kip Memolites) remain on Until next input sync pulse occurs. Static delay one-shot is then triggered, to extinguish display bulbs by dropping their plate voltage below ionization point. Bulbs are extinguished only
when new input information is to be received. Used in converting up to 13 bits from Gray code to straight binary.-R. Wasserman and W. Nutting, Solid-State Digital Code-fo-Cade Converter, Electronics, 32:50, p 60-63.

CRT CONTROL-Takes waveforms from gates and applies them to deffection electrodes of 2-inch crt to create numeral-forming Lissajous patterns.-R. L. White, Forming Hand-written-Like Digits on CRT Display, Electronics, 32:11, p 138-140.

LAMP-TYPE INDICATOR-Used as indicator in digital logic circuits. Common-emitter amplifier drives type 344 lamp rated 18 ma at 12 v. Can also be used to drive electromechanical indicator having the same operating power requirements. Lamp may be remotely located.-NBS, "Handbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. II, Semicanductor Device Circuits, PSC 13 (originally PC 216), p 13-2.

BINARY NEONS-Q1 and Q2 are active elements in transistor binaries, and lamps NE-A are pre-aged neons matched with respect to firing and running voltages. Voliage at D stores information in neon lamps.-B. H . Harrison, Photoconductive Matrix Simplifies Counter Display, Electronics, 34:51, p 28-30.

NANOSECOND PULSE DISPLAY-Magneticfocus electrostafic-deflection beam-deflection tube permits pulse height analysis where pulse separation is of the order of micro-seconds.-J. Burns, Special Tubes for Nanosecond Display, Electronics, 33:49, p 82-85.

CHARACTER-FORMING DOT GENERATORTransistor switch, having drop of less than 50 mv when delivering 50 ma , is used in display that provides fast alphanumeric readout on crt by forming characters from series of overlapping dots.-S. C. Chao, Character Displays Using Analog Techniques, Electronics, 32:43, p 116-118.

GATE-OPENING 100-KC OSCILLATOR-Output voltages are taken across r-f chokes in collector circuits, for controlling number gates of ert display that creates handwritten num-erals.-R. L. White, Forming HandwrittenLike Digits on CRT display, Electronics, 32:11, p 138-140.

CHAPTER 29

Electronic Heating Circuits

ISOLATION OSCILLATOR-Used 10 isolate duty-cycle generator of induction heoter control system from pulser of power oscilla-tor.-R. E. Mathows and F. R. Sios, Jr., Testing Spoce Croft with Induction Heoters, Electronics, 35:34, p 38-41.

27.12-MC DIELECTRIC HEATER-Pulse-confrolled frequency-stabilization servo mechonism retunes self-excited power oscillator con-
tinually, with 200-cps mvbr governing rate at which system compores oscillator frequency with thot of crystol-controlled ref-
erence oscillator.-J. Morkus ond V. Zeluff, "Handbook of Industrial Electronic Control Circuits," McGraw-Hill, N.Y., 1956, p 173.

SAWTOOTH-SYNC GENERATOR-Provides sync and sawtooth signals for power oscillator control system of induction heater.-R. E.

Mathews and F. R. Sias, Jr., Testing Space Craft with Induction Heaters, Electronics, 35:34, p 38-41.

INDUCTION HEATER POWER OSCILLATOR-
and keyer bias.-R. E. Mathows and F. R.
Circuit includes power supplies for oscillator Sias, Jr., Testing Space Craft with Induction

REPETITION RATE CONTROL-Compensates for fluctuations in repetition rate of hydrogen thyratron in induction heater. Ripple voltage induced in LI acts on control grid of VI to displace peaks at which ignition occurs in correct direction to maintain constant repetition rate in damped circuit.-H. L. Van Der Horst, How Radar Techniques Improve Induction Heating, Electronics, 32:7, p 51-55.

HYDROGEN-THYRATRON INDUCTION HEAT-ER-Thyrairon acts as high-speed switch, much like spark-gap oscillator, to produce damped oscillations In tank circuit 12-C2. Output frequency is 10 to 14 kc , depending on load. Peak thyratron current is about 340 amp when Vo_{0} is 10 kv . Repetition rate depends on maximum average current, and is 124 cps for 0.5 amp . 13 is $0.32 \mathrm{~h} .-\mathrm{H}$. L . Van Der Horst, How Radar Techniques Improve Induction Heating, Electronics, 32:7, p 51-55.

PULSE GENERATOR
INDUCTION HEATER CONTROL-Thyratron pulse generator VI produces voltage pulses of adjustable frequency for pulse shaper V2, which drives hydrogen thyratrons of high-
power induction heater. V3 regulates repefition rate of pulses by acting as switch that, when conducting, allows Cl to discharge rapidly through R1.-H. L. Van Der

PULSER AND KEYER-Used to control power oscillator of induction heater af rates up to 800 pps.-R. E. Mathews and F. R. Sias, Jr., Testing Space Craft with Induction Heaters, Electianics, 35:34, p 38-41.

DIATHERMY FREQUENCY MONITOR AND CONTROL-Monitor circuit stops 27.12-Mc oscillator and sounds buzzer when frequency drifis beyond legal limits established by FCC. -d. Markus and V. Zeluff, "Handbook of Industrial Electronic Control Circuits," McGraw-Hill, N.Y., 1956, p 100.

CLOSED-LOOP REGULATOR FOR INDUCTION HEATER-Switching action is performed by parallel triodes V2 and V3 that replace 5,000 ohms of oscillator grid resistance. Tungstenlamp bridge serves as measuring circuit that produces phase-modulated supply-frequency error signal. Requires no components with heavy power rating because only lowpower signal is required by switching tri-ode.-J. Markus, "Handbook of Electronic Control Circuits," McGraw-Hill, N.Y., 1959, p 178.

CHAPTER 30

Electronic Music Circuits

ORGAN SWELL SHOE-Uses capacitive volume control Cl to replace expensive indus-trial-type potentiometer. Operation of swell shoe varies value of C2 which consists of two hinged metal plates. C1 is series leg of capacitive voltage divider, shunt leg of which is dynomic capacitance of obout 0.02 mfd across tube grid due to capacitive feedback from plate through C2. Attenuation range is great, and noise and hum are negligible, -R. H. Dorf, Electronic Organ Uses Neon Tone Generators, Electronics, 31:35, p 36-41.

ORGAN VOICING PANEL-Contains formant and reeds to bland flutes and pipelike diafilters that transform sawtooth generator pasons. Filters are interlocked to produce signals into waveforms of various instru- composite effects,-R. H. Dorf, Electronic Organ ments. 19 different tone colors or timbres Uses Neon Tone Generators, Electronics, 31:35, are available, ranging from sharp strings p 36-41.

ORGAN PEDAL GENERATOR-Shaper V2 yields sawtooth wave with steeper flyback than from neon oscillator. Output of V2 feeds bistable mvbr VI which changes state with each input trigger. Bistable output at VIA is half the input frequency (one octave lower), so $16-\mathrm{ft}$ pedal tones are produced without low-frequency divider stage for each tone generator.-R. H. Dorf, Electronic Organ Uses Neon Tone Generators, Electronics, 31:35, p 36-41.

UJT METRONOME-Rate is adjustable from 40 (low largo) to 220 (high presto) beats per minute.-''Transistor Manual," Seventh Edition, General Electric Co., 1964, p 379.

PERCUSSION OR ELECTRONIC MUSIC-Provides congruent envelope shoping and coincident percussive envelope shaping of syn-
thesized program material. One input accepts control signal, while other accepts material requiring envelope shaping.-H. Bode, Sound

Synthesizer Creates New Musical Effects, Electronics, 34:48, p 33-37.

NEON-OSCILLATOR SYNCHRONIZER-Metal clips on neon lamps are used to synchronize successive stages of neon-lamp relaxa-
tion oscillators, overcoming their inherent instability. Used in frequency-division type of electronic organ tone generator,-R. F.

Woody, Jr., Clip Couples Neon Oscillators, Electronics, 39:9, p 77.

$\begin{array}{ll}L-450 \text { mHY SLUG TUNEO COIL MOTE: ALL CAPACITOAS }: 10 \% \\ 0: 6 Q \text { IKC } & \text { ALL RESISTOAS } \frac{1}{2} \text { WATT } \\ \text { OC AES. } 4 B O R & \end{array}$
ELECTRONIC ORGAN FREQUENCY DIVIDERUit relaxation oscillator circuits reduce number of master oscillators needed and elimi-
nate large inductors.- J. F. Cleary and D. V. Jones, A Unjuunction Frequency Divider, EEE, 12:S, p S2-53.

T W O-TRANSISTOR METRONOME-Rheostat provides rate adjustment.-"Transistor Manual," Seventh Edition, General Electric Co., 1964, p 379.

OUTPHASED TONE GENERATOR-Bus amplifiers located between keying-system outputs and formant filters provide outphased sig-
nals that lack even-harmonic content. Combinations of these produce organ tone colors called for by voicing panel.-R. H. Dorf,

Electronic Organ Uses Neon Tone Generators, Electronics, 31:35, p 36-41.

CHAPTER 31 Filter Circuits

ACTIVE ADJUSTABLE-BANDPASS AUDIO FIL TER-Has Bufterworth atfenuation characteris tics and $42 \mathrm{db} / 0$ ctave cutoff slopes. Output is 50 v rms with low distortion, and dynamic range over 100 db . Second-order harmonic distortion is reduced by operating tube heaters of low volfage. Seven elements are varied simultaneously by switching different resistor and copacitor values to change cutoff frequencies. Article has three tables giving these values for high-pass cutoffs from 16 to 16,200 cps and low-pass cuioffs from 20 to 20,000 cps.-J. R. MacDonald, Active Bandpass Filter has Sharp Cutoff, Electronics, 31:33, p 84-87.

NOISE-Provides varying threshold control voltage that causes detection threshold of celestial guidance system to operate af level slightly above background noise. After clip-
ping by amplifier, signal enters thresholdshoping unit that operates as fast-rise, slowfall agc.-R. L. Lillestrand, J. E. Carroll, and J. S. Newcomb, Automatic Celestial Guidance,

ACTIVE BUTTERWORTH R-C FILTER-Article gives design procedure for selecting \mathbf{R} and C values for active filters characterized by zero output either at zero frequency or at infinite frequency. Symmetry of network transfer function allows choice of values by coefficient matching technique. Fifth-order low-pass filter, down 50 db af 70 cps , is shown.-R. E. Bach, Jr., Selecting R-C Values for Active Filters, Electronics, 33:20, p 82-85.

ZOBEL BAND-PASS FILTER-Both axamplez give af least 40 db attenuation below 7,500 cps and above $12,500 \mathrm{cps}$, for 600 -ohm
source and load resistances.-K. Lichtenfeld, Method for Simplifying Filter Design, Electronics, 33:21, p 96-99.

FET AMPLIFIER FOR ACTIVE FILTER-Meats gain stability and high input impedance requirements for use with third-order lowpass active filters. Uses bootstrapped sourcefollower. Drain of input fet drives pnp transistor In cascode to reduce input capaci-tance.-L. J. Sevin, Jr., "Field-Effect Transistors," McGraw-Hill, N.Y., 1965, p 105.

CRYSTAL RADIOTELEGRAPH I-F FILTER-Volt-age-controlled varactor diode DI permits remate location of potentiometer used for phasing adjustment. Circuit can be used far any i-f value from 100 kc to 1.6 Mc by selecting erystal with desired frequency.H. Olson, Remotely Tuned Crystal Filter Eliminates Tuned Transformer, Electronics, 38:23, p 113.

ADJUSTABLE 400-CPS TUNING-FORK FILTER-Tuning-fork frequency is adjusted by varying current in extro magnet coils facing ends of fines. Current change of 1 ma in frequencyadjust coils gives frequency change of 50 parts per million. Input and output cathode followers isolate filter from rest of circuit. Drive and pickup amplifiers cancel fork insertion loss.-J. J. O'Connor, Tuning-Fork Audio Filter Tunes Electrically, Electronics, 33:49, p 66-67.

ZOBEL BAND-ELIMINATION FILTER-Both examples give of least 40 db attenuation between $8,410 \mathrm{cps}$ and $11,150 \mathrm{cps}$, for 600 -

NETWORK B
ohm source and load resistances.-K. Lichtenfeld, Method for Simplifying Filter Design, Electronics, 33:21, p 96-99.

PARALLEL-T FILTER WITH FEEDBACK-Singletronsistor feedback circuit Q2 reduces high attenuation in passband that severely limits conventional $60-\mathrm{eps}$ T-notch filter. Filter re-
sponse is down 1 db at 62 cps . Can be used in reproducing stereo tape, where it will salvage signals normally buried far below noise level of original tape recording.
-J. Strattan, Feedback Improves Parallel-T Filter, Electronics, 39:18, p 99.

ZOBEL LOW-PASS FILTER-Article gives design procedure using Cauer parameters. Both examples give 40 db attenuation of $5,000 \mathrm{cps}$ when inserted between 600 -ohm source and load resistances.-K. Lichtenfeld, Method for Simplifying Filter Design, Electronics, 33:21,
p 96-99.

325-KC BRIDGED-T FILTER-Used in magnetometer having large amounts of odd harmonics and only feeble second harmonic at secondary of sensing probe. Permits ampli-
fying only second harmonic, without excessive phase shift.-F. Voelker, Magnatometer Makes Confinuous Measurements, Electronics, 31:11, p 152-154.

TRIODE MAGNETOSTRICYION BANDPASS FIL-TER-Practical range is from 45 to 300 kc . When filter is used with triode, it serves as stable fixed-frequency oscillator in telemetry command receiver.-E. J. Neville, Jr., Designing Magnetostriction Filters, Electronics, 33:51, p 88-89.

FET VOLTAGE-CONTROLLED RESISTOR-Fieldeffect transistor circuit (enclosed in dashed rectangle) serves as dropping resistor working into antiresonant a-f filter, to deliver
constant voltage ta filter despite input voltage variations. Uses 2 N 2386 fet as Q1.H. H. Nord, the FET as a Voltage-Conirolled Resistor, EEE, 13:1, p 65.

TRIPLE-TUNED 90-OHM OUTPUT-Used to provide bandpass between 55 and 65.5 Mc for signal from 10 -mmfd plate capaci-tance.-R. B. Hirsch, How to Design Bandpass Triples, Electronics, 32:34, p 41-44.

800-CPS ACTIVE BANDPASS-Provides bandwidth of 13 cps. Maximum gain is 24 db , and divider af input reduces this to 0 db .

Selectivity af 3 - db points is $72 \mathrm{db} /$ octave.T. Mollinga, Active Bandpass Filiers, EEE, 14:8, p 115-119.

7-CPS ACTIVE BANDPASS-Band width is 1.6 cps for center frequency of 7 cps . T . Mollinga, Active Bandpass Filters, EEE, 14:B, p 115-119.

LOW-PASS FILTER-Unwanted short pulses from shot noise in celestial guidance photomultiplier are removed by active low-pass filter having constant phase shift ovar pass
band. Active filter avoids bulky inductors and impedance-matching problems. Filter is modified 6th-order Bessel type, called a Paynter filter.-R. L. Lillestrand, J. E. Carroil, and J. S.

Newcomb, Automatic Celestial Guidance, Part 2: New Challenge to Designers' Ingenuity, Electronics, 39:7, p 94-105.

800-CPS OSCILLATOR WITH PARALLEL-T FIL-TER-R-C network in feedback loop determines frequency of oscillation.-T. Mollinga, Active Parallel-T Networks, EEE, 14:4, p 93-98.

VARIABLE-BANDWIDTH B4B-KC CRYSTAL FIL-TER-High-Q unbalanced crystal filter is easy to adjust over appreciable frequency range. Can be used in f-m oscillators, signal genera-
tors, and i-f amplifiers, as wall as in variablebandwidth filters.-J. C. Seddon, Stable Crystal Filser is Parallel Resonant, Electronics, 31:11, p 155-156.

ACTIVE 800-CPS PARALLEL-T FILTER-Potenfiometer adjusts amount of rejection to compensate for tolerances of components. Second emitter-follower provides lower output impedance so feedback to network is more effective in sharpening notch of filter characteristic and in decreasing phase shift around null frequency. Used in servo sys-tems.-T. Mollinga, Active Parallel-T Networks, EEE, 14:4, p 93-98.

TWIN-T 400-CPS FILTER-Used with modulators to increase signal-noise ratio. Filter is funed to 400 cps , and eliminates other frequencies by feeding them back. Q of filter is 6. Output is low-distortion sine wave in phase with input. Frequency regulation of carrier signal should be better than 1% or filter will introduce phase shift.-L. 5 . Klivans, Modulators for Automatic Control Systems, Electronics, 31:1, p 82-84.

TRIPLE-TUNED 90-OHM INPUT-Article gives design procedure. Example shown passes signals between 55 and 65.5 Mc.-R. B. Hirsch, How to Design Bandpass Triples, Electronics, 32:34, p 41-44.

LATTICE COUPLING OF DOUBLE-TUNED FIL-TER-Permits adjusting coupling between input and output resonant circuits to compensate for stray reactances and variations in component values. Used in $30-\mathrm{Mc}$ i-f
amplifier requiring 1-Mc bandwidth. One side of variable capacitor is grounded, permitting convenient mechanical design.-J. R. Grindon, Lattice Coupling of Resonant Circuits, EEE, 13:6, p 53-55.

DYNAMIC NOTCH FILTER-Will trap out 10Mc noise while possing 10-Mc signal in heterodyne frequency converter used to extend measurement range of $10-\mathrm{Mc}$ counter. Operation is bosed on difference in level of noise and desired signal. Dynamic action of filter nulls out low-level noise, but filter disappears in presence of desired high-level signal.-H. T. McAleer, Dynamic Notch Filter, EEE, 10:9, P 90-91.

WIEN-BRIDGE FILTER-Does not have high Q, but provides good rejection (40 db aftenuation with 1% talerance components and 60 db with 0.1% tolerance camponents). -J. K. Goodwin, Wien Bridge Forms Rejection Filter, Electranics, 32:1, p 58-59.

GENERAL FILTER-Bridging conventional bandpass filter with single capacitar C00 converts to general filter having both shorp pass and reject behaviar at adjacent frequencies. For values shown, bandpass occurs af 20 Mc and peak rejection frequency is $\mathbf{1 9 . 1 5}$ Mc.-R. Kurzrok, Single Companent Changes Bandpass into General Filter, Electranics, 39:8, p 95-96.

CASCADED HIGH AND LOW-PASS A-F-Slope can be any desired multiple of 12 db per octave, with insertion loss less than 2 db . Corner frequencies are 200 radians per sec (32 cps) and 40,000 radions per sec (6,370 (ps).-W. D. Fryer, How to Design Low Cost Audio Filters, Electronics, 32:15, P 68-70.

TRANSISTORIZED MAGNETOSTRICTION BAND. PASS FILTER-Three transistors and filter give stable fixed-frequency oscillator, with averall gain of 20 db and moximum linear autput of 1 v rms.-E. J. Neville, Jr., Designing Magnetostrictian Filters, Electranics, 33:51, P 88-89.

TRANSISTOR AS SMOOTHING FILTER-Single junctian transistar in filter netwark of lawvaltage pawer supply permits use of smaller filter capacitars and chakes. Used in calibrating d-c meters up to 1 amp, at which residual peak-to-peak ripple values are 0.0015 amp and $0.005 \mathrm{v} .-\mathrm{F}$. Oakes and E. W. Lawsan, Transistar Filters Ripple, Electranics, 31:15, p 95.

CHAPTER 32
 Flash Circuits

TWO-TRANSISTOR CURRENT-MODE SWITCH -With iwo seporate voltoge supplies, input pulse triggers tronsistors to give 2-amp pulses for driving light-emitting diode.-E. L. Bonin, Drivers for Optical Diodes, Electrónics, 37:22, p 77-82.

HIGH-VOLTAGE FLASH PULSER-Two identical pulse generotors ore used to fire two flosh tubes olternately in high-speed strobe. One unit is coupled to eoch plate of an Eccles-Jordon trigger, to produce required olternoting trigger sequence.-L. H. Barreft, New Circuit Improves Stroboscope Versatility, Electronics, 32:32, p 116-118.

STROBE OSCILLATOR-TRIGGER-Oscillator produces square pulses having short rise time, over fotal frequency range of 200 to 1 Oscillator may also be sychronized to power line. Schmitf trigger provides additional means of getting output pulse to drive Eccles-Jordan trigger that provides alternate pulses for two shared-cycle strobe lamps.-L. H. Barrett, New Circuit Improves Stroboscope Versatility, Electronics, 32:32, p 116-11B.

TRIGGERED BLOCKING OSCILLATOR-Gives pair of output pulses, with opposite polarity, for controlling timing and spacing of flashes. -P. Scoff, Microflash and Pulse Stimulator Tests Human Optical Response, Electronics, 34:27, p 48-51.

ADJUSTABLE STROBE-Provides fime-motion data not possible with ordinary strobe. Used in studying motions where velocity varies during cycle, as in sewing machines, switches, relays, motors, and vibrating parts. Viewer can change motion point being studied by turning switch that gives choice of 100 different viewing positions.-J. H. Blakeslee, Strobe Techniques Analyze Complex Mechanical Motion, Electronics, 32:23, p 62-64.

LOW-COST STROBE-Addition of silicon controlled rectifter in triggering circuit of $\$ \mathbf{2 0}$ automobile engine-fiming strobe gives lowcost general-purpose stroboscope. Modification is completed by wropping ten turns of No. 18 bare copper wire around flashiube and connecting pne end to photoflosh trans-
former TI, with other end unconnected. Can be triggered by 10 -microsec 3 -v pulse at 5 ma, up to 25 times per second. Flash duration is 100 microsec.-A. C. Eberle, LowCost Strobe Built with SCR in Trigger, Electronics, 39:14, p 80-81.

PHOTOFLASH SUPPLY-Flyback or ringingchoke oscillotor is free-running when voltoge on regulotor copacitor C2 is less than zener voltage for reference diode D2, but converter action is halted when desired output voltage is reached. Circuit then periodically replaces charge lost by capacitor leakage. Energy conversion efficiency can therefore exceed 50% theoretical upper limit of most conventional photoflash circuits.-R. J. Sherin, Efficient Photoflash Power Converter, Electronics, 33:4, p 57.

BLOCKING-OSCILLATOR SUPPLY-Uses modifled blocking oscillator to obtain squorewave switching af 4,200 eps. Charges $300-$ mfd capacitor to $500 \vee$ in 5 to 10 sec from $9-\mathrm{v}$ dry cell that can delivar up to 700 flashes. To start oscillator, SI momentarily connects R1 to negative side of battery.-H. A. Manoogian, Transistor Photoflash Power Converters, Electronics, 31:35, p 29-31.

50% DUTY CYCLE-Provides 80 floshes per minute. Scr's conduct alfernately in parallel inverter with capocitor commutation, and are triggered by free-running relaxation oscillator Q1. Flashing rate is determined by R1-R2-C1.-D. V. Jones, Quick-On-The-Trigger Design, Electronics, 38:12, p 105-110.

TRANSISTORS SWITCH 10-AMP PULSES FOR light-emitting diodes of repetition rotes up LIGHT-EMITTING DIODE-Input A must precede and follow B by 1 microsec to give to $100 \mathrm{kc}$. -E. L. Bonin, Drivers for Optical 1-microsec width for 10 -amp pulses driving

SCR CONTROLS PHOTOFLASH-C1 is charged to 100 v by o-c power supply. Input trigger pulse fires 2 Nl 597 ser to make Cl dischorge through primary of TI . Peok of 5 kv in secondary triggers photoflosh. Maximum repetition rate is 20 flashes per second.E. L. Harris, Jr., Solid-State Components Shrink Photoflosh Control, Electronics, 36:15, p 70.

UNDERWATER CAMERA FLASH-Film drive motor and camera shutter are inferlocked with electronic flosh so camera con be operated blindly af depths up to 6 miles, with flash occurring only when shutter is open. Adjustoble mechanical fime-delay switch $\$ 1$
delays start of operoting cycle until camera is of operating depth. Timing switch $\mathbf{S 2}$ then tokes picture every 12 sec for two hours. -H. E. Edgerton and S. O. Raymond, Instrumentation for Exploring the Oceans, Electronics, 33:15, p 62-63.

RANDOM-FLASH GENERATOR-Multivibrators generote single pulse to drive flash tube of
unspecified time of from 2 to 10 seconds after switch is closed.-P. Scott, Microflash
and Pulse Stimulator Tests Human Opticol Response, Electronics, 34:27, p 48-51.

CURRENT-MODE SWITCH FOR LIGHT-EMIT- pulse-light communication.-E. L. Bonin, DrivTING DIODE-Peak currents of 2 amp, with 50 nsec rise and fall, drive diode ta give
ers for Optical Diodes, Electronics, 37:22, p 77-82.

FILM TIMING-MARK GENERATOR-Instrumentation recorder for plasma studies uses discharge of copacitor at beginning of each plasma pinch discharge to trigger flash fube, light from which is chopped by glass disk driven at constant speed by synchronous motor.-J. J. Pearsan, Instrumentation far Plasma Prapulsian, Electronics, 33:24, p 66-69.

FLASH TIMER-Pravides praperly synchronized flash illumination for cameras in response to subcarrier pulse commands from
uhf receiver.-F. M. Gardner and L. R. Hawn, Camera Control System for Rocket Sled Tests, Electronics, 33:14, p 63-6S.

LOW-CURRENT FLASHER-Q1 is operated in inverted configuration for lower leakage current. Typical on time is 0.2 sec and off time 0.8 sec. Q1 is 2 N 1302 and Q2 is 2 N1374. Can be used as construction barricade flasher, flashing single lamp at 1 eps
for up to 60 days on single battery. Use of solar-cell switch for S 1 , to turn off flasher automatically in daytime, will roughly double battery life in unattended locations.-Texas Instruments Inc., "Transistor Circuit Design," McGraw-Hill, N.Y., 1963, p $42 S$.

1-CPS FLASHER-When one scs triggers on, $0.2-\mathrm{mfd}$ commutating capacitor turns off other scs and charges its gate capacitor to negative potential. At point in charging determined by 20 -meg resistor, scs is retriggered. Battery power is delivered to load with 88\% efficiency.-"Transistor Manual," Seventh Edition, General Electric Co., 1964, P 434.

LASER FLASH TUBE SUPPLY-Variable pulseforming network sends rectangular pulses of current through flash tube when network is discharged by ignitron used as switch. Resulting pump action on ruby crystal then
produces laser beam for optical ranging up to 3 miles.-M. L. Stitch, E. J. Woodbury and J. H. Morse, Optical Ranging System Uses Laser Transmitter, Electronics, 34:16, p 51-53.

STROBE RATEMETER-Flash rate is metered by measuring mean charging current through capacitor supplied with constant-amplitude
pulse voltage.-L. H. Borrett, New Circuit Improves Stroboscope Versatility, Electronics, 32:32, p 116-118.

FLASH TUBE DRIVE-Generates low-impedance positive pulses having adjustable amplitude but constant duration, for driving flash tube to give same intensity-time characteristic
as other flash tubes having different colors. -P. Scott, Microflash and Pulse Stimulator Tests Human Optical Response, Electronics, 34:27, p 48-51.

FLASH DELAY-Supressor-gated sanatron pentode provides adjustable delay for changing spacing of flashes.-P. Scott, Microflash and Pulse Stimulator Tests Human Optical Response, Electronics, 34:27, p 48-51.

TWO-LAMP STROBE BOOSTS FLASH RATETwo discharge tubes provide shared cycle of aperation, to boost stroboscope firing rate to 1,000 flashes per second. Lamp circuit,
with range-switched discharge capacitors, receives triggers in ahernation.-L. H. Barrett, New Circuit Improves Stroboscape Versatility, Electronics, 32:32, p 116-118.

HALLOWEEN PUMPKIN BLINKER-Neon lamps blink alternately in eyes of pumpkin for 0.5 -sec duration, with 0.5 sec between blinks. Will also serve as roadside blinker. Although NE2's can be used, LNE17's can be brighter and more effective.-More GlowLamp Circuits, EEE, 12:2, p 106-108.

CHAPTER 33
 Flip-Flop Circuits

FLIP-FLOP FOLLOWER FOR COUNTER-Used to count down cycles of timing mvbr. Output of flip-flop follower is used in and circuit with matrix gates to turn on tone-burst oscillators or multivibrators during positive half-cycles only.-R. W. Rochelle, Cyclops Cores Simplify Earth-Satellite Circuits, Electronics, 31:9, S6-63.

NONSTALLING FLIP-FLOP FOR CAPACITIVE LOAD-Used for transferring data into storage having heavy capacitive load, such as long connecting wires. Complementary configuration, with load in emitter circuit of
one transistor, makes stage trigger reliably in fraction of microsecond.-Non-Stalling Flip-Flop for Capacitive Load, "Electronic Circuit Design Hondbook," Mactier Pub. Corp., N.Y., 1965, p 213.

PAIRED INVERTERS-Cross-coupling of two basic inverters gives low-cost flip-flop using 2N711 germanium pnp mesa switching tran-
sistors. Flip-flop can be sat and then reset, or run as counter using combined input. Close regulation is required for $-4 \vee$ supply.
-P. A. Mclnnis, "Low-Cost Computer Circuits," Motorola Application Note AN-130, Nov. 196 S.

BINARY FLIP-FLOP TURNS ON-Triggering is accomplished by furning transistors on, whereas in most similar circuits the transistors ore turned off. Trigger pulse meraly has to lower point a below ground for froction of microsecond. Almost any diode and transistor can be used. Speed can be up to 10 Mc with high-speed tronsistors. Output fall time is fast.-Binory Flip-Flop Turns On, "Electronic Circuit Design Handbook," Macfier Pub. Corp., N.Y., 1965, p 214.

BASIC FET FLIP-FLOP-Connected as scale-oftwo binary frequency divider, complete with steering diodes, speedup capacitors, and coupling capacitors. Used where speed is not primary consideration.-L. J. Sevin, Jr., "Field-Effect Transistors," McGrow-Hill, N.Y., 196S, p 89.

BIPOLAR OUTPUY-Output is cleon square wave whose symmetry with respect to ground can be balanced by potentiometer

R18. When input is fed by pulse generator, output can be used to test frequency response of transistor circuits.-F. C. Ruegg,

Multivibrator Provides Bidirectional Output Pulses, Electronics, 38:17, p 87.

STARTER FOR FLIP-FLOP-Free-running flipflop (thin lines) has several desired features but will not start oscillation by itself. Output impedance is less than 1,800 ohms, period is 1 millisec, and circuit is quite stable once in operation. Heavy lines show additions required for starting flip-flop when it is stalled. C3 (150 mfd) is in circuit for time period in which power supply voltage increases from 0 to 9 v after switch is closed. Relay pulls in at 9 v , to remove C3 from circuit after it has served its starting function.-Starter Circuir for Flip-Flop, "Electronic Circuit Design Handbook," Mactier Pub. Corp., N.Y., 1965, p 229.

NOR-FUNCTION RESET-Modified flip-flop is rather than the usual or function.-l. Merset or reset when all input signals are low, curio, Flip-flop Operated by Input Signal corresponding to nor-function of input signals NOR, EEE, 13:12, p 65.

CURRENT MODE LOGIC FOR 500-MC GATED FLIP-FLOP-Uses 2N2475 transistors and 1N3859 tunnel diodes in current mode logic circuit having four inpuls that can be ener-
gized to provide variety of desired logic functions. Supply of $0.8 v$ is obtained by passing current through two forward silicon diodes. Narrow 1-nsec clock pulse is gen-
erated by snap diode as close as possible to funnel diode.-R. Glasgal, 500 MHz Tran-sistor-TD Gated Flip Flop, EEE, 14:1, p 98101.

WIDE TEMPERATURE RANGE-Gives 10-Mc operation from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, with 3-v clock trigger. Addition of emitter-follower will improve wave form and extend operation to $+150^{\circ} \mathrm{C}$.-D. Hall, Using Epitaxial Transistors in Switching and R-F Circuits, Electronics, 34:13, p 52-53.

TUNNEL DIODE-COUPLED MICROENERGY FLIP-FLOP-Fan-in and fan-out capabilities per unit dissipation are improved up to ten times over existing types of logic. Use of
funnel diodes allows low supply voltages, resulting in low circuit dissipation.T. Maguire, Electro-Optical Developments Highlight NEREM, Electronics, 34:45, p 73-77.

FAN-OUT TO 60-Fan-out of conventional amplifiers Q1 and Q2 directly from emitters flip-flop is quadrupled by driving bases of
of Q3 and Q4.-D. J. Grover, Modified Flip-

Flop Quadruples Fan-Out, Electronics, 38:26, p 67-6B.

NONSATURATED FLIP-FLOP-Design procedure is given in 52 steps for manufacturability and long-ferm reliability, making full allowance for component folerances, voltage fluctuation, and collector output loading."Transistor Manual," Seventh Edition, General Electric Co., 1964, p 189.
250-KC FLIP-FLOP-Basic design procedure is given. Circuit shown operates over temperoture range of -55 to $+55^{\circ} \mathrm{C}$ with input frequency of $\mathbf{2 5 0} \mathbf{k c}$.-Texas Instruments Inc., "Transiztor Cirsuit Design," McGrow-Hill, N.Y., 1963, p 377.

MULTICHIP COMPLEMENTARY FLIP-FLOPCircuit for microelectronic application allows

TEMPERATURE COMPENSATION-Sensistor silicon resistors in cross-coupling network compensate for temperature changes. Circuit operates at resolution rate above 5 Mc if input
decreased from 100 millimicrosec.-How to Compensate for Temperature Variation in a Transistorized Flip-flop (Texas Instruments ad), Electronics, 33:37, p 97. pulse is above $10 \vee$ when pulse width is

TUNNEL-DIODE FLIP-FLOP-Power consump-
fion is very low. Takes advantage of fast switching speed (27 picosec) of funnel diode. -"Transistor Manual," Seventh Edition, Genorol Electric Co., 1964, p 367.

LEVEL DETECTOR-Used to provide switching function at two preset levels. R2 and Q1 determine highest level, while R3 and Q2 determine lowest level. Range of level odjust-

FEEDBACK PROVIDES STABILIZATION-Resisfor Rf, connected between bases of Q1 and Q2, provides negative feedback to make flip-flop less sensitive to voltage variations and transistor unbalance. Will operate on 3-v pulses having 0.5 -microsec fall time. Without feedback, higher voltage would be required for triggering.-P. Cheilik, Feedback Stabilizes Flip-Flop, Electronics, 31:19, p 92-96.

FLIP-FLOP SPEEDS MAGNETIC-DETENT STEPPING RELAY-Input signal goes to emifter of saturating flip-flop Q1-Q2, whose condifion is sensed by driving transistors Q3-Q4. Stepping coils $\mathbf{L 1}$ ond $\mathbf{L 2}$ are energized according to condition of flip-flop.-F. W. Kear, Coils Operate Stepping Relay of Higher Speed, Electronics, 35:6, p 60-63.

FLIP-FLOP DRIVES GALIIUM ARSENIDE LAMP -Pulses from mubr (not shown) trigger flipHop that feeds 1 -amp current pulses to GaAs lamp through emitter-follower and power transistor. Used in high-speed punched tape reader.-R. F. Broom and C. Hilsum, Diode Lamp Makes Tape Readers Faster, Electronics, 36:20, p 44-4S.

GATE-TURNOFF SCR FLIP-FLOP-Capacitorcommutated flip-flop transfers current from one load to other each time positive trigger pulse is applied to common input line, at rates up to 10 kc .-D. R. Grafham, Now the Gate Turnoff Switch Speeds Up D-C Switching, Electronics, 37:12, p 64-71.

SELF-INDICATING FLIP-FLOP-Uses Amperex 6679 triode having fluorescent anode, to eliminate need for neons as indicators. Incorporates collector protection and stabilixation against beta variation of transistor. -H. Rodriques deMiranda and 1. Rudich, Indicator Triode for Direct Data Readout, Electronics, 33:6, p 52-54.
$\begin{aligned} & R_{q}=0 \text { TO IM, } \\ & \text { VARIABLE }\end{aligned}$
$R_{b}=0$ TO 25 OHMS, SELECTEO

SOLENOID PUMP PULSER-Scr flip-flop feeds 5 -amp pulses alternately to two solenoid pump coils af rates varying from 1.5 to 25 cps.-U. L. Upson, Solid-State Pulser Drives Chemical Pump, Electronics, 33:49, p 74-76.

RESISTOR-COUPLED FLIP-FLOP-Typical switching times are 40 millimicrosec for ir and 110 millimicrosec for tf.-Philco MAT Transistors for Logic Circuits up to 5 Mc (Philco ad), Electronics, 33:17, p SO.

DIODE-COUPLED FLIP-FLOP-Typical switching times are 20 millimicrosec for ir and $\mathbf{6 0}$ millimicrosec for If.-Philco MAT Transistors for Logic Circuits up to 5 Mc (Philco ad), Electronics, 33:17, p 50.

DIRECT-COUPLED NOR GATES-Consists of two epitaxial-transistor nor gates.-D. Hall, Using Epitaxial Transistors in Switching and R-F Circuits, Electronics, 34:13, p 52-53.

SATURATED FLIP-FLOP FOR $100^{\circ} \mathrm{C}$-Increased temperature range is obtained at penality of smaller voltage change at collector, more battery power consumed, and more trigger powor required. Capacitor values depend on trigger characteristics and maximum trigger repefition rate.-"Transistor Manual," Seventh Edition, General Electric Co., 1964, p 186.

SINGLE-SCS FLIP-FLOP-Uses only one silicon controlled switch to perform flip-flop function over wide temperature range. Differentiated positive pulses are applied to cathode gate and anode gate alternately to turn ses on and off. If gate leads are brought out separately, circuit can be used as set-reset flip-flop.-E. Koda, Single-SCS Flip-Flop, EEE, 13:2, p 63.

SATURATED FLIP-FLOP FOR $50^{\circ} \mathrm{C}$-Addition of two $33,000-0 h m$ resistors to bosic soturated flip-flop boosts temperoture range for stoble operotion above $50^{\circ} \mathrm{C}$.-"Tronsistor Monual," Seventh Edition, Generol Electric Co., 1964, p 186.

DCTL FLIP-FLOP-Direct-coupled fransistor logic flip-flop utilizes soturation in circuit with extreme simplicity. With silicon transistors, operation up to $150^{\circ} \mathrm{C}$ is feasible. Saturation couses storage time deloy that limits circuit speed. With germonium tronsistors, stroy volfoge signols of abouf 0.3 v con couse foulty performance.-"Transistor Monual," Seventh Edition, Generol Electric Co., 1964, p 204.

SATURATED FLIP-FLOP-Simple circuit shown is preferable of moderote operating temperafures. If emitter triggering is not used, 220-ohm emitter resistor con be removed."Transistor Manual," Seventh Edition, Generol Electric Co., 1964, p 186.

JK FLIP-FLOP-Consists of transistorized Eccles-Jordan switch, with collectors clamped with diodes to stobilize operoting points. Used to provide current for driving goting
circuits of voltage omplifiers for mognetic memory drum.-A. J. Strassman and R. E. Keeter, Clock Trock Recorder For Memory Drum, Electronics, 32:41, p 74-76.

CHAPTER 34
 Frequency Divider Circuits

SCALE-OF-TEN DIVIDER-Cansists of faur cascaded Eccles-Jardan binary dividers with
feedback laaps, to recycle at 10. Operates up meter Aids in Turbine Design, Electranics, to 500 ke.-J. K. Gaodwin, Digital Tacho- 32:15, p 58-61.

STABILIZED MONO-Operates as 10:1 divider af 1,000 pps. Division ratio of mvbr remains constant for supply variations of from 40 to 400 v . Average plate voltage of V5 is ad-
justed automatically to maintain optimum working conditions throughout operating range.-T. Hornak, Stabilizing Monostable Multivibrators, Electronics, 33:45, p 76.

CAPACITOR-BANK TRIGGER-Uses two bi stable flip-flops in series as frequency divider for confrolling firing of huge copacitor bank. Three outputs deliver pulses with times related to input frequencies.-R. Buser and P. Wolfert, Experimental 100,000 Joule Capacifor Bank for Plasma Research, Electronics, 33:32, p 58-61.

ITV DIVIDER CHAIN-Magnatic-core frequency divider counts $31.5-\mathrm{kc}$ input signal down by 525 to produce 40-v 10-microsec output af

60 pps. Bias windings are series-connected Dlvider for ITV Sync Generators, Electronics, in pairs to simplify circuit. Gives high ac- $31: 15, \mathrm{p} 76-77$. curacy and stability.-A. Rose, Magnetic-Core

SILICON-CONTROLLED SWITCHES DIVIDE FREQUENCY BY 100-Each 3N60 stage divides input frequency by 10 while serving as reloxation oscillator, for frequencies from 250 ke down to fraction of cycle. Circuit can also be used as sawiooth generator.-R. J. Wold, 4-terminal Controlled Switch Divides Frequencies by 10, Electronics, 37:1B, p B1-82.

CASCADED UJT RELAXATION-OSCILLATOR DIVIDER-Class C Hartley master oscillator serves for synchronizing three basic relaxation oscillators that would otherwise be freerunning. Dividers remain locked over temperature range of 0 to $70^{\circ} \mathrm{C}$.-"Transistor Monual," Seventh Edition, General Electric Co., 1964, p 342.

VCO FOR FREQUENCY SYNTHESIZER-Digital synthesizer uses two vco's to cover 190 to 400 Mc , giving choice of 3,500 channels for
fransceiver in military uhf band without tuning. Output to prescaler is limited with hotcarrier diodes. Control voltage acts on dif-
fused-iunction varactors.-L. F. Blachowicz, Dial any Channel to 500 Mh , Electronics, 39:9, p. 60-69.

DIGITAL MAGNETIC-CORE DIVIDER-Fre-quenty-divider chain uses pairs of rectangulor hysteresis-loop magnetic cores as counting elements. Has high accuracy and stability. First core (ladle) is driven to saturation by each input pulse. Constant-voltoge integral output from ladle core drives second bucket core. With appropriate furns ratios of windings, bucket core can be mode to walk up its hysteresis loop in ony number of predetermined steps. Successful single-stage dividers hove been mode up to scales of 17, with reliable operation fram 10 to 50 kc .A. Rase, Magnetic-Core Divider far ITV Syne Generofors, Electronics, 31:15, p 76-77.

CASCADED DISTANCE-MARK DIVIDER-With 1-mile markers used as input trigger, autputs A, B, and C give 2 to 5, 10 ta 25, and 20 to 50-mile distance marks, respectively. Grid potentiameters cantral exact mile mark abtained at each output.-NBS, "Handboak Preferred Circuits Navy Aeronautical Electranic Equipment," Val. 1, Electran Tube Circuits, 1963, p N7-5.

input serial binary pulse train
PCM FREQUENCY REFERENCE-Coherently switched ascillator, 90° phase shifter, Schmitt trigger, and frequency-dividing multivibrafor
and flip-flap tagether darive constant-frequency square-wave output clock signol from frequency-shifted subcarrier ascillator of
f-m/f-m telemetry system.-R. C. Onstad, New Coherent Keyer Simplifies Pulse-Code Telemetry, Electronics, 35:26, p 71-73.

PULSE-FREQUENCY DIVIDER-Plate-fo-cathode coupled blocking oscillator is used to divide from high to low pulse frequency, as required in radar distance-mark generator. Circuit is highly stable with respect to heater

PHANTASTRON FREQUENCY DIVIDER-Will divide 360 cps to give 60 cps . Is triggered by pulse train with both positive and negative pulses.-K. M. Chen, Trigger Stabilizes Frequency Divider, Electronics, 31:47, p 104-107.

INDEPENDENT PULSE-WIDTH CONTROL-With components shown, circuit will divide 50millisec pulses by 5 without changing pulse width. Other components give different widths along with division.-J. McGruder, Frequency Divider With Independent PulseWidth Control, EEE, 14:2, p 69.

PULSE-FREQUENCY DIVIDER-Plate-fo-grid coupled blocking oscillator, with voltage stepup to grid, is used to divide from high to low pulse frequency.-NBS, "Handbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. 1, Electron Tube Circuits, 1963, p N7-1.

DIVIDER ELIMINATES COUNT-STARTING JIT-TER-Output of $\mathbf{8 0}$-Mc free-running crystal oscillator is divided by B to give $10-\mathrm{Mc}$ time base that is almost perfect square wave.W.O. LeCroy, Jr., Eliminating One-Count Uncertainty in Cycle-Counting interval Timers, Electronics, 35:29, p 46-47.

PULSE-FREQUENCY DIVIDER-Plate-fo-grid coupled blocking oscillator, with voltage stepdown to grid, is used to divide from high to low pulse frequency. Stepdown yields maximum peak pulse voltage at plate and permifs maximum pulse duration from given transformer.-NBS, "Handbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. 1, Electron Tube Circuits, 1963, p N7-1.

CHAPTER 35
 Frequency Measuring Circuits

TEN-FREQUENCY STANDARD-Stable crystal switching oscillator, isolation amplifier, multiplier, mixer, and audio amplifier give choice of ten fundamental frequencies, between 10 and 20 Mc , with harmonic output from 20 to 480 Mc , for zero-beating with unknown input frequency being measured.-Portable Frequency Standard Between 10 and 480 Mc, Electronics, 35:18, p 64.

range resistor. Adjustable precision resistor in series with slide-wire of potentiometer provides accurate manual compensation for changes in specific gravity of meosured medium. Circuit is Pofter model 11-B frequency converter,-G. C. Carrol, "Industrial Instrument Servicing Handbook," McGraw-Hill, N.Y., 1960, p 3-3.

MEASURING 1-CPS F-M DEVIATION-FosterSeely discriminator uses RC elements in feedback loops of amplifiers to simulate convenfional LC tuned circuits. Upper cascode amplifier, cathode follower, and feedback loop

resonate slightly above center frequency, while lower half of circuit resonates below center frequency. Circuit works well up to $500 \mathrm{kc} .-\mathrm{H}$. D. Crawford, F-M Discriminator Without Tuned Circuits, Electronics, 36:48, p 36.

TWO-PHASE OSCILLATOR-Unknown signal to be analyzed is multiplied independently by each of two output reference signals, A and
B. Oscillator uses two 90° phase-shift neteach of two output reference signals, A and
B. Oscillator uses two 90° phose-shift networks and 180° of phase shift in amplifier. Gain of 0.98 in cathode follower makes circuit accurate over 10:1 frequency range.T. B. Fryer, Frequency Analyzer Uses Two Reference Signals, Electronics, 32:18, P 5657.

$$
57
$$

 57.

that each input pulse feeds exactly the same charge to the output circuit.-R. J. SmithSaville and S. Ness, Charge Feedback In-

CABLE PROPAGATION DELAY TIME-Pulse generated by tunnel diode trovels to end of 50 -ohm coble, is reflected bock, and retriggers funnel diode to repeot process. Resulting repetition rote of pulses, measured with cir-
evif feeding frequency meter, gives delay time with high accuracy. Transformer (lower left) permits measuring cobles of other im-
pedances.-P. J. Kindlmann, Tunnel-Diode Pulser Measures Cable Deloy, Electronics, 39:4, p 87-88.

CRYSTAL LAPPING CONTROL-Noise signal generated by crystals being lopped is amplified by receiver. Noise peak, which occurs when crystal thickness produces frequency to which receiver is funed, triggers circuit that outomatically shuts down lapping machine. Useful for crystals up to 14 Mc.-J. F. Brumach, R. E. Bennett, and R. P. Chalker, Triggar Circuit Controls Quartz Crystal Lapping, Electronics, 31:29, p 66-67.

FREQUENCY MONITOR CONTROLS DEPOSITION OF THIN-FILMS-Film is deposited on quartz erystal mounted alongside substrate in vacuum, causing erystal frequency to
change. Amplified output of Colpitts crystal oscillator is fed through coax to mixer that also receives reference frequency, and beatfrequency difference (related to film thick-
ness) is indicated on counter.-S. J. Lins and P. E. Oberg, Automatic Deposition Control, Electronics, 36:13, p 33-35.

CHAPTER 36 Frequency Modulation Circuits

WEAK-SIGNAL CAPTURE-High-Q trap in re-actance-tube circuit aftenuates stronger of two signals, to permit capture of weaker of two cochannel f-m signals, as often required in police, military, and telemetering systems. Trap introduces depression in frequency response of third i-f stage, centered on frequency of stronger signal.-E. J. Baghdady and G. J. Rubissow, Dynamic Trap Captures Weak F-M Signals, Electronics, 32:2, p 6466.

1-MC F-M OSCILLATOR-Combines Q multiplier with Miller effect to produce simple and stable $f-m$ oscillator and modulator.-P. W. Wood, Transistorized F-M Oscillator, Electronics, 32:5, p 64.

100-MC VARICAP OSCILLATOR-Modulator consists of two variable-capacitance diodes in series to r-f and in parallel to audio modulating signals and d-c bias. Frequency deviation is $\mathbf{2 8}$ Mc peak-to-peak with modulating signals less than 28 v and negligible modulating power.-C. Arsem, Wideband F-M with Capacitance Diodes, Electronics, 32:49, p 112-113.

LOW-COST DISCRIMINATOR-Uses iwo detectors fed 90° out of phase. Signals are demodulated conventionally for each phase, and the sum of the two signals is taken across the whole output. Provides excellent operation as discriminator in 4.5-Mc iv sound detector.-J. B. Compton, "A Low-Cost All Solid-State FM Discriminator for Consumer Applications," Motorola Application Note AN-212, Jan. 1966.

200-MC VOLTAGE-CONTROLLED OSCILLATOR -Uses two funnel-diodes in astable mubr to give symmetrical square-wave output. Used
to produce wide frequency swing with respect to center frequency, linearly, when small control voltage is applied.-F. H. Lefrak,

Tunnel-Diode Oscillator Expands F-M System's Channel Capacity, Electronics, 39:1, p 105109.

SELF-REACTANCE MODULATION-Modulation current injected af emitter changes collectorbase voltage, thus varying output capacitance, tank resonant frequency, and oscillator frequency for 230-Mc pam/f-m telemetery beacon.-T. M. Conrad, Self-Reactance Modulation in Telemetry Oscillators, Electronics, 35:9, p 35-37.

OSCILLATOR

BUFFER

VARACTOR MODULATES 24-MC F-M OSCIL. LATOR-Modulating signal is applied to varactor diode in frequency-determining circuif
of telemetering oscillator. Linearity is 2% for deviation of $60 \mathrm{kc},-\mathrm{N}$. Downs and B. van Sutphin, Solid-State Transmitter Ready for

UHF Telemetry, Electronics, 37:17, p 76-80.

LOW-COST IC TUNER-Front end uses single RCA three-transistor two-diode chip with conventional funing circuit. Ganged capacifors

C1-C2 are 5-22 pf. Power gain is 15 db and sensitivity is 10 microvolts for 30 db of quieting. Performance is just adequate for
low-cost commercial f-m tuner.-R. L. Sanquini, Infegrated Circuits Make A Low-Cost F-M Receiver, Electronics, 39:16, p 133-138.

ELECTRIC TUNING FOR SO-MC F-M RANGEUsed two voltage-tunable ferroelectric capacitors. Can be built in pocket-size plastic case when powered with hearing-aid batteries. -T. W. Bufler, Jr., Ferroelectrics Tune Electronic Circuits, Electronics, 32:3, p 52-55.

VOLTAGE-CONTROLLED $100-M C$ OSCILLATOR -Video voltage of wide-band f-m receiver is applied to base of silicon tetrode to give voltage-sensitive $100-\mathrm{Mc}$ f-m oscillator in which deviations can be up to 1 Mc without excessive distortion.-5. Kallus, B. Rabinovici, and A. Newton, Fitting a Wide-Band Signal Into a Narrow-Band Receiver, Electronics, 36:10, p 47-49.

LI-4 TURNS NO. 18 WIRE
$1 / 2^{\text {H }}$ DIAM. TAPPED
AT II/4 TURNS
$L_{2}-2$ TURNS NO. 18 WIRE
1/2" DIAM.
C - TO RESONATE L_{2} AT 100 MC .

2-WATI POWER AMPLIFIER AT 160 MCUses 2N2950 npn silicon planar epitaxial transistor designed for medium-power highfrequency applications. Overall gain is 23
db. Intended for $\mathrm{f}-\mathrm{m}$ or c-w applications only. For a-m, supply voltage on final stage must be reduced to 12 v to remain within voltage rating, and driver should also be

2N2950.-D. L. Adley, "Designing 160 Mc FM or CR Circuitry Using a Silicon High Frequency Transistor," Motorola Application Note AN-16B, Aug. 1965.

ELECTRIC TUNING FOR F-M OSCILLATOR-Voltage-funable ferroelectric capacitors are used for tuning as well as for modulating.T. W. Butler, Jr., Ferroelectrics Tune Electronic Circuits, Electronics, 32:3, p 52-55.

400-MC VARICAP OSCILLATOR-Wideband frequency modulation of $400-\mathrm{Mc}$ distributedparometer Colpitts oscillator is obtained with symmetrical tronsistor in modulator. Q1 is equivalent to two reverse-biased diodes in
series for r-f and in parallel with respect to modulating signals and d-c bias.-C. Arsem, Wideband $\mathrm{F}-\mathrm{M}$ with Capacitance Diodes, Electronics, 32:49, p 112-113.

160-MC 15-W POWER AMPLIFIER-Performance of each of three stages is optimized by using input-output admittance data in network design, to give 30.5 db power gain from closs-C operation. Circuit can be exmittar by adding appropriate oscillator-buffer-multiplier stages.-R. Hejhall, "A 160 MHz 15-Watt Solid-State Power Amplifier," Motorola Application Note AN-214, Nov. panded to give complete $f-m$ or $c-w$ trans-

1965.

STRAIN-GAGE OSCILLATOR-Produces f-m signal output that is directly proportional to applied force, such as stress or pressure, on
resistive-type gage. Operating and bandedge frequencies of oscillator are determined by values of R, L, and C.-W. H. Foster,

Strain Gage Oscillator for Flight Testing, Electronics, 31:5, p 40-42.

CHAPTER 37
 Frequency Multiplier Circuits

PULSE SHAPER FOR FREQUENCY MULTIPLIER -Combines clipping with cathode peaking to increase rise time to 1 microsec for $150-\mathrm{v}$ pulses that drive blocking oscillator.-W. O. Brooks, Stepping up Frequency with Counter Circuits, Electronics, 32:29, p 60-62.

150-450 MC TRIPLER-Charge-storage IN4387 varactor gives 20 w at 450 Mc for 40 w of 150-Mc input.-G. Schaffner, Charge Storage Varactors Boost Harmonic Power, Electronics, 37:20, p 42-47.

DOUBLERS AND TRIPLER-In left section, first two stages are class B common-base power doublers and last two are class $A B$ commonemitter amplifiers. Oufput is 150 mw af 216

Mc, from 54-Mc input. In section af right, common-base class B power tripler drives common-amitter output amplifier to give 140 mw output at 162 Mc from 54-Mc input.-
J. W. Hamblen and J. B. Oakes, Instrumenfation and Telemetry of Transit Navigational Satellites, Electronics, 34:32, p 148-153.

MULTIPLIER GIVES 324 MC -Two class B common-base stages fone tripler and one doubler) drive class $A B$ common-base output omplifier to give 50 mw at 324 Mc from 54-

Mc input. Upper section, a 54-Mc transmitter, is simply a single class $A B$ common emitter that gives 200 mw output from 25mw input.-J. W. Hamblen and J. B. Oakes,

Instrumentation and Telemetry of Transit Navigational Satellites, Electronics, 34:32, p 148-153.

50 MC TO 400 MC VARACTOR MULTIPLIERConsists of two push-push varactor circuits in cascade, with bandpass filter at output. Provides 40 w with $\mathbf{3 0 \%}$ conversion efficiency.

For pulse-modulated drive signals, will give 100 w peak pulse power at 0.0088 duty cycle. Uses Motorola IN4386 varactors.-J. Cochran, "Two-State Varactor Multiplier Pro-

TWO 54-MC OUTPUTS FROM 3 MC-Uses three class $A B$ common-emitter amplifiers. First two are tripiers that multiply $3-\mathrm{Mc}$ input to 27 Mc. Third doubles this to 54 Mc , and drives two parallel 54-Mc class $A B$ output amplifiers providing 25 mw each.-J. W. Hamblen and J. B. Oakes, Instrumentation and Telemetry of Transit Navigational Satellites, Electronics, 34:32, p 148-153.

$x=x 1,000$
TWO DOUBLERS AND QUADRUPLER GIVE 960 MC-First two doublers are push-push class C with unity gain. Varactor D1 in final multiplier, feeding $960-\mathrm{Mc}$ quarter-wave se-
ries-resonance coaxial cavity, acts as quad-rupler.-W. E. Dahl, Communicating with Future Deep-Space Probes, Electronics, 36:22, p 28-32.

CASCADED UHF DOUBLERS-Commen-base amplifier with tank circuit funed to twice the input frequency is cascaded to give frequency
high frequencies.-A. E. Munich, Basic UHF Circuit Forms Amplifiers and Multipliers, Electronics, 37:20, p 59-60.

100 KC TO 5 MC -Simple transistor circuit converts $100-\mathrm{kc}$ standard frequency of frequency counter to 5 Mc for use with $500-\mathrm{Mc}$ frequency converter which requires 5 -Mc reference frequency. Q1 is doubler. Q2 and Q3 form unique quintupler evolved from Schmitt trigger, in which square-wave symmetry is preserved by maintaining triggering point at zero crossings of input signal. Q4-Q5 is similar quintupler, but without cross-coupling feedback.-H. T. McAleer, Unique Frequency Multiplier, Frequency, MayJune 1964, p 36-37.

50.100 MC PUSH-PUSH DOUBLER-Chargestorage iN4386 varactors in push-push provide 180 w . output with 70% efficiency.-G. Schaffiner, Charge Storage Varactors Boost Harmonic Power, Electronics, 37:20, p 42-47.

COMMON-BASE UHF AMPLIFIER OR DOU-BLER-With output tank circuit tuned to frequency input, power gain ranges between 10 and 16 db for 40 to $1,000 \mathrm{Mc}$, with bandwidth varying from 10 to 40 Mc depending
on temperafure, frequency, and loading. Tuning tank to twice input frequency gives frequency doubler.-A. E. Munich, Basic UHF Circuit Forms Amplifiers and Multipliers, Electronics, 37:20, p 59-60.

50 MC TO 200 MC VARACTOR QUADRUPLER 50 w input power up to 300 Mc . Gives Power Varactor Diodes," Motorola Applica--Uses 1 N4386 varactor capable of handling efficiencies up to 70%.-G. Schaffner, "High- tion Note AN-147, Apr. 1964.

50 MC TO 100 MC PUSH-PUSH DOUBLERTwo IN4386 varactors ore connected in phose opposition to input signal and parallel to common load at even harmonic signal, to give action comparable to push-push circuit. Power-handling capacity is twice that of single varactor, with added benefit of odd-harmonic suppression.-G. Schaffner and J. Cochran, "Varactor Diodes and Circuits for High Power Output and Linear Response," Motorola Application Note AN-191, Aug. 1965.

TRIPLER WITH OVERLAY TRANSISTOR GIVES
1.02 GC-Single overlay transistor eliminates conventional transistor amplifier and chain of varactor frequency multipliers. Output power is $3.5 \mathbf{w} .-H$. C. Lee and G. J. Gilbert, Overlay Transistors Move into Microwave Region, Electronics, 39:6, p 93-95.

Li-3 TURNS OF $1 / 16^{\prime \prime}$ WIRE $1 / 2$ " DIA. x 1 " LONG.
$\mathrm{L}_{2}-1$ TURN $1 / 8^{\prime \prime}$ TUBING 3/8' O.D.
L_{3} - STRAIGHT COUPLING LOOP $1 / 8^{\prime \prime}$ TUBING $2^{\prime \prime}$ LONG SPACED APPROX. $1 / 8^{\prime \prime}$ ' FROM CENTER CONDUCTOR.
L_{4} - STRAIGHT COUPLING LOOP $1 / 16^{\prime \prime}$ WIRE $1-1 / 2^{\prime \prime}$ LONG, SPACED APPROX. 1/16" FROM CENTER CONDUCTOR.

200 MC TO 600 MC HARMONIC TRIPLERUses single varactor to give 20 w output from 40 w input.-G. Schaffner and J. Cochran, "Varactor Diodes and Circuits for High Power Output and Linear Response," Motorola Application Note AN-191, Aug. 1965.

50-150 MC TRIPLER-Charge-storoge IN43B6 varactor triples frequency with power efficiency of 70% for input of 50 watts.-G. Schaffner, Charge Storage Varactors Boost Harmonic Power, Electronics, 37:20, p 42-47.

SIMPLE DOUBLER-Uses distributed R-C networks consisting of resistive and conductive loyers on dielectric substrate, with d-c applied between electrodes of 65 v for doubling frequency of ceromic-dielectric 400 -cps oscilla-for.-M. M. Perugini, Race to Reduce Copocifor Size, EEE, 10:7, P 61-64.

DECADE DRIVER FOR FREQUENCY MULTIPLIER -Input signal from frequency-multiplying oscillator is stepped up to BO v peak-to-peak, with 1 -microsec rise fime, for accurate triggering of decade counter.-W. O. Brooks, Stepping up Frequency with Counter Circuits, Electronics, 32:29, p 60-62.

TRIPLER-DOUBLER GIVES 700-1,200 MC-First stoge is grounded-grid amplifier, with plote tuned by 1 -furn coil and variable copacitor. Common-grid tripler and doubler are tuned
with coaxial resonators.-A. E. Anderson and H. D. Hern, F-M Exciter For Sight or Scatter Systems, Electronics, 31:11, p 148-151.

121.5 MC TO 243 MC DOUBLER-Input is tuned to fundamental and output to second harmonic. Combination series-parallal trap in
collector circuit rejects fundamental.-Texas Instruments Inc., "Transistor Circuit Design," MeGrow-Hill, N.Y., 1963, p 32B.

VARACTOR FREQUENCY QUADRUPLER-With SO-Mc input, output is 22 w of 200 Mc . Series-funed idler circuit L3-C4 is omitfed for
frequency-doubling.-L. E. Clork, E. B. Mack, ond R. C. Hejholl, Highlights of Small-Signol Circuit Design, Electronics, 36:49, p 46-S0.

S00 MC TO $1,000 \mathrm{MC}$ DOUBLER-Single varoctor gives up to 15 w output from 25 w input, with output linear up to 11 w . Conversion efficiency is 50%.-G. Schaffner and J.

Cochron, "Varactor Diodes and Circuits for High Power Output and Linear Response," Motorola Application Note AN-191, Aug. 1965.

50 MC TO 100 MC VARACTOR DOUBLERUsed to extend usefulness of conventionol time morker generotor.-R. M. Zilberstein, Frequency Doubler ond Amplifier, EEE, 12:12, p 57.

A-F DOUBLER-Frequency of sinusoidal signol is doubled with only one transistor, one coupling copocitor, ond four resistors, by utilizing nonlinear chorocteristic of fronsistor for half-wove rectificotion. Purity of output woveform is adjusted with feedbock control RI.-R. J. Miller, Jr., Audio Frequency Doubling Without Bulky Filters, EEE, 12:12, p 57.

VHF VARACTOR QUADRUPLER-Supplies 160 Me of up to 0.5 w . Output impedonce is 50 ohms.-R. C. Wonson, Designing VHF Voroctor Multipliers, EEE, 11:12, p 48-52.

BALANCED PARAMETRIC DOUBLER-Handles twice the power of single-ended circuit using some voroctor diode, while doubling $\mathbf{1 2 5 - M c}$ input. Voroctors VC ore PSI type PCII6. Efficiency is 70\%. Tronsformer winding doto is given in orticle.-R. D. Gromer, VHF Bolonced Porometric Doubler, EEE, 11:8, p 30-31.

CHAPTER 38

Function Generator Circuits

AUDIO FET SQUARING CIRCUIT-Used in noise investigotion, onolog computotion, ond meosurement of power in complex woveforms, where squorer of high occurocy ond
wide bondwidth is required. First stoge is phose divider whose outpuls drive squoring fet's Q2 and Q3. Oufput of squorer is coupled through copocitor to meter rectifier
whose reoding is proportional to squore of omplitude of input voltoge.-L. J. Sevin, Jr., "Field-Effect Tronsistors," McGrow-Hill, N.Y., 1965, p 83.
 gives reference cosine function and other gives woveform thot con be varied in phase from sine to cosine function, with choice of
high or low output impedance. Q1 is modified Colpirts. Frequency stobility is 1% from 1 kc to 100 kc with regulated power supply.
-J. G. Peddie, Oscillotor Generates Sine, Cosine Waves Simultoneously, Electronics, 37:22, p 74.

PHOTOELECTRIC FUNCTION GENERATOR-Open-loop photoelectric function generator generates any single-value function with 1%
accuracy, as required for duplicating particular antenna patterns in radar simulator. Uses horizontal sweep of 10 millisec (100 cps)
with 5-kc vertical sweep.-B. Silverberg, Funcfion Generator for Radar Simulator, Electronics, 32:2, p 52-55.

FUNCTION GENERATOR-Desired function of input voliage is developed across RC and inverted by Q4. One application is for computing graund range of radar target from slant range. Transistors eliminate need for d-c omplifier.-D. R. Chick, Boosting Function Generator Output with Transistors, Electronics, 33:13, p 75-76.

SQUARE-LAW OUTPUT-Diode network and detector provide autput proportional to square of input voltage. Input range of $\mathbf{4 0}$ db is split into two $20-\mathrm{db}$ segments. Each stage saturates and gives constont output
for voltages above aperating range. For voltages below operating range, stage is cut off and has zero output. Combination of two stages gives desired square-law characteristic. Resistar values are: R1A, R3A $=3.18 \mathrm{~K}$,

R1B $=57.9 \mathrm{~K}, \mathrm{R} 3 \mathrm{~B}=18.75 \mathrm{~K}, \mathrm{R} 5=3 \mathrm{~K}, \mathrm{R7}=$ $10, \mathrm{R} 2 \mathrm{~A}, \mathrm{R} 4 \mathrm{~B}=5.06 \mathrm{~K}, \mathrm{R} 4 \mathrm{~A}=1.86 \mathrm{~K}, \mathrm{R} 2 \mathrm{~B}=$ $64.2 \mathrm{~K}, \mathrm{R6}=300$ and R8, R9 = 990.-R. J. Matheson, Square-Law Defector has $40-\mathrm{db}$ Dynamic Range, Electranics, 39:18, p 95-97.

EXPONENTIAL FUNCTION GENERATOR-Output is exponentially decaying curve in which exponent is determined by other components of system. Used in analog computer to integrate curve of dye concentration in blood stream to obtain flow rate.-R. L. Skinner and D. K. Gehmlich, Analog Computer Aids Heart Ailment Diagnosis, Electronics, 32:40, p 56-59.

COSINE/SINE GENERATOR-Based on fact that area under sine curve varies as casine function. Input voltage is converted into pulse width that controls electronic switch to cut off one portion of sine wave. Resulting rec-

DYNAMIC RANGE COMPRESSOR-Transistorized version of vacuum-tube drawdown limiter or compressor amplifier limits dynamic range of any negative input signal without a threshold or saturation level. Output is approximately proportional to cube root of input, thus giving effective dynamic range compression. Good over audio range, yet can operate up to megacycle region if used with suitable high-frequency transistors and series inductance to varistor. Maximum input signal of 200 mv produces 3 v output, corresponding to gain of 15 at maximum permissible compression.-D. E. Lancaster, Dynamic Range Compressor, EEE, 11:2, p 25.

SINE-COSINE APPROXIMATOR-Converts triangular first approximation of sine and cosine of aximuth angle to accurate approxi-
mation of these functions by use of two diode-connected triodes as function generators, one for positive signals and the other
for negative signals.-B. L. Bair, Logical Design of SAGE Inpui Monifor, Electronics, 31:33, p 78-81.

TIME AMPLIFIER-Output pulse width is linear function of input pulse width. With two stages, circuit can amplify nanosec pulse widths to seconds. Article gives design procedure for choosing values of R1, C1, and R2
for desired time amplification and input pulse range. For input of $0.1-1$ microsec and time amplification of $1,000, \mathrm{RI}=51$, C1 $=8,200 \mathrm{mfd}$, and $\mathrm{R2}=3.2 \mathrm{meg}$. For 10-100 microsec input and amplification of

100, R1 is increased to 510 ohms. For 100 to 1,000 microsec input and amplification of $10, \mathrm{R1}=510, \mathrm{Cl}=0.82 \mathrm{mfd}$, and $\mathbf{R 2}=$ 320K.-R. W. Fergus, Time Amplifier, EEE, 11:8, P 26-27.

RANDOM-NOISE ANALYZER-Provides digital information from which amplitude probability distribution function and probability
density function can be plotted. Consists of two amplitude comparators followed by logic circuits and sampling network.-D. Hoffman
and E. Schutzman, Statistical Analysis of Noise-Signal Amplitudes, Electronics, 32:30, p 48-49.

CHAPTER 39

Gate Circuits

PULSE SEQUENCE DETECTOR-Output occurs only when event signal at A precedes event
signal at B. Other sequences are ignored. Produce Detector Output, Electronics, 39:16, -R. A. Wilson, Two Events, in Sequence, p 120-121.

TRANSISTOR SERIES SWITCH-Two fransistors back-fo-back in inverted connection serve as and gate between analog input from in-

TO LOW-LEVEL AMPL
sfrumentafion transducer and input fransformer of multiplexer. Gate driver receives key pulse from fiming mafrix.-C. E. Griffin, J. P.
$K=\times 1,000$
Knight, and J. H. Searcy, Low-Level Multiplexing for Digital Instrumentation, Electronics, 33:41, p 64-66.

STANDARD MICROMODULE LOGIC GATE-Single-fransistor gate can have maximum fan-in of 20 and maximum fan-out of 4. Power dissipation is 75 mw average, pair delay is 60 nsec, and rise time 30 nsec.A. S. Rettig, Computers in the Front Lines: Micromodules Make it Possible, Electronics, 36:1, p 77-81.

controlled by d-c voltage, while size of gate can be adjusted manually without affecting its center position.-J. R. Kruse, Automatic

Tv Tracker Keeps Eye on Missiles, Electronics,

34:13, p 82-87.

GATE GENERATOR FOR MISSILE TRACKERPosition of rectangular gate on iv display is

GATE OUTPUT INVERTER-Inverter stages compensate for phase inversion of three

NEON PHOTOCONDUCTOR IN LOW-COST LOW-SPEED GATE-Cadmium selenide or cadmium sulfide photoconductors PC deposited on common substrate are used in pairs with Ne-2H miniature neon indicator lamps to replace electromechanical relays in low-speed digital gote. Firing time of neons is reduced and stabilized by opplying $350-v, 60-\mathrm{cps}$ voltage between one neon electrode ond adjacent external electrode, to maintain ambient light that gives low level of ionization in lomp.-J. L. Patterson, Will Neon Photoconductors Replace Relays in Low-Speed Logic?, Electronics, 36:18, p 46-49.

SLOT FILTER-Intervol-sensitive gate will detect tone in range from 4,900 to $5,100 \mathrm{cps}$ regardless of other frequencies present.-A.

Corbin, Digital Tone Filter with Infinite Rejection Slope, Electronics, 34:5, p 58.

GATED DELAY-Negative-output clock pulses of 256-parameter microwave system checker are applied to gating diode D1, which ordinarily blocks signal to delay mvbr. During eighth pulse of code train, diodes D2-D3-D4 receive negative voltage from their binary outputs and make DI trigger mvbr through D5. At end of mubr delay, clamp is removed until eight more pulses arrive.-J. B. Bullock, Pulse-Coded Fault Alarm in Microwave Systems, Electronics, 33:1, p 82-84.

GATED OSCILLATOR-Drives pair of pulse Perlin, Selective Calling for Data Link Sysgenerators for selective calling system.-A. I. tems, Electronics, 33:18, p 108-1]0.

TEACHING-MACHINE REWARD GATE-Astable and monostable multivibrators feed and gate that triggers reward-dispensing device (such as candy dispenser) when number of
correct answers exceeds preset percentage of random probability. Circuit may also give 100% reinforcement for correct response but with candy reward only at spaced intervals.
-G. S. Pennington, Jr. and J. A. Boehm, III, Gate Varies Rewards from Teaching Machine, Electronics, 39:10, p 92-93.

NEON-TRIODE OFF-ON GATE-Supply voltage is set midwoy between firing and extinction voltages of neon tube. Neon conducts when triggered by momentory increase in voltage, and continues conducting until supply voltage is momentarily lowered below extinction voltoge. Con be used to produce low-repeti-tion-rate pulses. Triode may be 6AV6 or $1 / 2$ 12AX7.-R. L. Ives, Neon Triode Gives LowSpeed Gate, Electronics, 31:11, p 170-174.

DIODE GATE-Input signal from ring counter opplies reverse bios through isoloting transistor Q1 to diode gate and base of Q2, which then supplies current to common load of multichonnel scope display.-J. E. Russell, Ten Signals at a Glance, Electronics, 37:19, p 54-57.

SIGNAL-BRIDGE FET-Provides pulsed c-w oufput from 300-ke c-w input. On-off ratio is 50 db. Insertion loss is 15 db with 510 -ohm
output load. Requires ne adjustment. Used Signal, Electronics, 38:9, p 60-61. in sonar experiments.-F. J. Murphree and J.
Bealor, FET in Bridge Circuit Gates a 300-KC

NOR LOGIC USING SERIES TRANSISTORS FOR "'Transistor Manual," Seventh Edition, GenAND GATE-Requires inverter of output.- eral Electric Co., 1964, p 179.

BRIDGE GATE WITH TOROID-Portion of gate input signal is fed to wire threading output toroid, to cancel output spike of a-c bridge. -F. W. Kantor, Tunnel-Diode Gate has Subnanosecond Rise Time, Electronics, 35:15, p 62-64.

ANALOG GATE-Output is -10.0025 v for $+10 \vee$ input, and $+9.9975 \vee$ for $-10 \vee$ input. - M. Shipley Sr., Analog Switching Circuits Use Field-Effect Devices, Electronics, 37:32, P 45-50.

GATED MVBR-Complementary pulse trains appear af outputs 1 and 2 when gate is
applied.-R. Newmeyer, Gated Multivibrator Output Provides Constant Pulse Width, Elec-

PULSE HEIGHT-TO-WIDTH CONVERTER-Converts 0 to $2-v$ pulse to gate for pulse height to pulse width conversion. Gate width, directly proportional to data pulse amplitude, is applied to clock circuits.-W. W. Grannemann ef al., Pulse-Height-fo-Digital Signal Converter, Electronics, 33:2, p 58-60.

BASIC PNP GATE-Circuit is and gate if closing of switch is an input. Circuit is or gate if opening of switch is an input. Provides phase inversion of input without complicat-
ing overall circuitry.-"Transistor Manual," Seventh Edition, General Electric Co., 1964, P 176.

$E_{C S}+3 V D-C$
$E_{1}, E_{2}=+3 V$ PULSES
$E_{3}=-4 V$ PULSE
$D_{1}, D_{2}, D_{4}=8 D-4$
$D_{3}-\operatorname{IN} 3149$

FAST TUNNEL-DIODE GATE-At coincidence between sampling pulse at one input and $100-\mathrm{Mc}$ block pulse at other input, 11 ma current through D3 switches D3 to high level,
making D4 pass current to load.-A. A. Fleischer and E. Johnson, New Digital Conversion Method Provides Nanosecond Resolufion, Electronics, 36:18, p 55-57.

TUNNEL-DIODE AND GATE-Three cascaded monostables provide adequate gain for highspeed computer and logic.-"Transistor Manual," Seventh Edition, General Electric Co., 1964, p 370.

TUNNEL-DIODE OR GATE-Uses two cascaded monostables.-"Transistor Manual," Seventh Edition, General Electric Co., 1964, p 370.

SELF-SETTING PULSE-PATTERN GATE-Picks out pulses transmitted at fixed repetition frequency, in presence of random noise, to improve reliability of ionospheric pulse trans-mitter-receiver synchronizing link by factor of 50.-E. R. Schmerling, Self-Setting Servo Gate, Electronics, 31:3, p 71.

GATING WITH VARICAPS AND TRIODESGives $100-\mathrm{db}$ on-off ratio of $5.5-\mathrm{Mc}$ signal, using small-amplitude positive-pulse gate
(about 4 v) with two dual triodes and four funed circuits with varicaps in each. Tuned circuits are shifted from parallel to series
resonance by gating signal.-Gating with Varicaps, "Electronic Circuit Design Hondbook," Mactier Pub. Corp., N.Y., 1965, p 211

SYNCHRONIZED GATE-Continuous train of pulses is applied to control grid of gating tube. When 51 is closed, next pulse in train opens gate, then shuts gate ofter itself.-J. K. Goodwin, Time and Pulses Control Gates, Electronics, 32:3, p 72-73.

PNP SERIES-TRANSISTOR GATE-Circuit is or gate if closing of switch is an input. Circuit is and gate if opening of switch is an input. Provides phase inversion of input.-"Transistor Manual," Seventh Edition, General Electric Co., 1964, p 176.

NPN SERIES-TRANSISTOR GATE-Circuit is and gate if closing of switch is on input. Circuit is or gate if opening of switch is an input. Provides phase inversion of input."Transistor Manual," Seventh Edition, General Electric Co., 1964, p 176.

COMBINATION GATE AND ONE-SHOT-Uses two four-layer switching diodes, and draws no current from source except during gate pulse. Can also be used as one-shot. Width of pulse depends on supply voltage and R5-C2.-R. E. Amsterdam, Gate/One-Shot Uses Four-Layer Diodes, EEE, 12:12, p 58-60.

5.5-MC GRYSTAL OSCILLATOR GATE-Provides train of pulses to be read by 7 -digit binary counter. Number of pulses in train depends on width of gate pulse received from gate amplifier, and is proportional to amplifude of data input pulse.-W. W. Grannemann ef al, Pulse-Height-fo-Digital Signal Converter, Elecfronics, 33:2, p 58-60.

ONE-SHOT LOGIC CONTROLS TRANSMISSION GATE-Frequency generator, activated by negative pulse af A, generates $32-\mathrm{Mc}$ burst in which number of cycles depends on input pulse width. Pushbutton-controlled one-shot logic allows diade transmission gate to pass first complete $32-\mathrm{Mc}$ burst occurring after pushbutton is actuated, after which gate is closed. One-shot has sync connection to pulse generator.-V. Kenn, One-Shot Gating Circuit Generates Sinewaves for Testing Counters, Electronics, 34:23, p 114-116.

PUMPED TUNNEL-DIODE LOGIC GATESShows method of interconnecting negativeinput positive-output gate with positive-input negative-output gate for high-speed computer logic.-"'Tronsistor Monuol," Seventh Edition, General Electric Co., 1964, p 370.

single positive pulse gates sine wave SIGNAL-Two transistors act os balanced shorting switch, eliminating pedestol effects that normally necessitote dual-polarity gate pulses for onolog signols. Positive 10-v pulse saturates both transistors, thereby grounding
both output terminals to give isolation from input signol. Analog signol being goted con be as low as 5 -mv rms.-L. E. Frenzel, Jr., Gote Circuit Eliminates Pedestal Effects, Electronits, 37:15, p 77.

ZERO-CROSSING SWITCH FOR HEART SOUNDS-Active filter with three amplifiers provides output pulse for opening sliding
gote at instant when heart sound being monitored is zero. Filter has sharp cutoff above highest-frequency heart sound (600
cps).-R. Weiss, Heort-Sound Discriminator Simplifies Medical Diognosis, Electronics, 34:24, p 52-55.

TIME-CONTROLLED GATE-Pentode gate is controlled by period of astable mvbr. Gate is closed when VIA is conducting; when S1 is closed, mvbr opens gate for period determined by C1-R1.-J. K. Goodwin, Time and Pulses Control Gates, Electronics, 32:3, P 72-73.

PHASE INVERSION WITHOUT INVERTERSUsed to achieve and and or functions from same circuit. Base resistors ease requirements for saturation voliage and base input volt-age.-'Transistor Manual," Seventh Edition, General Electric Co., 1964, p 177.

MVBR CONTROLS BILATERAL GATE-QI and Q2 are part of saturated multivibrator, and D1 with RO form gate that permits output when Q2 furns on and blocks D1. When Q2 turns off, D1 and Q1 clamp output close to ground.-S. H. Tsao, Multivibrator Controls Single-Diode Gate, Electronics, 39:15, p 101.

TUNNEL DIODE-TRANSISTOR GATE-Combines high switching speed of tunnel diode with isolation properties of transistor. Rise time of gate is 0.7 nsec. Clock rate can be at least 500 Mc .-R. W. Lade, Logic Combines Tunnel Diodes with Transistors, Electronics; 34:9, p 46-47.

GATE WITH TAPPED TOROID-Arrangement of toroid windings minimizes number of components in a-c bridge used as computer gate, while keeping gating pulse out of output. R3 adjusts balance. Bias is adjusted for stable switching.-F. W. Kantor, Tunnel-Diode Gate has Subnanosecond Rise Time, Electronics, 35:15, p 62-64.

NPN NOR GATE-Circuit is or gate if closing of switch is an input. Circuit is and gate if opening of switch is an input. Provides phase inversion of input. If both switches are open, both transistors are nonconducting. When either switch is closed, output is negative, or not or, because of phase inversion, and circuit is therefore nor gate."Transistor Manual," Seventh Edition, General Electric Co., 1964, p 176.

(HIGH IMPEDANCE
$>1,000$)
FAST-READOUT MEMORY-Voltage-divider version of tunnel-diode gate is used with toroid to give extremely fast readout, for use with computers having clock rates above 500 Mc. Tertiary winding cancels gating spike.-F. W. Kantor, Tunnel-Diode Gate has Subnanosecond Rise Time, Electronics, 35:15, p 62-64.

POSITIVE TRANSMISSION GATE-Is equivalent to digitally controlled analog switch, for frequency range of 8 to 650 kc . Output signal never passes through active device, hence is not attenuated, distorted, or de-
layed. Will pass a-c signal with zero average value. Ratio of on voltage to off voltage is $420: 1$ ($4.2 \mathrm{v} \mathrm{p}-\mathrm{p}$ to $10 \mathrm{mv} \mathrm{p}-\mathrm{p}$), for isolation of $54.5 \mathrm{db} .-$ V. A. Bloom, Positive Transmission Gate, EEE, 10:9, p 26-27.

FET ANALOG GATE-Series connection of chopper-type fet permits high-accuracy analog switching. Resistance of Q2 when on is anly about 20 ohms, and drain gate leakage current is less than 0.1 nanoamp.-Six More Semiconductor Advances From TI (Texas Instruments ad), EEE, 14:8, p 120-121.

BASIC NOR GATE-Transistor conducts heavily if any of inputs is raised from 0 to +12 v . -"Transistor Manual," Seventh Edition, General Electric Co., 1964, p 178.

TUNNEL-DIODE GATE-Impedance of tunnel diode is part of voltage divider, eliminating need for a-c bridge in gate operating above 500 Mc.-F. W. Kantor, Tunnel-Diode Gate has Subnanosecond Rise Time, Electronics, 35:15, p 62-64.

CHAPTER 40

 I-F Amplifier Circuits

70-MC NEUTRALIZED-Designed to give maximum power gain in single stage while maintaining good stability. Noise figure is less
than 3 db with power gain of 27 db .-
Texas Instruments Inc., "Solid-State Communications," McGraw-Hill, N.Y., 1966, p 313.

PULSED-GATED 30-MC J-F-Control signals are fed to suppressor grids of early amplifier
stages, to generate graups of i-f pulses for simulating radar scanning or for testing tran-
sient response of i-f circuits. Bandwidth is 1.2 Mc.-C. D. Rasmussen, Suppressor Gating for I-F Amplifiers, Electronics, 34:34, p 62.

60-MC TETRODE 1-F-Use of 3N35 gives excellent agc characteristics. Stage gain is 12 db.-Texas Instruments Inc., "Solid-State

Communications," McGraw-Hill, N.Y., 1966, p 311.

I-F TUNING WITH DELAY LINE-Circuil gives Q of 285 af 500 kc , and is funed by adjusiing delay time. Can be used in any system where high gain, high Q, and stability are needed.-I. F. Barditch, Delay-Line Controls Tuned Amplifier, Electronics, 33:31, p 108.

500-MC STAGGER-TUNED I-F-Slight stoggering in two stoges gives excellent stobility, so circuit will not oscillote when either source or lood is open. Bondwidth is 90 Mc for 1 db down ond 110 Mc for 3 db down, with midbond goin of 21 db . Drows only 7 ma of 15 v.-Texos Instruments Inc., "Solid-Stote Communicotions," MeGrow-Hill, N.Y., 1966, p 315.

GROUNDED-GRID STRIP-Six-stoge low-noise $60-\mathrm{Mc}$ i-f strip omplifier, using microminioture ceromic triodes, gives 75 -db overoll goin, $1.7-\mathrm{db}$ noise figure, ond $6.5-\mathrm{Mc}$ bondwidth. First stoge is coscode ond other five are grounded-grid friodes.-J. W. Rush, Designing Grounded-Grid Amplifiers with Controlled Goin, Electronics, 33:52, p 50-53.

OPTIMIZED LOW-DISTORTION I-F AMPLIFIER --Provides $0.5 \vee$ audio from defector, with 3 db of control with ogc. Volume control is diode detector lood resistor. First i-f stoge uses ceromic filters for shorper bondposs choracteristic.-W. Rheinfelder, Using Tronsister Signal Hondling Curves in Receiver Design, EEE, 14:6, p 62-66.

SINGLE-TUNED FINAL I-F-Circuit is example of optimum design based on use of tronsistor signal-handling curves. Transformers are single-funed.-W. Rheinfelder, Using Transistor Signal Handling Curves in Receiver Design, EEE, 14:6, p 62-66.

$\mathrm{C}_{1}=5.3-102$ pf $\mathrm{L}_{1} 3 \mathrm{BT} \# 14$ WIRE $1 \mathrm{H}^{\prime \prime}$ DIA: $=0.25 \mathrm{uh}$
$\mathrm{C}_{2}-3.7-52 \mathrm{pI} \quad \mathrm{L}_{2} 4 \mathrm{~T} \pm 610$ AIR DUX (OR EQUIV.): $=0.35$ uh $C_{3}=0.01$ עf TAPPED APPROX. 1 TURN UP FROM BOTTOM $C_{4}=3.7-52$ pI $\quad C_{1}$ IS ADJUSTED TO GIVE DESIRED VALUE OF Re $C_{5}=0.01$ 山t \quad th LEAD GROUNDED. $R_{1}=1 \mathrm{k} / 2 \mathrm{~W}$ C $\mathbf{F} 0.01$ यf BIAS POINT: -6V. IE (SEE FIG. 34)
70-MC LOW-NOISE J-F-Noise figure ranges from 2 to 4 db depending on generotor resistance and emifter current. Power gain is 24 db .-Texas Instruments Inc., "SolidState Communications," McGraw-Hill, N.Y., 1966, p 312.

THIN-FILM LOG I-F AMPLIFIER-Translation amplifier limits bandwidth at input, while video emitter-follower matches $10-\mathrm{v}$ output to load. All seven log i-f stages use thin-film circuits.-R. Leslie and T. Townsend, Inductors No Problem: New Thin-film Amplifier, Electranics, 36:23, p 46-49.

RESISTANCE VALUES IN OHMS, CAPACITANCE VALUES IN PF.

LOW-OUTPUT-IMPEDANCE I-F-Can provide impedances as low as 2 ohms and low noise figure, to take advantage of superior noise performance of backward diodes as mixers and delectors while overcoming their very low impedance at intermediate frequen-
cies in range from 1 kc to 100 kc . Used in continuous-wave doppler radar systems.R. O. Wright, New Twist for Backward Diode: Help from Low-Noise Amplifier, Electronics, 39:14, p 74-77.

45-MC CASCODE FET-Operates without neutralization, giving 20 db power gain and 6-Mc bandwidth.-Cascode with FET's (Siliconix ad), Electronics, 39:2, p 109.

30-MC I-F USING 2N2188-Circuit includes L-section to give generator resisfance of 350 ohms from 50 ohm source. Power gain is 13 db , noise figure 4 db , and bandwidth 5 Mc.-Texas Instruments Inc., "Solid-State Communications," McGraw-Hili, N.Y., 1966, p 309.

30-MC I-F USING 2N2410-Single stage gives power gain of 16 db , permitting use as final stage of i-f strip.-Texas Instruments Inc., "Solid-State Communications," McGraw-Hill, N.Y., 1966, p 308.

10-MC SUPERREGENERATIVE I-F-Groundedbase oscillator Q1 is self-quenched of 25 kc . Quench wave is amplified by Q2 and de-
fected in modified Travis discriminator T2-T3. Afe voltage developed at discriminator is fed back to Q3 to maintain emitter current of Q1
at required value for quench rate.-N. H. Brown, Improved Superregenerator has Quench Converter, Electronics, 35:38, p 53

SYMMETRICAL LIMITING RADAR I-F AMPLI. FIER-Four-stage i-f using silicon planar epjtaxial transistors gives 35 db suppression of second hormonic for input of 0.3 to 30 mv . With one more stage and resistor RM across
feedback diode, total phose shift is less than 25 deg.-R. F. Kirkpatrick and R. C. Stouffer, Symmetrical Limiting I-F Reduces Second Harmonic, Electronics, 37:12, p 72-73.

VIDEO I-F USES FRAME-GRID 6GK7-Negative voltage on suppressor controls gain of dualcontrol sharp-cutoff pentode. Cathode current is independent of agc, and control grid bias automatically adjusts to prevent modulation clipping.-L. Solomon, New Tubes and Circuits for Consumer Electronics, Electronics, 36:2, p 47-49.

105-MC I-F WITH 2N2966-Proper loading gives good stability while providing 38 db
power gain in two stages, with bandwidth of 8 Mc and noise figure of 2.5 db .-Texas

$$
\begin{aligned}
& C_{1}=250 \mathrm{pf} \\
& C_{2}, C_{7}, C_{12}, C_{13}, C_{14}=1000 \mathrm{pf} \\
& C_{31}, C_{5}, C_{8}, C_{10}=9-35 \mathrm{pf} \\
& C_{4}, C_{9}=1.3-5.4 \mathrm{pf} \\
& C_{6}=1.5-20 \mathrm{pf} \\
& C_{11}=10 \mathrm{pf} \\
& C_{15}=9-180 \mathrm{pf} \\
& C_{16,} C_{17}=1000 \mathrm{pf} \\
& \text { Instruments Inc., "Solid-State Communica- } \\
& \text { fions,' McGraw-Hill, N.Y., 1966, p 314. }
\end{aligned}
$$

MOBILE I-F-Two 455-ke i-f stages provide gain of 20 per stage and average bandwidth of 12 kc.-C. Gonzalez and R. J. Nelson, Design of Mobile Receivers with Low-Plate-Potential Tubes, Electronics, 33:34, p 62-65.

60-MC I-F WITH 2N743-Silicon epitaxial transistor has unconditional stability at this frequency, simplifying alignment. Gains up to 16 db per stage are possible with conjugate match of output. Noise figure is good. -Texas Instruments Inc., 'Solid-State Communications," McGraw-Hill, N.Y., 1966, p 311.

SINGLE-TRANSISTOR I-F AMPLIFIER-Designed for broadcast-band transistor radio. Neutralization is unnecessary with 2 N 293 rategrown npn transistor used.-"Transistor Manval," Seventh Edition, General Electric Co., 1964, p 285.

LOW-Q 22-MC I-F DESIGN-Article gives detailed design procedure, with example worked out for 480-kc bandwidth and gain of 92 db . For high-Q stage, I.IK load resistor is changed to 12K.-J. F. Klarl, A Systematic Approach For Designing IF Amplifiers, $E E E$, 12:3, p 40-44.

LOGARITHMIC THIN-FILM I-F AMPLIFIER-Unfuned stages eliminate need for inductors in 60 -Mc log i-f module while giving gain of 10
db.-R. Leslie and T. Townsend, Inductors No Problem: New Thin-Film Amplifier, Electronics, 36:23, p 46-49.

CHAPTER 41
 Infrared Circuits

 in infrared horizon sensor of meteorological
satellite. Zener diode D1 provides low-impedance constant-voltage source of bias for
defector.-F. Schworz and W. Chou, Tiros Weather Satellites, Electronics, 34:39, p 136-137.

INFRARED ANALYZER-Circuit shows phasesensitive demodulator, 13-cps amplifier, and modulator of servo system used in PerkinElmer Tri-Non triple-beam analyzer for meas-
uring amount of infrared energy absorbed by component of interest in flowing sample of industrial process stream. Servo motor furns variable null-path attenuator to cancel
radiation unbalance and restore null.-G. C. Carroll, Industrial Instrument Servicing Handbook, MeGraw-Hill, N.Y., 1960, p 8-51.

IR WIDTH GAGE AMPLIFIER-Amplifies signals from two amplifiers, and combines them of second triode of V4 for translator. Signal
here consists of positive-going pulse from channel 1 and negative-going pulse from channel 2, with distance between pulses in-
dicating strip width.-F. J. Danks, Infrared Gage Measures Hot Steel Strip Width, Electronics, 33:43, p 65-67.

MONOCHROMATOR PREAMP-Used in sconning missile plumes to identify missile. Input moy be either multiplier phototube or leod sulfide detector covering ronge from 0.35 micron in visible spectrum to $\mathbf{2 , 9}$ microns in infrared. Bios for leod sulfide detector is provided by 5651 regulator ocross plate supply. Test voltoge is fed to cothode of first stoge for goin colibration.-J. N. Doy, Jr., Spectrometric Anolysis of Missile Flights, Electronics, 33:21, p 86-88.

INFRARED POWER MONITOR-Output of infrored signol generotor is monitored by two-thermistor bolometer, low-noise nuvis-
for preomp, ond synchronous defector driving multironge meter, oll operoting from two highly reguloted power supplies.-A.

Gloser, Signol Generotor for Infrored Region, Electronics, 35:8, p 40-43.

IR WIDTH GAGE PREAMP-Resistance of photocell DI drops when hot steel strip passes, producing negative-going pulse that is amplified, differentiated, clipped, and differentiafed ogain by DI. Signal through channel 2 is similar except that first pulse is unwanted. Second pulse, representing strip
edge, is selected by reversed polarity of D3. Both signals are fed into cathode followers D2 to provide low-impedance drives for shielded cable to main amplifier.-F. J. Danks, Infrared Gage Meosures Hot Steel Strip Width, Electronics, 33:43, p 65-67.

lation is taken from conventional diode discriminator. Applications include communication with space vehicles. Range in space is unlimited.-W. E. Osborne, Infrared Com-

ALl-TRANSISTOR INFRARED RECEIVER-Addition of four-diode bridge and associated circuits converts communications receiver to radiation-measuring device. Normal modu-
munications Receiver for Space Vehicles, Electronics, 32:38, p 38-39.

INFRARED HOT-ENGINE DETECTOR-OUtput relay resets parking meter to zero when
lead sulfide defector senses heat of engine when parked car is started.-W. E. Osborne,

TV ON INFRARED BEAM-Forward-biased gallium arsenide diode converts video input signal to video-modulated infrared radiation with up to 85% efficiency.-R. H. Rediker ef al., Gallium-Arsenide Diode Sends Television by Infrared Beam, Electronics, 35:40, p 44-45.

INFRARED HOT-ENGINE DETECTOR-Hot-ongine alarm using only two transistors and an scr resets parking meter to zero when lead
sulfide infrared defector senses engine heat as parked car starts. Circuit combines Colpilts oscillator with Schmitt trigger.-W. E.

Osborne, Farewell To Free Time On City Parking Meters, Electronics, 37:32, p 72-74.

IR WIDTH GAGE TRANSLATOR-Combined signal output from main amplifier of infrared gage triggers bistable mvbr V7, output of which is rectangular pulse whose width
is proportional to steel strip width. Pulse is clamped and amplified by $V 8$ and passed to comparator V9, which provides output proportional in amplitude to width of input
pulse.-F. J. Danks, Infrared Gage Measures Hot Steel Strip Width, Electronics, 33:43, p 65-67.

PREAMP FOR INFRARED MINE DETECTORLead telluride cell cooled with dry ice, with infrored input chopped af 200 cps by fan motor, feeds three-transistor preamp that provides output of 200 ohms to remote R-C funed main 200-cps amplifier.-W. E. Osborne, Infrored Mine Detector a Reality, Electronics, 36:31, P 54-58.

46-CPS AMPLIFIER WITH 8-CPS BANDPASSUses differential input amplifier Q1-Q2 as part of four-stage direct-coupled front end
of optically chopped radiometer. Parallel-T filter provides desired frequency characteristic and $d-c$ path for negative feedback
oround direct-coupled amplifier.-F. Schwary, Infrared Circuits in Tiros Satellites, Electronics, 34:38, p 43-45.

CHAPTER 42
 Integrated Circuits

LINEAR IC TESTER-Basic lab fester circuif displays transfer function, affset voltage, gain, linearity, and output voltage swing on single scope trace. High-gain null operational amplifier (such as Fairchild 709 IC) is used in feedback loop araund linear inte-
grated-circuit amplifier under test, to hald autput of amplifier under test at zero by adjusting its d-c input voltage ta equal the offset. Chopper on vertical scope inputs allows simultaneous display of offset voltage and transfer function, by switching in syn-
chronism with horizontal sweep. Separate TO-5 socket is provided for each type of infegroted circuit to be tested.-J. N. Giles, How to Measure Linear-JC Performance, EEE, 14:8, p 62-68 and 161.

HARMONIC MIXER-Two-fransistor integrated circuit is used in nonlinear mode for converting 120 Mc to 10.7 Mc with conversion of 29.4 db , noise figure of 11 db , and sensitivity of -105 dbm . Bandwidth, including i-f stages that follow mixer, is about 500 kc.-J. E. Thompson, "An Integrated Harmonic Mixer," Motorola Application Note AN-154, December, 1965.

WIDEBAND ANALOG AMPLIFIER-D-C input summing mode signals are amplified in lowdrift dec amplifier and reinserted into amplifier signal path at input to common-emitter stage. Response of d-c amplifer in parallel with common-base stage is complementary to high-frequency amplifier Q2-Q3-Q4, maintaining unit slope down to $1 \mathbf{k c}$, where gain is 100 db . Loop delay is less than 0.1 nsec . -F. D. Waldhaver, Latest Approach to Integrated Amplifier Design, Electronics, 36:22, p 24-27.

SENSE AMPLIFIER-General-purpose amplifier can be used with most coincident-current memories without redesign. Has adjustable threshold, good noise rejection, and drives any standard logic gate with positive or
negative output. Bandwidth is 10 Mc . Drift is only 22 microvolts per ${ }^{\circ} \mathrm{C}$. Circuit is differential amplifier whose inputs are connected to opposite ends of sense winding. Input accepts both polarities, but output is always
same polarity. For negative output pulse, connect F to G; for positive output, connect E to G.-B. Johnson, Sense Amplifior Fits Any Memory, Electronics, 39:1B, p 89-94.

1-WATT AUDIO AMP-Negative $d-c$ and a-c feedback is applied to one side of differential input stage and signal to other side. With
balanced power supplies, d-c output is at ground, permitting direct drive of speaker without large d-c decoupling capacitor in

MC1524 integrated circuit.-R. Hirschfeld, IC's Improve Differential Amplifiers-and Vice Versa, Electronics, 38:16, p 75-79.

MONOSTABLE MVBR-Pulse width of stresssensitive RC103 infegrated circuit is reduced from 1.5 to 1.0 microsec when 7 grams of force is applied to one transistor.-R. C. Wonson, Stress-Sensitive Infegrafed Circuits, Electronics, 38:14, p 81-84.

ASTABLE MVBR-Stress-sensitive RC103 integrated circuit shifts free-running frequency from 500 kc to 1 Mc when 7 grams of force is applied to one transistor.-R. C. Wonson, Stress-Sensitive Infegrated Circuits, Electran= incs, 38:14, p 81-84.

IMPROVED DARLINGTON-Seporate collector circuit for third transistor of Darlington con-
figuration prevents reflection of high copocitance back to input, thereby dissipoting Miller
effect.-Y. Torui, Japan Seeks Its Own Route to Improved IC Techniques, Electronics, 38:25, p 90-98.

DARLINGTON-INPUT OPERATIONAL AMPLI-FIER-Single-stage version uses emitter-follower output to lower impedance and shift d-c level of output. Q7 and R3 form constantcurrent source. Zeners, formed as baseemifter junctions of transistors, shift d-c level of outputs negative by 6 v to make them compatible with input voltages and permit cascading of monolithic integrated circuits di-rectly.-C. L. Heizman and D. G. Paterson, Circuit Analysis: A Monolithic integrated Operational Amplifier, EEE, 13:5, p 80-84.

2-SEC-TO-10-MIN TIMER-Number of monolithic diode-transistor logic circuits datermines range of time delay provided by
potentiometer R7. For shorter delays, one or both of integrated circuits connected with broken lines may be eliminated.-A. A. Lam-
pell, Off-the-Shelf Integrated Circuits for Versatile and Accurate Timer, Electronics, 38:25, p 70-73.

BASIC RCTL LOGIC-Transistors used provide ultrahigh switching speed for computers and have low stored charge along with gainbandwidth product above 300 Mc . Circuit can readily be adapted as flip-flop, nor circuit, and Schmitl trigger.-W. D. Roehr, "For Computers . . . Basic RCTL Circuits," Motorola Application Note AN-129, Nov. 196 S.

F-M RECEIVER-Multipurpose integrated-circuit chip consisting of six resistors and two identical transistors in cascade amplifier configuration serves three different functions in
single-frequency $100-\mathrm{Mc}$ f-m receiver. Although discrete components are used in digital discriminator, circuit requirements and component values here are compatible
with monolithic techniques.-R. L. Sanquini, Multipurpose Chips Cut Costs of F-m Receiver, Electronics, 39:10, p 80-82.

MEASURING SWITCHING TIME OF IC GATEUsed for and gates. To measure 11,51 is opened, input pulse of Q1 is adjusted to give Q1 output fall time of $3 \mathrm{nsec} / \mathrm{v}$ slope for 2.5 v , and SI is closed to measure 12.-Integrated Circuits, EEE, 12:3, p 78.

cuits Scarce? Now You Can Breadboard Your Own, Elecfronics, 37:27, p 58-64.

SCHMITT TRIGGER-Dual diode-coupled version for infegrated construction uses eight resistors.-D. D. Robinson, Linear Mierocir-

THIN-FILM AMPLIFIER-Pulse omplifier with evaporated connections uses two thin-film triodes, two silicon monoxide aluminum copacitors, and four chromium and rhenium resistors.-F. W. Schenkel, Thin•Film Capacitance Elements: Which ls Best For Your Purpose, Electronics, 38:2, p 67-72.

LOW-POWER FLIP-FLOP-2N3493 micropower transistors provide rapid switching with integrated construction. Power drain is only 6.6 mw .-R. W. McGinnis and W. D. Roehr, New Masking Techniques for Micropower Transistors, Electronics, 38:4, p 76-81.

15-MC RECEIVER-Operates 150 hours on 9 mercury cells, for applying command signals
directly to brain of monkey. Thin-film passive components on three substrates reduce
weight to 7 ounces.-W. Liben, Monkeys and Microelectronics, Electronics, 36:4, p 90-93.

LOGIC AND BUFFER AMPLIFIER-Designed to be driven by dual Schmitt trigger.-D. D. Robinson, Linear Microcircuits Scarce? Now You Can Breadboard Your Own, Electronics, 37:27, p 58-64.

PRESSURE-CONTROLLED-Frequency of avalanche oscillator in integrated circuit using RC103 transistors varies linearly from 100 to 124 ke as stylus pressure on fransistor Q2 is increased from zero to 7 grams. R. C. Wonson, Stress-Sensitive Integrated Circuits, Electronics, 38:14, p 81-84.

MULTIPURPOSE CHIP-Monolithic chip consisting of six resistors and two identical transistors serves three different functions in f-m receiver. Two transistars permit cascode amplifier configuration, giving low noise figure and good power gain af high frequen-cies.-R. L. Sanquini, Multipurpose Chips Cut Costs of F-m Receiver, Electronics, 39:10, p 80-82.

INTEGRATED P-MOST BROADBAND AMPLI, FIER-Hole-conducting metal-oxide semiconductor transistor (p -most) and metal-oxide semiconductor capacitor give gain of 5 down to a few cps for integrated stage.-F. M. Wanlass, Novel Field-Effect Device Provides Broadband Gain, Electronics, 36:44, p 30-33.

AUDIO AMPLIFIER-Uses Mitsubishi chromiumsilicon and nickel-chromium thin-film resistors in hybrid arrangement with conven-
fional transistors.-Y. Tarui, Japan Seeks Its Own Route to Improved IC Techniques, Elecfronics, 38:25, p 90-98.

CROSS-CONNECTED INVERTERS AS FLIP-FLOP-Output levels are 0 and 3.5 v. Switching times are 20 to 34 nsec for resistive loads and 30 to 44 nsec for capacitive loads.-W. D. Roehr, "For Computers . . . Basic RCTL Circuits,' Motorola Application Note AN-129, Nov. 1965.

TWO-STAGE OPERATIONAL AMPLIFIER-Maximum gain at room temperature is 36,000 . Emifter-follower output stages are used with zener diodes to shift d-c level. Input stage
uses Darlington inputs. Input impedance is above 1 meg. Frequency rolloff of $6 \mathrm{db} /$ octave begins af 50 kc .-C. L. Heizman and D. G. Paterson, Circuit Analysis: A Mono-
lithic Integrated Operational Amplifier, EEE, 13:5, p 80-84.

COMPLEMENTARY DUAL SCHMITT TRIGGERProvides inverting and noninverting outputs for pulse-width modulation.-D. D. Robin-
son, Linear Microcircuits Scarce? Now You Can Breadboard Your Own, Electronics, 37:27, p 58-64.

HIGH-NOISE-IMMUNITY LOGIC-Basic gate uses zener with $5.5-\mathrm{v}$ breakdown to give high noise immunity for variety of logic circuits, at penalty of relatively high supply voltage. D1 prevents Q1 and Q2 from being on simultaneously, even during severe tran-sients.-Higher-Voltage ICs Crack Noise 8arrier, EEE, 14:8, p 40-42.
 using Foirchild 709 IC null amplifier in feedback loop around linear integrated-circuit tester, and FI 0049 dual mos fet serving as chopper for displaying offsef voliage and
transfer function simultaneously on scope by switching in synchronism with horizontal sweep.-J. N. Giles, How to Measure LinearIC Performance, EEE, 14:8, p 62-68 and 161.

 tions of external terminals, can be used either as binary counter, monostable mvbr, Schmitt trigger, or selector. Although original design uses encapsulated construction, can readily be adapted for integrated circuit production techniques. Requires 10 ma for all opplications, and gives output pulses with 0.1 microsec rise time and up to 0.4 microsec fall time.-F. K. Luteran, Four-Woy "Quad" Circuit Building Block, EEE, 10:6, P 66-67.

BASIC IC GATE-Circuit is basic element of current mode logic family. If reference voltage VBB is supplied to one side of gote, constant current that normally flows through 1.24 K emitter resistor can be switched from one side of gate to other by switching input signals above and below reference voliage. Complementory output is provided from single gate.-S. T. Robertson, "Integrated Circuit Line Driver," Matorola Application Note AN-187, Aug. 1965.

AUDIO POWER AMPLIFIER-MC1524 chip gives high efficiency, low distortion, and wide ronge along with highest output power permifted by dissipation of TO-5 case. Chip is combined with superior power-handling of standard bottom-collector output transistors to give monobrid amplifier providing 1 w to speaker. True class-B output circuitry gives low stondby current, with crossover distortion of class B minimized by using current source Q3-Q4 for quod Q5-Q6-Q7-QB. Diode D2 further reduces crossover distortion.R. A. Hirschfeld, "Audio Power Applications Using Integrated Circuits," Motorola Application Note AN-162, Aug. 1965.

FINGERTIP-SIZE SERVO AMPLIFIER-Directcoupled class A servo amplifier diffused into 0.75 -inch-diameter silicon wafer gives
power output of 1.5 w and overall closedloop gain of 200. Distributed diode planes are intraduced by substrate.-M. W. Aorons,

Putting a Servo Amplifier on a Small Silicon Wofer, Electronics, 35:52, p 33-35.

D-C OPERATIONAL AMPLIFIER-Open-loop voltage gain is 62 db , input impedance is 16,000 ohms differential and 10,000 ohms to ground, and output impedance is 8,000 ohms.-Operational Amplifiers are Getting Smaller, Electronics, 35:52, p 66.

LINE DRIVER-Designed as line or capacifance driver, but is same as basic gate except for output stages. Pnp transistors are hybrid, while other parts are on monolithic chip.S. T. Robertson, "Integrated Circuit Line Driver," Motorola Application Note AN-187, Aug. 1965.

COMPLEMENTARY-TRANSISTOR LOGIC-Uses both pnp and npn transistors, with pnp emitters tied together and returned through 1 K resistor to positive voltage supply. Propagation delay is 3 to 5 nsec for fanouts of 1 to 10.-D. Christiansen, Logic Schemes Reviewed, EEE, 13:11, p 64-79.

HIGH-GAIN AUDIOPREAMP-Has strong negative feedback and builtin power supply series regulator.-D. D. Robinson, Linear Microcircuits Scarce? Now You Can Breadboard Your Own, Electronics, 37:27, p 58-64.

OUTPUT BUFFER AMPLIFIER-Integrated construction (shaded) is used with external pnp transistor.-D. D. Robinson, Linear Microcircuits Scarce? Now You Can Breadboard Your Own, Electronics, 37:27, p 58-64.

CHAPTER 43
 Integrator Circuits

HIGH-GAIN AMPLIFIER-Integrator amplifier using ten silicon transistors in five voltage gain stages gives gain of $\mathbf{2 5 0 , 0 0 0}$. To prevent saturation by spurious microvalt signols, input network is shielded by Mu-metal can grounded to signal ground and overall steel can grounded to power ground. Power supply ripple must be below 0.01%. Amplifier drives 6-w a-c servomotor hoving d-c tachometer on same shaft.-S. T. Cap and N. P. White, Guidance Systems in Manned Space Flight, Electronics, 32:33, p 49-51.

rent. Npn transistors are 2N706 and diodes are IN921.-J. E. Gersbach, The Great Shmoo

Plot: Testing Memories Automatically, Electronics, 39:15, p 127-134.

ABSOLUTE-DIFFERENCE INTEGRATOR-U se: two-pole chopper with capocitor connected between the two reeds. During half of chopper cycle, capacitor is charged to voltage difference between outputs of two signalprocessing channels. During other half-cycle, charge is transferred to integrator circuit and positive side of capacitor is clamped to ground by one of the two diodes. Integrator is chopper-stabilized d-e amplifier with capacitive feedback, having gain of 200 and integration time constant of 1.5 hours.-H. Schwarzlander, Intelligibility Evaluation of Voice Communications, Electronics, 32:22, p 88-91.

COMPENSATED R-C INTEGRATOR-Overshoot is less than 2% of 3 db down for bandwidth of 20 Mc .-S. Berglund and S. Wester-
lund, Probes for Plasma Research with Wideband Integrators, Electronics, 35:24, p 44-45.

DOUBLE INTEGRATOR-Used to measures disfances up to 150 feet, from information supplied by slide-wire accelerometer. Transis-
for operates as voltage trip, providing output pulse when distance reaches preset value. Two other fubes provide velocity and dis-
tance information for recorder.-T. R. Nisbet, Double Integrator Finds Distance, Electronics, 32:21, p 64-66.

0-10 KC INTEGRATOR-Schmitf frigger Q2-Q3 drives relays $\mathrm{K} 1-\mathrm{K} 2$ ta reverse palarity of input current to SE110 solion. Thermistor compensation T in autput is accurate within 1% for battery operation, used in integrating
long-period signals such os those proportional to sunlight and temperature changes.-J. W. Martin and J. R. Cax, Solion Tetrode Integrates Chromatograph Signals, Electronics, 35:12, p 46-47.

measuring integral of current pulses -Gives current integral of one or more pulses, for measuring quantity of electricity in coulombs, regardiess of pulse shape and
independently of ground connection or circuit potential. Commercial d-c electrometer may be used in place of operational amplifier. Range switch is af pickup.-J. F. How-
ell, How to Measure Coulombs in Irregular Pulses, Electronics, 35:32, p 72-73.

SOLION INTEGRATING NOISE METER-Audio amplifier for microphone feeds visual-readout solion integrator through rectifying diode. Used to measure extent of exposure of person to dangerously high levels of noise.R. N. Lane and D. B. Cameron, Current Infegration with Solion Liquid Diodes, Electranincs, 32:9, p 53-55.

SOLION TIME BASE-Electrical readout integrator consisting of solion liquid diode provides readout current that increases linearly with time for constant current input, permit-
fing use of input to axes of X-Y recorder. -R. N. Lane and D. B. Cameron, Current Integration with Solion Liquid Diodes, Electronics, 32:9, p 53-55.

ELECTROSTATIC SQUARER-Used to obtain integrated reading of reflected sound patterns when measuring acoustic characteristics of auditoriums. Electrostatic squarer incorporates frequency-determining elements of two transitron negative-resistance oscillators (3.3 and 3.B Mc). Amplified outputs are mixed to obtain 500-kc difference signal which in turn is mixed with 500 -ke crystal oscillator output to give from 0 to 35 kc for feeding to counter.-J. P. A. Lochner and P. Meffert, Electrostatic Squarer for Acoustic Measurements, Electronics, 33:35, p 66-6B.

RADAR VIDEO INTEGRATOR-Accepts all video and noise signals within first half of tracking gate and performs voltage-fime integration. Identical integrator performs sim-
ilar function for second half. Results of integrations (integrator out) go to difference defector for camparizon.-D. L. Nepveux, Digital Circuits Achieve Automatic Confrol of

Radar Range Tracking, Electronics, 34:52, p 46-50.

ELECTRICAL READOUT INTEGRATOR-Use of solion diode eliminates need for sensitive electrometer. Integral may be read continuously while integration is taking place, without affecting its value. Varistor is used in parallel with meter to compensate for temperature changes.-R. N. Lane and D. B. Cameron, Current Integration with Solion Liquid Diodes, Electronics, 32:9, p 53-55.

MEASURING MAGNETIC CHARACTERISTICSProvides rapid and accurate record of d-c magnetization and hysteresis characteristics
of materials.-R. R. Bockemuehl and P. W. Wood, Industrial Hysteresigraph Uses D-c Integration, Electronics, 33:13, p 70-71.

ISOLATED INTEGRATOR IN 100-CPS PHASESHIFT OSCILLATOR-Frequency can be adjusted over limited range with 500 -ohm
rheostat, which can easily be replaced with temperature, voltage, current, or other paraphotocell or other resistive transducer to give frequency that varies with light intensity,
meter.-B. M. Van Emden, The Isolated-Integrator Network, EEE, 12:5, p 55-57.

REED SWITCH CONTROLS OPERATIONAL AMPLIFIER-Circuit can gate out unwanted signale, maintain infegrated output at specified level, or operate as synchronous de-
fector. Maximum switching speed is 300 ke. Opening and closing 51 in synchronism with o-c input signal allows synchronous defecfion and infegration of signal. Amplifier
integrates only portion of signal present while switch is open.-H. Penfield, Glass Reed Switch Confrols Operationai Amplifier, Electronics, 39:17, p 97-98.

PROPORTIONAL AMPLIFIER FOR INTEGRATING CONTROL-Dual balanced feedback and form of booistrapping give highly stable
output of $35 \times$ into 3,500 ohms, with voltage gain adjustable from 0 to 30 while oute put transformer return is to ground rather
than Bt.-C. H. Smoot and F. J. Karlov, Boiler Control: Simple Controller for a Complex Job, Electronics, 37:18, p 88-93.

CORE FLUX INTEGRATOR-Speeds grading and matching of magnetic cores. Miller integrator measures instantaneous and peak flux in cores af 60,400 , and 1,600 eps. Design approaches ideal response throughout

480-kc bandwidth and provides closed-loop gain of 2 of fundamental excitotion fre-quencies.-C. E. Goodell, Integrator-Amplifier for Core Measurements, Elecfronics, 31:7, p 110-113.

BOOTSTRAP INTEGRATOR AND SWITCH-Circuit is part of memory and alarm system that accumulates predetermined numbers of pulses, then switches off until reset.-G. A. Dunn ond N. C. Hekimian, Tube-Transistor Hybrids Provides Design Economy, Electronics, 32:23, p 68-70.

ELECTRONICALLY ADJUSTABLE RESISTORUses Memistor in which rate of change of resistance is controlled by current opplied to third electrode. Resistance range is from 2 to $\mathbf{3 0}$ ohms. Input pulses up to 10 v are integrated by plating oction in sealed Memisfor cell, to give d-c output of 0 to 3 v .-Adjustable Resistor Has Built-in Memory, Electronics, 35:S1, p 76-77.

SO-MICROSEC CLEARING-Will clear R2-CI integrator in 50 microsec while providing isolation between integrator and switching network. Output is connected to differential amplifier for valiage level detection.-G. A. Herlich, Integrator Cleoring Circuit, EEE, 14:2, p 69.

CHAPTER 44 Inverter Circuits

400-CPS THREE-PHASE INVERTER DELAY CIR-CUIT-One-shot mubr Q1-Q2 triggered by input signal, and Q3 controlled by error-detecting signals at output of static inverter, together determine delay at output of Q4. Complete inverter uses six identical delay circuits together with solid-state servo loops to control output voltages and phase angles despite unbalanced loads.-T. J. Gilliam, Three-Phase Inverter with Feedback Loops, Electronics, 35:12, p 48-51.

SCR STATIC ARTERNATOR-Silicon-controlled rectifiers serve as current-switching elements in ring-counter inverter that delivers three. phase a-c output requiring no filtering, without moving parts. With 2.4-kc pulse generator, output is 400 -cps three-phase.-R. H. Murphy, Developing True Solid-State Static Alternators, Electronics, 36:21, p 58-61.

VARIABLE-GAIN INVERTER AMPLIFIER-Gives gain variations of up to 10 to 1 , with less than 10% harmonic distortion at 1 v output through use of tetrode transistor, to provide precise voltage regulation of output of d-c to 400 -cps a-c inverter. Error current from d-c amplifier of inverter is applied to base 2 of Q4, causing a-c voltage gain of stage to vary with magnitude of error current.-R. Wileman, Linear Circuits Regulate Solid-State Inverter, Electronics, 33:16, p 61-63.

T1 CENT TRAN W-23-104
T_{2} CENT TRAN W-23-105
$\mathrm{D}_{3}-\mathrm{D}_{6}$ MDA 952-5 (BRIDGE RECTIFIER ASS' Y)
D-C/D-C-Line voltoge is rectified, inverted at $1 B \mathrm{kc}$, stepped down, and rectified to give 23 a at 6 v for thermoelectric heat-pump system.-A. L. Wennerberg and F. H. Schroeder, High-Current Converter is Smoll, Quiet, Low-Cost, Electronics, 37:30, p 41.

SELF-EXCITED 3-PHASE NON-PHASE-AM8IGUOUS BRIDGE-Each oscillaping section is half-bridge converter operating in square-
wave mode. Phase diagram shows derivation of synchronizing voltages.-A. G. Hloyd, Half-Brldge Inverfer Provides Economical

Three-Phase Power, Electronics, 34:37, p 62-65.

THREE-PHASE REGULATOR-When used with three-phase static inverter employing scr's and magnetic amplifiers, provides 25 -millisec recovery time when load is switched from 2.5 amp to 0 . The three bridges use one zener
diode in common as non-linear element. Silicon transistor amplifies unbalance in each bridge. - M. Lilienstein, Static Inverter Delivers Regulated 3-Phase Power, Electronics, 33:28, p 55-59.

Saturating transformer data:
Core - The Arnold Engineering Co. 3T-7189-D4
Coil 1:
160 turns each of No. 26 wire Coil 2:
20 turns each of No. 36 wire Coil 3: 40 turns each of No. 20 wire

200-W 60-CPS 115-V POWER FROM 12 VUses saturating-core oscillator. Complete design procedure is given. Maximum fre-
quency drift is below 0.5% for change from no load to full load and for input change from 11.5 to 13.5 v. Efficiency is about 86%.

No-load input power is 8.5 w .-Texas In struments Inc., "Transistor Circuit Design," McGraw-Hill, N.Y., 1963, p 451.

Parts List

Q_{1} through $Q_{8}-2$ N458A
D_{1} through $D_{8}-1 N 2069$
D_{9} through $D_{12}-1$ N1825R
R_{1} through $R_{8}-5$ ohms, 1 watt
R_{9} through $R_{16}-910$ ohms, I watt
$R_{F}-25$-ohm 5-watt rheostat
T_{1}-Texas Instruments transformer \#440220 or equivalent X_{1}-Tapewound toroidal core, 51425-4A Magnetics Inc., or 5772-D4 Arnold Co.
$N_{1}-448$ turns, \#22 heavy Formvar
N_{2} through $N_{9}-112$ turns, \#28 heavy Formvar

400-W 60-CPS DUAL-TRANSFORMER IN-VERTER-Input voltage is divided equolly among four series primories so each transistor is subjected only to 60 v when off. Output is 140 -v square wave. Efficiency is 95% at full load. Use of dual-iransformer configurotion makes frequency of oscillation easy to adjust by changing setting of RF, to give exactly 60 cps for any value of load cur-rent.-Texas Instruments Inc., "Transistor Circuit Design," McGraw-Hil!, N.Y., 1963, p 459.

Transformer data:
Core - Magnetics, Inc., 50076-4A
Coil 1: 1,100 turns each of No. 36 wire
Coil 2: 130 turns each of No. 36 wire Coil 3: 200 turns each of No. 36 wire
Note: All resistors are $1 / 2$ watt
20-W 60-CPS INVERTER-Low-power version was designed to drive timer. Maximum frequency variation was only 1% for supply-
voltage range of 11.5 to 14.5 v.-Texas Instruments Inc., "Transistor Circuit Design," McGraw-Hill, N.Y., 1963, p 45B.

100-W 60-CPS INVERTER-Permits operation of small a-c appliances from auto or boat
storage battery. Frequency changes somewhat with temperature because sensing-input
transistor (2N1302) is germanium.-Texas Instruments Inc., "Transistor Circuit Design," McGraw-Hill, N.Y., 1963, p 457.

250-W 60-CPS DUAL-TRANSFORMER IN-VERTER-Provides square-wave output to load from $12-\mathrm{v}$ dec supply, at 130 v , with efficiency of 85%.-Texos Instruments Inc., 'Transistor Circuit Design," McGraw-Hill, N.Y., 1963, p 458.

Parts List

$Q_{1}, Q_{2}-2 \mathrm{~N} 514$
$D_{1}-1 N 1823$ (27-volt double-anode clipper)
$R_{F}-20$-ohm 5 -watt rheostat
$R_{1}, R_{2}-1$ ohm, 5 watts
$R_{3}, R_{4}-150$ ohms, 1 watt
X_{1}-Tape-wound toroid, 5320-D4 Arnold Engineering Co., or 5000-4A Magnetics, Inc.
$N_{1}-316$ turns, \#24 heavy Formvar
$N_{2}, N_{3}-79$ turns, \#22 heavy Formvar
T_{1}-Texas Instruments transformer \#440401 or equivalent

COLLECTOR CAPACITORS SPEED SWITCHING -Copacitors octing with 3 -ohm resistors in collector circuits provide energy storage to increose switching speed.-A. G. Lloyd, SpeedUp Circuits Improve Switching of Tronsisfor Inverters, Electronics, 34:45, p 92-94.

400-CPS INVERTER POWER AMPLIFIER-Has low internal impedance and low distortion, to provide good output voltage regulation
for dec to 400 -cps a-c inverter. Uses compounded common-collector output stage. Dalivers 55 w at 400 -cps with only $\mathbf{2 . 4 \%}$ total
harmonic distortion.-R. Wileman, Linear Cirsuits Regulate Solid-State Inverter, Electronics, 33:16, p 61-63.

24 V D-C TO SQUARE-WAVE A-C-Will replace sine-wave source because square-wave output is modified by series saturable reactor to have same rms and average values os pure sine wave.-D. Levy, Replacing Sine Wave Sources with Solid-State Inverters, Electronics, 34:26, p 80-83.

100 W AT 50 KC-Square-wave oscillator Q1-Q2 drives monostable gates Q3-Q5 and Q4-Q6 in parallel, and gates in furn drive push-pull amplifier using $\mathbf{2 5}$-amp transistors

Q7-Q8 to deliver 100 w to load at 50 kc with overall efficiency of 70%.-S. L. Chin, New Circuit Design Raises Inverter Frequency Limits, Electronics, 35:43, p 59-60.

LOW-VOLTAGE. HIGH-CURRENT INVERTERConverts output of solar cells, fuel cells, and other low-voltage sources to higher voltage sources. Currents up to 50 amp can be switched efficiently by 2N2728 power transistors used. Circuit shown provides a-c output which can easily be changed to d-c af

$$
\begin{aligned}
& 0.759 .5 \mathrm{w} \\
& 0.759 .5 \mathrm{w} \\
& 7.59 .5 \mathrm{w} \\
& 7.59 .5 \mathrm{w} \\
& 19.5 \mathrm{w} \\
& 20 \mu \mathrm{f}, 6 \mathrm{v} \\
& 10.000 \mu \mathrm{f} .6 \mathrm{v} \\
& 20 \mu \mathrm{f} .6 \mathrm{v} \\
& \text { Phoenix Transformer PX2127 } \\
& \text { Phoenix Transformer PX2126 } \\
& \text { 2N2728 } \\
& \text { 2V 50A }
\end{aligned}
$$

desired higher voltage by rectifying and filtering. Use of iwo transformers minimizes core losses when switching high collector currents. Efficiency is 70% at 60 w output.J. Takesuye, "A Low Voltage High Current Converter," Motorola Application Note AN169, Dec., 1965.

BLACK-LIGHT INVERTER-Operates from 2.5-v rechargeable battery and supplies 400 ma at $26 \vee$ to gas arc tube for portable ultraviolet lamp. Efficiency is 80%.-H. F. Weber, "Law Voliage Inverter Features High Frequency Operation with High Efficiency," Motorola Application Note AN-174, Feb. 1966.

SCR DRIVER-Two types of blocking oscillators generate required turn-on and turn-off pulses for power-switching output stage of
inverter,-R. J. Kearns and J. J. Rolfe, ThreePhase Static Inverters Power Space-Vehicle Equipment, Electronics, 34:18, p 70-73.

CONTROL CIRCUIT CUTS INVERTER IDLING CURRENT-Reduces standby current to less than 1 ma . Sensing element is pair of back-to-back silicon diodes, D1 and D2. Used when a-c power must be available on demand af many remote outlets even though actually used only few hours a day.-D. W. R. McKinley, Inverter Control Circuit Saves Power, Electronics, 34:31, p 56.

PARALLEL INVERTER FOR REACTIVE LOADSProduces square-wave output under all load conditions, without creating high voltages across silicon controlled rectifiers during light loads.-D. V. Jones, Turn-Off Circuits for Controlled Rectifiers, Electronics, 33:32, P 52-55.

TRANSISTOR-MAGNETIC INVERTER-Signal conversion performance is comparable to that of electromechanical vibrator converters. For power conversion, can be substituted for dynamotor in producing high voltage from low-voltage d-c power source.-C. H. R. Campling, Magnetic Inverter Uses Tubes or Transistors, Electronics, 31:11, p 158-161.

2-KC SCR INVERTER-Circuit shows parallel inverter, but unijunction relaxation oscillators Q1 and Q2 could also trigger series inverter, giving symmetrical operation. Q1 operates at
twice the frequency of Q2.-D. V. Jones, Turn-Off Circuits for Controlled Rectifiers, Electronics, 33:32, p 52-55.

QI-GE 2NIG7IA OR USAF 2N49O OS O4-GE 2N526 OR JAN 2N526 03 04-GE IN4009 TI-GE 9T93YI338

UNITY-GAIN INVERTER-Provides for difierential roll motion of missile autopilot.-J. H. Porter, Miniaturized Autopilot System for Missiles, Electronics, 33:43, p 60-64.

TRANSFORMER WINDING SPEEDS SWITCHING
-Addition of speed-up winding N1 to conventional transformer arrangement of inverter, with C1 in series with N1, increases switching speed. Clipping of resulting basecollector voltage spikes is provided by network D1-D2-C2-R3.-A. G. Lloyd, Speed-Up Circuits Improve Switching of Transistor Inverters, Electronics, 34:45, p 92-94.

TRANSFORMERLESS SCR BRIDGE INVERTER-Slave-friggering of SCR1 and SCR2 with capacitive load cuts cost in half by eliminating costly gate transformers. Input of BOO PPs (both half-cycles of 400-cps mvbr) gives

INVERTER REFERENCE ELEMENT-Accuracy and stability of dec to 400-cps a-c inverter are achieved by temperature compensarion of 1N2169A rener reference element. Silicon

400-cps sine-wave output with peak amplitude of 350 v , because bridge switching inverts alternate pulses.-L. M. Tibbets, Scr Bridge Inverter Eliminates Transformers, Electronics, 39:1B, p 98-99.

tronsistors are used where d-c levels are handied.-R. Wileman, Linear Circuits Regulate Solld-State Inverter, Electronles, 33:16, P 61-63.

INVERTER BASE SPEED-UP WINDINGS-Individual speed-up windings and series capocitors for each transistor base reduce switching times to as little as 4 microsec for 2N174's ond to 2 microsec for some germanium power transistors.-A. G. Lloyd, Speedup Circuits Improve Switching of Transistor Inverters, Electronics, 34:45, p 92-94.

PHASE INVERTER FOR CODE CONVERTERIn addition to phase reversal of input signal, single npn transistor provides isolation between negative input pulse and core driver, which is Schmift trigger having discriminafion leval within 10% of -4.5 v including phase inverters. Signals below that level ore disregarded. Signal range from 6 to 12 v will cause pulse output from Schmitt, with duration dependent on duration of input signal. When Schmitf trigger emits pulse, IN704 driver supplies 30 -ma current pulse, writing a ONE into its associated core.-R. Wasserman and W. Nutting, Solid-State Digital Code-ta-Code Converter, Electronics, 32:50, p 60-63.

LOGICALLY REDUNDANT INVERTER-Symmefrical design with series-bosed diodes mokes inverter independent of any single component failure.-T. Golstein, Reliable Circuits Through Redundancy, EEE, 11:3, p 56-59.

PARALLEL SQUARE-WAVE D-C TO A-C IN-VERTER-Receives square-wave inputs from separote drive circuit (not shown), causing Q1 to conduct half the time while $\mathbf{Q 2}$ is blocking, and vice-versa. Current from 28-v
supply flows olternotely through holves of transformer primary, to produce 400-cps a-c voltage across load.-'Transistor Manual," Seventh Edition, General Electric Co., 1964, p 235.

400-CPS FORK CONTROL-Tuning-fork oscillafor gives frequency accuracy of 0.01% for d-c to a-c inverter. Consists essentially of two-stage amplifier, output of which is re-
generatively coupled ta input through tuning fark.-R. Wileman, Linear Circuits Regulate Solid-State Inverter, Electronics, 33:16, p 61-63.

POSITIVE FEEDBACK BOOSTS SWITCHING SPEED-Base resistors R1 and R2 allow addition of cross-coupled positive-feedback capacitors C1 and C2 to increase high-frequency gain of feedback loop and provide energy storage to drive off transistor fully on when core safurates.-A. G. Lloyd, SpeedUp Circuits Improve Switching of Transistor Inverters, Electronics, 34:45, p 92-94.

SELF-EXCITED HALF-BRIDGE-Uses only two transistors. Suitable for both two-phase and three-phase applications. Basic circuits can be connected in series for high-voltage operation. Maximum transistor off voltage equals input voltage of half-bridge, making 80-v inverter practical for germanium transistors and 150 v for silicon.-A. G. Lloyd, Half-Bridge Inverter Provides Economical Three-Phase Power, Electronics, 34:37, p 62-65.

WRONG-POLARITY PROTECTION-Provides built-in protection of transistors in inverter from incorrect polarity of connection to 12-v battery. Used between inverter and battery. Green bulb G lights and relay operates for correct polarity. With wrong polarity, relay does not operate and red bulb R comes on to indicate error.-J. J. Pirch, Inverter Control, EEE, 11:3, p 44.

SYNC FOR SCR PARALLEL INVERTER-Doubleoutput pulse generator uses iwo relaxation oscillators synchronized by C3 to produce high-energy pulses alternately from two separate sources, in correct timing sequence from instant that supply voltage is switched
on. Synchronism is required to prevent inverter failure.-SCR Parallal Inverters in Correct Timing Sequence, "Electronic Circuit Design Handbook," Mactier Pub. Corp., N.Y., 1965, p 66.

INVERTER WITH CAPACITOR TURNOFF-Load power factor variations do not offect turnoff time. Varying trigger rate of Q2 varies power delivered to RI. Trigger rate con be adjusied autamatically for laad regulation.D. V. Jones, Turn-Off Circuits for Confrolled Rectifiers, Electronics, 33:32, p 52-55.

DIFFERENTIAL-MVBR INVERTER-Magnetic inverter circuit with differentially connected windings oscillates reliably without use of current bias. Small spike in square-wave output can be eliminated by connecting small capacitor between collector and emitter of each transistor.-C. H. R. Campling, Magnetic Inverter Uses Tubes or Transistors, Electronics, 31:11, p 158-161.

DUAL-TRIODE DIFFERENTIAL INVERTER-Uses electron tubes as switching elements in place of transistors. Although tubes are less efficient, availability of a suitable combination of voltage rating, current rating, and highspeed switching capacity may make tubes betfer than fransistors in some signal or power converter applications.-C. H. R. Campling, Magnatic Inverter Uses Tubes or Transistors, Electronics, 31:11, p 158-161.

THREE-PHASE OUTPUT STAGE-Scr's provide power switching for static inverter designed to develop 500 w of three-phase $115-\mathrm{v}$ 400cps power from input of 22 to 29 v d-c.R. J. Kearns and J. J. Rolfe, Three-Phase 5tatic Inverters Power Space-Vehicle Equipment, Electronics, 34:18, p 70-73.

CHAPTER 45
 Latching Circuits

A-C STATIC LATCHING RELAY-Is equivalent to single-pole electromechanical latching relay with electrically isolated solenoid. Once furned on, circuit remains in conducting state even though line voltage is interrupted for
long periods of time. Positive reset action requires that minimum load current of 1 amp flow whenever circuit is closed.-"Silicon Controlled Rectifier Manual," Third Edition, Goneral Electric Co., 1964, p 106.

PHOTOELECTRIC LATCHING RELAY-Photosensitive fet serves as relay in light-activated smoke detectors, end-of-tape sensing in tape recorders, and light-activated alarms.-B. R. Smith, Light-Activated Latching Relay, EEE, 14:B, p 167.

NEON-PHOTOCONDUCTOR LATCHING CIR-CUIT-Cadmium sulfide photoconductor PC and Ne 2 H neon lamps give low-cost latch. When neon C is energized to provide input to PCA, neon B remains on, independent of input A, due to feedback from neon B to PCB. Latch is reset by input to PCC.-J. L. Paterson, Will Neon Photoconductors Replace Relays in Low-Speed Logic?, Electronics, 36:1 B, p 46-49.

STEPPER RELAY RESET AND LATCH-Reset circuit deenergizes flip-flop that controls coils of stepper relay, and provides latching to keep reset coil energized until wiper senses reset contact.-F. W. Kear, Coils Operate Stepping Relay of Higher Speed, Electronics, 35:6, p 60-63.

POSITIVE GATING OF CLOCK PULSES-Adding scr latch to diode gate allows output to follow clock input when $S 1$ is closed. When $\mathbf{S 1}$ is open, output will be fixed at existing
clock level, without putting extra count into register.-R. A. Wilson, Latching Gate Removes Counter Ambiguity, Electronics, 39:7, p 91-92.

TRANSIENT-IMMUNE SCR LATCHING CIRCUIT -With 100,000 -ohm resistor of silicon controlled switch refurned to +24 v , latching circuit for lamp is immune to transient spikes of up to 12 v as well as to rate effect when turned off.-R. A. Stasior, How to Suppress Rate Effect in PNPN Devices, Electronics, 37:2, p 30-33.

120 A A-C LATCH-Bidirectional controlled rectifier (G.E. Triac) replaces more complicoted scr or power transistor circuits for static switching of a-c power circuits. Con be adopted to simulate action of mognetic starter for a-c motor. Momentary closing of start switch (in circuit at right) latches Triac on and starts motor.-F. W. Gutzwiller, Simplified 120 VAC Latching Circuit, EEE, 13:8, p 77.

UJT LATCHUP FOR SCR's-Insures that scr will turn on properly when driving inductive load under control of unijunction transistor. Circuit action holds unijunction in saturation, causing scr gate voltoge to be continuous rather than pulsating. Values of R1 and C1 are chosen to give desired time delay.-J. W. McAnally, Unijunction Latchup for SCR's Driving Inductive Loads, EEE, 11:7, p 31.

SCR LATCHING CIRCUIT WITH RATE-EFFECT SUPPRESSION-With bosic scr latching circuit (at left) for lotching on lamp when input voltage level is exceeded, resetting of circuit by opening supply leod exposes scr to fast transients and possible turn-on due to

rate effect. Adding 100,000 -ohm resistor and using four-terminal silican controlled switch suppresses rate effect.-R. A. Stasior, How to Suppress Rate Effect in PNPN Devices, Electronics, 37:2, p 30-33.

CHAPTER 46 Limiter Circuits

 threshold level ond RB adjusts limit level between which video input signal will be fed to crt display.-A. E. Popodi, Relioble Repertoire Of Disploy Circuits, Electronics, 3B:2, p 60-66.

PREVENTS AMPLIFIER OVERLOAD-Zener 6.B-v diode shunts culput while feedback diodes limit input. With input below 40 mv , output is below -5 v and diodes D1, D2, and D3 are biased off. When output exceeds -6.3 v , diodes act to clamp output at -6.8 v and maintain linear voltage relationships within the amplifier, preventing its saturafion and allawing recovery from overloads. -J. V. Diroceo and J. W. Peghiny, Low-Level Encoding Approach: Latest Details of Titon II Telemetery, Electronics, 35:47, p 36-39.

DIODE PAIRS-High-speed silicon diode pairs in two-stage limiter for telemetry, measuring, ofe systems, and f-m systems give 5% linearity over 6-Mc bandwidth. Associated discriminator uses two single poles resistively coupled to driving tube.-High-Speed Diodes Make Limiting Smooth, Electronics, 35:27, P 80.

80 DB DYNAMIC RANGE AT 8 MC-Uses five identical cascaded stages with filter to restore sinusoidal waveform. Phase-shift variations ore only 10°. Limits input signal by collector current cutoff only. Used in multi-channel-tracking receiving system.-S. P. W. Stranddorf, High-Frequency Limiter Amplifier Solves Phase-Shift Problems, Electronics, 35:46, p 44-45.

SUPPRESSING NOISES UP TO 1,000 TIMES SIGNAL LEVEL-Improved noise limiter for airborne transceiver uses large RC time constant. Plate of defecting diade is negatively charged by a-f signal, held steady by C.

For noise impulses, point A swings positively and limiter diode blocks rectified noise signal. -K. Makino and T. Yamanaka, Servo-Tuned Transceiver for Airborne VHF Communications, Electronics, 35:1, p 82-85.

PREFERRED VIDEO LIMITER-Used to amplify and limit low-level video signals. Capable of handling very fast rise times. Maximum duty factor is $\mathbf{4 \%}$. Limiting level is within $\mathbf{3 5 \%}$ of 4.8 v , depending on variations in tube and components.-NBS, 'Handbook Preferred Cireuits Navy Aeronautical Electronic Equipment," Vol. I, Electron Tube Circuits, 1963, PC 21, p 21-2.

RADAR NOISE CLIPPER-LIMITER-Used in plotting amplitude-distribution density of noise and vibration signals over range of 1 to 10,000 cps. Section A samples dec biased input signal between zero and positive half of slice width. Section B similarly handles
negative half. Output of B is inverted and biased in d-c amplifier to produce positive square wave. Recorder plots average of combined outputs from A and B sections.D. J. Zoll, Simple Plotter Analyzes Radar Noise Rapidly, Electronics, 31:11, p 162-164.

SYMMETRICAL LIMITER-Used in visual receiver of microwave relay. Signal is fed through triode cathode follower and diodecoupled to grid of pentode. DI cuts off on positive r-f swing above d-c bias set by R1 and R2, to prevent grid of V5B front going positive and provide clipping on negative swing.-T. G. Custin and J. Smith, Relay System Diplexes Audio and Color Video, Electronics, 31:25, p 64-67.

DUTY-CYCLE LIMITER-When duty cycle exceeds 1%, countdown begins and duty cycle
is held at about 1%. Uses voltage-controlled astable mubr consisting of Q2, Q3, and Q4,
which runs unsynchronized with input prf.C. Samocki, Duty-Cycle Limiter, EEE, 13:9, p 76.

PREFERRED DETECTOR AND NOISE LIMITERUsed in a-m receivers to demodulate i-f output and reduce effect of short-duration elec-

trical disturbances or impulse interference. Audio output is 20 to 150 mv rms, and upper 3-db frequency is 7,000 cps.-NBS, "Hand-
book Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. I, Electron Tube Circuits, 1963, PC 62, p 62-2.

AUDIO DETECTOR WITH NOISE LIMITERConventional 6Al5 series noise limiter and diode defector are here augmented by alaborate tone control network.-NBS, 'Handbook

Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. 1, Electron Tube Circuits, 1963, p N12-1.

AUDIO DETECTOR WITH NOISE LIMITERUses conventional 6AL5 series noise limiter arrangement.-NBS, "Handbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. 1, Electron Tube Circuits, 1963, P N12-1.

FAST-ACTING LIMITER-Provides compression of sine or square waves with minimum of phase distortion. Feedback paths in iwo di-rect-coupled transistor pairs improve limiting action of 100 -kc pulse amplifier in which signals under 5 mv get 35 db of gain, with gain dropping to unity as signal strength increases to peak of 400 mv .-L. H. Dulberger, Pulee Amplifier with Nonlinear Feedback, Electronics, 31:45, p 86-87.

3-V BIPOLAR LIMITER-Upper fronsistor conducts when positive input pulse exceeds 3 v , ond lower transistor shunts excess current to ground similarly for negotive inputs above 3
\mathbf{v}, to keep output of $3 \mathbf{v}$ for both polorities. Circuit provides own reference voltage.-5. B. Groy, Bipolor Limiter Reduces D-C Loss, Electronics, 3B:24, p 65.

AUDIO DETECTOR WITH NOISE LIMITERUses shunt limiter in conjunction with series limiter, so noise pulses are prevented from operating age circuit and thus desensitizing i-f amplifier of communication recaiver. Broad-band cathode follower is connected to output of diode defector.-NBS, "Handbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. 1, Electron Tube Circuits, 1963, p N12-1.

CLASS-D CB NOISE LIMITER-Two-step noise silencing system is almost essential for 27 Mc a-m receiver, becouse of ignition interference. Large noise pulse swings plate of V3 negative and cuts off diode V3, to prevent noise pulse and audio signal from reaching volume control R3. Circuit recovers quickly, allowing audio signals to pass.-l. G. Sands, Citizens Rodio Revision Spurs Equipment Design, Electronics, 32:15, p 55-57.

CHAPTER 47
 Logic Circuits

UNIVERSAL NBS DIODE LOGIC CIRCUIT-Developed by National Bureau of Standards to perform all required logic operations in two computers. Uses beam power tube for amplification of 1-Mc pulses, and transformer for coupling to subsequent levels.-Y. Chu, "Digital Computer Design Fundamentals," Mc-Graw-Hill, N.Y., 1962, p 173.

FULL BINARY ADDER-Two tunnel diodes in series perform arithmetic function of full ad-difion.-B. Rabinovici and J. Klapper, Designing Tunnel-Diode Circuits Using Composite Characteristics, Electronics, 35:7, p 46-48.

HIGH-SPEED TUNNEL-DIODE BINARY-TUnnel diode with Q1-Q2, driven by series of posifive or negative pulses at input repetition rates up to 140 Mc , can provide pulses capable of triggering successive pulse amplifier stages Q3, Q4, and QS.-W. V. Harrison and R. S. Foote, Tunnel Diodes Increase Digi-tal-Circuit Switching Speeds, Electronics, 34:32, p 1S4-1S6.

READ-WRITE AMPLIFIER-Each of 28 vertical circuits for coincident-flux memory consists of readout detector, bit register (flip-flop), write gate, and two-stage write amplifier.-H. F. Priebe, Jr., Three-Hole Cores for CoincidentFlux Memory, Electronics, 33:31, p 94-97.

HANDWRITING READER-Spelled-out digits written with wire stylus on striated conducfive surface are recognized by detecting risers, descenders, dots, word length, recross-
ings, and several other characteristics of spelled-out zero to nine, using only 12 relays, 8 diodes, and 10 neon indicator lamps. Accuracy is about 97% with the simple se-
quential logic used for recognition.-L. D. Harmon, Handwriting Reader Recognizes Whole Words, Electronics, 3S:34, p 29-30.

RESISTOR-TRANSISTOR NAND/NOR GATE-For integrated circuits, 100 -ohm resistor in base lead of each transistor reduces woste current, increases fan-out, and gives logic swing of 1 v.-A. E. Skoures, Choosing Logic for Microelectronics, Electronics, 36:40, p 23-26.

TICK-TACK-TOE LOGIC-Neon lamps serve os diode gates and indicate positions and moves on game board. Thyratron-relay combinotion serves as memory, while relays re-
ferse sequence to prevent two successive moves by either player,-C. E. Hendrix and R. B. Purcell, Neon Lamp Logic Gates Play Tick-Tack-Toe, Electronics, $31: 25$, p 68-69.

HIGH-SPEED FLIP-FLOP-Used in producing complex pulse sequences up to 4 billion bits in length. Drives n-stage shift generator that provides modulo-2 additions.-B. K. Ericksen and J. D. Schmidi, Random Pulse Generator Tests Circuits, Encodes Messages, Electronics, 34:25, p 56-59.

from collectors of shift register
BLOCKING OSCILLATOR FOR SHIFT REGISTER
-Used to generate series of ten pulses, 20 nsec wide and spaced 40 nsec apart. Each of the ten blocking oscillator stages Q1 is allowed to overshoot and trigger the following stage through on LC coupling network that provides additional delay.-B. K. Ericksen and J. D. Schmidt, Random Pulse Generator Tests Circuits, Encodes Messages, Electronics, 34:25, p 56-59.

PUMPED TUNNEL-DIODE TRANSISTOR LOGIC GATE-Nipo gate accepts negative inputs and provides positive outputs, while pino gate accepts positive inputs and provides negative outputs. With no inputs, 200-Mc pump or clock has sufficient amplitude to fire nipo stage tunnel-diode on positive halfcycle and pino stage tunnel-diode on negative half-cycle. When input signal is present, pump cannot flre that tunnel diode; this is basic nor gate action, with output pulse only when there is no input.-E. Gottlieb and J. Giorgis, Tunnel-Diode Switching Circuits, Electronics, 36:27, p. 26-31.

TUNNEL-DIODE OR CIRCUIT AND ENVELOPE GENERATOR-Used as part of program pulse generator incorporating ring of four stages, diode-matrixed with ring of three stages to
provide twelve-bit words at $30-\mathrm{Mc}$ clock rate. C6 and R2 are a-s terminations for coax from output of ring counter.-W. V. Harrison
and R. S. Foote, Tunnel Diodes Increase Digi-tal-Circuit Switching Speeds, Electronics, 34:32, p 154-156.

MULTIEMITTER TRANSISTOR ALTERNATES BE. TWEEN AND/OR LOGIC-Circuit parforms and function first, then or function. For infe-grated-circuit construction, fow isolated lands are needed.-P. M. Thompson, Logic Principles for Multi-emitter Transistors, Electronics, 36:37, P 25-29.

INVERTING AMPLIFIER GIVES COMPLEMENT OUTPUT-Only one transistor has isolated collector, so only three isolated lands are needed for integrated-circuit construction.P. M. Thompson, Logic Principles for Multiemitter Transistors, Electronics, 36:37, P 25-29.

MULTIEMITTER-TRANSISTOR AND/OR LOGIC -Circuits may be coupled either directly or by multi-emitter transistor and gates. Components show promise for integrated circuits. -P. M. Thompson, Logic Principles for Multiemitter Transistors, Electronics, 36:37, P 25-29.

NAND LOGIC GATE-And/or gate using pnp input transistors and npn output transistors is followed by three-transistor inverting output stage. Gate has fan-in of 5.-C. R. Cook, Jr., and B. M. Martin, New Semiconductor Networks Roduce System Complexity, Electronics, 37:2, p 25-29.

DIGIT LINE DECOUPLER-Diode switch and biasing network disconnect sense amplifier, allowing common-mode signal of about $1 v$ to reach difference amplifier. This signal is almost completely rejected at output, so amplifier is ready for next cycle 0.5 microsec after end of rewriting.-A. Melmed, R. Shevlin, and W. Orvedahl, Diode Steering Increases Speed of Magnetic Memories, Electronics, 34:37, p 68-70.

TUNNEL-DIODE THIN-FILM TOGGLING CIR-CUIT-Supply biases film-diode combination at constant 5 v at $\mathbf{2 5} \mathrm{ma}$ so two stable diode voltages are about 0.05 and 0.4 v . This means that bias current through film winding will flow in either of two directions, depending on state of diode.-T. A. Smay and A. V. Pohm, Design of Logic Circuits Using Thin Films and Tunnel Diodes, Electronics, 34:35, P 59-61.

SENSE AMPLIFIER-Minimum input required from cores of random-access memory is 30 mv , and minimum output pulse is 6 v . Amplifier is balanced to reduce common-mode
noise.-G. E. Lund and D. R. Faulis, Expandable Random Access Memories, Electronics, 33:11, p 164-166.

ENHANCED TUNNEL-DIODE NOR CIRCUITClock pulse through D2 friggers funnel diode to its high voltage state to produce an output only when there are no inputs. Hybrid
circuit will operate above 100 Mc , at high fan-in and fan-out, and uses low-cost parts. -P. Chow and J. Cubert, A Key to Nanosecond Switching, Electronics, 36:42, p 42-45.

OUTPUT A

THREE-STATE LOGIC-With no input pulse (state 1), output A is zero and output B is 1.5 v. With a positive input pulse (state 2),
A and B are both 1.5 v. With a negative input pulse (state 3), A and B are both zero. A 12-v positive pulse at the reset terminal
restores state 1.-S. F. Summer, Two Unijuncfion Transistors Produce Three-State Circuit, Electronics, 39:1, p 100.

RCTL NAND/NOR GATE-Resistars and capacitors in base circuits permit higher fan-out and give logic swing of $2 \vee$ for high noise
rejection in integrated-circuit logic.-A. E. Skoures, Choosing Logic for Microelectronics, Electronics, 36:40, p 23-26.

COMPLEMENTARY RDTL NOR-Alternataly provides 500 -na base current to pnp and npn transistors, thereby using transistor rise time at both edges of switching pulse to eliminate R-C time constant fall times of output waveform, Design reduces power drain and speeds up rise and fall times by factor of 15.-R. A. Tiefsch, Complementary Microwatt Logic Circuits, EEE, 11:8, p 51-52.

DRIVERS FOR SHIFT REGISTER-Invertar Q3 pulses $300-\mathrm{ma}$ drivers Q1 and Q2 and feeds 100 -nsec delay line that provides time for shift register stages to reach final values in new state.-B. K. Ericksen and J. D. Schmidt, Random Pulse Generator Tests Circuits, Encodes Messages, Electronics, 34:25, p 56-59.

TWO-INPUT PINO NOR GATE-Pumped solidstate logic for uhf shift register using positive input-negative output gate gives 2 -ge rate.-Tunnel Dlode-Transisior Pravides Fast Logic, Electronics, 35:11, p 72.

EMITTER-COUPLED TRANSISTOR AND GATEDesign gives manufacturing simplicity for integrated circuits without current hogging, but requires two power supplies. QD will conduct and QA, QB, and QC will be off when any of input A, B, or C are below $0.2 \mathrm{v} .-$ A. E. Skoures, Choosing Logic for Microelecfronics, Electronics, 36:40, p 23-26.

LOW-COST INVERTER AND NOR LOGIC-Inexpensive germanium pnp mesa switching transistor is used in basic inverter for highspeed computer circuits. Nor circuit is obtained by connecting other input stages to common collector load.-P. A. Mclnnis, "LowCost Computer Circuits," Motorola Applicafion Note AN-130, Nov. 1965.

LOCKED PAIR-Ungrounded locked or Goto funnel-diode pair permits logical inversion with no loss of speed or gain. Applications include converting analog television signals into pulse-code modulation.-C. L. Cohen, New Approach to Locked-Pair Tunnel-Diode Logic, Electronics, 35:31, p 46-47.

STORAGE-DIODE SELECTION MATRIX-Uses one diode per stored word. Four-word portion of 256 -word matrix is shown. Activation of switch followed by driver drives selected diode sufficiently to permit flow of
required read current. Write pulse is gen- P. Lawrence, Monolithic Ferrite Memories, erated when read channel of both switch "1965 Fall Joint Computer Conference Preand driver are deactivated and write channel prints," Spartan Books, Washington, D. C., is activated.-I. Abeyta, M. M. Kaufman, and 1965.
SWITCH

OR GATE FOR DIGITAL VOLTMETER-Groundlevel signal output is produced only when inputs from the two comparators are in different states. Transistor QB gates continu-
ously-running clock oscillator into decade counters of voltmeter.-R. C. Weinberg, Modified Ramp Generator Develops High D-C Input Impedance, Electronics, 37:8, p 33-35.

LARGEST-SIGNAL SELECTOR-Selects single channel that has greatest amplitude, using single nor-like transistor circuit per channel. Base mixer resistance network establishes signal bias level af greatest signal level encountered in all except designated chanzel. Channel transistor then conducts only when its signal at emitter is greater than all other signals.-L. R. Brown, Nonscanning Character Reader Uses Coded Wafer, Electronics, 33:48, p 115-117.

X AMPLIFIER FOR COINCIDENT-FLUX MEM-ORY-Inputs to and gate are clock read or write pulse and first two binary digits of horizontal address, forming one of the two translations for horizontal matrix of 1,120bit memory.-H. F. Priebe, Jr., Three-Hole Cores for Coincident-Flux Memory, Electronics, 33:31, p 94-97.

TRANSISTOR-DIODE NOR GATE-Low leakage and low storage time of silicon epitaxial transistor allow omission of base turn-off supply while giving medium-speed operation over wide temperature range, up to 2 Mc for two cascaded logic stages.-D. Hall, Using Epitaxial Transistors in Switching and R-F Circuits, Electronics, 34:13, p 52-53.

2 AND 4-INPUT NOR GATE-Performs gen-eral-purpose and, or, and inversion functions in compatible set of digital logic circuits for computer, control and communication equipment. Can be used as and gate for positive levels or positive-going pulses, as or gate for
negative levels ar negative-going pulses, and as inverter for both levels and pulses.-NBS, "Handbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. II, Semiconductor Device Circuits, PSC 7 foriginally PC 210), P 7-2.
with minimal interaction.-C. M. Wiley, Bionics on Program at Midwest's NEC, Electronics, 34:40, p 61-67. grator quench circuit. Ouiputs of 100 or more such neuron circuits are combined so experiments can be repeated consistently,

DIGIT LINE DRIVER-Uses diode steering to increase speed of memory.-A. Melmed, R. Shevlin, and W. Orvedahl, Diode Steering Increases Speed of Mognetic Memories, Elecfronics, 34:37, p 68-70.

PARALLEL NPN BASIC LOGIC-Serves as or gate for normally open switches and as and gate for normally closed switches. Provides phose inversion of input.-Texos Instruments Inc., "Transistor Circuit Design," McGraw-Hill, N.Y., 1963, p 388.

PARALLEL PNP BASIC LOGIC-Serves os or gate for normally open switches and as and gate for normally closed switches. Provides phase inversion of input.-Texas Instruments Inc., "Transistor Circuit Design," McGrow-Hill, N.Y., 1963, p 388.

TICK-TACK-TOE MEMORY-Nine memory cells are used, one for each position on game board. Circuit shown is for position No. 1. Operator moves are entered into board by pushbuffons on display panel, energizing
self-latching relays of memory. Board moves ore determined by a separate logic section that triggers thyratron of memory and energizes relay. Neon lamps indicate when each position is filled, and by whom.-C. E.

Hendrix and R. B. Purcell, Neon Lamp Logic Gates Play Tick-Tack-Toe, Electronics, 31:25, p 68-69.

EXCLUSIVE-OR CIRCUIT-Used in tester that shows computer memory performance under marginal drive currents by plotting shmoo curves. Memary errar triggers single-shat and changes direction of \mathbf{Y} generatar from positive to negative along top of shmoo curve, and from negative to positive along batfom. Transistors are 2N706 and diodes are IN921.-J. E. Gersbach, The Great Shmoo Plot: Testing Memories Automatically, Electronics, 39:1S, p 127-134.

FLIP-FLOP FOR SHIFT REGISTER-Used to produce complex pulse sequences up to 4 billion bits in length, af frequencies up to 1.5 Mc . Each flip-flop provides 10 ma when furned on and draws 0.6 ma when off.-B. K. Ericksen and J. D. Schmidt, Random Pulse Generator Tests Circuits, Encodes Messages, Electronics, 34:25, p 56-59.

WORD SWITCH-Circuit is basically bilateral switch, which closes selected word circuit of memory used in Burraughs B-21S Visible Record Computer. Units and tens inputs are used ta select particular ward. Third input ta gate is for special-purpase inhibit in-struction.-G. E. Lund and D. R. Faulis, Expandable Randam Access Memories, Electranics, 33:11, p 164-166.

BISTABLE AND CIRCUIT WITH RESET-Uses resistance-coupled inputs ta tunnel diodes. Gate is open when 1 N3129 is an its nega-tive-resistance slope, so reset pulse must be applied ta close it.-F. Leary, Computers Today, Electronics, 34:17, p 64-94.

COMPUTER FOR SIX-BIT BINARY OUTPUTPumped funnel-diode-transistor logic at 300 Mc converts outputs of converter subchannels into time series of six bits. In nipo element, one or more negative pulses at input inhibits positive-going pulse af output; other element operates at opposite half-cycles at pump source and gives opposite action.H. R. Schindler, Semiconductor Circuits in a UHF Digital Converter, Electronics, 36:35, p 37-40.

TRANSISTOR-COUPLED NAND/NOR GATECoupling transistor Q3 feeds its base current info base of inverting transistor Q2 when gate Q1 is cut off. When Q1 is saturated, coupling fransistor Q3 clamps base of Q2 to low voliage. Logic swing of 0.4 v occurs of high speed.-A. E. Skoures, Choosing Logic for Microelectronics, Electronics, 36:40, p 23-26.

ODD-EVEN LOGIC-Accepts five binary inputs and produces signal at either of two outputs according to whether sum of inputs is even or odd. Schmitt trigger is used between funnel diodes and load to boost output voltage to 9 v.-W. H. Ko, Unique Tunnel-Diode Circuit Performs Odd-and-Even Logic, Electronics, 35:42, p 61-62.

MEMORY INSERT DRIVER-Supplies current for inserting information in random-access mem-ary.-G. E. Lund and D. R. Faulis, Expandable Random Access Memories, Electranics, 33:11, p 164-166.

NEURON MODEL WITHOUT INTEGRATORGives rectangular output pulses of either polarity. Catastrophic failure is avoided even
if outputs become grounded.-C. M. Wiley, Bionics on Program at Midwest's NEC, Electronics, 34:40, p 61-67.

SERIES NPN BASIC LOGIC-Serves os and gate for normally open switches, and as ar gate for normally closed switches. Provides phase inversion of input.-Texas Instruments Inc., "Transistor Circuit Design," McGraw-Hill, N.Y., 1963, p 3BB.

DOUBLE NOR GATE-Pulse repetition rate is 1 Mc, fan-in is 3, and fon-out is up to 6, with $30-\mathrm{mw}$ dissipotion for 7 -v supply.-Double NOR Gate for Dense Packaging, Electronics, 36:12, p 100.

RESISTOR-TRANSISTOR NOR GATE-Circuit is basic building black of binary full odder for high speed encoding. Transistar is 2N1499. -S. C. Choa, High Speed Encoding with Re-sistor-Transistor-Logic Circuits, Electronics, 35-6, p 48-51.

TRUTH TABLE

A	B	C
0	0	0
0	1	1
1	0	1
1	1	0

PNP EXCLUSIVE-OR LOGIC-For use with 0 clusive OR Uses One Transistor, "Electronic (ground) and -6 v logic system. Can be adapted readily to most other logic levels. Produces logic 1 when inputs disagree.-Ex-

TRUTH TABLE

A	8	C
0	0	1
0	1	0
1	0	0
1	1	1

NPN AND GATE-Two diodes act os convenfional and gate with transistor and its collector supply, using few components. Intended for 0 and $-6 \vee$ logic.-Exclusive $O R$

Uses One Transistor, "Electronic Circuit Design Handbook," Mactier Pub. Corp., N.Y., 1965, p 213.

TRUTH TABLE

A	B	LAMP
0	0	ON
0	1	OFF
1	0	OFF
1	1	ON

voltage is logic 1 , lamp will furn off when control input is of logic 0.-Exelusive OR Uses One Transistor, "Electronic Circuit Design Handbook," Mactier Pub. Corp., N.Y., 1965, p 213. os logic 0 ; lamp will then turn aff whenever
control input is of logic 1 . Similorly, if fixed

EPITAXIAL NOR GATE-Operotes of Up ta 8 Mc from $-55^{\circ} \mathrm{C}$ ta $+150^{\circ} \mathrm{C}$.-D. Hall, Using

Epitaxial Transistors in Switching and R-F Circuits, Electronics, 34:13, p 52-53.

RC-COUPLED BINARY STAGE-Typical switching times are 30 and 44 millimicrosec.-Philco MAT Transistors for Logic Circuits up to 5 Mc (Philco ad), Electronics, 33:17, p 50.

MEMORY DRIVER-Extract-driver circuit furnishes current to extract information from random-access memory of Burroughs B-251 Visible Record Computer.-G. E. Lund and D. R. Faulis, Expandable Random Access Memories, Electronics, 33:11, p 164-166.

TUNNEL-DIODE AND GATE-Three cascaded monostable multivibrators provide required gain af $200 \mathrm{Mc} .-E$. Gottlieb and J. Giorgis, Tunnel-Diode Switching Circuits, Electronics, 36:27, p 26-31.

TUNNEL-DIODE OR GATE-Two monostable multivibrators are cascaded to provide current gain at 200 Mc . Output is obtained when either of input currents rises obove B ma.-E. Gotflieb and J. Giorgis, Tunnel-Diode Switching Circuits, Electronics, 36:27, P 26-31.

NOR CIRCUIT-With 2NB34 epitaxial mesa fransistors, furn-on time is BO nsec, and furnoff 90 nsec, as compared to 111 -nsec furn-on and 140-nsec furn-off for nonepitaxial 2N706 mesa transistors in same circuit.-W. D. Roehr, Epitaxial Process Improves Transistor Characteristics, Electronics, 34:9, p 52-53.

MAJORITY GATE-With odd number of inputs and resistor-summer, threshold logic transistor is virtually off up to 0.5 v base-emitter voltage and on at 0.7 v . Output is inverted. -W. A. Saver, How to Achieve Majority and Threshold Logic with Semiconductors, Electronics, 36:48, p 23-25.

Y AMPLIFIER FOR COINCIDENT-FLUX MEM-ORY-Inputs to translator section of Y amplifier are last four bits of address, which perform one out of ten translations for horizontal matrix of 1,120 -bit memory.-H. F. Priebe, Jr., Three-Hole Cores for CoincidentFlux Memory, Electronics, 33:31, p 94-97.

$$
-0.1 \mathrm{~V}
$$

THIN-FILM TOGGLING WITH TRANSISTORUse of transistor stage permits cascading as for counters. Tunnel diode, which controls conducting state of transistor, is biased to have output voltages of 0.05 and 0.4 v . have output voltages of 0.05 and 0.4 V .
Additional film winding is needed because of phase reversal by fransistor.-T. A. Smay Phase reversal by transistor.- T. A. Smay
and A. V. Pohm, Design of Logic Circuits Using Thin Films and Tunnel Diodes, Electronics, 34:35, P 59-61.

SERIES PNP BASIC LOGIC-Serves os and gate for normally open switches, and as or gate for normally closed switches. Provides phase inversion of input.-Texas Instruments Inc., "Transistor Circuit Design," McGraw-Hill, N.Y., 1963, p 388.

TWO-INPUT NIPO NOR GATE-Pumped funnel diode-transistor logic gives 2-gc rate for uhf shift register using negative input-posifive output gate having gain of 3 and 50mw power drain.-Tunnel Diode-Transistor Provides Fost Logic, Electronics, 35:11, p 72.

NEON PHOTOCONDUCTOR INVERTER-Cadmium selenide photoconductor PC and Ne 2 H neon lamps give low-speed inverter action for logic circuits af low cost. Neon B is on when there is no input. When neon A provides input, PC turns neon B off.-J. L. Patterson, Will Neon Phofoconductors Replace Relays in Low-Speed Logic?, Electronics, 36:18, p 46-49.

MONOSTABLE OR CIRCUIT-Uses resistance- Leary, Computers Today, Electronics, 34:17, p coupled inputs to drive funnel diode.-F. 64-94.

CHAPTER 48
 Magnetic Amplifier Circuits

OPEN-FUSE DETECTOR-Magamp circuit uses bridge unbalance to operate control relay when protective fuse opens in digital computer, to remove d-c voltages from fused section. One of $\mathbf{1 5}$ control windings of seriesconnected magnetic amplifier is placed across each fuse, with appropriate current-limiting resistor in series with each winding. (Only representative control windings are shown.) -J. Maroz, Magnetic Amplifier Detects Open Fuses, Electronics, 31:29,•p 86-92.

MODIFIED ANALOG MULTIPLIER-Input signal voltages are obtained from center-fapped 2,000-ohm input resistor so that each signal may change its polarity. Circuit then provides unidirectional output voltoge EL which is' equal to square of ES.-J. Morkus, "Hondbook of Electronic Control Circuits," McGrawHill, N.Y., 1959, p 103.

MAGAMPS CONTROL SCR BRIDGE-Singlephase bridge is controlled by two half-wave magnetic omplifiers eoch hoving a tronsistor
emitter-follower used os clipper for each half-wove voltage output. Used for adjustable d-c field supply.-T. E. DeViney, Semi-
conductors Improve Reliability of Sted-Mill Control Equipment, Electronics, 34:23, p 104-107.

400-CPS SERVO MOTOR DRIVE-Self-bolancing single-stoge magnetic amplifier has high response speed, excellent stability, excellent
linearity, ond freedom from drift. Provides half-cycle response as operational amplifier. Article gives winding data for saturable re-
octors.-J. Markus, "Handbook of Electronic Control Circuits," McGraw-Hill, N.Y., 1959, p 107.

DIFFERENTIAL MAGNETIC INVERTER-Oscil lates reliobly without use of current bias. Excessive drive will not cause fransistor overheating. Differential action of collector and emitfer windings greatly improves performance as compared to conventional nondifferential inverter and eliminates need for clipping diodes.-J. Markus, "Handbook of Electronic Control Circuits," McGrow-Hill, N.Y., 19S9, p 103.

TWO-SPEED SERVO MOTOR DRIVE-Consists of two conventional half-wave bridge-type stages driving full-wave slave-type output stage. Designed to replace former electron-
tube omplifier of two-phase servo system using fine and coarse control transformers. -J. Markus, "Handbook of Electronic Control Circuits," MeGrow-Hill, N.Y., 1959, p 112.

DOUBLE-BRIDGE OPEN-FUSE DETECTOR-Used with magnetic amplifier to disconnect d-c voltage from section protected by fuse that opens. Output of lower bridge is balanced against output of upper bridge by adjusting R1. Gives greatly increased sensitivity.-J. Marox, Magnetic Amplifier Defects Open Fuses, Electronics, 31:29, p 86-92.

BASIC ANALOG MULTIPLIER-Multiplies d-c voltages ES1 and ES2 in two-stage arrangement in which converter is input stage confralled by one signal voltage and multiplier is output stage controlled by other signal voltage.-J. Markus, "Handbook of Electronic Control Circuits," McGrow-Hill, N.Y., 1959, p 103.

NONDIFFERENTIAL MAGNETIC INVERTER-Is analogous to free-running copacitor-coupled mvbr. Frequency and output amplitude are both directly proportional to input voltage. Chief drawback is need to increase input voltage to get higher frequency, which in furn increases all winding voltages.-J. Markus, "Handbook of Electronic Control Circuits," McGraw-Hill, N.Y., 1959, p 102.

SYNCHRONOUS SWITCHING BOOSTS VOLTAGE GAIN-Synchronously switched biased diodes insert impedance in control circuit during power half-cycle. During reset half-cycle bias rectifiers conduct and signal is applied directly across control windings to increase gain by factor of four.-J. Markus, "Handbook of Electronic Control Circuits," McGrawHill, N.Y., 1959, p 115.

REFLEX KLYSTRON FREQUENCY AND VOLTAGE CONTROL-Consists of main regulation magnetic amplifier MA-REG for reflector of VA-222 power klystron in $6,000-\mathrm{Mc}$ microwave link, and secondary magamp MA-AFC
that provides further regulation for repeller voltage.-J. Markus, "Handbook of Electronic Control Circuifs," McGraw-Hill, N.Y., 1959, p 110.

HALF-SQUARE MAGNETIC MULTIPLIER-Can be used as squaring function generator, quarter-wave multiplier, or two multipliers. Only one operational amplifier is required.
-T. Miura and C. Hirano, Reliable Magnetic Amplifier Improves Multiplier, Electronics, 35:26, p 76-79.

MAGAMP REGULATES 2,300-V SUPPLY-Selfsafurating magnetic amplifier is placed on low-voltage input side of high-voltage 400 cps rectifier and auxiliary winding is added for output sensing, to isolate control and sensing functions from high-voltage circuit. -W. J. McDaniel and T. L. Tanner, Regulating High Voltage with Magnetic Amplifiers, Electronics, 32:29, p 64.

CHAPTER 49

Measuring Circuits

MAGNETIC TAPE SKEW MEASUREMENT-Magnetic strip recorded on tape is scanned transversely with ring-iype play-back head, and periods between output pulses generated at crossover points are measured. Cl acquires
positive charge for one direction of skew and negative charge for other. Output of detector of C1, which measures this charge, is fed to difference ampliffer having microammeter connected between cathodes to read tracking
error.-B. R. Gooch, Magnetic Strip Keeps Tape Running True, Electronics, 36:2, P 42-43.

MOSSBAUER-EFFECT SPECTROMETER-Circuit makes effective use of transistors as current
amplifiers.-W. W. MacDonald, Electronics in Israel, Electronics, 37:3, p 23-29.

R-C DIRECTIONAL COUPLER-Couples variablefrequency 150-175 Mc oscillator to vhf antenna and furnishes incident and reflected power samples to d-c amplifier for meas-
uring valtage-standing wave ratio.-J. Hanson, Unconventional Technique for Measuring VSWR, Electranics, 32:43, p 120-121.

CAPACITANCE-TRACKING TEST SET-Output signal voltage of capacitance bridge, propartional to capacitance unbalance, is applied to vertical input of scope through

I-Mc preamp. Horizontal sweep voltage of scope is also applied as bias to voltage-variable capacitances VVC whose tracking is being measured, sa scope display shows
diode capacitance-fracking as function of bias valtage.-L. A. Weldon and R. L. Kopski, Boost for Electronic Tuning, Electronics, 37:14, p 61-63.

NOISE-FIGURE MEASUREMENT OF R-F TUBES -Standardized EIA Committee circuit measures noise-figure of cascode r-f amplifiers with 95% repeatability. Jig circuit for fube under test has $200-\mathrm{Mc}$ center frequency and 10-Mc bandwidth.-T. E. Gausman, Standardixing Noise-Figure Meosurement, Electronics, 36:1, p 124-129.

MEASURING CONVERSION GAIN-Used for measuring input impedance characteristics of high-frequency fransistor for operation beyond cutoff in special converter circuits. -V. W. Vodicka and R. Zuleeg, Transistor Operation Beyond Cutoff Frequency, Electronics, 33:35, p 56-60.

COMMON-EMITTER BETA TEST SET-Switch permits testing both npn and pnp transistors over wide current and voltage ranges.

Two feedback amplifiers are used, one for npn and the other for pnp.-R. M. Mann,

Fresh Approach to Measuring Transistor Beta, Electronics, 36:30, p 47-49.

MIXER FOR DISTORTION MONITOR-COMbines local oscillotor signal with two inputfrequency tones without introducing distortion, by using primorily grid-swomping tech-niques.-G. H. Smiłh, Distortion Monitor Checks Lineor Amplifier Chorocteristics, Electronics, 34:27, p S7-59.

CEMENT-SETTING TIMER-Somple of cement is inserted os dielectric moterial in testtube copocitor, ond odmittonce reodings ore mode every 15 minutes using 7-Mc crystol oscillotor with onode circuit funed to 28 Mc .

Moximum odmittonce indicotes end of setfing process.-J. M. Tobio, Electronics Determines Cement Setting Time, Electronics, 31:41, p 88-90.

MOISTURE METER-Mointoins constant current for 20 minutes of heovy looding of convenfionol zinc-corbon dry cells when meosuring moisture in pulverized cool or other powders, through use of inverse voltoge feedbock in two-stoge direct-coupled ampli-fier.-G. E. Fosching, Inverse Feedbock Stobilizes Dry Cell Current Sources, Electronics, 32:41, p 78.

THERMAL CONSTANTS OF TRANSISTORS-
Astoble mubr generates 0.3 -sec pulse evary 3 sec to drive mercury relay when mode swith is on TC contacts for measuring thermal time constont of tronsistor under test.

Constant power is applied between pulses, using cro as guide for keeping power level near normal steady-state value of transistor. Thermal resistance dota is obtoined with mode switch on contact TR, where 60-cps
supply drives reloy.-H. Boumon, Proctical Way to Measure Transistor Thermal Resistance, Electronics, 36:7, p 66-67.

MEASURING TRANSISTOR TRANSFER RATIOBasic test circuit shown meosures smallsignal short-circuit forword current transfer rotio of tronsistors. Gives direct reading of
h-fe when base current is held at fixed value of 1 microamp.-Texos Instruments Inc., "Tronsistor Circuit Design," McGraw-Hill, N.Y., 1963, p 70.

MEASURING TRANSISTOR SHORT-CIRCUIT INPUT RESISTANCE-Output meter gives direct reading of h-ib when input current is
held ot 1 microamp.-Texas Instruments Inc., "Transistor Circuit Design," McGraw-Hill, N.Y., 1963, p 70.

MAGNETIC TAPE FLUTTER-Time of travel of recorded pulse between two playback heads on tape recorder under test is converted to
dec voltage. Boxcar defection circuit, ramp generator, and sampling gate detect flutter components as small as 0.01% peak-to-
peak.-A. Schulback, Instantaneous Measurement of Tape Flutter, Electronics, 35:19, P 93-94.

MEASURING TRANSISTOR OPEN-CIRCUIT OUTPUT ADMITTANCE-Test set gives smallsignal value h-ob of open-circuit output admittance of transistor for common-base connection. Input voltage is held constont at 1 V and current is read as voltage drop
across $\mathbf{I K}$ resistor. Voltage in mv can then be read directly as admittance of 0.1 to 1 micromho on $10-\mathrm{mv}$ scale of meter.-Texas Instruments Inc., "Transistor Circuit Design," McGraw-Hill, N.Y., 1963, p 71.

DIAMOND CIRCUIT MEASURES A-F PHASE SHIFT-Accuracy is 1% up to 2,000 cps. Used in computers and for high-speed analog
instrumentation. Zero-center d-c ammete indicates negative value for zero phase shift, zero for 90° phose shlfi, and some maximum
value for 180° phase shift.-H. R. Deveraux, Diamond Circuit Measures Phase Shift, Electronics, 37:25, p 74-75.

COATING THICKNESS GAGE-Oscillator VI and amplifier V2-V3-V4 apply 10 -cps sig-
nal to magnetic-reluctance transducer held over coating up to 0.040 inch thick, un-
balancing transducer and giving output voltage proportional to thickness of coating.

R-F TRANSMITTER POWER AND VSWR MONI-TOR-Standing-wave ratio is indicated by position of shaft of potentiometer R7 in bridge circuit, when switch is in vswr posifion. Diodes D3 and D4 act with Q1 as alarm circuit that interrupts power amplifier
plate voltage when vswr exceeds preset limit. At other switch position, actual r-f output power in watts is indicated on d-c milliammeter.-L. F. Stein, Versatile R-F Monitor Shows Power and VSWR, Electronics, 36:13, p 44-46.

LOG ATTENUATOR FOR POSITIVE PULSESOutput is proportional to log of input voltages between 0.1 and 100 v.-C. D. Nail, Logorithmic Attenuator Spans Three Decades, Electronics, 36:46, p 47-48.

TRANSISTOR POWER GAIN-Measures power gain as a function of frequency. When maximum oscillation frequency is approached, unilateral gain drops af rate of 6 db per octave. Input generator has 1 ohm internal resistance. Pi network matches fransistor output to load resistor.-J. Lindmayer and R. Zuleeg, Determining Transistor High-Frequency Limits, Eloctronics, 32:34, p 31-33.

After amplification in V5.V6, this voltage is rectified for $d-c$ milliammeter.-P. Dick, Meas-

WIRE THICKNESS GAGE-Uses principle of proximity detectors for nondestructive measurement of moving copper wire thickness during drawing operation or on coil-winding machine. Wire passing through test coil acts like shorted turn of transformer, lowering Q of coil. Stable 1 -Mc oscillator and buffer drive vivm that indicates variations in wire diameter for sizes down to AWG 46. -K. H. Jaensch, Wire Gage Provides Continuous Measurement, Electronics, 33:7, p 109-111.

LIQUID LEVEL-Nonconducting liquids change electrostatic capacitance of ring electrodes in tank. Amplified error signal from electrode
bridge operates recording galvanometer or indicator lamps to provide measurements of level accurate to 0.01 inch.- \mathbf{Y}. L. Greenwood,

Capacitance Change Indicates Liquid Levels, Electronics, 33:34, p 66-67.

NANOAMPERE SENSING CIRCUIT-May be used as sensitive current detector or as voltage detector having high input impedance. Circuit input impedance is 100 meg . Input current of 40 nanoamperes charges $C 2$ and raises emiffer voltage of 2 N 494 C to triggering level. C1 ond C2 then discharge, and resulting positive pulse triggers scr or other pulse-sensitive circuitry.-Transistor Manual, Seventh Edition, General Electric Co., 1964, p 326.

DENSITOMETER-Used in scanning X-ray diffraction photograph and measuring densifies of hundreds of spots. Circuit integrates
point-by-point values of optical extinction over the required area of the negative.E. M. Deeley, Flying-Spot Integrating Densito-

3-260 MC TUNNEL-DIODE DIP METER-Oscillotor is tunable in six ranges, using plugin circuits.-E. Gottlieb and J. Giorgis, Tunnal Diodes-Using Them as Sinusoidol Generotors, Electronics, 36:24, p 36-42.

CHRONOTRON CIRCUIT MEASURES COAX DELAY-Secondory-emission tube VI (EPP. 60) in blocking oscillotor generotes millimicrosec pulses thot are fed to unknown cable through anode tronsformer. Pulse reflected back from open-circuited end of coble is coupled into grid through some tronsformer to initiate new pulse. Resulting pulse repetiflon rote, proportional to cable deloy, is meosured with $10-\mathrm{Mc}$ digitol counter.-E. F. Loine, Getting Subnonosecond Precision in Coox Cable Deloy Meosurements, Electronics, 36:5, p 39-41.

PROPAGATION TIME-Inverter circuit chain was developed to measure propagation time of 2N834 epitaxial mesa transistors. Pulse is applied to input, and outputs at 1 and 2 compared to get shift for four stages. Typical time measured was 4 nsec per stage.W. D. Roehr, Epitaxial Process Improves Transistor Characteristics, Elecłronics, 34:9, P 52-53.

STRAIN-GAGE AMPLIFIER-Positive and negative feedback to bridge-type transformercoupled input circuit provides high-impedance floating differential input in dec to 25 ke amplifier. Bridge balances out commonmode signals that arise in data acquisition
systems, where pre-amplifier ground may be hundreds of feet from transducer ground. Floating output delivers low voltage at high current for recorder or analog-to-digital converter. Linearity is within 15 microvalts from d-e to 25 kc . Chopper stabilization keeps
input d-c drift below 0.5 microvolt during 40-hour run.-R. S. Burwen, Amplifiers for Strain Gages and Thermocouples, Electronics, 32:30, p 43-45.

CABLE TERMINATION FOR VELOCIMETERAmplifier restores leading edge of sinusoidal signal that has travelled through up to 35,000 feet of cable from deep-sea velocimeter. Frequency is then doubled by diodes, for ease of counting.-L. Dulberger, DeepOcean Velocimeter Aids Sonar Systems Design, Electronics, 34:22, p 41-43.

CAPACITANCE METER-Milliommeter indicotes Mosinski, Copocitonce Meter has Lineor capacitance values over any desired ronge Scale, Electronics, 3S:12, p 64. on linear scale having zera at right.-W.

PROTON PRECESSION MAGNETOMETER-Used in Vanguard III satellite for magnetic field
meosurements at altitudes of 510 to 3,750 km.-D. Monsir, Magnetic Meosurements in

FET PINCHOFF VOLTAGE-Meosures gatesource voltage while droin current is below 0.1 microomp, to give value that matches pinchoff voltage of fet.-B. R. Smith and I. C. Chase, Matching Gate Potential to FET Pinchoff Voltoge, Electronics, 38:16, p 81.

LOW-LEVEL CURRENT DETECTOR AND MEM-ORY-Unknown current Ix chorges C1. Operation of reloy K1 by interrogate pulse discharges Cl through tunnel diode, initiating switching of diode if in low-voltage state and unknown current is correct polarity. Lamp in transistor amplifier glows when tunnel diode is in high-voltage stote. Currents of one picoampere can be measured.-C. D. Todd, Tunnel Diode Detects Currents Down to 100 Femfoamperes, Electronics, 36:14, p 33-37.

VIBRATION DETECTOR-Low-frequency boost compensetes for characteristics of velocitytype vibration detector for turbines. Detector voltage is proportional to both displace-
ment and frequency, so integrating action by copacitonce feedbock around high-gain amplifier stage makes output proportional to displacement only.-H. A. Harriman and
W. M. Trenholm, Vibration Measurements with Peak-Reading Circuif, Electronics, 35:20, p 57-59.

CABLE DRIVE FOR VELOCIMETER-Flip-flop frequency divider converts 7-kc pulse output of velocimeter to 3.5 kc while providing low impedance and sufficient driving power for sending pulses through up to 35,000 feet of cable to counter on surface vessel. -L. Dulberger, Deep-Ocean Velocimeter Aids Sonar Systems Design, Electronics, 34:22, p 41-43.

EDDY-CURRENT CLADDING THICKNESS GAGE -Low-frequency channel (47.5 kc) obtains thickness of cladding on reactor fuel elements. Probe is common element of each input bridge. Can also be used for measuring plating thickness or for detection of subsurface cracks and voids.-W. J. McGonnagle, C. J. Renken, and R. G. Myers, Improved Nondestructive Testing by Eddy-Currents, Electronics, 32:35, p 42-43.

PULSE-ENERGY ERGMETER-Bolometer bridge converts input signal to heat by integrating input power with respect to time. Heat
upsets bridge balance, and resulting signal is amplified and applied to peak-holding voltmeter that indicates energy directly.

Used to measure energy content of pulses. -L. A. Rosenthal, Ergmeter Measures Bursts of Energy, Electronics, 31:23, p 79-81.

ALL TRANSISTORS TYPE 2N393
DEEP-OCEAN VELOCIMETER-Sonic pulse produced by transducer S is sent along fixedlength water path at any depth and picked up by receiving transducer R. Received sig-
nal is then amplified and fed back to blocking oscillator to synchronize it at repetition rate determined by delay time of pulse in water. Pulses then go to cable-driving cir-

* value oepenos upon sound path cuit, and through cable to surface vessel for counting.-L. Dulberger, Deep-Ocean Velocimeter Aids Sonar Systems Design, Electronics, 34:22, p 41-43.

MEASURING TRANSISTOR REVERSE-VOLTAGE TRANSFER RATIO-When oufput voltage is held constant, $10-\mathrm{mv}$ scale of output meter gives direct readings of small-signal value of open-circuit reverse-voltage transfer ratio h-rb over range of 0.0001 to 0.001 .-Texas Instruments Inc., "Transistor Circuit Design," McGraw-Hill, N.Y., 1963, p 72.

TRANSISTORIZED CHRONOTRON MEASURES COAX DELAY-Start switch triggers avalanche transistor Q1, generating millimicrosec pulse that travels down unknown cable and returns to trigger new pulse. Digital
counter is used to mesaure prr, which is proportional to cable delay. Q2 shapes counter pulse.-E. F. Laine, Getting Subnanosecond Precision in Coax Cable Delay Measurements, Electronics, 36:5, p 39-41.

PH METER-Beckman model W industrial-type pH meter is d-c amplifier designed for meas-
uring potentials generated by pH -sensitive electrodes. Output will drive most recorders.

R32 is used only with 4 to 14 pH meter, and R33 only with -1 to 9 pH meter.-G. C. Carroll, "Industrial Instrument Servicing Handbook," MeGraw-Hill, N.Y., 1960 p 7-4.

TUNNEL DIODE PARAMETERS-Provides quanfitative measurement of all d-c parameters for the three regions of forward d-c charocteristic curve for funnel diodes.-C. D. Todd, Simple Test Sets Measure Tunnel-Diode Parameters, Electronics, 35:14, p 43-45.

the four $2.5-\mathrm{db}$ expand ranges to give a full-scale reading.-D. L. Howard, Drift Control Aliows Expansian Scales for SWR Meter, Electronics, 35:21, p 45-47.

PULSE WIDTH ENCODER-Pulse widths in microsecond range are amplifude-limited and dumped info magnetic care. When core saturates, signal is recorded on mognetic
tape and core is reset for next series af pulses. The number of changes of state between saturation points gives the number af pulses for care soturation, fram which pulse
width can be computed.-W. L. Carter and P. J. Knoke, Pulse-Width Measurements, Electronics, 35:43, p 51-53.

CAVE-MAPPING RECEIVER-Pickup loop feeds low-noise transistor Q1, fallowed by twastage audio amplifler. Since low-frequency magnetic field (2 kc) is attenuated very little by rock, soil, or water, strength of received signal from transmitter in cave being mapped can be measured. When system is calibrated for distance on surface, depth can be measured.-E. R. Roeschlein, Mapping Caves Magnetically, Electronics, 33:39, p 61.

MEASURING NEGATIVE RESISTANCE OF TD -Thermistor cancels negative resistance of funnel diode, and calibrated potentiometer that matches thermistor gives absolute value
of td resistance at aperating point. Q1 provides thermistor heoting current, of level set by R6, while $5-\mathrm{v}, \mathbf{2 0 - k c}$ source provides a-c to modulate bias of funnel diode.-A.

Ambrozy, Thermistor Measures Negative Resistance of Tunnel Diode, Electronics, 39:17, p 95-96.

ALPHA CUTOFF-Measured with 3\% accuracy up to 30 Mc and 5% up to 100 Mc . Method compares transistor to short-circuit. -G. I. Turner, Measuring Transistor Alpha Cutoff, Electronics, 32:1, p 54.

MILIIOHMMETER-Substitution of transistors for diodes in rectifier circuit of a-c milliohmmeter gives significont increase in sensitivity and linearity. Uses inexpensive mil-liammeter.-P. Lefferts, Transistors Replace Diodes in Milliohmmeter Circuit, Electronics, 39:18, p 97.

RESISTANCE COMPARATOR-Known and unknown resistances are connected alternately across shock-excited oscillator by flip-flopdriven relay, and domping effect is observed on cro.-A. Kislovsky, Comparing Resistonces with Oscillator and Oscilloscope, Electronics, 34:23, p 118.

ELECTROMETER FEEDBACK AMPLIFIER-Meosures currents in range of 10^{-11} to $10^{-13} \mathrm{amp}$ by passing current through high-value precision resistor and amplifying voltage drop
across resistor with direct-coupled amplifier of electrometer. British CV2348 is similar to CK5886. Bandwidth is 7.5 Mc . Zener diade D3 provides meter overload protection
by clamping of obout 20% overlood.-D. Allenden, Using Feedbosk in Electrometer Design, Electronics, 32:41, p 71-73.

*adJUST FOR MINIMUM GRID CURRENT AT INP in Aerobee sounding rocket to measure doytime sporadic-E ionization of upper atmosphere. Electrometer uses 100% feedback
ond Thyrite resistor to produce compressed scale on telemetry record.-M. F. Wolff, Rockets Probe Sporadic-E, Electronics, 35:21, p 18-19.

CAVE-MAPPING TRANSMITTER-Transistorized 5-w, 2,000-cps generator of low-frequency magnetic induction field direction finder feeds funed loop in cave being mapped. Detector af surface locates vertical flux line over cave and also receives Morse code for com-munication.-E. R. Roeschlein, Mapping Caves Magnetically, Electronics, 33:39, p 61.

SHOCK SPECTRUM ANALYZER WITH PEAK VOLTAGE MEMORY-Each peak voltagememory circuit has frequency-determining L-C filter. Shock spectrum of input pulse is defined by peak voltage across eoch filter copacitor. Memory is Burroughs Beam-X switching tube in which beam is advanced one position for each voltage increment. Output is dec valtage suitable for automatic plotting,-Contest Produces Novel Circuit Designs, Electronics, 36:11, p 96-102.

CHAPTER 50 Medical Circuits

HEARTBEAT TRANSMITTER-Self-contained device worn by patient transmits his pulse to radio receiver for remate monitoring or recording. Photo-iransisior, fed separately,
measures changes in light transmitted through earlobe as heart pulses change blood density and valume of lobe.-G. A. Harten and A. K. Koroncai, Radio Transmitter for Remote Heart-
beat Measurements, Electronics, 33:52, p 54-55.

EYEBALL PRESSURE GAGE-Moving ferrite core in probe deflects in proportion to eyeball pressure and produces signal that is amplified to drive recorder. Plateau of recorded response represents true pressure,
which can easily be read independently of peak caused by extra pressure of probe.R. S. Mackay and E. Marg, Electronic Tonometer for Glaucoma Diagnosis, Electronics, 33:7, p 115-116.

BLOOD-PRESSURE MONITOR-Continuous indication of blood pressure, with 3% fullscale accuracy, is obtained by mounting variable-reactance pressure transducer in 5-ce syringe inserted directly into patient's artery.

Instrument has three ranges, for $0-75,0-150$, and $0-300 \mathrm{~mm} \mathrm{Hg}$. Transducer is excited by low-distortion sine wave generated by transistor counterpart of vacuum-tube Wienbridge oscillator. Positive and negative feed-
back circuits generate 5 -ke signal af $1 \mathbf{v}$ rms. -O. Z. Roy and J. R. Charbonneau, Transistor Unit Monitors Blood Pressure, Electronics, 31:33, p 82-83.

INTEGRATING OPERATIONAL AMPLIFIER-Analog-computer type of integrator uses stabilized chopper for integration of dye curve as function of time, in system for
measuring dye concentration in blood stream to obtain flow rate.-R. L. Skinner and D. K. Gehmlich, Analog Computer Aids Heart Ailment Diagnosis, 32:40, Electronics, p 56-59.

27.12-MC RETINA WELDER-Applies r-f energy to spot-weld retina back to original position by creating small burn scars. Crystal-controlled electron-coupled oscillator drives class

C power amplifer V2. Sample of output is taken through C3, defected in VB, and applied to grid of V5, which amplifies output changes and applies them to grid of
clamp tube $\mathbf{V} 3$ to restore output of $\mathbf{V} 2$ to desired level.-O. Rich, Jr. and R. V. Hill, R-F Spot Welder Reaftaches Retina of Human Eye, Electronics, 34:32, p 160-163.

BLOOD - VOLUME SERVO-Servo - controlled pump with variable stroke drives blood from venous system of patient into artificial lung and after oxygenation returns it to arterial system. Control circuit insures that volume of blood is constant. Sensor is brass disk forming capacitance with pool of blood in oxygenator at spacing of $1 \mathbf{m m}$. Error signal derived from capacitance change unbalances bridge that is energized af 3 kc (points B-B). Amplified error signal is applied to phasesensifive demodulator. Unbalance energizes center-stable relays K1 and K2 of arterial and venous servo motors, so stroke output of arterial pump is decreased while that of venous pump is increased, or vice versa, to restore preselected volume of blood.-R. Schild and N. Wesson, Servo Circuit Controls Artificial Heart, Electronics, 31:15, p 73-75.

TEMPERATURE COMPENSATION IN ECG AMP-LIFIER-Circuit has common-mode rejection ratio of 10,000 , with adjustable cancella-
tion of unbalanced noise at input, for electrocardiograph. For temperafure compensotion, C3 bypasses a-c signals from base of

Q7, so only d-c signals are fed back through this transistor to Q1.-J. R. Smith, Jr., Amplifier Can be Adjusted to Cancel Unbalanced Noise, Electronics, 37:23, p 60-61.

X-RAY TUBE PULSER-Supplies $3,600 \mathrm{v}$ peak-to-peak pulses, swinging from 400 to 4,000 v. Input signal comes from square-wave generator having adjustable duty cycle of 10 to 90% from 35 to 100,000 cps. Uses two pulsating x-ray tubes, each controlled by applying low-voltage square-wave to special
diaphragm element. Anode current is maintained constant by switching alternately between tubes. Used for delivering therapeutic dose levels.-E. F. Weller, Roof-TopTarget Tubes Pulse X-Rays, Electronics, 31:11, p 138-139.

TRIGGER SHAPING FOR RETINA WELDERTrigger pulse, selected by S2, is compared to fixed bias on one half of comparator tube V9. Trigger shaping by V10 provides
strong, sharp pulse for gating mubr V1lV12A, which furns off diodes V14, allowing Miller integrator V13A and cathode follower V13B to start time base runup that drives

C4 to 150 v . Circuit then reverts to normal. -O. Rich, Jr. and R. V. Hill, R-F Spot Welder Reatfaches Retina of Human Eye, Electronics, 34:32, P 160-163.

OSTEOGRAPH DETECTS BONE DI5EASEElectronic scanner using television flyingspot microscope measures irregular microscopic tissue areas of spongy bone, for early
diagnosis of bone disease. Television monifor receiver shows enlarged picture of bone section as aid in centering area to be scanned. Recorder plots ratio between bone
area and marrow area.-O. W. Jones III, R. V. Vreeland, and C. C. Collins, Video Microplanimeter Defects Bone Disease, Electronics, 31:43, p 85-87.

TWO-TRANSISTOR CARDIAC PACEMAKERProduces triggering pulses that stimulate heartbeats during surgery. Repetition rate is determined by C1 and R1. Pulse duration is 4 millisec, with 8 -v peak that sends 16 mo through 500 -ohm load.-W. E. Gilson and H. F. Klinge, Cardiac Pacemaker Triggers Heartbeats, Electronics, 34:40, p 80.

THREE-OUTPUT 3-KC OSCILLATOR-L-C OSciJ. lator provides carrier voltages of 4 v rms at 3 ke to blood-volume servo amplifier and to venous and arterial pressure indicator. Amplitude stabilization is achieved by bridge feedback network using filament-type lamp as nonlinear element in one bridge arm. -R. Schild and N. Wesson, Servo Circuit Controls Artificial Heart, Electronics, 31:15, p 73-75.

 bridge is energized af points A-A by external 3-ke oscillator. Unbalance voltage is amplified by V10 and demodulated by second bridge that operates as rectifier with phase discrimination, while energized at D-D by separate 3-kc oscillator source. During unbal-
ance, the only components reaching ring demodulator are those in phase or 180° out of phase with reference carrier voltage, giving positive or negative swing on meter.-R. Schild and N. Wesson, Servo Circuit Controls Artificial Heart, Electronics, 31:15, p 73-75.

NERVE STIMULATOR-Neon relaxation oscillator and transistor give stable pulse generator covering range of 0.2 to $2,500 \mathrm{cps}$ for neurophysiology research.-R. D. Ryan, LowCost Pulse Generator, Electronics, 35:15, p 70.

EEG WAVEFORM ANALYZER-Uses derivative curves of primary eeg signals to quantitatively describe waveshape deviations of irregular electrical waveforms emitted by
brain, in terms of time and amplitude. Operates on zero-crossing defector measurements to produce analog voltages proporfional to time between base periods and
also proportional to time values of left and right deviation coefficients.-C. J. Zaander, Computer Analyzes Brain Waveforms, Electronics, $31: 29, \mathrm{p}$ 68-72.

HEART-STIMULATING PULSE OUTPUT STAGEUsed in conjunction with pulse amplifier to increase stimulating voltage when scar tissue develops under electrodes sewn to auricle and ventricle of heart, introducing excessive load resistance. Produces constantvoltage positive-going pulse having maximum amplitude of 15 v and 0.1 -sec duration, when triggered by positive pulse.G. F. Vanderschmidt, Two-Transistor Amplifier Corrects Heart Block, Electronics, 31:47, p 80-81.

BLOOD PRESSURE REGULATOR-Chopper am plifier delivers d-c voltage to adder that is proportional to mean blood pressure. Potenfiometers in adder permit introducing negafive voltages corresponding to desired blood pressure level and maximum safe level.-R. L. Skinner, D. K. Gehmlich, and F. W. Longson, Blood Pressure and Heart Regulator, Electronics, 32:1, p 38-41.

RETINA STIMULATOR-Generated pulse is applied to skin near eyes, to act on nerve cells of refina and give same effect as slight flash of extremely short duration.-P. Scott, Microflash and Pulse Stimulator Tests Human Optical Response, Electronics, 34:27, p 46-51.

MYOELECTRIC STIMULATOR-S ix-fransistor amplifer having high-impedance differential input for commercial eeg or emg electrodes and gain of 10,000 from 5 to i0,000 cps drives modulator Q4-Q5 from decoupling transformer. Modulator makes stimulator (astable mvbr Q6-Q7) apply pulsating voltages to muscles of hand, to make hand open in response to signals picked up by

electrodes over shoulder muscles, thereby brldging severed arm nerves.-L. Vodovnik and W. D. Mcleod, Electronic Defours of

RECORDING MANOMETER-Pressure of blood or other body liquids is measured and recorded by photoelectric system. Mercury or other opaque fluids may also be measured. Servo loop maintains photocell at meniscus level of liquid. Mechanical linkage also drives recorder stylus.-W. E. Gilson and H. Ludwig, Recording Manometer, Electronics, 32:52, p 41.

TUNED-PLATE TRIODE POWER OSCILLATOR -Drives ultrasonic transducer af odd harmonically related frequencies in 900 kc to 5 Mc optimum range, for neurosurgery, at power levels within 1 db of any prescribed
level between 0.05 and 100 acoustic watts, without correction of amplitude after radiation has begun.-B. J. Cosman and T. F. Hueter, Instrumentation for Ultrosonic Neurosurgery, Electronics, 32:20, p 53-57.

TELEPRINTER CONTROL-Coded pulse train controls teleprinter. When negative pulses are applied to grid of $\mathbf{V} 2$, line relays open in correspondence to pulse pattern.-R. L. Thomas, R. Howat, and N. H. Mackworth, Tv Tracker Records Eye Focus Points, Electronics, 33:17, p 57-59.

AMPLIFIER
ONE-SHOT
RELAY DRIVERS
HOLO ONE-SHOT

AUTOMATIC BLOOD-PRESSURE INDICATOR
-High-gain amplifier-microphone combination detects pulse beats and feeds them
through shaper circuit to hold-relays that lock pressure gages at systolic and diastolic blood-pressure readings.-R. J. Roy and M.

Weiss, Inexpensive Monitor Reads Blood Pressure Automatically, Electranics, 35:47, p 40-41.

LAMP DRIVE-Count-rate meter of radiationdetecting tumor scanner provides input signal for d-c omplifier. Controls R1 and R2
in difference amplifier provides zero suppression and R3 provides scale expansion. Circuit drives lamp that exposes film in step
with scanning motion of probe.-E. Gordy and G. Sieber, Sensitive Amplifier Helps Locate Tumors, Elecłronics, 34:1, p 123-124.

PLETHYSMOGRAPH-Transistorized Unit measures change in impedance of living tissue resulting from nonrythmic fluctuations of
blood content. Changes of 0.1% in total fissue impedance are detected by resistance bridge and phase-sensitive defector that
scans bridge unbalance.-S. Bagno and F. M. Liebman, Impedance Measurements of Living Tissue, Electronics, 32:15, p 62-63.

IRON-LUNG AIR INTAKE CONTROL-Air exhaled by patient is sampled and analyzed for carbon dioxide concentration by commercial infrared analyzer that provides electrical output proportional to amount of carbon dioxide. Analyzer oufput charges C2 to level dependent on corbon dioxide concentration. Comparison circuit controls relays K2 and K3 so iron lung bleeder valve keeps concentration within preset limits. V5, V6, and K2 establish upper limit; V7, other half of V6, and K3 establish lower limit.-Contral Regulates Iron Lung, Electranics, 31:41, p 108,

EEG TELEMETER-Amplifier, modulator, and oscillator produce $37.7-\mathrm{Mc}$ signals frequencymodulated by scalp voltages of epileptics. Radiated signal may be picked up by antenna of receiver at distances up to 40 feet from patient in observation room.-C. L. Yeager and J. Henderson, Jr., Unit Telemeters Scalp Voltages, Electronics, 31:29, p 86.

ARTIFICIAL LARYNX-Output is negative pulse whose repetition frequency is varied from 100 to 200 cps by rheostat to change pitch of voice while speaking. Modified telephone receiver serves as vibrator that is pressed against throat to transform generated vibrations into speech sounds by normalmal use of throat cavity, tongue, mouth, teeth, and lips. With practice, users can achieve sentence intelligibility above 97%. -Circuit Substitutes as Larynx, Electronics, 32:27, p 60-63.

SLIDING GATE FOR HEART SOUNDS-Two multivibrators, synchronized with time reference, permit listening to selected portions
of heart sound. Potentiometers permit ad- Diagnosis, Electronics, 34:24, p 52-55.
justing width and position of gate.-R. Weiss, Heart-Sound Discriminator Simplifies Medical

FOETAL HEART BEAT DETECTOR-Amplified 2- to 3-cps signal from foetal heart modulates transistar ascillator operating between 800 and 1,200 cps. Frequency modulation technique overcomes poor low-frequency re-
sponse of human ear and loudspeaker. A-c coupled stages have large time constants, to give required low-frequency response.-T. I. Humphreys, Transistor Unit Defects Foetal Heart Sounds, Electronics, 31:17, p 52-54.

NERVE ACTION POTENTIAL TRANSMITTERUsed in telemetering bioelectric potentials from barareceptors of blaod pressure control system in active awake animals for several days after surgical implantation of elec-
trodes in aorta and carotid arteries. Systom provides flat frequency response from 1 ta 1,200 cps with input impedance of 2.5 meg and input sensitivity of 5 to 500 mv . Transmitting range is 25 feet.-P. Kerdi and W. 5.

Naylor, Telematry System to Transmit Baroreceptor Nerve Action Potentials, The American Jaurnal of Medical Electronics, 4:4, p 153-155.

HEART RATE REGULATOR-Senses arterial pressure and differentiates pressure signal to eliminate mean pressure and produce required sharp spike af beginning of each
pressure pulse. Spikes are used to control regulator that delivers pulses to vagus nerve that controls muscles of heart.-R. L. Skinner, D. K. Gehmlich, and F. W. Longson, Blood

MUSCLE-SIGNAL AMPLIFIER-Differential input amplifier Q1-Q2 accepts myoelectric signals of 10 to 1,000 microvolts from stump muscles of amputee. Stagger-tuned interstage transformers for Q3-Q4 give bandwidth of 100
to $1,000 \mathrm{cps}$ for main amplifier that drives integrating detector Q5 that operates relay to control servomotor for artificial hand.G. W. Horn, Muscle Voltage Moves Artificial Hand, Electronics, 36:41, p 34-36.

Reliable, Electronics, 32:39, p 92-93.

HEART PACER-Supplies pulses that drive heart at desired rate. Output is connected to heart muscles by small wires. Frequency of relaxation oscillator is controlled, between 50 and 200 ppm, by R2.-L. D. Trump and R. L. Skinner, Simple Heart Pacer is Highly heart at desired rote. Output is connected to

PRESET PULSE COUNTER-Automatically controls lesian-producing ultrasonic radiation by counting up to 99,999. Mechanical counter
is actuated by thyratron V5, which is keyed on by 50 -millisec counter pulser driven by
leading edge of square-wave input pulse.-

Pressure and Heart Rafe Regulator, Electronics, 32:1, p 38-41.
B. J. Cosman and T. F. Hueter, Instrumentation for Ultrasonic Neurosurgery, Electronics, 32:20, p 53-57.

PULSE AMPLIFIER FOR HEART-Used to provide adequate stimulating valtage to electrode sewn on ventricle of heart to make it contract properly in heart-blocked patients. Command pulses from electrode on auricle ore amplified 200 times by circuit, without waveform distortion, and applied to ventricle electrodes to produce normal pumping rhythm.-G. F. Vanderschmidt, Two-Transistor Amplifier Corrects Heart Block, Electronics, 31:47, p 80-81.

PILL-TRACING INTEGRATOR-Voltage proportional to speed of trovel of pill-sized radio transmitter in human body is integroted in quantizing circuit that delivers number of pulses proportional to trock length. Transistor differential amplifier charges C, and

Schmitt trigger controls discharge of C through R2. Frequency of trigger pulses is proportional to input voltage within 1% over range of 2 to $\mathbf{2 0 0} \mathbf{m v}$.-B. Jacobson and B. Lindberg, Servo Tracks Pill in Human Body, Electronics, 36:12, p 58-60.

BATTERYIESS CARDIAC PACEMAKER-Body fluids are electrolyte for implanted silver and zinc electrodes that provide d-c power for four-fransistor pacemaker. Secondary of T1 provides feedback for ringing-choke oscillator Q1, which charges C unfil Q2 is cut off. C then discharges until Q1 can again con-duct.-O. Z. Roy and R. W. Wehnert, Keeping the Heart Alive with a Biological Battery, Electronics, 39:6, p 105-107.

FOUR-RANGE VTVM-Measures r-f power os- for therapeutic treatment of deep-seated cillator output, for establishing irradiation brain structures.-B. J. Cosman and T. F. and calibration procedures and positioning Huater, Instrumentation for Ultrasonic Neurotechniques when using focused ultrasound surgery, Electronics, 32:20, p 53-57.

CHAPTER 51 Modulator Circuits

250 KW PEAK FROM SCR-line-type modulafor uses silicon diodes for high-voltage rectifiers, backswing, holdoff, and inverse-diode circuits. Trigger generator uses iwo-layer and four-layer diodes to provide pulse burst repatition rates up to $25 \mathrm{kc} .-\mathrm{H}$. G. Heard, Controlled Rectifier Produces Quarter-Megawatt Pulse Power, Electronics, 34:25, P 54-55.

DELTA-SIGMA MODULATION FOR DIGITAL COMMUNICATIONS-Flip-flop sampling pulse generator supplies 5 -microsec pulses at 3-kc prr to modulator that also has analog signal
input. Integrated difference signal fires 5chmitt frigger to provide positive output that opens gate, passing square-wave pulse that sets flip-flop. Output of flip-flop is fed
to emitter-follower and demodulated by active low-pass filter having 50 -cps cutoff.H. Inose ef al, New Modulation Technique Simplifies Circuits, Electronics, 36:4, p 52-55.

CASCADE ANGLE MODULATOR-Gives twice the modulation index for a particular signal, or 50° for the two sections.-A. C. Todd, P. Schuck, and H. M. Sachs, Using Voltage-Variable Capacitors in Modulator Design, Electronics, 34:3, p 56-59.
 Gives pulse ratio modulation, in which pulse duty ratio varies linearly with input signal. Accuracy is high over wide dynamic range. Developed for space vehicle control,-R. A. Schaefer, New Pulse Modulation Method Varies both Frequancy and Width, Elactronics, 35:41, p 50-53.

PAM MODULATOR-DECOMMUTATOR FOR VIDEO RECORDER-Schmitt trigger reshopes timing pulses from 52-channel distributing delay line. Modulator samples audia signal
from one channel during record mode, while decommutator separates individual channels from campasite signal during playback from time-division multiplexing on twa-track videa
recorder.-M. H. Damon and F. J. Messina, High-Density Starage of Wideband Analog Data, Electronics, 35:13, p 45-49.

AUDIO IN
3.5V RMS MAX

MODULATOR TRANSFORMER-Circuit provides best possible balance between halves of center-fapped secondary, as required for precise phase splitting, in Boynton-Scholt modulator shown.-Wide-Band Transformer Covers 3 Kc to 22 Mc, Electronics, 35:25, p 66.

DIRECT R-C COUPLED COMMON-EMITTER MODULATOR-Performance is considerably better than that of conventional trans-former-coupled collector-modulated 27-Mc CB modulator. Total current drain is $\mathbf{8 3} \mathrm{ma}$. 0.14 v gives full modulation. Power gain is nearly 20 db for 2 N 1193 . Requires no audio transformers.-8. Rheinfelder, Modulation Techniques for Transistorized A-M Transmitters, EEE, $11: 7$, p 54-57.

DIAMOND MODULATOR-Corrier signal furns electron tube or equivalent crystal diode on ond off to modulate d-c input signal. Signalnoise rotio is obout 1,500 to 1 , with carrier
voltoge of 19 v rms. Output is lineor up to 3 v rms for d-c inputs up to 10 v.-L. S. Klivans, Modulators for Automatic Control Systems, Electronics, 31:1, p 82-84.

MODEM PULSE SHAPER-Removes oudio component from modulotor output to prevent crosstalk, and shapes pulse to required rise and fall time and width. Used in four-channel
ppm microwove multiplex unit.-P. W. Kiesling, Jr., Portable Multiplexer for Telephone Communications, Electronics, 32:2, p 60-62.

EXT DC SIGNAL MODULATOR INPUT

300-KW MAGNETRON MODULATOR-Trigger is applied to first of four 2-kv switch modules arranged in series, for simultaneous triggering of other modules ta furnish 16-kv $\mathbf{2 0}$-amp pulse to type 7208 Ku-band coaxial magnetron through standard 50 -ohm pulseforming network PFN.-F. A. Gateka and M. L. Embree, Semiconductor Madulators for Modern Magnetrons, Electronics, 35:37, p 42-45.

CAPACITOR-BALANCED SSB-Output varies linearly with input over signal range of 0 to 4.5 v . Undesired sideband is suppressed 26 db at balance.-A. C. Tadd, R. P. Schuck, and H. M. Sachs, Using Volfage-Variable Capacitors in Modulator Design, Electronics, 34:3, p 56-59.

TRANSISTOR-DIODE PULSE MODULATOR-Four-layer diodes used in series give rise times faster than turn-on times of transistors, for pulse modulation of travaling-wave tubes and other devices at repetition rates up to 100 kc , with 5 -microsec pulses and 3mierosec pulse spacings.-E. H. Heckman, Three New Approaches to Pulse Modulation, Efectronics, 36:18, p 62-64.

F-M/P-M-Angle modulator gives phase modulation below 500 cps and frequency moduIation above. Voltage-variable capacitor HC-7005 gives phase angle change of up to 25° of 1 Mc.-A. C. Todd, P. Schuck, and H. M. Sachs, Using Voltage-Variable Capacitors in Modulator Dasign, Electronics, 34:3, p 56-59.

TRANSFORMER-COUPLED SERIES D-C MODU LATION-Eliminates need for bulky modulation transformer and reduces envelope distortion when used in 27-Mc CB transmitter. Modulation power required is 0.35 mw . Chief disadvantage is that voltage source must be iwice that of conventional collectormodulated transmitter.-B. Rheinfelder, Modulation Techniques for Transistorized A-M Transmifters, EEE, 11:7, p 54-57.

2-KV MODULE OF MAGNETRON MODULATOR With terminal 6 at $+2,000 \mathrm{v}$, voltage-regulafor diodes maintain $400 \vee$ across each pnpn transistor. Lowest transistor receives 0.5omp, 3-v trigger at its gate.-F. A. Gateka and M. L. Embree, Semiconductor Modulators for Modern Magnetrons, Electronics, 35:37, p 42-45.

LINEAR PWM FOR 0.5 TO 175 V-Tubes V4 and VS form bistoble mvbr that will accept modulation voltage range of 350:1, from 0.5 v to 175 v , at point A . V3 is Miller integrator. With 0.05 mfd for Cl , pulse lengths are 61 and 173 millisec for limits of modulation voltage. Linearity is nearly perfect,-J. E. Frecker, A Pulse Width Modulator, EEE, 10:12, p 28-30.

BALANCED-TRIODE SINE-WAVE MODULATOR -Gives sinusoidal output without filtering. Can be used for either open-loop or errorsignal modulation when high input impedance and low-distortion sinusoidol output are required. Long-ferm drift stability is less than 1 mv per hour referred to output.-L. S. Klivans, Modulators for Automatic Control Systems, Electronics, 31:1, p 82-84.

CHOPPER MODULATOR-Reduces output signol null level by balancing out zero input signal. Null levels can be maintained in microvolt region by proper shielding. Longtime drift stability is less than 1 mv referred to output. Used with strain gage and other law-leval tronsducer signals.-L. S. Klivans, Modulators for Automatic Control Systems, Electronics, 31:1, p 82-84.

SERIES-DIODE MAGNETRON MODULATORIn variation of spark-gap modulator, 25 pnpn diodes in series with pulse-forming networks (PFN) are switched by trigger and resulting voltage transient to supply B,700 v at 35 amp to load. Success depends on availability of $700-\mathrm{v}$ diodes.-F. A. Gateka and M. L. Embree, Semiconductor Modulators for Modern Magnetrons, Electronics, 35:37, p 42-45.

TRANSFORMER-TRIGGERED MAGNETRON MODULATOR-Success of circuit depends on availability of five pnpn transistors with breakover voltages of at least B00 v , in order to deliver $300-\mathrm{kw}$ pulses to load through pulse-forming network PFN.-F. A. Gateka and M. L. Embree, Semiconductor Modulators for Modern Magnetrons, Electronics, 35:37, p 42-45.

100-KC HYBRID BALANCED MODULATORCircuit is essentially balanced bridge, with carrier injected by Q1. Balance is maintained by balance control and by bias adjustment on V1. Modulation is achieved by unbalancing bridge in accordance with low-frequency input signal, using phase inverter Q2 to make both tubes unbalance bridge in same direc-tion.-J. Chirnitch, Hybrid Balanced Modulafor for $100 \mathrm{Kc}, ~ E E E, 10: 10, \mathrm{p} 30$.

TRANSFORMERLESS-COLLECTOR MODULATOR -Provides 950 mw modulated power for CB transmitter, but 100% modulation can be reached only by using double modulation.B. Rheinfelder, Modulation Techniques for Tronsistorized A-M Transmitters, EEE, 11:7, p 54-57.

TRIODE CLAMP MODULATOR-Dual-iriode performs chopper function. With 6.3 v rms carrier, output is linear to 2 v rms for d-c inputs up to 25 v . Null level is 100 mv , but con be reduced by filtering. Long-time drift
stability is excellent. Output signal is normally square-wave, but funed circuít shown converts this to sinusoidal signal.-L. S. Klivans, Modulators for Automatic Confrol Systems, Electronics, 31:1, p 82-84.

MAGNETRON MODULATOR-Uses four Shockley diodes in series, triggered by avalanche friode transistor, to give action similar to that of conventional line-type pulser using hydrogen thyratron, but requires no heater power or warmup.-L. Diven, Solid-State Modulator Feeds Subminiature Transponder, Electronics, 33:27, p 48-51.

TWO-TRANSISTOR MODULATOR FOR LIGHTEMITTING DIODE-Linear range of 80% modulation for bandwidth of 30 cps to 250 kc, with only 3% distortion of 1 kc , permits good voice transmission aver light beams generated by SNXIIO light-emitting diode. -E. L. Bonin, Drivers for Optical Diodes, Electronics, 37:22, p 77-82.

TRANSFORMERLESS BASE MODULATOR-REquires only ane audia transistor, and readily provides 100\% modulation. Modulated output power is 660 mw for CB transmitter. Audio quality is excellent.- 8 . Rheinfelder, Modulafion Techniques for Transisforized A-M Transmiftors, EEE, 11:7, p 54-57.

RING MODULATOR-Con be operoted with either input or output ungrounded. With $100-\mathrm{v}$ rms carrier and d-c input of 30 v , output is lineor up to 0.2 v rms. Null level is less thon 1 mv , but drift stobility is poor
ond bolonce is critical. Used in opplications where modulation of error signol is re-quired.-l. S. Klivons, Modulators for Automatic Control Systems, Electronics, 31:1, p 82-84.

VARIABLE PLATE RESISTANCE MODULATORIncreasing magnitude of corrier voltoge increoses modulated output. Used in amplification of d-c signols for automatic control sys-tems.-L. S. Klivans, Modulators for Automotic Control Systems, Electronics, 31:1, p 82-84.

PULSE TRAIN AMPLITUDE MODULATORProvides amplitude modulotion of pulse train with audio signal or other input, such as noise, over range of 0 to 200 ke with input pulses over 1 microsec wide. 80% modulalation is available up to 3 kc , decreasing to 30% at input of $200 \mathrm{kc} .-J$. F. McCormick, Jr., Pulse Amplitude Modulator, EEE, 13:7, p 44.

DUO-DIODE HALF-WAVE SWITCH MODULA-TOR-Tube serves in place of chopper. Carrier voltage turns diodes on and off, transferring d-c input signal to output when diodes are not conducting. With $10-\mathrm{v}$ rms carrier voltage, output is linear up to 2 v for inputs up to 5 v d-c.-L. S. Klivans, Modulators for Automatic Control Systems, Electronics, 31:1, P 82-84.

LINEAR F-M MODULATOR-Adding emitterfollowers to astable mvbr makes output frequency linear function (within 0.01%) of in-
put voltage for 50% modulation above and below center frequency.-G. Richwall, Linear FM Modulator, EEE, 12:10, p 59-60.

R-C COUPLED BASE MODULATION-Modulation signal is injected by using two resistors, values of which are determined by available r-f drive power; higher power is needed for larger resistance values. Excellent linearization of waveform is obtained with Re from 10 to 30 ohms. Rb should be in range from 100 to 2,000 ohms, with 470 as good compromise value. Modulation of 100% is easily achieved for CB transmitter.-B. Rheinfelder, Modulation Techniques for Transistorized A-M Transmitters, EEE, 11:7, P 54-57.

SERIES-RESISTOR PULSE MODULATOR-Fourlayer diodes with series resistors reduce $350-\mathrm{v}$, 1 -amp pulses to modulate twt and for other applications requiring fast-rise, varia-ble-width, high-current fiat-top pulses at repetition rates up to 200 pps.-E. H. Heckman, Three New Approaches to Pulse Modulation, Electronics, 36:18, p 62-64.

TRANSFORMER-COUPLED BASE MODULATION -Modulation is in series with r-f signal, so transistor operates in common-emitter configuration for both r-f and audio. Waveform is good, but modulation powar is only 0.7 mw into 900 ohms when audio bypass C is used. Without bypass, modulation power is 1 mw into 200 ohms.-B. Rheinfelder, Modulation Techniques for Transistorized A-M Transmiffers, EEE, 11:7, p 54-57.

CHAPTER 52 Motor Control Circuits

FULL-WAVE CONTROL-Uses only one control rectifier and one single-ended trigger to obfain continuously variable a-c or dec fullwave output. May be designed for any standard service power voltage. Trigger is always synchronixed with power bridge because both obtain power from same source. Used to drive and adjust speed of single-
phose induction mator, drive and adjust speed of universal motors in machine tools, and vary light output of high-power incandescent lamp.-Full-Wave Control with One Trigger and One Control Rectifier, "Electronic Circuit Design Handbook," Mactier Pub. Corp., N.Y., 1965, p 187.

EIGHT-TONE CRANE MOTOR CONTROL-Eight preset frequencies or tones activate collec-
for relays that operate crane motor contactors. Sequence of preselected operations,

CONSTANT MOTOR SPEED-Precise confrol of instantaneous voltage and current for power transistors gives 90% operating efficiency in driving $400-\mathrm{cps}$ synchronous motor of portable tape transport from 28 v d-c. Negative 800-cps synchronixing pulses from precision oscillator are applied to base of Q3 to produce posifive pulses at bases of Q1 and Q2, cutting them off quickly.-J. W. Caldwell and T. C. G. Wagner, Boosting Power Transistor Efficiency, Electronics, 31:47, p 86-88.

$\begin{gathered} \text { Chas- } \\ \text { sis } \end{gathered}$	Frequency				R_{1}	$\left.\right\|_{12}$	$\left\|R_{3}\right\|$	R4
No	in cps	in $\mu \mu \mathrm{f}$			$\times 1.000$ ohms			
1	270	460	0.460	390	135	5270	. 560	1,000
2	1,600	220	220	100	135	5100	270	270
3	450	390	, 303	270	195	5560	560	1,000
4	2,600	127	100	68	135	5100	270	270
5	700	460	290	330	135	5270	270	270
6	3,800	68	68	78	100	100	270	270
7	1,080	330	270	270	100	270	270	270
8	4,500	100	\| 68	25	100	0 47	270\|	270

recorded on magnetic tape, is repeated by traveling crane during playback, to give positioning accuracies better than $1 /$ th inch. Table gives values of R-C network components in grid circuit of phase-shift oscillator to provide the eight tones.-G. V. Sadler, Taped Tones Confrol Overhead Crane, Electronics, 31:1, p 63-65.

GONIOMETER MOTOR AMPLIFIER-Portion of odf receiver output is seporately rectified and opplied to selective omplifier V1-V2-V3. C1, C2, ond C3 develop 90° phase shift required between two coils of goniometer drive motor ond serve also os low-poss filter with shorp cutoff above 150 cps. Overall goin is high enough so motor will exert full torque when goniometer is only 3° off true null.-J. F. Hatch and D. W. G. Byatt, Direction Finder with Automatic Readout. Electronics, 32:16, p 62-64.

FULL-WAVE DRIVE FOR D-C MOTOR-Requires four controlled rectifiers and centertapped tronsformer. Four magnetic cores ore required for full-wove push-pull action.W. R. Seegmiller, Controlled Rectifiers Drive A-C and D-C Motors, Electronics, 32:46, p 73-75.

SCR RING COUNTER DRIVES HYSTERESIS MOTOR-Speed ronge of 1,200 to 18,000 rpin is obtained with A00-sps, six-pole frac-tionol-hp hysteresis motor by modifying scr
ring counter to work in switching mode. Series rectifiers prevent spurious modes dur. ing commutotion. Output OX of circuit at left goes to center of circular conflguration,
ond OY goes to outer circle.-R. H. Murphy, Static Alternator Controls Three-Phose Motor, Electronics, 37:5, p 30-33.

TWO-SOURCE CONTROL-Acts as bidirectional current switch that selects one of two oppositely polarized current sources for d-c motor of gyro or accelerometer. Switch is operated by opposing forces of motor torsion and acceleration. Motor forsion opens switch, reducing speed and therefore torsion of motor, and acceleration forces then close switch. Shaft speed is therefore proportional to acceleration.-F. W. Kear, D-C Motor Controls Improve System Accuracy, Electronics, 33:41, p 76.

REVERSING DRIVE FOR SHUNT-WOUND MOTOR-Silicon contralled rectifiers in halfwave circuit act with unijunction transistor
and two rheostats to adjust speed in either direction.-J. C. Hey, The Widening World of the SCR, Electronics, 37:2S, P 78-85.
 -Power-switch stage consists of four 2NS14 transistors in parallel, to handle starting or stalled motor current approaching 100 amp. Rectifier and capacitor in parallel with motor
minimize possibility of damage to power transistors when they switch off heavily inductive motor load. Variation of time duration of on and off portions of power transistor cycle, controlled by SOK potentiometer
in mvbr, provides control of motor speed while giving high starting forque.-Texas Instruments Inc., "Transistor Circuit Design," McGraw-Hill, N.Y., 1963, p 477.

SERIES ACTUATOR SOLENOID DRIVE-Consists of controlled rectifier in series with each solenoid, and saturable magnetic core firing circuit. Each magnetic core has two control windings, one for adjustment and one for signal. Can also be used to drive d-e splitseries motors. Windings of motor then replace solenoids.-W. R. Seegmiller, Controlled Rectifiers Drive A-C and D-C Motors, Elecfronics, 32:46, p 73-75.

FULL-WAVE PUSH-PULL FOR A-C SERVO-MOTOR-Circuit is identical to full-wove push-pull dec shunt motor drive except for different arrangement of firing circuit. Limiting resistors R1 and R2 determine standby current.-W. R. Seegmiller, Controlled Rectifiers Drive A-C and D-C Motors, Electronics, 32:46, p 73-75.

ONE-SOURCE CONTROL-Q5 determines direction of current flow through motor winding, which in furn depends on position of motor control switch. Motor torsion opens switch, and acceleration during slowdown closes switch, to make motor speed propartional to acceleration.-F. W. Kear, D-C Motor Controls Impreve System Accuracy, Electronics, 33:41, p 76.

TWO-PHASE INDUCTION MOTOR DRIVETransistors used as controlled switches in inverter provide two-phose square-wave output from single $d-c$ source. Moy also
be used with hysteresis-synchronous motors to provide speed under load.-W. H. Card, Four Transistor Inverter Drives Induction Motor, Electronics, 32:B, p 60-61.

ACCELERATION-SÉNSING switch-Sensing switch controls Q1, which provides power for accelerometer motor. Q2 and Q3 provide damping by current limiting, to increase accuracy by one order of magnitude.-F. W. Kear, Dynamic Fluid Switch Senses Acceleration, Electronics, 34:38, p 64-67.

$\mathrm{R}_{1}-4.7 \mathrm{~K}, 10 \%$
R_{3} - 100 K VARIABLE-SPEED CONTROL
CR1-CRE GE A400
R_{4} - $100 \mathrm{~K}, 1 / 2 \mathrm{~W}_{1} 10 \%$
$\mathrm{C}_{2}=0.5 \mathrm{Hf} 1,50 \mathrm{~V}$
D1-GE. IN536
Z1 - 25v zener diode, 1 w

- pulse transformer, sprague 93220 OR EQUIVALENT

SCR1-GE C338

THREGETOR IOPTIONALTRANSIENT PROTECTION)

FULL-WAVE SPEED REGULATOR-Features closed-loop feedback armature control to regulate speed of $0.5-\mathrm{hp}$ shunt-wound d-c motor
over 6:1 range.-"Silicon Controlled Rectifier Manual," Third Edition, General Electric Co., 1964, p 145.

GOLF CART TRACTION DRIVE-Pulse-widthmodulating series motor control was designed to operate motor in Cushman golf cart from 36-v battery supply. Provides 200 amp for climbing steep inclines ond up to 300 omp
for starting. Eight MP506 transistors in parallel are used to switch peak motor load. Speed is changed by varying width of pulse that is applied to motor af constant rate, to vary overage motor voltage.-H. F. Weber,
"Solid-State DC Motor Control for Traction Drive Vehicles," Motorola Application Note AN-189, Mar. 1966.

FULL-WAVE REVERSING D-C MOTOR DRIVEDesigned around two scr's with common cathode (SCR2 and SCR3) and two more with common anodes (SCR1 and SCR4). If load is d-c motor, plugging action occurs if R1 is reversed suddenly. R14 and R15 limit fault current if voltage transient should fire odd or even-numbered pair simultaneously.-"Silicon Controlled Rectifier Manual," Third Edition, General Electric Co., 1964, p 141.

SMALL D-C MOTOR CONTROL-Will drive small permanent-magnet motor at speeds below 1 rpm up to full speed, in direct proportion to control voltage, without friction problems. Applies full voltage of 12 v to motor and provides speed regulation by interrupting voltage at about so eps and varying ratio of on time to off time.-Motor Speed Control, "Electronic Circuit Design Handbook," Mactier Pub. Corp., N.Y., 1965، p 28.

ULTRASONIC CONTROL RECEIVER-Five-stage amplifier Q1-5 amplifies both control signals, 38.285 kc and 41.805 kc , while Q6 and Q7 operate as class B detector-amplifiers to eliminate need for separate diode detectors. Desired control frequency energizes only one coil of double-fulcrum motor control relay. while noise acts on both coils and keeps relay balanced.-Transistor Amplifier Controls Remote Appliances, Electronics, 34:21, p 59.

HALF-WAVE DRIVE FOR D-C MOTOR-Uses controlled rectifiers to control armature of d-c shunt motor or d-c torquer, for opplicafions requiring push-pull output for reversible drive. Safurable reactor control windings are wound over both cores together. Maxi-
mum current during reversal from top speed in one direction to top speed in opposite direction is approximately 20 omp , with current dropping to 10 amp in 0.1 sec.-W. R. Seegmiller, Contralled Rectifiers Drive A-C and D-C Motors, Electranics, 32:46, p 73-75.

UNIVERSAL-MOTOR SPEED CONTROL-Regulated speed control is achieved by varying conduction angle of scr placed in series with armature and field of universal a-c/d-c motor. Makes use of motor residual field to induce counter emf in armature proportion ta speed, for use as feedback signal. Provides stable operation at low speeds for sewing machines and small appliances.-"Silicon Controlled Rectifier Manual," Third Edition, General Electric Ca., 1964, p 143.

REVERSIBLE HALF-WAVE SPEED CONTROLSimple circuit is adequate for majority of universal series-wound motar drive applications. Direction of rotation depends on which
half-cycle scr conducts, since series field is in a-c leg of bridge rectifier.-"Silicon Contralled Rectifier Manval," Third Edition, General Electric Ca., 1964, p 144.

PUNCHED TAPE CONTROLS MOTOR-Photofubes sense hales punched in pragrammed tape and feed resulting cammand signals
through relays ta three thyratrons whose loads are windings af step motor for milling machine.-A. G. Thomas, Digital Contral of Machine Taals, Electronics, 33:11, p 174-176.

ACCELERATION-SENSING SWITCH WITHOUT OVERSHOOT-Provides null copture in indicated balance paint far each lovel of acceleration, with bidirectional current switching for accelerameter motor.-F. W. Kear, Dynamic Fluid Switch Senses Acceleratian, Electranics, 34:3B, p 64-67.

BALANCED-BRIDGE REVERSING DRIVE-Phoso-sensitive servo drive supplies reversible half-wove power to armature of small permanent magnet or to shunt motor. Power circuit consists of two half-wave circuits back-to-back (SCR1-CR1 and SCR2-CR2) fired by ujt al on either positive or negative line half-cycle depending on direction of unbalance of reference bridge containing sensing olement RI, which can be photoresiator, thermistor, potentiometer, or output from control amplifier.-"Silicon Controlled Rectifier Manual," Third Edition, General Electric Co., 1964, p 142.

GOVERNOR-TRANSISTOR SPEED REGULATOR -Centrifugal governor is used as error defector, with contacts handling only a few microwatts. Two-transistor amplifier actuated by governor is connected ocross motor field resistor, with power being obtained from 24 v d-c motor bus. Maintains 0.5 -hp motor speed of $6,000 \mathrm{rpm}$ over input voltage range of 20 to 30 v .-Transistorized Speed Regulator, "Electronic Circuit Design Handbook," Mactier Pub. Corp., N.Y., 1965, p 30.

TRIAC-DIAC REVERSING SERVO CONTROLVaries speed and direction of S-amp reversible series o-e motor in accordance with d-c control signal. Polority of control signal determines direction of rotation. Gain potentiometer adjusts slope of speed versus confral voltage curve.-M. P. Southworth, Bidirectional Static Switch Simplifies Ac Control, Control Engineering, March 1964, p 75-76.

STEPPER-MOTOR PULSE GENERATOR-Unijunction ring counter energizes windings of stepper motor sequentially.-F. W. Kear, Digi-
tal Contral Uses Unijunction Transistors, Electronics, 34:18, p 79-80.

THREE-SPEED BLENDER CONTROL-Single scr safely handles 7.5 -amp current of $1 / 2-\mathrm{hp}$ motor. Feedback is used to change firing angle of scr as load increases, to maintain constant blending speed.-J. Eimbinder, SCRs In The Consumer Market, EEE, 14:8, p 100-103.

FIELD-EFFECT TRANSISTOR CONTROLS PULSE OSCILLATOR-C653 transistor serves as voh-age-controlled nonlinear resistor that varies time constant of oscillator. Can generafe narrow output pulses at rates up to several Mc, to drive stepping motor.-T. C. Ross, Field-effect Transistor Controls Pulse Oscillafor, Electronics, 37:18, p 80-81.

SPEED FEEDBACK-Introduction of speed feedback signal into firing circuit helps maintain constant torque regardless of speed. Tunnel diodes provide excellent stabilizing action at low speeds.-TD/SDR Combos for Sale, EEE, 12:3, p 62-64.

MOTOR NOISE ACTUATES MUTING SYSTEM-
Noise pulses from commutator-type funing motor in receiver are rectified and used to bias audio stage to cutoff for as long as tuning motor is running. Audio amplifier remains cut off for about 0.25 sec after motor stops.-Muting System for Motor-Tuned Receivers, "Electronic Circuit Design Handbook," Mactier Pub. Corp., N.Y., 1965, p 51.

CHAPTER 53 Multiplier Circuits

Q MULTIPLIER FOR TONE FILTER-Provides sta-
ble multiplication over wide temperature range, as required for high-selectivity singlefrequency felemetry tone filter. Center frequency is $\mathbf{B} \mathrm{kc}$ and bandwidth is 40 cps . Q is about 200.-W. New, Jr., Stable Q Multiplier, EEE, 13:4, p 41.

HALL-MULTIPLIER FIELD-COIL DRIVE-Feedback amplifier drives field coil current in phase with input signal over range of 0 eps to 7 kc , with less than 1.5% distortion.R. A. Greiner, Feedback Amplification Improves Hall-Effect Multipliers, Electronics, 34:34, p 52-55.

HALL-EFFECT MULTIPLIER-Circuit gives algebraic product of two inputs. Accuracy is only 0.5%, but cost is low. Contrul current is applied through long dimension of Hall semi-
conductor element, to produce voltage across width of element that is proportional to prodict of control current and magnetic flux density.-W. A. Scanga, A. R. Hilbinger, and
C. M. Barrack, Hall-Effect Multipliers, Electronics, 33:29, p 64-67.

FOUR-QUADRANT SIGNAL MULTIPLIER-Highspeed magnetic-amplifier square-law circuits with silicon diodes and resistors replace slowresponse thermal converters in four-quadrant analog multiplying device. Polority-reversible signal currents 11 and 12 are multiplied with
two square-law and two push-pull magnetic amplifier circuits. Reversible-polarity output drives ink oscillograph.-W. A. Geyger, Multiplying Circuit Uses Magnetic Amplifiers, Electronics, 32:2, p 58-59.

POLARITY-COINCIDENCE MULTIPLIER-Detects weak low-frequency signals in high-noise background, with output indicating presence
and phase shift of signals received of dual inputs. Accuracy is within 1% for inputs of 1 to 500 cps.-B. M. Rosenheck, Detecting

Signals by Polarity Coincidence, Electronits, 33:5, p 67-69.

ANALOG VOLTAGE MULTIPLIER-Pulse-width modulator and push-pull rectangular pulse generator driving diode-bridge switch give product of two input voltages X and Y, which must be in range of -10 v to +10 v . Input circuit of pulse-width modulator DI-VI is supplied by lo-ke negative-slope sawtooth and input variable X.-J. Ash and Y. J. Fokkinga, Inexpensive Multiplier for Analog Computers, Electronics, 35:18, p 37.

SQUARE ROOT OF SUM OF SQUARES OF THREE VARIABLES-Output signal of Halleffect squaring multiplier HG is fed to differential amplifier A. Amplified difference controls current through lamp that determines resistance of photoresistor r which, with 2N174, controls Hall current derived from voltage source.-H. H. Wieder, SquareRoot Computer Uses Hall Multiplier, Electronics, 37:4, p 30-31.

HALL MULTIPLIER FOR ANALOG RATIO COM-PUTER-Indium arsenide Hall plate serves as analog multiplier in circuit with photoresistor

R and 2N174 grounded-emitfer power amplifier that controls drive current of Hall generator. Differential amplifier A in feedback
loop including lamp I controls Hall current. -H. H. Wieder, Analog Ratio Computer Uses Hall Multiplier, Electronics, 36:45, p 46-47.

HALL-MULTIPLIER PLATE DRIVE-Current remains in phase with signal from 0 cps to over 20 kc . Distortion is less than $\mathbf{1 \%}$ over ables.-A. J. Ferraro, Multiplier for Analog Computers, Electronics, 33:45, p 73-74.
entire range.-R. A. Greiner, Feedback Amplification Improves Hall-Effect Multipliers, Electronics, 34:34, P 52-55.

PULSE-AMPLITUDE MODULATOR-Used in multiplier that acts with one of operational amplifiers of analog computer. Double-triode VI here provides pulse-amplitude modulation, for use with separate pulse-width modulator to form desired product of two input vari-

TRIANGLE MULTIPLIER-Electronic multiplication is achieved by making slope of sawtooth wave proportional to one factor and duration to other factor. Peak haight of triangle will then be proportional to product. Triangle is generated by charging C with

PROBABILITY MULTIPLIER-Based on converting two analog factors to duty cycles of pulse trains of uncorrelated repetition rate. Pulse-train control of and gate is such that there is no output unless both trains are simultaneously positive, and then average value of gate output is proportional to prod-uct.-T. R. Hoffman, Analog Multiplication Using Time as One Variable, Electronics, 33:33, p 136-13B.

collector current of constant-current generafor Q1 during time interval in which Q2 is cut off.-T. R. Hoffman, Analog Multiplication Using Time as One Variable, Electronics, 33:33, p 136-138.

PULSE-WIDTH MODULATOR-Combines funcfions of rectangular pulse generator and width modulator for analog multipliar having error less than 2% of full-scale outputA. J. Ferraro, Multiplier for Analog Computers, Electronics, 33:45, p 73-74.

a MULTIPLIER FOR F-M MONITOR-Checks calibration of $\mathrm{f}-\mathrm{m}$ and television transmitter percentage-of-modulation monitors by using Q multiplier with monitor to make Bessel function measurements.-D. S. Henry, Calibrating Broadcast Modulation Meters, Electronics, 33:16, p 67.

CHAPTER 54
 Multivibrator Circuits

TV HORIZONTAL-SWEEP OSCILLATOR-Cath-ode-couped multivibrator includes noise-immunizing tuned circuit in plate circuit of triode. -C. L. Barsony, Graphical Checkout of Multivibrator Design, Electronics, 33:8, p 55-57.

TRANSFORMER-CONTROLLED MVBR-Gives sharper trailing edges and tighter control over ratio of on times of the two sides, as compared to choke control for same freerunning mubr.-W. M. Carey, Using Inductive Control in Computer Circuits, Electronics, 32:38, p 31-33.

PREFERRED PRF GENERATOR-Astable plate-to-grid coupled mvbr serves as moderately stable repetition-rate generator having greoter frequency stability than blocking oscillator and fewer components than Wienbridge oscillator. One drawback is thot output impedance for positive pulses equals plote load resistance, which must be relatively high for good frequency stobility. Output is $260 \vee$ for 5814A and $125 \vee$ for 6111. Maximum prf is 8,000 pps.-NBS, "Handbook Preferred Circuits Navy Aeronautical Electronic Equipment,', Vol. I, Electron Tube Circuits, 1963, PC 40, p 40-2.

Components:
R1, R5: 68 Kn (5814 A) ; 39 K 11 (6111).
$\mathrm{Cl}=\mathrm{C} 2=\underset{\mathrm{prf}}{0.79} \times 10^{\mathrm{s}} \mathrm{pf}$, where prf$=$ pulse repetition frequency in pulses per second.

10-MICROSEC MONOSTABLE MVBR-Output pulse width is approximately 10 microsec with values shown for basic one-shot.Texas Instruments Inc., "Transistor Circuit Design," McGraw-Hill, N.Y., 1963, p 381.

150-KC BISTABLE-Designed as storage element in digital logic circuits for computer, control, and communication equipment. Can be used as counter and as serial or parallel shift register at operating rates up to 150 kc under maximum load. Article gives connections of lettered terminals for various circuit functions and performance characteristics.NBS, "Handbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. II, Semiconductor Device Circuits, PSC 9 (orig: inally PC 212), p 9-2.

RELAY MVBR WITH ISOLATOR DIODES-Use of diodes to isolate capacitors reduces capacitance requirements for low frequencies. High-resistance relays for K2 and K3 cut costs.-R. L. Ives, Multivibrator for Low Frequencies Uses Relays, Electronics, 34:32, P 166-169.

CATHODE-COUPLED TRIGGER-Series diode improves sensitivity for cathode-coupled monostable mubr while giving stability of 5% for threshold levels of several mv. Second tube can be triode, permitting use of 608 tri-ode-pentode in compact assembly.-M. M. Vojinovic, Series Diode Increases Multivibrafor Sensitivity, Electronics, 32:17, P 90-91.

CRYSTAL CONTROL IMPROVES STABILITYUse of 7-Mc crystal in place of feedback capacitors in conventional mvbr improves stability and waveform while still permitting operation down to 750 kc . Circuit also operates with one crystal; variable 7-47 pf capacitor in noncrystal-controlled side permits varying pulse width on this side over wide range.-H. R. Newhoff, Crystal-Controlled Multivibrator has Better Stability, Electrenies, 36:15, P 60-61.

PREFERRED NONSATURATING BISTABLE-Used for frequency division of pulse trains when high stability is required. Cascade connection with appropriate feedback can provide ony desired ratio. Also useful for coding, gating,
and synchronixing. Maximum operating rate is Up to 1 Mc.-NBS, "Handbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. II, Semiconductor Device Circuits, PSC 15 (originally PC 253), P 15-2.

PREFERRED BISTABLE-In response to negative trigger, generates voltage steps of opposite polarity at the two outputs. Has no timing function, so second trigger is needed to restare circuit to initial state. Used as
radar gate. Requires 150 v plate supply for 6111 and 300 v for 5814A.-NBS, "Handbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. I, Electron Tube Circuits, 1963, PC 42, P 42-2.

HIGH TRIGGERING SENSITIVITY-Semiconductor diode is Used as series nonlinear element in feedback loop of monostable mubr, to give good stability along with improved triggering sensitivity for nuclear event registration, pulse analysis, counting, and time mod-ulation.-M. M. Vojinovic, Series Diode Increase Multivibrator Sensitivity, Electronics, 32:17, p 90-91.

PRF GENERATOR-Provides frequency stability of 3% as repatition rate generator in airborne radar. Free-running connections are shown, but may also be triggered externally.-NBS, 'Handbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. 1, Electron Tube Circuits, 1963, p N5-1.

CONSTANT-PULSE-WIDTH ONE-SHOT-Monostable circuit holds pulse width constant within 0.5% from $-65^{\circ} \mathrm{C}$ to $110^{\circ} \mathrm{C}$. Stages Q1 and Q2 form conventional one-shot. Use
of differential amplifier for $\mathbf{Q 2}$ stabilizes base voltage for furn-on of Q2 near ground. Con-stant-current transistor Q3 minimizes effects of small voltage variations, and switching
transistor Q4 provides 35-v output pulse with base line af ground.-R. Stevens, One-Shot Multi Produces Constant Pulse Width, Electronics, 34:13, p 74-75.

LJNEAR VOLTAGE-FREQUENCY CONVERTERAddition of two transistors to conventional astable mvbr gives constant-current charging of cross-coupling capacitors C1 and C2. Output frequency then varies linearly from

PRF GENERATOR-Used as repetition rate generator in airborne radar. Gives greater frequency stability than blocking ascillator and greater economy of components than Wien-bridge oscillator.-NBS, "Handbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. 1, Electron Tube Circuits, 1963, p N5-1.

10-MC TD MVBR-Uses two 1-ma, 0.01-ohm tunnel diodes.-I. A. Lesk, N. Holonyak, Jr., and U. S. Davidsohn, The Tunnel DiodeCircuite and Applicatione, Electronics, 32:48, p 60-64.

2,000 to 7,000 eps as dec inpuf rises from 0 to 5 V.-R. W. Biddlecomb, Latest Multivibrator Improvement: Linear Voltage-toFrequency Converter, Electronics, 36:17, p 64-65.

RELAY-ONLY MVBR-Consumes power only during switching. Can provide bistable, monostable, or astable operation of frequencies from a few operations per second to a few operations per hour.-R. L. Ives, Multivibrator for Low Frequencies Uses Relays, Electronics, 34:32, p 166-169.

(169

NONCUTOFF MONOSTABLE-Optimum operating conditions are achieved by keeping amplifiers connected to current sources continuously. With constant input voltage, triggering makes threshold level shift. Diodes in feedback loop improve switching speed. -H. Inose, Y. Yoshida, and H. Tada, Noncutoff Circuits Improve Trigger Switching, Electronics, 35:30, p. 36-39.

THERMAL MONO-Accurate pulse periods of 15 sec to 2 minutes are produced by thermal mono using silicon resistor (Sansistor) whose resistance varies with temperature,
power, and time. Used as timer to turn on plate supply 30 sec ofter filament supply.L. L. Kleinberg, Sensistor Produces Long, Reliable Pulses, Electronics, 37:31, p 51-52.

FREE-RUNNING CASCODE MULTIVIBRATOROutput signal at cathode of V1 is nearly perfect square wave, either positive or negative depending on setting of potentiometer. -C. Sing, Advantages of Free-Running Cascode Multivibrators, Electronics, 37:5, p 28-29.

WIDE MARK-SPACE RATIO-Pulse width and interpulse period are independently adjustable from tenths of microsecond to several seconds by varying Cbl-Rbl.-5. Tesic, Pulses with Voriable Mark-Ta-Space-Ratio, Electronics, 38:14, p 78-79.

5-MC MVBR-Constant-current generators Q1 and Q2 conduct continuously. Timing capacifor C1 charges through Q1 and Q4 and discharges in next half-peried through $\mathbf{Q 2}$ and

Q3, all in saturated states. Output pulse amplitude is 4 v at up to $5 \mathrm{Mc} .-\mathrm{V}$. M. Ristic, Simple Multivibrator Operates at 5 Me, Electranics, 38:17, p 86-87.

TWO-TRANSISTOR CASCODE MULTIVIBRATOR -Two capacitors in voltage-divider sterage circuit control transistors to give choice of rectangular or sawfooth waveforms at output of Q1, depending on time constants C1-R3 and C2-R4.-C. Sing, Advantages of Free-Running Cascode Multivibrators, Electronics, 37:5, p 28-29.

SINGLE-TRANSISTOR ONE-SHOT-Requires fewer components and gives higher reliabil-ity.-T. F. Heiting, One-Transistor Single-Shot, Electronics, 34:16, p 66.

MONOSTABLE PULSE FORMER-Output stage of driver serves alsa as first stage of manostable multivibrator, with saving in components. Here Q2 is output of Schmitt trigger
and first stage of monostable mvbr Q2-Q1. -R. L. Paul and A. S. Otfenstein, Eliminating the First State of a Monostable Multivibrator, Electronics, 35:36, p 54-55.

MAGNETICALLY COUPLED MVBR-Nonlinear element T in common-emitter lead stabilizes against temperature variation to within 0.1%
over $150^{\circ} \mathrm{C}$ range. Output is 100 pps.-M. Ingenito, Magnetically Coupled Multivibrators, Electronics, 36:13, P 42-43.

TWO-TRIODE CASCODE MULTIVIBRATORTwo capacitors in voltage-divider storage circuit control dual-triode multivibrator to produce linear sawtooth waveform, square wave, sine wove, ar pulse.-C. Sing, Advantages of Free-Running Cascode Multivibrators, Electronics, 37:5, p 28-29.

UNIJUNCTION CONTROL OF MVBR-Transistor mvbr trigger far scr inverter is contralled by unijunction relaxation ascillator Q1. Squarewave output af TI is required for triggering some inverter circuits.-D. V. Jones, Turn-Off Circuits for Controlled Rectifers, Electronics, 33:32, p 52-55.

EMITTER-COUPLED MVBR-When QI conducts, Q2 is cut off and conversely. Duration of both quasi-stable states is controlled by Ce. Q2 should saturate when canducting, to prevent distortion in flat tops af rectangular output pulses.-B. Rakovic, One More Transistor makes a Linear Sawtooth, Electranics, 35:49, p 50-51.

MICROSEC FALL TIME-Fast rise time of astable mubr is used to set and reset bistable flip-flop, whose output waveform follows that of astable with important exception that
now both rise and fall times are very fast, of the order of few microsec for 5-cps square wove.-M. I. Neidich, Astable Multi has Microsecond Fall, EEE, 11:7, p 28.

RELAY-ONLY MVBR FOR A-C-Use of a-c lotching relay and rectifier diodes permits operation of low-frequency reloy-type mubr from a-c source.-R. L. Ives, Multivibrator for Low Frequencies Uses Relays, Electronics, 34:32, p 166-169.

CHOKE-CONTROLLED FREE-RUNNING MVBR5mall resistors between chokes and ground bias transistors initially into active region to insure self-starting. Crossover resistors insure that chokes recover rapidly.-W. M. Carey, Using Inductive Control in Computer Circuits, Electranics, 32:3B, p 31-33.

3-KC SCR TRIGGER-Two outputs from mvbr give alternating trigger pulses to each rectifier. R1 is adjusted for symmetrical opera-tion.-D. V. Jones, Turn-Off Circuits for Controlled Rectifiers, Electronics, 33:32, p 52-55.

RZ TO NRZ ONE-SHOT-Zero recovery time of monostable multivibrator orrangement, achieved by using energy of input capacitor
to recharge fiming capacitor C2, makes circuit useful far converting digital data from
refurn-to-zera format to non-return-to-zero. -P. T. Rux, One-5hot Multivibrator with Zero Recovery Time, Electranics, 39:2, p 75-76.

ULTRA-LONG MONO-Has quiescent power drain of zero. Generates step-function gate with good leading and trailing edges, and provides delayed pulse of either polarity for triggering cascaded circuits. Q1 is 2N1442,
scr Q2 is 2N1595 or 3A31, and ujt Q3 is 2N489. Values for R3 and C2 give 50 -sec pulse duration.-Ultra-Lang Monostable Mulfivibrator, "Electronic Circuit Design Handbook," Mactier Pub. Corp., N.Y., 1965, p 66.

CASCADED ONE-SHOTS GENERATE PULSES IN BURST-Addition of redundant stages to timing portion of conventional monostable mvbr permits generating bursts of eleven 2-kc pulses every 0.1 sec. Used for testing decimal counters at high counting rates; each burst gives visible one-digit advance in readout because of 94.5 -millisec time between bursts.-J. Gaon, Simple Caunter Tester Uses Cascaded One-Shots, Electronics, 36:14, P 40-41.

PLATE-TO-GRID COUPLED MAIN-GATE MVBR -Used in combinatian search and gun-laying radar. Triggered by connecting plate of trigger inverter or switch tube in parallal with plate of normaliy-off mvbr tube. Provides positive unblanking gate for crt. Different
gate lengths are obtained by switching mvbr copacitors.-NBS, "Handbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. 1, Electron Tube Circuits, 1963, p N10.2.

FLIP-FLOP FOR DATA REGISTER-Eccles-Jordon type circuit uses surface-barrier transistors with saturation biasing. Large registers for computers are assembled by using one flip-flop per digit.-W. Orvedahl and J. H. Shepherd, Designing Data Registers with Simple Diode Circuits, Electronics, 36:8, P 48-50.

NOISE SUPPRESSION-Diode in collector circuit makes monstable mvbr immune to most noise pulses.-8. D. Simmonds, Diode Quiets Input to Monostable Multi, Electronics, 38:19, p 99-100.

200, 400, AND 800 PPS PRF GENERATORUsed in airborne radar. Frequency stability is $\mathbf{3 \%}$ for $\mathbf{2 0 0}$ pps and $\mathbf{8 \%}$ for higher frequencies. One drawback of mubr here is that output impedance equals plate load resistance, which must be relatively high for good frequency stability.-NBS, "Handbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. 1, Electron Tube Circuits, 1963, p N5-1.

MAIN-GATE MVBR WITH DIODE LIMITER-
Diode-connected triode in parallel with output tube plate limits positive swing at this point. Circuit is triggered by blocking-oscillator pulse through normally-on tube cathode resistor.-NBS, "Handbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. 1, Electron Tube Circuits, 1963, P N10-4.

CONTINUOUSIY VARIABLE PRR-When bosic mubr is biosed from constant-current source, tops of square wave become flat across collector resistor, and triangular wave across capacitor becomes linear. Pulse repetition rate then varies directly with magnitude of constant biasing current, over range of 5.6 cps to 2.68 Mc, by using only seven different capocitance valves for C (from $\mathbf{3 3 0}$ pf to 100 $\mathrm{mfd})$.-J. H. Bayne, Jr., and R. J. Hoislmaier, Improved Multi with Continuously Variable Rep Rate, EEE, 13:5, p 44-45.

FAST-RECOVERY ONE-SHOT-Dynamic period can be varied linearly over range of 20 to 425 microsec. Retrigger time is only 3 microsec for short periods and 14 microsec for longest periods. Circuit is conventional except for d-c isolation diode DI and drive resistor R4.-R. S. Hughes, A Linear, VoltageVariable One-Shot With Fast Retrigger Time, EEE, 13:5, p 78-79.

REDUCING RESET POWER LEVEL-Addition of diode Dl to sonventional mvbr decreases required amplitude and duration of resef pulse.
-H. Inose and T. Tomiyama, Diode Lowers Mulf's Reset Power Level, Electronics, 39:13, p 76-77.

VARIABLE-POWER ONE-SHOT-5witches load currents from few ma to over 1 amp for precise time interval ranging from fow millisec to one minute. Is excellent solid-state substitute for slug relays, dashpots, and thermal timers. Several stages can be cascaded to form sequence timer. With values shown, ond RT af 680K, l-v trigger pulse initiotes l-sec on period.一J. C. Rich ond R. D. Turner, Variable Time, Power One-Shot Multivibrator, EEE, 12:7, p 25-26.

EMITTER-COUPLED ASTABLE LOGIC DRIVER-Self-storting design gives good frequency stability along with high-speed soturated positive and/or negative outpuls. Currentmode logic output is optional, being obtained when circuit Q3-04 in dashed box is replaced by circuit of Q5. C1 determines operoting frequency in ronge from 50 cps to 8.5 Mc.-D. R. Hoppe, Emitter-Coupled Astable With Saturated Output, EEE, 14:7, p 106.

WIDE-RANGE MONO-Adding one transistor range 150 times.-G. Marosi, Wide Range (Q6) to linear one-shot increases frequency Monostable Multivibrator, EEE, 13:9, p 76.

TRANSISTORIZED FREE-RUNNING CASCODE MULTIVIBRATOR-Output woveform can be rectangular or sowtooth, with polarity depending on setting of potentiometer.-C. Sing, Advantages of Free-Running Cascode Multivibrators, Electronics, 37:5, p 28-29.

Y-POSITION DETECTOR FOR MISSILE TRACKER -Flip-flop Q2-Q3 is triggered by processed video pulse fed through Ql^{1} and by delayed vertical sync pulse fed through Q4. Width
of flip-flop output pulse, related to target position, is integroted by Q6-Q7 and amplified by QB-Q9 to give d-c output voltage proportional to Y-position of target.-T. L.

Poppelbaum, TV Camera Tracker: Can it Detect Missile Decoys? Electronics, 36:17, p 51-55.

ADJUSTABLE-DUTY-CYCLE MONO-When rotio of pulse width to pulse spocing exceeds volue set by R12, width of output pulse is outomoticolly reduced to mointoin duty cycle ot preset moximum. Used os pulse driver for high-power omplifier when duty cycle must be limited to prevent overheoting. If duty cycle is set for 50% ond frequency is increosed, output will be square wove for all frequencies up to moximum frequency limit for circuit. R9 odjusts output pulse width from 0.7 to 7 microsec.-D. N. Lee, Monostoble Multi With Adjustoble Duty Cycle, EEE, 13:9, p 92-94.

50-KC FREE-RUNNING MVBR-Uses 2N1304 tronsistors hoving bose-emitter breokdown of -25 v , moking emitter diodes unneces-sory.-Texos Instruments Inc., "Tronsistor Circuit Design," McGrow-Hill, N.Y., 1963, p 380.

THERMISTOR COMPENSATED ONE-SHOT-Negotive-temperoture-coefficient thermistor in pulse width determining network keeps pulse width of mubr constont within 0.6% over ronge of $25^{\circ} \mathrm{C}$. Bosic period with values shown is 357 microsec, increosing to 359 microsec of temperoture extremes.-B. Hedin, Temperoture-Compensoted One-Shot, EEE, 12:5, p 75.

ULTRA-LONG MONO-For opplicotions having only light looding. If required to drive heavy loods, stondby efficiency is reduced, and C3 must be so large that circuit could be occidentally turned off by negative supply bus tronsients.-J. C. Schoeffert and N. F. Goldman, Improved Uliro-Long Monostable Multivibrator, EEE, 12:12, P 57-58.

FAST-RECOVERY ONE-SHOT-Pulse width con be voried from 0.1 microsec 1010 millisec in decade ranges by changing timing capocitors. Used in commercial radar range unit and in pulse anolyzer.-J. Rogers, Fast-Recovery One-Shot Multi Gives 10:1 Width Control, EEE, 14:4, P 44-45.

CATHODE-COUPLED MAIN-GATE MVBR-Positive gate is d-c coupled from plate of nor-mally-on tube to cathode follower whose cathode resistor is common with diode clamp of main-gate mubr. Negative gate for unblanking is taken from plate that is a-c coupled to opposite grid of mubr.-NBS, "Handbook Preferred Circuits Navy Aeronaufical Electronic Equipment," Vol. 1, Electron Tube Circuits, 1963, p N10-2.

DOUBLE-COUPLED MAIN-GATE MVBR-Uses both cathode and plate-to-grid coupling, with gate length changed by switching of potentiometers. Used in radar to provide gate during which display sweop is generated, along with gates for waveforms that must be coincident with display sweep.-NBS, "Handbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. 1, Electron Tube Circuifs, 1963, p N10-3.

LONG-PULSE MONO-Advantages are high current gain, long pulse width with relatively small timing capacitance, and low dissipation when off. Pulse width is 11 sec. Drives 19.6 K load.-J. M. Mever, High-Gain, Long-Pulse Monostable, EEE, 14:4, p 41.

POWER ONE-SHOT-Complementary-symme-
try one-shot supplies 1.4 w for 0.1 sec to relay coil on very low duty cycle, without drawing standby power. Used to discharge large 10-ky copacitor.-W. P. Mitchell, Power One-Shot, EEE, 13:6, p 68.

HIGH-POWER ASTABLE-Simple astable circuit design eliminates external trigger, minimizing number of components. Voltage dividers R1 and R2 provide gate voltage for scr's. Both dividers start charging associated capacitors $\mathbf{C 2}$ until one scr breaks down, initiating oscillation. Used in converter power supplies.-W. B. MeCartney and E. O. Uhrig, Astable High Power Multivibrotor, EEE, 10:12, p 30-31.

FAST-TURNOFF MONO-Has long delay time along with fast rise and fall times leach 30 nsec). Pulse amplifude is clamped af 5 v.Fast Turnoff Monostable Multivibrator, "Electronic Circuit Design Handbook," Mactier Pub. Corp., N.Y., 1965, P 69.

IMPROVED TRIGGERING OF MONO-Addition of three diodes and one resistor to convenfional monstable mvbr permits increasing value of timing resistor Rt without making circuit susceptible to false triggering. $-H$. Cohen, Eliminating False Triggering in Monostable Multis, EEE, 14:B, p 16 B .

100 CPS TO 1 MC ASTABLE-Giver frequency change of 10,000 with reasonably good linearity over most of operating range. Two parts of timing cycle can be varied independently over wide range.-W. J. Mattox, A Versafile, Very-Wide Range Multivibrator, EEE, 13:7, p 59-61.

1 CPS-250 KC ASTABLE MVBR-Used as freerunning oscillotor for generating square waves and fiming frequencies, and for frequency division. Synchronixing pulses permit
generation of subharmonics. Sync pulse amplitude must exceed $+1.5 \vee$ with rise time less than 1 microsec.-"Transistor Manual," Seventh Edition, General Electric Co., 1964, p 201.

400-CPS UJT MVBR-Off time is determined primarily by R1, and on time primarily by R2. Frequency is inversely proportional to size of copacitor.-'Transistor Manval," Seventh Edition, General Electric Co., 1964, p 340.

UJT MVBR—Unijunction transistor serves as multivibrator, with Q2 amplifying its output and providing isolation from load.-F. W. Kear, Unijunction Transisfor Pulse-Circuit Design, Electronics, 35:21, p 5B-60.

TRANSIENT-IMMUNE MONO-Diode in series with cutoff collector load of Q1 provides protection against undesirable triggering by power supply transients.-W. B. Smith, Jr., Transient-Protection of Monostable Multivibrators, EEE, 11:3, p 38-39.

tone signals for testing digital communications and data processing equipment.-Wide Range Variable Multivibrator, "Electronic Circuit Design Handbook," Mactier Pub. Corp., N.Y., 1965, p 109.

600-MICROSEC OUTPUT-PULSE MONO-Similar to flip-flop except that one cross-coupling network permits a-c coupling only. Flip-flop can therefore remain in its unstable state only until reactive components discharge. Use of inductor in place of capacitor for timing gives much better pulse width stability at high temperatures. Operating range is $\mathbf{- 5 5}$ to $71^{\circ} \mathrm{C}$.-"Transistor Manual," Seventh Edifion, General Electric Co., 1964, p 201.

DOUBLE-COUPLED MAIN-GATE MVBR-Uses both cathode and plate-to-grid coupling, with gate length chonged by switching of potentiometers. Differentiated negative gate from delay mubr is applied as trigger to grid of normally conducting tube if undeloyed range sweep is desired, or to grid of normally-off fube when delayed sweep is used.-NBS, "Handbook Preferred Circuits Navy Aeronoutical Electronic Equipment," Vol. 1, Electron Tube Circuils, 1963, p N10-3.

SYNCHRONIZED ASTABLE MAIN-GATE MVBR -Used in combination search and gun-laying radar. Different gate lengths are obtained by switching capacitors. Provides positive unblanking gate.-NBS, "Handbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. 1, Electron Tube Circuits, 1963, P N10-4.

CATHODE-FOLLOWER COUPLING FOR MAINGATE MVBR-Triode cathode-followers provide coupling from plate to grid of radar main-gate mvbr. Provides posifive unblanking gate.-NBS, "Handbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. I, Electron Tube Circuits, 1963, p N10-2.

0.01-MICROWATT 40-CPS MVBR-Both npn and pnp transistors conduct at same time for part of cycle, and both are cut off for remainder of cycle, so average power consumed is much less than when one transisfor always conducts. Frequency is 40 cps . With $0.6-\mathrm{v}$ supply furnishing 0.015 microomp, fotal power consumption is 0.009 microwatt. -W. G. Shepard, A 0.01 Microwatt Multivibrator, EEE, 10:B, p 29.

250-KC MONO-When triggered by input pulse up to 5 v , switches to unstable state and remrins for predefermined time before returning to original stable state. Used for standardizing random-width pulses and generating fime-delayed pulses. Output pulse duration range is 2 microsec to 1 sec. Maximum input frequency is 250 kc .-"Transistor Manual," Seventh Edition, General Electric Co., 1964, p 201.

FAST-RECOVERY HYBRID ONE-SHOT-Improved configuration provides wide timing range, good timing stability, and clean waveforms over extremely wide range of duty cycles. Can be retriggered immediately after completion of timing cycle without loss in overall timing accuracy.-"Transistor Manual," Seventh Edition, General Electric Co., 1964, p 346.

SPEEDING ONE-SHOT RECOVERY-Additional transistor Q3 reduces charging time of timing capacitor, thereby increasing duty cycle. With values shown, circuit provides 10 -microsee pulses with recovery time of $\mathbf{0 . 2 5}$ microsec, corresponding to repetition rate of almost 100,000 pps and 97.5% duty cycle.-W. A. Ross, Added Transistor Reduces One-Shot Recovery Time, EEE, 12:4, p 60.

BISTABLE INDICATOR LAMP DRIVER-Permits controlling lamp with short trigger pulses, for control panel of computer. Negative 2-v trigger at A furns on lamp, which then remains on due to regenerative feedback in circuit.

Positive pulse af A turns out lamp. Use of complementary-type transistors minimizes standby power when lamp is out.-"Transistor Manual," Seventh Edition, General Electric Co., 1964, p 202.

PLATE-TO-GRID COUPLED MAIN-GATE MVBR -Triggered by connecting plate of trigger inverter or switch tube in parallel with plate of normally-off mubr fube. Unblanking gate is generated at mubr as negative output. Used in radar to provide gate during which
display sweep is generated, together with gates for generating waveforms that must be coincident with display sweep.-NBS, "Handbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. 1, Electron Tube Circuits, 1963, p N10-2.

IMPROVED ULTRA-LONG MONO-Elimination of reset fransistor and coupling diode makes circuit insensitive to supply bus transients, cuts standby current to essentially zero, and improves efficiency under heavy loading. Will handle loads above 150 ma.-J.C. Schaeffert and N. F. Goldman, Improved Ultra-Long Monostable Multivibrator, EEE, 12:12, p 57-58.

BISTABLE MAIN-GATE MVBR-Provides positive unblanking gote. Used in rodar to provide gates during which disployed sweep is generoted, along with gotes for waveforms that must be coincident with disploy sweep,
but monostable mubr is generally preferred for this opplication.-NBS, "Handbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. 1, Electron Tube Circuits, 1963, p N10-3.

UJT BISTABLE WITH DIODE DECOUPLINGNeeds only small negative trigger at X for turnoff.-T. P. Sylvan, Bistable Circuits Using Unijunction Transistors, Electronics, 31:51, p 89-91.

TUNNEL-DIODE MONOSTABLE-Used as pulsecontrolled oscillator. Power consumption is very low.-'Transistor Manual," Seventh Edifion, General Electric Co., 1964, p 366.

MAIN-GATE MVBR WITH TRIODE LIMITERTriode connected to grid of normally-on tube limits swing of voltage. Plate of shutoff tube is tied to point in d-e coupling network between plate and grid, to give greater flex-
ibility in setting plate voltage level of shutoff tube.-NBS, "Handbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. 1, Electron Tube Circuits, 1963, p N10-5.

MONO WITH NEGATIVE RECOVERY TIMEWill respond to input pulses occurring even before end of output pulse, which in effect gives negotive recovery time. If circuit begins normal 1,000-microsec cycle and another trigger pulse orrives in 500 microsec, output pulse will lost 1,500 microsec, or 500 microsec longer than usual. In other words, out-
put pulse continues for 100 microsec ofter last trigger pulse. Input pulses should be of stondardized voltoge and long enough to discharge 0.01 -mfd capocitor,-Monostable Circuit with Negotive Recovery Time, "Electronic Circuit Design Handbook," Mactier Pub. Corp., N.Y., 1965, p 72.

UJT BISTABLE WITH CLAMP-Clomping diode holds emitter voltage below peokepoint voltaga. When negative frigger at base B2 turns on transistor, D2 is back-biased and R1 becomes emitter load. Operation is stable if capacitance between emitter and base B1 is kept below critical value.-T. P. Sylvan, Bistable Circuits Using Unijunction Transistors, Electronics, 31:51, p 89-91.

TRANSISTOR-UJT MVBR-Uses low-cosi 7A35 silicon mesa transistor.-"TTransistor Manual," Seventh Edition, General Electric Co., 1964, p 341.

MULTIVIBRATOR-CONTROLLED RELAY-Control signal is used to trigger mubr that operates relay when input signal is greater thon predetermined leval (about 10 mv), and
releases relay immediately when signal falls below this level.-G. B. Miller, Multivibrator Operates Relay, Electronics, 31:49, P 106112.

IMPROVED ONE-SHOT-Improvement of basic circuit uses less power and fower components, while providing higher timing accuracy.T. G. Ellestad, Improved One-Shot Output Circuits, EEE, 13:8, p 67.

CHAPTER 55
 Noise Circuits

1-KC NOISE FIGURE TEST SET-Used in short-circuit forward current fransfer ratio measuring low-frequency common-emitter -Texas Instruments Inc., "Transistor Circuit Design," McGraw-Hill, N.Y., 1963, p 304.

FAIL-SAFE COMMUNICATIONS SQUELCH CIR-CUIT-Circuit adjusts automatically to changing noise levels in point-to-point vhf and uhf reseivers while suppressing noise when no carriar is prsesnt, but stays open when re-
ceiver gain is below threshold lovel of 0.7 microvolp over range of 108.95 to 135.95 Mc. Schmitt trigger gives fast turn-on and furn-off of receiver audio output af predefermined carrier-fo-noise ratios.-H. G. Mi-
chael, Fail-Safe Squelch Circuit Adapts to Changing Noise Levels, Electronics, 36:1, p 88-91.

NOISE CORRELATOR-Requires two inputs, reforence signal derived from modulating source and signat-pulse-noise input from receiver under test. Signal and noise components can then be measured separately. -B. T. Newman, Evaluating Radio Receiver Susceptibility to Inferference, Electronics, 34:15, p 70-74.

DETECTION IN NOISE-Time derivatives of noise-contaminated input signals control electronic switches which control sampling and holding unit. In mode for defection, signal is sampled af its peaks and troughs. In mode for backbone defection, involving additive noise, signal is sompled at its inflection points.-N. D. Diamantides, Nonlinear Filter Detects Envelope or Backbone, Elecfronics, 35:18, p 52-54.

OUT-OF-BASEBAND NOISE AMPLIFIER-Provides transfer function that is essentially logarithmic, with slope of 5 to 7 db per octave, to serve as bias voltage for differential com-
biner of i-f amplifier in troposcatter f-m receiver. Amplifier control range extends 40 db above threshold. 5ignal-noise ratio of highest baseband channel is $70 \mathrm{db} .-\mathrm{P}$. Gruber,

Crystal Converter for Tropo-Scatter Receivers, Electronics, 31:15, p 78-82.

TRIODE VARIABLE-RESISTANCE THRESHOLD CONTROL SWITCH-Passes only signals above predetermined positive and negative threshold value, for suppression of audio background noise. When V2 is cut off, threshold is at highest value, corresponding to off position of switch. With V2 conducting, threshold will be low and practically all signals appear unclipped af output, corresponding to on position of switch. Provides stable, nontransient switching, independent of changes in tube charactaristics.-W. E. Earle, A-C Threshold Converts to Switch, Electronics, 31:1, p 96-99.

AMPLITUDE PROBABILITY DENSITY FUNC-TION-Width of output pulse is proportional to time that input signal is between specified voltage levels. Used in statistical measurements of signals and noise.-B. M. Rosenheck, Defecting Signals By Polarity Coincidence, Electronics, 33:5, p 67-69.

SQUELCH-ACTUATED MOBILE REPEATER-Thyratrons serve as rectifiers in transmitter power supply to avoid repeater malfunctions caused by relays. When incoming signal opens receiver squelch, thyratrons conduct and provide d-c power for transmifter. Under standby conditions, flip-flop keeps thyratrons nonconducting. When relaxation oscillator is activated by squelch tube voltages, flip-flop reverses and applies pulses to thyratrons to make them conduct. This prevents transmitter from being activated by receiver failure.-L. G. Sands, Design Trends in Mobile Radio Repeaters, Electronics, 32:47, p 82-84.

CONSTANT Q FROM 1 CPS TO $10 \mathrm{KC}-5 y m-$ metrical parallel-T R-C rejection filter in negative feedback loop of amplifier gives Q
of 28 over frequency range, for frequencydependent noise measurements. Gain is about 5, and maximum oufput is about 5 v
rms.-R. E. Hobson and L. Calcagno, Narrow Pass-Band Amplifier with Parallel-T Network, Electronics, 34:33, p 68.

200-MC POST-AMPLIFIER FOR NOISE FIGURE METER-Coscoded common-bose connection of germonium meso fronsistors gives power goin of 40 db , bandwidth of 25 MC , ond - noise figure of 3 db . Used between test
iig ond Hewlett-Packord 342A noise figure meter for meosuring noise figure of tronsistors of 200 Mc.-Texos Instruments Inc., "Solid-Stote Communications," McGraw-Hill, N.Y., 1966, p 345.

A-F AMPLIFIER WITH SQUELCH-Used to moke first audio stoge inoperative during no-signal condition in communicotion receiver.-NBS,
"Hondbook Preferred Circuits Navy Aeronaufical Electronic Equipment," Vol. 1, Electron Tube Circuits, 1963, p N12-2.

SOUND LEVEL METER-Two-fronsistor circuit fokes high-impedance microphone feeding compound grounded-collector stoge in which collector, emitter load, and biosed resistor of Q1 ore bootstropped.-W. V. Richings ond B. J. White, Transistorized Sound Level Meter, Electronics, 33:25, p 64-66.

A-F AMPLIFIER WITH SQUELCH-Input is obtained from noise rectifier and amplifier of communication receiver. Squelch is used to make first audio stage inoperative during no-signal condition.-NBS, "Handbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. 1, Electron Tube Circuits, 1963, p N12-2.

A-F AMPLIFIER WITH SQUELCH-Used to make first audio stage inoperative during no-signal
condition in communication receiver.-NBS, first audio stage inoperative during no-signal
condition in communication receiver.-NBS, "Handbook Preferred Circuits Navy Aero-
nautical Electronic Equipment," Vol. 1, Elec"Handbook Preferred Circuits Navy Aero-
nautical Electronic Equipment," Vol. 1, Electron Tube Circuits, 1963, p N12-2.

SCR NOISE SUPPRESSOR-Used to suppress circuit noise generated when scr is switched on, without materially offecting powerhandling capacity or efficiency. Load shown is d-c series motor.-Noise Reducer for SCR, EEE, 10:10, p 94.

SQUELCH FOR MOBILE-Reduces background noise, to prevent operator fatigue during nosignal periods. Double-action squelch is obtained by using negative voltage at first limiter grid during signal periods to cut off 12AD6 noise amplifier.-C. Gonzalez and R. J. Nelson, Design of Mobile Receivers with Low-Plate-Potential Tubes, Electronics, 33:34, p 62-65.

GATE CAPACITOR PROTECTS SCS AGAINST RFI-Capacitor between gate and cathode provides shunt path af higher frequencies to prevent firing of silicon controlled switch by $r-f$ interfarence. Values in circuit will give protection from 32-v signals between 100 kc and 30 Mc.-R. J. Sanford, Can RFI Control Prevent Weapons Failures?, Electronics, 36:45, p 43-45.

SOUND METER RECTIFIER—Used with sound level meter to provide indication proportional to rms value of wideband noise, in two-segment linear approximation to required square-law characteristic.-W. V. Richings and B. J. White, Transistorized Sound Level Meter, Electronics, 33:25, p 64-66.

BACKGROUND NOISE SUPPRESSOR-With control set for maximum resistance, only desired a-c voltage peaks above 4.5 v are passed by diodes. Balanced variable-threshold circuit achieves this suppression of weak background noise without affecting a-c balance of signals.-W. E. Earle, A-C Threshold Converts to Switch, Electronics, 31:1, P 96-99.

ZENER NOISE GENERATOR-Amplifies noise voliage developed across conducting zener diode. Zener current is fed to base of transistor, which has nominal current gain of 75.-G. Richwell, One-Stage Semiconductor Noise Generator, EEE, 12:7, p 26-28.

CHAPTER 56

Oscillator Circuits

STABLE 1-MC OSCILLATOR-Gives frequency stability of one part in 1 billion per day af normal room temperature, at which a 12-lb, 45-y battery can furnish crystal oven and
circuit power for $\mathbf{7 2}$ hours.-J. F. Mercurio, Jr., Stable, Low-Cost One-Mc Oscillator, Electronics, 32:6, p 50-51.

TWO-STAGE VARIABLE-FREQUENCY CRYSTAL OSCILLATOR-Operotes of 9.1 kc with longferm frequency stobility of o few parts per million. Frequency can be pulled up to 5 cps off resonance by adjusting trimmer capacitor in series with crystal. Used in analog and digital systems to achieve calibrotion by deviating carrier frequency a smoll but accurately known amount.-G. A. Gedney and G. M. Davidson, Crystal Oscillator hos Variable Frequency, Electronics, 31:7, p 118-119.

BLOCKING OSCILLATOR FOR $10: 1$ SYNC Combines basic mubr and blocking oscillator into self-gated oscillator that gives syn-
chronization ratios of $10: 1$ or greater, with stability equal 10 of cuit having $1: 1$ synchronization.-W. W.

30-MC 2N2188-Delivers 23 mw over temperature range of -40 to $+60^{\circ} \mathrm{C}$. Typical collector efficiency is $\mathbf{3 0 \%}$.-Texas Instruments Inc., "Transistor Circuit Design," McGraw-Hill, N.Y., 1963, p 319.

CODE PRACTICE OSCILLATOR-Requires only single flashlight cell and two transistors. -"Transistor Manual," Seventh Edition, General Electric Co., 1964, p 378.

10-CPS PHASE-SHIFT FET OSCILLATOR-Uses four-mesh feedback network to provide aftenuation of 18.36, without use of lamps.-
V. Glover, Using a New Device: Field-Effect Transistor Oscillators, Electronics, 35:51, p 44-46.

CONSTANT-OUTPUT OSCILLATOR-Used with automatic doppler cycle counter to determine position and velocity of missiles and satel-
lites. Output signal amplitude is maintained constant over wide range of frequencies.B. E. Keiser, Digital-Counter Techniques In-
crease Doppler Uses, Electronics, 32:21, p 46-50.

PREFERRED 0．8－20 MC COLPITTS CRYSTAL－ Frequency is chonged by substituting plug－ in crystals．Component values depend on frequency ronge．Serves os simple and stable frequency source．－NBS，＂Hondbook Preferred Circuits Navy Aeronouticol Elec－ tronic Equipment，＂Vol．I，Electron Tube
 Circuits，1963，PC 101，p 101－2．

1＇requency rampe me	R1	$\begin{gathered} \text { R3 } \\ \text { !! } \end{gathered}$	$\begin{aligned} & \mathrm{Cl} \\ & \mathrm{pf} \end{aligned}$	$\begin{aligned} & \mathrm{C} 2 \\ & \mathrm{pf} \end{aligned}$	$\begin{aligned} & \mathrm{C} 3 \\ & \mathrm{pf} \end{aligned}$	Cl^{\prime}	C2＇	c3 ${ }^{\prime}$	11
						Distributed＂C＂pf			mh
0．8－i	\％ 60 K	：3\％	10.7	1.5	100	6.3	2	12．0̄	7.0
3－11	47k	：30K	12.4	1.7	33	6.3	2	12.5	0.8
3－20	！$: ⿰ 冫 欠$	： $1: 3$	－8．4	24	24	0．3）	2	12.5	0.3

	11	83	14	8 B	C1	C2	C3	$\mathrm{Cl}{ }^{*}$	C2＇	C3＇	$\begin{gathered} \mathrm{L}_{1} \\ \mathrm{mh} \end{gathered}$
me	！	！	！	：！	pf	pf	pf	1 listributed＂C＂pr			
0．8－5	10\％	620	17K	12K	10．：	1：5	1．50	6.3		12.5	7.0
3－11	100k	16211	188K	6，8k	8.7	18	100	6.3	2	12．5	0.8
5－20	47 K	170	1111k	100	8.6	22	47	6.3	2	12.5	0.3

PREFERRED 0．8－20 MC ELECTRON－COUPLED COLPITTS CRYSTAL－Provides higher output， greoter hormonic content，better frequency
correlation，and more immunity from effects of lood chonges than simpler Colpitfs version． －NBS，＂Handbook Preferred Circuits Navy

Aeronoutical Electronic Equipment，＂Vol．1， Electron Tube Circuits，1963，PC 102，p 102－2．

STABLE 3-MC CRYSTAL COLPITTS-Crystal operates at series resonance in faedback path between emitter of Q2 and tank tap. Q1 is shunt voltage regulator providing power-supply isolation. Two-stage feedback amplifier Q3-Q4 provides output impedance of about 150 ohms when R1 is adjusted for 0.5-v peak-to-peak output swing.-J. W. Hamblen and J. B. Oakes, Instrumentation and Telemetry of Transit Navigational Satellites, Electronics, 34:32, p 148-153.

RING-OF-FIVE NEON OSCILLATOR-Can be used for sequential switching, with operating cycles of various lengths at audio and sub. audio frequencies. When first furned on, one of lamps fires because of inequalities in lamp properties, and others then fire in sequence. Values of R and C determine cycle duration, according to formula given in article. Time is 1 sec for $C=0.5 \mathrm{mfd}$ and $\mathrm{R}=10$ meg.-R. L. Ives, Neon Oscillator Rings, Electronics, 31:41, P 108-115.

UNSTABILIZED TUNNEL DIODE-Simple but generally impractical because frequency varies greafly with supply voltage and waveform is poor. Frequency also varies with bias, from maximum of 2 Mc af 250 mv to 0.5 Mc at 80 mv and to 0.8 Mc at $\mathbf{4 0 0} \mathrm{mv}$. -Wen-Hsiung Ko, Designing Tunnel Diode Oscillators, Electronics, 34:6, p 68-72.

3-260 MC TUNNEL-DIODE OSCILLATOR-Uses plug-in coils to generate sine-wave output over wide frequency range.-"Transistor Manual," Seventh Edition, General Electric Co., 1964, p 352.

* SELECTED DEVICE

RAMP GENERATOR DRIVES TRIGGER-Circuit is relaxation oscillator providing short, fast pulses for triggering mubr. Upper operating frequency is about 1 Mc for values shown. Efficiency is high yet total component cost is under \$2-C. F. Andren, High Efficiency Relaxation Oscillator, EEE, 14:4, p 43.

FREQUENCY-SHIFT-KEYED OSCILLATOR-QI is Colpitts oscillator at $S \mathrm{kc}$ and Q2-Q3 is pushpull complementary-emitier amplifier with
unity voltage gain. Either switch shorts amplifier, thereby increasing tuning capacifance enough to shift frequency l kc. - N. C,

Hekimian, Getting Rid of Transients in Fre-quency-Shift Keying, Electronics, 35:45, p 58-59.

2,000-MC GENERATOR-Depends on harmonic frequency conversion. Oscillator O1 and amplifier O2 deliver 153 mw at 250 Mc to
coaxial matching section. Despite conversion loss of 11.8 db in 8 th-harmonic generator DI, output of 10 mw at $2,000 \mathrm{Mc}$ appears
across 50 -ohm bolometer.-M. M. Fortini and J. Vilms, Solid-State Generator for Microwave Power, Electronics, 32:36, p 42-43.

BRIDGED-T AUDIO OSCILLATOR-Incorporates heavy degenerative feedback in which small lamp is nonlinear compensating resistance. Provides constant output frequency and voltage for any supply between 12 and 32 v , af temperatures down to $-20^{\circ} \mathrm{F}$. Frequency is determined by capacitors C and 500 -ohm trimmer control, to give choice of $100,150,230$, and 350 eps.-H. P. Van Eckhardt, Crevasse Detector Blazes Glacial Trails, Electronics, 31:3, p 63-65.

Components:

PREFERRED DISTANCE-MARK DIVIDER-Used to generate disfonce marks when several must be displayed simultaneoutly. Maximum division factor is 5 . For 5814A, R6 is 100 ohms and plate voltage is 300 v . For 6111 , R6 is 150 ohms and plate voltage is 150 v . R7 should be maximum that will just suppress ringing.—NBS, "Handbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. I, Electron Tube Circuits, 1963, PC 51, p 51-2.

PREFERRED SERIES-TRIGGERED BLOCKING OS-CILLATOR-Responds to more slowly rising trigger than parallel-triggered version. Cathode follower VI is included io provide required low driving impedance and minimize reaction of oscillator on frigger source. Designed for repetition rates up to 2,000 pps. Four terminals give choice of positive or negative output from positive input. Plate voltage is 300 v for 5814A and 150 v for 6111.-NBS, "Handbook Preferred Circuits, Navy Aeronautical Electronic Equipment," Val. I, Electron Tube Circuits, 1963, PC 49, p 49-2.

Components:
R3: $270 \mathrm{~K} \Omega$ (5814A); $560 \mathrm{~K} \Omega$ (6111).
R6, R7 (Sce Note 3): 100) maximum (5814A); 150 maximum (6111).
T1: $1: 1$ pulse transformer chosen to obtain desired pulse width.

PERFERRED PULSE-FREQUENCY DIVIDER Blocking oscillator design produces equally spaced pulses at submultiple of 2 to 5 of trigger frequency. Maximum prf is 2,000 pps. Input and output are both positive. Plate voltage is $300 \vee$ with 5814 A tube and $150 \vee$
with 6111. R6 is 100 or 150 ohms depending on tube. R7 should be maximum that will just suppress ringing.-NBS, "Handbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. I, Electron Tube Circuits, 1963, PC 50, p 50-2.

VOLTAGE-CONTROLLED VFO-Adding IOK resistor to basic ujt oscillator gives voltage-controlled variable-frequency oscillator. With 0.68 mfd for C , dec input voltage range of 0 to $30 \vee$ gives 670 to 4,550 pps. With 0.2

mfd for C, same input range gives 220 to 1,400 pps. Not intended for use where linearity is important.-B. Strunk, Voltage-Controlled Variable-Frequency Oscillator, EEE, 10:12, p 28-30.

MULTIPLE-FEEDBACK R-C OSCILLATOR-Gives excellent amplitude stability and low distortion. Uses vibration and shockproof version of Sulzer bridged-T configuration to provide single-frequency operation in 4-cps to $350-k$ c range.-L. H. Dulberger, Improved R-C Oscillator, Electronics, 32:10, p 62.

27.255-MC TUNNEL DIODE-CRY5TAL OSCIL-LATOR-Operates within tolerance of quartz erystal from -55 to $+85^{\circ} \mathrm{C}$ and bias range of $\mathbf{1 1 0}$ to $\mathbf{1 5 0 ~ m v}$ for Citizens Band service. -"Transistor Manual," Seventh Edition, General Electric Co., 1964, p 353.

30-MC WIDE TEMPERATURE RANGE-Operates over range of -40 to $+60^{\circ} \mathrm{C}$. Typical power output is 23 mw at lowest tempera-
ture and 20 mw at highest. Collector efficiency is 30\%.-Texas Instruments Inc.,
"Solid-State Communications," McGraw-Hill, N.Y., 1966, p 239.

RESISTANCE-CONTROLLED OSCILLATOR-8oth positive and negative feedback loops are used, with notch network as frequency-defermining element. Incandescent lamp in forward loop give amplitude stabilization. Tuning network contains resistance-to-frequency tranducers.-V. C. Vanderbilt and C. L. Zimmer, Magnetic Tape Recorder Programs Engine Dynamometer Tests, Electronics, 33:S1, p 74-77.

60-MC COMMON-BASE-Delivers 10 mw to SO-ohm load af $25^{\circ} \mathrm{C}$. Collector efficiency is 10\%.-Texas Instruments Inc., "Transistor Circuit Design," McGrow-Hill, N.Y.. 1963, p 320.

S CPS TO 300 KC -Overcomes low-frequency problems of wide-range oscillators by using tank both for controlling frequency and coupling signal to next stage. Frequency is stable over wide variations in dec voltage and temperature, yet circuit is inexpensive. Alternative output coupling shown is useful for driving varying loads.-J. Freeman, Low-Frequency C-Coupled Oscillator, EEE, 11:7, p 27-28.

OSCILLATOR-DETECTOR-Capacitor microphones form part of grid tank circuit of 6-Mc tuned-plate tuned-grid r-f oscillator that also defects 6.5-cps modulation by class-C operafion during oscillation. Used in infrared analyzer for detecting leaks in automobile airsuspension systems.-P. G. Balko, Infrored Finds Auto Suspension Leaks, Electronics, 31:49, p 82-8S.

8 turns Air Dux-432
$N_{1} \cdot 4$ turns
$N_{2}-4$ turns

122-KC GROUNDED-COLLECTOR HARTLEYSimple class-C L-C arrangement has many advantages for power oscillators and for d-e to a-e converters. One side of tank can be grounded.-P. Laakmann, Designing ClassC Transistor L-C Oscillators, Electronics, 35:30, p 42-45.

Components:
R1: 1 Mn (5N14A) ; 2.2Mn (6111). R3: 100Kı (5814A); 220K』 (6111)

PREFERRED PARALLEL-TRIGGERED BLOCKING OSCILLATOR (BELOW 2,000 PPS)-Produces synchronizing impulses between 0.2 end 7 microsec wide at rates of 200 to 2,000 pps. One triode section is used as trigger am-
plifier to prevent triode blocking oscillator from reacting on trigger source. R6 and R7 are 100 ohms for S814A and 150 ohms for 6111. RB should be maximum that will just suppress ringing. Requires positive input
trigger and gives choice of output polarities af the four output terminals.-NBS, "Handbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. I, Electron Tube Circuits, 1963, PC 46, p 46-2.

STABLE 10-KC COLPITTS—Provides constantamplitude carrier for data reduction system, at 0.5 v rms with amplitude stability of 0.1% and frequency drift below 0.25% for temperature range of 30 to $50^{\circ} \mathrm{C}$.-L. H . Dulberger, Transistor Oscillator Supplies Stable Signal, Electronics, 31:5, p 43.

10-MC CRYSTAL-Collector voltage of transistor is kept low and is stabilized by zener diode D1 in microminiature oscillator using crystal in $10-\mathrm{Mc}$ fundamental mode. Volt-
age-sensitive capacitor D2 and R7 serve for fine frequency adjustmets.-M. Lysobey, Microminiature Crystal Oscillator Using Wafer Modules, Electronics, 35:15, p 60-61.

20-MC POWER OSCILLATOR-Colpitts-type common-base circuit gives power output of 500 mw to 50 -ohm load, while dissipating 750 mw.-Texas Instruments Inc., "SolidState Communications," McGraw-Hill, N.Y., 1966, p 300.

FEEDBACK LOOP STABILIZES A-F OSCILLATOR AMPLIFIER-Wien bridge determines frequency of oscillator, which is combined with amplifier stages to give single escillator stage
having sufficient output power to drive load directly. Thermistor R2 and resistor R3 provide negative feedback path around amplifiar and oscillator, to make oscillator gain and
frequency independent of load variations.R. G. Fulks, Noval Feedback Loop Stabilizes Audio Oscillator, Electronics, 36:5, p 42-43.

FET VOLTAGE-CONTROLLED OSCILLATOR-Pro* duces excellent sine-wave output with good linearity over frequency range of 1,500 to $2,500 \mathrm{cps}$, for control voltage of 0 to 7 v
d-c. Circuit is resistance-controlled threesection phose-shift oscillotor.-R. Selleck, Voltage-Controlled Oscillators, EEE, 13:3, P 47.

CASCADE TUNNEL DIODE-Volfage drops across resistors R 2 serve as individual voltage sources in series for cascaded diodes that give three times sine-wave output voltoge of single relaxation oscillator circuit.-WenHsiung Ko, Designing Tunnel Diode Oscillafors, Electronics, 34:6, p 68-72.

FEEDBACK OSCILLATOR-C1 provides positive feedback between amplifier V_{2} and cathode follower V1, causing oscillation of frequency and amplitude at which loop gain is unity. Twin-T network in negative feedback loop maintains pure sine wave, free of harmonics. Voriable-gain negative-feedback amplifier V3-V4 stabilizes frequency and amplitude at prescribed values.-Oscillator Patent is Granted, Electronics, 31:37, p 108.

FET PHASE-SHIFT OSCILLATOR-Frequency of four-mesh phose-shift oscillator can be varied several cycles around 10 cps, using 2.5meg pot. Attenuation of four-mesh feed-
back network is 18.36.-L. J. Sevin, Jr,, "Field-Effect Transistors," McGraw-Hill, N.Y., 196S, p 111.

CRYSTAL MOS FET-Oscillation is maintained even with 100 -microvolt oscillator output sig-
nol when using mos fet.-G. G. Luetigenau and S. H. Barnes, Designing With Low-Noise

MOS FETs: A Litfle Different But No Horder, Electronics, 37:31, p 53-58.

AUDIO-MODULATED 1-MC TUNED TD OSCIL-LATOR-Uses silicon tunnel diode that, with no surface protection, may be dipped in liquid nitrogen, placed in furnace, or immersed in acid, with only minor change in oscillator and modulation frequencies.-I. A. Lesk, N. Holonyak, Jr., and U. S. Davidsohn, The Tunnel Diode-Circuits and Applications, Electronics, 32:4B, p 60-64.

10-KC SINGLE-TRANSISTOR COLPITTS-Total temperature drift rate is only $0.035 \% /{ }^{\circ} \mathrm{C}$, determined by coil core material. For higher frequency stability, frequency-determining nefwork should be buffered from amplifier. -"Transistor Manual," Seventh Edition, General Electric Co., 1964, p 210.

PREFERRED ASTABLE BLOCKING OSCILLATOR -Used as pulse generatior when frequency stability is not important. Output can be used as trigger without further shaping. R4 should be maximum that will just suppress ringing. Design equations are given for RI
and R2, but final values must be determined experimentally. Range is 200 to 2,000 pps. Output is positive.-NBS, "Handbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. I, Electron Tube Circuits, 1963, PC 48, p 48-2.

SYNCHRONIZED OSCILLATOR-Astable mvbr Q1-Q2 operating af 68.4 kc is synchronized by 400 -cps signal having 6 -microsec pulse width. Frequency stability can be one part in 4,000 if film resistors and other tempera-ture-stable components are used. Synchron-
izing signal is variable, of the order of 1/170 of oscillator frequency but with no infegral relationship between the signals.-G. Silverman, A Synchronized Oscillator Circuit, EEE, 10:7, P 29-30.

74.13-MC CRYSTAL REPLACES LOST MICROWAVE CARRIER-To prevent noise interference during signal losses due to fading, carrier resupplies oscillator, and amplifier replaces lost carrier, within 0.1 millisec. Q1
and Q2 are switched from cutoff when carrier is needed. Resistor RF in series with crystal lowers its \mathbf{Q} to insure rapid starting. -Microwave Relay Designing with Travel-ing-Wave Tubes, Electronics, 35:3, p 40-43.

UNIJUNCTION-TRANSISTOR OSCILLATOR-If circuit is broken at X, discharge current of Cl can be used to shut off transistor stage. -A. G. Lloyd, Overload Protection for Transistor Voltage Regulators, Electronics, 33:52, p 56-59.

FREE-RUNNING CASCODE OSCILLATOROmission of voltage-divider capacitors from cascode multivibrator gives sine-wave oscillator if loop gain is equal to unity.-C. Sing, Advantages of Free-Running Cascode Multivibrators, Electronics, 37:5, p 28-29.

MEASURING OSCILLATOR STABILITY-Circuit is used as $90.3125-\mathrm{Mc}$ reference oscillator in system for measuring short-term stability of 45-Mc stale (stable local oscillator) of airborne radar under high vibration. Tape transformer in collector circuit of transistor controls crystal drive,-J. Coolican, How to Measure STALO Short-Term Stability Under Vibration, EEE, 13:5, p 96-98.

100-KC MAGNETOSTRICTIVE-ROD CONTROL -Oscillator Q1 can be adjusted to within 0.1 cps of desired frequency by adjusting length and center thickness of rod made from modified Elinvar constant-modulus ma-
terial positioned between coils. Emitter-follower Q2 minimizes pulling by variable load. -T. A. O. Gross, New Magnetic Rods Simplify Circuits, Electronics, 35:28, p 62-66.

VOLTAGE-CONTROLLED 23-MC OSCILLATOR AND MODULATOR-Input signal voltage to transistor changes capacitance of tank circuit, to make oscillator frequency vary with input signal voltage. Variable-capacitance
diode requires fewer parts than transistor modulator. Zener diodes provide constant bias for variable-capacitance diode D2.F. L. Carroll, How to Achieve Stability in Space Telemetry, Electronics, 37:4, p 32-35.

THREE-STAGE VARIABLE-FREQUENCY CRYSTAL OSCILLATOR-Provides loop transmission of 1 , under maximum frequency pulloff of 5 cps from 9.1 -ke crystal frequency, and has net phase shift around loop of 360° with crystal in circuit. Third stage provides extra circuit gain needed for larger power
output or larger frequency deviations off resonance. Transformer provides phase reversal and reflects desired anc load, to limit output swing of transistor.-G. A. Gedney and G. M. Davidson, Crystal Oscillator has Variable Frequency, Electronics, 31:7, p 118119.

FOUR-LAYER DIODE OSCILLATOR-If circuit is broken at X, discharge current of Cl can be used to shut off transistor stage.-A. G. Lloyd, Overload Protection for Transistor Voltage Regulators, Electronics, 33:52, P 56-59.

TONE-BURST OSCILLATOR-Consists of vari-able-frequency magnetically coupled mvbr, with two magnetic cores driven by batterypowered transistors. Injection of current or voltage from solar cell or other transducer affects mubr reset, to give frequency change over range of 5 to $15 \mathrm{kc},-\mathrm{R}$. W. Rochelle, Cyclops Cores Simplify Earth-Satellite Circuits, Electronics, 31:9, 56-63.

200-400 MC VARICAP-TUNED OSCILLATOR -Tuning range is achieved by adjusting Varicap bias valtage from 0.4 to 60 v.-E. Gottlieb and J. Giorgis, Tunnel Diodes-Using Them Sinusoidal Generatore, Electronics, 36:24, p 36-42.

STABLE OSCILLATOR-Excellent frequency and amplitude stability is accomplished by eliminating all grid current in tank circuit and by isolating tank from driving tube by means of resistive degeneration. If very pure sine wave is required, grid of VI should be cou-
pled to high-impedance load that is equivalent constant resistance, because either reactive or variable loads will impair stability.J. C. Davis, Stable Oscillator Circuit, EEE, 11:2, p 26.

CHATTER JAMMER-Can be used to create pleasing tone at level that drowns out ambient noises, to permit concentration on prob-
lem while others ore talking in vicinity.-J. Leeb, A Chatter Jammer Circuit, EEE, 10:11, p 31.

PREFERRED 2,000-83,000 PPS BLOCKING OS-CILLATOR-Parallel-triggered circuit responds to trigger pulses seporated by only few micrasec, as required for distance-mark generators and pulse coding circuits. Input is positive, with minimum of 15 v , and output
is positive. $R 6$ is 220 ohms. $R 7$ is maximum that will just suppress ringing.-NBS, "Handbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. I, Electron Tube Circuits, 1963, PC 47, p 47-2.

DELAY-LINE OSCILLATOR-Tunnel-diode oscillator with General Radio 314-586 delay line produces square-wave output in range of 0.5 to 20 Mc.-"Transistor Manual," Soventh Edition, General Electric Co., 1964, P 352.

SATURABLE-REACTOR OSCILLATOR-Timebase integration of a variable is performed by counting cycles of saturable-reactor oscillator whose frequency is proportional to the variable. Linearity is within 1% of full scale.-L. W. Langley, Saturable-Core OscilIator Integrates Gas-Flow Data, Electronics, 32:4, p 42-43.

NR DIODE AS R-F OSCILLATOR-5imple neg-ative-resistance diode circuit can develop several milliwatts af frequencies up to 300 Mc.-A. P. Schmid, Jr., Negative-Resistance Diode Handles High Power, Electronics, 34:34, P 44-46.

ELECTRIC TUNING FOR 600 to $1,200 \mathrm{MC}$ -Lumped-constant technique is used with volt-age-funable ferroelectric capacitors to provide 10 mw into 50 ohms.-T. W. Butler, Jr., Ferroelectrics Tune Electronic Circuits, Electronics, 32:3, p 52-55.

24-MC CLAPP-Delivers 300 mw into 50 -ohm load. Typical collector efficiency is $\mathbf{3 5 \%}$.
-Texas Instruments Inc., "Solid-State Communications," McGraw-Hill, N.Y., 1966, p 239.

CB CRYSTAL O5CILLATOR-Uses low-cost crystal having high series resistance, up to 30 ohms. Provides adequate output to supply most master oscillator-power amplifier applications. Output tap is arranged to match
directly a companion 2N2195 grounded-base amplifier. Crystal is 3rd overtone type."Transistor Manual," Seventh Edition, General Electric Co., 1964, p 211.

SIMPLE TRANSISTOR OSCILLATOR-Current gain is stabilized against transistor variation. Can be used over collector voltage range of 2 to 24 v . Oscillation occurs at frequency at which there is 360° total phase shift, 180° of which is furnished by grounded-emitter amplifier and 180° by high-pass network. 5K pot adjusts frequency from about 200 to 400 cps . -"Transistor Manval," Seventh Edition, General Electric Co., 1964, p 206.

DAMPED 40-MC GENERATOR-Converts unit pulses, resulting from video screening in nuclear track scanner, to damped $40-\mathrm{Mc}$ oscillations each 0.1 microsec long, which are in-
serted in quartz ultrasonic delay line that feeds counter.-P. V. C. Hough, J. A. Koenig, and W. Williams, Scanner Recognizes Atomic Particle Tracks, Electronics, 32:13, P 58-61.

VARICAP TUNES TUNNEL-DIODE OSCILLA TOR-Series oscillator circuit funes electrically over range of 12 to 22 Mc .-E. Gottlieb and J. Giorgis, Tunnel Diodes-Using Them as Sinusoidal Generators, Electronics, 36:24, P 36-42.

NONLINEAR VOLTAGE-CONTROLLED OSCIL-LATOR-Use of conventional fransistors rather than fat's means that Q1 and Q2 operate in knee region, where frequency does not vary linearly with d-c control voltage. This is generally not a drawback when control voltage is servoed. Increasing the control voltage increases the frequency. $-R$. Selleck, Voltage-Controlled Oscillators, EEE, 13:3, p

BRIDGED-T R-C PHASE-SHIFT OSCILLATOR-Emitter-follower eliminates loading variafions, contributing to exceptional frequency stability (0.2%) over temperature range of $\mathbf{- 5 5}$ to $80^{\circ} \mathrm{C}$.-"Transistor Manual," Seventh Edition, General Electric Co., 1964, p 207.
 47.

TEMPERATURE-STABLE 200-MC-Varies less than 2 Mc in frequency and less than 1.5 mw in power output over temperature range of 25 to $80^{\circ} \mathrm{C}$. Normal power output is 22.5 mw . -Texas Instruments Inc., "Solid-State Communlcations," McGiciw-Hill, N.Y., 1966, P 301.

500-MC COLPITTS-Frequency varies less than 3 Mc from 25 to $75^{\circ} \mathrm{C}$, and less than 1.5 Mc with bias change from 6 to 9 V . Output is 10 mw. Tl is $1.5^{\prime \prime}$ length of $3 / 8^{\prime \prime}$ brass rod with output tap 1/4" from bottom.-Texas Instruments Inc., "Solid-State Communications," McOraw-Hill, N.Y., 1966, p 301.

FET HARTLEY-Delivers 680 mv to 50 -ohm load af 100 Mc . Coil is four 3/8-inch-diameter furns of No. 16 wire spaced to 0.5 inch.-Fets Come Alive: Clinic Unvails Praclical Circuits, EEE, 14:4, p 16-18.

$100-\mathrm{MC}$ COLPITTS—Uses conventional bipolar transistor, which has low noise in operation from low-impedance voltage generator. Temperature drift is much greater than with fet. -Fets Come Alive: Clinic Unveils Practical Circuits, EEE, 14:4, p 16-18.

SINE-WAVE TUNNEL DIODE-Low-impedance capacitor in parallel with series-resonant circuit of tunnel-diode relaxation oscillator passes all frequencies except that for series resonance, giving sinusoidal voltage across output capacitor. Outpuf frequency varies from 0.7 to 0.8 Mc over bias range of 100 to $400 \mathrm{mv} .-$ Wen-Hsiung Ko, Designing Tunnel Diode Oscillators, Electronics, 34:6, P 68-72.

47.1-MC TUNNEL DIODE-CRYSTAL OSCILLA-TOR-Used in Fire Department service. Operates within tolerance of quartz crystal from $-55 \mathrm{ta}+85^{\circ} \mathrm{C}$ and bias range of 110 to 150 mv for Citizens Band service."Transistor Manual," Seventh Edition, General Electric Co., 1964, p 353.

SINE-WAVE TUNNEL DIODE-Series filter selects desired frequency and rejects harmonics from pulse-shaped output of basic tunneldiode relaxation oscillator. Values shown give 0.45 Mc , constant within 0.05 Me over bias range of 100 to 400 mv .-Wen-Hsiung Ka , Designing Tunnel Diode Oscillators, Electronics, 34:6, p 68-72.

$C_{b}=D C$ 日LOCKING CAPACITOR $R_{A}=$ ATTENUATING RESISTOR
$z_{i n} \cong R\left(1+\frac{R}{R_{A}}\right)$

VARIABLE-AMPLITUDE TUNNEL-DIODE OSCIL-LATOR-Attenuating resistor RA varies magnitude of oscillator swing, so ascillator aperates over limited highly linear portion of
diode conductance curve.-"Transistor Manual," Seventh Edition, General Electric Co., 1964, P 351.

CHAPTER 57 Phase Control Circuits

6-VARISTOR PHASE-SHIFT VTO-Ronge is ten times lowest frequency, with upper limit of several kc, depending on values of C. Triode
differential amplifier V1 is first stage of oscillator. One input grid, for a-c amplificotion, goes to output of phase-shift circuit. Other
grid goes to centertap across SiC varistors. - M. Uno, Varistor Network Controls VoltageTuned Osciflator, Electronics, 34:30, p 44-47.

ADF PHASEMETER-Input signals are squared by Schmitt triggers, differentiated, and chonged to unidirectional pulses thot drive flip-flop V4 to produce pulse whose length is proportional to bearing of transmiter.

500-eps signal from phonic wheel is sharpened by Schmitt trigger V7 ond used to indicate length of bearing pulse in degrees by moduloting the pulse in V6. One output gows io decade counter chain that counte
totol number of degrees.-J. F. Hatch ond D. W. G. Byatt, Direction Finder with Automatic Readout, Electronics, 32:16, P 62-64.

PHASE SHIFTER WITH LINEAR BIASING-Frequency range of more than two decades can be obtained from voltage-controlled oscillator when linear biasing is used for phase-shift

MEASURING PHASE UP TO 400 MC-Three plug-in tuning circuits cover range from 15 to 400 Mc. Phase delay is compared with
circuit.-R. A. Greiner and S. K. Morgan, Volfoge Controlled Wide-Range Oscillator, Electronics, 34:51, p 31-35.

TUBE REPLACES 180° TRANSFORMER-Eliminotion of transformer resonance effects af higher frequencies permits phase shifter to handle wider band of frequencies, from 500 to 2,000 eps for component values shown.W. G. Shepard, Phase Shifter Range Exceeds 180°, Electronics, 31:19, p 96-100.

360-DEG SHIFTER-One variable component provides phase difference between outputs that is adjustable from -180 to +180 degrees without substantial change in magnitude, at fixed frequency of 2,500 cps.-W. Bacon, Circuit Shifts Phase 360 Degrees, Electronics, 31:23, p 94-97.

STEERABLE ANTENNA CONTROL-Phase-stabilized 35-Mc uhf amplifier controls directivity of multi-element stationary antenna array.

Phase of amplifier output is compared with input reference signal in phase-sensitive detector. System keeps input-output error under
2.-E. W. Markow, Servo Phase Control Shapes Antenna Pattern, Electronics, 32:1, P 50-52.

AUDIO CONTROL FOR ANTENNA PHASERRectified audio in multiple-antenna aircraft receiver alternately charges C2 and C3 af grids of V2. Bistable mvbr V3 performs switching in synchronism with pulse generafor so each switch pasition corresponds to change in antenna phasing. When peak of signal is passed and phase is reversed, V4 pulls in K1 and sends control signal to control unit. K2 opens when difference in potentials of C2 and C3 becomes excessive, forcing system to resume cycling until output is again maximized. -I . Dlugatch, Optimizing Antenna Switches and Phasers, Electronics, 32:33, p 55-57.

CONTINUOUS PHASE CONTROL-Potentiome-
ter changes phase relationship between synchronizing voltage VI and output voltage V2, without affecting amplitude of output from free-running mvbr.-S. Tesic, Multivibrator Provides Continuous Phase Cantrol, Electronics, 39:15, p 102-103.

ANTENNA PHASING CONTROL-Used with two antennas an different parts of an aircraft to insert artificial delay in series with one antenna so signal addition will occur. Contains staircase generator that charges Cl in steps until receiver threshold cuts off V2.

Charge on Cl biases V5 to change magnttization of reactor and thereby lock phaser automatically at optimum degree of delay.I. Dlugatch, Optimizing Antenna Switches and Phasers, Electronics, 32:33, p 55-57.

SELF-SYNCHRONIZED PHASE SHIFTER-Consists of power supply, inverter, phase-shifting Selsyn, 100 -cps filter, and output amplifier, used to vary phase of 100 -cps frequency standard output by synchronization with WWV for studies of low-frequency propagation over long distances.-M. M. Newmon of al, Sea-Going Lightning Generator, Electronies, 33:30, p 53-55.

DIGITAL PHASE METER-Measures phase angle between satellite signal and reference pulse. Bistable switch operates as gate that connects 500-cps pulse train to 3 -decade deci-
mol counter during time between reference and signal pulses. Two channels measure phase angles of north-south and east-west fine signals.-C. A. Schroeder, C. H. Looney,

Jr., and H. E. Carpenter, Jr., Tracking Orbits of Man-made Moons, Electronics, 32:1, p 33-37.

PHASE MEASURING AT 30 MC -Double mixing process linearly transposes phase shifts aceumulated of 30 Mc down to 2 Mc , where they are accurately compared against calibrated 2-Mc raference signal. Samples of $30-\mathrm{Mc}$ and 2 -Mc signals are mixed in V5, and $32-\mathrm{Mc}$ sum frequency is then mixed with phase-shifted $30-\mathrm{Mc}$ signal from unit under test by V6. Difference frequency, equal to 2 Mc plus phase shift, is amplified in V7A, fed through gate V7B, and associated circuits then superimpose this signal and that of 2-Mc reference oscillator on cro to get display of phase shift.-A. Nirenburg, How to Measure Midfrequency Phase Shift, Electronics, 31:35, p 46-47.

VOLTAGE-CONTROLLED PHASE-SHIFT OSCIL-LATOR-Small-signal o-c resistance of junction diode, related to reciprocal of juncrion current aver two-decade range, is used
in two-section R-C phose-shift network octing with amplifier and age to give constantamplitude valtage-controlled oscillator with frequency range of over two decades.-R. A.

Greiner and S. K. Morgan, Voliage Controlled Wide-Range Oscillator, Electronics, 34:51, p 31-35.

PHASE-CONTROLLED D-C SUPPLY-Uses scr's in single-phase center-tap phase-controlled rectifier. D-c voltage across load can be adjusted steplessly from zero to maximum with R7. Single uit Q1 develops gate signal to fire both ser's on alternate half-cycles."Silicon Controlled Rectifier Manual," Third Edition, General Electric Co., 1964, p 140.

VOLTAGE-VARIABLE $90-\mathrm{MC}$ OSCILLATORCeramic friode in $18-\mathrm{Mc}$ crystal stage has high short-ferm stability, yet can be pulled about 2 kc by voltage-variable capacitor C1. Fifth harmonic is amplified and buffered for use in measuring phase differences between two signals.-R. T. Stevens, Precision Phasemater for CW or Puised UHF, Electronics, 33:10, p 54-57.

COINCIDENT-SLICER PHASEMETER-Cathodecoupled limiters convert input signals to square waves and feed them to coincident slicer. Self-adjustment of limiters and use of
coincident slicer to drive direct-reading phasemeter give good accuracy and stability for input-signal fluctuations from 0.3 to $70 \vee$ and supply voltages from 94 to 135 v , with ab-
solute accuracy of 1° and relative accuracy of 0.25°.-Y. P. Yu, Coincident Slicer Measures Phase Directly, Electronics, 31:37, p 99-101.

FIRING ANGLE CONTROL-Varying R from 0 to infinity shifts the three phase voltages
from 0° to 180°.-J. J. Vithayathil, VariablePhase, Polyphase From Single-Phase Supply,

1-KW A-C PHASE CONTROL-Inverse-parallel circuit is economical for manual control of lights, heaters, ovens, or fans.-"Silicon Confrolled Rectifier Manual," Third Edition, General Electric Co., 1964, p 138.

ELECTRONIC SWITCH
PHASE DETECTOR
INTEGRATOR AND AMPLIFIER

DELAY CIRCUIT
PULSE-CHAIN PHASEMETER-Measures phase difference as small as 0.005 deg between pulses of two nearly coincident pulse chains using electronic switch, mubr phase detector,
and diode synchronous detector. Output shows both sign and magnitude of phase angle between two corresponding pulses in pulse chains.-F. Vratarlc, Jr., Electronic

SYNC DETECTOR
Switching in Phase Measurement, Electronics, 32:23, p 60-61.

MEASURING PHASE UP TO $2,000 \mathrm{MC}$-Output is fed to cro having 100 -ke bandwidth. In operation, time delay of both channels is equalized by applying identical signal to both inputs, then reference and unknown signals are applied to input terminals and variable delay line is adjusted again for null on chopper amplifier that drives $\mathrm{d}-\mathrm{c}$ milli-ammeter.-Y. P. Yu, How to Measure Phase of High Frequencies, Electronics, 34:11, P 54-56.

LAMP DIMMER-Silicon symmetrical switches Q1 and Q2 control phase angle of which current flows through 600-w fluorescent or incandescent lamp load. Q1 handles load current while Q2 serves as symmetrical relaxation oscillator, with setting of RI determining point in each half-cycle at which Q2 fires. Since system is symmetrical, it cannot be damaged by transients or line surges.-S. B. Gray, Home and Auto Controls, Electronics, 36:19, p 52-56.

DIAC-TRIAC PHASE CONTROL OF 5-AMP LOAD-Uses two types of semiconductor switches together with R and C to give continuous control of power. Addition of second phose shift network (enclosed in dashed box) extends range of control to cover 5 to 95% of full power.-M. P. Southworth, Bidirectional Static Switch Simplifies Ac Control, Control Engineering, March 1964, p 75-76.

SNAP-ACTION A-C PHASE CONTROL-Provides snap-action switching of load in response to change in d-c signal, a-c signal, or variable resistance element, using small differentiating network R1-R2-C1 that peaks leading edge of pedestal. Triggering can occur only near beginning of each half-cycle, to give snap-on and snap-off action.-"Silicon Controlled Rectifier Manual," Third Edition, General Electric Co., 1964, p 135.

HIGH-GAIN PHASE CONTROL-Use of iwo different sizes of charging capacitors in series different sizes of charging copacitors in series
increases effective gain up to 10,000 times that of conventional ujt/scr phase-control circuit. Eliminates need for two or three stages of transistor amplification.-'Transistor Manual," Seventh Edition, General Electric Co., 1964, p 332.

TRIAC-UJT PHASE CONTROL-Provides wide range of stable control without hysteresis at low outputs and without dependence on supply voltage. Triac eliminates need for transient suppression components that would be required with scr control and permits use of simple iwo-winding pulse transformer.-M. P. Southworth, Bidirectional Static Switch Simplifies A-C Control, Control Engineering, March 1964, p 75-76.

CASCADED TWO-TUBE PHASE SHIFTER-Provides phose shifts well over 180° with highly constant output voltage. Use of tubes in place of transformer gives wide-band operation, from 500 to $2,000 \mathrm{cps} .-W$. G. Shepard, Phase Shifter Range Exceeds 180°, Electronics, 31:19, p 96-100.

SMALLEST PHASE CONTROL-Miniature lamp No. 2128 with small, low-mass filoment can reach firing level of light-activated scr in about three eycles with low applied voltage. As applied voltage is increased, this time is reduced to about 1 millisec when lamp is directed across LASCR terminals, thus providing phase control. Lamp voltage is removed when LASCR fires, protecting lamp and resetting it for next half-cycle. Useful for dimming 25-w lamp or for controlling temperature of small soldering iron.-"Silicon Controlled Rectifier Manual," Third Edition, General Electric Co., 1964, p 213.

+|2V- PHASE-DIFFERENCE METER FOR 0.2 TO 20 KC
-Measures phase difference between two sinusoidal inputs. Each limiter (Q1 and Q2) drives one side of high-speed flip-flop Q3-Q4 through differentioting and clipping
circuits, giving square wave that furns on when one input signal goes negative and turns off when other input goes negative. D-c value of output voltage is proportional to phose difference, with about 11 v cor-
responding to 360°.-J. R. Woodbury, Measuring Phase with Transistor Flip-Flops, Electronics, 34:38, p 56.

VARIABLE 0-1B0 DEG PHASE SHIFTER-Sin gle low-cost pnp germonium transistor cir cuit gives any desired phase shift between

0 and 180 degrees, of constont amplitude, for frequencies up to 3 Mc , by varying values of C2 and RS. Values shown give 90° shift
for 200 eps.-J. J. Collins, Single Transistor Provides Low-Cost Phase Shifter, Electronics, 37:16, p 92.

AMBIGUITY RESOLVER-Prevents counting error when phase shift between iwo signals is close to 0° or 360°.-R. T. Stevens, Precision Phosemeter for CW or Pulsed UHF, Electronics, 33:10, p S4-S7.

PHASE INDICATOR-Used to determine succession of phases of three-phase 120-v o-c source used in synchro work. Terminals A, B, and C are connected ta terminals of source to be checked. If neon lomp comes on, interchange any iwo leads; light then goes out, and A, B, and C then indicate correct sequence. Also serves as phase failure monitor, becouse neon lomp will come on if power on any one line is lost.-G. Richwell, Phose Indicator, EEE, 12:11, p 70.
$.033 \mu \mathrm{f}(60 \mathrm{CPS})$ 4700pf(400CPS)

PHASE-SHIFTING ANTENNAFIER-Control voltages A, B, and C together produce up to 180° phase shift with adequate matching, for
beam-steering arroys. Ganged potentiometers with appropriately tapered windings can provide the control voltages and relate beam
position to shoft rotation.-J. F. Rippin, Making the Antenna an Active Partner, Electronics, 38:16, p 93-96.

CHAPTER 58

Photoelectric Circuits

PHOTOMULTIPLIER FOR GAMMA-RAY SPEC-TROMETER-Flashes of light from scintillator crystal are picked up by EM19579 photomultiplier to masure underwater gamma radiation, and amplified output of photo-
multiplier is fed to surface equipment through coaxial cable that also serves as 2,000-v high-voltage lead for anode.-G. K. Riel, New Underwater Gamma Spectrometer, Electronics, 36:10, p 56-8.

level.-P. H. Sydenhom, Photodetector Goin
Control Aids Signal Discriminotion, Electronics, 38:23, p 111 .

PUNCHED TAPE READER-Uses photo memory to drive loods, to keep signol opplied to lood until memory is erosed. Lomp lood con be used for verifying punched poper tope. Relay lood controls circuit where it is necessary to hondle lorge currents. Relay used exceeds continuous rating of CR2, so one set
of relay contacts keeps reloy latched. Resistive lood is used to drive logic circuits. Sensor con be either photodiode or standord IN676 diode with paint removed from gloss case.Photo Reader for Perforoted Tope, "Electronic Circuit Design Handbook," Moctier Pub. Corp., N.Y., 1965, p 207.

LAMP-TRIGGERED SCR GIVES VARIABLE PHASE CONTROL OF POWER-Minioture 2128 lamp with low-mass filament triggers lightoctivated ser in 1 millisec when lamp is across ser and in about 3 cycles of low a-c lamp voltage. Potentiometer thus provides phase control of scr for dimming 25-w lomp or equivalent-wattoge load.-E. K. Howell, Light-Activated Switch Exponds Uses of Sili-con-Controlled Rectifiers, Electronics, 37:15, p 53-61.

CORONAMETER-Uses polorized-light technique ond closely controlled narrowbond circuit to detect, observe, ond meosure otherwise invisible solor phenomenon. Circuit shows multiplier tube in opticol head, with dynode

AUTOMATIC CALIPER-Photomultiplier and counter circuit on mochine lathe feed recorder to give dimensions of printed circuits and photographic plates in increments of 0.0001 inch.-S. Isaacson, Electronic Caliper Checks Printed Circuits, Electronics, 32:1, p 44-45.

A-C MODULATOR FOR PHOTOMULTIPLIEROutput of star-tracking photomultplier is converted to a-c by applying 400 -cps modulating voltage to dynode 14, to make gain vary between nominal value and 1% of this in
square wave fashion. Amplifier passband is then 130 to 800 cps .-E. R. Schlesinger, Aiming a 3-Ton Telescope Hanging from Balloon, Electronics, 36:6, p 47-51.

NOISE SUPPRESSOR-Removes noise from output of photodiode used in reflected-light shaft-position encoder.-F. W. Kear, How to Select Shoft-Position Encoders, Electronics, 35:35, p 48-51.

LAMP PREHEATER-Unijunction transistor triggers LASCR (light-activated scr) late in each half-cycle, with R2 determining lomp current so filament is heated but not visible. This preheating minimizes thermal stresses during
programmed operation of lamps by control beam hitting LASCR, as for theaters or foun-tains.-E. K. Howell, Light-Activated Switch Expands Uses of Silicon-Controlled Rectifiers, Electronics, 37:15, p 53-61.

MARK SENSOR FOR CARDS-Automatically transcribes up to 40 pencil marks on specially printed 90 -column cards into machine code
and block-punches information inta cards in any desired format at 150 cards per minute -F. A. Frankl, Transcribing Field Markings by

Optical Scanning, Electronics, 34:31, p 49-51.

PHOTOELECTRIC GAGING-Checks dimensions of machine parts while they are rotating. Fail-safe circuit ossures that only satisfactory pieces are accepted. Sorter is initially calibrated 10 desired sensitivity with go and no-go gages.-J. C. Frommer, Fail-Sofe Photoelectric Inspection for Indusiry, Electronics, 32:31, p 74-75.

AUTOMATIC LIGHT CONTROL-High-sensitivity vacuum phototube responds to illumination by changing mark-space periods of coldcathode mubr so $V 2$ is on most of the time when illumination is excessive. Thermal reloy then gets heated sufficiently to switch off lights.-P. Bergweger, Photoelectric Control Using Cold Cothode Amplifiers, Electronics, 33:27, p 46-47.

TAPE READER-Simplified circuitry, few components, storoge copobility, and output power above 20 w are advantages of using silicon controlled switch in place of multistage amplifier for photoelectric paper-tape readers. Thyratron-like characteristics maintain output after photoelectric stimulus disappears, until cut off by control circuit. Asterisk on one pole of relay K indicates that similar pole is required for each bit in iwo-mode operation.SCR Switch Eliminates Amplifier for Photoelectric Readers, "Electronic Circuit Design Handbook," Mactier Pub. Corp., N.Y., 196S, p 222.

PHOTOELECTRIC BANDPASS FILTER-Output of phototransistor varies linearly with input signal at resonant frequency of photoreed, to give function of bandpass filter.-Fre-quency-Sensitive Control Uses Light, Electronics, 34:36, p 88-91.

PHOTOSWITCHING CIRCUIT-Circuit provides amplification along with switching for photodiode mounted to pick up changes in light reflected by encoder disk.-F. W. Kear, How to Select Shaft-Position Encoders, Electronics, 35:35, p 48-51.

PHOTOCELLS PROVIDE NOISE-FREE AUDIO KEYING-Photoresistors R5 and R6 isolate control function from signal circuit to avoid switching transients. 51 may be replaced by automatic pulsing circuit.-A. Martans, NoiseFree Keying Circuit, Electronics, 35:13, p 53.

PHOTODIODE PICKOFF-Used in measuring servo system lag. Responds to slot milled near edge of rotating disk. Accuracy is 0.17° in either direction.-J. D. Habegger, Photo Diode Pickoff Gives Accurate Angular Reference, EEE, 10:6, p 37.
 cro for measuring rapidly changing light output of flashlamps.-H. E. Edgerton and R. O. Shaffner, Measuring Transient Light With Vacuum Phototubes, Electronics, 34:34, P 56-57.

CELL-GROWTH MICROPHOTOMETER-Permits direct measurement of transmittance while stained cells are studied visually at magniflcation of $1,000 \mathrm{X}$. Beam-splitting mirror sends 90% of light to multiplier phototube. Maximum current sensitivity is $\mathbf{0 . 0 1}$ mitroamp full scale.-E. Gordy, Microphotometer Aids Biologists, Electronics, 32:28, p 62-64.

CONVEYOR-LINE JAM DETECTOR-Interruption of light beam to light-activated scr for more than few millisec fires SCR1, opening relay. Momentory interruptions by objects moving normally on conveyar have no effect.

Circuit resets automatically when light is re-stored.-E. K. Howell, Light-Activated Switch Exponds Uses of Silicon-Controlled Rectifiers, Electranics, 37:15, p 53-61.

SINGLE COLD-CATHODE AMPLIFIER-Actuotes thermal relay directly from photoconductive cell, for furning on lights of sunset.-P. Bergweger, Photoelectric Contral Using Cold Cathode Amplifiers, Electronics, 33:27, p 46-47.

MEASURING FLASHES-Measures and hoids intensity of single flosh or total value of series of flashes.-C. R. Kerns, fet Circuit Stores Light Meosurement, Electronics, 38:22, p 66.

PHOTOREED-Combines resonant reed relay with photosensor to give frequency-sensitive control in which switching of contacts is accomplished by electro-optical techniques. Photosensor is exposed to intermittent light when reed vibrates like shufter between lamp and sensor.-Frequency-Sensitive Control Uses Light, Electronics, 34:36, p 88-91.

SQUARE-WAVE GENERATOR-Iniensily of light sets pulse and interpulse periods in range from 0.2 to 300 sec , using Schmitt
trigger Q1-Q2. Capacitor C is charged and discharged through diodes D1 and D2 consisting of collector-base junctions of 2N1393
phototransistors.-A. K. Horvath, Photodiodes Control Pulse Intervals, Electronics, 38:11, p 72.

ILLUMINATION TELEMETER-Prf rate of blocking oscillator, controlled by photocell output, can be tronsmitted over telephone lines to give accurate remote indication of daylight or other light intensity. D1, V2B, and
meter provide local indication. Maximum ilIumination gives highest prf.-E. F. Hosler and G. Spurr, Ways to Measure Light Intensity at a Distance, Electronics, 32:29, p 48-49.

PHOTODIODE AMPLIFIER-Used with trans-mitted-light encoder disk to produce pulses with correct omplitude and rise time to drive logic circuit.-F. W. Kear, How to Select ShoftPosition Encoders, Electronics, 35:35, p 48-51.

LIGHT-ACTIVATED SCR TIME DELAY-Bootstrapped unijunction tronsistor interrupts load current at desired delay interval (determined by RI and C1) ofter short pulse of light hits gloss-window ser LBU.-E. K. Howell, LightActivated Switch Exponds Uses of SiliconControlled Rectifiers, Electronics, 37:15, p 53-61.

OPTICAL PUSH-PULL COUPLING-Two gallium arsenide light sources and two high-speed silicon photoconductors provide push-pull op-
tical coupling between integrated-circuit flip flop and buffer, with two transistors in pushpull amplifier overcoming losses of optical
coupling.-T. E. Bray, Switching With Light, Electronics, 38:22, p 58-65.

CHAPTER 59
 Photography Circuits

MOVIE CAMERA FRAME-RATE CHECKERGives exact frame rate at each instant. Lens is removed for test. Light beam is projected into camera, and reflected back from pressure plate in film gate each time shutter opens. Reflected beam is defected info phototube that feeds Schmitt trigger. Differentiated output goes to thyratron in circuit of meter that reads frame rates directly from 5 to 64 frames per second. May also be used for checking projectors.-C. Owlett, FrameRate Checker for Motion-Picture Cameras, Electronics, 31:37, p 88-89.

ELECTRONIC CAMERA SHUTTER-Uses six tronsistors and photocell to vary bath operture and exposure time automatically according to incident light, from range of $1 / 30$ sec of $\mathbf{f / 2}$ to $1 / 500$ sec of $\mathbf{f / 1 6}$. Transistors are split into two groups, each having a

Schmitt trigger and output stage. One group worns photographer when light is insufficient, by turning on warning lamp, and other group drives solenoid that closes shutter of right instant. If light is adequate, depressing shutter button further moves $\mathbf{\$ 2}$ ta timing
position, ond closes 53 to energize solenoid M1 and open shutter to smallest operture. Mechonicol governor then grodually opens camera's combination shutter-iris until M2 snaps if closed under control of Q3.-Open ond Shut Case, Electronics, 39:17, p 153-155.

SLAVE FLASH-Addition of light-activated scr to ordinary flashgun gives fast-acting slave unit, with response speed of only few microsec to give perfect sync between master and slave. Use of LI between gate and cathode of LASCR prevents triggering by high-level ambient light because 11 offers low impedance to ambient and high impedance to flash.-E. K. Howell, Light-Activated Switch Expands Uses of Silicon-Controlled Rectifiers, Electronics, 37:15, p 53-61.

DATA RECORDING CAMERA TIMER-Controls expasure fime and interval between exposures aver ranges between 0.1 sec and 2 hours, independently of each other, by changing time constants with C1 and C2.-J. G. Fullertan, Bistable Circuit Times Camera Exposures, Electronics, 34:45, $\mathbf{p} 91$.

PHOTOMULTIPLIER TIMER FOR ENLARGER-Quarter-watt neon lamps regulate dynode potentials. Graded-capacitor voltage divider across string of neons makes them flre in sequence, to eliminate variations in fling times and increase fiming accuracy.-J. Markus and V. Zeluff, "Handbook of Industrial Electronic Control Circuits," McGraw-Hill, N.Y., 1956, p 297.

KERR-CELL SHUTTER-High-voltage Kerr-cell pulser and parallel triggering synchronization give 5 -nsec exposure, with triggering time jitter less than 1 nsec. Power supply must deliver 350 -amp pulse as 35 kv .-s. M. Hauser and H. Quan, Applying the Kerr Cell to Nanosecond Photography, Electronics, 34:33, p 56-59.

MAGNIFICATION-COMPENSATING DARKROOM TIMER-Pushbutton timer provides automatic compensation of exposure time with magnification of negative. J . Markus and V. Zeluff, "Handbook of Industrial Electronic Control Circuits," McGraw-Hill, N.Y., 1956, p 296.

PHOTOGRAPHIC DRYER CONTROL-Copper drum, serving as single-furn sherted secondary of transformer, is heated by several thousand amperes of induced current. As
drum heats up, transformer primary current Hot Rollers in Industry, Electronics, 32:30, decreases. When desired temperature is p 40-42. reached, KA energizes and TI is disconnected by KB.-D. A. Senior, Temperature Control for

BOOTSTRAP TIMER-Q1 and Q2 farm ane- fralling emitter valtage of Q5. Overall acshat mubr, with Q1 narmally on. C1 charges curacy of circuit, fram -50 to $+50^{\circ} \mathrm{C}$, is 3%. toward 24 v thraugh R1 and D1. Voltage on C1 is fallowed by Darlingtan circuit Q3-Q4. Feedback from Q4 to Cl gives nearly linear autput valtage rise across emitter resistor of Q4, with length of time cycle varied by can-

EXPOSURE TIMER-Uses thyratron to stop relay chatter. Gives lang time delays with relatively small capacitance. Ordinary volume contral cavers complete timing range. Circuit is backwards relay, in which coil is energized except during timing interval. Relay pulls in at 10 ma and drops aut at 6 ma .-J. Markus and V. Zeluff, "Handboak of Industrial Electronic Contral Circuits," McGraw-Hill, N.Y., 1956, p 291.

INSTRUMENTATION CAMERA TIMER-Varies camera exposure rates and duratians automatically accarding ta desired pragram. Triggering rate can be canstant and adjustable
or variable for selected periad between prodetermined initial and final rates. Manastable mubr Q2-Q3 determines length of triggering pulse that aperates relay KI.-B. E. Baurne,

Variable-Pragram Triggering Saurce, Electranics, 33:37, p 76-77.

EXPOSURE INDICATOR FOR ENLARGER-One leg of Wheatstone bridge is unbalanced by light shining on phototube. Sensitivity of circuit is adjusted to match speed of enlarging paper with potentiometer that changes d-c voltage applied to phototube. Meter can be calibrated directly in seconds of exposure.J. Markus and V. Zeluff, "Handbook of Industrial Electronic Control Circuits," McGrawHill, N.Y., 1956, p 291.

SINGLE-FRAME TV PHOTOGRAPHY TIMERUses four thyratrons to switch on picture tube for exact $1 / 30$ hh-sec interval required to complete two interlaced fields and give clean photograph for open-shutter still camera. Vertical drive pulses from iv sync generator
provide fime-reference triggering. Stabilized high-voltage supply minimizes defocus-ing.-A. A. Tarnowski and K. G. Lisk, Timer Shutters CRT for Single Frame Photos, Electronics, 31:15, p 83-85.

CAMERA SHUTTER CONTROL-Keeps camera shutter open for predetermined lime, to photograph scope as radiation pellet moves
past a succession of radiation defector tubes facing conveyor belt. Pellet interrupts light beam to start sweep. RS and Cl control
reset time of sweep.-R. L. Nuckolls, Slow Sweep Generator Controls Camera Shutfer, Elgctronics, 38:16; p 82.

PRINT TIMER-Uses radar phanfastron circuif to give correct combination of exposure time and color filter for desired contrast and density. R1 sets exposure time from 6 to 60
seconds and R2 regulates contrast.-J. D. Weir, Print Timer Controls Density and Contrast, Electronics, 31:7, p 108-109.

CAMERA CONTROL-Circuit separates $3.5-\mathrm{kc}$ pulses from other subcorrier signals af input filter, then omplifies, rectifies pulses, and
squares pulses at Schmitt trigger. Four cameras can be controlled by system from single $460-\mathrm{Mc}$ radio link.-F. M. Gardner and L. R.

Hawn, Camera Control System for Rocket Sled Tests, Electronics, 33:14, p 63-6S.

CHAPTER 60 Power Supply Circuits

7-KV CRT SUPPLY-Provides high-voltoge source for screen grid and final anode of 5 to 12-inch magnetic-deflection cathode-ray tubes in equipment having full or partial transistorization. Full-wave d-c to d-c converter, with transistor load connected between voltage source and emitfer, permits aftaching collectors to grounded or chassisconnected heat sink.-NBS, "Handbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. II, Semiconductor Device Circuits, PSC 6 (originally PC 202), p 6-2.

3.6-KV OSCILLATOR-TYPE SUPPLY-Single pentode in audio oscillator circuit provides sufficient power for step-up transformer and output rectifier fliter. Used for dark-face crf. -NBS, "Handbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. 1, Electron Tube Circuits, 1963, p N14-3.

ANALOG VOLTAGE SOURCE-Consists of bridge-rectifier supply with R-C filtering and zener diode regulation, feeding control potentiometer that is isolated from load by grounded-collector transistor. Used as analog voltage source for computer circuits.-E. R. James, Semiconductors Provide Analog Voltage Source, Electronics, 31:33, p 96-100.

PHOTOMULTIPLIER SUPPLY-String of Cock-croft-Walton voltage doublers multiplies a-c output voltage of blocking oscillator to step up baftery volitage to required 2 kv . Regula-
tion is reasonably constant up to 0.4 ma plate current.-R. P. Rufer, Battery Powered Converter Runs Multiplier Phototube, Electronics, 33:28, p 51.

$0-1,200 \mathrm{~V}$ REGULATED SUPPLY FOR PHOTO-MULTIPLIER-Silicon diodes in R-C filter network gives 0.5% regulation over entire d-c
oufput range, with temperature coefficient only 0.1% of output voltage per deg C, for photomultiplier stage in airborne equipment.
-J. G. Peddie, Network Filters Stabilize d-c Supply Over Wide Range, Electranics, 37:18, p 83.

OSCILLATOR-TYPE SUPPLY-Article gives basic design equations for d-c to d-c power supply using power transistors. Efficiency is up to $\mathbf{9 0 \%}$. D-c output valtage is 590 v for 3,500 ohm load.-T. Hamm, Jr., Equations for Designing Transistor Power Supplies, Electronics, 32:43, p 122-124.

TRANSISTOR-TESTING SUPPLY-Six tops on transformer, plus range switch that transfers negative bus ta 24-v tap, provide choice of nine constant outputs from 3 ta 36 v dec.F. W. Kear, Laboratory Supply far Transistors, Electronics, 35:30, P 55-57.

6.5-KV TWIN-TRIODE A-F OSCILLATOR CRT SUPPLY-Oscillator develops square wave because of saturable square-loop core material of transformer. Diodes eliminate extra load placed on oscillator by high-vacuum rectifier
fube filaments.-NBS, "Handbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. 1, Electron Tube Circuits, 1963, p N14-5.

TRIGGERED THYRATRON PULSER-Coaxial rail gun generates high-velocity copper plasma when triggered by series-connected button guns energized through transformer by thyratron pulser. Voporized copper from butions
shorts main $15-m f d$ capacitor, vaporizing inner copper high-voltage electrode.-M. F. Wolff, Plasma Engineering-Part 1: Generating and Heating Plasma, Electronics, 34:2B, p 47-53.

Unless otherwise stoted
R in ohms; L in $\mu h ;$
$C>1$ in of; $C<\operatorname{lin} \mu f$.

DUAL-TRIODE 7-KV CRT SUPPLY-Serves os high-voltage source for screen grid and final anode of 5 to 12-inch cathode-ray tubes. CR1 and CR2 are each six 1 N588 silicon diodes in series. Operating frequency is about 450 cps for twin-triode tuned-plate oscillator having high L-C ratio.-NBS, "Handbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. I, Electron Tube Circuits, 1963, PC 6, p 6-2.

7-KV OSCILLATOR-TYPE CRT SUPPLY-Audio oscillator provides screen-grid voltage for crt directly and second-anode voltage through high-voltage transformer and rectifier-filter.NBS, "Handbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. 1, Electron Tube Circuits, 1963, p N14-2.

GEIGER-MULLER SUPPLY-Uses blocking oscillator to provide three stabilized lavals of high voltage, of $900,1,000$, and $1,100 \mathrm{v}$, for G-M fube. Corona discharge tubes are switched in to provide regulation,-F. E. Armstrong, Battery Powered Portable Scaler, Electronics, 33:19, p 74-75.

14 KV AND 385 V FOR DARK-FACE CRTUses iwo pentodes in parallel in a-f oscillator to provide sufficient power for final anode potential in oscillator-type supply.-NBS,
"Handbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. 1, Electron Tube Circuits, 1963, p N14-3.

VARIABLE REMOTE POWER SUPPLY-Permits varying output d-c voltage of scr power supply without changing a-c input voltage. Conduction time of scr's during each half-cycle determines average power delivered to load. Conduction time is controlled with pulse gat-
ing circuit that is synchronized with a-c line and is phase-variable. Provides maximum output of 60 amp at 20 v.-6. F. Gilbreath, Variable High Current Remote Power Supply, EEE, 10:12, p 27-28.

D-C/D-C REGULATED SUPPLY-Efficiency is 93\% in converting 28 v d-c to 25 and $50 \mathrm{v} d-\mathrm{c}$ for telemetry transmitter. Regulation ls achieved by storing energy in magnetic field of coil
during half of each switching cycle created by transistors Q1 and Q2 after Q3 initiates switching cycle. SCR CR1 and diode CR5 control pertentage of time switching transistors
are on.-N. Downs and B. van Sutphin, SolidState Transmitter Ready for UHF Telemetry, Electronics, 37:17, p 76-80.

4.8-KV OSCILLATOR-TYPE CRT SUPPLY-One of earliest circuits in which o-f sine-wave oscillator wos used as power source. Filter copocitors are significantly smaller than in
conventional line-fransformer supplies.-N8S, 'Handbook Preferred Circuits Navy Aeronaufical Electronic Equipment," Vol. 1, Electron Tube Circuits, 1963, p N14-2.

120-WATT D-C/D-C CONVERTER-Circuit 10 kc -120-Wat D-C/D-C Converter Operates boosts $28 \vee$ d-c input to $400 \vee d-c$ with 85% From -55° to $+125^{\circ} \mathrm{C}$, Electronics, $36: 2, \mathrm{p} 15$.

DUAL_POLARITY VARIABLE D-C SUPPLYDiagonally symmetrical power transistor circuit permits smooth load current voriotion over range of several amperes of either polarity. Rectifier supply can be used in place of storage batteries. Moximum current drain from two 12-v dry cells in 5 K pon tentiometer control circuit is $7 \mathrm{ma}-$ R. R. 8ockemueh, Transistor Rectifier Gives D-C of Either Polarity, Electronics, 32:25, p 76.

5,000 V D-C FROM 26 V D-C-Uses transistor as sinusoidol oscillotor. Voltagendoubling capacitors keep ripple below 0.01%. - R. D. Morrow, Inexpensive Converter Gives 5,000 Volts D-C, Electronics, 35:28, p 54.

7 KV AND 450 V OSCILLATOR-TYPE CRT SUP-PLY-Pentode audio oscillator feeds hermetic-
ally sealed transformer-rectifier-filter unit.NBS, "Handbook Preferred Circuits Navy

Aeronautical Electronic Equipment," Vol. 1, Electron Tube Circuits, 1963, p N14-4.

CHAPTER 61 Preamplifier Circuits

ELECTROMETER PREAMP-Transformer TI feeds drive coil of vibrating capacitor Cl used in place of conventional chopper for
measuring picoampare currents. Output of -V. J. Caldecourt, Using a Vibrating Capaelectrometer, taken fram Q2 of preamp, goes citor as an Electromater Input, Electranics, to amplifier that is source of feedback signal. $\quad 35: 14$; p 48-50.

30-MC VARIABLE-BANDWIDTH RADAR PRE-AMP-Bias control R1 on grounded-grid 6BC4 triode provides continuous change of bandwidth from 200 kc to 15 Mc , for changing search range. Insertion loss is $0 \mathrm{db} .-\mathrm{R}$. Hirsch, Voltage-Variable Bandwidth Filter, Electronics, 35:22, p 46-47.

LOW-NOISE FET゙ PREAMPLIFIER-For 600-ohm source, 3 -db response is 0.5 cps to 700 kc , with voltage gain of 10.5 , using commonemitfer direct-coupled amplifier stage ofter fet stage, with 26 db of feedback. With l-meg source, upper limit is 20 kc .-E. G. Fleenor, Low-Noise Preamplifier Uses FieldEffect Transistors, Electronics, 36:15, p 67-69.

VLF PREAMP WITH AGC-Fost-recovery computer diode octs os pure voriable resistance shunting bose of Q1 to ground, for full age control without phose shift in output signal. In frequency range of 13 to 24 kc , phase shift is less than 0.25 microsec over $40-\mathrm{db}$ input signal range.-J. D. Echols, Calibrating Frequency Standords with VLF Transmissions, Electronics, 35:17, p 60-63.

ELECTRONICALIY CONTROLLED BANDWIDTH -For search radar, potentiometer adjusts bias on $6 \mathrm{BC4}$ tube of $30-\mathrm{Mc}$ i-f preamp to vary bandwidth over range of 200 kc to 15 Mc .Variable Bandwidth Preamplifier Electronically Voried Between 15 Mc and 200 Kc , Electronics, 35:2, p 102.

Closed-loop gain is 20 db from 100 cps to nearly 8 Mc for source impedance of 1,000 to $\mathbf{6 , 0 0 0}$ ohms.-J. J. Rado, Designing Input Circuits with Lowest Possible Noise, Electronic3, 36:31, P 46-49.

7326 PHOTOMULTIPLIER PREAMP-Used between type 7326 photomultiplier and dualbeam oscilloscope in receiver of opticol ranging system. Voltage gain is 100 for output dynamic range of 1.5 v , but noise figure is
only about $14 \mathrm{db} .-\mathrm{M}$. L. Stitch, E. J. Woodbury and J. H. Morse, Optical Ranging System Uses Laser Transmitter, Electronics, 34:16, P 51-53.

6217 PHOTOMULTIPLIER PREAMP-Used between photomultiplier and dual-beam oscilloscope to amplify signal pulse corresponding
to transmitted loser signal in optical ranging system. Distance between transmitted and received pulses on cro corresponds to range.
-M. L. Stitch, E. J. Woodbury and J. H. Morse, Optical Ranging System Uses Laser Transmifter, Electronics, 34:16, P 51-53.

AUTOPILOT PREAMP-Reliable pitch-axis channel uses four npn silicon transistors.C. W. McWilliams, Designing Safety Into Automatic Pilot Systems, Electronics, 31:45, P 69-71.

DIRECT-COUPLED PREAMPLIFIER-Output of mulfiplier phototube in orbiting astronomical observatory receives closed-loop amplification of 12 in current-sensing preamplifier over input dynamic current range of 3 to 500 ma . -R. Cuikay and T. Callahan, Orbiting Observatory to Measure Stars' Dim Light, Electronics, 37:9, p 28-31.

SILICON TRANSISTORS MINIMIZE POWER DRAIN-Used in conjunction with high-value circuit resistances to permit operation of preamplifier with batfery drain of lass than 1 nw. Gain is 100 for bandwidth of 18 kc . Intended primarily for use at room tempera-fure.-C. D. Todd, Preamplifier Designed for Minimum Power Consumption, Electronics, 33:18, p 106-107.

CHAPTER 62
 Protection Circuits

SUPPLY OVERLOAD AND REVERSE-POLARITY PROTECTION-Uses signol from Q1 to irigger SCRI, which turns off series-pass tronsistor when overlood reoches 15 omp. Will also provide limiting of output voltoge at 25 v , input overvoltoge protection at 32 v , and input reverse-polority protection by CRI.-J. J. Rodo, Versotile SCR Protection for Power Supplies, EEE, 13:8, p 56-62.

POWER TRANSFORMER SWITCHING RELAY SENSES LINE VOLTAGE-For 230 -v line voltage, zener diodes back-bias diode D5, pre-
venting energizotion of reloy. For 115 v , diode conducts ond reloy closes, connecting line to $115-\mathrm{v}$ top of transformer.-L. K. Moyer,

Circuit Alwoys Applies Correct Operating Volioge, Electronics, 37:25, p 77.

MISSING-PULSE DETECTOR-Turns on lamp if one of input pulses in continuous pulse input is missing. Pulses are very narrow (4 microsec wide) and 50 microsec apart for low duty cycle; Q1 and Q2 form pulse stretcher that increases width to about 40 microsec. In absence of stretched pulse, Q3 loses its bias and is turned on, making lamp light.-C. Gerston, Missing-Pulse Detecior for Narrow Pulses, EEE, 12:8, p 72-74.

OVERLOAD PROTECTION-Transistor 04 in conventional series regulated power supply is protected against charging current of load capacitance C2 by sharp current-limiting-characteristic protection circuit that operates statically, without need for resetting, in preset range of from 50 ta 250 ma , and provides instantaneous respanse when regulatar transistor is overlaaded. Line regulation is 0.001% and load regulation is 0.002%.H. D. Ervin, Transistor Power Supply has Overload Protection, Electronics, 31:25, p 74-75.

SERIES REGULATOR WITH OVERLOAD PRO-TECTION-Tunnel diode and transistor serve as overload sensing circuit used to frigger monostable mvbr, to protect series-pass transistors against overload. Circuit resets confinuously after overload until trouble is cleared. Protection is adequate for resistive loads only.-J. Takesuye and H. Weber, "Silicon Power Transistors Provide New Solutions to Voltage Control Problems," Motorola Application Note AN-163, Aug. 1965.

REVERSE-PHASE PROTECTION-Used to profect navigation system against damage if phase rotation is reversed by careless or accidental power transfers. With correct rotation, lamp ABC lights and relay closes contral circuit to allow operation. With reverse phase rotation, lamp BAC lights and relay does not close.-J. J. Pirch, Simple ReversePhase Protection, EEE, 11:12, p 26.

OVERLOAD PROTECTION WITH RIPPLE CLIP. PING-Power transistor interrupts load when current exceeds safe limit, and also serves as
part of ripple clipper.-J. J. Rado, Versatile SCR Protection for Powar Supplies, EEE, 13:8, p S6-62.

POWER SUPPLY OVERLOAD PROTECTIONCircuit uses simple relay instead of cusfomary transistor to break load current when overload or overvoltage occurs.-J. J. Rado, Versatile SCR Protection for Power Supplies, EEE, 13:8, p 56-62.

SHORT-CIRCUITABLE 30-W AUDIO AMPLIFIER -Utilizes practically entire supply voltage to produce usable power output, provides failsafe overload profection, and stabilizes bias current. Any temporary overload or current surge will turn off drive to output stage. Circuit must be reset manually, by turning S1 off, removing cause of overload, and furning 51 on again. Circuit will limit peak current in output transistors Q3 and Q5 to about 5 amp.-W. O. Hamlin, Transformerless Amplifier with Overload Protection, EEE, 12:9, p 42-44.

COMPLETE GTO PROTECIION FOR D-C SUP-PLY-Circuit includes required recycle pulse generator and Schmitt trigger for driving gate-furnoff scr (gio) that switches off d-c
power supply within 30 microsec of overload. Series regulator can deliver 125 v at 1 amp for input of 31 to 42 v . Overload trip point can be set anywhere between 0.75
and $1.2 \mathrm{amp} .-\mathrm{W}$. C. Mosley, GTO Protection Circuitry for DC Supplies, EEE, 12:11, P 57-59.

OVERVOLTAGE INDICATOR-Routes line voltage automatically to black box designed to handle it. Potentiometer is set so neon lamp TH fires of 152 v . This applies high negative voltage to grid of tube, deenergizing relays K1 and K2 so line voltage is applied to upper black box. This condition also exists when system is first connected to line. After tube is wormed up, it switches to low-voltage box if line is below 152 v . Rectifier CR is any 2,000-v low-current rectifier, such as Sarkes Tarzian 126-100-H-Q. NE68 glow lamp TH must be in lightproof box; NE2 can be used only if suitably aged.-Overvaltage Indicator, "Electronic Circuit Design Handbook," Mactier Pub. Corp., N.Y., 1965, p 124.

BASIC GTO FOR POWER SUPPLY OVER-LOADS-Gate-furnoff scr (GTO) provides superior overload protection for d-c power

FAIL-SAFE TWT FILAMENT REGULATOR-Designed to supply well-regulated voltage of 6.3 v dec at 2 amp to filoment of travellingwave tube, while providing temperature compensation and fail-safe capability. Profective circuit shown in heavy dotted lines operates if one of transistors shorts or if filament voltage rises for any other reoson. -G. Stanley, Foil Safe DC Filament Regulator, EEE, 10-6, 32-33.

MINIMUM-DISSIPATION SERIES REGULATOR -Regulation of short-circuit-proof variable voltoge-regulated supply is 0.1% for 2 to 30 v
output and up to 2 amp . Dissipation in series regulating fransistor is minimized by controlling on time of series switching fransistor QQ.
-J. S. Riordon, Power Supply Uses Switching Preregulation, Electronics, 35:10, p 62-64.

PULSED-TRANSDUCER METER PROTECTIONCircuit stores transducer output while transducer is momentarily disconnected during pulse period by relay drive circuit that operates coincidentally with transducer pulse drive. Meter voltage is stored by C during
pulse period. No storage occurs when $S 1$ is closed; mater then indicates voltage proportional to transducer current, as gain of circuit is 1.-C. Pittman and B. Birnbaum, Circuit Protects Meter from Periodic Current Spikes, Electronics, 39:12, p 108.

OVERLOAD PROTECTION-Switches power off rapidly to prevent current overloads from damaging transistors in breadboard circuits under test. Voltage drop across 0.47 -ohm resistor and Q1 biases Q2 to saturation, causing Q3 and Q4 to open power relay.- F. W. Kear, Laboratory Supply for Transistors, Electronics, 35:30, p 55-57.

LOW-DISSIPATION TRANSISTOR OVERVOLTAGE FUSE-Series collector resistor lowers dissipation of fuse circuit during normal line voliages, and serves also as voltage regulafor for transistors being protected (represented by 1K load).-K. Redmond, Low-Cost Transistor Overload Safety Circuit, Electronics, 33:42, p 102.

SHORT-CIRCUIT DETECTOR-Shunt used in d-c power circuit for metering also serves here to drive base of transistor that senses overloads. Relay in transistor circuit disconnects
d-c power when drop across $100-\mathrm{mv}$ shunt opproaches 400 mv (4 times normal load current).-J. J. Pirch, Single-Transistor ShortCircuit Defector, EEE, 12:6, p 64.

ELECTRONIC FUSE-Switches high series resistance R3 into circuit only when overload or short-circuit occurs. R3 is shunted out of load R2 by Q2.-L. Payerl, Overload Protection for D-C Amplifier, Electronics, 39:7, p 91.

ZENER-GATED SCR PROTECTS POWER TRAN-SISTORS-Scr serves as controllable short-circuit across power transistors. Reaction time is about 2 microsec.-C. A. Blanchard, ZenerGated SCR Protection for Power Transistors, EEE, 14:5, p 117-118.

TRANSISTOR OVERVOLTAGE FUSE-Protective circuit uses one resistor, one diode, and one transistor. Transistor across supply line is cut off by IN87 diode until overload occurs. When transistor conducts, fuse is open by current that would ordinarily destroy transistors being protected (represented here by IK load).-K. Redmond, Low-Cost Transistor Overload Safety Circuit, Electronics, 33:42, p 102.

SHORT-CIRCUIT PROOF SHUNT-TYPE SUPPLY -Output is variable from 1 to 17 v , maximum ripple is 1 mv peak-fo-peak, and maxi-
mum current is 2.5 omp af 1 v or 0.8 amp of 17 v . After two hours of warmup, output drift is negligible (fraction of mv).-E. Bald-
inger and W. Czaja, Designing Highly Stable Transistor Power Supplies, Electronics, 32:39, p 70-73.

OVERLOAD PROTECTION FOR REGULATED POWER SUPPLY-When roted load current is exceeded in series-regulated power supply,

D1 conducts ond collector voltoge of O1 acts os clomp to prevent further increase in lood current. At short-circuit, lood current is only
froction of full volue.-K. L. Burfeindt, Overlood Protection Without High Power Dissipotion, Electronics, 36:13, p 36-37.

LIFESAVER-Used with tronsformerless lineoperoted equipment to minimize possibility of chossis being hot. Reloys ore 30 orronged thot they outomotically search for
proper relotionship of voltoges between hot, both neutrol ond conduit ground ore of line neutrol ond ground terminols before power is opplied to equipment. Only limitotion is failure to protect against rore fault in which
potentiol with respect to eorth ground.-R. E. Pofenberg, Lifesover Circuit, EEE, 10:7, p 26-27.

ARC-PROTECTION CIRCUIT-Circuit ignores desired peok pulse currents by sensing their coincidence with drive pulse, but fires trigger
thyratren V6 and V7 in obsence of drive pulse, to moke thyrotrons dischorge power supply before breokdown and flashover of
high-voltoge electron device under test.D. D. Mawhinney, Latest Thing in Arc-Prow tection Circuits, Electronics, 36:8, p 54-55.

SHORT-PROOF REGULATOR-Provides constant 24 v at up to 500 ma and furns itself off when load is shorted. Restarts automatically when short is removed. Regulation is within 1% from no load to $\mathbf{5 0 0} \mathrm{ma}$ and with input voltages from 26 to 34 v.-D. E. Wilson, Inexpensive Short-Proof Voltage Regulator, EEE, 12:6, p 64.

ADJUSTABLE OVERLOAD TRIP-Protection circuit, added to conventional regulator, consists of R1, R2, R3, R4, C2, CR2, CR3, and Q1. When load current reaches preset trip level, drop across R1 turns on Q1, which in turn saturates Q2 and cuts off regulator transistor

Q3-Q4 to protect these transistors and reduce output voltage to zero. Turnoff is regenerative, hence fast. To reset, supply voltage is switched off and then back on.-W. A. O'Berry, Adjustable Overload Protection, EEE, 12:2, p 29.

SERIES REGULATOR WITH CAPACITIVE OVERLOAD PROTECTION-R-C delaying network in dotted box applies drive slowly to seriespass transistor to prevent overload protective circuit from turning off regulator when surge current charges capacitive load. Network does not reduce response time.-J. Takesuye and H. Weber, "Silicon Power Transistors Provide New Solutions to Voltage Control Problems," Motorola Application Note AN163, Aug. 1964.

SHORT-CIRCUIT PROTECTION-Voltage-sensing short-circuit switch Q4-Q5 turns off
series-regulating transistor Q1 when load R1 is short-circuited.-G. A. Chunn and G. D.

Norton, Short-Circuit Protection Consumes Little Power, Electronics, 38:22, p 68.

CHAPTER 63
 Pulse Amplifier Circuits

WIDEBAND DIGITAL PULSE AMPLIFIER-Com-mon-emitter a-c coupled cascaded amplifiers, with negative feedback at every second stage, give voltage gain of 12 , bandwidth of 100 Mc , rise time of 3 nsec , pulse pair resolution of 5 nsec , and s / n ratio of 100 to 1 for inputs from 0 to $200 \mathrm{mv} .-\mathrm{A}$. A. Fleischer and E. Johnson, New Digital Conversion Method Provides Nanosecond Resolution, Electronics, 36:18, p 55-57.

ALL Q's 2 N 917 (4th CASE LEAD ON EACH GOES TO GROUND)

TWO AMPLIFIERS FOR BIPOLAR PULSES—Design procedure is based on fact that wide bandwidth is required only for leading and trailing edges of pulses. Auxiliary am-
plifier supplies current to charge load and stray capacitances, reducing standby current and improving gain. Auxiliary amplifier V4-V5 provides charging current for shunt
capacitance during positive-going edge of output pulse.-J. F. Golding, Novel Approach to Pulse Amplifier Design, Electronics, 33:19, p 64-66.

NEGATIVE-RESISTANCE DIODE-Input pulses as low as 0.01 ma are sufficient to hold negative-resistance diode in high-current region. When pulse is shut off, diode current decays to low-current state. Amplifier tends to square up input pulses.-A. P. Schmid, Jr., Negative-Resistance Diode Handles High Power, Electronics, 34:34, p 44-46.

LINEAR PULSE AMPLIFIER-Simple linear amplifier drives two cathode followers through delay line. One output goes to one crt grid for intensity modulation. Other output goes
to horizontal plates of onother crt for bar presentation.-M. T. Nadir, Microsecond Sampler Handles 126 Channels, Electranics, 32:4, p 36-39.

VIDEO AMPLIFIER WITH TWO-NSEC RISE TIME-Uses feedback techniques with 1,000 Me silicon transistors to give wide bandwidth and fast pulse response.-P. J. Beneteau and J. A. Maclntosh, Getting Fast Pulse Response with Video Amplifiers, Electranics, 34:41, p 62-63.

FOUR-STAGE NEGATIVE-PULSE AMPLIFIERGives gain of 87 db with over-all bandwidth of 0.9 Mc , using direct-coupled inverse-feedback pairs, for amplifying closely spaced
pulse code groups coming from crystal detector of radar video receiver.-R. E. Koncen, Wide-Range Multiple-Pulse Amplifier, Electronics, 33:38, p 78-81.

THYRATRON DRIVER-Input of 1 v makes solid-state circuit drive thyratron grid to $400 \vee$ within 60 nsec. Thyratron itself is fully on, and handling 100 amp of 6,000 $v_{\text {, }}$ in less thon 100 nsec after input pulse. -W. D. Isreal and W. B. McCartney, Nanosecond Thyratron Driver, EEE, 11:12, p 66.

THREE-STAGE NEGATIVE-PULSE AMPLIFIERHandles closely spaced negative pulses in radar beacon and similar applications, without distartion and recovery problems. Each
amplifier stage is inverse-feedback pair of triodes with 360° total phase shift.-R. E. Kancen, Wide-Range Multiple-Pulse Amplifier, Electronics, 33:38, p 78-81.

LOGARITHMIC PULSE AMPLIFIER-Solected zener diodes with breakdown voltages in range of 4 to 6 v , with 1.6 ohm-resistor in
series with DI far straightening curva, give close approximation to logarithmic amplification of pulses over three decades of cur-
rent, from 0.1 to 100 ma.-D. Ophir and U. Galil, Zener Diode creates Logarithmic Pulse Amplifier, Electronics, 34:28, p 68-70.

FAST RISE TIME-Achieved by precise bias control of Q2 without introducing parasitics in input signal line. Gives high gain-bandwidth product as pulse amplifier.-D. D. Mcleod, Bias Control and Low Parasitics Shorten Amplifier Rise Time, Electronits, 39:2, p 73-74.

FAST-ACTING NONLINEAR FEEDBACK-Keeps output variotion within $B \mathrm{db}$ for input level variation of 38 db . Amplifies $100-\mathrm{ke}$ square woves and limits output amplitude without introducing phase distortion. Amplification is determined by input level. For signals below 5 mv peak, 38 db of gain is provided, automatically diminishing for higher-level input signals. With $400-\mathrm{mv}$ peok input, gain is slightly over unity.-L. H. Dulberger, Pulse Amplifier with Nonlinear Feedback, Electronits, 31:45, p 86-87.

CRYSTAL VIDEO RECEIVER AMPLIFIER-Modifled direct-coupled inverse-feedback pair of triades handles negative pulse groups only if not too closely spaced. May be used in command guidance, radar beacon, and pulse communitation applications.-R. E. Koncen, Wide-Range Multiple-Pulse Amplifier, Electronics, 33:38, p 78-81.

NONINVERTING AMPLIFIER-Increases amplitude of l-pps pulses and decreases rise and fall times. For adjustable output ampli-
fude, R5 can be potentiometer.-R. L. Sazpansky, Non-Inverting Pulse Amplifer Uses One Power Supply, EEE, 14:1, p 63.

PULSE POWER AMPLIFIER-Operates as inverting power amplifier for either pulses or levels. Input levels ore -6.2 v at 3.1 ma for logical 1 and $-0.15 \vee$ for logical 0 . Pulse polority may be pasitive or negative 6 v . Third transistor is used for handling up to

40 flip-flop or gate loads. Two transistors will handle up to 12 such loads.-NBC, "Handbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. II, Semiconductor Device Circuits, PSC 12 (originally PC 215), p 12-2.

COAXIAL CABLE DRIVER-Can drive digital information through long lengths of coaxial cable. Will send pulses with $30-n s e c$ rise and fall time through 1,155 feet of 50 -ohm RG/ $188 U$ or through 650 feet of 93 -ohm RG/ 62U.-B. Strunk, Coaxial Cable Driver Circuit, EEE, 13:5, p 43-44.

CURRENT DRIVER-Provides fast rise time and equal-amplitude positive and negative output pulses (equal-polarity drive) far 50 -ohm load. -E. J. Kennedy, Fast-Pulse Amplifier Drives 50-Ohm Load, Electranics, 39:2, p 76.

CHAPTER 64
 Pulse Generator Circuits

RANDOM-TIME PULSES-When gate is opened by noise, sine wove steps electron beam of Burroughs tube through its ten sections. Transistor connected to each target produces voltage pulse whose magnitude depends on potentiometer setting, giving sequence of different voltages in output. When beam reaches position 9, pulse is fed back to close the gate,-C. V. Jakowatz and G. M. White, Self-Adaptive Filter Finds Unknown Signal in Noise, Electronics, 34:7, p 117-119.

MULTIPLE OUTPUTS-Circuit provides negafive d-c output valtage along with positive and negative output pulses, using only single d-c source. Unijunction-fransistor oscil-
lator Q1 provides positive pulses, while Q2 and Q3 togather invert these and drive rectifier DI that gives $-5 \vee$ of 1 ma to drive low-
power amplifier that may be used in same integrated circuit.-M. H. Hussain, Circuit Inverts D-C Voltage, Electronics, 38:19, p 100.

RING-TYPE OSCILLATOR-After core-setting current is removed, pulse output of Q1 is followed by output of Q2 after delay of 100 microsec to 3 sec, depending primarily an input voltage and core size. No separate drive oscillator is required when used as ring counter.-J. M. Marzolf, Magnetic-Core Ring Counter Needs No Drive, Electronics, 35:12, P 52-53.

TWO-OUTPUT SQUARE-WAVE PULSE GENER-ATOR-Pairs of control pulses are provided in sequence by silicon unijunction transistor in relaxation oscillator. Interval between pulses is determined by R3-C2. When C2 charges enough to trigger Q4, pulse fed to base of Q5 makes it conduct heavily; C3 charges and reset pulse is then developed across R4. Next, Q5 switches off, thereby feeding negative pulse to base of Q6 to switch Q6 off and make its collector voltage rise rapidly to form negative second pulse af pair.-C. D. Todd, Tunnel Diode Detects Currents Down to 100 Femtoamperes, Electronics, 36:14, p 33-37.

THREE-PULSE GROUPS TEST 10-NSEC DECADE COUNTERS-Free-running mvbr Q1-Q2 triggers sawtooth generator Q3, which in turn acts thraugh emitter-follower Q4 to drive delay-adjusting amplifiers Q5, Q6 and Q7, each driving silicon transistor working in avalanche mode. Common output is group of three $10-\mathrm{v}$ pulses having rise times below 1 nsec.-R. Charbonnier, Avalanche Transistors Test 10-Nsec Logic, Electronics, 36:28, p 46.

RECTANGULAR PULSES GENERATED IN PAIRS -Outpur A gives 50 -millisec positive pulses and output B gives 120 -millisec positive pulses, both square-wove and both of 0.5 eps, with rise and fall times under 2 micro-
sec for 12-v pulses. Circuit uses one unijunction transistor, two npn transistors, and four pnp transistors.-R. W. Maine, Generoting Two Rectongulor Waves, Electronics, 37:18, p 82-83.

VARIABLE-WIDTH PULSE GENERATOR-Rheostat in series with pulse transformer primary winding controls bias current to adjust output pulse width over range of 0.06 to 5 microsec. Rise time is less than 40 nsec .-Blocking Oscillator Has Variable Width Output, Electronics, 36:11, p 156.

SINE-WAVE CLIPPER-When driven by sine waves, circuit gives high-quality square waves over wide frequency range. Oufput voltage is essentially constant at 1.5 v peak-to-peak if input voltage is high enough to saturate silicon diodes.-W. E. Nemeth, TwoState Sine-Wave Clipper, Electronics, 34:11, p 64.

ADJUSTABLE DUTY CYCLE-R2 varies off time from 0.25 to 40 sec , while R15 provides variation of over 100 to 1 in ratio of on
time to off time. Pulse width and interpulse time can thus be adjusted inde-pendently.-A. A. Dargis, On and Off Time

MONOSTABLE WITH ZENER CLAMP-Produces pulses of known length and amplitude when triggered by external pulse.-C. M. Stewart, Monostable Pulse Generator Employs ZenerDiode Clamp, Electronics, 34:19, p 76-77.

ZERO-CROSSING PULSES-Sharp pulse is produced of each zero crossing, for phase control of scr power supply. When instantaneous line voltage is zero, differential amplifier Q1-Q2 is balanced and collectors swing to +2.5 v , cousing gate to produce $2-\mathrm{v}, 20-$ microsec output pulse.-S. Prigozy, Zero-Crossing Defector Provides Fast Syne Pulses, Electronics, 38:8 p 91.

CRYSTAL-CONTROLLED PRR-Avalanche pulse generator used with $10-\mathrm{Mc}$ AT-cut crystal supplies nanosecond pulses with high stability and high repetition rate, for phaselocking microwave oscillators and for generating vhf and uhf local oscillator signals. -J. N. Bridgeman, Crystal Accurately Confrols Avalanche Pulse Generator, Electronics, 38:23, p 112-113.

IMPULSE GENERATOR-Transistor electronic switch driven by mvbr provides 10 -microsec pulses at 1,500 pps for modulating receiver close to 100% with pulsed interference.-
B. T. Newman, Evaluating Radio Receiver Susceptibility to Interference, Electronics, 34:15, p 70-74.

SINE-SQUARE-WAVE PHASE-SHIFT OSCILLA-TOR-R1 controls osciliator frequency and R2 controls width of square wave having same frequency as sine-wave output.-F. W. Kear, Designing Transistor Phase-Shift Oscillators, Electronics, 35:11, p 72-74.

NEGATIVE-RESISTANCE DIODE-C discharges through negative-resistance diode and load after being charged by source, at rate defermined by exponential function rother than by RC time constant.-A. P. Schmid, Jr., Negative-Resistance Diode Handles High Power, Electronics, 34:34, p 44-46.

megawatt pulses in range from 16 to 24 Mc, under control from electronic timer of

STEPPING-SWITCH POSITION INDICATORTransistor Q generates positive output pulse when input pulse is applied or removed. To obtain such positive pulses when stepping switch of automatic test set reaches positions $1,3,4,5,8$, ond 10 , contacts are connected to -10 v . Transfer for contact 1 to 2 then gives no output pulse, but moving from 2 to 3 removes input pulse and thus gives desired output pulse. Operation depends on underdamped oscillation in unloaded R-L-C circuit, with only one negative oscillation because saturated transistor shunts tuned network.-R. J. Bouchard, Positive-Pulse Generator, Electronics, 37:21, P 74-75.

1,000-V PULSES-Positive 3-v input pulse switches Q1, Q2, and Q3 on in sequence, to produce $1,000-\mathrm{v}$ pulse with short rise time for driving 20-kv pulse fube. High-voltage
rectifier diodes protect transistor string from spurious high-voltage spikes.-D. O. Hansen, Transistor Circuit Pulses 1,000 Volis, Electronics, 38:18, p 86.

NEON-TRANSISTOR RELAXATION-Operates over ronge of 0.05 to $7,000 \mathrm{cps}$ by odjusting values of C1, C2, and R4. Average supply current drawn is less than 1 ma.-R. D. Ryon, Low-Cost Pulse Generator, Electronics, 35:15, p 70.

TUNNEL-DIODE PULSER-Switching voltage change of tunnel diode is differentiated and amplified by grounded-base amplifier. With 8-v supply, 5-v output pulses are
obtained into 91 ohms of clock rates up to $140 \mathrm{Mc} .-$ M. V. Harrison and R. S. Foote, Tunnel Diodes Increase Digital-Circuit Switching Speeds, Electronics, 34:32, p 154-156.

UNIJUNCTION TRANSISTOR GENERATES DESIRED NUMBER OF PULSES-Number of pulses generoted each time switch $\$ 1$ is operated increases linearly from 0 to 140 as batfery volfage is increased from 11 to 35 v . Charge transferred from C1 to C2 fires transistor, discharging $\mathbf{C 2}$, with cycle repeating until C2 voltage drops below firing point.-R. Ferrie, Unijunction Circuit Generates Specific Number of Pulses, Electronics, 37:15, p 78.
 pulse is missing or below noise level.-W. C. Whitworth, Plate Voltage Control of Phanfrastron Frequency, Electronics, 34:6, p 73-74.

PHANTASTRON-Reversal of current and voltage functions of basic three-transistor phantastron sweep generator results in pulse output that is derivative of sawtooth sweep. -N. C. Hekimion, Phantastron Circuits Using Transistors, Electronics, 34:8, p 46-47.

SINGLE SCS-R4 varies relaxation frequency of pnpn silicon controlled switch from 1 to 500 pps, independently of pulse duration and amplitude. For operation in gated mode, cathode gate pulse at input should be -1.5 v af 50 microamp.-H. H. Wieder, Silicon Controlled Switch Can Generate Pulses, Electronics, 38:2, p 79.

ADJUSTABLE RISE AND FALL TIMES-Con-stant-current source Q1-Q2 charges C3, while
constant-current sink Q3-Q4 discharges C3. pandent Of Fall Time, Electronics, 30:2, p -D. N. Lee, Rise Time Adjustment Inde- 76-78.

sec.-R. W. Bailey, Push Button SCR Equols Fast Pulse, Electronics, 37:30, P 41-42.

SQUARE-WAVE TUNNEL DIODE-Short-circuited coaxial cable may be connected either in series or in parallel with iunnel diode of basic relaxation oscillator, to get squore-wave output with excellent frequency stobility over entire bias range. Wen-Hsiung Ko, Designing Tunnel Diode Oscillators, Electronics, 34:6, p 68-72.

RISE AND FALL CONTROL-CI controls range of rise and fall times, from 10 nsec for 10 pf , to $\mathbf{1 0}$ millisec for $\mathbf{0 . 1} \mathbf{~ m f d}$. Used for testing pulse networks.-D. G. Larsen, Pulse Generator Controls Rise, Fall Time Independently, Electronics, 38:19, p 98-99.

FISH SHOCKER-Two thyratrons serve os d-c interrupter that olternately connects and disconnects d-c generator from load consisting of fresh-water path between aluminum boot and aluminum grid 6 ft away. Fish swim toward positive electrode, receive shock, ond are temporarily stunned. Timing circuits determines number and duration of pulses.H. P. Dale, Electronic Fishing with Underwoter Pulses, Electronics, 32:4, p 31-33.

CONSTANT-WIDTH HIGH-CURRENT PULSESCircuit generotes negative pulses from -2 to $-12 v$ with rise and fall times less than 30
nsec. Amplifude and spacing depend on supply voltage. For positive output pulses, use npn transistors and positive supply.-
C. P. Hohberger, Fast Pulse Generator Tests Digital Circuit Delay, Electronics, 39:4, P 88-89.

CONTROL FOR FISH SHOCKER-Produces timing pulses that can be varied in range of 2 to 30 eps, with durations up to 250 millisec for square waves. R1 changes frequency of oscillator V3, while C6, R4, and R5 in delay mvbr V5-V6 determine width of pulse.-H. P. Dale, Electronic Fishing with Underwater Pulses, Electronics, 32:4, p 31-33.

PREFERRED DISTANCE-MARK GENERATORProduces train of accurately spaced pulses. Number of pulses in train is determined by duration of input gate, and distance mark spacing is controlled by values of $\mathbf{L 1}, \mathbf{C 2}$, and R3. R13 is 250 ohms maximum. Output is 0 to 50 v positive, for distance mark spacings of 0.5 to 25 miles in search radar. V2 is switched Hartley oscillator, whose output is shaped by mubr shaper V3-V4, for triggering blocking oscillator V5 to produce narrow marker pulses.-NBS, "Handbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. I, Electron Tube Circuits, 1963, PC 55, p 55-2.

30-NSEG: 5,000-V, 30-AMP PULSES-Used for testing magnetic materials at narrow pulse widths. Four hard tubes in parallel drive
test cores with 0.1 megawatt peak power and give some degree of regulation during pulsing.-G. A. Reeser, How Magnetic Ma-
terials Behave at Nanosecand Pulse Widths, Electronics, 34:36, p 72-75.

TRANSFLUXOR OSCILLATOR-Holds frequency setting for many hours ofter removal of control signal. Operates between 100 kc and 1 Mc. Gives square-wave output.-R. J. Sherin, Transfluxar Oscillator Gives DriftFree Output, Electronics, 33:10, p 48-49.

COMMON-BASE BLOCKING OSCILLATOR-Nonsafurating-fype triggered blocking oscillator is used when fast response is desired. Often used as pulse generator when waveform requirements are not critical.Texas Instruments Inc., "Transistor Circuit Design," McGraw-Hill, N.Y., 1963, p 430.

TUNNEL-DIODE PULSE GENERATOR-Nega-tive-resistance charocteristics of funnel diode gives fast-rise-time rectangular pulses, independently of signal frequency. Used here with common-base tronsistor amplifier.-G. B. Smith, Tunnel Diode Generates Rectangular Pulses, Electronics, 33:48, p 124-125.

SIMPLE SQUARE-WAVE GENERATOR-Circuit performance is made independent of active elements by using transistor only as switch. For reliable operation, circuit requires extra 10% of output-pulse-width dead time beiween triggers.-C. A.. Von Urff and R. W. Ahrons, How to Generate Accurate Sawtooth and Pulse Waves, Electronics, 32:50, P 64-66.

AVALANCHE SWITCH-Low-cost germanium fransistors used in avalonche mode provide narrow pulses with fast rise times. Width of input pulse determines number of output pulses. For testing counter, collector voltage of Q2 was adjusted for ten pulses per input pulse, at input repetition rate of up to 100,000 pps.-B. S. Ahn, Germanium Transisfor As Avalanche Switch, Electronics, 37:30, p 44.

TRIGGERED SQUARE-WAVE GENERATORSynchronizing trigger signal drives phase splitter Q1, which in furn feeds blocking oscillator Q2. Output from emifter-follower Q3 is 1 -microsec-wide pulse info 90 -ohm load. Depending on connections for Q1, either positive or negative input pulse greater than 5 v will trigger generator. Maximum prr is 40 kc.-R. E. Daniels and C. Swoboda, Pulse Generator for Synchronizing Events, Electronics, 33:24, p 63.

VARIABLE SQUARE WAVES-Output is adjustable from 0.5 cps to 60 kc at currents up to 150 ma , without appreciable corner rounding of waveform, with variable pulse width and variable interval between pulses, for driving flash lamps, relays, and computer gates.-J. D. Reed, Square Wave Generator with Variable On and Off Times, EEE, 10:10, p 27-28.

RINGING-TYPE PULSE GENERATOR-Used in some lorge high-speed computers to tronsmit pulses from central unit over long distances as d-c levels, then convert back to pulse forms. To convert level back to pulse, transistor switch is furned off by positive-going wavefront energizing ringing circuit. Input triggering of ringing sfage is accomplished when definite threshold level is exceeded.--Pulse Generotor for High-Speed Computers, "Electronic Circuit Design Handbook," Moctier Pub. Corp., N.Y., 1965, p 75.

ALL CAPACITORS IN $\mu \mu$ F UNLESS NOTED

GATED-BEAM SQUARE-WAVE GENERATORAmplifies without attenuation up to tenth harmonic of square-wave fundamental, from which output of 50 to 500,000 pps can be adjusted over desirable range without waveform distortion. Uses twin-triode 12AU7 as symmetrical mvbr, 6BN6 as gated-beam
tube, 6AN6 as wideband amplifier, and 6AG7 as cathode-follower output. Operating frequencies ore changed by 51 and S2. R27 adjusts output signal level from 0.8 to 8 v peak to peak. Rise time for 500 -ke signal is better than 0.07 microsec. Provides 5 distinct repetition rates $(50,1,000,10,000$,

100,000 , and $500,000 \mathrm{pps}$) for checking amplifiers up to af least tenth harmonic of fundamental repetition ratio.-Gated-Beam Tube Square-Wave Generator, "Electronic Circuit Design Handbook," Mactier Pub. Corp., N.Y., 1965, p 175.

PULSE-SQUARING ZENERS-Addition of zener diodes to transistor amplifier fed by tunneldiode pulse generator improves output wave-form.-G. B. Smith, Tunnel Diode Generates Rectangular Pulses, Electronics, 33:48, p 124125.

VOLTAGE-CONTROLLED PULSE SPACINGUnijunction transistor circuit generates train of pulses with constant pulse width but with spacing linearly adjustable over 20-to-1 range by voltage V, which varies trigger point of ujt Q2.-A. M. Ridenour and F. Turco, Unijunction Controls Spacing Between Pulses, Electronics, 39:14, p 82-83.

CALIBRATED MILLIMICROSECOND PULSERUses coaxial discharge line to produce precise short pulses on keyed single-shot basis or at constant repetition rate. Works info 50 -ohm laad.-E. J. Mortin, Jr., Calibrated Source of Millimicrosecond Pulses, Electronics, 32:16, p 56-57.

VARIABLE FREQUENCY AND VARIABLE DUTY CYCLE-Frequency and duty ratio can be varied independently to generate desired rectangular wave. Uji is used in conventional sawtooth generator. Two transistors provide
positive-going output when uit emitter voltage exceeds npn emitter voltage. Frequency range is 60 to $1,000 \mathrm{cps}$.-"Transistor Manual," Seventh Edition, General Electric Co., 1964, p 344.

VARIABLE-PULSE-WIDTH GENERATOR-Converts fixed negative pulse-width input to variable and stable pulse width. Will accept positive inputs if TI and $\mathbf{T 2}$ are changed from 2N1308 to 2N1309 and collector voltages reversed. Will operate at repetition
rates from 30 cps to 2 Mc, with pulse widths from 600 microsec to 100 nsec. With values shown, maximum duty cycle is 92% with 63-microsec input rep rate.-H. D. Flagle, High-Duty-Cycle Pulse-Width Generafor, EEE, 11:8, p 27-28.

DELAYED OUTPUT PULSE-Only three transistors are required to generate output rectangular pulse that is delayed a predetermined time after arrival of input pulse. Delay time is determined by C1, R3, and R4,
and is about 10 microsec for values shown. Output pulse width is also about 10 microsec. -T. R. Ferrara, Delayed Pulse Generator, EEE, 13:10, p 71.

BASIC HARTLEY-Sine-wave ascillator, funable aver $3: 1$ frequency range by $\mathrm{C4}$, uses switching transistor. Used in pulse generotar far festing high-speed digital camputers.-L. Neumann, Transistarized Generatar far Pulse Circuit Design, Electronics, 32:14, p 47-49.

MULTI-WAVEFORM OSCILLATOR-By varying collector laod, emitter resistars, and C, oscillator can produce triangular wave, square wave up to 30 Mc , microwatt audia signal, or serve as voltage-controlled oscillator. Volues shown, with $6-\mathrm{v}$ supply and 0.01 mfd for C, give $0 . B \vee$ peak-to-peak square wave at obout 1 Mc.-P. Lefferts, Multi-Oscillator Gives Simple Woveforms, 30-Mc Output, EEE, 12:10, p 60.

SCS SQUARE-WAVE GENERATOR-RI-C defermines half the period, and R2-C the remainder. R1 should equal R2 far squarewove autput. Patentiometer varies pulse width withaut affecting frequency. Outputs are equal and appasitely phased.-"Transisfar Manual," Seventh Editian, General Electric Co., 1964, p 434.

STEPPING SWITCH PULSER-Used to advance stepping switch outomatically at predetermined rate, in automatic fest equipment providing go-no-go indications. Cl controls output pulse width to give 80 -msec on time,
far reliable actuation of switch that normally requires 20 millisec. Range of off time, confrolled by R5, is 20 millisec to 7 sec.-C. Wilson, Step Switch Pulser, EEE, 10:11, P 26-27.

INPUT

PULSES
PULSED OSCILLATOR-Circuit is pilsed on only when required, as in tone generators where output is needed only occasionally
and pawer must be conserved. Uses Wienbridge oscillator having range of 100 cps to 100 kc , which operates only when goting

LEVEL DETECTOR-Provides constant-width pulses af fixed repetition rate whenever input signal exceeds predetermined level. Maximum current drawn from signal source is only 35 microamp.-J. G. Peddie, Two Unijunctions Form Low-Cost Level Detector, Electranics, 39:8, p 94.

LOW-COST SQUARE WAVES-Conversion cir cuit coupled to sine-wave audio ascillator gives square-wave generator at half usual cast. Will shape sine waves up to 3 Mc before trailing edges of square-wave autput begin to deteriorate. Can be triggered by input signals from 0.2 to 10 v . Positive input furns on D1 and Q1, driving amplitudelimiting pair Q2-D2 into conduction to square up waveform. Lower half of circuit generates negative square pulse in negative manner.-R. S. Selleck, Converting Audio Oscillators to Square-Wove Generators, Electronics, 39:16, P 123.

VARIABLE WIDTH AND VARIABLE PRR-Gives wide range of control over pulse width and pulse repetition rate, while maintaining synchronization with oscillosope. Can be constructed with banana plugs for sawtooth output jacks of scope.-R. G. Rakes, Simple Variable Widih, PRR Pulse Generator, EEE, 13:11, p 45-46.

CHAPTER 65

Pulse Height Analyzer Circuits

PULSE HEIGHT DISCRIMINATOR-Delivers trigger pulse when input signal reaches predetermined threshold. Used in nuclear counting experiments, in satellite and rocket ap-
plications where sensitivity and stability are essential.-R. H. Wagner, Stable, Sensitive Pulse Height Discriminator, EEE, 10:7, p 2829.

PULSE AMPLITUDE DISCRIMINATOR-Input of 1 v triggers SCSI but not SCS 2. Input of $3 v$ is delayed in reaching SCS1 by R-C infegrating network and therefore triggers SCS2, which raises common-amitter voltage to prevent SCSI from triggering.-"Transistor Manual," Seventh Edition, General Electric Co., 1964, p 433.

VOLTAGE DISCRIMINATOR-Output changes sharply when input signal rises above preset threshold such as -10 v , with circuit returning to initial state when input reaches still higher threshold such as -11 v . Width of resulting
output pulse can be changed by varying R1, R2, or R3.-C. D. Todd, Sharp Discrimination of Voltage Differences, Electronics, 38:19, p 97-98.

PWM TELEMETRY-Width or height of input pulse determines whether trigger Q1-Q2 will be on long enough for C to charge to valtage
that will make trigger Q3-Q4 produce output pulse.-R. G. Ferrie, One Discriminator

Senses Pulse Width and Height, Electronics, 38:8, p 90-91.

FAST AMPLIFIER FOR RANDOM TELEGRAPH WAVE-Amplifies small pulses above threshold value without being overloaded by large pulses derived from radioactive isotope and phosphor on envelope of multiplier phototube. Two feedback loops, similar to Oak Ridge-Fairstein and Brookhaven-Chase circuits, help to stabilize gain.-J. B. Manelis, Generating Random Noise with Radioactive Sources, Electronics, 34:36, p 66-69.

TUNNEL-DIODE DISCRIMINATOR-TdI, biased close to its peak current, is connected to d-c amplifier to overcome inherent limitations of tunnel diode. When input voltage makes current through R3 exceed diode peak current, diode switches to its high-voltage state of 0.5 v . Q1 amplifles this change by factor of 10 , and $\mathbf{Q 2}$ initiates start of squarewove output. When input drops, circuit and diode revert to original state. Rise and fall times are about 10 nsec.-G. Marosi, Versatile Tunnel-Diode Discriminator, EEE, 14:5, p 120.

VOLTAGE LIMIT DETECTOR-Consists of two voltage dividers that set the levels between which ramp generators should remain in tester that shows computer memory perfarmance under marginal drive eurrents by plotfing schmaa curves. Npn transistors are 2N706, pnp transistors are 2N1132, and
diades are IN92I.-J. E. Gersbach, The Great Schmoo Plot: Testing Memories Automatically, Electronics, 39:15, p. 127-134.

SIGNAL AMPLITUDE ANALYZER-Width of rectangular output pulse is proportional to time spent by signal between specified voltage levels. Used to defermine probability
amplitude density functions.-T. A. Bickart, Amplitude Slicer for Signal Analysis, Electronics, 32:9, p 64-65.

AMPLITUDE WINDOW-Provides trigger on negative portion of input signal or noise, for slicing portion out of input signal for use with amplitude analyzer in determining probability amplitude density functions.T. A. Bickart, Amplitude Slicer for Signal Analysis, Electronics, 32:9, p 64-65.

SHOCK SPECTRUM ANALYZER-Inexpensive peak memary unit has indefinitely long memory, to refain information long enough for all channels to be recorded. Shock spectrum of input pulse is then defined by peak voltages across capacitors in all memory units. Output is d-c level for automatic recording or plotting.-D. F. Palmer, Shock Spectrum Analyzer, EEE, 11:3, P 118-119.

TUNNEL-DIODE PULSE-HEIGHT DISCRIMINA. TOR-Used to analyze 30 -nsec pulses varying in height from 0 to 6 v peak, over temperature range of -20 to $+60^{\circ} \mathrm{C}$. Ten stages were connected in parallel and $0.5-\mathrm{v}$ steps used for 0 to 5 v output range. When funnal diode is triggered af its predeter-
mined level, Q1 delivers fixed current to operational amplifier. As input pulse height increases, more and more tunnel diodes are triggered, and current to operational amplifier increases linearly.-J. D. Nickell, TunnelDiode Pulse-Height Discriminator, EEE, 13:9, p 75.

CHAPTER 66

Pulse Processing Circuits

MAGNETRON BEAM SWITCHING-First trigger pulse switches beam to first position, and each succeeding frigger advances beam one position, until reset pulse zeroes V1I for repetition of switching sequence. Succeeding switching-circuit output pulses are thus timecoincident with succeeding amplitude porfions of input signal, for pulse amplitude measurement.-J. F. Lyons, Jr., Analyzing Multipath Delay in Communications Studies, Electronics, 32:36, p 52-55.

CONSTANT DUTY CYCLE-Width of output pulse varies with frequency to keep duty cycle constant at preadjusted value from
$\mathbf{2 5 \%}$ to $\mathbf{7 5 \%}$, over input trigger range of 100 to 5,000 pps. Q1, Q3, and Q4 form one mvbr, and Q5 is second mvbr. Q2 is voltage-
to-current converter.-G. P. Klein, Duty Cycle is Constant at any Trigger Frequency, Electronics, 3B:15, p 62-63.

SINE-WAVE ZERO-CROSSING DETECTOR-Delivers 10-v pulse that coincides with zero crossings of sine-wave input for most of
audio range. Output interval is adjustable. -F. Stevens, Jr., Sine-Wave Zero-Crossing Detector, EEE, 13:11, p 45.

TRIGGER GENERATOR-Differentiating circuit provides triggers for each input signal amplitude discontinuity, and resultant positive and negative triggers are converted to uniform negative polarity in paraphase amplifier V21A. Second channel, composed of overdriven amplifiers V25 and V26 and cath-
ode follower V21B, provides output pulse whose width corresponds to that of overall input signal. Lagging edge of pulse triggers one-shot V28 to generate delayed resef pulse for subsequent switching circuits.-J. F. Lyons, Jr., Analyzing Multipath Delay in Communications Studies, Electronics, 32:36, p 52-55.

PULSE PHASE SPLITTER-Provides bipolar pulses 180° out of phase, with perfect coincidence of positive-going leading edges, same reference level, and drive capability for saturated inverters.-G. Wolff, simple Pulse Phase-Splitter, EEE, 14:2, p 70-72.

PULSE AMPLITUDE MEASUREMENT-Produces pulse whose width is linearly related to solected portion of input signal. V42 is 5 chmits trigger. V46 is flip-flop controlled by output from magnetron-beam switching tube (MBST) for selecting desired sample of signal. Output pulse width is sampled and measured by counter.-J. F. Lyons, Jr., Analyzing Multipath Delay in Communications Studies, Electronics, 32:36, p 52-55.

PULSE COINCIDENCE DETECTOR-Provides output from silicon controlled switches only when input pulses are applied simultaneously at A and B, with 2 to $3 v$ amplitude. Overlap of 1 microsec is sufficient for triggering. -"Transistor Manual," Seventh Edition, General Electric Co., 1964, p 428.

MEASURING PULSE LENGTH-Circuit delivers output pulse only when triggered by input pulse obove preset width. Can be used for checking lengths of objects moving past

phofocell.-K. R. Whittington and G. Robson, Versatile Discriminator Measures Pulse Length, Electronics, 35:31, p 48.

COINCIDENCE DETECTOR-TURns on lamp to indicate coincidence of any two input pulses that are 100 microamp in amplitude and coincide for at least 1 microsec.-J. Crowling, Pulse Coincidence Detector, EEE, 11:7, p 27.

PULSE PHASE SPLITTER-Provides bipolar pulses 180° out of phase, with perfect coincidence of negative-going troiling edges, same reference level, and drive capability for safurated inverters. Used for switching sample-hold gates requiring opposite-going pulses with trailing-edge coincidence.-G. Wolff, Simple Pulse Phose-Splitter, EEE, 14:2, p 70-72.
 pulse generator provides blanking signal starting with input pulse and remaining on for some nominal portion of pulse, regordless af drapauts due to noisa in triggering
pulse.-Blanking Pulse Generator with Linear Pulse Width Control, "Electronic Circuit Design Handbook," Mactier Pub. Corp., N.Y., 1965, p 78.

ANTICOINCIDENCE DETECTOR-Gives indication whenever two input pulses are not coincident. Limit on smallest degree of onticoincidence that is detectable is determined by turn-on time of SCR's, and is obout 0.3 microsec for 2 N1595 ser used, when C1 is omitted. Upper limit is set by $\mathbf{C l}$, and can be several tenths of a second when Cl is 200 mfd . Circuit is reset by interrupting supply. Diodes are 1 N691, ond lomp is 1819. -J. T. Gatshall, Anti-Caincidence Detector, EEE, 10:9, p 28-29.

MISSING-PULSE DETECTOR-Detects presence or obsence of pulse train and indicates whether level remoins positive or negative after pulsing stops.-R. W. Allington, Pulse Absence Defector, EEE, 11:5, p 90-91.

PULSE SORTER-Receives troin of vorying- pulse in train, without chonging pulse widths. width pulses ond presents eoch pulse of output ferminal corresponding to position of

Three transistors ond one ferrite core ore used for eoch sorted pulse. Con handle
over 1,000 pps.-J. H. Porter, Pulse Sorting with Tronsistors ond Ferrites, Electronics, 32:20, p 64-65.

CHAPTER 67
 Pulse Shaping Circuits

PREFERRED PULSE SHAPER-Generolly used with monostoble mvbr, to form l-microsec pulse of end of delay period. Also used to reshope pulse thot hos suffered deteriorotion by possoge through long chain of gates, or to produce 1-microsec pulse whose leading
edge coincides with troiling edge of o positive pulse, for deloying output by width of input pulse.-NBS, "Handbook Preferred Circuits Novy Aeronoutical Electronic Equipment," Vol. II, Semiconductor Device Circuits, PSC 11 (originally PC 214), p 11-2.

G-M DRIVE FOR SCALE-OF-64 COUNTERShopes pulses from Geiger-Muller tube and uses one-shot mubr to drive first scaling stoge.-F. E. Armstrong, Bottery Powered Portoble Scoler, Electronics, 33:19, p 74-75.

[^1]low leokoge current through D1 ond fet Q3 McGee, FET Circuit Stratches 1-MSEC Pulse give circuit 30-hour time constont.-M. E. to 30 Hours, Electronics, 38:7, p 87-88.

FET CONVERTS TRIANGULAR TO SINE-Eliminates need for signal rectification by using symmetrical properties of Fairchild FSB40 fet with respect to saurce and drain. Far
p-channel units, reverse the diades.-R. D. Middlebraak and I. Richer, Nanreactive Filter Canverts Triangular Waves ta Sines, Electranics, 38:5, p 96-101.

PULSE FORMER AND SHAPER-Converts sinewove input ta 40 millimicrosec autput. Used in versatile pulse generator far testing highspeed camputer circuits. Input frequency ronge is 3 to 20 Mc.-L. Numann, Tronsisfarized Generatar far Pulse Circuit Design, Electranics, 32:14, p 47-49.

ADJUSTABLE D-C LEVEL SHIFTER-Shifts d-c level of signal accurately and cantinuausly withaut affecting gain, from +4 v ta +7 v d-c center-valtage output. Input a-e signal varies 2 v abaut $+4 \mathrm{v} d-c$. Other affset valtages can alsa be obtained.-H. Anway, Cantinuausly Adjustable DC Level Shiffer, EEF, 12:10, p 59.

ZENER-DIODE PULSE STRETCHER-Gives delays UP to $\mathbf{5 0}$ millisec without need for large capacitance values, by varying R1; delay is 10 millisec for 20 K value shown. Input is negative 1-millisec pulse, which is stretched by amount of deloy.-A. S. Robinson, Zener Diode Allows Delay Without Large Capacitors, Electronics, 39:11, p 93.

DELAY-LINE PULSE SHAPER-Voltage pulse from current preamplifier of multiplier phototube is shaped by DLI, which is shorted ot one end and ferminated at other end with its characteristic impedance, to normalize input pulse width at twice 0.5 -microsec characteristic delay of line. First stage gives open-loop gain of 118. Second stage gives low-impedance drive for feedback and for following discriminator amplifier. Total loop gain is 17 for bandwidth of 1 Mc.-R. Cuikay and T. Callahan, Orbiting Observatory to Measure Stars' Dim Light, Electronics, 37:9, p 28-31.

SELF-RESETTING PULSE STRETCHER-Produces output pulse that lasts for designated pariod of time after last of group of 20-microsec $5-\mathrm{v}$ input pulses disappears. Circuit then resets, and draws no current while quiescent. Amount of stretching is determined by charging of C through R2, and is 55 microsec for values shown. Gate-furnoff scr can be usad in place of transistors Q1 and Q2. -B. F. Smith, Self-Resetting Pulse Stretcher, EEE, 12:8, P 71-72.

STRETCHER-EXPANDER-Produces dot pulse that unblanks ert screen and advances staircase. 0.5 -microsec pulse from linear amplifier is stretched to 2-millisec pulse, amplified,
and inverted for push-pull art defection.W. E. Bushor, Sample Method Displays Millimicrosecond Pulses, 32:31, Electronics, P 69-71.

SCS PULSE STRETCHER-Stretch interval is determined by 5 -mfd capacitor and 4.7 K re-sistor.-"Transistor Manual," Seventh Edition, General Electric Co., 1964, p 435.

SAWTOOTH CLIPPER-High-gain amplifier converts sawtooth input to rectangular output pulse whose width is proportional to portion of sawtooth amplitude that is above
threshold level.-B. E. Mathews and F. R. Sias, Jr., Testing Space Craft with Induction Heaters, Electronics, 35:34, p 38-41.

500 KC TO 1 MC D-C RESTORER-Modified clamp circuit is used with 500 -ke sine-wave input to provide complete restoration of reference potential for 1-Mc half-wave output. -H. Kundrat, Jr., High Frequency DC Restoration with Gain, EEE, 11:10, p 26-27.

PULSE-LENGTH CONTROLLER-Reduces duration of intervalometer pulse from 400 millisec
to 100 millisec without affecting intervalotion of intervalometer pulse from 400 millisec
to 100 millisec without affecting intervalometer operation for other purposes. Used to
control airborne strip-chart camero.-J. 5 . meter operation for other purposes. Used to
control airborne strip-chart camera.-J. 5. Peddo, Low-Cost Pulse-Length Controller, EEE, 12:7, p 26.

SINE TO SQUARE WAVES-Japanese Esaki or tunnel diode acts like Schmitt trigger in converting sine-wave input signal to square-wave pulse train.-T. Kojima and M. Watanabe, When You're Second, You Try Harder, Electronics, 28:25, p 81-89.

UJT PULSE SHAPER-Use of inductance in ujt relaxation oscillator gives significant improvement in output pulse shape over that of conventional resistance-coupled circuit. Pulse width for various transistors is between 11 and 12 microsec, and rise and fall times are typically 0.3 microsec. With 47 -ohm resistor in place of inductance, fall time would be 3 microsec.-"Transistor Manual,'" Seventh Edition, General Electric Co., 1964, p 316.

CHAPTER 68 Radar Circuits

MULTICHANNEL MONITOR-Automatically detects single signal coming from large number of separate sources and identifies source, as required in doppler radar sets that must search bank of sharp filters placed side by side, to detect target, while antenna scans field of search. Positive signal reaching defector is amplified to drive Miller integrator V1-V2. As V1 goes negative, it disconnects one channel at a time (by driving its disconnecting diode D1 below 0 v) until live channel is reached. Defector output is then cut off, and Cl stores level of which disconnect occurred.-R. Kronlage, Monitoring Multiple Inputs Simultaneously, Electronics, 32:35, p 50-51.

RADAR SPEED METER-Transiates doppler or difference frequency between transmitted and received frequencies info mph and displays
on meter or records on strip chart. Operates at $2,455 \mathrm{Mc}$ and is accurate within 2 mph up to 100 mph .-J. Barker, Radar Meter Helps

VTVM
Enforce Traffic Laws, Electronics, 32:10, p 48-49.

DELAY LINE AMPLIFIER FOR CLUTTER 5IMU-LATOR-Used with ultrosonic delay line and 30-Mc Gaussion noise source to simulate acfual clutter received during consecutive radar sweeps. Input 1 is amplified version of delay line output signal, which is added to noise input 2 in common plate load of V1 and V2, for amplification by V3. These three tubes together with tuned input to delay line form staggered Butterworth triple centered on 30 Mc , with half-power bandwidth of 2.75 Mc . Third input permits insertion of pulse for precise synchronizing to repetition frequency of clutter simulator. -J. Aikin, H. J. Bikel, and M. Weiss, Realistic Simulation of Radar Clutter, Electronics, 32:39, p 78-81.

COHO JITTER MONITOR-Automatically monifors coherent oscillator frequency and pro-
vides visible indication of amount of jitter, as measure of mti system capability.-C. Clark,

Checking Jitter in Moving Target Radar, Electronics, 32:29, p 56-58.

TWO-DIMENSIONAL TARGET SIMULATORTwo signals, one representing angular posifion of target and the other angular posifion of radar antenna, are fed to aximuth coincidence circuit. When signals coincide, indicating that antenna is pointing af target, delayed pulses representing a target are passed to radar ppi by azimuth gating cir-cuit.-J. I. Leskinen, Four Ways to Simulate Radar Targets, Electronics, 31:23, p 82-86.

NARROW-BAND RADAR AMPLIFIER-Twin-tee feedback loop iuned to modulating frequency between 60 and 400 cps is used with video crystal and chopper of low-cost c-w radar receiver. Minimum defectable level is -55 dbm.-R. Fleming, Modulation Techniques Cut Radar Cost, Electronics, 35:35, p 56-58.

250-KW MODULATOR-Ten silicon diodes replace five vacuum fubes in artificial linetype modulator for airborne radar operating of peak power of $250 \mathrm{kw} .-\mathrm{M}$. G. Gray, Using Silicon Diodes in Radar Modulators, Electronics, 32:24, p 70-72.

RADAR POWER AMPLIFIER-Hondles pulses in range of 100 to 500 microsec of 2.2 Mc . Class B final stage Q2 delivers 105 w to pi loading network serving as 51 -ohm load.-S. Horowitz and L. Humphrey, Sotellite Sounder and Telemeter Chart lonosphere Electron Density, Electronics, 34:25, p 50-53.

HYBRID 30-MC I-F-Bandwidth is 6 Mc , noise figure is below 2.5 db , and gain is enough to give 1 v peak-fo-peak noise output info 1,000 -ohm load when using two transistorized video stages following the five transistorized i-f gain stages.-J. Scott, D. Randise, and R. P. Lukacovic, Poriable Radar Traces Battlefield Deployment, Electronics, 33:12, p 67-70.

DISTANCE-MARK GENERATOR-Uses switched Hartley oscillator, pentode amplifier-shaper, and series-friggered blocking oscillator 10 generate 20-mile distance marks in airborne search radar.-NBS, "Handbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. 1, Electron Tube Circuits, 1963, P N8-2.

SWEEP GENERATOR-Accepls pulse from monostable mubr and generates signal for sweep resolver of ppi radar. Voltage rises at constant rate during mono off time, and is held of zero during on time. Coscaded emitter-follower Q7-Q8 provides impedance match to output. Q9-Q10-Q11 provide required power for sweep resolver while preventing thermal runaway at normal tempera-tures.-C. E. Veazie, Transistorized Radar Sweops Circuits Using Low Power, Electronics, 32:26, p 46-47.

YOKE DRIVER-Used to clamp sweep signal voltage to reference valtage during clamping time at end of sweep, while remaving clamp during sweep. Diodes D1-D2 and D3-D4, cannected in opposite polarity to each signal line, serve as clamp circuit.-C. E. Veazie, Transistorized Radar Sweep Circuits Using Low Power, Electronics, 32:26, p 46-47.

TIMING PULSE SHAPER-Monostable mvbr converts timing signal to narrow pulse whose width is occurately controlled by R-C natwork. Use of emitfer-follower Q4 befween friggered fransistor Q3 and R-C nefwork assures fast rise and fall times.-C. E. Veazie, Transistorized Rador Sweep Circuits Using Low Power, Electronics, 32:26, p 46-47.

COSINE-SQUARED PULSE GENERATOR-Generates pulse whose width is half tha durafion of one input sine-wave cycle. Cosine-
squared pulse output is fed into balonced modulator in conjunction with 30-Mc signal, and resulting burst is used as input to syn-
chrodyne klystron.-K. H. Chase and J. L. Pierzga, Reducing Mutual Radar Interference, Electronics, 32:28, p 39-43.

FAR-END-OF-LINE MODULATOR CLIPPER-In variation of diode modulotor, clipper diodes D9 and D10 are connected to for end of pulse-forming network, for improved performance. Choke L in plate circuit of thyratron limits rate of rise of thyratron current.-M. G. Gray, Using silicon Diodes in Radar Modulators, Electronics, 32:24, p 70-72.

VARIABLE SWEEP LENGTH-Operates with sweep lengths varying by factor of 8 to 1 . Supplies $1,100 \mathrm{v}$ at 160 ma for 0.5 -mile range and 400 v at 270 ma for 4 -mile range. R. F. P. Smith, Airpert Radar Has High Resolution, Electronics, 32:14, p 64-69.

LOG AMPLIFIER-Has highly linear logarithmic output over $30-\mathrm{db}$ dynamic range. Used in obtaining antenna patterns on operating radar system. Output current is directly proportional to pulse repetition frequency and
log of peak r-f pulse power.-Logarithmic Amplifier for Radar Signals, "Electronic Circuit Design Handbook," Mactier Pub. Corp., N.Y., 1965, p 107.

DISTANCE-MARK GENERATOR-Uses switched Hartley oscillator, mvbr-type trigger shoper, and parallel-friggered blocking oscillator to generate distance marks in airborne search
radar. RLC unit is switched to change mark spacing.-NBS, "Handbook Preferred Circuits Navy Aeronoutical Electronic Equipment," Val. 1, Electron Tube Circuits, 1963, p N8-1.

STRONG-NOISE-SUPPRESSING AUDIO AMPLI-FIER-Feedback circuit limits amplitude of low-frequency signals such as those produced by wind-moved tree branches, to prevent masking vehicular target signals in portable doppler radar. Low-pass fltering compen-
sates for poor bass respanse of human ear, permitting defection of slow-moving targets such as walking man.-J. Scott, D. Randise, and R. P. Lukacovic, Poriable Radar Traces Battlefleld Deployment, Electronics, 33:12, p 67-70.

HIGH-POWER PULSE GENERATOR-Power transistors and saturable transformers serve in place of hydrogen thyratrons for generating pulses with 1-megawatt peak power for sonar and radar. Low-voltage capacitor is first charged to voltage that is regulated on pulse-to-pulse basis rather than from regulated supply. Capacitor is then discharged through saturable step-up transformer ll to charge high-voltage capacitor, which in turn is discharged through magnetron load.-R. T. Maguire, SCR's to Pulse Radar, Electronics, 37:3, p 14-15.

DISTANCE-MARK GENERATOR-Uses switched Hartley oscillator, pentode amplifier-shaper, and series-triggered blocking oscillator to generate l-mile distance marks in airborne search radar. Frequency dividers are used for 10-and 20-mile marks.-NBS, "Handbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. 1, Electron Tube Circuits, 1963, p N8-2.

doveloped by gating circuits. Gives marked improvement in acquisition capability.-K. H. Chase and J. L. Pierzga, Reducing Mutual

PULSE-WIDTH DISCRIMINATOR-Cuts scanning loss from interfering radars in half, by blanking video signal only if it falls within notch

DISTANCE-MARK GENERATOR-Uses switched Hartley oscillator, amplifier-shaper, and par-allel-triggered blocking oscillator to generate distance marks for 10 and 40 miles in airborne search radar.-NBS, "Handbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. 1, Electron Tube Circuits, 1963, p N8-3.

DISTANCE-MARK GENERATOR-Uses switched Hartley oscillator, gated-beam amplifiershoper, and series-triggered blocking oscillafor to generate distance marks for 2, 5, and and $\mathbf{2 5}$ miles in airborne search radar.-NBS, "Handbook Preferred Circuits Navy Aeronaufical Electronic Equipment," Vol. 1, Electron Tube Circuits, 1963, p N8-3.

VIDEO SWITCH-Used to either pass or blank out video signals going to ppi visual display. Blanking gate input pulse is applied to switch
if video fails to identify itself as signal from associated radar set.-L. Turf, Video Switch for Radar, EEE, 11:2, p 24-25.

ELECTRONIC SWITCH FOR RADAR INDICA-rOR-Used to produce aircraft identification
markers on ppi. Cainsidence of binary voltages supplies gating signals for switch.-J. B. Switch, Electronics, 32:8, p 66-68.

RADAR PULSER-Mognatic dischorge and pulse shaping networks are used insteod of thyrotrons or vocuum-tube omplifiers to reduce size ond weight while increosing re-liobility.-A. Krinitz, Using Mognetic Circuits to Pulse Radar Sefs, Electronics, 32:27, p 42-43.

HARD-TUBE MODULATOR-Supplies 0.02microsec 180-kw moduloting pulses of prf of 14,400 pps. Hord tube is used becouse hydrogen thyrotron of odequate power-hondling copobility would not deionize rapidly enough of this prf.-R. F. P. Smith, Airport Rodor Hos High Resolution, Electronics, 32:14, p 64-69.

PULSED DISTRIBUTED AMPLIFIER-Gives 20\%
bondwidth centered on 200 Mc . Used os out-
put stoge of moderate-power 'radar, final
drive of high-power drive, ond for high-level
pulse omplificotion.-S. K. Meads, How to De-
sign Pulsed Distributed Amplifiers, Electronics,
32:12, p 56-58.

VARIABLE TIME-INTERVAL STANDARD-PIOduces two deloyed pulses for establishing acturate time intervals from 1 to 10,000 microsec. Delays are adjustable in 1 -microsec increments, with continuous interpolation
between steps. Crystol-controlled oscillator and fast preset counters reduce time-delay orrors. Useful in calibroting rodar and loran fiming circuits, oscilloscopes, and marker generotors, as well as for precision pulse code

PULSED CRYSTAL OSCILLATOR

modulation and for calibrating delay lines. -D. Broderick, D. Hartke, ond M. Willrodt, Precision Generator for Radar Range Colibration, Electronics, 32:14, p 58-60.

BLOCKING-OSCILLATOR MODULATOR-High permeability of ferrite-core transformer allows use of fow coil turns, keeping capacitance af minimum so narrow pulses are pro-duced.-C. D. Hardin and J. Salerno, Miniature X-Band Radar Has High Resolution, Electronics, 32:5, p 48-51.

DISTANCE-MARK GENERATOR-Uses switched Hartley oseillator, mubr-type trigger shaper, and parallel-triggered blocking oscillator to generate 1.67 -mile distance marks in airborne search radar. Blocking-ascillator frequency dividers are used to gat 5. and 10 mile marks.-NBS, "Handbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. 1, Electron Tube Circuits, 1963, p N8-2.

DISTANCE-MARK GENERATOR-Uses switched
Hartley oscillator, monostable mybr-type trigger shaper, and parallel-triggered blocking oscillator to generate distance marks for 2 , 5 , and 25 miles in airborne search radar. RLC unit is switched to change mark spacing. -NB5, "Handbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. 1, Electron Tube Circuits, 1963, p N8-1.

NARROW-BAND BALANCED MODULATORYields two sidebands and carrier while balancing out original video signal. Gang switch permits use of six different carrier
frequencies if sufficient telephone-line bandwidth is available. Sideband filters remove upper sideband and part of carrier to provide vestigial sideband operation.-H. W. Gates
and A. G. Gatfield, Scan Converter Aids Phone-Line Radar Relay, Electronics, 32:16, p 48-51.

KLYSTRON SERVO-Simple three-fube modecentering servo is only control required for local-oscillator klystron in wide-band receiver
of short-pulse radar system.-C. D. Hardin and J. Salerno, Miniature X-8and Radar Has High Resolution, Electronics, 32:5, p 48-51.

TRIGGER FROM
LONG DELAY UNIT
DOUBLE-PULSE GENERATOR-Used in re-sponder-interrogator range computer to produce pair of 15 -microsec-wide pulses spaced 30 microsec. Monostable mubr receives two triggers, one through $\mathbf{3 0}$-microsec delay line, and produces 15 -microsec pulse for each trigger received.-H. Vantine, Jr., and E. C. Johnson, Modified Transceivers Compute Disfance, Electronics, 31:37, p 94-98.

FLYBACK BLANKING-Amplifies blanking pulse from monostable mvbr sweep circuit to level required far blanking crt screen. Q26, normally nonconducting, is driven to saturation by blanking pulse, thereby applying high negative voltage to crt contral grid.C. E. Veazie, Transistorized Radar Sweep Circuits Using Low Power, Electronics, 32:26, p 46-47.

LINE SWEEP GENERATOR FOR ENCODER-Circuit is basically negative-feedback linearized R-C sawtooth generator in which charging voltage is held constant while negative end
of sweep-forming capacitor is driven negative. Amplifier VB-V9A-VIOA is direct-coupled throughour. Loop-stabilizing networks pass high-frequency components.-H. W.

Gates and A. G. Gatfield, Scan Converter Aids Phone-Line Radar Relay, Electronics, 32:16, p 48-51.

DISTANCE-MARK GENERATOR-Uses switched Hartley oscillator, mvbr-type trigger shaper, and parallel-iriggered blocking oscillator to generate distance marks for 2, 5, and 25 miles in airborne search radar. RLC unit is switched to change mark spacing.-NBS, "Handbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. 1, Electron Tube Circuits, 1963, p N8-2.

CHAPTER 69 Radiation Circuits

JUNCTION-DIODE ALPHA DETECTOR-Used for counting alpha particles at high altitudes in dew-point hygrometer. Signal-to-noise
rotio is poor (about 4 to 1).-C. R. Seashore and C. D. O'Brien, FET Datects Alpha Particles

Better and More Precisely, Electronics, 38:3, p 64-66.

THERMAL NUCLEAR RADIATION DETECTORTriggers only on light flash from nuclear explosion, consisting of initial fast-rising pulse lasting a fow millisec, followed by pulse losting over 1 sec. Discriminotes against short floshes from lightning and shell bursts, and long slowly rising pulses coused by heodlights and sunlight refections.-J. C. Champeny, T. E. Patriken, and S. Siciliano, Nuclear Bomb Alarm Systems, Electronics, 32:19, p 53-55.

NEUTRON DIFFRACTOMETER-Neutron beom from reactor strikes somple, producing diffrocfion pottern. Multielement glow tubes control sequence of aperation in which length of dato accumulation time at each ongle of dif-
fraction is determined by counting neutrons in incident beom. This eliminates counting errors due to reactar level fluctuotions. Circuit drives key solenoids of electric type-

[^2]

MULTI-OUTPUT BINARY-Basic binary circuit of 256-channel neutron analyzer is contralled by diode gates in coincidence with clock pulses derived from $\mathbf{2 0 0}$-ke crystal oscillator. Used in countdown, address overflow, memory cycle, sync, and gote stages.-E. J. Wade, Digital Instrumentation for Nuclear Research Tests, Electronics, 33:43, p 68-71.

PHOTO RELAY USES SR-90 SOURCE-Interruption of high-energy beam from strontium 90 radioactive source changes resistance of cadmium sulphide photocell. Transistor amplifier converts variation into signal that actuates relay or other control element. Sourcedefector separation must be less than 4 inches. Maximum counting rate is five pieces per second.-P. Weisman and S. L. Ruby, Solid-State Photocell Sees Through Haze, Electronics, 31:25, p 62-63.

FALLOUT TIME-OF-ARRIVAL INDICATOR-
Auto clock operates until fallout at leval above 2 milliroentgens per hour arrives. Geiger-counter defection circuit then blows power-supply fuse, stopping clock with hands pointing to time of arrival.-R. W. Farmer and O. Reiner, Jr., Determining Arrival Time of Radioactive Fallaut, Electranics, 31:31, P 69-71.

RADIATION ALARM-Input is from multiplier phototube having anthracene scintillation crystal on its window. Signals are amplified

TUNNEL-DIODE COINCIDENCE CIRCUIT-Determines coincidence of pulses from scintillotion counter within nanosecond limits, for high-energy physics experiments. Circuit hos limited timing jitter, good temperoture stobil-
ity, ond is insensitive to tronsistor porome-ters.-C. Infonte ond F. Pondorese, Tunnel Diodes Stobilize Coincidence Circuits, Electronics, 34:46, p 133-135.

MECHANICAL COUNTER DRIVE-Tokes output from scole-of-64 circuit ond converts to 40millisec squore-wove pulse by meons of complementory mvbr, to drive coil of mechonical register once for every 64 pulses from G-M fube.-F. E. Armstrong, Battery Powered Portable Scoler, Electronics, 33:19, p 74-75.

by Q1, Q2, ond Q3, and fed to counter flipflop Q4-Q5. Flip-flip output goes to logorithmic count circuit whose output level is indi-
coted by microammeter. When output exceeds predefermined level, olarm circuit closes reloy thot octuotes oudible ond visuol
olorms.-H. E. DeBolt, How Radiation Monifor Guards Nucleor Novy, Elechronics, 33:4, P 43-45.

G-M COUNTING-RATE METER-Uses two transistors in integrating circuit and pentode recorder drive. Output of counting-rate mvbr Q1-Q2 is $4.5-\mathrm{v}$, 260 -microsec square pulse that charges integrating capacitor Cl through D2.-F. E. Armstrong and E. A. Pavelka, Monitoring Radioisotope Tracers in Industry, Electronics, 32:26, p 42-43.

G-M COUNTER AND IONIZATION GAGEUsed to correlate cosmic radiation intensity with other ionospheric and geomagnetic phenomenom. G-M counter provides negative pulse that is differentiated, shaped, and amplified in circuits similar to that of ion chamber. Counter rate is scaled down by 9 -stage binary scaler before square-wave output is fed to telemetering unit.-L. E. Peterson, R. L. Howard, and J. R. Winckler, Balloon Gas Monitors Cosmic Radiation, Electronics, 31:45, p 76-79.

GEIGER COUNTER-Simple basic monitor provides continuous audio and visual indications of radioactive materials in industrial areas.

If recording is required, four leads at right are connected to 10-cps keep-alive mvbr and triode output stage for driving recorder. Will
handle count rates up to 10,000 per minute. Strobotron V3 in pulse equalizer provides visual indications.-R. L. Ives, Geiger Radiation

FET ALPHA DETECTOR-Field-effect transistor with cover removed serves as low-noise alpha-particle defector in high-altitude dew-
point hygrometer. Signal-fo-noise ratio is 67 to 1.-C. R. Seashore and C. D. O'Brien,

FET Detects Alpha Particles Better And More Precisely, Electronics, 38:3, p 64-66.

COLD-CATHODE COUNT RATE CIRCUIT-Fourelement cold-cathode tube operates directly from output pulse of 6292 phatomultiplier receiving light output of Zns screen of alpho particle defector. Moximum counting rate is 100 counts per second.-M. H. Goosey, Dssigning Cold-Cothode Tube Circuits, Electronics, 31:3, p 101-108.

Monitor Indicates Continuously, Electronics, 31:43, p 93-95.

SURVEY METER HAS PULSED AND CURRENT MODES-High-voltage source far G-M counter uses 10-kc blocking oscillator and CockeroftWalton multiplier, to give 550 v stobilized by zener region of DI. Range for pulsed operotion is 0.5 to 50 milliroentgen per hour.

For current mode, same 18503 G-M tube is used, and current in range of 50 milliroentgen to 5 roentgen per hour is logorithmic function of radiotion intensity.-R. W. Lehnert and J. M. McKenxie, Radiotion Survey Meter, Electronics, 35:8, p 50.

RADIOLOGICAL VACUUM GAGE-Permits measuring extremely low pressures in loboratory equipment and in high-altitude research. Provides digital output that can be used for storage for telemetry. Transformer is oudio type with lorge step-up ratio. Polarizing voltage supplies less than 1 micraamp. Transducer is small cylindrical tube lined with radioactive foil.-G. F. Vonderschmidt, Using Isotopes to Measure Low Pressures, Electronics, 32:25, p 60-61.

ELECTROMETER-Amplifies output of photomultiplier that responds to degree of fluorescence, which in furn is proportional to radiation received by glass dosimetry needle implanted in body of person undergoing radiotion freatment.-5. J. Malsky et al, Measuring Radiation Within Human Body, Electronics, 33:12, p 74-75.

G-M COUNTER FOR TRACERS-Monitors radioactivity level of flowing liquids or gases for long periods of time. Concentration of 0.1 microcurie per liter of liquid gives counting rate of 200 cpm above $300-\mathrm{cpm}$ background count when using iodine-131. Output pulse is 0.75 v in amplitude and 20 microsec wide.-F. E. Armstrong and E. A. Pavelka, Monitoring Radioisotope Tracers in Industry, Electronics, 32:26, p 42-43.

GAMMA-RAY DETECTOR-Triggers only on gamma-ray pulse produced by nuclear explosion. Uses a-c coupled ion chamber to de-
fect pulses of gamma radiation.-J. C. 32:19, p 53-55.
Champeny, T. E. Petriken, and S. Siciliano,
Nuclear Bomb Alarm Systems, Electronics,

ARITHMETIC BINARY-Uses 2N501 series-triggered fransistors, catching diodes, and peaking coils operating of data input rate of
about 15 Mc , in neutron time-of-flight and pulsed-neutron measurements.-E. J. Wade, Digital Instrumentation for Nuclear Research

Tests, Electronics, 33:43, p 68-71.

500,000-PPS SCALER~Uses seven fast gosfilled decade counter tubes driven by transistors, for counting pulses from nuclear radiation detector. Input channel, which con
otcept positive or negotive pulses from 0.1 to 100 v , hos omplitude discriminotor and caincidence-onticoincidence gating. \boldsymbol{M}. Birk,
H. Brafman, and J. Sakolowski, Transistors

SCINTILLATION-COUNTER ANTICOINCIDENCE -Produces on output from a trigger at input 1 only if input 2 is not triggered at thet
time. Used in liquid scintillation counter where expected count rates are low.-G. J. Sprokel, A Liquid Scintillation Counter Using

Anticoincidence Shielding, IBM Journal of Research and Development, 7:2, P 135-145.

LOW-ENERGY PARTICLE DETECTOR-Change in conductivity of single-crystal photocell under irrodiotion is converted to pulse-code modulation by neon glow-iube reloxation os-
cillator whose firing rate is determined by charging of Cl through photocell. Saturating bootstrap amplifier Q2 inverts and shopes pulses to drive accumulation register.-J. W.

Freemon, Energy Defector for Satellites, Electronics, 35:4, p 42-43.

TUNNEL-DIODE COINCIDENCE-Used in liquid scintillation counter for carbon-14 and other radioactive solutions. Delivers output pulse
to stretcher omplifier only for coinciding pulses from two photomultiplier inputs.G. J. Sprokel, A Liquid Scintillation Counter

Using Anticoincidence Shielding, IBM Journal of Research and Development, 7:2, P 135-145.

2-KC COLD-CATHODE COUNT RATE CIRCUIT -Uses triode having separate cold-cathode diode that produces glow discharge to eliminate trigger-cathode gap of triode section. This eliminates photosensitivity shown by most cold-cathode devices. Maximum operating speed is 2,000 counts per second.-M. H. Goosey, Designing Cold-Cathode Tube Circuits, Electronics, 31:3, p 101-108

RADIATION ALARM FAILURE DETECTORNeon indicator lamp comes on when counter flip-flop of radioactive dust particle alarm stops. Flip-flop normally aperates at minimum of 10 transitions per second due to slight leakage from radioactive test source built into detector.-H. E. DeBolt, How Radiafion Monitor Guards Nuclear Navy, Electronics, 33:4, p 43-45.

CHAPTER 70 Receiver Circuits

RESONANT-REED PAGING RECEIVER-Ferrite antenna 11 is tuned to one of up to 45 different carrier frequencies in range from 15 to 30 kc , keyed at various repetition rates. Resonant relay K1 in collector circuit of detector Q5 vibrates when excited at its natural keying rate, thereby interrupting loudspeaker current at audio rate to create paging tone. -J. G. DeGraaf, Selective Paging System Uses Coded Transmission, Electronics, 33:9, p 68-70.

MEASURING SIGNALS IN NOISE-Lock-in amplifier beats desired weak signal (40 db below input noise level) with reference signal of same frequency, to give d-c output that

can be measured or recorded, as required in for frequency against WWV to one part in
radio astronomy. Bandwidth is variable down 10^{10}. - R. D. Moore, Lock-in Amplifier for radio astronomy. Bandwidth is variable down to 0.12 cps for tuning range of from 15 to 15,000 cps. Also used for checking oscilla-

Signals Buried in Noise, Electronics, 35:23, p 40-43.

FOUR-TRANSISTOR TRF-Single-channel receiver fits into one temple piece of eyeglass frame, with ferrite antenna in other piece, and separate miniature earphone,-H. F. Cooke, Transistor Eyaglass Radio, Electronics, 32:39, p 88.

THREE-TRANSISTOR A-M/F-M I-F STRIP-Used in a-m/f-m portable radio. Only two stages operate on $a-m .-R$. A. Santilli and H. Thanos, Portable Radio Uses Drift-Field Transistors, Electronics, 33:28, p 48-50.

AUDIO FOR A-M/F-M PORTABLE-Overall power gain is 70 db , with audio output of 1 w at less than 10% distortion.-R. A. Santilli and H. Thanos, Portable Radio Uses Drift-Field Transistors, Electronics, 33:28, P 48-50.

460-KC F-M RECEIVER FOR WIRELESS MICRO-PHONE-Loop 5 meters square picks up induction field of four-transistor transmitter and feeds r-f amplifier VI. Operating fre-
quency is converted to 50 kc by $\mathbf{V} 2$ and amplified and limited by V3 and V4. Audio signal is recovered after passing through low-pass filter. Peak audio output is about
0.5 v , enough to feed p-a or speech pre-amplifier.-G. F. Montgomery, Wireless Microphone Uses F-M Modulation, Electronics, 31:1, P 54-55.

ANTENNAFIER-Varactor-funed transistor amplifier built into tip of conical spiral antenna is tuned from 120 to 240 Mc by varying varactor voltage from 0 ta 40 v d-c.-J. F. Rippin, Making the Antenna an Active Partner, Electronics, 3B:16, p 93-96.

FOUR-TRANSISTOR REFLEX—Nominal sensitivity is $\mathbf{2 0 0}$ microvolts per meter at $5 \mathbf{~ m w}$ reference power output. Maximum power output is 75 mw , and total battery drain is 17 ma.-"Transistor Manual," Seventh Editian, General Electric Co., 1964, p 291.

TUNED R-F STAGE-Improves sensitivity, selectivity, and signal-to-naise ratio when used af input of radio receiver.-"Transistor Manual," Seventh Edition, General Electric Co., 1964, p 283.

TONE-OPERATED CALLING SYSTEM-Colling frequency of $2,350 \mathrm{cps}$ is amplified by plate resonant circuit of V2. D1 rectifies this signal and applies positivergoing voltage to control grid of last iof V1, to operate KI and sound buzzer.-L. Solomon, Citizens Band Equipment Design, Electronics, 33:45, p 70-72.

FOUR-TRANSISTOR REFLEX PORTABLE-Second i-f stoge doubles as oudio amplifier to give five-stoge performance.-E. Gottlieb, Tronsisfor Reflex Circuit Trims Receiver Costs, Electronics, 31:1, p 66-68.

LOAD-ISOLATING 3-3.5 MC OSCILLATORRefined version of Lampkin vorioble r-f oscillotor for dual-conversion receiver gives uniform output over bond and sufficient stability for single-sideband reception ofter 30sec warmup.-E. Robberson, R-F Oscillator has Improved Stability, Electronics, 36:32, p 62-63.

SLOT ANTENNAFIER-T-bor-fed 420-Mc slot antennafier for spoce vehicles has gain of 10 $\mathrm{db}, 100-\mathrm{Mc}$ bandwidth, and 7.8 db noise figure.-J. F. Rippin, Making the Antenna on Active Partner, Electronics, 38:16, p 93-96.

9-KC INDUCTION RECEIVER-Thermistor network in bose circuits of transistors provide thermal compensotion between -30 and $+140^{\circ} \mathrm{F}$, for picking up messoges broodcast
from roadside telephone-line loops.-E. A. Hanysx, J. E. Stevens, and A. Meduvsky, Communication Syatem for Highway Troffic Contral, Electronics, 33:42, p 81-83.

TUNER FOR A-M/F-M PORTABLE-R-f amplifier Q1, mixer Q2, and local oscillator Q3 are all switched to perform same functions on $\mathbf{f - m}$ as on a-m. Grounded-base oscillator Q3 requires careful design to compensate for transconductance phose shift of highest fre-
quency of oscillation (118.7 Mc). Overall gain of tuner is 25.5 db at $B B \mathrm{Mc}$ and 22.5 db at 108 Me.-R. A. Santilli and H. Thanos, Portable Radio Uses Drift-Field Transistors, Electronics, 33:28, p 48-50.

TWO-TRANSISTOR REFLEX RADIO-Q1 is used regeneratively as r-f amplifier and reflexively as first a-f amplifier, while Q2 serves as power amplifier.-S. A. Sullivan, Transistor Radio Uses Fow Parts, Electronics, 31:1, p 90-92.

MILIIMETER-WAVE DETECTOR-Biasing with IN53 crystal detector increases gain 20 db at 73 Mc.-K. Ishii and A. L. Brault, Crystal Biasing Improves Millimeter-Wave Defector, Electronics, 34:24, p 65.

DOUBLE-CONVERSION F-M SUPERHETERO. DYNE-Common-base connections in local oscillators Q10 and Q11 give stability with
minimum components in 20-channel Mercury spacecraft command receiver. Each frequency multiplier doubles frequency of first local
oscillator. I-f output is 10.7 Mc.-R. Ellioth, First Details on Mercury 5pacecraft Command Receiver, Electronics, 36:5, p 32-35.

AUTOMATIC LEVEL CONTROL FOR PARAMETRIC AMPLIFIER-Varoctor diode in pump feed line feeds so-colled magnified d-c amp-
lifier that in turn drives ferrite varioble attenuator, to hold troposcatter receiver signol level constant over entire klystron mode.-
W. L. Smott ond H. C. Leahy, Parametric Amplifier Improves Tropo-Scatter System, Electronics, 35:9, p 38-40.

SIGNAL-POWERED RECEIVER-Circuit receives and rectifies r-f rodiation, stores resultant d-c energy in C2, and releases energy to transistors as required. Unique dipole rectifier provides efficient antenna-to-receiver coupling for frequencies of above 50 Mc .-L. R. Crump, Radio Waves Power Transistor Circuits, Electronics, 31:19, p 63-65.

Q1 2N2926 (RED) OR 2N2715 OR 2N3394 Q2.03 2N2926 (ORANGE) OR 2N27I6 OR 2N3393 04 2N2196 OR 2N2IO7 (ATTACH TO HEAT SINK) DI IN4009 (SILICON)
D2 IN6O (GERMANIUM) D3 INI692

* USE I.Opf WITH 2N2926 AND 2N339 SERIES TRANSISTORS, 0.5 pf WITH 2N27IS SERIES.

RADIO INDUSTRIES, INC
TI 16414
T2 13964
LI 16413
L2 16411 $\triangle C$ MODEL 42-2A $+$

HIGH-STABILITY 3-3.5 MC OSCILLATOR-Modification of Lampkin circuit uses pair of cothode followers in cascade, with tube circuits being topped across part of coil ond excited from resonator through high impedance. Bifilar choke minimizes variations in heatercathode copacitance of driver V2.-E. Robberson, R-F Oscillotor has Improved Stability, Electronics, 36:32, p 62-63.

SIX-TRANSISTOR 9-V BROADCAST WITH TUNED R-F STAGE-Nominal sensitivity is $\mathbf{3 0}$
microvolts per meter, power output 500 mw , ual," Seventh Edition, General Electric Co., ond battery drain 12.5 ma.-"Tronsistor Man- 1964, p 296.

COLPITTS CRYSTAL-Oscillator uses $11.155-M c$ funed plate circuit for operation at crystal fundamental frequency. Other 12EK6 has no cathode bias and provides conversion gain of 10.-C. Gonzalez and R. J. Nelson, Design of Mobile Receivers with Low-Plate-Potential Tubes, Electronics, 33:34, p 62-65.

175-MC R-F STAGE-Pi network in grid circuit couples energy from antenna. Doubletuned capacirance-coupled transformer is used in plate circuit.-C. Gonzalez and R. J. Nelson, Design of Mobile Receivers with Low-PlatePotential Tubes, Electronics, 33:34, p 62-65.

GENERAL ELECTRIC CO.
QI, Q3 2N2926 (RED) OR 2N27I5 OR 2N3394
Q2, Q4 2N2926 (ORANGE) OR 2N2716 OR 2N3393
05, 06 2N27I4 (WITH HEAT SINK) OR 4JXIICI536
01 IN4009 (SILICON)
03 IN1692
*USE I.Opf WITH 2N2926 AND 2N339I SERIES TRANSISTOR, 0.5 pf WITH 2 N27IS SERIES

SIX-TRANSISTOR A-C LINE SET-Nominal sensitivity is $\mathbf{3 0}$ microvolts per meter, power output 940 mw , and total power drain 4 w.-"Transistor Manual," Seventh Edifion, General Electric Co., 1964, p 298.

RAOIO	INOUSTRIES, INC.
TI	$13964-R I$
T2, T3	13964
LI	16413
L2	16411
ΔC	MODEL42-2A

*USE 1.0 pf WITH 2N2926 AND 2N339I SERIES TRANSISTORS, 0.5 pf WITH $2 N 2715$ SERIES.

SIX-TRANSISTOR 9-V BROADCAST-Nominal sensitivity is $\mathbf{2 0}$ microvolis par meter, rated
power output 500 mw , and battery drain 10 ma.-"Transistor Manual," Seventh Edition,

CHAPTER 71
 Recorder Circuits

SOUND TRACK DRIVE-Dual-input amplifier drives 10 -ohm recording golvonometer for vorioble-areo optical sound trock of $16-\mathrm{mm}$ sound-on-film comero. Con be mounted directly on comera. Requires only two 6-v nickel-codmium cells.-E. M. Tink, Transistorixing $16-\mathrm{Mm}$ Tv Remote Film Camera, Electronics, 32:3, p 58-59.

SHOCKPROOF FERRITE-CORE RECORDERCores retoin stored dota even after 6,000-8 shock. Each fransistor encodes decimal digit
into two binory digits. Beomeswitching decode counter mokes Q1 to Q10 count in succession, to energize the five outputs that
pulse cores through gated amplifiars.-C. P. Hedges, Digital Recorder Holds Dota After Shock, Electronics, 32:12, p 60-62.

BANDPASS AMPLIFIER DRIVES RECORDERFeedback from final stage to input sets bias level of direct-coupled a-c amplifier having current-derived stabilization, for driving recorder over range of 0.2 to 5 cps , with no bulky capacitars.-P. Laakmann, Direct Coupling Shrinks Amplifier Size and Cost, Electronics, 36:12, p 66-68.

MAGNETIC DRUM WRITE AMPLIFIER-Power amplifier is followed by impedance-changing device that converts voltage waveform at output of flip-flop into corresponding current waveform far low-impedance recarding head of magnetic memary drum, for Manchester recording with 220 ma peak-to-peak.-A. J. Strassman and R. E. Keater, Clock Track Recarder For Memory Drum, Electronics, 32:41, p 74-76.

GATED AMPLIFIER DRIVES FERRITE CORESUsed in shockproof recorder in which each amplifier drives a line of six cores. Interrogation of cores releases stored informafion for processing.-C. P. Hedges, Digital Recorder Holds Data After Shock, Electronics, 32:12, p 60-62.

PEAK-READING CIRCUIT-Recovers analog voltage from modulated sawtooth waveform of magnetic-drum recorder.-H. L. Daniels and D. K. Sompson, Magnatic Drum Provides Analog Time Deloy, Electronics, 32:6, P 44-47.

Cover Sotellites, Electranics, 32:18, p 44-49.

TRACING CAUSES OF LAB LINE TRANSIENTS
-Circuit responds to single pulse having rise time as short as 1 microsec, and records overoge value of line voltage. Transients greater thon preset trigger level pass through
diode gote and trip mono, giving current pluse that drives chart recorder pin.-F. Trainor, Transient Recorder Monitors Power Lines to Protect Circuits, Electronics, 34:29, P 74-75.

RUGGED DESIGN FOR OCEANOGRAPHY-Con drive low-impedance recording galvanometar for long periods without auxiliary power. Bilateral symmetry of push-pull circuit using matched 2N65 transistors optimizes linearity
and thermal stability. Although designed for d-c operation, response is flat within 2 db up to $50 \mathrm{kc} .-W$. G. Von Dorn, Tronsistor D-C Amplifier for Rugged Use in Field, Electronics, 33:1, p 85.

TRANSDUCER EXCITER-Used in carrier amplifier of strip-chart recorder to provide amp-litude-stable fixed excitation frequency for transducer. Two-stage amplifier with 360° phose shift oscillotes when output is fed to
input, at frequency depending on loop parameters. Amplitude variation is held to 0.2% for $25^{\circ} \mathrm{C}$ change in ambient by simple zener and transistor IImiter.-Amplitude-Stable Audio Oscillator, EEE, 11:8, p 87.

FAC5IMILE SWEEP-Maximum variotion in sweep length is less than 1 part in 1,000 . Uses modified Miller feedback circuit. Sweep rote can be controlled over 10:1 ratio.-E. W. VonWinkle, High-Precision Sweep Generator, Electronics, 33:50, p 88-90.

1-CPS RAIL FLAW AMPLIFIER-Used to amplify extremely low-frequency signals produced by longitudinal defects in rails, to drive pen recorder. Cl bypasses high-frequency sig-nals.-H. W. Keevil, Transistor Pulse Ampliflers Detect Rail Faulis, Electronics, 35:21, P 53-54.

VERTICAL ACCELERATION RECORDER-Accepts phase-reversible 400 -cps signal from vertical accelerometer, which is in phase with reference voltage for positive accelerations and 180° out of phase for negative. After amplification by Q1-Q2, synchronous damodulator diodes DI to DB separate positive and negative signals for output transistors Q3 and Q4, which feed servo of engraved-foil flight recorder.-H. E. Schauwecker, Data Recorder for Airplane Flight Analysis, Electronics, 33:48, p 118-120.

PRECISION FREQUENCY GENERATOR-Provides 440 cps at $115 \vee$ for timing motor of engraved-foil fight recorder. Uses safurat-ing-fransformer oscillator and auxiliary regulating circuits to maintain precise voltage and frequency.-H. E. Schauwecker, Data Recorder for Airplane Flight Analysis, Electronics, 33:4B, p 118-120.

RAIL FAULT-DETECTING AMPLIFIER-Signals from inductive pickup near rail are amplified enough to drive sensitive relay of pen recorder. Amplifier does not block after being overloaded when pickup passes over rail joint.-H. W. Keevil, Transistor Pulse Amplifiers Datect Rail Faults, Electronics, 35:21, p 53-54.

FACSIMILE SWEEP AMPLIFIER-Provides power amplification for driving electronic high-defnition facsimile recorder. Sweep input voltage is high enough to eliminate need for voltage gain in power amplifier stages.-E. W. VanWinkle, High-Precision Sweep Generator, Electronics, 33:50, p 88-90.

BEEPER FOR TELEPHONE RECORDING-Gen* erates periodic 1,400 -cps tone or beep having 0.2 sec duration, at intervals of about 15 sec, as required by Federal law when recording or broadcasting telephone con-versations.-J. Zelle, Phone Calls for Broadcast, Electronics, 31:45, P 96-101.

ANALOG VOLTAGE COMPARATOR-When sawtooth amplitude exceeds analog voltage, positive feedback loop of blocking oscillator is completed through conducting diode and oscillator conducts, triggering thyratron writ-
ing circuit for magnetic drum.-H. L. Daniels and D. K. Sampson, Magnetic Drum Provides Analog Time Delay, Electronics, 32:6, p 44-47.

FACSIMILE SYNC PULSE SHAPER-Used to change shape of high-precision sync pulse for facsimile recorder in order to change time of return trace. Amplifier V1 is coupled to plate-
driven one-shot mubr whose time constants determine return trace time.-E. W. VanWinkle, High-Precision Sweep Generator, Electronics, 33:50, p B8-90.

MAGNETIC DRUM READ AMPLIFIER-Amplifies phase-modulated step-modulated Manchester signal from magnetic drum read head and provides phase detection for recovery of stored information. Also used for syn-chronization.-A. J. Strassman and R. E. Keeter, Clock Track Recorder For Memory Drum, Electronics, 32:41, p 74-76.

VU RECORDER-Used to provide permanent records of broadcast speech levals and for checking audio network circuits. Circuit has same rise time, overshoot, frequency response, and rectifier characteristics as standard vu meter.-D. H. McRae, Vu Recorder Has Standard Response, Electronics, 31:17, p 78-82.

POSITIONING AND ATTENUATING CONTROL -Adds d-c positioning voltage to input signal of recording galvanometer. Magnitudes of input and positioning voltages can be
cuit also has aftenuating control for signal voltage.-N. Kassowitz, Non-Interacting Positioning and Attenuating Controls, EEE, 13:3, p 47. varied independently without interaction. Cir-

10,000 1-KV PULSES PER SECOND-Four-layer diode D3 discharges C1 through pulse transformer and transistor Q1 prevents diode from remaining in conducting state. Used in elec-
trographic recorder.-N. C. Hekimian and P. M. Schmitz, Four-Layer Diode Triggers HighVoltage Pulse Generator, Electronics, 34:26, p 84-85.

RECORDING SAWTOOTH-CONTROLLING FLIP. FLOP-Used for sawtooth generator of magnetic drum recording system.-H. L. Daniels and D. K. Sampson, Magnetic Drum Provides Analog Time Delay, Electronics, 32:6, p 44-47.

READING SAWTOOTH-CONTROLLING FLIP. FLOP-When flip-flop output is negative with respect to zero-set reference voltage, sawtooth output is dropped through diode gate to reference voltage. Start-sawtooth pulse makes output of flip-flop positive.-H. L. Daniels and D. K. Sampson, Magnetic Drum Provides Analog Time Delay, Electronics, 32:6, p 44-47.

CHAPTER 72

Regulated Power Supply Circuits

VOLTAGE STABILIZER USING FOUR CON. STANT-CURRENT DIODES-Value of stabilized autput valiage can be adjusted by placing potentiometer in parallel with SX68 zener diade and cannecting base of Q1 to slider. With this arrangement, magnitude and phase angle af autput impedance are nat affected by autput valtage setting.-T. K. Hemingway, Applications af the Canstant-Current Diade, Electranics, 34:42, p 60-63.

VARIABLE-FREQUENCY A-C REGULATORCommercial ballast tube in thermal regulating bridge is used with feedback-stabilized amplifier and filter to regulate a-c voltage source to 0.1%. Used for instrument calibration. Triode oscillator circuit oscillates at series resonant frequency of LC filter, which can be funed from 50 to 2,000 eps.-E. A. Gilbert, Precision Variable Frequency Power Supply, Electronics, 34:2, P 99-100.

1.4 V TWO-ZENER REGULATOR-Used to deliver regulated voltage lower than is normally available with zener diodes. Difference voltage is used for oufput. Gives excellent temperature compensation because both diodes tend to drift in same direction.-"Zener Diode Handbook," International Rectifier Corp., 1960, p 54.

REGULATOR DIODE STRING-Six 5% silicon regulator diodes operated af 65 ma give +30 v af 90 ma and -15 v af 95 ma . Used
with vlbration-measuring circuit whose peakreading output drives dec amplifier Q8-Q9 to give required output current of 2 ma for d-c
meter or recorder,-H. A. Harriman and W. M. Tranholm, Vibration Measurements with PeakReading Circuit, Electronics, 35:20, p 57-59.

SHORT-CIRCUIT PROTECTION-Series regulafor has automatic pulsing-type short-circuit protection. D1, R2, and R3 form constantcurrent prelimiting circuit, and Q4 is shutoff transistor. Unijunction transistor Q5 pulses continuously. D2 complates discharge path of C1 through R4 when Q5 fires.-A. G. Lloyd, Overload Profection for Transistor Voltage Regulators, Electronics, 33:52, p 56-59.

TRANSDUCTORS STABILIZE HIGH-POWER RECTIFIER-Rectangular-loop saturable reacfors SR in single-phase power supply hold output voltage constant within 1% at load currents of 0 to 20 amp and line voltage variations of 50%. Choice of components dedetermines power capacity.-T. Kurimura and K. Yamamura, New Way to Use Saturable Reactors: Stabilizing High-Power Rectifiers, Electronics, 36:21, p 62-66.

SERIES REGULATOR WITH TRANSISTOR PRE-REGULATOR-Design procedure is given to meet specification that regulation factor F range from 0.001 for no load to 0.00145 for
full load when input voltage varies over range specified. Output varies from 30.7 v to $\mathbf{3 1 . 1}$ over temperature range of -50 to $+125^{\circ} \mathrm{C}$.-Texas Instruments Inc., "Transistor

Circuit Design," McGraw-Hill, N.Y., 1963, p 160.

MIDDLEBROOCK SERIES-STABILIZED SUPPLY -Provides constant $15 \vee$ for moderately variable load, with temperature coefficient of 1 mv per degree $\mathrm{C}, 4 \mathrm{mv}$ peak-to-peak ripple, and 0.5 amp maximum current.-E. Baldinger and W. Czaja, Designing Highly Stable Transistor Power Supplies, Electronics, 32:39, p 70-73.

ZENER REFERENCE-Sensing circuit for 6-v con-stant-voltage transformer-regulated power supply develops error signal for controlling shunt transistors.-J. T. Keefe, Transformer and Shunt Transistors Regulate D-C Power Supply, Electronics, 34:20, p 99-101.

MAGNETRON INJECTION ELECTRODE SUPPLY
-Constant-voltage bridge floating on variable resistor feeds differential amplifier and series regulator. Rheostat setting determines value of regulated output voltage.-S. Prigozy, Designing Special Power Supplies for Valtage-Tunable Oscillators, Electronics, 35:44, P 48-50.

6-V D-C REGULATOR-Provides 4 amp at 6 v with 1% regulation for inputs of 7 to 50 v from unregulated source. Auxiliary source Ea must be minimum of 5 v.-NBS, "Handbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. II, Semiconductor Device Circuits, PSC 1, p 1-2.

MAGNETIC-AMPLIFIER REGULATOR—Provides stable operating voltages for transmitter and
receiver local-oscillator klystrons in 6,000Mc microwave link.-M. C. Harp, Nonvacuum

Devices Control Klystrons, Electronics, 32:7, p 68-70.

HIGH-CURRENT REGULATOR-Four paralielconnected transistors handle up to 240 w if mounted with heat sink. If output voltage is reduced, separate power supply must be provided for zener regulator to protect fransis-tors.-"Zener Diode Handbook," International Rectifier Corp., 1960, p 57.

IN3639 (4)
12-V REGULATED SUPPLY WITH REFERENCE AMPLIFIER-Integrated transistor and zener diode in reference amplifier act with transistor 2N2108 to hold 12-v d-c output volt-
age within 0.3\% over a-c line voltage variations of 10% for load currents up to 100 ma . -T. P. Syivan, New Device Simplifies Power Supply Design, Electronics, 36:20, p 39-43.

BACKWARD-WAVE OSCILLATOR FILAMENT SUPPLY-Provides constant voltoge for filament of backward-wave oscillator. Output voltoge is compared with fixed reference in d-c amplifier, and difference is used to control series pass alement.-S. Prigozy, Designing Special Power Supplies for VoltageTunable Oscillators, Electronics, 35:44, p 4850.

50 CPS-2 KC REGULATOR-Thermal bridge using ordinary iron-wire ballast tube is used with tunable fitter of 200 v-a variable-fre-
quency power supply for instrument calibration. Output stage (not shown) uses two 7378 pentodes in push-pull class AB1, with
positive feedback.-E. A. Gilbert, Precision Variable Frequency Powar Supply, Electronics, 34:2, p 99-100.

LARGE VOLTAGE SWING WITh LImited SUPPLY VOLTAGES-Circuit shows usual solution to prablem, wherein final transistor is operated near pasitive supply voltage and zener diode provides coupling. Drop in gain caused by R can be eliminated by using constant-current diode in place af R. If $R 1$, R2, and R3 are similarly replaced with these diodes, circuit becomes independent of positive line, eliminating spurious feedback thraugh this line.-T. K. Hemingway, Applications of the Constant-Current Diode, Elecfronics, 34:42, p 60-63.

OVERLOAD PROTECTION FOR SERIES REGU-LATOR-For input voltage of 30 to 40 v dec, output of full load of 3 amp will be held within 99.09% of 28 v. Tunnel diode D4
and fransistor Q8 in overload-sensing circuit trigger monostable mvbr Q6-Q7 to remove drive from Q1 until mvbr resats.-J.
Takesuye, Tunnel-Diode Sensor Protects Reg-

5 AMP AT 0 TO 20 V-Five regulator transistors in 5 -amp power supply have indicator lamps at their emitters. Regulation is betfer than 0.1% at 20 v , and ripple is below 1 mv rms.-J. A. Wheeler and E. J. Currence, FaultIndicating Series Regulator, Electronics, 34:4, p 60.

REGULATED 3-V SUPPLY-Junction diode D1 provides nonlinear voltage-current characteristic of zener diode, as required far reference lovel below 2 v . Poor temperature characteristics of junction diode are affset by base-emitter voltage variation of transistor

Q1 with temperature. Regulated output of 3 v within 2%, at 5 to 100 ma , is obtained from unregulated $4.8-\mathrm{v}$ source over range of $-16^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$.-A. K. Scidmore, Junction Diode Regulates Low-Voltage Supply, Electronics, 37:27, p 55-56.

DUAL-POLARITY 15-V SUPPLY-Output voltage is adjustable from 11 to 15 v d-c and nearly constant from no laad to 300 ma , or from 90 to 140 v o-c line voltage.-D. T . Birch and K. E. Chellis, Regulated PositiveNegative Supply Delivers Low-Voltage Direct Current, Electronics, 34:30, p 62.
60 CPS
range. Cost is under $\$ 15 .-$ R. E. Risely, Power Supply Reduces Ripple by Varying Series Resistance, Electronics, 39:2, p 74-75.

LOW RIPPLE AT LOW COST-Ripple at output is used to cantrol d-c resistance of series
regulator transistors Q3-Q4, to keep ripple below 10 mv rms over wide temperature

12 VOLTS 0 TO 1 AMP$+$

A-C LINE REGULATOR-Five-transistor circuit uses breakdown diodes to regulate voltage inputs between 113 v and 140 v to within
0.5 v of 110 v for 2 -amp load.-R. A. Greiner, Line Voltage Control Uses Zener Diodes, Electronics, 33:6, p 64.

REFERENCE OUTPUT IN 0.5-V STEPS—Eight command signals combined in a binary manner provide stable reference output voltage from $-63.5 \vee$ to $+63.5 v$ in $0.5-v$ steps, with
regulation of 0.05% for $\$ \%$ change in input voltage. System uses two independent d-c power supplies, one delivering fixed 20 v and the other from 20 to 83.5 v in 0.5-v in-
crements.-M. Beebe and J. Miller, Reference Supply Delivers Half-Volt Increments, Electronics, 35:18, p 41-43.

PREFERRED 0.1\% REGULATION 300-V D-CProvides either polarity, for applications requiring superior regulation and long-time stabilliy. Minimum input is $340 \mathrm{v} \mathrm{d-c}$, and minimum Esg is 150 v. Maximum load cur-
rent is 100 ma per series tube. C4 is minimum of 4 mfd .-NBS, "Handbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. I, Electron Tube Circuits, 1963, PC 5, p 5-2.

D-C SWITCHED REGULATOR-Gives 0.5% regulation for input voltage range from -15% to $+30 \%$. Efficiency is $\mathbf{9 5 \%}$. Transistor is nearideal switch, having low leakage when open and low voltage when closed.-A. A. Sarenson, Solid-State D-C Switched Regulators, Electronics, 33:48, p 121-123.

100-V D-C REGULATOR-Provides up to 400 ma at 100 v with 1% regulation far inputs of 101 to $150 \vee$ from unregulated source. Auxiliary saurce Ea must be minimum of 5 v . -NBS, "Handbook Preferred Circuits Navy Aeronautical Electranic Equipment," Vol. II, Semicanductor Device Circuits, PSC 5, p 5-2.

HEATER VOLTAGE REGULATOR-Clipping action is combined with depression of flattop portion of output waveform in proportion to input voltage change, to hold rms output voltage constant within 0.2% of voltage determined by value of R5.-J. D. Wells, Low-Cost Adjustable Regulator Consumes Little Power, Electronics, 38:23, p 109-110.

25-V D-C REGULATOR-Provides up to 1.5 amp at $25 \vee$ with 1% regulation for inputs of 26 to $50 \vee$ from unregulated source. Auxiliary source Ea must be minimum of $5 \mathbf{v}$. -NBS, "Handbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. II, Semiconductor Device Circuits, PSC 3, p 3-2.

$T_{1 A}-30$ TURNS OF AWG NO. 22
$T_{18} \& T_{1 C}-45$ TURNS OF AWG NO. $22 \quad T_{1}$ CORE - FERROXCUBE 203F481 - 3C, OR EQUIVALENT

LINE VOLTAGE REGULATOR-Line voltage which in turn changes triggering of scr's to Wechsler, Scr's Regulate A-C Line Voltage, controls frequency of relaxation oscillator Q3,
keep load valtage essentially constant.-R.

Electronics, 38:3, p 61-62.

PREFERRED 150-V D-C REGULATOR-Provides either polarity of output with 1% regulation, from minimum of 190 v d-c input. Maximum load current is 100 mo per series tube. C4 is minimum of 4 mfd . NBS , "Handbook Preferred Circuits Navy Aeronoutical Electronic Equipment،" Vol. I, Electron Tube Circuits, 1963, PC 4, p 4-2.

50-V D-C REGULATOR-Provides up to 750 ma of $50 \vee$ with 1% regulation for inputs of 59 to $100 \vee$ frem unregulated source. Auxiliary source Eo must be minimum of 5 v . -NBS, "Handbook Preferred Circuits Novy Aeronoutical Electronic Equipment," Vol. II, Semiconductor Device Circuits, PSC 4, p 4-2.

PREFERRED - 150-V D-C REGULATOR-Provides 1% output voltage regulation under normal line and load variations of military equipment. Minimum value of C3 is 2 mfd . Value of R12 depends on reference voltage $E r$, which should be minimum of -300 v dec. Two reference tubes, V3 and V4, are used in series so negative bias for V2 can be obtained with grounded reference supply. Minimum input voltage is 200 v d-c.-NBS, "Handbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. I, Electron Tube Circuits, 1963, PC 2, p 2-2.

EqUAL POSITIVE AND NEGATIVE VOLTAGES -Single supply provides equal and opposite output voltages at desired value between 5 and 25 v , at up to 100 ma , for input voltages from 10 to 50 v . R1 balances output voltage, while R2 is adjusted to give good tracking of output voltage.-T. P. Sylvan, Regulator Makes Two Power Supplies Out of One, EEE, 14:5, p 117.

UJT-SCR REGULATED A-C SUPPLY-Component values shown give optimum regulation at 25 v rms output, with less than 0.1 v variation for change in line voltage from 115 v to 100 v . For wider range of autput valtage than 10 to 30 v , R1 and R4 can be ganged pot.-"Transistor Manual," Seventh Edition, General Electric Co., 1964, p 334.

10-KV R-F OSCILLATOR-TYPE CRT SUPPLYAssociated regulator controls oscillator output. Considered less desirable than a-f oscillator supplies, which have no r-f radiation problem.-NBS, "Handbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. 1, Electron Tube Circuits, 1963, P N14-3.

PREFERRED 0.1\% REGULATION 250-V D-CProvides either polarity, for applications requiring suparior regulation and stability. Min-
imum input is 290 v dec, and minimum Esg is 150 v d-c. Maximum output is 100 ma per series tube. C4 is minimum of 4 mfd . -NE5,
"Handbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. I, Electron Tube Círculiss, 1963, FC B, p 8-2.

PRECISION 12-V 200-MA SUPPLY-Regulation is less than 0.001% for 10% change in line voltage. Sharp current limiting at 300 ma is provided by R1 and D3. Darlington connection for series regulator gives current gain of 10,000 of $100 \mathrm{ma}_{\text {, }}$ so normal variation of reference amplifier collector current is only 10 microamp over full range of output current.-"Transistor Manual," Seventh Edition, General Electric Co., 1964, p 232.

12-V D-C REGULATOR-Provides Up to 3 amp of $12 \vee$ with 1% regulation for inputs of 13 to $50 \vee$ from unregulated source. Auxiliary source Ea must be minimum of 5 v .NBS, "Handbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. II, Semiconductor Device Circuits, PSC 2, p 2-4.

FEEDBACK CHOKE CUTS RIPPLE-Choke LI, placed in feedback path from Q1 to Q2, holds down ripple in current supplied to
load through Darlington amplifier Q2-Q3. Choke acts as if it were in series with load even though carrying only a fraction of
load current.-J. T. Quatse, Feedback Choke Reduces Power Supply Ripple, Electronics, 39:13, p 74.

NEGATIVE-OUTPUT 250-V REGULATOR-Operation is comparable to corresponding posi-tive-output circuit.-NBS, "Handbook Preferred Circuits Novy Aeronautical Electronic Equipment," Vol. 1, Electron Tube Circuits, 1963, p N2-5.

NEGATIVE-OUTPUT 150 AND 300-V REGU-LATOR-Operation is comparable to corresponding positive-output circuit.-NB5, "Handbook Preferred Circuits Novy Aeronautical Electronic Equipment," Vol. 1, Electron Tube Circuits, 1963, p N2-5.

REFERENCE-AMPLIFIER 12-V REGULATED SUPPLY-Uses integrated device consisting of zener diode and npn transistor in single pellet, to serve dual function of voltage reference element and error voltage amplifier. Provides up to 100 ma . 180 -ohm series resistor provides short-circuif protection by limiting output current to less than 200 ma . Output regulation is better than 0.3% for line voltage variations of 10%.-"Transistor Manual," Seventh Edition, General Electric Co., 1964, p 231.

SIMPLE 5-VOLTAGE SUPPLY-Provides -6 v and both positive and negative 12 and 18 v outputs, each regulated by zeners, for linear
infegrated-circuit tester and for integrated circuits under test. Transformer has centertapped 24-v secondary. Lamp across half of
secondary operates at 12 v to extend life.J. N. Giles, How to Measure Linear-IC Performance, $E E E, 14: 8$, p $62-68$ and 161.

20,000-V INDUCTIVE-STORAGE SUPPLY-Consists of shunt-regulated electronically switched inductive energy storage system in which coil 11 is charged through vacuum switch. When
high voltage is needed, $\mathbf{V} 2$ is fired to deionize V1. Cathode capacitor of V2 is then charged to $20,000 \mathrm{v}$ by coil current, at which time electronic feedback regulator in shunt
with 11 draws current to maintain constant output voltage.-R. L. Gamblin, Ohmic Heating Circuits for Plasma Physics, Electronics, 32:41, p 57-59.

0-10 V TWO-ZENER-Simple orrangement provides source of well-regulated adjustable voltage. First zener diode tends to act as pre-regulator, improving dynamic regulation. -"Zener Diode Handbook," Infernational Rectifier Corp., 1960, p 54.

BLOCKING-OSCILLATOR SWITCHING VOLTAGE REGULATOR-Efficiency is improved greatly by having current of 2 N 3791 tronsistor flow through load. Differential-amplifier voltage-sensing orrongement cantrols action of oscillator to maintain constant output voltage. Will regulate $24-\mathrm{v}$ output to within 1% over load range of 100 ma to 2 amp. Oscillator frequency is $6 \mathrm{kc} .-\mathrm{H}$. Weber, "Two Unique Switching Voltage Regulators Using Blocking Oscillators," Motorola Application Note AN-163, Aug. 1965.

PREFERRED 300-V D-C REGULATOR-Provides either polarity of output with 1% regulation, from minimum of 350 v d-c input. Maximum output current is 125 ma for single series fube section and 100 mo per triode
section when two or more are paralleled. Minimum value of C5 is 4 mfd .-NBS, "Handbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. I, Electron Tube Circuits, 1963, PC 3, p 3-2.

SHUNT REGULATOR-Used when output voltage must be higher than zener voltage. Ripple is less than 10 mv when regulator is supplied by full-wave rectifier having $\mathbf{2 0} \mathbf{m f d}$ capacitance.-"Zener Diode Handbook," International Rectifier Corp., 1960, p 55.

150 AND 300 V SERIES-TUBE REGULATORUses simple triode as regulator amplifier. Series tube for 300-v supply is conventional triode-connected pentade, but series tube that regulates $150 \vee$ has its screen fed from
autput af 300-v regulated supply, for pentode operation.-NBS, "Handbook Preferred Circuits Navy Aeronaufical Electranic Equipment," Vol. 1, Electran Tube Circuits, 1963, p N2-11.

THERMOCOUPLE VACUUM-GAGE HEATERSimple regulator for $240-\mathrm{v}$ d-c supply provides 140 ma with 0.1% regulation. Uses regulator triade, pentode-connected d-c amplifier, and series-connected reference regulatar tube.-W. V. Loebenstein, Regulated Power Supply for Instruments, Electronics, 33:48, p 132.

SHUNT REGULATOR-Used when output can be less than zener voltage.-"Zener Diode Handbook," International Rectifier Corp. 1960, p S5.

8-V VOLTAGE REGULATOR-Output voltage $20-\mathrm{v}$ input ta regulator that itself consumes is held within 0.1% despite $5-\mathrm{v}$ variations in only 1.5 ma . Differential amplifier Q5 acts
as voltage comparator, with zener diode D3 as reference.-A. Dargis, A High Performance Voltage Regulatar, Electronics, 37:13, p 75.

DARLINGTON-CONNECTED SERIES REGULA-TOR-Designed for output currents up to 2 omp overoge or 3.5 amp peak. Output voltoge can be adjusted from 45 to 65 v by $\mathrm{R7}$. Ripple is less than 1 mv rms of no lood, increasing to 60 mv peak-to-peak at 2 omp. Regulation is 2.1% of 2 omp and 0.72% of 1 amp.-"Transistor Manual," Seventh Edition, General Electric Co., 1964, p 22B.

REMOTE-SENSING 6-V REGULATOR-Used when small lead resistance between regulafor and load is physically impossible. Voltoge Eo' is essentially voltage thot oppears directly across load. Differential omplifier senses and corrects for changes in this voltage rather thon for chonges in Eo of regulator output terminols.-NBS, "Handbook Preferred Circuits Navy Aeronoutical Electronic Equipment," Vol. II, Semiconductor Device Circuits, PSC 1, p 1-11.

PREFERRED 250-V D-C REGULATOR-Provides either polarity of output with 1% regulafion, from minimum of 300 v d-c. C5 is minimum of 4 mfd .-NBS, "Handbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. I, Electron Tube Circuits, 1963, PC 7, p 7-2.

152-V PENTODE SERIES-TUBE REGULATORHos excellent frequency response, but this performance could almo be obtained if cathode follower were omplifier using negative feedback for frequency compensation, olong with better regulotion ond lower d-c resis-tance.-NBS, "Hondbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. 1, Electron Tube Circuits, 1963, P N2-11.

POSITIVE-REFERENCE REGULATOR-Hos selfcontoined 150-v positive reference potentiol for pentode regulotor, but gives only marginol operotion.-NBS, "Hondbook Preferred Circuits Novy Aeronoutical Electronic Equipment," Vol. 1, Electron Tube Circuits, 1963, p N2-4.

POSITIVE-REFERENCE REGULATOR-Has selfcontoined 150-v positive reference potential for pentode regulator, but gives only morginol operotion.-NBS, "Handbook Preferred Circuits Novy Aeronoutical Electronic Equipment," Vol. 1, Electron Tube Circuits, 1963, P N2-4.

PREFERRED +150-V D-C REGULATOR-Provides 1% output voltoge regulation under normol line and lood variotions of military equipment. Minimum volue of C3 is 2 mfd . Volue of R4 depends on reference voltage

Er, which should be minimum of -150 v d-c. Minimum input voltage is $200 \vee$ d-c.-NBS, "Hondbook Preferred Circuits Novy Aeronoutical Electronic Equipment," Vol. I, Electron Tube Circuits, 1963, PC 1, p 1-2.

MODIFIED TWIN-TRIODE CASCODE-Plate resistor for lower-potential triode parallels top triode, which is plate load for true cascode. This increases gain of circuit by increasing overage plate current and thereby tronsconductance of bottom triode.-NBS, "Handbook Preferred Circuits Novy Aeronautical Electronic Equipment," Vol. 1, Electron Tube Circuits, 1963, p N2-2.

BASIC SERIES-PASS REGULATOR-Outpui voltage is regulated by 2 N 3715 series-pass silicon power transistor hoving rise and fall times below 0.5 microsec at 5 amp. Transisfor has wide safe-area range, but circuit otherwise has no overlood protection.-J. Takesuye and H. Weber, "Silicon Power Transistors Provide New Solutions to Voltage Control Problems," Motorola Application Note AN-163, Aug. 1965.

TRUE TWIN-TRIODE CASCODE-Use of 5 -mfd capacitor across regulated output reduces adverse effect of $2.2-\mathrm{meg}$ plate load resistor on frequency response. Cascode circuit is used when required gain is too high for single triode, becouse it avoids need for second d-c supply that would be required for screen if pentode were used.-NBS, "Handbook Preferred Circuits Navy Abronautical Electronie Equipment," Vol. 1, Electron Tube Circuits, 1963, p N2-2.

LOW-COST VOLTAGE REGULATOR-Costs 5 to 7 times less than zener regulator having same power rating. Can be set at precise voltoge volue required, whereas zener has 5 or 10\% tolerance. Uses IN462 silicon diode for reference. Total cost (in quantity) is less than two dollars. Thermistor makes circuit perform from -55 to $71^{\circ} \mathrm{C}$. Input voltage source is sea-water-activated battery.-M. E. Gavin, Low Cost Transistor Voltage Regulator, EEE, 10:B, p 28-29.

BATTERY VOLTAGE REGULATOR-Used in bat-tery-powered instruments to compensate for wide range of baftery voltages. Converter serves to provide required variety of operating voltages and isolate equipment from supply. Will hold output within 0.5 v of 16 v for input range of 11.5 to 19 v.-C. D. Lindsay, Combined Battery Converter-Regulator Power Source, EEE, 14:3, p 61.
 lation to overcome effects of changing line voltage, improve output ripple, and improve outpuit impedance characteristics.-NBS, "Handbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. 1, Electron Tube Circuits, 1963, p N14-1.

BASIC SERIES REGULATOR-Provides volfage regulation within 2% at 400 ma , with peak-to-peak output ripple below 0.3 v . Output
impedance is less than 2 ohms from d-e to 20 cps.-"Transistor Manual," Seventh Edition, General Electric Co., 1964, P 227.

THYRATRON REGULATOR-Output of 12 to 16 v is regulated within 1% for loads of 6 to 22 ma . Since 2D21 can handle 100 ma continuously, circuit is easily modified to regulate higher current values.-W. D. Fryer, Thyratron Regulates Supply, Electronics, 31: 25, p 88.

SERIES REGULATION of 3 V -Combination of backward diode and resistor network serves as reference for regulated outputs below $6 \mathbf{v}$, for which temperature-compensated zener diodes are not available. Provides input regulation of $100: 1$ over 10% change in inpul voliage, with output impedance of 0.04 ohm. -T. P. Sylvan, Backward-Diode Power-Supply Reference Elements, EEE, 13:11, p 46-48.

ZERO-IMPEDANCE VOLTAGE REGULATORUses two transistors and controlled positive feedback along with temperature compensotion to reduce output resistance to zero while holding output voltage constant. Also gives some current overload protection. Values shown provide 1 amp of 9 v.-G. Duggan, Zero Impedance Voltoge Regulator, EEE, 11:5, p 91-92.

PENTODE REGULATOR-Reference tube is in cothode circuit of 6AK5, and plate load of pentode is high (1 meg), resulting in poor frequency response.-NBS, "Handbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. 1, Electron Tube Circuits, 1963, p N2-2.

150-V REGULATOR WITH EXTERNAL REFER-ENCE-Permits wider supply voltage range and better operation than arrangements using self-contained reference.-NBS, "Handbook Preferred Circuils Navy Aeronautical Electronic Equipment," Vol. 1, Electron Tube Circuits, 1963, p N2-4.

TWIN-TRIODE CASCADE-Has self-contcined reference voltage, and does not load reference fube. Is theoretically capable of highest possible gain obtainable with singleenvelope d-c amplifiers.-NBS, "Handbook Prefarred Circuis Navy Aaronautical Electronic Equipment," Vol. 1, Electron Tube Circuits, 1963, p N2-3.

BALANCED-OUTPUT PENTODE TWIN-TRIODE -Arrongement gives high gain, approoching 10,000 , along with more ripple reducfion thon is generolly required.-NBS, "Handbook Preferred Circuits Navy Aeronauticol Electronic Equipment," Vol. 1, Electron Tube Circuits, 1963, p N2-4.

TWIN-TRIODE CASCADE-Smaller load resistor improves frequency response. Both reference tube and comporison divider ore loaded.-NBS, "Handbook Preferred Circuits Navy Aeronoutical Electronic Equipment," Vol. 1, Electron Tube Circuits, 1963, p N2-3.

PENTODE WITH CONSTANT REFERENCE CUR-
RENT-Screen is fed directly from regulated voltage of shunt-regulating supply using VR105 and VR-150 reference tubes to give - $\mathbf{3 0 0}$ v.-NBS, '"Hondbook Preferred Circuits Novy Aeronautical Electronic Equipment," Vol. 1, Electron Tube Circuits, 1963, p N2-2.

320 V AT 60 MA-Silicon diodes in full-wove bridge feed seven-tronsistor regulator. Tem-peroture-compensoted silicon-junction zener
diode is bosic reference element. Output is constont within 50 mv , for use with digitalanolog converter.-N. Aron, Precise Con-
verter takes Current Analog of Digitol Voltoge Pulses, Electronics, 35:32, p 68-71.

6 at 20 A-Constont-voltage ferroresonant transformer with full-wave silicon rectifiers is supplemented by shunt transistors
driven by error signal from zener-reference sensing circuit.-J. T. Keefe, Transformer and Shunt Transistors Regulate D-C Power Supply,

NEGATIVE-OUTPUT 1S2-V REGULATOR-Operation is comparable to corresponding posi-tive-output circuit.-NBS, "Handbook Preferred Circuits Novy Aeronoutical Electronic Equipment," Vol. 1, Electron Tube Circuits, 1963, p N2-5.

NEGATIVE-OUTPUT 300-V REGULATOR-Operotion is comporable to corresponding posi-tive-output circuit.-NBS, "Handbook Preferred Circuits Novy Aeronoutical Electronic Equipment," Vol. 1, Electron Tube Circuits, 1963, p N2-5.

TEMPERATURE-COMPENSATED ZENER-Reference voltage is compared to $27-\mathrm{v}$ output by dual-chip fronsistor serving os error ampli-
fier. Unique end-compensation circuit using sensistor generates voltage that rises with temperature.-C. H. Moulton, Light Pulse Sys-
fem Shrinks High-Voltage Protection Device, Electronics, 38:11, p 71-75.

BALANCED-INPUT PENTODE TWIN-TRIODEBalanced input stage reduces effects of tube aging and heater voltage change. Plate load of 16,500 ohms on output pentode contributes to excellent frequency response. Neither reference tube nor comparison voltage divider are loaded. Gives outstanding over-all performance.-NBS, "Handbook Preferred Circuits Navy Aeronautical Electronic

Equipment," Vol. 1, Electron Tube Circuits, 1963, p N2-4.

VOLTAGE-TUNABLE MAGNETRON FILAMENT SUPPLY-Voltage drop across 1-ohm resistor, proportional to output current, is compared with fixed reference and held constant by series pass element.-S. Prigozy, Designing Special Power Supplies for Voltage-Tunable Oscillators, Electronics, 35:44, p 48-50.
 sides of supply, to reduce ripple. Plate load is low (100,000 ohms), providing good frequency response but increasing current fluctuations in VR-105.-NBS, 'Handbook Pre-

SIMPLE SERIES REGULATOR-Satisfactory for power supplies that are not subjected to shorted, capacitive, or suddenly increased loads. Any capacitance Cl at load must be charged through Q2, so entire supply voltage appears across Q2 before Cl starts charging. If initial charging current exceeds limits of Q2, it will be damaged immediately or become unstable.-H. D. Ervin, Transistor Power Supply has Overload Protection, Electronics, 31:25, P 74-75.

REFERENCE AMPLIFIER TESTS POWER SUPPLY STABILITY-Integrated transistor and zener diode serve as reference amplifier for testing effects of temperature on output voltage. After amplifier is heated or cooled, voltage divider is adjusted to restore initial collector current, and change in reference voltage is read from voltage divider scale to within 1 mv.-T. P. Sylvan, New Device Simplifies Power Supply Design, Electronics, 36:20, P 39-43.

CHAPTER 73
 Remote Control Circuits

TRANSMITTER CONTROL FOR DRONE-Pulse repetition rate and pulse symmetry control servos that drive rudder and elevator. Pulses modulate transmitter carrier, which is picked up and detected by superregenerative receiver in target drone.-G. B. Herzog, Transistors Simplify Control of Target Drone, Elecfronics, 32:18, p 52-54.

460-MC F-M COMMAND RECEIVER-Transisforized double-conversion $\mathrm{f}-\mathrm{m}$ superhet, funable by crystal substitution in $457-462$-Me band, has 6-microvolt sensitivity for 20 db of noise quieting. Camera start and timing
pulses are omplitude-modulated onto 3.5 and 12-kc corriers. After signal is detected, subcarriers are separated and pulses ore reconstituted by decoder. Start pulses operate camera relays, and timing pulses flash neon

NOTE:
CRYSTAL FREQUENCY TO BE SELECTED AS FOLLOWS:
lamps.-F. M. Gardner and L. R. Hawn, Camora Control System for Rocket Sled Tests, Electronics, 33:14, p 63-65.

DRONE RECEIVER-Signal from ground trans- positions of rudder and elevator motors. mitter is received by logarithmic mode (selfquenching) superregenerative receiver. Clipper Q2 limits signal to constant level. Combinations of prr and pulse symmetry altar Engine speed, transmitted by momentarily inferrupted modulation, acts on Q17-Q18.G. B. Herzog, Transistors Simplify Control of Targef Drone, Electronics, 32:18, P 52-54.

EIGHT-COMMAND RECEIVER-Transistorized superheterodyne with crystal-controlled local ascillatar energizes eight-reed relay, with
each reed activating own transistor switch. Reeds are funed to different frequencies between 250 and 500 cps.-R. A. Baker, Radia-

Controlled Tank for Realistic Combat Training, Electranits, 33:45, p 55-57.

LINE-CURRENT TV CONTROL RECEIVER-Can be considered os two separafe receivers, one detecting unmodulated power-line corrier for channel selection, the other detecting both modulated and unmodulated corriers for sound-muting relay. Four individuolly funed frequencies ($52.5,57.5,67.5$, and 73.5 kc) are selectoble by switching additional copocitors ocross that for highest frequency.-J. R. Bonker ond C. H. Wood, Jr., Line Current Controls Remote Tv Receiver, Electronics, 31:33, p 68-69.

73.5-MC CRYSTAL-CONTROLLED TUNNELDIODE TRANSMITTER-Self-moduloted lowpower oscillotor for remote-controlled toys, troins, ond garoge doors con olso be voicemoduloted. Ronge is obout 200 yords, and bottery droin is 18 mo.-E. Gottlieb ond J. Giorgis, Tunnel Diodes-Using Them os Sinusoidal Generotors, Electronics, 36:24, P 36-42.

Parts List

Resistors	Kilohms	Walt
R_{1}	6.8	$1 / 2$
R_{2}	20	$1 / 2$
R_{3}, R_{4}	100	$1 / 2$
R_{5}	6.8	$1 / 2$
R_{6}	47	$1 / 2$
R_{7}	4.7	$1 / 2$
R_{8}, R_{9}	150 ohms	$1 / 2$
R_{10}	1	$1 / 2$
R_{11}	47 ohms	$1 / 2$

Miscellaneous
S_{1} Push-button switch (normally open)
$Y_{1} \quad 27.255-\mathrm{mc}$ crystal
27.255-MC CONTROL TRANSMITTER -5 ree. running multivibrotor keys power amplifier Q4 of oudio rote. Ronge is obout 1 mile.

Capacitors
C_{1}, C_{2}
C_{3}
$C_{4}, C_{7}, C_{8}, C_{9}$
C_{5}
$C_{6}, C_{10} \quad$ 33-pf disk
$0.01-\mu \mathrm{f}$ disk
$0.1-\mu \mathrm{f}$ disk
$0.05-\mu \mathrm{f}$ disk
56-pf disk

Inductors
L_{1}, L_{2} Adjustable RF coil (J. W. Miller 4403 or equivalent). Add 2 turns of No. 24 enameled wire on cold end.
L_{3} RF coil, 15μ h (Delevan 1537-40 or equivalent).
C6 funas collector of oscillotor to crystol fre- Circuit Design," McGrow-Hill, N.Y.p 1963, p quency--Texos Instruments Inc., "Tronsistor 361.

Transistors

$$
\begin{array}{ll}
Q_{1}, Q_{2} & \text { 2N } 1274 \\
Q_{3}, Q_{4} & \text { TI } 395
\end{array}
$$

RECTANGULAR WAVEFORM GENERATORPovides variable frequency and symmetry without interaction of functions. Supply valtage can be -15 to -45 v . Frequency range
is variable from 60 cps to 7 kc . Can be used to modulate small transmitter for remote control purposes.-L. E. Spadt, Rectangular Waveform Generator, EEE, 10:6, p 33-34.

LI- 6 TURNS \# 16 ($1 / 2^{\prime \prime}$ LONG, $3 / 8^{\prime \prime}$ I.D., TURNS SPACED $1 / 32^{\prime \prime}$)
UJT-TD GARAGE-DOOR CONTROL TRANSMIT-TER-Unijunction tone oscillator modulates 27.255-Mc crystal-controlled tunnel-diode ascillator. Has adequate range for remote contral of toys, window displays, garage doors,
etc. When voice-modulated, can be used for short-range communication, as in shopping centers and bowling alleys.-"Transistor Manual," Seventh Edition, General Electric Co., 1964, p 355

THREE-TONE H-F CONTROLS TRANSMITTER-Tone-modulated ground transmitter can be tone-modulated by three different tones, each corresponding to a particular reed of receiving relay and balloon. Consists of three stable audio oscillators (between 200 and 500 cps) and low-power erystal-controlled transmitter in h-f band between 3 and $1 B$ Mc.-R. W. Frykman, Radio Command Set for High-Altitude Balloons, Electronics, 33:35, p 54-55.

$0.1 \mathrm{SEC}<\mathrm{T}<0.5 \mathrm{SEC}$
OUTPUT PULSE WIDTH INDEPENDENT OF
INITIAL AMPLITUDE
TIME-CONSTANT DETECTOR FOR TV CON-TROL-Produces output pulse whose width is proportional to time constont of exponentially damped ulirasonic signal, in range of 0.1 to 0.5 sec , independent of input ompli-fude.-K. R. Cross and R. O. Whitaker, TimeConstont Detectors Control Tv Sets, Electronics, 32:36, P 62-67.

COMMUTATOR SYNCHRONIZER-Automatic synchronizing circuit consists of motor interrupter and synchronism-sensing circuit. Commutator drive motor at control tronsmitter is interrupted until it syncs with commutator drive motor in robot that performs jobs in
dangerous radioactive areas. Each inferrupt mokes motor drop back 90°, so that only up to three interruptions are required to achieve synchronism.-D. A. Campbell, Multiplex Circuits for Control of a Robot, Electronics, 33:4, p 46-48.

WIDEBAND F-M RADIO CONTROL LINK-Covers 406 to 549 Mc . Used in missiles and missile-farget aircraft to receive up to $\mathbf{2 0}$ tone
channels and provide demodulated audio output to decoding equipment. Second through seventh i-f channels are essentially same as
elghth.-T. L. Fischer, WIdeband F-M Receiver for Remote Aircraft Control, Electronics, 33:40, p 85-87.

REMOTE CONTROL OF AMPLIFIER GAIN-Permits control of gain of small signal amplifier by means of d-c voltage. Adjustment potentiometer does not carry signal current. D-c control voltage acts on 6-v zener diode which in turn controls amplifier gain.

Control voltage is limited to -4 v , which makes gain adjustable between 0.04 and 0.7 for range of 1 to 1 B . Input signal is $1 \vee \mathrm{p}-\mathrm{p}$ sine wave.-T. Molligna, Amplifier with DC Controlled Gain, EEE, 11:5, p 94-96.

CARRIER-CURRENT TV CONTROL-Low-power oscillator provides both unmodulated and 60cps modulated signals for power-line carriercurrent transmission to contral receiver in tv set. Unmodulated carrier having preset duration controls channel selection, while modulated carrier controls sound level. Sysfem operates on one of four nonadjacent frequencies ($52.5,57.5,67.5$, and 73.5 kc) to avoid interaction between nearby systams.J. R. Banker and C. H. Wood, Jr., Line Current Controls Remote Tv Receiver, Electronics, 31:33, p 68-69.

27.255-MC TD-CRYSTAL TRANSMITTER-Sili-con-transistor Hartley oscillator modulates tunnel-diode oscillator in remote-control
transmitter.-"Transistor Manual," Seventh Edition, General Electric Co., 1964, p 356.

EIGHT-COMMAND TRANSMITTER-Two tone channels can be transmitted simultaneously. Operates at 27 Mc with 0.25-w output, for controlling model tank.-R. A. Baker, RadioControlled Tank for Realistic Combat Training, Electronics, 33:45, p 55-57.

TOY TRAIN CONTROL-With LI-CI funed to one of five r-f chonnels ($100,140,180,220$ and 255 kc), pair of scr's drives train either forward or in reverse, depending on polarity of r-f signal pulse applied to rails by control station. Five-channel transmitter permits sim-
ultaneous control of five different Prains, each having receiver funed to different frequencies. Scr characteristics eliminate jackrabbit starts. -5. B. Gray, Appliances and Housewares, Electronics, 36:20, p 46-49.

Miscellaneous
K_{1} Typical: Sigma 11F-2300-G/SIL or equivalent

Transformer

$T_{1} \quad$ 10-2 kilohms (Thordorson TR7 or equivalent)
27.255-MC REMOTE-CONTROL RECEIVEROutput of superregenerative detector consists of 200-ke quench signal and 1,000 -eps tone modulation from incoming signal. Quench filter passes only audio signal ta amplifier. Amplified audio is detected and resulting direct current used to operate relay K1.-Texas Instruments Inc., "Transistor Circuit Design," McGrow-Hill, N.Y., 1963, p 363.

CHAPTER 74 Sampling Circuits

SYNCHRONOUS SAMPLER—Time jitter of digital receiver output pulse is eliminated by synchronous sompling of defected signal. Each bit is sompled by local clock pulses thot trigger flip-flop Q1-Q2. Two outputs of slicer, 180° out of phose, ore applied to bases of Q1 and Q2. Output of Alip-flop is regeneroted informotion, free of jitter.-J. L. Hollis, Sending Digitol Dato Over NorrowBond Lines, Electronics, 32:23, p 72-74.

3O-KC HALL-GENERATOR SAMPLING SWITCH-ES-Control current circuits of series-connected Holl generotors X ore pulsed olternately for
switching d-c input slgnal. Triggering for identical circuit at right occurs on opposite half-cycles of signol generotors.-T. J. Morcus,

Using Hall Generotors as Contoctless Commutators, Electronics, 35:4, p 43-4S.

MAGNETIC-TAPE DATA SAMPLER-Used in ploybock system for discrimination of f-m signol from mognetic tope. Compares dota chonnel signals with recorded reference fre-
quency, to moke output independent of tope speed. Tube V2B is cothode follower with hyperbolo generotor network os cathode impedance, to creote curve for overage oreo
of voltoge block of ony time during doto period for o given blockwidth (1.4 millisec). -P. S. Bengston, Sampling Discriminators for Doto Reduction, Electronics, 32:13, p 70-72.

PULSE-COUNT SAMPLE-TIME RECORDERAmplifier ond thyrotron trigger feed pulse to solenoid pen of recorder, to record time of end of counting period, corresponding to instont of which counter delivers negative pulse.-C. F. Miller, New Phototronsistor Tochometers Measure Missile Spin, Electronics, 35:25, p 33-35.

COLD-CATHODE SAMPLING COUNTER-Tron-sistor-blocking oscillotor drives cold-cothode counter tube to give long-life decode counter hoving low power consumption. Used in outomotic recorder for data from several hundred radioactive somples per day. Moximum repetition rote is 200 pps.-H. Sadowski ond M. E. Cassidy, How Transistor Drives ColdCothode Counter, Electronics, 32:38, p 46-47.

FLIP-FLOPS CONTROL SAMPLE-AND-HOLDSampled slices of incoming rodar pulse are converted to binary digital form of $10-\mathrm{Mc}$ rate, using flip-flops to connect somple-and-
hold copacitor Cs to signol omplifiers. Effective operture time of sample gate is 20 nsec. Multiplex gate feeds sompled signal volues to anolog-digital converter at proper time as
selected by multiplex counter of system.-A. Hakimoglu and R. D. Kulvin, Sompling Ten Million Words o Second, Eleotrenics, 37:8, p 52-57.

discriminator shown provides voltage output proportional to period of preceding cycle. - P. S. Bengston, Sampling Discriminators for Data Reduction, Electronics, 32:13, p 70-72.

OPERATIONAL-AMPLIFIER SAMPLER-Uses funnel-diode pair with amplifier to provide output that is proportional to input signal at instant corresponding to leading edge of sampling pulse. Voltage gain of circuit is 100 . Can also be used to measure differential peak point current of tunnel diode pairs."Transistor Manual," Seventh Edition, General Electric Co., 1964, p 372.

HYBRID GERMANIUM BOXCAR-Provides time
selection and storage of wovaforms, as required for radar mfi, sensing elements of tracking radars, and gated agc. Power drain is negligible except for 7586 nuvistor filament power of about 1 w.-A. G. Lloyd, HalfBridge Inverter Provides Economical ThreePhase Power, Electronics, 34:37, p 62-65.

ZERO-ORDER DATA HOLD-Samples analog signal ond holds sample value for period much longer than sampling aperture, as required in some sampled data systems and analog-to-digital converters. Used to sample inputs to accuracy of 0.1% of full scale, using sampling aperture greater than 1.25 microsec. Value of C is equal to sampling aperture divided by resistance in charge and discharge path.-E. Nelson, Zero-Order Data Hold, EEE, 11:7, p 26-27.

TWO-WAY SAMPLING SWITCH-Uses two compensafed comparators V1 and V2 whose currents are mointoined constant by V3A and $\mathbf{V} 3 \mathrm{~B}$, while $\mathbf{V} 4$ maintains constant plate valiage on these tubes. May be expanded to
multi-way unit by adding input selector circuits, or may be used as pracision cathode follower by eliminating selector. Circuit has near-infinite input impedance and near-zero output impedance. Comparator compensation
permits accuracy of 0.1% over range of -100 to +100 v.-R. Benjamin, Electronic Switch Doubles as Cathode Follower, Electronics, 31:3, p 81-83.

HEIGHT SAMPLING GIVES NANOSECOND RESOLUTION-Eight identical four-transistor difference amplifiers in parallel divide input signal into eight levels for sampling. In each, input signal is compared to reference signal in Q2-Q3.-A. A. Fleischer and E. Johnson, New Digital Conversion Method Provides Nanosecond Resolution, Electronics, 36:18, p 55-57.

CHAPTER 75

Sawtooth Generator Circuits

20-100,000 CPS TRIANGULAR-WAVE GENERA. TOR-Sinusoidal frequency changes are converted into proportional d-e voltage and fed into pulse amplifier and inregraior to geinerate constant-amplitude triongular waveform

for measuring dynamic linearity of amplifier as function of frequency. Schmitt trigger converts input sine wave to constant-amplitude square wove. Frequency sensor producas d-¢ voltage proportional to frequency to serve as
d-c source for pulse amplifier and integrator. -D. E. Cottrell, Frequency Sensor Stabilizes Triangular-Wave Generator, Electronics, 37:9, p 38-40.

LINEAR BOOTSTRAP-Charging current of CI is kept constant, resulting in high linearity of ramp output. Positive-going square wave is on collectar of $Q 8$ while ramp is being gen-erated.-D. A. Williams Jr., Transistors Ruggedize Airborne Telemetry Keyer, Electranics, 31:37, p 81-83.

FET SUPPLIES CONSTANT CURRENT-Utilizes near-zero temperature drift af fet at bias point, to make performance independent of
battery or line voltage fluctuations.-E. Elad, FET Insures Stable Sawtooth Wave, Electranics, 39:16, p 122-123.

SIMPLE SAWTOOTH-Uses semiconductor switch Q1, whose amplitude is controlled by zener diode DI. Operation on only small part of R-C charging curve helps make output pulse widths, amplifudes, and waveform timing independent of active elements in cir-cuit.-C. A. Von Urff and R. W. Ahrons, How to Generate Accurate Sawtooth and Pulse Waves, Electronics, 32:50, p 64-66.

BOOSTING SAWTOOTH FREQUENCY-Inducfor causes ringing and thereby extends operating frequency of sawtooth oscillator using four-layer diode. Will operate well above 100 kc.-P. Emile, Jr., Inductor Raises Useful Sawiooth Frequency, EEE, 12:7, p 28.

SYNCHRONOUS SWEEP-Produces linear 20-v sawtooth with four-layer diode and six other components. Maximum sweep rate can reach 100 kc. Provides synchronous operation with good linearity and sufficiently fast retrace to eliminate need for blanking in oscilloscope applications.-4-Layer Diode Sweep (Synchronous), "Electronic Circuit Design Handbook," Mactier Pub. Corp., N.Y., 1965, p 173.

TRIANGLES-Peaks, slopes, and frequency of friangular waves can be varied independenily. R10-R11 control positiva slops, R11= R15 negative slope, and C1-C2 both slopes.

Zener voltages of D1-D2 determine peaks.R, Zane, Triangle Generator Adjusts Output Slopas and Paaks, Electronics, 38:12, P 85-86.

LINEAR SAWTOOTH-Q1 and Q2 in emitter. coupled mvbr and constant-current generator Q3 produce sweep having linearity comparable to that of vacuum-tube circuits.-B. Rakovic, One More Transistor Makes a Linear Sawtooth, Electronics, 3S:49, p 50-51.

MULTI-WAVEFORM GENERATOR-Uses dou-ble-bootstrap sweeps to generate triangular
wave. Can be free-running or driven by external generator. Polarity-sensitive trigger
circuit controls sweeps.-J. E. Curry, MultiWoveform Generator, Electronics, 32:46, p B3.

RAMP GENERATOR-Produces positive-going ramp with $100-\mathrm{v}$ amplitude when input trigger pulse is applied. Time duration of ramp con be set of 0.1 or 1 microsec. Time stability is better than 0.1 millimicrosec for long time intervals.-W. E. Bushor, Sample Method Displays Millimicrosecond Pulses, Electronics, 32:31, p 6y-71.

VOLTAGE-CONTROLLED RAMP/TRIGGER-Provides ramp output with or without positive and negative trigger pulses over 6:1 linear range of frequency control. For values of \mathbf{C} from 0.001 to 10 mfd , frequency range is 10 cps 1020 kc.-M. S. Tatch, Voltage-Controlled Ramp/Trigger Generator, EEE, 12:3, p 71.

0.2 TO 18 CPS-Provides low-frequency 5-v sweeps of high linearity, to complement con-
ventional signal generators having maximum accuracy at higher sweops.-A. Angelone,

Subaudio Sawiooth Generator Gives One-Percent Linearity, Electronics, 34:48, p 42-43.

WIDE-RANGE LINEAR BOOTSTRAP TIME BASE -Delivers highly linear ramps at repetition rates up to $\mathbf{S} \mathbf{M c}$, for input pulses fram 0.1 microsec to several seconds wide. Nonlinearity is 5% for slow ramps, and improves ta 0.05% for fast ramp. Measures pulse width accurately when used in combination with voltage comparator. Can also be used far sampling and for testing amplitude response of linear amplifiers.-T. Mollinga, A WideRange, linear Time Base, EEE, 10:8, p 56-59.

ALL-WAVEFORM GENERATOR-Two-transistor circuit with function switch provides choice of four different waveforms: sine, triangular, square, and sawiooth. Frequency is around 450 eps.-Transistorized All-Waveform Generator, "Electronic Circuit Design Handbook," Mactier Pub. Corp., N.Y., 196S, P 168.

UNIJUNCTION SAWTOOTH-Uses ZJ14 uni. junction transistor. R1 represents input impedance of conventional emitfer-follower having nominal $5,000-$ ohm impedance in emifter circuit. R3 is 3 K and R4 is 330 ohms. -M. Rosen, Subaudio Swept Signal Generafor, Electronics, 33:17, p 67-68.

WNE SMAPE
IV/c. VERT
201 5EC/ cm HORIZ

> (Lowtn)

COLLECTOR BASE SHAP
IOV/E VERT
2OHSEC/CM MORIZ

TRIGGERED SAWTOOTH—Uses Shockley four- is 0.2 microsec of 400 pps.-Triggered Sowlayer diode and transistorized infegrating circuit. Ramp starts with quick drop, then rises back to steady-state condition. Pulse width
tooth Generator, "Electronic Circuit Design Handbook," Mactier Pub. Corp., N.Y., 1965, p 169.

SIMPLE SUBAUDIO SWEEP-Uses operational amplifier in integrating circuit, neon lamp os automatic switch, and resistance network that allows output to be varied around level set by R1. Used to generate sweeps with high linearity up to 16 cps .-A. Angelone, Suboudio Sawtooth Generator Gives One-Percent Linearity, Electronics, 34:48, p 42-43.

POSITIVE OR NEGATIVE SLOPE-Generates linear ramps, either negative or positive, by switching two current sources on and off
during charging of C3.-G. Marosi, Positive or Negative Slope Generator, EEE, 13:5, p 43.

ULTRALINEAR RAMP GENERATOR-Used in high-accurocy low-speed voltoge to pulse width converter. Linearity is better than 0.02% between 10 and 90% points of ramp.

Test circuit below is substituted for C1 when adjusting linearity control.-Ulira Linear Ramp Generator, "Electronic Circuit Design Handbook," Mactier Pub. Corp., N.Y., 1965, p 166.

LINEAR SAWTOOTH WITH SPLIT TIMING CA-PACITOR-To compensate for linearity deterioration, timing copacitor of emitter-coupled mvbr is split into two equal parts, and feedback resistor is connected between center point and emitter of constant-current generator Q3.-B. Rakovic, One More Transistor Makes a Linear Sawtooth, Electronics, 35:49, p 50-51.

SIMPLE UJT SWEEP-Generates variable-frequency sawtooth directly, with emitter-follower 2N335 serving only for isolation. Sawtooth frequency can be varied without affecting output amplitude.-Unijunction Sweep, EEE, 11:7, p 86.

UJT TRIANGULAR-WAVE GENERATOR-Two current generators produce triangular wave by alternately charging and discharging $\mathbf{C l}$.

(c)

Uit and diode serve as switch to reverse slope of ramp.-R. Dean, Unijunction Triangular Wave Generator, EEE, 12:4, p 59.

IINEAR SAWTOOTH-Develops signal with 4-v amplitude and 2-sec period.-O. C. Haycock and K. D. Baker, Measuring Antenna

Impedance in the lonosphere, Electronics, 34:2, p 8B-92.

LINEAR RAMP GENERATOR-Ussd in tester that shows computer memory performance under marginal drive currents by plotting
shmoo curves. System uses two generators that differ only in component values in table. R3 in X drive circuit makes X generator jump when capacitor stops charging and starts discharging. Charging currant is positive or negotive deponding on input voltage polarity. Npn transistors are 2N706, pnp transistors are 2 N 1132 , and diodes are

50-KC SAWTOOTH-Uses bootstrap charging circuit, with constant voltage maintained circuit, with constant valtage maintained
across charging resistor by zener diode and emitter-follower amplifier Q3, so capacitor charging current is constant over complete
cycle. "Transistor Manual," Seventh Edition, chorging current is constant over complete
cycle.-"Transistor Manual," Seventh Edition, General Electric Co., 1964, p 319.

FREE-RUNNING HIGH-VOLTAGE SAWTOOTH GENERATOR-When power is applied, goteturnoff scr triggers and applies $400 \vee$ to Cl . When valtage across Cl rises above avalanche voltage of DI, GTO turns off and CI discharges until scr conducts again.-D. R. Grafham, Now the Gate Turnoff Switch Speeds Up D-C Switching, Electronics, 37:12, p 64-71.

FET RAMP GENERATOR-Use of mos fet gives very slow rate-of-rise linear ramp generator (less than $0.1 \mathrm{v} / \mathrm{sec}$). Longer durations can be obtained by using larger values for R and C. $-J$. M. Phalan, MOS FETs Give Long TimeConstant Ramps, EEE, 14:4, p 46.

VARIABLE-SLOPE RAMP GENERATOR-Slope is determined by rate at which Cl is charged by constant-current generator Q1-R4 through

Q2. Paok of ramp is determined by R19 Circuit will synchronize over 3:1 frequency range centered on 70 kc .-D. J. Grover, Co-

CHAPTER 76 Scanner Circuits

AUTOMATIC BRIGHTNESS CONTROL-AUtomatic brightness control circuit intensifies scanning spot when sweep is triggered, and holds intensity constant. When spot is quiescent, output of 931A is applied to cathode follower that determines bias on 5ZP16. Phototube then sees only 10 -meg laad because V4 is cut off. When mark is sensed by scanner, load switching action makes V4 conduct to reduce phototube load to 120,000 ohms.-A. C. L. Brown, Flying Spot Inspects TV Rating Records, Electronics, 35:9, p 31-34.

NUCLEAR TRACK COUNTER-Recognition system scans nuclear emulsion strips coated on glass, using image orthicon with microscope. Straight or moderately curved tracks in emul-
sion, produced by nuclear particles, are recognized and counted by scanner that used video screening circuit shown. Opaque emulsion regions that meet narrowness criteria
produce output pulses.-P. V. C. Hough, J. A. Koenig, and W. Williams, Scanner Recognizes Atomic Particle Tracks, Electronics, 32:13, p 58-61.

UJT RASTER GENERATOR—Developed for use in low-cost transistorized flying-spot scanner. Can also be adapted for closed-circuit iv cameras and monitors. Ujt Q1 is relaxation oscillator at desired horizontal sweep rate of 10 kc. Inferlaced scanning is easily obtained.F. Stevens, Low-Cost UST Raster Generator, EEE, 13:12, p 65-66.

VERTICAL LOCATOR FOR CHARACTER READER -Sawtooth input is compared with earliest video of each verfical sweep of fyped character being scanned, to charge capacifor and derive logical output related to botfom of typed line.-J. Bauldreay and E. Milbradt, Solving Registration Problems in Optical Character Recognition, Electronics, 35:1, p 77-81.

SHAPE RECOGNITION-Use of dilating circular scan resolves some of problems for gen-eral-purpose reading machine. Technique
can be applied to automatic recognition of letters and numbers in variety af styles.-
L. D. Harmon, Line-Drawing Paffern Recagnizer, Electronics, 33:36, p 39-43.

WIDEBAND VIDEO AMPLIFIER-Has gain of 1,000, bringing 1 -mv inpul up to 1 v. First two stages are cathode-bypassed, and next iwo use inductive compensation for highfrequency peaking, to compensate for noninfinitesimal shorl persistence of screen of flying-spot scanner. Used in comparing two sky photographs to detect variable stars.J. Borgman, Using Tv Techniques in Astronomy, Electronics, 32:19, p 66-68.

STABILIZING PHOTOMULTIPLIER GAIN-Feedback loop provides automatic gain stabilization for color film scanner.-R. M. Farber and K. M. St. John, Scanner Analyzes Color Content of Movie Film, Electronics, 34:48, p 3841.

TWO-PHOTOMULTIPLIER SUBTRACTION CIR-CUIT-Flying-spof closed-circuit iv system compares two photographs and displays only differences between them, for automatic identification of variable stars. Both photomultiplier signals are coupled to subtraction tube VIA. Difference signal is fed by cathode follower to video amplifier of 14 -inch tv monitor.-J. Borgman, Using Tv Techniques in Astronomy, Electronics, 32:19, p 66-6B.

FLAT-TUBE SCANNER-VI thru V3 generate sawtooth wave and V5 thru V7 triangular wave for driving horizontal and vertical
conductors of electroluminescent panel.-B. Binggeli and E. Fatuzze, Solid-State Panels: Will They Bring Flat-Display TV? Electronles, 35:26, p 67-70.

PUPILLOGRAPH-Measures movements of pupil of eye, using flying-spot scanning unif
with multiplier phototube, amplifier-detector, Changes For Clinical Diagnosis, Electronics and recorder.-G. W. King, Recording Pupil 32:39, p 67-69.

CHAPTER 77 Servo Circuits

TRANSDUCER SCANNER WITH INDICATORS-
Tronsducers monitored in parallel mode actuate a-c servo when any one goes beyond predetermined ronge. Tronsistor then turns
on lamp to identify transducer whose output has actuated the servo.-S. Thaler, Solid-State Parallel-Mode Scanner Reads System Physical Parameters, Electronics, 34:19, p 78-80.

4-W CLASS 8 SERVO AMPLIFJER-Gives power gain of 42 db . Voltage amplification is constonf within 2.5 db of 42.5 db . Transformer dafo is for 400-cps operation.-Texos Insfruments Inc., "Transistor Circuit Design," Mc-Grow-Hill, N.Y., 1963, p 241.

DIFFERENTIAL-TRANSFORMER TRANSDUCERDetects and responds with 0.1% linearity to core displacement. Low-level aic transformer output is converted to 10 to $50 \mathrm{ma} \mathrm{d-c}$ transmission signal with 1 w maximum power by high-input-impedance feedback amplifier. Precision exciter consists of constont-voltage 1-ke oscillator and high-Q swamping choke. Gain is stabilized by using separate d-e feadback loop for each group of d-c coupled transistors.-L. H. Dulberger, Constant-Current Technique Cuts Servo Response Time, Electronics, 32:28, p 52-54.

DARLINGTON-PAIR SERVO AMPLIFIER-Openloop gain of differential forward amplifier Q1 through Q8 is over 2,000 and closed-loop gain is 200 . Signal across output of common-
mode feedback amplifier Q9-Q10 is differentially summed by R21-R22 to cancel a-e components, while d-c component is amplified and applied to emitters of differential-input

Darlington pair.-M. W. Aarons, Putting a Servo Amplifier on a Small Silicon Wafer, Electronics, 35:52, p 33-35.

DIGITAL SERVO MODULATOR-Used to subtract two analog currents of digital-to-analog converter, giving phose-sensitive 60-cps square-wave output signol. Modulator is driven from 60-cps line to maintain precise phase relationship with two-phase servo motor. Modulotor gives $2.4-\mathrm{mv}$ p-p output signal for 2-microamp input signal on one side, and $1.1 \mathrm{v} \mathrm{p}-\mathrm{p}$ for 1 -ma input signal on one side. First output corresponds to least significant digit error in Gray-to-binary converter, and latter to most significant digit error.-Texas Instruments Inc., "Transistor Circuit Design," McGraw-Hill, N.Y., 1963, p 492.

QUADRATURE VOLTAGE REJECTION-Suppresses quadroture voltages in servo loops while delivering in-phase o-c signol. Phase reference voliage controls two unmatched diodes so they conduct only when in-phase signol component is passing through maximum and quadrafure is passing through minimum. Prevents overload of amplifier.-B. Fennick, Phase-Selective Gate Rejects Quodrature, Electronics, 31:51, p 89-91.

2-W HIGH-EFFICIENCY SERVO AMPLIFIERVoltage gain with feedback loop is 10,000 , efficiency is above 50%, and gain changes
less than 3 db between -55 and $+125^{\circ} \mathrm{C}$. No center tap is required on control winding of motor.-J. A. Walston and J. E. Setliff,

Designing Servo Amplifiers for High Efficiency, Electronics, 36:6, p 62-63.

6-W HIGH-EFFICIENCY AMPLIFIER-Overall efficiency is $\mathbf{5 5 \%}$. Design equations are given. -Texas Instruments Inc., 'Transistor Circuit Design," McGraw-Hill, N.Y., 1963, P 249.
$T_{1} 400 \mathrm{cps} 12$-watt power transformer step-down 115 volt to 68 volt c.t.
$T_{2} 400 \mathrm{cps} 65 \cdot \mathrm{mw}$ driver transformer. Turns ratio $N_{1}: N_{2}: N_{3}=2: 1: 1$ Primary current $=10 \mathrm{mad} \cdot \mathrm{c} . \quad$ Primary inductance $=1.5 \mathrm{hy}$.

SERVO FREQUENCY COMPENSATION-Parforms frequency compensation in servo system by operating on modulation envelope of amplitude-modulated suppressed-carrier sig-
nal. Hybrid construction, replacement of linear circuits with switching circuits, and substilution of active filters for lorge L-C filters reduce size and weight.-F. A. Plem-
enos, The Packaging Revolution, Part VI: Converting to Microelectronics, Electronics, 39:4, p 103-109.

QUADRATURE SUPPRESSION-Two poirs of thermistor potentiometers balonce the inphose ond quodroture components of input current, which are in phose and in quadroture with a-c reference of the same frequency, to permit disploying components simultaneously on two a-c meters. Circuit and values for demodulators and preamplifier are same as for THERMISTOR CONTROL circuit.I. C. Hutcheon, Using Thermistors as Servo Elements, Electronics, 34:5, p 52-55.

TRANSDUCER SCANNER—Monitors transducer outputs in parallel mode and reports when any one of measured parameters exceeds or falls below predetermined limit. Superimposing a-c signal on d-c control voltage permits use of a-c servo as indicator.-S. Thaler, Solid-State Parailel-Mode Scanner Reads System Physical Paramefers, Electronics, 34:19, P 78-80.

ROUGH SERVO REGULATOR-Drives autotransformer to establish norrow range of fine regulator for close control of field of large electromagnet having $50-\mathrm{kw}$ excitation. -A. M. Patlach, Precision Servo Regulator Controls High-Power Magnetic Field, Electronics, 33:45, p 66-69.

SERVO AIMS D-F LOOP AUTOMATICALLYBearing accuracy of 3 deg is obtained aver frequency range of 190 kc to 2.8 Mc. Error
signals derived from balanced modulator and sense antenna are mixed, amplified, defected
by V8, and amplified to drive two-phase antenna motor.-L. D. Shergalis, Pleasure Boat Electronics Stresses Low Power Consumption, Operating Simplicity, Electronics, 35:4, p 2021.

SYNCHRONOUS FILTER FOR ADF-Seporates 130-cps motor drive voltoge from vaice frequencies in output of odf receiver.-P. V. Sparks, Servo Filter and Gain Control Improve Automatic Direction Finder, Electronics, 34:23, P 110-113.

World Radio History

LOW-POWER DRIVER-Pair of high-voltage, high-gain silicon power transistors gives 5 w output from -55 to $+125^{\circ} \mathrm{C}$ when driven by 250-mw 2N1275 transistor.-New High Voltage, High Gain Transistors (Raytheon Ad), Electronics, 33:35, P 42.

SERVO-CONTROLLED GAIN-Gain is confrolled by varying photomultiplier input voltoge, permitting photoelectric system to trock brightness range from remote stars to moon.-W. J. Wichman and M. M. Birnbaum, Servo System Design for Balloon-Borne Star Trockers, Electronics, 34:35, p 43-46.

Transformer data

$T_{1}-N_{1}=2050$ turns No. 35 AWG. $N_{2}=$ $N_{3}=466$ turns No. 29 AWG, bifilar wound. Core: Magnetic Metals 75 El, SL-14, or equivalent, butt-jointed.
$T_{2}-N_{1}=N_{4}=90$ turns No. 29 AWG. $N_{2}=N_{3}=433$ turns No. 29 AWG, bifilar wound. $N_{5}=303$ turns No. 38 AWG. Core: Magnetic Metals Carpenter $49,0.006-\mathrm{in} .375 \mathrm{El}$ or equivalent, 8×8 interleaved.
1.5-W CLASS B SERVO AMPLIFIER-Gives power gain of 3 B db . Voltage omplification is constant within 1.5 db of 40.5 db . Transformer dalo is for 400-cps operation.-Texas Instruments Inc., "Transistor Circuit Design," MeGrow-Hill, N.Y., 1963, p 240.

COMPLETE 2-W SERVO AMPLIFIER-Includes direct-coupled preamplifier and driver stages, with considerable d-c feedback to stabilize
bias conditions. Voltage gain of amplifier with feedback loop closed is 10,000 . Overall efficiency is $\mathbf{5 0 \%}$. Input impedance is $\mathbf{1 0 , 0 0 0}$
ohms and outpul impedance is 150 ohms.Texas Instruments Inc., "Transistor Circuit Design," McGraw-Hill, N.Y., 1963, p 247.

-Used with instrument servo motor confroller to increase available gain. Choice of preamplifier depends on error voltage per degree error available. Chopper is used with d-c inputs only.-NBS, "Handbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. I, Electron Tube Circuits, 1963, PC 71, p 71-2.

60-CPS SERVO AMPLIFIER-Consists of 60-cps d-c chopper, two stages of $60-\mathrm{cps}$ voliage amplification V6, and 4-w power output stage V7-V8 that drives control winding of two-phose servo motor. Over-all power gain is $\mathbf{B 0}$ db.-P. G. Balko, Infrared Finds Audio Suspension Leoks, Electronics, 31:49, P B2-85.

OPERATIONAL PREAMPLIFIER-Used to sum modulator and tachometer outputs and provide signal for power amplifier that drives
split-phase motor. Adjustable overall d-c have equol mark-space ratio.-Texas Instrufeedbock insures equal clipping when ampli. ments Inc., "Transistor Circuit Design," Mcfier is overloaded, so squared output will Graw-Hill, N.Y., 1963, p 493.

must be shorted. Will drive 20 v rms into 40 -ohm load, giving 10 w . Voltoge gain is 37 db and power gain is $60 \mathrm{db} .-N$. Frey-
ling, "High Performance All Solid-State Servo Amplifiers," Motorola Application Note AN-225, Jan. 1966.

THERMISTOR CONTROL-Thermistors RTI and RT2 in series are heated equally under no signal. Applying a-c signal increases resistance of one and lowers that of other, depending on phase. Q1 and Q2 form a-c preamp. Q3 and Q4 operate in switched mode as demodulator. Circuit can be used in place of mechanical servo.-I. C. Hutcheon, Using Thermistors as Servo Elements, Electronics, 34:5, p 52-55.

6-WATT SERVO AMPLIFIER-Unconventional output stage eliminates need for center tap on servomotor for controlled winding, gives 55% overall efficiency,-J. A. Walston and J. E. Sefliff, Designing Servo Amplifiers for High Efficiency, Electronics, 36:6, p 62-63.

50, 60, and 400-CPS SERVO AMPLIFIER-Solid-state 10 -w amplifier handles all three power frequencies, operates from 28v d-c, and uses four-transistor Darlington output
stages to drive two-phase servo motor. Preamplifier and drive stages Q1-Q4 are all d-c coupled through zener diodes, with d-c feedback around all four stages to stabilize
bias against temperature changes. -M . Bodnar, Versatile Servo Amplifier for 50, 60 or 400-Cycle Operation, Electronics, 36:3, P 44-45.

STALLED SERVO MOTOR SHUTOFF-silicon controlled switch Q7 in timing circuit turns on each time servo motor is actuated, and removes power from motor if if remains on more than 15 sec, indicating a stall.-D. Perlman, Silicon Switch Turns Off Stalled Servomotors, Electronics, 39:10, p 90-91.

DIRECT-COUPLED PREAMP-Direct-coupled sil-icon-fransistor amplifier uses zener diode to provide constant voltage, and has adequate d-c stability even with transistors having beta range of 3:1.-A. N. Desautels, Servo Preamplifiers Using Direct-Coupled Transistors, Electronics, 32:20, p 74.

TWO-SPEED SERVO-Directly drives size 11 motor, aliminating need for output transformer. Zener diodes provide switching between fine and coarse signals for two speeds. Maximum coarse and fine signal input is 26 v rms at 400 cps . Voltage gain of coarse amplifier Q1 is 25 , and gain of feedback amplifier Q2-Q3-Q4-Q5 is 460.-B. E. Orr, Direct Drive Amplifier for Two-Speed Servos, Electronics, 31:11, p 146-147.

PREFERRED RESOLVER DRIVER-A-c aperatianal amplifier is used as isolation amplifier, employing feedback that includes campensafing winding of o-c resolver being driven. Useful as camputing element for coordinate canversion, coardinate rotation, and resolutian of vectors when accuracy of 0.5% is sufficient. Component values given are for 500 cps , with Mark 4 Mad 0 resolver.-NBS, "Handbaak Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. I, Electran Tube Circuits, 1963, PC 79, p 79-2.

ON-OFF RELAY SERVO-Step-functian potenfiometer provides on-off characteristic af null detector. Easily adjusted damping is applied thraugh differential relay cantacts to eliminate oscillations. Fast response to small angular displacements assures close following. Tapping posifive voltage off step-function potentiameter causes current flow through Q1, operation of relay K1A, and upward mavement of arms. Negative voltage moves arms dawnward, reversing motar travel.-S. Shenfeld, Transistors Reduce Relay Servo Size, Electranics, 31:33, p 74-77.

PITCH AND YAW CHANNELS-Identical shannele amplify, domodulato, and shape gyra signal to feed direct-coupled differential
servo amplifier whose output differential current goes ta dual-coil hydraulic control valve in rocket.-R. E. King and H. Low, Solid-State

Guidance For Able-Series Rockets, Electronics, 33:5, p 60.63.

4-W SERVO MOTOR DRIVE-Emitter-follower (common collector) push-pull omplifier gives stable output stage gain along with lowimpedance drive for 1 to 4 -w servo motors. Forword bias of 1.4 v is developed across DI and D2, while D3 and D4 protect transistors from inductive lood generated voltages that exceed emitfer-base breakdown. Efficiency is better than 60\%.-"Transistor Monual," Seventh Edition, General Electric Co., 1964 p 223.

PREFERRED PHASE-SENSITIVE NULL DETECTOR -Operates d-c relay when sum of input currents is zero. Circuir can be adjusted for any operoting frequency from 300 to 1,000 cps by selection of C5 and C7; values given are for 500 cps . Consists of a-c amplifier, phase-sensitive detector, and reloy control tube.-NBS, 'Handbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. 1, Electron Tube Circuits, 1963, PC 78, p 78-2.

COMPLETE 3-W 400-CPS SERVO AMPLIFIER -Is copoble of driving 3-w servo motor in ambient of -55 to $125^{\circ} \mathrm{C}$, if copacitors for $125^{\circ} \mathrm{C}$ are used. Gain con be adjusted over ronge of 20,000 to $80,000 \mathrm{amp}$ per amp by adjusting RF in driver circuit. Gain varies Jess than 10% over operating temperafure range.--"Transistor Manual," Seventh Edition General Electric Co., 1964, p 225.

PREFERRED INSTRUMENT SERVO MOTOR CONTROLLER-Used to excite control winding of 2-phase Mark 7 Mod 1 and Mark 14 Mod O servo motors. Delivers nominal output of 1 w to loads with effective resistance between 2,000 and 4,000 ohms. Maximum output is 50 v . CRI is $75-\mathrm{ma}$ silicon rectifier with 70-v reverse working voltage.-NBS, "Handbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. I, Electron Tube Circuits, 1963, PC 70, p 70-2.

INSTRUMENT SERVO CYCLING-Used to cycle instrument servo units from stop to stop for extended periods of time, as for determining wear characteristics and friction leval changes. Motor drive is applied so servo pot arm is driven toward +30 v . When $27-\mathrm{v}$ breakdown of D1 is exceeded, it conducts and furns on Q1; K1 pulls in, energizing K3, and motor drive reverses. As pot arm approaches -30 v , reversing action occurs again. -P. J. Stein, Instrument Servo Cycling Circuit, EEE, 12:9, p 61.

AUTOMATIC SEARCH AND CONTROL-Used in servo control systems when automatic acquisition and linear search are desired, as in afi and phase-lock controls. Basic circuit was used in phase-lock microwave systems having 300 -ke bandwidth. Active integrator is used as linear search generator as well os control system integrotor.-W. H. Schuette, Automatic Search and Confrol Circuit for Servo Loop, EEE, 12:11, p 67-68.

400-CPS PREAMP FOR TWO-PHASE SERVO MOTOR-Bias point and gain are stable over wide temperature range, from -55 to $125^{\circ} \mathrm{C}$. No selection of transistors is required. Bias

design procedure and design equations are given.-"Transistor Manual," Seventh Edition, General Electric Co., 1964, p 218.

MANUAL CONTROL
COMPUTER-SERVO AMP
DITHER
 fioned on remote object by radar and then directed by operator, who adds corrections to
tracking vector only if tracking rate changes.
-R. L. Schoum and D. W. 5avage, Joy-Stick

Control Aids Telescope Tracking, Electronics, 32:17, p 87-89.

BRIDGE BALANCER-Reference signal from capacitonce bridge is transformer-coupled into phose-shifting circuit to compensate for phase shifts in bridge and amplifier used for automatic measurement of dielectric properties. Sheet beam tubes V3 and V4 provide gating action for rebalancing servos.-P. G. Frischmann, Measuring Dielectric Properties Automatically, Electronics, 33:32, p 56-57.

ERROR-RATE COMPENSATION AMPLIFIERChopped d-e input is fed to Q2 through T1 and Q1. Base of Q2 is amplifier summing point and receives feedback signals. Gain is 2.73 v rms per volf d-c.-E. R. Schlesinger, Aiming a 3-Ton Telescope Hanging from Balloon, Electronics, 36:6, p 47-51.

PREFERRED AMPLIFICATION-1,200 PREAM-PLIFIER-Used with instrument servo motor controller to increase available gain. Chopper is used with d-c outputs only.-NBS, "Handbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. I, Electron Tube Circuits, 1963, PC 74, p 74-2.

CHAPTER 78 Shift Register Circuits

SCR AND LAMP DISPLAY CONTENTS OF REGISTER-Computer register to be sampled is connected to input A, ond input B is fed with 10 -microsec, $12-\mathrm{v}$ positive pulse. When output of register is at its low level of -12 v , diode D1 conducts but D2 does not, so scr D3 is nonconducting ond lomp is off. When register output is high level (ground potential), coincident positive voltoges opplied to base of ser make it conduct and turn lomp on.J. J. Collins, Displaying the Contents of a Computer Register, Electronics, 37:21, p 72.

POINT	FUNCTION
$V_{C C}$	6 V
T8.F	OUTPUT
+ 81	$\begin{aligned} & \text { CONNECT TO } \\ & \text { T AND F } \\ & \text { FOR BINARY } \\ & \text { OPERATION } \end{aligned}$
OS	DC SET
DR	DC RESET
DS 8.0 R	CONNECT TO GROUND FOR BINARY OPERATION
AS	AC SET
AR	AC RESET

03

1. 018 Q2: SELECTED 2 N3251.
2.03804 : COMPLEMENT TO 2N3251
2. 01-08: IN3206 OR IN914

LOW-DISSIPATION I-MC FLIP-FLOP-Com-plementary-pair circuit keeps power dissipation below 2 mw , with standby power of only 150 microwatts. Consists of two interconnected flip-flops, shoring common diode
steering nefwork at input. Diodes D1, D4, D5, and Ds protect emifter-based junctions from breakdown and also increase switching speed by clamping back bias levels of base of transistor. May be used for binary opera-
tion, as scaler, or as shift register.-M. E. McGee and J. H. Wujek Jr., One-Megahertz Flip-Flop Saves Standby Power, Electronics, 39:12, p 106-107.

MICROMODULE FOR I.6-MC CLOCK RATE-Flip-flop arrangement of two standard gafes, with capacitor-resistor-diode gates fied to bases for trigger input, operafes under worst-
case femperalure conditions with two standard gate loads.-A. S. Rettig, Computers in the Front Lines: Micromodules Make it Possible, Electronics, 36:1, p 77-B1.

SELF-INDICATING REGISTER-Combines two self-indicating flip-flops with rhase splifter that converts single-polarity shift pulses to positive and negative-going pulses for all
stages. Indicator triodes are Amperex 6977. -H. Rodriques de Miranda and I. Rudich, Indicator Triode for Direct Data Readout, Electronics, 33:6, p 52-54.

input

INTERCONNECTION AS COUNTER

INTERCONNECTION AS SHIFT REGISTER
500-KC SHIFT REGISTER-Basic nonsaturated flip-flop, using 52-step design procedure given, serves as building block for 500-kc counter and shift register.--'Transistor Manual," Seventh Edition, General Electric Co., 1964, p 190.

SYMMETRICAL SATURATED FLIP-FLOP-Developed for inexpensive 2N711 germanium pnp mesa switching transistors, to serve as building block for high-speed computer applications. Two or more flip-flops can be cascaded to form counter, or used as shift register by separating inputs. Close regulation is required for -6 v supply.-P. A. MeInnis, "Low-Cost Computer Circuits," Motorola Application Note AN-130, Nov. 1965.

BASIC SHIFT-REGISTER STAGE-If silicon controlled switch stage is off, shift pulse (less than 15 v) will not be coupled to next stage. Anode supply is interrupted just before shift pulse, to turn off all stages. Stored capacitor charge then determines which stages will be retriggered.-"Transistor Manual," Seventh Edition, General Electric Co., 1964, p 432.

BASIC BISTABLE MODULE-Can be used as flip-flop by connecting 1 to 7 and 4 to 8 , thon using 2 ond 5 as inputs and 7 and 8 os outputs. Becomes binory counter stage when 2 and 5 are fied together for some arrangement. Other combinations of connections give one-shot mubr, pulse generotor, shift register, square-wave generator, or flip-flop. -A. I. Perlin, Selective Calling for Data Link Systems, Electronics, 33:18, p 108-110.

SHIFT REGISTER DRIVER-Shift pulse input soturates 2N2714, depriving Darlington combinotion of base drive. Resulting negative pulse generated on 15-v line is differentiated to produce positive trigger pulse at its trailing edge.-"Transistor Manual," Seventh Edition, General Electric Co., 1964, p 432.

TUNNEL-DIODE SHIFT REGISTER-Incorparates tunnel-diode steering by Q1 and DI. II pravides necessary phose reversal.-W. V. Harrison and R. S. Faote, Tunnal Dioder Ine creose Digital-Circuit 5 witching Speeds, Electranics, 34:32, p 154-156.

REGISTER-DRIVER-Handles 10 -nsec pulses far s0-megapulse computer. Can drive eight 75. ahm lines.-K. H. Kankle and J. E. Laynar, Key

SCS SHIFT REGISTER-Shifi pulse furns off all silicon controlled switches. Trailing edge of turnoff pulse is differentiated for turning on appropriate stages. 2 N 2714 will easily drive ten scs stages.-"Transistor Manual," Seventh Edition, General Electric Co., 1964, p 432.
 coupled Alp-flops are put together to form shift register. Both signal and shift pulses are positive. Operates reliably over wide ranges of input pulse amplitude and circuit parameters.-M. M. Perugini and N. Lindgren, Recent Progress in Solid State Technology, Electronics, 33:10, p 39-43.

CHAPTER 79
 Signal Generator Circuits

OSCILLATOR OUTPUT STAGE-Used with in-cremental-funing precision R-C oscillator for testing and aligning equipment having sharp resonances. Oscillator signal is fed through phase splitter V2 to cathode followers V3 and V4 in push-pull, to provide symmetrical output when required. Will feed either 600ohm unbalanced load or two 300 -ohm outputs balanced with respect to ground, with 10 mw maximum output.-J. H. Reyner, Precision Oscillator with Incremental Tuning, Electronics, 33:16, p 76-78.

SPECTRUM ANALYZER FILTER-Designed to study dynamic data recorded as frequencymodulated signals on magnetic tape. Filter circuit values give 1, 2, and 4-cps bandwidth
in analyzer. Thermocouple in squarer has time constont of 1 sec so output is filtered as well as squared. Oulpuls of thermocouples are in series to provide summing. D-c ampli-
fiers prevent loading of filters.-T. B. Fryer, Frequency Analyzer Uses Two Reference Signals, Electronics; 32:18, p 56-57.

COMBINED R-F AND A-F OSCILLATOR-Used for checking $a-m$ receivers. Generates r-f at 0.6 Mc, defermined by L1-C1, and relaxa-tion-type audio output of 400 cps at A.-W. H. Ko, Tunnel-Diode Oscillator Delivers R-F and Audio, Electronics, 35:41, p S6.

0.1-1,000 CPS DECADE-SWITCHING TWOPHASE OSCILLATOR-Simultaneous outputs at

90 deg phase difference have constant amplitudes over entire range. Direct coupling between stages ovoids phase error.-Y. P.

Yu, Two-Phase Oscillator Covers 0.1 to 1,000CPS, Electronics, 36:40, p 27-29.

TONE strates principles of fourier syilesis strates principles of Fourier synthesis of musical tone, for one octave. Lowest fundamental is 250 eps. Switches $\mathbf{S 1}, \mathrm{S} 2$, and 53 add or remove third harmonic, second har-
monic, or fundamental components from output signal to change tone quality. Master oscillator has range of 1.5 to 3 kc . Blocking oscillator Q1 is tuned through one octove by varying voltage to which R4 is returned, by
switching resistors in series with playing keys.-W. S. Pike and C. N. Hoyler, Synthesizing Timbre for Electronic Musical Tones, Electronics, 32:22, p 92-94.

LINEAR-FREQUENCY SWEEP GENERATORFrequency is swept from 400 to 600 kc elec: tronically by using reverse-biased pn juncfion diode C as variable capacitor in oscil-
lator V5. Frequency markers are provided. Output is amplified and filtered to give 6 w into 150 ohms with high purity of wave-form.-M. M. Brady, Oscillator Design Using

MODULATOR WITH FEEDBACK-Automatic amplitude stabilization of r-f test signals, within 1 db over 1,300 to 1 frequency range, is achieved by demodulating r-f output with D1 and feeding demodulated voltage back to grid Y of differential amplifier V4. Permits rapid and accurate response measurements over wide range without resetting signal level to input of device under test.-A. Fong, Feedback Stabilizes Signal Generator, Elecpronics, 33:29, p 71-73.

COHO-Connected-cathode coherent oscillafor has compromise between good shortterm frequency stability and good locking ability, as required for measuring pulse-fopulse phase variation in pulsed r-f systems. -R. H. Holman and R. B. Shields, Measuring Frequency Stability of Pulsed Signals, Electronics, 34:16, p 61-6S.

VALUES FOR 100 KC
SQUARE WAVES FROM MVBR-Use of four additional components (two resistors and two diodes) with basic free-running mvbr changes its output to clean square wave. Operating range is from several cps to several Mc.R. O. Gregory and J. C. Bowers, Simple Square-Wave Generator, Electronics, 35:51, p 47.

SPECTRUM-INVARIANT RANDOM FUNCTION GENERATOR-Operational amplifiers of analog computer produce periodically stepped
waves by clipping and sampling raw noise signal. Feedback maintains desired power density spectrum.-N. D. Diamantides and
C. E. MeCray, Generating Random Forcing Functions for Control-Systems Simulation, Electronics, 34:33, p 60-63.

CORE SENSE AMPLIFIER-Used in programmed digital signal generator in which plug-in magnets set up program. Input, nominally 100 mv , is amplified and clipped before it is gated with strobing pulse.-W. D. Woo, Novel Digital Signal Generator Uses Mag-netic-Core Pegboard, Electronics, 35:27, P 46-49.

TIMING SIGNAL GENERATOR-Delivers pulses of controlled duration, amplitude, and carrler conient at 1 pps in channel A and either 1 per 5 sec or 1 per 10 sec in channel
B. Any decimal frequency multiple of $1, \overline{2}$, or S from 100 to 0.1 cps may be obtained. Timed pulse signals can be controlled both in amplitude and width, and turned on or off
at will.-D. E. Minow, Timed-Signal Generator With Flexible Output, Electronics, 32:10, p 52-53.

PRECISION R-C OSCILLATOR-Used in signal generator for testing systems by varying frequency over very small limits, as in aligning filters having sharp resonance curves. Cathode follower V2 is included in feedback loop to reduce loading on bridge network. Covers 25 cps to 250 kc in four ranges, with incremental control giving increment of 2% of maximum frequency in each range.-J. H. Reyner, Precision Oscillator with Incremental Tuning, Electronics, 33:16, p 76-78.

12-MC CRYSTAL STANDING-WAVE DETECTOR -Transistorized crystal oscillator Q1 and emitter-follower Q2 feed 1 v rms into two balanced transmission lines going to stand-ing-wave detector.-O. C. Haycock, and K. D. Baker, Measuring Antenna Impedance in the Ionosphere, Electronics, 34:2, p 88-92.

CONSTANT-AMPLITUDE SINE-WAVE SOURCE -Bottery-operoted fixed-frequency calibration source gives constant amplitude within 1% between 0 and $70^{\circ} \mathrm{C}$, with less than 1% harmonic disfortion. Circuit generafes square wave, then converts it to sine wave in lowpass filter network. Frequency remains constant at around 850 cps within 4% over operating temperoture range.-Constant-Amplitude Sine-Wave Source, "Electronic Circuit Design Handbook," Mactier Pub. Corp., N.Y., 1965, p 166.

20 CPS TO 40 KC WITH WIEN BRIDGERonge is covered in four steps. Two-stoge oscillator is followed by buffer that delivers 3.5 v to 2,000-ohm load.-V. Glover, Using a New Device: Field-Effect Transistor Oscillators, Electronics, 35:51, p 44-46.
C_{1} AND C_{2} ARE GANGED 4-SECTION AIR CAPACITORS, VARIABLE FROM 190 F TO 425 pF EACH.

CARRIER SYNTHESIZER-Generotes signol midway in frequency between two input
frequency tones, for mixing with output of linear amplifier Under test.-G. H. Smith, Dis-
fortion Monitor Checks Linear Amplifier Chaiacteristics, Electronics, 34:27, p 57-59.
 tone timbre generator to provide gradual oftack for electronic music demonstration.W. S. Pike and C. N. Hoyler, Synthesizing Timbre for Eloctronic Musical Tones, Electronics, 32:22, p 92-94.

VHF SWEPT OSCILLATOR-Voltage-funable ferroelectric capacitors give tuning ratio of obout 2 to 1 from 20 to 250 Mc and 1.5 to 1 from 250 to 400 Mc.-T. W. Butler, Jr., Ferroelectrics Tune Electronic Circuits, Electronics, 32:3, p 52-55.

PIERCE TETRODE-TRANSISTOR-TUned to third overtone of crystal fundamental. Fifth harmonic of oscillator is used as calibration frequency for $\mathrm{c}-\mathrm{w}$ receiver of radio direction finder.-A. T. Lloyd, Direction Finder Helps Recover Discoverer Copsule, Electronics, 34:9, p 42-45.

20-40 CPS VARIABLE SWEEP-Used to test servos and related equipment. Sawtooth
waveform developed by unijunction tran- for.-M. Rosen, Subaudio Swept Signal Gensistor circuit is used to key blocking oscillo- erator, Electronics, 33:17, p 67-68.

CHAPTER 80 Simulator Circuits

RANDOM-SIGNAL GENERATOR-Signals arise from fluctuations in dense layer of positive jons near cathode of 2D21 grid-controlled gas-discharge tube. Used with computers to simulate random action, such as effect of
wind gusts on controls of airplane.-N. D. Diamantides and C. E. McCray, Generating Random Forcing Functions for Control-System Simulation, Electronics, 34:33, p 60-63.

PULSE RECEIVER TESTER-Simulates field conditions enceuntered by pulge receivers use in ionospheric soundings, by supplying powerful pulse followed by weak pulse, with
variable time separation. Weak pulse can be moved through fixed strang pulse without addition of pulse amplitudes. Uses cathodefollower mixer pulser and c-w ascillator puls-
ing a buffer.-K. Perry, Transmitter Simulator Tests Pulse and Phase-Path Receivers, Electronics, 33:41, p 67.

SPIRAL SWEEP SIMULATOR-Does not require operational radar equipment. Antenna signal is obtained from phase shifter and sweep amplitude potentiometer that provides spiral sweep for target on oscillosope. Range is indicated by gating target to cor-
rect radius of spiral sweep. Aximuth is indicated by another gate that limits target appearance to correct angle on spiral sweep. -J. I. Leskinen, Four Ways to Simulate Radar Targets, Elecfronics, 31:23, p 82-86.

RADAR MOVING-TARGET SIMULATOR-Supplies signal having all choracteristics of radar echo, for testing automatic tracking radars under normal and exireme conditions. Phantastron, dual-diode V2, and two-phase motor serve as variable fime-delay.-K. 1. Chapman, Moving-Target Simulator Tests Tracking Radars, Electronics, 34:13, p 58-60.

SQUIB SIMULATOR-Simulates electricol characteristics of primer or squib of propellantactuoted fastener used in missiles and space systems for vehicle separation. Has very low impedonce prior to firing, and infinite impedonce ofter firing. Useful for testing firing circuits in laborotory where firing of actual squib would create disturbing sound.-C. S. Lewis, Electronic Squib Simulotor, EEE, 10:9, P 24-25.

THREE-DIMENSIONAL TARGET SIMULATORTrigger generator supplies zero time reference for ppi and rhi scopes and circuifs of rador simulator. Course generator provides voltages
proportional to X, Y, and Z target coordinates. Transformation computer with function genarators sonverts these into polar caordinates, Range voltage from computer is compared
with linear sawtaoth to obtain time delay proportional to target range.-J. I. Leskinen, Four Ways to Simulote Rodar Targets, Electronics, 31:23, p 82-86.

NUCLEAR BLAST SIMULATOR-Uses xenon flashtube in double-discharge circuit to simulate thermal radiation pulse of nuclear explosion within afmosphere, which rises rapidly to first maximum, declines to minimum, rises to second maximum, then decreases gradually to zero. Used to evaluate atomic bomb olarm systems.-D. J. Baker and D. E, Thomas, Nuclear Thermal Pulse Simulator, Electronics, 32:44, p 66-69.

CORE DRIVER-Causes current with fast rise and fall time to flow through steering driver that has been actuated by outputs of address counter used in generating programmed digital signals for simulation or test purposes. -W. D. Woo, Novel Digital Signal Generator Uses Magnetic-Core Pegboard, Electronics, 35:27, p 46-49.

CLUTTER GENERATOR-Simulates radar clutter received by rotating antenna on 550-mph aircraft, for checking airborne moving-target indicator on ground. Clutter is produced
by ringing bank of closely spaced crystals and allowing resulting frequencies to beat together to produce jagged clutter return that decays with range. $-H$. Lobenstein and A. R.

Dial, Radar-Return Simulator Tests MovingTarget Indicators, Electronics, 33:49, p 58-60.

SPEECH SIMULATOR-Electron-coupled 1-kc Colpitts oscillator is modiffed to hunt at approximately 10 cps . Serves as source of fluc-tuating-amplitude audio tone, to simulate speech in narrow spectrum region.-H. Schwarzlander, Intelligibility Evaluation of Voice Communications, Electronics, 32:22, p 88-91.

NEURON SIMULATOR-Simulates many of functions of eye and ear nerve cells. Output consists of 6-Mc pulses.-Artificial Neuron Uses Transistors, Electronics, 32:7, p 74.

RADAR TARGET ACCELERATION SIMULATOR -Used for testing radar range tracking systems. Uses phantastron delay modified by adding synchronous-motor-driven capacitor in feedback loop to provide target with controlled acceleration. Pulse used to trigger phantastron corresponds to radar transmitted pulse; second pulse, friggered by trailing edge of phantastron square-wave, represents
radar echo. Time between pulses, representing range, can be set to desired values by changing resistance between positive supply and grid and changing capacitance between plate and grid of phantastron tube. -Radar Target Acceloration Simulator, "Electronic Circuit Design Handbook," Mactier Pub. Corp., N.Y., 1965, p 171.

RADAR RANGE TESTER-Dynamic farget simulator independently generates time-delayed fixed or moving target pulses for target rates
above mach 3, for teating range accuracy of Systems, Electronics, 34:8, p 51-53. airborne automatic-iracking radar.-O. B.
Mitchell, Simulator Tests Radar Tracking

EXPONENTIAL-DECAY LOAD-Used in place of a copacitor when large load with expanential decay is required. R1 pravides means for manitoring current on cro. Article gives component values for wide range af decay times, from 50 millisec to 1 sec , with initial discharge currents of 6.3 to 21.5 amp . Source voltage is 28 v.-B. Bever and L. Snyder, Transient Load With Exponential Decay, EEE, 10:10, p 31.

LOAD SIMULATOR-Is more economical than large rheostat when testing semiconductor power supplies for ripple attenuation and output impedance at different values of load current. Presents variable laad to $30-\mathrm{v}$ supply rated at 0.6 amp.-Inexpensive Load Simulator, "Electranic Circuir Design Handbook," Mactier Pub. Corp., N.Y., 1965, p 165.

IONOSPHERIC SOUNDER PULSE SIMULATORGenerates lang and shart autput pulses with pasitive and negative palarities, each adjust-
able in duration and amplitude. Small pulse can be maved thraugh large pulse. Simulatar is triggered af pawer-line frequency,-K. Perry,

Back-Scatter Simulator Checks Ionaspheric Saunder Displays, Electranics, 35:25, p 50.

CHAPTER 81

Staircase Generator Circuits

STAIRCASE COUNTER-Q1-Q2 serve os bootstrap amplifier for valtage on storage capacifor C2. Each incoming pulse transfers charge increment from C1 to C2. Reliable counts as large os ten are easily obtained.-N. C. Hekimian, PNP-NPN CIRCUITS; New look of a Fomiliar Connection, Electronics, 35:47, p 42-46.

10-MINUTE STEPPED SWEEP_Provides long stepped sweeps required for swepf-frequency ionosondes, with 100-v omplitude. Schmitt
trigger V3 detects end of rundown and initiates recharging of C1.-K. Parry, Leng Stoircase Generator, Electronics, 35:35, p 54.

SAMPLING STAIRCASE-Provides horizontal deflection voltage for crt and time advance information for comparator tube in strobe generator. Increase of d-c bias superimposed on stoircase advances start of sampling with respect to start of ramp, decreosing apparent time delay in start of d-c
trace. Blanking indicator in staircase generator is on when screen is blanked. Scan indicator flashes when stoircase is sweeping. Staircose advances one step for each displayed sample.-W. E. Bushor, Sample Merhod Displays Millimicrosecond Pulses, Electronics, 32:31, p 69-71.

STAIRCASE GENERATOR-Mojor modification of conventional 64-step voltage staircase generotor for infegrated-circuit construction involved dropping supply voltage from 15
v to 6 v , to cut power drain in half and reduce summing resistor network values. Circuit uses Pacific Semiconductor PD101 microdiodes and uncased Fairchild FSP-42-1
transistors.-E. E. Eberhard, Latest Thin-Film Circuit Techniques, Electronics, 35:24, p 37-39.

LOW-FREQUENCY STAIRSTEP-Accopts pulse input, either random or evenly spaced, and produces output after fixed number of inputs. Useful in measuring and recording lowfrequency data. Pulse widths may be 1 millisec to several hundred millisec. Output may have anywhere from 2 to 1,000 steps. By making R1 smaller and eliminating R2, output becomes sawtooth with 1% linearity, variable from 10 millisec to 15 minutes depending on values of Cl and R1.-LowFrequency Stairstep Generator and Timing Circuit, "Electronic Circuit Design Handbook," Mactier Pub. Corp., N.Y., 196S, p 144.

64 STEPS-R-C clack, six binary counters, and summing netwark give repetitive stair-
mum and maximum valtages. Free-running astoble mubr (lower left) generates 40-cps clock signal. Transistors can be 2N697.-
E. E. Eberhard, Latest Thin-Film Circuir Techniques, Electranics, 35:24, p 37-39.

SINGLE STEPS AT 100 KC -Tunnel-diode step generator provides single $\mathbf{4 0 0}-\mathrm{mv}$ steps that are fast and free from overshoot, for testing wideband systems. Flat top of step, used for tests, is 2 microsec long. Step can be triggered with $0.5-\mathrm{v}$ signal at repetition rates to 100 kc , or can frec-run at about $100 \mathrm{kc},-\mathrm{R}$. Carlson, Tunnel-Diode Fast-Step Generator Produces Positive or Negative Steps, Electronics, 34:30, p 48-49.

WAVEFORM GENERATOR FOR CURVE TRACER-Generates blanking signal at collector of Q2 and staircase waveform at emitter of Q4 by charge transfer from C2 to C3. -C. J. Candy, Simplified Curve Tracer for Transistors and Diodes, Electronics, 33:34, p 68-70.

TWO-SECTION STAIRCASE-Negative-going staircase is developed from positive potenfial, and positive-going staircase from negative potential. Output voltage across 150 mmfd capacitors is 800 v peak-to-peak, enough to drive crt directly.-M. T. Nadir, Microsecond Sampler Handles 126 Channels, Electronics, 32:4, p 36-39.

CHAPTER 82
 Stereo Circuits

STEREO MULTIPLEX A-F AMPLIFIER—Provides low-frequency phase equalization for the A-B channel, using variable R-C high-pass filter sections that can be adjusted for cutoff between 5 and 25 eps.-Modifying an F-M Transmitter for Compatible Stereo Multiplex, Electronics, 34:28, p 60-62.

STEREO MULTIPLEX F-M SIGNAL GENERA-TOR-Used for testing and aligning multiplex receivers and adapters. Switches per-
mit generating $L+R$ or $L-R$ separately with or without preemphasis and inserting or removing SCA 67 -ke signal.-S. Feldman, Stereo

F-M Multiplex Alignment Signal Generator, Electronics, 35:3, p 37-39.

F-M STEREO MATRIXING-Matrixing is completely accomplished before detection. Con be substituted for 67 -kc rejection filter of stereo demodulator. Also provides deempho-sis.-L. Solomon, Multiplex Adaptors for Compotible F-M Stereo Reception, Electronics, 34:33, p 45-47.

SUPPRESSED-CARRIER SIGNAL GENERATOROutput of 38 kc , modulated by L-R signal, is obtained by bios-modulating symmetrical stoble multivibrotor. Carrier will remain sup-
pressed 46 db below maximum signal level for days.-S. Feldman, Stereo F-M Multiplex Alignment Signal Generator, Electronics, 35:3, p 37-39.

ALL CAPACITORS ARE Pf UNLESS DESIGNATED ON DRAWING

FET STEREO-FM TUNER-Uses four tuned rof to fet mixer and local oscillator. Age volt-
circults, iwo in high-a highly salective band- age for the two gain-controlled fet raf stages
pass filter, plus two fet raf stages in addition is derived from fourth i-f stage, which also
drives narrow-band meter amplifier.-F. L. Mergner, P-inn Diode and FET's Improve F-M Reception, Electronics, 39:17, p 114-118.

STEREO MULTIPLEXER-F-m reception is monaural when 19-ke multiplex input is absent or below acceptable power level. Rectifica-
tion of 19-ke signal provides furn-on voltage to frequency doubler, for stereo.-S. Messin and T. E. Nawalinski, A Solid State Stereo Set

Built in Modules, Electronics, 38:16, p 88-92.

STEREO MULTIPLEX OSCILLATOR-Output of 19-kc crystal oscillator is amplified by V2 for pilot subcarrier. Same frequency is doubled by D1-D2, amplified by V3, and shoped by
monostable mvbr V4 to provide trigger pulses. for blocking oscillator VS, from which fifth and sixth harmonics (190 and 228 kc) are taken and amplified by V6 and V7 for use
as carrier signals.-Modifying an F-M Transmitter for Compatible Stereo Multiplex, Electronics, 34:28, p 60-62.

COMPACTRON FOR STEREO-Z2969 compacfron performs functions of two triodes and two diodes in circuit for adapting f-m re-
ceivers to stereo.-L. Dillon, Single Compactron Adapts Receiver for Stereo, Electronics, 34:43, P 62-64.

DRIVER-Upper pair of transistors provides voltage regulation, filtering, furn-on time delay, and decoupling for audio driver transistors below.-S. Messin and T. E. Nawalinski, A Solid State Stereo Set Built in Modules, Electronics, 38:16, p 88-92.

STEREO MULTIPLEX PHASE MODULATOR-Circuit serves for frequency-modulating main carrier signal by stereophonic subcarrier in
four-diode ring modulator to which 19-kc pilot subsarrier is alsa applied. Resultant signal is phase-modulated at same $11.055-\mathrm{Mc}$
corrier frequency as input signal.-Modifying and F-M Transmitter for Compatible Stereo Multiplex, Electronics, 34:28, p 60-62.

Stereo headphone Amplifier-will drive dyanamic headphones of 75 to 400 ohms impedance to power level of 60 mw . Program source may be funer or ceramic cartridge. Frequency response is flat within 0.33 db from 20 cps to 20 kc . High input
impedonce, 1 meg up to 2.5 kc and decreasing to 400 K at 15 kc , is obtoined by using bootstrapped bias network for Q1 along with negative feedback.-"Transistor Monual," Seventh Edition, General Electric Co., 1964, p 272.

STEREO AMPLIFIER POWER SUPPLY-Diode decoupling provides 80 db of separation between iwo stereo amplifier channels. Designed for use with 10 -w power amplifiers. -"Transistor Manual," Seventh Edition, General Electric Co., 1964, p 261.

F-M STEREO DEMODULATOR-Signal from f-m discriminator is passed through $67-\mathrm{ke}$ rejection filter to control grid of 6ARBA as elec-
tronic switch, while high-amplitude 38-kc sine wave is applied to its defection plates. One plate produces mainly left signal, and
other produces mainly right signal. Cathode gives balanced $L+R$ signal.-L. Solomon, Multiplex Adaptors for Compatible F-M Stereo Reception, Electronics, 34:33, p 45-47.

PIN DIODE PROVIDES 120 DB AGC RANGEDynamic signal range exceeds 120 db in fully tronsistorized Fisher TFM-1000 stereo set. Will receive signols as low as 1.5 microvolts without distortion, yot $0.5-\mathrm{v}$ signals con
be handled without overload or spurious response. Solid-state pin diode serves os goin-controlled attenuator. Separate 10.7-Mc tuned amplifier delivers age valiage thot, olong with d-c omplifier, controls pin diode.

Action of tuned amplifier is delayed until antenna signal is $1 \mathrm{mv} .-\mathrm{F}$. L. Morgner, P-i-n Diode ond FET's Improve F-M Reception, Electronics, 39:17, p 114-118.

CHAPTER 83

Sweep Circuits

CONSTANT AMPLITUDE FOR THREE RANGES -Multiple-range sweep generator for airborne radar provides constant-amplitude output sowtooth, along with fast-rising gate pulse or pedestal having duration of sawtooth. Linearity is kept within 1% without using bootstrap.-H. P. Brockman, Sweep Generator Design: How to Keep It Simple, Electronics, 33:3, p 92.

KLYSTRON SWEEP-Provides sweep voltage for klystron in microwave interferometer system, plus vertical sweep and trigger for oscilloscope.-H. L. Bunn, Determining Electron Density and Distribution in Plasmas, Electronics, 34:14, p 71-75.

HIGH-SPEED HYBRID BOOTSTRAP-Speed is increased because C_{c} does not have to supply charging current for $\mathrm{Cs}_{\text {s }}$ but only current required by grid leak resistor; this is small, so Cc can be small and easily recharged during quiescent period.-F. C. Creed, Hybrid Bootstrap Circuits Increase Sweop Iinearity, Electranics, 34:31, P 46-48.

TRANSISTORS SIMULATE PHANTASTRONThree transistors simulate current-partitioning action of pentode vacuum-tube phantastron sawtooth sweep generator. Potentiometer in bias and feedback circuit can be adjusted for either triggered ar free-running phantastron sweep.-N. C. Hekimian, Phantastron Circuits Using Transistors, Elecfronics, 34:B, P 46-47.

SHF SWEEP GENERATOR-Swept-frequency signal saurce using backward-wave oscillator tube offers variable sweep rate in microwave region batwesn 8,200 and 12,400 Mc. Sweep width is continually adjustable from 3 Mc to

4,200 Mc. May be modulated with either f-m or a-m.-D. E. Wheeler and P. D. Lacy, SHF Frequency Sweeper Uses Backward-Wave fube, Electronics, 31:1, p 76-78.

tANGENTIAL WAVEFORM GENERATOR-Generates approximation of tangent function for slant-range correction of video signal from
airborne infrared scanner. Ramp mvbr Q5Q6 and timing mvbr Q1-Q2 are triggered simultaneously.-J. L. Woika, Generating Tan-
gential Sweeps for Infrared Mapping, Electronics, 34:41, p 64-66.

DARLINGTON WITH BOOTSTRAP FLIP-FLOP SWEEP-Transistor Q3 in Darlington connection improves linearity of controllable
tron.-J. B. Payne III, Voltage-Controlled Bootstrap Generator, Electronics, 33:11, P 177-178. sweep comparable to vacuum-tube phantas-

FAST-RESET SAWTOOTH-Regenerative pnpnpn pair in positive-feedback circuit Q1 is constant-current charging source for C1, with R2 varying charging rate and free-running frequency, which can range from 60 cps to 1 Mc.-N. C. Hekimian, PNP-NPN CIRCUITS: Now Look at a Familiar Connection, Electronics, 35:47, p 42-46.

TRIODE PHANTASTRON SWEEP-Active elements V1-V2 serve with isolation diode V_{3} to give action af single pentade with gaod sweep linearity.-A. S. Kislovsky, Sweep Cirsuits Using Two Three-Terminal Active Eloments, Electronics, 35:12, p 54-55.

FREE - RUNNING GROUNDED GRID - Has higher output impedance than other timebase sweep circuits. Reducing RL increases
period.-C. Sing, Grounded-Grid Circuit Sweeps Better Than Miller or Bootstrap, Electronics, 38:6, p 83-84.

 curves of iunnel diodes in unstable negativeresistance region,-H. G. Dill and M. R.

MacPherson, Tracing Tunnel Diode Curves, Electronics, 33:32, p 62-64.

SLOW SWEEP-Large electrolytic cepacitor and five zener diodes connected across standard transistor-regulated power supply give sweep voliage that increases 2 v per second, for classroom demonstrations.-M. H. Crothers, Added Capaciror Sweeps Power Supply, Electronics, 37:17, p 62.

SAWTOOTH VOLTAGE GENERATOR MODULATES KLYSTRON-C2 is charged through R6 and discharged through Q2 operated in avalanche mode. Flyback time of sawtooth is about 90 nsec. Sweep rate is 33.3 kc .W. H. Chiles and H. G. Lafuse, Sweeping Carrier Signals Through Interference, Electronics, 37:16, p 94-96.

LOG SWEEP-Resistance coupling in feedback loop permits positive-going as well as negative-going waveforms. Circuit gives choice of logarithmic, exponential, or linear
sweep output. Relay switches between linear and long sweep.-J. Curry and W. Sander, Bootstrap Generates Logarithmic Sweeps, Electronics, 33:52, p 60.

THREE-TRANSISTOR PHANTASTRON-Use of both pnp and npn transistors gives desired current partition, while feedback required for sweep generator is provided by potenfiometer arrangement at right.-N. C. Hekimian, Phantastron Circuits Using Transistors, Electronics, 34:8, p 46-47.

BOOTSTRAP SWEEP FOR CRO-Hybrid circuit has high linearity and moderate sweap speed.-F. C. Creed, Hybrid Bootstrap Circuits Increase Sweep Linearity, Electronics, 34:31, p 46-48.

SCR HORIZONTAL SWEEP-Scr, fired by trigger pulse at start of retrace, transfers to yoke coil the energy stored in $1.27-\mathrm{mfd}$ capacitor C. At end of retrace, energy transfer is completed, damper diode turns on, and energy in yoke refurns to supply source E1,
giving linear sweep current through yoke. Scr can be General Electric C35, C36, or C40 series. Yoke is 200 microhenrys.-T. Tarui, New Deflection Circuit Uses SCR, Saves Power, Electronics, 36:32, p 56-57.

VARIABLE BOOTSTRAP FLIP-FLOP SWEEP-
Gives same type of waveform as phantastron. Oufpul pulse length can be varied by

d-c bias or by control voltage.-J. B. Payne III, Voltage-Controlled Bootstrap Generator, Electronics, 33:11, p 177-17B.

GCS HORIZONTAL SWEEP-Uses gate-controlled switch GCS to replace horizontal output tube in television receiver, and semiconductor diode D1 to replace damper. GCS can cut off 2.5 -amp peak current in 500 nsec. -J. W. Motto, Jr. GCS swaep Circuit, EEE, 12:5, p 89-90.

TWO-TRANSISTOR PHANTASTRON-QI and Q2 simulate vacuum-iube phantastron sweep generator. Since input impedance is law, linearity can be improved by using emitterfollawer Q3.-N. C. Hekimian, Phantastran Circuits Using Transistars, Electranics, 34:8, p 46-47.

CHAPTER 84
 Switching Circuits

THREE-DIODE SWITCH FOR VIDEO TIME diode D4 keeps base line of output always SHARING-Gafe pulse applied to diode DI positive.-T. Vagt, New Light on Air Traffic: draws current from R1 through D1 (switch Bright Plan Display with Alphanumerics, open) or through D2 and D3 (switch closed Electronics, 36:30, p 42-46.

SCS CONTACT ISOLATOR-Eliminates contact bounce in grounded-switch arrangement where switch is opened to trigger scs.-"Tronsistor Manval," Seventh Edition, General Electric Co., 1964, p 433.

HIGH-CURRENT HIGH-SPEED SWITCH-Alloy junction transistor (2N2648 germanium) has useful frequency range up to 10 Mc for switching up to 1 omp with goin of $S O$ in 0.8 microsec.-Medium Power Transistor Has Multiple Uses, Electronics, 36:1, p 132.

OPERATIONAL AMPLIFIER CONTROL-Switch must pass 1 ma in either direction (A to B or B to A). Diode pairs D1-D2 and D3-D4 are voltage limiters, while Q1 is basic switching element. Switching time is about 2 microsec. Used as sample-and-hold circuit, with 500microsec sampling interval.-R. W. Maloy, Transistor Switch Passes Current Both Ways, Electronics, 38:1, p 79.

SPARK-GAP SWITCH—Bank of 111 spark gops switches 30 kv in less thon 10 millimicrosec, to explode wire for generating plasmo in shock tube or generating hypersonic waves in wind funnel. Jitfer problem is solved by using one spark gap to trigger onother.

Thyratron V1 fires section 1 having single gap, and this triggers 10 gaps in section 2 , each of which in turn triggers 10 gaps in section 3.-H. B. McForlane, Spark Gaps for Fast High-Voltage Switching, Electronics, 32:31, p 72-73.

ELECTRONIC R-F SWITCH-VI isolates goniometer from balanced modulator tubes V2 and V3, which provide 90° phase shift of goniometer signal. V2 and V3 are made to conduct alternately by 100 -eps drive applied to their suppressor grids by phose-splitter V4. -J. F. Hatch and D. W. G. Byatt, Direction Finder with Automotic Reodout, Electronics, 32:16, p 52-S4.

FAST INDUCTIVE SWITCHING-Fast-rise current switching circuit provides current as fast as it can be switched info highly inductive load. Used as current driver for digital computer memory arrays as well as for speeding up ordinary relays.-T. W. Collins, Fast-Risa Current Switch, EEE, 13:1, p 65-66.

HIGH-SPEED TRANSISTOR RELAY-Push-pull switch handles up to 10 amp with rise time of 50 microsec. Rising d-c voltage at input produces no output until predetermined level is reached, when power supply voliage is suddenly switched across load.

Circuit remains locked in until input voltage drops below trip level. Trip voltage is determined largely by breakdown voltage of IN437 zener diode.-D. L. Anderson, Fast Transistor Relay, Electronics, 31:11, p 145.

SWITCHING GAPACITANCE TRANSDUCERS-Beam-switching fube pulses bridges sequentially. Each bridge has pressure-sensitive
capacitance transducer that unbalances Outputs of bridges are displayed as pulse pattern corresponding to pattern of pres-
sure imposed on auto seat.-A. Stiebel, HighSpeed Switching of Low Lovel Signals, Electronics, 32:12, p 54-55.

MISSILE COUNT-DOWN SWITCH-Level-sensitive switch uses nonlinear negative feedback to provide stable operation (within 1.5%) over $100^{\circ} \mathrm{C}$ femperature range. Monostable mvbr is followed by rectifying fransistor and filter. For signals above trigger level, circuit is periodically switched into its transient state.-D. W. Boensel, Switching Circuits for Missile Count-Downs, Electronics, 32:31, p 76-78.

PUNCH PRESS SAFETY SWITCH-Static switching control for dangerous presses requires that both hands of operator be on run pushbuttons, out of danger area, before ram can descend. To prevent operators from jamming or taping one or more buttons closed, control circuit stops press at end of cycle. Both buttons must then be released and depressed again to start now cycle. Self-excited magnetic amplifier operates much like snap switch.-S. A. Zarleng, Static Switching Techniques for Machine-Tool Safety, Electronics, 32:24, p 57-59.

ELECTRIC FISH FENCEMOUtpul of 360-kw d-c generotor is opplied to row of electrodes in sequence by pair of high-voltage
ignitren tubet that rurn pulse on and off for each electrode in turn. Single furnoff ignitron terminates pulse period of whichever
loaded ignitrons are conducting.-C. D. Volz, Ignitron-Pulsed Electric Fence Guides Migrating Solmon, Electronics, 35:16, p 50-52.

ROW STORAGE UNIT FOR MAGNETIC CON. TOUR DISPLAY-Scan pulses activate nor gates in sequence. For 11 by 11 display matrix, there are 11 nor gates each with its switching circuit. On read-in, nor gate output of $\mathbf{- 1 0} \mathrm{v}$ activates switching circuit, grounding
its capacitor and making capacitor charge up to value of that data point.-W. W. Anderson, Latest Antisubmarine Aid-Magnetic Contour Display System, Electronics, 36:32, p 58-61.

IGNITRON 5HORTS SPARK GAP-Used for continuous production of plasma in mirrorgeometry magnetic field of Philips ionization gage. Ignitron shorts spark gap about 100 microsec after discharge begins. Ionization
gage (PIG) receives positive potential at peak of externally applied magnetic field by closing of triggered spark gap.-M. F. Wolff, Plasma Engineering-Part 1: Generating and Heating Plasma, Electronics, 34:24, p 47-53.

CROWBAR-Used to cut off oscillator sharply in tank circuit of stellarator. Consists of tube with plate holdoff rating comparable to peak instantaneous output tank voltage. At end of pulse, grid is driven to +500 v and tube becomes low impedance across tank, to damp out oscillation within a cycle or two.-R. L. Gamblin, Radio-Frequency Circuits for Plasma Physics, Electronics, 32:27, p 50-52.

GATE-TURNOFF D-C CIRCUIT BREAKERClosing on switch discharges $\mathbf{C l}$ into gate to initiate turn-on. Closing off switch discharges C2 out of gate, opening power cir-cuit.-J. W. Mofto, Jr., Switching Circuits Using the Gate Turnoff Controlled Rectifier, EEE, 13:3, p 52-55.

MEMORY DRIVER AMPLIFIER-Proves 750-ma current pulse for 8-microhenry load, at repetition rate of 0.25 Mc . Positive turnoff voliage is automatically applied, with no extra loss in gain or power, by driving pnp transistor Q3 with npn transistor Q2.-J. S. Ronne, Computer Switching With High-Power Transistors, Electronics, 33:10, p 44-47.

SATURABLE REACTOR LATCH-Offers operating simplicity, high speed, and low cost. Transistor model can switch in less than 0.5 microsec. Current through N1, when VI conducts, saturates core of TI.-W. J. Reap, Simple Laich Circuit Uses Saturable Reactor, Electronics, 33:2, p 66.

NR DIODE AS BISTABLE SWITCH-Bonded negative-resistance diode switches to highcurrent state on arrival of first pulse. Pulse is shut off before capacitor current through diode falls below negative spike on trailing edge of pulse.-A. P. Schmid, Jr., Nega-five-Resistance Diode Handles High Power, Electronics, 34:34, p 44-46.

NEON-LAMP CAPACITOR DISCHARGER-Used to discharge capacitor being charged from constant-current source providing about 15 microamp. Circuit has extremely high impe-
dance unfil breakdown, then low enough im pedance to discharge capacitor to fraction of volt.-R. W. Biddlecomb, High-Current Switch Has High ON/OFF Z Ratio, EEE, 12:2, p 29.

SENSITIVE A-C POWER SWITCH-Used to switch load in response to gradually changing signal, as from photocell or thermistor. Provides snap-action switching from full on to full off, with differential between
switching conditions adjustable over wide range by changing C1 and R1.-"Transisfor Manual," Seventh Edition, General Electric Co., 1964, p 331.

5-KW A-C SWITCHING WITH FULL-WAVE SCR'S-Provides inferference-free switching from 120-v o-c line on continuous basis. By replacing C35's and CR3 with higher-rated devices, additional power can be controlled. Interference-free switching ability was utilized in reducing intolerable noise level in broadcast receiver to inaudibility. For highimpedance or open-load circuits, 1,000 -ohm bleeder resistor may be necessary across load. -F. W. Gutzwiller, RFI-less Switching with SCRs, EEE, 12:3, p S1-53.

LIGHT-BEAM COUPLING-Gallium arsenide light source and silicon photadetector pre-
vent inferaction befween drive circuit and output of binary switch.-E. L. Bonin, Light-

Coupled Semiconductor Switch for Low-Level Multiplexing, Electronics, 38:3, p 54-59.

SEQUENTIAL SWITCHING-Shock-resistant design releases number of solenoid-operated mechanical locks of 10 -millisec intervals. Sin-gle-stroke ramp generator Q1 starts sequence when closing of initiation switch S1 discharges C1. Q2 reduces loading an
timing circuif RI-C1 when large base currents are drawn. Ramp is sufficiently linear to provide adequate timing accuracy far eight operations.-D. H. Thampson and D. Simpson, Time-Sequence Switch, Electronics, 33:28, p 64.

1-MILLIMICROSEC SPARK-GAP SWITCH Spark gaps are mounted sa ultraviolent radiation from gaps that fire earlier in 111gap operating sequence irradiate succeeding gaps. Intense radiation from earlier gaps reduces statistical firing delay, or jitter, of succeeding gaps. Breakdown of gap is fur-
ther speeded by connecting low-potential end of gap to trigger source with short length of cable and blocking capacitor, which in turn is grounded by similar cable.-H. B. McFarlane, Spark Gaps for Fast-High Voltage Switching, Electronics, 32:31, p 72-73.

AUDIO SWITCH-Switches audio signal on and aff under control of flip-flop. With potentiometer across output, phase can be reversed. With two of these switches connected to same flip-flop, and each excited by different audia signal, potentiometer connected between B outputs will provide signal from
wiper ta ground that alternates from one audia signal to other as flip-flop changes state. Pot setting determines relative amplitudes of two signals. Can be used to generate o-f shift-keying signals.-F. Stevens, Audio On-Off, Phaso-Reversing Switch, EEE, 14:6, p 91-92.

HIGH-POWER SCR STATIC SWITCH-Prevents burning of switch or relay contact when switching large inductive loads. Switch contacts here corry only trigger current for silicon contralled rectifiers. If desired, output power can be varied by changing time constant R1-C1 ta control scr firing angle. Will switch primary of transformer having $\mathbf{4 , 2 0 0}$ v-a secondary load.-J. A. Moraites, High Power AC Static Switch, EEE, 12:8, p 71.

SENSITIVE D-C POWER SWITCH-Stays on after being triggered, to give latching actian. Power input is 2.5 microwatts, power output is 44,000 , and power gain is 92 db .-"Transistor Manual," Seventh Edition, General Electric Co., 1964, p 331.

TEMPORARY MEMORY-Arrangement using Esaki or tunnel diode is equivalent to bistable fip-flop. Used in 24-channel pulse code modulation system.-T. Kojima and M. Watanabe, When You're Second, You Try Harder, Electronics, 3B:25, p 81-B9.

TRANSISTOR-SWITCHED IGNITION-Ignition breaker points handle only current of about 0.25 amp for switching transistor Q1, increasing contact life, while transistor handles 9 -amp peak ignition coil current. Diode D1 reverse-biases emitter-base junction when
distributor confacts are open, to ensure transistor cutoff at high temperaturs. Zener D2 clips peaks of transients that might damage transistor.-S. B. Gray, Home and Auto Controls, Electronics, 36:19, p 52-56.

SCR-REED A-C SWITCH-Magnetic reed switch makes ideal frigger for silicon controlled rectifiers, even though nine components are required for switching $600-\mathrm{w}$ load.-M. P. Southworth, Bidirectional Static Switch Simplifies Ac Control, Control Engineering, March 1964, p 75-76.

FAST SWITCHING OF D-C POWER-Power transistor Q6 switches 20 w d-c through 15 ohm lood R3 under control of scr Q1, which
in turn is controlled by stort-stop pulse omplifiers Q2 and Q3, and multivibrator Q4-Q5. Switching rate can be up to 700 cps.
-J. E. Roberts, Controlled Rectifiers for Fast Power Switching, Electronics, 35:17, p 58-59.

SOLID-STATE DPDT SWITCH-Eight diodes and four transistors connected as shown give same action as double-pole double-throw re-lay.-R. C. Going, Solid-State DPDT Relay, EEE, 11:10, p 26-27.

FAST SWITCHING OF A-C POWER-Pulsed scr's Q1 and Q2 furn on load-current-carrying ser's Q3 and Q4 under control of start-stop pulses from an external vibrator
that feeds the 2N527 start-stop pulse amplifiers. Each pulsed scr has its own 3-v source. Load being switched requires $\mathbf{3 5 0} \mathbf{~ m a}$ at $\mathbf{4 0 0}$ eps.-J. E. Roberts, Controlled Rectifiers for

Fast Power Switching, Electronics, 35:17, p 58-59.

SCS CONTACT ISOLATOR-Eliminates contact bounce when both switch and load are grounded and opening of switch triggers scs. -'Transistor Manuol," Seventh Edition, General Electric Co., 1964, p 433.

SCS CONTACT ISOLATOR-Eliminates contact bounce when switch is closed to trigger scs, with both switch and load grounded.-"Transistor Manual," Seventh Edition, General Electric Co., 1964, p 433.

A-C POWER INTERLOCK-Any device drawing over 5 w (up to amount allowed by D2-D3) will produce $60-\mathrm{cps}$ square wave at base of
relay through Q1 and apply power to receptacle 2.-C. J. Ulrick, AC Power Interlock, EEE, 13:6, p 65. Q1 when device is turned on, to energize

A-C RELAY DRIVE-Drives 12-v a-e relay with transistors triggered by low direct current of pair of switch contacts. Can drive any a-c
relay rated in voltage up to breakdown rating of transistors.-R. K. Walters, Tronsistor Driven AC Relay, EEE, 11:2, p 25-26.

GROUNDED-SWITCH SCS CONTACT ISOLATOR -Eliminates contact bounce when switch is closed to trigger scs, because load current increases rapidly and latches on.-"Transistor Monual," Seventh Edition, General Electric Co., 1964, p 433.

UNGROUNDED-SWITCH SCS CONTACT ISOLA-TOR-Eliminotes contact bounce when switch is closed to trigger scs, becouse lood current increases rapidly and lotches on.-'Tronsistor Manual," Seventh Edition, General Electric Co., 1964, p 433.

TRIAC-REED A-C SWITCH-Gate-controlled semicanductor switch (G-E Triac) and mognetic reed switch provide on-off a-c switching with minimum components. Gate signal of $3 \vee$ of 50 ma , either polarity, triggers Triac for handling 600-w load.-M. P. Southworth, Bidirectionol Static Switch Simplifies Ac Control, Control Engineering, March 1964, P 75-76.

MEMORY MATRIX SWITCHING-Output termi- | nal, connected to three word cail groups of matrix, is grounded when pulse appears at input.-d. Yamoto and Y. Suzuki, Ferming Semi-Permanent Memories with Metol Card Storage, Electronics, 34:46, p 136-141.

CHAPTER 85

Tape Recorder Circuits

SYNCHRONOUS DETECTOR FOR ZERO-SPEED TAPE PLAYBACK-Tuned amplifiers with 200 kc center frequency and 20-kc bandwidth separate second harmonic signal containing intelligence from composite head output signal. Output of 6AR8 coupled to push-pull stage gives balanced output.-M. E. Anderson, Magnetic Head Reads Tape at Zero Speed, Electronics, 32:10, p 58-60.

DIRECT-REPRODUCE CIRCUIT-Switching and equalization networks extend upper frequency limit to 250 kc for instrumentation
tape. Amplifier section provides voltage gain of 14 db and output impedance below 50 ohms, for driving long, low-impedance lines.
-D. R. Steele, More Bandwidth for Magnetic Recorders, Electronics, 33:2, p 44-47.

MAGNETIC-TRANSDUCER PREAMP-Gain is constant at 49 within 2% for a-c source impedances ranging from 0 to 5,000 ohms, such as magnetic read heads. Gain remains constant within 3 db from 10 cps to 1 Mc .-S. R. Parris, Wideband Transistor Preamplifier Handles Low-Resistance Transducers, Electronics, 34:11, p 57-59.

DELAY-LINE PULSES FOR VIDEO RECORDERBlocking oscillator arrangement gives 0.3 microsec pulse length for recording by timedivision multiplexing of 52 channels on twotrack video recorder, and 0.8 microsec pulses when 51 is set for playback.-M. H. Damon and F. J. Messina, High-Density Storage of Wideband Analog Data, Electronics, 35:13, p 45-49.

VIDEO TAPE PREAMP-Two windings on reproduce head extenid frequency rasponse to 1 Mc. Winding $\mathbf{L 2}$ is connected conventionally to input of Q1; when transistor gain drops
line is 1.5 v peak to peak.-G. N. Johnson, W. R. Johnson, and J. T. Mullin, Magnetic

FET REDUCES PREAMP NOISE-When impedance of source Vg is high, field-effect transistors reduce overall signal-to-noise ratio in preamp for reproduce head of tape re-corder.-J. J. Rado, Designing Input Circuits with Lowest Possible Noise, Electronics, 36:31, p 46-49.

TIMING-SIGNAL RECORDER-Low-cost analog magnetic tape recorder is modified to store rectangular ovent-fiming signals for biomedical experiments. Input gate signal is differentiated in pulse shaper C1-R2. C2 with R3, R4, and D3 produce alternately positive and negative pulses corresponding to leading and trailing edges of gate. V1, biased off, blocks negative pulses. Output af T2 after inversion by $\mathbf{V} 2$ consists of 30 -microsec negative pulses with peak of 50 v , which can be fed to tape recorder.-G. Silverman, Modified Tape Recorder Stores Timing Signals, Electronics, 39:13, P 75-76.

STRIPE-ON-FILM RECORD-PLAYBACK-Transistor preamplifier is used only on playback. Two-stage recording amplifier has 10 db of negative feedback from secondary of output transformer to linearize frequency response
and reduce distortion. Oscillator V3 supplies bias and erase current af 40 kc.-J. M. Moriarty, R. B. Johnson, and R. J. Roman, Magnetic Sound Track of B-MM Home Movies, Electronics, 33:35, P 61-63.

MEASURING TAPE WOW AND FLUTTER-Circuit uses 40 -kc carrier, calibrated cro, and

HIGH-FREQUENCY COMPENSATION-Compensates for $23 \mathrm{db} /$ decade loss above 500 cps in high-frequency response caused by spacing pickup head 1 mil from magnotic tape of vif induction radio link.-E. A. Hanysz, J. E. Stevens, and A. Meduvsky, Communication System for Highway Traffic Control, Elecfronics, 33:42, p 81-83.

F-M DEMODULATOR FOR TAPE RECORDERRemoves low-frequency frequency-modulated nerve-potential signal from 7.5 -kc carrier recorded on magnetic tape. Amplifier V3a feeds squarer V4 that is connected as Schmitt trigger to give square-wave output for differentiation by C8-R2S. Negative-going edge of resulting square wave triggers monostable mvbr V5 which serves as demodulator.-K. D. Broadfoot, F-M Magnetic Tape System Records Low-Frequency Nerve-Fiber Potentials, Electronics, 34:28, p 66-67.

various spectrum cutout filters to show all drift, wow, and flutter components from d-c
to 4,000 cps for magnetic tape recorder.J. T. Mullin, Precise Measurement of Wow

INDEPENDENT-CONTROL MVBR TESTS TRANS-PORT-Timing resistors of conventional astable are replaced by adjustable constantcurrent sources using transistors Q3 and Q4.

R7 controls mark/space ratio and R10 controls frequency.-C. J. Dokin, Novel Multivibrators Test Tape Transports, Electronics, 37:7, p 40-43.

ZERO-SPEED TAPE PLAYBACK OSCILLATORPermits playback of recorded high-frequency signals of extremely slow speeds so highest frequency component is within limited bandwidth of pen recorder. 100-kc excitation oscillator and reference omplifier use beam deffection tube.-M. E. Anderson, Magnetic Head Reads Tope at Zero Speed, Electronics, 32:10, p 58-60.

INSTRUMENTATION RECORDER-Bandpass is 250 cps to 250 kc . Uses input emitter-follower, heod driver, bias amplifier, ond monitor omplifier. Square-wave bias signal is supplied to eoch channel from master oscil-lator.-D. R. Steele, More Bandwidth for Magnetic Recorders, Electronics, 33:2, p 44-47.

BATTERY-OPERATED DICTATING MACHINEAmplifier voltage is regulated by $Q 5$ and
zener diode. Q6 functions as on-off switch controlled either by microphone switch or
by metallic coating af both ends of two-track tape.-L. Hannemann, Pocket-size Dictating Machine, Electronics, 33:44, p 73.

RECORDING AMPLIFIER-Has suffiaient input impedance for medium-high-impedance magnetic microphone. Includes equalization to
produce flat response with Nortronics lowimpedance recording head when playback preamp is adjusted for NAB equalization at
tape speed of 7.5 inches per second.-'Transistor Manual," Seventh Edition, General Electric Co., 1964, p 272.

MAG TAPE PRINT-THROUGH SUPPRESSOREchoes occurring before and after true signal in recorded magnetic tape stored for some time, called print-thraugh, and noticeable chiefly during soft musical passages and during recorded speech or singing, are suppressed by biased-diode type of quieting ave that silences audia channel whenever signal drops to 40 db below peak. Each diode is back-biased 0.1 v . If pragram peaks are

10 v , diodes became nonconducting for all signals more than 40 db below this peak. To prevent loss af desired signal near the zero axis, signals above the threshold are amplified, rectified, filtered, and used in timeconstant circuit to keep diodes conducting throughout each spoken word.-D. Cronin, Squelch Circuit Mutes Magnetic Tape Echoes, Electronics, 31:19, p 66-67.

25-75 KC FREQUENCY MODULATOR-Frequency changes ore linear within 1% with changes in input voltage. Circuit can easily be modified for other frequency ranges. Designed for use with magnetic tape recorders. Cf is primary frequency-determining element. -P. S. Bengston, Frequency Modulator Covers 25-75 Kc, Electronics, 31:31, p 100-106.

impedance path for recharging timing capacitors. R7 controls mark/space ratio and R10 controls frequency.-C. J. Dokin, Novel

Multivibrators Test Tape Transparts, Electronics, 37:7, p 40-43.

F-M MODULATOR FOR TAPE RECORDER-Mil-ler-effect transitron oscillator V2 generates 7.5-ke carrier that is frequency-modulated by low-frequency action potentials from nerve
fibers, to permit recording on ordinary tape recorder.-K. D. Broadfoot, F-M Magnetic Tape System Records Low-Frequency NerveFiber Potentials, Electronics, 34:28, p 66-67.

COMPRESSOR-Has unity goin, exponsion of 3 db , and compression of 12 db . Gain odjustments are automatic. Used to mointain even recording level during tope-recorded interviews.-E. C. Miller, Audio Volume Compressor, Electronics, 33:2, p 62.

DIGITAL DATA READ AMPLIFIER-Presents 10,000-ohm input impedance to read head. No-signol input produces -4 v output; peak
input as low as 1.35 my rero-to-peak produces +4 v output. Gives satisfactory reading af pulse repetition rates up to 22 kc .-R. F.

Show, Universal Tape Amplifiers for Digital Dota Systems, Electronics, 31:41, p 91-93.

SHOCKLEY-DIODE MVBR TESTS TRANSPORTS -For testing lape transports, frequency can be varied over $15: 1$ range and mark/space ratio from 1:15 to 15:1. Shockley diodes MRI and MR2 serve as changeover switch.

Two additional diodes, af MR3 and MR4, are needed if reverse voltage rating of diodes is less than their striking voltage.-C. J. Dakin, Novel Multivibrators Test Tape Transports, Electronics, 37:7, p 40-43.

CRYSTAL-CONTROLLED BLOCKING OSCILLA-TOR-Used for recording 50 -ke reference base on magnetic tape in 10 -channel instrumentation system. Circuit is ordinary plate-tocathode coupled blocking oscillator with crystal substituted for capacitor. If free-running frequency (without crystal) is lower than crystal frequency by no more than 40%, oscillator locks ta crystal frequency.-p. S. Gengston, Blocking Oscillator is Crystal Controlled, Electronics, 31:25, p 88-90.

CHAPTER 86 Telemetry Circuits

GATED AMPLIFIER FOR RECEIVER-Input from f-m discriminator of ground receiver for nev-tron-defecting radiosonde contains two subcarrier oscillator frequencies plus steep unwanted pulses af audio blocking rate of 10 to 200 cps . Three-stage amplifier feeds amplified input signals to one-shot mvbr V3A. V3B for blocking of unwanted pulses. Oupput of gated amplifier V4 then contains only bursts of the two desired subcarrier fre-quencies.-L. Hillman and R. C. Haymes, Modifying a Telemetry System for BalloonBorne Neutron Detection, Electronics, 34:11, p 60-63.

TWO-CHANNEL DIVERSITY COMBINER-Beamdeffection subes provide ratio-squared combining of iwo telemetry recsiving shannels, to counteract fading signals from iumbling
or spinning spacecraft missile. Video signals go directly to confrol grids of type 7360 deflection fubes, while control voltages from receivers are applied to the respective de-
ffection electrodes through differential ampli-fler.-V. A. Ratner, Telemetry Diversity Combiner Uses Beam Deflection Teehnique, Elecfronics, 35:4, p 42-43.

F-M/F-M TRAN5MITTER-Output power is 0.5 w at 95 Mc , and range is 400 miles. Provides two channels.-L. E. Peterson, R. L. Howard, and J. R. Winckler, Bolloon Gos Monitors Cosmic Radiation, Electronics, 31:45, p 76-79.

LOGARITHMIC AMPLIFIER FOR 0.5 TO 6 V D-C-Uses operational amplifier and function generotor principle to compress defector signal levels to values within range of tolemetering system.-5. Chase, Jr. and F. 5chwarz, Mariner If Instrumentotion: What Will It See on Venus?, Electronics, 35:50, p 42-45.

MULTIPLEX DRIVER-Diode matrix drives bilateral transistors similar to core memory drivers. Drive circuit is regulated to within 10%. -J. V. Dirocco and J. W. Peghiny, Low-Level Encoding Approach: Latest Datails of Titan II Telemetry, Electronics, 35:47, p 36-39.

FOUR-CHANNEL DISCRIMINATOR-Common amplifier and four individual amplifiers drive triggers for four channels of scalars. Com= mon amplifier supplies 7 v on common bus from Q3 to four potentiometers, settings of which determine discrimination point for each channel.-D. Enemark, Balloon-Borne Circuits Sort High-Altitude Cosmic Rays, Electronics, 32:35, p 52-55.

FOOTBALL-HELMET TRANSMITTER-Impact dafa sensed by accelerometer in helmet is transmitted to sideline receiver by f-m/f-m trans-
mitter. Use of subcarrier oscillator makes transmitter more immune to shock and vibrotion than with conventional main-channel
oscillator.-J. S. Aagaard and J. L. DuBois, Telemetering Impact Data from the Football Fleld, Electronics, 35:14, p 46-47.

ENERGY-LOSS TELESCOPE-Uses sensistors to help compensate for temperature effects. Cir. cuit normally employs two identical channels for the two multiplier phototubes, to
drive coincidence circuit that feeds height-totime converter.-D. Enemark, Balloon-Borne Circuits Sort High-Altitude Cosmic Rays, Electronics, 32:3S, p 52-55.

$T_{1}=1,000$ TURNS, $T_{2}=2,000$ TURNS NO. 40 ON TOROIOAL ARNOLD
3T-7428-DI CORE
PULSE COMMAND MONITOR-Toroid in control electrode circuit of solid-state thyratron Q1 triggers circuit on when command pulse passes through insulated conductor, without affecting command circuit for such critical functions as arming of missile.-R. C. Wright, Collecting Data from Live Missiles in Flight, Electronics, 34:12, p 46-49.

ANEMOVANE AUDIO OSCILLATOR-Used for telemetering wind velocity. Cam switch closes for each mile of wind that passes the anemometer cups, applying voltage to Cl and C2 in series and making Q1 conduct and pull in K1. This energizes velocity audio oscillator of telemetry system.-R. Beaulieu and G. Neal, Wind Velocity Telemetering System, Electronics, 33:29, p 68-70.

MALFUNCTION MONITOR-Used for monitoring missile in flight while maintaining radio silence of telemetry transmitter unless abnormal condition is defected. After arming of missile, monitor can be used to transmit missile kill data,-R. C. Wright, Collecting Data from Live Missiles in Flight, Electronics, 34:12, p 46-49.

LUNAR PROBE TRANSMITTER-Five subcarrier channels are used in $\mathrm{f}-\mathrm{m} / \mathrm{p}-\mathrm{m}$ systems to transmit ian density, two levels of micro-
mefeorite particle impacts, magnetic field atrangth, and sempartment temperature. Output stage uses four transistars in push-
pull parallel to give 400 mw output.-R. R. Bennett ef al., Circuits for Space Probes, Electronics, 32:25, p 55-57.

STABLE SUBCARRIER OSCILLATOR-Two Colpitts oscillators, designed for 7,350 cps and $12,300 \mathrm{cps}$, are used with reactance-type frequency modulation. Input stage of each oscillotor is temperature-stabilized by d-e feed-back.-D. Enemark, Balloon-Borne Circuits Sort High-Altitude Cosmic Rays, Electronics, 32:35, p 52-55.

PDM KEYER-High linearity, low crosstolk and jitter, and high effective input impedance are provided by fransistor pulse-dura-tion-modulation keyer. Circuit includes bistable flip-flop, linear ramp generator, and voltage comparator. Output pulse widths vary with signal amplitude.-D. A. Willioms Jr., Transistors Ruggedize Airborne Telemetry Keyer, Electronics, 31:37, p 81-83.

5ATELLITE TRANSMITTER-Novel phase modu. lator, based on bridged-T network, gives simple design along with wide modulating cap-
ability. Transmitter has output of 300 mw at 108 Mc for telemetering data for up to 18 months from Van Alien radiation belt.-A. J.

Fisher, W. R. Talbert, and W. R. Chitfenden, Telemetry Transmitter for Radiation Satellite, Electronics, 33:19, p 68-69.

PCM TELEMETRY MULTIPLEXER-Permits gateswitching transistors Q1-Q2 to double in ring counter and control sequencing. Uses fourdiode bridge for each gate, with single transformer-coupled floating voltage source switched to each gate in succession by twotransistor switching gate.-R. C. Onstad, Solid-State 30-Channel Multiplexer Designed for Minimum Components, Electronics, 34:40, P 77-79.

Abstract

100-MC LINK TRANSMITTER-Signal picked UP by microphone is amplified by first 2N2712, which turns off second 2N2712, allowing Cl to charge up and fire 2N2840 unijunction oscillator, producing pulse that modulates tunnel-diode transmifter.-"Transistor Manual," Seventh Edition, General Electric Co., 1964, p 362.

CI 1.5-5.0p ${ }^{\prime}$ VARIABLE
C2 047 TO $0.2 \mu \mathrm{fd}$
LI $\cong 0.2 \mu$ h (6 TURNS ${ }^{\left.\# 16,3 / 8^{\prime \prime} \text { I.D.) }\right) ~}$

PPM DEMODULATOR-Input is modified twoinput semiconductor diode and gate, driving bistable mvbr, modified bootstrap sweep, and filter to give d-c data voltage output.-l. Weisman, Telemetry Demodulator Using Modified And Gate, Electronics, 32:8, p 54-57.

F-M MODULATOR-Provides at leaet 200 kc deviation when applied to base of oscillator transistor, before severe distortion sets in. Feedback keeps output impadance low.-D. Enemark, Transistors Improve Telemeter Transmitter, Electronics, 32:11, p 136-137.

BASIC SCALER-Each scaler stage is bistable circuit with trigger amplifiers between each pair of stages. Used to make 512 counts from ion chamber give one output to telemetry system.-D. Enemark, Balloon-Borne Circuits Sort High-Altitude Cosmic Rays, Electronics, 32:35, p 52-55.

60-MW TRANSMITTER-Amplitude modulation is applied at collector of amplifier-doubler Q4.-H. L. Richter of al., Instrumenting the

Explorer I Satellite, Electronics, 32:6, P 39-43.

MICRO-MULTIPLEXER-Solid-state high speed time-division commutator connects several low-level inputs, one at a time, to common differential bus. Each multiplexer channel consists of two transistor switch pairs.-J. V. Dirocso and J. W. Peghiny, Low-Level Encoding Approach: Latest Details of Titan II Telemetry, Electronics, 35:47, p 36-39.

POST-DETECTION DIVERSITY COMBINER-Can handle any IRIG modulating signal and feed any telemetry receiver having external agc
output. Will combine two, three, or four channels.-W. Casson and R. C. Robinson, Versatile Diversity Combiner Handles Most

Missile-Range Signals, Electronics, 35:44, p 40-43.

PROJECTILE ACCELERATION TELEMETER-Microwave signal at $24,000 \mathrm{Mc}$ is aimed down barrel of howitzer by sheet aluminum reflector that is replaced after each firing. Variations in reflection coefficient of ferrite device
on projectile nose modulate reflected microwave signal from moving projectile, of frequency dependent on acceleration. Circuit shows encapsulated transducer mounted on nose. Capacitance gage produces frequency
shift of 70-ke subcarrier that is proportional to acceleration, for driving ferrita-core madulator through amplifier stage.-W. M. Kendrick and L. A. Peters, Projectile Telemetry with Microwaves, Electronics, 33:38, p 68-71.

FIVE-FREQUENCY OSCILLATOR-Two-fransistor circuit generates up to five different tones simultaneously for five-bit parallel encoder for telemetry. Starting transients are built up in individual series-tank circuits. Amplifude of oscillation stabilizes at value where energy from negative-resistance source equals energy lost in tanks.-R. Stapelfeldt, Multitone Oscillators-New Source of Simultaneous Frequencies, Electronics, 36:1, p 86-87.

 iable-capacitance pressure transducer modulates 150-Mc carrier for telemetering stagnation pressure at nose of projectile during flight. Antenno-oscillator coil has four turns of No. 24 AWG wire, 0.16 inch inside dia-metar.-O. H. Bock and P. L. Clemens, Aerodynamic Measurements in a Hypervelocity Gun Range, Electronics, 34:44, p 33-37.

CURRENT-CONTROLLED SUBCARRIER OSCIL-LATOR-Uses time-controlled reactance modu. lation. Operating frequency is altered by introducing alternating current having same frequency but 90° out of phase with oscillator voltage. Frequency shift thus produced is proportional to amount of additional current fed into tuned circuit.-H. L. Richter of al., Instrumenting the Explorer I Satellite, Electronics, 32:6, p 39-43.

RESISTANCE-CONTROLLED SUBCARRIER OS. CILLATOR-Required 7.5% frequency deviation is obtained with ratio of 1.5 for $\mathrm{Cl} / \mathrm{C} 2 .-\mathrm{H}$.
L. Richter et al., Instrumenting the Explorer I Satellite, Electronics, 32:6, p 39-43.

F-M TRANSMITTER-Provides 250 mw at 92 Mc, for use with balloon-borne ionizing radiation defectors. Variable-frequency ascillator can be used because only maderate stability is required.-D. Enemark, Transistors Improve Telemeter Transmitter, Electronics, 32:11, P 136-137.

40,000 BITS PER SEC OVER PHONE LINE-For interconnecting computers, one-transistor line driver and wave shaper permit fransmitting 40,000 bits per second up to half a mile over standard voice-grade phone lines. Three-transistor line receiver and pulse slicer receive data.-R. M. Lee, Speeding Digital Data Over Phone Lines, Electronics, 36:39, p 30-31.

TELEPHONE LINE
TO REMOTE STATION

WIND VELOCITY DECODER-Each of nine decoders in receiver of wind direction and velocity telemetering system has notch filter of different frequency. At resonant frequency of filter, desired audio tone is blocked, causing thyratron to fire for part of every supply
voltage cycle. Resulting pulsating d-c pulls in sensitive plate relay, operating pen of anemograph.-R. Beaulieu and G. Neal, Wind Velacity Telemetering System, Electronics, 33:29, p 68-70.

LOW-POWER 54-MC TRANSMITTER-Draws anly 5 ma at $8 \times$ d-c. Phose madulation is praduced by varying valtage applied ta cal-
lectar of Q1.-H. L. Richter et al., Instrumenting the Explorer I Satellite, Electronics, 32:6, p 39-43.

CHAPTER 87

Television Camera Circuits

FLAT-TV GENERATOR-MODULATOR-R-C generator V1, generating one of nine different carrier frequencies, feeds deflection plate of beam deflection tube V2, while video modulation from camera is fed to grid 1 of V2 to modulate the carrier.-B. Binggeli and E. Fatuzzo, Solid-State Panels: Will They Bring Flat-Display TV?, Electronics, 35:26, p 67-70.

AIRBORNE TV SUNSPOT CAMERA-Used with slow-scan iv systom for high-altitude solar photography from balloon. Uses 500 eps horizantal scan without interlace for

500 -line resolution, requiring 200 -ke bandwidth. Video output of camera goes to 2-w commercial 225.7-Mc f-m telametry transmitter exciting $10-w$ power stage.-L. E. Flory

31.5-KC CRYSTAL OSCILLATOR-Provides sync signols for iv comera sweeps. Crystol vibrates in lowest-frequency notural mode of long thin bars, resulting in high impedance and difficulity in exciting crystal, and making it necessary to use two tronsistors in symmetrical collector-coupled mvbr oscillator.-D. G. Carreon, Designing Transistorized Television Cameras, Electranics, 33:37, p 72-75.

AUTOMATIC SENSITIVITY CONTROL FOR VIDICON-Positive-going blanked video on grid of video amplifier output stage V3A
serves to produce negative age voltage that increases with camera signal, to reduce gain of first video amplifier stage V2A when light

Input 10 vidicon camera increases.-P. C. Kidd, Automatic Sensitivity Control for Vidicon TV Camera, Electronics, 35:6, p $\$ 2$.

plifier V1-V2. Horizontal drive is also opplied to clamp portion of circuit. Video signal is clamped at white clipper, where highlights are clipped from signal.-M. V. Sullivan, Highlight Equalizer Sharpens Tv Pictures, Electronics, 31:3, p 72-74.

CAMERA HIGHLIGHT EQUALIZER-Provides better signal-fo-signal noise ratio and improved definition over conventional aperfure equalizers covering full brightness range.

Since most image orthicon noise is in low light region, improvement is achieved by dividing signal into two parts and equalizing only relatively quiet highlight portion. Complete video signal is amplified and applied to white clipper and to difference am-

CHAPTER 88
 Television Circuits-Black-and-White

AUTOMATIC LOCAL-FRINGE TUNING-Complete automatic fine tuning system combines features of fringe switching and auto-matic-manual operation. Switching transients are reduced by $180-\mathrm{mmfd}$ capacitor.-C. W. Baugh, Jr., and L. J. Sienkiewicr, Sound Signal Tunes Tv Automatically, Electronics, 31:17, p 54-58.

over bandwidth of 3 to 17 Mc.-L. G. Schimpf, Carrier Transmission for ClosedCircuit Television, Electronics, 32:24, P 6668.

CCTV 10-MC REPEATER-Has gain characteristics to match losses in 0.5 mile of coaxial cable. Mismatching is used at input and between stages to stabilize gain and cut it down to required 18 db af $15 \mathrm{Mc} .-\mathrm{L}$. G. Schimpf, Carrier Transmission for Closed-Circuit Television, Electronics, 32:24, p 66-68.

MESA-TRANSISTOR TUNER OSCILLATOR-Uses common-base transistor connection, which is regenerative af high frequencies. Additional feedback capacitance between emitter and collector assures dependable oscillation. With emitter current of 2 ma , circuit can supply about $\mathbf{2 0}$ times the $\mathbf{3 0 0}$ microwatts required by mixer. Sliding-core coil gives $2: 1$ change in inductance for fine funing.-H. F. Cooke, Designing Tv Tuners with Mesa Transistors, Electronics, 33:15, p 64-69.

CAPACITIVE-TRANSISTOR SYNC LOCK—Provides stable sync lock of signal generator against noise interference on tv station relay

HORIZONTAL DEFLECTION-Uses 200-v 15. amp fransisfor with high power dissipation characteristics and low thermal resistance. Drive requirements are substantially re-
duced because transistor has high saturated current gain.-High-Power Nu-Base Germanium Transistors (Delco Radio ad), Electronics, 39:7, p 20-21.

TWO-STAGE SOLID-STATE VIDEO AMPLIFIER -Provides cathode drive for crt of tv receiver, olong with sync takeoff from driver. Driver also serves as sync amplifier, first
sound amplifier, and keyer for agc stage. -D. L. Wollansen, "Solid-Stote Television Video Amplifiers," Motorola Applicatien Note AN-165, Dec. 1965.

HORIZONTAL SYNC TRANSIENT DISPLAYReed switch operated of field frequency from a-c heater voltage, with permanent magnet providing magnetic bias to get 60 eps, permits observing single transient continuously while making tv receiver circuit adjustment.M. B. Knight, Reed Switches for Breadboording, Electronics, 37:16, p 93.

PEAK PICTURE CONTROL-Variable resistor in video detector load circuit can be adjusted to improve snowy pictures in fringe areas.-Tv Set Size Shrinks, Electronics, 36:23, p 22.

lines.-Y. Fujimura and N. Mii, Automatic Frequency Control with Reactance Transistors, Electronics, 33:40, p 97-99.

ONE-STAGE TRANSISTOR VIDEO AMPLIFIEROvercomes Miller capacitance effect that normally causes excessive high-frequency rolloff. Intended for 12 -inch and smaller b-w receivers, and provides direct cathode-ray drive. Bandwidth is 2 Mc. Uses MM2260 npn high-voltage silicon epitaxial transis-tor.-D. L. Wollesen, "A Single Stage Video Amplifier," Motorola Application Note AN186, Feb. 1966.

$a_{1}, a_{7}, a_{8}, a_{17}, a_{19}, a_{21}, 0_{29}-2 N 585$
$a_{5}, a_{15}, 2 N 335$

SLOW-SCAN TV RECEIVER-Signals from f-m telemetry system in balloon are picked up by commercial receiver and fed to distribu-

fion amplifier serving three monitors, having identical circuits as shown. Video bandwidth is $\mathbf{2 0 0} \mathbf{k c}$-L. E. Flory et al., Television

System for Stratoscope I, Electronics, 33:25, p 49-53.

OUTLINE GENERATOR FOR TV STUDIO-Produces variable-size rectangles in any desired position on iv screen, including horizontal or vartical white lines, for emphasizing par-
ticular part of picture during educational iv broadcast.-G. Southworth, Outline Generafor for Educational Television, Electronics, 32:14, p 52-53.

DELTA TV SOUND-Costs less than ratio defector sound system. Uses discriminator circuit with triode operating as power defector, with cancellation of undesired a-m funda-mental.-R. B. Dome, Inexpensive Sound for Television Receivers, Electronics, 32:9, P 66-68.

TV SOUND SLOPE DETECTOR-Uses drift transistor as efficient, highly sensitive oscillating lineor-slope detector, injection-locked by onesfage sound driver. A-m rejection is uniformly high over full detector bandwidth. Audio output is constont, independent of corrier strength.-M. Meth, Tv Sound Detector Uses Drift Transistor, Electronics, 32:8, P 62-64.

CLAMPED SYNC SEPARATOR-Separates sync from composite input signal at studio, for automatic video level control.-J. O. Schroeder, Holding Video Levels While Switching Studios, Electronics, 32:22, p 96-98.

SCR FOR HORIZONTAL OUTPUT-Sync pulses saturate driver Q1, permitting C to charge, for achieving fast furnoff after gate-furnoff scr conducts yoke current for 27 microsec to deflect electron beams.--L. D. Shergalis, Scr's for 19-Inch Tv, Electronics, 37:23, p 97-98.

VIDEO DISTRIBUTION AMPLIFIER-Bandwidth is 12 Mc , for high-resolution closed-circuit television and high-speed facsimile systems.

Input level is 2 v and output level is 5 v for 75 -ohm lines. Differential amplifier eliminates second harmonic distortion without use of
interstage transformers.-H. H. Naidich, Video Distribution Amplifier Eliminates Interstage Transformers, Eectronics, 34:24, p 58-61.

HORIZONTAL DEFLECTION - Two-fransistor circuit provides high ratio of reverse to forward base drive. Oscillator current is 0.12 amp, outpuf-stage current 0.72 amp, and push-pull yoke current is $11 \mathrm{omp} .-\mathrm{M}$. Fischman, Transistorized Horizontal Deflection for Television, Electronics, 32:33, p 60-63.

CCTV REPEATER POWER SUPPLY-Operates from 24-v batiery at transmitting terminal. C1 isolates battery voltage from terminal equipment, and 11 prevents shorting of signal. Two $7-v$ rener diodes in series serve os voltage regulators.-L. G. Schimpf, Carrier Transmission for Closed-Circuit Television, Electronics, 32:24, p 66-68.

FOUR-TRANSISTOR TUNER-Diffused-base mesa transistors permit design of iv tuners with noise performance equal to that of fube funers. Article gives complete design pro-
cedure for r-f amplifier, mixer, and oscillator stages.-H. F. Cooke, Designing Tv Tuners with Mesa Transistors, Electronics, 33:15, p 64-69.

CCTV 10-MC CARRIER TRANSMITTER TER-MINAL-Uses single tetrode transistor in oscillator to feed four-diode balanced modulator. Peak level of modulator output is 4 db below 1 mw.-L. G. Schimpf, Carrier Transmission for Closed-Circuit Television, Elecfronics, 32:24, p 66-68.

EMITTER FEEDBACK PEAKING GIVES 100MC BANDWIDTH-Four identical AF102 stages amplify pulse output of delta modulator in iv woveguide link.-C. Kramer and J. C. Balder, Delfa-Modulated Television Waveguide Link, Electronics, 36:31, p 50-52.

LINEAR TRANSISTORIZED HORIZONTAL SWEEP-Placing transformer in yoke circuit provides better than 0.5% linearity for deflecting 16-inch crt having 52° deflection angle and $15-\mathrm{kv}$ acceleration voltage. Line rate is 28.35 kc with 945 lines. Supply volt-

VIDEO OUTPUT AMP-With 2N834 circuit, output is sufficient to drive crt.-W. D. Roehr,

Epitaxial Process Improves Transistor Characteristics, Electronics, 34:9, p 52-53.

DIODE MIXER FOR TUNER-IN87 semiconductor diode mixer D1 improves isolation of r-f amplifier from 6ER5 tube V2, connected
age determines width or amplitude of sweep. C con be increased to get 525 -line rate. J. W. Greininger, Improving Linearity in Transisforized Horizonfal Sweeps, EEE, 12:9, p 61-62.

os Colpitts oscillator.-E. H. Hugenholtz, OneTube Oscillator Mixers for Tv and F-M Tuners, Electronics, 33:3, p 76-79.

STABILIZED HORIZONTAL OSCILLATOR-Sinewave stabilization or ringing coil pulls Synchroguide horizontal oscillafor frequency back to correct value when tube or other components drift in value.-W. E. Babcock, Unusual Tube Effects Cause Circuit Troubles, Electronics, 31:37, p 90-93.

AUTOMATIC FRINGE TUNING-Circuit serves to disable sound track, to increase amplitude of sound carrier, so weak picture carrier will be funed higher on i-f pass band, of point of desired fringe tuning.-C. W. Baugh, Jr. and L. J. Sienkiewicx, Sound Signal Tunes Tv Automatically, Electronics, 31:17, p 54-58.

CHAPTER 89
 Television Circuits-Color

COLOR DEMODULATOR-Uses two 6JH8 sheef beam tubes as red and blue luminance demodulators. Balanced outputs of both polarities on plates of tubes eliminate need for addifional phase inverter stages to recover green luminance signal.-Color Demodulator Uses Beam Switching Tubes, Electronics, 34:36, p 30-31.

CHROMA AMPIIFIER-Used in transistorized color iv to provide response slope opposite that of j -f amplifier. Automatic color contral
signal reduces voltage gain of first siage Makes Debut in Big-Sereen Color Tr, Elec. Q18. Color killer signal cuts off Q19 during tronics, 39:8, p 99-105. monochrome operation.-D. Bray, Solid State

COLOR-BURST-GATED OSCILLATOR-For playback of color iv recordings on magnetic tape, color burst is removed from composite video signal on tape, amplified by VI, and used to gate $3.58-\mathrm{Mc}$ start-stop oscillator V2 to make this oscillator ring at burst frequency. Regenerated $3.58-\mathrm{Mc}$ signal is amplified by V3 and fed to decoder for demodulating chroma information.-J. Roizen, Magnetic Recording of Color Television, Electronics, 33:1, p 76-79.

TWO-COLOR TV-Picture is viewed on halfsilvered mirror that combines images of red and green 14 -inch picture tubes. Receiver circuits accept standard NTSC color
signal. Chief drawback is narrow angle of vision.-K. Hashimoto, Color TV Based on Land Theory uses Two Single-Gun Tubes, Electronics, 35:38, p 54-55.

SOUND I-F FOR COLOR TV-Uses three transistor stages and Foster-Sealey discriminator
to give audio output of 1 v peak to peak. -D. Bray, Solid State Makes Debut in Big-

CHROMA CONTROL AND COLOR KILLERUses amplifier burst as reference to determine amount of bias on first stage of
chroma amplifier. If burst amplifier falls below certain level, color killer voltage cuts off chroma amplifier automatically.-D. Bray,

Solid State Makes Debut in Big-Screen Color Tv, Electronics, 39:8, p 99-105.

AFC FOR COLOR TV KLYSTRON-Used with visual f-m transmitter for microwave relay. Klystron locks to crystal i-f difference fre-
quency to provide required high degree of stability. Calibrated wavetrap modifies sawfooth waveshope of afc to provide internal
frequency monitoring.-T. G. Custin and J. Smith, Relay System Diplexes Audio and Color Video, Electronics, 31:25, p 64-67.

AUTOMATIC FINE TUNING-Amplitude of 4.5-Mc intercarrier sound signal confrols sound-to-picture ratio to provide automatic fine tuning. Automatic control of beats between picfure harmonics and sound carrier closely approximates manual tuning. Circuit is particularly valuable for remote control of color tv sets.-C. W. Baugh, Jr., and L, J. Sienkiewicz, Sound Signal Tunes Tv Automatically, Electronics, 31:17, p 54-58.

AUTOMATIC CHROMA CONTROL-Improves stability of hue, saturation, noise, and pullin characteristics of received color iv signals. Low-frequency diode gate corrects subcarrier oscillator phase from synchronous demodulafor signals and establishes signal leval for a chroma control circuit.-Z. Wiencek, Automatic Controls for Color Television, Electronics, 32:20, p 58-59.

LUMINANCE AMPLIFIER-Provides bandwidth of 2 Mc , with 200-v output, for color set hoving transistors in all except deffection and
rectifier circuits. Brightness is controlled by shifting base bias voltage of Q12, and contrast by varying a-c emitter impedance of

Q12.-D. Bray, Solid State Makes Debut in Big-Screan Color Tv, Electronics, 39:B, P 99-105.

REFERENCE OSCILLATOR FOR COLOR TV KLYSTRON-Used in afe system that locks 2,000-Mc klystron to crystal oscillator reference frequency. Receiving-tube mulfipliers provide 50 mw at 500 Mc , and silicon crystal diode quadruples this to give 0.25 mw at 2,000 Mc. Used in mobile microwave relay system for color iv pickups.-T. G. Custin and J. Smith, Relay System Diplexes Audio and Color Video, Electronics, 31:25, P 64-67.

COLOR DEMODULATOR-Single demodulator in Japanese 7-inch color iv recovers the three difference signals in sequence by impressing color signal with local subcarrier that is advanced 120° in phase for each line. -Y. Sugihara, H. Ito and A. Horaguchi, From Japan a Startling New Color TV Set, Elec. tronics, 38:11, p 81-94.

COLOR-BURST GATING-SIGNAL GENERATOR
-Provides burst gating pulses for operating balanced-diode gate used in studio switching of color iv programs.-J. O. Schroeder, Holding Video Levels While Switching Studios, Electronics, 32:22, p 96-98.

COIOR AGC-Supplies bios voltoge to r-f and video i-f stages of color set using transistors in all but defiection and rectifier
stages, to maintain video output amplitude at about 3 v.-D. Bray, Solid State Makes Debut in Big-Screen Color Tv, Electronics,

39:8, p 99-105

COLOR HOLD-Uses passive filter to separate color subcarrier frequency from sync burst,
along with injection-locked oscillator that color subcarrier frequency from sync burst,
along with injection-locked oscillator that combines amplitude limiting and power am-
plification for direct drive of color demoducombines amplifude limiting and power am-
plification for direct drive of color demodu-lators.-I. N. Meth, Locked Oscillator for Color Tv, Electronics, 32:39, p 91-92.

BALANCED-DIODE COLOR-BURST GATE-Used in automatic video-processing amplifier that instantly compensates for wide variations in color or monochrome input signal levels,
to maintain output signal components af correct levels.-J. O. Schroeder, Holding Video Levels While Switching Studios, Electronics, 32:22, p 96-98.

COLOR VIDEO I-F-Three-stage amplifier has forward age on first stage Q1. Sound trap
af 41.25 Mc before defection prevents 900 Mc beat between color subcarrier and sound carrier.-D. Bray, Solid State Makes Debut in

Big-Screen Color Tv, Electronics, 39:8, p 99105.

B.Y DEMODULATOR-Used in transistorized color tv. $\mathbf{R - Y}$ and $\mathbf{G - Y}$ demodulators are
identical except for having different demodulation phase angle.-D. Bray, Solid State

Makes Debut in Big-Screen Color Tv, Electronics, 39:8, p 99-1 05.

CHAPTER 90

Temperature Control Circuits

SCHMITT TRIGGER AS TIME-PROPORTIONING TEMPERATURE CONTROL-Hysteresis of Schmitt trigger (difference between furn-on and furnoff signal levels) is adjusted with negative faedback instead of positive, to reduce hysteresis to less than 1 mv . Trigger point can be adjustad above or below ground reference despite use of only one power supply. Modification of negative feedback causes duty-cycle-controllable oscillation. Potentiometer adjusts circuit gain smoothly over wide range.-PP. Lefferts, 'Super' Schmitt Uses Negative Feedback, EEE, 12:12, p 52-53.

THERMISTOR IS SENSOR FOR OVEN CON. TROL-When oven temperature drops, thermistor resistance increases, making unijunc-
fion transistor trigger earlier in line voltage - J. C. Hey, The Widening World of the SCR, cycle so scr's deliver more power to oven. Electronics, 37:25, p 78-85.

HYBRID THERMOSTAT-Utilizes reverse characteristics of pnp junctions for temperature control. Provides continuous control with higher sensitivity than thermistors, along with quiet operation, remote resetting of temperature, and small thermal time constant. Chief disadvantage is high imped-ance.-H. Sutcliffe, Transistor Temperature Controller, Electronics, 31:13, p B1-B4.

MERCURY THERMOSTAT AND SCR CONTROL HEATER-Uses mercury-in-glass thermostat capable of sensing $0.1^{\circ} \mathrm{C}$ changes. Ser serves both as current amplifier for thermostat and as main load switching element. With thermostat open, scr will trigger on each half-cycle and deliver power to heater load. When thermostat closes, scr can no longer trigger, and heater shuts off.-"Silicon Controlled Rectifier Manual," Third Edition, General Electric Co., 1964, p 121.

PHOTOFEEDBACK 5TABILIZATION OF PHO-TOTRANSISTOR-Subminiature lamp mounted on window of photatransistor stabilizes elec-tro-optical response of high-iemperature pyrometer for rocket surface temperatures. Base bias for phototransistor is supplied by d-c component of light from feedback lamp.

相

TEMPERATURE TELEMETER FOR BALLOON-Designed for range of -70 to $+70^{\circ} \mathrm{C}$, for which circuit produces frequency change of 1.5 kc . Uses temperature-sensitive base-foemitter voltage of transistor, which varies
linearly with temperature, as transducer for voltage-controlled oscillator based on astable mvbr.-G. F. Ingle, Using Transistors for Temperature Measurement, EEE, 11:8, p 53-55.

TEMPERATURE-COMPENSATING THERMOCOUPLE BRIDGE-Temperafure-sensitive resistor RT in bridge provides voltage to compensate variations in cold-junction voltage during missile flight testing.-J. B. Brownwood, Thermocouple Compensating Circuit Design, Electronics, 35:1, p 98-100.

SIMPLE DIODE SENSOR-Meter measures voltage drop across germanium diode (such as IN2326), which varies linearly with temperature from near absolute zero to a high limit around $45^{\circ} \mathrm{C}$, which is upper limit of diode base material.-L. E. Barton, Measuring Temperature with Diodes and Transistors, Electronics, 35:1B, p 38-40.

$0.01^{\circ} \mathrm{C}$ DIFFERENTIAL-Ser conducts until Q.-R. G. Ferrie, Thermostat Operates With heater reaches desired temperature, when $0.01^{\circ} \mathrm{C}$ Differential, Electronics, 37:26, p 65. thermistor \mathbf{T} furns off unijunction oscillator

TRANSISTORS SENSE TEMPERATURE-Transisfor
Q1, mounted in tight thermal contact with heater R7, will maintain erystal oven within
$0.2^{\circ} \mathrm{C}$ of $70^{\circ} \mathrm{C}$.-S. Greenblaft, Transistor Becomes Sensor In Temperature Regulator, Electronics, 37:2B, p 65.

MEASURING HIGH TEMPERATURES-Used for automatic recording of missile and rocket surface temperafures. Phototransistor, connected in common-emitter mode, requires no preamp. Decade amplifier in control box is stabilized by 34 db of feedback through R1. Diode demodulator provides d-c output for recording.-5. A. Elder, Designing PhotoIrunsisiur Pyromelers Wilh and Wirhoul Feedback, Electronics, 34:49, p 56-60.

ROAD ICING ALARM-Sensing transmitter mounted on auto about 2 feet above road, with junction of transistor connected to case, is connected to low-frequency oscillator having lamp load. R7 is adjusted so lamp is out but on verge of flashing of $2^{\circ} \mathrm{C}$. When temperature drops, lamp flashes. Duration of each flash increases down to $0^{\circ} \mathrm{C}$ after which lamp remains on.-J. A. Irvine, Reducing Winter Skids with a Transistor Warning Circuit, Electronics, 36:4, p 56-58.

WIDE-RANGE DIODE THERMOMETER-Temper-afure-sensing germanium-diode bucking-voltage microammeter has null indicator, covers full usable range of from near absolute zero to about $45^{\circ} \mathrm{C}$ with resistance values shown. -L. E. Barton, Measuring Temperature with Diodes and Transistors, Electronics, 35:18, p 38-40.

TEMPERATURE TRANSMITTER-2N169A transistor is used in tuned-collector oscillator, with large R-C time constant in emitter circuit to give self-modulator for quenching action. Variation in quench break is ac-
complished with temperature-sensing element R1, consisting of glass-enclosed bead ther-mistor.-R. H. Elsken, Temperature Telemetry Aids Frozen Food Study, Electronics, 33:33, p 129-131.

BODY-TEMPERATURE TRANSISTOR THERMO-METER-Covers range of 90° to $105^{\circ} \mathrm{F}$ in three steps, with temperature indicated on meter that measures base bias of germanium
transistor, for which bias varies linearly with temperature.-L. E. Barton, Measuring Temperature with Diodes and Transistors, Elec-

GYRO TEMPERATURE CONTROL-Regulates temperature to $0.5^{\circ} \mathrm{F}$ by sensing differences between gyro-mounted temperafure-sensitive
resistor R1 and fixed resistor R2 in bridge. Magnetic amplifier for bridge operates relay K1 to energize gyro heater when temperature
is low.-R. E. King and H. Low, Solid-State Guidance For Able-Series Rockets, Electronics, 33:5, p 60-63.

CRYSTAL OVEN-Thermistor RTI senses temperature of crystal oscillator cavity and modifiss output of asymmatrie free-running mubr Q3-Q4 whose output is integrated by C12.

Thermistor is followed by modulator, amplifier Q7, and four-iransistor switch that opplies power at fixad repetition frequancy but with on time per cycle controlled by
thermistor.-M. Lysobey, Microminiature Crystal Oscillator Using Wafer Modules, Electronics, 35:15, p 60-61.

-200 METERS APPROX \rightarrow

MULTIPLEXER CAL-OPER
SWITCH
THERMISTORS CORRECT THERMOMETER LIN-

EARITY-Zero-femperature-coefficient resistors mounted near resistance thermometer element offset variation of lead resistance with
temperature.-F. J. Goldwater, Low-Cost Digital System Records Weather Data, Electronics, 37:2, p 34-36.
1.1-Mc TEMPERATURE-SENSING OSCILLATORUses mylar capacitor as main temperaturesensing element, with temperature coefficient of $0.5 \mathrm{kc} /{ }^{\circ} \mathrm{C}$, in tunnel-diode oscillator that franslates temperature changes info frequency changes.-"Transistor Manual," Seventh Edifion, General Electric Co., 1964, p 350.

HIGH-ACCURACY CONTROL-Holds temperafure constant to within $0.1^{\circ} \mathrm{C}$ far any volue between -25 and $200^{\circ} \mathrm{C}$. For confrolling refrigerated unit instead of oven, switch $\mathbf{\$ 2}$
is placed in its other position and output relay is then used to energize solenoid valve liat controls flow of refrigerant.-m, H, P. Kohnke, Electronic Thermostat Controls Tem-
perature to Within $0.1^{\circ} \mathrm{C}$, Electronics, 39:1, p 100-102.

LOW-HYSTERESIS D-C LEVEL DETECTORServes as temperature contral when thermisfor or other temperoture-sensing resistive device is connected to input. Dual complemenfory transistor Q1 is high-stability d-c amplifier, with zener diode CRI providing threshold level. With sharp-breaking characteristic for zener, hysteresis can be less than 10 mv between furn-on and furn-off. -P. C. Murray, Accurate DC-Level Detector, EEE, 13:12, P 65.

TEMPERATURE-SENSING TD OSCILLATORMylar capacitor with known and reproducible temperature characteristics makes oscillafor frequency vary with temperature. Diode bios regulator circuit is used.-E. Gottlieb and J. Giorgis, Tunnel Diodes-Using Them as Sinusoidal Generators, Electronics, 36:24, P 36-42.

REVERSE THERMISTOR AND R, FOR COOLING LOAD
BATH TEMPERATURE CONTROL-Used to and scr is turned on earlier in each cycle maintain temperature of photographic de- by uit.-J. Embinder, SCRs in the Consumer veloper solution constant. When tempera- Market, EEE, 14:B, p 100-103. ture drops, thermistor resistance increases
Market, EEE, 14:B, p 100-103.

COARSE, FINE TEMPERATURE CONTROLS

TEMPERATURE CONTROL-Fast thermal respönse is obtained with high-resistance thermistor in bridge circuit, feeding chopper VIV2. V3 is Hartley oscillator operating at
about 400 eps, to plate-modulate chopper tubes. When bridge is unbalanced by thermistor, pulses in secondary of Il act through amplifiers V4 and V5 to operate relay.-
G. A. R. Trollope, Thermistor Regulator Provides Fast Response, Electronics, 39:5, p 106-107.

LIMITED-RANGE DIODE THERMOMETER-Values of R3 and R4 determine partion of temperature spectrum to be measured, while R2 determines full-scale temperature value of meter, which may be as low as $25^{\circ} \mathrm{C}$. Meter depends on fact that voltage drop across germanium diode is linear function of tem-perature.-L. E. Barton, Measuring Temperafure with Diodes and Transistors, Electronics, 35:18, p 38-40.

TEMPERATURE MONITOR-Senses variations in ambient temperature near telemetry defector in space probe. Zener diode maintains constant voltage on transistor base.-S. Chase, Jr. and F. Schwari, Mariner II Instrumentation: What Will it See on Venus?, Electronics, 35:50, p 42-45.

NULL-INDICATING DIODE THERMOMETERMicroammetar serves as null indicator. When potentiometer is adjusted for zero current, arm of potentiometer indicates temperature value directly. Values of R3 and R4 are chosen to place $25^{\circ} \mathrm{C}$ range anywhere from near absolute zero to about $40^{\circ} \mathrm{C}$.-L. E. Barton, Measuring Temperature with Diodes and Transistors, Elecfronics, 35:18, p 38-40.

LIQUID BATH THERMOSTAT FOR 0.01° CON-TROL-Based on thermistor R2, which has linear temperature coefficient of -6% per
degree C from 15 to 35 degree C. R2 is one element in relaxation oscillator also consisting of Q1, C1, R1, R3, and R4.-K. van der

Geer, Control is Accurate to $0.01^{\circ} \mathrm{C}$, Electronics, 39:12, p 111.

CHAPTER 91
 Test Circuits

FET ADAPTER FOR CURVE TRACER-Used to canvert input current steps fram Tektranix

575 ar other curve tracer to output volitage steps for fet gate.-R. Williams, Adapter far

Curve Tracer Tests FET's af High Voltage, Electronics, 39:5, p 104-105.

HARNESS TESTER USES NEON FLIP-FLOPSOne end of each harness wire under test is grounded. Other end completes circuit for GO glow lamp. Discontinuity in wire opens GO cathode, decreases voltage drop through R, and makes NO-GO lamp glow.-Harness Tester Defects and Indicates Intermittent Faults, Electronics, 37:4, p 56-57.

CROWBAR IGNITRON-Multimegawatt highvocuum medulotor fubes for large radars are protected during tests by circuit that is
triggered by fault sensors. Total response time for firing ignitron crowbor is helow in microsec.-T. E. Yingst, Circuits to Contral and

Protect High-Power Modulator Tubes, Electronics, 35:A, p 56-61.

TUNNEL-DIODE TEST ATTACHMENT FOR CURVE TRACER-Adapter switches sweep voltages of curve tracer on and off af reduced duly cycle to prevent overheating of tunnel diode while determining its series resistance. Increasing R1 gives lower duty cycle, because R1-R2 control frequency of inductively coupled series-resonance feedback oscillator Q1.-L. M. Zappulla, Low Duty Cycle Tunnel-Diode Tester, Electronics, 35:4, p 47.

DIODE TESTER-Three-friode constant-current difference omplifier triggers magnetic amplifier thot drives reject mechonism of outomatic zener voltage tester for diodes.-E. V. Morrott and V. S. Zucco, High-Speed Automotic Diode Tester, Electronics, 34:2, p 9395.

CURRENT PULSE GENERATOR-Used for production testing of ferrite memory cores.

Provides pulse omplitudes from 200 mo to 3 omp of repetition rotes up to 20 kc . -H . W.

Goss, Current Pulse Generotor Tests Mognetic Cores, Electronics, 33:1, p $\overline{8} 0 \overline{0}-\overline{8} 1$.

INDUCTIVE TELEMETRY FOR ROTATING TEST FIXTURE-Tronsducer, oscillotor, modulator, and battery supply rotate with device under test. Carrier frequency of 1 Mc , modulated over range of 200 to $10,000 \mathrm{cps}$, is transferred inductively from rotating output coils L1-L2 to stationory pickup coils.-H. Baumann, Inductive Telemetry Improves Spin-System Measurements, Elecironics, 36:46, p 41-42.

D-C LEVEL SHIFTER-Provides adjustable shift of up to $18 v$ in d-c voltoge level of signal. -T. Mollinga, D-C Level Shifter Checks New Computer Modules, Electronics, 35:27, p 44-45.

NONHEATING THERMOCOUPLE TESTER-POtentiometer completes bridge circuit of simple test set that checks thermocouple installations for thermal confact, electrical continuity, and correct polarity, without causing tamperature change at thermocouple junction. Operation depends on resistance difference between thermocouple wires, which ranges from 6.5 ohms per 100 feet of 28-gage copper wire to 266 ohms for Chramel-P.-S. Meieran, Tester Che sks Out Thermocouple Circuits, Electranics, 36:11, p 102-106.

VHF TRANSISTOR AMPLIFIER TESTER-Has fixed match, neutralization, and bias for use as standard test circuit for transistors in tv or vhf r-f amplifier stage. With 2 N1742 transistor, power gain is 19 db , bandwidth up to 16 Mc , and maximum noise 5.5 db . -G. J. Flynn, Engineering Trends in Consumer Electronics, Electronics, 34:1, P 115117.

20-KC WIRE-TRACING MVBR-Used as signal source for identifying particular wire at midpoint in cable, for splicing. Ends of wire are connected between A and B, to become part of parallelifuned circuit of astable mubr. Tiny probe coil with amplifier is then used to locate wire carrying 20-kc signal.J. S. Rushton, Probe Identifies Cable Wiring, Electronics, 34:9, p 51.

TIME-BASE GENERATOR-Variable time delay V8-V9 permits selecting portions of cro display in pulse-echo cable fault finder. Adjustment range is 190 to 1,140 microsec, or

10 to 60 nautical miles.-F. Jones and J. H. Reyner, Compact New Instrument Finds Undersea Cable Faults, Electronics, 35:37, p 48-50.

TRANSISTOR TESTER-leakage current and common-emitter current amplification are checked by using forward voltage drop across two silicon rectifiers in series as reference voltage. Base current of transistor under test is held constant by switching series base resistance.-G. F. Montgomery, Building a Simple Transistor Tester, Electronics, 36:16, p 56.

LEAKAGE TESTER-Operational trigger trips when transistor leakage is above 5 ma . Response time is 40 millisec.-P. Lefferts, Operational Trigger For Precise Confrol, Electronics, 37:28, p 50-55.

POWER TRANSISTOR TEST GATE-Rectangular pulse opens saturated amplifier; gate output is then a series of pulses whose amplitude is equal to voltage across power transistor under test when full load current is drawn.-D. H. Breslow, Measuring Parameters by Power Transistor Pulse Techniques, Electronics, 34:1, p 120-122.

20-KC WIRE-TRACING PROBE-Used to identify wire in middle of long cable, carrying 20-ke mubr signal. Pickup probe for amplifier has 600 turns wound on U-shaped trans-
former steel. Relay closes and energizes lamp when probe is held near correct wire.-J. S. Rushton, Probe Identifies Cable Wiring, Electronics, 34:9, p 51.

LOW-COST TRANSISTOR TESTER-Indicates, in one simple operation, whether transistor has had catastrophic failure and, if not, whether it can provide minimum data (gain) of 20 of $\mathbf{3 0}$ ma. Test circuit is inverter
with emitter degeneration resistor R1 providing control of collector current during warmup of indicator lamp.-E. H. Sommerfield, Simple Transistor Tester Uses Lamp for Indicator, Electronics, 34:36, p 80.

TRANSISTOR CURVE TRACER-Staircase wave* form generator supplies test transistor with six values of base current during each cycle, to develop family of curves for cro. Range switches give wide choice of test voltages
and currents. Four-layer and funnel diodes can also be checked.-C. J. Candy, Simplified Curve Tracer for Transistors and Diodes, Electronics, 33:34, p 68-70.

TACHOMETER TESTER-Free-running mvbr, half of which is connected as Colpitts oscillator, gives I-Mc sine wave, 100% modulated by 15 -cps square wave, for testing iwo-channel tachometer using radioactive sources.R. R. Bockemuehl and P. W. Wood, Unique Two-Channel Tachometer uses Radioisotopes, Electronics, 35:49, p 44-45.

HI-POT TESTER-Operational trigger trips when resistance of sample under test is less than $500,000 \mathrm{meg} .-\mathrm{P}$. Lefferts, Operafional Trigger For Precise Control, Electronics, 37:28, p 50-55.

INDUCTIVE TELEMETRY FOR SPIN TESTTransistors in modulated oscillator-fransducer package withstand over $6,000 \mathrm{rpm}$ on spin test while radiating measured data inductive-

Iy from oscillator coils L1-L2 to stationary coil of readout equipment.-H. Baumann, Inductive Telemetry Improves Spin-System Measurements, Electronics, 36:46, p 41-42.

TV MIXER TRANSISTOR ${ }^{+}$TESTER-Used as standarized test circuit for mixer transis-
tors in tv and vhf receivers.-G. J. Flynn, Engineering Trends in Consumer Electronics, Electronics, 34:1, p 115-117.

EDDY-CURRENT WIRE FLAW DETECTOR-Highsensitivity eddy-current instrument gives meter indication or permanent record of surface or infernal cracks and voids smaller than 0.001 inch in $0.05 S$-inch-diameter zir. conium wire used for positioning fuel elements of nuclear reactors. Wire is run through probe coil energized at 150 kc by crystal oscillator, and change in impedance of coil due to flaw is measured with modified Owens bridge. Output of bridge is amplified in five stages, then rectified for measurement by d-c differential voltmeter. -R. G. Myers and C. J. Renken, Defecting Invisible Flaws in Wire, Electronics, 31:39, P 72-73.

VARIABLE-DELAY PULSE-Grid voltage of monostable multivibrator V5 is adjusted by R2 to give delay range of between 171 and 22B microsec, corresponding to 9 ta 12 nautical miles of cable under test. Used in pulseecho fault finder to generate transmitted

pulse in synchronism with marker pulse gen-erator.-F. Jones and J. H. Reyner, Compact

New Instrument Finds Undersea Cable Faults, Electronics, 35:37, p 48-50.

TUBE LIFE-TEST PULSER-Pulse generator produces 0.2 S -microsec pulses af $50 \vee$ for lifetesting of 1 to 15 microwave triodes at a time. Amplitude and repetition rate are adjustable within limits.-R. S. Ringland, Pulse Modulator Works info Variable Load, Electronics, 31:37, p 102-103.

RESISTANCE CHECKER-Amplified errar voltage from Wheatstone bridge feeds 75-0-75 microammeter to indicate whether resistance under test is higher or lower than desired value and within preset tolerance. Instrument range is 9,999 ohms in 1 -ohm steps. Gives go-no-go indication, to speed produc. tion testing.-D. S. Randall, Go No-Go Meter Speeds Resistance Check, Electronics, 31:9, p 66-68.

WAVEFORM TESTER-Used in high-speed testing of ferrite cores, transistors, transformers, and ather components requiring waveform
provided by perfect component.-B. Agusta, Sorting Components by Measuring Waveforms, Electronics, 32:7, p 56-S9.

RELAY CONTACT CHATTER TESTER-Monitors either open or closed confacts, in 10 -microsec increments for intervals of from 10 to 100 microsec. Thyratron conducts if relay contacts remain open (or closed) longer than predetermined interval. Inverter (at right) trig-
gers thyratron during testing of contacts, and is normally open. Contacts under test are connected to J3 and J4.-E. H. Kopp, Production Line Checker for Relay Contact Chatter, Electronics, 33:21, p 94-95.

ARMATURE-TESTING BRIDGE-Identical current pulses are injected into perfect standard armature and production armature being tested. Transient response, displayed on cro, permits fault diagnosis and location. Choice

of four operating modes provides operating flexibility.-H. R. Weed and S. K. Weed, Pulse Response Pinpoints Armature Faults, Electronics, 33:24, p 70-72.

DYNAMIC TRANSISTOR TESTER-Uses blocking oscillator and depends on fact that open, shorted, or excessivaly leaky transistors will not oscillate. Good transistors should oscillate with RI set at zero, and make neon lamp glow if $S I$ is on.-L. G. Sands, Dynamic Testers For Transistors, Elecfronics, 33:8, p 66-67.

TRANSISTOR TESTER WITH SPEAKER-Block-ing-oscillator test circuit provides tone from speaker only when transistor is good (not open, shorted, or leaky). Runaway transistors can be defected by providing npn-pnp switch and reversing it to stop oscillation for a few seconds, then restoring correct position. If transistor then oscillates at different frequency or will not resume oscillation, it is a runaway.-L. G. Sands, Dynamic Testers For Transistors, Electronics, 33:8, p 66-67.

AUTOMATIC BETA CHECKER-Holds collector current of test transistor Q_{x} af preset value while base current is measured and beta de-termined.-E. P. Hojak, Automatic Measurement of Transistor Beta, Electronics, 32:49, p 114-115.

DIELECTRIC-STRENGTH TESTER-Automatic sequencing of test functions minimizes highvoltage danger to operator and improves accuracy of readings. Control system may
be inserted in any commercial high-pot tester. -F. J. Clounie, P. M. Degroat, and E. M. Szymanski, Control Makes Test Safe, Accurate, Electronics, 33:19, p 88-91.

QUARTZ OVERTONE CRYSTAL CHECKERRapidly measures equivalent parameters, in range of 75 to 200 Mc , by combining active and passive measuring systems. Crystal being measured confrols frequency stabiltiy of oscillatory circuit of crystal impedance meter. -D. W. Robertson, Plug-in Bridge Checks VHF Quartz Crystals, Electronics, 31:19, P 82-85.

TESTING 300-KW UHF TUBE-If are develops in protected A2346 tube, ignitron crowbar circuit grounds power supply in less than 5 microsec. Keying circuits operate of $35-\mathrm{ky}$
plate voltage of tube under test, opplied in pulses 10 to 2,000 microsec wide through switch tube. Peak plate current is almost 300 amp during 5 -megawatt output test.
-G. Flynn, Super-Power Electron Tube for UHF Band, Electronics, 33:15, p 70-72.

ELECTRO-EXPLOSIVE DEVICE TESTER-Uses combination of tubes and solid-state thyratron to generate single pulse up to 100 amp with duration of several millisec, for testing detonators, primers, squibs, and explosive switches.-V. W. Goldie, R. G. Amicone, and C. T. Davey, Generating Pulses With SolidState Thyratrons, Electronics, 32:33, p 70.

SWITCHING DIODE TESTER-Used in checking performance of computer diodes when handling steep-edged, short-duration pulses. Negative input pulse cuts off diode current, and sampling oscilloscope with $1,000-\mathrm{Mc}$ bandwidth permits study of diode recovery times down to 500 picosec.-W. S. Eckess and P. G. Ducker, Measurement of Diode Switching Characteristics, Electronics, 33:1S, p 59-61.

STEPPER MOTOR TESTER-Digital test equipment automatically evaluates performance of magneticalily detented stepper motors in several modes, for wide variety of test conditions. Analyzer compares number of ap-
plied voltage steps with number of motor movements. Pulse train from power amplifier is gated through logic circuits that prevent switching from occurring in middle uf pulse, and keep input pulse line closed even
when switching motor direction.-H. J. Weber and M. Weiss, Analyzing Magnetically-Detented Stepper Servo Motors, Electronics, 33:39, ip $71-74$.

MEASURING SCR TURNOFF TIME-Q1 in parallel inverter circuit is triggered by closing 51 , to give 10 amp of test current. When 52 is closed ofter warmup, Q2 furns on, connects positively charged plate of Cl to cathode of QI, and makes reverse current flow. If turnoff time of Q1 is less than 12 microsec, it will remain turned off and ammeter reading will refurn to zero. If test rectifier fails to turn off, $\mathbf{5 3}$ should be opened immediately to prevent overheating.-D. V. Jones, Turn-Off Circuits for Controlled Rectifiers, Electronics, 33:32, p 52-55.

STEPPER MOTOR RESPONSE LOGIC-Clockwise and counferclockwise pickoff channels each drive monostable mvbr, with output of each being added to signal of other channel. Direction-of-rotation information is sup-
plied because pulses appear only on line whose pickoff's signal come first.-H. J. Weber and M. Weiss, Analyzing MagneticallyDefented Stepper Servo Motors, Electronics, 33:39, p 71-74.

CRYOGENIC CONTACT TESTER-Measures critical current in superconducting confacts during periods shorter than 100 microsec in
which such currents con be maintained, and gives oscilloscope display.-J. I. Pankove and R. Drake, Measuring Critical Current in Cryo-
genic Circuits, Electronics, 33:4, p 52-53.

TRANSISTOR GAIN AND LEAKAGE TESTERDesigned for general testing of production units. Switch \$1 chonges over from npn to pnp tronsistors. After controls ore set for o specific fronsistor type, checking involves only noting bose current when test bution is pressed.-F. W. Keor, Simple Test for Transisfor Quolity, Electronics, 35:39, p 80-81.

MÄGNETIC TAPE FLAW DETECTOR-Tronsistor oscillator records steody test tone on tope. Machine stops during ployback when reproduced level indicates flow thot would make tape unsuitoble for broodcost use. Polorized
relay charges memory copacitor os it responds to fronsient. Capacitor dischorges into coil of slower reloy, which in turn stops tronsport. -N. J. Thompson, Defector Pin-Points Mognetic Tope Flaws, Electronics, 32:2, p 50-51.

CONTACT TESTER-Determines whether contocts hove mointoined their normally open or closed conditions during shock ond vibration testing. Dual circuit monitors both types of contact.-F. W. Kear, Contact Monitoring for Vibration Tests, Electronics, 33:15, p 78-79.
 Negotive pulse of 8 tests condition of circuit and lomp.-A. E. Popodi, Reliable Reper-
toire Of Display Circuits, Electronics, 38:2, p 60-66.

VOLTAGE
DIVIDER

PARALLEL-PATH CONTINUITY CHECKER-Used for monitoring nonseparable parallel paths for continuity in automatic testing equipment. Current through circuit under fest is
limited, to prevent damage to low-power circuits. Resistance levels for continuity checks ore set at $5,20,100$, and 1,000 ohms.R. H. Wassum, Parallel-Path ContinuityChecking Circuit, EEE, 14:8, p 164-166.

DIAL TELEPHONE TESTER-Delivers large pulses without being sensitive to changes in load, through use of thyratron in flip-flop.Thyratron Used for Bistable Circuit, Electronics, 32:6, p 64-65.

CONDUCTIVITY TESTER-For nondestructive festing of printed-circuit conductors, throughhole plating, soldered joints, and coils, in resistance range from 0 to 50 milliohms and currents up to 5 amp . Q1 and Q2 protect millivaltmeter from open-circuit voltage overloads by energizing relay K1, interrupting rectified output from a-c power supply.F. W. Kear, Unit Measures Printed Circuit Resistances, Electronics, 34:4, p 64-65.

VIBRATION TEST MONITOR-Gives visual indication of momentary contact malfunctions in components during vibration testing. Also indicates permanent open or short. Each channel monitors one component. In testing device having normally closed contacts, lamp should come on initially. Lamp goes
out if contacts open momentarily. If lamp remains on after reset switch for channel is pushed and released, open was momentary. If lamp goes out on release, open is perma-nent.-Component Vibration Test Manitor, "Electronic Circuit Design Handbook," Mactier Pub. Corp., N.Y., 1965, p 159.

TUNNEL DIODE TESTER-Curve-tracing circuit provides cro traces as aid in determining proper bias and circuit impedances for op-
erating funnel diode as switch, amplifier, or oscillator.-R. P. Murray, Biasing Methods for Tunnel Diodes, Electronics, 33:23, p 82-83.

A-C TO D-C VOLTAGE STANDARDIZATION -High-gain d-c amplifier is used in feedback circuit to standardize a-c voltages directly to
standard cell.-E. A. Gilbert, Feedback Circuits for A-C Instrument Calibration, Electronics, 33:40, p 94-96.

A-C TO D-C CURRENT STANDARDIZATION -Used to standardize alternating currents directly to standard cell.-E. A. Gilbert, Feedback Circuits for A-C Instrument Calibration, Electronics, 33:40, p 94-96.

LEAKAGE TESTER-High-reliability current-detecting Schmitt frigger responds to nanoampere inputs for leakage testing of copacitors, diodes, and insulation, yet is not damaged or even affected by overloads of $1,000 \mathrm{v}$ at input. Input of 300 na will trigger output relay.-P. Lefferts, Schmitt Triggers on Nanoomp Inputs, EEE, 14:6, p 91.

TRANSISTOR TEST CIRCUIT-Measures power gain, with emitter current varied manually by R1 in bose circuit. Used to determine conditions for uniform emitter current, re-
quired for uniform gain in transistor circuits despite variations in d-c beta values of tran-sistors.-K. Redmond, Biasing Transistors for Uniform Gain, Electronics, 33:50, p 74-75.

CHAPTER 92
 Timer Circuits

A-C ZERO LOCATOR-locates zero of a-c voltage within 0.1 microsec for 50 -kc input signal. Operation is independent of input signal amplitude between 0.15 and 30 v p-p. Used for accurate measurement of time interval between given number of cycles of ex. ponentially decaying $50-k c$ signal.-L. Costrell, A-C Zero Locator, Electronics, 31:3, p 98-101.

TIME INTERVAL ANALYZER-Gives high resolution (better than 1 millimicrosec) for multichannel measurements of short-life nuclear particles. Two pulses, defining time interval, are fed into the same loop-forming ends of

MEASURING VALVE-CLOSING TIME-Determines exact time of valve closure from waveshape of current in solenoid. Energizing current is differentiated and shaped, to trigger circuits that measure interval between sole-
noid switch closing and final solenoid posi-tion.-R. L. Kissner, Determining Closure Time in Missile Control Valves, Electronics, 33:42, p 88-89.

REPEAT-CYCLE TIMER-Provides output pulses over dynamic range of several thousand. Will tolerate large ripple from power source. If D4, DS, and C4 are odded as shown in dotted lines, will tolerate transients up to
100% of supply voliage with several microsec duration.-Low-Frequency Stairstep Generator and Timing Circuit, "Electronic Circuit Design Handbook," Mactier Pub. Corp., N.Y., 1965, p 144.

BASIC HYBRID UJT-PNP TIMER-Serves as symmetrical square-wave mvbr when fixed or varioble resistor is connected between \mathbf{E} and G. Serves as one-shot mubr when fixed or variable resistor is connected between Cl and E. Other configurations shown for external connections give constant or variablefrequency nonsymmetrical multivibrators."Transistor Manual," Seventh Edition, General Electric Co., 1964, p 338.

PLUG-IN TOOL-USE TIMER-Serves as runningtime meter for soldering guns, electric drills, and other partable power fools. Tool is plugged into outlet on timer, eliminating need for connections to switch of device under test. Load capacity is from 25 to 1,000 w.-R. L. Ives, Circuit Times Operation of Portable Tools, Electronics, 31:5, p 62-64.

BASIC THYRATRON TIMER-Is not completely linear, partly because of contact potential in grid circuit, but nonlinearity errors are usually less than 3% up to about 60 sec.R. L. Ives, Timer Made More Linear, Elecfronics, 32:5, p 66-69.

IMPROVED THYRATRON TIMER-Linearity is improved by varying capacitance rather than resistance in grid circuits. Timing error is less than 1% for 1 to 400 sec.-R. L. Ives, Timer Mada More Linear, Electroniss, 32.5, p 66-69.

FET TIMER-Darlington-like pair Q2-Q3 serve with Q1 as monostable mvbr, most useful as fimer because high input impedance allows use of modest capacitors to obtain long time
delays. In stable state, Q2 is on and Q3 is saturated, holding Ql off.-L. J. Sevin, Jr., "Field-Effect Transistors," McGraw-Hill, N.Y., 1965, p 89.

FENCING TOUCH TIMER—Detects touches in either epee or foil fencing, determines if touch is held long enough to score point, then starts timing interval in which other fencer may also score. Lamps indicate status of match. Loudspeaker sounds tone when
sequence of touches is correct, and switch 51 must then be reset for next scoring se-quence.-W. R. Durretf, Electronic Judging of Fast-Moving Sports Contests, Electronics, 32:32, p 114-115.

15-MINUTE SCS TIMER-Transistor and silicon controlied switch together serve to open relay 15 minutes after it is activated by manual closing of battery switch, for operating recording instruments.-T. H. Charters, LowCost Time Delay Controls Recorder, Electronics, 37:18, p 84.

START-STOP CONTROL-Low-cost transistor arrangement controls four precision timers used for simultaneous measurement of time interval of four integrating circuits. Time between first digital output pulse and firing of circuit is determinable within 0.01%.-F. W. Kear, Tests Show Control is Key to Timer Accuracy, Elecfronics, 33:27, p 62.

All resistors are $\pm 5 \%$ tolerance, $\frac{1}{2}$ watt.
C_{1} is $\pm 10 \%$ tolerance, Mylar ${ }^{\text {(1) }}$.
Temperature range $=-20$ to $+55^{\circ} \mathrm{C}$.

LINEAR-SCALE FET TIMER-Operation compares to that of one-shot mvbr. Q3 is normally on and Cl is charged. When Sl is closed, Q2 and Q3 furn off. Q3 remains off
unfil charge on Cl decreases to point where Q2 is turned on sufficiently to make Q3 con-
duct. Q2 here acts as voltage-variable re-sistor.-Texas Instruments Inc., "Transistor Circuit Design," McGraw-Hill, N.Y., 1963, p 519.

10-SEC SCS TIMER-Switch applies positive pulse to gate of scs, triggering it on and thereby supplying power to relay load and ujt timing circuit. At end of timing interval, determined by R-C, limer feeds negative pulse to anode to turn off scs.-"Transistor Manual," Seventh Edition, General Electric Co., 1964, p 435.

CONSTANT - CURRENT GENERATOR-Insures that voltage across charging capacitor of unijunction-transistor timer increases linearly with time. Maximum sharging current is about 0.3 ma with 2 N 2605 for Q2 and 1N643 for D5. R7 is 1,000 -ohm potentiometer.-A. A. Lampell, Off-the-Shelf Integrated Circuits for Versatile and Accurate Timer, Electronics, 38:25, p 70-73.

TELEPRINTER CHARACTER COUNTER-Simple circuit switches on timer clock only when teleprinter keying impulses are present, to give indication of traffic volume, flow, and rauting.-R. E. Pafenberg, Character Counter Aids Telatypewriter Routing, Elactronies, 34:17, p 120-121.

SOLID-STATE TIMER-Uses fet constant-current source to eliminate timing errors due to unregulated power supplies and line
transients. Range of 0.1 to 50 sec is controlled by R2.-J. Geekie, Simple Fet Timer, EEE, 14:3, p 62.

UJT TIMER-Charging current of CI should be greater than 20-microamp peak-point current at which Q3 is triggered and less than 8 -ma sustaining current of Q3, so uit will
turn off after it is triggered. 2N2422A may be used for Q3.-A. A. Lampell, Off-theShelf Integrated Circuits for Versatile and Accurato Timer, Elecfronics, 38:25, p 70-73.

AUDITORIUM ACOUSTICS TIMER-Can be set and comparator giving delay time linearly to accept any portion of incoming sound signal for feeding to electrostatic squarer and digital counter. Microphone preamp feeds gate input and trigger shnper. Time base consists of phantastron sawtooth generator
variatle from 0 to $\mathbf{1 2 0}$ millisec.-J. P. A. Lochner and P. Meffert, Electrostatic 5quarer for Acoustic Measurements, Electronics, 33:35, p 66-68.

high-Current scs interval timer-when triggered by low-level 5 -microsec pulse, furnishes 1 amp to load for 1 sec . Advantages are simplicity and high reliability through use of silicon controlled switches.--Y. J. Lubkin, High Output Interval Timer, EEE, 10:9, p 92.

DUAL-OUTPUT FREE-RUNNING TIMER-Each output may be controlled separately. With stable power-supply voltage and constant ambiant temperature, accuracy of 0.1% may
be expected with this type of repeating timer. Switch is shown in off position load
resistors RLI and RL2 can be replaced with 500 -ohm relay coil shunted by IN2069 diode. -Texas Instruments Inc., "Transistor Circuit Design," MeGraw-Hill, N.Y., 1963, p 414.

RECYCLING WITH VARIABLE DUTY CYCLETwo 100 K variable resistors control on and off times. Gives time delays from 0.3 to 6 sec.-P. Gheorghiu, Recyeling Timing with Variable Duty-Cycle, EEE, 13:4, p 41.

ENCODER COMMUTATOR-Commutator, buffer, and feedback circuits are given for slapsed-fime encoder. After oscillator has triggered 24 elapsed-time counters during storage period, oscillator is switched to electronic commutator controlling diode matrix switch. Counter data is then read out serially through matrix and fed to ert for photo-graphing.-R. J. Kelso and J. C. Groce, Encoder Measures Random Event Time Intervals, Electronics, 32:12, p 48-51.

BASIC HYBRID UJT-NPN TIMER-Serves as symmetrlcal square-wave mubr when fixed or variable resistor is connected between E and G. Serves as one-shot mvbr when fixed or variable resistor is connected between CI and E. Other external connections give constant or variable-frequency nonsymmetrical multivibrators.-"Transistor Manual," Seventh Edition, General Electric Co., 1964, p 338.

ENCODER OSCILLATOR-Used to frigger 24 elapsed-fime counters until end of storage period, for storing and reading out elapsed time between consecutive but randomly accurring events. Gates are designed to main-
tain amplitude of trigger pulse above half the supply voltage over wide temperature range.-R. J. Kelso and J. C. Groce, Encoder Measures Random Event Time Intervals, Electronics, 32:12, p 48-51.

CLUTCH COIL FOR TIMER MOTOR-Start-andstop signals are applied to stop jack, far automatic timing. Manual-timing pushbutton applies $0-\mathrm{v}$ signal to stop jack, to make Q1 conduct. Fast switching time of transistor permits reading time to within 0.005 milli-sec.-F. W. Kear, Electromechanical Timer far Lab Applications, Electronics, 36:7, p 78-79.

INTERVAL TIMER-Interval is defermined by C, which can be paralleled capacitors to increase range.-N. C. Hekimian, PNP-NPN CIRCUITS: Now Look af a Familiar Connectian, Electronics, 35:47, p 42-46.

CURRENT-MODE SWITCH-With $1,000-\mathrm{Mc}$ time base applied to base of Q2, iwo currentmode switches together serve to give accuracy of 0.5 nsec in measurement of time intervals with quinary scaler.-R. Englemann, Quinary Scalers: Measure Time Intervals Digitally, Electronics, 37:5, p 34-36.

DUAL-POLARITY START - STOP CONTROLSwitches connect relay cails either to positive bus or to ground, so timer can be controlled by either positive or negative pulses. Additional transistar, used in place of relay, provides stop switching. Q3 forms clamping circuit for use where stop pulse duration is tao short.-F. W. Kear, Tests Show Control is Key to Timer Accuracy, Electranics, 33:27, p 62.

WATCH TIMER-Simple time base, with high linearity, is achieved by two-stage dec amplifier heving unity gain, back-coupled to R-C infegrator. Time-base reference, synchronized
with master clack, can check accuracy of any timing device.-S. T. Kiewied, Watch Timer with Precise Time Base, Electronics, 31:51, p 84-85.

13-5EC TIMER-Twa silicon fransistors start fiming actian when 10 -milisec start pulse closes reed relay K1, making output transisfor Q1 conductive for 13 sec . Timing period can be shortened by applying 36 -millisec pulse to K2.-H. W. Hines and L. C. Radzik, Electronic Timer Provides Long Delay, Electronics, 37:17, p 63.

ENCODER COUNTER-Counter, limit trigger, and blocking oscillator are given for encader used for storing and reading aut elapsed time between consecutive randomly occurring events. First 23 counters are identical.-R. J. Kelso and J. C. Groce, Encoder Measures Random Event Time Intervals, Electronics, 32:12, p 48-51.

INTERVALOMETER-Operotes of end of predetermined period to produce second predetermined time period in ronge of 5 ta 10 sec. Developed for medical electronic research. Standby current is anly 5 ma .-E. L. Dewig, Inexpensive UJT-SCR Intervalometer, EEE, 14:7, p 104.

ENCODER OUTPUT-Output circuits are given for encoder used in storing and reading out elapsed time between consecutive ran-
domly occurring events. Cathode follower stage provides low output impedance to give desired output waveform on crt for showing

CATHODE COUPLED CLIPPER
encoded elapsed time.-R. J. Kelso and J. C. Groce, Encoder Measures Random Event Time Intervals, Electronics, 32:12, P -48-51.

CHAPTER 93

Transceiver Circuits

CB FILTER-Electromechanical filter with 6-kc bandwidth at 455 ke gives 8 db signal-fonoise improvement.-Filtering the Chatter on Citizens' Band, Electronics, 38:5, p 81.

920-CHANNEL CRYSTAL REFERENCE-CON-trolled-frequency mobile radio transceiver, operating in two bands, uses improved bandpass filter techniques that double number of
channels per megacycle of spectrum. Oscil-lator-stabilized system is designed for $50-\mathrm{kc}$ channel spacing and selects any of 920 channels between 30 and 76 Mc.-F. Braver
and D. Kammer, Mobile Radio System Provides 920 Channels, Electronics, 31:41, P 96-99.

THREE-TRANSISTOR CB TRANSCEIVER-Has $30-m w$ r-f output and range of several thousand feet. Detector uses 40-kc quanch. Draws 15 ma for receive and 30 ma for fransmit. Loudspeaker serves as microphone far trans-mitting.-L. Solomon, Citizens Band Equipment Design, Electronics, 33:45, p 70-72.

NOISE-ACTUATED AVC-Emitter current of 2N43A controlled low-leval audio amplifier stage Q3 is regulated indirectly by sound pressure level of ambient noise. With no noise, gain of controlled amplifier is prevented from going to zera by applying quiescent conduction bias through R1 to gain-control stage Q2.-D. C. Gibson, Helmet Transceiver for Flight Derk Communicotions, Electronics, 33:39, p 56-60.

CLASS-B CB TRANSCEIVER-On transmit, VI is self-excited power oscillator, V_{3} is $a-m$ modulator, and V2 is speech amplifier. On receive, V1 is superregenerative r-f amplifier, V3 is audio power amplifier, and V2 is first audio stage.-L. G. Sands, Citizens Radio Revision Spurs Equipment Design, Electronics, 32:15, p 55-57.

CB SQUELCH—Actuated by d-c limiter voltage and o-e noise voltage. With no signal, autput of noise amplifier V1 is converted into positive voltage by noise rectifier of V 2 and applied to grid of squelch control tube V3, making it conduct and drive grid of V_{4} mare negative, to squelch noise.-L. G. Sands, Citizens Radio Revision Spurs Equipment Design, Electronics, 32:15, p 55-57.

CLASS-C CB TRANSMITTER-Control signal may be tone-modulated $a-m$, with different tones to contral several functions on one fre-quency.-L. G. Sands, Citizens Radio Revision Spurs Equipment Design, Electronics, 32:15, p 55-57.

CB WITHOUT SEND-RECEIVE RELAY-With switch in transmit position, carbon mike gets some of r-f amplifier current, and audio signals in last audio stage Heising-modulate transmitter. During reception, recaiver local oscillator gets plate voltage, loudspeaker is connected, and cathodes of transmitter crystal oscillator and r-f amplifier are made positive to cut them off.-L. Solomon, Citizens Band Equipment Design, Electronics, 33:45, p 70-72.

CB DECODER-Responds to telephone-dial digital tone pulses from receiver. Rejects noise pulses ond functions even when noise is stronger thon desired single-tone signal. Used in mobile dial telephones.-L. G. Sands, Citizens Radio Revision Spurs Equipment De-
sign, Electronics, 32:15, p S5-57.

NOISE SQUELCH-When negative-going signal is received from detector, control grid of is received from detector, control grid of
squelch tube $\mathbf{V 2}$ goes negative until positive bios set by squelch control R1 is overcome. Used in Vocaline CB transceiver.-L. Solomon, Citizens Band Equipment Design, Electronics, 33:4S, p 70-72.
 33: ${ }^{2}$

CHAPTER 94 Transmitter Circuits

1 W AT 170 MC-Single $L 52$ feeds 1 w to 50 -ohm antenna through pi-L network. Power gain is 4 db and efficiency is 30% for class C operation.-Texas Instruments Inc., "SolidState Communications," McGraw-Hill, N.Y., 1966, p 323.

$P_{0}=1$ woft power goin $=4 \mathrm{db}$ average
$V_{c c}=25 v$
$I_{C}=125 \mathrm{mo}$
$L_{1}=1$ T Nal4 Buss, $0.5^{\prime \prime}$ diam
$L_{2}=3$ T No. 14 Buss, $0.4^{\prime \prime}$ diam, $0.3^{\prime \prime}$ long
$L_{3}=5$ T No. 14 Buss, $0.4^{\prime \prime}$ diam, $0.5^{\prime \prime}$ long
$L_{4}=4$ T No. 14 Buss, $0.4^{\prime \prime}$ diam, $0.4^{\prime \prime}$ long

NEUTRALIZED EMITTER BOOSTS H-F GAINNew operating mode increases h-f gain more thon 20 db , reduces interstage matching problems, improves selectivity and stability, and cuts cost. Based on neutralizing of emifter-circuit inductances with small variable capacitor from emitter to ground and r-f choke to provide d-c path from emitter to ground. Technique works best above 100 Mc . -Extend Transistor Frequency, Electronics, 34:44, p 25.

$L_{2}=5 \mathrm{~T}$ No. 16 Buss, $0.4^{\prime \prime}$ diam, $0.4^{\prime \prime}$ long, $L=.14 \mu \mathrm{~h}$
$L_{3}=5 T$ No. Soldereze, $0.5^{\prime \prime}$ diom, $0.4^{\prime \prime}$ long, $L=.22 \mu h$
$L_{4}=6 T$ No. Soldereze, $0.5^{\prime \prime}$ diam, $0.5^{\prime \prime}$ long, $L=.34 \mu h$

Power out $=10 \mathrm{w}$
Power goin $=10 \mathrm{db}$
DC Power in $=600 \mathrm{mo}$ of $25 \mathrm{v}=15 \mathrm{~m}$

10 W AT 50 MC-Two LS2's in parallel provide 10 w output power with 10 db gain. Separate biasing resistors are used in base
circuits to balance operating currents. Input and output impedances are both 50 ohms, and overall efficiency is 65%.-Texas Instru-
ments Inc., "Solid-State Communications," McGraw-Hill, N.Y., 1966, p 323.

PARALLEL-TRANSISTOR OUTPUT STAGE WITH EMITTER TUNING-Variable capacitor common to both emitters, together with r-f choke for d-c path, provides efficient tuning and increased power gain at outputs near maximum of 2 w . Chief drawback is reduced power gain at low input levels.-W. A. Rheinfelder, Choosing the Best Transmitter Output Stage, EEE, 11:10, p 48-53.

LOW-POWER BROADCAST-BAND TRANSMIT-TER-Crystol-controlled 670-kc oscillotor ond single-tronsistor omplifier stage provide 400 microwotts a-m for antenno.-'Transistor Manuol," Seventh Edition, General Electric Co., 1964, p 386.

SSB EXCITER-Silicon transistors reduce noise and increase reliability of single-sidebond exciters. Circuit shown, for 10 -meter band, gives choice of upper or lower sideband.D. L. Wilcox, Single-Sideband Exciter uses Planar Silicon Tronsistors, Electronics, 35:32, p 65-67.

9-KC OSCILLATOR STABILIZER-Insures 24 w output over temperature range of -20 to $+120^{\circ} \mathrm{F}$. Zener diode voltoge-regulating circuit prevents chonges in collector supply voltoge of oscillator Q1. Base-driven modulator Q2 moy be fed from tape repeoter preomp,
microphone, or master control center serving induction radio system using roodside tele-phone-line loops.-E. A. Hanysz, J. E. Stevens, ond A. Meduvsky, Communicotion System for Highway Troffic Control, Electronics, 33:42, p 81-83.

460-KC F-M WIRELESS MICROPHONE-Radiates about 0.2 micromicrowatt directly from tank circuit to establish induction field within usable area of auditorium stage without exceeding FCC radiation field limitation. Normal speaking voice produces peak f-m deviotion of about 10 kc .-G. F. Montgomery, Wireless Microphone Uses F-M Modulation, Electronics, 31:1, p 54-55.

LI 2 TURNS " 16 COPPER $3 / 8^{" I I O ~ S P A C E D ~} 1 / 8^{\prime \prime}$ FROM GROUND ENO OF L2 (ADJUST FDR BEST STABILITY)
L2 6 TURNS*IG COPPER 3 "'ID CLDSE - WOUND ANO CONNECTED DIRECTLY TO C2. TAPPED I YURN FROM GROUND.
CI 4.5-25 $\mu \mu$ id CERAMIC YRIMMER
C2 $1.5-5 \mu \mu \mathrm{fd}$ VARIABLE
C3 $800 \mu \mu \mathrm{fd}$ (VOLTAGE NOT IMPORTANT-SELECT FDR SMALL SIZE)
C4 $50 \mu \mathrm{HP} 6$ VOC ELECTROLYTIC (VDLTAGE NOT IMPORTANT-SELECT FOR SMALL SIZE)
CS I $\mu \mathrm{P}$ d 35 VOC (VOLTAGE NOT IMPORTANT-SELECT FDR SMALL SIZE)
R1 $1801 / 2$ W 5%
R2 $15001 / 2 \mathrm{~W}$ 5\%
R3 470a $1 / 4$ W
R4 $10 \mathrm{Ka} 1 / 4 \mathrm{w}$
R5 IOK Ω I/4W
$E_{\text {to }}$ MALL ORY RM-12R MERCURY CELL 1.34 VDC - 3600 MAH
SWI NORMALLY OPEN SPST "PUSH-TO-TALK" SWITCH
SPKR 2"PM SPEAKER
IN37I6 (TD-3) 4.7 MA AXIAL TUNNEL DIODE

F-M WIRELESS MICROPHONE-Transmitter has range of $\mathbf{2 0 0}$ yards when used with sensitive commercial receiver covering 96-110 Mc.

Transistor stage frequency-modulates tunneldiade oscillator.-"Transistor Manual," Seventh Edition, General Electric Co., 1964, p 357.

223-MC TELEMETRY TRANSMITTER-Crystalcontrolled Colpitts delivers 10 mw to first doubler. Second doubler has trop to eliminate
11.5-Mc fundamental. Power output to final is obout 45 mw of 223 Mc . Class C final delivers 100 mw to $\mathbf{5 0}$-ohm laad.-Texas ln -
struments Inc., "Solid-State Communications," McGraw-Hill, N.Y., 1966, p 326.

PAGING TRANSMITTER-Feeds single-wire loop surrounding orea to be covered. Multivibrotor V1-V2 produces carrier frequencies in range from 15 to 30 kc , keyed on and off ot vorious repetition rates in range from $1 / 50$ th to $1 / 200$ th second, for selective paging of up to 45 different receivers.-J. G. DeGroof, Selective Paging System Uses Coded Transmission, Electronics, 33:9, p 68-70.

VOICE-OPERATED CONTROL WITH DAMPING -Relays provide timed sequential switching of pentode load to LC-filtered power supply when operator speaks into microphone, thereby preventing overshoot.-E. L. Harris ond O. J. M. Smith, Novel Circuit Damps Transients in Voice-operated Tronsmitters, Electronics, 35:39, p 66-67

CARRIER SUPPRESSION-Suppressod-corrier modulotion improves efficiency of mediumpower tronsmitter and provides noise ad-
vantages of exalted-carrier detection in re-
ceiver.-J. Dysinger, W. Whyland, ond R.
Wood, New Suppressed-Carrier Modulotion

F-M WIRELESS MIKE-Oscillotor-modulotor using single tunnel diode produces $35-\mathrm{kc}$ frequency deviation per mv of modulating signol of 90 Mc . When fed by dynomic mike, range is up to 100 feet. If pre-emphasis is desired, diode IN34A may be replaced by R1-C1 circuit shown in dotted lines, hoving time constant of 75 microsec.-W. Ko, Tunnel Diode F-M Wireless Microphone, Electronics, 33:47, p 93-95.

$L_{1}=3 \mathrm{~T}$ NO. 16 Buss, 0.4 diam, $0.3^{\prime \prime}$ long, $L=0.085 \mu \mathrm{~h}$
$L_{2}=4$ T NO. 16 Buss, 0.4 diom, $0.4^{\prime \prime}$ long, $L=0.12 \mu \mathrm{~h}$
$L_{3}=8$ T NO. I6 Soldereze, 0.5 diam, $0.5^{\prime \prime}$ long, $L=0.5 \mu h$
$\mathrm{L}_{4}=10 \mathrm{~T}$ NO. I6 Soldereze, 0.4 diam, $0.6^{\prime \prime}$ long, $\mathrm{L}=0.34 \mu \mathrm{~h}$

1 W AT 50 MC-Relatively high breokdown voltoge of $L 52$ transistor permits omplitude modulation. Overoll efficiency is 65%. Combinotion pi-L network motches common-
emifter closs-C stage to 50 -ohm ontenno.Texos Instruments Inc., "Solid-State Communicotions," McGraw-Hill, N.Y., 1966, p 322.
 under test, from 2 to 50 Mc . Pulse-controlled ring counter switches tronsmitters up to 40
times per second. All tronsistors ore type 2N3053.-C. Bornes, Tronsmitters Towed fern, Electronics, 38:21, p 96-101.

TUNNEL-DIODE WIRELESS MIKE-Two cascaded 2-ma germanium funnel diodes serving os coscade oscillator and $90-\mathrm{Mc} \mathrm{f}-\mathrm{m}$ modulafor give range of over 100 feet. Coil L is about 5 microhenrys, with five turns o quar-ter-inch in diameter and half an inch long. C is 24 pf.-W. Ko, Tunnel Diode F-M Wireless Mierophone, Electronics, 33:47, p 93-95.

MINIATURE F-M TRANSMITTER-Single 2N499 tronsistor performs functions of r-f oscillator, frequency modulator, and oudio amplifier for tiny portable tronsmitter having range of 200 feet. Suitable for use with public-oddress system.-D. E. Thomas and J. M. Klein, How to Construct o Miniofure F-M Tronsmitter, Electronics, 32:31, p 80-81.

$L_{\mathrm{J}}-66 \mathrm{mh} .6$ iurns $=18$ fimed Wre, $3 / 38 \quad 1.0 .1 / 2 \mathrm{~L}$.
$\mathrm{L}_{\mathbf{2}}-22$ on .2 furns $=18$ finned Wire, $3 / 3 \mathrm{Cl} 1.0 .1 / 4 \mathrm{~L}$.

$\mathrm{L}_{4}-85 \mathrm{mi}$. 3 Fums $=14$ Timed Wre, $3 / 81.0 \mathrm{~B} / 3 / \mathrm{L} \mathrm{L}$
All capacter vades in picofasds.

160-MC 15-W POWER AMPLIFIER-Simple three-stage r-f power transistor circuit provides 30.5 db power goin with efficiency of
62%, on 28 -v supply.-Solid-State Power Amplifier Design (Motorola ad), Electronics, 39:14, p 48-49.

PUSH-PULL OUTPUT WITH LATTICE FILTERSPreferred for frequencies obove 30 Mc because laftice orrongement without fransformers is much eosier to construct and align
than standord push-pull circuit.-W. A. Rheinfelder, Choosing the Best Tronsmitter Output Stage, EEE, 11:10, p 48-53.

27-MC REMOTE-EVENT TRANSMITTER-Gives 400-cps modulation for pulse of input A,

1,400 cps for pulse of B, ond 800 -cps check pulses every 2 sec, for tronsmitting bird flight dota to remote recorder.-P. A. Tove

[^3]

LOW-POWER PARALLEL-TRANSISTOR OUTPUT
-Conventionol transistor orrangement pro-
vides up to 2 w output with power gain of 10 db . Chief advantage is simplicity.-W. A. Rheinfelder, Choosing the Best Transmitter Output Stage, EEE, 11:10, p 48-53.

LOW-POWER PUSH-PULL OUTPUT-Efficiency is higher thon with normal parallel output stage, yot overoll efficiency is only $4 \mathrm{~B} \%$ for 1.9 -w output because emitter tuning is not effective and power gain is accordingly re-duced.-W. A. Rheinfelder, Choosing the Best Transmitter Output State, EEE, 11:10, P

PUSH-PUSH OUTPUT DOUBLER-InPUt is conventional push-pull configuration providing out-of-phase signals for both transistors, but for output circuit both transistors operate in parallel into standard pi network. This cancels fundamental and odd-order harmonics, leaving only second harmonic predominating in output circuit. Transistors can be 2N1692. -W. A. Rheinfelder, Choosing the Best Transmitter Output Stage, EEE, 11:10, P 48-53.

STEPPED FREQUENCY EXCITER-Provides cry-stab-controlled output frequency in 100-ke steps af l-sec intervals from 31.05 to 54.95 Mc, with each step an odd multiple of 50 kc. Used to control pulse transmitter and re-
ceiver at widely separated locations, for observation of mutual propagation conditions between the iwo points. Frequency control of r-f oscillator is obtained by mixing sample r-f signal with 1 -Mc reference and compar-
ing components of product with $50-k c$ pulse spectrum supplied by pulse generator V6B.Frequency Stepper for Radio Propagation Tests, Electronics, 32:4, P 44-46.

2.185-MC MARINE-BAND TRANSMITTER-Grounded-base Colpitts oscillator uses seriesmode crystal with driver and output stage.

Current drain is only 1.5 amp from storage battery. No converter is required. Output is 13-w rms carrier.-R. J. Brubaker, "An All-

Solid-State Marine Band Transmitter," Motorola Application Note AN-156, Feb. 1966.

PHASE-SHIFT KEYER-Used with double-sideband suppressed-carrier modulation. Crystalcontrolled Colpitts oscillator drives transistor gate, which in turn feeds conventional funed pentode r-f amplifier and tuned cathode fol-lower.-J. Dysinger, W. Wyland, and R. Wood, New Suppressed-Carrier Modulation Technique, Electronics, 33:6, p 47-49.

73.S-MC SELF-MODULATED CRYSTAL-Uses tunnel diode oscillatar to modulate crystal."Transistor Manual," Seventh Edition, General Electric Co., 1964, p 357.

$$
\begin{aligned}
& L_{4}=2 T_{1} 1 / 4^{n \prime} \text { Form, top center } \\
& L_{5}=3 T_{1} 1 / 4^{\mathrm{IN}} \text { Form } \\
& Q_{1} \text { Thru } Q_{6}=5 \mathrm{SM} 2498
\end{aligned}
$$

Communications," McGraw-Hill, N.Y., 1966, p 325.

NARROWBAND 162-180 MC TRANSMITTER-
First stage acts as buffer for oscillator, while Q2 and Q3 multiply frequency. Class-C

$$
\begin{aligned}
& L_{1}=8 T_{1} 1 / 4^{\prime \prime} \text { Form with core, lop center } \\
& L_{2}=6 T, 1 / 4^{\prime \prime} \text { Form } \\
& L_{3}=2 T, 1 / 4^{\prime \prime} \text { Form }
\end{aligned}
$$

power amplifier using two SM2498 transistors in parallel delivers 300 mw to 50 -ohm load.-Texas Instruments Inc., "Solid-State

CHAPTER 95
 Trigger Circuits

OPERATIONAL TRIGGER-Combines some feofures of operotional amplifier with those of Schmitt trigger. Input diodes prevent omplifier safurotion.-P. Lefferts, Operational Trigger For Precise Control, Electronics, 37:28, P 50-55.

INPUT TURNS BOTH TRANSISTORS ON-Unlike Schmitt trigger, both tronsistors stop conduction when input is removed.-L. L. Kleinberg, Complementary Shoper Replaces Schmitt Trigger, Electronics, 37:26, p 66.

PULSER FOR 250-KW MODULATOR-Trigger generotor for scr modulotor uses iwo-loyer and four-loyer diodes to provide pulse burst repetition rates up to $25 \mathrm{kc} .-\mathrm{H}$. G. Heard, Controlled Rectifier Produces Quarter-Megowatt Pulse Power, Electronics, 34:25, P 54-55.

RESISTOR TESTER-Operationol trigger is tripped by bridge circuits when resistor under test is 0.11% high for switch position shown. Reversing switch gives some sensifivity for low resistors.-P. Lefferts, Operotionol Trigger For Precise Control, Electronics, 37:28, p 50-55.

VOLTAGE-LEVEL TRIGGER-Output pulse appears when input is 6.0 v but not for inputs up to 7 volts obove or below this level. Circuit then continues on until input drops below 5.4 v.-R. F. Woody, Precise 6-Volt Input Triggers Circuit, Electronics, 38:14, p 80.

CHOPPER AND PHASE DETECTOR-Input gote signal operates Schmitt trigger V1, to give identical but oppositely phased signals for phose detector of instrument for meosuring phase differences between two signols.-R. T. Stevens, Precision Phosemeter for CW or Pulsed UHF, Electronics, 33:10, p 54-57.

D-C TRIGGER DRIVES HIGH-C COAX-Emit-fer-follower incorporated in schmitt circuit provides signal shaping needed to drive highcapacitance cable with good rise time and few components.-G. Klein, Schmitt Trigger Drives Low Impedance Loads, Electronics, 36:33, p 28-29.

PNPN ONE-SHOT-Provides up to 10 sec delay. Circuit is normally on, with point A at $-11 v$ and 8 af +1 v . Negative trigger applied to base of pnpn unit operates circuit.J. B. Hangstefer and L. H. Dixon, Jr., Triggered Bistable Semiconductor Circuits, Electronics, 32:35, p 58-60.

MICROWATTS AT QUIESCENCE-Circuit has same characteristics as single unijunction transistor but dissipates only microwatts of powar when eff.-R. A. Wilson, Pnp Plus Npn Equals Unijunction Transisior, Elecironics, 38:5, p 94-95.

tRIGGER WITH TRANSMISSION-LINE FEED-BACK-Feedback capacitor is replaced by open-circuited section of tronsmission line. Duration of output pulse taken across dynode
load of secondary-emission pentode is adjusted by varying line length.-E. J. Martin, Jr., How to Use the Secondary-Emission Pentode, Electronics, 33:41, p 60-63.

NOISE-IMMUNE SCR TRIGGER GENERATORModification of line-type radar modulator gives general-purpose triggering circuit that is immune from noise. Expensive pulse-forming network of conventional scr trigger is replaced by capocitor. Sharply peaked output pulses are ideal for triggering radar modulotors for firing strobe flashtubes. Scr conducts for 10 microsec after triggering, and C1 is negative for next 15 microsec becouse
of ringing with LI, so false triggering can occur from low-level noise pulses for only last 5 microsec, by which time capacitor has charged enough to forward-bios ser so large triggering pulse is again required to furn it on. Circuit is ready for next trigger 60 microsec ofter C1 is discharged. Maximum prr is 12 kc.-J. E. Curry, No Pulse-Forming Network in SCR Trigger Generator, Electronics, 39:18, P 97-98.

CUTOFF SCHMITT-Conventional current-feedback version, in which one of the two active transistor elements is generally cut off, performs reliably even though optimum operat-
ing regions for transistors cannot always be achieved.-H. Inose, Y. Yoshida, and H. Tada, Noncutoff Circuits Improve Trigger Switching, Electronics, 35:30, p 36-39.

$\$ 1.75$ SCHMITT-Use of inexpensive transistors and fixed resistors in place of potentiometers keeps cost low. Hysteresis control R2 and trigger level control R3 are optional.

Output is $8 \vee$ peak to peak at 50 kc .-A. Pacela, Low-Cost Schmitt Trigger Reduces Hysteresis, Electronics, 38:24, P 63-64.

VOLTAGE SENSING-Unijunction transistor is triggered when input signal is slightly positive, and then generates pulses as long as input remains positive. Output can be used
o trigger flip-flop or turn on ser's.-D. V. Jones, Quick-On-The-Trigger Design, Elecfronics, 38:12, P 105-110.

SCR IMPROVES SCHMITT TRIGGER STABILITY -Input signals to 200 kc give consistent triggering over wide range of temperature, source impedance, and input impedance, and hysteresis is reduced by order of $10 .-\mathrm{M}$. Schmidt, Improved Schmift Trigger Uses SCR, Electronics, 36:17, P 68.

SERIES SCHMITT-Complementary transistors are either both on or both off, conserving power for trigger, comparator, flip-flop, oneshot, and oscillator applications. With 20-v supply, RE1 is 15 K, RC2 is 3 K , and RE2 is 1 K . -J. K. Skilling, New Complementary Transistors make Series Schmitt Circuits Practical, Electronics, 35:35, p 52-53.

DYNODE-TO-GRID POSITIVE FEEDBACK-Produces negative output pulse across plate load of secondary-emission pentode. Feedback is from dynode to control grid, rather than from plate to cathode. Diode insures that feedback pulse does not affect other circuits, and makes feedback nearly independent of input generator impedance. Used in high-speed, short-duration pulse work.-E. J. Martin, Jr, How to Use the Secondary-Emission Pentode, Electronics, 33:41, p 60-63.

SECONDARY-EMISSION PENTODE TRIGGERProduces positive output pulse across dynode load each time it is friggered by positive grid pulse. Used in high-speed, shart-duration pulse work.-E. J. Martin, Jr., How to Use the Secondary-Emission Pentode, Electronics, 33:41, p 60-63.

NEGATIVE-PULSE TRIGGER-Diode is not necessary in input circuit of secondary-emission pentode, since feedback is from dynade to control grid and negative frigger pulse is impressed on cathode. Used in high-speed, shorf-duration pulse work.-E. J. Martin, Jr., How to Use the Secondary-Emission Pentode, Electronics, 33:41, p 60-63.

PNPN FLIP-FLOP BINARY COUNTER-Negative trigger pulses praduce 2:1 operatian. Can be driven from identical flip-flap or from collector of npn silicon transistar.-J. B. Hangstefer and L. H. Dixon, Jr., Triggered Bistable Semiconductor Circuits, Klectronics, 32:35, p 58-60.

DIODE-COUPLED SCHMITT-Uses include pulsewidth modulation of d-c voltage for switching amplifiers, wave shaping, and voltage or current monitoring. Low dynamic resistance of diode formed by Q2 keeps hysteresis
(difference between furn-on and furn-off) down to $10 \mathrm{mv} .-\mathrm{D}$. D. Robinson, DiodeCoupled Schmitt Trigger, Electronics, 37:31, p 50-51.

VARIABLE-SENSITIVITY TRIGGER-Biased diode varies sensitivity, allowing use as pulsein feedback circuit prevents regeneration. height discriminatar also.-E. J. Martin, Jr., Feedback connot occur until negative-gaing pulse greater than bias appears at plate of secondary-emission pentode. Diode bias

How to Use the Secandary-Emission Pentode, Electronics, 33:41, P 60-63.

NONCUTOFF SCHMITT-Bath amplifiers are always connected to their current sources, hence are never cut aff and can oparate in optimum legion, willi nu risk of damage by inverse base-emitter voltage. Output voltage
alfernates between iwa levels.-H. Inose, Y. Yoshida, and H. Tada, Noncutaff Circuits Improye Trigger Switching, Electranics, 35:30, p 36-39.

DELAYED TRIGGER GENERATOR-Provides controllable positive or negative delayed trigger. When used to see leading edge of multivibrator pulse on cro, trigger starts cro sweep and delay generator. After preset time, delay generator produces pulse used to trigger mvbr.-H. L. Armstrong, Transistorized Trigger and Delay Generators, Elactronics, 31:3, P 96-98.

REGENERATIVE-SWITCHING
TRIGGER-Ad. vantages over conventional Schmitt include reduced power consumption (neither transistor conducts during off state), full-range output voltage swing, and low output impedance. Some input signal appears in output. Rise and fall times are 0.15 microsec. -R. K. Vieth, Trigger Circuit Gives Less P-diss, More V-out, EEE, 11:12, p 28.

LC PULSE GENERATOR-Provides half-sinusoid output determined by L and C, when pnpn unit is triggered on by low-level positive pulse applied to its base.-J. B. Hangstefer and L. H. Dixon, Jr., Triggered Bistable Semiconductor Circuits, Electronics, 32:35, P 58-60.

VOLTAGE MONITOR-Input voltage sensitivity better than 0.7 mv is obtained from operational trigger.-P. Lefferts, Operational Trigger For Precise Control, Electronics, 37:28, P 50-55.

HIGH-IMPEDANCE SCHMITT-Use of fet QI for input stage gives high input impedance, as required for threshold detector circuit. Output pulse is square wave at up to 100 kc
triggering. Turnoff threshold is obout $0.2 \vee$ below turnon.-L. R. Lott, FET Increases Schmits Trigger Input Impedance, Electronics, 38:15, P 65.

SENSE AMPLIFIER-Blocking-oscillator transistor amplifier is triggered by output of diode bridge network. Rectification assures thot readout voltages of both polarities are sensed. Diodes attenuate small signols great-
ly relative to large signals, increasing signalnoise ratio at rectifier output to about 20:1. -C. S. Warren, W. G. Rumble, and W. A. Helbig, Transistorized Memory Monitors Earth Satellite, Electronics, 31:3, p 66-70.

BASE-TRIGGERED FLIP-FLOP-Maximum trigger rate for steering circuit exceeds 5 Mc with negative trigger pulse amplifude from 0.75 to 2 v . Requires less trigger energy than collector triggering but more accurately controlled trigger amplitude.-"Transistor Manual," Seventh Edition, General Electric Co., 1964, p 197.

SATURATED TRANSISTOR MEASUREMENTTransistor under test is biased to saturate collector to within 100 mv of ground for 10 ma collector load. Operational trigger then trips when $V \mathrm{~V}$ is 1 mv above $100 \mathrm{mv},-\mathrm{P}$. Lefferts, Operational Trigger For Precise Control, Electronics, 37:28, p 50-55.

PULSE GENERATOR-Delivers 1-amp peak output current having duration of 10 microsec when pnpn unit is triggered on by low-level positive pulse applied to its base.-J. B. Hangstefar ond L. H. Dixen, Jr., Triggered Bistable Semiconductor Circuits, Electronics, 32:35, p 58-60.

VARIABLE-HYSTERESIS SCHMITT-R7 adjusts lower trigger point, and RB adjusts upper trigger point.-R. S. Hughes, Variable-Hysteresis Schmitt Trigger, EEE, 13:7, p 41.

HOURS OF DELAY-Capacitor starts charging from -12vio $+12 v$ when switch is opened. Diode begins conducting af ground potential, and operational trigger trips when diode
passes 2 na. Timing accuracy is high.-P. Lefferts, Operational Trigger For Precise Control, Electronics, 37:2B, p 50-55.

COMBINATION SCHMITT-MONOSTABLE-Three transistors in complementary connection give Schmift trigger (Q1-Q2) and monostable mubr (Q2-Q3) in which triggering level is accurately controlled. Output pulse width is independent of input because circuit is regenerative.-G. Marosi, Combinafion Schmitt Trigger-Monostable Multivibrator, EEE, 13:10, p 77.

BLOCKING-OSCILLATOR TRIGGER GENERATOR -Generates relatively narrow pulses af adjustable repetition rate. Audio transformer provides positive feedback.-H. L. Armstrong, Transistorized Trigger and Delay Generators, Electronics, 31:3, p 96-98.

ADJUSTABLE SCHMITT TRIGGER-Accepts either sine waves or pulses. Adjustable input level contral allows trigger to occur on any desired portion of input waveform. Amplifier
stage drives flip-flop of units decade counter directly.-R. W. Wolfe, Decade Decimal Counter Speeds Printed Readout, Electronics, 31:3. p 88-90.

FOUR-STAGE PNPN BINARY COUNTER-Operates on negative trigger pulses, to provide 16:1 division.-J. B. Hangstefer and L. H. Dixon, Jr., Triggered Bistable Semiconductor Circuits, Electronics, 32:35, p 58-60.

DIODE-MODIFIED SCHMITT TRIGGER-Addition of Rb and D1 reduces loading on driving circuit when Q1 is on, thereby preventing input signal from being clamped. Same
signal may therefore drive other Schmift triggers having higher trigger levels.-J. Gaon, Diode and Resistor Increase Input Resistance of Schmitt, Electronics, 39:12, P 110-111.

EMITTER-TRIGGERED FLIP-FLOP-Pulse input makes alternate sides of flip-flop conduct on alternate trigger pulses. Maximum trigger rate exceeds 2 Mc with trigger amplitude
from 4 to 12 v . Chief limitation is high trigger current required.-"Transistor Manual," Seventh Edition, General Electric Co., 1964, p 196.

BASIC PNPN MEMORY-Delivers either positive or negative pulse output, accomplished by means of coupling diodes and transition memory capacitor.-J. B. Hangstefer and L. H. Dixon, Jr., Triggered Bistable Semiconductor Circuits, Electronics, 32:35, p 58-60.

ZERO-HYSTERESIS SCHMITT-Turn-on and furn-off voltages are made identical by using zener diode in place of RE,-R. A. Wilson, Zero-Hysteresis Schmitt Trigger, EEE, 13:2, p 62.
-

LOW-LEVEL THRESHOLD DETECTOR-Determines when millivolt-range signal exceeds adjustable threshold. Circuit is similar to Schmitt trigger. Forward gain of amplifier is increased by adding second differential amplifier stage having two low-cost transistors and three resistors. Hysteresis can be as low os 2 mv , as compared to 100 mv in standard Schmitt.-R. M. Muth, Stable Threshold Circuit With Low Hysteresis, EEE, 14:1, p 64.

VOLTAGE-SENSING TRIGGER-Long-form stability is befter than 10 mv , and can be improved still more by adding two silicon diodes in series with R2. Ideal for use in go-no-go applications.-"Transistor Manual," Seventh Edition, General Electric Co., 1964, p 325.

UJT/TRIAC PHASE CONTROL-Has wide range of stable control, without hysteresis or dependence upon supply voltage. Used in automatic feedback control systems, since uit is essentially half of balanced bridge, with built-in unbalance defection.-"Tronsistor Manual," Seventh Edition, General Electric Co., 1964, p 330.

TRANSIENT-ATTENUATING TRIGGER-Transformer coupling and diode bridge between ujt and scr greatly aftenuate transients, to prevent premature triggering of uit when used for impulse commutation in dec choppers and inverters.-'Transistor Manual," Seventh Edition, General Electric Co., 1964, p 333.

FAST-RECOVERY COLLECTOR TRIGGERINGAdditional diode, used in place of resistor from midpoint of diode pair to +6 v , has high back impedance to prevent shunting of trigger puise during triggering period, and has low forward impedance to insure fast recovery.-"Transistor Manual," Seventh Edition, General Electric Co., 1964, p 198.

THREE-INPUT TRIGGER-Digital logic permits use of only one Schmitt trigger for monitoring number of variables that can have different voltage levels of which trigger action is desired. Potentiometers provide independent control of set points for each positive input. Each input then triggers circuit independently at its particular theshold, provided circuit was not previously triggered. Circuit is taken from NASA-SP-5022 Technology Utilization Report, Lewis Research Center.-Mulriple-Input Trigger Circuit, Elesfromechanical Design, Nov. 1965, p 66.

CONVENTIONAL SCHMITT TRIGGER-QI is turned on when input exceeds 6.5 v , and input remains clamped at this level. As a result, input signal cannot drive additional

Schmift circuits that may have higher trigger levels.-J. Gaon, Diode and Resistor Increase Input Resistance of Schmitt, Electronics, 39:12, p 110-11.

20-KC TRIGGER GENERATOR-Uses ujt to drive 2N526 transistor from cutoff to saturation. Since energy in Cl is not used to trigger scr, small capacitor can be used, thereby increasing operating frequency limit. -"Transistor Manual," Seventh Edition, General Electric Co., 1964, p 333.

SIMPLIFIED FULL-WAVE UJT-SCR TRIGGERConsists of two basic half-wave circuits placed back to back, with emitters of uit's cross-coupled with network that exerts full-
cycle phase control over both scr's.-'TTransistar Manual," Seventh Edition, General Electric Co., 1964, p 330.

10-MC SCHMITT-Will operate as squarewave generator in range of 100 cps to 10 Mc, using 2N695, 2N705, or $2 N 711$ mesa tronsistors.-P. A. Mcinnis, "Low-Cost Computer Circuits," Motorola Application Note AN-130, Nov. 1965.

1-MC SCHMITT TRIGGER-Q1 conducts when input exceeds 6.8 v . Q2 always conducts if input is below 5.2 v . Ambient temperature range is 0 to $71^{\circ} \mathrm{C}$. Output at collector has $2 \vee$ minimum level change.-"Transistor Manual," Seventh Edition, General Electric Co., 1964, p 200.
base triggering with hybrid gateCombines sensifivity of base triggering and trigger amplitude variation of collector triggering. Bias potential varies in order to direct trigger pulse more effectively. This steering scheme is affractive for some nonsaturafed circuits, when collector-base voltage for conducting transistor is very small.-"Transistor Manual," Seventh Edition, General Electric Co., 1964, p 199.

TRANSIENT-REJECTING SCR TRIGGER-Integrator combined with voltage comparator defects difference in voltage-fime areas of data pulses and random transients. Dafa pulses passed are $8 \vee$ high and 0.5 millisec wide.-S. B. Marshall, Noise-Rejecting SCR Trigger Circuit, EEE, 14:7, p 102-104.

TYPICAL SCHMITT TRIGGER-Performs well at frequencies up to 100 kc . Capacitor may be removed for low-frequency operation. Widely used to produce square wave from sinusoidal input, because regenerative circuit changes
states abruptly when input signal crosses specific dec triggering levels.-Texas Instruments Inc., "Transistor Circuit Design," McGraw-Hill, N.Y., 1963, p 382.

PNPN SHIFT REGISTER-Consists of five onebit memory elements connected in cascade. -J. B. Hangstofer and L. H. Dixon, Jr., Triggered Bistable Semiconductor Circuits, Electronics, 32:35, p 58-60.

PROTECTIVE DIODES FOR SCHMITT TRIGGER -Addition of diodes D2 and D3 to modified Schmitt frigger having isolating diode DI prevents reverse breakdown of emitfer-base junction of Q1.-J. Gaon, Diode and Resistor Increase Input Resistance of Schmitt, Electronics, 39:12, p 110-111.

LOW-HYSTERESIS TRIGGER-Differential-amplifier pair, with constant-current source Q3 replacing emitter resistor, serves as level detector with low hysteresis. Good up to 60 ke.-D. B. Campbell, Low-Hysteresis Trigger Circuits, EEE, 13:1, p 76.

COLLECTOR-TRIGGERED FLIP-FLOP-Diodes with basic flip-flop serve as steering circuit, with negative input pulse being used to trigger collectors. Maximum trigger rate exceeds 5 Me with trigger amplitude from 4 to $12 v$. -"Transistor Manual," Seventh Edition, General Electric Co., 1964, p 197.

TRIGGER FOR ANY INPUT-D-c coupling of input permits triggering either by sine waves or pulses, independently of pulse shape or rise time.-P, L. Writer, DC Input Trigger Circuit, EEE, 10:9, p 29.

500-KC SCHMITT TRIGGER-Used for waveform restoration, signal level shifting, squaring, and d-c level defection, Q1 conducts if input is more negative than -5 v . Q2 con-
ducts when input is more positive than -2 v . Operating range is -55 to $71^{\circ} \mathrm{C}$.-"Transisfor Manual," Seventh Edition, General Electric Co., 1964, p 200.

LOW-COST BASIC SCHMITT-Developed for use with inexpensive 2N711 germanium pnp mesa switching transistors. Con serve as source of $10-\mathrm{Mc}$ square waves, as pulse restorer, or as general-purpose square-wave generator.-P. A. Mclnnis, "Low-Cost Computer Circuits," Motorola Application Note AN-130, Nov. 1965.

POWER FLIP-FLOP-Delivers square-wave output pulse of 1 amp when pnpn unit is triggered on by low-level positive pulse applied to its bose.-J. B. Hangstefer and L. H. Dixon, Jr., Triggered Bistable Semiconductor Circuits, Electronics, 32:35, p 58-60.

N-STAGE RING COUNTER-Uses modified memory circuit, in which input pulse turns off all pnpn stages except thot following on
stage.-J. B. Hongstefer and L. H. Dixon, Jr., Triggered Bistable Semiconductor Circuits, Electronics, 32:35, p 58-60.

50-V PUSH-PULL PULSES FOR DIODE BRIDGESchmitt trigger acts os comparotor about $0 \vee$ and provides input to two pulse amplifiers. Cathode followers furnish push-pull output
of low impedance necessary to drive a 6AL5 diode bridge. Permits two samplo-hold circuits to be run as memory pair in analog computer.-T. A. Brubaker, Precision Anolog

Memory has Extended Frequency Response, Electronics, 34:39, p 141-143.

CHAPTER 96 Tuner Circuits

PORTABLE TV TUNER-Three transisfors in Mukai and P. V. Simpson, Transistorized vhf tuner provide 19 db power gain even TUners For Portable Television, Electronics, for channel 13, with 12 db noise factor. V.

3-TRANSISTOR UHF TUNER-Conversion gain is up to 9 db and noise figure around 8 db, with drain of 18 ma at 12 v .-Transistors Provide Gain in TV Tuner, Electronics, 35:26, P 25.

ANSIT-TIME DIODE UHF/SHF TUNER-Two electronically regulated voltage sources are required to control current-funed condition and collector voltage, using transistors $0 C 468$ and TF65 with zener diodes. One
transistor operates in harmonic-genaration mode as pump oscillator, comparable to parametric amplification.-U. L. Rhode, Pushing Transistors Above Their Frequency Limlts, Electronics, 35:25, p 46-49.

AFC FOR F-M TUNER-Obtained by amplifying change in output from ratio detector os caused by local oscillator drift, and applying resulting error signal to voltage-funable ferroelectric copacitor in local oscillator through d-c amplifier.-T. W. Butler, Jr., Ferroelectrics Tune Electronic Circuits, Electronics, 32:3, p 52-55.

FERRITE-CUP TUNER-Rotary-axial tuner consists of two pairs of ferrite cups with ground D-shaped center cores, ganged to produce lineor frequency voriation from 500 to $1,600 \mathrm{kc}$ with 270° rotation. Operoting frequencies can be extended to 15 Mc .-E. A. Abbot ond M. Lafer, Miniature Ferrite Tuner Covers Broadcast Bond, Electronics, 31:9, p 72-73.

PANORAMIC FRONT END-Can be made as three plug-in units, ach containing the electrically tunable r-f, mixer, and local oscillator stages to cover 35 to 70,70 to 130 , and

130 to 200 Me. Each plug-in front end has eight voltage-funable ferroelectric tuners. -T. W. Butler, Jr., Ferroelactrics Tune Electronic Circuits, Electronics, 32:3, p 52-55.

IMPROVED CODAN-Applied to first audio tube of receiver. Tube is biased off by zener diode in cathode circuit, and keepalive current is supplied to zener from B+. Actuating codan, consisting of crystol, volt-age-doubling rectifier, smoothing capacitor C2, and load, produces positive output only
when signal is received from i-f. Crystal is of i-f center frequency. Audio is thus unblocked only when voltage of desired signal, as set by R2, is sufficient to overcome cutoff bias in cathode circuit.-R. L. Ives, Crystal Codans Give Accurate Receiver Tuning, Electronics, 33:22, p 113.

FET MIXER FOR UHF TV TUNER-Uses strip tronsmission lines. Ground-plane conductors divide circuit into three shielded cubicles, for r-f input, local oscillator output, and i-f output.-S. M. Weaver, For a Good Mixer, Add One FET, Electronics, 39:6, p 109-1 12.

TRANSISTORIZED UHF TV TUNER-Gain is 3 to 9 db over funing range of 470 to 890 Mc and noise-figure is 7 to 9 db , with output of 45 Mc. Current drain is only 18 mo af 12 v .-Transistorized UHF Tuner Feasures Low Noise, High Gain, Electronics, 36:2, P 15.

LOW-NOISE UHF TV TUNER-Input is tunable from 470 to 890 Mc , and output is $\mathbf{4 5} \mathrm{Mc}$. Gain is 3 to 9 db over uhf band, with typi-
cal noise figure of 7 to 9 db .-Texas Instruments Inc., "Solid-State Communications," McGraw-Hill, N.Y:, 1966, P 299.

SIGNAL-SEEKING TUNER-Three silicon diodes, ventionol tuning capacitors.-J. G. Hommerwhose copocitances can be varied with ex- slog, Signol-Seeking Auto Radio Uses Semiternolly opplied bios voltages, replace con- conductor Tuning, Electronics, 33:30, p 60-62.

CHAPTER 97
 Ultrasonic Circuits

HYDROPHONE PREAMPLIFIER-Cathode-follower hydraphone isolation amplifier and high-gain preamplifier feed Navy RBA-6 low-frequency radio receiver on trowler, to receive modulated 21 -kc beam that transmits trawl net depth data.-F. H. Stephens, Jr., Underwater Telemeter for Trawl Fishing, Electronics, 32:13, p 66-68.

SING-AROUND TRIGGER GENERATOR-Elec. trical echo signals generated by receiving transducer pass through $10-\mathrm{Mc}$ funed amplifier to trigger generator that delays se-

WIOE GATE GEN NARROW GATE GEN
lected defected echo and combines it with undetected echo in fast series-iransistor coincidence circuit to obtain trigger output pulse for transmitter of ultrasonic velocity meas*

REC AMP
REC GATE

UNDERSEA PROPAGATION RECEIVER-Amplified output of receiving transducer is fed to receiver gate that acts like switch in that output appears only when pulse is applied. Receiver is thus sensitive only for short intervals of time in which return is expected.

Output of receiver gate is detected by V8 and filtered to get pulse envelope for crt . Receiver pulse is also amplified by V9 and used to charge capacitor in boxcar generator, so amplitude of pulse is remembered in interval between pulses. To make boxcar
generator forget old amplitude when another pulse arrives, receiver gate is shaped into narrow pulse used to discharge capacitors through V11 just before arrival of next pulse.-W. C. Gore, Ulirasonics Tests Undersea Propagation, Electronics, 31:35, p 32-3S.

SONAR AUDIO SELECTION GATE-Triongular sliding gate of sonar target classifier selects from channel positions the sample chosen for monitoring by sonor operator-troinee,
with smooth transition from one chonnel to onother.-M. H. Damon, Jr., Tape Torget Classifier Trains Sonar Operators, Electronics, 33:13, p 65-69.

TV CONTROL RECEIVER-Uses barium fitonate tronsducer as microphone, tuned with $20-\mathrm{mh}$ coil to provide peaks at control frequencies of 38.5 ond 41.5 kc . Balanced dis-
criminator defects the two ultrosonic tones. Frequency shift of continuous ultrasonic tone activotes tuning-motor reloy. Both audio and video are killed during tuning.

Also provides remote on-off control of power.-N. Frihort and J. Krokora, Ultrosonic Tones Select Tr Channels, Electronics, 31:23, p 88-69.

HYDROPHONE PREAMP-Fet eliminates unwanted noise and added capacitance caused by long cables connecting hydrophone to shore station. Voltage gain is unity. Can be used with cables up to 3,000 feet long. If hydrophone moves in water, use l-meg resistor between gate and ground to suppress low-frequency excursions of signal.-F. Watlingion, Hydrophone Preamplifier Cuts Cable Noise, Electronics, 39:16, p 120.

22-KC SONAR -Amplifier is coupled to sonar transducer through 8:1 step-up transformer and resistor-varistor network. Circuit feeds cathode-ray display that protects V2 from overload and possible blocking during echo return time. Receiver gain is 137 db . -L. H. Dulberger, Sonar to Survey Arctic Ocean Shelf Transmits Through Ice and Water, Electronics, 34:31, p 44-45.

ZERO-CROSSING SYNCHRONIZER-Variablefrequency sinusoidal wavetrain output, starting at zero crossing, is produced by gating circuit. Used to defermine aftenuation and
velocity characteristics of ultrasonic delay lines. Covers 20 cps to 300 kc. External blocking oscillator allows use of alternative repetition rate generator when required.
-J. A. Wereb, Jr., Zero-Crossing Technique Synes Wavetrain Outputs, Electronics, 32:19, p 64-65.

UNDERSEA PROPAGATION TRANSMITTERDevelops 100-v peak signal ocross 100 -ohm matched resistive load of crystal transducer, for mean power output of 50 w . Is fed by r-f oscillator through transmitter gate that generates voltage pulse whose width is variable from 10 to 5,000 microsec, to furn on transmitter for corresponding time. PI and P2 are plug-in circuits that must be changed when operating frequency is changed in range of 25 to $150 \mathrm{kc} .-\mathrm{W}$. C. Gore, Ulirasonics Tests Undersea Propagation, Electronics, 31:35, p 32-35.

SONAR BEARING INDICATOR-Visual indicator using ordinary cro can be synchronized with rotating directional underwater acoustic transducer, to indicate relative bearing of arriving signal from target. Transducer synchro output, proportional to bearing, drives small servo motor having standard 4-top sine-cosine potentiometer. Defector output is applied across pot, and four vector outputs are fed to cathode-ray deflection plates. A-c voltage produces rotating bar, and diode clipping of half the signal converts bar to pointer emanating from center of screen. With target signal present, input amplitude is adjusted to produce line from center to edge of screen.-Target Bearing Indicator, "Electronic Circuit Design Handbook," Mactier Pub. Corp., N.Y., 1965, p 123.

MAGNETOSTRICTION TV REMOTE CONTROL -Frequency of transistor oscillator is controlled by either of two lengths of nickel tubing, each floating inside form having two coil windings. One coil acts as driver and the other as pickup to provide feedback voltage for sustaining oscillation at control frequencies of 38.5 and 41.5 kc . Aluminum diaphragms on front ends of tubing increase acoustic output.-N. Frihart and J. Krakora, Ultrasonic Tones Select Tv Channels, Electronics, 31:23, p 68-69.

SELF-TUNED ULTRASONIC GENERATOR-Current from feedback transducer goes through ballast lamp B1, keeping oscillator circuit

V1 funed to desired frequency between 20 and 40 kc .-5. Vogel, Ultrasonic Equipment in Industry, Electronics, 34:4, p 52-55.

900-KC FLAW DETECTOR-Attenuation of ultrasonic pulses beamed through test piece reveals presence and extent of internal defects, such as nonbonds between aluminum cladding and uranium core. Test piece
and transducers are submerged in water to provide good coupling for 900 -ke ultrasonic wave from barium titanate transducer of pulser. Motor sets discriminator threshold to equal signal received from aftenuator.-J. D.

Ross and R. W. Leep, Ultrasonic Pulses Defect Reactor-Slug Flows, Electronics, 31:25, p 59-61.

WATER DEPTH TELEMETER-Determines exact depth of trowl net under woter, for interception of desired school of fish. Continuous depth information is transmitted to trowler by modulated 21-kc ultrasonic beom, along with water temperature.-F. H. Stephens, Jr., Underwater Telemeter for Trowl Fishing, Electronics, 32:13, p 66-68.

19.5-KC SONAR F-M DEMODULATOR—Used in playback of active sonar f-m signals multiplexed onto one track of magnetic tope, for training students af land-based sonor. Bandpass filter of input demodulator selects band of frequencies ossociated with desired $\mathbf{f - m}$ carrier. Output from filter is amplified and clipped for switching demodulotor, whose output is varying component of average modulating signal current.-M. H. Damon, Jr., Tape Target Clossifier Trains Sonar Operators, Electronics, 33:13, p 65-69.

60-KC HYDROPHONE RECEIVER-Shore-bosed receiver responds to four signal frequencies in 60-kc region, at levels as low os 1 microvolf, coming from receiving hydrophone through up to $\mathbf{1 5 , 0 0 0}$ feet of $\mathbf{1 2 0}$-ohm under-
water cable. Output of cathode follower V6B is connected to four Foster-Seeley discriminotors (not shown) that demodulate signals for driving recorder. Used in monitaring performonce of four underwoter mines while
test ship passes over.-M. J. Aucremanne and D. D. Woolston, Telemeter System Relays Undersea Ordnance Data, Electronics, 31:41, p 84 - 87.

60-KC UNDERWATER TRANSMITTER-Consists of oscillator, buffer, driver, and power amplifier feeding barium titanate projector. Bandwidth is 1 ke in $60-k e$ region. Used to monitor underwater mine operation os test ships pass over. Receiving hydrophone on bottom may be up to 600 feet awoy. When mine senses approach of target, relay K1 is activated, furning on transmitter.M. J. Aucremonne and D. D. Woolstion, Telemeter System Relays Undersea Ordnance Data, Electronics, 31:41, p 84-87.

SONAR PEAK-AMPLITUDE DETECTOR-Reshopes pulses from playback amplifiers handling pulse-amplitude-modulation timedivision multiplex signals recorded and reproduced in magnetic-tope storage system, to provide norrow 2-microsec pulses coinciding with reference playback clock and having amplitude proportional to peak amplitude of input pulse sample. Used in fraining sonar operators af land-based sonar. -M. H. Damon, Jr., Tape Target Classifier Trains Sonor Operators, Electronics, 33:13, p 65-69.

RESPONDER FOR 13-KC DOG WHISTLETuned stages Q1-Q2-Q3 each having 700cps bandwidth, staggered to give total bandwidth of 1.7 ke for amplifier. Untuned
stage Q4 maximizes gain yet prevents aperation of device by circuit noise. Diode defectar D1 makes Q5 conduct, energizing relay K1 and sounding response bell for 25 sec
(controlled by charging of C3),-M. R. McCann and I. Aleksonder, Ulirasonic Frequency Responder Aids Blind, Electronics, 34:43, p 48-49.

BROADBAND HYDROPHONE PREAMP-Provides gain of 3 S db af 250 kc , with exfremely low noise figure (within 1 db of thermal). Operating power of $\mathbf{2 0} \mathbf{~ m a ~ d - c ~ c a n ~}$ be fed down same RG/B coax used to tronsmit signal.-R. N. Foss, Transistor Preamp has Very Low Noise, Electronics, 31:29, P 92-96.

SONAR THUMPER-Strobotron fube circuif energizes spark coil, ionizing spark gap and discharging bank of $4,000-\mathrm{v}$ capocitors through underwater fransducer coil, causing adjacent aluminum plate to produce
high-power sound pulse thot penetrates sediment layers and bedrock for oceanographic research.-New Sonar Thumper Charts Ocean Subbottom, Electronics, 34:5, p So-57.

SING-AROUND COUNTER CONTROL-Timer stort-pulse generator is fast series-fransisfor coincidence circuit. Stop-gate generator is one-shot mubr that prevents IN97A diode from passing blocking oscillator negative sync pulse until mubr fires. Used to count number of sing-around cycles and measure fotal time in system for measuring ultrasonic velocity in liquids and solids.-R. L. Forgacs, Precision Ultrasonic Velocity Measurements, Electronics, 33:47, p 98-100.

UNDERSEA PROPAGATION GATE GENERA-TORS-Pulse-rate oscillator VI generates pulses with variable time interval from 0.3 to $\mathbf{1 7 0}$ millisec for triggering rate. Normal operation is af BO^{2} millisec, corresponding
to 12.5 cps . Trigger pulses are amplified and delivered to circuits that trigger transmitfer and delay generators for two receivers, and synchronize crt sweep. Used to measure changes in propagation time of less than

20 microsec over direct path of up to 300 feet in sea water.-W. C. Gore, Ultrasonics Tests Undersea Propagation, Electronics, 31:35, p 32-35.

THYRATRON-SWITCH TRANSMITTER-Receives 100 or 1,000 -pps trigger pulse from rote generotor and produces pulse of r-f oscillations that decays from maximum peak-topeak of 300 v , for measuring ultrasonic velocity in metol test somple. Pulse fitter is less thon 1 millimicrosec, for accurate measurement of time inferval between ultrosonic echo pulses.-R. L. Forgocs, Removing the Jitter from Thyrotron Pulses, Electronics, 32:20, p 60-61.

19.5-KC SONAR F-M MODULATOR-Used in recording signals fram active sanar on magnetic tape, for later playback to control lond-based sonor used in troining opera-
tors. Modulotor is bosically sawiooth generator whose reperirion frequency is changed by amplitude of modulating input signal. -M. H. Damon, Jr., Tope Target Classifier

Trains Sonar Operators, Electronics, 33:13, p 6569.

PRF MULTIPLIER-Multiplies pulse repetition frequency of ultrasonic receiver by factor of either 4 or 8 , into range between 35 and 85 cps af which synchronous motors of indicator system work best. Multiplication is based on controlled mvbr oscillator V1, whose frequency can be varied from 40 to 180 cps by varying control voltage Vc. Multiplier feedback circuit acts to control this voltage so mvbr frequency is exact multiple, 8 or 16, of input pulse rate.-H. F. Messias, Ultrasonics Measures Flow Velocity of Rivers, Electronics, 34:41, p 56-69.

MAGNETOSTRICTIVE DELAY LINE AMPLIFIER -Used to reshape output signal of delay line used as 12 -event serializer. Q3 clips two negative peaks of signal and Q4 flattens pulse. Pulse width control adjusts gain of Q2 to vary pulse width.-R. P. Rufer, How to Measure Simultaneous Events with Magnetostrictive Delay Lines, EEE, 14:5, p 44-49.

PORTABLE FISH FINDER-Measures depth up to 120 feet and provides lower-intensity echoes from schools of fish. Indicator is neon lamp at end of rotating arm driven
by constant-speed motor. Magnet triggers 200-kc ultrasonic transmitter and makes neon lamp glow af zero on circular scale. Lamp glows again for each echo pulse
from fish and for bottom echo.-H. C. Single, Portable Depth Finder for Small Boats, Electronics, 33:6, p 50-51.

TRF RECEIVER-Operates at either 85 or 135 kc. Input impedance is 72 ohms to match transducer. Detected pulse of rectifier bridge is amplified in direct-coupled amplifier V4 and differentiated of its output, ta trigger one-shot mubr VS, which in turn triggers transmitter and prf multiplier in computing circuitry.-H. F. Messias, Ultrasonics Meassures Flow Velocity of Rivers, Electronics, 34:41, p S6-59.

PULSED 30-W TRANSMITTER-Uses pulsed Hartley oscillator operating af either 85 or 135 kc , followed by push-pull driver amplifier, push-pull power amplifier, and power amplifier that feeds 72 -ohm transducer through step-down transformer Q1. Oscillator operates for 1 -millisec period controlled by VI, which in furn is triggered by negative pulse coming from receiver through free-running mvbr V6.-H. F. Messias, Ultrasonics Measures Flow Velocity of Rivers, Electronics, 34:41, p 56-59.

CHAPTER 98 Video Circuits

CASCADED SHUNT-PEAKED STAGES-Design procedure is given for n identical one-pole stages. Bandwidth of total cascaded amplifier is equal to bandwidth of single stoge multiplied by shrinkage factor of 0.64 for two stages, 0.51 for three, and 0.44 for four. Two-stage example shown gives gain of 8.5 and bandwidth of 2.1 Mc .-R. S. Pepper and D. O. Pederson, Designing ShunfPeaked Transistor Amplifiers, Electronics, 33:49, p 68-70.

SILICON WIDEBAND VIDEO AMPLIFIER-Employs feedback around each of its three stages, with zener diode for stabilizing cot
lector-emitter voltage. Voltage and current amplification are 20 db , and useful frequency range is $\mathbf{3 . 2} \mathbf{k c}$ to $\mathbf{3 2} \mathbf{~ M c}$.-Texas Instruments

Inc., "Transisfor Circuit Design," McGrawHill, N.Y., 1963, p 267.
 Device Circuits, PSC 18 (originally PC 201), p 18-2.

PREFERRED VIDEO AMPLIFIER CHAIN-Designed for use in radar display system to mix positive radar video with positive marker pulses, to invert combined signals, and to

INTERMEDIATE
AMPLIFIER

DRIVER

Components:

Tube type	R6	C5	C6	C7
5670	. 1808	180	390	
6021	220	150	560	

amplify them sufficiently to intensity-modulate cathoderay indicator. Input polarity is negative. Maximum peak amplitude is 60 v . Amplification is variable from 30 to 60.-

NBS, "Handbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. 1, Electron Tube Circuits, 1963, PC 25, p 25-2.

100-MC-BANDWIDTH VIDEO AMPLIFIERShunt feedback networks around each stage reduce overall gain at low frequencies, trading gain for bandwidth, so that five cascaded stages give overall gain of 50 db . -J. C. de Broekert and R. M. Scarlett, Transistor Amplifier has 100 Megacycle Bandwidth, Electronics, 33:16, p 73-7S.

TRIPLE-INPUT VIDEO MIXER-Each grid is biased to cutoff, so mixer accepts only posi-tive-polarity pulses having sufficient amplifude to overcome this bias.-NBS, "Handbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. 1, Electron Tube Circuits, 1963, p N4-2.

Bunn, Determining Electron Density and Distribution in Plasmas, Electronics, 34:14, P 71-75.

PUSH-PULL CLIPPER-Accepts balanced output of video preamp in microwave inter-
ferometer system and provides both linear and clipped outputs for oscilloscope.-H. L.

RANGE STROBE MARKER MIXER-Commoncathode dual-triode video mixer is used for combining two positive-polarity radar ronge strobe markers.-NBS, "Handbook Preferred Circuits Navy Aeronauticol Electronic Equipment," Vol. 1, Electron Tube Circuits, 1963, p N4-2.

MARKER-IFF MIXER-Combines 9-v positive markers with iff signols from 2 to 10 v.NBS, "Handbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. 1, Electron Tube Circuits, 1963, p N4-2.

PENTODE COMMON-PLATE MIXER-Circuit is good odder for coincident inpuls. Operates best with positive input pulses and negativegoing output.-NBS, "Hondbook Preferred Circuits Novy Aeronoutical Electronic Equipment," Vol. 1, Electron Tube Circuits, 1963, p N4-7.

PREFERRED INTERMEDIATE-LEVEL AMPLIFIERIs noninverting linear pulse voltage amplifier. May follow radar second detector. Minimum bandwidth is 3 Mc and maximum output 6 v . Signal polarity is positive input and posifive output.-NBS, "Handbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. II, Semiconductor Device Circuits, PSC 19 (originally PC 219), p 19-2.

HIGH-GAIN VIDEO PREAMP-Used in microwave interferometer system when additional gain is required along with 3-Mc bandwidth. -H. L. Bunn, Defermining Electron Density and Distribution in Plasmas, Electronics, 34:14, p 71-75.

PREFERRED INTERMEDIATE-LEVEL AMPLIFIERDesigned to amplify l-v signal, such as output of mixer or cathode follower, to lovel required for input to video driver. Amplification of 3 to 5 may be increased by cascading. Use of R5 and C4 is optional.-NB5, "Handbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. I, Electron Tube Circuits, 1963, PC 26, p 26-2.

R3	Tube type	R4	C3	C4
$1.5 \mathrm{~K} \Omega$	5670	1800	180	. 47 pf
	6021	. 220 n	. 150	. 47
2.2 Kn	eith	180Ω	270	

THREE-INPUT TWO-OUTPUT MIXER—Uses two separate common-cathode video mixers. same heading markers are inserted into both mixers from input 2, while other inputs handle independent markers.-NB5, "Handbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. 1, Electron Tube Circuits, 1963, p N4-3.
 MIXER-Combining of video signals with pulsez is accompanied by inversion of input signal. Value of R4 is 270 ohms for 5670 and 470 ohms for 6021. R2 is $\mathbf{6 8 0}$ ohms for 5670 and 1 K for 6021. Input signals must be positive.-NB5, "Handbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. I, Electron Tube Circuits, 1963, PC 24, p 24-2.

NONADDITIVE COMMON-PLATE MIXERPlotes are coupled by diode that is nonconducting because plate is at lower potential than cathode. If input pulses are not coincident, negative pulse of sufficient amplitude af either input will appear at output. If inputs are coincident, positive pulse appearing of plate af section A will not appear af output unless of sufficient amplitude to overcome bias established by positive output from section B. Radar video must be applied to input 2, since output of section A must overcome 5-v diada bias.-NBS, 'Handbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. 1, Electron Tube Circuits, 1963, p N4-4.

SINGLE-ENDED VIDEO PREAMP-Single-ended input from balanced mixer is achieved by terminating one arm of mixer. Bandwidth is 3 Mc. Used in microwave interferometer sys-tem.-H. L. Bunn, Determining Electron Density and Distribution in Plasmas, Electronics, 34:14, p 71-75.

DISTANCE-MARKER MIXER-Uses compensated plate load for triodes to combine distance markers with radar video.-NBS, "Handboak Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. 1, Electron Tube Circuits, 1963, p N4-3.

TWO-STAGE WIDEBAND VIDEO AMPLIFIER -D-c feedback provides stable d-c operotion for normal production spread of components and normal temperature variations. Supply voltage changes up to 25% have negligible
effect an performance. Open-loop bandwidth is 1 Mc for 50 db gain, and bandwidth of $30-\mathrm{db}$ closed-loop gain is 17 Mc.-Texas Instruments Inc., "Transistor Circuit Design," McGraw-Hill, N.Y., 1963, p 269.

THREE-INPUT VIDEO MIXER-Used in radar systems for combining any three of the following: radar video, beacon, range markers, range strobe, and aximuth markers.-NBS, "Handbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. 1, Electron Tube Circuits, 1963, p N4-1.

THREE-PENTODE MIXER-Triode is used as phase splitter. Both positive and negative signals are combined from four inputs. Highfrequency compensation is used in common plate circuit of pentodes.-NBS, "Handbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. 1, Electron Tube Circuits, 1963, p N4-5.

FOUR-INPUT HIGH-LEVEL PULSE MIXERTriode in series with plate load of mixer provides for additional blanking pulse.-NBS,
"Handbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. 1, Electron Tube Circuits, 1963, p N4-3.

VIDEO PREAMP-Accepts output of balanced Electron Density and Distribution in Plasmas, mixer of microwave interferometer system. Electronics, 34:14, p 71-75. Bandwidth is 3 Mc.-H. L. Bunn, Determining

PREFERRED PULSE EMITTER-FOLLOWER-Twostage cascaded emitter-follower is intended primarily as video line driver for positive pulses. Will drive load impedances as low as 50 ohms. Input impedance is about B0,000 ohms in parallel with 25 pf. May be modified for negative inputs by replacing Q1 and Q2 with complementary pnp types and
age amplification is 0.975 and power is 30 db .-NBS, "Handbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. II, Semiconductor Device Circuits, 1962, PSC 21 (originally PC 221) p 21-2.

SHUNT-PEAKED INTERSTAGE-Pole-zero cancellation design procedure for using shunt peaking gives simple cascaded broadband video amplifier. Gain is 10.4 and bandwidth is 1.05 Mc.-R. S. Pepper and D. O. Pederson, Designing Shunt-Peaked Transistor Amplifiers, Electronics, 33:49, p 6B-70.

PENTODE MIXER-Negative video plus iff signals are inserted af grid, while range strobe, from cathode output of blocking oscillator, is applied to cathode.-NBS, "Handbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. 1, Electron Tube Circuits, 1963, p N4-4.

(19,

COMMON-PLATE TRIODE MIXER-Has two inputs, for combining mixed markers and radar video. Cathode resistors are unbypassed, for gain stabilization.-NBS, "Handbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. 1, Electron Tube Circuits, 1963, p N4-3.

PREFERRED LOW-LEVEL PULSE CATHODE FOL-
LOWER-Used to couple output of low-level video stage to resistive load in applications where high-duty-factor signal makes direct
coupling desirable.-NBS, "Handbook Pree where high-duty-factor signal makes direct
coupling desirable.-NBS, "Handbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. I, Electron Tube Circuits, 1963, PC 22, P 22-2.

TWO-INPUT THREE-OUTPUT MIXER-Combines two inputs and distributes them to each of three independent outputs, which are connected to separate indicators.-NBS, "Handbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. 1, Electron Tube Circuits, 1963, p N4-3.

THREE-INPUT IFF MIXER-Common-plate connection serves for combining three iff signals. Common cathode resistor provides some degeneration.-NBS, "Handbook Preforred Circuits Navy Aeronautical Electronic Equipment," Vol. 1, Electron Tube Circuits, 1963, p N4-3.

VOLTAGE-CONTROLLED GAIN-Silicon diodes serve to vary gain of wideband video amplifier over range from 2 to 32 db , with bandwidth remaining almost constant at 12 Mc and input impedance constant of 10 K . -R. S. Hughes, A Wideband Video Amplifier with Variable Gain, EEE, 12:8, P 54-55.

COMPRESSION AMPLIFIER-Single transistor serves as compression amplifier having 50 db dynamic range, for nonsaturating amplification of widely ranging video signals. Provides minimum output of 1 v for 20 mv input, but does not saturate with $6 v$ input.

Circuit gain is minimum of 1 and maximum of 15. Two circuits are cascaded in actual application.-R. W. Cotterman, One Transisfor, 50 Db Dynamic Range Compression Amplifier, EEE, 13:5, p 46.

TWO-INPUT MIXER-Used to combine range and heading markers in radar system.-NBS, "Handbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. 1, Electron Tube Circuits, 1963, p N4-1.

MIXER-LIMITER-Common-plate mixer uses diode-limiting coupling circuit to nullify adding feature. Bias voltage on diode sets limiting level.-NBS, "Handbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. 1, Electron Tube Circuits, 1963, p N4-8.

INPUT 2
INPUTI
DUAL-GRID PENTODE MIXER-Uses 6AS6, in which suppressor grid has cutoff characteristic similar to control grid. Pulses of higher amplitude, such as markers, should be impressed on suppressor grid, since its transconductance is about one-fourth that of control grid. Chief drawback is need for large screen bypass capacitor.-NBS, "Handbook Preferred Circuits Navy Aeronaufical Electronic Equipment," Vol. 1, Electron Tube Circuits, 1963, p N4-9.

PREFERRED COMMON-CATHODE MIXERCombines video signals and pulses from two inputs, as for radar video, beacon signals, range markers, range strobes, and azimuth markers. Mixer is nonadditive and noninverting, con handle fast rise fimes, but amplification is less then unity and it cannot handle negative inputs.--NBS, "Handbook Preferred Circuits Novy Aeronautical Electronic Equipment," Vol. I, Electron Tube Circuits, 1963, PC 23, p 23-2.

THREE-INPUT TWO-PENTODE MIXER-Disfance morkers and iff signals are inserted at separate grids on one tube, while radar video from input 3 is impressed on control grid of other pentode.-NBS, "Handbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. 1, Electron Tube Circuits, 1963, p N4-4.

RANGE STROBE MARKER-IFF MIXER-Combines positive-polarity markers with iff signals, to give 8-v positive output.-NBS, "Handbook Preferred Circuits Navy Aeronautical Electronic Equipment," Vol. 1, Electron Tube Circuits, 1963, p N4-2.

TWO-PENTODE RADAR AND IFF MIXEREach grid is clamped by diode to establish base line of positive input pulse at -1.8 v.-NBS, "Handbook Preferred Circuits Navy Aeronautical Electronis Equipment," Vol. 1, Electron Tube Circuits, 1963, p N4-5.

CHAPTER 99
 Voltage Measuring Circuits

D-C VOLTAGE COMPARATOR-Campares lang-duration sowiaoth input with dec reference and generotes pulse when inputs
coincide.-R. D. Valentine, D-C Volfoge Comparator Circuit Uses Tube and Transistor, Electranics, 34:24, p 66.

R-F VOLTMETER-Circuit generates low-frequency wavaform whase amplitude is equivalent to that of unknown r-f voltage, using photochopper modulator V1-V2 as error de-
tector. Arrangement gives seven voltage ranges, from 10 mv rms to 10 v rms full scale, over frequency range of 500 kc to 1,000 Mc.-T. C. Anderson, Measuring Low-

Level R-F Voltage with Sarvo Feedback Techniques, Electronics, 34:2B, p 63-65.

DUAL-RANGE D-C VOLTMETER-With switch in position 2, serves as standard 0-50 v d-c voltmeter. With switch in position 1, R1 is shunted across $50-\mathrm{mv}$, 1 -ma meter to allow about 3 ma through $27-\mathrm{v}$, 1 -w zener diode CR1. CR2 diode 1 N540 is for temperature compensation. About 27 v is then held across the diodes, and meter scale represents 27 to 32 v , with sensitivity of 0.1 v dec per division. R3 is used for calibration.-M. W. Raybin, Dual Range DC Voltmeter, EEE, 10:12, p 31.

POWER-FREQUENCY HARMONIC METER-Has four bandpass filters, tuned to first four harmonics of 60 cps , and vivm that measures voltage at each filter output, in five ranges covering from 0.3 to $30 \vee$ full scale.-R. 5 . Brown, Tuned Voltmeter Reads Harmonic Amplitude, Electronics, 32:3, p 68.

DIFFERENTIAL VOLTMETER-High-impedance differential-input transistorized panel voltmeter has stable zero point, eliminating need for undesirable zero control. Meter compares voltage under test with known zenerregulated reference voltage. Circuit is differential Darlington-connected emitter-follower
using pair of 2 N 2060 's. Bias point is stabilired by constant-current sync connected to 2N1613 transistor. Accuracy is 1% if unmatched source impedance is less than 10K. -A High-Stability Differential Volimeter, "Electronic Circuit Design Handbook," Mactier Pub. Corp., N.Y., 1965, p 152.

PULSE PEAK METER-Indicotes peak of fast voltage pulse to within one of several predetermined voltage ranges established by tunnel-diode level-sensing circuit and indi-
cated by series of exclusive-or dual-coil reed relays.-J. C. Rich, Pulse-Peak Indicator, EEE, 13:2, p 61.

HIGH-IMPEDANCE DIFFERENTIAL VTVM-Infinite input impedance is obtained in directcoupled d-c amplifier by continuously and automatically feeding back to input a bucking voltage equal to signal voltage. Use of both inputs permits differential measurements of small signal voltages at mean levels between -150 and +300 v , for measuring
grid-cathode potentials in high-impedance circuits or for balancing high-impedance push-pull circuits. Instead of input voltage dividers, range resistors are used in output circuif. Voltage supply need not be regu-lated.-V. D. Schurr, D-C Amplifier Expands Input Voltage Range, Electronics, 31:23, P 87-89.

FET D-C MILIVOLTMETER-Uses differential amplifier assembled from pair of simple twostage feedback amplifiers having voltage
gain of 3. Input sensitivity of meter is $\mathbf{2 0}$ meg per v and common-mode rejection ratio is 1,000 to 1 . Temperature characteristics are
reasonably good when using matched fet's. -Texas Instruments Inc., "Transistor Circuii Design," McGraw-Hill, N.Y., 1963, p 522.

VOLTAGE RATIO METER-5imple circuit, having resolution better than 0.1% for measuring ratio of two voltages, also serves as accurate null detector when difference voltage is less than 0.5 v . A $115-\mathrm{v}$, 6-w lamp limits voltage applied to meter when difference voltage exceeds 0.5 v . R2 is chosen to give full-scale deflection when difference between the two voltages is maximum.-P. A. Lenk, Circuit Permits Accurate Voltage Ratio Measurements, Electronics, 34:52, P 56-57.

DIRECT-COUPLED AMPLIFIER-Gives high d-c volimeter having $0.1 v$ full scale on lowest input impedance and low drift at low cost, with approximately unity gain. Uses one fet and three bipolar transistors. 5uitable for
range. Temperafure drift is low.-J. M. Colwell, Direct-Coupled Amplifier Cuts Cost of D-C Voltmeter, Electronics, 39:12, p 109-110.

100-V A-C REFERENCE-Accurate 100-v rms source is used as reference voltage for divider to corralate vacuum-tube volimeters. Meter is altered to zero-center, with new scale indicaing voliages up to 1.825 v on each side of $100-v$ center value. D-c voltage on one side of meter is held constant by zener diode, and is compared with positive voltage applied to other meter terminal by divider action without stabilization.

Initial standardization is done by adjusting input controls for $100-\mathrm{v}$ output as determined by reference standard. Output potentiometer is then adjusted to make meter correspond (center of scale). Three diodes protect meter when unit is turned on.-Standardized AC Voltage Reference Source, "Electronic Circuit Design Handbook," Mactier Pub. Corp., N.Y., 1965, p 151.

PEAK-SENSING OPERATIONAL AMPLIFIEROperates as slideback sensing circuit to give dec output that is proportional to posifive peak of repetitive input signal. Will measure peaks of pulses as narrow as 1 neec.-"Transiterer Monuol," Seventh Edition, Generol Electric Co., 1964, p 371.

D-C PREAMP FOR VTVM-Prevents damage to fransistors when making measurements with $1.5-\mathrm{v}$ or $3-\mathrm{v}$ range in semiconductor circuits. Feedback from Q3 to Q2 gives stability and linearity. Circuit can extend range of $1.5-\mathrm{v}$ vivm down to 500 or 150 mv full scale, but is sensitive to supply voltage variations and has open-circuit gain of only about 50. -A. K. Scidmore, Low-Cost Emitter-follower Extends Voltmeter's Range, Electronics, 39:3, P 87.

PEAK-VOLTAGE MEMORY-When properly balanced, will measure voltages in range from 0 to 10 cps with average error of 0.5%. Used with conventional digital volt-
meter. Stores low-frequency positive and negative peak-voltage excursions in memory capacitor whose linear charge characteristic is controlled by operational-amplifier limit
circuit. Used for measuring low-frequency voltages in servo systems.-W. V. Weiss, Peak-Voltage Memory Measures Low-Frequency Voltages Accurately, EEE, 10:7, p 50-55.

TRANSISTOR VOLTMETER-Has input impedance of 1 megohm per volt. D-c amplifier provides gain of 100,000 .-W. Mosinski, Transistor Voltmeter is Accurate, Linear, Electronics, 32:4, p 56-57.

PEAK VOLTMETER-Auxiliary flip-flop compares input pulse with voltage already on integrating capacitor. Flip-flop then automatically adjusts capacitor charge to match
peak voltage of input. Q2 is infegrator, controlled by flip-flop Q1-Q2.-R. P. MacKenzie, Novel Design Peak Volimeter, Electronics, 33:25, p 57.

DIFFERENTIAL FET VOLTMETER-Two singleended circuits connected back to back give sensifivity of 1 meg/v.-L. J. Sevin, Jr., "FieldEffect Transisfors," McGraw-Hill, N.Y., 1965, p 110.

PHOTOCELL CHOPPER-Allows millivolt d-c voltoges to be measured accurotely with ordinory average-reading vivm. Neon lamps are fired alternately by rectified 60 -eps line voltage, causing Clairex photocells to alternate between low and high resistance states and thereby chop d-c input voltage being meosured.-I. Queen, Chopper Adopts Voltmeter to D-C, Electronics, 38:22, P 66-67.

VOLTAGE DIP COUNTER-Eoch time a-c line voltage drops below adjustable threshold level, thyrotron fires and operates electromagnetic counter. Used to count dips that might affect computer operation.-T. D. Koranye, Thyratron Monitors Line-Voltage Dips, Electronics, 34:1, P 126.

PRESET VOLTAGE-LIMIT MONITOR-Used in outomatic testing equipment to determine if voltage is within required go-band. Uses complementary transistors in blocking oscillator circuits with high input impedance and with low hysteresis at switching limits.-l. Smith, High-Impedance Voltage Monitoring Circuit, EEE, 12:4, p 65.

CHAPTER 100

Welding Circuits

MEASURING SPOT-WELDING CURRENT-Toroid placed around one of welder electrodes develops voltage that is function of rate of change of magnetic flux produced by alternoting current flowing through weld. Peakreading a-c electronic voltmeter is used ro measure resulting voltage across toroid. Selector switch positions are: 1-no signal input; 2-0 to $15,000 \mathrm{dmp} ; 3-0$ to 30,000 amp; 4-calibration.-J. Markus, "Handbook of Electronic Control Circuits," McGrow-Hill, 1959, p 326.

SPOT-WELDING TIMER-Five-thyrotron sequence timer for resistance-type spot welder
meets auto industry requirements for efficiency and reliobility.-J. Markus and V. Zeluff,
"Handbook of Industriol Electronic Control Circuits," McGrow-Hill, New York, 1956, P 343.

HEAT PROGRAM TIMER-Controls weld energy for production-line welding of electron tubes and other small components. Func-
fions controlled are low heot, weld heat, up-slope time, weld time, and down-slope time. Adjustable potentiometers permit
changing each of these times.-A. V. Ranis, Heat Program Timer Controls Weld Energy, Electronics, 31:23, p 76-78.

METAL-FOIL SPOTWELDING CONTROL-Permits precise control of high-energy capacitor discharge used in welding extremely thin and highly conductive foils or fine wires. Heat control provides range of 650 to 1,500
v for level at which energy is stored, and selector switch gives choice of 50,100 , and 200 mfd for storage capacitor.-J. Markus, "Handbook of Electronic Control Circuits," McGraw-Hill, New York, 1959, p 321.

INDUSTRIAL BRAZING CIRCUIT-Applies high r-f power peaks in short-duration pulses, such as 11 kw for 2 sec or 45 kw for 0.5 sec, repeated every 5 sec . Settings of timedelay relays RE1 and RE2 determine pulse lengths.-J. Markus and V. Zeluff, "Handbaok af Industrial Electranic Cantral Circuits," McGraw-Hill, New York, 1956, p 340.

HEAVY-DUTY WELDER CONTROL-Flip-flop thyratron circuit makes pairs of ignitrons share load alternately, ta prevent averlaading af tubes when welder is used for heavier weld ar far longer time than ariginally intended.-J. Markus and V. Zeluff, "Handbaak of Industrial Electranic Cantral Circuits," McGraw-Hill, New Yark, 1956, p 342.

THIN-FOIL WELD CONTROL-Cantral circuit uses gated rectifiers to generate welding
pulses far rates up ta 15 walds per secand in fails up ta 10 mils thick.-D. D. Kline,

Autamatic Welder far Thin Fails, Electranics, 33:36, p 48-49.

PRECISION WELD INTERVAL TIMER-Stable timer provides infervals repetitive to accuracy of 0.75%, from 1 to 110 sec in l-sec increments. Can be used for welder, enlarger, and other industrial controls.-J. Markus and V. Zeluff, "Handbook of Industrial Electronic Control Circuits," McGrowHill, New York, 1956, p 292.

CURRENT-SLOPE CONTROL FOR RESISTANCE WELDING-Varies buildup and decay rates of current, to increase weld quality and uniformity. Consists essentially of variable resistance inserted in phase-shify circuit of main welding control.-J. Markus and V. Zeluff, "Handbook of Industrial Electronic Control Circuits," McGraw-Hill, New York, 1956, p 340.

MODULATOR CONTROL FOR FULL-WAVE SCR SWITCH-Used with high-power a-c scr switching circuit to provide regulation by varying ratio of full on cycles to full off cycles of supply voltage. Also suitable for
control, and flashers. With R10 af 10K, variation of R1I from zero to maximum produced 40:1 load voltage swing.-F. W. Gutzwiller, RFl-Less Switching with SCRs, EEE, oven and furnace temperature confrol, motor

WELD TEMPERATURE CONTROL-Welding voltage passes through transformer for synchronous rectification to give signal for operational amplifier V1-V2. Output, which is integral of difference between command
voltage and resistive input voltage, is used to provide correct, fusion temperature under varied welding conditions.-G. R. Archer, Feedback and NOR Logic Yield Sound Spot Welds, Electronics, 33:B, p 48-S1.

Index

Acceleration, measurement, 731
ccelerometer, d-c motor control, 406, 407
digital-analog converter, 32
falling-sphere switch, 424
faling-sphere switch, 424
Acoustics, measuring auditorium, 309, 787
Adapter, compactron $\mathrm{f}-\mathrm{m}$ stereo, 693
fet curve tracer, 764
-m stereo multiplex, 691, 694
der, cascode 82
drain-coupled, 81
fult, 123
half, 121
Afc (see Automatic frequency confrol)
Agc (see Aufamatic gain control)
Air navigation (see Beacon
Air traffic control, beacon decoder, 78
Aircraft, $75-\mathrm{Mc}$ marker beacon receiver, 77 $75-\mathrm{Mc}$ three-light marker beacon receiver, 76 243-Mc crash beacon, 80 automatic multiple-antenna phaser, 467 autopilot fader contral, 130 autopilot failure alarm, 118 capacitance-type fuel gage, 86
fve-zone passenger public-address amplifier, 43
fuel-flow gage, 350
one-light marker beacon, 79
three-light marker beacon adapter, 80 (See also Beacon)
Alarm, 27.12-Mc diathermy frequency drift, 212 200-Me r-f radiation, 6
analog computer overvoltage, 5
autopilot malfunction, 118
avalanche warning fransmitfer, 2
balansed-capacitance fence, 86
bootstrap integrator 312
bootsrap integrator, 312
capacitance-sensitive intion, 88
capaciter fault-location, 87
computer fault-location,
differential voltage or current, 6
electronic doorbell,
flying-spot scanner sweep failure, 696
high-voltage, 5
intrusion foil-loop
lamp burnout, 7
locked-up gyro, 6
low-voltage, 5 ,
microwave system coder matrix, 3
microwave system fault, 272
missing-pulse,
multiple-input overvoltage, 4
multiple-input ses, 6
over-or-under-voltage, 119
parking meter, 293
phase-sensitive infrared intrusion, 5
photographic film break, 131
power-failure, 1
power loss on one three-phase line, 474
proximity-switch intrusion, 86
pulse-coded microwave system fault, 3
radiation, 560
radiation stopped-count indicator, 567
resistance-triggered, 7
road icing,
short-circuit, 4
short-circuit, 4
signal dropout, 7
signal-powered, 7
siren power amplifier, 4
siren preamplifier, 2
supply volfage failure, 502
temperature rate-of-rise, 1
transient spike pulse,
transmitter vswr, 362
varying-frequency fane generator, 4
vhf intrusion, 4
voltage-sensing scs, 5
warble generator, 3
wone coding generator, 2
(See also Protection)
Alternator, frequency-control diseriminator, 203 static solid-state, 314
Altimeter, aneroid-driven soparitor in datum stabilizer, 87
Ammeter, integrating, 308, 369

Amplidyne control, electric spark machining, 129
Amplifier, $0-25 \mathrm{kc}$ strain gage 366
$0-250$ ke unify-gain, 15
$0.2-5$ cps direct-coupled, 582
$0.3-70,000 \mathrm{cps}$ ecg, 380
1 cps- 30 ke mieropower, 13
$1 \mathrm{eps}-40 \mathrm{ke}$ microvoli-signal, 21
1 cps -500 ke low-noise, 22
1 cps-1 Mc direct-coupled, 9
2-cps foetal heartbeat defector, 389
2 cps-20 kc, 9
5-10,000 cps, 385
5 cps-72 kc broadband, 10
6 cps-300 kc gain-stabilized, 17
6.5-cps air-leak detector, 17^{\prime}

10 -eps push-pull, 362
10 eps-10 kc bootstrapped source-follower, 10
$10 \mathrm{cps}-100 \mathrm{kc}$ microphone, 498
10 cps-1 Mc cascaded emitter-follower, 22
10 cps-1 Me unity-gain fet, 20
15-15,000 eps lock-in, 568
15 eps -200 Mc cascode mos fet, 13
$15 \mathrm{cps}-200 \mathrm{Mc}$ common-gate mos fet, 8
17 cps -35 kc RC-coupled fet, 23
30-1,500 cps passive-redundancy, 28
46 -cps with 8 -eps bandpass, 294
50.60 , and $400 \cdot \mathrm{cps}$ servo, 656

50-2,000 cps feedback-stabilized, 589
$50 \mathrm{cps}-1$ Mc complementary curren \dagger multiplier, 24
$50 \mathrm{cps}-3.5 \mathrm{Mc}$ emitter-follower, 27
60 -eps bandstop, 18
$100 \mathrm{cps}-230 \mathrm{kc}$ with high input impedance, 25
$100 \mathrm{cps}-500 \mathrm{kc}$ diode-stabilized bias, 28
00-1,000 cps, 390
400 -cps high-impedance, 81,82
400 -cps inverter power 319
400 -cps inverfer power, 319
400-cps servo, 653
400 cps variable-gain inverter, 315
$1 \mathrm{kc}-500 \mathrm{kc}$ high-input-impedance, 27
$3.2 \mathrm{kc}-32 \mathrm{Mc}$ silicon video, 838
-ke cable-driving, 37
50-kc operational, 29
50-kc push-pull class-S, 320
$50-k c$ push-pull class-S, 320
$50-100 \mathrm{ke}, 171$
0-100 ke, 171
200-ke wide-band 4-w, 28
200-kc fixed-gain, 64
500-kc high-impedance parametric, 27
00-k
500-ke delay-line-tuned, 282
-Me-bandwidth discriminator, 9
2-Mc unneufralized common source, 10
2.2-Mc radar power, 548
3-Mc bandwidth 846

3-Mc bandwidth, 846
4.7-Mc two-stage 2N1937, 22
8.Mc limiting, 331
$10-\mathrm{Mc}$ tuned f t 15
10-Mc unity-gain video, 628
30 -Me 8 -w linear ssb, 13
$30-\mathrm{Mc} 20-\mathrm{w}$ single-sideband, 8
30 -Mc double-tuned, 19
30 -Mc gain-controlléd tetrode, 60
30 -Mc hybrid gain control, 59^{\prime}
30-Mc low-noise, 12
30-260 Mc grounded-grid broadband, 11
$35-\mathrm{Mc}$ steerable antenna contral, 466
$50-\mathrm{Mc} 40-\mathrm{w}$ single-sideband, 8
50 -Mc 2 N2410 power, 29
50 -Mc diffused-base video, 841
60 -Mc 2N743, 25
60 -Mc low-noise, 12
60 -Mc small-signal, 12
60-90 Mc voltage-tuned, 18
70.Mc 0.5-w, 14

70-Mc neutralized gain-controlled, 58
75-Mc marker beacon, 77
100 Mc bandwidth, 745
$100-\mathrm{Mc}$-band width cro, 94
100-Mc-bandwidth vide o, 840
$100-\mathrm{Me}$ cascaded three-transistor, 20
$100-\mathrm{Mc}$ insulated-gate fet, 8
100 - Mc neutralized common-source, 10
$160-\mathrm{Mc} 2-w f$ d
$160-\mathrm{Mc} 2-\mathrm{w}^{\text {f }}-\mathrm{m}, 254$
$160-\mathrm{Mc} 15-$ pawer, 255
$160-\mathrm{Mc} 15-\mathrm{w}$ thee-trans
$160-\mathrm{Mc} 15$-w three-transistor power, 803
$160 . \mathrm{Mc}$ wideband
160.Mc wideband class C, 16

Amplifier, $175-\mathrm{Mc}$ f-m mobile, 796
175-Mc r-f stage, 578
180 -Mc class C power, 806
190-400 Me broadband, 242
$200-\mathrm{Mc}$ gain-controlled 63
200-Mc neutralized fet with 12 - Me bandwidth
200-Mc neutralized fet with 12 -Mc bandwidth
14
200-Me noise-measuring, 358
$200-\mathrm{Mc}$ pulsed distributed, 554
250 -Mc 12-w, 9
250 -Mc military vhf band, 20
250-Mc power, 29
445-Mc funnel-diode, 18
450 -Mc, 26
$450-\mathrm{Mc}$ aeronautical navigation band, 25
450-Mc gain-controlled, 59
$470-890 \mathrm{Mc}, 823$
$500-\mathrm{Mc}$ neutralized, 23
500 -Mc small-signal, 24
600 - Mc cascode, 26
$1,000-\mathrm{Mc}$ wideband video, 512
50 -db dynamic-range compression, 848
$00-\mathrm{db}$ gain for disfortion monitor, 27
250,000-gain integrator, 306
0.5 -ohm source impedance, 23

50 -meg input impedance, 12
$100-\mathrm{meg}$ input impedance, 15
$250,000-\mathrm{meg}$ input impedance, 174
10-nsec pulse, 126
12-v power supply reference, 614
21-v power supply reference, 593
1-w differential audio, 297
2-w servo, 646
5-w servo, 65
6 -w servo, 656
200 -w siren, 4
a-c coupled low-noise cascode, 19
agc fet, 62
aftack control amplifier, 676
audio with $40-\mathrm{db}$ agc, 58
beta-independent gain, 782
boosting input impedance, 16
bootstrapped fet source-follower, 19
bootsfrapped fet with 30 -meg input
impedance, 18
ootsfrapped source follower, 10
broadband differential bootstrap, 82
broadband radar speed meter, 545
buffer and logic, 301
cascaded common-base uhf doubler, 259
ascaded shunt-peaked video, 838
ascode follower,
cascode integrated-circuit chip, 301
cascode video tape, 715
cascoded nuvistor-transistor, 734
CCTV receiving term
character-generator deflection, 102
chopper-type d-c, 472
chopper-type summing, 103
chopper-type summing, 103
chopperless differantiof, 174
color-tv luminance, 751
complementary-transistor Darlington, 24
compounded emitter-follower, 13
computer readout, 121
computer readout, 121
constant-current diode load, 18, 29
constant-gain differential, 12
constant- $Q, 442$
core-sensing, 67
counter bootstrap, 685
ro marker pulse, 96
ert horizontal, 98
rt unblanking, 95
current-derived stabilization, 9-11
current-difference, 591
currenisumming operation, 177
Darlingtan befa-squaring, 24
Darlington broadband, 14
Darlington oułput stage, 194
Darlington-pair servo, 645
Darlington syne distributor, 737
-c lamp-driving, 387
difference, 356, 387, 628
difference for cetv microscope, 32
differential, 62, 140, 388, 415, 506, 596, 723
differential a-f, 143
differential analog, 30

Amplifier, differential battery-charging, 74 differential current compression, 174
differential drive for transfluxor, 30
differential low-hysteresis trigger, 819
differential low-voltage alarm, 5
differential pulse width measurement, 630
differential regulated power supply, 592
differential video, 744
digital-analog compute, 34
digital-analog hold, 37
digital data read, 721
digital data write, 722
direct-coupled a-c, 10, 11
direct-coupled mos fet, 15
double-bootstrapped fet, 21
emitter-squared follower, 13
error-rate compensation, 66
expanded-scale swr meter, 373
fet source-follower, 11
flux-controlled transistor, 12
gain-controlled logarithmic, 26
gain-stabilized conversion feedback, 645
gated telemetry raceiver, 723
gyro pitch servo, 659
gyro vibration, 98
Hall-effect field coil drive, 413
Hall-effect plate drive, 416
high-gain clipping, 544
high-gain video, 843
high-valtage pulse, 512
i-f transistor cascode with age, 63
incremental R-C oscillator,
improved Darlington, 298
infinite-input-resistance mos fet, 26
infinite-inpul-impedance unity-gain, 28
infrared horizon sensor, 289
infrared width gage, 290
infegrated-circuit sense, 301
integraied d-c operational, 305
integrated output buffer, 30 .
integrated voltage reference, 614
integrating operational, 379
inverter, 90
logarithmic 0.5-6 v, 724
logarithmic $0.5-6$ v, 724
logarithmic radar, 551
logarithmic reactor startup, 128
ogarithmic reactors
logic-inverting, 339
low input capacitance, 10
low-noise contour-map design procedure, 442 low-noise fet audio with age, 11
low-naise fet audio with agc, 11 band width, 29 magnetic, 105
magnetic drum read, 587
magnetic drum write, 582
magnetic half-square, 355
magnetic tape recorder, 718
magnetostrictive delay line, 836
magnified d-c level control, 576
memory logic sense, 340
memory readout, 120
memory-sensing, 123
memory X-pulse, 343
memory Y-pulse, 349
microphone, 498
mos fet with junction transistor, 15
mos fet two-stage, 14
nanosecond thyratron driver, 513
narrow-band radar, 547
negative-positive-feedback servo, 653
neutralized-emifter-inductance h - $f, 797$ neutron counter, 726
nonlinear feedback with varistor, 14
null in integrated-circuit tester, 303
nulling, 644
operational, 308, 807
operational Darlington-input integrated, 298 operational sampling, 626
operational two-stage integrated, 302
p-most integrated broadband, 302
paralleled-T feedback, 81, 82
period reactor startup, 12
photodiode, 481, 484
photodiode noise-suppressing, 478
photoelectric agc, 476
photomultiplier, 726
photomultiplier gain stabilizer, 641
piezoelectric gage, 9
plate-cathode follower, 27
preferred high-level cathade follower, 24
pressure-sensitive resistor, 388
pulse-shaping a-f, 36
push-pull frequency-shift keying, 451
push-pull optoelectronic, 484
push-pull pulse, 820
push-pull video,
rail flaw detector, 584, 585
rail flaw detecto
read-write, 336
redundant analog, 175
reflex for sensitive relay control, 137
reflex for sensitive relay con
remote gain-control, 14, 620
remote gain-control, 14, 620
saturating bootstrap, 566
secondary-emission-pentode cathode follower, 16 secondary-
servo chopper, 115
servo integratéd-circuit, 304
servo. synchronous filter, 650
shunt-peaked video, 84'
shunt-peaked video, 840
signal-level-controlled gain, 59
signal-ievel-contraiked gain,
simple differential, 816

Amplifier, single-ended video input, 844 solar-cell strobe-generating, 17
squaring for cctv microscope, 32
stable superregenerative, 16
stereo i-f, 690
sweep power, 585
temperature-compensated Darlington, 16
temperature-stable complementary-transistor, 9
thin-film memory sense, 124
thin-film pulse, 300
thres-triode constant-current, 767
transformerless linear modulator, 402
transistor tv r-f, 769
transistorized chroma, 747
tuned r-ftransistor stage, 572
tv video output, 746
two-stage wideband video, 844
uhf doubler, 260
ultrasonic, 409
unity-gain for active filter, 217
unity-gain buffer, 11
unity-gain isolation, 17
unity-gain triode cathode follower, 16
varactor-tuned, 571
vibration-measuring, 369
video with age, 737
video inverter, 309 atenuator, 15
voltage-controled attenuator
voltage-controlled gain
voltage-difference, 591
voltage-difterence,
wideband cable-driving, 16
wideband cable-driving, 16
wideband fet, 11
wideband i-f with age, 62
wideband fwin-T, 20
wideband voltage-controlled gain, 847
wire-locating, 770
2-axis, 99
zero-crossing-detecting, 278
(See a/so all specialized circuits using amplifier stages)
Amplifier control, operational, 704
Amplitude probability density function, measurement, 441
Analog, four-quadrant muliplier, 414 353 , 416
probability multiplier, 416
square-law magamp multiplier, 351,354
triangle multiplier, 416
(See also under Analog-digital; Digital-analog)
Analog computer, 10 -bit digital-analog canverter,
exponential function generator, 267
integrating operational amplifier, 379
ladder-type network decoder, 31, 36
multiplier, 399
overvaltage alarm, 5
potentiometer error compensation, 35
pulse-amplitude multiplier, 416
pulse-width demodulator, 36
pulse-width modulator, 416
random-noise source, 535
voltage multiplier, 415
Analog counter, staircase, 685
Analog-digital converter, 3200 -Mc sampling circuit,
binary ancoder, 337
colibrator, 31
coding digit card, 36
comparator, 36
d-c amplifier, 30
encoder, 34
fast-response, 628
gate, 274
magnetic-core readoul, 33
magnetic data, 708
muftiplexer, 37
polarity defector, 34
sample-and-hold flip-flop, 625
summing and weighting net work, 30
transfluxor driver, 30
tunnel-diode, 32
video from ectv microscope, 32
video sampling amplifier, 268
voltage comparator, 33
voltmeter, 35
weighting circuit, 33
Analog memory, sample-hold circuit, 36
Analog ratio computer, Hall multiplier, 415
Analog voltage source, computer, 492
Analyzer, 15 -cps i-f amplifier, 284
eeg waveform, 384
frequency, 248,669
gasoline engine rotation, 67
nuclear flight time interval, 783
nuclear fight time interval,
neutron time of flight, 560,564
pulse height, 115
radar noise clipper-limiter, 332
radar noise clipper-limiter,
random noise, 268
Anesthesia, servo contro
shock spectrum, 376
signals and noise, 441
signals and noise, 441
And gate (see Logic)
Anemograph, decoder drive, 733
Antenna, audio-controlled phaser, 467
automatic phasing control, 467
butomatic phasing
impedance measurement, 674
variable-directivity phase-shift control, 466
Antenna pattern, radar with logarithmic amplifier, 551
Antennafier, dipole fixed-gain, 569

Antennafier, dipale phase-shift, 474
dipole variable-gain, 63
slot, 573
varactor-tuned, 571
Anticoincidence, arc protection, 509
Anticoincidence circuit, scintillátion counter, 565
Anticoincidence detector, nonoverlapping pulses, 118
Aperture correction, tv camera, 735
Are protection, comparator, 509
Astronomy, variable-star detector, 641
Attenuator, logarithmic, 362, 373
recording galvanometer input signal, 587
transistor, 61
two-transistor electronic, 58
voliage-controlled mos fet, 15
Audio, 400 -cps oscillator, 670
Audio, 1,000-cps wobbulated speech simulat or, 683
1,800 -cps alarm tone generator, 6
1-Me modulated funnel-diode osciltator, 449
10-w stereo amplifier power supply, 694
30 -w amplifier overioad protection, 504
active adiustable-bandpass filter, 216
adjustable tuning-fork filter, 218
alarm beep or tone generator, 6
a-m/f-m poriable, 570
amplitude-stable transducer-exciting oscillator, 583
artificial larynx, 388
attack control amplifier, 676
audible auto turn-signal indicator, 65, 70
automatic f-m stereo switch, 689
automatic impedance-matching preamp, 498
balanced variable-threshold control switch, 441
bass boost, 51
battle stations signal generator, 3
battle stations signal generator,
bridge-stabilized oscillator, 457
bridge-stabilized osc
chafter-jamming tone genarator, 461
chatter-amming, ${ }^{\text {codon }}$
collision signal generator, 3
compactron $\mathrm{f}-\mathrm{m}$ stereo adapter, 693
cube-root signal compressor, 267
d-c voltage-controlled pulse generator, 145
delta tv sound, 743
driver, 693
driver for fader, 39
electronic fader, 39
elactronic music demonstrator, 671
fet squaring circuit, 265
flip-flop controlled switch, 710
horn signal generator, 3
loudness control, 51
low-cost discriminator, 251
low-noise agc, 61
low-pass d-c to l-cps, filter, 219
magnetic-tape print-through squelch, 720
magnetic tape recording amplifier, 719
measuring auditorium acoustics, 309, 787
microwatt oscillator, 530
noise-actuated avc, 793
noise-free keying, 481
nonlinear voltage-controlled oscillator, 463
percussion music synthesizer, 214
Q multiplier, 141
siren preamplifier, 2
siren warble generator, 3
siren zone code generator, 2
snap-action power tevel switch, 127
sonar selection gate, 827
sound level meper, 444
sound level metor rectifier, 446
sound pulse generator, 833
stereo multiplex transmitter, 890
three-transistor class A color ty, 752
tone contral, 50
tuning motor noise-actuated squelch, 412
two-stage discriminator, 201 ,
two-tone electronic doorbell, 7
variable-sweep signal generator, 676
variable-s weep signal generator, 676
varying-frequency alarm tone generator, 4 , 220
oliage-controll dropping resistor for filter, 22
voltage-controlled v fo, 454
volume compress
wailing-siren, 5
wailing-siren, S
(See also Amplifier; Preamplifier; Receiver;
Recorder; Servo; Stereo; Tape Recorder;
Transceiver; Transmitter; Ultrasonics)
Audio amplifier, $0.5-100 \mathrm{cps}$ tunable, 49
$1 \mathrm{cps}-30 \mathrm{kc}$ micropower, 13
eps-20 kc, 9
100-350 cps crevasse-defector receiver, 51
$100-350 \mathrm{cps}$ creva
$130-800 \mathrm{cps}, 477$
$1300-1,000 \mathrm{cps}$ tuned, 38
$800-1,000 \mathrm{cps}$ tuned,
$40-\mathrm{db}$-range agc, 58
$40-\mathrm{db}$-range agc, 58
$60-\mathrm{db}$ low-noise fet, 45
$60-\mathrm{db}$ low-noi
$6-v$ phono, 41
6-v phono, 41
9-v phono, 42
$0.5-w 3$-transistor, 48
$0.5-\mathrm{w}$ 3-tran
1 -w fet, 40
1-w fet, 40
$1-w$ integrated, 297
2-w preferred power, 41, 51
2-w preferred power, 4,21
$8-\mathrm{w}$ silicon-transistor, 44
10 -w direct-coupled, 42
10 -w single-ended push-pull output, 41
$10-\mathrm{w}$ single-enced push-pu
$10-\mathrm{w}$ stabilized power, 49
12 -w transformerless, 48
20 -w single-ended push-pull output, 40
25-w power, 51
45-w quasicomplementary-symmetry, 52
45-w series-łype, 52

Audio amplifier, 50-w two-stage output, 53
70.w, 47

200-w siren, 4
class-B push-pull output, 42
complementary-symmetry transformerless, 41
cutting odd-harmonic class-B distortion, 52
Carlingron, 51,52
fot-pnp Darlington
five-zone aircraft publis
high ine aircraft public address, 43
high input resistance, 40, 52
high voltage gain, 22
integrated-circuit power, 304
integroted output stage, 302
line-operated two-transisfor phono, 46
low-current mos fet, 50
low-noise bootstrap fet, 49
low-noise cascode fet, 38, 46
low-noise fet with agc, 11
low-noise fet output, 53
low-noise low-level high-gain, 45
output transistor protection, 44
preferred twin-triode voltage, 42
Q multiplier, 41
single-ended class- 8 output, 47
single-tronsistor, 53
single-fronsistor push-pull, 51
44, 445
stereo hea-transistor, 4
telephone-channel thick-film, 43
temperature-compensated for spacecraf decoder, 50
three-stage cascaded common-emitter, 46 two-stage cascaded common-emitter, 48
two-transistor R-C coupled, 40
Audio oscillator, conversion to square-wave generator, 531
Audio preamplifier, bootstrapped stereo, 689 building-block stage, 47
capacitor mike, 49
seramic-cartridge-phono, 48
four-control,
hi-fi fet, 43
npn magnetic-coritidge, 53
phono, 38,40
phono, 38, 40
phono-tape-microphone, 39
stabilized, 50
stabilized, 50
tape and microphone, 45
underwafer hydrophone, 50
Auto radio, five-transistor $\mathrm{a}-\mathrm{m}, 569$
Auto radio, five-transistor a
signal-seeking funer, 824
Autocorrelationg funer, 824
Autocorrelalion, spectrum invariance, 672
639 brightness control, flying-spot scanner,
Automatic direction finder, agc amplifier, 64 agc without clipping, 63
synchronous filter, 650
Automatic frequency 50
discriminator 56 trol, 23-Mc telemetry discriminator. 50
30 -Mc preferred pulse-modulated i-f, 54
automafic search and control, 662
diode-phantastron control for airborne radar
klystron, 54, 56
emitter-current-control, 55
klystron, 193
mobile color tv pickup, 750
reactance-fransistor, 740
receiver klystron local oscillator, 55
thyratron control for radar klystron repeller, 55, 56
varactor-controlled, 55
Automatic gain control 12-Mc video amplifier, 744
30-Mc gain-controlled tetrode, 60
30-Mc hybrid gain control, 59
30-Mc stage, 80
$70-\mathrm{Mc}$ neutralized, 58
200 -Mc amplifier, 63
450-Mc amplifier, 59
40-db-range audio, 58
adf receiver, 63,64
ambient light leval, 476
amplified, 57
antennafier, 63
bridge with agc for on diode, 62
bridge with control of both diodes, 63
camera video, 737
cascaded fixed-gain amplifier, 64
communication receiver, 64
diode L-aftenuator, 64
double-conversion i-f amplifier, 57
double-conversion i-f amplifier, 57
double-gated with regulated bias supply, 64 fouble-gafed amplifier, 62
keyed, 59
logarithmic, 26
low-noise audio, 61
preferred audio squ
preferred audio squelch, 62
preferred tube circuit,
signa-controled 60
slicer and gate, 60
licer and gate, 60
querr in a
uperregenerative amplifier, 16
transistor i-f amplifier, 62,63
ransistor i-f amplifier, 62, 63
transisturized colur iv, 753
vIf preamp, 499
volfage-controlled a-c amplifier, 58

Automatic gain control, voltage-controlled capaci tor diode network, 64
voltage-controlled capacitors in diode bridge, 64 voltage-controlled capacitors in diode T-network 63
volfage-controlled phase-shift oscillator, 469
Automatic volume compression, tape recorder, 721
Automatic volume confrol, magnetic-tape printthrough squelch, 720
Automotive electronics, 60 -cps $200-\mathrm{w} 115-\mathrm{v}$ inverter, 316
456-ke vehicle identification beacon, 79
$30,000-\mathrm{rpm}$ capacitance transducer for
fachometer, 87
$400,000-\mathrm{rpm}$ turbine tachometer, 70
400,000-rpm turbine tachometer, 70
$30-\mathrm{kv}$ ignition pulse generator, 71
30-kv ignition pulse generator, 71
air-suspension leak detector, 17,456
airsuspension leak detector,
audible turn-signal indicator, 65,70
automatic timing advance, 65
capacitive-discharge ignition, 68
cylinder gas temperature measurement, 67
cylinder gas temperature measurement, 67
electronic tachometer, 65
engine raad test simulator, 66
gas-tube electronic ginémeter
gate-opening furbi 169 meter, 69
heodlight dimmer, 66, 71
ignition-pickup tachometer, 68
infrared suspension-leak defector, 654
quick-disconnect tachometer, 69
road icing alarm, 758
rotation-analyzing integrator, 67
sealed transmission tachometer, 71
single-pulse tachometer generator, 60
single-transistor tachometer, 71
speed-controlling chopper for battery-powered vehicle, 107
tachometer amplifier, 69
tachometer gate, 68
telemetry d-c amplifier, 70
telemetry display sfrobe, 89
transistor fuel pump drive, 67
transistor ignition, 69,711
ultralinear high-precision tachometer, 67
zero-power tachometer, 68
(See also Batfery charger)
Autopilot, clock generator, 665
comparator-alarm, 118
dec amplifier, 197
fader, 130
gyro control, 130, 136
preamplifier, 500
Avalanche alarmerter, 322
Avc (see Automatic volume control)

Backscatter, ground pulse blanker, 95
tone signal rejector, 570
Backward-wove oscillator, regulated filament supply, 593
Balancer, gyro, 89,98
balinverter, noise-cancelling, 138 battery, 73 , automatic control with reference battery, 73
constanf-current motor-controlled rheostat, 75
control and profection circuit, 72
control with stabilized reference supply, 75
nickel-cadmium, 75
photoflash, 72,74
portable cro, 74
scr regulator, 75
thyratron-controlled, 73
wolder, 74
Baftery standby, alarm power supply, 507
Beacon, 1.686-Mc high-altitude balloon, 76
75. Mc marker, 77

75-Mc one-light airborne marker, 79
75-Mc three-light aircraft marker adapter, 80
75-Mc three-light aircraft marker receiver, 76
$100-140$ or $220-260 \mathrm{Mc}$ emergency, 78
243. Mc oircraft crash, 80
decoder, 78
gated-diode modulator, 80
rotating-lamp, 223
signal-powered transponder, 80
spacecraft recovery, 77
two-frequency SOS', 79
vehicle identification, 79
Beam intensity control, crt, 95
Beam switching, capacitance transducers, 705
recorder cores, 581
Beam-s witching fube decade counter, 165 pulse generator, 516
storing accumulated count, 156
Beeper, recording telephone conversation, 586
Beta squaring, complementary-transistor Darlington amplifier, 24
temperature-compensated Darlington, 16
Binary, arithmetic, 564
basic neutron analyzer, 560
cascaded, 336
Binary-analog, converter, 31
Binary-analog, converter, 31
Binary-command control system, 596
Bionics, neuron model, 343
Bionics, neuron mode, 343
neuron model without integrator, 346
neuron model without integrator,
Bistuble circuit, triangular-wava, 631
lack light portable inver
Blender, three-speed motor control, 412

Blinker, neon roadside or Halloween-pumpkin, 230 (See also Flasher)
Blocking oscillator, $\mathbf{0 - 2 , 0 0 0} \mathrm{pps}$ preferred pulse. frequency divider, 454
$0-2,000$ pps preferred series-triggered, 453
$200-2,000$ pos preferred astable 459
$200-2,000 \mathrm{pps}$ praferred astable, 459
,000-83,000 pps preferred paraillel.
triggered, 461
adjustable-prr trigger generator, 814
cascaded distance-mark divider, 243
diode sampling bridge drive 82
distance-mark generator, $549,551,552,555,557$
preferred distance-mork divider, 453
nverted-output switching voltage regulator, 609
pulse-frequency divider, 244,245
sense amplifier frigger, 812
loolage limit monitor,
Blood pressure, automatic measurement, 386
ometer, amplifier and detector, 289
preamp, 291
Bolometer bridge, ergmeter, 370
Bone disease, early diagnosis by osteogroph, 382
Bootstrap, wide-range linear time base, 634
positive and negative-going, 201
positive and negative-goin
variable controllable, 702
Bootstrapping, $0.5 \mathrm{cps}-700 \mathrm{kc}$ fet preamp, 499
Boxistrapping, capacitor-storage feedback, 116
modulation envelope deedback, 11
Boxcar defector, radar, 557
Boxcar generator, ultrasonic receiver, 826
Brazing, 45-kw r-f pulse control, 862
Bridge, 3-ke oscillator amplitude stabilization, 383
15-kc impedance, 367
100-kc hybrid balanced modulator, 400
300-kc fet gate, 273
300 -kc tandem fet gate, 271
a-c fet, 84
a-c gate, 273
a-e line regulator, 598
amplifier stabilization, 10
armalure tester, 774
aufomatic servo balanced capaci1ance, 663
beam-tube-switched, 705
blood pressure indicator, 384
capacitance, 357
cascode-adder null detector, 82
onstont-voltage regulated power supply, 592
conveyor belt slip detector, 353
art light-pen pulse height detector, 81
d.c level-shifting, 83
diode sampling, 82
drain-coupled-adder null detector, 81
enamel thickness monitor, 87
gyro temperature control, 758
impedance, 387
intrusion-alarm capacitive, 88
inverter, 325
lne-vol fage-sensing, 501
liquid level measurement, 363
magnetoresistor scr control, 83
magnetoresistor triggering, 84
memory core sense amplifier, 812
memory core sense ampl
microvolt-switching, 83
millivolt pulse sampling, 8
milivolt pulse sampling, 8
overtone crystal parameters, 8
phase-difference detector, 81
plate-cathode follower drive for
Wien oscillator, 27
pulse-energy-measuring bolometer, 370
R-C oscillator, 674
esistance thermometer, 76
cr capacitorg, 808
scr regulated power supply, 507
scr single-phase motor control, 352
self-bolancing shunt-type, 83
static-inverter reaulator, 316
strain-gage amplifier, 366
telephone baseband amplifier, 82
temperature-compensating, 757
temperature-control, 761, 762
thermal, in variable-frequency power
supply, 589,593
thermistor, 759
thermocouple tester, 768
three-phase inverter, 315
transformerless scr inverter, 323
punnel-diode a-c gate with toroid, 274, 280
variable-frequency Wien oscillator, 670
Wheatstone in enlarger exposure indicator, 489
Wien fer, 675
Wien pulsed oscillator, 530
Wien rejection filter, 222
Bridge discriminator, phase, 201
Briahtness control, vit-scr for 500-w lamp, 137
fer, infinite-impedance fet for $60-\mathrm{cps}$
notch filter, 18
ring counter, 160
unity-gain, il
Buffering, 10 - Mc flip-flop, 152
Burglar alarm (see Alarm)
Butterworth attenuation, active audio filter, 216
Butterworth filter, active low-pass R-C, 217
Butterworth triple, radar clutter simulator, 546

Cable fault finder, marker generator, 764 time base, 769
Cable propagation pulse gentor, 772
Cable propagation delay, measurement, 249
Cable wire, locator, 769, 770

Cadmium sulfide-neon inverter, 349
Cadmium sulfide-neon latch, 328
Calibration, frequency standard with WWV, 111
modulation percentage meter, 416
Calibrator, digital
portable cro, 98
portable cro, 98
Calling system, cifizens band, 572
Calling system, cifizens band, 572
Camera, $16-\mathrm{mm}$ sound-on-film drive, 581
control, 490
contral receiver, 615
Camera (See also Photography)
Camera (See also Photograph
Capacifance, meosuring, 368
Capacitance, measuring, 368 , measurement, 363
Capacitance control, $30,000-\mathrm{rpm}$ tachometer transducer, 87
aircraft fuel gage, 86
continuously variable electronic, 88
extrusion of plastic on wire, 87
fence alorm, 86
in-circuit capacitor tester, 88
intrusion alarm, 87,88
lamp, 85
proximity switch, 86
ensing cane for blind, 88
stabilizer for radar altimeter, 87
Capacitor, 0.1-100 mfd variable electronic, 88
voltage-variable, 394, 397, 398
Capacitor bank, firing switch, 241
Capacitor charger, constant-current, 169
Capacitor forming, power supply, 591
Capacitor tester, in-circuit, 88
Car (see Aułomótive)
Carcinotron, control for receiver, 572
Card scanner, mark-sensing, 478
Cardiac pacemaker, batteryless, 392
†wo-łransistor, 383
arrier-current control, receiver, 617
Cascode, 45-Mc, 285
multipurpose infegrated-circuit chip, 301
Cascode amplifier, i-f with agc, 62,63
Cascode circuit, mvbr, 422,
Cascode tube, noise-figure measurement, 358
Cathode follower, secondary-emission pentode, 16
Cathode ray, 50 -ke vertical deflection, 90
8-22 Mc marker generator, 91
800 -v sweep, 698
$7-\mathrm{kv}$ magnetic-deflection power supply, 491
$7-\mathrm{kv}$ preferred dual-itiode crt supply, 494
alignment correction, 96
alphanumeric generator, 102
armature tester, 774
beam infensify control, 95
chopper-produced multitrace display, 107 coarse-deflection switch, 101
cro as sonar bearing indicator, 829
deflection control, 207
display numeral generotor, 101
fine-deflection switch, 101
focus current regulator, 92
grid-1 bias regulator, 99
ground pulse blanker, 9598
gyro vibration amplifier, 98
high-voltage supply, 90
horizontal amplifier, 98
intensity-modulation pulse amplifier, 842 intensity-modulation radar video chain, 839 level-controlled strobe, 89
light-pen amplifier, 92
light-pen preamp, 99
light-pen pulse height detector, 81
linear integrated-circuit tester, 295
low-frequency differential amplifier with 400-v peok swing, 193
low-frequency sync oscillator, 99 marker pulse amplifier and mixer, 96 measuring axis-crossing interval, 90 monostable unblanking gate, 420
nonosecond display, 208
number generator, 100
portable cro calibrator, 98
radar intensity-modulating ert driver, 839
raster disploy, 91
regulator-charger for portable cro, 74
sampling pulse stretcher, 92
single-frame tv photography timer, 489
sonar display, 204
staircase qenerator, 688
strobe pulse generator, 96
sweep trigger, 89
tangent-function sweep, 698
tape wow and flutter measurement, 716
tone signal rejector, 570
trace brightness equalizer. 99
trace intensifier, 98
transistor beta display, 93
triangular-wave sweep, 96
trigger multivibrator, 94
funnel-diode curve-tracer, 94, 781
tunnel-diode uhf synchronizer, 97
two-signal display, 89
unblanking amplifier, 95
unblanking pulse, 542
unblanking pulse generator, 99 unblanking signal generator, 106 variable-length radar sweep, 551
variable prr and pulse width generator, 532 wide-band deflection amplifier, 94 Z -oxis amplifier, 99

Cathode ray, Z-axis modulation, 99
(See also Display)
Cathode-ring, diode gate, 273
Cave manetic. 146
都, 376
elestial guidonce, active low-pass filter, 220
Cement setting, timer, 359
Ceramic cartridge, preamp, 38,40
Ceramic cariridge, preamp, 38, 40
Channel selector discriminator, 200
Character generator, alphanumeric, 102
cathode-ray numerals $1.7,100$
coarse-deflection switch,
defe-deflection switch 10
harmonic oscillator, 102
harmonic oscic
numeric, 100
overlapping-dot, 208
pulsed-os cillator, 100
signal combiner, 101
Character reader, aiphanumeric, 640
dilating circular scan, 640
largest-signal selector, 34
script, 336
soiar-cell, 11
vertical positioner, 640
Charger, constant-current, 169, 699
Chopper, $0-1$ ke valtage-controlled oscillator, 202
10-kc, 496
analog switch, 103
asynchronous square-wave, 106
balanced silicon-diode lattice, 55
data amplifier, 172
d-c operational amplifier, 103, 106
d-c voltage comparator, 118
difference circuit and infegrator, 307
disploy switching in integrated-circuit tester, 303
fet shunt, 106
gain-controlling, 477
gate-turnoff d-e, 108
hybrid d-c feedback amplifier, 107
infrared receiver, 292
lamp-photocell, 106
mechanical with 400 -eps amplifier, 103
mechanical with fet amplifier, 108
multifrace cro display, 107
normally-off gate-turnoff, 107
normally-on gate-turnoff, 108
null indicator, 472
pentode, 103
phosemeter, 808
photoelectric, 108, 858
printed-circuil Bright, 107
servo comparator amplifier, 115
solar-cell regulated power supply, 105
speed-controlling for battery-powered vehicle 107
starved d-c input amplifier, 177
temperature-regulating, 762
transient-suppressing trigger, 816
transistor pulse-width regulator, 105
two-transistor dewpoint-measuring; 48
Chopper stabilization, d-c o
strain-gage amplifier, 366
strain-gage amplifier, 366
Chroma amplifier, fransistorized, 747
Chroma amplifier, trans
Chromatograph, integrator 308
Chrominance French SECAM 748
Chrominance, French SECAM,
Chronotron, measuring coax delay, 365, 37
Circuit breaker, d-c gate-turnoff, 708
Circuit breaker, $\mathbf{d - c}$ gate-turnoff,
27-Me collector-modulated transmitter, 397
class-B transceiver, 794
class-C transmitter, 79
erystal oscillator, 462
decoder, 795
interference filter, 792
squelch, 794, 795
tone-operated colling system, 572
tronsmitter withaut relay, 794
funnel diode-crystal osciliator, 454
Clamp, 1-Mc d-e restorer, 544
keyed iv camera, 73
milivali pulses, 84
radar ppi sweep, 557
radar yoke driver, 550
Clipper, heater-voltage-regulating, 598
phase-demodulating, 191
power-supply, 352
pulse height analyzer, 536
radar modulator, 551
six-diode sine-wave, 518
video, 840
Clock, 2,500-cps phase synchronizer, 112
100-ke Pierce crystal, 109
600-ke pulse shaper, 125
809.11-ke oscillator, 112

10 -Mc counter, 152
10-Mc oscillator, 113
10-Mc three-phose, 113
12-Mc four-phase, 112
150-Mc gate, 269
500-Mc gate, 279
16-bit binary word generator, 68
ambiguity-preventing latch, 328
cesium beam-tube control for 5 -Mc primary standard, 109
cesium resonance synthesizer, 111
computer testing, 110
crystal-controlled mubr, 110

Clock digit square-wave amplifier, 110
disk-track pulse generator, 112
driver gate, 121
electronic, 113
frequency-dividing WWV calibrator, 112
frequency-divid
fuze timer, 111
one-shot mubr, 423
pulse amplifier, 110
sidereal regenerative oscillator, 113
synchronizing to 300 -pps trigger, 113
synchronizing to
WWV check, 111
WWV-controlled, 111
Clock pulse generator, 25-nsec 0.5-amp, 109
Clutch control, timer, 790
Coating, thickness measurement 362,365
Coax, drive amplifier, 515
Cockcroft-Walton multiplier, radiation survey meter, 563
Codan, improved crystal-confrolled, 812
Code generator, alarm siren, 2
double-pulse, 556
Coded pulse comparator, rador beacon, 78
Coding generator, fire alarm system, 2
phototube pulses, 479
Coincidence circuit, echo pulses, 826
telephone data readout, 122
unnel-diode, 566
Coincidence control, fluorescent-lamp display, 206
Coincidence defector, 100 -microamp pulses, 539
onergy-loss telescope, 726
pulse, 539, 561
Cold-cathode tube, 6-kc counter, 154
counter, 149
numerical display, 206
shift register, 150
Color-burst regenerator, video tope, 748
Color tv, automatic fine funing, 751
Colpifts oscillator, 3-Mc, 392
Combiner, telemetry diversity, 730
Communication, delta-sigma modulator, 393
light-beam, 401, 402
Commutator, analog s witch, 103
Hall generator, 623
matrix-controlled, 789
time-division telemetry, 730
Commutator simulator, télemetry, 678
Compactron, f-m stereo adapter, 693
Comparator, 20 -ke control amplifier, 118
amplitude, 119
analog voltage, 586
analog-digital converter, 36
autopilot dual-accelerometer, 118
batfery-charging voltage, 73
beacon rador code, 78
bilateral-transistor voltage, 119
capacitor charging voltage, 117
capacitor-storage feedback boxcar, 116
copacitor-storage feedback 18
chopper-type d-e volt
code conversion,
d-c voltage, 850
d-c volitage,
differential voltage, 117
differential volfage, 117
digital-voltmeter, 114
diode switching time, 766
frequency, 66
frequency with WWV, 568
go-no-go voliage, 119
insulation resistance tester, 772
missile count-down switch, 706
nonoverlapping pulse, 118
or gate, 343
ver-or-under-voltage, 119
pdm keyer, 728
pulse, 119, 156, 509
pulse amplitude, 114
pulse voltage, 115 保 268
resistance, 375
retina welder control, 381
series-Schmitt amplitude, 810
servo amplifier, 115
tunnel-diode voltoge, 117
wo-stage load current switch, 118
video signal, 119
volfage, 33, 606
ompensation, low audio frequency, 55
mognetic tape playback, 717
temperature in induction receiver, 573
Compensator, servo frequency, 647
Compression, $50-\mathrm{db}$ dynamic-ronge video, 848
telemetry signal, 724
Compressor, audio volume, 721
cube-root dynamic audio to meqacycle, 267
Computer, 5 -Mc memory driver, 121
10 -nsec amplifier, 126
10-nsec gate and mixer, 123
10-nsec register-driver, 667
25 -nsec 0.5 -amp clock pulse generator, 109
0.5 -microsec-recovery delay, 184

16-bit word generator, 881
alphanumeric output display, 102
anolog display at $50 \mathrm{kc}, 90$
analog overvoltage alorm, 5
analog-ratio Hall multiplier, 415
analog sample-hold circuit, 36
analog-type ratio, 205
analog voltage multiplier, 415
anolog voltage source, 492
arithmetic cell, 120
bilateral-transistor digital comparator, 119
choke-controlled differentiator, 125
clock gate, 121
clock pulse shaper, 125
double-bridge magamp open-fuse detector, 354
354

fault-loceg waveform analyzer, 384
full adder, 123
unction generator, 266
Hall-effect squaring multiplier, 415
ow-cost basic inverter, 342
magnetic-spoke disk memory pulse generator
magnetic-spoke disk read-write circuit, 125
megapulse test generator, 110
memory inhibit driver, 122
memory readout amplifier, 120
memory strobe generation, 122, 124
perational d-c amplifier, 177
aired-inverter, 231
potentiometer errar compensation, 35
powor switching, 125
reciprocal circuit, 120
inging-type pulse generator, 528
whill
elephone traffic data recorder, 12
thin-film memory current drivar, 124
thin-film pulse generator, 121
ime-shared troubles haoting scope, 122
wiring short-ciredit logic, 33
Conductivity, testing, 781
Contacts, testing under vibration, 779
Control, 100 -cps phase-shift oscillator, 310
-c power outlot ione docodir,
acceleration, 408, 410
alternator frequency, 203
autopilot gyro, 130
alanced-rriode sine-wave modulator, 399
lood pressure, 385
body-capacitance switch, 85
amera shutter, 485,489490
carbon dioxide in iron lung, 388
arrier-powered, 7
continuously variable capacitance, 88
convey or shutdown for jams, 134
Control, d-c voltage level dofector, 762
iamond madulator 396
dual-function bistable réactor scram, 130
duo-diode half-wave switch modulator, 403
lectric spark machine, 128, 129
filament emission in gas analyzer, 127
im-break datector, 131
requency-sensitive phatoolectric, 483
l- 500 -w lamp dimmer, 37
gyro balancer, 89
yro torquing switch, 136
heart rate, 390
nductor tester, 775
inverter idling current, 321
iquid madlar current, 167
liquid level, 136, 363
machine-gun firing rate, 131
metal-forming skew, 356
missile-destruct f -m receiver, 619
mobile radionce, 127
mator transient anticipator for counter, 135
parking meter, 293
ower-summing dor cooling, 200
power supply dec ampliker, 195
printed-circuit assembler, 652
printing register, 148
programmed lamp preheater, 129
pulse length af intervalometer, 544
quartz erystal fil
reactor startup, 128
resistance-triggered, 7
retina welder output, 379, 381, 391
ocket rall chann
saturable-core voltage-monitoring, 134
scr lamp dimmer, 133
sensifive relay with reflex circuit, 137
nap-action a-f pawer level switch, 127
thin-foil welder, 862
timer, 786, 790

Control, fimer motor, 790
triac lamp dimmer, 133
wit latch for inductive-load scr, 329
uit latch for inductive-load scr, 329
undercurrent-avercurrent protection,
Undercurrent-avercurrent protection, 133
variable-plate-resistance modulatar, 402
variable-plare-resistance modulatar, 402
voice-actuated, 133
Control (Soe also Motor control; Photoelectric Remate contral)
Conversian gain, measurement, 358
Conversian gain, measurement
Convertar, 10 -Mc dynamic noth filfer, 222
27-Mc CB ransmitter, 139
27-Mc CB transmitter.
30 Mc to $5.5 \mathrm{Mc}, 143$
$88-108$ Mc f-m tunnel-diode with afe, 145
255-Mc ascillator, mixer, 144
400 -Mc low-noise, 145
420 -Mc oscillator-mixer, 140
450 Mc to 30 Mc , 144
450 Mc to 105 Mc with $2 \mathrm{~N} 2415,139$
450 Mc to 105 Mc with $2 \mathrm{~N} 2996^{\prime}, 139$
$1,000 \mathrm{Me}$ to $200 \mathrm{Mc}, 441$
11 -bit digital to analog, 32
$12-300 \vee \mathrm{~d}-\mathrm{c}, 71$
$28-162 \times d-c$ at $10 \mathrm{w}, 145$
$28-400 \vee$ d-c, 496
$28-420 \vee$ d-c at $125 \mathrm{w}, 147$
$30-325 \vee d-c, 138$
$5,000 \vee \mathrm{~d}-\mathrm{c}, 496$
analog tv to pulse code, 342
autodyne, 569
autodyne with $455-k c$ i-f, 147
balanced-input noise-canceling, 138
battery supply far instruments, 610
capacitively tuned tunnel-diode tuner, 823
cety for bar graph display, 206
Citizens band, 138
Citizens band crystal-controlled, 146
Civil Air Patral, 147
community-tv, 146
d-c to audio, 145
d-c/d-c, 313, 491
d-c/d-c $7 \cdot \mathrm{kv}$ crt supply, 491
$\mathrm{d}-\mathrm{c} / \mathrm{d}-\mathrm{c}$ auto ignition, 68
d-c dual-pulse drive, 807
d-c level shifter, 542
d-e signal level, 76
d-c voliage, 143
differential-mvbr magnetic, 326
digital-analog, 31
digital logic level, 144
dual-triode magnetic, 326
fowmeter frequency, 247
frequency to d-c, 146
Gray binary code 207146
grounded-coliector Hartley, 456
height-to-time, 726
high-power astable mvbr, 433
inegr vod-circuit, 198
inear volrage-frequency, 421
mobile receiver, 57
mos fer, 44
ne-shot ri to dance, 14
one-shoi rz to $\mathrm{nrz}, 42$
phase inverter, 323
photoflash, 225
power, 146
pulse height to digital signal, 142
pulse height to time, 143,542
pulse height to width, 275
pulse width to analag, 36
pulse width-sequence, 423
random-pulse digital-analog, 35
sine to sawtooth or square wave, 14
superregenerative quench, 286
temperature-frequeney, 761
ransducer-controlled $70-\mathrm{Mc}$ crystal oscillator 140
ransducer voltage to resistance, 84
ransistor-magnetic, 322
riangular to sine, 542
tunnel-diode uhf tuner, 823
Uhf tv, 823
Ulifralinear voltage to pulse width, 636
vaice to pem, 144
voltage-current, 537
voltage-frequency, $140,142,143,145,629$
voltoge-pulse width, 145
voltage-fime, 35
See also Analog-digital converter; Digital-analog converter; Mixer)
Conveyor, belt slip detector, 353
lam detector, 482
Cooling-liquid-density gage, 128
Core, pulse-width-masuring, 374
Care readout, 5 -aperture, 33
Coronameter, polarized-light, 476
Correlator, polarity-coincidence multiplier, 414
receiver noise, 440
Coulometer, 30 sec- 350 hr delay, 188
Caunter, 1-ke glow-tiobe, 161
4-ke glow-fube, 154
40-kc bistablé mvbr, 154
40 -kc uit bistable ring, 16
$50-\mathrm{kc}$ gas tube with transistors, 155
$50-\mathrm{kc}$ gas tube 109
100 ke . 109
$100-\mathrm{kc}$ clack, 109
100 ge tube, 155
$500-\mathrm{kc}$ gas tube, 155
0.5 -Mc pulse, 565

1-Mc camplementary-pramsistar, 158
1-Me gas tube, 163
5-Mc tunnel-diode, 166

Counter, 10 -Mc buffered flip-flop, 152
10 - Mc dynamic notch filter for noise rejection, 222
200-Mc, 788
$500-\mathrm{Me}$ biquinary, 151, 158
500 -Mc high-speed quinary sync control, 164
10-channel multiplexer, 152
7 -digit binary, 166
400-pps decade sealer, 157
400,000 -rpm digifal fachameter, 69
$2000-\mathrm{sec}, 665$ digital pachameter,
2,000-sec, 665
$10-$ stage ring, 204
$15-$ stage low
15 -stage low-current-drain, 160
adf decade chain, 151
alpha particle 563567
alpha paricle, 58, 50
anode-triggered ring, 160
backward and forward, 160
backward and forward, 160
basic binary, 156 .
batching, 150
bed, 156^{\prime}
bed conversion, 151
beam-switching decade, 165
bidirectional ring scr, 158
binary high-speed, 788
binary nean, 208
binary pnpn flip-flop, 811
binary scaler stage, 149
biquinary, 153
birds in fight, 148, 150
bistable ring, 161
boosting electromechanical speed, 149, 150
buffer circuit, 180
closed-ring data-sampling, 624
coincidence-triggered decade, 155
cold-cotiode blacking-oscillator, 625
cold-cathode ring, 157
collector-iriggered with trigger amplifier, 814
consfant-amplitude doppler oscillator, 448
conveyor, 149
decade driver, 262
decimal-coded, 163
digital phase meter, 468
diode matrix decimal, 159
divide-by-5 ring, 240
doppler cycle, 23
electramechanical drive for Geiger-Müller, 561
flip-flop, 165
four-stage hybrid ring, 154
four-stage pnpn binary, 814
four-transistor binary fip-flap, 153
frequency-measuring, 191, 192
frequency-multiplying 1,000 times, 258
gate turnoff ring, 164
Geiger-Müller, for tracers, 564
Geigar-Müller drive for scaler, 541
gunshot, 149
halogen-fype Geiger, 558
integrated-circuit quad block binary, 304
lamp-flashing ring, 223
magnetic-core frequency-dividing, 241, 243
magnetic-core frequency
magnetic-core ring, 517
motor transient suppressor, 135
motor fransient suppress
multiaperture-care, 159
multijunction semiconductor decade, 152
neutron 726
Nixie-fube scs ring, 166
nonoverlapping pulises, 118
nuclear tracks, 639
nuclear tracks,
pnpn ring, 820
predefermined-pulse, 312
presef neurosurgery pulse, 390
presef neurosurgery puls
preversible decade, 162
reversible ten-stage ring, 157
ring, 729
ring-of-7, 159
ring-of-10, 162
ring with visual readout, 16
sampling-periad time recorder, 625
scale-of-ten divider, 240
Schmit input trigger, 814
Schmitt trigger for buttons, 148
scs binary, 162
hift register, 154
staircase, 685
static alternator, 314
sfeering for reversible decade, 153
stepper-motar pulse-generating, 411
toring accumulated count, 156'
strontium-90 photorelay, 560
symmetrical saturated fíp-flops, 666
achometer auto-locking gate, 68
tachometer display, 70
oleprinter character, 787
three-phase ring, 314
transformer-controlled, 165
transformer-controlled' shift register, 668
ulirasonic sing-around transmitter, 834
unijunction ring, 164
Unijunction transistor, 164
voriable scale factor, 162
variable -timing ring, 163
voltage dips, 858
(See also Scaler; Timer)
Counting-rate mefer, Geiger-Müller, 562
Coupler, R-C directional 357
Coupling, light-beam, 709
Crevasse defector, audio oscillatar, 452
Crowtbar, ignitren control, 765
stellarafor, 708
Crowbar circuit, 300-kw fube tester, 778

Demodulator, microwave radiometer, 190
phase, 191
phase-sensitive, 190
ppm multiplexer, 395
ppm telemetry, 729
pulse width to analog, 36
synchronous, 115
synchronous color ty, 751
synchronous radar, 191
transformerless full-wave, 191
transistorized $8-Y, 754$
transistorized 8-Y, 754
uhf scatter klystron, 192
vertical acceleration recorder, 584
(See also Detector)
Densitometer, flying-spot integrating, 364
Densify gage, liquid, 128
Depth indicafor, portable, 836
Defection, backbone, 440
envelope, 440
weak l-f signals in high noise, 414
Detector, $27.255-\mathrm{Mc}$ superregenerative remote control, 621
200-Mc r-f radiation, 6
100-microamp coincident pulses, 539
6.0 v, 808
anticoincidence, 540
armature faults, 774
bipolar pulse, 813
boxcar, 360
bridge null, 81
C8 40-kc quench, 793
core saturation, 374
cosmic-ray neutron, 726
crack and void, 367,370
crt blip, 81
current amplitude, 167
current-controlled threshold, 422
current-level, 203
d-c level, 762
differential voltage or current, 6
eeg, waveform zero, 383
engine heat, 293
foil-loop intrusion, 1
gamma-ray, 564
hold-samplé-hold, 472
ceberg, 190
illumination rise, 1
infegrating, 390
magnetic drum read amplifier, 587
magnetic tape flaws, 779
millimeter-wave, 574
millimeter-wave, 574
milivolt threshold, 816
missing-pulse, 6 , 502
missing-pulse and d-c dropout, 6
multichannel signal, 545
nuclear explosion flash, 559
nuclear explision flash, $\mathrm{ty}, 743$
paper flaws, 479
paper naws, 47
phase-difference bridge, 8
phase-measuring, 466
phase-sensitive, 440 , 88
phase-sensitive impedance-measuring, 387
photographic film breaks, 131
photographic firm breaks
polarity, 34
preferred a-m receiver, 333
preferred pulse-modulated video, 841
projectile glow, 483
pulse coincidence, 118,539
pulse sequence, 269,540
pulse train absence, 540
radar boxcar, 557
Schmitt-trigger threshold, 812
sensitive aural-visual parasitic, 449
signal dropout, 7
signal level, 531
sine-wave zero-crossing, 538
sonar peak amplitude, 832
square-law with $40-\mathrm{db}$ dynamic range, 266
ssb, 575
synchronous with reed-switch control, 311
synchronous tape playback, 714
targe \uparrow-position, 430
time-constant tv remote control, 619
transient-pulse, 329
transient spike pulse, 4
ultrasonic reactor slug cladding flow, 830
vhf intrusion, 4
voice for pem, 144
voltage limit, 535
wavef orm time-sample, 773
weak-current, 815
weak signal in noise, 90
zero-crossing, 519,810
zero-crossing for ser power contral, 136 (See also Demodulator)
Dew-point hygrometer, alpha-counting, 558, 563
Dewpoint measurement, photoelectric servo, 480
Diamond circuit, measuring a-f phase shift, 361
Diam ond modulator, d-c input signal, 396
Diathermy, frequency drift alarm and control, 212
(See also Electronic heating; Medical electronics)
Dictating machine, battery-operated, 719
Dielectric heater, 27.12-Mc crystal-controlled, 209
Difference circuit, two-pole chopper, 307
Differential amplifier, 230-ke radar control, 193
51 -db power gain, 197
1 -ma constant-current scr supply, 167
6-v voltage regulator, 606
400-v output swing with transistors, 193
balanced operational, 198
canceling supply variations, 198

Differential amplifier, chopperless, 194
common-made feedback, 198
d-c milivolitmeter, 853
direct-coupled, 194
four-stage, 195
integrated-circuit, 195-199
memory sense, 296
pill-tracing integrator, 391
single-stage integrated, 198
unity-gain d-c, 195
variable-gain, 199
voltage-regulating inverter, 197
voltage regulator, 194
wide-dynamic-range, 196
wide-range variablé delay, 182
Differential voltage, signal comparator, 117
Differential voltmeter, high-stability, 852
Differentiator, choke-controlled, 125 pulse, 374, 766
Diffractonic pulse, 828
Diffractometer, neutron, 559
Digital-analog converter, 3
10-bit, 35
11 -bit, 32
accelerom
accelerometer, 32
compute amplifier, 34
current-subtracting modulator, 646
ladder-type der, 37
ladder-type decoder, 31, 36
reference switch 3
Digital communicotion
Digital communication, modulator, 393
Digital computer (see Computer)
Digital data, phone-line transmission, 732
Digital voltmet
Dimmer, fluorescent calibrator, 31
light-activated scr, 473
scr, 133, 476
silicon symmetrical switch, 472 triac, 33
Diodes full-range 500-w lamp, 137
oda, harmonic gene
light-emitfing, 226
light-emitting modulator, 401,402
Dip meter, tunnel diode, 365
Direction finder, $15-500$ kc, 498
antenno servo, 649
goniometer motor amplifier, 405
phasemeter, 465
r-f switch, 704
Discriminator, 3 cps- 300 ke prf, 201
23-Mc crystal, 56
alternator frequency control, 203
amplitude ratio indicator, 67
channel-selecting, 200
crystol oscillator control with WWV, 11
crystal reference frequency-hunting, 792
data sampler, 624
differential, 203
digifal f-m, 299
f-m, 331
Foster-Seeley, 248
Foster-Seeley color tv sound, 749
Foster-Seeley mobile receiver, 330
Foster-Seeley radar, 56
four-channel, 725
heart sound, 389
level, 536
low-cost f-m, 251
modified Travis, 286
phase, 200, 201
phase-locked frequency, 202
phase-madulated, 192
phase-synchronizing, 112
prf, 203
pulse amplitude, 534, 565
pulse-counting, 202
pulse-counting f-m, 203
pulse height, 534,811
pulse. length measuring, 539
pulse-level, 6
pulse widh, 81
pulse width-height, 534
radar pulse width, 552
reference-frequency sampler, 626
servo, 643
solar x-ray pulse height, 533
unnel-diode, 535
tunnel-diode pulso-height, 536
unnel-diode with d-c amplifier, 535
w-stage audio, 201
voltage or current pulse height, 533
voliage-difference, 534
(See also Detector)
isplay 50 -ke cathod
400,000-rpm tathode-ray, 90
alphanumeric, 101, 102
uto-locking gate 68
binary-controlled electroluminescent, 205
binary nean counter, 208
bistable indicator lamp driver, 436 cathode-ray numeral generator, 10
chapper-produced multitrace, 107
cold-cathode numerical, 206
crt control, 207
crt unblanking pulse stretcher-expander, 542 lectroluminescent ring counter drive, 204
fuarescent-anade Iriade, 237
gate-opening oscillator, 208
Gray-binary code converter, 207

Display, lamp driver, 769,779
lamp readout inversion, 207
amp with transistor drive, 207
ight-pen amplifier, 92
light-pen preamp, 99
magnetic contours, 708
movable marker generator, 275
nanosecond pulse, 208
verlapping-dot character generator, 208
pulse coincidence control, 206
radar unblanking switch, 55
adiation alarm failure, 567
ignal ratia, 205
sonar cathode-ray, 204
tick-łack-foe neon-lamp, 337
transistor beta on cro, 93
tv pulse-cross generałor, 746
two-intensity crt, 95
wo-signal cathode-ray, 88
voltage bar graphs on cctv, 206
See also Cathode ray
Display limit control, video, 330
Distortion, cutting class-B audio, 52
monitor, 675
iversity combiner, pulse reshaper, 732
telemefry, 723,730
telemetry, 723, 730
Divider, cascaded bistable, 829
frequency for $\mathrm{f}-\mathrm{m} / \mathrm{f}-\mathrm{m}$ felemetry, 243
(See a/so Frequency divider)
Doorbell, two-tone electronic, 7
Doppler, constant-amplitude oscillator, 448 cycle counter, 23
Doppler radar, demodulator, 191
Dosimetry, electrometer, 564
Doubler, Cockcroft-Walton voltage, 492
-m multiplexer, 692
frequency, 692
mobile receiver, 578
telemetry transmitter, 730
oltage, 496
ee also Frequency multipler; Voltage multi-
Driver, 5 - M
Driver, 5 - Mc funnel-diode memory, 121
10-nsec pulse, 667
0.5 -ohm source impedance, 23
beam-power video, 839
core, 682
horizontal output, 744
light-emitting diode, 401, 402
line printer hammer, 515
mechanical counfer for G-M, 56
mos fet phono preamp emitter-follower, 38
phone-line digital data, 732
ser power-switching, 321
shift register, 341
thin-film memory plane, 12
Dry cell, current stabilization, 359
Dynamometer, magnetic tape controlled, 66

Eddy-current, flaw detector, 367, 370
Eeg wavefarm, analyzer, 384
zero defector, 383
Electrocardiograph, amplifier, 380
Electroluminescent display, binary control, 205
Electrolytic capacitor, forming, 591
Electromagnet, fine servo regulator, 648
rough servo regulator, 649
Electrometer, electron density measurement, 376 preamplifier, 497
radiation signal amplifier, 564
reactor startup, 128
wide-band feedback amplifier, 375
Electron resonance spectrometer, wide-band amplifier, 20
Electronic heating, 27.12-Mc crystal-controlled di-
7 electric heater, 209
27.12-Mc diathermy frequency-drift alarm, 212
hydrogen-thyratron control, 211
hydrogen-thyratron induction, 211
isolation oscillator, 209
power oscillator, 210
regulator for high-power induction heating, 212
repetition rate control, 211
sawtooth-syne pulse genorator, 210
Electronic music, attack control amplifier, 676
neon-oscillator synchronizer, 215
neon fone generator, 213
organ outphased-tone generator, 215
organ pedal generator, 214
organ swell shoe, 213
organ voicing panel, 213
synthesizer, 214
tone timbre demonstrator, 671
uit frequency divider for organ, 215
uit metronome, 214
Encoder, I-Mc oscillator, 789
binary, 337
commutator, 789
counter and limit frigger, 791
ferrite-core digital recorder, 581
five-bit parallel, 73
output circuits, 79
pulse width, 374
haft-position, 481,484
Envelope generafor, funnel diode, 338
Ergmeter, pulse energy measurement, 370
xciter, 10 -meter ssb, 798
stepped frequency, 804

Facsimile, 12-Mc distribution amplifier, 744
Facsimile recorder, sweep generator, 584

Facsimile recorder, sweep power amplifier, 585
sync pulse shaper, 586
ader, autopilot, 130
driver, 39
electronic, 39
Fading control, uhf scatter link, 192
Failure indicator, 0-20 v power supply, 595
Fathomefer, portable, 836
eedback, 1,000 -Mc video amplifier, 512
Hall-effect field coil amplifier, 413
Fencing, foil touch timer, 785
Ferrite switch, microwave radiometer, 190
Fiber optics, high-voltage, 226
Filament supply, traveling-wave tube fail-safe
ilter, 7-cps active bandpass, 220
60-cps parallel-T notch with feedback, 218
130 -cps synchronous, 650
800 -cps active bandpass, 220
4,900-5,100 cps slot, 271
8-kc Q multiplier, 413
100-kc magnetostrictive, 460
325 -ke multisection bridged-T, 219
455-kc mechanical, 798
20-channel L-C audio tone, 132
active adjustable-bandpass audio, 216
active low-pass R-C, 217
active parallel-T 800 -cps, 221
acrive zero-crossing-sensing, 278
adaptive, 516
adjustable 400-cps tuning-fork, 218
airborne marker beacon, 79
automatic threshold control, 216
band-rejection, 442
bandpass photoreed, 481
ascaded a-f, 222
CB electromechanical, 792
eramic in i-f stage, 287
diode voltage-regulating, 492
dynamic notch, 222
frequency analyzer, 669
general bandpass-reject, 222
attice coupling, 221
ow-pass active shot noise suppressing, 220
low-pass d-c to 1 -cps, 219
magnetostriction bandpass, 219, 222
nonreactive, 542
organ formant, 21
parallel-T amplifier feedback, 294
parallel-T feedback in 800-cps oscillator, 221
power-line harmonic voltmeter, 852
remotely funed crystal i-f, 217
sample-and-hold nonlinear filter, 440
single-transistor smoothing, 222
synchronous lag-lead, 647
telemetry decoder notch, 733
transmitter output lattice, 803
transmifter output lattice, 803
triangular-to-sine conversion, 542
triangular-to-sine conversion,
triple-tuned 90 -ohm input, 221
triple-tuned 90 -ohm input, 221
triple-tuned 90 -ohm output, 220
triple-tuned 90 -ohm out
twin.T $60-\mathrm{cps}$ notch, 18
twin-T 60 -cps notch, 18
twin-T 400 -cps modulatar, 221
two-section low-pass R.C 284
two-section low-pass R-C, 284
nity-gain amplifier for third-order active low-pass, 217
variable-bandwidth 848-ke crystal, 221
variable-bandwidth radar preamp, 498
variable electronic capacitor, 88
vestigial sideband operation, 555
Wien-bridge rejection, 222
Zobel band-elimination, 218
Zobel band-pass, 217
Zobel high-pass,219
Zobel low-pass, 219
Firing-angle control, ser, 608
Fish fence, ignitron-pulsed, 707
Fish shocker, d-c pulse generator, 524
pulse generator control, 525
Flash, 30 w -sec supply with charger, 74
200 w -sec symmetrical inverter supply, 72
adjustable strobe, 224
blocking-oscillator drive for light-emitting diode, 226
blocking-oscillator supply, 225
high-voltage pulser, 223
low-cost stroboscope, 225
measurement, 482
nuclear explosion detector, 559
ratemeter, 229
strobe oscillafor-trigger, 224
synchronizing fimer, 22
two-lamp shared-cycle strobe, 230
Underwater camera, 227
Flash circuit, light-emitting diode, 223, 226, 228
fiming-mark generator, 228
Flash control, scr, 227
Flasher, 1-cps scs, 229
50\% duty cycle, 226
adiustable-delay sanatron, 230
intensity-controlling drive, 230
low.current canstructian barricade, 229
neon Halloween-pumpkin eyes, 230
random-time, 227
retina electrical stimulator, 385
road icing alarm, 758
rotating-beacon, 223
triggered blocking ascillator, 224
variable duły cycle, 228
(See also Blinker)
Flash lamp, measuring output, 481
pulssiforming múdulator, 395
variable square-wave source, 528
Flash tube, firing circuit, 486

Flash fube, noise-immune scr trigger, 809 nuclear blast simulator, 682 power supply, 229
Flaw detector, magnefic tape, 779 paper, 479
zirconium wire, 772
Flight recorder, timing motor supply, 585 vertical acceleration, 584
Flip-flop, 1.5-25 cps solenoid pump pulser, 237
10-ke capacitor-commutated, 237
250-kc, 235
500 - kc counter-shift register, 666
1.5-Mc, 345
$5-\mathrm{Mc}$ temperature-compensated, 236
10-Mc buffered, 152
10-Mc wide-tomperature-range, 234
27 -picosec tunnel-diode, 236
12-millimicrosec direct-coupled, 238
20 -millimicrosec diode-coupled, 238
40 -millimicrosec resistor-coupled, 238
2 sec-10 min timer, 298
adiustable-hysteresis level-detecting, 236
analog-digital converter, 34
base-triggered, 813
base-triggered with hybrid gate, 818
basic bistable, 6072
basic saturated, 239
binary neon, 208
bistable thyratron, 781
closed-ring sampling counter, 624
collector-triggered with trigger amplifier, 814 collector-triggered \mathbf{w}
complementary, 235
cross-connected integrated-circuit inverters, 302 Darlingion-linearized sweep, 699
Darlingto
decimal counter, 156, 15
direct-coupled, 238
emitter-triggered, 815
fast-recovery collector-friggered, 817
feedback-stabilized, 236
follower count-down, 23
frequency-dividing, 370
frequency-dividing' 1.5 -kc, 243
frequeney-dividing for firing capacitor bank, 241
gated current-mode logic, 233
gyro control, 130, 136
heater control, 480
high fan-out, 234
high fan-out, 23
high-speed, 338
high-temperature saturated, 238, 239
indicator triode, 237
integrated, 300
JK memory-drum recorder, 239
lamp drive, 237
load-sharing control for welder ignifrons, 862 low-dissipation 1-Me, 664
magnetic drum read control, 587
magnetic drum recorder control, 587
magnetic drum write amplifier, 582
microsec fall time for astable mvbr, 426
neon, 765
neon indicator, 207
nor-function reset, 233
nonsaturated design procedure, 235
nonstalling for capacitive load, 23
paired inverters using 2N711, 231
pdm keyer, 728
peak volimeter, 857
phase-difference mefer, 473
phase-locked frequency discriminator, 202
photoelectric band-switching in distress transmitfer, 79
pnpn binary counter, 81
radiation alarm, 560
raster display. 91
relay-driving, 375
reversible binary counter, 160
reversible decade counter, 153
ring caunter, 165
ring-of-five counter, 204
sample-and-hold, 625
scale-of-two frequency divider, 232
series-Schmitt set-reset, 810
shift register, 665, 666, 668
single-ses, 238
starter for free-running, 233
stepper relay, 230
stopped-count indicator, 567
superconducting contact test set, 778
symmetrical soturated 2N711, 6
three-phase ring counter, 314
transformer-controlled counter, 165
transformer-controlled shift register, 668
transisfor-testing, 232
trigger circuit, 810
tunnel diode-coupled, 234
transistor turn-on for triggering. 232
two-counter, 156
unsymmetrical pulse generator, 424
variable controllable sweep, 702
(See alsa Logic)
Flow gage, radioactive jet fuel, 567
Flowmeter, frequency converter, 247
Fluorescent lamistorized, 367
 inverter, 313
Flutter, measurement, 716
Flying-spot mieroscope, bone section scanner, 382
Flying-spot scanner, vif raster generator, 640
F-m (see Frequency modulation)
Focus coil, current regulator, 92

Foetoscope, 2-cps amplifier, 389
Foil, automatic welding, 862
Football helmet, telemefry transmifter, 725
Forcing function, random stepped generator, 672
Franklin superregenerative receiver,
remote control, 620
Frequency analyzer, filter and squarer, 669
two-phase osciliator, 248
Frequency confrol, mobile receiver, 578
Frequency divider, 0.25 cps -250 kc scs, 242
360 -cps to 60 -cps phantastron, 244
8:1 for 80-Me oscillator, 244
10:1 stabilized mono mivbr, 241
0-2,000 pps preferred blocking oscillator, 454
blocking-oscillator pulse, 244, 245
cascaded Eistance-mark, 240
cascaded ujt relaxation-ascillator, 242
coscoded uji relaxatio
clock calibrator, 112
Dekatron, 69
digital magnetic core, 241, 243
digital synthesizer, 242
divide-by-5 ring counter, 240
fet flip-flop, 232
flip-flop, 375
independent pulse-width control, 244
argan pedal generator bistable mvbr, 214
pem telemetry, 243
preferred blocking-oscillator distance-mark, 453
sałurable reactor, 784
sałurable reactor, 784
timing signal'generator, 673
unnel.diode 113
uit for electronic organ, 215
Frequency doubler, velocimeter, 367, 370
Frequency measurement, $1-\mathrm{cps} \mathrm{f}-\mathrm{m}$ deviation, 248
$10-480 \mathrm{Mc}, 246$
55-4,000 Me single-pulse, 247
cable delay, 249
crystal lapping, 249
flowmeter, 247
pulse rate, 248 tachometer, 69
lachometer amplifier, 69
vIf time-signal preamp, 499
requency meter, 0.2 to $10 \mathrm{cps}, 246$
Frequency modulation, 460-ke wireless microphone receiver, 571
-Mc oscillator, 251
4.5-Mc low-cos \dagger sound discriminator, 251
10.7-Mc two-chip i-f strip, 282

24-Me varactor-modulated oscillator, 252
50 -Mc voltage-tunable oscillator, 254
92 -Mc transmitter, 732
$95-\mathrm{Mc} \mathrm{f}-\mathrm{m} / \mathrm{f}-\mathrm{m}$ telemefry, 724
100-Mc integrated-circuit receiver, 299
100-Mc oscillator, 254
100 -Me varicap oseillator, 251
160-Mc 2-w power amplifier, 254
$160-\mathrm{Mc} 15$-w power amplifier, 255
175-Mc transmitter, 796
200-Me voltage-contralled oscillator, 252
230-Mc modulated oscillator, 252
400 -Mc varicap os cillator, 255.
406-549 Mc remote-control receiver, 619
460-Mc receiver, 615
afe for local oscillator, 822
data demodulator, 191, 192
double-conversion supérhet, 574
exciter tripler-doubler for 700-1,200 Mc, 262
fot stereo tuner, 691
football-helmet shock transmitter, 725
linear modulator, 403
low-cost single-chip tuner, 254
lunar probe transmitter, 727.
modulation percentage monitor, 416
multipurpase infegrafed-circuit chip, 301
one-pransistor fransmitter, 803
pam sample-and-hold, 626
pulse-counter discriminator, 203
recorded-signal discriminator, 626
stereo demodulaior, 694
stereo matrixing, 691
stereo multiplex tuner, 253
stereo uses pin diode, 695
strain-gage oscilatar, 255
tape-recarder demodulator, 717
tape-recarder demodulator,
telemetry modulator, 730
wo-chip tuner, 25
variable-bandwidth 848 -kc crystal filter, 221
voltage-funable oscillator or madulator, 255
weak-signal capture frap, 250
wireless microphone, 802,803
requency-madulation stereo, compactron adapter, 693
Frequency multiplier, $60-420 \mathrm{cps}$ septupler, 258
400.800 cps ceramic-dielectric oscillator, 262

100 ke to $5 \mathrm{Mc}, 260$
3 Mc to 54 Me doubler-triplers, 259
21.42 Mc doubler, 263

40-160 Mc varactar quadrupler, 258
$50-100 \mathrm{Mc}$ push-push doubler, 260
$50-150$ Mc fripler, 262
50.100 Mc varactor doublor, 264
$50-200 \mathrm{Mc}$ quadrupler, 263
$50-200 \mathrm{Me}$ varactor quadrupler, 260
$50-400$ Me varactor quadrupler, 257
$54-162$ Mc fripler, 256, 257
$60-960 \mathrm{Mc}$ doubler-quadrupler, 259
80-160 Mc transmitfer output doubler, 796
121.5-243 Mc doubler, 263

125-250 Mc parametric doubler, 264

Frequency multiplier, 150-450 Me tripler, 256
162-180 Mc fransmitter, 806
$200-600 \mathrm{Mc}$ varactor tripler, 261
223-Mc fransmitter, 800
$500-1,000 \mathrm{Me}$ varactor doubler, 263
$500-4,000 \mathrm{Me}$ varactor actupler,
$500-4,000 \mathrm{Me}$ varacior octupler, 261
1-gc tripler, 261
1,000-rimes, 258
a-f doubler, 264
cascaded uhf doubler, 25
cascaded uhf doubler, 259
cesium clock $\$$ ynthe
decade driver, 26
pulse shaper, 28
transmitter push-push output doubler, 804
transmitter push-push output doubler,
fripler-doubler for $700.1,200 \mathrm{Mc}, 262$
iripler-doubler for $700.1,200 \mathrm{Mc}, 262$
velocimater, 367
vhf varactor quadrupier, 264
white noise 679
Frequency-shift keyer, 5-kc
Colpitts oscillator, 451
requency synthesizer, uhf transceiver, 472
Frequency synthesizer, uhf transceiver, 472
Fuel flaw, magnetic-amplifier gage, 350
Fuel pump, transistor blocking oscillator drive, 67
Fuel pump, fransistor blocking osciln
Function generator, cosine/sine, 267
unction generator, cosine/sine, 267
eube-root signal
high-accuracy fet squarer, 267
high-accuracy fet squaror, 267 ,
radar target simulator, 266,443
random-noise analyzer, 268
sine-cosine, 265
sine-cosine approximator, 268
spectrum-invariant random, 672
square-jaw, 266
square-iaw, 266
squaring, 265
three-dimensional radar target simulator, 681
transistor-diode, 266
(See also Generator; Pulse generator; Pulse processing; Pulse shaping; Sawiooth
processing; Pulse shaping; Sa generator; Signal generator; Simulator;
Staircase generator)
Fuse, d-c amplifier electronic protection, 508
Fuse, d-c amplifier electronic protection, 508
Fuze, electronic timer, 111, 113

Gago, photoelectric, 479
Gain tester, fransistor, 77
Gallium arsenide lamp, driver flip-flop, 237
Gamma-ray spectrometer, underwater, 475
Garage door, control transmitter, 618
Gas analyzer, filament emission control, 127
Gas tube, noise-generator, 677
Gate, 8-650 ke positive transmission, 280
$300-\mathrm{kc}$ fet bridge, 273
300 kc tandem fet bridge, 271
5.5-Mc crystal oscillator, 277
5.5-Me varicap with dual triodes, 276

30-Mc amplifier, 281
50-Mc balanced funnel diode, 345
$100-\mathrm{Mc}$ funnel-diode, 275
150-Mc current-robbing, 269
200 -Me interval timer, 269
200-Me interval timer, 269
200 -Mc pumped tunnel-diode computer
200. Me pumped tunnel-diod
logic, 278

500 -Mc computer clock, 280
500 -Mc tunnel-diode voltage divider, 280
2 and 4 input-pulse nor, 341,343
5-fan-in nand/and/or, 339
0.7-nsec rise time, 27

10-nsec pulse, 123
analog, 274
analog fet chopper, 280
analoa sample-and-hold multiplex, 625
and, 200
and with nor logic for inversion, 278
audio-controlled, 214
balanced shorting-switch, 278
basic integrated, 304
basic nor, 280
basic pnp, 275
bidirectional
bisfable, 156
bistable, 156 age amplifier, 80
cascaded monostable tunnel-diode and, 276
cascaded monostable
cascaded monostable tunnel-diode or,
clock ambiguity-preventing latch, 328
clock ambiguity-preventing latch
caincidence-anticoincidence, 565
caincidence-ann
computer clock driver, 121
computer clock driver, 121
current-mode lagic fip-fiop,
diode-coupled nand/nor, 341
diode between ring counfer and
scope display, 273
scope display,
double nor, 347
dual four-input, 297
emifter-coupled and, 342
event sequence detector, 269
ferrite-core recorder drive 583
flashtube frigger, 225
four-layer swifching diodes, 277
high-noise-immunity integrated-circuit, 303
high-speed nor, 341
interval-sensitive 4,900-5,100 cps, 271
logic-conirolled 32-Mc bursts, 277
majority, 348
memory driver, 348 mery strobe generator, 124
memory strobing pulse, 122
micromodule logie, 270
missile tracker, 270
missile tracker, 270
missing-pulse detector, 6
6

\qquad
,
\qquad

[^4]\qquad
$$
0
$$

$$
0
$$

Gate, mono mvbr generating step function, 427 multiplexer, 270
multiplexer sampling, 37
mvbr, 274, 381
mvbr-conírolled bilateral, 279
neon photoconductor, 271
neon-friode, 273
nipo nor, 349
nor logic using series transistors, 274
npn and logic, 347
npn nor, 280
npn series-transistor, 277
overvoltage transiont 583
parallel-transistor, 344
phantastran delayed, 279
phase inversion without inverter, 279
phase-shifi keyer, 805
pino nor, 341
pnp series-transistor, 277
power transistor tester, 770
ppm demodulator, 729
pulse-coded fault alarms, 272
pulse coincidence detector, 539
pulse height to width converter, 275
pumped funnal-diode nor, 338
radar ppi sweep, 557
radar video integrator, 309
RCTL nand/nor, 341
r-f, 520
RTL nand/nor, 337
sampling, 360
scs protection, 446
selective-calling oscillator, 272
self-closing synchronized, 277
self-setting servo, 276
series-transistor, 347,349
sliding, 389
sonar audio selection, 827
superconducting contact test set, 778
switching time test circuit, 300
switching transistor, 729
tachometer auto-locking, 68
teaching-machine reward dispenser, 272
tick-tack-toe neon-lamp logic, 337
time-controlled, 279
transistor-coupled nand/nor, 346
rigger generafor, 826
tunnel-diode a-c bridge, 273
tunnel-diode a-c bridge with toroid, 274, 280
tunnel-diode and, 348
ultrasonic pulse, 828
ultrasonic receiver, 826
universal NBS diode logic, 335
variable-widrh mvbr, 27
voltage failure protection, 502
welding pulse generator, 86
word switch, 345
zero-crossing-sensing, 278
(See also Logic; Switching)
Gate turnoff, 100-ke chopper, 108
d-e chopper, 107, 108
Gafed diode, beacon pulse modulator, 80
Generator, $20-40 \mathrm{kc}$ ultrasonic, 830
300 -kc tone burst, 271, 273
$300-k c$ tone burst, 271, 273
$8-22$ Mc cro marker, 91
$8-22$ Mc cro marker
$100-\mathrm{Mc}$ pulse, 519
100 -Mc pulse, 519
16 -bit word, 681
2.8-microamp constant-current, 170

64-step staircase, 686, 687
alternating-pulse, 807
constant-current for linear sawtooth, 632
constant-current mvbr, 423
constant-current timing, 787
cosine-wave, 102
current-voliage regulator, 169
free-running sawtooth, 699
high-power sonar pulse, 833
memory clock pulse, 112
mfi clupter signal, 682
programmed digital, 673, 682
radar echo, 680
radar time interval, 554
ramp, 360
random noise, 443
random-noise pulses, 535
sine-wave, 102
square wave, 422, 430, 544, 807
squaring-function magnetic, 355
stereo subcarrier, 695
syne, 519
imer ramp, 710
triggered sawtooth, 698
(See also Oscillator; Pulse generator)
Geiger-Müller crunter, audio-visual indicating, 562 cosmic-ray, 562
radiation survey meter, 563
three-level power supply, 495
Glow tube, $1-\mathrm{kc}$ counter, 161
4-ke counter, 154
4-ke counter, 154
Goldberg drift correction, d-e amplifier, 104
Golf cart, pulse width modulation
motor control, 408
Goniometer, r-f switch, 704
Goto pair, locked, 342
Gray code, encoder, 34
Gyro, d-c motor confrol, 406, 407
yro, d-c motor control, 406, 407
lock-up alarm,6
magamp indicator servo, 350
pilch or yaw servo, 659
roll channse amplifier, 132
Gyro balancer, cro sweep frigger, 89

Hall-effect multiplier, field coil drive, 413
plate drive, 416
Hall generator, amplifier chopper, 108 commutator, 623
multiplier, 413
Hall multiplier, analog ratio computer, 415 squaring, 415
Handwriting, reading spelled-out digits, 336
Harmonic generator (see Oscillator)
Harmonic voltmeter, power frequency, 852
Headlight dimmer, photoelectric, 66, 71
Heart, pacer, 390
Heat (see Temperature control)
Heater supply, regulator, 598
High-frequency heating (see Electronic heating)
Horizon sensor, infrared, 289
Horizontal deflection, germanium-
transistor ty, 741
Hydrogen thyratron, laser pumping switch, 395
Hydrophone, preamplifier, 50,825
Hydrophone preamp, noise-suppressing fet, 828
Hygrometer, alpha-counting, 558, 563
Hysteresigraph, magnetic materials, 310
Hysteresis control, Schmitt trigger, 810

Iceberg, microwave-radiometer detector, 190
cing, alarm, 758
Identification friend or foe, mixer with range strobe marker, 849
mixer with radar marker, 842
I.f (see under Intermediate frequency)

Iff (see Identification friend or foe)
Ignition, $30-\mathrm{kv}$ pulse generator, 71
capacifive-discharge auto, 68
electronic automotive, 65
gas-tube electronic, 66
magnetic-pulse, 69'
(ransistor switch, 711
(See also Automotive)
Ignitron, $360 . \mathrm{kw}$ switching circuit, 707
crowbar, 765
crowbar, 765
diacharge-sharting, 708
pulse-switching, 229
flumination (see Photoelectric)
Illumination control, photoelectric, 475, 480, 482
Indicator, cathode-ray sonar bearing, 829
chopper-lype d-c, 472
computer register,
fencing foil time and sequence, 785
fencing foil time and sequence
fluorescent-anode triode, 237
fluorescent-anode triode,
four-electrode neon, 207
four-electrode
fuel-flow, 350
gated amplitude ratio, 67
incorrect polarity, 325
line-voltage dip 329
off-limit transducer, 643
power-line overvoltage, 505
er-controled lamp, 6
self-balancing shuni bridge, 83
three-lamp switching circuit, 207
transistor-driven lamp, 207
(ses Character lamp, 595
nductance control, differentiator, 125
free-running mvbr, 426
one-shot mvbr, 428
Induction field, $460-\mathrm{kc} \mathrm{f}-\mathrm{m}$ wireless microphone, 800
Induction heater, closed-loop regulator, 212
control oscillator, 209
photographic dryer, 487
power oscillator, 210
Induction radio, 9-kc oscillator stabilizer, 799
magnetic tape playback compensation, 717
Industrial control (see Control)
Infrared, 6.5-cps amplifier for air-leak detector, 17
46-cps amplifier, 294
60 -cps servo amplifier for air-leak detector, 654
air-leak defector, 456
engine gas temperafure measurement, 67
engine heat detector, 293
horizon sensor, 289
mine-detector preamp, 294
monochromator preamp, 291
obiect detector-counter, 150
Perkin-Elmer analyzer, 289
phase-sensitive intrusion alarm, 5
power monitor, 291
space vehicle communication, 292
steel strip width, 294
transceiver, 290
video modulator, 293
width gage amplifier, 290
width gage preamp, 292
width gage translator, 294
Infrared scanner, tangent-function sweep, 698
Infrared scanner, tangent-function sweep, 698
Instrumentation, calibrating a-c meters ta magnetic recorder, 715
magnetic recorder, 715
magnetic tape reproducer, 714
magnefic tape reproducer, 714
Insulation, controlling extrusion on wire, 87
Insulation, controlling extrusion on
Integrated circuit, 10.7-Mc two-chip
f-m i-f strip, 282
15 -Mc telemetry command receiver, 300
1-w audio amplifier, 297
a-f preamp, 305
alternating and-or gate, 33
olternation 30 gate, 33

Integrated circuit, audio power amplifier, 304
basic gafe, 304
basic RCTL logic inverter, 299
bipolar pulse generator, 516
buffer and logic, 301
camera sync distributor, 737
chopper drive for linear integrated.
circuit tester, 303
complementary-fransistor logic, 305
cross-connected inverters as flip-flop, 302
Darlington audio preamp, 52
Darlington-input operational amplifier, 298
d-c operational amplifier, 305
differential amplifier, 195, 196, 199
dual four-input gate, 297
five-voltage power supply for tester, 604
fip-flop, 300
f-m limiter, 197
harmonic mixer, 198
high-noise-immunity gate for logic, 303
improved Darlington, 298
line driver, 305
logic-inverting, 339
low-cost f-m tuner, 254
measuring and gate switching time, 300
measuring gate switching time, 300
measuring performance with cro systems, 295
memory sense amplifier, 296
multipurpose chip, 301
nonlinear-mode harmonic mixer, 296
null amplifier and chopper for tester, 303
optoelectronic coupling, 484
or gate, 339
output buffer, 305
p-mos \dagger amplifier, 302
pressure-sensitive monostable mvbr, 297
pressure-sensitive mubr, 297
pressure-sensitive oscillator, 301
quad block, 304
Schmitt trigger, 300, 303
sense amplifier, 196, 30
servo amplifier, 304
servo frequency compensator, 647
single-frequency $100-\mathrm{Mc}$ f-m receiver, 299
single-stage differential amplifier, 198
staircase generator, 686
thin-film pulse amplifier, 300
timer, 298
two-chip f-m tuner, 250
two-stage operational amplifier, 302
wideband amplifier, 296
integrated transistor-zener reference amplifier, 614
ntegrator, 100-६ps phase-shift oscillator, 31
250,000-gain amplifier 306
analog-computer blood flow-rate, 379
analog-computer blood flow-rate, 379
automatic search and control for servo, 662
bootstrap, 312
chopper-siabilized d-c amplifier, 307
current culse 308
current pulse,
d-c to $10 \mathrm{kc}, 308$
d-c to voltage, 391
diode pump, 367
distance measurement, 307
electrical-readout solion, 310
magnetic characteristics, 310
magnefic core flux, 312
Memistor, 312
Miller, 381, 545
noise dosimeter, 309
operational amplifier controlled by
synchronous reed switch, 311
peak volimeter, 857
phantasfron delay, 185, 189
proportional amplifier, 311
pulse, 146
radar video, 309
rotation-analyzing staircase, 67
shmoo memory curve plotter, 306
solion linear time base, 309
time-base cycle-counting, 462
triangular-wave generafor, 629
Intensifier, cro, 93
Intensity control, crt, 95
Inferference, receiver susceptibility, 440, 520
Interference protection, scs, 446
Inferference suppression, ionospheric sounding, 570
radar, 552
Intermediate-frequency amplifier, 15-cps
spectrum onalyzer, 284
455-ke mobile, 288
455-ke single-fransistor, 288
500 -ke delay-line
500 -ke delay-line tuning, 282
848-kc crystal filter, 221
5.5-Mc germanium, 287
5.5-Mc germanium, 287
5.5-Mc high-gain low-noise, 287
6.25-Mc, 77

10-Mc superregenerative, 286
10.7-Mc two-chip f-m strip, 282

22-Mc design, 288
30-Mc with 2N2188, 285
30 -Mc pulsed 2410,285
$30-\mathrm{Mc}$ pulsed-gat
$30-\mathrm{Mc}$ radar 549
30 - Me three-trans istor, 285
45. Me cascode fet, 285
60 . Mc with 2 N 743.288

60 - Mc grounded-grid triode, 283
60 -Mc grounded-grid triode, 283
60 -Mc logarithmic, 284
60-Mc logarithmic thin-film, 288
60 Mc ogilicon tetrode stage, 287
60 -Mc tetrode, 282
ntermediate-frequency amplifier, 70-Mc low-noise, 284

105-Mc, 139
105-Mc with 2N2966, 286
500 -Mc stagger-funed, 28
a-m/f-m strip, 570
ceramic-filfer stage, 287
complete optimized design, 283
double-conversion, 57
low-noise for backward-diode defector, 285
optimum design, 284
out-of-baseband noise, 440
preferred 30 -Mc pulse-modulated afc, 5
symmetrical limiting, 286
three-fransistor color tv sound i-f, 749
three-transistor color video, 754
video, 286
(See also Receiver; Transceiver; Transmitter)
intermediate frequency filter, remotely funed crystal, 217
ntervalometer, low-cost vit-scr, 791
pulse width
pulse width controller, 544
ntrusion alarm, capacitance-bridge, 88
(See also Alorm)
d-c to 50 ke to d-c 313 d-c, 315
d-e to 50 ke to d-e, 313
1.5-25 cps solenoid pump pulser, 237
$60-$ cps $20-\mathrm{w}, 318$
$60-$ cps $100-\mathrm{w}$
318
60 -cps $100-w, 318$
60 -cps $200-w, 115-v, 316$
$60-$ cps $200-\mathrm{w}$ 115-v, 316
$60-$ cps $250-\mathrm{w}$ dual-tronsformer, 319
60.eps 400.w dual transformer, 317

400-cps fork control, 324
400 -cps power amplifier, 319
400-cps variable-gain amplifier, 315
2-kc parallel, 322
50 kc at 100 w , 320
10 kc at $100 \mathrm{~W}, 320$
$12 \mathrm{v} \mathrm{d-c}$ in $8.5 \mathrm{kc}, 145$
$12 \mathrm{v} \mathrm{d-c}$ to $8.5 \mathrm{kc}, 145$
$12 \mathrm{vd} \mathrm{to} 250 \mathrm{kc}, 143$
$24 v$ d-c to square-wave a-c, 320
$28-v$ d-c to $400-$ cps a-c, 324
4 w at 150 y from flashlight call, 326
basic RCTL logic integrated circuit, 298
black-light supply, 321
capacitor furnoff, 325
code converter phase, 323
ross-connected integrated-circuit as flip-flop, 302
cross-coupled as flip-flop, 231
d-c voltage, 96
differential transistor-magnetic, 353
differential-mvbr magnetic, 326
dual speed-up windings, 323
dual-iriode magnetic, 326
frequency standard control, 468
induction motor drive, 407
lamp-flashing, 226, 228
logically redundant, 324
low-cost computer logic, 342
ow-voltage high-current, 320
neon-photoconductor, 349
nondifferential transistor-magnetic, 354
parallel, 778
parallel reactive-load, 322
positive-feedback fast-switching, 324
power-switching output stage, 326
propagation time measurement, 366
protection from incorrect polarity, 325
pulse delay, 185, 186, 189
pulse polarity, 516
pulse sequencing of scr parallel, 325
pulse-widit modulator, 315
reducing idling current, 321
reference element, 323
rotating-beacon, 223
scr driver, 321
scr static alfernator, 314
cr frigger, 426
self-excited half-bridge, 325
elf-excited three-phase, 315
speed-up winding, 323
quare-wave drive, 322
symmetrical photoflash, 72
hree-phase regulator, 316
hree-phase ring counter, 314
hree-fransistor, 33 .
ransformerless scr bridge, 323
tansient-suppressing trigger, 816
transistor-magnetic,
transistor fester, 770
wo-capacitor fast-s witching, 319
unity-gain contropilat 322
voltage regulator 197
Ionization, cosmic-ray, 562
lonosonde, long-duration stepped-sweep, 685
lonosonde, ong-duration stepped-5W
lonosphere, sounding transmitter simulatar, 67
lanosperic sounding, trane signal suppression, 570
Isolatian, magnetores istar, 84

Jam detector, conveyar, 482
Jammer, conversation, 461
Jitfer suppression, digital receiver, 623

Keyer, distress-frequency transmifter, 79

Keyer, induction heater, 210 induction heater oscillator, 212 neurosurgery oscillator, 382 neurosurgery os
phase-shift, 805
squelch-actuated repeater, 442
Keying, oscillator, 451

$$
\begin{aligned}
& \text { paging fransmitter, } 801 \\
& \text { transient-free photoelectric, } 481
\end{aligned}
$$

Keving monitor, sensitive broadband $c-w, 449$
Klystron, color tv pickup reference oscillator, 752 regulated magnetic-amplifier supply, 592

Lomp, burnout alarm. 7 dimmer, 472
flasher circuit, 226, 228
fluorescent inverter, 313
intensity control, 475
programmed preheater control, 129
radiation alarm failure, 567
scr brightness confrol, 128
scr dimmer, 133
transisfor failure-indicating, 595 trioc dimmer, 133
Lamp dimmer, light-activated scr, 473 scr, 476
Lamp display, readout inversion, 207
Lamp drive, fumor-scanner, 387
Lamp driver, bistable, 436 scr, 664
Lamp preheater, light-activated scr, 478
Langmuir probe, sporadic-E ionization, 376
Lapping, automatic shutoff control, 249
Larynx, artificial, 388
Laser, modulator current control, 167 receiver preamp, 499
Laser beam, preamp, 500
Laser flash tube, power supply, 229
Laser ty audio driver, 739
Lateh, 120 va-c Triac, 329
a-c static using toroids and scr's, 327
clock pulse registor, 328
fet light-activafed relay, 328
amp-s witching, 328 ; 329
mognetic-firing a-c $1.7-\mathrm{kw}$ scr, 328
magnetic-firing a-c $1.7-k w$
nean-photoconductor, 328
saturable-reactor, 709
stepper relay reset coil, 328
transient-pulse detector, 329
uit, 327
uit for inductive-load scr, 329
atching circuit, lamp, 4
leak detector, 60 -cps servo amplifier, 654
automotive air-suspension system, 17,456
leakage, capacitor and diode testin
leakage rurrent, measurement, 369 , trigal 771
leakage tester, transistor, 770, 779
Level control, liquid, 136
Life test, mierowave friodes, 773
light (see Photoelectric)
light beam, communicotion, 401, 402
light-beam communication, current-mode switch, 223, 228
Light control, ambient-level age, 476
light pen, high-gain amplifier, 92
preamp, 99
light transients, measuring, 481
imiter, 500-kc, 439
6-Mc-bandwidth high-linearity, 331
27-Mc CB receiver, 334
$80-\mathrm{db}$ dynamic range, 331
a-f noise, 332
audio dynamic-range, 267
bipolar, 334
current, 331
duty-cycle, 332
fast-acting, 333
f-m integrated-circuit, 197
mobile color tv pickup, 332
mobile receiver, 330
nonadditive video mixer, 848
preferred a-m receiver noise, 333
preferred video, 332
pulse, 374
radar noise analyzer, 332
series noise, 333
series-parallel oudio noise, 334
symmetrical i-f, 286
telemetry low-level amplifier, 331
video signal, 330
Line driver, integrated, 305
Liquid level, measurement, 363
oad switching, flying-spot scanner, 639
flying-spot scanner, 642
locking, coherent oscillator, 672
logarithmic aftenvator, pulses, 362, 373
Logarithmic diode, reactor startup, 128
ogic, 1.5 -Mc flip-flop, 345
300 -Mc pino-nipo, 346
$500-\mathrm{Mc}$ pino-nipo, 346
2 and 4 input nor gate, 341, 343
alternating and-ar gate, 339
arithmetic cell 120
rithmetic cell, 120
asic integrated gate, 304
basic parallel-tronsistar npn, 344
basic RCTL integrated-circuit inverter, 299
basic series npn, 347
basic series pnp, 349
basic series pnp, 349
binary adder, 335
binary encoder 337
bird-direction-af flight, 150

Logic, bistable and circuit, 345
blocking oscillator control, 338
omplementary RDTL nor, 341
omplementary-transistor integrated-circuit, 305
urrent-mode gafed flip-flop, 233
ct flip-flop, 239
digit line decoupler, 340
diod
diode-coupled nond/nor gate, 341
double nor gate, 347
drive for biloteral Iransistor, 725
drivers, 341
ite coupled astable driver, 430
mitter-coupled and gate, 342
exclusive-or, 345
full adder, 123
half-adder, 121
high-speed binary, 336
high-speed flip-flop, 338
hybrid nor, 340
integrated-circuit amplifier, 301
integroted line driver, 305
inverting amplifier, 339
largest-signal selector, 343
level converter, 144
level shifter, 335
locked-pair tunnel-diode, 342
low-cost inverter, 342
majority-decision 50-Mc gate, 345
maiority gate, 348
memory information-extracting driver, 348
memory information-inserting driver, 346
memory X-pulse amplifier, 343
memory Y-pulse amplifier, 349
microenergy flip-flop, 234
multi-emitter-transistor or gate, 339
nand/and/or gate, 339
neon-photocanductor inverter, 349
neon with pnp exclusive-or, 347
neuron model, 343
neuron model without integrator, 346
nor, 347, 348
nor up to $8 \mathrm{Mc}, 347$
nor gote, 238, 708
npn and gate, 347
odd-even, 346
paired-inverter flip-flop, 231
pnp exclusive-or, 347
pulse sequence detector, 540
pulse train generator, 531
pumped tunnel-diodé nor gate, 338
random-noise analyzer, 268
RC-coupled binary, 348
RCTL nand/nor gate, 341
RTL nand/nor gate, 337
RTL nond/nor gate, 337
script word recognifion, 336
sense amplifier, 340
single-supply nor to $1 \mathrm{Mc}, 349$
stepper servo motor tester, 777, 778
storage-diode selection matrix
storage-diode selection matrix, 342
felemetry commutator simulator, 678
themetry commutator
thin-film toggling with transistor, 349
thin-film togglin
threestate, 340
tick-tack-toe memory, 34
tick-tack-toe neon-lamp gates, 33
transistor-coupled nand/nor gate, 346
transistor-diode nor gate to $2 \mathrm{Mc}, 343$
tunnel-diode and gate, 348
tunnel-diode or gate, 348
two-input nor gate, 341,349
universal NBS diode, 335
word switch, 345
(See also Computer; Flip-flop; Gate; Switching;
Trigger)
Luminance amplifier, color tv, 751

Machine gun, firing-rate control oscillator, 131
Machine tool, motor control, 410
Machining, electric spark, 128, 129
Magnetic amplifier, computer open-fuse detector,
conveyor belt slip detector, 353
differential two-transistor inverter, 353
double-bridge open-fuse defector, 354
four-quadrant multiplier, 414
four-quadrant square-law analog multiplier, 353
fuel flow gage, 350
gyro indicator servo, 350
high-voltage regulated power supply, 355
nondifferential two-transist or inverter, 354
power supply control, 352
quarter-wave multiplier, 355
reflex klystron power supply, 355
regulated klystron supply, 592
regulated power supply, 35
self-balancing $400-\mathrm{cps}$ servo motor drive, 352
square-law analog multiplier, 351, 354
synchronously switched biased diades, 355
two-speed servo motor drive, 354
Magnetic contaur, display, 708
Magnetic cantrol, transistor gain, 12
Magnetic film, measuring switching speed, 628
Magnetic firing, scr latching relay, 328
Magnetic gage, flashtube trigger, 225
Magnetic gage, flashtube frigger, 225
Magnetic induction, cave mapping, 374, 376
Magnetic shift register, autopilat, 665
Magnetic shift register, autopilai,
flutter measurement, 360
fluter measurement,

Magnetic tape, skew control, 356
(See also Audio; Recorder; Tape Recorder)
Magnetic tape handler, photoelectric alarm, 7
Magnetic tape recorder, playback of event-fiming signal, 586
Magneto, zero-power tachometer, 68
Magnetometer, 325-kc bridged-T filter, 219
proton precession, 368
Magnetoresistor bridge, 84
Magnetoresistor control, ser, 83
Magnetostriction, iv remote control, 830
Magnetostriction delay line, serializer, 180
Magnetostriction filter, oscillator, 219, 222
Magnetostriction oscillator, 100 -kce, 460
Magnetron, 2-kv modulator switching module, 398
300 -kw modulator, 397
injection electrode supply, 592
magnetic pulser, 554
radar four-diode modulator, 40
regulated filament supply, 61
series-diode modulator, 400
transformer-triggered modulator, 400
X-band radar transmi
Magnetron beam tube, switching circuit, 537
Manometer, photoelectric, 386
Marker, 8-22 Mc cro, 91
Marker beacon, 569 receiver, 77
Matrix Ma gamma, 56
electroluminescent display, 204 microwave system alarm, 3
Matrixing, f-m stereo adapter, 691
Measurement 10 cps to 1 Mc 146
3-260 Mc tunnel-diode dip meter, 365
$200-\mathrm{Mc}$ transistor noise figure, 44
1-nsec pulse peak amplitude, 855
a-f phase shift, 361
amplifier distortion, 27, 359, 675
amplifier linearity, 629
amplifude probability density function, 441
antenna impedance, 674
antenna radiation paftern, 802
audiforium acoustics, 309, 787
auto engine speed, 71
axis-crossing interval, 90
bird flight speed, 150
blood flow, 377
blood flow rate, 267, 379
blood oxygenator volume, 380
blood pressure, 378, 384, 386
body temperature, 758
cable fault locatión, 7\&4, 769, 772
cable propagation delay, 249
calibroting a-c meters to standard cell, 781
capacitance, 368
capacitance-fype aircraft fuel gage, 86
cell-growth microphotometer, 481
cement sefting time, 359
cladding or plating thickness, 367,370
coating thickness, 362,365
coax delay, 365, 372
coherent oscillator fitter, 546
cosmic-ray neutrons, 726
crt pulse height, 81
daylight intensity, 484
d-e voltage comparator, 850
dewpoint, 480
dielectric properties, 663
dielectric strength, 775
differential transformer core displacement, 645
digital circuit delay, 524
dimensions of rotating parts, 479
dynamic notch filter for noise rejection, 222
dynamic notch filter
electron density, 376
engine gas temperałure, 67
engine rpm, 65, 68
eyeball pressure, 378
eye puphoff voltage 369
film density, 364
flashlamp output, 48
flip-flop peak voltmeter, 857
flowmeter frequency converter, 247
f -m modulation percentage, 416
f-m stroin-gage oscillator, 255
-m suroin-gage ascillator, 255
frequency jitter, 156
frozen-food temperature, 758
fuel-flow, 350
gyro vibration, 89, 98
high-impedance source voltage, 174
high-speed multiplexing counter, 624
home and outdoor temperatures, 759
infrared energy absorption, 289
infrared horizon sensar, 289
infrared power, 291
instantaneous and peak core flux, 312
instrument insulation resistance, $\mathbf{7 7 2}$
insulaition resisfance, 782
infegrating circuit time interval, 786, 790
invisible flows in wire, 772
tron density, 548
jet fuel flow, 567
leakage resistance, 771
light flashes, 482
linear integrated-circuil performance, 295
line voltoge dip, 329
liquid density. 128
liquid level, 363
logorithmic otfenuator, 362, 373
low-energy space particles, 566

Measurement, magnetic characteristics, 310
magnetic fields in space, 368
magnefic-induction cave mapper, 374, 376
magnetic materials af narrow pulse widths, 525
magnetic tape flutter, 360
mefal tension and elongation, 134
meter profectian from pulsed iransducer, 507
nicromicroammefer, 371
micromicroampere currents, 375
millivolt d-c voltages, 858
missile position and velocity, 23
moisture in powder, 359
Mossbaver-effect spectrometer, 356
movie camera frame rałe, 485
nanoampere sensing circuif, 364
neutron, 564
neutron analyzer, 560
neutron diffraction, 559
noise dosimeter, 309
noise frigure, 358 , 439, 779
nuclear particle flight time, 783
ocean depth, 835
overtone crystal parameters, 83, 776
parallel-mode tron
parallel-mode transducer, 643, 649
phase, 201, 648
hase at 15 to $400 \mathrm{Mc}, 466$
hase up to $2,000 \mathrm{Mc}, 472$
phase angle, 470, 473
hase shift at $30 \mathrm{Mc}, 469$
ph meter, 372
position of encapsulated metal part, 225
power supply temperafure coefficient, 614
prf, 203
printed circuit widths, 477
projectile occeleration, 731
projectile nose pressure, 73
pulse amplitude, 538
pulse energy content, 370
pulse energy in coulombs, 308
pulse frequency, 191, 192
pulse height, 115,534
pulse rate, 248
pulse-reference phase angle, 468
pulse-reference phase ang
pulse width, $374,539,630$
pulse width with linear bootstrap time base, 634
radar auto speed mefer, 545
radiation at 0.5-50 milliroentgen per hour, 563
radiation exposure, 564
radiation of high-altitude alpha particles, 558, 563
radio propagation, 804
radioactive dust particles, 560
adioactivity of tracers, 564
adio bearing, 465
radio wave dírection, 498
random time interval, 789, 791
receiver noise, 440, 520
recorder wow, and flupter, 201
relay chatter time, 774
resistonce, 808
resistance comparator, 375
resistance in milliohms, 78
r-f power, 362
-f voltoge, 85
iver flow velocity, 836, 837
racket surface temperafure, $756,757,760$
satellite position and velocity, 448
cr turnoff time, 778
elf-balancing strain-gage bridge, 83
semiconductor resistivity, 168
servo system angular lag with photodiode rvo system a
hock spectrum, 376
hort-term frequency stability, 672
signal phase difference, 470, 474, 808
mall phase anales, 471
solar x-rays, 533
sound level meter, 44
speed of inaccessible rotating parts, 71
speed of sound in water, 367,370,371
pot-welding current 859
stalo stability under vibration, 460
teel strip width, 290, 292
train-gage amplifier 366
uperconductor critical current, 778
wr, 373
tachometer amplifier-frequency meter, 69
tape recorder wow and flutter, 716
emperature, 757, 758, 763
emperature by nuclear resononce, 760
hickness of moving wire, 363
thin magnetic films, 628
issue impedonce, 387
ool running time, 785
ransducer-controlled erystal oscillator, 140
transistor alpha cutoff, 375
transistor beta, 358, 774
ransistor conversion gain, 358
ransistor forward-current transfer ratio, 360
transistor h-fe at $100 \mathrm{Mc}, 782$
transistor leakage, 770
ronsistor noise figure af $200 \mathrm{Mc}, 44$
transisfor open-circuif outpuł admitfance, 36
transistor power gain, 362, 782
ransistor propagotion time, 366
ransistor reverse-voltage transfer ratio, 371
transistor short-circuit input resistance, 360
trawl net depth, 825, 831
ransistor thermal data, 359
unnel diede chorocteristic curve. 94
unnel diode curves, 700,771
unnel diode d-c parameters, 373

Measurement, tunnel-diode negafive resistance 374
ultrasonic delay line characteristics, 828
ultrasonic propagation time in sea water, 826, 834
ultrasonic velocity, 825, 826, 834
underwater gamma radiation, 475
vacuum, 564
valve closure fime, 784
ertical acceleration, 584
vibration, 369
voltage, 812,813
voltage dips, 858
voltage in semiconductor circuit, 854, 856
swr, 357, 362
wafer velocity, 367
wire enamel thickness, 87
See also Counter: Frequency measurement Meter; Pulse height analyzer; Radiation
Meter; Pulse height analyzer; Radiation; Sampling; Telemetry; Tes
Medical electronics, 3-kc three-output oscillator, 383
3-ke ultrasonic responder for blind, 832
$15-\mathrm{Mc}$ receiver for brain command signals, 300
15-Mc receiver for brain command signals, 300
27.12 -Mc diathermy frequency-drift alarm, 212
anesthesia control, 387
artificial-hand amplifier, 390
artificial-hand servo, 388
artificial Iarynx, 388
automatic blood pressure
ufomatic blood pressure monitor, 386
blood flow-rate integrátor, 267, 379
blood pressure indicator, 384
blood-pressure monitor, 378
blood-pressure regulator, 385
blood-pressure regulator,
blood-volume servo, 380
blood-volume servo, 380
bone section scanner, 382
capacitance-sensing cane for blind, 88
cardiac pacemaker, 383
ecg amplifier, 380
eeg telemeter, 388
eeg wavaform analyzer, 384
eeg waveform zera detector, 383
electronic tonomefer, 378, 392
eye-motion recorder, 386
eye-motion tracker, 483
foetal heartbeat detector, 389
heartbeat telemeter, 377
heart-block pulse amplifier, 385, 391
heart-lung machine control, 377
heart pacer, 390
heart rate regulator, 390
heart sound selector, 389
heart-sound zero-crossing detector, 278
intravenous infusion bubble detector, 13
iron-lung air intake contral, 388
low-cost intervalometer, 791
measuring eye pupil movements, 642
measuring tissue impedance, 387
muscle potential telemeter, 39
myoelectric stimulator, 385
nerve-fiber-potential recorder, 721
nerve potential transmitter, 389
neuron simulator, 683
neurophysiology stimulator, 384
neurosurgery oscillator keyer, 382
neurosurgery ulirasonic oscillator, 386
neurosurgery ulirosonic oscillator, 386
neurosurgery vivm, 392
pill fracer, 391
preset neurosurgery pulse counter, 390
recording manometer, 386
retina stimulator, 3
retina welder, 379
retina welder control, 381, 391
retina welder control, $\mathbf{3 8 1}$ for biomedical research
586 signal playback for
umor-scanner amplifier, 387
video processor for blood-cell scanner, 32
x-ray fube pulser, 381
Memistor, integrator, 312
analog sample-hold 36
basic pnpn trigger 815
clock pulse generator 112
digit line decoupler 340
digit line driver, 344
exclusive-or logic for shmoo curve plotter, 345
fast-readout 500 . Mc gate, 280
fast-rise current driver, 705
ferrite time-of magnetization, 126
French SECAM color tv one-line, 748
high-goin readout amplifier, 120
information-extracting driver, 348
information-inserting driver, 346
inhibit driver, 122
integrated-circuit sense amplifier, 296
integrator for shmoo curve plotter, 306
imit detector for shmoo curve plotter, 535
marker-pulse blocking ascillator, 125
matrix readout, 122
nonstalling flip-flop drive for capacifive load, 231
peak capacitor valtage, 536
peak voltage, 376
peak voltage for $0-10 \mathrm{cps}, 856$
pnpn ring counter, 820
power transistor switching, 708
pulse generator, 121
pulsed drive current amplifude detector, 167
read-write blocking oscillator, 125
sense amplifier, 123, 124, 812
shmoo curve plopyer, 432
storage-diode selection matrix, 342

Memory, strobe pulse generation, 124
strobing-pulse gałe, 122
thin-film current driver, 124
hin-film sense amplifier, 124
ick-tack-foe logic, 344
transistor swifching circuit, 713
tunnel-diode temporary bistable, 711
word switch, 345
Memory core, tester, 767
Memory fester, linear ramp generafor, 637
Meter, capacitance, 368
Meter, expanded-scale swr, 373
portable power tool running time, 785
pulse rate, 248
Metronome, two-transistor, 215
Microammeter, Hall-generator, 108
Microcoulometer, 30 sec- 350 hr delay, 188
Micromicroammefer, servo-controlled, 37
Micromodule, flip-flop, 235
(See also Integrated circuits)
Microphone, preamplifier, 45
wireless, 802, 803
Microphone preamplifier, capacitor, 49
Microphotometer, stained-cell transmittance, 481
Microwave, diode harmonic generator, 452
fault alarm, 272
Kild dode swirg, 706
measuring projectile acceleration, 731
eceiver
Microwave link, regulated klystron supply, 592
calor ty pickup, refe for mobile color pickup, 750
color tv pickup reference 0
losf-carrier generator, 459
Microwave system, fault alarm, 3
Miller action, phantastron sweep, 698, 699
Miller action, phantastron 5 weep, 698, 699
Miller infegrator, sawtooth generator, 636
triggered sweep, 698
Miller superregenerative receiver, remote confrol 618
Miliohmmeter, transistors as rectifiers, 375
Millivolimeter, d-c fet, 853
Mines, underwater ulfrasonic telemetry, 831, 832
Missile, beam-rider radar target simulator, 443
Missile fuze, electronic timer, 111,113
Missile guidance, acquisition relay, 127
Missile \ddagger racker, display gate generator, 270
Mixer, 27-Mc CB transmifter, 139
30 Mc to $5.5 \mathrm{Mc}, 143$
120 Mc to 10.7 Mc nonlinear-mode integrated harmonic, 296
$255-\mathrm{Mc}, 144$
$420-\mathrm{Mc}, 140$
450 Mc to 30 Mc , 144
10-nsec pulse, 123
balinverter, 138
common-plafe video, 844, 846
cutoff-biased friple-input video, 840
diode \$v, 740
distortion monitor, 359
dual-grid pentode video, 848
fet uhf tv, 823
five-inpuł radar marker, 845
four-input high-level video pulse, 846
harmonic integrated-circuit, 198
marker-iff, 842
mos fet, 144
nonaddifive common-plate video, 844
nonadditive video, 848
partial-adding video, 841
pentode common-plate video, 842
pentode video, 846
preferred common-cathode video, 849
preferred low-level common-plate video, 843
radar and beacon video, 849
radar range strobe marker, 842
radar video amplifier chain, 83
range strobe marker-iff, 849
silicon-fransistor, 798
three-input two-output video, 843
three-input two-output video, 843
three-input two-pentode video, 849
three-input two-pentode
three-pentode video, 845
three-pentode video,
friode common-plate video, 848
triode common-plate video, 848
two-input hree-oulput vide 848
two-pentode radar and
two-pentod
uhf iv, 823
Mobile radiotelephone, CB decoder, 795
Modulation, light-emitting diode, 228
Modulation suppression, diode quad, 403
Modulator, 9-kc induction radio, 799'
$25-\mathrm{kc}$ trigger generator, 808
$25-75 \mathrm{kc}$ frequency, 720
100 -ke hybrid balanced, 400
100-kc prr, 398
2.kv switching module, 398

250-kw ten-diode radar, 54
300-kw magnetron, 397
$23-\mathrm{Mc}$ voltage-controlled, 460
100 -Mc varicap f-m oscillator, 251
150-Mc telemetry carrier, 731
230-Mc self-reactance, 252
243-Mc beacon, 80
400-Mc varicap f-m oscillator, 255
$0-200$ pps variable-width pulse, 403
a-c for photomultiplier, 477
balanced, 649
balanced adf, 395
balanced silicon-transistor, 798
balanced-friode sine-wave, 399
beacon transmitfer, 80
blocking-oscillator X-band pulse radar, 555

Modulator, Boynton-Scholt, 396
capacitor-balanced ssb, 397
cascade angular, 394
CB direct R-C coupled common-emitter, 396
CB transformer-coupled base, 403
CB transformer-coupled collector-modulated
transmifter, 397
CB transformer-coupled series d-c, 398
chopper, 399
delta-sigma, 393
Diamond, 396
diode quad, 403
double-balanced ring, 695
duo-diode half-wave switch, 403
ferrite-core microwave, 731
hat-display \$v, 734
-m/p-m, 398
f-m telemetry, 730
ull-wave scr a-c switch, 864
infrared, 290
infrared television transmitter, 293
large-range pulse width, 399
aser pumping, 395
ight, 476
light-emifting diode, 223, 226, 401, 402
inear f-m, 403
inear voltage-frequency converter, 142
line-type 250-kw peak, 393
ow-frequency $f-\mathrm{m}, 721$
magnetic pulse-fime, 399
missile fransponder, 548
modem pulse shaper, 396
myoelectric stimulator, 385
pam video recorder, 394
phase, 73
hofochopper, 851
ppm multiplexer, 395
pulse ratio, 394
pulse train amplifude, 402
pulse width, $315,396,415,416,811$
radar four-diodé magnetron, 401
R-C coupled base, 403
-f iv camera,
sotellite transmifter, 728
awtooth ramp, 636
series-diode magnetron, 400
servo current-subtracting, 646
shaft position servo, 661
stabilized signal generator, 672
stabio phase, 693
stereo
synchronous-detection balanced, 440
temperafure control, 759
three-tone, 803
three-tone telemetry, 618
transformerless base, 40
transformerless collector, 400
ransformerless linear, 402
ransformer-friggered magnetron, 400
riode clamp, 401
tv laser, 739
twin-T 400-cps filter, 221
variable-plate-resistance, 402
ariable rectangular-wave, 618
variable-width pulse, 398
voltage-tunable f - $\mathrm{m}, 255$
wide-bond transformer, 396
wide-range voltage-controlled oscillator, 455
Modulator tube, protection, 765
Moisture meter, current-stabilized, 359
Monifor, disfortion, 27, 359
leakage current, 770
line-voltage failure, 1
missile performance, 727
missing-pulse and d-c dropout, 6
r-f power and vswr, 362
slow-scan tv, 742
telemetry command pulse, 726
transducers, 643,649
voltage, 812
voltage bar graph display, 206
voltage and current, 811
Monochromator, missile plume, 291
Mossbauer effect, spectrometer, 35
Motor, 440-cps power supply, 585
Motor control, 400 -cps servo magamp drive, 352
0.5-hp shunt wound d-c, 408

1-kw a-c phase, 471
3.w servo power amplifier, 661
acceleration-sensing switch, 408, 410
adf goniometer, 405
adjustable d-c field supply, 352
balanced-bridge reversing drive, 411
commutator noise actuates muting system, 412
constont-current battery-charger rheostat, 75
constant-speed 400-cps, 404
convey or belt slip, 353
directional d-c, 412
four-transistor inverter, 407
four-fransisfor inverter, 407
full-wave a-c or d-c, 404
full-wave a-c or d-e, 404
full-wave push-pulla-c servo, 407
full-wave push-pull a.c servo, 407
ful-wave push-pull shunt motor, 405
golf cart drive, 408
golf cart drive, 408
governor-fransistar for $0.5-\mathrm{hp}$ d.c, 411
mvbr modulator for
mvbr modulator for full-wave scr power switch,
864
one-source gyro, 407
overersible d-c shunt motor, 410
reversing, 406, 412
reversing full-wave d-c, 409

Motor control, reversing series-wound universal 410
scr noise suppressor, 445
scr zero-crossing synchronizer, 136
series actuator solenoids, 407
sidereal-time clock, 113
small permanent-magnet d-c motor, 409
speed-controlling chopper for battery-powered vehicle, 107
stepper pulse generator, 41
stepping, 412
switching-mode, 406
synchronizer, 619
td-scr with speed feedback, 412
three-phase scr, 405
three-speed blender, 412
timer motor clutch, 790
Triac a-c starter, 329
Triac-Diac reversing a-c, 411
two-source gyro, 406
ultrasonic, 409
universal a-c/d-c, 410
vhf infrusion alarm,
(See also Control; Servo)
Moving-target indicator, signal simulator, 682
Multiplex, stereo funer, 253
Multiplexer, 10 -channel satellite, 152
20 -channel sampling counter, 624
analog-digital converter, 37
f-m stereo, 692
four-channel ppm modem, 395
low-level telemetry, 730
pcm telemetry, 729
transistor series switch, 270
Multiplier, 8-kc Q, 413
amplifier input impedance, 28
analog-computer pulse-amplifude modulafor, 416
analog-computer pulse-width modulator, 416
analog-ratio Hall-effect, 415
analog voltage, 415
four-quadrant ónalog, 414
four-quadrant square-low magamp, 353
gain-controlled logarithmic, 26
half-square magnetic, 355
Hall-effect, 413
Hall-effect field coil drive, 413
Hall-effect plate drive, 416
Hall-effect squaring, 415
polarity-coincidence, 414
probability analog, 416
Q, 24, 141, 416
quarter-wave magnetic, 355
simultaneous logic, 337
square-law magamp, 351, 354
riangle analog, 416
wo-quadrant analog, 399
voltage, 141, 142, 492
(See also Frequency multiplier; Q multiplier:
Voltage multiplier
Multivibrator, 40-cps 0.01-microwast, 435
40 -cps astable, 687
100 cps to 1 Mc astable, 433
125 -cps, 190
$210 \mathrm{cps}-210 \mathrm{kc}$ voltage-controlled astable, 434
400 -cps synchronized 68.4 -ke astable, 459
400 -cps synchron
400 cps uif, 434
$850-\mathrm{cps}$ constant-amplitude sine wave from
square wave, 675
10-kc power supply 49
20-kc astable, 769
20-kc paging transmitter, 801
31.5 kc crystal oscillator, 736

50 -kc free-running, 431
150 kc bistable, 418
250-ke monostáble, 435
500-1,000 kc pressure-sensitive astable, 297
$750 \mathrm{kc}-7 \mathrm{Mc}, 419$
1-Mc counter input, 163
1-Mc magnetic transfluxor, 526
5-Mc, 423
10-Mc funnel diode, 421
200 -Mc astable, 252
10 -microsec monostable, 418
600 -microsec oufput-pulse monostable, 434
510600 millisec astable, 434
$25-\mathrm{nsec} 0.5$-amp clock pulse generator, 109
0.3 sec astable, 359
$1-5$ sec one-shot timer, 784
$15 \mathrm{sec}-2 \mathrm{~min}$ thermal mono, 422
1.4 min one-shot delay, 185

200-400-800 pps prf generator, 428
adiustable delay, 389
astable high-power, 433
astable hybrid td-transistor, 531
astable stimulator, 385
astable wailing-siren, 5
asymmetric current control, 736
asymmetric free-running, 759
basic hybrid uit-pnp transistor, 784, 789
bistable flowmeter, 367
bistable hybrid td. transistor, 438
bistable indicator lamp driver, 436
bistable main-gate, 437
bistable ppm demodulator, 729
bistable in pulse-width modulator, 399
bistable fransistor-testing, 232
blocking oscillator 10:1 sync, 447
cascaded bistable, 166
cascaded one-shot,
cascode, 423 , 425 main-gate, 432, 437
cathode-coupled main-gate,
cathode-coupled frigger, 419

```
Multivibrator, cathode-followar-coupled main-gate,
    4 3 5
    choke-contralled free-running,}42
    choke-controlled ane-shot,428
    clean square-wave, 672
    cold-cathode,480
    combined with Schmift trigger, }8
    complementary, }16
    computer fault alarm,3
    constant-current charging,421
    canstant pulse-width one-shat, 412
    canstruction barricade flasher, }2
    continuously variable prr, 429
    counting-rate mefer, 562
    cro trigger, 94
    crystal-contralled, 419
    crystal-controlled clock, 110
    d-c controllad switching voltage regulator, 603
    demodulatar,}71
    differential magnetic, }32
    double-coupled main-gate, 432,435
    dual-input flip-flop, 430
    dual-priode, magnefic inverter, 326
    Eccles-Jordán,427
    Eccles-Jordan auto-locking gate, }6
    emiffer-coupled, 425
    emitter-coupled asfable logic driver, 430
    mmitter-coupled linear sawtooth,636
    emitter-coupled mono design, 421
    emitter-coupled sawtooth, }63
    expanded-delay monastable, 183
    fast-recovery hybrid one-shot,436
    fast-recovery hybrid one-sh
    fast-recovery variable-width one-shot, 431
    fast-reset,423
    fast-furnoff mono,433
    fet monastable timer,785
    free-running, 143, 517
    free-running astable 1 cps-250 kc, 434
    free-running cascode, 422, 430
    free-running with Colpitts,771
    frequency-dividing for f-m,'f
    gate-controlling saturated, }27
    gated, 274
    gated delay, }27
    Geiger recorder keep-alive, 562
    high-power one-shot,437
    high triggering sensifivity,420
    improved one-shot,438
    improved ultra-long monostable, 436
    isolating-diode monostable delay, 186
    line-triggered bistable, 70
    long-pulse mono,432
    magnetic inverter, 322,425
    moin-gate with diode limiter, }42
    main-gate with triode limiter, 43
    mechanical counter drive for G-M, 561
    microsec fall time, 426
    missile count-down switch, }70
    modulator for full-wave ser motor control, 864
    mono,422
    mono with adiustable pulse width, }20
    mono with delay,417
    mono with improved iriggering, 433
    mono with negative recovery time, 438
    monosfable, 200, 537,692
    monosfable, 200,537,692 delay, }18
    monastable auto ignition, }6
    monastable chart recorder drive, 583
    monostable delay,}18
    monostable with driver as first stage, 425
    monostable noncutoff,422
    monostable overload-profecting, 594
    monostable pulse length confrol, 488
    monostable quad block, }30
    monostable with transistor protectian, 505
    monostable vertical sweep,93
    monostable voltage-time converter, 35
    monostable zero-crossing detector,'114
    noise-immune bistable, 424
    noise-suppressing mono,428
    on-aff relay control,}13
    on-aff relay control,131
    one-shot battery-charging, 74
    one-shot cro raster disoloy, }
    one-shot telemetry, 723
one-shot ultrasonic synchronizer, 828
one-transistor one-shot,425
one-transistor one-shot, 425
plate-to-grid coupled monostable main-gate,
pnpn triggered one-shat, 809
power one-shot,432
precision time delay, 188
preferred bistable, 419
preferred monostable, 420
preferred monostablé delay, 181
preferred nonsaturating bistable, 419
preferred nonsaturafing bista
preferred saturating blstable, 424
pressure-sensitive monostable, }29
pulse duty cycle limiter, 431
radar ppi sweep generatar,549
radar prf generator, 420,421
random-time delay, }22
reducing one-shot recovery time, 436
reducing reset power level,429
relay contral;438
relay-only,421
relay-only for a-c,426
relay-type with diodes, 419
relay-type with diodes, 419
Multivibrator, cathode-followar-coupled main-gate,
435
    clean square-waye 6}67
    complementary 165
    continuously variable prr, 429
    continuous phase confrol, 467
    demodulatar,}71
    dual-triode, magnefic inverter, 326
relay-only for a-c,426
```

Multivibrator, refing welder cantrol, 381
scr bridge inverter, 323
scr switching, 42
ser trigger, 426
self-completing gated astable pulse train
generator, 531
eries-Schmitt one-shot, 810
shmad curve platter, $43 \mathbf{2}$
siren warble generator,
stabilized bisfable, 117
stabilized mono frequency divider, 241
stabilized oneshot, 424
strobe trigger, 224
superconducting test set, 778
switch-acfuating, 520
switching-diode one-shot, 277
symmetrical, 690, 691
symmetrical twin-triode, 528
synchronized astable main-gate, 435
teaching-machine reward dispenser, 272
temperature-compensated, 425
testing tape transport, 718, 720, 722
thermistor-compensafed one-shot, 43
time-controlled gate, 279
transformer-controlled free-running, 417
transient-immune mono, 434
transistor-vit, 438
triangular wavefarm generator, 635
trigger-shaping, 39
tunnel-diode, 348
tunnel-diodé monostable, 437
tv horizontal sweep, 417
ujt, 434
ult bistable with clamp, 438
uit bistable with diode decoupling, 437
ultra-long monostable, 427, 43
ultrasonic control tester, 833
ultrasonic prf, 836
ultrasonic transmifter, 837
ultrasonic trigger generator, 826
unclamped saturated, 148
unijunction cantrol, 4
unsymmetrical, 42
varioble-delay monostable, 772
variable gate generator, 275
variable mark-space, 423
variable-pulse-width mono, 433
variable-time one-shot, 429
variable-time one-shof, 429
voltage-controlled astable duty-cycle limiter, 332
wide-range mona, 430
zero-recovery-time one-shot, 426
(See also Flip-flop)
Muscle potential, telemetry transmitter, 391
Music, oftack control amplifier, 676
Muting, actuated by funing motor noise, 412

Nand/nor gate (see Logic)
Nand/nor gate (see Logic)
Navigation system, reverse-phase protection, 503
Negalive resistance, diode bistable switch, 709
Negative resistance, diod
diode oscillator, 462
diode pulse amplifier, 512
diode pulse amplifier, 512
diode pulse generator, 520
Neon, 0.2-2,500 cps pulse generator, 384
binary flip-flop, 208
chopper, 108,858
crt bias regulator, 99
Halloween pumpkin blinker, 230
lamp-control oscillator, 85
off-on-gate, 273
organ fone generator, 213, 215
photoconductor gafe, 271
photoconductor inverter, 349
photoconductor latch, 328
pulse generator, 521
relaxation oscilfator, 1
ring-of-five oscillator, 450
stabilizing photomultiplier dynode voltages, 486 ultrasonic fathometer, 836
Neon lamp, capacitor-discharging switch, 709
Network, $800-1,000 \mathrm{cps}$ ladder tuning, 38
inverter despiking, 323
parallel-T, 442
variable pulse-forming, 229
Neuron, simulator, 683
Neuron model, without integrator, 346
receptor-type, 343
Neutralization, $200-\mathrm{Mc}$ fel amplifier, 14
emitter inductance, 797
Neutron diffractometer, 559
Noise, 10 -Mc dynamic notch filfer, 222
audio squelch, 444, 445
automatic cancellation, 380
balanced variable-threshold control switch, 441
cancellation with balinverter, 138
constant-Q measuring amplifier, 442
contour-map design procedure for low-noise amplifier, 442
correlator, 440
detector and squelch, 439
drene target simulator for missile radar, 443
gate for high-noise-immunity logic, 303
generator for low-frequency white, 679
lack-in amplifier, 56
measurement, 446
measurement for 200-Mc transistor, 441
measuring amplitude probability density functions, 441
nonlinear rejectian filter, 440
out-af-baseband logarlihmic amplifier noise, 440
out-af-baseband logarlihmic amplifier noise, 440
protection agairis! scs firing by rfi, 446
pulse generator, 680
rejection in scr frigger, 818

Noise, series limiter with audio defector, 333
shunt limiter with audio detector, 334
sound level meter, 444
squelch-actuafed mobile repeater, 442
squelch for double superhet, 445
squelch in mobile receiver, 446
statistical analysis, 268
supprassing with photodiode, 478
suppression in receiver with synchronous se switch, 709
suppression in scr circuit, 445
suppression in scr circuit, 44,
zener-diode generator, 446
Noise analyzer, probability amplitude density, function, 536
radar clipper-limiter, 332
Noise figure, measurement, 358
transistor test set, 439, 779
transistors at 200 Mc, 444
Noise figure meter, $1,000 \mathrm{Mc}$ to 200 Mc converter, 441
Noise generator, 25 to $450 \mathrm{Mc}, 443$
radioactive-saurce, 535
Noise limiter, a-f, 332
preferred a-m receiver, 333
Noise reduction, sense amplifier, 340
Noise suppression, automatic threshold control, 216 background audio, 446
improved codan, 812
Noise suppression factor, cro display, 205
Nor gate (see Lagic)
Nor logic, single-transistor, 343
Nuclear flight interval analyzer, 783
Nuclear radiation (see Radiation)
Nuclear resonance, femperafure telemeter, 760
Nucleonics, ultrasonic slug cladding flaw detector 830
(See also Radiation)
Null defector, phase-sensifive, 660
Null detector, voltage, 854
Oceanography, ruggedized d-c amplifier, 583 underwater flash, 227
underwater preampllfier, 50
Octupler (see Frequency múltiplier)
Operational amplifier, chopper-stabilized, 106
Operational amplifier,
control s witch, 704
reed-swifch synchronous defector, 311
servo, 653
Optical modulator, iv laser, 739
Optical scanner, line locator, 640
mark-sensing, 478
Optoelectronics, hiqh-voltage protection, 226
neon chopper, 108
switch, 709
Or gate (see Logic)
Organ, neon tone generator, 213
outphased-tone generator, 215
pedal generotor, 214
swell shoe, 213
tone generator, 215
voicing panel, 213
(See also Electronic music)
Oscillator, 0.100 cps relaxation, 143
$0-25 \mathrm{kc}$ Wien bridge, 366
$0-25 \mathrm{kc}$ Wien bridge, 366
$0.01-100,000 \mathrm{cps}$ stabilized, 117
$0.01-100,000 \mathrm{cps}$ stabilized,
$0.1-1,000 \mathrm{cps}$ two-phase, 670
$0.1-1,000 \mathrm{cps}$ voltage-controlled, 142
$0.2-2,500 \mathrm{cps}$ neon relaxation, 384
$0.25 \mathrm{cps}-250 \mathrm{kc}$ relaxation frequency-dividing, 242
below $1 \mathrm{cps}, 766$
1.5-25 cps unifunction relaxation, 237

2-cps uit relaxation, 186
4 cps -350 kc Sulzer bridged-T, 454
$5 \mathrm{cps}-300 \mathrm{kc}$ capacitance-coupled, 455
10-30 cps blocking, 828
10 -cps four-mesh fet phase-shifs, 458

Oscillator, 15-kc flowmeter, 367
18-kc, 315
19-ke crystal, 692
20-ke chopper-driving d-c voltage comparator, 118
20-kc mbvr, 801
20-40 ke ultrasonic, 830
21-ke water depth telemeter, 831
$31.5-k e ~ c r y s t a l, ~$
38 -ke blocking 692
$38-k c$ blocking, 692
$40-\mathrm{kc}$ bias-erase, 716
40-kc bias-erase, 716
50 -ke crystal-controlled blocking, 722
$50-k c$ erystal-controlled blocking, 722
50 -ke Hartley induction telemeter, 391
50 -ke square-wave, 320
52-kc crystal and blocking marker-generator, 764
52.5-kc tetrode remote-control transmitter, 620
68.4-ke astable mvbr synchronized af $400 \mathrm{cps}, 459$

80-ke magnetic tape erase and bios, 721
100-kc Clapp L-C, 109
100-ke magnetostrictive ultrasonic, 460
100-ke Pierce crystal, 109
122-kc grounded-collector Hartley, 456
230-kc c-w radar, 193
400 -kc-triggered blocking, 97
453-kctrilgered blocking, 97
4ilicon-transistor, 798
456-ke three-tone vehicle identification beacon
500-
500-ke and 8.326 - Me distress transmifter, 79
634-ke erystal, 445
670-ke erystal-transistor, 799
$800 \mathrm{ke}-3$ Mc crystal or copacitor, 464
809.11-kc clock, 112

900 -ke ultrasonic flaw detector, 830
$900 \mathrm{kc}-5 \mathrm{Mc}$ ultrasonic neurosurgery, 386
0.45 -Mc sine-wave funnel-diode, 464
$0.5-20 \mathrm{M}_{\mathrm{c}}$ tunnel-diode delay-line, 46
0.75 -Mc sine-wave tunnel-diode, 464
$0.8-20 \mathrm{Mc}$ preferred Colpitts crystal, 449
$0.8-20 \mathrm{Mc}$ preferred electron-coupled Colpitts, 449
1-Me audio-modulated tuned funnel diode, 449
1-Mc crystal-controlled clack, 110
-Mc crystal time interval standard, 554
1-Mc encoder, 789
1-Me f-m, 251
1-Me high-efficiency relaxation, 451
1-Mc inductive telemetry, 768, 771
1-Mc proximity detector, 363
1-Mc stable battery-powered, 447
1-Me transflux or, 526
1.1-Mc funnel-diode temperature-sensing, 761
1.5-Mc clock, 112
1.65-Mc CB crystal, 139
-Mc, 469
2-Mc crysial, 98
2-Mc triggered blocking, 98
2-Me wide-range voltage-controlled, 455
2.50 Mc crystal, 802
2.185-Mc Colpitts, 805

3-Mc Colpitts, 450
3-Me Colpitis erystal, 392
3-3.5 Mc Lampkin, 573, 577
$3-260 \mathrm{Mc}$ tunnel-diode, 451
3.522-Mc silicon-transistor,
3.58 -Mc color burst, 748,753
3.8-Mc transitron negative-resistance, 309
4.5-Me erysial, 378
-Me servo-contralled crystal primary standard, 109
5-15 Mc Clapp sweep-frequency, 674
5.5-Mc crystal, 277

6-Me infrared air leak defector, 456
7-Mc erystal-contralled Colpitts, 805
-Mc tunnel-diode, 793
10-Mc CCTV carrier, 745
10-Mc elock, 113
$11.155-\mathrm{Mc}$ Colpitts crystal, 578, 800
12-Mc crystal, 674
12-22 Mc electrically funed, 463
12-22 Mc tunnel diode-varicap voliagecontrolled, 451
$18-\mathrm{Mc}$ blocking, 110
20-Mc Colpitts, power, 457
20-480 Mc crystal frequency standard, 246
23-Mc iwo-transistor push-pull, 452
23-Me voltage-controlled, 460
24-Mc Clapp, 453, 462
24-Mc varactor-modulated f-m, 252
25.7-Mc silicon-transistor, 798

27-Mc crystal, 803
27-Mc crystal CB, 397
27.12-Me crystal-controlted electron-coupled, 379
27.255-Mc crystal-confrolled tunnel-diode remote
control, 618
.255-Mc crystal remote coniral 617
27.255-Me tunnel diode-erystol, 454, 620

28-Mc cement-setting timer, 359
30-Mc, 369
$30-\mathrm{Mc}$ coherent radar, 547
30-Mc wide-femperature-range, 448, 454
31.05 to 54.95 Mc stepped, 804

32- Me burst gate, 277
$35-\mathrm{Mc}$ reactance-fube-controlled, 466
40-Mc, 463
$40-\mathrm{Mc}$ collector-valtage-control afc, 55
40-Mc damped, 462
40 -Mc emitter-eurrent-control afe, 55
40-Me varactor-controlled, 55
47.1-Mc iunnel diode-crystal, 464

54 -Mc telemetry transmitfer, 733
60 - Mc common-base, 455,456
68.75 -Mc marker beacon, 77

Oscillator, 70-Me transducer-conirolled crystal, 140
73.5-Mc self-modulated crysial, 617
73.5-Mc td-modulated erystal, 806
74.13-Mc crystal lost-carrier generator, 459

90 -Me valiage-variable, 470
90.3125 -Mc crystal-transistor reference, 460
$96-110 \mathrm{Mc}$ funnel-diode f -m wireless mike, 800
100-Mc Colpitts, 464
00-Me erystal, 766
100-Me fet Hartley, 464
$100-\mathrm{Mc}$ funnel-diode telemetry transmitfer, 729
100 -Mc varicap f-m, 251
100 -Mc voliage-conirolled f -m, 254
100-140 or 220-260 Mc emergency transmitter,
108-Mc telemetry transmitter, 730
118-145 Mc crystal, 643
200-Mc temperature-stable. 463
200-Me volpage-controlled, 252
200-400 Mc electrically funed, 461
$\mathbf{2 2 0 - 2 6 0} \mathrm{Mc}$ dual
220-260 Mc dual-friode, 77
230-Mc pam/f-m, 252
230-Mc self-reactance modulation, 252
243-Mc beacon, 80
$255-\mathrm{Mc}, 144$
345-Mc Colpitts, 139
400-Mc varicap f-m, 255
400-5,000 Mc tuner, 821
425-845 Mc, 82
500-Mc, Col
500-Mc Colpitts, 463
$600-1,200 \mathrm{Mc}$ volfage-funed, 462
1,000-Mc uhf funer, 824
2,000-Me harmonic frequency conversion, 452
920 -channel mobile radio crystal reference, 792
80 -flash-per-minute relaxation, 226
80 -flash-per-minute relaxatio
3.6 -kv crt pawer supply, 492
3.0-kv crt pawer supply, 492
$4.8-k v$ crt power supply, 496
$7-\mathrm{kv}$ crt power supply, 494
$7-k v$ and $380-v$ cri power supply, 494
$14-k v$ and $385-v$ crt power supply, 495
0-2,000 pps preferred series-triggered blocking,
200-300-800 pps radar prf generator, 527
200-2,000 pps preferred astable blocking oscil-
200-2,000 pps radar prf generator, 555, 557
220-4,550 pps voliage-controlled variable-
frequency audio, 454
2,000.83,000 pps preferred parallel-triggered blocking, 461
500.w square-wave, 105
$\mathrm{a}-\mathrm{m} / \mathrm{f}-\mathrm{m}$ funer, 574
amplitude-stable tronsducer-exciting, 583
ortificial larynx, 388
audible auto turn-signal indicator, 65, 70
backward-wave shf sweep, 697
beaf-frequency in sensing cane for blind, 88
blocking, 321, 338, 518, 527, 563
blocking 10:1 sync, 447
blocking for G-M power supply, 495
blocking for raster cro, 97
blocking siren-warble, 3
carrier-signal-powered, 80
carrier synthesizer, 675
cascade sine-wavé tunnel-diode, 458
$C B$ crystal, 462
cesium clock synthesizer for 5-Mc primary standard, 111
chatter-jamming audio tone, 461
code practice, 448, 449
coherent. 672
coherently switched for f-m/f-m telemetry, 243
coho iitter monitor, 546
color ty pickup reference, 752
Colpifts crystal frequency monitor, 249
Colpifts telemetry subcarrier, 728
comstont-amplitude doppler radar, 448
constant-amplitude dopp
crystal chronometer, 113
crystal-controlled pulse, 520
crystal-controlled funnel-diode CB converter, 146
crystal impedance meter, 776
current-controlied subcarrier, 731
daylight-intensity telemeter, 484
d-c to d-c 590-v power supply, 493
dip meter, 365
drive for coid-cathode counter, 625
eight-tone phase-shift, 404
electronically swept $400-600 \mathrm{kc}, 671$
feedback-stabilized, 458
fet-controlled pulse, 412
five-tone series-tank, 731
f-m/f-m subcarrier, 725
four-layer diode, 461
four-waveform generator, 634
free-running segmenfed-sweep, 687
free-running sine-wave cascode, 460
free-running time-delay, 180
frequency checking with WWV, 568
frequency-shift-keyed, 451
frequency-synthesizing, 580
fuze-timing, 111
gated selective-calling, 272
Hartley distance-mark generator, 549, 551-553,
555, 557
Hartley remote-control tone, 620
heart-pacer relaxation, 390
high-frequency mobile, 578
high-stability bridged-T, 463
high-stability vacuum-tube, 461

Oscillator, hold-sample-hold phase defector for
vco, 472
hydrogen-fhyrafron induction heater, 21
incremental-funing R-C, 674
incremental-funing R-C' output, 669
induction heater, 210
isolation, 209
level-detecting relaxation, 531
linear-biased oscillator control, 466
locked color tv, 753
locking to WWV. 111
low-frequency cro sync, 99
machine-gun firing confrol, 131
marker-pulse blocking, 125
mesa-transistor tv funer, 740
mierowatt a-f, 530
Miller-effect transitron, 721
millimicrosecond blocking, 365, 372
mos fet crysial, 458
multi-crystal clutter generator, 682
multi-waveform voltage-controlled, 530
negative-feedback uhf tuner, 822
negative-resistance diode, 462
neon relaxation, 521, 566
nonlinear voltage-controlled sine-wave a-f, 463
nonsaturating triggered blocking, 526
parallel-T feedback filter, 221
pentode a-f for 5-kv crt supply, 493
pentode a-f for 7-kv ert supply, 494, 496
phase-locked frequency control, 202
photomultiplier power supply, 492
photoreed, 484
Pierce tefrode-transistor, 676
prop plus npn, 809
preferred paralfel-triggered blocking (below
2,000 pps), 456
pressure-sensitive integrafed, 301
proximify-control, 132
read-write blocking, 125
ead-write blocking, 125
laxation for la
elaxation for lamp-flashing beacon, 223
laxation neon,
elaxaition scr control, 598
asistance-controlied subcarrier, 732
esistance stroin gage, 255
-f for 10-ky regulated crt supp, 455
f for 10-kv regulated ert supply, 601
-f-a-f, 670
ring-type magnefic core, 517
saturable-reactor, 462
sawtooth chirp-radar, 700
sawtooth relaxation, 556
sawtooth-triggered blocking, 586
cs relaxation, 523
scs RLC, 450
self-quanched superregenerative, 286
series-Schmitt, 810
shorted-coax tunnel-diode, 524
sidereal-clock regenerative control, 113
sine-square-wave phase-shift, 520
sinusoidal high-valtage converter, 496
quare-wave tunnel-diode, 524
stabilized horizontal iv, 746
stabilized Wien-bridge, 457
strobe trigger, 224
switched Hartley distance-mark generator, 525
switching-fransisfor Harfley, 530
telemetry anemovane audio, 727
temperature-sensing, 762
three-terminal neon, 215
transistor radio autodyne converter, 147
transistorized magnefostriction filter, 222
transistorized phantastron, 523, 697, 701, 702
triggered blocking, 224
triode magnetostriction filter, 219
tunnel-diode CB converter, 138
tunnel-diode Civil Air Pafrol converter, 147
funnal-diode monostable, 437
funnel-diade monostable, 437
iv camera r-f, 736
iwin-phantastron, 522
t win-triode a-f for $6.5-\mathrm{kv}$ cri supply, 493
two-phase frequency analyzer, 248
iwo-tone electronic doorbel, 7
uif, 460,757
ult metronome, 214
uit relaxation, 178
uit relaxation with pulse shaper, 544
ulf sawtooth, 635
variable-amplitude tunnel-diode, 464
variable-duty-eycle relaxation, 228
variable-frequency Wien-bridge fel, 670
variable pulse width, 518
variable Wien-bridge fat, 675
varistor-controlled volfage-funed, 465
varying-frequency alarm tone generator, 4
vco for frequency synthesizer, 242
vhf intrusion alarm, 4
video-recorder blocking; 715
voltage-controlled 0-1 kc, 202
voltage-controlled frequency-multiplying, 258
voliage-controlled Shockley diode, 140
voltage-controlled temperature telemeter 756
voltage-controlled wide-range phase-shift, 469
voltage-tunable $50-\mathrm{Mc} \mathrm{f}-\mathrm{m}, 254$
voltage-tunable f-m, 255
voltage-tunable swept vhf, 676
wailing-siren, 5
X-band pulse radar modulator, 555

Oscillator, zero-speed tape playback, 718
(See also Audio; Electronic heating; Electronic music; Frequency divider; Frequency modulation; Frequency multiplier; Function generator; Inverter; Modulator; Multivibrator; Pulse generator; Radar; Receiver; Remote control; Sawtooth generator; Signal generator; Staircase generator; Sweep; Telemetry; Television; Transceiver; Transmifter; Ultrasonic, Video)
Oscillator-doubler, 8-12 Mc crystal-controlled,
Oscilloscope, battery-operated, $90,94,95,98$
Oscilloscope, battery-o
crt blip defector, 81
crt blip defector,
raster, $93,97,98$
raster, $93,97,98$
time-shared computer troubleshooter, 122
(See also Cathode-ray)
Osteograph, bone-marrow ratio scanner, 382
Oven, temperature-controlled, 761
Oven control, crystal oscilator,
Overlay transistor, 796
Overload (see Protection)
Overload (see Protection)
Overload profection, transistor, 170
Overshoot suppression, accelerometer, 410
Overvolting, electromechanical counter, 149, 150

Pacemaker, batteryless cardiac, 392
cardiac, 383
Paging, resonant-reed receiver, 568
ingle-loop transmitter, 801
Panoramic receiver, electrically funed, 822
Paramagnetic coating, thickness measurement, 362 365
Paramefric amplifier, 200-kc high-impedance, 27 level control, 576
test set, 766
Parking meter, infrared reset, 293
Paftern recognition, dilating circular scan, 640
Peak memory, $0-10^{\text {cps }} 856$
Pedestal generator, airborne radar, 696
Peltier-effect, liquid-density gage cooling, 128
pH, 8eckman meter, 372
Phanfastran, delayed gate, 279 modified, 701
Phantastron, $360-\mathrm{cps}$ to 60 -cps frequency divider, 244
urrent pulse generator, 76
delay integrator, 185, 189
equivalent fransistorized sweep, 699, 702
ast-recharging solid-sfate, 185
four-transistor delay, 183
preferred fast-recovery delay, 181
print fimer, 490
radar target acceleration simulator, 68
weep generator, 523
temperature-compensated delay, 182
three-fransistor saw tooth sweep, 697, 701, 702
fiming signal generator, 673
tv pulse-cross generator, 746
wo-transist or sweep, 6
wo-triode sweep, 699
variable time-delay, 680
(See also Delay; Timer)
Phantastron oscillator, voltage-controlled, 522 hase control, 90 -Mc voltage-variable oscillator, 470
1-kw general-purpose a-c, 471
180° transformerless, 466
180° variable, 474
60-deg, 466
ambiguity resolver, 474
audio-controlled antenna phaser, 46
automatic antenna phaser, 467
balanced-bridge reversing servo drive, 411
cascaded two-fube 255° range, 473
coincident-s licer phasemeter, 47
d-c supply output voltage, 470
digital phase meter, 468
free-running mubr, 467
frequency standard 468
high-gain vit, 473
hold-sample-hold detector, 472
lamp-dimming, 472
linear-biased oscillator control, 466
low-power ser, 476
measurement from 15 to $400 \mathrm{Mc}, 466$
measurement at $30 \mathrm{Mc}, 46$
measurement up to $2,000 \mathrm{Mc}, 472$
measuring with flip-flop, 473
miniature using light-activated scr, 473
polyphase, 471
pulse-chain phasemeter, 471
radio direction finder, 465
reversing full-wave d-c motor, 409
reversing series-wound universal motor, 410
shunt-wound d-c motor, 408
snap-action a-c, 473
steerable antenna, 466
Triac-uit, 473
universal a-c/d-e motar, 410
voltage-controlled wide-range oscillator, 469
voltage-tuned oscillator, 465
voltage-variable capacitor, 398
Phase detection, magnetic drum read amplifier,
Phase discriminator, a-c bridge, 20
Phase equalizer, a-f amplifier, 690
Phase indicator, three-phase power line, 474
Phase-lock microwave system, 662
Phase rotation indicator, reverse-pliose protection, 503
Phase shift, 10.cps fet oscillator, 448

Phase shift, 10 -cps oscillator, 458
bridge-rebalancing servo, 663
crystal i-f filter, 217
current-controlled oscillator, 731
goniometer motor amplifier, 405
measuring a-f, 361
phasemefer chopper, 808
servo quadrature voltage rejection, 646
square-wave generator control, 70
varistor control amplifier, 175
aristor contol ampliner,
Phase shifter, color $\uparrow \mathrm{v}, 752$
transistor-testing, 768
Phase-shifting amplifier, 90-deg, 653
Phase splitter, pulse, 538, 539
shift register, 666
Phasemeter, ambiguity resolver, 474
chopper and phase defector, 808
coincident-slicer, 470
polarity-coincidence multiplier, 414
pulse-chain, 471
voltage-variable oscillator, 470
Phone line, radar relay, 555, 556
Phono amplifier, 6-v, 41
$9-\mathrm{v}, 42$
ine-operated two-transistor, 46
Phono preamplifier, $40-12,000 \mathrm{cps}, 39$
ceramic-cartridge, 38, 40, 48
npn magnetic-cartridge, 53
velocity-response ceramic-cartridge, 46
Photocell, bridge element, 83
Photoconductive cell, sunsef switch, 482
Photoconductor-neon inverter, 349
Photoconductor-neon latch, 328
Photoelectric control, 6217 photomultiplier preamp, 500
7326 photomultiplier preamp, 499
a-c modulator for photomultiplier, 477
agc for ambient light, 476
alarm transmitter fester, 2
antenna-pattern function generator, 266
utomatic caliper, 477
automatic camera shutier control, 485
bandpass filter, 481
bird counter, 150
blip detactor, 81
character reader, 640
chopper, 106, 858
cold-cathode amplifier, 482
conveyor jam detector, 482
conveyor shutdown for jams, 134
oronameter, 476
dewpoint sensor, 480
distress iransmitfer code-wheel flip-flop, 79
arlobe pulse transmitter, 377
exposure indicator for enlarger, 489
eye-motion mubr chain, 483
ef latching relay, 328
lash-activated scr delay, 484
requency-sensitive control,483
ull-wave td-scr control, 135
gain -controlling parvo 651
gain-control spectrometer, 475
hamma-ray spectromerer
illumination control, 480
illumination telemeter, 484
keying control, 481
keying contral, 48
lamp failure alarm, 7
ight-activated scr lamp preheater, 478
git activated ser phase control 476
ight activated ser time delay, 484
light-beam coupling, 709
light detector and alarm, 7
light-frequency converter using $1,000-\mathrm{cps}$ phaseshift oscillator, 310
light meter, 482
ight-source stabilizer, 482
mark sensor, 47 lar lag of servo, 481
measuring flashlamp oułput, 481
measuring length, 539
microphotometer, 481
monochromator preamp, 291
movie camera frame-rate checker, 485
nuclear explosion flash detector, 559
nuclear track scanner, 639
optical cammunication amplifier, 23
optoelectronic chopper, 108
paper flaw detector, 479
photodiode amplifier, 484
photodiode noise suppressor, 478
photomultiplier gain stabilizer, 64
photoreed oscillator, 484
programmed lamp preheater control, 129
programmed-tape tool control, 410
projectile glow detector, 483
pulse interval control, 483
punched paper tape reader, 476
punched-tape pulse comparator, 119
pupillograph with flying-spot scanner, 642
push-pull opticai coupling, 484
recording manometer, 386
reflected-light photodiode amplifier, 481
resistance-triggered alarm, 7
-f welder shutoff, 863
ser poper tape reader, 480
signal subtracter, 641
strontium 90 photorelay source, 560
time-delayed Schmitt sensor, 136
hotnelectric amplifier, starved-transistor, 40, 52
hotoelectric control, character reader, 640
conveyor, 149

Photoelectric control, scanner load switching, 639,642
Photoelectric counter, buttons and beads, 148
Photofeedback, high-femperature pyrometer, 756
phototransistor contral, 760
Photoflash, high-efficiency supply, 225
(See also Flash; Photography)
hotography, 0.1 sec- 2 hr timer, 486
$6-\mathrm{mm}$ sound-on-film drive, 58
ootsfrap timer, 488
crt trace brightness equalizer, 99
crt trace brightness equalizer, 99
dryer temperature control, 487
dryer temperature contral 485
exposure indicator for enlarger, 489
exposure timer, 488
Kerr-cell shutter, 487
magnification-compensating darkroom timer, 487
movie camera frame-rate checker, 485
nuclear track scanner 639
photomultiplier timer for enlarger, 486
precision interval timer for enlarger, 863
projectile shadowgraph trigger, 483
rocket-sled camera control, 490
ser developer temperature control, 762
shutter contral, 489
slave unit, 486
fumor-scanning amplifier, 387
tv single-frame fimer, 489
underwater flash, 227
variable program timer, 488
(See also Flash)
Photomultiplier, 2-kv battery-powered supply, 492
automatic caliper, 477
gain-controlling, 651
gain stabilizer, 641
gain-switched a-c modulator, 477
microphotometer, 481
power supply, 492
projectile glow defector, 483
shot noise suppression, 220
underwater gamma radiation-measuring, 475
hotoreed, bandposs filter, 481
frequency-sensitive, 483
oscillator, 484
Photoresistor, audio keying, 481
hototransistor, high-temperature pyrameter, 757
phot of eedback, 756
Phototube, sunset switch, 480
Piezoelectric gage, amplifier, 9
Plasma generator, ionization-gage, 708
thyratron pulser, 493
Plasma instrumentation, timing-mark flash, 228
Plasma research, wideband integrator, 307
late-cathode follower, drive for Wien-bridge oscillator, 27
Polarity detector, analog-digital converter, 34
Pole-zero cancelfation, shunt-peaked video amplifier, 838,846
Potentiometer, error compensation, 35
Power supply, 420 -cps, 258
$40-\mathrm{cps}$ ins
9,600-cps fluorescent, 313
$0-1,200 \vee$ photomultiplier, 492
$20 \vee$ at 60 amp variable remotely controlled, 495
20 v at 60 amp variable rematcl
$28 \mathrm{vd}-\mathrm{c}$ to 25 and $50 \mathrm{vd} \mathrm{c}, 495$
28 v d-c/400 v d-c, 496
100 v a-c reference, 855 . 493
$900,1,000$, and $1,100 \vee$ for portable G-M tube,
495 , 492
2-kv photomultiplier, 492
$3.6-k v$ screen for dark-face crt, 492
4.5-kv electric spark machining, 128
$4.8-\mathrm{kv}$ oscillator-type crt, 496
5.kv a-f oscillator-fype crt, 493

5-kv d-c, 496
6.5-kv twin-triode a-f oscillator-type ert, 493

7-kv a-f oscillator-type crt, 494
7 -kv magnetic-deflection crt, 491
$7-\mathrm{kv}$ preferred dual-priode ert, 494
$7-\mathrm{kv}$ and $380-\mathrm{v}$ oscillator-type crt, 494
7-ky and 450-v a-f oscillator-pype crt, 496
$14-\mathrm{kv}$ ond $385-\mathrm{v}$ oscillator-fype $\mathrm{crt}, 495$
10 -w stereo amplifier, 694
adjustable d-c motor field, 352
analog voltage source, 492
auto ignition, 66
battery-charging, 73, 75
baftery standby circuit, 507
constont-current, 591
constant-current a-c output, 168
constant-current with adiustable rise and fall
times, 523
constant-voltage, 591
d-c to 400 -cps a-c, 32
d-c converter, 143
d-c for fluorescent lamps, 169
d-c motor control, 412
d-c/d-c inverter, 313,31
d-c/d-c inverter, 313,315
d.c/d-c regulated, 491
d.c/d-c regulated, 491
dual-polarity variable, 496
error cancellation in d-c amplifier, 198
flash-tube pulser, 223
high-voltage ero, 90
induction heater bias, 210
induction heater bias, 210
laser flash fube, 229
low-power amplifier, 516
minimum-dissipation regulated, 506
output voltage phase confrol, 470
overload protection, 507
rudio signal energy, 576
single-transistor smoothing filter, 222

Power supply, slow sweep for classroom demonstrations, 700
three-phase inverter, 314
transistor circuit tester, 493
triggered thyratron pulser, 493
underwater flash tube, 227
voltage monitor, 134
(See also Battery charger; Inverter; Regulated power supply)
Power swifching, 400-cps a-c, 712
scr, 712
Power transistor, pulse-fype tester, 768, 770
Preamplifier, $0.5 \mathrm{cps}-700 \mathrm{kc}, 499$
1 eps-40 ke microvolt-signal, 21
10 cps-100 kc microphone, 498
10-cps-1 Mc magnefic transducer, 715
$100 \mathrm{cps}-8$ Mc tape recorder, 499
13-24 ke vlf, 499
$15-500$ kc direction finder, 498
18-kc low-drain silicon transistor, 500
21 -kc ulłrasonic, 825
$250-\mathrm{kc}$ broadband ultrasonic, 833
$30-\mathrm{Me}$ variable-bandwith
$30-\mathrm{Mc}$ variable-bandwith i-f, 499
$30-260$ Mc grounded-grid broadband, 11
$3-50$ na current, 500
amplification-15 servo, 654
amplification-70 servo, 657
amplification- 300 servo, 654
amplification- 1,200 servo, 663
automatic impedance-matching, 498
autopilot, 500
ceramic-cartridge phono, 38, 40
Darlingion audio, 51, 52
dual-beam oscilloscope, 499,500
lual-beam osciloscope, 499, 500
fectronic siren, 2
et hydrophone, 828
fet-pnp bootstrapped source-follower, 497
infrared mine detector, 294
infrared transceiver, 290
infrared width gage
integrated a-f, 305
light pen, 99
low-noise radar i-f, 549
magnetic tape playback, 717
photomultiplier, 499, 500
stabilized audio, 50
tape recorder fet, 716
variable-bandwidth radar, 498
vibrating-capacitor electrometer, 497
video recorder, 715
vivm transistor-protecting, 854, 856
See also Amplifier; Audio; Audio preamplifier; Phono preamplifier; Receiver)
Preregulator, 31-v series-regulated power supply 590
Prescaler, divide-by- 5 ring counter, 240
Printed circuit, automatic caliper, 477
conductor tester, 78
programmed servo component inserter, 652
Prinfer, electrostatic high-speed, 116
Processor, video signal, 330
Product detector, ssb, 575
Programmer, neutron diffractometer, 559
Projectile, glow dełector, 483
measuring acceleration, 731
Popagation delay, measurement, 249
Proportional amplifier, integrator, 31
Protection, 12 -v batfery charger control, 72
$28-v$ power supply overload, 594
30 -w audio amplifier overload, 504
adiustable overload, 510
a-f output transistor, 44
capacitance-sensitive intrusion alarm, 87
capacitive overload for series regulator, 510
conveyor belt overload, 353
conveyor iams, 134
correct a-c line valtage, 501
current overload, 507
current overload for series-pass regulator, 503
d-c amplifier overload, 508
d-c power supply short-circuit, 508
from false alarm due to power failure, 507
high-voltage system, 226
high-voltage testing, 509
hot-chassis, 509
meter from transducer current spikes, 507
missing-pulse detector, 502
monostable mvbr transistors, 505
multiple supply voltage failure, 502
overload, 171
overload with ripple clipping, 503
overload and short-circuit, 503
parallelled power transistors, 508
power amplifier pulse duty cycle limiter, 431
power-line overvoltage, 505
power-line overvoltage, 505
power supply overload with gate-turnoff ser,
504,505 504, 505
power supply overload and overvolfage, 504
power supply overload with power reduction,
510
power supply short-circuit, 590
punch press safety, 706
reactor undercurrent-overcurrent, 133
regulated power supply, 506, 509
regulated power supply against capacitive-load
charging current, 502 charging current, 502
regulated power supply overload, 501
regulated power supply short-circuits, 510
reverse-phase control, 503
scr regulated power supply, 507

Protection, series voltage regulator overload with funnel diode, 505
short-circuit on power supply, 510
short-circuit-proof regulated power supply, 508
telemetry low-level amplifier overload, 331 thyratron in voltage-controlled high-voltage switch, 506
transistor overload, 170
transmitter, 362
travelling-wave tube filament regulator, 506
welder ignitron with load-sharing flip-flop, 862
(See also Alarm)
Proximity detector, ferrous or non-ferrous, 132
Proximity switch, capacitance control, 86
Public address, aircraft five-zone, 43
Pulse (see Chopper; D-c amplifier; Flip-flop; Gate; Inverter; Latching circuit; Logic; Pulse amplifier; Pulse generator; Pulse height analyzer; Pulse processing; Pulse shaping; Radar; Switchng; Trigger)
Pulse amplifier, 50 cps-3.5 Mc emitter-follower, 27
100-Mc bandwidth, 511
$1,000-\mathrm{Mc}$ wideband video, 512
50 -ohm driver, 515
beam-intensity modulation, 99
coaxial cable driver, 515
current-integrating, 308
fast-acting limiter, 333
fast-acting nonlinear feedback, 514
fast rise time, 514
heart-block correction, 385,391
intermediate-level video, 842
inverting, 514
keyer, 212
line printer hammer, 515
linear, 512
linear high-level, 842
logarithmic, 513
low-ievel video, 83
magnetostrictive delay, 836
nanosecond thyratron driver, 513
negative-resistance diode, 512
noninverting, 514
preferred cascaded emitter-follower, 846
preferred low-level cathode follower, 847
pulse code groups, 513, 514
reduced standby current, 51
Van de Graaff accelerator, 512
wireless telemetry link transmitser, 729
(See also D-c amplifier)
Pulse amplitude, sampling, 538
Pulse analyzer, fast-recovery one-shot mvbr, 431
Pulse communication, amplifier, 513, 514
Pulse delay, in verter, 185, 186, 189
Pulse dropout detector, 6
Pulse generator, $0.05 \mathrm{cps}-10 \mathrm{kc}, 532$
$0.2-2,500 \mathrm{cps}$ neon-fransistor, 384
$0.5 \mathrm{cps}-60 \mathrm{kc}$ variable square-wave, 528
60 -cps
559 quare-wave in neutron diffractometer.
60-1,000 cps variable-duty rectangular-wave, 100-
100-cps square-wave, 425
13-25 ke prf, 396
$20-k c$ trigger, 817
600 -kc clock, 125
1-Mc square-wave transflux or, 526
1-Mc square-wave
$10-\mathrm{Mc}$ clock, 113
10 -Me Schmit! square-wave, 818
12-Mc Schmitt square-wave, 818
12-Mc four-phase clo
18-Mc clocking, 110
18-Mc clocking, 110
$30-\mathrm{Mc}$ suppressor-gated i-f, 281
30 -Mc suppr
$100-\mathrm{Mc}, 519$
140 -Mc tunnel-diode, 522
200 - Mc voltage-controlled, 252
220-260 Mc beacon, 77
1-amp power flip-flop, 820
1-amp power frigger, 813
45-kw r-f brazing, 862
250-kw, 393

- 2,000 pass preferred series-triggered blocking
oscillator, 453
$0.5 \mathrm{ppm}-2,000 \mathrm{pps}, 531$
1-pps clock, 665
200-2,000 pps preferred astable blocking
oscillator, 459
200-300-800 pps, 527
200-400-800 pps mvbr prf, 428
2,000-83,000 pps preferred parallel-triggered
blocking, 461
$25-$ nsec 0.5 -amp clock, 109
2,000-sec counter, 665
100 -v ramp, 633
$500-v, 703$
1000 - 521
$1,000^{\circ} v, 521$
30-kv ignition, 71
adjustable duty cycle, 518
adjustable rise and fall, 523
adiustable time-base delay, 769
armature tester, 774
astable hybrid id-transis tor, 531
basic bistable, 667
basic hybrid square-wave mvbr, 784, 789
basic low-cost Schmitt square-wave, 820
batteryless pacemaker, 392
blanking with linear pulse widih control, 539
blocking-oscillator, 338
calibrated millimicrosecond, 529
cardiac pacemaker, 383
clock, 423
632 triangular, square, and sawtooth
632

Pulse generator, constant duty cycle, 537 constant-width high-current, 524
contral for fish shocker, 525
cosine/sine function, 267
cosine-squared radar,550
counter-testing, 517, 527
ro marker. 164
rt unblanking, 99
crystal-controlled avalanche, 520
current, 767
delay line driver, 715
delayed output,
digital, 673,682
digital, 673, 682
diode-matrixed program, 338
ight-pulse train 12
ight-pulse train, 142
electroexplosive tester, 780
electroexplosive tester, 780
fish shocker, 524
four-waveform 634
frequency exciter, 804
gafed-beam square-wave, 528
yro balancer, 89
hard-tube radar modulator, 554
Hartley oscillator, 530
high-accuracy rectangular, 526
high-voltage, 587
high-voltage flash tube, 229
integral number of pulses, 531
interference pulses, 520
ionospheric sounder simulator, 684
keyed d-c or tone signals, 434^{\prime}
laser pumping, 395
level datector, 531
light-controlled, 483
ine-triggered square-wave, 70
linear ramp, 637
long-fime-constant ramp, 638
low-cost square-wave from sine wave, 531
low-frequency random-noise, 679
low-repetition-rate neon-triode gate, 273
magnetic core testing, 525
magnetron modulator, 397, 400
memory disk track, 112
memory-plane driver, 123
microwave fube life-fest, 773
milimicrosecond, 365, 372
modulator trigger, 808
monostable, 519
monostable mvbr with adiustable duły cycle, 431
multi-waveform, 530
negafive-resistance diode, 520
neon-transisfor, 521
neuron simulator, 683
neurosurgery oscillator keyer, 382
nine-bit word, 526
noise, 446
one-shot, 521
phantastron, 523
positive or negative ramp slope, 635
predefermined number of pulses, 680
preferred parallel-triggered blocking oscillator
(below $2,000 \mathrm{pps}$), 456
preferred prf mvbr, 418
preferred search radar distance mark, 525
with pulse inverter, 516
pulsed $100 \mathrm{cps}-100 \mathrm{kc}$ Wien-bridge oscillator, 530
punched card reader, 17
push-puli rectangular, 415
radar distance mark, 549, 551-553, 555, 557
radar distance mark, 549
radar prf, 420,421
ramp-staircase strobe, 632
random-time, 227, 516
rectangular parts, 518
retina-stimulating, 385
ring-type, 517
ringing-type, 528
sawtooth, 641
sawfooth-sync for induction heater, 210
scs, 523
scs RLC, 450
scs single-pulse, 66
scs square-wave, 530
self-resetting pulse stretcher, 543
sine to sawtooth or square-wave converter, 147
single 100 -amp pulse 777
single
single-pulse, 524
single-pulse, 528
six-diode square-wave, 518
specific number of pulses, 522
square-wave, $232,544,672$
square-wave, pair, 517,
square-wave tunnel-diode, 524
square-wave tunnel-diode discriminator, 535
stellarator-controlled, 520
stepper motor, 411
stepping switch drive, 530
superregenerative amplifier control, 16
sync, 519
sync oscillator, 99
temperałure-control, 758
thin-film memory, 121
thin-foil welder, 862
ransistor tester, 773
triangular, 641
triangular-wave, 629
riangular waveform, 635
trigger, 538
triggered blocking oscillator, 526
triggered square-wave, 527
triggered funnel-diode, 249
unnel-diode, 117

Radar, sweep generator, 549
sweep oscillator, 700
symmetrical i-f limiter, 286
synchronous demodulator, 191
target acceleration simuiator, 683
target pulse simulator, 680
telescope-łracking servo, 662
three-dimensional target simulator, 681
three-dimensional target simu
three-input video mixer, 845
three-range nonprecise phantastron delay, 184
thyrafron-controlled afc for klystron, 55, 56
time-interval standard, 55
timing pulse shaper, 550
wo-imensional target simulator, 547
two-input vid mer 848
unblanking signal generator for circular display
variable-band width preamp, 498
variable-length sweep generator, 551
variable-pulse-width one-shot, 431
video amplifier, 840
video amplifier chain, 839
video integrator, 309
video switch, 553
voltage-confrolled delay, 178
waveform-sampling boxcar, 627
yoke driver and clamp, 550
Displa Comparator; Converter; D-c amplifier:
Display; Frequency mulfiplier; Gate; Oscilla-
for; Regulafed power supply; Sweep; Trigger;
Video)
Radar simulator, function generator, 266
Radiation, 0.5 -Mc scaler, 565
alpha particle monitar, 563, 567
control rod magnet current regulaior, 129
controf rod magne
cosmic-ray G-M counter and ionization gage, 562
dual-function bistable reactor seram, 130
electrometer, 564
G-M counter 558
G-M counter for tracers, 564
G-M counting-rate meter,
industrial Geiger-counter monitor, 562
iet fuel how gage, 567
liquid scintillation counter coincidence circuit, 566
measurement with arithmetic binary, 564
measurement with tachometer, 7
measuring with basic binary block, 560
measuring high-altitude alpha particles, 558, 563
measuring law-energy space particles, 566
measuring neutron diffraction, 559
mechanical counter drive for G-M, 561
monitoring dust particles, 560
nuelear-explasion gamma-ray defector, 564
nuclear explasion simulator, 682
nuclear thermal detectar, 559
nuclear track scanner, 639
pulse coincidence circuit, 561
pulse height discriminator, 533, 534
radialagical vacuum gage, 564
resistance-triggered alarm, 7
robot remote-control switch, 618
sampling cold-cathode counter, 625
scintillation counter anticoincidence circuit, 565
stopped-count indicator for alarm, 567
strontium-90 photorelay source, 560
survey meter, 563
Radiation measurement, random naise, 535
Radio astronomy, lock-in amplifier, 568
Radia directian finder, 15-500 kc preamp, 498
Radiometer, 46 -cps feedback amplifier, 294
microwave iceberg detector, 190
Radiosonde, neutron-detecting, 726
Rail flaw detector, amplifier, 584,585
Rail flaw detector, amplifier, 584, 585
Ramp, phantastran, 701
volfage-controlled 10-eps to 20-kc, 633
(See also Sawfooth)
Ramp generator, linear, 636, 637
linear saw toath, 630
long-fime-canstant $\mathbf{f e t}, 638$
pdm keyer, 728
positive or negative slope, 635
single-stroke, 710
single-stroke, 710
trigger-driving, 451
uit triangular-wave,
uit triangular-wave,
variable-slope, 63
Random function, generator, 677
Randam noise, radioactive source, 535
Random stepped function, generator, 672
Raster display, ero, 91
Raster generator, fiying-spat scanner, 640
Raster oscilloscope, timing generator, 98
vertical sweep generatar, 93
Rertical triggering genero
Rate effect, suppression, 4
Ratemeter, strabe flash, 229
Rafio meter, voltage, 854
Reactor, startup control, 128
Reactor, startup control, 128
Reactar contral, dual-function bistable trip, 130
regulator amplifier, 129
rod magnet undercurrent-overcurrant sencor.
Reader, alphanumeric character, 640
punched tape, 476
scr photoelectric paper tape, 480
Readaut, telephone data matrix, $\mathbf{1 2 2}$
Readaut, telephone data matrix, 122
Receiver, $100-350 \mathrm{eps}$ erevasse detector, 51
2-ke magnetic induction field, 374
2-kc magnetic inductian field,
$9-k e$ induction auta radio, 573
13-ke ultrasonic, 832
21-ke ultrasonic, 825
22-ke sonar, 828

\qquad
\qquad

\qquad
相

\qquad
\checkmark
;

\square

Recorder, beeper for telephone conversation, 586
color tv, 748
constant-speed drive for 400 -cps synchronous motor, 404
d-c positioning voltage inserter, 587
drive amplifier, 582
drive amplifier, 582
end of sampling period, 625
facsimile power amplifier, 585
facsimile power amplifier, 585
facsimile sweep pulse shaper, 586
ferrite-core gafed amplifier, 583
errite-core gated amplifier, 583
$\mathrm{f}-\mathrm{m}$ signals on tape, 626
f-magnetic characteristics, 310
magnetic drum elock pulse amplifier, 110
magnetic drum clock pulse amplifier, 110
magneric-drum-controlled flip-fl
magnetic-drum JK flip-flop, 239
magnetic-drum JK fip-flop, 239
magnetic drum read amplifier, 587
magnetic drum write amplifier 582
magnetic tape flaw detector 779
measuring wow and flutter, 201
peak-reading circuit, 583
rail fault, 584, 585
ruggedized d-c amplifier, 583
satellite slow-speed video, 582
shockproof ferrite-core, 581
solion linear time base, 309
onar troiner, 835
eleprinter control, 386
timing motor power supply, 585
timing signal modification, 586
traffic data matrix readout, 122
transducer exciter, 583
video time division multiplex, 394
volume level, 587
(See also Tape recorder)
Rectifier, sound level meter, 446
edundancy, d-c amplifier, 175
inverter, 324
passive in a-c amplifier, 28
Reference amplifier, 8-25 v current-limiting power supply, 612
12-v Darfingion-connected supply, 602
12-v regulated supply, 604
precision constant-current regulated supply, 170
Reference voltage source, 6-v zener, 591
Reflex circuit, economy transistor radio, 577
sensifive relay control amplifier, 137
Refrigerator, temperature-contralled, 761
Register, magnetic, 120
saturafed-transistor fip-flop, 427
Regulated power supply, $50-2,000 \mathrm{cps}$ a-c, 589, 593
-10 v adiustable two-zener, 605
$1-17 \times$ short-circuit-proof, 508
1-17 v temperature-stabilized, 600
1.4-v two-zaner, 589
$3-v, 595$
3 v using backward-diode reference, 611
5-v output steps, 596
5.25 v equal and opposite outputs, 600

6 v at $20 \mathrm{amp}, 613$
6 -v d-c at 4 amp, 592
$6-v$ d-c at 4 amp, 592
$6-v$ remote-sensing, 607
$6-v$ zener reference, 59
$8-v, 606$
$8-v, 606$
$8-25$
$612{ }^{v}$ current-limiting with reference amplifier, 612
$9-v$ with zero output resistance, 611
12-v with 2D21 thyratron, 611
12-v Darlington-connected with reference
amplifier,
$12-v$ d-c of $3 \mathrm{amp}, 602$
12 v d-c bi-level, 588
12 v d-c bi-level, 588
$12-v$
$12-v$
reference amplifier, $593,604,614$
$12-v$ voltage-splitting, 610
15-v Middlebroock series-stabilized, 591
16-v battery converter-regulator, 610
$20-\mathrm{v} 100$-w switching-mode, 603
20-v inverted-output blocking-oscillator switch.
ing, 609 regulator, 605
$25-\mathrm{regulator}, 6$
25-v uit-scr a-c, 601
$25-v$ Uit-scr a-c, 601
$28-v$ with overload protection, 594
31-v weries with preregulator, 590
50 v at $400 \mathrm{ma}, 610$
50 v at $400 \mathrm{c}, 59$
50 -c d-c, 599
62 v at 2 amp Darlington-connected series, 607
100 -v d-c, 597
$110-v a-c, 596$
$150-v$ with external reference, 611
$150-\mathrm{v}$ negative-output, 603
$150-\mathrm{v}$ positive-reference pentode, 608
$150-\mathrm{V}$ preferred, $599,600,608$
150 - and $300-\mathrm{v}$ negative-output, 603
150 - and $300-\mathrm{v}$ triode-connected pentode series tube, 606
152-v negative-output, 613
152-v pentode series tube, 607
$200-\mathrm{v}$ d-c to $24-\mathrm{v}$ d-c, 599
240 v for vacuum gage, 606
250-v preferred, 601,607
250-v tube-zener, 594
$300 \vee$ at $200 \mathrm{ma}, 596$
$300-\mathrm{v}$ negative-oulput, 613
$300-\mathrm{v}$ pentode with 6 L 6 series tubes, 612
$300-\mathrm{v}$ preferred, 597, 605
$320 \vee$ at $60 \mathrm{ma}, 612$
10-kv r-f oscillator-fype for crt, 601
$14-\mathrm{kv} 400$-cps crt, 610

Regulated power supply, $15-\mathrm{kv}$ uvicon, 736
20 -kv inductive-storage, 604
2.8-microamp constant-current, 170

1-ma constant-current, 167
10 -ma constant-current, 167
5 amp at $0.20 \mathrm{v}, 595$
adiustable $30 \cdot \mathrm{v}$ meter- festing, 775
backward-wave oscillator filament, 593
balanced-input pentode twin-triode, 614 balanced-output pentode twin-triode, 612 basic series-pass transistor, 609
battery charger, 74
capacitor-forming, 59
CCTV repeater, 745
constont-current, 168
constant-current, 168
constant-current-diode, 588, 594
current limiter, 331
current-stabilized dry cell, 359
d-c voltage level converter to pulse width, 145
dual-polarity 15
dual-polarity $15-\mathrm{v}, 595$
fail-safe twt filament, 506
feedback choke cuts ripple, 602
feedback choke cuts ripple, 602
five voltages for linear IC tester, 60
focus coil, 92
high-voltag
high-voltage magamp, 35
klystron oscillator, 592
low-cost silicon-diode reference, 609
ow-rippie, 595
magamp for reflex klystron, 355
magnetic-amplifier, 351
magnetron injection electrode, 592
minimum-dissipation, 506
modified twin-triode cascode, 609
overload and overvoltage protection, 504
overload-protected, 502,503,509, 510
overload protection with ripple clipping, 503
overload protection with funnel diode, 505
pentode with ripple suppression, 614
portable cro, 74
precision constant-current, 170
reference amplifier, 614
reference for automatic charger control, 75
satellite, 105 J
saturab
scr overload protection, 501, 507
series-pass with delayed overload frotection,
510
eries-pass with overload protection, 503
short-circuit-protected, 510, 590
short-proof, 510
hunt with zener, 606
simple series regulator, 614
single-pentode, 611
emperature-compensaled, 813
triggered scr, 598
true iwin-triode cascode, 609
win-triode cascade, 611, 612
variable pulse width, 105
vibration meter, 589
zener-controlled high-current, 593
(See also Power supply)
Regulator, 0-100 ma current, 171
$6-v$ shunt transistor, 613
audio generator, 169
blood pressure, 385
charging-current, 75
closed-loop for high-power induction heater, 212
current, 171
d-c amplifier, 174
d-c to d-c converter, 141, 142
d-e signal, 194
d-c signal, 194
electromagnet servo, 648, 649
focus coil current, 92
focus coil current, 92
gas analyzer filament emission, 127
heart rate, 390
integrated-circuit series, 305
oven temperature, 757
reactor control rod magnet current, 129
series, 510
emperature, 762
three-phase static inverter, 316
See also Current control: Regulated power
Regulator-charger, portable cro, 74
Relay, 12-v a-c drive by transisiors, 713
d-c amplifier responds to rapid input changes,
delay
delayed-dropout timer, 188
fast-recycling time-delay, 187
fast-rise current driver, 705
fet light-activated latching, 328
fet light-activated
hysteresis-free, 127
hysteresis-free,
latch circuit, 327
latch circuit, 327
latching a-c static using toroids and ser's, 327
latching magnetic-firing ser, 328
multivibrator, 419,421, 426
mubr-controlied, 438
on-off servo, 659
parking meter resel, 293
photoelectric, 482
reflex contral amplifier, 137
resonont-reed control, 616
saturable-reactor latch, 709
six-transistor for 10 -amp load, 705
slow-break circuit, 186
slow-make circuit, 182
solid-state dpdr, 712
stepper flip-flop drive, 230
thyratron stops chatter, 488
transmitter-damping, 801
uit time delay, 188
ly) 171
ner
\qquad

[^5]\qquad
\qquad
\qquad

G-v shunt tra
d-c amplifier, 174
load, 705
\qquad 8
s, 327
\square
7

,

Receiver, $60-\mathrm{kc}$ ulfrasonic hydrophone, 831
455-ke i-f mobile, 288
$400-\mathrm{kc} 4-\mathrm{m}$ wireless microphone, 571
3-3.5 Mc Lampkin oscillator, 573, 577
$15-\mathrm{Mc}$ microelectronic, 300
27-Me C8 limiter, 334
27-Mc eight-command remote control, 616
27-Mc tone-modulated data, 148
27.255-Mc remote control, 62
75. Mc morker beacon, 77

75-Mc one-light airborne marker beacon, 79
75 -Mc three-light marker beacon, 76
75-Mc three-light marker beacon adapter, 80
105 -Mc i-f superhet, 139
200-Me r-f radiation alarm, 6
406-549 Mc f-m, 619
$420-\mathrm{Mc}$ slot antennafier, 573
$460-\mathrm{Mc} f-\mathrm{m}, 615$
a-m/f-m i-f strip, 570
a-m/f-m tuner, 574
amplifying signals in noise, 568
audio for $\mathrm{a}-\mathrm{m} / \mathrm{f}-\mathrm{m}$ portable, 570
automatic aircraft antenna phaser, 467
coicinotron conirol, 572
C8 decoder, 795
C8 squelch, 794, 795
C8 three-transistor, 793
C8 transceiver, 794
clock-pulse synchronizer, 112
compactron f -m stereo adapter, 693
current-funed uhf tuner, 822
d-c coupled transmission line, 133
double-conversion superhet, 57,574
double superhet with squelch, 445
electroluminescent display, 205
fail-safe squelch, 439
five-transistor auto radio, 569
fixed-gain antennafier, 569
f-m stereo, 692
$\mathrm{f}-\mathrm{m}$ stereo demodulator, 694
$\mathrm{f}-\mathrm{m}$ stereo matrixing, 691
f-m weak signal capture, 250
four-transistor a-c line, 576
four-transistor reflex, 571
frequency-selective audio Q multiplier, 41
ground pulse blanker, 95
i-f/a-f reflex, 577
improved codan, 812
infrared space communication, 292
klystron local-oscillator afe, 55
I-f signals in high noise, 414
limiter in mobile color iv relay receiver, 332
Mercury spacecraft command, 50
millimefer-wave detector, 574
mobile 175-Mc r-f stage, 578
mobile high-frequency oscillator, 578
mobile limiter and discriminator, 330
mobile low-frequency oscillator, 578
mobile low-frequency
mobile squelch, 446
multipurpose integrated-circuit chip, 301
noise correlator, 440, 520
noise suppression with synchronous ser switch,
out-of-baseband logarithmic noise amplifier, 440 paging, 568
parametric-amplifier-contralled, 576
par demodulator, 192
power-line carrier-current iv remote control, 617
preferred agc, 62
preferred audio squelch, 62
protected output stage, 575
radios onde, 72
radiofelegraph i-f filter, 217
reflex portable a-m, 57
signal generator, 670
signal-powered, 576
signal-powered alarm, 7
signal-powered transponder, 80
signol-seeking auto radio tuner, 824
single-frequency 100 - Mc integrated-circuit $\mathrm{f}-\mathrm{m}$, 299
single-transistor autodyne converter, 147
six-transisfor 6-v broadcast, 579
six-transistor $12-v$ broadcast, 579
six-transisfor a-c line, 578
six-transistor broadcost with tuned r-f stage, 577
ssb frequency synthesizer, 580
ssb product detector, 575
superregenerative amplifier, 286
synchronous sampler, 623
target drone control, 616
television remote control, 622
tone-operated calling system, 572
tone signal rejector, 570
toy train control, 621
funed r-f fransistor stage, 572
uning motor noise actuates muting, 412
iv horizontal deflection, 741
iv ultrasonic remote-control, 827
iwo-transistor reflex poriable, 574
Uhf/shf tuner, 821
ultrasonic trf, 837
varactor-funed antennafier, 571
vif preamp, 499
voltage-tunable panoramic, 822
(See also Audio. Intermedic
(See also Audio; Intermediate frequency; Limiter;
Preamplifier; Remote control; Transceiver)
Reciprocal circuit, computer, 120
ecorder, 100 -cps -8 Mc preamplifier, 499
$16-\mathrm{mm}$ sound on-film, 581
airplane vertical acceleration, 584
analog voltage comparator, 586
auto engine control, 66

Relay, variable-delay make, 180
Relay chatter, tester, 774
Relaxation oscillator, 1-Mc high-efficiency, 45
uit for electronic organ 215
Reliability, active redundant d-c amplifier, 175
passive redundant a-c amplifier, 28
Remote control, 27.255-Mc receiver, 821
27.255 -Mc Pransmitter, 617
73.5-Mc transmitter, 617
amplifier gain, 620
balloon-borné gear, 618
cameras on rocket sled, 615
carrier-powered, 7
commutator-motor synchronizer, 819
Franklin superregenerative receiver, 620
magnelostriction tv, 830
Miller superregenerative receiver, 618
modal tank, 616, 620
photoelectric oscillator, 484
pawer-line carrier-current receiver for tv set, 617
power-line carrier-current transmitter for iv receiver, 620
radioactive-area robot, 618
larget aireraft, 619
targel drone, 61
target drone receiver, 616
time-constant detector for iv, 619
toy train, 621
transmitter, 824
tv transmitter programs, 622
tv ultrasonic, 827
vif-td garage-door transmifter, 618
variabie rectangular-wave modulator, 618
(See also Control; Motor cantrol; Receiver; Telemetry; Transmitter)
Remote gain control, wideband amplifier, 14
Repeater, 10-Mc CCTV, 740
d-c power supply (CCTV), 745
squelch-actuated mobile radio, 442
Resistance, a-c milliohmmeter, 375
go-no-ga tester, 733
Resiator, electronically variable, 312 variable r-f, 83
voliage-controlled fet, 220
Resolver, sweep generator drive, 549
unity-gain isolating amplifier, 11
Resolver driver, a-c operotional amplifier, 659
Responder, 13-ke ultrasonic, 832
RIAA equalization, phono preamplifier, 40
Ring counter, scr motor control, 405
Ringing choke, d-c to d-c converter, 141, 142
Robot commutator motor synchronizer 619
remote-control commutating switch, 618
Rocket, pitch or yaw servo, 659
Rotation analyzer, integrator, 67

Sample-and-hold, analog, 36
fet d-c amplifier, 172
operational amplifier, 704
pam pulse train, 626
Sampler, digital receiver, 623
random noise, 268
sampling, $10-\mathrm{Mc}$ amplifier, 628
10-Mc flip-flop, 625 velemetered information, 626
20 voliage sources, 624
analog-digital, 628
axis-crossing interval, 90
old-cathode radioactive, 625
component waveforms, 773
diode bridge, 82
end-of-count time recorder, 625
Hall generator, 623
inear bootstrap time base, 634
ocked-pair logic, 342
magnetic-tape data, 624
magnefic-tape reference channel, 620
millivolt pulses, 84
perational amplifier with funnel-diode pair, 628
thin-film waveforms, 628
wo-way electronic switch, 627
video signal, 89
zero-order data hold, 627
Sampling circuit, analog-digital converter, 32
Sampling gate, 360
Satellite, 3 -Mc telemetry oscillator, 450
10 -channel multiplexer, 152
digital-analog random-pulse converter, 35
magnetometer, 368
position-measuring phase meter, 468
solar x-ray spectrometer, 533
Saturable core, voltage control, 134
Saturable reactor, frequency-dividing, 784 inverter, 320
Saturable-transformer chopper, 100-kc, 108
Sawtooth, 25.75 kc frequency modulator, 720
$0.2-300$ sec Schmiti rigger, 483
afc for mobile color tv pickup, 750
analog valtage comparator, 586
converting from sine wave,
derivative pulse output, 523
drum recorder control flip-flop, 587
fast-reset, 699
free-running 690
roe-running, 698
grounded grid, 698
low-frequency with I percent linearity, 687
multi-range constantsamplifude, 696

Sawtooth, recovering analog voltage, 583
Shockley diode relaxation oscillator, 556
three-fransisto
variable-sweep subaudio signal generator, 676
volrage bar graph display, 206
Sawtooth generator, 20-100,000 cps priangular, 629
50 -kc, 837
$100-\mathrm{v}$ ramp, 833
100 sec to 5 hour ramp, 634
adjustable slopes and peaks, 63
boosting frequency, 631
fast-retrace synchronous sweep, 631
four-waveform, 634
high-accuracy, 631
high-linearity, 629
inear, 632,636
inear 2-sec, 637
inear bootstrap, 630
inear bootstrap time base, 634
inear ramp, 636, 637
positive or negative slope, 635
pulse width measurement, 630
rising and falling, 632
ampling or strobe, 632
simple subaudio, 635
slow-rise linear-ramp, 638
ubaudio, 633
triggered Shockley diode with integrator, 635
uit slope-reversing, 637
ujt variable-frequency sweep, 637
liralinear ramp as voltage to pulse width converter, 636
nijunction, 635
variable-slope ramp generator, 638
variable triangular, 636
voltage-controlled ramp, 633
voltage-independent fet, 630
(See also Sweep)
Scaler, 1-ks glow-tube, 161
4-kc glow-łube, 154
1.Mc low-dissiparion 665

1-Mc low-dissiparion, 664
500 -Mc quinary control circuit, 164
500 -Mc quinary control
arithmetic binary, 564
Scaler, basic bistable with trigger amplifier, 730
baftery-powered binary, 14
decade, 157
four-channel discriminator, 725
G-M drive, 541
Sanner, bone-marrow ratio, 382
character, 640
character-reading, 640
densitometer, 364
flat-display iv, 64
flying-spof pupillograph, 642
flying-spot sweep failure alarm, 696
microfilm flying spoi, 639,642
nuclear tracks, 639
optical mark-sensing, 478
photomultiplier gain stabilizer, 641
photomultiplier signal subtracter, 64
signal-level-controlled gain, 59
transducer, 643, 649
uit raster generator, 640
wideband video amplifier, 641
Scatter link, pulsed demodulator, 192
Schmitt trigger, cro strobe, 89
temperature alarm, 1
voltage regulator, 105
(See also Trigger)
Scintillation counter, anticoincidence circuit, 565 coincidence circuif, 566
coincidence detector, 56
Scope (see Cathode ray; Oscilloscope)
Script, reading, 336
SECAM, French color ty chrominance, 748
Selector, quad-block, 304
Sense amplifier, integrated-circuit, 301
Sensing, core memory, 812
Sensistor, 5 -Mc temperature-compensated flip-flop, 236
mono, 422
Sensitivity control, vidicon, 737
Sensor, a-c load, 321
engine heat, 29
frequency, 629
germanium-diode temperature, 757, 758, 763
germanium-transistor temperature, 758, 759
pressure, 301
time-delayed Schmift, 136
toroid command pulse, 726
Separator, clamped video sync, 744
Septupler (see frequer miplier)
Serializer, measuring nearly simultaneous events 180
Servo, 50, 60, and 400 -cps amplifier, 656 60 -cps amplifier for air-leak detector, 654
400 -cps amplifier, 65
400 -cps two-transistor preamp, 662
800 -cps active parallei. T fiter' 221
800-cps active paralie $1 .-651$
1.5 -w class B amplifier, 651
$1.5-\mathrm{w}$ class B amplifier,
1.5-w fet amplifier,

2-w amplifier, 653
3-w power amplifier, 661
3-w power amplifier, 601
4-w class B amplifier, 645
4-w class B amplifier,
$4-\mathrm{w}$ output stage, 660
4-w output stage,

Servo, 10 -w class B amplifier, 650
35 -w class B amplifier, 652
alternator frequency control discriminator, 203
amplification-15 preamplifier, 654
amplification-70 preamplifier, 657
amplification-300 preamplifier, 654
anesthesia control, 387
artificial hand, 388
automatic search and control, 662
balanced-bridge reversing drive, 41
blood-volume level control, 380
bootstrapped emitter-follower positive-feedback
amplifier, 654
bridge-balancing, 663
chopper-input amplifier, 663
clock control, 111
comparator chopper, 115
complementary-transistor amplifier, 655
controlling extrusion of plastic on wire, 87
current-subtracting modulator, 646
d-c molor control, 412
dewpoint measurement, 480
d-f antenna, 649
direct-coupled preamp, 657
electric spark machine control, 128, 129
electromagnet fine regulator, 648
electromagnet rough regulator, 649
frequency compensator, 647
frequency control for 5.Mc primary standard, 109
frequency contral for dielectric heater, 209
requency standard control, 468
full-wave push-pull a-c drive, 407
goniometer amplifier, 405
gyro pitch or yaw, 659
instrument motor controller, 661
integrator amplifier, 306
klystron oscillator mode-centering, 556
ife-fest cycling, 662
magamp gyro indicator,
measuring angular lag with photodiode pickoff,
measuring angular lag wir
modulator for shaft position encoder 68
moter stall protection switch, 657
negative-positive-feedback omplifier, 653
negative-positive-feed
on-off relay, 659
operational preamplifier, 655
parallel-mode transducer scanner, 643, 649
Perkin-Elmer infrared analyzer, 289
phase-sensitive null defector, 660
printed-circuit assembler, 652
quadrature-suppression thermistor, 648
quadrature voltage rejection, 646
receiver affenuator, 61
resolver driver, 659
response time speedup, 645
self-balancing 400-cps servo motor drive, 352
self-setting gate, 276
sonar bearing indicator, 829
star tracker gain-controlling, 651
stepper tester, 777, 778
switching-mode amplifier, 658
synchronous filter, 650
target drone control, 615, 616
telescope positioning, 662
ten-transistor amplifier, 645
ten-transistor integrated-circuit amplifier, 304
thermistor, 656
three-transistor transformer-coupled amplifier,

650

transmitter tuning, 643
Triac-Diac reversing speed control, 411
two-speed, 658
two-speed magamp drive, 354
Servo amplifier, $2 \cdot w, 646$

$6 . w, 656$

Sextupler, voltage, 193
Shape recognition, dilating circular scan, 640
Shaper, complementary, 807
facsimile sync, 586
Shift register, 6-kc counting, 154
500-kc flip-flop, 666
1-Mc low-dissipation, 664
1.5-Mc flip-flop, 345
1.6-Mc clock rate, 66.

10 -nsec pulses, 66
2,000-sec counter pulse generator, 665
1-pps clock generator, 665
analog-digital conv
basic bistable
basic scs, 666
contents display, 664
counting, 15
five pnpn one-bit units, 819
fip-flop blocks, 688
ring-counter with visual readout, 161
self-indicating flip-flop, 666
furated flip-flops, 666
ten-stoge scs, 668
transformer-controlled, 668
funnel diode, 667
tunnel diode-fransistor, 341, 349
(See also Computer; Logic)
Shiffer, d-c signa
logic level, 335
hogic level,
432, 535, 637
Shock spectrum, analyzer, 536
Short-circuit, power supply protection, 590
Short-circuit protection, series-regulator, 594
Shutter, Kerr-cell, 487
Sideband relecrion, dual-delector demadulater, 192
multi-range constantamplit
phantastron time
6-w high-efficiency amplifier, 647
6-w high-efficiency amplifier, 647
7.5 -w class B amplifier, 644

Spark gap, fast high-voltage switch, 704
Spark machining, 4.5-kv power supply, 128
amplidyne servo control, 129
Specific gravity, measurement, 128
Spectrometer, missile plume, 291
Mossbauer-effect, 356
neutron, 559
nuclear-resonance femperafure-sensing, 760
solar x-ray, 533
underwater gamma radiation, 475
wide-band amplifier, 20
Spectrum analyzer, low-pass i-f amplifier, 284 shock, 376
shock pulse, 536
Speed contral, 1-kw fan, 471
series d-c motor, 406, 412
shunt-wound motor, 406
(See also Motor control)
Spike suppression, d-c/d-c
Spike suppression, $d-c / d-c$ converter, 138
Spin test, inductive
Spin test, inductive telemetry, 768, 771
Splitter, phase, 568
power supply voltage, 610
Sporadic-E, measurement, 376
Square-wave generator, $0.2-300 \mathrm{sec}, 483$
conversion from audio os
conversion from audio oscillator, 531
(See also Pulse generator)
Squarer, electrostatic, 309
high-accuracy fet, 267
Squaring, fet audio, 265
Squelch, qudio, 444, 445
double superhet, 445
fail-safe, 439
magnetic-tape print-through, 720
mobile receiver, 446
preferred agc 62
preferred agc, 62
preferred audio, 62
funing motor noise-actuafed, 412
Stabilizer, load current, 171
photoelectric light source, 482
signal voltage, 22
Staircase generator, 10 -minute stepped s weep, 685
64-step, 686, 687
low-frequency, 687 converter, 146
negative and positivenductor, 152

Standard cell, calibrating a-c mefers, 781

Static alternator, three-phase motor control, 405
Steering, base-triggered flip-flop, 813
base-friggered f.p-flop with hybrid gate, 818

Stepper motor, test analyzer, 777, 778

Stereo, 60-eps parallel-T notch filter for reproducing
10-w amplifier power supply, 694
audio amplifier for $f-m$ trans mitter, 690
multiplex f-m signal generator, 690
ronsmitier subcarrier generator, 695

Storage readout, solid-state counter, 159
troboscope, flash ratemeter, 229
high-voliage pulser, 223
modification of auto engine-fiming strobe, 225
hyratron flashtube trigger, 225
(See also Flash; Strobe)
Strobotron, Geiger counter visual indicator, 562
sonar thumper, 833
Subaudio, $0.5-100 \mathrm{cps}$ funable amplifier, 49
Subtracter, photomultiplier signals, 641
sampled waveforms, 628
Summing, d-c operational amplifier, 103
Superconducting contact, test set, 778
Superheterodyne, doubléconversion $f-m, 574$
Suppressor, ser noise, 445
Survey mefer, radiation 563
Surveying, datum stabilizer for radar altimeter, 87
Sweep, 20-40 cps variable, 676
10 -minute stepped, 685
$2 v$ increase per second, 700
100 -v ramp, 633
$800-v$ hybrid bootstrap, 698
backward-wave-tube shf, 697
bootstrap with flip-flop, 702
bootstrap ppm demodulator, 729
cro vertical, 697
Darlington bootstrap fip-flop, 699
double-bootstrap triangular-wave, 632
rast-reset sawtooth, 699
fast-retrace saw tooth, 631
fying-spot scanner failure alarm, 696
grro balancer cro, 89
high-precision facsimile recorder, 584
high-speed hybrid bootstrap, 697
horizontal scr, 702
horizontal ty, 417
hybrid bootstrap, 702
improved horizontal iv, 746
klystron, 697
klystron oscillator, 700
linear saw tooth, 632, 636
linearly varying 400-600 kc, 671
logarithmic bootstrap, 701
modified phantastran, 701
multi-range airborne radar, 696
power amplifier, 585
radar ppi, 549
radar ppi yoke driver, 550
radar timing pulse shaper, 550
sampling staircase, 686
sawtooth phantastron, 697, 701, 702
subaudio, 633, 635
tangent-function, 698
triangular-wave crt, 96
tunnel diode curve tracer, 700
tv horizontal gate-controlled switch, 702
two-transistor phantastron, 698
two-triode phantastron, 699
uit variable-frequency sawfooth, 637
ultrasonic remote control tester, 833
variable-length radar, 551
(See also Sawtooth)
Sweep generator, camera control, 489
cro horizontal, 97
cro raster, 98
cro vertical, 93
cro vertical triggering, 97
Switch. 20-kc control amplifier, 118
100 -kc gate-turnoff chopper, 108
100 -kc repetition chopper, 108
226
$10-\mathrm{Mc}, 704$
1-millimicrosec spark gap, 710
126-channel-sampling, 181
20-w one-shot mvbr, 437
$360-\mathrm{kw}$ electric fish
Switch, 6.0 ectric fish fence, 707
Switch, 6.0 v, 808
a-c power oullet inferlock, 713
a-c relay drive, 713
acceleration-sensing, 408, 410
acceleration-torsion-actuated, 406, 407
alarm lamp, 3
analog, 103
analog volitage comparatar, 33
automatic f-m stereo, 689
avalanche, 527
balanced shorting, 278
balanced variable-threshold control, 441
bilateral logic, 345
bilateral logic, 345
capacitance-transducer, 705
capacitor-discharging neon, 709
capacitor-discharging power one-shot, 432
closed-ring sampling counter, 624
computer memory
counter disconnect for motor transients, 135
current-controlled threshold, 422
current-controlled
current-mode for light-emitting diode, 223, 228
current-mode fransistor, 158
current-mode fransistor
electronic ignition, 68
encoder diode mafrix, 789
encoder diode mairix, 789
fast a-c power, 712
fast d-c power, 712
fast-rise current for inductive load, 705
fine-deflection character generator, 101
flip-flop controlled audio, 710
forced speedup with shunt inductor, 707
four-layer diode gate, 277
frequency-sensitive photoreed, 483
gate-turnoff d-c circuit breaker, 708
goniometer r-f, 704
Hall generator, 623
high-power scr
710
high-speed six-transistor relay, 705

Synthesizer, frequency, 580

Tachometer, 1-pps gate-opening turbine, 69 $30,000-$ rpm capacitance transducer, 87 auto engine, 65, 68
conveyor belt slip defector, 353
counter display, 70
quick-disconnect aufomotive, 69
scale-of-ten divider, 240
scs single-pulse generator, 66
single-transistor auto, 71
test set, 771
wo-channel amplitude-discriminating, 71
ultralinear high-precision auto, 67
zero-power, 68
Tank, 50-Me phase-locked, 345
Tape (see Magnetic tape; Tape recorder)
Tape control, milling machine, 410
Tape reader, photoelectric comparator, 119
ser photoelectric, 480
Tape recorder, $250 \mathrm{cps}-250 \mathrm{kc}$ instrumentation, 715
$25-75$ kc frequency modulator, 720
50 kc reference base oscillator for magnetic tape, 722
8-mm sound stripe, 716
digital data read amplifier, 721
digital data write amplifier, 722
direct-reproduce instrumentation tape, 714
erase and bias oscillator, 721
fef preamplifier, 716
f-m demodulator, 717
magnetic tape, 721
magnetic tape amplifier, 719
movie camera magnetic, 718
playback compensation, 717
portable dictating machine, 719
print-through squel
reod preamp, 715
synchronous
back, 714
ape wow and flutter measurement, 716
iming signal modification, 716
transpnrt test mvbr, 718, 720, 722
video tape preamp, 715
video fime division multiplex, 715
olume compressor, 21
zero-speed tape playback, 718
Target simulator, rador, 680,683
Teaching machine, reward-dispensing mvbr gate,
272 machine, reward-dispensing mvbr gate
elemetry, 8-ke Q mulfiplier for tone filter, 413
$60-k c$ mine-festing ultrasonic transmitter, 832
60 -kc underwater hydrophone receiver, 831
2.kc underwater hydrophone receiver,

3-Mc Colpitts oscillator, 450
3-Mc Colpitts oscillator, 450
3 Me to 54 Me frequency multipliers, 259
15 - Mc command receiver, 300
23-Mc discriminator, 56
23-Mc voltage-controlled oscillator, 460
24-Mc varactor-modulated f -m, 252
27-Mc tone-modulated transmitter 803
37.7-Mc eeg signal transmitter, 388

54 -Mc low-power transmifter, 733
$54-162 \mathrm{Mc}$ frequency multiplier, 256
54-324 Me frequency doubler-fripler, 257
92 -Mc f-m transmitfer, 732
$95-\mathrm{Mc}$ two-channel $\mathrm{f}-\mathrm{m} / \mathrm{f}-\mathrm{m}$ transmitter, 724
100-Mc wireless link transmiłter, 729
223-Mc transmitfer, 800
230-Me pam/f-m beacon, 252
$460-\mathrm{Mc}$ f-m command receiver, 615
10-channel safellite multiplexer, 152
20 -channel audio tone decoder, 132
60-mw transmitter, 730
airborne pdm keyer, 728
amplifier overload protection, 331
analog switch, 103
anemovane audio oscillator, 727
avalanche warning transmifter,
baroreceptor nerve potential, 389
basic scaler, 730
camera control, 490
commond pulse monitor, 726
commutator simulator, 678
cosmic-ray gage, 562
current-controlled subcarrier, 731
daylight intensity, 484
d-e coupled transmission line, 133
d-c/d-c regulated power supply, 495
d-c summing amplifier, 177
differential voltage comparator, 117
diversity combiner, 723,730
double-conversion f -m, 574
electron density, 376
energy-loss telescope, 726
five-bit encoder, 731
$\mathrm{f}-\mathrm{m} / \mathrm{f}$-m helmet transmitter, 725
f-m modulator, 730
f-m strain-gage oscillator, 255
four-channel discriminator, 725
four-stage differential amplifier, 195
heartbeat transmitter, 377
high-altitude belloen
inductive, 768, 771
logarithmic amplifier, 724
law-drift d-c amplifier, 174
law-drift d-e amplifi
low-pass filter, 219
low-pass filter, 21
Mercury spacecraft audio driver, 50
micro-multiplexer, 730
missile performance monitor, 727
multiplex driver, 725
muscie poiential, 39

Telemefry, pcm frequency divider, 243
pcm mulfipiexer, 729
phone-line shaft position modulator, 66
ppm demodulator, 729
projectile acceleration, 731
projectile nose pressure, 731
pulse height-time converter, 143
pulse reshaper for diversity combiner, 732
pulse stretcher, 542
radiation safellife transmitter, 728
receiving decoder, 733
resistance-controlled subcarrior oscillator, 732
ringing-type pulse generator, 528
sample-and-hold with bilateral charging, 626
satellite cloud pictures, 582
sideband rejection, 192
slow-scan monitor, 742
slow-scan tv camera, 735
slow-scan tv camera, 735
stratosphere balloon temperaiure, 756
strobe for cro display, 89
subcarrier oscillator stabilization, 728
temperature, 760
temperature monitor, 763
tone-modulated transmitter, 618
transducer d-c amplifier, 70
water depth receiver, 825,831
wind-velocity transmitter, 724
Telephone, baseband amplifier, 82
Telephone, baseband amplifier, 82
data matrix readout, 122
Telephone channel, thick-film amplifier, 43
Telephone dial tester, flip-flop, 781
Telephone system, low-voltage alarm, 5
Teleprinter, character counter, 787
control, 386
Telescope, energy-loss, 726
Television, 3.58-Me color burst oscillator, 753
4.5-Mc low-cost f.m sound diseriminator, 25
automatic chroma control, 751
automatic color control and killer, 750
bone section scanner, 382
b-w 12-Mc distribution amplifier, 744
b-w 100-Mc bandwidth, 745
b-w automatic fringe tuning, 746
b-w automatic local-fringe funing, 739
b-w CCTV 10-Mc currier modulator ferminal, 745
b-w CCTV 10.Mc repeafer, 740
b-w CCTV receiving terminal, 740
b-w CCTV repeater power supply, 743
b-w delta sound system, 743
$b-w$ diode mixer, 746
b-w germanium-transistor horizontal deflection,
b-w horizontal oscillator stabilization coil, 740
b-w horizontal sync transient display, 741
b-w laser, 739
b-w linear transistorized horizontal sweep, 746
b-w mesa-transisfor oscillator, 740
b-w mesa-transistor osciltafor,
b-w one-transistor video amplifier, 742
b -w outline generator, 743
b-w peak picture control, 741
b-w pulse-cross generator, 746
b-w reactance-transistor afc, 740
b-w scr horizontal output, 744
b-w slope detector for sound, 743
b-w slow-scan monitor, 742
b-w two-stage solid-státe video amplifier, 741
b-w two-transistor horizontal deflection, 745
b-w video ou ppuł amp, 746
B-Y demodulator, 754
cetv voltage bar graph display, 206
color afe for mobile pickup, 750
calor agc, 753
color automatic fine funing, 751
color-burst amplifier, 753
color-burst gate, 753
color-burst gating-signal generator, 752
color demodulator, 747, 752
color killer and hold, 753
color pickup reference oscillator, 752
color sound i-1, 749
color video i-f, 754
community-tv up converter, 146
eye-motion tracker, 483
fet uhf tuner, 823
flat-display scanner, 641
French SECAM chrominance stages, 748
gate-controlled switch horizontal sweep, 702
gated color-burst regenerator, 748
horizontal sweep mvbr, 417
infrared modulator, 293
keyed agc, 59
low-noise uhf tuner, 823
magnetostriction remote control, 830
mobile color pickup limiter, 332
modulation percentage monitor, 416
power-line carrier-current remofe-contral
transmitter, 620
program rating scanner, 639, 642
remote-control power-line carrier receiver, 617
remote control of programs, 622
remote ultrasonic volume control, 829
sync-generator frequency divider, 241, 243
three-transistor color audio, 752
time-constant detector for remote control, 619
transistorized chroma amplifier, 747
transisforized color sync separator, 750
transistorized luminance amplifier, 751
transistorized luminance amplifier, 751
transistorized portable tuner, 821
transistorized portable tuner, 821
two-color system
uhf funer, 821
uit raster' generator, 640
ver 827
ultrasonic contral tester, 833

Television, ultrasonic remote contral, 409
video i-f amplifier, 286
weather satellite, 582
wideband video amplifier, 641
Television camera, $31.5-\mathrm{ke}$ sweep oscillator, 736
$15,000-\mathrm{v}$ uvicon supply, 736
15,000-v uvicon supply, 736
aperture correcting circuit, 735
generator-modulator, 734
highlight equalizer, 738
r-f modulator, 736
slow-scan airborne, 735
sync distributor, 737
uvicon preamp, 734
video gain control, 737
video gain control, 737
vidican sensitivity control, 737
Temperature, automatic compensatian, 380
resistance-friggered alarm, 7
emperafure coeficient measurement, power supply, 614
Temperafure compensation, 5-Mc flip-flop, 236
junction diode, 595
emperature control, 1,000-cps phase-shift 1 Mc tunnel
1.1-Mc tunnel-diode sensing oscillator, 761
.O. differential, 757
body-temperature sensor, 758
compensated resistance-thermometer, 761
compensating bridgé 757
crystal oven, 757,
dual-output, 760
germanium-diode sensor, 757, 758, 763
germanium-dio
high-accuracy, 761
hybrid fube-transistor, 756
liquid bath to $0.01^{\circ} \mathrm{C}, 763$
law-hysteresis d-c level detector, 762
mercury thermostat and ser, 756
mubr modulator for ser power switch, 864
mylar-capacitor id oscillator, 762
negative-feedback Schmitt trigger, 755
nuclear-resonance sensor, 760
oven, 755
photographic developer, 762
photographic dryer, 487
proportioning, 762
road icing alarm, 758
rocket gyro, 758
rocket surface, 756, 757, 760
shunf-regulated power supply, 600
soldering iron, 473
space probe, 763
stratosphere balloon telemeter, 756
thermaelectric cooler, 759
transistor thermometer, 759
transmitter for frozen food, 758
zero-crossing sync for scr's, 136
emperature measurement, $90^{\circ}-105^{\circ} \mathrm{F}, 758$
transistor sensor, 759
emperature sensor, rate-of-rise, 1
transistor, 757
esf set, capacitance-fracking, 357
ester, 10 -Mc computer circuits, 113
1-ge noise-figure converter, 441
$0.5-\mathrm{v}$ power supply, 596
$300-\mathrm{kw}$ uhf tube, 776
cirborne mti, 682
antenna radiation pattern, 802
armature, 774
outo engine, 66
cable fault finder, 764, 769, 772
cable propagation delay, 249
cable wiring locator, 769, 770
calibrating a-e meters to standard cell, 781
capacitor and insulation leakage, 782
capacitors in circuits, 88
component waveforms, 773
computer memory shmoo curve plotter, 432 conductivity, 781
contacts under vibration, 779
counter, 527
c-w receiver calibration oscillator, 676
d-c amplifier for a-c meter calibration, 107
d-c level-shifting, 768
decade counfer, 517
decimal countr, 42
defecting momentary opens during vibration, 78
dial telephone, 78
diodectric strength, 775
diode, 767
eddy-current crack and void detection, 367, 370
lectro-explosive devices, 777, 780
ef adapter for curve fracer, 782
go-no-go vivm, 858
go-no-go 765
hi-pot, 771
high-power modulator tubes, 765
high-power modulator fubes, $\mathbf{h i g h}$-speed digital computer, 110,681
in-flight missile, 727
instrument servo cycling, 662
insulation resistance, 772
invisible flaws in wire, 772
onospheric sounding pulse receiver, 677
keyed d-c or tone signal generator, 434
keyed d-c or fone sign
lamp circuit, 769,779
linear integrated-circuis, 295, 303, 604
magnetic core, 525, 767
magnetic tape, $\mathbf{7 7 9}$
meter and transistor regulated 30 -v supply, 775
novie camera frame rate, 485
hovie projector frame rate, 485
nor logic, 348
nuclear explosion alarm system, 682

Tester, overtone crystal bridge, 83
overtone quartz crystal, 776
parallel-path continuity, 780
parametric amplifier, 766
phase defector, 265
production transistor, 779
pulse-fype power transistor, 768, 770
radar with ignitron crowbar, 765
radar target simulator, 680, 683
regulated power supply, 614
relay, 780
relay contact chatter, 774
resistance go-no-go, 733
resistor, 808
saturated transistor, 813
scr turnoff, 778
servo swept signal generator, 676
short-cirevit alarm, 4
spin-sysfem inductive-telemetry, 768, 771
squib simulator, 681
stepper motor, 777, 778
stepping switch pulser, 530
stereo f-m mulfiplex receiver, 690
superconducting confacts, 778
switching diode, 777
5 witching time of and gate, 300
tape recorder flutter,
thermocouple, 768
time-shared computer, 122
time-shared co
transisfor, 770
fransistor 200 -Mc noise figure, 44
fransistor with audio indicator, 774
fransistor wish audio
fransistor beta, 358,774
transistor beta display, 93
transistor circuit, 493,507
Iransisfor conversion gain, 358
transisfor curve trac
transisfor and diode curve fracer, 770
transistor frequency response, 232
transistor h-fe at $100 \mathrm{Mc}, 782$
transistor with lamp indicator, 774
transistor leakage, 195, 770
transistor noise figure, 439, 779
transistor power gain, 362, 782
transistor to mixer, 771
tunnel diode, 373, 374, 700, 766, 771, 781
tunnel-diode, switching-time, 766
iv vhf transistor, 769
two-channel tachameter, 771
ultrasonic reactor-slug cladding nonbond, 830
ultrasonic remote controls, 833
underwater mines, 831, 832
vif amplifier and servo, 636
voltage go-no-go, 812
voltage limit monitor, 858
Thermistor, erystal oven confrol, 759
sawtooth circuit, 636
servo control, 648, 656
temperature control, 755
Thermistor bridge, femperafure confrol, 762
Thermocouple, amplifier, 366
calibrating a-c meters to standard cell, 78 fesl set, 768
Thermocouple gage, regulated power supply, 606
Thermcelectric cooler, temperature control, 759
Thermometer, resistance-bridge, 761
fransistor, 759
Thermostat, scr, 757
(See also Temperature control)
Thickness measurement, coating, 362, 365
Thin film, logic, 349
memory current driver, 124
memory sense amplifier, 124
toggling logic, 340
Threshold circuit, analog-digital converter, 32 balanced variable, 441
balanced variabie a-f, 446
Threshold defector, ultrasonic remote control, 829
Thyratron, 360-kw switching eircuit, 707
pulser, 493
solid-state, 726
Tick-fack-foe, logic gates, 337
Time amplifier, pulse width stretcher, 268
Time base, wide-range linear bootstrap, 634
Time-base generator, missile fuze, 111
Time delay, photoelectric, 484
Time delay (See also Delay)
Timer, 200-Mc gate, 269
$500-\mathrm{Mc}$ scaler control, 164
1-pps gate-opening, 69
400-pps cold-cathode, 157
0.1 to $50-s e c$ low-cost fet, 787
0.1 sec to 2 hr for data-recording camera, 486
$0.3-6 \mathrm{sec}$ variable-duty-cycle recyeling. 789
$0.3-6 \mathrm{sec}$ variable-duty-cycle recycling, 789
$1-$ see ses confrols 1 amp, 788
$1-5 \mathrm{sec}$ one-shot mut 785
$1-5 \mathrm{sec}$ one-shot mvbr, 784
2 sec-10 min, 298
$5-10 \mathrm{sec}$ low-cost intervalometer, 791
$10-s e c ~ s e s, 7$
$13-s e c, 791$
15 sec-2 min thermal, 422
$15 \mathrm{sec}-2$ min thermal, 422
30 sec- 350 hr delay, 188
30 sec- 350 hr
4 -hour, 813
8 -fo-1 frequency-dividing for $80-\mathrm{Mc}$ oscillator,
a-c zero locator, 783
adjustable-interval, 790
adustable saturable-reactor, 784
basic hybrid uit-pnp, 78
basic thyratron,
bootstrap, 488
bootstrap, 488
cement-setfing, 359

Timer, clock oscillator, 111
clock oułput driver, 111
consfan f-current generator, 787
current-mode swifch, 790
dual-polarity start-stop control, 790
lectronic camera shutter, 485
fencing foil touch, 785
et monostable mvbr, 785
ive-function weld programming, 864
five-fhyratron resistance welder sequence control. 860
four-function welding control, 861
free-running dual-output, 788
hall acoustic measurement, 787
linear-scale fet, 786
magnification-compensating darkroom, 487
nuclear particle flight, 783
operational trigger, 813
photographic exposure with relay chatter suppression, 488
photomultiplier for enlarger, 486
precision weld interval, 863
print contrast and densify, 490
pulse-stretching, 541
radar, 550
random interval, 789, 791
ecorder-controlling, 786
eloxation, 329
elay contact chafter, 774
relay dropout, 188
epeat-cycle, 784
resistance welding gun control, 859
elina welder, 39
sing counter, 113
cs pulse-strefching, 544
onar, 204
stalled servo motor prote
witching sequence, 710
teleprinter character-counting, 787
ool running-fime, 785
ransient-immune with wide dynamic range, 784
transistor-controlled motor, 790
ansistor start-stop control, 78
vimage photography, 489
uit. 787
uit-npn basic hybrid, 789
jf-relay interval, 788
frasonic sing-around transmifter, 834
alve closure, 784
variable-program camer
vhf counfer, 788
watch, 790
weid-heat program, 860
(See also Counter; Delay)
Timing, automotive automatic advance, 65
Timing signal, modification for low-cost tape recorder, 716
Timing signal playback, magnetic tape recorder,
Toggling circuit, thin-film, 340
thin-film with transistor, 349
Tone control, fet, 50
Tone-operafed calling, citizens band, 572
Tonometer, erystal oscillator, 392
electronic, 378
Touch control switch, body-capacitance, 85
Tracer, funnel diode curves, 771
Tracking, telescope servo, 662
Tracking system, missile, 430
Train generator, eighf-pulse, 142
Trainer, sonar, 832
Transceiver, 809.11 -ke clock oscillator, 112
920 -channel crystal-controlled mobile radio, 792
3,500-channel frequency synthesizer, 242
CB 5-w overlay-transistor, 795
CB class-B, 794
CB class-C, 794
CB with electromechanical filter, 792
CB with noise squelch, 795
CB squelch, 794
CB three-transistor, 793
CB tone-pulse decoder, 795
CB transmitter without relay, 794
divide-by- 5 counter for frequency synthesizer,
infrared, 290
noise-acfuated ave, 793
single tunnel-diode, 793
(See also Receiver; Transmitter)
Transducer, beam switching, 705
electro-optic, 415
frequency-to-valtage, 146
parallel-mode scanner, 649
scanner, 643
stress-sensitive integrated-circuit, 301
femperature using fransistor base-emitfer voltage, 756
voltage-resistance converter, 84
Transducer drive, constant-current, 168
Transflux or, 1 -Mc oscillator, 526
analog-digital converter, 30,34
Transformer, $6-\mathrm{v}$ regulating, 613
broadband impedance, 14
broadband impedance, 1
saturable-core frequency septupler, 258
Transient suppression, ser latch, 328
Transistor, fet pinchoff measurement, 369
measuring alpha cutoff, 375
measuring forward-current transfer ratio, 360
measuring noise figure at $200 \mathrm{Mc}, 444$
measuring open-circuit output admittance, 361
measuring power gain, 362
measuring reverse-voltage transfer ratio, 371
measuring short-circuit input resis
measuring thermal constants, 359

Transistor, saturation tester, 813
Transmission line, d-c coupled driver-receiver, 133
Transmission line, d-c coupled driver-receiver, 13
Transmitter, 2-kc magnetic induction field, 376
9-kc oscillator stabilizer, 799
21-kc ultrasonic, 831
22-kc sonar, 835
60-ke ulfrasonic mine-testing, 832
$460-\mathrm{kc} \mathrm{f}-\mathrm{m}$ wireless microphone, 800
500 kc and 8.326 -Mc distress, 79
orkc crysta-controlled low-power a-m, 799
2.50 Mc crystal, 802
2.185-Mc marine band, 805
2.2-Mc radar power output stage, 548
$27-\mathrm{Mc} \mathrm{CB}$ transformer-coupled collector modulated, 397
Transmitter, 27-Mc eight-command remote control, 620
27-Mc remote-event 803
27.255 - retina welding, 379
7.755-MC Uif-td remote control, 618

70-Mc eeg signal, 388
$50-\mathrm{Mc} 1-\mathrm{wa}$ a-m, 8 BO 2
$50 \mathrm{Mc} 10-\mathrm{w}, 797$
50 Mc of $40 \mathrm{w}, 805$
50-250 Mc tunnel-diode, 824
54-Mc law-pawer telemetry, 733
73.5-Mc self-modulated crystal, 806
$80-160 \mathrm{Mc}$ standard output doubler, 796
92 - Mc f-m, 732
6-110 Mc f-m wireless microphone, 800
$100-\mathrm{Mc}$ telemetry link, 729
$150-\mathrm{Mc}$ telemetry, 731
$160-\mathrm{Me}$ 15-w power amplifier, 255
$60-\mathrm{Mc} 15-\mathrm{w}$ three-fransistor power amplifier, 803
62-180 Mc narrowband, 806
70-Mc 1-w, 797
175-Mc f-m mabile amplifier, 796
220-260 Mc beacon, 77
223-Mc telemetry, 800
$243-\mathrm{Mc}$ aircraft crash beacon, 80
$60-\mathrm{mw}$ felemetry, 730
$60-\mathrm{mw}$ felemetry, 730
$2-w$ parallel-transistor autput, 804
2 w parallel-transistor
w parallel-transistor output with emitter
tuning, 798
2-w push-pull autput, 804
4-w emergency, 78
30-w pulsed ultrasonic, 837
80 -meter amateur vfo c-w, 799
afe for mobile color ty pickup, 750
avalanche warning, 2
avalanche warningt ${ }^{2}$
CB, 795
CB class-C, 794
without relay, 794
dmped voice-perated
duty-cycle timiter for pulse
duty-cycle timiter for pulse inodulation, 332
extroluminescent display, 205
exin
$f-\mathrm{m} / \mathrm{f}-\mathrm{m}$ telemetry, 725
f -m ane-transitor 803
$\mathrm{f}-\mathrm{m}$ wireless mike, 802, 803
frozen-foad temperature, 758
heartbeat felemetry, 377
infrared iv, 293
minimum-iitter pulsed ultrasonic, 835
modulation percentage manitor, 416
muscle-potential induction, 39
phase-shift keyer, 805
power-line carrier-current for ty remate contral 620
pulsed X-band magnetron radar, 556
push-pull lattice-filter autput, 803
push-push doubler, 804
adiation satellite, 728
radiosonde, 726
emote control tay, 617
-f monitor, 362
satellite video recorder, 582
selective paging, 80
servo-tuned, 64
stepped frequency exciter, 804
sterea multiplex a-f amplifier, 690
sterea multiplex oscillator, 692
tereo multiplex subcarrier generatar, 695
stereo phase modulator, 693
suppressed-carrier, 801
arget drone control, 615
temperature telemeter, 756
tane-madulated telemetry, 618
tripler-doubler far $700-1,200 \mathrm{Mc}, 262$
fropaspheric scatter fading contral, 192
tropaspheric scater fading contral,
ultrasonic velocity measurement, 825
(See also Frequency madulation; Radar; Remote contral; Telemetry; Television; Transceiver Contral; Tiele
Transponder, missile, 548
signal-powered, 80
Trap, f-m weak-signal capłure, 250
Traveling-wave tube, fail-safe filament regulator, 506
modulator, 398, 403
Triac, motor control, 412 motor control 411
Triangular-sine canverter, fet, 542
$10-\mathrm{cps}$ to 20 -ke volfage-controlled positive or negative, 633
Trigger, 0-500 ke Schmiff, 819
3 .ke' ser, 426
7-ke Schmitf, 37

Trigger, 25-kc, 808
$100-k c$ counter, 155
$100-\mathrm{kc}$ Schmift, 818
10-Mc Schmity square-wave generator, 818
40 -na current-sensing, 815
-amp pnpn pulse generator, 813
0.2-300 sec Schmift, 483
acoustic timer, 787
adiustable-prr blocking-oscillator, 814
adjustable Schmitt, 814
analog-computer overvoltage, 5
any input pulse shape, 819
astable mvbr, 434
automatic ignition control, 65
basic pnpn memory, 815
batfery-operated cro, 94
cathode-coupled mvbr, 419
closed-ring counter, 624
cold-cathode ring counter, 157
conventional Schmitt, 817
cro, 697
cro sweep, 89
crystal lapping contral, 249
decade decimal counter, 814
delayed, 812
delto-sigma modulator, 393
diode bridge drive, 820
diode-coupled Schmitt, 811
diode-madified Schmiti, 815
diade-protected modified Schmitt, 819
dual-pulse, 807
eeg waveform zero defectar, 383
encoder limit, 791
fast-recovery flip-flop, 817
flip-flop, 815
flip-flap steering circuit, 813, 819
$\mathrm{f}-\mathrm{m} / \mathrm{f}$-m felemetry frequency divider, 243
four-stage pnpn binary counter, 814
generotor, 538
half-sinusaid pulse generator, 812
high-valtage pulse gen
with hybrid gate, 818
integrated-circuit Schmitt, 300
integrated-circuit Schmitt, 300
low-cost Schmitt, 810, 820
ow-hysteresis differential amplifier, 819
aw-level threshoid detector, 816
law-oufput-impedance Schmitt, 809
magnetoresistor bridge, 84
memory-care, 126
missing-pulse detector, 6
modrted Scrmmitrequency quintupler, 260
mur co input Sch 412
noise-immune scr without pulse-farming noise-immune $\begin{gathered}\text { network } 809\end{gathered}$
noncutoff Schmity, 81
noneutar al, $770,807,808,813$
operational hi-pot, 7il
operational linuid-level control, 136
perational temperature-control, 762
perational voltage-monitoring, 812
photaflosh, 136
pnp plus npn, 809
pnpn flip-flop, 81
pnipn one-shat, 809
pnpn power flip-flop, 820
pnpn ring counter, 820
pnpn shift register, 819
polarity-sensitive, 632
pulse, 336
pulse-reshaping Schmitt, 394
pulse sampler, 92
pulse width, 539
push-pull six-tronsistor relay, 705
random-puise, 813
regenerative switching, 812
retina welder pulse-shaping, 381
Schmitt, 425, 506, 534, 700, 810, 820
Schmitt adf phasemeter, 465
Schmitt combined with mono mvbr, 814
Schmitt caunting far buttans, 148
Schmitt with delay, 417
Schmitt double-triode, 717
Schmitt f-m stereo signal generator, 690
Schmitf high-impedance, 812
Schmitt ionaspheric sounder simulator, 684
Schmitt leakage-testing, 782
Schmitt odd-even logic, 346
Schmitt with aperotional amplifier, 807
Schmitt phase-difference, 808
Schmitt pulse-width madulation, 303
Schmitt quad-black, 304
Schmitt in sawtaoth generator, 636
Schmitt scr, 810
Schmitt signal analyzer, 536
Schmitt sine ta square wave, 629
Schmith substitute, 807
Sthmitt substifute
ser-ignitron, 809
secondory-emission pentode, 809-811
secondary-emissian pentode variable-sensitivity, 811
sense amplifier. 812
sensitive a-c power switch, 709
ensies Schmitt 810 witch, 710
series Schmil
implifed ful-wave uif-scr, 817
implified uit-scr, 820
ing-around ultrasonic transmitter, 826
ingie 50.000 -amp current pulse, 170
sound pulse, 833
With speed-beosting trigger omplifier, 814
stepped-sweep Schmitt, 685

Trigger, strobe pulse 96
stroboscope scr, 225
synchronizing to 3.3 -Mc clock, 113
teaching-machine reward dispenser, 272
time-delayed Schmitt, 136
ime-recording, 625
transient-rejecting scr, 818
transisforized for 50-ke counter, 155
tunnel-diode, 117
tunnel-diode pulser, 249
uit, 425, 608
Uji/triac phase control, 816
valve closure measurement, 784
Van de Graaff accelerator, 512
variable-hysteresis Schmitt, 813 , 755
variable negative-feedback Schmitf,
variable Schmitt, 119
voltage-level, 808
voltage-sensing, 810, 816
zero-hysteresis Schmitt, 815
Trigger control, ser, 83
Trigger generator, 20-kc, 817
Tripler, SOS beacon frequency, 78
ropascatter, aut-of-baseband logarithmic noise amplifier, 440
Troposcaifer receiver, level control, 576
Truth table, script recognition, 336
Tube aging, vivm campensator, 85
uner, 35 -Mc reactance-fube, 466
$60-90 \mathrm{Mc}$ voltage-funed, 18
1,000-Me npn oscillotar, 824
3-transistor uhf, 821
a-m/ $\ddagger-m$ three-transistor portable, 574
automatic sterea $\mathrm{f}-\mathrm{m}$ switch, 689
capacitively tuned funnel-diode, 823
current-tuned uhf, 822
electronically variable capacitance, 88
fet f-m stereo, 691
fet uhf tv, 823
$\mathrm{f}-\mathrm{m}$ ofe, 822
f-m sterea multiplex, 253
improved cadan, B12
low-cost single-chip f-m, 254
law-noise Uhf iv, 823
mesa-iransistor iv, $\mathbf{7 4 5}$
mesa-illansistor tv oscillar, 740
mesa-fronsistor tv oscillatar,
pin diode in stereo $\mathrm{f}-\mathrm{m}, 695$
pin diode in stere
remote-control transmitter, 824
cotary-axial ferrite-cup, 822
servo-driven, 643
signal-seeking auto radia, 824
hree-transistor vhf tv, 821
transit-time diade uhf/shf, 82
tunnel-diode uhf, 823
tv diode mixer,
two-chip $f-\mathrm{m}, 250$
two-chip f-m
uhf tv, 823
Tuner (See also Receiver; Televisian; Transceiver)
Tuning, 500 -ke i-f transformer delay-line, 282
automatic color tv, 751
automatic fringe local-fringe tv, 739
valtage-contralled ferroelectric capacitar, 462, 676, 822
Tuning fork, 400-cps inverfer, 324
Tuning-fark filter, odjustable, 2
measuring d-c parameters, 373
measuring negative resistance, 374
Typewriter contral, neutron diffractometer, 559

Ulirasonic control, motar, 409
Jitrasonics, 13 -kc responder for blind, 832
delay line drive, 462
19.5-kc sonar $\mathrm{f}-\mathrm{m}$ demodulatar, 831
19.5-ke sonar f -m madulator, 835
$20-40 \mathrm{kc}$ generatar, 830
22-ke sonar receiver, 828
22-ke sonar transmiffer, 835
25-kc 100 -w generator, 835
60-kc hydrophone receiver, 831
60 -ke mine-testing transmitter, 832
85-ke transmitter, 837
250 -kc broadband preamp, 833
fet hydrophone preamp, 828
fish finder, 836
magnetostriction tv remote cantrol, 830 magnetastrictive delay line amplifier, 836 neurasurgery oscillatar, 386
prf multiplier, 836
reactor-slug flaw detector, 830
remote control tester, 833
emote iv volume control, 829
sing-around cycle counter and timer, 834
sing-around transmitter, 825
sing-araund transmitter trigger, 826
sonar oudio selectian gate, 82
sonar peak-amplitude deter
sonar peak-amplitude defector, 832
sonar pulse generator, 833
hyrafron-s witch transmifter, 835
receiver, 837
v confrol receiver, 827
underse-cantrol time-constant detectar, 619
undersea prapagatian gate generatars, 834
undersea propagation receiver, 826
undersea propagation fransmit
zero-crossing synchronizer, 82
Ulitraviolet, portable inverter supply, 321

Uliraviolet felescope, preamp, 734 Univibrator, trigger-controlled, 520
Uvicon, camera preamp, 734

Vacuum-gage heater, 240-v regulated power supply, 606
Vacuum-fube volimeter, balanced, 857 distortion-monitor drive amplifier, 27
hybrid $\ddagger u b e-\nmid r a n s i s f o r, ~ 857$
infinite-impedance differential, 853
peak, 850
radar speed meter, 545
three-lamp go-no-go, 858
transistor-protecting preamp, 854, 856
(See also Volimeter)
Valve, measuring closure fime, 784
Varactor, $50-200 \mathrm{Mc}$ quadrupler, 260,263
50.400 Mc quadrupler, 257
$500-4,000$ Mc oftupler, 261
frequency quadrupler, 259
parametric-amplifier-controlled, 576 r-f amplifier, 571
vco frequency synthesizer, 242
Varactor tripler, emergency fransmiffer, 78
Varicap, 5.5-Mc gate, 276
Variolosser, audio agc, 58
Varistor, nonlinear-feedback amplifier, 14 output stage protection, 575
Varistor control, voltage-funed oscillator, 465
Vco, hold-sample-hold phase defector, 472
Vehicle (seo Automotive electronics)
Velocimeter, deep-ocean, 370, 371
Vibrafing capacitor, preamplifier, 497
Vibration, momentary-open indicator, 781
Vibration testing, contacts, 779
Video, $3.2 \mathrm{kc}-32 \mathrm{Mc}$ amplifier, 838
50-Mc diffused-base amplifier, 84
$100-\mathrm{Mc}$-bandwidth amplifier, 840
analog-digital converter for cctv microscope, 32 analog-digital converter sampling amplifier, 628 cascaded shunt-peaked amplifier, 838
common-plate mixer, 844, 846
compression amplifier, 848
constant-level switching, 744, 752, 753
culoff-biased triple-input mixer, 840
dual-grid pentode mixer, 848
dual-triode range strobe mixer, 842
five-input marker mixer, 845
four-input high-level pulse mixer, 846
four-trigger mixer, 845
i-f amplifier, 286
marker.iff mixer, 842
nonadditive common-plate mixer, 844
nonadditive mixer-limiter, 848
one-fransistor tV amplifier,
partiol-adding mixer, 84
pentode common-plate mixer, 842
pentode ifier,
preferred beam-pow, 846
preferred beam-power driver, 839
preferred comermedithode mixer, 849
preferred low
preferred low-level common-plate mixer, 843 preferred radar amplifier chain, 839
preferred friode driver, 847
push-pull clipper, 840
radar and beacon mixer, 849
radar beacon pulse amplifier, 513, 514
radar unblanking switch, 553
range strobe marker-iff mixer, 849
shunt-peaked transistor amplifier, 846
three-iff mixer, 847
three-input mixer, 845
three-input two-output mixer, 843
hree-input wo-pentode mixer, 849
three-pentode mixer, 845
wode common-plate mixer, 848
iwo-input three-output mixer, 847

Video, two-pentode mixer, 849
two-pentode radar and if mixer, 849
two-stage solid-state iv, 741
two-s tage wideband amplifier, 844
voltage-controlled gain, 847
Television, b-w; Television; Television camera
Television, b-w; Television, color)
Video amplifier, automatic gain control, 737
preferred high-ievel, 842
preferred intermediate-level, 842
preferred low-level, 839
preferred pulse emitier-follower, 846
Video detector, preferred pulse-modulated, 841
Video imiter, preferred, 332
Video microplanimeter, bone disease detector, 382
Video processor, display, 330
Video recorder, preamp 715
Video recording, playback color-burst regenerator 748
Video screening, nuclear track scanner, 639
Video selector, positive-going signals, 119
Voice (see Audio)
Voltage comparator, bilateral-transistor, 119 differential, 117
fet, 33
go-no-go, 119
Voltage control, a-c line voltage, 596
battery charger, 74
radar bandwidfh filter, 498
saturable-care, 134
stepped power supply, 596
telephone system, 5
transisfor overload protection, 507, 508
(See also Regulated power supply
Voltage-controlled oscillator, divide-by- 5 ring counter, 240
requency synthesizer, 242
Voltage defector, nanoampere sensing, 364
Voltage display, bar graphs on cetv, 206
Voltage measurement, 95-135 \vee a-c, 855
high-impedance source, 174
line dip, 329
line-dip counter, 858
(See also Volfmeter)
Voltage multiplier, probability analog, 416
triangle analog, 416
Voltage regulator, $50-2,000 \mathrm{cps}$ a-c, 589,593
6-v transformer-type, 613
100-v a-c reference, 855
a-c line, 598
chopper type, 105
d-c/d-c converter, 138
four constant-current diodes, 588
neon crt bias, 99
overload protection, 331
short-circuit-protected, 510,594
signal amplifier, 22
Voltage sensor, imput signal dropout, 7
power line 501
power line, 50
Voltage stabilizer, high-gain amplifier, 18
Voltmeter 1 meg
oltmeter, $1 \mathrm{meg} / \mathrm{v}$ differential fet, 857
1 meg 20 feg 854
$20 \mathrm{meg} / \vee$ fet-pnp d-c, 85
calibrator for digital, 31
calibrator
digital, 35
direct-coupled amplifier, 854
dual-range d-c, $85 ?$
ergmeter peak holding, 370
fet d-c millivalimeter, 853
five-transistor $d-c, 857$
flip-flop peak, 857
high-stability differential, 852
hybrid tube-transisfor, 857
infinite-impedance differential, 853

Voltmeter, measuring peak a-c spot-welding current, 859
neurosurgery vacuum-tube, 392
peak, 850
peak pulse indicator, 852
peak-reading a-c operafed, 858
peak-sensing operational amplifier, 855
peak-voltage memory for $0-10 \mathrm{cps}, 856$
photocell chopper, 858
power-frequency harmonics, 852
precision a-c, 855
ratio, 854
f,
self-balancing slide-back peak, 367
three-lamp go-no-go, 858
racuum-fube, 857
oltage limit monitor, 858
(See also Vacuum-tube volimeter; Voliage
lume control
Volume control, remote tv, 829

Watch, timer, 790
Waveform, time-sample detector, 773
Waveform generator, iriangular, 635
Wavemeter, tunnel-diode oscillator, 449
Weighting circuit, current, 33
Welder, 45-kw r-f brazing pulse control, 862
battery charging control, 74
current-slope control, 863
five-function timer, 864
five-thyratron sequence timer, 860
four-function timer, 861
heat program timer, 860
load-sharing flip-flop control for ignitrons, 862
measuring spot-welding current, 859
mubr modulator for scr power switch, 864
photoelectric shutoff control, 863
precise control for metal foils, 861
precision inferval timer, 863
retina, 379
temperafure control, 864
thin-foil, 862
thyratron timer confrol for high-speed resistance
welding gun, 859
Welder control, retina, 381
Welder timer, refina, 391
Wheatstone bridge (see 8 ridge)
White follower, low-noise fe \dagger audio output, 53
Wien bridge, rejection filter, 222
ien-bridge oscillator, plate-cathode follower
drive, 27
drive, 27
Wire, controlling extrusion of plastic insulation, 87
eddy-current flaw detector, 77
enamel thickness m
thickness gage, 363
Wireless microphone, 460 -kc f-m receiver, 571
460-ke f -m transmitter, 800
$46 . k c \mathrm{f}-\mathrm{m}$ fran
$96.110 \mathrm{Mc}, 800$
$\mathrm{f}-\mathrm{m}, 802,803$
$\mathrm{f}-\mathrm{m}, 802$, 803 one-fransistor, 803
Wiring, short-cirevit alarm, 4
Wobbulator, paging fransmitter, 801
Wow, measurement, 716
WWV, clock calibrator, 112
clock check, 111
clock-controlling servo, 111
comparison lock-in amplifier, 568
X-ray, high-valtage tube pulser, 381
Zener clamp, pulse generator, 519
Zener clamp, pulse gener
Zener reference, 6-v, 591
temperature-compensated, 613
Zero-crossing detector, heart sounds, 278
sine-wave, 538
Zero-crossing synchronizer, temperature-controlled
scr's, 136 . 783

[^0]: 20-KC RING COUNTER-Shift pulses turns off conducting silicon controlled switch by reverse-biosing cathode gate. Charge stored on coupling capacitor then triggers next gate.-"Transistor Manual," Seventh Edition, General Electric Co., 1964, p 431.

[^1]: 1 MILLISEC TO 30 HOURS-Input ond output emitter-followers isolate fet. Extremely

[^2]: writer to give printout of resulis.-E. W. Johonson, Glow-Tube Pragrommer Controls Neutron Spectrometer Experiments, Electronics, 34:19, p 65-67.

[^3]: and J. Czekojewski, Infrored Curtain System Defects and Counts Moving Objects, Electronics, 34:31, p 40-43.

[^4]:

[^5]: