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Preface

Wireless—or radio— has branched out and developed so tremen-
dously that very many books would be needed to describe it all in
detail. In ordinary conversation, ‘radio’ has come to mean sound
broadcasting, as distinct from ‘TV" which gives pictures as well as
sound, but of course the pictures come by radio just as much as the
sound. Besides broadcasting sound and vision, radio is used for
communication with and between ships, cars, aircraft, satellites and
spacecraft; for direction-finding and radar (radiolocation), photo-
graph and ‘facsimile” transmission, telegraph and telephone links,
meteorological probing of the upper atmosphere, astronomy, and
other things. Very similar techniques are applied on an increasing
scale to industrial control (‘automation’) and scientific and financial
computation. All of these are based on the same foundational
principles now generally comprised in the word electronics. The
purpose of this book is to start at the beginning and lay these
foundations, on which more detailed knowledge can then be built.

At the beginning. . . . If you had to tell somebody about a cricket
match you had seen, your description would depend very much
on whether or not your hearer was familiar with the jargon of the
game. If he wasn’t and you assumed he was, he would be puzzled.
If it was the other way about, he would be irritated. There is the
same dilemma with electronics. It takes much less time to explain
it if the reader is familiar with methods of expression, such as
symbols, that are taken for granted in technical discussion but
not in ordinary conversation. This book assumes hardly any special
knowledge. But if the use of graphs and symbols had to be com-
pletely excluded, or else accompanied everywhere by digressions
explaining them, it would be very boring for the initiated. So the
methods of technical expression are explained separately in a
preliminary Initiation. Those already initiated can of course skip
it; but it might be as well just to make sure, because this is a most
essential foundation.

Then there are the technical terms. They are explained one by
one as they occur and their first occurrence is distinguished by
printing in italics; but in case any are forgotten they can be looked
up at the end of the book; and so can the symbols and abbrevia-
tions. These references are there to be used whenever the meaning
of anything is not understood.

Most readers find purely abstract principles very dull; it is more
stimulating to have in mind some application of those principles.
As it would be confusing to have all the applications of electronics

15
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or even of radio in mind at once, broadcasting of sound is men-
tioned most often because it directly affects nearly everyone. But the
same principles apply more or less to all the other things. The
reader who is interested in the communicating of something other
than sound has only to substitute the appropriate word.

1975 M. G. SCROGGIE




Initiation into the Shorthand of Electronics

Glancing through this book, you can see numerous strange signs
and symbols. Most of the diagrams consist of little else. while the
occasional appearance of what looks like algebra may create a
suspicion that this is a Mathematical Work and therefore quite
beyond a beginner.

Yet these devices are not, as might be supposed, for the purpose
of making the book look more learned or difficult. Quite the
contrary. Experience has shown them to be the simplest, clearest
and most compact ways of conveying the sort of information
needed.

The three devices used here are Graphs, Circuit Diagrams, and
Algebraic Symbols. The following explanations are only for readers
who are not quite used to them.

0.1 Algebraic Symbols

If a car had travelled 90 miles in 3 hours, we would know that its
average speed was 30 miles per hour. How? The mental arithmetic
could be written down like this:

90 - 3 =130

_ That is all right if we are concerned only with that one particular
journey. If the same car, or another one, did 7 miles in a quarter
of an hour. the arithmetic would have to be:

T+}=7x4=28

To let anyone know the speed of any car on any journey, it would
be more than tedious to have to write out the figures for every
possible case. All we need say is, "To find the average speed in
miles per hour, divide the number of miles travelled by the number
of hours taken’.

What we actually would say would probably be briefer still:
“To get the average speed, divide the distance by the time’. Literally
that 1s nonsense, because the only things that can be arithmetically
divided or multiplied are numbers. But of course the words ‘the
number of” are (or ought to be!) understood. The other words—
‘miles per hour’, ‘miles’, *hours’—the units of measurement, as they
are called, may also perhaps be taken for granted in such an easy

17
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case. In others, missing them out might lead one badly astray.
Suppose the second journey had been specified in the alternative
form of 7 miles in 15 minutes. Dividing one by the other would not
give the right answer in miles per hour. It would, however, give
the right number of miles per minute.

In electronics, as in other branches of physics and engineering,
this matter of units is often less obvious, and always has to be kept
in mind.

Our instruction, even in its shorter form, could be abbreviated
by using mathematical symbols as we did with the numbers:

Average speed = Distance travelled — Time taken.

Here we have a concise statement of general usefulness; note
that it applies not only to cars but to aircraft, snails, bullets, space
capsules, and everything else that moves.

Yet even this form of expression becomes tedious when many
and complicated statements have to be presented. So for con-
venience we might write:

=T

NI o

S =
or alternatively S =
S =

or, to suit the printer, DIT

0.1. WHAT LETTER SYMBOLS REALLY MEAN

This is the stage at which some people take fright, or become
impatient. They say, ‘How can you divide D by T? Dividing one
letter by another doesn’t mean anything. You have just said your-
self that the only things that can be divided are numbers!” Quite so.
It would be absurd to try to divide D by T. Those letters are there
just to show what to do with the numbers when you know them.
D, for example, has been used to stand for the number of miles
travelled.

The only reason why the S, D and T were picked for this duty
is that they help to remind one of the things they stand for. Except
for that there 1s no reason why the same information should not
have been written as:

=
I
N '

or even o

I

=< I
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so long as we know what these svmbols were intended to mean.
As there are only 26 letters in our alphabet. and fewer still in the
Greek. we cannot allocate any one of them permanently to mean
‘average speed in miles per hour’. x. in particular. is notoriously
capable of meaning absolutely anything. Yet 1o write out the exact
meaning every time would defeat the whole purpose of using the
letters. How. then. does one know the meaning?

Well, some meanings have been fixed by international agreement.
There is one symbol that means the same thing every time. not only
in electronics but in all the sciences—the Greek letter 7 (read as
‘pie’). It is a particularly good example of abbreviation because
it stands for a number that would take eternity to write out in full
the ratio of the circumference of a circle 10 its diameter, which
begins: 3-1415926535 . . . .. (The first three or four decimal places
give enough accuracy for most purposes.)

Then there is @ much larger group of symbols which have been
given meanings that hold good throughout a limited field such as
electrical engineering, or one of its subdivisions such as electronics,
but are liable 10 mean something different . say. astronomy or
hvdraulics. These have to be learnt by anvone going in for the
subject seriously. A list of those that concern us appears on pages
504 6 of this book: but do not try to learn them there. It is much
easier to wait till they turn up one by one in the body ot the book.

Lastly. there are symbols that one uses for all the things that are
not in a standard list. Here we are [ree to choose our own: but
there are some rules it is wise to observe. Il is common sense to
steer clear as far as possible from symbols that already have estab-
lished meanings. The important thing is to state the meaning when
first using the symbol. It can be assumed to beur this meaning to
the end of the particular occasion for which it was attached: after
that. the label is taken off and the symbol thrown back into the
common stock. ready for use on another occasion. perhaps with a
ditferent label—provided it is not likely to be confused with the
first.

Sometimes a single symbol might have any of several different
meanings. and one his to decide which it bears in that particular
context. The Greek letter p (pronounced ‘mew’) is an example that
occurs in this book. When the subject is a radio valve. it can be
assumed 10 mean ‘amplification factor’. But if iron cores for trans-
formers are being discussed. p should be read as ‘permeability’.
And if it comes before an upright letter it is an abbreviation for
‘micro-". meaning ‘one mitlionth of ™.

0.1.2 SOME OTHER USES OF SYMBOLS

The last of these three meanings of 1 is a different kind of meaning
altogether from those we have been discussing. Until then we had
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been considering symbols as abbreviations for quantities of certain
specified things, such as speed in miles per hour. But there are
several other uses to which they are put.

Instead of looking on ‘S = D|T" as an instruction for calculating
the speed, we can regard it as a statement showing the relationship
to one another of the three quantities, speed, time and distance.
Such a statement, always employing the ‘equals’ sign, is called
by mathematicians an equation. From this point of view S is no
more important than 7 or D, and it is merely incidental that the
equation was written in such a form as to give instructions for
finding S rather than for finding either of the other two. We are
entitled to apply the usual rules of arithmetic in order to put the
statement into whatever form may be most convenient when we
come to substitute the numbers for which the letters stand.

For example, we might want to be able to calculate the time
taken on a journey, knowing the distance and average speed. We
can divide or multiply both ‘sides’ of an equation by any number
(known, or temporarily represented by a letter) without upsetting
their equality. If we multiply both sides.of S = D/T by T we get
ST = D (ST being the recognized abbreviation for § x 7). Divid-
ing both sides of this new form of the equation by S we get T = D/S.
Our equation is now in the form of an instruction to divide the
number of miles by the speed in miles per hour (e.g., 120 miles at
24 m.p.h. takes 5 hours).

When you see books on electronics (or any other technical sub-
ject) with pages covered almost entirely with mathematical symbols,
you can take it that instead of explaining in words how their con-
clusions are reached, the authors are doing it more compactly in
symbols. It is because such pages are concentrated essence, rather
than that the meanings of the symbols themselves are hard to learn,
that makes them difficult. The procedure is to express the known
or assumed facts in the form of equations, and then to combine or
manipulate these equations according to the established rules in
order to draw some useful or interesting conclusions from those
facts.

This book, being an elementary one, explains things in words,
and only uses symbols for expressing the important facts or con-
clusions in concise form, or for rearranging them.

0.1.3 ABBREVIATIONS

Another use for symbols is for abbreviation pure and simple. We
have already used one without explanation—m.p.h.—because it
is well known that this means ‘miles per hour’. The mile-per-hour
is a unit of speed. ‘£’ is a familiar abbreviation for the pound sterling.
The unit of electrical pressure is the volt, denoted by the abbreviation
V. Sometimes it is necessary to specify very small voltages, such as
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5 millionths of a volt. That could be written 0-000005 V. But a more
convenient abbreviation is 5uV. read as ‘5 microvolts’. The list on
pages 504 6 gives the abbreviations commonly used in electronics.

Still another use for letters is to point out details on a diagram.
R stands for electrical resistance, but one has to guess whether it is
intended to mean resistance in genera’. as a property of conductors,
or the numerical value of resistance in an equation, or the particular
resistance marked R in a diagram. Often it mav combine these
meanings, being understood to mean ‘the numerical value of the
resistance marked R in Fig. So-and-so’.

Attaching the right meanings to symbols probably sounds dread-
fully difficult and confusing. So do the rules of a new game. The
only way to defeat the difficulties is to start playing the game.

But before starting to read the book, here are a few more hints
about symbols.

0.1.4 HOW NUMBERS ARE USED

One way of making the limited stock of letters go farther is to
use different kinds of type. It has become a standard practice to
distinguish symbols for physical quantities by italic (sloping)
letters. leaving the roman (upright) ones for abbreviations; for
example, *V’ denotes an unspecified amount of clectrical potential
difference. reckoned in volts, for which the standard abbreviation
is “V’. “R’ is the resistance of a resistor R. And so on.

Another way of making letters go farther is to number them.
To prevent the numbers from being treated as separate things they
are written small near the foot of the letter (‘subscript’). For ex-
ample, if we want to refer to several different resistances we can
mark them R,, R,. R, etc. Sometimes a modification of a thing
denoted by one symbol is distinguished by a tick or dash; 4 might
stand for the amplification of a receiver when used normally, and 4’
when modified in some way.

But on no account must numbers be used ‘superscript® for this
purpose, because that already has a standard meaning. 52 (read as
‘S squared’) means 5 x 5; 5% (‘5 cubed’) means 5 x 5 x 5: 5¢
(‘5 to the 4th power’) means 5 x 5 X 5 X 5: xZ means the number
represented by v muliiplied by the same number.

X 2 seems nonsensical according to the rule just illustrated. It
has been agreed, however, to make it mean 1/x2? (called the reciprocal
of x squared). The point of this appears most clearly when these
superscripts, called indices (singular: index). are applied to the
number 10. 10 = 10000, 10° = 1000, 10> = 100, 10' = 10, 10° = 1.
10" = 0-1, 10-2 = 0-Q1, and so on. The rule is that the power of 10
indicates the number of places the decimal point has to be away
from 1 with a positive index it is on the right: negative. on the left.
Advantage is taken of this to abbreviate very large or very small
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numbers. It is easier to see that 0-0000000026 is 2-6 thousand-
millionths if it is written 2-6 x 10-° Likewise 2:6 x 10'? is briefer
and clearer than 2600000000000.

X* also needs explanation. It is read as ‘the square root of x’,
and is often denoted by 4/ x. It signifies the number which, when
multiplied by the same number, gives x. In symbols, (1/x)? = x.

Note that 10 x 10° = 102, and that 10!2 x 10~3 = 10'%/10°
= 10°. In short, muitiply by adding indices, and divide by subtracting
them. This idea is very important in connection with decibels (Sec.
19.2). .

0.2 Graphs

Most of us when we were in the growing stage used to stand bolt
upright against the edge of a door to have our height marked up.
The succession of marks did not convey very much when reviewed
afterwards unless the dates were marked too. Even then one had
to look closely to read the dates, and the progress of growth was
difficult to visualize. Nor would it have been a great help to have
presented the information in the form of a table with two columns—
Height and Date.

But, disregarding certain technical difficulties, imagine that the
growing boy had been attached to a conveyor belt which moved
him horizontally along a wall at a steady rate of, say, one foot per
year, and that a pencil fixed to the top of his head had been tracing
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Fig. 0.1—Simple (but inconvenient) system for automatic graph plotting of human
growth. The equipment consists of a conveyor belt moving at the rate of one foot per
year, a pencil, and a white wall

a line on the wall (Fig. 0.1). If he had not been growing at all, this
line would, of course, be straight and horizontal. If he had been
growing at a uniform rate, it would be straight but sloping upwards.
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A variable rate of growth would be shown by a line of varying
slope.

In this way the progress over a period of years could be visualized
by a glance at the wall.

0.2.1 SCALES

To make the information more definite, a mark could have been
made along a horizontal line each New Year's Day and the number
of the year written against it. In more technical terms this would be
a time scale. The advantage of making the belt move at uniform
speed is that times intermediate between those actually marked can
be identified by measuring off a proportionate distunce. 1If one
foot represented one year, the height at, say, the end of May in
any year could be found by noting the height of the pencil line
5 inches beyond the mark indicating the start of that year.

Similarly a scale of height could be marked anywhere in a vertical
direction. It happens in this case that height would be represented
by an equal height. But if the graph were to be reproduced in a
book, although heighi would still represent height it would have to
do so on a reduced scale, say half an inch to a foot.

To guide the eye from any point on the information line to the
two scales, it is usual to plot graphs on paper printed with horizontal
and vertical lines so close together that a pair of them is sure to
come near enough to the selected point for any little less or more to
be judged. The position of the scales is not a vital matter, but
unless there is a reason for doing otherwise they are marked along
the lines where the other quantity is zero. For instance, the time
scale would be placed where height is nil; i.e., along the foot of the
wall. If, however, the height scale were erected at the start of the
year | A.D. there would be nearly half a mile of blank wall between
it and the pencil line. To avoid such inconvenience we can use a
‘false zero’, making the scale start at or slightly below the first
figure in which we are interested. A sensible way of doing it in this
example would be to reckon from the time the boy was born, as
in Fig. 0.1. The point that is zero on both scales is called the origin.

False zeros are sometimes used in a slightly shady manner to
give a wrong impression. Fig. 0.2¢ shows the sort of graph that
might appear in a company-promoting prospectus. The word
‘Profit’ would, of course. be in a big type, and the figures indistinctly,
so that the curve would seem to indicate a sensational growth in
profits. Plotted without a false zero, as in Fig. 0.2b, it looks much
less impressive. Provided that it is clearly admitted, however, a
false zero is useful for enabling the significant part of the scale to be
expanded and so read more precisely.

Fig. 0.2, by the way, is not a true graph of the sort a mathe-
matician would have anything to do with. Profits are declared



24

annually in lumps, and the lines joining the dots that mark each
year's result have no meaning whatever but are there merely to guide
the eye from one to another. In a true graph a continuous variation
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Fig. 0.2—(a) Typical financial graph arranged to make the maximum impression
consistent with strict truthfulness. (b) The same information presented in a slightly
different manner

is shown, and the dots are so close together as to form a line. This
line is technically a curve, whether it is what is commonly understood
as a curve or 1s as straight as the proverbial bee-line.

0.2.2 WHAT A ‘CURVE’ SIGNIFIES

Every point on the curve in Fig. 0.1 represents the height of the
boy at a certain definite time (or, put in another way, the time at
which the boy reached a certain height). Since it is possible to
distinguish a great number of points along even a small graph, and
each point is equivalent to saying ‘When the time was T years, the
height was H feet’, a graph is not only a very clear way of presenting
information, but a very economical one.

Here we have our old friend T again, meaning time, but now in
years instead of hours. It is being used to stand for the number of
years, as measured along the time scale, represented by any point
on the curve. Since no particular point is specified, we cannot
tell how many feet the corresponding height may be, so have to
denote it by H. But directly T is specified by a definite number,
the number or value of H can be found from the curve. And vice
versa,

In its earlier role (Sec. 0.1) 7 took part in an equation with two
other quantities, denoted by S and D. The equation expressed
the relationship between these three quantities. We now see that
a graph is a method of showing the relationship between two
quantities. It is particularly useful for quantities whose relationship
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is too complicated or irregular to express as an equation—the
height and age of a boy, for instance.

0.2.3 THREE-DIMENSIONAL GRAPHS

Can a graph deal with three quantities? There are three ways in
which it can, none of them entirely satisfactory.

One method is to make a three-dimensional graph by drawing a
third scale at right angles to the other two. Looking at the corner
of a room, one can imagine one scale along the foot of one wall,
another at the foot of the other wall, and the third upwards along
the intersection between the two walls. The “curve’ would take the
form of a surface in the space inside—and generally also outside—
the room. There are obvious difficulties in this.

Another method is to draw a number of cross-sections of the
three-dimensional graph on a two-dimensional graph. In other
words, the three variable quantities are reduced to two by assuming
some numerical value for the third. We can then draw a curve
showing the relationship between the two. A different numerical
value is then assumed for the third. giving (in general) a different
graph. And so on.

Let us take again as an example D = ST. If any numerical value
is assigned to the speed, S, we can easily plot a graph connecting
D and 7, as in Fig. 0.3a. When the speed is zero, the distance
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Fig. 0.3a—One way of graphing the relationship between speed, time and distance
of ajourney. Graphs of speed against time for any given distance can be derived from it (b)

remains zero for all time, so the ‘S = 0’ curve is a straight line
coinciding with the time scale. When S is fixed at | mile per hour,
D and T are always numerically equal, giving a line (‘S = 1’) sloping
up with a 1-in-1 gradient (measured by the T and D scales). The
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‘S = 2’ line slopes twice as steeply; the ‘S = 3’ line three times as
steeply. etc.

If a fair number of S curves are available, it is possible to replot
the graph to show, say, S against T for fixed values of D. A horizontal
line drawn from any selected value on the D scale in Fig. 0.3a
(such as D = 10) cuts each S curve at one point, from which the T
corresponding to that S can be read off and plotted, as in Fig. 0.35.
Each point plotted in a corresponds to an S curve in b, and when
joined up they give a new curve (really curved this time!). This
process has been demonstrated for only one value of D, but of
course it could be repeated to show the time/speed relationship for
other distances. Fig. 3b gives numerical expression to the well-
known fact that the greater the speed the shorter is the time to
travel a specified distance.

Graphs of this kind are important in many branches of electronics
for example, with transistors, whose relationships cannot be
accurately expressed as equations.

Lastly, two (or more) variables can be grouped so as to reduce the
total to two. In our D = ST. D can be plotted against ST, which in
mathematical language is called the product of $'and 7. The result-
ing very simple graph is shown as Fig. 0.4. A point on the ST scale,
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say 60, shows the distance travelled in 2 hours at 30 miles per hour,
3 hours at 20 miles per hour, etc. No one would bother to draw
a graph for such a simple equation, but this is quite a useful technique
for more complicated ones. Fig. 20.7 is an example.

0.2.4 SIGNIFICANCE OF SLOPE

Even from simple two-dimensional graphs like Fig. 0.1 it may be
possible to extract information that is worth replotting separately.
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It is clear that a third quantity is involved—rate of growth. This is
not an independent variable; it is determined by the other two.
For it is nothing else than rate-of-change-of-height. As we saw at
the start, when the curve slopes upward steeply. growth is rapid;
when the curve flattens out. it means that growth has ceased; and
if the curve started to slope downwards—a negative gradient—it
would indicate negative growth. So it would be possiole to plot
growth in, say, inches per year. against age in vears. This idea of
rate-of-change, indicated on a graph by slope. is the essence of no
less a subject than the differential calculus, which is much easter than
it is often made out to be. If you are anxious to get a clearer view
of any electrical subject it would be well worth while to read at
least the first few chapters of an elementary book on the differential
calculus, such as S. P. Thompson's classic ‘Calculus Made Easy’
(Macmillan).

0.2.5 NON-UNIFORM SCALES

Finally. although uniform scales for graphs are much the easiest
to read. there may quite often be reasons which justify some other
sort of scale. The most important, and the only one we need con-
sider here, is the logarithmic scale. In this. the numbers are so spaced
out that a given distance measured anywhere along the scale repre-
sents, not a certain addition, but a certain ratio or multiplication.
Musicians use such a scale (whether they know it or not); their
intervals correspond to ratios. For example, raising a musical
note by an octave means doubling the frequency of vibration. no
matter whereabouts on the scale it occurs. Users of slide-rules
are familiar with the same sort of scale. Readers who are neither
musicians nor slide-rule pushers can see the difference by looking
at Fig. 0.5. where a is an ordinary uniform (or /inear) scale and b is
logarithmic. If we start with @ and note any two scale rcadings
14 inches apart we find that they always differ by 10. Applying
the same test to b we find that the difference may be large or small,
depending on whether the inch and a half is near the top or bottom.
But the larger reading is always 10 times the smaller.

One advantage of this is that it enables very large and very small
readings to be shown clearly on the same graph. Another is that
with some quantities (such as musical pitch) the ratio is more
significant than the numerical interval. Fig. 20.11 is an example of
logarithmic scales.

0.3 Circuit Diagrams

It is easier to identify the politicians depicted in our daily papers
in the cartoons than in the news photos. There is a sense in which
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the distorted versions of those individuals presented by the cari-
caturist are more like them than they are themselves. The dis-
tinguishing features are picked out and reduced to conventional
forms that can be recognized at a glance.

A photograph of a complicated machine shows just a maze of
wheels and levers, from which even an experienced engineer might
derive little information. But a set of blue-prints. having little
relation to the original in appearance, would enable him, if necessary,
10 reproduce such a machine.

There should be no further need to argue why circuit diagrams
are more useful than pictures of radio sets or other electronic
equipment.

In a circuit diagram each component or item that has a significant
electrical effect is represented by a conventional symbol, and the
wires connecting them up are shown as lines. Fortunately. except
for a few minor differences or variations, these symbols are recogniz-
ably the same all over the world. Most of them indicate their
functions so clearly that one could guess what they mean. How-
ever, they are introduced as required in this book.

0.3.1 ALTERNATIVE METHODS

One convention about which there are differences of opinion is the
way in which crossing wires should be distinguished from connected
wires. Fig. 0.6 shows the commonest method. Crossing wires are
assumed to be unconnected unless marked by a blob, as at h. There
is obviously a risk that either the blob may be omitted where needed
or may form unintentionally (especially when the lines are drawn
in ink) where not wanted. Even when correctly drawn the difference
1s not very conspicious. Method b ought never to be used, especially
along with «. Connecting crossings should always be staggered, as
at ¢. To distinguish unconnected crossings more clearly they are
sometimes drawn as at d To make quite sure, the author uses
methods e and ¢ respectively to denote unconnected and connected
crossings.

Another variation is that some people omit to draw a ring round
the symbols that represent the ‘innards’ of a valve or transistor.
In this book they are drawn, because they make the transistors or
valves, which are usually key components, stand out distinctly.

0.3.2 IMPORTANCE OF LAYOUT

There is a good deal more in the drawing of circuit diagrams than
just showing all the right symbols and connections. If the letters
composing a message were written at random all over the paper.
nobody would bother to read it even if the correct sequence were
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shown by a maze of connecting lines—unless it was a clue to
valuable buried treasure. And a circuit diagram, though perfectly
accurate, is difficult to ‘read’ if it is laid out in an unfamiliar manner.
The layout has.by now become largely standardized, though again
there are some variations. It is too soon in the book to deal with
layout in detail, but here are some general principles for later
reference.

The first is that the diagram should be arranged for reading from
left to right. In a radio receiver, for example, the aerial should be on
the left and the final item, the loudspeaker, on the right.

Next, there is generally an ‘earthed’ or ‘low-potential’ con-
nection. This should be drawn as a thicker line, usually straight
across the diagram. The most positive potential connections should
be at the top and the most negative at the bottom. This helps one
to visualise the potential distribution and the direction of current
flow (normally downward).

Long runs of closely parallel wires are difficult to follow and
should be avoided.

As with written symbols, facility in drawing and reading circuit
diagrams soon comes with practice.

0.3.3 WHERE CIRCUIT DIAGRAMS CAN MISLEAD

One warning is needed in connection with circuit diagrams, especially
when going on to more advanced work. They are an indispensably
convenient aid to thought, but it is possible to allow one’s thoughts
to be moulded too rigidly by them. The diagram takes for granted
that all electrical properties are available in separate lumps, like
chemicals in bottles, and that one can make up a circuit like a pre-
scription. Instead of which they are more like the smells from the
said chemicals when the stoppers have been left open—each one
strongest near its own bottle, but pervading the surrounding space
and mixing inextricably with the others. This is particularly true at
very high frequencies, so that the diagram must not always be taken
as showing the whole of the picture. Experience tells one how far a
circuit diagram can be trusted.



CHAPTER 1

General View of a System

Most of the chapters of this book are about subjects the usefulness
of which, taken by themselves, might not be at all obvious. Pro-
verbially, one might not be able to see the wood for the trees. So
before examining these things in detail we may find it helpful to
take a general view of a complete electronic system. The choice is a
broadcasting and receiving system, because it 1s so familiar in every-
day life and it happens to embody most of the principles of elec-
tronics.

1.1 What Wireless Does

People who remark on the wonders of wireless seldom seem to
consider the fact that all normal persons can broadcast speech and
song merely by using their voices. We can instantly communicate
our thoughts to others, without wires or any other visible lines of
communication and without even any sending or receiving apparatus
outside of ourselves. If anything is wonderful, that is. Wireless, or
radio, is merely a device for increasing the range.

There is a fable about a dispute among the birds as to which
could fly the highest. The claims of the wren were derided until,
when the great competition took place and the eagle was proudly
outflying the rest, the wren took off from his back and established
a new altitude record.

It has been known for centuries that communication over vast
distances of space is possible—it happens every time we look at the
stars and detect light coming from them. We know, then, that a
long-range medium of communication exists. Radio simply uses
this medium for the carrying of sound and vision.

Simply?

Well, there actually is quite a lot to learn about it. But the same
basic principles can be applied to many other electronic systems.

1.2 Nature of Sound Waves

Radio, as we have just observed, is essentially a means of extending
natural communication beyond its limits of range. It plays the part
of the swift eagle in carrying the wren of human speech to remote
distances. So first of all let us see what is required for ‘natural’
communication.

1
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There are three essential parts: the speaker, who generates sound;
the hearer who receives it; and the medium, which connects one
with the other.

The last of these is the key to the other two. By suspending a source
of sound in a container and extracting the air (Fig. 1.1) one can

ELECTRIC-

BELL Fig. 1.1—Experiment to de-

monstrate that sound waves
canot  cross empty  spdce.
As the air is removed from
the glass vessel, the sound of
the bel! fudes awvay

demonstrate that sound cannot travel without air (or some other
physical substance) all the way between sender and receiver.

Anyone who has watched a cricket match will recall that the
smack of bat against ball is hcard a moment after they are seen to
meet; the sound of the impact has taken an appreciable time to
travel from the pitch to the viewpoint. If the pitch were 1100 feet
away, the time delay would be one second. The same speed of
travel is found to hold good over longer or shorter distances.
Knowing the damage that air does when it travels at even one-tenth
of that speed (hurricane force) we conclude that sound does not
consist in the air itself leaping out in all directions.

When a stone is thrown into a pond it produces ripples, but the
ripples do not consist of the water which was directly struck by the
stone travelling outwards until it reaches the banks. If the ripples
pass a cork floating on the surface they make it bob up and down;
they do not carry it along with them.

What does travel, visibly across the surface of the pond, and
invisibly through the air, is a wave, or more often a succession of
waves. While ripples or waves on the surface of water do have much
in common with waves in general. they are not of quite the same
type as sound waves through air or any other medium (including
water). So let us forget about the ripples now they have served
their purpose, and consider a number of boys standing in a queue.
If the boy at the rear is given a sharp push he will bump into the
boy in front of him, and he into the next boy: and so the push
may be passed on right to the front. The push has travelled along
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the line although the boys—representing the medium of communica-
tion—have all been standing still except for a small temporary
displacement.

In a similar manner the cricket ball gives the bat a sudden push;
the bat pushes the air next to it; that air gives the air around it a
push : and so a wave of compression travels outwards in all directions
like an expanding bubble. Yet all that any particular bit of air
does is to move a small fraction of an inch away from the cause of
the disturbance and back again. As the original impulse is spread
over an ever-expanding wave-front the extent of this tiny air
movement becomes less and less and the sound fainter and fainter.

1.3 Characteristics of Sound Waves

The generation of sound is only incidental to the functioning of
cricket bats, but the human vocal organs make up a generator
capable of emitting a great variety of sounds at will. What surprises
most people, when the nature of sound waves is explained to them,
is how such a variety of sound can be communicated by anything so
simple as to-and-fro tremors in the air. Is it really possible that
the subtle inflexions of the voice by which an individual can be
identified. and all the endless variety of music, can be represented
by nothing more than that?

Examining the matter more closely we find that this infinite
variety of sounds is due to four basic characteristics, which can
all be illustrated on a piano. They are:

(a) AMPLITUDE. A single key can be struck either gently or
hard. giving a soft or loud sound. The harder it is struck, the more
violently the piano string vibrates and the greater the tremor
in the air, or. to use technical terms, the greater the amplitude of
the sound wave. Difference in amplitude is shown graphically in
Fig. 1.2a4. (Note that to-and-fro displacement of the air is repre-
sented here by up-and-down displacement of the curve, because
horizontal displacement is usually used for time.)

(b) FREQUENCY. Now strike a key nearer the right-hand end of
the piano. The resulting sound is distinguishable from the previous
one by its higher pitch. The piano string is tighter and lighter,
so vibrates more rapidly and generates a greater number of sound
waves per second. In other words, the waves have a higher frequency.
which is represented in Fig. 1.2h.

(c) wAVEFORM. If now several keys are struck simultaneously
to give a chord, they blend into one sound which is richer than any
of the single notes. The first three waves in Fig. 1.2¢ represent
three such notes singly: when the displacements due to these
separate notes are added together they give the more complicated
waveform shown on the last line. Actually any one piano note
itself has a complex waveform, which enables it to be distinguished
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from notes of the same pitch played by other instruments.

(d) ENVELOPE. A fourth difference in sound character can be
illustrated by first ‘pecking’ at a key, getting brief (staccato) notes,
and then pressing it firmly down and keeping it there, producing a
sustained (legato) note. This can be shown as in Fig. 1.24. The
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Fig. 1.2—Graphical representation of the four basic ways in which sound (or any other)
waves can differ. (a) amplitude; (b) frequency; (¢) waveform; and (d) envelope

dotted lines, called envelopes, drawn around the wave peaks, have
different shapes. Another example of this type of difference is the
contrast between the flicker of conversational sound and the
steadiness of a long organ note.

Every voice or musical instrument, and in fact everything that
can be heard, is something that moves; its movements cause the
air to vibrate and radiate waves; and all the possible differences in
the sounds are due to combinations of the four basic differences.
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Mathematically, Envelope is covered by Waveform, so may not
always be listed separately.

The details of human and other sound generators are outside
the scope of this book, but the sound waves themselves are the
things that have to be carried by long-range communication systems
such as radio. Even if something other than sound is to be carried
(pictures, for instance) the study of sound waves is not wasted,
because the basic characteristics illustrated in Fig. 1.2 apply to all
waves—including radio waves.

The first (amplitude) is simple and easy to understand. The third
and fourth (waveform and envelope) lead us into complications
that are too involved for this preliminary survey, and will have to
be gone into later. The second (frequency) is very important
indeed and not too involved to take at this stage.

1.4 Frequency

Let us consider the matter as exemplified by the vibrating string
or wire shown in Fig. 1.3. The upper and lower limits of its vibra-
tion are indicated (rather exaggeratedly, perhaps) by the dotted lines.
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Fig. 1.3—A simple sound gencrator, consisting of a string held taut by a weight. When
plucked it vibrates as indicated by the dotied lines

If a point on the string, such as A, were arranged to record its
movements on a strip of paper moving rapidly from left to right,
it would trace out a wavy line which would be its displacement/
time graph, like those in Fig. 1.2. Each complete up-and-down-

! N
Fig. 1.4—The extent of one cvcle in a o 5 g (3 2
series of waves is shown in heavy line.
The time occupied by its generation, or ! TIME, IN THOUSANDTHS
by its pussing a given point, is marked T OF A SECOND

and-back-again movement is called a cycle. In Fig. 1.4, where
several cycles are shown, one has been picked out in heavy line.
The time it takes. marked T, is known as its period.

We have already noted that the rate at which the vibrations take
place is called the frequency, and determines the pitch of the sound
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produced. Its symbol is f, and it used to be reckoned in cycles per
second (abbreviated c/s) but the cycle per second is now called the
hertz (abbr. Hz) in honour of Heinrich Hertz for a reason to be
given very soon. Middle C in music has a frequency of 261 Hz.
The full range* of a piano is 27 to 3516 Hz. The frequencies of
audible sounds—about 20-20000 Hz for young people with normal
hearing—are distinguished as audio frequencies.

Y ou may have noticed in passing that T and f are closely related.
If the period of each cycle is one-hundredth of a second, then the
frequency is obviously one hundred cycles per second. Putting it in
general terms, f = 1/T. So if the time scale of a waveform graph is
given, it is quite easy to work out the frequency. In Fig. 1.4 the time
scale shows that T is 0-0005 sec, so the frequency must be 2000 Hz.

1.5 Wavelength

Next, consider the air waves set up by the vibrating string. Fig. 1.5
shows an end view, with point A vibrating up and down. It pushes
the air alternately up and down, and these displacements travel
outwards from A. Places where the air has been temporarily moved
a little farther from A than usual are indicated by full lines, and
places where it is nearer by dotted lines; these lines should be
imagined as expanding outwards at a speed of about 1100 feet per
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Fig. 1.5—End view of the vibrating Ae

string at A in Fig. 1.3. As it moves up

and down over the distance AA it sends

out air waves which carry some of its Fig. 1.6—Twenty successive waves from
energy of vibration to the listener's ear the string shown in Figs. 1.3 and 1.5

second. So if, for example, the string is vibrating at a frequency
of 20 Hz, at one second from the start the first air wave will be
1100 feet away, and there will be 20 complete waves spread over that

* In wireless the word ‘range’ means distance that can be covered, so to avoid
confusion a range of frequencies is more often referred to as a band.
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distance (Fig. 1.6). The length of each wave is therefore one-
twentieth of 1100 feet, which is 55 feet.

Now it is a fact that sound waves of practically all frequencies
and amplitudes travel through the air at the same speed, so the
higher the frequency the shorter the wavelength. This relationship
can be expressed by the equation

A=
S
where the Greek letter A (pronounced ‘lambda’) stands for wave-
length, v for the velocity of the waves, and f for the frequency. If v
is given in feet per second and f'in hertz, then A will be in feet. The
letter v has been put here instead of 1 100, because the exact velocity
of sound waves in air depends on its temperature; moreover the
equation applies to waves in water, wood, rock, or any other
substance, if the v appropriate to the substance is filled in.

It should be noted that it is the frequency of the wave which
affects the pitch, and that the wavelength is a secondary matter de-
pending on the speed of the wave. That this is so can be shown
by sending a sound of the same frequency through water. in which
the velocity is 4700 feet per second; the wavelength is therefore
more than four times as great as in air, but the pitch, as judged by
the ear, remains the same as that of the shorter air wave

1.6 The Sender

The device shown in Fig. 1.3 is a very simple sound transmitter
or sender. Its function is to generate sound waves by vibrating
and stirring up the surrounding air. In some instruments, such as
violins, the stirring-up part of the business is made more effective
by attaching the vibrating parts to surfaces which increase the
amount of air disturbed.

The pitch of the note can be controlled in two ways. One is to
vary the weight of the string, which is conveniently done by varying
the length that is free to vibrate, as a violinist does with his fingers.
The other is to vary its tightness, as a violinist does when tuning,
or can be done in Fig. 1.3 by altering the weight W. To lower the
pitch, the string is made heavier or slacker. As this is not a book
on sound there is no need to go into this further, but there will be a
lot to say (especially in Chapter 8) on the electrical equivalents of
these two things, which control the frequency of radio waves.

1.7 The Receiver

What happens at the receiving end? Reviving our memory of the
stone in the pond, we recall that the ripples made corks and other
small flotsam bob up and down. Similarly, air waves when they



strike an object try to make it vibrate with the same characteristics
as their own. That is how we can hear sounds through a door or
partition; the door is made to vibrate, and its vibrations set up a
new lot of air waves on our side of it. When they reach our ears
they strike the ear-drums; these vibrate and stimulate a very
remarkable piece of receiving mechanism, which sorts out the
sounds and conveys its findings via a multiple nerve to the brain.

1.8 Electrical Communication by Wire

To extend the very limited range of sound-wave communication it
was necessary to find a carrier. Nothing served this purpose very
well until the discovery of electricity. At first electricity could only
be controlled rather crudely, by switching the current on and off;
so spoken messages had to be translated into a code of signals
before they could be sent, and then translated back into words at
the receiving end. A simple electric telegraph consisted of a battery
and a switch or ‘key’ at the sending end, some device for detecting
the current at the receiving end, and a wire between to carry the
current.

Most of the current detectors made use of the discovery that when
some of the electric wire was coiled round a piece of iron the iron
became a magnet so long as the current flowed, and would attract
other pieces of iron placed near it. If the neighbouring iron was in
the form of a flexible diaphragm held close to the ear, its movements
towards and away from the iron-cored coil when current was
switched on and off caused audible clicks even when the current was
very weak.

To transmit speech and music, however, it was necessary to make
the diaphragm vibrate in the same complicated way as the sound
waves at the sending end. Since the amount of attraction varied
with the strength of current, this could be done if the current could
be made to vary in the same way as the distant sound waves. In the
end this problem was solved by quite a simple device—the carbon
microphone, which, with only details improved, is still the type used
in telephones.

In its simplest form, then, a telephone consists of the equlpment
shown in Fig. 1.7. Although this 1nvention extended the range of
speech from yards to miles, every mile of line weakened the electric
currents and set a limit to clear communication. So it was not
until the invention of the electronic valve, making it possible to
amplify the complicated current variations, that telephoning could
be done over hundreds and even thousands of miles.

1.9 Electric Waves

Wire or line telephones and telegraphs were and still are a tre-
mendous aid to communication. But something else was needed
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for speaking to ships and aeroplanes. And even where the inter-
vening wire 1§ practicable it is sometimes very inconvenient.

At this stage we can profitably thiuk again of the process of un-
aided voice communication. When you talk to another person you
do not have to transfer the vibrations of your vocal organs directly

VIBRATING AIR
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RS DIAPHRAGM  waves
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Fig. 1.7 An early form of one-way eleciric telcphone, showing how the churucteristics
of the original air waves are duplicated in eleciric currents, which travel farther and
quicker, and whiclt are then transtormed back inio air waves 10 make them perceptible
by the listener

to the ear-drum of your hearer by means of a rod or other ‘line’.
What you do is to stir up waves in the air, and these spread out in
all directions, shaking anything they strike, including ear-drums.

‘Is it possible’, experimenters might have asked, ‘to stir up
electric waves by any means, and if so would they travel over greater
distances than sound waves? Gradually scientists supplied the
answer. Clerk Maxwell showed mathematically that electric waves
were theoretically possible, and indeed that in all probability light,
which could easily be detected after travelling vast distances, was
an example of such waves. But they were waves of unimaginably
high frequency. about 5 x 10'* Hz. A few years later the German
experimenter Hertz actually produced and detected electric waves
of much lower (but still very high) frequency, and found that they
shared with sound the useful ability to pass through things that are
opaque to light.

Unlike sound, however, they are not carried by the air. They
travel equally well (if anything, better) where there is no air or any
other material substance present. So the broadcasting expression
‘on the air’ is misleading. If the experiment of Fig. 1.1 is repeated
with a source of electric waves instead of sound waves, extracting
the air makes no appreciable difference. We know, of course, that
light and heat waves travel to us from the sun across 93 000000 miles
of empty space. What does carry them is a debatable question. It
was named ether (or aether. to avoid confusion with the anaesthetic
liquid ether), but experiments which ought to have given results if
there had been any such thing just didn’t. So scientists deny its
existence. But it is very hard for lesser minds to visualize how electric
waves, whose behaviour corresponds in so many respects with waves
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through a material medium, can be propagated by nothing.

There is no doubt about their speed, however. Light waves travel
through space at about 186282 miles, or nearly 300000 (more
accurately, 299 792) kilometres, per second. Other sorts of electric
waves, such as X-rays, ultra-violet and radio waves, travel at the
same speed, and differ only in frequency. Their length is generally
measured in metres; so filling in the appropriate value of v in the
formula in Sec. 1.5 we have, very nearly,

_ 300000000
!

If, for example, the frequency is 1000000 Hz, the wavelength is
300 metres.

A

1.10 Why High Frequencies are Necessary

Gradually it was discovered that electric waves of these frequencies,
called radio waves, are capable of travelling almost any distance,
even round the curvature of the earth to the antipodes.

Their enormous speed was another qualification for the duty of
carrying messages. the longest journey in the world takes less than
a tenth of a second. But attempts to stir up radio waves of the same
frequencies as sound waves were not very successful. To see why
this is so we may find it helpful to consider again how sound waves
are stirred up.

If you try to radiate air waves by waving your hand you will
fail, because the highest frequency you can manage is only a few
hertz, and at that slow rate the air has time to rush round from side to
side of your hand instead of piling up and giving the surrounding
air a push. If you could wave your hand at the speed of an insect’s
(or even a humming bird’s) wing, then the air would have insufficient
time to equalize the pressure and would be alternately compressed
and rarefied on each side of your hand and so would generate sound
waves. Alternatively, if your hand were as big as the side of a house,
it could stir up air waves even if waved only a few times per second,
betause the air would have too far to go from one side to the other
every time. The frequency of these air waves would be too low to be
heard, it is true; but they could be detected by the rattling of win-
dows and doors all over the neighbourhood.

The same principle applies to radio waves. But because of the
vastly greater speed with which they can rush round, it is necessary
for the aerial—which corresponds to the waving hand—to be
correspondingly vaster. To radiate radio waves at the lower audible
frequencies the aerial would have to be miles high, so one might
just as weli (and more conveniently) use it on the ground level as a
telephone line.
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Even if there had not been this difficulty, another would have
arisen directly large numbers of senders had started to radiate waves
in the audible frequency band. There would have been no way of
picking out the one wanted: it would have been like a babel of
giants.

That might have looked like the end of any prospects of radio
telephony, but human ingenuity was not to be beaten. The solution
arose by way of the simpler problem of radio telegraphy. so let us
follow that way.

1.11 Radio Telegraphy

Hertz discovered how to stir up radio waves; we will not bother
about exactly how, because his method is obsolete. Their frequency
was what we would now call ultra-high; in the region of khundreds
of millions of hertz, so their length was only a few centimetres.
Such frequencies are used nowadays for radar. He also found a
method of detecting them over distances of a few yards. With the
more powerful senders and more sensitive receivers developed later,
ranges rapidly increased. until in 1901 Marconi actually signalled
across the Atlantic. The various sorts of detectors that were invented
from time to time worked by causing an electric current to flow in
a local receiving circuit when radio waves impinged on the receiving
aerial. Human senses are unable to respond to these *wireless’ waves
directly—their frequency is far too high for the ear and far too low
for the eye—but the electric currents resulting from their detection
can be used to produce audible or visible effects.

At this stage we have the radio counterpart of the simple tele-
graph. Its diagram, Fig. 1.8, more or less explains itself. The

AERIAL AERIAL
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CF RF WAVES) OF RF WAVES)
SENDER
N ’ RECEIVER
KEY GENERATOR OF s
24, |_| RADIO-FREQUENCY =
t ©  waves DETECTOR
a4 o4 -0 -
1 L f
= EARTH EARTH= d
ON AND OFF

ELECTR'C CURRENTS

Fig. 1.8 Elementary radio tetegraph. Currents flow in the receiving headphones and
cause sound whenever the sender is radiating waves

sending key turns on the sender, which generates a rapid succession
of radio waves, radiated by an aerial. When these reach the receiver
they operate the detector and cause an electric current to flow,
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which can make a noise in a telephone earpiece. By working the
sending key according to the Morse code, messages can be trans-
mitted. That is roughly the basis of radio telegraphs to this day,
though some installations have been elaborated almost out of
recognition, and print the messages on paper as fast as the most
expert typist.

1.12 Tuning

One important point to note is that the current coming from the
detector does not depend on the frequency of the waves, within
wide limits. (The frequency of the current is actually the frequency
with which the waves are turned on and off at the sender.) So there
is a wide choice of wave frequency. In Sec. 17.12 we shall consider
how the choice is made: but in the meantime it will be sufficient to
remember that if the frequency is low, approaching audibility, the
aerials have to be immense; while if the frequency is much higher
than those used by Hertz it is difficult to generate them powerfully,
and they are easily obstructed, like light waves. The useful limits
of these radio frequencies are about 15000 to 50000000000 Hz.

The importance of having many frequencies to choose from was
soon apparent, when it was found to be possible—and highly
advantageous—to make the receiver respond to the frequency of
the sender and reject all others. This invention of runing ‘was
essential to effective radio communication, and is the subject of a
large part of this book. So it may be enough just now to point out
that it has its analogy in sound. We can adjust the frequency of a
sound wave by means of the length and tightness of the sender. A
piano contains nearly a hundred strings of various fixed lengths
and tightnesses, which we can select by means of the kevs. If there
is a second piano in the room, with its sustaining pedal held down
so that all the strings are free to vibrate, and we strike a loud note
on the first piano, the string tuned to the same note in the second
can be heard to vibrate. If we had a single adjustable string, we
could tune it to respond in this way to any one note of the piano
and ignore those of substantially different frequency. In a corre-
sponding manner the electrical equivalents of length (or weight) and
tightness are adjusted by the tuning controls of a radio receiver
to select the desired sending station.

1.13 Radio Telephony

The second important point is that (as one would expect) the strength
of the current from the detector increases with the strength of the
waves transmitted. So, with Fig. 1.7 in mind, we need no further
hint to help us to convert the radio telegraph of Fig. 1.8 into a
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radio telephone or a broadcasting system, by substituting for the
Morse key a device for varying the strength of the waves, just as the
microphone varied the strength of the line current in Fig. 1.7. Such
devices are called modulutors, and will be referred to in more detail
in Chapter 15. The micraphone is still needed, because the output
of the radio sender is not controlled directly by the impinging sound
waves but by the wavily-varying currents from the microphone.
A practical system needs amplifiers in various places, firstly to
amphfy the feeble sound-controlled currents from the microphone
until they are strong enough to modulate a powerful wave sender;
then to amplify the feeble radio-frequency currents stirred up in a
distant receiving aerial by the far flung waves: then another to
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Fig. 1.9—The rudio telegraph of Fig. 1.8 converted into a radio telephone by controlling
the outpur of the sender by sound waves insteud of just turning it on and off. In practice
i is also generally necessary to use amplifiers where shown

amplify the audio-frequency currents from the detector so that they
are strong enough to work a loudspeaker instead of the less con-
venient headphones. This somewhat elaborated system is indicated
—but still only in broadest outline—Dby the block diagram, Fig. 1.9.

1.14 Recapitulation

At this stage it may be as well to review the results of our survey.
We realize that in all systems of communication the signals must,
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in the end, be detectable by the human senses. Of these, hearing
and seeing are the only ones that matter. Both are wave-operated.
Our ears respond to air waves between frequency limits of about
20 and 20000 Hz; our eyes respond to waves within a narrow band
of frequency centred on 5 x 10'* Hz—waves not carried by air but
by space, and which have been proved to be electrical in nature.

Although our ears are remarkably sensitive, air-wave (i.e., sound)
communication is very restricted in range. Eyes, it is true, can see
over vast distances, but communication is cut off by the slightest
wisp of cloud. If, however, we can devise means for ‘translating’
audible or visible waves into and out of other kinds of waves, we
have a far wider choice, and can select those that travel best. It has
been found that these are electric waves of lower frequencies than
the visible ones, but higher than audible frequencies. The lowest of
the radio frequencies require excessively large aerials to radiate
them, and the highest are impeded by the atmosphere. All travel
through space at the same speed of nearly 300000000 metres per
second, so the wavelength in metres can be calculated by dividing
that figure by the frequency in Hz.

The frequency of the sender is arranged by a suitable choice and
adjustment of the electrical equivalents of weight and tightness (or,
more strictly, slackness) in the tuning of sound generators. In the
same way the receiver can be made to respond to one frequency and
reject others. There are so many applicants for frequencies—
broadcasting authorities, telegraph and telephone authorities,
naval, army, and air forces, space organisations, weather stations,
police, the merchant navies, airlines, research scientists, amateurs
and others—that even with such a wide band to choose from it is
difficult to find enough for all, especially as only a small part of the
whole band is generally suitable for any particular kind of service.

The change-over from the original sound waves to radio waves
of higher frequency is done in two stages: first by a microphone
into electric currents having the same frequencies as the sound
waves; these currents are then used in a modulator to control the
radio-frequency waves in such a way that the original sound
characteristics can be extracted at the receiver. Here the change-
back is done in the same two stages reversed: first by a detector,
which yields electric currents having the original sound frequencies ;
then by ear-phones or loud speakers which use these currents to
generate sound waves.

Since the whole thing is an application of electricity, our detailed
study must obviously begin with the general principles of electricity.
And it will soon be necessary to pay special attention to electricity
varying in a wavelike manner at both audio and radio frequencies.
This will involve the electrical characteristics that form the basis
of tuning. To generate the radio-frequency currents in the sender,
as well as to amplify and perform many other services, use is made
of various types of electronic devices, such as valves and transistors,



15

so it is necessary to study these in some detail. The process of caus-
ing the r.f. currents to stir up waves, and the reverse process at the
receiver, demands some knowledge of aerials and radiation. Other
essential matters that need elucidation are modulation and detec-
tion. Armed with this knowledge we can then see how they are
applied in typical senders and receivers. By then, most of the basic
principles of electronics in general will have been covered, but a few
more chapters will be needed to fill in the special requirements in
such things as television, radar, electronic instruments and com-
puters.



CHAPTER 2

Electricity and Circuits

2.1 Electrons

The exact nature of electricity is a mystery that may never be fully
cleared up, but from what is known 1t is possible to form a sort of
working model or picture which helps us to understand how it
produces the results it does, and even to think out how to produce
new results. The reason why the very existence of electricity went
unnoticed until comparatively recent history was that there are two
opposite kinds which exist in equal quantities and, unless separated
in some way, cancel one another out. This behaviour reminded the
investigating scientists of the use of positive (+) and negative (—)
signs in arithmetic: the introduction of either + 1 or — 1 has a
definite effect, but + 1 —1 equals just nothing. So, although at
that time hardly anything was known about the two kinds of
electricity, they were called positive and negative. Both positive and
negative electricity produce very remarkable effects when they are
separate, but a combination of equal quantities shows no signs of
electrification.

Further research led to the startling conclusion that ail matter
consists largely of electricity. All the thousands of different kinds
of matter, whether solid, liquid, or gaseous, consist of atoms which
contain only a very few different basic components. Of these we
need take note of only one kind—particles of negative electricity,
called electrons. For a simple study it is convenient to imagine each
atom as a sort of ultra-microscopic solar system in which a number
of electrons are distributed around a central nucleus, somewhat as
our earth and the other planets around the sun (Fig. 2.1). (The
subject is treated in much more detail in the author’s The Electron
in Electronics.) The nucleus is generally a more or less composite
structure; it makes up nearly all the weight of the atom, and the
number and type of particles it contains determine which element it
is—oxygen, carbon, iron, etc. It is possible to change some elements
into others by breaking up the nucleus under very intense laboratory
treatment. For our present purpose, however, the only things we
need remember about the nucleus are that it is far heavier than the
electrons, and that it has a surplus of positive electricity.

In the normal or unelectrified state of the atom this positive
surplus is exactly neutralised by the planetary electrons. But it is a
comparatively easy matter to dislodge one or more of these electrons
from each atom. One method is by rubbing; for example, if a glass
rod is rubbed vigorously with silk some of the electrons belonging

16
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to the glass are transferred to the silk. Doing this produces no
change in the material 1tself—the glass is still glass and the silk
remains silk. As separate articles they show no obvious evidence
of the transfer. But if they are brought close together it is found
that they attract one another. And the glass rod can pick up small
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scraps of paper. It is even possible, in a dry atmosphere, to produce
sparks. These curious phenomena gradually fade away, and the
materials become normal again.

2.2 Electric Charges and Currents

The surplus of electrons on the silk is called a negative electric
charge. The glass has a corresponding deficiency of electrons, so its
positive nuclear electricity is incompletely neutralised. and the
result is a positive charge. It is a pity that the people who decided
which to call positive did not know anything about electrons,
because if they had they would certainly have called electrons
positive and so spared us a great deal of confusion. As it is. however,
one just has to remember that a surplus of electrons is a negative
charge.

Any unequal distribution of electrons is a condition of stress.
Forcible treatment of some kind is needed in order to create a surplus
or deficiency anywhere, and if the electrons get a chance they move
back to restore the balance; i.e., from negatively to positively
charged bodies. This tendency shows itself as an attraction between
the bodies themselves. That is what is meant by saying that opposite
charges attract.

The space between opposite charges, across which this attraction
is exerted, is said to be subject to an electric field. The greater the
?harges. the more intense is the field and the greater the attractive

orce.

If a number of people are forcibly transferred from town A to
town B, the pressure of overcrowding and the intensity of desire to
leave B depend. not only on the number of displaced persons, but
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also on the size of B and possibly on whether there is a town C close
by with plenty of accommodation. The electrical pressure also
depends on other things than the charge, reckoned in displaced
electrons; so it is more convenient to refer to it by another term.
namely difference of potential, often abbreviated to p.d. We shall
consider the exact relationship between charge and p.c. in the
next chapter. The thing to remember now is that wherever there
is a difference of potential between two points there is a tendency
for electrons to move from the point of lower (or negative) potential
to that of higher (or positive) potential in order to equalise the
distribution.* If they are free to move they will do so; and their
movement is what we call an electric current.

This is where we find it so unfortunate that the names ‘positive’
and ‘negative’ were allocated before anybody knew about electrons.
For it amounted to a guess that the direction of current flow was the
opposite to that in which we now know electrons flow. By the time
the truth was known this bad guess had become so firmly estab-
lished that reversing it would have caused worse confusion. More-
over, when the positively charged atoms (or positive ions, as they
are called) resulting from the removal of electrons are free to do so
they also move, in the direction + to —, though much more slowly
owing to their greater mass. So this book follows the usual custom
of talking about current flowing from + to — or high to low
potential, but it must be remembered that most often this means
electrons moving from — to +.

2.3 Conductors and Insulators

Electrons are not always free to move. Except in special circum-
stances (such as high temperature, which we shall consider in
Chapter 9) atoms do not allow their electrons to fly off completely
on their own, even when they are surplus. The atoms of some sub-
stances go so far as to allow frequent exchanges. however, like
dancers in a Paul Jones, and in fact such exchanges go on all the
time, even in the normal unelectrified state. The directions in which
the electrons flit from one atom to another are then completely
random, because there is nothing to influence them one way or
another.

But suppose the whole substance is pervaded by an electric field.
The electrons feel an attraction towards the positive end ; so between
partnerships they tend to drift that way. The drift is what is known
as an electric current, and substances that allow this sort of thing
to go on are called conductors of electricity. All the metals are more

* Note that + 1 is positive with respect to — 1 or even to 0, but it is negative
with respect to + 2; — 1 or 0 are both positive with respect to — 2. There is nothing
inconsistent in talking about two oppositely charged bodies one minute, and in the
next referring to them both as positive (relative to something else).
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or less good conductors; hence the extensive use of metal wire.
Carbon and some liquids are fairly good conductors.

Note that although electrons start to go in at the negative end
and electrons start to arrive at the positive end the moment the p.d.
1s set up, this does not mean that these are the same electrons,
which have instantaneously travelled the whole length of the con-
ductor. An electron drift starts almost instantaneously throughout
miles of wire, but the speed at which they drift is seldom much more
than an inch a minute.

Other substances keep their electrons, as it were, on an elastic
teash which altows them a little freedom of movement, but never
‘out of sight’ of the atom. If such a substance occupies the space
between two places of different potential, the electrons strain at the
leash in response to the positive attraction, but a continuous steady
drift is impossible. Materials of this kind, called insulators. can be
used to prevent charges from leaking away, or to form boundaries
restricting currents to the desired routes. Dry air, glass, polythene,
rubber, and paraflin wax are among the best insulating materials.
None is absolutely perfect. however; electrified glass rods, for
example, gradually lose their charges.

We shall see in Chapter 9 that there is a third class of substances
called semiconductors, of immense importance in electronics.

2.4 Electromotive Force

If electrons invariablv moved from — to +. as described. they
would in time neutralize all the positive charges in the world, and
that, for all practical purposes. would be the end of electricity. But
fortunately there are certain apphances, such as batteries and
dynamos (or generators) which can force electrons to go from +
to —. contrary to their natural inclination. In this way they can
continuously replenish a surplus of electrons. Suppose A and B in
Fig. 2.2 are two insulated meta!l terminals, and a number of electrons
have been transferred from A to B, so that A is at a higher potential
than B. If now they are joined by a wire, electrons will drift along
it, and. if that were all, the surplus would soon be used up and the
potential difference would disappear. But A and B happen 1o be the
terminals of a battery. and as soon as electrons leave B the battery
provides more, while at the sume time it withdraws electrons arriv-
ing at A. So while electrons are moving from B to A through the
wire, the battery keeps them moving from A to B through itself.
The battery is, of course, a conductor; but if it were only that it
would be an additional path for electrons to go from B to A and
dissipate the charge all the quicker. It is remarkable, then. for being
able to make electrons move against a p.d. This ability is called
electromotive force (usually abbreviated to e.m.f.).
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_ Fig. 2.2 shows what is called a closed circuit. there being a con-
tinuous endless path for the current. This is invariably necessary
for a continuous current, because if the circuit were opened any-
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where, say by disconnecting the wire from one of the terminals,
continuation of the current would cause electrons to pile up at the
break, and the potential would increase without limit; which is
impossible.

2.5 Electrical Units

The amount or strength of an electric current might reasonably
be reckoned as the number of electrons passing any point in the
circuit each second. but the electron is so extremely small that such
a unit would lead to inconveniently large numbers. For practical
purposes it has been agreed to base the unit on the metric system.
It is called the ampere (or more colloquially the amp), and happens
to be about 6240000000000000000 (or 6-24 x 10'8) electrons per
second.

As one would expect, the number of amps caused to flow in a
given circuit depends on the strength of the electromotive force
operating in it. The practical unit of e.m.f. is the volt.

Obviously the strength of current depends also on the circuit—
whether it 1s made up of good or bad conductors. This fact is
expressed by saying that circuits differ in their electrical resistance.
The resistance of a circuit or of any part of it can be reckoned in
terms of the e.m.f. required to drive a given current through it.
For convenience the unit of resistance is made numerically equal to
the number of volts required to cause one amp to flow, and to
avoid the cumbersome expression ‘volts per amp’ this unit of
resistance has been named the ohm.

By international agreement the following letter symbols have been
allocated to denote these electrical quantities and their units, and
will be used from now on:
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Quantity Symbol for Unit of Symbol for
Quantity —L Quantity Unit
EM.F. E Volt \%
Current 1 I Ampere A

Resistance | R I Ohm Q

(Q is a Greek capital letter omega)

These three important quantities are not all independeni. for we
have just defined resistance in terms of e.m.f. and current. Expressing
it in symbols:

E
R=2
1

2.6 Ohm’s Law

The question immediately arises: does R depend only on the
circuit, or does it depend also on the current or voltage” This was
one of the first and most important investigations into electric
currents. We can investigate it for ourselves if we have an instru-
ment for measuring current, called an ammeter, a battery of identical
cells, and a length of thin wire or other resistive conductor. A closed
circuit is formed of the wire, the ammeter, and a varying number of
the cells; and the ammeter reading corresponding to each number
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Fig. 2.3—Graph showing the results
of an experiment on the relationship
benween current in amps and e.m.f.
in volts, for two different circuits

of cells is noted (Fig. 2.5). The results can be plotted in the form ofa
graph (Fig. 2.3). If the voltage of a cell is known, the current can
be plotted against voltage instead of merely against number of cells.

When all the points are joined up by a line it will probably be
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found that the line is straight and inclined at an angle and passes
through the origin (0). (If the line is not quite straight, that may be
for the reason given at the end of Sec. 2.11.) If a different resistance
is tried, its line will slope at a different angle. Fig. 2.3 shows two
possible samples resulting from such an experiment. In this case
each cell gave 2 volts, so points were plotted at 2, 4, 6, 8, etc., volts.
The points at —2, —4, etc., volts were obtained by reversing the
battery. A current of —2 A means a current of the same strength as
+2 A, but flowing in the opposite direction.

Looking at the steep line, we see that an e.m.f. of 2 V caused a
current of 2 A, 4 V caused 4 A, and so on. The result of dividing
the number of volts by the number of amps is always 1. And this,
according to our definition, is the resistance in ohms. So there is
no need to specify the current at which the resistance must be
measured, or to make a graph; it is only necessary to measure the
voltage required to cause any one known current (or the current
caused by any one voltage). The amount (or, as one says in technical
language, the value) of resistance so obtained can be used to find
the current at any other voltage, or voltage at any other current.
For these purposes it is more convenient to write the relationship
R = E/I'in the form

i1=£ or E=1IR
R

Thus if any two of these quantities are known, the third can be
found.

Conductors whose resistance does not vary with the amount of
current flowing through them are described as linear, because the
line representing them on a graph of the Fig. 2.3 type (called their
current|/voltage characteristic) is straight. Although the relationship
I = E|R is true for any resistance, its greatest usefulness lies in the
fact, discovered by Dr. Ohm, and known as Ohm’s law, that
ordinary conductors are linear. From Chapter 9 onwards we shall
come across some exceptions. And often the relationship / = E/R
is itself rather loosely called Ohm’s law.

As an example of the use of Ohm’s law, we might find. in investi-
gating the value of an unknown resistance, that when it was con-
nected to the terminals of a 9 V battery a current of 0-01 A was
driven through it. Using Ohm’s law in the form R = E|I, we get
for the value of the resistance 9/0-01 = 900 Q. Alternatively, we
might know the value of the resistance and find that an old battery,
nominally of 9 V, could only drive a current of 0-007 A through it.
We could deduce, since £ = | x R, that the voltage of the battery
had fallen to 900 x 0-007 = 6:3 V. Note that in driving current
through a resistance an e.m.f. causes a p.d. of the same voltage
ls)etwgen the ends of the resistance. This point is elaborated in

ec. 2.14,
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2.7 Larger and Smaller Units

It is unusual to describe a current as 0-007 ampere, as was done
just now: one speaks of ‘7 milliamperes’, or. more familiarly,
*7 milliamps’. A milliampere is one-thousandth part of an ampere.
Several other prefixes are used; they are tabulated in Appendix 2.
the commonest being

Prefix Meaning Symbol
milli- one thousandth of m
micro- one miliionth of m
nano- one thousand- n
millionth of
pico- one billionth of
(millien millionth)
kilo- one thousand k
mega- | one million M

(u 1s the Greek letter mu)

The prefixes can be put in front of any unit; one speaks commonly
of milliamps, microamps, megohms, and so on. ‘Half a megohm’
is easier to say than ‘Five hundred thousand ohms’, and ‘4 MQ’ is
quicker to write than 500000 Q"

It must be remembered, however, that Ohm’s law in the forms
given on p.22 assumes volts, ohms, and amps. If a current of S mA is
flowing through 15000 2, the voltage across that resistance will not
be 75000 V. But since most of the currents we shall be concerned
with are of the milliamp order it is worth noting that there is no need
to convert them to amps if R is expressed in thousands of ohms
(kQ). So in the example just given one can get the correct answer,
75 V, by multiplying § by 15.

2.8 Circuit Diagrams

At this stage it will be as well to start getting used to circuit diagrams.
In a book like this, concerned with general principles rather than
with constructional details, what matters about (say) a battery is
not its shape nor the design of its label, but its voltage and how 1t is
connected in the circuit. So it is a waste of time drawing a picture as
in Fig. 2.2. All one needs is the symbol shown as Fig. 2.4a. which
represents one cell. An accumulator cell gives 2 V, and a dry cell
about 1-4 V. The longer stroke represents the + terminal. To get
higher voltages, several cells are connected one after the other, as in
Fig. 2.4b, and if so many are needed that it is tedious to draw them
all one can represent all but the end ones by a dotted line, as in
Fig. 2.4c, which also shows how to indicate the voltage. Other
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symbols in Fig. 2.4 are (d) a circuit element called a resistor, because
resistance is its significant feature, (¢) a switch shown ‘open’ or ‘off",
and (/) a measuring instrument, the type of which can be shown by
‘mA’ for milliammeter, ‘V’ for voltmeter, etc., and the range of
measurement marked as here. A simple line represents an electrical

0V

| = - -

(0) (b} (c)

—W— =
(@) (e) (6

Fig. 24—A first instalment of circuit-diagram symbols, representing (a) a cell, (b)
a battcry of three cells, (¢) a battery of many cells, (d) a resistor, (e; a switch, and
(f) a milliammeter

cfonncction of negligible resistance, often called a lead (rhyming with
‘feed’).

The circuit diagram for the Ohm'’s law experiment can therefore
be shown as in Fig. 2.5. The arrow denotes a movable connection,
used here for including anything from one to eight cells in circuit.

Fig. 2.5 is a simple example of a series circuit. Two elements are
said to be connected in series when, in tracing out the path of the
current, we encounter them one after the other. With steadily

N

Fig. 2.5—Circuit diagram of the apparatus used for obtaining
Fig. 2.3

-

oo o|o[o]os]

|

flowing currents the electrons do not start piling up locally, so it is
clear that the same current flows through both elements. In Fig. 2.5,
for instance, the current flowing through the ammeter is the same as
that through the resistor and the part of the battery ‘in circuit’.

Two elements are said to be in parallel if they are connected so as
to form alternative paths for the current; for example, the resistors
in Fig. 2.8a. Since a point cannot be at two different potentials at
once, it is obvious that the same potential difference exists across
both of them (i.e., between their ends or terminals). One element in
parallel with another is often described as shunting the other.

The method of connection can sometimes be regarded as either
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series or parallel, according to circumstances. In Fig. 2.6, R, and
R, are in series as regards battery B,, and in parallel as regards B,.

Looking at the circuit diagrams of radio sets—especially tele-
vision receivers—one often sees quite complicated networks of
resistors. Fortunately Ohm’s law can be applied to every part of a

Fig. 2.6—R, is in series with R, us regards B,. but in parallel
with it as regards B,

complicated system of e.m.fs and resistances as well as to the whole.
Beginners often seem reluctant to make use of this fact, being
scared by the apparent difficulty of the problem. So let us see how
it works out with more elaborate circuits.

2.9 Resistances in Series and in Parallel

Complicated circuit networks can be tackled by successive stages of
finding a single element that is equivalent (as regards the quantity
to be found) to two or more. Consider first two resistances R, and
R,, in series with one another and with a source of e.m.f. £ (Fig.
2.z7a). To bring this circuit as a whole within the scope of calculation

Fig. 2.7—Resistances in series. The circuit b is equivalent 10 the circuit u, in the sense
that both 1ake the sume current from the batterv. if R = R, + R,

by Ohm’s law we need to find the single resistance R (Fig. 2.7b)
equivalent to R, and R, together.

We know that the current in the circuit is everywhere the same;
call it /. Then, by Ohm’s law, the voltage across R, is /R,, and that
across R, is IR,. The total voltage across both must therefore be
IR, + 1152, or I (R, + R,), which must be equal to the voltage E.

in the equivalent circuit, £ is equal to /R, and since, to make the
circuits truly equivalent, the currents must be the same in both for
the same battery voltage, we see that

R=R,+ R,
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Generalizing from this result, we conclude that: The total resistance
of several resistances in series is equal to the sum of their individual
resistances.

Turning to the parallel-connected resistances of Fig. 2.8a, we see
that they have the same voltage across them; in this case the e.m.f.

Fig. 2.8—Resistances in parallel. The circuit b is equivalent to the circuit a in the sense
that both take the current from the battery, if 1/R = I/R, + /R,

of the battery. Each of these resistances will take a current depending
on its own resistance and on the e.m.f.—the simplest case of Ohm’s
law. Calling the currents respectively /; and I,, we therefore know
that I, = E/R, and I, = E|R,. The total current drawn is the sum

of the two: it 1s
E E 1 1
1 - — — E — —
R, s R, (Rl . R2>

In the equivalent circuit of Fig. 2.85 the current is E/R, which
may also be written E (1/R). Since, for equivalence between the
circuits, the current must be the same for the same battery voltage,
we see that

Generalizing from this result, we conclude that: If several re-
sistances are connected in parallel, the sum of the reciprocals of their
individual resistances is equal to the reciprocal of their total resistance.

If the resistances of Fig. 2.8a were 100 Q and 200 Q. the single
resistance R which, connected in their place, would draw the same
current is given by 1/R = 1/100 + 1/200 = 0-01 4 0-005 = 0-015.
Hence, R = 1/0-015 = 66:67 Q. This could be checked by adding
together the individual currents through 100Q and 200 Q, and com-
paring the total with the current taken from the same voltage-
source by 6667 Q. In both cases the result is 15 mA per volt of
battery.

We can summarize the two rules in symbols:

1. Series Connection: R=R +R,+R,+R SRORONG
2. Parallel Connection: 1/R=1/R,+1/R, % 1/1§3+ P
For only two resistances in parallel, a more convenient form of
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the same rule can be obtained by multiplying above and below by
R.R;:
R/R,

R—-—l—-
I/R, + 1/R, R, + R,

2.10 Series-Parallel Combinations

How the foregoing rules, derived directly from Ohm’s law, can be
applied to the calculation of more complex circuits can perhaps best
be illustrated by a thorough working-out of one fairly elaborate
network, Fig. 2.9. We will find the total current flowing, the equivalent

Fig. 2.9—The current through and voltage across
each resistor in this complicated network cun be
calculated by applying the nvo simple rules derived
from Figs. 2.7 and 2.8

resistance of the whole circuit, and the voltage and current of every
resistor individually.

The policy is to look for any resistances that are in simple series or
parallel. The only two in this example are R, and R,. Writing R, to
symbolise the combined resistance of R, and R, taﬁen together, we

(2) (b) (<) (d)

Fig. 2.10—Successive stages in simplifving the circuir of Fig. 2.9. R,, stands for the
single resistances equivalent to R, and R,; and so on. R represents tﬁe whole system

know that R,; = R,R;/(R;, + R,) = 200 x 500/700 = 142-8 Q.
This gives us the snmphﬁed circuit of Fig. 2.10a. If R,; and R, were
one resistance, they and R; in parallel would make another snmple
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case, so we proceed to combine R,; and R, to make R,,, = R,; + R,
= 1428 + 150 = 292-8 Q. Now we have the circuit of Fig. 2.105.
Combining R,,, and Rs, R,3,s = 292:8 x 1000/1292-8 = 2265 Q.
This brings us within sight of the end; Fig. 2.10c shows us that the
total resistance of the network now is simply the sum of the two
remaining resistances; that is, R is Fig. 2.10d is R,,,, + R, =
2265 + 100 = 3265 Q.

From the point of view of current drawn from the 40-V source
the whole system of Fig. 2.9 is equivalent to a single resistor of this
value. The current taken from the battery will therefore be 40/326-5
=01225A = 122:5mA.

To find the current through each resistor individually now merely
means applying Ohm’s law to some of our previous results. Since
R, carries the whole current of 122:5 mA, the potential difference
across it will be 100 x 0-1225 = 12:25 V. R4 also carries the whole
current (2.10¢); the p.d. across it will again be the product of
resistance and current, in this case 226-5 x 0-1225 = 27-75V. This
same voltage also exists, as comparison of the various diagrams
will show, across the whole complex system R,R,R R, in Fig. 2.9.
Across R, there comes the whole of this voltage; the current through
this resistor will therefore be 27-75/1000 A = 27-75 mA.

The same p.d. across R,,, of Fig. 2.10b, or across the system
R,R4R, of Fig. 2.9, will drive a current of 27-75/292-:8 = 94:75 mA
througfl this branch. The whole of this flows through R, (2.10a), the
voltage across which will accordingly be 150 x 0-09475 = 14-21 V.
Similarly, the p.d. across R,, in Fig. 2.10a, or across both R, and R
in Fig. 2.9, will be 009475 x 142-8 = 13-54 V, from which we find
that the currents through R, and R, will be respectively 13-54/200
and 13-54/500 A, or 67-68 and 2707 mA, making up the required
total of 94:75 mA for this branch.

This completes an analysis of the entire circuit; we can now
collect our scattered results in the form of the following table.

Resistance Current through | Potential Difference

«©Q) J it (mA) J across it (V)
R 100 122-5 12:25
R; 200 67-68 13-54
Rs 500 2707 13-54
Ra 150 94-75 14-21
Rs 1000 27-75 27-75
R 3265 ' 122-5 40

= = S— 1 E—

Note that by using suitable resistors any potential intermediate
between those given by the terminals of the battery can be obtained.
For instance, if the lower and upper ends of the battery in Fig. 2.9
are regarded as 0 and + 40 (they could equally be reckoned as — 40
and 0, or — 10 and + 30, with respect to any selected level of
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voltage). the potential of the junction between R, and R,is 14-21 V.
The arrangement is therefore called a potential jivider, and is often
employed for obtaining a desired potential not given directly by the
terminals of the source. If a sliding connection is provided on a
resistor, to give a continuously variable potential, it is generally
known—through not always quite justifiably—as a potentiometer.

2.11 Resistance Analysed

So far we have assumed the possibility of almost any value of
resistance without considering exactly what determines the resistance
of any particular resistor or part of a circuit. We understand that
different materials vary widely in the resistance they offer to the
flow of electricity, and can guess that with any given material a long
piece will offer more resistance than a short piece, and a thin piece
than a thick. We have indeed actually proved as much and more;
by the rule for resistances in series the resistance of a uniform wire
is exactly proportional to its length—doubling the length is equiv-
alent to adding another equal resistance in series, and so on (Fig.
2.11a). Similarly, putting two equal pieces in parallel, which halves

(b)

Fig. 2.11—The rule for resistances in series proves that
doubling the length of a uniform conductor doubles its A
resistance (a). By the rule for resistances in parallel,
doubling its cross-section area halves its resistance (b):
and doubling its diameter quarters its resistance (c)

B (c)

N

(a)

the resistance, is equivalent to doubling the thickness; so resistance
is proportional to the reciprocal of thickness. Or, in more precise
language, to the cross-section area (Fig. 2.115). Altering the shape
of the cross-section has no effect on the resistance—with steady
currents, at least. Fig. 2.11¢ shows how doubling the diameter of a
piece of wire divides the resistance by four.

To compare the res:stances of different materials it is necessary to
bring them all to the same standard length and cross-section area,
which, in the system of units known as SI (Systéme Internationale
d’Unités), is one metre long by one square metre. This comparative
resistance for any material is called its resistivity (symbol: p, pro-
nounced ‘roe’). Knowing the resistivity (and it can be found in
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almost any electrical reference book*) one can easily calculate the
resistance of any wire or piece having uniform section by multiplying
by the length in metres (/) and dividing by the cross-section area in
square metres (A4). In symbols:

R =

R

Such calculations are seldom necessary, because there are tables
showing the resistance per metre or per yard of all the different
gauges of wire, both for copper (usually used for parts of the circuit
where resistance should be as low as possible) and for the special
alloys intended to have a high resistance.

Resistance varies to some extent with temperature, so the tables
show the temperature at which they apply. and also the proportion
by which the resistance increases with rise of temperature.

2.12 Conductance

It is often more convenient to work in terms of the ease with which a
current can be made to flow, rather than the difficulty; in other
words, in conductance rather than resistance. The symbol for con-
ductance is G, and its unit (called the siemens, S ; formerly, the mho)
is equal to the number of amps caused to flow by one volt. So
I = EG is an alternative form of I = E/R; and G = |/R.

It is not difficult to see that corresponding to the equation above
for calculating resistance there will be one for conductance:

oA
G=—
/
where o (Greek ‘sigma’) stands for conductivity (siemens per metre).
The advantage of conductance appears chiefly in parallel circuits,
for which it is easy to see that the formulais G = G, + G, + - -

2.13 Kirchhoff’s Laws

We have already taken it as obvious that no one point can be at
more than one potential at the same time. (If it is not obvious, try
to imagine a point with a difference of potential between itself;
then electrons will flow from itself to itself, i.e., a journey of no
distance and therefore non-existent.) So if you start at any point
on a closed circuit and go right round it, adding up all the voltages

* In the older books, resistivity is given in ohms per centimetre cube. or ohm-cm.
Resistivity in metre units is a number 100 times smaller.
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on the way, with due regard for + and —, the total is bound to be
zero. If it 1sn’t, a mistake has been made somewhere: just as a sur-
veyor must have made a mistake if he started from a certain spot,
measuring his ascents as positive and his descents as negative, and
his figures told him that when he returned to his starting-point he
had made a net ascent or descent.

This simple principle is the modern form of one of what are known
as Kirchhoff’s laws, and is a great help in tackling systems of
resistances where the methods already described fail because there
are no two that can be simply combined. One writes down an
equation for each closed loop or mesh, by adding together all the
voltages and equating the total to zero, and one then solves the
resulting simultaneous equations. That can be left for more advanced
study, but the same law is a valuable check on any circuit calculations.
Try applying it to the several closed loops in Fig. 2.9, such as that
formed by E. R, and R,. If we take the route clockwise we go
‘uphill’ through the battery, becoming more positive by 40 V. Com-
ing down through R; we move from positive to negative so add
—12:25 V, and, through R,, —27-75 V, reaching the starting point
again. Check: 40 —12-25 —27 75 = 0.

Taking another clockwise route via R, R;, and R, we get
13-54 —27-75 + 14-21 = 0. And so on for any closed loop.

The other Kirchhoff law is equally obvious; it states that if you
count all currents arriving at any point in a circuit as positive, and
those leaving as negative, the total is zero. This can be used as an
additional check, or as the basis of an alternative method of solving
circuit problems.

2.14 P.D. and EM.F.

The fact that both e.m.f. and p.d. are measured in volts can be
confusing. So it will be time well spent if, before going any farther,
we look into the matter rather carefully.

We have just been likening difference of potential to difference
in height. This analogy is implied whenever we talk about low and
high potential. But although we measure height in feet or metres
what we have in mind is not just a distance; we are really concerned
with the force of gravity close to a massive body, usually the earth.
(‘Height’ has no meaning in outer space.) This force tends to make
things move downwards, or fall. Corresponding to this gravitational
field is the electric field between opposite electric charges, which
tends to make mobile charges move in the direction of that field,
towards the low-potential or negative end if the mobile charges are
positive ones, but “upwards’ if they are electrons. Just as an effort.
which we might call a weight-motive force, is required to lift a
weight against the force of a gravitational field, so an electromotive
force is needed to lift positive electric charges to a point of higher
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potential; that is to say, against the force of an electric field. And
Just as the amount of weight-motive force could be reckoned as the
height it could lift a weight—any weight—so an e.m.f. is specified
as the p.d. it can overcome. If water has to be supplied to the top
floor of a 200ft block of flats, then a water-motive force which
could be specified as not less than 200ft must be provided by a
pump or other active device. The difference in height that the
pressure of the water source can overcome is the most directly in-
formative way of stating it. Similarly the p.d. in volts that a source
of electricity can overcome is the most helpful way of stating its
e.n.f., which indeed is sometimes referred to as its pressure.

Another reason for reckoning e.m.f. in volts is that it cannot be
measuted as such, but only in terms of the p.d. it can overcome or
create.

Note that the p.d. between two points is something quite definite,
but the potential of a point (like the height of a hill) is relative,
depending on what one takes as the reference level. Heights are
usually assumed to be relative to sea level, unless it is obvious that
some other ‘zero’ is used (such as street level for the height of a
building). The potential of the earth is the corresponding zero for
electrical potentials, where no other is implied. To ensure definiteness
of potential, apparatus is often connected to earth.

The p.d. across a resistor (or, as it is sometimes called, the volt-
age drop, or just ‘drop’) is, as we know, equal to its resistance
multiplied by the current through it; and the positive end is that at
which the current enters (or electrons leave). The positive end of a
source of e.m.f., on the other hand, is that at which current would
leave if its terminals were joined by a passive conductor. That is
because an e.m.f. has the unique ability of being able to drive a
current against a p.d. Note however that the positive terminal of a
source of e.m.f. is not always the one at which current actually does
leave; there may be a greater e.m.f. opposing it in the circuit.

Fig. 2.12a shows a circuit invented to illustrate questions that can
arise in the early stages of studying these matters. Let us assume
that each cell in it has an em.f. of 2 V.

All five cells in the battery B, are connected in series and all tend
to drive current clockwise, so the total clockwise e.m.f. of B, is
5 x 2 =10V, and we can show this as in Fig. 2.12b.

B, seems to be a flat contradiction of Kirchhoff’s voltage law. Here
we have an e.m.f. of 2 V between two points which must be at the
same potential because they are joined by a wire of negligible
resistance! The cell is, as we say, short-circuited, or ‘dead-shorted’.
Part of the answer to this apparent impossibility is that no real
source of e.m.f. can be entirely devoid of resistance. Often it is not
enough to matter, so is not shown in diagrams. But where the
source is short-circuited it is vital, because it is the only thing to
limit the current. To represent a source of e.m.f. completely, then,
we must include between its terminals not only a symbol for e.m.f.
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but also one for resistance. When a source of e.m.f. is open-circuited,
so that no current flows. there is no voltage drop in its internal
resistance, so the terminal voltage is equal to the e.m.f. When
current is drawn the terminal voltage falls, and if the source is dead-
shorted the internal drop must be equal to the e.m.f., as shown in

B, 2y
—ph—
R
| mép
_..:_ | 2
=B 2001
%33 34;
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Fig. 2.12—(a) is an imaginary circuit for illustrating the meanings of ¢.mr.f. and p.d.
The voltages and currents in different parts of it are marked in (b). Arrows alongside
voltages show the direction of rise of potential

Fig. 2.12b. The other part of the answer is that when the source has
a very low resistance (e.g., a large accumulator or generator) such
an enormous current flows that even a wire of normally negligible
resistance does not reduce the terminal voltage to zero, and the
wire is burnt out, and perhaps the source too.

In our example we shall assume that all the resistance is internal,
so the external effect of B, is nil.

If the loop containing B,, B,, and R, is considered on its own as a
series circuit. we see two e.m.fs each of 4 V in opposition, so the
net e.m.f. is zero, and no current due to them flows through R,.
As regards the main circuit, By and B, are in parallel, and contribute
ane.m.f. of —4V (because in opposition to B, which we considered
positive). This can be indicated either by * —4 V" and a clockwise
arrow, or by ‘4 V' and an anticlockwise arrow as shown.

It would be wise to stop for a moment and re-read that last
sentence. So often there are disputes about which is the ‘right’
direction for a voltage or current direction arrow, when all the time
either direction could be right. The important thing is to say what the
arrow is intended to mean—direction of positive voltage rise or
current flow, or direction of actual voltage rise or current flow
(Sec. 5.9).

We see that putting a second battery in parallel does not increase
the main circuit e.m.f., but it does reduce the internal resistance by
putting two in parallel, so is occasionally done for that reason. In
our example the 20 Q in series with B, is probably far greater than
the internal resistance of B,, so practically all the current will flow
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through B,, and the effect of B, will be negligible.

We have, then (ignoring B,), 10 — 4 = 6 V net clockwise e.m.f.
in the circuit, and (neglecting the internal resistances of B, and B,) a
total resistance of 7 + 5 = 12 Q. The current round the circuit is
therefore 6/12 = 0-5 A, as marked, aad the voltage drops across R,
and R;are 0-5 x 7= 3-5Vand 0-5 x 5 = 25V respectively.

Finally, the symbol at the bottom left-hand corner means that
the negative end of B, is connected to earth (or ‘earthed’). So its
potential is reckoned as zero, and the potential of every other point
in the circuit is thereby defined.

To distinguish between e.m.f. and p.d. the symbol F is sometimes
reserved for e.m.f., p.ds being denoted by V. But often there is no
need to make any distinction, and we shall see in Sec. 5.11 that
attempting to do so can lead to controversy and confusion, so there
is much to be said for reckoning in voltage rises (falls being negative
rises) as for example those indicated in Fig. 2.12b.

2.15 Electrical Effects

It is time now to see what electricity can do. One of the most familiar
effects of an electric current is heat. It is as if the jostling of the
electrons in the conductor caused a certain amount of friction. But
whereas it makes the wire in an electric fire red hot, and.in an
electric light bulb white hot, it seems to have no appreciable effect
on the flex and other parts of the circuit—in a reputable installation,
anyway. Reasoning of the type we used in connection with Fig. 2.11
shows that the rate at which heat is generated in a conductor con-
taining no e.m.fs is proportional to the product of the current
flowing through it and the voltage across it (i.e., the p.d. between
its ends); in symbols, EI. Since both E and [ are related to the
resistance of the conductor, we can substitute /R for E or E/R for
I, getting /2R or E?/R as alternative measures of the heating effect.
Thus for a given current the heating is proportional to the resistance.
Electric lamps and heaters are designed so that their resistance is
far higher than that of the wires connecting them to the generator.
I?R shows that the heating increases very rapidly as the current rises.
Advantage is taken of this in fuses, which are short pieces of wire
that melt (or ‘blow’) and cut off the current if, owing to a short-
circuit somewhere, it rises dangerously above normal.

Another effect of an electric current is to magnetize the space
around it. This effect is particularly strong when the wire is coiled
round a piece of iron. As we shall see, it is of far more significance
than merely being a handy way of making magnets.

An effect that need not concern us much is the production of
chemical changes, especially when the current is passed through
watery liquids. A practical example is the charging of batteries.
The use of the word ‘charging’ for this process is unfortunate, for
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no surplus or deficiency of electrons is accumulated by it.

All these three effects are reversible; that is to say, they can be
turned into causes, the effect in each case being an e.m.f. The
production of an e.m.f. by heating the junction of two different
metals (a thermocouple) is of only minor importance, but mag-
netism is the basis of all electrical generating machinery, and
chemical changes are very useful on a smaller scale in batteries.

2.16 Instruments for Measuring Electricity

All three effects can be used for indicating the strength of currents;
but although thermocouple ammeters (Sec. 5.5) are used in radio
senders, the vast majority of current meters are based on the
magnetic effect. There are two main kinds: the moving-iron instru-
ment, in which the current coil is fixed, and a small piece of iron
with a pointer attached moves to an extent depending on the
amperage; and the moving-coil (generally preferred) in which the
coil is deflected by a fixed permanent magnet.

Besides these currents effects there is the potential effect—the
attraction between two bodies at different potential. The force of
attraction is seldom enough to be noticeable, but if the p.d. is not
too small it can be measured by a delicate instrument. This is the
principle of what is called the electrostatic voltmeter, in which a
rotatable set of small metal vanes is held apart from an inter-
leaving fixed set by a hairspring. When a voltage is applied between
the two sets the resulting attraction turns the moving set through an
angle depending on the voltage. This type of instrument, which is a
true voltmeter because it depends directly on potential and draws
no current, is practical and convenient for full-scale readings from
about 1000 V to 10000 V, but not for low voltages. (‘Full-scale
reading’ means the reading when the pointer is deflected to the far
end of the scale.)

Since V or E = IR, voltage can be measured indirectly by measur-
ing the current passing through a known resistance. If this additional
conducting path were to draw a substantial current from a source
of voltage to be measured, it might give misleading results by lower-
ing that voltage appreciably; so R is made relatively large. The
current meter (usually of the moving-coil type) is therefore a
milliammeter, or better still a microammeter. For example, a volt-
meter for measuring up to 1 V could be made from a milliammeter
reading up to 1 mA by adding sufficient resistance to that of the
moving coil to bring the total up to 1000 Q. The same instrument
could be adapted to read up to 10 V (all the scale readings being
multiplied by 10) by adding another resistance, called a multiplier,
of 9000 Q, bringing the total to 10000 Q. Such an arrangement,
shown in Fig. 2.134, can obviously be extended.

The same milliammeter can of course be used for measuring
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currents up to | mA by connecting it in series in the current path;
but to avoid increasing the resistance of the circuit more than can be
helped the voltage resistances would have to be short-circuited or
otherwise cut out. Care must be taken never to connect a current
meter directly across a voltage source, for its low resistance might

ZERQ ENTS MEASURED

(0) (b) (c)

Fig. 2.13—Showing how a single moving-coil indicating instrument cun be used for
measuring (a) voltuge, (b) current, (¢) resistance. The moving coil and pointer
attached are shown diagrammatically

pass sufficient current to destroy it. Higher currents can be measured
by diverting all but a known fraction of the current through a by-
pass resistance called a shunt. If, for example, the resistance of the
0-1 milhammeter is 75 Q, shunting it with 75/9 = 8:33 Q would
cause nine times as much current to flow through the shunt as
passes through the meter, thereby multiplying the range by 10
(Fig. 2.13b).

Thus a single moving-coil instrument can be made to cover many
ranges of current and voltage measurement, simply by connecting
known resistances as shunts and multipliers. The operation can be
reversed by incorporating a battery sufficient to give full-scale
deflection; then, when an unknown resistance is connected, either
as a shunt or multiplier, according to whether it is small or large, the
extent to which the reading is reduced depends on the value of that
resistance. It is therefore possible to graduate the scale in ohms
and we have an ohmmeter (Fig. 2.13c¢).

2.17 Electrical Power

When everyday words have been adapted for scientific purposes by
giving them precise and restricted meanings. they are more likely
to be misunderstood than words that were specially invented for use
as scientific terms—"‘electron’, for example. Power is a word of the
first kind. It is commonly used to mean force, or ability, or authority.
In technical language it has only one meaning: rate of doing work.
Work here is also a technical term, confined to purely physical
activity such as lifting weights or forcing things to move against
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pressure or friction—or potential difference. If by exerting muscular
force you lift a 101b weight 3 ft against the opposing force of gravity
you do 30ft1b of work. And if you take a second to do it, your rate
of doing work—your power output—is 30ftlb per second, which is
rather more than 1/20th of a horse-power. Correspondingly, if the
electromotive force of a battery raises the potential of 10 electrons
by 3V (i.e., causes them to flow against an opposing p.d. of 3 V) it
does 30 electron-volts (eV) of work; and if it takes one second to
do it the output of power is 30 volt-electrons per second. The electron
per second is, as we saw, an extremely small unit of electric current,
and it is customary to use one more than 6 x 10 times larger-—the
ampere. So the natural choice for the electrical unit of power might
be called the volt-ampere. Actually, for brevity (and for another
reason which appears in Chapter 6). it has been given the name
watt.

We now have the following to add to the table which was given
in Sec. 2.5:

Quantity | Symbol for 1 Unit of | Symbol for
. Quantity I Quantity Unit
i
Electrical power P ' Watt w

We also have the equation P = EJ. So when your 3 V torch battery
is lighting a 0-2 A bulb it is working at the rate of 002 x 3 = 0-6 W.
In this case the battery e.m.f. is occupied in forcing the current
through the resistance of the filament in the bulb, and the resulting
heat is visible. We have already noted that the rate at which heat
is produced in a resistance is proportional to E/—the product of
the e.m.f. applied and the current flowing—and now we know this
to be a measure of the power expended.

Alternative forms of the power relationship can be found as
in Sec. 2.15:

Thus if any two of the four quantities E, /, R, and P are given, all
are known. For example, if a 1000 Q resistor is to be used in a
circuit where 50 V will be maintained across it, the power dissipated
as heat will be 502/1000 = 2-5 W. In choosing such a resistor one
must take care not only that the resistance is correct but also that it
is large enough to get rid of heat at the rate equivalent to 2:5 W
without reaching such a high temperature as to damage itself or
anything near it.

To familiarize oneself with power calculations it would be a good
exercise to add another column to the table in Sec. 2.10, headed
‘Power (watts)’, working out the figures for each resistor and
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checking that they are the same whether derived from EI, PR, or
E%|R. A further check is to add up all the wattages for R, to R, and
see that the total is the same as that for R,

It is often necessary to be able to tell whether a certain part of a
circuit is acting as a giver (or generator, or source) of power, or as a
receiver (or load). The test is whether the current is going through
it in the direction of rising potential, in which case power is being
generated there, or of falling potential, in which case power is being
absorbed. In Fig. 2.12 the current is going through B, fp rom —to +,
so B, is a generator, as one would expect of a battery But it is going
through B, from + to —, so although in a different circuit B,
could be a generator in this one it is a load, into which power is
being delivered, perhaps for charging it. Through any resistance
alone, current can only flow from + to —, because a resistance is
essentially a user-up of power.

2.18 A Broader View of Resistance

It will be found later on in this book that there are other ways in
which electrical power can be ‘lost’ than by heating up the circuit
through which the current flows. This leads to a rather broader
view of resistance; instead of defining it as E//, resulting from an
experiment such as that connected with Fig. 2.3, one defines it as
P/P (derived from P = PR), P being the expenditure of power in
the part of the circuit concerned, and 7 the current through it. The
snag is that P is often difficult to measure. But as a definition to
cover the various sorts of ‘resistance’ encountered in radio it is
very useful.

A feature of electrical power expended in resistance—however
defined—is that it leaves the circuit for good. Except by some in-
direct method it is not possible to recover any of it in the form of
electrical power. But there are ways in which electrical power can
be employed to create a store of energy that can be released again as
electrical power. Energy here is yet another technical term, mean-
ing the amount of work that such a store can do. It can be reckoned
in the same units as work, and so power can be defined alternatively
as rate of release of energy. To return to our mechanical analogy,
30ftlb of energy expended by exerting a force of 101b to push a
box 3 ft across the floor is all dissipated as heat caused by friction.*
But 30ftlb used in raising a 101b weight 3ft is stored as what is
called potential energy. If the weight is allowed to descend, it
delivers up the 30ftlb of energy, which could be used to drive a

* Electrical units are defined in terms of mechanical forces, etc., in metric units.
Because of the relationships between metric and British units, a power of 746 watts
is equal to 550 ft-b per second (1 horse-power). It is confirmed by experiment that
the rate of heating is the same, whether produced by dissipation of 1 mechanical
HP or 746 electrical watts.
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grandfather clock for a week. Another way of storing the energy
would be to push a heavy truck' mounted on ball bearings along rails.
In this case very little of the pressure would be needed to overcome
the small amount of friction; most of it would have the effect of
giving it momentum which would keep it going long after the 3ft
push had finished. A heavy truck in motion is capable of doing
work because the force setting it in motion has been used to store
energy in it; this kind is called kinetic energy.

In the next chapter we shall begin the story of how electrical
energy can be stored and released in two ways, corresponding to
potential and kinetic energy. and how this makes it possible to tune
in to different stations on the radio.



CHAPTER 3

Capacitance

3.1 Charging Currents

Although most of the last chapter was about steady e.m.fs driving
currents through resistances, you may remember that the whole
thing began with the formation of an electric charge. We likened it
to the deportation of unwilling citizens from town A to town B.
Transferring a quantity of electrons from one place to another and
leaving them there sets up a stress between the two places, which is
only relieved when the same quantity of electrons has been allowed
to flow back. The total amount of the stress is the p.d., measured
in volts. And the place with the surplus of electrons is said to be
negatively charged. The original method of charging—by friction—
is'inconvenient for most purposes and has been generally superseded
by other methods. If an e.m.f. of, say, 100 V is used, electrons will
flow until the p.d. builds up to 100 V; then the flow will cease
because the charging and discharging forces are exactly equal.

It was at this stage that we provided a conductive path between
the negatively and positively charged bodies, allowing the electrons
to flow back at a rate proportional to the p.d.; and, as this p.d. is
being maintained by a constant e.m.f., a continuous steady current
is set up. This state of affairs could be represented as in Fig. 3.1.
Our attention then became attached to this continuous current and
the circuit through which it flowed. The electron surplus at the
negative end—and the deficit at the positive end—seemed to have
no bearing on this, and dropped out of the picture. So long as e.m.f.
and current are quite steady, the charges can be ignored.

But not during the process of charging. While that is going on
there must be more electrons entering B than are leaving it; and
vice versa during discharging. Assuming that there are parts of a
circuit requiring a substantial number of electrons to charge them to
a potential equal to the applied e.m.f., then it is clear that the
ordinary circuit principles we have been studying become more com-
plicated whenever the e.m.f. varies. For one thing, it seems as if the
current is no longer the same in all parts of a series circuit. The
moment the e.m.f. is applied, a charging current starts to flow, over
and above any current through conducting paths. If the e.m.f. is
increased at any time, a further charging current flows to raise the
p.d. correspondingly. Reducing the e.m.f. causes a discharging
current. Since telecommunications and most other applications of
electronics involve e.m.fs that are continually varying, it is evidently
important to know how far the charging and discharging currents
affect matters. 40
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3.2 Capacitance: What It Is

The first thing is to find what decides the number of electrons
needed to charge any part of a circuit. The number of pecple that
could be transferred to another town would probably depend on
(a) the pressure brought to bear on them, (b) the size of the town,
and (c) its remoteness. The number of electrons that are transferred
as a charge certainly depends on the electrical pressure applied—
the e.m.f. As one would expect. it is proportional to it. If the battery
in Fig. 3.1 gave 200 V instead of 100, the surplus of electrons

DEFICIENCY A
OF ELECTRONS
HERE
Fig. 3.1—Before a p.d. can be established /
benveen any two parts of a circuit {such !
uas A and B) they must be charged, and {
when the p.d. is rapidly varied the charging \
current may be important \
ELECTRON N A ELECTRON
Flow B~ FLOW

SURPLUS  OF ELECTRCNS HERE

forced into B would be just twice as great. The quantity of electrons
required to charge any part of a circutt to 1 V is called its capacitance.

We have already noted in Sec. 2.5 that as a practical unit of
electric current one ¢electron-per-second would be ridiculously small,
and the number of electrons per second that fits the metric system
(S1) is rather more than 6 x 108 (=1 A). So it is natural to take the
same number of electrons as the unit of electric charge or quantity of
electricity (symbol: Q). It is therefore equal to the number that
passes a given point every second when a current of 1 A is flowing,
and the name for it is the coulomb. So the unit of capacitance is that
which requires 1 coulomb to charge it to 1 volt. It is named the
Jarud (abbreviation: F) in honour of Michael Faraday, who contri-
buted so much to electrical science. In symbols, the relationship
between electric charge. voltage, and capacitance is

Q=VC

which should be compared with the relationship between electric
current, voltage, and conductance (Sec. 2.12). V' is used instead of
E because fundamentally 1t is the p.d. that is involved rather than
the charging e.m.f. If the conducting path and e.m.f. in Fig. 3.1
were both removed, leaving A and B well insulated, their charge
and the p.d. would remain. In practice one need not bother to dis-
tinguish between e.m.f. and p.d. every time (Sec. 2.14). All that
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matters is the voltage, and £ and V' do equally well.

As capacitance is equal to the charge required to set up a given
potential difference between two parts of a circuit or other objects,
one has to speak of the capacitance between those objects, or of
one to another.

3.3 Capacitance Analysed

We saw that when any object is being charged the current going
into it is greater than that coming out. So it Kirchhoff’s law about
currents is true in all circumstances, the object must be more than
just a point; it must have some size. We would expect the capacitance
of objects to one another to depend in some way on their size;
the question is, what way?

When analysing resistance (Sec. 2.11) we found that it depended
on the dimensions of the conductor and what it was made of. So,
of course, does conductance, though in inverse ratio (Sec. 2.12).
Capacitance, however, has to do with the space between the con-
ductors; it results from the force of attraction that can be set up in
that space, or from what is called the electric field. Suppose A and
B in Fig. 3.2 are our oppositely-charged terminals. The directions

\

L \ Fig. 3.2—The dotted lines indicate the direction

1 ! and relative intensity of electric field between

l‘ | nvo oppositely-charged terminals, A and B
i

[

along which the force acts are indicated by dotted lines, called
lines of electric force. These show the paths electrons would take if
they were free to move slowly under the force of attraction to +.
(But to agree with the convention for direction of electric currents
the arrows point in the opposite direction.) To represent a more in-
tense field, lines are drawn more closely together. Each can be
imagined to start from a unit of positive charge and end on a unit
of negative charge. It must be understood that it is a matter of con-
venience what size of unit is taken for this purpose; and that the
lines are not meant to convey the idea that the field itself is in the
form of lines, with no field in the spaces between.

The fact that the space between two small widely-separate objects
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such as these is not confined to a uniform path makes the capacitance
between them a more difficult thing to calculate than the resistance
of a wire. But consider two large flat parallel plates, shown edge-on
in Fig. 3.3a. Except for a slight leakage around the edges, the field
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Fig. 3.3—Consideration of the electric field benween closelv-spaced parallel plates
leads to the rclationship between dimensions and capacitunce

is confined to the space directly between the plates, and this space,
where the field is uniformly distributed, is a rectangular slab.

Suppose, for the sake of example, the plates are charged to 100 V.
Since the field is uniform, the potential changes at a uniform rate
between one plate and the other. Reckoning the potential of the
lower plate as zero, the potential half way between the plates is
therefore 4+ 50 V. A third plate could be inserted here, and we
would then have two capacitances in series, each with a p.d. of 50 V.
Provided that the thickness of the third plate was negligible, its
presence would make no difference to the amount of the charge
required to maintain 100 V across the outer plates. Each of the two
capacitances in series would therefore have the same charge but
only half the voltage. To raise their p.d. to 100 V each, the amount
of charge would have to be doubled (Fig. 3.3b). In other words
(remembering that C = Q/V) halving the spacing doubles the
capacitance. In general, C is inversely proportional to the distance
between the plates (which we can denote by 1, for thickness of the
space).

Next, imagine a second pair of plates, exactly the same as those
in Fig. 3.3a. Obviously they would require the same quantity of
electricity to charge them to 100 V. If the two pairs were joined
together as in Fig. 3.3¢, they would form one unit having twice the
cross-section area and requiring twice the charge to set up a given
p.d.; in other words, twice the capacitance. In general, C is directly
proportional to the cross-section area of the space between the
plates (which we can denote by A).

So the capacitance between two plates separated by a slab of
space in which the electric field is uniform depends on the dimensions
of the slab in the same way as does the conductance of a piece of
material (Sec. 2.12):

€A

c=%
t
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Here € (‘epsilon’) is the ‘constant’, corresponding to conductivity,
needed to link the chosen system of units with the experimentally
observed facts. Formerly the symbol x was used. One would ex-
pect it to be called ‘capacitivity’, but actually the name is absolute
permittivity. When, as in SI units (Sec. 2.11), C is reckoned in farads,
t in metres, and A in square metres, and the space is completely
empty, € turns out to be 8:854 x 10 !2. This particular value is
sometimes called the ‘electric space constant’ and is given the
distinctive symbol g,,.

Filling the space with air makes very little difference: but if you
use solid or liquid materials such as glass, paper, plastics or oil. the
capacitance is considerably increased. The amount by which the
capacitance is multiplied in this way by filling the whole of the space
with such a material is called the relative permittivity of the material,
or oflen just permittivity (symbol: g,).

Insulating materials in this role are called dielectrics, and another
name for relative permittivity is dielectric constant. For most solids
and liquids it lies between 2 and 10, but for special materials it may
be as much as several thousands.

Just as the embodiment of resistance is a resistor, a circuit element
designed for its capacitance is called a capacitor; the older name
condenser is also used. Usually it consists of two or more parallel
plates spaced so closely that most of the field is directly between
them. as in Fig. 3.3.

The capacitance of a capacitor thus depends on three factors:
area and thickness of the space between the plates, and permittivity
of any material there. For convenience, the permittivity specified
for materials is the relative value, €,; and since € is €, times g, the
formula is usually adapted for g, by filling in the value of &,:

_ 8854 x 10 ¢, A
t

C

This practice is so common that the little r is often omitted, ‘€’
being understood to be the relative value.

Supposing, for example, the dielectric had a permittivity of 5 and
was 0-1cm thick, the area needed to provide a capacitance of 1 F
would be about 9 square miles. In practice the farad is far too
large a unit, so is divided by a million into microfarads (uF), or even
by 10'2 into picofarads (pF). Adapting the above formula to the
most convenient units for practical purposes, we have:

€A
ERSTETL

the dimensions being in centimetres.
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3.4 Capacitors

The general symbol for a capacitor in circuit diagrams is Fig. 3.4a.
The capacitors themselves appear in great variety in circuits,
according to the required capacitance and other circumstances.
Some actually do consist of a single sheet of insulating material
sandwiched between a pair of metal plates, but sometimes there are

| l T
. | .
(a) (b) (c) (d)

Fig. 3.4—The standard symbol for a fixed capacitor is at a; it often has many plates
interleaved as at b. Electrolytic capacitors are distinguished as at ¢, in which the white
plate is positive. d denotes a variable capacitor

a number of plates on each side as indicated in Fig. 3.4b. The
effective area of one diclectric is of course multiplied by their
number—in this case four.

A very common form of capacitor consists of two long strips of
aluminium foil separated by polyester film and rolled up into a
compact block. Above a few microfarads it is often more economical
to separate the aluminium electrodes by chemically impregnated
paper or other material which causes an extremely thin insulating
film to form on one of them. Apart from this film-forming, the
solution also acts as a conductor between the film and the other
plate. These electrolytic capacitors must always be connected and
used so that the terminal marked + never becomes negative
relative to the other. Even when correctly used there is always a
small leakage current. To help the wireman, the symbol Fig. 3.4c,
in which the + plate is distinguished by outlining, is used for elec-
trolytic types.

Air is seldom used as the dielectric for fixed capacitors, but is
quite common in variable capacitors. These, indicated in diagrams
as 3.4d, consist of two sets of metal vanes which can be progressively
interleaved with one another, so increasing the effective area, to
obtain any desired capacitance up to the maximum available, sel-
dom more than 500 pF. Plastic film dielectric is used in variable
capacitors where compactness is essential.

Besides the capacitance, an important thing to know about a
capacitor is its maximum working voltage. In Sec. 2.3 we visualized
insulators as substances in which the electrons are unable to drift
through the material in large numbers under the influence of an
electric field but instead they ‘strain at the leash’, being slightly



46

displaced from their normal positions in the atoms. If the intensity of
electric field is increased beyond a certain limit the elastic leashes
tethering the electrons snap under the strain, and the freed electrons
rush uncontrollably to the positive plate, just as if the dielectric
were a good conductor. It has, in fact, been broken down or punc-
tured by the excessive voltage. For a given thickness, mica stands an
exceptionally high voltage, or, as one says, has a relatively high
dielectric strength. Air is less good, but has the advantage that the
sparking across resulting from breakdown does it no permanent
harm.

In our concentration on intentional capacitance between plates,
we should not forget that, whether we like it or not, every part of a
circuit has capacitance to surrounding parts. When the circuit
e.m.fs are varying rapidly, these stray capacitances may be very
important.

3.5 Charge and Discharge of a Capacitor

It is instructive to consider the charging process in greater detail.
In Fig. 3.5 the capacitor can be charged by moving the switch to A,
connecting it across a battery; and discharged by switching to B.
R might represent the resistance of the wires and capacitor plates,
but as that is generally very small it will be easier to discuss the

L

Fig. 3.5—Circuit used for obtuining the
charge and discharge curves shown in
Fig. 3.6
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matter if we assume we have added some resistance, enough to bring
the total up to, say, 200 Q. Suppose the capacitance C is 5 uF and
the battery e.m.f. 100 V.

At the exact moment of switching to A the capacitor is as yet
uncharged, so there can be no voltage across it (Sec. 3.2); the whole
of the 100 V of the battery must therefore be occupied in driving
current through R, and by Ohm’s law that current is found to be
0-5 A (extreme left of Fig. 3.6a). Reckoning the potential of the
negative end of the battery as zero, we have at this stage the positive
end of the battery, the switch, the upper plate of the capacitor, and
(because the capacitor has no p.d. across it) the lower plate also,
all at + 100 V. The lower end of the resistor is zero, so we have
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100 V drop across the resistor, as already stated. Note that imme-
diately the switch is closed the potential of the lower plate of the
capacitor as well as that of the upper plate jumps from zero to + 100.
The use of a capacitor to transfer a sudden change of potential to
another point, without a conducting path, is very common.

We have already seen that the number of coulombs required to
charge a capacitance of C farads to V volts is VC. In this case, it
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Fig. 3.6—These curves show the current and voltage in the circuit of Fig. 3.5 during
charge and discharge

1s 100 x 5 x 1075, which is 0-000 5. As a coulomb is an ampere-
second, the present charging rate of 0-5 A, if maintained, would
fully charge the capacitor in 0-001 sec. The capacitor voltage would
rise steadily as shown by the sloping dotted line in Fig. 3.65. Directly
it starts to do so, however, there are fewer volts available for
driving current through R, and so the current becomes less and
the capacitor charges more slowly. When it is charged to 50 V,
50 V are left for the resistor, and the charging rate is 0-25 A. When
C is charged to 80 V, 20 are left for R, and the current is 0-1 A. And
so on, as shown by the curves in Fig. 3.6.

Curves of this type are known as exponential, and are charac-
teristic of many growth and decay phenomena. Note that the
current curve’s downward slope, showing the rate at which the
current is decreasing, is at every point proportional to the current
itself. It can be shown mathematically that in the time a capacitor
would take to charge at the starting rate it actually reaches 63-29, of
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its full charge. By using the principles we already know we have
calculated that this time in the present example 1s 0-001 sec. Try
working it out with letter symbols instead of numbers, so that it
covers all charging circuits, and you should find that it is CR secs,
regardless of the voltage E. CR—equal to the time in seconds taken
to reach 63-29 of final charge—is of course a characteristic of the
circuit, and is called its time constant. C in this example being
5 % 10-° F and R 200 Q. CR is 0-001 sec, confirming Fig. 3.6.

Theoretically, the capacitor is never completely charged, because
the charging depends on there being a difference between the applied
e.m.f. and the capacitor voltage, to drive current through the
resistance. If the current scale is multiplied by 200 (the value of R),
the upper curve is a graph of this voltage across R. Note that the
voltages across C and R at all times up to 0-004 sec add up to 100,
just as Kirchhoff’s voltage law says they ought (Sec. 2.13).

For practical purposes the capacitor may be as good as fully
charged in a very short time. Having allowed 0-004 sec for this to
happen in the present case, we move the switch to B. Here the
applied voltage is zero, so the voltages across C and R must now add
up to zero. We know that the capacitor voltage is practically 100,
so the voltage across R must be — 100, and the current —0-5 A;
that is to say. it is flowing in the opposite direction, discharging the
capacitor. And so we get the curves in Fig. 3.6 from 0-004 sec
onwards.

A point to remember is that the voltages set up across R at the
instants of switching to A and B are short-lived ; some idea of their
duration in any particular case can be found by multiplying C by R
in farads and ohms respectively, giving the answer in seconds. These
temporary changes are called rransients.

3.6 Where the Power Goes

The height of the charging curve above the zero line in Fig. 3.6a
represents the current supplied by the battery. Multiplied by its
e.m.f. (100 V) it represents the power. When first switched on, the
battery is working at the rate of 0-5 x 100 = 50 W, but at the end
of 0-004 sec this has fallen off almost to nothing. At first the whole
50 W goes into the resistance, so all its energy is lost as heat. But the
effort of the e.m.f. immediately becomes divided. part being re-
quired to drive the current through R and the rest to charge C. It is
clear that energy is going into the capacitance (Sec. 2.18); what
happens to it? The answer is that it is stored as an electric field. in a
similar way to the storage of mechanical energy in a spring when it is
compressed by an applied force. During the charging process as a
whole, then, part of the release of energy from the battery is lost
as heat in the resistor, and part is stored 1n the capacitor.

When we come to the discharge we find that the voltage across R
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and the current through R follow exactly the same curves as during
the charge, except that they are both reversed. But multiplying two
negatives together gives a positive. so the energy expended in R
is the same amount as during charge. The capacitor voltage and
current during the discharge are the same as for the resistor, so the
amount of energy is equal; in fact, it is the same energy. for what
goes into the resistor has to come out of the capacitor. Applying
the test described at the end of Sec. 2.17. we can check that the
capacitor is a source of energy; the current that is going into the
resistor at its positive terminal is coming out from the capacitor’s
positive terminal.

At the end of the discharge. all the energy supplied by the battery
during the charging process has been dissipated in the resistance as
heat. And as the amounts dissipated therein during charge and dis-
charge are equal, it follows that during charge the energy from the
battery was shared equally by R and C.

Summing up: during the charging period half the energy supplied
by the battery is stored as an electric field in the capacitor and half
is dissipated in the resistor; during discharge the half that was
stored 1s given back at the expense of the collapsing field and is
dissipated in the resistor.

It may be as well 10 repeat the warning that the ‘charging’ and
‘discharging’ of accumulator batteries is an entirely different pro-
cess, accompanied by only minor variations in voltage. The elec-
tricity put into the battery is not stored as an electric charge; it
causes a reversible chemical change in the plates.

3.7 Recapitulation

By this time you may be getting a little confused about the mean-
ings and relationships of the various quantities we have met. So
let us recapitulate. First. those that do not necessarily depend on
time. There is electric charge (Q), reckoned in coulombs (C). which
can be thought of as surpluses or deficiencies of electrons. Trans-
ferring electrons from A to B charges A positively and B negatively
(as we say), and sets up a p.d. (V) between them. which is a kind of
stress and is reckoned in volts (V). Q/V is called the capacitance
(€) between A and B, and its unit is the farad (F). To make the
electrons move from A to B against the p.d. created by the separation
of the charges we need an e.m.f. (E) which is reckoned in terms of
the p.d. it is able to counteract, so its unit also is the volt. The p.d.
is always tending to restore the charge to the normal uiicharged
state. and if it is allowed to do so the electrical energy stored in C
is released. That energy is equal to the effort (called work) that the
source of e.m.f. had to do in order to charge C. Because energy
and work, like income and expenditure, are the same thing looked
at from different points of view, they are both denoted by W and
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have the same unit—the joule (J)—new information, this.

We know (Sec. 3.2) that if a charge Q is imparted to a capacitance
C the resulting p.d.. V., is equal to Q/C. But as the starting p.d. was
zero and increased in proportion to the charge, the average p.d.—
and therefore the average e.m.f. needed to transfer the charge—
must be half as much, Q/2C. The work done by the e.m.f., and there-
fore the energy stored in C. is Q multiplied by the average e.m.f.,
that is to say

W =0 x 0/2C = 0*2C = V*C?2C = }1*C

The important thing to remember about energy is that it never
ceases to exist. Even when the switch in Fig. 3.5 is moved to B the
electrical energy stored in C is converted into an equal amount of
heat energy in R.

Time comes into things as rates of happening. The rate at which
charge is moved is called current (/), reckoned in amperes (A). So
if a current of / amps continues steadily for ¢ secs, the charge moved
past a fixed point en route is /t coulombs and 7 = Q/z. If the charge
1s moved against a constant p.d. V, energy equal to VQ is transferred
every second. and an equal amount of work has to be done by a
source of e.m.f. The rate at which energy is transferred and work
is done is called power (P) and is reckoned in watts (W). So P =
VQ/t = VI(Sec. 2.17).

3.8 Displacement Currents

If any readers are worrying about reconciling capacitance with
Kirchhoff’s current law, which implies that current in a series
circuit is the same throughout, they deserve a note on the subject.

There should be no difficulty so far as the extra capacitance due
to dielectrics is concerned. A charging or discharging current in the
circuit connected to the capacitor plates can be regarded as con-
tinued through the dielectric by the displacements of electrons as
they ‘strain at the leash’. The fact that this movement is very
restricted is no problem, for it is consistent with the very limited
quantity of electricity that can be allowed to flow in one direction as
a charging current. To take some practical figures, InF (= 10-° F)
is typical of capacitors in radio circuits, and the voltages across
them are usually quite small. But let us go up to 1000 V as a typical
breakdown voltage. Then using the basic equation @ = VC we
find the charge needed to bring it to that point is only 106 C,
which would be delivered in 1 second at the rate of onlv 1pA. The
enormous number of electrons in the dielectric would not have to
move very far to match such a small drift of their colleagues in the
charging circuit.

The real problem concerns the capacitance left when the dielectric
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is removed and even the air between the plates is pumped out, so
that no electrons or any other charges arc there. If looks as if
Kirchhoff’s current law then breaks down completely.

Clerk Maxwell, who has already come into this story (Sec. 1.9),
was well aware of this difficulty, and got himself out of it by imagin-
ing what he called a displacement current in the empty space, equal
to the charging or discharging current in the rest of the circuit. (The
name connected it with a quantity already well known in the theory
of electricity as displacement.) This seems rather a desperate ex-
pedient for a respectable scientist to fall back on merely in order to
save Kirchhoff’s law from failing in a particular case, and so per-
haps it would be if that were all. But as we saw earlier (Sec. 1.9)
Maxwell was concerned with a much more important matter than
that: the possibility of electric waves in space. These could not
exist, and neither could we, if something equivalent to electric
currents did not function in empty space. After all, we do not have
to understand everything fully in order to use it.



CHAPTER 4

Inductance

4.1 Magnets and Electromagnets

If a piece of paper is laid on a straight bar magnet, and iron filings
are sprinkled on the paper, they are seen to arrange themselves in a
pattern something like Fig. 4.1a. The lines show the paths along
which the attraction of the magnet exerts itself. (Compare the lines
of electric force in Fig. 3.2.) As a whole, they map out the magnetic
field, which is the sphere of influence, as it were, of the magnet. The
field is most concentrated around two regions, called poles.* at the
ends of the bar. The lines may be supposed to continue right through
the magnet, emerging at the end marked N and returning at S.
This direction, indicated by the arrows, is (like the direction of an
electric current) purely conventional, and the lines themselves are
an imaginary representation of a condition occupying the whole
space around the magnet.

The same result can be obtained with a previously quite ordinary
and unmagnetized piece of iron by passing an electric current
through a wire coil round the iron—an arrangement known as an
electromagnet. It is not even necessary to have the iron core (as it is
called); the coil alone, so long as it is carrying current, is interlinked
with a magnetic field having the same general pattern as that due to
a bar magnet, as can be seen by comparing Fig. 4.1a and b. Without
the iron core, however, it is considerably weaker. Finally, if the
wire 1s unwrapped, every inch of it is still found to be surrounded
by a magnetic field. Though very much less concentrated than in the
coil, if the current is strong enough it can be demonstrated with
filings as in Fig. 4.2.

The results of these and other experiments in electromagnetism
are expressed by saying that wherever an electric current flows it
surrounds itself with a field which sets up magnetic flux ¢symbol: @,
the Greek capital phi). This flux and the circuit link one another like
two adjoining links in a chain. By winding the circuit into a compact
coil, the field due to each turn of wire is made to operate in the same
space, producing a concentrated magnetic flux (Fig. 4.15). Finally,
certain materials, notably iron and its alloys, described as ferro-
magnetic, are found to have a very large multiplying effect on the
flux, this property being called the relative permeability of the
material, denoted by the symbol p,, or often just p. The permeabilities

* The terminals of a battery or other source of e.m.f., between which electric field

lines are imagined, are sometimes also called poles. The distinction between +
and — in such sources, and N and S in magnets, is called its polarity.
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of most things, such as air, water, wood, brass, etc., have practically
no effect on the flux and are thercfore generally reckoned as 1.
Certain alloys, not all containing iron, have permeabilities running
into many thousands. Unlike resistivity and permittivity, however,
the permeability of ferromagnetic materials is not even approxi-
mately constant but varies greatly according to the flux density
(i.e., the flux passing through unit area at right angles to its direction).

Fig. 4.1—The dotted lines indicate the direction and distribution of magnetic field
around (a) a permanent bar magnet. and (b) a coil of wire carrying current

] S =3 ST T3
¥
S (a) S (b)
Fig. 4.2—Conventional direction of Fig. 4.3—Deflection of a compuss needle
magnetic field around a straight wire by a magnet, proving that like poles
carrying current repel and unlike poles attract

It is now known that all magnets are really electromagnets.
Those that seem not to be (called permanent magnets) are magnetized
by the movements of the electrons in their own atomic structure.
The term ‘clectromagnet’ is however understood to refer to one
in which the magnetizing currents flow through an external circuit.
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4.2 Interacting Magnetic Fields

The "N’ and ‘S’ in Fig. 4.1 stand for North-seeking and South-
seeking respectively. Everybody knows that a compass needle points
to the north. The needle is a magnet, and turns because its own field
interacts with the field of the earth, which is another magnet. Put
differently, the north magnetic pole of the earth attracts the north-
seeking pole of the needle, while the earth’s south pole attracts its
south-seeking pole. The poles of a magnet are often called just north
and south, but strictly, except in referring to the earth itself, this is
incorrect. By bringing the two poles of a bar magnet—previously
identified by suspending it as a compass—in turn towards a com-
pass needle it is very easy to demonstrate, as in Fig. 4.3, that unlike
poles attract one another. This reminds one of the way electric

charges behave.
Now suppose we hang a coil in such a way that it is free to turn,
as suggested in Fig. 4.4. So long as no current is passing through
Fig. 4.4—A coil carrying current, and free

- SUSPENSION~\’
to rotate. sets itself with its axis pointing

N N and S. a is a side view and b an end view

() (b) '*W—]

the coil it will show no tendency to set itself in any particular
direction, but if a battery is connected to it the flow of current will
transform the coil into a magnet. Like the compass needle, it will
then indicate the north, turning itself so that the plane in which the
turns of the coil lie is east and west, the axis of the coil pointing
north. If now the current is reversed the coil will turn through 180
degrees, showing that what was the N pole of the coil is now, with
the current flowing the opposite way, the S.

The earth’s field is weak, so the force operating to turn the coil is
small. When it is desired to make mechanical use of the magnetic
effect of the current in a coil it is better to provide an artificial field
of the greatest possible intensity by placing a powerful magnet as
close to the coil as possible. This is the basis of all electric motors.

In electronics, however, we are more interested in other applica-
tions of the same principle, such as the moving-coil measuring
instruments described very briefly in Sec. 2.16. The coil is shaped
somewhat as in Fig. 4.4, and is suspended in the intense field of a
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permanent magnet. Hairsprings or taut metal ribbons at top and
bottom of the cotl serve the double purpose of conducting the current
to the coil and keeping the coil normally in the position where the
pointer attached to it indicates zero. When current flows through it
the coil tends to rotate against the restraint of the springs, and the
angle through which it moves is proportional to the magnetic
interaction, which in turn is proportional to the value of the current.

4.3 Induction

In Sec. 4.1 we noted that the magnetic circuit formed by the imagin-
ary flux lines is linked with the electric circuit that causes them, like
two adjoining links in a chain (Fig. 4.5). Now suppose the electric
circuit includes no source of e.m.f. and consequently no current,

Fig. 4.5—An electric current and the magnetic flux set
up thereby are linked with one another as indicated in
this diagram, which shows the relative directions
established by convention

but that some magnetic flux is made to link with it. There are various
ways in which this can be done: a permanent magnet or an electro-
magnet—or any current-carrying circuit—could be moved towards
it, or current could be switched on in a stationary circuit close to it.

o ————

Fig. 4.6—When the magnetic linkage with any closed
path is varied, say by moving a magnet near it, an em.f.
is generated around the path

Whatever the method, the result will be the same: so long as the
flux linked with the circuit is increasing, an e.m.f. is generated in the
circuit. The magnitude and direction of this induced e.m.f. can be
found by means of a suitable voltmeter, as in Fig. 4.6. The amount



56

of e.m.f. is proportional to the rate at which the amount of flux
linked with the circuit is changing. So a constant flux linkage yields
no e.m.f. When the flux is removed or decreased. a reverse e.m.f. is
induced. In Fig. 4.6. the increasingly linked flux has the same
direction as in Fig. 4.5; the e.m.f. induced thereby would tend to
drive current in the direction shown; i.e., in the opposite direction
to the current in Fig. 4.5.

These results, first discovered by Michael Faraday in 1831, are
the basis of all electrical engineering, including of course radio.
The electrical generators in power stations are devices for con-
tinuously varying the magnetic flux linked with a circuit, usually by
making electromagnets rotate past fixed coils. The alternative
method of varying the flux linkages—by varying the current in
adjacent fixed coils—is adopted in transformers (Sec. 4.11) and,
as we shall see, in many kinds of radio equipment.

The Sl unit of flux, the weber (WDb). is such that the induced e.m.f.
‘in volts® is equal to the rate at which the linked flux is changing, in
webers per second.

4.4 Self-Inductance

We have just been considering an e.m.f. being induced in a circuit
by the varying of magnetic flux due to current in some other circuit.
But in Fig. 4.5 we see a dotted loop representing the flux due to
current flowing in that circuit itself. Before the current flowed
there was no flux. So, directly the current was switched on, the flux
linked with the circuit iust have been increasing from zero to its
present value. and in the process it must have been inducing an
e.m.f. in its own circuit. This effect is—very naturally—known as
self-induction. Since Fig. 4.5 can be taken to represent any circuit
carrying current, and because a flow of current inevitably results in
some linked magnetic flux, it follows that an e.m.f. is induced in
any circuit in which the current is varying.

The amount of e.m.f. induced in a circuit (or part of a circuit)
when the current is varied at some standard rate is called its self-
inductance, or often just inductance (symbol: L). Its unit, the henry
(abbreviation: H), was so defined that the inductance of a circuit in
henries is equal to the number of volts self-induced in it when the
current is changing at the rate of 1 ampere per second.

Actually it is the change of flux that induces the e.m.f.. but since
information about the flux is less likely to be available than that
about the current, inductance is defined in terms of current. What
it depends on, then, is the amount of flux produced by a given
current, say | A. The more flux, the greater the e.m.f. induced when
that current takes one second to grow or die, and so the greater
the inductance. The flux produced by a given current depends, as we
have seen, on the dimensions and arrangement of the circuit or part
of circuit, and on the permeability.
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4.5 Lenz’s Law

In Sec. 4.3 we noted the direction of the induced e.m.f. in relation
to the direction of the flux inducing it. By comparing Fig. 4.6 with
Fig. 4.5 we see that a self-induced e.m.f. would tend to send current
round the circuit in the opposite direction to the current producing
the flux that is inducing it. In more general terms, any induced e.m.f.
tends to oppose its cause. This statement is known as Lenz's law,
and is really inevitable, because if induced e.m.fs aided their cause
there would be no limit to their growth. So it is easy to remember.

When you try to stop the clockwise current in Fig. 4.5 by switch-
ing off, the flux in the direction shown begins to decrease. and in
doing so it induces an e.m.f. in the samne direction as that of the
battery, tending to oppose the switch-off and keep the current going.

This is a good point at which to learn another easily remembered
rule—the corkscrew rule. Imagine that the current in Fig. 4.2 is a
corkscrew being driven downwards. The direction the corkscrew
has to be turned is the direction of the resulting flux. This can be
seen in Fig. 4.5 too. And it holds good if the roles are interchanged ;
turning the corkscrew in the direction of the current around the
circuit, the direction in which it moves, in or out, 1s the direction
of the resulting flux through the circuit. With this rule and Lenz's
law we are fully equipped to deal with induction polarity questions.
But we must realize that the directions are conventions, not physical
facts.

4.6 Inductance Analysed

We had no great difficulty in finding a formula expressing resistance
in terms of resistivity and the dimensions of the circuit element con-
cerned. because currents are usually confined to wires or other con-
ductors of uniform cross-section. Capacitance was not so easy,
because it depends on the dimensions of space between conductors,
and the distribution of the electric field therein is likely to be any-
thing but uniform, but for the particular and practically-important
case of a thin space between parallel plates we found a formula
for capacitance in terms of permittivity and the dimensions of
the space. Inductance is even more difficult, because the magnetic
fields of many of the circuit forms used for providing it. known in
general as inductors, are not even approximately uniform or easily
calculated. And some of the flux may link with only part of the
circuit. In coils, for example, the flux generated by one turn usually
links with some of the others but not all.

However, Fig. 4.7 shows a type of inductor in which the coil is
linked with an iron core of nearly uniform cross-section area. The
permeability of the iron is usually so high that the core carries very
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nearly all the magnetic flux; the remainder-—called leakage flux—
that strays from it through the surrounding air or the material of the
coil itself, can be neglected. So it is nearly true to assume that all
the flux links all the turns, and that it is uniformly distributed
through the whole core. On that assumption, the inductance of a

IRON CORE~_

Fig. 4.7—Showing how a closed iron core
links with the turns of the cail and carries
F COI :
oF coit nearly all the flux set up by the coil
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coil is related to the dimensions in the same way as for conductance
and capacitance:

where 4 is the cross-section area of the core, / is its length, and p
is its absolute permeability. As with permittivity, the ‘absolute’
value is the one that gives the answer in the desired units without
the assistance of other numbers (‘constants’). In SI units (Sec. 2.11),
in which L is in henries, 4 in square metres and / in metres, its value
for empty space (sometimes called the ‘magnetic space constant’),
denoted by p,, is 1:257 x 1075, The same value is practically correct
for air and most other substances except the ferromagnetic materials.
Although strictly the permeability (u) is this p, multiplied by the
relative permeability p, (Sec. 4.1), the values quoted for materials
are invariably relative, so the formula is usually adapted for them
by incorporating p,:

_ 1257 x 10 %y, 4

L !

And, as with permittivity, , is then usually written *u’ and called
just ‘permeability’. For air, etc., it can be omitted altogether, being
practically 1. If the dimensions are in centimetres, 108 must be
substituted for 109,

The above equation is for only one turn. If there are N turns
the same current flows N times around the area A, so the flux
(assuming p to be constant) is N times as much. Moreover, this
N-fold flux links the circuit N times, inducing N times as much
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e.m.f. when it varies as in one turn. So the inductance is N? times as
great:

1257 x 10-6 p, AN?
L = —

4.7 Practical Considerations

In practice this formula is not of much use for calculating the in-
ductance of even iron-cored coils. For one thing, in order to get
the core into position around the coil it is necessary to have it in
more than one piece, and the joint is never so magnetically perfect
as continuous metal. Even a microscopic air gap makes an appre-
ciable difference, because it is equivalent to an iron path perhaps
tens of thousands of times as long. Then the permeability of iron
depends very much on the flux density and therefore on the current
in the coil. So one cannot look it up in a list of materials as one can
resistivity or permittivity. It is usually plotted as a graph against
the strength of the magnetizing field. which has the symbol H and is
reckoned as the total current encircling the iron (i.e., the number
of ampere-turns) per unit length of iron carrying the flux. For
many purposes it is even more helpful to have graphs of the flux

FLUX DENSITY, B (TESLAS)

MAGNETIZING FIELD, H {AMPS PER METRE)

Fig. 4.8—The flux density in many magnetic materials such as iron varies with the
magnetizing field in this sort of way

density per square metre, which has the symbol B and is reckoned
in teslas (i.e., webers of flux per square metre) against H, as
in Fig. 4.8. The permeability, equal to B/H, can be found from
this for any particular value of H or B. It is represented by the steep-
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ness of the slope of the graph. A characteristic of ferromagnetic
materials is that increasing the ampere-turns yields progressively
smaller increases in flux density. In other words, the permeability
gets less and less. This effect is called magnetic saturation. Another
effect in ferromagnetic materials will come to our notice in Sec. 25.7.

If you are finding this section rather heavy going, with so many
new quantities cropping up, comfort yourself with the assurance that
they will not be found essential within the scope of this book. But
if you are keen enough to pursue the magnetic relationships farther
you may care to note, starting from the fact that p = B/H, that one
can derive the first formula for inductance in Sec. 4.6:

_ B _w
B=H = a1
pd _ @ _
So ] i L

With ‘air-core’ coils, even when all the turns are close together
it is not correct to assume that all the flux due to each turn links
with the whole lot; and the error is of course much greater if the
turns are widely distributed as in Fig. 4.15. An even greater difficulty
is that tlhe flux does not all follow a path of constant area A and equal
ength /.

A general formula for inductance has nevertheless been given, to
bring out the basic similarity in form to those for conductance and
capacitance, but for practical purposes it is necessary either to
measure inductance or calculate it from the various formulae and
graphs that have been worked out for coils and straight wires of
various shapes and published in radio reference books.

Between a short length of wire and an iron-cored coil with
thousands of turns there is an enormously large range of inductance.
The iron-cored coil might have an inductance of many henries; the
short wire a small fraction of a microhenry. For most purposes the
inductance of connecting wires is small enough to ignore. But not
always. The maximum current may be much less than | A, but if it
comes and goes a thousand million times a second its rate of change
may well be millions of amps per second and the induced voltage
quite large.

It is, of course, this induced voltage that makes inductance
significant. Just how significant will appear in later chapters, but
we can make a start now by comparing and contrasting it with the
voltage that builds up across a capacitance while it is being charged.

4.8 Growth of Current in an Inductive Circuit

What happens when current is switched on in an inductive circuit
can be studied with the arrangement shown in Fig. 4.9, which
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should be compared with Fig. 3.5. To make comparison of the

Fig. 4.9—Circuit used for studying the rise and fall
of current in an inductive circuit
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results easy, let us assume that the inductance, for which the curli-
ness marked L is the standard symbeol, is 0-2 H, and that R (which
includes the resistance of the coil) is 200 Q and Eis 100 V as before.

With the switch as shown, no current is flowing through L and
there is no magnetic field. At the instant of switching to A, the
full 100 V is applied across L and R. The current cannot instantly
leap to 0-5 A, the amount predicted by Ohm’s law, for that would
mean increasing the current at an infinite rate, which would induce
an infinite voltage opposing it. So the current must rise gradually,
and at the exact moment of closing the circuit it is zero. There 15
therefore no voltage drop across R, and the battery e.m.f. is opposed
solely by the inductive e.m.f., which must be 100 V (Fig. 4.10q). That
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Fig. 4.10—Curves showing the current and voltage in the circuit of Fig. 4.9 when the
switch is moved first to A and then to B
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enables us to work out the rate at which the current will grow.
If L were 1 H, it would have to grow at 100 A per sec to induce
100 V. As it is only 0-2 H it must grow at 500 A/s.

In the graph (Fig. 4.10b) corresponding to Fig. 3.6b for the capaci-
tive circuit, the dotted line represents a steady current growth of
500 AJs. If it kept this up, it would reach the full 0-5 A in 0-001 sec.
But directly the current starts to flow it causes a voltage drop across
R. And as the applied voltage remains 100, the induced voltage
must diminish. The only way this can happen is for the current to
grow less rapidly. By the time it has reached 0-25 A there are
50 V across R, therefore only 50 across L, so the current must be
growing at half the rate. The full line shows how it grows; here is
another exponential curve and, as in the capacitive circuit, it
theoretically never quite finishes. In the time that the current would
take to reach its full Ohm’s law value if it kept up its starting pace,
it actually reaches 63-29 of it. This time is, as before, called the
time constant of the circuit. A little elementary algebra based on the
foregoing shows it to be L/R seconds.

The voltage across L is also shown. Compared with Fig. 3.6,
current and voltage have changed places. The voltage across R is
of course proportional to the current and therefore its curve is the
same shape as Fig. 4.105. Added to the upper, it must equal 100 V
as long as that is the voltage applied.

When the current has reached practically its full value, we flick
the switch instantaneously across to B. The low resistance across
the contacts is merely to prevent the circuit from being completely
interrupted in this process. At the moment the switch is operated,
the magnetic field is still in existence. It can only cease when the
current stops, and the moment it begins to do so an e.m.f. is induced
which tends to keep it going. At first the full 0-5 A is going, which
requires 100 V to drive it through R; and as the battery is no longer
in circuit this voltage must come from L, by the current falling at
the required rate: 500 A/s. As the current wanes, so does the
voltage across R, and so must the induced voltage, and therefore
the current dies away more slowly, as shown in the continuation of
Fig. 4.10. In L/R (= 0:001) secs it has been reduced by the in-
evitable 63-2 9.

4.9 Power During Growth

In reckoning how the power in the circuit varies during these
operations, we note firstly that the output from the battery (cal-
culated by multiplying the current at each instant by its 100 V) in-
stead of starting off at S0 W and then tailing off almost to nothing,
asin the capacitive example, starts at nothing and works up towards
50 W. If there had been no C in Fig. 3.5 there would have been no
flow of power at any time; the effect of C was to make possible a
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temporary flow, during which half the energy was dissipated in R
and half stored in C. In Fig. 4.9, on the other hand, absence of L
would have meant power going into R at the full 50-W rate all the
time; the effect of L was to withhold part of that expenditure from
R for a short time. Not all this energy withheld was a sheer saving to
the battery, represented by the temporarily sub-normal current;
part of it—actually a half—went into L, for the current had to be
forced into motion through it against the voltage induced by the
growing magnetic field. The energy was in fact stored in the inagnetic
field, in a similar way to the storage of mechanical energy when force
is applied to set a heavy vehicle in motion.

Just as the vehicle gives up its stored energy when it is brought
to a standstill, the result being the heating of the brakes. so the
magnetic field in L gave up its energy when the current was brought
to a standstill, the result being the heating of R. Self-inductance is
therefore analogous to mechanical inertia.

The amount of energy stored when a current / is flowing is again
equal to the charge Q transferred during the magnetizing process.
multiplied by the p.d. it has been transferred against. Supposing the
current grew at the starting rate in Fig. 4.10 it would reach its full
value / in time L/R, so Q = IL/R. The average p.d. across the coil
is clearly half the maximum value /R. So

W=’l§ x JIR=}PL

4.10 More Comparison and Contrast

In the previous chapter we saw that besides the conducted currents.
reckoned by dividing voltage by resistance, there is an extra current
whenever the voltage is varying. This current is made up of move-
ments of charges caused by the electric field adjusting itself to the
new voltage. It is proporttonal not only to the rate at which the
voltage is changing but also the capacitance (intentional or other-
wise) of the part of the circuit considered. In this chapter we have
seen that in addition to the resistive voltage, reckoned by multiplying
current by resistance, there is an extra voltage whenever the current
is varying. This voltage is caused by the magnetic field adjusting
itself to the new current. It is proportional not only to the rate at
which the current is changing but also to the inductance (intentional
or otherwise) of the part of circuit considered.

4.11 Mutual Inductance

If a coil with the same number of turns as that in Fig. 4.9 were
wound so closely around if that practically all the magnetic flux
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due to the original primary winding embraced also this secondary

IRON CORE

Fig. 4.11—How a transformer is represented PRIMARY
in circuit diagrams WINDING

SECONDARY
WINDING

winding, then an equal voltage would at all times be induced in the
secondary. If an appreciable part of the flux is not linked with the
secondary winding, the voltage induced in it is correspondingly less.
But by giving the secondary more turns than the primary, it is
possible to obtain a greater voltage in the secondary than in the
primary. Remember that this voltage depends on the varying of the
primary current. A device of this kind, for stepping voltages up or
down, or for inducing voltages into circuits without any direct
connection, is named (rather inappropriately) a transformer. It is
represented in circuit diagrams by two or more coils drawn closely
together. An iron core is shown by one or more straight lines
drawn between them (Fig. 4.11).

The effect that one coil can exert, through its magnetic field, on
another, is called mutual inductance (symbol: M), and like self-
inductance is measured in henries. The definition is similar too:
the mutual inductance in henries between two coils is equal to the
number of volts induced in one of them when the current in the other
is changing at the rate of | A per second.

Transformers are an immensely useful application of the induc-
tive effect, and in fact are the main reason why alternating current
(a.c.) has almost superseded direct current (d.c.) for electricity
supply. So we now proceed to study a.c.



CHAPTER 5

Alternating Currents

5.1 Frequencies of Alternating Current

In our first chapter we saw that speaking and music are conveyed
from one person to another by sound waves, which consist of rapid
vibrations or alterations of air pressure. And that to transmit
them over longer distances by telephone it is necessary for electric
currents to copy these alternations. And further, that for trans-
mitting them across space, by radio, it is necessary to use electric
currents alternating still more rapidly. We have now just noted
the fact that the great advantage of being able to step voltages up
and down as required is obtainable only when the electricity supply
is continually varying, which is most conveniently done by arranging
for it to be alternating. Public electricity supplies which light and
heat our houses and provide the power that works our television
receivers and many other facilities are therefore mostly of the
alternating-current kind.

The only essential difference between all these alternating currents
is the number of double-reversals they make per second; in a word,
the frequency. We have zlready gone fairly fully into the matter
of frequency (Sec. 1.4), so there 1s no need to repeat it; but it may be
worth recalling the main divisions of frequency.

There is no hard-and-fast dividing line between one lot of fre-
quencies and another; but those below 100 Hz are used for power
(the standard in Britain is 50 Hz); those between about 20 and
20000 Hz are audible, and therefore are classed as audio frequencies
(a.f.); while those above about 15000 are more or less suitable for
carrying signals across space, and are known as radio frequencies
(r.f.). Certain of these, such as 525000 to 1605000, are allocated for
broadcasting. All those above about 1000 MHz (wavelengths
shorter than about 1 ft) are often lumped together as microwave fre-
quencies.

What has been said about currents applies to voltages, too; it
requires an alternating voltage to drive an alternating current.

The last two chapters have shown that when currents and voltages
are varying there are two circuit effects—capacitance and inductance
—that have to be taken into account as well as resistance. We
shall therefore be quite right in expecting a.c. circuits to be a good
deal more complicated and interesting than d.c. Before going on to
consider these circuit effects there are one or two things to clear up
about a.c. itself.

65
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5.2 The Sine Wave

An alternating current might reverse abruptly or it might do so
gradually and smoothly. In Fig. 3.6¢ we have an example of abrupt
reversal. There is, in fact, an endless variety of ways in which
current or voltage can vary with time, and when graphs are drawn
showing how they do so we get a corresponding variety of wave
shapes. The steepness of the wave at any point along the time scale
shows the rapidity with which the current is changing at that time.

Fortunately for the study of alternating currents, all wave shapes,
however complicated, can be regarded as built up of waves of one
fundamental shape, called the sine wave (adjective: sinusoidal).
Fig. 1.2¢ shows examples of this. Note the smooth, regular alterna-
tions of the component sine waves, like the swinging of a pendulum.
Waves of even such a spiky appearance as those in Fig. 3.6 can be
analysed into a number of sine waves of different frequencies.

Most circuits used in radio and other systems of telecommunica-
tion consist basically of sources of alternating e.m.f. (often called
generators) connected to combinations of resistance, inductance
and/or capacitance (usually called loads). With practice one can
reduce even very complicated-looking circuits to standard generator-
and-load combinations.

We have just seen that although there is no end to the variety of
waveforms that generators can produce. they are all combinations of
simple sine waves. So it isenough to consider the sinc-wave generator.
Sources of more complicated waveforms can be imitated by com-
binations of sine-wave generators. Theoretically this dodge is
always available. but in practice (as, for example, with square
waves) there are sometimes easier alternatives, as we shall see in
Chapter 24. Unless the contrary is clear, it is assumed from now on
that a generator means a sine-wave generator.

5.3 Circuit with Resistance only

The simplest kind of a.c. circuit is one that can be represented us a
gencrator supplying current to a purely resistive load (Fig. 5.1).
We have already found (Sec. 2.6) how to calculate the current any

G R Fig. 5.1—Circuit consisting of an a.c. generator (G) feeding u
purelv resistive load (R)

given e.m.f. will drive through a resistance. Applying this method
to an alternating e.m.f. involves nothing new. Suppose. for example,
that the voltage at the peak of each wave is 200, and that its fre-
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quency is 50 Hz. Fig. 5.2 shows a graph of this e.m.f. during rather
more than one cycle. And suppose that R is 200 Q. Then we can
calculate the current at any point in the cycle by dividing the
voltage at that point by 200, in accordance with Ohm’s law. At the
peak it is, of course, 200/200 = 1 A half-way up the wave it is
0-5 A. Plotting a number of such points we get the current wave,
shown dotted. It is identical in shape, though different in vertical
scale.

5.4 R.M.S. Values

How is an electricity supply that behaves in this fashion to be
rated? Can one fairly describe it as a 200-V supply, seeing that the
actual voltage is changing all the time and is sometimes zero? Or
should one take the average voltage?

The answer that has been agreed upon is based on comparison
with d.c. supplies. It is obviously very convenient for a lamp or

EMF  CURRENT
(VOLTS) (AMPS)

200 20
150 1g
100 0
50 05 \
of \
° TIME
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-100 -0} 4
_‘50 _l.s - 4
-200 -20
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POWER B POWER
200 200
(WATTS) WATTS
150
100 - AVERAGE
POWER
50 100
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Fig. 5.2—Time graphs of e.m.f., current and power in the circuit Fig. 5.1. Note that the
Sfrequency of the power waves is twice that of the e.m.f. and current

heater intended for a 200-V d.c. system to be equally suited to a.c.
mains of the same nominal voltage. This condition will be fulfilled
if the average power taken by the lamp or heater is the same with both
types of supply, for then the element will reach the same temperature
and the light or heat will be the same in both cases.

We know (Sec. 2.17) that the power in watts is equal to the voltage
multiplied by the amperage. Performing this calculation for a
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sufficient number of points in the alternating cycle in Fig. 5.2, we
get a curve showing how the power varies. To avoid confusion it
has been drawn below the E and / curves. A significant feature of
this power curve is that although during half of every cycle the
voltage and current are negative, their negative half-cycles always
exactly coincide, so that even during these half-cycles the power is
(by the ordinary rules of arithmetic) positive. This mathematical
convention agrees with and represents the physical fact, checked
by the test given at the end of Sec. 2.17, that while both current and
voltage reverse their direction the flow of power is always in the
same direction, namely, out of the generator.

Another thing one can see by looking at the power curve is that
its average height is half the height of the peaks. The peak height
15 200 x 1 = 200 W; so the average power must be 100 W. This can
be checked by cutting out the areas of wave above 100 W and finding
that they exactly fill the empty troughs below 100 W, giving a steady
100 W of d.c. The next step 1s to find what direct voltage would be
needed to dissipate 100 W in 200 Q; the answer is again in Sec. 2.17:
P = E?|R, from which £2 = PR, which in this case i1s 100 x 200 =
20000. So E = 20000 = 141 approximately.

Judged on the basis of equal power, then, an a.c. supply with a
maximum or peak voltage of 200 is equivalent to a d.c. supply at
141 V.

Generalizing this calculation, we find that when an alternating
voltage is adjusted to deliver the same power to a given resistance
as a direct voltage, its peak value is |’2 times the direct voltage, or
about 1:414 times as great. Put the other way round, its nominal or
equivalent or effective voltage—called its r.m.s. (root-mean-square)
value—is 1/ 2 or about 0-707 times its peak value. Since the resist-
ance is the same in both cases, the same ratio exists between r.m.s.
and peak values of the current. What is called a 240-V a.c. supply
therefore alternates between 4+ and — 2 x 240 = 339 V peak.

The r.m.s. value is not the same as the average voltage or current
(which is actually 0-:637 times the peak value, if averaged over a
half cycle, or zero over a whole cycle). If you have followed the
argument carefully you will see that this is because we have been
comparing the a.c. and d.c. on a power basis, and power is propor-
tional to voltage or current squared.

Remember that the figures given above apply only to the sine
waveform. With a square wave (Fig. 6.2h) for example. it is obvious
that peak, r.m.s., and average (or mean) values are all the same.

There is one other recognized ‘value’—the instantaneous value,
changing all the time in an a.c. system. It is the quantity graphed
in Fig. 5.2. It can be found for any stage of a cycle by dividing the
cycle into 360 degrees of angle as in Sec. 5.7 and then looking up the
sine of that angle in a trigonometrical table and multiplying the peak
value by it.

As regards symbols, plain capital letters such as £, V and I are
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generally understood to mean r.m.s. values unless the contrary is
obvious. Instantaneous values, when it is necessary to distinguish
them, are denoted by small letters, such as /; peak values by /,,,,:
and average (or mean) values by /,,.. .

Using r.m.s. values for voltage and current we can forget the
rapid variations in instantaneous voltage, and, so long as our circuits
are purely resistive, carry out all a.c. calculations according to the
rules discussed in Chapter 2.

5.5 A.C. Meters

If alternating current is passed through a moving-coil meter (Sec.
4.2) the coil is pushed first one way and then the other, because the
current is reversing in a steady magnetic field. The most one is
likely to see is a slight vibration about the zero mark. Certainly it
will not indicate anything like the r.m.s. value of the current.

If, however, the direction of magnetic field is reversed at the
same times as the current, the double reversal makes the force act
in the same direction as before, and the series of pushes will cause
the pointer to take up a position that will indicate the value of
current. The obvious way to obtain this reversing magnetic field
is to replace the permanent magnet by a coil and pass through it
the current being measured. When the current is small the field
also is very weak and the deflection too small to be read, so this
principle is seldom used, except in wattmeters, in which the main
current is passed through one coil, and the other—the volt coil—
is connected across the supply.

A more usual type is that in which there is only one coil, which
is fixed. Inside are two pieces of iron, one fixed and the other free
to move against a hairspring. When either d.c. or a.c. is passed
through the coil, both irons are magnetized with the same polarity,
and so repel one another, to a distance depending on the strength of
current. These moving-iron meters are useful when there is plenty
of power to spare in the circuit for working them, but they tend to
use up too much in low-power circuits.

Another method is to make use of the heating effect of the current.
When a junction of two different metals is heated, a small uni-
directional e.m.f. is generated, which can be measured by a moving
coil meter. Instruments of this kind, called thermojunction or
thermocouple types, if calibrated on d.c. will obviously read r.m.s.
values of a.c. regardless of waveform. They are particularly useful
for much higher frequencies than can be measured with instruments
in which the current to be measured has to pass through a coil.

The electrostatic instrument (Sec. 2.16) can be used for alternat-
ing voltages and responds to r.m.s. values.

But perhaps the most popular method of all is to convert the
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alternating current into direct by means of a rectifier—a device
that allows current to pass through it in one direction only—so
that it can be measured with an ordinary moving-coil meter. The
great advantage of this is that by adding a rectifier a multi-range
d.c. instrument can be used on a.c. too. Most of the ‘multimeters’
used in radio and electronics are of this kind. Because the moving-
coil instrument measures the average current, which in general is
not the same as the r.m.s. current, the instrument is arranged
to take account of the factor necessary to convert one to the other.
This, as we have seen, is approximately 0-707/0-638 (= 1-11) for
sine waves. It is different for most other waveforms, so the rectifier
type of meter reads them incorrectly.

5.6 Phase

Looking again at the current graph in Fig. 5.2 we see that it not
only has the same shape as the e.m.f. that causes it but it is also
exactly in step with it. Consideration of Ohm’s law proves that
this must be so in any purely resistive circuit. The technical word
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Fig. 5.3—The time lag between the start of A and the start of B is the sante in a and
b. but in a the two voltuges are quarter of a cvcle out of phase and in b are in phase.
Time is therefore not the basic meusure of phase
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for being in step is being in phase. The idea of phase is very im-
portant, so we had better make sure we understand it.

Suppose we have two alternating generators, A and B. The
exact voltages they give will not matter, but to make it easier to
distinguish their graphs we shall suppose A gives double the voltage
of B. If we start drawing the voltage graph of A just as it begins a
cycle the result will be something like waveform A in Fig. 5.3a.
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Next, consider generator B, which has the same frequency, but is out
of step with A. It starts each of its cycles, say, quarter of a cycle
later than A, as shown by waveform B. This fact is stated by saying
that voltage B lags voltage A by a phase difference of quarter of a
cycle. Seeing that it is a time graph. it might seem more natural to
say that B lagged A by a phase difference of 0-005 sec. The incorrect-
ness of doing so is shown in Fig. 5.3b, where the frequency of A
and B is four times as great. The time lag is the same as before, but
the two voltages are now in phase. So although phase is usually very
closely related to time, it is not advisable to think of it as time. The
proper basis of reckoning phase is in fractions of a cycle.

5.7 Phasor Diagrams

The main advantage of a time graph of alternating voltage, current,
etc., is that it shows the waveform. But on those very many occasions
when the form of the wave is not in question (because we have agreed
to stick to sine waves) it is a great waste of effort to draw a number
of beautifully exact waves merely in order to show the relative
phases. Having examined Figs. 1.2, 5.2 and 5.3, we ought by now
to be able to take the sine waveform for granted, and be prepared to
accept a simpler method of indicating phases.

In Fig. 5.4, imagine the line OP to be pivoted at O and to be
capable of rotating steadily in the direction shown (anticlockwise),

Fig. 5.4—Starting position of an alternative method of \
representing sinusoidal variation oy

o

which by mathematical convention is the positive direction of
rotation. Then the height of the end P above a horizontal line
through O varies in exactly the same way as a sine wave. Assuming
OP starts, as shown in Fig. 5.4, at ‘3 o’clock’, P is actually on the
horizontal line, so its height above it is, of course, nil. That represents
the starting point of a sine-wave cycle. As OP rotates, its height
above the line increases at first rapidly and then more slowly, until,
after a quarter of a revolution, it is at right angles to its original
position. That represents the first quarter of a sine-wave cycle.
During the third and fourth quarter of the revolution, the height of
P is negative, corresponding to the same quarters of a cycle.

Readers with any knowledge of trigonometry will know that the
ratio of the height of P to its distance from O (i.e., PQ/PO in Fig. 5.5)
is called the sine of the angle that OP has turned through; hence
the name given to the waveform we have been considering and
which is none other than a time graph of the sine of the angle 0
(abbreviated ‘sin 8°) when 0 (pronounced ‘theta’) is increasing at a
steady rate.
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We now have a much more easily drawn diagram for representing
sine waves. The length of a line such as OP represents the peak
value of the voltage, etc., and the angle it makes with the ‘3 o’clock’
position represents its phase. The line itself is called a phasor. The
angle it turns through in one whole revolution (which, of course,
brings it to the same position as at the start) is 360°, and that

— A
90°
B
Fig. 5.5—The Fig. 54 phasor after Fig. 5.6—Phasor diagram
having turned through an angle, 6 corresponding to Fig. 5.3a

corresponds to one whole cycle of the voltage. So a common way
of specifying a phase is in angular degrees. Quarter of a cycle is 90°,
and so on. Usually even a waveform diagram such as Fig. 5.3 is
marked in degrees.

Besides the common angular measure, in which one whole
revolution is divided into 360°, there is the mathematical angular
measure in which it is divided into 2n radians. Seeing that = is a
very odd number (Sec. 0.1.1) this may seem an extremely odd way
of doing things. It arises because during one revolution P travels
2n times its distance from O. Even this may not seem a good enough
reason, but the significance of it will appear very soon in the next
chapter.

As an example of a simple phasor diagram, Fig. 5.6 is the equivalent
of Fig. 5.3a. In the position shown it is equivalent to it at the begin-
ning or end of each cycle of A, but since both phasors rotate at the
same rate the 90° phase difference shown by it between A and B is
the same at any stage of any cycle. If the voltages represented had
different frequencies, their phasors would rotate at different speeds,
so the phase difference between them would be continually changing.

It should be stated here that the subject of phasor diagrams is
currently treated in a number of different ways, which are examined
in the author’s book Phasor Diagrams. Phasors are still often called
vectors, but vectors are the subject of a branch of mathematics
dealing with vector quantities, which current and voltage are not.
The likelihood of misunderstanding through using the same name
for things that are essentially different is increased by the common
practice of attaching an arrow head to the end of each phasor,
making it look exactly like a vector. The arrow head is quite un-
necessary, and can be confusing until it is realized that it does not
indicate a direction of motion.

Worthy of more respect is the doctrine that phasors should not
be supposed to rotate. Some of the reasons are rather too subtle
for the present level of study, and in any case the difference between
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the two schools of thought is theoretical rather than practical, be-
cause the diagrams that even rotating-phasor exponents draw on
paper are inevitably fixed there. The effort of imagining them to be
rotating at 3000 rev/min to represent a frequency of 50 Hz (let alone
the speeds corresponding to radio frequencies!) might well induce
a feeling of dizziness. So long as all the phasors in a diagram repre-
sent quantities having the same frequency, the shape of the diagram
does not change. Nevertheless, in the early stages of study we may
find it helpful to turn the diagram around in order to see ‘in slow
motion’ how each voltage and current in an a.c. circuit changes
relative to the others as the cycle progresses.

It is an essential part of the rotating phasor concept that the
length of the phasor represents the peak value. But without forgetting
this there is really no reason why we should not make use of the
fact that the ratio between peak and r.m.s. values is constant (y/2)
to regard the phasors alternatively as representing r.m.s. values. It
is merely a matter of choice of scale. This is convenient and is often
done, expecially when one has become used to interpreting stationary
diagrams.

5.8 Adding Alternating Voltages

A great advantage of the phasor diagram is the way it simplifies
adding and subtracting alternating voltages or currents that are not
in phase. To add voltages A and B in Fig. 5.3a, for example, one
would have to add the heights of the A and B waves at close intervals
of time and plot them as a third wave. This would be a very laborious
way of finding how the peak value and phase of the combined
voltage (or resultant, as 1t is called) compared with those of its
component voltages. In a phasor diagram it is quickly done by
‘adding’ phasor B to the rotating end of phasor A, as in Fig. 5.7,

o A

Fig. 5.7—How to find the phasor representing the resultant
of A and B (Fig. 5.3a)

and drawing a straight line from 0 to the ‘loose’ end of B. This line
is the phasor of the combined voltage, A + B. Its length represents
its peak value (to the same scale as A and B) and its angle represents
its relative phase. Alternatively of course A can be added to B.
Note that the result of adding two voltages that are not in phase is
less than the result of adding them by ordinary arithmetic, and its
phase is somewhere between those of the components. Since it is
representable by a phasor, it is sinusoidal, like its components.



74
5.9 Direction Signs

Have you ever been directed to a destination by someone who
supposed that it was being approached from the opposite direction?
It is a very perplexing and frustrating experience. Yet quite a
common one for students of a.c., because much of the literature on
the subject is ambiguous in its direction signs.

All our talk about voltages and currents will do us no practical
good unless we can relate them to circuits. Already we have been
drawing graphs and phasor diagrams of voltages A and B without
any reference to where they could be found. So let us suppose that
voltage A (call it ¥,) occurs between terminals ¢ and d in a circuit,
and Vjp between terminals e and f in the same or another circuit.
As these circuits might be very complicated, in Fig. 5.8 only the

d
\ Fig. 5.8—If Vg is known to lag quarter of a
——wof cycle behind V ,, which of its terminals first

Y [7
& eo~= L becomes positive after d?
c

terminals are shown. A very common way of indicating the voltages
between them is as shown there, with two-way arrows. Now let us
try to relate this to the waveform graph, Fig. 5.3, which tells us that
the positive peak of ¥y occurs quarter of a cycle later than the
positive peak of V,. The phasor diagram, Fig. 5.6, tells us the same
thing in a simpler way. Suppose that at a certain instant d is at
positive peak relative to c. Then we know that a quarter of a cycle
later either e or f will be at peak positive relative to the other. Which
one? The answer we have is like that of the man who was asked
‘Will Oxford or Cambridge win the boat race? and replied ‘Yes’.
Quite true, but quite useless. So are two-way arrows as voltage
signposts.

One solution to the difficulty is to insist on arrows pointing one
way only, like any sensible signpost. The same applies of course to
currents. When we were dealing with d.c. circuits, such as Fig. 2.12,
one point that had to be made clear was that there needed to be
agreement on whether the arrow heads marked what we knew were
(say) the positive ends, or merely the ends that were to be taken as
positive, so that if any voltage, at first unknown, turned out to be
negative we would know that the arrow head would mark what was
actually the negative end. With a.c. the voltages and currents are
continually reversing, so no terminal or direction is any more
positive than negative ; but one-way arrows or even + and — signs
can be used for a.c. to show the polarity that is arbitrarily taken as
positive at a given instant. Half a cycle later everything will be re-
versed, but things that were opposite in sign will still be so and like
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signs will still be like. Provided that all phasors are correctly marked
to correspond (hence the arrow-head custom) this method can be
made to work. Phasor Diugrams mentions eight disadvantages it
has, however. and advises a system that is free from all of them. A
brief outline follows.

5.10 Subscript Notation

If the terminals are labelled. as in Fig. 5.8, there is no need to mark
the voltages or their directions on the circuit diagram at all; V, is
automatically Veq or Vg, and so on. In practice there is no need
even to write the V; it is much easier to write (and especially to type)
just cd or de. Similarly there is no need to mark the phasor with an
A, or V4. as in Fig. 5.7; nor with an arrow. Marking its ends ¢ and
d makes it correspond completely with the circuit. We do not then
have to make an arbitrary choice of polarity: both sets of half-
cvcles are equally represented. If necessary, we can distinguish
between a voltage and its phasor by following the usual convention
of italic type for a voltage (e.g., cd) and roman letters for its phasor
(cd).

Only one thing remains to be settled. When cd is positive, which
terminal is the positive one? Some people who use a subscript
voltage notation write the letters in the order that makes a voltage
rise negative. It seems more natural, and fits in with other con-
ventions better, to regard a rise as positive, and that is what will be
done here. So whenever terminal d is positive relative to ¢, voltage
«d will be taken as positive, signifying in fact the change in potential
on moving from c to d. It follows that dc would be negative.

Fig. 5.9 shows how Fig. 5.7 wouid be redrawn according to the
foregoing conventions. It tells us that if terminals d and e were

c de

Fig. 5.9—Fig. 5.7 redrawn, using double-subscript
convention reluted 1o Fig. 5.8

f

connected together, the voltage between ¢ and f would be correctly
represented by the phasor between ¢ and f. The angle by which it
lags cd is marked ¢ (Greek small phi), the usual symbol for a
phase difference. It answers all questions unambiguously. For ex-
ample, when d is at peak positive with respect to ¢, what is the
potential of f relative to ¢, and when will it reach its positive peak?
If we turn Fig. 5.9 quarter of a turn anticlockwise. so that cd is bolt
upright and therefore appropriately representing c¢d at positive
peak, « being at its farthest above ¢, corresponding to Fig. 5.3a
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0-005 sec from the origin, cf shows that ¢/ is nearing its positive peak
and will reach it in a fraction ¢/360° of a cycle.

If instead of connecting e to d we had connected it to ¢, Fig. 5.10
would be the appropriate diagram. It shows the potential at fa full
quarter-cycle behind that at d (both relative to ¢). This agrees with

& d

Fig. 5.10—If one of the circuit connections was
reversed, this would apply instead of Fig. 5.9

f

Fig. 5.3a, but until we had a proper notation we were unable to tell
which was the right connection, and in fact went astray in Fig. 5.7.

One of the advantages of not using arrow heads in phasor dia-
grams is that we are not tied to any one point as the centre about
which the thing is supposed to rotate. Whichever point in the circuit
we choose to regard as the reference point, or zero potential, with
respect to which all other voltages are reckoned, is the appropriate
centre, and we can mark it with a circle or stick a pin through it to
serve as an axis.

5.11 Current Phasors

Attempts to extend subscript notation to currents usually run into
trouble, because people write I .4 to mean the current flowing from
c to d. But whereas there can be only one voltage at a time between
two points, there can be as many currents as there are parallel paths.
This difficulty can be avoided by labelling the meshes or loops of the
circuit. There are excellent theoretical reasons for doing this, but

b b
A
()
@ R Fig. 5.11—Voltage and current phasor diagrams
relating to the very simple circuit shown
a a
(a) (b)

it also works in practice. To distinguish currents from voltages,
capital letters can be used for the meshes. All we need is to agree on
which order of letters to use in order to denote the positive direction
of current. Either would do, but to agree with Phasor Diagrams let
us say that I, (which we can convenientiy write as 4B) in Fig.
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5.11a means positive current moving up through the generator and
down through the resistor. Note that although this simplest of
circuits appears to have only one mesh we must mark the external
one (A) too. Note also that I, or B. means the current circulating
clockwise around mesh B, and 4B means the net current crossed in
moving fron: A to B.

For such a simple circuit the phasor diagram is very simple. There
are only two terminals, so only one voltage, ab or ba, between them
and therefore onc voltage phasor (Fig. 5.116). When «b is peak
posttive, as shown, we know (Sec. 5.3) that the current 4 B, which
according to our convention is the one flowing upward through the
generator, is also peak positive, so is represented by the vertically
upward phasor AB.

It can be said fand many of those who use other conventions
probably will say) that there are two voltages in this circuit. And ina
sense there are, but they are really the same voltage looked at from
two opposite points of view. The only way of finding two voltages
with a voltmeter is to measure it once and then measure it again
with reversed leads. If we think of Kirchhoff’s voltage law and
start at a, going clockwise around the circuit with the current, at the
instant represented by the phasors, we find that when we have
reached b the potential has risen. In other words, ab is positive.
Going now through the resistor R to b we find the potential falls.
In other words, ba is negative. This may seem too obvious to
have to explain. but it is surprising how confused the people
who use arrows can get about it. And i1 the confusion is possible with
this simplest of circuits the need to be quite clear before going on to
more complicated ones needs no emphasis.

One objection that is sometimes raised against the foregoing
notation is that it introduces a minus sign into Ohm’s law, since the
voltage across R in the direction of 4B is ba. But this is not so in the
form of the law which says that the current is proportional to the
voltage upplied. (This i1s usually implied by using E for the voltage,
in I = E/R.) In Fig. 5.11a the voltage applied is the generator
voltage, ab.



CHAPTER 6

Capacitance in A.C. Circuits

6.1 Current Flow in a Capacitive Circuit

The next type of basic circuit to consider is the one shown in
Fig. 6.1. If the generator gave an unvarying e.m.f. no current
could flow, because there is a complete break in the circuit. The
most that could happen would be a momentary current when
switching on, as shown in Fig. 3.6.

Some idea of what is likely to happen when an alternating e.m.f.
is applied can be obtained by an experiment similar to Fig. 3.5 but
with an inverted battery in the B path, as shown in Fig. 6.2a. Moving
the switch alternately to A and B at equal time intervals will then
provide an alternating voltage of square waveform (Fig. 6.2b).

Whenever the switch is moved to A there is a momentary charging
current in one direction, and moving it to B causes a similar current
in the reverse direction.

We know that for a given voltage the quantity of electricity
transferred at each movement of the switch is proportional to the
capacitance (Sec. 3.2). And it is obvious that the more rapidly the
switch is moved to and fro (that is to say, the higher the frequency of
the alternating e.m.f.) the more often this quantity of electricity will
surge to and fro in the circuit (that is to say, the greater the quantity
of electricity that will move in the circuit per second, or, in other
words, the greater the current).

So although the circuit has no conductance an alternating e.m.f.
causes an alternating current. It does not flow conductively through
the capacitor, whose dielectric is normally a very good insulator,
but can be visualized as flowing in and out of it. Alternatively,
Sec. 3.7 suggested how the current can be regarded as existing even
between the capacitor plates.

The fact that an alternating e.m.f. can make a current flow in a
circuit blocked to d.c. by a capacitance in series is easily demon-
strated by bridging the open contacts of an electric light switch by a
capacitor (of suitable a.c. rating!); say 2puF for a 40 W lamp (Fig.
6.3). The lamp will light and stay alight as long as the capacitor is
connected. But it will not be as bright as usual. The less the capacit-
ance, the dimmer the light. The amount of current due to a given
voltage thus depends on two things: the capacitance and the
frequency.
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Fig. 6.1—Circuit consisting of an a.c. gencratar with a purely c
capacitive load, for comparison with Fig. 5.1

AT'B +E
+5[ © iy
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Fig. 6.2—If the generator in Fig. 6.1 consisted of the periodically switched batteries
as shown at a, the waveform would be as at b, and the current (assuming a certain
amount of resistance) could be calculated as discussed in connection with Fig. 3.6
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Fig. 6 4—E.m . and current diagram for Fig. 6.1, drawn to correspond with Fig. 5.2
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6.2 Capacitive Current Waveform

Let us now consider the action of Fig. 6.1 in greater detail, by
drawing the graph of instantaneous e.m.f. (Fig. 6.4) exactly as for
the resistive circuit, in which we assumed a sine waveform. But
unlike the resistive case there is no Ohm’s law to guide us in plotting
the current waveform. We have, however, a rather similar relation-
ship (Sec. 3.2):

V=0|C

where V is the p.d. across C and Q is the charge in C. This is true
at every instant, so we can rewrite it v = ¢/C, to show that we mean
instantaneous values. In Fig. 6.1, v is always equal in magnitude to
e, the instantaneous e.m.f. So we can say with confidence that at
the moments when e is zero the capacitor is completely uncharged,
and at all other moments the charge is exactly proportional to e.
If we knew the right scale, the voltage wave in Fig. 6.4 would do also
as a charge curve. But we are not so much interested in the charge
as in the current; that is to say, the rate at which charging takes
place. At points marked «, although the voltage and charge are
zero they are growing faster than at any other stage in the cycle.
So we may expect the current to be greater than at any other times.
At points marked b, the charge is decreasing as fast as it was growing
ata, so the current is the same in magnitude but opposite in direction
and sign. At points marked c, the charge reaches its maximum,
but just for an instant it is neither growing nor waning; its rate of
increase or decrease is zero, so at that instant the current must be
zero. At intermediate points the relative strength of current can be
estimated from the steepness of the voltage (and charge) curve.
Joining up all the points gives a current curve shaped like the dotted
line.

If this job is done carefully the shape of the current curve is also
sinusoidal, as in the resistive circuit, but out of phase, being quarter
of a cycle (or 90°) ahead of the voltage.

On seeing this, students are sometimes puzzled and ask how the
current can be ahead of the voltage. ‘How does the current know
what the voltage is going to be, quarter of a cycle later? This
difficulty arises only when it supposed, quite wrongly, that the
current maximum at a is caused by the voltage maximum quarter
of a cycle later, at ¢; whereas it is actually caused by the voltage at «
increasing at its maximum rate.

6.3 The ‘Ohm’s Law’ for Capacitance

What we want to know is how to predict the actual magnitude of
the current, given the necessary circuit data. Since, as we know
(Sec. 3.2), when there is | V between the terminals of a 1-F capacitor
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its charge must be 1 C, we can see that if the voltage were increasing
at the rate of 1 V/s the charge would be increasing at 1 C/s. But
we also know that 1 C/s is a current of 1 A; so from our basic
relationship, @ = VC. we can derive

Amps = Volis-per-second x Farads.

The problem is how to calculate the volts-per-second in an alter-
nating e.m.f., especially as it is varying all the time. All we need do,
however, is find it at the point in the cycle where it is greatest—at «
in Fig. 6.4. That will give the peak value of current, from which all
its other values follow (Sec. 5.4).

Going back to Fig. 5.5, you may remember that one revolution
of P about O represents one cycle of alternating voltage, the fixed
length OP represents the peak value of the voltage, and the length
of PQ (which, of course, is varying all the time) represents the
instantaneous voltage. When P is on the starting line, as in Fig. 5.4.
the length of PQ is zero. but at that moment it is increasing at the
rate at which P is revolving around O. Now the distance travelled by
P during one cycle is 2x times the length of OP. And if the frequency
1s 50 Hz, it does this distance 50 times per second. Its rate is there-
fore 2n x 50 times OP. More generally, if f'stands for the frequency
in hertz, the rate at which P moves round O is 2nf times OP. And
as OP represents E.,.. we can say that P’s motion represents
27f E .., vOlts per second (Fig. 6.5). But we have just seen that it

6TH OF
Fig. 6.5—From this diagram it can be in- LE,’;}:E,USO
Sferred that the maximum rate at which E : .
increases is 2nf E,.,. volis per second REPRESENTS

also represents the maximum rate at which PQ, the instantaneous
voltage, is growing. So, fitting this information into our equation,
we have

Imax - znfEmax C

where / 1s in amps. E in volts, and C in farads. Since /,, and
E ... are both 4,2 times 7 and FE (the r.m.s. values) respectively, it
1s equally true to say

I =2nfEC
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And if we rearrange it like this:

E_ 1

1 2nf C
and then take another look at one of the forms of expressing
Ohm’s law:

we see they are the same except that 1/2nf C takes the place of R in
the role of limiting the current in the circuit. So, although 1/2nf C is
quite a different thing physically from resistance, for purposes of
calculation it is of the same kind, and it is convenient to reckon it
in ohms. To distinguish it from resistance it is named reactance. To
avoid having to repeat the rather cumbersome expression 1/2nf C,
the special symbol X has been allotted. The ‘Ohm’s law’ for the
Fig. 6.1 circuit can therefore be written simply as

.E=X orl=—E orF=1X
1 X

For example, the reactance of a 2 uF capacitor to a 50 Hz supply
is 1/2rn x 50 x 2 x 10°% = 1592 Q, and if the voltage across it
were 240 V the current would be 240/1 592 = 0-151 A.

The factor group 2nf occurs so often in connection with a.c.
circuits that it 1s commonly denoted by the Greek small omega, o.
So an alternative way of writing the reactance is 1/wC. But in this
elementary book the formulae will be used mainly for numerical
examples, so it may be clearer if the separate factors are shown.

6.4 Capacitances in Parallel and in Series

The argument that led us to conclude that the capacitance between
parallel plates is proportional to the area across which they face one
another (Sec. 3.3) leads also to the conclusion that capacitances in
parallel add up just like resistances in series.

We can arrive at the same conclusion by simple algebraic reason-
ing based on the behaviour of capacitors to alternating voltage.
Fig. 6.6 represents an a.c. generator connected to two capacitors in
parallel. The separate currents in them are respectively £ x 2nfC:
and £ x 2nfC,. As these currents are in phase with one another
(because both lead E by the same angle), the total current is £ X 2nf
(C1 + C2), which is equal to the current that would be taken by a
single capacitance equal to the sum of the separate capacitances of
Ci and Ca.
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We also saw that if a single capacitor is divided by a plate placed
midway between its two plates, the capacitance between the middle
plate and either of the others is twice that of the original capacitor.
In other words, the capacitance of two equal capacitors in series is
half that of each of them. Let us now consider the more general
case of any two capacitances in series.

If X1 and X2 are respectively the reactances of C; and C; in
Fig. 6.7, their combined reactance X is (X1 + Xz), as in the case of

Fig. 6.6—In this circuit the capacitance of C, and C, to-
gether is equal to C, + C, ' ! 3 G &)

resistances in series. By first writing down the equation X = X; +
X2, and then replacing each X by its known value, of form 1/2n/C,
we deduce that

I |

cC G
That is, the sum of the reciprocals of the separate capacitances is
equal to the reciprocal of the total capacitance.

So the rule for capacitances in series is identical with that for
resistances or reactances in parallel. From the way it was derived

™
Ky}
A
™
S
_"__“

Co ==

J ]

(a) (b)

Fig. 6.7—If the one capacitor C in b is to take the same current as the nvo in series at
a, its capacitance must be equal to 1/(1/C, + 1/C,)

it is evidently not limited to two capacitances only, but can be
applied to any number. It implies that if capacitors are connected
in series, the capacitance of the combination is always less than that
of the smallest.
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Applied to two capacitances only, the rule can, as with resistances
(end of Sec. 2.9), be put in the more easily workable form

c=_6GC
Ci+ C:

6.5 Power in a Capacitive Circuit

Fig. 6.4 was drawn to match Fig. 5.2 as regards peak voltage and
current. The only difference is the current’s 90° phase lead. Let
us now complete the picture by calculating the wattage at a sufficient
number of points to draw the power curve (Fig. 6.8). Owing to the
phase difference between E and 1, there are periods in the cycle when

VOLTS AMPS
200 20 4
|
150 5 —+
EMF N / \
100 n-os}{ M. —
50 0 ;: A\ // 7\\ \
o o !\ { '
/ N
-50 _0.5L J_‘.A_\t_ —7 NG {
ICURRENT ~ / \J
=100 —ro[— T < 7 |
=150  -kS———+——T—1 / . i
-200 20—+ 1 '
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S| | POWER
] T T T +100
s * P:WERJ 1IN\ | || warTs
|
of— + - = AVERAGE
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-100 1 J 1 ; ; i L

Fig. 6.8—The current and voltage graphs for a capacitance load (Fig. 6.4) are here
repeated, with a power graph derived from it plotted below

they are of opposite sign, giving a negative power. In fact, the
power is alternately positive and negative, just like E and I except
for having twice the frequency. The net power, taken over a whole
cycle, is therefore zero. Since we are applying the sign ‘+’ to
positive current going through the generator towards positive
potential, positive power means power going out of the generator,
and negative power is power returned to the generator by the load
(end of Sec. 2.17).

The power curve in Fig. 6.8 represents the fact that although a
pure capacitance draws current from an alternating generator it
does not permanently draw any power—it only borrows some
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twice per cycle, repaying it in full with a promptitude that might be
commended to human borrowers.

A demonstration of this fact is given by the capacitor in series
with the lamp (Fig. 6.3}. The lamp soon warms up, showing that
electrical power is being dissipated i it, but although the capacitor
is carrying the same current it remains quite cold.

6.6 Phasor Diagram for Capacitive Circuit

In dealing with such a simple circuit as Fig. 6.1 we are not likely to
become uncertain about the directions of e.m.f. and current repre-
sented in graphs such as Fig. 6.8, cspecially as we have just stated
them fully in words in order to check the directions of power flow.
But in order to get into practice for more complicated circuits let
us draw the phasors for Fig. 6.1, as we did for the simple resistive
circuit in Fig. 5.11.

Fig. 6.9a shows the circuit suitably labelled. We can always choose
the angle at which to draw the first phasor, so to make it easy to
—— i
|

(a) (b)

Fig. 6.9—Simplest capacitive circuit and corresponding phasor diagrams

compare with Fig. 5.11 let us draw the voltage phasor in the same
way, indicating that terminal b is at peak positive potential with
respect to a. At that moment, therefore, the voltage across C has
just stopped increasing and is about to decrease; so C is charged
to the maximum extent, positive on the upper plate. The current,
which has been flowing clockwise to deliver that charge, is now at
zero and about to discharge anticlockwise. The current phasor must
therefore be drawn horizontal, to signify zero current. And as
anticlockwise current, which our convention denotes by BA, is
the one about to become positive, it must be drawn left to right as
shown (Fig. 6.9b). As ab is the generator voltage applied to C, one
would usually refer to the clockwise current 4B, which the diagram
shows to be a quarter of a cycle ahead of ab. This confirms the rule
for sinusoidal a.c., well known to electrical engineers, that the
current into a pure capacitance leads the applied voltage by 90°.
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6.7 Capacitance and Resistance in Series

Fig. 6.10 shows the next type of circuit to be considered: C and R
in series. We know how to calculate the relationship (magnitude
and phase) between voltage and current for each of these separately.
When they are in series the same current will flow through both, and
this current cannot at one and the same time be in phase with the
generator voltage and 90° ahead of it. But it is quite possible—and
in fact essential—for it to be in phase with the voltage across the
resistance and 90° ahead of the voltage across the capacitance. These
two voltages, which must therefore be 90° out of phase with one
another, must add up to equal the generator voltage. We have
already added out-of-phase voltages by two different methods
(Fig. 5.3 and Fig. 5.7), so that part of it should not be difficult.
Because the current, and not the voltage, is common to both
circuit elements, it will be easier to reverse the procedure we have
adopted until now, and, starting with a current, find the e.m.f.
required to drive it. When we have in that way discovered the key
to this kind of circuit, we can easily use it to calculate the current
resulting from a given e.m.f.

We could, of course, represent the two voltages by drawing
waveform graphs, and, by adding them, plot the graph of the total
generator voltage and compare 1t for phase and magnitude with
the current graph. But seeing we have taken the trouble to learn the
much quicker phasor method of arriving at the same result, we

(0) (b)

Fig. 6.10—C and R in series, and corresponding phusor diagrams

might as well use it. (If you prefer not to, there is nothing to stop
you drawing the waveforms.)

The first thing, then, is to draw a current phasor AB at any angle
we please. In Fig. 6.10 it is vertical. 4B being a clockwise current,
we know that it is in phase with the voltage applied clockwise, via
G and C, to the resistor R; that is to say ac. So we draw ac parallel «



87

to AB to show that they are in phase. We know that 4B leads by
90° the voltage applied clockwise, via R and G, to C; that is to say
cb. So cb should be drawn to lag AB by 90°. The generator e.m.f,,
ab, is then indicated in magnitude and phase. The current is leading
it by the angle @, less than 90°.

Y ou may ask how we know how long to draw these phasors. The
current one has to be drawn first, and at that stage we do not know
how much current there is, even if we know ab, f, C and R. Whatever
AB may turn out to be, however, any length of phasor will be right
if a suitable scale is chosen. As for ac and cb, those voltages are
proportional to R and X (= 1/2nfC), so we can draw their phasor
lengths in the ratio R : X. Then if we know the generator e.m.f.,
ab represents it, so the voltage scale is found and hence the values
of ac and cb. Lastly. AB can be calculated by Ohm’s law as ac/R.

Most of the time, however, phasor diagrams are drawn just to
show the principle without bothering about the exact values they
represent. At low frequencies at least, it is likely that C would
impede current more than R and so take the major share of the
available e.m.f., so cb has been drawn longer than ac.

6.8 Impedance

A new name is needed to refer to the current-limiting properties
of this circuit as a whole. Resistance is appropriate to R and reactance
to C; a combination of them is called impedance (symbol: Z).
Resistance and reactance themselves are special cases of impedance.
So we have still another relationship in the same form as Ohm’s
law ; one that covers the other two, namely:

1=£

74

Although Z combines R and X, itis not true to say Z = R + X.
Suppose that in Fig. 6.10 C is the 2uF capacitor which we have
already calculated has a reactance of 1592 Q at 50 Hz, and that R
is a round 1000 Q. AB, shall we say, is 0:1 A. Then ac must be
100 V and cb 159 V. If the phasor diagram was drawn accurately to
scale it would show ab to be 188 V, so Z must be 1880 Q, which is
much less than 1592 + 1000.

As the three voltage phasors refer to the same current, to a
suitable scale they also represent the corresponding three im-
pedances: resistive, reactive and total. Also, as they make a right-
angled triangle, the celebrated Theorem of Pythagoras tells us that

ZZ=R2+X2
orZ =+ (R4 X?
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In trigonometry the ratio cb/ac, which we have just seen is equal
to X/R, is known as the tangent of the angle ¢, abbreviated to
tan ¢. As there are tables from which the angle corresponding to
any tangent can be seen, phase angles can be found from

X
tan g = *
an R

So we have the alternative of computing Z by arithmetic instead
of drawing a phasor diagram or a waveform diagram accurately to
scale.

The phasor triangle also tells us, of course, that

ab = \/(ac* + cb?)

(Note that here ‘ac is really one symbol, all squared; nota X ¢2)
We will no doubt have already realized that 100 V and 159 V, the
voltages across R and C, do not add up in the ordinary way to equal
188 V, the voltage across both. This would be very puzzling—in
fact, quite impossible, and a serious breach of Kirchhoff’s voltage
law—if these figures were instantaneous values. But of course they
are r.m.s. values, and the explanation of the apparent discrepancy
is that the maximum instantaneous values do not occur all at the
same time. This is most clearly shown by a waveform graph, tedious
though it is to draw as a means of calculating the total voltage, etc.,
compared with a phasor diagram or algebra.

But this type of phasor diagram does very neatly illustrate
Kirchhoff’s voltage law, because the voltage phasors for any whole
circuit always necessarily form a closed geometrical figure, such as
our triangle.

6.9 Power in Mixed Circuit

By now we should hardly need to draw waveform diagrams such
as Fig. 6.8 in order to find how much power the generator delivers
to the Fig. 6.10 circuit. Fig. 6.8, together with Fig. 6.9, has shown
that when phasors are at right angles, as they are when they refer to
a perfect capacitor, energy flows to and fro between generator and
load, but none is permanently delivered. That is because a capacitor
can store electrical energy and returns it in the same form, unlike a
resistor, which dissipates it all as heat just as fast as it is received.
In Sec. 5.4 we found that the power P delivered to and dissipated by
resistance R is E?/R, where E is the r.m.s. voltage across it. As
R = E|I, I being the r.m.s. current through R, by substituting for
R in the first equation we get P = EI, just as with d.c. (Sec. 2.17).
The quantities corresponding in Fig. 6.10 to E and / are AB and ac,
if those are being used to represent r.m.s. values. If however they



89

are used more strictly to represent peak values, and since peak
values are 4/2 X r.m.s. values, P would be equal to 4B. ac/2.

In a circuit such as this, including both R and C in series, the
part of the total voltage that should be multiplied by the current
to find the power dissipated is represented by the phasor that is
parallel to the current phasor: ac in Fig. 6.105. In terms of the total
voltage, this voltage is ab. ac/ab, or ER|Z. So

EIR
P ===
Z

E and 7 being the total voltage and the current.
In trigonometry the ratio ac/ab is called the cosine of the angle ¢,
abbreviated to cos @. So another form of the same equation is

P=Flcoso

¢ being the phase angle between E and 1. Cos ¢ is known to electrical
engineers as the power factor.

6.10 Capacitance and Resistance in Parallel

In solving this type of circuit, Fig. 6.11, we revert to the practice
of starting with the voltage, because that is common to both.
What we do, in fact, is exactly the same as for the series circuit

8

() (b)

Fig. 6.11—A parallel circuit such as this is similar to a series circuit such as Fig. 6.10
with voltages and currents interchanged

except that currents and voltages change places. We now have two
currents, CB and 4C, one in phase with the e.m.f. ab and the other
90° ahead of it. By drawing the phasors accordingly, Fig. 6.115, we
find the total current, 4B, and the phase angle ¢ by which it leads
ab.
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By the same methods as we used in Sec. 6.8 we find that

AB = 4/(AC* + CB?)

This is in fact the same equation, apart from the capital letters for
currents instead of small ones for voltages. As with them, AC is
regarded as one symbol, all squared.

Calculating the impedance is slightly more complicated, however,
because the currents are inversely proportional to the impedances
through which they flow. So 1/Z = 4/(1/R? + 1/X?%), or

which can be simplified to

= Rx
v(R? + X?)

Compare the formula for two resistances in parallel at the end of
Sec. 2.9.
“In Sec. 2.12 we found that calculations in parallel resistance
circuits can be made as simple as those for series circuits by sub-
stituting conductance, G, for 1/R. This idea has been extended to

A

Cs

2 Ry -]- Ca .]. (2

Fig. 6.12—Example of a complex circuit that can be reduced to Fig. 6.11 by applying
the rules for resistances and capacitances in series and in parallel

a.c. circuits by introducing susceptance, B, for 1/X, and admitiance,
Y, for 1/Z. The equations for parallel circuits then correspond to
those for series circuits (Sec. 6.8):
Y =4/(G*+ BY
and I = EY (compare / = EG in Sec. 2.12.)

Tan ¢ in Fig. 6.11b is equal to CA/BC, and as these currents are
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proportional to susceptance and conductance respectively we have

B
t =5
an @

Note that the method by addition of squares can be applied only
to circuits in which the two currents or voltages are exactly 90° out
of phase, as when one element is a pure resistance and the other a
pure reactance. Combining series impedances which are themselves
combinations of resistance and reactance in parallel, or vice versa,
is a rather more advanced problem than will be considered here.
Such a circuit as Fig. 6.12, however, can be tackled by rules already
given. R; and R; are reduced to a single equivalent resistance
(Sec. 2.10) which is then added to R;. Ci1, Cz2 and C; are just added
together, and so are C4 and Cs; the two resulting capacitances in
series are reduced to one (end of Sec. 6.4). The circuit has now
beiled down to Fig. 6.11.



CHAPTER 7

Inductance in A.C. Circuits

7.1 Current Flow in an Inductive Circuit

Although the phenomenon of magnetism, which gives rise to
inductance, differs in many ways from electrostatics, which gives
rise to capacitance, -it is helpful to draw a very close parallel or
analogy between them. Inductance and capacitance are, in fact,
like opposite partners; and this chapter will in many ways be a
repetition of the last one, but with a few basic things reversed.

We have already noticed some striking similarities as well as
differences between capacitance and inductance (Sec. 4.10). One
thing that could be seen by comparing them in Figs. 3.6 and 4.10
was an exchange of roles between voltage and current.

The simple experiment of Fig. 6.2 showed that, in a circuit con-
sisting of a square-wave alternating-voltage generator in series with
a capacitor, the current increased with frequency, beginning with
zero current at zero frequency. This was confirmed by examining
in more detail a circuit (Fig. 6.1) with a sine-wave generator, in
which the current was found to be exactly proportional to frequency.

Comparing Fig. 4.10 with Fig. 3.6, we can expect the opposite to
apply to inductance. At zero frequency it has no restrictive in-
fluence on the current, which is limited only by the resistance of the
circuit. But when a high-frequency alternating e.m.f. is applied
the current has very little time to grow (at a rate depending on the
inductance) before the second half-cycle is giving it the ‘about turn’.
The gradualness with which the current rises, you will remember,
is due to the magnetic field created by the current, which generates
an e.m.f. opposing the e.m.f. that is driving the current. It is rather
like the gradualness with which a heavy truck gains speed when you
push it. If you shake it rapidly to and fro it will hardly move at all.

For finding exactly how much current a given alternating voltage
will drive through a given inductance (Fig. 7.1) we have the basic
relationship (Sec. 4.4):

Volts = Amps-per-second x Henries (Compare Sec. 6.3.)

Adapting the same basic method we begin with a sinusoidal
current and find what voltage is required. The dotted curve in
Fig. 7.2 represents such a current during rather more than one cycle.
At the start of a cycle (a), the current is zero, but is increasing faster
than at any other phase. So the amps-per-second is at its maximum,
and so therefore must be the voltage. After half a cycle (b) the cur-
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rent is again zero and changing at the same rate, but this time it is
decreasing, so the voltage is a maximum negative. Halfway between
(c) the current is at its maximum, but for an instant it is neither
increasing nor decreasing, so the voltage must be zero. And so on.
Completing the voltage curve in the same way as we did the current

Fig. 7.1—Circuit consisting of an a.c. generator with a purely L
inductive load
VOLTS AMPS
200 20 T Y T
™| T T ]
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50 05—t TN\ 7T\
o Of— AT e\ T o~ | Ac o T ¢
-50 -0s—A+ { N vt
ACURRENT | \ g >
-100 -10 N 7
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Fig. 7.2—E.m.{f. and current graphs for Fig. 7.1, drawn 10 correspond with Figs. 5.2
and 6.4

curve in Fig. 6.4, we find that it also is sinusoidal. This is very fortu-
nate, for it allows us to say that if the sinusoidal voltage represented
by this curve were applied to an inductance, the current curve
would represent the resulting current, which would be sinusoidal.

7.2 The ‘Ohm’s Law’ for Inductance

We have already found (Sec. 6.3) that when an alternating e.m.f. E,
of frequency f, is sinusoidal, its r.m.s. volts-per-second is 2nfE.
The same method applies equally to current, so the r.m.s. amps-per-
seceond is 2nf]. Fitting this fact into our basic principle we get

E =2nfIL

where L is the inductance in henries. )
What we set out to find was the current due to a given em.f, so
the appropriate form of the above equation is

E
I =
2nfL

Again, this is in the same form as Ohm’s law, 2nfL taking the
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place of R. This 2rfL can therefore also be reckoned in ohms,
and, like 1/2n/C, it is called reactance and denoted by X. When-
ever it is necessary to distinguish between inductive reactance and
capacitive reactance they are denoted by X, and X¢ respectively.
X 1s the general symbol for reactance.

A question that may come to mind at this point is: can X, and
Xc in the same circuit be added in the same simple way as resistances?
The answer is so important that it is reserved for the next chapter.

Note in the meantime that X, is proportional to f, whereas
X is proportional to 1/f; this expresses in exact terms what our
early experiments had led us to expect about the opposite ways in
which frequency affected the current due to a given voltage.

An example may help to clinch the matter. What is the reactance
of a 2 H inductor at 50 Hz? X = 2rf L = 2rn x 50 x 2 = 628Q.
So if the voltage is 240, the current will be 240/628 = 0-382 A.

7.3 Inductances in Series and in Parallel

The previous section has shown that the reactive impedance of
an inductance is directly proportional to the inductance—oppositely
to that of capacitance (which is proportional to 1/C), but exactly
like resistance. So inductances can be combined in the same way
as resistances. The total effect of two in series, L1 and L., is equal
to that of a single inductance equal to L, + L:. And inductances
in parallel follow the reciprocal law: 1/L = 1/L, + 1/L, or

L= _Lils
L+ L,

These principles can easily be verified by adding the reactances when
they are in series, and the currents when the inductances are in
parallel.

The above rules are subject to one important condition, however:
that the inductors are so placed that their mutual inductance (Sec.
4.11) or magnetic coupling is negligible. If mutual inductance, M,
does exist between two coils having separate self-inductances L, and
L,, the total self-inductance of the two in seriesis L, + L, + 2M or
L + L, — 2M, according to whether the coils are placed so that
their separate magnetic fields add to or subtract from one another.
The .eason M is doubled is that each coil is affected by the other, so
in the combination the same effect occurs twice.

The corresponding elaboration of the formula for two inductances
in parallel gives the result

[ =L M (L £ M)
Li+ L+ 2M

where ‘1’ signifies ‘4 or —’.
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Complications arise also when the fields of two capacitors interact,
but with the usual forms of construction such interaction is seldom
enough to take into account.

7.4 Power in an Inductive Circuit

Comparing Figs. 6.4 and 7.2 we see one difference. Whereas the
capacitive current leads its terminal voltage by quarter of a cycle
(90°). the inductive current lags by that amount. If you want some-
thing to do you might care to calculate the instantaneous power at
intervals throughout the cycle in Fig. 7.2 anc draw a power curve,
as in Fig. 6.8. But the same result can be achieved with less trouble
simply by reversing the time scale in Fig. 6.8. making it read from
right 10 left. So except for relative phases the conclusions regarding
power in a pure inductance are exactly the same as for a capacitance:
the net power taken over a whole cyele i1s zero, because during half
the time the generator is expending power in building up a magnetic
field. and during the other half the energy thus built up is returning
power to the generator. So in the example we took, with 240V pass-
ing 0:382 A through 2 H, 240 x (382 does not represent watts
dissipated in the circuit (as it would with resistance) but half that
number of volt-amps tossed to and fro between generator and in-
ductor at the rate of 100 times a second.

If you try an experiment similar to Fig. 6.3, but using a coil of
several henries in place of the capacitor, you may find that it does
become perceptibly warm. This is because the coil is not purely
inductive. Whereas the resistance of the plates and connections
of a capacitor is usually negligible compared with its reactance, the
resistance of the wire in a coil is gznerally very appreciable. Al-
though the resistance and inductance of a coil are physically in-
separable. it is allowable to consider them theoretically as separate
items in series with one another.

7.5 Phasor Diagram for Inductive Circuit

For comparison with Fig. 6.9 we draw the simple circuit diagram,
Fig. 7.3a. of a generator feeding a load consisting of pure (i.e..
resistanceless) inductance. We start with the current phasor and by
applying the basic principles we know, as in Sec. 6.6. we find that
the correct relative angle of the voltage phasor is as shown (Fig.
7.3b). With the same conventions as before, it expresses the well-
known rule that the current through a pure inductance lags the
applied sinusoidal voltage by 90°.
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7.6 Inductance and Resistance in Series

R in Fig. 7.4a represents the resistance of the inductor whose in-
ductance is represented by L, plus any other resistance there may
be in series. This circuit can be tackled in exactly the same manner
as Fig. 6.10. As the current is common to both L and R we again
begin with its phasor. The voltage phasor ac is again parallel to AB,

b

(a) ()]
Fig. 7.3—The circuit of Fig. 7.1 repeated with its phasor diagrams

(a) (b)

Fig. 7.4—L and R in series, and corresponding phasor diagrams

and in fact the only real difference is that the phasor representing
the voltage cb applied to L must be drawn so that AB is 90° behind
in phase, which is the same thing as saying cb must lead AB by that
angle.

As ac is parallel to AB, ¢ is the angle by which 4B lags the total
applied voltage, ab. Again, as in Secs 6.8 and 6.9, and by similar
reasoning,

Z =14/ (R*+ X?

tan(p=l

and P = Elcoso
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7.7 Inductance and Resistance in Paralla!

Fig. 7.5 corresponds to Fig. 6.11 and the phasor diagram is derived
in the same way. As the current AC through L lags the applied
voltage ab by 90° instead of leading it as it would with a capacitor,
AC must be drawn in the opposite direction, and ¢ is the angle by
which the total current supplied by the generator lags its voltage.

If R is independent of L, then this circuit is somewhat unrealistic,
as the resistance of the wire with which L is wound is not allowed

8

] /

o A c

(a) (b)

Fig. 7.5—Parallel LR circuit and phasor diagranis

for. Ifits resistance were included (in series with L) the problem could
be solved by combining the methods for series and parallel im-
pedances, as in Sec. 8.9. We shall see however. in Sec. 8.16, that Fig.
7.5a is an alternative way of taking account of the resistance of a
reactive component.

The formulae for Z, Y, etc., found in Sec. 6.10, apply equally here.
X standing for inductive instead of capacitive reactance.

The more advanced books extend the methods and scope of
circuit calculation enormously; but before going on to them one
should have thoroughly grasped the contents of these last two
chapters. Some of the results can be summarized like this:

Applicd voliage.

[ Resistance, In phase with
R Oth ................... current
[ Capacitive.
Reactance, Xc=12rfC --- Lags }current

Impedance, y
Z ohms

X ohms o
Inductive, L7y
L Xy=2nfL---- Leads

With R and X in series. Z =  (R* 4+ X?)and tan ¢ = X/R.
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Current:
( Conductance In phase with
Admittance Gsiemens -« -« ---- R applied voltage
Y siemens [ Capacitive :
| Susceptance | Be=2nfC----- Leads~ applied
{  Bsiemens < voltage
Inductive by 90

[ By=1/2nfL --- Lags
With G and B in parallel, Y = /(G? + B?) and tan ¢ = B/G.

7.8 Transformers

In Sec. 4.11 we had a brief introduction to the transformer, which
is an appliance very widely used for electrical purposes, including
radio and electronics. We are now equipped to study it in a little
more detail, beginning with Fig. 7.6a. This represents a transformer

b d

b * ° d
A B l
@ |
a Cc a C
(a) (b)

Fig. 7.6-—Unloaded | : | transformer with 100°%, coupling

connected to a generator giving the usual sinusoidal waveform. Let
us assume that the primary and secondary coils have the same
number of turns, and at this stage such complications as their
resistance are conveniently assumed to be absent. An iron core is
used to ensure that we can also assume, without serious error, that
all the magnetic flux generated by the primary coil also links with
the secondary, which at present is not connected to anything. The
dots marking the top ends of the coils are a standard ¢onvention to
exclude uncertainty about the relative direction of the windings.
Without it one could not be sure about the polarity of the secondary
voltage. If both coils are wound around the core in the same direc-
tion, then the dots mark both starting ends or both finishing ends.

With the secondary coil open-circuited, as shown, the circuit is
essentially the same as Fig. 7.3, so the phasor diagram is the same.
We saw in Sec. 7.2 that the current driven by any applied voltage E
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through an inductance L is inversely proportional to L. And in
Sec. 4.6 we noted that the inductance of an ideal inductor of the
type we are considering is directly proportional to the permeability,
u of the core, and to the square of N, the number of turns. The iron
core of a transformer normally has a n running into thousands, and
N is usually considerable, so the inductance is likely to be very
large and the current therefore quite small. That is why AB isdrawn
so short in Fig. 7.6b. AB is called the magnetizing current because its
purpose is to generate sufficient alternating magnetic flux in the
core to induce an e.m.f. in the primary coil exactly equal to that
applied. As the flux is due directly to the current (not to its rate of
change), it is in phase with the current, so the same phasor will do
for both. This is shown by marking it with the flux symbol, ® (Greek
capital phi) in Fig. 7.6b; and this also picks out 4B as the magnetizing
current. Actually, as mentioned in Sec. 4.7, u depends on the flux
density in the core, varying throughout each cycle; so to induce a
sinusoidal e.m.f.—necessary to match the applied one at every
instant—the magnetizing current has to be distorted. or non-
sinusoidal, and therefore cannot strictly be represented by a phasor.
This awkward complication is usually ignored. especially as the
magnetizing current is such a little one. With the ideal conditions
assumed, it is clear that the average power required from the
generator is nil, but that does not mean that there is no point in
keeping the magnetizing current as small as possible; the resistances
of coil, generator and leads. which we are neglecting, give rise to a
power loss proportional to the square of the current.

Because the secondary coil in the assumed transformer has the
same number of turns as the primary and is linked by the same
alternating flux. the secondary voltage cd must be the same as the
primary, ab, so is represented by a phasor of the same length and
angle. In fact, a single phasor would do, and this corresponds to the
fact that a could be connected to ¢ and b to d without affecting the
electrical conditions. This is where the dots are helpful: if the
secondary dot was at the c end it would indicate a reversal of winding
and consequent polarity of secondary voltage. so paralleling the
two coils as described would be disastrous!

7.9 Load Currents

The next step is to connect a load (for full explanation of this term,
see Sec. 11.2) to the secondary terminals, and continuing our ideal
simplicity we make it a resistor, R in Fig. 7.7a. This creates a new
current mesh, C, and also raises a question about how this should
be related to mesh B. Are we to suppose that the external mesh A
penetrates between the windings, or should we think of them as too
close together for that? According to our current notation BC is
the current crossed on passing from B to C, and this is so whether
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we chose to see an intermediate mesh A, so that BC = BA + AC, or
A is ignored and BC is seen as the same as the sum of the currents
upwards in the two coils. Both ways come to the same thing. The
important point is that the magnetic flux is the result of current in
both coils. As the generator voltage ab is the same as before, the net

b d b,d

s -

C—/B

(a) (b)

Fig. 7.7—The transformer of Fig. 7.6 with a resistive load

magnetizing current, which now is BC, must be the same as B4 in
Fig. 7.6. So in Fig. 7.7b we must draw BC accordingly.

Having settled that point we turn to the secondary circuit, which
is identical with Fig. 5.11 except for the different letters. Following
the same principle we draw AC parallel to cd, which now has been
made to coincide with ab as we saw it could have been in Fig. 7.6b.
The total current that the generator has to supply, 4B, follows from
this construction, and we see that it lags the generator voltage by
the small phase angle ¢.

The procedures for other types of load than R have been ex-
plained so need not be repeated.

We have already noted that in this example the coils could have
been joined together at both ends, as we have represented by the
coineiding voltage phasors. The coils themselves, indeed, could be
made to coincide without affecting the working principles. Having
done so, we could regard the secondary load current AC as flowing
direct from the generator by the route bdca, and the combined
primary and secondary coil as carrying only the magnetizing current,
CB. This is equivalent to going straight from C to B.in the phasor
current diagram, instead of via A, which takes account of the
separate coil currents. These largely oppose one another in order to
maintain the magnetizing current CB unchanged. The very close
correspondence between this type of phasor diagram and what it
represents gives a clear insight into the working of the circuit and
makes it almost impossible to fall into such a common error as to
suppose that the secondary voltage is in opposite phase to the primary.
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7.10 Transformer Losses

In real transformers the primary coil has some resistance as well
as inductance. Moreover, the alternating flux in the core generates
a certain amount of heat in 1t (Sec. §.14), which has to come from
somewhere, and in accordance with our wider definition of resistance
(Sec. 2.18) can be considered as equivalent to some extra resistance
in the primary. The primary resistance. augmented in this way,
causes the magnetizing current to lag the primary voltage by less
than 90°.

Nor 1s the power from the supply transferred to the load without
loss. The primary and secondary load currents have to pass through
the resistances of the windings. These resistances are represented in
Fig. 7.8 by R; and R;. Moreover in real transformers some of the

. . - Ti
|

Fig. 7.8—Fig. 7.7a is here elaborated 10 include the resistances of the cails and their
leakage inductances

a

flux linking the primary coil fails to link with the secondary;
similarly when secondary current is flowing 1t creates some flux
not linked with the primury. These fluxes can be represented by
small inductances L, and L,, called leukage inductances. Note that
the transformer terminals are still a-b and c¢-d; the internal
junctions are of course not accessible as they are entirely imaginary.
Fig. 7.8 is an example of an equivalent circuit—equivalent in this
case, approximately, to a real transformer, so far as any actual
electrical measurements can show. It happens to be an example of a
very common type of equivalent circuit, with two input and two
output terminals; and because one may have to guess, from ex-
ternal measurements, what circuit best represents its actual be-
haviour, it is often called a black box.

If you feel confident about applying the phasor diagram rules,
Fig. 7.8 would be a good exercise. Although more complicated than
anything we have tackled so far, it is quite straightforward, if one
labels the four extra junctions and starts with the ¢d phasor. How-
ever, as it may be too biga jump for some, let us deal with a simphfied
version.

We have already seen that if the transformer turnsratiois 1 : | the
two coils can be reduced to one. And as the magnetizing current is
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normally quite small compared with the load current its contribution
to the voltage drop across Ry and L; can reasonably be neglected, by
transferring them to the secondary circuit, so that suitably increased
values of R; and L; include them. Fig. 7.9a¢ shows the simplified
diagram. For easy comparison with the preceding ones, c 1s still
shown, though it 1s now electrically the same as a.

AC and cd are first drawn parallel to one another. If the load had
not been purely resistive they would of course have had to be drawn

b 3

T —AV— g C
C

A B %
%u
|

)

a,c

{(a) {b)

Fig. 7.9—Simpler phasor diagrams (b) than those applicable to Fig. 7.8 are obtained
by transferring the primary resistance and leakage inductance 1o the secondary circuit
and combining the fullv coupled parts of the windings (a)

with the appropriate phase angle between them. de is simply an
extension ofp cd, but eb must lead it by 90° because eb is across an
inductance. We now see ab, the input voltage, and can therefore
draw CB at right angles to it to represent an ideal magnetizing
current, or at a somewhat smaller angle to be more rcalistic. As the
diagram clearly shows, one effect of coil resistance and leakage in-
ductance is that the output voltage falls as the current taken i1s in-
creased. This effect is confirmed by practical experience. And if we
calculate the output power, equal to cd. 4C, and compare it with
the input power, which in Sec. 6.9 we found to be ab.AB cos o,
we can find how much power is lost in the transformer. The ratio of
output to input power, which is always less than 1, is called the
efficiency of the transformer.

These considerations are most important in mains transformers;
in audio-frequency transformers (which are less used than they once
were) the emphasis is rather different, and in radio-frequency
transformers it is almost completely different, as will be seen when
they come up for attention.

7.11 Impedance Transformation

So far our transformer diagrams have been related to those having
the comparatively little-used 1 : | ratio. There is no reason why
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other ratios should not be illustrated by means of the relative lengths
of the phasors. except that if the ratio were large there would be
difficulty in drawing all the phasors clearly to the same scale. Of
course the primary and secondary phasors of our type would need
to be shown separately. On the other hand there is no strong reason
why phasor diagrams should be used to show ratios other than | : 1.
Transformer designers usually work in ampere-turns and volts per
turn. which are the same for both primary and secondary and for
any other windings embracing the whole core. So the phasors can
very well be regarded as referring to ampere-turns and volts per
turn. the actual amps and volts being derived by dividing or multiply-
ing by the numbers of turns.

For we already know that when the same alternating flux links
all the turns it induces the same voltage in every turn. And you have

3 R

(a) (b) (c)

Fig. 7.10— So fur as the generator is concerned, the perfect transformer and load at «
can he replaced by the impedence as at b. An ivwerfect transformer can be simuluted
asal ¢

probably realised that if (say) the secondary coil has twice as many
turns as the primary., so that its no-load voltage is twice that applied
to the primary. the primary current due to any load current in the
secondary must be twice as great. because the primary has only
ha'f the number of turns with which 10 offset the magnetizing eftect
of the secondary current. It has to be so, too, to make the input
walls the same (neglecting transformer loss) as the output.

Now if the turns ratio of the transformer is »7 : 1 and the load im-
pedance is Z (Fig. 7.10¢) the primary voltage V, is n times the
secondary voltage V;, and the primary load current /; 15 In. So,
while Z = V,/I,, the impedance ‘looking into" the transformer from
the primary side is thus 2V, /I, or n*Z. The transformer and its
load Z. then, can be replaced by a load n*Z. as in Fig. 7.10h. without
making any difference from the generator’s point of view, except
for magnetizing current and losses. If we want to be more precise
and simulate these too we can do it by adding suitable parallel in-
ductance and resistance. as in Fig. 7.10¢. Here is another example
of an equivalent circuit. Obviously the equivalence is valid only on
the primary side.

One of the uses of a transformer is for making a load of a certain
impedance. say Z,, equivalent to some other impedance, say Zp. So



104

it 1s often necessary to find the required turns ratio. Since Z, =nZ,,
it follows thatn must be \ (Z,/Z,).

Another use is for insulating the load from the generator. That
is why 1 : 1 transformers are occasionally seen. But if it is not
necessary 10 insulate the secondary winding from the primary, there
is no need for two separate coils, even when the ratio is not 1 : 1.

Fig. 7.11—For some purposes it is practicable to obtuin a
voltage step-up or down without a separate secondury
winding

The winding having the smaller number of turns can be abolished,
and the connections tapped across the same number of turns forming
part of the other winding as in Fig. 7.11. This device is called an
auto-transforiner.

Transformers are not limited to two windings. In practice it is
quite usual to have several secondary windings delivering different
voltages for various purposes, all energized by one primary coil.



CHAPTER 8

The Tuned Circuit

8.1 Inductance and Capacitance in Series

In the previous chapters we have seen what happens in a circuit
containing capacitance or inductance (with or without resistance),
and the question naturally arises: what about circuits containing
both? We know that two or more reactances of either the inductive
or capacitive kind in series can be combined just like resistances, by
adding; and either sort of reactance can be combined with resistance
by the more complicated square-root process. The outcome of
combining reactances of opposite kirds s so fundamental to radio
and many other electronic applications that it needs a chapter to
itself.

We shall begin by considering the simplest possible series circuit,
Fig. 8.1 with capacitance and inductance in series. The method is
exactly the same as for reactance and resistance in series: that is to
say. since the current is common to both it is easiest to start from it

b B
Al B Bt
a b [©
c
=
A
a
(a) (b)

Fig. 8.1—(a) circuit consistng of an a.c. gererator in series with capacizance and
inductance. and (h) corresponding phasor diagrams

and work backwards to find the e.m.f. needed to drive it. As in
Fig. 7.4, we first draw a current phasor AB at any angle we like. The
voltage applied to L (ch) must lead 4B by 90°: «c on the other hand
must lag AB by 90°. And so we get the complete phasor diagram.
As a further check we may care to take another look at phasor and
waveform diagrams for C alone (Figs. 6.9 and 6.4) and for L alone
(7.3 and 7.2). The conclusion must be the same: that in Fig. 8.1 the
voltages across C and L are in opposite phase, or 180° out of phase.
So one of them must be subtracted from the other to give the necessary
driving em.f. And since reactance is equal to applied voltage
divided by current (the same in both cases) it follows that the total
105
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reactance of the circuit is also equal to one of the separate reactances
less the other.

Which voltage or reactance must be subtracted from which to
give the total? There is no particular reason for favouring either,
but the agreed convention is to call X, positive and X negative.

For example, suppose L in Fig. 8.1 1s 2 H, C is 2pF, and ab is
240 V at 50 Hz. We have already calculated the reactances of 2 H
and 2uF at 50 Hz (Secs. 7.2 and end of 6.3) and found them to be
628 Q and 1592 Q. So the total reactance must be 628 — 1592 =
— 964 Q, which at 50 Hz is the reactance of a 3-3 pF capacitor. The
generator, then, would not notice any difference (at that particular
frequency) if a 3-3 puF capacitor were substituted for the circuit con-
sisting of 2 pF in series with 2 H. The magnitude and phase of the
current would be the same in both cases; namely, 240/964 = 0-249 A,
leading by 90°.

To make sure, let us check it by calculating the voltage needed to
cause this current. ¢b is equal to X¢ times 4B, = 0-249 x 1592 =
396 V. acis X, times AB, = 0-249 x 628 = 156 V. The resultant of
gi(?l{/d cb, namely ab, must be (as shown in Fig. 8.15) 396 — 156 =

The fact that the voltage across the capacitor is greater than the
total supplied may be surprising, but it is nothing to what we shall
see soon!

8.2 L, Cand R all in Series

Bringing R into the circuit introduces no new problem, because
we have just found that L and C can always be replaced (for purposes
of the calculation) by either L or C of suitable value, and the method
of combining this with R was covered in the previous two chapters.
Elaborating the equation given therein (Sec. 6.8) to cover the new
information, we have

Z=+\[XL—Xe)*+ R

If the three circuit elements are connected in the order shown in
Fig. 8.2a, the phasor diagram, drawn according to the now familiar
rules, will be as at b. Note that ad, representing the voltage across
C. is longer than ab representing the generator voltage. If L and C
were replaced by a larger C to form the equivalent circuit mentioned
above, b¢ would disappear and ad be shortened by that amount,
but ub would still have the same length and phase angle relative to
AB.

8.3 The Series Tuned Circuit

We have already seen that the reactance of a capacitor falls and
that of an inductor rises as the frequency of the current supplied to
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them is increased (Secs. 6.1 and 7.1). It is therefore going to be
interesting to study the behaviour of a circuit such as Fig. 8.3 over a
range of frequencies. For the values given on the diagram, which
are typical of practical broadcast receiver circuits, the reactances
of coil and capacitor for all frequencies up to 1800 kHz are plotted
as curves in Fig. 8.4. The significant feature of this diagram is that
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Fig. 8.2—Inductance, resistance und capacitauce all in series. with ( b) corresponding
phasor diagrams

1800
n
= 1600} 1
T
P O 1400+ X 1
o 2200 —— (L=200uH)|
- : [
X,uooo 4 Lot
O 5 ;
200pF S 800}—1—7 Jd€=200pF)
2 600+
o
zoé . I 400}
. © 200| - ‘»
B 1| _
_ 0 300 800 1200 1600
Fig. 8.3—The way the reactances in FREQUENCY, 7/, IN KILOHERTZ
this circuit vary with the frequency '
of E, graphed in Fig. 8.4, leads to Fig. 8.4—Rcactances of the coil and
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at one particular frequency, about 800 kHz (more precisely, 796), L
and C have equal reactances, each amounting to 1000 Q. So the
total reactance, being the difference between the two separate re-
actances, is zero. Put another way, the voltage developed across
the one is equal to the voltage across the other: and since they are,
as always, in opposition, the two voltages cancel out exactly. The
circuit would therefore be unaltered, so far as concerns its behaviour
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as a whole to a voltage of this particular frequency, by completely
removing from it both L and C. This, leaving only R, would result
in the flow of a current equal to E/R.

Let us assume a voltage not unlikely in broadcast reception, and
see what happens when £ = 5 mV. The current at 796 kHz is then
5/10 = 0-5 mA, and this current flows, not through R only, but
through L and C as well. Each of these has a reactance of 1000 Q
at this frequency; the potential difference across each of them is
therefore 0-5 x 1000 = 500 mV, which is just one hundred times
the voltage E of the generator to which the flow of current is due.

That a simple circuit like this, without any amplifier, can enable
so small a voltage to yield two such relatively large voltages, may
seem incredible, but practical radio communication would not be
possible without it.

8.4 Magnification

In the particular case we have discussed, the voltage across the
coil (or across the capacitor) is one hundred times that of the
generator. This ratio is called the magnification of the circuit.

We have just worked out the magnification for a particular
circuit; now let us try to obtain a formula for any circuit. The
magnification is equal to the voltage across the coil divided by that
from the generator, which is the same as the voltage across R. If
I is the current flowing through both, then the voltage across L is
IX., and that across R is IR. So the magnification is equal to
IX, /IR, which is X /R or (because in the circumstances considered
X¢ is numerically equal to X;) X¢/R. At any given frequency, it
depends solely on L/R, the ratio of the inductance of the coil to the
resistance of the circuit, or on CR. (Both of these, you may have
noticed, are time constants.)

To obtain high magnification of a received signal (for which the
generator of Fig. 8.3 stands), it is thus desirable to keep the resistance
of the circuit as low as possible.

The symbol generally used to denote this voltage magnification
is Q (not to be confused with Q denoting quantity of electricity).

In any real tuned circuit the coil is not pure inductance as shown
in Fig. 8.3, but contains the whole or part of R and also has some
stray capacitance in parallel with it. Consequently the magnification
obtained in practice may not be exactly equal to Q (as calculated by
X, /R); but the difference is usually unimportant.

8.5 Resonance Curves

At other frequencies the impedance of the circuit is greater, because
in addition to R there is some net reactance. At 1250 kHz, for ex-
ample, the individual reactances are 1570 and 637 Q (see Fig. 8.4),
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leaving a total reactance 0f 933 Q. Compared with this, the resistance
is negligible, so that the current, for the same driving voltage of
5 mV, will be 5/933 mA, or roughly 5 pA. This is approximately
one hundredth of the current at 796 kHz. Passing through the re-
actance of L (1 570Q) it gives rise to a voltage acrossitof 1 570 x 5=
7850 uV = 7-85 mV, which is only about one sixty-fourth as much
as at 796 kHz.

By extending this calculation to a number of different frequencies
we could plot the current in the cireuit, or the voltage developed
across the coil, against frequency. This has been done for two
circuits in Fig. 8.5. The only difference between the circuits is that

100

50~

MILLIVOLTAGE ACROSS COIL

O(ZO
e
10061
1010
1014~
1018

FREQUENCY OF APPLIED SIGNAL IN
KILOHERTZ

Fig. 8.5—Showing how the voliage developed across the coil in a tuned circuit varies
with frequency. Curves are plotied for L = 180 yH, C = I4PpF, E (injectcd voltage) =

0-SmV.and R = [5Q for tlhe Q = 75 circuit and 563 Q for the Q = 200 circuit

in one the resistance is 15 Q, giving @ = 75. and in the other it is
5:63 Q, giving Q = 200. In both, the values of L and C are such
that their reactances are equal at 1000 kHz. These curves illustrate
one thing we already know—that the response (voltage developed
across the coil) when the reactances are equal is proportional to Q.
They also show how it falls off at frequencies on each side, due to
unbalanced reactance. At frequencies well off 1000 kHz the re-
actance is so much larger than the resistance that the difference
between the two circuits is insignificant. The shapes of these curves
show that the response of a circuit of the Fig. 8.3 type is far greater
to voltages of one particular frequency—in this case 1000 kHz—
than to voltages of substantially different frequencies. The circuit
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is said to be nuned 10, or to resonate to, 1000 kHz: and the curves
are called resonance curves. This electrical resonance is very closely
analogous 10 acoustical resonance: the way in which hollow spaces
or pipes magnify sound of a particular pitch.

The principle on which a receiver is tuned is now beginning to
appear: by adjusting the values of L or C in a circuit such as that
under discussion one can make it resonate to any desired frequency.
Signal voltages received from the aerial at that frequency will be
amplified so much more than those of substantially different fre-
quencies that these others will be more or less tuned out.

8.6 Selectivity

This ability to pick out signals of one trequency from all others
1s called selectivity. It is an even more valuable feature of tuned
circuits than magnification. There are alternative methods (which
we shall consider later) of magnifying incoming signal voltages. but
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Fig. 8.6—In this diagram the curve ‘Q = 200’ is the same as in Fig. 8.5. bui, 10 enuble
the selectivity of the Q = 75 circuit 10 be more eusily compared, the voliage injected into
it has heen raised fron1 0-5 m3’ 10 1-:33 mV, s0 as 10 make the ouiput voliage at resonance
equal o that across the Q = 200 circuit

by themselves they would be uscless, because they fail to distinguish
between the destred programme and others.

The way the curves in Fig. 8.5 have been plotted focuses attention
on how the value of Q affects the response at resonance. The
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comparative selectivity is more easily seen, however. if the curves are
plotted to give the same voltage at resonance, as has been done in
Fig. 8.6. This necessitates raising the input to the low-Q circuit
from 0-5 V to 1-33 V. Since the maximum voltage across both the
coils is now 100 mV, the scale figures can also be read as percentage
of maximum. Fig. 8.6 brings out more clearly than Fig. 8.5 the
better selectivity of the high-Q circuit. For a given response to a
desired station working on 1000 kHz. the 200-Q response 10 990 kHz
voltages is less than half that of the 75-Q circuit. In general. the
rejection of frequencies well off resonance is nearly proportional

to Q.

8.7 Frequency of Resonance

It is obviously important to be able to calculate the frequency at
which a circuit containing known L and C resonates, or to calculate
the 1. and C required to tune to a given frequency. The required
equation follows easily from the fact that resonance takes place at
the frequency which makes the reactance of the coil equal that of
the capacitor:

' I
L =
2nf, 3nf.C

where the symbol /, is used to denote the frequency of resonance.
Rearranging this, we get

~ 1 N _ 4l
=Gnite © T o

If L and C are respectively in henries and farads. f, will be in
hertz; if L and C are in henries and microfarads, f; will be in kHz.
But perhaps the most convenient units for radio purposes are pH
and pF. and when the value of n has becn filled in the result is

; 159,155 ; 159-15
. (in kHz) =222 or (,(in MHz) = -2
U, Y=vaLe O FUnMHD =S558

If the answer is preferred in terms of wavelength, we make use
of the relationship /' = 3 x 108/A (Sec. 1.9) to give

A, = 1885 (LC) (A, inm: L in uH: Cin pF)

Note that /, and X, depend on L multiplied by C; so in theory a
coil of any inductance can be tuned to any frequency by using the
appropriate capacitance. In practice the capacitance cannot be
reduced indefinitely, and there are disadvantages in making it very
large. A typical tuning capacitor for the medium-frequency band
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has a range of about 16 to 270 pF. The capacitance of the wiring and
circuit components necessarily connected in parallel may add
another 14 pF. This gives a ratio of maximum to minimum of
284/30 = 9-47. But the square root sign in the above equations
means that if the inductance is kept fixed the ratio of maximum to
minimum f; (or &,) is y '9-47, or 3:075. Any band of frequencies
with this range of maximum to minimum can be covered with such
a capacitor, the actual frequencies in the band depending on the
inductance chosen for the coil.

Suppose we wished to tune from 1620 MHz to 1620/3-075 or
527 kHz, corresponding to the range of wavelengths 185 to 569
metres. For the highest frequency or lowest wavelength the capacit-
ance will have its minimum value of 30 pF; by filling in this value
for C and 1:620 MHz for f,, we have 1:620 = 159-15/+ (30L). from
which L = 321-5 pyH*.

If we calculate the value of L necessary to give 0-527 MHz with a
capacitance of 284 pF, it will be the same.

In the same way the inductance needed to cover the short-wave
band 9-8 to 30 MHz (30-6 to 10 metres) can be calculated, the result
being 0-938 uH.

Notice how large and clumsy numbers are avoided by a suitable
choice of units, but of course it is essential to use the equation
having the appropriate numerical ‘constant’. If in any doubt it is
best to go back to first principles (2nf,L = 1/2nf,C) and use henries,
farads, and Hz.

8.8 L and C in Parallel

Having studied circuits with L and C in series we come naturally
to the simple parallel case, Fig. 8.7a. It should hardly be necessary
by now to point out that the voltage ab is the quantity common to
both L and C, and so we start with its phasor. Drawing the current
phasors in the appropriate directions and assuming that in this
particular example more current goes through L than through C
we get the complete diagram, Fig. 8.75.

If we go back to Fig. 8.1 and compare the two phasor diagrams
we see that they are identical except that current and voltage have
changed places. We seem to be coming across quite a lot of this sort
of thing: see Secs. 4.8, 4.10 and 6.10 for example. It has a special
name, but going into that just now would divert attention from our
study of tuned circuits so will have to wait until Sec. 12.2.

* For this reverse process it saves time to adapt the formula, thus:
So = 15915/ (LO) (uH, pF, MHz).
Co gt = 15918 LC
oL = 25333/f2C
The corresponding adaptation for calculating C is
C = 25333/f,2
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Meanwhile we note the fact of current-voltage interchange
sufficiently to be able to grasp, without too much repetition along
the lines of Sec. 8.1, that in the parallel circuit the branch currents
are in opposite phase, so that the total current to be supplied is the
difference between them (or their sum if one of them is taken as
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Fig. 8.7—L and C in parallel. and corresponding phasor diagrams

negative). Similarly the two susceprances, By and B¢, are opposite
in sign, and this time it is the inductive one that is taken as negative.
So the total susceptance in our example is negative and smaller
numerically then either B. or Bc.

Suppose now that the frequency is such as to make the suscept-
ances (and therefore the reactances) equal. The currents will there-
fore be equal, so that the difference between them will be zero. We
then have a circuit with two parallel branches, both with currents
flowing in them, and yet the current supplied by the generator is nil!

It must be admitted that such a situation is impossible, the reason
being that no practical circuits are entirely devoid of resistance. But
if the resistance is small, when the two currents are equal the system
does behave approximately as just described. It is a significant fact,
which can easily be checked by calculation of the type given in
Sec. 8.7, that the frequency which makes them equal is the same as
that which in a series circuit would make Z and C resonate.

8.9 The Effect of Resistance

When the resistance of a parallel LC circuit has been reduced to a
minimum, the resistance in the C branch is likely to be negligible
compared with that in the L branch. Assuming this to be so, let us
consider the effect of resistance in the L branch (Fig. 8.8), repre-
senting it by the symbol r as a reminder that it is small compared
with the reactance. We have already studied this branch on its
own (Fig. 7.4) and noted that one effect of the resistance is to make
the phase angle between current and voltage less than 90°; the
greater the resistance the smaller the angle. It would be quite easy
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to modify Fig. 8.7 by reducing the phase angle slightly. but to do
the job thoroughly, so that if necessary we could draw the diagram
to scale. let us start from scratch without reference to other diagrams
and just follow the basic rules of phase relationships.

We start with the series branch made up of L and r. and as current
is common to both we draw its phasor. AC. horizontally. Now we
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Fig. 88 (u) ldeal capacitor in parallel with inductor having losses represented by
resistance r in series. and (b) corresponding phasor diagrams

can draw ac in phase, small because r i1s small: and cb 90° ahead.
That completes the voltage part. Having now got ab. not perfectly
vertical this time. we can draw CB 90° ahead of it: let us assume it
is cqual to AC. That shows us the supplied current. 4AB. Because
AC = CB, the angle ABC is less than a right angle. but as we have
drawn CB at right angles to ab we deduce that although the supplied
current A8 looks as if it might be in phase with its e.m.f. g/ it is not
exactly so. 1t could be made so by a very slight reduction in fre-
quency. which would increase 4AC and reduce CB. (This sort of
information would be almost impossible to obtain from waveform
diagrams. even at cost of much greater time and trouble.) In practice
r 1s likely to be less than one-hundredth as much as X;. so even
when X is made exactly equal to X¢ the current supplied by the
generator would be small and practically in phase with its e.m.f. In
other words, it is identical with the current that would flow if the
two reuctive branches were replaced by one consisting of a high
resistance.

8.10 Dynamic Resistance

It is of considerable practical interest to know how high this
resistance is (let us call it R), and how it is related to the values of
the real circuit: L. C and r. We have already seen that it r = 0, AB
18 zero, so in that case R is infinitely large. Fig. 8.8 shows that as r
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is increased. making the voltage drop across it, ac, greater, ub is
swung round clockwise. and BC with it, increasing 4B. This in-
crease in current from the generator signifies a fall in R. So at least
we can say that the smaller we make r in Fig. 8.8, the greater is the
resistance that the circuit as a whole presents to the generator.

It can be shown mathematically that, so long as r is much less
than X.. the resistance R. to which the parallel circuit as a whole
is equivalent at a certain frequency. is practically equal to X, 2/r.
The proof by algebra is given in textbooks. but geometry-minded
readers should not find it difficult to prove from Fig. 8.85.

To take an example, suppose C and L are the same as in Fig. 8.3,
and r is equal to 10 © (Fig. 8.9«). At 796 kHz the reactances are

1

(@) (b)

Fig. 8.9—The circuit composed of C, L and r having the values marked (a) can at
796 k H= be replaced by a high resistance (b), so far as the phase and magnitude of the
current taken from the generator is concerned

each 1000 Q (Fig. 8.4). So R is 1000?/10 = 100000 Q (Fig. 8.94).
If L. C and r were hidden in one box and R in another, each with a
pair of terminals for connecting the generator, it would be impossible
to tell. by measuring the amount and phase of the current taken,
which box was which. Both would appear to be resistances of
100 kQ. ar that particular frequency. We shall very soon consider
what happens at other frequencies. but in the meantime note that
the apparent or equivalent resistance, which we have been denoting
by R. has the special name dvnamic resistance.

8.11 Parallel Resonance

Suppose E in Fig. 8.9 is | V. Then under the conditions shown the
current / must be 1/100000 A, or 10 pA. Since the reactances of C
and L are each 1000 €. and the impedance of the L branch is not
appreciably increased by the presence of r. the branch currents are
each 1000 pA. But let us now change the frequency to 1000 kHz.
Fig. 8.4 shows that this makes X and X;, respectively 800 Q and
1250 Q. The current taken by Cis then 1/800 A = 1250 pA and the
Lcurrentis 1/1250 A = 800 pA. Since r 1s small, these two currents
are so nearly in opposite phase that the total current is practically
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equal to the difference between them. 1250 — 800 = 450 pA. This
balance is on the capacitive side, so at 1000 kHz the two branches
can be replaced by a capacitance having a reactance = E// =
1/0-00045 = 2222 Q, or 71'6 pF. The higher the frequency the
greater is the current, and the larger this apparent capacitance; at
very high frequencies it is practically 200 pF—as one would expect,
because the reactance of L becomes so high that hardly any current
can flow in the L branch.

Using the corresponding line of argument to explare the fre-
quencies below 1000 kHz, we again find that the total current be-
comes larger, and that its phase is very nearly the same as if C were
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Fig. 8.10—Plotting the current and impedance of the Fig. 8.9a circuit as a whole at
various frequencies gives the shapes shown here: (a) current, (b) impedance

removed, leaving an inductance greater than L but not much greater
at very low frequencies.

Plotting the current over a range of frequency, we get the result
shown in Fig. 8.10a, which looks somewhat like a series-circuit
resonance curve turned upside down.

The graph of impedance against frequency (Fig. 8.10b) is still
more clearly a resonance curve.

8.12 Frequency of Parallel Resonance

Before we complicated matters by bringing in r we noticed that the
frequency which would make L and C resonate in a series circuit
had the effect in a parallel circuit of reducing / to zero and making
the impedance infinitely great. In these circumstances the frequency
of parallel resonance is obviously the same as that of series resonance.
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But actual circuits always contain resistance, which raises some
awkward questions about the frequency of resonance. In a series
circuit it is the frequency that makes the two reactances equal. But
in a parallel circuit this does not make the branch impedances
exactly equal unless both contain the same amount of resistance,
which is rarely the case. The two branch currents are not likely to be
exactly equal, therefore. So are we to go on defining f, as the fre-
quency that makes X; = X¢, or as the frequency which brings /
into phase with E so that the circuit behaves as a resistance R, or as
the frequency at which the current / is least?

Fortunately it happens that in normal radio practice this question
is mere hair-splitting: the distinctions only become appreciable
when r is a large-sized fraction of X.; in other words, when Q
(= X_/r) is abnormally small—say less than 5. On the understanding
that such unusual conditions are excluded, therefore, the following
relationships are so nearly true that the inaccuracy is of no practical
importance. The frequency of parallel resonance (f;) is the same as
that for series resonance, and it makes the two reactances X; and
X¢ numerically equal. The impedance at resonance (R) is resistive,
and equal to X/?/r and also to Xc*/r (Sec. 8.10). And, because

XL = XC.

r 2nf.Cr  Cr
fi hich =L
rom whic CR

In all these, r can be regarded as the whole resistance in series with L
and C, irrespective of how it is distributed between them. Since

Q = X,

All these relationships assume resonance.

8.13 Series and Parallel Resonance Compared

The resonance curve in Fig. 8.10b showing R = 100 kQ applies
to the circuit in Fig. 8.9a, in which Q = X, /r = 2rfL/r = 21 X
796000 x 0-0002/10 = 100. If r were reduced to 5 Q. Q would
be 200, and R would be 200k). But reducing r would have hardly
any effect on the circuit at frequencies well off resonance; so the
main result would be to sharpen the resonance peak. Increasing r
would flatten the peak. This behaviour is the same as with series
resonance, except that a peak of impedance takes the place of a
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peak of voltage across the coil or of current from the generator.
Current from the generator to the parallel circuit reaches a minimum
at resonance (Fig. 8.10a), as does impedance of the series circuit.

At resonance a series circuit takes the maximum current from the
generator, so is called an accepror circuit. A parallel circuit, on the
contrary, takes the minimum current so is called a rejector circuir.
One should not be misled by these names into supposing that there
is some inherent difference between the circuits; the only difference
is in the way they are used. Comparing Fig. 8.9¢ with Fig. 8.3 we
see the circuits are identical except for where the generator is con-
nected. To a generator connected in one of the branches, Fig. 8.9«
would be an acceptor circuit at the same time as it would be a
rejector circuit to the generator shown.

If the generator in a circuit such as Fig. 8.9¢ were to deliver a
constant current instead of a constant e.m.f., the voltage developed
across it would be proportional to its impedance, and so would
vary with frequency in the manner shown in Fig. 8.5. So the result
is the same, whether a tuned circuit is used in series with a source
of voltage or in parallel with a source of current. In later chapters
we shall come across examples of both.

8.14 The Resistance of the Coil

In the sense that it cannot be measured by ordinary direct-current
methods—by finding what current passes through on connecting
it across a 2 V cell, for example—it is fair to describe R as a fictitious
resistance. Yet it can quite readily be measured by any method
suitable for measuring resistances at the frequency to which the
circuit is tuned; in fact, those methods by themselves would not dis-
close whether the thing being measured was the dynamic resistance
of a tuned circuit or the resistance of a resistor.

If it comes to that, even r is not the resistance that would be
indicated by any d.c. method. That is to say, it is not merely the
resistance of the wire used to make the coil. Although no other
cause of resistance may appear, the value of r measured at high
frequency is always greater, and may be many times greater, than
the d.c. value.

One possible reason for this has been mentioned in connection
with transformers (Sec. 7.10). If a solid iron core were used, it would
have currents generated in it just like any secondary winding: the
laws of electromagnetism make no distinction. These currents
passing through the resistance of the iron represent so much loss
of energy, which as we have seen, brings the primary current more
nearly into phase with the e.m.f., just as if the coil’s impedance in-
cluded a larger proportion of resistance. To stop these eddy currents,
as they are called, iron cores are usually made up of thin sheets
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arranged so as to break up circuits along the lines of the induced
e.m.f. At radio frequencies even this is not good enough, and if a
magnetic core is used at all it is either iron in the form of fine dust
bound together by an insulator, or a non-conducting magnetic
material called a ferrite.

Another source of loss in magnetic cores, called hysteresis, is a lag
in magnetic response, which shifts the phase of the primary current
still more towards that of the applied ¢.m.f., and therefore represents
resistance, or energy lost.

The warming-up of cores in which a substantial number of watts
are being lost in these ways is very noticeable.

Although an iron core introduces the equivalent of resistance
into the circuit, its use is worth while if it enables a larger amount of
resistance to be removed as a result of fewer turns of wire being
needed to give the required inductance. Another reason for using
iron cores, especially in r.f. coils, is to enable the inductance to be
varied, by moving the core in and out.

Even the metal composing the wire itself has e.m.fs induced in it
in such a way as to be equivalent to an increase in resistance. Their
distribution is such as to confine the current increasingly to the
surface of the wire as the frequency is raised. This skin effect occurs
even in a straight wire; but when wound into a coil each turn lies in
the magnetic field of other turns, and the resistance is further in-
creased ; so much so that using a thicker gauge of wire sometimes
actually increases the r.f. resistance of a coil.

8.15 Dielectric Losses

In the circuits we have considered until now, r has been shown
exclusively in the inductive branch. While it is true that the resistance
of the capacitor plates and connections is usually negligible (except
perhaps at very high frequencies), insulating material coming
within the alternating electric field introduces resistance rather as
an iron core does in the coil. It is as if the elasticity of the ‘leashes’
(Sec. 3.4) were accompanied by a certain amount of friction, for the
extra circuit current resulting from the electron movements is not
purely capacitive in phase. The result is the same as if resistance
were added to the capacitance.

Such materials are described as poor dielectrics, and obviously
would not be chosen for interleaving the capacitor plates. Air is
an almost perfect dielectric, but even in an air capacitor a part of
the field traverses solid material, especially when it is set to minimum
capacitance. Apart from that, wiring and other parts of the circuit—
including the tuning coil—have ‘stray’ capacitances; and if in-
efficient dielectrics are used for insulation they will be equivalent to
extra resistance.
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8.16 H.F. Resistance

All these causes of loss in high-frequency circuits come within
the general definition of resistance (Sec. 2.18) as (electrical power
dissipated) <+ (current-squared). In circuit diagrams and calcula-
tions it is convenient to bring it all together in a single symbol such
as r in Fig. 8.94, in conjunction with a perfectly pure inductance and
capacitance, L and C. But we have seen that at resonance the whole
tuned circuit can also be represented as a resistance R = L/Cr
(Fig. 8.9b). We also know that a perfect L and C at resonance have
an infinite impedance, so could be shown connected in parallel with
R as in Fig. 8.11a. That they are ‘invisible’ to the generator is
b

(a) (b)

Fig. 8.11—L, C and R all in parallel, and corresponding phasor diagrams

shown in the phasor diagram (b) by the points A and C coinciding,
meaning that the current AC is zero. At the same time the capacitor
and coil currents, CD and DA, are relatively large, but equal and
opposite. This current diagram is unusual in being a four-sided
figure with two diagonally opposite points coinciding (to put it
paradoxically!). If R had been placed between C and L the current
diagram would have opened out into a slim rectangle. Fig. 8.11a
represents the actual circuit not only at resonance but (except in so
far as R varies somewhat with frequency) at frequencies on each
side of resonance.

More generally, for every resistance and reactance in series one
can calculate the values of another resistance and reactance which,
connected in parallel, at the same frequency, are equivalent. And
if (as we are assuming) the reactance is much greater than the series
resistance, it has very nearly the same value in both cases. The
values of series and parallel resistance, » and R respectively, are
connected by the same approximate formula R = X?/r, which we
have hitherto regarded as applying only at the frequency of resonance
(Sec. 8.9). This ability to reckon resistance as either in parallel or in
series is very useful. It may be, for example, that in an actual
circuit there is resistance connected both ways. Then for simplifying
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calculations it can be represented by a single resistance, either series
or parallel.

An example, worked out with the help of relationships explained
in this chapter, may make this clearer. A certain coil has, say, an
inductance of 1-2 mH, and at 300 kHz its resistance, reckoned
as if it were in series with a perfect inductance, is 25 Q (Fig. 8.12a).
At that frequency the reactance, X, is 2nfL = 2rn X 300 x 1-2 =
2260 Q. Now although @ has been reckoned in Sec. 8.12 as the ratio
of reactance to series resistance (X/r) of a coil, it has so far been
considered as a property of a complete resonant circuit, in which X
could be the reactance of either coil or capacitor, since at resonance
they are equal. And r is the resistance of the whole tuned circuit.
(Likewise in the alternative form for Q: R/X.) But this meaning of
Q is often extended to cover separate reactive parts of circuits, as a
measure of their ‘goodness’. The Q of the coil in our example, which
we could distinguish as @, is therefore 2260/25 = 90-4. If tuned
by a completely loss-free capacitor, that would also be the Q of
the combination.

The same coil can be represented alternatively as a perfect in-
ductance of very nearly 1-2 mH in parallel with a resistance R, =
X12r, = 22607/25 = 205 kQ (Fig. 8.2b). If rp remained the same at

L=|200_;.LH
L=1200uH R, =205kQ
£=300kH c %
) ’ 235pF =0-75MQ
r, =258
(a) (b} (c)
7 (5

161kQ

@ 738

Fig. 8.12—Example to illustrate series and parallel equivalents. b is equivalent to a;
and d and e are alternative ways of expressing the result of combining ¢ with b

200 kHz, the value of R; would be (2 x 200 x 1-2)?/25 = 91 kQ;
so when the equivalent parallel value has been found for one
frequency it must not be taken as holding good at other frequencies.
As a matter of fact, neither r, nor R, is likely to remain constant,
but in most practical coils @ is fairly constant over the useful range
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of frequency; which is a good reason for using it as a figure of
merit. So it 1s likely that at 200 kHz R, would be somewhere around
135 kQ, and r;, would be about 17 Q.

The capacitance required to tune the coil to 300 kHz, or 0-3 MHz,
is (Sec. 8.7, footnote) C = 25333/f,2L = 25333/(0-32 x 1200) =
235 pF. This, of course, includes the tuning capacitor itself plus the
stray capacitance of the wiring and of the coil. The whole of this
1s equivalent to a perfect 235 pF in parallel with a resistance of, shall
we say, 0-75 MQ (Fig. 8.12¢). The reactance, X, is bound to be the
same as X, at resonance; but to check it we can work it out from
12n/C = 1/2n x 0-3 x 0-000235) = 10%/(2n x 03 x 235) =
2260 Q. Qc is therefore Re/Xe = 750000/2260 = 332.

If the two components are united as a tuned circuit, the total loss
can be expressed as a parallel resistance, R, by reekoning R, and
Rcin parallel: Ry Rc/(Ry + Re) = 0-:205 x 0-75/0-955 = 0-161 MQ
(Fig. 8.12d). Although this is less than R;, it indicates a greater loss.
The Q of the tuned circuit as a whole is R/X = 161 000/2260 = 71.
Incidentally, it may be seen that this i1s Q; Oc/(Q; + Qc). The total
loss of the circuit can also be expressed as a series resistance,
r = X?/R = 2260%2/161000 = 31-8 Q (Fig. 8.12¢). Calculating Q
from this, X/r = 2260/31-8, gives 71 as before.

Before going on, the reader would do well to continue calculations
of this kind with various assumed values, taking note of any general
conclusions that arise. For instance, a circuit to tune to the same
frequency could be made with less inductance ; assuming the same
Q. would the dynamic resistance be lower or higher? Would an
added resistance in series with the lower-L coil have less or more
effect on its O? And what about a resistance in parallel?



CHAPTER 9

Diodes

9.1 FElectronic Devices

We now have all the essential basic principles of circuiis, and it
is time to strike out along a new [ine—electronics. Although all
the electric currents we have been discussing in the last six chapters
consisted of electrons in motion there has been no real need to con-
sider them as such. It would have been just about as easy to deal
with the subject using one of the theories of the electric current in
vogue before electrons were discovered. But now we are going to
study electronic devices, which could not be satisfactorily explained
without reference to electrons. It is these devices that are responsible
for the rapid and multifarious developments included under the
broad name of electronics.

There are two main divisions of electronic devices: those in which
the currents pass through vacuum or gas, and those in which they
pass through semiconducting solids. The first includes those called
valves in Britain and tubes in America, and the second includes
transistors.

Although some simple semiconductor devices were used, without
knowing how they worked, for several decades before 1948, it was
not until that year, when the transistor was invented as a result of
research into the electronic nature of semiconductors, that they began
to overtake thermionic valves (as they are named more fully), which
are reckoned to have started in 1904,

Electronic devices can be, and often are. classified according to
the number of their electrodes. An electrode is not very easy to
define precisely, but roughly it is any part of the device where a
current leaves or enters or by means of which it is electrically con-
trolled. Often each electrode has a terminal or wire by which con-
nection is made to a circuit, but sometimes electrodes are connected
together inside the device.

9.2 Diodes

The least number of electrodes is two, and devices so constituted
are called diodes. Although they are relatively limited in what they
can do—their chief capability is allowing currents to flow only one
way——they embody most of the basic principles needed for under-
standing all electronic devices. So as not to be too theoretically
minded, however, we may at once note two most important practical
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uses of diodes. Working at low (or power) frequencies such as 50 Hz,
they enable a.c. to be converted to d.c. such as is required for running
nearly all electronic equipment. This function is called rectification.
And by rectifying radio-frequency currents, diodes enable radio
signals to be made evident, as mentioned in Sec. 1.11. This function,
although basically rectification, is often distinguished as detection
and is the subject of Chapter 18.

Although thermionic diodes have been superseded almost entirely
by semiconductor (or solid-state) types, their principles are easier
to understand and are a necessary introduction to other valves and
to cathode-ray tubes. So we begin with them.

9.3 Thermionic Emission of Electrons

So far we have considered an electric current as a stream of elec-
trons along a conductor. The conductor is needed to provide a
supply of ‘loose’ or mobile electrons, ready to be set in motion by an
e.m.f. An e.m.f. applied to an insulator causes no appreciable current
because the number of mobile electrons in it is negligible.

To control the current it is necessary to move the conductor, as
is done in a switch or rheostat (a variable resistor). This is all right
occasionally, but quite out of the question when (as in radio) we
want to vary currents millions of times a second. The difficulty is
the massiveness of the conductor; it is mechanically impracticable
to move it at such a rate.

This difficulty can be overcome by releasing electrons, which
are inconceivably light, from the relatively heavy metal conductor.
Although in constant random agitation in the metal, they have not
enough energy at ordinary temperature to escape beyond its surface.
But if the metal is heated sufficiently they ‘boil off” from it. A source
of free electrons such as this is called a cathode. To prevent the
electronic current from being hindered by the surrounding air, the
space in which it is to flow is enclosed in a glass bulb and as much
as possible of the air pumped out, giving a vacuum. We are now
well on the way to manufacturing a thermionic valve.

Cathodes are of two main types: directly heated and indirectly
heated. The first, known as a filament and now seldom used, consists
of a fine wire heated by passing a current through it. To minimize the
current needed, the wire is usually coated with a special material that
emits electrons freely at the lowest possible temperature. The in-
directly heated cathode is a very narrow tube, usually of nickel,
coated with the emitting material and heated by a separate filament,
called the /ieater, threaded through it. Since the cathode is insulated
from the heater, three connections are necessary compared with
the two that suffice when the filament serves also as the source of
electrons, unless two are joined together internally. In either case
only one connection counts as an electrode—the cathode: that it is
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heated electrically is only for convenience. So except in Fig. 9.1
the heating arrangement will be omitted.

One advantage of indirectly heated cathodes is that they can be
heated by a.c., as explained in Sec. 26.11; another is that the whole
cathode is at the same potential.

The electrons released by the hot cathode do not tend to move in
any particular direction unless urged by an electric field. Without
such a field they accumulate in the space around the cathode.
Because this accumulation consists of electrons, it is a negative
charge, known as the space charge, which repels new arrivals back
again to the cathode, so preventing any further build-up of electrons
in the vacuous space.

9.4 The Vacuum Dicde Valve

To overcome the stoppage caused by the negative space charge it
is necessary to apply a positive potential. This is introduced into
the valve by means of the second electrode, a metal plate or cylinder
called the anode.

When the anode is made positive relative to the cathode, it attracts
electrons from the space charge, causing its repulsion to diminish
so that more electrons come forward from the cathode. In this
way current can flow through the valve and round a circuit such as
in Fig. 9.1. But if the battery is reversed, so that the anode is more

ANODE

T

3 |ANGDE
ELECTRON  I(OR "HT")
STREAM  IBATTERY

CATHODE
(a) (b)

Fig. 9.1—(a) Electron flow from cathode to anode in a directly-heated diode. The
alternative indirect method of heating is shown at b

negative than the cathode, the electrons are repelled towards their
source, and no current flows. The valve therefore permits current
to flow through it in one direction only, like the air valve attached
to a tyre, and this is why it was so named. The anode battery or
other supply is often called the h.t. (signifying ‘high tension’) and
the filament or heater source the L.t, (‘low tension”’).

If the anode of a diode is slowly made more and more positive
with respect to the cathode, as for example by moving the slider of
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the potentiometer in Fig. 9.2 upwards, the attraction of the anode
for the electrons is gradually intensified and the current increases.
To each value of anode voltage V, there corresponds some value
of anode current /,, and if each pair of readings is recorded on a
graph a curve like that of Fig. 9.3 (called a valve I,/ V, characteristic
curve) 1s obtained.

The shape of the curve shows that at low voltages the anode
collects few clectrons, being unable because of its greater distance

Fig. 9.2—Circuit for finding the relu-
tionship hetween the anode voliage (V,)
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Fig. 9.3—Characteristic curve of a thermionic diode

from the cathode to overcome much of the repelling effect of the
space-charge. The greater the positive anode voltage the greater
the negative space charge it is able to ncutralize; that is to say. the
greater the number of electrons that can be on their way between
cathode and anode: in other words, the greater the anode current.
By the time the point C is reached the voltage is so high that electrons
are reaching the anode practically as fast as the cathode can emit
them; a further rise in voltage collects only a few more strays,
the current remaining almost constant from D onwards. This con-
dition is called saturation. Because the saturation current is limited
by the emission of the cathode, and that depends on the temperature
of the cathode, it is often called a temperature-limited current,
to distinguish it from the space-charge limited current lower down
the curve. In modern valves the saturation current is far above the
working range.
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At B an anode voltage of 50 V drives through the valve a current
of 40 mA ; the valve could therefore be replaced by a resistance of
50/40 = 1-25 K without altering the current flowing at this voltage.
This value of resistance is thercfore the equivalent d.c. resistance
of the valve at this point. The curve shows that although the valve
is in this sense equivalent to a resistor, it does not conform to
Ohm's law (compare Fig. 2.3); its resistance depends on the voltage
applied. To drive 10 mA. for example. needs 25 V: V/I =25/10 =
2:5kQ.

This is because the valve. considered as a conductor, is quite
different from the material conductors with which Ohm experi-
mented. Its so-called resistance —really the action of the space
charge—is like true resistance in that 1t restricts the current that
flows when a given voltage is applied, but it does not causc the
current to be exactly proportional to the voltage as it was in Fig. 2.3
In other words. it 1s non-linear.

The kind of non-linearity just examined is particularly importint
in an undesirable way in valves having more than two electrodes,
as we shall see later. The most significant non-linearity of diodes is
that because the anode emits no electrons there is no possibility of
current when the anode voltage is negative compare Fig. 9.3
again with Fig. 2.3. Tt is this that makes diodes so useful. Fig. 9.3
makes clear that it a source of alternating voltage of, say, 50 V
peak were applied instead of the battery in Fig. 9.1 to the anode the
positive half-cycles would cause a peak current of 40 mA, but the
negative half-cycles would cause none. So the anode current would
consist of d.c. pulses.

For this process of rectification the thermionic diode has two dis-
advantages, both of them wasteful of power: it requires an auxihary
source of current to heat the cathode. and the space charge nccessi-
tates quite a number of volts to neutralize it. In high-power applica-
tions the latter disadvantage can be mitigated by admitling a
controlled amount of gas or vapour into the tube. Directly electrons
start moving across to the anode with sufficient velocity-—which
can be imparted by a fairly low anode voltage —they collide with
the gas atoms (or small groups of atoms called molecules) violently
enough 10 knock out some of their electrons. These electrons join
the stream and augment the anode current, but the more important
result is that the gas molecules with electrons missing are positively
charged ions (Scc. 2.2). (The process just described in ionization,
which is important in many connections.) These ions are therefore
attracted to the cathode. but being tar heavier than the electrons they
move comparalively slowly. So each one lingers in the space charge
long enough 10 neutralize the negative charge not only of the
electron torn from it but also of many of those emitted from the
cathode. In fact, the negative space charge is practically eliminated,
and with it nearly all the resistance of the diode.

Even this interesting improvement succeeded only in delaying
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for a time the replacement of thermionic diodes by semiconductor
ones, both for power and signals (rectifiers and detectors). So we go
on now to study these.

9.5 Semiconductors

In Sec. 2.3 solid materials were grouped into conductors and in-
sulators. The difference was explained by supposing that conductors
are substances in which the electrons belonging to their atoms are
free to move, under the influence of an electric field, in one direction
(towards the positive pole) and so to create an electric current,
whereas the electrons of insulators are, as it were, held on elastic

Fig. 9.4—The four valence
electronsinatetravalentatom
can be visualized as satellites
around the rest of the atom.
These parts are electrically
charged as shown

leashes so that an electric field (unless extremely strong) is unable
to move them far from the home atoms. This is a very much over-
simplified view of the matter, but it will do as a first approach. For
a more advanced but still not highly mathematical treatment, see
the author’s The Electron in Electronics.

Not all the electrons in atoms are involved, but only the outer-
most ones, known as valence electrons. This term first arose in
chemistry, because it happens that the chemical behaviour of sub-
stances depends mainly on the number and arrangement of these
outer electrons. There are never more than seven of them per atom,
though the normal total number of electrons per atom, called the
atomic number, can be anything up to about 100.

Substances in which all the atoms have the same atomic number
are called elements. The semiconductor materials most important
in electronics are the elements silicon and germanium, which are
tetravalent (meaning that they have four valence electrons per
atom). Their atomic numbers are 14 and 32 respectively, but for
our purpose all except the four valence electrons may be lumped
together with the remainder of the atom ; that is to say, the positively
charged nucleus. Around this relatively heavy main body of the
atom the valence electrons can be visualized as satellites (Fig. 9.4).
The positive charge on any atom is exactly neutralized by the whole
normal complement of electrons, so if four electrons are subtracted
there must be a positive charge of 4 electron units, as shown.




129

Now it happens that the full capacity of the outermost or valence
orbit is eight electrons. Atoms show a general tendency to fill up
vacancies in such orbits in some way or other, and one of these
ways is the creation of what are called covalent bonds. 1f each atom
shares each of its four valence electrons with another atom, so that
both atoms have two electrons in common, every atom has eight
electrons in its valence orbit and is attached to four other atoms.
These are arranged symmetrically in three dimensions, so a model
would be needed to represent the system properly; but Fig. 9.5
shows the result of squashing a bit of such a model flat so as to get
it on a sheet of paper. Because every atom is identical with every
other, the structure so formed is made up of atoms in perfectly
regular array, like a case of tennis balls packed for export. But we
must remember that the atoms are inconceivably small and numerous.
Broken-off pieces of such an atomic structure naturally tend to

Fig. 9.5—Diagrammatic representation of the four-fold knkages of tetravalent atoms
such as silicon

have flat faces at certain definite angles to one another, and this
description fits what we call crystals.

9.6 Holes

A crystal of this kind, if perfect, would have no electrons free to
roam around and would therefore be a perfect insulator. And in
fact one of the tetravalent elements, carbon, crystallizes in this way
(though not very readily!) as diamond, which is a very good but
rather expensive insulator. But the atoms of silicon—and even
more those of germanium—hold on to their electrons less firmly,
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and at ordinary room temperatures there is enough heat energy to
‘shake out’ a valence electron here and there, making it available
for electrical conduction. The atom from which it came is then an
electron short.

Now ‘an electron short’ is, in effect, a positive charge. We have
already noted that the inner part of the atom, taken by itself, is
positively charged, as shown in Fig. 9.4, because its four valence
electrons are being considered separately. Taken as a whole, with
all its electrons, the atom is neutral. But when one of the valence
electrons moves off, the atom as a whole becomes a positive ion
(Sec. 2.2). The electron vacancy thus created is called a hole. The
curious and interesting thing is that this hole can wander about
and cause conduction, almost like the loose electron. Although the
exact way in which this happens is difficult to understand, the
following analogy or working model should give sufficient insight
for practical purposes into the significance of electronic holes.

Fig. 9.6 shows part of a floor laid with small square tiles. One tile
has been removed and laid aside. It represents an electron, and the

e \
Tal | Fig. 9.6—Tile analogy of the creation of a
gﬁ —% ‘hole’ by the displacement of an electron

JSrom an atom

lump it makes on the floor represents its negative charge. The hole
it has left behind, being the reverse of a lump, represents the positive
charge created by an electronic hole. Now introduce a tile-motive
force towards yourself. That draws the displaced tile towards you
and represents a tiny electric current away from you. Most of the
other tiles (representing electrons fixed in the crystal structure) are
unable to move in response to the t.m.f., but the one marked A
can do so because there is an adjacent hole into which it can slide.
That leaves tile B free to move into the hole left by A, and so on.
The net effect is that the hole moves away from you, and as it repre-
sents a positive charge it too means an electric current away from
you.

An electronic hole can for most purposes be regarded as a mobile
electron, except for its being electrically positive instead of negative.
When a meter reads 1 mA it could be due to 6:24 x 10 electrons
per second moving through it one way, or an equal number of holes
the other way—or a mixture of both to the same total. Conduction
caused by heat disturbance is therefore twofold: each electron
released creates a hole, and when there is an electric field (due, very
likely, to an e.m.f.) the resulting current is made up of electrons
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moving towards the positive end and holes towards the negative
end. Owing to the more complicated way in which holes ‘move’,
their mobility is less than that of electrons. This means that they
move slower.

Just as the only things that really moved in Fig. 9.6 were tiles,
so the only things that move in conduction by holes are clectrons.
Teachers are sometimes so anxious to emphasize that holes are not
real positive charges that there may be difficulty later on when
certain experiments show that holes really do behave like positive
charges. Although not strictly scientifically, Fig. 9.6 covers this
point too. We can all agree that both kinds of tile current are
brought about solely by movements of tiles. That corresponds to
the statement that a hole movement one way is really an electron
movement the opposite way. But looking at the two ‘current carriers’
we must also admit that one is a hump and the other a hollow. As
these irregularities stund for negative and positive polarities
respectively, one kind of current is a negative charge moving one
way, and the other kind is a positive charge nioving the other way.
So although the causes are the same the results are different. That
corresponds to the statement that a hole behaves physically as a
positive charge.

9.7 Intrinsic Conduction

Having grasped the significance of holes. we may perhaps gain
further insight into this kind of conduction by consider:ng a vast
array of small balls on a flat tray. They are kept in their places
by resting in shallow depressions (‘holes’) in the tray. A difference
of potential between the ends of the tray is represented by raising
one end slightly, the raised end being ‘negative’. Such a tlt would
cause no movement of balls (‘electrons’). except perhaps a slight
lurch to the side of each hole nearest the ‘positive’ end, representing
a displacement or capacitive current (Sec. 3.8). This is like a crystal
at a very low temperature. when it i1s an insulator.

The effect of raising the temperature could be shown by making
the tray vibrate with increasing vigour. At a certain intensity a
ball here and there would be shaken loose, and on a perfectly level
tray (no e.m.f.) would wander around at random. In doing so it
would sooner or later fall into a hole—not necessarily the one from
which it came. There would therefore be some random ‘nmovement’
of holes. At any given degree of vibration (temperature) a balance
would eventually be reached between the rate of shaking loose
and the rate of re-occupation (called in electronics recombination),
but the greater the vibration the greater the number of free electrons
and holes at any one time. and the greater the drift of balls towards
the ‘positive’ end of the tray when tilted. One result of this move-
ment would be a tendency for more holes to be reoccupied at the
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lower end than the upper; in effect, there would be a movement of
holes up the tray towards the negative end.

To represent a sustained e.m.f. it would be necessary for the balls
that reached the bottom of the tray to be conveyed by the source
of the e.m.f. to the top end, where their filling of the holes would be
equivalent to a withdrawal of the holes there.

If you have been able to visualize this model sufficiently you
should by now have gathered that at very low temperatures a semi-
conductor crystal is an insulator, but that as the temperature rises
it increasingly conducts. In other words its resistance falls, in con-
trast to that of metals, which rises with temperature. This sort of
conduction is called intrinsic, because it is a property of the material
itself.

A similar effect is caused by light; a fact that is turned to advantage
in the use of semiconductors as light detectors and measurers.

Unless a substance crystallizes under ideal conditions, it tends to
be a jumble of small crystals, at the boundaries of which there are
numerous breaks in the regularity of the lattice, releasing spare
electrons: this is yet another cause of conduction.

Even although conduction due to these causes is contributed
to by both electrons and holes, the combined number falls far short
of the free electrons in metals, so the result is only ‘semiconduction’.
In fact, as we shall see later, to be suitable material for most electronic
devices the intrinsic conduction at working temperatures should be
as nearly as possible negligible. It is because silicon fulfils this
condition better than germanium that it has tended to supersede
germanium, especially for use at high temperatures.

9.8 Effects of Impurities

So far we have assumed that our crystal, however it may be dis-
turbed by heat, light, or its original formation, is at least all of one
material. In practice however nothing is ever perfectly pure. Now
if the impurities include any element having five valence electrons
(such as phosphorus, arsenic or antimony) its atoms will be misfits.
When they take their places in the crystal lattice—as they readily
do—one electron in each atom will be at a loose end, more or less
free to wander and therefore to conduct. Such an incident is repre-
sented in Fig. 9.7. Intruding atoms that yield spare electrons are
called donors. It might be supposed that because each surplus
electron leaves behind it an equal positive charge it thereby creates
a hole, but it should be understood that the technical term ‘hole’
applies only to a mobile positive charge. In this case all four valence
electrons needed for the lattice are in fact present, so there is no
vacancy into which a strolling electron can drop. Therefore the
positive charges due to donor impurities are fixed, and conduction
is by electrons only. This is a most important thing to remember.
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Fig. 9.7—Showing the release of an electron wherever a peniavalent (donor impurity)
atom finds its way into a tetravelent crystal lattice structure
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Fig. 9.8 Where u trivalent ¢accepror impuriiy} atom takes a place in the weteavalent
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Because electrons are negative charges. a semiconductor with donor
impurity is classified as n-rype.

An incredibly small amount of impurity is enough to raise the
conductivity appreciably; far less than can be detected by the most
sensitive chemical analysis. As little as one part in a hundred
thousand million (1 in 10") can be significant. This is the ratio of
about a thirtieth of a person in the entire population of the world!
So the manufacture of semiconductor devices is a tricky business.

Trivalent elements, such as aluminium, gallium and indium, have
only three valence electrons per atom; and when any of these sub-
stances is present the situation is the opposite of that just described.
The vacancy in such an atom’s valence orbit is a hole, and because
trivalent atoms attract electrons more strongly that the surrounding
tetravalent atoms hold on to theirs, the hole is quickly filled (Fig.
9.8). The impurity atom in this case is an acceptor. Note that when
the hole has migrated from the acceptor—in other words, an electron
from elsewhere has filled up or cancelled the hole in the acceptor
atom—that atom constitutes a negative charge, because its main
body has only three net positive charges to offset what are now four
valence electrons; but such negative charges are fixed and take no
direct part in current flow. Because conduction is by holes only,
which are positive charges, a semiconductor with acceptor impurity
is called p-rype.

So far as impurity conduction is concerned, we see that the semi-
conductor itself plays only a passive part, as a framework for the
impurity atoms. In fact, it corresponds to the vacuum in a thermionic
valve, and ideally would be non-conducting. Intrinsic conduction
1s just a nuisance. In the diagrams that follow, therefore, all except
the relatively few impurity atoms will be omitted in order to focus
attention on them. Fig. 9.9 shows the symbols used for this purpose.
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Fig. 9.9—Simplified representation of pieces of impure semiconductor, showing only
the electric charges of broken impurity atoms. In p-type material the mobile charges
are predominantly positive (holes), and in n-1ype material negative (electrons). The
uniform distribution of mobile charges is represented below

The mobile charges—electrons and holes—are represented by
simple minus and plus signs respectively; and the fixed charges—
donor and acceptor atoms—are distinguished by encircled signs.
Although these atoms are all members of the crystalline lattice,
they are such a small minority that when the tetravelent atoms are
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omitted, as here, the pattern can no longer be discerned. In each
type of material the mobile charges are distributed as uniformly as
the fixed, and clearly they must be equal in number, so the material
is electrically neutral throughout.

One might ask what happens when both donor and acceptor
impurities are present at the same time. The answer is that they
tend to cancel one another out by electrons filling holes, and when
present in equal quantities the semiconductor is much as if it had
no impurity at all. But although this compensation as it is called is
used for converting n-type into p-type (or vice versa) by adding
more than enough opposite impurity to neutralize the impurity
already present, the balance would be too fine to enable heavily
contaminated material to be made apparently pure by the same
method.

We must however take care not to concentrate so exclusively on
the important impurity current carriers that we forget all about the
background intrinsic conduction, for it 1s always present in semi-
conductor devices and in fact sets an upper limit to the temperatures
they can be allowed to reach. Do the two sorts of conduction go on
independently, so that the total numbers of electrons and holes are
the sum of those due to impurity atoms and those due to heat and
other disturbances? The answer 1s no. because there is a law that the
product of the densities of electrons and holes (i.e.. number per unit
volume of material) is constant. Suppose that in a certain very small
volume of pure material there are 14 free electrons and 14 holes.
The product, 142, is 196. Now add n-type impurity to the extent of
96 clectrons. The total numbers are now 110 and 14, and the product
is [10 x 14 = 1540. which is much too large. What happens is that
12 of the impurity electrons fill 12 of the intrinsic holes. reducing
the numbers to 98 and 2. to restore the product to 196. The electrons
in this example are called majority carriers and the holes are minority
carriers. In p-type material the roles are reversed, of course.

More hole-and-clectron pairs are continually being generated by
heat, but these are balanced by recombinations. so at a fixed tem-
perature the numbers remain practically constant. The nuimbers
taken in our example were extremely small, to make the calculation
clear: in such a small sample they would fluctuate considerably
about the averages quoted. But we should realize that in as little as
one cubic millimetre (about the size of a pin head) of typical material
at ordinary room temperature the number of carriers is of the order of
107 for silicon and 10'° for germanium. Even so, they are very rare
compared with the atoms.

9.9 P-N Junctions

We can have. then, p-type material, in which conduction is by
holes (positive carriers); n-type, in which it is by electrons (negative
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carriers); and what is sometimes called i-type (for ‘intrinsic’), in
which it is by both in equal numbers. None of these by itself is
particularly useful; it is when more than one kind are in contact
that interesting things begin to happen. Just bringing two pieces
together is not good enough, however; the combination has to be
in one crystalline piece, divided into two or more regions having
different impurities. Various manufacturing methods have been
devised for achieving this. The process of introducing a desired
proportion of p or n impurity is called doping.

Fig. 9.10 shows with standard symbols a small section of such a
combination at its boundary between p and n materials, both
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equally doped let us assume. The boundary is called a p-n junction.
Compare it with Fig. 9.9 where the two materials are shown
separately. Let us suppose first that there is no electric field to in-
fluence matters. But at room temperature, which is nearly 300°C
above absolute zero ( — 273°C), the spare electrons on the n side and
holes on the p side are in continuous random motion, like the intrin-
sic ones illustrated by the tray experiment. This motion tends to
make any concentration of them gradually spread out into a uniform
distribution—a process known as diffusion. It is by this process that
when a bottle of ether is unstoppered in a room the smell pervades
the whole room within seconds. Unlike intrinsic mobile charges,
which for the moment we are ignoring, and impurity mobile charges
within their own separate zones in Fig. 9.9, all of which from the
start are distributed uniformly throughout the material because
that is how they are generated, the holes have the entirely holeless n
region in front of them. So they begin to diffuse across the junction.
Directly they do so they encounter electrons diffusing in the opposite
direction and combine with them, eliminating both so far as our
diagram (restricted to electric charges) is concerned. The same story
applies in reverse to the electrons. Because of this recombination
process the mobile charges are prevented from diffusing far into the
opposite territory. It is like a frontier between two equally matched
warring nations. As a result of the casualties there is a thin layer on
each side of the junction in which there are hardly any mobile
charges; a sort of no man’s land. It is called a depletion layer (Fig.
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9.10). And it really is thin; typically one thousandth as thick as a
sheet of paper.

The fixed charges are still there, of course; positive on the n side
and negative on the p. The cancelling out of the mobile charges
therefore builds up a difference of potential between the two regions,
of such a polarity as to repel mobile charges moving towards the
junction, until it 1s strong enough—a few tenths of a volt—to bring
further traffic across the junction to a halt. The array of unneutralized
negative fixed charged on the p side behaves rather like the space
charge in a thermionic diode towards electrons seeking to follow
up from the n side, but this time there is a corresponding set-up of
opposite polarity on the other side, holding back the holes.

If you connect a sensitive voltmeter to the two sides of a p-n
junction to measure this p.d. you will not get a reading. This does
not prove that the p.d. does not exist. In the complete circuit there
are inevitably other inter-material p.ds that bring the total to zero,
provided all 1s at the same temperature.

Next, consider what happens when an external e.m.f. is applied,
as in Fig. 9.11. Electrons in the n region are attracted by its positive
pole and tend to move to the right, while holes are attracted to the
left. There are no current carriers of the correct polarity to be
drawn across the junction. Instead, more fixed charges on each side
of it are ‘uncovered’ by retreating carriers, and the barrier p.d. is
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Fig. 9.11—1If un external voltage
is applied, positive 10 n, the p.d.
in Fig. 9.10 is augmented and
the depletion luver widened

Fig. 9.12—If sufficient external
voliage is upplied, positive to p,
the internal p.d. is overcome and
current flows

thereby increased. When this process has gone on enough for the
p.d. between the regions to be equal and opposite to the applied
e.m.f. another no-current balance is established. In other words, to
an e.m.f. of this polarity (called a reverse bias) the junction behaves
as a non-conductor. Because it develops a back voitage equal to
that applied, it is like a small capacitor.

Suppose however that the e.m.f. is applied the other way round,
as in Fig. 9.12, and is increased gradually from zero. The polarity
of this forward bias, as it is called, is now such as to repel electrons
and holes rowards the junction, and the first effect is to neutralize
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some of the fixed charges there and reduce the potential barrier.
This movement constututes only a small temporary ‘capacitive’
current. But when the applied e.m.f. is sufficient to exceed the
initial barrier p.d. the carriers are able to flow across the junction.
Because of recombinations when the electrons and holes meet, the
flow of holes to the right begins to die out even before the junction
is reached, and has done so completely a short distance beyond it.
So current through the semiconductor, except close to the junction,
is by holes on the p side and by electrons on the n side, as indicated
at the foot of Fig. 9.12. The fact that near the junction there are some
carriers of the ‘wrong’ polarity will be found later to be very im-
portant. Their number can be greatly increased if one region is
doped more heavily than the other, instead of equally as we have
been assuming,.

If we remember that there are no positive current carriers in
metals, we may wonder where the supply of holes comes from to re-
plenish the p zone as they are drawn to the right and are neutralized
by electrons. They are in fact created by withdrawal of electrons at
the positive terminal of the semiconductor.

9.10 The Semiconductor Diode

Summing up. a p-n junction allows current to flow one way (pro-
vided that the e.m.f. applied is not too small) but not the other.
In short, it is a rectifier. The foregoing explanation of why it
rectifies may seem complicated in comparison with the action of
the vacuum diode (Sec. 9.4). so let us look at them side by side, as
in Fig. 9.13. Here diodes of both vacuum and p-n junction types are
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Fig. 9.13—Showing how in diodes the presence or absence of current depends on the
presence or absence of the right kind of current carriers. [ is the general symbol for
a diode
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connected both ways across a battery. At « we are reminded that
current can consist either of negative charges flowing to + or
positive charges to —. Or, of course, both at cnce. When a vacuum
diode is connected as at b, current can flow, because the heated
cathode is an emitter of electrons, which are negative charges.
But when reversed. as at ¢, there is no current. because the anode
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does not emitelectrons. And neither electrode emits positive charges.
In a p-n diode connected p to + as at . current flows. because “the
n region emits electrons, and because the p region emits holes, which
are positive charges. When reversed (¢) both regions emit the
wrong charges. so there is no current. The Luneml symbol for a
diode is shown at /. It could replace both b and d if there was no
need to specifv which kind.

The semiconductor diode rectifier has some important advantages
over the vacuum type: it needs no cathode heating: it is less fragile:
and the emitted electrons do not form a space charge tending to
oppose the anode voltage, because their charge s neutralized in
the crystal by the fixed positive charges. so less voltage is iost in the
diode when current flows and as a rectifier it 1s more efficient. And
because the working region of a semiconductor diode is contained
in a microscopically thin layer the whole thing can be made exceed-
ingly small.

On the other hand there arc one or two complications. So far
we have ignored the intrinsic conduction which, as we have seen,
results from the releasing of electrons and holes in equal numbers
1hroughout the material, so does not depend on the direction of the

c.m.f. As a small extra current in the forward direction it is unim-
portant. but there should be no current in the reverse direction. So
to the extent that intrinsic conduction results in a reverse or leakage
current it reduces the effectiveness of the diode as a rectifier. One
causc of intrinsic or minority current—Ilight can easilly be ex-
cluded by an opaque covering. But the amount of heat at ordinary
temperatures is sufficient for the current of a germanium diode to
be appreciable, and it approximately doubles with every 9° C rise
in temperature. This is one of the most serious limitations of ger-
manium. In this respect silicon is an attractive alternative because
its intrinsic conductivity is about a thousand times less. On the
other hand silicon has nearly three times the barrier potential to be
overcome, so the forward current does not ‘get off the ground” so
easily.

This imperfection of a semiconductor diode cannot be fully
represented In an equivalent circuit diagram by a resistor in parallel
with a perfect diode, because the current through ar ordinary
ohmic resistor is proportional to the applied voltage. whercas in-
trinsic semiconductor current is limited by the number of carriers
released at the temperature of the material and cannot be increased
by applying more volts—short of a limit to be mentioned later.
With no bias. there is an exact balance between intrinsic electrons
released on the p side (where they are minority carriers) moving to
the n side because of the aftraction of the positive space charge there,
and electrons releascd on the n side with sutficient force 1o propel
them across the barrier. Hole flow is balanced in the same way. So
therc is no net current. But once e¢nough reverse bias has been
applied to raise the barrier too high for any majority carriers to get
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over it, the only current flow consists of minority carriers only,
and is in the direction of the bias.

The behaviour of this leakage current, in reaching a saturation
value unaffected by further increase in voltage but steeply increasing
with rise in temperature, may remind us of the temperature-limited
vacuum diode (Sec. 9.4) but the mechanism of the effect is quite
different.

9.11 Diode Characteristics

We can now account for the features of the current/voltage charac-
teristics of a typical germanium diode, Fig. 9.14. To positive voltages
below about } V the response is very small, as they are occupied
mainly in dismantling the potential barrier at the junction. Such
current as does flow is mostly intrinsic. Above that level of applied
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Fig. 9.14— Current|voltage characteristics of a typical germanium diode ar two
different temperatures

voltage the barrier is down and the forward current increases
steeply; soon it is limited chiefly by the resistance of the semi-
conductor material and external circuit. Compared with such a
large impurity current the intrinsic current at ordinary temperatures
is small, so the effect of a moderate change in temperature on the
total current is also small. To the left the curves show the reverse
current (needing a ten-thousand-fold change in scale to make
it clear) reaching saturation value at a low reverse voltage and
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determined mainly by temperature. A silicon diode would have
much less reverse current, and the forward current would not rise
steeply until the voltage reached about 0-6 V. Even so, it gets away
at a much lower anode voltage than does a thermionic diode (com-
parc Fig. 9.3).

If an attempt were made to extend the curves in the forward
direction, the power dissipated in the diode would sooner or later
overheat i1t so much that the intrinsic current would no longer be
a minor effect but the major one. And because it can flow equally
in both directions the diode would cease to be an cffective rectifier.
It could hardly even be called a semiconductor, since the material
would be more like a metal. The junction would be destroyed and
one would say that the diode was burnt out.

If the voltage is increased in the reverse direction, the current
remains nearly constant until a point is reached at which the intrinsic
carriers are driven so fust that they knock out more electrons from
the crystal atoms and start a chain reaction. called avalunche effect,
that increases the current until either it is limited bv external
means such as resistance or the diode is destroyed. rather as a
capacitor is destroyed by excessive voltage (Sec. 3.4).

And indeed a semiconductor diode is also a capacitor., as we have
already noted. Because its diclectric—the depletion layer—is so
extremely thin it has quite a large capacitance per square millimetre.
It provides a by-pass for a.c.. which may be a serious disadvantage.
High-power rectifiers need large junction areas to pass heavy
current without getting too hot, but fortunately the {requencies for
which such diodes are needed are usually low— 50 Hz. for example
and the capacitance is then not too serious. But at the very high
frequencies used for television it is difticult to make junctions small
enough for the capacitance to be tolerable. even although there is
no power problem. This is why signal diodes are usually of the
poini-contact type, consisting of a small piece of n-type crystal with

GERMANIM WIRE
CATHODE 'ANODE

Fig. 9.15—Construction of a poini-contact
germuanium rectifier

a pointed springy wire impinging on it, enclosed in a glass bulb
(Fig. 9.15). During manufacture a pulse of current is passed. which
has the effect of giving p-type characteristics to the germanium
immediately surrounding the point. Because of the small area of the
boundary so formed, the capacitance is less than in the junction
type. so these diodes are effective at much higher frequencies.
2 pF is a typical value.

A wide variety of characteristics are obtainable by varying the
impurity in the material. and other details. Owing to its relatively
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high starting voltage for forward current, silicon is not normally
used for signal diodes, but has other applications (Sec. 26.4). One
of them is as a voltage-varied capacitor. or vaructor. The capacitance
of a diode, being dependent on the thickness of the depletion layer,
and that thickness varying with the reverse voltage. as shown by
comparison of Fig. 9.11 with 9.10, the capacitance must vary with
reverse voltage. Since increasing the voltage increases the thickness
of the depletion layer. it reduces the capacitance (Sec. 3.3). This
property has some uses. such as tuning receivers (Sec. 21.6).

One quite essential thing we have been taking for granted is the
possibility of connecting the p and n regions of a diode to an ex-
ternal circuit. This routine necessity is actually too difficult a subject
to discuss in this book, and the science of it is still not fully under-
stood. so manufacturers have to rely mainly on practical experience.
The problem is to make a joint between the semiconductor crystal
and a metal wire, that does not rectify on its own. The ideal is a
connection that has no resistance at all; that being impossible, the
aim is a resistance that is low and linear, or ohmic.

9.12 Recapitulation

Even an elementary introduction to semiconductors is not easy to
grasp at once, and as 1t is important to have at least the main points
clear before going any farther. let us recapitulate. To avoid a lot
of “ifs’ and ‘buts’ let it be assumed that the basic semiconductor
material is silicon (*Si") or germanium (‘Ge’) and that exceptional
conditions are excluded.

At low temperatures, perfectly pure material would be an in-
sulator, because the active or valence electrons would all be occupied
in holding the atoms together in regular crystalline array and there
would be none to spare as current carriers. At slightly below room
temperatures (Si) or well below (Ge) the heat energy is sufficient to
10onize enough atoms (i.e.. rclease electrons from them) to cause
perceptible conduction. Each displaced electron leaves behind a
hole, which behaves like a positive charge. So negative and positive
current carriers are created in equal numbers throughout the
material. At any given temperature this population increases until
balanced by the rate at which pairs recombine. Their density
(number per unit volume) then remains steady at that temperature.
But it increases so fast with temperature that the conductivity doubles
with about every 9° C rise. The ultimate conductivity can be very
high—comparable with that of metals-—because «// the atoms are
involved. But at room temperatures only perhaps 1 in 10'° happens
to be ionized at any moment, so the material behaves like a poor
insulator. So much for intrinsic conduction.

When trivalent impurities are present they provide onc hole per
impurity atom for conduction, so there is a surplus of holes. Some
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of them mop up some of the intrinsic electrons, so the net effect is
to reduce electrons and increase holes. Electrons are then minority
carriers and holes are majority carriers, and the material is p-type.
At anything above an extremely low temperature all the impurity
atoms are ionized, so even if they are outnumbered perhaps 1 : 10!
by the basic material they are still likely to contribute more current
carriers at room temperature. But as their contribution is already
at its maximum it is rapidly rendered insignificant at high tempera-
tures by the huge intrinsic reserves. At the same time, of course, the
disparity in numbers between electrons and holes practically
vanishes 100. As semiconductor devices rely on the disparity they
must be worked below the temperature at which intrinsic conduc-
tion begins to take over.

Pentavalent impurity has the same results except for introducing
electrons instead of holes. so material with it is n-type. If both kinds
of impurity are present, the carriers created by the smaller quantity
of impurity are neutralised by those from the larger quantity, so
only the surplus impurity of one kind counts.

All the impurity atoms in p-type material are fixed negative
charges, and all those in n-type are fixed positive charges. Unless the
mobile current carriers are moved by an electric field they mill about
at random, and because they are equal and opposite to the fixed
charges any volume of the material as a whole is neutral.

This random motion tends to make the carriers fill any available
volume uniformly, so at a p-n junction the electrons on the n side
begin to diffuse into the p region, and when they meet the holes
doing the same thing in the opposite direction they fill them, so
creating a depletion layer, in which there is a shortage of both kinds.
So the fixed charges of opposite polarity on each side of the junction
establish a potential barrier that stops further diffusion. Applying
an external voltage, negative to p and positive to n, heightens the
barrier and no majority-carrier current can flow. Intrinsic (minority)
carriers can flow, because they are of the right polarity to do so. but
the resulting current is limited by their number, which is increased
by a rise in temperature but not by a rise in voltage-—short of break-
down voltage. Applying an external voltage of the opposite (for-
ward) polarity overcomes the barrier with roughly its first 0-2 V
(Ge) or 0-6 V (S1), and all above that causes a current limited mainly
by incidental resistance.

A reverse-biased diode has a capacitance that decreases with in-
crease in bias voltage.



CHAPTER 10

Triodes

10.1 The Vacuum Triode Valve

Valuable though diodes are, radio and electronics would not
have got very far on only two electrodes. The important date is
1906, when De Forest tried adding a third electrode as a sort of tap
to control the flow of current between cathode and anode. It is
called the grid, and usually takes the form of an open spiral of thin
wire wound closely around the cathode so that in order to reach the
anode the electrons from the cathode have to pass between the
turns of wire.

If the potential of the grid is made positive with respect to the
cathode it will assist the anode to neutralize the space charge of
electrons around the cathode, so increasing the anode current; and,
being nearer to the cathode, one grid volt is more effective than one
anode volt. If, on the other hand, it is made negative it will assist the
space charge in repelling electrons back towards the cathode.

Fig. 10.1 shows the apparatus needed to take characteristic
curves of this three-electrode valve, or triode. And in Fig. 10.2 are
some such curves, showing the effects of bothanode and grid voltages.
(These curves are somewhat idealized, being straighter and more
parallel than in actual practice). Each of them was taken with the
fixed grid voltage indicated alongside. Notice that this voltage,
like al others relating to a valve, is reckoned from the cathode as
zero. If, therefore, the cathode of a valve is made two volts positive
with respect to earth, while the grid is connected to earth, it is
correct to describe the grid as "two volts negative’, the words *with
respect to the cathode’ being understood. In a valve directly heated
by d.c.. voltages are reckoned from the negative end of the filament.

10.2 Amplification Factor

One would expect that if the grid were made neither positive nor
negative the triode would be much the same as if the grid were not
there; in other words, as if it were a diode. This guess is confirmed
by the curve in Fig. 10.2 marked "}, = 0’ for it might easily be a
diode curve. Except for a progressive shift towards the right as the
grid is made more negative, the others are almost identical. This
means that while a negative grid voltage reduces the anode current
in the way described, this reduction can be counterbalanced by a
suitable increase in anode voltage. In the valve for which curves are
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shown, an anode current of 40 mA can be produced by an anode
voltage of 120 if the grid is held at zero potential. This is indicated
by the point A. If the grid is now made 6 V negative the current
drops to 16 mA (point B). but can be brought up again to its original
value by increasing the anode voltage to 180 V (point C).

Looked at another way, the distance A to C represents 60 V on
the V, scale and —6 V on the V, scale, with no change in /,. So
we can say that a change of 6 V at the grid can be compensated for
by a change of 60 V. or ten times as much, at the anode. For reasons

Fig. 10.1—Circuit for taking charac-
teristic curves of a thermionic triode
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Fig. 10.2—Characteristic curves of triode valve, at different grid voltages
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that will soon appear, this ratio of 10 to 1 is called the amplification
Jactor of the valve. It is yet another thing to be denoted by p.

10.3 Mutual Conductance

Another measure of the control that the grid has over the electron
stream in a valve is the change of anode current that results from a
given change in grid voltage, the anode voltage meanwhile remaining
constant. Comparing points A and B in Fig. 10.2 we note that increas-
ing the grid voltage by 6 V increases the anode current by 24 mA.
In Sec. 2.12 the number of amps made to flow, per voit, was the defini-
tion of the siemens, the basic unit of conductance. Here now we have
a current change brought about in a circuit (the anode circuit) by a
voltage somewhere else (between cathode and grid). To distinguish
this conductance from the ordinary sort it is calied mutual conduc-
tance and given the special symbol g,. Although its value in this
example would correctly be stated as 4 mS (4 millisiemens) one is
more likely to come across it in milliamps per volt.

To find the value of g, from an /,/V, graph, as we have just done,
it must have curves for at least two different grid voltages. A more
suitable form of characteristic curve for this purpose is obtained by
plotting /, against J;, taking care to keep V, constant, as in Fig. 10.3.
A single curve of this kind is sufficient to show gm- For instance BC
represents the increase in /, caused by an increase in V; represented
by AB; so g, is given by BC/AB—in this case 4 mA/V, as before.
Although they can be drawn by direct measurement, using the Figs.
10.1 set-up, the curves in Fig. 10.3 were actually derived from those
in Fig. 10.2, by noting (for example) the anode currents correspond-
ing to the four grid voltages where they cut the vertical V, = 100
line; and so on for the other three values of V.

The usefulness of identifying g, with the slope of such curves is
that one can see at once that it is not everywhere the same. Near the
foot of each curve the slope, and therefore gn, is less. And if we
examine genuine valve curves we find that they are not so straight
and parallel as these, so that g, varies to some extent even along
the upper stretches. Thus, although g, used sometimes to be called
a valve constant, in actual fact it is not at all constant, so is better
referred to as a parameter of the valve. The other parameter we
have encountered, W, also varies to some extent with V, and Vg, but
much less so than g, does.

If a characteristic curve really is appreciably curved (technically,
non-linear) then not only does its slope vary from point to point but
even at a given point it depends on the amplitude of the signal.
In fact, slope hardly has a meaning unless the signal amplitude
is small enough for the part of the curve used by it to be practically
straight (linear), so a.c. parameters are often called small-signal
parameters.
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Fig. 10.3—Four samples of anode-current|grid-voltage characteristic curve, each taken
at a different anode voltage

10.4 Anode Resistance

By this time you may be wondering if the slope of the curves in
Fig. 10.2 has any special significance and name. Clearly it is a
ratio of change in /, caused by a change in V,, V/; being kept constant.
So it too is a conductance, and this time a straightforward one,
because both current and voltage refer to the same thing : the cathode-
to-anode path through the valve. This slope is therefore called anode
conductance, and its symbol is g.. More often, however, it is turned
upside down, 1/g,, and this reciprocal of g, is, as one would expect,
called anode resistance and denoted by r,.

When considering the diode curve, Fig. 9.3, we calculated a kind
of resistance in the same way as we did with Ohm’s law, as V,//,,
but there was not very much point in doing so, because, as we saw
then, a valve is not a proper resistance and does not conform to
Ohm’s law. We shall see later that in most uses of valves one is more
interested in changes in I,, V,, etc., than in their values relative to
zero, so that is why in regard to triodes we have been working in terms
of changes or differences. It represents what a valve does with an
alternating voltage or current superimposed on the d.v. or d.c. cor-
responding to a selected point on the valve curve. So r, is more
precisely termed anode a.c. resistance. In Fig. 10.2 it would be found
as AC/BA = 60/24 = 2-5 kQ (kQ instead of Q because BA is in mA).
And of course g, being 1/r,,is 1/1:25 = 0-4 mA/V or mS.

If we have been keeping the figures for this example in mind we
will remember that g, is 4 mA/V, which is now seen to be 10 times
gs- And p is 10. This 1s not just a coincidence. Because V has y times
the effect on 7, that V, has, and p is the ratio of their effectivenesses
in this respect, it must always be true (provided all three parameters
refer to the same valve under the same conditions) that
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m = HUfa
In terms of r,, therefore
gm =l Of W=gmn. Or n= ZB;

We see, then, that if any two of these three parameters are known
they are all known.

10.5 Alternating Voltage at the Grid

In Fig. 10.4 we have an [,/ V, curve for a typical triode. Suppose that,
as suggested in the circuit dlagram. we apply a small alternating
voltage, v, to the grid of the valve, what will the anode current do?
If the bateries supplying anode and grid give 200 and —25 V re-
spectively, the anode current will set itself at about 53 mA ; point A on
the curve.

If v; has a peak value of 0-5 V, the total voltage on the grid will
swing between —2 and —3 V, alternate half-cycles adding to or
subtracting from the steady voltage E;. The anode current will
swing correspondingly with the changes in grid voltage, the points
B and C marking the limits of the swing of both. The current, swing-
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ing between 74 and 4 mA, is reduced by 13 mA on the negative half-
cycle and increased by the same amount on the positive one. The
whole is therefore equivalent to the original steady current with an
alternating current of 13 mA peak superposed on it. Incidentally
this. divided by the peak grid voltage, 0-5, gives 3-5 mA'V. the g,..

There are two ways in which this a.c. in the anode circuit can be
usefully employed. It can be used for producing an alternating vol-
tage, by passing it through an impedance. If the voltage so obtained
1s larger than the alternating grid voltage that caused it, we have a
voltage amplifier. Alternatively, if the alternating current is strong
enough it can be used to operate a loudspeaker or other device,
in which case the valve is described as a power amplifier. It is
this ability to amplity that has made modern radio and the many
kindred developments comprised in electronics possible. The
subject is so important that several chapters will be devoted to it,
beginning with the next one.

10.6 Grid Bias

You may have been wondering why the grid of the valve has never
been shown as positive. The rcason is that a positive grid attracts
electrons to itself. It is, in effect, an anode. The objection to this is
not so much that it robs the official anode of electrons—for up to a
point 1t continues to increase the flow there as well as to itself
but because current flowing in the grid circuit calls for expenditure
of power there, thus depriving the valve of one of its most attractive
features—its ability to release or control power without demanding
any.

To prevent the flow of grid current during use, a fixed negative
voltage. known as grid bias, 1s applied. The amount ol bias required
1s equal to—or preferably a volt or so more than—the positive
peak of the signal input voltage which the valve is expected to
accepl. The reason for making the bias greater than the signal peak
is that some electrons are emitted from the cathode with sufticient
energy to force a landing on the grid against a negative bias of any-
thing up to about one volt.

10.7 The Transistor

Considering how enormously the usefulness of the thermionic
valve was increased by adding a third electrode to the original
diode, one is hardly surprised that attempts were made to do the
same with the semiconductor diode. Owing to the greater difficulty
of the basic theory, success was not achieved until 1948. But the
result, the rransistor, in spite of its late start has largely supplanted
therinionic valves.
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Fig. 10.5 reproduces parts of Fig. 9.13, a being a thermionic diode
connected in the forward direction. Current flows because the

Fig. 10.5—To remind us of Fig. 9.13

(o) (b)

cathode emits electrons, which are attracted across the vacuum by
the positive anode. This was converted into a triode by interposing
an electrode (the grid) to control the current—normally by reducing
it. A junction diode, also connected in the forward direction, is
shown at b. Besides electron flow to the anode there is hole flow to
the cathode. So the valve control method would not work here;
its effect on the electrons would be counteracted by its opposite
effect on the holes.

Coming now to ¢, a reverse-biased diode, .we recall that the
potential barrier at its junction prevents both electrons and holes
from crossing it. However, the junction p.d. that is a barrier to those
current carriers has the opposite effect on carriers of the opposite
polarities, such as those responsible for intrinsic conduction (Sec.
9.10). In rectifiers these are a nuisance, to be kept to a minimum,
because they are not under control. What we want is a supply of (say)
electrons that can be introduced into the p region in numbers that
can be controlled. But this is what we already have in diode b. The
number of electrons introduced into the p region there depends on
the positive bias applied to it. So all we have to do to diode ¢ is to
add on an n region below as well as above it and apply a positive
bias to p, relative to the new n region, as in Fig. 10.6. The upper p-n
junction is the reverse-biased one of Fig. 10.5¢ and the lower junction
is the forward-biased one of Fig. 10.5b. This device, which is called

Fig. 10.6—Applying bias of the right polarity to the
middle layer causes increased current between the outers

an n-p-n transistor, does indeed work, but if it is to do so to a useful
degree at least two important structural features must be included.
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In considering p-n junctions with the aid of Figs 9 10-12, we
assumed that the p and n regions were doped with opposite im-
purities equally. As Fig. 9.12 indicates. half the electrons have
combined with oncoming holes before they have even crossed the
frontier. and the survivors are nearly all mopped up before they get
very far. So the chances of reaching the second junction and crossing
it would seem poor. In practice. therefore, the lower n region is
doped much more heavily. say a hundred times more; thus the
electrons. by so greatly outnumbering the p-region holes, nearly all

4

%\

ELECTRONS

Y HOLES
!

l
JUNCTION

Fig. 10.7 If the n region of a diode is ‘doped much morc heavilv than the p region, so
that electrons greaily outmunber holes, thex are able to penctrate an appreciable
distance into the p region. as showu here and as is required in the middle laver of a iransisior

manage to cross the first junction. And when they have arrived in
the p layer the rate of recombination is slower, so more of them get
farther. This result is represented in Fig. 10.7.

The other feature must now be obvious: make the p layer as thin
as possible, so that the electrons have hardly got into it before they
come under the influence of the relatively high positive potential of
the upper n region and are pulled into it. For this reason the p layer
1s usually made less than one thousandth of an inch (0-004cm) thick.

Making the journey to the positive n region so short and easy has
the effect of making the alternative path to the source of p bias
relatively less easy. so that the proportion of electrons finding that
route is small. This is very much to the good because it reduces the
power needed for control. There would not be much point in being
able to control a current if the power needed to do so was not less
and preferably very much less—than the power controlled.

The purpose of the lower n region is to provide a large source of
free electrons for emission into the p layer, which without it is
virtually an electron vacuum. So it corresponds to the cathode of a
vacuum valve, and is called the emitrer (a name that could equally
well be applied to the valve cathode). The upper n region is there to
collect the electrons so emitted, so is called the collector (a name that
would equally fit the anode of a valve). The amount of collector
current depends on the amount of bias given to the p luyer. which is
therefore analogous to the valve grid, and is called the base. Unlike
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the other two names. this one seems strangely inappropriate. Its
origin was historical rather than functional. And the cmitter 1s
usually said to inject rather than emit carriers.

Obviously there is an alternative way of making a transistor. by
sandwiching an n layer between two p regions, giving a p-n-p type.
To make it work, the base and collector polarities have to be
negative, instead of positive as in Fig. 10.6.

Although in some ways a transistor is remarkably like a vacuum
triode valve. there are important differences. The valve is a rectifier
connected to a supply voltage in the right direction to make current
flow through it. This current can be either inicreased or decreased by
applying grid bias, according to whether it is positive or negative:
but to avoid the flow of grid current it is usual to make it negative,
so that in practice the anode current is controlled downwards. The
transistor, on the contrary, faces the supply with a rectifier in
reverse, so except for a small leakage the normal state is no current.
Biasing the base negative would merely add another reversed rectifier
to the score, so to obtain any useful result it is necessary for the bias
to be positive: and although under these conditions base current is
inevitable it enables a much larger collector current to be created and
controlled. In electronic jargon a valve is said to be usually operated
in the depletion mode and a transistor in the enhancement mode.

As with the junction diode, the transistor does not contain an un-
neutralized space charge to impede current flow, so only a few volts
are needed at the collector—certainly not enough to be dignified
by the description “h.t.” The base bias is small, too; usually only a
fraction of a volt. And the emitter provides vast numbers of electrons
without any heater. So transistors clearly save much power and some
circuit complication compared with valves.

The transistor symbols most often seen, Fig. 10.8¢ and A, very
aptly suggest the point-contact type of transistor, which has so
long been obsolete that it needs no further mention in this book.
The symbols at ¢ and d are quicker to draw and fit better into circuit
diagrams, as well as suggesting more clearly the function of the base.
In all symbols the emitter is distinguished from the collector by
carrying an arrow head, which also distinguishes p-n-p from n-p-n
types by pointing in the direction of (positive) current.

COLLECTOR e c e
EMITTER c e c
(a) (b) (c) (d)

Fig. 108 (a and b) Usual symbol for a transistor, n-p-n and p-n-p respectively. Thev
are very suitable for the obsolete point-contact type. Junction types (n-p-n and p-n-p
respectively) are more appropriately represented by ¢ and d
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19.8 Transistor Characteristic Curves

To plot transistor curves we can use much the same set-up as for
the triode valve (Fig. 10.1) except that there is no need for cathode
heating. the supply voltages should be lower and both of the same
polarity relative to the emitter, and a low-reading milliammeter
1s needed for base current; see Fig. 10.9. We must remember that

Fig. 10.9- Arrangement, similar 10 Fig. 10.1, for obtaining characteristic curves of a
transistor

what in Fig. 9.14 was the "working’ half of the graph—the right-hand
one—has no place in connection with the collector-to-emitter
circuit of a transistor. which always includes one reverse-biased
junction no matter what the polarity of the voltage applied. The only
place where the forward curve has any relevance 1s in the control
(base) circuit by itself. First, though. let us deal with the collector
circuit.

With the base disconnected, what we have 1s a reverse-biased p-n
junction in series with a forward one. The only current that can
flow through the reversed junction is the intrinsic or leakage
current. which should be small enough to neglect for most practical
purposes. The bias needed to make this small current flow through
the forward emitter-to-base junction is also negligible. So the first
curve, whether we label 1t */; = 0" or * Vg = 0", will show a small and
nearly constant (over a wide range of V) collector current. /..

As our circuit provides for measuring both /g and V. we have a
choice of two methods. We could follow the same procedure as with
valves and plot Ic/V¢e curves at regular intervals of positive Vg
(instead of negative }%). If we did we would find that instead of the
regular spacing of the valve curves as in Fig. 10.2 the transistor
curves would be crowded together at first, with progressive thinning
out. This would show that the increases in /¢ are not in constant
ratio with the increases in Vg causing them. Although such curves
are sometimes drawn. the more usual sets are in terms of base
current, /. Fig. 10.10 is an examiple. For most low-power germanium
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Fig. 10.10—1¢|V¢ characteristic curves for typical small germanium transistor

transistors such as this the curves are spaced more regularly than
comparable valve ones. This can be seen more clearly by plotting
Ic against Ig at a constant V, as in Fig. 10.11.

The base voltage is nevertheless important, so besides the I/ V¢
curves for stepped values of 7 (called collector or output character-
istics) we really need what is called the base or input characteristic:
I against V. This (Fig. 10.12) is of course essentially a diode
forward characteristic, like the right-hand half of Fig. 9.14, which
we already know is very non-linear. The Fig. 10.9 circuit is suitable
for measuring it, if allowance is made for the voltage drop in the
Iy milliammeter, which must be deducted from the reading of the
Vg voltmeter—necessarily a low-range one to suit the low working
bias voltages of transistors. If on the other hand the voltmeter is
connected direct to the base, the current it takes must be deducted
from the reading of the I meter.

By combining the information shown by curves such as those in
Figs. 10.10 and 10.12, or by direct measurement, we can obtain a
curve of Ic against Vp at a fixed V¢ (Fig. 10.13). This corresponds to
Fig. 10.3 for a valve, but it is scarcely necessary to draw more than
one such curve because it is so little affected by changing the collector
voltage.
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a tangent 10 the curve at that point
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Fig. 10.13—From Figs. 10.11 and 10.12 this transfer characteristic (1c{V3) is easily
derived

All the curves shown are typical of a low-power germanium
transistor. With silicon types at room temperature the collector
current at zero /g or Vg is far too small to show, and in general the
curves are less ‘ideal’. The base bias voltage required to cause
appreciable collector current is around 0-6 V instead of 0-2 V. With
both kinds, if the temperature is raised sufficiently all the /¢ curves
are moved upwards.

Curves for p-n-p transistors are essentially the same except for
all voltage and current polarities being reversed. Strictly, their
curves should be drawn in the lower left-hand quarter where the
scales are negative, but more often they are drawn in the upper
right-hand quarter like valve and n-p-n transistor curves, sometimes
without even minus signs to the scales to show that they refer to a
p-n-p type. . . .

We did not bother to measure emitter current in our Fig. 10.9
experiment, because Kirchhoff’s current law (Sec. 2.13) assures us
that it is equal to Ic + Ig. As both of these flow into the n-p-n
transistor, /g must flow out of it. And as /g is normally very much
less than I¢, Ig is approximately equal to /¢ but a little larger.



157
10.9 Transistor Parameters

The most obvious differences between the I¢/V¢ curves in Fig. 10.10
and the corresponding ones for a valve (Fig. 10.2) are the very
rapid rise of I¢ followed by a nearly flat top. In a triode valve there
is a plentiful supply of electrons emitted by the cathode, and the
amount of anode current depends on how much anode voltage there
is to counteract the combined throttling-back effect of the negative
space charge and (usually) negative grid voltage. An n-p-n transistor,
on the other hand, relies on a positive base voltage to make available
a supply of electrons, and a fraction of a volt at the collector is
enough to get nearly all of them across the junction. Little can be
done by further increasing V.

When considering valve curves we saw that the steeper the slope
of a current/voltage characteristic the higher the conductance and
the lower the resistance to current changes at that part of the curve.
So Fig. 10.10 shows a very low resistance for the first fraction of a
volt, and a very high resistance thereafter. Consider the resistance
between emitter and collector terminals with 2 V V¢ and 30 pA I,
s0 4.25 mA Ic. To a.c. it can be found by noting that an increase of
6 Vin V¢ increases Ic by 0-15 mA. So the a.c. resistance is 6/0-15 =
40 kQ. To d.c., however, the resistance at the 2 V/4-:25 mA point is
only 0-47 kQ, or 470 Q. The a.c. resistance, which could be denoted
by rc, is in practice seldom used, for reasons that will be explained
in Chapter 12.

The mutual conductance of a transistor, as we would expect from
Sec. 10.3, is given by the slope of the Ic/Vs curve, Fig. 10.13. We
see that its value depends very much on the part of the curve chosen,
so this parameter too is less used than with valves.

Because the voltage amplification factor of a transistor would be
equal to the above two parameters multiplied together (Sec. 10.4)
it likewise would depend very much on working conditions, in con-
trast to a valve’s pu which is fairly constant. On the other hand the
even spacing of the curves in Fig. 10.10 shows that the ratio of collec-
tor current to base current is remarkably constant, and this is
brought out clearly by plotting one against the other, as in Fig. 10.11.
The slope, being practically the same throughout, is easily calculated
as the ratio of any corresponding pair of currents, say 10/0-068. so
in this case it is 147. If we consider how a transistor works we shall
realise that this figure means that out of 10:068 mA crossing from
emitter to base, 10-000 mA is bagged by the collector and only
0-068 mA is lost by flowing into the base circuit. This current ratio
parameter is called the current amplification factor. Several symbols
have been used for it, such as a” and PB. The official one is /i¢, again
for reasons that will appear in Chapter 12.

It should be admitted that not all types of transistor show such a
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constant Ay as our example, put the tendency is there.

If hr is truly constant the Ig/Vp curve, Fig. 10.12, is just as non-
linear as Fig. 10.13. In some types, however, the Ic/Ig characteristic
is appreciably curved, and in such a way that Ic/V}p is less curved.
In any case the input a.c. resistance, which can be found from the
Ig/Vg curve, is important, even if we have to realize that it varies
considerably from point to point. Let us try the one marked in Fig.
10.12. Drawing the dotted line to show the slope there, we calculate
the resistance to a.c. by dividing the voltage step (0-35—-0-27, =
0-08) by the corresponding current step (59 pA, = 0-059 mA) and
get 0-08/0-059, or 1356 Q. So, in this example at least, it is much
less than the collector resistance. This is very different from a
valve, which when suitably biased has almost infinite resistance
between grid and cathode.

For broadly comparing one triode valve’s characteristics with
another’s it is sufficient to know any two of the three parameters
we have studied: ry, p and gn. The third can always be very simply
calculated from the other two (Sec. 10.4). For a transistor, because
there is base voltage and current and another complication that will
emerge in Chapter 12, we must know at least four, selected from a
bewilderingly large list of possible parameters. Unfortunately at
the present time there is no general agreement as to which four. The
choice depends largely on why they are needed, or perhaps on what
the manufacturer publishes on his data sheets. In the next chapter
we shall begin to look at the significance of triode characteristics
under working conditions.

10.10 Field-Effect Transistors

The general class of triode transistors considered so far is sometimes
called bipolar, because it employs current carriers of both polarities :
electrons and holes. There is another class, distinguished as unipolar,
working on such a different principle that its right to be called a
transistor at all is open to doubt, but it is nevertheless known as the
field-effect transistor, usually abbreviated to f.e.t. To some extent
it combines the most useful features of valves and bipolar transistors;
in particular, the power economy and compactness of the transistor
and the almost infinite input resistance of the valve. On the other
hand it is much more easily destroyed by misuse than valves.

An fe.t. consists essentially of a channel of semicohductor
material, either p or n type, on the side of which is a control electrode
of the opposite type, as shown in Fig. 10.14. Unlike the bipolar
transistor, the p-n junction so formed is biased in the reverse polarity;
hence its high resistance. Again, we have to learn a new set of names
for the electrodes. In place of the valve cathode or transistor emitter
we have the source. In place of the anode or collector there is the
drain. There is however a tendency to use the terms emitter and
collector for f.e.ts too. But the third electrodeina f.e.t. is always the
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gate. Increasing its reverse bias increases the depletion layer, as
explained in Sec. 9.9, and thus narrows the conducting channel
between source and drain, reducing the amount of current the
applied voltage can pass, just like a water or gas tap. If sufficient
bias is applied the channel 1s closed and the drain current cut off.
With an n-type channel, as in Fig. 10.14, the reverse gate bias is

Fig. 10.14—Showing how a field-effect
transistor is constructed in principle

normally negative relative to the source, and the drain voltage is
positive. In both these respects, and in starting with maximum
current at zero bias voltage, this f.e.t. resembles a valve. But drain-
current/drain-voltage (Ip/Vp) curves, shown in Fig. 10.15, are more
like transistor curves: for quite a different reason however. Increas-
ing the drain voltage accelerates the electrons and so tends to in-
crease the current, as with ordinary resistance, but at the same time
it makes all parts of the channel progressively more positive towards
the drain end, thereby increasing the reverse bias across the junction
and narrowing the channel. Beyond a certain Vp, called the pinch-
off voltage, the two effects almost balance, so the curve flattens out
as shown. The a.c. resistance is therefore fairly high. Note however
that the curves level out more gradually than in bipolar types, and
in general the working drain voltages tend to be higher than collector
voltages. F.e.t. mutual conductances are of the same order as in
valves. Typical Ip/V¢ curves are so similar to valve I,/V; curves
such as those in Fig. 10.3 that there is really no need to show any.
In fact, f.e.ts can often be substituted for valves with little or no
circuit modification.

The f.e.t. illustrated so far is an n-channel type, corresponding
to an n-p-n bipolar transistor. Just as there is the alternative p-n-p
type, so there is the p-channel f.e.t., requiring negative Vp and
positive Vg bias. Both of them work in what is called the depletion
mode, the effect of applying bias being to reduce the drain current.
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Fig. 10.16—Symbols for n-channel (a) junction f.e.t., (b) depletion insulated-gate
Je.t., (c) enhancement insulated-gate f.e.t. For p-channel types the arrow head is
reversed
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10.11 Insulated-Gate F.E.Ts

There is another group of f.e.ts which offer not only a choice of
polarities (n-channel or p-channel) but also a choice between the
depletion mode and the enhancement mode, in which the effect
of applying bias is to increase the drain current from zero or there-
abouts. Instead of the resistance between gate and drain being in

{~eaviy
DRAIN 2] DOPED
n CHANNEL —8 |7 REGIONS
Fig. 10.17-—Basic construction of n-channel 4 iL—_
depletion igfet GATE 1 [SUBSTRATE
INSULATION
SOURCE
I

megohms as in the f.e.ts we have been considering, it is in thousands
of megohms, or gigohms (GQ), at least.

The reason for this remarkably high control resistance, greater
even than that of valves, is that the gate electrode is very highly
insulated. So in contrast to the junction-gate f.e.ts (jugfets) already
described they are known as insulated-gate f.e.ts (igfets) or alterna-
tively, because of a particular construction favoured, metal-oxide-
silicon or metal-oxide-semiconductor f.e.ts (mosfets or mosts). This
basic difference 1s indicated in the symbols for igfets (Fig. 10.16b and
¢) compared with that for a jugfet (a). All these symbols refer to n-
channel types. with positive drain voltages; for p-channel the arrow
heads are reversed. Both depletion and enhancement n-channel igfets
are laid down on a block of p-type material (the substrate), making a
fourth terminal, which may be connected straight to the source, or
not, as required. Below the source and drain terminals are n-type
regions, heavily doped to keep their resistance low. Between them is
the gate electrode, insulated from the body of the device by a very
thin layer of silicon dioxide.

Except for the insulation, a depletion igfet resembles in principle
the jugfet, for there is an n-type channel between drain and source,
as shown in Fig. 10.17, so that the device normally conducts.
Applying a negative bias to the gate repels electrons present in the
channel, reducing its conductivity, and ultimately cutting off drain
current entirely. The characteristic curves are therefore similar to
those for jugfets (Fig. 10.15) except that the zero- Vg curve is usually
much lower, but because the gate is insulated it can be used to in-
crease as well as reduce the drain current. Doing this with a jugfet
would drastically reduce the input resistance.

In an enhancement igfet the channel is missing, so with no gate
bias there is no conduction between source and drain. This feature
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is indicated in its symbol (Fig. 10.16¢) by the gaps between source
and drain. To turn the device on, positive gate bias 1s needed. In this
respect it resembles bipolar transistors, but in all other respects it is
similar to the depletion igfet. Because the bias has 1o make the p-
type material that lies under the gate intrinsic before it can begin to
convert it into an n-type channel, several volts of bias are needed to
bring the device to a suitable working point.

The gate insulation in an igfet being so extremely thin, of the order
of 0-0001 mm, it can be permanently broken down by quite a low
voltage —25. say—and because the capacitance is no more than
perhaps 4 pF the quantity of electric charge needed to destroy the
device instantly is extremely small. Substituting the above figures in
Q = VC (Sec. 3.2),25 x 4 x 10!2 = 10'°C. This can easily be
generated by taking a step or two on a dry floor in rubber soled shoes.
So precautions have to be taken, such as wrapping the cevice in foil
until installed, and shunting it by protective diodes.

10.12 Light-Sensitive Diodes and Triodes

We have already seen (e.g.. on the left-hand side of Fig. 9.14) that
the reverse (leakage) current of a p-n diode depends very much on
the temperature. because heat energy splits up atoms into (ree
electrons and holes, both of which are current carriers. Light has
the same effect, and for this reason ordinary semiconductor diodes
and transistors have opaque containers. But for many purposes
small light-sensitive devices are useful. So what are called photo-
diodes are provided with little windows through which light can fall
on the junction in such a way as to reach as many as possible of the
semiconductor atoms. The resulting {ree clectrons and holes are
driven in opposite directions by the reverse bias voltage, creating a
current through the diode. The brighter the light, the more the
current. The very small leakage that flows when there is no light is
called the dark current.

Often the changes in light that are to be detected or measured
cause insufficient change in current to do what is required, so the
current changes have to be amplified. A separate amplifier can be
attached of course, but it may be more convenient to use instead of
the photodiode a phototransistor, in which the light is applied to
the base-to-collector junction (which of course is reverse-biased).
The current changes here cause changes about /g times greater in
the emitter circuit (Secs. 10.9, 13.3). Changes due to temperature,
which are comparatively slow, or due to slow changes in light, can
be filtered out by a blocking capacitor (Sec. 14.6). Phototransistor
characteristic curves are like Fig. 10.10 but with brightness of
illumination in place of base current values.

In both of the above types of device, light controls a current
driven by a voltage source. There arc some applications (e.g.,
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photographic exposure meters) where providing this source is incon-
venient. Fortunately there are such things as photovoltaic diodes,
in which the light itself provides it. We saw in Sec. 9.9 that the free
electrons on the n side of a p-n junction and the holes on the p
side diffuse across the junction and set up a difference of potential
between the two sides. As mentioned there, a voltmeter connected
to the two sides of the junction would give no reading, because i
both sides are at the same temperature and receive the same light
intensity there is a balance. However, by suitable design of the
junction and applying the light to one side there develops between
the terminals a net voltage, which can drive a current around an
external circuit. The strength of the current is proportional to the
illumination. and can be used as a measure of it.

On a larger scale, photovoltaic diodes are used to generate power
trom sunlight-—particularly useful in space vehicles.

When a semiconductor diode is passing forward current, electrons
and holes recombine in large numbers, as described at the end of
Sec. 9.9. Consequently energy is released, usually as heat. But there
are certain semiconductors other than germanium and silicon (such
as gallium arsenide) which emit some of the energy as light. The
colour of the light is determined by the materials used to make these
light-emirting diodes (1.e.ds), and the intensity of the light is controlled
by the current, so they have many uses.

Thermionic diodes are now practically obsolete, but if we recall
from Sec. 9.3 that certain substances readily emit electrons when
heated, and that we have just noted that light has an effect sumilar to
heat as a stimulator of electron movement, it is hardly surprising that
light-sensitive devices analogous to thermionic diodes are possible.
In fact, they were used extensively until superseded by the semi-
conductor devices just described. They are still used as “targets’ in
television cameras of the phoroemissive type (Sec. 23.6).

There are other substances which are sensitive to light in that
their resistance is reduced by it. Among other applications these too
are used in television cameras of the photocondictive type.

Photoelectric devices, which are in general those that emit or are
stimulated by light, are distinguished in circuit diagrams by a pair
of diagonal arrows, representing the light, placed above the basic
symbol (Fig. 10.18).
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Fig. 10.18— Svmbols for (a) photodiode, (b) photovolraic diode, (¢) light-emitting
diode, and (d) photoconductive cell



CHAPTER 11

The Triode at Work

11.1 Input and Output

Although in the last chapter attention has been focused on triode
valves and transistors themselves, various hints along the line
(especially Sec. 10.5) must have conveyed some ideas about how
these devices are employed. Now is the time to turn our whole
attention to this aspect of the matter.

We have seen that basically triodes are devices by which very small
amounts of electrical power—sometimes negligibly small, because
requiring voltage without appreciable current—are able to control
relatively large amounts, somewhat as the power of a car engine can
be controlled by slight variations in pressure on a pedal. Two
circuits are thus involved: the controlling or inpur circuit and the
controlled or output circuit. Each of these must be connected
to the amplifying device (such as a triode) at not less than two
points. As a triode has by definition only three terminals, one of
them must be common to both input and output circuits. The
choice of common electrode is a very important question which we
shall have to look into in the next chapter. So as not to complicate
things too much right at the start, however, one particular choice
has been made for each device considered: cathode, emitter and
source, which in principle are all the same. This is the choice we
have been assummg, because it is by far the most usual in practice,
so will continue to be assumed unless one of the others is indicated.

11.2 Source and Load
|

Running a car engine in neutral gives it no scope for making use
of the power it can develop, and is likely to be harmful if the
accelerator is pressed hard down. To fulfil its purpose it needs a
load. This term is the one used also in electronics and other branches
of electrical engineering, but we must beware because it is also used
to mean several things that are not quite the same—as indeed it is in
general conversation (e.g., ‘he’s loaded’). When we say something
1s overloaded we usually mean that too much power is gomg into it
and it is in danger of burning out. But here the word ‘load’ will be
used primarily to mean whatever receives output power; for ex-
ample, a loudspeaker.

Sometimes a load is fed with power direct from a generator. In
this respect a television receiver as a whole is a very small part of the
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load connected to a generator in a power station. Simpler still, the
lamp in a torch is the load fed by the battery. This book is more con-
cerned with situations in which there is an important link between
the source of power and the load; for example, a transformer,
which does not itself amplify but has to be suitably adapted to its
foad. Or the output part of a triode, which is a_link between the
source of anode or collector voltage and the load. But more often
the triode and any power supplies it needs are regarded as one unit
(an amplifier, for example) which is a link between the controller
and the load.

This controller, typified by the driver of a car, is usually called
the source of the voltage or current needed to control the device,

SOURCE DEVICE LOAD

COMMON CONNECTION

\ / \ J

N Vv
INPUT CIRCUIT OUTPUT CIRCULT

Fig. 11.1—Triodes, like many other devices and complete units for such purposes as
amplification, have an input and an output, as shown here in general

and is the essential item in its input circuit, just as the load is in the
output circuit.

The substance of these first two sections can be shown quite
simply as Fig. 11.1. Later on, when we see the importance of the
impedances between the four pairs of terminals, we shall have to
elaborate this diagram somewhat.

11.3 Feeds and Signals

In the meantime there are a few practical details and terms that
need to be made clear before we go on.

We have gathered, no doubt, that any triode (and the same is
true of electronic devices with more than three electrodes) can only
work properly if it is supplied with certain suitably chosen currents
and voltages. What is needed can usually be ascertained with the
aid of characteristic curves—together with some understanding of
how the device works. which by now we are supposed to have. For
instance, our study of triodes would have made clear that trying to
work a valve with its anode-to-cathode supply voltage reversed
would be futile, but that this might not necessarily be true of the
drain-to-source voltage of an fe.t.

We may have gathered that certain combinations of these feeds
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would be harmful to the device. For example, too high a collector
voltage would puncture the junction. A lower voltage might be all
right within a certain range of base voltage, but above that the
collector current multiplied by the collector voltage would be a
larger power than the transistor could stand without overheating
and finally failing. The manufacturers supply information on these
maximum ratings, which put certain areas of the curve sheets ‘out
of bounds’.

With all this in mind we find a suitable working point for the pur-
pose in view, and provide power supplies to maintain the device in
the conditions represented by that point. It is then in a fit state to
receive controlling currents or voltages from the source. These are
referred to as input signals, whether they are in fact what most
people would understand by that word, or are electrical alternations
corresponding to sound waves (Sec. 1.3) or to pictures, or even a
current we want to measure and which is too small for any meter we
have. By signal currents and voltages, then, current and voltage
changes are to be understood.

All this was illustrated in Sec. 10.5 by a simple example, but it is
worth refreshing the memory about it because the apparatus we
have been using so far (for characteristic curves) has been concerned
mamly with feed currents and voltages. While these parts of a
circuit are absolutely essential, and arranging for them is a large part
of practical circuit design, for discussing signal handling in circuits
it is clearer, and saves a lot of time, if we take the feed arrangements
for granted and do not trouble to show them. It is quite usual for a
designer to deal with the two matters separately, each with a circuit
diagram showing only one, before combining them in a diagram of
the complete circuit. It is also customary, as in Fig. 10.4, to use
capital letters for feeds and small ones for signals. [

In most (but not all) applications of electronic devices the signals
are alternating at a sufficiently high frequency (which actually can
be quite low) to be easily separated from the constant feeds in the
circuits themselves as well as in the diagrams. Much use is made of
the fact that a capacitor is a complete circuit break (open circuit) to
d.c., but allows a.c. to pass. And inductance, on its own, offers no
1mpedance to d.c., so is a short circuit, yet may offer such a high
impedance to a.c. as to be almost an open circuit. In Fig. 10.4, how-
ever, the input feed source of R, and the input signal source of V,
were connected simply in series, and no load was shown at all. We
must now consider how an amplifier is affected by its load.

11.4 Load Lines |
At this early stage in the study of electronic circuits we must take

care not to get so involved in various incidental complications that
the basic principles are not clearly seen. For instance, amplification

|
|




167

of high (radio) frequencies is beset with considerable complications,
which will be kept back until Chapter 22. So for a start we shall
assume signals of low (audio) frequency. They are not only simpler
1o deal with but are of practical interest in radio, television, tape
recorders, record players and much else.

Triode valves are now almost never used for a.f. amplification,
but they are freer from sidetracking issues than transistors. so the
basic principles of amplification can be demonstrated more clearly
at the start using a triode valve as the active device; once grasped,
these principles provide a good foundation for studying other types.

Fig. 11.2, then. shows a common-cathode triode valve in the
simplest possible amplifier. It is in fact Fig. 10.4 with the addition of

Fig. 11.2—Simple voliage-amplifier
circuil

a 20 kQ load resistance (R) in the anode (output) circuit. This
immediately faces us with a difficulty. It is easy enough to calculate
the output signal current (a.c.) when R is not there; it is equal to the
milliamps of anode signal current per volt of grid signal (i.e.. gm)
multiplied by the grid signal voltage (v;). In Fig. 10.4 we had
gm = 3% and the peak v, was 4 V, so the peak 7, should be } x 31 =
12 mA, and this agrees with what we found from the /,/V, graph.
But whenever the anode current varies in Fig. 11.2 the voltage drop
across R must vary correspondingly, and as the total voltage pro-
vided in this anode circuit is fixed at 240 V, the voltage across the
valve (V,) must vary oppositely to that across R. But the definition
of gm says V, must be constant. So that method of calculation fails.
And the alternative method, by Ohm'’s law, using r, as the resistance
of the valve (between anode and cathode) also breaks down, be-
cause the definition of r, specifies constant grid voltage. What are
we to do?

The answer is to combine the anode characteristic curves of the
valve with a ‘characteristic curve’ of R in such a way as to make the
total voltage across both of them equal to that provided. in this
example 240 V. Suppose the curves in Fig. 11.3 are the ones relating
to our valve. They tell us, of course, all the possible combinations
of 1, at any V; for which a curve is provided. When ¥, = —0-5 V,
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for example, the combinations include 4 mA and 100 V, and 10 mA
and 160 V, and any number of others. But in our loaded circuit the
Va corresponding to any particular I, is fixed by the fact that V,
must be 240 V less the amount dropped in R, namely /,R. When
I,=0.thenV,=240—0,=240V ,when/, =1 mA, LR =20V,

|
A
ZZ=

O 20 40 60 80 100 120 140 160, 180 200 220 240
Va u—22v->|

Fig. 11.3—The problem of finding the amplification of the valve in Fig. 11.2 is here
worked out on an 1|V, curve sheet |

so V,=220V;whenl, = 2mA, V, = 200 V; and so on. Plotting all
these points on Fig. 11.3 we get the straight line ‘R = 20 kQ". Since
R is a load resistance, this line is called a load line. It would be
equally easy to draw a load line for any other value of R.'

The only possible values of I, are those that are on the appropriate
load line. So now for any given load line each value of }; has only
one possible corresponding value of I,. To check this, thmk of a
number for /,, say 3} mA. The only point corresponding to this on
the 20 k2 load line is marked A. It tells us that V,is 170 V and V, is
— 2-:5V. 34 mA flowing through 20 kQ drops 34 X 20= 70 V. De-
ducting this from the anode battery voltage, 240, leaves 170 V, which
checks.

11.5 Voltage Amplification |

Suppose now we alter the grid voltage to — 1-5 V. The working point
must move to B, because that is the only point on both the ‘V; =
— 15 V’ curve and the load line. The anode current rises from
3-5 mA to 46 mA: an increase of 1-1 mA. The voltage drop due to
R therefore increases by 1-1 X 20 = 22 V. So the voltage at the anode
(V,) falls by that amount.

Note that a grid voltage change equal to | V has caused an anode
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voltage change of 22 V, so we have achieved a voltage multiplication
—called amplification or gain—of 22. If the anode had been
connected direct to a 170 V battery there could of course have been
no change in V; at all, and the working point would have moved 1o
C. representing an [, increase of 3:3 mA. The reason why the in-
crease with R in circuit was only 11 mA was the drop of 22 V in
Va. which partly offset the rise in V.

Another thing to note is that making the grid less negative caused
the anode to become less positive. So an amplifier of this kind
reverses the sign of the signal being amplified.

11.6 An Equivalent Generator

It would be very convenient to be able to calculate the voltage
amplification when a set of curves was not available and only the
valve parameters were known. To understand how this can be done,
let us go back to Fig. 10.1 with its controls for varying anode and
grid voltages. First, leaving the ¥, control untouched, let us work
the V, control. The result, indicated on the millilammeter, is a
variation in anode current. The same current variation for a given
variation in ¥, would be obtained if an ordinary resistance equal to
ra were substituted for the valve (Sec. 10.4). Considering only the
variations (signals), and ignoring the initial ¥, and /, needed to
make the valve work over an approximately linear part of its
characteristics (feeds), we can say that from the viewpoint of the
anode voltage supply the valve looks like a resistance r,.

Now keep V, steady and vary V,. To the surprise of the I,
supply (which does not understand valves'), £, again starts varying.
If the 17, supply could think, it would deduce that one (or both)
of two things was happening: either the resistance r, was varying,
or the valve contained a source of varying em.f. To help it to
decide between these, we could vary V, slightly—enough to check
the value of r, by noting the resulting change in /,—at various
settings of the V; control. Provided that we took care to keep within
the most linear working condition, the value of r, measured in this
way would be at least approximately the same at all settings of
Ve. So that leaves only the internal e.m.f. theory in the running.
We (who do understand valves) know that varying ¥, has p times
as much eflect on /, as varying a voltage direclly in the anode circuit
(namely, V,).

So we can now draw a diagram. Fig. 11.4 (which should be com-
pared with Fig. 11.2) to show what the valve looks like from the
point of view of the anode circuit. Its behaviour can be accounted
for by supposing that it contains a source of e.m.f., pv,. in series
with a resistance. r,. We have already come across examples of
substituting (on paper or in the imagination) something which,
within limits, behaves in the same way as the real circuit, but is
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easier for calculation. One of them was a dynamic resistance in
place of a parallel resonant circuit (Fig. 8.9). And now this trick of
the equivalent generator, which is one of the most important and
useful of all equivalent circuits.

But ‘within limits’ must be remembered. In this case, for a valve

Fig. 11.4—The ‘equivalent generator' cir-
cuit aof a valve, which can be substituted for
Fig. 11.2 for purposes of calculating the
performance of the valve

to behave like an ohmic resistance it must be working at feed
voltages corresponding to linear parts of its characteristic curves,
and they are never perfectly linear, so at best r, is no more than a
fair approximation to an ohmic resistance. And we must remember
Sec. 11.3 and realise that the equipment generator takes account
only of signals and ignores feeds, which are merely incidental
conditions necessary for achieving reasonable linearity.

It is failure to separate in one’s mind these two things, feeds and
signals, that leads to confusion about the next idea—the minus
sign in front of pvg in Fig. 11.4. Some people argue that because a
positive change in vg (say from —2:5V to — 1-5 V) increases /, the
imaginary signal voltage puvg must be positive. And then they are
stuck to account for v,, the amplified signal voltage, being negative
as we noticed at the end of the last section. But if they realised that
the feed voltage and current do not come into Fig. 11.4 they would
avoid this dilemma. For it just happens that the feed current flows
anticlockwise around the circuit. but as we have replaced the real
valve and its feeds by an imaginary signal generator there is no
reason for departing from the usual convention of reckoning voltages
with reference to the common electrode, here the cathode. If the
generator voltage were +pvg, a positive signal on the grid would
make the anode go positive, contrary to fact. To put this right by
turning the generator upside down and reckoning the cathode
voltage with respect to the anode is contrary to established conven-
tion and common sense. The logical course is to reckon the generator
voltage as —pv,.

A further point about equivalent generators is that such equiva-
lence as they have applies only to the external circuit. In general we
would be wrong to draw any conclusion from them about con-
ditions within the valve or other device simulated.
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Fig. 11.5 is an alternative version of the diagram, using the
notation explained in the latter part of Chapter 5. As Fig. 11.4 is
the kind of diagram commeonly used, and Fig. 11.5 has a number of
advantages over it which grow with increasing circuit complexity, it
will be as well to be able to interpret both. One of the advantages

b

4
£’}

(b)
Fig. 11.5—(a) Aliernative version of Fig. 11.4, adapted for phasor diagrams (b)

of Fig. 11.5 is that while we can refer to the outflowing 7, as 4B the
people who insist on reckoning the anode signal current as inwards
can call it BA, and they can have their positive generator voltage
bk, = pkg. Just now when we are going to discuss valves in
general, i, etc. will be a little more convenient than 4 B etc., because
one does not have to refer to a particular diagram to know what
they mean, and in such a simple case we are not likely to get the
signs wrong. And without any reactances there is little justification
for a phasor diagram. But in preparation for less simple circuits, and
as a further check on our understanding of this basic circuit, Fig.
11.5b is its phasor diagram according to the conventions explained
in Chapter 5. The absence of reactances is indicated by all the
phasors being parallel to one another-—a condition which the
usual arrowed type of diagram tends to confuse rather than elucidate.
In accordance with the equation kb = — pkg. kb i1s drawn opposite
to kg and p times as long. It represents the generator voltage, which
is divided between r, and R. Point b is of course inaccessible in a
real valve: ab is drawn dotted to emphasise this.

11.7 Calculating Amplification

Now let us apply this equivalent generator technique to the problem
we set out to solve—finding the amplification of a valve. The signal
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current 7, in Fig. 11.4 is (by Ohm’s law) the signal e.m.f. divided by
the total circuit resistance: —pvy/(R + r,). The signal output voltage,
v,, is caused by this current flowing through R, sois =pv, R/(R + r,).
The voltage amplification (which is often denoted by A) is v,/v,. sO

—HR

A= R+ r,

This minus sign agrees with our finding that the signal output
voltage 1s opposite in polarity to the input. Since it 1s generally
understood that v, is in opposite phase to vy, the minus is often
omitted. Let us apply this equation to the case we considered with
the help of Fig. 11.3. Using the methods already described in Secs
10.2 and 10.4 we find that in the region of point A the valve in
question has an r, of about 14-5 kQ and p about 39. Substituting
these,and R = 20 kQ, in the formula: 4= —39 x 20/(20 4+ 14-5) =
—22-6, which agrees pretty well with the figure obtained graphically.
(It must be remembered that with electronic devices we are in the
realm of the approximate. Performance depends so much on con-
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Fig. 11.6—The full line shows hov: the voltage amplification depends on the value of
load resistance R. 1t is calculated for a valve withp = 39 and r, = 14'5 kQ. The dotred
line shows the peak milliwatts delivered 10 R for a grid input of 1 V peak

ditions, and even when conditions are the same different samples of
the same type of device give different results. So there is no point in
specitying them with high precision.)

The amplification formula that we have just used shows at once
that making R = 0 would make 4 = 0. It aiso shows that making R
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so large that r, was negligible in comparison with it would make 4
almost equal to p. which is the reason for calling this parameter the
amplification factor. What happens at intermediate values of R can
best be seen by using the formula to plot a graph of 4 against R—
the full-line curve in Fig. 11.6, in which, incidentally, logarithmic
scales (Sec. 0.2.5) have been used to cover wide ranges of values
without squeezing most of them into a corner. According to this it
looks as if the higher the more, so far as R and 4 are concerned.
But although feeds do not come directly into the equivalent generator
(from which this curve was derived) the assumption that they are
adequate to maintain the parameters at the values assumed must
never be forgotten. Looking at Fig. 11.3 we see that if R were in-
creased to a much larger value the load line would have to swing
round until it was nearly horizontal, cutting the valve curves at
points where their decreased slopes would mean much larger values
of r, too. So although very high load resistances are sometimes used,
it is more likely to be for some other reason, such as keeping the
feed current small, than for extracting the maximum possible
voltage gain. The alternative solution, increasing the supply voltage
to compensate for the loss in R, is usually uneconomic with valves.
and exposes transistors to serious risk of breakdown when current
iscut off. In practice there is often little or no choice of load resistance,
and things may have to be designed to fit it, rather than vice versa.

11.8 The Maximum-Power Law

For some purposes tsuch as working loudspeakers) we are not
interested in the voltage output so much as the power output. This,
of course, is equal to /,v, or i,’R (Sec. 2.17), and can therefore be
calculated by filling in the value of i, we found : namely —pv /(R + r,).
Denoting the power by P. we therefore have

= M ¥
P (R S "a> R.

A graph of thisexpression, forv, — | V,andpu — 39and r, — 14-5kQ
as before, is shown dotted in Fig. 11.5. The interesting thing about
it 1s that it has a maximum value when R is about 15 kQ. The only
thing in the circuit that seems to give any clue to this is r,, 145 kQ.
Could the maximum power result when R is made equal to r,?

It could, and does; as can be proved mathematically. This fact
1s not confined to this particular valve, or even to valves in general,
but (since, you remember. it was based on Fig. 11.4) it applies to all
circuits which consist basically of a generator having internal
resistance and working into a load resistance. So the fact that it has
been demonstrated for a device not now commonly used does not
detract from its importance. Making the load resistance equal to
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the generator resistance (which in this case simulates an amplitying
device’s output resistance) is called /load matching.

[t does not follow that it is always desirable to make the load
resistance equal to the generator resistance. Attempting to do so
with a power-station generator would cause so much current to
flow that it would be disastrous! But this law, that the maximum
power from a generator (whether ‘equivalent’ or real) giving a fixed
voltage, a.c. or d.c., is obtained when the load resistance i1s equal
to the generator resistance, is a very important one. In the form just
stated, both generator and load are assumed to be purely resistive;
if there is reactance too it should be cancelled out by reactance of the
opposite kind (Sec. 8.3).

11.9 Transistor Load Lines

We have seen that the output current/voltage curves of transistors,
both bipolar and field-effect. are shaped very differently from those
of vacuum triodes. It happens that valves of the types more often
used, such as pentodes (Sec. 15.7) also have the same sort of shape,

[c, mA
10
8 \ Ve
0-66
//
/
»/
¥
v
‘0\
4 N 0:-64
SN
2 ; — 0-62
0-60
—R:20k (-3 ggg
) 2 4 6 8 9 oy

Vee

Fig. 11.7—Various load lines applied 10 a set of 1|V curves for a small silicon transisior

rising very steeply at first and then flattening out. So we ought to see
how the foregoing principles apply to curves of this general shape.

Fig. 11.7 is a set of output curves for a typical low-power silicon
transistor. Note that this time (unlike Fig. 10.10) they have been
drawn for equal intervals of base vo/tage. As we would expect from
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Fig. 10.12, the corresponding steps in collector current are not at all
equal. If, mindful of the maximum power law, we were to try draw-
ing a load line having the same slope (but the other way) as the
transistor lines we would see that whatever our choice the
load line would have to be extended a very long way to the right
before it hit the zero-current line, so that the point where it did
would almost certainly represent a collector voltage above the rated
maximum for the transistor. That being so. if the collector current
were cut off for any reason (a large negative input signal. or a lack
of bias) the transistor’s life would probably come to an abrupt end.
In practice one is seldom vitally interested in getting the maximum
power output per input volt or mi