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PREFACE 

AKNOWLEDGE of electromagnetic radiation and propagation is 
now required of virtually all communication and electronic 

engineers. This book is designed to provide a course in this field for 
electrical engineers and physicists. It is an outgrowth of courses 
given by the author at Ohio State University and at the University 
of Illinois. The level of the first part of the book is suitable for 
seniors and beginning graduate students; the later chapters are 
primarily for more advanced graduate students. Although there is 
sufficient material for a two-semester course, many instructors may 
prefer to select only certain chapters to be covered in a one-semester 
or one-quarter course. The division of material among chapters has 
been made with this fact in mind. 

In a text of this scope it is necessary to draw from the writings of 
many specialists. I am indebted to Professor Erik Hallén for the 
use of his antenna impedance curves in Chapter 13. For the chap-
ters on propagation, material from the papers of K. A. Norton and 
C. R. Burrows has been used. The writings of S. A. Schelkunoff 
are already classics and are largely responsible for many engineering 
concepts, such as wave impedance and magnetic currents, now in 
general use. References to his papers and book will be found 
throughout the text. 

It is a pleasure to acknowledge the assistance given by the au-
thor's associates at the University of Illinois and elsewhere. W. G. 
Albright, R. S. Elliott, P. K. Hudson, Ray DuHamel, Edgar Hay-
den, John Myers, Douglas Royal, John Bell, and many others gave 
freely of their time in checking the manuscript and reading proof. 
Discussions with George Sinclair were always helpful. I am espe-
cially indebted to J. A. Bark,son, who read much of the manuscript 
and offered many suggestions, and to Nicholas Yaru, who drew the 
originals for the illustrations. 

Several years ago it was ray privilege to take a graduate course in 
V 
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radiation from Professor W. L. Everitt at the Ohio State University. 
The original set of notes, " Radiation and Radiating Systems," used 
for that course has formed the nucleus about which this book has 
been developed. It is my hope that some of the engineering philos-
ophy that was so much a part of that early course may have been 

carried over into this work. 
E. C. JORDAN 

Urbana, Illinois 
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CHAPTER 1 

FUNDAMENTALS OF ELECTROMAGNETIC 
ENGINEERING 

1.01 Circuits and Fields. The rapid advances that have been 
made in electrical engineering during the past few decades have 
been due largely to the ability of the engineer to predict with accu-
racy the performance of complicated electrical networks. The 
secret of this ability lies chiefly in the use of a simple but powerful 
tool called circuit theory. The power of the circuit approach 
depends upon its simplicity, and this simplicity is due to the fact 
that circuit theory is a simplified approximation of a more exact 
field theory. In chap. 11 familiar circuit relations are derived 
directly from the more general field relations, and in the process 

the assumptions and approximations involved in the use of circuit 
theory are made apparent. 

Despite the power and usefulness of the circuit approach the 
communications engineer concerned with microwaves or with radio 
transmission problems quickly becomes aware of its limitations. 
In the over-all design of a radio communication system the engineer 
can use circuit theory to design the terminal equipment, but between 
the output terminals of the transmitter and the input terminals of 
the receiver, circuit theory fails to give him answers, and he must 
turn to field theory. Electromagnetic field theory deals directly 
with the field vectors E and H, whereas circuit theory deals with 
voltages and currents that are the integrated effects of electric 
and magnetic fields. Of course voltages and currents are the end 
results in which the engineer is interested, but the intermediate step, 
the electromagnetic field, is now a necessary one. It is the purpose 
of this book to familiarize the student and the engineer with the 
fundamental relations of the electromagnetic field, and to demon-
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strate how such relations are used in the solution of ensineering 

problems. 
Field theory is more difficult than circuit theory only because 

of the larger number of variables involved. When current is con-
stant around a circuit, the voltages and currents are functions of 
one variable—time. In uniform-transmission-line theory, the dis-
tance along the line is an added variable, but the engineer has 
learned to treat this distributed-constants circuit by means of an 
extension of ordinary circuit theory, which he calls transmission line 
theory. In the most general electromagnetic field problems there 
are three space variables involved, and the solutions tend to become 
correspondingly complex. The additional complexity that results 
from having to deal with vector quantities in three dimensions can 
largely be overcome by use of vector analysis. The small amount 
of effort required to become familiar with vector analysis is soon 
amply repaid by the simplification that results from its use. For this 
reason the first topic to be treated will be vector analysis. 

1.02 Vector Analysis. The use of vector analysis in the study 
of electromagnetic field theory results in a real economy of time 
and thought. Even more important, the vector form helps to give 
a clearer understanding of the physical laws that mathematics 
describes. To express these essentially simple physical relations in 
the longhand scalar form is like trying to sing a song note-by-note, 
or like sending a code message dot-by-dash, instead of in letter or 
word groups. The more concise vector form states each relation 
as a whole, rather than in its component parts. The brief introduc-
tion to vector analysis included here is for the benefit of those 
readers not already familiar with this useful tool. This treatment 
is adequate for present purposes, but it is expected that the student 
may later find it desirable to refer to some standard vector analysis 
text for a more thorough presentation. 

Scalar. A quantity that is characterized only by magnitude 
and algebraic sign is called a scalar. Examples of physical quan-
tities that are scalars are mass, time, temperature, and work. They 
are represented by italic letters, such as A, B, C, a, b, and c. 

Vector. A quantity that has direction as well as magnitude is 
called a vector. Force, velocity, displacement, and acceleration are 
examples of vector quantities. They are represented by letters in 
bold-face roman type, such as A, B, C, b, t.' A rector can 



§1.021 FUNDAMENTALS OF ELECTROMAGNETIC ENGINEERING 3 

b3 represented geometrically by an arrow whose direction is appro-
priately chosen and whose length is proportional to the magnitude 
of the vector. 

Field. If at each point of a region there is a corresponding value 
of some physical function, the region is called a field. Fields may 
be classified as either scalar or vector, depending upon the type of 
function involved. 

If the value of the physical function at each point is a scalar 
quantity, then the field is a scalar field. The temperature of the 
atmosphere, the height of the surface of the earth above sea level, 
and the density of a nonhomogeneous body are examples of scalar 
fields. 

When the value of the function at each point is a vector quan-
tity, the field is a vector field. The wind velocity of the atmosphere, 
the force of gravity on a mass in space, and the force on a charged 
body placed in an electric field, are examples of vector fields. 

Sum and DIfference of Two Vectors. The sum of any two vectors 
A and B is illustrated in Fig. 1-1a. It is apparent that it makes no 
difference whether B is added to A or A is added to B. Hence 

A + B = B A. (1-1) 

When the order of the operation may be reversed with no effect 
on the result, the operation is said to obey the commutative law. 

(0) 

FIG. 1-1 

(b) 

Figure 1-lb illustrates the difference of any two vectors A and B. 
It is to be remembered that the ne,:ative of a vector is a vector of 
the same magnitude, but with a reversed direction. 

MulCplicatio:1 of a Scalar ad a Vector. When a vector is multi-
plied by a scalar, a new vector is produced whose direction is the 
same as the original vector and whose magnitude is the product of 
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the magnitudes of the vector and scalar. Thus 

C = aB (1-2) 

Note the absence of any multiplication symbols between a and 
B. The symbols • and X are reserved for special types of multipli-
cation, which will be discussed later. 

The mathematician finds in vector analysis a tool by which 
relationships can be expressed without reference to a co-ordinate 
system. The engineer, however, generally needs a reference set of 
co-ordinates to solve problems. The text will use rectangular or 
Cartesian co-ordinates, except in those cases where other co-ordi-

nate systems reduce the com-
plexity of the problems. It 
will be assumed that all vec-
tors and fields are three-
dimensional. 
A three-dimensional vector 

kAz is completely described by its 
A projections on the x, y, and z 

AY  axes. Therefore it can be said 
that a three-dimensional vec-

IA, 
tor specifies three scalars (the 
scalar magnitudes of the three 
mutually orthogonal vector 
components). Also, a vector 

FIG. 1-2 field specifies three scalar fields 
(the scalar magnitudes of the 

three component vector fields). This idea of c8mponent vectors can 

be represented by 

A = A xi -1- Aij -1- A alr (1-3) 

where A, Ay, and Az are the magnitudes of the projections of the 
vector on the x, y, and z axes respectively, and i, j, and k are unit 
vectors in the direction of the axes, (Fig. 1-2). 

If any two vectors A and B are added, there results 

A -1- B = Azi -1- A„j A.k B.i Bij -1- Bzk (14) 

which can be grouped as 

A ± B = (A. -I- B.)i (Ay + By)i + (A. + 13.)k (1-5) 
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This shows that each of the three components of the resultant 
vector is found by adding the two corresponding components of the 
individual vectors. 

Furthermore, in any vector equation, the sum of the i components 
on the left-hand side is equal to the sum of the i components on the 
right-hand side. The same is true also of the j and k components. 
Therefore, a vector equation can be written as three separate and dis-
tinct equations. For example, the equation 

A-1-B = C-FD -FB (1-6) 

could be written as the three equations 

Az Bz = Cz Dz E. 

A.+ Bz = D, Ez 

The ease with which three component equations can be written 
as one vector equation makes vector analysis particularly useful in 
field theory. 

Scalar Multiplication. It was just shown 
that a vector could be multiplied by a scalar. 
It is also possible to multiply a vector by a 
vector, but first the meaning of such multi-
plication must be defined and suitable rules 
formulated. Two types of vector multipli-
cation have been defined, namely " scalar 
product" and "vector product." The 
meaning of such multiplications and the necessary rules are briefly 
discussed in the following. The scalar product of two vectors is a 
scalar quantity whose magnitude is equal to the product of the 
magnitudes of the two vectors and the cosine of the angle between 
them. This type of multiplication is often called the dot product 
and is indicated by a • (dot) placed between the two vectors to be 
multiplied. Hence in Fig. 1-3, 

A • B = AB cos 0 (1-7) 

It is seen that the dot product obeys the commutative law, that is 

A•B =B•A (1-8) 

A physical example of the dot product can be found in the rela-
tionship between force and distance. If F represents a force that 

Fm. 1-3 
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acts through the distance D (Fig. 1-4), then the work done would be 
given by the equation 

Work = F • D (1-9) 

Again notice that the dot product, which in this case is work, is 
a scalar quantity. 

WEIGHT 

FRICTION 

The dot product of two vectors can be found by using ordinary 
algebraic rules. 

Let A = A À Ayj -F A,k 
B = Bi Bzir 

Therefore 

A • B = AxBx(i • i) Ax4,(i • j) Ax13,(i • k) 

Ay13.(i • i) AyBy(i • j) Ay13.(i • k) 
AzBx(k • i) AzB(k • j) AzBz(k • k) (1-10) 

But it can be seen from eq. (7) that 

i•i = j•j = k•k = 1 (1-11a) 
i •j = j•k = k. i = k•j = i-k = 0 (1-11b) 

Therefore eq. (10) reduces to 

A • B = AxBz± AB „ AB, (1-12) 

Vector Multiplication. The vector product of two vectors is 
defined as a vector whose magnitude is the product of the magnitudes 
of the two vectors and the sine of the angle between them, and whose 
direction is perpendicular to the plane containing the two vectors. 
If a right-handed screw is rotated from the first vector to the second 
(through the smaller included angle), it moves in the positive direc-
tion of the resultant vector. This type of multiplication is often 
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called the cross product and is indicated by a X (cross) placed 
between the two vectors to be multiplied. Hence, in Fig. (1-3) 

IA X BI = AB sin 0 (1-13) 

where the bars I I indicate " magnitude of." 
The direction of the vector A X B would be into the paper away 

from the reader. The vector B X A would have the same magni-
tude but the opposite direction, that is, toward the reader. There-
fore 

A X B = —B. X A (1-14) 

and the commutative law does not apply. 
A physical example of vector multiplication can be found in the 

lifting force of a screw jack. If friction is neglected and a force f 
is applied at the end of a lever arm of length 1, then the lifting force F 
produced by the jack will be 

=f xi 

where the the constant p is the pitch of the screw. 
The vector product may also be obtained by straightforward 

algebraic multiplication and a result similar to that of eq. (10) 
obtained. Thus 

A X B = 21.13.(i X i) A.13„(i X j) Az.13,,(i X k) 

A„Bz(j X 1) ± A:Ai( j X j) AvB.(j X k) 

A.13.(k X i) 4- A.By(k X j) 44,13.(k X k) (1-15) 

By using eqs. (13) and (14) and a right-handed system of 
co-ordinates (Fig. 1-5) it is found that 

X j = k = —j X i (1-16a) 
jXk = i = —k X j (1-16b) 
k Xi = j= —i X k (1-16c) 
iXi=jXj=kXk= 0 (1-16d) 

Therefore eq. (15) reduces to 

A X B = (A„B,, A.13„)i 

+ (A.B. — A.B.)j 

(AB „ — A„13.)k (1-17) 
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This result may be remembered easily by noting that the sub-
scripts of the first (positive) part of each term are cyclic with an 
x-y-z rotation when combined with the axis direction of the associ-
ated unit vector. For example, in the first part of the first term, the 
subscript order is y-z-x (i is in the x direction). The subscript order 
of the positive part of the second term is z-x-y, and for the positive 
part of the third term it is x-y-z. The second or negative part of 

Y 

X 

FIG. 1-5. Right-handed co-ordinate system. 

each term is obtained by reversing the subscripts of the first part of 
the term. The correct order also may be found from the determinant 

A X B 
A. Ai, A. 
B. B„ B. 
i j k 

or A X B = 
• j k 
A. A„ A. 
B. Bi, B. 

Differentiation—The V Operator. The differential vector oper-
ator V, called del or nabla, has many important applications in 
physical problems. It is defined as 

V 
aX aY az 

A differential operator can be treated in much the same way as 
any ordinary quantity. For example, with the operator D = a/az, 
the operation Dy means the quantity ay/ax is to be obtained. 

There are three possible operations with V corresponding to the 
three possible types of vector multiplication, illustrated in eqs. (2), 
(12), and (17). 

1. If V is a scalar function, then by eqs. (2) and (18) 

av , av „ 
VV = , . -r 

ax ay az 

(1-18) 

(1-19) 
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This operation is called the gradient (for reasons to be explained 
later), and is abbreviated 

VV = grad V (1-20) 

2. If A is a vector function, we can apply eqs. (10), (12), and (18) 
and get 

ax ay az 

This operation is called the divergence and is abbreviated 

V • A = div A (1-22) 

3. If A is a vector function, we can use eqs. ( 15), ( 17), and (18) 
to show that 

A (aA„ _ aAà _ aA,). 
ay az \ az 3 ax 

.‘ax ay j 
a a a 
ax -a¡ Or 
A. A!, Az 
i j k 

This operation is called the curl and can be written as 

V X A = curl A 

V X A = 

(1-21) 

(1-23) 

(1-24) 

Identities. The identities that follow are useful in deriving field 
equations. The student can verify them by direct expansions. 

div curl A --- V • (V X A) = 
curl grad V = V X (VV) = 
div grad V = V • (VV) = 

where V2 is defined (in Cartesian co-ordinates) as the operation* 

02 a 2 02 
V2 = 

ax2 ay2 aza 

(1-25) 
(1-26) 

(1-27) 

* The operator y2 (del squared) is called the Laplacian. The Laplacian of 
a scalar V is given by eq. (27). The Laplacian of a vector A is defined as the 
vector whose Cartesian components are the Laplacians of the Cartesian compo-
nents of A, That is 

V2A iV2A. iV2Ay kV2A, (9 terms) 
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curl curl A = V X (V X A) = grad div A — V2A (1-28) 
div A XB = V• (A X B) = B • curl A — A • curl B (1-29) 

Direction Cosines. The component of a vector in a given direc-
tion is the projection of the vector on a line in that direction. Thus 
A., the x component of A, is equal to A cos a, where a is the angle 

between A and the x axis. Then 

A. = A • i 

That is, the component of a vector in a given direction is equal 
to the dot product of the vector and a unit vector in that direction. 

If a vector makes angles a, (3, 7, with the co-ordinate axes, then 

= cos a, m = cos p, = cos 7 

are known as the direction cosines of the vector. 

Problem 1. The scalar product of two vectors may be written in terms 
of the sum of the products of their direction components. 

A • D = A.B. + AB,, + A.B. 

Show that the cosine of the angle 1P between the vectors is given by the 
sum of the products of their direction cosines: 

cos = cos aA ccs ctB -I- cos f3 A cos pB + cos y4 cos .YB 
= /ALB mAms nAnB 

1.03 Physical Interpretation cf Gradient, Divergence, and Curl. 
The three operations which can be performed with the operator del 
have important physical significance in scalar and vector fields. 
They will be considered in turn. 

Gradient. The gradient of any scalar function is the maximum 
space rate of change of that function. If the scalar function V 
represents temperature, then VV = grad V is a temperature gra-
dient, or rate of change of temperature with distance. It is evident 
that although the temperature V is a scalar quantity—having 
magnitude but no direction—the temperature gradient VV is a 
vector quantity, its direction being that in which the temperature 
changes most rapidly. This vector quantity may be expressed in 
terms of its components in the x, y, and z direction. These are 

av av av 
respectively ax — ay , — — , and az• The resultant temperature gradient 
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is the vector sum of these three components: 

vv = ay. ,-r j-r av , 
—1 --  
aX aY aZ 

If the scalar V represents electric potential in volts VV represents 
potential gradient or electric intensity in volts per meter (MKS). 

Divergence. As a mathematical tool, vector analysis finds great 
usefulness in simplifying the expressions of the relations that exist 
in three-dimensional fields. A consideration of fluid motion gives 
a direct interpretation of divergence and curl. 

tir 

Fla. 1-6 

Consider first the flow of an incompressible fluid. (Water is an 

example of a fluid that is almost incompressible.) In Fig. 1-6 the 
rectangular parallelepiped Ax, y,àz, is an infinitesimal volume 
element within the fluid. If p,, is the mass density of the fluid, the 
flow into the volume through the left-hand face is pmvyAx Az where 
v„ is the average of the y component• of fluid velocity through the 
left-hand face. The corresponding velocity through the right-hand 
face will be (v,, (0%/ay) Ay) so that the flow through this face is 

[pe. + a(Pnev)  
ay 
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The net outward flow in the y direction is therefore 

a(Pmvy) ea Ay Az 
ay 

Similarly the net outward flow in the z direction is 

a(P.v.) Ay Az 
az 

and in the x direction it is 

a(P.v.) Ax Ay Az 
Ox 

The total net outward flow, considering all three directions, is then 

ra(p.v.) a(p.v.) a(p.v.)] 
L ax + ay Oz 

The net outward flow per unit volume is 

a(P.v.) + a(Piov) a(Pe g) — cliv (p„e) 
ax ay az 

This is the divergence of the fluid at the point x, y, z. Evidently 
for an incompressible fluid the div (p„,v) always equals zero. An 
incompressible fluid cannot diverge from, nor converge toward, a 
point. 

The case of a compressible fluid or gas such as steam is different. 
When the valve on a steam boiler is opened, there is a value for the 
divergence at each point within the boiler. There is a net outward 
flow of steam for each elemental volume. In this case the diverg-
ence has a positive value. On the other hand, when an evacuated 
light bulb is broken, there is momentarily a negative value for 
divergence in the space that was formerly the interior of the bulb. 

Curl. The concept of curl or rotation of a vector quantity is 
clearly illustrated in the stream flow problems. Figure 1-7 shows 
a stream on the surface of which floats a leaf (in the x-y plane). 

If the velocity at the surface is entirely in the y direction and is 
uniform over the surface, there will be no rotational motion of the 
leaf hut only a translational motion downstream. However, if 
there are eddies or vortices in the stream flow, there will in general 
be a rotational as well as translational motion. The rate of rotation 
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or angular velocity at any point is a measure of the curl of the 
velocity of the water at that point. In this case, where the rotation 
is about the z axis, the curl of y is in the z direction and is designated 
by curl. v. A positive value of curls y denotes a rotation from x to 
y, that is a counterclockwise rotation. From Fig. 1-7b it is seen 
that a positive value for avy/ax will tend to rotate the leaf in a count-
erclockwise direction, whereas a positive value for ay./a, will tend to 
produce a clockwise rotation. 
The rate of rotation about the 
z axis is therefore proportional 
to the difference between these 
two quantities. By defini-

/ LEAF 

tion of the curl in rectangular , --.....__ 
co-ordinates, 

—_.-_-_ ---

curl. y = (avY eve) 
ax (3y 

More generally, considering 
any point within the fluid, 
there may be rotations about 
the x and y axes as well. 
The corresponding compo-
nents of the curl are given by 

av, curl. = (34 — — — 
ay az 
avz av, 

curl, y = — — 
az ax 

(a) 

/vr 

Nvr,e1,-dx, 

FIG. 1-7. Rotation of a floating leaf. 

A rotation about any axis can always be expressed as the sum of the 
component rotations about the x, y, and z axes. Since the rotations 
have direction as well as magnitude this will be a vector sum and the 
resultant rate of rotation or angular velocity will be proportional to 

= ev. avi) (ay. _ ay.) ; (1av8v., _ ay.) k 
curl v 

ay az az ax ax ay 

The direction of the resultant curl is the axis of rotation. 
It should be observed that it is not necessary to have circular 

motion or eddies in order to have a value for curl. In the example 
of Fig. 1-7, if v1 were everywhere zero but v„ were greater in mid-



14 FUNDAMENTALS OF ELECTROMAGNETIC ENGINEERING [§1.04 

stream than near the bank (that is, v„ varies in the x direction), the 
leaf would tend to rotate and there would be a value for curl given 

by 
8v,, 

curls = -2 
ax 

1.04 Vector Relations in Othcr Co-ordinate Systems. In order 
to simplify the application of the boundary conditions in particular 
problems, it is often desirable to express the various vector relations 
in co-ordinate systems other than the rectangular or Cartesian 
system. Two other systems are of great importance. They are 
cylindrical and spherical polar systems. The expressions for gra-
dient, divergence, curl, and so on, in these co-ordinate systems can 
be obtained directly by setting up a mathematical statement for the 
particular physical operation to be carried out. 

Cylindrical Co-ordinates. The gradient of a scalar quantity is 
the space rate of change of that quantity. In cylindrical co-ordi-
nates the elements of length along the three co-ordinate axes* are 
dp, p dtP, and dz (Fig. 1-8). The respective components of the 
gradient of a scalar V are therefore 

av a V 
grad. V = —av (1-30) grade V = — grado V = a p' Pae az 

If the unit vectors are designated by u„ uo, and u., the gradient may 
be written in cylindrical co-ordinates as 

av av av 
grad V --- u„ -F — uo  

ap P a95 aZ 

The divergence was found to represent the net outward flow per 
unit volume. The expression for it can be obtained as before by 
determining the flow through the six surfaces of an elemental 

*The symbol p is used for radial distance in cylindrical co-ordinates 

(p •.« /x' ± y2) in order to distinguish it from r, the radial distance in spherical 

co-ordinates (r = Vx2 y2 + z2). This is necessary because these co-ordi-
nate systems are often used together in problems. No confusion with p„„ used 
for mass density, or p, used for volume charge density, is anticipated. If it 
should ever happen that volume charge density and radial distance in cylindri-
cal co-ordinates appear in the same equation the symbol p, can be used for 
volume charge density. This is consistent with the notation p, for surface 
charge density, which is used later. When no confusion results, volume charge 
density is represented by the symbol p (without subscript). 

(1-31) 



§1.04J FUNDAMENTALS OF ELECTROMAGNETIC ENGINEERING 15 

volume. Considering an incompressible fluid, the mass density 
pm will be a constant and so this factor can be dropped from the 

x, cos 0 

Y p SIN it.$ 

Z Z 

Fm. 1-8. A cylindrical co-ordinate system. 

expressions. Then in the p direction the flow in through the left-
hand face is proportional to 

v pp die, dz 

The flow out of the right-hand face is proportional to 

(v„ -e d) (p ± dp) dck dz 

The difference between these two quantities (neglecting the second-
order differential) is 

av„ v„ p dp de dz p dp dz — 1 a(pv„) dp p de dz 
P Op 

In the direction the difference is (avo/pOe) dp p de dz, and in the z 
direction it is (0v./0z) dp p de dz. The net flow out is therefore 
proportional to 

C 0(pv„)  
dp p de dz 

Op p a 4, az 
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The net flow out per unit volume is proportional to 

div — 1 a(pv  -r „) , av„ , av, v — — 
P aP Pact> az 

In terms of any vector A, the divergence in cylindrical co-ordinates 

is 

div A — 1 a(PAP) + + a—Az pap p az 

Curl. The three cylindrical components of curl are: 

aft. curl„ aA. A = — 

aA. 
curl„ A = —ôz  ap 

curl, A = [ a (P A ) — 
P  ark 

(1-32) 

(1-33a) 

(1-33b) 

(1-33c) 

In chap. 4, the expression for curl in rectangular co-ordinates will 
be developed in connection with Ampere's law. The expression for 
curl in cylindrical co-ordinates can be derived in exactly the same 
manner. 

The Laplacian Operator. The operator V' = V • V is the diver-
gence of the gradient of the (scalar) quantity upon which V' operates. 
Carrying out this operation, it will be found that in cylindrical 
co-ordinates, 

= a ( _L 1 a2v a2v 
p WI; P ap .17, az2 (1-34) 

For a vector, the symbol V • VA so far has no meaning except in 
Cartesian co-ordinates where it has been defined (see footnote fol-
lowing eq. 27). The definition for the Laplacian of a vector can be 
generalized for other orthogonal co-ordinate systems by writing, 

`MA — V - (VA) • le ) 

where VA is defined to mean* (in cylindrical co-ordinates) 

aA aA aA 
VA = 11.p_riTe -+-11 

* The definitions of the symbol VA, given by eqs. (36) and (42), have sig-
nificance only when VA is associated with the divergence operation as in eqs. 
(35) and (41). 

(1-35) 

(1-36) 
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Spherical Polar CO-ordinates. In the spherical polar co-ordinate 
system the elements of length along the three co-ordinates are dr, 
r do, and r sin O dck (Fig. 1-9). 

FIG. 1-9. A spherical co-ordinate system. 

Gradient. The three components of the gradient in spherical 
co-ordinates are 

av av 1  av grad, V 
= ar grade V  grado V - r sin 0 ao (1-37) 

Divergence. The expression for divergence in spherical polar 
co-ordinates is 

 aA, 
div A = (r2i1r) r sin _ d0_ (sin 0.,40) r sin 04 "'") 

Curl. The three spherical polar components for the curl of a 
vector are 

1  [a 
curl,. A - r sin (sin 02,10 — ) - 0A.91 (1-39a) 
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r i aA, 1 8(r..A.)1 
(1-39b) curle A — 

sin e r ar J 

ifa • aA ly 
curli, A = (rAe) — (1-39c) 

The Laplacian in Spherical Polar Co-ordinates. For a scalar V, 

0V Vj_  in o a. a I r2 sin2 o 1  a2v (sin 0 
V2'T7 a = à ( 2 8r) r2 s a° 80)  

(1-40) 

The Laplacian of a vector quantity is defined by 

=   v) A (1-41)— 

where in spherical co-ordinates, VA is defined as 

aA M  1 M 
VA -= u,. -I- • 

: - 11 eel-fee( d " 270/ _ ,,4) 7-711.711 

Problem 2. In the illustration of the leaf floating on the surface of the 
water (the z-y plane) show that for a very small circular leaf, curl v is equal 
to twice the angular velocity of rotation of the leaf, that is that 

(Oyu ay) _ 2 de 
az ay  — dt 

(Suggestion: Assume that the tangential force on the leaf per unit area 
at any point is a constant times the relative velocity between leaf and 
water at that point. The sum of all the torques on the leaf must be zero.) 

Problem 3. For a two-dimensional system in which r = y2 
determine VW (use rectangular co-ordinates and then check in cylindrical 
co-ordinates) (a) when V = 1/r, (b) when V = hi 1/r. 

Problem 4. Repeat problem 3 for a three-dimensional system in which 
r = N/x2 + y2 ± e (use rectangular co-ordinates, and check with spherical 
co-ordinates). 

1.05 Units and Dimensions. Although several systems of units 
are used in electromagnetic theory, most engineers now use some 
form of the practical meter-kilogram-second (MKS) system. It is 
to be expected that the marked advantages of this system will 
prompt its universal adoption. 

The existence of the large number of systems of electric and 
magnetic units requires some explanation. The units used to 
describe electric and magnetic phenomena can be quite arbitrary, 

(1-42)— 
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and a complete system of units can be built up from any of a large 
number of starting points. It is necessary only to define the units 
of length, mass, time, and one electrical quantity (such as charge, 
current, permeability or resistance) in order to have the basic units 
from which all other required units can be derived. Unfortunately, 
in the original CGS (centimeter-gram-second) systems the defined 
units of length and mass were so small that the derived electrical 
units were unsuitable for practical use. It was found necessary 
to set up the so-called practical system with units that were related 
to the corresponding CGS units by some power of 10 (volt, ampere, 
ohm, and so on). In 1901 Professor Giorgi showed that this prac-
tical series could be made part of a complete system, based upon the 
meter, kilogram, and second, provided that II., the magnetic perme-
ability of a vacuum or free space, is given the value 10-7 instead of 
unity as in the CGS system. The resulting (MKS) system has the 
advantage that it utilizes units already in use in electrical engineer-
ing. In addition, it is a complete and self-consistent system. 

The problem of selecting a suitable system of electric and mag-
netic units has been further complicated by the question of rational-
ization. As was pointed out by Heaviside, the CGS system is 
unrationalized in that the factor 4r occurs in the wrong places, that 
is, where logically it is not expected. It would be expected that 4r 
would occur in problems having spherical symmetry, 2nr in problems 
having circular or cylindrical symmetry and no ir in problems 
involving rectangular shapes. In the ordinary CGS system that is 
not the case, and Heaviside proposed to rationalize the system. 
However his proposal involved changing the values of the volt, 
ampere, ohm, and so on, by nonintegral values and so was not 
considered feasable for practical reasons. It was pointed out later 
that, if the permeability µ„ of a vacuum or free space were changed 
from 1 to 4r in the CGS system, rationalization could be effected 
without changing the magnitude of the practical units. In the 
rationalized MKS system of units this requires that ix. have the 

value of 47 X 10-7. In any system of units the product 1/-‘/:-4.e.. 
must be equal to c, the velocity of light. This requires that in the 
rationalized MKS system 

1  
e. = 8.854 X 10-" 

367 X 10'' 
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In the rationalized system the factor 47r occurs explicitly in Cou-

lomb's law and in Ampere's law for the current element, but it 

does not occur in Maxwell's field equations. It is for this latter 
reason that the rationalized system is favored in electromagnetic 

theory. 
In 1935 the Giorgi (MKS) system was adopted as the inter-

national standard, with the question of rationalLation left unsettled. 
In this book the rationalized MKS system of units will be used. 

Consequently, the basic or defined electrical unit (the permeability 

of free space) will have the value ii,, = 4r X 10-1. The common 

mechanical and electrical quantities as they appear in this system 

are listed below. 

RATIONALIZED MKS SYSTEM Or UNITS 

Length. The unit of length is the meter. 

Mass. The unit of mass is the kilogram. 
Time t. The unit of time is the second. 

Force F. The unit of force is the newton. It is the force required to 
accelerate 1 kg at the rate of 1 meter/sec2 (1 newton = 105 dynes). 

Energy. The unit of electrical energy is the same as the unit of mechanical 
energy. It is the joule. A joule is the work done when a force of 
1 newton is exerted through a distance of 1 meter (1 joule = 107 ergs). 

Power. The unit of power is the watt. It represents a rate of energy 
expenditure of 1 joule/sec. 

Absolute Permeability of Free Space This basic electrical unit has the 
value of 4r X 10-7 by definition. It has the dimensions of henry per 
meter. 

Current I. The unit of current is the ampere. The size of the ampere is 
established through the experimental law of force (Ampere's law) 
between two very long parallel wires in free space, viz. 

µ„/1/2L 
F — 

2rd 

where L is the length of the wires, and d is their separation. Thus an 
ampere is that current (flowing in each conductor) which produces a 
force of 2 X 10-7 newtons/m length between very long parallel wires 
spaced 1 meter apart in a vacuum. 

Charge Q or q. The unit of charge is the coulomb. One ampere of current 
flowing for 1 sec transports 1 coulomb of charge. 

Resistance R. The unit of resistance is the ohm. If 1 watt of power is 
dissipated in a resistance when 1 amp of current flows through it, the 
value of the resistance is 1 ohm. 
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Conductance G. Conductance is the reciprocal of resistance. The recipro-
cal ohm is known as the mho (or as the siemens). 

Resistivity. The resistivity of a medium is the resistance measured between 
two parallel faces of a unit cube. The unit of resistivity is the ohm meter. 

Conductivity a». The conductivity of a medium is the reciprocal of resis-
tivity. The unit of conductivity is the mho/meter. 

Electromotive Force V. The unit of electromotive force (emf) or voltage 
is the volt, which is defined as 1 watt/amp. It is also equal to 1 joule/ 
coulomb and so has the dimensions of work per unit charge. (It is not 
a force.) 

Electric Intensity E. Electric intensity or electric field strength is measured 
in volts/meter. The electric intensity at any point in a medium is the 
electric force per unit positive charge at that point. It has the dimen-
sion newton/coulomb. 

Current Density j. The unit of current density is the ampere/square meter. 

Electric Displacement qr. The electric displacement through a closed sur-
face is equal to the charge enclosed by the surface. The unit of electric 
displacement is the coulomb. 

Displacement Density D. The unit of electric displacement density (usually 
called just displacement density) is the coulomb/square meter. 

Magnetic Flux 41). The voltage V between the terminals of a loop of wire 
due to a changing magnetic field is related to the magnetic flux through 
any surface enclosed by the loop by V = —dcb/dt. The unit of magnetic 
flux is defined by this relation and is called the weber. A weber is 
1 volt • sec. 

Magnetic Flux Density B. The unit of magnetic flux density is the 
weber/square meter. (1 weber/sq m = 104 gauss) 

Magnetic Intensity H. The magnetic intensity or magnetic field strength 
between two parallel plane sheets carrying equal and oppositely directed 
currents is equal to the current per meter width (amperes per meter) 
flowing in the sheets. The unit of magnetic intensity is the amp/meter. 

Magnetomotive Force (or M). The magnetomotive force between two 

points a and b is defined as the line integral H • da. The unit of 
a 

magnetomotive force is the ampere. The magnetomotive force around 
a closed path is equal to the current enclosed by the path. 

Capacitance C. A conducting body has e capacitance of 1 farad if it 
requires a charge of 1 coulomb to raise its potential by 1 volt. A farad 
is equal to 1 coulomb/volt. 

Inductance L. A circuit has an inductance of 1 henry if a changing 
current of 1 amp/sec induces in the circuit a " back-voltage" of 1 volt. 
The dimensions of the henry are 

volt • seconds 
= ohm • seconds 

ampere 
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Dielectric Constant e. In a homogeneous medium the electrical quantities 
D and E are related by the equation D = eE, where e is the dielectric 
constant of the medium. It has the dimensions farad/meter. The 
dielectric constant of evacuated (free) space is 

1  
e. = 8.854 X 10-" 3enr X 109 farads/m 

The dielectric constant of a medium may be written as e = e,e, where Cr 
is a dimensionless constant known as the relative dielectric constant of the 
medium. 

Permeability p. The magnetic flux density and magnetic intensity in a 
homogeneous medium are related by B = µ11 where g is the magnetic 
permeability of the medium. It has the dimensions henry/meter. The 
permeability of free space is g. = 47r x 10-7 henry/m. The permea-
bility of a medium may be written as p = grit. where gr is the relative 
permeability of the medium. 

Table I gives the dimensions of the units of the MKS system. 
In this table the dimensions of all of the units have been expressed 
in terms of mass M, length L, time T, and charge Q. By expressing 

the dimensions in terms of charge Q, rather than the defined unit g, 
fractional exponents in the dimensional equations are avoided. 
A table that can be used for converting from the MKS practical 

system to the CGS systems or vice versa is shown iuside the back 
cover. 

J..06 Order of Magnitude of the Unlit:. A concept of the order 
of magnitude of the units of the MKS practical system can be 
obtained from a few examples. A meter is equal to 3.281 ft, and 
roughly 3 meters equal 10 ft. A kilogram is slightly more than 
2 lb (1 kg = 2.205 lb). A newton is approximately the force 

required to lift Yi lb. (more accurately 0.225 lb). A joule is the 
work done in lifting this lb weight 1 meter. To raise the weight 
through 1 meter in 1 sec requires the expenditure of 1 watt of power. 
Whereas the watt •is usually thought of as a rather small unit of 
power (the smallest lamp in general household use requires 15 watts, 
and it takes 2 or 3 watts to run an electric clock), it represents a 

considerable amount of mechanical power. A man can do work 
for a 12-hour day at the rate of about 40 watts, which is less than 
the power required to run his wife's electric washing machine. The 
coulomb, which is about the amount of charge passing through a 
100-watt lamp in one néconewsàuje charge, .a sphere the size of the 



TABLE I 
DIMENSIONS OF UNITS IN THE MKS SYSTEM 

Quantity Symbol MKS unit 
Dimensional 
equivalent Dimensions 

Length  1 meter L 
Mass  et kilogram M 
Time  t second T 
Charge  q coulomb Q 
Force  F newton joule per meter MLT-2 
Energy  U joule volt-coulomb ML2T-2 
Power  W watt joule per second Min-2 
Current  I ampere coulomb per second T-1Q 
Current density  i ampere/square meter   L-2T-1Q 
Charge density (volume)  p (or p.) coulomb/cubic meter   L-2Q 
Charge density (surface)  P. coulomb/square meter   L-2Q 
Resistance  R ohm volt per ampere ML2T-,Q-2 
Conductivity  o- mho/meter   M-1L-3N2 M-1L-3N2 

Electromotive force  V volt joule per coulomb ML2T-2Q-1 
Electric intensity  E volt/meter newton per coulomb MLT-2Q-1 
Capacitance  C farad coulomb per volt M -1L-2T2Q2 
Diecctric constant  E farad/meter  m-g r irr2Q2 m-gr irr2Q2 

Electric displacement  10" coulomb Q 
Electric displacement density  D coulomb/square meter     L-2Q L-2Q 
Magnetic flux  e weber volt-second ML2T-1Q-1 
Magnetic flux density  B weber/square meter  MT -1Q-1 MT-1Q-1 
Magnetomotive force  if (or M) ampere (turn)   T-1Q T-1Q 
Magnetic intensity  H ampere (turn)/meter   L-1T-1Q L-1T-1Q 
Inductance  L henry ohm-second ML2Q-2 
Permeability  it henry/meter  MLQ -2 MLQ-2 
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earth to about 1400 volts. If it were possible to place a coulomb 
of charge on each of two small spheres placed 1 meter apart, the 
force between them would be 9 X 10' newtons, or about the force 
required to lift a million tons. The farad is a large unit of capaci-
tance, and the terms microfarad (10-6 f) and micro-microfarad 
(10-12 f) are in common use. The filter condensers on a radio set 
are usually 8 or 16 mf (microfarads). The capacitance of a sphere 
1 cm in radius is approximately 1 1.4pf (micro-microfarads). The 
inductance of the primary winding of an iron-core audio transformer 
may be the order of 50 henrys, whereas the inductance of the radio 
frequency " tuning-coils" for the broadcast band is about 300 ph 
(microhenrys). A weber per square meter is about one-half the 
saturation flux density of iron used in transformer cores. 
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CHAPTER 2 

ELECTROSTATICS 

2.01 Introduction. The sources of electromagnetic fields are 
charges, and the strength of a field at any point depends upon the 
magnitude, position, velocity, and acceleration of the charges 
involved. An ele trostatic field can be considered as a special case 
of an electromagnetic field in which the sources are stationary,* 
so that only the magnitude and position of the charges need be 
considered. The study of this relatively simple case lays the 
foundations for solving problems of the more general time-varying 
electromagnetic field. In what follows it is assumed that the reader 
has had an elementary course covering the subject of electro-
statics and has some general knowledge of the experimental facts 
and their theoretical interpretation. The purposes of this chapter 
are ( 1) to review the subject briefly, not as a study in itself but as an 
introduction to the electromagnetic field, (2) to consider the state-
ment of the laws in the vector form, and finally (3) to state the 
required relations in the MKS system of units. It is usually much 
simpler to derive all relations directly in the new unit system rather 
than to try to use conversion factors to convert from the older esu's 
and emu's of the CGS system. 

2.02 Fundamental Relations of the Electrostatic Field. Cou-
lomb's Law. It is found experimentally that between two charged 
bodies there exists a force that tends to push them apart or pull them 
together, depending on whether the charges on the bodies are of 
like or opposite sign. If the two bodies are spheres whose radii are 
very small compared with their distance apart, and if the spheres 
are sufficiently remote from conducting surfaces and from other 

*Individual charges (e.g., electrons) are of course never stationary, having 
random velocities, which depend among other things upon the temperature. 
This statement regarding stationary sources simply means that when any 
elemental macroscopic volume is considered, the net movement of charge 
through any face of the volume is zero. 

25 
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dielectric media (more technically if the spheres are immersed in an 
infinite homogeneous insulating medium), the magnitude of the 
force between them due to their charges obeys an inverse square 
law. That is 

F qi42 
kr2 (2-1) 

where qi is the net charge on one sphere, q2the net charge on the other. 
This is Coulomb's law of force. In the CGS electrostatic system of 
units the constant k is arbitrarily put equal to unity for a vacuum 
and relation ( 1) is used to define the unit of charge for the electro-
static system of units. However, in the MKS system the unit of 
charge has already been determined from other considerations, and 
since units of length and force have also been defined, the constant k 
can be determined from experiment. In order to rationalize the 
units and so leave Maxwell's field equations free from the factor 
4r, it is convenient to show a factor 47 explicitly in the constant k 
and write 

k = 4re 

The " constant" e depends upon the medium or dielectric in which 
the charges are immersed. It is called the dielectric constant (or 
capacitivity) of the medium. For free space, that is for a vacuum, 
but also very closely for air, the value of e is 

e, = 8.854 X 10- 12 f/m (2-2) 

To a very good approximation (the same approximation involved 
in writing the velocity of light as c r-e 3 X 108 meter/sec) the value 
of e, is given by 

1  
362r X 109 (2-3) 

The subscript, y, indicates that this is the dielectric constant of a 
vacuum or free space. For other media the value of e will be differ-
ent. Then Coulomb's law in MKS units is 

F = giq2 
47rer2 newtons (2-4) 

The direction of the force is along the line joining the two charges. 
Electric Intensity E. If a small probe charge Sq is located at 

any point near a second fixed charge q, the probe charge experiences 
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a force, the magnitude and direction of which will depend upon its 
location with respect to the charge g. About the charge g there is 
said to be a field of electric intensity E, and the magnitude of E at 
any point is measured simply as the force per unit charge at that 
point. The direction of E is the direction of the force on a positive 
probe charge, and is along the outward radial from the (positive) 
charge g. 

From equation (4) the magnitude of the force on dg will be 

q bq SF = 47r (2-5) 
er2 

and the magnitude of the electric intensity is 

E q  
4wer2 

(2-6) 

The force on the probe charge is dependent upon the strength of the 
probe charge, but the electric intensity is not. If the charge on the 
probe is allowed to approach zero, then the force acting on it does 
also, but the force per unit charge remains constant; that is, the elec-
tric field due to the charge g is considered to exist, whether or not 
there is a probe charge to detect its presence. 

The direction, as well as the magnitude, of the electric intensity 
about a point charge is indicated by writing the vector relation 

E = 2u (2-7) 
4rer 

where u,. is a unit vector along the outward radial from the charge g. 
Electric Displacement ‘If and Displacement Density D. It is seen 

from eq. (7) that at any particular point the electric intensity E 
depends not only upon the magnitude and position of the charge g, 
but also upon the dielectric constant of the medium (air, oil, and 
others) in which the field is measured. It is desirable to associate 
with the charge g a second electrical quantity that will be inde-
pendent of the medium involved. This second quantity is called 
electric displacement or electric flux and is designated by the symbol 
T. An understanding of what is meant by electric displacement 
can be gained by recalling Faraday's experiments with concentric 
spheres. A sphere with charge Q was placed within, but not 
touching, a larger hollow sphere. The outer sphere was "earthed" 
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momentarily, and then the inner sphere was removed. The charge 
remaining on the outer sphere was then measured. This charge 
was found to be equal (and of opposite sign) to the charge on the 
inner sphere for all sizes of the spheres and for all types of dielectric 
media between the spheres. Thus it could be considered that there 
was an electric displacement from the charge on the inner sphere 
through the medium to the outer sphere, the amount of this dis-
placement depending only upon the magnitude of the charge Q. 
In MKS units the displacement %If is equal in magnitude to the 
charge that produces it, that is 

= Q coulombs (2-8) 

For the case of an isolated point charge g remote from other bodies 
the outer sphere is assumed to have infinite radius. The electric 
displacement per unit area or electric displacement density D at any 
point on a spherical surface of radius r centered at the isolated charge 
g will be 

‘1, g 
471.7.2 47.7.2 

coulomb/sq m (2-9) 

The displacement per unit area at any point depends upon the 
direction of the area. Displacement density D is therefore a vector 
quantity, its direction being taken as that direction of the normal 
to the surface element which makes the displacement through the 
element of area a maximum. For the case of displacement from an 
isolated charge this direction is along the radial from the charge 
and is the same as the direction of E. Therefore the vector relation 

corresponding to (9) is 

D =  u 
471-r2 

(2-10) 

Comparing eqs. (7) and (10) shows that D and E are related by the 
vector relation 

D = cE (2-11) 

Equation (11) is true in general for all isotropic media. For certain 
crystalline media, the dielectric constant e is different for different 
directions of the electric field, and for these media D and E will 
generally have different directions. Such substances are said to be 
enisotropic. In this book only homogeneous isotropic media will be 
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considered. For these e is constant, that is, independent of position 
(homogeneous) and independent of the magnitude and direction 
of the electric field. 

It is possible to measure the displacement density at a point 
by the following experimental procedure. Two small thin metallic 
disks are put in contact and placed together at the point at which D 
is to be determined. They are then separated and removed from 
the field, and the charge upon them is measured. The charge per 
unit area is a direct measure of the component of D in the direction 
of the normal to the disks. If the experiment is performed for all 
possible orientations of the disks at the point in question, the direc-
tion (of the normal to the disks) that results in maximum charge 
on the disks is the direction of D at that point, and this maximum 
value of charge per unit area is the magnitude of D. 

Lines of Force and Lines of Flux. In an electric field a line of 
electric force is a curve drawn so that at every point it has the direc 
tion of the electric intensity. The number of lines per unit area is 
made proportional to the magnitude of the electric intensity, E. 
A line of electric flux is a curve drawn so that at every point it has 
the direction of the electric flux density or displacement density. 
The number of flux lines per unit area is used to indicate the magni-
tude of the displacement density, D. In homogeneous isotropic 
media lines of force and lines of flux always have the same direction. 

2.C3 Gauss's Law. Gauss's law states that the total displace-
ment or electric flux through any closed surface surrounding charges is 
equal to the amount of charge enclosed. This may be regarded as a 
generalization of a fundamental experimental law (recall Faraday's 
experiments) or it may be deduced from Coulomb's inverse-square 
law, and the relation D = LE (now used to define D). 

Consider a point charge q located in a homogeneous isotropic 
medium whose dielectric constant is e. The electric intensity at 
any point a distance r from the charge q will be 

E =—L u 
4rEr2 

and the displacement density or electric flux density at the same 
point will be 

D = ¿E = u 
471-r2 ' 
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Now consider the displacement through some surface enclosing 
the charge (Fig. 2-1). The displacement or electric flux through the 

element of surface da is 
= D da ccs 0 (2-12) 

where O is the angle between D and the normal to da. From the 
figure it is seen that da cos 0 is the projection of da normal to the 
radius vector. Therefore, by definition of a solid angle, 

da cos 0 = r2 c/2 (2-13) 

where c/2 is the solid angle subtended at q by the element of area da. 

FIG. 2-1. Displacement through a surface enclosing a charge. 

The total displacement through the surface is obtained by 
integrating eq. (12) over the entire surface. 

‘11 = f D da cos 0 (2-14) 

(The circle on the integral sign indicates that the surface of integra-
tion is a closed surface.) Using eq. (13) the displacement is given 
by 

%If = f Dr' c/2 

and substituting for D from (9) 

xlf = — 96 d 
47 

(2-15) 
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But the total solid angle subtended at q by the closed surface is 

= f d2 = 4r solid radians. 
Therefore from (15) the total displacement through the closed surface 
will be 

(2-16) 

If there are a number of charges within the volume enclosed by the 
surface the total displacement through the surface will be equal to 
the sum of all the charges. If the charge is continuously* dis-
tributed throughout the volume with a charge density p (coulombs 
per cubic meter), the total displacement through the surface is 

i f p dV (2-17) vo 

where the right-hand side represents the total charge contained 
within the volume. 

It is often desirable to state the above relations in vector form. 
By definition of the dot product, the expression D da cos O in eq. (12) 
can be written as D • da. In this case the element of area da is 
considered to be a vector quantity having the magnitude da and 
the direction of the normal to its surface. Then eq. (14) would be 
written 

%if = fD • da (2-18) 

When da is a part of a closed surface as it is here the direction of the 
outward normal is taken to be positive. The right-hand side of 
eq. (18) is the integration over a closed surface of the normal com-
ponent of the displacement density, that is, it is the total (outward) 
electric displacement or electric flux through the surface. 

Combining eqs. (17) and (18) the vector statement of Gauss's 
law is 

56s D • da = i f p dV vo (2-19) 

* Actual charge distributions consist of aggregations of discrete particles or 
corpuscles. However since there will always be an enormous number of these 
microscopic particles in any macroscopic element of volume A V, it is permissabIe 
to speak of the charge density p where p Aq/A V is the charge per unit volume 
in elemental volume eV. Thus by "charge density at a point" is really meant 
the charge per unit volume in the elemental volume AV containing the point. 
Although A V may be made very small, it is always kept large enough to contain 
many charges. 
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In words, the net outward displaceme..1 through a closed surface is 
equal to the charge contained in the volume enclosed by the surface. 

2.04 Electric Field Due to Several Charges. When a test 
charge Sq is located at a point p in the field of a single charge q it 

experiences a force F that is given by 

F —  3g u,. newtons (2-20) 
471-r2 

The unit vector u,. indicates that the direction of the force is along 
the radius vector from the charge q to the point p. By definition, 

(1/ 

E 

0;• 

0.5 J 

FIG. 2-2. Vector addition of fields. 

the electric intensity E at the point p is the force per unit charge 
and has the same direction as F, so that 

E —  q  u, 
47rer2 

When there are several charges present, each charge will exert 
a force .m the test charge at p, the magnitude and direction of which 
is given by (20). The resultant force on bq will be the vector sum 
of the inc:ividual forces, the addition taking into account the direc-

tion as wèll as magnitude of the forces. Correspondingly the elec-
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tric intensity at the point p will be the vector sum of the electric 

intensities because of each charge acting alone. If qi, q2, qs, . • . qn 
are charges located at distances r1, r2, r3, . . . r„ from the point p 
the electric intensity at p will be 

E = 1 -r 4 , qa 
ra2 u • • • qn 7re r 2  

2 

i n 
1 

4ire 
i=1 

EXAMPLE 1: Electric Field of Two Charges (Method 1). Determine the 
electric intensity at the point p in Fig. 2-2 due to the charges * and q2 

= 1 X 10-9 coulomb 
q2 = 8 X 10-1° coulomb 
r1 = C 3 meter 
r2 = 0.4 meter 

The magnitudes of the individual intensities E1 and E2 are 

_ 367r X log  x 10-. 1E1 =   loo voivm 
4reri2 4r X 0.32 

1E21 =  q2  _ 36r X 109  X  8 X 10- 1° = 45 volt/m 

4ru22 4r X 0.42 

In order to add these intensities vectorally it is convenient to use the 
components in the x and y directions. From the geometry of the 3, 4, 
5 triangle: 

(a) The x component of E 1 is 100 X = 63 
(b) The x component of E2 is —45 x = —36 
(c) The y compenent of E1 is 100 X = 80 
(d) The y component of E2 is 45 X = 27 

The total x component of E is 

= 60 — 36 24 

and the total y component is 

Ez, = 80 X 27 = 107 

The resultant electric intensity has a magnitude 

E = N/242 -F 1072 = 110 

The angle O between the direction of E and the x axis is given by 

O = tan-i 1 o%4 = 77.40 
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2.05 The Potential Function. An electric field is a field of 
force, and a force field can be described in an alternative manner 
from that given above. If a body being acted upon by a force is 
moved from one point to another, work will be done on or by the 
body. If there is no mechanism by which the energy represented 
by this work can be dissipated, then the field is said to be conserva-
tive, and the energy must be stored in either the potential or kinetic 
form. If a charge is moved in a static electric field or a mass is 
moved in a gravitational field and no friction is present in the region, 
then no energy is dissipated. Hence these are examples of conserva-
tive fields. If some point is taken as a reference or zero point the 
field of fore can be described by the work that must be done in 
moving the body from the reference point up to any point in the 
field. A reference point that is commonly used is a point at infinity. 
For example, if a small body has a charge g and a second body with 
a small test charge (3g is moved from infinity along a radius line to a 
point p at a distance R from the charge g, then the work done on 
the system in moving the test charge against the force F will be 

Work = — fie Fdr. 

q 8q  and since SF --= 471-67-2 

g 8g f R 1  Work on test charge = — 
47r Ej d r 

g sq 
47reR 

The work done on the test charge per unit charge is 

V=" 1 q (2-21) 
47rere 47reR 

V is called the potential at the point p due to the charge g 
Because it is a scalar quantity, having only magnitude and no direc-
tion, it is often called the scalar potential. 

In a conservative field the work done in moving from one point 
to another is independent of the path. This is easily proven. If it 
were not independent of the path and a charge were moved from 
point Pi to point P2 over one path, and then from point P2 back 
to point Pi over a second path, the work done on the body on one 
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path could be different from the work done by the body on the 
second path. If this were true, a net (positive or negative) amount 
of work would be done when the body returned to its original 
position P1. In a conservative field there is no mechanism for 
dissipating energy corresponding to positive work done and no 
source from which energy could be absorbed if the work were nega-
tive. Hence, it is apparent that the assumption that the work done 
is different over two paths is untenable, and so the work must be 
independent of the path. Thus for every point in the static electric 
field there corresponds one and only one scalar value of the work 
done in bringing the charge from infinity up to the point in question 
by any possible path. This scalar value at any point is called the 
potential of that point. The potential* is measured in volts where 
1 volt = 1 joule per coulomb. 

If two points Pi and P2 are separated an infinitesimal distance 
8. and the potential at Pi is VI, whereas that at P2 is V1+ &V, it 
is apparent that the work done in moving a unit charge from point 
P1 to point P2 will be 

W = Vi — (VI + 8V) = E8&8 

where E, is the component of the electric intensity in the direction 
of Ss 

— SV = E, 88 (2-22). 

The three components of E in the x, y, and z direction can be 
obtained from eq. (22) 

av av av 
= — -ax—y E = — ay a — -- (2-23) 

z 

The three scalar eqs. (23) can be written in one vector equation 

av„ ay . av 
E = — — — j — 

ax ay Or 

* In electrostatics the term potential or potential difference and voltage are 
used interchangeably. For time-varying electromagnetic fields, potential, as 
defined here, has no meaning. However, the voltage between two points a 
and b, defined by 

fb 
Vab = E • ds 

Ja 

continues to huve meaning as long as the path is specified. 

(2-24) 
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or in the abbreviated vector notation 

E = — grad V (2-25) 

Thus the electric intensity at any point is just the negative of the 
potential gradient at that point. The direction of the electric field 
is the direction in which the gradient is greatest or in which the 
potential changes most rapidly. 

Equations (23) give the three components of E in rectangular 
or Cartesian co-ordinates. Very often the conditions of a problem 
are such that it is more simply solved in cylindrical or spherical 
co-ordinates. In cylindrical co-ordinates the three mutually per-
pendicular directions are p, 4), and z. The elemental increments of 
length in these directions are dp, p dck, and dz respectively. The 
space rates of change of potential in these directions will give the 
corresponding components of electric intensity, viz., 

av av (cylindrical 
E„ = — — E4, = — E, = — — 

ap e pa aZ co-ordinates) 

In spherical polar co-ordinates, the increments of length are dr, r de 
and r sin O dck so that the space rates of change of potential and 
corresponding electric intensities are given by 

av av E = — Eo = — Egs — 1 ay (spherical r ar rae r sin O acp co-ordinates) 

When the system of charges is specified and the problem is that 
of determining the resultant electric field due to the charges, it is 
often simpler to find first the potential field and then determine E 
as the potential gradient according to eqs. (25). This is so because 
the electric intensity is a vector quantity, and when the electric 
field produced by several charges is found directly by adding the 
intensities caused by the individual charges (as was done in the 
example on page 32), the addition of fields is a vector addition. 
This relatively complicated operation is carried out by resolving 
each vector quantity into (generally) three components, adding 
these components separately, and then combining the total values 
of the components to obtain the resultant field. On the other hand 
the potential field is a scalar field and the total potential at any 
point is found simply as the algebraic sum of the potentials due to 
each charge. If the potentinl is known, the electric field cP.n be 
found from eq. (25). 
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EXAMPLE 2: Electric Field cf Two Charges. As an example let it be 
required to find the electric intensity at c// points in the x-y plane due to 
the charges ci and q2 (Fig. 2-1:). By the first method this would be done 
by writing the expressions for the x and y components of E due to each 
of the charges and adding these separately to obtain the resultant E. By 
the second method the potential due to the charges is found first. 

The potential at the point p in (Fig. 2-2) is 

= 1  4re (22 + 22) 
: r2 

3,17r X 10° (10-9 8 X 101 
47r 0.3 0.4 

= 48 volts 

The potential at any point (x, y) due to charges çi and q2, located respec-
tively at (0, 0) and (0.5, 0), is 

v = 1 ( ql  +  q2  , 
47rE \/x2 1_ y2 V (X 0.5)1 + y) 

The electric intensity is obtained from V by applying eq. (23) 

a v. 1  41X q2(x — 0.5) 
j_ } 

ax — 47rE f [x2 + y2]% -1- [(x — 0.5)2 + y2]3"-' 

a V 1 aly  ±  q2y  

ay = 47re f [x2 + y2]1 [(x — 0.5)2 + ell 

Therefore E at any point (x, y) will be 

1  qix g2(x 0.5)  E = 
4r€ (hx2 y2],- 0.5)2 + y j3J I 

qiy + 97Y  
4 Le y2p. [(x __ 0.5)2 1.. y2]4 i) 

At the particular point p of (Fig. 2-2), x 0.18 and y = 0.24. Substi-
tuting these values and the values for qi and q2 gives 

1.62 2.30  ) i -I- ( 2.16 1.728) E = ± 
(0.027 0.064 0.027 0.064 

= (60 — 36)i + (80 + 27)j 
= 24i + 107i 

This checks with the answer obtained in the previous example. 
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In a simple problem such as the one above there may be little 

advantage, if any, to using the potential method, but in the more 

complex problems to be considered later it will be found that the 

use of the scalar potential results in a real simplification of the 

problem. 

FIG. 2-3. An electric dipole. 

EXAMPLE 3: Field of an Electric Dipole. The concept of the electric 
dipole is extremely useful in electromagnetic field theory. Two equal and 
opposite charges of magnitude q separated by an infinitesimal distance 1 
are said to constitute an electric dipole or electric doublet. The electric 
field due to such an arrangement can be found readily by first finding the 
potential V. In Fig. 2-3 

Vp 
42re r1 r2 

Because 1 is infinitesimally small 

r — § cos e 

r2 r -/ cos O 
2 

ql cos 0  
47r€V, 12 

r — -2 cos r + -1 cos 0 r2 — —4 cos2 0 
2 

ql cos O 

r2 
(for 12 « 7.2) 
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The electric field is found from E = — grad V. The three compcnents 
in spherical co-ordinates are 

av 2g1 E, = cos O  
ar 4irer3 

E aV gl sin 0  
e = — — — 

r a o 42r2r8 
1  av 

Eqs — 0 
r sin eao 

2.06 Field Due to a Continuous Distribution of Charge. The 
potential at a point p due to a number of charges is obtained as a 
simple algebraic addition of the potentials produced at the point 
by each of the charges acting alone. If qi, q2, q8, . . . q, are 
charges located at distances r1, r2, ra, . . . r., respectively, from the 
point p, the potential at p is given by 

V, = —A _1 + + • +  rin) 
r r2 . 
i-n 

1 

= 4ife 4.J ri 
s-1 

If the charge is distributed continuously throughout a region, 
rather than being located at a discrete number of points, the region 
can be divided into elements of volume AV each containing a charge 
p AV, where p is the charge density in the volume element. The 
potential at a point p will then be given as before by 

1 pi AVi 
V = 

4re 

where ri is the distance to p from the ith volume element. As the 
size of volume element chosen is allowed to become very small, the 
summation becomes an integration, that is 

1 f p dV 
V p = r (2-26) 

voi  

The integration is performed throughout the volume where p has 
value. 

EXAMPLE 4: Potential Distribution about Long Parallel Wires. Debi.-
mine the potential distribution about a long parallel pcir cf wires of 
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FIG. 2-4. A pair of parallel line charges. 

negligible cross section when the wires have equal and opposite charges 
distributed along their length. 

Assume that a linear charge density q' coulombs per meter is distributed 
along wire a and — q' coulombs per meter along wire b (Fig. 2-4). Then 
p dV becomes q' dz so that the expression for potential at the point p will be 

1 + q ' 

= 47r€ 777, à _ — 

= q' f ( 1 7. ) 1 
2r€ o ri 2 

Substituting 7.1 = z2 and r2 = Vrba + z2, 

V = f 1 1  
o N/r.2 z2 N/rb2 z2) 

= [ln (z + r.2 + z2) — in (z Vr1,2 z2]: 
27re 

q' [ z + N/r.2 z2T 
= — in 

27re z + rb2 + z2 o 
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As z approaches infinity the fraction (z Vr.2 z2)/(z z2) 
approaches unity. Therefore, when the limits are inserted, the expression 
for potential at the point p becomes 

q'  V = — , — — 
27r€ rt, 

q' , 
= — — 
27r r. 

(2-27) 

It will be observed that in the plane of symmetry between the wires 
(r. = rb) the potential is zero. 

2.07 Equipotential Surfaces. The solutions to many problems 
involving electric fields are simplified by making use of equipotential 
surfaces. An equipotential surface is a surface on which the poten-
tial is everywhere the same. The movement of charge over such a 
surface would require no work. Since any two points on the surface 
have the same potential, there is zero potential difference and 
therefore zero electric field everywhere along (tangential to) the 
surface. This means that the electric field must always be perpen-
dicular to an equipotential surface. 
A very simple example of equipotential surfaces exists in the 

case of a point charge. Since V = q/4irre, a surface with a fixed r 
would have a constant potential. The constant potential surfaces 
therefore are concentric spherical shells. 

In the problem of the parallel line charges the equipotential 
surfaces can be determined with little difficulty. The locus of a 
constant potential is obtained by setting the potential of eq. (27) 
equal to a constant, that is 

k1 = 
27rE 

This requires that 

(rb) 2 
— = k2 

where k2 is another constant. From Fig. 2-4 

7;32 = + 02 + y2 

re = — g)2 ± y2 
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— 7j2 

b-d)2 y' 

= k2 

[12.07 

d2 
x2(1 — k2) y'(1 — k2) — xd(1 ± 71- ( 1 — k2) = 

1 ± k2 d2 
X2 + y2 — xd = 0 

1 — k2 4 

1 + k2 d2 (1 + k2)2 _ d2 (i k2)2 1] 
rx d(k2 -1- 1)12 ± 2 k2d2 

L 2 \k2 — 1n (k2 — 1)2 

kd  
This is the equation of two families of circles with radii k2 — 1 and 

centers at + d (k2 + 1), 0. Because of symmetry in the z direction 
— 2 k2 — 1 the equipotential surfaces will 

be cylinders. The cylinders 
are not concentric because k 
will depend on the potential 
selected. 

Figure 2-5 shows a plot 
of the equipotential surfaces 
about the parallel line charges. 
It is seen that for small values 
of radius the equipotential 
cylinders about each line are 
nearly concentric, with the 
line charges as the center. 

Conductors. A conducting 
medium is one in which an 
electric field or difference of po-
tential is always accompanied 

Flo. 2-5. Equipotential surfaces about by a movement of charges. 
parallel line charges. The theory explaining this 

phenomenon is that a conductor contains free electrons or conduction. 
electrons that are relatively free to move through the ionic crystal 
lattice of the conducting medium. It follows that in a conductor 
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there can be no static electric field, because any electric field origi-
nally present causes the charges to redistribute themselves until the 
electric field is zero. The electric field being zero within a con-
ductor means that there is no difference of potential between any 
two points on the conductor. For static electric fields therefore, a 
conductor surface is always an equipotential surface. 

It also follows that within a conductor there can be no net 
charge (excess positive or negative charge). If there were a net 

CONDUCTOR 

FIG. 2-6. Boundary surface between a conductor and a 
dielectric. 

charge anywhere within the conductor, then by Gauss's law there 
would be a displacement away from this charge and therefore a 
displacement density D in the conductor. Since E --- D/E this 
requires (for any finite value of dielectric constant e) that there 
be an electric field E in the conductor. But the possibility of this 
has already been ruled out for the electrostatic case. Therefore, 
the (net) charge density p must be zero within the conductor. 
There can, however, be a distribution of charge on the surface 
of the conductor, and this gives rise to a normal component of 
electric field in the dielectric medium outside the conductor. The 
strength of this normal component of electric intensity in terms 
of the surface charge is obtained directly from Gauss's law. 
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Electric Field Due to Surface Charge. Let the charge per unit 
area or surface charge density on the surface of a conductor be pa 
coulombs per square meter. Enclose an element of the surface 
in a volume of " pillbox" shape with its flat surfaces parallel to the 
conductor surface. Then, if the depth d of the pillbox is made 
extremely small compared with its diameter, the electric displace-
ment through its edge surface will be negligible compared with any 
displacement through its flat surfaces. There can be no displace-
ment through the left-hand surface submerged in the conductor 
(because no E exists in the conductor) so all the electric flux must 
emerge through the right-hand surface. Applying Gauss's law to 

this case gives 

D. da = pa da 

where da is the area of one face of the pillbox and Di, is the dis-

placement density normal to the surface. Therefore, 

= p. and En = e 

The electric displacement density at the surface of a conductor 
is normal to the surface and equal in magnitude to the surface 

charge density. The electric intensity 
is also normal to the surface and is equal 

d to the surface charge density divided by 
o 

the dielectric constant. 
2.08 Divergence Theorem. The 

divergence theorem (also called Gauss's 
theorem) relates an integration through-
out a volume to an integration over the 

x surface surrounding the volume. 
Figure 2-7 shows a closed surface 

FIG. 2-7. Section of a volume S enclosing a volume V that contains 
charges (or a charge density) that pro-

duce an electric flux density D. 
By the definition of divergence, 

V. 

aD aD aD, 
div D = ax ay az 



§2.081 ELECTROSTATICS 45 

so that 

alp ap z 
divDdV = f f f ap dx dy dz (2-28) ax ay dz 

where 
dV = dx dy dz 

Consider now the elemental rectangular volume shown shaded, 
which has dimensions dy and dz in the y and z directions respectively. 
Let D., and D., respectively be the x component of the electric 
flux entering the left-hand side and leaving the right-hand side of 
the rectangular volume. The total flux emerging is the algebraic 
difference of these two. But 

D., — D., = f aD. 12 — dx 
x, 

f f dx dy dz = f f (D., — D.2) dy  dzax (2-29) 

Now dy dz is the x component of the surface element da, and so 
(29) is just the integration of the product of D. times the x com-
ponent of da over the whole surface. (Note that for the right face 
D. da. = D., dy dz, but for the left face D. da. = — D., dy dz. This 
is because the direction of da is along the outward normal and for 
the left face the x component of da has a direction opposite to that 
of D.,.) 

By definition of a scalar product 

D • da = D. da. D„ da„, da, 

where da1 indicates the x component of da, and so on. Then, 
making use of (29), eq. (28) may be written 

div D dV = D • da (2-30) 
jvol Ja 

This is the divergence theorem. 

Although derived here for the particular case of electric dis-

placement density D it is a quite general and very useful theorem 
of vector analysis. For any vector, it relates the integral over a 
closed surface of the normal component of the vector to the integral 
over the volume (enclosed by the surface) of the divergence of the 
vector. 
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Integral Definition of Divergence. The divergence theorem (30) 
provides a definition of divergence of a vector in the integral form 
which is easy to put into words. The expression on the right-hand 
side of (30) is the net outward electric flux through the closed surface 
S. The expression on the left represents the average divergence 
of D multiplied by the volume V that is enclosed by S. Thus the 
average divergence of a vector is the net outward flux of the vector 
through a closed surface S divided by the volume V enclosed. The 
limit of the average divergence as S is allowed to shrink to zero 
about a point is the divergence of the vector at that point; that is, 

56 D • da 
div D lim  8 

og--b0 V 

In words, the divergence of the vector D is the net outward flux of D 

per unit volume. 
Alternative Statement of Gauss's Law. Making use of Gauss's 

law which states 

96 D • da = p dV (2-31) 

and applying the divergence theorem (30), gives 

vol div D dV = fvol p dV 

This holds for any volume whatsoever. As the volume considered 
is reduced to an elemental volume, this becomes the point relation, 

div D = p (2-32) 

This is the alternative statement of Gauss's law. It states that 
at every point in a medium the divergence of electric displacement 
density is equal to the charge density. Recalling the physical 
interpretation of the term divergence, eq. (32) might be stated as 
follows: The net outward flux of electric displacement per unit 
volume is equal to the charge per unit volume. Equation (32) 
will often be found to be a more useful form for mathematical 
manipulation than the corresponding integral statement (31). 

2.09 Poisson's Equation and Laplace's Equation. Equation 
(32) is a relation between the electric displacement density and the 
charge density in a medium. If the medium is homogeneous and 
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isotropic so that e is constant and a scalar quantity, eq. (32) can 
be written as 

or 

div eE = e div E = p 

div E = 21 
E 

(2-33) 

Recall that E is related to the potential V by 

E = — grad V = —VV 

Substituting this into (33) 

div grad V = — e (2-34a) 
e 

or symbolically V. (V V) = — e (2-34b) 
E 

or V2V = — e (2-34c) 
e 

Equation (34) is known as Poisson's equation. In free space, that 
is in a region in which there are no charges (p = 0), it becomes 

vav = 0 (2-35) 

This special case for source-free regions is Laplace's equation. 
Laplace's Equation. Laplace's equation is a relation of prime 

importance in electromagnetic field theory. Expanded in rec-
tangular co-ordinates it becomes 

v2v = ax2 a2v , OW , az2 a2v 
= — -r — -r — 0 

ay2  

This is a second-order partial differential equation relating the rate 
of change of potential in the three component directions. In any 
charge-free region the potential distribution must be such that this 
relation is satisfied. An alternative form of (36) in terms of electric 
intensity is 

(2-36) 

div E = 0 (2-37) 

In this form the statement is that in a homogeneous charge-free 
region the number of lines of electric intensity emerging from a 
unit volume is zero, or (in such a region) lines of electric intensity 
are continuous. 

The Problem of Electrostatics. In a homogeneous charge-free 
region the potential distribution, whatever it may be, must be a 
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solution of the Laplace equation. The problem is to find a potential 
distribution that will satisfy (35) as well as the boundary conditions 
of the particular problem. When the charges are given the poten-
tial can be found directly from 

V = f e dV 
41r6 volr 

This is a simple problem and the solution is straightforward. On 
the other hand, if the potential distribution is given for a certain 
configuration of conductors, the charge distribution on the con-

ductors can be found from 

p. = D. = eE. 

In the general problem as it exists, however, neither the potential 
distribution nor the charge distribution is known. These are the 
quantities to be found. A certain configuration of conductors is 
specified and the voltages or potential differences between conduc-
tors are given (or the total charge on each conductor may be given). 
The charges on the conductors will then distribute themselves to 
make the conductors equipotential surfaces and at the same time 
produce a potential distribution between conductors which will 
satisfy Laplace's equation. 

Thus the problem is that of finding a solution to a second-order 
differential equation (Laplace's equation) that will fit the boundary 
conditions. The problem is one of integration and therefore 
straightforward methods of solution are not generally available. In 
fact, only in a relatively small number of cases, where symmetry 
or some other consideration makes it possible to specify the charge 
distribution, can an exact solution be found. Of course, an approxi-
mate solution can always be obtained, and the degree of approxima-
tion can usually be improved to any desired extent by a systematic 
method of successive approximations. Unfortunately, this often 
requires an excessive amount of labor. 
A similar situation exists in the more general electromagnetic 

field problem where the fields and charge distributions are varying 
in time. Although it is this more general problem that is of pri-
mary concern in electromagnetic wave theory, it is helpful 1-,o con-
sider some of the special methods and solutions that exist for the 
electrostatic case. It will be found that some of these special meth.. 



§2.091 ELECTROSTATICS 49 

ods can be extended to the general case. Moreover, a knowledge 
of the actual electrostatic solutions for certain simple configurations 
is required for later use. 

Solutions for Some Simple Cases. It is instructive first to obtain 
the solutions for the simplest possible cases in which, because of 
symmetry, the field is constant along two axes of the co-ordinate 
system and variations cocur in one direction only. 

EXAMPLE 5(a): In Rectangular Co-ordinates—Two Parallel Planes. Two 
parallel planes of infinite extent in the x and y directions and separated by 

FIG. 2-8. Two parallel planes. 

a distance d in the z direction have a potential difference applied between 
them (Fig. 2-8). It is required to find the potential distribution and electric 
intensity in the region between the planes. 

In rectangular co-ordinates Laplace's equation is 

82v 82v 82v v2v = 
2 8, 8y2 8,2 

From symmetry it is evident that there is no variation of V with x or 
but only with z. For this simple case Laplace's equation reduces to 

which has a solution 

a2V n  

17. = = U 

az2 

V = kiz Ics 

y, 
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where k1 and k2 are arbitrary constants. Substituting the boundary 

conditions 

gives 

so that 

V -= Vo at z 0, V =-- V1 at z -- d 
, Vi -- Vo 

k2=Vo and ri — 
d 

V1— Vo 
V — z Vo 

d 

The electric intensity is obtained from the relation 

E = — grad V 

av = — —k 
as 

Vi - 
d 

The electric intensity is constant 

in the region between the plates. 
It is directed along the z axis and 

toward the plate of lower potential. 

Y EXAMPLE 5(b): In Cylindrical 

Co-ordinates—Concentric Cylinders. 
In cylindrical co-ordinates Laplace's 

equation is 

vv a =— — 
P OP 

FIG. 2-9. Two concentric cylinders. 

( al 1 a2v 
P --ap p 2 

a2v + —2 = 0 (2-38) 
az 

For the space between two very long concentric cylinders (Fig. 2-9), in 
which case there will be no variations with respect to either 4) or z, but 

only in the p direction, eq. (38) becomes 

p 0 

P aP aP 

1 a ( av 

A trivial solution to this equation is V equals a constant. A useful solution 

that fits the boundary condition is 

V = ki In p k2 

(2-39) 
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The electric intensity in the region between the cylinders will be 

E = — grad v 
av = — Up 

-•-• u p  

EXAMPLE 5(c): In Spherical Co-ordinates—Concentric Spheres. In 
spherical co-ordinates with no variations in O or ct. directions, Laplace's 
equation is 

51 

vw = _a (.2 av) 0 
7.2 Or Or 

ki 
A solution is V = —r k2 

The electric intensity between the spheres is 

E = — grad V = — V u, = k1 u, 
r2 

In the three examples just solved, the simplicity of the boundary 
conditions (due to symmetry) made it possible to guess the solution 
and write it down from inspection. Only in rare cases is it possible 
to do this. However, there is an important group of problems that 
can be solved almost by inspection because their boundary condi-
tions are similar to those of problems which have already been 
solved. These make use of the principle of the electrical image. 

Solution by Means of the Electrical Image. As a simple example 
of this method of solution consider the problem of a line charge g' 
coulombs per meter parallel to and at a distance d/2 from a perfectly 
conducting plane of infinite extent. It is required to determine 
the resulting potential distribution and the electric field. The 
boundary condition in this case is that the conducting plane must 
be an equipotential surface. Also if the potential at infinity is 
considered to be zero, the potential of the conducting plane must be 
zero since it extends to infinity. 

The lines of electric flux, which start on the positive line charge, 
must terminate on negative charges on the plate and at infinity. 
These negative charges on the conducting surface are required to 
distribute themselves so that there is no tangential component of 
electric field along the surface of the conductor; i.e., so that the 
conducting plane is an equipotential surface (Fig. 2-10). 
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If this distribution can be found, the potential at any point can 

fv then be determined from the relation V = P dV. As it 
ol 47er 

stands, this is not a simple problem. However now recall the 
problem of two equal and opposite line charges for which the solu-
tion has already been obtained (page 40). It will be remembered 
that the plane of symmetry between the wires is an equipotential 
plane of zero potential. Hence a conducting surface could be 

-a 

(0) (b) 

Fm. 2-10. (a) Line charge near a conducting surface. (b) 
Charges on the conducting surface have been replaced by an 
appropriately located "image" charge. 

placed at the location of this equipotential plane without affecting 
the potential distribution in any manner whatsoever. If this were 
done, the negative line charge then has no effect on the field on the 
opposite side of the conductor and, so as far as that field is con-
cerned, can be removed. The problem is now just the one for which 
a solution is required. The solution can be set down directly. 
The field due to a line charge at a distance d/2 from an infinite 
conducting plane is exactly the same as the field (on one side of the 
zero potential plane) produced by that line charge and an equal and 
opposite line charge located parallel to it and a distance d away. 
This second (hypothetical) line charge is called the electrical image 
of the other, from the analogy with optical images. 

Thus in any problem involving charges and conductors, if an 
additional distribution of charges can be found which will make 
the surfaces to be occupied by the conductors equipotential surfaces 
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having the correct potential, the conductors can be removed and 
the field in the volume, originally outside the conductors, will not 
be changed. Then this field can be computed by methods already 
developed. The problem is now simply that of finding the poten-
tial and electric intensity for a distribution of charges without 
conductors. 

As a second example of this method let it be required to find the 
potential distribution and electric field about a pair of parallel 
cylindrical conductors which have applied to them a specified 
voltage or potential difference. Again referring to the line charges 
on page 40, the equipotential surfaces about these line charges 
are cylinders. If the conductors are located in this field to coincide 
with an appropriate pair of equipotentials, their introduction will 
not change the field configuration outside the volume occupied by 
the conductors. Thus the potential distribution outside the con-
ductors is just the same as it was before the conductors were intro-
duced and is that produced by a pair of line charges of proper 
strength located along appropriate axes. The solution to this 
problem has already been obtained. 

It must be observed, that this process of computing the effects 
of a conductor is an inverse one, i.e., a solution must be found by 
experience, and there is no straightforward method of finding an 
analytical solution in every case. This is analogous to the problem 
of differentiation and integration. In differentiation a straight-
forward method is available for finding derivatives, but the deter-
mination of integrals depends on the experience of the operator, or 
the recorded experience of those who have gone before him. In the 
case of electric fields, an analytical expression for the charge distri-
bution that can replace a given conductor is not always known, just 
as the integral of every function is not known. On the other hand, 
with a given configuration, there are approximate methods available 
for determining the effect of a conductor in a field just as there are 
approximate methods for the integration of any curve that can be 
graphed. 

2.10 Capacitance. The capacitance between two conductors is 
defined by the relation 

c.9V. 
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where Vis the voltage or potential difference between the conductors 
due to equal and opposite charges on them of magnitude Q. When 
the capacitance of a single conductor is referred to, it is implied that 
the other conductor is a spherical shell of infinite radius. 

EXAMPLE 6: Parallel Plate Condenser. Consider the parallel plate con-
denser having plates of area A and separation d (Fig. 2-11). (d is assumed 

+0 

—0 1111111111E11 ITIT1 IT  
FIG. 2-11. Parallel plate condenser. 

to be very small compared with the length and width of the plates so that the 
effect of flux fringing may be neglected.) If the plates have a charge of 

magnitude Q, the surface charge density will be 

FIG. 2-12. Concentric 
conductors. 

The capacitance is 

P8 = 

The electric intensity E between, the plates is 
uniform and of magnitude 

E = 
e 

where e is the dielectric constant of the medium 

between the plates. 
The voltage between the plates will be 

V = 2E • de 

= Ed 

Q Q EA 

V.Ed d 
farads 

Because of their usefulness in later work the capacitances for two other 

simple cases will be found. 

ExAmPLE 7. Concentric Conductors. It is required to determine the 
capacitance per unit length between two infinitely long concentric con-
ducting cylinders (Fig. 2-12). The outside radius of the inner conductor is 
a and the inside radius of the outer conductor is b. 
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Assume a charge distribution q' coulombs per meter on the inner con-
ductor and an equal and opposite charge on the outer conductor. Because 
of symmetry the lines of electric flux will be radial and the displacement 
through any cylindrical shell will be q' coulombs per unit length. The 
magnitude of the displacement density will be 

D = — 
27p 

and the magnitude of the electric intensity will be 

E = 
27p€ 

The voltage between the conductors is 

P bPb E • dp — dp 
a Ja 27rpe 

= —q' b ln pi = —q' ln -b 
2re a 27r€ a 

The capacitance per meter will be 

C
q' 27re  

- - 
V ln b/a 

For the air dielectric for which e - 
1 

367 X 109 

C 
10-9  

= 18 ln b/a 

f/m (2-40) 

f/m (2-41) 

EXAMPLE 8: Parallel Cylindrical Conductors. The method for deter-
mining the electric field for this case has already been considered. A pair 

LINE CHARGE 

g o 

Fia. 2-13. Parallel cylindrical conductors. 

of line charges, appropriately located, would make the surfaces occupied 
by the conductors equipotentials (Fig. 2-13). If the radius of the cylinders 
is a and the separation between their axes is b, then, in terms of the notation 
used in connection with Fig. 2-4, 
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1 b d-ie-2 -I-  
k2 1 

kd  
a = 

— 1 

b k2 + 1  

a k 

ak2 — bk -F a = 

b -Vb2 — 4a2 
k= 

2a 
rb 

But k r 

rb b N/b2 — 4a2 
— 

r. 2a 

The potential at the surface of one conductor is given by equation (27) 

o' b N/b2 — 4a2 
V1 = in 

27r€ 2a 

where g' is the charge per unit length. 
When the separation is large compared with the radius, that is when 

b » a, this becomes 
g' b 

V1 = -- in - 
27€ a 

The potential at the other conductor will be equal and opposite. Hence 

g' b •Vb2 — 4a2 
V = V1 — V2 = In ire 2a 

The capacitance per unit length is 

C = 
b+•Vb2 — 4a2 

ln 
2a 

Ire 

If b » a the capacitance is given very closely by 

f/m 

ire  C f/m (2-42) 
ln bla 

For an air dielectric between the conductors 

10-9  
C 36 ln bia f/m (2-43) 

EXAMPLE 9: Capacitance of a (Finite-length) Wire or Cylindrical Rod. 
In the first two of the above three examples the charge distribution was 
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uniform over the conductor surfaces and so the potential distribution 
could be determined directly and exactly. In the third example the charge 
distribution was not known but the potential was obtained by showing 
that the problem was similar to that of a pair of line charges for which 
the exact solution was known. In practice there are very few problems 
that can be solved so simply. In most actual problems the charge dis-
tribution is unknown and there are no methods available for obtaining an 
exact solution. It is then necessary to set about finding an approximate 
solution. 

In the present problem it is required to determine the capacitance of a 
straight horizontal wire or conducting rod elevated at a height h above 

/ / / J/ / / 1  / / / / / / / 

Fia. 2-14. An elevated wire or rod. 

the earth. The rod has a length L = 1 meter and a radius a = 0.5 cm, 
and is elevated at a height h = 10 meters (Fig. 2-14). 

For a first attack on the problem it will be assumed that the height 
above the earth is very great so that the problem is that of determining 
the capacitance of a cylindrical rod remote from the earth. The boundery 
condition is that the surface of the rod be an equipotential surface. Obvi-
ously the charge distribution cannot be uniform along the length of the 
rod because such a distribution produces a potential that varies along the 
length of the wire. Moreover there is apparently no straightforward 
method available for finding the correct charge distribution, which will 
make the surface an equipotential. This is a typical practical problem. 

This particular problem was solved many years ago by G. W. O. Howe, 
using a method of attack that is now used very frequently in electrostatic 
and electromagnetic problems. It is first assumed that the charge dis-
tribution is uniform (even though such an assumption is known to be 
incorrect). The potential along the wire due to this uniform charge distri-
bution is calculated. It is then assumed that the true potential, which 
actually exists along the surface of the wire, is equal to the average value of 
this calculated potential. Knowing the potential for a given total charge 
the capacitance of the wire is obtained from C 
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Solution: Figure 2-15 shows the rod, which is assumed to have a uniform 
charge distribution on its surface of amount q' coulombs per meter of 
length. The surface charge density is the q727ra coulombs per square 
meter. The charge on each element of area contributes to the potential 
at a point p on the surface and the total potential at p can be obtained by 
integrating these contributions over the surface of the wire. It is possible 
to simplify this part of the problem in the following manner. It is known 
that the equipotential surfaces about a line charge of infinite length are 
cylinders whose axes coincide with the line charge. If a conducting 

t i   

dx 

....  

FIG. 2-15. Surface charge is replaced by a line charge along the 
axis for the purpose of computing potential. 

cylinder is made to coincide with one of these equipotential surfaces and 
is given a charge per unit length equal to that of the line charge, the electric 
field in the region about the cylinder will be exactly the same as that pro-
duced originally by the line charge. 

Thus as far as the potential outside of it (and on its surface) is con-
cerned a long charged cylinder may be replaced by a line charge situated 
along its axis and having the same charge per unit length as the cylinder. 
Applying this principle in Fig. 2-15 the contribution to the potential at a 
point x' on the surface due to the charge on an element of length Ax located 
at point x along the axis will be 

q'  
A V = (2-44) 

47€ (x' — x)2 a2 

where q' is the charge per unit length. The total potential at z' due to 
the assumed charge distribution along the axis is 

TT = 
z 47rE 

dx  
fo V(x, _ x)2 az 

= 4gir'E sinh- a 1 x 
10 

  [ 47r sinh-1 (' —a 1.) sinh-' (1] 
E a 

(2-45) 
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From eq. (45) the potential at the middle of the rod will be 

L/2 = - sinh"' - sinh-' 
47re 2a 2a 

2g' . _ 10.6 , 
= 47-re . 1 iuu 

47re 

and the potential at each end is 

= = 
47re 

The potential can be calculated at other points along the length to obtain 
the resulting distribution, shown by Fig. 2-16. 

5.99g' 

FIG. 2-10. Potential distribution along the rod calculated from 
assumed uniform-charge distribution. 

The cverage potential along the rod may be found by integrating 
eq. (45) (with respect to x') over the length of the rod and dividing by L. 

, fL [ 
q (x' - L) x' 

V.v. = - sinh-1 ± sinh- (-a)]dx' 
47reL o a 

q'  
= (x' L) sinh-1 (2.' 't .1) + -V(x' - L)2 ± a2 47reL 

sinh- a - N/X2 a2 

= — - - - 1 -F - 
27re L 

q' . (L) a2 

c L2 

substituting numerical values 

V= „ =  q' 27r€ [0.005 -I- sinh-' 200 - (1 0.00001)] 

5.00g' 

27re 

o 
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The capacitance of the rod (remote from the earth) will be (approximately) 

q'L 
= = 11.11 pd 

The effect of the proximity of the earth can be accounted for by means of 
the image principle. A negative charge —q'L located at the position of 
the image will decrease the average potential of the rod slightly. With 
negligible error this negative charge can be considered as being located 
at a point at the center of the image a distance 2h from the rod and the 
potential at the rod due to this negative charge will be 

—q'L  
Vimage = 

4rE X 2h 
0.05q'L 

47re 

The average potential of the rod including the contribution from the 
image charge is 

V,„„.= 441r -e (10.0 — 0.05) — 9.95e 
47re 

The capacitance of the rod including the effect of the presence of the earth 
will be 

4re 
C = 71§-à- = 11.16 i.ntf 

The proximity of the earth has increased the capacitance by about 34 of 
1 per cent. It will be observed that in this case a 50 per cent error in 
computing the contribution from the image would affect the final answer 
a negligible amount. Therefore there is usually no justification for seeking 
a more accurate solution for this part of the problem. 

The method outlined above gives an approximate answer for the capaci-
tance of the rod. The degree of approximation can be improved by assum-
ing a second and different charge distribution, which will produce a more 
nearly uniform potential distribution. (This is easy to do once the 
potential distribution due to a uniform charge distribution has been found.) 
It will be found (for this case) that the answers obtained with more nearly 
correct charge distributions do not differ appreciably from that obtained 
above. The correct value for capacitance will always be a little larger 
than that calculated from any assumed charge distribution. This is 
because the actual charge distribution is always such as to make the 
potential energy of the system, and therefore the potential of the rod, a 
minimum. 

2.11 Energy Stored in an Electric Field. When a condenser is 
charged so that there exists a voltage V between its plates, there is 
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a storage of energy, which can be converted into heat by discharging 
the condenser through a resistance. The amount of energy stored 
can be found by calculating the work done in charging the con-
denser. Since potential was defined in terms of work per unit 
charge, the work done in moving a small charge dq against a poten-
tial difference V is V dq. But the voltage V can be expressed in 
terms of the capacity C and the charge q by 

v = 

Therefore the work done in increasing the charge on a condenser by 
an amount dq is 

—q dq 

The total work done in charging a condenser to Q coulombs is 

Q  Total work f „ — 1 Q2 
o C 

Therefore the energy stored by a charged condenser is 

1Q2 1 1 
Stored energy = = VQ = V2C 

This energy is said to be " associated with the electric charge on 
the conductors," or alternatively, " associated with the electric 
field in the dielectric between the conductors."* 

It is convenient in electromagnetic wave theory, where energy 
is propagated through space, to use the second of these concepts 
and associate the energy with the electric field. An expression 
giving the stored-energy density in terms of the electric field is 
readily obtained in the case of the parallel-plate condenser where 
the electric field between the plates is uniform, with a value 

* These statements represent two different points of view or two interpreta-
tions of a single set of experimental facts. The question of just where the 
energy " resides" in this case is similar to the question of where the potential 
energy is stored when a weight has been raised. The question seems to be one 
of philosophy or interpretation and as such is unanswerable on the basis of any 
physical measurements that can be made by the engineer. 
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V is the voltage between the plates and d is their separation. The 
expression for stored energy can then be written 

V2C E2d2€21 EE2 
Stored energy = — 2 «.= 2d (Ad) 

Since Ad is the volume between the plates the quantity €E2/2 has 
the dimensions of energy per unit volume and is said to be the 
energy density of the electric field. Although derived here for the 
special case of a uniform electric field, it is easily shown for 
the general case that the quantity €E2/2, when integrated over the 
whole volume in which the electric field exists, always gives the 
correct value for the total stared (electric) energy. 

2.12 Conditions at a Boundary between Dielectrics. Consider 
conditions at the interface between two dielectrics in an electric 

E 

Et2 

(b) 

Fro. 2-17. Boundary surface between two dielectric media. 

field. The dielectric constants of the media are ei and ei respec-
tively, and it is assumed that there are no free charges on the 

boundary surface. 
Apply Gauss's law to the shallow pillbox volume that encloses 

a portion of the boundary (Fig. 2-17). Since there are no charges 
within the volume the net outward displacement through the sur-
face of the box is zero. As the depth of the box is allowed to 
approach zero, always keeping the boundary surface between its 

two flat faces, the displacement through the curved-eke surface 
becomes negligible. Gauss's law then requires that the displace-
ment through the upper face be equal to the displacement through 
the lower face. Because the area of the faces are equal, the normal 
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components of the displacement densities must be equal, that is, 

D., = 

Thus there are the same number of lines of displacement flux 
entering one face as are leaving the other face and the lines of 
electric displacement are continuous across a boundary surface. 

Whereas the normal component of D is the same on both sides 
of a boundary, it is easily shown that the tangential component of 
the electric intensity E must be continuous across the boundary. 
Referring to Fig. 2-17b it is supposed that there are electric intensi-
ties E1 and E2 respectively in medium (1) and medium (2). In the 
electrostatic field the voltage around any closed path must be zero, 
that is, 

Vekeed vath E • ds 

Apply this to the rectangular path ABCD, in which AD is just 
inside medium (1) and BC just inside medium (2). The length of 
the rectangle is a, and its width is b. 

E • da = E,,a — Etia (2-46) 

where Eh and Eh are the average tangential components of E along 
paths AD and BC and E„, and E., are the average normal com-
ponents of E along the paths BA and CD. As the sides AD and 
BC are brought closer together, always keeping the boundary 
between them, the lengths AB and CD approach zero and the first 
and third terms in eq. (46) become zero (assuming that the electric 
field never becomes infinite). Therefore 

El,a ---- 0 and Eh -= El, 

The tangential component of E is continuous at the boundary. 
The two conditions (a) Normal D is continuous at the boundary, 

and (b) Tangential E is continuous at the boundary are used to 
solve problems involving dielectrics. 

EXAMPLE 10: Refraction. Consider the problem of Fig. 2-18 where an 
infinite slab of dielectric whose dielectric constant is e 2, is immersed in a 
medium of ei. Let 01 be the angle that the normal to the boundary makes 
with the lines of electric force in medium (1). Then the lines of E and D 
will be refracted in passing through the slab. 
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Let D1 and D2 be the electric displacement density outside and inside 
the slab respectively, and El and Ez be the electric intensity outside and 
inside the slab. Then 

= ElE1 

D2 = E2E2 

By the two fundamental principles stated above 

D1 cos 02 = D2 cos 02 

E1 sin 01 = E2 sin 02 

D1 ui n D2 n — cocot = u2 
El .D2 

Therefore €1 cot 01 = €2 cot 02 
tan 01 el 

tan 02 — E2 

Equation (47) gives the relation between the tangents of the angle of 
incidence 01, and the angle of refraction 02 in terms of the dielectric con-
stants of the media involved. 

Fm. 2-18. Refraction of an electric field. 

(2-47) 

2.13 Cylindrical and Spherical Harmonics. It was pointed out 
in earlier sections of this chapter that, except for a few special cases, 
the solution of Laplace's equation, subject to the appropriate 
boundary conditions, was in general a quite difficult problem. 
There is a group of problems having a certain symmetry that may 
be solved approximately by use of cylindrical or spherical harmonics. 
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Because these functions are also required for later use in electro-
magnetic problems, they will be considered briefly here. 

For those problems, which can be set up in cylindrical co-ordi-
nates, and for which there is no variation of the field in the z direc-
tion, Laplace's eq. (38) may be written as 

a 
a p P ap ' f? = n 
(  

If a solution of the form V = pnQ,, 

is assumed (where Q. is a function of 4) alone), then substitution of 
this solution back into (48) shows that Q. must satisfy the following 
differential equation. 

a20. 
+ n2Q. = 

(2-48) 

The solution of this equation is well known and has the form 

Qn = An cos nçb + B. sin no 
where A. and B. are arbitrary constants. It will be noted that 
when —n is substituted for +n, the same differential equation for Q 
results, so that Q-n can be put equal to Qn. Then, if p.Q,, is a solu-
tion of (48), r-nQ, = Q,,/r' is also a solution. By inspection it is 
seen that V = ln p is a solution of (48). Now if a function is a 
solution of Laplace's equation, each of its partial derivatives with 
respect to any of the rectangular co-ordinates x, y, or z, (but not in 
general with respect to cylindrical or spherical co-ordinates) is also 
a solution. That this is so, may be verified by differentiating 
Laplace's equation partially in rectangular co-ordinates. Differ-
entiating the solution V = in p with respect to x yields (cos (t))/p 
as another solution, while differentiation with respect to y yields 
(sin p. Successive differentiation leads to the following set of 
possible solutions of (48): 

cos 4.. sin 4. cos 20. sin 24). cos 34. sin 30. 
In p; — - 1 

p2 P2 P3 P 

Replacing p-n by pn gives a second set, viz.: 

p cos 0; p sin 4); p2 cos 24; p2 sin 24); p3 cos 34); pla sin 34. 

These solutions of Laplace's equation (48) are known as circular 
harmonics or cylindrical harmonics. These harmonic functions 
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may be used to solve problems in which there is no variation of the 

field in the z direction. 

EXAMPLE 11: Conducting Cylinder in on Electric Field. A long con-
ducting cylinder is placed in, and perpendicular to, a uniform electric 
field E. with the axis of the cylinder coincident with the z axis (Fig. 2-19). 
Determine the field distribution in the region about the cylinder. 

Although the field in the neighborhood of the cylinder will be disturbed 
by its presence, the distant field will be unancted and will be just L. 
Therefore, if the potential of the cylinder is taken as zero potential, the 
potential at a great distance p will be —E.p cos Also the surface of 

Y 

Fm. 2-19. Conducting cylinder in a uniform field. 

the cylinder, p = a, is an equipotential surface, which has arbitrarily been 
set at zero potential. The problem can be solved by finding that com-
bination of the given cylindrical harmonic solutions that will also satisfy 
these two boundary conditions. The answer in this case happens to be 
quite simple, for it is evident that the following combination of cylindrical 
harmonics, selected from those listed in the table, can be made to satisfy 
the boundary conditions: 

V = Ap cos ci) B cos 4) 

For p very large 

Therefore 

For p = a, 

(I) °°) 

V = Ap cos 4) = — E.p cos 4, 

A = —E. 

V = Aa cos B cos cf, = 0 
a 
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Therefore B = --.Aa2 = a2E. 

Then V =  —p L cos 4) 

The components of electric field intensity in the region outside the cylinder 
are given by 

a v 
Ep = 

av C 2 
Eo = — -p •71) = — E. sin (1) (2-49) 

Spherical Harmonics. For problems that can be set up in 
spherical co-ordinates and for which there is no variation in the 
4) direction, Laplace's equation is 

a . v2v = 1 (r , 2 ± r2 o ae ( sm -- (2-50) r2 or ar sin  

Letting u = cos 0, so that du = — sin O do, eq. (50) becomes 

(2-51) \ ar au au 

Again assuming that a solution may be found that has the form 

V = rnP. 

(where P„ is a function of u = cos 0 alone), substitution into (51) 
shows that P„ must satisfy the following differential equation: 

d [(I _ 142) d72_41, 
n(n 1)P. = (2-52) 

Equation (52) is known as Legendre's equation. This is an impor-
tant equation in field theory for it is encountered whenever solutions 
(involving variations with r and 0) are sought to Laplace's equation 
or the wave equation in spherical co-ordinates. Solutions to eq. 
(52) may be found by assuming a power series solution, which is 
inserted back into the differential equation. Equating the coeffi-

cients of corresponding powers, relations among these coefficients 
are found. The result is the following set of solutions for (52) 
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PO = 1 

= u = cos 0 
P2 = 34(3u2 - 1) = cos' 0 - 1) = pi(3 cos 20 + 1) (2-53) 

133 = X(51.43 - 3u) = cos' 0 - 3 cos 0) 
= (5 cos 30 -I- 3 cos 0) 

and so on. 
The function I' n is called a Legendre function of the order n. Sub-

stitution of -(n ± 1) for n in (52) results in the same equation, 

showing that P-(n+i) = P.• 
Solutions to Laplace's equation (50) can now be found by trial, 

using these Legendre functions. Alternatively, the solutions may 
be found as in the cylindrical harmonic case by a process of partial 

differentiation. By trial it is found that 

1 
V = -r 

is a solution of (50). Then differentiating partially with respect to 
z the following solutions are obtained: 

1 

1 -:. cos 0 r cos 0 
7.3 
1 -74 (3 cos' 0 - 1) r2(3 cos' O - 1) 

-1 (5 cos, O - 3 cos 0) r,(5 cos' O - 3 cos 0) 
r4 

The second set has been obtained from the first set by replacing 
r-(n+ 1) by rn. The solutions to Laplace's equation in spherical 
co-ordinates are called spherical harmonics. The particular sets 
(54), obtained for no variation with cl) are known more specifically 
as zonal harmonics because the potential is constant in each zone of 

latitude. 
Zonal harmonics can be used to obtain solutions to problems in 

spherical co-ordinates for which there is no variation in the ct, 
direction. A simple example would be that of a conducting sphere 
placed in a uniform field which is parallel to the z axis. The solu-
tion to this problem follows in a manner similar to that of the con-
ducting cylinder and is left as an exercise for the student. 

1 

(2-54) 



§2.131 ELECTROSTATICS 69 

It is important to realize that only certain very special problems 
yield to an exact solution such as was obtained in the two examples 
above. "Tñ general, an infinite number of harmonic solutions would 
be required to satisfy the boundary conditions. However, just as 
any periodic function (satisfying certain conditions) may be approx-
imated by a finite number of terms of a Fourier series, so any 
problem having a geometry suitable for the application of these 
harmonic functions may be solved approximately by an appropri-
ate combination of a finite number of them. 

The methods of this last section are also applicable in the solu-
tion of certain electromagnetic problems. Examples of such prob-
lems will be encountered in chaps. 13 and 15. 

PROBLEMS 

1. If a flat conducting surface could have placed on it a surface charge 
density p, = 1 coulomb per square meter, what would be the value of the 
electric intensity E at its surface? 

2. A point charge q is located a distance h above an infinite conducting 
plane. Using the method of images find the displacement density normal 
to the plane and hence show that the surface charge density on the plane is 

qh 
p. = 2irr3 

where r is the distance from the charge q to the point on the plane. Inte-
grate this expression over the plane to show that the total charge on its 
surface is —q. 

3. Show that the capacitance of an isolated sphere of radius R is 

47rEoR farads 

4. Verify that the capacitance between two spheres, whose separation 
d is very much larger than their radii R, is given approximately by 

47reoRd  
C   2ireoR 

2(d — R) 

Hence show that the capacitance of a sphere above an infinite ground 
plane is independent of the height h above the plane when h » R. 

5. In the problem of example 3, section 2.05, derive the expression 
for E at any point in the x-y plane directly, that is, by vector addition of 
the electric fields produced by the two charges. 

6. Verify that the expression for the potential due to an electric dipole 
satisfies the Laplace equation. 
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7. Verify that the expression obtained for the potential due to two 
parallel oppositely charged wires, viz., 

INFINITESIMAL 

rh 
V = — In — In 

27rE r„ 2rE 

is a solution of the Laplace equation. 

8. A very long cylindrical conductor of radius a 
has a charge q coulombs per meter distributed along its 
length. Find the electric intensity E in air normal to 
the surface of the conductor (a) by applying Gauss's 
law; (b) by finding the potential V and deriving the 
electric intensity from E = — grad V. 

9. (a) Verify that V ln cot 0/2 is a solution of 
Fla. 2-20 V2V = 0. (b) Hence show that the capacitance per 

unit length between two infinitely long coaxial cones 
(Fig. 2-20), placed tip to tip with an infinitesimal gap between them, is 

Ire Ire 
C   ee   

ln cot 01/2 ln 2/01 

for small angles of O. 

10. (a) Find the electric field distribution between the hinged plates 
(Fig. 2-21a) and the charge distribution on the plates in a region not too 
close to the edges (that is, neglect fringing). The plates are insulated at 
the hinge. 

IN 
HINGE 

(a) 

INSULATING 
HINGE 

FIG. 2-21 

(b) 
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(b) If the plates are 1 meter wide and very long (Fig. 2-21b), estimate 
roughly the capacitance between them per meter length when O = 10 
degrees; when O = 180 degrees. The insulating hinge extends from r = 
to r = 1 cm. 

1. The general definition for the voltage between two points in an 
electromagnetic field is 

Ve, = ibE•ds 
a 

By taking the point b to infinity, show that in an electrostatic field due to a 
charge g the voltage at a (with kpect to the voltage at infinity) is tilt, 
same as the potentitl at a as de-nned on page 34. That is, show that 

= 47eR 

where R is the distance of a from the charge g. 

12. By the methods of sec. 2.13 derive a set of solutions to Laplace's 
equation (a) in cylindrical co-ordinates, starting with 

V = 

(b) in spherical co-ordinates starting with 

0 
V = k ln tan § 

BIBLIOGRAPHY 
Page, L., and N. I. Adams, Jr., Principles of Electricity, D. Van Nostrand 

Co., New York, 1931. 

Skilling, H. H., Fundamentals of Electric Waves, John Wiley and Sons, 
New York, 1948. 

Jeans, J. H., The Mathematical Theory of Electricity and Magnetism, Cam-
bridge University Press, London, 1946. 

Smythe, W. R., St,:tic and Dynamic Electricity, McGraw-Hill Book Co., 
Inc., New York, 19C9. 

Pohl, R. W., Physical Principles of Electricity and Magnetism, Blackie and 
Son, Limited, London, 1930. 

Howe, G. W. O., " On the Capacity of Radio-Telegraphic Antennae," The 
Electrician, p. 829, Aug. 28, 1914; also LXXV, p. 870. 



CHAPTER 3 

THE STEADY MAGNETIC FIELD 

Electric charges at rest produce an electric field—the electro, 
static field. Electric charges in motion, that is, electric currents, 
produce a magnetic field. This is evidenced by the fact that in the 
region about a wire carrying a current, each end of a magnetic 
compass needle experiences a force dependent upon the magnitude 
of the current. There is said to be a magnetic field about the wire, 
and the direction of the magnetic field is taken to be that in which 
the north-seeking pole of the compass needle is urged. The 
intensity H of the magnetic field was originally defined in a manner 
similar to that for the electric intensity E. A unit magnetic pole 
was first defined in terms of the force between two similar poles, 
and then the magnetic intensity was defined in terms of the force 
per unit pole. In electromagnetic wave theory, magnetic fields 
due to electric currents are of chief concern and the effects of 
permanent magnets are of little importance. Therefore the above 
approach will be discarded for one that leads more directly to a 
solution of the type of problems encountered in electromagnetic 
engineering. 

3.01 Theories of the Magnetic Field. It is possible to develop a 
quantitative theory of the magnetic field from any of several differ-
ent starting points. Rowland's experiments showed that moving 
charges produce magnetic effects. Therefore a theory based upon 
the magnetic forces between individual moving charges would 
be logical. In this theory permanent-magnet effects are ascribed 
to the motion of external electrons about the atomic nuclei. This 
theory is used in modern physics, and can be developed to answer 
most of the questions that arise in connection with magnetism. 
Some such fundamental approach is required whenever it is neces-
sary to deal with individual charges, but in most engineering prob-

72 
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lems where only macroscopic effects are considered such a procedure 
involves an unnecessary complexity. The motion of a single elec-
tron in a wire is an erratic and highly unpredictable affair, subject 
to forces that vary greatly in the small length of interatomic dis-
tances. Yet, the intelligent sophomore experiences little difficulty 
in predicting with fair accuracy the statistical average motion of 
millions of electrons by a simple application of Ohm's law. For 
most engineering problems it will be the magnetic effect of currents 
rather than the motion of individual charges that will be of impor-
tance, and it would seem reasonable to use the forces between 
currents as a starting point. Ampere's experiments on the force 
between current-carrying conductors form a logical starting point 
for this development and lead to quite satisfactory engineering 
definitions, especially when the end result desired is in terms of 
mechanical forces. In electromagnetic wave theory, however, 
primary interest is in the relations between electric and magnetic 
fields, and a different starting point proves to be convenient. This 
starting point is Faraday's induction law, which relates the mag-
netic flux through a closed path to the voltage induced around the 
path. This relation, which defines magnetic flux in terms of a 
measurable electric voltage, is the starting point that will be used in 
the present discussion of magnetic fields. 

Still another attack that is often used in electromagnetic theory 
is to postulate a vector potential due to the currents, and then 
obtain a magnetic field in terms of this potential. This vector-
potential method has the marked advantage that it can be readily 
extended to the general case where the currents vary with time— 
the electromagnetic field—and in this latter case it will also yield 
directly the electric field produced by changing currents. In gen-
eral, use of the vector-potential method simplifies the mathematical 
analyses and facilitates the solution of electromagnetic problems. 
Therefore it will be developed and used. However, instead of 
starting with a postulated potential and deducing from it the electric 
and magnetic fields, the reverse procedure will be used. The elec-
tric and magnetic vectors will be defined in terms of relations 
derived from experiments, often performed under restricted con-
ditions. These definitions will then be generalized for use in the 
electromagnetic field, and in the process a potential will be found 
such that the space and time derivatives of this potential will give 
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the magnetic and electric fields. The generalizations may be con-
sidered valid as long as conclusions derived from them agree with 
subsequent experiment. 

3.02 Magnetic Flux cb. 

In the experimental setup indicated in Fig. 3-1, a ballistic 
galvanometer is connected to a loop placed near a long straight 
wire, carrying a current I. Probing with a magnetic compass 

needle shows that there is a mag-
netic field in the region about the 
wire. At the position of the loop 
shown, the direction of the field is 
out of the plane of the paper for an 
upward flow of the current I. If 
now the current I is reduced to zero, 
the galvanometer is deflected, the 
amount of the deflection being in-
dependent of the rate at which the 
current is reduced to zero, so long 
as the time required is short com-
pared with the period of the galva-
nometer. The current /, through 
the galvanometer flows as a result 
of a voltage V "induced" in the 
loop and is given by 

V 
1g = — R 

where R is the total resistance in the galvanometer circuit (Ii is a 
very large resistance). The galvanometer deflection is a measure 
of the charge Q or the time integral of the current through it, so that 

FIG. 3-1. Measurement of mag-
netic flux. 

Q o dt = f t V dt 
1? o 

is an experimentally determinable quantity. Magnetic flux e 
through the loop is then defined as the time integral of voltage 

induced in the loop throughout the interval during which the mag-
netic field is being established; or having been established, as the 
time integral of voltage throughout the interval in which the field 
is being reduced to zero. (These quantities are equal but of oppo-
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site sign.) That is 

= ± fot v dt (3-1) 

where the time interval 0 to t is that required to establish the field 
or reduce it to zero. Dilerentiatin3 with respect to time gives 

TI = — — 
at (3-2) 

which is Faraday's induction law. Consistent with a right-hand 
co-ordinate system, the negative sign has been used to indicate 
that when the flux is increasing in the positive direction (out of the 
paper through the loop in Fig. 3-1), the induced voltage occurs in a 
clockwise direction. It is evident from eq. ( 1) or (2) that the unit 
of magnetic flux is the volt-second; this unit has been named the 
weber. 

3.03 Magnetic-flux Density B. The magnetic flux per unit 
area through a loop of small area is called the magnetic-flux density B 
at the location of the loop. Because the flux through the loop 
depends upon the orientation of the loop as well as upon its area, 
magnetic-flux density is a vector quantity. The direction of B is 
taken as the normal to the plane of the loop when oriented to 
enclose manimum flux. The positive sense of B is the direction 
of the magnetic field at the point in question. The unit of magnetic-
flux density is the weber per square meter or the volt-second per square 
meter. The magnetic flux through any surface is the surface integral 
of the normal component of D, that is 

= f B. da = f B • da 

3.04 Magnetic Intensity H and Magnetomotive Force F. Using 
a small probe loop and galvanometer as in Fig. 3-1, it is possible 
to determine B at all points in a region about a long current-carrying 
wire. Experiment shows that for a homogeneous medium, B is 
related to the current I through 

B cc PI (3-3) 

where r is the distance from the wire and is a constant that 
depends upon the medium. The constant i, called the permeability 
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of the medium, may be written as 

A = gnu. 

where II, is the absolute permeability of a vacuum, and /.4. is the 
relative permeability (relative to a vacuum). iht, is the basic defined 
electrical unit, which has been assigned the value 

µ. = 4ir X 10--7 henry/m 

in the rationalized MKS system of units. Using this value of µ., 
and probing the field about the wire in a vacuum for which µ,. = 1 
(or in air for which '4. ,---/- 1), the proportionality factor in (3) is 
found to be 1/2r, so that the relation becomes 

B = 21. - = p,H (3-4) 
27e 

where 
I 

H = — 
27r 

amp/m (3-5) 

The magnetic intensity H is thus defined by this relation in terms 
of the current which produces it and the geometry of the system. 
Magnetic intensity is a vector quantity, having the same direction 
as the magnetic-flux density, so the equality expressed by (4) can 
be stated as the vector relation 

B -=- µH (3-4a) 

Under the conditions of the above (long-wire) experiment, H, the 
magnitude of the magnetic intensity is independent of the perme-
ability of the medium, depending only on the current and distance 
from it, while B is dependent on the permeability of the medium. 
In this sense H may be pictured as a magnetic intensity that drives 
a " resultant" flux density through the medium (but this is not the 
only possible viewpoint). Although no longer defined in terms of 
unit poles, the relative value of H at any point may be indicated 
by the force on one end of a magnetized compass needle. 

The line integral 

Œ = fb I 1 • ds a 

is defined as the magnetomotive force between the points a and b. 
For a circular path about the wire, with the wire at the center, H 
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has the constant value I/27rr and is directed along the path, so that 

e = Fl • ds = / (3-6) 

It is easily demonstrated that this same result (6) will be obtained 
for any closed path about the current. Equation (6) is Ampere's 
work law. The positive directions (or senses) of magnetomotive 
force and current are related by the familiar " right-hand rule." 

Ampere's work law makes it easy to compute H in certain prob-
lems. For example, consider the toroidal coil of Fig. 3-2, consisting 

Fla. 3-2. Toroidal coil. 

of a large number of closely spaced turns on a tubular core. For 
any closed path C taken around the core inside the winding, the 
magnetomotive force will be 

if = n1 

where n is the number of turns and, therefore, the number of times 
the path links with the current I. If D, the thickness of the core, 
is small compared with R, the radius of the ring, the radii of all 
circular paths through the core are approximately equal to R, so 
that at any point within the core 

if nI ni H e-•s = 2en-R 211-R = —1 ampere turnsim (3-7) 
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with 1 = IrR denoting the length of the coil. The magnetic inten-
sity is nearly uniform throughout the cross section of the core and 
is equal to the ampere turns per unit length. 

Another example, in which H is simply related to the current 
that produces it, is the case of two very large closely spaced parallel 
planes carrying equal and oppositely directed currents (Fig. 3-3). 
The magnetic field is confined to the region between the planes 
and is found to be uniform (except near the edges) and independent 
of the distance apart of the planes as long as this distance is small 

Fia. 3-3. Parallel-plane conductors. 

14- - 

------- — 

compared with the other dimensions. In Fig. 3-3 the current is 
assumed to be flowing in the positive x direction (outward) in the 
upper plate. 

Then if J. represents the current per meter width flowing in this 
plate, Ampere's work law states that 

H • ds = H„(y2 — yi) J.(y2 — yi) 
ABCDA 

from which 14 = elx ainp/m (3-8) 

The magnetic intensity is equal in magnitude to the linear current 
density (amperes per meter width) flowing in each of the planes. 
It is parallel to the planes, but perpendicular to the direction of 
current flow. 
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3.05 Permeability p. In each of the above examples the mag-
netic intensity H has been related directly to the current that pro-
duces it. Using the toroidal coil example the magnetic flux (I) and 
therefore the magnetic flux density B within the core can be meas-

ured; the magnetomotive force H • ds, and therefore H, is known 

in terms of the current; therefore p, and hence µ,., the relative perme-
ability of the medium composing the core, can be determined from 
the relations 

= Ti; = PI-Pe; = 47r X 10-7 henry/m (3-9) 

For air and most materials the relative permeability is very 
nearly unity. For paramagnetic substances Pr is very slightly 
greater than unity; thus for air it is 1.00000038 and for aluminum 
it is 1.000023. For diamagnetic substances Pr is slightly less than 
unity; for copper (1 — 8.8 X 10--6); for water (1 — 9.0 X 10-6). 
However, for that exceptional class of materials known as ferro-
magnetic materials (iron and certain alloys) the relative permeability 
may have a value of several hundred or even several thousand. 
In general, the permeability of these materials is not constant but 
depends upon the strength of the magnetic field and upon their 
past magnetic history. However for most applications of interest 
in electromagnetic wave theory, the range of flux densities involved 
is small enough that p may be considered constant. 

3.06 Energy Stored in a Magnetic Field. It is found experi-
mentally that a certain amount of work is required to establish a 
current in a circuit. This work is done in establishing the current 
against the electromotive force induced in the circuit by the increas-
ing magnetic flux, and the energy thus transferred to the circuit 
is said to be stored in the magnetic field. The amount of the 
energy so stored can be determined in terms of the extent and 
intensity of the magnetic field by considering the elementary exam-
ple of current flow in a toroidal coil. In this case, when the turns 
are closely spaced, the magnetic field is confined to the core of the 
toroid, and the magnetic intensity is given by 
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where n is the number of turns and l is the mean length of path 
through the core of the coil. The back voltage induced in the coil 
is, by definition of magnetic flux c1), 

cl(1) 
V = —n 

dB 
= — nA" 

where B is the magnetic flux density, and A is the cross-sectional 
area of the core. The work done in establishing the current I in 

the coil is 

W 2 .t VI di 

= 1.11AH dB dt 
o dt 

= f glAH dH 

[el 

2 
(3-10) 

This is the total energy stored in the field, und since IA is the volume 
of the region in which the magnetic field exists, it is inferred that 
the quantity 

2 

represents the energy density of the magnetic field. Whether or 
not it is considered desirable to ascribe a certain energy density 
to each small volume of space and so " locate" the energy, it is 
nevertheless true in general that the quantity p112/2, when inte-
grated over the whole volume (in which H has value), does give the 
correct value for the total stored magnetic energy of the system. 

3.07 Ampere's Law for a Current Element. When a current I 
flows in a closed circuit the magnetic intensity H at any point is a 
result of this flow in the complete circuit. For computational 
purposes it is convenient to consider the total magnetic intensity 
at any point as the sum of contributions from elemental lengths ds 
of the circuit, each carrying the current I. The quantity I ds 
is called a current element. It is a vector quantity having the direc-
tion of the current, or what amounts to the same thing, the direc-
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tion of the element ds in which the current flows. This may be 
indicated by writing I ds or alternatively I ds. The two notations 
are used interchangeably and to suit convenience in the particular 
problem. 

The magnitude of the contribution to H from each current 
element I ds cannot be measured directly, but is inferred from 
experimental results to be 

dH — I ds sin ip 
4irr2 (3-11) 

r is the distance measured outward from the current element I ds 
to the point p at which H is being evaluated (Fig. 3-4). is the 
angle between the direction of I ds 
and the direction of r. The direc-
tion of H is perpendicular to the 
plane containing I ds and r, in the 
direction in which a right-hand screw 
would progress in turning from I ds 
to r. This complete statement can 
be written in vector notation simply ds 

as 

dH = I ds X ut 
47r2 

(3-12) 
Fla. 3-4 

where u,. is a unit vector in the r direction. Equation (12) is 
known as Ampere's law for a current element (or sometimes as the 
Biot-Savart law). 

The total magnetic intensity H at a point p will be the sum or 
integration of the contributions from all the current elements of the 
circuit and will be 

H = L Ids X ur 
Y 47r2 (3-13) 

Magnetic Fields of Some Simple Circuits. The magnetic inten-
sity H at any point due to current flow in a circuit can be obtained 
by summing the contributions from the current elements that make 
up the circuit. This is not always a simple task but there are a few 
problems in which conditions of symmetry make it relatively easy 
to obtain an answer. 
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EXAMPLE 1: Field at the Center cf a Circular Loop. The contribution 
to H at the center due to any element I de will be directed vertically 

upward and will have a magnitude 

dH = I ds = IR d4) I dct. 
— 
411-R2 471-R2 42* 

The total intensity at the center will be 

H = 
fo 47R = 2R 

22- dli) I 

FIG. 3-5 

Ids Field about a Long Straight Wire. 
The magnetic intensity at a distance R 
from a very long (infinitely long for the 
purposes of this problem) straight wire 
carrying a current I can also be obtained 

by summing the contributions from the individual current elements. 
This is left as a problem for the student. 

3.08 Magnetic Vector Potential. In the electric field it was 
found desirable to introduce the concept of potential. In that 
case the electric potential was a space function that depended upon 
the magnitude and location of the charges, the charges being the 
sources of the electric field. The intensity of the electric field was 
obtained from the potential V by taking the gradient or space 
derivative of V. This procedure was often found to be much 
simpler than that of trying to obtain E directly in terms of the 
magnitude and location of the charges. 

Similarly in the case of the magnetic field it would be desirable 
to be able to set up a magnetic potential, the space derivative of 
which would give the magnetic intensity H. Corresponding to the 
individual charges in the electric field case, the sources of the 
magnetic field would be the current elements I de of the circuits 
that produce the field. The magnetic potential being sought 
would therefore depend upon these current elements. Assuming 
that a suitable magnetic potential can be found, the properties that 
such a potential must possess are easily determined by simple 
reasoning. 

Because the magnetic intensity H that is to be derived from 
the potential is proportional to the strength of the current element 
I ds, the potential itself must be proportional to I de. Because the 
magnetic intensity H due to a current element varies inversely as 
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the square of the distance r from the element (Ampere's law), the 
magnetic potential due to the current elements must vary inversely 
as the first power of the distance because H is to be obtained by 
taking the space derivative of the potential. This is equivalent to 
dividing by r as far as dimensions are concerned. The electro-
static potential due to charges was a scalar quantity. This was 
adequate in that case, because the charges themselves were scalars 
having magnitudes only. In the present case, the current elements 
have directions as well as magnitudes, and it is necessary that this 
additional information on the direction of the source be contained 
in the potential due to the source. Therefore the potential in this 
case must be a vector quantity, the direction of which will somehow 
be related to the direction of the current-element source. If this 
vector magnetic potential is designated by the vector A, then it should 
be possible to obtain H as the space derivative of A. There are 
two possible space-derivative operations on a vector quantity, 
namely the divergence and the curl. The divergence operation 
yields a scalar quantity, whereas the curl operation yields a vector 
quantity. Inasmuch as the resulting magnetic intensity H is a 
vector quantity, the curl is the only space-derivative operation 
which can be used. Therefore, if there is a suitable vector magnetic 
potential A, the magnetic intensity will be derived from it by 

H = curl A (3-14) 

As indicated above, the relation between the magnetic vector 
potential and the current element source must be of the form 

dA = k (L p) (3-15) 

where the constant k is still to be determined. With one eye on 
eq. (12) a reasonable guess for the expression for the vector poten-
tial of a currenzi, element I ds would appear to be 

I ds 
dA = (3-16) 

47rr 

3.09 Vector Magnetic Potential of a Current Element. The 
expression (16) for the magnetic vector potential of a current ele-
ment was obtained by a combination of logical reasoning and 
straight guesswork. It remains to be shown that (16) is indeed 
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the required expression. This can be done by inserting (16) in 
(14) and showing that the result is equivalent to eq. ( 12). How-
ever it is instructive to obtain the expression for dA directly from a 
restatement of Ampere's law for the current element. 

Consider a current element I ds located at the origin of the 
co-ordinate system and having components I dx, I dy, and I dz, 

FIG. 3-6 

along the respective axes (Fig. 3-6). The magnetic intensity at a 
point P as given by Ampere's law for the current element is 

/ ds X ur dH — (3-12) 
47/.2 

As indicated by the cross product, H is perpendicular to the plane 
containing ds and ur. The magnitude of dH is given by 

I ds sin 4, 
dH — (3-17) 4,472 

where 4, is the angle between ds and r. 
The magnetic intensity at P can be considered in terms of its 

components d11., dH„ and d1-1.. The magnetic intensity in the x 
direction is due, in part, to a contribution from I dz and in part to a 
contribution from I dy. The component I dx contributes nothing 
to the x component of the magnetic intensity since a magnetic field 
is always perpendicular to the current producing it. 
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The contribution to dH due to I dz is, by (17), 

I dz I dz Vx2 ± y2 
- 411.2 sin 0 sin ct) 

4rr2 • r v x2 + y2 
I dz y 
4r • ri 

Similarly the contribution to dH. at P due to I dy is 

I dy z 
4ir r3 

The total dH. at P due to the current element I dz is therefore 

4r = —I dz • ± I dy • 

85 

(3-18) 

Now the first of these terms is the partial derivative with respect 
to y of I dz/r for 

a dz) = I dz a  1  
r ay (x2 + y2 - —I dz ( 2 4_ y2 ± x2)ei 

= —I dz •; 

Also the second term is the negative of the partial of I dy/r with 
respect to z. Therefore (18) may be written 

4n.  dL = a (r dz) _ a (I dy) 
(3-19) ay r az r 

In a similar manner the y and z components of dH can be written 
in terms of the appropriate derivatives of I ds/r. The complete 
statement would be 

4r dH. = 

4r dII = 

a (.r r dz) _ _a_ dy) 
az r 

O ( r1 dx) _ dz) 
8x \ r) 

4r dH, = (L _a (r 
Ox \r/ ay r 
a cLy )  dx) 

The right-hand sides of these equations are the three components 
of curl I ds/r. Therefore eqs. (20) may be written 

I ds 
dH = curl (3-21) 

4rr 

(3-20) 
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It is evident that for the current element I ds, the vector mag-
netic potential is 

dA I ds 
47rr 

It is proportional to the current I and to the length of the element 
ds, and is inversely proportional to the distance r from the current 
element. It has the same direction as the current producing it. 

The vector magnetic potential (usually called just vector poten-
tial) due to current flow in a complete circuit is obtained as a summa-
tion or integration of vector potentials caused by all the current ele-
ments that comprise the circuit. That is 

f Ids 
A — (3-22) 

47rr 

where the integration extends over the complete circuit in which 
I flows. As mentioned previously, the direction of a current ele-
ment can be indicated by making either ds or I the vector quantity. 
In the latter case the expression for A would be 

A = f I ds 
47rr 

This expression can be written in a more general form by replacing 
the current I by a current density i and then integrating over 
the volume in which this current density exists. Then the expres-
sion for the vector potential A is 

i dV 
A = f, 47rr 

This reduces to the previous expression when the current flows in a 
filamentary circuit. 

EXAMPLE 2: Magnetic Field about a Long Straight Wire. Using the 
vector potential, let it be required to find the magnetic intensity about a 
long straight wire carrying a current I. 

The general expression for vector potential is 

A 
idV 

= 
f y 4711 
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For this problem the current density i, integrated over the cross sectioi. 
of the wire, gives the total current I. Also the current is entirely in the 
z direction (Fig. 3-7) so that A has only one component, A,. 
Then 

1 +L dz 

A, 47 = f — 
r -L r 

If the point P is taken in the y-z plane, r = N/Z2 ± y2 and 

1 L  I  
 dz 

2ar /0 N/y2 z2 

= N/Y2 z2)1e 

= -217r [In (L + Vy2 + L2) - ln y] 

For L » y, the vector potential is 
given approximately by 

(ht - In 1/) 2ar 

Then for a point in the y-z plane 

OA, 
H. = curl. A, = = - 

ay 2ary 

Z+L 

-L 

The lines of magnetic intensity Fla. 3-7. Vector potential about a long 
will be circles about the wire, that 
is in the direction. For any 
arbitrary point P, not necessarily in the y-z plane, 

2/rR 

straight wire. 

where R = Vx2 + y2 is the distance of the point P from the wire. 

EXAMPLE 3: Magnetic Fields Due to Long Parallel Wires. Let it be 
required to derive the expressions for the magnetic field about two long 
straight parallel wires, carrying equal and oppositely directed currents. 
Start with A. ••>-' (1/27) (in 2L - In R) for a single wire. 
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FIG. 3-8. Long parallel wires. 

The total vector potential at the point P (Fig. 3-8) will be 

A. = A., 

where A., = 2—w (In 2L — ln ri) 

and A., = — —211- (In 2L — In r2) 

Therefore A, = — (In r2 — in ri) 
2ir 

From the figure r1 = Ni(y — 1)2 x2 

and r2 = NKY ± ± e2 

ari = y — (d/2) ar2 _ y -I- (d/2) 
so that and „ ay r1 cry — r2 

an x an x - ax ri ax r2 

Then the z component of H will be obtained from 

a A. 
H. = cur A. = — 

ay 

I [y (d/2) y — (d/2)] 

2r r22 r22 
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The y component of H is 

aft 
= curly Ay = — 

3x 

2) 7.22 7. L2 

EXAMPLE 4: The Magnetic Dipole. A small circular loop canjes a 
current I. Let it be required to find the magnetic field at distances from 
the loop that are large compared with the dimensions of the loop. Without 
loss of generality the point p may be assumed to lie in the y-z plane 
(Fig. 3-9). The vector potential at the point p will have a component in the 

FIG. 3-9. Small circular loop. 

e direction only and for p in the y-z plane this means that A = A4, = —Ay 
The contribution to Ay from a current element l de will be 

dA Ids sin 4). — 
47rr 

The total vector potential at p will be 

A. = ,6 I sin 4) ds Ja sin fe die 
47rr 4ir o 

Now r = R — a 
r2 = r • r = (R — a) • (R — a) = R2 — 2R • a -F a 2 

The quantity R • a is R times the projection of a on R and has a value 

R • a = Ra sin 4, sin O 
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1 
Then 

r VR2 — 2Ra sin 4) sin 0 + a2 

( 
_ 2a . a2 ...... R_I 1 — 4 Tz sin cf) sin 0 ± --ffi 

For R» a, this is given approximately by the first two terms of the 
binomial expansion, that is 

Then .4= = — — f  — (1 ± —a sin 4; sin 0 — —2aR22) dc> 
47r 0 R R 

Ia 21. sin 4, 

la2 sin 0 1 — 22. . 
4/r/t2 o sin2 it. dcp 

I(Ira2) sin 0 

4wR2 

For an arbitrary location of the point P, not necessarily in the y-z plane, 
we may write 

A I(ira2) sin O 

= 4irR2 

There will be two components of H at the point p. Expanding H -= curl A 
in spherical co-ordinates gives 

Ho = — —1 —a (rAG) = I(ra2) sin O 
r ar 47r/i3 

1  a . I(ra2) cos O 
H, — (sin 0 2,10) = 

r sin 0 ae 27r/13 

If these expressions are compared with those for the electric dipole 
(page 39) it will be seen that they are identical when the electric moment 
ql of the electric dipole is replaced by Ira2I for the loop. ra2 is the area 
of the loop, and the product of this area and the current I is known as the 
magnetic moment of the loop. A small loop such as this is often referred 
to as a magnetic dipole. 

It will have been observed in the examples above and in the 

problems at the end of the chapter, that usually little time or labor 

is saved by using the vector-potential method. Indeed for simple 

problems the solution can often be obtained more quickly by solv-

ing directly for H. This is a common experience encountered in 
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using a new and powerful tool. The simple problem often yields 
more readily to simple tools. However when the problems become 
more complex, as they do when time-varying fields are considered, 
the real power and true worth of the vector-potential method will 
become apparent. 

3.10 Analogies between Electric and Magnetic Fields. It is 
natural to draw analogies between the electric and magnetic fields. 
Such analogies are useful in helping to maintain orderly thought 
processes and often make it possible to arrive at conclusions quickly 
by comparison with results already obtained in a different but 
analogous problem. There are several possible analogies that can 
be drawn between electric and magnetic fields, but two of these are 
particularly applicable to later work in the (time-varying) electro-
magnetic field. The first analogy considers D and H as analogous 
quantities and E and B as analogous quantities. This is based on 
consideration of the fact that displacement density D is related 
directly to its source, the charge, and is independent of the charac-
teristics of the (homogeneous) medium in which the charge is 
immersed. Similarly the magnetic vector H can be related directly 
to its source, the current, and is independent of the (homogeneous) 
medium in which the magnetic field exists. The vectors E and B 
are also related to their respective sources, charge and current, but 
show a dependence on the characteristics of the medium, that is 
on the dielectric constant, and magnetic permeability respectively. 
This analogy is correct in the sense that it is self-consistent and can 
be made to give useful interpretations. The second analogy, which 
is equally valid, considers E and H as analogous and D and B as 
analogous. It is no more " correct" than the first analogy, but 
has the advantage in electromagnetic field theory that it gives a 
symmetry to Maxwell's equations that otherwise would be lacking. 
Inasmuch as these equations form the starting point for every 
problem of the electromagnetic field, this is a very useful result. 
Two simple experiments serve to point up this analogy. In 
Fig. 3-10a voltage V produces an electric field E in the space between 
the condenser plates. E is equal to V /d and is independent of the 
dielectric constant e of the dielectric. However the displacement 
density depends upon e (for a constant applied voltage and there-
fore constant E) and is given by D = EE. In Fig. 3-10b the cur-
rent I results in a magnetomotivo force n1 around the closed path L. 
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The magnetic intensity H within the core is equal to ni /i. The 
magnetic flux density B depends upon the permeability µ (for a 
constant applied mmf) and is given by B = pH. In this analogy 
E and H are sometimes pictured as electric and magnetic intensities 
or forces that result in electric and magnetic flux densities, D and B 

respectively. 
In the above experiments, if the charge Q (instead of the voltage) 

is held constant in Fig. 3-10a, and the current is held constant as 

V 

(0) ( b ) 

Flo. 3-10. Circuits illustrating analogies between electric and 
magnetic fields. 

before in Fig. 3-10b, then the first analogy results. That is, D and 
H are the analogous quantities that remain unchanged for different 
dielectric and core materials. 

STEADY MAGNETIC-FIELD PROBLEMS 

4. Starting with Ampere's law for a current element, show that the 
netic intensity at a distance R from a very long straight wire carrying 

a current I amperes is given by 
H  = 

P 2m-R 

*pia Verify that within a conductor car'rying a current I the magnetic 
sity at a distance r from the center of the wire is given by 

/r 
H = ---

27rR2 
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where R is the radius of the wire. The current density is constant across 
the cross section of the conductor. 

3. Verify that expressions (3-14) and (3-16) combine to give the same 
result for magnetic intensity as is given by (3-12); that is, verify that the 
curl of the expression for vector potential due to a current element does 
indeed yield the magnetic intensity as given by Ampere's law. (Sugges-
tion: Solve for the special case of a point in the y-z plane, and then 
generali ze). 

. A very long thin sheet of copper having a width b meters carries a 
çhfect current I in the direction of its length. Show that if the sheet is 

/assumed to lie in the x-z plane with the z axis along its center line, the 
magnetic field about the strip will be given by 

H» (tan-1  

+ x 

—y 

(Nom: Solve by first setting up the vector-potential due to long narrow 
strips.) 

5. By setting up the statement of Ampere's work law for elemental 
areas in cylindrical co-ordinates derive the expansion for curl H in these 
co-ordinates. 

6. Show that the answers to Problem 4 agree with the answers to 
Problem 1 for (a) a point on the y axis when y » b; (b) a point on the 
z axis when x » b. 

7. The familiar statement of Ohm's law is I = V/R, where the direc-
tion of current flow is in the direction of the voltage drop. Show that 
for an elemental volume this law may be written as the vector point relation 
= (rE. (Recall that the resistance R of a conductor of length l and cross-

sectional area A is given by R = VOA where u is the conductivity of the 
material.) 
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CHAPTER 4 

MAXWELL'S EQUATIONS 

Up to the present the fields considered have been the static 
electric field due to charges at rest and the static magnetic field 
due to steady or unchanging currents. The next step is to deter-
mine what modifications will be required when the charge densities 
and currents are changing with time. Before doing so it is desirable 
to restate Ampere's work law in the vector form as a point relation. 

/IX 

FIG. 4-1 

4.01 Ampere's Work Law in the Differential Vector Form. 
Ampere's work law states that the magnetomotive force around a 
closed path is equal to the current enclosed by the path. That is 

H • ds = / amp (4-1) 

This law may be put into an alternative form as follows: Consider 
a conducting region in which there is a current density 1. Let ABCD 

94 
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be an element of area parallel to the x-y plane, and let the co-ordinates 
of the point A be (x, y, z). The magnetomotive force around the 
closed path ABCDA can be obtained by summing the magnetomotive 
forces along the four sides of the rectangle. If the average value of 
Hz over the path AB is represented by É. and the average value 
of H„ over the path AD is represented by 17„, then the following 
relations will hold: 

mmf from A to B = fl x 

mmf from B to C = (27„ Ax) Ay 
ax 

mmf from C to D = — (É. Ay) Ax 
ay 

mmf from D to A = —fi„ Ay 

Adding on both sides, 

a an mmf around closed path = il — Ax Ay 
ax ay 

The current flowing through this rectangle is 

dl = i„ Ax Ay 

Therefore by Ampere's law, 

(all, ail — — -= [Ix Ay Ax Ay 
ax ay 

As Ax and Ay are allowed to approach zero, H. becomes H„ and 
fli, becomes H„, so that in the limit 

ari„ arix 
ax — = (4-2a) ay 

Next if the element of area is taken parallel to the y-z plane, and 
then parallel to the z-x plane, the following relations are obtained: 

ax. aH7, _ . 
(4-2b) 

aHz aHz 
az jv ax (4-2c) 

The three scalar eqs. (2a), (2b), and (2c) can be combined into the 
single vector equation 

curl H = i (4-2) 
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This is an alternative statement (in the differential vector form) 
of Ampere's law. Equations (1) and (2) are stated correctly for 
a right-hand set of co-ordinate axes, and it is seen that the right-
hand rule for determining the direction of H is included in both 
of these statements. The differential forms (2) of the equation 
require a homogeneous medium because the space derivative has no 
meaning at a discontinuity of the medium. When the path under 
consideration crosses a discontinuity the integral form (1) is 
suitable. 

Interpretation of Curl H. Equation (2) relates the curl of the 
magnetic intensity to the current density that exists at any point 
in a region. A study of this relation is helpful in obtaining a phys-
ical picture of the curl of a vector. The picture can be made 
clearer if eq. (2) is integrated over an area to give 

Is curl H • da = f i • da (4-3) 

The right-hand side of (3), being the current density integrated 
over a surface S, is just the total current I flowing through the 
surface. Recalling the original form of the statement of Ampere's 
law in eq. (1) shows that the following relation must be true: 

Is curl H • da = II • ds (4-4) 

This relates the integral of curl H over a surface to the line integral 
of H, or magnetomotive force, around the closed path bounding 
the surface. If the surface is reduced to an element of area da, 
the left-hand side becomes curl H • da. Dividing through by da, 

the result is j curl HI = H • ds)/da, which may be interpreted 

as: " curl H equals the magnetomotive force per unit area." The 
direction of curl H is that direction of the area da that results in a 
maximum magnetomotive force around its edge. 

Stoke's theorem. The relation (4) obtained above for a magnetic 
field H is in fact a perfectly general relation true for any vector. 
That is, for any vector A, 

Is curl A • da = A • ds 

This equation is known as Stokes' theorem. It provides a very 
useful relation between an integration over a surface and an integra-
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tion around the closed path bounding the surface. As was seen 
above it also provides a definition in the integral form for the curl 
of a vector. 

4.02 Error in Simple Statement cf Ampere's Law for Time-
Varying Fields. It was proved in chap. 1 that for any vector A 

div curl A = 

Applying this to eq. (2) above necessitates that 

= (4-5) 

Equation (5) states that there is no net outward flow of current 
prom an elemental volume; that is, the current has no sources or 
sinks in the sense that it does not start or stop anywhere in a circuit. 
In other words, there must be a continuous flow of current through-
out the entire circuit. 

This is true in the steady or direct-current case, and indeed, 
this is just a statement of Eirchoff's law for currents. However, 
eq. (5) is not necessarily true if the circuit contains condensers 
and the current is varying with time. Observe, for example the 
simple situation of Fig. 4-2. 

In this case a voltage V, which is changing with time, will cause 
charges to flow onto the plates of the condenser. However, no 
charge will move across the region between the two plates. Hence 

current must start and stop on the condenser plates and i must 
have a divergence there. It will be necessary to modify eq. (5) 
to take care of this. 

Equation of Continuity. Consider the diagram of Fig. 4-3, 
where an element of volume may have a different movement of 
charge through one face as compared with another. Let p be the 
charge density as a function of the co-ordinates. 
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FIG. 4-3 

[§4 02 

The current density is pv, where y is the velocity with which 
charges are moving. 

Then in the elemental cube 

The current flowing = pv z dy dz 
in the left face 

That flowing out 
the right face 

= (pvz a(Pvz) dx) dy dz 
ax 

The increase in charge within the volume per unit time due to move-
a(pv)  

ment in the x direction is therefore ax dx dy dz. 

The total increase due to movement in and out of all faces of 

the cube will be 

Total increase 
in charge per 
unit time 

Incr2ase in 
charge per unit 
time per unit 
volume 

But increase in 
charge per unit 
volume per unit 
time 

— [ ô(pv) a(P4) a(Pvl  dx dy dz 
L ax ay az j 

_ [a(pv) a(pvi,) j_ a(pv)  

ax ay ' az 

= — div pv div 

ap 
at 
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Now, since increase in charge per unit time per unit volume equals 
increase in charge per unit volume per unit time 

ap 
= — div i (4-6) 

Equation (6) is called the equation of continuity. 
Although the equation of continuity has been developed here 

in connection with the flow of charges, it has quite general applica-
tion in many fields, being the fundamental law of fluid motion. 
Under such circumstances p stands for the density of the fluid and 
the equation of continuity then states that the rate at which the 
quantity of fluid in a unit volume is increasing is equal to the rate 
at which the fluid is flowing into the volume from outside. 

4.03 The Generalized Magnetomotive Force Equation. Am-
pere's work law stated in the vector point-relation form is 

curl H = 1 (4-2) 

It has been seen that taking the divergence of both sides of this 
equation leads to the conclusion that 

div i 

or that current must be continuous. Since this is evidently not 
true for the alternating current case shown in Fig. 4-2, where 
current flows (momentarily) into the dotted rectangular enclosure 
without any corresponding outward flow, it follows that Ampere's 
law (eq. 2) must be in error for this case. An application of the 
equation of continuity has shown that a correct statement regard-
ing the divergence of current density would be 

ap 
(4-6) at 

Using this relation it is easy to arrive at a more general statement of 
Ampere's law which will be true in all cases. Recall Gauss's law as 
a vector point relation 

div D = p 

Take the time derivative of both sides 

a ap 
a —vtch D = (4-7) 
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Because space and time are independent variables, the order of 
differentiation may be reversed, that is, 

a . ari -a-t div D = div at 

so that eq. (7) becomes 
. ap ap an, = 

Then using eq. (6) 

or 

. at) div —at = — div i 

= o 
div 

at 
(4-8) 

Equation (8), rather than eq. (5), is the correct statement when 
time changing (alternating) currents and fields are considered. In 
the direct-current case, where there is no change with time, eq. (8) 
reduces to (5). 

It is evident that the term 3D/at has the dimensions of a current 
density. Now if at vat is considered as being a kind of current 
density then it would be possible to write (8) as 

div r = 

where 

is the total current density. Under these circumstances it would 
be true that the (total) current is continuous and Ampere's law 
would hold even for the alternating current case where there are 
condensers in the circuit. Maxwell first observed the error in the 
original statement of Ampere's law (eq. 2) and modified the state-
ment by replacing the conduction current density i by the total 
current density [i (3D/at)]. The term 3D/at is called the dis-
placement current density. The generalized statement cf Ampere's 
law becomes 

curl H = (4-9) 

Equation (9) is called the first of Maxwell's equations. 
Maxwell's assumption that a changing displacement density 

(that is, a changing electric field) was equivalent to an electric 
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current density, and as such would produce a magnetic field, has 
had most far-reaching effects. Combined with Faraday's law which 
indicates that a changing magnetic field will produce an electric 
field it leads directly to the "wave equations." This result enabled 
Maxwell to predict electromagnetic wave propagation some thirty 
years before Hertz's brilliant researches gave experimental verifica-
tion. It should be observed that the assumption was made as a 
result of recognition of an error that was pointed up by the mathe-
matics. This is an interesting example of one of those rather rare 
cases where the mathematical reasoning has preceded and pointed 
the way for experiment. 

4.04 Faraday's Law and Maxwell's Second Equation. Fara-
day's irduction law is analogous to Ampere's law. It states that 
the electromotive force or voltage around a closed path is equal to 
the negative of the time rate of change of magnetic flux enclosed 
by the path. That is 

E • ds = — at 

But (I) = B • da 

where the integration of the magnetic-flux density is over a surface 
bounded by the closed path. 

Then* E • ds = — t —s a f B • da • 
a - fs —at • da aB 

But, by Stoke's theorem, 

E • ds = fs curl E • da 

aB Therefore fs curl E • da = — f — • da 
s at (4-10) 

If the surface S is now reduced to an elemental surface, eq. (10) 
becomes the point relation 

curl E = — —aB 
at (4-11) 

* The partial derivative with time is used throughout to indicate that only 
variations of magnetic flux with time through a fixed closed path or at a fixed 
region in space are being considered. For a discussion of induced emf under 
other conditions refer to any text on electricity and magnetism. A thorough 
treatment is given in E. G. Cullwick, The Fundamentals of Electromagnetism, 
The Macmillan Co., Cambridge, England, 1939. 
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This is known as the second Maxwell equation. 
Again recalling that the divergence of the curl of any vector 

is zero, it is evident from eq. (11) that div aB/at = 0, and therefore 
(for time varying fields) 

div B = (4-12) 

Equation (12) states that there are no sources* of B and that lines 
of magnetic flux are continuous. This is in agreement with the 
assumption that there are no isolated magnetic poles and, conse-
quently, no (physical) magnetic conduction current. 

An interpretation of the curl of E is obtained from eq. (11) 
and the integral definition of curl. From the integral definition of 
curl the left-hand side of ( 11) is the line integral of E per unit area, 
and (11) states that this is equal to the negative time rate of change 
of magnetic flux per unit area. Now the line integral of E around 
any path is simply the voltage around the path, and so (11) is just 
Faraday's law stated for the closed path about an element of area. 
The voltage around the small closed path could be measured by a 
loop of wire connected to a voltmeter. The voltmeter reading 
divided by the area of the loop is a direct measure of the curl of E. 
As the loop is oriented in various directions, the direction of the 
axis of the loop that results in maximum voltage around the loop 
is the direction of the curl of E. In a region in which there is no 
time-changing magnetic flux, the voltage around the loop would be 
zero, and curl E = 0. The electric field is then said to have no curl, 
or to be irrotational in that region. Evidently in electrostatics 
the electric field is always irrotational or without curl. 

4.05 The Field Equations in Vector Form. The two Maxwell 
equations together with the expressions relating D and B to their 
sources are generally known as the electromagnetic field equations 
or just the field equations. In the differential vector form the field 

equations are: 
curl Fl = + i 
curl E = —É II 
div D p III 
div B = 0 IV 

* As used here source—is a mathematical term. In the vector analysis of 
fluid fields a source is a point at which fluid is emitted or introduced into a 
region, and a sink is a point at which the fluid is absorbed or removed. The 
term source also has a broader use as the "cause of a phenomenon." In this 
latter sense, the sources of magnetic fields are electric currents. 
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The dot over a quantity indicates the time derivative of that quan-
tity. These relations will be referred to so often that they have 
been labeled with Roman numerals and will be indicated in that 
manner throughout the remainder of this text. 

The Field Equations in Differential Scalar Form. The field 
equations I—IV appear above in the abbreviated vector form. 
Written in the expanded scalar form in rectangular co-ordinates 
they are 

III 

IV 

The Field Equations in Integral Form. The field equations are 
often written in the integral form. The differential vector or scalar 
forms above are more convenient in the actual solution of problems, 
but the integral form is easier to interpret and to state in words. 
In the integral form 

II • ds = (i) i) • da 

E • ds = — É • da II 

f D • da = Ivol p dV III 
c.esed 
surf ace 

B • da = 0 IV 

closed 
surface 
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Word Statement of the Field Equations. A word statement of 
the significance of the field equations is readily obtained from their 
mathematical statement in the integral form. It would be some-
what as follows: 

I. The magnetomotive force around a closed path is equal to 
the conduction current plus the time derivative of the electric 
displacement through any surface bounded by the path. 

II. The electromotive force around a closed path is equal to 
the time derivative of the magnetic displacement through any 
surface bounded by the path. 

III. The total electric displacement through the surface enclos-
ing a volume is equal to the total charge within the volume. 

IV. The net magnetic flux emerging through any closed surface 
is zero. 

As indicated previously the time derivative of electric displace-
ment is called displacement current. The term electric current is 
then generalized in meaning to include both conduction currents 
and displacement currents.* Furthermore, if the time derivative 
of electric displacement is called an electric current, the time 
derivative of magnetic displacement can be considered as being a 
magnetic current. Finally, electromotive force is called electric 
voltage, so that magnetomotive force may be called magnetic 
voltage. 

'The first two Maxwell equations can then be stated: 

I. The magnetic voltage around a closed path is equal to the electric 
current through the path. 

II. The electric voltage around a closed path is equal to the magnetic 
current through the path. 

4.06 Conditions at a Boundary Surface. Maxwell's equations 
in the differential vector or scalar form express the relationship 
that must exist between the four field vectors E, D, H, and B at 
any point within a continuous medium. In this form, because 
they involve space derivatives, they cannot be expected to yield 
information at points of discontinuity in the medium. However, 
the integral form of statement can always be used to determine 
what happens at the boundary surface between different media. 
* Also convection currents (e.g., electron beam currents). Conduction cur-

rents obey Ohm's law, i = ; convection currents do not. 
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The following statements can be made regarding the electric 
and magnetic fields at any surface of discontinuity: 

(a) The tangential component of E is continuous at the surface. 
That is, it is the same just outside the surface as it is just inside the 
surface. 

(b) The tangential component of H is continuous across a sur-
face except at the surface of a perfect conductor. At the surface 

Fia. 4-4. A boundary surface between two media. 

of a perfect conductor the tangential component of H is discontinu-
ous by an amount equal to the surface current per unit width. 

(c) The normal component of B is continuous at the surface of 
discontinuity. 

(d) The normal component of D is continuous if there is no 
surface charge density. Otherwise D is discontinuous by an amount 
equal to the surface charge density. 

The proof of these boundary conditions is obtained by a direct 
application of Maxwell's equations at the boundary between the 
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media. Suppose the surface of discontinuity to be parallel to the 
y-z plane. Consider the small rectangle of width Ax and length Iy 
enclosing a mar. portion of each of media (1) and (2). 

The integral form of the second Maxwell equation (II) is 

E • ds = _ J8Ê.da 

For the elemental rectangle of Fig. 4-4 this becomes 

Ax Ax Ax Ax 
Ey, y — E„ — E — Ey, 4 E E„ 

= —h. Ax 4 (4-13) 

where n. is the average magnetic-flux density through the rectangle 
Ax Ay. Now consider conditions as the area of the rectangh is 
made to approach zero by reducing the width Ax of the rectangle, 
always keeping the surface of discontinuity between the sides of 
the rectangle. If it is assumed that B is always finite, then the 
right-hand side of eq. ( 13) will approach zero. If E is also assumed 
to be everywhere finite, then the &-e/2 terms of the left-hand side 
will reduce to zero, leaving 

Ey, 4 — Ay = 

for àx = O. Therefore 

That is, the tangential component of E is continuous. 
Similarly the integral statement of eq. I is 

H • ds = is (i) i) • da 

which becomes 

Hy, Ay — L. — H,tx- — Hy, Ay -I- H„ 3i2" 

= + i2 ày (444) 

If the rate of change of electric displacement b and current density t 
are both considered to be finite, then as before (14) reduces to 

Hy, Ay — Hy, ày = 
or Hy, = H„ 
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The tangential component of H is continuous (for finite current 
densities; that is, for any actual case). 

Note on a Perfect Conductor. A perfect conductor is one which 
has infinite conductivity. In such a conductor the electric intensity 
E is zero for any finite current density. All actual conductors have 
a finite value for conductivity. However, the actual conductivity 
may be very large and for many practical applications it is useful 
to assume it to be infinite. Such an assumption will lead to diffi-
culties (because of indeterminacy) in formulating the boundary 
conditions unless care is taken in setting them up. As will be shown 
later, the depth of penetration into a conductor of an alternating 
electric field and of the current produced by the field decreases as 
the conductivity increases. Thus in a good conductor a high-
frequency current will flow in a thin sheet near the surface, the depth 
of this sheet approaching zero as the conductivity approaches 
infinity. This gives rise to the useful concept of a current sheet. 
In a current sheet a finite current per unit width, J amperes per 
meter, flows in a sheet of vanishingly small depth Ax, but with the 
required infinitely large current density such that 

lim x = J amp/m 
ax-.0 

Consider again the above example of the magnetomotive force 
around the small rectangle. If the current density i. becomes 
infinite as Ax approaches zero, the right-hand side of eq. (14) will 
not become zero. Let J amperes per meter be the actual current 
per unit width flowing along the surface. Then as Ax —› 0 the eq. 
(14) for H becomes 

Hence 
Hv. AY - Hui AY = J1 Ay 

Hy. = Hy, — (4-15) 

(Note that D = ¿E remains finite and therefore b. Az is zero for 
b‘x = O.) 

Now, if the electric field is zero within a perfect conductor, the 
magnetic field must also be zero (for alternating fields) as the 
second Maxwell equation II shows. Then in eq. (15), 117„ must be 
zero and so 

Hy. = (4-16) 

Equation (16) states that the current per unit width along the 
surface of a perfect conductor is equal to the magnetic intensity 
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H just outside the surface. The magnetic field and surface current 
will be parallel to the surface, but perpendicular to each other. In 
vector notation this is written • 

J=nXH 

where n is the unit vector along the outward normal to the surface. 
Conditions on the Normal Components of B and D. The remain-

ing boundary conditions are concerned with the normal components 
of B and D. The integral form of the third field equation is 

D • da = Loi p dV III 

When applied to the elementary " pill-box" volume of Fig. 4-5, 
eq. III becomes 

D, da — D„, da = ; .!Sx da (4-17) 

In this expression da is the area of each of the flat surfaces of the 
pillbox, ix is their separation, and 7) is the average charge density 

A e, 

147 
2 

FIG. 4-5. A "pill-box" volume encloses a portion of a boundary 
surface. 

within the volume Ax da. Tod., is the outward electric flux through 
the curved-edge surface of the pillbox. As Az --> 0, that is, as the 
flat surfaces of the box are squeezed together, always keeping the 
boundary surface between them, Ted. ---> 0, for finite values of dis-
placement density. Also for finite values of average charge density 
7), the right-hand side of ( 17) approaches zero, and (17) reduces to 

da — D„, da = 0 
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(for Ax = 0). Then for the case of no surface charge the condition 
on the normal components of D is 

--- D., (4-18) 

That is, if there is no surface charge the normal component of D 
is continuous across the surface. 

In the case of a metallic surface, the charge is considered to 
reside " on the surface." If this layer of surface charge has a 
surface charge density pa coulombs per square meter, the charge 
density p of the surface layer is given by 

p8 
p = 

Ax coulomb/cu m 

where Ax is thickness of the surface layer. As Az approaches zero, 
the charge density approaches infinity in such a manner that 

lim p Ax = pa 
at,o 

Then in Fig. 4-5, iI the surface charge is always kept between the 
two flat surfaces as the separation between them is decreased, the 
right-hand side of eq. ( 17) approaches ps da as [Ix approaches zero. 
Equation (17) then reduces to 

D., — D., = pa (4-19) 

When there is a surface charge density pa, the normal component of 
displacement density is discontinuous across the surface by the 
amount of the surface charge density. 

For any metallic conductor the displacement density D = EB 
within the conductor will be a very small quantity (it will be zero 

in the electrostatic case, or in the case of a perfect conductor). 
Then if medium 2 is a metallic conductor D , = 0 and eq. (19) 
becomes 

D., = p, (4-20) 

The normal component of displacement density in the dielectric is 
equal to the surface charge density on the conductor. 

In the case of magnetic-flux density B, since there are no isolated 
"magnetic charges," a similar analysis leads at once to 

B., = B., 
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The normal component of magnetic flux density is always continu-
ous across a boundary surface. 

PROBLEMS 

1. Show that the displacement current through the condenser is equal 
to the conduction current I (Fig. 4-6). 

I 

C) V=4, SIN(ail) 
FIG. 4-6 

ICT 
2. Within a perfect conductor E is always zero. Using Maxwell's 

equations, show that H must also be zero for time varying fields. Can a 
steady (unchanging) magnetic field exist within a perfect conductor? 
Show that the normal component of B (and therefore H) must be zero at 
the surface of a perfect conductor. 

3. A "transmission line" consists of two parallel perfectly conducting 
planes of large extent, separated by a distance d meters. The conducting 

Fra. 4-7. Parallel-plane "transmission" line. 
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planes carry an alternating linear current density J amp/m in the y direc-
tion, that is, 

= joeedg—(v/e)1 

or J Jo cos co — 11) 

Applying Maxwell's first equation in the region between the conductors 
find the electric intensity, and hence the voltage between the planes, 
when d = 1 meter and the effective linear current density is Jeff --- 1 amp/m. 

. A square loop of wire, 20 cm by 20 cm, has a voltmeter (of infinite 
impedance) connected in series with one side. Determine the voltage 
indicated by the meter when the loop is placed in an alternating magnetic 
field, the maximum intensity of which is 1 ampere per meter. The plane 
of the loop is perpendicular to the magnetic field; the frequency is 10 mc. 

5. A No. 10 copper wire carries a conduction current of 1 amp at 
60 cps. What is the displacement current in the wire? For copper 
assume e = e,,, = = 5.8 X 107. 

6. The electric vector E of an electromagnetic wave in free space is 
given by the expressions 

= E„ = O E„ = 4 eiwtt-(=m1 

Using Maxwell's equations for free space conditions determine expres-
sions for the components of the magnetic vector H. 
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CHAPTER 5 

ELECTROMAGNETIC WAVES 

PART I—ELECTROMAGNETIC WAVES 
IN A HOMOGENEOUS MEDIUM 

In the solution of any electromagnetic problem the fundamental 
relations that must be satisfied are the four field equations 

curl H = if) + i I 
curl E = —É II 
div D = p III 
div B = 0 IV 

In addition there are three relations that concern the characteristics 
of the medium in which the fields exist. These are 

D = eE (5-1) 
B = µH (5-2) 
i = crE (5-3) 

where e, µ, and cr are the permittivity, permeability, and conductiv-
ity of the medium, which is assumed to be homogeneous, isotropic, 
and sourcefree. A homogeneous medium is one for which the quan-
tities e, p, and a are constant throughout the medium. The medium 
is isotropic if E is a scalar constant, so that D and E have everywhere 
the same direction. The form of Maxwell's equations, given by I 
and II, is for sourcefree regions, that is, regions in which there are 
no impressed voltages or currents (no generators). The relations 
of the fields to their sources will be considered in chap. 10 and 

subsequent chapters. 
When the relations (1), (2), and (3) are inserted in I and II, 

Maxwell's equations become differential equations relating the 
electric and magnetic intensities E and H. If they are then solved 
as simultaneous equations, they will determine the laws which both 
E and H must obey. 

112 
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5.01 Solution for Free-space Conditions. Before obtaining the 
solution for the general case it is instructive to consider the simple, 
but important, particular case of electromagnetic phenomena in 
free space—that is in a perfect dielectric containing no charges and 
no conduction currents. For this case the field equations become 

curl H = Ée 
curl E = 
div D = 
div B = 

Differentiate (4) with respect to time. Since the 
is a differentiation with respect to space, the order of 
may be reversed, that is, 

a curl H 
— curl É at 

Also since E and et are independent of time 

b = 
È = 

so that there results 

curl fi = EË 

(5-4) 
(5-5) 
(5-6) 
(5-7) 

curl operation 
differentiation 

82E 
The symbol Ë means -w • 

Take the curl of both sides of (5) and using (9), obtain 

curl curl E = -is curl É 

Substitute eq. (10) into (11) 

curl curl E = -12EË 

It was shown in identity (1-28) that 

curl curl E = grad div E - D'E 

Combine this equation with (12) to obtain 

grad div E - V2E = - eteÉ 

but div E = 1-  div D = 0 
e 

(5-8) 
(5-9) 

(5-10) 

(5-11) 

(5-12) 

(5-13) 
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therefore eq. (13) becomes 
V2E = PEË (5-14) 

This is the law that E must obey. 
Differentiating (5) with respect to time and taking the curl of 

(4) it will be found on combining that H obeys the same law, viz. 

V2I-1 11E14 (5-15) 

Equations (14) and (15) are known as the wave equations. Thus 
the first condition on either E or H is that it must satisfy the wave 
equation. (Note that although E and H obey the same law, E is 

not equal to H.) 
5.02 Uniform Plane Wave Propagation. The wave equation 

reduces to a very simple form in the special case where E and H 
are considered to be independent of two dimensions, say y and z. 

Then 

so that (14) becomes 

02E 
= — 

ax2 

a2E 02E 
ax2 = "L6 at2 

(5-16) 

Vector eq. (16) is equivalent to three scalar equations, one for 
each of the scalar components of E. In general, for uniform plane 
wave propagation in the x direction, E may have components E„ 
and E, but (as will be seen later) not E. Without loss of generality 
attention can be restricted to one of the components, say Ey, know-
ing that results for Ey will be similar to those obtained for E„. 

Then the equation to be solved has the form 

02E., = 024, 
ax2 at2 

(5-16a) 

Equation (16a) is second-order partial differential equation, 
which occurs frequently in mechanics and engineering. For exam-
ple it is the differential equation for the displacement from equi-
librium along a uniform string. Electrical engineers will recognize 
it as the differential equation for voltage or current along a lossless 
transmission line. Its general solution is of the form 

E = fi(x — vot) f2(x vot) (5-17) 
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where vo = 1/-Y7.€ and fl and f2 are any functions (not necessarily 
the same) of (x — vot) and (x vot) respectively. The expression 
f(x — vot) means a function f of the variable (x — vot). Examples 
are, A cos /3(x — vot), C ek(z—vot), — vot, etc. All of these expres-
sions represent wave notion. 
A wave* may be defined in the following way: If a physical 

phenomenon that occurs at one place at a given time is reproduced 

vo ) 
1. e 

FIG. 5-1. A wave traveling in the positive z direction. 

at other places at later times, the time delay being proportional 
to the space separation from the first location, then the group of 
phenomena constitute a wave. Note that a wave is not necessarily 
a repetitive phenomena in time. Those who survive a tidal wave 
are thankful for this. 

The functions fi(x — vot) and f2(x vot) describe such a wave 
mathematically, the variation of the wave being confined to one 
dimension in space. This is shown by Fig. 5-1. 

If a fixed time is taken, say ti, then the function fi(x — vat') 
becomes a function of x since vcti is a constant. Such a function 
is represented by the first curve. If another time, say t2, is taken, 

* The term wave also has an entirely different usage, viz.: a recurrent function 
of time at a point, as in the expression sinusoidal voltage wave. Usually there 
will be no doubt as to which kind of wave is meant. 
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another function of x is obtained, exactly the same shape as the first 
except that the second curve is displaced to the right by a distance 
vo(t2 — ti). This shows that the phenomenon has traveled in the 
positive x direction with a velocity vo. 

On the other hand, the function 12(z vot) corresponds to a wave 
traveling in the negative x direction. Thus the general solution 
of the wave equation in this case is seen to consist of two waves, one 
traveling to the right (away from the source), and the other travel-
ing to the left (back toward the source). If there is no reflecting 
surface present to reflect the wave back to the source, the second 
term of ( 17) is zero and the solution is given by 

E = fi(x — vot) (5-18) 

Problem 1. Does the function ex-von represent a wave if k is a real 
number? Sketch it as a function of x for several instants of time. 

5.03 Sinusoidal Time Variations. In solving a one-dimensional 
wave equation, such as (16a), no restriction is put upon how E and H 
might vary with time, and the functions fi and f2 of eq. (17) can be 
any functions of (x — vot). In practice most generators produce 
voltages and currents, and hence electric and magnetic fields, which 
vary sinusoidally with time (at least approximately). Even where 
this is not the case any periodic variation can always be analysed 
in terms of sinusoidal variations with fundamental and harmonic 
frequencies, so it is customary in most problems to assume sinusoidal 
time variations. This can be expressed by writing, for example, 

E = Eo cos cot (5-19a) 
or E = Eo sin cut (5-19b) 

where f = co/27 is the frequency of the variation. In electrical 
engineering it is more usual to express sinusoidal time variations 
in the exponential form 

E = Eo (5-20) 

where Eo = Eo(cos cot j sin cot). 
It is seen that the real part of (20) is equal to (19a), and the 

imaginary part is equal to (19b).* In working a problem, the 
exponential form (that is, both real and imaginary parts) is carried 
through to the end, but only the real part or the imaginary part of 
the final answer is used, the other part being discarded. Use of the 
* This, of course, assumes that Eo is real. 
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real part corresponds to starting with Eo cos cot, while use of the 
imaginary part corresponds to starting with ( 19b). The use of 
this exponential form will be treated more fully in the next chapter.* 

It will be observed that if 

E = E0 ei‘" 

then —8E = jwE0 eie at 
= jwE (5-21) 

and E = (5-22) 

Also f  E dt (5-23) 
3(.0 

Assuming that the variation with time of all fields and currents is 
represented by ei'd, eqs. (4) and (5) can be written 

curl H = jwEE (5-24) 
curl E = —jcoµ}1 (5-25) 

Differentiating (24) with respect to time and taking the curl of (25) 
and combining gives 

curl curl E = 0)21.LEE 

Making use of the identity ( 1-28) of chap. 1, and the fact that 
div E = 0 for this case 

`72E = —(.02µEE (5-26) 

For the case of no variation of E with respect to y or z this results 

* The correctness of the results obtained in carrying both real and imaginary 
parts through the problem, and using only the real (or the imaginary) part of 
the final solution, depends on the linearity of the equations. In power calcu-
lations the relations are no longer linear, and caution must be observed if 
correct results are to be obtained. For example, writing 

V = V o ei.,g I = Ioei 
it is not correct to say, where Vo and /0 are real, 

W = Vo ebero = Voro 

the real part of which would be 

W = Re (VoIo eti‘") = V olo cos lot 

This equation indicates that the average power over a complete cycle would 
be zero, an incorrect result. However, it can be shown (see chap. 6) that when 
Vo and /o are expressed in the complex form the correct value for real power is 
given by 

W (real) = 3,¡ Re ( V010*) 

where 10* is the complex conjugate of /0. 
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in an equation corresponding to (16) 
a2E 
= - C,J21.LEE ax2 

(5-27) 

Again considering only the Ei, component, a solution may be written 

in the form 
Et, = E' e-jc,Vîte + E" e+i'Vi-ex 
= E' e-ex ± E" e+ex 

where e = v—ge 
Showing the time variation explicitly by writing 

E' = E0' ei't E" = Eo" 

eq. (28) becomes 
Ey = E,' e14,1-te.) E0,, eic.t4-0.) 

(5-28) 

(5-29) 

This equation represents the sum of two waves traveling in opposite 
directions. If only the real part of the expression is used, the solu-

tion has the form 

= E0' cos (cot — px) Eo" cos (wt Px) (5-30) 

whereas, if only the imaginary part is used, there results 

E, = Eo' sin (cut — Px) Eo" sin (cot -I- Ox) (5-31) 

Equation (30) or (31) is a special case of eq. ( 17), which is obtained 
when a sinusoidal time variation is assumed. It is seen that in a 
homogeneous lossless medium the assumption of sinusoidal time 
variations results in space variations that are also sinusoidal. 

The wave represented by the first term of eq. (30) is sketched in 
Fig. 5-2 for successive instants of time. 

v-
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It progresses in the positive x direction with a velocity co/0. This 
becomes apparent by noting that a wave crest or maximum value of 
Ey occurs when 

ot — z = 0 (or any even multiple of r) (5-32) 
In order to always remain with a crest, it is necessary to move in 
the positive x direction with a velocity 

X Ca 

t 
(5-33) 

so that (32) is always satisfied. The wave, represented by the first 
term of eq. (30) and sketched in Fig. 5-2, is called a traveling wave 
(in this case it is an unattenuated traveling wave) to distinguish it 
from a standing wave, which does not progress. 

The distance between adjacent crests or any two corresponding 
points on adjacent waves is the wavelength X, and the frequency 
with which the crests appear at a given point is the frequency f. 
It is evident that the velocity with which the wave is propagating 
in the x direction is also given by 

v = Xf (5-34) 

Combining (33) and (34) = xf a 
2r 

showing that = (5-35) 

0 is the phase shift constant and is a measure of the phase shift 
(in radians) per unit length. Expression (35) is a statement of the 
fact that the phase shifts 2ar radians, or one complete cycle, in a 
distance of one wavelength. 

5.04 Uniform Plane Waves. Equation (18) is a solution of the 
wave equation for the particular case where the electric intensity 
is independent of y and z and is a function of x and t only. Such a 
wave is called a uniform plane wave. A plane wave is one for which 
the phase is the same for all points on a plane surface. If the 
amplitude is also constant over this plane surface, it is a uniform 
plane wave. Although this is a special case of electromagnetic 
wave propagation, it is a very important one practically and will be 
considered further. 

The plane-wave equation 

a2E 02E 

ie 
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may be written in terms of the components of E as 

82E. /92E 
ax 2 . = Pe (5-36a) at2 
a2E„ a2E„ 

= (5-36b) ax2 at2 
82E. a2E, 
2 = Pe (5-36e) ax at2 

In a region in which there is no charge density 

1  div E = cliv D = 

That is 
aEz aE„ aE, 
ax ay -r- az = ° 

For a uniform plane wave in which E is independent of y and z, 
the last two terms of this relation are equal to zero so that it reduces 
to 

Therefore there is no variation of E. in the x direction. From 
eq. (36a) it is seen that the second derivative with respect to time 
of E. must then be zero. This requires that E. be either zero, 
constant in time, or increasing uniformly with time. A field satis-
fying either of the last two of these conditions would not be a part 
of the wave motion, and so E. can be pit equal to zero. Therefore 
a uniform plane wave progressing in the x direction has no x com-
ponent of E. A similar analysis would show that there is no x 
component of H. It follows, therefore, that uniform plane electro-
magnetic waves are transverse and have components of E and H 
only in directions perpendicular to the direction of propagation. 

Relation between E and H in a Uniform Plane Wave. For a 
uniform plane wave traveling in the x direction E and H are both 
independent of y and z, and E and H have no x component. In 
this case 

aE,. aE, k 
-l-curl E = 

ax - ax 
aH, . aH, curl H .... — j + ax k 
ax 
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Then the first Maxwell Equation (I) can be written 

k = (aE„  3 + a Ez k) 

and the second equation (II) becomes 

ax  aE axY.' 14 ( at at — 
am, 4 aHz b.) z aE 

Equating j terms and then the k terms yields the four relations 

aH, aE,, 
ax e at 
aH„ aE. 
ax e at 
aEz aH,, 
ax = 11 at 
aE  aHz 
ax .=— L at 

Now if E„ = fi(x — vot), where vo = 1/vriTe, then 

aE, _  aj1 a(x — vot)_ afi  
at — a(x — vot) at v° a(x — vot) 

This is generally written as 

aE,, at = ,(x — vot) &(x — vot) = —vofi'(x — vot) at 

where fi(x — vot) means 
afi(x — vot)  
a(x — vot) 

aE,, 
Substituting for in (37a) above gives 

at 
aHz 

= voefl'(x — vot) ax 
Then 

H, = 

Now 

afi(x — vot) — vot) a(x — vot)  
ax Ji lx — vot) ax  

121 

(5-37a) 

(5-37b) 

(5-37c) 

(5-37d) 
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Hence 
H.= f Of ,(x — vot) dx e 

N g J ax 

— vot) -F C 

= E„ C (5-38) 

The constant of integration C that appears indicates that a field 
independent of x could be present. Inasmuch as this field would 
not be a part of the wave motion, it will be neglected and the rela-

tion between H. and Ey becomes 

or 
E„ 
Hz= 

Similarly it can be shown that 

Ez 
Fly = E 

E = N/Ey2 E.2 and H = -VW+ Hy2 
where E and H axe the total electric and magnetic intensities, there 

also results 

Since 

(5-39) 

H = 
E 

Equation (41) states that in a traveling* plane electromagnetic 
wave there is a definite ratio between the amplitudes of E and H 
and that this ratio is equal to the square root of the ratio of perme-
ability to the dielectric constant of the medium. Since the units 
of E are volts per meter and the units of H are amperes per meter, 

the ratio 

(5-40) 

_ H  E= jje: 
E 

* The term traveling wave is used to indicate that the wave is progressing 
in one direction and there is no standing wave (see section on reflection). 
When there is a reflected wave resulting in a standing-wave distribution, the 
ratio E/H can have any value between zero and infinity. 

(5-41) 
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will have the dimensions of impedance or ohms. For this reason 

.,rit is customary to refer to the ratio -`± as the characteristic imped-
ance or intrinsic impedance of the (nonconducting) medium. For 
free space 

so that 

= 1.4 = 41- X 10-7 

1  
e = — 367 X 109 

= \FLI 1211r = 377 ohms 
e Ev 

hemys/m 

f/m 

For any medium, whether conducting or not, the intrinsic impedance 
is designated by the symbol n. When the medium is free space or 
a vacuum, the subscript e is used. That is, the intrinsic impedance 
of free space is 

ny = .‘127.21 377 ohms 
e,  

Polarization. The plane wave just considered has no x compo-
nent of electric field (that is, no component of E in the direction of 
propagation), but in general would have components Ei, and E. 
If E = 0 and only E„ has value the wave is said to be polarized in 
they direction. If E„ = 0 but E, has value the wave would be polar-
ized in the z direction. If both E„ and E„ components are present 
and are in time phase, the resultant electric field has a direction 
dependent on the relative magnitude of E„ and E. The angle 
which this direction makes with the y axis is tan-1 E,/E„ and this 
angle will be constant with time. In all of the above cases in which 
the direction of the resultant vector is constant with time the wave 
is said to be linearly polarized, and the direction of polarization is 
just the direction of the electric vector.* 

If the E„ and E, components are not in time phase, that is, if at 
a given point they reach their maximum values at different instants 
of time, then the direction of the resultant electric vector will vary 
with time. In this case the locus of the end point of the resultant E 
will be an ellipse and the wave is said to be elliptically polarized. 

* In optics the plane of polarization is taken as being that plane in the 
direction of propagation that contains the magnetic vector H. 
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Fia. 5-3. Linear, elliptical, and circular polarization. 

In the particular case where Ei, and Ez have equal magnitudes and 
a 90° time phase difference, the locus of the resultant E is a circle 
and the wave is circularly polarized. 

5.05 The Wave Equations for a Conducting Medium. In the 
foregoing sections Maxwell's equations were solved for the par-
ticular case of a perfect dielectric, such as free space, in which there 
were neither charges nor conduction currents. For regions in 
which the conductivity is not zero and conduction currents may 
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exist, the more general solution must be obtained. It follows in a 
manner similar to the simpler case already considered. 

Recall Maxwell's equations: 

curl H = éÉ 4- i 

curl E --- —,1171 II 

If the medium has a conductivity « (mhos/m), the conduction 
current density will be given by Ohm's law:* 

i = (5-42) 

curl H = eE crE (5-43) 

Again assuming that all fields and currents vary with time as 
eedg so that, for example, 

so that eq. I becomes 

= jcoE 
eq. (43) becomes 

curl H = (cr ja,€)E 

Differentiating with respect to time gives 

curl II = jc0(0- julE)E 

(5-44) 

(5-45) 

Take the curl of both sides of equation II and then substitute into 
it eq. (45) 

curl curl E = —µ curl Él 
= —jcup(cr jcoe)E 

Recall that 

curl curl E = grad div E — V2E 

Combining these last two equations, there results 

V2F — jcup(cr jcue)E = grad div E (5-46) 

Now for any homogeneous medium in which e is constant 

divE = --1 div D 

But div D = p, and since there is no net charge within a conductor 

Equation (42) is the vector statement (applicable to an elemental volume) 
of the more familiar relation / V1R (see problem 7, chap. 3). 
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(although there may be a charge on the surface), the charge density 
p equals zero* and therefore 

div D = 

Equation (46) then becomes 

V2E — jzog(cr jc.ue)E = (5-47) 

This is the wave equation for E. The wave equation for H is 
obtained in a similar manner. 

curl curl H = (o- -I- jco€) curl E 
curl E = —jcupH 

grad div H — V211 = (—jcom)(o. j.:oe)H 

1  But div = - div B = 0 

Therefore V2FI — (jcop)(o- jcoe)FI = 0 (5-48) 

This is the wave equation for H. 
Equations (47) and (48) are the general wave equations for a 

homogeneous conducting medium and sinusoidal time variations. 
Wave Propagation in a Conducting Medium. The solutions of 

general wave eqs. (47) and (48) in a conducting medium will as 
before yield expressions for a wave. In this case, however, on 
account of the finite conductivity, there will be loss in the medium 
and the wave will be attenuated as it progresses. It is desirable 
to know the value of the attenuation constant in terms of the 
constants of the medium. 

Equation (47) may be written in the form 

where 

V 2E 1, 2E = 

72 = (.iwil)(0" iwe) 

(5-49) 

* The statement of no net charge within a conductor is consistent with our 
notion of current flow as a drift of free negative electrons through the positive 
atomic lattice of the conductor. Within any macroscopic element of volume 
the positive and negative charges are equal in number (on the average), and 
the net charge is zero. It is easily shown for steady-state sinusoidal time 
variations that div D = 0 (and therefore p = 0) in conductors is a direct 
consequence of Maxwell's equations and Ohm's law (see problem 3). It can 
also be shown that if a charge ever were placed within a conductor (in some 
manner not explained) the " transient time" or " relaxation time" required for 
this charge to appear on the surface would be exceedingly small for any materials 
considered to be conductors (see problem 4). 
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In general, the constant -y is complex and has real and imaginary 
parts designated by a and respectively. That is, y = a -F jfl. 

Again consider a uniform plane wave traveling in the x direction. 
For this case, (49) becomes 

a 2E 
= „,2r. (5-50) ax2  

A possible solution for (50) would be 

E = E' e-liz 

For reasons, which will become apparent, use the minus sign and 
consider the solution 

E = E' e-7e (5-51) 

When E' is expressed explicitly as a function of time as for example 

E' = Eo elwt 
eq. (51) can be written 

E = Bo em e—.7e 
= E0 eat e—ax e—j13x 
= E0 eic.g-tes) 

(5-52) 

Equation (52) is the equation of a wave moving in the x direction 
with a velocity CO The wave is attenuated by the factor e—ar. 
a and p are the real and imaginary parts respectively of 

= V(izoeh)o- +J.:0E) 

The constant y is known as the propagation constant for the 
wave. As is seen from eq. (52), a, the real part of 7, is a measure 
of the rate at which the wave is attenuated as it progresses through 
the medium. "3, the imaginary part of y, is the phase shift per unit 
length for the wave. Since the phase shifts through a complete 
cycle, or 2r radians, for each wave length, 

2r 
= 

The velocity of propagation of the wave, or the phase velocity is 
given by 

= (;21 
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In terms of the " primary" constants of the medium, that is u, µ, 

and e, the values of a and fi are 

a = real part of -V(jcup)(cr jcue) 

2 

= :2„ — 

= co + —%ico 2 ± 

(5-53) 

(5-54) 

Problem 2. From the expression y ---- Vjwµ(cr jwe) derive expres-
sions (53) and (54). 

Problem 3. Using Maxwell's equation I show that 

div D = 0 in a conductor, 

if Ohm's law and sinusoidal time variations (i.e., as em) are assumed. 

,--Problem 4. Using div D = p, Ohm's law, and the equation of con-
tinuity show that if at any instant a charge density p existed within a 
conductor, it would decrease to 1/e times this value in a time ¿lu seconds. 
Calculate this time for a copper conductor. 

5.06 Conductors and Dielectrics. In electromagnetics, mate-
rials are divided roughly into two classes; conductors and dielectrics 
or insulators. The dividing line between the two classes is not sharp 
and some media (for example the earth) are considered as conductors 
in one part of the radio frequency range, but as dielectrics (with loss) 
in another part of the range. 

In Maxwell's first equation: 

Curl H = (rE jamE 

the first term on the right is conduction current density and the 
second term is displacement current density. The ratio cr/we is 
therefore just the ratio of conduction current density to displace-
ment current density in the medium. Hence, cr/w6 = 1 can be 
considered to mark the dividing line between conductors and dielec-
trics. For good conductors such as metals oicue is very much greater 
than unity over the entire radio frequency spectrum. For example 
for copper, even at the relatively high frequency of 30,000 mc, 
cr/wE is about 3 • 5 X 108. For good dielectrics or insulators u/coe 
is very much less than unity in the radio frequency range. For 
example, for mica at audio or radio frequencies olwE is of the order 
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of 0.0002. For good conductors 0- and e are nearly independent of 
frequency, but for most materials classed as dielectrics the " con-
stants" u and e are functions of frequency. It has been found for 
these materials that the ratio 010.1€ is often relatively constant over 
the frequency range of interest. For this and other reasons the 
properties of dielectrics are usually given in terms of the dielectric 
"constant" e and the ratio cr/we. Under these circumstances the 
ratio cr/we is known as the dissipation factor D of the dielectric. For 
reasonably good dielectrics, that is those having small values of D, 
the dissipation factor is practically the same as the power factor 
of the dielectric. Actually, power factor is given by 

P.F. = sin 
where = tan--' D 

Dissipation factor and power factor differ by less than 1 per cent 
when their values are less than 0.15. 

Most materials used in radio are required either to pass conduc-
tion currents readily or to prevent the flow of conduction current as 
completely as possible. For this reason most materials met with 
in practice will fall into either the good conductor or the good 
insulator class. The important practical exception is the earth, 
which occupies an in-between position throughout most of the radio 
frequency spectrum. This case will be treated in detail in the 
chapter on propagation. For both good conductors and good 
dielectrics certain approximations are valid which simplify con-
siderably the expressions for a and #. 

Wave Propagation in Good Dielectrics. For this case olwe « 1 
so that it is possible to write to a very good approximation 

‘
u  11. + 2 -T -2• ( 1 

CO E 

where only the first two terms of the binomial expansion have been 
used. Then expression (53) for a becomes 

,2 

N F L-) ( (5-55) 
2 e 

This expression may be compared with the expression for the attenu-
ation factor of a low-loss transmission line having zero series 
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resistance. In that case the expression for a is 

G \TE G 0 = i zio 

The expression for fl reduces in a similar manner 

[15.06 

/3 .‘11. - ± 11 = Ce VT" (1 + 8„2,2) 
(r2 

(5-56) 

is the phase shift factor for a perfect dielectric. The effect 
of a small amount of loss is to add the second term of (56) as a small 
correction factor. The velocity of the wave in the dielectric is given 

by 
1 

vit- ± 8,02€2) 
0.2 

0.2 
(5-57) 

Where vo = 1./Vrie is the velocity of the wave in the dielectric 
when the conductivity is zero. The effect of a small amount of 
loss is to reduce slightly the velocity of propagation of the wave. 
It will be shown later that the general expression for the intrinsic 
or characteristic impedance of a medium which has a finite conduc-

tivity is 

J 
No• + i-uejcue 

Using the same approximations as above, this becomes for a good 

dielectric 

= 

Since N/p/o is the intrinsic impedanca of the dielectric when e -= 0, 
it is seen that the chief effect of a small amount of loss is to add a 
small reactive component to the intrinsic impedance. 
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Wave Propagation in a Good Conductor. For this case —a >> 

so that the expression for may be written 

7 = V(jcuper) (1 j 

1,/jcio• = /45° 

Therefore 
= = 

The velocity of the wave in the conductor will be 

and the intrinsic impedance of the conductor is 

It is seen that in good conductors where u is very large, both a and 
09 are also large. This means that the wave is attenuated greatly 
as it progresses through the conductor and the phase shift per unit 
length is also great. The velocity of the wave, being inversely 
proportional to ft, is very small in a good conductor, and is of the 
same order of magnitude as that of a sound wave in air. The char-
acteristic impedance is also very small and has a reactive compo-
nent. The angle of this impedance is always 45 degrees for good 
conductors. 

Dcpth of Penetration. In a medium which has conductivity the 
wave is attenuated as it progresses owing to the losses which occur. 
In a good conductor at radio frequencies the rate of attenuation is 
very great and the wave may penetrate only a very short distance 
before being reduced to a negligibly small percentage of its original 
strength. A term that ha à significance under such circumstances 
is the depth of penetration. The depth of penetration, (3, is defined 
as that depth in which the wave has been attenuated to 1/e or 
approximately 37 per cent. of its original value. Since the amplitude 
decreases by the factor e-ax it is apparent that at that distance x, 
which makes ax = I, the amplitude is only 1/c times its value at 
x = O. By definition this distance is equal to (3, the depth of pene-
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tration; so 

cyb = 1 or o = --
a 

The general expression for depth of penetration is 

1 
= 
a 

1 

co Nie.lf (\h. -coe--22e- — 1) 2 2 

For a good conductor the depth of penetration is 

8 = _1 ___.2 
a COMO' 

As an example of the order of magnitude of 3 in metals, the depth 
of penetration of a megacycle wave into copper which has a conduc-
tivity (r = 5.8 X 107 mhos per meter and a permeability approxi-
mately equal to that of free space is 

8 
2 X 107  

= Ni2 = 0.0667 mmir X 106 X 47r X 5.8 X 107 

At 100 mc it is 0.00667 mm, whereas at 60 cps, it is 8.67 mm. 

Problem 5. Earth is considered to be a good conductor when ce/cr « 1. 
Determine the highest frequencies for which earth can be considered a 
good conductor if « 1 means less than 0.1. Assume the following 
constants: 

= 5 X 10-3 mho/meter e = 10e. 

Problem 6. A copper wire carries a conduction current of 1 amp. 
Determine the displacement current in the wire at 100 mc. (Assume that 
copper has about the same permittivity as free space, that is e = E.. For 
copper cr = 5.8 x 107 mhos/m.) 

PART II—REFLECTION AND REFRACTION 
OF PLANE WAVES 

5.07 Reflection by a Perfect Conductor—Normal Incidence. 
When an electromagnetic wave traveling in one medium impinges 
upon a second medium having a different dielectric constant, per-
meability, or conductivity, the wave in general will be partially 
transmitted and partially reflected. In the case of a plane wave 
in air incident normally upon the surface of a perfect conductor, 
the wave is entirely reflected. For fields that vary with time 
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neither E nor H can exist within a perfect conductor so that none 
of the energy of the incident wave can be transmitted. Since there 
can be no loss within a perfect conductor, none of the energy is 
absorbed. As a result the amplitudes of E and H in the reflected 
wave are the same as in the incident wave, and the only difference 
is in the direction of power flow. If the expression for the electric 
field of the incident wave is 

E. ei(t-13.) 

and the surface of the perfect conductor is taken to be the x = 
plane, the expression for the reflected wave will be 

E,. ei(6"4-Pm) 

where Er Must be determined from the boundary conditions. Inas-
much as the tangential component of E must be continuous across 
the boundary and E is zero within the conductor, the tangential 
component of E just outside the conductor must also be zero. This 
requires that the sum of the electric intensities in the initial and 
reflected waves add to give zero resultant intensity in the plane 
x = O. Therefore 

= —Ei 

The amplitude of the reflected electric intensity is equal to that 
of the initial electric intensity, but its phase has been reversed on 
reflection. 

The resultant electric field at any point a distance —x from the 

X = 0 plane will be the sum of the intensities of the incident and 
reflected waves at that point and will be given by 

Er = E €2(wt-fix) E,. 
_ eicwt+0.1 

= E eiwe(e-or — e-Hoz) 

= — 2jEi sin fix ei't (5-58) 

Equation (58) shows that the incident and reflected waves com-
bine to produce a standing wave, which does not progress. The 
magnitude of the electric field varies sinusoidally with distance 
from the reflecting plane. It is zero at the surface and at multiples 
of half wavelength from the surface. It has a maximum value of 
twice the electric intensity of the incident wave at distances from 
the surface that are odd multiples of a quarter wavelength. 
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Inasmuch as the boundary conditions require that the electric 
intensity be reversed in phase on reflection in order to produce 
zero resultant field at the surface, it follows that the magnetic 
intensity must be reflected without reversal of phase. If both 
magnetic and electric intensities were reversed, there would be no 
reversal of direction of energy propagation, which is required in 

1= 74 

= %,ery 
f. 0 I 

A377 .5, 

tr 
U. 

tki a. 

Fia. 5-4. Ctancling waves cf E and II. 

this case. Therefore, the phase of the reflected magnetic intensity 
H, is the same* as that of the incident magnetic intensity Hi at the 
surface of reflection x = O. The expression for the resultant mag-
* An alternative way of arriving at this same result is from a consideration 

of current flow in the conductor. If it is assumed for the incident wave, which 
is traveling to the right in the positive x direction, that Ei is in the positive y 
direction and Hi is in the positive z direction (it will be seen later that the 
direction of energy propagation is always the direction of the vector E X H), 
the current flow in the conductor will be in the same direction as the incident 
electric field, that is, in the positive y direction. This current flow produces 
an electric field —E, to oppose the incident field (Lenz's law) and produces a 
magnetic field, which is shown by application of the right hand rule to be in 
the positive z direction. Therefore the magnetic field of the reflected wave 
has the same direction as in the incident wave. 
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netic field vill be 

H T = Hi ei(«"-Be ll, c eLo 

Ruce.1-13.) cic.t+t3.1 

= 2111 cos Px eiwg (5-59) 

The resultant magnetic intensity II also has a standing wave dis-
tribution. In this case, however, it has maximum value at the 
surface of the conductor and at multiples of a half wavelength from 
the surface, whereas the zero points occur at odd multiples of a 
quarter wavelength from the surface. From the boundary con-
ditions for H it follows that there must be a surface current of 
J amperes per meter, such that J = HT (at x = 0). 

Since Ei and Hi were in time phase in the incident plane wave, 
a comparison of (58) and (59) shows that ET and HT are 90 degrees 
out of time phase because of the factor j in (58). This is as it 
should be, for it indicates no average flow of power. This is the 
case when the energy transmitted in the forward direction is 
equalled by that reflected back. 

That ET and HT are 90 degrees apart in time phase can be seen 
more clearly by rewriting (58) and (59). Replacing —j by its 
equivalent e-i(r") and combining this with the eiwt term to give 
ek."-ormi eq. (58) becomes 

ET = 2E1 sin 13x olca-(ri:)1 (5-58a) 

Recalling that only the real (or only the imaginary) part of the 
egú"-(T/2)1 term is to be used finally, (58a) means 

ET = 2E1 sin 13x cos (cot — 7-2) (5-58b) 

Likewise rewriting (59), 

hr = 2111 cos flx cos (cut) (5-59a) 

Comparison of (58b) and (59a) shows that ET and hr differ in time 
phase by 7/2 radians or 90 degrees. 

5.08 Reflection by a Perfect Dielectric—Normal Incidence. 
When a plane electromagnetic wave is incident normally on the 
surface of a perfect dielectric, part of the energy is transmitted 
and part of it is reflected. A perfect dielectric is one with zero 
conductivity, so that there is no loss or absorption of power in 
propagation through the dielectric. 
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As before, consider the case of a plane wave traveling in the 
x direction incident on a boundary that is parallel to the x = 
plane. Let Ei be the electric intensity of the incident wave striking 
the boundary, Er be the electric intensity of the reflected wave 
leaving the boundary in the first medium, and Et be the electric 
intensity of the transmitted wave propagated into the second 
medium. Similar subscripts will be applied to the magnetic inten-
sity H. Let el and pi be the constants of the first medium and 
e2 and I.t2 be the constants of the second medium. Designating by 

ni and /72, the ratios N/pi/ei and N/I.F2. the following relations will 
hold 

= — n1H, 

Et = n2H: 

The continuity of the tangential components of E and H require that 

+ H,. = Ht 
Ei = 

Combining these 

II + 1  1= — ( E¡ — Er) = Ht = — (Ei ± Er) 
n1 772 

n2(Ei — Er) = ni(Ei ± Er) 

Ei(112 ni) = E,.( 2 + n1) 

_ /72 - /71 
Ei n2 + ni 

Also Ei ±  = 
fit 1 + Ei  

Furthermore 

2212 
n2 + nt 

_ _ n1 — n2 
TI7 Ei n1 + n2 

Ile _ ni Et _   
Hi n2 Ei ni ± n2 

(5-60) 

(5-61) 

(5-62) 

(5-63) 

The permeabilities of all known insulators do not differ appreciably 
from that of free space, so that pi = m2 = it,. Inserting this rela-
tion the above expressions can be written in terms of the dielectric 
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constants as follows: 

_  ei./ E2 — Veiv/el 

VIZ.772 

Er  — Nfei 
_ (5-64) 

E. N- /Z V„ 

• Et  2 •Vit  
VZ- . ± V E2 

H,  — Nfei 
(5-66) 

_  2 Nfe--2  

•‘/ 

5.09 Reflection by a Perfect Insulator—Oblique Incidence. If 
a plane wave is incident upon a boundary surface that is not parallel 

Similarly 

e; 

INCIDENT RAY 

BOUNDARY 
SURFACE/// //////// 

6' 2 

(5-65) 

(5-67) 

REFLECTED RAY 

TRANSMITTED RAY 

FIG. 5-5. Reflection and refraction. 

to the plane containing E and H, the boundary conditions are more 
complex. Again part of the wave will be transmitted and part of 
it reflected, but in this case the transmitted wave will be refracted; 
that is the direction of propagation will be altered. Consider 
Fig. 5-5, which shows a ray of the wave. (A ray is a line drawr 
normal to the equiphase surfaces.) 
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In the diagram the one side of the incident ray travels the dis-
tance CB, whereas the other side of the transmitted ray travels 
the distance AD and the left side of the reflected ray travels from 
A to E. If vi is the velocity of the wave in medium (1) and v2 is 
the velocity in medium (2), then 

CB vi 
AD = v2 

Now CB = AB sin 01 and AD = AB sin 02, so that 

sin 01 vt 
sin 02 v2 

In terms of the constants of the media, vi and v2 are given by 

1 1  
— _ -   
1441€1 VPv€1 

1 1 
V2 =   

"V P2E2 ViivE2 

Therefore 

\fi; sin 01 
sin 02 

Furthermore 
AE = CB 

and as a resu:t, sin 01 = sin 03, or 

01 = 03 

Et 
(5-68) 

(5-69) 

The angle of incidence is equal to the Etngle of reflection; the angle 
of incidence is related to the angle of refraction by eq. (68), which 
in optics is known as the law of sines, or Snell's law. 

In a later section it will be shown that the power transmitted 
per square meter in a wave is the vector product of E and H. 
Since E and II are at right angles to each other, in this case the 
power transmitted per square meter is equal to E2/n. The power 
in the incident wave striking AB will be proportional to 
(1/ 1)E 2 cos 01, that reflected will be (1 int)Er2 cos 01 and that 
transmitted through the boundary will be (1/ 2)E 2 cos 02. By the 
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conservation of energy 

—1 E2 cos 01 = —1 Er2 cos 01 --I-- —1 E2 cos 02 
171 ni .712 

E r2 nlEt2 COS 02 

Ei2 = 172E 2 cos 01 

Er2 E t2 COS 02 

E 2 ViiEi2 cos 01 
(5-70) 

It is necessary to consider separately two cases. The first of 
these is the case in which the electric vector is parallel to the 

(a) (b) 

FIG. 5-6. Reflection and refraction waves that have (a) per-
pendicular (horizontal) polarization, and (b) parallel (vertical) 
polarization. 

boundary surface or perpendicular to the plane of incidence. (The 
plane of incidence is the plane containing the incident ray and 
the normal to the surface.) This case is often termed horizontal 
polarization. In the second case the magnetic vector is parallel to 
the boundary surface, and the electric vector is parallel to the plane 
of incidence. This case is often termed vertical polarization. The 
two cases are shown in Fig. 5-6. The terms "horizontally and 
vertically polarized waves" refer to the fact that waves from hori-
zontal and vertical antennas, respectively, would produce these 
particular orientations of electric and magnetic vectors in waves 
striking the surface of the earth. However, it is seen that, whereas 



140 ELECTROMAGNETIC WAVES [15.09 

the electric vector of a " horizontally" polarized wave is horizontal, 
the electric vector of a " vertically" polarized wave is not wholly 
vertical but has some horizontal component. More significant 
designations are the terms " perpendicular" and " parallel" polariza-
tion to indicate that the electric vector is perpendicular or parallel 
to the plane of incidence. In wave guide work the terms transverse 
electric (TE) and transverse magnetic (TM) are used to indicate 
that the electric or magnetic vector respectively is parallel to the 
boundary plane. The reason for this will be discussed later. 

CABE I: Perpendicular (Horizontal) Polarization. In this case the 
electric vector E is perpendicular to the plane of incidence and parallel 
to the reflecting surface. Let the electric intensity Ei of the incident wave 
be in the positive x direction (outward in Fig. 5-6a), and let the assumed 
positive directions for E, and E, in the reflected and transmitted waves 
also be in the positive x direction. Then, applying the boundary condition 
that the tangential component of E is continuous across the boundary, 

Insert this in eq. (70) 

Ei E. = E, 
Et E, 
= 1 + — 

Ei 

E ,2 
E i2 = 1 — (I + Er)2 cos 02 

El Ei cos 0, 

1 (,r)2 = .\[€:«1L (i + cos 
E cos 01 

02 

1 E, r!"; (1 + Er)cos 82 
— Nei Ei cos 01 

E, -Vi-L cos 01 — N/i2 cos 02 

Ei cos 01 ± NA; cos 02 
Now from eq. (68) 

therefore 

cos 02 = NA2(1 — sin2 02) = Ve2 — ci sin' 01 

E, Ve-Lo cos 01 — N/e2 — el sin2 01 

E. COB 01 + Ve2 el sin' et 

cos 01 — V(e2/ei) — sin2 01 

cos 01 + N/(E2/€1) — sin2 01 

(5-71) 

(5-72) 

(5-72a) 
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Equation (72) gives the ratio of reflected to incident electric intensity for 
the case of a perpendicularly polarized wave. 
CASE II: Parallel ( Vertical) Polarization. In this case E is parallel to 

the plane of incidence and H is parallel to the reflecting surface. Again 
applying the boundary condition that the tangential component of E is 
continuous across the boundary in this case gives (Fig. 5-6b), 

(E; — E,) cos 01 = Eg cos 02 

Eg = Er) cos 01 
Ei cos 62 

Insert this in eq. (70) 

(Er) 2 = 1 _ [ill E,. 2 COS 01 
Eg \j €j \ Ei cos 02 

= E,.2 ( Ey cos 01 
1 — — 1 Ei2 €1 Eg cos 02 

1 ± = Nîl .1r) C°S ° I 
Ei El Eg cos 02 

El (I -I- rE-2 cos 01 = \ 172 cos 01 
‘, 1 

Ei Nei cos C/2) CI cos 02 

E, Vei cos 0i — NAT cos 02 

VE-2 COS 01 + NrEi cos 02 

N/72 cos 01 — Vel(1 — sin2 02) 

N/i2 cos 01 Vela — 81112 02) 

El 
Recall that sin2 02 = — sin2 01 

E2 

E, (e2/C1) CO8 01 - V(E2/Ei) — sin2 02 
Ei = (Wei) cos 01 + N/(52/€1) — sin2 01 

(5-73) 

Equation (73) gives the reflection coefficient for parallel or vertical polari• 
zation, that is, the ratio of reflected to incident electric intensity when E is 
parallel to the plane of incidence. 

Brewster Angle. Of particular interest is the possibility in 

eq. (73) of obtaining no reflection at a particular angle. This 
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occurs when the numerator is zero. For this case 

.\/E2 E2 
sin' 01 = — cos 01 

El El 

E2 

El 

(€12 - €22) 

€22 E22 
sin' 01 = —i — sin2 Oi 

El El 

S1112 01 = E2(E1 - E2) 

sin' 01 — 

cos2 01 — 

E2 

El -F E2 

El 

El + (2 

tan 01 = — 
ci 

(5-74) 

At this angle, which is called the Crewster angle, there is no 
reflected wave when the incident wave is parallel (or vertically) 
polarized. If the incident wave is not entirely parallel polarized, 
there will be some reflection, but the reflected wave will be entirely 
of perpendicular (or horizontal) polarization. 

Examination of eq. (72), which is for perpendicular polarization, 
shows that there is no corresponding Brewster angle for this 
polarization. 

5.10 Direction Cosines. Sometimes it is necessary to write the 
expression for a plane wave that is traveling in some arbitrary 
direction with respect to a fixed set of axes. This is most con-
veniently done in terms of the direction cosines of the normal to 
the plane of the wave. By definition of a uniform plane wave the 
equiphase surfaces are planes. Thus in the expression 

E = E 1 emt—(.,,)] 

for a wave traveling in the x direction, the planes of constant phase 
are given by the equation 

X = a constant 

For a plane wave traveling in some arbitrary direction, say the s 
direction, it is necessary to replace x with an expression that, when 
put equal to a constant, gives the equiphase surfaces. 

The equation of a plane is given by 

N • r = a constant 
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where r is the radius vector from the origin to any point P on the 
plane and N is the unit vector normal to the plane.* That this is 
so can be seen from Fig. 5-7, in which a plane perpendicular to the 
unit vector N intersects the y-z plane along the line A-A. The dot 
product N • r is the projection of the radius vector r along the 
normal to the plane, and it is apparent that this will have the 
constant value OM for all points on the plane. Now the dot 
product of two vectors is a scalar equal to the sum of the products 
of the components of the vec-
tors along the axes of the co-
ordinate system. Therefore 

N • r = /x ± my + nz (5-75) 

where x, y, z are the compo-
nents of the vector r and 1, m, 
n are the components of the 
unit vector N along the x, y, 
and z axes. The components 
1, m, and n are the cosines of 
the angles that the unit vector 
N makes with the positive z, y, 
and z axes, respectively, and 
are termed the direction cosines A' 
or direction components of the 
vector. 

The equation of a plane wave traveling in the direction N, 
normal to the planes of constant phase, can now be written as 

.1 N•r) 

E = El e'w v 

FIG. 5-7 

.f ix+mrns) 
= El e'w‘g (5-76) 

As an example of the use of such expressions for plane wave propa-
gation, the reflection of a plane wave obliquely incident upon a 
perfect conductor will be considered. 

5.11 Reflection by a Perfect Conductor—Oblique Incidence. 
lz° When a plane wave is incident upon a perfect conductor at an L, 

oblique angle, the wave is totally reflected with the angle of ici-

* In this section capital N rather than lower case n is used for the unit 
normal in order to avoid possible confusion with the direction cosine n, defined 
later. 
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dence equal to the angle of reflection. As in the case of reflection 
irom a dielectric, there will be two cases to consider, viz., E perpen-
dicular to the plane of incidence and E parallel to the plane of 
incidence. 

CASE I: E Perpendicular to the Plane of Incidence. Let the incident 
and reflected waves make angles Oi = O,.=O with the z axes as in Fig. 5-8. 
Because the directions of these two waves have oppositely directed com-
ponents along the z axis, there must be a standing wave distribution along 
this axis. In the y direction the incident and reflected waves both progress 

INCIDENT WAVE REFLECTED WAVE 

FIG. 5-8. Field pattern above a reflecting plane when the 
wave is incident at an oblique angle. (Perpendicular or horizontal 
polarization.) 

to the right with the same velocity so there will be a traveling wave in 
the positive y direction. That these conclusions are correct can be seen 
by adding the expressions representing the two waves. 

With the co-ordinate system chosen as shown in Fig. 5-8, the expression 
for the reflected wave is 

E (reflected) = E, 
v 

(5-77) 

where E,. is the amplitude of the electric intensity of the reflected wave at 
the plane of reflection and l', m', n' are the direction cosines of the normal 
(N') to the wave front of the reflected wave. For the wave normal of the 
reflected wave 

= o, m' = cos (11-7, — = sin 0, n' = cos 0 

so that (77) becomes 
j.(t_y sin 0+z cos 0) 

E E, e (5-78) 
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For the incident wave 

ir 
= 0, m -= cos(— 2 — 0) = sin 0, n = cos (r — 0) = — cos 0 

and 
y sin 0—z coe 0) 

&videos E. e v (5-79) 

From the boundary conditions 

E. = —Ei 

Therefore the total electric intensity (sum of incident and reflected intensi-
ties) will be 

y sin 0-3 cos 0\ y sin 0-1-z cos 0)] 

E Ei[eie(t— — e 

cos COB j.. (1 y sin 0) 

= 2jEi sin (flz cos 0) ei(«"--01/ 8U1 te) 

= 2jE. sin fizz ei(°t—i3e) (5-80) 

where (3 = co/v = 2r/X is the phase shift constant of the incident wave, 
13, = 13 cos 0 is the phase shift constant in the z direction, and 0„ = /3 sin 0 
is the phase shift constant in the y direction. Equation (80) shows a 
standing-wave distribution of electric intensity along the z axis. The 
wavelength X, (twice the distance between nodal points), measured along 
this axis, is greater than the wavelength X of the incident wave. The 
relation between the wavelengths is 

27 2r X  
= 0. = p cos O cos 0 

The planes of zero electric intensity occur at multiples of X./2 from the 
reflecting surface. The planes of maximum electric intensity occur at odd 
multiples of X./4 from the surface. 

The whole standing wave distribution of electric intensity is seen from 
eq. (80) to be traveling in the y direction with a velocity 

co 
14, — —   = 

sin 0 sin O 

This is the velocity with which a crest of the incident wave moves along 
the y axis. The wavelength in this direction is 

X 
'Ay = 

Sin 
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These relations between the velocities and wavelengths in the various 
directions are shown more clearly in Fig. 5-9, which shows successive 
crests of an incident wave intersecting with the y and z axes. For small 

FIG. 5-9. Relations between wavelengths and velocities in differ-
ent directions. 

angles of O it is seen that the velocity v„, with which a crest moves along 
the y axis, becomes very great, approaching infinity as O approaches zero. 
CASE II: E Parallel Lo the Plane of Incidence. In this case Ei and E,. will 

have the instantaneous directions 
shown because the components 
parallel to the perfectly conduct-
ing boundary must be equal and 
opposite. The magnetic intensity 
vector H will be reflected without 
phase reversal as an examination 
of the direction of current flow will 
show. The magnitudes of E and 
H will be related by 

PERFECT CONDUCTOR 

Fla. 5-10. Reflection of a parallel—or 
vertically—polarized wave. = = n 

For the incident wave the expression for magnetic intensity would be 

i ei.(1 V sin 9; z cos 0 H = H ) 

and for the reflected wave 

H 
( t y sin 0+, cos 8) 

= ei'l 
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and, since Hi H„ the total magnetic intensity is 

where, as before 

H = 21-li cos 13,z 

co 
13, = -v cos O 

0„ sin O 

(5-81) 

The magnetic intensity has a standing-wave distribution in the z direction 
with the planes of maximum H located at the conducting surface and at 
multiples of one-half X, from the surface. The planes of zero magnetic 
intensity occur at odd multiples of X,/4 from the surface. 

In adding together the electric intensities of the incident and reflected 
waves it is necessary to consider separately the components in the y and 
z directions. For the initial wave 

Ei E. = n sin 014 E„ = n cos 01 

For the reflected wave 

H, = Hi, E = n sin OH„ E, = —n cos OH, 

The total z component of electric intensity is 

= 2n sin OH; cos ,z ei(.t-Pyv) 

The total y component of electric intensity is 

E, = 2.bl cos OH; sin 13..z 

where /3, -v cos O and 13„ = -v sin O 

(5-82) 

(5-83) 

Both components of the electric intensity have a standing-wave distribu-
tion above the reflecting plane. However, for the normal or z component 
of E the maxima occur at the plane and multiples of )4/2 from the plane, 
whereas for the component of E parallel to the reflecting plane the minima 
occur at the plane and at multiples of X./2 from the plane. 

Problem 7. Sketch the planes of zero magnetic intensity, zero E., and 
zero E, for the case of oblique reflection with E parallel to plane of inci-
dence (Fig. 5-1C). 

5.12 The Transmission Line Analogy. The student familiar 

with ordinary transmission line theory cannot have failed to notice 
the similarity between the equations of wave propagation developed 
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in this chapter and those giving voltage and current distributions 
along uniform transmission lines. The similarity is especially 
marked in the expressions for the reflection coefficients in the two 
cases. This similarity is more than a coincidence. There exists a 
close analogy between the propagation of plane waves in a homo-
geneous medium and the propagation of voltage and current along 
a uniform transmission line. This analogy is so close that it can be 
used not only as an aid in obtaining an understanding of a new sub-
ject, but also to obtain the solutions to actual problems. Because 
of his background in transmission-line theory the engineer often 
finds himself able to write directly the solutions to electromagnetic 
wave problems, or at any rate to set them up in terms of familiar 
circuit concepts. For these reasons the analogy will be considered 
step-by-step in some detail in order that the similarities, and the 
differences, may be fully understood. 

For a uniform transmission line 
having the constants R, L, C and 
G per unit length, the voltage and 
current equations may be written 
in the differential form as 

ae ai 
-I- Lit -FRi= 0 

ai ae 
-1- C —at -1- Ge = 0 

(5-84a) 

For a homogeneous medium Max-
well's equations are 

aH 
curl E = —at 

curl H = e —aE + 0-E 
at 

For a uniform plane wave propa-
gating in the x direction and 
having only components E,, and 
H, these become 

aE7, 811, n 

ax e at = 
aE 

g e crE„ = 0 
ax at 

(5-84b) 

Inspection of these equations shows that the following quantities 

are analogous: 

e (volt)  E (volt/m) 
(amp)  H (amp/m) 
C (f/m)  e (f/m) 
L (henry/m)  i (henry/m) 
G (mho/m)  o (mho/m) 
R (ohm/m)  
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In this analogy there appears to be nothing corresponding to R. 
The reason for this will be seen later. If the voltages and currents, 
and electric and magnetic intensities are assumed to vary sinus-
oidally with time, so that 

e = V eice, 

eqs. (84) become* 

11V 
(R -F jcoL)/ = 

(5-85a) 
ai 

(G jcoC)V = 0 

= I elm', E,, = E ei.t.11. = H em 

aE 
+ (0 ± jaw )H = 

(5-85b) 
+ (cr jcoe)E 

Differentiating with respect to x, these equations combine to give 
the following second-order differential equations: 

a2v 
— (R jcuL)(G jcoC)V = 

a2I 
— — (E 4- jcoL)(G jcue)I = ax2 

(5-86a) 

a2E . 
—ax2 — + = o 

a2H 
— (3,1.L) (, + jcue)H = 

(5-86b) 

A possible solution for any of these equations would be of the form 

V, I, E, or H = .AE-7e (5-87) 

where 1,2 = (R jcuL)(G jcue) 

* In writing eqs. (85) each term really should be multiplied by the factor 
eiwg to express the variation with time. However, it is customary—and quite 
correct—to cancel out or divide through by the common time factor (em), 
leaving an equation expressing relations between amplitudes. Thus in eqs. (85), 
V, I, E, and H, as written, are functions of z but not of time. In order to 
differentiate with respect to time it is first necessary to reinsert the time varia-
tion by multiplying through the ei.e. After differentiating, the common time 
factor can again be dropped. 

Because the symbols V, I, E and II in this case are not functions of time, 
it would be correct to use total derivatives with respect to x instead of partial 
derivatives. However eqs. (85) are still true when the symbols V, I, E, and H 
(without subscripts) represent functions of time, as for example V =, V. eiwg. 
In this latter case partial derivatives would be required. Since the symbols 
without subscripts are used interchangeably to represent both instantaneous 
values and amplitudes of the quantities (for reasons discussed in chap. 6), 
the partial derivative signs will be used throughout. 
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for the eqs. (86a), and 

= (iwg)(a ico€) 

for the eqs. (86b). When the variation with time is expressed by 
reinserting the factor em", the first term of expression (87) represents 
a wave traveling to the right and the second expression represents a 

wave traveling to the left. 
An alternative solution to eqs. (86) is often used in transmission 

line theory. In this solution the exponentials are combined differ-
ently and the solution appears in terms of hyperbolic functions, 

and can be written 

V = A1 cosh -yx + B1 sinh -yx 
I = A2 cosh -yx -I- B2 sinh 

(5-88a) 

Let V = V3, I = IR at x = 
and V =- Vs, I = Is at x = Xi 

Substitute these in (88a) and find 
for the coefficients the values 

R  _R 
Ai = V3, El = NIG / 

A2 IR, B2 = NIGR ±± ii:Le VR 

E = Ai cosh yx B1 sinh -yx 1 
H = A2 cosh -yx + B2 sinh j 

(5-88b) 

Let E = ER, H R at x = 0 
and E = Es, H = Hs at x = xi 

Substitute these in (88b) and 
evaluate the coefficients. 

A1 = ER, El ="-

11 2 - R.Ry B2 = 

In transmission line theory it is customary to write 

Z = R jwL Y G jcoC 

la° Y NIG jwC 

where Zo is called the characteristic impedance of the transmission 

line. 
Similarly in wave theory it is customary to write 

_ A  
n + jcee 

where n is called the characteristic impedance or intrinsic impedance 
of the medium. 

In terms of these quantities, and writing L —xi eqs. (88) 
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become* 

Vs = Vs cosh 7L 
ZoIs sinh 

Is = In cosh 71. 
VR 
—Zo sinh 7L 

(5-89a) 

Es = ER cosh 7L 
sinh -yL 

Hs = HR cosh 7L 
ER . 

± smh yL 
17 

(5-89h) 

When the line is very long (or the homogeneous medium very thick) 
so that 71 is a large quantity, 

e7' 
cosh 7/ sinh 7/ 

and the ratios of voltage to current and E to H are seen from eqs. (89) 
to be — 

Vs Es = z, 
18 Ti-; 

The characteristic impedance Zo, and intrinsic impedance n are, 
respectively, the ratios of V to I on a transmission line and E to H 
in a uniform plane wave under conditions where there is no reflected 
wave from the termination, or, in other words, when the wave 
along the line or in the medium is a traveling wave. Equations (89) 
are the general equations for the propagation of waves along uni-
form transmission lines or plane waves in homogeneous media. 
For the special cases of a " lossless" line or a " lossless" (nonconduct-
ing) medium the following simplifications occur 

but 
Therefore 

R=G = 0 so that 

Zo = 

7 = -V(jwL)(jwC) 

= jw 

= « + e 
= 

p = co \TEO 

= 0 so that 

n = ViLTE  

'Y = V(icog) Uwe) 

= .ico "Vie 
but 7 = a + :70 
Therefore a = 

fi = Vire 

Under these circumstances, since cosh ja = cos a, and sinh ja 
= j sin p, the general eqs. (89) reduce to 

Vs = VR cos f3L jZ 01 R sin ez, 1 Es = ER COS OL jen sin a 
. VR ER . 

Is =- IR cos f3L — ssin pi, Hs = HR cos 0/, . — sin fiL 

Z° (5-90a (5-90b) 
*The details are given in section 8.06. 
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The quantities 1/VTZ and 1/VF/€ have the dimensions of velocity 
and are in fact the velocities of wave propagation along the lossless 
line and in the lossless medium respectively. In either case, when 
the dielectric is air, so that ¡I = is. and E = 

1 
— c = 3 X 108 meter/sec 

V LC 
1 

= c •-•:.--•• 3 X 108 meter/sec 
Nri—LvEt• 

It has been seen that propagation of a uniform plane wave in a 
homogeneous medium is analogous to propagation along a uniform 

MEDIUM I 

141 

cr, 

zo, 

ER1 

119/1)e 

SURFACE OF 
DISCONTINUITY 

MEDIUM 2 

#2 

cr, 

JUNCTION 

(b) 

Fm. 5-11. Reflection and transmission (a) at a boundary 
surface between two media and (b) at a junction between two trans-
mission lines. 

transmission line. If the uniform plane wave passes abruptly from 
one medium to another, the surface of discontinuity being a plane 
perpendicular to the direction of propagation, the analogy will 
continue to hold. This is so because the boundary conditions at 
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the surface of discontinuity are the same as those existing at the 
junction between two transmission lines having different constants. 

For the latter the continuity requirements are that ( 1) the voltage 

be continuous across the junction and (2) the current be continuous 

across the junction. These are the same requirements that hold 

for the analogous quantities E and H across a boundary surface. 

The usefulness of the above analogy may be shown best by means 

of examples. 

EXAMPLE 1: Reflection at the Surface of a Medium Having Arbitrary 
Constants. A uniform plane electromagnetic wave, propagating in a 
medium which has constants µ, e, and u, impinges normally upon a second 
medium of infinite depth having the constants 112, 02, and Cf 2 (Fig. 5-11a). 
Determine 

(a) The amplitudes and phases of the reflected electric and magnetic 
intensities relative to the intensities of the incident wave. 

(b) The amplitudes of the electric and magnetic intensities transmitted 
into the second medium. 

For the transmission lines of Fig. 5-11h let V'R„ V"R, be the initial 
and reflected voltages on line (1) at the junction, and let "Rx, I"Ri be the 
initial and reflected currents. It will be recalled that these voltages and 
currents are related by V'R,//'R, = Zo, V"R,//"R, = —Zo. Then, as in 
eqs. (60) and (62), 

V"Ri ZR — Zoi Zot  

= ZR Zoi = Zo2 + Zoi 

.I"Ri  — ZR Zoi — ZO, 
FR, — Zoi ZR = Z0, + Zoi 

(5-91) 

(5-92) 

In the above equations ZR is the terminating impedance for line (1). In 
this case line ( 1) is terminated by the input impedance to line (2), which 
is just the characteristic impedance Zo, of line (2) since it has been assumed 
that this second line is infinitely long. By analogy for Fig. 5-11a 

where 

E" RI n2 —  

E'R, — n2 + ni 

"1"R, 111 — 112 
H'R, = 111+112 

—   

iwp2  

172 \L. ± itOe 

(5-60) 

(5-62) 
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and where, as in the transmission line case, 

E' R E " R,   = 
H' R, = H"R, 

Equations (60) and (62) give the reflected electric and magnetic field 
intensities in terms of the field intensities of the incident wave. 

In Fig. 5-11b the voltage and current entering line (2) (the transmitted 
waves) are given by 

V S, Ti IT' Ri = + 17" 

-= IR, = I  Ri 12 R, 

In terms of the voltage and current of the initial or incident wave, 

Vs, V" 1 - s, 2Zo,  
= I- =  

17FRi IT/ Ri Z cy, + Z I, 

IS, 1 _i_ "Ri 2zo,  
"R = ' M PR, = Z0, --I- Zo, 

Similarly in Fig. 5-11a, the electric and magnetic intensities transmitted 
into the second medium are related to the E and H of the incident, wave, by 

Es, 2n2  
— 

E '5, 112 + n, 
Hs, _  2n, 
H's, — n2 + n1 

(5-94) 

(5-61) 

(5-63) 

It is interesting to evaluate expressions (60), (62), (61), and (63) for the 
case of an electromagnetic wave in air incident normally upon a copper 
sheet. A frequency of 1 mc will be assumed. For this example 

/22 = 

62 = ep 
02 = 5.8 X 107 mhos/m 

so that .„1-- n, = 1±' = 377 ohms 
E 

712 = 
5.8 X 107 j27r X 106 X 8.854 X 10-12 

j27r X 106 X 47r X 10-7  
— 0.000369 /45° ohms 

Then the ratio of reflected to incident electric intensities, as given by 
eq. (60), is 

E"5, 3.69 X 10-4 /45° — 377 

E' R, = 3.69 X 10-4 /45° 377 

= —0.9999986 / — 0.000079° 



§5.131 ELECTROMAGNETIC WAVES 155 

Similarly = +0.9999986 ¿-0.000079° 
H i& 

It is seen that differences between these reflection coefficients for copper 
and the coefficients of minus and plus unity, which would be obtained 
for a perfect reflector, are indeed negligible. For most practical purposes, 
copper can be considered a perfect reflector of radio waves. 

The relative strengths of the transmitted intensities for this case are 

Es, 

r Rl 

HS, 

Ri = 

7.38 X 10-6 /45° 

= 3.69 X 10-6 /45° + 377 

377 ± 32.69X x37170-4 /45. 

— 0.00000196 /45° 

1.9999986 / —0.00004° 

The electric intensity just inside the metal is approximately 2 x 10-6 times 
that of the initial wave; the magnetic intensity just inside the metal is 
approximately twice the magnetic intensity of the initial wave. This 
last result could be inferred from the fact that, since the magnetic intensity 
is reflected without phase reversal, the total magnetic intensity just outside 
the surface of the copper is approximately double that of the initial wave 
and therefore, because of continuity requirements, H just inside the copper 
is also approximately twice the magnetic intensity of the incident wave. 
The ratio of E to H just inside the metal is equal to /12, the characteristic 
impedance of the copper. That is 

Es. 
= n2 = 0.000369 /45° ohms 

For many practical purposes this is sufficiently close to zero to consider 
the copper sheet to be a zero-impedance surface. 

5.13 Surface Impedance. It has been seen that at high fre-
quencies the current is confined almost entirely to a very thin sheet 

at the surface of the conductor. In many applications it is con-
venient to make use of a surface impedance defined by 

Zs = Eta. (5-95) 

where Eta0 is the electric intensity parallel to, and at the surface 
of, the conductor and J is the linear current density that flows 

as a result of this Eta.. The linear current density J represents 
the total conduction current per meter width flowing in the thin 

sheet. If it is assumed that the conductor is a flat plate with its 
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surface at the y = 0 plane (Fig. 5-12), the current distribution in 
the y direction will be given by 

i= 

where jo is the current density at the surface. 
It is assumed that the thickness of the conductor is very much 

greater than the depth of penetration, so that there is no reflection 

TY e 

o  
SURFACE OF CONDUCTOR 

FIG. 5-12. Current distribution in a thick flat-plate conductor. 

from the back surface of the conductor. The total conduction 
current per meter width, that is, the linear current density is 

J = foas dy = jo J e"11 dy 
io 

= — •Ty [e—yve 

But io, the current density at the surface, is 

io = crE 
E 7 

Therefore Z3 = - — 
J cr 

(5-96) 

The constant 7 for propagation in a conducting medium was found 
to be 

7 = 1/.7w/1(0' ± ./c0E) e-'- Viwi-tu 

This gives for a thick conductor 

.\TZs = i2-11-1 = n (for the conducting medium) 
« 

(5-97) 
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It is seen that the surface impedance of a plane conductor that is very 
much thicker than the skin depth is just equal to the characteristic 
impedance of the conductor. This is also the input impedance of the 
conductor when viewed as a transmission line conducting energy 
into the interior of the metal. When the thickness of the plane 
conductor is not great compared with the depth of penetration, 
reflection of the wave occurs at the back surface of the conductor. 
Under these conditions, the input impedance is approximately equal 
to the input impedance of a lossy line terminated in an open circuit, 
viz., 

Zin = n coth 7/ (5-98) 

where 1 is the thickness of the conductor, and n and -y are its intrinsic 
impedance and propagation constant respectively. The approxi-
mation is ordinarily valid because the actual termination n. = 377 
ohms is very much greater than n of the conductor. 

Surface Impedance of Good Conductors. For any material 
normally classed as a good conductor er » we, and if the conductor 
thickness is very much greater than the depth of penetration, the 
surface impedance of such a conductor is 

Z, =.‘1171-1 /45° (5-97) 

The surface resistance is R. (5-97a) 

and the surface reactance has the same magnitude as R. at all 
frequencies 

X. (5-97b) 

The surface surface resistance defined by (97a) as the real part of the surface 
impedance is the high-frequency or skin-effect resistance per unit 
length of a flat conductor of unit width. (It has the dimension of 
ohms and its value does not depend upon the units used to measure 
length and width as long as they are the same.) Recalling that 
the expression for depth of penetration in a conductor is 

8 = 

it is seen that 

(5-99) 

(5-100) 
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The surface resistance of a flat conductor at any frequency is equal 
to the d-c resistance of a thickness ô of the same conductor, where 8 
is the depth of penetration or skin depth. This means that the 
conductor, having a thickness very much greater than 8 and having 
the exponential current distribution throughout its depth, has the 
same resistance as would a thickness ô of the conductor with the 
current distributed uniformly throughout this thickness. From 
this it follows that the power loss per unit area of the plane con-
ductor will be given by Jeff2 R., where R. is its surface resistance and 
Jeff is the linear current density or current per meter width (effective 
value) flowing in the conductor. This same conclusion can be 
obtained from consideration of power flow, a subject that will be 
taken up in the next chapter. 

ADDITIONAL PROBLEMS 

8. From the boundary conditions that Et.. and Ht„„ are continuous, 
derive the reflection and transmission coefficients for a uniform plane we'Are 
incident normally on the boundary surface between any two media; i.e., 

E" n: — nj H" 771 — 112 
E' n2 + H' th + 112 
E: _  2712 Hy 27/  

E' H' +,i, 

E', E", and Ey represent the electric intensity of the incident, reflected 
and transmitted waves respectively, with a similar notation for the mag-
netic intensity. 

9. The electric intensity of a uniform plane electromagnetic wave in 
free space is 1 volt per meter, and the frequency is 300 mc. If a very large 
thick flat copper plate is placed normal to the direction of wave propaga-
tion, determine (a) the electric intensity at the surface of the plate; (b) the 
magnetic intensity at the surface of the plate; (c) the depth of penetration; 
(d) the conduction current density at the surface; (e) the conduction cur-
rent density at a distance of 0.01 mm below the surface; (f) the linear 
current density J; (g) the surface impedance; (h) the power loss per square 
meter of surface area. For copper use cr = 5.8 X 10v, e e„, 

10. A uniform plane electromagnetic wave is incident normally upon a 
sheet of dielectric material, which has the following constants: E = 4E, 

=  ji,, Cf = Ur' mhos per meter. If the sheet is 2 cm thick and the 
amplitude of the electric intensity of the incident wave is 100 mv/m, 
determine the electric intensity of the wave after passing through the 
sheet (a) if the frequency is 3000 me; (b) if the frequency is 30 me. (Nern: 
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It is assumed that o- and e are independent of frequency. In general, for 
the so-called dielectric materials, this is not true.) 

11. Determine the reflection coefficients for an electromagnetic wave 
incident normally on (a) a sheet of copper; (b) a sheet of iron. Use 
f = 1 me. Assume a- = 1 X 106 mhos/m, = 1000µ. for the iron. 

12. In the analogy between plane wave propagation in a homogeneous 
conducting medium and wave propagation along transmission lines, there 
appears to be nothing corresponding to R. Discuss. [Suggestion; Com-
pare eqs. (5.85b).] 

13. A thick brass plate is plated with a 0.0005 inch thickness of silver. 
What is the surface impedance at (a) 10 kc, (b) 1 mc, (c) 100 mc? Com-
pare the surface impedance of the plated brass with that of a solid silver 
plate and a solid brass plate. (For silver « = 6.2 X 107; for brass 
= 1 X 10v; for both assume that µ = e = e..) 

14. A sheet of glass, having a relative dielectric constant of 8 and 
negligible conductivity, is coated with a silver plate. Show that at a 
frequency of 100 mc the surface impedance will be less for a 0.001 cm 
coating than it is for a 0.002 cm coating, and explain why. 

15. Determine the voltmeter reading by two different methods. 
Assume that all the conductors are perfect and that the coaxial cable is 
lossless. 

120 VOLTS 
(f = 100 MC. 

CM 

7.4 CMS Ft= Zo . 120 OHMS 

I GM. 

Fm. 5-13. Coaxial cable for Problem 15. 

16. "Free-space cloth" consists of a cloth coated with conducting 
material that has a surface impedance of 377 ohms per square. Show 
that if the thickness of the coating is much greater than the depth of 
penetration, the surface impedance will be complex, with a reactance equal 
to the resistance (assuming cr /cue» 1 for the conducting material). How-
ever, if the coating is made sufficiently thin, show that the surface imped-
ance will be almost a pure resistance. Determine appropriate values for 
a- and l, where l is the thickness of the coating. 

BIBLIOGRAPHY 

See bibliography for chap. 4. 



CHAPTER 6 

POYNTING VECTOR AND THE FLOW 
OF POWER 

6.01 Poynting's Theorem. As electromagnetic waves propagate 
through space from their source to distant receiving points, there 
is a transfer of energy from the source to the receivers. There 
exists a simple and direct relation between the rate of this energy 
transfer and the amplitudes of electric and magnetic intensities 
of the electromagnetic wave. This relation can be obtained from 
Maxwell's equations as follows. 

The magnetomotive force equation I can be written 

i = curl H — EÉ 

This expresses a relation between quantities which have the dimen-
sions of current density. If it is multiplied through by E, there 
will result a relation between quantities which will have the dimen-
sions of power per unit volume. That is 

E • i = E • curl H — eE • (6-1) 

Recall that for any vectors the following identity holds 

divEXH=H•cur1E—E• curl H 

E • i H • curl E — divE X H — EE • (6-2) 

Introducing the second field equation, 

curl E = II 

Therefore 

obtain 

Now 
E • i = —121-1• — EE • — div E X H (6-3) 

H•Ii= 1-a—H2 and E•É= 121 E2 at 2 at 
160 
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so that 
a E . i= _ L.4 (2. H2 E2 div E X H 

2 at E2 at 

Integrating over a volume V, 

E • i dV = _ f (L. .t + 1E) dy _ f div E X 1:1 dV 
vol at vol 2 vol 

(6-4) 

Using the divergence theorem the last term can be changed from a 
volume integral to a surface integral, that is, 

L i div E X HdV = 968 E X H • da 

Then eq. (4) can be written 

fv 7 _ te E • i dV _ a f H2 + E) c:7 — E X II • da (6-5) 
ol el vol 2 2 

A physical interpretation of eq. (5) leads to some interesting con-
clusions. It will be considered term by term. 

The term on the left-hand side represents (instantaneous) power 
dissipated in the volume V. This result is obtained as a generali-
zation of Joule's law. A conductor of cross-sectional area A, 
carrying a current I and having a voltage drop E per unit length 
will have a power loss of El watts per unit length. The power 
dissipated per unit volume would be 

El 
— = Ei watts per unit volume 
A 

In this case E and i are in the same direction. In general, where 
this may not be true, the power dissipated per unit volume would 
still be givén by the product of i and the component of E having 
the same direction as i. That is, the power dissipated per unit 
volume would always be given by 

E • i 

and the total power dissipated in a volume V would be 

fvol E • i dV (6-6) 
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When the E in this expression represents the electric intensity 
required to produce the current density i in the conducting medium, 
the expression (6) represents power dissipated as ohmic (PR) loss. 
However, if the E is an electric intensity due to a source of power, 
for example due to a battery, then the power represented by the 
integral expression (6) would be used up in driving the current 
against the battery voltage and hence charging the battery. If 
the direction of E were opposite to that of i, the " dissipated" power 
represented by (6) would be negative. In this case, the battery 
would be generating electric power. 

Consider next the first term on the right-hand side of eq. (5). 
In the electrostatic field it was found that the quantity hee could 
be considered to represent the energy density or the stored electric 
energy per unit volume of the electric field. Also for the steady 
magnetic field the quantity hg112 represented the stored energy 
density of the magnetic field. If it is assumed that these quantities 
continue to represent stored energy densities when the fields are 
changing with time (and there seems to be no real reason for con-
sidering otherwise), the integral represents the total stored energy 
in the volume V. The negative time derivative of this quantity 
then represents the rate at which the stored energy in the volume 
is decreasing. 

The interpretation of the remaining term follows from the 
application of the law of conservation of energy. The rate of energy 
dissipation in the volume V must equal the rate at which the 
stored energy in V is decreasing, plus the rate at which energy is 
entering the volume V from outside. The term 

— 962 E X H • da 

therefore must represent the rate of flow of energy inward through 
the surface of the volume. Then this expression without the nega-
tive sign, 

962 E X H • da (6-7) 

represents rate of flow of energy outward through the surface enclos-
ing the volume. 

The interpretation of eq. (5) leads to the conclusion that the 
integral of E X H over any closed surface gives the rate of energy 
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flow through that surface. It is seen that the vector 

P=EXH (6-8) 

has the dimensions of watts per square meter. It is Poynting's 

theorem that the vector product P=E XH at any point is a meas-

ure of the rate of energy flow per unit area at that point. The 

direction of flow is perpendicular to E and H in the direction of the 
vector E X H. 

EXAMPLE 1: Power Flow for a Plane Wave. The expression for rate of 
energy flow per unit area is checked very easily in the case of a uniform 
plane wave traveling with a velocity 

The total energy density due to electric and magnetic fields is given by 

(eE2 y1121 

For a wave moving with a velocity vo the rate of flow of energy per unit 
area would be 

P = WeE2 µ112)vo (6-9) 

Recalling that for a plane wave the magnitudes of E and H are related by 

= 
e 

E 
H 

1 

= (EH) v 

V0/ 

E X H 

EXAMPLE 2: Power Flow in a Concentric Cable. Consider the transfer 
of power to a load resistance R along a concentric cable which has a d-c 
voltage V between conductors and a steady current I flowing in the inner 
and outer conductors. The conductors are assumed to have negligible 
resistance. The radius of the inner conductor is a and the (inside) radius 
of the outer conductor is b. The magnetic intensity H will be directed 
in circles about the axis. By Ampere's law the magnetornotive force 
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around any of these circles will be equ .1 to the current enclosed, that is, 

H • ds = I 

in the region between the conductors. 

FIG. 6-1 

For this case H is constant along any of the circular paths so 

H • ds = 27rrH 

where r is the radius of the circle being considered. 
Hence 

H = 
2wr 

The electric intensity E will be directed radially. In the example on 
page 55 it was shown that 

b 
V = —q  log — 

27r€ a 

where q was the charge per unit length. Also it was shown that 

q E -= 
27rEr 

Therefore the magnitude of E will be given by 

E = V  

r log —b 
a 

The Poynting vector is P=EXH 

It is directed parallel to the axis of the cable. Since E and H are every-
where at right angles, the magnitude of P is simply 

P = EH 
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The total power flow along the cable will be given by the integration of the 
Poynting vector over any cross-sectional surface. If the conductors are 
considered to be perfect, E will have value only in the region between 
them and the Poynting vector will have value only in the same region. 
Let the element of area be 2wrdr. Then 

W= f EXII-da 

 Gri) 27rr dr 
fab r loTg7b/a 

VI   ( bd r 

log b/ a a —r-

= V/ 

This is the well-known result that the power flow along the cable is the 
product of the voltage and current. It is interesting to observe that this 
result was obtained by an integration over an area that did not include the 
conductors. According to this picture, for the perfect conductor case the 
flow of power is entirely external to the conductors. Even when the con-
ductors have resistance, there is no contribution within the conductors 
to the Poynting vector in the direction parallel to the axis, for there is no 
value of E within a conductor at right angles to the direction of current 
flow. In the case of the open-wire transmission line, the fields extend 
throughout all space and there is a value of Poynting vector everywhere 
in space, except within conducting bodies. Therefore the rather remark-
able conclusion is reached that when a transmission line is used to deliver 
power from a generator to a load, the power transmission takes place 
through all the nonconducting regions of space and none of the power 
flows through the conductors that make up the transmission line. 

EXAMPLE 3: Conductor Having Resistance. When a conductor having 
resistance carries a direct current /, there will be a value of E within the 
conductor. It will be parallel to the direction of the current (E = i/e), 
so there will still be no radial component of E. Hence there will still be 
no value of Poynting vector within the wire parallel to the axis, but there 
will now be a radial component of P. Consider a wire of length L having 
a voltage drop V L along the wire. Let the wire be parallel to the z axis. 
Then in the wire and at its surface 

E V L 
» TT; 

The magnetic intensity H will be in the ye direction and at the surface of 
the wire it will have a value 

= 
2ra 
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where a is the radius of the wire. E. and H, are at right angles, so the 
Poynting vector will have a magnitude 

P = E.H, 

and will be directed radially into the wire. The total power flowing into 
the wire through the surface will be 

W = fE.H,27ra dz 
Jo 

f' d 
= J. z 
= va 

which is the usual expression for loss due to ohmic resistance. This 
derivation shows that the power required to supply this loss may be con-
sidered as coming from the field outside the wire, entering it through the 

surface of the wire. 
It is interesting to observe how the power flow continues inward. 

Inside the wire the value of H does not vary with the radius in the same 
way as outside, because the current enclosed varies with r in this case. 
If i is the current density, the current enclosed at a radius r will be 

Ieno = 7rr2i 

For a wire of radius a having a total current / 

= irr2/  r . 2 /„ — = — 
ira2 a 2 

Therefore inside the wire (r < a) 

1.21 
--= — 27rra2 

The power flowing inward through an imaginary cylindrical shell of radius 

r < a will be 

W = —FL 27cLI/ 

= V a 12-
a2 

(6-10) 

Equation (10) shows that the power dissipated within any shell is pro-
portional to the volume enclosed by the shell through which the power is 
flowing. Hence the power dissipated per unit volume is uniform through-
out the wire. 
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The configuration of the electric field about a two-wire line will appear 
somewhat as illustrated in Fig. 6-2 when there is a resistance drop in the 
conductors. The curvature near the surface of the wire is due to the 
voltage drop along the wire. 

EXAMPLE 4: Poynting Vector about A-C Lincs. When a transmission 
line delivers a-c power, the voltage, and therefore the electric and magnetic 
fields, vary with time. Also, if it is a long line, the phases of voltage and 
current (and E and H) will vary along the length of the line. For the 
simple case of a lossless line terminated in its characteristic impedance 

J1111)))11111)111) 
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Fie. 6-2. Electric-field configuration about a two-wire trans-
mission line which has resistance. 

which is a pure resistance, the variation in time and along the line of both 
voltage and current will be given by the expression for a traveling wave, 
that is, they are proportional to 

cos co z 

For any value of z and t there will be a certain distribution of the Poynting 
vector over a plane parallel to the x and y axes. At every point in this 
plane, P will be parallel to the z axis. The Poynting vector will be given 
by an expression of the form 

P=EXH=Acos2u(— 2v-) f(x, y) 

The function f(x, y) will not vary with z or t. For a fixed value of time, 
the total power passing through a plane will vary with the position of the 
plane, that is with z, whereas for a fixed value of z the power through the 
plane will vary with time. It will be noted that the power flow past a 
given plane is in pulses of double frequency, a fact readily appreciated 
when observing the flicker of a 25-cycle electric light bulb. 

In a polyphase line a study of the Poynting vector shows that the 
power passing through a plane of fixed z will not vary as a function of 
time. In this case the Poynting vector distribution spirals about the 
line as it is propagated forward. The value of P integrated over a plane 
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of constant z will be found to be independent of time. In such a plane 
wbere z = constant, the distribution of the Poynting vector would appear 
to be revolving about the line. 

6.02 Note on the Interpretation of E X H. The interpretation 
of E X H as the power flow per unit area is an extremely useful 
concept, especially in radiation problems. For example, an inte-
gration of E X H over a surface enclosing a transmitting antenna 
gives the power radiated by the antenna. Although this interpre-
tation of E X H never gives an answer which is known to be erron-
eous, it sometimes leads to a picture which the engineer is loathe 
to accept. Most engineers find acceptable the concept of energy 
transmission through space, either with or without guiding con-
ductors, when wove motion is present. However for many engi-
neers this picture becomes disturbing for transmission line propaga-
tion in the dc case. When E and H are static fields produced by 
unrelated sources, the picture becomes even less credible. The 
classic illustration of a bar magnet on which is placed an electric 
charge is one which is often cited. In this example a static electric 
field is crossed with a steady magnetic field and a strict interpreta-
tion of Poynting's theorem seems to require a continuous circulation 
of energy around the magnet. This is a picture that the engineer 
generally is not willing to accept (although he usually does not 
question the theory of permanent magnetism, which requires a 
continuous circulation of electric currents within the magnet). 
Fortunately, there exists an easy way out of the dilemma posed by 
this last example. 

First, it is observed that the surface integral in eq. (5) is over 
the closed surface surrounding the volume. If any closed surface 
is taken about the bar magnet, it is found that E X H integrated 
over this closed surface is always zero. In other words, the net 
power flow away from the magnet is zero as it should be. Secondly, 
it is noted that, even though the power flow through any closed 
surface is correctly given by eq. (7), it does not necessarily follow 
that P=E XH represents correctly the power flow at each point. 
For, to the vector E X H, could be added any other vector having 
zero divergence (that is, any vector that is the curl of another vector) 
without changing the value of the integral in (7). This can be 
shown by applying the divergence theorem. Suppose the correct 
value for power flow at any point is not E X H, but rather P = E 



6.031 POYNTING VECTOR AND THE FLOW OF POWER 169 

X H + F, where F is the curl of some other vector, say G. Then 
the net power flow through any closed surface would be 

(E X H F) • da = 563 (E X H) • da div F dv 

= 563 (E X H) • da 

because div curl G asO. 
It is seen that even though it may be possible to write an expres-

sion that gives correctly the net flow of power through a closed 
surface, it is still not possible to state just where the energy is. 
This problem is by no means peculiar to the electromagnetic field. 
The total potential energy of a raised weight is a readily calculable 
quantity but the " distribution" of this energy is not known. Just 
where the potential energy of a raised weight or a charged body 
"resides" is a question for philosophic speculation only. It cannot 
be answered on the basis of any measurements that the engineer 
can make. 

6.03 Instantaneous, Average, and Complex Poynting Vector. 
In an ac circuit, the instantaneous power is always given by the 
product of the instantaneous voltage and the instantaneous current. 

Winst = Vinstrinst 

The real power or average over a cycle is 

Ws.„ = V/ cos 0 (6-11) 

where 0 is the time-phase angle between voltage and current, and 
V and / are effective values. The reactive power, or reactive volt-
amperes, is 

Wreg.ot = V/ sin 0 (6-12) 

When the voltage and current are written in the complex form,t 
that is, 

V = Vre jVi. 

/ = / To+ j/i. 

A familiarity with complex notation as used in the solution of a-e circuits 
is assumed. In accordance with the 1948 IRE Standards on Symbols, when 
it is necessary or desirable to differentiate between real and complex scalars, 
the complex scalars (or phasors as they are now known) will be shown in bold 
italic type as V. For complex vectors bold roman type is used, the same as 
for real vectors. 
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it is easily shown, using Fig. 6-3, eqs. (11) and (12), and a little 
trigonometry, that the real or average power is given by 

Way = VreIre ± VimIlm 

while the reactive power is 

W reeet = Vre Iim 

(6-13) 

(6-14) 

This is a result well known to all electrical engineers. By multi-

FIG. 6-3. Phasor diagram for voltage and current. 

plying out it is seen that the real power of eq. (13) is given by the 
real part of the product. 

V/*, 

where P is the complex conjugate of I. That is, 

/* = Ire — jIim 

Also the reactive power is given by the imaginary part of VP. 
Therefore it is possible to write t 

Wm' = Re VP' (6-15) 
WrenCt Im VI* (6-16) 
Woomplex = Wreal iWreact = VP 

where Re and Im indicate that only the real or only the imaginary 
part is to be used. 

t The student is reminded that the real and imaginary parts of the product 
V/ (where V and t are in the complex form) do not represent real and reactive 
power. 
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In expressions (15) and (16), V and I represent effective values 
of (complex) voltage and current. In terms of peak values (maxi-
mum in time), which for sinusoidal variations are Vi times the 
effective values, eqs. (15) and (16) would be 

Wyse = 34 Re Vo10* (6-17) 
Wessel = 1m V0/0* (6-18) 

In electromagnetic field theory there are relations similar to the 
above between the Poynting vector P (watts/sq m) and E (volts/m) 
and H (amp/m). The instantaneous power flow per square meter 
is 

Pinst = Binet X "it 

The real and reactive power per square meter is 

=- Re (Eoff X Heff*) 
Peeeet = Im (Eeff X Hee) 

Romplec = Ee X Hee 

where E and H are expressed in the complex form and are effective 
values. In field theory peak values, rather than effective values, 
are used most, so it is usual to let the symbols E and H (without 
subscripts) represent peak or maximum values in time. Then 

Proai = 34 Re (E X H*) (6-19) 
= Im (E X 11*) (6-20) 

Poomplex = E X H* 

where E and H are now peak values in the complex form. The first 
of these expressions represents the average or real power flow per 
unit area. The second represents a flow of reactive power, a surg-
ing back and forth of the energy in the field. 

The product of E and H in equations (19) and (20) is a vector 
product. Only mutually perpendicular components of E and H 
contribute anything to power flow, and the direction of the flow is 
normal to the plane containing E and H. Thus in rectangular 
co-ordinates, the complex flow of power per unit area normal to 
the y-z plane is 

= 1A(EL,11,* — E.1-1„*) (6-21) 

t For vectors the form corresponding to expression (11), i.e., Peee = 
E X H cos 0, would require special interpretation, because the time phase 
angles between the scalar components may be different for the different 
components. 
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with corresponding expressions for the other directions. In 
spherical co-ordinates, the outward (radial) flow of complex power 
per unit area is 

P. = 3¡(E0110* — EoH0*) (6-22) 

Problem 1. Verify that 

VI cos O = Vrelre = Re VI* 
and V/ sin O Vim/r. — /m VI* 

where the symbols represent effective values of voltage and current. 

Problem 2. A concentric cable (assumed perfectly conducting) is one 
wavelength long and is terminated in its characteristic impedance, a pure 
resistance. 

(a) Indicate the magnitude and direction of the Poynting vector along 
the line at successive one-eighth period intervals of time throughout a cycle. 

(b) Repeat part (a) for the case where the line is terminated by a 
short circuit. 

Problem 3. A short vertical transmitting antenna erected on the 
surface of a perfectly conducting earth produces an effective field intensity 

Ed( = Eedf = 100 sik O mv/m 

at points a distance of 1 mile from the antenna (0 is the polar angle). Com-
pute the Poynting vector and the total power radia ted. (For the distant 

Ee 
field, H = H, = 

n, 

6.04 Power Loss in a Plane Conductor. An evaluation of the 
normal component of Poynting vector at the surface of a conductor 
will give the power flow per unit area through the surface and hence 
the power loss in the conductor. 

Let there be a tangential component of magnetic intensity 
at the surface of a metallic conductor (assumed for the present to 
be an infinitely large flat plate having a thickness very much greater 
than the skin depth ô). From the continuity requirements across 
the boundary surface the tangential component of H just inside 
the conductor will have this same value H. Inside the conductor 

the tangential component of E is related to Ht. by 

Et.. 
rt. 

Htan 

nm = \lam  (,) m e»bem and = — /45° 
er„, 
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where nm is the intrinsic impedance of the conductor. (The sub-
script in has been used to indicate that the quantities inside the 
metallic conductor are meant.) Just inside the surface of the con-
ductor Ets. nmilt„„ and, from the continuity requirements across 
the boundary, the tangential component of electric intensity just 
outside the surface will also be E 8. Then the average (or real) 
power flow per unit area normal to the surface will be 

P. (real) = 3 Re (Et. X Hti..*) (6-23) 

When Etan and Ht., are at right angles, and since for any good 
conductor E D leads by 45 degrees in time phase, (23) becomes 

= 141Ei..11Ht..1 cos 45° 

- (2 N/-2) inmigan12 1 
( 1  VEt..i2 

N/2) innil 
(6-24) 

where the bars l I indicate the absolute magnitude of the complex 
quantity. For a conductor which has a thickness very much greater 
than the skin depth (5, the surface impedance Z, is equal to the 
intrinsic impedance nm of the conductor, so that 

n  1 

141442 2 I 

1 E , watt/sq m (6-25) 
-0 

In a conductor the linear current density J is equal in magnitude 
to the tangential magnetic intensity at the surface, so 

P n — ( 12 V -2) V.1112 watt/sq m (6-26) 

In expressions (25) and (26), Et., 11,,,„ and J are peak values. In 
terms of effective values 

P — 1 lEt(e(f)I2 _ 
n Vi 141 

1 
1Z11.4.12 

= Raa, 2 watt/sq m (6-27) 

This result agrees with that previously obtained in chap. 5. 
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[Nam: In this chapter, where the notions of complex power and complex 
Poynting vector were introduced, special type (bold italic) was used to dis-
tinguish complex scalars from real scalars. After the student or engineer has 
become familiar with the use of complex quantities, the need for making a 
distinction between the two hardly ever exists, and so most engineering texts 
use the same type (light-face italic) for complex scalars as for real scalars. 
This practice will be followed in the remainder of the text, except in special 
cases where it is desired to emphasize that the quantities are complex rather 
than real.] 

Problem 4. A uniform plane wave having field components E. and H„ 
is guided in the z direction between a pair of parallel copper planes. If the 
frequency is 100 mc and the field intensity of the transmitted wave is 
E. = 1 volt/m, determine by two methods the power loss per square 
meter in each of the conducting planes. 

BIBLIOGRAPHY 

See bibliography for chap. 4. 



CHAPTER 7 

GUIDED WAVES 

In the wave propagation so far discussed, only uniform plane 
waves, remote from any guiding surfaces, have been considered. In 
many actual cases, propagation is by means of guided waves, that 
is, waves that are guided along or over conducting or dielectric 
surfaces. Common examples of guided electromagnetic waves are 
the waves along ordinary parallel-wire and coaxial transmission 

X.0 

X.0 

FIG. 7-1. Parallel conducting planes. 

lines, waves in wave guides, and waves that are guided along the 
earth's surface from a radio transmitter to the receiving point. The 
study of such guided waves will now be undertaken. 

7.01 Waves between Parallel Planes. For purposes of study 
a simple illustrative example is that of an electromagnetic wave, 
propagating between a pair of parallel perfectly conducting planes 
of infinite extent in the y and z directions (Fig. 7-1). In order 
to determine the electromagnetic field configurations in the region 

175 
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between the planes, Maxwell's equations will be solved subject to 
the appropriate boundary conditions. Because perfectly conduct-
ing planes have been assumed, these boundary conditions are very 
simple, being 

Etangentla = 0, //normal = 

at the surfaces of the conductors.* 
In general, and assuming that all time variations are as 

Maxwell's equations and the wave equations are 

'where 

curl H = (o• jcoe)E 

= -y2E 

curl E = 
= 1,21.1 

= V(0- + icoe)(icem) 
In rectangular co-ordinates, and for the nonconducting 
between the planes, these equations become 

_ . 
ay az 3wene 
OH. ax. _ 
az az jcoe4 

arig 8H,_ . — jcoe.. 
Ox 

aE,  
= 

ay az  

aE. aE. . 
-a7 —3"4214 
aE„ aE. — = az ay 

02E _L  02E 82E 
ax2 ay2 az2 = 
aql 82H 82H 

± 2 ± 2 = ax2 ay az 

It will be assumed that propagation is in the z direction, and 
that the variation of all field components in this direction may be 
expressed in the form e—lz, where in general 

—co2µEE 

(7-1) 

(7-2) 

(7-3) 

region 

(7-4) 

(7-5) 

5 = + e 

— co2i.tcH 

(7-6) 

is a complex propagation constant, t whose value is to be determined. 

*It is easy to show for actual conductors such as copper or brass (which 
have a very high, but not infinite, conductivity) that the finite conductivity 
has negligible effect on the field configuration. Therefore it is possible to use 
the fields calculated on the basis of perfectly conducting planes to determine 
the sur fa 3t1 currents that must flow in these planes. The currents so calculated 
may then be used to compute the losses, and hence the attenuation, which 
occur with finitely conducting planes. This is a standard engineering approach. 
t In general .7 will not be equal to y, defined by equation (3), but 5 reduces 

to y in the special case of uniform plane waves. 
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This is a quite reasonable assumption because (as will be shown 
later) for any uniform transmission line or guide the fields must 
obey an exponential law along the line. When the time variation 
factor is combined with the z-variation factor, it is seen that the 
combination 

dot. = ctieût—m = c—az (7-7) 

represents a wave propagating in the z direction. If 5 happens to 
be an imaginary number, that is if a = 0, expression (5) represents 
a wave without attenuation. On the other hand, if 5 is real so that 
e = 0, there is no wave motion but only an exponential decrease in 
amplitude. 

Since the space between the planes is infinite in extent in the 
y direction, there are no boundary conditions to be met in this 
direction, and it can be assumed that the field is uniform or constant 
in the y direction. This means that the derivatives with respect 
to y in (4) can be put equal to zero. In the x direction however, 
there are certain boundary conditions which must be met. There-
fore it is not possible to specify arbitrarily what the distribution of 
fields in this direction will be. This answer must come out of the 
solution of the differential equations when the boundary conditions 
are applied. 

When the variation in the z direction of each of the field com-
ponents is shown explicitly by writing, for example, 

= Hy° e-53 

it is seen immediately that 

—51-40 e-1 8 = — 511v 

aZ 

with similar results for the z derivatives of the other components. 
Making use of this result and remembering that the y derivative of 
any component is zero, eqs. (4) and (5) become 

+114 = 

aH. — — — ax 

jco€E. 

jamE, 

5E7, = 

OE. 
—5E. — — = —j4.117, 

ax 
ôH . aEi, 
= — = ax ax 

(7-8) 
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a2E 
ax2 -r 5".c' = —‘02µEE 

a2H 
ax2 + 12H = —w2eLdi 

(7-9) 

In eqs. (9) it should be remembered that each of these equations 
is really three equations, one for each of the components of E or H. 
Equations (8) can be solved simultaneously to yield the following 
equations 

where 

B.» _ i aH. 

— 712iT  ax 
jw€ aE, 
h2 ax 

a = — E. 772 
= T x— 

_ j_ OH. 
h2 ax 

h 2 .52 ± ca2pe 

(7-10) 

(7-11) 

In eqs. (10) the various components of electric and magnetic 
intensities are expressed in terms of E, and H,. With the exception 
of one possibility, to be discussed later, it will be observed that 
there must be a z component of either E or II; otherwise all the 
components would be zero and there would be no fields at all in the 
region considered. Although in the general case both E, and H, 
could be present at the same time, it is convenient and desirable 
to divide the solutions into two sets. In the first of these, there is a 
component of E in the direction of propagation (E.), but no com-
ponent of H in this direction. Such waves are called E waves, or 
more commonly, transverse magnetic (TM) waves, because the 
magnetic intensity H is entirely transverse. The second set of 
solutions has a component of H in the direction of propagation, but 
no E. component. Such waves are called H waves or transverse 
electric (TE) waves. The solutions to eqs. (8) and (9) for these two 
cases will now be obtained. Since the differential equations are 
linear, the sum of these two sets of solutions yields the most general 
solution. 

7.02 Transverse Electric Waves (E, = 0). Inspection of eqs. 
(10) shows that when E. ---- 0, but II, does not equal zero, the field 
components ./.4, and E. will also equal zero, whereas, in general, there 
will be nonzero values for the components H, and E. Since each of 
the field components obeys the wave equation as given by eqs. (9), 
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the wave equation can be written for the component E„ 
a2E 

_4_ i-,24 
aX2 

This can be written as 
a2E„ 
ax2 — h2EY 

Recalling that E, = E,°(x) e -14, eq. (12) reduces to 

d2E„° 
dx2 — h2E„° (7-12a) 

where as before h2 = 52 ± co2ge 

Equation (12a) is the differential equation of simple harmonic 
motion. Its solution can be written in the form 

Ev° = CI sin hx + C2 cos hx (7-13) 

where C1 and C2 are arbitrary constants. 

Showing the variation with time and in the z direction the expres-
sion for E, is 

= (CI sin hx ± C2 cos hx) ed--5z) (7-13a) 

The arbitrary constants C1 and C2 can be determined from the 
boundary conditions. For the parallel-plane wave guide of Fig. 
(7-1) the boundary conditions are quite simple. They require 
that the tangential component of E be zero at the surface of the 
(perfect) conductors for all values of z and time. This requires 
that 

(7-12) 

EE,,= 0 at x .-- 0 for all values (boundary conditions) 
Ey = 0 at x = aI of z and t 

In order for the first of these conditions to be true, it is evident that 
C2 must be zero. Then the expression for Ey is 

Ey = C1 sin hx eu'i-lz) 

Application of the second boundary condition imposes a restriction 
on h. In order for Es, to be zero at x = a for all values of z and t 
it is necessary that 

where m = 1, 2, 3, • • • 

h= 
a (7-14) 
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(The special case of m = 0 will be discussed later.) Therefore 

E, = Ci sin (-9nr x) élœg-5z) (7-15) 
a 

The other components of E and H can be obtained by inserting 
eq. (15) in eqs. ( 10). When this is done, it is seen that the expres-
sions for the field intensities for transverse electric waves between 
parallel planes are 

E„ = C1 sin (n-2-1-r x)eciwt-lz) 
a 

_ mir (mir 
H. -- Ci cos —a x eu'e-ig) (7-16) 

joula 

H. = — --17— C1 sin —17er x eice—tg) 
icaià a 

Each value of m specifies a particular field configuration or mode, 
and the wave associated with the integer m is designated as the 
TE„ho wave or TE„.,0 mode. The second subscript (equal to zero in 
this case) refers to another factor which varies with y, which is 
found in the general case of rectangular guides. It will be noticed 
that the smallest value of m that can be used in eqs. (16) is m = 1, 
because in = 0 makes all the fields identically zero. That is, the 
lowest order mode that can exist in this case is the TE1,0 mode. 

In writing expressions for the field components as ir eq. (16), 
the variation of all the fields with time and in the z direction is the 
same for any particular value of m and is shown by the factor 
eicd-i's. Rather than carry this factor through the entire analysis, 
it is customary to drop it, putting it back in for the final result. 

Thus eqs. (16) can be written 

E„ = C1 sin mir — x 
a 

= — Ci sin n . 
.74z a 

= 
17L7r mir 

Cl cos — x 
jeoga a 

(7-17) 

where now the factor eat-5z) is understood.* Whenever it is desired 

* As shown in (17), E, 11,, and H. are functions of x only, and not of time 
or z. They are the crest values or amplitudes of the waves. Most relations 
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to show the time and z variations explicitly, the expressions are 
multiplied by eue--14. 

The factor 5 is the propagation constant, which is ordinarily 
complex, the real part a being the attenuation constant and the 
imaginary part a being the phase shift constant. However, it will 
be shown in section 7.04 that for the present problem of waves 
guided by perfectly conducting walls, 5 is either a pure real or a 
pure imaginary. In that range of frequencies where 5 is real, a has 
value but 5 is zero, so that there is attenuation but no phase shift 
and, therefore, no wave motion. In the range of frequencies where 
5 is imaginary, a is zero but a has value, so that there is propagation 
by wave motion without attenuation. It is this latter range of 
frequencies that is of chief interest in wave guide propagation. 
Writing 5 ja, eqs. (16) for TE.,0 waves in the propagation range 
may be written as 

(—me. x ei(4't-fiz) 

II. --- - -i-f-7 CI sin (227 .r x) ei(wg-15.) 
COM a 

= CI. cos (17-1-e x) ei(ca-flz) coma a 

(7-16a) 

A sketch of these field distributions at some particular instant of 
time is shown in Fig. 7-2 for the TE1,0 mode. 

7.03 Transverse Magnetic Waves (Hz 0). The case of trans-
verse magnetic waves between parallel planes can be solved in a 
manner similar to that used for TE waves. In this instance H. 
will be zero, and inspection of eqs. (10) shows that H. and Ei, will 
also be zero, while in general, E„ E, and H„ will have value. Solv-
ing the wave equation for 11,,, gives as before 

H„ = C3 sin hx C4 cos hx (7-18) 

where the factor e(ica-lx) is understood. The boundary conditions 
cannot be applied directly to H„ to evaluate the constants C3 and 

between the field components, including those which involve determination of 
power, can be made in terms of these crest values. However, when it is 
desired to differentiate or integrate any of the field components with respect 
to time or z, the factor eu.g— re) is put back in until the desired operation has 
been performed, and then this factor is again dropped. 
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C4, because in general the tangential component of H is not zero 
at the surface of a conductor. However from eqs. (10) the expres, 
sions for E. can be obtained in terms of H, and then the boundary 
conditions applied to E.. From eqs. (10) and (18) 

h 
= [C3 cos hx — C4 sin hx] 

3CJE 

Applying the boundary conditions that E. must be zero at x = 
shows that C3 = 0. The second condition that E. must be zero 

H 

Flo. 7-2. Electric and magnetic fields between parallel planes for 
the TE40 wave. 

E 

at x = a requires that h = mina where m is any integer. Then 
the expressions for E., Hy, and E. become 

E. — ine.C4 sin min x 
jw€a a 

14 = C4 COS mr —a x (7-19) 

tiC4 my 
E. = — cos — x 

jcoe a 
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Multiplying by the factor eu4"-- z) to slow the variation with time 
and in the z direction, and putting = gi for the range of fre-
quencies in which wave propagation occurs, the expressions for TM 
waves between parallel perfectly conducting planes are 

Ily -= C4 cos (-In11- x) ei(.t-bz) 
a 

Ez 4 cos ni—r x 
WE a 

Ez = C4 sin (—.1  
coal a 

(7-19a) 

As in the case of transverse electric waves, there is an infinite num-
ber of modes corresponding to the various values of m from 1 to 
infinity. However in this case of transverse magnetic waves there 

Fin. 7-3. The T1\11,0 wave between parallel planes. 

is also the possibility of m = 0, because m = 0 in the above equa-
tions does not make all the fields vanish. This particular case of 
m = 0 will be discussed in detail in a later section. A sketch of the 
TM1,0 wave between parallel planes is shown in Fig. 7-3. 

7.04 Characteristics cf TE and TM Waves. The transverse 
electric and transverse magnetic waves between parallel conducting 
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planes exhibit some interesting and rather surprising properties 
that seem quite different from those of uniform plane waves in free 
space. These properties can be studied by investigating the propa-
gation constant ey- for.these waves. 

Examination of eqs. (16) for TE waves and eqs. (19a) for TM 
waves shows that for each of the components of E or H there is a 
sinusoidal or cosinusoidal standing-wave distribution across the 
guide in the x direction. That is, each of these components varies 
in magnitude, but not in phase, in the x direction. In the y direc-
tion, by assumption, there is no variation of either magnitude or 
phase of any of the field components. Thus any x-y plane is an 
equiphase plane for each of the field components (that is, any 
particular component, E„ for example, reaches its maximum value 
in time at the same instant for all points on the plane). Also these 
equiphase surfaces progress along the guide in the z direction with 
a velocity D = co/a, where the phase shift constant, is the imag-
inary part of the propagation constant 5. Now from eq. (11), 5 
can be expressed in terms of h and frequency and the constants of 
the medium by 

5 = — (0211E (7-20) 

Inserting the restrictions on h imposed by eq. ( 14), this becomes 

m 12 

CO2µ6 : 
a 

(7-21) 

Inspection of eq. (21) shows that at frequencies sufficiently high 
so that (.02µE > (nur/a)2, the quantity under the radical will be 
negative and will be a pure imaginary equal to jP, where 

a = \10,2 _ (m_ir)2 (7-22) 
a 

Under these conditions the fields will progress in the z direction as 
waves, and the attenuation of these waves will be zero (for perfectly 
conducting planes). 

As the frequency is decreased, a critical frequency fc = erw will 

be reached at which 
2 

2 - WC 
• a 

(7-23) 
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For all frequencies less than fc, the quantity under the radical will 
be positive and the propagation constant will be a real number. 
That is, 5 will have value but a will equal zero. This means that 
the fields will be attenuated exponentially in the z direction and that 
there will be no wave motion, since the phase shift per unit length 
is now zero. The frequency fc, at which wave motion ceases, is 
called the cut-off frequency of the guide. From eq. (23). 

- m 
2a Vrie 

(7-24) 

It is seen that for each value of m, there is a corresponding cut-off 
frequency below which wave propagation cannot occur. Above 
the cut-off frequency, wave propagation does occur and the attenu-
ation of the wave is zero (for perfectly conducting planes). The 
phase shift constant e in the range where wave propagation occurs, 
is given by eq. (22). It is seen that a varies from zero at the cut-off 
frequency up to the value w •VFLE as the frequency approaches 
infinity. The distance required for the phase to shift through 2ar 
radians is a wavelength, so that the wavelength 'it is given in terms 
of 5 by 

(7-25) 

Also the velocity of propagation of the wave is given by the wave-
length times the frequency, so that 

2arf 
(7-26) 

When the expression for a is put in eqs. (25) and (26), the wave-
length and wave velocity are given by 

—  2-if  (7-27) 
co2ge — (mr/a) 2 

V w212, (nur/a)2 (7-28) 

It is seen that at the cut-off frequency both it and '0 are infinitely 
large. As the frequency is raised above the cut-off frequency, the 
velocity decreases from this very large value. It approaches a 
lower limit. 
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1 
vo (7-29) 

1/Pe 

as the frequency becomes high enough so that (mr/a)2 is negligible 
compared with (0211E. When the dielectric medium between the 
plates is air, and E have their free space values 1.4, and e„, and tLe 
lower limit of velocity, given by (29), is just the free-space velocity 

c, where as usual 
1  c — — 3 X 108 meter/sec 

V PV6V 

Therefore the velocity of the wave varies from a value equal to 
the velocity of light in free-space up to an infinitely large valut' 
as the frequency is reduced from extremely high values down to the 
cut-off frequency. This velocity is the wave velocity or phase 
velocity, and is different from the velocity with which the energy 
propagates. The distinction between these velocities will be con-
sidered in a later section of this chapter. 

7.05 Transverse Electromagnetic Waves. For transverse elec-
tric (TE) waves between the parallel planes, it was seen that the 
lowest value of m that could be used without making all the field 
components zero was m = 1. That is, the lowest-order TE wave 
is the TEL') wave. For transverse magnetic (TM) waves however, 
a value of m equal to zero does not necessarily require that all the 
fields be zero. Putting m = 0 in eqs. (19a) leaves 

H„ = C4 ee**-41) 

E. = C4 e ex.s-ii.) • (7-30) 

E, --= 

For this special case of transverse magnetic waves the component of 
E in the direction of propagation, that is E,, is also zero so that the 
electromagnetic field is entirely transverse. Consistent with previous 
notation this wave is called the transverse electromagnetic (TEM) 
wave. Although it is a special case of guided-wave propagation, it 
is an extremely important one, because it is the familiar type of 
wave propagated along all ordinary two-conductor transmission 
lines when operating in their customary (low-frequency) manner. 

It is usually called the principal wave. 
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There are several interesting properties of TEM waves which 
follow as special cases of the more general TE or TM types of waves. 
For the TEM waves between the parallel planes it is seen from eqs. 
(30) that not only are the fields entirely transverse, but they are 
constant in amplitude across a cross-section normal to the direction 
of propagation; and, of course, their ratio is also constant. For 
m = 0 and an air dielectric, the expressions for 1, and it reduce 
to 

= 177-1,teo 

1/17-44 

v = — C (7-31) 

2er  
—› X — 

• co 'VW.; fi 

Unlike TE and TM waves, the velocity of the TEM wave is inde-
pendent of frequency and has the familiar free-space value, c 3 
X 108 meter/sec. (It has this value only when the planes are 
perfectly conducting and the space between them is a vacuum. 
The effect of finite conductivity for the conducting planes is to 
reduce the velocity slightly. This effect will be considered in a 
later section.) Also from eq. (24), the cut-off frequency for the 
TEM wave is zero. This means that for transverse electromagnetic 
waves, all frequencies down to zero can propagate along the guide. 
The ratio of E to H between the parallel planes for a traveling wave 
is 

E, 5 ¡-.1„ = =-. - 
H, e, (7-32) 

which is just the intrinsic impedance, n., of free space. 
A sketch of the TEM wave between parallel planes is shown in 

Fig. 7-4. 

7.06 Velocities cf Propagation. It was seen that except for the 
TEM wave, the velocity with which an electromagnetic wave 
propagates (in an air dielectric) between a pair of parallel planes 
is always greater than c, the free-space velocity of electromagnetic 
waves. In actual rectangular or cylindrical wave guides (to be 
considered in chap. 9), the TEM wave cannot exist and the wave 
or phase velocity is always greater than the free-space velocity. On 
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the other hand, the velocity with which the energy propagates along 
a guide is always less than the free space velocity. The relation 
between these velocities is made clear by consideration of a simple 
and well-known illustration. Figure 7-5 might be considered to 
represent water waves approaching the shore line or a breakwater 
a-a at an angle O. The velocity of the waves could be determined 

FIG. 7-4. The TEM wave between parallel planee. 

by measuring the distance X between successive crests and recording 
the frequency f with which the crests passed a given observation 
point. The velocity c with which the waves are traveling would 
be given by 

c = Xf 

Alternatively, if one wished to determine the velocity c without 
going into the water, this could be done by measuring the angle O 
and the velocity O = vz with which the crests move along the shore 
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line (in the z direction). This velocity would be given by 

D = 5t.f 

where -it is now the distance between crests along the shore line. 
Evidently i3 and are greater than c and X respectively, and are 
related to them by 

(7-33a) 

(7-33b) 

When the direction of wave travel is nearly parallel to the shore, 
that is, when the angle O is small, the velocity j7 with which the 
crests move along the shore line is very nearly equal to c, the free-
space velocity of the waves. However, when the angle O is near 

de 

a I ...• 1 o ....- e• 
...- e", BREAKWATER OR ..-

.•••• SHORE LINE -1:-
.., 

Fia. 7-5. Water wave approaching a breakwater. 

90 degrees the velocity with which the crests advance along the 
shore line is very great, and approaches infinity as O approaches 
90 degrees. 

Consider now wave propagation within a wave guide. It is 
always possible, though sometimes not too practical, to obtain 
the field configuration within a rectangular guide by superposing 
two or more plane waves in a suitable manner. For the TE„„0 
waves in rectangular guides and for these same waves between 
parallel planes as already considered, this separation into component 
waves is quite simple. It is left for the student to show (problem 2) 
that two uniform plane waves having the same amplitude and fre-
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quency, but opposite phases can be added to produce the field 
distributions of the TE.,0 waves. The direction of the component 
waves are as shown in Fig. 7-G, where the angle 0 between the walls 
of the guide and the direction of the waves depends upon the 
frequency and the dimension a. For each of the component waves 
the electric vector E will be in the y direction and the magnetic 
vector H will lie in the x-z plane and will be perpendicular to the 
direction of travel of that wave. In order to satisfy the boundary 
conditions at the walls of the guide, the electric fields due to the two 
component waves must add to zero at those surfaces. The only 

FIG. 7-6. Direction of travel of the component uniform-plane 
waves between parallel planes. 

way in which it is possible to have E„ equal to zero at the walls and 
still have values of Ei, at points between the walls is to have a stand-
ing wave distribution of Et, across the guide, with the nodal points 
of the standing wave occurring at the wall surfaces. This condition 
requires that a, the separation between the walls, must be some 
multiple of a half-wavelength measured in the direction perpen-
dicular to the walls. Referring again to Fig. 7-5 the required con-
dition is that 

mX. 
= a 

2 

where m is an integer and where X. is the distance between crests 
measured in the x direction. Since X. = X/sin 0, it is seen that 
the condition on O is 

mX 
sin 0 = 

2a 
(7-34) 
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Because the sine cannot be greater than unity, it is apparent that 
a, the separation between the walls must be greater than X/2, where 
X is the free-space wavelength cf the wave. The wavelength for 
which 

2a 
= (7-35) 

is the cut-off wavelength for that value of m. At the cut-off wave-
length sin O is unity and O is 90 degrees. That is, the waves bounce 
back and forth between the walls of the guide, and there is no wave 
motion parallel to the axis. As X is decreased from the cut-off 
value, O aim decreases, so that at wavelengths much shorter than 
cut-off (very high frequency) the waves travel almost parallel to the 
axis of the guide. 

The wavelength it = Xz, parallcl to the walls of the guide, which 
is the wavelength ordinarily measured in wave guide work, is given 
by 

— 
cos O — (mX/2a) 2 

X 
(7-36) 

This is the distance between equiphase points in the direction of the 
axis of the guide. The phase velocity in this direction is 

5 = 
Cos 0 -V1 — (mX/2a) 2 (7-37) 

It is evident that because of the zig-zag path traveled by each of the 
component waves, the velocity,* v„, with which the energy propa-
gates along the axis of the guide will be less than the free-space 
velocity c. In terms of the angle 0, for a guide with an air dielectric, 
it will be 

VG = c cos O 

In terms of the width dimension a in wavelengths, it is 

tl, c — ("IXY (7-38) 
2a / 

It will bF noted that the product of the phase velocity and the veloc-
ity with which the energy propagates is equal to the square of the 

* This velocity, v„ is the group velocity. The terms phase velocity, group 
velocity, and signal velocity are discussed in more detail in Appendix I. 



• 192 GUIDED WAVES M7.01 

free-space velocity, that is, 
i7 X yo = c2 (7-39) 

As the frequency is reduced toward the cut-off frequency, the 
angle O approaches 90 degrees, so that the phase velocity i becomes 
very large, and the velocity with which the energy propagates 
becomes very small. At the cut-off frequency O is infinite, but y, 
is zero, that is propagation of energy along the guide by wave motion 

ceases.* 
For a (lossless) dielectric in the guide having permittivity e 

and permeability g, different from so and 1.4, the velocity c must be 
replaced by vo = 1/NATe. 

7.07 Attenuation in Parallel Plane Guides. The problem of 
wave propagation between parallel conducting planes has been 
solved for the theoretical case of perfect conductors, and the solu-
tions appear as eqs. (16a), (19a), and (30) for the TE.,o, TM,n,o and 
TEM modes respectively. In actual wave guides the conductivity 
of the walls is usually very large, but it is never infinite, and there 
are always some losses. These losses will modify the results 
obtained for the lossless case by the introduction of the multiplying 
factor e—cts in eqs. (16a), (19a), and (30). The problem now is to 
determine this attenuation factor a that is caused by losses in the 
walls of the guide. • 

In order to see how a may be evaluated for wave guides, con-
sider the familiar problem of attenuation in ordinary two-conductor 
transmission lines. For any line with uniformly distributed con-
stants, the amplitudes of voltage and current along the line (when 
the line is terminated in its characteristic impedance) are 

V = Vo e—az (7-40) 

I = Io e—az (7-41) 

and the average power transmitted is 

W = cos O 
= V 0/0 e-2as cos 0 (7-42) 

* This is not to say that there are no fields within the guide. In section 7.04 
it was seen that below cut-off frequency 5 is real, so that & has value and et is 
zero. This means that the fields then penetrate into the guide with an expo-
nential decrease in amplitude, and with no phase shift (for the infinitely-long 
guide with perfectly-conducting walls). A wave guide operated in this manner 
is known as an attenuator. 
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The rate of decrease of transmitted power along the line will be 

aw — — = +2aW 
az 

The decrease of transmitted power per unit length of line is 

= 2aW 

and this must be equal to the power lost or dissipated per unit 
length. Therefore 

Power lost per unit length 2a W 
= — 2a 

Power transmitted 
so that 

Power lost per unit length 
a — (7-44) 

2 X power transmitted 

Using eq. (44), the attenuation factor can be determined for 
more general cases of guided wave transmission where the terms 
" voltage" and " current" may no longer apply. 

The computation of power loss in a wave guide appears at first 
glance to be a rather difficult problem, because the loss depends 
upon the field configuration within the guide, and the field con-
figuration, in turn, depends to some extent upon the losses. The 
attack on this problem is one that is used quite often in engineering. 
It is first assumed that the losses will have negligible effect upon 
the field distribution within the guide. Using the field distribu-
tions calculated for the lossless case, the magnetic-intensity tan-
gential to each conducting surface is used to determine the current 
flow in that surface. Using this value of current and the known 
resistance of the walls, the losses are computed and a is determined 
from (44). If desired, a second and closer approximation could 
then be made, using a field distribution corrected to account for 
the calculated losses. However, for metallic conductors of high 
conductivity such as copper or brass, the first approximation 
yields quite accurate results, and a second approximation is rarely 
necessary. 

EXAMPLE 1: Attenuation Factor for the TEM Wave. The expressions 
obtained for magnetic and electric fields between parallel perfectly con-
ducting planes (Fig. 7-1) in the case of the TEM mode were 

= C4 eiccog) 

Ez --= ne eim-fh) (7-30a) 

(7-43) 
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The linear current density in each of the conducting planes will be given by 

J=nXII 

so the amplitude of the linear current density in each plane is 

= C4 

The loss per square meter in each conducting plane is 

= 3IC42R. 

where = 
2u. 

is the resistive component of the surface impedance given by the expression 
• - 

Z. = \11;44. 
G-.. 

and cr,„ refer of course to values in the metallic conductor. The 
total loss in the upper and lower conducting surfaces per meter length for a 
width b meters of the guide is 

The power transmitted down the guide per unit cross-sectional area is 

34 Re (E X II*), (745) 

E. and H are right angles and in time phase and ILi = n11-1„1, so (45) 
reduces to 

hnC42 

For a spacing a meters between the planes the cross section area of a 
width b meters of the guide is /K.: square meters and the power transmitted 
through this area is 

Power transmitted = ,InCt42ba 

From (44) the attenuation factor is 

C42R.b  
a — 

2 X 3inC42ba 

R. 1 ,\Icum.„, 
= — 2u — — nepers/meter (7.46) 

na na „. 

This expression should be compared with the corresponding expression 
for the attenuation factor of an ordinary transmission line (eq. 8-65), 
which is 

a 
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where R is the resistance per unit length of the line (that is twice the con-
ductor resistance). 

EXAMPLE 2: Attenuation of TE Waves. The expressions for E and H 
for the transverse electric modes between perfectlf conducting parallel 
planes (Fig. 7-1) are 

( inr 
Eli = Cl sin — x ei(.1-04 

a 

H. = — C1 sin —new cou a (7-16a) 

H. = i—MT C1 cos m-2" x 
coma a 

The amplitude of linear current density in the conducting planes will be 
equal to the tangential component of H (i.e., IL,) at x 0 and x = a 

1.41 = 1/1.1 
tnrCi 

(aim 

(at x = 0, x = a) 

It is interesting to note in passing that for these modes there is no flow 
of current in the direction of wave propagation. The loss in each plate is 

j 2» _ M 272C12 VCOIhn./20-ns _  
2 2„,2122a2 (7-47) 

The power transmitted in the z direction through an element of area 
da = dx • dy is 

Power transmitted per unit area = 34 Re (E X H*) • da 

= —WE„H.) dx dy 

= - !.c s i n (-7121r dx dy 
2wµ a 

Power transmitted in the z direction for a guide 1 meter wide with a spacing 
between conductors of a meters is 

'elC2sin2 (mir — x), a 4co12a 
ax (7-48) 

µ fx -a 2cog a  

Dividing twice expression (47) by twice expression (48), the attenuation 
factor is 

a — 2m2r2 Vcdµ,./2«. 

(loge 
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Recalling that a = — (mina)2 the expression for attenuation 
factor for TE waves between parallel conducting planes for frequencies 
above cut-off is 

2m272 Vwµ./2«.  
a — (7-49) 

togas V co2i.te — (mr/a)2 

The value of this expression decreases from infinity at cut-off to quite low 
values at higher frequencies. For frequencies very much higher than 
cut-off the attenuation varies inversely as the three-halves power of the 
frequency. 

Attenuation Factor for TM Waves. The expression for the atten-
uation factor for TM waves between parallel conducting planes 
can be obtained in a similar manner. It differs from expression (49) 
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Fro. 7-7. Attenuation versus frequency characteristics of waves 
guided between parallel conducting planes. 

in that the attenuation reaches a minimum at a frequency that is 
-V-§ times the cut-off frequency and then increases with frequency. 
At frequencies much higher than cut-off the attenuation of the TM 
modes increases directly as the square root of frequency. 
A sketch of variation of attenuation with frequency for different 

modes propagating between parallel conducting planes is shown in 
Fig. 7-7. 

7.08 Wave Impedances. In ordinary transmission line theory, 
a brief discussion of which is given in the next chapter, extensive 
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use is made of the " characteristic impedance," Zo, of the line. 
This impedance gives the ratio of voltage to current (for an infi-
nitely long line), and its real part is a measure of the power trans-
mitted for a given amplitude of current. In transmission line 

theory power is propagated along one axis only, and only one 
impedance constant is involved. However in three-dimensional 
wave propagation power may be transmitted along any or all of 
the three axes of the co-ordinate system, and consequently three 
impedance constants must be defined. For example, in the Car-
tesian co-ordinate system the complex power per unit area trans-
mitted in the x, y, and z directions respectively is given by 

P,: = w E,H ,* _ E.Hy*) P„ = — ExHz*) 

P. = 1A(E.H„* — EH,:*) 

The real or average Poynting vector in any of the three directions 
is given by the real part of the appropriate expression. It is now 
convenient to define the wave impedances at a point by the following 
ratios of electric to magnetic intensities: 

Z÷ = Z÷vs = E -17". 
x H. 

(7-50) 
„ Ez 

Z+" = H Z+.5 = — lix y  

These are the wave impedances looking along the positive directions 

of the co-ordinates, and this fact is indicated by the superscript 
plus sign. The impedances in the opposite directions are the nega-
tive of those given above, and the negative direction is indicated 
by a superscript minus sign. Thus in the directions of decreasing 

co-ordinates 
Ex E„ E. 

Z--.„ = — Hy Z-yz = Z -  zx = 

E„ E. E. 
" = zZ 

Ii z 

Corresponding definitions would obtain for any orthogonal co-ordi-
nate system. In terms of these wave impedances the x, y, and z 
components of complex Poynting vector are 

Pz = Z-1-,H„H*„) = -34(Z-vzHzH*.-1- Z-z„H„H*„) 
P, = WZ±..H.H*. Z- -xzH.H*.) = Z-xzHzH*,) 

P. = %(Z±.„H„H*y+Z-1-„.H.H*.) = 
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The subscripts on the wave impeda,nces indicate the particular 
components of E and H involved, and the algebraic sins of the 
wave impedances have been chosen so that, if the real part of any 
given impedance is positive, the corresponding average power flow 

is in the direction indicated by the impedance. 
Applying these definitions to waves propagating between parallel 

planes the wave impedance in the direction of propagation can be 
found. For the TEM wave (the exceptional case where both E 
and H are transverse), the wave impedance is given by eq. (32), 
and it is seen to be equal to n, the same as for a uniform plane wave 
in free space. For TE waves, the wave impedance can be obtained 

from eqs. (17). It is 

(7-51) 

If ir)2 
— _ 

a where 

The wave impedance in the z direction is constant over the cross 
section of the guide. For frequencies below cut-off for which is 
real, the impedance is a pure reactance indicating no acceptance of 
power by the guide and therefore no transmission down the guide. 
For frequencies above cut-off is a pure imaginary (under the 
assumption of perfectly conducting walls) and can be written 

i41 W 2 ( nr = = — ) 

2 

CO» 

so that Z+2,.   — — (7-52) v.21„ _ (m ,./(02 

The wave impedance is real and decreases from an infinitely large 

value at cut-off toward the asymptotic value of n = NE as the 
frequency increases to values much higher than cut-off. 

These results could equally well have been obtained by con-
sidering the TE wave as being made of two uniform plane waves 
reflected back and forth between the conducting planes and making 
an angle O with the axis of propagation (Fig. 7-6). For the TE 
wave propagating in the positive z direction the transverse com-
ponent of E will be E„, whereas the transverse component of H will 
be —H. = —H cos O; therefore the wave impedance in the z direc-

tion is 
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E„ E  _ 
Z+" = H cos 0 cos 0 

Making use of eq. (37), this may be written as 

cou 
z+ve = n = 

(7-53) 

which is the same result as was obtained in (52). 
For TM waves the transverse component of E will be E. = 

E cos 0, whereas the transverse component of H will be H„. The 
wave impedance for this case is 

+ E. E cos 0 
Z 71 = = H — esz)s ° (7-54) 

It varies from zero at the cut-off frequency up to the asymptotic 
value n for frequencies much higher than cut-off. 

There is a marked resemblance between the properties of these 
wave impedances and the characteristic impedances of the proto-
type T or 71- sections in ordinary filter theory. For example, the 
wave impedance for TE waves between parallel planes may be 
written as 

= n —   
e C°S V 1 — sm2 0 

Making use of the relations 

sin 0 = —mX Xe = ) 2a — 1 

2a 

(7-55) 

where Xe and fe are the cut-off wavelength and cut-off frequency, 
eq. (55) becomes 

—  n (7-56) 
— (f/f ,2 

This is similar to the expression for the characteristic impedance 
of the prototype 7r section of a high pass filter, which is 

zo. —   
Vi — (fc/f)2 

(7-57) 
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Similarly the expression for the wave impedance for TM waves 
between parallel planes may be written as 

z-Fx„ = - \f/ (7-58) 

which corresponds to the expression for characteristic impedance 
of the prototype T section of a high-pass filter, 

Z = (7-59) 0 T  

The wave impedances for waves between parallel planes are shown 
as functions of frequency in Fig. 7-8. In Chap. 9 a general trans-
mission line analogy will be developed for TM and TE waves in 
cylindrical guides of any cross-sectional shape. 

FIG. 7-8. Wave impedances for waves between parallel conduct-
ing planes: a, TE waves; b, TM waves. 

In this chapter the characteristics of waves propagating between 
two parallel planes have been considered in some detail. The con-
cepts developed in the treatment of this simple illustrative system 
are quite general and may be extended to apply to all guided sys-
tems. In chap. 8 these general principles will be applied to " ordi-
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nary" two-conductor transmission lines, and in chap. 9 application 
will be made to practical forms of waveguides. Before leaving this 
simple system some consideration will be given to the electric field 
configuration and current flow within the metal walls of the guiding 
system. 

7.09 Electric Field and Current Flow Within the Conductor. 
When an electromagnetic wave is guided along the surface of a 
conductor, currents flow in the conductor and charges appear and 
disappear on its surface. The current distribution within the 
conductor and the charge distribution on the surface can be obtained 
from a straightforward solution of Maxwell's equations, subject 

E.E Y 

H.—H P.e.E S Y 

Jz • co 

FIG. 7-9. Current and surface charge on a perfect conductor that 
is guiding an electromagnetic wave. 

to the appropriate boundary conditions at the boundary surface 
between the dielectric and the conductor. However the results are 
somewhat complex and require interpretation. For this reason, 
before obtaining the exact solution, it is advantageous to consider 
in a qualitative manner, and from facts already known, certain 
features of the problem. 

In Fig. 7-9 a TEM wave is guided along the surface (in the 
x-z plane) of a conductor which, for the moment, will be assumed 
to be perfectly conducting. For the case considered the electric 
intensity, E = jE„, will be normal to the surface, and the magnetic 
intensity H = —iHz will be parallel to the surface. There will be 
a surface current J, flowing in the z direction, and related to the 
magnetic intensity by the vector relation J = n X H, which in this 
case becomes J. = —H.. Since Ei, = — 11.H., it follows that 

J. = (7-60) 
n. 
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A surface charge density appears on the surface, the value of which is 

given by 
p. = Dv = e.E, (7-61) 

From (60) and (61) it is seen that both P. and J. are proportional 
to Ei„ so that at any instant of time the position of maximum charge 
occurs at the same value of z as the position of maximum surface 

current. 
When the conductivity of the conductor is reduced from infinity 

to a large but finite value such as obtains for ordinary metallic 
conductors, the situation is modified in several respects. The 
chief effect is the introduction of a small tangential component 
of E, which is required to drive the linear current density J against 
the surface impedance Z. of the conductor. Making the assump-
tion (known to be very good) that H will not be changed appreci-
ably by the finite rather than infinite conductivity, the tangential 
component of E can be obtained from 

E. = J.Z. = — H.Z. 

= = \F2-1 /45° 

The horizontal or tangential component of E is seen to lead —il. 
and therefore Ey by an angle of 45 degrees. The conductor is con-
sidered to be sufficiently good that the inequality« » WE holds for all 
frequencies considered. The depth of penetration, although small 
for good conductors, is not zero, and the linear current density J. 
is now distributed throughout the thickness of the conductor, with 
approximately two-thirds of it concentrated within the " skin 
depth" S. The linear current density .1., is still in phase with the 
magnetic intensity —Hz, but the current density iz at the surface 
is in phase with E., and so leads — Hz by 45 degrees. The penetra-
tion of the electric field and current waves into the conductor can 
be visualized by employing an artifice which yields an approximate 
but simple picture of the phenomena. 

Since the electric field and current penetrate into the conductor 
by means of wave motion, it is convenient to think of the metallic 
medium as a large number of transmission lines, side by side guid-
ing energy into the interior of the conductor* (Fig. 7-10). The 

*G. W. O. Howe, " Wireless Currents at the Earth's Surface," Wireless 
Engineer, Vol. 17, No. 204, p. 385, September 1940. 
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picture is particularly simple if it is imagined that there are perfectly 
conducting strips, parallel to the x-y plane, imbedded in the metallic 
medium and serving as the " conductors" of the transmission lines. 

(a) 

Ez zlZ 

et/ 

PERFECTLY 
CONDUCTING STRIPG 

(b) 

Fia. 7-10. Penetration of the electric field and current in a con-
ductor that is not perfect (approximate representation). 

Considering now a square vertical column of unit width (in the 
z direction and unit depth (in the x direction) as a transmission 
line, it will have the following constants per unit length (in the y 
direction): 

G = er mhos/meter L = 1.4 henries/meter 
fl = 0 ohms/meter C = e farads/meter 

where cr,g and e are the constants of the metallic medium. The 
"input voltage" to each of these lines will be E, Az =- E, (for 
Az = 1). The " input current" per unit depth (in the x direction) 
will be equal to this voltage divided by the input impedance of the 
line. Assuming that the line is long enough so that any reflected 
wave has negligible amplitude (that is, conductor thickness >> 8), 
the input impedance will be equal to the " characteristic impedance" 
of the line. 

icy 
R jzoL 

w 

iwg og 
cr jcoe \F 

The "input current" to each " transmission line" flows down in one 
conductor, through the medium, and back up the second conductor. 

/45° 
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If the input voltage were the same magnitude and phase for all lines, 
the vertical currents of adjacent lines would cancel and the current 
flow in the medium would be entirely in the horizontal direction. 

This is the case when a uniform plane wave is incident normally 
on the surface of a conductor. In this case there is no current flow 
in the conducting strips and they may be removed without in any 
way affecting the current flow in the medium. However, when E. 
is caused by a radio wave traveling parallel to the surface of the 
conducting medium, there will be a phase difference between the 
input voltages of adjacent transmission lines equal to 2ar Az/X, where 
Az/X is the width in wavelengths of the vertical columns. In this 
case, there will be currents in the vertical strips as indicated in 
Fig. 7-10(b), and, of course, this simple analysis is no longer exact. 
However for a metallic medium where the depth of penetration is 
very small, the error in this approximate approach is also small. 
The picture could be improved upon by sloping the conducting 
strips to be normal to the phase front of the wave advancing into 
the metal. As the wave external to the surface advances in the 
z direction with a velocity v. = co/,80, the wave penetrates into the 
metal with a much slower velocity y„ w/i3i. The first of these 
velocities is approximately equal to the velocity of light in free space, 
whereas the second is of the same order of magnitude as the velocity 
of sound in air. The slope of the line AB, parallel to an equiphase 
surface within the metal, is given by 

tan = =   
w:o./2 

o. 

For any good conductor the angle el is very nearly zero. For 
example, for copper at 100 mc, 4» = 0.000079 degrees. Since the 
direction of propagation of a wave is normal to the equiphase 
surfaces, the statement, that in the metal the wave propagates 
almost perpendicularly to the surface, is well justified. 

RIGOROUS SOLUTION. Having obtained a qualitative picture of what 
happens within a conducting medium as an electromagnetic wave is guided 
along its surface, it is now in order to set up and obtain a more rigorous 
solution as a boundary value problem. The problem is that of finding 
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solutions to Maxwell's equations in regions 0 and I (Fig. 7-11), which will 
fit the boundary conditions at the surface of the conductor. 

Y 

REGION 0 
(AIR) 

••• 

REGION I 
(METALLIC CONDUCTOR) 

FM. 7-11. Equiphase lines (solid) and equiamplitude lines 
(dashed) for an electromagnetic wave guided along a conducting 
plane. 

Q 

fi 

The following assumptions will be made: 

(1) No variations in the x direction. Therefore a/ax as 0. 
(2) Variations in the z direction can be represented by e-70 in the 

dielectric and by in the metal. The values of yo and yi must come 
out of the solution. 

(3) Variations in the y direction are as yet unknown and must be 
solved for. 

Then, again representing all time variations by eswg, Maxwell's equa-
tions become: 

Above the surface (Region 0): Within the conductor (Region I): 

± 704 = + 71Ei, = 
8E. aE 

= i.„Ey (7-62a) —71H. = (o-i ja.,)Ey 

— = jcoe,,E. — (al ± jcuEi)E. 
ay 

combining gives 

aw. 
Y021/. = —w2µ„E.H. ay2 

(7-62b) 

ay2 'Y 12H = jcoe ,)I I 

aw. or hoof/. hi2H. 
ayo ay2 
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where ho2 = (—yo2 — 0.12g,e„) where h12 = (- 7,2 4- 7.2) 
and 7.2 = jzoei) 

Solutions to these differential equations may be written as 

H. = Ciehov + C2 e-h" (7.63a) H. = Ca ehiv -F C4 e-hiv (7.63b) 

In taking the square root of /12, if it is agreed that that root which has a 
positive real part will be used, then only the second term of (63a) need 
be considered. The first term represents a field which becomes infinitely 
large at y = 00. Since this could not represent a physical field, this first 
term will be discarded by putting CI = O. Similarly within the conductor, 
the second term represents a nonphysical field that becomes infinite at 
y = — oo. Therefore C4 can be put equal to zero. Showing the variations 
with time and in the z direction, the expressions for magnetic intensity can 
now be written 

Above the surface: EeZow the surf cc: 

II = C2 e-h" e(iwe-1 0') H. = C3 e+hlY etiwt --7i.) 

At the surface (y = 0), these expressions must be equal at all instants of 
time and for all values of z, because L must be continuous across the 
boundary. This requires that C2 = C3 and yo = Then the expres-
sions for vertical and horizontal components of electric intensity can be 
written: 

Above the surface: 

- 70C2 
Ey =  . e-h00 eciwt-10) 

julE„ 

hoC2 
E. = e-"00  

jr.de„ 

In the conductor: 

oC2  E = eh, y 
al + jwEI 
hiC2  

Es = ehni 
+ 

At y = 0 the expressions for E. must be equal. Therefore 

he —h1  

cri 

ho — 
ui 

(for metallic conductors) 

— co2e.2 
h02 — h12 

'Yo2 = — 1102 = --‘02itoE. 'Yo2 + 7.2) 

From this, 

g--'• ,\I—W2f.tve,, (1 iwille) 
¡Lei 
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For nonferrous metallic conductors el ei so that 

70 = - - — 
c 0-1 

ho2 - () ho 
c2 0.1 

• C 0.1 

h1 Vjwiteri 

The resultant expressions for the fields in the two regions are 

Above the conductor: 

H. = C2 e-heY 0'8-7°4  

Ey = H. -n.H. 
awe,, 

Es = x Pe• — z 
ho , 

ace. 0-1 

h0 Wet, 
/ -45° 

(7.64a) 

Within the conductor: 

C2 ehisi e(iwg-1.0.) 

— jtue  
n.11 

IL. 

E„ \ICJE. ee 0-1 
(7.64b) 

It is seen that in the region of the air dielectric, outside the conductor, the 
electric intensity is almost normal to the surface. The field is elliptically 
polarized, the small horizontal component of E leading the vertical com-
ponent by 45 degrees. Within the conductor the field is almost horizontal 
or parallel to the surface, the very small vertical component leading the 
horizontal component by 45 degrees. 

The equiphase and equiamplitude surfaces can by obtained from the 
first of eqs. (64a and b). By letting 

'Yo = ao ho = Po + hi -= pi + jqi 

these equations can be written as 

= C2 e(-Poy-ao.) ei(4'4-20-004 (in the dielectric) 

and II,, = C: e(PlY-e") ei(wi-hin"9") (in the conductor) 

Equiamplitude surfaces are obtained by setting the real exponents equal 
to a constant. This leads to 

.\"-- tan xo = - I/ J.,- r -, ±:'- -e' (in the dielectric) (7-65) 
z po 2cri 

\r -(j•,-we7, (in the conductor) (7-66) 
z pi cri eel 
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Equiphase surfaces are obtained by setting the imaginary exponents equal 
to a constant. The slopes of the equiphase surfaces are given by 

j30 2 
tan 4/0 = -z = — — — (in the dielectric) (7-67) 

qo 0-1 v 

y 130 .\i2coE„ 
tan = - = — — (in the conductor) (7-68) 

z qi 43-1 

The angles Xi, Xi, 1,1/0, and 1,b, are shown in Fig. 7-11 where the equiphase 
lines are shown solid and the equiamplitude lines are shown dotted. In 
order to show the angles, their sizes have been very much exaggerated in 
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F G. 7-12. Instantaneous current distribi tion within a copper 
conductor as a 100-me wave is guided over its surface. (The ver-
tica scale has been expanded by a factor of 105, and the vertical 
current scale is 10 times the horizontal current scale. Lengths of 
arrows refer to magnitudes at tail of arrow.) 

this diagram. It is seen from eqs. (65) and (67) that in the dielectric the 
equiphase and equiamplitude surfaces are mutually perpendicular. In 
the conductor both equiamplitude and equiphase surfaces are nearly 
parallel to the surface, with the equiamplitude surface making a much 
smaller angle than the equiphase surface. 
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Within the conductor the conduction current density, given by 

i = crE 

is seen to have both horizontal and vertical components. Using eqs. (64b) 
it is possible to make an instantaneous plot of current flow in the conductor 
as the electromagnetic wave is guided along its surface. This has been 
done in Fig. 7-12 for a copper conductor at 100 mc. In order to show the 
current flow adequately the vertical scale has been expanded by a factor 
of 100,000. The current magnitudes, indicated by the lengths of the 
arrows, are drawn to scale, but the vertical current scale is 106 times the 
horizontal current scale. Thus, if a horizontal current density of 1 ampere 
per square meter is represented by an arrow of unit length, an arrow of 
the same length in the vertical direction represents only 10 microamperes 
per square meter. It is apparent from the figure that the vertical currents 
are very small compared with the horizontal currents. However, it is 
these minute vertical currents that bring to the surface the charges on 
which the external electric flux terminates. Since total current normal to 
the surface must be continuous across the boundary surface, the vertical 
conduction current within the conductor at the surface is equal to the 
displacement current normal to the surface in the dielectric (the displace-
ment current in the conductor is negligible). These vertical currents are 
a maximum at those places where the charge density on the surface is zero. 

The plot of Fig. 7-12 is for a single instant of time. As time passes, 
the entire field configuration shown sweeps to the right with a velocity 
approximately equal to the velocity of light in free space. 

PROBLEMS 
1. A TEM wave is guided between two perfectly conducting parallel 

planes (Fig. 7-13). The frequency is 300 me. Determine the voltage 

FIG. 7-13 

reading of the (infinite impedance) voltmeter (a) by using Maxwell's 
electromotive force law (Faraday's induction law); (b) in terms of voltages 
induced in conductors which are parallel to the electric field. 

2. Show that the field configuration of the TE.,e wave between parallel 
planes can be obtained by superposing two plane waves that are reflected 
back and forth between the walls of the guide as indicated in Fig. 7-6. 
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3. (a) Derive an expression for the attenuation factor for the TMi.o 
wave between parallel conducting planes. 

(b) Verify that the attenuation is a minimum at a frequency which is 

N/.3. times the cut-off frequency. 

4. For any uniform transmission line, for which R, L, C, and G per unit 
length are independent of position along the line (and, of course, inde-
pendent of the magnitude of voltage and current), show that variation 
along the line of V and I can always be represented by an exponential law. 

5. Use Maxwell's equations to show that it is impossible for the TEM 
wave to exist within any single-conductor wave guide (such as an ordinary 
rectangular or circular guide). 

Him: For H • ds to have value in the transverse plane, there must 

be a longitudinal flow of current (conduction or displacement). 

6. A plane wave propagating in a dielectric medium of permittivity 
oi and permeability III 1.t. is incident at an angle 0i upon a second 
dielectric of permittivity e 2 and permeability µ2 = µ„. The wave is polar-
ized parallel to the plane of incidence. Then, if the electric and magnetic 
intensities of the incident wave are E1 and Hi, the component of E1 parallel 
to the boundary surface will be E1 cos 01 and the component of Hi parallel 
to the surface will be Hi, so that the "wave impedance" of medium (1) in 
a direction normal to the surface would be E1 cos 01/III = ni cos O. 
Similarly the "wave impedance" for the refracted ray in medium (2) in the 
direction normal to the surface would be E2 COS 02/112 = n2 COS 02. It 
would be expected when these impedances normal to the boundary surface 
are equal that there would be no reflection at the surface. Show that the 
condition that these impedances be equal is the same condition that led 
to the Brewster angle in eq. (5-73). 

7. (a) In Chap. 9 (eq. 9-56), the expression for phase velocity in a 

rectangular guide of any cross-section is shown to be i = vo/V1 — w.2! w1 
where uh is a constant which depends upon the dimensions of the guide. 
Show that the group velocity defined by vp = de/4i is given by 

Vg = vo — coc2/ce. 
(b) Using the definition vg = d.,c.o/c15, show that eq. (7-38) follows from 

(7-37). 

BIBLIOGRAPHY 

See bibliography for Chap. 4. 



CHAPTER 8 

TRANSMISSION LINES 

8.01 Introduction. In the study of wave propagation between 
parallel planes, it was found that there were many possible modes 
or types of waves which could be propagated. Except for the 
special case of the transverse electromagnetic (TEM) wave, how-
ever, all of these modes require a certain minimum separation (in 
wavelengths) between the conductors for propagation to be pos-
sible. Only for the TEM wave could the conductor separation be 
small compared with a wavelength. This statement also holds for 
practical transmission lines, such as coaxial or parallel-wire lines, 
and it is for this reason that only the TEM mode need be considered 
at low frequencies, that is at power, audio, and radio frequencies 
below 200 or 300 mc. All other modes would require impractically 
large cross-sectional dimensions of the guiding systems. If a system 
of conductors guides this low-frequency-type TEM wave, it is 
called a transmission line, whereas if it supports TE or TM waves, 
it is called a wave guide. Transmission lines are considered in this 
present chapter and wave guides will be studied in chap. 9. Trans-
mission lines always consist of at least two separate conductors 
between which a voltage can exist, but wave guides may, and often 
do, involve only one conductor; for example, a hollow rectangular 
or circular cylinder within which the wave propagates. 

Although the TEM transmission line wave is but one special 
case of guided wave propagation, it is so important practically, 
that it is usually treated as " ordinary transmission line theory" 
quite early in the training of the electrical engineer. In this treat-
ment, circuit concepts are extended to cover this distributed-
constants circuit. It is the purpose of this chapter to show how the 
circuit approach follows directly from Maxwell's equations, and also 
to review briefly transmission line theory, especially as it applies 
in the case of low-loss lines. It will be found that many of the 

211 
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results and conclusions of ordinary transmission line theory may be 
applied with slight modifications to the more general cases of wave 
propagation. In particular, the concept of impedance developed in 
circuit theory can be carried over to transmission lines, and then 
extended to general wave propagation. This makes it possible, 
instead of working separately with V and / or E and H, to deal with 
their ratio, which is usually the important quantity in engineering. 

Actual two-conductor transmission lines usually take the form 
of parallel-wire or coaxial lines. Before considering these practical 
cases, however, circuit concepts will be developed for the simpler 
case of a parallel plane transmission line carrying the TEM wave. 

8.02 Circuit Representation of the Parallel-plane Transmission 
Line. In communication engineering a transmission line carrying 
the principal (TEM) wave is represented as a distributed-constants 
network having a series impedance Z = R jcoL per unit length 
and a shunt admittance Y = G ± jcoC per unit length. It is instruc-

tive to draw the equivalent 
cuit and evaluate the constants 
for the parallel plane transmis-

=  sion line of Fig. 7-1. For the 
special case of perfectly conduct-

s, ing planes and a perfect (lossless) 
dielectric, the series resistance 
and shunt conductance are both 
zero, so that the equivalent cir-

cuit representation is that of Fig. 8-1, where there is an inductance L 
per unit length and a capacitance C per unit length. The values 
of these constants in terms of the line dimensions and the constants 
of the medium between the planes can be obtained directly from 
Maxwell's equations. 

Consider the various sections of a parallel-plane transmission 
line shown in Fig. 8-2. It is assumed that the line is carrying the 
TEM mode in the positive z direction, so that E = iEz and H = j Hy. 
The linear surface current density in the lower plane is Jz = H. 
The separation between the planes is a meters and, although they 
are infinite in extent in the y direction, a section b meters wide will 
be considered as being the transmission line. (By making this 
section a part of planes of infinite extent the field will not depend on 
y, and edge effects are eliminated.) Applying the emf equation 

FIG. 8-1. Circuit representation of a 
lossless line. 
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to the closed path ABCDA 

E • ds = — i3 • da 

becomes 
¡TAB + V Bp ± V0» ± V  DA = jC4.1Bya (8-1) 

where, as usual, time variations as ei'" are assumed. For perfectly 
conducting planes the tangential component of E is zero and so 

V BC = V DA 

i Hu ! 4 4444 4 
--1-4v.ti. )r— i -.L. ' 24- J. 

• II 
I I'V. 1.1 I i i 1 
I;tp:.( • i 1 1 I , i 1 1 

_..z 
i I. .:•: i I 

1 , 11 1 
—1 em-r-i-r IT T 
1 tilt f I I Ill I 

H 

which leaves 

= 0 

Fm. 8-2. Parallel-plane transmission line. 

V0» — V BA = — jcoBya Lz 

Dividing through by Az and expressing in the differential form 

dV . 
jcoBya 

dz 
It will be seen that 

By = = lay 

(8-2) 

where I is the current flowing in the strip of width b meters. There-
fore, eq. (2) becomes 

dV jcoma 
= — —  dz b (8-3) 
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Comparison with the ordinary circuital form of the transmission line 

equation 
dV 
—  = dz 

(8-4) 

shows that for the parallel plane transmission line of width b meters 
and spacing a meters 

L = b-a (8-5) 

Similarly by writing the mmf equation for the path FGHK in the 
y-z plane gives 

which becomes 

bilro - bH xff = jà,EExb (8-6) 

d(bH„) 
dz = -jcimEzb 

Replace bH„ by U. = I and E. by V/a. Then 

dI jcoeb v 
- a (8-7) 

Comparison with the usual equation 

dI 
d—z= -jcoCV (8-8) 

shows that for the parallel-plane transmission line 

(8-9) 
a 

It is seen that for a parallel plane transmission line the induct-
ance per unit length is simply the permeability tz of the medium 
multiplied by a geometry factor a/b, which in this case is propor-
tional to the spacing and inversely proportional to the width of the 
line. Also the capacitance per unit length is the dielectric constant 
E of the medium, multiplied by a geometry factor which, in this 
case, is proportional to the width and inversely proportional to the 
spacing. The reciprocal of the square root of the product of L 
and C gives the velocity of wave propagation along the line. That 

is, 
1 1 

V -  - 
VIZ' V Pe 

(8-10) 
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For lines of different cross section the geometry factors will of 
course be different. However, since the velocity of propagation 

is given by y = 1/Nra' for all uniform unloaded lossless transmis-
sion lines, and since the velocity is independent of the line geometry 
(whether parallel-wire, coaxial, etc.), it follows that the geometry 
factors for L and C must always be reciprocal (for lossless lines). 
For example, for parallel-wire lines it was found in chap. 2 that the 
capacitance per unit length was 

re  re  
C — 

In b Vb2 — 4a2 cosh-1 (26a) 
2a 

Therefore, the inductance per unit length must be 

b Vb2 — 4a2 
In 2a iz cosh-1 (rba) 

L —  

(8-11) 

(8-12) 

It is, of course, more than just a coincidence that the geometry 
factors for the L and C of a line are reciprocal. The significance of 
this relation is discussed in section (8.05). 
A clear concept of the meaning of the permeability constant p 

and dielectric constant e is obtained from the parallel-plane trans-
mission line of Fig. (8-2). If this line has unit width and unit separa-
tion, so that a = b = 1, then 

L=p and C =E 

Thus e is the capacitance between conductors of 1 meter length of 
the parallel plane line, which is 1 meter wide and has a separation 
of 1 meter. Similarly, p is the inductance per meter length of the 
same line. In terms of voltage and current, 1.4 is a measure of the 
change per unit length of the transverse voltage when the current 
is changing at the rate of 1 amp/sec. Also the dielectric constant E 
is a measure of the capacitive (displacement) current flow per unit 
length when the voltage between the planes is changing at the rate 
of 1 volt/sec. In terms of electric and magnetic fields, et is a meas-
ure of the rate of change of E with distance owing to a change of H 
with time. Similarly, e is a measure of the rate of change of H with 
distance owing to a change of E with time. Of course this is just 
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the information conveyed by Maxwell's equations in their differ-
ential form. 

In one respect the equivalent circuit representation of a trans-
mission line may be misleading. In the equivalent circuit there 
exists a voltage drop L(dI/dt) along each unit length of line. In 
the actual line, since E tangential to the surface of a perfect con-
ductor is always zero, the voltage drop along the surface of the line 
is necessarily zero. Even if the conductors are imperfect so that 
an E parallel to the surface of the conductors is possible, the only 
voltage drop along the line would be that due to the current flow 
through the surface impedance, and this is ordinarily very small as 
has already been seen. The L(dI/dt) drop in the equivalent circuit 
represents in the actual line the change per unit length of the trans-
verse voltage between conductors. With a zero voltage drop along 
paths tangential to the (perfect) conductors, the difference of the 
transverse voltages AB and DC is equal to the induction voltage 
—dcIa/dt around the closed path ABCDA (Fig. 8-2). But in the 
equivalent circuit representation of Fig. 8-1, where fields are not 
considered, the voltage around the closed path AiBiCiDiAl is zero. 
Therefore the induction voltage — c/Vdt (which is responsible for 
the change in transverse voltage along the line) is shown as a series 
voltage, drop, —L dI/dt, across a lumped inductive reactance. 

The characteristic impedance of the lossless parallel plane trans-
mission line is 

—0 JE _ \rta _ n a 
z — _ _ _ _ 

C ib b 
(8-13) 

For the line of unit dimensions, a = b = 1, the characteristic imped-
ance is just the intrinsic impedance of the dielectric medium between 
the plates. 

8.03 Parallel-plane Transmission Lines with Loss. If the par-
allel plane transmission lines have loss, the results obtained above 
must be modified. The loss in the line will be due to the resistance 
of the conductors and to any conductivity of the dielectric between 
them. Again applying the electromotive force equation around 
the path ABCDA of Fig. 8-2, the voltages VBc and V  DA will now 
not be zero but will each have a value 

VBC = V»4 = J AZ. Az 
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This is the voltage drop in length Az of each conductor due to .1, 
flowing against the surface impedance Z„. Then eq. (1) becomes 

VC» — VRA = —jcol3„a Az — 2J,,Za Az (8-14) 

Writing B„ = 12.14 = p.J, = and putting (14) in the differen-
tial form, 

dV j,)LI — Z' I = — (jcuL Z')I (8-15) 
dz — 

where, as before, 

2Z, 
and =( 8-16) 

L = /lba 

is the series impedance per unit length of the line (that is twice 
the surface impedance of a width b of each conductor). The imped-
ance Z' is complex and can be written as Z' = R' jcaIl where 
R' will be the series resistance per unit length and jcdL' will be the 
surface or internal reactance per unit length. Then eq. (15) can 
be written 

dV 
= —[R' jco(L' (8-15a) 

If the dielectric between the conducting plates is not perfect, 
but has a value «, then there will be a transverse conduction current 
density «E, which will modify the magnetomotive force around the 
rectangle FGHK. Instead of (6) the mmf equation will now be 

— (bHKH — &lira) = (crE. jcoeEx)b Az 
d(bH„)  

Then = —b(u jcue)Ex 
dz 

V 
Replacing bH„ by bJ,= I and Ez by — 

a 

dl  = _ (b2 coa€b) 

— (G jcoC)V (8-17) 

where C = eb/a is the capacitance per unit length and G = bcr/a 
is the conductance per unit length of line. 

Equations (15) and (17) are in the circuital form, familiar to 
engineers, and may be solved to yield the well-known " transmission 
line equations." Before carrying out the solution, Maxwell's equa-
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tions will be applied to two practical transmission lines, the coaxial 
line and the parallel-wire line, to show the development of the same 

relations [eqs. (15) and (17)] 
A  to  for them. 

( -. s, 

c-k-- 81 ic- , / I 
) 8.04 Coaxial and Paral-

-z lel-wire Lines. The circuit 

1 

constants for the equivalent 
circuit of a coaxial or paral-
lel-wire line can be obtained 

in the same manner as in the case of parallel planes. In the coaxial 
line of Fig. 8-3 we can apply Maxwell's emf equation to the closed 
path ABCDA, for which AD = BC has unit length. 

dc1, 
VAB -I- VBC + VCD + V Iht = — — = —ja)(1) 

dt 
VCD — VBA = —jel, — Z'I — Z"I (8-18) 

where /Z' and /Z" are the voltage drops per unit length along the 
inner and outer conductors, respectively. For perfect conductors 
these would be zero. If the magnetic flux per unit length of line 
is related to / by 

Fm. 8-3. Coaxial transmission line. 

= LI (8-19) 
eq. (18) may be written 

dV 
= —(Z' + Z" + jcoL)I 

dz (8-20) 

Z' and Z" are the surface or internal impedances per unit length 
of the inner and outer conductors. If the depth of penetration is 
small compared with the radii of the conductors, these are given by 

Z' = Z" = Z8 
22-a 27b 

where Z. is the surface impedance of a plane conductor of unit length 
and unit width, and a and b are the radii of the inner and outer 
conductors. The resistance per unit length of line will be the real 
part of the sum of Z' and Z". That is 

= ..\1:011 ( 1ra 2 1 ) 
2u 2r ( b e 1 1) _ _ ohms/m (8-21) 
47re a b 
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The surface or internal reactance of the conductors will have this 
same value. The internal reactance of the conductors should be 
added to the external reactance jet' to obtain the total reactance 
per unit length. The voltage equation may be written 

dV 
= — (R jwL)I (8-20a) 

dz 

where R is given by (21) and coL is the sum of the external inductive 
reactance and the surface 
reactance just determined. 

To obtain the current c t 
F( A( _ 

equation apply Maxwell's Tr"   

emf equation to the closed 
path ABCDEF A on the sur- FIG. 8-4 

face of the inner conductor 
and let the length FA = DC be unity (Fig. 8-4). Designating the 
magnetomotive force by if, 

ŒAIIC gCD ŒDEP = In (8-22) 

I„ is the current normal to the surface enclosed by the path ABCD-
EF A; that is, I„ is the transverse current per unit length from the 
inner to the outer conductor. In general, I„ will consist of a leakage 
or conduction current, /c, proportional to the voltage, and a displace-
ment current, /a, proportional to the rate of change of voltage. 
Let G and C be proportionality' factors such that 

I = GV and %It = CV (8-23) 

if is the electric displacement from the surface enclosed by the path, 
and the displacement current will be 

dV 
id = — = C— 

dt dt 

Therefore, the right-hand side of (22) becomes 

I„ = (G jcuC)V 

Considering terms on the left-hand side of (22), 

SCD — gr.! eDEF = = 12 
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so that the left-hand side reduced to 

ŒABC eDBF = I 1 — 12 

The current equation is then 

dI 
= — (G jzoC)V (8-24) 

Equations (20a) and (24) are the familiar circuital form of the trans-
mission line equations. L and C are the inductance and capacitance 
per unit length of line. For a coaxial line, having perfect con-
ductors, L and C are defined by (19) and (23). For conductors 
having large but finite conductivity, the value of L will be slightly 
greater than that obtained for the ideal case, although the difference 
is usually negligible for efficient (low-loss) transmission lines. 

The equivalent circuit and differential equation for a parallel-
wire line are derived in a similar manner. It is left for the student 
to carry this through, and to derive the expressions for L and C for 
this case. 

8.05 E and H about Long Parallel Cylindrical Conductors. In 
section 8.02 it was found that the geometry factors for the L and 

C of parallel perfectly con-
ducting cylinders were al-
ways reciprocal. As might 
be suspected, this interest-
ing result is not just a coin-
cidence, but follows as a 
logical consequence of the 
similarity that exists be-
tween all two-dimensional 
electric and magnetic field 
distributions. It is well 
known that lines of E and 
H about long parallel cir-

cular cylinders are always orthogonal, and that the magnitudes 
of E and H are related at all points by a constant factor that 
is dependent on the charge on the conductors and the current flowing 
through them. It is easy to show that this same correspondence 
between electric and magnetic fields must hold even in the more 

FIG. 8-5. Parallel cylinders of arbitrary 
cross section. 
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general case where the parallel cylinders have any arbitrary cross 
section as in Fig. 8-5. 

The static electric field configuration is obtained as a solution 
to Laplace's equation subject to the boundary conditions of the 
problem. In rectangular co-ordinates, for two dimensional fields 
that are independent of the z co-ordinate, Laplace's equation is 

a2v 
— — o Ox' + ay2 (8-25) 

where V is the (electrostatic) potential, the gradient of which gives 
the electric field. Similarly, the magnetic field configuration can 
be obtained as the curl of a magnetic (vector) potential that has 
the direction of the current producing it. When the conductors 
are entirely in one direction, say the z direction, the vector potential 
has only one component Az, and the components of magnetic inten-
sity lie in the x-y plane and are given by 

aA. °A. 
Hz --- -- Hy = 

aY aX 

Under these conditions it can be readily shown that A. (which now 
may be treated as a scalar quantity) also satisfies eq. (25). In a 
region in which there are no currents, Ampere's law indicates that 
the line integral of H around every closed path is zero. That is 

H • ds = 0. The differential vector statement of this law is 

curl H = 0 (8-27) 

For this case where there is no z component of H, relation (27) 
becomes 

OH2_ art, 
ay ax 

Inserting relations (26) gives 

= 0 

(8-26) 

a2A, 
(8-28) 

ax2 —ay2 

Thus for two-dimensional magnetic fields the potential A. satisfies 
Laplace's equation, and the configuration of the magnetic field, 
obtained from (26), is always such that relation (28) is satisfied. 
In addition, of course, the boundary conditions of the particular 
problem must also be satisfied. 
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Now consider the problem of two parallel cylindrical conductors 
(assumed perfectly conducting) that carry equal and oppositely 
directed currents I. For the d-c case the current is uniformly 
distributed throughout the conductor, but for rapidly alternating 
fields, because of the phenomenon of skin effect, the current exists 
only near the surface of the conductor. Although this is a d-c 
field analysis, the results will be applied chiefly to the alternating 
field cases, so the assumption of current concentrated in a thin 
sheet at the surface of the conductor will be used. Except when 
the spacing between conductors is large compared with their diam-
eters, the current distribution around the circumference of the 
conductor will not be uniform. The actual current distribution 
will be such that the boundary conditions at the surface of the 
conductor are satisfied. This is similar to the electrostatic problem 
where the charge distribution around the cylinders was such as to 
make the cylinders equipotential surfaces, and satisfy the condition 
that Et., = O. 

The corresponding boundary condition for the magnetic inten-
sity is that H. = O (for a perfect conductor). That is, the 
magnetic intensity at the surface is entirely tangential. Equations 
(26) indicate that if the magnetic intensity normal to the surface 
is zero, there can be no change of A. in a direction tangential to the 
surface. Therefore the conductor must also be an " equipotential" 
surface for the magnetic potential A. Because in this case both 
A, and V satisfy Laplace's equation, and in addition satisfy the 
same boundary conditions, it follows that the expressions for A„ 
and V will always be identical, except for some constant factor. 
Then, because 

a A, 
E. = — H. = 

ax ay 

= — v a a A. (8-29) ay Hz, — 

it follows that E and H will always be orthogonal, and that their 
magnitudes will be related to each other by the same factor that 
related V and A. 

The electric and magnetic field configuration obtained from solu-
tions of Laplace's equation are for the electrostatic and steady cur-
rent cases, respectively. In general, it would not be expected that 
these same solutions would hold for alternating fields, especially 
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at high frequencies. It turns out that for two-dimensional fields 
however, the field configurations obtained for the static cases also 
hold for the alternating cases. This is because the general Maxwell 
emf and mmf equations reduce to their steady-field counterparts 
in the two-dimensional case. For example, the mmf equation in 
the x-y plane for the region outside the conductors (no conduction 
current) is 

curl, H = EÉ. (8-30) 

But for two dimensional fields in the x-y plane, E. is zero so that 
for any path in this plane this equation reduces to eq. (27), which 
yielded the Laplace equation (28). Similarly the Maxwell emf 
equation 

curl. E --- (8-31) 

curl, E = 0 (8-32) 

for the two-dimensional problem. Equation (32), the integral form 
of which is 

reduces to 

E • ds 0 (8-33) 

states that for any path in the x-y plane the electric field is con-
servative. Therefore, E is derivable as the gradient of a scalar 
potential V, and in a region in which there are no charges, the 
relation 

div E --

leads directly to Laplace's equation. 
8.06 Transmission Line Theory. The differential equations 

(20a) and (24) relating voltage and current along a transmission line 
may be solved to yield the transmission line equations. 

—av = — (R jcoL)1 (8-20a) 
az 

—at = — (G jc0C)V (8-24) 
az 

Differentiating and combining gives 
a2v 
az2 = 72V 

821  = 72 / 

where -y2 = (R jcoL)(G jcdC) 

(8-34) 

(8-35) 
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Solutions to eqs. (34) and (35) may be written in either exponential-
or hyperbolic-function form. In the exponential form, viz., 

V = V' e-7z -F V" e+73 (8-36) 

/ = /' e-72 -F I" e+7z (8-37) 

the solutions are shown as the sum of two waves, one traveling in 
the positive z direction and the other traveling in the negative z 
direction. The ratio of voltage to current for the wave traveling 
in the positive z direction is 

V' 
—1-' = Zo (8-38) 

whereas for the " reflected" wave traveling in the opposite direction 

V" — = -Zo (8-39) 

Zo is the characteristic impedance of the line and is related to the 
so-called primary constants R, L, C, and G by 

NIG jcoe 
R jcoL 

Zo = (8-40) 

If the line is terminated in an impedance ZR located at z = 0, the 
ratio of V to / at this point will be equal to ZR so that 

V V' ± V" Zo(I' - I" )  

ZR 
I = I + I" I' + I" 

These relations can be recombined to give the reflection coefficients, 

IT" ZR ZO I" ZO ZR 
V ' ZR ZO - ZO ZR 

In the hyperbolic-function form the solutions to (34) and (35) 
are 

V = A1 cosh 7z -I- B1 sinh -yz 

I = A2 cosh -yz + B2 sinh -yz (8-42) 

The constants A1, A2, B1 and B2 are evaluated by applying the 
boundary conditions. Let 

V = I == IR at z 0 

V = V., 1=1. at z zt 

(8-41) 
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substituting these relations in (42) and using eqs. (20a) and (24), 

= VR cosh -yz1— ZoI sinh 7zi 
VR 

Is = IR cosh 7z1 — — sinh 7zi (8-43) 
Zo 

It is usual to make the location of the terminating impedance ZR 
the reference point (z = 0), and to consider the sending end as 
being to the left of this reference point, that is, in the —z direction 
as in Fig. 8-6. Then letting / = —zi, eqs. (43) become 

= VR cosh -y1 Z °I R sinh 7/ (8-44) 
VR 

I8 = I r: cosh 71 — sinh 71 (8-45) 
Zo 

where / is measured from the receiving end of the line. 

FIG. 8-6 

These are the general transmission line equations that relate 
the voltages and currents at the two ends of the line. The general 
expression for the input impedance of the line is obtained by divid-
ing (44) by (45), that is, 

V VR cosh 7/ -F Zo/R sinh 71  
Z. = — (8-46) 

18 IR cosh 71 + (V R/ Z 0) sinh 71 

Certain special cases are of interest. For a line short-circuited 
at the receiving end, ZR = 0, and therefore VR = 0, and the input 
impedance is 

= Zo tanh 71 (8-47) 

On the other hand, for an open-circuited line ZR = 00 8 = 0, so 
that the input impedance is 

Zo. Zo coth 7/ (8-48) 

8.07 Low-loss Radio Frequency and UHF Transmission Lines. 
The low-loss transmission line is of special interest to the engineer 
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concerned with the transmission of energy at radio and ultrahigh 
frequencies. There are two reasons for this. First, most practical 
lines designed for use at these frequencies will be low-loss lines. 
Second, at ultrahigh frequencies, sections of low-loss line are used 
as circuit elements, and a knowledge of the operation of such "dis-
tributed-constants circuits" is of considerable importance. 
A low-loss transmission line is one for which 

R coL 
G « coC 

(8-49) 

where R, L, C, and G are the resistance, inductance, capacitance, and 
conductance per unit length of the line. When the above inequali-
ties hold, the following approximations are valid: 

Z = R jcuL re; jcuL 
Y = G + jcoC re jcoC 

z .‘11? jcuL o= G jc0C (8-50) 

7 = -OR ± jcuL)(G jcuC) jcu (8-51) 

Since y = a -F jti, this last expression gives 

a 0 (8-52) 
(8-53) 

The approximation for ft is very good for low-loss lines, but occasion-
ally the approximation of zero for a may not be good enough, even 
though a is very small compared with 0. A closer approximation 
for a may be obtained by rearranging the expression for y and 
using the binomial expansion. Thus 

G 
= jco •VIZI ,\K1 (1 ± 

R G  \ 
jcu VW (1 2jcoLJ\ 2j(41 

R G \ 

  G N/L/C ico „viz, 

2 2 
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which gives a ge (1z3-0- + CZ) (8-54) 

er• w VECI (8-55) 

The more correct value for a given by (54) need only be used in 
place of (52) when the line losses are being considered. As far as 
voltage and current distributions are concerned, the attenuation 
of most low-loss ultrahigh frequency lines is so small that the 
approximation a = 0 gives satisfactory results. This may seem 
strange in view of the fact that R, and therefore a, increases with 
frequency, and a is not usually neglected at low (power and audio) 
frequencies. The explanation for this apparent paradox is that 
although a, the attenuation per unit length, increases approximately 
as the square root of frequency, the attenuation per wavelength 
decreases as the square root of the frequency. Transmission lines 
are ordinarily a few wavelengths long at most, and al can usually 
be neglected (compared with 13l) at the ultrahigh frequencies. Thus 
for many purposes, low-loss lines may be treated as though they 
were lossless; that is, as if R = G = a = O. 

Using the approximate values for the secondary constants 
given by (50), (51), (52), and (53), the general transmission lines 
become for this low-loss, high-frequency case 

V, = VR cos el + ir.zo sin fl/ (8-56) 
VR 

Ja =  IR cos 131 + j — sin 13/ (8-57) 
Zo 

where now Zo -Vre is a pure resistance. 
The input impedance of such a line is 

V 
Z = 

(cos 131 i(Zo/ZR) sin fil = 
cos 131 + j(ZR/Z0) sin egi 

(ZR cos + jZo sin /3/\ 
Zo cos en + jZ R sin tel) (8-58) 

The voltage and current distributions along the line are obtained 
from eqs. (56) and (57) by replacing 1, the length of line, by x, the 
distance from the terminating impedance ZR. Since voltmeters 
and ammeters read magnitude without regard to phase, the absolute 
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magnitude of expressions (56) and (57) have been used in Fig. 8-7 
to show the standing wave distributions for various conditions 

of the terminating impedance ZR. 
In general the terminating impedance ZR will be a complex 

impedance having both resistance and reactance, but it will be 
shown later that the results for the general case may be inferred 

11/X1.1 VM SIN el 
114.14 COS /24'1 

IVx1.1Vm COS ex1 

1/x l.lim SIN 1.41 

1Vx1.1VR(COSAY4? SIN /941 

frxiqr,,,(cos fix.Jt SIN ,841 

FIG. 8-7. Voltage and current distribution along a lossless line. 

from those obtained for the particular case of a pure resistance 

termination. For this latter case where ZR = R, eqs. (56) and (57) 

may be written as 

VR Vcos2 ex + (Ro/R)2 sin2 i3x (8-59) 

(8-60) 

• 0 

ZR • c° 

III = 1R Vcos2 13x (R / R0)2 sin2 OX 
For the lossless line being considered Zo is a pure resistance 

Ze = Ro = 
NiTé 
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Examination of eqs. (.59) and (60) shows that the voltage and 
current distributions are given by the square root of the sum of a 
cosine-squared term and a sine-squared term. It is evident that 
the maximum value of voltage or current will occur at that value 
of x that makes the larger of these terms a maximum. In the 
particular case of a line terminated in Ro, that is, for which R = Ro, 
the sine and cosine terms have equal amplitudes and the square root 
of the sum of their squares has constant value for all values of x. 
That is, there are no standing waves on the line. For all other cases, 
however, the magnitude will vary along the length of the line. 
When R is less than Ro, the amplitude of the sine terms of (59) 
will be larger than that of the cosine term and the voltage maxima 
will occur at those values of x that make sin i3x a maximum, viz., at 
x = X/4, 3X/4, and so on. Also the voltage minima will occur at 
those values of x that make the sine term a minimum, viz., x =- 0, 
X/2, and so on, also for this case of R < Ro, the current maxima will 
occur at x = 0, X/2, and so on, and the current minima at x = X/4, 
3X/4, and so on. When the terminating resistor is larger than Ro, 
the conditions for both voltage and current are reversed. 

One of the important measurable quantities on a transmission 
line is the standing-wave ratio of voltage or current. When R is 
less than Ro, eq. (59) shows that the voltage maximum, which occurs 
when sin fix = 1, will have a value 

Ro 
= v It • 

Also the voltage minimum, which occurs when sin e = 0, will have 
a value 

Vmin = V R 

The ratio of maximum voltage to minimum voltage is therefore 

V,„,,. Ro 
(for R < Ro) 

Similarly the standing wave of current ratio is given by 

Ro 
(for R < Ro) 

Imin = 

For R > Ro these expressions are just reversed, that is 

V„,„, R 
= = (for R > Ro) 
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Using these expressions, the value of a terminating resistance may 
be determined in terms of Ro from relative measurements of voltage 
or current along the line. Ro is readily calculable from the line 

dimensions. 
Case where ZR is not a Pure Resistance. When the terminating 

impedance ZR is not a pure resistance, standing-wave measurements 
can be still used, and in this case will yield values of both resistance 
and reactance of the termination. From eqs. (59) and (60) it was 
seen that with a resistance termination a voltage maximum or mini-
mum always occurred right at the termination (x = 0). However, 

(a) 

(b) 

0 

2 

Fla. 8-8. A complex terminating impedance in (a) is replaced by a 
pure resistance termination in (b). 

when the terminating impedance has reactance as well as resistance, 
the maximum or minimum is always displaced from the position 
x = 0, and the direction and amount of this displacement can be 
used to determine the sign and magnitude of the reactance of the 

I oad. 
Figure 8-8 shows a transmission line terminated in an impedance 

that has a reactive component. The voltage distribution along 
the line is shown. Because the impedance is not a pure resistance, 
the voltage maximum (or minimum) does not occur at the termina-
tion. Now any complex impedance can be obtained by placing a 
pure resistance of proper value at the end of an appropriate length 
of (lossless) transmission line. In part (b) of Fig. 8-8, the complex 
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impedance R jX has been replaced by the proper value of 
resistance R 1 at the end of a length /1 of line, such that the imped-
ance at c — c looking towards Ri is equal to R -F jX. The standing 
wave back from c — c toward the source will be unchanged and that 
toward R (shown dotted) will be just a continuation of it. Quite 
evidently the proper position for R 1 is at a distance of one-half 
wavelength from the minimum point a (or the maximum point b 
if R 1 is greater than Ro), and the proper value of R 1 is given by the 
standing-wave ratio on the line, that is, by 

R V re.  
170 = V. 

Or 
R Vm x 

RO Vinj, 

Because any resistance greater than Ro can be obtained by a resist-
ance less than Ro at the end of a quarter wave section of line (see 
below), it is really only necessary to consider for R 1 resistances less 
than or equal to Ro. It is then possible to state that any impedance 
whatsoever can be obtained by means of a pure resistance R1 (not 
greater than Ro) at the end of a length /1 of lossless transmission 
line, less than one half wavelength long. 

The value of the impedance Z = R jX is given in terms of 
R 1 and /1 by eq. (58). Rationalizing and separating into real and 
imaginary parts, eq. (58) becomes 

R   
Ro2R1  

— 8 
Ro2 cos' /3/1 ± R12 sin' et, ( -61 ) 

x  — Ro(R02 — R12) sin i3/1 cos eli 
Roz cosz fila R12 sinz fl (8-62) 

Equations (61) and (62) make it possible to determine both the 
resistance and reactance values of a terminating impedance from 
standing-wave measurements on the transmission line. The sign 
of the reactance, that is, whether inductive (positive) or capacitive 
(negative) can be obtained by inspection as shown in Fig. 8-9. 

Considering the value of R 1 to be less than Ro, eq. (62) shows 
that when /1 is less than one-quarter wavelength, the reactance 
X is positive (i.e., inductive), whereas if /1 is between one-quarter 
and one-half wavelength, X will be negative (capacitive). From 
this results the conclusion that, if the standing wave of voltage 
slopes down toward the terminating impedance (Fig. 8-9a), the 
impedance is inductive; if the slope is up toward the impedance 
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(Fig. 8-9b), the impedance is capacitive. Of course, if the slope is 
zero at the termination, the terminating impedance is a pure 
resistance. 

In practice the measurable quantities are /2, the distance from 
the termination to the minimum point a, and the standing-wave 
ratio 

RO Vmax 

P Ri = Vrnin 

R, < R0 
1,, 

JR, < Ro 

(a) (b) 

FIG. 8-9. A terminating impedance that is inductive (a) or 
capacitive (b). 

In terms of these measurable quantities, the resistance and 
reactance of the terminating impedance is given by 

R —  PR o (8-63) 
p2 cos' 1312 sin2 $12 

x  = —Ro(p2 — 1) sin 012 cos 012 
sin2 012 (8-64) p 2 c os2 $12 

8.08 UHF Lines as Circuit Elements. The transfer of energy 
from one point to another is only one use of transmission lines. At 
the ultrahigh frequencies an equally important application is the 
use of sections of lines as circuit elements. Above 150 mc the 
ordinary lumped-circuit elements become difficult to construct and, 
at the same time, the required physical size of sections of transmis-
sion lines has become small enough to warrant their use as circuit 
elements. They can be used in this manner up to about 3000 mc 
where their physical size then becomes too small and wave guide 
technique begins to take over. 

In Fig. 8-10 are shown some line sections and their low-frequency 
equivalents. The magnitude of the input reactance of the first 
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four of these sections is given by eq. (58) when the appropriate 
value of ZR is inserted; that is, Z = 0 for the shorted section and 
ZR = co for the open sections. The resistive component of the 
input impedance is negligible for the usual low-loss lines used at 
UHF. Thus it is seen that for line lengths less than a quarter of a 
wavelength the shorted section is equivalent to an inductance, and 
the open section to a capacitance. For length of line between a 
quarter and a half wavelength, the shorted section is capacitive 
and the open section is inductive. However, it should be noted that 

-.. Z3 Zo tam 
•  

4--.  4.1 cot e 

•  
2.5 —>" 

Zo j Zo TAN 

Zo COT fit 

  —  2Z  
T TANH 

• 2  

Zs' à 2zo2 
T  es 

Fro. 8-10. Input impedance of various transmission line sections. 

unlike their low-frequency equivalents, these "inductances" and 
"capacitances" change value with frequency. 

The Quarter-wave and Half-wave Sections. For the particular 
case of the shorted quarter-wave line or the open half-wave line, the 
input reactance, given by (58), goes to infinity, and the resistive 
component of the input impedance must be taken into account. 
This corresponds to conditions in the parallel-resonant circuit (the 
low-frequency analogue), which has an infinite impedance if resist-
ance is neglected. In both cases (the quarter-wave line and the 
parallel-resonant circuit) the actual input impedance when the 
series resistance is not neglected is a pure resistance of very high 
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value. In the case of the line its value is given approximately by 

2Z02 
R" eee Rl 

where Rir is the input resistance of the line at a resonant length and 
R is the series resistance per unit length of the line. / is the length 
of the resonant section, which will be an odd multiple of a quarter 
wavelength for a shorted line or an even multiple of one-quarter 
wavelength for an open line. This expression is obtained directly 
from eqs. (44) and (45) in which the actual line loss is not neglected 
as follows: 

For a shorted line for which Viz = 0, eqs. (44) and (45) become 

= I RZ o sinh yl 

IR cosh 7/ 

Dividing the voltage equation by the current equation gives the 
input impedance of a short-circuited line as 

= Zo tanh 7/ 

„ sinh al cos + cosh al sin el 
= z,0 • 

cosh al cos j sinh al sin ell 

For line lengths that are an odd multiple of a quarter wavelength, 
sin fil = + 1 and cos 13/ = O. Under these conditions the input 
impedance becomes 

cosh al 
Z. = L/t) . 

smh a/ 

If al is very small, as is generally true for sections of low-loss line, 
cosh al e•--, 1 and sin al al so that 

z 0 
Z 1- 

When coL >> R and cie >> G, a is given in terms cf the Ene constants 
by 

(8-54) 

For the air dielectric lines commonly used the losses due to the 
conductance G are negligible, so that G can be neglected and 

R R 
ee = 2-4 

(8-65) 
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Substituting this- in the above expression for input impedance of a 
short-circuited line, whose length is an odd multiple of a quarter 
wavelength, gives 

Zo Z = = 2Z02 —  
al R1 

(8-66) 

An identical expression is obtained for an open-ended section that 
is a multiple of a half wave long. 

Resonance in Line Sections. The shorted quarter-wave section 
has other properties of the parallel-resonant circuit. It is a resonant 
circuit and produces the resonant rise of voltage or current which 
exists in such circuits. The mechanism of resonance is particularly 
easy to visualize in this case. If it is assumed that a small voltage 
is induced into the line near the shorted end, there will be a voltage 
wave sent down the line and reflected without change of phase at 
the open end. This reflected wave travels back and is reflected 
again at the shorted end with reversal of phase. Because it required 
one-half cycle to travel up and back the line, this twice-reflected 
wave now will be in phase with the original induced voltage and so 
adds directly to it. Evidently those additions continue to increase 
the voltage (and current) in the line until the PR loss is equal to 
the power being put into the line. A voltage step-up of several 
hundred times is possible depending upon the Q of the line. 

Input Impedance of the Tuned Line. When the quarter-wave 
section is tapped at some point x along its length, a further cor-
respondence between this circuit and the simple low-frequency 
parallel resonant circuit is seen. The reactance looking toward 
the shorted end will be inductive and of value Z. = jZo tan fix. 
The reactance looking toward the open end will be of equal magni-
tude but opposite sign, i.e., a capacitive reactance. Its value is 
given by Z. = jZo cot e(X/4 — rc) = —jZo tan ex. The equal but 
opposite reactances are in parallel just as they are in Fig. 8-11b 
and the input impedance will be purely resistive. As the tap point 
is moved from the shorted end toward the open end of the line, the 
impedance seen at the tap point is a pure resistance that varies from 
zero to the quite high value already given (Rs = 2Z02/R/). This 
corresponds in the circuit of Fig. 8-11b to varying the reactances 
XL and Xc from low to high values, meanwhile always keeping the 
circuit tuned (i.e., XL =•. Xe). 
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It is of interest to know how the input resistance varies as the 
tap point is moved along the quarter-wave section. For the rela-
tively high Q circuits used in such applications the voltage distribu-
tion along the line may be considered sinusoidal and it is a simple 
matter to determine the input resistance at any point a distance x 
from the shorted end. For a given magnitude of voltage and cur-
rent on the quarter-wave section a certain fixed amount of power 

x 

4ik 

(a) ( b) 

FM. 8-11. (a) Tapped quarterwave line and (b) its equivalent 
circuit. 

input will be required to supply the /2R losses, regardless of where 
this power is fed in. This power input is equal to 

V .2 V .2R1 

R. — 2Z02 

where Vs and Rs are, respectively, the voltage and input resistance 
at the open end of the section. When the tap point of the feed 
line is at a distance x from the shorted end (Fig. 8-1 la), the power 
input is given by V.2/R., where R. is the input resistance at the 
point x. Vz is the voltage at this point and equals Vs sin fix. 
Therefore 

which gives 

V z2 17.,2 sine  — 17_32R1 

Rz = Rz 2Z02 

2Z02 . 
R. = sin2 /3x 

Thus the input resistance varies as the square of the sine of the 
angular distance from the shorted end. 
Q of Resonant Transmission Line Sections. One of the important 

properties of any resonant circuit is its selectivity or its ability to 
pass freely some frequencies, but to discriminate against others. 
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The selectivity of a resonant circuit may be conveniently stated in 
terms of the ratio Af/fo, where fo is the resonant frequency and 
Af = 12 — fl is the frequency difference between the "half-power" 
frequencies. In the case of a series resonant circuit Af/2 represents 
the amount the frequency must be shifted away from the resonant 
frequency in order to reduce the current to 70.7 per cent of /0, its 
value at the resonant frequency. (A constant voltage source is 
assumed.) Evidently this occurs when the reactance of the circuit 
becomes equal to the resistance and the phase angle of the circuit 
is 45°. For the parallel-resonant case Af/2 represents the frequency 
shift away from unity power factor resonance necessary to reduce 
the voltage across the parallel circuit to 70.7 per cent of its value at 
resonance. (A constant current source is assumed.) This occurs 
when the absolute magnitude of the impedance is 70.7 per cent of 
the impedance at resonance. 

The ratio fo/àf may be used to define the Q of a resonant circuit. 
The Q of a resonant transmission line section can be determined as 
follows: 

The input impedance of any shorted line section is given by 

Z, = Zo tanh •y/ 

sinh al cos 01 j cosh al sin 01 
= zio 

cosh al cos )9/ j sinh al sin 

When the frequency is a resonant frequency fo, then 01 = nn- /2 
(where n is an odd integer), cos 01 = 0 and sin /31 = + 1, the expres-
sion for the input impedance becomes 

= zo cosh al Zn  Zo 
Zl sinh al tanh al al 

When the frequency is shifted off resonance by a small amount &f. 
that is when f = fo ± of, then 

2arf 2r(fo Of) nr 2r Sfl = -v =  = + 2 

Under these conditions 
• (21r Oft) 

cos fi/ = — sin te • 

(2r tfl) 
sin e/ cos 

V 
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— sinh al sin (I've) -F j cosh al cos (21r:1 
and Z. = Zo 

— cosh al sin (I've) j sinh al cos (21.v 

l'or moderately high Q circuits the first term in the numerator is the 
product of two small quantities and may be neglected in comparison 
with other terms. Putting 

cosh al 1, sinh al --›-e al, cos ( 27r- Of j 1, 
v  

sin (2arve — (27ry 

Zo  
gives Z. — 

al ± j (271-

When the imaginary term in the denominator is equal to the real 
term, the impedance Z. will be 70.7 per cent of its value for a reso-
nant length, and the frequency shift required to make this true will 

be Af/2. Therefore 
Ir Aft 7 
2v = 
av 2afo 

The Q of the resonant section is 

fo _ (8-67) 

Alternative forms of this expression are 

IrfoZo coL Q =   — 
av Ru 

The Q is independent of the number of quarter wavelengths in the 
resonant section as long as al is a small quantity. It is interesting 
to observe that the Q of a resonant section of transmission line is 
equal to the ratio of inductive reactance per unit length to resistance 

per unit length. 
A similar analysis could be carried through for an open-ended 

resonant section (for which the length would be some multiple of a 

(8-68) 
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half wavelength). The expression for Q in this case would be 
identical with the above. 

The Quarter Wave Line as a Transformer. When a section of 
transmission line is used as a reactance, or as a resonant circuit, it is 
a two-terminal network. The input terminals of the section are 
connected across the generator or load and the other terminals are 
left open or shorted as the case may be. However, a section of line 
is often used as a four-terminal network, in which case it is inserted 
in series between generator and load. Because the input impedance 
is in general different from the load impedance connected across the 
output terminals, the line section is an impedance-transforming 
network. This is true for all lengths of line, but the quarter-wave 
section has certain particular properties that make it very useful in 
this respect. 

For any impedance termination Zr, the input impedance of a 
section cf lossless line is given by eq. (58) as 

=- Zr (cos a ± jZo/Z, sin fil 
cos pl + jzr/zo sin /3/ 

For the particular ease of a quarter-wave section, a = 7/2, and 
this reduces to 

Zo2 
Z = — 
s Z, 

For the case under consideration, where Zo is a pure resistance Re, 
this is 

= n o2 

Z  zr (8-69) 

Thus the quarter-wave section is an impedance transformer, or 
more correctly an impedance inverter. Whatever the terminating 
impedance may be, the inverse impedance will appear at the input. 
If the output impedance consisted of a resistance R2 in series with 
an inductive reactance XL,, the input impedance would be given 
by a resistance R1 in parallel with a capacitive reactance Xei, where 

R = and Xe = e — 
R2 XLi 

A pure resistance termination R is transformed into a pure resistance 
of value R02/R. 
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This property of matching any two impedances Z1, Z2 such that 
ZiZ2 = Zo2 finds many practical applications. It can be used to 
join together, without impedance mismatch, lines having different 
characteristic impedances; it is only necessary to make the char-
acteristic impedance of the quarter-wave matching section the 
geometric mean of the Zo's to be matched. By means of the 
quarter-wave section a pure resistance load can be matched to a 
generator having a generator impedance that is resistive so long as 
the geometric mean between the resistances gives a value for the 
required characteristic impedance that is practicable to obtain. 

Voltage Step-up of the Quarter-wave Transformer. As long as 
the quarter-wave transforming section is considered as being loss-
less, the ratio between input and output voltages will just be the 
square root of the ratio of the input and output impedances being 
matched. From the voltage equation (56), for the quarter-wave 
section 

V, = jI„Zo jZo = . 
3 Nir, 

or calling V,./V, the voltage step-up 

I V,. _ rz-,. 
- NIZ 

For the infinite impedance termination, that is an open circuit, this 
simple relation indicates an infinite voltage step-up, and it becomes 
necessary to resort to the exact eqs. (44) and (45) for the correct 
answer in this case. For the quarter-wave section the voltage 

equation of (44) becomes 

V, = jV,. sinh al jI, Zo cosh al 

In open circuit L is zero and the voltage step-up is 

V,.  1 1 2Z0 
V, = sinh al — al = Rl 

For the quarter-wave section this may be written 

117,1 _ 8Z0 _ 8Zof 
117.1 RX Rv 

while for a three-quarterwave section the voltage step-up would be 

Vr 8Z1f 
V, =. 3R, 
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8.09 Impedance Matching by Means of Stub Lines. When a 
line is terminated in an impedance other than its characteristic 
impedance Zo, reflection will occur and there will be standing 
waves of voltage and current along the line which may be very large 
if there is considerable "mismatch." In general, these standing 
waves are undesirable because they increase the line losses. It is 
possible to obtain an impedance match between the line and its 
load by use of a properly located "stub line." 

Consider the UHF line, shown in Fig. 8-12, terminated in a 
resistance R, different from Ro. At a point Z = X/4 from the 
termination the input impedance will be a pure resistance of value 
R,„ = R02/R. If R is less than Ro, R,„ will be greater than Ro, 

STUB LINE 

MOVABLE 
SHORT 

FIG. 8-12 

ZR .R 

whereas if R is greater than Ro, Ri,. will be less than Ro. Somewhere 
between t = 0 and Z = X/4, the resistance component of the input 
impedance will equal Ro. However, there will also be a reactive 
component at such a point; but if this is tuned out by means of an 
equal and opposite reactance (the stub line), only the resistance 
component R,„ = Ro will remain and the line coming up to this 
point will be properly terminated. At any point Z the input imped-
ance is, from (58), 

n (R cos )91 jR0 sin Li) Zin = 
Ro cos el + jR sin el 

This impedance can be considered as a resistance in series with a 
reactance or resistance in parallel with a reactance. Because it is 
desired to tune out the reactance component with another reactance 
in parallel (the stub line), the parallel representation will be used. 
The input admittance at a point I will be 



242 TRANSMISSION LINES 118.09 

1 Ro cos et + jR sin fil  
n. = Gin + je. = -z: '''' Re cos el + iRo sin ta) 

RR0  
— Ro(R2 cos2 fil + R2 sin' pl) 

i(R2 — Ro2) sin fil cos fil  
-I- Ro(R2 cos' fil + R 02 sin' fill) 

and I should be chosen so that 

That is, 

This gives 

1 G,.. = Ti; 

RoR  i 
Ro(R2 cos2 fil + Ro' sin' 130 — -ffo 

Ro 
—R cos' fil + —R sin' fil = cos2 el + sin2 el 
Ro 

Ro 
cos' fil (1 — #0) = sin' 81 (—R — 1) 

Ro — R R R 
tan' /3/ = Ro . Ro—Ro 

tan fil -= .e-le-10 (8-70) 

This equation gives the distance back from the termination R to 
the point where the input conductance is equal to 1/Ro and deter-

mines the correct location of the stub. 
The length of the stub line required can be calculated by making 

its reactance equal and opposite to that at the tap point. Assum-
ing the stub has the same characteristic impedance as the line, it 
will have a reactance equal to 

jZo tan e.S = jR0 tan eS 

where S is the stub length. Then 
1 

jR0 tan /3S = — 

.  sin fil cos /3L(R2 — R02)  —  1  
le" = 3 Ro(R2 cos' fil ± Ro2 sin' /30 jRo tan OS 
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R2 cos2 3l + R02 sin' el 
tan OS — sin fil cos 0/(R2 — Ro2) 

R Rot 2 si ± 
TI, 7R  

tan 13/ (R Royo — NITo \IT0 R) ) re (  

This can be reduced to 

(8-71) 

Vii/Ro  
tan OS —  (8-72) 

(R/Ro) — 1 

Stub Line Matching in Terms of Maximum and Minimum Volt-
ages. In an actual experimental set-up the value of the terminating 
resistance is generally unknown, so that it is desirable to determine 
the dimensions for the stub line match directly from the measurable 
standing-wave ratio that exists on the transmission line. 

The standing-wave ratio in terms of the terminating resistance 
and characteristic resistance is 

V m R 
1-77„ = 71 0 

(for R > R0) 

so that the position and length S of the matching stub are given by 

tan fil = (8-73) 

(for R > R0) 

VVm/Vm  
tan OS —   (8-74) 

(Vm/V„,) — 1 

In these expressions the subscripts M and m have been used to 
indicate maximum and minimum respectively. 

Stub Matching a Line to a Complex Impedance. The formulas 
just derived give the stub adjustments required to match a line 
to a resistance load. They may also be used to match a line to a 
complex load impedance if the proper reference point is taken. 
When a line is terminated in a complex impedance, there will be a 
standing wave on the line and there will be neither a voltage maxi-
mum nor a voltage minimum at the termination. However, at 
some point down the line there will be a voltage maximum and at 
this point the input impedance will be a pure resistance greater than 
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Ro; at another point there will be a voltage minimum where the 
impedance will be a pure resistance less than Ro. Therefore, if 
measurements are made from either a voltage maximum or a voltage 
minimum, the problem will have been reduced to that of matching a 
line to a pure resistance. The solution for this case has been given 
above. Therefore, the experimental procedure for matching a 
line to any complex impedance would be as follows: 

Experimental Procedure for Stub Line Matching. 1. Measure 
the standing wave of voltage back from the termination. Note 
the position of the maxima and minima and the ratio of maximum 
to minimum voltages Vm/Vm. 

SENDING 
END 

UNKNOWN 
TERMINATION 

FIG. 8-13. Stub matching a transmission line. 

2. Place a shorted stub line of length S a distance 1 back from a 
maximum point toward the sending end. The line is then properly 
terminated in its characteristic resistance. 

The length 1 and S are given by 

tan 0/ = 
V. 

N/Vm/Vm  tan I3S — 
(Vm/V.) — 1 

Of course, the stub can be placed on the other side of the voltage 
maximum, but then a capacitive stub would be required. For a 
shorted stub this means a length greater than a quarter wavelength, 
which is usually undesirable. The procedure outlined above 
ensures a stub length less than a quarter wavelength. 

Double-stub Tuner. The single-stub matching unit just dis-
cussed is satisfactory for impedance matching on open parallel-wire 
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lines, but proves inconvenient to use on coaxial lines, because on 
these lines it is difficult to vary the position of the stub along the 
line. For matching on coaxial lines the double-stub tuner arrange-
ment of Fig. 8-14 is usually used. This arrangement consists of two 
adjustable tuners that have movable shorting plungers, but are 
fixed in position on the line. 

FIG. 8-14. Double-stub tuner. 

It is easy to show that with the double-stub tuner of Fig. 8-14 
it is possible to match any two impedances within a certain specified 
range of values. The analysis will be carried through for matching 
pure resistances only, but the results are general, because any com-
plex admittance can be expressed as a conductance in parallel with 

FIG. 8-15. Circuit representation of a double-stub turner. 

a susceptance. The susceptance can then be tuned out by means 
of the adjustable susceptance of the stub, which is in parallel with 
the load, leaving a pure resistance to be matched. 

The distributed-constants circuit of Fig. 8-14 can be represented 

at one frequency by the lumped-constants circuit of Fig. 8-15. 
The portion of the network within the dotted enclosure is the 
w-section representation of the length 1 of lossless transmission line 
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between the two tuners. The reactances of the three arms are* 

X» = Zo sin f3/ .7C41 Xci = cot 

In parallel with the vertical arms of the ir network are the reactances 
of the tuning sections. These reactances are 

= ZO tan I3S1 Xe" = ZO tan pS2 
These reactances are shown negative (capacitive) in the figure, 
but of course they may have any value from plus infinity to minus 
infinity. Combining these parallel reactances giving a matching 
7-section that has one fixed element, In, and two adjustable ele-
ments, X4 and X e, which may have any reactance desired. (The 
reactance IA is formed by X4t and X4" in parallel. Similarly Xe 
is formed by Xe and Xe" in parallel.) The values of I4 and Xe 
required to match two resistances R1 and R2 aret 

X —RIX8  
= 4  R ± VR1R2 XB2 

— R 2X c  
X c — 

R2 ± N/R1R2 XB2 

It is possible to match any two resistances R1 and R2 as long as 
Xe is less than VTiri2. It would appear, by suitable choosing the 
length t of the section near zero or some multiple of X/2, that Xe 
could be made as small as is desired. However, if such a length 
is chosen, it will be found that the required values of IA and Xe 
will come out very nearly equal to zero, and large currents will 
flow in the section. The elements have been assumed lossless, but 
every physical set-up has some loss, and large circulating currents 
mean inefficient operation. For this reason the length / should be 
selected between about X/8 and 3X/8, or 5X/8 and 7X/8. The 
range of resistances that can be matched will be any resistances such 

that 
> Zo sin 131 

* See for example, W. L. Everitt, Communication Engineering, McGraw-Hill, 

New York, 1932, p. 173. 
Communication Engineering, p. 265. 
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If resistances outside this range (that is, low resistances) are to be 
matched, a triple-stub matching unit can be used. The triple-
stub unit can be analyzed by considering it as two double-stub 
units in tandem. The first double-stub unit matches one of the 
low resistances R1 to any suitable high resistance. Then the 
second double-stub unit matches this high resistance to the second 
low resistance R2. Thus with a triple-stub tuner, any two imped-
ances whatsoever can be matched. 

Resonance with 1 Variable. When resonance phenomena are 
considered in the ordinary lumped-constant circuits, two things are 
of interest: the operation of the circuit with L and C fixed and the 
frequency variable or, secondly, the operation with a fixed frequency 

LOOSE 
COUPL ING 

(a) 

Fla. 8-16. "Series" feed. 

(b) 

but with either L or C variable. Similarly with the line circuits, 
interest may center around a line of fixed length under conditions 
of varying frequency, or the frequency may be fixed and the line 
length varied to obtain resonance. The first of these conditions 
was considered under selectivity of line sections. The second will 
be considered now. 

(a) "Series" Resonance. When the voltage is introduced "in 
series" in the circuit, usually at one end of the line, the adjustments 
made for maximum current from a low-impedance source, the line 
may be said to be in series resonance. This is illustrated by the 
circuit of Fig. 8-16, which shows a constant voltage Vid, induced 
into one end of the line or inserted directly as shown in the equiv-
alent circuit. 

The first problem is to determine the length / that will make the 
sending-end current Is, a maximum. 

Since 1/.1 = Eind/lZini, the problem is simply that of determining 
for what length 1, ginj will be a minimum. From eq. (58) for the 
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lossless line case 

so that 

where 

zi. = R_ (I? cos fi/ + jR0 sin ,3/\ 
Ro cos ei + jR sin ay 

iz.i, Ro, (R2 cos2 fil + Ro2 sin2  
Ro, cos2 fil + R2 sin2 01 

= R02 (k2 cos2 fil sin2 Pl) 
cos2 fil k2 PI 

k = —R— 
Ro 

When IZi.12 is a minimum, IZini will be a minimum. Taking the 
derivative with respect to I and putting this equal to zero gives 

a o =z al 
= (cos2 el k2 sin2 fil)( -2k2 cos Pl sin 01 -I- 2 sin fil cos Pl) 

— (k2 cos2 fil sin2 Pl)( — 2 cos eel sin 131 2k2 sin in cos al) 

which simplifies to 

—2k4 sin al cos P1 + 2 sin i31 cos fil = 

For k = 1, that is, when R is equal to Ro, this expression is 
identically zero and the input impedance is independent of length. 
For all other values of k the expression can be satisfied only if sin 0.1 
or cos fil equals zero. For R less than Ro the input impedance is a 
minimum when sin fil is zero, that is, when the length of the line 
is a multiple of a half wavelength. For R greater than Ro the input 
impedance is a minimum when cos 0/ is zero, that is, when / is an 
odd multiple of a quarter wavelength. 
A second, perhaps more important problem, is to determine the 

line lengths which make the current through the resistance R a 

maximum. 
Putting V, = Ir R for a resistive termination, the voltage equa-

tion for lossless transmission lines may be written 

114: = R cos fil jZo sin 13l 

or rift = VR2 cos2 Zo2 sin2 fil (8-75) 
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For a constant voltage V., the current I, will be a maximum when 
this expression is a minimum. This will occur for sin fil = 0 when 
R is less than Zo, and for cos fil = 0 when R is greater than Zo. 
Therefore, for values of R less than Zo, the current through R, will 
be greatest for lengths 1, which are multiples of X/2. For values of 
R greater than Zo, the current through R will be a maximum when 
I is an odd multiple of X/4. 

Case when Terminating Impedance is not a Pure Resistance. 
When the terminating impedance is not a pure resistance, the length 
t for "resonance" will not be a multiple of X/4 or X/2 as occurred 
above. However, the required length is readily determined by 
representing the complex impedance by means of a pure resistance 

TAP POINT 
FEED 
LIN 

 I 

TAP POINT 
FEED 
LINE 

FIG. 8-17. "Parallel feed." 

R1 at the end of the appropriate length /1 of line [eqs. (61) and (62)]. 
Evidently the required length t will be given by 

nX 
= 
2 

(b) "Parallel" Resonance. When the voltage is applied across 
the line as shown in Fig. 8-17 rather than in series as in Fig. 8-16, 
the circuit corresponds to the ordinary low-frequency parallel cir-
cuit. The adjustment that is of interest is the length 1, which will 
present a unity power factor load to the feed line tapped on at 
point x. The unity power factor condition requires that the reac-
tive component of the impedance seen looking to the right from the 
tap point be equal and opposite to the reactance seen looking to the 
left from the tap point. For a given length y from the tap point 
to the load, the reactance seen to the right of the tap point will vary 
with the value of load resistance R. This means that the required 
length x will depend upon R, and the total length 1 = (x + y) for 
unity power factor resonance will depend upon the value of the load 
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impedance. This is similar to the analogous low-frequency circuit 
case in which the reactances required for unity power factor res-
onance depend upon the resistance in the circuit. 

The case of most practical interest is the one in which the feed 
line is tapped on to the resonant section at a point, such that the 
feed line is terminated in its characteristic resistance. If the char-
acteristic resistance of the feed line is the same as that of the 
resonant section, as is usually the case, this problem reduces to one 
for which the solution is already known, viz., the stub-line match 
problem. The section cf length x can be considered as the stub, 
located at a distance y from the load /?. For any lead resistance R 
the required length y will be given by 

tan gy = Tro (8-76) 

whereas the required length x would be given by 

VR/Ro  
tan 13x — (8-77) 

(R/Ro) — 1 

The total length of the section 1 for unity power factor resonance 
will be 

/ = x y 

Except for fl equal zero or infinity 1 will not equal X/2 or X/4. 
8.10 Graphical Representation of Transmission Line Phenom-

ena. It is possible to solve most of the transmission-line problems 
considered above, and many others as well, by means of a simple 
graphical procedure. If impedances are plotted in the complex 
plane in the form of the R-X diagram of Fig. 8-18, then it turns out 
that for a lossless line terminated in some fixed impedance ZR, the 
locus of the input impedance Z, (as 01 is varied) is a circle through 
Z. Since the center and radius of the circle are easily calculable, 
this leads to a very simple and rapid method for making transmis-
sion line calculations. 

Because, as has already been seen, any complex impedance ZR 
can be obtained by use of a pure resistance at the end of an appre-
piste length cf lossless line, it is only necessary to discuss the pure 
resistance termination in order to solve the most general case. Con-
sider a lossless transmission line terminated in a pure resistance R. 
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If the standing-wave ratio p, is expressed as a number greater than 
unity, then 

for R > 

for R < Ro 

It is convenient in a diagram such as that of Fig. 8-18 to normalize 
the impedances by giving their values with respect to Zo, which is 
taken as unity. In the pres-
ent application Zo will always 
be a pure resistance i?. The 15 65° .2 

normalized impedances are 150° 
designated by lower case 
letters as 175* + 

R X izes 
r jx — = — , . — Ro Ro Ro II d' 

er, and in the diagram Ro will 0 
occur  at the point (1,0). 
Now referring to the figure, 5c 
it can be shown that a circle 40* 

drawn through some resist-
ance value r, with center 

n2 1 

at r 2p and radius equal 

n2 _ 1 

t e  will be the locus of 
2p 

I6e 

0  

o 2 3 

20° 

r OR 

15° 2 

the input impedances as a is FIG. 8,18. Impedance or admittance 

allowed to vary. 
From eq. (58), the normalized input impedance is 

diagram. 

jx. = r cos /31 j sin 15.1 
le° cos + jr sin a 

(8-78) 

Letting O = (31, and replacing sin and cos by their exponential 
equivalents, eq. (78) becomes 

r(e±o ± e-o) (eo — e-o) 
r. jx. 

(eo e-o) Keo — e-o) 
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which reduces to 
r. ± ix. = ((rr ±d- 11)) ((rr 11)) 00 

(8-79) 

Now the reflection coefficient, which in general is a complex quan-

tity, given by 
TT " R ZO 

fl. = = ZR ZO 
r — 1  

will, in this case, be a real number equal to r I. Its absolute 

value will be 

Then from eq. (79) 

so that 
(r, — 1) jx. 

K — (8-80) 
(r, + 1) -F jx, 

Equating the absolute values of (80), 

r,2 -I- 2r, + 1 x2 

Cross multiplying and completing the square leads to 

1 -I- IKI)2 x - (  1 — 21 KI 
12) (8-81) 1 — IK12 1K 

This is the equation of a circle having a radius 

21K1 = p2 
1 1K1 2  2p 

and a center located on the real axis at 

1 -F I K 12 _ p2 + 1 
1 — IK12 2p 

In the diagram of Fig. 8-18 circles corresponding to various 
values of terminating resistance (and therefore to various constant 
values of p) have been drawn in. It is necessary to mark off on 
these circles points indicating the values of 0/. If the points on 

p — 1 
IK I = 

p + 1 

1 + K e-i20 
+ ix, — 1 — K e-12° 
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various circles having the same value of (3/ are joined, it is found 
that the curves so formed are circles orthogonal to the p = constant 
set. The equation for the fl/ = constant circles is derivable, in a 
manner similar to the derivation of (81), by equating the tangents 
of the angles in (80), instead of the absolute magnitudes. The 
result yields circles with their centers located on the imaginary axis 
at 1/tan 20 and having radii equal to 1/sin 20. These circles have 
been drawn in on Fig. 8-18 and labeled with the appropriate values 
of /3/. 

Using Fig. 8-18 it is a simple matter to make various computa-
tions as the following examples will indicate. 

(a) A 300-ohm line is terminated in a 600-ohm resistive imped-
ance. What is the input impedance if the line is one-eighth wave-
length long? 

Following the p = 2 circle in clockwise direction for 45°, the 
normalized impedance is found to be 0.8 — j0.6. Therefore, 
Z, = 240 — j180 ohms. 

(b) The line of part (a) is terminated in an impedance ZR = 180 
+ j200 ohms. Find the input impedance. Answer: z = 2.5 -I- j0.4, 
Z, = 750 -I- j120. 

Because the transmission line equations have the same form 
when expressed for admittances as they do for impedances, the 
impedance diagram can be used as an admittance diagram by simply 
changing the labels. That is, g replaces r, and b replaces x, with Go 
replacing Ro. Using the admittance diagram, the stub matching 
problem is readily solved in the following manner. The chart is 
entered at the (normalized) value of the load admittance, 

y = g + ib — G + e Go 

to determine a p = constant circle. This circle is followed around 
to its intersection with the vertical axis at g = 1. At this point 
the input conductance has the value g = 1 (actual value G = Go), 
and the input susceptance has a value given by the length of the 
vertical intercept. The electrical distance /3/, measured along the 
transmission line from the load point, at which the stub should be 
located is given by the angle through which it was necessary to 
turn to reach the vertical axis. The required susceptance of the 
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stub to cancel the susceptance on the line at this point is just the 
negative of the susceptance indicated at the intersection of the circle 
and the vertical (g = 1) axis. The electrical stub length that will 
produce this susceptance (assuming a shorted stub) is given by the 
value of the = constant curve which intersects the imaginary 
axis (g = 0) at the particular value of susceptance required. 

EXAMPLE 1: A 303-ohm line is terminated in an admittance YR = 
0.002 — j0.0033, which corresponds to a normalized admittance 

YR 
g jb = = 0.0 — j1.0 

Determine the location and length of a shorted stub to match this load 
to the line. 

Entering the diagram at the admittance value 0.6 — j1.0, it is 
found by interpolation that this point marks the intersection of p = 3.45 
and 01 = 40° circles. Following the p = constant circle clockwise around 
to its intersection with the vertical (g = 1) line, a value of fi/ = 152 degrees 
is found. The susceptance at this point is 1.35, so the stub must have an 
input susceptance of — 1.35. The shorted electrical stub length that has 
this value of susceptance is given by the el = constant curve, which inter-
sects the g = 0 axis at b = —1.35. This is found to be 37 degrees. There-
fore the electrical stub length is 37 degrees and its location on the trans-
mission line is 152 — 40 --. 112 degrees, from the load. 

It is interesting to note in passing how the impedance value 
corresponding to a certain admittance (or vice versa) can be 
obtained from the circle diagram. For example, to obtain the 
(normalized) impedance corresponding to the (normalized) admit-
tance y = 0.6 — j1.0, it is merely necessary to follow the p = 3.45 
circle around from 40 degrees (through another 93 degrees) to 
130 degrees, at which point the normalized impedance can be 
read as z = 0.44 + j0.74. That this should be so follows directly 
from the impedance inversion properties of the quarter-wave line 
which "inverts" impedances about Zo (which in this case is unity): 
That is, Z„ = Ze/ZR, and z8 = 1/zR = yn (for a = 93 degrees). 

The settings for double-stub tuners are also obtained with ease 
by this graphical method. Because the spacing between tuners 
is fixed (say at 135 degrees), the procedure is to adjust the admit-
tance of the first stub to such a value that when 135 degrees is 
turned off on the p = constant circle the intersection with the 
(g = 1) line will have just been reached. Then the second stub is 
used to cancel the remaining susceptance at that point on the line. 



§8.101 TRANSMISSION LINES 255 

The examples given will serve to indicate the effectiveness of 
the graphical approach. The diagram of Fig. 8-18 is only one of 
several such diagrams that can be used. While this particular chart 
is probably the simplest, other diagrams based on the same principles, 
and derivable from the diagram of Fig. 8-18 by suitable transforma-

FIG. S-19. Smith chart for transmission line calculations. 

tion of variables, are more convenient for actual computations. 
Several such charts are available commercially. Among these, the 
polar impedance chart, described by P. H. Smith,* has come into 
extensive use. This is a circular chart illustrated qualitatively in 
Fig. 8-19. In it, the r = constant and x = constant lines have been 

* P. H. Smith, "An Improved Transmission-Line Calculator," Electronics, 
17, p. 130 (Jan. 1944); also 12, P. 29 (Jan. 1939). 



TABLE II 
NUMERICAL DATA ON UHF TRANSMISSION LINES 

Parallel Wire Lines 
Conductor radius = a 
Conductor spacing 

(between centers) = b 

Coaxial Lines 
Outer radius of inner conductor = a 
Inner radius of outer conductor = b 

Inductance L (henry/m length of line) — cosh-1 2—a or 
ir 

g. b 
— ln - for b >> a 
7r a 

b 
— in - 
Ir. a 

Capacitance C (f/m length of line) 

Resistance R (ohms/unit length of line) 

ire 

cosh-' b/2a 
or 

ire  
ln b la for b >>  

2re 

in b/a 

R. 1 ..\F ohms/m og. 
Ira Ira —24  

For copper lines 
8.31 x 10-8fki 

R ohms/m 
a 

V ohms/1000 ft 
am. 

R. (1 1) 1 \ Fog. (1 1 „ 
- FT) == 1-r • it i) °OMB/ M 

For copper lines 
1 1 

R 4.16 X 10-8M -1-)) ohms/m 

Conductance G (mhos/m length of line) C(dissipation factor) = wC(power factor of dielectric) 

S
3
N
I
1
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I
S
S
I
W
S
N
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I
I
I
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TABLE II—Continued 

Parallel Wire Lines 
Conductor radius = a 
Conductor spacing 

(between centers) b 

Characteristic impedance Zo = 
G jwC 

(air dielectric) 

120 cosh-1 —b or 
2a 

276 log10 -b for b >> a 
a 

Coaxial Lines 
Outer radius of inner conductor = a 
Inner radius of outer conductor = b 

77 b 138 
— In - log io - 
2dr a V e, a 

Attenuation constant a (neper/m) 
R GZe 

= 2Z0 ± 2 

Phase shift constant fi (radians/m) 

Phase velocity vo (meter/sec) 

2r co = - 
X Vn 

1  3 X 108 
Vo for low-loss lines 

/Lc NAT-ire, 

For air 
For copper 

µ, 1; 
Mr ge 1; 

et. = 4-ir X 10-' 

e, 1 
Pe 1; 

1  

ee 36r X 10' 

5.8 X 10' 

S
3
N
1
1
 
N
O
I
S
S
I
I
N
S
N
V
2
1
1
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transformed into orthogonal sets of circles in such a manner that 
the p = constant lines now appear as concentric circles about R 

(r = 1), which is at the center of the chart. The chart is equipped 

with a rotating radial arm so that computations can be per-

formed as simply as computations on a slide rule. For the 

communication engineer who is required to work extensively with 

transmission line problems, the transmission line calculator is 

almost as indispensable as his slide rule. 

PROBLEMS 

1. Derive an expression for the inductance and capacitance per unit 
length of a coaxial transmission line. 

2. Repeat for a parallel wire line (assume perfect conductors). 

3. Compute the line "constants" per unit length, R, L, C, G, a, and 0, 
and the characteristic impedance, Zo, for each of the following lines at the 
frequencies indicated. 

(a) No. 12 wires (diameter = 0.0S08 in.) spaced 3 in. apart at 10 mc; 
at 100 mc. 

(b) diameter rods spaced 1 in. at 100 mc; at 1000 mc. 
(c) A coaxial line having a 3-in. diameter inner conductor and a %-in• 

outer conductor, at 1000 mc. 

4. (a) A dipole antenna is fed by a transmission line consisting of 
No. 12 wires at 3-in. spacing. The measured ratio V.../V.;„ = 4, and 
the location of a voltage minimum is 2.8 meters from the antenna feed 
point. f = 112 mc. Determine the antenna impedance. 

(b) If a current indicator is used instead of a voltage indicator, where 
will the maximum and minimum readings be obtained, and what will be 
their ratio? 

5. A shorted length of a parallel-rod transmission line is connected 
between grid and plate of a tube to make a UHF oscillator. What should 
be the length of the line to tune to 300 mc, if the effective capacitance 
between grid and plate is 3 µµfd? The rods are in. in diameter and 
are spaced 1 in. apart. 

6. A lossless transmission line has a characteristic impedance of 300 
ohms and is one quarter wavelength long. What will be the voltage at 
the open-circuited receiving end, when the sending end is connected to a 
generator which has 50-ohm internal impedance and a generated voltage 
of 10 volts. 

7. For low-loss transmission line sections which are much shorter than 
one quarter wavelength show that the input reactance can be repre-
sented by 

X ID ee (4.= coLl 
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when the line is shorted, and 

1 1 

con 

when the line is open. 

Z 1 
L = o — and 

t/o 
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are the inductance and capacitance per unit length of the line. 

8. Derive the expression for Q (eq. 67) for an open-end half-wave line. 

9. Show that a coaxial line having an outer conductor of radius b will 
have minimum attenuation when the radius a of the inner conductor 
satisfies the ratio bja = 3.6. 
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CHAPTER 9 

WAVE GUIDES 

9.01 Rectangular Guides. Practical wave guides usually take 
the form of rectangular or circular cylinders. Other cross sectional 
shapes are possible, but in general these other shapes offer no 
electrical advantages over the simpler forms in use and are more 
expensive to manufacture. 

In order to determine the electromagnetic field configuration 
within the guide, Maxwell's equations are solved subject to the 
appropriate boundary conditions at the walls of the guide. Again 
assuming perfect conductivity for the walls of the guide, the bound-
ary conditions are simply that Ets and HDO will be zero at the 
surface of the conductors. For rectangular guides Maxwell's equa-
tions and the wave equations are expressed in rectangular co-ordi-
nates and the solution follows almost exactly as for waves between 
parallel planes. Assuming that time variations are given by ewt, 
and that variations in the z direction may be expressed as e-1», where 
5 = -F ja, Maxwell's equations become (for the loss-free region 
within the guide) 

, aE, , ,E, yn„ = jcaeEz — -r 7 „ = 
ay ay 
ax, + 511. = + 5E. = .icobilly (9-1) 
ax ax 

aH  . aEi, aE. — ay = jcoerz ax—ay = 
ax  

and the wave equations for E. and H. are 

a2E. a2E. 
+ — + 52E. = —co2kteE. 

ax2 ay2 
a2H. a2H. 
+ + 5211. = --cebscH. ax2 ay2 

260 

(9-2) 
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Equations (1) can be combined into the form 

H = 5 a H s , co e aE g s 
3 /7 

ax. aE. 
1111— 

Ez = 

— PW -3 P -i; 

aE. 
a z 3 h2 ay 

where 

aE. . cog ail, 
Ev ' 17 a + 3h2 az 

h2 = 52 0,212, 

(9-3) 

These equations give the relationships among the fields within the 
guide. It will be noticed that, if Es and Hz are both zero, all the 

Flo. 9-1. A rectangular guide. 

fields within the guide will vanish. Therefore, for waveguide trans-
mission (no inner conductor) there must exist either an E, or an H. 
component. The TEM wave cannot exist inside a single-conductor 
wave guide. As in the case of waves between parallel planes, it is 
convenient to divide the possible field configurations within the 
guide into two sets, transverse magnetic (TM) waves for which 
H = 0, and transverse electric (TE) waves for which E,==- O. For 
the rectangular guide shown in Fig. 9-1 the boundary conditions are: 

Ex = Es = 
= Es = 

at y = 0 and y = b 
at x= 0 and x= a 

9.02 Transverso Magnetic Waves in Rectangular Guides. The 
wave equations (2) are partial differential equations that can be 
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solved by the usual technique of assuming a product solution. 
This procedure leads to two ordinary differential equations, the 
solutions of which are known. Let 

E, = XY (9-4) 

where X is a function of x alone, Y i3 a function of y alone, and the 
factor e(3«"--ix) is understood. Inserting (4) in (2) gives 

v d2X -r d Y ,2xy = 
dx2 d2y2 

Putting h2 = 52 + co2µe as before, this becomes 

Divide by XY, 

Y4d Y Y 2X — X d2—  h2XY = 

1 d2X 1 d2Y 
dx2 I"2  Ydy2 

(9-5) 

Equation (5) equates a function of x alone to a function of y alone. 
The only way in which such a relation can hold for all values of x 
and y is to have each of these functions equal to some constant, say 
A'. Then 

1 d2X 
h2 = A2 

1 d2Y 
Y dy2 = — A2 

A solution of eq. (6) is 

X = Ci cos Bx C2 sin Dx 
where D2= h2 — A2 

The solution of eq. (7) is 

Y = Cs cos Ay ± C4 sin Ay 
This gives 

E, = XY = CIC3 ccs Bx cos Ay + Cie, cos Bx sin Ay 
C2C8 sin Dx cos Ay ± C2C4 sin Bx sin Ay (9-8) 

The constants C1, C2, Ca, C4, A, and B must now be selected to fit 
the boundary conditions, viz.: 

E, = 0 when x = 0, x = a, y = 0, y = b 

(9-6) 

(9-7) 
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If z = 0, the general expression (8) becomes 

=Ca cos Ay + C2C4 sin Ay 

For E, to vanish (for all values of y) it i3 evident that C1 must be 
zero. Then the general expression for E, will be 

Ez = C2C3 cm n Ex cos Ay + C2C4 sin Dx sin Ay (9-9) 

When y = 0, eq. (9) reduces to 

= C2C3 sin Ba, 

For this to be zero for all values of x it is possible to have either 
C2 or C3 equal to zero (assuming B 0). Putting C2 = 0 in (9) 
would make E, identically zero, so instead C3 will be put equal to 
zero. Then the general expression (9) for Ez reduces to 

E, = C2C4 sin Dx sin Ay (9-10) 

In addition to the amplitude constant C = C2C4, there are still 
two unknown constants, A and B. However, there are two more 
boundary conditions to be applied. 

If x = a 
Ez = C sin Ba sin Ay 

In order for this to vanish for all values of y (and assuming A 0 0, 
because A = 0 would make E, identically zero) the constant B 
must have the value 

B = mr 
a 

Again if y = b, 

where m = 1, 2, 3, • • • 

Ez = C sin mir x sin Ab 

and for this to vanish for all values of x, A must have the value 

= 
where n = 1, 2, 3, • • • 

Therefore the final expression for E, is 

mir 
Ez = C sin —a x sin y (9-11) 
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Making use of eqs. (3) and putting 5 = ja (as in section 7.02) 
for frequencies above the cut-off frequency, the following expres-
sions are obtained: 

where 

-jaC 
B cos Bx sin Ay 

h2 

-jaC 
A sin Bx cos Ay 

h2 

jcoEC 
A sin Bx cos Ay 

-jcoeC 
B cos Bx sin Ay 

112 

mir nr 
B = —a and A = T. 

(9-12) 

(9-13) 

These expressions show how each of the components of electric and 
magnetic intensities varies with x and y. The variation with time 
and along the axis of the guide, that is in the z direction, is shown 
by putting back into each of these expressions the factor ei't-lz. 

In the derivation of the fields it was found necessary to restrict 
the constants A and B to the values given by expressions (12). In 
these expressions a and b are the width and height of the guide, and 
m and n are integers. Now, by definition, 

and 
Therefore, 

A2 + B2 = h2 
h2 = 52 + «elm 

= V A2 + B2 - co2pe (9-14) 

= \I( m) 
2 
i_ few\2 

air ) --1- \ b f 
— CO2/J.6 

Equation (14) defines the propagation constant for a rectangular 
guide for TM waves. For low frequencies, where co2ihe is small, 5 
will be a real number. The propagation constant met with in 
ordinary transmission line theory is a complex number, that is 
5 = à -I- ia, where à is the attenuation constant (attenuation per 
unit length) and a is the phase shift constant (phase shift per unit 
length). If 5 is real, a must be zero, and there can be no phase 
shift along the tube. This means there can be no wave motion 
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along the tube for low frequencies. However, as the frequency is 
increased, a value for CO will be reached that will make the expression 
under the radical in (14) equal to zero. If this value of co is called 
coc, then for all values of CO greater than coc, the propagation constant 
5 will be imaginary and will have the form 5 -= ja. For the case 
under consideration (perfectly conducting walls) the attenuation 
constant rx is zero for all frequencies such that co > co.. For these 
frequencies 

\ /(.02iie ( )mi.\ 2 iniA2 

a V) 

The value of oh is given by 

ec = 1 Nk A a )2 + ( b ) 

ini nT\ 2 

The cut-off frequency, that is the frequency below which wave 
propagation will not occur, is 

.1; = 27-VTLE •Nk-Ti. + —17 
1  i mar 2 nir 2)  

and the corresponding cut-off wavelength is 

2 
Xc = 

(9-15) 

+ ( 61)2 

The velocity of wave propagation will be given by 

(nary ( nir 
— — — —b 

2 

(9-16) 

(9-17) 

(9-18) 

(9-19) 

This last expression indicates that the velocity of propagation of 
the wave in the guide is greater than the phase velocity in free 
space. As the frequency is increased above cut-off, the phase 
velocity decreases from an infinitely large value and approaches c, 
the velocity in free space, as the frequency increases without limit. 

Since the wavelength in the guide is given by -it = D/f, it will be 
longer than the corresponding free-space wavelength. From the 



266 WAVE GUIDES [§9.03 

expression for D 
2r 

—    NiCO21.LE - (") 2 - (" ) 2 
a 

(9-20) 

In the above expressions the only restriction on m and is 
that they be integers. However from eqs. (12) and (13) it is seen 
that if either m or n is zero the fields will all be identically zero. 
Therefore the lowest possible value for either m or n (for TM waves) 
is unity. From eq. (17) it is evident that the lowest cut-off fre-
quency will occur for m = n = 1. Substituting these values in 
eqs. (13) gives the fields for the lowest frequency TM wave which 
can be propagated through the guide. This particular wave is 
called the T111,1 wave for obvious reasons. Higher order waves 
(larger values of m and n) require higher frequencies in order to be 
propagated along a guide of given dimensions. 

9.03 Transverse Electric Waves in Rectangular Guides. The 
equations for transverse electric waves (E. = 0) can be derived 
in a manner similar to that for transverse magnetic waves. This is 
left as an exercise for the student. H. will be found to have the 
same general form as eq. (8). This is differentiated with respect 
to x and y to find E, Ey, H, and Ii. The boundary conditions 
are then applied to Ex and 4, to give the resulting expressions: 

= C cos Dx cos Ay 

H = g CB sin Bx cos Ay 
h2 

14  = -iL5 CA cos Bx sin Ay h2 

E = j-"-") CA cos Bx sin Ay 
h2 

Ey = — CB sin Dx cos Au 

B = " 
a 

A = 

(9-21) 

In the above expressions 5 has been put equal to jP, which is valid 
for frequencies above cut-off. 

For TE waves the equations for 5, f., X,, D, and 5; are found to be 
identical to those for TM waves. However, in eqs. (21) for TE 
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waves it will be found possible to make either m or n (but not both) 
equal to zero without causing all the fields to vanish. That is, a 
lower order is possible than in the TM wave case. The lowest 
order TE wave in rectangular guides is therefore the TEL° wave. 
This wave which has the lowest cut-off frequency is called the 
dominant wave. 

It is seen that the subscripts m and n represent the number of 
half-period variations of the field along the x and y co-ordinates 
respectively. By convention,* the x co-ordinate is assumed to 
coincide with the larger transverse dimension, so the TE1.0 wave 
has a lower cut-off frequency than the TEoa. 

For practical reasons in most experimental work with rectangular 
guides the dominant TEL o wave is used. For this wave, substitut, 
ing m = 1 and n = 0, the fields are 

= C cos .17 - 
a 

H = eaC sin Ire 
ir a 

=  sin irx— 
ir  a 

Ez =lit,=0 

Jc = 

a = — - (12 

X, = 2a h 
ir = _ 
a 

(9-22) 

For the TEL() wave the cut-off frequency is that frequency for which 
the corresponding (free-space) half wavelength is equal to the width 
of the guide. For the TEL° wave the cut-off frequency is inde-
pendent of the dimension b. 

In Fig. 9-2 are sketched the field configurations for the lower 
order TE and TM waves in rectangular guides. 

Possible methods for feeding rectangular guides so that these 
waves may be initiated ar3 shown in Fig. 9-3. In order to launch 
a particular mode, a type cf probe is chosen which will produce 

* " Definition of Terms Itelating to Wave Guides," IRE Standards on Radio 
Wave Propagation, 1045. 
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FIG. 9-2. Electric (solid) and magnetic (dashed) field configura-
tions for the lower-order modes in a rectangular guide. 

lines of E and H that are roughly parallel to the lines of E and H 
for that mode. Thus in Fig. 9-3a the probe is parallel to the y axis 
and so produces lines of E in the y direction and lines of H which 
lie in the x-z plane. This is the correct field configuration for the 
TE L() mode. In (b), the parallel probes fed with opposite phase 
tend to set up the TE2,0 mode. In (d) the probe parallel to the z 
axis produces magnetic field lines in the x-y plane, which is correct 
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for the TM modes. The field configuration due to probes and 

antennas is the subject of chap. 10. 
It is possible for several modes to exist simultaneously in a 

guide if the frequency is above cut-off for those particular modes. 
However the guide dimensions are often chosen so that only the 
dominant mode can exist. 

ANTENNA 
PROBE 

COAXIAL 
CABLE 

(0) TElo 

( b) TE20 

(C) TE1, 

(d) Tfall 

Flo. 9-3. Excitation methods for various modes. 

Problem 1. A rectangular guide has cross section dimensions 

a = 7 cm b = 4 cm 

Determine all the modes which will propagate at a frequency of (a) 3000 mc, 
(b) 5000 mc. 

Problem 2. Starting with expressions (9-16) and (9-20) derive the 
relations 

itX 

X .»   

Vit 2 + ›tc2 
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where X is the free-space wavelength (X = c/f),it is the wavelength meas-
ured in the guide, and X, is the cut-off wavelength. 

Problem 3. Show by means of arrows the directions of the instan-
taneous Poynting vector for the TE1,0 wave in a rectangular guide. 

Problem 4. (a) Indicate the (instantaneous) directions of current flow 
in all the walls of a rectangular guide carrying a TEL() wave. 

(b) Where in the guide could slots be cut without affecting operation? 

Problem 5. Starting with eqs. (9-2) and (9-e) derive expressions (9-21) 
for TE waves. 

9.04 The TEM Wave in Wave Guide3. The waves that will 
propagate inside hollow rectanj-ular cylinders have been divided 
into two sets: the transverse magnetic waves of eqs. (11) and (12) 
which have no z component of H, and the transverse electric 
waves of eqs. (21) that have no z component of E. It will be found 
that corresponding sets of TM and TE waves can also propagate 
within circular wave guides, or indeed, in cylindrical guides of any 
cross sectional shape. It is easily shown, however, that the familiar 
TEM wave, for which there is no axial component of either E or H, 
cannot possibly propagate within a single-conductor wave guide. 

Suppose a TEM wave is assumed to exist within a hollow guide 
of any shape. Then lines of H must lie entirely in the transverse 
plane. Also in a nonmagnetic material. 

div II = 

which requires that the lines of II be closcd loops. Therefore, if a 
TEM exists inside the guide, the lines of H will be closed loops in 
plane perpendicular to the axis. Now by Maxwell's first equation 
the magnetomotive force around each of these closed loops must 
equal the axial current (conduction or displacement) through the 
loop. In the case of a "guide" with an inner conductor, e.g., a 
coaxial transmission line, this axial current through the H loops 
is the conduction current in the inner conductor. However for a 
hollow wave guide having no inner conductor, this axial current 
must be a displacement current. But an axial-displacement current 
requires an axial component of E, something not present in a TEM 
wave. Therefore the TEM wave cannot exist in a single-conductor 
wave guide. 

9.05 Bessel Functions. In solving for the electromagnetic fields 
within guides of circular cross section, a differential equation known 
as Bessel's equation is encountered. The solution of the equation 
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leads to Bessel Functions. These functions will be considered 
briefly in this section in preparation for the following section on 
circular wave-guides. These same functions can be expected to 
appear in any two-dimensional problem in which there is circular 
symmetry. Examples of such problems are the vibrations of a 
circular membrane, the propagation of waves within a circular 
cylinder, and the electromagnetic field distribution about an 
infinitely long wire. 

The differential equation involved in these problems has the 
form 

(PP 1 dP (1 n2\ 
dp2 P dp \"" p2 I = (9-23) 

where n is any integer.* One solution to this equation can be 
obtained by assuming a power series solution 

P = ao alp -I- a2p2 + • • • (9-24) 

Substitution of this ascumed solution back into (23) and equating 
the coefficients of like powers leads to a series solution for the differ-
ential equation. For example in the special case where n = 0, 
eq. (23) is 

d2P 1 dP 
ap pdp = ° 

When the power series (24) is inserted in (25) and the sums of the 
coefficients cf each power cf p are equated to zero, the following 
series is obtained 

P = P1 = C1 1 — —P 2 + ( P)4 ( 1))0 --I-[ 
2 (2!) 2 (3!) 2 ' . 

4 

= ' L 1 1. P Ps 
22 22 • 42 22 • 4' • 6' 

(P) 2r 
= ( - 1) r — 

(r!)2 
r 

(9-25) 

(9-26) 

This series is convergent for all values of p, either real or complex. 
It is called Bessel's function of the first kind of order zero and is 
denoted by the symbol 

Jo(P) 

* If n is not restricted to integral values, the symbol Y is used. See Appen-
dix II. 
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The zero order refers to the fact that it is the solution of (23) for 
the case of n = 0. The corresponding solutions for n. = 1, 2, 3, 
etc., are designated Ji(p), .1.2(p), Jo(p), where the subscript n denotes 
the order of the Bessel function. Since eq. (23) is a second-order 
differential equation, there must be two linearly independent solu-
tions for each value of n. The second solution may be obtained 
in a manner somewhat similar to that used for the first, but starting 
with a slightly different series that is suitably manipulated to yield 
a solution.* This second solution is known as Bessel's function 
of the second kind, or Neumann's function, and is designated by the 
symbol f 

N(p) 

where again n indicates the order of the function. For the zero 
order of this solution of the second kind, the following series is 
obtained 

No(p) = 2 iln -F -yi Jo(p) 

1 1 
— —2 ( 1)r ()p)2r ( 1 +++ • • • + :4) (9-27) 

(11)2 
7r r...1 

The complete solution of (25) is then 

P = Itio(P) ZeNo(P) (9-28) 

A plot of Jo(p) and No(p) is shown in Fig. 9-4. Because all the 
Neumann functions become infinite at p = 0, these second solutions 
cannot be used for any physical problem ih which the origin is 
included, as for example the hollow wave guide problem. 

It is apparent that [except near the origin for No(p)] these curves 
bear a marked similarity to damped cosine and sine curves. Indeed, 
for large values of (p) these functions do approach the sinusoidal 
forms. As p becomes very large 

,7r) 
Jo(p) -->.t/1! cos (p — (9-29) 

7p  

7r\ No(p) —› — sin (p (9-30) 
7rp i) 

• N. W. McLachlan, Bessel Functions for Engineers, Oxford University 
Press, New York, 1934. 
t The symbol Y(p) is used in some texts and tables. It should be noted 

that there are other forms for this second solution which differ by a constant 
from the one given. 
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FIG. 9-4. Zero-order Bessel functions of the first and second kinds. 

1. 

o 

o 

o 

o 

o 

o 

a 
Jo(P) 

8 
1 (P) 

6 
(P) 

4 

2 

0 

2 

4 

I 2 3 4 5 6 7 8 9 10 II 11 

FIG. 9-5a. Higher-order Bessel functions of the first kind. 
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9-5b. higher-order Bessel functions of the second kind 
(Neumann functions). 
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Figs. 9-5(a) and (b) show Bessel functions of the first, and second 
kinds for the higher orders. A further discussion of these functions 
is given in Appendix II. 

9.06 Solution of the Field Equations: Cylindrical Co-ordinates. 
The method of solution of the electromagnetic equations for guides 
of circular cross section is similar to that followed for rectangular 
guides. However, in order to simplify the application of the 
boundary conditions (electric field tangential to the surface equals 
zero), it is expedient to express the field equations and the wave 
equations in the cylindrical co-ordinate system. 

In cylindrical co-ordinates in a nonconducting region (and 
again assuming variations with time and z to be given by eiwg—t.), 
Maxwell's equations are 

—5 aIi II, — — 
ap 

= jweE, 

= — jcogH, 

= jcueE0 

aE. 
— 5Et, — = — izoitHo 

1 (a (pH,.) ari,) 
= jcueE. 

P \ ap act> 
1 (0(pEo) 8E„) 
P ap 

These equations can be combined to give 

• WE 5E. H. 
101I, = 3 7  — ap 

8E5 5 al-A211,, = —87 — p 
84 t 

aE. . cog aH. A2E, = — 5 —a7-) — pw 

5 OE. . 8H5 t 
h2Em = 

The wave equation in cylindrical co-ordinates is 

82E 1 02E 82E 1 aE 
= 11E r; 

a p 2 p 2 a4,2 az2 p ap 

(9-31) 

(9-32) 

(9-33) 
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Proceeding in a manner similar to that followed in the rectangular 
case, let 

E = P(P) • Q(0) • e-la+I(''' (9-34) 

where P(p) is a function of p alone and Q(ck) is a function of 4, alone. 
Substituting the expression for E, in the wave equation gives 

d2P Q dP P d20 
dp2 p 71P p 2 dt, 2 ± Qi w beEPQ = 

Divide by PQ, 
1 d2P 1 dP 1 d2Q 
P dp2 pP dp Qp2 dc1)2 '*2 = ° 

As before, eq. (35) can be broken up into two ordinary differential 
equations 

d'Q 
C171;2 = — 712Q 

dp 2 -r 71, dp -1- ( 12 — p2) 
d2P 1 dP 7 n2 

where n is a constant. The solution of eq. (33) is 

Q = (A,, cos nci) D„ sin nep) (9-38) 

Dividing through by h2, eq. (37) is transformed into 

d(ph)2 -I- (ph) d(ph) (ph) 2 
  -I- El n2•—•] P (9-39) 

This is a standard form of Bessel's equation in terms of (ph). Using 
only the solution that is finite at (ph) = 0, gives 

P(ph) = J,,(ph) (9-40) 

where J(ph) is Bessel's function of the first kind of order n. Sub-
stituting the solutions (38) and (40) in (34), 

= J,,(ph)(A„ cos nct. sin nct,) e-13113'' (9-41) 

The solution for II, will have exactly the sa,rne form as for E, 
and can therefore be written 

H. = J(ph)(C„ cos nrt. D„ sin ne) e-13+i°' (9-42) 

For TM waves the remainin3 field components can be obtained 
by inserting (41) into (32). For TE waves (42) must be inserted 
into the set corresponding to (32). 

(9-35) 

(9-36) 

(9-37) 
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9.07 TM and TE Waves in Circular Guides. As in the case of 
rectangular guides, it is convenient to divide the possible solutions 
for circular guides into transverse magnetic and transverse electric 
waves. For the TM waves H. is identically zero and the wave 
equation for E. is used. The boundary conditions require that E, 
must vanish at the surface of the guide. Therefore, from (41) 

J(ha) = 0 (9-43) 

where a is the radius of the guide. There is an infinite number of 
possible TM waves corresponding to the infinite number of roots 
of (43). As before h2 = + co2p€, and, as in the case of rectangular 
guides, 112 must be less than c21€ for transmission to occur. This 
means that h must be small or else extremely high frequencies will 
be required. This in turn means that only the first few roots of 
(43) will be of practical interest. The first few roots are 

(ha)0,1 = 2.405 

(ha)0,2 = 5.52 
(ha)1,1 = 3.85 1 

(ha)1,2 = 7.02 
(9-44) 

The first subscript refers to the value of n and the second refers 
to the roots in their order of magnitude. The various TM waves 
will be referred to as TMo.i, TM1,2, etc. 

Since 5 = •Vh2 — ceme, this gives for a-
nm =  _ /12. 

The cut-off or critical frequency below which transmission of a wave 
will not occur is 

where 

The phase velocity is 

-   
2er VIre 

Oa). h. = 
a 

- w -   
-Vc„,21.,e h2nm 

From eqs. (32) the various components of TM waves can be 
computed in terms of E.. The expressions for TM waves in circular 
guides are 

= A.J.(hp) cos nri) 
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H - jAnwEn J1(ph) sin ne ,  
/Op 

- jA.cue,(ph) cos ne 1-14,  
h 

E, =_  
WE 

(9-45) 

The variations of each of these field components with time and in 
the z direction are shown by multiplying each of the expressions 
of (45) by the factor eim-Pz). In the original expression (41) for 
E., the arbitrary constant B. has been put equal to zero. The 
relative amplitudes of A. and B. determine the orientation of the 
fields in the guide, and for a circular guide and any particular value 
of n, the 4) = 0 axis can always be oriented to make either A. or B. 

equal to zero. 
For transverse electric waves E. is identically zero and H. is given 

by eq. (42). By substituting (42) into eqs. (32), the remaining field 
components can be found. The expressions for TE waves in circu-

lar guides are 

H. = C.J.(hp) cos ne 

H, - -gee, .I.,(hp) cos no 
h 

114 - jntiC  J.(hp) sin no 
1121) (9-46) 

E, = 
a 

E, = - Tiz H, 
a 

where the factor eim-ez) is understood. 
The boundary conditions to be met for TE waves are that 

Eo --= 0 at p = a- From (32) Eo is proportional to 011,/ap, and 
therefore to J.'(hp), where the prime denotes the derivative with 
respect to (hp). Therefore, for TE waves the boundary conditions 

require that 

J„'(ha) = 0 (9-47) 
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Fin. 9-6. TE and TM waves in circular guides. 

and it is the roots of (47), which must be determined. The first 
few of these roots are 

(ha)'o = 3.83 
51..384 (haYe.2 = 7.02 3 1 (9-48) 

The corresponding TE waves are referred to as TE0,1, TE LI, and 
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so on. The equations for fz, ?«;, and t) are identical to those for 
the TM waves. It is understood, of course, that the roots of eq. 
(47) are to be used in connection with TE waves only. 

Inspection of eqs. (44) and (48) shows that the wave having the 
lowest cut-off frequency is the TEL,. wave. The wave having the 
next lowest cut-off frequency is the TM0,1. Some representative 
TM and TE waves are shown in Fig. 9-6. 

9.08 Wave Impedances and Characteristic Impedances. The 
wave impedances at a point have been defined by eqs. (7-50). For 
waves guided by transmission lines or wave guidés, interest centers 
on the wave impedance which is seen when looking in the direction 
of propagation, that is, along the z axis. Inspection of expressions 
(12) for the transverse field components of a TM wave in a rec-
tangular guide shows that 

Try = 
Therefore 

E„ E,,2 a 
11.= vii,2+ 10 — we 

z, = z„, = _ = z, (9-49) 

The wave impedances looking in the z direction are equal and may 
be put equal to Z,, where 

Et,... VE.2 + 4,2  
(9-50) 

z' ..‘/Hz2 H y2 

is the ratio of the total transverse electric intensity to the total 
transverse magnetic intensity. 
A similar inspection of eqs. (45) for TM waves in circular guides 

shows that for them also 

Zz = Z = Z p (9-51) 
a 
WE 

It is seen that for TM waves in rectangular or circular guides, or 
indeed in cylindrical guides of any cross section, the wave imped-
ance in the direction of propagation is constant over the cross 
section of the guide, and is the same for guides of different shapes. 
Recalling that 

= — 

and that the cut-off angular frequency oz has been defined as that 
frequency that makes 

h2 
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it follows that if can be expressed in terms of the cut-off frequency 
by 

17 =_. co .‘71; V I. _ (c002/c02) 
(9-52) 

Then from (49) or (51) the wave impedance in the z direction for 
TM waves is 

Z(TM) = ..\1# -V1 — (042/(02) 

= n vi _ („c2/,2) (9-53) 

Thus for any cylindrical guide the wave impedance for TM waves 
is dependent only on the intrisic impedance of the dielectric and the 
ratio of the frequency to the cut-off frequency. 

For TE waves the same conclusion can be reached. However 
for TE waves it is found that 

4(TE) —  —  , n  (9-54) 
v p . i _ (o.,c2/,,2) 

For TEM waves between parallel planes or on ordinary parallel-
wire or coaxial transmission lines the cut-off frequency is zero, and 
the wave impedance reduces to 

Zz(TEM) = n (9-55) 

The dependence of a on the ratio of frequency to cut-off fre-
quency as shown by (52) affects the phase velocity and the wave-
length in a corresponding manner. Thus the phase or wave velocity 
in a cylindrical guide of any cross section is given by 

co 1 vo  
U — — (9-56) _  a v, _ ((„c2/,,,2) vi _ (,,,,c2/0,2) 

where vo = 1/N/Tre, and µ and o are the constants of the dielectric. 
The wavelength in the guide, measured in the direction of propaga-
tion, is 

- 

1  

f a f -\//le 1/1 — (wc2/(02) 
X0 

Vl. — (4,02/(02) 

where Xo is the wavelength of a TEM wave of frequency f in a 

(9-57) 
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dielectric having the constants µ and E. Since w2/c 2 = X02/Xo' it 

follows that 
Xo)to  

—  
NA.2 — x02 

or 

it.>1.0 I 
Xo 

"VX.c2 

(9-58) 

A quantity of great usefulness in connection with ordinary two-
conductor transmission lines is the (integrated) characteristic imped-
ance, Zo, of the line. For such lines, Zo can be defined in terms of 
the voltage-current ratio or in terms of the power transmitted for a 
given voltage or a given current. That is, for an infinitely long line 

V 2W VV* 
Zo = ./ --• Z0 = —• Z0 --= (9-59) 

' II* ' 

where V and / are peak values in time. For ordinary transmission 
lines these definitions are equivalent, but for wave guides they 
lead to three values that depend upon the guide dimensions in the 
same way, but which differ by a constant. 

For example, consider the three definitions given by (59) for 
the case of the TEL o mode in a rectangular guide (Fig. 9-1). The 
voltage will be taken as the maximum voltage from the lower face 
of the guide to the upper face. This occurs at x = a/2 and has a 

value 

Vm =J E(max) dy = bE„(max) = —j`eiÁbaC (9-60) 
7r 

The longitudinal linear current density in the lower face is 

= , jf3aC rx 
1r sin -c--t (9-61) 

The total longitudinal current in the lower face is 

/ = f a L dx = —j2anaC 
2 

Then the " integrated" characteristic impedance by the first defini-
tion is 

(9-62) rb irb z. =  7rbn  
Zo(V, /) = = -2a 2a -V1 — (f 2/f2) 
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In terms of the second definition, the characteristic impedance 
for the TEL o wave in a rectangular guide is found to be 

r 
Zo(W, /) = 72b = -4 Zo(V, I) (9-63) 

In terms of the third definition the integrated characteristic imped-
ance is 

2b 4 
Zo(W, V) = — Z, = - Z o(V , I) 

a r (9-64) 

In the next section the utility of the concept of characteristic imped-
ance for cylindrical wave guides will be demonstrated. 

9.09 Transmission Line Analogy for Waveguides. There exists 
a useful analogy between the electric and magnetic field intensities 
of TM and TE waves and the voltages and currents on suitably 
loaded transmission lines. This analogy enables the engineer 
to draw " equivalent circuits," which are often helpful to him in 
dealing with unfamiliar electromagnetic problems. 

For TM waves (H, = 0) in rectangular co-ordinates the field 
equations are 

aH, aE, aE _ —j€E „ — co. az ay az = 
aHz j aEz 0E, 
az = c.oeE„ ax = 

— iCaprix 

aH, — 811,=j  z r, aE, aEz . „, — coei.,,,, — 
—3 ax ay —ax —ay •-• weel: 

aHz , aH„ -1- -- = , az ay 
Now since H, = 0, 

curl,„ È = 

That is, in the x-y plane the electric field has no curl (the voltage 
around a closed path is zero) and so in this plane E may be written 
as the gradient of some scalar potential V. Then 

av av 
E, = — 1.;,„ = — — 

Ox ay (9-66) 
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From the first equations of (65) and (66) and using (3) 

a (jzoe aEz) . av 
= Tx-

whence -11 E) = —jcoeV az h2 (9-67) 

From the fifth of (65) and the first of (66) and using (3) 

aE. 3E2 _ cepe 
az ax — h2 ax 

av (W 2ge 
whence = 1-7  — 1) E. 

= — (cog ,) (, E.) (9-68) h2 
The quantity jcueE, is the longitudinal displacement current 

density and 1/10 has the dimensions of area, so jw€E./h2 represents 

Pe\ p. 

T'" T T  
Fla. 9-7. Equivalent transmission line circuit representation for 

TM wavc3. 

a current in the z direction and will be designated by I.. Then (67) 
and (68) become 

al, av h 2 
= — jcoe V — — Pc I. (9-69) 

These are the differential equations for a lossless transmission line 
having a series impedance per unit length Z = jwµ (h2ljem) and 
a shunt admittance per unit length Y = jcoe. The " equivalent 
circuit" for such a. transmission line is that shown in Fig. 9-7. 

For TE waves the two equations of interest from the set cor-

responding to (65) are 

T! z aH am, = . = jw€E. (9-70) 
ay az 
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Since E. = 0, curl, H = 0; then in the x-y plane it is possible to 
define a scalar (magnetic) potential U such that 

au au 
111 = Hy 

aX 

From (70) and (71) and using eqs (3) 

a (.12 al . au ail, ally 
-à-z- le ax = — 3we ax ay az h2 ay 

whence 

(9-71) 

a ,\ au h2 • ) (jaw ) 
nz) = —iweu —ai =  TC2 111 (9-72) 

The quantity jcapH./h2 has the dimensions of voltage and U has 
the dimensions of current, so (72) may be written 

av, a, 
= -zI, = -Yv, (9-73) 

az as 
, _ jcupH. 

.v where now h2 /1 = U 

. , le 
Z = jaw Y = jCJE -r 

The " equivalent circuit" for TE waves is shown in Fig. 9-8. 

T r 

( frefi 

n2 T ,w,  r 14J,Ll 

Fm. 9-8. Equivalent transmission line circuit representation for 
TE waves. 

The " loaded" transmission line circuits of Figs. 9-7 and 9-8 
have high-pass filter characteristics. The cut-off frequency for the 
line of Fig. 9-7 occurs when the series reactance equals zero, whereas 
for the line of Fig. 9-8, the cut-off frequency is that which makes 
the shunt susceptance equal to zero. Both of these equalities 
require that 

h2 = ,c2pe 
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as was already obtained from wave theory. The characteristic 
impedance of the line of Fig. 9-7 is 

Z0 (TM) = \r-z _ >41. (h2/jcue) _ 042 
Y \I jcoe Nie co 2 

= Z.(TM) (9-74) 

The characteristic impedance of the line of Fig. 9-8 is 

Z o(TE) — ice -1-iw(h;42/jau.t) 

V •Nil — (w 02/,2) 

TA,  1  — — Z.(TE) (9-75) 
E  

The characteristic impedances of the equivalent transmission lines 
are equal to the corresponding wave impedances as would be 
expected. 

(a) 

( c ) 

Fla. 9-9. Typical discontinuities in wave guides: (a) Iris with 
edges perpendicular to E. (b) Iris with edges parallel to E. (c) 
Change of wave-guide dimensions. 

The concept of a waveguide as an equivalent transmission line 
with a certain characteristic impedance and propagation constant 
is a powerful tool in the solution of many wave guide problems 
because it enables the engineer to obtain the solution by-means of 
well-known circuit and transmission line theory. For example, the 
wave-guide problems, illustrated in Fig. 9-9, can be solved in terms 
of the " equivalent circuits," shown in 9-10. Thus an iris in a wave 
guide behaves as a shunt reactance on the equivalent line. The 
reactance is positive or inductive when the edges of the iris are 
parallel to E (Fig. 9-9b); it is negative or capacitive when the edges 
are perpendicular to E (Fig. 9-9a). An abrupt change in wave-
guide dimensions (Fig. 9-9c) is represented by the equivalent circuit 
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of Fig. 9-10c, in which two equivalent transmission lines are joined 
together, with an appropriate reactance shunted across the junction. 

In these examples the calculation of the actual value of shunting 
reactance to be used in any particular case is, of course, a field prob-
lem. However it is a field problem which can be solved in a fairly 
straightforward manner by matching solutions at the boundary.* 
The procedure is to represent the field at the junction or discontin-
uity by the sum of principal and higher order waves, the relative 

z, zo z, 

(a) (b) 

7 C, 

SHUNTING REACTANCE 

za 

FIG. 9-10. "Equivalent circuits" for the wave-guide discontinui-
ties illustrated in Fig. 9-9. 

amplitudes of which are obtained by matching the tangential com-
ponents of E and H at the boundary. The higher order waves are 
set up by the discontinuity and are required in order to meet the 
boundary conditions. However, in general, they have cut-off 
frequencies higher than the frequency of transmission and so are 
attenuated rapidly. The load impedance and the generator are 
assumed to be sufficiently far removed from the iris or junction 
to be out of the field of these higher order waves. It is for this 
reason that the problem can be treated in terms of the effect of the 
discontinuity on the principal wave only, which fact, in turn, makes 
valid the circuit representation by means of an ordinary transmis-
sion line. (Otherwise, a transmission line having a different set of 

* J. R. Whinnery and II. W. Jamieson, " Equivalent Circuits for Discon-
tinuities in Transmission Lines," Proc. IRE, 82, 98-114, February, 1944; 
S. A. Schelkunoff, Electromagnetic Waves, D. Van Nostrand, New York, 1943, 
p. 492. 
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"constants" for each mode would be required.) It is found that 
the higher order modes make no contribution to the voltage at the 
junction, and therefore the total voltage is just the voltage of the 
principal wave. However, in the region of the junction the higher 
order waves do make contributions to the current. Although the 
total current must be continuous across the junction, the principal-
wave current is discontinuous by the amount of the higher order 
mode current. This discontinuity of principal-wave current is 
accounted for by the effect of the equivalent shunting reactance. 

The values for equivalent shunting reactances have been calcu-
lated in terms of the iris or junction dimensions for many cases 
and may be found in handbooks.* Using this known reactance, 
together with the known characteristic impedance for the guide [as 
given, for example, by eq. (62) for the TEL() wave], the wave-guide 
problems of Fig. 9-9 are readily solved in terms of the well-known 
circuit problems of Fig. 9-10. 

9.10 Attenuation Factor and Q cf Wave Guides. In solving 
Maxwell's equations for the region within rectangular or circular wave 
guides, the assumptions were made that the dielectric was lossless 
and that the walls of the guide were perfectly conducting. Under 
these conditions an expression was obtained for the propagation 
constant 5, which was 

= .vh2 _ 4,212e 

The quantity 112 is a real number, the value of which depends upon 
the guide dimensions and the order of the mode being considered. 
For example, for rectangular guides h2 is given by 

((m )2 , (()2h-„ = — — 
a 

For frequencies below cut-off co2ge is less than h', and 5 is a real 
number, which is then put equal to a. That is, below cut-off, 

= a = Vh2 — cel.te 

In general, for frequencies well below cut-off, a is a large number, 
and the fields decrease exponentially at a rapid rate. At the cut-
off frequency 5 becomes equal to zero; for all frequencies above 

* N. Marcuvitz, Waveguide Handbook, Radiation Laboratory Series, Vol. 10, 
McGraw-Hill, New York, 1948. 
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cut-off 5 is a pure imaginary and the attenuation constant a is zero. 
This result is correct for the assumed conditions. However, 
whereas the dielectric within the guide may be very nearly lossless 
(air for example), the walls of an actual guide do have some loss. 
Therefore a finite, though perhaps small, value of attenuation would 
be expected in the range of frequencies above cut-off. 

The actual attenuation factor for waves propagating within 
cylindrical guides may be calculated to a very good approximation 
by the method already outlined for parallel-plane guides. In this 
approach it is assumed that the finite conductivity of the walls 
will have only a small effect on the configurations within the guide; 
in particular the magnetic field tangential to the wall is expected to 
depend only slightly on the conductivity of the walls. This is very 
nearly true as long as the conductivity is high, as it is for metals. 
Then the tangential magnetic intensity computed for perfectly 
conducting walls is used to determine the linear current density 
in the walls. This linear current density, squared and multiplied 
by the actual surface resistance of the walls, gives the actual power 
loss per unit area in the walls. The attenuation factor in the range 
of propagation is then given by 

a — power lost per unit length 
2 X power transmitted. (9-76) 

The power transmitted is obtained by integrating the axial com-
ponent of the Poynting vector over the cross section of the guide. 
Because the transverse components of E and H have been found to 
be in phase and normal to each other, the axial Poynting vector is 
given simply as 

P. = ¡ lEtransilH tr..' 

Using (50), this may be written 

P. = 

1 
or P. = es lEtn..12 

The total power transmitted is 

W -= Yes fa. IHt,...12 da (9-77) 
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where the integration is over the cross-section area of the guide. 
The power lost per unit length of guide is 

Wio.t =  IJ1 2 da 
surf 

= sur da R. f (9-78) 

where the integration is taken over the wall surface of a unit length 
of the guide. 
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FIG. 9-11. Attenuation vs. frequency curves for various modes in a 
typical rectangular brass guide. 

Formulas for attenuation factors for rectangular and circular 
guides computed by this or equivalent methods can be found in 
many textbooks and handbooks. For the dominant TEL() mode 
in rectangular guides the result is 
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where 

010 .08 
.06 
.04 
025 
.015 
.010 .008 
.006 
.004 
.0025 
.0015 

Rs ri ± 2kfl 
a — nepers/m 

brioK L af 2 

= 8.7R, [ 1 + 251 db/m 
bnoK of'  

K = .\il — .21  Rs = VC°14m 

(9-79) 
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Fro. 9-12. Attenuation vs. frequency curves for various modes in 
a circular guide. 

Attenuation vs. frequency curves are sketched for typical rec-
tangular brass guides in Fig. 9-11, and for circular guides in Fig. 
9-12. The attenuation is very high near the cut-off frequency, but 
decreases to a quite low value at frequencies somewhat above cut-
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off. For TM waves in cylindrical guides of any shape, there is a 
frequency of minimum attenuation that occurs at Vg times the 
critical frequency. In general, for still higher frequencies, the 
attenuation again increases (approximately as the square root of 
frequency for very high frequencies). An exception to this last 
statement appears to occur for the TE0,m waves in circular guides. 
For these waves in perfectly circular guides the wall currents 
decrease as the frequency increases, and the attenuation theo-
retically decreases indefinitely with increasing frequency. Unfor-
tunately, slight deformations of the guide produce additional wall 
currents that nullify this desirable characteristic. 
A quantity closely related to the attenuation factor a is the 

"quality" factor Q. For ordinary transmission lines carrying the 
TEM wave Q was found to be expressible in terms of the secondary 
line constants by 

a Q = --2a 

Making use of relation (76), the expression for Q for ordinary trans-
mission lines becomes 

— ( ow power transmitted  
Q 13 per lost per unit length 

_ w  energy transmitted per second  
y energy lost per second per unit length 

But, energy transmitted per second equals stored energy per 
unit length times v. 

energy stored per unit length  
Q — co (9-80) energy lost per unit length per second 

Expression (80) may be considered as a general definition for Q, 
applicable to wave guides as well as to ordinary transmission lines. 
It should be compared with the circuit definition of Q, which may be 
stated as 

energy stored in circuit 
Q energy lost per second 

For the TEM wave on the lossless or distortionless transmission 
line,* the velocity y represented both the phase velocity and the 

* When the transmission line has distortion, phase velocity and group 
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group velocity. For wave guides these two velocities are different, 
the group velocity, v0, being related to the phase velocity 0 by 

v 02 1 
= where vo = (9-S2) 

1Am 
For a wave-guide, 

energy transmitted per second 

= vg X (energy stored per unit length) 
or 

energy stored per unit length = —1 X power transmitted (9-83) 
vo 

Using (80), (83), and (70), the Q of a wave guide is given by 

co  power transmitted  
Q - vg power lost per unit length 

co 
(9-84) 

2a-J, 

This also may be written in the following equivalent forms 

co0 co  

2c002 2cco — coc2/co2 

Because of the low attenuation factors obtainable with wave guides 
compared to transmission lines, it is possible to construct wave-
guide sections having extremely high Q's. This is of importance 
when such sections are used as resonators, or as the elements of 
wave-guide filters. 

Q - (9-84a) 

ADDITIONAL PROBLEMS 
6. Verify the results obtained in eqs. (63) and (64). 

7. Show that for a coil the definition for Q given by (81) reduces to 
Q = coL/R. 

8. Show that at frequencies much higher than the cut-off frequency, 
the Q of a rectangular guide carrying the dominent TE1.0 wave approaches 
the value 

Q —> 

where a„, = Vcom.cr./2 is the attenuation factor for a wave propagating 
in the metal of the guide walls. (NOTE: Assume 

velocity are not equal. For a thorough discussion of this case see E. A. 
Guillemin, Communication Networks, John Wiley & Sons, Inc., New York, 1935, 
Vol. II. Also see Appendix I. 
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CHAPTER 10 

RADIATION 

10.01 Vector Potential in the Electromagnetic Field. In the pre-
vious chapters, relations which exist among the electromagnetic field 
vectors have been studied, but so far no consideration has been 
given to the sources* of the fields. It is now in order to consider 
how these fields are related to their sources, that is, the charges and 
currents that produce them. Although it is possible in theory to 
obtain expressions for the electric and magnetic intensities E and H 
directly in terms of the charge and current densities p and i, such a 
derivation is, in general, quite difficult. It will be recalled that 
in the study of the electrostatic field and the steady magnetic field 
it was found possible, and often simpler, to first set up potentials in 
terms of the charges or currents, and then to obtain the electric or 
magnetic fields from these potentials. In a similar manner, in the 
electromagnetic field it turns out to be much simpler first to set up 
potentials that are related to the charges and currents, and then 
to obtain E and H from these potentials. 

The first step in this process is that of finding a suitable potential 
or potentials that satisfy the conditions of the problem. There are 
several possible ways of doing this, and all of these attacks require 
a certain amount of educated guesswork. The method chosen 
here will use the heuristic approach in which the expressions for 
potentials are guessed. If the guess proves to be correct, it is then 
possible to demonstrate that these potentials do indeed meet all 
the requirements of the field equations and of the problem. 

The electromagnetic field is produced by charge and current 
distributions, which vary with time. The electrostatic field and 
the steady magnetic field can be considered as special cases of the 
electromagnetic field for which the time variations are reduced to 
zero. It is reasonable, therefore, to suppose that as the frequency 

* The term source is here used in its broader sense (see footnote on page 102). 
294 
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approaches zero, the potential(s) developed for the electromagnetic 
field will reduce to the scalar potential V of the electrostatic field 
and the vector potential A of the steady magnetic field. Con-
versely, it is reasonable to expect that the potentials for the electro-
magnetic field might be obtained by generalizing the static field 
potentials to account for time variations. This proves to be the 

case. 
In the electrostatic field a scalar potential V was set up, from 

which the electric intensity E could be obtained by taking a space 

derivative, that is, 
E = — grad V (10-1) 

The potential V was related to the sources of the field (the charges) 

by 
i 

1 
V=i4— ri 

When the charges were considered to be distributed continuously 
throughout a volume, the potential was expressed as a function of 

the charge density p by 

V = 1 f - dV (10-2) 
47re vot r 

p  

where the integration was extended over the whole of the volume* 
containing charge which contributes to the potential V. 

In the steady magnetic field, produced by direct currents, a vector 
potential A was set up, and the magnetic field intensity H was 
obtained from A by again taking a space derivative, this time the 

curl. 
H = curl A (10-3) 

For a current element Ids, the contribution to the vector potential 

was 
dA = —1 I ds (10-4) 

4ir r 

For a complete (or closed) circuit, the expression for vector poten-

tial was 
(10-5) 

r 

* It is not anticipated that any confusion will result from the use of dV for 
volume element and V for voltage or potential. 
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When the current is considered 
cross section of a conductor as 
concentrated in a thin filament), 
becomes 

ATION [§10.01 

to be distributed throughout the 
a current density j (rather than 
the expression for vector potential 

1 f i 
A = - d V 

voi r (10-6) 

where the integration is extended over the entire volume of con-
ductors containing current density i (Fig. 10-1). 

Fia. 10-1 

For alternating or time-changing currents, the current density 
can be written 

i = jo cos cot 

and the expression expected for vector potential would be 

A = 
1 f io cos wt dV 

'f ir r 

(10-7) 

(10-8) 

In expression (8), r is the distance from the volume element dV 
to the point P at which the potential is being evaluated. Expres-
sion (8) assumes that the vector potential at P will be in phase with 
the current density i, regardless of how large r may be. In effect, 
an infinite velocity of propagation has been assumed. Actually, 
electromagnetic disturbances propagate with a finite velocity y, 
which in free space is equal to c 3 X 108 meter/sec. This finite 
time of propagation requires that there be a time delay between 
any change in the current density and the effect of this change at P. 
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The amount of this time delay will be r/v seconds, and at an angular 
frequency co, this corresponds to a phase delay wily radians. When 
the finite time of propagation is taken into account the expression 
for vector potential is 

A = 

where 

1 
io cos co — —r) 
 dV 

Ivol 

1 f jo cos (cut — i3r) dV 
4r jvoi 

co 2r 
V X 

In exactly the same way, the generalized expression for scalar 
potential due to a time-varying charge density distribution po cos cot 
would be 

po cos co — - 
1 v  dV (10-12) 

4r€ fvol 

Expressions (9) and (12) indicate that time variations of A and V 
at the point P correspond to time variations in current and charge 
densities that occurred at an earlier time t' = [t — (r/v)]. Thus the 
potential variations are retarded in time, and for this reason the 
potentials given by (9) and (12) are known as the retarded potentials. 

Instead of eq. (7), the time variations of current density may be 
shown more generally by 

i = i(t) 

where i(t) can represent any specified function of time. Similarly 
the time variations of charge density can be shown as p(t). The 
corresponding expressions for the retarded potentials are 

i _ r\ 
v 

A = . I dV (10-13) fvo,  1 
p r_\ 

1 vj  V = dV (10-14) 
4re vol 

where i[t — (r/v)land p[t — (r/v)] are the same functions of (t — r/v) 
as i and p are of t. 
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Having obtained expressions for the retarded potentials in terms 
of the currents and charges, the magnetic and electric field intensi-
ties can be obtained from A and V by taking the appropriate space 
derivatives. However, the resulting E and H are not entirely 
independent, but are in fact related through Maxwell's equations. 
Therefore, if H is obtained through the relation H = curl A, it 
should be possible to find E from H, through either of Maxwell's 
equations. 

Using the second Maxwell equation 

curl E = 

= curl 11 

and transposing, curl (E ± = 0 (10-15) 

Equation (15) is a differential equation, a particular solution of 
which is 

(E 1.1) = 

However, a more general solution to (15) is 

(E + = ± grad Vo (10-16) 

where Vo is any scalar function. That this is a solution becomes 
evident when vector identity number (1-26) is recalled. Using 
the minus sign in (16) gives 

E = — grad Vo (10-17) 

If (17) is a perfectly general expression for E, it will give the electric 
field in the particular case of no time variations, that is, the static 
field. For no variations with time (17) reduces to 

E = — grad Vo 

and it is seen that the scalar function Vo [which was arbitrary in 
(16)] is, in fact, just the scalar potential V due to the charge distri-
bution p. Therefore, the electric intensity can be obtained from 

E = — grad V (10-18) 

where A and V are given by (13) and (14). 
Alternatively E can be obtained by using the first Maxwell 

equation instead of the second. In free space, that is outside the 
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conducting region carrying current density 1, use of Maxwell's 
first equation gives 

curl H = €É 

E = f curl H dt 
e 

= I curl curl A dt 
e 

(10-19) 

From (18) and (19) it follows that the following relation between 
A and V must hold 

1 
- f curl curl A dt -F ALA = — grad V (10-20) 

Problem 1. Show that equation (20) is satisfied if 

div A = — El> 

(NoTE: Since H obeys the wave equation, its time and space derivatives 
and integrals will also obey the wave equation. Therefore V2A = eel) 

Equation (20) indicates that the potentials A and V are not 
independent, but are related to each other, and problem 1 shows 
that a suitable relation between them would be 

div A = (10-21) 

Actually, it can be shown that (21) is a relation that must always 
hold in any real problem because it follows directly from the equa-
tion of continuity 

div i = (10-22) 

which always holds in a physical problem. Equation (22) states 
that the charge and current densities cannot be specified independ-
ently, but must always be such as to satisfy the equation of con-
tinuity. Therefore, in any real problem it is not necessary to 
specify both charges and currents, because one can be obtained in 
terms of the other through (22). Correspondingly, the complete 
electromagnetic field can be obtained by use of the vector potential 
alone, because A and V are always related through (21). 

Proof that (21) follows from (13), (14), and (22) can be found 
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in various papers and books,* and will not be carried through 
here. 

Alternative Method of Deriving the Electromagnetic Potentials. 
In the foregoing portion of this section the electromagnetic poten-
tials were derived as generalizations from the scalar and vector 
potentials of the static electric and magnetic fields. An alternative 
approach, and the one usually adopted in most texts on electro-
magnetic theory, is to use the field equations to set up differential 
equations that the potentials must obey. The potentials are then 
written down as solutions of these partial differential equations. 
Because the vector potential is an important concept in the electro-
magnetic field, and because it is a new and unfamiliar concept to the 
engineer at this stage of his training, it is desirable to examine it 
from several angles in order to gain a more thorough understanding. 
For these reasons this alternative approach will also be carried 
through. 

In the electrostatic field the electric intensity was related to the 
scalar potential by 

E = — grad V (10-1) 

Also E was related directly to the charge density through Gauss' law 

1 
div E = - div D = e 

e e 
(10-23) 

Combining (23) with (1) gives Poisson's equation for the electro-
static field 

div grad V = V2V = — P 
e 

(10-24) 

Equation (24) is a differential equation relating the scalar potential 
to the charge density. Now it is known that at point P, the poten-
tial due to a distribution of charge density p is 

1 
V, = dV (10-25) 

`ilrE vol r 

Therefore (25) must be a solution of (24). 

* For example see J. Grosskopf, " On the Application of the two Methods of 
Solution of Maxwell's Equations in the Calculation of the Electromagnetic 
Fields of Radiating Conductors," Hochfrequenz. Tech. und Elektro-akustik, 49, 
205-211 (1937); also, J. A. Stratton, Electromagnetic Theory, McGraw-Hill Book 
Co., New York, 1941, p. 429. 
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In the electromagnetic field it will be assumed that H can be 
obtained from some vector potential A, yet to be determined, 
through the relation 

H = curl A (10-03) 

Then using the second Maxwell equation 

curl E = = —µ curl 

or curl (E = 0 

from which E = —11 — grad V (10-26) 

where, as before, V can be shown to be the scalar potential due to 
charges, and A is still to be determined. Writing the first Maxwell 
equation for a region containing a conduction current density i 

curl H = EE i (10-27) 

Combining (26), (27), and (3) gives 

curl curl A = — E grad (10-28) 

Use of vector identity number (1-28) changes this to 

grad div A — V2A = - E grad (10-29) 

It has been indicated that the relation between A and V given by 
(21) must always be satisfied in any real problem, so (29) reduces to 

V2A — ¡La= — i (10-30) 

Taking the time derivative of (21) and combining with the diver-
gence of (26) gives 

div E = µeV — div grad V (10-31) 

Application of Gauss' law, (23), finally yields 

V2V — peV = — (10-32) 
E 

Equations (30) and (32) may be regarded as partial differential 
equations, the solutions of which will give A and V. The form of 
the solution for (32) may be inferred by considering the equation 
in two limiting cases. First, for the static case in which there are 
no variations with time, (32) reduces to Poisson's equation (24), 
for which (25) is a solution. Second, for the time-varying case, 
but outside the volume occupied by the charge density p, (32) 
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reduces to the free-space wave equation, viz., 

VV = peV (10-33) 

A particular solution for (33) (suitable, for example, for the case of 
no variation of the field with O or e) is of the form 

KF — -7) 
v  

VP r (10-34) 

where K depends upon the source, and F i3 any function of (t — —r • 
v 

Now the potential in free space (outside the region where there 
are charges) is nevertheless due to the distribution in the region 
occupied by the charge. If the charge distribution is a function of 
time, the effect of a change in p is not felt immediately in all space, 
but the disturbance propagates outward as a wave traveling with a 
finite velocity v. If (25) is the solution of (24), and (34) is a solu-
tion of (33), a logical guess for the solution of the general differential 
equation (32) might be 

1 P  
p  dV 

uir€ 
(10-35) 

Similarly a possible solution for (30), which is the same equation 
as (32) from a mathematical point of view, would be 

i _r)1 
A = —  L dV (10-36) P 4r I 

That (35) and (36) are indeed solutions of (32) and (30) can be 
checked by reinserting the former into the latter.* 

Problem 2. Show that for a current along the z axis the expression 
H = curl A reduces to 

H. = — em e ar 
when only the distant field is considered. 

(NoTE: This is an important result, for it covers the majority of practi-
cal antennas.) 

* This process, which is usually quite Etraightforward, is rather involved 
in this case, and reference should be made to one of the following texts: 
H. A. Lorentz, Theory of Electrons, pp. 17-19; M. Mason and W. Weaver, 
The Electromagnetic Field, University of Chicago Press, Chicago, 1929 (p. 282). 



§10.02] RADIATION 303 

10.02 The Alternating Current Element (or Oscillating Electric 
Dipcle). An excellent example of the use of the retarded vector 
potential occurs in the calculation of the electromagnetic field of an 
alternating current element (or oscillating electric dipole). A 
current element Idl refers to a filamentary current I flowing through 
an elemental length dl. This is approximated when a current I 
flows in a very short length of thin wire, if the length dl considered 
is so short that the current is essentially constant along the length. 
Although an isolated current element may appear to be a very 
unreal concept, any physical circuit or antenna carrying current 
may be considered to consist of a large number of such elements 
joined end to end. Therefore, if the electromagnetic field of this 
"building block" is known, the electromagnetic field of any actual 
antenna having a specified current distribution may be calculated. 

Figure 10-2 shows an alternating-current element Idl cos cut 
located at the origin of a spherical co-ordinate system. The prob-
lem is to calculate the electromagnetic field at an arbitrary point P. 

The first step is to obtain the vector potential A at P. The 
general expression for A is given by 

7. 

A = —4  dV 
4w (10-36) 

The integration over the volume in (36) consists of an integration 
over the cross-sectional area of the wire and an integration along 
its length. The current density i, integrated over the cross-sectional 
area of the wire, is just the current I, and because this is assumed 
to be constant along the length, integration over the length gives 
Idl. Therefore in this simple example the expression for vector 
potential becomes 

A. = 
4v-

1 Idl cos co (t _ _ 

(10-37) 

The vector potential has the same direction as the current element, 
in this case the z direction, and is retarded in time by r/v seconds. 

The magnetic intensity H is obtained through the relation 

H = curl A 
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Reference to the expressions in chap. 1, showing the curl in spherical 
co-ordinates, gives the components of H in terms of A„ A 9, and Ao. 
From Fig. (10-2) it is seen that for this case 

A, = Az cos 0; Ao = —Az sin 0; Ao = 0 (10-38) 

z 

X 

FIG. 10-2. A current element at the center of a spherical co-
ordinate system. 

Then from expressions (1-39a, b, and c) and noting that because of 

symmetry, 8/a --- 0, 
Hz = 
Ho = 

11.9= 1[8 (rile) — —M r] a8 

= 477—rr  [ 0 cos co (t — 
Idl la 

w t 11) _ Idl sin 0 — w sin w (I —  cos ( — vr-) ± v  
47r ry r2 

curl,. A = 0 
curio A = 0 

7)1 a [cos o cos o.,(t _ 7.)] } 
v ao r v 

(10-39) 
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The electric intensity E can be obtained from H through Max-
well's first equation, which at the point P (in free space) is 

curl H = cÉ 

E = f curl H dt (10-40) 
e 

Taking the curl of (39) and then integrating with respect to time 
(the order is immaterial) gives for the components of E, 

Idl sin O (— co sin cot' ▪ cos cot' ▪ sin cot'  
E0 — 

47r€ ru 2 cor3 

21d1 cos O (cos cot' , sin cot') 
Er — 

4ire r2 v 1- c‘n-3 

and rewriting (39) 

(10-41) 

(10-42) 

Idl sin O (—co sin cot' , cos cot') 
(10-43) - 

ru 7-2 

where t' = — 

It is somewhat surprising to find that something so apparently 
simple as a current element should give rise to an electromagnetic 
field as complicated as that given by (41), (42), and (43). However 
a study of these expressions soon shows the significance and neces-
sity for each of the terms. 

Consider first the expression for H. It is seen to consist of two 
terms, one of which varies inversely as r and the other inversely 
as r2. The second of these, called the induction field, will predom-
inate at points close to the current element where r is small, whereas 
at great distances, where r is large, the second term becomes 
negligible compared with the first. This first inverse-distance term 
is called the radiation or distant field. The two fields will have 
equal amplitudes at that value of r, which makes 

that is, at 

1 = co 
ru 

V X X 
r = —co --- A u 
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Except for the fact that e has replaced t, the induction term 

Idl sin O cos we 
47rr2 

is just the magnetic field intensity that would be given by a direct 
application of the Biot-Savart law (or Ampère's law for the current 
element) if this were extended to cover the case of an alternating 
current I cos wt. The fact that the true field is a function of 
e = t — (r/v) instead of t, accounts for the finite time of propaga-
tion. However, at points close to the element where the induction 
term predominates, r/v is a very small quantity and e t. 

The inverse-distance (radiation) term is an extra term, not pres-
ent for steady currents. It results from the fact of the finite time 
of propagation, which is of no account in the steady-field case. It 
will be shown later that this radiation term contributes to a flow of 
energy away from the source (the current element), whereas the 
induction term contributes to energy that is stored in the field 
during one quarter of a cycle and returned to the circuit during 
the next. 

Examination of the expressions for Ete and E,. shows that Ed 
has an induction (1/14) term and a radiation (1/r) term, and Er 
has a 1/14 term. In addition both components of E have a term 
that varies as 1/r3. From their similarity with the components of 
the field of an electrostatic dipole (see chap. 2, example 3), these 
1/r8 terms are called the electrostatic field terms (or sometimes just 
electric field terms). 

Relation between a Current Element and an Electric Dipole. It 
is not just a coincidence that the expressions for the electric field 
of the alternating current element should contain terms that cor-
respond to the field of an oscillating electric dipole. Although 
only current was specified in setting up the hypothetical current 
element, the equation cf continuity (or conservation of charge) 
requires that there be an accumulation of charge at the ends of the 
element, which is given by 

8,1 , — = cos ca 
at 

That is, the charge at one end is increasing and at the other end 
decreasing, by the amount of the current flow (coulombs per second). 
In order to obtain a physical approximation of an isolated current 
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element, one could terminate the current element in two small 
spheres or disks on which the charges could accumulate. If the 
wire is very thin compared with the radius of the spheres (so that 
its distributed capacitance is negligible compared with the capaci-
tance between the spheres), the current in the wire will be uniform. 
In addition, the radii of the spheres should be small compared with 
dl, their distance apart, and in turn dl should be very much shorter 

/1 

FIG. 10-3. Hertzien dipole. rm. 10-4. Chain of Hertzian dipoles. 

than a wavelength. The arrangement then is essentially that of the 
original Hertzian oscillating electric dipole (Fig. 10-3). 

aq 
— = I COS cad 
at 

I sin cet 
q — 

From comparison with the electrostatic dipole, the electric intensity 
that would be expected to result from the separated charges at the 
ends of the current element would be 

— q dl sin 0 Idl sin O sin cot' (10-44) 
4/rer3 47recor3 

2ridl cos 21d1 cos O sin cat' 
Er — (10-45) 

4rer3 4recer3 

These are exactly the 1/r3 terms that automatically appeared in the 
solution for the electromagnetic field of the current element. 

When a current element forms part of a complete circuit there 
is no accumulation of charge at its ends if the current is uniform 
throughout the circuit, for the current from one element flows into 
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the next. In this case, as would be expected, the 1/r8 terms due to 
accumulated charge vanish, leaving only induction and radiation 
fields. In terms of a chain of Hertzian dipoles (Fig. 10-4), the 
positive charge at the end of one dipole is just cancelled by an equal 

amount of negative charge at the 
CHARGE DISTRIBUTION opposite end of the adjacent dipole. 

\\". However, if the current along the 
circuit or antenna is not uniform 

\\ along its length, but is distributed 
as, for example, in Fig. 10-5, this 
could be represented as a chain of 

CURRENT 
; DISTRIBUTION current elements, or Hertzian 

1 1. 

dipoles, having slightly different 
amplitudes. In this case the ad-

- jacent charges do not completely 

Fla. 10-5. Current and charge 
cancel, and there is an accumula-

distribution on a linear antenna. tion of charge on the surface of the 
wire, as indicated in Fig. 10-5. 

These surface charges are responsible for a relatively strong com-
ponent of electric intensity normal to the surface of the wire. 

Problem 3. Obtain expressions (41) and (42) for E9 and E, due to a 
current element through the alternative relation 

E = - grad V 

(NoTE: Obtain V from A through div A = -eV; alternatively write V 
directly from the charges that can be obtained from / through the equation 
of continuity.) 

Problem 4. Starting with the expression Idl eiwe for a current element, 
show that the expressions for vector potential and field intensities will be 

Idl 

4ffr 

'di sin O e-ior (. 1 

114' = 47r JI3 + 

Ee - . 77/di sin O e-ior (. 1 1 
70 + i.-1- i-t-Ti2) 

47rr 

- rildl cos 0 e-iI3'. (2 2 
E, 

trr r_i_ jI3r2) 

where a = co/v, n - N/17€ = gv and the time factor se" is understood. 
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10.03 Power Radiated by a Current Element. The power flow 
per unit area at the point P will be given by the Poynting vector 
at that point. The instantaneous Poynting vector is given by 
Emit X 1:11.8 and it will have both O and r components. Replacing 
y by c 3 X 10' for free-space propagation, the O component of 
instantaneous Poynting vector will be 

Po = 

12c112 sin  sin2 cot' cos2 cot' sin cot' cos cd ▪ 40 sin cot' cos cot' 
161.2€ r4C 4 r c 40rb r2c2 

— /2d/2 sin 20 (  — cos 2cot' sin 240/' 40 sin 240e\ 
1672, raC 240r5 ± (10-46) 2r2c2 f 

The average value of sin 2(4' or cos 240/' over a complete cycle is 
zero. Therefore, for any value of r, the average of Po over a com-
plete cycle is zero. Po represents only a surging back and forth of 
power in the O direction without any net or average flow. The 
radial Poynting vector is given by 

P,. = E01-14, 

/2d/2 sin2 e sin cot' cos ad cos" cot' 40 sin cot' cos cot' 
—  161.26 40r° + r4c r3C2 

sin' ad' co sin cut' cos cot' 402 sin2 cot' 
r4c r3c2 ± r2c3 

= 12d12 sin2 0 sin 240/' cos 240/' 40 sin lot' + 402(1 — cos 244 
1678-2e 240r5 ± r4c r3c2 2r2c3 

(10-47) 

The average value of radial Poynting vector over a cycle will be due 
to part of the final term only and is 

402/2d/2 sin2 O 
Pr( V) = 

3272r2C3E 

_ n (co/d/ sin 0\2 
— 2 \ 471-rc f watts/sq m (10-48) 

None of the terms in the expressions for Poynting vector represent 
an average power flow except that of eq. (48). The only terms of 
E and H that contribute to this average power flow are the radiation 
or inverse-distance terms. At a large distance from the source 
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these radiation terms are the only ones that have appreciable value, 
but even close to the current element, where the induction and 
electric fields predominate, only the 1/r terms contribute to an 
average outward flow of power. 

That it is only the inverse-distance terms that can contribute 
to an outward flow of power from the source can be proven by simple 
reasoning. If one considers two concentric shells or adii r1 and r2 
enclosing the source, then the average outward rate id energy flow 
through shell r2 must be the same as through shell r1. if there is to 

be no continuous acc.imulation (or 
rd& decrease) of energy 8tored in the 

region between them. This re-
quires that the po%wr density de-
crease as 1/r2 since the area of the 
shells increases as r2., The power 
density is proportionul to E times 
H (or to E2 or H2), so E and H, 
which contribute to an average 
radial power flow, must be propor-
tional to 1/r. Components of E 
or II, which are inversely propor-
tional to r2 or r8, can contribute to 
an instantaneous flow of energy into 

the region between the shells, but this energy must later be returned 
to the source because it cannot be stored permanently in a finite 
volume of the medium. 

From eqs. (41), (42), and (43) the amplitudes of the radiation 
fields of an electric current element Idl are 

caIdl sin O 
E. — 

47re2r 

nIdl sin O 
2Xr 

6071-Idl sin O 
(10-49) 

rX 

wIdl sin O 
— 

4irvr 

Idl sin O 

FIG. 10-6. Element of area on a 
spherical surface. 

2Xr 
(10-50) 
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The radiation terms of E0 and 114, are in time phase and are related 
by 

= (10-51) 

The total power radiated by the current element can be com-
puted by integrating the radial Poynting vector over a spherical 
surface centered at the element. P is independent of the azimuthal 
angle 4,, so the element of area on the spherical shell will be taken 
as the strip da where 

da = 277.2 sin 0 dO 

Then the total power radiated is 

Power -- 96 ..rhice .„)da = r 12 (wIdl sin 
f 2 47rc 

0)2 270,2 sin 0 dO 
o  

oco2Pd/2 fir e 
167c2 sin 0 dO 

w2/2d/2 r_ cos 0 ,. „ , 
-= — h) 

167c2 L 3io 
nw212d12 

12Tc2 

In this expression / is maximum or peak current. In terms of 
effective current the power radiated is 

nw2/2effe//2 
Power — 

67c2 

8071.2 (C1/\ 2 iefê 

\ X j 

watts (10-52) 

The coefficient of I.fr2 has the dimensions of resistance and is called 
the radiation resistance of the current element. Then, for a current 
element, 

nriid = 8072 (d/)2 (10-53) 
X 

10.04 Application to Short Antennas. The hypothetical current 
element is a useful tool for theoretical work, but it is not a prac-
tical antenna. The practical "elementary dipole" is a center-fed 
antenna having a length that is very short in wavelengths. The 
current amplitude on such an antenna decreases uniformly from a 
maximum at the center to zero at the ends (Fig. 10-7a). For the 



312 RADIATION [00.04 

same current I (at the terminals) the (short) practical dipole of 
length 1 will radiate only one-quarter as much power as the current 
element of the same length, which has the current I throughout its 
entire length. (The field intensities at every point are reduced to 

‘‘  one-half, and the power density 
will be reduced to one-quarter.) 
Therefore, the radiation resistance 

/--- 
/ CURRENT of a practical short dipole is one-g 

/ DISTRIBUTION quarter that of the current element 
of the same length. That is 

(a) Rrad (short dipole) = 20T2 ( 1)2 

I 

200 ) ohms (10-53) 
/ 2 

1 z-1\ \ i 10-7b), or short vertical .. antenna I 
\ e The monopole of height h (Fig. 

,_.  
////,'/ ././/2/ mounted on a reflecting plane, pro-

. 
, duces the same field intensities 

 p' above the plane as does the dipole , 

of length 1 = 2h when both are fed 
( b) with the same current. However, 

FIG. 10-7. Current distribu- the short vertical antenna radiates 
tion on short antennas: (a) short only through the semispherical sur-
dipole; (b) short monopole, face above the plane, so its radiated 

power is only one-half that of the corresponding dipole. Therefore, 
the radiation resistance of the monopole of height h = 1/2 is 

R r ad (monopole) = Me ( i) 

= 4072 (0 2 

400 iLA2 
ohms (10-54) 
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10.05 Assumed Current Distribution. In order to calculate 
the electromagnetic fields of longer antennas, it is necessary to 
know the current distribution along the antennas. This informa-
tion should be obtainable by solving Maxwell's equations subject 
to the appropriate boundary conditions along the antenna. How-
ever, for the cylindrical antenna, this is a comparatively difficult 
problem, and it is only in quite recent years that satisfactory solu-
tions have been obtained. One of these will be considered in chap. 
13. In the absence of a known antenna current, it is possible to 
assume a certain distribution and from that to calculate approxi-
mate field distributions. The accuracy of the fields so calculated 
will, of course, depend upon how good an assumption was made for 
current distribution. By thinking of the center-fed antenna as an 
open-circuited transmission line that has been opened out, a sinus-
oidal current distribution with current nodes at the ends is sug-
gested. The fact that it is known from Abraham's work on thin 
ellipsoids that the current will be truly sinusoidal for the infinitely 
thin case, makes this assumption more justifiable. It turns out 
to be a very good assumption for thin antennas, sufficiently good in 
fact, that even with more accurate (and much more complicated) 
formulas available, the sinusoidal distribution is still used for much 
of the work in the antenna field. When greater accuracy is desired, 
and in those particular cases where the sinusoidal assumption 
breaks down entirely, it is necessary to use a distribution that is 
closer to the true one. 

Figure 10-8a shows a center-fed dipole with a sinusoidal current 
distribution, and Fig. 10-8b shows the corresponding monopole. 
"A dipole antenna* is a straight radiator, usually fed in the center, 
and producing a maximum of radiation in the plane normal to the 
axis. The length specified is the over-all length." The vertical 
antenna (of height H = L/2) fed against an infinitely-large per-
fectly-conducting plane has the same radiation characteristics above 
the plane as does the dipole antenna of length L in free space. 
This is because the fields due to a current element I dz when reflected 
from the plane, appear to originate at an image element located 
beneath the plane. Moreover, the impedance of the vertical 
antenna fed against the reflecting plane is just one-half that of the 
corresponding dipole of length L = 2H. Thus the dipole of Fig. 
10-8a and the corresponding base-fed vertical antenna of Fig. 10-8b 

* IRE Standards on Antennas, 1948. 
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can be solved conveniently as one problem. The base-fed vertical 
antenna of Fig. 10-8b will be referred to simply as a monopole of 
height H, the infinitely large perfectly reflecting plane being under-
stood, unless otherwise stated. The corresponding center-fed 
dipole will be referred to as a dipole of length L = 211 or as a dipole 
of half-length II. 

The image principle used here is discussed further in chap. 12. 

L. 2H 

H 

+H 

dz — r 

z - 0 

SIN e(H-z) 1 

47, SIN ,g(H.z) 

IMAGE 

,(„fm (H-Z) 

, 058 
.10 

PERFECT 
REFLECTING 
PLANE 

, shv e(H+z) 

(a) (b) 

Fia. 10-8. (a) Center-fed dipole with assumed sinusoidal current 
distribution, (b) corresponding monopole. 

10.06 Radiation from a Quarter-wave Monopole or Half-wave 
Dipole. It will be assumed that the current is sinusoidally dis-
tributed as shown in Fig. 10-8 and that time variations will be 
indicated by ed. Then 

I = Im sin f3(H — z) eed z > 

I = I m sin 13(H z) eiwg z < 0 

where /„, is the value of current at the current loop or current 
maximum. Then the expression for the vector potential at a point 
P due to the current element I dz will be 

dA I dz eim-or) I e-ior dz , = 
4%-r 4Tr 

where r is the distance from the current element to the point P, and 
where the time factor has been dropped in the second expression. 
The total vector potential at P due to all the current elements will be 
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A, = 1 f ° I m sin ow + z) e-er dz 
4ir ff 

o 
1 1 11 L., sin 8(/1 — z) dz 
4r  (10-55) 

Because only the distant or radiation fields are required in this prob-
lem, it is possible to make some simplifying approximations. For 
the inverse-distance factor (the r in the denominator) it is valid to 
write 

r ro 

However for the r in the phase factor in the numerator, it is the 
difference between r and ro that is important. For very large values 
of r the lines to the point P are essentially parallel (0 00) and for 
the r in the phase factor one can write approximately 

r = ro — z cos O 

Then the expression for A. becomes 

I. e-ero r f° 
Az — sin 8(H -I- z)eith cc's dz 

47rro j_H 
r 

Jo 
sin e(1l — z)eioz.c. dz] (10-56) 

For the particular case of II = X/1, 

sin 13(H z) = sin e(1r — z) = cos ftz 

and the integral becomes 

I e-iiko Jo ez(ei A. —  "' 47rro o cos t3.... à 

e-ler f H 
=   {COS 10 -F 13 + cos 0)1 cos ($z(1 — cos OM] dz 

wrro o 

Im e-ero 'sin [8z(1 -I- cos 0)] sin [8z(1 — cos  
4irr I. #(1 + cos 0) 0(1 — cos 0) j 0 
e. 

=   
41rOro 

(I — cos 0) cos (-12f; CO3 0) ± (1 ± cos 0) cos (n. cos 0) [ 

sin' 0 

Im (7r rere COS CO3 o)1 

Zero L sin2 0 
(10-57) 
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Recalling from problem (2) that when the current is entirely in the 
z direction, 

= —aA. sin 0 
ar 

The expression for magnetic intensity at a distant point will be 

Ho = Irro 
jI„, e. [cos (r 01 

sin O 

cos 
(10-58) 

where only the inverse-distance term has been retained. The elec-
tric intensity for the radiation field will be 

E0 = n110 

j601m e_i or o cos (;* cos 0) [ 

ro sin 0 
(10-59) 

The magnitude of the electric intensity for the radiation field of a 
half-wave dipole or quarter-wave monopole is 

E0 — [ 601„, 
cos (7r cos 01 

2  
ro sin 0 

volt/m (10-60) 

E0 and Ho are in time phase so the maximum value in time of the 
Poynting vector is just the product of the peak values of E0 and Ho, 
and the average value in time of the Poynting vector will be one-
half the peak value. Then 

0/m2  [cos2 (7-r2 cos 0 
8r2r02 )1 

The total power radiated through a semispherical surface of radius 
ro (Fig. 10-6) will equal 
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It is necessary to evaluate this integral. Most of the difficulty in 
radiation problems is usually in connection with the evaluation of 
an integral. The following substitutions are typical. 

o 

r/2 r/2 
COS2 ICOS 0) 

sin 0 2Jo 
 dO — 

1 + cos (71- cos 0) 
dO 

sin O 

Let u = cos 0 
du = — sin O dO 

dO  _ —du _ du  
sin 0 sin' 0 1 — u2 

o ./2 
cos2 (1-r- cos 0) 

2  1 + cos u) du 
dO --- sin 0 2 f (1 w  1—u2  

Let 

Therefore 

f 
7.1 0 (1 + *Is 7̀11) + u ± 1-- 1 77u) du 

1  

— 
4 1 + u 
1 1 + cos wu du 

= 

f+1 

= Ira + u) 
dv = ir du 
dv du  
v 1 + u 
wu = y — ir 

cos ru = cos y cos ir + sin V sin ir = - cos V 

cos2 cos 0) dO = 1 
(7r 

1 2r 1 — COS v dv 
sin 0 4  

r/2 

2r 

• • .) dv 1 (vi v3 v5 v7 

\2r 

= 2.2! 4-4! 6-6! — 8-8! • • •)0 
(v2 V4 V6 V8 (10-62) 
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The series of eq. (10-62) can be evaluated by substitution. It 
does not converge rapidly and so a number of terms must be used. 
This evaluation is shown below. 

v = 2r = 6.2832 log io v = 0.79818 
2.2! = 4 logo v' = 1.59636 

logo 2.2! = 0.60206 
V2 

10,g10 2 V. = *99430 —2.2, = 9.870 

The other terms tire found in a similar manner. Using eight terms, 
the sum of the positive terms is 26.878 and the sum of the negative 
terms is 24.441. Therefore 

,r/2 

COS2 (11- cos 0) 
2  

dB = 0.6093 
sin O 

It is also possible to integrate such a function as 

cos' (;* cos 0) 
cle 

sin 0 

graphically or by Simpson's or the trapezoidal rule. For example 
by the trapezoidal rule if O is taken in increments of 5°, then the 
following table is constructed: 

(10-63) 

e in degrees 0 5 10 15 23 23 30 35 43 45 

cos2 (11 cos 0) 
2 

0 0 .003 .011 .C28 .050 .086 .138 .201 .280 
sin 0 

0 in degrees 50 55 60 65 70 75 83 85 03 

cos2 (.5. cos 0) 
2 

. 360 . 458 . C78 . CO3 . 788 . E75 . 042 . 080 1 . 03 
sin 0 
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Now 

.12 
7r  

COS2 -2 cos O 11.000 + e- COS' (-2 cos u) 
  dO 

ir 
sin 0 18 [ — X - 2 2 sin 0 0=5° 

= X 6.987 
36 

= 0.609 

This method of numerical integration shows that in a given antenna 
problem, if the current distribution is known, the radiation resist-
ance may always be found by straightforward methods, although 
the integration may be tedious. The power radiated through the 
semispherical surface is obtained by inserting the value of the 
integral in (61). Then 

Radiated power — 0.609n/m2 
47r 

In this expression /„, is peak current. In terms of effective current 
the radiated power would be 

0.60977/2„, (eff) 
Radiated power = 

2/r 
36.512„, (0,0 (10-64) 

Therefore the radiation resistance of a quarter-wave monopole 
antenna is 36.5 ohms. 

For the half-wave dipole antenna in free space, power would be 
radiated through a complete spherical surface. Therefore, for the 
same current the power radiated would be twice as much, and the 
radiation resistance for the half-wave dipole is 

Rmd = 73 ohms 

Problem 5. Derive the expression for the radiation term of the electric 
field of a half-wave dipole [eq. ( 10-60)] without the use of the vector 
potential; that is, by adding directly the (distant) fields owing to the 
current elements. 

Problem 6. Derive the general expression corresponding to eq. (59) 
for the (distant) electric field of a dipole antenna of any half-length H. 
It is 

E9 — j601 „, c-o'o[ccs OH cos 0) — cos SH] 
ro sin 
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Problem 7. Write the expression for the power radiated through a 
spherical surface by the dipole of half-length H. 

10.07 Sine Integral and Cosine Integral. The series of eq. (62) 
that resulted from the integral 

1 — cos y dv. 
j o 

has been evaluated and can be found in tables. It is designated as 
Si(x). This series also occurs in the integral 

Ci (x) = — — dv 
x 

cosy, 
(10-65) 

This latter integral is called the cosine integral of x, and is abbrevi-
ated as shown. A companion integral defined by 

Si (x) = r sin v dv (10-66) 

known as the sine integral of x. 
The cosine integral of x is related to Si(x) by 

Ci (x) ln x C — 81(x) 

where C = 0.5772157 is Euler's constant, and 

— cos v dv — ( x2 X 4 

2.2! 4.4! 6•- • • .) (10-67) 

These integrals occur frequently in radiation problems. They 
have been studied extensively, and tables giving their values may 
be found in several books.* 

Problem 8. Integrate the ex-pression of problem 7 and show that the 
general expression for the radiation resistance of a dipole of half-length H is 

Rr,d = 30181(b) — [S1(2b) (b)1 cos b [21(2b) — Si (b)] sin b 
[1 + cos b]Sl(b) — sin b Si (b)I 

where b = 2f3H 

10.08 Electromagnetic Field Close to an Antenna. In section 
(10.06) and problem 6 expressions for the radiation or distant fields 

* E. Jahnke and F. Emde, Tables of Functions, B. G. Teubner, Leipzig, 1933; 
F. E. Terman, Radio Engineers Handbook, McGraw-hill, New York, 1943. 
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of an -antenna were derived. For some purposes, for example to 
determine the mutual impedance between antennas, it is necessary 
to know the electric and magnetic intensities in the neighborhood 
of the antenna. In this region 
the field is often called the near 
field, in contrast to the distant 
or radiation field. Because the 
near field will include induction 
and electric as well as radiation 
fields, it can be expected to be h 

more complex than the distant   
field. The answer of most in-
terest will be the component of - 
electric intensity parallel to the 
antenna, that is E. For this 
reason it is convenient to use a 

-H cylindrical co-ordinate system, 
or actually, a combination of FIG. 10-9. Geometry for fields near 

the antenna. 
cylindrical, spherical, and rec-
tangular co-ordinate systems. This is shown in Fig. 10-9, where 
the antenna is assnmed to extend along the z axis. In this figure the 
following relations will hold: 

r = V(z — h)2 + y2 

ri 
ro = .o z ± y2 

= '‘/(z — 1-1)2 y2 

= V z 2 + y 2 

The co-ordinates of the point P are (p, z) in cylindrical co-ordi-
nates (or ro, 0, 4) in spherical co-ordinates). However, because of 
symmetry, there are no variations in the 4) direction and so, without 
loss of generality, the point P may be located in the y-z plane 
(4) = 90° plane). In this case p = y, and the distances from vari-
ous points along the antenna will be as indicated in the figure. 

Again assuming a sinusoidal distribution of current, the antenna 
current will be 

I = sin et(H — h) h > 

/ sin ei(H -F h) h < 0 

where again the exponential time factor em has been dropped. The 
expression for vector potential at the point P will be 
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A = I rH sin )3(H - h)e-ier dh + Jo  II sin ex + h)e-iter dh] 
Jo 

Replacing sin 0(H - h) with 

ecui-h) _ e-eff-h) 

2j 

and using a corresponding expression for sin fl(H -I- h), there results 

/„. [ 'f H e-er+h) foil e-er-h) 
Az = cell  dh cis g   dh 

871-3 o r r 

° efr--") dh — e-o" ° e-o(*-1-h) ] dh (10-68) 
± e'en f_ H r f_ H r 

In cylindrical co-ordinates the magnetic intensity at the point P 
will be given by 

H = curle A = — aAz 
ap 

With the point P in the y-z plane, this can be written as 

a Az 
Ho = — Hz = — —ay 

ini [ H f H a ie_gt(r_h)) a e  -e(r+h) 

11, = - â—r. ce" 1 0 ay r 
dh e-i en ay  r dh 

o a (C o)) 0 o (0-isfr+h)) dh 
ay r H a i (10-69) 

_ ± ce II f dh e-ion f , \ r 
II  

Consider the first term only, 

f H o a f 
y H [ o a (e-:e(r+h)) dh = den ell -jay e-i00-1-h) 

r 7.2 
y e-il3(r+h)] 

r3 dh (10-70) 

The integrand turns out to be a perfect differential. Integrating 
gives 

But 

[
y e-iii(r+h) ih 0 0-e(r1+ 11)  

r(r + h z) - ri(ri H - z) r o(r 0 - z) 

(ri - II ± z)z-efri+H) (ro ± z)e-jor. = y eel/ 
ri[ri2 - (H - z)2] ro(7.02 _ z2) 

r12 — (H z)2 = r02 — z2 = y2 
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so that the first term become.-3 

_et" [(I _  —  ) — ± 2 ) e— ero] 

L \ ri  ro 

Similarly the second, third, and fourth terms of equation (10-69) are 

e-201/ [ (1 H —  ciscr,in _ (1 _ _z) c_eroi 
r, ro 

eel' I-  (1 II -I- z) e_ip(r,-FH) _ (1 _ z) e-erol 
Y L r2 ro 

e-ien [( I. + II ± z) e(r) _ (1 + _e) c-eq 
Y L r2 ro 

Adding these four terms, the magnetic field strength can be obtained. 
It is 

472 Y 

L. (-el e-isr. 2 cos OH e-er.) 
y y 

The electric field can be obtained from the magnetic field by recallink 
that in free space 

so that 

In the x = 0 plane 

curl H = eÉ 

E = ,--1 curl H 
24.16 

L, 1 ( I  12 LT 1 a , , , = --- 0)5 = — wri o) 
JCIJE jcoty ay 

1 1 a 
= (curl H4), = — 

jom jom az 

(10-71) 

Substituting the expression for Ho in these equations gives 

E, — 
—ieim (y u1 'isr. + y ee-e" 4, e—fer) 

2 cos i3H "  
47rwEy ri r2 ro 

which reduces to 

eri ▪ e-er, 
= 2 cos all   (10-72) 

ri r2 ro 
Similarly, 

= j301., 

(  z — ▪ +  II e—ier, 2z cos if 3H e-er) 
r y r2 y ro 

(10-73) 
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and rewriting the expression for magnetic intensity 

j30/. 
1/0 —(e_'' + e-er. — 2 cos PH e-ifiro) (10-74) 

ny 

Equations (72), (73), and (74) give the electric and magnetic 
intensities both near to and far from an antenna carrying a sinu-
soidal current distribution. It is quite remarkable that something so 
complex as the electromagnetic field close to an antenna should be 
expressible by such simple relations. The secret of this result lies 
in the integral of eq. (70), the integrand of which turned out to be a 
perfect differential. This happy circumstance occurred only 
because the current distribution was stipulated to be sinusoidal 
(although it also occurs for an unattenuated traveling-wave distri-
bution, two of which can be combined to give the sinusoidal distri-
bution). The result becomes even more remarkable when the 
expression for the important parallel component Ez is considered 
and interpreted. Examining eq. (72), it is seen that the first term 
represents a spherical wave originating at the top of the antenna. 
The numerator is the phase factor (ei.t is understood) and the 
denominator is the inverse-distance factor. Similarly, the second 
term represents a spherical wave of equal amplitude originating 
at the other end of the antenna, or, in the case of a monopole 
antenna on a reflecting plane, at the image point of the top of the 
antenna. Finally, the third term represents a wave originating 
at the center of the antenna (at the base in the case of a monopole 
antenna). The amplitude of this latter wave depends upon the 
antenna half-length H. It is zero for H = X/4, that is, for a half-
wave dipole or quarter-wave monopole. The sources of the spher-
ical waves represented by the terms of eq. (72) are isotropic, that 
is they radiate uniformly in all directions, as is the case, for 
example, for a point source of sound. If a point source of sound is 
situated above a perfect (acoustic) reflecting plane, an equal image 
source is automatically obtained. Thus it is seen that the pressure 
field of a single, point source of sound located one-quarter wave-
length above a reflecting plane will give a true representation of 
both magnitude and phase of the parallel component of electric 
intensity about a quarter-wave monopole or half-wave dipole 
carrying a sinusoidally distributed current. Antennas of other 
lengths may be represented by two point sources. This fact has 
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been used* to give experimental data from which the (electrical) 
mutual impedance between antennas can be computed. 

Equations (72) and (73) can be used to calculate the parallel 
and normal components of electric intensity in the immediate 
neighborhood of an antenna. Figures 10-10 and 10-11 show the 
calculated valuest of the components of E at the surface of a half-
wave dipole for the assumed sinusoidal current distribution. Fig-
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FIG. 10-10. In-phase and quadrature terms of parallel com-
ponent of electric intensity along a half-wave dipole. (Calculated 
for a number 4 wire at 20 mc carrying an assumed sinusoidal cur-
rent distribution.) 

ure 10-10 shows the relative magnitudes of the in-phase and quadra-
ture terms of E., the parallel components of E. Figure 10-11 
compares the relative magnitudes of the quadrature terms of paral-
lel and perpendicular components of E. It is seen that except very 
near the ends of the antenna the normal component is very large 
compared with the parallel component. 

Problem 9 Verify that 

f [ _jey e-l(r+h) y e- ier+h)] 

  dh r2 r3  —   r(r h — z) 

y e-i13(r+h) 

where r, h, z, and y are as indicated in Fig. 10-9. 

. * E. C. Jordan and W. L. Everitt, "Acoustic Models of Radio Antennas," 
Proc. IRE, 29, 4, 186 (1941). 

P. S. Carter, " Circuit Relations in Radiating Systems," Proc. IRE, 20, 6, 
1004 (1932). 

QUADRATURE TERM 
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.20 40 .80 .80 100 L20 1.40 x 102 
VOLTS PER METER 
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10.09 Network and Antenna Theorems. In ordinary circuit 
theory certain network theorems have proven very useful in 
simplifying the solution of many problems. The validity of these 
theorems is based upon the linearity and/or the bilaterialism of the 
networks. In electromagnetic field theory the solution of any 
antenna problem can be obtained (at least in theory) by application 
of Maxwell's equations and the appropriate boundary conditions. 
The field equations themselves are linear and as long as the " con-
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FIG. 10-11. Quadrature terms of both parallel and perpen-
dicular components of electric intensity along a half-wave dipole. 
(Calculated for a number 4 wire at 20 mc carrying an assumed 
sinusoidal current distribution.) 

stants" ;4 e, and u of the media involved are truly constant, that 
is, do not vary with the magnitude of the signal (linearity) nor with 
direction (bilateralism), the same theorems can be applied. The 
usefulness of such theorems in antenna work is evidenced by the fact 
that with their aid nearly all the properties of a receiving antenna 
can be deduced from the known transmitting properties of the 
same antenna. A few of these theorems that find most usefulness 
in antenna problems are the following: 

Superposition Theorem. " In a network of generators and linear 
impedances, the current flowing at any point is the sum of the cur-
rents that would flow if each generator were considered separately, 
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all other generators being replaced at the time by impedances equal 
to their internal impedances." 

This fundamental principle follows directly from the linearity 
of the field equations and Ohm's law. When an impedance or 
network of impedances is linear, a given increase of voltage produces 
an increase of current that is independent of the magnitude of the 
current already flowing. Therefore the effect of each generator 
can be considered separately and independently of whether or not 
other generators are generating. 

Thevenin's Theorem. "If an impedance ZR be connected 
between any two terminals of a linear network containing one or 
more generators, the current which flows through ZR will be the 
same as it would be if ZR were connected to a simple generator 
whose generated voltage is the open circuit voltage that appeared 
at the terminals in question and whose impedance is the impedance 
of the network looking back from the terminals, with all generators 
replaced by impedances equal to the internal impedances of these 
generators." 

This theorem follows from the principle of superposition. A 
proof of it can be found in any of the references on circuit theory. 

Maximum Power Transfer Theorem. " An impedance connected 
to two terminals of a network will absorb maximum power from the 
network when the impedance is equal to the conjugate of the imped-
ance seen looking back into the network from the two terminals." 

Corollary: "The maximum power that can be absorbed from a 
network equals V.2/4R, where V„,, is the open-circuit voltage at 
the output terminals and R is the resistive component of the imped-
ance looking back from the output terminals." 

Compensation Theorem. "Any impedance in a network may be 
replaced by a generator of zero internal impedance, whose gener-
ated voltage at every instant is equal to the instantaneous potential 
difference that existed across the impedance because of the current 
flowing through it." 

Reciprocity Theorem. "In any system composed of linear 
bilateral impedances, if an electromotive force V is applied between 
any two terminals and the current I is measured in any branch, the 
ratio of V to /, called the transfer impedance, will be the same as 
the ratio of V to I obtained when the positions of generator and 
ammeter are interchanged." 
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In the above statement of this theorem the generator and 
ammeter are assumed to havé zero impedance. It is readily shown 
that the theorem also holds if the generator and ammeter have 
impedances which are equal.* The reciprocity theorem is one of 
the most powerful theorems in both circuit and field theory. It 
was originally stated by Rayleigh in a form somewhat similar to 
the above. A generalized statement of the theorem, suitable for 
application to fields as well as circuits, has been made and proven 
by Carson. t 

Generalized Reciprocal Theorem. "Let a distribution of im-
pressed periodic electric intensity E' = E'(x, y, z), produce a cor-
responding distribution of current intensity i' = i'(x, y, z), and let 
a second distribution of equiperiodic impressed electric intensity 
E" = E"(x, y, z) produce a second distribution of current density 
i" = i"(x, y, z), then 

lye (E' • i") dV = (E" • i') dV (10-75) 

the volume integration being extended over all conducting and 
dielectric media." E and i are 
vectors and E • i denotes the scalar 
product. This statement of the 
theorem was derived from Max-

i G well's equations and the only re-
striction is that magnetic matter be 
excluded (that is ¡I = ¡z.). The 
statement for networks is a particu-
lar case of this more general state-

FIG. 10-12 
ment and can be derived from it. 

Consider the application of this general theorem to the simple 
problem of two antennas (1) and (2) far removed from other con-
ducting bodies (Fig. 10-12). Assume a voltage V1' to be applied 

* An alternative statement of the theorem, which is sometimes very useful, 
can be made in terms of an infinite-impedance (constant-current) generator 
and an infinite-impedance voltmeter. This alternative statement is: " In any 
system composed of linear bilateral impedances, the positions of a constant-
current generator and an infinite-impedance voltmeter may be interchanged 
without affecting the voltage across the voltmeter, either in magnitude or 
phase, relative to the generator current." 

J. R. Carson, " Reciprocal Theorems in Radio Communications," Proc. 
I.R.E. 17, 6, 952 (1929). 
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at the terminals of .(1), as a result of which a current /2' flows in 
the zero impedance ammeter connected between the terminals of 
(2). Then apply a voltage V2" at (2) and obtain a current /1" 
at (1). 

Now applying the general theorem, consider the term 

vol 
E' • i" dV 

For perfectly conducting antennas, E' will be zero everywhere 
along the antennas, except between the terminals of (1) where the 
voltage V1 is applied. Therefore the first integral reduces to 

E' • i" dV =vol V 

Similarly the second integral becomes 

LI E" • i' dV = 
Thus the general statement reduces to 

Val" = T72"/21 

V 172" 
or 

12' /1" 
(10-76) 

which is the simple statement for networks. 
The reciprocity theorem has proven a powerful and useful tool 

in circuit and field theory, and many corollary statements have 
been derived from it. Some of these corollaries, especially those 
concerning reciprocity of powers, have been derived under special 
conditions. If applied in circumstances where these special condi-
tions are violated, the corollary statements may break down. The 
reciprocity theorem itself, in the form of eqs. (75) or (76) is perfectly 
general, and always gives the correct answer as long as only linear 
bilateral circuits or media are involved. 

Antenna Theorems. From the above theorems can be deduced 
several very useful antenna theorems, relating the properties of 
transmitting and receiving antennas. So far, most of the analysis 
has been concerned with transmitting antennas for which the 
assumption of sinusoidal current distribution is known to yield 
results of usable accuracy. On the other hand, for antennas excited 
as receiving antennas, the current distribution varies with the direc-
tion of arrival of the received field and is not even approximately 
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sinusoidal, except for the resonant lengths (half-wave dipole, etc.). 
This being the case, it is by no means obvious that the direc-
tional and impedance properties of an antenna should be identical 
fcr the transmitting and receiving conditions. Because, in the 
general case, the current distribution is not sinusoidal for the 
receiving antenna, direct computation of its properties is usually a 
relatively complicated problem. The following theorems make it 
possible to infer the properties of a receiving antenna from its prop-
erties as a transmitting antenna, and vice versa. 

\SMALL DIPOLE 
ANTENNA 

TEST 
ANTENNA 

v C) 

no. 10-13 

Equality cf Directional Patterns. "The directional pattern of a 
receiving antenna is identical with its directional pattern as a trans-
mitting antenna." 

Proof: This theorem results directly from an application of the 
reciprocity theorem. The directional pattern of a transmitting 
antenna is the polar characteristic that indicates the intensity of the 
radiated field at a fixed distance in different directions in space. 
The directional pattern of a receiving antenna is the polar character-
istic that indicates the response of the antenna to unit field intensity 
from different directions. The pattern as a transmitting antenna 
could be measured as indicated in Fig. (10-13) by means of a short 
exploring dipole moved about on the surface of a large sphere 
centered at the antenna under test. (The exploring dipole is 
always oriented so as to be perpendicular to the radius vector and 
in the plane containing the electric vector). A voltage V is applied 
to the test antenna, and the current / flowing in the short dipole 
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antenna will be a measure of the electric field at the position of the 
dipole antenna. If then the voltage V is applied to the dipole and 
the test antenna current is measured, the receiving pattern of the 
test antenna can be obtained. But by the reciprocity theorem, for 
every location of the probe antenna, the ratio of V to I is the same 
as before. Therefore the radiation pattern as a receiving antenna 
will be identical with the pattern as a transmitting antenna. 

When the test antenna radiates an elliptically polarized wave, 
that is, when the radiated electric intensity has two components, 
E9 and Ei„ that are not in time phase, the radiation patterns for 
the O polarization and 4, polarization are shown separately. The 

o fii? 

I/ 7//,/ 

(a) (b) 

FIG. 10-14 

pattern for the particular polarization specified is obtained by keep-
ing the exploring dipole parallel to that polarization. It follows 
as before that for each of the polarizations the radiation patterns 
for transmitting and receiving will be the same. 

Equivalence cf Transmitting and Receiving Antenna Impedances. 
" The impedance of an antenna referred to a given pair of terminals 
is independent of the method of excitation. In particular, the 
antenna impedance for receiving is the same as for transmitting." 

Proof: This theorem follows directly from the principle of super-
position. Consider the antenna of Fig. 10-14 connected in series 
with an impedance Z. and excited as a receiving antenna (a), a 
transmitting antenna (b), or both As a receiving antenna 
(a), a field E is assumed rc be incident upon the antenna, and a 
current IR flows through the load impedance ZL and the shorting 
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link connecting terminals a-b. Applying Thevenin's theorem, the 
value of IR will be 

Voe  
IR 

Zr IZL 

where V,,,, is the open-circuit voltage at a-b and Z,. is the antenna 
impedance for the receiving condition. 

Now insert at terminals a-b an opposing voltage V such that 

V = 

This will reduce the current through ZL and at a-b to zero (Fig. 
10-14c). 

Finally remove the exciting field E, but continue to apply the 
voltage V at a-b. The current it, which now flows, will be given by 

V  
Is — 

Zs + ZL 

where Zt is the antenna impedance for the transmitting condition. 
By the principle of superposition the current which flows when 

both excitations are applied simultaneously is the sum of the 
currents which flow when the excitations are applied separately. 
In this case the sum of the currents is zero, that is 

or 

IR .re = 

IR = —It 

From this it follows that 

V 
Zr ZL Zt ZL 

and since V = — V., the only way (77) can be satisfied is to have 

Z,. = Zt = Za (10-78) 

Thus the impedance of an antenna is the same, whether it be used 
as a transmitting antenna or as a receiving antenna. The relation 
(78) will hold whatever may be the value of ZL. In actual operation 
ZL would be the load impedance in the receiving case and the gen-
erator impedance in the transmitting case. 

In the discussion above, no restriction was put upon the exciting 
field E. It could be obtained as the result field owing to any 

(10-77) 
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number and combination of radiators. However, it is necessary 
'for these radiators to be distant radiators; otherwise the impedance 
Z, or Zi will not represent the self-impedance of the antenna. If 
the radiators producing the excitation E are sufficiently close that 
the mutual impedance between them and the antenna being con-
sidered is not negligible (compared with the impedance of this 
antenna) then Zr will actually be the self-impedance of the antenna 
plus the impedance coupled-in owing to the presence of the other 
antennas. However, even under these conditions the relation 
Zr = Ze will hold if in the transmitting case the radiators that pro-
duced E are left in position and connected to impedances equal 
to the impedances of the generators that excited them. 

1E. 

FIG. 10-15 

Equality of Effective Lengths. The effective length, leff, of an 
antenna is a term used to indicate the effectiveness of the antenna 
as a radiator or collector of electromagnetic energy. The signifi-
cance of the term as applied to transmitting antennas is illustrated 
in Fig. 10-15. The effective length of a transmitting antenna is 
that length of an equivalent linear antenna that has a current /(0) 
at all points along its length and that radiates the same field inten-
sity as the actual antenna in the direction perpendicular to its 
length. /(0) is the current at the terminals of the actual antenna. 
That is, for transmitting 

or 

+L/2 

(0)/ei (trans) -= f Idl 
-L/2 

-=  1  1+1'12 Idl Lff(trans) 
I(0) -L/2 

(10-79) 
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The effective length of a receiving antenna is defined in terms cf 
the open-circuit voltage developed at the terminals of the antenna 
for a given received field intensity E. That is, for receiving 

Lff(rec) = (—10-80) Vi 

where V.„ is the open-circuit voltage produced at the terminale of 
the antenna because of a uniform exciting field E volts per meter 
parallel to the antenna. 

Using the reciprocity theorem it is readily shown that these two 
definitions yield the same value cf effective length for a given 

(b) (0) 

FIG. 10-16 

antenna. First consider the transmitting antenna case (Fig. 
10-16a). A voltage V applied at the terminals produces a current 
/(0) = V/Z6 at the terminals and a current 1(z) at any point z 
along the antenna. Z. is the antenna impedance measured at the 

terminals. 
Next consider the same antenna as a receiving antenna (Fig. 

10-16b) where an exciting field E is parallel to the vertical portion 
of the antenna. In each elemental length dz there will be induced 
a voltage E dz. Now by the reciprocity theorem a voltage E dz 
at z will produce a current at the terminals (with terminals short-
circuited) of amount 
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The total current at the short-circuited terminals due to all the 
induced voltages E dz along the antenna will be 

Ju = Evdz 1(z) 

= E v 1. I (z) dz 

since E is uniform along the antenna. The open-circuit voltage at 
the base due to this induced voltage will be 

V. = I.eZa 

EZa 
= f I (z) dz 

But —V = /(0) 

Therefore V. = 1 
I I (z) dz = Lu(trans) 

E (0) 

Therefore Lf(rec) = /.1(trans). That is, the effective length of an 
antenna for receiving is equal to its effective length as a trans-
mitting antenna. 

At low and medium frequencies the antenna usually consists 
of a vertical radiator (with or without top-loading), fed against 
ground. Under these conditions the " image" forms half of the 
antenna system, and it becomes convenient to speak of the half-
length of the antenna system. In this terminology a vertical 
antenna a quarter-wavelength high has a half-length of X/4. Its 
effectirm half-length* is the length of linear antenna, also fed against 
ground, that will produce the same field intensity E when carrying 
a current /(0) at all points along its length. The effective half-
length of a quarter-wave vertical antenna with a sinusoidal current 
distribution is 2/7 X X/4 = X/27. A curve of effective length vs. 
length for straight radiators having the sinusoidal current distribu-
tion is plotted in Fig. 10-17. 

* This was originally termed the effective height of the ground-based antenna, 
but this usage has been discontinued because of confusion with the height 
above the ground of elevated antennas. The effective height of an (elevated) 
antenna is now defined as the height of its center of radiation above the effective 
ground level. 
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Generalized Effective Length. As ordinarily used, the effective 
length of an antenna is a measure of the effectiveness of the antenna 
as a radiator or receptor in directions perpendicular to its axis. 
However, the term can be generalized to give a measure of radiated 
field intensity in any direction, and in this case the effective length 
of an antenna will be a function of direction (0 and 4,). The 
equivalent linear antenna, having the constant current /(0) along 
its length, is always oriented to be perpendicular to the direction 
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Fla. 10-17. Effective length vs. length for dipole antennas. 

being considered. (It lies in the plane containing E and the radius 
vector.) In the most general case the radiated field intensity from 
an actual antenna may be elliptically polarized. This can be 
handled by specifying separately the effective lengths of the antenna 
for two components of the electric intensity E; for example, an 
effective length Peff for the O component and /oaf for the 47, component. 
Since the O and 4, components of E will, in general, not have the same 
time phase, the resultant generalized effective length /:„ will be a 
complex vector. That is 

1:ff = ue/tfr Ktio/t0 (10.81) 
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where K is a unit complex number, and Par and /oeff are functions 
(usually different) of O and O. Using the reciprocity theorem it is 
easy to show that this generalized effective length will be the same 
for receiving as transmitting. 

The problem of elliptical polarization will be considered further 
in sec. (12.12). 

Field Intensity in Terms of Effective Length. A current I amperes 
flowing in an elemental length dl produces a radiation field intensity 
at a distance r meters in a direction normal to the current element of 
amount 

6071-1d1 
E = 

rX 
volts/meter 

Therefore the field intensity produced by an antenna having an 
effective length /in will be 

E — 607r/(0)/eu 
rX 

volts/meter (10-82) 

where /(0) is the current at the terminals. If the generalized 
effective length is used in expression (82), the radiation field will 
be completely specified in all directions. Conversely, if the field 
intensity E is known, the effective length is given in terms of E by 

rXE  
/off 60r/(0) 

From eq. (82) it is seen that the effective length of an antenna 
gives the field intensity E at a given distance for a given current 
flowing at the antenna terminals (or some other specified reference 
point). However, no indication is given of the power required to 
produce the field intensity. A term that can be used to specify 
the field intensity at a given distance (and therefore the power 
radiated per unit solid angle in that direction) for a given total power 
is antenna gain. The gain of an antenna will be considered in 
chap. 12. 

(10-83) 

ADDITIONAL PROBLEMS 

10. (a) Using the reciprocity principle, show that the current at the 
center of a half-wave dipole is 

XE 
/ = 
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when excited by a uniform field L' parallel to the antenna and when the 
terminals are short-circuited. Z. is the antenna impedance measured at 
the terminals. Assume that the current distribution as a transmitting 
antenna is sinusoidal, that is 1(z) = sin p(11 - izi) = I. cos f3z (for the 
half-wave dipole). 

(b) Under the same conditions what will be the open-circuit voltage 
at the antenna terminals? How much current would flow in a load 
impedance ZL connected to those terminals? 

11. If the dipole receiving antenna of problem 10 has any length 
L = 211, show that the short-circuit current at the terminals would be 

Dt(1 — cos tim 
_ 

Z sin pH 

Assume that, as a transmitting antenna, the current distribution would be 
sinusoidal, i.e., 

1(z) ---- I. sin p(II - 14) 
12. The current distribution in a half-wave dipole transmitting antenna 

is known to be nearly sinusoidal. The current distribution of a half-wave 
dipole receiving antenna is also nearly sinusoidal when the terminals are 
short-circuited. Using the superposition and compensation theorems, 
verify that the current distribution of the half-wave dipole as a receiving 
antenna must be approximately sinusoidal when the terminals are con-
nected to any load impedance L. 

13. A half-wave dipole antenna is excited by a uniform electric field E, 
which is parallel to a plane through the antenna, but which arrives from 
a polar angle O. (In problem 10, 0 was 90°.) Using the reciprocity 
principle, determine the expression for the short-circuit current. Do it 
two ways. 

Answer: = 
irZa sin 0 

XE cos (—Ir cos 0) 2 

14. Assuming the sinusoidal current distribution 

1(z) = 1„, sin 13(11 — 14) 

derive the expression for the effective length of a dipole antenna of 
Length L = 211. 

X(1 — cos OH)  
Answer: left — 

r sin I3H 

15. (a) At what distance from a 60-cycle circuit is the radiation field 
approximately equal to the induction field? 

(b) Approximately what are the relative amplitudes of the radiation, 
induction, and electric fields at a distance of 1 wavelength from a IIertzian 
dipole? 
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16. (a) Show that the unattenuated radiation field at the surface of 
the earth of a quarter-wave monopole is given by the formula 

6.14 /-- 
E = W v  mv/m effective 

where r is in miles and W is the power radiated in watts. The unattenuated 
field is the value of field intensity that would exist if the earth were per-
fectly conducting. 

(b) Derive the corresponding expression for a short monopole (H « X). 

17. An "inverted L" receiving antenna has vertical and horizontal legs 
which are both 10 meters long. The field intensity of the received wave 
is vertical and has a measured value of 1 mv/m. Frequency is 1 mc. 
What is the open-circuit voltage at the base of the antenna? (NOTE: as a 
transmitting antenna the current distribution on an "inverted L" is 
approximately sinusoidal, with the current node at the open end of the 
horizontal arm.) 

18. A half-wave dipole is located parallel to and one-quarter wave-
length from a plane metallic reflecting sheet. Sketch the lines of current 
flow in the sheet. (Suggestion: Use the image principle and the relation 

J = n X H.) 

19. Short vertical monopole antennas that are suitably "top-loaded" 
with a capacitive load, have an essentially uniform current along their 
whole length. Set up the vector potential and derive an expression for 
the average value (in time) of the Poynting vector at large distances from 
such an antenna. 

20. (a) Set up an expression for the vector potential due to a traveling-
wave current distribution 

[1(z) = I,,e-'i 

along a terminated wire antenna of length L. 
(b) Show that the distant field of such an antenna is given by 

E9 —  [2 2 cos (3(1 — cos 

21. (a) A toroidal coil has a large number of closely wound turns on a 
core of high permeability so that at d-c virtually all of the magnetic flux 
is confined to the core (Fig. 10-18). When an alternating current flows in 
the winding, is there at the point P (1) a value of vector potential A? (2) 
a value of magnetic intensity H? (3) a value of electric intensity E? 

Assuming a current of 1 amp at 60 cps through a 1000-turn winding, 
and µ = 1000µ. 

(b) approximately what is the voltage around the path s? 
(c) What is the order of magnitude of each of the vectors of parts ( 1), 

(2) and (3)? 
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FIG. 10-18. A toroidal coil on a high-permeability core. 

22. It is possible to define a single function, called the Hertzian vector, 
from which both electric and magnetic intensities may be derived. This 
vector is 

Z = f A dt 

Using this function, show the: 

(a) E = —i.cï V(V • Z) 

(b) H=vxt 

(c) rz = ze2 (in free space, where V X H = 1)) 
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CHAPTER ii 

IMPEDANCE 

PART I 

Induced-EMF Method of Calculating Impedances 

In chap. 10 the radiation resistance of an antenna was obtained 
by the Poynting vector method. In that method the distant or 
radiation field of the antenna was determined, and then the power 
radiated was computed by integrating the Poynting vector over a 
large spherical surface. The same method can be used to determine 
the total power radiated by an array of antennas, but it will give 
no information as to how much power is contributed by the indi-
vidual elements of the array. Moreover, whereas the distant field 
determines the power radiated, and hence the radiation resistance 
of an antenna, the reactive power and reactance of an antenna are 
determined by the near fields in close to the antenna, and so the 
distant-field method cannot be used to obtain reactance. 

These limitations are not present in an alternative method, which 
was developed for obtaining the radiation resistance of single 
antennas and then extended to obtain the impedance of antennas in 
a multi-element array. In this second method, which is known as 
the induced-emf method, the electric intensity produced at any point 
P near or far from the antenna is first determined. Then, if the 
radiation resistance of a single antenna is required, the point P 
is brought back to the surface of the antenna and the voltage 
induced in each element of length of the antenna is determined. 
The power required to produce the assumed current against the 
opposition of this induced voltage is computed for each element of 
length, and then the total power is obtained by integrating over the 
length of the antenna. This gives the total power required to 
eltablish the assumed current against the self-induced eraf and 
hence gives the power radiated by the antenna (ohmic losses are 

342 
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neglected). From this the radiation resistance can be determined. 
The mutual impedance between 
antennas can be obtained in a 
similar manner by calculating 
the power required to drive the 
assumed current in one antenna 
against the voltage induced in 
it by current flow in a second 
antenna. 

11.01 Radiation Resistance 
by the Induced-emf Method. 
The exact expressions for the 
electric intensity about the an-
tenna of Fig. 11-1; which is as-
sumed to have a sinusoidal cur-
rent distribution, are given by 
eqs. (10-72) and (10-73). For 
the component of E parallel to the axis of the antenna the expression 
is 

FIG. 11-1 

E. = 301. (—j  ▪ —j e i2 2▪ j cos PH e- r) 
r2 ro 

When the point P is on the antenna: 

ro = z ri = // — z r2 = H ± z 

(11-1) 

The power required to produce the assumed current against the 
induced voltage will be 

= 10 11 1E. z11/(Z)1 cos ip dz (11-2) 

where lEz1 and 1/(z)1 are the magnitudes of E, and /(z) and 1,1, is 
the phase angle between them. In eq. (1) the factor —j e-iort in 
the first term indicates that the electric intensity represented by 

this term lags the current I., by the angle [(T/2) eri]. The power 
factor for this term is then 

cos (-r2 + 13r) = — sin pri 

Similarly the power factor for the second and third terms is estab-
lished and, remembering that 1(z) = 1„, sin 13 (H — z), the expres-
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sion for power becomes 

P = 15/m2 [sin f  11 (H — z) sin 0(H — z) 
H — z 

+ sin j9(H — z) sin ,s(H + z)  
H + z 

2 cos OH sin a(H — z) sin el 
dz (11-3) 

This expression can be integrated term by term. Consider the first 
term and let u = (3(H — z), du = --0 dz, du/u = —dz/(H — z) so 
that when z = 0, u = el, and when z = H, u = 0. Then 

H  sin e(H — z) sin ti(H — z) dz — o 2 
n 24 du H — z f3H Si u 

= — 
o( 2u) 

1 j."11 1 — cos (2u)  
d(2u) = 2 b- S1(2H) 

1 

where the function Si(x) is defined by eq. (10-67). 
To integrate the second term of eq. (3) let 

w = 20(H + z) dw = 2edz 2ez = w — 2f3H 

Then 
Jo 

sin e(H — z) sin e(H + z) 
dz 

H z 

1 f 11 COS 20Z — cos 20H dz 
(H + z) 

1 f 413H cos 2t3H — cos (w — 2011) dw = — _ 
2 21313 W 

1 41311 cos 2,3H(1 — cos w) — sin w sin 20H dw 
— — -A 

h 213H ID 

1 41911 1 — cos w dw + 1 sin 2511 = — i cos 2I3H 4"1 sin w dw 
120H w 2 LI w 

1 (f04PH 1 — cos w dw w fo2PH 1 — cos IV 

W 
= — i cos 2f1H  dw) 

1 4/3H gin ,„ 
+ sin 2eH (f ------r- dw — -2. o w " H sinww dw) 

1 1 
= — i cos 2eH[Si(4eH) — &(213H)] + i sin 2d3H[Si (OH) — Si (2eH)] 

where Si (x) is the sine integral of x and is defined by eq. (10-66) 
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The third term of eq. (3) can be integrated almost directly. It 
is 

—2 cos PH 
10H  sin e(H—  z) sin ez dz 

z 

= — cos PH foil cos ew — 2z) — cos 8 
z ' H dz 

= cos ex fo2fill CO8 excl. — cos 2,3z) — sin 811 sin 2Pz d(28z) 
28z 

= cos2 f3HS1(2eH) — cos pH sin 8H Si (2811) 

Using the notation 213H = b, the power radiated as given by 

equation (3) is 

P = 1%.1„,2[Si(b) — (81(2b) — S1 (b)) cos b 

± (Si (2b) — Si (b)) sin b 

+ (1 ± cos b)Si(b) — sin b Si (b)] (11-4) 

Rearranging terms and dividing by /m2/2, an expression for radia-
tion resistance is obtained. 

Rrad = 15[(2 + 2 cos b)S1(b) — cos bSi(2b) — 2 sin b Si (b) 
± sin b Si (2b)1 (11-5) 

Expression (5) gives the radiation resistance of the antenna, referred 
to the current loop, I.. This resistance is plotted in Fig. 11-2 for 
monopole antennas as a function of antenna height H. For center-
fed dipole antennas of half-length H, the values of resistance should 
be multiplied by 2. For example, for a quarter-wave monopole 
mounted on a reflecting plane the radiation resistance is shown as 
36.5 ohms. For a half-wave dipole (in free space) it would be 
73 ohms. For a half-wave monopole and a center-fed full-wave 
dipole the values of radiation resistance are 99.5 and 199 ohms 

respectively. 
11.02 Radiation Resistance Referred to the Base. The radia-

tion resistance of an antenna is that value of resistance which, when 
multiplied by the square of the antenna current (effective value), 
gives the power radiated. lf the loop current I. is used, the radia-
tion resistance is said to be referred to the loop. If the base current 
/(0) (or the current at the terminals in the case of a center-fed 
dipole) is used, the radiation resistance is said to be referred to the 
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base (or referred to the feed point). Since the radiated power is 
the same in both cases 

Wm2R,. (loop) = ;‘g 2(0)/?, (base) (11-6) 

where I. and /(0) are both peak values in time. For an antenna 
having the sinusoidal current distribution, the base or terminal 

140 

120 

.1111 1111 1(111111. 

E.1 

111 
1111 1111 1111 1(11 111 

E 

“Ir 

z z 

z 

111 1111 1111 111i 

.2 .3 4 .5 .6 .7 .8 .9 

FIG. 11-2. Radiation resistance (referred to the current loop) of 
monopole antenna as a function of antenna height H /X. 

current is related to the loop current by 

/(0) = 1m sin t3H 
Therefore, for this case, 

Im2  
R,. (base) = 12(0) R,. (loop) 

R,. (loop)  
(11-7) 

sin' ex 
For antenna lengths for which H is a multiple of a half-wavelength, 
the assumed sinusoidal distribution gives a value of zero for the 
current at the feed point, and eq. (7) indicates that the input 
resistance will be infinite. For these lengths the actual input 
current will be small but not zero, and the input resistance will be 
large but not infinite. Although a value of infinity may be regardc-2 

1.0 
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as the first approximation to the actual resistance, it is a worthless 
approximation for practical purposes. For these cases it becomes 
necessary to use a method involving a better approximation than 
the sinusoidal for current distribution. Such methods are con-
sidered in chap. 13. It is seen that the sinusoidal current distribu-
tion can be used to give useful answers over a certain range of 
antenna lengths, but there are other ranges in which the approxima-
tion fails. In general this is true of every approximate method, and 
it is necessary for the engineer always to consider the limitations 
as well as the capabilities of any method he may employ. 

re V2 
bl  

7/e/ 

(0) (b) 

Fla. 11-3 

11.03 Mutual Impedance between Antennas. When two or 
more antennas are used in an array, the driving-point impedance 
of each antenna depends upon the self-impedance of that antenna 
and in addition upon the mutual impedance between that antenna 
and each of the others. For example, consider the two-element 
array of Fig. 11-3 in which base currents Ii and 12 flow as a result of 
voltages VI and V2 applied at the bases. As far as voltages and 
currents at the terminals a-b and c-d are concerned the two antennas 
of Fig. 11-3a can be represented by the general four-terminal net-
work of Fig. 11-3b. 
Z11 is the impedance measured at the terminals a-b with the 

terminals c-d open; that is, Zii is the mesh impedance of mesh 1. 
Similarly Z22 is the mesh impedance of mesh 2, and is the imped-
ance that would be measured at terminals c-d with a-b open. 
Z12 = Zol is the mutual impedance between the antennas and is 

defined in both figures by 
V21 V12 

Z21 = Z 12 = 
1 1 
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where V21 is the open-circuit voltage induced across terminals c-d 
of antenna 2 owing to current Ii, flowing (at the base) in antenna 1. 
Similarly V12 is the open-circuit voltage across the terminals of 
antenna 1 owing to current /2, flowing in antenna 2. Under most 
conditions the impedance Z11 is approximately equal to the self-
impedance Zsi of antenna 1. The self-impedance of an antenna is 
its input impedance with all other antennas entirely removed. 
Except when antenna 2 is very near a resonant length (that is 
H X/2) or when it is very close to antenna 1, the input impedance 
of antenna 1 will be nearly the same with antenna 2 open-circuited 
as it would be with antenna 2 entirely removed from the field of 
antenna 1. 

The mesh equations for Fig. 11-3 are 

Vi = 1.211 ± 1 2Z12 
V2 = 1221 4" 1 2Z22 

(11-8) 

Let r = 11/12, where in general r is a complex number. Then 

VI 1 
= Z 11 + Z12 (11-9) 

V2 
= rZ21 ± Z22 (11-10) 

12 

It is seen that the input impedances, V1/11 and V2//2 are depend-
ent upon the current ratio r. It is these impedances that any 
impedance-transforming networks must be designed to feed, and in 
order to calculate them the mutual impedance must be known. 

In the Fig. 11-3 and the corresponding mesh eqs. (8), the voltages 
V1 and V2 are assumed to be supplied by zero-impedance generators. 
When the generators have finite impedances, Z01 and Z92, equations 
(8) still apply if the generator impedances are included in the mesh 
impedances. The representation then becomes that of Fig. 11-4 
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for which the mesh equations would be 

where 

V1 = 11211 + 12Z:2 

V2 = 1Z21 ± 12222 

=Z11 -1- Zg1 and 222 ..-- Z22 Z g2 

and where V1 and V2 are now supplied by zero-impedance gener-
ators, which produce voltages equal to the open-circuit voltages of 
the actual generators. 

11.04 Computation of Mutual Impedance. The mutual imped-
ance Z21 between the two antennas of Fig. 11-3 or 11-4 is defined by 

V21 
Z21 = (11-12) 

/1 

where V21 is the open-circuit voltage at the terminals of antenna 2 
due to a base current Ii in antenna 1. Now the electric intensity 
at all points along antenna 2 due to a current in antenna 1 can be 
calculated, and the problem is that of determining the open-circuit 
voltage at the terminals of antenna 2, which results from the 
voltages induced in all the elemental lengths of the antenna. This 
result may be obtained by an application of the reciprocity theorem. 

Consider antenna 2 with antenna 1 in place, but VI not generat-
ing (Fig. 11-4). A voltage V2 = /2(0)Z2' applied at the terminals 
(2 = 0) of antenna 2 will produce a base current /2(0) and current 
at any point z, which will be indicated by /2(2). The impedance 
Z2f is the impedance looking into the terminals of 2 and is given by 

Z 212 
Z2, = 222 

411 

Applying the reciprocity theorem, if a voltage /2(0)Z2' applied at 
the base produces a current /2(2) at a point z along antenna 2, then 
a voltage E1 dz, induced at z, will produce at the base a (short-
circuit) current 

E01 dz „ 
12 dI. e) 

The total short-circuit current at the base due to voltage induced 
along the entire length of the antenna will be 

1  f 
° — 12(0)z2' Jo Egli 2(z) dz 
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By Thevenin's theorem the open-circuit voltage at the base then 
will be 

V21 = 
1 f Ht 

1-765Y h E 31I 2(z) dz 

The minus sign results from the fact that a current through the 
short-circuited terminals in the assumed positive direction (upwards) 
requires on open circuit a voltage across c-d of negative polarity 
(that is, d positive with respect to c, whereas the assumed positive 
polarity is c, positive with respect to d). 

The expression for mutual impedance between the antennas is 

Iii 
V21 1 

Z21 = Eel2(z) dz (11-13) 
/1(0) /1(0)/2(0) fo 

In expression (13), I2(z) is the current distribution along antenna 2 
when fed by a voltage at the base and with antenna 1 closed through 
the generator impedance Z91; also E1 is the voltage induced along 
antenna 2 due to a base current /1(0) in antenna 1, and with antenna 
2 closed through the generator impedance Z. Now because of 
linearity the mutual impedance between the antennas will be 
independent of the generator impedances Z9z and Zge By making 
the latter very large the evaluation of the expression for mutual 
impedance can be greatly simplified. Thus, if Z9, is very large, 
antenna 1 is effectively open-circuited when VI is not generating, 
and, except for the special case of H1 =•--: X/2, the current distribu-
tion I2(z) along antenna 2 due to a voltage at the base of antenna 2 
will be nearly the same as it would be with antenna 1 removed. 
The distribution /2(z) can therefore be represented by the sinusoidal 
approximation for an isolated transmitting antenna 

/2(z) = 12m sin e(H, — z) (11-14) 

Again with Z9, very large and V2 not generating, antenna 2 is 

essentially open-circuited and the distribution along it of the 
induced voltage E, dz due to current in antenna 1 is just that 
already given in equation (1). 

Inserting eqs. (1) and (14) in (13), the expression for mu+.ual 
impedance becomes 
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Z = 30/i„,/2„, r In (-j el j e-ie2 2j cos PH e-orc, 
21 /1(0)/2(0) JO ri r2 ± ro / 

sin /3(H2 — z) dz (11-15) 

Equation (15) gives the mutual impedance referred to the base. The 
mutual impedance referred to the loop currents will be given by 
expression (15) multiplied by the ratio of the product of base 
currents to the product of loop currents, that is by 

/1(0)/2(0)  
.1.1mI2m 

Therefore the mutual impedance referred to loop currents will be 

(_i e n1 j e-or. + 2j cos OH 
Z21 = —30 fo  ri r2 ro 

sin f3(H2 — z) dz (11-16) 

It is usually this mutual impedance referred to the current loops 
that is plotted and shown in curves. When this impedance is 

known, the mutual imped-
ance referred to the base or ANT.   

terminal currents can be easily 
calculated. 

In Fig. 11-5 are shown 
two monopole antennas of 
height H mounted on a per-
fect reflecting plane and 
spaced apart a distance d. 
For this case 

H 
ro ..Vd2 z2 

ri = v d2 (H _ z )2 1 

r2 = vd2 (H z)2 

(11-17) 

12 d 

FIG. 1 1-5 

Expression (16) for mutual impedance is complex. The real part 
gives the mutual resistance, and the imaginary part gives the mutual 
reactance. Substituting the relations (17) in the real part of (16) 
gives an expression for mutual resistance. 
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R21 = 30 f sin p(H — z) [sin 13 'V& ± (II — 2)2 
d2 — 2)2 

± sin e -vd2 + (H  z)2 2 cos 1311 sin ei d2  22]ds (11-1,C) 
Vd2 + (H ± z) 2 d2 z2 

Similarly the imaginary part of (16) yields the expression for mutual 
reactance 

X21 = 30 f sin 13(II — z)jf [cos Vd2 + (H — 2)2 

Jo + (H — z)2 

cos 13 Vd2 ± (H -I- 2) 2 2 cos PI/ cos 13 .Vd2 22] c_,: (11-19) 

1/d2 -E (II -E z) 2 ..0 /2 _E 22 

The integrations indicated in (18) and (19) can be carried out in a 
manner similar to that employed in evaluating eq. (3). The case 
of mutual resistance between quarter-wave monopoles is not too 
difficult and is left as an exercise. The result for quarter-wave 
monopoles spaced at distance d is 

R12 = 15[2 Ci 1:id — Ci (V(A-1)2 + 7r2 — 7r) 

— Ci (-V (j3d)2 ir)] (11-20) 

The expression for mutual reactance between quarter-wave mon-
opoles is 

X12 = 15[Si (V(J3d)2 -F 11-2 -E Si (1v/(flor)2 -E e -F 1-) 
— 2 Si (M)] (11-21) 

The general expressions for the mutual impedance between antennas 
of (equal) height H and a distance d apart are* 

R12 = 30[sin ex cos 13H (Si 122 — Si y2 — 2 Si v1 + 2 Si ui) 
cos 21311 2 (2 Ci ul — 2 Ci uo + 2 Ci vi — Ci u2 — Ci v2) 

— (Ci — 2 Ci uo + Ci vi)] (11-22) 

*P. S. Carter, " Circuit Relations in Radiating Systems and Applications 
to Antenna Problems," Proc. IRE, 20, 1004 (1932); J. Labus, " Mathematical 
Calculation of the Impedance of Antennas," Hochfrequenz. Technik, 41, 17 
(1933); G. H. Brown and R. King, " High Frequency Models in Antenna 
Investigations," Proc. IRE, 22, 457 (1934). 
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X12 = —30[sin ex cos em2 Ci yl — 2 Ci ?LI + Ci v2 — Ci u2) 
cos 20H 

(2 Si u1 — 2 Si uo + 2 Si y1 — Si u2 — Si u2) 
2 

353 

— (Si u1 — 2 Si uo ± Si Yi)] (11-23) 

whcre uo = ed 

ui = p(Vd2 + H2 — H) 
u1 = e(-Vd2 + H2 + H) 
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Fie. 11-6. The mutual impedance (referred to the current 
loops) between a quarter-wave monopole, HI, and a monopole 
antenna of height H2. 
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Since the evaluation of these expressions is a laborious task, graphi-

cal and other methods* of evaluating them have been employed. 

Curves for the mutual impedance between antennas of unequal as 

well as equal heights are given in Figs. 11-6 through 11-10. 

Problem la. Derive the expression ( 11-20) for the mutual resistance 
between two quarter-wave monopoles. (NOTE: Use of the substitutions 
x = H — z and u = e(Vd2 _ pwd2 z2 in the 
appropriate places will aid in the derivation). 

Problem lb. Derive the expression (11-21) for the mutual react-
ance between two quarter-wave antennas. 

Problem 2. Evaluate the expressions for R12 and X13 to obtain the 
mutual impedance between two quarter-wave antennas at half-wavelength 
separation. Ans.: Z13 = —6.3 — j14.9 

Problem 3. (a) Derive the expressions for the mutual resistance and 
reactance between two half-wave vertical antennas at the surface of a 
perfect earth; (b) Evaluate these expressions to obtain the magnitude and 
phase angle of the mutual impedance when the antennas are spaced one 
half-wavelength apart. 

Problem 4. Evaluate eq. (11-5) to obtain the radiation resistance of 
a -g-wave monopole antenna. Ans.: 93 ohms (referred to loop current) 

Problem 5. A broadcast antenna array consists of two quarter-wave 
vertical towers spaced a quarter-wavelength apart. The antennas are to 
be fed with equal currents which differ by 90 degrees in phase. The 
radiated power is 5000 watts. Determine the magnitude and relative 
phases of the driving-point voltages. 

Assume Z11 = Z22 = 37 + j21 ohms 
Z13 = 21 — j14 ohms. 

Problem 6. A broadcast array is to consist of 3 quarter-wave radiators 
in a line spaced 34. wavelength apart. They are to be fed with equal 
currents of such phases that 

Ii = /2/-120° 12 = 12/+120° 

where antenna 2 is the center element. Assuming that Z11 = Z22 = Z33 
= 37 + j21, and using mutual-impedance values picked from curves as 
being Z12 = Z23 = 20 — j16, Z13 = — 6 — j15, determine the input 
impedances of each of the antennas, and the required magnitude and phases 
of the voltages at the feed points. 

* G. H. Brown and R. King, /oc. cit.; E. C. Jordan and W. L. Everitt, 
"Acoustic Models of Radio Antennas," Proc. IRE, 29, 4, 186 (1941). 
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Problem 7. An array consisting of three vertical towers in a line is to 
be fed with currents 

13 =-- /2 -= 1.512/-114° 

Bridge measurements on the towers (of identical dimensions) give Z11 = 
20.2 — j11, Z22 = 19.5 — j11, Z33 = 20.2 — j21.2. The impedance of 
No. 1, measured with No. 2 open-circuited, but No. 3 resonated to ground 
(X33 = is 19.0 — j13. Similarly, the impedance of No. 2, with No. 3 
open but No. 1 resonated to ground, measured 23.5 — j4.2 ohms. The 
impedance of No. 2, with No. 1 open but No. 3 resonated to ground, 
measured 23.1 — j4.0 ohms. From this set of measurements determine 
probable values of mutual impedances. Calculate the input or driving 
point impedances when the array is in operation, and the power fed to 
each element for a total of 1000 watts radiated. 

11.05 Reactance of an Antenna. By definition the mutual 
impedance between two antennas is a measure of the voltage induced 
in the second antenna for 1 amp of current flow in the first. As two 
antennas of equal height are brought closer together until they 
coincide, the voltage induced in the second antenna becomes equal 
to the back or self-induced voltage against which the current in the 
first antenna must be driven. Therefore it would be expected that 
the mutual impedance between two antennas of equal length would 
approach the self-impedance of one of them as the antenna spacing 
approaches zero. This is indeed the case, and it will be found, if 
antenna spacing d is put equal to zero, that the formula for mutual 
resistance between equal-length antennas reduces to the expression 
(11-5) for the radiation resistance of a single antenna. In the case 
of the mutual-reactance formula it is found that, except for the 
special case of H equal to an odd multiple of )1/4/4, the mutual react-
ance becomes infinite as the antenna spacing approaches zero. 
This gives a value of infinity for the self-reactance of an antenna. 
The answer is correct for the conditions stated, namely for the 
sinusoidally distributed current in a filamentary- or zero-diameter 
antenna. (It will be shown in section 11.08 that the inductive 
reactance of a wire becomes infinitely large as the wire diameter 
approaches zero.) It is evident that in computing the reactance 
of an antenna, its finite diameter will have to be considered. The 
reason why the approximation of an infinitely thin antenna is valid 
for computing radiation resistance but not reactance, becomes 
apparent when it is recalled that the radiated power, which deter-
mines the value of radiation resistance, depends only on the distant 
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fields. On the other hand, the reactive power, and hence the 
reactance of the antenna, depends upon the induction and electro-
static fields close to the antenna. The strength of these near fields 
depends to a marked degree upon the shape and thickness of the 
antenna, whereas these same factors affect the distant field only 
slightly. 

The computation of the reactance of a finite-diameter antenna 
can be accomplished by using the induced-emf method in a manner 

similar to that employed for comput-
ing antenna resistance. The electric 
intensity Ez due to the assumed sinu-
soidal current distribution is evaluated 
at the surface of the antenna. Then 

Jdo the magnitude of Ez at each point is 
- —  ro= multiplied by the current in the ele-
 ment of area at that point (and by 

- _ _ the sine of the phase angle between 
them) to give the reactive power 
associated with the element. This 
product is then integrated over the 
surface of the antenna to obtain the 
total reactive power. Dividing the 

reactive power by the square of the current at the reference point 
gives the reactance of the antenna (referred to the current at the 
reference point). 

Figure 11-11 shows a length of a cylindrical antenna of radius 
ro, which is assumed to be carrying a sinusoidal distribution of 
current along its length. The current is uniformly distributed 
around the circumference of the cylinder, the major portion of it 
flowing in a very small thickness of conductor adjacent to the outer 
surface. For purposes of making an approximate computation it 
may be assumed that the electric field at the surface, calculated 
from the actual current distributed around the cylinder, would be 
the same as that which can be calculated by considering the current 
to be concentrated along a filament at the axis of the cylinder. 
Actually, the " average" distance S from a point P on the surface 
to a current element Jda on a typical ring located a distance Z2 — Z1 
from P is somewhat greater than the distance of P from the cor-
responding point on the axis given by V(Z2 — Z1)2 -I- r02. It has 

FIG. 11-11 
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been shown* that if an effective radius a, equal to V2 ro, is used as 
the radius of the cylindrical surface on which E is calculated, the 
results of this simplified analysis will be very close to those obtained 
by a rigorous analysis. In view of the fact that the current distribu-
tion along the length of the cylinder is not known, and a sinusoidal 
current has been assumed, a more rigorous analysis for this case 
would hardly seem to be justified. 

Now referring to Fig. (11-11), both E. and J are constant around 
the circumference of the antenna at a given height, say zo. Since 
the linear current density J, integrated around the circumference, 
is just the total antenna current I at that cross section, the reactive 
power associated with a ring of height dz is 

—MIE.III(z)1 sin e dz 

The total reactive power for the whole antenna is 
r 

-34À, sin 1,1, dz 

and the antenna reactance referred to the loop current is 
If 

— 1E,11/(z)1 sin e dz (11-24) 
/.2 o 

In this expression I(z) is the (assumed sinusoidal) antenna current 
and E. is the electric intensity due to such a current at a distance 

from the current of a = ro. Now except for the point of 
reference (24) is equivalent to the imaginary part of (13), which 
gives the mutual reactance between two filamentary antennas. 
Thus within the limits of the assumptions and approximations 
made, the reactance of an antenna of finite radius ro is equal to the 
mutual reactance between two filamentary antennas of the same 

length spaced Vi" ro apart. Substituting a = ro for d in expres-
sion (23) for mutual reactance gives for the reactance of a monopole 

antenna of height H and radius ro = a/VI 

X = —30[sin pH cos PH(2 Ci v — 2 Ci ui + Ci vi — Ci u2) 

cos 2PH 
2 (2 Si ui — 2 Si uo + 2 Si vi — Si u2 — Si v2) 

— (Si ui — 2 Si uo + Si vi)] (11-25) 

* O. Zinke, " Fundamentals of Voltage and Current Distributions along 
Antennas," Arch. Elektrotech., 35, 67-84 (1941). 
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where uo = 13a 

u1 = el(VH2 a2 — H) 

vi = e(VIP ± H) 

U2 = /5(-02H)2 z2 ± 2H) 

V2 = P(N/(21/)2 + a' — 2H) 

The radius of the antenna will normally be a very small fraction 
of a wavelength so that 

0a « 1 

and the following approximations may be used. 

(0a)  Si Oa) = — 8 — • • • ••,•-• ea 1.--• 0 

Ci 0(-VH2 a2 — H) Ci OH (1 + 2c4.2 — 1) ee 

Ci 0(-V(2H)2 a2 — 2H) Ci (Z) 

Si u1 ee 0 Si y1 ee Si 2011 

Si th ••--•• 0 Si u2 e--• Si (40-1) 
Ci y1 ee Ci (201-1) 

Ci u2 Ci (40H) 

Ci(2H 131 

Using these approximations, expression (25) becomes 

X = —30 isin OH cos OH [2 Ci 20H — 2 Ci ( 21) -I- Ci (Z) 

— Ci 40H] c°s 2SH [2 Si 20H — Si 40H] — Si 20111 
2 

Now when x is very small, Ci x -y -I- ln x where -y = 0.5772 • • - 
is Euler's constant. Using this substitution, the second and third 
terms of the above expression may be combined 

_2 ci (fia2) ( 3a2 
2H -1- '1  = — 7 + ln (iLl_ a2) 

so that the final expression for the reactance of a monopole antenna 

of radius ro = a/Vi and length H becomes 
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X = —15 { sin 213H[ + ln (h) + 2 Ci (2PH) — Ci (4PH)] 

— cos 2pH[2 Si (2PH) — Si (OH)] — 2 Si (2PH)) (11-26) 

For the particular case of a quarter-wave antenna, sin 2PH = 0, 
cos 2,9H = — 1, and the expres3ion for reactance reduces to 

X = 15 Si (4eH) 
= 15 Si (2r) = 21.25 ohms 

Expression (26) gives the reactance (referred to the current loop) 
of a monopole antenna of length H and radius ro = a/Vi, as 
given by the induced-emf method, using the sinusoidal current 
distribution assumption. The reactance referred to the base can 
be obtained from (26) by dividing by sin' H. Figure 11-12 shows 
resistance and reactance values computed by this method for short 
monopole antennas of different thicknesses. The resistance or react-
ance of the corresponding dipole antennas of length L = 2H is 
just double that of the monopole antenna of length H. 

It is seen that under the assumed conditions of sinusoidal cur-
rent distribution, a quarter-wavelength antenna has a positive 
reactance of 21.25 ohms, and this value of reactance is independent 
of antenna diameter as long as the latter is small in wavelengths. 
For lengths other than multiples of the quarter-wavelength, the 
reactance depends very greatly on the antenna diameter, being 
very large for thin antennas. This fact indicates the desirability 
of using fat antennas for broad-band applications such as television, 
where a low ratio of antenna reactance to resistance (low Q) is 
required. 

It will also be seen that, as the antenna length is varied, the 
reactance goes through zero for some leneh shorter than a quarter-
wavelength. This means that the " resonant" length is always 
somewhat less than a quarter wavelength, being shorter for fat 
antennas. 

Problem 8. Verify that as the spacing d approaches zero, the expres-
sion ( 11-22) for mutual resistance between two antennas of equal height 
reduces to the expression for the radiation resistance of a single antenna. 

11.06 Note on the Induced-emf Method. The power radiated 
from an antenna has been calculated by two methods. The first 
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of these methods, called the Poynting vector method, was covered 
in chap. 10. The second, known as the induced-emf method, was 
the subject of this chapter. Because of certain questions that 

+20 

IpJ 
1;; ;1;1 1;11 1;11,1;1 

. r 
,,REÍ 

• c d 
DUtV 

Iii. e - .41 
ERR ....r.. ERARE I 

L 
.05 .10 .15 20 .25 3C 

.100 70 

40 

-5 

-6 

HA 

60 

50 

40 0 

20 

10 

Fm. 11-12. The resistance and reactance (referred to base) of 
short monopole antennas as computed by the induced-emf method. 

inevitably are raised concerning this latter method, it is desirable 
to compare the two methods in some detail.* 

(a) Poynting Vector Method. A certain current distribution is 
assumed to exist along the antenna. The electric and magnetic 
field intensities due to the assumed current distributions are corn-

* The clarification of the induced-emf method is due to R. E. Burgess, 
"Aerial Characteristics," Wireless Engineer, 21, 247, 154 ( 1944). 
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puted at a point P on some surface enclosing the antenna. The net 
outward flow of power through this surface is obtained by integrat-
ing the Poynting vector E X H over the entire surface and over a 
cycle in time. In practice, the enclosing surface is usually chosen 
to be a sphere of very large radius, under which condition the 
difference in distance to various points on the antenna affects only 
the phase, and not the magnitude, of the contributions to the total 
field and hence the computation is correspondingly simplified. A 
sinusoidal current distribution is usually assumed, and the method 
is in error only by the amount that the radiation fields, produced by 
the actual current distribution, differ from the radiation fields 
calculated from this assumed sinusoidal distribution. Inasmuch 
as the actual current distribution is known to be very nearly 
sinusoidal for thin transmitting antennas, the answer obtained is a 
good approximation to the true power radiated. 

The calculation is usually made assuming a filamentary current, 
but the results hold for finite diameter antennas as long as the 
diameter is very small compared with the length and compared 
with a wavelength. 

(b) Induced-emf Method. In the second method a filamentary 
current distribution is assumed as before and the electric and mag-
netic intensities resulting therefrom computed. However, in this 
case the point P1, at which the fields are computed, is taken right 
at the filament. Each current element I dl is multiplied by the 
component E. of the electric field parallel to it at that point, to 
obtain the power required to drive the current against the electric 
field. The real part of the total power, obtained by integrating 
1E11/1 dl cos # over the length of the antenna, represents the total 
power radiated (ohmic losses assumed negligible). ip is the time 
phase angle between E. and I at the point in question. This 
method gives exactly the same value for power radiated as the 
previous Poynting vector method. This is as it should be because, 
as will be shown, this method can be derived directly from 
the Poynting vector method. The approximation involved in this 
method is the same as in the Poynting vector method and is that 
of assuming a sinusoidal current distribution, whereas the actual 
current distribution is only approximately sinusoidal. 

Although the induced-emf method is essentially the same as the 
Poynting vector method and gives exactly the same results, its 
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validity is sometimes questioned when it is applied to an actual 
antenna having a finite diameter. The reason for this is as follows: 
If the antenna is assumed to be a perfect conductor (the usual 
assumption), the boundary conditions require that the total electric 
intensity E along the surface of the antenna be zero. In the case 
of a transmitting antenna, excited by a lumped voltage across a 
gap, the only electric field existing along the surface of the antenna 
is the field E„ induced by the currents and charges along the 
antenna. The boundary conditions require that this electric 
intensity be zero everywhere on the surface, and therefore the 
product IE.11/1 dl cos 1P is zero at every point along the antenna. 
Then IE.11/1 dl cos integrated along the antenna is zero and the 
power radiated from the conducting part of the antenna is zero. This 
also is as it should be, because the conductor contains in itself no 
source of electromagnetic energy, the energy coming from the gen-
erator. However, there are two questions raised that require 
clarification. 

1. Since the actual IE„II/I dl cos IP that exists along the sur-
face is zero and, therefore, not even approximately the same as 
IE.11/1 dl cos 4,, computed from the assumed sinusoidal distribution, 
is there any justification for expecting that the value given by the 
computed f jEil I/1 dl cos 4/ is even approximately correct? 

2. Since the actual flE.11/1 dl cos 4, over the surface of the 
conductor is zero, an incidental question is " from where is the power 
radiated?" 

The answer to the first question regarding the validity of the 
method can be obtained readily by considering initially a receiving 
antenna of resonant length that has the load terminals a-b short-
circuited and which, therefore, reradiates all the received energy. 
Assume first that the current flowing in the antenna owing to the 
received electric field has a true sinusoidal distribution. The self-
induced electric intensity or " back voltage" due to this current 
flow (and the corresponding charge distribution) can be calculated 
in the usual manner and will be designated by E.. (The subscript 
s indicates that this is the electric intensity computed from the 
assumed sinusoidal distribution.) Then, if the received or applied 
tangential field—which will be designated by E'—were exactly equal 
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and opposite to E. at all points along the surface of the antenna, the 
assumed current would flow in the antenna. The boundary con-
ditions at the surface of the antenna would be satisfied because the 
total electric intensity parallel to it would be E = E' E. = 
The power reradiated by the antenna is obtained by integrating 
the Poynting vector over the surface of the antenna. As pointed 
out above and in the next section, this is equal to IE.11/1 dl cos 
integrated along the length of the antenna. Similarly, the power 
per unit length flowing into the antenna from the received field is 
—1E'llII dl cos 19 (outward flow of energy is assumed positive). 
The net flow of power out of the antenna, which is the difference 
between these two, is equal to zero. 

Next consider the same short-circuited receiving antenna under 
conditions where the received field E' does not have the particular 
configuration required in the above case, but instead has some 
arbitrary value along the length of the antenna. In particular, 
consider the case where E' is uniform, as it would be for reception of 
a plane wave at O = 90 degrees. Then the current distribution will 
not be sinusoidal, and the actual current distribution will be such 
as to produce a self-induced field E" along the antenna, such that 
E' E" = 0. That is, E" will be -uniform or constant along the 
antenna and will have a value E" = —E'. Now, although the 
actual current distribution cannot be sinusoidal, it is known to be 
very closely sinusoidal for the resonant length. Evidently then, it 
requires but a very small change in current distribution from the 
sinusoidal to change the self-induced parallel component of E from 
that calculated for the sinusoidal current cases, E„ to the value 
E" = — E' that must exist in the actual case. Since the current 
distribution is but little changed from the sinusoidal, the power 
radiated for a given loop current must be very nearly equal to the 
case for the true sinusoidal distribution. (Small changes in 
current produce only small changes in the radiation terms of 
the electric field). The actual po-ver reradiated in this case is 

dl cos 4,, where I,, is the ac ,ual current and E" is the self-
induced parallel component of electric field due to it. But from 
the previous statement this must be very nearly equal to the power 
reradiated in the sinusoidal case, which is f IE,I 1.1 dl cos 1P. That is 

dl cos tp = f - dl cos 1,1, e-- flE.111.81 dl cos 1P 
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This means that, although the actual current is not sinusoidal and the 
actual self-induced voltage E" = E' differs greatly from that 
calculated from a sinusoidal distribution, nevertheless, the radiated 
power computed from an assumed sinusoidal distribution with its 
resulting E, gives an answer that is very close to that which would 
be obtained from f — 1E'l I/al dl cos 4, if the actual current /0 were 
known. However, it should be noted that this is true only because 
the actual current distribution is nearly sinusoidal. 

Finally, consider the case of a transmitting antenna in which 
the applied electric field is concentrated over a short section at the 
center. 

If Vis the applied voltage and S is the separation of the terminals 
a-b (Fig. 11-1b), then the field across a-b can be considered to be 

E' = V/S. The applied field is zero everywhere else 
along the antenna. The actual current that flows in the 
antenna as a result of the applied voltage V must be 
such as to produce a self-induced electric field opposite 

0 to the applied field everywhere along the antenna. That 
--51- is, the self-induced field must be zero everywhere along 

the antenna except between a and b, where it has a value 
of — V/S. It is an experimental fact that the actual 
antenna current that flows and necessarily produces the 
above electric field distribution, is very closely sinusoidal 
for thin transmitting antennas. Therefore, as in the 
discussion of receiving antennas, the radiated power 

computed from f I Esil/ii dl cos 4, must be very nearly equal to the 
actual power radiated. In this case, the actual power radiated is 

FIG. 11-13 

foL — 1E1111..1 dl cos 4, a lEil Val dl cos 4, = cos 

where /0 is the current at the feed point and 0 is the angle between 
V and I. Therefore, actual power radiated = IVilIol cos 
foL 

jEs111,1 dl cos 4,. 
It should be noted in passing that this latter integration should 

be performed over the whole of the antenna including the section 
between a and b. However, since E, between a and b is of the same 
order of magnitude as E, at adjacent points on the antenna, the 
error incurred in neglecting the section a-b becomes very small 
when the gap length is small compared with the length of the 
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antenna. However, the situation is very different in the case of 
the actual current distribution with the resulting actual distribution 
of the self-induced field. In this latter case, the integral is zero 
everywhere, except at the gap or generator. As the gap is made 
very small, the actual E' across it becomes very large for a given 
applied voltage V and the gap or generator section cannot be 
neglected. Indeed, it may be said that all the power flows out from 
this generator section, being guided into space by the antenna 
conductors. 

11.07 Equivalence of Induced-en-if and Poynting Vector Meth-
ods. It is easy to show that the induced-emf and Poynting vector 
methods for computing radiated power are one and the same method 
when the surface of integration coincides with the surface of the 
antenna. Consider an antenna of length L and radius R, which 
has some arbitrary current distribution I. The components of E 
and H, tangential to the surface along the length of the antenna, are 
E„ and Ho. At the top and bottom ends the tangential components 
are Er and Ho. If the real Poynting vector is integrated over the 
surface of the antenna, the following result is obtained: 

Re L E X H* • da = f: !Et! Viol cos ip 27rR dz 

± 2 foR , E,.,,„„, cos#2irrdr. 

where 1,1, is the time phase angle between the tangential components 
of E and H. 

The first integral covers the entire surface of the antenna except 
the end caps. The second integral covers these end caps. The 
quantity 27RH4, is equal to the line integral of Ho about the antenna 
and, by Maxwell's first equation, this is equal to the total current 
flowing through the closed path, so t hat 

= f n dl = I. 

where I. is the current along the antenna. Using this relation, the 
first integral becomes 

foL 
1E/114 COS dz 

The angle 1p is now the time phase angle between E. and I., because 
I. and Ho are in time phase. 
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In the end caps the current flows radially and must be zero 
at the center. Denoting by Jr the radial surface current density 
in the caps, the relation I-I=JXn becomes Ho = Jr for the top 
and bottom caps. Then leHo = 2irrJr = Ir is the total radial 
current flowing across a circle of radius r on each of the caps. 
Using this relation the second integral becomes 

2 foR [NIL! cos # dr 

The total surface integral may then be written 

Re fs E X H* • da = f:I.E.11/.1 cos 1,G dz ± 2 foR lE,11/,1 cos 1,1, dr 

Thus the Poynting vector, when integrated over the surface of the 
antenna, yields the induced-emf integral. 

It is evident that the contribution to the radiated power from 
the end surfaces of the antenna must be very small, since the current 
there is very small and in such directions that the various current 
elements produce radiation fields which cancel one another. There-
fore, the second term of the above integral is usually dropped, and 

the power is obtained from 

cos 4, dz 

11.08 Uniform Cylindrical Waves and the Infinitely Long Wire. 
In foregoing sections the impedance of finite-length antennas have 
been computed by the induced-emf method, using an assumed 
sinusoidal current distribution. A simpler problem is that of 
determining the impedance per unit length of an infinitely long 
wire, which is assumed to carry a uniform, in-phase current I em. 
Although this may appear to be a rather unreal situation, it can be 
approximated in practice by a very long wire that is excited by a 
parallel electric field of constant value. This particular problem 
has the definite advantage that its solution is simple enough to 
permit of easy interpretation. Before solving it a brief discussion 
of uniform cylindrical waves will be in order. 

For a homogeneous medium having the constants g, e, and fy, 
Maxwell's equations in cylindrical co-ordinates are 
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OH, aH,„ . (0. + icoe)E, 0E. _ aaE,„ . _iO4,H, 
p ao — az p aq5 Z 

, „,,, 
aE, aE„ aH, aH. = (0. ± icoe)E0 _07 _ 7,17. _ —20,12.n,, .,..1.-.i ) 

az ap ` 

; .co H  
a(pHo) — + p a p a(pEo p—a—CP aE, _ 3 e z 
p aP Pact, 

For fields that have no variation with 4.i or z, such as would be gen-
erated for example by an infinitely long wire carrying a uniform 
current / ei«d, eqs. (27) reduce to 

aH, 
= — (cr jzoe)E4, 

ap 
,=  jcogn 
OE , 

a(p110) a(pE,$) 
— (o• jcoe)E,   — 

P aP pap 

The waves obtained with these fields are uniform cylindrical waves, 
having no variation of amplitude or phase over any cylindrical sur-
face represented by p = po. It is evident that uniform cylindrical 
waves are transversely electromagnetic, and that they may be 
divided into two types, viz., (a) those having E. and Ho compon-
ents, and (b) those having Eo and H, components. The former 
would be generated by the infinitely long wire mentioned, whereas 
the latter would be produced by an infinitely long line of closely 
spaced coaxial loops carrying equal and uniform currents that are 
everywhere in phase. 

Considering the first of these types, the two relations 

aE, 
p OP .   — + jcue)E, ap = 3wµ114, (11-29) 

(11-28) 

can be combined to yield a wave equafion in cylindrical co-ordinates. 

02E, 1, 0E 
_ _ 72E. = 0 (11-30) 

p 2 p ap 

where as usual = izol2(0" f ..1(0e) 

For the special case of wave propagation in a nonconducting 
medium, o• = 0 and 7 2 = — cepe, so that the wave equation becomes 

02E, aE, 
(11-31) — —  -F 13% •=- 

49(32 P aP 
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where = wN/TiE is a real number. Dividing through by $2 in 
(31) shows it to be an ordinary Bessel equation of order zero with 

the independent variable (f3p): 

(32E. _,_ 1 a E. , 
aop)z -I- op) 3(13) -r = 

As in sec. (9.05) the general solution may be written in terms of 
zero-order Bessel functions of the first and second kinds. 

Ez= AJ0(3p) BNo(Pp) (11-33) 

In this form the solution represents standing waves. An alterna-
tive solution may be written in terms of linear combinations of Jo 
and No. 

where 

(11-32) 

E. = A LT ow (OP) + 13 H o(2) (OP) (11-34) 

He($p) = Jo(13p) + iN.(eP) 
Ho(2)(ap) = Jai') — iNo(13p) (11-35) 

Hon) and Ho(2) are called Hankel functions of zero order, first and 
second kinds, respectively. When appropriately combined with 
the time factor el'", these functions represent inward- and outward-
traveling waves respectively. That this is so, is evident from the 
asymptotic expressions for large values of (fip). These expressions 
are: 

0 ir 
110(1) (SP) —> ( P ) -4/ 

H0(2) (i3p) —> e-i(13P-41 
rOP 

for fit) —> (11-36) 

which should be compared with the corresponding asymptotic 
expressions for Jo and No. 

Jo(Op)—> .\ilj-cos(i3p 

No(ap) \IL sin ((Op — 1.4) 
7P3P 

It is also apparent from (35) that the Hankel functions bear a 
relation to the Bessel functions similar to the relation between the 
exponential functions (with imaginary exponents) and the trig-
onometric (sine and cosine) functions. 

for fip -› 00 (11-37) 
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For propagation in a conducting medium solutions to eq. (30) 
will be required. Dividing through by 72 in (30) shows it to be a 
modified Bessel equation of order zero in the variable (-yp) 

a2E, aE — Ez = 0 
aeYP)2 7P aerp) 

Solutions to this modified Bessel equLtion are called modified Bessel 
functions and are denoted by /0(7p) and Ko(7p) (for the zero order). 
Expressions for the I and K functions are given in the appendix. 
For small values of (7p), 

Io(yp) —4 1 
Ko(yp) —) — [In (yp) C In 2] for -y —+ 0 (11-39) 

Since eq. (30) reduces to (31) when 7 is a pure imaginary, it is not 
surprising to find that the modified and ordinary Bessel functions 
are related to each other. The relat ons are 

Io(jz) = Jo(z) 

Ko(iz) = i.10(z) — Aro(z)] 

= — .1r2 [No ) o(z)] (11-40) 

The modified functions I and K are most suitable for propagation 
in a dissipative medium. For a losdess medium, for which y is a 
pure imaginary, the corresponding Bessel or Hankel functions are 
usually more convenient. 

Field about an Infinitely Long Wi-e. Consider now the electro-
magnetic field about a long wire cal rying a current I 0". In the 
region external to the wire the Hankel function solutions of eq. (31) 
will be appropriate, and the expression for E can be written as 

E1 = Ailloa)(13P) -131.11o(2) (8p) (11-41) 

Only the zero-order functions appear, because there is no variation 
of the field in the ck direction. If the region is assumed to extend 
to infinity, there is no reason for ix taming the first term of (41), 
which represents an inward-traveling wave, and so the solution is 
given by 

= 1311/0'2)(9P) 
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which represents an outward-traveling wave. Using eq. (29), the 
expression for magnetic intensity will be 

B, =,- — = c)(3p) = — — 03P) 
Jwit aP .10 1-1 371 d Hi 

since [1-10")(u)] = —1/1")(u) 

At 

Therefore, 

Then 

= 11. = 2—Fra 

j 
B1 — ni  

27aHi(2) (0a) 

— /377i 
4 

E, = — SI — 4 1/0(2) (0P) 

(for Pa << 1) 

ni_ e-i(19P-1.) 
2 .VPX 

Ho = _ H i(2)(i3p) I  _if e \ 4 2 Nfpî 

At large distances from the wire the fields decrease in amplitude 

as 1/Vii. Also at large distances the fields are periodic in 27r 
radians (this is not true close to the source) and appear to have 
originated at an " effective" source, which is one-eighth of a wave-
length out from the center of the wire. 

The outward radial impedance is 

E, Hoe(aP)  p+ — — = jn   (11-43) 
114, Hi(2) (i3p) 

at large distances, where the asymptotic expressions for the Hankel 
functions can be used, the radial impedance becomes a pure resist-
ance 

(11-42) 

Zp+ n = 377 ohms (for 13p>> 1) 

The impedance of the wire can be obtained from a consideration 
of the field intensities at its surface. Assuming first a perfectly 
conducting wire of radius a, the total tangential electric intensity 
at its surface, E(a), must be zero. Then 

E(a) = E. ± E1(a) = 

or E. —E,(a) 
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where E. is the applied electric intemity that causes the current / 
to flow, and Es(a) is the self-induced electric intensity (due to the 
current I) evaluated at the surface of the wire, P = a. (In this 
problem the " applied" field E. migly, be the incident field from a 
distant transmitter). Then the exterlal impedance of the wire per 
unit length will be 

Ea Es(a)  
Zext — I 22-aHo(a) 

Therefore, 

ze. _ in 110."03a) 
t HI :2) (3a) 

For fia « 1, as would normally be the case, (44) reduces to 

_ in f J0(3a) — ilio(0a)1 
2ra LJ1(3a) — jiMela) J 

. 2 
1 ;-r (ln C — ln 2) 

13a . 2 
7 1-3 irela 

60,r2 in 
— — ln 

2ra 

= iTøX 10— ) 
-Fr 

(11-44) 

(11-45) 

(11-45a) 

The real part of this external impedance is the radiation resist-
ance per unit length, and the imaginary part is the external induc-
tive reactance per unit length of the wire. The former is independ-
ent of wire diameter, whereas the latter becomes logarithmically 
infinite as the wire diameter approaches zero. The quantity 
µ/2r ln X/Ira is the high-frequency faternal inductance of the wire 
(per meter length). 

If the assumption of perfect conductivity is not made, the total 
tangential intensity E(a) at the surface will not be zero, but it will 
have the (small) value required to drive the current I against the 
internal impedance of the wire. This total or resultant field at the 
surface of the wire is as before 

so that 

E (a) = E0 -- E1(a) 

E. = E(a) E,(a) (1146) 
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Dividing by the current I gives the impedance per unit length of 

the wire. 
E. E(a) Es(a) _ ,.). ,_ 7 

z = I — I I Glut -r za.it 

For the fields within the wire it is the appropriate solutions of 
(38), which must be used. Therefore within the wire 

E, (it) = A/0(7P) + BKo(7P) 

The second of these functions becomes infinite at p = O. Since 
E, must always remain finite this requires that B = 0, so 

E, (it) = AI0(7p) 

and from (29), remembering* that /0' = Ii 

114, = 1-1- II(7P) 
3014 

(11-47) 

At the surface of the wire, E, (it) must equal the total or resultant 
electric intensity E(a), and 21-a/14, = I. 

Therefore 

and 

E(a) = AI0(7a) I = 2ra 37e1.11(7a) 

z _ E(a) _ jcoµ Io(7a) 
i" — .I 2ray /1(7a) 

/in, I0(7a) 
— 27a /1(7a) 

(11-48) 

where n„, = V jowl (o. ± jcue) is the intrinsic impedance of the 

metal. 
Equation (48) gives the exact expression for the internal imped-

ance of the wire. The evaluation of this expression is simplified by 
recalling that for all metallic conductors at frequencies less than 
optical, 0- » WE and 7 e•--•• -Vic—ogcr = VE-dgcr .N5 -= VF. rgo- /45°. To 
assist in obtaining numerical values for expressions such as (48), 
the following auxiliary functions have been defined and tabulated 

1.0(v Vi) = ber v -I- j bei v 

• Recurrence formulas for the I and K functions differ from the other 
Bessel functions. These formulas are listed in the Appendix. 
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Tables of these "farmyard functions .' may be found in the refer-
ences noted.* Curves showing the internal impedance of wires as 
given by (48) may be found in sevei al texts.t Two special cases 
of this general expression are of importance practically and will be 

considered. 
The first of these special cases occurs for thin wires at low 

(power) frequencies, where the wire radius is small compared with 
the depth of penetration. For this case, 1^yal « 1, and only the 
first two terms of the power series e> pansion for /0(7a) and /1(7a) 
need be used. Then 

(7a)2 
/0(7a) ,— 4 ' 

Zipi (low freq) 

I(-ya) •-*"• 7a + (7a)3 2 16 

1  ± 
ra2(7 jcue) 87 
1 . 

—7- + 7ra r fir 
(11-49) 

These terms represent respectively the low-frequency resistance and 
internal inductive reactance of the wire, per unit length. The low-
frequency internal inductance of the wire is µ/87r henry/m. 

The second special case of practical importance occurs for 
frequencies sufficiently high that flu: depth of penetration is small 
compared with the radius of the wire. This makes Fyal>> 1. 
Except for quite thin wires, this case covers all radio frequencies. 
Using the asymptotic expansions for /0 and Ii, the internal imped-

ance becomes 

Zim (high freq) =- = —R, ± 2ra (11-50) 2ra 27ra 2ra  

As would be expected, when the depth of penetration is small com-
pared with the radius, the internal impedance per unit length of 
the wire is equal to the surface impedance of a thick plane sheet 
of the metal 1 meter long and 27ra meters wide. Evaluating (50) 
in terms of the constants of the metal shows that 

1 [0g _i_j \Fit 
Zint (high freq) —27ra 2ra 2a- (11-51) 

* McLachlan, Bessel Functions for Engineers, Oxford Press, London, 1934; 
Dwight, Tables of Integrals, Macmillan, New York, 1934. 

For example, Ramo and Whinnery, Fields and Waves in Modern Radia 
John Wiley and Sons, New York, 1944, caap. 6. 
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The first term is high-frequency ohmic resistance of the wire per 
unit length, and the second term is the high-frequency internal 
inductive reactance of the wire per unit length. 

PART II 

Circuit Relations and Field Theory 

In the first part of this chapter the relations of field theory have 
been used to develop expressions for the impedance of a straight 
wire in two rather special cases. In the first case the wire was of 
finite length and was assumed to carry a sinusoidally distributed 
current. The impedance was calculated at the terminals. In the 
second case the wire was assumed infinitely long with a uniform 
current distribution, and the impedance per unit length was calcu-
lated. It is apparent that it should be possible, in a somewhat 
similar manner, to derive an expression for the impedance at the 
terminals of a wire circuit of any configuration. This is indeed 
the case, and it will be shown that the so-called circuit relations, by 
means of which the engineer solves for the current in a circuit in 
terms of the applied voltage and the circuit impedances, are deriv-
able from field theory as special and approximate cases. Before 
carrying through such a derivation, it is desirable to re-examine 
circuit concepts for a simple closed circuit, to see how these con-
cepts follow directly from the integral statement of Maxwell's 
equations. 

11.09 Circuit Relations and Maxwell's Equations in the Integral 
Form. Consider the Maxwell emf equation (Faraday's law) 

applied to the simple circuit of Fig. 11-14 consisting 
of a loop of wire with terminals a-b. 

L .) E, ds fE, ds = (11-52) 
(ab) 

where E. is the component of E parallel to the wire 
and (1, is the magnetic flux through the loop. 

The first integral is taken along the wire, and the second integral 
is along a straight line joining the terminals. The E. along the 
path of integration is the self-induced electric intensity, produced 
by the charges and current in the circuit. The voltage V°, which 
must be applied or impressed at the terminals of the circuit to 
transfer the charges against this self-induced field, will be equal 
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and opposite to the second integral. That is, 

V° = — ¡(ab) E. ds 

Then eq. (52) can be rewritten as 

V° = — fab) E. ds = E11 ds jcel, 

379 

(11-53) 

Dividing through by the current 1, an impedance equation is 
obtained. 

V ° 8 CIS 
Z = ca )I + -I (11-54) 

The first term on the right-hand side is the internal impedance Zi 
of the wire, and the second term represents the external reactance. 
If the external inductance L. is defined by 4)/I, then eq. (54) 
becomes 

Z = jwii. (11-55) 

In the d-c case (co = 0), the external reactance is zero and the 
internal impedance is the resistance of the wire. In the alternating 
case, the internal impedance Zi is complex, and consists of a resist-
ance Ri and an internal reactance Xi = jeoLi. If a perfectly con-
ducting wire is assumed, the first integral on the right-hand side of 
(53) is zero, and the applied voLage is equal to the external 
reactive voltage drop jcoc1, = jzteL.I. For an actual conductor the 
total inductance L is the sum of the external and internal induct-
ances, that is L = L. + L. In practice L « L., so that the total 
inductance L is very nearly equal to the exter-
nal inductance L. The inductance L can be 
increased by winding the wire in the form of a f  e 

coil. In this manner the magnetic flux per c d 

ampere is increased, and the same magnetic 
flux is caused to link several turns. If the 
inductive reactance of the coil is large enough 
so that the inductive reactance of the rest of the circuit may be 
neglected, the inductance is said to be " lumped." 

If a condenser is connected in series with the loop as in Fig. 
11-15, the emf equation becomes 

foe E. ds f E. ds (eta) E. de ± I Es ds —jceD (11-56) 
(de)  (ab) 

FIG. 11-15 
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The first and third terms are due to the internal impedance of the 
wire and condenser plates. The second term is the voltage between 
the condenser plates. This is proportional to the charge Q on the 
plates, and the ratio 

E. ds 
f( de) 

is the capacitance C of the condenser. Q is related to the current / 
by 

Q = I dt = , 
.1(0 

so the second term of eq. (56) may be written 

1 
Es ds I 

Le) 3wC 

The applied voltage V° is equal to the negative of the fourth integral, 
so eq. (56) becomes 

Vo 1 = zil -I- ice — I 
jcoC 

(11-57) 

If the small internal reactance of the wire is lumped with the external 
inductive reactance, (57) may be written as 

1 
= I (R jcid, 

.1cou 
(11-58) 

where L is now the total or effective inductance of the circuit. 
This is the usual form of the circuit equation. 

There are several approximations and assumptions involved in 
writing eq. (58). Some of these will be evident from the manner 
of its derivation from eq. (52), but others are more obscure. 
They will be listed here and discussed in greater detail later in this 
section. 

1. The current / has been assumed to have the same magnitude 
in all parts of the circuit. This means that " distributed capaci-
tance" effects, or displacement currents from one conductor to 
another have been neglected. 
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2. An inductance L has been defined for low frequencies (actu-
ally at co = 0) and has then been used in (58) as though it were 

independent of frequency. 
3. Retardation effects, e.g. radiation, have been neglected. 

At power frequencies, the approximations are excellent and the 
neglected quantities are indeed negligible. However, at radio fre-
quencies and more especially at ultrahigh frequencies, some of 
the neglected factors become important, and the circuit approach 
breaks down unless appropriate steps are taken to make circuit 
concepts carry over, for example, by generalizing definitions. Gen-
eralized definitions for circuit constants can be obtained by consider-
ing the circuit as a problem in field theory. The direct derivation 
of E and H from Maxwell's equat) ons in the integral form was 
easily done for the closed or quasi-closed circuits of Figs. 11-14 and 
11-15. However, for open circuits such as antennas, where radia-
tion is important, it is generally simpler to obtain E and H indirectly 
through the retarded potentials A and V. It is instructive to use 
this more general field method to de ive the simple circuit relations 
already considered. Such a deriva.ion points up the approxima-
tions involved in the latter relations and indicates the extent of the 

errors incurred when ordinary circuit theory is used at high fre-
quencies. In addition, generalized definitions can be obtained for 
the circuit " constants," by means of which it becomes possible to 
extend the use of the circuit approach to the ultrahigh frequencies. 

11.10 Derivation of Circuit Relations from Field Theory. The 
electric circuit laws of Ohm, Faraday, and Kirchhoff were based on 
experimental observations and antedated the electromagnetic theory 
of Maxwell and Lorentz. Indeed, the theory was developed as 
a generalization from these simpler and more restricted laws. It 
is interesting, but not surprising, then, to find that the circuit 
relations are just special cases of the more general field relations, 
and that they may be developed from the latter when suitable 
approximations are made. Nevertheless, the importance of the 
simple (and approximate) circuit relations should not be under-
estimated. With these beautifully simple relations the electrical 
engineer has been enabled to design and construct electrical systems 
and circuits of amazing intricacy. Without the simplifying assump-
tions of circuit theory the vast power and communication networks 
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of today would not have been possible, for the exact field solutions to 
many of the problems would have been of overwhelming complexity. 

In this section the circuit relations dealing with voltages and 
currents will be derived as special cases of electrmagnetic field 
theory, the theory which treats with charge and current densities 
and their associated fields. 

(a) (b) 
FIG. 11-16. (a) A simple ItLC circuit. (b) A representation 

suitable for the applicaticn of field theory. 

Consider again the simple series circuit of Fig. 11-16 for which 
can be written the circuit equation 

I . 
V° = (11-59) 

jwC 

The applied or impressed voltage V° is assumed to be independent 
of the resultant current I. Equation (59) can be rewritten in 
the form 

± = V R (11-60) 
1 

where V' = — I (11-61) 
3:4C 

is the sum of the reactive voltages across the circuit elements and 

VR = IR (11-62) 

is the net voltage left to drive the current I through the resistance 
R after the reactive voltage drops have been subtracted from the 
applied voltage. 

In field theory relations similar to (69), (61), and (62) may be 
written for electric fields and conduction current densities. Thus 
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at the surface of, or within, a conductor, the conduction current 
density is given by Ohm's law. 

- = E (11-63) 

where u is the conductivity of the conductor and E is the total 
electric intensity tangential to the sui face. In general, this total E 
is the sum of an applied or impressed electric intensity E° and a 
"self-induced" or back electric intensity E' that is due to the 
charges and currents in the system. 

That is E = E° -I- E' (11-64) 

The impressed intensity E° is ass imed to be independent of the 
charges and currents in the syste n under consideration. This 
would be the case for example if lr were the electric field of a 
distant antenna. In this circumstar ce, to use circuit terminology, 
the coupling between the two sys ,ems is sufficiently loose that 
the charges and currents in the secor.d system do not affect (to any 
significant extent) the current flowirg in the distant antenna. 

The " self-induced" electric inten: ity E' that is due to the charges 
and currents in the system under co asideration may be determined 
from Maxwell's equations, either directly or through the scalar 
and vector potentials. In terms of the potentials, 

E' = — grad -7 — cewjA (11-65) 

where V and A are related to the clar.rge and current densities of the 
system through 

V = 
1 P  

i — 

dV A - - v  dV (11-66) 47r6 oi r 4r r 

Then, rewriting (34) and using (63) and (65), the field relations 
at the surface of a conductor may be written as 

E° = grac V ± jcwiti (11-67) 
cr 

Integrating along the conducting petion of a circuit (Fig. 11-16), 
the general circuital relation is obt:Lined, viz.: 

f d • d 

E ds f 22 da ds f ds (11-68) 
e cr c as 
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Making suitable assumptions and approximations, the general 
relation (68) can be reduced to the simple circuit equation 
(59). The steps required to derive (59) from (68) show clearly 
the approximations involved in the simple circuit equation. 

In eq. (68) the path of integration is taken along the surface 
of the conductor parallel to its axis. The expression (67) cannot 
be integrated across the condenser gap, because there both i and °-
are zero and the first expression on the right-hand side is inde-
terminate. If there is no series condenser in the circuit, the points 
c and d are coincident, and the integration is performed around a 
completely closed conducting path. For this case of a completely 
closed path the circuital relation corresponding to (68) would be 

56 E,° ds = ds jcoeLA, ds (11-69) 
cr 

The second term on the right-hand side of (68) has dropped out 
because the gradient of a scalar potential integrated around a closed 
path is always zero. That is 

av 
grad V • ds = ds 

The various terms of eq. (68) will now be considered one at a 
time. The term on the left-hand side of (68) evidently cor-
responds to the applied voltage V°. In circuit work V° is supplied 
by an electric generator, which is usually a complicated circuit in 
itself. However, for purposes of solving for voltages and currents 
in the circuit under consideration (the driven circuit), V° is assumed 
to be supplied across a pair of terminals by a zero-impedance gen-
erator, or by a zero-impedance generator connected in series with 
a lumped impedance equal to the generator impedance. Similarly 
in considering the field relations, the impressed or applied field E° 
usually exists along a complicated configuration of conductors (in 
the generator winding) and may extend over an appreciable portion 
of the circuit under consideration. However, for purposes of 
analysis the impressed field E° is often assumed to exist only along 
a section of conductor of very short length; that is, a " point" or 
"slice" generator is assumed to exist between the points a and b, 
(Fig. 11-16a), so that the applied voltage is 

íd 
a E1° ds = f b Es° ds = V° 

a 
(11-70) 
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Now consider the first term on the right-hand side of eq. (68). 
For the direct-current case, the interpretation of this term would 
be very simple. The current density i1 would be uniform through-
out the conductor cross section and would be given by 

2. = 
A 

where A is the cross sectional area of the conductor. The con-
ductivity is the reciprocal of the resistivity p, and so 

1 p 
Icr = R 

where R' is the resistance per unit length of the conductor. Then 

= —i, • —A = IR' (11-72) 
« A « 

is just the voltage drop (due to resMance) per unit length, and the 
first term on the right-hand side of (68) becomes 

fc d .• d ds f IR' ds = IR (11.73) 

which is the total IR drop around 1 he circuit. 
From (72) and (63) it is seen that for the direct-current case, 

the ratio of total tangential electric intensity E to total current / is 
the resistance per unit length, that is 

E , 
I = R 

For alternating currents, especially at high frequencies, the current 
density is no longer uniform throughout the cross-section of the 
conductor. Instead it varies—both in magnitude and phase 
through the cross-section—so that the total current I, in general, 
differs in phase from the current density at the surface of the con-
ductor. The ratio Ell is now complex and defines z, the " internal 
impedance" per unit length of the conductor. Now the first term 
on the right-hand side of eq. (68) may be written 

fd d fd 
o ds = E,ds = Izids (11-74) 
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When the current I is uniform around the circuit, as it is in the low-
frequency case, (74) becomes 

fd 

Jo ds = /Zi (11-75) 

iX; is the so-called internal impedance of the con-
ductors of the circuit. For direct-current it reduces to the circuit 
resistance. Even in the case of high-frequency alternating cur-
rents, the internal reactance Xi is very small compared with the 
"external reactance" of the circuit obtained from the second and 
third terms on the right-hand side of (68) and may usually be 
neglected. In any event, in circuit work the internal reactance of 
the conductors is usually lumped with the external reactance to 
give the total circuit reactance, and the resistive or in-phase com-
ponent of the first term of (68) is shown explicitly as IR. 

Consider next the second term on the right-hand side of eq. 
(68). When integrated around a closed path, as in the case of a 
circuit containing only resistance and inductance, this term is zero. 
However, for a circuit with a condenser (Fig. 11-16b), where the 
integration is carried from one plate c to the other plate d, there 
results. 

av 
ds = Va — Ve 

Jc 88 
(11-76) 

This is the potential difference between the plates of the con-
denser. If these plates are considered to be very close together, and 
if the charge distributed along the wire is small compared with the 
charge concentrated on the condenser plates (that is, if stray capaci-
tance is negligible compared with the capacitance of the condenser), 
the potential difference (Vd — Va) will be proportional to the charge 
on the condenser plates. That is 

I 
Vd — T7 = Q — = . (11-77) 

C 3:0C 

The proportionality factor C is just the capacitance of the con-
denser as defined for the static case. Thus, for the second term of 
eq. (68), it is possible to write 

av 

jc as = 
• 

(11-78) 
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Finally consider the third term on the right-hand side of eq. 
(68). This could be written 

(11-79) 

where L' = 

fed jzoµA. ds = 

d 4 d f o s (11-80) 

is a "generalized inductance" of tae circuit. This generalized 
inductance depends both on the circuit geometry and on the current 
distribution, and, as defined by (80), it also depends upon where 
in the circuit the current /' is measured. For low frequencies, 
where the current amplitude is constant around the circuit, this 
generalized definition reduces to a well-known formula for low-
frequency inductance [eq. (87)]. o see how the " inductance" 
of the circuit changes as the frequen3y increases, it is necessary to 
examine more closely the integral expression of equation (80). 

For a current flowing in a thin wile, the expression for the vector 
potential at any point in space, due to an elemental length, is 

1 Id 1' c—ier  
dA — (11-81) 

r 

where / is the integrated value of current density over the cross 
section of the wire, and r is the distance from an element of length 
de along the center of the wire to the point at which A is evaluated. 
The total vector potential due to current flow in the entire circuit 
will be 

A = I 56 I rier de 
4r r 

(11-82) 

In the third term of eq. (68) the component of A parallel to the 
axis of the wire is evaluated at the surface of the wire, and integrated 
around the conducting part of the circuit from c to d. This term 
can then be written 

d 

iCt) etA. ds =-
c 

re I, r e—jar 
 ds' • ds 

/1 42-r 
(11-83) 

In the general case / varies witl the position of ds' and must be 
retained under the integral sign. '1 he usual low-frequency approxi-
mations are to assume that / is constant around the circuit with 
no change of phase, and also to neglect the phase shift factor e—mr. 
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At very high frequencies where the circuit dimensions become 
appreciable fractions of a wavelength, both of these approximations 
lead to error. However, the effect of neglecting the phase shift 
factor is much the more important because it is responsible for 
radiation from the circuit. For circuits that are not too large in 
wavelengths, say less than one-tenth wavelength around, the cur-
rent distribution usually departs a surprisingly small amount from 
the low-frequency, constant-amplitude, constant-phase condition. 
(The reason for this can be seen by considering the current ampli-
tude and phase variations along a short-circuited low-loss trans-
mission line, the length of which is less than one-twentieth of a 
wavelength.) Because of these facts it is often permissible to 
neglect variations of current amplitude and phase around the circuit 
while still accounting for the phase-shift factor e—eer. Under such 
conditions (83) becomes 

fa e'er jco/ ic ds' • ds (11-84) 
47rr 

Comparison with jcaL/ shows that 

fcd 
7 4irr ds' • ds (11-85) 

is the factor that, at low frequencies, is identified 'as the inductance 
of the circuit. At frequencies sufficiently low that the phase shift 
is negligible (that is, for which er < < < 1) 

e—er "--• 1 

and the low-frequency inductance is 

56  ds' • ds 
LLI7 = Pd c 4er 

If the circuit is closed, c and d coincide and 

f, 56  de • ds 
4irr 

(11-86) 

(11-87) 

which is known as Neumann's formula for the external inductance 
of a circuit. 

At higher frequencies, where it is no longer permissible to neglect 
the factor e—isr, its effect can be determined by expanding it in series 
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form and using the first few terms: 

e = 1 jer /3227.12 + ja3ars + /3447.14 

= (1 -  
2! 3! 

It is seen that the expression (85) for " inductance" now has 
both real and imaginary parts. The real part represents the high-
frequency external inductance of the circuit. The imaginary part 
is the so-called radiation resistance of the circuit. From expression 
(84) it is evident that this imaginary part combines with the 
factor jw/ to yield a voltage in-pha,si: with I. The power required 
to drive / against this in-phase component of voltage is radiated 
from the circuit. 

The value of the radiated power is given by 

d • 

d 12 ( — Or j — • *) ds' • ds =- /7/?,,,d 
3! 

(11-88) 

where Rne is the radiation resistance of the circuit and is given by 

rd 2 I 2 

le • • .) ds' • ds (11-89) rad /-) 1-4 (4wirc 2°4-irrc3 —  , 

When integrated around a closec. path, the first term drops out, 
leaving 

Rr.d d 2 CO4r (.067.4 — -F — • • -) ds' • ds (11-90) = 10-7 
3 !C 3 5 !c5 

Consideration of the real part of expression (85) shows how 
the inductance depends upon the phase factor e-isr. 

L = fare it (1 i3227:_2 ds' • ds (11-91) 
47rr 

2 2 

= 10-7 f d r 9S (1 - 2 r + • • .) ds' • ds 
c 2  

Using eqs. (75), (76), (78), and (79), it is seen that at low fre-
quencies eq. (68) reduces directly to eq. (59). Comparison of eqs. 
(68) and (59) shows clearly the approximations involved in the simple 
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circuit relations, and makes it possible to determine the magnitude 
of the neglected factors. With this knowledge circuit concepts may 
be extended to much higher frequencies. 

The extension of circuit concepts to higher frequencies is accom-
plished in practice by the addition of appropriately located lumped-
circuit constants. For example "distributed" inductance and 
capacitance effect are accounted for by suitably located series 
inductors and shunt capacitors, and radiation effects by the inclu-
sion of a " radiation resistance." An outstanding example in 
electrical engineering of the extension of circuit concepts to systems 
not necessarily small in wavelengths is the ordinary transmission 
line. Here, by suitably representing the distributed constants of 
the line by lumped constants, a circuit results that can be solved 
by ordinary circuit methods. Although the circuit is complicated, 
the solution is relatively simple in the important practical case of a 
uniform transmission line. In this manner it is possible in some 
problems to extend circuit concepts even to the microwave range. 

ADDITIONAL PROBLEMS 
9. A resonant-length dipole (L = 2H, slightly less than X/2) has a 

free-space input impedance of 73 -I- /0 ohms. What is its input impedance 
when placed parallel to, and a quarter-wavelength from, a large perfectly 
conducting screen. 

10. A parasitic (unfed and short-circuited) dipole has a length of 
108 cm and a radius of 0.5 cm. Determine the magnitude and phase of 
the current in it when placed parallel to and 0.1 wavelength from a half-
wave dipole carrying 1 amp. Frequency = 150 mc. From curves, find 
Z12 = 68 -I- j10 approximately. What is the input impedance of the 
driven dipole (antenna 1) if it is assumed that Zu ee- 73 ohms. 

BIBLIOGRAPHY 

See bibliography for chap. 10. 



CHAPTER 12 

DIRECTIONAL CHA ACTERISTICS 
OF ANTENNAS 

12.01 Introduction. Radio antennas have a twofold function. 
The first of these functions is to " radiate" the radio frequency 
energy that is generated in the transmitter and guided to the 
antenna by the transmission line, in this capacity the antenna 
acts as an impedance-matching device to match the impedance of 
the transmission line to that of free space. The other function of 
the antenna is to direct the energy into desired directions, and what 
is often more important, to suppress the radiation in other directions 
where it is not wanted. This second function of the antenna 
will be considered first under the general heading of directional 
characteristics. 
A completely nondirectional or omnidirectional radiator radiates 

uniformly in all directions and is known as an isotropic radiator or a 
unipole. A point source of sound is an example of an isotropic 
radiator in acoustics. There is no such thing as an isotropic radiator 
of electromagnetic energy, since all radio antennas have some 
directivity. However, the notion of a completely nondirectional 
source is useful, especially for gain comparison purposes. 

The radiation pattern of an antenna is a graphical representation 
of the radiation of the antenna as a function of direction. When 
the radiation is expressed as field strength, E volts per meter, the 
radiation pattern is a field strength pattern. If the radiation in a 
given direction is expressed in terms of power per unit solid angle, 
the resulting pattern is a power pattern. A power pattern is pro-
portional to the square of the field strength pattern. Unless 
otherwise specified, the radiation patterns referred to in this book 
will be field strength patterns. 

The co-ordinate system generally used in the specification of 
391 
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antenna radiation patterns is the spherical co-ordinate system 
(r, 0, 0), shown in Fig. 12-1. The antenna is located at or near the 
origin of this system, and the field intensity is specified at points 
on the spherical surface of radius r (or on a semispherical surface 
in the case of ground-based antennas). The shape of the radiation 
pattern is independent of r, as long as r is chosen sufficiently large 
(r must be very much greater than the wavelength and very much 
greater than the largest dimension of the antenna system.) When 

FIG. 12-1. Spherical co-ordinate system. 

this is true, the magnitude of the field strength in any direction 
varies inversely with r, and so needs to be stated for only one value 
of r. For example, in broadcast antenna work it is customary to 
state the field strength at a radius of 1 mile. Often only the 
relative radiation pattern is used. This gives the relative field 
strengths in various directions, usually referred to unity in the 
direction of maximum radiation. 

For the radiation field, the direction of E is always tangential 
to the spherical surface. For a vertical dipole E is in the O direction, 
whereas for a horizontal loop E is in the 4 direction. In general, the 
radiation field intensity may have both Ed, and Eo components, 
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which may or may not be in time phase. The radiation character-
istics are then shown by separate patterns for the theta and phi 
polarizations. The terms, theta polarization and phi polarization 
are synonymous with and replace the older terms vertical polariza-
tion and horizontal polarization, respectively. The older terms were 
confusing in that a theta or vertically polarized signal is not always 
vertical (however it is always in the vertical plane through the 
radius vector), although a phi or horizontally polarized signal is 
always horizontal. 
A complete radiation pattern gives the radiation for all angles 

of ct. and O and really requires three-dimensional presentation. This 
is overcome by showing cross sections of the pattern in planes of 
interest. Cross sections in which the radiation patterns are most 
frequently given are the horizontal (0 = 90°) and vertical (4) -- con-
stant) planes. These are called the horizontal pattern and vertical 
patterns, respectively. 

12.02 Directional Properties of Dipole Antennas. The magni-
tude of the radiation term for the field strength due to an elementary 
dipole I dl is 

60.7rI. 
E= De = — sin 

rX 
volt/m (12-1) 

where O is the angle between the axis of the dipole and the radius 
vector to the point where the field strength is measured. When the 
dipole is vertical, the horizontal radiation pattern is a circle (Fig. 
12-2a) because in this plane (0 = 90°) the radiation is uniform. 
In any vertical plane through the axis the field strength varies as 
sin O and the vertical patterns are all the same, having the figure-
eight shape shown in Fig. 12-2b. When the dipole is horizontal, the 
horizontal pattern has the figure-eight shape, but the vertical 
pattern depends upon the angle which the vertical plane makes 
with the horizontal axis. The two vertical planes of chief interest 
are those perpendicular and parallel to the axis of the dipole. The 
vertical radiation pattern is a circle for the former and a figure-eight 
for the latter. These two vertical patterns and the horizontal 
pattern are known as the principal plane patterns. 

As the length of a dipole is increased beyond the point where 
it may be considered short in terms of a wavelength, the radiation 
pattern in the planes through the axis changes as indicated in Fig. 
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12-2. Figure 12-2c shows the vertical radiation pattern of a center-
fed half-wave vertical dipole, and Fig. 12-2d shows the same 
pattern when the dipole is one wavelength long. The expression 

(0) HORIZONTAL PATTERN ( b) VERTICAL PATTERN 

00 cple' 1: 
(c) (d) 

(e) (f) 

FIG. 12-2. Radiation patterns of center-fed vertical dipoles: 
(a) horizontal rattern; (b) vertical pattern for a short dipole. 
Vertical patterns for dipole lengths: (c) one-half wavelength; (d) 
one wavelength; (e) one-and-a-half wavelengths; (f) two wave-
lengths. The assumed current distribution for each case is shown 
dashed. 

for the magnitude of the radiation field intensity due to a half-wave 
dipole is 

E
60/ [cos (; cos 0) 

— 
sin 0 

volt/m (12-2) 
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The more general expression for a dipole of any length L = 2H is 

E  _ 601 I- cos 1311 — cos ( 3H cos 0)] volt/m (12-3) 
r L sin 0 

Expressions (1) and (2) were derived in chap. 10 and expression (3) 
was obtained in a problem in the same chapter. The radiation 
patterns, as given by (3), are shown in Fig. 12-2e and 12-2f for 
antenna lengths of 1% and 2 wavelengths. 

The vertical radiation patterns of Fig. 12-2 also apply to the 
corresponding grounded vertical antennas when mounted on a 
perfectly conducting ground plane. The length of the grounded 
vertical antenna is just one-half the length of the corresponding 
dipole (the image forms the other half), and of course only the top 
half of the pattern applies. 

12.03 Traveling-wave Antennas and Effect of the Point of Feed 
on Standing-wave Antennas. The patterns of Fig. 12-2 are for 
unterminated antennas that are assuried to have a standing-wave 
distribution of current. Sometimes antennas are terminated to 
make them aperiodic or nonresonant and, in this case, they have a 
traveling-wave distribution. The directional pattern of a traveling-
wave antenna having a length of 6 wavelengths is shown in Fig. 
12-3. Assuming negligible attenuat on of the wave along the 
antenna, the expression for the pattern of a traveling-wave antenna 
(see problem 20, chap. 10) is 

301. sin 0  
E — {2 — 2 cos um,(1 - cos 0)11% (12-4) 

r(1 — cos 0) 

It is seen that with a traveling current, wave the pattern is no longer 
symmetrical about the 0 = 99 degrees plane, but instead the 
radiation tends to " lean" in the direction of the current wave. 
The angle 0 between the axis of the antenna and the direction of 
maximum radiation becomes smaller t s the antenna becomes longer. 

In the case of an unterminated antenna the actual current dis-
tribution in general is a combination of standing wave and traveling 
wave. However, except for very lor.g antennas, the standing wave 
is predominant and the traveling-'save component of current is 
usually neglected in pattern calculations. For the standing-wave 
current distribution, the pattern is always symmetrical about the 
O = 90 degrees plane. For center-fe I antennas the pattern of the 
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traveling-wave component of current is also symmetrical about 
O = 90 degrees, so that the effect of this latter component of current 
tends to be obscured. This is especially true when the angles of 
maximum radiation for the two current distributions nearly coin-
cide, as is often the case. However, when an antenna is unsym-
metrically fed, the pattern due to the traveling-wave current 
distribution is no longer symmetrical about O = 90 degrees, and its 
effect on the resultant pattern becomes more pronounced. This 
is evident in Fig. 12-4, which shows some experimental patterns of 
wire antennas having different locations for the feed points. The 

33e 

FIG. 12-3. Radiation pattern of a traveling-wave antenna that is 
6 wavelengths long. 

asymmetry due to the traveling-wave current shows up when the 
feed point is moved away from center. 

Changing the location of the feed point has another, even more 
important, effect when the antenna is longer than a half-wavelength. 
This is the effect on the standing-wave current distribution, which 

may be quite different for different locations of the feed point as is 
also illustrated in Fig. 12-4 for full wave and wavelength 
antennas. The effects of these different current distributions is 
clearly evident in the measured patterns. 

12.04 Two-element Array. When greater directivity is required 
than can be obtained by a single antenna, antenna arrays are used. 
An antenna array is a system of similar antennas, similarly oriented. 
Antenna arrays make use of wave interference phenomena that 
occur between the radiations from the different elements of the 



§1 2.04] DIRECTIONAL CHARACTERISTICS 397 

(a) ( b 

I 

I 

FIG. 12-4. Experimental patterns of wire antennas having 
different locations for feed points: (a) half-wave center-fed; (b) 
half-wave end-fed; (c) full-wave center-fed; (d) full-wave fed one-
quarter wavelength from one end; (e full-wave end-fed; (f), (g), 
(h), and (i) one-and-one-half wave, led as indicated. (Courtesy 
Electronics.) 

array. Consider the two-element an ay of Fig. 12-5 in which the 
antennas 0 and 1 are nondirectional radiators in the plane under 

consideration. (For example, they could be vertical radiators wheh 
the horizontal pattern is being consi( ered.) When the point P is 
sufficiently remote from the antenna, system, the radius vectors 
to the point can be considered parallel, and it is possible to write 
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7-1 = ro — d CO3 c> 

in the phase factor of the fields, and 

1 1 _ _ 
ri ro 

as far as the magnitudes of the fields are concerned. The phase 
difference between the radiations from the two antennas will be 

pa cos + 

ANTENNA 0 d ANTENNA / 

FIG. 12-5. A two-cicmcnt array cf nondirectional radiators. 

where Od = (2ir/X)d is the path difference in radians and a is the 
phase angle by which the current Ii leads /o. The vector sum of 
the fields will be 

E = E0(1 k 

where Eo is the field intensity due to antenna 0 alone, and where k 
is the ratio of the magnitudes of I and /o. The magnitude of the 
total field intensity is given by 

ET = E0(1 ci0)1 

= 1E0(1 k cos + Fe sin ) I 

= Eo -01 -F k cos .1)) 2 -F 1.;2 sin21,¡ 

In the particular but important case where the, antenna currents 
have equal magnitudes, this becomes (see Fis. 12-6b) 

ET = 2E0 cos 

(rd cos e 
(12-5) 2E0 cos  x 



02.041 DIRECTIONAL CHARA CTERISTICS 399 

(a) (b) 

Fia. 12-6. Phasor addit ion of fields. 

d4 

(h) 

cAA 
e1.0. 

(d) 

Fla. 12-7. Radiation patterns cf :wo nondirectional radiators 
when fed with equal currents it the phasings shown. 
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The radiation patterns resulting from the expression for commonly 

used spacings and phasings are sketched in Fig. 12-7. These 
patterns are for the case where each of the antennas, when radiating 
alone, is a nondirectional or point source radiator; that is, it has a 
circle for its radiation pattern in the plane under consideration. 
This is quite evidently true for vertical antennas when the horizontal 
pattern is being considered. 

12.05 Horizontal Patterns in Broadcast Arrays. Two element 
arrays are limited in the type and variety of radiation patterns that 
they can produce, and for broadcast arrays three or more antennas 

FIG. 12-8. A three-element array. 

are often used. With a two-antenna array the pattern must always 
be symmetrical about the plane through the antennas, and the 
position of only two nulls can be specified. A three-element array, 
in which antenna configurations and spacing as well as current 
magnitudes and phases are all variables under the control of the 
designer, permits a larger number of different antenna pattern 
types. For a three-element array as in Fig. 12-8 the resultant 
horizontal intensity pattern is given by 

ET = 1E0(1 + k1 k2 ele2 ) I 

where = cos 01 + al 

(f3d2) COS 02 + a2 

(12-6) 

The evaluation of expression (6) is straightforward but rather time-
consuming when a large number of points must be plotted. A 
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graphical method which is sometimes used for evaluating an expres-
sion such as (6) is shown in Fig. 12-9. The antenna spacing is 
expressed in degrees and a semicircle is drawn with this spacing as 
radius. For each angle ck the value of ¡id cos 4) is read off directly 
in degrees, and 11,1 is obtained by adding the angle a. 4/2 is obtained 
in a like manner and the vector addition of Fig. 12-9b gives the 
resultant ET. 

(0) 

(b) 

Fin. 12-9. Graphical method for obtaining antenna patterns. 

The design of an array to produce a desired pattern is usually 
done on a cut-and-try basis. That is, certain spacings and currents 
are assumed and the corresponding pattern computed. Modifica-
tions are then made in the assumed conditions and the pattern is 
recomputed. This process is continued until a pattern close enough 
to the desired pattern has been obtained. Since the computation 
involved is simply that of vector addit ion, various " pattern calcula-
tors," both mechanical and electronic, have been devised to perform 
the computation. A book* on directional antennas shows some 

* Carl E. Smith, Directional Antennas, Cleveland Institute of Radio Elec-
tronics, Cleveland, Ohio. 
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15,000 computed patterns obtained with the aid of a mechanical 

plotter. 
12.06 Linear Arrays. For point-to-point communication at the 

higher frequencies the desired radiation pattern is a single narrow 
lobe or beam. To obtain such a characteristic (at least approxi-
mately) a multielement linear array is usually used. An array is 
linear when the elements of the array are spaced equally along a 
straight line (Fig. 12-10). In a uniform linear array the elements 
are fed with currents of equal magnitude and having a uniform 
progressive phase shift along the line. The pattern of such an 
array can be obtained as before by adding vectorially the field 
intensities due to each of the elements. For a uniform array of 
nondirectional elements the field intensity would be 

ET = E011 c2e cee el3e . . . 

where = j3d cos çh + a 

and a is the progressive phase shift between elements. (a is the 
angle by which the current in any element leads the current in the 

preceding element.) 
For the purpose of computing the pattern of the linear array, 

eq. (7) may be written as 

Er 
E0 

(12-7) 

(12-8) 

The maximum value of this expression is n and occurs when %I, = 0. 
This is the principal maximum of the array.* Since ,p = 13d cos irt• 
+ a the principal maximum occurs when 

cos ç5 = — — ed 
For a broadside array the maximum radiation occurs perpendicular 
to the line of the array at ç5 = 90 degrees, so a = 0 degrees. For an 

* If the spacing d is equal to or greater than X, there may be more than one 
principal maximum. 
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end-fire array the maximum radiation is along the line of the array 
at le = 0, so a = —Pc/ for this case. 

The expression (8) is zero when 

= + kir 
2 — 

k = 1, 2, 3, • • • 

These are the nulls of the pattern. Secondary maxima occur 
approximately midway between the nulls, when the numerator of 
expression (8) is a maximum, that is when 

714' = + (2m + 1) - 2 
m = 1, 2, 3, • • • 

The first secondary maximum occurs when 

_ +3w 
i 2n 

(note that e2 = ir/2n does not give a maximum). The amplitude 
of the first secondary lobe is 

1  
sin (4//2) 1( 37/2n)1 

2m 
— for large n 
3r 

The amplitude of the principal maximum was n so the amplitude 
ratio of first secondary maximum to principal maximum is 2/3w 
= 0.212. This means that the first secondary maximum is about 
13.5 db below the principal maximum, and this ratio is independent 
of the number of elements in the uniform array, as long as the 
number is large. 

The width of the principal lobe, measured between the first nulls, 
is twice the angle between the principal maximum and first null. 
This latter angle is given by 

'nth 2ir = or = — 
2 

For a broadside array cos cb = eed, and the principal maximum 
occurs at ci) = r/2. The first null occurs at an angle [(r/2) + AO] 
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where 

cos (772 + Ao) = ‘e±j = 

If Ay5 is small, it is given approximately by 

X 
= 

and the width of the principal lobe is 

2X 
26,0 = (12-9a) 

For a uniform broadside array the width of the principal lobe (in 
radians) is approximately twice the reciprocal of the array length 
in wavelengths. 

For the end-fire array 1p = 16d(cos e — 1). The principal maxi-
mum is at ck = 0, and the first null is at 951 = àcp where 

or 

27r 
i3d(cos 4,1 — 1) = — — 

n 

(cos AO) — 1 = X — — 
nd 

For AO small, there results approximately 

(A4))2 _ X 
2 Fd 

2A = 2 .\1iX -2-
nd 

(12-9b) 

The width of the principal lobe of a uniform end fire array, as given 
approximately by expression (9b) is greater than that for a uniform 
broadside array of the same length. 

12.07 Multiplication of Patterns. The methods of the preced-
ing section provide straightforward means for determining the 
radiation patterns of uniform linear arrays. However, for such 
arrays there is also available another method for obtaining these 
same patterns. This second method, when it can be used, has the 
great advantage that it makes it possible to sketch rapidly, almost 
by inspection, the patterns of complicated arrays. Because of this 
fact, the method is a useful tool in the design of arrays. 

y 
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Consider a four-element array of antennas in Fig. 12-10, in 
which the spacing between units is X/2 and the currents< are in 
phase (cf = 0). The pattern can be obtained directly by adding 
vectorially the four electric fields due to the four antennas. How-
ever the same radiation pattern can be obtained from the following 
considerations. The pattern of antennas 1 and 2 operating as a 
unit, that is two antennas spaced X/2 and fed in phase, is already 
known and is that of Fig. 12-7a. Also antennas 3 and 4 may be 
considered as another similar unit wi-.11 the same pattern of Fig. 
12-7a. As far as the resultant radiation pattern is concerned 

d cos FIS 

4 

Fur. 12-10. A four-element linear array of nondirectional radi-
ators. 

antennas 1 and 2 could be replaced by a single antenna located at a 
point midway between them and having as its directional character-
istic the " figure eight" of Fig. 12-7a. Antennas 3 and 4 could 
similarly be replaced by a single antenna having the figure eight 
pattern. The problem is then reduced to that of determining the 
radiation pattern of two similar antennas that are spaced a wave-
length apart and each of which has a figure eight directional pat-
tern. Now the pattern of two nondfrectional radiators spaced 1X 
and fed in phase is already known and is that of Fig. 12-7d. For 
the case of Fig. 12-7d each of the antennas alone radiates equally 
in all directions in the plane being considered. When these anten-
nas are replaced by radiators that radiate different amounts in 
different directions, the pattern of Fig. 12-7d must be modified 
accordingly. The resultant pattern for the original four element 
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zrray is obtained as the product of the pattern of Fig. 12-7d by the 
pattern of the unit, Fig. 12-7a. 

This multiplication of patterns is illustrated below. 

THE ARRAY 

IS REPLACED BY 
o o 

WHERE ED REPRESENTS 4,— AND HAS A PATTERN 

THE PATTERN OF 2 NON-DIRECTIONAL RADIATORS 

SPACED .1 AND FED IN PHASE IS 

THE RESULTANT PATTERN FOR THE ARRAY 
IS OBTAINED AS FOLLOWS: 

(a) 

(b) 

(a) 

(b) (c) 

FIG. 12-11. Multiplication of patterns. 

The application of this principle to more complicated arrays 
follows quite readily. For example the pattern of a broadside array 
of eight elements spaced one-half wavelength and fed in phase would 
be obtained by considering four elements as a unit and finding the 
pattern of two such units spaced a distance of two wavelengths. 
This is shown in Fig. 12-12. The resultant pattern is the product 
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of the unit pattern for four elements (all eady obtained in Fig. 12-11) 
by the pattern for two nondirectional radiators spaced two wave-
lengths apart (calculated from eq. 7). 

This procedure provides a means for rapidly determining what 
the resultant pattern of a complicated array will look like without 
making lengthy computations, since the approximate pattern can be 
arrived at by inspection. The width of the principal lobe (between 
nulls) is the same as the width of the corresponding lobe of the 
group pattern. The number of secondary lobes can be determined 

2 A 

X 

UNIT PATTERN GROUP PATTI RN RESULTANT PATTERN 

Flo. 12-12. Pattern for an eight-el( rient uniform array obtained 
by principle cf multiplie: tien cf patterns. 

from the number of nulls in the resultant pattern, which is just the 
sum of the nulls in the unit and group patterns (assuming none 
of the nulls are coincident). Although the chief usefulness of the 
method is in being able to obtain an approximate idea of the pattern 
of a complicated array by inspection, the method itself is exact, 
and a point by point multiplicatioa of patterns yields the exact 

pattern for the resultant. 
Patterns in Other Planes. Figure 12-7a is the pattern, in the 

plane normal to the axes of the antennas, of two antennas spaced one-
half wavelength apart and fed in phase. In this plane the antennas 
are nondirectional or uniform radiators. If the pattern in the plane 
containing the antennas is desired (in which plane the antennas are 
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directional), it is necessary to multiply the pattern of Fig. 12-7a by 
the directional pattern of the antenna in the plane being considered. 
For half-wave dipole antennas this latter pattern will be the " figure-
eight " pattern of Fig. 12-2c. This is shown as the unit pattern in 
Fig. 12-13. 

The resultant pattern is then obtained as a multiplication of the 
group pattern by the unit pattern (Fig. 12-13A). If the antennas 

GROUP PATTERN UNIT PATTERN RESULTANT PATTERN 

(A) 

GROUP PATTERN UNIT PATTERN RESULTANT PATTERN 

(B) 

Fia. 12-13. Radiation pattern (in the plane centoMing the 
axes cf the antennas) of two-element array of half-wave dipoles: 
(A) fed in phase; (B) fed 180 degrees out cf phase. 

are fed 180 degrees out of phase (end-fire array) the directions of 
maxima of group and unit patterns coincide and the desirable direc-
tional characteristic of Fig. 12-13B results. 

12.08 Effect of the Earth on Vertical Patterns. The radiation 
patterns shown so far have been obtained on the assumption that 
the antenna or antenna array was situated in free space far removed 
from any other conducting bodies or reflecting surfaces. In prac-
tice, antennas are nearly always erected either right at, or within 
a few wavelengths of, the surface of the earth, or some other reflect-
ing surface. Under these conditions currents flow in the reflecting 
surface, and the radiation pattern is modified accordingly. The 
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magnitudes and phases of these induced currents will of course be 
dependent to some extent upon the surface impedance of the 
reflector (that is, upon o-, e, co). However, for practical purposes it 
is adequate to compute the resultant fields on the assumption that 
the surfaces are perfectly conducting. This is true, for example, 
for the earth at low and medium frequencies, and for metallic 
reflectors at any radio frequency. 

In Fig. 12-14 are shown horizontal and vertical antennas located 
above the earth (assumed perfectly conducting). The boundary 
conditions to be satisfied at the surface of the perfectly conducting 

ÇON9yC,TI,N  

PLANE 

1-+ 
++ 

Fm. 12-14. " Image" charges and currents replace the charges 
and currents induced in the conducting plane. 

plane are that the tangential component of E and the normal com-
ponent of H must vanish. That is, at the surface E is normal and 
H tangential. Charges will distribute themselves and currents will 
flow on the conducting surface in such a manner that these boundary 
conditions are satisfied. The total electric and magnetic fields will 
be due not only to the charges and currents on the antenna, but also 
to these " induced" charges and currents. As far as the electric and 
magnetic fields in the region above the conducting plane are con-
cerned, the same results can be obtained with the conducting plane 
removed and replaced with suitable located " image" charges and 
currents, as shown in Fig. 12-14. The image charges will be " mirror 
images" of the actual charges, but will have opposite sign. The 
currents in actual and image antennas will have the same direc-
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tions for vertical antennas, but opposite directions for horizontal 
antennas. 

For perfectly conducting planes these same results are also given 
in terms of simple ray theory as pictured in Fig. 12-15. The 
resultant field is considered as made up of direct and reflected waves, 
the image antenna being the virtual source of the reflected wave. 
The vertical component of electric field for the incident wave is 

.. .1. 
12- •Çr 

Ct-
0 ..1. 0 

b.. 
0 c, 
tu b.. tu 

• 
I - 

4 I 
I , 

(o) (b) 

FIG. 12-15. Image antennas act as virtual sources for the reflected 
waves. 

reflected without phase reversal, whereas the horizontal component 
has a 180 degrees phase reversal. It is seen that the phase delay 
due to path length differences (that is, the effect of retardation) is 
automatically taken care of. 

The use of the image principle makes it a simple matter to take 
into account the effect of the presence of the earth on the radiation 
patterns. The earth is replaced by an image antenna, located a 
distance 2h below the actual antenna, where h is the height above the 
ground of the actual antenna. The field of this image antenna is 
added to that of the actual antenna to yield the resultant field. 
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The relative horizontal pattern will remain unchanged (its absolute 
value changes), but the vertical pattern is affected greatly. 

For simple arrays above a reflecting surface the principle of 
multiplication of patterns can be used to obtain the resultant 
vertical patterns. The vertical pattern of the antenna (or array) 
is multiplied by the vertical pattern of two nondirectional or point-
source radiators having equal amplitudes and spaced one above the 

À 
7 

tib 

7 

Ji 
X ) 

) 

UNIT PATTERN CROUP PITTERN RESULTANT PATTERN 

( b) 

Fm. 12-16. (a) Vertical pattern o; a horizontal antenna above 
the earth, obtained by considering th c• pattern of the antenna and 
its negative image. (b) Vertical pattern of a vertical antenna 
above the earth, obtained by using title principle of images and the 
principle of multiplication of patterns. 

other a distance 2h apart. For vertical antennas the nondirectional 
radiators would be considered to have the same phase, whereas for 
horizontal antennas the nondirectional radiators would have 
opposite phases. Examples of this method are shown in Fig. 12-16. 
Of course, only the upper half of t he resultant pattern actually 
exists. When the antenna is sloping as in Fig. 12-15c, the pattern 
cannot be obtained by this multiplication process but the image 
principle can still be used to obtain the resultant field. This same 
statement also applies for vertical an tennas mounted at the surface 
of the earth when the antenna is not a multiple of one-half wave-
length long (Fig. 12-15d). 
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When the finite conductivity of the earth must be considered, 
the idea of images is still valid, but the simple ray theory used here 
is no longer adequate. It is then necessary to return to field theory-
for accurate answers. The effect of an imperfect earth on the 
radiated fields is considered in chap. 16 on ground-wave propagation. 

12.09 Binomial Array. An example of the usefulness of the 
principle of multiplication of patterns is given in the derivation of 
the so-called binomial array. With a uniform linear array it is 
found that, as the array length is increased in order to increase the 

é 
4 

2 
o 

UNIT PATTERN GROUP PATTERN RESULTANT PATTERN 

FIG. 12-17. An array that produces a pattern without secondary 
lobes. 

directivity, secondary or minor lobes always appear in the pattern. 
For some applications a single narrow lobe without minor lobes is 
desired. A study of the uniform array, using the principle of multi-
plication of patterns, shows that secondary lobes appear in the 
resultant pattern whenever the elements that produce the unit 
pattern or the elements that produce the group or space pattern 
have a spacing greater than one-half wavelength. Thus in the 
uniform four-element array of Fig. 12-11, the secondary lobes appear 
in the resultant because the group pattern has four lobes. The 
group pattern has four lobes because the effective sources producing 
the group pattern are spaced a full wavelength. Reduction of the 
spacing of the elements of the group to one-half wavelength results 
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in a two-lobed figure-eight pattern for the group pattern, and a 
resultant pattern that has only primary lobes. The antenna 
arrangement that will result in half-wavelength separation of the 
elements of the group, is shown in Fig. _2-17 along with the resultant 
patterns. In this case antennas 2 and 3 coincide so they would be 
replaced with a single antenna carrying double the current in the 
other elements. That is, a three-element array results, that has 
the current ratios 1 : 2:1 and the pattern shown as the resultant in 
Fig. 12-17. Since this pattern is the product of two figure-eight 
patterns, it can be called a " figure-eight squared" pattern. 

o 

2 

FIG. 12-18. A four-element array with a "figure-eight cubed" 
pattern. 

Using this three-element array aE a unit with a second similar 
unit spaced one-half wavelength from it results in the four-element 
array shown in Fig. 12-18. The current ratios of this array are 

1:3:3:1 

and the pattern is the " figure-eight squared" pattern of the unit 
times a figure-eight group pattern that results in a " figure-eight 
cubed" pattern. This process may be continued to obtain a pattern 
having any desired degree of directLvity and no secondary lobes. 
The numbers that give the current ratios will be recognized as the 
binomial coefficients. For an array n half-wavelengths long the 
relative current in the rth element fi orn one end is given by: 

n! 
r!(n — r)! 

where r = 0, 1, 2, 3, • • • 

12.10 Antenna Gain. The gain g of an antenna in a given direc-
tion. is defined as 4ir times the ratio al' the radiation intensity in that 
direction to the total power W. When W is taken as total power 
delivered to the antenna, the gain is called power gain. When W 
is taken as the total power radiate(E from the antenna the gain is 
called directive gain. The ratio of lirective gain to power gain is 
independent of direction and is equd to the ratio of the total power 

(12-10) 
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delivered to the total power radiated from the antenna. For an 
"efficient" antenna, directive gain and power gain are very nearly 
equal. 

The radiation intensity in a given direction is the power per 
unit solid angle radiated in that direction. For an isotropic radiator, 
for which cJ is the same in all directions, the total power radiated is 

Wo = 4e1) 

Thus the gain of an antenna 
414. Wo 

(12-11) 

is just the ratio of the power radiated by an isotropic antenna to 
the power radiated by the actual antenna when both are producing 
the same radiation intensity in the direction for which the gain is 
specified. When the gain is expressed, in decibels, it is denoted by 
G, where 

G = 10 logio g (12-12) 

The directivity or maximum directive gain of an antenna is the 
ratio of the maximum to the average radiation intensity. The 
directivity is obtained from 

g' f cl) c/2 

where dit is an element of solid angle. f el is, of course, just W, 
the total power radiated. Although these definitions* have been 
framed by considering a transmitting antenna, they are applied 
to the antenna regardless of its particular function. That is, the 
gain of an antenna when used for receiving is the same as its gain 
when used for transmitting. Of course, the gain thus defined can 
be realized on a receiving antenna only when it is in the presence 
of a properly polarized field. 

The gain or directivity of an antenna is easily computed when 
its effective length and radiation resistance are known. For 
example, for a current element I dl, the distant field intensity in 
the direction of maximum radiation is 

607r , (7) 
E = — — 

r X 

(12-13) 

* These definitions are those given in the IRE Antenna Standards (1948). 
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The corresponding power flow per square meter is 

E2 = — 
nv 

and the radiation intensity (power per unit solid angle) is 

= 
nv 

E2r2 

(12-14) 

The radiation resistance of the current element is 8072(d//X)2 ohms, 
so that the power radiated for an effective current I is 

y = 80„.2 cu /2 
X 

The current required to radiate 1 wat-, is 

— 
VF:17 dl 

with a corresponding field intensity, in the direction of maximum 
radiation, of 

60 
E = 

watts 

and a radiation intensity 
602 3 

e — 80 X 120T — 

For the same 1 watt radiated, the radiation intensity produced by 
an isotropic radiator would be 

r id 

amp 

volt/in 

1 
= 

so that the directivity or maximum directive gain of the current 
element is 

or 

(I) 
g. = 470 r= 1.5 

= 10 logio 1.5 = 1.76 db 

(12-15a) 

(12-15b) 

For a half-wave dipole the computed gain is 1.64 or 2.15 db. Thus 
the maximum directive gain of a half-wave dipole is only 0.39 db 
greater than for a current element (or for a very short dipole). 
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12.11 Effective Area of an Antenna. A term which has con-
siderable significance, especially for receiving antennas, is effective 
area. The effective area A of an antenna is defined in terms of the 
gain of the antenna through the relation 

A = (12-16) 

Using this relation it can be shown that the effective area is the 
ratio of power available at the terminals of the antenna to the power 
per unit area of the appropriately polarized incident wave. That 
is, the received power is equal to the power flow through an area 
equal to the effective area of the antenna. This would be written 
as 

TYR = PA (12-17) 

where WR is the received power and P is the power flow per square 
meter for the incident wave. That relation (17) holds for the 
current element receiving antenna can be demonstrated quite 
simply. 

For an effective field intensity E, the power per square meter 
in the linearly polarized received wave is 

E2 E2 p = = 
n, 120r 

watts/sq m 

The power absorbed by a properly matched load connected to the 
receiving antenna would be 

V'« E2 d12 
W = — 

4Rr.d 4ILd 

The radiation resistance of the current element is 

Rd = 80r2 (1 2 
X 

E2X2  
so that WR = 

32072 

A = = 1.5 X' and rir 
x2„ 
4: 

which agrees with definition ( 16). 
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Relations between g, left, and Rrad. Only two of the three quanti-
ties, gain, effective length, and radiation resistance are required to 

specify the radiation characteristics of an antenna that emits 
linearly polarized waves. When two of these quantities are known, 

the third can be derived. 
The radiation field of an antenna at a distance r can be expressed 

in terms of the effective length and th c current at the terminals by 

the relation 
E = 6311- \ 

r X f 

The radiation intensity 4, is expressible in terms of the field intensity 

by 
E2r2 

= 

„  = 3D7r (.` 1.)2 12 

If W = /2R,„d is the total power radiated, the gain g is 

g = w 

1207r2 (1.,)2 12 
W 

Rrad ) 

12071-2 (10)2 (12-18) 

This equation relates g, /err, and Rrad. 
Using the reciprocity theorem, it has already been shown that 
is the same for receiving as for transmitting. The power received 

by an antenna of effective length /eff in the presence of a linearly 
polarized field intensity E is 

172. E212eff 
Wr — 

4/Ld 4R.d. 

Using (18), this becomes 
eX2 

ei 4 X 120r2 
(gx2) E2 

4r 1207) 

= (94X: 
P 

(12-19) 
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Equation (19) shows that for an antenna of any length the effective 
area defined by (16) gives the ratio of power received to power flow 

per unit area in the incident wave. 

Problem 1. Knowing the effective length of a half-wave dipole, com-
pute its effective area. 

12.12 Elliptical Polarization. In the examples used in the pre-
ceding section only linearly polarized waves were considered. Such 
waves are emitted by the simple antenna types such as dipoles in 
free space, or straight vertical antennas at the surface of a perfectly-
conducting flat earth. However, for antennas which have both 
vertical and horizontal elements or antennas that are mounted on, 
or backed up by, curved surfaces, the radiated fields will, in general, 
be elliptically polarized. Under these circumstances the " elliptic-
ity" of the polarization as well as the gain or effective area of the 
antenna should be stated in order that the directional character-
istics be completely specified. 

Consider a transmitting antenna T of arbitrary shape located 
at the origin of the spherical co-ordinate system (r, 0, 4,) of Fig. 12-1. 
The electric field intensity at a distant point p will, in general, have 
two components, E0 and Egs. These components will differ in time 
phase by some angle «, which will vary with direction. That is, « 
is a function of 0 and 0. There will also be two components of 
magnetic intensity in space quadrature, but in time phase with the 
components of E (assuming a nondissipative medium). 

For any particular value of r the field vectors can be represented 

as below. 

Ee(t) = E9, 0" 

E0(1) = E0, ei(t+a) 

Eel • 
146(t) e'`" 

Ho(t) — — E*1 ei(f4+a) (12-20) 
17, 

The real power flow per square meter in the r direction will be given 

by 
Pr = Re (E0,H4,* — E.,H0*) 

1 
= (E0,2 E0,2) 

217, 

= (E92 E4.2) 

(12-21) 
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where E0 and Eo are effective values. Men the radiation intensity 
or power per unit solid angle will be 

r2 = (Ee2 E02) 

= ± 4.0 

(be = —r2 E02 
n, 

is the power per unit solid angle of the O component of the field and 

4,0 = —r2 4 2 

is the power per unit solid angle of the 4) component of the field. 
The " total" gain of the antenna would be 

474 47r , 
g = W = —W (‘1'0 wo) 

= go ± 

Correspondingly, the " total" effective area of the antenna is 

)1/42 

= (g° gè) 
= A0 ± A e 

As a transmitting antenna this " total" gain or effective area is 
realized only when the receiving antenna is designed for the par-
ticular polarization being radiated. Similarly, when used as a 
receiving antenna, these same gain and effective area figures are 
realized only when the received wave has the correct polarization. 
It is evident that in order for these " total" values to have sig-
nificance, it is necessary to specify the polarization of the wave 
radiated by the antenna. That is, the relative magnitudes Et, and 
Eo and the time phase angle between them must be known. In 
practice the radiation patterns for the 0 component and yb component 
are measured separately, but the time phase angle between these 
components is hardly ever obtained because of the additional com-
plexity of the measuring technique required. Under these circum-
stances the gain and effective area are specified separately for the 
0 component and the ri) component of the field, and the " total" 
values are not used. The 0-polarization gain of an antenna used 
for transmitting is 47r times the ratio of the radiation intensity of the 
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0-polarized field to the total power. When this same antenna is 
used for receiving its effective area for 0-polarization as defined by 

x2 
A0 = no (12-22) 

47 

is equal to the ratio of the power received to the power per square 
meter of an incident wave that is linearly polarized in the O direction. 
A similar relation holds for the ct, polarization. 

12.13 Antenna Gain from Pattern Measurements. The radia-
tion pattern of an antenna or array as obtained from full-scale or 
model measurements is usually a relative pattern only. That is, 
the relative field intensity in various directions about the antenna 
system is known, but its absolute value in " volts per meter at 1 
mile" or some other convenient units is unknown. If the complete 
three-dimensional relative pattern of the antenna array has been 
obtained, the power radiated and hence the absolute field intensity 
pattern, can be determined by graphical integration of the Poynting 
vector over a closed surface about the system. The particular 
method used for performing the integration depends upon the 
manner in which the experimental data are presented. The follow-
ing method assumes that the information is available as a set of 
horizontal patterns (¢) variable, O constant) obtained for various 
values of the parameter O. 

Let the components of the relative field intensity at any point 
on the spherical surface enclosing the antenna system (Fig. 12-1) 
be E0,. and E0,. If k is the factor by which these relative values 
must be multiplied to convert them to a basis of volts per meter, 
then from eq. (21) the Poynting vector is 

k2 (E0,2 E0,.2) 
nv 

(12-23) 

The total power radiated is 

k2 r  
TV = f  J o P • da = JO ro,,),„ sin de d4) 

Then W = —/.; 2r2 (A E) 

where A = f02' f: D.,2 sin O dO dce, 

= fo2' f: E0,2 sin O dO 

(12-24) 
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From eq. (24) 

k — nvW 
r2(A ± B). 

If the field intensity is desired in terms of volt/m at 1 mile for 1 watt 
radiated, then W = 1 watt and r = 1609 meters, so that 

k i  120v  
1,1(1609) 2(A B) 
.01208 

V A ± B 

Evaluation of the integrals A and B will give the desired value of 
the conversion factor k. 

Consider the integral A and write it in the following form: 

A = 2 low (sin o fo2e 4E0,2 cicb) de 

Now the integral with respect to 0, 

folr 3.,/E4,r2 do 

(12-25) 

(12-26) 

is given by the area of the Ei>, pattern plotted with respect to ye, on 
polar co-ordinate graph paper 
(Fig. 12-19). This integra- ef4 dgf 
tion may be performed with 
a planimeter (remembering to 
convert the planimeter read-
ing from square centimeters 
to square units of graph 
paper). Let the result of this 
integration be designated by 
A0. Since there will be a 
value of 110 for each value of 
0, Ao is a function of O. Then 

Fia. 12-19. Graphical method for ob-
taining antenna patterns. 

A = 2 1: A t sin 0 de (12-27) 

There are several ways of evaluating the integral (27). About the 
simplest way is to approximate it with the finite sum. 
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0-180 
27r 

A O--= 2 Ao sin OA 
360 

e—o 
e—iso 

= _AO 
/le sin 0 

90 
0=0 

The integral B is evaluated in the same manner. Substituting the 
values for A and B in eq. (25), the value of k is obtained. 

With the conversion factor k known, the radiation patterns 
may be labeled in absolute values of volts per meter (at 1 mile for 
1 watt radiated) through the relations 

(absolute) = kE0, 

E0 (absolute) = kEe, 

The Poynting vector is given by eq. (23). The radiation intensity 
for the 4, polarization is 

k2r2 r2 
4,0 = .D4„-,  = — E02 

17v 17v 

and for the O polarization 
k2r2 

«Pe =- — E0,2 
77v 

r2 _ E02 

The radiation intensity due to an isotropic antenna radiating 1 
watt of power is 

1 
4)0 = — 

The antenna gain for the 4) polarization is 

c1,0 4.2 

g0 — —  E02 = 86,400E02 (12-28) 

where EA is measured in volts per meter at 1 mile for 1 watt radi-
ated. For the O polarization the antenna gain is 

go = 86,400E02 (12-29) 

12.14 The Mathematics of Linear Arrays. The binomial array 
of section 9 is but one example of a large class of linear arrays, hav-
ing special current distributions by means of which the radiation 
patterns can be made to have almost any prescribed shape. Schel-
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kunoff has shown* that linear arrays can be represented as poly-
nomials and that this representation becomes a very useful tool in 
the analysis and synthesis of antenna arrays. 

For a general linear array of equally spaced elements (Fig. 
12-20), the relative amplitude of the radiated field intensity is given 
by 

E = lac) eiao + al eiFfiai az ei2e+iai + • • • 
a,,2 '-2)i+ja—, el(t 1) #I (12-30) 

where i,' = Pc/ cos ck + a, 

In this expression d is the spacing between elements. The coeffi-
cients ao, al, az, etc., are proportional to the current amplitudes in 

• 

d7s 

LINE OF THE ARRAY 

FIG. 12-20. A lilear array. 

the respective elements. a is the progressive phase shift (lead) 
from left to right; al, az, etc., are the leviations from this progressive 

phase shift. Expression (30) may 1,e written 

E = IA0 Aiz A2z2 . . . zn—iI (12-31) 

where z = de, A, = am Cia. 

The coefficients A1, A2, etc., are low complex and indicate the 
amplitude of current in each elemeni, and the phase deviation of that 
current from the progressive phase :ha of the array. If any of the 
coefficients are zero, the corresponding element of the array will be 
missing, and the actual separation between adjacent elements can 
be greater than the " apparent separation" d. The apparent sep-
aration is the greatest common measure of the actual separations. 

*S. A. Sehelkunoff, "A Mathematiell Theory of Linear Arrays," BSTJ 
22, 1, 80-107 (1943). 
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The following fundamental theorems are due to Schelkunoff, 
and lay the foundations for the method: 

THEOREM I: "Every linear array with commensurable sepa-
rations between the elements can be represented by a polynomial, 
and every polynomial can be interpreted as a linear array." 
Since the product of two polynomials is a polynomial, a corollary to 
Theorem I is 
THEOREM II: "There exists a linear array with a space factor 

equal to the product of the space factors of two linear arrays." 
THEOREM III: "The space factor of a linear array of n apparent 

elements is the product of (n — 1) virtual couplets with their null 
points at the zeros of E (eq. 31)." 

The space factor of an array is defined as the radiation pattern 
of a similar array of nondirective or isotropic elements. The degree 
of the polynomial which represents an array is always one less than 
the apparent number of elements. The actual number of elements 
is at most equal to the apparent number. The total length of the 
array is the product of the apparent separation and the degree of the 
polynomial. 

Consider a simple two element array in which the currents in 
the elements are equal in magnitude. The radiation field intensity 
is represented by 

E = 11 -F z1 (12-32) 

where z = ejetdoos 0+a) 

Making use of Theorem II, a second array can be constructed which 
will have a radiation pattern that is the square of that given by 
(32), that is, 

1E1 = 11 + z12 = 11 -F 2z -F z21 

It is seen that the array that will produce this pattern is a three 
element array having the current ratios 

1:2:1 

The current in the center element will lead the left-hand element 
by a, and the current in the right-hand element will lead that in the 
left-hand element by 2a. 
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If the polynomial of (32) is raised to the mth power, there results 
the general binomial array already discussed. When the element 
spacing d is not greater than X/2, such an array produces a pattern 
with no secondary lobes. However, the principal lobe is con-
siderably broader than that produce (l by a uniform array having 
the same number of elements. An array having a narrower prin-
cipal lobe than that given by the binomial distribution and smaller 
secondary lobes than that given by the uniform distribution can be 
obtained by raising the polynomial of the uniform array of n 
elements (where n > 2) to any desired power. 

For an n-element uniform array 

1E1 = 11 z z2 -1- • • • ± zn-11 (12-33) 

It has already been shown that when n, the number of elements, is 
large, the ratio of the principal maximum to the first secondary 
maximum is approximately independent of n and is 13.5 db for 
the uniform array. If an array is formed to produce a pattern 
that is the square of that given by (33), the ratio of the principal 
to first secondary maximum will be 27 db. This second array is 
given by 

1E1 = 11 z z2 + • • • ± zn-112 

= 11 + 2z ± 32 + • • • nzn-1 (n — 1)zn -I- • • • 

2z2n--3 ± en-21 (12-34) 

The current ratios for this array have the triangular distribution 

1, 2, 3, • • • (n — 1), n, ( n — 1), • • • 3, 2, 1 

Raising the uniform array to a still nigher power would, of course, 
increase still further the ratio of principal to secondary lobes. 
The respective patterns for the uniform, binomial, and triangular 
distribution are shown in Fig. 12-21. 

The significance of Theorem IH, the decomposition theorem, 
can be understood by studying the variable z. 

where z = = fid cos ç + a 

Since 4, is real, ji,l/ is a pure imaginary, and the absolute value of z 
is always unity. Plotted in the complex plane, z is always on flab 
circumference of the unit circle (Fig. 12-22). 
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As 4) increases from zero to 180 degrees 4. decreases from /3d a 
to —ed + a and z moves in a clockwise direction. Thus the range 
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FIG. 12-21. Radiation patterns for uniform (solid), triangular 
(long dashed), and binomial (short dashed) amplitude distri-
butions. (Courtesy Bell System Technical Journal.) 

of ip described by z is 4/ = 2ed radians. For example, for a separa-
tion between elements of X/4, 4/ varies through 7r radians as 43 goes 

from zero to 189 degrees, and z 
describes a semicircle. (z retraces 
its path to the starting point as 
4, goes from 180 degrees to 360 
degrees, and the pattern is sym-
metrical about the 0-180-degree 
line). For d = X/2 the range of 
4) is 27 radians and z describes a 
complete circle as varies from 
zero to 180 degrees. If d is greater 
than X/2, the range of 4/ is greater 
than 27, and z will overlap itself. 

FIG. 12-22. As q5 increases from The geometrical representation of 
O degrees to 180 degrees, z moves in Fig. 12-23 makes it a simple 
a clockwise direction on the unit 

matter to observe the radiation 
characteristics as z moves around 

the circle within its range of operation. For example, for the 
simple two-element uniform array given by (32), the fiel.d intensity 
is the sum lz 11, which may be written as the difference :z — (- 1)1. 

circle. 
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This value is given geometrically by the distance between z and the 
point —1 (Fig. 12-24). For the more general case of unequal 

(a) (b) (c) 

Fra. 12-23. Active range of z (shown for a = On for a separation 
between elements of (a) X/4I, (b) X/2, (c) 3X/4. 

amplitudes, where the source intensities are proportional to 1 and 
—t, the radiated field intensity pattern is given by lz — /1 which 
geometrically is the distance between the points z and t. Since z 
is always on the unit circle, the pattem will have a zero only when t 
is also on the unit circle, and 
when t is within the range of z. 

By the fundamental theo-
rem of algebra, a polynomial 
of the (n — 1)th degree has 
(n — 1) zeros (some of which 
may be multiple zeros) and z. t-t) z-i 
can be factored into (n — 1) 
binomials. Thus 

1E1 = 1(z — ti)(z — 12) • • • 
(z — (12-35) 

from which Theorem III 
follows directly. 

It is evident that the radiation intensity in any direction is 
given by the products of the distan  es from z (corresponding to the 
chosen direction) to the null points of the array. 

EXAMPLE 1: Uniform Array. Consider the case of the uniform array 
that is represented by 

1E1 = z + z2 + • • • + 

FIG. 12-24 

(12-36) 
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(0) (b) 

Z./ 

Fm. 12-25 

FIG. 12-26. Relative field intensity E as a function of 1p. 

The null points of such an array, given by the roots of (36), are in this 
case the nth roots of unity (excluding z = 1, which is the principal maxi-
mum). In the complex plane the roots of unity all lie on the unit circle, 
and divide the circle into n equal parts (Fig. 12-25). The roots are 

z = e-j2(2r/n), • • • e-jm(2r/ti) 

It is seen that the null points of the array are given by = —m 27r/n 



(0) 
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where m = 1, 2, 3, • • • (n — 1). Since = cos + a, the null 
points of the radiation pattern are given in terms of the angle 4) by 

a 27rm 
cos Om = — — - 

Oct nOd 

When z = 1, E has a principal maximum. Other maxima occur approxi-
mately midway between the nulls. As z moves around the circle the 

Z• I 

A, 

4 
-...\ 

6 

.4 

2 

4/ 0 +74 -f 

(b) 

FIG. 12-2 7 

radiation pattern is given by the product of the lines connecting the null 
points to z. A plot of E as a function o' tp is shown in Fig. 12-26. Using 

— a 
= cos-3 ed ) 

E can be drawn as a function of 4). 
EXAMPLE 2: Four-element Broadside. A simple array, which has already 

been considered is the four-element br( adside having half-wave spacing 
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between elements and equal currents fed in phase. For this case 

fid = ir a = 0 4, = on- cos it. 

The range of z is # = 219c1 = 2r. 

so° 

The relative field intensity pattern is 
given by 

E = 11 z z2 

= z4 — 11 

z — 11 
= 1(z — e-i(T/2))(z — — e-i(3T/)))I 

(12-37) 

The nulls are spaced equally on the unit 
Lo circle as shown in Fig. 12-27a. As y1) 

increases from 0 to 180 degrees, 4. decreases 
from ir through zero to and the curve 
of Fig. 12-27b results. This is plotted in 
polar co-ordinates as a function of 4) in 
Fig. 12-28. 
EXAMPLE 3: Four-element End Fire. 

Consider a uniform four-element end-fire 
array having an element spacing of one-
quarter wavelength and a progressive 

FIG. 12-28. Relative field in- phase shift of —r/2 radians. For this 
tensity as a function of 0. array 

j9d 7f = 2r- a = — 
2 

and e = I3d cos (1) -1- a = 1-;- (cos ct. — 1) 

The range of e is ir radians. 
As before, the expression for ¡El is given by eq. (37) and the three nulls 

occur at 4/ = —7r/2, —r, —3r/2. However, in this case the range of e is 
only from e = 0 to 4, = (Fig. 12-29), so the null at — 3r/2 obviously 
has very little effect on the pattern. An improved pattern (that is, one with 
a narrower principal lobe and smaller secondary lobes) can be obtained with 
the same number of elements by spacing the nulls equally in the range 
of 4/. This gives rise to the array that has the circle diagram of Fig. 12-30 
and the pattern given by 

E = 1(z — e-iorm)(z — e-i(2.18))(z — 

= iz' + (1 — c-1(713) — e-i(21r/3))z2 + (- 1 — e-i(es) — e-i(2e31)4 — 11 

+ 2 e-i(1.13)Z ± 2 e-i(27/))22 e-ivzsi (12-38) 
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The current amplitudes of the array are 

1:2:2:1 

and the progressive phase shift between elements will be —ir/2 — 1r/3 = 
—51r/6 radians. The resultant pattern as a function of it, is shown as 
curve B in Fig. 12-31. 

RANGE OF 

 4 ----AI-

41-

12-:;.3 

Fro. 12-30. Circle diagrams fc.• a four-element array having 
nulls equispaced in the range cf Fcr an clement spacing of 
one-quarter wavclength the range cf 1,e is T radians. 

If the over-all length of the array is maintained constant, but 
the number of elements is increase 1, it is possible to improve the 
directivity still further if the nulls are properly spaced in the range 
of operation. Curve C of Fig. 12-31 shows the pattern that results 
when the number of elements is increased to seven with the spacing 
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reduced to one-eighth wavelength, so that the over-all length is 
still X. To obtain this result the nulls were equispaced in the 
range 1p = 20d = ir/2. Curve D shows the pattern obtained for 
13 elements at X/16 spacing, with the nulls again equispaced in the 
range of tp. 

For the uniform array it was found that the maximum direc-
tivity and gain obtainable were directly related to the length of the 
array. In contrast to this, when the current ratios and phasings 
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FIG. 12-31. Radiaticn patterns fcr several end-fire arrays, all 
having an array length cf :: X/4. Shown at A is four-element uni-
form array (d = X/4); B, four elements with nulls equispaced in the 
range cf 11. (d = X/4); C, seven elements with nulls equispaced in 
the range cf ‘,1, (d = )/8); D, thirteen elements with nulls equi-
spaced in the range of t,/, (d = )s/16). (Courtesy Bell System Tech-
nical Journal.) 

are properly chosen, it appears possible to obtain arbitrarily sharp 
directivity with an array of fixed length by using a sufficiently 
large number of elements. However, it will be found also that with 
the phase relations and close spacings between the elements required 
to obtain this result, the radiation resistance is reduced to extremely 
low values. That is, extremely large currents are required to pro-
duce fields of appreciable intensity. With actual antennas that 
have a finite ohmic resistance, the antenna efficiency enters the 
picture to limit the directivity and gain that can be obtained from 

an array of given length. 
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Problem 2(a). Draw the circle diag, am and sketch the pattern of 
a three-element, uniform, end fire array, using d = X/2. (b) Using the 
same number of elements and same spacing, redesign the array to have 
nulls at ch = 90 degrees and ci) = 60 degrees. 

12.15 Antenna Synthesis. It is a simple and straight forward 
job to compute the radiation pattern of an array having specified 
configuration and antenna currents. A somewhat more difficult 
problem is the design of an array to produce a prescribed radiation 
pattern. Making use of Fourier analysis, the methods of the pre-
ceding sections may be extended to accomplish this result. 

It is convenient to consider an array having an odd number of 
elements with a certain symmetry of current distribution about the 
center element. The polynomial for an array with n = 2m 1 
elements is 

El = 1A0 AlZ A2Z2 Amen 4 Am+eni+' A2meni (12-39) 

Now the absolute value of z is always unity, so equation (39) can 
be divided by ea without changing the value of 1E1. That is, 

1E1 = 1,40z-ni + iz-ne" ± • • • ± + Am ± Am+e 

+ • • • + A 2„enil (12-40) 

It is now specified that the currents in corresponding elements on 
either side of the center element be equal in magnitude, but that 
the phase of the left-side element shall lag that of the center element 
by the same amount that the corresponding right-side element leads 
the center element (or vice versa) That is, the coefficients of 
corresponding elements are made complex conjugates with 

Am = ao Am-k = ak — jbk Am+k =- ak jbk 

Then the sum of terms of two corresponding elements may be 
written 

A„,kz-k "1„,i_kzk = ak(z+k z-k) jbk(zk — z-k) 

= 2ak cos kt — 2bk sin 14 
since e = eke 
The expression for 1E1 is now 

1E1 = 2[ao -1- al cos tp + • • • + am cos 
— (-Fb1 sin 4, + • • • + bm sin mel 

k= m 

= 2 iclº [ak cos (— bk) sin kikj I (12-41) 
2 k = 1 
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These are the first 2m -I- 1 terms of a Fourier series in which the 
coefficients of the cosine terms are the ak's, and the coefficients of 
the sine terms are ( — bk's). Now any radiation pattern specified 
as a function f(#) may be expanded as a Fourier series with an 
infinite number of terms. Such a pattern may be approximated to 
any desired accuracy by means of the finite series (41). When this 
is done the required current distribution of the array can be written 
down directly. 

9e e 6e 

270e 

Fla. 12-32. A prescribed pattern, A, and approximations to 
it, obtained with an eleven-element array, B, and a five-element 
array, C. 

EXAMPLE 4: Synthesized Bidirectional Array. Let it be required to 
design an array that will produce approximately a pattern of Fig. 12-32. 
This pattern is defined by 

Ad)) = 1 ir 

7r 27r 
AO) = 0 < < 

27r 
AO) = 1 
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It will, of course, be symmetrical about the line of the array, 4, 0. If 
the spacing is chosen to be X/2, then 4, = r cos 4) -I- a. The correspond-
ing e function is 

ir ± a > 4, > + a 

> — 72. + a 

- - + a > > -7r + a 
2 

Choosing a = -7 for an end fire array results in the function shown in 
Fig. 12-33. 

The Fourier series expansion for 
this function is 

F(e) = 

k . 
1 kir (1 2 . 

-  — cos ktP) 
2 ir k k 2 

-27r -37r 
-2-

Comparison with (41) determines the coe fficients 

1 
ao = 

1 . kir 
ao = sin 

kir 2 

bk = k 0 

F 

LO 

O 

The pattern obtained using the value of m -- 4, is given from eq. (40) as 

1E1 = z-3 z-3 z - (12-42) 

This is a five-element array having thu current ratios indicated and an 
over-all length of three wavelengths (the apparent spacing between ele-
ments is one-half wavelength, but four cf the elements are missing). The 
pattern produced by this array is shown in Fig. 12-32. Also shown in 
this figure is the pattern obtained with an 11-element array formed using 
m = 9 in the series. 

In the above example the apparent element spacing was arbi-

trarily chosen as one-half wavelength, which made the range of e 

equal to 2r radians. If the element spacing is less than X/2, the 
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range of e will be less than 27r radians. This means that although 
the radiation pattern as a function of 0, that is AO), is completely 
specified for the whole range of 0, the corresponding 1(e is specified 
only over its range, which is less than the interval of 2r radians 
required for the Fourier expansion. It is possible then to complete 
the interval with any function that satisfies Dirichlet's conditions. 
Naturally, the function chosen would be one which would simplify 
the series as much as possible or make it converge rapidly. It is 
evident that when the apparent spacing is less than X/2 there is an 
unlimited number of solutions that will satisfy the conditions of the 
problem. If the apparent spacing of the elements is greater than 
X/2, the range of is more than 2r radians. Except for some 
special cases* it is then not possible to obtain the prescribed direc-
tional pattern by this method. 

When an apparent spacing less than X/2 is used, f(e) is specified 
over only a portion of the required 2r radians, and the function 
used to fill in the remainder of the interval can be chosen at will by 
the designer. A judicious choice of " fill-in" function will produce 
a desirable pattern with a minimum number of elements, and 
conversely a poor choice of function may result in a poor pattern. 
An example will illustrate this point. 

EXAMPLE 5: Synthesized Unidirectional Array. Let it be required to 
design an end fire array that will have an approximately semicircular 
pattern given by 

1(4)) = 1 

1(4)) = 

The apparent spacing is to be X/4. 
Then, for this problem, 

0 < < —2 

< < r 

= —2 cos 4) a 

and the range of e is r radians. By choosing different values of a, the 
range of 4/ which is used can be shifted anywhere in the interval of 2r 
radians, which is required for the Fourier expansion. This is shown in 

*Examples of cases where a larger spacing is permissable are given in the 
following article: Irving Wolff, " Determination of the Radiating System 
Which will Produce a Specified Directional Characteristic," Proc. IRE, 25, 5, 
630 (1937). 
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Fig. 12-34 for three values of a. In this Example there is a finite discon-
tinuity within the range of tP, so the coefficients of the series will decrease 
at a rate that is of the order of 1/n. (They will be less in absolute magni-
tude than c/n, where c is some positive constant.*1 If the functions were 

a. 0 a., 

7,> çfr> O 

FIG. 12-34. Range of „c for 0 < < 1r, for three different values 
of a. (Range used is indicated by double arrows.) 

continuous in the range, the series would converge at a rate that would 
be at least of the order of 1/n2. Because no choice of fill-in function can 
remove this discontinuity within the range of ip, it is anticipated that, in 
this case, the fill-in function may not have much effect on the number of 
terms required. However, it is interesting to examine some actual eases. 

F(Ji) 

J  
7T o 

RANGE OF b FOR 

0<0<ir 

FIG. 12-35. A possible choice of fill-in function (shown dashed) 
for a = —7r/4. 

CASE 1: A possible choice for a and for the fill-in function is illustrated 
in Fig. 12-35. This choice would appear to be good, because it results in 
the following conditions: 

(1) f(r 4.) = —f(IP). Therefore, only odd harmonics will be present. 
(2) f(iP) is an even function, so the coefficients of the sine terms will 

be zero. 
(3) Ali') has an average value of zero, so the d-e term (or center element) 

is eliminated. 

r Uy 

*Doherty and Keller, Mathematics of Modern Engineering, John Wiley and 
SODS, New York, 1936, Vol. 1, p. 89. 
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- 

900. 

(b) 

Fla. 12-36. (a) Array and (b) pattern corresponding to 
Fig. 12-35. (Circles in (a) indicate elements which drop out 
because of zero current.) 
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The antenna array resulting from the choice used in Fig. 12-35 is shown in 
Fig. 12-36a for m --- 7 (eight elements), and the corresponding pattern is 
shown in Fig. 12-36b. This pattern has two serious defects. It approaches 
a relative value of 0.5 at 4, = 0 where jI should be unity, and it also 
approaches 0.5 at 4) = ir where it should De zero. Using more terms of 
the series will not remedy these defects, whi ch are inherent in the particular 
function used in Fig. 12-35. This functioi: is discontinuous at the values 

bLy_ 

fLo_ 

.5L/f 

/277 
(b) 

o 7T 

RANGE OF ;G FOR a -tr 

0<0<77-

(a) 

(c) 

Fla. 12-37. A better design (a) remits in the array (b) and the 
pattern (e). 

of 1,1, corresponding to 4, -- 0 and ck = ir, and the series converges to the 
average of the values taken by the function on the two sides of the dis-
continuity. Therefore, the function of Pig. 12-35 is an unsuitable choice. 
CASE 2: The discontinuities at values of 1,1, corresponding to =- 0 and 

ct• = ir can be eliminated by a different choice of a, and a suitable fill-in 
function. A possible function is that shown in Fig. 12-37(a). 
The corresponding antenna array and resulting pattern are also shown, 
and it is seen that this function is a suitable one. 
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Whereas many other types of fill-in functions are possible, it is found 
for this example, where the apparent spacing is fixed at X/4, that none of 
them results in appreciable improvement over the design of Fig. 12-37. 
However, if the apparent spacing d is permitted to have other values, this 
puts one more variable under the control of the designer. For a given 
number of antenna elements it is in general possible, with this additional 
control, to improve the pattern obtained. In the present example for a 
given number of elements, an apparent spacing of 3X/8 instead of X/4 
results in a closer approach to the ideal pattern in the critical regions, 
(1) = tra. 

12.16 The Tchebyscheff Distribution. A particular, but very 
important, problem in antenna synthesis is the following: For a 
given linear antenna array, determine the current ratios that will 
result in the narrowest main lobe, for a specified side-lobe level; or, 
in other words, determine the current ratios that will result in the 
smallest side-lobe level for a given beam-width of the principal 
lobe. The current distribution that produces such a pattern will 
be considered as being the optimum. 

From the material of section 14, it will be recalled that a desir-
able pattern (but not necessarily the optimum) can be obtained by 
equispacing the nulls on the appropriate arc of the unit circle. An 
examination of Fig. 12-26, which shows a pattern obtained by equi-
spacing the nulls, indicates how a better pattern can be obtained. 
For a given width of principal lobe, the first secondary lobe can be 
decreased by moving the second null closer to the first. Of course, 
this increases the second side lobe, but that is permissible as long 

as it does not exceed the first. It is evident that the optimum 
pattern is obtained when all the side lobes have the same level. 
The problem is simply that of finding the spacing of nulls which 
makes this true. The answer is given in terms of the Tchebyscheff 

polynomials. 
The Tchebyscheff polynomials occur quite frequently in design 

and synthesis problems. They are defined* by 

Tm(s) = cos (m cos' x) —1 < x < +1 

71.(x) = cosh (in cosh—' x) Ix > 1 

The general shape of Tm(X) is shown in Fig. 12-38 for both m even 

and m odd. 

*Courant-Hilbert, Methed,en der Mathemcdischen Physik, Julius Springer, 
Berlin, 1931. Vol. 1, p. 75. 
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By inspection, To(x) = 1, Ti(c) = x 

The higher order polynomials can be derived as follows: 

T2(x) = cos (2 cos-1 x) = cos 28 
where 6 = cos-1 x or x = cos 
Now since cos 28 = 2 cos2 — 1 

T2(x) = 2x2 — 

Similarly, it can be shown that 

T„..4.1(x) 2T„,(x)Ti(x — T._1(x) 

so that 773(x) = 4x3 — 3:c 

T4(x) = 8x4 — 8.c2 + 1 
and so on. 

The important characteristic of the Tchebyscheff polynomials, 
as far as antenna pattern synthesis is concerned, is evident from 
Fig. 12-38. As x is allowed to vary from some point c up to a 
value xo and then back to its starting point, the function Tm(X) 
traces out a pattern consisting of several small side lobes and one 
major lobe. The secondary lobes will all be of equal amplitude 
(unity) and will be down from the main lobe by the ratio 1/b. This 

ratio can be chosen at will by suitable choice of xo. Such a pattern 
will be called the optimum or Tchebyscheff pattern.* Since a 
technique for obtaining the pattern is available once the positions 
of the nulls on the unit circle are known (section 14), all that is 
required from the Tchebyscheff polynomials is information on the 
proper distribution of the nulls. This information can be obtained 
by causing x to trace out the desired portion of the Tchebyscheff 
polynomial (of correct degree) as the variable 4/ moves over its 
range on the unit circle. This is accomplished as follows: 

Consider the Tchebyscheff polynomial of mth degree 

Tm(X) = cos (m cos-1 x) = cos (m8) 
where cos 8 = 

The nulls of the pattern are given by the roots 

cos (m8) = 

4' C. L. Dolph, "A Current Distribution for Broadside Arrays which Opti-
mizes the Relationship between Beam Width and Side-lobe Level," Proc. IRE, 
84, 6, 335 (1946); also H. J. Riblet, Proc. IRE, 35, 5, 489 (1947). 
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Fia. 12-38. Tchebyscheff polynomials, Tm(x), for m even and m 
odd. 

that is, by 

Sk° 
(2k — 1)7r 

2m 
k = 1, 2, • • • 

Next consider the function 4, . For a broadside array for which 

a = 0, 

= ad cos it, 
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as 4, varies from 0 to r/2 to ir, tp goes from 0d to 0 to — fid and the 
range of 1,1/ is 2I3d. 

Now let x = xo cos ea. Then, as varies from 0 through 7r/2 
to 7r, 1P varies from I3d through zero tc• —0d, and x will vary from 
xo cos rd/X to xo back to xo cos ( —rd/X) = xo cos ird/X. For 
example, if d = X/2, le will range from ir through zero to —7r, and x 
will range from 0 to +xo and back to zero. Again, if d = X, 11/ will 
range twice around the circle from 27r through 0 to — 27r, (two 
major lobes) and x will range from xo to xo and back to —xo. 
This is the correspondence desired. 

The nulls in the Tchebyscheff pattern occur at values of x 
given by 

xk° = cos Ek° 

so the corresponding position for the nulls on the unit circle will be 
given by 

e 
Xk° = X0 COS k° 

or 140 = 2 cos-1 [x—] 
X° 

= 2 cos-1 [cos oto] 
xo 

— 
where 8k° —(2k1)7r k --= 1, 2, • 

2m 

Equation (43) gives the required spacing of the nulls on the 
unit circle for a pattern whose side lobes are all equal. The degree 
m of the polynomial used will be equal to the number of nulls on 
the unit circle, and this will be one less than n, the apparent number 
of elements. The value of xo is determined by the desired ratio b 
of principal to side lobe amplitudes. The value of xo is given in 
terms of b by 

Tm(xo) = b 

It can be obtained more conveniently* from 

xo = 3q(b + -Vb° — 1) vm 4_ (b _ vb2 _ 1) inq 

The graphical-analytical method for obtaining the pattern of 
t he array from the location of the nulls yields a detailed and accurate 

*C. L. Dolph, /oc. cit. (discussion), p. 492. 

(12-43) 
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plot of relative field strength versus the defined angle 1p. For many 
purposes a rough sketch of the pattern may be adequate, and this 
can be obtained directly from the known properties of the Tchebys-
cheff polynomial. Thus, knowing the location of the nulls in the 
pattern and the amplitude of all the side lobes relative to the prin-
cipal lobe, the pattern as a function of 1P may be sketched in with 
good accuracy. The pattern as a function of the azimuthal angle 4, 
is then determined using the transform 4, = cos-1 4///3d. The 
binomial expansion method of calculating the required current dis-
tribution from the location of the nulls proves satisfactory for small 
arrays, but tends to become unwieldy for larger arrays. For large 
multielement arrays, an alternative procedure outlined in the 
article by Dolph will be found to require less labor. 

EXAMPLE 6: Design on a four-element broadside array having a spacing 
d = X/2 between elements. The pattern is to be optimum with a side 
lobe level, which is 19.1 db down (b = 9.0). 

For d = X/2, the range of operation is 2ed = 27. Since there will be 
3 nulls, use To(x) = 4x3 — 3x. Then 

To(xo) = 4x03 — 3x0 = 9 

Solving for xo, 

xo ¡[(b 1/b2 — 1)1' + — NA' — 1) 1/"1 

= %[(9 "V -870)4 (9 — "VàiiM 
= 1.5 

The nulls are given by cos (me) = cos (38) = 0. Therefore 

Then 

(2k — 1)r (2k — 1)71-
Sko — 

2m 6 

olo = 7), 
37 

620 = —6 

k = 1, 2, 3, • • • 

5r ae = — • 6 

k óko xk° = cos óko rk°/xo 1,tk° = 2 cos—' E• eko (radians) 

1 r/6 0.866 0.577 109.5° 1.910 

2 3/6 0 0 180° r 

3 5r/6 --0.866 —0.577 250.5° 4.37 
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The polynomial representing the array is 

1E1 = 1(z — eil-91)(z — ei.)(z — 0.37)1 

= lz3 1.667z2 + 1.667z ± il 

The required relative currents in the elements are 

1:1.667:1.667 1 

12.17 Supergain Arrays. In the case of end fire arrays, it was 
found that the technique of equispacing the nulls in the range of 
yielded desirable radiation patterns, even when the spacing between 
elements became small in wavelengths. Indeed, if the number of 
elements in the array was increased as the spacing was decreased, 
so that the overall length of the array remained fixed, this technique 
led to the design of arrays having arbitrarily sharp directivity. 
Such arrays, which are capable (theoretically) of attaining very high 
gains with reasonably small dimensions, have become known as 
supergain arrays. 

When this same technique of equispacing the nulls is applied 
to broadside arrays having small spacings, it is found that, as the 
spacings are made smaller, the patterns become progressively poorer. 

However, if the nulls are distributed in the range of 4, according 
to the Tchebyscheff distribution, desirable patterns having small 
side lobes and arbitrarily sharp principal lobes result. The design 
procedure for supergain broadside arrays is indicated below. 

Referring to Fig. 12-38, the range of the Tchebyscheff poly-
nomial, which is used, lies between the points c and xo. The posi-
tion of the starting point c depends upon the element spacing and 
is given by 

rd 
C = xo cos --

X 

For a spacing d equal to X/2, the point c is at the origin. For 
d > X/2, c is negative as shown in Fig. 12-38, whereas for spacings 
less than X/2, c is positive, approaching xo as the spacing approaches 
zero. Since the radiation pattern is determined entirely by that 
portion of the Tchebyscheff curve lying between c and xo, it is seen 
that for small spacings (c near xo) full use is not being made of the 
pattern control available. This failing can be remedied by com-
pressing the desired range of Tchebyscheff curve into the region 
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that will be used. This can be accomplished by a simple change of 

scale on the abscissa. An example will illustrate the method. 

EXAMPLE 7: Design a five-element broadside array having a total array 
length of X/4 (spacing between ehments d = A/16). The side lobe level 
is to he 25.8 db down, or 1/19.5 times the main lobe level. 

T2OÏ) (X0119.5) 

: o 

15 

40 

5 

+1 

,X 0 I 
-11 

.i_ 
. 2 

\ 

32 

-0.9e4X0 
-1 

FIG. 12-39a. Second-degree Tchebyschcff polynomial. 

For a five-element array there should be four nulls on the unit circle 
within the range of and four nulls in the range of the Tchebyscheff 
pattern that is used. Thus it would be possible to select T4(x) and use 
the range from 0 to xo and back (four nulls), or alternatively it is possible 
to select T2(x) and use the whole range from — 1 to xo and back (again 
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four nulls). Since it is considerably simpl( r to work with the lower degree 
polynomials, T 2(x) will be used. 
A sketch of T2(x) is shown in Fig. 12-3!Pa. Let x = xo cos 1P, where for 

this case of d = 

= —8 cos A 

. 
, 
, , 

/ +1 

' 

, 

0.924 3.2 X 

FIG. 12-:.: Ob 

Then as 4i ranges from 0 through 7r/2 tc ir,1,e will range from 7r/8 to --ir/8, 
and since cos 7118 = 0.92388, x will vary from 0.92388x0 to xo and back 
to 0.92388xo. By a simple translation nd change of scale of the abscissa, 
the portion of the curve between — 1 ai d xo can be compressed within the 
range 0.92388x0 to Xe. Thus let 
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x = ax' b 
so that 3.20156 = a(3.20156) b 
and —1.0 = a(0.92388 X 3.20156) + b 
Solving 

a = 17.236 b = —51.982 

The curve now appears as in Fig. 12.39b, where 

x — b x + 51.982 
x' — 

a 17.236 

I. 
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06 
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0.2 

o 

\ 
e‘, 

‘ 

'\ 

‘ \ 

N 

‘ 

\ 

\ 

\ 

a 
\ 
\ 
\ 
\--b 

\ 

\ 

\ 
le 

I 

....--...... 
./.../ ---.....->.‹.,.. , ... '... 

20 40 50 60 70 80 90 

Fia. 12-40. Broadside "super-gain" patterns for arrays that 
have an overall length of one-quarter wavelength: a, five-element 
array; b, nine-element array. 

The nulls in Fig. 12.39a occur at xo = + 0.707, so the nulls in (b) will 
occur at 

xo 51.982 
xo' — — 3.0569 or 2.9749 

17.236 

Correspondingly, the nulls on the unit circle will be place at 

, xo' = cos— — 
xo 

= cos-1 0.95480 or cos-1 0.92919 
= + 17° 17%' or + 21° 41%1' 

The resulting pattern as a function of 4) is shown in a, Fig. 12-40. The 
required relative currents are obtained in the usual manner from the 
coefficients of the various powers of z in the polynomial 
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where 
1E1 = (z — eiee)(z — c-i#1°)(z — ei#2°)(z — 
#1° = 17° 17ge and 1/20 = 21° 41>41' 

Multiplying out, the current ratios are fouud to be 

1: — 3.7680:5.5488: — 3.7680:1 

In the above example it will be noted that to obtain the pattern 
by the semigraphical method of multii)lying together the distances 
from z to the null points of the array, as indicated in eq. (35), 
three-figure accuracy is adequate. However, if it is desired to 
obtain the pattern from the simple phasor addition of the fields 
due to the individual elements, as in eq. (30), it is necessary to 
compute the current ratios with great accuracy if a reasonably 
accurate pattern is to be obtained. 

The reason for the extreme accuracy required in this case 
becomes evident when the fields are added to determine the resultant 
field in the direction of the maximum, broadside to the array. In 
this direction, there is no phase difference due to difference in path 
lengths and so the field trength is proportional to the simple 
arithmetic sum of all the currents. Adding these currents with 
due regard to sign, 

1.0000 — 3,7680 -F 5.5488 — 3,7680 -I- 1.0000 = 0.0128 

it is seen that the " effective current" radiating in the direction 
of the maximum is only about one-fif-il of 1 per cent of the current 
in the center element. This low value of radiation results from the 
fact that the array derives its " supergain" or high directivity 
properties by virtue of the addition of the radiation from elements 
carrying large, almost equal and opposite currents. Furthermore 
a slight error of the order of 1 per cent in the setting of any one 
of the currents would change the resultant by several hundred 
per cent, and so completely destroy the supergain pattern. 

These effects are demonstrated even more clearly in the next 
example which is the case of a nine-element array having the same 
over-all length (one-quarter wavelength) as the array of the previ-
ous example. The pattern of this array is shown in b, Fig. 12-40. 
For this array the nulls were spaced corresponding to the distribu-
tion of nulls in T4(x). The calculated current ratios are given in 
the following table: 



450 DIRECTIONAL CHARACTERISTICS 1§12.17 

/1 260,840.2268 
/2 — 2,062,922.9994 
/3 7,161,483.1266 
/8 —14,253,059.7022 
/8 17,787,318.7374 
/3 —14,253,059.7032 
/1 7,161,483.1266 
/8 — 2,062,922.9994 
/8 260,840.2268 

Total 03,000,000.0390 

It is seen that, if a current of the order of 17 million amperes 

is fed to the center element, with corresponding currents in the 

other elements, the total effective current radiating broadside to 

the array (the direction of the maximum) is equivalent to a current 

of 39 milliamperes in a single antenna. It is concluded that, although 

supergain arrays are possible in theory, they are quite impractical. 

ADDITIONAL PROBLEMS 

3. Derive an expression for the radiation pattern of an antenna of 
length L which has a traveling wave current distribution represented by 
I = I o e-(a+item. The phase shift factor f3 is equal to 21r/X where X is 
assumed to be equal to the free-space wavelength. 

4. Using the principle of multiplication of patterns, sketch the following 
radiation patterns: 

(a) The horizontal pattern of four vertical antennas spaced one-half 
wavelength apart and fed with equal currents, but with 180° phasing 
between adjacent elements. 

(b) Same as part (a), but for eight elements. 
(e) The horizontal pattern of four vertical radiators spaced one-quarter 

wavelength and having a progressive phase shift of 90° between elements. 
(d) The free-space vertical patterns (obtained for the array remote 

from the earth) of each of the arrays of parts (a), (b) and (c): 
(1) In the plane of the array 
(2) In the plane perpendicular to the plane of the array. 

5. An elevated antenna is one wavelength long and is fed a quarter 
wavelength from one end. Assuming a sinusoidal current distribution 
(not the distribution of Fig. 12-2d) calculate its free-space radiation pattern 
and its radiation resistance. 

6. Using the known relative radiation pattern for a half-wave dipole 
in free space, determine the absolute value of the pattern (in mv/m at 
1 mile for 1 watt radiated) by the method of seotion 12.13. Hence deter-
mine the radiation resistance of the antenna. 

7. Calculate and plot the vertical pattern of a 190 degree vertical 
monopole uni = 1907r/180). Determine: (a) the field intensity at the 
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surface of the earth at a distance of one mire, in niv/m fo-: one kw radiated, 
assuming negligible attenuation of the fi Id due to earth losses; (b) the 
field intensity of the secondary lobe. 

8. Design an end fire array that will pr duce approximately the pattern 
described by 

= 1 

AO) = o 

Use an element spacing of one-quarter wavelength. 

9. Design a six element broadside array having a spacing d = x/2 
between adjacent elements. The patterr is to be optimum, with the side 
lobe level 20 db down. 
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CHAPTER 13 

IMPEDANCE CHARACTERISTICS 

OF ANTENNAS 

To the communication engineer interested in the over-all design 
of a radio communication system, the antenna is but one link in the 
complicated chain that leads from the microphone to the loud-
speaker. It is natural for him to consider the antenna simply as 
another circuit element that must be properly matched to the rest 
of the network for efficient power transfer. From this point of 
view the input or terminal impedance of the antenna is of primary 
concern. The input impedance of an antenna is a complicated 
function of frequency, which cannot be described in any simple 
analytical form. Nevertheless, at a single frequency, the antenna 
terminal impedance may be accurately represented by a resistance 
in series with a reactance. Over a small band of frequencies such 
representation can still be used, but it is now only approximate. 
If, as is often the case, the band of frequencies is centered about the 
"resonant frequency" of the antenna, a better approximation is 
obtained by representing the antenna as a series R, L, C circuit. 
If the range of operation extends over a wider band of frequencies, 
this representation is no longer adequate. It can be improved by 
adding elements to the " equivalent" network, but the number 
of elements required for reasonably good representation becomes 
very large as the frequency range is extended. Under these circum-
stances it is possible to replace the equivalent lumped-constant 
network with a distributed-constant network, such as an open-
circuited transmission line, the input impedance of which will 
represent reasonably well the input impedance of the antenna over 
a wide range of frequencies. 

13.01 Lumped-constant Representation of Antenna Input 
Impedance. For an antenna whose half-length H is shorter than 

452 
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a quarter-wavelength, the input impedance can be represented over 
a narrow band of frequencies by a resistance R in series with a 
capacitive reactance X. The resistance R is the radiation resistance 
(and loss resistance, if any), of the antenna, referred to the terminal 
or base current. . It is given in Fig. 11-12, or it can be obtained 
from Fig. 11-2 by dividing the values of radiation resistance referred 
to lcop current by sin' pH. Approximate values of the capacitive 
reactance X are also given in Fig. 11-12. For antennas which 
have a half-length greater than about a quarter-wavelength (actu-
ally nearer 0.23)1/4, the exact point depending on the thickness of the 
antenna), the input impedance becomes inductive and would be 
represented by a resistance in series with an inductive reactance. 
For both transmitting and receiving, an antenna is often operated 
at its resonant frequency, that is, at the center frequency of the 
narrow band of operation where the antenna input impedance is a 
pure resistance. Below this center frequency the antenna reactance 
is capacitive, and above this frequency the reactance is inductive. 
The input impedance can then be represented approximately by a 
series R, L, C circuit. Quantities of interest are the required 
values of the equivalent R., L., and C,„ and the Q of the antenna. 

Figure 13-1 illustrates this representation as a simple R, L, C 
circuit and shows the variation of impedance and admittance in the 
vicinity of resonance (X = 0) for such a circuit. 

The general expression for the impedance is 

Za = Ra + j (col„ — 
coCa 

at the resonant frequency f = 

1 
COrria = 

CA)rCa 

(13-1) 

= Zr = Ra (13-2) 

For a small angular frequency increment, &a, from the resonance 
frequency, the impedance increment is 

o 
SZ. = j(ScoLa + Sc 

Therefore the per unit increase in impedance is 

(13-3) 
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FIG. 13-1. Approximate representation of antenna input 
impedance by a simple R, L, C circuit, with corresponding imped-
ance and admittance curves. 

where 

From eq. (4) 

or 

co L. 1  
.;?„ cerC.R. 

L.01 

SZ. 
R. 

(13-5) 

(13-6) 

When SZ. -= R., the current has dropped to 1/V2> times its value 
at resonance and the power has dropped to one-half. The angular 
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frequency difference between half-powcr points is 

Aco = 2 &co = 261. (13-7) 

The frequency difference between helf-power points is the band 
width of the circuit, and the relative band width is 

(13-8) 

To the extent that the antenna impedance may be represented 
by the simple circuit of Fig. 13-1, this can be considered to be the 
band width of the antenna (unloaded). A more general definition 
for antenna band width is given in sec. 3. 

When precise impedance or admittance measurements are made 
on an actual antenna in the neighborhood of the resonant frequency, 
it is found that the curves have a scrnewhat different shape from 
those of the simple R, L, C circuit shown in Fig. 13-1. This differ-
ence is due to the fact that the equivalent R., L., and C. of the 
antenna are really functions of frequency, and not constants as in 
Fig. 13-1. A much better representa tion of the antenna impedance 
may be obtained with the series R, L, C, circuit by assuming L. and 
C. to be constant as before, but taking into account the variation 
of R. with frequency. For this purlose, the variation of R. with 
frequency can be assumed to be linear over the frequency range of 
interest (see Fig. 11-12), and so the resistance may be written as 

so) = R,.(1 p (7) (13-9) 

where Ry is the resistance at resonance and p is a positive constant. 
The expression for impedance for this case, illustrated in Fig. 13-2, 
is (for w = cur -F 

Z a = Ra + j (aL. — 

1 
= R, (1 + + j (,La + iwLa — Su) (»ea + ct-76—,.) (13-10) 

cor 
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1 
Then, remembering that cot/J. = , 

COrt, a' 

Z. -8co  R—, = 1 + ;Tr (p + j2 corL. ) 
I
M
P
E
D
A
N
C
E
 

= 1 + —&) (p + j2Q) 

/ 
rZIP/ fri 

A
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M
I
T
T
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E
 

(13-12) 

Fie. 13-2. Impedance and admittance curves about resonance 
when the variation of radiation resistance with frequency is 
considered. 

The impedance and admittance curves for this case are shown in 
Fig. 13-2. It is seen that the impedance minimum or admittance 
maximum no longer occurs at resonance, but rather at some fre-
quency below resonance. The frequency at which the impedance 
is a minimum can be found by minimizing the absolute value of 
expression (11) (or its square) with respect to 6(o. 

Putting 

gives 

d 

d(5w) 
za 
R. 

2 

= 0 

Sco  — P (for the minimum) 
(p, p 2 + 4(22 



03.01] IMPEDANCE CHARACTERISTICS OF ANTENNAS 457 

The impedance at the minimum will be given by 

Zmin = Rt[l p, 4Q, (i) j2Q)] 

P2  2PQ  
p2 4Q2 p2 + 4Q2] 

(13-13) 

• In order to make use of the equivdent circuit for antenna input 
impedance in computations, it is necessary to know, or to be able 
to obtain, values of the equivalent L., C., and R. in terms of antenna 
dimensions. When curves such as those of Fig. 11-12 are available 
in the range of interest, values of these quantities may be determined 
from the curves. Otherwise, L., C. and Q may be calculated in 
terms of a quantity called the average charac-
teristic impedance of the antenna. 

Characteristic Impedance of Ant3nnas. A 
quantity that has considerable usefulness in 
connection with antennas is the average charac-
teristic impedance of the antenna. The signifi-
cance of this term as applied to ‘3ylindrical 
antennas can be understood by first considering 
a biconical transmission line or a biconical 
antenna. In chap. 8 the characteristic imped-
ance of a transmission line was defined as the 
voltage-current ratio existing on the line when 
the line was infinitely long. For a uniform 
transmission line, this ratio is constant along 
the line. It is easily shown that the trans-
mission line, formed by two infinitely long 
coaxial conical conductors having a common 
apex (Fig. 13-3), is a uniform line, and that the 
ratio of voltage to current along the line will 
remain constant, that is, independent of r. 
(The voltage V is applied across an infinitesimal gap at the apex and 
the current I flows out of one cone and into the other.). In secs. 
13.06 and 13.07 the general solution for a finite length of such a 
transmission line (or antenna) will be obtained. It will be found 
that such a structure can support the TEM wave, as well as higher 
order TM waves. For the outgoing TEM wave (which alone is 

FIG. 13-3. In-
put to a conical 
transmission line (or 
a bi-conical an-
tenna). 
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excited on the infinitely long line) the expressions for the fields are 

A  
- r sin 0 e-ier 

Eo -  Any C-er 
r sin 

E,. = Eo = Ho = H,. = 

(13-14) 

Maxwell's equations in spherical co-ordinates for the case of lib 
variation in the 4) direction are 

1 a(rEe) 1 aE,. . 
r ar r ao = 

r si 
1n a (sin 014) = jw€E,. (13-15) 
o ao 

1 8(rH) - jwcEe 
r ar 

Direct substitution of ( 14) into (15) shows that Maxwells equations 
are satisfied. In addition, because Er = 0, the boundary condi-
tions are automatically satisfied. 

It will be noted that the electric field distribution is just that 
corresponding to the static case (problem 9, chap. 2) and that the 
magnitude of the voltage between the cones at any distance r 
from the apex is constant. That is 

V = f- Eer dB = n„A e-er 01 fi sin 0 d° 

= 277,4 In cot —01 
2 

(13-16) 

Also the amplitude of the current flowing in the cones is constant 
along the line and is given by 

/ = 2irr sin 011/4, 
= 27rA (13-17) 

Therefore, the characteristic impedance for a biconical transmission 
line or biconical antenna is constant r-nd is 

V Oi 
Z3 = — = 17,—  n cob — 

I  2 
01 

= 129 ln cot —2 (13-18) 
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Because the electric and magnetic held configurations are the 
same as for the stationary-fields case, this same result could have 
been obtained directly by using the static capacitance per unit 

length as calculated in chap. 2. Thus 

\ir 1 
ce 

where 

and 

Then 

Zo = In cot Pi- = .120 ln cotir  Pi  

For thin antennas, that is when 01 is small, the characteristic imped-
ance is given approximately by 

Zo = 120 In (-2) = 120 ln (-2r) (13-19) 
01 a 

where a is the cone radius at a distance r from the 

apex. 
When a cylindrical antenna is 1 reated in a like 

manner, it is evident that the cor -esponding " bi-
cylindrical" transmission line will be nonuniform, 
with a capacitance per unit length and characteristic 
impedance that vary along the line. However, for 
thin antennas the e'ements dr can be considered as 
elements of a biconical line which has a cone angle 
01 = a/r, where a is the radius of the cylinder and r 
is the distance from the origin to the element dr 
(Fig. 13-4). Then the characteristic impedance at 
a distance r will be 

1  
VTZ = 

TE 
C   

01 In cot -T 

1  
c = /— = 3 X 108 

v gev 
meter/sec 

Zo(r) = 120 In (— ) = 120 ln 01) 
01 a 
2 \ 

It is seen that the Jharacteristic impedance of a cylindrical antenna 
varies along the antenna, being large r near the ends. For a center-
fed cylindrical antenna of half-length H, an " average" character-

Fia. 13-4 

(13-20) 
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«istic impedance can be defined by 

Zo (av.) = H Jo  Zo(r) dr 

= foll 120 ln (2-2-.a) dr 

= 120 [ln (-2aH ) — 1] 

(13-21) 

(13-22) 

Equivalent L., C., and Q in terms of Zo (ay). Use of the average 
characteristic impedance of an antenna makes it possible to obtain 
values for the equivalent R, L, C circuit of the antenna in terms of 
the antenna dimensions. This is done by first finding a Q for the 
antenna by comparison with ordinary transmission line theory, and 
then determining L. and C. in terms of this Q and the known R.. 

From transmission-line theory for low-loss lines (see chap. 8), 
the Q of a transmission line is 

(.0/, wZo 2/1-Zo 
Q —  R Rv (13-23) 

XR 

where R, L, and C are the resistance, inductance, and capacitance 
per unit length of line and 

1 
v VEC 

for low-loss lines. For a resonant length (1 = X/4) of open-cir-
cuited line, it is easily shown that the input impedance is a pure 
resistance of value 

R1 RX 
= — = 
2 8 

(13-24) 

and this must be equal to R. in the equivalent lumped-circuit 
representation of antenna input resistance (Fig. 13-1). That is, 

RX 
=I? = R. 8 rs 

For the equivalent lumped-constant circuit 

_ curLa 
'e R. 
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Therefore 

and 

RX 27rZo 7rZo 
co,L. = R.(2 -- • 

8 XR = 4 
4 

curCa = 
'We'd o 

= 8If: 

n rZo 
— 

R. = RI-ad 

(13-25) 

where the Zo in the case of a cylindrical antenna, will be the average 
characteristic impedance Zo (ay) defined in the preceding section. 
The Q of the antenna as given by eq. (25) will be the unloaded Q. 
When the antenna circuit is loaded by a properly matched generator 
impedance or load impedance, the total Q of the circuit is one-half 
the Q of the antenna above. That is 

Qloaded = 1A0ualoaded 

It is this 0 which is of chief concern in band width considera-

tions. 

Problem 1. (a) Using the curves of Fig. 11-12, determine an approxi-
mate value for the Q of a half-wave dipole antenna constructed with No. 12 
copper wire, at a frequency of 100 megacycles; (b) compute Q for the same 
antenna using eq. (13-25). 

Problem 2. From the point of vies/ of band width, discuss the suita-
bility of each of the following antennas for (a) an F-M receiving antenna, 
(b) a television receiving antenna: a half-wave dipole constructed of 
(1) No. 12 wire, (2) 1-cm. diameter rods, (3) 1-in, diameter pipes, (4) a 
biconical cage arrangement with a total cone angle of 10°. 
NOTE: The F-M band covers from 88-108 mc. The low-frequency 

television channels are 6 mc. wide and, at present, are 54-60, 60-66, 66-72, 
76-82, 82-88. In both cases it is desired, if practical, that a single antenna 
should cover the entire band with a decrease of received power of less 
than 3 db. 

13.02 The Antenna as an Opened-out Transmission Line. 

Using an assumed sinusoidal current distribution, the power radi-
ated from an antenna can be calculated, and approximate values 

for input resistance and reactance can be obtained for very thin 
antennas. However, for thicker antennas, such as tower antennas 
for broadcast use, especially when fed near a current node, the 
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sinusoidal-current assumption fails to give sufficiently good answers. 
Faced with the necessity of having to feed such antennas, and in the 
absence of a rigorous solution to the antenna problem, it was 
natural that engineers should look for a better assumption than the 
sinusoidal for the current distribution. Because the input imped-
ance of an antenna goes through variations somewhat similar to the 
input impedance of an open-circuited transmission line, it was also 
natural to attempt to treat the antenna as an opened-out trans-
mission line. This attack had the advantage of using transmission 
line theory with which the engineer was already familiar, and it 
provided him with a simple expression for current distribution and 
input impedance which, although only approximate, could always 
be " adjusted" in the light of measured values. Although in more 
recent years the cylindrical antenna problem has been solved to a 
fairly good approximation and accurate values for input impedance 
are now available in the form of curves or tables, it is often still very 
convenient to have available simple analytic expressions, which 
will indicate the correct order of magnitude of input impedance 
and current distribution. For this reason, and because it is instruc-
tive to compare the antenna with the transmission line, one of the 
methods developed for treating the antenna as a transmission line 
will be outlined. 

The most extensive study of the transmission line representation 
of an antenna has been made in a series of papers* by Siegel and 
Labus, and their results have been used in the broadcast antenna 
field for many years. The method treats the antenna as an opened-
out transmission line that is open circuited at the end. An antenna 
differs from a transmission line in two important respects. An 
antenna radiates power, whereas transmission line theory assumes 
negligible radiation of power. Ordinary transmission line theory 
deals with uniform lines for which L, C, and Zo are constant along 
the line (except very close to the end). For the nonuniform line 
representing the antenna, L, C, and Zo all vary along the line, and 
indeed it becomes necessary to define what is meant by these 
quantities under such conditions. Siegel and Labus assume that 

* J. Labus, " Mathematical Calculation of the Impedance of Antennas," 
Hochf. und Elek., 41, 17 ( 1933); E. Siegel and J. Labus, "Apparent Resistance 
of Antennas," Hochf. und Elek., 43, 166 (1934); E. Siegel and J. Labus, " Trans-
mitting Antennas," Hochf. und Elek., 49, 87 (1937). 
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the radiated power can be accounted for by introducing an equal 
amount of ohmic loss distributed along the transmission line. 
Knowing this loss, an attenuatinn fact or can be calculated, and this 
factor can be used to give a better approximation for the current 
distribution. In addition the variable characteristic impedance 
of the antenna is replaced by an average value. Because the value 
used for this average characteristic impedance determines very 
largely what the input impedance will be, considerable effort was 
expended in obtaining a truly significant expression for Zo. The 
essentials of the Siegel and Labus method (with slight modifications', 
are outlined below. 

H  

(a) 

(b) 

TT is 

H 

L= 2H 

—2a 

IL 
H 

(d) 

(C) 

FIG. 13-5. The antenna as an opened-out transmission line. 

Input Impedance by Transmission Line Analogy. Figure 13-5 
illustrates the representation of a center-fed dipole antenna as an 
opened-out transmission line. The " equivalent" transmission line 
has a length equal to the half-length H of the dipole antenna. The 
diameter of the antenna or transmishion-line conductors is 2a. The 
problem of a ground-based antenna of height H, erected on a per-
fect reflecting plane (Fig. 13-5d), is the same as that of the dipole 
antenna of half-length H (Fig. 13-5c), except that values of char-
acteristic and input impedances will be just one-half those obtained 
for the corresponding dipole antenna. 

The first step is to obtain an expression for Z., (ay), the average 
characteristic impedance of the antenna. In sec. (13.01) a simple 
expression for average characteriitic impedance was developed 
from elementary considerations. Siegel and Labus have developed 
a somewhat different expression in quite another way. The scalar 
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potential for an antenna carrying a sinusoidal current distribution 
was set up and compared with the usual expression for the scalar 
potential along a uniform parallel-wire line. Comparison of these 
expressions yielded an expression for the characteristic impedance 
Zo(s) at each point s along the antenna. From this, an average 
characteristic impedance for the total length was defined by 

1 f Z0 (ay) = —H 0 Zo(s) ds (13-26) 

The final expressions obtained for Zc (ay) were 
(a) For the center-fed dipole antenna of half-length H (Fig. 

13-5c) 

Zc (ay) = 120 (ln — 1 211 1 — —2 in T ) ohm (13-27) 

(b) For the antenna of height H, fed against a perfect reflecting 
plane (Fig. 13-5d), 

H  ZG (av) = 60 (In 1 2H — a-  — 1 — ) —2 In ohm (13-28) 

The notation Zc (ay) has been used to distinguish this average 
characteristic impedance from the Zo (ay) given by eq. (22). For 
the special case of H = A/4, (half-wave dipole or quarter-wave 
ground-based antenna), the expressions for Zc (ay) become 

(c) Half-wave dipole, 

ZG (ay) = 120 (In — 0.65) ohm (13-29) 

(d) Quarter-wave ground-based antenna, 

H 
Zc (ay) = 60 (In —a — 0.65) ohm (13-30) 

Having a value for Zc (ay), the expressions for the voltage and 
current distributions and input impedance may be written down 
from transmission line theory. For the open-circuited line the 
expressions are 

Ve = VR cosh 78 

V  . 
Is — R  smh -ys 

(ay) 

(13-31) 

(13-32) 
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V, 
Z, = Z, (ay) coth ys 

Zin = Z, (ay) coth 711 

(13-33) 

(13-34) 

In these expressions V„ and I, are the voltage and current, respec-
tively, at a distance s from the open end of the line. -y = a -I- ie 
is the complex propagation constant for the line. Its imaginary 
part 13 = 27r/X is the phase shift constant, and its real part a is the 
attenuation constant, which is still to be determined. 

The expression for current distribution [eq. (32)] may be written 
in terms of the current at the loop or maximum, I., as follows: 
Expanding sinh -ys, and taking the absolute magnitude, it is seen 
that, if the attenuation is not too great, the maximum amplitude of 
current (the loop current) will occur : ipproximately at s = X/4, and 
will be given by 

.  V R X X 
1m = I - 

Z0 (av) cosh a 4- sin  

.  VR  
- Zc (ay) 

Then eq. (32) may be written as 

Ii = ( j)/m sinh 78 

/.(cosh as sin fis j sinh as cos fis) (13-35) 

The next step is to determine the attenuation factor a for the 
"equivalent" transmission line. Oa the basis of a sinusoidal cur-
rent distribution, the power radiated by the antenna can be com-
puted by the Poynting vector method or the induced-emf method. 
This gives a value for Rrad, the radiation resistance, referred to the 
loop current. By definition, 

Power radiated = II ml2R (13-36) 

Rnid for ground-based antennas on a perfect reflecting plane is 
plotted as a function of antenna height in Fig. 11-2. Alternatively, 
for H greater than 0.2X, Rrad may be obtained with good accuracy 
from the approximate formula 

= 7r  15 sin 47rH ( 2H [ - -2 -I- In —X + 1.722) cos 47rH -F 4.83 
X 

2111 
+ 2 ln — I (13-37) 

X j 
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For the corresponding center-fed dipole (L = 2H) in free space, 
the values of R rad given by Fig. 11-2 or eq. (37) must be doubled. 

In the transmission line representation the radiated power is 
replaced by an equal amount of power dissipated as ohmic loss 
along the line. This power loss may be assumed to be due to a 
series tesistance r ohms per unit length, shunt conductance g mhos 
per unit length, or both. In their analysis, Siegel and Labus 
assumed a series resistance for the line, of such value that the total 
PR loss was equal to the radiated power. It turns out that if 
the power loss is considered to be due to both series resistance and 
shunt conductance of such values that the Pr loss per unit length 
at a current loop is equal to the V2g loss per unit length at a voltage 
loop, similar expressions result. There is the added advantage that 
input impedances calculated from these simpler expressions seem 
to be in better agreement with values calculated by other means. 
This is especially true for short antennas where the series resistance 
assumption, used by Siegel and Labus, leads to values of input 
resistance that are consistently too high, whereas the assumption 
used here leads to correct values. 

Assuming both series resistance r per unit length and shunt 
conductance g per unit length, the total power loss along the line is 

TV = Jo (III2r IVI2g) ds o 

= .1" (/,n2rIsinh 7812 V.2gIcosh 7812) ds (13-38) 

The values of r and g are so chosen that 

/.2r = V,„2g (13-39) 

Then the expression (13) for power dissipated becomes 

W = 12.,r folr (Isinh as cos Os j cosh as sin /342 

Icosh as cos ¡is j sinh as sin )9812) ds 

which reduces to 

W = P„,ir foH  cosh 2as ds 

12.,rll sinh 2aH 
2a.H. 

(13-40) 
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For small values of 2aH, this becomes approximately 

W e-- P„„rH 

That is, the power loss per unit leng 1 is approximately constant 
and is equal to 

Prnir = V' nig (13-41) 

The total power dissipated must equal the power that is actu-
ally radiated, so 

Therefore 

Also, using (41), 

I2„„rH I2„Rr„d 

r =   

12,cir _  Rlad  
g V2.1 z20 (ay) HZ2c (ay) 

For any low-loss transmission line the attenuation factor is given by 

e = 2(io eZ) 

so for this " equivalent" line 

1  r R +  rad Rr.d  a — ) 2 Z0 (ay) HZ, (ay)I HZc (ay) (13-42 

The total attenuation for the length H is 

aH —  rad 
Z c (ay) 

The input impedance can now be obtained from eq. (34). For 
purposes of computation eq. (34) can be expanded into more suit-
able forms: 

(ay)[ cosh (aH OH)] =  
sinh (aH if311)J 

Zc (ay) sinh 2aH — j sin 201\ 
2 \ cosh2 aH — cos2 I 

(sinh 2aH — j sin 2,9H) 
= Zc (ay) 

cosh 2aH — cos 213H 

(13-43) 

(13-44) 

(13-45) 



468 IMPEDANCE CHARACTERISTICS OF ANTENNAS fel 3.02 

The input resistance and input reactance are, respectively, 

R — Z,, (ay) sinh 2aH  
m  

2 \cosh' aH — cos' ex) 
Zc (ay)  — sin 28H 
2 \cosh 2 aH — cos' I3H) 

— (13-47) 

The current distribution is given by eq. (35). When only the 
magnitude of the current is of interest, this may be obtained from 

Ja = /„,Isinh 781 

= Im Vsinh2 as ± sin2 Ps (13-48) 

Correction for the End-effect. Equation (47) for the input 
reactance for an antenna indicates that the reactance goes through 
zero for lengths of line that are integral multiples of a quarter-wave-
length. It is known from experiment that this is not the case, and 
that, in fact, the reactance zeros occur for physical lengths of 
antennas that are somewhat less than multiples of X/4. This effect, 
which also occurs on open-ended transmission lines, is known as 
end-effect. It is due to a decrease in L and an increased C near the 
end of the line. This results in a decrease in Zo and an increase in 
current near the end of the line over that given by the sinusoidal 
distribution. With transmission lines the magnitude of the effect 
depends upon the line spacing in wavelengths. The region in 
which the change in the line " constants" occurs is known as the 
terminal zone. In the case of the transmission line, the terminal 
zone extends back a distance approximately equal to the line spac-
ing. In the case of antennas, the end-effect produces an apparent 
lengthening of the antenna, the amount of which depends in a rather 
complicated manner on the characteristic impedance, the length, 
and the configuration of the antenna. The effect is somewhat 
greater for antennas of low characteristic impedance (large cross 
section) than it is for thin wire antennas. Siegel has investigated* 
the end effect on both transmission lines and antennas and has 
computed the following table, which shows numerical values 
for the amount by which the apparent electrical length of the 
antenna exceeds its physical length measured in wavelengths. 

*Ernest M. Siegel, Wavelength of Oscillations Along Transmission Lines 
and Antennas, University of Texas Publication No. 4031, Aug. 15, 1940. 

(13-46) 
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TABLE I 
INCREASE IN APPARENT LENGTH OF Al,..TENNAS DUE TO END EFFECT 

% Increase 

Tower antenna Wire antenna 
.L (ay) = 220 ohms Z., (ay) = 500 ohms 

V . 2 
0.59 

5.4 
5.3 
5.2 
5.1 

4.5 
4.3 
2.2 
1.9 

It is seen that the rule of thumb often used in the field, by which 
the physical length is made 5 per cent less than the desired electrical 
length, is a rather good approximation for tower antennas. In 
computing input impedance by this method it is the apparent elec-
trical length that should be used for H. 

"Modified" Impedance. It is natural to ask what sort of agree-
ment may be expected between measured impedances and those 
calculated from this simplified representation. Siegel and Labus 
have compared measured and calculated input impedances for 
elevated horizontal dipoles, and, in general, have obtained good 
agreement. However, when measurements are made on ground-
based tower antennas, it is found that considerable difference may 
exist between measured and calculated values. In general, the 
values calculated by this method are high compared with measured 
values. Morrison and Smith* have made an extensive set of 
measurements on a 400-ft uniform cross section tower antenna and 
have compared the results with values calculated by this method. 
It was found that, if the antenna I ermines were considered to be 
shunted by a 200-ggf capacitance and fed through a 6.8-gh induct-
ance (presumably to account for base capacitance and finite ground 
conductivity), the resultant " modified base impedance" showed 
excellent agreement with measured values over a three-to-one 
frequency range. Although the theoretical justification for this 
procedure is questionable, it does produce useful answers. More-

* J. F. Morrison and P. H. Smith, " The Shunt-Excited Antenna," Proc. 
I.R.E., vol. 25. no. 6, pp. 673-696, June, 1937. 
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over, it must be remembered that, regardless of the accuracy of 
theoretical results, some modification will always be required, 
because of the differences that exist between the ideal configuration 
that is calculated and the actual configuration that is measured. 
However, it is significant that answers given by the methods of 
Hallén and Schelkunoff (sections 13.04 and 13.08) show reasonably 
good agreement with measured values when corrected only for 
" visible" factors, such as the known base capacitance. 

EXAMPLE 1: Determine an approximate value for the input impedance 
at antiresonance of a full-wave (L = 2H re X) cylindrical dipole antenna 
having a diameter of 2 cm. The frequency is 150 mc. 

Physical half-length 

2 X 0.95 
Ho — 0.95 meter 

2 

Ho „ 
— 
a 

Zo (ay) -- 120(ln 95 — 1 — In 0.95) = 430 ohms 

210 
aH = = = 0.489 

Z. (ay) 430 

j3H 7f 

= Ri. = 430 ( sinh 0.978  ) — 948 ohms 
cosh 0.978 — 1 

EXAMPLE 2: A uniform cross section tower antenna is 400 ft high and 
7 ft square. Calculate the base impedance at a frequency of 1399 kc. 

(a) Characteristic impedance 

Equivalent* radius a = 0.5902 X 7 

Physical height Ho 
Then Ho/a = 96.6 2110/X = 1.06 

1 2H0) 
Z. (ay) = co (In — 1 — - --

a 

= 4.14 ft 

= 400 ft 

-- 210 ohms 

E. Hallan has shown that the correct value for the equivalent radius of a 
noncircular cylinder is obtained by finding the radius of the infinitely long 
circular cylinder that has the same capacitance per unit length as does an 
infinite length of the noncircular cylinder. For the square cross section of 
side length d he obtains for the equivalent radius, a = 0.5902d. "Theoretical 
Investigations into the Transmitting and Receiving Qualities of Antennae," 
'yen Acta Upsal 4, 11, 7 ( 1938). Also "Admittance Diagrams for Antennas 
and the Relation between Antenna Theories," Cruft Laboratory Report No. 46, 
June 1938. 
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(b) Attenuation factor 

27r X 1.05 X 400 
Electrical height OH — = 3.48 radians 

231 X :i.281 

, 81 
all = = — 

Z o 210 

(c) Theoretical base impedance 

R 
210  0.851  

2 (1.155 — 0.883) 

X 
210 (0.643 
= ) — 

2 0.272 

Zbabe = 329 j248 ohms 

= 0.386 nepers 

= 329 ohms 

= —248 ohms 

(d) Modified base impedance. From measurements on other struc-
tures, it has been determined that the resrilts given by this method, when 

6 µh  

•---f 000 

200 i.,.‘fd 

Fia. 13-6. Modified bFse impedance. 

used on ground-based tower antennas, sh Duld be modified by the addition 
of a shunt capacitance of about 200 µµfd and a series inductance of about 
6 µh (Fig. 13-6). Then the expected input impedance is obtainable from 
the circuit of Fig. 13-6: 

Modified base impedance Zb = j49 -I- 144 — j233 
= 144 — j184 ohms 

(For the WWJ tower which is 400 ft high and ffl ft square, Morrison and 
Smith show a measured value of 140 — 3200 ohms at this frequency.) 

EXAMPLE 3: The antenna of example 2 is to be used as antenna ( 1) in 
a two-element directional array, with a quarter-wave tower as antenna (2). 
The loop current of antenna (2) is equal to, but leads, the loop current of 
antenna ( 1) by 99 degrecs, that is, 

/2 (loop) = I (loop)/90° 
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Assume Zu is nearly equal to the self-impedance of antenna (1) and use 

Z12 = 20/-25° (referred to current loops) 

Z22 = 36 -F j20 

Determine the driving-point impedances: 
(a) Refer the mutual impedance to the base of antenna ( 1). The 

mutual impedance Z21 referred to the base current /1(0) of antenna ( 1) is 

V21 /1 (IWO V21  II (loop)  
Z21 (base) — Z21 (loop) 

/1(0) I1(0) II (loop) — /1(0) 

where V21 is the open-circuit voltage at the terminals of (2) due to the 
current flow in ( 1). 

From example 2, 

/1 (loop) sinh 7X/4 .  cosh aX/4  
Ii (base) — sinh — 3 sinh 0.386 cos 200° j cosh 0.386 sin 200° 

1/90° 
1 0.523/224.8° .91/-134.8° 

then Z21 (base) = 20/-25° X 1.91/-134.8° = 38.2/-159.8°  

(b) Driving-point impedances 

Z1' = Z11 —/2 Z12 (all referred to base) 

/2 (base) /2 (loop) v  (loop)  
II (base) = (loop) — /1 (base) 

= 1/90° X 1.91/-134.8° -= 1.91/-44.8° 

Z1' = 329 — j248 1.91/-44.8° X 38.2/-159.8° 

= 263 — j218 

For antenna (2), base current equals loop current. 

/1 
Z2' = Z22 + —/2 Z12 (loop or base) 

= 36 -F j20 
1.91/ — 44.8 

= 36 -F j20 20/-115.0  

= 27.5 -I- j1.9 

38.2/-159.8 

(c) Modified driving-point impedances. Treating the driving-point 
Impedances in the same manner as the base impedances, the modified 
driving-point impedances are obtained. 
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Zi' (modified) = 130 — j154 
Z2' (modified) = 28 + j50 

13.03 Wide-band Impedance Matching. In general, it is 
desirable to match a transmitting antenna to the transmission line 
or r-f output circuit that feeds it. At a single frequency, or over a 
relatively narrow band of frequencies as in broadcast work, the 
impedance-matching problem is very simple, and one with which 
the reader is assumed to be familiar.* Ef the antenna to be matched 
is one of an array, then it is necessary to design the matching network 
to control the phase as well as magnitude of the current in the 
antenna, but this is still a straightforward circuit problem, an 
example of which is given in section 14.02. However, in com-
munication work it is often necessary to use a single antenna through 
a wide band of frequencies extending over a range of 1.5 to 1 or more. 
In this case, wide-band impedance-matching circuits are required. 
When the antenna used is nonresonant or aperiodic (such as a 
rhombic, for example) so that its input impedance remains rela-
tively constant over the frequency band of interest, the design of the 
wide-band matching network can be accomplished through the use 
of standard band-pass filter theory. However, more often than 
not, the antenna impedance that is to be matched varies between 
wide limits, and the design problem is quite complicated. When 
the analytical approach becomes too cumbersome, a very effective 
attack that may be used is a combination of graphical and analytical 
methods. t 

In this approach the antenna impedance is plotted in the com-
plex plane as a function of frequency. Figures 13-7a and 13-7b 
show the usual impedance and admittance curves for a typical 
antenna of fairly broad band width, and (c) and (d) show the 
corresponding plots in the complex plane. It will be recalled from 
chap. 8 that, in the complex plane, the locus of impedances that 
produce constant standing-wave ratios (on the transmission line 
which they terminate) is a circle. The wide-band matching prob-
lem is usually stated in terms of keeping the standing-wave ratio, p, 
below some stated value; in this case, below p = 2. Thus, in 

* E.g., W. L. Everitt, Communication Engineering, chaps. VII and VIII, 
McGraw-Hill, 1937. 
T F. D. Bennett, P. D. Coleman, and A. S. Meier, "The Design of Broad-

band Aircraft Antenna Systems," Proc. IRE, 33, 10, pp. 671-700 (1945). 
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Figs. 13-7c and 13-7d, the problem is that of warping the impedance 
or admittance characteristic within the p = 2 circle over the 
required frequency range. The range of frequencies lying within 

4 

2 
10 

(a) 

R/Ro 

2 

o 

1.4 la 2-2 

(c) 
IMPÉDANCE DIAGRAM 

R/Ro 

2.0 

LS 

-2.5 

(b) 

ko/G, 

LO 

2 

2 

14 L8 2-2 

(d) 
ADMITTANCE 014. 

u 2 

a/ce, 

Fia. 13-7. Typical measured impedance and admittance 
curves for a broadband II-F or V-H-F antenna: (a) Impedance 
curve plotted against relative frequency. (b) Admittance curve. 
(c) Impedance diagram plotted in the complex plane. (d) 
Admittance diagram. 

the p = 2 circle will be called the band width* of the antenna, and, 
in this instance, per unit band width will be defined as 

band width — 12  fi — 
fi fi 

(13-49) 

where fl and fi are the lower and upper frequencies, respectively, at 
which the impedance curve intersects the p = 2 circle. 

* The required performance of an antenna varies greatly with the type of 
service, so the terms band width and percentage band width have not been 
standardized, but must be specified for each application. 
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It is convenient to show the frequency scale relative to the 
resonant frequency of the antenna, arid this is done by use of a 
relative frequency, Y = N o. Then y = 1 at the first resonant 
frequency, fo, of the antenna, and percentage band width will be 
given by 

P2 - PI (13-50) 
Pi yl 

Inspection of the impedance and admittance curves of Figs. 
13-7a and 13-7b reveals that the susceptance curve has a negative 
slope at resonance (the first resonant point), and the reactance curve 
has a negative slope at antiresonance (usually called the second 
resonant point). This means that it should be possible to cancel 
the susceptance of the antenna in the region of first resonance by 
means of a suitable parallel positive susceptance. In the region 
of second resonance, the reactance of the antenna can be cancelled 
by a suitable series positive reactance. These facts form the 
basis of a technique for increasing the band width of an antenna. 
Figure 13-8 shows the effect on the impedance and admittance 
diagrams of adding a series capacitance (negative reactance) or 
series inductance (positive reactance). The effect of a series 
capacitance is to add a negative reactance that moves the imped-
ance characteristic downward; on the other hand, a series inductance 
adds a positive reactance that moves I he impedance curve upwards. 
On the admittance diagrams the series elements affect both con-
ductance and susceptance and a series capacitance tends to rotate 
the curve counterclockwise, whereas a series inductance rotates it 
clockwise. In the example of Figs. 13-8a and 13-8c the series 
capacitance has been added to bring the antenna impedance curve 
down into the p = 2 circle, increasing the band width from zero to 
about 17 per cent [since (1.23 — 1.05)/1.05 = 0.17]. In Figs. 13-8b 
and 13-8d the series inductance has raised the impedance curve of a 
different antenna into the circle to produce a band width of about 
46 per cent. It will be noticed that maximum band width is 
obtained by raising the curve slightly beyond the diameter into the 
upper left-hand portion of the circle. This result follows from the 
fact that, using the definition given above, the band width can be 
increased both by increasing iv and by decreasing vi. 

The inductance or capacitance to be added can be obtained by 
use of lumped-constant circuits (coil or condenser) or distributed-
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constant circuits (sections of transmission line). In the high-
frequency range, coils and condensers would usually be used, but 
in the V-II-F range, sections of transmission line are very con-
venient. Figure 13-9 indicates how such line sections can be built 
right into the antenna or the feed line. The lengths of line required 
to yield a given effective inductance or capacitance, can be calcu-
lated with the aid of the appropriate formulas from chap. 8. 
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Fm. 13-8. Effect on impedance and admittance curves of the 
addition of a series capacitance cr inductance. 

The impedance-matching properties of quarter-wave and half-
wave sections of transmission line at a single frequency are well 
known. Figure 13-10 shows in striking fashion the broad-banding 
properties of such sections when used in series with the antenna. 

The effect of elements added in parallel with the antenna is 
best shown on admittance diagrams. A very important practical 
case is that of a parallel-resonant circuit or shorted quarter-wave 
stub placed in parallel with an antenna. The effects of this are 
shown in the admittance diagrams of Fig. 13-11. As indicated 
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previously the susceptance curve of an antenna has a negative slope 
about the resonant frequency. It is evident from Fig. 13-11a that 
an optimum design for a parallel matching stub can be achieved by 
just cancelling the antenna susceptance at the points at which the 
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Fm. 13-9. Possible methods for building series reactance into 
feed line or antenna. 
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Fig. 13-10. Effect of series quarter-wave and half-wave lines on 
impedance characteristic. 

conductance is 0.5. This will cause the admittance curve of 
Fig. 13.11b to tie on the p = 2 circle, and so result in maximum 
bandwidth for a single element. The most favorable antenna 
admittance curve for this purpose is one that has a conductance of 
just less than 2 at resonance, as shown in the figure. The required 
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stub dimensions can then be determined by the following procedure. 
The points A and D, which have the negative of the antenna sus-
ceptance at the G = 0.5 points, are marked on the diagram. The 
susceptance curve of the matching stub must pass through these 
points. As a first approximation the susceptance variation of the 
stub is assumed to be linear over this frequency range and a straight 
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Flo. 13-11. Matching a resonant antenna over a range of 
frequencies by means of a parallel quarter-wave stub: admittance 
curves and admittance diagram. 

line is drawn through the points A and D. The intersection of this 
line with the Y = 0 line gives the frequency for which the stub 
should be a quarter-wavelength long. The slope of the line deter-
mines the required characteristic impedance for the stub. The 
actual susceptance characteristic of the shorted stub can then be 
drawn in, as has been done in Fig. 13-11, and the resultant suscept-
ance curve may be plotted. 

The parallel broad-b9nding stub just considered is important 
practically because of the ease of incorporating it into actual antenna 
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systems. It appears automatically in certain types of antennas, 
typified by the folded dipole or folded monopole. Although the 
primary purpose of folding is usually that of obtaining high input 
impedances, the resultant structure is such that the antenna imped-
ance is effectively shunted by the input impedance of a shorted 
quarter-wave stub (or two stubs in series in the case of the folded 
dipole). The resultant wide band width has been pointed out by 
Carter.* In addition, it is often necessary to transform from an 
unbalanced (coaxial) feed to a balanced antenna or vice versa, and 
this is accomplished by use of " baluns" or " bazookas," some of 
which are described in chap. 14. Since these balance-to-unbalance 
transformers are formed using resonant line sections, it is often 
possible to design them to perform the functions of both balun and 
wide-band impedance-matching stub. 

The use of two (or even more) elements for broad-band match-
ing greatly increases the designer's control over the impedance 
characteristic and enables him to design for greater band widths. 
The procedure is to use the first element to " set up" the antenna 
curve into the ideal position for the second element to warp it into 
the p = 2 circle. Many interesting examples of both one and two 
element broad-band matching sections will be found in the original 
article, t from which the examples used here were taken. 

13.04 The Cylindrical Antenna Problem. The methods con-
sidered earlier in this chapter for representing the impedance of an 
antenna by lumped-constant or distributed-constant circuits prove 
useful in the analytical design of suitable matching networks for 
the antenna. However these circuit representations are not solu-
tions of the antenna problem, and the inmiedances or current distri-
butions, which they approximate over a certain range of frequencies, 
are assumed to be known, that is, are obtainable from experiment 
or calculation. It is the purpose of his present section to indicate 
three important methods of solution that have been applied to the 
antenna problem. In a later section one of these methods will be 
considered in some detail. 

Any solution of the antenna problem will of course have Max-
well's equations as a starting point. In fact, the problem is just 
one of solving Maxwell's equations subject to the boundary con-
* P. S. Carter, " Simple Television Antennas," RCA Rev., 4, 168 (1939). 
F. D. Bennett, P. D. Coleman, and A. S. Meier, Loc. cit. 
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ditions imposed by the antenna and the source. For the simple 
center-fed cylindrical antenna this turns out to be a surprisingly 
difficult problem. Three general methods of attack have been used. 
The first of these methods (historically) treats the problem as a 
boundary-value problem. The second method sets up the problem 
as that of finding the solution of an integral equation for the current. 
The third method treats the antenna as an open-ended waveguide 
or electromagnetic horn. 

(a) As a Boundary-value Problem. For certain symmetrical 
antenna shapes (e.g., the ellipsoid or prolate spheroid) it is possible 
to solve for the free oscillations or natural modes, so determining 
the proper frequencies and corresponding damping factors. This 
problem was worked out many years ago by Abraham* for very 
thin ellipsoids and later by Brillouint for prolate spheroids of any 
eccentricity. When the antenna is excited or fed, the solution is 
given in terms of an infinite series of the free-oscillation modes with 
coefficients chosen so as to satisfy the force function. Page and 
Adams, Ryder, § StrattonII and Chul are among those who have 
worked on this problem. This method has the advantage of yield-
ing very reliable results, but is restricted to a relatively few shapes, 
among which, unfortunately, the cylinder is not included. There 
are two main disadvantages of the method. First, although the 
method is useful near resonance, for lengths considerably different 
from the resonant length the series converge very slowly so that an 
excessive amount of labor is involved in obtaining numerical 
answers. Second, actual antennas generally are not prolate spher-
oids, but have various shapes, the circular cylinder being most 
common. About the best that can be done in obtaining a solution 
for the actual antenna by this method is to assume that the solution 
for an "equivalent" thin prolate spheroid will hold appro::imately 
for the cylindrical antenna. The troublesome question of just 
what size of prolate spheroid is " equivalent" to a cylinder prevents 
this method from being so useful as it might otherwise be. An 
excellent summary and comparison of the work of different writ-
* Max Abraham, Ann. Physik, 66, 435 (1898): Math. Ann., 52, 81 (1899). 
t L. Brillouin, Propagation de l'Electricite, Hermann, Paris, 1904, Vol. 1. 
L. Page and N. I. Adams, Phys. Rev., 53, 819 (1938). 
§ Robert M. Ryder, J. Applied Phys., 13, 327 (1942). 
II J. A. Stratton, Proc. Nat.'Acad. Science, 21, 51 (317) 1935. 
1 J. A. Stratton and L. J. Chu, J. App. Phys., 19, 236 (1941). 
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ers using this and other methods 
Brillouin.* 

(b) Integral equation solution. 
approach to the antenna problem. 
rent distribution, general expressions for the field are obtained by 
the use of retarded potentials. Application of the boundary condi-
tions at the surface of the antenna then leads to an integral equation 
for the current. Thus, instead of a set of partial differential equa-
tions, it is now an integral equation that must be solved. The 
method is general and applicable to ani ennas of different shapes, but 
the accurate evaluation of the resulting e::pressions is very difficult. 
However, quite recently HallÉn has succeeded in reducing the 
integrals involved to ordinary sine and cosine integrals, and iterated 
sine and cosine integrals, whose values he has tabulated for argu-
ments frnm 0 to 7. From these tables he has constructed admit-. 
tance and impedance diagrams for cylindrical antennas § for a 
wide range of antenna dimensions. The impedance diagrams, show-
ing antenna resistance and reactance separately, are reproduced in 
Figs. 13-12 and 13-13. In these curves, antenna resistance and 
reactance are shown as a function of antenna length (in radians or 
in wavelengths) for various ratios of half-length to radius. The 
single diagram of Fig. 13-14 displays this same information in a 
different form. Antenna conductance and susceptance are plotted 
in an admittance diagram for all antenna lengths in the range 
covered, and for six ratios of H/a. The intersecting lines mark off 
fixed values of ex (antenna length in radians). This method of 
plotting has the advantage that it makes interpolation easier. In 
addition the effect of base capacitance, which is always present in 
any actual antenna set-up, is easily allowed for in an admittance 
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is contained in an article by 

113,11ént has used a different 
Starting with an arbitrary cur-

* Leon Brillouin, "Antennae for Ultrahigh Frequencies," Elec. Comm., 21, 4, 
257 ( 1944); and 22, 1, 11 ( 1944). 
f Erik Hallén, " Theoretical Investietions into the Transmitting and 

Receiving Qualities of Antennae," Nova Acta Upa/ 4, 11 (1938); " Further 
Investigations into the Receiving Qualiti,3s of Antennae: the Absorption of 
Transient Unperiodic Radiation," Arszkrit, Upccla, 4 (1939). 
$ E. Hallén, " Iterated Sine and Cosine Integrals," Trans. Royal Inst. 

Teanology, Stockholm, 12 (1947); " On Antenna Impedances," Trans. Royal 
Inst. Technology, Stockholm, 13 (1947). 
§ E. Hallén, Admittance Diagrams for Antennas and the Relation between 

Antenna Theories, Cruft Laboratory, Harvard University, Technical Report 46 
June, 1948. 
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FIG. 13-12. Antenna resistance according to Hallén. The 
resistance of center-fed dipoles is plotted as a function of 27t-H/X, 
the antenna half-length in radians, for various ratios of H/a, 
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FIG. 13-13. Antenna reactance acco 'ding to Hallén (see legend fox 
Fig. 13-12). 
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diagram. Because G is unaffected by the addition of shunt suscept-
ance, the only effect of the base capacitance, Cb, is to raise the whole 
admittance diagram by the amount coGb. In an impedance dia-
gram, on the other hand, both R and X are affected by the shunting 
base capacitance. 

Unfortunately Hallén's solution is too involved mathematically 
to be treated adequately in an engineering text of this scope. A 
good introductory discussion of the integral equation method can 
be found in the book by Aharoni.* The advanced student, who is 
interested in obtaining a more complete knowledge of this powerful 
method, should refer to the original papers by Hallén. 

(e) The antenna as a waveguide or electric horn. An entirely 
different attack on the antenna problem has been made by Schel-
kunoff, who treats the antenna as an open-ended waveguide or elec-
tric horn. In contrast to the usual approach used in boundary value 
problems, where a solution is sought in terms of the natural modes 
or oscillations of the system, Schelkunoff solves the problem in 
terms of waves transmitted along the antenna. This corresponds 
to the engineering solution of the transmission-line problem in terms 
of initial and reflected waves, as against the alternative method of 
solution in terms of natural oscillations on a section of line. The 
method uses familiar transmission-line and wave-guide theories, and 
is an approach which the engineer finds quite satisfying. Because 
it represents an important application of concepts developed in 
earlier chapters, this method will be considered in detail. First, 
however, it will be necessary to give some consideration to spherical 
waves. 

13.05 Spherical Waves. For propagation in a homogeneous 
medium having constants it, e, and a the scalar wave equation is 

where 

V2V = 1,2V 

7 = Viwki(cr iwE) 

In spherical co-ordinates (51) becomes 

(13-51) 

1 a ( 2 .917) +  1  a ( 0an +  1  a2v — 7,V (13-51a) 

\r Or r2 sin o ao \sin  r2 sin' 0 4 2 

*J. Aharoni, Antennae, An Introduction to their Theory, Clarendon Press, 
Oxford, 1946. 
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Although in general the propagation constant 7 may be complex, 
for dissipationless media o = 0 and 'y reduces to —cebte. Separat-
ing eq. (51a) by letting 

V = R(r)P(0)4,(0) 

results in the three equations 

7Frd ddRr) = 02 + ,y2r2gt 

el) 
dR = n24' 

d02 + Cot 0 di + (1)2 — sin' 0) P -= ° 
d2P dP m2 

(13-52) 

(13-53) 

(13-54) 

where the constants 52 and —m2 may be real or complex. When m 
is an integer, 4> is periodic with a period Ir. 

Equation (54) is the associated Lengendre equation. When 52 
is real and has the form 52 = n(n + 1), eq. (54) may be written 

d2p dP 
(1 — X2) —dx 2 — 2x —dx ±[n(n ± 1) —  m2x2 .1 P = 0 (13-55) 

1 —  

where 

x = cos 0, 1 — x2 = sin' 0, 
d d 
= — sin 0 — 

-dB dx 

For those problems in which thme is no variation with 0, the 
constant in in eq. (53) is zero, and for these cases eq. (55) becomes 

d2P dP 
(1 — x2) c • — 2x c n(n 1)P = 0 (13-56) 

which is the ordinary Legendre equadon. 
For nonintegral values of n the solutions of (56) are given by 

the functions P.(cos 0) and P„(— cos 0), where 

P.(cos 0) = — 1)q(n q)! sin2q Ge) (13-57) 
(n — q)! (0) 2 

• 

For integral values of n, expression (57) reduces to the Legendre 
polynomials and P.(cos 0) and P. — cos 0) are no longer linearly 
independent. Under these circumstances it is convenient to use 
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Pn(cos 0) (where n is a positive integer) for one solution and Q„(cos 0) 
for the other, where the Q. functions are defined by 

0 S Qn(cos 0) = Pn(cos 0) log cot -2 —   (13-58) 
1 

The Q functions become infinite at 0 = 0 and 0 = ir, and so 
can be used to represent physically realizable fields only when the 
O — 7r axis is excluded from the region being considered. 

When m is not equal to zero, the associated Lengendre equa-
tion must be considered. For integral values of n its solutions are 
Pe(cos 0) and Q„'n(cos 0) where 

Pe(cos 0) = (- 1)" Sjflm 0 dm[P„(cos 0)] (13-59) 
d(cos 0)"' 

0) (- 1)in sin. 0 d'n[Q„(cos 0)]  Q.'n(cos (13-60) 
d(cos 

For the first few values of n, the Legendre and associated Len-
gendre polynomials represented by (7) and (9) are, 

Po(cos 0) = 1 

Pi(cos 0) = cos 0 

P2(cos 0) = AI(3 cos' O — 1) 

P3(cos 0) = 1A(5 cos' O — 3 cos 0) 

P4(cos 0) = 3(35 cos4 O — 30 cos' 0 -I- 3) 

Pil(cos 0) = — sin 0 

P2l(cos 0) = —3 sin 0 cos 0 

P22(cos 0) = 3 sin' 0 

P31(cos 0) = —M sin 0(5 cos' 0 — 1) 

P32(cos 0) = 15 sin' 0 cos 0 

Considering now the solutions to eq. (52) for R, this equation 
may be written as 

,R dR 
r d2 -I- 2r — (72r2 b2)R = 0 (13-61) 

This equation is slightly different from the ordinary Bessel 
equation (62) or the modified Bessel equation (63) with which it 
should be compared. 
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d'w dw 
Ordinary Desscl z2 . z . Tizî dz ( = 0 (13-G2) 

d2w dw = 
Modified Desscl z- _ z ( 0 (13. 63) 

Equation (61) can be reduced to a standard form by suitable change 
of variable. Let 

Then 

w = ri? Or = - 
r 

dR 1 dw w (PR 1 d'w 2 dw 2w — _ = _ _ 
dr r dr r2 dr2 r dr2 9.2 dr r3 

and eq. (61) becomes 

frw2 (y w  = 
(13-64) 

Now put b2 = n(n -I- 1) as in the Legendre equations and let 
z = -yr. Then (64) becomes 

d2w [ 1) 
- 1 -F w = 0 (13-65) 

dz2 z2 

Solutions to this equation are denoted by L(z) and Ín(z) where 

(n p)!  
p !(n - p)1(2z)P 

1.(z) = [e. 

P n 

(-1)n+le—g p !(7;n— p2;i(2z)P 
p 

For the first few values of n 

f?0(z) = 

1?1(z) = c-: (1 ± -1) 

.1?2(z) = e-' (1 + -3 ± -3) 
z z2 

these are 

Îo(z) = 

Îi(z) = 

sinh z 

sinh z 
cosh z 

(13-66) 

(13-67) 

3 3 
12(z) = (1 -I- sinh z - -z cosh z 
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In general the propagation constant 7 of eq. (61) is complex. 
For the particular, but important, practical case where the attenua-
tion factor a is zero, 7 is a pure imaginary equal to e, and eq. (61) 
becomes 

d'R 4- 2r —dR ($2r2 - 1)2)R = 0 (13-68) 
dr2 dr 

which should be compared with the ordinary Bessel equation (62). 
Reducing (68) in the same manner that (61) was reduced, but letting 
z = fir, there results 

d'w , 
-r [ dz2 

n(n  
w = 

z' (13-69) 

instead of (65). 
Solutions of this equation are denoted by ./n(z) and gn(z), where 

for the first few values of n, these functions* are 

./o(z) = sin z 
sin z 

11(z) = - cos z 

go(z) = - cos z 
e.i(z) _ sin z _ cos z 

( 3 3 3. I2(z) = -i - 1 sin 3 z - - cos z 20.2(z) = 1 - cos z - -zsin z 
z z z-

The ./ and Ê functions are simply related to the 1 and le func-
tions by 

Ín(jz) = j'1(z) 

Ê.(./z) = .i-n-1[1.(z) - iiqn(z)] (13-70) 

In addition the functions .1, g, I, Ê, are related to the ordinary 
and modified Bessel functions, J, N, I, K. Indeed they are just 
the half-integral orders of the corresponding ordinary and modified 
Bessel functions. The relations are: 

= 

Î(z) = /(n+) (z) 

„„(z)=.e,(,...(z) 
.k..(z)= _ K(n+m(z) (13-71) 

* The and g functions used here are as defined by Schelkunoff, Electro-
magnetic Waves, D. Van Nostrand, New York, 1943, p. 51. They are just 
z times the Spherical Bessel Functions as defined by Morse, Vibration and Sound, 
McGraw-Hill, New York, 1936, p. 248. 
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For propagation in a lossless medium, the propagation constant 7 
will be a pure imaginary equal to jfi. Under these conditions 
(imaginary arguments), the I and Ê functions reduce to half-order 
Bessel and Hankel functions as follows: 

n(er) = in+1.1.(,9r) 

= in+1 ef,n+ Y2) 031.) 
Én(j 3r) = i-n-1[1.(fir) — en(13r)] 

= 

= 1 Jr H")(11-4§)(3r) (13-72) 

The first of these functions represents a spherical standing wave 
and is suitable for regions that include the origin. The second 
function represents an outward-traveling spherical wave, and is 
appropriate for regions that may extend to infinity, but do not 
include the origin. Applications of these functions* will be made 
in the following sections. 

13.06 Spherical Waves and the Biconical Antenna. Schel-
kunoff has obtained a solution to the antenna problem by treating 
the antenna as an open-ended wave guide, or electro-magnetic horn. 
To accomplish this, he has started with a biconical antenna as a 
prototype for which a solution can be obtained from Maxwell's 
equations. In the process, it is dem onstrated that for the biconical 
antenna the input impedance deper ds only on the principal wave. 
Therefore, for biconical antennas, th 3 input impedance can be repre-
sented exactly as the input impedance of a uniform transmission line, 
terminated in an appropriate terminal impedance. Two methods 
for calculating the terminal impedance are given. Then, using 
the solution for the biconical antenna as a guide, the solution for 
cylindrical antennas is obtained by analogy. Whereas this approach 
necessarily involves making some approximations, the approxima-

*Of necessity, discussion of these functions in this section has been very 
brief. For a more thorough treatment, reference should be made to a mathe-
matics text. An excellent treatment is given in S. A. Schelkunoff, Applied 
Mathematics for Engineers and Scientists, D. Van Nostrand, New York, 1948. 
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tions are justifiable on the basis of the physical picture gained from 
the biconical antenna theory. 

Before investigating radiation from biconical antennas, it is 
desirable to give consideration to some of the general properties of 
spherical waves. It will be recalled that for plane waves it was 
found possible to divide the waves into transverse magnetic (TM), 
transverse electric (TE), and transverse electromagnetic (TEM) 
waves. For TM waves traveling in the z direction, H. = 0, and 
the divergence equation for H is 

°Hz aH + = 0 (13-73) 
ax ay 

It follows that it should be possible to derive H from a stream func-
tion II. through the relations 

Hz 
ay 

an. 
H„ = — ax (13-74) 

which relations satisfy (73). Since Hz = 0, IT. may be regarded 
as the magnitude of a vector A' that is parallel to the z axis. Then 
eqs. (74) are given by 

II = curl A' 
where A' = kAz, A. = 11mg Ax = Ai, = 

Similarly for TE waves traveling in the z direction, E. = 0, and the 
divergence equation for E (in a charge-free region) is 

aEz aE„ 
Ox 8y ° 

so that, in this case, it is possible to obtain E from a stream function 
II. through the relations 

E 811e — 
ay 

Since E. = 0, II. may be regarded as the scalar magnitude of a 
vector F that is parallel to the z axis. Then 

E = curl F 
where F = kF., F, = IL, Fx = F„ = 

Since TEM waves may be considered a special case of either TM 
or TE waves, it follows that the most general plane wave field 
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traveling in the z direction can be expressed in terms of two scalar 
stream functions A, and F.. 

The theory of spherical waves is similar to that of plane waves. 
There are TM spherical waves for which H, = 0, TE spherical 
waves for which Er = 0, and TEM spherical waves for which both 
Er and H, are zero. For TM spherical waves, the divergence equa-
tion for H reduces to 

a ari, 
-ii (sin OHe) -I- -3-7, = 0 

1 ei A` 
1 / 

S/" Se' % 
I I \ 1.-- H  

8 Î • • "" • 

I li --..-  , REGIONy' 
2 % 
\ //, 

; 

, REGION I `,.. 
(b) 

(a) 

Fia. 13-15. (a) Biconical antenna and (b) its equivalent circuit 
(inspfar as impedance i3 concuned). 

Therefore it should be possible to obtain H from a stream function 
II. through the relations 

1  an 1 ar1„, Ho —  . 0 Ho — 
r sin acp r ao 

Since H. = 0, II„, may be regarded a3 the magnitude of a vector A' 
which* at every point is in the direction of the r co-ordinate. Then 
H is obtained from 

H = curl A' 
where A' = Ar = 11. Ae = A6 = 

In a similar manner the electric field of a spherical TE wave is 
found to be expressible in terms of a stream function Fr. How-
ever, in dealing with biconical and cylindrical antennas, only TM 
(and TEM) spherical waves are encpuntered. 

Figure 13-15 shows a biconical antenna that is assumed to be 
excited by a voltage applied across an infinitesimal gap at the apices. 

* In general, for spherical waves, the vector A' = urii, will not be the same 
as the magnetic vector potential A. 
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The spherical surface S divides the space about the antenna into two 
regions: region I is the antenna region and region II is the outside 
or free-space region. The conducting cones and dielectric in region 
I can be considered as a wave guide that is "terminated" in a 
second wave guide, consisting of region II. Because of circular 
symmetry, currents along the cones will be radial (except at the 
end surfaces) and magnetic lines will be circular about the axis 
of the cones. That is, only transverse magnetic waves will be 
present. 

With H,. = 0, the electromagnetic field about the cones can be 
completely specified in terms of a radial vector A' = Taking 
the curl of A',. and remembering that 8/(34, = 0, the magnetic 
intensity is given by 

1 aA,. 
11, = (13-75) 

Then, assuming a nondissipative dielectric (a = 0), Maxwell's equa-
tions become 

with 

a  .5à (sin 0H0) = jeer sin 0E,. 

a — (r1-14,) = jcoerEe 

(rEe) — 
8r 80 

H,. = He = E0 = 

(13-76) 

Since Eo = 0, the lines of electric intensity lie in axial planes. 
Also, since there is no radial magnetic current (H, = 0), curl,. E = 
and the transverse electric intensity can be expressed as the gradient 
of a scalar potential V. That is 

aV 
Ee = — — (13-77) 

r 80 
The stream function or potential from which the fields are 

to be obtained through (75) and (76), can be determined from the 
following considerations. For this problem, where there is no 
variation with 4,, the separation of the wave equation in spherical 
co-ordinates leads to the Legendre equation (56), sec. 13.05. In 
region II, the free-space region, where the axis (0 = 0, ir) is included, 
n will be integral and the 0 function solution will be given in terms 
of the Legendre polynomials Pn(cos 0). The Q functions cannot 
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be used in this region because they become infinite at the axis. 
Because this region extends to infinity, the appropriate radial 
functions will be those that represent outward-traveling waves, that 
is, the K functions or the spherical Hankel functions. Therefore, 
the expression for vector potential in this region must be of the form 

Ar(r, 0) = kn(jar)Pn(cos 0) 

From (78), (75), and (76) it follows that 

digs = —k,i(j0r)P1(cos 0) 

rEe = nk„' (jer)P1(cos 

(13-78) 

(13-79) 

(13-80) 

Expressions for Er can be obtained from the three parts of eq. (76). 
Equating these expressions and using (75) the following equation in 
A, is obtained, 

r —ar2 cegEr-Lir — sn = u 
sin o ao , 1 a (. aAr 

ao 
, , 

This equation is sometimes called a -,vave equation, although it is 
different from (13-51a) which is the wave equation in spherical 
co-ordinates. Separating, and letting the separation constant be 
n(n 1) as before, results in 

a2A,. [n(n -I- 1) 
ar2 L r2 (.02µ1 _  A, (13-82) 

ié 1 a(. -I- sin 0 = —n(n 1)A, (13-83) 

Combining (83), (76), and (75) gives an expression for E, directly 
in terms of A,: 

jcoer2E, = n(n 1)A, 

= n(n 1)1Z.(jfir)P„(cos 0) (13-84) 

In this region (region II), when n = 0 all the fields vanish, so the 
lowest order or principal wave is given by n = 1, for which 

rH4, = e-or (1 ± 1) sin 0 
jer 

rEe = n e-e» _ 2) sin 0 sdr fi2r  (13-85) 

r2E, = 2n e-e' 1 ) cos 0 
02r 

(13-81) 
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When multiplied by the factor jpi d1/4r, expressions (85) are exactly 
the expressions obtained in chap. 10 for the fields due to a current 
element. Thus it is seen that the simple current element generates 
fields that are representable by the lowest order transverse magnetic 
spherical waves. 

(a) (b) 

Fm. 13-16. Electric-field lines for first- and second-order trans-
verse magnetic spherical waves in free space. 

(b) (c) 

Fm. 13-17. Electric-field lines for zero-, first-, and second-
order transverse magnetic spherical waves between coaxial cones. 
The zero-order wave is the TEM wave. 

A sketch of the first- and second-order transverse magnetic 
spherical waves is shown in Fig. 13-16. These are for the waves in 
free space. 

In the presence of two coaxial conductors (that is, in the antenna 
region I), the first- and second-order TM waves appear as shown 
in Figs. 13-17b and 13-17c. However, in this latter region the zero-
order TM wave, that is the TEM wave, can and does exist. Its 
electric field lines are shown in Fig. 13-17a. 
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The radial impedance for outgoing waves is defined by 

E0 
-1-T; 

For the first-order TM wave of eqs. (85), it is 

Z -  77e2r2  377  
1 ± i32r2 era + 132r2) 

(13-86) 

It is noted, in passing, that at large distances this impedance 
approaches n, the intrinsic impedance. On the other hand, for 
small values of r, the radial impedance becomes a small resistance 
in series with a large capacitive reactance of value -j/wEr. 

Within the antenna region there will exist a TEM wave as well 
as the higher-order waves. In general, to meet the boundary 
conditions, n will be nonintegral in this region and the 0 function 
solution will be given in terms of P i unctions in the form 

AP„(- cos 0) -I- BP„(cos 0) 

An exception to this occurs for n = 0, which gives the TEM wave. 
For n = 0, P„(- cos 0) and Pn(cos 0) are not independent solu-
tions, and the Q function solution must be added. (The Q function 
is permissible in this region because the axis is excluded.) Then, 
for n = 0, the solution for A, will have the form 

A, = ko(jr3rHaPo(cos 0) + bQ0(cos 0)] 

= e-ior[a b ln cot 1 (13-87) 
2 

Then rE0 = bn e-ior 
sin 0 

1, 
r110 = 

sin 0 
E, = 

(13-88) 

The electric field distribution for the TEM wave is seen to be the 
same as that obtained as a solution to Laplace's equation in the 
static case. 

For the higher order waves between the cones, the solution will 
be of the form 

Ar(r, 0) = [al „(13r) -1-be,,(13r)ilazP,,(- cos 0) + b2/)(cos 0)] (13-89) 
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where in general n will have nonintegral values. Now recalling 
from (84) that E, is proportional to Ar, and applying the boundary 
conditions E,. = 0 at 0 = 1P and at 0 = 7r — it follows that the 
second bracketed term of (89), containing the 0 function, must be 
zero at 0 = 1,1, and at 0 = 7r — v.,. Applying these conditions, it is 
found that 

and 
b2 = —a2 

Pn(cos 1P) = P„(— cos e) (13-90) 

Equation (90) may be solved for n. When this is done there results,* 
for small cone angles, 4,, 

1 
n (2m + 1) + 

ln —2 

120 
= (2m + 1) (13-91) 

where m is an integer, A= 120/Zo, and Zo Pe 120 ln 2/1,I, is the char-
acteristic impedance of the biconical antenna. As Zo approaches 
infinity (that is, as the cone angle approaches zero) n approaches an 
integral value, and the transmission modes approach the corre-
sponding free-space modes. 

The appropriate radial functions in the antenna region are the 
spherical Bessel function j. and /9",., which represent standing waves. 
However, the g„ cannot be used as they become infinite at the 
origin, which is not excluded. Except for the zero order, the k' 
functions are ruled out for the same reason. It follows that the 
higher order waves (n > 0) in the antenna region will be given by 

A,. = a„1„(f3r)T(0) 

where 

rHo = —al(fir) dTd(0°) 

= _ianj.,03r) dTd(00) 
rEe 

jcuer2E,. = n(n 1)a,7„(13r)T(0) 

T(0) = [P,.(cos 0) — Po(— cos 0)] 

(13-92) 

(13-93) 

The current in the cones is proportional to rHo, evaluated at the 
surface, so the current associated with the higher order waves can 

S. A. Schelkunoff, Electromagnetic Waves p. 446. 
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be obtained from the second of eqs. s'92). Now for n > 0, and for 
r —› 0, J(r) varies as id' which, of course, goes to zero as r —+ O. 
Therefore the current at the input /n(0), associated with the higher 
order waves is zero. Also the voltage caused by the higher order 
waves and taken along any meridian between the cones, can also be 

shown to be zero, for 

V(r) = Ir e rE0 dB 

= —jria.1,!(0r)[T(ir — 1P) — T(1P)] = 0 (13-94) 

for n > O. Therefore the input volt Ige and current, and hence the 
input impedance, depend only on the principal or TEM wave. This 
is a very important result, because it makes it possible, without 
approximation, to treat the input impedance of the biconical antenna 
as the input impedance of a transmission line that is terminated in 

an appropriate impedance. 
13.07 Equivalent Transmission Line and Terminal Impedance. 

Considering the biconical antenna as a transmission line, the voltage 
and current at a distance r from the origin or input terminals will be 

V(r) = Vo(r') 

I(r) = Io(r) 1(r) (13-95) 

where Vo and /0 are the principal mode (n =- 0) values, and Ï is the 
"complementary" current due to ail the higher order waves. As 
has already been noted, 1(0) -- O. Then, in terms of principal 
mode values, the lossless transmission line equations may be written 
(Fig. 13-15) 

Vo(r) Vo(H) cos 0(H — r) jZoIo(H) sin 0(H — r) 

. . 
/0(r) = /0(H) cos ¡3(11Vo(H) (II — r) -I- sin ii(H — r) 

Zo 

where Zo = 120 ln cot e/2 is the characteristic impedance of the 
coaxial cones. The input impedance will be 

Vo(0) vo(H) cos 011 jZoIo(H) sin OH1 
Zi "-= To) -° Lzoro(H) cos fill jV o(H) sin 011 

The equivalent terminal impedance Zi will be 

Vo(H) V(H) 
Zt — 7 

/0(H) — I(H) — 1(H) (13-9) 

(13-96) 
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The equivalent terminal admittance is 

1 I (H) 1(H) 1 
= = V (H) VW) _ n ap. + 17, (13-98) 7`  

The current I (H) is the total current on the antenna at r = H and 
is, therefore, just the current flow out of and into the spherical caps 
that are assumed to close the ends of the antenna. That is, I (H) 
is the current flow through the capacitance between the caps, and 
I (H) / V (H) is the admittance between the two caps. For thin 

Fm. 13-18. The terminal admittance Yg. 

(Yi = Y1 — Y and Ze = 1/171) 

antennas, the capacitance between caps is very small and I (H) is 
approximately zero. Then 

/0(H) -F (H) = 1(H) 0 

or /0(H) —1(H) (13-99) 

/0(H) 1(H)  
and Yg = 

V (H) — V (H) 

V (H) V (H) 
also Z, = ge• — 

I o(H) F). 

In general, the terminal admittance consists of two admittances in 
parallel as diagrammed in Fig. 13-18. The admittance, 
between caps of small radius is approximately just the capacitive 
susceptance jwC, where C is the electrostatic capacitance between 
the caps. This may be obtained by calculating the capacitance 
between the outside surfaces of two thin disks having radii very 
much smaller than their separation. The capacitance of an isolated 
thin circular disc treated as a very flat spheroid is found* to be 

* J. H. Jeans, Electricity and Magnetism, Cambridge Press, London, 1946, 
p. 249. 
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20a/9r µµfd where a is the radius in centimeters, so the admittance 
between caps will be 

y ospe = ja 
30X mhos 

where a is now the radius of the circular disks in meters. 
The other part of the terminal admittance, Y' = -.T(H)/V(H), 

is calculated from the higher order current waves at r = H. When 
the terminal impedance Ze has been determined the input impedance 
will be given by 

=  (Zi cos all  + jZo sin fl1-1\ (13-100) Zo cos 13H ± jZt sin OH) 

Schelkunoff has carried out the evaluation of Y', and hence Zt, 
in the following manner. Since the detailed calculations are 
lengthy, only an outline of the method is given here. 

First, expressions for E,. in the antenna region and in the outside 
or free-space region are written and compared. For the antenna 
region, the resultant field due to the higher order waves can be 
expressed in the form 

2arjcuer2E,. =  T,,(0) —n  (13-101) 
Jn(01-1) 

where T,,(0) is defined by (93) and where n is nonintegral, being 
defined by (91). Making use of (84) and (75), the corresponding 
expression for the complementary current will be 

i(r) = 2wr sin 

ci„1„(ar)  sin ,  
n(n + chp 

As 1p —› 0, Zo --> oo, and n --+ 2m + 1 + 

drn(e) à 120 so that —  
cl¡ ZotP 

Then, for thin antennas, 

120 an,io (sr)  
1(r) = — (13-103) 

Zo n(n + 1)i(i3H) 

In the outside region E„ can be expressed in spherical Hankel 
functions by 

(13-102) 
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b;k;,(jer)P,-,(cos 0) 
2firjun.2E, (13-104) 

fe;*. (OH) 

where ñ is integral. Equating the expressions (104) and (101) for 
Er at the boundary surface r = H results in 

anTn(0) = ber,b(Ops 

/1=1 

Now, as 4,, 0 and Zo —> 00, then n --+ 2m + 1, and Tn(0) 
P2m+i(cos 0). Therefore, in the limit, for infinitely thin antennas, 
= b2m+1 = n. Then for thin antennas, it is permissible to use 

the b2„,±1 terms as first approximations for the an terms. The 
expression for the complementary current on thin antennas is then 
given by 

60 b2m+1•72.14.(13r)  (13-105) 
Ï(r) —  Zc (2m 1)(m 1).72.1-109H) 

The b2„,+1 terms can be evaluated by again considering the limiting 
case as 4, 0 and Zo co. For very thin antennas the current 
distribution approaches the sinusoidal distribution of the principal 
wave 

I(r) = Io sin 13(H — r) 

with I —wow) zo (13-106) 

For this distribution the fields have been calculated in chap. 10. 
By expanding in terms of Legendre polynomials the distant field 
expression for E,. obtained from chap. 10 and comparing it with 
eq. (104), the b coefficients can be evaluated. 

The result is: 

b2m-1-1 = —j/o(4m + 3)./2.+1(PH)[J2m+I(eH) — .0 .2.+103ffli 

Inserting this in (105) and combining with (104) gives for the 
complementary current 

60V0(H) e  4m + 3  
(r) Z02  m (in 1)(2m + 1) 

[J21(H) Obn-1-1(PH)}121n1-1(3r) (13-107) 
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Then the terminal admittance is 

i(H) Za(aH) 1a(H) jX.(811) 
V(H) Z02 Z02 

Yg — 

co 

(13-108) 

where R(H) = 60 • 4m + (3 2m + 1) 122„,+I(PH) (13409) 1),  

L(13x) = —co  , 4m + 3 )0- 
(m -r• 1)(2m 1- 1) - 2m-F1,13/1)— 2m1-10310 

m- o  

The terminal impedance Zg is 

Zo2 
4 = 

Z.(1311) 
(13-108a) 

Za(PH) is the inverse of the terminal impedance. The input 
impedance of a quarter-wave section of lossless line having a char-
acteristic impedance Zo and terminated in Zo(PH) is Z. 

Although it is possible to calculate Z. directly from expressions 
(109), the series converge slowly and are not useful for computations 
except when PH is small. Schelkunoff has circumvented this 
difficulty by providing an ingenious alternative method for calculat-
ing Z.. Using (100), the input impedance can be expressed in 
terms of z. by 

As Zo—> co, 

4 — Zo Zci sin I3H  jZ6 cos 13H  Zo sin jZ0 cos ex 

z. — iz. cot ,3H  _ 
1 — 2Z./ Zo cot PH 

(Z. — jZo cot el) (1 + j z-20 cot PH) 

--> sin' OH jZo cot 13H 

(13-110) 

(13-110a) 

and, since the input current approaches /0 sin el, the input power 
(complex) becomes 

MZi/o2 sin' AI[Z„ — jZo sin OH cos PHI/02 

However, as Zo co, the current distribution approaches the 
sinusoid, and the complex input power can be obtained by the 
induced-emf method of chap. 11. Tae real part, which gives the. 
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radiation resistance, will be independent of the antenna shape (for 
thin antennas) and will, therefore, be the same as that already 
calculated for the infinitely thin cylindrical antenna. However, 
the reactive part, which determines the reactance, will be a function 
of shape even for thin antennas, and so must be calculated for conical 
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Flo. 13-19. Resistive and reactive components of the inverse 
terminal impedance Z. = R. jX.. 

antennas (with e 0). Using this approach, Schelkunoff obtains 
the following results 

/MPH) = 60(-y + ln 2pH — Ci 2PH) 
30(7 -I- ln pH — 2Ci 2pH -I- Ci 4eH) cos 2H 

-F 30(Si 4eH — 2Si 20H) sin 20H 

xa(pH) = 60Si 2eH 30(Ci elpH — ln pH — -y) sin 2pli 
— 30Si 401 cos 2eH 

where -y = 0.5772 (Euler's constant) 

These expressions are plotted in Fig. 13-19. The input impedance 
is then obtained from 

• = 
Z. sin pH — jZo cos pH 

,0 z Zo sin eH — jZo cos OH 

It is important to note that, although the approximate relation 
(110a) was used in calculating Z, it is necessary to use the exact 
expression ( 110) for calculating Zi. Use of the approximate expres-

(13-110) 
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thon here would lead to the same anes7er as is given by the induced-
emf method. 

The final result of this attack or the problem is seen to be a 
surprisingly simple one. The inpt t impedance of the conical 
antenna is calculated as the input impedance of a lossless trans-
mission line which is terminated by an impedance Z. This 
terminal impedance is just the inver3e of an impedance Z„ which 
can be calculated by the induced-eml method. 
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Fla. 13-20. The input impedance of hollow conical antennas for 
various values of Zo as giv€ n by Schelkunoff. 

The input impedance of hollow conical antennas is shown in 
Fig. 13-20 for various values of Zo. Che term hollow refers to the 
fact that the cap capacitance has rot been taken into account. 
For thin antennas, the cap capacita ice has negligible effect, but 
for thicker antennas it must be accounted for. This can be done 
by adding the admittance Yo„,. to th€ calculated value of Yt Y'. 
With this correction ( 108) becomes 

no(OH) . [ X OM  
-F 3 Zo2 o2 Yg = + (13-111) 

Z 

Two effects of considerable practical importance can be observed 
in the curves of Fig. 13-20. The fir it of these is that the fatter 
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antennas (lower Zo) have very much smaller impedance variations 
with frequency, so that a fat cone is inherently a wide-band antenna. 
The second effect is the shortening of the resonant length for the 
thicker antennas. For very thin antennas resonance occurs for 
lengths just slightly shorter than multiples of X/4, but for thicker 
antennas the shortening effect becomes quite large, especially for 
first resonance. The cap capacitance acts to decrease the resonant 
lengths still further. 

13.08 Impedance of Cylindrical Antennas. The analysis for 
conical antennas can be extended to cover antennas of other shapes 
in the following manner. If the transverse dimensions of the 
antenna are small, the waves along it will be nearly spherical, what-
ever its shape. Then such antennas can be treated as nonuniform 
transmission lines whose inductances and capacitances per unit 
length and characteristic impedance vary along the line. The 
terminating impedance will be as calculated from (108a), except 
that an " average" characteristic impedance must be used for Zo. 
From the theory of nonuniform transmission lines, Schelkunoff has 
obtained for the input impedance of antennas 

= Zo (ay) 

[R. sin OH — N) sin pH — (Zo (ay) — M) cos PHI 
L[(Zo (ay) M) sin ex + + N) cos pm - cos ex 

(13-112) 

where, for cylindrical* dipoles of radius a and half-length H, 

M = 60(ln 20H — Ci 2(3H ± 7 — 1 ± cos 20H) 
N = 60(Si 2011 — sin 2(311) 

211 )Zo (ay) = 120 (In —a — 1 

In Fig. 13-21 are shown curves for the input resistance and reactance 
of hollow cylindrical antennas for various values of Zo (ay). Zo (ay) 
for cylindrical antennas of half-length H is plotted in Fig. 13-22 as 
a function of the ratio II/a. For a monopole antenna Zo (ay) has 
just one-half the value it has for the corresponding dipole. The 

* For the M and N functions fcr antennas of other shapes the reader should 
refer to S. A. Schelkunoff, Electromagnetic Waves, D. Van Nostrand, New York, 
1943, p. 461. 
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FIG. 13-21. (a) Input resistance ind (b) input reactance of 
hollow cylindrical center-fed dipole a ltennas as given by Schel-
kunoff. For monopole antennas of he ght H, divide the ordinates 
and the value shown for Zo (ay) by IA% o. 

input resistance and reactance of a monopole antenna are just one-

half those of the corresponding dipoh antenna that has the same 
H/a. Therefore, the input impedance of monopole antennas can 
be obtained from Fig. 13-21 by diyidi ig the ordinates and Zo (ay) 
by 2. Figure 13-23 shows the resonant impedance of hollow 
cylindrical dipole antennas at the first and second resonance points. 
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Fla. 13-22. Average characteristic impedance, Zo (ax), for 
cylindrical antennas. 
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Fie. 13-23. Resonant impedance of hollow cylindrical 
antennas as a function of Zo (ay) at second resonance (anti-
resonance): A, Hallén, Nova Acta Upsal, 1038, Formula 39; B, 
Schelkunoff. Points are measured values from various sources. 
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Also shown for the second resonance point are some experimental 
values (circles) obtained from various sources, as well as a curve of 
theoretical values as given by Hallén. The agreement between 
theories and with experimental results at this critical point is seen 
to be quite good. Agreement at other points will, in general, be 
found to be even closer. 

Schelkunoff's antenna theory is important for two reasons. 
First, it has provided reasonably accurate numerical answers over 
a fairly wide range of antenna dimensions. Second, the method 
itself is an excellent example of how and when to make approxima-
tions. In engineering, most probleras are not amenable to exact 
solutions. Therefore the ability to raake approximations can spell 
the difference between success and failure in the solution of the 
problem. 

ADDITIONAL PROBLEMS 

3. Using Schelkunoff's method, calculate the input impedance of a 
uniform cross section tower antenna at 1:',00 kc. The tower is 400 ft high 
and 6% ft square. The base-insulator ca pacitance is 33 if. 

4. The antenna for a portable test transmitter consists of a tubular 
steel mast 2 in. in diameter and 50 ft high. The base insulator has an 
effective shunting capacitance of 15 µW. (a) If a test survey is to be 
made at 650 kc, determine ( 1) the radiation resistance, (2) the antenna 
reactance, (3) the input impedance, including the effect of the base capaci-
tance. (b) for 1 amp through an ammeter in the lead to the antenna, 
what is the current in the mast near the base? (c) for an ammeter reading 
of 1 amp, what is the field intensity at 1 mile and how much power is 
radiated? 
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CHAPTER 14 

ANTENNA nACTICE AND DESIGN 

The theory of antennas is the same at 1000 mc as it is at 100 kc, 
but the form that practical antennas and their matching networks 
take is very much a function of frequency. At low and medium 
frequencies, where a wavelength is long, practical antennas are 
usually short in wavelengths and the problem is chiefly that of 
efficiency. At high and very high frequencies, where a half-wave 
antenna has reasonable dimensions, good efficiency is more easily 
obtained, and the problem is usually that of obtaining directivity 
or gain. At ultrahigh and superhigh frequencies, the problems of 
"beam-shaping" become important. In addition to these general 
considerations, specific applications often entail particular require-
ments that must be met in the antenna design. In this chapter a 
few typical antenna systems will be considered in just enough detail 
to illustrate the problems and methods of antenna practice. 

14.01 Low-frequency Practice—(Electrically Short Antennas). 
At frequencies below the broadcast band the difficulties of con-
structing antennas that have appreciable electrical length become 
very great, and so electrically short antennas must be considered. 
Moreover, because of the large attenuation of the horizontal com-
ponent of the surface wave (see sec. 16.03), and the cancellation 
effect of the negative image of horizontal antennas (sec. 12.08), only 
the vertical portions of an antenna will be effective* in signal pickup 
or radiation at these frequencies. Therefore the problem becomes 
that of designing a vertical ground-based antenna having an effec-
tive half-length (or effective " height" in the old usage) that is as 
large as possible. This design is accomplished by making the 

* An exception to this general statement occurs in the case of a Beverage 
wave antenna, which is responsive tp the horizontal component of a forward-
tilted, "vertically polarized" wave. 

510 
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physical height as great as possible, t ad by top loading. Top load-
ing, which consists of adding some form of " capacity hat" or a 
horizontal portion to the structure ak. in the familiar L- and T-type 
antennas, serves two purposes. It increases the effective half-
length by a factor of two (at most), and it decreases the large 
capacitive reactance of the short antenna. For both transmitting 
and receiving antennas a large capacitive reactance means low 
efficiency because of the losses in tie high-reactance tuning coil 
that is required. In addition, in the case of short transmitting 
antennas, the amount of power that can be fed to the antenna with-
out voltage breakdown is dependent on the antenna reactance. 
Thus the voltage required to establish the antenna current is approx-
imately V = IX., and the power radiated is PR« v2R./x.2, so 
that for short antennas having low values of Ra and high values of 
X«, extremely large driving voltages are required to radiate moder-
ate amounts of power. In the case of short receiving antennas, the 
presence of unavoidable shunt capacitances at the receiver input 
reduces the signal available to the receiver when the antenna 
capacitive reactance is large. 

Impedance and Efficiency of Short Antennas. For electrically 
short antennas the resistance and reactance can be expressed 
approximately by the following simple and convenient relations. 
For short vertical ground-based antennas without top loading the 
radiation resistance referred to the base is given by the expression 
developed in chap. 10, viz., 

••-•• 1003H)2 ee 403 M 2 (14-1) 

For top-loaded antennas having a total electrical length (H b) 
less than one-tenth wavelength, the radiation resistance can be 
obtained from 

Rraa = 40(i3H) 2 [ 1 H H + b b + 1 ( H   )2] (14-2) 
4 H  

In this expression, H is the height of the vertical portion of the 
antenna, and b is the equivalent additional length of vertical portion 
that would draw the same current ai does the capacitive loading 
(Fig. 14-1). For T- and L-type antennas b is approximately equal 
to the length of the horizontal portion. 
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The approximate reactance of short unloaded antennas can be 
calculated from the expression 

Xa = —Zo' cot OH (for H < 0.2X) (14-3) 

where Zo' = 60 [ln -II— 1] (14-4) 
a 

is an " adjusted" characteristic impedance that is picked to give 
the closest fit to experimentally measured values. It is found 
that, if either the value of Zo given by expression (13-22) or that 
given by Siegel and Labus (13-27) is used in eq. (3), the values of 
reactance so calculated are consistently higher than measured 

II b 
II 

I I H 
I I iH 

1  

FIG. 14-1. Top-loaded antennas. 

values. The use of expression (4) in eq. (3) yields calculated react-
ances that are in better agreement with measured reactances. 
There appears to be no theoretical basis for expression (4), and it 
must be regarded simply as an empirical formula which, when used 
with (3), gives a reasonably close check with values obtained by 
measurement. 

The efficiency of electrically short antennas tends to be low 
because the radiation resistance is small and the loss resistances of 
the antenna system may be comparable with, or even considerably 
greater than, the radiation resistance. For short antennas the 
chief losses occur in the ground system and the loading coil. 
Ordinarily, ohmic losses in the antenna itself will be small. Ground 
system losses will be considered under broadcast frequency antennas 
where this subject has received much attention. For short antennas, 
where the antenna reactance is capacitive, it becomes necessary to 
"tune out" this capacitive reactance either by means of a series load-
ing coil, or by use of an L, T, or r matching network. Regardless of 
the matching circuit used, there will always be some loss in it that 
will be at least as large as the loss that occurs in a simple loading coil, 
so the efficiency to be expected can be estimated on the basis of the 
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latter connection. In the actual and equivalent antenna coupling 
circuits indicated in Fig. 14-2, the power radiated will be 

.1‹,2 
= Ia2Ra 1(a 

The power lost in the coil will be ap eoximately 

/ 2XL 
PL /a2RL 

Q L 

Q. = X./Ra and QL = XL/RL are the Q's of the antenna and loading 
coil respectively. Remembering that in the matched condition 

FIG. 14-2. An actual antenna coupling circuit and its equivalent 
circuits. 

XL and X. are nearly equal, it is seen that the efficiency is given by 

QL  Efficiency — 
Qa I TQL 

For very short antennas, Q.,» QL and X. ee Zo'/011 so that 

QL Efficiency 10QL (pH)3 (14-5) 

Equation (5) shows that for very short vertical antennas without 
top loading the efficiency varies approximately as the cube of the 
antenna length. 

Considerations similar to the above also apply in the case of 
short receiving antennas. The effective length, and hence the 
induced voltage, of a short receiving antenna is proportional to its 
physical half-length H, and, as was shown previously, its radiation 
resistance is proportional to the square of H. Therefore, in theory, 
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the maximum power which can be absorbed by a matched load, 
viz., 

V2.nd 

W = 

is independent of the half-length H, for small values of H. Actu-
ally, when coupling circuit losses are taken into account it can be 
shown (see problem 6) that the efficiency, and, therefore, the maxi-
mum useful received power tends to vary as the cube of the length 
for very short antennas. 
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Fla. 14-3. Field intensity at one mile r.t O = 9D degrees for one 
kw radiated from a ground-based vertical monopole of height H. 

14.02 Broadcast Antennas. Because of their economic impor-
tance broadcast antennas have received a great deal of attention in 
the literature. The fact3rs of most concern are the height and 
current distribution (which determine the vertical pattern), the 
driving-point impedance, losses, efficiency, and, in the case of an 
array, the horizontal pattern. 

As the height H of a ground-based vertical antenna is increased 
from a very short height, the field intensity on the horizon (0 = 90 
degrees) for a given power input first increases, and then decreases 
as shown* in Fig. 14-3. This dependence of the field intensity upon 

* Stuart Ballantine, "On the Optimum Transmitting Wavelength for a 
Vertical Antenna over a Perfect Earth," Proc. IRE, 12, 833 (1924). 
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height of the antenna is a result of the change in vertical pattern 
with height of antenna. This effect is illustrated in Fig. 12-2 for 
the equivalent dipoles of length L = 2H. For H very small, the 
vertical pattern is given by sin 0, and the shape of this pattern 
changes quite slowly with height to H = X/4, where the pattern is 
given by Fig. 12-2b. (Of course, only the top half of this pattern 
applies for ground-based monopoles.) Because the high-angle 
(small 0) radiation has been decreased, the field intensity at 0 = 90 
degrees for a given power radiated will be greater, but at H = X/4 
the increase in field intensity over a very short monopole is only 
about 7 per cent. Above H = X/4 the field intensity at O = 90 
degrees continues to increase, reaching a maximum at H = 0.64 X, 
and then decreasing sharply to zero at H = X. The decrease above 
H = 0.64 X is due to the fact that the secondary, high-angle lobe, 
which begins to appear above H = 0.5 X, is now quite large, and 
hence more power is being radiated at these high angles. In broad-
cast work where the desired coverage is obtained by means of the 
surface wave alone (the wave radiated at O = 90 degrees), this 
high-angle radiation is deleterious for two reasons. First, it takes 
power which otherwise could be used to increase the field intensity 
of the main lobe. Second, at night, instead of being absorbed in 
the ionosphere as they are during the day, the waves radiated at 
these high angles are reflected back to earth, giving strong signals 
hundreds and even thousands of miles from the transmitter. In 
the early days of broadcasting this was a desirable result, but with 
the present large number of broadcast stations requiring approxi-
mately 20 stations per channel, this sky wave transmission causes 
severe interference with the local coverage of transmitters on the 
same frequency or adjacent channels, and so must be reduced to a 
minimum. For this reason, although the theoretical " optimum" 
height of 0.64 X gives a maximum value of low-angle radiation, a 
somewhat smaller height gives a better ratio of low-angle to high-
angle radiation. A height of 0.59 X is one that is often used in 
present-day practice. 

The vertical pattern of a broadcast antenna is also dependent 
to a small extent upon the change in cross section with height. A 
uniform cross section antenna has a current distribution that differs 
only slightly from a sinusoidal distribution. However when a tower 
is tapered from a large cross section at the bottom to a small cross 
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section at the top, as it often is for mechanical reasons, the current 
distribution departs from the sinusoidal. The chief effect is that 
the current near the top is less than that which would result if the 
tower were uniform. For diamond-shaped antennas, the effect is 
more complicated. The current amplitude tends to be increased 
above the sinusoid, where the cross section is large, and decreased 
below it, where the cross section is small. Tapered towers are 
often self-supporting, but uniform and diamond-shaped antennas 
must be guyed. In general, the presence of these steel guy wires 
will affect both the pattern and impedance of the antenna, but these 
effects can be kept small by sectionalizing the guy wires with 
insulators, so that the current flowing in each short high-reactance 
section is kept small. 

Losses and Efficiency. Losses in an antenna system may be 
divided into four classifications: ( 1) ohmic losses in the conductor, 
(2) dielectric losses in the base insulator, (3) losses in the coupling 
coil or matching network, (4) losses in the ground system. Ohmic 
losses in the conductor are negligibly small provided that the 
antenna cross section is sufficiently large (a condition always met 
in tower antennas), and that the tower members are thoroughly 
bonded. The power loss in the insulator(s) is generally quite small 
and almost always less than per cent of the total power input 
for broadcast antennas. However, for electrically short antennas 
that require large driving voltages, the percentage power loss in 
the insulator may become large, especially in wet weather. Losses 
in the matching network can be kept small by proper design, and by 
use of low-loss inductors. In general, losses occurring in the ground 
adjacent to the antenna will be quite large unless an adequate 
ground system is used. These ground losses may be divided into 
V2G or " dielectric" losses (which are proportional to the base 
voltage) and PR or " ohmic" losses (which are proportional to the 
antenna current). The " dielectric" loss occurs near the base in 
the layer of earth above the ground wires. It is important only 
when the base voltage is high, as for example in the case of elec-
trically short antennas. This type of loss may be reduced by use 
of a ground screen placed above the earth in the immediate vicinity 
of the antenna. The " ohmic" loss is due to the ground "return" 
current flowing through the finite impedance of the earth. This 
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loss can be calculated (approximately) by computing the magnetic 
intensity at the surface of the earth in the neighborhood of the 
antenna on the basis of no loss (perfectly conducting earth). Then, 
assuming that the fields, and hence the ground currents, do not 
change appreciably when the earth has loss, the radial surface 
current density Jiy is known, and therefore the loss per square meter 
.1,2R„ can be calculated. The percentage of power lost in the 
ground depends upon the antenna height and the conductivity of 
the earth. It varies from a few per cent for a half-wave monopole 
on an earth of good conductivity up to about 75 per cent for a short 
monopole on a poorly conducting earth. However, in all cases these 
losses can be reduced almost to zero by using a suitable ground 
system. A grounding system composed of about 120 radial wires, 
each about half a wavelength long and buried a few inches beneath 
the surface of the earth, has proven to give almost total reduction 
of ground losses. Fewer wires can be used, but the loss reduction 
is then not so complete. 

Broadcast Antenna Arrays. More often than not it is desirable 
to modify the horizontal pattern of the field intensity radiated by a 
broadcast transmitter, and this requires an array of two or more 
antennas. One reason for changing the horizontal radiation char-
acteristic from a circular pattern exists when the potential audience 
lies on one side of the station rather than all around it. A more 
compelling reason exists when a station desires a frequency and 
power that will give more than local coverage. The Federal Com-
munications Commission then requires that the station install a 
directional array that will " protect" stations on the same or 
adjacent channels, that lie within the radius of several hundred 
miles. Such protection consists of reducing the field intensities 

below certain specified levels in those particular directions, and this, 
in turn, requires a directional pattern which has a certain definite 
number and location of nulls or minima. In general, the more sta-
tions that must be protected, the greater will be the number of 
antennas required for the array. Arrays consisting of from two to 
five elements are common. The calculation of the patterns of such 
arrays has been considered in chap. 12. However after the 
correct current ratios have been computed there remains the prob-
lem of determining the driving point impedances, and designing the 
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matching networks to feed the elements with currents that have the 
correct magnitudes and phases. The design of matching networks 
that will produce a specified phase shift is a circuit problem that has 
been solved* to give the required reactances for the elements of 
a T or ir section in terms of the impedances to be matched and the 
phase shift desired. A simple example of a broadcast array design 
problem will be given. 

The equivalent T or ir section of a network of impedances can 
be expressed in terms of the image impedances Zi, and Zi„ and the 
image transfer constant 0 by the following relations.t 

For a T section 

zi _ Zi, cosh O — •Vrir, 
sinh 

— Zj cosh 0 —  
e 2   sinh 

Z 3 —  
sinh 

For a ir section, 

Zi,Zi, sinh  
Z A = 

Z is cosh 0 — Z 

Z0 = 1/ZjiZ sinh 0 

Zi,ZiR sinh  
Z — 

cosh O — 

(14-6) 

(14-7) 

For matching networks of pure reactances the complex image 
transfer constant 0 will reduce to the pure imaginary jB, and, con-
sidering those cases where the image impedances are pure resistances 

--- R1, = R2), the appropriate expressions for T and ir 

reactance networks are 

* A complete treatment cf the method, including design curves for deter-
mining the values of reactances for the matching networks, is given in the 
article by W. L. Everitt, " Coupling Networks," Communications, 18, 12, Sept. 
(1938): also 18, 12, Oct. 1938. The design curves are also shown in Terman, 
Radio Engineers' Handbook, McGraw-Hill, New York, 1943. 

E.g., W. L. Everitt, Communication Engineering, McGraw-Hill. New York. 
1937, p. 278. 
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T section 

zi _ _. Ri cos B — N/RiR2 
2 sin B 

R2 cos B — -NA.irre2 
Z2 — j 

sin B 

.  N/TI ITC2 
Z3 3 sin B 

ir section 

(14-8) 

•  RiR2 sin B  
ZA =j —it2 

cos B — R1R2 

ZB = j VR1R2 sin B (14-9) 

•  RiR2 sin B  

Zc = R1 cos B —  /R1R2 

The angle B is the phase shift (lag) introduced by the network. 
If the impedances to be matched have reactance as well as resist-
ance, a T section can be designed to match the resistances, and then 
a sufficient reactance can be added to each of the values calculated 
for the series arms to cancel the reactances of the terminating 
impedances. If a ir network is desired, the resulting T can then be 
transformed to the equivalent ir. • 

An L network can also be used to match two resistances. How-
ever, the phase shift then cannot be chosen at will, but is determined 
by the image impedances. Formulas for an L network are obtained 
by putting one series arm, say Z2 of a T section equal to zero. 
Then for an L reactance network (Z2 = 0), 

cos B = 
R2 = j N/Rei — R2) 

Z3 = R  
ie2 — .1 

(For this L network R2 must be greater than RI, but of course the 
network can always be turned around.) 

EXAMPLE 1: 
Two quarter-wavelength tower antennas spaced one quarter-wavelength 

apart are to be fed with equal currents, but with the current 1B lagging 1,4 
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by 90 degrees. Design the appropriate matching networks. The antennas 
are to be supplied by 70-ohm concentric cable, and the transmitter is 
designed to feed a 70-ohm line. 

An appropriate feeding arrangement is shown in Fig. 14-4. The first 
step is to find the driving-point impedances of the antennas. From Fig. 

1 

INE i 

3 

^ 2 

LINE 2 

4 

TRANSMITTER 

1 
B 

FIG. 14-4. Feeding arrangement for a two-element broadcast 
antenna array. 

11-6 the mutual impedance between two quarter-wave monopoles at X/4 
spacing is 

Z12 = 25/-35° = 21 — j14 

For the mesh impedances Z11 and Z22, the self-impedance of a quarter-
wave monopole can be used. That is, 

Z11 = Z22 e•-••• 37 + 122 

For an array that has already been erected Z11, Z22, and Z12 can be 
obtained by measurement. However, ordinarily, preliminary calculations 
at least must be made before construction starts. From eq. ( 11-9), and 
remembering that IA = SIB, the driving-point impedances will be 

VA 
ZA' = — = 37 + 122 — j(21 — j14) = 23 + 11 

IA 

VB 
ZB' = 7; = (37 + 122) + 1(21 — j14) = 51 + 143 

Since a single three-element network can give the desired phase shift, the 
other three networks can be designed for impedance matching only. 
L networks are the simplest and most efficient for this purpose. 
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Network 1 must, match the impedance 23 + ji to a resistance of 
70 ohms. Then R1 -=- 23 and R2 = 70 and from eqs. ( 10) the required 
reactance to match these resistances are 

Z1 = j32.9, Z3 = —j49.0 

with cos B1 = 0.70 or B1 = +55 degrees 

If a reactance of —ji is added to Z1, it will cancel the positive 1-ohm 
reactance of the load impedance. 

Therefore 

Z1 = j32.9 — ji = j31.9 

In a similar manner for network 2 it is found that for this network 

Z1= —j11.9 Z2 = —j114.8 B2 =- 31 degrees 

Networks 3 and 4 must be designed to satisfy the following require-
ments. 

(1) The input resistances of the two networks must be such that each 
will absorb the proper amount of power for its respective antenna. There-
fore the input resistance must have the ratio Ra/R3 = P.A/PB = 23i i• 

(2) The two networks in parallel must present a resistance of 70 °himi. 
to the transmitter. 

(3) The phase shifts must be such that the total phase shift between 
generator and antenna B will be 90 degrees greater than the phase shift 
between generator and antenna A. To satisfy simultaneously conditions 
(1) and (2), the required input resistances are 

Rj = 225 ohms R4 = 101.2 ohms 

Designing network 3 as an L network to match a resistance 225 ohms 
(call this R2) to 70 ohms (call this R1) gives for this network 

Z1 = j104.2 Z2 = —j151.2 B = 56 degrees 

In general the line lengths to the two antennas will not be equal. 
Assume line 2 is 70 electrical degrees larger than line 1. Then 

Bi + B3 + 90° = B2 + B4 ± 70° 
B4 = 100° 

Thus, for network 4, 

B = 100° R1= 70 R2 = 101.2 

Using a 7r network, the required values for the elements are 

Z4 = —j68.6 ZB = j82.6 Ze = —j72.8 

The complete system will appear as shown in Fig. 14-5. 
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14.03 High-frequency (Short-wave) Antennas. The high-fre-
quency band nominally covers the range of frequencies from 3 to 
30 mc, but for the purposes of this section it will be considered to 
include frequencies down to about 2 mc. As the frequency is 
increased above the broadcast band, attenuation of the surface wave 
becomes very large and propagation by such means is restricted 
to• local coverage within a few miles of the transmitter. Longer 
distance transmission at the high frequencies makes use of sky wave 
or ionospheric propagation. The subject of ionospheric propagation 

31.9A 
•—rep000   

ANTA 

j 
490A 

FIE 
104.2 82.6 

TRANSMITTER 

FIG. 14-5 

68.6n. 

72.8n 

is dealt with in chap. 17, and here it will be sufficient to point out 
that the higher frequencies in this band are useful for long-distance 
communication up to several thousand miles, whereas the lower 
frequencies are suitable for communication over distances less than 
about 500 miles. The higher frequencies suffer less attenuation, 
but are not reflected back to earth at the high angles of incidence 
required for short-distance communication. An indication of fre-
quencies most suitable for transmission over different distances 
under average conditions is given in Table I. The frequencies 
listed in Table I are meat,t to serve as a rough guide only. The 
actual optimum frequency for any distance varies daily, seasonally, 
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and also with the 11-year sun spot cycle, and the methods of chap. 17 
should be used for a more precise determination. In general, for 
short distances the lower frequencies and high-angle radiation will 
be required; whereas for long distances higher frequencies and low-
angle radiation will be needed. 

In the high-frequency band it becomes practical and desirable 
to use elevated antennas. At these frequencies, ground system 
losses of ground-based vertical antennas become quite large. The 
use of elevated antennas gives a certain amount of control over the 
vertical pattern, which is very desirable. Usually, but not always, 

TABLE I 
USABLE rlIEQUENCIES (MEGACYCLES) 

Distance 
(miles) 

summer 
day 

Summer 
night 

W inter 
day 

Winter 
night 

5000 and up 13 8-14 18 5-8 
3000 18 6-14 14-18 4-8 
2000 16-18 5-12 12-18 4-6 
1000 12-16 4-8 10-12 3-6 
500 8-12 2-6 G-10 2-5 
300 C-8 2-4 5-0 2-4 
150 5 2-4 4 2-4 
50 2-4 2-4 2-5 2-5 

the elevated antenna is horizontal. A horizontal receiving antenna 
is less responsive to local generated (man-made) noise which 
is propagated as a predominantly vertically polarized surface 
wave. In general, an elevated horizontal antenna is more con-
venient to excite, bearing in mind the desirability of keeping the 
antenna and feed line at right angles to each other. One of the 
most common high-frequency antennas is the simple center-fed half-
wave dipole. 

The Pro,;Heal Half-wave Dipole. The directional and impedance 
characteristics of the theoretical infinitely thin dipole having a 
sinusoidal current distribution have been considered in previous 
chapters. An actual half-wave dipole has a finite diameter and a 
current distribution that is not sinusoidal. These differences affect 
both its directional characteristics and its impedance. However, 
the difference between the theoretical and actual radiation patterns 
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of the center-fed half-wave dipole is negligible, and for all practical 
purposes the theoretical pattern can be used. The effect on imped-
ance characteristics is much more pronounced. Reference to the 
impedance curves of Figs. 13-12, 13-13 and 13-14 shows that for 
finite-diameter antennas the radiation resistance at a physical half-
wavelength is greater than 73 ohms and the reactance is inductive. 
However, in practice a " half-wave dipole" refers to a resonant-
length dipole (for which the reactance is zero). For finite-diameter 
antennas the resonant length is less than a physical half-wavelength 
by an amount that depends upon the thickness of the antenna, but 
that is of the order of 5 to 10 per cent. Because the radiation 
resistance varies rapidly with length in this region, the radiation 
resistance of a finite-diameter dipole at the resonant length may 
be of the order of only 65 to 72 ohms—somewhat less than the 
theoretical 73 ohms. 

In addition to the above effects, an actual dipole is always 
located above the ground or other supporting and reflecting surface, 
so that the theoretical free-space conditions do not apply. The 
effect of the presence of a perfectly-conducting ground on the input 
impedance of the antenna can most readily be accounted for by 
replacing the ground by an appropriately-located image antenna 
carrying an equal current in proper phase, and then computing the 
driving-point impedance under those conditions by the methods of 
chap. 11. Figure 14-6 shows how the input impedance of a (theo-
retical) half-wave dipole varies with distance above a ground plane 
that is assumed perfectly conducting. In general the input imped-
ance now has a reactive component as well as resistance, and the 
magnitude of the resistance oscillates about the free-space value 
of 73 ohms. For a practical dipole a similar effect could be expected, 
with the input resistance oscillating about the actual free-space 
value. The effect of a finitely conducting ground could be deter-
mined in a similar manner, the only difference being that the image 
antenna would carry a current, the magnitude and phase of which 
would depend upon the actual reflection coefficients of the earth 
(see chap. 16). The final results would be similar to those of Fig. 
14-6, except that the amplitude of oscillation about the free-space 
impedance would be slightly less, with a slight shift in the actual 
heights above ground at which the maximum and minimum imped-
ances occurred. Because of irregularities of the ground itself, and 
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unknown reflections from buildings, trees, and other surrounding 
objects, some deviation from the theoretical values must always be 
expected. 

The effect of the presence of the ground on the vertical radiation 
pattern can also be obtained by use of the image principle. In 
Figs. 16-7 through 16-11 are shown the vertical patterns of short 
vertical and horizontal dipoles above earths of various conductivi-
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FIG. 14-6. Variation of the radiation resistance of a theo-
retical half-wave dipole with height above a perfectly conducting 
earth. 

ties. For greater heights above the earth the vertical pattern 
becomes multilobed. The approximate location of the maxima and 
minima of the pattern can be obtained by considering the perfect 
ground case and using the principle of multiplication of patterns 
as in chap. 12. For horizontal antennas in the plane perpendicular 
to the axis of the antenna the factor by which the free-space pattern 

must be multiplied to account for the effect of the ground is 

2 sin (2rh sin II) 
X 
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where h is the height of the center of the antenna above ground and 
e is the angle of elevation above the horizontal. The first maximum 
in this pattern occurs at an angle IP,nt which is given by 

sin g= (h > 

For a vertical antenna the corresponding ground-effect factor 
for a perfectly conducting earth is 

^rh 
2 cos [-it,- sin e] (14-12) 

For finitely conducting earth, expression ( 11) should give a good 
approxim4tion to the actual multiplying factor for all angles of 4, 
because, for horizontal polarization, the reflection factor of an 
imperfect earth is always nearly equal to minus one (Fig. 16-3). 
However for vertical antennas, expression ( 12) will give reasonably 
good results only for large angles of 1P. As will be shown in chap. 16 
(Fig. 16-4), for angles of 1p less than about 15 degrees (the " pseudo-
Brewster angle"), the phase of the reflection factor is nearer to 
180 degrees than it is to zero, and the use of ( 12) for low angles of 4, 
would lead to erroneous results. 

In the vertical plane parallel to the axis of a horizontal antenna, 
the radiation is vertically polarized, and it is the reflection factor 
for vertical polarization that must be used in determining the effect 
of the ground. This means that for large angles of 1P, the reflection 
factor will be approximately plus one, but for small angles (below 
about 15 degrees) it will more nearly approximate minus one. This 
result has an effect of some practical importance in connection with 
low-angle radiation or reception off the end of a horizontal antenna. 
Because the vertical components of the direct and reflected waves 
are oppositely directed as they leave the horizontal antenna, they 
will have the same direction (or phase) after reflection of the 
reflected wave by the imperfect ground. Therefore, at low angles, 
direct and reflected waves will tend to add instead of cancel, result-
ing in a relatively strong vertically polarized signal off the end of a 
horizontal antenna. 

Methods of Excitation. Several common methods of feeding half-
wave antennas are illustrated in Fig. 14-7. Figure 14-7a shows the 



04.03] ANTENNA PRACTICE AND DESIGN 527 

balanced-line type of center feed. Because of the mismatch 
between the high characteristic impedance of open-wire lines and 
the low input resistance of a resonant dipole, this manner of excita-
tion results in standing waves on the feed line as indicated in the 
figure. However with solid-dielectric, low-impedance lines this 
mismatch can be almost completely eliminated, but there is now 

(a) (b) 

„  

(c) (d) 

Fro. 14-7. Common methods of exciting high-frequency antennas. 

some loss in the dielectric. The " delta-match" or " shunt-feed 
arrangement of Fig. 14-7b can result in a good impedance match 
and low standing waves on the feed-line of the various dimensions 
are properly chosen. 

Probably the simplest of all possible methods of excitation is the 
single-wire line " end-fed" arrangement of Fig. 14-7c. In this case 
the vertical " transmission line" also radiates energy, a result that 
may or may not be desired. By tapping on the vertical wire at a 
lower impedance point along the horizontal antenna as in d, a 
better impedance match and lower standing-wave-ratio on the feed 
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line can be obtained.* This results in smaller radiation from the 
vertical wire, which now carries a traveling-wave current distribu-
tion. Optimum dimensions for the types of feed shown in b and d 
are dependent on the height of the antenna above ground and upon 
the conductivity of the ground. They may be determined by trial 
in each case. 

Long-wire Antennas. The single-wire feeds of Figs. 14-7c and d 
are also suited to the excitation of horizontal long-wire antennas. 
When such antennas are unterminated (that is, open at the far end), 
the current distribution is chiefly that of a standing wave, and the 
antenna should preferably be cut to a resonant length, so that the 
input impedance is resistive. However, with the resonant-line 
feed of Fig. 14-7c it is usually possible to tune-out a certain amount 
of reactance at the point of coupling between transmitter and feed 
line. The patterns of end-fed resonant long-wire antennas are 
multilobed patterns given by the expressions 

E _ 60/ r cos (11/X cos 0)] 
(14-13a) 

r sin 0 

for wires that are an odd number of half-waves long, and 

E — 60/ r sin (n-L/X cos 0)  
r L sin (14-13b) 

for wires that are an even number of half-waves long. Qualitative 
patterns for these antennas can be obtained by inspection through 
use of the principle of multiplication of patterns. The theoretical 
current distribution and calculated pattern for a two-wavelength 
end-fed long-wire antenna are shown in Figs. 14-8a and b. Since 
the actual current distribution consists of a traveling wave as well 
as a standing wave (because of loss due to radiation), the actual 
patterns will differ from the theoretical as was pointed out in section 
12-03. The chief effect of this difference is to tilt the lobes towards 
the unfed end. This difference between actual patterns and theo-
retical patterns (based on standing waves only) is much less in the 
case of center-fed antennas. 

* W. L. Everitt and J. F. Byrne, " Single-wire Transmission Lines for 
Short-wave Radio Antennas," Proc. IRE, 17, 1840 (1929). 
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If a long-wire is terminated in a resistance equal to its character-
istic impedance the current distribution along it is essentially that 
of a traveling wave, and its pattern will have the general shape of 
that shown in Fig. 12-3. The longer the wire, the smaller will be 
the angle between the wire and the first or main lobe. The impor-
tant difference between the patterns of terminated and untermi-
nated wire antennas is the absence of large rear lobes in the former. 

I 1 

(0) 

-36° 

(b) 

Fla. 14-8. (a) Theoretical current distribution and (b) radiation 
pattern of a two-wavelength end-fed antenna. 

Rhombic Antennas. One of the most useful of the terminated-
wire type of antennas is the rhombic antenna (Bruce antenna). 
This antenna, shown in Figs. 14-9a and 14-9b, consists essentially of 
a set of four long-wire antennas arranged in such a manner as to 
have reinforcement of the main beam lobes in the forward direction. 
Because of the importance of this antenna (rhombics or arrays of 
rhombics are used on most long-distance commercial circuits) com-
plete design equations have been worked out, and design data may 
be found in books and handbooks. By terminating one rhombic 
in a second rhombic, a two-element rhombic array having improved 
efficiency and greater directivity results. 
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High-frequency Antenna Arrays. In order to obtain increased 
directivity for point-to-point communication, commercial companies 
have built many different kinds of ,antenna arrays. Besides the 
broadside " curtain array" these include antennas and arrays having 
such descriptive names as V, double V (or W), stacked V's, fish-. 
bone antennas, and many others. Details on these various types 

FEED 
POINT 

--RESISTANCE 

(a) 

SUPPORTS 

DIRECTION OF 
MAIN BEAM 

PATTERN OF 
EACH LEG 

(b) 

Flo. 14-9. Rhombic antennas. 

may be found in the Proceedings of the IRE and other technical 
j ournals. 

Parasitic Antenna Arrays. If a short-circuited antenna element 
is placed near an antenna carrying current there is induced in the 
shorted element a voltage, the magnitude and phase of which depend 
on the mutual impedance between the elements. The current that 
flows in the shorted element as a result of this induced voltage 
depends upon the impedance of the element. By proper control 
of the phase of this current a certain amount of desirable directivity 
can be obtained. One, two, or more such " parasitically excited" 
elements are often used with a driven element to form a parasitic 
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array. The close spacing required between elements results in a 
compact array which can be mounted on a light, rotatable frame. 
The steerable directivity of this rotary-beam antenna, as it is called, 
has led to its extensive use at the upper end of the high-frequency 
band, and also in the very high frequency band for FM and tele-
vision reception. 

The magnitude and phase of the current in a parasitic element 
can be varied by adjusting its length and its spacing from the driven 
element. Fairly close spacings, between 0.1 X and 0.25 X are 
required in order to obtain a sufficiently large current, but the actual 
spacing is not too critical as long as the length is correctly adjusted 
for each spacing. When the phasing of the current in a parasitic 
element is such that the main lobe is on the same side of the driven 
element as the parasitic, the parasitic element is called a director. 
When the main lobe is . ou the opposite, side, the term reflector is 
used. For a single director element used with a driven element, 
the optimum spacing* is about 0.1 X. For a reflector alone with a 
driven element the optimum spacing is about 0.15 X. When both 
director and reflector are used together, these spacings are not 
necessarily still optimum, but they are often used. When the 
spacings have been selected, the mutual impedances between ele-
ments can be obtained from curves such as those of Figs. 11-6 
through 11-10. Then for any selected lengths (and hence imped-
ances) of parasitic elements, the currents which will result can be 
calculated by solving the mesh equations. t 

Vi = I1Z11 1 2Z12 I3Z13 

O = 11Z21 I2Z22 I3Z23 

O = 11Z31 I2Z32 I3Z33 

A sample computation will be carried through to indicate the vari-
ous factors' involved. 

EXAMPLE 2: Design a horizontal three-element parasitic array for 29 me. 
The reflector will be spaced 0.15 X and the director 0.10 X from the driven 

* G. H. Brown, " Directional Antennas," Proc. IRE, 25, 1, 78-145 ( 1937). 
-I- For the solution of these equations the values of the mesh impedances 

Z11, Zn, and Z33 are required. In general these are not known, and it is 
customary to use in their stead the self-impedances, Za, and Z 33 as explained 
in section 11-03. Although less justifiable for these close-spaced arrays, the 
same procedure will be followed here. It is expected that the results obtained 
will be at least of the correct eider Df magnitude. 
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element. The diameter of the elements will be 1 inches. Investigation 
by a cut-and-try method has shown that a good front-to-back ratio is 
obtained when the reactances of the director (antenna 2) and reflector 
(antenna 3) are chosen to be 

X22 = —j30 X33 = +565 

ro 0.750  
Then f = 29 mc 34 X 12— 0.00184 X  

X = 34 ft 

For this problem the curves of Fig. 11-12 prove most convenient. From 
them it is found that 

X22 = —j30, R22 = 55.6, Z22 = 63.2/ — 28.4°, L2 = 0.455 X 

X33 = +j65, R33 = 80, Z33 = 103/39.1°, L3 = 0.515 X 

Solving the mesh equations gives 

/2 Z31Z23 — Z21Z33 

— Z22Z33 (Z23)2 

13 Z21Z23 Z31Z23 

= Z22Z33 (Z23)2 

From mutual-impedance curves the mutual impedances involved are 
found to be 

Z31 = 60.8/ — 6.7° 

Z21 = 67.91+6.4° 

Z23 = 49.7/ — 34.8° 

Using these values, 

/2 /3 
— = 1.135/ — 143.1° = 0.0834/67.1° 
Il Il 

The horizontal pattern of the array will be given (Fig. 14-10) by 

cos (7-1 sin 2 
E = kill ± 1210(12 cos 4) + 13/-0d3 cos 01 cos 4, 

E = kl,[1 + 112 /a2 i3d2 cos (1)  
r3 

/a3— f3d3 cos ct, 
cos ct, 

0)1 
ir 

cos sinci, 1 

Inserting the values for /2//3 and 13//,, it is found that: 

Eo- 1.30 

Else 0.2 
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which is the front to back ratio. Solving for Vi//1 in the mesh equations, 
the input impedance of the array is found to be 

/2 /3 
Z1 = Zii --t-- — .1'12 -r — £‘ 13 

/1 /1 

Z1 = Z11 — 53.5 — j48.4 

Ri = R11 — 515 
X1 -- X 11 — 48.4 

Since the array should present a resistive load to the transmission line, 
we assign a value of X11 = -Fj48.4 

FIG. 14-10 

From the curves of figure 11-12 

X 11 = Rii = 75 L1 = 0.505 X 

Then the input impedance will be 

= RI = 75 — 53.5 = 21.5 ohms 

The low input resistance is typical of these close-spaced arrays. It 
can be increased to match commercially available transmission line by 
using a folded dipole for the driven element. A problem on this is given 
at the end of section 14-04. 

Sec. 14.04 Very High Frequency Antennas. In the v-h-f band 
(30-300 mc) a half-wave antenna is a convenient physical size, and 
transmission line matching sections are easy to construct, so that 
optimum design of an antenna system becomes easier to achieve. 
Besides aircraft and point-to-point communication applications, 
this range includes frequency modulation and television. For the 

latter services band width becomes a consideration, so that wide-
band matching circuits are of importance. 
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Stub-matched and Folded Dipoles. A simple dipole has an input 
impedance that is too low for direct connection to an ordinary open-
wire transmission line, and some sort of impedance matching 
arrangement is required if the desirable condition of no standing 
waves on the line is to be attained. An easy way of obtaining this 
match is by means of the stub-matched dipole shown in Fig. 14-11. 
By making the length L = 2H somewhat less than a half-wave-
length, the input impedance will be a capacitive reactance in series 
with the radiation resistance. For a length s of stub line less than 
X/4, the input impedance of the shorted transmission line will be 

L <1/2  

// ///// / / 77/ //// 
FM. 14-11. Stub-matched dipole. 

an inductive reactance, the magnitude of which can, be adjusted. 
to tune out the capacitance of the antenna. The resulting imped-
ance at the terminals od-b will be a pure resistance Rat, the resistance 
of the parallel-resonant circuit. By proper choice of L and s this 
resistance can be adjusted to almost any value desired. The. 
arrangement is good mechanically, because by extending the lines ' 
of the stub back beyond the shorting bar, the antenna can be 
mounted on, and a quarter wavelength in front of, a reflecting 
ground screen, without the use of insulators. 

An alternative way of obtaining a high-impedance input is by 
means of the folded &pole described by Carter* and shown in Fig. 
14-12. This method has the added advantage that it also increases 

* P. S. Carter, " Simple Television Antennas," RCA Rev., 4. 163, October 
1939; \V. Van B. Roberts, " Input Impcdance of a Fclded Dipole," RCA Rev., 
8, 289 (1947). 
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the bandwidth of the antenna, an important consideration in FM 
and television applications. The folded half-wave dipole consists 
essentially of two half-wave radiators very close to each other and 
connected together at top and bottom. As far as the antenna 
currents or radiating currents are concerned, the two elements are 
in parallel, and if their diameters are the same, the currents in the 
elements will be equal and in the same direction. If 1 amp flows 
in each element (at the center) the total effective current is 2 amp, 
and the power radiated will be (2/1)2R.d r-z, 4 X 73/12 or 4 times 
that radiated by a single element carrying 1 ampere. However, the 

(b) 

 .) 

(a) • (c) 

Era. 14-12. (a) Folded dipole. (b) Folded monopole. (e) 
Multi-element folded dipole. 

current that is required to be delivered by the generator at the 
terminals a-b is only 1 ampere, so that the input resistance is seen 
to be 4 times that of a simple dipole. If there are three elements of 
equal diameters connected together as in Fig. 14-11c, the input 
resistance will approximately be 9 times that of a simple dipole. 
If the elements are of unequal diameters, the currents will divide 
unequally between the elements. If it is assumed that the currents 
divide inversely as the characteristic impedances Zoi and Z02, so that 

12 = ZO1 
Ii ZO2 

then if element 1 is the driven element, the input resistance will be 

I 2R..d /2y oi 2 = (I + /)2  — Rne (1 + 7.7 = L ad (I. Z2-0) (14-14) 
/12 
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As before Rd is the radiation resistance of a simple half-wave 
dipole (theoretically Rd = 73 ohms, actually Lid < 73 ohms). 

In order to understand the increased band width that results 
with the folded dipole arrangement, consider the simple half-wave 
(resonant-length) dipole of Fig. 14-13a which is connected in parallel 
at its terminals with a shorted quarter-wavelength line. At the 
resonant frequency the dipole resistance is in parallel with the input 
impedance of the transmission line, which is a resistance of very 
high value. Below resonance, the antenna impedance bocomec 
capacitive, but the transmission line impedance becomes inductivo, 

Fia. 14-13 

(b) 

and the parallel combination tends to remain nel.rer unity powet 
factor than does the antenna alone. Conversely, above resonance 
the antenna impedance becomes inductive and the line imped-
ance becomes capacitive so that compensation is again obtained. 
Although compensation is far from perfect, because the susceptances 
are not equal and opposite, if the frequency is shifted far enough in 
either direction from the resonant frequency of the dipole, a point 
of perfect susceptance compensation (where the input impedance 
is a pure resistance) is again obtained. Below resonance this 
occurs for the same conditions that led to the dub-rat-Itched dipole 
of Fig. 14-11. Above resonance the point of perfect susceptance 
compensation occurs when the capacitive susceptance of the stub 
is just sufficient ;;o tune out the inductive susceptance of the 
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antenna. Of course, the input resistance at these stub-matched 
or anti-resonant points will be considerably higher than at the 
resonant frequency, but for some purposes the resulting standing-
wave ratio is good enough over the range that the effective band 
width may be said to extend from one anti-resonant point to the 
other. This represents almost a two to one frequency range. 

The above considerations apply directly to the folded dipole of 
Fig. 14-13, which has the stub line (actually two stub lines in series) 
as a built-in feature. The elements of the folded dipole then carry 
both the antenna currents, which are in the same direction in the two 
elements, and the transmission line currents, which are in opposite 
directions in the two elements of the dipole (Fig. 14-13b). At the 
resonant frequency the antenna currents are relatively large 
= (V / Ri.) ( V/4R,..d) in each element, at the center], whereas the 

transmission line currents are zero at the center, but have the 
value h = V /2Zet at the ends, where Z.1 is the characteristic imped-
ance of each of the two shorted quarter-wave transmission line 
sections. 

For FM broadcast reception a common type of antenna is a 
folded dipole made of flexible solid dielectric " twin-lead." For a 
transmission line made of such cable the phase velocity, and hence 
the length of a wavelength, is only about 80 per cent of the free-
space values. Therefore an electrical quarter-wavelength section 
is only 0.8 times X/4 physically, and the physical line must be made 
shorter than would be the case with a free-space dielectric. On the 
other hand, the thin dielectric covering on the cable has almost 
negligible effect* on the apparent phase velocity and wavelength 
of the antenna currents, so that for resonance the physical length 
of the antenna should still be approximately L 0.95X/2 (that is 
H 0.95X/4). The method for satisfying these two conditions 
simultaneously is indicated in Fig. 14-14. The two elements are 

* The reason for the difference in the two cases is as follows: As a trans-
mission line the return displacement currents flow from one wire to the adjacent 
wire, mostly through the solid dielectric that is in parallel with the surrounding 
air dielectric. As an antenna the "return" displacement currents flow from 
both wires in parallel, through the solid dielectric and air dielectric in series to 
the opposite arm of the dipole (or to ground in the case of the monopole). In 
this latter case the length of path through the solid dielectric is short compared 
with the remainder of the path through the air dielectric so that the solid 
dielectric has negligible effect. 
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cut to 0.95 times X/2, but the shorting connections are spaced only 
0.8 times X/2 apart. 

An added insight into the operation of the folded dipole (and 
also certain of the "baluns" described in the next part of this sec-

  tion) is provided by the superposition 
principle. Consider the operation of 
the folded monopole of Fig. 14-12b, 
which operation is identical w ith that 
of the corresponding folded dipole of 

aei"5'4 Fig. 14-12a. The single zero-imped-
ance generator may be replaced by three 
equivalent generators having equal 

SOLID voltages, zero internal impedances, and 
DIELECTRIC 

connections and polarity as shown in 
  Fig. 14-15b. If V1 = V2 -= V3 = V/2, 

Fig. 14-14. Common then a quick check shows that as far 
type of "built-in" antenna as the currents in the two elements 
for FM reception. are concerned, the operation of 14-15b 

is identical with that of 14-15a. In b generator V3 causes 
equal antenna currents to flow in the same direction in elements 1 
and 2. Generators V1 and V2 in series cause equal and opposite 
transmission line currents to flow in elements 1 and 2. Because 

/ / 

(0) (b) 

Fla. 14-15 

points B and C have the same voltage at all times they could be 
joined together without affecting the operation (when all generators 
are generating) and the circuit of Fig. 14-15a would result. Now 
consider the superposition principle applied to the equivalent circuit 
b. By this principle the total currents flowing in any branch with 
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all generators generating is just the sum of the individual currents 
produced by each of the generators alone, the other generators being 
replaced by their internal impedances. With V1 and V2 not gen-
erating, V3 sends equal antenna currents into the two elements 1 
and 2 (assuming these elements to have equal diameters). With 
V3 not generating, V1 and V2 send equal and opposite transmission 
line currents into the two elements. The total currents that actu-
ally flow are the sum of the two sets of currents. The impedance 
relations given previously follow directly. At resonance the 
transmission line currents at the input produced by VI and V2 
are approximately zero. The total antenna current is V3/Rd, 
where /ir.,,d for a X/4 monopole is approximately 36.5 ohms. The 
antenna current in element 1 is one-half the total antenna current, 
or .1.1. = V3/2R2. The actual applied voltage V = 2V3, so the 
input impedance at resonance is Ri. = V//.1 = 4R.d. 

Baluns. An ordinary dipole is a balanced load in the sense that 
for equal currents in the two arms, the arms should have the same 
impedance to ground. Such a load should be fed by a transmission 
line such as a two-wire line, which itself is " balanced to ground." 
However at very high and ultrahigh frequencies unbalanced coaxial 
lines are nearly always used, so the problem is encountered of 
transforming from an unbalanced to a balanced system or vice 
versa. The device that accomplishes this balance-to-unbalance 
transformation is called a balun. There are many different types 
baluns and four of the most common are shown in Figs. 14-16 and 
14-17. In Fig. 14-16a, a balanced dipole antenna is shown con-
nected directly to the end of an unbalanced (coaxial) line. The 
currents /1 and /2 must be equal and opposite. At the junction A, 
current /2 divides into /3, which flows down the outside of the 
outer conductor of the line and /2 — /3 which flows on the second 
arm of the dipole. The current /3 depends upon the effective 
"impedance to ground" Zg, provided by this path along the out-
side of the conductor. This impedance can be made very high, 
thus making /3 very small, by the addition of a quarter-wave skirt 
around the outer conductor as in Fig. 14-16b. With the skirt 
shorted to the conductor at the bottom, the impedance between the 
points A and B, and therefore between A and the effective ground 
part wherever it may be, is extremely large, being limited only by 
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the Q of the shorted quarter-wave section. In the arrangement of 
14-16c the dipole feed is balanced by making the impedance of the 
shunt paths from A and B to the common point C equal. When the 
stub length is approximately a quarter of a wavelength, these equal 
shorting impedances are very large, and, in addition, the arrange-

12- .̀ _ 

(d) 

(b) 

14-16. Baluns. 

(d) 

ment exhibits the desirable broad-band characteristics discussed 
in connection with Fig. 14-13a, to which it is exactly equivalent. 
Figure 14-16d is a more practical version of the arrangement shown 
in c. Similar broad-band characteristics are obtained with the 
balun of Fig. 14-17a for which the equivalent circuit of Fig. 14-17b 
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may be drawn. The impedances Z„ which shunt each side of the 
balanced load, are given by 

Z, •--- jZo tan Os, 

where Zo is the characteristic impedance of each of the parallel 
stubs. 

Fl equency Modulation and Television Antennas. Folded dipoles, 
either alone or with parasitic elements, are frequently-used antennas 
for frequency modulation and 
television reception. The par-
asitic elements give an addi-
tional directivity, which is often 
very desirable, but they also 
increase the frequency sensi-
tivity of the antenna. This 
comes about because the pres-
ence of the parasitic elements 
tends to decrease the actual 
band width, and, in addition, 
the radiation pattern changes 
rapidly with frequency so that 
the useful frequency range is 
f ur t he r restricted. The de-
creased band width is rather 
important in television because BALUN 

of the wide-band requirements   
of this service. These require-
ments are of the order of 10 
per cent for single-channel re-
ception. If a single antenna is FIG. 14-17. Balun and "equivalent. 

" to be used for all channels, an circuit. 

antenna capable of covering approximately a four to one frequency 
range is required. For television transmitting antennas, band width 
requirements are very stringent indeed, because an almost perfect 
match is required over the channel band width (6 mc) if " ghosts" 
owing to multiple reflections on the line between transmitter and 
antenna are to be avoided. 

In FM transmitting, the antenna problem is chiefly that of 
obtaining a circular pattern with horizontal (or circular) polariza-

(a) 
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(a) 

2 

(c) 

FIG. 14-18. Some commercial models of FM and television 
antennas: (a) RCA superturnstile or batwing; (b) GE circular; (c) 
WE clover-leaf; (d) Federal square loop; (e) RCA pylon. 

tion. Power gain is obtained from directivity in the vertical 
plane. Figure 14-18 illustrates five commercial types of FM and 

television transmitting antennas that achieve these ends by different 
means. 

In Fig. 14-18a is sketched the superturnstile or batwing type of 
antenna, which obtains its almost circular horizontal pattern by 
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having the two sets of wings fed in phase quadrature. The ordinary 
turnstile arrangement consists of two crossed horizontal half-wave 
dipoles fed in quadrature. By replacing the dipoles with the wing-
like structure that is fed in phase along its length, wide band width 
as well as some desirable vertical directivity is obtained. This 
antenna is suitable for television transmission. In (b) a circular 
antenna has been formed by rolling a folded dipole almost into 
a circle, and then applying capacitive loading between the ends 
to improve the uniformity of current around the loop. The clover-
leaf antenna of (c) consists of four small loops fed in phase to give 
the effect of radiation from a single larger loop. One end of each of 
the four loops is connected to the inner conductor of a transmission 
line and the other end of each loop is connected to one of the four cor-
ners of a square lattice-work tower that supports the whole struc-
ture and that also forms the outer conductor of the transmission 
line. The square loop antenna of (d) is an adaptation for square 
towers of the circular V-H-F loop, which is in common use at ultra-
high frequencies. This antenna makes use of the principle of the 
shielded loop in which the radiating element is also the outer con-
ductor of the coaxial transmission line that feeds the loop. In 
addition, the coaxial feed line sections are used to obtain a suitable 
impedance match. The pylon or slotted-cylinder antenna shown in 
(e) consists of a longitudinal slot cut in a cylinder that is of the order 
of one wavelength long. The slot is shorted at both ends and fed 
at the middle by means of a coaxial transmission line that runs up 
the inside of the cylinder. Methods of computing the radiation 
patterns of slotted cylinder antennas are given in chap. 15. 

All of the antennas shown in Fig. 14-18 produce a nearly circular 
horizontal pattern with horizontal polarization. The desired ver-
tical directivity is obtained by stacking vertically several of the 
individual units. 

V-H-F Antenna Arrays. For point-to-point communication and 
applications such as radar the gain or directivity that can be 
achieved by the use of arrays is usually desirable and sometimes 
necessary. At these frequencies, line arrays and rectangular arrays 
become practical. A common array is the " mattress" antenna 
(Fig. 14-19) which consists of a rectangular array of coplanar 
elements, mounted a quarter wavelength in front of a reflecting 
screen. The patterns of such arrays are easily obtainable by the 
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methods of chap. 12, but methods of feeding the arrays to obtain 
the desired currents in the elements have not yet been considered. 
Figures 14-20 and 14-21 illustrate two methods for feeding a number 
of elements with equal currents, or with any specified currents, as 

(a) 
SCREEN 

J-L J-L J-L J-L J-L J-L 
(b) 

FIG. 14-19. Typical rectangular array of co-polar elements. 

required, for example in the binomial array of section 12. In 
Fig. 14-20 the points A, B, C, and D are spaced half a wavelength 
apart on the transmission line, so that the voltages at these points 
are always equal in amplitude. By feeding the antennas from 
these points through quarter-wave sections, the current amplitudes 

4 
_L 

A 

FIG. 14-20. A method of feeding antennas with specified currents. 

depend only upon these equal voltages and the characteristic imped-
ances of the sections, and will be independent of the antenna driving-
point impedances. For similar quarter-wave sections the antenna 
currents will be equal, although they can be made to have almost any 
ratio by suitable choice of characteristic impedances for the quarter-
wave sections. In the arrangement of Fig. 14-21, it is easy to show 
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that the amplitudes of the driving voltages at the antenna terminals 
will be related by 

V2 Zog Vg Zog 

Vi ZO1 V2 = Zol 
(14-15) 

In practice the quarter-wave sections are made by slipping copper 
tubing of the correct diameter over the main feed line Z01, and 
soldering the tubing to the inner line at both ends. 

V-H-F and S-H-F Antennas. The antennas and arrays used in 
the v-h-f band, for the most part can be and are used in the u-h-f 
range also. However, at the upper end of the ultrahigh-frequency 
band, and especially at superhigh frequencies (3000-30,000 mc), the 

 11001•Os 

F o. 14-21. A second method of feeding the elements of an array 
with specified currents. 

size of the elements becomes impractically small. It is then con-
venient to use " current-sheet" radiators such as parabaloids, horns, 
and slot antennas. The radiation from such sheet radiators can 
be computed from the fields of the individual current elements, 
exactly as is done for ordinary linear radiators, providing that the 
current distribution on the conducting sheets is known or can be 
estimated. However in most cases, the current distribution is 
neither known nor readily estimated, so that other methods of 
determining the radiation must be sought. A quite powerful 
method consists of determining the radiation from the antenna in 
terms of the fields that exist across the " aperture" of the antenna. 
Radiation from aperture antennas is the subject of chap. 15. 

Problem 1. Verify the relation given in eq. (15). 

Problem 2. Using eq. (14), determine the wire size required for the 
excited arm of a folded dipole, in order to transform the input resistance 
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of 21.5 ohms, obtained in example 1, to 150 ohms. The second arm of 
the dipole should be of the same diameter as the other elements (13 in.), 
and a spacing between arms of 3 in., center-to-center, is suggested. 

14.05 Receiving Antennas. In earlier chapters no special con-
sideration has been given to receiving antennas because use of the 
reciprocity theorem shows that the important characteristics of an 
antenna, viz., impedance and pattern, are the same for receiving as 
for transmitting. Nevertheless, there are differences between other 
properties of receiving antenna and transmitting antennas, and so 
some mention will be made in this section of those characteristics 
of an antenna that are peculiar to its use as a receiving antenna. 
One of the important characteristics that is different for reception 

FIG. 14-22 

than for transmission is the current distribution on the antenna. 
It has been seen that for thin transmitting antennas the current 
distribution may be represented approximately by a sinusoidal dis-
tribution, the approximation improving as the antenna is made 
thinner. On the other hand, for reception, the current distribution 
is a function of the length of the antenna, the direction of arrival 
of the received wave, and the load impedance, and except for the 
special case of the resonant-length antenna (H r-e X/4), the current 
distribution is not even approximately sinusoidal even for very 
thin antennas. Once again, however, it is possible to invoke the 
reciprocity theorem, and by this means determine the approximate 
current distribution on a receiving antenna from the known approxi-
mately sinusoidal distribution that holds for the transmitting case. 
The application of the theorem to obtain this result is made as 
follows: Figure I4-22a shows a thin center-fed transmitting dipole of 
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length 2H that has the symmetrical sinusoidal current distribution 
represented by 

/1 = /1. sin 13(H - z) (0 < z < H) (14-16) 

/2 = 12. sin 18(H z) (—H < z < 0) (14-17) 

In Fig. 14-22b, with the antenna fed off-center at z = h (by an 
isolated generator that has no connection to ground), the sinusoidal 
current distribution is still given by eqs. (16) and (17), except That 
for Ii the range of z is from h to H, and for /2 it is from h to —H. 
At the generator (z = h), the currents /1 and /2 must be equal to 
each other and to the generator current lb, and so the following 
relation between the maximum or loop values of currents is obtained: 

Ib = /1.. sin (3(H — h) = 12. sin P(H + h) (14-18) 

In either a or b the current at the feed point will be 

V 
Za 

where Z. is the antenna impedance. For thin antennas and for 
lengths not too near the resonant or antiresonant lengths (H = X/4 
and H = X/2), the input impedance for the symmetrical, center-fed 
antenna may be represented approximately as a reactance, the 
value of which is given by 

Z. tr.-- —jZo cot i3H (14-19) 

where Zo = 120 [In 211 — 1] 
a 

Ib = 

At the resonant length where eq. (19) indicates zero impedance, 
the actual impedance is a small resistance. At the antiresonant 
length, where (19) yields an infinite reactance, the actual impedance 
is a resistance of very high value. 

In the unsymmetrical case of Fig. 14-22b, the impedance is not 
known, but a very rough approximation to it can be obtained by 
considering it made up of the sum of the "impedances" of the 
two half-sections of the antenna, one of length (H — h) and the 
other of length (H -I- h). That is, it will be assumed that 

Z. = Zai Za2 

where Z.1 = — 1AjZoi cot f3(H — h) 

Z a2 = — Wen cot /3(H ± h) 
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Z01 and Z02 are the characteristic impedances of the two sections. 
In general Zo1 and Z02 will be different, the first getting larger as 
the second gets smaller. For present purposes, it will be further 

assumed that 

Z01 Zo2 Zo = 120 (In 2± 1.  — 1) 
a 

Then 

Z. 0 [cot p(H — h) ± cot 0(H + h)] (14-20) 

It is now possible to apply the reciprocity theorem. For a given 
voltage V, applied at the feed-point, z = h, in Fig. 14-22b, the 
current at any point z along the antenna will be [from eqs. (16) and 

(17)] 

= lb sin j3(H — z) _ V sin et(H — z)  
I.' • sin p(H — h) Z. sin e(H — h) 

V sin 0(H ± z)  
or Iz2 — • 

Za sin e(H + h) 

(h < z < H) 

(—H < z < h) 

Then by the reciprocity theorem, when the antenna is used as a 
receiving antenna, a voltage E, dz induced in an elemental length 
dz at z will produce a short-circuit current at z = h, which is given 

by 
E dz 1,1 

di' — (for h < z < H) 
V 

— Ez dz Iz2 
or  (for — H < z < h) 

V 

For a uniform plane wave incident normally (0 = 90 degrees) on 
the receiving antenna, the induced voltage E. dz will be constant 
(same magnitude and phase) along the length of the antenna, so 
the total short-circuit current, Ih, at the point z = h will be 

E, z- II E f. -h 
Ih = i7. Izidz ± Trz Iz2 dz 

V fz=h V z= — H 

E, f H  sin p(n• - z) h sin p(H ± z)  
= dz + dz 

fa h sin 0(H — h) f_ii sin 0(H + h) 

E. [1 — cos 0 (H — h) 1 — cos ti(H ± h)] 
+ (14-21) — • OZ. sin e(H — h) sin 0(H + h) 
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Inserting the expression (20) for Z. and performing the necessary 
trigonometric manipulations, (21) can be reduced to 

= iE X (cos — cos Oh h ) I 
0 cos pH 

(14-22) 

By choosing h at different points along the antenna the current 
distribution on a receiving antenna in a uniform field parallel to 
the antenna is obtained. 

Expression (22) fails for H equal to an odd multiple of a quarter-
wavelength. For these resonant lengths, expression (22) indicates 
that the current amplitudes would be infinite. The reason for this 
result is that the radiation resistance was neglected in writing the 
expression for the antenna impedance. Although such an approxi-
mation is permissible for nonresonant lengths where the antenna 
reactance may be much larger than the resistance, at resonance 
the input reactance is zero and the current is limited only by the 
radiation resistance of the antenna. Putting Z«, equal to the input 
resistance, that is Z. = Ric,/sin2 fl(H — h), for the resonant con-
dition, the reciprocity theorem can be used to compute the receiving 
current distribution as before. For a resonant-length half-wave 
receiving dipole, the current distribution is found to be sinusoidal 
and, to a first approximation, the current amplitude is independent 
of the thickness of the antenna. 

In Fig. 14-23, the current distributions obtained by this method 
have been plotted for dipole lengths L = 2H = X/4, 3X/4, 5X/4, 
and for the resonant length L = X/2, for antenna radii of 1 cm and a 
frequency of 100 mc. 

Although the reciprocity theorem itself is exact, it was necessary 
in the above analysis to make some questionable assumptions 
regarding antenna impedances in order to obtain quantitative 
answers. In view of these assumptions the method would be 
expected to yield answers that are rough approximations, at best. 
It is interesting to find that expression (22) for current distribution 
on a receiving antenna agrees exactly with results that can be 
obtained by other, apparently more rigorous, methods. 

Other considerations. Certain other differences between receiv-
ing and transmitting antennas result from the different require-
ments for the two conditions of operation. Although the directional 
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patterns of an antenna are the same for transmitting and receiving, 
the optimum pattern for transmitting may not be optimum for 
receiving. For transmitting, the optimum pattern is often that 
which puts most signal into a given direction. For reception, how-
ever, the optimum condition is not maximum received power, but 
rather maximum signal-to-noise ratio. Although the pattern that 
gives the first condition may also lead to the second, such is not 
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FIG. 14-23. Current distributions in a short-circuited receiving 
antenna where the received wave is incident normally to the 
antenna axis. The curves show current magnitudes on a one 
centimeter diameter rod at 100 mc. 

necessarily the case. For example, a minor lobe in the pattern of a 
receiving antenna may bring in a large amount of noise if it happens 
to be pointed towards the noise source, and so result in a low signal-
to-noise ratio. On the other hand, as a transmitting antenna, the 
presence of the lobe may have no ill effect, other than the loss of the 
small amount of power that it radiates. Increasing the directivity 
of a transmitting antenna will always increase the signal-to-noise 
ratio at the receiver (assuming the receiver to be in the correct 
direction). Increasing the directivity of a receiving antenna may, 
or may not, improve the signal-to-noise ratio. If the noise is corn-
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ing equally from all directions, the improvement in signal-to-noise 
ratio will be exactly the same as was obtained in the transmitting 
case. If less noise is coming from the direction of the received 
signal than other directions, then the improvement can be greater 
than in the transmitting case. On the other hand, if all the noise 
is coming from the same direction as the signal, there will be no 
improvement in signal-to-noise ratio obtained by making the 
receiving antenna directive. (These conclusions are valid only if the 
set noise is a negligible part of the total noise.) Similar differences 
between transmission and reception occur in coupling the antenna 
to transmitter or receiver. In the transmitting case, the coupling is 
adjusted to feed the antenna with a specified amount of power (and 
not for maximum power transfer, which condition would usually 
overload the transmitting tubes). In receiving, the best adjust-
ment is that which yields maximum signal-to-noise ratio. Under 
those conditions where maximum signal-to-noise ratio is obtained 
simultaneously with maximum received signal, the correct adjust-
ment would be that which gives maximum power transfer. How-
ever, there are many cases where the optimum coupling is not that 
which gives maximum power transfer. In medium-frequency 
broadcast reception, where receivers ordinarily have ample gain, 
and where receiver set noise is negligible compared with atmospheric 
noise, there is no advantage to be gained in increasing the amount of 
power delivered by the antenna to the receiver beyond that required 
to deliver sufficient audio power output, because the noise power is 
increased in the same ratio as the signal power. Hence the coupling 
used is usually very loose, so that the receiver will " track" properly 
over the entire band, regardless of the length of the antenna that 
may be used. 

Again at frequencies above about 30 mc, atmospheric noise is 
negligible and set noise may be the limiting factor in determining 
signal-to-noise ratio. Under these conditions the adjustment 
should be that which delivers maximum signal to the set, as long as 
this adjustment does not increase the set noise more than it does the 
signal. Set noise occurs mostly in the first stage and is dependent 
upon the effective resistance coupled into the grid-circuit of the 
first tube. Hence it depends upon the coupling to the antenna 
impedance and increases with this coupling. The coupling that 
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yields maximum signal-to-noise ratio is often just slightly less than 
that which produces maximum power transfer. 

Another difference between transmission and reception appears 
when the operation of an antenna of given electrical length (say a 
half-wave dipole) is considered as a function of frequency. Neglect-
ing the effect of losses, a half-wave transmitting dipole fed with 
100 watts of power produces the same field intensity in a given direc-
tion, regardless of whether the frequency is 100 mc or 1000 mc. 
When used for reception, however, a half-wave dipole delivers to a 
matched load an amount of power that is proportional to the square 
of the wavelength [from eq. (12-16) its effective area is 0.13X1. 
This means, for example, that at 1000 mc, the half-wave dipole 

delivers to its load only Moo times the power it would deliver at 
100 mc, for the same received field intensity. This result has 
important bearing in the choice of frequency used for certain v-h-f 
and u-h-f applications that require omnidirectional antennas and 
which, therefore, cannot make use of the greater directivity that is 
usually achieved at these frequencies. 

There are also other points of difference between receiving 
antennas and the corresponding transmitting antennas. Power-
handling capacity is often a problem with transmitting antennas; 
seldom with receiving antennas. Economic factors enter the 
engineering picture. For point-to-point communication involving 
a single transmitter and a single receiver, one would expect to 
expend the same amount of money and effort improving the receiv-
ing antenna as the transmitting antenna. On the other hand in a 

broadcast service, where one transmitter may serve 100,000 receiv-
ers, it is justifiable economically to spend far more on the trans-
mitting antenna than on any one receiving antenna to obtain a 
given improvement. 

ADDITIONAL PROBLEMS 

3. Derive eq. (22) from eq. (21). 

4. Using the reciprocity theorem and an assumed sinusoidal current 
distribution for the transmitting case, show that the current distribution 
on a resonant-length half-wave dipole must be sinusoidal. 

• 5. Derive an expression for the current distribution along a receiving 
antenna which is terminated in an arbitrary load impedance ZL at its 
center. (HINT: Use the compensation theorem.) 
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6. For very short receiving antennas (II « A) show that the efficiency, 
and therefore the useful received power, varies approximately as the cube 
of the antenna length. 
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CHAPTER 15 

SECONDARY SOURCES AND APERTURE 
ANTENNAS 

15.01 Magnetic Currents. In writing Maxwell's equations 

curl H = If) + i curl E = —É 

the quantities r), 4 and fi are interpreted as the densities of electric 
displacement current, electric conduction current, and magnetic 
displacement current, respectively. The absence of a magnetic 
quantity corresponding to 4 that is, to a magnetic conduction cur-
rent, is explained by the fact that so far as is yet known, there are no 
isolated magnetic charges. As a result, it has been found possible to 
set up the solution of electromagnetic problems in terms of electric 
currents and charges alone through the relations 

H = curl A E = — grad V — (15-1) 
where 

1  — 
-7)  A =  dV V = 1 P dV (15-2) 

vol r 47 vol er 

Although the relations (1) and (2) have proven adequate for 
the solution of problems considered up to the present, there are 
many other problems where the use of fictitious magnetic currents 
and charges is very helpful. In such problems the fields, which 
are actually produced by a certain distribution of electric current 
and charge, can be more easily computed from an "equivalent" 
distribution of fictitious magnetic currents and charges. An exam-
ple of such "equivalent distributions" is the case of the electric 
current loop and the magnetic dipole. The electromagnetic field 
produced by a small horizontal electric current loop is identical 

555 
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with that produced by a vertical magnetic dipole. Conversely, the 
fields produced by a magnetic current loop and electric dipole are 
also identical. It will be found in many problems involving radia-
tion from " aperture antennas," that the notion of magnetic currents 
and charges will prove an invaluable aid in arriving at solutions. 
Therefore the expressions for the fields due to such magnetic charges 
and currents will be developed. It should be emphasized that, 
although the magnetic charges and currents used in this procedure 
are fictitious, the fields calculated from them are physical fields that 
are actually produced by an equivalent distribution of electric 
charges and currents. 

Written to include magnetic as well as electric conduction cur-
rent, Maxwell's equations would be 

curl H = i curl E = —E — m (15-3) 

or in the integral form 

fEI • ds = / fE • ds = -4 — K (15-4) 

In these equations K is a magnetic conduction current and i„, is a 
magnetic conduction current density. K has the dimensions of volts 
and in, has the dimensions of volts per square meter. For surface 
magnetic current density (corresponding to J for the electric case) 
the symbol M (volt/m) will be used. It is apparent from (3) and 
(4) that (except for a matter of sign) complete symmetry now exists 
in Maxwell's equations. 

The positive sign in the first equations of (3) and (4) indicates 
that directions of magnetomotive force and electric current are 
related by the right-hand rule, whereas the negative sign in the 
second equation indicates that the directions of electromotive force 
and magnetic current are related through the left-hand rule. 

In general it will be desired to solve problems having both 
electric and magnetic distributions. However, for the purpose of 
developing expressions due to magnetic currents and charges, con-
sider first the case where the fields are due to these alone. Equa-
tions (3), written for magnetic currents, and in the absence of 
electric currents, are 

curl H" = LE" curl Em = ..4m —Li (15-5) 
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These should be compared with the familiar relations written for 
electric currents alone (without magnetic currents) 

curl E° = —idle curl H° = €É6 i (15-6) 

(The superscripts e refer to fields due to electric currents and super-
scripts m refer to fields due to magnetic currents.) 

Comparison of (5) and (6) shows them to be identical sets (except 
for sign) if electric and magnetic quantities are interchanged, that 
is, if Hm, Em, g, and e replace E6, He, E, and µ respectively. There-
fore, the procedures used in chap. 10 for electric currents can be 
followed to set up potentials due to magnetic currents, and the fields 
can be obtained from these potentials by differentiation. Corre-
sponding to the magnetic vector potential A that yields the magnetic 
intensity through 116 = curl A, there will be an electric vector 
potential F that will yield the electric field (due to magnetic cur-
rents) through Em = — curl F. Similarly corresponding to the 
scalar electric potential V that is set up in terms of the electric 
charges, there will be a scalar magnetic potential Y that is set up in 
terms of the magnetic charges. Rewriting eqs. ( 1) and (2) with 
suitable superscripts for fields due to electric currents and charges 
results in 

r16 = curl A E 6 = «- grad V — pA (15-7) 

i 
1  vi 1 P  

A = dV V — dV (15-8) 
yol Er '271- r 47 

The corresponding relations for fields due to magnetic currents and 
charges are 

Em = — curl F Hm = — grad e' — F (15-9) 

—  1 pm — r)v 
1 

F = —A_7E fol r dV — 42- vol prdV (15-10) 
'±-  

The fields due to a magnetic dipole can now be developed from 
(9) and (10), or they may be written down directly from comparison 
with the fields due to an electric dipole. For the distant field of a 
magnetic current element, placed at the center and lying along the 
polar axis of a spherical co-ordinate system, the lines of E will lie 
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along circles of latitude and lines of H will lie along the meridians 
in the directions* indicated in Fig. 15-1. 

For problems where both electric and magnetic current and 
charge distributions are in-
volved, the total electric and 
magnetic intensities (indi-
cated by no subscript) will be 
the sum of the intensities 
produced by the distributions 
separately. Writing 

A di 

Fto. 15-1. Lines of E (solid) and H 
(dashes) on a large spherical surface 
centered on a magnetic current element 
K dl. 

E = — grad V — 
H = — grad if — 

E = El E2 
and 

H = H1 + H2 

the fields will be given by 

E = — grad V — pit — curl F 

H = — grad if — et ± curl A 

For the usual case where time 
variations are written as el4", 
these expressions become t 

jcogA — curl F 
jcoEF + curl A 

(15-11) 
(15-12) 

There is one last relation connected with magnetic currents that 
must be considered. It was found that tangential H was discon-
tinuous across an electric-current sheet (though tangential E 

*For later use it is noted in passing that, since the electric field is perpen-
dicular to any vertical plane containing the element, a perfectly conducting 
sheet may be placed in such a plane without disturbing the field. Lines of H 
adjacent to this conducting plane will be tangential to it, and electric currents 
will flow on its surface, their magnitude and direction being given by 

J=--nXH 

t For dissipative media it is necessary to write the second term of (12) as 
— (is ± jcuE)P instead of just —jcuEP to include the effects of electric conduction 
currents due to magnetic sources in addition to electric displacement currents 
due to magnetic sources. There is, of course, no corresponding term in (11) 
for magnetic conduction currents due to electric sources. In this book there 
will be no occasion to deal with the effects of magnetic sources in dissipative 
media, and eqs. (11) and (12) will suffice. 
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remained continuous). The discontinuity in tangential H is equal 
to the linear current density J as shown by the relation 

IIi — H2 tan = J (amp/m) 

This result was obtained directly from an application of Maxwell's 
mmf equation I; the continuity of tangential E followed from the 
em! equation II (section 4.05). The electric-current density J and 
tangential H are mutually perpendicular, and this fact is indicated 
by the vector relation 

J = n X (HI — H2) (amp/m) (15-13) 

where n, the unit vector normal to the current sheet, is regarded as 
positive when pointing to the side that contains HI. In exactly 
the same way it is found from equations (4) that tangential E is 
discontinuous across a magnetic-current sheet, whereas tangential H 
remains continuous. For a linear magnetic current density M 
(volt/m) the relation corresponding to (13) is 

M = —n X (El — E2) (volt/m) (15-14) 

The minus sign results from the minus sign in the second of eqs. (4). 
Equation (14) states that the tangential electric intensity is dis-
continuous across a magnetic-current sheet by an amount equal to 
the linear magnetic-current density. 

Examples of the use of magnetic currents will appear in the 
sections that follow. 

15.02 The Induction and Equivalence Theorems. As was 
pointed out in the previous section, it is always possible, at least in 
theory, to determine the electromagnetic field of a system from its 
electric currents and charges alone. In practice there are many 
problems whose solutions by this method are prohibitively difficult, 
and yet some of these may be solved without too much labor by 
other means. Two examples of problems that are difficult to solve 
in terms of the currents of the system are illustrated in Fig. 15-2. 
The first of these concerns the radiation from the open end of a 
semi-infinite coaxial line. In this case, assuming that the transverse 
dimensions of the line are very small in wavelengths, the current 
distribution is known fairly accurately, but the problem is made 
difficult by the fact that all currents throughout the infinite length 
of the line must be considered in the integration to determine the 
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radiated field. The second problem involves the radiation from 
the open end of a wave guide or from an electromagnetic horn. 
Here the currents are known only approximately, especially around 
the mouth of the horn. But even though only an approximate 
solution is required, the integration to obtain the fields from the 
known or guessed at currents is extremely difficult because all 
currents, including those on the probe antenna and in the coaxial 
feed line, must be included. 

54 

.1-

(a) 

..-----------

(b) 

Fla. 15-2. Radiation from (a) the open end of a coaxial line (b) 
an electromagnetic horn. • 

In both of these problems it seems evident that there should be a 
simpler way of obtaining the radiated field. In particular, although 
all currents of the system are involved in determining the radiation, 
it appears reasonable that for systems such as those of Fig. 15-2, 
the currents can only affect the radiated field through some change 
that they make in the fields that appear across the open end of the 
coaxial line or wave guide horn. These latter fields are known 
(case a), or can be guessed at (case b), to the same order of approxi-
mation as the currents of the system. Therefore a method for 
computing radiated fields in terms of known fields across an aperture 
will be sought. 
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The means for accomplishing the result is suggested by Huygens' 
principle. This principle states that "each particle in any wave 
front acts as a new source of disturbance, sending out secondary 
waves, and these secondary waves combine to form a new wave 
front." Huygen's principle has long been used in optics to obtain 
qualitative answers to diffraction problems. It can be used to give 
quantitative results when suitably combined with two other theo-
rems, the induction and equivalence theorems, which are due to 
Schelkunoff. 

In Fig. 15-3 the closed surface S separates two homogeneous 
media, one containing a system of sources si, and the other being 
source-free. In general the field in region (2) will be different from 

2 

(Er, Ht) 

P2 e2 

FIG. 15-3. A closed surface S divides a region (1) containing 
sources from a source-free region (2). 

the value that it would have if media (1) and (2) were the same. 
The actual field in (2) can be determined by treating the problem as 
a reflection problem in which an incident field (Ei, Hi) sets up at the 
boundary surface S a reflected field (Er, HT) and a transmitted field 
(E', 11'). The incident field (E', Hi) is the field that would exist 
if there were no reflecting surface, that is, if the entire region were 
homogeneous. The actual field in region (1) is (Ei Er, Hi ± HT); 
the actual field in region (2) is (E', 11'). At any actual boundary 
surface S, the tangential components of these fields are continuous. 
That is, 

Eti -F Et* = Et' Ht' Ht* = Htt (15-15) 

where the subscript t indicates the components tangential to the 
surface. Equation (15) can be rewritten in the form 

(Et' — re. Eti (Hi* — Hir) =-- Thi (15-15a) 
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Now let attention be concentrated on the "induced" or "reradi-
ated" fields (Er, 11*) and (E', H'). The reflected fields (Er, Hr) 
satisfy Maxwell's equations in the homogeneous medium (1), and 
the transmitted or refracted fields satisfy Maxwell's equations in 
the homogeneous region (2). Together these fields constitute an 
electromagnetic field in the entire space. This field is source-free 
everywhere except on S, and the distribution of sources on S is 
calculable from the incident field, and therefore from the given 
sources si. In section 15.01 it was shown that the discontinuities 
in E and H across the surface S could be produced by current sheets 
on S of densities 

J = n X (11/ n x Hi 
M = —n X (Et' — Ear) = —n X Ei (15-16) 

Thus as far as the "induced" or reradiated field is concerned, it 
could be produced by electric- and magnetic-current sheets over the 
surface S, the densities of these sheets being given by (16). This 
is the induction theorem. 
A second theorem follows directly from the induction theorem 

for the particular case where region (2) has the same constants as 
region (1), that is where the entire region is homogeneous. In this 
case the reflected field is zero and the transmitted field is the actual 
field in the homogeneous region due to the sources of s. But this 
transmitted field can also be calculated from a suitable distribution 
of electric- and magnetic-current sheets over the surface S. The 
required surface current densities of these sheets will be 

J = n x Hit = n X Hé M = —n X Et' = —n X Eti (15-17) 

Since the vector product of n and the normal component of the field 
is zero, the t subscripts can be dropped and eqs. (17) written as 

J=nX}I M= —nXB' (15-18) 

The vector n is in the direction of the transmitted wave. Thus in a 
source-free region bounded by a surface S, in order to compute the 
electromagnetic field, the source distribution 81 (outside of S) can 
be replaced by a distribution of electric and magnetic currents 
over the surface S, where the densities cf this "equivalent" source 
distribution are given by (18). This is the equivalence theorem. 
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These theorems prove to be powerful tools in solving many 
electromagnetic problems that involve radiation from apertures. 

15.03 Field of a Secondary or Huygen's Source. It will be of 
interest to determine first the radiation field of a Huygen's source, 
or an element of area of an advancing wavefront in free space. 
In Fig. 15-4 is shown an element of area dx dy on the wavefront of 
a uniform plane (TEM) wave, which is advancing in the z direction. 
By the theorems of the previous section this element of wavefront 
having electric intensity El' and magnetic intensity HT°, = EVny can 

X 

Fig. 15-4. Radiation from a Huygen's source. 

be treated as a secondary source and can be replaced by electric and 
magnetic sheets. Using eqs. (18), the directions and densities of 
these current sheets will be 

J. = —II: = — g MT, = — E2 n  
The element of area dx dy of electric surface current density J. 
constitutes an electric current element (J. dy) dx, and similarly the 
element of area of magnetic surface current density M„ constitutes a 
magnetic current element (MT, dx) dy. The problem is simply one 
of determining the radiation fields of these current elements. 
Because only the radiation fields are required, only the vector poten-
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tials need be considered. (The scalar potentials contribute nothing 
to the radiation or inverse-distance fields.) At large distances, the 
electric field of the electric-current element will be 

A _ = (Jr dy) dx e-101 
Ee —MLA; 

4rr 

The O and 0 components of the radiation field of the electric-current 
element will be 

Eoe = —joylA o 

Eoe = —jCO,1.4A0 

where A 0 = Az cos 4) cos 

E Hoe =oe 
liro 
E e 

Hoe = — 
nv 

A, = —Az sin 0 

Similarly for the magnetic-current element the radiation fields are 

rim = -i.EF; 
110'n = —jcoeF, 

Hom = — jc0EF 0 

Fo, = F,, cos 4) 

[(M,, dx) dy 
F = j 

4rr 
Eon' = n„Ho'n 

Eon' = —77,,Hom 

Fo F,, sin 0 cos 0 

Expressing all the fields in terms of E2, the radiation field of the 
Huygens source is found to be 

E 0 = E0. E,. _ jezdx dy e—ior 
(cos 0 cos -I- cos 0) 

2Xr 

= Eck. _ — iezdx dy e—Jor (sin 0 -I- sin 0 cos 0) 
2Xr 

E 
1-1, = — 

nv 

—E  
Ho — 

In the plane 0 = 0, the magnitude of the electric intensity is 

dy 
1E01 —  2Xr [1 -F cos O] IE,I = 0 (15-22) 

Tn the plane 0 = 90 degrees, the magnitude of the electric field is 

 ( 1 + cos 0) 1E01 = z2Xr (15-23) 
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In th l principal planes, which contain the axis of propagation, the 
radiation patterns of an element of wave-front have a heart-shaped 
or unidirectional pattern. The radiation is a maximum in the 
forward direction (0 = 0); it is zero in the backward direction 
(0 = 180 degrees). In one sense, this "explains" why an electro-
magnetic wave, once launched, continues to propagate in the for-
ward direction. An electric-current sheet alone radiates equally 
on both sides; similarly a magnetic-current sheet alone radiates 
equally on both sides; but crossed electric- and magnetic-current 
sheets of proper relative magnitude and phase can be made to radi-
ate on one side only. A large square surface of a plane wavefront 
constitutes a rectangular array of Huygen's sources, all fed in phase. 
The "radiation pattern" of the array is obtained by multiplying 
the unit pattern of the element (a cardioid pattern) by the group 
pattern or array factor, which in this case is a bidirectional pencil 
beam. The resultant pattern is a unidirectional pencil beam, the 
cone angle of which becomes very small as the area of the wavefront 
becomes large. 

15.04 Radiation from the Open End of a Coaxial Line. By 
application of the new approaches outlined in previous sections, the 
problem of radiation from the open end of a coaxial cable of small 
cross-sectional dimensions can now be solved quite easily. If the 
surface S, separating the source-free region from the region contain-
ing sources, is taken to be the surface shown dotted in Fig. 15-2, 
it is only necessary to specify the equivalent electric- and magnetic-
current sheets over this surface. The surface can be divided into 
two parts: Sa is the cylindrical surface that encloses the outer wall 
of the coaxial line; Sb is the flat circular surface which caps the end 
of the line. Over S., tangential E is tangential to the metallic wall 
and has zero value. Therefore the equivalent magnetic-current 
sheet has zero density over Sa. Also the magnetic intensity at the 
outer surface of the outer conductor must be zero, because for any 
circumferential path enclosing both conductors, the total current 
enclosed is zero. (This assumes that the transverse dimensions 
are small, so that, except right near the ends, only the TEM wave 
exists.) With tangential H over S. equal to zero, the equivalent 
electric-current sheet must also be zero over this part of the surface, 
and there remains only the contribution from Sb. Over Sb the 
electric field is radial and the magnetic intensity , is circumferential; 
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but whereas the electric field is relatively strong, to a first approxi-
mation the magnetic intensity is zero (the open end is a current 
node). Therefore the radiation from the open end can be computed 
by use of an equivalent magnetic-current sheet only over the surface, 
Sb. Having determined the radiation fields, and thence the power 
radiated, it is possible to compute from consideration of power flow 
through the open end, the small value of magnetic intensity that 
actually must exist there. If desired, an equivalent electric-current 

do ck4 

Fia. 15-5. Geometry for calculation of power radiated by open 
end of a coaxial cable. 

sheet could then be set up for this magnetic intensity, and the small 
radiation field of the electric-current sheet could be calculated. In 
practice this second approximation rarely needs to be made, because 
it produces only a very small correction to the radiation fields and 
power radiated. 

Figure 15-5 shows the geometry appropriate for calculation of 
the radiation from the open end of a coaxial cable. Between the 
inner radius a and the outer radius b, the radial electric intensity 
E, will have a value 

E, = —k where k = V  
In b/a 
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V is the voltage between inner and outer conductors at the open end. 
Using (18), E, can be replaced by a magnetic-current sheet 

Mo = —E, = — !pc-

The electric vector potential F will be in the 4) direction and will have 
a value 

F = 1 f  — r/v) da 
47 j A 

f 2r f b m e cer 
47 o j a   p dp dyt), (15-24) 

where the integration is over the area A between inner and outer 
inductors, and where time variations as em have been assumed. 
Without loss of generality the point P may be taken in the y-z 
plane, for which case only the x components, Mo cos ch, of magnetic 
current contribute to the potential, the y components cancelling 
out. Because only distant fields are being considered, the r in the 
denominator of (24) can be put equal to ro, and the r in the phase 
factor in the numerator may be replaced by 

r ro — p sin O cos 4,1 

Making these substitutions, and remembering that for small values 
of 45 the exponential eo can be replaced by the first two terms of its 
power series expansion, viz., 

co :re. 1 j3 

the integration indicated by (24) can be carried out. The result is 

j8k sin O e—orgi — (1,2 a2) (15-25) 
8ro 

The distant magnetic intensity is obtained from 

Ho = —jumF4, 
so that 

—Ow& sin  
Ho — (b2 — ce) e—or• 

8ro 

The intensity of the distant electric field will be 

Ed = 

(15-26) 
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By integrating the Poynting vector over a large spherical surface, 
the radiated power is found to be 

ir2V2 (  A  
= 360 \X2 in b/ a) 

where A = 7r(b2 — a2) is the area of the opening between inner and 
outer conductors. 

15.05 Radiation through an Aperture in an Absorbing Screen. 
Another example of radiation through an aperture occurs in the 
problem of the transmission of electromagnetic energy through a 
rectangular aperture in a perfectly absorbing screen. Although 
admittedly not a very practical problem, because of the difficulties 

watts (15-27) 

X AY 

Fia. 15-6. An element of area on an advancing wavefront. 

of obtaining a screen which is both infinitely thin and perfectly 
absorbing, the solution to this problem is required in obtaining 
answers to other, more practical problems. 

In Fig. 15-6 the rectangle ab represents an aperture in a perfectly 
absorbing screen of infinite extent which occupies the z = 0 plane. 
A uniform plane electromagnetic wave traveling in the z direction 
is assumed to be incident upon the bottom side of the screen and 
aperture, and the problem is that of determining the radiation 
through the aperture in the positive z direction. Under the assumed 
conditions of the problem, the incident wave is completely absorbed 
at the surface of the screen. Over the aperture the field intensity 
will be just that of the incident wave. By dividing up the aperture 
into a large number of Huygen's sources of area da = zix Ay, the 
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aperture may be treated as a rectangular array of such sources, all 
fed in phase. 

For a line array of nondirective sources in the x direction, 
having a uniform spacing Ax, the radiation pattern or space factor is 
(from section 12.06) 

S. = 1 -F eee eue ± • • • ± em—ueel 
us — 1 

= eal(41x) sin Ooos di 

pin [%?na (Ax) sin O cos (1)11 
I sin [ f3 Ax sin O cos cic] I 

Similarly, for a line array in the y direction with a uniform spacing 
Ay, the space factor is 

Hsin 54nel (Ay) sin O sin 41 
sin me (Ay) sin O sin 4)] I 

The total space factor for the rectangular array of isotropic sources 
is then 

= SO% 

If Ax and Ay are now allowed to become small, but m and n are made 
large in such manner that 

(m — 1) Ax = a (n — 1) Ay = b 

the space factor Sx,, may be written 

S.,.  = Ax Ay (Yea sin O cos 0 ) 
ab  'sin (348a sin O cos 4) sin (148b sin O sin 01 

Geb sin sin d)) (15-28) 

multiplying this space factor or group pattern by the radiation from 
the unit Huygen's source gives the total radiation from the aperture. 
Then, using (19) and (20), 

E. —  z2Xr [( 1 -I- cos 0) cos  4)] sinu1 sin  u1 • y1 (15-29) 
jE CIabe— eir 

Eçs — u sin y jElabe—ior [(1 ± cos 0) sin 4]] (15-30) 2Xr i I u1  
where 

u1 = ¡i3a sin O cos 4) and 1/1 = Wb sin O sin 

This is known as the diffracted field and this problem is an example 
of Fraunhofer diffraction. In the principal x-z plane, 4) = 0 or 7r, 
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.E 0 0, and the E. field is given by 

E. _ jErhabe-ok (1 + cos 0) sin u 
2Xr u 

(15-31) 

where u = [3ect sin 0] = 21 sin 

The square bracketed expression, (sin u)/u, occurs in many radiation 
and diffraction problems. It is plotted in Fig. 15-7. 

It will be noted that the first null in this general pattern occurs 
at u = ir. Thus, for an aperture width a = 1X, the first null of the 
pattern occurs at 0 = 90 degrees. For aperture widths smaller 

Fro. 15-7. Plot of a sin u/u. 

than lx, there is no null in the pattern. For very large apertures, 
the "beam" is quite narrow, and small angles of 0 are of most 
interest. For small values of 0, sin 0 0, and 

ira0 
U ete )t 

For a = 10X, the first null occurs at 00 = 0.1 radian or 5.7 degrees. 
Application to Open-ended Waveguides. If it can be assumed 

that the currents on the outside walls of an open-ended waveguide 
have negligible effect on the radiation from the guide, the problem of 
diffraction through an aperture has direct application to this second, 
more practical, problem. Since experimentally measured radiation 
patterns are found to agree roughly with patterns computed by 
neglecting these outside currents, such calculations may be used if 
only approximate answers are sufficient. 
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Referring to Fig. 15-8, and assuming that the fields at the open 
end are approximately the same as they would be if the guide didn't 
terminate there, but continued on to infinity, the tangential fields at 
the end surface will be 

E: = Ee sin 12. 
a 

o 111' = — .\11 _ Ev 
Xc 

The dominant TEL(' mode has been assumed, and for this mode 
X. = 2a. For a very wide guide (a » X/2) carrying the dominant 
mode, IEVI-41 n, and the problem is the same as that of the 
rectangular aperture, except for the variation of E and H in the x 

Fin. 15-8. Field at the open end of a waveguide. 

direction across the mouth of the guide. For narrower guides, with 
operation closer to the cut-off frequency [i.e., as X 2a, and 

— (X/X.) 2 —* O, H1' becomes very small and there are two 
important effects. First, the characteristic impedance of the guide 
becomes very great, so that there is now a large mismatch between 
the impedance of the guide and the effective terminating impedance. 
This means that more of the energy is reflected back from the open 
end, and less is radiated for a given value of E. Second, the 
radiation pattern approaches more closely that which would be calcu-
lated from a magnetic-current sheet alone, rather than from crossed 
electric- and magnetic-current sheets. Experimental and calcu-
lated radiation patterns of waveguides and horns may be found 
in the literature.* 

" Radio Research Laboratory, Staff, Very High Frequency Techniques, 
McGraw-Hill, New York, 1947, Vol. 1, Sec. 6-4. 



572 SECONDARY SOURCES AND APERTURE ANTENNAS [05.06 

15.06 Fraunhofer and Fresnel Diffraction. For many prob-
lems involving radiation from apertures, and also for solving certain 
propagation problems, some knowledge of classical diffraction theory 
is required. In the previous section an example of Fraunhofer 
diffraction was encountered, whereas in the problem of radiation 
from an electromagnetic horn, Fresnel diffraction will be of interest. 
The difference between these is illustrated in Fig. 15-9. In the 
case of Fraunhofer diffraction both the source and receiving point 
are so remote from the aperture or screen that the rays may be 
considered as being essentially parallel. In Fig. 15-9, this means 
that rays arriving from the secondary source (the aperture D), may 

PARAL 
RAYS 
FROM 
DISTAN 
SOURC ‘ro I 

NEAR I FRESNEL 
REGION REGION 

FRAUNHOFER 
REGION 

Fro. 15-9. Illustration of Fresnel and Fraunhofer regions in 
diffraction theory. 

be considered to arrive in-phase at a point Pi which is on a line 
drawn normal to the screen through the aperture. On the other 
hand, if the distance r to the receiving point P2 is sufficiently large 
that the amplitude factor 1/r may still be considered constant, but 
is not so large that the phase difference of contributions from the 
various Huygen's sources over the aperture may be neglected, the 
point P2 is in the region of Fresnel diffraction. The region so close 
to the aperture that both the amplitude and phase factors are vari-
able with the position of the receiving point is sometimes called the 
near region. The dividing line between Fresnel and Fraunhofer 
diffraction depends upon the accuracy required; however, the dis-
tance to the dividing line is often taken* as r = 2D2/X. If the 

* IRE Standards on Antennas, 1948. 
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distance to the receiving point is very great, but the source is so 
close to the screen that the phase of the field varies over the aperture 
(with the source on the normal to the screen through the aperture), 
Fresnel diffraction theory is required. 

Fresnel Diffraction a: a Straightedge. Figure 15-10 illustrates a 
simple example of Fresnel diffraction. An obstacle, such as a 
straightedge (considered to be perfectly absorbing), is inserted 
between a transmitting source T and a receiving location R. To 
keep the problem two-dimensional, the source T is assumed to be a 

Fm. 15-10. Diffraction at a straightedge. 

very long line source parallel to the long straightedge. The problem 
is to determine the intensity at the receiving point R, as R is moved 
along the line GMN. It is assumed that the distances do and d1 are 
sufficiently large that the approximations inherent in Fresnel diffrac-
tion theory are valid, but not large enough to permit the approxima-
tions used in Fraunhofer diffraction. 

Assume that each elemental strip du of the wave front produces 
an effect at R given by 

k1 du clot 
dE — (15-32) f(r) 

where 13 = 27/X, f(r) is a function of r, and k1 is a constant. For 
Fresnel diffraction, the r in the denominator of (32) can be con-
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sidered constant but the variation of r in the phase shift factor must 
be accounted for. By geometry, 

then 

V 

(QR)2 = r2 = (d1 4- d2)2 4- d12 — 2di(di 4- d2) cos —u 
di 

.--- (d1 -F d2)2 ± d12 — 2 d1 (d1 +d2) (1 — 2ud212) 

r2 = (d2 4- a)2 - d22 + u2 411 d+ d2 

FIG. 15-11(a). Cornu's spiral. 

It' 
MAGNITUDE OF 

RELATIVE FIELD STRENGTH 
VERSUS 
V 

Fro. 15-11(b). Diffracted field obtained by use of (a). 
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Neglecting 82, this gives 

8 = di d2 2 d1 + do 

2did2 u 2dido 

The total effect at R, due to the portion of the wavefront between 
uo and ul, will be 

fui 
k1 clod' fui e—,73' du E = k1  e—ior du — 

f (r) f (d 2) u. (15-33) 

k1 c-20d2 f ri" 
= \ju. cos eiS du — j 1.u. sin In du) (15-33a) f (d 2) u. 

r (dl ± d2) u 2 where 
136 — X did2 

The square of the magnitude of the field intensity at R is given by 

— f2k(d122) (fsoul cos PS du)2 (f ul sin a du) (15-34) 
u. 

To evaluate and interpret this result consider the following integral 

C(v) — jS(v) = e—i(L/2)., dv (15-35) 

which is a standard form of the Fresnel integrals. Plotting this 
integral in the complex plane, with C as the abscissa and S as the 

ordinate, results in a curve known as Cornu's spiral (Fig. 15-11a). 
In this figure, positive values of v appear in the first quadrant and 
negative values of v in the third quadrant. The spiral has some 
interesting and important properties: 

C = fv rV2 COS —2rv2 dv S = f:: sin -y  dv (15-36) 
o 2 

Ss = -V (SC) 2 + (SS) 2 = Sv; v = 8 

SS 2r.v2 Irv' irs2 
tan 4, = = tan T ; yb = T  = -F 

de . ds 1 
radius of curvature cli = "' = __ = __ 

CIO 71-8 

C(± c° ) = -± 4; S(± e° ) = ±- (15-37) 

The following properties follow from the above relations: 
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(1) A vector drawn from the origin to any point on the curve 
represents in both magnitude and phase the value of the integral 
(35). (The phase of the vector is the negative of the phase of the 

integral.) 
(2) The length s of arc along the spiral, measured from the 

origin, is equal to v. As y approaches plus or minus infinity, the 
spiral winds an infinity of times about the points %) or (—%, 

— 
(3) The magnitude .s/C2  ± 82 of the integral has a maximum 

value when ct, = 32•/4, or at y = = 1.225. Secondary max-
ima occur at 

37r 3 = 2nir or v = -I- 4n (n = 1, 2, 3, • • -) 

Minima occur at 

v = -I- 4m (m = 0, 1, 2, 3, • • -) 

Returning now to the integral of (33), it can be put in the 
standard form by writing 

a  _ 7r di + d2 u, 
X \ did2 

v2 

\i2(d1 d)  
or v = u = k2u 

Xdid2 

Then 
vi 

E = 1c3 f e—i(T/2)et dv 

k 1 e-ileda 
where — k 2f(d2) 

Using (36), 
are 

E = k3(1.: e-3-e dv — e-i(r/2)°1 dv) 
Jo 

ica[C(vi) — C(vo) — j8(vi) Avo)] 

Because y is proportional to u and inversely proportional to the 
square root of the wavelength (which is very small in optics), v1 
will be a very large number for large values of ui. Therefore 
C(vi) -3 C(00) as u1 is allowed to become large. Then using (37), 
the field intensity will be approximately 

E = Kg% — C(v0)] — j[34 — S(v0)11 
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The quantities (34 — C) and j(34 — S) represent the real and imag-
inary parts of a vector drawn from the upper point of convergence 
(34, 34) to a point on the spiral. Thus the magnitude of E is pro-
portional to the length of the vector drawn from (34, 34) to the 
appropriate point on the spiral. This makes it possible to visualize 
the intensity variation as vo (and hence either uo or d1 or d2) is varied. 

For uo equal to a large negative value, the free-space field inten-
sity Eo results. Therefore 

E0 = K{[ — ( - 3')] — j[h - (-)]) = K(1 — 3) 
0  

and therefore K = 1E — j — Eo (1 j) 
2 

The received field intensity is given in terms of the free-space field by 

eir 
E0 

E = —2 (1 j) f e 2 dv vo (15-38) 

..\12(d1 4- d2)  
where vo =-- uo 

Xdid2 

In order for this approximate treatment to be valid, the following 
inequalities must hold: 

di, d2 >> uo; did2 >> X 

In Fig. 15-11b is plotted the magnitude IE/Eol as taken off the spiral. 
The field intensity in the shadow zone decreases smoothly to zero. 
Above the line of sight the field intensity oscillates about its free-
space value. On the line of sight the field intensity is just one-half 
of its free-space value. 

This approximate theory of diffraction was developed for use in 
optics, where the approximations and assumptions made are usually 
quite valid. However, it is found that even at radio frequencies, 
and especially at ultrahigh frequencies, there are many problems 
where the theory is applicable. An example occurs in computing 
the radiation from electromagnetic horns. 

15.07 Radiation from Electromagnetic Horns. In order to 
secure greater directivity a wave guide can be flared out to form an 
electromagnetic horn. A rectangular guide flared out in one plane 
only constitutes a sectoral horn, whereas a guide flared in both 
planes forms a pyramidal horn. The sectoral horn flared out in 
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the plane of the electric field is the easiest case to treat and will 

serve as an example of the method of attack. 

Figure 15-12 shows a horn flared out in the electric plane with a 

flare angle 2#. 

For best operation the angle 11, is usually sufficiently small that 

the area of the wavefront is approximately equal to the area of the 

aperture. The total field at any distant point is obtained by sum-

ming the contributions from the Huygen's sources distributed over 

the wavefront. It is permissable to assume that the field distribu-

tion over the aperture is approximately the same as it would be 

there if th 9 horn did not terminate, but was infinitely long. For the 

case considered in Fig. 15-12, the field will be constant over the 

—1z 

FIG. 15-12. Electromagnetic horn. 

aperture in the y direction, but will vary in the x direction as 
cos rxda. The information of most interest will be the field inten-

sity, and hence the gain in the forward direction, that is, along the 

positive z axis. 

At any distant point on the z axis the field intensity due to a 

Huygen's source of intensity E°H° will be 

E° dx dy E° dx dy 
(1 ± cos 01) — 

2Xr Xr 

since cos 01 r-e 1 for distant points in the forward direction. The 

strengths of the Huygen's sources over the aperture will be given by 

E° = E: cos 
a 

The total field at a distant point on the z axis is 

E po f +b/2 -Fa/2 
Xr —b/2 — a/2 cos —a &Ph dxi dyi 
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where the reference phase has been taken as that due to a source in 
the plane of the aperture (z1 = 0). From the geometry of Fig. 15-12, 

zi= L cos Oi — L cos 
b2 y12 

ee 8L 2L 
Then 

Ex, f  -Fa/2 

COS 1E1 = 7rXi 
—a dxi Xr —a/2 

4aE°, b/2 f . 
e—/Se dyi 7rXr Jo 

where 

Putting 

2 
or V = Yi 

y12 
E — 

2L 

/412 r n2 
2L" 

+b/2 

e—io« dyi 
f - 8/2 

dv = dyi 
XL 

(15-39) 

reduces (39) to the form of (35), and the expression for the square 
of the absolute magnitude of field intensity will be 

1E12 2L (2a4\2 [c2  b s2  b  
(15-40) 

X \ r r N/2Xii) -V2Xid) 

The effect of changes in any of the horn dimensions is made evidert 
by using (40) and Cornu's spiral. It is seen that, if b is increased, 
for a given L, the forward signal will first increase to a maximum and 
then decrease, increasing again to secondary maximum which is 
smaller than the first maximum. A similar variation results if b 
and L are increased together keeping the horn angle constant. 
The explanation for this result is that as b is increased, the contribu-
tions from some of the secondary sources on the wavefronts are out 
of phase with others, and so tend to decrease, instead of increase, the 
field intensity in the forward direction. 

15.08 The Infinitely Long Narrow Slit. Solutions to several 
problems involving radiation from or through apertures have now 
been obtained. In the practical problems, e.g., radiation from open-
ended coaxial lines, wave guides, and electromagnetic horns, the 
solutions were approximate to the extent that the effects of any 
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conduction currents on the outside walls were assumed to be negli-
gible. Although in these cases the assumptions were justified by 
intuitive reasoning and experimental results, there are many other 
problems where this would not be true. In the problem of diffrac-
tion through an aperture in a thin perfectly absorbing screen, the 
solution was exact for the problem as stated, but the problem itself 
was a nonphysical one, not met with in practice. A more practical, 
and in general much more difficult, problem is that of diffraction 

c9,/ 

REGION 2 REGION I 

(a) (b) 

Fm. 15-13. (a) A "wedge" transmission line that supports 
uniform cylindrical waves. (b) Diffraction through a narrow 
slit in an infinite conducting plane. 

through an aperture in a conducting screen. The simplest possible 
problem of this sort is the diffraction through an infinitely long and 
very narrow slit in a thin infinite conducting screen. Because 
of the simplicity of the boundary conditions and the resulting 
field configurations, the solution for this problem is relatively 

straightforward. 
Figure 15-13b shows the problem to be solved. Figure 15-13a 

shows an apparently different problem, the solution of which applies 
directly to 15-13b. In the problem of 15-13b the incident wave is 
assumed to be directed normally to the screen with the electric 
vector perpendicular to the axis of the slit. In Fig. 15-13a the twc, 
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semi-infinite planes form a wedge transmission line with an enclosed 

and 00, and with the " input edges" located a distance a from the 
line of intersection of the two planes. The applied voltage V is 
assumed to be the same at all points along the input edges, so that 
uniform cylindrical waves will be excited. For these waves the 
appropriate differential equations [taken from the set (11-28)] are 

d(p.E.) dH. . 
= —jcupH. = —3weE4, (15-41) 

p dp dp 

where cr = 0 for the nonconducting region between the planes 
(region I). As in sec. (11.07) these equations combine to give a 
wave equation for Hz similar to ( 11-32), with solutions of the form of 
eq. (11-34). Retaining only the second term, which represents an 
outward traveling wave, the expression for Hz is 

H. = BH0(2)(f3p) (15-42) 

Using the second of eqs. (41), the corresponding expression for E4, is 

where, as usual, 

= -inefie)(13p) 

= e 

(15-43) 

The radial wave admittance looking in the positive p direction in 
region I is 

y H. _ jHon)(ep) 
p  

E. ni-11(21 (13p) 

The input voltage between the edges (at p = a) is 

V = 4,0aE 0(a) 

and the input current per unit length is 

I = = —Hz(a) 

(15-44) 

(15-45) 

(15-46) 

where E and Hz are evaluated at p = a. Using (43) and remember-
ing that for x « 1, 

Hi(2) (x) 

217e0B 
V — (15-47) 
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For the problem of Fig. 15-13b, (1)0 = ir so that 

B = - 2,/ V (15-48) 

For the distant fields the expressions for E and H become 

V 
E° = 'i. 7- H1(2) Op) .- - - =_- e-2(.0P- T/4) 

2  

Hi -13V 1-1 (2)(0p) _, _  V  e-iGgp-irbo (15-50) 
2)/ ° 

For the wedge transmission line the input admittance per meter 
is 

(15-49) 

Yi. - JP - 'Ma) (15-51) 
V 0(4E4, (a) 

This is the admittance presented to the generator by region I. 
For the slotted plane of Fig. 15-13b, Ço = 7r, and the admittances of 
region I and region II are equal and in parallel. Therefore 

Ydit = 2 Ya,, 

211,(a) _ j2Hoi2) (tea)  
raEo(a) 'rani 1(2)(0a) 

(15-52) 

For a very narrow slit, such as has been assumed, ea « 1, and (52) 
reduces in the same manner as did ( 11-44) to give 

27g- j4 X 
Yet, — -F — ln — - C) 

)IX nX Ira (15-53) 

For the slit in the conducting plane the voltage V can be evalu-
ated in terms of the incident field intensities in the following way: 
If there were no slit, the current per meter in the conducting plane 
would be J = 2H°, where Ho is the magnetic intensity of the 

incident wave. With the slit in the screen the total conduction 
current at the edge of the slit is zero, so the "induced" voltage V 
(due to charge concentrations at the edges of the slit) must be 

just sufficient to produce a current per meter, J„, which is equal 
and opposite to the linear current density J = 2H°. Therefore 

J V - P — -2H° 
I alit y 111, 

(15-54) 
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Equations (49), (50), (53), and (54) constitute the solution to the 
problem of diffraction through a very narrow and infinitely long 

slit in a conducting screen. 
An interesting and useful comparison can be drawn between the 

above problem of the long narrow slit in an infinite conducting plane 
and the earlier problem of the thin and infinitely long wire. Com-
paring eqs. (49) and (50) with those of ( 11-42), it is seen that except 
for a constant multiplying factor, the electric field diffracted by the 
slit has the same magnitude and direction as the magnetic field 
radiated (or reradiated) by the wire. Similarly, the magnetic field 
due to the slit is related in both magnitude and direction to the 
electric field produced by the current-carrying wire. Further, when 
the (external) impedance per unit length of the wire is compared 
with the admittance per unit length of the slit, it is observed that 
they are simply related by 

or 

1-1-2 Y ro = 4 .ht 

ZwiroZelit = = 35,257 
4 

(15-55) 

This similarity between the properties of the wire and those of the 
slit are au example of a principle which is known in electromagnetics 
as Babinet's principle. 

15.09 Babinet's Principle. The correspondence noted above 
between the magnetic and electric fields about a long narrow slit 
and the electric and magnetic fields about a long thin wire are just 
one example of a duality principle of electromagnetic theory. Using 
this principle, the solutions to certain problems can be written 
directly if the dual problems have been solved. In the new prob-
lems, the quantities I, V, Y, H, E correspond respectively to the 
quantities V, I, Z, E, and H in the dual problems. In order to see 
how to obtain quantitative answers using this principle, the wire 
and slit problems will be considered further. 

If it is assumed that the long thin wire of section 11.07 is excited 
by an electromagnetic field E°, IP. which has E° parallel to the wire, 
then E° is the applied electric intensity E., and the current which 
flows in the wire will be 

(15-56) 
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where Z„ is the external impedance of the wire. (A perfectly 
conducting wire, for which Zim = 0, is assumed.) Using (56) and 
eqs. (11-42) gives for the reracliated or diffracted fields 

E. — — 01E° 110(2)(flp) (15-57) 
4Z„ 

Ho — — Ole° Hi(2)(ap) (15-58) 
4Z„ 

Now let the thin infinitely long wire be replaced by the narrow 
infinitely long slit in a conducting screen, and again let the field 
E0, H° be incident, but with the polarization rotated through 90 
degrees so that E° is perpendicular to the slit and H° is parallel to it. 
For this case, substituting (54) and (55) into (49) and (50) the 
diffracted fields of the narrow slit are found to be 

131711° 
111 = e  (I3P) 

E — —,i0nE° H (2)(3p) 
• 4Z„ 

Comparing eqs. (57) and (59) show that 

where 

E. HI +k —k ye, +k 

k thilo(2) (0P) 
4Z„ 

(15-59) 

In the case of the wire, the total field E at any point is the sum of the 
incident field E° and the diffracted or reradiated field E.; that is 

E = E° + 

Then, if U1 designates the ratio of the field intensity in the presence 
of the wire to the field without the wire, 

E 
U1 = —E° = 1 — k (15-62) 

In the case of the infinite conducting screen with the long slit, the 
total field H on the right of the screen (with the incident wave 
approaching from the left) is just the diffracted field H.. Denoting 
ler U2 the ratio of the field intensity on the right of the screen to 
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the field without the screen, 

U2 = — = k 
H° 

(15-63) 

It is evident that the following equality holds 

U1 + U2 = 1 (15-64) 

This relation, developed here for the particular case of a slit and 
a wire, actually is a quite general relation, true for all comple-
mentary screens and conjugate sources.. Complementary screens are 
defined in the following manner: An infinite-plane conducting screen 
is pierced with apertures of any shape or size and the resultant 
screen is called Si. Consider then the screen which is obtained by 
interchanging the region of metal and aperture space in Si and call 
this second screen $2. Then screens Si and 82 are said to be comple-
mentary, because, added together they result in a complete infinite 
metal screen. In this sense the thin wire and narrow slit may be 
considered as being complementary. 

In deriving (64) it was necessary to interchange E and H of the 
incident wave. (For the plane wave considered, this was accom-
plished by simply rotating the plane of polarization through 90 
degrees.) In general, for an arbitrary source, the effect of inter-
changing E and H can be obtained by replacing the distribution 
of electric currents and charges which constitutes the source by 
the corresponding distribution of magnetic currents and charges. 
Sources so related are called conjugate sources. 
A generalized statement of (64) can now be stated as follows: 

Let a source si to the left of an infinite screen Si produce a field on 
the right of Si, and let U1 be the ratio of this field to the field 
intensity that would exist there in the absence of the screen; then 
consider a conjugate source 82 to the left of the complementary screen 
82, and let U2 be the ratio of the field on the right of 82 to the field 
that would exist there in the absence of the screen; then 

Ui + U2 = 1 (15-64) 

Similarly, if V1 is the ratio of field intensity at any point on the 
left of the screen to the field that would exist at that point if both 
screens were present (that is, if the screen were a complete infinite 
metal screen), and if V2 is the ratio of the field produced by the 
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conjugate source on the left of the complementary screen to the field 
that would exist there in the presence of a complete metal screen, 
then 

V1 + V2 = 1 (15-65) 

Equations (64) and (65) along with the associated impedance rela-
tion ZiZ2 = n2/4 constitute a statement of an extension* of Bab-
inet's principle which is valid for conducting screens and radio 
frequencies. It should be compared with the original statement of 
the Babinet's principle of optics from which it derives its name. In 
optics, Babinet's principle relates to the transmission through 
apertures in absorbing screens, and polarization is not mentioned. 
The principle for optics simply states that the sum of the fields, 
taken separately, beyond any two complementary (absorbing) 
screens will add to produce the field that would exist there without 
any screen. It will be seen that there are important differences 
between this simple statement for absorbing screens in optics and 
the extended principle •which is valid for conducting screens and 
polarized fields. 

Application to the Half-wave Slot. One of the most straightfor-
ward applications of Babinet's principle occurs in determining the 
diffraction through a half-wave slot in an infinite conducting screen. 
For this example the complementary screen is a flat half-wave 
dipole of width equal to the width of the slot. For the resonant 
length dipole, the current induced in the dipole is independent of its 
cross-sectional dimensions (to a first approximation) and is given 
approximately by 

V E°X 
" 

where Za gz-.: 73 ohms is the radiation resistance of the half-wave 
dipole. Using a spherical co-ordinate system centered at the 
dipole, the radiation field will be 

Ee ioor e , cos (i  cos _ j60XE° e—ior cos —2 cos 

sin 0 737r sin 0 

Therefore, by Babinet's principle, the distant diffracted field of a 
resonant slot in a conducting screen will be 

*H. G. Booker, " Slot Aerials and Their Relation to Complementary Wire 
Aerials (Babinet's Principle)," J.I.E.E., III A, 620-626 (1946). 
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110 — 
73irr -- sin 

j6OXH° e—B3r ci3s (i ce5 

Ed) = — n1.10 

In the above it has been assumed that the incident electric field 
was oriented parallel to the dipole, but perpendicular to the slot. 

For lengths other than the resonant half-wavelength, the per-
f ormance of both slot and dipole depend on the width as well as 
the length of the slot or (fiat) dipole. However, by suitably defining 
a "characteristic impedance" for both of these elements, it is pos-
sible to compute at least approximately what their performance 
will be. It follows directly from Babinet's principle that the Q 
of fiat dipoles and the corresponding slots in conducting planes are 
identical. 

There may be some question about treating the thin wire and the 
narrow slit as complementary screens as was done earlier. The 
true complement of the slit in a thin conducting plane is, of course, a. 
thin flat conducting strip, but for very narrow strips the difference 
between a flat strip and thin round wire becomes negligible. For 
slits of appreciable width, and the corresponding finite-width strips, 
it is necessary to define an average impedance by integrating over 
the width. When this integration is carried out,* it is found that 
the relations which constitute Babinet's principle do indeed still 
hold. 

15.10 Slot Antennas. At very hizh frequencies a practical zero 
drag antenna for high-speed aircraft consists of a half-wave slot 
cut in the metal skin of the aircraft, and fed across the slot, usually 
at its center. Such fed slots also have interesting application in FM 
and television. Although the important properties of a half-wave 
slot in a conducting screen follow directly from Babinet's principle 
and the known properties of a half-wave dipole, it will be of value 
to consider this important case in some detail. 

Figure 15-14 shows a slot in a conducting plane, and the com-
plementary flat dipole. The slot is fed by a voltage applied between 
its edges at the center. The dipole is fed by a series voltage at its 
center. 

For a first approach consider these antennas as separate bound-

* S. A. Schelkunoff, Electromagnetic Waves, p. 266. 
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ary value problems.* As such, the problem in each case is that of 
finding appropriate solutions to Maxwell's equations, or the derived 
wave equations, which will satisfy the boundary conditions. In 
both cases, for the free-space regions about the antennas, the wave 
equations to be solved are 

VE = p€É or V2H .--- peti (15-66) 

Having obtained a solution for either E or H from one of the above 
equations, the other field intensity can be obtained through one 
of the free-space relations 

curl E = —pil curl H = t (15-67) 

z 

FLAT STRIP 

Í X 

FIG. 15-14. A slot antenna in a conducting screen, and the 
complementary flat dipole. 

For the dipole, a solution to the second of eqs. (66) would be 
sought subject to the following boundary conditions: 

(1) In the y-z plane, and outside the perimeter of the dipole, 

H, = 0, H= O 

(2) In the y-z plane, and within the perimeter of the dipole, 

H. = 0 

The first of these conditions follows from symmetry considerations. 
The second condition is a statement of the fact that the normal 
component of H must be zero at the surface of a perfect conductor. 

* The treatment of the first part of this section follows a method of class-
room presentation used by Professor V. H. Rumsey at the Ohio State University. 
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For the slot in the conducting plane the first of eqs. (66) would 
be solved subject to the following boundary conditions: 

(1) In the y-z plane, and outside the perimeter of the slot, 

E„ = 0, E. = 0 

(2) in the y-z plane, and within the perimeter of the slot 

Ez = 

The first of these conditions results from the fact that the tangential 
component of E must be zero at the surface of a perfect conductor. 
The second condition results from symmetry considerations. 

It is apparent that, mathematically, these two problems are 
identical. It is necessary only to interchange E and H to pass from 
one problem to the other. (Of course it will have to be shown that 
the driving forces are also similar.) Therefore, except for a con-
stant, the solution obtained for E for the slot, will be the same as the 
solution for H for the dipole, and it is possible to write for the fields 
at any corresponding points 

= klHd (15-68) 

where the subscripts 8 and d refer to the slot and dipole respectively. 
Similarly, the magnetic field of the slot and the electric field of the 
dipole will be related by 

H. = 1c2Ed (15-69) 

It follows that the pattern of E for the slot is the same as the 
pattern of H for the dipole, and vice versa. Also the impedance 
of the slot is proportional to the admittance of the dipole and vice 
versa. The relations between the impedance properties can be 
studied by use of the integral expressions for the fields near the feed 
points. 

Strictly, for impedance to have meaning, it is necessary to con-
sider an infinitesimal gap in each case. However, the results will 
apply to a finite gap if this is kept small, as indicated in Fig. 15-15. 
For the dipole, the impedance is given by the voltage across the gap 
divided by the current through the generator and into one arm of 
the dipole. The voltage across the gap is obtained by integrating 
Ed • ds along a line of E between two closely spaced points a and c 
on opposite sides of the gap. 

V = fEa • ds aba 
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The current into one arm of the dipole is equal to the magnetomotive 
force around the (small) closed loop efghe 

/ = Hd • ds = 2 fta lId • ds 
e 

The impedance of the dipole is therefore 

f Ed • ds 
Zd — • °be (15-70) 

2 leg Hd • ds 

FIG. 15-15. Slot and flat-strip dipole with small gaps. 

The admittance of the slot can be found by dividing the curreni 
into one edge by the voltage across the gap. The slot current is 
equal to the magnetomotive force around the closed path abcda. 

I = 96 H, • ds = 2 H, • ds 
abcda Jobo 

The voltage across the slot can be obtained by integrating E, • ds 
along the curve efg. 

V = f Es • ds 
Jcfq 

The slot admittance is therefore 

2 f • ds 
Y.  °be  

feig E, • ds (15-71) 
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Making use of eqs. (68), (69), (70), and (71), it is seen that 

k2 k1 
dlr.= 4—Z or 

s ki 4k2 

The ratio k1/k2 can be evaluated by considering the distant fields. 
At any corresponding points 

= klHd H. = k2Ed 

At points sufficiently distant that the fields are essentially plane 
wave fields 

E. = n.1-1. Ed = nvHd 

Combining these relations shows that 

Therefore 

ki 172 = n.2 = 3772 

Z.Zd = (15-72) 

For the theoretical half-wave dipole, Zd ee 73 -I- j43 ohms, so that 
for a theoretical half-wave slot, 

3772  
Z„ -- 418/ — 30.5° 

4 X (73 -I- j43) 

For a resonant-length dipole, the input resistance depends upon the 
dipole thickness. It may be of the order of 65 ohms for practical 

Fo. 15-16. Folded slot and folded dipole. 

dipoles. The corresponding impedance for a practical resonant-
length slot would be of the order of Z. = 550 ohms. For a folded 
half-wave dipole the input impedance is roughly four times that 
of an ordinary dipole, so that the input impedance of the folded 
half-wave slot of Fig. 15-16 is approximately 55% = 138 ohms. 
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The field about a slot in a conducting plane can also be obtained 
by replacing the electric field distribution that exists across the slot 
by its equivalent magnetic-current sheets. Elementary consider-
ations suggest and actual measurements show that the electric 
intensity across a slot is distributed approximately sinusoidally 
along the length of the slot. The replacement of the slot in a 
conducting plane by magnetic currents is carried out in the follow-
ing manner. Consider first conditions on one side only of the 
conducting plane (call this region I). A magnetic-current sheet 
at the surface of the plane (that now has no slot) will produce the 
same fields in this region as did the electric field across the slot. 
Since the boundary conditions at the conducting plane require zero 
tangential electric intensity at its surface, the magnetic-current 
sheet will have a positive image in the conducting plane. Because 
the magnetic current was assumed to be on the surface of the plane 
the magnetic current and its image will be almost coincident, and 
the only effect of the image onsthe field in region I is to double its 
value over that produced by the magnetic current alone. 

The electric field across the slot also gives rise to an electro-, 
magnetic field on the back side of the plane (region II), which 
field could be set up by a second equivalent magnetic-current sheet 
at the surface of the conducting plane on the side of region II. 
Together with its positive image in the plane this second magnetic 
current will give correctly the field in region II. It should be noted 
that, in order to establish the correct polarity for the fields in region 
II with respect to those in region I (the electric field is continuous 
through the slot and so E has the same direction on both sides of 
the plane), it is necessary that the direction (or polarity) of the 
equivalent magnetic current in region II be opposite to that in 
region I. The presence of this magnetic-current sheet in region II 
will, of course, in no way effect the field in region I. 

The use of the equivalent magnetic current to calculate the 
electromagnetic field due to a slot proves quite useful in determining 
the approximate electromagnetic field configurations about slots 
in conducting surfaces that are not plane. An example of this use 
is given in the section 15.12. 

It remains to be shown that the flat-strip electric dipole of 
Fig. 15-15a and the slot in plane of Fig. 15-15b have corresponding 
methods of feed. The electric dipole is fed with an electric voltage 
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V = Ea • ds in series with the dipole. The corresponding source 
cibc 

f or a magnetic-current sheet or magnetic dipole should be a mag-

netic voltage Œ1 = fec H, • ds in series with the dipole. For the 

second magnetic dipole (in region II) which has its magnetic current 
in the opposite direction, the magnetic voltage in series with the 

dipole should be Œ2 = H.• ds. The total magnetic driving vol-

tage required for the double-sheet magnetic dipole will be 

+ fH • ds f H. • ds H. • ds 
abc cda 

which is in fact the magnetomotive force produced 
by a current I through the slot generator. 

15.11 The Slotted Cylinder Antennas. An an-
tenna that has important applications at very high 
frequencies consists of a slot or slots cut in a conduct-
ing cylinder. For example, a longitudinal slot in a 
vertical cylinder produces a horizontally polarized 
signal suitable for FM or television. A method for 
obtaining the complete three-dimensional radiation 
pattern of a finite-length slot in a cylinder will be 
considered in the next section. The two-dimen-
sional problem of an infinitely long slot in an infinite 
cylinder can be solved easily, and is an example that 
illustrates nicely a method of solution that is quite 
powerful for certain types of problems. The solution 
of this particular problem is useful because it gives 
the principal-plane pattern (perpendicular to the axis) 
of a finite length slot in a cylinder. 

Figure 15-17 shows a section of the infinitely 
long cylinder of radius a with a longitudinal slot of 
width acikk It is assumed that the slot is fed between 
its edges with a voltage V = (1004 which is uniform 
in magnitude and phase along the length of the slot. 
This means that there will be no variations in the 
z direction. Also with this method of excitation 
there will be an Ee, and perhaps an Ep, but no E. 

Writing Maxwell's equations in cylindrical co-ordinates for the 
free-space region external to the cylinder where u = 0, and remem-

/ 

FIG. 15-17. 
A section of 
an infinitely 
long slotted 
cylinder. 
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bering that Ez = 0 and a/az = 0; there results 

aliz = ee • E O = jzopH, 
P a0 e P 
aH, _ico€E,0 

= —j:aallo (15-73) 
ap 

a(pII4,) allp 0(pE.,) OE, = _jcopH, 
P aP P açs P aP P ae 

It is seen that H„ = II, = 0, and that for this problem all fields 
can be expressed in terw...3 cf the components of magnetic 
intensity Hz. Then 

1 aff. 
(15-74) = >Kt) Oc> 

1 017. 
= — 

jcoe Op 

Substituting these expressions in the last expression of (73) gives 
a wave equation for Hz. 

1 a ( al 1 0211 
- — P — ± — -- = —P211, (15-75) 
P OP aP P2 002 

where 02 = (0212, 

Solving in the usual manner by assurain3 a product solution results 
in 

= [A III,(0(13p) BIH,(2)(flp)]ei'4' (15-76) 

For this problem it is apparent that y must be an integer n. Using 
only the outward traveling wave for this region outside the cylinder, 
the general solution for this region will be 

n-+ 00 
H. = b„Il„(2)(d3p) ei"0 (15-77) 

and Eo = bile(3p) ei"‘ (15-78) 

where the bn's are coefficients which are to be evaluated by applying 
the boundary conditions. At p = a, the expression for E, becomes 

+ 
.713 Eolp. — bnrema) chit. (15-79) 
WE 
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but at p = a, the boundary conditions are 

E4, = E 0 

E = 

°°- < < 5-b) 
2 2 

4co 
14,1 > 

(15-80) 

where the electric intensity Eo has been assumed uniform over the 
gap. The field distribution at p = a, as represented by these 
boundary conditions is shown in Fig. 15-18. 

(0 

-;r 

Fla. 15-18. Distribution of field intensity E4, around the cylinder 
at p = a. 

This field distribution may be resolved into a Fourier series, 

E4,1, = C. eine (15-81) 
n — 

27r 1 fo 

2,- 
where C. = F() e-in«cla 

7,0 f + 00/2 
e-7nada 

27r _ „v2 

E 0 
e+i.kon) 

2jnir 

Eo ncko 
= — sin 

nr 2 

The distribution represented by (81) is the same as that represented 
by (79), so 

or 

--2E sin = bnile (ea) fir 2 WE 

E0 . n 1  
14, = — sin 

.10fir 2 H2q0a) 
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The external field at a distance p is then given by (78). 

+ sin 21  -L) H(2)'(13p) 
= 2 n ein• 

nI-1(„2)'(fla) 
n- -

It is possible to evaluate this expression at large distances from 
the cylinder where the asymptotic expressions for the Hankel func-
tions may be used. At large distances 

a  f 2  -i(op-7-1 
He'(flP) e ep)1:\1703P 

nw e 
[ .\/7(02p )3 e-i( ) Op-T -i 

  J Nri3PJ 

Neglecting the first term, at large distances 

+ • ncko -;(fip-nr 1 --no) 
jEo\i 2 sin — e 2 4 2  

E - —   (15-82) 
71-13P n — nee (Oa) 

Using only the first few terms of this expansion will usually give 

results of sufficient accuracy. Using less than some fixed number, 
say N, it is possible to write, if 00 is sufficiently small, 

1 . n(1)0 cpo 
n- sin for in' < N 

Therefore, approximately, 

where 

Recalling that 

1-1(0a) = (- 1)"H' (13a) 

eq. (83) can be written 

n= +N jn( q +) 

n = —N 11(,r(aa) 

2 

Ed, = A e-i(9P-71) e  

A -jE04,0 i 2 
\ rep 

(15-83) 

n =N 

E = A e-i()  1 (j)n cos nl ei.c" (15-84) 

[HF(Pct) ± 2 H(.2) '(3a) 
n=1 

where the time factor has been reinserted. 
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This expression gives the amplitude and phase of the electric 
intensity at any distant point (p, 0). The relative shape of the 
radiation pattern is given by the absolute value of the bracketed 
factor. 

This factor has both real and imaginary parts and may be written 
as C jD. The field intensity pattern shape is then given by the 
absolute value 

.Vc2 + D2 

Figure 15-19 shows the radiation pattern calculated by this method 
for a X/20-wide slot in a 5X/4-diameter cylinder. Shown for corn-

FIG. 15-19. Experimental pattern of a long, X/20-wide, axial 
slot in a long cylinder of diameter 5X/4. Points are calculated for a 
X/20 slot that is 1.5X long. 

parison is the measurement pattern of a 1X-long slot of width 
X/20 in a long, 5X/4-diameter cylinder. The radiation patterns of 
slots in cylinders of other diameters may be found in the literature.* 

Transverse Slots. The same method can be used, although with 
less justification, to predict the radiation pattern perpendicular 
to the cylinder of a transverse slot in a cylinder. In this case 
the electric intensity applied across the slot will be in the z direction. 
For a narrow transverse slot of length L = cteo, the electric field 
across the slot will be assumed to have a distribution along the 

* G. Sinclair, E. C. Jordan, and E. W. Vaughan, " Measurement of Aircraft 
Antenna Patterns Using Models," Proc. IRE, 35, 12, 1451-1462 (1947); E. C. 
Jordan and W. E. Miller, " Slotted-cylinder Antenna," Electronics, 20, 2, 90 
(1947). 
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length of the slot similar to that which exists on a short-circuited 

lossless transmission line. That is, it will be assumed that at p = a 

E z= Eo sin Pa — c5) O<5 < —2 
çbo 

Ez Eo sin Oa (çlr! rj)) 
2 < < ° 

Ez = 0 101 > 

Expressing this function by the appropriate Fourier series, and 

equating it to an expression similar to (79) for Ez leads to the fol-

lowing expression for the field at any point (p, 4)) 

o  eocos (n ) — cos (Pct )  
= — E0 112)(0p) ei'4' (15-85) 

n+_ . He (ea )[ (13a) 2 n 21 

In Fig. 15-20 expression (85) has been evaluated for a narrow 

3X/4 transverse slot in a 5X/4-diameter cylinder. Although the 

agreement between calculated and 

experimental patterns is not as close 

as for longitudinal slots, it is suffi-

ciently good to predict approximate 

radiation patterns. 

15.12 Dipole and Slot Arrays 
around Cylinders.* A class of an-

tenna arrays of practical interest in 

several different fields consists of an 

array of vertical or horizontal dipoles 

or slots about a vertical conducting 

cylinder. In practice, the "conduct-

ing cylinder" may be an existing 

structure such as the spire on a tall 

building, or part of the superstruc-

ture on a battleship, or it may be an 

actual cylinder constructed as part of the antenna system. The 

* The material of this section is based largely on the excellent article by 
P. S. Carter, " Antenna Arrays Around Cylinders," Proc. IRE, 31, 12, 671-693 
(1943). 

FIG. 15-20. Experimental 
pattern of a 3X14-long transverse 
slot in a 5X/4-diameter cylinder. 
Points are calculated. 
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mathematical problem to be solved is that of diffraction of waves of 
various polarizations by a conducting cylinder. 

Line Source and Conducting Cylinder. Mathematically, the 
simplest problem of this type to solve is the two-dimensional problem 
of an infinitely long line source parallel to an infinitely long con-
ducting cylinder. Consider the problem of a very long wire carry-
ing a uniform in-phase current I eie't parallel to a very long conduct-
ing cylinder (Fig. 15-21). The field due the current in the wire 
alone, without the cylinder, can first be obtained by integrating 
over the length of the wire the expression for the vector potential 

LINE SOURCE 

CYLINDER 

FIG. 15-21. Line source parallel to a conducting cylinder. 

due to a current element. For a point P, a distance p from the wire 
(located at the origin), the vector potential will be 

er A. d2 
4r r 

(15-86) 

where r = z2 is the distance from the current element I dz 
to the point P. Expression (86) can be integrated by changing the 
variable. Let 

then 
r = p cosh a 

z2 = p2(zosh2 1) = p 2 sinh2 

z = p sinh a dz = p cosh a da = r da 

I fAz = —47 _,., e--10P cosh a da (15-87) 

This integral is a standard form* and integrates to give 

A» -= -2e- He(5p) 

* E. Jahnke and F. Emde, Tables of Functions, B. G. Teubner, Leipzig, 
Germany, 1938, p. 218; or Dover Publications, New York, 1943, p. 150. 
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For the geometry of Fig. 15-21, the vector potential at P due to 
the line source alone will be 

A„ = CH(j3R) 

where C = — E and R = p2 b2 — 2pb cos rk 
4 

The field due to the line source alone will be called the primary wave. 
The primary wave will induce currents in the conducting cylinder, 
and the field of these induced currents will be called the secondary 
wave. The total or resultant field at any point will be the sum of 
primary and secondary fields. The currents that are induced in 
the cylinder are of such magnitude and phase that the resultant 
electric intensity tangential to the (perfect) conducting cylinder is 
zero everywhere over the surface of the cylinder. In order to apply 
this boundary condition it is necessary to expand the primary wave 
in terms of a sum of cylindrical waves referred to the axis of the 
cylinder. Using the addition theorem* for Bessel functions, this 
expansion is given by 

H 2>(R) = Z enRe(13b)J.(t3p) cos nO for p < b 
n=0 

(oR) = en112)(3p)J,;(0b) cos ne, for p > b 
n=0 

where en is Neumann's number. (e„ = 1 for n = 0; en = 2 for 
n 0 0). 

The secondary waves that originate at the cylinder will be 
cylindrical waves, and the secondary field may be expressed as a 
sum of cylindrical waves originating at the axis of the cylinder. 
Thus for the secondary field 

A., = Z enbh1-1(fip) cos nO 
n=0 

The electric intensity parallel to the surface of the cylinder is given 
by 

E. = —jwµA. (15-88) 

E.g., J. A. Stratton, Electromagnetic Theory, McGraw-Hill, New York, 
1941, p. 372; S. A. Schelkunoff, Electromagnetic Waves, p. 300. 
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since a V/az = 0 for this case. At p = a, E1 (total) and therefore 
A. (total) must be zero. Therefore 

A. (total) = A., ± Az, 

= En[HT(eb)J.(Pa) b„.11(„2) (ea,)] cos n¢ = 

and therefore 
HT(Ob)J ( 3a) 

bn (fia) 

Then at any point P, the total field will be given by 

A. (total) = en[1-P,P(13b)J„(13p) b.112)(Pp)] cos ne 
n-o 

or 

A. (total) = en{iP,P(Sp)[.1.(eb) 19.11 cos ne 
n=0 

(p < b) 

(15-89) 

(P. > b) 

(15-90) 

These expressions give the field due to the infinitely long line source 
and conducting cylinder. The electric intensity is obtained by 
using (88). The magnetic intensity is given by H = curl A. The 
currents on the cylinder can be obtained by evaluating H at p = a. 

Short Dipole near a Long Conducting Cylinder. A more practical 
problem than the one above is the case of a short dipole near a long 
conducting cylinder. If an attempt is made to solve this problem 
in the same manner as the preceding one, it is found that when 
the primary field of the dipole is expanded in cylindrical waves 
originating at the cylinder axis, the result is an infinite series in 
which each term of the series contains an infinite integral. The 
difficulties in evaluating such a series are very great. Fortu-
nately, the problem can be solved by another method, described 
by Carter,* which makes use of the reciprocity theorem. 

In Carter's method the radiation pattern of the dipole at P near 
a conducting cylinder (Fig. 15-22) is obtained as a receiving antenna 
instead of as a transmitting antenna. The wave received from a 
distant source will be essentially a plane wave that is easily expanded 

• P. S. Carter, /oc. cit. 
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into a sum of standing cylindrical waves. Equating the sum of 
primary and secondary tangential electric fields to zero at the 
cylinder surface gives the magnitude of the secondary or reradiated 
waves. The field at the dipole, and hence its open circuit voltage, 
V.., can then be calculated. If it is assumed that the (essentially) 
plane wave is produced by a current I amperes flowing in a properly 
oriented distant dipole at P', application of the reciprocity principle 
shows that a current I amperes in the dipole at P will produce an 
open-circuit voltage, Vo., at P'. In this manner the distant field 
of the transmitting dipole near the cylinder is determined. To 

FIG. 15-22. Dipole near a conducting cylinder. 

obtain the complete radiation pattern it is necessary to consider 
waves of both polarizations arriving at the cylinder. 

Figure 15-22 shows a short vertical dipole near a very long con-
ducting cylinder. Consider a wave, essentially plane, arriving at 
the cylinder from a distant dipole lying in the x-z plane, perpen-
dicular to the radius vector, and at a polar angle O. The magnetic 
field of such a wave will be horizontal and in the y direction, and 
can be represented by 

= eiticzO0 o+r sin 0) 
eje(s oos 0+ p nos ite sin El) (15-91) 

where a wave of unit amplitude has been assumed. For this case 
the magnetic field will be entirely in the horizontal plane, with 
H. = 0, so it will be possible to obtain H from a vector A' = kA. 
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which is everywhere parallel to the z axis. The appropriate relation 
for 11„ is 

M. 
H„ = curly A. — — 

az 
From (92) and (91) 

A., — 
eipc. ein 0+s nos 0) jee (p sin 0 coo 0+0 coo 8) 

ja sin 0 — [3 sin 0 

Using a standard Bessel function expansion 

(15-92) 

efOpein 01=4,) = en (i) n.f.(ep sin 0) cos net, 

0 

the expression for the vector potential due to the primary wave 
becomes 

A., — 
e i °" 8 

En(i) n.rn(i3p sin 0) cos ncts 
p sin 0 

n 

(15-93) 

In this expression the primary wave has been expanded in terms of 
standing waves (Bessel functions of the first kind) centered at the 
origin. The secondary waves, produced by induced currents on the 
cylinder, will have the same form, but will be outward traveling 
waves. For such waves the In's in (93) will be replaced by He's, 
so that for the secondary waves 

A jc, died COO • 

sin bnEn (i) nHe (OP sin 0) cos no 
p  

n 

where the b.'s are arbitrary constants that must be evaluated from 
the boundary conditions. The total wave function is 

•ce• z's o 
A, (total) — 

fl sin 

E„(j).[J„(01, cm n 0) ± bni42)(0p sin 0)] cos ne (15-94) 
n=0 

Recalling that 
div A = —jcuE V 

the electric intensity can be expressed in terms of the vector poten-
tial A by 
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E = —jwµA — grad V 

= —j4 .tA — grad div A 
WE 

so that 

= —jwµA. — am-x 
WE aZ2 

= [ — jwµ — 2. (- 132 cos2 0)] Az = —jonh sin20 A, 
WE 

Since Ez = 0, and therefore A. = 0 at p = a, it follows from (94) 
that 

b J.(fia sin 0)  
. — 

He Oa sin 0) 

Then the electric intensity at a vertical dipole located near the 
cylinder at (b, 0) will be 

= n sin 

n=0 

By the reciprocity theorem this will also be the expression for the 
distant field of a vertical dipole, located a distance b from the 
cylinder. Therefore the relative radiation pattern for a short 
vertical dipole near a long vertical cylinder is 

J 
enci>"[J.(eb sin 0) 

1-1;,2) (13a sin 0) " 
H(2) (0b sin 0)] cos nci, 

.(f3a sin 0)  

00 

E9 = sin O (i)n kn(tib sin 0) 
no 

J.(0a sin 0)  (2 H'((3b sin 01  cos n4, (15-95) 
11(„2)(pa sin 0) " 

Expression (95) gives the radiation pattern for all values of 0. For 
the special case of 0 = 90 degrees (the horizontal pattern) it should 
be observed that expression (95) gives the same pattern as was 
obtained with the infinitely long wire near the cylinder. This 
result, obtained here for a special case, is in fact quite general. For 
example, the horizontal pattern of a finite-length axial slot in the 
vertical cylinder is independent of the length of the slot, and is the 
same as the pattern for an infinitely long slot. 

Expression (95) also gives (exactly) the vertical pattern of a 
short dipole near the cylinder. This result may be used as the 
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approximate vertical pattern of a half-wave dipole at the same 
location. The vertical pattern of a vertical array of dipoles may 
be obtained by using this pattern as the unit pattern and by apply-
ing the principle of multiplication of patterns. 

The radiation patterns of horizontal and radial dipoles also may 
be determined by this method. In general, it is necessary to con-
sider both polarizations for the arriving plane wave. 

Application to Slots in Cylinders. By replacing the electric 
field distributibn across a slot by its equivalent magnetic-current 
sheet, it is evident that the above method should have direct appli-
cation in obtaining the patterns of slots in cylinders. The problem 
of obtaining the radiation pattern of a slot in a cylinder is now just 
that of determining the field patterns produced by a magnetic 
dipole adjacent to the cylinder. The solution carries through, just 
as it did for the electric dipole, except for two differences. The 
distant dipole in this case will be a magnetic dipole, which results 
in an entirely horizontal electric intensity at the cylinder, so that 
the fields can be expressed in terms of an electric vector potential F 
which is in the z direction. When the boundary conditions are 
applied at the surface of the cylinder, they cannot be applied on H, 
(corresponding to the application on E, for the electric dipole), but 
must be applied to E. When the problem is worked through, 
keeping these facts in mind the expression obtained for Ho due to a 
short axial slot in a long cylinder is 

Ho = — sin OE.(j)n[J.(13a sin 0) 
n = 0 

H,2)(13a sin 0)  I  — J.'(p cos n4 (15-96)a sin 0)  '1 
He' (13a sin 0) 

which should be compared with eq. (95). In expression (96) the 
magnetic dipole has been allowed to approach the surface of the 
cylinder so that b = a. 

Remembering that 1/2) = J. — jN. and using the following 
Bessel function relation* 

2 
J.N.' — J. 'N. = J.+1N. — J.N.+1 = - Tx 

*S. A. Schelkunoff, Electromagnetic Waves, p. 56, eq. 7-13. 
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eq. (96) reduces to 

He = .K  en(i) „ [  cos ncf,  

sin O H' ( a sin 0) n =0 

For O = 90 degrees 

p = —He = —Ken(j)n  cos /u  
Hmea)n = LI 

(15-97) 

Expression (97), which is for a short axial slot in along cylinder, 

gives exactly the same pattern in the horizontal plane (0 = 90 
degrees) as was obtained for the infinitely long slot of eq. (84). 

PROBLEMS 

1. A coaxial line has an inner conductor of (outer) radius a = h in., 
and an outer conductor of (inner) radius b = 2 in. Determine the power 
radiated at 100 mc when the voltage across the open end is 1000 volts, 
and find the value of an equivalent resistance I? that, when connected 
across the open end, would absorb the same amount of power as is radiated. 

2. Derive the expressions ( 19, 20, and 21) for the electromagnetic field 
of a Huygen's source by direct use of equations (11 and 12). 

3. Integrate the radiation fields due to all the Huygen's sources on an 
infinite plane to show that a plane wave results. 

4. Using an " equivalent radius" a = d/4 for a flat-strip dipole of 
width d, calculate the approximate impedance of a slot in a large conducting 
plane at 300 mc. The slot is 35 cm long and 1 cm wide. 

5. Using Carter's method, derive eq. (96) for a short slot in a cylinder, 
following the procedure indicated in the text. 

6. Verify that eq. (96) reduces to the form shown in (97). 

7. From first principles prove that the horizontal pattern of an axial 
slot in an infinitely long vertical cylinder is independent of the length of 
the slot. Hint: Use the reciprocity theorem. 

8. Verify Babinet's principle (the simple version used in optics) for 
the case of diffraction at a straight-edge. That is, show that the vector 
sum of the two diffracted fields from two complementary straight-edges is 
equal to the free-space field. 
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CHAPTER 16 

GROUND WAVE PROPAGATION 

The energy radiated from a transmitting antenna may reach 
the receiving antenna over any of several possible propagation 
paths, some of which are indicated in Fig. 16-1. That portion of 
the energy that arrives at the receiver after reflection by the iono-
sphere is termed the sky wave. Waves that are reflected at abrupt 
changes in the effective dielectric constant of the troposphere (that 

DIRECT REFLECTED 
WAVE WAVE 

FIG. 16-1. Some possible propagation paths. 

region of the atmosphere within 10 kilometers of the earth's surface) 
are known as tropospheric waves. Energy propagated over all other 
paths is considered to be ground wave. The ground wave may be 
divided up into a space wave and a surface wave. The space wave 
is made up of the direct wave, the signal that travels the direct path 
from transmitter to receiver, and the ground-reflected wave, which is 
the signal arriving at the receiver after being reflected from the 

608 
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surface of the earth. The space wave also includes that portion 
of the energy received as a result of diffraction around the earth's 
surface and refraction in the upper atmosphere. The surface wave 
is a wave that is guided along the earth's surface, much as an 
electromagnetic wave is guided by a transmission line. Energy 
is abstracted from the surface wave to supply the losses in the 
ground; so the attenuation of this wave is directly affected by the 
constants of the earth along which it travels. When both antennas 
are located right at the earth's surface, the direct and ground-
reflected terms in the space wave cancel each other, and transmis-
sion is entirely by means of this surface wave (assuming no sky 
wave or tropospheric wave). The surface wave is not shown in 
Fig. 16-1. 

The factors that affect propagation over each of these paths will 
be considered in detail. As a first step, the expressions for the 
reflection of a plane radio wave at the surface of the earth will be 
obtained. 

16.01 Reflection at the Surface of a Finitely Conducting Plane 
Earth. The problem of reflection at the surface of a perfect (non-
conducting) dielectric has already been solved and the reflection 
factors obtained for both perpendicular (horizontal) and parallel 
(vertical) polarizations. The earth, although not a good conductor 
in the sense that copper and silver are good conductors, is by no 
means a perfect dielectric, and its finite conductivity must be taken 
into account. 

For a medium which has a dielectric constant e and a conductiv-
ity cr, Maxwell's equation I is 

curl H = --1?• GrE (16-1) 

If the variation of E with time is sinusoidal, that is, if the expression 
for E at any point may be written 

E = E0i'" (16-2) 

Then É = jcoEoeiwg 
= jwE (16-3) 

Putting this in eq. ( 1), there results 

curl H = --)É 
.70) 

= (16-41 
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From eq. (4) it is apparent that a partially conducting dielectric 
can be considered as a dielectric that has a complex dielectric 
constant e', where 

= E ( 1 ± 
34)E 

The wave equations and reflection coefficients derived for perfect 
dielectrics will apply directly to dielectrics having loss or conduct-
ance, if the dielectric constant e is replaced by an equivalent complex 
dielectric constant 

é = 

Reflection Factor for Perpendicular (Horizontal) Polarization. 
The reflection factor Rh for a plane wave having horizontal or 
perpendicular polarization is obtained directly from equation (5-72). 
It is 

Rh — — 
cos e — Ni(e —e) — E sin2 

Ve; cos e •NI(e —e) — Et, sin2 

For the case of a wave incident at the surface of the earth, medium 1 
is air and so e l has been replaced by e,, the dielectric constant of 
free space. Also the dielectric constant E2 of the second medium 
has been replaced by the complex dielectric constant [E (01jco)]. 
O is the angle of incidence measured from the normal. In dealing 
with reflection by the earth, it is usual to express the direction of the 
incident wave in terms of the angle e which is measured from the 
earth's surface. That is 

= 90° - 

so that 
cos O = sin 1,1, sin O = cos 

Equation (5) may then be written 

sin e — \i( —et, COE, — 211 — cos2 
Rh — 

E 

+ Ni( E — — — COS2 
Et, WEv 

(16-5) 

(16-6) 
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where (5) has been divided through by Eit. It is also customary 
to state the earth's dielectric constant relative to that of free space 
by means of a relative dielectric constant Er, where 

E 
Er = — 

e. 

(This is the familiar dielectric constant of electrostatic units where 
e. = 1.) The final form of the expression for the reflection factor 

TRANSMITTING 
ANTENNA ( I) 

0? 

- 
DIRECT WAVE RECEIVING 

ANTENNA ( 2) 

\ Ez 

GROUND REFLECTED 
WAVE / NE 

)4 

; GRouND 
  d   

Fie. 16-2. Geometry for direct and ground-reflected waves. 

for horizontal polarization is 

sin 4, —  — Ix) — coo 4, 
= 

sin V(Er — jx) — cos2 

18 X 102u 18 X 103u 
where x = = 

WEv 

(16-7) 

Reflection Factor for Parallel (Vertical) Polarization. In a man-
ner similar to the above, the reflection factor for parallel or vertical 
polarization is obtained from eq. (5-75). It is 

(e, — jx) sin e — V(e,. — jx) — c062 1,1/ 
R. — (16-8) 

(Er — jx) sin e V(Er — jx) — cos' e 

It is evident from eqs. (7) and (8) that the reflection factors are 
complex and that the reflected wave will differ both in magnitude 
and phase from the incident wave. The manner in which the reflec-
tion factors vary with angle of incidence is shown in Figs. 16-3 and 
16-4. The various curves are for different frequencies. A study 
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of these figures yields some interesting information. When the 
incident wave is horizontally polarized (Fig. 16-3), so that E is 
perpendicular to the plane of incidence and parallel to the reflecting 
surface, the phase of the reflected wave differs from that of the 
incident wave by nearly 180 degrees for all angles of incidence. For 
angles of incidence near grazing (4, = 0), the reflected wave is equal 
in magnitude but 180 degrees out of phase with the incident wave 

'4 
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Fla. 16-3. Magnitude and phase of the plane wave reflection 
coefficient for horizontal polarization. The curves are for a 
relatively good earth (o. = 12 X 10-3, e, = 15) but can be used 
to give approximate results for other earth conductivities and 
other frequencies by calculating the appropriate value of x = 18 
X 103cr/f... 

for all frequencies and all ground conductivities. As the angle of 
incidence is increased, both the magnitude and phase of the reflec-
tion factor change, but not to any large extent. The change is 
greater for the higher frequencies and lower ground conductivities. 
The curves of Fig. 16-3 are drawn for an earth having a "good" 
conductivity and for a range of frequencies from 0.5 to 1000 mc. 
The relative dielectric constant Er varies from about 7 for a " poor" 
(low conductivity) earth to about 30 for a " good" (high conductiv-
ity) earth, so an average value of Er = 15 has been used. 
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FIG. 16-4. Magnitude and phase of the plane wave reflection 
coefficient for vertical polarization. The curves are for a rela-
tively good earth (cr = 12 X 10-3, r = 15) but can be used to 
give approximate results for other earth conductivities by calcu-
lating the appropriate value of z= 18 X 103o/f,.. 

90 

Figure 16-4 shows the manner in which the reflection factor Ro 
for vertical polarization varies with angle of incidence. In this 
case the electric vector E is parallel to the plane of incidence and 
the magnetic vector H is parallel to the boundary surface. The 
results are quite different from those obtained for horizontal polari-
zation. As before, at grazing incidence the electric vector of the 
reflected wave is equal to that of the incident wave and has a 
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180 degree phase reversal for all frequencies and all finite values of 
conductivity. However, as the angle 1,/, increases from zero, the 
magnitude and phase of the reflected wave decrease rapidly. The 
magnitude reaches a minimum and the phase goes through — 90 
degrees at an angle known as the pseudo-Brewster angle (or just 
Brewster angle) by analogy with the perfect dielectric case. At 
angles of incidence above this critical angle, the magnitude increases 
again and the phase approaches zero. For very high frequencies 
and low conductivities (x e,), the Brewster angle has very nearly 
the same value as it has for a perfect dielectric. This can be seen 
from eq. (8). (For Er = 15, Brewster's angle occurs at Isti = 14.5 
degrees for the perfect dielectric case.) For lower frequencies and 
higher conductivities the Brewster angle is less, approaching zero 
as x becomes much larger than e,.. For a perfect conductor x is 
infinite and the Brewster angle occurs at # = 0 degrees. 

When the incident wave is normal to the reflecting surface 
= 90 degrees), it is evident that there is no difference between 

horizontal and " vertical" polarization. The electric vector will 
be parallel to the reflecting surface in both cases and the reflection 
coefficients R. and Rh should have the same values. Comparison 
of Figs. 16-3 and 16-4 shows that, whereas they do have the same 
magnitude, there is a 180 degree difference in phase. This comes 
about from the different definitions of positive direction for the 
reflected wave in the two cases and requires some explanation. For 
the case of reflection of a horizontally polarized wave from the 
surface of a perfect conductor, if the electric vector of the incident 
wave is in the positive x direction (Figure 5-6a), the electric vector 
of the reflected wave will also be in the positive x direction, but will 
be 180 degrees out of phase with the incident wave. This could 
also be interpreted as a wave in phase with the incident wave, but 
having its electric vector in the opposite direction. In the vertical 
polarization case, the positive directions for incident and reflected 
electric intensities are usually assumed to be as shown in Fig. 5-6b, 
that is, both in the positive z direction when tp = 0. As # increases 
from zero, the horizontal components of both electric fields increase, 
but one horizontal component is positive and the other negative. 
At # = 90 degrees the electric intensities are wholly horizontal, but 
oppositely directed, one being in the positive y direction and the 
other in the negative y direction. From Fig. 16-4b the phase angle 
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FIG. 16-6. Ground conductivity in the United States. Numbers on the legend, when 
multiplied by 10-3, indicate ground conductivity in mhos/meter. (To obtain ground 
conductivity in e.m.u. multiply the numbers by 10-14.) (Map by FCC.) 
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between these fields at the surface of the reflector is zero degrees 
(for a perfect conductor). But two vectors oppositely directed in 
space and having the same time phase give the same result as two 
vectors having the same direction and opposite phases; so this 
result is identical with that obtained from Fig. 16-3b at e = 90 
degrees. 

For angles of incidence near grazing (4, nearly equal to zero), a 
more accurate plot of reflection coefficients than those given by 
Figs. 16-3 and 16-4 is often required. In Fig. 16-5, the magnitudes 
and phases of the reflection coefficients are shown* on a logarithmic 
scale for a relative dielectric constant Er = 10. 

Figure 16-6 shows how the earth's conductivity varies through-
out the United States. In general, hilly or mountainous regions 
have low conductivity (from 10-3 to 5 X 10-3 mho/m) whereas the 
flat prairies are regions of relatively high conductivities (from 
10 X 10-3 to 30 X 10-3 mho/m). The curves of Figs. 16-3 and 
16-4 may be used with other conductivities than those shown on the 
figures by computing the appropriate values of x and interpolating 
between curves. For example, the curve labeled x = 18 corre-
sponds to a frequency of 12 me and a fairly good ground conductiv-
ity (0- = 12 X 10-3 mho/m). Since x = (18 X 103 X u)/f„, it is 
seen that this same curve would also apply for 1 me over an earth 
having a conductivity cr = 1 X 10-3 mho/m (that is a very poor 
earth). The curves of Fig. 16-5 are labeled directly in terms 
of x. 

16.02 Space Wave and Surface Wave. The general problem of 
radiation from a vertical antenna above a plane earth having finite 
conductivity was originally solved by Sommerfeldt in 1909. Sim-
ilar solutions have since been obtained by other writers using differ-
ent attacks. All of these leave the solution in complicated forms 
difficult to evaluate. 

*These curves are from the article by Burrows, which also shows curvea 
for other values of Er. 

C. R. Burrows, " Radio Propagation Over a Plane Earth," Bell System 
Tech. J., 16, 45 (1937). These curves are also shown in F. E. Terman, Radio 
Engineering Handbook, p. 700-707. In the curves of Fig. 16-5 as well as those 
of Figs. 16-2 and 16-3 the phase angle shown for the reflection coefficient is the 
angle by which the reflected wave leads the incident wave. 

A Sommerfeld, " The Propagation of Waves in Wireless Telegraphy," 
Ann. Physik, 28, 665 (1909). 
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Norton* has reduced the complex expressions of the Sommerfeld 
theory to a form suitable for use in engineering work. In his 
original discussion, Sommerfeld stated that it was possible to divide 
the ground-wave field intensity into two parts, a space wave and a 
surface wave. The space wave predominates at large distances 
above the earth, whereas the surface wave is the larger near the 
earth's surface. As given by Norton, the expressions for the electric 
field of an electric dipole above the surface of a finitely conducting 
plane earth are in a form that clearly shows this separation into 
space and surface waves. At large distances from the dipole, such 
that the terms containing the higher orders of 1/Ri and 1/R2 may 
be neglected, the expressions for the vertical dipole above a finitely 
conducting plane earth reduce to 

e--it3R) 
= j30$1 dl [cos2 (-10R1 R°  Ri R2 

e-011, 
± (1 — R„)(1 — u2 u4 cos2 1P)F (16-9) 

E„ = —j30f3/ dl [sin e cos 11/ (e—R' _Fi1 .R 1  7 e-02 

— cos 1,141 — R„)u V1 — cos2 F e—R113:2 + sin2 )] (16-10) 

In these expressions, E„ is the z component of electric fie d and E„ 
is the radial component (cylindrical co-ordinates, see Fig. 16-2); R1 
and R2 are the distances from the &pole and its image, respectively, 
to the field point P. R„ is the plane wave reflection coefficient, the 
expression for which has already been developed. F is an attenua-
tion factor that depends upon the earth's constants and upon the 
distance to the receiving point. It will be discussed under " surface 
wave." Also 

1  
u2 — 

Er + 

where x — 
1.8 X 104u mho/m 

u = conductivity of the earth, mho/m 
e,. = e / e. = relative dielectric constant of the earth 
= 27/X 

*K. A. Norton, " The Propagation of Radio Waves over the Surface of the 
Earth and in the Upper Atmosphere," Proc. IRE, 24, 1367 (1936); Proc. IRE, 
25, 1203 (1937); Proc. IRE, 26, 1192 (1937). 
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Inspection of eqs. (9) and (10) shows that the total field may be 
divided into two parts, a " space wave," given by the inverse-
distance terms, and a " surface wave" that contains the additional 
attenuation factor F. Combining (9) and (10) and separating into 
these two types of waves, there results 

Etote vv. = E4, (space) = N/E„2 (space) -F 4,2 (space) 

, e-isR1 , » e-10e) 
= j30/3/ dl cos ip R --f- nv (16-11) 

1 R2 

Etotnl •urfae• = j30i9I dl(1 — 1?,)F 
R2 

•Nh. — 2U2 (C052 %)le + 5111 2 10 (16-12) 

In equations (11) and (12), terms involving the factor u4 have 
been discarded. 

The Space Wave. The expression for the space wave of a vertical 
dipole over a plane earth as given by eq. ( 11), consists of two terms. 
The first term e-oRi/Ri represents a spherical wave originating at 
the position of the dipole. e-mi is the phase factor (the time factor 
em has been dropped) and 1/Ri is the inverse-distance factor. 
Similarly the second term represents a spherical wave originating 
at the position of the image of the dipole, but in this case the magni-
tude and phase of the wave have been modified by the plane wave 
reflection factor Rv. Thus the space wave part of the field consists 
of a direct wave and a reflected wave, and the expression for the 
reflected wave contains the reflection factor R, that would apply 
if the incident wave were plane. When the dipole is located far 
from the earth, the incident wave is essentially a plane wave, and, 
in this case, the space wave field is the total (ground wave) field. 
On the other hand, when the dipole is located close to the earth, the 
incident wave will not be plane, and the expression for the total 
reflected field must contain terms in addition to those given by the 
space wave field. These additional terms are just those which 
account for the surface wave. 

Space Wave Patterns of a Vertical Dipole. In order to determine 
the effect of a finitely conducting earth upon the radiation pattern 
of an actual antenna, it is desirable first to investigate the radiation 
pattern of an elementary dipole above the earth. Expression (11) 



§16.021 GROUND WAVE PROPAGATION 621 

gives the space wave field of a vertical dipole located at any height 
above a finitely conducting earth having the reflection coefficient 
R. The expression has been evaluated and plotted as a function 
of frequency for a range of ground conductivities and several dipole 
heights (Figs. 16-7 to 16-9). 

E SPACE n. too 
[7, co 

17. 

2o* 

2 .4 1.6 2.0 

1-R)COSik SURFACE [n ' n.100 

FIG. 1G-7. Vortical radiation pattern of a vertical dipole at 
the surface of an earth having finite conductivity. The parameter 
n = x/fi. and an average value e, = 15 has been used. Both 
space wave and unattenuated surface wave terms are shown. 

Figure 16-7 shows the vertical radiation pattern of a vertical 
dipole located at the surface of a finitely conducting earth. The 
parameter n = x/er, where as before 

o. 18 X 103cr 
x — 

ov fino 

u is the earth conductivity in mhos per meter andf,, is the frequency 
in megacycles. An average value of 15 has been used for Er, the 
relative dielectric constant of the earth. The curve n = co repre-
sents the case of a perfectly conducting earth. n = 100 represents 
conditions at low broadcast frequencies over a good (high conductiv-

ity) earth. n = 10 corresponds to high broadcast frequencies over 
an earth of average conductivity. The curve n = 1 represents con-
ditions at the medium-high frequencies. The solid curves are the 
space wave patterns. Shown dotted is the unattenuated surface 
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wave curve, which will be discussed later. Figs. 16-8 and 16-9 
show the vertical radiation patterns, which result when the dipole 
is elevated one-quarter wavelength and one-half wavelength above 
the earth. 

01 61f 

.2 

E SURFACE En I 
n.100 

i4 1.8 
flœ 

n.100 I E SPACE 
17.1 

FIG. 16-8. Vertical radiation of a vertical dipole located a 
quarter wavelength above an earth of finite conductivity. n = x/e, 
and e, = 15. 

Fro. 16-9. Vertical radiation pattern of a vertical dipole one 
half wavel3ngth above an earth of finite conductivity. n = x/e, 
and Er = 15. 

From these figures it is apparent that the chief effect of the 
finite conductivity of the earth on the vertical radiation patterns 
occur at the low angles where the space wave is much reduced from 
its value over a perfectly conducting earth. This is because of the 
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phase of the reflection factor R., which changes rapidly for angles 
of incidence near the pseudo-Brewster angle. Above this angle the 
phase of R. is nearly zero, whereas below this angle near grazing 
incidence the phase of R. approaches — 180 degrees. The phase 
of R. is always — 90 degrees at the pseudo-Brewster angle. This 
rapid change of phase of the reflection coefficient near the critical 
pseudo-Brewster angle is responsible for many of the propagation 
characteristics peculiar to vertical polarization. 

scr 
n•co 
n.100 
n.10 
n• 1.0 
n • at 

.25 .5 75 lb I 45 2.0 

16-10. Vertical radiation (in the plane perpendicular to 
the axis of the dipole) of a horizontal dipole a quarter wavelength 
above an earth having finite conductivity, n z/e„ and er = 15. 

The patterns shown in Figs. 16-7 to 16-11 have been plotted 
for equal currents in the dipoles. A small radiated field, as for 
example in the case of n = 1, indicates small power radiated for a 
given current and, therefore, a low radiation resistance. For a 
given power radiated the dipole currents would be larger for this case 
(n = 1) and the resultant field would also be larger than shown. 
The relative shape of the patterns shown is the important thing; 
their relative size has less significance. 

Space Wave Patterns for the Horizontal Dipole. The expression 
for the space wave field of a horizontal dipole in the plane perpen-
dicular to the axis of the dipole is similar to that for the vertical 
dipole, except that R. is replaced by Rh and the cos 1P factor is 
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absent. It is 

R2 / 
= j30i9/ dl (e--Ri81R1 Rh e-1"2\ 

The absence of the cos factor is due to the fact that the horizontal 
dipole by itself is a uniform radiator in the plane perpendicular to 
its axis. 

Figs. 16-10 and 16-11 show the space wave patterns of a hori-
zontal dipole at heights of one-quarter wavelength and one-half 
wavelength above a finitely conducting earth. These are the 

n.0.1 
7e 5e 

5e 80f 60° 

.10 

30° 

100 

le 

FIG. 16-11. Vertical radiation pattern (in the plane perpen-
dicular to the axis of the dipole) of a horizontal dipole one-half 
wavelength above an earth having finite conductivity, n x/er 
and er = 15. 

patterns in the plane perpendicular to the axis of the dipole. The 
effects of finite conductivity is much less marked than in the vertical 
dipole case because the reflection factor Rh never deviates much 
from the value — 1, which it has for the perfect conductor case. 
In the plane parallel to the axis of the dipole, the electric field is 
given by the expression 

Eh.p... j30,91 dl sin ip (e--10R1 e-isR) R I R , .R5 

In this case the incident wave is polarized parallel to the plane of 
incidence, and the reflection factor R, for " vertical" polarization is 
required. The minus sign comes about from the assumed positive 
directions of electric fields for the incident and reflected waves, as 
explained earlier in the chapter. Note that in this plane, parallel 
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to the dipole axis, the electric field of a horizontal dipole is " ver-
tically" polarized. 

16.03 The Surface Wave. The expressions for the electric 
field of a vertical dipole above a finitely conducting plane earth 
were given in eqs. (9) and (10). When the dipole is at the surface 
of the earth, the expression for the surface wave part of this field 
reduces to 

j30/91 d1(1 — R„)F (ei±j") 

u2) r cos ( e 1 sin22  
[k(1 u N/1 — u2 cos' IP] (16-13) 

In this expression R is the distance from the dipole to the point at 
which the field is being considered (R » X). k and r are unit 
vectors respectively parallel to and perpendicular to the vertical 

dipole. Also 

F = [1 + j NArcu e-w erfc (—j Vio)] 

jeu2(1 — /42 cos2 1,b) [ 1  sin 1P  
— 2 u — u2 cos2 4.1 

1 
U 2   

er ± ix 

18 X 103« 
x — 

f.e 

erfc (—j VC-o) 
2  

1/7r f dv 

The function F introduces an attenuation that is dependent upon 
distance, frequency, and on the constants of the earth along which 
the wave is traveling. For distances within a few wavelengths of 
the dipole, F has a value of very nearly unity, and it approaches 
unity as the distance R approaches zero. Putting F = 1 in eq. 
(13), it is possible to evaluate and plot what is called " unattenuated 
surface wave." This is shown in Fig. 16-7 for two values of the 
parameter n. For low frequencies and good ground conductivity 
(n -- 100), the unattenuated surface wave is very small, except for 
angles near grazing (4, = 0). At ly = o, it has the value 2. At this 
same angle the space wave is always zero because the direct and 
ground-reflected waves cancel. For higher frequencies and poorer 
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conductivity (n = 1), the unattenuated surface wave still has a 
value of 2 at # = 0, but it also has appreciable value at high angles 
as well. However, this wave attenuates very rapidly with distance 
because of the factor F. 

At the surface of the earth (ip = 0), the absolute value of F has 
been evaluated and is called the " ground wave attenuation factor." 
It is designated by the symbol A. That is, at tp = 

A = 1F1 

= 11 - 1 - LV-Frcue erfc (—j Nrio)14,-0 

= 11 N/rPi erfc ( —j /)j (16-14) 

pl is the value of co at the angle e = O. In general, it is a complex 
quantity and may be written 

pl = p 

where p is known as the numerical distance and b as the phase 
constant. 

Evaluating w at 1P = 0 shows that 

7T-R cos' b"  irR 
p — cos b, --)7x- cos b 

b = (2h" — b') tan-1 er ±x 1 

where h" = tan-1 ir 

h' = tam-'  C°82 t'e 

18 X 103cr 
x — 

= —x 1 

The Surface Wave Attenuation Factor A. A plot of the ground 
wave attenuation factor A, as given by eq. (14), is shown in Fig. 
16-12 in terms of p and b. The numerical distance p depends 
upon the frequency and the ground constants, as well as upon the 
actual distance to the transmitter. It is proportional to the 
distance and to the square of the frequency and varies almost 
inversely with the ground conductivity. The phase constant b is a 
measure of the power factor angle of the earth (the actual power 
factor angle is b"). When the earth constants and the frequency 
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are such that x » Er, the power factor angle will be nearly zero, and 
the impedance of the earth will be mainly resistive. This is the 
case for average or better-than-average earth at broadcast fre-
quencies. At very high frequencies and over poor earths the con-
dition Er >> x may be obtained, and the earth impedance will then be 
reactive. It will be noticed that the same earth which acts as a 
conductor at very low frequencies will act as a dielectric that has a 
small loss at very high frequencies. 
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10-12. Ground wave attenuation factor A. 

The attenuation factor A can also be represented approximately 
by the following empirical formulas: 

For b < 5 degrees, 

2 ± p 0.6p2 
(16-15) 

For all values of b, 

A '."--' A1 — sin b U e-%P .\/- (16-16) 

For b < 5 degrees and p < 4.5 (that is, for short numerical 
distances), 

A , e-0.43p+Mle (16-17) 

This relation shows that A varies almost exponentially with p for 
short numerical distance 
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For b < 5 degrees and p k 4.5, 
1  

A  (16-18) — 2p — 3.7 

This relation shows that at large numerical distances A is inversely 
proportional to p. This means that at large numerical distances 
the field strength of the surfce wave will vary inversely as the 
square of the distance from the transmitter. 

Surface Wave from a Horizontal Dipole. The expressions for 
the space and surface waves of a horizontal dipole at the surface 
of a finitely conducting plane earth are given by Norton as 

dl e-10R—wo 
Espoe = [cos cf, sin 11/(1 — R„)It + sin 0(1 + RIM 

(16-19) 

j30/ dl e—ion—c") { cos 4,(u -V1 — u' cos' tp) ( 1 — ROF — 

cos ,p ( i. + sin; ) k + u V1 — u2 cos2 e [ 

1 — six-(1'1P  
(1 — R.)-u2 

1 — u' : F) o ± sin 4)(1 — Rh)G4 I (16-20) 
1os: RAW 

where G = [1 - - EjNfrry e—v erfc (—j Vi))] 

v _ jf3R(1 — u2 cos2,,b) (1 +     u sin  

2u2 N/1 — u2 cos' id 

RI, is the plane-wave reflection factor for horizontal (perpendicular) 
polarization, k, p, and 4, are unit vectors in the cylindrical co-ordi-
nate system. The dipole lies perpendicular to k and in the plane 
0 = 0. Inspection of the expressions shows that in the principle 
plane normal to the dipole (4) = 90 degrees) the electric field is 
entirely in the 0 direction, that is, it is horizontally polarized. In 
the direction e = 0, the electric vector lies in the plane cf, = 0 
("vertical" polarization). For intermediate directions the field is 
elliptically polarized. 

The function G is an attenuation function for horizontal polar-
ization. At large numerical distances G approaches u4F, and since 
u2 = 1/(E, ± lx) is always much less than unity, it is evident that 
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the horizontally polarized surface wave will be attenuated more 
rapidly than a vertically polarized wave of the same frequency. 

In practical computations the attenuation of a horizontally 
polarized wave along the surface of the earth is determined by using 
the same ground wave attenuation factor A as is used for vertical 
polarization. However, now the numerical distance p and phase 
factor b are given by 

w•R  x  
P X cos b' 
b = 180° — h' 

where, as before, 
— 18 X 10'v 

x  
fm. 

b' tan-1 e' ; 1 

For a given actual distance R, the numerical distance p will be 
greater for horizontal polarization than for vertical polarization. 
This means greater attenuation for the horizontally polarized surface 
wave than for the vertically polarized wave. At low and medium 
frequencies, where x is large, this difference in attenuation is very 
great and only vertically polarized surface waves need be considered. 
In this frequency range the antennas used will be designed to radiate 
and receive vertically polarized signals. At high and very high 
frequencies the attenuation of the surface wave is very large for 
both polarizations, with the result that surface wave propogation 
is limited to very short distances. However, in this frequency 
range elevated antennas are used, and propagation paths are pro-
vided by the space wave. For this wave either vertical or horizontal 
polarization may be used. 

16.04 Elevated Dipole Antennas above a Plane Earth. When 
both transmitting and receiving antennas are located at the surface 
of the earth, the angle 4, of the ground wave propagation path 
between the antennas is zero. Under these conditions the earth's 
reflection coefficient is — 1, so the direct and ground-reflected waves 
cancel. Propagation is then entirely by means of the surface wave. 
This is the case, for example, in the daytime reception of ordinary 
broadcast program signals. At high and very high frequencies, 
however, where a wavelegth becomes sufficiently short, it is pos-
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sible to elevate the antennas a quarter-wavelength or more above 
the ground. When the antennas are elevated, the space wave is 
no longer zero, and the resultant signal at the receiving antenna is 
the vector sum of space and surface wave. 

Consider the case of two vertical antennas elevated at heights 
hl and h2 above the surface of the earth (Fig. 16-2). From eq. (9) 
the vertical component of the electric field at the receiving antenna 
(2) due to a vertical dipole at ( 1) will be 

c-joRI e-ent e-i0R1 
E. = j30/3/ dl cos2 4/[—R1 R,— — -,5 + (1 — Ev)F „ 

11,2 11,2 (16-21) 

In expression (21) u2 and u4 have been neglected as being small 
compared with unity. The first two terms of the expression con-
stitute the space wave, and the third term is the surface wave. 
This expression is accurate at distances from the antenna larger 
than a few wavelengths. However, as it stands, it is rather involved 
for actual computations. Fortunately, the case of interest in 
practice is usually that in which the distance between antennas is 
very large compared with their heights above the ground, that is, 
for which 

r » (h1 h2) 

Under these circumstances considerable simplification 
thon (21) results. The following relations will then 
mately. 

cos tp = 1 
R, = R2 = d (for the magnitude factor in the 

Also for large numerical distances, the asymptotic 
the error function erfc can be used so that 

F = 1 ± jVr-rw erfe (—j Vi-o) 

1 1.3 
1 m 2w m  (10)2 -1- • • • 

= 1 
hl h2 

1 -I-
uR2 

where uR2>> (h1 h2) and Icej > 20. 

of the expres-
hold approxi-

denominator) 

expansion for 
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Introducing these approximations into (21) gives 

(1 -  - j301 dl le--7w (16-22) 

The expression for the numerical distance co for this case will be 

= (1 + R2uh Vi +1h-2 u2)2 
(16-23) 

When the distance between antennas is very large compared with 
their height above the ground, it is evident from an inspection of 
expression (23) that the numerical distance co is very nearly equal 
to pi, the numerical distance along the surface of the earth. Also 
under the same conditions the attenuation factor F, which is 
approximately equal to 1/2co, will not change much with height 
of either transmitting or receiving antenna. It will have a value 
approximately equal to A, the surface wave attenuation factor of 
Fig. 16-12. Thus, for elevated antennas, the magnitude of the 
surface wave will be given approximately by 

Ez surface 3.3001 dl (1 - j30/3Id (1 _ RD)A (16-24) 
d \ 2p d 

as long as the distance between antennas is very much greater than 
their heights above the ground. 

Expression (22) has been obtained for short vertical dipoles, but 
it can be shown that it also holds* for elevated half-wave dipoles 
under the same conditions if dl is replaced by )1/4//r, the effective 
length of the half-wave dipole. 

The corresponding expression for horizontal half-wave dipoles 
would be 

Eo = j60 sin Rh CI"' + (1 - Rh)G e-iinel (16-25) 
d 

At large numerical distances (co > 20), the attenuation factor G 
approaches u4F, and so G is a very small quantity. The surface 
wave attenuation for horizontal polarization is so large that the 
surface wave becomes negligibly small at very short distances, and 
ordinarily only the space wave needs to be considered. At large 

*Norton, " Propagation of Radio Waves over the Surface of the Earth 
and in the Upper Atmosphere," Proc. IRE, 25. 1223 (1937). 
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numerical distances the factor G in expression (25) can be replaced 
by A 1/2p, where p has already been defined for horizontal 
polarization. 

EXAMPLE 1: A half-wave dipole radiator is elevated 100 ft above the 
ground. A receiving dipole 3 miles distant is elevated 30 ft. Determine 
the space and surface wave field strengths at the receiving antenna when 
the transmitting antenna carries a current of 1 ampere at a frequency of 
50 mc. Assume an average earth having e,. = 10 and = 5 X 10-3 (a) 
for vertical half-wave dipoles (b) for horizontal half-wave dipoles. 

CABE (a)—Vertical half-wave dipoles. 

E . = d 
j3013Ileu (e_'$'', 

°  

=  -F R. e-o(1tz-s.)] 

+ h2 130  
_ = tan- r — tan-i 3 X 5280 — 0.47° 

5 X 10-3 X 103 X 18 
1.8 

50 
X = 

From Fig. 16-5 

= 0.94/-180° 

Referring to Fig. 16-2, 

RI = Vd2 (hi — h2)2 = d ± (h, —d h2)2 

= d V1.0000196 = d(1.0000098) 

h -I- h,\2)  

R2 Vd2 (hl h2) 2 = d ± d  

= d V1.0000677 = d(1.0000339) 

R2 — R1 = 3 X 0.304 X 5280(1.0000339 — 1.0000098) 
= 0.116 meters 

360 360 
7t • (R2 — R1) = X 0.116 = 7.0° 

!En,' = -67. (1) 11 -1- 0.94/ — 180° — 7°1 

60  
= 3 X 1609 11 0.935 + j0.1131 

60 X 0.13 
3 X 1609 = 1.62 mv/m 
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60 (1 — R.)1 

I d 2p I 

b —."..t tan-' er ± 1 — tan-' -1 - = 83.6° 
x 1.8 

rR r X 3 X 1609 X 0.112 
p cos b — = 157 

6 X 1.8 

60 1.94  
lEeul = 3 X 1609 X 2 X 157 = 0.077 mv/m 

Clam (b)—Horizontal half-wave dipoles. From Fig. 16-5, Rh = 0.995 
/180°. 

Eip = —60 e-iteRi[l Rh e.-18(s2-so] 
d 

1E.,1 = 6° X 1609 11 + 0.995/-180° — 7°1 
3  

60 X 0.122 
— 1.52 mv/m 

3 X 1609 

601(1 — Rh)  

I d 1 2p 

= tan' e — 1 = tan-1 14 1.8 = 82.6° 

ir X 3 X 1609 1.8  
= x cos h' 6 x 0.128 = 35,600 

60  1.995  
Eisul 3 X 1609 2 X 35,600 0.000349 mv/m 

Approximate Formula for V-H-F Propagation. The preceding 
example indicates that certain simplifying assumptions can be 
made when the elevated transmitting and receiving antennas are 
far apart. When these approximations are used, a quite simple 
formula for VHF propagation between elevated antennas results. 
These approximations are 

(1) The surface wave can be neglected in comparison with the 
space wave. 

(2) The angle is very small so that the reflection factor R. or 
Rh ___ 1. 

Then the field at the receiving antenna due to a current / 
amperes in a half-wave transmitting antenna is given by 
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60/ 
1E1 = --Fi - 11 ± RDI — al 

h 

60/ = Tr 11 — 1/— al (16-26) 

where a is the difference in path length between direct and reflected 

waves expressed in degrees. That is, 

27 
a = Vt2 (16-27) 

Referring to Fig. 16-2, 

R2 d \ 
éhi h2Y R1 d + (hi — hA2 

d \ d 1 

Using the binomial expansion, when x « 1, 

(1 ± r-t-, 1 + Alx 

Then 

+ 1 (hi h2)2] 1 (h1 — )12\21 
R2 ee d[l d[1 2 \ d 2 d 1 

21iih2 
d 

• (16-28) 

It should be observed that, in actual computations, this approxi-
mate expression (28) for R2 — RI, obtained by using the first two 

terms of a series, will give a more accurate numerical answer than 
the " exact" computation, using a reasonable number of significant 
figures. This is because when two large and nearly equal numbers 
are subtracted one from the other, significant figures are lost, so 
that it is necessary to start with a very large number of significant 
figures in order to end up with only fair accuracy. In the " approxi-
mate" method one works directly on the difference between the 
numbers and no significant figures are lost. Then, from (27) and 

(28), 

From (26) 

47 hili2 
a = 7 d 

60/ 
1E1 — 11 — cos a j sin al 

d 
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When the angle a is small, so that cos a 1, 

1E1 n 6c011 si a, r„,.. 60d/ sin 4-whih2 
Xd (16-29) 

If a is sufficiently small so that sin a a, this reduces to 

1E1 — 60/a 2407r/hih2 d — Xd2 volt/m (16-30) 

where the approximations used are valid, the received field strength 
is proportional to the height of the transmitting antenna, the height 
of the receiving antenna, and inversely proportional to the square 
of the distance between them. In most propagation problems met 
with in frequency modulation and television applications, the above 
approximations will hold so that the simple expression of eq. (30) 
may be used in these important practical cases. 

16.05 Wave Tilt of the Surface Wave. A vertically polarized 
wave at the surface of the earth will have a forward tilt, the magni-
tude of which depends upon the conductivity and permittivity of 
the earth. The slight tilt forward of the electric intensity is 
responsible for a small vertically downward component of the 
Poynting vector, sufficient to furnish the power dissipated in the 
earth over which the wave is passing. In general, the component 
of electric intensity parallel to the earth will not be in phase with 
the component perpendicular to it, so that the electric .field just 
above the surface of the earth will be elliptically polarized. 

In chap. 7 the problem of a wave guided along the surface of a 
good conductor was solved. The results obtained will apply 
directly to this case of a radio wave along the surface of the earth, 
as long as the same assumption (depth of penetration not too large 
a fraction of the wavelength) is valid. This will be true over most 
of the range of frequencies and conductivities that are of interest in 
surface wave propagation. Then the surface impedance of the 
earth is given approximately by 

cog  / 1 cr 
.tan—' 

± coyi 2 WE 

where g, et, and E are respectively the conductivity, permeability, 
and permittivity of the earth. The horizontal component of 
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electric intensity will be Eh = JZ. and the vertical intensity will 
be approximately E. = Hnv, so that the ratio of horizontal to 
vertical field will be 

Eh JZ, Z. 
Yv = Hnv = 

1   /1 tan-' -1 = 2 coy / 2 WE 
(16-3 (16-31) 

As an example consider a one mc radio wave at the surface of an 
average earth having = 5 X 10-3 and Er = 10. For this case 

WE = 5.55 X 10-4 

Eh 
= 0.105/41.8° 

The horizontal component of E is about one-tenth of the vertical 
component and leads it by an angle 41.8°. If the electric vector 

were plotted at various instants of time, 
the locus of the end point would trace out 
an ellipse. This elliptical polarization of 
the field at the earth's surface is shown 
in Fig. 16-13 for Er = 5 and various values 
of x, where 

e 
X.0.3 X.3 X.30 X.500 

FIG. 16-13. Elliptical 
polarization of the electric 
vector at the surface of an 
earth for which er = 5 and 
for various values of x 
18 X 103/be. 

18 X 103 
x - 

WEv 
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curvature of the earth affects the propagation of the ground wave 
signal in several ways. First, the bulge of the earth prevents the 
surface wave from reaching the receiving point by a straight-line 
path. The surface wave, which does arrive at the receiver, reaches 
it by diffraction around the earth and refraction in the lower atmos-
phere above the earth. Secondly, for elevated antennas the space 
wave is affected in two different ways. The ground-reflected wave 
is now reflected from a curved surface, and its energy is diverged 

TRANSMITTING 
ANTENNA 

FIG. 16-14. Geometry for a spherical earth. 

more than in the case when it is reflected from a flat surface. This 
means that the ground-reflected wave reaching the receiver will be 
weaker than for a flat earth by the divergence factor D, which is 
less than unity. Finally, for a spherical earth, the heights hi.' and 
h2' of the transmitting and receiving antennas above the plane 
tangent to the surface of the earth at the point of reflection of the 
ground-reflected wave are less than the antenna heights h1 and h2 
above the surface of the earth (Fig. 16-14). 

It would seem that it F:lululd be possible to obtain an exact 
solution to the problem of an antenna above a spherical finitely 
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conducting earth by solving Maxwell's equations subject to the 
appropriate boundary conditions. Although formal solutions to 
this problem have been set up, these solutions are much more 
involved than even the rigorous plane earth solution. For example, 
one such solution is in the form of an infinite series of spherical 
harmonics with coefficients containing twelve Bessel functions. 
The convergence of the series is extremely slow, the main contribu-
tion being given by those terms for which n is of the order of the 
ratio 2TR/X, where R/X is the radius of the earth in wavelengths. 
For commonly used radio frequencies, this ratio is of the order of 103 
to 108! It is thus apparent that a different approach must be used 
if numerical answers are desired. Answers of engineering accuracy 
can be obtained by considering separately various particular cases. 
The detailed analysis is complex, and in general the expressions that 
result are complicated. However, the results may be put in a 
graphical form suitable for engineering use, and this has been done 
by Norton.* A few of the important cases of spherical-earth ground 
wave propagation, which will be considered here, concern (a) the 
surface wave (ground-based antennas), (b) elevated antennas at 

medium heights, (c) optical path propagation. 
(a) The surface wave over a spherical earth. Beyond the line of 

sight the surface wave that reaches the receiving point is due entirely 
to diffraction around the surface of the earth. (The effect of refrac-
tion in the troposphere is accounted for by using an effective radius 
for the earth that is greater than the actual radius as explained in 
section 16.07.) The extent of the diffraction depends upon the 
wavelength of the signal and the constants of the earth, and it can 
be determined in terms of the parameters b and k where 

b = 2h" — b' (for vertical polarization) (16-32) 
b = 180° — b' (for horizontal polarization) (16-33) 

_  X Yi (x cos b'r 
\Irka/ cos2 b" 

(vertical polarization) (16-34) 
\ 

K = / x \1/4 (cos 1" (horizontal polarization) (16-35) 
Mirka 

Er - 1 Er (16-36) tan b' — tan b" = —x 

*K. A. Norton, " The Calculation of Ground Wave Field Intensity over a 
Finitely Conducting Spherical Earth," Proc. IRE, 29, 11, 623 (1941). 
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In the above expressions a is the radius of the earth and k is the 
factor by which a is multiplied to account for refraction (usually 
k =). Having determined the value of K and b in a particular 
problem, the curves of Figs. 16-15 and 16-16 are used to obtain the 
values of two other parameters eo and 7. Then the relative values 
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FIG. 16-15. Parameter fio as a function of K and b. 
of field intensity at large distances over a spherical earth are given 
in Fig. 16-17 as a function of the parameter n', where 

n' = Sonod (16-37) 
= (1c2a2X)—ki1 (16-38) 

Figure 16-17 is used to calculate the surface wave at large distances 
in the following manner. First the field intensity corresponding to 

n' = 2 is calculated from the formula 

= 2E0n ey 1100 2) (16-39) 

Then the distance d corresponding to n' = 2 is obtained from 

2 
= (16-40) 
P on o 
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Finally the field at any large distance is determined relative to the 
field at n' = 2 from Fig. 16-17. 

In Fig. 16-17 it is noted that for large distances such that 
n' > 2, a single curve is drawn, but that for shorter distances the 
curve divides into two branches. The lower of these curves is 
valid for very large values of K (i.e., very low frequencies and good 
ground conductivity), whereas the upper curve applies for very 
small values of K (very high frequencies and poor ground conduc-
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FIG. 16-16. Parameter 7 as a function of K and b. 

tivities). In using Fig. 16-17 it is necessary to interpolate between 
these curves. This is done by plotting the field at the shorter 
distances by means of the plane earth field intensity curves (Fig. 
16-12), using the single curve of Fig. 16-17 to give the field intensi-
ties at large distances beyond n' = 2, and then joining these up with 
a smooth transition curve the shape of which can be estimated by 
keeping an eye on the curves for very large and very small values of 
K. 

EXAMPLE 2: Determine surface wave intensity as a function of distance 
up to a distance of 500 miles for a 1 mc signal. Assume a fairly good earth 
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for which o- = 10 X 10-3 and e, = 15, and also assume 1 kw radiated from 
a short monopole (unattenuated field intensity at 1 mile equals 186 my/m). 

18 X 103 X cr — 180 b = tan--' e, ± 1 x — = 5.1° 
f-

7i-R cos b 
P — xX 5.8 X 10 -3R (meters) = 0.0932R (miles) 
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FIG. 16-17. Ground wave field intensity at large distances over a 
spherical earth. 
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(a) Plane earth calculations (using Fig. 16-12): 

[§16.06 

Miles P A 
Eo 

E = —r A (mv/m) 

1 0.0932 0.93 173 
10 0.932 0.63 11.7 
20 1.86 0.43 4.0 
100 9.32 0.065 0.12 

(b) Spherical earth calculations: 

b = 5.1°, h' = tan-1 1X80 = 4.46°, h" = tam-' 1% 80 = 4.78° 

K _ ( x y i (x cos 1 1/2 
27rka cos2 h" 

( 300  )1/2 (  0.993 180 X 0.997) 
1/2 
= 21- X 5280 X 1609  0.239 

From Fig. 16-15, 130 = 1.4; from Fig. 16-16, 'y = .005. Then 

no --- [(5280 X 1609)2300] 3 = 0.359 X 10-4 

= ponod = 0.00808d (miles) 

Ew_ 2) = 2E007 = 0.0107 mv/m 

2 
= = 247 (miles) 

Polo 

Problem 1. Using Fig. 16-17, sketch the field intensity vs. distance 
curve out to 500 miles for example 1. 

(b) Elevated antennas of medium height. Propagation character-
istics over a curved earth between elevated antennas can be obtained 
quite simply from the surface wave calculations as long as the 

2000 
antenna heights are less than f=ei7 -nc ft. It is convenient to define a 

" numerical antenna height," g as 

2rh (cos2 b"r 
= À \x cos bq 

2rh  x  
q = X eos 

(vertical polarization) (16-41) 

(horizontal polarization) (16-42) 
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where h/X is the antenna height in wavelengths. Then the field 
intensity for antennas at numerical heights qi and qo will be given 
by 

where 

100 

40 
20 
10 

f(q) 4 
2 

0.4 
0.2 
0.1 

E = Esurf.of(D) • f(q2) 

fir 
f(q) [ 1 + q2 - 24 cos ± b1 

(16-43) 

4.4 

60° a?)  

.02 .04 J 2 Z 4 10 20 40 

FIG. 16-18. Variation of field intensity with numerical 
antenna height. Within the line of sight (gi qs) < p/100 and 
qlq2 < p/10. Beyond the line of sight q < 1/10K. 

Expression (43) can be applied whenever the antenna heights are • 
low enough and the numerical distance p is large enough to satisfy 
simultaneously the following relations: 

<2000 f 
t;•  f". ' 

p > lOgiq2; 

p > 20 /p > 100(qi -I- q2) 

(16-44) 

This relation is particularly useful for the ultrahigh frequencies 
where the numerical distance p is large for distances d greater than 
about 1 mile. The height-gain function f(q) is shown plotted in 
Fig. 16-18. 

(c) High antennas within the line of sight.. For high antennas 
well within the line of sight, the field intensity can be calculated 
directly from eq. (9) when this expression is suitably modified to 
account for the effects of a curved earth. It is easily shown by 
simple geometry that the distance do to the horizon for an antenna 
of height h is given by the relation 

do •--•• N/2ah (16-45) 
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where a is the radius of the earth (3960 miles) and d, a, and h are 
expressed in the same units. This approximate relation holds for 
h < 20,000 ft. When the effect of refraction in the atmosphere is 
accounted for by use of an effective radius ka (see section 16.07), 
this formula for distance to the optical horizon becomes 

do = V2kah (16-46) 

Therefore the line-of-sight distance between two elevated antennas 
of heights hl and h2 (Fig. 16-14) will be 

di, = -V2kahi 

For a " standard" atmosphere k = 1.33 and ka = 5280 miles, so 
that di, reduces to 

dL = (16-47) 

where ILI and h2 are now in feet and di, is in miles. 
For line of sight propagation the curvature of the earth will have 

two principal effects. First, the ground-reflected wave, being 
reflected from a curved surface, will have its energy diverged more 
than in the plane earth case. This can be accounted for by multi-
plying the ground-reflected wave by a divergence factor D, which is 
given by 

D  = (1 ±  2did2 y  
(16-48) 

kact tan 1P2' 

Second, the heights 10.' and h2' of the antennas above the plane 
that is tangent to the earth at the point of reflection are less than 
the actual heights hl and h2 above the earth. By geometry, the 
relations between these heights are 

d12 d22 
hl' 2ka; h2 h2 

tan th' = 141 ± /41 _ hd11' _ 
d 

(16-49) 

The modified form of expression (9) suitable for a curved earth is 
then 

E = [cos' th.' e1" DRfi cos' 4,2' e-i8R2' ± (1 — R0)d 

F cos2 e-i8R1] (16-50) 
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where R1 has been replaced by d/cos and R2 by d/cos #21 in the 
denominator. E0 is the free-space field intensity at unit distance 
and Rren = fe, for vertical polarization and /ir„ii = Rh for horizontal 
polarization. The use of this formula is restricted to points well 
within the line of sight and to distances less than that, which makes 

tan 11/21 = (X/271-ka) 

When the surface wave can be neglected, as is usually the case for 
high antennas, and assuming that the antennas are far enough apart 
that tan #2' < 0.1, expression (50) reduces to 

E =—E0 (1 ± e-i2phigie /a) (16-51) 

where (X/Irka)i < tan < 0.1. It is seen that the received 
field oscillates with distance between the values 

and 

Eo 
E = —d (1 ± 

Eo 
E = —d (1 — (16-52) 

The above three examples of ground wave propagation above 
a spherical earth cover the majority, but by no means all of the cases 
that will be met with in practice. In general, the computations 
for other cases will be somewhat more complex than those above, 
and will involve the use of graphs and charts not shown here. For 
examples of such computations reference should be made to the 
article by Norton. Typical results for the important practical case 
of high antennas beyond the line of sight at FM and television 
frequencies are shown in the curves of Figs. 16-19 and 16-20. 

16.07 Tropospheric Refraction and Reflection. For frequencies 
above about 50 me the ionospheric reflection indicated in Fig. 16-1 
does not occur, and propagation paths would appear to be limited 
to the ground wave transmission discussed in the preceding sections. 
As already has been seen, for these ground wave propagation paths 
at the very high and ultrahigh frequencies, the field intensity 
decreases very rapidly for distances beyond the line of sight, so that 
at these frequencies, useful transmission much beyond the horizon 
would not be expected. Nevertheless, it is found that under certain 
meteorological conditions useful transmission considerably beyond 
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the line of sight does occur. Such transmission is due to refraction 
and reflection of the radio waves in the troposphere. The tropo-
sphere is that region of the earth's atmosphere immediately adjacent 
to the earth and extending upwards about 10 kilometers. In the 
troposphere the temperature decreases with height at about the 
rate of 6.5° C per kilometer to a value of about — 50° C at its upper 
boundary. Above the troposphere is the stratosphere where the 
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Fm. 16-19. Ground wave field intensity vs. distance for 1 kw 
radiated at a frequency of 50 mc. Polarization is horizontal and 
the labeling on the curves indicates transmitting and receiving 
antenna heights expressed in feet. Earth constants are cr = 5 X 
10-3, r = 15. 

temperature remains constant at about — 50° C. Tropospheric 
effects on radio waves may be divided into refraction and reflection. 
Tropospheric refraction is a gradual bending of the rays that occurs 
because of the changing effective dielectric constant of the atmos-
phere through which the wave is passing. As will be shown, normal 
refraction effects can be accounted for by using an "effective" 
value for the radius of the earth that differs from the actual value. 
Thus the effects of tropospheric refraction are automatically 
included in the ground wave computations. Tropospheric rejlec-
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lions occur at a place where there are abrupt changes in the dielectric 
constant of the atmosphere. Such tropospheric reflected waves 
often result in useful signals at distances much greater than line of 
sight, a fact of considerable importance in frequency modulation 
and television reception. 

Tropospheric Refraction. A radio wave traveling horizontally in 
the earth's atmosphere follows a path which has a slight downward 
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FIG. 16-20. Ground wave field intensity vs. distance for 1 kw 
radiated at the frequencies indicated. Polarization is horizontal 
and the antenna heights are 1000 feet and 30 feet. The earth 
constants are cr = 5 X 10-3, E, 15. 

curvaturé due to refraction of the wave in the atmosphere\ This 
curvature of the path tends to overcome partially the loss of signal 
due to curvature of the earth and permits the direct ray to reach 
points slightly beyond the horizon as determined by the straight-
line path. In making computations the effect of ref faction is 
acccunted for by using an effective radius of curvature for the earth 
that is somewhat larger than the actual radius, and then assuming 
straight-line paths (that is, no refraction) in the atmosphere. 

The refraction of a radio wave in the atmosphere occurs because 
the dielectric constant, and hence the refractive index of the atmos-
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phere, varies with height above the earth. The dielectric constant 
of dry air is slightly greater than the value of unity that applies 
for a vacuum, and the presence of water vapor increases the dielec-
tric constant still further. For this reason, the dielectric constant 
of the atmosphere is greater than unity near the earth's surface, but 
decreases to unity at great heights where the air density approaches 

zero. Although the dielectric constant and 
v. dv its variation with height are quantities that 

vary with the weather, the assumption is 
usually made that the variation of dielectric 
constant with height above the earth is uni-
form, and an atmosphere that has the as-
sumed conditions is called a standard atmos-
phere. The justification for the use of a 
standard atmosphere in computations is that 
the results predicted on the basis of such an 
assumption agree fairly well with the results 
obtained in practice on the average. There 
are times, of course, when the observed 
results differ markedly from those predicted 
from the standard atmosphere, and some con-
sideration is given to these nonstandard con-
ditions at the end of this section. The 

relation between the radius of curvature of the path and the change 
of dielectric constant with height can be derived as follows. 

Let p be the radius of curvature of the path and y the velocity 
of propagation at a height H above the earth. Then from Figure 
16-21 

dB 

Fia. 16-21 

or 

Also 

p de = v dt 
do v 
= dt 

1 
v = _ kir-1 

VerveTe. 

At a height H ± dH = H -I- dp, the velocity must be 

(p dH) c160 
(v dv) — di  

(16-53) 

(16-54) 
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dv dO _ y 
Therefore 

dH = 

ker1/2  or cl (16-55) 
P dvic1H dEr Er/dH 

—341cler% lcfi 

2  
P der/dH 

The radius of curvature of the path, being a function of the rate of 
change of the dielectric constant with height, varies from hour to 

° 
ACTUAL 
PATH 

(0) 

STRAIGHT-LINE 
PATH 

(16-56) 

(b) 

Flo. 16-22. Curved paths become straight lines when an effective 
radius ka is used for the earth. 

hour, day to day, and season to season. However, in practice an 
average value of four times the radius of the earth is used for the 
purposes of calculations. 

In working propagation problems it is often convenient to C31-
sider the ray paths as straight lines instead of being curved as they 
actually are, and to compensate for the curvature by using a larger 
value for the " effective " radius of the earth. The relations involved 
are shown in Fig. 16-22a and b. In Fig. 16-22a, the actual path is 
shown above an earth of radius a. In order for the straight-line 
path of Fig. 16-22b to be the equivalent of that shown in Fig. 16-22a, 
it is necessary that the change in height dH be the same in the two 
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cases for the same horizontal distance D. In Fig. 16-22b, 

) dH = BO — AO = (ka + 
II' ( 1cos — 1) 

For small angles, 
1 1 0e2 

—  cos O. 0,.2 1 + 
1 — 

when H is small compared to ka. But 

D  D 
O. sin 0. — 

(ka H) 

D2 
Therefore dH 

2ka 
On the other hand, in Fig. 16-20a 

therefore 

dH = D2 D 2 — 
2a 2p 

1 1 1 
ka a— 

The effective radius of the earth required is therefore 

so that 

ka = a 

k —  1 

1 — a 

(16-57) 

(16-58) 

(16-59) 

(16-60) 

For a radius of curvature p, equal four times the radius a of the 
earth, the effective radius of the earth is % times the actual radius. 
By using this effective radius instead of the actual radius in making 
ground wave path computations, the systematic bending of the 
waves in the atmosphere is accounted for, and straight-line paths 
may be drawn. 

Tropospheric Reflection. In addition to the systematic refrac-
tion of waves that occurs in the troposphere, there is also the posai-
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bility of reflection occurring at places of abrupt change in the 
dielectric constant or its gradient. Under conditions of a standard 
atmosphere the line-of-sight distance is increased approximately 
15 per cent by the effects of refraction (though it may be much more 
or much less under nonstandard conditions). In contrast to this, 
the effects of the reflection of waves in the troposphere may be to 
extend the range of reception by a hundred miles or more. In the 
special case of duct propagation, discussed later, the range may be 
extended several thousand miles. 

Assuming that abrupt changes in the value of the dielectric 
constant do exist in the troposphere, it is easy to calculate the 
reflection which will occur at the surface of discontinuity. For a 
wave traveling in a dielectric medium having a dielectric constant 
e 1, and incident upon a second medium of dielectric constant 62, the 
reflection factors have already been developed in chap. 5. Writing 
e2 = ei AE, where As is the change in the dielectric constant at the 
layer in the troposphere, eq. (5-73) for vertically polarized waves 
may be written 

(1 ± —46) cos 01 — Nícos2 01 — _  E 1 Et 

As As 
1 — cos 01 -I- Nicos2 01 ± — 

Ei Ei 

(16-61) 

It is known that the abrupt change AE must be very small, say of 
the order of 10-8 to 10-4, and since si is approximately equal to 
unity, expression (61) can be reduced to 

As  As  
R° — (16-62) 

2 4 cos2 01 

Similarly for horizontally polarized waves the reflection coefficient 
of eq. (5-72) can be reduced to 

As  
Rh ee (16-63) 

4 cos2 01 

Using these reflection coefficients and various assumed conditions 
for As and reflecting layer height, the field intensities of tropo-
spheric waves have been calculated.* In Fi3. 16-23 the calculated 

* K. A. Norton, "On a Theory of Tropospheric Wave Propagation," Report 
No. 40003 presented before the Federal Communications Commission, March 
18, 1940. Also presented before the Droadcast Engineering Conference at the 
Ohio State University. 
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tropospheric wave field intensities have been plotted as a function 
of distance, for different assumed conditions. On the basis of these 
calculations it is apparent that there may be times when reflections 
from the troposphere may be expected to produce usable signals at 
distances considerably beyond those that result when only ground 
wave propagation paths are considered. Experience with fre-
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Fla. 16-23. Calculated tropospheric wave and ground wave 
field intensity for 1 kw radiated at 50 mc. Polarization is hori-
zontal and antenna heights are 500 feet and 30 feet. Earth con-
stants used are sr = 5 X 10-4, s,. = 15. Curves a, b, and c are for 
tropospheric layer height of 1.5 km and As = 10-4, 10-4, and 10-4 
respectively. Curve d is for a layer height of 3 km and As = 10-6. 
(From FCC report No. 40003 by K. A. Norton.) 

quency modulation and television reception seems to bear out these 
predictions. 

Modified Index Curves and Duct Propagation. The atmospheric 
condition that gives rise to the tropospheric reflection just con-
sidered, is a nonstandard condition. There are many different types 
of such nonstandard atmospheres, each of which affects wave 
propagation in a different way. The standard dry atmosphere has 
already been defined as one for which the temperature decreases 
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at the rate or 6.5° C per kilometer. When the temperature increases 
with height over a certain range of heights, it is known as temperature 
inversion. Actually the water content of the atmosphere has much 
more effect than temperature on its dielectric constant and on the 
manner in which it affects radio waves. The moist standard atmos-
phere is specified as one which has a water-vapor pressure of 10 
millibars at sea level, decreasing with altitude at the rate of 1 milli-
bar per thousand feet, up to 10,000 ft. If the temperature or water 
content differ from these standard conditions, nonstandard propaga-
tion will result. The effects to be expected can be estimated most 
readily by transforming the meteorological data, temperature, water 
content, and so on, into M curves. M curves are curves that show 
the variation of the modified index of refraction with height. (The 
term " modified" refers to the fact that the actual index has been 
modified to account for the curvature of the earth. When this is 
done, straight rays above a curved earth come out as curved rays 
(with an upward curvature) above a flat earth. This procedure, 
which simplifies computations when rays of different curvatures 
must be considered, is just the reverse of that used previously when 
curved rays over a curved earth were transformed to straight rays 
over an earth of lesser curvature.) 

When M curves are available, it is possible to predict, at least 
roughly, the type of transmission path that can be expected. 
Standard propagation occurs when the modified index of refraction 
increases linearly with height. In this case, the M curve is a 
straight line with a positive slope. If the slope of the M curve 
decreases near the surface of the earth, substandard propagation 
results, with the rays curving upward (over the fiat earth) more than 
for normal conditions. If the slope of the M curve increases near 
the surface of the earth, the upward curvature of the rays is less, so 
that greater coverage is achieved and superstandard conditions 
result. If the M curve becomes vertical (no change of modified 
index with height), the rays over the flat earth are straight and very 
great coverage can be obtained. (In this condition the actual rays 
have the same curvature as the curvature of the earth.) 

If the modified index decreases with height (M curve slopes to 
left) over a portion of the range of height, the rays will be curved 
downward (over the flat earth) and a condition known as trapping 
or duct propagation can occur. Under such conditions the wave 
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tends to be trapped or guided along the duct, much as a wave is 
guided by a leaky wave guide. If the lower side of the duct is at 
the surface of the earth, it is known as a surface duct. Sometimes 
when the inverted portion of the 111 curve is elevated above the 
surface of the earth, the lower side of the duct is also elevated, and 
the duct is called an elevated duct. If the receiving antenna is 
elevated to within the duct, the signal may be very large. How-
ever, if the receiving antenna is outside the duct, either below or 
above it, the received signal will be very small. Elevated ducts 
are due to a subsidence of large air masses and are common in 
Southern California and certain areas of the Pacific. They are 
found at elevations of 1000 to 5000 ft and may vary in thickness 
from a few feet to a thousand feet. In the trade wind belt over sea 
there appears to be a continuous surface duct about 5 ft thick. 
Over land areas surface ducts are produced by radiation cooling 
of the earth. 

As with ordinary wave guide propagation, there is a certain 
critical frequency (which depends on the thickness of the duct) 
below which duct propagation will not occur. Since these non-
standard refraction effects appear to be restricted to waves that 
make a very small angle with the horizontal, it is evident that the 
required thickness of the duct would have to be large in wave-
lengths. For this reason trapping is more likely to occur at the 
ultrahigh frequencies than at very high frequencies. 

The tropospheric propagation considered in this section is very 
much a function of the weather. As more meteorological and radio 
transmission data become available, it is to be expected that a 
very close correlation between the two sets of information can be 
achieved. It should then prove possible to use measurements of 
atmospheric conditions to predict accurately tropospheric trans-
missions, and perhaps vice versa. 
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CHAPTER 17 

SKY WAVE PROPAGATION 

GENERAL CONSIDERATIONS 

17.01 Introduction. The ground wave propagation paths con-
sidered in the previous chapter are not the onjy paths along which 
a transmitted wave may travel to reach the receiver. This was 
demonstrated to a surprised scientific world in 1901 by Marconi's 
successful transmission of radio signals across the Atlantic. Calcu-
lations had already been made to show that diffraction effects would 
be insufficient to permit such long-distance transmission around the 
curvature of the earth, and immediately other explanations were 
sought. The existence of a reflecting region in the earth's upper 
atmosphere was proposed (independently) by A. E. Kennelly and 
Oliver Heaviside, and the Kennelly-Heaviside layer, or ionosphere, 
as it is now known, became a much discussed part of radio propaga-

tion phenomena. 
Knowledge of the characteristics of the ionosphere is based 

almost entirely upon its effect on radio waves, which may or may 
not be reflected from it back to the earth's surface. Experimentally 
it is found that at night signals in the broadcast frequency range are 
reflected back, but in the daytime the reflected signal is very weak 
or entirely absent. As the frequency is raised, however, these day-
time reflected waves become stronger, and for frequencies between 10 
and 30 mc, they may provide strong signals over distances of several 
thousand miles. As the frequency is increased still higher, a point 
is reached where the waves cease to be reflected back, but instead, 
penetrate the ionosphere to be lost in outer space. Thus there is a 
range of frequencies roughly between 3 and 30 mc where, although the 
surface wave is greatly attenuated, long-distance transmission may 
still occur because of reflections from the ionosphere. In general, 
these " sky wave" signals are less stable than ground wave signals, 
their strength depending upon the frequency, and upon the condi-

656 
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tion of the ionosphere. The state of the ionosphere is found to 
vary from hour to hour, day to day, and season to season in much 
the same way as does the weather. Also as with the weather, there 
may be periods of sudden storms, but many of the variations are 
fairly regular and may be predicted several days or even weeks 
ahead of time. Indeed, the art of ionosphere prediction is in much 
the same state as, and is very similar to, that of weather forecasting. 
Ionosphere stations set up in various parts of the world continu-
ously gather and record information about the ionosphere in those 
regions. This information is assembled, correlated, interpreted, 
and issued in the form of charts that show past conditions and also 
make predictions for the future. Using these charts it is possible 
to determine in advance the optimum frequency to use for com-
munication between any two points on the earth's surface at any 
given time. Thus, although long-distance ionospheric propagation 
does not have the stable characteristics of short-distance ground 
wave propagation, it does, in general, provide a predictable, and 
therefore usable, means of radio communication. A knowledge of 
some of the more important characteristics of the ionosphere will 
aid the engineer in an intelligent over-all design of a communica-
tions system. 

17.02 The Ionosphere. The ionosphere is that region of the 
earth's atmosphere in which the constituent gases are ionized by 
radiations from outer space. This region extends from about 40 to 
250 miles above the earth. The ionizing agent is chiefly ultraviolet 
light from the sun, which is very intense before being absorbed by 
the earth's atmosphere, but there is reason to believe that there are 
other agents as well, and cosmic rays and meteors in the high 
atmosphere have been suggested. Although ions and electrons are 
undoubtedly present to some extent throughout the whole of this 
region, there seem to be several layers in each of which the ionization 
density reaches a maximum. These layers are designated by the 
letter symbols D, E, and F in order of height. At times the I? layer 
splits into separate layers called F1 and F2. The probable distribu-
tion of ionization density with height is indicated in Fig. 17-1, which 
shows conditions for a summer day. Conditions at night or on a 
winter day are different in that the F1 layer merges with the F2 
layer to form the single F layer. The D layer, which does not hava 
a permanent existence, has not been shown. 
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The existence of the ionosphere in the form of a layer is explained 
on the following basis: At great heights the ionizing radiations are 
very intense, but the atmosphere is rare and there are few molecules 
present to be ionized. Therefore in this region the ionization 
density (number of ions or electrons per unit volume) is very low. 
As height is decreased, the atmospheric pressure and ionization 
density increase until a height is reached where the ionization 
density is a maximum. Below this height the atmospheric pressure 
continues to increase, but the ionization density decreases because 
the ionizing radiation has been absorbed or used up in the process of 
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Fla. 17-1. Probable distribution of bnizr-tion density with height. 

ionization. This explains in general why there should be a layer. 
The existence of layers within the layer is accounted for by the fact 
that the atmosphere is a mixture of several gases that differ in their 
susceptibility to the ionizing radiations, and so produce maximum 
ionization at different pressures. 

Although the number and heights of the layers vary with time, 
there are two layers that have a permanent existence. These are 
designated as the E layer and the F layer. The E layer exists at a 
height of between 55 and 85 miles (89 to 137 kilometers) and the 
level of maximum ionization density remains fairly constant in 
height throughout the day, and from season to season. The E 
layer disappears at night.* The F layer exists above the E layer 

* This statement refers to the regular day-time E layer that is produced by 
the ultraviolet light from the sun. There is evidence of a relatively low level 
of ionization in the E region that exists through the night. The cause of this 
night-time E layer has not yet been definitely established. 
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from about 85 to 250 miles, but the level of maximum ionization 
density varies between night and day and from season to season. 
In addition there is evidence of other layers which are present only 
part of the time. One of these layers is the D layer, which lies 
below the E layer at a height of about 40 miles. Although the D 
layer does not normally reflect back high-frequency waves, its 
presence decreases the intensity of signals reflected from the higher 
layers. Another layer that does not have a permanent existence is 
the so-called sporadic E layer. This is not so much a separate layer 
as it is a pach or cloud of electrons or ions having a relatively sharp 
boundary and existing at the height of the regular E layer. Reflec-
tions from sporadic E patches often make possible long-distance 
reception of waves of much higher frequency than would normally 
be possible. 

17.03 Effective E and cr cf an Ionized Region. The ionosphere 
is a dielectric region containing free electrons and ions. In the 
absence of these free charges the constants of this region would be 
essentially those of free space, viz., e = e, i = go, and cr = 0. 
Under the influence of a passing electromagnetic wave the charges 
have imparted to them an oscillatory motion that both absorbs 
and reradiates some of the energy of the wave. As far as the effect 
on the electromagnetic wave is concerned, the ionosphere may be 
treated as a charge-free but imperfect dielectric having an effective 
dielectric constant e and an effective conductivity cr, which are differ-
ent from the free-space values. As will be shown, these effective 
values of e and « may be calculated in terms of the frequency, the ion 
density, and the collision frequency in the ionized region. 

Consider a region in the upper atmosphere in which there is an 
electron or ion density of N electrons or ions per cubic meter. The 
electric field of the passing electromagnetie wave produces a move-
ment of the electrons in the direction of the field, and so gives rise 
to a current density, 

i = Nev amp/sq m (17-1) 

where e is the electronic charge in coulombs and y is the average 
instantaneous velocity in the direction of the electric field. If E 
is the field strength in volt/m of the electromagnetic wave, the 
force on the electron is Ee. If there were no collisions between 
electrons and molecules of the gases of the atmosphere, the equation 
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of motion for the electron would be 

dv 
Ee = m Fit 

and all of the electric force would be used in accelerating the elec-
tron. However, in the event that there are collisions between 
electrons and gas molecules, energy is lost in the form of heat 
and it may be considered that there is "frictional" or retarding 
force on the electron that is proportional to the velocity v. The 
equation of motion then becomes 

dv 
Ee =miff R.v (17-2) 

where R. is an effective frictional resistance. The actual average 
frictional force due to collisions is given by mvy, where mv is the 
average momentum lost on collision and y is the frequency of 
collision. Thus 

R. = my (17-3) 

Assuming that E = Egm, y = voé", a solution of eq. (2) is 

E.  
— 

R. ± :icon 

The current density is 

• Ne2E  
= Nev — 

Re ± icon 
Ne2ER. jconNe2E 

R .2 + (0%2 R .2 + w 2n12 

Ne'vE jcoNe2E 
ni(v2 4. 0,2) Trt(y2 + 0,2) 

In the ionized region Maxwell's eraf equation can be written 

curl H = jca€,E i 

j [I   r  Ne2v  1 
COE ,en(y2 ± m2)] E Lm(v2 ,2) E 

= (jcere. fr)E (17-4) 
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where 

et = [ 1 — Ne2 4(v2 w2) and ø= 
Ne2 p 

M(p2 w 2) 
(17-5) 

The presence of the electrons or ions has a twofold effect. The effec-
tive dielectric constant of the region is reduced below that of free 
space, and the region has an effective conductivity a• which depends 
upon the electron density and the collision frequency. It will be 
observed that for a given frequency the effective conductivity in a 
region is a maximum when the collision frequency v is equal to W. 
The collision frequency is dependent upon the thermal agitation 
velocity and the gas pressure, and is therefore a function of height. 
It is estimated that the collision frequency varies from about 1012 
times per second at the surface of the earth to 1 time per second at 
500 miles up. Examination of eq. (4) reveals that at great heights 
where y is small and CO » v, the conductivity will become vanishingly 
small and the effective dielectric constant will be given by 41 
— (Ne2/€,m(02)]. On the other hand, at low heights such that 
» co, the conductivity again becomes small and the reduction of 

the dielectric constant approaches zero. These effects that occur 
with decreasing height are augmented by the fact that the electron 
density N also decreases rapidly below about 50 miles. The result 
is that the region of high conductivity (and therefore high absorp-
tion when the wave penetrates it) is confined to a relatively thin 
layer at the lower edge of the E region. 

The effect of the presence of the ions and electrons in decreasing 
the effective dielectric constant and increasing the conductivity 
of the medium is just what would be expected from simple physical 
reasoning. In free space the electromagnetic wave results in a 
displacement current which leads the electric field by 90 degrees, 
i.e., there is a capacitive current flow. With ions and electrons 
present there is also a convection current flow that is in phase with 
the velocity of the particles. In the absence of collisions the veloc-
ity lags the electric field by 90 degrees (the acceleration is in phase 
with the electric force) and the convection current is an inductive 
current flow, in opposite phase to the displacement current. When 
there are collisions between the electrons and gas molecules, the 
velocity lags the electric intensity by an angle less than 90 degrees 
and there is an in-phase or power component of convection current. 
Thus the medium has an effective conductivity, or there is now a 
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resistance in series with the shunting inductance. The transmission 
line analogy for this phenomenon will be given more detailed con-
sideration in a later section. 

17.04 Reflection and Refraction cf Waves by the Ionosphere. 
The mechanism of reflection and refraction of radio waves by the 
ionosphere is very much a function of frequency. At low frequen-
cies, say below 100 kc, the change in electron and ion density within 
the distance of a wavelength is so great that the layer presents 
virtually an abrupt discontinuity in the medium. Under these 
circumstances, the reflection may be treated in the same manner 
as the reflection of waves at the surface of a dielectric that may or 
may not have loss. On the other hand, at the high end of the high-
frequency band, the length of a wavelength is sufficiently short that 
the ionization density changes only slightly in the course of a wave-
length. Under such conditions the ionosphere may be treated (by 
methods well-known in optics) as a dielectric with a continuously 
variable refractive index. For in-between frequencies, not covered 
by these two cases, it is possible to treat the reflection region as 
though it consisted of several thin but discrete layers, each layer 
having a constant ionization density that differs from that of the 
adjacent layer. It follows that the incident wave will be partially 
refracted. The refracted wave penetrates to the second layer where 
it is partially reflected and partially refracted, and so on. In this 
case the resultant reflected signal may be considered as the sum of 
reflections from various parts of the ionized layer. Because they 
suffer greater attenuation, these in-between frequencies are of less 
practical interest than the others, and only the first two cases will 
be treated. 

CASE I: Reflection at Low Frequencies 
In this case the wavelength is considered to be sufficiently long that 

there is a great change in the ionization density in the course of a wave-
length. The layer then may be considered a reflecting surface, for which 
reflection coefficients corresponding to those developed in chap. 16 may be 
written. These coefficients are 

Rh = 

cos s0 — \Ke, — in2 0 

cos 0 + — sin2 
jtOev 

(17-6) 
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(er -) cosg — — sin2 0 
ju,€)  

= 

(er —e ) cos 0 + Ni(er jcoe, jc.e,) — sin2 O 

where the effective values of u and e,. are given by eqs. (5). 
It is apparent that for this type of reflection, the reflection coefficient 

of the medium will depend upon the frequency, polarization, and angle of 
incidence of the wave. When the effective conductivity can be neglected 
the reflection curves will be those for reflection from a perfect dielectric 
that has a refractive index of less than unity. For angles of incidence 
greater than a certain critical angle (which depends upon the refractive 
index), there will be complete reflection of the signal for both polarizations 
of the wave. For angles less than the critical (that is, closer to the normal), 
the reflection coefficient will be less than unity and will depend on the 
angle of incidence. The effect of finite effective conductivity would be to 
modify these curves in much the same way as the reflection curves of Figs. 
16-3, and 16-4 were modified by the conductivity. The ranges of er and e 
are, of course, here quite different from those of Figs. 16-3 and 16-4. e,. is 
less than unity and u is small, and their values depend upon the electron 
density and collision frequency at the height at which reflection occurs. 
These latter variables in turn will depend upon the time of day and time of 
year. 
. CASE II: Eejlection (or Eefraction) ct High Frequencies 
(This is an important case, practically.) When the change in phase 

velocity within the course of a wavelength is small, the well-known methods 
of ray optics may be used to obtain a solution. The requirement of small 
change in phase velocity means, in this case, a small change in electron 
density, as can be seen from the following considerations: The phase 
velocity of a wave in a medium having negligible loss is given by 

1 
= —  

Vi.tre,. 

(17-7) 

(17-8) 

where, as usual, c = 1/V7-24. is the velocity of light in a vacuum. Assum-
ing the permeability of the ionosphere to be unchanged by the presence of 
electrons so that = 1, the phase velocity will be 

ep = (17-9) 
V er 

where er depends upon the electron densiiy N as indicated in eq. (5). If 
the change in electron density in the distance of a wavelength is small the 
change in phase velocity will also be small. 

Under the conditions for this case the wave penetrates the lower edge 
of the ionosphere without reflection, but within the ionosphere travels a 
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path that is curved away from the region of greater electron density (smaller 
. , .. • . index of refraction). At any point along the 
1 . • path, the angle 0 between the path and the • •. ..  

. • . . normal (Fig. 17-2) is given by Snell's law of 
.. .. • . • - refraction 
. - •  : : •.. • • • . • • • . sin cki = n sin cp 

sin Gin 
or sin 4, = (17-10) 

n 

n is the index of refraction at the point where (1) 
is observed, and g5; is the angle of incidence 

FIG. 17-2 (measured from the normal to the ionosphere 
layer). The refractive index for any medium is given by 

velocity of light in vacua  
n — — (17-11) 

v, phase velocity in the medium 

For the lossless case, where (9) is true, eq. (11) gives for the refractive 
index 

n = VZ• (17-12) 

In general the effective conductivity of the ionosphere cannot be neglected, 
but at the higher frequencies where this present analysis is applicable, 
reflection takes place in the F layers where the collision frequency is very 
small and the conductivity is correspondingly low. Therefore, for a first 
approximation at least, it is permissable to neglect the effects of conductiv-
ity and use the simple expression given in (12). 

For w2 » v2, the expression for e, [from eq. (5)] is 

Ne2) 
e, = (1 

e,mco2  
(17-13) 

For an electron, e =- 1.59 X 10-12 coulombs, m = 9 X 10-n kg, so that 
(13) becomes 

e, (1 — 87 ..211 (17-14) 

N is the number of electrons per cubic meter and f is the frequency in 
cycles per second. (However, if N is expressed as the number of electrons 
per cubic centimeter and the frequency is expressed in kc, relation (14) is 
still true). 

From (12) the refractive index is 

I 81N 
n .= 1 — --r— (17-1&) 
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The refractive index decreases as the wave penetrates into regions of greater 
electron density and the angle of refraction increases correspondingly. 
When n has decreased to the point where n = sin cki, the angle of refraction 
will be 90 degrees and the wave will be traveling horizontally. The highest 
point reached by the wave is therefore that point at which the electron 
density N satisfies the relation 

or 

81N' , 
— — = sin IN 

N' f2 cos2 tin 
= 81 (17-16) 

If the electron density at some level in a layer is sufficiently great to satisfy 
relation ( 16), the wave will be returned to earth from that level. If the 
maximum electron density in a layer is less than that required by ( 16), the 
wave will penetrate the layer (though it may be reflected back from a 
higher layer for which N is greater). 

The largest electron density required for reflection occurs when the 
angle of incidence cki is zero, that is, for vertical incidence. For any given 
layer the highest frequency which will be reflected back for vertical inci-
dence will be 

= V81N. (17-16a) 

where N... is the maximum ionization density (electrons per cubic meter) 
and f., is the critical frequency for the layer. 

Experimental Determination of Critical Frequencies and Virtual 
Heights. Ionosphere characteristics are determined experimentally 
by measuring the amplitude and time delay of reflected signals as 
a function of frequency. The commonest method is that in which 
the transmitted signal consists of pulses of rf energy of short dura-
tion. The receiver, which is located close to the transmitter, picks 
.up both the direct and the reflected signal. The spacing between 
these signals on the time axis of a cathode ray oscilloscope gives a 
measurement of the height of the layer. The height so measured is 
the virtual height of the layer and is higher than the true height 
of the lower edge of the layer as indicated in Fig. 17-3. The 
virtual height h' is that height from which a wave sent up at an angle 
appears to be reflected. It is also the height obtained by pulse 
measurements, because the time delay for the actual curved path 
ABC is approximately the same as it would be for a wave to travel 
the path ADC if the ionosphere were replaced by a mirrorlike reflect-
ing surface at the level of D. Although the path length ADC is 
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greater than ABC, the group velocity in the ionosphere is less than 
in free space by just the amount required to make the time delays 
of the two paths equal. 

As the frequency of the transmitted signal is increased, starting 
say at 2 mc, the measured virtual height increases slightly, indicat-
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ing that for the higher frequencies the wave is returned back from 
higher levels within the layer. This continues until a critical fre-
quency is approached near which the virtual height increases sud-
denly to quite high values as shown in the virtual height-frequency 
curve of Fig. 17-4. As the critical frequency is passed, the measured 
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virtual height drops back to a second more or less steady value which 
is higher than was obtained for frequencies well below the critical 
frequency. The wave is now penetrating the first layer and is 
reflected from a second, higher layer. The critical frequency of 
a layer is that frequency for which a vertically incident wave just 
fails to be reflected back from the layer. As the frequency is 
increased above the critical frequency for the lower layer, a second 
and sometimes a third critical frequency may be reached correspond-
ing to the critical frequencies for the higher layers. The apparent 
increase in the measured height of the layer in the neighborhood 
of the critical frequency is due to a large time delay in the ionized 
medium, occurring as a result of a much reduced group velocity 
near this frequency. 

Maximum Usable and Optimum Frequencies. Although the 
critical frequency for any layer represents the highest frequency 
that will be reflectel back from that layer at vertical incidence, it 
is not the highest frequency that can be reflected from the layer. 
The highest frequency that can be reflected depends also upon the 
angle of incidence, and hence, for a given layer height, upon the 
distance between the transmitting and receiving points. The maxi-
mum frequency that can be reflected back for a given distance of 
transmission is called the maximum usable frequency (MUF) for 
that distance. From eq. (16) and using (16a), it is seen that the 
maximum usable frequency is related to the critical frequency and 
the angle of incidence by the simple expression 

MUF = f soc ç5 (17-17) 

The maximum usable frequency for a layer is greater than the 
critical frequency by the factor sec ç(i. Because of curvature of the 
earth and the ionospheric layer, the largest angle of incidence ei 
that can be obtained in F layer reflection is of the order of 74 degrees. 
This occurs for a ray that leaves the earth at the grazing angle. 
The geometry for this case is shown by Fig. (17-5), where Os (max) 
= sin--' (r/r ± h). The maximum usable frequency at this limit-
ing angle is related to the critical frequency of the layer by 

MUF (max) - cos 74° 3.6f. (17-18) 

When the critical frequency is known, the maximum usable fre-
quency can be calculated for any given distance through use of 



668 SKY WAVE PROPAGATION [07.04 

eq. (17). Figure 17-6 shows a set of maximum usable frequency 
curves for the latitude of Washington, D. C., for a winter month 

Fm. 17-5 

during a period of maximum sunspot activity. It is evident that, 
whereas a given frequency, say 28 mc would have been satis-

factory for transmitting over dis-
tances of 2000 kilometers or more 
near midday, the same signal would 
have failed to be reflected back at 
points less than 1500 kilometers 
from the transmitter at the same 
time. The distance within which 
a signal of given frequency fails to 
be reflected back is the skip distance 
for that frequency. The higher the 
frequency the greater is the skip 
distance. 

Because the maximum usable 
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mum usable frequency curves for a 
winter month. 
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o frequency may show small daily 
variations about the monthly aver-
age of up to 15 per cent, it is cus-
tomary to use a frequency some-
what lower than the predicted, 

maximum usable frequency. Also because it is desirable to restrict 
the number of different frequencies required to a reasonable number, 
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.some latitude must be permitted in the choice of frequency actually 
used. The optimum frequency for transmitting between any two 
points is therefore selected as some frequency lying between about 
50 and 85 per cent of the predicted maximum usable frequency 
between those points. 

17.05 Regular and Irregular Variation of the Ionosphere. Con-
ditions in the ionosphere vary throughout the day with the altitude 
of the sun, and in addition vary 
quite regularly with the season 
• of year. A plot of critical fre-
quencies and virtual heights as 
a function of time of day gives 
a reasonably good picture of 
ionospheric variations. It is 
customary to show monthly 
averages of these quantities be-
cause the day to day variations 
are usually quite small, except 
during periods of ionosphere 
storminess. Figure 17-7 shows 
some typical virtual-height and 
critical-frequency curves for 
summer and winter. The F 
layer, which has a virtual height 
of about 300 kilometers during 
the night, splits into two sepa-
rate layers during the day. 
The lower of these is designated 
FL and the upper is designated 
F2. The E layer exists only 
during the day, disappearing 
as soon as the sun goes down. Its virtual height remains almost 
constant at 110-120 kilometers from season to season and year to 
year. 

Besides the diurnal and seasonal variation of virtual height and 
critical frequency, these quantities also vary in synchronism with 
the 11-year sunspot cycle, as shown in Fig. 17-7. The critical 
frequencies are considerably higher during a year near a sunspot 
maximum than during a period near a sunspot minimum. 

S-
loe 

000 

»UM MMMMMM 
11•1111MMIIIBIIMB 
MMUMMUMEMIll 
ummulruzzin 
mougeem..4r.i.geez 
isiIUuJI 

mommiloolemmergic 
almniumarma 
MUMMUMMMRIMM 
• lo 

(e) 

le 

UMMMIMMMMUMME 
mummemummm 
murem-, MM 
miveiesim 

500 
400 

loe 

loe 

(b) 
MMIMMMUMMIMM 
Mmemeeeglimm 
Limb!. MMMMM 
mvammammumm. 

immenn=k-Ammom 
muniummumumg 
remmememmems 
MBLEMWUMMIMMI 
OMMItielnellMMM 
»WOMMUMKUMB 
MWAMMUMMMMUM 
IIIMMMUMUMMIMM 

22 

muumuu' 
ommememmmumn 
umem-=2emâll 
milekumumm 

l MMMOIMMUMMII 
MIIIMMMUMMWOMM 
MMIMMMIUWIMM 
IIMPIMMIMKUMM 
UMILIMMUMMMUM 
IIMMOMMIIMMM 
IIMMWEVIUMMII 
milminimammm 
muirareammem 
umemounLumm 
pnegiumiamwom 
mimmummummum . IS 

LOCAL 70/1C 

toe 

400 
CAS-

loe 

100 

12 

1: 

O /0 10 
LOCAL T SC 

Fm. 17-7. Diurnal variation of 
critical frequency and virtual height of 
the regular ionosphere layers. (a) Sum-
mer at period of sunspot minimum. (b) 
Summer at sunspot maximum. (c) 
Winter at sunspot minimum. (d) Win-
ter at sunspot maximum. 
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In curves such as those of Figs. 174 and 17-7, the critical fre-
quencies for the different layers are designated by appropriate 
letter subscripts denoting the layer. Because of the presence of the 
earth's magnetic field, there are actually two different critical fre-
quencies for each layer, one for the so-called ordinary wave and a 
higher one for the extraordinary wave. The respective critical fre-
quency is therefore denoted by the superscript o or x; for example 
Pr, is the critical frequency of the F1 layer for the ordinary wave. 
For the E layer the ordinary wave predominates and the extraordi-
nary is usually not considered because it has negligible effect on 
radio reception. Ordinary and extraordinary waves will be dis-
cussed further in a later section on the effect of the earth's magnetic 
field. 

The critical frequency of the E layer has a regular diurnal and 
seasonal variation. It increases with the altitude of the sun and 
is a maximum at noon on a summer day. For the E layer it has 
been found that the critical frequency is given approximately by 
the simple relation 

fly = K 

wherelp is the zenith angle of the sun and K is a factor that depends 
upon the intensity of the radiation from the sun. The critical 
frequencies of the F layers do not obey any such simple law. For 
the F2 layer the diurnal maximum lags behind the altitude of the 
sun and the daytime critical frequencies are higher in winter than in 
summer (for the northern hemisphere). Figure 17-8 shows typical 
curves of the distribution of the ionization density N with height. 
The curves shown are for day and night conditions in both summer 
and winter for a mid-latitude region. The values of N are obtained 
from sweep-frequency virtual-height measurements through the rela-
tion 

CO2M E, 
N = e2 

The maximum value of N for any layer is given by 

c2ME, 

e2 

(17-19) 

(17-20) 

where N is the number of electrons per cubic meter and fc is the 
critical frequency in cycles for that layer. It will be observed from 
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these curves that for daytime conditions the ionization density falls 
off very rapidly below about 100 kilometers. 

Irregular Variation of the Ionosphere. In addition to the regular 
or normal variation of ionospheric characteristics indicated by 
Fig. 17-7, there are also irregular variations that are often unpre-
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FIG. 17-8. Distribution of ionization density with height 
for quiet conditions. (a) Summer noon. (b) Winter noon. (c) 
Summer midnight. (d) Winter midnight. 

dictable and that s ometimes have a marked influence on radio wave 
propagation. One of these irregular variations is a sudden iono-
spheric disturbance, known as the Dellinger effect, which produces a 
complete radio " fade out" lasting from a few minutes to an hour or 
more. The phenomenon is caused by sudden bright eruptions on 
the sun that produce a large increase in the ionizing radiations that 



672 SKY WAVE PROPAGATION [07.06 

reach the D layer. The resulting increase of ionization density in 
this layer results in a complete absorption of all sky wave signals 
having a frequency greater than about 1 mc. However, for the 
very low frequencies that are normally reflected from this layer, the 
sky wave signals will increase in intensity. This sudden ionospheric 
disturbance is often accompanied by disturbances in terrestrial 
magnetism and earth currents. The effect never occurs at night. 
A second type of irregular variation is somewhat similar in 

origin and effect to the sudden disturbance mentioned, but its 
beginning and ending are more gradual and it may last for several 
hours. Usually the absorption of radio signals is not as complete 
and communication may be carried on at higher frequencies. 

In a third type of irregularity, known as ionospheric storms, the 
ionosphere is turbulent and loses its normal stratification. The 
result is that radio wave propagation becomes very erratic, and it is 
often necessary to lower the working frequency in order to maintain 
communication. The cause of the storm is thought to be the emis-
sion of a burst of electrified particles from the sun, and the fact 
that the storms tend to recur at 27-day intervals, the period of 
rotation of the sun, seems to indicate that there are active areas on 
the sun which produce the phenomenon. The effects of ionosphere 
storms may last for several days. 

17.06 Attenuation Factor for Ionospheric Propagation. In sec-
tion 17.03 the equivalent conductivity 0- and dielectric constant e 
of the ionosphere were obtained in terms of the ionization density N 
and the collision frequency v. The attenuation factor a for wave 
propagation through this region will be given directly by eq. (53) 
of chap. 5. It is 

where 

and 

a = w /4' (\/ o.2 — 
CO E 

= ErEr 
Ne2  

,,m(v2 + (.02) 

Ne2v 
771(v2 ± 0,2) 

P = Pv• 

(5-53) 

(17-21a) 

(17-21b) 

Substituting (21a) and (21b) in (5-53), the expression for a may be 
wri tten • • 
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a = -Nh (\ail :,e, — i) 

.\11 _L e2 

C (\II er2 e) 

—c 2 NIEr 2 [ (1 — Er) 0,]_ 2 

2 

For frequencies not too near the maximum usable frequency, 
and for the important practical case of a section of the ionosphere 
where the relation °lox« 1 holds, eq. (5-53) for a reduces by use 
of the bionomial expansion to 

a — u 60iro• 60/r/Ve2P  
(17-23) 

2 ve Nrir M(1,2 ± CO2) 

For the frequency range where w» y, eq. (23) shows that the 
attenuation varies approximately as the inverse square of the fre-
quency. Therefore it is desirable to use as high a frequency as 
possible without approaching too close to the maximum usable 
frequency. If the ionization density and collision frequency are 
known, the attenuation per unit length can be calculated by means 
of (21a) and (22). The total attenuation of the wave in the iono-
sphere would then be obtained by integrating a along the whole 
lepgth of path through the ionosphere. In general, it is found that 
attenuation is negligibly small, except in the region near the lower 
edge of the ionosphere (the D region) and at the top of the path 
where the ray is being bent. The absorption that occurs in the 
region where the wave is bent, is called deviative absorption, whereas 
that which occurs in the D region is known as nondeviative absorp-
tion. For high frequencies, where reflection takes place from the F 
layer, deviative absorption is usually small because the collision 
frequency in this layer is low. Exceptions to this occur for fre-
quencies near the maximum usable frequency where the wave is 
abnormally retarded and appreciable absorption of energy may take 
place. 

Since it is known from theoretical considerations that the 
collision frequency r high near the surface of the earth but 
decreases very rapidly with increasing height, it can be deduced 
through the use of eq. (23) that the main region of nondeviative 

(17-22) 
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absorption will be confined to a relatively narrow range of heights 
lying somewhere between GO and 100 km. 

In the above analysis no account has been taken of the effect 
of the earth's magnetic field. This subject is treated in the next 
section. 

17.07 Effect of the Earth's Magnetic Field. Electrons and 
ions in the ionosphere moving under the influence of the electric 
field of a passing electromagnetic wave, experience an additional 
force because of their velocity in the presence of the earth's magnetic 
field. Taking into account the effect of this steady magnetic field 
Bo, but neglecting frictional forces due to collision between electrons 
and gas molecules, the equation of force on the particle can be 
written 

F = e(E -F v X Bo) = m (Tavt (17-24) 

Equation (24) is a vector equation that can be written as three 
scalar equations. Choosing the z axis of a rectangular co-ordinate 
system parallel to Bo, so that Bo = kBz, and B. = B,, = 0, eq. (24) 
becomes 

+ N,B0 

— v.B0 

Ez 

jcom 
--e- v. 

jcom 
e 

jcom 
= — V» 

e 

In eqs. (25) all variables have been assumed periodic with a fre-
quency co/27, so the time derivative of y has been replaced by jwv. 
Solving (a) and (b) simultaneously for y. and yv gives 

— jco(m/e)E. BoET, 

— jco(m/e)E„ — BoE. 

Bo2 — co2(m/er 

(b) 

(a) 

B02 _ 0,2(0)8 

" Resonance" occurs for that frequency that makes the denominator 
of (a) and (b) equal to zero, that is for 

coo = Bo Ten (17-27) 

(17-26) 

An approximate value for the earth's magnetic field is 0.5 gauss 
which in MKS units corresponds to 0.5 X 10-4 webers/sq m. 
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Since elm = 1.77 X 101° coulombs/kg for an electron, eq. (27) 
gives a resonant or gyrofrequency of about 1400 kc for electrons. 
For the hydrogen ion with a mass approximately 1800 times that 
of the electron, the gyro frequency is outside the radio frequency 
spectrum, being of the order of 800 cps. Thus, as far as the influ-
ence of the earth's magnetic field on radio-frequency wave propaga-
tion is concerned, only the electrons in the ionosphere need be 
considered. 

The result of this resonance condition for electrons in the 
ionosphere is that near the gyro frequency the velocities of the 
electrons increase to large values for a given intensity of electric 
field, and the wave attenuation is increased greatly over the value 
existing in the absence of the earth's magnetic field. The practical 
result is that the absorption of radio waves in the ionosphere as a 
function of their frequency reaches a broad maximum in the neigh-
borhood of 1400 kc, so that over most of the broadcast band and 
up to about 2 mc, the absorption of the wave is too large for day-
time sky wave reception. Outside of this frequency band the atten-
uation is relatively much smaller, the order of magnitude being 
given by the expressions developed in the previous section. A 
general quantitative discussion of the effect of the earth's magnetic 
field of an electromagnetic wave of any frequency traveling through 
the ionosphere can become quite complicated. However, it is 
possible to treat certain typical particular cases,* the results of 
which serve to explain many of the observed phenomena. 

Maxwell's first equation for a region in which there is a convec-
tion current density Nev is: 

Curl H = Nev (17-28) 

In terms of the three scalar components and using eqs. (26), eq. (28) 
becomes 

Are jNe2wo  
Curl. H = 4(1 -F ) E 

eon( 0,m (w 2 _ 0,2) c002 — ‘02)  

Ne2 jNewo  • 
Curl:, /I = c. (1 ± Ez (17-29) .vm(0,02 _ 0,2) com(c002 ,2) 

Ne2  \ E. 
Curl. = 4(1 

evmw21 

* The cases considered in this section were treated by W. Nichols and 
J. C. Schelleng, " Propagation of Electric Waves over the Earth," Bb2rJ, 4, 
215, April, 1925. 
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In the above equations E. has been replaced by É./jco, etc., and 
mie = Bo/coo. Assuming for N a value approximately equal to 
N.1 and using eq. (20), the quantity Ne2/e,m is equal to C0c2, where 
wc is 2r times the critical frequency for the layer having that par-
ticular maximum value of N. Making this substitution, eqs. (29) 
Ian be written in the following form 

Curl. H = eÉz — se& (a) 1 

Curls H = ¿Éi, jE"É (b) (17-30) 

Curl» H = e°É. (c) 

where e° = e, (1 — we' ') 
co 

e' e, (1  We2 2 (17-31) 
0,0  

= _ ev  C.0, 2(00 

(.0(0,2 (002) 

In addition to the above relations, another set which will be use-
ful can be obtained by taking the curl of Maxwell's emf equation. 

curl curl E = grad div E — V2E = —is curl Ñ (17-32) 

From this, 

V2E — grad div E = m curl É 

which can be written as the three scalar equations 

a . 
— —ax E) = curL É 

a  V2E„ — (div E) = curly 14 

a  — (div E) curlz 

(17-33) 

It is now possible to consider separately two particular cases 
that are of interest. 

CASE I: Direction of Propagation Parallel to Bo 
For this case, a uniform plane electromagnetic wave is assumed to be 

traveling parallel to Bo in the z direction. Remembering that under these 
a a 

conditions, E. — H... 0, and — — — 0, eqs. (30) and (33) can be 
az ay 
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combined to yield 

aZ2 

a2E, 

  = E„ jµE"E. 
az2 

a2E. 
= ge'É. — 

(17-34) 

These are the relations which the electromagnetic wave traveling through 
the ionosphere parallel to Bo must satisfy. A general solution for a uniform 
plane wave progressing in the z direction has the form 

E. = A e (17-35) 

= Be(t) 

where A and B may be complex. Then 

É, -co2A eiw(g-0 É, = -co2B eiw(1-0 

2E w-2 A /41-0 
a . 
az2 1,2 
a2E, co2B  

az2 y2 

Substituting (36) in (34) and dividing through by 

gives 
-co2 e 

(- pl + PE') A -= igE"B 

1 ,) B „ 
.n.te A 

There are two sets of solutions to (37). They are 
Solution I: 

B = jA 

Solution 2: 

V = VI = 

B = -jA 

1 

•Vii(E' E") 

1 
V = V2 =   

e" ) 

(17-36) 

(17-37) 

(17-38) 

(17-39) 
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Assuming A is real and using only the real parts of eqs. (35), the expressions 
for the electric field are: 

Solution I: 

E. =- A cos co — 

Solution 2: 

E, = — A sin ce (t — .-
vi 

E. = A cos co (t — 

E, = A sin co — 
V2 

(17-40) 

(17-41) 

Eqs. (40) and (41) represent two circularly polarized waves, rotating in 
opposite directions and traveling with different velocities. From eq. (38), 
(39), and (31) the two velocities are 

= 

Vy — 

I  

Wc2 «O w° 

(02 — wo4 co(w 2 e)02) = 
»NI 1 

We2 wc2coo 

w 2 0)02 co(w 2 wo2) 

oh2 

(17-42) 

CASE II: Direction of Propagation Perpendicular to Bo 
In this case, the uniform plane electromagnetic wave will be assumed 

to be traveling in a direction perpendicular to the magnetic field, say in the 
x direction. In the general case the electric field will be arbitrarily polar-
ized, so that there will be both E, and E. components. An important 
special case of Case II occurs when the electric vector is entirely in the 
z direction, that is parallel to Bo. In this special case, only eq. (30c) 
applies. This corresponds to eq. (4), which was obtained previously when 
the earth's magnetic field was neglected. (In the present case, both cr 
and y which appear in (4) are assumed to be zero). Thus, as would be 
expected, the earth's magnetic field Bo has no influence on ionospheric 
propagation in the particular case where E, and therefore the electron 
velocity v, is parallel to Bo. 

Now consider the more general case of propagation in the x direction 
(perpendicular to Be) when the electric field of the incident wave may have 
both polarizations (E. and E.). Remembering that for a uniform plane 
wave in the x direction, a/ay = a/az = 0, eqs. (33) reduce to 
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82E. eE. 
eurL É 

ax2 ax2 
a2E„ 

= µ curl, à (17-33a) ax2 

82E. 
= 1.4 curl, É 

ax2 

Combining the first of eqs. (33a) with eq. (30a) shows that 

(17-43) 

For a uniform plane wave propagating through free space in the x direction, 
the wave is transverse and E. = O. However, in this case of propagation 
through an ionized medium in the presence of the earth's magnetic field, 
the electron convection current in the x-y plane results in a component 
(usually small) of electric intensity in the x direction, the magnitude of 
which can be obtained from (43). 

Again from eq. (30b). 

itéE„ jµe"E. (17-44) 

and, using (43), this becomes 

Also from eq. (30c), 

V2E„ = (e' (02) — Ey (17-45) 

V2E. = (17-46) 

Equations (45) and (46) indicated that for waves propagating through the 
ionosphere perpendicular to the earth's magnetic field, there will be two 
different velocities depending upon whether E is parallel to, or perpendicu-
lar to, the magnetic field. For the component of E parallel to Bo, already 
considered as a special case, the velocity of wave propagation is obtained 
from (46) as 

1 1 
V0= /_ j 2 

17 7;€° 1 — 
0,2 

(17-47) 

This is the same velocity that was obtained when the presence of the earth's 
magnetic field was neglected. For Ey, the component of E perpendicular 
to Bo, the wave velocity, obtained from (45) is 

— 
1 

_ (92\ 
e 
JL _ (E?) 

Co E 

(17-48) 
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In general, an electromagnetic wave propagating perpendicular to the 
earth's magnetic field will have components of E both parallel and perpen-
dicular to Bo. These components will travel with different velocities and 
will therefore be refracted differently in the ionosphere. Therefore two 
waves traveling different paths with different velocities will result. One 
of these has the same velocity as would be obtained if the earth's field were 
not present, and this is called the ordinary wave or ordinary ray. The other 
travels with a different velocity and is termed the extraordinary ray. The 
extraordinary ray suffers greater absorption (at high frequencies) and has a 
somewhat higher critical frequency than the ordinary ray. 

17.08 Transmission Line Representation of the Ionosphere. 
When all the variables are considered, the phenomenon of ionosphere 
reflection is one of great complexity. In such a circumstance the 
engineer often finds it helpful to have available a simplified picture 
of the phenomenon that will indicate to him the order of magnitude 
(or at least the correct direction of change) of the dependent variable 
when one of the independent variables is varied. Figure 17-9 is a 
simplified equivalent-circuit representation of the ionosphere, which 
accounts for some of the major facts of ionosphere reflection. As 
with any equivalent circuit, the equivalence holds only over a 
restricted range of operating conditions, but within that range it 
may be used to give useful answers. 

In Fig. 17-9a wave propagation through free space and in the 
ionosphere is compared to wave propagation along a transmission 
line having " constants" that vary along the length of the line. In 
the region beneath the ionosphere, the free-space constants 14, and 
E, are the equivalent series inductance and shunt capacitance per 
unit length of the "free-space transmission line." Electron and 
ion convection currents flow within the ionosphere in response to 
the electric field of the electromagnetic wave. In the absence of 
collisions and neglecting the effect of the earth's magnetic field, 
these convection currents lag the impressed electric intensity by 
90 degrees. The effect of the ionization is therefore correctly 
represented in the transmission line analogue as a shunt inductance 
L.. In the region where collisions between electrons and gas mole-
cules result in appreciable absorption of the wave, a resistance R. 
is included in series with L. to account for this power loss due to the 
convection current flow. (It could be accounted for instead by a 
shunt conductance G.) Shunt inductance added to a transmission 
line tends to neutralize or reduce the shunt capacitance of the line 
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Fin. 17-9. Approximate equivalent circuit of the ionosphere, 
(a) neglecting, and (b) including the effect of the earth's magnetic 

field. L = C = e., Zo = = Nes R. -= Nes 

Nm 
C. — — (for extraordinary wave), C. = co (for ordinary wave). 
— Bo 

and hence increases the phase velocity along the line as indicated by 
the simple relation for the lossless line 

1  
v — 

LC 
where for this case 

1 
C1 = C — (17-49) 

w2L. 

When the shunt capacitance C is completely neutralized by the 
shunt inductive loading, that is when C1 = 0, the phase velocity 
becomes infinite. This means the phase shift per unit length has 

been reduced to zero, or in other words, wave motion has ceased. 
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Therefore the point where 

L. = 1 W C (17-50) 

is the farthest point to which the wave can progress, and complete 
reflection (in the lossless case) of the wave occurs at this point. 
Substitution for L. and C indicates that the ionization density at 
this point must satisfy the relation 

Ne2 2 w = 
E.M 

(17-51) 

The frequency for which (51) is satisfied is by definition the critical 
frequency for the layer that has this value of N for its maximum 
ionization density. 

In Fig. 17-9b the effect of the earth's magnetic field has been 
represented (but only approximately) as a condenser C., in series 
with L. and R.. The capacitance of the condenser is inversely 
proportional to the square of the magnetic field strength and would 
be infinite for no magnetic field, or for propagation under circum-
stances where the magnetic field has no effect. At the frequency 
for which L. and C. are in series resonance, 

e co --- coo —   — /30— 
V/4C. 

1 
(17-52) 

the convection current rises to a large value limited only by the 
collision losses; the absorption is abnormally large at and near this 
resonant frequency. At frequencies considerably above the 
resonant frequency, the absorption decreases to values just a little 
larger than would be obtained without the magnetic field. At fre-
quencies below the resonant frequency the loss is somewhat less than 
without the magnetic field. In addition, the presence of the earth's 
magnetic field as represented by C. has the effect of increasing the 
critical frequency for that wave polarization that is affected by it, 
that is, for the extraordinary wave. 

In both of these representations vertical incidence has been 
assumed. In general the line " constants" are also functions of 
angle of incidence, and this fact would have to be considered if the 
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simplified transmission line picture were used at various angles of 
incidence. 

17.09 Sky Wave Transmission Calculations. 
Maximum Usable Frequency. Por ionospheric transmission to be 

possible, the frequency used must lie between the maximum usable 
frequency (muf). and the lowest useful high frequency (luhf). The 

00 02 04 08 08 10 12 14 16 18 

LOCAL TIME 

Fm. 17-10. Typical world contour muf chart for the F2 
layer. Chart is for distances of 4000 km and summertime con-
ditions. 

muf was defined in section 17.04, and the luhf will be discussed later 
in this section. 

The muf for any given path at any time of day is calculated 
quite simply through use of convenient world contour charts obtain-
able from the Bureau of Standards in Washington. These charts, 
an example of which appears in Fig. 17-10, show the world-wide 
variation of muf with local time for all latitudes. The muf figures 
predicted on these charts are the monthly median values of maxi-
mum usable frequency. Thus, communication at the muf calcu-
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lated from these charts should be effective approximately 50 per 
cent of the time during undisturbed periods. 

To calculate the muf it is necessary to know the length of the 
transmission path and the location of certain " control" points 
on the path. The control points of a transmission path are points 
along the path, the ionospheric conditions of which seem to control 
transmission along the path. For paths shorter than 4000 kilo-
meters (that is, single-hop paths) the control point is midway along 
the path, as would be expected. For longer paths the control 
points are taken as 2000 kilometers from each end for F2 layer 
reflection and 1000 kilometers from each end for E layer reflection. 
Although the choice is empirical, it can be justified to some extent 
from a consideration of the probable paths in multihop transmission. 

To calculate the maximum usable frequency the appropriate 
muf chart is used in conjunction with a world map and a great-
circle chart of the same size. A sheet of transparent paper is placed 
over the world map, and on it are marked the location of the trans-
mitting and receiving points and the equatorial line. The trans-
parent paper is then placed on the great-circle chart. Keeping the 
equatorial lines on chart and paper lined up, the transparency is 
moved sideways until the transmitting and receiving points both lie 
on the same great circle line, which is then sketched in. The trans-
parency is then placed over the muf chart, and the meridian whose 
local time is to be used for the calculation is lined up with the 
appropriate time meridian on the muf chart. Since 24 hours on the 
time scale of the muf chart is drawn to the same scale as 360 degrees 
of longitude on the world map, all points on the great-circle path 
will be lined up in their proper local time relationship. The maxi-
mum usable frequency at the control point or points can then be 
read off directly if the path length is the same as that for which the 
muf chart is drawn. For F2 layer transmission over distances less 
than 4000 kilometers (single-hop transmission) the maximum usable 
frequencies are determined from zero-distance and 4000 kilometers 
distance muf charts; then the maximum usable frequency corre-
sponding to the actual path length is obtained by interpolation 
with the aid of a suitable nomogram. For transmission via other 
layers and over greater distances the calculation procedure is 
slightly different. Details of these calculations, along with a com-
plete set of sample charts and worked examples are given in a Bureau 
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of Standards publication.* 11.tuf prediction charts are also available 
from the same source.t 

The frequencies selected by the procedures above are for undis-
turbed periods. During periods of " ionospheric storms" the critical 
frequencies are lower than usual, and it may be necessary to lower 
the working frequency in order to insure communication. As the 
frequency is lowered the absorption of the wave increases. If it is 
necessary to lower the operating frequency below the lowest useful 
high frequency, communication becomes impossible. Since the 
"ionospheric storm" type of disturbance is most severe in the polar 
regions, with less severity towards the equator, communication can 
often be maintained during " storm" periods by relaying through 
points closer to the equator. This last statement does not apply 
in the case of " sudden ionospheric disturbances" or " radio fade-
outs" (Dellinger effect). During radio fadeouts high-frequency 
communication becomes impossible on all paths in the daylight side 
of the world. Fortunately this latter type of disturbance, which is 
unpredictable, rarely lasts more than two hours. 

Sky-wave Absorption and Lowest Useful High Frequency. As 
has already been pointed out, when the operating frequency is 
reduced from the maximum usable frequency the absorption of the 
wave in the ionosphere increases, and the received signal strength 
becomes less. The lowest-useful-high-frequency (luhf) for a given 
distance and given transmitter power is defined as the lowest fre-
quency (in the high-frequency band) that will give satisfactory 
reception for that distance and power. Unlike the muf, which 
depends only upon the state of the ionosphere and the distance 
between transmitting and receiving points, the luhf depends upon 
the following factors: 

(a) The effective radiated power. 
(b) The absorption characteristics of the ionosphere for the 

paths between transmitter and receiver. 

* Ionospheric Radio Propagation, National Bureau of Standards Circular 
462, issued June 1948. 
t Series CRPL-D, Basic Radio Propagation Predictions Three Months in 

Advance. These bulletins are prepared by Central Radio Propagation Labora-
tory and are for sale by the Superintendent of Documents, U.S. Government 
Printing Office, Washington, D. C. 
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(c) The required field intensity, which in turn depends upon 
radio noise at the receiving location and the type of service involved. 
These factors will be considered in turn. 

(a) Effective Radiated Power and Unabsorbed Field Intensity. 
The effective radiated power is the power actually radiated by the 
antenna, multiplied by the antenna gain in the direction of propaga-
tion. This second factor requires a knowledge of the vertical angle 
of radiation that is effective in producing a signal at the receiver. 
This angle depends upon the layer involved, the distance to the 
receiver, and the number of hops. The unabsorbed field intensity 
of a sky wave signal at a given distance for a transmitter is defined 
as the median incident field intensity that would be observed by use 
of an antenna of fixed linear polarization if no absorption were intro-
duced by the ionosphere. The unabsorbed field intensity is less 
than that which would result from inverse-distance attenuation 
alone because of (1) interference and polarization fading and (2) 
loss of energy upon reflection at the ground between hops. In 
practice the unabsorbed field intensity for any distance is obtained 
from a graph that takes the above factors into account. 

(b) Absorption Characteristics of the Ionosphere. Absorption in 
the ionosphere can be classified as deviative or nondeviative absorp-
tion. Deviative Absorption occurs in that region of the ionosphere 
where the wave is bent back to earth. Except for frequencies near 
the critical frequency for the reflecting layer this type of absorption 
is small. During daylight hours a much greater absorption of the 
wave occurs in the D region, where the collision frequency is high. 
This latter absorption is called nondeviative because it is not associ-
ated with a bending of the wave. In the D region recombination is 
rapid and the ionization density, and hence the absorption, varies 
almost in synchronism with the elevation of the sun. D-layer 
absorption is a maximum at noon and decreases to negligibly small 
values within two hours after sunset. As was pointed out in sec. 
17.07, the absorption has a broad maximum in the neighborhood of 
the resonance frequency (1.2-1.4 mc) for the electrons in the 
earth's magnetic field. As the frequency is increased above the 
resonance frequency, the absorption decreases steadily except for 
frequencies close to the critical frequency of each layer. 

In addition to frequency and time of day, sky-wave absorption 
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is also dependent upon the season of year and sunspot activity. 
When all of these factors have been taken into account, the absorp-
tion of the wave in the ionosphere, and hence the expected incident 
field intensity, can be calculated. As in the case of the muf, such 
calculations are greatly facilitated by the use of numerous charts and 
nomograms which have been prepared, and which are available.* 

(c) Required Field Intensity. The field intensity required for 
satisfactory reception for a given type of service depends among 
other things on the receiver sensitivity, the receiving-set noise, the 
radio noise lev.)1 prevailing at the receiving location, and the type 
of modulation. Radio " noise" can be divided into man-made noise, 
that is, local electrical disturbances produced by electrical machin-
ery, and atmospheric noise, or static. The latter noise depends 
upon the frequency, the time of day, the season of year, and location 
with respect to the sources of thunderstorms. Because most 
atmospheric noise has its origin in thunderstorms, those areas in 
which thunderstorms are most prevalent will have the highest 
atmospheric-noise level. The world can be divided into noise zones 
that correspond roughly to the zones showing the incidence of 
thunderstorms. The principal noise centers or active thunder-
storm areas are located in Central Africa, Central America, and the 
East and West Indies. Areas of very low thunderstorm incidence 
are the, north and south frigid zones. In general the temperate 
zones are areas of moderate thunderstorm incidence. The actual 
atmospheric noise at any location depends upon the local noise 
sources (thunderstorms) and also upon the sky-wave propagation 
characteristics between that location and the principal noise centers. 
It should be noted that the same factors that make for good trans-
mission of radio signals from distant transmitters also provide good 
transmission of noise signals from distant noise sources. 

The distribution of noise intensities throughout the world has 
been plotted on world maps for each month of the year. Using 
these noise-grade charts in conjunction with curves that show 
required field intensity vs. frequency for different times of day and 
different noise grades, it is a simple matter to figure the required 

*Such charts are available in Bureau of Standards Circular 462 and in 
Elementary Manual of Radio Propagation, by Donald Menzel, published by 
Prentice-Hall, Inc., New York, 1948. The Manual gives simple, detailed pro-
cedures for the calculation of all important quantities. 
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field intensity for any given set of conditions.* For any frequency 
less than the muf, if the incident field intensity calculated under 
(b) is greater than the required field intensity calculated under (c), 
communication can be established. The lowest frequency for which 
this occurs is the lowest useful high frequency. 

It is seen that the calculation of the probable received field 
intensity at any point is an engineering problem that can be solved 
when sufficient data are given. The data required are the time of 
day, the season of year, the transmission path, the frequency, and 
the effective radiated power. Although the ionosphere is a complex , 
natural phenomenon not under the control of man, by familiarizing 
himself with its characteristics man has learned to predict its 
behaviour and so has been enabled to use it to serve his needs. 
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APPENDIX I 

VELOCITIES OF PROPAGATION 

Group Velocity and Phase Velocity. In the discussion of wave 
propagation between parallel planes and in wave guides two differ-
ent velocities were encountered. The first of these was the phase 
velocity y, which represented the velocity of propagation of equi-
phase surfaces along the guide. The second velocity was the group 
velocity v0, which in those particular cases, could be considered as 
the velocity of energy propagation in the direction of the axis of the 
guide. For wave guide propagation the phase velocity is always 
greater than vo = 1/W E, whereas the group velocity is always less 
than yo. The term group velocity has a more general significance 
than was indicated in that discussion. 

In order to convey intelligence it is always necessary to modulate 
by some means or other the carrier frequency being transmitted. 
When this is done, there is a group of frequencies, usually centered 
about the carrier, that must be propagated along the guide or trans-
mission line. If the phase velocity is a function of frequency, the 
waves of different frequencies in the group will be transmitted with 
slightly different velocities. The component waves combine to 
form a " modulation envelope," which is propagated as a wave hav-
ing the group velocity y, defined by 

dco 
vg = 

The frequency spread of the group is assumed to be small compared 
with the mean frequency of the group, and the derivative is evalu-
ated at this mean frequency. The significance of the definition is 
made clear by consideration of a simple and well-known example. 

Consider the case of a carrier Eo cos cot, amplitude-modulated 
by a modulation frequency àf = &o/27-. Such a signal would be 
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represented by 
E = E0(1 m cos Acot) cos cot 

where m is the modulation factor. This expression can be expanded 
in the usual manner to show the presence of the carrier and side 
band frequencies. 

mE0 
E = E0 cos cot + —2 [cos (co + co)t + cos (co — Aco)t] 

If now such a signal is propagated in the z direction under conditions 
where the phase velocity varies with frequency, the resultant wave 
would be written as 

mE0 
E = E0 cos (cot — f3z) 

2 
{cos [(co + co)t — (0 ± Aa)z] 

+ [cos (co — Aco)t — (0 — 43)41 

This expression can be recombined to show an amplitude-modulated 
wave progressing in the z direction 

E = E0[1 m cos (Awt —  .0z)] cos (cot — ez) 

The bracketed part of this expression represents the envelope of the 
wave. It is seen that the envelope progresses in the z direction with 
a velocity 

Aco 
vg = - 

N3 

If the frequency spread of the group is small enough that Aco/à0 
may be considered constant throughout the group, this may be 
written as the limit 

dc,., 
vg, d-7-3 

To simplify the evaluation of v„, this may also be written as 

1  
dP/dco 

The phenomenon of phase and group velocities can be illustrated 
by sketching the addition of the two side band frequencies waves at 
a certain instant of time (the carrier frequency is omitted to simplify 
the discussion and the sketch). Figure 1 shows two waves of slightly 
different frequencies combining to form a single amplitude-raodu-
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lated wave. If the component waves have the same velocity, the 
two crests al and b1 will move along together and the maximum 
of the modulation envelope will move along with them at the same 
velocity. Under these circumstances, phase and group velocity 
are the same. If it is assumed that the lower frequency wave b 
with the longer wavelength has a velocity slightly greater than that 
of a, the crests al and b1 will move apart and the crests az and bz 
will come together. Therefore, at some later instant of time the 
maximum of the envelope will occur at the point where az and bz 
are coincident, and at a still later instant where as and bs are coinci-
dent. It is evident that the envelope is slipping backward with 
respect to the component waves. In other words, it is moving for-
ward with the group velocity v9, which is less than the phase velocit 

/-ENVELOPE 

RESULTANT 

FIG. 1 

of either of the component waves. Visually, as for example, in the 
case of water waves, it appears as though the envelope were slipping 
behind the component waves, or, on the other hand, as though the 
component waves were slipping forward through the envelope. 
Under those conditions, where the shorter wavelength (high fre-
quency) wave has the greater phase velocity, the situation is 
reversed and the modulation envelope slips forward. The group 
velocity is then greater than the phase velocity of the component 
waves. If fi is plotted as a function of co, the phase velocity and 
group velocity may be determined directly from the graph. Figure 2 
shows such a plot for waveguide propagation. It is observed that 
the slope of Wco = 1/D is always less than that of da/dco = 1/vg, so 
that u3 is always greater than v9, but both approach vo as co approaches 
infinity. 

Figure 3 shows a typical plot of 13 vs. co for a two-conductor trans-
mission line having loss. For this case the slope of 1/i) is always 
greater than that of dedco = 174, so that the phase velocity i 
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always less than the group velocity, but as the frequency is increased 
both velocities approach the velocity yo = 1/N/LC, which applies 
in the lossless case. 

Signal Velocity. It is to be noted that both phase velocity and 
group velocity are terms that apply only under steady-state condi-
tions. If a signal be impressed suddenly at one end of a transmis-
sion line or wave guide, the time required for the disturbance to 
reach the other end is a measure of what is sometimes called the 
signal velocity. However, it is difficult to state just what is the 

Fla. 3 

value af this signal velocity, because the signal at the other end 
builds up more or less gradually to a steady state as the initial 
transient condition dies out. The first impulse always reaches the 
receiving end with a velocity equal to the velocity of light, with 
other impulses arriving at later times. However, the amplitude 
of the first impulse is zero and the build-up to the steady-state 
condition is gradual, so the time required for the signal to reach (and 
be indicated by) the detector is dependent on the sensitivity of the 
detector. A thorough discussion of this rather complex phenom-
ena has been given by Brillouin.* 

* Brillouin, Congres international d'electricite, Vol. II, Paris, 1932. See 
also, Sarbacher and Edson, Hyper and Ultra-High Frequency Engineering, 
John Wiley and Sons, New York, 1943. 
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BESSEL FUNCTIONS 

Bessel and Eankel functions have been discussed briefly in vari-
ous parts of the text (secs. 9.05, 11.08, 13.05). In working electro-
magnetic problems the series expansions of the functions, and a 
knowledge of the differentiation and recurrence formulas are often 
required. For convenience a few of these series and formulas are 
assembled together here. For a more detailed treatment of these 
functions, reference should be made to one of the standard texts 
on Bessel functions.* 

Bessel Functions and Hankel Functions. Bessel functions are 
solutions of the following differential equation, which is known as 
Bessel's equation 

d'w 
z2 z (z2 _ = 0 (1) 

dz 2 dz 

The order of the equation is given by the value of y. In general 
y will be nonintegral. For integral values of y the symbol n is 
usually used. 

For nonintegral values of two linearly independent solution» 
of ( 1) are 

J,(z) 

J_(z) == 

m!r(m 1)2)+2'. 
œg-o 

( — 11inz-,1-21"  
m!F(m — 1)2-r-r2* 

mœo 

(2) 

where Jp(z) is Bessel function of the first kind, of order Y. The 
function F(m + 1) = F(p) is the generalized factorial function 

*In addition, an excellent summary treatment of Bessel Functions is given 
by S. A. Schelkunoff, Electromagnetic Waves, Chapter III: also Applied Mathe-
matics for Engineers and Scientists, Chapter XX. Where differences in defini-
tions and notations exist among various texts, those used by Schelkunoff have 
been followed here. 
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known as the Gamma function. It is defined by 

11(p) = f xP—' e-2 dx 
o 

When v = n (an integer), the Gamma function becomes the factorial 
r (m n ± 1) = (m n)! The two solutions given by (2) are 
then no longer independent, but instead are related by 

J,(z) = (- 1)nJ„(z) 

(-1)mzn+2m 
where now J(z)  2.-1-2.no(m  (3) 

A second independent solution of (1) is defined by 

N (z) — J(z) cos vw — J_(z)  ,,  
sin vir 

(4) 

where N(z) is known as a Neumann function or, more commonly, as 
a Bessel function of second kind, of order v. When y is integral, 
W(z) continues to be a solution of Bessel's equation, and is still 
defined* by (4). For integral values of v, a complete solution of ( 1) 
is 

w = AJ„(z) BN„(z) (5) 

Bessel functions of the second kind become infinite at z = 0, and so 
cannot be used to represent physical fields except in those problems 
in which the region z = 0 is excluded. 

Solutions to equation (1) may also be written in terms of Hankel 
functions. Hankel functions are linear combinations of Bessel 
functions defined by 

= J(z) + jN(z) 

113 (2) (z) = .1.3(z) — (6) 

Like the N functions, Hankel functions become infinite at z = 0, and 
so in physical problems are restricted to cases where z = 0 is 
excluded. 

Bessel Functions for Small and Large Arguments. For z « 1, the 
.1- and N functions are given approximately by the expressions 

21v — 1)! 
0 N(z) (7) 2' 

When w is an integer, n, r n(z) as defined by (4) is indeterminate. How-
ever, it can be evaluated by usual methods. 
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and in particular 

Jo(z) = 1 

are 

No(z) (biz C - ln 2) (8) 

On the other hand for large values of z the asymptotic expressions 

Pr 
J(z) NI:7-7z.2 cos (z 2 4 

2 . _ 
N „(z) 77,z- sin (z 2 4 

Hp(I)(z) .\112 ei(z-îr -10 
7rZ 

( ì" 
H ,(2)(z) ee, .e e 

7rZ 

(9) 

From these expansions it is apparent that the J and N functions 
correspond to cosine and sine functions and as such represent stand-
ing waves when used with the time factor eiwt. On the other hand, 
the 1/( 1) and Ho) functions correspond to exponential functions 
with imaginary exponents and, when used with the time factor &0t, 
represent inward- and outward-traveling cylindrical waves. 

Differentiation and Integration of Bessel Functions. Using the 
series definition for Jo(z), and differentiating term by term, shows 
that 

d 

Similarly it can be shown that the following relations are true: [In 
the expressions listed here Z,(z) may denote any of the functions 
J ,(z), N,(z), Hp(1)(z), or H, (2) (Z); also Z;(z) means (d/dz)Z,(z)]. 

Zo'(z) = -Z1(z) 
1 

Zi'(z) = Zo(z) - -z Z1(z) 

zZ;(z) = vZ,(z) - zZ,_Fi (z) 
= zZ,_1(z) - vZ,(z) 

—d [zwZy(z)] = eZ,_1(z) 
dz 

= -z-Y Z ,44 (z) 
dz 

(10) 
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A useful recurrence formula is 

2vZ,(z) = z[Z,_1(z) ± Z 1(z)] 

Some integration formulas are 

f Zi(z) dz = -Zo(x) 1 

frZ,_1(z) dz = eZ,(z) (12) 

fz-PZ,+1 (z) dz = -z-'Zp(z) 1 
Modified Bessel Functions. Modified Bessel functions of zero 

order were encountered in sec. 11.05. The modified Bessel equation 
of order y is 

d'w dw 
z 2 ____ ± z ___ _ (z 2 ± OW = 0 

dz2 dz 

For nonintegral values of 1, two independent solutions are 

/p(z) and /,(z) 

where 
., 

zr-E2m  
Iy(z) = 2,-Fimnor (I, ± m + 1) 

m - o 

(13) 

(14) 

(15) 

As in the case of the J functions, when y is integral, these two solu-
tions are related by 

/,(z) --- /.(z) 

and it becomes necessary to seek another solution. Another solu-
tion is given by 

Kp(z) - 2 sin PT [I_,(z) - I ,(z)] 

For integral values of n this reduces to 

2  (aLn ai) 
K(z) - —an cos nir an - 

(16) 

(17) 

and gives a second independent solution. 

For z « 1, the I and K functions are given approximately by 

/,(z) e---• zy 
2'vl 

- 1)! 
K,(z) - 

z' (18) 

and in particular; 

/0(z) ••-,--; 1 Ko(z) --=, - [In z + C - ln 2] (19) 
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Series expansions for the I and K functions are given by Schel-
kunoff.* As noted in sec. 11.07, the I and K functions are 
appropriate for dissipative media. For propagation in a lossless 
dielectric, the arguments of these functions would be pure imagi-
naries, and the functions reduce to ordinary Bessel functions. For 
imaginary arguments the relations between modified and ordinary 

Bessel functions are 

y(jz) = ei'TV,(z) 

./C,(jz) = e 
—i(e÷l)r/2[J,(z) iN,(z)] 

(20) 

It is apparent that for imaginary arguments the I functions repre-
sent standing waves and the K functions represent outward travel-
ing waves. 

Recurrence Formulas for I and K Functions. In general the 
differentiation and recurrence formulas for the modified Bessel 
functions are different from those for Bessel and Hankel functions. 
For the modified functions the recurrence formulas corresponding 

to those of eqs. (10) are 

z/;(z) = v/(z) zI„+i(z), 
zK,'(z) = yK,(z) — zK,+1(z) 
zI,'(z) = zIp_i — vI„(z), 
zK,'(z) = —zK„_1(z) — vIC,(z) 

-cri [zPlp(z)] = 

—dz [eK„(z)] = —zyK„-i(z) (21) 

— [z-PI,(z)] 
dz 

—d [z-,K„(z)] = —z-PK„+1(z) 
dz 

2yIv(z) = z[Ip_1(z) — 
2yK,(z) = —z[K,_1(z) — 

* Electromagnetic Waves, pp. 50-51: Applied Mathematics for Engineers and 
Scientists, p. 396. 



LIST OF SYMBOLS 
(See also pages e-22 and Table I, page 23) 

The following list contains those symbols that have been used 
consistently throughout the text. The symbols shown on pages 
20-23 are not repeated here. Because of the large number of 
quantities to be represented and the undesirability of using alpha-
bets other than English and Greek, it has been necessary to use 
some symbols to represent different quantities at different times 
and places. In every instance the symbol has been defined where 
introduced to avoid misinterpretation of its meaning. 

Symbol Quantity Page 
A Vector magnetic potential  83 

Velocity of light in free space  19 
Euler's constant (.5772157)  320 

Ci (x) Cosine integral  320 
D Dissipation factor   129 
e Base of natural logarithms (2.71828)  131 

Farad  24 
Frequency  116 
Vector electric potential  492 
Attenuation factor, surface wave  625 

h Simplifying factor h = N/12 + W 2/2e  178 
H,o) (x) Hankel function, first kind, order P  372 

2) (z) Hankel function, second kind, order y  372 
•i, j, k, Unit vectors, cartesian coordinates   4 
/,(x) Modified Bessel function, first kind, order y  373 
I(x) Modified Bessel function, of half order  490 

Imaginary part of • • • .  170 
Unit imaginary number in complex plane, V---71 117 
Linear or surface current density   108 

J,(x) Bessel function of first kiwi, order y  271 
698 
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Symbol Quantity Page 
J(x) Bessel function of half order  490 
k A constant  26 
K Reflection coefficient  252 
K Magnetic conduction current  556 
Kw(x) Modified Bessel function, second kind, order is  373 
K(x) Modified Bessel function of half order  490 
1, m, n Direction cosines  10 
m, n An integer  179 
M Magnetic current density  556 
M, N Antenna functions  506 
n Unit vector normal to surface  108 
N Unit vector normal to plane surface  143. 
N,(x) Bessel function, second kind, order is (Neumann 

function)  272 
Ña(x) Bessel function of half order  490 
P Poynting vector  163 
P„, Q„ Legendre function of order n  68, 488 
Q Quality factor  291 
r, 0, 0 Spherical coordinate axis  14 
R. Surface resistance   157 
Re Real part of • • •  117 
s Distance, ds element of distance  35 
S Surface, da element of surface area  31, 45 
Si(x) Integral related to cosine integral  320 
Si (x) Sine integral  320 
Tm(X) Tchebyscheff polynomial of order m  440 
u„ uo, u. Unit vectors, cylindrical coordinates  14 
U, u., u. Unit vectors, spherical coordinates  17 
y Wave velocity in any medium  127 
vo Velocity, uniform plane wave in lossless dielectric 114 
D Phase velocity   189 
vo Group velocity  191 
✓ Volume, dV element of volume  31, 41 
x, y, z Cartesian coordinate axis  4 
X. Surface reactance   157 
Y Admittance  150 
2 Impedance, wave impedance   150, 197 
Zo Characteristic impedance  150 
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Symbol Quantity Page 
Z. Surface impedance   155 

a Attenuation constant   127 
a General attenuation constant  176 
0 Phase shift constant  119 
a General phase shift constant  176 
7 Propagation constant  127 
-i General propagation constant  176 
A, ô Small increment of a quantity  11, 27 
ô Depth of penetration  131 

/1 Intrinsic impedance  130 
n, Intrinsic impedance of free space  123 
0 Polar angle in spherical coordinates  17 
X Wavelength   119 
-X. Wavelength parallel to wall3 of a guide  191 
bt Prefix, micro-, denoting 10-6  24 
y General order of Bessel and Hankel functions. 272 
y Relative frequency  475 
ir 3.14159   19 
II A potential stream function  492 
P, (P, z Cylindrical coordinate axis  14 

An angle  81 
co Angular frequency  116 
2 Solid angle  30 
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ABRAHAM, MAX, 111, 480 
Absorption, deviative, 673, 686 

nondeviative, 673 
ADAMS, N. I., 71, 480 
AHARONI, J., 486, 509 
ALFORD, A., 553 
Ampere's law, current element, 80 

work, 77, 94 
error in, 97 

Amplitude, of reflected wave, 133 
of waves, 180 

Analogue, electric and magnetic fields, 
91 

transmission line, 147 
and wave guide, 282 

ANDREW, A., 451 
Angle, Brewster, 141, 210, 526, 616 

solid, 30 
Anisotropie, 28 
Antenna: 

aperture. 555 
area, effective, 416 
array, 396 
Beverage wave, 510 
broadcast, 514, 517 
Bruce, 529 
clover leaf, 542 
cylindrical, impedance of, 506 

slotted, 543, 593 
the problem of, 479 

dipole, 393 
directional characteristics, 391 
efficiency, 516 
elevated, 642 
excitation, 526 
frequency-modulation, 541 
gain, 413 
high frequency, 522 
impedance, 331, 452 

as boundary value problem, 480 
integral equation solution, 481 
mutual, 347, 353 

length, effective, 333, 336 
line of sight, 643 

Antenna (cont.): 
long wire, 528 
losses, 516 
near field of, 320 
open-end transmission line, as an, 

461 
parasitic, arrays, 530 
point of feed, 395 
practice, 510 
Q, 453 
reactance, 359 
receiving, 546 
rhombic, 529 
rotary beam, 531 
short, 311, 511 
synthesis, 433 
television, 541 
theorems, 326 
traveling wave, 395 
UHF, 545 
VHF, 533 
wave guide, as a, 486 

Array, antenna, 396 
binomial, 412 
broadcast, 400, 517 
broadside, 404, 429 
curtain, 530 
dipole, 598 
high frequency, 530 
Linear, 402, 405 
mathematics of, 422 

parasitic, 530 
rhombic, 529 
slot, 598 
space factor, 424 
supergain, 445 
synthesized, 434 
UHF, 545 

Atmosphere, moist standard, 653 
nonstandard, 652 

Attenuation, constant, 127, 181, 257 
factor, 193, 467 

surface waves, 626 
wave guides, 287 
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Attenuation (cont.): 
parallel-plane guides, 192 
TE waves, 195 
TM waves, 196 

Attenuator, 192 
ATTWOOD, STEPHEN S., 655 

Babinet's principle, 583, 606 
BAKER, W. G., 688 
BALLANTINE, STUART, 514 
Baluns, 539 
Band width, 455 
BARFIELD, R. H., 654 
BARROW, W. L., 293 
BARROWS, C. R., 618, 654 
Batwing, 542 
BEAM, R. E., 293 
BECKMANN, R., 341 
BECKER, R., 111 
BENNETT, F. D., 473, 479 
BERKNER, L. V., 688 
Bessel, equations and functions, 270, 

372, 488, 498, 603, 693 
BEVERAGE, H. H., 553 
Beverage wave antenna, 510 
Biconical antenna, 491, 499 
Binomial array, 412 
Biot-Savart law, 81 
BOOKER, H. G., 586, 607 
Boundary, conditions, 62, 104, 133, 

158, 179, 201, 222, 262 
surface, 43 

Brewster angle, 141, 201, 526 
pseudo, 616 

BRILLOITIN, L., 480, 481, 509, 692 
Broadcast antenna, 514 

arrays, 517 
horizontal patterns, 400 

BRONWELL, A. B., 293 
BEowN, G. H., 340, 352, 358, 531, 533 
BRUCE, E., 553 
Bruce antenna, 529 
BURGESS, R. E., 340, 364, 553 
BYRNE, J. F., 528 

Cable, power flow in concentric, 163 
Capacitance, 21, 53, 256 

distributed, 214, 380 
sphere, 69 
wire, 56 

Capacitivity, 26 
Capacity hat, 511 

CARSON, J. R., 328, 340 
CARTER, P. S., 325, 352, 479, 534, 553, 

601 
CGS units, 19 
Charge, 20, 125 

continuous distribution, 39 
density, 31 

surface, 14, 44, 202 
volume, 14 

fictitious magnetic, 555 
parallel-line, 40 

CHU, L. J., 293, 480 
Circuit, 1 

elements, UHF lines, 232 
relations and field theory, 378 
representation, parallel-plane line, 

212 
Circular, guides, 274 

harmonics, 65 
loop, magnetic field, 82 
polarization, 124 

CLAVIER, A. G., 293 
Coaxial line, 218, 256 

radiation from open end, 560, 565 
Coefficient, reflection, 141, 155 
COLEMAN, P. D., 473, 479 
Compensation theorem, 327 
Complex, power, 171 
Poynting vector, 197 
propagation constant, 176 
voltage and current, 169 

Condenser, 50-55 (see Capacitance) 
Conductance, 21, 256 
Conducting, medium, 124 

surface, 69 
Conduction, 125 

current, 128 
electrons, 42 

Conductivity, 93, 125 
ground, 617 

Conductor, 42, 125, 157, 165 
current flow within, 201 
good, 128 
perfect, 105, 132, 143 
power loss in, 172 

Conservative field, 34 
Constant, attenuation, 127, 181 

dielectric, 215 
complex, 610 

Euler's, 504 
line, R,L,C,G, 148 
phase shift, 119, 120, 127, 181 
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Constant (cont.): 
propagation, 127 

complex, 176 
rectangular guide, 264 

Continuity, equation of, 97 
Copper wire, 132, 155 
Cornu's spiral, 574 
Cosine, direction, 10, 142 

integral, 320 
Coulomb, 20 
Coulomb's law of force, 26 
COURANT, 440 
Cross product, 7 
Cruft Laboratory, 470 
Cum.witcx, E. G., 101, 
Curl, 9, 16, 17 

interpretation of, 10, 96 
Current, 20 

complex, 169 
conduction, 104 
convection, 104 
density, 21 

distribution, 208, 313 
displacement, 100, 110, 128, 132, 

380 
element, 303 
flow in a conductor, 201 
magnetic, 104 
sheet, 107 

ratliator, 545 
surface, 78 

CUTTING, FULTON, 553 
Cylinders, concentric, 50, 54 

conducting, 599 
and dipole, 598, 601 

Cylindrical antenna, 479 
condenser, 55 
conductors, 70 

parallel, 220 
coordinates, 14 

solution of field equations, 274 
harmonics, 64 
waves, 370 

DARROW, KARL K., 688 
Definitions, 20-23 
Del, the differentiation operator, v, 8 
DELLINGER, J. H., 688 
Dellinger effect, 671, 685 
Delta-match, 527 
Density, charge, 31 

current, 21 

Density (cant.): 
displacement, 21 
energy, 162 
magnetic flux, 21 
ratio of displacement to conduction 

current, 128 
Depth, of penetration, 131, 158 

skin, 158 
Diamagnetic, 79 
Dielectric, 128 
boundary conditions at, 62 
constant, 22, 26, 214, 215 
good, 128 
wave propagation in, 129 

intrinsic impedance of, 130 
reflection by a, 135 
wave velocity in, 130 

Diffracted field, 569 
Diffraction, Fraunhofer, 569 

Fresnel, 572 
Dimensions, 22 
and units, 18 

Dipole, electric, 69 
field of, 38 
oscillating, 303, 306 

folded, 534 
Hertzian, 307 
horizontal, space wave pattern, 623 

surface wave from, 628 
length of, 524 
magnetic, 89 
parasitic, 390 
practical, elementary, 311 

half-wave, 523 
radiation from, 314 
short, near cylinder, 601 
stub matched, 534 
vertical, space wave, 620 

Directional, characteristics of an-
tenna, 391 

patterns, equality of, 330 
properties of dipole antenna, 393 

Direction cosines, 10, 142 
Directivity, 414 
Director, 531 
Displacement, electric, 21 

density, 27 
magnetic, 104 

Displacement current, 110, 132, 380 
density, 21, 100 

ratio to conduction current, 128 
Dissipation factor, 129 
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Divergence, 9, 17 
integral definition of, 46 
physical interpretation of, 10 
theorem, 44 

DOHERTY, 437 
DOLPH, C. L., 441, 443 
Dot product, 5 
Doublet, electric, 38 
Duality principle, 583 

Earth, good conductor, 132 
effect of, on vertical patterns, 408 
spherical, propagation, 636 

Earth's magnetic field, effect of, 674 
E X H, interpretation of, 168 
Epsom, 111, 692 
Electric intensity, 21, 26 
Electromagnetic field equations, 102 

differential form, 103 
integral form, 104 
vector form, 102 
word statement of, 104 

Electromotive force, 21, 104 
Electrons, free conduction, 42 
Electrostatic field, fundamental rela-

tions, 25 
Electrostatics, 51 

the problem of, 47 
Elliptical polarization, 123, 418 
EMDE, F., 320, 599 
End-effect, 468 
Energy, 20 

density, 162 
stored, in electric field, 60 

in magnetic field, 79 
EPSTEIN, J., 553 
Equation, of continuity, 97 

Laplace's, 46, 69 
Legendre's, 67 
magnetomotive force, generalized, 

99 
of a plane, 142 
Poisson's, 46 
transmission line, 217 
vector, 5 
wave, 114 

conducting medium, 124 
Equations, electromagnetic field, 102 
Equiamplitude lines, 205 
Equiphase lines, 205 
Equipotential surfaces, 41, 119, 137, 

142 

Equivalence theorems, 559 
Euler's constant, 504 
EVERITT, W . L., 246, 259, 325, 358, 

473, 518, 528, 553 
E waves, 178 
Exponential form, sinusoidal time 

variation, 116 

Factor, dissipation, 129 
power, 129 

Farad, 21 
Faraday's law, 101 

induction, 73 
FELDMAN, C. B., 553, 655 
Ferromagnetic, 79 
Field, 1, 3 
fundamental relations of electro-

static, 25 
magnetic, 72 
strength pattern, 391 
theory and circuit relations, 378 

Filter theory, 199 
Flow, power, 163 

Poynting vector of, 160 
Flux, electric, 27 

lines of, 29 
magnetic, 21, 74 

FM, 531 
Force, 20 

lines of, 29 
FOSTER, DONALD, 553 
Fourier series, 595 
Fraunhofer diffraction, 569, 572 
Free-space, 113 
Frequency, 119 

critical, 184, 276, 665 
cut-off, 185, 265, 276 
lowest useful high, 685 
maximum usable, 667 
modulation antenna, 541 
optimum, 667 

Fresnel, diffraction, 572 
integrals, 575 

FRIIS, H. T., 451, 553 
FUBINI, E. G., 509 
Functions, Bessel, 270, 693 
gamma, 694 
Hankel, 693 
I and K, 697 
M and N, 506 
Neumann's, 272, 694 
stream, 492 
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Gain, antenna, 413 
from pattern, 420 
maximum directive, 414 

Gamma function, 694 
Gauss's law, 29 

alternative statement of, 46 
Gauss's theorem, 44 
GIHRING, H. E., 553 
GIORGI, 19 
GOODMAN, BRYON, 554 
Gradient, 9, 17 

physical interpretation of, 10 
GRAMMER, GEORGE, 554 
GROSSKOPP, J., 300 
Group velocity, 210, 689 
Guided waves, 175 

rigorous solution of, 204 
Guides, circular, 274 

parallel-plane, 192 
power loss in, 193 
rectangular, 260, 268 
single conductor, 210 

GUILLEMIN, E. A., 292 

HALLt Dr, E., 470, 481, 482, 483, 484, 
485, 486, 508 

Henkel functions, 372, 693 
Harmonics, circular, 65 

cylindrical, 64 
spherical, 64 
zonal, 68 

Heights, virtual, 665 
Henry, 21 
HERTZ, 101 
Hertzian dipole, 307 

vector, 340 
HESSLER, V. P., 24 
High antenna, line of sight, 643 
HILBERT, 440 
Homogeneous medium, 112 
Horizontal polarization, 139 
Horn, electromagnetic, 545, 560 

radiation from, 577 
HOWE, G. W. G., 57, 202, 655 
Huygen's principle, 561 
H waves, 178 

Identities, vector, 9 
I functions, 697 
Image, antenna, 410 

charges and currents, 409 
electrical, solution by means of, 51 

Impedance, 342 
antenna, equivalence of transmit-

ting and receiving, 331 
characteristic, 150, 257, 279 

adjusted, antenna, 512 
average, 457 
copper, 155 
integrated, 281 

characteristics of antennas, 452 
input, of line sections, 233 

of tuned line, 235 
intrinsic, 150 

of dielectric, 130 
matching, stub line, 241 

wide-band, 473 
modified, 469 
mutual, between antenna, 347 
surface, 155, 157 
terminating, 230 
wave, 279 

Incidence, normal, 132 
plane of, 139 

Incident ray, 137 
Induced emf method, note on, 365 

of calculating impedances, 342 
Inductance, 21, 214, 256, 381 

external, high-frequency, 375 
Neumann's formula for, 388 

Induction, 306 
Faraday's law, 73 
theorems, 559 

Inductive reactance, internal, 377 
Intensity, required field, 687 
unabsorbed field, 686 

Intrinsic impedance, 150 
Ionized region, effective e and cr, 659 
Ionosphere, 657 

absorption characteristics of, 686 
reflection and refraction by the, 662 
transmission line representation of, 

680 
variation of, 669 

Ionospheric, attenuation factor of 
propogation, 672 

storms, 672 
Iris, in wave guide, 285 
Isotropic, 28, 112 

radiator, 391 

JAHNxE, E., 320, 599 
JAMIESON, H. W., 286 
JEANS, J. H., 71, 500 
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JORDAN, E. C., 325, 358, 597 
Jouis, 20 
Joule's law, 161 

KELLER, 437 
KELLOGG, E. W., 553 
KENNELLY, A. E., 24 
K functions, 697 
Krbto, R., 352, 358 
KIRBY, S. S., 688 

Lus, J., 341, 352, 362, 512 
Laplace's equation, 46, 69, 221 
Laplacian, cartesian coordinates, 9 

cylindrical coordinates, 16 
of a vector, 9 
spherical coordinates, 18 

LAPORTE, E. A., 451 
Legendre's equation, 67, 487 

polonomial, 488 
Length, 20 
Lenz' s law, 134 
LEw is, It. F., 553 
',Ems, W. D., 451 
Line, parallel, charges, 40 

sections, resonance in, 235 
Q of resonant, 236 

Linearity of the field equations, 117 
Linearly polarized, 123 
Lines, transmission, 211 

a-c, Poynting vector about, 167 
coaxial, 218 
graphical representation of phe-

nomena, 250 
impedance, input of, 233 

matching, 241 
lossless, 151, 212, 228 
low-loss, 211 
parallel-plane, 212, 217 
polyphase, Poynting vector, 167 
theory, 223 
UHF, 225, 232, 256 
wedge, 580 

Loading, top, 511 
Lobe, principal, 403 
Loop, Federal square, 542 
LORENTZ, H. A., 302 
Loss, ohmic resistance, 166 

in plane conductor, 172 
in wave guide, 193 

Lossless medium, 151 
¿uhf, 683 

MACMILLAN, 377 
Macroscopic, 25, 31, 73 
Magnet., bar, 168 
Magnetic current, 104 

dipole, 89 
displacement, 104 
field, 72 

effect of earth's, 674 
energy stored in, 79 
parallel conductors, 220 
simple circuits of, 81, 86, 87, 
91 

flux, 74 
intensity, 21 

intensity, 75, 92, 134 
phase of reflected, 134 

vector potential, 82 
voltage, 104 

Magnetomotive force, 21, 75, 104 
generalized equation, 99 

MARCUVITZ, N., 287 
Mass, 20 
Maxwell's equations, 94, 100 
MCLACHLAN, N. W., 272, 377 
MCPHERSON, W. L., 533 
M curves, 653 
MEIER, A. S., 473 
MENZEL, D., 687, 688 
Meter, 21 
ohm, 21 

Mho, 21 
MILLER, W. E., 597 
MIMNO, H. R., 688 
MKS system of units, 23 

rationalized, 19 
Mode, 180 
dominant, 269 
TE, TM, 268 

Modulation, frequency, 541 
Monopole, 314 

radiation from, 314 
MORRISON, J. F., 469, 471 
MORSE, 490 
MOULLIN, E. B., 340 
muf, 667, 683 

Nabla, 8 
NAKBA, &moo, 688 
Near region, 572 
Network and antenna theorems, 

326 
Neumann function, 272, 694 
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Neumann's formula, external induct-
ance, 388 

number, 600 
NEWTON, 20 
NICHOLS, w., 675, 688 
Noise, atmospheric, 687 
man-made, 687 

Normal, components, 105, 108 
incidence, 132 

reflection, 135 
vector to a plane, 108, 143 

NORTON, K. A., 619, 631, 638, 651,654 

Oblique incidence, reflection by, 143 
perfect conductor, 143 
perfect insulator, 137 

Ohm, 20 
meter, 21 

Ohmic resistance, power loss, 166 
Ohm's law, 93, 125 

PAGE, L., 71, 480 
Parabaloids, 545 
Parallel, cylindrical condenser, 55 

line, charges, 40 
wire, 39, 218, 256 

planes, 49 
attenuation in, 192 
transmission line, 110, 212 
waves between, 175, 200 

plate condenser, 54 
resonance, 249 

Paramagnetic, 79 
Parasitic, antenna arrays, 530 

dipole, 390 
Patterns, effect of earth on, 408 

equality of directional, 330 
experimental, 397 
graphical method for obtaining, 401 
multiplication of, 404 
other planes, in, 407 
principal plane, 393 
without secondary lobes, 412 

PEDERS:11N, P. O., 655, 688 
PENDER, H., 24 
Penetration, depth of, 131, 158 
Perfect, conductor, 105, 110, 132, 143 

dielectric, 135, 137 
Permeability, 22, 214 

constant, 215 
free-space, 20 
relative, 20, 75, 79 

Phase, of reflected magnetic intensity, 
134 

reversal on reflection, 133 
shift constant, 119, 127, 181, 257 
velocity, 127, 186, 689 

Phasor addition, 399 
PHILLIPS, H. B., 24 
Piszoixons, A. A., 340 
Plane, capacitance of sphere and, 69 

conductor, power loss in, 172 
surface impedance, 157 

equation of, 142 
incidence, of, 139 

parallel to, 146 
infinite conducting, 69 
plates, hinged, 70 
polarization of, 123 
principal, 186, 393 
unit vector normal to, 143 
wave, power flow, 163 

reflection and refraction, 132 
uniform, 114, 119 

Plate, parallel, condenser, 54 
Pon', R. W., 71 
Poisson's equation, 46 
Polarization, 123 

elliptical, 123, 418 
horizontal, 139 
linear, 124 
parallel, 141 
perpendicular, 140 

Polyphase lines, Poynting vector, 
167 

Potential, function, 34 
scalar, 34 
vector, 73, 82, 294, 301 

Power, 20 
average, 117 
complex, 171 
dissipated per unit volume, 166 
factor, 129 
flow, plane wave, 163, 165 

Poynting vector, 160 
lost, 193 

ohmic, 166 
plane conductor, 172 
wave guide, 193 

maximum, transfer theorem, 327 
pattern, 391 
points, half-, 455 
reactive, 169 
real, 117 
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Poynting's theorem, 160 
Poynting vector, 160, 167, 309 

complex, 197 
method, 364 

Propagation, duct, 652 
ground wave, 608 
ionospheric, 672 

spherical earth, 636 
wave, conducting medium, 126 

in good conductor, 131 
in good dielectric, 129 
sky, 656 
substandard, 653 
uniform, plane, 114 
velocity of, 127, 187, 689 

Propagation constant, 127 
complex, 176 

Pylon, R.C.A., 542 

Q, quality factor, 236 
antenna, 453 
loaded and unloaded, 461 
resonant line, 236 
transmission line, 291 
wave guide, 287 

Radiated power, by current element, 
309 

effective, 686 
Radiation, 294, 381 

field, 305 
from, eoaxial line end, 565 

electromagnetic horn, 577 
monopole or dipole, 314 

intensity, 414 
pattern, 391 
resistance, 311 
by induced emf method, 343 

through aperature, 568 
Radiator, parabaloid, 545 
Radio frequency lines, 225 
RADIO RESEARCH LABORATORY STAFF, 

554, 571 
RAMO, s., 111, 377 
Rationalized MKS system, 19 
Ray, reflected, incident, transmitted, 

137 
Reactance, antenna, 359 

surface, 157 
Reactive power, 169 
Receiving antenna, 546 
Reciprocal theorem, generalized, 327 

Reflected ray, 137 
Reflection, coefficient, 141 

copper, 155 
Reflection, factor, 610 
normal incidence, 135 
oblique incidence, 137, 143 
plane wave, 132 
surface, earth's, 669 
medium, 153 

Reflection and refraction, 132 
Reflector, 531 
Refraction, 63 (see also Reflection) 
Resistance, 20, 256 

low-frequency, 377 
ohmic, 166 
radiation, 311, 343 
surface, 157 

Resistivity, 21 
Resonance, in line sections, 235 
with L variable, 247 

Resonant, length, 363 
line section, Q, 236 

Retardation, 381 
Rhombic antenna, 529 
REBLET, H. J., 441 
RICE, C. W., 553, 688 
RUMMY, V. H., 588 
RYDER, ROBERT M ., 480 

SARBACHER, R. J., 111, 692 
Scalar, 2 

complex, 174 
field, 3 
Laplacian of a, 9 
multiplication, 3, 5 
potential, 34 
product, 5 

SCHELKUNOFF, S. A., 24, 111, 259, 286, 
293, 423, 451, 470, 486, 490, 
491, 498, 501, 503, 504, 506, 
508, 509, 600, 605, 606, 607, 
693, 697 

SCHELLENG, J. C., 675, 688 
Screens, complementary, 585 
Sheet, current, 108 
Shunt-feed, 527 
SIEGEL, ERNEST M., 462, 468, 512 
SIEMENS, 21 
Simpson's trapezoidal rule, 318 
SINCLAIR, C., 597 
Sine integral, 320 
Sink, 102 
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Sinusoidal, time variation, 116 
traveling wave, 118 

SHILLING, H. H., 71, 111 
Skin depth, 158 
Skip distance, 668 
SLATER, J. C., 259 
Slit, narrow, 579 
Slot, half-wave, 586 

folded, 591 
Slots, cylinders, in, 605 

transverse, 597 
SMITE, C. E., 401 
SMITH, P. H., 255, 469, 471 
SMITH, WOODROW, 554 
SMYTHE, W. R., 71 
Snell's law, 138 
Solid angle, 30 
SOMMERFELD, A., 618 
Source, 102 

free, 112 
Huygens, 563 
line, 599 
secondary, 563 

Sources, conjugate, 585 
secondary, 555 

Sourawortni, G. C., 293 
Sphere, capacitance of, 69 
Spheres, capacitance between two, 

69 
concentric, 51 

Spherical, coordinates, 17 
harmonics, 64 
waves, 486 

Sporadic E layer, 659 
Standing wave, 133 
Stoke's theorem, 96 
STRArroN, J. A., 111, 300, 480, 600 
Stream function, 492 
STUART, D. M., 688 
Superposition theorem, 326 
Superturnstile, 542 
Surface, boundary, 43, 104 

charge, 44 
conducting, 69 
equiphase, 142 
equipotential, 41 
impedance, 155 
magnetic current density, 556 
reflection at a, 153 
resistance and reactance, 157 

SUTRO, P. J., 509 
Synthesis, antenna, 433 

TANG, K. Y., 24 
Tangential components, 105 

continuity of, 136 
Tchebyscheff polynomials, 440 
Television antennas, 541 
TEM waves, 183, 187, 270 

attenuation factor for, 193 
TERMAN, F. E., 518, 554, 618 
Thevenin's theorem, 327 
Tilt of surface wave, 635 
Time, 20 

sinusoidal variations, 116 
transient, relaxation, 126 

TM waves* 178, 181 
Toroidal coil, 340 
Transformer, line as a, 239 
Transmission, lines, 211 

line analogy, 147 
of wave guides, 282 

Transmitted ray, 137 
Transverse, 120 

electric waves, 178 
electromagnetic waves, 186 
magnetic waves, 178, 181 

in rectangular guides, 261 
Trapping, 653 
Trophospherie refraction and refire-

tion, 645 
Tuner, double-stub, 244 

UHF lines, as circuit elements, 232 
low-loss, 225 
numerical data on, 256 

Unipole, 391 
Units, CGS, 19 
MKS, 18 
order of magnitude of, 22 
rationalized, 20 

Units and dimensions, 18 

VAN DER POL, BALTH., 655 
VAN ROBERTS, W., 553 
VAUGHN, E. W., 597 
Vector, 2 

analysis, 2 
equation, 5 
field, 3 
form of field equations, 102 
identities, 9 
Laplacian of a, 9 
multiplication, 3, 6 
point relation, 93 
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Vector (cont.): 
potential, 73, 82, 301 

in electromagnetic field, 294 
Poynting, 160, 167 

average, 169, 309 
complex, 169, 197 
instantaneous, 169, 309 

product, 6 
relations in other coordinates, 14 
sum and difference, 3 
unit, normal to plane, 143 
normal to surface, 108 

Velocities of propogation, 689 
Velocity, 114, 121, 127, 131, 187, 214, 

265 
group, 191, 210, 689 
phase, 127, 191, 257, 689 
signal, 191, 692 
TEM wave, 187 

Vertical polarization, 139 
Voltage, 21, 35, 104 
complex form, 169 

W ARREN, S. R., JR., 24 
W ATSON, W. H., 607 
Watt, 20 
Wave, defined, 115 

direct, 608 
dominant, '267 
equations, 114, 124 
extraordinary, 670 
ground, propagation, 608 
guide, 175, 260 

attenuation factor, 287 
discontinuities in, 285 
open-ended, 570 
power loss in, 193 
Q of, 287 
rectangular, 266 
single conductor, 210 
transmission line analogy, 282 

impedance, 196, 200, 279 
ordinary, 670 

Wave (cont.): 
plane, power flow in, 163 

uniform, 114, 119, 158 
principd, 186, 286 
propagation, 126, 129, 131 
ray of, 137 
sky, 608, 683 
space, 608, 620 
standing, 119, 133 
surface, 608 
traveling, 118 
velocity, 130, 214, 689 

Wavelength, 119 
cut-off, 191 

Waves, E and H, 178 
electromagnetic, 112 

amplitude of, 180 
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