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CONVERSION OF UNITS

Sg;xlx- Quantity MEKS units CGS units
The MKS unit be- | is equal lo the following | and is also equal to the fol-
low number of CGS elec- | lowing number of CGS elec-
tromagnetic units: trostatic unils:
q Charge 1 coulomb 10t 3 X 10" (stat-coulombs)
1 Current 1 ampere 107t (ab-amperes) |3 X 107
v Electromotive | 1 volt 10 (ab-volts) 1g X 107 (stat-volts)
force
R Resistance 1 ohm 10¢ g X 1071
(' | Capacitance 1 farad 1077 9 X 10*  (stat-farads or
centimeters)
L Inductance 1 henry 10° lg X 1071
F  Force 1 newton 10 (dynes) 105 (dynes)
7| Energy 1 joule 107 (ergs) 107 (ergs)
W | Power 1 watt 107 (ergs/sec) 107 (ergs/sec)
a Conductivity | I mho/meter 10~ 9 X 10°
d Magnetic flux | 1 weber 108 (Maxwells) lg X 107
B Magnetic flux | 1 weber/square 10* (gauss) g X 107
density meter
F Magnetomo- | 1 ampere (-turn) | 4o X 1077 (gilberts) | 12z X 100
tive force® ‘ ‘
H | Magnetic 1 ampere/meter | 4x X 107 (oersteds)) 12x X 107
intensity *

* The starred quantities are affected by rationalization.

For these quantities the conversion

factors are shown for converting from ralionalized MKS units to unralionalized CGS units.

Meters Inches Feet Miles
0254 1 L0833
3048 12 1 0001894
1 39.37 3.281 0006214
1609 5280 1
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PREFACE

KNOWLEDGE of electromagnetic radiation and propagation is
A now required of virtually all communication and electronic
engineers. This book is designed to provide a course in this field for
electrical engineers and physicists. It is an outgrowth of courses
given by the author at Ohio State University and at the University
of Illinois. The level of the first part of the book is suitable for
seniors and beginning graduate students; the later chapters are
primarily for more advanced graduate students. Although there is
sufficient material for a two-semester course, many instructors may
prefer to select only certain chapters to be covered in a one-semester
or one-quarter course. The division of material among chapters has
been made with this fact in mind.

In a text of this scope it is necessary to draw from the writings of
many specialists. I am indebted to Professor Erik Hallén for the
use of his antenna impedance curves in Chapter 13. For the chap-
ters on propagation, material from the papers of K. A. Norton and
C. R. Burrows has been used. The writings of S. A. Schelkunoff
are already classics and are largely responsible for many engineering
concepts, such as wave impedance and magnetic currents, now in
general use. References to his papers and book will be found
throughout the text.

It is a pleasure to acknowledge the assistance given by the au-
thor’s associates at the University of Illinois and elsewhere. W. G.
Albright, R. 8. Elliott, P. K. Hudson, Ray DuHamel, Edgar Hay-
den, John Myers, Douglas Royal, John Bell, and many others gave
freely of their time in checking the manuscript and reading proof.
Discussions with George Sinclair were always helpful. I am espe-
cially indebted to J. A. Barkson, who read much of the manuscript
and offered many suggestions, and to Nicholas Yaru, who drew the
originals for the illustrations.

Several years ago it was my privilege to take a graduate course in
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vi PREFACE

radiation from Professor W. L. Everitt at the Ohio State University.
The original set of notes, * Radiation and Radiating Systems,” used
for that course has formed the nucleus about which this book has
been developed. It is my hope that some of the engineering philos-
ophy that was so much a part of that early course may have been
carried over into this work.
E. C. JorpaN
Urbana, Illinots
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CHAPTER 1

FUNDAMENTALS OF ELECTROMAGNETIC
ENGINEERING

1.01 Circuits and Fields. The rapid advances tkat have been
made in electrical engineering during the past few decades have
been due largely to the ability of the engineer to predict with accu-
racy the performance of complicated electrical networks. The
secret of this ability lies chiefly in the use of a simple but powerful
tool called circuit theory. The power of the circuit approach
depends upon its simplicity, and this simplicity is due to the fact
that circuit theory is a simplified approximation of a more exact
field theory. In chap. 11 familiar circuit relations are derived
directly from the more general field relations, and in the process
the assumptions and approximations involved in the use of circuit
theory are made apparent.

Despite the power and usefulness of the circuit approach the
communications engineer concerned with microwaves or with radio
transmission problems quickly becomes aware of its limitatiouns.
In the over-all design of a radio communication system the engineer
can use circuit theory to design the terminal equipment, but between
the output terminals of the transmitter and the input terminals of
the receiver, circuit theory fails to give him answers, and he must
turn to field theory. Electromagnetic field theory deals directly
with the field vectors E and H, whereas circuit theory deals with
voltages and currents that are the integrated effects of electric
and magnetic fields. Of course voltages and currents are the end
results in which the engineer is interested, but the intermediate step,
the electromagnetic field, is now a necessary one. It is the purpose
of this book to familiarize the student and the engineer with the
fundamental relations of the electromagnetic field, and to demon-
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2 FUNDAMENTALS OF ELECTROMAGNETIC ENGINEERING  [§1.02

strate how such relations are used in the solution of engzineering
problems.

Field theory is more difficult than circuit theory only because
of the larger number of variables involved. When current is con-
stant around a circuit, the voltages and currents are functions of
one variable—time. In uniform-transmission-line theory, the dis-
tance along the line is an added variable, but the engineer has
learned to treat this distributed-constants circuit by means of an
extension of ordinary circuit theory, which he calls transmission line
theory. In the most general electromagnetic field problems there
are three space variables involved, and the solutions tend to become
correspondingly complex. The additional complexity that results
from having to deal with vector quantities in three dimensions can
largely be overcome by use of vector analysis. The small amount
of effort required to become familiar with vector analysis is soon
amply repaid by the simplification that results from its use. For txis
reason the first topic to be treated will be vector analysis.

1.02 Vector Analysis. The use of vector analysis in the study
of electromagnetic field theory results in a real economy of time
and thought. Even more important, the vector form helps to give

a clearer understanding of the physical laws that mathematics"

describes. To express these essentially simple physical relations in
the longhand scalar form is like trying to sing a song note-by-note,
or like sending a code message dot-by-dash, instead of in letter or
word groups. The more concise vector form states each relation
as a whole, rather than in its component parts. The brief introduc-
tion to vector analysis included here is for the benefit of those
readers not already familiar with this useful tool. This treatment
is adequate for present purposes, but it is expected that the student
may later find it desirable to refer to some standard vector analys1s
text for a more thorough presentation. '

Scalar. A quantlty that is characterized only by magnitude
and algebraic sign is called a scalar. Examples of physical quan-
tities that are scalars are mass, time, temperature, and work. They
are represented by italic letters, suc‘l as A, B, C,a,b,and c.

Vector. A quantity that has d1rect10n as well as magnitude i is
called a vector. Force, velocity, dlsplacement and acceleration are'
examples of vector quantities. They are represented by letters in'
bold-fsice Toméin type, such as ‘A, B;"C, 4, b, and c.” ‘A" vector ean’




§1.02] FUNDAMENTALS OF ELECTROMAGNETIC ENGINEERING 3

bz represented geometrically by an arrow whose direction is appro-
p-iately chosen and whose length is proportional to the magnitude
of the vector.

Field. 1f at each point of a region there is a corresponding value
of some physical function, the region is called a field. Fields may
be classified as either scalar or vector, depending upon the type of
function involved.

If the value of the physical function at each point is a scalar
quantity, then the field is a scalar field. The temperature of the
atmosphere, the height of the surface of the earth above sea level,
and the density of a nonhomogeneous body are examples of scalar
fields.

When the value of the function at each point is a vector quan-
tity, the field is a vector ficld. The wind velocity of the atmosphere,
the force of gravity on a mass in space, and the force on a charged
body placed in an electric ficld, are examples of vector ficlds.

Sum arnd Differer.ce of Two Vectors. The sum of any two vectors
A and B is illustrated in Fig. 1-1a. It is apparent that it makes no
difference whether B is added to A or A is added to B. Hence

A+B=B+A. (1-1)

When the order of the operation may be reversed with no effect
on the result, the operation is said to obey the commutative law.

:]/
U
ﬂ/) 1
" e . g
°

\] “4' Q G

\

(a) (b)
F1c. 1-1

Figure 1-1b illustrates the difference of any two vectors A and B.
It is to be remembered that the ne-ative of a vector is a vector of
the same magnitude, but with a reversed direction.

Multiplication of a Scalar axd a Vector. When a vector is multi-
plied by a scalar, a new vector is produced whose direction is the
same as the original veetor and whose magnitude is the product of
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the magnitudes of the vector and scalar. Thus
C =daB (1-2)

Note the absence of any multiplication symbols between a and
B. The symbols « and X are reserved for special types of multipli-
cation, which will be discussed later.

The mathematician finds in vector analysis a tool by which
relationships can be expressed without reference to a co-ordinate
system. The engineer, however, generally needs a reference set of
co-ordinates to solve problems. The text will use rectangular or
Cartesian co-ordinates, except in those cases where other co-ordi-

nate systems reduce the com-
plexity of the problems. It
will be assumed that all vec-
tors and fields are three-

dimensional.
-~ A three-dimensional vector
k4, . is completely described by its
projections on the z, y, and 2
axes. Thereforeit can besaid
that a three-dimensional vec-
/ tor specifies three scalars (the
scalar magnitudes of the three
mutually orthogonal vector
X components). Also, a vector
Fia. 1-2 field specifies three scalar fields
(the scalar magnitudes of the
three component vector fields). This idea of cdmponent vectors can

be represented by

z

<

-~
-~
.

14,

A=Ai+Aj+ Ak (1-3)

where A,, A,, and A, are the magnitudes of the projections of the
vector on the z, y, and z axes respectively, and i, j, and k are unit
vectors in the direction of the axes, (Fig. 1-2).

If any two vectors A and B are added, there results

A+ B = A+ Aj+ Ak + Bd + Bij + Bk (1-4)

which can be grouped as
A4+ B-= (Az + B,)i + (Au +. Bu)] + (A: + B-)k. (1'5)
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This shows that each of the three components of the resultant
vector is found by adding the two corresponding components of the
individual vectors.

Furthermore, in any vector equation, the sum of the i components
on the left-hand side is equal to the sum of the i components on the
right-hand side. The same is true also of the j and k components.
Therefore, a vector equation can be written as three separate and dis-
tinct equations. Feor example, the equation

A+B=C+D+E (1-6)
could be written as the three equations
A+ B, =C.4+D.+E, (1-6a)
Ay + B, =C, + D, + E, (l'ﬁb)
A+ B, =C.+ D, + E, (1-6¢)

The ease with which three component equations can be written
as one vector equation makes vector analysis particularly useful in
field theory.

Scalar Multiplication. It was just shown
that a vector could be multiplied by a scalar.

It is also possible to multiply a vector by a

vector, but first the meaning of such multi- P
plication must be defined and suitable rules \
formulated. Two types of vector multipli-
cation have been defined, namely ‘scalar
product” and ‘“vector product.” The
meaning of such multiplications and the necessary rules are briefly
discussed in the following. The scalar product of two vectors is a
scalar quantity whose magnitude is equal to the product of the
magnitudes of the two vectors and the cosine of the angle between
them. This type of multiplication is often called the dot product
and is indicated by a - (dot) placed between the two vectors to be
multiplied. Hence in Fig. 1-3,

B
Fia. 1-3

A.B = ABcos 6 a-7
It is seen that the dot product obeys the commutative law, that is
A-B=B-A (1-8)

A physical example of the dot product can be found in the rela-
tionship between force and distance. If F represents a force that
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acts through the distance D (Fig. 1-4), then the work done would be
given by the equation
Work =T .D (1-9)

Again notice that the dot product, which in this case is work, is
a scalar quantity.

_ WEIGHT

N

l._

TZITTTT ///TV\////////
1
' FRICTION

Fic. 1-4

The dot product of two vectors can be found by using ordinary
algebraic rules.

Let A=Ai4 Aj+ Ak
B =DB.i+ B,j+ Bk
Therefore
A-B = A.B.(i-1) + A.B,(i-j) + A.B.(i-k)
+ A,B:(j - 1) + AyBy(i - §) + AyB.(j - k)
+ A.B.(k-i) + A.By(k-j) + A.B:(k-k)  (1-10)
But it can be seen from eq. (7) that
iri=j-j=k-k=1 (1-11a)
i-j=j-k=kei=j-i=k.j=i-k=0 (1-11b)
Therefore eq. (10) reduces to
A.B=AD,+4 AB, 4+ A.B, (1-12)

Vector Multiplication. The vector product of two vectors is
defined as a vector whose magnitude is the product of the magnitudes
of the two vectors and the sine of the angle between them, and whose
direction is perpendicular to the plane containing the two vectors.
If a right-handed screw is rotated from the first vector to the second
(through the smaller included angle), it moves in the positive direc-
tion of the resultant vector. This type of multiplication is often
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called the cross product and is indicated by a X (cross) placed
between the two vectors to be multiplied. Hence, in Fig. (1-3)

|A X B| = AB sin ¢ (1-13)

where the bars | | indicate ‘“magnitude of.” :
The direction of the vector A X B would be into the paper away
from the reader. The vector B X A would have the same magni-
tude but the opposite direction, that is, toward the reader. There-

fore ,
AXB=-BXA (1-14)

and the commutative law does ot apply.

A physical example of vector multiplication can be found in the
lifting force of a screw jack. If friction is neglected and a force £
is applied at the end of a lever arm of length I, then the lifting force F
produced by the jack will be

Py
5. F=1X1

where the constant p is the pitch of the screw.

The vector product may also be obtained by straightforward
algebraic multiplication and a result similar to that of eq. (10)
obtained. Thus

A XB = A.B.(i X1i) + A.B,(i X j) + 4.B,(i X k)
+ AyB.(j X i) + 4,B,(G X ) + 4,B.( X k)
+ A.Bo(k X i) + A.By(k X j) + A,B.(k X k)  (1-15)

By using eqgs. (13) and (14) and a right-handed system of
co-ordinates (Fig. 1-5) it is found that

iXj=k=—-jxi (1-16a)
iXk=i=—-kXj (1-16b)
kXi=j=—-iXk (1-16c)
iXi=jXj=kxk=0 (1-16d)

Therefore eq. (15) reduces to
A X B = (A,B, — A,B))i
+ (A'Bz - Asz)j
+ (AzBu - AuBz)k (1'17)
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This result may be remembered easily by noting that the sub-
scripts of the first (positive) part of each term are cyclic with an
z-y-z rotation when combined with the axis direction of the associ-
ated unit vector. For example, in the first part of the first term, the
subscript order is y-z-z (i is in the z direction). The subscript order
of the positive part of the second term is z-z-y, and for the positive
part of the third term it is z-y-2. The second or negative part of

Y z Y
/J__ L ‘lZ‘
i i "
X Y o Z
1
2z X

Fic. 1-5. Right-handed co-ordinate system.

each term is obtained by reversing the subscripts of the first part of
theterm. The correct order also may be found from the determinant

A, A, A i §j k
AXB=|B. B, Bf o AXB=|4, 4, A
i j k Bz Bu Bz

Differentiation—The V Operator. The differential vector oper-
ator V, called del or nabla, has many important applications in
physical problems. It is defined as

V=%i+%j+%k (1-18)

A differential operator can be treated in much the same way as
any ordinary quantity. For example, with the operator D = 4d/d,
the operation Dy means the quantity dy/dz is to be obtained.

There are three possible operations with V corresponding to the
three possible types of vector multiplication, illustrated in eqgs. (2),
(12), and (17).

1. If V is a scalar function, then by egs. (2) and (18)

v, oV, aVk
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This operation is called the gradient (for reasons to be explained
later), and is abbreviated

VV =grad V (1-20)

2. If A is a vector function, we can apply eqs. (10), (12), and (18)
and get

_ 94, | 04, , 94,
V'A‘ax'*'W'*'az (1-21)
This operation is called the divergence and is abbreviated
V-A=divA (1-22)

3. If A is a vector function, we can use eqs. (15), (17), and (18)
to show that

VXA (aA. B aA,,) i 4 (aA, B aA.)j

9y oz 9z az
94, 04,

Noz ~ a—y) k(123

9 9 3

dr dy 9z

VXA=i4, A, A,

i j k

This operation is called the curl and can be written as

VXA =curl A (1-24)

Identities. The identities that follow are useful in deriving field
equations. The student can verify them by direct expansions.

diveurl A =V.(VXA) =0 (1-25)
curl grad V =V X (VV) =0 (1-26)
divgrad V = V. (VV) = ©2y
where V? is defined (in Cartesian co-ordinates) as the operation*
62 62 62
2 = = -
ox? + ay? 022

* The operator v2 (del squared) is called the Laplacian. The Laplacian of
a scalar V is given by eq. (27). The Laplacian of a vector A is defined as the
vector whose Cartesian components are the Laplacians of the Cartesian compo-
nents of A, That is

VA = iV24, + jvi4, + kv24, (9 terms)

(1-27)
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curl curl A =V X (VX A) = grad divA — V%A (1-28)
divAXB=V.(AXB)=B.curlA —A-.curl B (1-29)

Direction Cosines. The component of a vector in a given direc-
tion is the projection of the vector on a line in that direction. Thus
A., the £ component of A, is equal to A cos a, where « is the angle
between A and the z axis. Then

A, =A-i

That is, the component of a vector in a given direction is eqﬁal
to the dot product of the vector and a unit vector in that direction.
If a vector makes angles a, 8, v, with the co-ordinate axes, then

l=cosc, m = cos B, 7 = COS ¥
are known as the direction cosines of the vector.

Problem 1. The scalar product of two vectors may be written in terzs
of the sum of the products of their direction comporents.

A-B = A,B, + A,B, + A.D,

Show that the cosine of the angle ¥ between the vectors is given Lty the
sum of the products of their direction cosizcs:

cos Y = ccs cra cc8 cip + cos 4 cos Bp + cO8 Y4 €OS Y
= lAlB + mamp + nane

1.03 Physical Interpretaticn cf Gradient, Divergence, and Curl.
The three operations which can be performed with the operator del
have important physical significance in scalar and vector fields.
They will be considered in turn.

Gradiert. The gradient of any scalar function is the maximum
space rate of change of that function. If the scalar function 14
represents temperature, then VV = grad V is a temperature gra-
dient, or rate of change of temperature with distance. It is evident
that although the temperature V is a scalar quantity—having
magnitude but no direction—the temperature gradient VV is a
vector quantity, its direction being that in which the temperature
changes most rapidly. This vector quantity may be expressed in
terms of its components in the z, y, and z direction. These are

V oV )4

respectively %—x, 3’ and s The resuvltant temperature gradient
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is the vector sum of these three components:

q ., 0
w=2li4+ 2 &

or oy 3

If the scalar V represents electric potential in volts VV represents
potential gradient or electric intensity in volts per meter (MKS).

Divergence. As a mathematical tool, vector analysis finds great
usefulness in simplifying the expressions of the relations that exist
in three-dimensional fields. A consideration of fluid motion gives
a direct interpretation of divergence and curl.

‘7

VAN

Ar

Fic. 1-6

Consider first the flow of an incompressible fluid. (Water is an
example of a fluid that is almost incompressible.) In Fig. 1-6 the
rectangular parallelepiped Az, Ay, Az, is an infinitesimal volume
element within the fluid. If pn is the mass density of the fluid, the
flow into the volume through the left-hand face is pmv, Az Az where
vy is the average of the y component of fluid velocity through the
left-hand face. The corresponding velocity through the right-hand
face will be (v, + (9v,/3y) Ay) so that the flow through this face is

[pmv,, + a(g—’;”) Ay] Az Az
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The net outward flow in the y direction is therefore
a(meJu)
3y Ax Ay Az

Similarly the net outward flow in the z direction.is

d (vaz)

oz Ax Ay Az
and in the z direction it is
a(vaz)
oz Ax Ay Az

The total net outward flow, considering all three directions, is then

A(pmvz) 3(pmby) d (Pm”t)
[ s -+ 3y -+ 32 ] Az Ay Az

The net outward flow per unit volume is

9(pmvz) + 3 (pmby) + 3 (pmvs)

0% 3y 9z = div (env)

This is the divergence of the fluid at the point z, y, z. Evidently
for an incompressible fluid the div (p.v) always equals zero. An
incompressible fluid cannot diverge from, nor converge toward, a
point.

The case of a compressible fluid or gas such as steam is different.
When the valve on a steam boiler is opened, there is a value for the
divergence at each point within the boiler. There is a net outward
flow of steam for each elemental volume. In this case the diverg-
ence has a positive value. On the other hand, when an evacuated
light bulb is broken, there is momentarily a negative value for
divergence in the space that was formerly the interior of the bulb.

Curl. The concept of curl or rotation of a vector quantity is
clearly illustrated in the stream flow problems. Figure 1-7 shows
a stream on the surface of which floats a leaf (in the z-y plane).

If the velocity at the surface is entirely in the y direction and is
uniform over the surface, there will be no rotational motion of the
leaf but only a translational motion downstream. However, if
there are eddies or vortices in the stream flow, there will in general
be a rotational as well as translational motion. The rate of rotation
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or angular velocity at any point is a measure of the curl of the
velocity of the water at that point. 1In this case, where the rotation
is about the z axis, the curl of v is in the z direction and is designated
by curl, v. A positive value of curl, v denotes a rotation from z to
Yy, that is a counterclockwise rotation. From Fig. 1-7b it is seen
that a positive value for dv,/8z will tend to rotate the leaf in a count-
erclockwise direction, whereas a positive value for d,/8, will tend to
produce a clockwise rotation.

The rate of rotation about the LEAF
z axis is therefore proportional
to the difference between these
two quantities. By defini-
tion of the curl in rectangular —~—— —_—
co-ordinates, _— T o —
——— e tung -\’
_ (v, v, ’
curl, v = (ax ay) (@)
More generally, considering y
any point within the fluid, /Vy
there may be rotations about Y -
X
the z and y axes as well. \l@— l—(y, + ﬂﬁdr)
. o7
The corresponding compo-
nents of the curl are given by W + _g%r ax)
v, ovy X
curl, v = = — 2
oy 0z
] _6v: 9, (b)
eury V=5 T ez Fic. 1-7. Rotation of a floating leaf.

A rotation about any axis can always be expressed as the sum of the
component rotations about the z, ¥, and z axes. Since the rotations
have direction as well as magnitude this will be a vector sum and the
resultant rate of rotation or angular velocity will be proportional to

_ (9v: _ dvy\. v, _ s\ . dvy v,
CBEA (ay az)1 + (az ax)’ + (ax ay)k
The direction of the resultant curl is the axis of rotation.
It should be observed that it is not necessary to have circular

motion or eddies in order to have a value for curl. In the example
of Fig. 1-7, if v, were everywhere zero but », were greater in mid-
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gtream than near the bank (that is, v, varies in the z direction), the
leaf would tend to rotate and there would be a value for curl given
by ac ] .
vy
cur, v = ¥

1.04 Vector Relations in Othcr Co-ordinate Systems. In order
to simplify the application of the boundary conditions in particular
problems, it is often desirable to express the various vector rclations
in co-ordinate systems other than the rectangular or Cartesian
system. Two other systems are of great importance. They are
cylindrical and spherical polar systems. The expressions for gra-
dient, divergence, curl, and so on, in these co-ordinate systems can
be obtained directly by setting up a mathematical statement for the
particular physical operation to be carried out.

Cylindrical Co-ordinates. The gradient of a scalar quantity is
the space rate of change of that quantity. In cylindrical co-ordi-
nates the elements of length along the three co-ordinate axes® are
dp, pd¢, and dz (Fig. 1-8). The respective components of the
gradient of a scalar V are thercfore

v

grad, V = %2 (1-30)

av
p 09’
If the unit vectors are designated by u,, u4, and u., the gradient may
be written in cylindrical co-ordinates as

14 4
grad V = 3;11,, + p_(')Tf)

The divergence was found to represent the net outward flow per
unit volume. The expression for it can be obtained as before by
determining the flow through the six surfaces of an elemental

grad, V = %I;,, grady, V =

uy + %gu, , (1-31)

#The symbol p is used for radial distance in cylindrical co-ordinates
(p == 4/z? + 3?) in order to distinguish it from r, the radial distance in spherical

co-ordinates (r = V/z? + y? + 2?). This is necessary because these co-ordi-
nate systems are often used together in problems. No confusion with pm, used
for mass density, or p, used for volume charge density, is anticipated. If it
should ever happen that volume charge density and radial distance in cylindri-
cal co-ordinates appear in the same equation the symbol p, can be used for
volume charge density. This is consistent with the notation p, for surface
charge density, which is used later. When no confusion results, volume charge
density is represented by the symbol » (without subscript). ’
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volume. Considering an incompressible fluid, the mass density
pm Will be a constant and so this factor can be dropped from the

>

£

Vo

~.

A S,

FAXY

X X=p cos ¢
Y=psin g
Z=2

Fro. 1-8. A cylindrical co-ordinate system.
expressions. Then in the p direction the flow in through the left-
hand face is proportional to
vp de dz
The flow out of the rizht-hand face is proportional to

(v,, + aaip dp) (o + dp) do dz

The difference between these two quantities (neglecting the second-
order differential) i3

av,, 1 a(Pvp)

pdp d¢d’+%pdpd¢dz——p do p d¢ dz

In the ¢ direction the difference is (dv,/pd¢) dp p d¢ dz, and in the z
direction it is (0v,/92) dp p d¢ dz. The net flow out is therefore

proportional to
1 O(pv,,) 804, v,
(p—¢9p—+p6¢+ dppde¢dz
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The net flow out per unit volume is proportional to

_}_ 8 (ov,) avrﬁ
vy =% Tiroé +
In terms of any vector A, the divergence in cylindrical co-ordinates
is
1004, | a4, ]
leA—-p % +pa¢+az (1-32)
Curl. The three cylindrical components of curl are:
_ 94, 04,
curl,, A= m 72— (1-333)
_ 04, 034,
curl, A = N % (1-33b)
curl; A = —[ (pAy) — ] (1-33c)

In chap. 4, the expression for curl in rectangular co-ordinates will
be developed in connection with Ampere’s law. The expression for
curl in cylindrical co-ordinates can be derived in exactly the same
manner.

The Laplacian Operator. The operator V2 = V . Vis the diver-
gence of the gradient of the (scalar) quantity upon which V? operates.
Carrying out this operation, it will be found that in cylindrical

co-ordinates,
oy 19 ¢ 18V | &V
vV 29 ( 6p)+ﬁa—¢f+—5z_2 (1-34)

For a vector, the symbol V - VA so far has no meaning except in
Cartesian co-ordinates where it has been defined (see footnote fol-
lowing eq. 27). The definition for the Laplacian of a vector can be
generalized for other orthogonal co-ordinate systems by writing,

VIA = V—VA) \7' V)Z (1-35) —
where VA is defined to mean* (in cylindrical co-ordinates)

A A
VA-u,a -lru,,;pa/‘b-i-u.;a (1-36) ~

N AAA
* The definitions of the symbol VA, given by eqs. (36) and (42), have sig-
nificance only when VA is associated with the divergence operation as in egs.
(85) and (41).
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Spherical Polar Co-ordinates. In the spherical polar co-ordinate
system the elements of length along the three co-ordinates are dr,
rdf, and r sin 6 d¢ (Fig. 1-9).

f
uUr
\\\\\ \ ‘ r"”
TMAESUy
-------- g Uy
4
]
va Y
’I
’I
X=r $IN & cos ¢
Y=/ SiNn & sINg
Z2=r cos &

Fia. 1-9. A spherical co-ordinate system.

Gradient. The three components of the gradient in spherical
co-ordinates are
V 1 9V
r a0 grad, V = rsin 6 d¢ (1-37)
Divergence. The expression for divergence in spherical polar
co-ordinates is

grad, V = %—I: grad, V =

a aAd,
dIVA___ )+rsm060(sm0A0)+rsn0 a9

r? or
Curl. The three spherical polar components for the curl of a
vector are

(1-38)

1

curl, A = ——
r sin 0

[ 55 (sin 04,) — aa‘:"] (1-392)
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curly A = [—.1— g L a(’A*")] (1-30b)

r sin 6 6¢> r ar
curl, A = —[ (rdg) — 2r ] (1-39¢)

The Laplacian in Spherical Folar Co-ordinates. For a scalar V,

190 av 1 af . aV 1 %V
2 —_— —
ViV = 2ar(r ('37')-I_7'2sin060<1 +r2smzoa¢2
(1-40)

The Laplacian of a vector quantity is defined by
VA = vtva) (. ) A (1-41)—
where in spherical co-ordinates, VA is defined as
oA dA 1 oJA
= — 'y =+ — - ———
e or == T 00 ’ "’rsmﬁacb (1-42)

P AR
Problem 2. In the illustration of the leaf floating on the surface of the
water (the z-y plane) show that for a very small circular leaf, curl v is equal
to twice the angular velocity of rotation of the leaf, that is that

av,, _ ) _,d8
dy dt

(Suggestion: Assume that the tangential force on the leaf per unit area
at any point is a constant times the relative velocity between leaf and
water at that point. The sum of all the torques on the leaf must be zero.)

Problem 3. For a two-dimensional system in which r = Azt
determine V2V (use rectangular co-ordinates and then check in cylindrical
co-ordinates) (a) when V = 1/r, (b) when V =In 1/7.

Problem 4. Repeat problem 3 for a three-dimensional system in which

r = v/z? + y? + 2 (use rectangular co-ordinates, and check with spherical
co-ordinates).

1.05 Units and Dimensions. Although scveral systems of units
are used in electromagnetic theory, most engineers now use some
form of the practical meter-kilogram-second (MKS) system. It is
to be expected that the marked advantages of this system will
prompt its universal adoption.

The existence of the large number of systems of electric and
magnetic units requires some explanation. The units used to
describe electric and magnetic phenomena can be quite arbitrary,
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and a complete system of units can be built up from any of a large
number of starting points. It is necessary only to define the units
of length, mass, time, and one electrical quantity (such as charge,
current, permeability or resistance) in order to have the basic units
from which all other required units can be derived. Unfortunately,
in the original CGS (centimeter-gram-second) systems the defined
units of length and mass were so small that the derived electrical
units were unsuitable for practical use. It was found necessary
to set up the so-called practical system with units that were related
to the corresponding CGS units by some power of 10 (volt, ampere,
ohm, and so on). In 1901 Professor Giorgi showed that this prac-
tical series could be made part of a complete system, based upon the
meter, kilogram, and second, provided that u,, the magnetic perme-
ability of a vacuum or free space, is given the value 10~7 instead of
unity as in the CGS system. The resulting (MKS) system has the
advantage that it utilizes units already in use in electrical engineer-
ing. In addition, it is a complete and self-consistent system.

The problem of selecting a suitable system of electric and mag-
netic units has been further complicated by the question of rational-
ization. As was pointed out by Heaviside, the CGS system is
unrationalized in that the factor 4x occurs in the wrong places, that
is, where logically it is not expected. It would be expected that 4x
would occur in problems having spherical symmetry, 2r in problems
having circular or cylindrical symmetry and no = in problems
involving rectangular shapes. In the ordinary CGS system that is
not the case, and Heaviside proposed to rationalize the system.
However his proposal involved changing the values of the volt,
ampere, ohm, and so on, by nonintegral values and so was not
considered feasable for practical reasons. It was pointed out later
that, if the permeability u, of a vacuum or free space were changed
from 1 to 47 in the CGS system, rationalization could be effected
without changing the magnitude of the practical units. In the
rationalized MKS system of units this requires that u, have the
value of 4r X 10~7. In any system of units the product 1/4/ e,
must be equal to ¢, the velocity of light. This requires that in the
rationalized MKS system

1

= 8. —12 .
€y 8.854 X 10 %36‘"' X 10°
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In the rationalized system the factor 4= occurs explicitly in Cou--
lomb’s law and in Ampere’s law for the current element, but it
does not occur in Maxwell’s field equations. It is for this latter
reason that the rationalized system is favored in electromagnetic
theory.

In 1935 the Giorgi (MKS) system was adopted as the inter-
national standard, with the question of rationalization left unsettled.
In this book the rationalized MKS system of units will be used.
Consequently, the basic or defined electrical unit (the permeability
of free space) will have the value p, = 4r X 10~7. The common
mechanical and electrical quantities as they appear in this system
are listed below.

RationaLizEp MKS System oF UNiTs

Length. The unit of length is the meter.

Mass. The unit of mass is the kilogram.

Time t. The unit of time is the second. =

Force F. The unit of force is the newton. It is the force required to
accelerate 1 kg at the rate of 1 meter/sec? (1 newton = 10° dynes).

Energy. The unit of electrical energy is the same as the unit of mechanical
energy. It is the joule. A joule is the work done when a force of
1 newton is exerted through a distance of 1 meter (1 joule = 107 ergs).

Power. The unit of power is the watf. It represents a rate of energy
expenditure of 1 joule/sec.

Absolute Permeability of Free Spacc p,. This basic electrical unit has the
value of 4w X 10-7 by definition. It has the dimensions of kenry per
meter.

Current I. The unit of current is the ampere. The size of the ampere i3
established through the experimental law of force (Ampere’s law)
_between’ two very long parallel wires in free space, viz.

_ welloL
T 2xd

where L is the length of the wires, and d is their separation. Thus an
ampere is that current (flowing in each conductor) which produces a
. force of 2 X 10-7 newtons/m length between very long parallel wires
spaced 1 meter apart in a vacuum.
Charge Q or ¢. 'The unit of charge is the coulomb. One ampere of current
flowing for 1 sec transports 1 coulomb of charge.
Reststance R. The unit of resistance is the ohm. If 1 watt of power is
dissipated in a resistance when 1 amp of current flows through it, the
value of the resistance is 1 ohm.

F
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Conductance G. Conductance is the reciprocal of resistance. The recipro-
cal ohm is known as the mho (or as the siemens).

Resistivity, The resistivity of a medium is the resistance measured between
two parallel faces of a unit cube. The unit of resistivity is the ohm meter.

Conductivity 0. The conductivity of a medium is the reciprocal of resis-
tivity. The unit of conductivity is the mho/meter.

Electromotive Force ¥. The unit of electromotive force (emf) or voltage
is the volf, which is defined as 1 watt/amp. It is also equal to 1 joule/
coulomb and so has the dimensions of work per unit charge. (It is not
a force.)

Electric Intensity E. Electric intensity or electric field strength is measured
in volts/meter. The electric intensity at any point in a medium is the
electric force per unit positive charge at that point. It has the dimen-
sion newton/coulomb.

Current Density i. The unit of current density is the ampere/square meter.

Electric Displacement ¥. The electric displacement through a closed sur-
face is equal to the charge enclosed by the surface. The unit of electric
displacement is the coulomb.

Displacement Density D. The unit of electric displacement density (usually
called just displacement density) is the coulomb/square meter,

Magnetic Fluz ¢. The voltage V between the terminals of a loop of wire
due to a changing magnetic field is related to the magnetic flux through
any surface enclosed by theloop by V = —d®/df. The unit of magnetic
flux is defined by this relation and is called the weber. A weber is
1 volt - sec.

Magnetic Flux Density B. The unit of magnetic flux density is the

weber/square meter. (1 weber/sq m = 104 gauss)

Magnetic Intensity H. The magnetic intensity or magnetic field strength
between two parallel plane sheets carrying equal and oppositely directed
currents is equal to the current per meter width (amperes per meter)
flowing in the sheets. The unit of magnetic intensity is the amp/meter.

Magnetomotive Force § (or M). The magnetomotive force between two

b .
points a and b is defined as the line integral L H-ds. The unit of
magnetomotive force is the ampere. The magnetomotive force around
a closed path is equal to the current enclosed by the path.

Capacitance C. A conducting body has e capacitance of 1 fared if it
requires a charge of 1 coulomb to raise its potential by 1 volt. A farad
is equal to 1 coulomb/volt.

Inductance L. A circuit has an inductance of 1 henry if a changing
current of 1 amp/sec induces in the circuit a “back-voltage” of 1 volt.
The dimensions of the henry are-

volt «
UL conde = ohm - seconds
ampere N
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Dielectric Constant e. In a homogeneous medium the electrical quantities
D and E are related by the equation D = €E, where ¢ is the dielectric

. constant of the medium. It has the dimensions farad/meter. The
dielectric constant of evacuated (free) space is

1
= 12 a -
e = 8.854 X 10 367 > 10° farads/m

The dielectric constant of a medium may be written as ¢ = €., where e
is a dimensionless constant known as the relative dielectric constant of the
medium.

Permeability p. The magnetic flux density and magnetic intensity in a
homogeneous medium are related by B = uH where p is the magnetic
permesbility of the medium. It has the dimensions henry/meter. The
permeability of free space is p, = 4w X 10~7 henry/m. The permea-
bility of & medium may be written as p = p.u, where p. is the relative
permeability of the medium.

Table I gives the dimensions of the units of the MKS system.
In this table the dimensions of all of the units have been expressed
in terms of mass M, length L, time 7, and charge Q. By expressing
the dimensions in terms of charge @, rather than the defined unit g,
fractional exponents in the dimensional equations are avoided.

A table that can be used for converting from the MKS practical
gystem to the CGS systems or vice versa is shown inside the back
cover. _

1.06 Order of Magnitude of the Unitc. A concept of the order
of magnitude of the units of the MKS practical system can be
obtained from a few examples. A meter is equal to 3.281 ft, and
roughly 3 meters equal 10 ft. A kilogram is slightly more than
2 1b (1 kg = 2.205 Ib). A newton is approximately the force
required to lift ¥4 lb. (more accurately 0.225 1b). A joule 1s the
work done in lifting this 3£ 1b weight 1 meter. To raise the weight
through 1 meter in 1 sec requires the expenditure of 1 watt of power.
Whereas the watt -is usually thought of as a rather small unit of
power (the smallest lamp in general household use requires 15 watts,
and it takes 2 or 3 watts to run an electric clock), it represents a
considerable amount of mechanical power. A man can do work
for a 12-hour day at the rate of about 40 watts, which is less than
the power required to run his wife’s electric washing machine. The
coulomb, which is about the amount of charge passing through a
100-watt lamp in onk second would charge. a sphere the size of the




TABLE 1

Dimensions oF UnNits IN THE MKS SysTeEM

Quantity Symbol MKS unit D;:&?::ig:: ! Dimensions
Length... ... ... . ... ... . ... ... ... ... l meter | ...l L
Mass......... m kilogram | ... ool M
Time....... . ... . . . t second | ...l T
Charge... ... ... ..o q coulomb | L.l Q
Force..... .. .. ... . . .. F newton joule per meter MLT-*
Energy... ... e U joule volt-coulomb ML2T2
Power... ... . ... . W watt joule per second ML2T-3
Current.............. ... ... ... ... I ampere coulomb per second | T™1Q
Current density............................ i ampere/square meter | .............c.0.. L-T-1Q
Charge density (volume).............. ...... p (or py) |coulomb/cubic meter | .. ... ... ... ..... L—3Q
Charge density (surface)..................... Pe coulomb/square meter | ................. L2Q
Resistance..............cooiiii i R ohm volt per ampere ML2T-1Q-?
Conductivity............... ... o o mho/meter | ... M-IL-3TQ?
Electromotive force...................... |V volt joule per coulomb ML2T2Q™!
Electric intensity................ ..... | E volt /meter newton per coulomb | MLT-2Q~!
Capacitance................................ l C farad coulomb per volt M-1L-2T2Q?
Dielectric constant..........................| € farad/meter | .......... ... M-IL-3T2Q?
Electric displacement........................ I coulomb | ... oL
Llectric displacement density................. D coulomb/square meter | ........... ..... L2Q
Magnetic flux. ..........ooco i oL | @ weber volt-second ML2T-1Q~1
Magnetic flux density....................... B weber/square meter | ................. MT-1Q!
Magnetomotive force........................ | § (or M) |ampere (turn) = | .....c0..eeo T-'Q
Magnetic intensity.......................... H ampere (turn)/meter | ................. L-1T-1Q
Inductance.............. ... .., | L henry ohm-second ML22Q-?
Permeability............................... | & henry/meter | ... ... ... MLQ™

[90" 1§
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earth to about 1400 volts. If it were possible to place a coulomb
of charge on each of two small spheres placed 1 meter apart, the
force between them would be 9 X 10? newtons, or about the force
required to lift a million tons. The farad is a large unit of capaci-
tance, and the terms microfarad (10~¢ f) and micro-microfarad
(10~ f) are in common use. The filter condensers on a radio set
are usually 8 or 16 uf (microfarads). The capacitance of a sphere
1 cm in radius is approximately 1 uuf (micro-microfarads). The
inductance of the primary winding of an iron-core audio transformer
may be the order of 50 henrys, whereas the inductance of the radio
frequency ‘‘tuning-coils” for the broadcast band is about 300 wh
(microhenrys). A weber per square meter is about one-half the
saturation flux density of iron used in transformer cores.
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CHAPTER 2
ELECTROSTATICS

2.01 Introduction. The sources of clectromagnetic fields are
charges, and the strength of a field at any point depends upon the
magnitude, position, velocity, and acceleration of the charges
involved. An ele trostatic field can be considered as a special case
of an electromagnetic field in which the sources are stationary,*
so that only the magnitude and position of the charges need be
considered. The study of this relatively simple case lays the
foundations for solving problems of the more general time-varying
electromagnetic field. In what follows it is assumed that the reader
has had an elementary course covering the subject of electro-
statics and has some general knowledge of the experimental facts
and their theoretical interpretation. The purposes of this chapter
are (1) to review the subject briefly, not as a study in itself but as an
introduction to the electromagnetic field, (2) to consider the state- '
ment of the laws in the vector form, and finally (3) to state the
required relations in the MKS system of units. It is usually much
simpler to derive all relations directly in the new unit system rather
than to try to use conversion factors to convert from the older esu’s
and emu’s of the CGS system.

2.02 Fundamental Relations of the Electrostatic Field. Cou-
lomb’s Law. It is found experimentally that between two charged
bodies there exists a force that tends to push them apart or pull them
together, depending on whether the charges on the bodies are of
like or opposite sign. If the two bodies are spheres whose radii are
very small compared with their distance apart, and if the spheres
are suffciently remote from conducting surfaces and from other

* Individual charges (e.g., electrons) are of course never stationary, having
random velocities, which depend among other things upon the temperature.
This statement regarding stationary sources simply means that when any
elemental macroscopic volume is considered, the ne! movement of charge
through any face of the volume is zero.

25
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dielectric media (more technically if the spheres are immersed in an
- infinite homogeneous insulating medium), the magnitude of the
force between them due totheir charges obeys an inverse square
law. That is
192

F = ot (2-1)
where ¢; is the net charge on one sphere, ¢; the net charge on the other.
This is Coulomb’s law of force. In the CGS electrostatic system of
units the constant k is arbitrarily put equal to unity for a vacuum
and relation (1) is used to define the unit of charge for the electro-
static system of units. However, in the MKS system the unit of
charge has already been determined from other considerations, and
since units of length and force have also been defined, the constant k&
can be determined from experiment. In order to rationalize the
units and so leave Maxwell’s field equations free from the factor
4, it is convenient to show a factor 4x explicitly in the constant k

and write
k = 4re

The *“constant’ e depends upon the medium or dielectric in which
the charges are immersed. It is called the dielectric constant (or
- capacitivity) of the medium. For free space, that is for a vacuum,
but also very closely for air, the value of e is

€& = 8.854 X 10—12 f/m (2-2)

To a very good approximation (the same approximation involved
in writing the velocity of light as ¢ = 3 X 108 meter/sec) the value
of ¢, is given by

1

~ 367 X 10° (2-3)

€y
The subscript, v, indicates that this is the dielectric constant of a
vacuum or free space. For other media the value of € will be differ-
ent. Then Coulomb’s law in MKS units is

= f,:g:z newtons  (2-4)
The direction of the force is along the line joining the two charges.

Electric Intensity E. If a small probe charge 8¢ is located at
any point near a second fixed charge g, the probe charge experiences
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a force, the magnitude and dircction of which will depend upon its
location with respect to the charge g. About the charge ¢ there is
said to be a field of electric intensity E, and the magnitude of E at
any point is measured simply as the force per unit charge at that
point. The direction of E is the direction of the force on a positive
probe charge, and is along the outward radial from the (positive)
charge ¢.

From equation (4) the magnitude of the force on 8¢ will be

)
B = 4q7reg2 (2-5)

and the magnitude of the electric intensity is

s 41rq67‘2 (2-6)

The force on the probe charge is dependent upon the strength of the
probe charge, but the electric intensity is not. If the charge on the
probe is allowed to approach zero, then the force acting on it does
also, but the force per unit charge remains constant; that is, the elec-
tric field due to the charge ¢ is considered to exist, whether or not
there is a probe charge to detect its presence.

The direction, as well as the magnitude, of the electric intensity
about a point charge is indicated by writing the vector relation

= ‘%erz u, (2-7)
where u, is a unit vector along the outward radial from the charge g.

Elcctric Displaccmert ¥ and Displacemer.t Density D. It is seen
from eq. (7) that at any particular point the electric intensity E
depends not only upon the magnitude and position of the charge g,
but also upon the diclectric constant of the medium (air, oil, and
others) in which the field is measured. It is desirable to associate
with the charge ¢ a second elcctrical quantity that will be inde-
pendert of the medium involved. This second quantity is called
electric displacemer.t or clectric fluz and is designated by the symbol
Y. An understanding of what is mcant by electric displacement
can be gained by recalling Faraday’s experiments with concentric
spheres. A sphere with charge Q was placed within, but not
touching, a larger hollow sphere. The outer sphere was “earthed”
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momentarily, and then the inner sphere was removed. The charge
remaining on the outer sphere was then measured. This charge
was found to be equal (and of opposite sign) to the charge on the
inner sphere for all sizes of the spheres and for all types of dielectric
media between the spheres. Thus it could be considered that there
was an electric displacement from the charge on the inner sphere
through the medium to the outer sphere, the amount of this dis-
placement depending only upon the magnitude of the charge Q.
In MKS units the displaccment ¥ is equal in magnitude to the
charge that produces it, that is

¥ =0Q coulombs  (2-8)

For the case of an isolated point charge ¢ remote from other bodies
the outer sphere is assumed to have infinite radius. The electric
displacement per unit area or electric displacement density D at any
point on a spherical surface of radius r centered at the isolated charge
g will be
D= Y _ 4 coulomb/sq m (2-9)
dxrt  4wr?
The displacement per unit area at any point depends upon the
direction of the area. Displacement density D is therefore a vector
quantity, its direction being taken as that direction of the normal
to the surface element which makes the displacement through the
element of area a maximum. For the case of displacement from an
isolated charge this direction is along the radial from the charge
and is the same as the direction of E. Therefore the vector relation
corresponding to (9) is
D=L (2-10)
Comparing eqgs. (7) and (10) shows that D and E are related by the
vector relation
D =& (2-11)

Equation (11) is true in general for all ¢sotropic media. For certain
crystalline media, the dielectric constant e is different for different
directions of the electric field, and for these media D and E will
generally have different directions. Such substances are said to be
anisotropic. In this book only homogeneous isotropic media will be
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considered. For these ¢ is constant, that is, independent of position
(homogeneous) and independent of the magnitude and direction
of the electric field.

It is possible to measure the displacement density at a point
by the following experimental procedure. Two small thin metallic
disks are put in contact and placed together at the point at which D
is to be determined. They are then separated and removed from
the field, and the charge upon them is measured. The charge per
unit area is a direct measure of the component of D in the direction
of the normal to the disks. If the experiment is performed for all
possible orientatione of the disks at the point in question, the direc-
tion (of the normal to the disks) that results in maximum charge
on the disks is the direction of D at that point, and this maximum
value of charge per unit area is the magnitude of D.

Lires of Force and Lines of Fluz. In an electric field a line of
electric force is a curve drawn so that at every point it has the direc
tion of the electric intensity. The number of lines per unit area is
made proportional to the magnitude of the electric intensity, E.
A line of electric flux is a curve drawn so that at every point it has
the direction of the electric flux density or displacement density.
The number of flux lines per unit area is used to indicate the magni-
tude of the displacement density, D. In homogeneous isotropic
media lines of force and lines of flux always have the same direction.

2.3 Gauss’s Law., Gauss’s law states that the total displace-
ment or electric flux through any closed surface surrounding charges is
equal to the amount of charge enclosed. This may be regarded as a
generalization of a fundamental experimental law (recall Faraday’s
experiments) or it may be deduced from Coulomb’s inverse-square
law, and the relation D = ¢E (now used to define D).

Consider a point charge ¢ located in a homogeneous isotropic
medium whose dielectric constant is e. The electric intensity at
any point a distance r from the charge ¢ will be

E=_1

—— U
4rer? T

and the displacement density or electric flux density at the same
point will be
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Now consider the displacement through some surface enclosing
the charge (Fig. 2-1). The displacement or electric flux through the
element of surface da is

d¥ = Ddaccs 6 (2-12)

where 6 is the angle between D and the normal to da. From the
figure it is seen that da cos 6 is the projection of da normal to the
radius vector. Therefore, by definition of a solid angle,

da cos 6§ = r2dQ (2-13)
where dQ is the solid angle subtended at g by the element of area da.

Fie. 2-1. Displacement through a surface enclosing a charge.

The total displacement through the surface is obtained by
integrating eq. (12) over the entire surface.

¥ = ¢Ddacos0 (2-14)

(The circle on the integral sign indicates that the surface of integra-

tion is a closed surface.) Using eq. (13) the displacement is given

by
¥ = £Dr2dQ

dnd substituting for D from (9)
_ 4a
v=Ld¢ae (2-15)
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But the total solid angle subtended at q by the closed surface is
Q = £ dQ = 47 solid radians.

Therefore from (15) the total displacement through the closed surface
will be :
¥ =q (2-16)

If there are a number of charges within the volume enclosed by the
surface the total displacement through the surface will be equal to
the sum of all the charges. If the charge is continuously* dis-
tributed throughout the volume with a charge density p (coulombs
per cubic meter), the total displacement through the surface is

v= [ pav @)
where the right-hand side represents the total charge contained
within the volume.

It is often desirable to state the above relations in vector form.
By definition of the dot product, the expression D da cos 6 in eq. (12)
can be written as D - da. In this case the element of area da is
considered to be a vector quantity having the magnitude da and
the direction of the normal to its surface. Then eq. (14) would be
written

¥ = ¢D.da (2-18)

When da is a part of a closed surface as it is here the direction of the
owtward normal is taken to be positive. The right-hand side of
eq. (18) is the integration over a closed surface of the normal com-
ponent of the displacement density, that is, it is the total (outward)
electric displacement or electric flux through the surface.

Combining egs. (17) and (18) the vector statement of Gauss’s
law is

9SSD-da = [volpdV ' (2-19)

* Actual charge distributions consist of aggregations of discrete particles ar
corpuscles. However since there will always be an enormous number of these
microscopic particles in any macroscopic element of volume AV, it is permissable
to speak of the charge density p where p = Ag/AV is the charge per unit volume
in elemental volume AV. Thus by ‘“charge density at a point’’ is really meant
the charge per unit volume in the elemental volume AV containing the point.
Although AV may be made very small, it is always kept large enough to contain
many charges.
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In words, the net outward displaceme:t through a closed surface is
equal to the charge contained in the volume enclosed by the surface.

2.04 Eloctric Field Due to Several Charges. When a test
charge 3¢ is located at a point p in the field of a single charge ¢ it
experiences a force F that is given by

F= 489 u, newtons (2-20)

T dgyer?

The unit vector u, indicates that the direction of the force is along
the radius vector from the charge g to the point p. By definition,

Fic. 2-2. Vector addition of fields.

the electric intensity E at the point p is the force per unit charge
and has the same direction as F, so that

q
47rer?

u,

When there are several charges present, each charge will exert
a force vn the test charge at p, the magnitude and direction of which
is given by (20). The resultant force on &7 will be the vector sum
of the incividual forces, the addition takinz into account the direc-
tion as well as magnitude of the forces. Correspondingly the elec-
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tric intensity at the point p will be the vector sum of the electric
intensities because of each charge acting alone. If 41,9293, . . . Qn
are charges located at distances ry, 74, 73, . . . r, from the point p
.the electric intensity at p will be

-1 (e g2 2 e 4 O
E_‘I—ﬂ(rf"u"-*_;?u"-*_rszu"-*_ +r_,.2u"
1 tﬂﬂgi

Ame &md 72
t=1

(21

ExamrLe 1: Electric Field of Two Charges (Method 1). Determine the
electric intensity at the point p in Fig. 2-2 due to the charges ¢, and ¢,

¢1 = 1 X 10~* coulomb
g2 = 8 X 10-'° coulomb
71 = 3 meter
72 = 0.4 meter

The magnitudes of the individual intensities I, and E are

g1 _ 36 X 10° X 10-9

=] = =] 1
|Ey| Trer ST 100 volt/m
- 92 _ 36m X 10° X 8 X 10~ _
|| = dmers? ar X 0.42 = 45 volt/m

In order to add these intensities vectorally it is convenient to use the
components in the z and y directions. From the geometry of the 3, 4,
5 triangle:
(#) The z component of E, is 100 X 3¢ = 6
(b) The z component of Egis —45 X 4§ = —36
(c) The y compenent of I, is 100 X 8
(d) The y component of E; is 45 X 34 = 27
The total z component of E is
E, =60~ 36 =24
and the total y component is
E, = 80 X 27 = 107

The resultant electric intensity has a magnitude

E = +/24* 4 1072 = 110

The angle 6 between the direction of E and the z axis is given by

0 = tan-1 1074, — 77.4°

B
oN
I
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2.056 The Potential Function. An electric field is a field of
force, and a force field can be described in an aiternative manner’
from that given above. If a body being acted upon by a force is
moved from one point to another, work will be done on or by the
body. If there is no mechanism by which the energy represented
by this work can be dissipated, then the field is said to be conserva-
tive, and the energy must be stored in either the potential or kinetic
form. If a charge is moved in a static electric field or a mass is
moved in a gravitational field and no friction is present in the region,
then no energy is dissipated. Hence these are examples of conserva~
tive fields. If some point is taken as a reference or zero point the
field of forge can be described by the work that must be done in
moving the body from the reference point up to any point in the
field. A reference point that is commonly used is a point at infinity.
For example, if a small body has a charge ¢ and a second body with
a small test charge 8¢ is moved from infinity along a radius line to a
point p at a distance E from the charge ¢, then the work done on
the system in moving the test charge against the force F will be

Work = — [ Far. -
; _ 9%
and since SF = p
R
- 9% ("L
Work on test charge e | 7 dr
_ 9%
4dwelR
The work done on the test charge per unit charge is
_eX1l_ g ;
V= 4dreR  4meR (221

V is called the potential at the point p due to the charge g.
Because it is a scalar quantity, having only magnitude and no direc-
tion, it is often called the scalar potential.

In a conservative field the work done in moving from one point
to another is independent of the path. This is easily proven. If it
were not independent of the path and a charge were moved from
point P; to point P» over one path, and then from point P; back
to point P; over a second path, the work done on the body on one
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path could be different from the work done by the body on the
second path. If this were true, a net (positive or negative) amount
of work would be done when the body returned to its original
position Pi;. In a conservative field there is no mechanism for
dissipating energy corresponding to positive work done and no
source from which energy could be absorbed if the work were nega-
tive. Hence, it is apparent that the assumption that the work done
is different over two paths is untenable, and so the work must be
independent of the path. Thus for every point in the static electric
field there corresponds one and only one scalar value of the work
done in bringing the charge from infinity up to the point in question
by any possible path. This scalar value at any point is called the
potential of that point. The potential* is measured in volts where
1 volt = 1 joule per coulomb.

If two points P; and P, are separated an infinitesimal distance
6, and the potential at P, is V,, whereas that at P, is Vi+ 8V, it
is apparent that the work done in moving a unit charge from point
P, to point P, will be -

W=V,—(V,+8V) =E,ss

where E, is the component of the electric intensity in the direction
of ds
o =8V = E, 8s (2-22)

The three components of E in the z, y, and z direction can be
obtained from eq. (22)
2% 2% aV

E, = - a) E,, = - W’ E; = - '32— (2-23)

The three scalar eqs. (23) can be written in one vector equation

_dV. 8V, av

E=-mi-oi-%

(2-24)

* In electrostatics the term potential or potential difference and voltage are
used interchangeably. For time-varying electromagnetic fields, potential, as
defined here, has no meaning. However, the voltage between two points a
and b, defined by

b
Vab=/ E.ds
a

continues to huve meaning as long as the path is specified.
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or in the abbreviated vector notation
E=—grad V (2-25)

Thus the electric intensity at any point is just the negative of the
potential gradient at that point. The direction of the electric field
is the direction in which the gradient is greatest or in which the
potential changes most rapidly.

Equations (23) give the three components of E in rectangular
or Cartesian co-ordinates. Very often the conditions of a problem
are such that it is more simply solved in cylindrical or spherical
co-ordinates. In cylindrical co-ordinates the three mutually per-
pendicular directions are p, ¢, and z. The elemental increments of
length in these directions are dp, p d¢, and dz respectively. The
space rates of change of potential in these directions will give the
corresponding components of electric intensity, viz.,

14 _ a9y _ 8V (cylindrical
E, = ap Ey = PErS E. = 3z  co-ordinates)
In spherical polar co-ordinates, the increments of lenzth are dr, r d6
and r sin 6 d¢ so that the space rates of change of potential and

corresponding electric intensities are given by

E =_<‘-)_I_7, Eo=_ﬂ, n _ 1 oV (spherical
r or rd0 ¢ rsin6d¢ co-ordinates)
When the system of charges is specified and the problem is that
of determining the resultant electric field due to the charges, it is
often simpler to find first the potential field and then determine E
as the potential gradient according to egs. (25). This is so because
the electric intensity is a vector quantity, and when the electric
field produced by several charges is found directly by adding the
intensities caused by the individual charges (as was done in the
example on page 32), the addition of fields is a vector addition.
This relatively complicated operation is carried out by resolving
each vector quantity into (generally) three components, adding
these components separately, and then combining the total values
of the components to obtain the resultant field. On the other hand
the potential field is a scalar field and the total potential at any
point is found simply as the algebraic sum of the potentials due to
each charge. If the potentizl is l:nown, the electric field can be
found from eq. (25).
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ExaMPLE 2: Electric Field ¢f Two Chcrges. As an example let it be
required to find the electric intensity at cll points in the 2y plane due to
the charges ¢, and g, (Fig. 2-S). By the first method this would be done
by writing the expressions for the z and y components of E due to each
of the charges and adding these separately to obtain the resultant E. By
the second method the potential due to the charges is found first.

The potential at the point p in (Fig. 2-2) is

1 1 g2
Ve = Tme (7'_1 + r_-_-)
_ 367 X 10° (10—9 8 X 10-10)
T 4 0.3 0.4
= 48 volts

The potential at any point (z, ) due to charges ¢ and g, located respec-
tively at (0, 0) and (D.5, 0), is

q1 (4]

1
V= :
e (\/x’ T Ve-oot y?)

The electric intensity is obtained from V by applying eq. (23)

v _ _1 l 1z g2z — 0.5) ’
0z dme |[z* + 4 " [@ — 0.5)7 + 7%
a—V = — i { "y + q:y

dy dre [z + 1% [z — 0.5)% + y7Ji

Therefore E at any point (z, y) will be

_L({ @z __ gz —0.5) ’
dwe \|[2® + 4% T [z — 0.5)7 + 4o |

Oy q:y q
* [[xz +v% T =08 y’]”’ ’)

At the particular point p of (Fig. 2-2), 2 = 0.18 and y = 0.24, Substi-
tuting these values and the values for q: and ¢ gives

1.62 230\, (216 1.798\.
E, = (0.027 - 0.064) S (0.027 + 0.064)’
= (60 — 36)i + (80 + 27);
=24 +107i

This checks with the answer obtained in the previous example.
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In a simple problem such as the one above there may be little
advantage, if any, to using the potential method, but in the more
complex problems to be considered later it will be found that the
use of the scalar potential results in a real simplification of the
problem.

£

Fic. 2-3. An electric dipole.

ExampLe 3: Field of an Electric Dipole. The concept of the electric
dipole is extremely useful in electromagnetic field theory. Two equal and
opposite charges of magnitude ¢ separated by an infinitesimal distance !
are said to constitute an electric dipole or electric doublet. The electric
field due to such an arrangement can be found readily by first finding the
potential V. In Fig. 2-3

=1l —¢
V’—44re {r1+ Tz}
Because [ is infinitesimally small

l
r,zr—écoso

l
rzzr+§coso

1
I B _ _Qlcosf

l i2
—— + = 2 2
T 20080 r 2COSG r cos? @

gl cos 0

r2

(for 12 K 7%)

=~
=z
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The electric field is found from E = — grad V. The three compcnents
in spherical co-ordinates are
E = _QK___.‘qucosO
’ ar 4wer’
Ep = — AV qlsin 8
r a0 4mer?
1 av
o=~ tnoos "

2.06 Field Due to a Continuous Distribution of Charge. The
potentiai at a point p due to a number of charges is obtained as a
simple algebraic addition of the potentials produced at the point
by each of the charges acting alone. If qi, g2, g3 . . . qa are
charges located at distances r1, 72, 73, . . . 7», Tespectively, from the
point p, the potential at p is given by

L1 (n, e, .. L0
Ve " 4re (r1+ 'I‘z+ +r,.
i=n

N

4re 4 75
sm=1]

If the charge is distributed continuously throughout a region,
rather than being located at a discrete number of points, the region
can be divided into elements of volume AV each containing a charge
p AV, where p is the charge density in the volume element. The
potential at a point p will then be given as before by

1 U pi AV;
Ve = i 21 T

where r; is the distance to p from the ith volume element. As the
size of volume element chosen is allowed to become very small, the
summation becomes an integration, that is

1 pdV

Vo = Tre v T (2-26)

ol

The integration is performed throughout the volume where p has
value.

ExampLE 4: Potential Distribution about Long Parallel Wires. Deter-
mine the potential distribution about a long parallel poir cf wircs of
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2
y
\ o’z\
~C | N
2 % o
b

a b
Fia. 2-4. A pair of parallel line charges.

negligible cross section when the wires have equal and opposite charges
distributed along their length.

Assume that a linear charge density ¢’ coulombs per meter is distributed
along wire a and —¢’ coulombs per meter along wire b (Fig. 2-4). Then
p dV becomes ¢’ dz so that the expression for potential at the point p will be

1 + = g q
V—H/—w (R_Ts)dz

N B 5 S P
—271'6 0 (T], To C"'

Substituting 71 = V/7.? + 2% and 7, = V/n? + 22,

’ «© 1 1
V=29 N — dz
2me Jo (\/ rd+ 2 Vntt Z’)
= sr ln (z + V72 + 2) ~In (2 + V72 + 2)e

[1nz+\/m]°
24+ V2t 2t do

2me
ql
= 2re
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As 2z approaches infinity the fraction (z + \/7.2 + 29)/(z + /72 + 2?)
approaches unity. Therefore, when the limits are inserted, the expression
for petential at the point p becomes

Ve=—-ZLn>

2me T8

L LD 22
2me = P (227)

It will be observed that in the planc of symmetry between the wires
(re = 1) the potential is zero.

2.07 Equipotential Surfaces. The solutions to many problems
involving electric fields are simplified by making use of equipotential
surfaces. An equipotertial surface is a surface on which the poten-
tial is everywhere the same. The movement of charge over such a
surface would require no work. Since any two points on the surface
have the same potential, there is zero potential difference and
therefore zero electric field everywhere along (tangential to) the
surface. This means that the electric field must always be perpen-
dicular to an equipotential surface.

A very simple example of equipotential surfaces exists in the
case of a point charge. Since V = g/4nre, a surface with a fixed r
would have a constant potential. The constant potential surfaces
therefore are concentric spherical shells.

In the protlem of the parallel line charges the equipotential
surfaces can ke determined with little diffculty. The locus of a
constant potential is obtained by setting the potential of eq. (27)
equal to a constant, that is

A .

o=t

e -»
Ta

where k? is another constant. From Fig. 2-4

This requires that

L3

2
ra2=(x+g> + 9
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2
-9+
_—=k2

Therefore VAR
(x+§ + y?
21 — k) + g1 — k) — 2d(1 + k) + 5 (1 - k) =0
2 2
:c’-l—y’—xdi%zz-i—%:O
14k, 2Q+k) @[+ k)
x’+y’—xdr_—kz+zﬁl——kz§z=z[ﬁl-—kzgz‘l]

dfk:+ 1\ k2dz
[+2(m)] LR G

This is the equation of two families of circles with radii kz—k_d—l and

dfk?+1 . .
centersat + s\ =1/ 0. Because of symmetry in the z direction

k2 —1 . . .
the equipotential surfaces will

be cylinders. The cylinders
are not concentric because k
will depend on the potential
selected.

Figure 2-5 shows a plot
of the equipotential surfaces
about the parallel line charges.
It is seen that for small values
of radius the equipotential
cylinders about each line are
nearly concentric, with the
line charges as the center.

Conductors. A conducting
medium is one in which an
electric field or difference of po-
tential is always accompanied
Fic. 2-5. Equipot.eutial surfaces about by a movement of charges.

parallel line charges. The theory explaining this
phenomenon is that a conductor contains free electrons or conduction
electrons that are relatively free to move through the ionic crystal
lattice of the conducting medium. It follows that in a conductor
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there can be no static electric field, because any electric field origi-~
nally present causes the charges to redistribute themselves until the
electric field is zero. The electric field being zero within a con-
ductor means that there is no difference of potential between any
two points on the conductor. For static electric fields therefore, a
conductor surface is always an equipotential surface.

It also follows that within a conductor there can be no net
charge (excess positive or negative charge). If there were a net

.

fdon
A\

CONDUCTOR DIELECTRIC

Fia. 2-6. Boundary surface between a conductor and a
dielectric.

charge anywhere within the conductor, then by Gauss’s law there
would be a displacement away from this charge and therefore a
displacement density D in the conductor. Since E — D/e this
requires (for any finite value of dielectric constant ¢) that there
be an electric field E in the conductor. But the possibility of this
has already been ruled out for the electrostatic case. Therefore,
the (net) charge density p must be zero within the conductor.
There can, however, be a distribution of charge on the surface
of the conductor, and this gives rise to a normal component of
electric field in the dielectric medium outside the conductor. The
strength of this normal component of electric intensity in terms
of the surface charge is obtained directly from Gauss’s law.
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Electri¢ Field Due to Surface Charge. Let the charge per unit
area or surface charge density on the surface of a conductor be p,
coulombs per square meter. Enclose an element of the surface
in a volume of “pillbox”’ shape with its flat surfaces parallel to the
conductor surface. Then, if the depth d of the pillbox is made
extremely small compared with its diameter, the electric displace-
ment through its edge surface will be negligible compared with any
displacement through its flat surfaces. There can be no displace-
ment through the left-hand surface submerged in the conductor
(because no E exists in the conductor) so all the electric flux must
emerge through the right-hand surface. Applying Gauss’s law to
this case gives

D,. da = Ps da

where da is the area of one face of the pillbox and D, is the dis-
placement density normal to the surface. Therefore,

D, = ps and E. =

ol

The electric displacement density at the surface of a conductor
is normal to the surface and equal in magnitude to the surface
) charge density. The electric intensity
isalso normal to the surface and is equal
to the surface charge density divided by
the dielectric constant.
v v 2.08 Divergence Theorem. The
divergence theorem (also called Gauss’s
5T theorem) relates an integration through-
out a volume to an integration over the
x surface surrounding the volume.
Figure 2-7 shows a closed surface
Fic.2-7. Sectionof s volume g enclosing a volume V that contains
V. ' 3
charges (cr a charge density) that pro-
duce an electric flux density D.
By the definition of divergence,

£

do

% Xe

D,

oD, | @D, | 3D,
ox

ay Az

divD = 4+
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so that

. _ aD, , aD, , 4D, g
/:,dIVDdV—///(ax +a—y+ az>d:cdydz (2-28)

dV = dzdydz

Consider now the elemental rectangular volume shown shaded,
which has dimensions dy and dz in the y and z directions respectively.
Let D., and D., respectively be the z component of the electric
flux entering the left-hand side and leaving the right-hand side of
the rectangular volume. The total flux emerging is the algebraic
difference of these two. But

ng - Dz; = f 3D, dz

where

az

3 ///aa—%d:cdydz=//(D,,—D,,)dydz (2-29)

Now dy dz is the z component of the surface element da, and so
(29) is just the integration of the product of D, times the z com-
ponent of da over the whole surface. (Note that for the right face
D;da; = D,, dy dz, but for the left face D.da, = —D,, dy dz. This
is because the direction of da is along the owfward normal and for
the left face the x component of da has a direction opposite to that
of D,,.)
By definition of a scalar product

D.da = D.da, + D, da, + D, da,

where da. indicates the z component of da, and so on. Then,
making use of (29), eq. (28) may be written

fv L divDay = 953 D-da (2-30)

This is the divergence theorem.

Although derived here for the particular case of electric dis-
placement density D it is a quite general and very useful theorem
of vector analysis. For any vector, it relates the integral over a
closed surface of the normal component of the vector to the integral

over the volume (enclosed by the surface) of the divergence of the
vector.
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Integral Definition of Divergence. The divergence theorem (30)
provides a definition of divergence of a vector in the integral form
which is easy to put into words. The expression on the right-hand
side of (30) is the net outward electric flux through the closed surface
8. The expression on the left represents the average divergence
of D multiplied by the volume V that is enclosed by S. Thus the
average divergence of a vector is the net outward flux of the vector
through a closed surface S divided by the volume V enclosed. The
limit of the average divergence as S is allowed to shrink to zero
about a point is the divergence of the vector at that point; that is,

’ 963 D.da
div D = lim =5——
8—0 V
In words, the divergence of the vector D is the net outward flux of D
per unit volume.
Alternative Statement of Gauss's Law. Making use of Gauss’s
law which states

9SSD.da = [volpdV (2-31)

and applying the divergence theorem (30), gives

LoldideV= fvolpdV

This holds for any volume whatsoever. As the volume considered
is reduced to an elemental volume, this becomes the point relation,

divD =p (2-32)

This is the alternative statement of Gauss’s law. It states that
at every point in a medium the divergence of electric displacement
density is equal to the charge density. Recalling the physical
interpretation of the term divergence, eq. (32) might be stated as
follows: The net outward flux of electric displacement per unit
volume is equal to the charge per unit volume. Equation (32)
will often be found to be a more useful form for mathematical
manipulation than the corresponding integral statement (31).

2.09 Poisson’s Equation and Laplace’s Equation. Equation
(32) is a relation between the electric displacement density and the
charge density in a medium. If the medium is homogeneous and
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isotropic so that e is constant and a scalar quantity, eq. (32) can

be written as
diveE =edivE =p

or divE = -f (2-33)

Recall that E is related to the potential V by
E=—gradV =-VV
Substituting this into (33)

divgrad V = — f (2-34a)
or symbolically V. (VV) = —f (2-34b)
or vy = —f (2-34¢)

Equation (34) is known as Poisson’s equation. In frce space, that
is in a region in which there are no charges (p = 0), it becomes

ViV =0 (2-35)

This special case for source-free regions is Laplace’s equation.
Laplace’s Equation. Laplace’s equation is a relation of prime

importance in electromagnetic field theory. Expanded in rec-

tangular co-ordinates it becomes

_ oW |, 8 | 9

—-6:5_2+_+ =0 (2-36)

VA 3y | 9zt

This is a second-order partial differential equation relating the rate
of change of potential in the three component directions. In any
charge-free region the potential distribution must be such that this
relation is satisfied. An alternative form of (36) in terms of electric
intensity is

divE =0 (2-37)

In this form the statement is that in a homogeneous charge-free
region the number of lines of electric intensity emerging from a
unit volume is zero, or (in such a region) lines of electric intensity
are continuous.

The Problem of Elccirostatics. In a homogeneous charge-free
region the potential distribution, whatever it may be, must be a
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solution of the Laplace equation. The problem is to firid a potential
distribution that will satisfy (35) as well as the boundary conditions
of the particular problem. When the charges are given the poten-
tial can be found directly from

v Lav
47c vol T
This is a simple problem and the solution is straightforward. On
the other hand, if the potential distribution is given for a certain
configuration of conductors, the charge distribution on the con-
ductors can be found from

Ps = D, = 3

In the general problem as it exists, however, neither the potential
distribution nor the charge distribution is known. These are the
quantities to be found. A certain configuration of conductors is
specified and the voltages or potential differences between conduc-
tors are given (or the total charge on each conductor may be given).
The charges on the conductors will then distribute themselves to
make the conductors equipotential surfaces and at the same time
produce a potential distribution between conductors which will
satisfy Laplace’s equation.

Thus the problem is that of finding a solution to a second-order
differential equation (Laplace’s equation) that will fit the boundary
conditions. The problem is one of integration and therefore
straightforward methods of solution are not generally available. In
fact, only in a relatively small number of cases, where symmetry
or some other consideration makes it possible to specify the charge
distribution, can an exact solution be found. Of course, an approxi-
mate solution can always be obtained, and the degree of approxima-
tion can usually be improved to any desired extent by a systematic
method of successive approximations. Unfortunately, this often
requires an excessive amount of labor. - '

A similar situation exists in the more general electromagnetic
field problem where the fields and charge distributions are varying
in time. Although it is this more general problem that is of pri-
mary concern in electromagnetic wave theory, it is helpful o con-
sider some of the special methods and solutions that exist for the
electrostatic case. It will be found that some of these special meth-
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ods can be extended to the general case. Moreover, a knowledge.
of the actual electrostatic solutions for certain simple configurations
is required for later use.

Solutions for Some Simple Cases. It is instructive first to obtain
the solutions for the simplest possible cases in which, because of
symmetry, the field is constant along two axes of the co-ordinate
system and variations cccur in one direction only.

ExAurLE 5(a): In Rectangulcr Co-ordinates—Two Parallel Planes. Two
parallel planes of infinite extent in the z and y directions and separated by

‘7

Fia. 2-8. Two parallel planes.

a distance d in the z direction have a potential difference applied between
them (Fig. 2-8). Ttis required to find the potential distribution and electric
intensity in the region between the planes.

In rectangular co-ordinates Laplace’s equation is

vV a9tV 9V
2 = — —_— —_—
VA O0z? + day? + 922 0

From symmetry it is evident that there is no variation of V with z or y,
but only with z. For this simple case Laplace’s equation reduces to
2
VzI/ = ﬂ = 0

022

which has a solution V =kz+k,
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where k; and k. are arbitrary constants. Substituting the boundary
conditions
V=V, 2atz=0, V=V, atz=4d
Vi—V
gives L=V, and = l—d——o

so that V=uz+Vo

The electric intensity is obtaired from the relation
E=—grad V

z _av,
dz
Vi— Vo

d

k

The electric intensity is constant
in the region between the plates.
It is directed along the z axis and
toward the plate of lower potential.

# Y Examere 5(b): In Cylindrical
Co-ordinates—Concentric Cylinders.
In eylindrical co-ordinates Laplace’s
equation is

wy 10 ( 8V), 19V
VV—p3p<p ap>+pz a¢?

X

Fic. 2-9. Two concentric cylinders.

v
+ i 0 (238

For the space between two very long concentric cylinders (Fig. 2-9), in
which case there will be no variations with respect to either ¢ or z, but

only in the p direction, eq. (38) becomes
10 av
2 lp,—)})=0 2-39
p dp ( ap) -

A trivial solution to this equation is V cquals a constant. A useful solution
that fits the boundary condition is

V=Fkilnp+ke
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The electric intensity in the region between the cylinders will be
E=—grad V

av

3p

ky

=——up

p

ExampLe 5(c): In Spherical Co-ordinates—Concentric Spheres. In
spherical co-ordinates with no variations in 0 or ¢ directions, Laplace’s

u,

equation is

19 av

2 = e— — 2 | o=
A rzar(' 61') 0
A solution is V= % + k,
The electric intensity between the spheres is
av ky
E=—grad V = —WUr—;iur

In the three examples just solved, the simplicity of the boundary
conditions (due to symmetry) made it possible to guess the solution
and write it down from inspection. Only in rare cases is it possible
to do this, However, there is an important group of problems that
can be solved almost by inspection because their boundary condi-
tions are similar to those of problems which have already been
solved. These make use of the principle of the electrical image.

Solution by Means of the Electrical T mage. As a simple example
of this method of solution consider the problem of a line charge ¢/
coulombs per meter parallel to and at a distance d/2 from a perfectly
conducting plane of infinite extent. It is required to determine
the resulting potential distribution and the electric field. The
boundary condition in this case is that the conducting plane must
be an equipotential surface. Also if the potential at infinity is
considered to be zero, the potential of the conducting plane must be
zero since it extends to infinity.

The lines of electric flux, which start on the positive line charge,
must terminate on negative charges on the plate and at infinity.
These negative charges on the conducting surface are required to
distribute themselves so that there is no tangential component of
clectric field along the surface of the conductor; i.e., so that the
conducting plane is an equipotential surface (Fig. 2-10).
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If this distribution can be found, the potential at any point can

o 4mwer
stands, this is not a simple problem. However now recall the
problem of two equal and opposite line charges for which the solu-
tion has already been obtained (page 40). It will be remembered
that the plane of symmetry between the wires is an equipotential
plane of zero potential. Ilence a conductinz surface could be

ey [

then be determined from the relation V = / P _qv. Asit

(Q) (b

Fia. 2-10. (a) Line charge near a conducting surface. (b)
Charges on the conducting surface have been replaced by an
appropriately located “image’ charge.

placed at the location of this equipotential plane without affecting
the potential distribution in any manner whatsoever. If this were
done, the negative line charge then has no effect on the field on the
opposite side of the conductor and, so as far as that field is con-
cerned, can be removed. The problem is now just the one for which
a solution is required. The solution can be set down directly.
The field due to a line charge at a distance d/2 from an infinite
conducting plane is exactly the same as the field (on one side of the
zero potential plane) produced by that line charge and an equal and
opposite line charge located parallel to it and a distance d away.
This second (hypothetical) line charge is called the electrical image
of the other, from the analogy with optical images.

Thus in any problem involving charges and conductors, if an
additional distribution of charges can be found which will make
the surfaces to be occupicd by the conductors cquipotential surfaces
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having the correct potential, the conductors can be removed and
the field in the volume, originally outside the conductors, will not.
be changed. Then this field can be computed by methods already
developed. The problem is now simply that of finding the poten-
tial and electric intensity for a distribution of charges without
conductors.

As a second example of this method let it be required to find the
potential distribution and electric field about a pair of parallel
cylindrical conductors which have applied to them a specified
voltage or potential difference, Again referring to the line charges
on page 40, the equipotential surfaces about these line charges
are cylinders. If the conductors are located in this field to coincide
with an appropriate pair of equipotentials, their introduction will

duced and is that produced by a pair of line charges of proper
strength located along appropriate axes. The solution to this
problem has already been obtained.

It must be observed, that this process of computing the effects
of a conductor is an inverse one, i.e., a solution must be found by
experience, and there is no straightforward method of finding an
analytical solution in every case. This is analogous to the problem
of differentiation and integration. In differentiation g straight-
forward method is available for finding derivatives, but the deter-
mination of integrals depends on the experience of the operator, or
the recorded experience of those who have gone before him. In the
case of electric fields, an analytical expression for the charge distri-
bution that can replace a given conductor is not always known, just
as the integral of every function is not known. On the other hand,
with a given configuration, there are approximate methods available
for determining the effect of g conductor in a field just as there are
approximate methods for the integration of any curve that can be
graphed.

2.10 Capacitance. The capacitance between two conductors is
defined by the relation
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where V is the voltage or potential difference between the conductors
due to equal and opposite charges on them of magnitude Q. When
the capacitance of a single conductor is referred to, it is implied that
the other conductor is a spherical shell of infinite radius.

ExampLE 6: Parallcl Plate Condenser. Consider the ‘parallel plate con-
denser having plates of area A and separation d (Fig. 2-11). (d is assumed

Fie. 2-11. Parallel plate condenser.

to be very small compared with the length and width of the plates so that the
effect of flux fringing may be neglected.) If the plates have a charge of
magnitude @, the surface charge density will be

=9
Pe =y

The electric intensity E between_the plates is
uniform and of magnitude

where € is the dielectric constant of the medium
between the plates.
The voltage between the plates will be

Fra. 2-12. Concentric 2
conductors. V= fl L-.ds
= Ed
. . . Q_Q 4
The capacitance is C= V=T~ d farads

Because of their usefulness ia later work the capacitances for two other
simple cases will be found.

ExampLE 7. Concentric Conductors. It is required to determine the
capacitance per unit length between two infinitely long concentric con-
ducting cylinders (Fig. 2-12). The outside radius of the inner conductor is
a and the inside radius of the outer conductor is b.
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Assume a charge distribution ¢’ coulombs per meter on the inner con-
ductor and an equal and opposite charge’on the outer conductor. Because
of symmetry the lines of electric flux will be radial and the displacement
through any cylindrical shell will be ¢’ coulombs per unit length. The
magnitude of the displacement density will be

g
D= 2mp
and the magnitude of the electric intensity will be

The voliage between the conductors is

b b
- vdo= | L
V= ﬁ E:dp = /; 21rpedp

’ b !
=—q—lnp] g lnb

2me a Tome "4
The capacitance per meter will be

2me

_ 9 _ 27 :
C=Y=va f/m  (2-40)
. 4. . . 1
For the air dielectric for which ¢ = 367 5 10°
10-°
=18l b/a f/m  (2-41)

ExampLE 8: Parallel Cylindrical Conductors. The method for deter-
mining the electric field for this case has already beea considered. A pair

\f—LINE CHARGE P
I -. LEng :
NI a [

b

F10. 2-13. Parallel cylindrical conductors.

of line charges, appropriately located, vould make the surfaces occupied
by the conductors equipotentials (Fig. 2-13). If the radius of the cylinders
is @ and the separation between their axes is b, then, in terms of the notation
used in connection with Fig. 24,
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k41
b=dp—y
.
!
b k241
a  k
ak* —bk+a=0

Yy
2a

k =
But S
Ta
1 b+ /b — 4a?
n 2a
The potential at the surface of one conductor is given by equation (27)
¢ b+ /b —dat
Vi=—ln———5——
2me 2a

where ¢’ is the charge per unit length. ]
When the separation is large compared with the radius, that is when

b > a, this becomes

9t
Vl_21relna

The potential at the other conductor will be equal and opposite. Hence

' b B
2a

VaVi—-Vi=ZLm
TE

The capacitance per unit length is

!

q e
C === — f/m
4 b+ /b* — 4a? /
In ————
2a
If b>> a the capacitance is given very closely by
e
C~nb/a ffm @42)
For an air dielectric between the conductors
10-°
€~ %Tab/a f/m  (243)

ExampLE 9: Capacitance of a (Finite-length) Wire or Cylindrical ‘Rod.
In the first two of the above three examples the charge distribution was
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uniform over the conductor surfaces and so the potential distribution
could be determined directly and exactly. In the third example the charge
distribution was not known but the potential was obtained by showing
that the problem was similar to that of a pair of line charges for which
the exact solution was known. In practice there are very few problems
that can be solved so simply. In most actual problems the charge dis-
tribution is unknown and there are no methods available for obtaining an
exact solution. It is then necessary to set about finding an approximate
solution.

In the present problem it is required to determine the capacitance of a
straight horizontal wire or conducting rod elevated at a height h above

[

77 7 7 77 7 7 7 7 7
Fi1c. 2-14. An elevated wire or rod.

the earth. The rod has a length L = 1 meter and a radius a = 0.5 cm,
and is elevated at a height b = 10 meters (Fig. 2-14).

For a first attack on the problem it will be assumed that the height
above the earth is very great so that the problem is that of determining
the capacitance of a cylindrical rod remote from the earth. The boundary
condition is that the surface of the rod be an equipotential surface. Obvi-
ously the charge distribution cannot be uniform along the length of the
rod because such a distribution produces a potential that varies along the
length of the wire. Moreover there is apparently no straightforward
method available for finding the correct charge distribution, which will
make the surface an equipotential. This is a typical practical problem,

This particular problem was solved many years ago by G. W. O. Howe,
using & method of attack that is now used very frequently in electrostatic
and electromagnetic problems. It is first assumed that the charge dis-
tribution is uniform (even though such an assumption is known to be
incorrect). The potential along the wire due to this uniform charge distri-
bution is calculated. It is then assumed that the true potential, which
actually exists along the surface of the wire, is equal to the average value of
this calculated potential. Knowing the potential for a given total charge
the capacitance of the wire is obtained from ¢ = Q/ V.
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Solution: Figure 2-15 shows the rod, which is assumed to have a uniform
charge distribution on its surface of amount ¢’ coulombs per meter of
length. The surface charge density is the ¢’/2we coulombs per square
meter. 'The charge on each element of area contributes to the potential
at a point p on the surface and the total potential at p can be obtained by
integrating these contributions over the surface of the wire. It is possible
to simplify this part of the problem in the following manner. It is known
that the equipotential surfaces about a line charge of infinite length are
cylinders whose axes coincide with the line charge. If a conducting

e s i

| S S | o

________ i I R 2

x

L

Fia. 2-15. Surface charge is replaced by a line charge along the
axis for the purpose of computing potential.

cylinder is made to coincide with one of these equipotential surfaces and
is given a charge per unit length equal to that of the line charge, the electric
field in the region about the cylinder will be exactly the same as that pro-
duced originally by the line charge.

Thus as far as the potential outside of it (and on its surface) is con-
cerned a long charged cylinder may be replaced by a line charge situated
along its axis and having the same charge per unit length as the cylinder.
Applying this principle in Fig. 2-15 the contribution to the potential at a
point z’ on the surface due to the charge on an element of length Az located
at point z along the axis will be

g Az

AV = - e
dre \/(z' — 2)? + a?

(2-44)

where ¢’ is the charge per unit length. The total potential at 2’ due to
the assumed charge distribution along the axis is

yoo I [f
dme Jo /(2 — )* + o?

’ ' L

7l _ (e

L[ (5]

I Y £ A W £

_41‘_6[ smh‘( p )+smh‘(a)] (2-45)

I
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From eq. (45) the potential at the middle of the rod will be

’ .
Vearsz = er-; [— sinh~! (-— %) + sinh—! (%})]

_ 2 _ 106 ,
= e sinh—! 100 = e
and the potential at each end is
!
V:'-O = Vz’—L = 599q
4me

The potential can be calculated at other points along the length to obtain
the resulting distribution, shown by Fig. 2-16.

5 - —_—

. J

Fic. 2-16. Totential distribution along the rod calculated from
assumed uniform-charge distribution.

The cverage potential along the rod may be found by integrating
eq. (45) (with respect to z') over the length of the rod and dividing by L.

V—L’L_'h—lt_l‘_*_'h—li’ dz’
avg = drel, 0 81n 7 S = XL

= L‘ — (&' — L) sinh~! (%‘) +VE - Lyt a
L

+ z’ sinh—? (2) -V + a?
0

=28y g (E) g
" 2me [L+smh <a) J1+L’]

Substituting numerical values

9_10.005 + sinh=1 200 — (1 + 0.00001)]
2me

5.00¢
27e

Vae =
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The capacitance of the rod (remote from the earth) will be (approximately)

'L
C= %: = 1111 ppf
The effect of the proximity of the earth can be accounted for by means of
the image principle. A negative charge —g'L located at the position of
the image will decrease the average potential of the rod slightly. With
negligible error this negative charge can be considered as being located
at a point at the center of the image a distance 2h from the rod and the
potential at the rod due to this negative charge will be

—¢'L
= 4re X 2k
0.05¢'L
4me

Viman

The average potential of the rod including the contribution from the
image charge is
9.95¢'

4me

4 (10,0 — 0.05) =
Vam = 2 (10.0 — 0.05) =

The capacitance of the rod including the effect of the presence of the earth
will be
4re
C= 9.05 = 11.16 ppf

The proximity of the earth has increased the capacitance by about %4 of
1 per cent. It will be observed that in this case a 50 per cent error in
computing the contribution from the image would affect the final answer
a negligible amount. Therefore there is usually no justification for seeking
a more accurate solution for this part of the problem.

The method outlined above gives an approximate answer for the capaci-
tance of the rod. The degree of approximation can be improved by assum-
ing a second and different charge distribution, which will produce a more
_ nearly uniform potential distribution. (This is -easy to do once the

potential distribution due to a uniform charge distribution has been found.)
It will be found (for this case) that the answers obtained with more nearly
correct charge distributions do not differ appreciably from that obtained
above. The correct value for capacitance will always be a little larger
than that calculated from any assumed charge distribution. This is
because the actual charge distribution is always such as to make the
potential energy of the system, and therefore the potential of the rod, a
minimum.

2.11 Energy Stored in an Electric Field. When a condenser is
charged so that there exists a voltage V between its plates, there is
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a storage of energy, which can be converted into heat by discharging
the condenser through a resistance. The amount of energy stored
can be found by calculating the work done in charging the con-
denser. Since potential was defined in terms of work per unit
charge, the work done in moving a small charge dq against a poten-
tial difference V is ¥V dg. But the voltage V can be expressed in
terms of the capacity C and the charge ¢ by

_q
V=0

Therefore the work done in increasing the charge on a condenser by
an amount dgq is

4
C@

The total work done in charging a condenser to @ coulombs is

Q 2
Total work = f g dg = 10
0

¢ 2C
Therefore the energy stored by a charged condenser is
‘ 1@ _ 1,0 1y,
Stored energy = 50 =3 VQ =35 VC

This energy is said to be ‘“associated with the electric charge on
the conductors,” or alternatively, ‘‘associated with the electric
field in the dielectric between the conductors.”’ *

It is convenient in electromagnetic wave theory, where energy
is propagated through space, to use the second of these concepts
and associate the energy with the electric field. An expression
giving the stored-energy density in terms of the electric field is
readily obtained in the case of the parallel-plate condenser where
the electric field between the plates is uniform, with a value

14

E=E

* These statements represent two different points of view or two interpreta~
tions of a single set of experimental facts. The question of just where the
energy ‘‘resides” in this case is similar to the question of where the potential
energy is stored when a weight has been raised. The question seems to be one
of philosophy or interpretation and as such is unanswerable on the basis of any"
physical measurements that can be made by the engineer.
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V is the voltage between the plates and d is their separation. The
expression for stored energy can then be written
V:C  EtA _ E?
Stored energy = 5 =734 "2 (Ad)
Since Ad is the volume between the plates the quantity e£?/2 has
the dimensions of energy per unit volume and is said to be the
energy density of the electric field. Although derived here for the
special case of a uniform electric field, it is easily shown for
the general case that the quantity ¢E?/2, when integrated over the
whole volume in which the electric field exists, always gives the
correct value for the total stored (electric) energy.
2.12 Conditions at a Boundary between Dielectrics. Consider
conditions at the interface between two diclectrics in an electric

On,
_ &
\ E,. . A a

% R o E— "%

c

On,

(a) (®)

Fia. 2-17. Boundary surfaco between two dielectric media.

field. The dielectric constants of the media are ¢ and e respec-
tively, and it is assumed that there are no free charges on the
boundary surface. .
Apply Gauss’s law to the shallow pillbox volume that encloses
a portion of the boundary (Fig. 2-17). Since there are no charges
within the volume the net outward displacement through the sur-
face of the box is zero. As the depth of the box is allowed to
approach zero, always keeping the boundary surface between its
two flat faces, the displacement through the curved-edze surface
becomes negligible. Gauss’s law then requires that the displace-
ment through the upper face be equal to the displacement through
the lower face. Because the area of the faces are equal, the normal
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components of the displacement densities must be equal, that is,
D,, = D,,

Thus there are the same number of lines of displacement flux
entering one face as are lecaving the other face and the lines of
electric displacement are continuous across a boundary surface.

Whereas the normal component of D is the same on both sides
of a boundary, it is easily shown that the tangential component of
the electric intensity E must be continuous across the boundary.
Referring to Fig. 2-17b it is supposed that there are electric intensi-
ties E; and E; respectively in medium (1) and medium (2). In the
clectrostatic field the voltage around any closed path must be Zero,
that is,

VdmduthE§E'ds =0

Apply this to the rectangular path ABCD, in which AD is Just
inside medium (1) and BC just inside medium (2). Thé length of
the rectangle is a, and its width is b.

gﬁ E.ds = —Eub + Euwa + Enbp — Eia (2-46)

where E,, and E,, are the average tangential components of E along
paths AD and BC and E,, and E,, are the average normal com-
ponents of E along the paths BA and CD. As the sides AD and
BC are brought closer together, always keeping the boundary
between them, the lengths AB and CD approach zero and the first
and third terms in eq. (46) become zero (assuming that the electric
field never becomes infinite). Therefore

—E,,a + E,,a =0 and E" = El,

The tangential component of E is continuous at the boundary.

The two conditions (a) Normal D is continuous at the boundary,
and (b) Tangential I is continuous at the boundary are used to
solve problems involving dielectrics.

Exavrre 10: Rcfraction. Consider the problem of Fig. 2-18 where an
infinite slab of dielectric whose dielectric constant is €5, is immersed in a
medium of ¢;,. Let 0, be the angle that the normal to the boundary makes
with the lines of electric force in medium (1). Then the lines of E and D
will be refracted in passing through the slab.
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Let D, and D, be the electric displacement density outside and inside
the slab respectively, and E; and E; be the electric intensity outside and
inside the slab. Then

D1 = ﬂE]
D; = e,

By the two fundamental principles stated above

Dj cos 6 = D3 cos 04
E1 SiIl 01 = Ez SiIl 02

D, D2
E, cot 0, = E cot 02
Therefore € cot 0 = ez cot 0
tan 6, &
tan 02 - €2 (2-47)

Equation (47) gives the relation between the tangents of the angle of
incidence 03, and the angle of refraction 6 in terms of the dielectric con-
stants of the media involved.

Fig. 2-18. Refraction of an electric field.

2.13 Cylindrical and Spherical Harmonics. It was pointed out
in earlier sections of this chapter that, except for a few special cases,
the solution of Laplace’s equation, subject to the appropriate
boundary conditions, was in general a quite difficult problem.
There is a group of problems having a certain symmetry that may
be solved approximately by use of cylindrical or spherical harmonics.
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Because these functions are also required for later use in electro-
magnetic problems, they will be considered briefly here.

For those problems, which can be set up in cylindrical co-ordi-
nates, and for which there is no variation of the field in the z direc-
tion, Laplace’s eq. (38) may be written as
19 av 1 02V
;a—p(”a toaer =0 $nd
If a solution of the form V = p"Qa

is assumed (where @, is a function of ¢ alone), then substitution of
this solution back into (48) shows that Q, must satisfy the following
differential equation.

aZQ” ’
a¢2 + ann =0

The solution of this equation is well known and has the form
Q. = A, cos n¢ + B, sin n¢

where A, and B. are arbitrary constants. It will be noted that
when —n is substituted for +n, the same differential equation for @
results, so that Q_, can be put equal to Q.. Then, if p"Q. is a solu-
tion of (48), r"Q_, = Q./r" is also a solution. By inspection it is
seen that V = In p is a solution of (48). Now if a function is a
solution of Laplace’s equation, each of its partial derivatives with
respect to any of the rectangular co-ordinates z, y, or 2, (but not in
general with respect to cylindrical or spherical co-ordinates) is also
a solution. That this is so, may be verified by differentiating
Laplace’s equation partially in rectangular co-ordinates. Differ-
entiating the solution V = In p with respect to x yields (cos ¢)/p
as another solution, while differentiation with respect to y yields
(sin ¢)/p. Successive differentiation leads to the following set of
possible solutions of (48):

cos ¢ sin ¢ cos2¢ sin 2¢  cos 3¢, sin 3¢,

? ? ’ 2 ? 2 ? 3 ? 3 2

P p P P P P

In p

Replacing p~™ by p™ gives a second set, viz.:
pcos ¢; psin ¢; plcos2¢; p?sin 2¢; p3cos3¢; p3sin 3

These solutions of Laplace’s equation (48) are known as circular
harmonics or cylindrical harmonics. These harmonic functions
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may be used to solve problems in which there is no variation of the
field in the 2 direction.

Exavpre 11: Conducting Cylinder in on Llectric Field. A long con-
ducting cylinder is placed in, and perpendicular to, a uniform electric
field E. with the axis of the cylinder coincident with the z axis (Tig. 2-19).
Determine the field distribution in the region about the cylinder.

Although the field in the neighborhood of the cylinder will be disturbed
by its presence, the distant field will be unaffzcted and will be just E..
Therefore, if the potential of the cylinder is taken as zero potential, the
potential at a great distance p will be —E.p cos ¢. Also the surface of

Y

Fic. 2-19. Conducting cylinder in a uniform field.

the cylinder, p = ¢, is an equipotential surface, which has arbitrarily been
set at zero potential. The problem can be solved by finding that com-
bination of the given cylindrical harmonic solutions that will also satisfy
these two boundary conditions. The answer in this case happens to be
quite simple, for it is evident that the following combination of cylindrical
harmonics, selected from those listed in the table, can be made to satisfy
the boundary conditions: -

B cos ¢

V = Apcos ¢ + p

For p very large (p — «)

V = Apcos ¢ = —E.pcos ¢
Therefore A= -E,

Forp =aq, V = Aa cos ¢ + 0

Bcos ¢ _
. =
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Therefore B = —Aa? = a’E,

2
Then V= (%—p)E,r cos ¢

The components of electric field intensity in the region outside the cylinder

are given by
2
E, = —-a—I—,=(%+1>E’,cos¢
dp

2
By e %—1)E’,sin¢ (2-49)

Spherical Harmonics. TFor problems that can be set up in
spherical co-ordinates and for which there is no variation in the
¢ direction, Laplace’s equation is

VY = _l_i(ﬁﬂ,) +_l_ 9 (sin gﬂ’) =0 (2-50)

r?or ar r2sin 0 86 a6
Letting u = cos 0, so that du = — sin 0 d6, eq. (50) becomes
af ,0V 2 .0 ﬂ/' _ .
Again assuming that a solution may be found that has the form
V =rpP,

(where P, is a function of « = cos 0 alone), substitution into (51)
shows that P, must satisfy the following differential equation:

%t [(1 — u?) ‘%] +n(n + 1)P, = 0 (2-52)

Equation (52) is known as Legendre’s ecquation. This is an impor-
tant equation in field theory for it is encountered whenever solutions
(involving variations with » and 0) are sought to Laplace’s equation
or the wave equation in spherical co-ordinates. Solutions to eq.
(52) may be found by assuming a power series solution, which is
inserted back into the differential equation. Equating the coeffi-
cients of corresponding powers, relations among these coefficients
are found. The result is the following set.of solutions for (52)
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Po = 1
P, =u = cos 6
P, = %@But — 1) = ¥(Bcos?0 — 1) = 14(3cos26 + 1) » (2-53)

P; = Y% (5u® — 3u) = }4(5 cos® 6 — 3 cos 0)
= 14(5 cos 36 + 3 cos 6)
and so on. ‘

The function Pais called a Legendre function of the order n. Sub-
stitution of —(n + 1) for n in (52) results in the same equation,
showing that P_arny = Pa.

Solutions to Laplace’s equation (50) can now be found by trial,
using these Legendre functions. Alternatively, the solutions may
be found as in the cylindrical harmonic case by a process of partial
differentiation. By trial it is found that

y=1
r
is a solution of (50). . Then differentiating partially with respect to

2 the following solutions are obtained:

! 1

r

%é cos 0 r cos 0

1 (2-54)
= (3 cos? 6 — 1) r%(3 cos? § — 1)

1

po (5 cos® 8 — 3 cos 0) r3(5 cos® 6 — 3 cos 6)

The second set has been obtained from the first set by replacing
—+D by r», The solutions to Laplace’s equation in spherical
co-ordinates are called spherical harmonics. The particular sets
(54), obtained for no variation with ¢ are known more specifically
as zonal harmonics because the potential is constant in each zone of
latitude.

Zonal harmonics can be used to obtain solutions to problems in
spherical co-ordinates for which there is no variation in the ¢
direction. A simple example would be that of a conducting sphere
placed in a uniform field which is parallel to the z axis. The solu-
tion to this problem follows in a manner similar to that of the con-
ducting cylinder and is left as an exercise for the student.
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It is important to realize that only certain very special problems
yield to an exact solution such as was obtained in the two examples
above. "I genéral, an ¢nfinite number of harmonic solutions would
be required to satisfy the boundary conditions. However, just as
any periodic function (satisfying certain conditions) may be approx-
imated by a finite number of terms of a Fourier series, so any
problem having a geometry suitable for the application of these
harmonic functions may be solved approximately by an appropri-
ate combination of a finite number of them.

The methods of this last section are also applicable in the solu-
tion of certain electromagnetic problems. Examples of such prob-
lems will be encountered in chaps. 13 and 15.

PROBLEMS

1. If a flat conducting surface could have placed on it a surface charge\ !

density p, = 1 coulomb per square meter, what would be the value of the
electric intensity E at its surface?

2. A point charge ¢ is located a distance h above an infinite conducting
plane. Using the method of images find the displacement density normal
to the plane and hence show that the surface charge density on the plane is

gh

Ps = — 57—

2arr3

where 7 is the distance from the charge ¢ to the point on the plane. Inte-
grate this expression over the plane to show that the total charge on its
surface is —gq.

3. Show that the capacitance of an isolated sphere of radius R is
4meo R farads

4. Verify that the capacitance between two spheres, whose separation
d is very much larger than their radii R, is given approximately by

. 4meRd
C =~ m = 27r60R
Hence show that the capacitance of a sphere above an infinite ground
plane is independent of the height h above the plane when A > R.

5. In the problem of example 3, section 2.05, derive the expression
for E at any point in the z-y plane directly, that is, by vector addition of
the electric fields produced by the two charges.

6. Verify that the expression for the potential due to an electric dipole
satisfies the Laplace equation.

.
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7. Verify that the expression obtained for the potential due to two
parallel oppositely charged wires, viz.,

d 2
[} — - 2
f ¢ . n_d “( 2> Ty

mt -2 p -

=2—1Fenr¢—21re d\?
B

is a solution of the Laplace equation.

'
\
\

. INFINITESIMAL L .
GAP 8. A very long cylindrical conductor of radius a

has a charge ¢ coulombs per meter distributed along its
length. Find the electric intensity E in air normal to
the surface of the conductor (a) by applying Gauss’s
law; (b) by finding the potential V and deriving the
i electric intensity from E = — grad V.
! 9. (a) Verify that V = In cot 6/2 is a solution of
Fra. 2-20 V2V = 0. (b) Hence show that the capacitance per
unit length between two infinitely long coaxial cones
(Fig. 2-20), placed tip to tip with an infinitesimal gap between them, is

-—

C = e ~ T
In cot 8,/2 1n 2/6,
for small angles of 0:. -
10. (a) Find the electric field distribution between the hinged plates
(Fig. 2-21a) and the charge distribution on the plates in a region not too

close to the edges (that is, neglect fringing). The plates are insulated at
the hinge.

{
INSULATING —> |
HINGE :
S
A INSULATING -

HINGE
(a) (b)
Fia. 2-21
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(b) If the plates are 1 meter wide and very long (Fig. 2-21b), estimate
roughly the capacitance between them per meter length when 6 = 10
degrees; when 6 = 180 degrees. The insulating hinge extends from r = 0
tor =1 cm.

1. The general definition for the voltage between two points in an
— electromagnetic field is

b
Va = / LC-ds
a
By taking the point b to infinity, show that in an electrostatic field due to a

charge ¢ the voltage at a (with » pect to the voltage at infinity) is the
same as the potentisl st ¢ as derined oc page 34. That is, show that

Veu = 47rqeR ?

where R is the distance of a from the charge g.

12. By the methods of sec. 2.13 derive a set of solutions to Laplace’s
equation (a) iz cylindrical co-ordinates, starting with

V =ko

(b) in spherical co-ordinates starting with

V=klntang
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CHAPTER 3
THE STEADY MAGNETIC FIELD

Electric charges at rest produce an electric field—the electro
static field. Electric charges in motion, that is, electric currents,
produce a magnetic field. This is evidenced by the fact that in the
region about a wire carrying a current, each end of a magnetic
compass needle experiences a force dependent upon the magnitude
of the current. There is said to be a magnetic field about the wire,
and the direction of the magnetic field is taken to be that in which
the north-seeking pole of the compass needle is urged. The
intensity H of the magnetic field was originally defined in a manner
similar to that for the electric intensity E. A unit magnetic pole
was first defined in terms of the force between two similar poles,
and then the magnetic intensity was defined in terms of the force
per unit pole. In electromagnetic wave theory, magnetic fields
due to electric currents are of chief concern and the effects of
permanent magnets are of little importance. Therefore the above
approach will be discarded for one that leads more directly to a
solution of the type of problems encountered in electromagnetic
engineering,.

3.01 Theories of the Magnetic Field. Itispossible todevelop a
quantitative theory of the magnetic field from any of several differ-
ent starting points. Rowland’s experiments showed that moving
charges produce magnetic effects. Therefore a theory based upon
the magnetic forces between individual moving charges would
be logical. In this theory permanent-magnet effects are ascribed
to the motion of external electrons about the atomic nuclei. This
theory is used in modern physics, and can be developed to answer
most of the questions that arise in connection with magnetism.
Some such fundamental approach is required whenever it is neces-
sary to deal with individual charges, but in most engineering prob-

72
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lems where only macroscopic effects are considered such a procedure
involves an unnecessary complexity. The motion of a single elec-
tron in a wire is an erratic and highly unpredictable affair, subject
to forces that vary greatly in the small length of interatomic dis-
tances. Yet, the intelligent sophomore experiences little difficulty
in predicting with fair accuracy the statistical average motion of
millions of electrons by a simple application of Ohm’s law. For
most engineering problems it will be the magnetic effect of currents
rather than the motion of individual charges that will be of impor-
tance, and it would seem reasonable to use the forces between
currents as a starting point. Ampere’s experiments on the force
between current-carrying conductors form a logical starting point
for this development and lead to quite satisfactory engineering
definitions, especially when the end result desired is in terms of
mechanical forces. In electromagnetic wave theory, however,
primary interest is in the relations between electric and magnetic
fields, and a different starting point proves to be convenient. This
starting point is Faraday’s induction law, which relates the mag-
netic flux through a closed path to the voltage induced around the
path. This relation, which defines magnetic flux in terms of a
measurable electric voltage, is the starting point that will be used in
the present discussion of magnetic fields.

Still another attack that is often used in electromagnetic theory
is to postulate a vector potential due to the currents, and then
obtain a magnetic field in terms of this potential. This vector-
potential method has the marked advantage that it can be readily
extended to the general case where the currents vary with time—
the electromagnetic field—and in this latter case it will also yield
directly the electric field produced by changing currents. In gen-
eral, use of the vector-potential method simplifies the mathematical
analyses and facilitates the solution of electromagnetic problems.
Therefore it will be developed and used. However, instead of
starting with a postulated potential and deducing from it the electric
and magnetic fields, the reverse procedure will be used. The elec-
tric and magnetic vectors will be defined in terms of relations
derived from experiments, often performed under restricted con-
ditions. These definitions will then be generalized for use in the
electromagnetic field, and in the process a potential will be found
such that the space and time derivatives of this potential will give
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the magnetic and electric fields. The generalizations may be con-
sidered valid as long as conclusions derived from them agree with.
subsequent experiment,.

3.02 Magnetic Flux &.

In the experimental setup indicated in Fig. 3-1, a ballistic
galvanometer is connected to a loop placed near a long straight
wire, carrying a current I. Probing with a magnetic compass

needle shows that there is a mag-

P netic field in the region about tke
wire. At the position of the loop
shown, the direction of the field is
out of the plane of the paper for an
upward flow of the current 7. If
now the current I is reduced to zero,
the galvanometer is deflected, the
P amount of the deflection bemng in-
lAﬂ/l dependent of the rate at which the

current is reduced to zero, so long
as the time required is short com-
pared with the period of the galva-
nometer. The current I, through
the galvanometer {lows as a result
of a voltage ¥V ““induced” in the

U loop and is given by
Fic. 3-1. Measurement of mag- 14
netic flux. I, = B

where R is the total resistance in the galvanometer circuit (R is a
very large resistance). The galvanometer deflection is a measure
of the charge @ or the time integral of the current through it, so that

¢ 1 [t
Q=AI,dt=RAth

is an experimentally determinable quantity. Magnetic flux &
through the loop is then defined as the time integral of voltage
induced in the loop throughout the interval during which the mag-
netic field is being established; or having been established, as the
time integral of voltage throughout the interval in which the field
is being reduced to zero. (These quantities are equal but of oppo-
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site sign.) That is
¢==x ['va (3-1)

where the time interval 0 to ¢ is that required to establish the field
or reduce it to zero. Dilferentiating v:ith respect to time gives

V= Ut— (0-2)
which is Faraday’s induction law. Consistent with a right-hand
co-ordinate system, the negative sign has been used to indicate
that when the flux is increasing in the positive direction (out of the
paper through the loop in Fig. 3-1), the induced voltage occurs in a
clockwise direction. It is evident from eq. (1) or (2) that the unit
of magnetic flux is the volt-second; this unit has been named the
weber.

3.03 Magnetic-flux Density B. The magnetic flux per unit
area through a loop of small area is called the magnetic-flur density B
at the location of the loop. Because the flux through the loop
depends upon the orientation of the loop as well as upon its area,
magnetic-flux density is a vector quantity. The direction of B is
taken as the normal to the plane of the loop when oriented to
enclose mazimum flux. The positive sense of B is the direction
of the magnetic field at the point in question. The unit of magnetic-
flux censity is t:e weber per square meter or the volt-secor.d per square
meter. The magnetic flux through any surface is the surface integral
of the normal componert of B, that is

<:>=]SB,.da=[SB-da

3.04 Magnetic Ictcnsity H and Magnetomotive Force & Using

a small probe loop and galvanometer as ia Fig. 3-1, it is possible

to determine B 2t all points in a region about a long current-carrying

wire. Experiment shows that for a homogeneous medium, B is
related to the current I through

B ot (3-3)

where r is the distance from the wire and p is a constant that
depends upon the medium. The constant y, called the perneability
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of the medium, may be written as

B = Hrlo

where u, is the absolute permeability of a vacuum, and g, is the
relative permeability (relative to a vacuum). g, is the basic defined
electrical unit, which has been assigned the value

g, = 47 X 1077 henry/m

in the rationalized MKS system of units. Using this value of g,
and probing the field about the wire in a vacuum for which g, = 1
(or in air for which g, =~ 1), the proportionality factor in (3) is
found to be 1/2m, so that the relation becomes

ul

B = o = vH (3-4)
I
where H = 57 amp/m  (3-5)

The magnetic intensity H is thus defined by this relation in terms
of the current which produces it and the geometry of the system.
Magnetic intensity is a vector quantity, having the same direction
as the magnetic-flux density, so the equality expressed by (4) can
be stated as the vector relation

B = uH (3-4a)

Under the conditions of the above (long-wire) experiment, H, the
magnitude of the magnetic intensity is independent of the perme-
ability of the medium, depending only on the current and distance
from it, while B is dependent on the permeability of the medium.
In this sense H may be pictured as a magnetic intensity that drives
a “resultant” flux density through the medium (but this is not the
only possible viewpoint). Although no longer defined in terms of
unit poles, the relative value of H at any point may be indicated
by the force on one end of a magnetized compass needle.

The line integral

F = LbH-ds

is defined as the magﬁetomotive force between the points a and b.
For a circular path about the wire, with the wire at the center, H
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has the constant value I/2nr and is directed along the path, so that
ﬁ:ﬁH.ds:I (3'6)

It is easily demonstrated that this same result (6) will be obtained
for any closed path about the current. Equation (6) is Ampere's
work law. The positive directions (or senses) of magnetomotive
force and current are related by the familiar “right-hand rule.”
Ampere’s work law makes it easy to compute H in certain prob-
lems. For example, consider the toroidal coil of Fig. 3-2, consisting

F16. 3-2. Toroidal coil.

of a large number of closely spaced turns on a tubular core. For
any closed path C taken around the core inside the winding, the
magnetomotive force will be

§F =nl

where 7 is the number of turns and, therefore, the number of times
the path links with the current I. If D, the thickness of the core,
is small compared with R, the radius of the ring, the radii of all
circular paths through the core are approximately equal to R, so
that at any point within the core

I
H ~ %E = oR = nT ampere turns/m  (3-7)
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with I = 2xR denoting the length of the coil. The magnetic inten-
sity is nearly uniform throughout the cross section of the core and
is equal to the ampere turns per unit length.

Another example, in which H is simply related to the current
that produces it, is the case of two very large closely spaced parallel
planes carrying equal and oppositely directed currents (Fig. 3-3).
The magnetic field is confined to the region between the planes
and is found to be uniform (except near the edges) and independent
of the distance apart of the planes as long as this distance is small

4

/N o
fEE—EB: — ,

| |

% %

Fic. 3-3. Parallel-plane conductors.

compared with the other dimensions. In Fig. 3-3 the current is
assumed to be flowing in the positive x direction (outward) in the
upper plate.

Then if J. represents the current per meter width flowing in this
plate, Ampere’s work law states that

H.ds = H(y: — y1) = J:(y2 — y1)
ABCDA .
from which H =J, amp/m  (3-8)

The magnetic intensity is equal in magnitude to the linear current
density (amperes per meter width) flowing in each of the planes.
It is parallel to the planes, but perpendicular to the direction of
current flow.
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3.06 Permeability . In each of the above examples the mag-
netic intensity H has been related directly to the current that pro-
duces it. Using the toroidal coil example the magnetic flux & and
therefore the magnetic flux density B within the core can be meas-

ured; the magnetomotive force j; H - ds, and therefore H, is known

in terms of the current; therefore p, and hence p,, the relative perme-
ability of the medium composing the core, can be determined from
the relations

k= 5; B = Rty fe = 47 X 1077 henry/m  (3-9)

For air and most materials the relative permeability is very
nearly unity. For paramagnetic substances g, is very slightly
greater than unity; thus for air it is 1.00000038 and for aluminum
it is 1.000023. For diamagnetic substances p, is slightly less than
unity; for copper (1 — 8.8 X 10~%); for water (1 — 9.0 X 10-9).
However, for that exceptional class of materials known as ferro-
magnetic materials (iron and certain alloys) the relative permeability
may have a value of several hundred or even several thousand.
In general, the permeability of these materials is not constant but
depends upon the strength of the magnetic field and upon their
past magnetic history. However for most applications of interest
in electromagnetic wave theory, the range of flux densities involved
is small enough that u may be considered constant.

3.06 Energy Stored in a Magnetic Field. It is found experi-
mentally that a certain amount of work is required to establish a
current in a circuit. This work is done in establishing the current
against the electromotive force induced in the circuit by the increas-
ing magnetic flux, and the energy thus transferred to the circuit
is said to be stored in the magnetic field. The amount of the
energy so stored can be determined in terms of the extent and
intensity of the magnetic field by considering the elementary exam-
ple of current flow in a toroidal coil. In this case, when the turns
are closely spaced, the magnetic field is confined to the core of the
toroid, and the magnetic intensity is given by
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where 7 is the number of turns and [ is the mean length of path
through the core of the coil. The back voltage induced in the coil
is, by definition of magnetic flux ®,

do

dt

dB
= —nA -(—i?

V=-—-n

where B is the magnetic flux density, and A4 is the cross-sectional
area of the core. The work done in establishing the current I in
the coil ig

W= —JvId
0

i dB
oflAH i dt

H
= [plAH dH
[1]

H,?
Y [t‘—z—] (3-10)

This is the total energy stored in the field, and since [A is the volume
of the region in which the magnetic field exists, it is inferred that
the quantity
uH?
2

represents the energy density of the magnetic field. Whether or
not it is considered desirable to ascribe a certain energy density
to each small volume of space and so “locate’” the energy, it is
nevertheless true in general that the quantity pH?2/2, when inte-
grated over the whole volume (in which H has value), does give the
correct value for the total stored magnetic energy of the system.
3.07 Ampere’s Law for a Current Element. When a current
flows in a closed circuit the magnetic intensity H at any point is a
result of this flow in the complete circuit. For computational
purposes it is convenient to consider the total magnetic intensity
at any point as the sum of contributions from elemental lengths ds
of the circuit, each carrying the current I. The quantity Ids
is called a current element. It is a vector quantity having the direc-
tion of the current, or what amounts to the same thing, the direc-
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tion of the element ds in which the current flows. This may be
indicated by writing I ds or alternatively I ds. The two notations
are used interchangeably and to suit convenience in the partlcular
problem. -

The magnitude of the contribution to H from each current
element I ds cannot be measured directly, but is inferred from
experimental results to be

Idssiny

47r?

dH = (3-11)

r is the distance measured outward from the current element I ds
to the point p at which H is being evaluated (Fig. 3-4). ¢ is the

angle between the direction of Ids H
and the direction of r. The direc- N\
tion of H is perpendicular to the +p
plane containing 7 ds and r, in the /

direction in which a right-hand screw y e

would progress in turning from I ds
to r. This complete statement can

be written in vector notation simply ¢
as
aa = LB XU g9
w Fic. 34

where u, is a unit vector in the r direction. Equation (12) is
known as Ampere’s law for a current element (or sometimes as the
Biot-Savart law).

The total magnetic intensity H at a point p will be the sum or
integration of the contributions from all the current elements of the
circuit and will be

H = fﬁ Ids X u, (3_13)

47r?

Magnetic Fields of Some Simple Circuits. The magnetic inten-
sity H at any point due to current flow in a circuit can be obtained
by summing the contributions from the current elements that make
up the circuit. This is not always a simple task but there are a few
problems in which conditions of symmetry make it relatively easy
to obtain an answer.
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ExaMPLE 1: Field at the Center cf a Circulcr Loop. The contribution
to H at the center due to any element Ids will be directed vertically
upward and will have a magnitude

_Ids IRd¢ Ido
4rR*  4wR* 4R
The total intensity at the center will be

"1y _ 1
o 4R 2R

~et [ H=
% o Field about a Long Straight Wire.

The magnetic intensity at a distance B

from a very long (infinitely long for the

Tic. 3-5 purposes of this problem) straight wire

carrying a current I can also be obtained

by summing the contributions from the individual current elements.
This is left as a problem for the student.

3.08 Magnetic Vector Potential. In the electric field it was
found desirable to introduce the concept of potential. In that
case the electric potential was a space function that depended upon
the magnitude and location of the charges, the charges being the
sources of the electric field. The intensity of the electric field was
obtained from the potential V by taking the gradient or space
derivative of V. This procedure was often found to be much
simpler than that of trying to obtain E directly in terms of the
magnitude and location of the charges.

Similarly in the case of the magnetic field it would be desirable
to be able to set up a magnetic potential, the space derivative of
which would give the magnetic intensity H. Corresponding to the
individual charges in the electric field case, the sources of the
magnetic field would be the current elements I ds of the circuits
that produce the field. The magnetic potential being sought
would therefore depend upon these current elements. Assuming
that a suitable magnetic potential can be found, the properties that
such a potential must possess are easily determined by simple
reasoning.

Because the magnetic intensity H that is to be derived from
the potential is proportional to the strength of the current element
I ds, the potential itself must be proportional to I ds. Because the
magnetic intensity H due to a current element varies inversely as
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the square of the distance r {from the element (Ampere’s law), the
magnetic potential due to the current elements must vary inversely
as the first power of the distance because H is to be obtained by
taking the space derivative of the potential. This is equivalent to
dividing by r as far as dimensions are concerned. The electro-
static potential due to charges was a scalar quantity. This was
adequate in that case, because the charges themselves were scalars
having magnitudes only. In the present case, the current eléments
have directions as well as magnitudes, and it is necessary that this
additional information on the direction of the source be contained
in the potential due to the source. Therefore the potential in this
case must be a vector quantity, the direction of which will somehow
be related to the direction of the current-element source. If this
vector magnetic potential is designated by the vector A, then it should
be possible to obtain H as the space derivative of A. There are
two possible space-derivative operations on a vector quantity,
namely the divergence and the curl. The divergence operation
yields a scalar quantity, whereas the curl operation yields a vector
quantity. Inasmuch as the resulting magnetic intcnsity H is a
vector quantity, the curl is the only space-derivative operation
which can be used. Therefore, if there is a suitable vector magnetic
potential A, the magnetic intensity will be derived from it by

H = curl A (3-14)

As indicated above, the relation between the magnetic vector
potential and the current element source must be of the form

an = (1) (3-13)

where the constant k is still to be determined. With one eye on

eq. (12) a reasonable guess for the expression for the vector poten-
tial of a current element I ds would appear to be

Ids

dA = T (3-16)

3.09 Vector Magnetic Potential of a Current Element. The

expression (16) for the magnetic vector potential of a current ele-

ment was obtained by a combination of logical reasoning and

straight guesswork. It remains to be shown that (16) is indeed
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the required expression. This can be done by inserting (16) in
(14) and showing that the result is equivalent to eq. (12). How-
ever it is instructive to obtain the expression for dA directly from a
restatement of Ampere’s law for the current element.

Consider a current element I ds located at the origin of the
co-ordinate system and having components I dzx, I dy, and I dz,

"

aHy
L~
T

daHy

o

Fic. 3-6

along the respective axes (Fig. 3-6). The magnetic intensity at a
point P as given by Ampere’s law for the current element is

_Ids X u,
 4m?

dH (3-12)
As indicated by the cross product, H is perpendicular to the plane
containing ds and u,. The magnitude of dH is given by

Idssiny

dH = T?

(3-17)
where ¢ is the angle between ds and r.

The magnetic intensity at P can be considered in terms of its
components dH,, dH, and dH,. The magnetic intensity in the z
direction is due, in part, to a contribution from I dz and in part to a
contribution from I dy. The component I dz contributes nothing
to the z component of the magnetic intensity since a magnetic field
is always perpendicular to the current producing it.
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The contribution to dH. due to I dz is, by (17),

Idz.\/xz-i—y’. y

4nr? r VTE+ gt

—%—ﬁsin()sin¢= -

Similarly the contribution to dH, at P due to I dy is
Tdy =
4r rd
The total dH, at P due to the current element I ds is therefore
dx dH, = —Idz.r%+1dy-r—i (3-18)

Now the first of these terms is the partial derivative with respect
to y of I dz/r for

9 (Idz\ _ 9 1 _ y
@(T)*”’za_ym” o oy o
=—Idz-%
r

Also the second term is the negative of the partial of I dy/r with
respect to z.  Therefore (18) may be written

_ 90 (Id:\ a(Idy

In a similar manner the y and z components of dH can be written
in terms of the appropriate derivatives of I ds/r. The complete
statement would be

o fId\ o (ldy
4"‘”’**5;(7)‘5;(7)
o (Idr\ o (Id

_9(Idy\ o (Idx
4"‘”"*ax(r> a“y(—r‘>

The right-hand sides of these equations are the three components
of curl I ds/r. Therefore eqs. (20) may be written
Ids

dH = curl T (3-21)
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It is evident that for the current element I ds, the vector mag-
netic potential is
Ids
WA =T
It is proportional to the current I and to the length of the element
ds, and is inversely proportional to the distance r from the current
element. It has the same direction as the current producing it.
The vector magnetic potential (usually called just vector poten-
tial) due to current flow in a complete circuit is obtained as a summa-
tion or integration of vector potentials caused by all the current ele-
ments that comprise the circuit. That is

A= f fds (3-22)

where the integration extends over the complete circuit in which
I flows. As mentioned previously, the direction of a current ele-
ment can be indicated by making either ds or I the vector quantity.
In the latter case the expression for A would be

Ids
. / 4rr

This expression can be written in a more general form by replacing
the current I by a current density i and then integrating over
the volume in which this current density exists. Then the expres-
sion for the vector potential A is

idV
. Vv 4rr
This reduces to the previous expression when the current flows in a
filamentary circuit.

ExampLE 2: Magnetic Field about a Long Straight Wire. Using the
vector potential, let it be required to find the magnetic intensity about a
long straight wire carrying a current I.

The general expression for vector potential is

idV
A= T
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For this problem the current density i, integrated over the cross section
of the wire, gives the total current I. Also the current is entirely in the
z direction (Fig. 3-7) o that A has only one component, A..

Then

1 [*h1a

A'=4—1r L T

If the point P is taken in the y-z plane, r = 4/2? 4+ y* and

A -ifL_’___dz
"TorJo Vi + 2
= L ln G+ Vo T 9k
= @+ VD) —lng]

For L > y, the vector potential is Zu

given approximately by

I
A'z-z_;r(lnzL—lny) ldz\i"

P

Then for a point in the y-z plane

H,=curl,A,—a—y=—2—1rl-l o

L

The lines of magnetic intensity Fic.3-7. Vector potential about a long
will be circles about the wire, that straight wire.

is in the ¢ direction. For any

arbitrary point P, not necessarily in the y-z plane,

I
II¢=2‘A’—R

where R = A/z? + y? is the distance of the point P from the wire.

ExampLE 3: Magnetic Fields Due to Long Parallel Wires. Let it be
required to derive the expressions for the magnetic field about two long
straight parallel wires, carrying equal and oppositely directed currents.
Start with A, = (I/2x)(In 2L — In R) for a single wire.
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V4

2= 2/

A
/.

Y

d

Fic. 3-8. Long parallel wires.

The total vector potential at the point P (Fig. 3-8) will be

where
and

Therefore

From the figure

and

so that 3

o _

A, = Ay + As
I
A, = 2—n_(ln 2L — Inr))

A, = —%(In2L—lnrz)

L
T or

¥ 2
=

A, (Inry — lnry)

1 dy rs

Then the z component of H will be obtained from

dA,

H, =curl. A, = —

9y
_r [y +(d/2) _y - <d/2)]

2‘!’ 1’:’ 1’1’

[§3.08
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The y component of H is

34,
H, =curl, A, = — ™

=_I(=_=
T 2w\ r?

ExampLE 4: The Magnetic Dipole. A small circular loop cariies a
current I. Let it be required to find the magnetic field at distances from
the loop that are large compared with the dimensions of the loop. Without
loss of generality the point p may be assumed to lie in the y-z plane
(Fig. 3-9). The vector potential at the point p will have a component in the

‘7

Fic. 3-9. Small circular loop.

¢ direction only and for p in the y-z plane this meansthat A = 4, = —A4.
The contribution to A, from a current element I ds will be

Idssin ¢

dd. = - daqrr

The total vector potential at p will be

Isingds  Ia [*"* sin ¢ do
Y 4 T W Jeeo T
Now r=R-—a

rP=r.r=(R—a)-(R—a) =R?—2R-a + a®

A =

The quantity R - a is R times the projection of a on R and has a value

R.a = Rasin ¢sin @
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1
A/R? — 2Ra sin ¢ sin 0 + a?

2 o -34
= (I—Esm¢sm0+ )

For R > a, this is given approximately by the first two terms of the
binomial expansion, that is

_ 1 2a . . a?
=R ‘[1 —5(—fsm¢sxn0+—ﬁ)]

Io [*sin ¢ a . . a?
iy 7 (1+Rsm¢sm0—2—R2)d¢
2 ol 2x
= _—I“J;;eﬁ sin? ¢ dop
_ I(wa?) sin 9§
4rR?

1
Then 73

]

|

N |-

Then A,

]

For an arbitrary location of the point P, not necessarily in the y-z plane,
we may write

A - I(mwa?) sin 6

* T 4xRe
There will be two components of H at the point p. Expanding H = curl A
in spherical co-ordinates gives

I (wa?) sin @

r Or 4w R3
1 I(ma?) cos @
"= rsin 000 (sin 6 Ay) = 2rR?

If these expressions are compared with those for the electric dipole
(page 39) it will be seen that they are identical when the electric moment
gl of the electric dipole is replaced by mwa®I for the loop. wa? is the area
of the loop, and the product of this area and the current I is known as the
magnetic moment of the loop. A small loop such as this is often referred
to as a magnetic dipole.

It will have been observed in the examples above and in the
problems at the end of the chapter, that usually little time or labor
is saved by using the vector-potential method. Indeed for simple
problems the solution can often be obtained more quickly by solv-
ing directly for H. This is a.common experience encountered in
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using a new and powerful tool. The simple problem often yields
more readily to simple tools. However when the problems become
more complex, as they do when time-varying fields are considered,
the real power and true worth of the vector-potential method will
become apparent. .
3.10 Analogies between Electric and Magnetic Fields. It is
natural to draw analogies between the electric and magnetic fields.
Such analogies are useful in helping to maintain orderly thought
processes and often make it possible to arrive at conclusions quickly
by comparison with results already obtained in a different but
analogous problem. There are several possible analogies that can
be drawn between electric and magnetic fields, but two of these are
particularly applicable to later work in the (time-varying) electro-
magnetic field. The first analogy considers D and H as analogous
quantities and E and B as analogous quantities. This is based on
consideration of the fact that displacement density D is related
directly to its source, the charge, and is independent of the charac-
teristics of the (homogeneous) medium in which the charge is
immersed. Similarly the magnetic vector H can be related directly
to its source, the current, and is independent of the (homogeneous)
medium in which the magnetic field exists. The vectors E and B
are also related to their respective sources, charge and current, but
show a dependence on the characteristics of the medium, that is
on the dielectric constant, and magnetic permeability respectively.
This analogy is correct in the sense that it is self-consistent and can
be made to give useful interpretations. The second analogy, which
is equally valid, considers E and H as analogous and D and B as
analogous. It is no more “correct” than the first analogy, but
has the advantage in electromagnetic field theory that it gives a
symmetry to Maxwell’s equations that otherwise would be lacking.
Inasmuch as these equations form the starting point for every
problem of the electromagnetic field, this is a very useful result.
Two simple experiments serve to point up this analogy. In
Fig. 3-10a voltage V produces an electric field E in the space between
the condenser plates. FE is equal to V/d and is independent of the
dielectric constant e of the dielectric. However the displacement
density depends upon e (for a constant applied voltage and there-
fore constant E) and is given by D = ¢£. In Fig. 3-10b the cur-
rent I results in a magnetomotive force nl around the closed path I
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The magnetic intensity H within the core is equal to nI/l. The
magnetic flux density B depends upon the permecbility u (for a
constant applied mmf) and is given by B = pH. In this analogy
E and H are sometimes pictured as electric and magnetic intensities
or forces that result in electric and magnetic flux densities, D and B
respectively.

In the above experiments, if the charge Q (instead of the voltage)
is held constant in Fig. 3-10a, and the current is held constant as

<
1 |III=+

(a) (b)

Fra. 3-10. Circuits illustrating analogies between electric and
magnetic fields.

before in Fig. 3-10b, then the first analogy results. That is, D and
H are the analogous quantities that remain unchanged for different
dielectric and core materials.

STEADY MAGNETIC-FIELD PROBLEMS

. Starting with Ampere’s law for a current element, show that the
agnetic intensity at a distance R from a very long straight wire carrying
a current I amperes is given by
- 1
H=_—
2R
Verify that within a conductor carrying a current I the magnetic
intensity at a distance r from the center of the wire is given by

_Ir
" 27 R?

{
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where R is the radius of the wire. The current density is constant across
the cross section of the conductor.

3. Verify that expressions (3-i4) and (3-16) combine to give the same
result for magnetic intensity as is given by (3-12); that is, verify that the
curl of the expression for vector potential due to a current element does
indeed yield the magnetic intensity as given by Ampere’s law. (Sugges-
tion: Solve for the special case of a point in the y-z plane, and then
generalize).

d‘f. A very long thin sheet of copper having a width b meters carries a
ifect current I in the direction of its length. Show that if the sheet is
// assumed to lie in the z-z plane with the z axis along its center line, the
magnetic field about the strip will be given by

4xb b e ,
3~ +y

(Note: Solve by first setting up the vector-potential due to long narrow
strips.)

5. By setting up the statement of Ampere’s work law for elemental
areas in cylindrical co-ordinates derive the expansion for curl H in these
co-ordinates.

6. Show that the answers to Problem 4 agree with the answers to
Problem 1 for (a) a point on the y axis when y >> b; (b) a point on the
z axis when z 3> b.

7. The familiar statement of Ohm’s law is I = V/R, where the direc-
tion of current flow is in the direction of the voltage drop. Show that
for an elemental volume this law may be written as the vector point relation
i = dE. (Recall that the resistance R of a conductor of length ! and cross-
sectional area A is given by R = [/cA where o is the conductivity of the
material.)

BIBLIOGRAPHY
See bibliography for chap. 2.




CHAPTER 4
MAXWELL'S EQUATIONS

Up to the present the fields considered have been the static
electric field due to charges at rest and the static magnetic field
due to steady or unchanging currents. The next step is to deter-
mine what modifications will be required when the charge densities
and currents are changing with time. Before doing so it is desirable
to restate Ampere’s work law in the vector form as a point relation.

£

X
Fiac. 4-1
4,01 Ampere’s Work Law in the Differential Vector Form.

Ampere’s work law states that the magnetomotive force around a
closed path is equal to the current enclosed by the path. That is

jS H.ds =1 amp  (4-1)

This law may be put into an alternative form as follows: Consider
a conducting region in which there is a current densityi. Let ABCD
94
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be an element of area parallel to the z-y plane, and let the co-ordinates
of the point 4 be (z, y, z). The magnetomotive force around the
closed path A BCD A canbe obtained by summing the magnetomotive
forces along the four sides of the rectangle. If the average value of
H; over the path AB is represented by H. and the average value
of H, over the path AD is represented by H,, then the following
relations will hold:

mmf from 4 to B = A, Az
mmf from B to C = (ﬁ,, + aa—lzy Ax) Ay

mmf from C to D = — (IL + %Ay) Az
mmf from D to 4 = —H, Ay
Adding on both sides,
_(9H, 44,
mmf around closed path = (_63:— W) Az Ay

The current flowing through this rectangle is
dl = 1, Az Ay
Therefore by Ampere’s law,
of, aﬁ,) iy
(3.1: a_y Az Ay = 1, Az Ay

As Az and Ay are allowed to approach zero, #, becomes H = and

H, becomes H,, so that in the limit
oH, _ o,
oz oy

=15 (4-2a)

Next if the element of area is taken parallel to the y-z plane, and
then parallel to the z-z plane, the following relations are obtained:

. oH, oH, .
707 92 =1 (4-2b)
oH. oH, .
2 9z W (4-2c)

The three scalar eqs. (2a), (2b), and (2¢) can be combined into the
single vector equation
: curl H = (4-2)
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This is an alternative statement (in the differential vector form)
of Ampere’s law. Equations (1) and (2) are stated correctly for
a right-hand set of co-ordinate axes, and it is seen that the right-
hand rule for determining the direction of H is included in both
of these statements. The differential forms (2) of the equation
require a homogeneous medium because the space derivative has no
meaning at a discontinuity of the medium. When the path under
consideration crosses a discontinuity the integral form (1) is
suitable.

Interpretation of Curl H. Equation (2) relates the curl of the
magnetic intensity to the current density that exists at any point
in a region. A study of this relation is helpful in obtaining a phys-
jcal picture of the curl of a vector. The picture can be made
clearer if eq. (2) is integrated over an area to give

fscurlH-da= fsi-da 4-3)

The right-hand side of (3), being the current density integrated
over a surface S, is just the total current I flowing through the
surface. Recalling the original form of the statement of Ampere’s
law in eq. (1) shows that the following relation must be true:

curl H-da =9 II.ds (4-4)
Js §

This relates the integral of curl H over a surface to the linc integral
of H, or magnetomotive force, around the closed path bounding
the surface. If the surface is reduced to an elcment of area da,
the left-hand side becomes curl H-da. Dividing through by da,

the result is |curl H| = (f H - ds)/da, which may be interpreted

as: ““curl H equals the ‘magnetomotive force per unit area.” The
direction of curl H is that direction of the area da that results in a
maximum magnetomotive force around its edge.

Stoke’s theorem. The rclation (4) obtained above for a magnetic
field H is in fact a perfectly general rclation true for any vector.
That is, for any vector A,

[scurlA-d3.= fA-ds

This equation is known as Stokes’ theorem. It provides a very
useful relation between an integration over a surface and an integra-
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tion around the closed path bounding the surface. As was seen
above it also provides a definition in the integral form for the cur

of a vector. ’
4.02 Error in Simple Statemert cf Ampere’s Law for Time-

Varying Fields. It was proved in chap. 1 that for any vector A
diveurl A =0
Applying this to eq. (2) above necessitates that
divi=0 (4-5)
Equation (5) states that there is no net outward flow of current
from an elemental volume; that is, the current has no sources or
sinks in the sense that it does not start or stop anywhere in a circuit.

In other words, there must be a continuous flow of current through-
out the entire circuit.

1_.-

T'16. 4-2

This is true in the steady or direct-current case, and indeed,
this is just a statement of Ifirchoff’s law for currents. However,
eq. (5) is not necessarily true if the circuit contains condensers
and the current is varying with time. Observe, for example the
simple situation of Fig. 4-2.

In this case a voltage V, which is changing with time, will cause
charges to flow onto the plates of the condenser. However, no
charge will move across the region between the two plates. Hence
current must start and stop on t:e condenser plates and i must
have a divergence there. It will be necessary to modify eq. (5)
to take care of this.

Equation of Cont:nuity. Consider the diagram of Fig. 4-3,
where an element of volume may have a different movement of
charge through one face as compared with another. Let p be the
charge density as a function of the co-ordinates.
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Y

va
ay| /S ispV
4y 7“'/

x

Fic. 4-3

The current density is pv, where v is the velocity with which

charges are moving.

Then in the elemental cube

The current flowing
in the left face

That flowing out 3(ov2)
the right face = (Pvz + oz dz ) dy dz

= pv,dy dz

The increase in charge within the volume per unit time due to move-

ment in the z direction is therefore — %2 dx dy dz.

The total increase due to movement in and out of all faces of

the cube will be

in charge per =

Total increase [_ 3evs) _ 3(pm) _ a(pv.)] dz dy dz

unit time dx dy oz
Incrzase in

charge per unit _ a(pv,) + a(,m,,) + a(pvs)
time per unit 0z
volume

= —divpv = —divi

But increase in .
charge per unit _ 9p
volume per unit EY;
time
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Now, since increase in charge per unit time per unit volume equals
increase in charge per unit volume per unit time

%’; = —divi (4-6)
Equation (6) is called the equation of continuity.

Although the equation of continuity has been developed here
in connection with the flow of charges, it has quite general applica-
tion in many fields, being the fundamental law of fluid motion.
Under such circumstances p stands for the density of the fluid and
the equation of continuity then states that the rate at which the
quantity of fluid in a unit volume is increasing is equal to the rate
at which the fluid is flowing #nto the volume from outside.

4.03 The Generalized Magnetomotive Force Equation. Am-
pere’s work law stated in the vector point-relation form is

curl H =i (4-2)

It has been seen that taking the divergence of both sides of this
equation leads to the conclusion that
divi=0
or that current must be continuous. Since this is evidently not
true for the alternating current case shown in Fig. 4-2, where
current flows (momentarily) into the dotted rectangular enclosure
without any corresponding outward flow, it follows that Ampere’s
law (eq. 2) must be in error for this case. An application of the
equation of continuity has shown that a correct statement regard-
ing the divergence of current density would be
divio _ 0
divi = i (4-6)
Using this relation it is easy to arrive at a more general statement of
Ampere’s law which will be true in all cases. Recall Gauss’s law as
a vector point relation
divD =p

Take the time derivative of both sides

d . o _
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Because space and time sre independent variables, the crder of
differentiation may be reversed, that is,

3 .. . oD
3 div D = div ¥l
so that eq. (7) becomes
. 8D _dp
div W = a
Then using eq. (6)
. D ..
div 5= div i
or div (i + %’) =0 (4-8)

Equation (8), rather than eq. (5), is the correct statement when
time changing (alternating) currents and fields are considered. In
the direct-current case, where there is no change with time, eq. (8)
reduces to (5).

It is evident that the term 8D/3¢ has the dimensions of a current
density. Now if aD/dt is considered as being a kind of current
density then it would be possible to write (8) as

divir =0
where - ir = (i 4 %)

is the total current density. Under these circumstances it would
be true that the (total) current is continuous and Ampere’s law
would hold even for the alternating current case where there are
condensers in the circuit. Maxwell first observed the error in the
original statement of Ampere’s law (eq. 2) and modified the state-
ment by replacing the conduction current density i by the total
current density [i + (0D/dt)]. The term 4D/ct is called the dis-
placement current density. The generalized statement ¢f Ampere’s
law becomes

curl H = (i + %) (4.-9)

Equation (9) is called the first of Mazwell’s equations.
Maxwell's assumption that a changing displacement densily
(that is, a changing electric ficld) was equivalent to an electric
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current density, and as such would produce a magnetic field, has
had most far-reaching effects. Combined with Faraday’s law which
indicates that a changing magnetic field will produce an electric
field it leads directly to the ‘“wave equations.” This result enabled
Maxwell to predict electromagnetic wave propagation some thirty
years before Hertz's brilliant researches gave experimental verifica-
tion. It should be observed that the assumption was made as a
result of recognition of an error that was pointed up by the mathe-
matics. This is an interesting example of one of those rather rare
cases where the mathematical reasoning has preceded and pointed
the way for experiment. .

4.04 Faraday’s Law and Maxwell’s Second Equation. Fara-
day’s inrduction law is analogous to Ampere’s law. It states that
the electromotive force or voltage around a closed path is equal to
the negative of the time rate of change of magnetic flux enclosed

by the path. That is
9%
§ BECH S a3t

But <I>=/;B-da

where the integration of the magnetic-flux density is over a surface
bounded by the closed path.
d B
* . = — — . . = — —
Then PE-ds at/SB da a7 da

But, by Stoke’s theorem,
$E-ds= [curlE-da

Therefore / curl E-da = — B da (4-10)
s s 9t

If the surface S is now reduced to an elemental surface, eq. (10)
becomes the point relation

oB
at

* The partial derivative with time is used throughout to indicate that only .
variations of magnetic flux with time through a Jfized closed path or at a fixed
region in space are being considered. For a discussion of induced emf under
other conditions refer to any text on electricity and magnetism. A thorough
treatment is given in E. G, Cullwick, The Fundamentals of Eleciromagnetism,
The Macmillan Co., Cambridge, England, 1939.

curl E = — (4-11)
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This is known as the second Mazxwell equation.

Again recalling that the divergence of the curl of any vector
is zero, it is evident from eq. (11) that div B/t = 0, and therefore
(for time varying fields) :

divB =0 /(4-12)

Equation (12) states that there are no sources* of B and that lines
of magnetic flux are continuous. This is in agreement with the
assumption that there are no isolated magnetic poles and, conse-
quently, no (physical) magnetic conduction current.

An interpretation of the curl of E is obtained from eq. (11)
and the integral definition of curl. From the integral definition of
curl the left-hand side of (11) is the line integral of E per unit area,
and (11) states that this is equal to the negative time rate of change
of magnetic flux per unit area. Now the line integral of E around
any path is simply the voltage around the path, and so (11) is just
Faraday’s law stated for the closed path about an element of area.
The voltage around the small closed path could be measured by a
loop of wire connected to a voltmeter. The voltmeter reading
divided by the area of the loop is a direct measure of the curl of E.
As the loop is oriented in various directions, the direction of the
axis of the loop that results in maximum voltage around the loop
is the direction of the curl of E. In a region in which there is no
time-changing magnetic flux, the voltage around the loop would be
zero, and curl E = 0. The electric field is then said to have no curl,
or to be irrotational in that region. Evidently in electrostatics
the electric field is always irrotational or without curl.

4.05 The Field Equations in Vector Form. The two Maxwell
equations together with the expressions relating D and B to their
sources are generally known as the electromagnetic field equations
or just the field equations. In the differential vector form the field
equations are:

curlH =D +1i I

curl E = —B II
divD = p III
divB =0 IV

* Ag used here source is a mathematical term. In the vector analysis of
fluid felds a source is a point at which fluid is emitted or introduced into a
region, and a sink is a point at which the fluid is absorbed or removed. The
term source also has a broader use as the ““cause of a phenomenon.” In this
latter sense, the sources of magnetic fields are electric currents. :
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The dot over a quantity indicates the time derivative of that quan-
tity. These relations will be referred to so often that they have
been labeled with Roman numerals and will be indicated in that
manner throughout the remainder of this text.

The Field Equations in Differential Scalar Form. The field -
equations I-IV appear above in the abbreviated vector form.
Written in the expanded scalar form in rectangular co-ordinates
they are

6x—6y—6—t+2'
OF, _4E, _ _ 3B,
dy oz at
9E. _9E. _ _ 9B, I’
9z ax ot
OB, _oE, _ _ 9B,
oz ay ot
oD, , D, , aD, _
S "oy T e o f I
dB, , B, , 3B, _
6:c+6y 2z =0 v

The Field Equations in Integral Form. The field equations are
often written in the integral form. The differential vector or scalar
furms above are more convenient in the actual solution of problems,
but the integral form is easier to interpret and to state in words.
In the integral form

$H-ds= [D+D-da T
fE-ds=—/;]'3-da II
/D-da=/;olpdV III
:l]:m?:e

fB.da=0 IV

cloged
surface
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Word Statement of the Field Equations. A word statement of
the significance of the field equations is readily obtained from their
mathematical statement in the integral form. It would be some-

what as follows:

I. The magnetomotive force around a closed path is equal to

the conduction current plus the time derivative of the electric
displacement through any surface bounded by the path.

II. The electromotive force around a closed path is equal to
the time derivative of the magnetic displacement through any
surface bounded by the path.

III. The total electric displacement through the surface enclos-
ing a volume is equal to the total charge within the volume.

IV. The net magnetic flux emerging through any closed surface
18 zero.

As indicated previously the time derivative of electric displace-
ment is called displacement current. The term electric current is
then generalized in meaning to include both conduction currents
and displacement currents.* Furthermore, if the time derivative
of electric displacement is called an electric current, the time
derivative of magnetic displacement can be considered as being a
magnetic current. Finally, electromotive force is called electric
voltage, so that magnetomotive force may be called magnetic
voltage.

e first two Maxwell equations can then be stated:

1. The magnetic voltage around a closed path is equal to the electric
current through the path.

I1I. The electric voltage around a closed path is equal to the magnetic
current through the path.

4.06 Conditions at a Boundary Surface. Maxwell’s equations
in the differential vector or scalar form express the relationship
that must exist between the four field vectors E, D, H, and B at
any point within a continuous medium. In this form, because
they involve space derivatives, they cannot be expected to yield
information at points of discontinuity in the medium. However,
the integral form of statement can always be used to determine
what happens at the boundary surface between different media.

* Also convection currents (e.g., electron beam currents). Conduction cur-
rents obey Ohm’s law, i = ¢E; convection currents do not.
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The following statements can be made regarding the electric
and magnetic fields at any surface of discontinuity:

(a) The tangential component of E is continuous at the surface.
That is, it is the same just outside the surface as it is just inside the
surface.

(b) The tangential component of H is continuous across a sur-
face except at the surface of a perfect conductor. At the surface

S aX
a;m
8N WP ;&

Fi16. 4-4, A boundary surface between two media.

of a perfect conductor the tangential component of H is discontinu-
ous by an amount equal to the surface current per unit width.

(c) The normal component of B is continuous at the surface of
discontinuity.

(d) The normal component of D is continuous if there is no
surface charge density. Otherwise D is discontinuous by an amount
equal to the surface charge density.

The proof of these boundary conditions is obtained by a direct
application of Maxwell’s equations at the boundary between the
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media. Suppose the surface of discontinuity to be parallel to the
y-z plane. Consider the small rectangle of width Az and length Ay
enclosing a sma’. portion of each of media (1) and (2).

" The integral form of the second Maxwell equation (II) is

E-ds= — [ B.da
S

For the elemental rectangle of Fig. 4-4 this becomes

(2
232

Ax

Az
Eu:Ay—En_z'_Ezn'A_zx‘_EuxAy+E +En"2—'

= —B, Az oy (4-13)

where B, is the average magnetic-flux density through the rectangle
Az Ay. Now consider conditions as the area of the rectanglz is
made to approach zero by reducing the width Az of the rectangle,
always keeping the surface of discontinuity between the sides of
the rectangle. If it is assumed that B is always finite, then the
right-hand side of eq. (13) will approach zero. If E is also assumed
to be everywhere finite, then the Az/2 terms of the left-hand side
will reduce to zero, leaving

E,bAy — F, 0y =0

for Az = 0. Therefore
Eux = Eu:

That is, the tangential component of E is continuous.
Similarly the integral statement of eq. I is

§H-ds= /S(f)-}—i)-da

which becomes
Ax Ax Ax Ax
n? _HuxAy+H=a7+Hu'§'

= (D. +1) Az Ay (4-14)

H,,,Ay —H,,-,-E' — H

[f the rate of change of electric displacement D and current density ¢
are both considered to be finite, then as before (14) reduces to

Hy, 0y — H, 8y =0 ‘
or H, = H,,
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The tangential component of H is continuous (for finite currént
densities; that is, for any actual case).

Note on a Perfect Conductor. A perfect conductor is one which
has infinite conductivity. In such a conductor the electric intensity
E is zero for any finite current density. All actual conductors have
a finite value for conductivity. However, the actual conductivity
may be very large and for many practical applications it is useful
to assume it to be infinite. Such an assumption will lead to diffi-
culties (because of indeterminacy) in formulating the boundary
conditions unless care is taken in setting them up. As will be shown
later, the depth of penetration into a conductor of an alternating
electric field and of the current produced by the field decreases as
the conductivity increases. Thus in a good conductor a high-
frequency current will flow in a thin sheet near the surface, the depth
of this sheet approaching zero as the conductivity approaches
infinity. This gives rise to the useful concept of a current sheet.
In a current sheet a finite current per unit width, J amperes per
meter, flows in a sheet of vanishingly small depth Az, but with the
required infinitely large current density 2, such that

lim 1Az = J amp/m
Az—0

Consider again the above example of the magnetomotive force
around the small rectangle. If the current density . becomes
infinite as Az approaches zero, the right-hand side of eq. (14) will
not become zero. Let J amperes per meter be the actual current
per unit width flowing along the surface. Then as Az — 0 the eq.
(14) for H becomes

Hy,Ay — H,, Ay = J, Ay ‘
Hence H,=H,-J, . - (4-15)

(Note that D = ¢E remains finite and therefore D, Az is zero for
Az = 0.) :
Now, if the electric field is zero within a perfect conductor, the
magnetic field must also be zero (for alternating fields) as the
second Maxwell equation II shows. Then in eq. (15), H,, must be
zcro and so
H, = —J. (4-16)
Equation (16) states that the current per unit width along the
surface of a perfect conductor is equal to the magnetic intensity
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H just outside the surface. The magnetic field and surface current
will be parallel to the surface, but perpendicular to each other. In
vector notation this is written

J=nXH

where n is the unit vector along the outward normal to the surface.

Conditions on the Normal Components of B and D. The remain-
ing boundary conditions are concerned with the normal components
of B and D. The integral form of the third field equation is

953D-da=jwlpdv 111

When applied to the elementary ‘pill-box” volume of Fig. 4-5,
eq. III becomes

D, da — Dy, da + Veseo = p Az da (4-17)

In this expression da is the area of each of the flat surfaces of the
pillbox, Az is their separation, and p is the average charge density

D”z

Fic. 4-5. A “pill-box’’ volume encloses a portion of a boundary
surface.

within the volume Az da. W is the outward electric flux through
the curved-edge surface of the pillbox. As Az — 0, that is, as the
flat surfaces of the box are squeezed together, always keeping the
boundary surface between them, W.e — 0, for finite values of dis-
placement density. Also for finite values of average charge density
7, the right-hand side of (17) approaches zero, and (17) reduces to

Dm da — Du, da =0
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(for Az = 0). Then for the case of no surface charge the condition
on the normal components of D is

D., = D,, (4-18)

That is, if there is no surface charge the normal component of D
is continuous across the surface.

In the case of a metallic surface, the charge is considered to
reside “on the surface.’” If this layer of surface charge has a
surface charge density p, coulombs per square meter, the charge
density p of the surface layer is given by

L0

P= 2 coulomb/cu m

where Az is thickness of the surface layer. As Az approaches zero,
the charge density approaches infinity in such a manner that

lim p Az = p,

Az—Q
Then in Fig. 4-5, if the surface charge is always kept between the
two flat surfaces as the separation between them is decreased, the
right-hand side of eq. (17) approaches p, da as Az approaches zero.
Equation (17) then reduces to

Dn; ha Dn, CJ P'. (4-19)

When there is a surface charge density p,, the normal component of
displacement density is discontinuous across the surface by the
amount of the surface charge density.

For any metallic conductor’ the displacement density D = ¢E
within the conductor will be a very small quantity (it will be zero
in the electrostatic case, or in the case of a perfect copductor).
Then if msdium 2 is a metallic conductor D, = 0 and eq. (19)
becomes

D,, = p, (4-20)

The normal component of displacement density in the dielectric is
equal to the surface charge density on the conductor. o

In the case of magnetic-flux density B, since there are no isolated
“magnetic charges,”” a similar analysis leads at once to

B,, = B,,
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The normal component of magnetic flux density is always continu-
ous across a boundary surface.

PROBLEMS

1. Show that the displacement current through the condenser is equal
to the conduction current I (Fig. 4-6).

J—

V=i SIN(uI)@ — ¢

T1a. 4-6

2. Within a perfect conductor E is always zero. Using Maxwell’s
equations, show that H must also be zero for time varying fields. Can a
steady (unchanging) magnetic field exist within a perfect conductor?
Show that the normal component of B (and therefore H) must be zero at
the surface of a perfect conductor.

3. A “transmission line”’ consists of two parallel perfectly conducting
planes of large extent, separated by a distance d meters. The conducting

—]

Fic. 4-7. Parallel-plane ‘““transmission” line.
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planes carry an alternating linear current density J amp/m in the ¥y direc-
tion, that is,
J = Jgeiwl—wsal

or J=Joc03w(t—%>

.

Applying Maxwell’s first equation in the region between the conductors
find the electric intensity, and hence the voltage between the planes,
when d = 1 meter and the effective linear current density is J.g = 1 amp/m.

4. A square loop of wire, 20 cm by 20 cm, has a voltmeter (of infinite

"impedance) connected in series with one side. Determine the voltage

indicated by the meter when the loop is placed in an alternating magnetic
field, the maximum intensity of which is 1 ampere per meter. The plane
of the loop is perpendicular to the magnetic field; the frequency is 10 me.

5. A No. 10 copper wire carries a conduction current of 1 amp at
60 cps. What is the displacement current in the wire? For copper
ASSUMe € = €, 4t = Uy, 6 = 5.8 X 107,

6. The electric vector E of an electromagnetic wave in free space is
given by the expressions

E.=E =0 E” = 4 efult—(z/n)}

Using Maxwell’s equations for free space conditions determine expres-
sions for the components of the magnetic vector H.
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CHAPTER 5 :
ELECTROMAGNETIC WAVES

PART |—ELECTROMAGNETIC WAVES
IN A HOMOGENEOUS MEDIUM
In the solution of any electromagnetic problem the fundamental
relations that must be satisfied are the four field equations

curl H =D 4 I

curl E = —B II
divD = p III
divB=0 v

In addition there are three relations that concern the characteristics
of the medium in which the fields exist. These are

D =¢E (5-1)
B =uH (5-2)
i =0¢E (5-3)

where ¢, u, and ¢ are the permittivity, permeability, and conductiv-
ity of the medium, which is assumed to be homogeneous, isotropic,
and sourcefree. A homogeneous medium is one for which the quan-
tities ¢, », and o are constant throughout the medium. The medium
is isotropic if € is a scalar constant, so that D and E have everywhere
the same direction. The form of Maxwell’s equations, given by I
and II, is for sourcefree regions, that is, regions in which there are
no impressed voltages or currents (no generators). The relations
of the fields to their sources will be considered in chap. 10 and
subsequent chapters.

When the relations (1), (2), and (3) are inserted in I and II,
Maxwell’s equations become differential equations relating the
electric and magnetic intensities E and H. If they are then solved
as simultaneous equations, they will determine the laws which both
E and H must obey. ‘

112
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6.01 Solution for Free-space Conditions. Before obtaining the
solution for the general case it is instructive to consider the simple,
but important, particular case of electromagnetic phenomena in
free space—that is in a perfect dielectric containing no charges and
no conduction currents. For this case the field equations become

curl H = D (54)
curl E = —B (5-5)
divD =0 (5-6)
divB =0 (5-7)

Differentiate (4) with respect to time. Since the curl operation
is a differentiation with respect to space, the order of differentiation
may be reversed, that is,

d curl H

3 = curl H

Also since e and u are independent of time

D= (5-8)
B = .H (5-9)

so that there results
curl H = ¢ (5-10)

The symbol £ means %%::
Take the curl of both sides of (5) and using (9), obtain
curl curl E = —p curl H (5-11)
Substitute eq. (10) into (11)
curl curl E = —pucg (5-12)
It was shown in identity (1-28) that
curl curl E = grad div E — V2E
Combine this equation with (12) to obtain
grad div E — V2E = —uE (5-13)
but divE =ldivD =0
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therefore eq. (13) becomes
VIE = pek (5-14)

This is the law that E must obey.
Differentiating (5) with respect to time and taking the curl of
(4) it will be found on combining that H obeys the same law, viz.

v:H = peH (5-15)

Equations (14) and (15) are known as the wave equations. Thus
the first condition on either E or H is that it must satisfy the wave
equation. (Note that although E and H obey the same law, E is
not equal to H.)

5.02 Uniform Flane Wave TFropagation. The wave equation
reduces to a very simple form in the special case where E and H
are considered to be independent of two dimensions, say ¥ and z.
Then

I’E
0 = 2
V2E ot
so that (14) becomes
J%E I’E
Fr AT (5-16)

Vector eq. (16) is equivalent to three scalar equations, one for
each of the scalar components of E. In general, for uniform plane
wave propagation in the z direction, E may have components E,
and E., but (as will be seen later) not E,. Without loss of generality
attention can be restricted to one of the components, say E,, know-
ing that results for E, will be similar to those obtained for E,.
Then the equation to be solved has the form

3°E, 3°E,

.——axz = ue ETE (5-163)

Equation (16a) is & second-order partial differential equation,
which occurs frequently in mechanics and engineering. For exam-
ple it is the differential equation for the displacement from equi-
librium along & uniform string. Electrical engineers will recognize
it as the differential equation for voltage or current along a lossless
transmission line. Its general solution is of the form

E = fl(:c - vot) + fz(x + vot) (5-17)
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where vy = 1/4/ue and f, and f; are any functions (not necessarily
the same) of (x — vot) and (z + vot) respectively. The expression
f(x — vit) means a function f of the variable (x — vt). Examples
are, A cos B(z — wvct), C €=, /x — vet, ete.  All of these expres-
sions represent wave motion.

A wave* may be defined in the following way: If a physical
phenomenon that occurs ot ore place ot a given time is reproduced
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Fia. 5-1. A wave traveling in the positive z direction.

at other places at later times, the time delay being proportional
to the space separation from the first location, then the group of
phenomena constitute a wave. Note that a wave is not necessarily
a repetitive phenomena in time. Those who survive a tidal wave
are thankful for this.

The functions fi(x — vet) and fa(x + vet) describe such a wave
mathematically, the variation of the wave being confined to one
dimension in space. This is shown by Fig. 5-1.

If a fixed time is taken, say ¢;, then the function fi(x — vety)
becomes a function of z since »ct; is a constant. Such a function
is represented by the first curve. If another time, say ¢,, is taken,

* The term wave also has an entirely different usage, vis.: a recurrent function

of time at a point, as in the expression sinusoidal voltage wave. Usually there
will be no doubt as to which kind of wave is meant.
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another function of z is obtained, exactly the same shape as the first
except that the second curve is displaced to the right by a distance
vo(ts — t1). This shows that the phenomenon has traveled in the |
positive z direction with a velocity vo.

On the other hand, the function f2(z - vot) corresponds to a wave
traveling in the negative z direction. Thus the general solution
of the wave equation in this case is seen to consist of two waves, one
traveling to the right (away from the source), and the other travel-
ing to the left (back toward the source). If there is no reflecting
surface present to reflect the wave back to the source, the second
term of (17) is zero and the solution is given by

E = fi(x — vot) (5-18)

Problem 1. Does the function ex==v" represent a wave if & is a real
number? Sketch it as a function of x for several instants of time.

5.03 Sinusoidal Time Variations. In solving a one-dimensional
wave equation, such as (16a), no restriction is put upon how E and H
might vary with time, and the functions f, and f2 of eq. (17) can be
any functions of (zx — vef). In practice most generators produce
voltages and currents, and hence electric and magnetic fields, which
vary sinusoidally with time (at least approximately). Even where
this is not the case any periodic variation can always be analysed
in terms of sinusoidal variations with fundamental and harmonic
frequencies, so it is customary in most problems to assume sinusoidal
time variations. This can be expressed by writing, for example,

E = E, cos wl (5-19a)
or E = E; sin wf (5-19b)

where f = w/2r is the frequency of the variation. In electrical
engineering it is more usual to express sinusoidal time variations
in the exponential form

E = E, et (5-20)

where E, ¢t = Ey(cos wt + j sin wt).

It is seen that the real part of (20) is equal to (19a), and the
imaginary part is equal to (19b).* In working a problem, the
exponential form (that is, both real and imaginary parts) is carried
through to the end, but only the real part or the imaginary part of
the final answer is used, the other part being discarded. Use of the

* This, of course, assumes that E, is real.
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real part corresponds to starting with E, cos wf, while use of the

imaginary part corresponds to starting with (19b). The use of

this exponential form will be treated more fully in the next chapter.*
It will be observed that if

E = Ey et
then E= %1? = jwE, efet
_ =JjuE (5-21)
and E = —uE (5-22)
Also Edt = Li (5-23)
Jw

Assuming that the variation with time of all fields and currents is
represented by e/, eqs. (4) and (5) can be written

curl H = jweE (6-24)
curl E = —jouH (5-25)

Differentiating (24) with respect to time and taking the curl of (25)
and combining gives
curl curl E = w?ueE
Making use of the identity (1-28) of chap. 1, and the fact that
div E = 0 for this case
VIE = —w?ueE (5-26)
For the case of no variation of E with respect to y or z this results
* The correctness of the results obtained in carrying both real and imaginary
parts through the problem, and using only the real (or the imaginary) part of
the final solution, depends on the linearity of the equations. In power calcu-

lations the relations are no longer linear, and caution must be observed if
correct results are to be obtained. For example, writing

V = Vo eiut I = I, eiet
it is not correct to say, where V, and I, are real,
W = Vo eiﬂtlo efut == VOIO ediwt
the real part of which would be
W = Re (Vol, e*ivt) = Vol cos 2wl

This equation indicates that the average power over a complete cycle would
be zero, an incorrect result. However, it can be shown (see chap. 6) that when
Vo and I, are expressed in the complex form the correct value for real power is
given by

W (real) = 3§ Re (Volo*)

where Io* is the complex conjugate of I,.
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in an equation corresponding to (16)

oL

) dx?

Again considering only the I, component, a solution may be written
in the form

= —ow?uell (5-27)

E, = [’ e~3Vue + "' etioV/ ez :
= [} ¢ifz 4 [ etife (5-28)
where B=wvV e
Showing the time variation explicitly by writing
I =.Ey e E" = Ey' et
eq. (28) becomes
E,, _ Eo' ei(u:—ﬁz) + Eo” ei(w:+ﬂz) (5_29)
This equation represents the sum of two waves traveling in opposite
directions. If only the real part of the expression is used, the solu-
tion has the form
E, = Ey cos (ot — pz) + Eo’ cos (ot + Bx) (5-30)
whereas, if only the imaginary part is used, there results
E, = Ey sin (ot — Bz) + B, sin (vt + Bz) (5-31)

Equation (30) or (31) is a special case of eq. (17), which is obtained
when a sinusoidal time variation is assumed. It is seen that in a
homogeneous lossless medium the assumption of sinusoidal time
variations results in space variations that are also sinusoidal.

The wave represented by the first term of eq. (30) is sketched in
Fig. 5-2 for successive instants of time.

wt=0
/(uf:% V=%
7 7 A
(l/f:/z
/

Fic. 5-2. A sinusoidal traveling wave.
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It progresses in the positive z direction with a velocity «/8. This
becomes apparent by noting that a wave crest or maximum value of
E, occurs when

wt — Bz = 0 (or any even multiple of ) (5-32)

In order to always remain with a crest, it is necessary to move in
the positive z direetion with a velocity

)
so that (32) is always satisfied. The wave, represented by the first
term of eq. (30) and sketched in Fig. 5-2, is called a traveling wave
(in this case it is an unattenuated traveling wave) to distinguish it
from a standing wave, which does not progress. :

The distance between adjacent crests or any two corresponding
points on adjacent waves is the wavelength A, and the frequency
with which the crests appear at a given point is the frequency f.
It is evident that the velocity with which the wave is propagating
in the z direction is also given by

v=N (5-34)
Combining (33) and (34) %’ =N
showing that B = _2;_:- (5-35)

B is the phase shift constant and is a measure of the phase shift
(in radians) per unit length. Ixpression (35) is a statement of the
fact that the phase shifts 2= radians, or one complete cycle, in a
distance of one wavelength.

5.04 Uniform Plane Waves. Equation (18) is a solution of the
wave equation for the particular case where the electric intensity
is independent of ¥ and z and is a function of z and ¢ only. Such a
wave is called a uniform plane wave. A plane wave is one for which
the phase is the same for all points on a plane surface. If the
amplitude is also constant over this plane surface, it i3 a uniform
plane wave. Although this i3 a special case of electromagnetic
wave propagation, it is a very important one practically and will be
considered further.

The plane-wave equation

?’E _ JE
T M
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may be written in terms of the components of E as

?E, ?E,
oz? = M€ a_tz (5-363)
2K 9k,
—gx—;‘l = M€ Tz” (5-36b)
9%k, 3k,
axz = pe at2 (5'360)

In a region in which there is no charge density
divE=divD =0

That is
dE, , OE, | O0E, _
o Ty Tz 0
For a uniform plane wave in which E is independent of y and z,
the last two terms of this relation are equal to zero so that it reduces
to
dE, _
%z = 0

Therefore there is no variation of E, in the z direction. From
eq. (36a) it is seen that the second derivative with respect to time
of E. must then be zero. This requires that E, be either zero,
constant in time, or increasing uniformly with time. A field satis-
fying either of the last two of these conditions would not be a part
of the wave motion, and so E, can be put equal to zero. Therefore
a uniform plane wave progressing in the z direction has no x com-
ponent of E. A similar analysis would show that there is no z
component of H. It follows, therefore, that uniform plane electro-
magnetic waves are transverse and have components of E and H
only in directions perpendicular to the direction of propagation.
Relation between E and H in a Uniform Plane Wave. For a
uniform plane wave traveling in the = direction E and H are both
independent of y and 2, and E and H have no £ component. In
this case

_ _9E.. , oK,
curl E = a—x]‘*‘ oz k
curl H = — 9Hs5 4 0Hyy

ox oz
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Then the first Maxwell Equation (I) can be written

~ Wy oy - ("—E”i+"—E-'k)

dax at at

and the second equation (II) becomes

121

(5-37a)
(5-37b)
(5-37¢)

(5-37d)

aE E, _ (oH,. , 8H,
PR (Tﬂ ta
Equating j terms and then the k terms yields the four relations
_OH, _ aE
ox at
0H,  9E,
oz ot
O, _ o,
az ¥
0B, _ _  oH.
3z Mo
Now if E, = fi(z — vt), where v, = 1/+/1z, then
aE afl 6(.1: - vot) — afl
9 T Az —vt) et o 3z — vot)
This is generally written as
aE
= fi'(x — vot) ‘vot) —vofy' (x — vot)
where fy/ (:c — vol) means
fi(x — wvot)
a(.‘l? - vot)
Substituting for —5— in (37a) above gives
oH, ,
oz = voefy' (x — vot)
Then
H, = \/E/fl’(x —wvt)dz + C
Now
ofi(x — vt p 3
D) i =) 290

ax
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H, = \/Ef———af‘(x — vf) dr + C
7 ox

= \/‘:j_ﬁ(x - vot) +C

= \EE +c (5-38)

The constant of integration C that appears indicates that a field
independent of = could be present. Inasmuch as this field would
not be a part of the wave motion, it will be neglected and the rela-
tion between H, and E, becomes

.

or 'g_y' = AJ‘——E (5'39)

Similarly it can be shown that

B, _ _ v N
H—u— \/: (5-40)

E=+VE’+E? ad H=+H?+H’

where E and H are the total electric and magnetic intensities, there

also results )
E_ \/E (5-41)
H €

Equation (41) states that in a traveling* plane electromagnetic
wave there is a definite ratio between the amplitudes of £ and H
and that this ratio is equal to the square root of the ratio of perme-
ability to the dielectric constant of the medium. Since the units
of E are volts per meter and the units of H are amperes per meter,

the ratio
E _ \/E
H \e

* The term traveling wave is used to indicate that the wave is progressing
in one direction and there is no standing wave (see section on reflection).
When there is a reflected wave resulting in a standing-wave distribution, the
ratio E/H can have any value between zero and infinity.

Hence

Since
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will have the dimensions of impedance or ohms. For this reason

it is customary to refer to the ratio \/% as the characteristic imped-

ance or inirinsic impedance of the (nonconducting) medium. For
free space

po= = 4r X 1077 henrys/m
1 }
~ 36r X 10° f/m

so that \/— \/I’ ~ 120r = 377 ohms

For any medium, whether conducting or not, the intrinsic impedance
is designated by the symbol . When the medium is free space or
a vacuum, the subscript v is used. That is, the intrinsic impedance

of free space is
= (P2 _ o
N = 4 ,— = 377 ohms
€y

Polarization. The plane wave just considered has no z compo-
nent of electric field (that is, no component of E in the direction of
propagation), but in general would have components E, and E..
If E. = 0 and only E, has value the wave is said to be polarized in
the y direction. If E, = 0but E, has value the wave would be polar-
ized in the z direction. If both E, and E. components are present
and are in time phase, the resultant electric field has a direction
dependent on the relative magaitude of E, and E. The angle
which this direction makes with the y axis is tan—! E,/E, and this
angle will be constant with time. In all of the above cases in which
the direction of the resultant vector is constant with time the wave
is said to be linearly polarized, and the direction of polarization is
just the direction of the electric vector.*

If the E, and E, components are not in time phase, that is, if at
a given point they reach their maximum values at different instants
of time, then the direction of the resultant electric vector will vary
with time. In this case the locus of the end point of the resultant E
will be an ellipse and the wave is said to be elliptically polarized.

*In optics the plane of polarization is taken as being that plane in the
direction of propagation that contains the magnetic vector H.
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(Q) LINEAR POLARIZATION

]

<

(b) ELLIPTICAL POLARIZATION

(C) CIRCULAR POLARIZATION
i !

t=o0 % | Y4 7 ¥

TIME —=

Fia. 5-3. Linear, elliptical, and circular polarization.

In the particular case where E, and E. have equal magnitudes and
a 90° time phase difference, the locus of the resultant E is a circle
and the wave is circularly polarized.

65.06 The Wave Equations for a Conducting Medium. In the
foregoing sections Maxwell’s equations were solved for the par-
ticular case of a perfect dielectric, such as free space, in which there
were neither charges nor conduction currents. For regions in
which the conductivity is not zero and conduction currents may
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exist, the more general solution must be obtained. It follows in a
manner similar to the simpler case already considered.
Recall Maxwell’s equations:
curl H = & + i I
curl E = —,H I1

If the medium has a conductivity ¢ (mhos/m), the conduction
current density will be given by Ohm’s law:*

i =0¢E (5-42)
so that eq. I becomes
curl H = ¢& + ¢E (5-43)

Again assuming that all fields and currents vary with time as
e so that, for example,
E = juE

eq. (43) becomes

curl H = (¢ + jwe)E (5-44)
Differentiating with respect to time gives

curl H = jw(e + jwe)E (5-45)
Take the curl of both sides of equation IT and then substitute into
it eq. (45)

curl curl E = —p curl H

= —jup(oc + jwe)E
Recall that

curl curl E = grad div E — V2E

Combining these last two equations, there results
ViR — jop(oc 4 jwe)E = grad div E (5-46)
Now for any homogeneous medium in which e is constant
divE = 1divD

But div D = p, and since there is no net charge within a conductor

* Equation (42) is the vector statement (applicable to an elemental volume)
of the more familiar relation I = V/R (see problem 7, chap. 3).
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(although there may be a charge on the surface), the charge density
p equals zero* and thercfore

divD =0
Equation (46) then becomes
VZE — jwu(c + jwe)E =0 (5-47)

This is the wave equation for E. The wave equation for H is
obtained in & similar manner.

, curl curl H = (¢ + jwe) curl E
curl E = —jwpH
grad div H — V?H = (—jwu)(c + jwe)H

But divH=‘l‘divB=0
Therefore VIH — (jou)(e + jodH = 0 (5-48)

This is the wave equation for H.

Equations (47) and (48) are the general wave equations for a
homogeneous conducting medium and sinusoidal time variations.

Wave Propagation in a Conducting Medium. The solutions of
general wave egs. (47) and (48) in a conducting medium will as
before yield expressions for a wave. In this case, however, on
acegunt of the finite conductivity, there will be loss in the medium
and the wave will be attenuated as it progresses. It is desirable
to know the value of the attenuation constant in terms of the
constants of the medium.

Equation (47) may be written in the form

VZE — 42E =0 (5-49)
where
v = (Jou)(o + jwe)

* The statement of no nel charge within a conductor is consistent with our
notion of current flow as a drift of free negative electrons through the positive
atomic lattice of the conductor. Within any macroscopic element of volume
the positive and negative charges are equal in number (on the average), and
the net charge is zero. It is easily shown for steady-state sinusoidal time
variations that divD = 0 (and therefore p = 0) in conductors is a direct
consequence of Maxwell’s equations and Ohm’s law (see problem 3). It can
also be shown that if a charge ever were placed within a conductor (in some
manner not explained) the “transient time’” or ‘“‘relaxation time” required for
this charge to appear on the surface would be exceedingly small for any materials
considered to be conductors (see problem 4).
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In general, the constant vy is complex and has real and imaginary
parts designated by « and g respectively. That is, vy = o + jB.

Again consider a uniform plane wave traveling in the z direction.
For this case, (49) becomes

d’E
2% = 7E (5-50)

A possible solution for (50) would be
E = E et

For reasons, which will become apparent, use the minus sign and
consider the solution

E=Ee¢r (5-51)
When E’ is expressed explicitly as a function of time as for example
E = Eo ei”‘
eq. (51) can be written
E = E0 eiwt g—7z
= E0 eiwt gz e—jﬂz
= Eo e—az pi(wt—pz) (5_52)

Equation (52) is the equation of a wave moving in the z direction
with a velocity w/8. The wave is attenuated by the factor e—e=,
o and 8 are the real and imaginary parts respectively of

v = V({Jur)o + jwe) ,

The constant v is known as the propagation constant for the
wave. As is seen from eq. (52), «, the real part of v, is a measure
of the rate at which the wave is attenuated as it progresses through
the medium. B, the imaginary part of v, is the phase shift per unit
length for the wave. Since the phase shifts through a complete
cycle, or 2x radians, for each wave length,

27
e

The velocity of propagation of the wave, or the phase velocity is
given by

v=XN=

wiE
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In terms of the “primary’ constants of the medium, that is o, K,
and ¢, the values of a and 8 are

a = real part of v/ (Juu)(o + jwe)
~
=w\/‘:§‘(\/1+w—"23—1) (5-53)
2
B=o %‘(\/1 +:Tez+1) (5-54)

Problem 2. From the expression v = A/jwu(o -+ jwe) derive expres-
sions (53) and (54). :

Problem 3. Using Maxwell’s equation I show that

div D = 0 in a conductor,
if Ohm'’s law and sinusoidal time variations (i.e., as e/*) are assumed.

_Problem 4. Using divD = p, Ohm's law, and the equation of con-
tinuity show that if at any instant a charge density p existed within a
conductor, it would decrease to 1/e times this value in a time ¢/o seconds.
Calculate this time for a copper conductor.

6.06 Conductors and Dielectrics. In electromagnetics, mate-
rials are divided roughly into two classes; conductors and dielectrics
orinsulators. The dividing line between the two classes is not sharp
and some media (for example the earth) are considered as conductors
in one part of the radio frequency range, but as dielectrics (with loss)
in another part of the range.

In Maxwell’s first equation:

Curl H = ¢E + jweE

the first term on the right is conduction current density and the
second term is displacement current density. The ratio o/we is
therefore just the ratio of conduction current density to displace-
ment current density in the medium. Hence, o/we =1 can be
considered to mark the dividing line between conductors and dielec-
trics. For good conductors such as metals o/we is very much greater
than unity over the entire radio frequency spectrum. For example
for copper, even at the relatively high frequency of 30,000 muc,
o/we is about 3 -5 X 108 For good dielectrics or insulators o/we
is very much less than unity in the radio frequency range. For
example, for mica at audio or radio frequencies ¢/we is of the order
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of 0.0002. For good conductors o and € are nearly independent of
frequency, but for most materials classed as dielectrics the “con-
stants” ¢ and e are functions of frequency. It has been found for
these materials that the ratio o/we is often relatively constant over
the frequency range of interest. For this and other reasons the
properties of dielectrics are usually given in terms of the dielectric
‘““constant” e and the ratio o/we. Under these circumstances the
ratio o/we is known as the dissipation factor D of the dielectric. For
reasonably good dielectrics, that is those having small values of D,
the dissipation factor is practically the same as the power factor
of the dielectric. Actually, power factor is given by

P.F. = sin ¢
where ¢ = tan—! D

Dissipation factor and power factor differ by less than 1 per cent
when their values are less than 0.15.

Most materials used in radio are required either to pass conduc-
tion currents readily or to prevent the flow of conduction current as
completely as possible. For this reason most materials met with
in practice will fall into either the good conductor or the good
insulator class. The important practical exception is the earth,
which occupies an in-between position throughout most of the radio
frequency spectrum. This case will be treated in detail in the
chapter on propagation. For both good conductors and good
dielectrics certain approximations are valid which simplify con-
siderably the expressions for « and 8.

Wave Propagation in Good Diclectrics. For this case g/we K 1
so that it is possible to write to a very good approximation

o a?
\/ 1+ o= (1 + ——zwzez>
where only the first two terms of the binomial expansion have been
used. Then expression (53) for « becomes

~ L [ N _ 1] [
a0 §[<1+2Tze2> 1] 2\/: (5-55)

This expression may be compared with the expression for the attenu-
ation factor of a low-loss transmission line having zero series
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resistance. In that case the expression for « i§

_G¢ L _G
*=gNC T~ 2

The expression for g reduces in a similar manner

3 1 2
BEw,/‘g[(l-}-i,z—eZ)%— 1]=w*\/p.—e<1+8%2? (5-56)

@ /e is the phase shift factor for a perfect dielectric. The effect
of a small amount of loss is to add the second term of (56) as a small
correction factor. The velocity of the wave in the dielectric is given
by

p=®o— L
B o?
\/FE<1+872€-,>
2
2 9 (1 = 5%6—) (5-57)

Where vo = 1/+/ue is the velocity of the wave in the dielectric
when the conductivity is zero. The effect of a small amount of
loss is to reduce slightly the velocity of propazation of the wave.
It will be shown later that the general expression for the intrinsic
or characteristic impedance of a medium which has a finite conduc-

tivity is -
_ \/ Jop
E o + jwe

Using the same approximations as above, this becomes for a good
dielectric

Since v/u/¢ is the intrinsic impedance of the dielectric when o = 0,
it is seen that the chief effect of a small amount of loss is to add a
small reactive component to the intrinsic impedance.
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Wave Propagation in a Good Conductor. For this case “% >1

so that the expression for ¥ may be written

Y= \/(jw;-'a) (1 +J'%€)

= jopo = \/wpo [45°

wuo

Therefore a=8= o)

The velocity of the wave in the conductor will be

p= @ o
8 Mo

and the intrinsic impedance of the conductor is

ﬂg\/]ﬁ‘ = /"’_” /45°
ag g

It is seen that in good conductors where o is very large, both & and
B are also large. This means that the wave is attenuated greatly
as it progresses through the conductor and the phase shift per unit
length is also great. The velocity of the wave, being inversely
proportional to 8, is very small in a good conductor, and is of the
same order of magnitude as that of a sound wave in air. The char-
acteristic impedance is also very small and has a reactive compo-
nent. The angle of this impedance is always 45 degrees for good
conductors.

Dcpth of Penetration. In a medium which has conductivity the
wave is attenuated as it progresses owing to the losses which oceur.
In a good conductor at radio frequencies the rate of attenuation is
very great and the wave may penetrate only a very short distance
before being reduced to a negligibly small percentage of its original
strength. A term that ha$ significance under such circumstances
is the depth of penetration. The depth of penetration, §, is defined
as that depth in which the wave has been attenuated to 1/e or
approximately 37 per cent of its orizinal value. Since the amplitude
decreases by the factor e—== it is apparent that at that distance z,
which makes ax = 1, the amplitude is only 1/¢ times its value at
z = 0. By definition this distance is equal to 8, the depth of pene-
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tration; so

ab =1 or 6=

RIlm=

The general expression for depth of penetration is
1

—_— = 1
o j 2
ne o
w\/; (\/1 + w?e? 1)

For a good conductor the depth of penetration is

6:

PREY-Y
o
As an example of the order of magnitude of & in metals, the depth
of penetration of a megacycle wave into copper which has a conduc-
tivity ¢ = 5.8 X 107 mhos per meter and a permeability approxi-
mately equal to that of free space is

2 X 107 _
b= \/21r % 10° X 47 X 5.8 X 107 0.0667 mm

At 100 me it is 0.00667 mm, whereas at 60 cps, it is 8.67 mm.

Problem 5. Earth is considered to be a good conductor when we/o << 1.
Determine the highest frequencies for which earth can be considered a
good conductor if <<1 means less than 0.1. Assume the following
constants:

o = 5 X 10~% mho/meter € = 10¢,

Problem 6. A copper wire carries a conduction current of 1 amp.
Determine the displacement current in the wire at 100 me. (Assume that
copper has about the same permittivity as free space, that is € = €,. For
copper ¢ = 5.8 X 107 mhos/m.)

PART 1l—REFLECTION AND REFRACTION
OF PLANE WAVES
6.07 Reflection by a Perfect Conductor—Normal Incidence.
When an electromagnetic wave traveling in one medium impinges
upon a second medium having a different dielectric constant, per-
meability, or conductivity, the wave in general will be partially
transmitted and partially reflected. In the case of a plane wave
in air incident normally upon the surface of a perfect conductor,
the wave is entirely reflected. For fields that vary with time
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neither E nor H can exist within a perfect conductor so that none
of the energy of the incident wave can be transmitted. Since there
can be no loss within a perfect conductor, none of the energy is
absorbed. As a result the amplitudes of E and H in the reflected
wave are the same as in the incident wave, and the only difference
is in the direction of power flow. If the expression for the electric
field of the tncident wave is

E‘. o (wt—Bz)

and the surface of the perfect conductor is taken to be the z = 0
plane, the expression for the reflected wave will be

Er ei (wt+pz)

where E, must be determined from the boundary conditions. Inas-
much as the tangential component of E must be continuous across
the boundary and E is zero within the conductor, the tangential
component of E just outside the conductor must also be zero. This
requires that the sum of the electric intensities in the initial and
reflected waves add to give zero resultant intensity in the plane
z = 0. Therefore
E, = —E;

The amplitude of the reflected electric intensity is equal to that
of the initial electric intensity, but its phase has been reversed on
reflection.

The resultant electric field at any point a distance —z from the
z = 0 plane will be the sum of the intensities of the incident and
reflected waves at that point and will be given by

ET = Ei ei(ﬂl—ﬁz) + Er ei(wH—ﬁz)
= Ei[el'(ﬂf—ﬁz) _ ei(wH'ﬁI)]

== Ei ei‘“(e—iﬁz — e+fﬁz)
= — 2jE; sin Bz et (5-58)

Equation (58) shows that the incident and reflected waves com-
bine to produce a standing wave, which does not progress. The
magnitude of the electric field varies sinusoidally with distance
from the reflecting plane. It is zero at the surface and at multiples
of half wavelength from the surface. It has a maximum value of
twice the electric intensity of the incident wave at distances from
the surface that are odd multiples of a quarter wavelength.
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Inasmuch as the boundary conditions require that the electric
intensity be reversed in phase on reflection in order to produce
zero resultant field at the surface, it follows that the magnetic
intensity must be reflected without reversal of phase. If both
magnetic and electric intensities were reversed, there would be no
reversal of direction of energy propagation, which is required in
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T1o. 5-4. Standing waves ¢f I and II.

this case. Therefore, the phase of the reflected magnetic intensity
H, is the same* as that of the incident magnetic intensity II; at the
surface of reflection z = 0. The expression for the resultant mag-

* An alternative way of arriving at this same result is from a consideration
of current flow in the conductor. 1If it is assumed for the incident wave, which
is traveling to the right in the positive z direction, that E; is in the positive y
direction and H; is in the positive z direction (it will be seen later that the
direction of energy propagation is always the direction of the vector E X H),
the current flow in the conductor will be in the same direction as the incident
clectric field, that is, in the positive y direction. This current flow produces
an electric field —E, to oppose the incident field (Lenz’s law) and produces a
magnetic field, which is shown by application of the right hand rule to be in
the positive z direction. Therefore the magnctic field of the reflected wave
has the same direction as in the incident wave.
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netic field will be
IIT = II' ef(“"‘ﬂ’) + II’_ cf(wl+ﬂ-!)
IIi[C;'(ut-—Bz) + Ci(wt+ﬂz)]
= 2II; cos Lz ¢ (5-59)

The resultant magnetic intensity II also has a standing wave dis-
tribution. In this case, however, it has maximum value at the
surface of the conductor and at multiples of a half wavelength from
the surface, whereas the zero points occur at odd multiples of a
quarter wavelength from the surface. From the boundary con-
ditions for H it follows that there must be a surface current of
J amperes per meter, such that J = Hr (at z = 0).

Since E; and II; were in time phase in the incident plane wave,
a comparison of (58) and (59) shows that Er and Hr are 90 degrees
out of time phase because of the factor j in (58). This is as it
should be, for it indicates no average flow of power. This is the
case when the energy transmitted in the forward dlrectlon is
equalled by that reflected back.

That Er and Hr are 90 degrees apart in time phase can be seen
more clearly by rewriting (58) and (59). Replacing —j by its
equivalent ¢7*/2 and combining this with the ¢t term to give
glt—/2) oq, (58) becomes

Er = 2E; sin Bz clet=tx/2] (5-58a)

Recalling that only the real (or only the imaginary) part of the
eflot—(x/2] term is to be used finally, (58a) means

Er = 2E; sin Bz cos (wt = ’-2') (5-58b)

Likewise rewritinz (59),
IIr = 2II; cos Px cos (wt) (5-59a)

Comparison of (58b) and (59a) shows that Er and IIr differ in time
phase by x/2 radians or 90 degrees.

5.08 Reflection Ly a Perfect Dielectric—Normal Incidence.
When a plane electromagnetic wave is incident normally on the
surface of a perfect dielectric, part of the energy is transmitted
and part of it is reflected. A perfect dielectric is one with zero
conductivity, so that there is no loss or absorption of power in
propagation through the dielectric.
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As before, consider the case of a plane wave traveling in the
z direction incident on a boundary that is parallel to the z =0
plane. Let E; be the electric intensity of the incident wave striking
the boundary, E, be the electric intensity of the reflected wave
leaving the boundary in the first medium, and E, be the electric
intensity of the transmitted wave propagated into the second
medium. Similar subsecripts will be applied to the magnetic inten-
sity H. Let e and p; be the constants of the first medium and
ez and ps be the constants of the second medium. Designating by

1 and n,, the ratios v/u1/e; and \/u2/e; the following relations will
hold

E; = 171H.'
E, = _171Hr
El = 172H ¢
The continuity of the tangential components of E and H require that
H;+ H, = H,
E;:+ E, = E,
Combining these

Hi+H =& -E)=H-L@&+5E)
m n2

n(E: — E,) = nmi(E: + E,)
Ein2 — m) = E.(n2 + m)

E. " m+m (5-60)

Also %.: = F'_I';E_f =14 %:
- % (5-61)
Furthermore gf = - g—: = Z:—;%: (5-62)
LRy S (5-63)

The permeabilities of all known insulators do not differ appreciably
from that of free space, so that p; = p2 = p,. Inserting this rela-
tion the above expressions can be written in terms of the dielectrie
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constants as follows:

B, _ Ve = Vi/a

E; vV #v/ez + \/#a/ex

Er \/e—l - V;

E S VAC S 2, 5-64)

E; Vea+ Ve (
Similarly % = \/ezf\/i/e_z (5-65)

i 1

H Ve — Ve

Ve Vea 5-66

H /e + Ve ( )

H, 2 \/e—; -

o 5-6

H ™ Vea+va s

5.09 Reflection by a Perfect Insulator—Oblique Incidence. If
a plane wave is incident upon a boundary surface that is not parallel

g

—
INCIDENT RAY ~] 4
REFLECTED RAY
£
BOUNDARY
SURFACE. /' / / / 4 A Ve
D
)

TRANSMITTED RAY
%

Fic. 5-5. Reflection and refraction.

to the plane containing E and H, the boundary conditions are more
complex. Again part of the wave will be transmitted and part of
it reflected, but in this case the transmitted wave will be refracted;
that is the direction of propagation will be altered. Consider
Fig. 5-5, which shows a ray of the wave. (A ray is a line drawr

normal to the equiphase surfaces.)
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In the diagram the one side of the incident ray travels the dis-
tance CB, whereas the other side of the transmitted ray travels
the distance A D and the left side of the reflected ray travels from
A to E. If v is the velocity of the wave in medium (1) and . is
the velocity in medium (2), then

CB V1

XE = Vo
Now CB = AB sin 6, and AD = AB sin 8, 5o that

sin 61 _ %
sin 0, v

In terms of the constants of the media, v; and v, are given by

o L1
L= ———= =
Vme Ve
1 1
Vo = _— =
ez Viver
Therefore
sin 61 _ e
snb; Ve (5-68)
Furthermore
AE =CB
and as a resu’t, sin 6, = sin 03, or
6, = 03 (5-69)

The angle of incidence is equal to the angle of reflection; the angle
of incidence is related to the angle of refraction by eq. (68), which
in optics is known as the law of sines, or Snell’s law.

In a later section it will be shown that the power transmitted
per square meter in a wave is the vector product of E and H.
Since E and II are at right anzles to each other, in this case the
power transmitted per square meter is equal to E%/n. The power
in the incident wave striking AB will be proportional to
(1/m)E cos 6,, that reflected will be (1/m)E.? cos 6, and that
transmitted through the boundary will be (1/9:)E? cos 6;. By the
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conservation of energy

o E2cos 6, = i E.2 cos 0, + i E\.? cos 8,
71 71 72

f:'_f S L2 cos 62
E,'2 ﬂzE.’z cos 01
2 2
E% -1 - Ve B2 cos 0, (5-70)
E; Ve E2 cos 6,

It is necessary to consider separately two cases. The first of
these is the case in which the electric vector is parallel to the

z z
MEDIUM |
& & & &
/
! # H
Hi Hy
77 7. Y
MEDIUM 2
0 T t-f % Ef
H,
H /

(a) {b)

Fig. 5-6. Reflection and refraction waves that have (a) per-
pendicular (horizontal) polarization, and (b) parallzl (vertical)
polarization.

boundary surface or perpendicular to the plane of incidence. (The
plane of incidence is the plane containing the incident ray and
the normal to the surface.) This case is often termed horizontal
polarization. In the second case the magnetic vector is parallel to
the boundary surface, and the electric vector is parallel to the plane
of incidence. This case is often termed vertical polarization. The
two cases are shown in Fig. 5-6. The terms ‘horizontally and
vertically polarized waves’’ refer to the fact that waves from hori-
zontal and vertical antennas, respectively, would produce these
particular orientations of electric and magnetic vectors in waves
striking the surface of the earth. However, it is seen that, whereas
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the electric vector of a ‘‘horizontally’’ polarized wave is horizontal,
the electric vector of a “vertically” polarized wave is not wholly
vertical but has some horizontal component. More significant
designations are the terms *‘perpendicular’ and ‘“parallel’’ polariza-
tion to indicate that the electric vector is perpendicular or parallel
to the plane of incidence. In wave guide work the terms transverse
electric (TE) and transverse magnetic (TM) are used to indicate
that the electric or magnetic vector respectively is parallel to the
boundary plane. The reason for this will be discussed later.

Case 1: Perpendicular (Horizontal) Polarization. In this case the
electric vector E is perpendicular to the plane of incidence and parallel
to the reflecting surface. Let the electric intensity E; of the incident wave
be in the positive x direction (outward in Fig. 5-6a), and let the assumed
positive directions for E, and E. in the reflected and transmitted waves
also be in the positive z direction. Then, applying the boundary condition
that the tangential component of E is continuous across the boundary,

Et‘ + Er L t
E, E,
- 1+ E. (5-71)
Insert this in eq. (70)
E;z2 €2 E.\? cos 6,
E;z— ! _&(1-‘-5.) cos 6,
| — & 2_\/5:2 1 ﬂ. % cos 6,
E; €1 E:J cos 8,
Eg €1 E; CcOos 01
E, _ Ve cos b1~ \Vex cos 0
E; \/5—1 cos 61 + \/e_o cos 8,

Now from eq. (68)

\/é—; cos f; = \/62(1 — sin? f2) = \/ez — €1 8in2 6,
therefore

E, _ V/e1008 61 = Vs — e sin’ by (5-72)
E; \/e—l cos Oy + \/e?—Tlsin-?;;

_cos 6; — v/ (es/er) — sin? 6,
cos 8, + \/(es/e1) — sin 6,

(5-72a)
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Equation (72) gives the ratio of reflected to incident electric intensity for
the case of a perpendicularly polarized wave.

Case I1: Parallel (Vertical) Polarization. In this case E is parallel to
the plane of incidence and H is parallel to the reflecting surface. Again

applying the boundary condition that the tangential component of E is
continuous across the boundary in this case gives (Fig. 5-6b),

(E; — E,) cos 0, = Ecos 0,

E _(,_ E.\ cos 6,
E. E;/) cos 6,
Insert this in eq. (70)

E, ’_1_\/,{, 1 — B cos 6,
E;‘ - € E;’ cos 02
1— E,- 62 1 — E’,' 2 coSs 01
E € co8 02

E 2 E CcoS8 01

1+ E:. ~ '\/7, ( E) cos 03
E \/720050 \/:gcos()l_l
E; €, cos 8 €, cos 0,

‘\/6_2008 0, — \/e—lcos 0.
\/6_200891+\/€—100802

'\/6_2 cos 8, — Vel — sin? §5)
Vez cos 8; + Vey(1 — sin? 87)

b'[l!:l

Recall that sin? §; = Z—l sin? 6,
2

E, (62/61) cos 6, — \/(eg/el) — g8in? 6,

Ei  (eofer) cos 0, + \/(es/er) — sin? 6,

Equation (73) gives the reflection coefficient for parallel or vertical polari
zation, that is, the ratio of reflected to incident electric intensity when E is
parallel to the plane of incidence.

(5-73)

Brewster Angle. Of particular interest is the possibility in
eq. (73) of obtaining no reflection at a particular angle. This
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occurs when the numerator is zero. For this case

€ o €2
\/—2 — sin% 8, = = cos 0,

€1 €
2 2
€2 . €2 €2 .
= — sin? 01 =-—" sin? 01
€)1 €)1 €

(e12 — €2?) sin? 6, = e2(e) — €2)

€2

sin? 6, =

at e
2 — _ &
cos? 8, aF o
tan 0, = \/é (5-74)
a

At this angle, which is called the Crewster angle, there is no
reflected wave when the incident wave is parallel (or vertically)
polarized. If the incident wave is not entirely parallel polarized,
there will be some reflection, but the reflected wave will be entirely
of perpendicular (or horizontal) polarization.

Examination of eq. (72), which is for perpendicular polarization,
shows that there is no corresponding Brewster angle for this
polarization.

5.10 Direction Cosines. Sometimes it is necessary to write the
expression for a plane wave that is traveling in some arbitrary
direction with respect to a fixed set of axes. This is most con-
veniently done in terms of the direction cosines of the normal to
the plane of the wave. By definition of a uniform plane wave the
equiphase surfaces are planes. Thus in the expression

E = El ejw[t—(zlv)]
for a wave traveling in the z direction, the planes of constant phase
are given by the equation

z = a constant
For a plane wave traveling in some arbitrary direction, say the s
direction, it is necessary to replace x with an expression that, when

put equal to a constant, gives the equiphase surfaces.
The equation of a plane is given by

N .r = a constant
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where r is the radius vector from the origin to any point P on the
plane and N is the unit vector normal to the plane.* That this is
so can be seen from Fig. 5-7, in which a plane perpendicular to the
unit vector N intersects the y-z plane along the line A-A. The dot
product N . r is the projection of the radius vector r along the
normal to the plane, and it is apparent that this will have the
constant value OM for all points on the plane. Now the dot
product of two vectors is a scalar equal to the sum of the products
of the components of the vec-
tors along the axes of the co- AN
ordinate system. Therefore \

Ner=lz+my+nz (575)

where z, y, z are the compo-
nents of the vector r and I, m,
n are the components of the P
unit vector N along the z, y, Ve e
and z axes. The components
I, m, and n are the cosines of
the angles that the unit vector
N makes with the positive z, y, 4
and z axes, respectively, and
are termed the direction cosines ¥
or direction components of the Fic. 57
vector.

The equation of a plane wave traveling in the direction N,
normal to the planes of constant phase, can now be written as

E = E, (%)

_ p, o)

~x

(5-76)
As an example of the use of such expressions for plane wave propa-
gation, the reflection of a plane wave obliquely incident upon a

« perfect conductor will be considered.

\r}v“’ 6.11 Reflection by a Perfect Conductor—Oblique Incidence.

" When a plane wave is ‘incident upon a perfect conductor at an
oblique angle, the wave is totally reflected with the angle of inci-

*In this section capital N rather than lower case n is used for the unit

normal in order to avoid possible confusion with the direction cosine n, defined
later. g
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dence equal to the angle of reflection. As in the case of reflection
irom a dielectric, there will be two cases to consider, viz., E perpen-
dicular to the plane of incidence and E parallel to the plane of
incidence.

Case 1: E Perpendicular to the Plane of Incidence. Let the incident
and reflected waves make angles §; = 6. = 6 with the z axes as in Fig. 5-8.
Because the directions of these two waves have oppositely directed com-
ponents along the z axis, there must be a standing wave distribution along
this axis. In the y direction the incident and reflected waves both progress

z
i INCIDENT WAVE REFLECTED WAVE
H
"
£ £
N—N)/—N' 5
TT7 777 7 vl

Fic. 5-8. Field pattern above a reflecting plane when the
wave is incident at an oblique angle. (Perpendicular or horizontal
polarization.)

to the right with the same velocity so there will be a traveling wave in
the positive y direction. That these conclusions are correct can be seen
by adding the expressions representing the two waves.

With the co-ordinate system chosen as shown in Fig. 5-8, the expression
for the reflected wave is

il =T
E (reflected) = E. #(=5)

. ll + ?, + 0

_ g, o) (5-77)
where E, is the amplitude of the electric intensity of the reflected wave at
the plane of reflection and I’, m’, n’ are the direction cosines of the normal
(N) to the wave front of the reflected wave. For the wave normal of the
reflected wave
I'=0, m’=cos(g—0) = gin 6, n' = gos 6

so that (77) becomes

ju(t—” sin 0-:-: co8 0)

E=E-¢ (5-78)
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For the incident wave

l=0, m=cos(7§r—0)=sin0, n=cos(mwr—0) = —cosb

and

5 8in § -z cos §
Eincident = E ejw(t_” v ) (5-79)

From the boundary conditions
E. = —E;

Therefore the total electric intensity (sum of incident and reflected intensi-
ties) will be

B = g (1) _ () |

.wz cos @ 1wz cos § . y 8in @
= E.-(-e] v e ® ) e]”(t_ v )
= 2jE; sin (Bz cos 0) el -Fysm ®
= 2jE; sin B.z e “t—fy0) (5-80)

where B = w/v = 2+/\ is the phase shift constant of the incident wave,
B. = B cos 0 is the phase shift constant in the z direction, and 8, = 8 sin 6
is the phase shift constant in the y direction. Equation (80) shows a
standing-wave distribution of electric intensity along the z axis. The
wavelength \, (twice the distance between nodal points), measured along
this axis, is greater than the wavelength A of the incident wave. The
relation between the wavelengths is

L . S L
*T B, Bcosl cos@

The planes of zero electric intensity occur at multiples of \,/2 from the
reflecting surface. The planes of maximum electric intensity occur at odd
multiples of \./4 from the surface.

The whole standing wave distribution of electric intensity is seen from
eq. (80) to be traveling in the y direction with a velocity

This is the velocity with which a crest of the incident wave moves along
the y axis. The wavelength in this direction is

A

Ny = o
Y &in @
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These relations between the velocities and wavelengths in the various
directions are shown more clearly in Fig. 5-9, which shows successive
crests of an incident wave intersecting with the y and z axes. For small

‘P

£
¢ |
Ry
//
7~

e

%, -
'l"— ‘y—/‘l

Fia. 5-9. Relations between wavelengths and velocities in differ-
ent directions.

angles of 0 it is seen that the velocity v,, with which a crest moves along
the y axis, becomes very great, approaching infinity as @ approaches zero.

Case I1: E Parallel to the Plane of Incidence. In this case E: and E, will
have the instantaneous directions
shown because the components
parallel to the perfectly conduct-

‘7

& £ ing boundary must be equal and
& r B Ak .
i opposite. The magnetic intensity
& vector H will be reflected without
H " phase reversal as an examination

of the direction of current flow will
show. The magnitudes of E and
y H will be related by
Ef _|E|_
="

For the incident wave the expression for magnetic intensity would be

/' //" PERFECT CONDUCTOR ///7

F1a. 5-10. Reflection of a parallel—or
vertically—polarized wave.

5 (l—” 8in 8-z cos &
H = II. e’“ v
and for the reflected wave
v 8in 842 cos @

H=H, (- v
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and, since H; = H,, the total magnetic intensity is

H = 2H; cos B,z efw:—bw) (5-81)
where, as before B: = %’ cos @
w
B, = 5 sin 6

The magnetic intensity has a standing-wave distribution in the z direction
with the planes of maximum H located at the conducting surface and at
multiples of one-half \, from the surface. The planes of zero magnetic
intensity occur at odd multiples of N\./4 from the surface.

In adding together the electric intensities of the incident and reflected
waves it is necessary to consider separately the components in the y and
z directions. For the initial wave .

E; = qH:, E,=nsin6ll; E, =y cos0H;
For the reflected wave
H, = H;, E, = qsin 0H,, E, = —n cos 6H,
The total z component of electric intensity is
E, = 2y sin 0H; cos Bz ef—Fw (5-82)
The total ¥ component of electric intensity is
E, = 2jn cos 0H; sin B,z eit=—Fw (5-83)
where B: = % cos @ and By = %sin 6
Both components of the electric intensity have a standing-wave distribu-
tion above the reflecting plane. However, for the normal or z component
of E the maxima occur at the plane and multiples of N\,/2 from the plane,

whereas for the component of E parallel to the reflecting plane the minima
occur at the plane and at multiples of A\./2 from the plane.

Problem 7. Sketeh the planes of zero magnetic intensity, zero E., and
zero E, for the case of oblique reflection with E parallel to plane of inci-
( dence (Fig. 5-1C).

5.12 The Transmission Line Analogy. The student familiar
with ordinary transmission line theory cannot have failed to notice
the similarity between the equations of wave propagation developed
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in this chapter and those giving voltage and current distributions
along uniform transmission lines. The similarity is especially
marked in the expressions for the reflection coefficients in the two
cases. This similarity is more than a coincidence. There exists a
close analogy between the propagation of plane waves in a homo-
geneous medium and the propagation of voltage and current along
a uniform transmission line. This analogy is so close that it can be
used not only as an aid in obtaining an understanding of a new sub-
ject, but also to obtain the solutions to actual problems. Because
of his background in transmission-line theory the engineer often
finds himself able to write directly the solutions to electromagnetic
wave problems, or at any rate to set them up in terms of familiar
circuit concepts. For these reasons the analogy will be considered
step-by-step in some detail in order that the similarities, and the
differences, may be fully understood.

For a uniform transmission line | For a homogeneous medium Max-
having the constants R, L, C and | well’s equations are

@ per unit length, the voltage and
current equations may be written
in the differential form as

g
at

curl H =e%+o’E

curl E =

Tor a uniform plane wave propa-
gating in the z direction and
having only components E, and
H, these become

de i T | oE, all, _

s Tl tR=0 5 Tra =0

EN de 3 oH, . OE, B

‘55+CE+G€—-0 ax+€7t‘+0'Ey—-0
(5-84a) (5-84b)

Inspection of these equations shows that the following quantitizs
are analogous:

e(volt).............. E (volt/m)

t(amp).....cooouuen.. H (amp/m)
C@H/m)............. e (f/m)

L (henry/m)......... p (henry/m)
¢ (mho/m).......... o (mho/m)
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In this analogy there appears to be nothing corresponding to E.
The reason for this will be seen later. If the voltages and currents,
and electric and magnetic intensities are assumed to vary sinus-
oidally with time, so that

e =V et i=1Ie*, E, =FEew H, =H e
eqs. (84) become*

W R+ jol)I =0 OB 1 0+ juw)H =0
(;”I (5-858) | , 7 (5-85b)
5;+(G+ij)V=0 E+(o’+jwe)E=0

Differentiating with respect to z, these equations combine to give
the following second-order differential equations:

. . . 2R . .
Y (R+4oL)(@ + 000 =0 )| 2F — oo + judB = 0
. . . aH . .
Pl R+ D)@ + o0 =0 )| TH — Gono + jodH =0
(5-86a) (5-86b)

A possible solution for any of these equations would be of the form
V,I,E,or H= Ae* + Berr (5-87)
where ¥?* = (R + jowL)(G + jwC)

* In writing eqs. (85) each term really should be multiplied by the factor
eiwt to express the variation with time. Iowever, it is customary—and quite
correct—to cancel out or divide through by the common time factor (ef«t),
leaving an equation expressing relations between amplitudes. Thus in egs. (85),
V, I, E, and II, as written, are functions of z but not of time. In order to
differentiate with respect to time it is first necessary to reinsert the time varia-
tion by multiplying through the eit. After differentiating, the common time
factor can again be dropped.

Because the symbols V, I, E and II in this case are not functions of time,
it would be correct to use total derivatives with respect to z instead of partial
derivatives. IIowever eqs. (85) are still true when the symbols V, I, E, and H
(without subscripts) represent functions of time, as for example V = V, ei«t.
In this latter case partial derivatives would be rcquired. Since the symbols
without subscripts are used interchangeably to represent both instantaneous
values and amplitudes of the quantities (for reasons discussed in chap. 6),
the partial derivative signs will be used throughout. .
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y? = (jop)(o + joe)

for the egs. (86b). When the variation with time is expressed by
reinserting the factor e, the first term of expression (87) represents

a wave traveling to the right and
wave traveling to the left.

the second expression represents a

An alternative solution to eqs. (86) is often used in transmission
line theory. In this solution the exponentials are combincd differ-

ently and the solution appears
and can be written

V = A, cosh yz + Bisinh vz
I = A, cosh yx + Basinh vz

(5-882)

Let V=V I=1Iz at z=0
and V=Vs I=Isatz=m

Substitute these in (88a) and find
for the coefficients the values

Ay = Vi, Bi= —,/g—i%rx
A2=IR,BZ= —1’%%'[’3

in terms of hyperbolic functions,
E = A, cosh yz + By sinh vz
H = A,cosh yz 4+ Basinh vz
(5-88b)

LetE=Ex,H=Hgatx=0
andE=Es,H=Hsat:c=:c1

Substitute these in (88b) and
evaluate the coefficients.

_ /_1&
a'-i-jweH"z

_ a'+jweER
"

A4, = Ea, B, =

Ay = Hg, B,

In transmission line theory it is customary to write

Z =R+ joL

Z
Z0=J:-Y=

Y =G+ juC

B oL
G + juC

where Z, is called the characteristic impedance of the transmission

line.
Similarly in wave theory it i3

customary to write

Jop

n=\/¢+jwe

where 7 is called the characteristic

of the medium.
In terms of these quantities

impedance or intrinsic impedance

, and writing L = —z1 egs. (88)
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become*
Vs = Vg cosh yL Es = Eg cosh yL
+ ZoI g sinh yvL + 9H g sinh 4L
Is = I cosh vL (5-89a) | Hs = Hpz cosh vL (5-89b)
+ V2 ginh 4L + Z2ginh 4L
Zy L]

When the line is very long (or the homogeneous medium very thick)
so that vl is a large quantity,
1
cosh yl ~ & = sinh 71

and the ratios of voltage to current and E to H are seen from egs. (89)

to be
Vs Es

—=Z0 —_— =

3 H.S

The characteristic impedance Zo, and intrinsic impedance 7 are,
respectively, the ratios of V to I on a transmission line and E to H
in a uniform plane wave under conditions where there is no reflected
wave from the termination, or, in other words, when the wave
along the line or in the medium is a traveling wave. Equations (89)
are the general equations for the propagation of waves along uni-
form transmission lines or plane waves in homogeneous media.
For the special cases of a ‘‘lossless’ line or a “‘lossless’’ (nonconduct-
ing) medium the following simplifications occur

R =G =0 sothat =0 so that
Zy=+L/C n= \/#—/6
v = V/(GwL)(§uC) v = vV Gor)Gwe)
. =iVIC - jo Ve
but y=a+j8 but ¥y =a+j8
Therefore « == 0 Therefore « = 0
B =wANILC B=uw \/E

Under these circumstances, since cosh j8 = cos 8, and sinh j8
= j sin B, the general eqs. (89) rcduce to

Vs = VecosBL + jZolrsinBL | | Es = Er cos L 4 jnHp sin SL
Is =1, cosBL-}—j-gfsin BL Hs = Hg cos BL-}—j%sin BSL
0

(5-90a) (5-90b)
* The details are given in section 8.08.
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The quantities 1/ v LC and 1 / /e have the dimensions of velocity
and are in fact the velocities of wave propagation along the lossless
line and in the lossless medium respectively. In either case, when
the dielectric is air, so that p = p, and € = ¢,

1
—— =c =3 X 10® meter/sec
V'L /
1

V Wv€o

It has been seen that propagation of a uniform plane wave in a
homogeneous medium is analogous to propagation along a uniform

MEDIUM 1 / MEDIUM 2

H

€,

7

o b fsz/
W

% /;’

SURFACE OF
DISCONTINUITY

(@)

L
%, A = 20,

Q

=c¢=~3 X 10® meter/sec

€2
Te

i
N

%%
\JUNCTION

(b)

F1c. 5-11. Reflection and transmission (a) at a boundary
surface between two media and (b) at a junction between two trans-
mission lines.

transmission line. If the uniform plane wave passes abruptly from
-one medium to another, the surface of discontinuity being a plane
perpendicular to the direction of propagation, the analogy will
.continue to hold. This is so because the boundary conditions at
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the surface of discontinuity are the same as those existing at the
junction between two transmission lines having different constants.
For the latter the continuity requirements are that (1) the voltage
be continuous across the junction and (2) the current be continuous
across the junction. These are the same requirements that hold
for the analogous quantities E and H across a boundary surface.
The usefulness of the above analogy may be shown best by means
of examples.

ExampLE 1: Reflection at the Surface of a Medium Having Arbitrary
Constants. A uniform plane electromagnetic wave, propagating in a
medium which has constants u, ¢, and ¢, impinges normally upon a second
medium of infinite depth having the constants u,, €2, and o2 (Fig. 5-11a).
Determine

(2) The amplitudes and phases of the reflected electric and magnetic
intensities relative to the intensities of the incident wave.

(b) The amplitudes of the electric and magnetic intensities transmitted
into the second medium.

Tor the transmission lines of Fig. 5-11h let V'g,, Vg, be the initial
and reflected voltages on line (1) at the junction, and let I’g,, I"'g, be the
initial and reflected currents. It will be recalled that these voltages and
currents are related by V'e/I'r, = Zo, V'r,/I''r, = —Zo. Then, as in
egs. (60) and (62),

V' Zr— 2o _ Zo — Zn
Vo~ Ze + 2o, Zo + Zo, (5-91)
I"Rl Zot —Zr Zn, - Zo,

Ta ~ Zo % Zr  Zo ¥ Zo, (5-92)

In the above equations Zp is the terminating impedance for line (1). In
this case line (1) is terminated by the input impedance to line (2), which
is just the characteristic impedance Zy, of line (2) since it has been assumed
that this second line is infinitely long. By analogy for Fig. 5-11a

E' _n2—m

E'B. n2+m (5-60)
H''p, M — N
H'Rx h 7+ 7 (5-62)

where N = 4 f&
o1 + jwer

Ne = \/—_jw#z
g2 + jwéz
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and where, as in the transmission line case,

EIR E”R‘ n
_— = = =M
H’R‘ H”R‘

Equations (60) and (62) give the reflected electric and magnetic field
intensities in terms of the field intensities of the incident wave.
In Fig. 5-11b the voltage and current entering line (2) (the transmitted
waves) are given by
Ve =Va=Vr+V's
IS. == IRx = I'Rx + I”Rx

In terms of the voltage and current of the initial or incident wave,

Vs, l 2Z01
— =1 —_— 5-93
V', + Ve Zo + Zo, (5-93)
Is’ I”Rx 2Z°l
Tr =14+5— T'm ~ Zo + Zo, (5-94)

Similarly in Fig. 5-11a, the electric and magnetic intensities transmitted
into the second medium are related to the E and H of the incident wave, by

Es, 2172
=L -61
E'r m4+m Gy
Hs, 2171
—_ = — 5-63
Hg  n24m (5-63)

It is interesting to evaluate expressions (60), (62), (61), and (63) for the
case of an electromagnetic wave in air incident normally upon a copper
sheet. A frequency of 1 me will be assumed. For this example

By = e B2 = fe
€1 = € €3 = €y
gy = 0 03 = 5.8 X 107 mhos/m

so that
"= \/;;—' = 377 ohms

_ 727 X 108 X 4r X 1077 R
= \/ 5.8 X 107 j2r X 108 X 8.854 X 10-1 — 0000369 /45” ohms

Then the ratio of reflected to incident electric intensities, as given by
eq. (60), is
E"p  3.69 X 10~ /45° — 377

E's,  3.69 X 10~ /45° + 377

= —0.9999986 / —0.000079°
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Similarly 1;11 = = +0.9999986 /—0.000079°
Ry

It is seen that differences between these reflection coefficients for copper
and the coefficients of minus and plus unity, which would be obtained
for a perfect reflector, are indeed negligible. For most practical purposes,
copper can be considered a perfect reflector of radio waves.

The-relative strengths of the transmitted intensities for this case are

Es, 7.38 X 104 /45° 0.00000196 /45°
E'n 369 X 10~4/45° + 377 ~ L
Hs, 2 X 377

Tn, = 377 1 3.60 X 10_]&50 = 1.9999986 /—0.00004

The electric intensity just inside the metal is approximately 2 X 10-¢ times
that of the initial wave; the magnetic intensity just inside the metal is
approximately twice the magnetic intensity of the initial wave. This
last result could be inferred from the fact that, since the magnetic intensity
is reflected without phase reversal, the total magnetic intensity just outside
the surface of the copper is approximately double that of the initial wave
and therefore, because of continuity requirements, i just inside the copper
is also approximately twice the magnetic intensity of the incident wave.
The ratio of E to H just inside the metal is equal to 72, the characteristic
impedance of the copper. That is

g& = 712 = 0.000369 /45° ohms
Sy

For many practical purposes this is sufficiently close to zero to consider
the copper sheet to be a zero-impedance surface.

5.13 Surface Impedance. It has been seen that at high fre-
quencies the current is confined almost entirely to a very thin sheet
at the surface of the conductor. In many applications it is con-
venient to make use of a surface impedance defined by

_ Eu,

Zs %

(5-95)

where E.. is the electric intensity parallel to, and at the surface
of, the conductor and J is the linear current density that flows
as a result of this Eu.. The linear current density J represents
the total conduction current per meter width flowing in the thin
sheet. If it is assumed that the conductor is a flat plate with its
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surface at the y = 0 plane (Fig. 5-12), the current distribution in
the y direction will be given by

1 = tee™"W
where 7, is the current density at the surface.

It is assumed that the thickness of the conductor is very much
greater than the depth of penetration, so that there is no reflection

Y

/

CONDUCTCR

/|

i._ b _.| SURFACE OF CONDUCTOR

Fi1c. 5-12. Current distribution in a thick flat-plate conductor.

(¢}

from the back surface of the conductor. The total conduction
current per meter width, that is, the linear current density is

J=/(;”idy=io/;)”e“"/dy

%0 %0
=——lemp == 5-96
~ e 15 = ( )
But 7, the current density at the surface, is
'l:o = O'E
Therefore Zs = E_x
J o

The constant v for propagation in a conducting medium was found
to be

v = Vijou(o + jue) = Vjopo
This gives for a thick conductor

Zs = J—‘:—# = 4 (for the conducting medium) (5-97)



§5.13) ELECTROMAGNETIC WAVES 157

It is seen that the surface impedance of a plane conductor that is very
much thicker than the skin depth is just equal to the characteristic
impedance of the conductor. This is also the input impedance of the
conductor when viewed as a transmission line conducting energy
into the interior of the metal. When the thickness of the plane
conductor is not great compared with the depth of penetration,
reflection of the wave occurs at the back surface of the conductor.
Under these conditions, the input impedance is approximately equal
to the input impedance of a lossy line terminated in an open circuit,
viz.,

Zin = 1 coth vl (5-98)
where [ is the thickness of the conductor, and # and v are its intrinsic
impedance and propagation constant respectively. The approxi-
mation is ordinarily valid because the actual termination 4, = 377
ohms is very much greater than » of the conductor.

Surface Impedance of Good Conductors. For any material
normally classed as a good conductor ¢ 3> we, and if the conductor
thickness is very much greater than the depth of penetration, the
surface impedance of such a conductor is

~ /J"v_ﬂ= OB 4o
Z, ~ \[*= £ /45 (5-97)

The surface resistance is R, ~ 4 ’gﬁ (5-97a)
g

and the surface reactance has the same magnitude as R, at all
frequencies
~ o |DR

X, = 2% (5-97b)
The surface resistance defined by (97a) as the real part of the surface
impedance is the high-frequency or skin-effect resistance per unit
length of a flat conductor of unit width. (It has the dimension of
ohms and its value does not depend upon the units used to measure
length and width as long as they are the same.) Recalling that
the expression for depth of penetration in a conductor is

2
d =, 'w—‘w (5-99)
it is seen that R, = L (5-100)

ad
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The surface resistance of a flat conductor at any frequency is equal
to the d-c resistance of a thickness 6 of the same conductor, where &
is the depth of penetration or skin depth. This means that the
conductor, having a thickness very much greater than § and having
the exponential current distribution throughout its depth, has the
same resistance as would a thickness 6 of the conductor with the
current distributed uniformly throughout this thickness. From
this it follows that the power loss per unit area of the plane con-
ductor will be given by J.«? R., where R, is its surface resistance and
J o 18 the linear current density or current per meter width (effective
value) flowing in the conductor. This same conclusion can be
obtained from consideration of power flow, a subject that will be
taken up in the next chapter.

ADDITIONAL PROBLEMS

8. From the boundary conditions that E.. and H., are continuous,
derive the reflection and transmission coefficients for a uniform plane wave
incident normally on the boundary surface between any two media;ie.,

E" _m=m H' m-—m
E'" m+4+m H m+n
_Ej_ 292 Hz_ 21]1
E'" " i+ H 54

E’, E", and E; represent the clectric intensity of the incident, reflected
and transmitted waves respectively, with a similar notation for the mag-
netic intensity.

9. The electric intensity of a uniform plane electromagnetic wave in
free space is 1 volt per meter, and the frequency is 300 me. If a very large
thick flat copper plate is placed normal to the direction of wave propaga-
tion, determine (a) the electric intensity at the surface of the plate; (b) the
magnetic intensity at the surface of the plate; (c) the depth of penetration;
(d) the conduction current density at the surface; (e) the conduction cur-
rent density at a distance of 0.01 mm below the surface; (f) the linear
current density J; (g) the surface impedance; (h) the power loss per square
meter of surface area. For copper use ¢ = 5.8 X 107, € =~ €, & =~ .

10. A uniform plane electromagnetic wave is incident normally upon a
sheet of dielectric material, which has the following constants: ¢ = 4e,,
i = My, ¢ = 107¢ mhos per meter. If the sheet is 2 em thick and the
amplitude of the electric intensity of the incident wave is 100 mv/m,
determine the electric intensity of the wave after passing through the
sheet (a) if the frequency is 3000 mc; (b) if the frequency is 30 me. (NoTE:
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It is assumed that o and e are independent of frequency. In general, for
the so-called dielectric materials, this is not true.)

11. Determine the reflection coefficients for an electromagnetic wave
incident normally on (a) a sheet of copper; (b) a sheet of iron. Use
f=1me. Assumeos = 1 X 10®* mhos/m, u = 1000y, for the iron.

12. In the analogy between plane wave propagation in a homogeneous
conducting medium and wave propagation along transmission lines, there
appears to be nothing corresponding to B. Discuss. [Suggestion: Com-
pare egs. (5.85b).]

13. A thick brass plate is plated with a 0.0005 inch thickness of silver.
What is the surface impedance at (a) 10 ke, (b) 1 me, (¢) 100 me? Com-
pare the surface impedance of the plated brass with that of a solid silver
plate and a solid brass plate. (For silver o = 6.2 X 107; for brass
o = 1 X 107; for both assume that p = p., € = ¢,.)

14. A sheet of glass, having a relative dielectric constant of 8 and
negligible conductivity, is coated with a silver plate. Show that at a
frequency of 100 mc the surface impedance will be less for a 0.001 em
coating than it is for a 0.002 cm coating, and explain why.

16. Determine the voltmeter reading by two different methods.
Assume that all the conductors are perfect and that the coaxial cable is
lossless.

120 VOLTS 7.4 CMS. R=Z,=120 OHMS

7 :::::"—:_{,_;E_u;[_—:;::'jfé":::}}é)
N

Fia. 5-13. Coaxial cable for Problem 15.

16. “Free-space cloth” consists of a cloth coated with conducting
material that has a surface impedance of 377 ohms per square. Show
that if the thickness of the coating is much greater than the depth of
penetration, the surface impedance will be complex, with a reactance equal
to the resistance (assuming o/we >> 1 for the conducting material). How-
ever, if the coating is made sufficiently thin, show that the surface imped-
ance will be almost a pure resistance. Determine appropriate values for
o and [, where [ is the thickness of the coating.

BIBLIOGRAPHY
See bibliography for chap. 4. 5




CHAPTER 6

POYNTING VECTOR AND THE FLOW
OF POWER

6.01 Poynting’s Theorem. As electromagnetic waves propagate
through space from their source to distant receiving points, there
is a transfer of energy from the source to the receivers. There
exists a simple and direct relation between the rate of this energy
transfer and the amplitudes of electric and ragnetic intensities
of the electromagnetic wave. This relation can be obtained from
Maxwell’s equations as follows.

The magnetomotive force equation I can be written

i=curl H — & I

This expresses a relation between quantities which have the dimen-
sions of current density. If it is multiplied through by E, there
will result a relation between quantities which will have the dimen-
sions of power per unit volume. That is

E-i=E.curlH— ¢E-E (6-1)
Recall that for éhy vectors ﬂ;a following iden"city holds
divE X H = H. curlLE —E-.curl H

Therefore . . . .
E-i=H:culE—divEXH— ¢E-E " (6-2)
Introducing the second field equation, _
curl E = —uH _ II
obtain . o '
E-i=—yH-H—-E-E—divEXH (6-3)
Now

H-uH=2m ad E-B=:2p

20t

[ TR
&l
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so that
E-i=—53 _t9 m _GvEXH
243 2 at

Integrating over a volume V,

-_9 Epey € pe _ i
'/;01 -1dV at,/;ol(ZH +2E)dV '/;OIdlvEXHdV
(6-4)

Using the divergence theorem the last term can be changed from a
volume integral to a surface integral, that is,

j;oldivEXHdV=9ssEXH-da

Then eq. (4) can be written

| 9 o € = . N
,/;olE idV = ——"'/;OI(EHZ-FQE”)Q/—¢SEXH-da (6-5)

A physical interpretation of eq. (5) leads to some interesting con-
clusions. It will be considered term by term.

The term on the left-hand side represents (instantaneous) power
dissipated in the volume V. This result is obtained as a generali-
zation of Joule’s law. A conductor of cross-sectional area A4,
carrying a current I and having a voltage drop E per unit length
will have a power loss of EI watts per unit length. The power
d1ss1pated per unit volume would be

EI

T = Ei{ watts per unit volume
l

In this case E and i are in the same direction. In general, where
this may not be true, the power dissipated per unit volume would
still be. givén by the product of i and the component of.E having
the same direction as i. That is, the power dissipated per unit
volume would always be given by

E.i

and the total power dissipated in a volume ¥V would be

._ﬁolE-idV. (6-6)
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When the E in this expression represents the electric intensity
required to produce the current density 7 in the conducting medium,
the expression (6) represents power dissipated as ohmic (I2R) loss.
However, if the E is an electric intensity due to a source of power,
for example due to a battery, then the power represented by the
integral expression (6) would be used up in driving the current
against the battery voltage and hence charging the battery. If
the direction of E were opposite to that of 7, the “dissipated” power
represented by (6) would be negative. In this case, the battery
would be generating electric power.

Consider next the first term on the right-hand side of eq. (5).
In the electrostatic field it was found that the quantity 4¢E? could
be considered to represent the energy density or the stored electric
energy per unit volume of the electric field. Also for the steady
magnetic field the quantity 34uH? represented the stored energy
density of the magnetic field. If it is assumed that these quantities
continue to represent stored energy densities when the fields are
changing with time (and there seems to be no real reason for con-
sidering otherwise), the integral represents the total stored energy
in the volume V. The negative time derivative of this quantity
then represents the rate at which the stored energy in the volume
is decreasing.

The interpretation of the remaining term follows from the
application of the law of conservation of energy. The rate of energy
dissipation in the volume V must equal the rate at which the
stored energy in V is decreasing, plus the rate at which energy is
entering the volume V from outside. The term

—958E><H-da

therefore must represent the rate of flow of energy inward through
the surface of the volume. Then this expression without the nega-
tive sign,

95815 X H-da (6-7)

represents rate of flow of energy outward through the surface enclos-
ing the volume.

The interpretation of eq. (5) leads to the conclusion that the
integral of E X H over any closed surface gives the rate of energy
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flow through that surface. It is seen that the vector
P=EXH ' (6-8)

has the dimensions of watts per square meter. It is Poynting’s
theorem that the vector product P = E X H at any point is a meas-
ure of the rate of energy flow per unit area at that point. The
direction of flow is perpendicular to E and H in the direction of the
vector E X H.

ExaMPLE 1: Power Flow for ¢ Plane Wave. The expression for rate of
energy flow per unit area is checked very easily in the case of a uniform
plane wave traveling with a velocity

1
Vo = ——
Ve
The total energy density due to electric and magnetic fields is given by
3$(eE? + pH™

For a wave moving with a velocity vo the rate of flow of energy per unit
area would be

P = }4(eE* + pH?)v, (6-9)
Recalling that for a plane wave the magnitudes of E and H are related by

S VY

fl : 2 15
eq. (9) becomes . /.} - = \/:g’
AL

(e VR € 4
=(_E£)v‘€ AN 5
Yo
=EXH

ExaMpLE 2: Power Flow in a Concentric Cable. Consider the transfer
of power to a load resistance R along a concentric cable which has a d-c
“voltage V between conductors and a steady current I flowing in the inner
and outer conductors. The conductors are assumed to have negligible
resistance. The radius of the inner conductor is a and the (inside) radius
of the outer conductor is b. The magnetic intensity H will be directed
in circles about the axis. By Ampere’s law the magnetomotive force
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around any of these circles will be equ._1 to the current enclosed, that is,

§H-ds=1

in the region between the conductors,

Fic. 6-1

For this case H is constant along any of the circular paths so
§ H-ds = 2rH

where 7 is the radius of the circle being considered.

Hence
I

2rr

The electric intensity E will be directed radially. In the example on
page 55 it was shown that

V=-—q—log

b
2me a

where ¢ was the charge per unit length. Also it was shown that

q

2mer

Therefore the magnitude of E will be given by

E = 14
r log 2
The Poynting vector is P=EXH

It is directed parallel to the axis of the cable. Since E and H are every-
where at right angles, the magnitude of P is simply

P =EH
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The total power flow along the cable will be given by the integration of the
Poynting vector over any cross-sectional surface. If the conductors are
considered to be perfect, E will have value only in the region between
them and the Poynting vector will have value only in the same region.
Let the element of area be 27rdr. Then

W=/E><II-da
s

_ (v (1), P
= Ja rlogb/a\Zar) "™ ¥

__vr [tar
" logb/a Jo T
= VI

This is the well-known result that the power flow along the cable is the
product of the voltage and current. It is interesting to observe that this
result was obtained by an integration over an area that did not include the
conductors. According to this picture, for the perfect conductor case the
flow of power is entirely external to the conductors. Even when the con-
ductors have resistance, there is no contribution within the conductors
to the Poynting vector in the diréction parallel to the axis, for there is no
value of E within a conductor at right angles to the direction of current
flow. In the case of the open-wire transmission line, the fields extend
throughout all space and there is a value of Poynting vector everywhere
in space, except within conducting bodies. Therefore the rather remark-
able conclusion is reached that when a transmission line is used to deliver
power from a generator to a load, the power transmission takes place
through all the nonconducting regions of space and none of the power
flows through the conductors that make up the transmission line.

ExampLe 3: Conductor Ilcving Resistance. When a conductor having
resistance carries a direct current I, there will be a value of E within the
conductor. It will be parallel to the direction of the current (E =i/a),
so there will still be no radial component of E. Hence there will still be
no value of Poynting vector within the wire parallel to the axis, but there
will now be a radial component of P. Consider a wire of length L having
a voltage drop V. along the wire. Let the wire be parallel to the z axis.
Then in the wire and =t its surface

=T
The magnetic intensity H will be in the ¢ direction and at the surface .of
the wire it will have a value

o
IIw—%
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where @ is the radius of the wire. E, and H, are at right angles, so the
Poynting vector will have a magnitude

P =EMH,

and will be directed radially into the wire. The total power flowing into
the wire through the surface will be

L
W=/E;H,,27radz
0
v [*
=7 J, #
= V.I

which is the usual expression for loss due to ohmic resistance. This
derivation shows that the power required to supply this loss may be con-
sidered as coming from the field outside the wire, entering it through the
surface of the wire.

It is interesting to observe how the power flow continues inward.
Inside the wire the value of H does not vary with the radius in the same
way as outside, because the current enclosed varies with » in this case.
If 1 is the current density, the current enclosed at a radius 7 will be

Tops = 718

For a wire of radius a having a total current I

arl 12
e = =@
Therefore inside the wire (r < a)
r2]
H= 2rra?

The power flowing inward through an imaginary cylindrical shell of radius
r < a will be

w

i
[
5
[Se}

= V.= (6-10)

Equation (10) shows that the power dissipated within any shell is pro-
portional to the volume enclosed by the shell through which the power is
flowing. Hence the power dissipated per unit volume is uniform through-
out the wire.
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The configuration of the electric field about a two-wire line will appear
somewhat as illustrated in Fig. 6-2 when there is a resistance drop in the
conductors. The curvature near the surface of the wire is due to the
voltage drop along the wire.

ExavpLE 4: Poynling Vector about A-C Lincs. When a transmission
line delivers a-c power, the voltage, and therefore the electric and magnetic
fields, vary with time. Also, if it is a long line, the phases of voltage and
current (and E and H) will vary along the length of the line. For the
simple case of a lossless line terminated in its characteristic impedance

LN

t NI %

PRI

Fia. 6-2. Electric-field configuration about a two-wire trans-
mission line which has resistance.

which is a pure resistance, the variation in time and along the line of both
voltage and current will be given by the expression for a traveling wave,
that is, they are proportional to

coS @ (t - i"')
v

For any value of z and ¢ there will be a certain distribution of the Poynting
vector over a plane parallel to the  and y axes. At every point in this
plane, P will be parallel to the z axis. The Poynting vector will be given
by an expression of the form

P=EXH=Acos’u(t-—Z)f(x,y)

The function f(z, y) will not vary with z or t. Ior a fixed value of time,
the total power passing through a plane will vary with the position of the
plane, that is with z, whereas for a fixed value of z the power through the
plane will vary with time. It will be noted that the power flow past a
given plane is in pulses of double frequency, a fact readily appreciated
when observing the flicker of a 25-cycle electric light bulb.

In a polyphase line a study of the Poynting vector shows that the
power passing through a plane of fixed z will not vary as a function of
time. In this case the Poynting vector distribution spirals about the
line as it is propagated forward. The value of P integrated over a plane
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of constant z will be found to be independert of time. In such a plane
- where z = constant, the distribution of the Poynting vector would appear
to be revolving about the line.

6.02 Note on the Interpretation of E X H. The interpretation
of E X H as the power flow per unit area is an extremely useful
concept, especially in radiation problems. For example, an inte-
gration of E X H over a surface enclosing a trensmitting antenna
gives the power radiated by the antenna. Although this interpre-
tation of E X H never gives an answer which is known to be erron-
eous, it sometimes leads to a picture which the engineer is loathe
to accept. Most engineers find acceptable the concept of energy
transmission through space, either with or without guiding con-
ductors, when wave motion is present. However for many engi-
neers this picture becomes disturbing for transmission line propaga-
tion in the dc case. When E and H are static fields produced by
unrelated sources, the picture becomes even less credible. The
classic illustration of a bar magnet on which is placed an electric
charge is one which is often cited. In this example a static electric
field is crossed with a steady magnetic field and a strict interpreta-
tion of Poynting’s theorem seems to require a continuous circulation
of energy around the magnet. This is a picture that the engineer
generally is not willing to accept (although he usually does not
question the theory of permanent magnetism, which requires a
continuous circulation of electric currents within the magnet).
Fortunately, there exists an easy way out of the dilemma posed by
this last example.

First, it is observed that the surface integral in eq. (5) is over
the closed surface surrounding the volume. If any closed surface
is taken about the bar magnet, it is found that E X H integrated
over this closed surface is always zero. In other words, the net
power flow away from the magnet is zero as it should be. Secondly,
it is noted that, even though the power flow through any closed
surface is correctly given by eq. (7), it does not necessarily follow
that P = E X H represents correctly the power flow at each point.
For, to the vector E X H, could be added any other vector having
zero divergence (that is, any vector that is the curl of another vector)
without changing the value of the integral in (7). This can be
shown by applying the divergence theorem. Suppose the correct
value for power flow at any point is not E X H, but rather P = E
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X H + F, where F is the curl of some other vector, say G. Then
the net power flow through any closed surface would be

fy B XH+F)da=¢ (ExH da+ [ divFar
= ¢, (EXH)-da

because div curl G = 0.

It is seen that even though it may be possible to write an expres-
sion that gives correctly the net flow of power through a closed
surface, it is still not possible to state just where the energy is.
This problem is by no means peculiar to the electromagnetic field.
The total potential energy of a raised weight is a readily calculable
quantity but the ‘‘distribution” of this energy is not known. Just
where the potential energy of a raised weight or a charged body
“resides” is a question for philosophic speculation only. It cannot
be answered on the basis of any measurements that the engineer
can make.

' 6.03 Instantaneous, Average, and Complex Poynting Vector.
Id an ac circuit, the instantaneous power is always given by the
product of the instantaneous voltage and the instantaneous current.

Winnt = Vinnlhut
The real power or average over a cycle is
Wa = VI cos 8 (6-11)

where 6 is the time-phase angle between voltage and current, and
V and I are effective values, The reactive power, or reactive volt-
amperes, is

Wreact S VI Sin 0 (6‘12)

When the voltage and current are written in the complex form,t
that is,

V ts Vn + j Vim

I == I u+ inm

t A familiarity with complex notation as used in the solution of a-¢ circuits
is assumed. In accordance with the 1948 IRE Standards on Symbols, when
it is necessary or desirable to differentiate between real and complex scalars,
the complex scalars (or phasors as they are now known) will be shown in bold
italic type as V. For complex vectors bold roman type is used, the same as
for real vectors.
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it is easily shown, using Fig. 6-3, eqs. (11) and (12), and a little
trigonometry, that the real or average power is given by

Wav = VreIro + thIhn (6‘13)
while the reactive power is
Wreut = VimIre - VreIim (6‘14)

This is a result well known to all electrical engineers. By multi-

Fia. 6-3. Phasor diagram for voltage and current.

plying out it is seen that the real power of eq. (13) is given by the
real part of the product.

VI*,
where I* is the complex conjugate of I. That is,
I* e In, - inm

Also the reactive power is given by the imaginary part of VI*.
Therefore it is possible to writet

Weea = Re VI* (6-15)
Weeset = Im VI* (6-16)
Wuomplex = Wl’e.'.\l + erennt - VI e
where Re and Im indicate that only the real or only the imaginary
part is to be used.

t The student is reminded that the real and imaginary parts of the product
VI (where V and I are in the complex form) do not represent real and reactive
power.
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In expressions (15) and (16), V and I represent effective values
of (complex) voltage and current. In terms of peak values (maxi-
mum in time), which for sinusoidal variations are /2 times the
effective values, egs. (15) and (16) would be

Wn.l = % Re Volo* (6—17)
Wreue = % Im Volo* (6—18)

In electromagnetic field theory there are relations similar to the
above between the Poynting vector P (watts/sq m) and E (volts/m)
and H (amp/m). The instantaneous power flow per square meter
is ;
Piost = Eingt X Hing X
The real and reactive power per square meter ist

Prenl = Re (Eeﬂ X Heﬂ*)
Prowct = Im (Eor X Hey*)
Pcomplex = Eeﬂ X Heﬂ*

where E and H are expressed in the complex form and are effective
values. In field theory peak values, rather than effective values,
are used most, so it is usual to let the symbols E and H (without
subscripts) represent peak or maximum values in time. Then

Pronl = % Re (E X H*) (6‘19)
Prewt = 14 Im (E X H*) (6-20)

Poomplex = % E X H*

where E and H are now peak values in the complex form. The first
of these expressions represents the average or real power flow per
unit area. The second represents a flow of reactive power, a surg-
ing back and forth of the energy in the field.

The product of E and H in equations (19) and (20) is a vector
product. Only mutually perpendicular components of E and H
contribute anything to power flow, and the direction of the flow is
normal to the plane containing E and H. Thus in rectangular
co-ordinates, the complex flow of power per unit area normal to
the y-z plane is

P: = 14(E,H,* — E.H,*) (6-21)

t For vectors the form corresponding to expression (11), ie., Prea =

E X H cos 6, would require special interpretation, because the time phase

angles between the scalar components may be different for the different
components.
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with corresponding expressions -for the other directions. In
spherical co-ordinates, the outward (radial) flow of complex power
per unit area is

P, = 15(EgHy* — EgH,*) (6-22)
Problem 1. Verify that
VI cos 6

Vielro + Vimlim = Re VI*
and VIsgin 0 = Vialie — Vielim = Im VI*

where the symbols represent effective values of voltage and current.

Problem 2. A concentric cable (assumed perfectly conducting) is one
wavelength long and is terminated in its characteristic impedance, a pure
resistance,

(a) Indicate the magnitude and direction of the Poynting vector along
the line at successive one-eighth period intervals of time throughout a cyecle.

(b) Repeat part (a) for the case where the line is terminated by a
short circuit.

Problem 3. A short vertical transmitting antenna erected on the
surface of a, perf?ctly conducting earth produces an effective field intensity

’ % Y U L E.q = Egy = 100 sin ¢ mv/m

at points a distance of 1 mile from the antenna (8 is the polar angle). Com-
pute the Poynting vector and the total power radiated. (For the distant

field, H = H, = 2.
M

6.04 Power Loss in 2 Piane Conductor. An evaluation of the
normal component of Poynting vector at the surface of a conductor
will give the power flow per unit area through the surface and hence
the power loss in the conductor.

Let there be a tangential component of magnetic intensity He.
at the surface of a metallic conductor (assumed for the present to
be an infinitely large flat plate having a thickness very much greater
than the skin depth 6). From the continuity requirements across
the boundary surface the tangential component of H just inside
the conductor will have this same value H,,,. Inside the conductor
E.., the tangential component of E is related to H..,.. by

Hay

— j wy"m wu"m m (-
and n., g jwe,.. \[ /45
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where nn is the intrinsic impedance of the conductor. (The sub-
seript m has been used to indicate that the quantities inside the
metallic conductor are meant.) Just inside the surface of the con-
ductor Ew. = n.Hu. and, from the continuity requirements across
the boundary, the tangential component of electric intensity just
outside the surface will also be E... Then the average (or real)
power flow per unit area normal to the surface will be

P, (real) = 14 Re (Ewn X Hin*) (6-23)

When E.w. and H.. are at right angles, and since for any good
conductor E.., leads Hi. by 45 degrees in time phase, (23) becomes

P, = Y4|Eu||Hiun| cos 45°

- (2 \1/5) | Hrcf?
1

2
= (L) Bl (6-24)
242/ |l
where the bars | | indicate the absolute magnitude of the complex
quantity. For a conductor which has a thickness very much greater

than the skin depth 5, the surface impedance Z, is equal to the
intrinsic impedance n, of the conductor, so that

1 1 |Eu
P,=— |Z||Hu|? = —— tt 6-25
2'\/2| ” "‘I 2_\/§ IZ!I wa /sqm ( )

In a conductor the linear current density J is equal in magnitude
to the tangential magnetic intensity at the surface, so

P, = (ﬁé) |Z| 12 watt/sq m (6-26)
In expressions (25) and (26), Evwny Hiy and J are peak values. In
terms of effective values

1 |Eyemn]? 1
P, = 7§| {(Z:fl)l = 12| H o ?
1
=3 |Z.[| T
= R,J o4t watt/sq m  (6-27)

This result agrees with that previously obtained in chap. 5.
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[Norz: In this chapter, where the notions of complex power and complex
Poynting vector were introduced, special type (bold italic) was used to dis-
tinguish complex scalars from real scalars. After the student or engineer has
become familiar with the use of complex quantities, the need for making a
distinction between the two hardly ever exists, and so most engineering texts
use the same type (light-face italic) for complex scalars as for real scalars.
This practice will be followed in the remainder of the text, except in special
cases where it is desired to emphasize that the quantities are complex rather
than real.]

Problem 4. A uniform plane wave having field components E. and H,
is guided in the z direction between a pair of parallel copper planes. If the
frequency is 100 mc and the field intensity of the transmitted wave is
E. =1 volt/m, determine by two methods the power loss per square
meter in each of the conducting planes.

BIBLIOGRAPHY o
See bibliography for chap. 4. “ , W
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CHAPTER 7
GUIDED WAVES

In the wave propagation so far discussed, only uniform plane
waves, remote from any guiding surfaces, have been considered. In
many actual cases, propagation is by means of guided waves, that
is, waves that are guided along or over conducting or dielectric
surfaces. Common examples of guided electromagnetic waves are
the waves along ordinary parallel-wire and coaxial transmission

— L L

x=ag

xs . 52
% = LLLL 7T a4

F16.7-1. Parallel conducting planes.

lines, waves in wave guides, and waves that are guided along the
earth’s surface from a radio transmitter to the receiving point. The
study of such guided waves will now be undertaken.

7.01 Waves between Parallel Planes. For purposes of study
a simple illustrative example is that of an electromagnetic wave,
propagating between a pair of parallel perfectly conducting planes
of infinite extent in the y and z directions (Fig. 7-1). In order
to determine the electromagnetic field configurations in the region

175
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between the planes, Maxwell’s equations will be solved subject to
the appropriate boundary conditions. Because perfectly conduct-
ing planes have been assumed, these boundary conditions are very
simple, being '
E’tanzenth.l = O, Hnumnl =0

at the surfaces of the conductors.*

In general, and assuming that all time variations are as &,
Maxwell’s equations and the wave equations are

curl H = (¢ 4+ jwe)E curl E = —jwpH (7-1)
VE = y2E VH = y?H (7-2)
‘where v = V(o + jwe)(fur) (7-3)

In rectengular co-ordinates, and for the nonconducting region
between the planes, these equations become

dH, dH . dE, OE .
Ty e s g T = iw
oH . oH, . doF., dE, .
7 o T el G T g = ety (1)
oH, oH . . dF, ok, .
o~ = el Gt = 5 = —juul,

?E = 9%E , O%E

— 4 =+ 5 = —wucE

ox? ay? az2

o (7-5)

oH  oH  ¢H _
2 T o T o = ek

It will be assumed that propagation is in the z direction, and
that the variation of all field components in this direction may be
expressed in the form =%, where in general

7=a+j8 (7-6)
is a complex propagation constant, f whose value is to be determined.

* Tt is easy to show for actual conductors such as copper or brass (which
have a very high, but not infinite, conductivity) that the finite conductivity
has negligible effect on the field configuration. Therefore it is possible to use
the fields calculated on the basis of perfectly conducting planes to determine
the sur{ase currents that must flow in these planes. The currents so calculated
may then be used to compute the losses, and hence the attenuation, which
occur with finitely conducting planes. This is a standard engineering approach.

1 In general 5 will not be equal to v, defined by equation (3), but ¥ reduces
to v in the special case of uniform plane waves.
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This is a quite reasonable assumption because (as will be shown
later) for any uniform transmission line or guide the fields must
obey an exponential law along the line. When the time variation
factor is combined with the z-variation factor, it is seen that the
combination

et o g~ = plUut—92) = o~z , pilwt—f2) (7-7)

represents a wave propagating in the z direction. If ¥ happens to
be an imaginary number, that is if @ = 0, expression (5) represents
a wave without attenuation. On the other hand, if ¥ is real so that
B = 0, there is no wave motion but only an exponential decrease in
amplitude. .

Since the space between the planes is infinite in extent in the
y direction, there are no boundary conditions to be met in this
direction, and it can be assumed that the field is uniform or constant
in the y direction. This means that the derivatives with respect,
to ¥ in (4) can be put equal to zero. In the z direction however,
there are certain boundary conditions which must be met. There-
fore it is not possible to specify arbitrarily what the distribution of
fields in this direction will be. This answer must come out of the
solution of the differential cquations when the boundary conditions
are applied.

When the variation in the 2z direction of cach of the field com-
ponents is shown cxplicitly by writing, for example,

I, = Hp ¢
it is seen immediately that

oH,
0z

= —§HO % = —71,

with similar results for the z derivatives of the other components.
Making use of this result and remembering that the y derivative of
any component is zero, egs. (4) and (5) become

+7II, = juwell, Thy = —jwpH,
- o, . - - aL, .
-3l — Fral Jwelty —¥E; — Frai Joully, (7-8)
o, oK,

% = Jwelt, 7 —JjopH,
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J’E

— + ¥°E = —w?uek

dx? (7-9)
o’H o2 )

-é-x—z- Y H= —w y.eH

In egs. (9) it should be remembered that cach of these equations
is really three equations, one for each of the components of E or H.
Equations (8) can be solved simultaneously to yield the following
equations

) A 7))
h? 3z h? 3z (7-10)
b= _dseB o onal,
YT Az v h? oz
where h? = 7% 4+ wlue (7-11)

In egs. (10) the various components of electric and magnetic
intensities are expressed in terms of E, and I{,. With the exception
of one possibility, to be discussed later, it will be observed that
there must be a z component of either I or II; otherwise all the
components would be zero and there would be no fields at all in the
region considered. Although in the general case both L, and H,
could be present at the same time, it is convenient and desirable
to divide the solutions into two sets. In the {irst of these, there is a
component of E in the direction of propagation (E.), but no com-
ponent of II in this direction. Such waves are called E waves, or
more commonly, iransverse magnetic (TM) waves, because the
magnetic intensity H is entirely transverse. The second set of
solutions has a component of H in the direction of propagation, but
no E, component. Such waves are called H waves or {ransverse
electric (TE) waves. The solutions to egs. (8) and (9) for these two
cases will now be obtained. Since the differential equations are
linear, the sum of these two sets of solutions yields the most general
solution. :

7.02 Transverse Electric Waves (E. = 0). Inspection of eqgs.
(10) shows that when E, = 0, but II, does not equal zcro, the field
components II, and I will also equal zero, whereas, in generzl, there
will be nonzero values for the components H, and E,. Since each of
the field components obeys the wave equation as given by egs. (9),
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the wave equation can be written for the component E,
“ d%E, -
a2 T 7By = —w%ek,
This can be written as
K, -
a—xz- = —h L'y (7—12)
Recalling that E, = L,(x) eGer—1m eq. (12) reduces to
dE,°
d:c: = —hiE,0 (7-12a)
where as before h? = 32 4 G2

Equation (12a) is the differential equation of simple harmonie
motion. Its solution can be written in the form

Ep = Cysin bz + €, cos bz (7-13)

where C) and C; are arbitrary constants.
Showing the variation with time and in the z direction the expres-
sion for E, is
Ey = (Cisin hz + C, cos hz) elwi~42) (7-13a)

The arbitrary constants C; and C: can be determined from the
boundary conditions. For the parallel-plane wave guide of Fig.
(7-1) the boundary conditions are quite simple. They require
that the tangential component of E be zero at the surface of the
(perfect) conductors for all values of z and time. This requires
that

E, =0 atz = 0] for all values (boundary conditions)
L, = atr =a ) of zand ¢

In order for the first of these conditions to be true, it is evident that
C: must be zero. Then the expression for I, is

E, = C, sin hg elet~»

Application of the second boundary condition imposes a restriction
on k. In order for Ey to be zero at z = q for all values of z and ¢
it is necessary that

mmr

B h = ' ’ (7—14)
wherem =1,2,3, . . .
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(The special case of m = 0 will be discussed later.) Therefore

E, = Cy sin (’—’;I x) gUot=12) (7-15)
The other components of E and H can be obtained by inserting
eq. (15) in egs. (10). When this is done, it is seen that the expres-
sions for the field intensities for transverse electric waves between
parallel planes are

8 mw .
Eu = (; sin (-Tz‘ 23) gliut—7e) -

H,= — 2Z ¢ cos (ﬂ"—r :c) gUut=12) (7-16)
Jwua a

Y . [(m -
H,= — - Cysin (—7-r x) gUut=12
Jou a

Each value of m specifies a particular field configuration or mode,
and the wave associated with the integer m is designated as the
TEm,o wave or TE,, o mode. The second subscript (equal to zero in
this case) refers to another factor which varies with y, which is
found in the general case of rectangular guides. It will be noticed
that the smallest value of m that can be used in egs. (16) ism = 1,
because m = 0 makes all the fields identically zero. That is, the
lowest order mode that can exist in this case is the TE,;,, mode.

In writing expressions for the field components as ir eq. (16),
the variation of all the fields with time and in the z direction is the
same for any particular value of m and is shown by the factor
g% Rather than carry this factor through the entire analysis,
it is customary to drop it, putting it back in for the final result.
Thus eqs. (16) can be written

E, = Cysin ’l'alx

H, = — J%# Crsin =z (7-17)
—mn
Joua

where now the factor ¢ is understood.* Whenever it is desired

mm
01 [e{0 ] -Z— x

* Ag shown in (17), E,, H., and H, are functions of z only, and not of time
or z. They arc the crest values or amplitudes of the waves. Most relations
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to show the time and z variations explicitly, the expressions are
multiplied by etet—72),

The factor 4 is the propagation constant, which is ordinarily
complex, the real part & being the attenuation constant and the
imaginary part 8 being the phase shift constant. However, it will
be shown in section 7.04 that for the present problem of waves
guided by perfectly conducting walls, 7 is either a pure real or g
pure imaginary. In that range of frequencies where 7 is real, & has
value but f is zero, so that there is attenuation but no phase shift
and, therefore, no wave motion. In the range of frequencies where
7 is imaginary, & is zero but g has value, so that there is propagation
by wave motion without attenuation. It is this latter range of
frequencies that is of chief interest in wave guide propagation.
Writing 7 = j, eqs. (16) for TEn,0 waves in the propagation range
may be written as

Ey = C1 sin (%r x) el (wt—Bz)
II” = - £ C1 sin (371_1!‘ x) ei(wt—ﬁz) (7—163,)
Wik a

i, =177 C1 cos (ﬂr :c) ¢i(ot—P2)

wpa a
A sketch of these field distributions at some particular instant of
time is shown in Fig. 7-2 for the TE;,0 mode.

7.03 Transverse Magnetic Waves (H, = 0). . The case of trans-
verse magnetic waves between parallel planes can be solved in a
manner similar to that used for TE waves. In this instance H,
will be zero, and inspection of eqs. (10) shows that H, and E, will
also be zero, while in general, E,, E,, and H, will have value. Solv-
ing the wave equation for H,, gives as before

H, = Cssin hx + €4 cos hx (7-18)

where the factor eG~%) is understood. The boundary conditions
cannot be applied directly to H, to evaluate the constants Cs and

between the field components, including those which involve determination of
power, can be made in terms of these crest values. However, when it is
desired to differentiate or integrate any of the field compouents with respect,
to time or 2, the factor etiwt~7o ig put back in until the desired operation has
been performed, and then this factor is again dropped.
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C., because in general the tangential component of H is not zero
at the surface of a conductor. However fror egs. (10) the expres-
sions for E, can be obtained in terms of H,, and then the boundary
conditions applied to E,. From egs. (10) and (18)

E, = - (05 cos he — C. sin ha]
Jwe

Applying the boundary conditions that E, must be zero at z = 0
shows that Cs = 0. The second condition that E,; must be zero

)v L— 7’———4' X
e Z
—F—%F4
AEERY L W § I Y ‘._LJ| v
.f,x/ %f’z
ﬁ &
o —< z 7T T y
' 1 i d
v t !
1 1 . :
1 ! H '
X i H i X
1 ' ' ]
[ ' t |

N

H E

Fia. 7-2. Electric and magnetic fields between parallel planes for
the TE,,o wave.

at z = a requires that h = mr/a where m is any integer. Then
the expressions for E., Hy, and I, become

maCy . mw

E,= — = sin —

Jwea a
H, = C cos ’%’ z (7-19)
L, = i('l‘ cos mx z

Jwe a
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Multiplying by the factor e¢*~% to show the variation with time
and in the 2z direction, and putting ¥ = j8 for the range of fre-
quencies in which wave propagation occurs, the expressions for TM
waves between parallel perfectly conducting planes are

I, = C4 cos (—721 :c) gitet—bn)
B mx )
E, = =C,cos (—— :c) gitwt=B) (7-19a)
we a
E, = jma C, sin (.m_" :c) ¢i(wt—f2)
wea a
As in the case of transverse electric waves, there is an infinite num-

ber of modes corresponding to the various values of m from 1 to
infinity. However in this case of transverse magnetic waves there

X X

L‘gﬂ

\ fa—Hy

<

.
.
.
.

&=

N\
7

Fie. 7-3. The TM,,, wave between parallel planes.

<

is also the possibility of m = 0, because m = 0 in the above equa-
tions does not make all the fields vanish. This particular case of
m = 0 will be discussed in detail in a later section. A sketch of the
TM,0 wave between parallel planes is shown in Fig. 7-3.

7.04 Characteristics ¢f TE and TM Waves. The transverse
electric and transverse magnetic waves between parallel corducting
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planes exhibit some interesting and rather surprising properties
that seem quite different from those of uniform plane waves in free
space. These praperties can be studied by mves’clgatmg the propa—
gation constant ¥ for.these waves.

Examination of egs. (16) for TE waves and eqs (19a) fo" ™
waves shows that for each of the components of E or H there is a
sinusoidal or cosinusoidal standing-wave distribution across the
guide in the z direction. That is, each of these components varies
in magnitude, but not in phase, in the z direction. In the y direc-
tion, by assumption, there is no variation of either magnitude or
phase of any of the field components. Thus any z-y plane is an
equiphase plane for each of the field components (that is, any
particular component, E, for example, reaches its maximum value
in time at the same instant for all points on the plane). Also these
equiphase surfaces progress along the guide in the 2z direction with
a velocity # = w/B, where B, the phase shift constant, is the imag-
inary part of the propagation constant ¥. Now from eq. (11), ¥
can be expressed in terms of b and frequency and the constants of
the medlum by : o

'y—'\/h—wpe | L (7-20)

Inserting the res’crlc’clons ori h imposed by eq. (14), this becomes

i ¥y = \/(-7%[) — wiue l (7-21)

Inspection of eq. (21) shows that at frequehcies sufficiently high
so that w2ue > (mw/a)?, the quantity under the radical will be
negative and ¥ will be a pure imaginary equal to j8, where

B= \/w’ne - (%’—')2 | (7-22)

Under these conditions the fields will progress in the z direction as
waves, and the attenuation of these waves will be zero (for perfectly
conducting planes).

As the frequency is decreased, a critical frequency f. = 2%: will
be reached at which

2
wne = (22) BN )

a
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For all frequencies less than f., the quantity under the radical will
be positive and the propagation constant will be a real number.
That is, ¥ will have value but g will equal zero. This means that
the fields will be attenuated exponentially in the z direction and that
there will be no wave motion, since the phase shift per unit length
is now zero. The frequency f., at which wave otion ceases, is
called the cut-off frequency of the guide. From eq. (23).

m
2a /e
It is seen that for each value of m, there is a corresponding cut-off
frequency below which wave propagation cannot occur. Above
the cut-off frequency, wave propagation does occur and the attenu-
ation of the wave is zero (for perfectly conducting planes). The
phase shift constant g, in the range where wave propagation occurs,
is given by eq. (22). It is seen that § varies from zero at the cut-off
frequency up to the value w /e as the frequency approaches
infinity. The distance required for the phase to shift through 2r
radians is a wavelength, so that the wavelength X is given in terms
of 8 by

Jo=

(7-24)

2x
B
Also the velocity of propagation of the wave is given by the wave-
length times the frequency, so that

A= (7-25)

4

b=M= (7-26)

'QJ]IN
i
™l €

When the expression for § is put in eqs. (25) and (26), the wave-
length and wave velocity are given by
27
—— 7-27
Vwlue — (mr/a)? (-27)
[

Vwlue — (mr/a)?

It is seen that at the cut-off frequency both X and % are infinitely
large. As the frequency is raised above the cut-off frequency, the
velocity decreases from this very large value. It approaches a
lower limit.

A

@
I

(7-28)




186 GUIDED WAVES [§7.05

S 7-29
ag the frequ,ency becomes high enough so that (mx/a)?is negligible
compared with w?pe. When the dielectric medium between the
plates is air, u and e have their free space values p, and e, and the
lower limit of velocity, given by (29), is just the free-space velocity
¢, where as usual

1
\/#vev

Therefore the velocity of the wave varies from a value equal to
the velocity of light in free-space up to an infinitely large valuo
as the frequency is reduced from extremely high values down to the
cut-off frequency. This velocity is the wave velocity or phase
velocity, and is different from the velocity with which the energy
propagates. The distinction between these velocities will be con-
sidered in a later section of this chapter.

7.06 Transverse Electromagnetic Waves. TFor transverse elec-
tric (TE) waves between the parallel planes, it was seen that the
lowest value of m that could be used without making all the field
components zero was m = 1. That is, the lowest-order TE wave
is the TE;, wave. For transverse magnetic (TM) waves however,
a value of m equal to zero does not necessarily require that all the
fields be zero. Putting m = 0 in egs. (19a) leaves

H, = Cy eitw—bo

¢ = =~ 3 X 108 meter/sec

o
I

ge Cy eitet=5 (7-30)
E,=0

For this special case of transverse magnetic waves the component of
E in the direction of propagation, that is £, is also zero so that the
electromagnetic field is entirely transverse. Consistent with previous
notation this wave is called the transverse electromagnetic (TEM)
wave. Although it is a special case of guided-wave propagation, it
is an extremely important one, because it is the familiar type of
wave propagated along all ordinary two-conductor transmission
lines when operating in their customary (low-frequency) manner.
It is usually called the principal wave.
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There are several interesting properties of TEM waves which
follow as special cases of the more general TE or TM types of waves.
For the TEM waves between the parallel planes it is seen from eqs.
(30) that not only are the fields entirely transverse, but they are
constant in amplitude across a cross-section normal to the direction
of propagation; and, of course, their ratio is also constant. For
m = 0 and an air dielectric, the expressions for 7, B, 7, and X reduce

to
Ty = jw V by€y
B—B =0 Vie
\/1 _ (7-31)
Ho€y
2r

S Cc
x—%k:—:—
® w\ Uyey f

Unlike TE and TM waves, the velocity of the TEM wave is inde-
pendent of frequency and has the familiar free-space value, ¢ ~ 3
X 10°® meter/sec. (It has this value only when the planes are
perfectly conducting and the space between them is a vacuum.
The effect of finite conductivity for the conducting planes is to
reduce the velocity slightly. This effect will be considered in a
later section.) Also from eq. (24), the cut-off frequency for the
TEM wave is zero. This means that for transverse electromagnetic
waves, all frequencies down to zero can propagate along the guide,
The ratio of E to H between the parallel planes for a traveling wave
is

Doy =

Ez
H,
which is just the intrinsic impedance, 1., Of free space.

A sketch of the TEM wave between parallel planes is shown in
Fig. 7-4.

7.06 Velocities cf Propagation. It was seen that except for the
TEM wave, the velocity with which an electromagnetic wave
propagates (in an air dielectric) between a pair of parallel planes
is always greater than ¢, the free-space velocity of electromagnetic
waves. In actual rectangular or cylindrical wave guides (to be
considered in chap. 9), the TEM wave cannot exist and the wave
or phase velocity is always greater than the free-space velocity. On

B _ B8 _ |u

H, e €

(7-32)
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the other hand, the velocity with which the energy propagates along
a guide is always less than the free space velocity. The relation
between these velocities is made clear by consideration of a simple
and well-known illustration. Figure 7-5 might be considered to
represent water waves approaching the shore line or a breakwater
a-a at an angle 6. The velocity of the waves could be determined

X
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Fic. 7-4. The TEM wave between parallel planes.

by measuring the distance A between successive crests and recording
the frequency f with which the crests passed a given observation
point. The velocity ¢ with which the waves are traveling would
be given by

c=MN
Alternatively, if one wished to determine the velocity ¢ without

going into the water, this could be done by measuring the angle 6
and the velocity # = v, with which the crests move along the shore
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line (in the z direction). This velocity would be given by
=X\

where X is now the distance between crests along the shore line.
Evidently # and X are greater than ¢ and respectively, and are
related to them by

< A
_ ¢ y
D= (7-33b)

When the direction of wave travel is nearly parallel to the shore,
that is, when the angle 6 is small, the velocity # with which the
crests move along the shore line is very nearly equal to ¢, the free-
space velocity of the waves. However, when the angle 6 is near

£ x
‘
7 @
g
2
T &
=l
z
a - a
L7 27 BREAKWATER OR
27 SHORE  LINE
Cd

<
F16. 7-5. Water wave approaching a breakwater.

90 degrees the velocity with which the crests advance along the
shore line is very great, and approaches infinity as ¢ approaches
90 degrees.

Consider now wave propagation within a wave guide. It is
always possible, though sometimes not too practical, to obtain
the field configuration within a rectangular guide by superposing
two or more plane waves in a suitable manner. For the TE,. o
waves in rectangular guides and for these same waves between
parallel planes as already considered, this separation into component
waves is quite simple. It is left for the student to show (problem 2)
that two uniform plane waves having the same amplitude and fre-
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quency, but opposite phases can be added to produce the. field
distributions of the TEn o waves. The direction of the component
waves are as shown in Fig. 7-6, where the angle 6 between the walls
of the guide and the direction of the waves depends upon the
frequency and the dimension a. For each of the component waves
the electric vector E will be in the y direction and the magnetic
vector H will lie in the z-z plane and will be perpendicular to the
direction of travel of that wave. In order to satisfy the boundary
conditions at the walls of the guide, the electric fields due to the two
component waves must add to zero at those surfaces. The only

X

Fia. 7-6. Dircction of travel of the component uniform-plane
waves between parallel planes.
way in which it is possible to have E, equal to zcro at the walls and
still have values cf E, at poirts between the walls is to have a stand-
ing wave distribution of I, across the guide, with the nodal points
of the standing wave occurring at the wall surfaces. This condition
requires that a, the scparation between the wells, must be some
multiple of a half-wavelength racasured in the direction perpen-
dicular to the walls. Referring again to Ilig. 7-5 the required con-
dition is that
m\;
2

where m is an integer and where A, is the distance between crests
measured in the z direction. Since A, = N\/sin 6, it is seen that
the condition on @ is

~

. mA
sin 0 = o7 (7-34)
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Because the sine cannot be greater than unity, it is apparent that
a, the separation between the walls must be greater than A/2, where
\ is the free-space wavelength cf the wave. The wavelength for
which
2a

A= s (7-35)
is the cut-off wavelength for that value of m. At the cut-off wave-
length sin 0 is unity and 6is 90 degrees. That is, the waves bounce
back and forth between the walls of the guide, and there is no wave
motion parallel to the axis. As \ is decreased from the cut-off
value, 6 also decreases, so that at wavelengths much shorter than
cut-off (very high frequency) the waves travel almost parallel to the
axis of the guide.

The wavelength X = A,, parallcl to the walls of the guide, which
is the wavelength ordinarily measured in wave guide work, is given
by
A

This is the distance between equiphase points in the direction of the
axis of the guide. The phase velocity in this direction is

A=

M
cos 0

- < ¢

v = = e ———

cos 0 /1 — (mA/2a)?

It is evident that because of the zig-zag path traveled by each of the
component waves, the velocity,* v,, with which the energy propa-
gates along the axis of the guide will be less than the free-space

velocity c. Interms of the angle 6, for a guide with an air dielectrie,
it will be

(7-37)

v, =ccos 0

In terms of the width dimension ¢ in wavelengths, it is

v, =¢ \/ : Tn—)‘_z (7-38)
? 2a
It will be noted that the product of the phase velocity and the veloc-

ity with -which the energy propagates is equal to the square of the

* This velocity, v, is the group velocity. The terms phase velocity, group
velocity, and signal velocity are discussed in more detail in Appendix I.
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free-space velocity, that is,
7 X v, =c (7-39)

As the frequency is reduced toward the cut-off frequency, the
angle 8 approaches 90 degrees, so that the phase velocity 7 becomes
very large, and the velocity with which the energy propagates
becomes very small. At the cut-off frequency 7 is infinite, but v,
is zero, that is propagation of energy along the guide by wave motion
ceases.

For a (lossless) dielectric in the guide having permittivity e
and permeability u, different from e, and p,, the velocity ¢ must be
replaced by v = 1/4/pe.

7.07 Attenuation in Parallel Plane Guides. The problem of
wave propagation between parallel conducting planes has been
solved for the theoretical case of perfect conductors, and the solu-
tions appear as eqs. (16a), (19a), and (30) for the TEy, o, TMm,0and
TEM modes respectively. In actual wave guides the conductivity
of the walls is usually very large, but it is never infinite, and there
are always some losses. These losses will modify the results
obtained for the lossless case by the introduction of the multiplying
factor e=* in eqgs. (16a), (19a), and (30). The problem now is to
determine this attenuation factor « that is caused by losses in the
walls of the guide. .

In order to see how a may be evaluated for wave guides, con-
sider the familiar problem of attenuation in ordinary two-conductor
transmission lines. For any line with uniformly distributed con-
stants, the amplitudes of voltage and current along the line (when
the line is terminated in its characteristic impedance) are

V="Voe (7-40)

I =1Ie= o (7-4)
and the average power transmitted is
W = ¥VI cos 6

= W Voloe % cos 0§ (7-42)

* This is not to say that there are no fields within the guide. In section 7.04
it was seen that below cut-off frequency # is real, so that & has value and B is
zero. This means that the fields then penetrate into the guide with an expo-
nential decrease in amplitude, and with no phase shift (for the infinitely-long

guide with perfectly-conducting walls). A wave guide operated in this manner
is known as an attenuator. .
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The rate of decrease of transmitted power along the line will be

oW

The decrease of transmitted power per unit length of line is
— AW = 2aW

and this must be equal to the power lost or dissipated per unit
length. Therefore

Power lost per unit length _ 2aW _

Power transmitted w 2

so that
_ Power lost per unit length
% = 727X power transmitted (=)

Using eq. (44), the attenuation factor can be determined for
more general cases of guided wave transmission where the terms
“voltage” and ‘“current’’ may no longer apply.

The computation of power loss in a wave guide appears at first
glance to be a rather difficult problem, because the loss depends
upon the field configuration within the guide, and the field con-
figuration, in turn, depends to some extent upon the losses. The
attack on this problem is one that is used quite often in engineering.
It is first assumed that the losses will have negligible effect upon
the field distribution within the guide. Using the field distribu-
tions calculated for the lossless case, the magnetic-intensity tan-
gential to each conducting surface is used to determine the current
flow in that surface. Using this value of current and the known
resistance of the walls, the losses are computed and « is determined
from (44). If desired, a second and closer approximation could
then be made, using a field distribution corrected to account for
the calculated losses. However, for metallic conductors of high
conductivity such as copper or brass, the first approximation
vields quite accurate results, and a second approximation is rarely
necessary.

ExampLE 1: Attenuation Factor for the TEM Wave. The expressions
obtained for magnetic and electric fields between parallel perfectly con-
ducting planes (Fig. 7-1) in the case of the TEM mode were

H, = C;eitwt=B2
E. = 1C, eit=p» (7-30a)
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The linear current density in each of the conducting planes will be given by
J=nXII
so the amplitude of the linear current dexsity in each plane is
- J=0C
The loss per square meter in cach conducting plane is
JR, = 15C R,

where L. = "‘ﬂ‘
20 m

is the resistive component of the surface impedance given by the expression

Z. = \/Jw#_»
Gﬂl

im and o refer of course to values in the metallic conductor. The
total loss in tha upper and lower conducting surfaces per meter length for a
width b meters of the guide is

Cilb
The power transmitted down the guide per unit cross-sectional area is
14 Re (E X H*), (7-45)

E. and H, are right angles and in time phase and |E.| = 9|H,}, so (45)
reduces to
Y4nC

For a spacing a meters between the planes the cross section arca of a
width b meters of the guide is b2 square meters and the power transmitted
through this area is

Power transmitted = 141C2ba

From (44) the attenuation factor is

=P = — nepers/meter (7.46)

This expression should be compared with the corresponding expression
for the attenuation factor of an ordinary transmission line (eq. 8-65),
which is

R
2Z,

o =
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where £ is the resistance per unit length of the line (that is fwice the con-
ductor resistance). :

ExampLe 2: Atienuction of TE Waves. The expressions for E and H

for the transverse electric modes between perfectly conducting parallel
planes (Fig, 7-1) are

. fmw e
E, = Cysin (— :t) eilwt—pe)
a

I

Ho=-% ¢ (’—’“—' .z) gitot—fo (7-168)
Wi a
H =™ 0 cos (ﬂ x) pitor—B
wua a

The amplitude of linear current density in the conducting planes will be
equal to the tangential component of I (i.e., Il.) atz = Oand z = o

o] = [H.| (atz =0,z = q)
m1rC'1
wea

I

It is interesting to note in passing that for these modes there is no flow
of current in the direction of wave propagation. The loss in each plate is

mwCy? V Ot/ 20 m

i (7-47)

1

é J y2R| =
The power transmitted in the 2z direction through an element of area
da =dzr-dyis

Power transmitted per unit area = 14 Re (E X H*) - da
—34(E,H.) dx dy

2
= 5—2—% sin? (? x) dz dy

Power transmitted in the z direction for a guide 1 meter wide with a spacing
between conductors of a meters is

T=a4 5 e 2
/ BC e ("fT" x) ) s AT (7-48)

=0 2wu 4op

Dividing twice expre_ssion (47) by twice expression (48), the attenuation
factor is

o= 2m21? A/ Wi/ 20 m
Bwpa?
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Recalling that § = Vv w?ue — (mm/a)? the expression for attenuation
factor for TE waves between parallel conducting planes for frequencies

above cut-off is
2m2r? \/ Wikm/20m
wpa® VvV wiue — (mmw/a)?

The value of this expression decreases from infinity at cut-off to quite low
values at higher frequencies. For frequencies very much higher than
cut-off the attenuation varies inversely as the three-halves power of the
frequency.

o= (7-49)

Attenuation Factor for TM Waves. The expression for the atten-
uation factor for TM waves between parallel conducting planes
can be obtained in a similar manner. It differs from expression (49)

]
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Fia. 7-7. Attenuation versus frequency characteristics of waves
guided between parallel conducting planes.

in that the attenuation reaches a minimum at a frequency that is
/3 times the cut-off frequency and then increases with frequency.
At frequencies much higher than cut-off the attenuation of the TM
modes increases directly as the square root of frequency.

A sketch of variation of attenuation with frequency for different
modes propagating between parallel conducting planes is shown in
Fig. 7-7.

7.08 Wave Impedances. In ordinary transmission line theory,
a brief discussion of which is given in the next chapter, extensive
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use is made of the ‘‘characteristic impedance,” Z,, of the line.
This impedance gives the ratio of voltage to current (for an infi-
nitely long line), and its real part is a measure of the power trans-
mitted for a given amplitude of current. In transmission line
theory power is propagated along one axis only, and only one
impedance constant is involved. However in three-dimensional
wave propagation power may be transmitted along any or all of
the three axes of the co-ordinate system, and consequently three
impedance constants must be defined. For example, in the Car-
tesian co-ordinate system the complex power per unit area trans-
mitted in the «, y, and z directions respectively is given by

P, = Y4 (E,H* — E.H,*) P, = V4(E.H.* — E.H,*)
P, = ,I/Z(Esz* - Esz*)

The real or average Poynting vector in any of the three directions
is given by the real part of the appropriate expression. It is now
convenient to define the wave tmpedances at a point by the following
ratios of electric to magnetic intensities:
E

Z+, = ﬁ': Zt, = ==
E E
+ = — Y + = — + = — ==
Zt,, yo zZ+, H, Z+,, H
These are the wave impedances looking along the positive directions
of the co-ordinates, and this fact is indicated by the supersecript
plus sign. The impedances in the opposite directions are the nega-
tive of those given above, and the negative direction is indicated
by a superscript minus sign. Thus in the directions of decreasing

co-ordinates
Z_W=_— Z_yz=_'— Z_“::—_f

E.

H, Zy = A, Z.. = H
Corresponding definitions would obtain for any orthogonal co-ordi-
nate system. In terms of these wave impedances the z, ¥, and z
components of complex Poynting vector are

Pz = %(Z+112H3H*l + Z+WHIIH*II) = _%(Z_IHH‘H*‘ + Z_HIHIIH*V)
P, = 14(Z*+,.H.H*. + Z*. . H H*)) = —14(Z~..H.H*. + Z~,,H.H*,)
P, = %(Z+WHIIH*II+Z+V=H=H*=) - %(Z_vaH*v +2.H.H*,)

Zt, =

|

(7-50)

2y =
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The subscripts on the wave impedances indicate the particular
components of E and H involved, and the algebraic sizns of the
wave impedances have been chosen so that, if the real part of any
given impedance is positive, the corresponding average power flow
is in the direction indicated by the impedance.

Applying these definitions to waves propagating between parallel
planes the wave impedance in the direction of propagation can be
found. For the TEM wave (the exceptional case where both E
and H are transverse), the wave impedance is given by eq. (32),
and it is seen to be equal to 7,, the same as for a uniform plane wave
in free space. For TE waves, the wave impedance can be obtained
from eqs. (17). Itis

Z+, = — L =LF (7-51)

where

2

1
/-\

o[3

N’

|

SN
=
™

The wave impedance in the z direction is constant over the cross
section of the guide. For frequencies below cut-off for which 7 is
real, the impedance is a pure reactance indicating no acceptance of
power by the guide and therefore no transmission down the guide.
For frequencies above cut-off ¥ is a pure imaginary (under the
assumption of perfectly conducting walls) and can be written

2
'7=j5=j\/w2#e—<ma£

T S, .. -
so that Zty, \/m 3 (7-52)
The wave impedance is real and decreases from an infinitely large
value at cut-off toward the asymptotic value of 7 = V/u/e as the
frequency increases to values much higher than cut-off.

These results could equally well have been obtained by con-
sidering the TE wave as being made of two uniform plane waves
reflected back and forth between the conducting planes and making
an angle 9 with the axis of propagation (Fig. 7-6). For the TE
wave propagating in the positive z direction the transverse com-
ponent of E will be E,, whereas the transverse component of H will
be —H, = —H cos 0; therefore the wave impedance in the z direc-
tion is '
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Z¥, = — E, ___E _ 1 (7-53)

Making use of cq. (37), this may be written as

(5]

n= ’B-‘
which is the same result as was obtained in (52).

For TM waves the transverse component of E will be E, =
E cos 6, whereas the transverse component of H will be H,. The
wave impedance for this case is

®

Zr, =

[+ MR-

Lty =5F = —— =ncosf (7-54)

It varies from zero at the cut-off frequency up to the asymptotic
value 7 for frequencies much higher than cut-off.

There is a marked resemblance between the properties of these
wave impedances and the characteristic impedances of the proto-
type T or « sections in ordinary filter theory. For example, the
wave impedance for TE waves between parallel planes may be
written as

. S Ui L
2 = o5 v/1 —sin? 6 (7-55)

Making use of the relations

sin0=ﬁ-)\: )\c=2—a: fe = 1

2a m - e Ve

where \. and f, are the cut-off wavelength and cut-off frequency,
eq. (55) becoraes

Z+ zr — 4— (7-56)
V=

This is similar to the expression for the characteristic impedance

of the prototype = section of a high pass filter, which is

ZOI’ = \/L/C

__VEEY 7.
= G Y0
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Similarly the expression for the wave impedance for TM waves
between parallel planes may be written as

Z+, =9 \[ 1 —_(‘f}:)é (7-58)

which corresponds to the expression for characteristic impedance
of the prototype T section of a high-pass filter,

Zyr = \/% \/1 o (fffy (7-59)

The wave impedances for waves between parallel planes are shown
as functions of frequency in Fig. 7-8. In Chap. 9 a general trans-
mission line analogy will be developed for TM and TE waves in
cylindrical guides of any cross-sectional shape.

o l//’// ) /1 a
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Fic. 7-8. Wave impedances for waves between parallel conduct-
ing planes: a, TE waves; b, TM waves.

In this chapter the characteristics of waves propagating between
two parallel planes have been considered in some detail. The con-
cepts developed in the treatment of this simple illustrative system
are quite general and may be extended to apply to all guided sys-
tems. In chap. 8 these general principles will be applied to ‘‘ordi-
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nary’’ two-conductor transmission lines, and in chap. 9 application
will be made to practical forms of waveguides. Before leaving this
simple system some consideration will be given to the electric field
configuration and current flow within the metal walls of the guiding
system.

7.09 Electric Field and Current Flow Within the Conductor.
When an electromagnetic wave is guided along the surface of a
conductor, currents flow in the conductor and charges appear and
disappear on its surface. The current distribution within the
conductor and the charge distribution on the surface can be obtained
from a straightforward solution of Maxwell’s equations, subject

—ree
E=Ey
H=-4 /g.:e'é}
IR R o =0
77 rarars Z
———pr
4 o =00

Fi6. 7-9. Current and surface charge on a perfect conductor that
is guiding an electromagnetic wave.

to the appropriate boundary conditions at the boundary surface
between the dielectric and the conductor. However the results are
somewhat complex and require interpretation. For this reason,
before obtaining the exact solution, it is advantageous to consider
in a qualitative manner, and from facts already known, certain
features of the problem.

In Fig. 7-9 a TEM wave is guided along the surface (in the
z-z plane) of a conductor which, for the moment, will be assumed
to be perfectly conducting. For the case considered the electric
intensity, E = jE,, will be normal to the surface, and the magnetic
intensity H = —iH, will be parallel to the surface. There will be
a surface current J,, flowing in the z direction, and related to the
magnetic intensity by the vector relation J = n X H, which in this
case becomes J, = —H,. Since E, = —u,H,, it follows that

E

Je = n—” (7-60)
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A surface charge density appears on the surface, the value of which is
given by
ps = Dy = &,E, (7-61)

From (60) and (61) it is seen that both p, and J. are proportional
to E,, so that at any instant of time the position of maximum charge
occurs at the same value of z as the position of maximum surface
current.

When the conductivity of the conductor is reduced from infinity
to a large but finite value such as obtains for ordinary metallic
conductors, the situation is meodified in several respects. The
chief effect is the introduction of a small tangential component
of E, which is required to drive the linear current density J against
the surface impedance Z, of the conductor. Making the assump-
tion (known to be very good) that H will not be changed appreci-
ably by the finite rather than infinite-conductivity, the tangential
component of E can be obtained from

E, =J.2, = —1I.Z,

= _n,,/%‘ = ~IL 2 a5

The horizontal or tanzentizl component of E is seen to lead —1II.
and therefore E, by an angle of 45 degrees. The conductor is con-
sidered to be sufficiently good that the inequality ¢ 3> we holds for all
frequencies considered. The depth of penetration, although small
for good conductors, is not zero, and the linear current density J.
is now distributed throughout the thicknéss of the conductor, with
approximately two-thirds of it concentrated within the ‘‘skin
depth” 5. The linear current density J, is still in phase with the
magnetic intensity —H, but the current density ¢. at the surface
is in phase with E,, and so leads — H, by 45 degrees. The penetra-
tion of the electric field and current waves into the conductor can
be visualized by employing an artifice which yields an approximate
but simple picture of the phenomena.

Since the electric field and current penetrate into the conductor
by means of wave motion, it is convenient to think of the metallic
medium as a large number of transmission lines, side by side guid-
ing energy into the interior of the conductor* (Fig. 7-10). The

*@. W. O. Howe, “Wireless Currents at the Earth’s Surface,”’ Wireless
Engineer, Vol. 17, No. 204, p. 385, September 1940.
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picture is particularly simple if it is imagined that there are perfectly
conducting strips, parallel to the z-y plane, imbedded in the metallic
medium and serving as the ‘‘conductors” of the transmission lines.

- "'JT"'1‘*"

| A ,rr
i
[l
|
[
I

!

I

I PERFECTLY
CONDUCTING STRIPS

() (b)

F1a. 7-10. Penetration of the electric field and current in a con-
ductor that is not perfect (approximate representation).
Considering now a square vertical column of unit width (in the
z direction and unit depth (in the z direction) as a transmission
line, it will have the following constants per unit length (in the y

direction):

(¢ = ¢ mhos/meter L = ; henries/meter
I’ =0 ohms/meter C = ¢ farads/meter

where o,u and e are the constants of the metallic medium. The
“input voltage” to each of these lines will be E. Az = E, (for
Az = 1). The “input current” per unit depth (in the z direction)
will be equal to this voltage divided by the input impedance of the
line. Assuming that the line is long enough so that any reflected
wave has negligible amplitude (that is, conductor thickness > §),
the input impedance will be equel to the ‘“characteristic impedance”’

of the line.
_ _ |R + jwL
Zin =20 = |G F juC
I I PR o
" No + jwe o /45

The “input current’ to each ‘“transmission line’’ flows down in one
conductor, through the medium, and back up the second conductor.
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If the input voltage were the same magnitude and phase for all lines,
the vertical currents of adjacent lines would cancel and the current
flow in the medium would be entirely in the horizontal direction.

This is the case when a uniform plane wave is incident normally
on the surface of a conductor. In this case there is no current flow
in the conducting strips and they may be removed without in any
way affecting the current flow in the medium. However, when E,
is caused by a radio wave traveling parallel to the surface of the
conducting medium, there will be a phase difference between the
input voltages of adjacent transmission lines equal to 2r Az/\, where
Az/\ is the width in wavelengths of the vertical columns. In this
case, there will be currents in the vertical strips as indicated in
Fig. 7-10(b), and, of course, this simple analysis is no longer exact.
However for a metallic medium where the depth of penetration is
very small, the error in this approximate approach is also small.
The picture could be improved upon by sloping the conducting
strips to be normal to the phase front of the wave advancing into
the metal. As the wave external to the surface advances in the
z direction with a velocity v. = w/B,, the wave penetrates into the
metal with a much slower velocity v, =~ w/B1. The first of these
velocities is approximately equal to the velocity of light in free space,
whereas the second is of the same order of magnitude as the velocity
of sound in air. The slope of the line AB, parallel to an equiphase
surface within the metal, is given by

Uy BO w \/;‘_5

B S BT Va2

= J

. g
For any good conductor the angle 1 is very nearly zero. For
example, for copper at 100 me, ¥; = 0.000079 degrees. Since the
direction of propagation of a wave is normal to the equiphase

surfaces, the statement, that in the metal the wave propagates
almost perpendicularly to the surface, is well justified.

Ricorous SorutioN. Having obtained a qualitative picture of what
hiappens within a conducting medium as an electromagnetic wave is guided
along its surface, it is now in order to set up and obtain a more rigorous
solution as a boundary value problem. The problem is that of finding
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solutions to Maxwell’s equations in regions O and I (Fig. 7-11), which will
fit the boundary conditions at the surface of the conductor.

REGION 0O
(AIR}
e (4]

T el 2z
REGION | X %5:/

(METALLIC CONDUCTOR}

Y

Fie. 7-11. Equiphase lines (solid) and equiamplitude lines
(dashed) for an electromagnetic wave guided along a conducting
plane.

The following assumptions will be made:

(1) No variations in the z direction. Therefore d/0z = 0.

(2) Variations in the z direction can be represented by e=7s in the
dielectric and by e-7- in the metal. The values of Yo and +y; must come
out of the solution.

(3) Variations in the y direction are as yet unknown and must be
solved for.

Then, again representing all time variations by e, Maxwell’s equa-
tions become:

Above the surface (Region 0): Within the conductor (Region I):
OE, . JdE, ,
dy + voE, = —jwp.H. a—y- +vE, = —jomH,
""Yon = jwevEﬂ (7'628‘) _'Yle = (a'l + jwfl)Ey (7-62b)
aH. . d0H. .
- y Jwe,E, - W = (01 + jwe:)E,
combining gives
02H, 02H. . .
oy T YH: = —olpeH. Gy T Ve = jom(on + jwe)H,
2 2
o THe FH

dy? ) dy?
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where ho? = (—7o? — wi.€r) where hi2 = (—7:2 + Y»?)
and  Ym? = jopi(o + jwer)

Solutions to these differential equations may be written as
H, = Cyehv + Cpre~mv  (7.63a) H, = Csetw 4+ Ciemv (7.63b)

In taking the square root of A%, if it is agreed that that root which has a
positive real part will be used, then only the second term of (63a) need
be considered. The first term represents a field which becomes infinitely
large at y = o. Since this could not represent a physical field, this first
term will be discarded by putting C; = 0. Similarly within the conductor,
the second term represents a nonphysical field that becomes infinite at
y = — . Therefore C4can be put equal to zero. Showing the variations
with time and in the z direction, the expressions for magnetic intensity can
now be written

Above the surface: Lelow the surfzce:
II, = Cyehov eliwt—vo2) H, = Cjethw glivt=ms)

At the surface (y = 0), these expressions must be equal at all instants of
time and for all values of 2z, because H. must be continuous across the
boundary. This requires that C: = ('3 and Yo = 7i. Then the expres-
sions for vertical and horizontal components of electric intensity can be
written:

Above the surface: In the conductor:
E, = .1"0_2 e—hov gliut—yys) B, = — _ﬂ ey glizt—7e0)
Jwer a; + jwer
E, = ’f°C’ e—hov glivt—7e9) E, = — LC_’_ My glivt=vyn)
Jwey gy + Jwes

At y = 0 the expressions for E; must be equal. Therefore
he —h —hy

3_; = F Tt ~ = (for metallic conductors)
v 1 1 1
iweoh — %2
ho=-—'—7m€T—l ho? = :’:' hy?
1 1
w,?
Yot = —whpes — het = —wiues + o (—70t + 77

From this,

Jwpi€y
~ ‘_(02 o ] —%¥——
L \/ K ( K01 )

Niﬁ\/l_ie#ﬁ
¢’ Hol1
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For nonferrous metallic conductors u; = pu,, €; =~ ¢, so that

'Yo=’le'7io l_]_w_e,
[ (/57

h°2 o _a_’? jﬁ? ho ~ _‘i‘i’ ‘i.w_e:
¢\ o1 c a1
h = Vjop.o

The resultant expressions for the fields in the two regions are

Above the conductor: Within the conductor:

H, = Cz e—hoy g(iwt—"0z) 1:1'= = 02 ey gliot—vos)

Ev = ._‘YO H, = —‘ﬂuH, Ev ~ :]ﬁ?"lsz
Jwei’ o1

PR S \/Jwé, H.( (7648) g . _ ek g b (7.64b)
Jwey o1 a1

E, Yo o1 E, WEp

V= - D — —45° ok S

E. ho Wy / 5 E, 01 /45 Y

It is seen that in the region of the air dielectric, outside the conductor, the
electric intensity is ailmost normal to the surface. The field is elliptically
polarized, the small horizontal component of E leading the vertical com-
ponent by 45 degrees. Within the conductor the field is almost horizontal
or parallel to the surface, the very small vertical component leading the
horizontal component by 45 degrees.

The equiphase and equiamplitude surfaces can bz obtained from the
first of egs. (64a and b). Dy letting

Yo= oo+ By, ho=7po+3iq,  hi=p+in
these equations can be written as

H. = Cgel~rpov—0s) giwt—av=Boe) (in the dielectric)
and II; = C.etmy—aon) git+aiv=hon) (in the conductor)

Equiamplitude surfaces are obtained by setting the real exponents equal
to a constant. This leads to

= Y _ % ’ﬁ’ i i ; i
tan xo = 2= e %, (in the dielectric) (7-65)
1 €5 o s
tan x; = g = 2 ~ % % (in the conductor) (7-66)
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Equiphase surfaces are obtained by setting the imaginary exponents equal
to a constant. The slopes of the equiphase surfaces are given by

(m the dielectric) (7-67)

tanyg, =Y = ﬁgl ~ \/% (in the conductor) (7-68)

The angles Xxo, X1, Yo, and ¥, are shown in Fig. 7-11 where the equiphase
lines are shown solid and the equiamplitude lines are shown dotted. In
order to show the angles, their sizes have been very much exaggerated in

| VEYBo=l
€ :
{

SURFACE

CHARGE

DENSITY

-y + 7 | = - - =" = 5 ry FT+
+ - - +
+ = - +
+ |- T'ERS y |- '0

SKIN e i ebe ek e o ol = <k - T bl ==
DEPTH 7 7 Vil
7 >
/ ¢
go 4 / b
@ i £ ! | [
o Z L / » r
3 / ’ . |
y. P / |
Ks) / 1
/8
» /,,/ (m
/ / e /3.{
A /,,"
o /53 a2
1Y 7

Fi. 7-12. Instantaneous current distribution within a copper
conductor as a 100-mc wave is guided over its surface. (The ver-
tical scale has been expanded by a factor of 105, and the vertical
current scale is 10°% times the horizontal current scale. Lengths of
arrows refer to magnitudes at tail of arrow.)

this diagram, It is seen from egs. (65) and (67) that in the dielectric the
equiphase and equiamplitude surfaces are mutually perpendicular. In
the conductor both equiamplitude and equiphase surfaces are nearly
parallel to the surface, with the equiamplitude surface making a much
smaller angle than the equiphase surface.
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Within the conductor the conduction current density, given by
" i=¢E

is seen to have both horizontal and vertical components. Using eqs. (64b)
it is possible to make an instantaneous plot of current flow in the conductor
as the electromagnetic wave is guided along its surface. This has been
done in Fig. 7-12 for a copper conductor at 100 mc. In order to show the
current flow adequately the vertical scale has been expanded by a factor
of 100,000. The current magnitudes, indicated by the lengths of the
arrows, are drawn to scale, but the vertical current scale is 10° times the
horizontal current scale. Thus, if a horizontal current density of 1 ampere
per square meter is represented by an arrow of unit length, an arrow of
the same length in the vertical direction represents only 10 microamperes
per square meter. It is apparent from the figure that the vertical currents
are very small compared with the horizontal currents. However, it is
these minute vertical currents that bring to the surface the charges on
which the external electric flux terminates. Since total current normal to
the surface must be continuous across the boundary surface, the vertical
conduction current within the conductor at the surface is equal to the
displacement current normal to the surface in the dielectric (the displace-
ment current in the conductor is negligible). These vertical currents are
a maximum at those places where the charge density on the surface is zero.

The plot of Fig. 7-12 is for a single instant of time. As time passes,
the entire field configuration shown sweeps to the right with a velocity
approximately equal to the velocity of light in free space.

PROBLEMS

1. A TEM wave is guided between two perfectly conducting parallel
planes (Fig. 7-13). The frequency is 300 me. Determine the voltage

¥ T
i .
o —-Ilcm/|—

F16. 7-13

reading of the (infinite impedance) voltmeter (a) by using Maxwell’s
electromotive force law (Faraday’s induction law); (b) in terms of voltages
induced in conductors which are parallel to the electric field.

2. Show that the field configuration of the TE,,o wave between parallel
planes can be obtained by superposing two plane waves that are reflected
back and forth between the walls of the guide as indicated in Fig. 7-6.
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3. (a) Derive an expression for the attenuation factor for the TMy.o
wave between parallel conducting plancs.
(b) Verify that the attenuation is a mizimum at a frequency which is

4/3 times the cut-off frequency.

4. For any uniform transmission line, for which &, L, C, and G per unit
length are independent of position along the line (and, of course, inde-
pendent of the magnitude of voltage and current), show that variation
along the line of ¥ and I can always be represented by an exponential law.

5. Use Maxwell’s equations to show that it is impossible for the TEM
wave to exist within any single-conductor wave guide (such as an ordinary
rectangular or circular guide).

Hint: For ﬁ H - ds to have value in the transverse plane, there must
be a longitudinal flow of current (conduction or displacement).

6. A plane wave propagating in a dielectric medium of permittivity
¢, and permeability u, = p. is incident at an angle 6, upon a second
dielectric of permittivity €. and permeability p2 = p.. The wave is polar-
ized parallel to the plane of incidence. Then, if the electric and magnetic
intensities of the incident wave are E; and II;, the component of £y parallel
to the boundary surface will be E cos 6, and the component of II, parallel
to the surface will be Hj, so that the “wave impedance” of medium (1) in
a direction normal to the surface would be E; cos 0,/1I, = 7 cos 6.
Similarly the “wave impedance” for the refracted ray in medium (2) in the
direction normal to the surface would be Ej; cos 8z/Hz = 52 cos 02 It
would be expected when these impedances normal to the boundary surface
are equal that there would be no reflection at the surface. Show that the
condition that these impedances be equal is the same condition that led
to the Brewster angle in eq. (5-73).

7. (a) In Chap. 9 (eq. 9-56), the expression for phase velocity in a

rectangular guide of any cross-section is shown to be # = vo/V' 1 — wt/w?
where w, is & constant which depends upon the dimensions of the guide.
Show that the group veclocity defined by v, = dw/dB is given by

v, = v V1 — wl/w? _
(b) Using the definition v, = dw/dB, show that eq. (7-38) follows from
(7-37).
BIBLIOGRAPHY
See bibliography for Chap. 4.




CHAPTER 8
TRANSMISSION LINES

8.01 Introduction. In the study of wave propagation between
parallel planes, it was found that there were many possible modes
or types of waves which could be propagated. Except for the
special case of the transverse electromagnetic (TEM) wave, how-
ever, all of these modes require a certain minimum separation (in
wavelengths) between the conductors for propagation to be pos-
sible. Only for the TEM wave could the conductor separation be
small compared with a wavelength. This statement also holds for
practical transmission lines, such as coaxial or parallel-wire lines,
and it is for this reason that only the TEM mode need be considered
at low frequencies, that is at power, audio, and radio frequencies
below 200 or 300 me. All other modes would require impractically
large cross-sectional dimensions of the guiding systems. If a system
of conductors guides this low-frequency-type TEM wave, it is
called a transmission line, whereas if it supports TE or TM waves,
it is called a wave guide. Transmission lines are considered in this
present chapter and wave guides will be studied in chap. 9. Trans-
mission lines always consist of at least two separate conductors
between which a voltage can exist, but wave guides may, and often
do, involve only one conductor; for example, a hollow rectangular
or circular cylinder within which the wave propagates.

Although the TEM transmission line wave is but one special
case of guided wave propagation, it is so important practically,
that it is usually treated as ‘“‘ordinary transmission line theory’’
quite early in the training of the electrical engineer. In this treat-
ment, circuit concepts are extended to cover this distributed-
constants circuit. It is the purpose of this chapter to show how the
circuit approach follows directly from-Maxwell’s equations, and also
to review briefly transmission line theory, especially as it applies
in the case of low-loss lines. It will be found that many of the

211
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results and conclusions of ordinary transmission line theory may be
applied with slight modifications to the more general cases of wave
propagation. In particular, the concept of impedance developed in
circuit theory can be carried over to transmission lines, and then
extended to general wave propagation. This makes it possible,
instead of working separately with ¥V and I or E and H, to deal with
their ratio, which is usually the important quantity in engineering.
Actual two-conductor transmission lines usually take the form
of parallel-wire or coaxial lines. Before considering these practical
cases, however, circuit concepts will be developed for the simpler
case of a parallel plane transmission line carrying the TEM wave.
8.02 Circuit Representation of the Parallel-plane Transmission
Line. In communication engineering a transmission line carrying
the principal (TEM) wave is represented as a distributed-constants
network having a series impedance Z = R + jwL per unit length
and a shunt admittance ¥ = @ + jwC per unit length. It is instruc-
tive to draw the equivalent cir-
V4 4 0, cuit and evaluate the constants

/ /
| | | for the parallel plane transmis-
c= - sion line of Fig. 7-1. For the
l I | special case of perfectly conduct-

4 5 G ing planes and a perfect (lossless)
dielectric, the series resistance
and shunt conductance are both
zero, so that the equivalent cir-
cuit representation is that of Fig. 8-1, where there is an inductance L
per unit length and a capacitance C per unit length. The values
of these constants in terms of the line dimensions and the constants
of the medium between the planes can be obtained directly from
Maxwell’s equations.

Consider the various sections of a parallel-plane transmission
line shown in Fig. 8-2. It is assumed that the line is carrying the
TEM mode in the positive z direction, so that E = iE,and H = jH,.
The linear surface current density in the lower plane is J, = H,.
The separation between the planes is ¢ meters and, although they
are infinite in extent in the y direction, a section b meters wide will
be considered as being the transmission line. (By making this
section a part of planes of infinite extent the field will not depend on
y, and edge effects are eliminated.) Applying the emf equstion

F1c. 8-1. Circuit representation of a
lossless line.
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to the closed path ABCDA

§E-ds= —/SE-da

Vas 4+ Vee + Veo + Voa = —jwBya Az (8-1)

becomes

where, as usual, time variations as ¢/ are assumed. = For perfectly
conducting planes the tangential component of E is zero and so

VBC = VDA = 0
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Fie. 8-2. Parallel-plane transmission line.

which leaves
Vep — Vea = —ij,,aAz

Dividing through by Az and expressing in the differential form

dv .
—dz = —]wBya (8‘2)
It will be seen that

I
Bﬂ=l‘Hﬂ=l’-Jz=Eb_

where I is the current flowing in the strip of width b meters. There-
fore, eq. (2) becomes
av _ juepa

Pl b I (8-3)
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Comparison with the ordinary circuital form of the transmission line
equation

4~ —joLr (84)
shows that for the parallel plane transmission line of width b meters
and spacing a meters

L= #% (8-5)

Similarly by writing the mmf equation for the path FGHK in the
y-z plane gives g

bHpe — bHxr = jweE.b Az (8-6)
which becomes

d(l:ilz{u) = —jweBd

Replace bH, by bJ, = I and E. by V/a. Then

ar _ _ job
i " (8-7)
Comparison with the usual equation
dI .
shows that for the parallel-plane transmission line
b
C=c¢ p (8-9)

It is seen that for a parallel plane transmission line the induct-
ance per unit length is simply the permeability u of the medium
multiplied by a geometry factor a/b, which in this case is propor-
tional to the spacing and inversely proportional to the width of the
line. Also the capacitance per unit length is the dielectric constant
¢ of the medium, multiplied by a geometry factor which, in this
case, is proportional to the width and inversely proportional to the
spacing. The reciprocal of the square root of the product of L
and C gives the velocity of wave propagation along the line. That
is,

v = 1_ (8-10)
Ve

B
Q
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For lines of different cross section the geometry factors will of
course be different. However, since the velocity of propagation
is given by » = 1/4/IC for all uniform unloaded lossless transmis-
sion lines, and since the velocity is independent of the line geometry
(whether parallel-wire, coaxial, etc.), it follows that the geometry
factors for L and C must always be reciprocal (for lossless lines).
For example, for parallel-wire lines it was found in chap. 2 that the
capacitance per unit length was

e

C = Ll - : (8-11)
2 2
2a 2a
Therefore, the inductance per unit length must be
b2 — 42
e ln !)L\%z ) 1 cosh™! (%)
L = = (8-12)

T T
It is, of course, more than just a coincidence that the geometry
factors for the L and C of a line are reciprocal. The significance of
this relation is discussed in section (8.05).

A clear concept of the meaning of the permeability constant g
and dielectric constant e is obtained from the parallel-plane trans-
mission line of Fig. (8-2). If this line has unit width and unit separa-
tion, so that @ = b = 1, then

L=y. and C =c¢

Thus ¢ is the capacitance between conductors of 1 meter length of
the parallel plane line, which is 1 meter wide and has a separation
of 1 meter. Similarly, p is the inductance per meter length of the
same line. In terms of voltage and current, p is a measure of the
change per unit length of the transverse voltage when the current
is changing at the rate of 1 amp/sec. Also the dielectric constant e
is a measure of the capacitive (displacement) current flow per unit
length when the voltage between the planes is changing at the rate
of 1 volt/sec. In terms of electric and magnetic fields, u is a meas-
ure of the rate of change of E with distance owing to a change of H
with time. Similarly, e is a measure of the rate of change of H with
distance owing to a change of E with time. Of course this is just
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the information conveyed by Maxwell’s equations in their differ-
ential form.

In one respect the equivalent circuit representation of a trans-
mission line may be misleading. In the equivalent circuit there
exists a voltage drop L(dI/dt) along each unit length of line. In
the actual line, since E tangential to the surface of a perfect con-
ductor is always zero, the voltage drop along the surface of the line
is necessarily zero. Even if the conductors are imperfect so that
an E parallel to the surface of the conductors is possible, the only
voltage drop along the line would be that due to the current flow
through the surface impedance, and this is ordinarily very small as
has already been seen. The L(dI/dt) drop in the equivalent circuit
represents in the actual line the change per unit length of the trans-
verse voltage between conductors. With a zero voltage drop along
paths tangential to the (perfect) conductors, the difference of the
transverse voltages AB and DC is equal to the induction voltage
—d®d/dt around the closed path ABCDA (Fig. 8-2). But in the
equivalent circuit representation of Fig. 8-1, where fields are not
considered, the voltage around the closed path A1B1C1D14; is zero.
Therefore the induction voltage —d®/dt (which is responsible for
the change in transverse voltage along the line) is shown as a series
voltage, drop, —L dI/dt, across a lumped inductive reactance.

The characteristic impedance of the lossless parallel plane trans-

mission line is
L jua _ a
Z°—\E~—\[za—"z (®-13)

For the line of unit dimensions, a = b = 1, the characteristic imped-
ance is just the intrinsic impedance of the dielectric medium between
the plates.

8.03 Parallel-plane Transmission Lines with Loss. If the par-
allel plane transmission lines have loss, the results obtained above
must be modified. The loss in the line will be due to the resistance
of the conductors and to any conductivity of the dielectric between
them. Again applying the electromotive force equation around
the path ABCDA of Fiz. 8-2, the voltages Ve and Vpa will now
not be zero but will each have a value

Vee = Vpa = JZ, Az
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This is the voltage drop in length Az of each conductor due to J,

flowing against the surface impedance Z,. Then eq. (1) becomes
Vep — Vpa = —ij’,,a Az — 2J.7Z, Az (8-14)

Writing B, = pll, = pJ, = uI/b, and putting (14) in the differen-
tial form,

WV oo oLl =21 = —GoL+ 20 ($19)
where, as before, L= Ebg
el 7 = 25' (8-16)

is the series impedance per unit length of the line (that is twice
the surface impedance of a width b of each conductor). The imped-
ance Z’ is complex and can be written as Z’ = R’ 4 jwL’ where
R’ will be the series resistance per unit length and jwL’ will be the
surface or internal reactance per unit length. Then eq. (15) can
be written
%’ = —[R' + jol’ + DI (8-150)
If the dielectric between the conducting plates is not perfect,
but has a value ¢, then there will be a transverse conduction current
density ¢E, which will modify the magnetomotive force around the
rectangle FGIIK. Instead of (6) the mmf equation will now be
—(bHgy — bllpe) = (¢cE, + jweE,)b Az
dll,) _ .
= b(e + jwe)E,
Replacing bH, by bJ, = I and E. by I;’

a_ —(’E+j“’—"’)v

Then

dz a a

= —(@ + juC)V (8-17)

where C = eb/a is the capacitance per unit length and G = bo/a
is the conductance per unit length of line.

Equations (15) and (17) are in the circuital form, familiar to
engineers, and may be solved to yield the well-known *‘ transmission
line equations.” Before carrying out the solution, Maxwell’s equa-
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tions will be applied to two practical transmission lines, the coaxial
line and the parallel-wire line, to show the development of the same
relations [eqs. (15) and (17)]

for them.

c Lb ) , 8.04 Coaxial and Paral-
lel-wire Lines. The circuit
constants for the equivalent

Fio. 83. Cosxial transmission line. circuit of a coaxial or paral-

lel-wire line can be obtained

in the same manner as in the case of parallcl planes. In the coaxial

line of Fig. 8-3 we can apply Maxwell’s emf equation to the closed
path ABCDA, for which AD = BC has unit length.

Vas + Vee+ Veo + Voa = — = = —jud
Veo — Vea = —jud — Z'I — Z""I  (8-18)

where IZ’ and IZ" are the voltage drops per unit length along the
inner and outer conductors, respectively. For perfect conductors
these would be zero. If the magnetic flux per unit length of line
is related to I by

¢ =LI (8-19)
eq. (18) may be written
Y e @+ 27 4l (8-20)

Z' and Z"' are the surface or internal impedances per unit length
of the inner and outer conductors. If the depth of penetration is
small compared with the radii of the conductors, these are given by

I_Za II_Z3
Z =5 %" =33

where Z, is the surface impedance of a plane conductor of unit length
and unit width, and a and b are the radii of the inner and outer
conductors. The resistance per unit length of line will be the real
part of the sum of Z’ and Z””. That is

(L,
o 20 (27ra + 21rb)

=\ L{% (711 + %) ohms/m (8-21)
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The surface or internal reactance of the conductors will have this
same value. The internal reactance of the conductors should be
added to the external reactance jwL to obtain the total reactance
per unit length. The voltage equation may be written

% = —(R + jol)I (8-20a)
where I is given by (21) and wL is the sum of the external inductive
reactance and the surface
reactance just determined.

To obtain the current C R N
equation apply Maxwell’s P m B O
emf equation to the closed L ;2
path ABCDEF A on the sur- Fia. 8-4
face of the inner conductor
and let the length FA = DC be vnity (Fig. 8-4). Designating the
magnetomotive force by &,

Fanc + Fep + Forr + Fra = 1, (8-22)

Jn

I, is the current normazl to the surface enclosed by the path A BCD-
EF A ; that is, I, is the transverse current per unit length from the
inner to the outer conductor. In general, I, will consist of a leakage
or conduction current, ., proportional to the voltage, and a displace-
ment current, I, proportional to the rate of change of voltage.
Let @ and C be preportionality'factors such that

I. =0V and v =CV (8-23)

¥ ig the electric displacement from the surface enclosed by the path,
and the displacement current will be

d¥v dVv
=@ - %

I,
Therefore, the right-hand side of (22) becomes

I. = (G + juO)V
Considering terms on the left-hand side of (22),

Fep = —Fra Foer = I) Fepa = I




220 TRANSMISSION LINES {§8.05

so that the left-hand side reduced to
Fase + Foer =11 — I,

-4
dz
The current equation is then
Z—: = — (@ + OV (8-24)

Equations (20a) and (24) are the familiar circuital form of the trans-
mission line equations. L and C are the inductance and capacitance
per unit length of line. For a coaxial line, having perfect con-
ductors, L and C are defined by (19) and (23). For conductors
having large but finite conductivity, the value of L will be slightly
greater than that obtained for the ideal case, although the difference
is usually negligible for efficient (low-loss) transmission lines.

The equivalent circuit and differential equation for a parallel-
wire line are derived in a similar manner. It is left for the student
to carry this through, and to derive the expressions for L and C for
this case.

8.05 E and H about Long Parallel Cylindrical Conductors. In
section 8.02 it was found that,the geometry factors for the L and

C of parallel perfectly con-

ducting cylinders were al-
£  waysreciprocal. Asmight
be suspected, this interest-
ing result is not just a coin-
cidence, but follows as a
logical consequence of the
similarity that exists be-
tween all two-dimensional
clectric and magnetic field
distributions. It is well
known that lines of E and
H about long parallel cir-
cular cylinders are always orthogonal, and that the magnitudes
of E and H are related at all points by a constant factor that
is dependent on the charge on the conductors and the current flowing
through them. It is easy to show that this same correspondence
between electric and magnetic fields must hold even in the more

Fic. 85. Parallel cylinders of arbitrary
cross section.
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\
general case where the parallel cylinders have any arbitrary cross
section as in Fig. 8-5.

The static electric field configuration is obtained as a solution
to Laplace’s equation subject to the boundary conditions of the
problem. In rectangular co-ordinates, for two dimensional fields
that are independent of the z co-ordinate, Laplace’s equation is

v | oV

where V is the (electrostatic) potential, the gradient of which gives
the electric field. Similarly, the magnetic field configuration can
be obtained as the curl of a magnetic (vector) potential that has
the direction of the current producing it. When the conductors
are entirely in one direction, say the z direction, the vector potential
has only one component 4., and the components of magnetic inten-
sity lie in the z-y plane and are given by

34, 04,
H. = "oy oz

Under these conditions it can be readily shown that A, (which now
may be treated as a scalar quantity) also satisfies eq. (25). In a
region-in which there are no currents, Ampere’s law indicates that
the line integral of H around every closed path is zero. That is

f H.ds = 0. The diffcrential vector statement of this law is
curl H =0 (8-27)

For this case where there is no z component of H, relation (27)
becomes

H,= -

(8-26)

oH, _ 0H, _
ay ax

Inserting relations (26) gives
%A, | 9?4, _

Thus for two-dimensional magnctic fields the potential A, satisfies
Laplace’s equation, and the configuration of the magnetic field,
obtained from (26), is always such that relation (28) is satisfied.
In addition, of course, the boundary conditions of the particular
problem must also be satisfied.
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Now consider the problem of two parallel cylindrical conductors
(assumed perfectly conducting) that carry equal and oppositely
directed currents I. For the d-¢c case the current is uniformly
distributed throughout the conductor, but for rapidly alternating
fields, because of the phenomenon of skin effect, the current exists
only near the surface of the conductor. Although this is a d-c
field analysis, the results will be applied chiefly to the alternating
field cases, so the assumption of current concentrated in a thin
sheet at the surface of the conductor will be used. Except when
the spacing between conductors is large compared with their diam-
eters, the current distribution around the circumference of the
conductor will not be uniform. The actual current distribution
will be such that the boundary conditions at the surface of the
conductor are satisfied. This is similar to the electrostatic problem
where the charge distribution around the cylinders was such as to
make the cylinders equipotential surfaces, and satisfy the condition
that Eune = 0.

The corresponding boundary condition for the magnetic inten-
sity is that Huem = 0 (for a perfect conductor). That is, the
magnetic intensity at the surface is entirely tangential. Equations
(26) indicate that if the magnetic intensity normal to the surface
is zero, there can be no change of A, in a direction tangential to the
surface. Therefore the conductor must also be an ““equipotential ”’
surface for the magnetic potential A,. Because in this case both
A, and V satisfy Laplace’s equation, and in addition satisfy the
same boundary conditions, it follows that the expressions for A4,
and V will always be identical, except for some constant factor.
Then, because

av 04,
E, = - 5 H, = 3y

v _ 94, -
E, = — w B (8-29)

it follows that E and H will always be orthogonal, and that their
magnitudes will be related to each other by thc same factor that
related V and A,.

The elcctric and magnetic field configuration obtained from solu-
tions of Laplace’s equation are for the electrostatic and steady cur-
rent cases, respectively. In general, it would not be expected that
these same solutions would hold for alternating fields, especially
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at high frequencies. It turns out that for two-dimensional fields
however, the field configurations obtained for the static cases also
hold for the alternating cases. This is because the general Maxwell
emf and mmf equations reduce to their steady-field counterparts
in the two-dimensional case. For example, the mmf equation in
the z-y plane for the region outside the conductors (no conduction
current) is

curl, H = ¢E, (8-30)

But for two dimensional fields in the z-y plane, E, is zero so that
for any path in this plane this equation reduces to eq. (27), which
yielded the Laplace equation (28). Similarly the Maxwell emf
equation
cur, E = —uH, © (8-31)
reduces to
cur, E =0 (8-32)
for the two-dimensional problem. Equation (32), the integral form
of which is

ji E.-ds =0 ' (8-33)

states that for any path in the z-y plane the electric field is con-
servative. Therefore, E is derivable as the gradient of a scalar
potential ¥, and in a region in which there are no charges, the

relation
divE =0
leads directly to Laplace’s equation.
8.06 Transmission Line Theory. The differential equations
(20a) and (24) relating voltage and current along a transmission line
may be solved to yield the transmission line equations.

av

i — (R + joL)I .. (8-20a)
8 - —@+iC)V (8-24)
Differentiating and combining gives
v ., ;
TRV (30
2 L
&L - (8-35)

where v = (R + ]wL) (G + ]wC)




994 " TRANSMISSION LINES (§8.06

Solutions to eqs. (34) and (35) may be written in either exponential-
or hyperbolic-function form. In the exponential form, viz.,

V=Ver+ V' er (8-36)
I=Ie¢r 4+ 1"t (8-37)
the solutions are shown as the sum of two waves, one traveling in
the positive z direction and the other traveling in the negative 2
direction. The ratio of voltage to current for the wave traveling
in the positive z direction is
VI

7 = Zg (8-38)

whereas for the ““reflected” wave traveling in the opposite direction

Kf
III

Z, is the characteristic impedance of the line and is related to the
so-called primary constants R, L, C, and G by

_ |R + juL
Zy = 4 ’ ] (8-40)

If the line is terminated in an impedance Zx located at z = 0, the
ratio of V to I at this point will be equal to Zz so that

7 = Z _ V' + v _ Zo(I' _ I//)
R I—I/+II/__I/+I//

These relations can be recombined to give the rcflection coefficients,
V" _Zr— 2y I" _Zy— Zx
V'~ Zz + Zs I  Zo+ Zz

In the hyperbolic-function form the solutions to (34) and (35)
are

= —Z, (8-39)

(8-41)

V = A, cosh ¥z + B, sinh ¥z
I = A, cosh yz + Bz sinh 42 .(8-42)
The constants A;, As, B; and B: are evaluated by applying the
boundary conditions. Let
V = Va, I =1Ig atz =0
V=Y, I =1, at z = 21
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substituting these relations in (42) and using eqs. (20a) and (24),
Ve = Ve cosh vz, — Z,I sinh vz,
I,

I cosh vz — % sinh 72 (8-43)
0

It is usual to make the location of the terminating impedance Zz

the reference point (z = 0), and to consider the sending end as

being to the left of this reference point, that is, in the —z direction

as in Fig. 8-6. Then letting [ = —z,, eqs. (43) become

Ve = Ve cosh vl + ZoIz sinh yI (8-44)
I, = I; cosh vl + 22 sinh 1 (8-45)
0
where [ is measured from the receiving end of the line.
5. k.
N lé 20 %4 VR
----- 2
2
20
F1c. 8-6

These are the general transmission line equations that relate
the voltages and currents at the two ends of the line. The general
expression for the input impedance of the line is obtained by divid-
ing (44) by (45), that is,

_ Vs _ Vecosh vl + ZIr sinh vl
Zin = T, = Tncosh 11+ (Vs/Z5) sinh 71 (8-46)
Certain special cases are of interest. For a line short-circuited
at the receiving end, Z» = 0, and therefore V = 0, and the input
impedance is '
Zy. = Zy tanh vl (8-47)

On the other hand, for an open-circuited line Zz = e, I = 0, so
that the input impedance is

Zo = Zy coth vl (8-48)

8.07 Low-loss Radio Frequency and UHF Transmission Lines.
The low-loss transmission line is of special interest to the engineer
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concerned with the transmission of energy at radio and ultrahigh
frequencies. There are two reasons for this. First, most practical
lines designed for use at these frequencies will be low-loss lines.
Second, at ultrahigh frequencies, sections of low-loss line are used
as circuit elements, and a knowledge of the operation of such “dis-
tributed-constants circuits” is of considerable importance.

A low-loss transmission line is one for which

R K wL (8-49)
G Kl

where R, L, C, and G are the resistance, inductance, capacitance, and
conductance per unit length of the line. When the above inequali-
ties hold, the following approximations are valid:

Z = R 4+ jol, = juL

Y = Q@+ juC = juC

_ R+i@ﬁ~\/§ g
Zo = \lGF juC = NT , (8-50)

v = V(R + juL)(G + juC) = jo v/LC (8-51)

Since ¥y = a + jB, this last expression gives
a =0 (8-52)
8 =~ wLC (8-53)

The approximation for 8 is very good for low-loss lines, but occasion-
ally the approximation of zero for « may not be good enough, even
though « is very small compared with 8. A closer approximation
for « may be obtained by rearranging the expression for v and
using the binomial expansion. Thus

. R G

v —J“’V"C\/(l +m)(l+m
. R G
o vIo(1-+ 5) (1 5c)

: R G
= jo \/Z_Z’(l t oL T 2ij)

o R GVL/C | . A
: avict g2 TRVIC
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which gives @ ~ %(g— + GZ.,) ©(8-54)
0
B =~ wILC (8-55)

The more correct value for a given by (54) need only be used in
place of (52) when the line losses are being considered. As far as
voltage and current distributions are concerned, the attenuation
of most low-loss ultrahigh frequency lines is so small that the
approximation a = 0 gives satisfactory results. This may seem
strange in view of the fact that R, and therefore a, increases with
frequency, and « is not usually neglected at low (power and audio)
frequencies. The explanation for this apparent paradox is that
although a, the attenuation per unit length, increases approximately
as the square root of frequency, the attenuation per wavelength
decreases as the square root of the frequency. Transmission lines
are ordinarily a few wavelengths long at most, and al can usually
be neglected (compared with 8l) at the ultrahigh frequencies. Thus
for many purposes, low-loss lines may be treated as though they
were lossless; that is, asif R =G = a = 0.

Using the approximate values for the secondary constants
given by (50), (51), (52), and (53), the general transmission lines
become for this low-loss, high-frequency case

V.= V& cos Bl + jI:Z, sin 8l (8-56)
I, = Ip cos Bl + j% sin 8l (8-57)
1]

where now Z, =~ v/L/C is a pure resistance.
The input impedance of such a line is

v,
Z. = —I—,
o (cos Bl + §(Zo/Zx) sin /31)
" 7% \cos Bl + j(Zz/Z,) sin B

_ (Z,e cos Bl + jZ, sin /31)
~ “°\Z, cos Bl + jZy sin Bl
The voltage and current distributions along the line are obtained
from eqs. (56) and (57) by replacing [, the length of line, by z, the
distance from the terminating impedance Zg. Since voltmeters
and ammeters read magnitude without regard to phase, the absolute

(8-58)
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magnitude of expressions (56) and (57) have been used in Fig. 8-7
to show the standing wave distributions for various conditions
of the terminating impedance Ze.

In general the terminating impedance Zr will be a complex
impedance having both resistance and reactance, but it will be
shown later that the results for the general case may be inferred

<
SN

[l sm ] eI
Zo s O
PRE "
v,
In
AN AT ~,
|%I,I%c°s i‘rl N7 NP \J
Zo ® O
{ele)2m s £ "
7
NN
________ Aoy
14l || :
|4+ | g5
‘o I
A DDA

|I& -l%(c.os ix.j-gﬁ SIN ﬁx)l
; 4% Zet 2,
|JX|=|.;,(cos ,9;./23 SIN ,9;)1

Fie. 8-7. Voltage and current distribution along a lossless line.

from those obtained for the particular case of a pure resistance
termination. Tor this latter case where Zr = R, egs. (56) and (57)
may be written as

|V = V& Vcos® Bz + (Ro/R)? sin?® Bz (8-59)
|I.] = Ir Vcos® Bx + (B/R,)* sin® Bz (8-60)

For the lossless line being considered Z, is a pure resistance

Zc=Ro=J%
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Examination of egs. (59) and (60) shows that the voltage and
current distributions are given by the square root of the sum of a
cosine-squared term and a sine-squared term. It is evident that
the maximum value of voltage or current will occur at that value
of z that makes the larger of these terms a maximum. In the
particular case of a line terminated in R,, that is, for which R = R,,
the sine and cosine terms have equal amplitudes and the square root
of the sum of their squares has constant value for all values of z.
That is, there are no standing waves on the line. For all other cases,
however, the magnitude will vary along the length of the line.
When R is less than R, the amplitude of the sine terms of (59)
will be larger than that of the cosine term and the voltage maxima
will occur at those values of z that make sin 8z a maximum, viz., at
z = A/4, 3\/4, and so on. Also the voltage minima will occur at
those values of z that make the sine term a minimum, viz., z = 0,
A/2, and so on, also for this case of R < R,, the current maxima will
occur at z = 0, A\/2, and so on, and the current minima at z = A/4,
3\/4, and so on. When the terminating resistor is larger than R,,
the conditions for both voltage and current are reversed.

One of the important measurable quantities on a transmission
line is the standing-wave ratio of voltage or current. When R is
less than Iy, eq. (59) shows that the voltage maximum, which occurs
when sin 8z = 1, will have a value
. Vo = Vi- IIEBO

Also the voltage minimum, which occurs when sin gz = 0, will have
a value

Vmin = VR
The ratio of maximum voltage to minimum voltage is therefore

anx _ RO

m = E (fOI' R < Ro)
Similarly the standing wave of current ratio is given by

I max RO

m = E (fOI' R < Ro)
For B > R, these expressions are just reversed, that is

le\‘ Imnt R

— = o = (for B > Ry)
i 0
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Using these expressions, the value of a terminating resistance may
be determined in terms of R, from relative measurements of voltage
or current along the line. R, is readily calculable from the line
dimensions.

Case where Zz is not a Pure Resistance. When the terminating
impedance Zz is not a pure resistance, standing-wave measurements
can be still used, and in this case will yield values of both resistance
and reactance of the termination. From egs. (59) and (60) it was
seen that with a resistance termination a voltage maximum or mini-
mum always occurred right at the termination (zx = 0). However,

g
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o
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Fic. 8-8. A complex terminating impedance in (a) is replaced by a
pure resistance termination in (b).

1

when the terminating impedance has reactance as well as resistance,
the maximum or minimum is always displaced from the position
z = 0, and the direction and amount of this displacement can be
used to determine the sign and magnitude of the reactance of the
load.

Figure 8-8 shows a transmission line terminated in an impedance
that has a reactive component. The voltage distribution along
the line is shown. Because the impedance is not a pure resistance,
the voltage maximum (or minimum) does not occur at the termina-
tion. Now any complex impedance can be obtained by placing a
pure resistance of proper value at the end of an appropriate length
of (lossless) transmission line. In part (b) of Fig. 8-8, the complex
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impedance R 4 jX has been replaced by the proper value of
resistance R, at the end of a length I, of line, such that the imped-
ance at ¢ — ¢ looking towards R, is equal to R + jX. The standing
wave back from ¢ — ¢ toward the source will be unchanged and that
toward R, (shown dotted) will be just a continuation of it. Quite
evidently the proper position for R, is at a distance of one-half
wavelength from the minimum point ¢ (or the maximum point b
if R, is greater than R,), and the proper value of R, is given by the
standing-wave ratio on the line, that is, by

R 1 Vmin R 1 anx

I_B; = Vmax or FO B Vmin

Because any resistance greater than R, can be obtained by a resist-
ance less than R, at the end of a quarter wave section of line (see
below), it is really only necessary to consider for R, resistances less
than or equal to Bo. It is then possible to state that any impedance
whatsoever can be obtained by means of a pure resistance R, (not
greater than R,) at the end of a length I; of lossless transmission
line, less than one half wavelength long.

The value of the impedance Z = R 4 jX is given in terms of
R, and [, by eq. (58). Rationalizing and separating into real and
imaginary parts, eq. (58) becomes

R _ Role
- Ieo2 cos? ﬁll + Rlz sin? ﬁll
X = Ro(]%o2 - Rlz) sin ﬁll COS ﬁll
Ieo2 cos? ﬁll + Rlz sin? ﬁll

Equations (61) and (62) make it possible to determine both the
resistance and reactance values of a terminating impedance from
standing-wave measurements on the transmission line. The sign
of the reactance, that is, whether inductive (positive) or capacitive
(negative) can be obtained by inspection as shown in Fig. 8-9.

Considering the value of R; to be less than Ry, eq. (62) shows
that when [, is less than one-quarter wavelength, the reactance
X is positive (i.e., inductive), whereas if I, is between one-quarter
and one-half wavelength, X will be negative (capacitive). From
this results the conclusion that, if the standing wave of voltage
slopes down toward the terminating impedance (Fig. 8-9a), the
impedance is inductive; if the slope is up toward the impedance

(8-61)

(8-62)
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(Fig. 8-9b), the impedance is capacitive. Of course, if the slope is
zero at the termination, the terminating impedance is a pure
resistance.

In practice the measurable quantities are l,, the distance from
the termination to the minimum point a, and the standing-wave
ratio

RO = anx
"R Ve

; --‘
! :
' R <Ry

"“é‘"/ T’/"I i”z"‘— 45—

o——— ——]

a [4

(a) (b)
Fic. 8-9. A terminating impedance that is inductive (a) or
capacitive (b).

In terms of these measurable quantities, the resistance and
reactance of the terminating impedance is given by

— R,
p? cos? Bly + sin? Bl
—Ro(p? — 1) sin Bl; cos Bl.
p? cos? Bl, + sin? Bl,

8.08 UHF Lines as Circuit Elements. The transfer of energy
from one point to another is only one use of transmission lines. At
the ultrahigh frequencies an equally important application is the
use of sections of lines as circuit elements. Above 150 mc the
ordinary lumped-circuit elements become difficult to construct and,
at the same time, the required physical size of sections of transmis-
sion lines has become small enough to warrant their use as circuit
elements. Thev can be used in this manner up to about 3000 me
where their physical size then becomes too small and wave guide
technique begins to take over.

In Fig. 8-10 are shown some line sections and their low-frequency
equivalents. The magnitude of the input reactance of the first

(8-63)

X = (8-64)
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four of these sections is given by eq. (58) when the appropriate
value of Zz is inserted; that is, Zr = 0 for the shorted section and
Zz = = for the open sections. The resistive component of the
input impedance is negligible for the usual low-loss lines used at
UHF. Thus it is seen that for line lengths less than a quarter of a
wavelength the shorted section is equivalent to an inductance, and
the open section to a capacitance. For length of line between a
quarter and a half wavelength, the shorted section is capacitive
and the open section is inductive. However, it should be noted that

ey S % Z=] 2 mn AL
—e<d—

Zs~ = :}-‘ 25 & cor S

Zs=>- = % Zs =] 2 AN S2
e DY Y —

Z—- = é s ==/ & cor St
a— 3

zj = _[3 2zt

g = um ol = R.l

A
2

F16. 8-10. Input impedance of various transmission line sections.

unlike their low-frequency equivalents, these “inductances’” and
“‘capacitances” change value with frequency.

The Quarter-wave and Half-wave Sections. For the particular
case of the shorted quarter-wave line or the open half-wave line, the
input reactance, given by (58), goes to infinity, and the resistive
component of the input impedance must be taken into account.
This corresponds to conditions in the parallel-resonant circuit (the
low-frequency analogue), which has an infinite impedance if resist-
ance is neglected. In both cases (the quarter-wave line and the
parallel-resonant circuit) the actual input impedance when the
series resistance is not neglected is a pure resistance of very high
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value. In the case of the line its value is given approximately by

27
B~

where R.: is the input resistance of the line at a resonant length and
R is the series resistance per unit length of the line. [ is the length
of the resonant section, which will be an odd multiple of a quarter
wavelength for a shorted line or an even multiple of one-quarter
wavelength for an open line. This expression is obtained directly
from eqs. (44) and (45) in which the actual line loss is not neglected
as follows:

For a shorted line for which V; = 0, egs. (44) and (45) become

V, = I[zZo s1nh 'Yl
I, = I cosh vyl

Dividing the voltage equation by the current equation gives the
input impedance of a short-circuited line as

Z, = Z, tanh ~l
) sinh ol cos Bl 4+ j cosh «l sin 8l
cosh ol cos Bl + j sinh ol sin gl

For line lengths that are an odd multiple of a quarter wavelength,
sin Bl = +1 and cos Bl = 0. Under these conditions the input
impedance becomes

= Z,

cosh al
® sinh ol

Z,=2Z
If ol is very small, as is generally true for sections of low-loss line,
cosh al = 1 and sin al = ol so that
Zy
al
When «L 3> R and wC 3> G, ais given in terms cf the line constants

b
' o= é(R \/g +,G\/%,) (8-54)

For the air dielectric lines commonly used the losses due to the
conductance G are negligible, so that G can be neglected and

~E)C_E
=32NI T 27,

Z, ~

(8-65)

o
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Substituting this in the above expression for input impedance of a
short-circuited line, whose length is an odd multiple of a quarter
wavelength, gives

27y

o Zo
Z, = g=3r (8-66)

An identical expression is obtained for an open-ended section that
is a multiple of a half wave long.

Resonance in Line Sections. The shorted quarter-wave section
has other properties of the parallel-resonant circuit. It is a resonant
circuit and produces the resonant rise of voltage or current which
exists in such circuits. The mechanism of resonance is particularly
easy to visualize in this case. If it is assumed that a small voltage
is induced into the line near the shorted end, there will be a voltage
wave sent down the line and reflected without change of phase at
the open end. This reflected wave travels back and is reflected
again at the shorted end with reversal of phase. Because it required
one-half cycle to travel up and back the line, this twice-reflected
wave now will be in phase with the original induced voltage and so
adds directly to it. Evidently those additions continue to increase
the voltage (and current) in the line until the I2R loss is equal to
the power being put into the line. A voltage step-up of several
hundred times is possible depending upon the @ of the line.

Input Impedance of the Tuned Line. When the quarter-wave
section is tapped at some point z along its length, a further cor-
respondence between this circuit and the simple low-frequency
parallel resonant circuit is seen. The reactance looking toward
the shorted end will be inductive and of value Z.. = jZ, tan Sz.
The reactance looking toward the open end will be of equal magni-
tude but opposite sign, i.e., a capacitive reactance. Its value is
given by Z. = jZ, cot B(\/4 — z) = —jZ, tan Bz. The equal but
opposite reactances are in parallel just as they are in Fig. 8-11b
and the input impedance will be purely resistive. As the tap point
is moved from the shorted end toward the open end of the line, the
impedance seen at the tap point is a pure resistance that varies from
zero to the quite high value already given (Bs = 2Z*/RIl). This
corresponds in the circuit of Fig. 8-11b to varying the reactances
X ahd X from low to high values, meanwhile always keeping the
cifcuit tuned (i.e., X = X¢).
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It is of interest to know how the input resistance varies as the
tap point is moved along the quarter-wave section. For the rela-
tively high @ circuits used in such applications the voltage distribu-
tion along the line may be considered sinusoidal and it is a simple
matter to determine the input resistance at any point a distance z
from the shorted end. For a given magnitude of voltage and cur-
rent on the quarter-wave section a certain fixed amount of power

,?l XLE 1

L ~Xc

-
e

\
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N

ole

(9) (b)

Fra. 811. (a) Tapped quarterwave line and (b) its equivalent
circuit.

input will be required to supply the I2R losses, regardless of where
this power is fed in. This power input is equal to

Ve _ V2RI
R, T 2Zg

where Vs and Rs are, respectively, the voltage and input resistance
at the open end of the section. When the tap point of the feed
line is at a distance z from the shorted end (Fig. 8-11a), the power
input is given by V,*/R,, where R, is the input resistance at the
point z. V. is the voltage at this point and equals Vs sin Bz.
Therefore

V.r _ Vs’sin?Bzr _ Vs’RI

R, R, T 27,2
2
which gives R, = % - sin? Bz

Thus the input resistance varies as the square of the sine of the
angular distance from the shorted end. _
Q of Resonant Transmission Line Sections. One of the important
properties of any resonant circuit is its selectivity or its ability to
pass freely some frequencies, but to discriminate against others. .
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The selectivity of a resonant circuit may be conveniently stated in
terms of the ratio Af/fo, where f, is the resonant frequency and
Af = f» — f1 is the frequency difference between the ‘half-power”
frequencies. In the case of a series resonant circuit Af/2 represents
the amount the frequency must be shifted away from the resonant
frequency in order to reduce the current to 70.7 per cent of I,, its
value at the resonant frequency. (A constant voltage source is
assumed.) Evidently this occurs when the reactance of the circuit
becomes equal to the resistance and the phase angle of the circuit
is 45°. For the parallel-resonant case Af/2 represents the frequency
shift away from unity power factor resonance necessary to reduce
the voltage across the parallel circuit to 70.7 per cent of its value at
resonance. (A constant current source is assumed.) This occurs
when the absolute magnitude of the impedance is 70.7 per cent of
the impedance at resonance.

The ratio fo/Af may be used to define the Q of a resonant circuit.
The Q of a resonant transmission line section can be determined as
follows:

The input impedance of any shorted line section is given by

Z, = Z, tanh vl
sinh al cos B8l + 7 cosh al sin Bl
® cosh ol cos Bl + j sinh ol sin Bl

When the frequency is a resonant frequency fo, then Bl = nx/2
(where n is an odd integer), cos gl = 0 and sin I = +1, the expres-
sion for the input impedance becomes

coshal  Zo  Zy

Ze=2o ghal ~tanhal ol

When the frequency is shifted off resonance by a small amount &f,
that is when f = fo + &f, then

_of, _ 2ot &), _nr , 2w ifl
fl = v . v =gt
Under these conditions

cos Bl = —

os (2= ofl)
v

sin @r o)
v

sinfl =c¢
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— sinh of sin (2"r o l) + j cosh «l cos <27rvaf l)

— cosh ol sin <2T o ) + j sinh ol cos (27rvaf l)

For moderately high Q circuits the first term in the numerator is the
product of two small quantities and may be neglected in comparison
with other terms. Putting

cosh al = 1, sinh al = o, cos <2Tvaf l) =~ 1,

. (21rvafl> - (21rvc3fl>

gives Z, = -

and Z, =2,

. When the imaginary term in the denominator is equal to the real
term, the impedance Z, will be 70.7 per cent of its value for a reso-
nant length, and the frequency shift required to make this true will
be Af/2. Therefore '

2n Afl

5 = al
_ v 2afo
Af = ~ =B
"The Q of the resonant section is
Qe-L-a (8-67)

Alternative forms of this expression are

Q = mfy _ 2rfodo _ oL (8-68)

The @ is independent of the number of quarter wavelengths in the
resonant section as long as of is a small quantity. It is interesting
to observe that the Q of a resonant section of transmission line is
equal to the ratio of inductive reactance per unit length to resistance
per unit length.

A similar analysis could be carried through for an open-ended
resonant section (for which the length would be some multiple of a
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half wavelength). The expression for @ in this case would be
identical with the above.

The Quarter Wave Line as a Transformer. When a section of
transmission line is used as a reactance, or as a resonant circuit, it is
a two-terminal network. The input terminals of the section are
connected across the generator or load and the other terminals are
left open or shorted as the case may be. However, a section of line
is often used as a four-terminal network, in which case it is inserted
in series between generator and load. Because the input impedance
is in general different from the load impedance connected across the
output terminals, the line section is an impedance-transforming
network. This is true for all lengths of line, but the quarter-wave
section has certain particular properties that make it very useful in
this respect.

For any impedance termination Z,, the input impedance of a
section cf lossless line is given by cq. (58) as

7 -7 (cos Bl + jZo/Z, sin_ﬁl)
* 7 “"\cos Bl + jZ,/Z, sin Bl

For the particular ease of a quarter-wave section, 8l = /2, and
this reduces to
=z

Z, 7,

For the case under consideration, where Z, is a pure resistance R,
this is

=7 (8-69)

Thus the quarter-wave section is an impedance transformer, or
more correctly an impedance inverter. Whatever the terminating
impedance may be, the inverse impedance will appear at the input.
If the output impedance consisted of a resistance R, in series with
an inductive reactance X, the input impedance would be given
by a resistance R, in parallel with a capacitive reactance X, where

= R = B
R1 = Rz and Xc-l = XL,

A pure resistance termination R is transformed into a pure resistance
of value R%/R.
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This property of matching any two impedances Z,, Z: such that
722 = Zo? finds many practical applications. It can be used to
join together, without impedance mismatch, lines having different
characteristic impedances; it is only necessary to make the char-
acteristic impedance of the quarter-wave matching section the
geometric mean of the Zy's to be matched. By means of the
quarter-wave section a pure resistance load can be matched to a
generator having a generator impedance that is resistive so long as
the geometric mean between the resistances gives a value for the
required characteristic impedance that is practicable to obtain.

Voltage Step-up of the Quarter-wave Transformer. As long as
the quarter-wave transforming section is considered as being loss-
less, the ratio between input and output voltages will just be the
square root of the ratio of the input and output impedances being
matched. From the voltage equation (56), for the quarter-wave
section

or calling V./V, the voltage step-up
v _ &

Vil NZ.

For the infinite impedance termination, that is an open circuit, this

simple relation indicates an infinite voltage step-up, and it becomes

necessary to resort to the exact eqs. (44) and (45) for the correct

answer in this case. For the quarter-wave section the voltage
equation of (44) becomes

V., = jV,.sinh ol + jI. Z, cosh ol
In open circuit I, is zero and the voltage step-up is
| £ 1 1 2Z,

- — R — =

V. sinhal o RI
For the quarter-wave section this may be written
V. _ 8% _ 8¢
Vi RN Rv
while for a three-quarterwave section the voltage step-up would be
V. _8Zf
V. 3R,

.
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8.09 Impedance Matching by Means of Stub Lines. When a
line is terminated in an impedance other than its characteristic
impedance Z,, reflection will occur and there will be standing
waves of voltage and current along the line which may be very large
if there is considerable “mismatch.” In general, these standing
waves are undesirable because they increase the line losses. It is
possible to obtain an impedance match between the line and its
load by use of a properly located ‘‘stub line.”

Consider the UHF line, shown in Fig. 8-12, terminated in a
resistance R, different from R,. At a point [ = A/4 from the
termination the input impedance will be a pure resistance of value
Ri. = R¢®/R. If R is less than Ry, R, will be greater than R,,

fo——f—]
20 L Ro
Zn~ %"R‘”
STUB LINE: /’
/ i
MOVABLE
SHORT
Fic. 8-12

whereas if R is greater than R, Ri, will be less than B,. Somewhere
between ! = 0 and [ = A\/4, the resistance component of the input
impedance will equal B.. However, there will also be a reactive
component at such a point; but if this is tuned out by means of an
equal and opposite reactance (the stub line), only the resistance
component Ri, = Ry will remain and the line coming up to this
point will be properly terminated. At any point I the input imped-
ance is, from (58),

Z. =R Rcosﬁl+jRosinﬂl)
=~ TO9\R, cos £l + R sin Al

This impedance can be considered as a resistance in series with a
reactance or resistance in parallel with a reactance. Because it is
desired to tune out the reactance component with another reactance
in parallel (the stub line), the parallel representation will be used.
The input admittance at a point I will be
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R, cos 8l 4 jR sin Bl
Ro(R cos Bl + jR, sin BI)
_ RR,
= Ro(R? cos? Bl + K*sin® Bl)

j(R? — Ry?) sin Bl cos Bl
+ Ro(R? cos? Bl + Ro? sin*® Bl)

Yu = th+jan = -Z_l.: =

and I should be chosen so that

1
Gin - Ej
. R.R 1
h : g , = —
That 1s, Ro(R? cos? Bl + Ro*sin? Bl) ~ Ro
This gives
R 2 R, . 2 2 s
mcos gl + % sin Bl = cos? gl + sin? 8l
R . R, )
2 _ Y ogGin? o _ 4
cos? gl (1 R°> sin? 6l (R
tan? gl = B —F K R

e Ro— R Ro

R
tan Bl = \/%0 (8-70)

This equation gives the distance back from the termination R to
the point where the input conductance is equal to 1/R, and deter-
mines the correct location of the stub.

The length of the stub line required can be calculated by making
its reactance equal and opposite to that at the tap point. Assum-
ing the stub has the same characteristic impedance as the line, it
will have a reactance equal to

jZo tan ﬁS = ]Ro tan ﬁS

where S is the stub length. Then
1
jBin
B — gin Bl cos BL(R? — Ro*) _ _ 1
3B = J R (R? cos? Bl + Ro* sin? ) jRo tan BS

jRo tan 8BS = —
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R2? cos? Bl + R, sin? 8l

tan A8 = sin Bl cos BI(R? — R.?)
RE + %’ tan? gl RE +1
= 0 = . (8-71)
Ro Iﬂ Ro Ro R
This can be reduced to
_ VER,
tan 88 = (R/Ro) — 1 (8-72)

Stub Line Maiching in Terms of Mazimum and Minimum Volt-
ages. In an actual experimental set-up the value of the terminating
resistance is generally unknown, so that it is desirable to determine
the dimensions for the stub line match directly from the measurable
standing-wave ratio that exists on the transmission line.

The standing-wave ratio in terms of the terminating resistance
and characteristic resistance is

Vu _ R

V. = m (fOI' R > Ro)

so that the position and length 8 of the matching stub are given by

tan gl = %{ (8-73)
(fOI' R > Ro)
VUV Va

In these expressions the subscripts M and m have been used to
indicate maximum and minimum respectively.

Stub Matching o Line to a Complex Impedance. The formulas
just derived give the stub adjustments required to match a line
to a resistance load. They may also be used to match a line to a
complex load impedance if the proper reference point is taken.
When a line is terminated in a complex impedance, there will be a
standing wave on the line and there will be neither a voltage maxi-
mum nor a voltage minimum at the termination. However, at
some point down the line there will be a voltage maximum and at
this point the input impedance will be a pure resistance greater than
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Ro; at another peint there will be a voltage minimum where the
impedance will be a pure resistance less than Ro. Therefore, if
measurements are made from either a voltage maximum or a voltage
minimum, the problem will have been reduced to that of maiching a
line to a pure resistance. The solution for this case has been given
above. Therefore, the experimental procedure for matching a
line to any complex impedance would be as follows:

Experimental Procedure for Stub Line Matching. 1. Measure
the standing wave of voltage back from the termination. Note
the position of the maxima and minima and the ratio of maximum
to minimum voltages V/Vm.

SENDING
END

£
U,
\\§

‘UN
TERMINATION

Fic. 8-13. Stub matching a transmission line.

2. Place a shorted stub line of length S a distance ! back from a
maximum point toward the sending end. The line is then properly
terminated in its characteristic resistance.

The length [ and S are given by

tan gl = 4,11;—:

 NValVm
tan BS = Wm——l

Of course, the stub can be placed on the other side of the voltage
maximum, but then a capacitive stub would be required. For a
shorted stub this means a length greater than a quarter wavelength,
which is usually undesirable. The procedure outlined above
ensures a stub length less than a quarter wavelength.

Double-stub Tuner. The single-stub matching unit just dis-
cussed is satisfactory for impedance matching on open parallel-wire
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lines, but proves inconvenient to use on coaxial lines, because on
these lines it is difficult to vary the position of the stub along the
line. For matching on coaxial lines the double-stub tuner arrange-
ment of Fig. 8-14 is usually nsed. This arrangement consists of two
adjustable tuners that have movable shorting plungers, but are
fixed in position on the line.

e 2
AY

&

il
D

:
5 s
4 i

Fic. 8-14. Double-stub tuner.

It is easy to show that with the double-stub tuner of Fig. 8-14
it is possible to match any two impedances within a certain specified
range of values. The analysis will be carried through for matching
pure resistances only, but the results are general, because any com-
plex admittance can be expressed as a conductance in parallel with

Xo=12p s B2

X
Ny
)Y
N
e

/% TAN B L - — e e - - /2, Tan 55,
-~/ cor%_e.

Fie. 8-15. Circuit representation of a double-stub turner.

a susceptance. The susceptance can then be tuned out by means
of the adjustable susceptance of the stub, which is in parallel with
the load, leaving a pure resistance to be matched.

The distributed-constants circuit of Fig. 8-14 can be represented
at one frequency by the lumped-constants circuit of Fig. 8-15.
The portion of the network within the dotted enclosure is the
w-section representation of the length [ of lossless transmission line
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between the two tuners. The reactances of the three arms are*

Xp = Zosinfl X = X = —Zocot 3
In parallel with the vertical arms of the 7 network are the reactances

of the tuning sections. These reactances are
XA" = Zo tan BS1 Xa” = Zo tan BSz

These reactances are shown negative (capacitive) in the figure,
but of course they may have any value from plus infinity to minus
infinity. Combining these parallel reactances giving a matching
x-section that has one fixed element, Xz, and two adjustable ele-
ments, X4 and X¢, which may have any reactance desired. (The
reactance X4 is formed by X.' and X4” in parallel. Similarly Xc¢
is formed by X¢’ and X¢” in parallel.) The values of X4 and X¢
required to match two resistances R; and R, aref

o ~R X5
R: = VRiR, — X5
o —RoXs

“R: £ /BB, — X

It is possible to match any two resistances R, and R. as long as
X is less than v/ R1R,. It would appear, by suitable choosing the
length I of the section near zero or some multiple of A/2, that X»
could be made as small as is desired. However, if such a length
is chosen, it will be found that the required values of X1 and X¢
will come out very nearly equal to zero, and large currents will
flow in the section. The elements have been assumed lossless, but
every physical set-up has some loss, and large circulating currents
mean inefficient operation. For this reason the length I should be
selected between about A/8 and 3\/8, or 5\/8 and 7A/8. The
range of resistances that can be matched will be any resistances such

that
V' RiR: > Z, sin Bl

* See for example, W. L. Everitt, Communication Engineering, McGraw-Hill,
New York, 1932, p. 173.
} Communication Engineering, p. 265.
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If resistances outside this range (that is, low resistances) are to be
matched, a triple-stub matching unit can be used. The triple-
stub unit can be analyzed by considering it as two double-stub
units in tandem. The first double-stub unit matches one of the
low resistances R; to any suitable high resistance. Then the
second double-stub unit matches this high resistance to the second
low resistance R;. Thus with a triple-stub tuner, any two imped-
ances whatsoever can be matched.

Resonance with | Variable. When resonance phenomena are
considered in the ordinary lumped-constant circuits, two things are
of interest: the operation of the circuit with L and C fixed and the
frequency variable or, secondly, the operation with a fixed frequency

Is & Is &
%ﬁ = % %‘?
z2— | y]
LOOSE Eind
COUPLING
(9) (b)

Fic. 8-16. “Series” fced.

but with either L or C variable. Similarly with the line circuits,
interest may center around a line of fixed length under conditions
of varying frequency, or the frequency may be fixed and the line
length varied to obtain resonance. The first of these conditions
was considered under selectivity of line sections. The second will
be considered now.

(@) “Series” Resonance. When the voltage is introduced “in
series”” in the circuit, usually at one end of the line, the adjustments
made for maximum current from a low-impedance source, the line
may be said to be in series resonance. This is illustrated by the
circuit of Fig. 8-16, which shows a constant voltage Ving, induced
into one end of the line or inserted directly as shown in the equiv-
alent circuit.

The first problem is to determine the length I that will make the
sending-end current I, a maximum.

Since |I,| = Eina/|Z:l, the problem is simply that of determining
for what length J