

## ONLY MECK HAS THE COURAGE TO TELL THIS STORY



## SurveYs Show

That approximately $64 \%$ of the prospects for new radio sets in your community-have not yet decided where they will buy their postwar radios.
There is still time for independent radio and electrical dealers to keep the radio business where it belongs. Tie in now with the Meek program - the only consumer advertising program devoted to selling the public on the DEALER.
Ask about the Mack Preferential Dealer Plan.


JOHN MECK INDUSTRIES, INC., PLYMOUTH, INDIANA


Better because great new resources, facilities and experience have been added...strengthening Ken-Rad's leadership . . . enabling Ken-Rad Metal Tubes to serve even more successfully today's radioowners and those who will buy the finer new instruments soon to appear ... increasing substantially the value of the Ken-Rad franchise!

- Write for your copy of "Essential Characteristics" the mast complete digest of tube information available.

KENPRAD
OWENSBORO, KENTUCKY

## EDITORIAL

ASUBSTANTİAL allotment of replacement parts and tubes in the fourth quarte1\% of this year appears possible according to surveys completed by department store executives and industry specialists. Production depends on when reconversion begins. WPB has revealed that unrestricted production of parts and tubes will begin when military requirements fall below 90 per cent. Some specialists believe that the latter part of this summer may see the beginning of reconversion. If such programs are initiated, many types of parts would be available around November. And December would also see tubes being shipped in larger quantities.

The battery picture is also expected to improve considerably. As a result of cutbacks, we can expect dry cell production for the current quarter to be at least two and one-half times greater than the first quarter.

In the meanwhile, WPB has warned that wartime regulations still in effect must be obeyed. Many flagrant violations have been reported in the sound system field. WPB has disclosed that many have been selling and installing intercommunication and p-a systems on the basis of MRO (maintenance, repair) ratings. This rating can only be used to effect unit replacement when the equipment has been damaged beyond repair. Other parts of sound systems, such as speakers, microphones and parts, are subject to replacement on an MRO certificate. If you are in doubt on MRO use, check with your local field office or contact H. B. Esterly, Radio and Radar division, WPB, Washington, 25, D. C.

MISREPRESENTATIVE, bait-type inspection - checkup advertisements still appear to be the pet sales promotion plan of some service shops. Recently we received several folders and cards offering a checkup of tubes, alignment, inspection of chassis, speaker, coils and ground system. minor adjustments, and a free estimate for additional repairs . . . all for 50 c ! Certainly this is not a very profitable charge, nor is it very conducive to good business. The customer's usual revolt at learning the real charges, does little to encourage sales. Such teaser programs are destructive. . not constructive. They destroy complete faith in the Service Man. Service shop promotional programs can produce results. . . . profitably . . . without subterfuge !

Vol. 14, No. 5
May, 1945

## LEWIS WINNER <br> Editorial Director

ALFRED A. GHIRARDI<br>\section*{F. WALEN}<br>Advisory Editor<br>Managing Editor

Extending Ammeter Ranger With Shunts. By Lewis J. Boss.

## F-M Converters

Fixed Resistor Replacement and Substitutions. By Alfred A.
Ghirardi

Ouput Design in P.A Amplifiers. By Willard Moody 28

Power Transformer Servicing. By Arnold D. Peters 24
Push-Pull Amplifiers and Phase Inverters. By Edward Arthur.. 13 RCA Ceramic Capacitor Color Code Charts 47
Ser-Cuits. By Henry Howard ............................. 21
Servicing Helps
39

## Circuits

Emerson 363
Emerson EX 386
Garod 3 P 1812
G.E. RHJS. 10005

Servicing Helps
Tube Substitutions
39
Zenith 6 C 301
40
Zenith 6 S 439, 469 (Chassis 5678)
40
enith 7 S 633, 634, 657 (Chassis 7 BQil) ....................................... 4C
Index to Advertisers

## Manufacturers

New Products
News .
Jots and Flashes
Copyright, 1945, Bryan Davis Publishing Co., Inc.

# Published monthly by Bryan Davis Publishing Co., Inc. 19 East 47th Streot, New York 17, N. Y. Telephone PLaza $3-0483$ 

Bryan S. Davis, President
Paul 5 Weil, Vice Pres.-Gen. Mgr.
James C. Munn, 10515 Wilbur Arenue, Cleveland 6, Ohio
Paclfic Const Keprenentative: Brand \& Brand, 816 W . Fifth St., Los Angeles 12, Callf.: Telephone Michigan 1732
Entered as second-class mäter June 14, 1932, at the Post Office at New York, N. Y., under the Act of March 3, 1879. Subscription price: $\$ 2.00$ per year in the United States of America and Canada; 25 cents per copy. $\$ 3.00$ per year in foreign countries; 35 cents per copy.

## RAYTHEON tuest nerommenoid

## FOR POSTWAR

Chris-Craft, world's largest maker of speedboats, cruisers and motor yachte, has a line of new streamlined beauties on the drawing boards that are sure to be seen on every lake and river in the peacetime years to come. Their refinements, as compared with prewar models, are almost too numerous to count. . . and one of the most important available accessories is ship-to-shore radio, for which Chris-Craft will recommend famous Raytheon High-Fidelity Tubes.

Radio equipment for marine use must be able to take plenty of battering abuse, and Chris-Crafi's recommendation of Raytheon Tubes is based on their splendid wartime performance under the most gruelling battle conditions on land, sea, and in the air.

The moral of this story for you, the radio service dealer, is that Raytheon Tubes, capable of absorbing the punishment of war, are the best bet for giving your eustomers the dependable, rich reception they rely on you to provide. Their consistent performance . . . plus a postwar Raytheon merchandising program that will revolutionize the radio service industry . . . are the two big reasons why you should feature Raytheon Tubes now!

Increased turnover and profits . . . easier stock control . . . better tubes at lower inventory cost ... these are benefits which you may enjoy as a result of the Raytheon standardized tube type program, which is part of our continued planning for the future.

Raytheon Manufacturing Company


# spraide trading post A FREE Buy-Exchange-Sell Service for Radio Men 

## CONDENSER-

 RESISTOR TESTER de luxe!

EVERY basic characteristic of EVERY type of condenser and resistor can be read quickly and accurately on direct reading scales on the Sprague de luxe Tel.Ohmike. Measures capacitance from . 000010 to 2000 mfd ; d.c resistance from 5 to $5,000,000$ ohms; and insula tion resistance to $\mathbf{1 0 , 0 0 0}$ megohms. Contains built-in d-c volt-milli aneter. Power factor and leakage current of electrolytic condensers are read directly. Built-in power supply permits all characteristic measurements under actual working conditions up to 1,000 volts DC A "magic eye" indicator shows bridge circuit balance.

FOR SALE-Weston \# 682 tube tester, very State Md., Upper Darby, Pa.

WNTED - Mder chanalygt. Cash. Also mider Sanual Erooklyn 22, N. Y.

FOR SALE-RCA electronic sweed oscl lator \#150; RCA \#151-2 rathode ray oscillograph, both in good condition complete with harness \& instructions, $\$ 70$ at OPA price. Jacks Radio Servlce, 34 W . Hoffman Are., Lindenhurst. N.

WANTED-Late tube tester \& slgnal generator also 6K7; 25\%5; 70L7: 3525:
$3526 ; 12 \mathrm{K7} ; 50 \mathrm{~L} 6$ : and 35L6 tubes. Bodie Mikus Radio, 10334 Torrence Are., Chicabo, III.

FOR SALE-Crosloy phono motor with condenser, 25 cy no plekup, $\$ 15$; two 18.A phono motors with condensers, 25 cy.o no plekup, $\$ 15$ ea.; Philco AR-10 car radio, $\$ 20$. Multh Stown, Me.

FOR SALE-Brand now 1941 Meigsner Signal Shifter complete with tubes \& colls Miller Lubbock Army Air Field, Lubbock Texus.

WANTED-Howard \#490 recelver. Cash or will trade 450A and cash. Carl
Horton, 16 Auburn Pl., Athol. Mass.

WANTED-One ILDS and one 7C6 tube.
. T. Bridges, Miblewood, La
FOR SALE - Wilcor-Gay Recordia Pro radio and racord maker, 2 mikes, cords. head sol, and 20 glass bise record blanks 350. Charles Goft, 1319 Ave. A, Brown vood, Texas

FOR SALE- 500 worth of radio tubes, alt yper. Whole lot only. Write for ilst Goo, De Marco, 58 Klng St., Santa Criz allf.

WILL TRADE-A-F sig. generator 75 to 75.000 cy . hi and low imp, with built -1 . Ben L. Sandberg. 36 Washington Village Asbury Park, N. J

FOR "SALE-Brand new 5"' HCA osclllo scope $\$ 160 \mathrm{~B}$, used very Hitle. \$140. Radio \& Thlladelphía ${ }_{48}$ Servic

WANTED- Echophone EC-1 or any simi Jar small recelver. Also want r-f tuning colls with matching tuning condenser. Prt.E. A. Gerliart, ${ }^{\text {Squin. }}$, Valla

WANTED-Sig. generator, tube tester \& Kider manuals. Elmo's Radio Service, 190' Lrich St St. Touts 18 Mo

FOR SALE-Latest Mallicrafters SX-25 Super Defliant, good as new. Complete with matching speaker, crystal and aluminum Ave., New Haven, Cona.

WANTED-Tube tester, sig. generator, and oltohmeter, also 1A7G, 1C76, ID5GT H4G and IH5GT tubes. Casl. Harold E. Babe, Bebee, W. Va.

WANTED-liecord cutter with automatic eed. Wlll trade autographic Kodak 122: Davrad tube checker; 37 watt, Pol. amplifer with mike speakers; Solar conWintleld, Ala.

WANTED-Used tube tester and rolt ohmmeter. Wlll trade typewriter, 12 gauge
shotgun, pocket watch, violin. B. Iapinski shotgun, pocket watch, violin. B. I_aplnaki 311 N. Latrobe Ave., Chicago, Ill.

FOR SALE OR TRADE-HESistors- 10,000 ohm 18 W . wirewound with ferrules 50 c meters 0-10 mia. $31 / 2^{\prime \prime}$ bakelite flush pane rutg. $\$ 5$; interoftice comm. 2 master unit Craan, 5201 Eastern Ave., Ballhmore ? Md.

FOR SALE-Sky Chumbion recelver 1 yr old: Weston 672, $01 / 2$ tube checker meter. needs spring; 1 mis. 280 reflecting scal lab. meter; nov Kellogg handset. A. Dem ing, 203 Glanorgafi. Alliance, Onio.

WANTEDTO BUY-Test instruments, tube tester, oscillator, A.F. \&. F. and service Service, 606 W'yandot St., Findlay, Olito WILL TRADE-Weston 697 pocket zester for Supreme, Triplett or other tube tester Shipment by air express, Jullo Bellbe c/o Pan Amerlcan Airways, San Juan FOR SALE OR TRADE Good used tube at 1/2 O.P.A. 6-26, 1-85, 4-24A, 3-27, 1-19



 out stze. Ellison Radio Serrice, Center.


FOR SALE OR TRADE-National SW-3 recelver with 20, 40, 60, 80 and 160 nieler cons and lubea, slikhty used. Neads


FOR SALE OR TRADE-Teleplex, codper Flibon type suts ovin tape Want model
 H. C. Humphress, Ward.

WILL TRADE-Mendell wardrobe trunk
 Fautey, 236 Elm St., Holy voke, Musis.

WANTED-Giond small radios, phonos and
 12SAT, 12A8, and 1A7. Noah's Atk, 226 $12 t h$ St., Aukusta, Ga.
FOR SALE-Table radios $815-\$ 20-$ - 95 complete: auto radios sine. Batory radio uses 30 serles tubes. $\$ 25$; 3 console type chassis complete with speakers-all working order $\$ 20$ ea. or 3 for $\$ 50 . \mathrm{F}^{\mathrm{H}}$.
WANTED - Multimeter or voltohnmeter,

 St., Hamilton Ohso

FOR SALE-75 to 100 good used tubes in cartons at $1 / 2$ Ilst price. Sell In one lot. Write
Kans.
Kar

FOR SALE-Complete radio repalr shop ncluding 800 tubes most all types; late Sertice, Box 392, Freeman, S. Dak
WILL TRADE-F. M. tuning condenser -15 mmf. sectlons and $3-410$ mmf. sec ther dial mechanism. Edwin Bohr, Route 5, N. Chattanooga, Tonn.
FOR SALE - New Sprague Tel-ohmike. Factory guarantee. Al Werhan. Manlus

WILL TRADE one DX $0-5$ voltunter; two DX 0-8 ditto and two DX $0-800$ militam DX 0-8 ditto and two DX 0.800 millam Want tube tester, Frank Way, 406 S . 7th St., Newark 3, N. J.

WANTED-Supreme sudolyzer in good condition. Wm. W, Jordan, Lexington Miss

FOR SALE A Bendix-DayRad all-wave oscillator, late serfes 36; Hickok AC-49 dynamic mutual conductance tube tester Solar CB capacitor analyzer \& resistance bridge; Superior late model $\# 1240$ tube
tester in port. case; Sprague interference
analyzer: Hichok \#4955 9-X V-O-M. Weit for detalls. Burt's, P.O. Bos 308, Elyria Ohto.
FOR SALE-Power amplifler 18 wat output, $3-6-250-500$ ohm output, Migh In Limited number new \& used tubes 27 80. 65, 6F7, 5T4, 616. 5V4, 6N7. Ea H. Swen, Gilby, N. Dak.

FOR SALE-CC solar capacitor aneluzo nev. Want Triplett ${ }^{\text {In }} 1672$ vibrator test In new conditio

FOR SALE-Mod. S.Y. signalyzer counp with ingtr. and il tubes. Fine unjt fo locating cut-off troubles. A-1 condition $\$ 23$. No Irades. A. Fless, 3224 Midan

WANTED FOR CASH-12J5: 1R5: 6A2 117\%6: 1C7; 35Z5; 6G6G: 35A5; $\underset{125 Z 3}{2526: 25 Z 5 ; ~ 50 L 6: 35 L 6: 12 S \& 7: ~}$ and other tubes. send your list. Wiliamse Radlo Shod. Cooper. Texas.
WANTED-Stancor or similar A \& battery ellfainators. Cash or irade fo
vartous meters, intoroftice outfits, speakern G. Samkofsky, 527 Bedford $\Delta$ ve., Brook isn, $\mathbf{N}$. $\mathbf{Y}$.

WANTED -Tube checker any make, goo
 and 35L6 lubes. J. I Ma

FOR SALE-Weston $=663$ voltohumate \#662 cscillator, $=663$ type 2 analyze ith St., Apt. 4, Tulsa, Okla.

WANTED-2588 tube, new or used. L. Hitte, 462 Elia St., Ludlow, Kys.

WILL TRADE-Good sig, gen. and Hicko schlloscope for Hallicrafters or simll年 WANTED $=$ Unlversity P.M. units runipets for cash. J.

FOR SALE - ? battery chargers wht Tungar bulb: Jewell 210 \& 209 tub heckeri; Pignolet d.c. smmeter. and ac voltrater. A. Fless, 3224 Midland A

WANTED-Set of 5 prons plug colls f $365 \mathrm{~mm} / \mathrm{d}$. cond. or dats on how 10 win colls. Hyman Blatter. 3260 Coney Islan , Brookisn, N.
WILL TRADE - Emperson combinatio radio for Superior channel analgzer an
Superior 1280 tester or will pay cas Walter Jandro, Hidg. 58 , Apt 218, Succe i’ark, Bridgeport, Conn.

FOR SALE-Astatic T-3 microphone, pet fect $\$ 12$; Brush $P L_{2}-251 \mathrm{oz}$. $\mathrm{Hi}-\mathrm{Fl}$ cryst plekup factory reconditioned, hit. lmy equalizer included, 818 . W. D. Swal

## YOUR OWN AD RUN FREE!

This is Sprague's special wartime advertising service to help radio men get needed parts and equipment, or dispose of radio materials they do not need. Send your ad today. Write PLAINLY or PRINT-hold it to 40 words or less. Due to the large number received, ads may be delayed a month or two, but will be published as rapidly as possible Sprague reserves the right to reject ads which do not fit in with the spirit of this service. HARRY KALkER, Sales Manager

## Dept. S-55, SPRACUE PRODUCTS CO., North Adams, Mass

Jobbing Sales Organization for Sprague Electric Company

## SPRACUE COUDETSERS KOOLOHM RESISTORS

Obviousiy, Sprague cannot assume any responsibility, or guarantee goods, services, etc., which might be exchanged through the above advertisements


## DYNAMIC HANDI-MIKE

## TECHNICAL DATA

 MODEL 204-TCIMPEDANCE: 35.50 Ohms.
FREQUENCY RESPONSE: 200.7500 Cps. OUTPUT LEVEL: Into 50 ohm input; 44 db below 6 milliwalts for 100 bor signal.
SWITCH: Type "T," Press-to-talk. Ver. tical toggle with snop action.
CORD: 6 feet long. Rubber jacketed. 2 Conductor and shield.
CIRCUIT: Two wires direct to microphone. Switch "mokes'" independent circuit. For use in connection with control circuit of tronsmitter or other relay operated devise.
DIMENSIONS: length overall 8 inches, heod diometer $21 / 4$ inches.
SHIPPING WEIGHT: 2 pounds.
There are seven other dynamic handimike models from which to make a selection.

Universal Handi-Mikes have been, through these years of progress in Radio-Electronics, as common a part to specialized sound equipment as the vacuum tube is to your home radio. The same microphone restyled and redesigned progressively has met the wanted need of a rugged hand held microphone. The Handi-Mikes are now available in both carbon and dynamic microphones with a variety of switches and circuits from which to choose.

## UNIVERSAL MICROPHONE COMPANY inglewood, california

representatives: New York, Chicago, Kansas City, Cleveland, Boston, Tampa, Houston, Philadelphia, Detroit, Seattle, St. Paul, Salt Lake, Los Angeles, San Francisco, and Asheville.

## "Big Three news daut BT resistors

## NEW MIDGET TYPES

To meet the growing demand for smaller, space-conserving components, IRC presents two new insulated METALLIZED resistors... Type BTS, $1 / 2$ watt and Type BTA, 1 watt. Thoroughly dependable and engineered to embody the high-quality standards that have made $\mathrm{BT}^{\prime}$ 's "preferred for performance", these tiny units can be counted on to do a mansize job. Like other BT's they operate at lower temperature than ordinary resistors of

BTA
BTS

## NEW LOW PRICES

New methods and new techniques in the stocking and packaging of resistors for Servicemen make possible the introduction of new lower prices on IRC Type BT and BW resistors. This means that you can now buy premium quality resistors at prices comparable to non-branded or "unknowns". For example, here are a few of the typical reductions based on list prices: BTS now 13c (BT-1/2 was 17c), BTA now 17 c ( $\mathrm{BT}-1$ was 20c), BT-2 now 25 c (was 30c), BW-1/2 now 15 c (was 17c), BW-1 now 17 c (was 20c), BW-2 now 25 c (was 30 c ). Under IRC's new price set-up you can operate even more profitably than before.

## RMA PREFERRED RANGES

IRC's standardization on RMA Ranges in both BT's and BW's as stock values for Servicemen, enables you to replace the same values you take out when making resistor repairs. Long used by set manufacturers, and now adopted by the Army-Navy in Specification JAN-R-11, the RMA Preferred Number System is a mathematical sequence of ranges which gives complete coverage with the least number of values. RMA Ranges listed for $\pm 10 \%$ tolerance resistors are carefully spaced so that preceding or following values are never more than $20 \%$ apart, thus assuring complete coverage of every value with regularly stocked BT's and BW's.

## INTERNATIONALRESISTANGE CO.

DEPT. 23-E - 401 N. BROAD ST. - PHILADELPHIA 8, PA.
IRC makes more types of resistonce units, in more shapes, for more applications than any other manufacturer in the world.



Imagine a lady carrying a bunch of keys for old time locks in her evening bag. Their bulk and weight would make this impractical ... yet, for modern locks, it is common practise for her to carry several keys. Imagine trying to crowd a kit of old-style large tubes into the midget receiving set of the future. TUNG.SOL Miniature Electronic Tubes have indeed opened up new possibilities in compactness and weight.
When miniature tubes were introduced, they created much interest . . . but set manufacturers asked "will they work as well?" The answer is "yes." In most circuits, miniatures do a better job than large tubes. Some high frequency circuits could not even be designed with large tubes. Added advantages of miniatures are their small size and reduced weight.

After the war, the experience gained from producing tubes for the Signal Corps and Navy will be
 at the disposal of TUNG.SOL Jobbers and Dealers. They will find at TUNG.SOL the engineering and production skill to produce all types of tubes that will be necessary to service radio sets and the new and better electronic devices of the future.

## TUNG-SOL <br> vibration-tested

ELECTRONICTUBES

TUNG-SOL. LAMP WORKS INC., NEWARK 4, NEW JERSE Also Manufacturers of Miniature Incandescent Lumps, All-Glass Sealed Beam Headlight Lamps and Current Intermittors


## ALL THE FEATURES of STANDARI INSTRUMENTS RETAINED Withstands submersion tests at $\mathbf{3 0}$ feet

A screw-on bezel provides uniform pressure for hermetically sealing the glass to the case. The gasket is pressed into every crevice around the edge of the glass and the top of the case, where the permanent seal is made.

Tempered glass window and ceramic sealed terminals are used.

The knurled screw type bezel permits servicing when necessary and resealing without replacing a single part or the use of special tools or equipment.
Complete dehydration of the interior is readily accomplished by recognized temperature difference
method (the bezel loosely attached for the escape of all moisture, after which the bezel is tightened to make the permanent seal). Interior is completely dry at slightly above atmospheric pressure.
These instruments comply with thermal shock, pressure and vibration tests. They also are resistant to corrosion. Instruments conform to S.C. No. 71-3159 and A.W.S. C-39.2-1944 specifications.

Furnished in $11 / 2^{\prime \prime}, 21 / 2^{\prime \prime}$ and $31 / 2^{\prime \prime}$ metal cases with $1 / 16^{\prime \prime}$ thick walls, in standard ranges. D.C. moving coil, A.C. moving iron and thermocouple types.


ELECTRICAL INSTRUMENT CO. bluffton, ohi

# There's no let down in MT. CARMEL 

 nough the war news is good ... and getting 'etter every day ... the men and women of Meissner's famed "precision-el" haven't let lown. As you can see, in the photographs on his page, they devote the same concentraion to their work now as they did when the oing was tough. This stick-to-it-iveness is the more reason for Mt. Carmel's rapid rise o prominence as one of the centers of an xacting industry, electronics.

They Listen to a news broadcast during their lunch hour. Then it's back to work with a determination to equal military victories with new production records on the home front . . . without loss of Meissner quality.

'recision-el" at Work. They're building Meissner quality into this vital eleconic war material. After victory that same pride in a job well done will ive new meaning to Meissner's siogan, "Precision-built by Precision-el."


His Skilled Fingers have mastered many of the secrets of electronics. After victory, he and many of Meissner's "precision-el" like him will pass this knowledge and tradition of precision to a new generation.

is Smile is a Reilection of the hundreds of smiles he sees ach day as the men and women of Meissner pass through e gates he guards. If you ask him, he'll tell you it's e smile that helps put precision into "precision-el."


These Meissner Ferrocart I. F. input and output transformers are getting top results in stepping up performance of old worn re ceivers. Special powdered iron core permits higher " $Q$ " with a resultant increase in selectivity and gain, now available for frequency range 127-206. Ask for rumbers 16-5728 input, 16-5730 output. List $\$ 2.20$ each.

Nom

## MEISSNER

MANUFACTURING COMPANY - MT. CARMEL, ILL.
advanced electronic research and manvfacture Export Division: 25 Warren St., New York; Cable: Simontrice

# SYLVANIA NEWS Radio Service Edition 



In various sections of the country, servicemen have been active in a movement to have legislation passed for the licensing of radio servicemen. This, they feel, will tend to preserve their prestige in the eyes of the public, and keep radio repairing standards high by assuring that only those servicemen who are qualified be permitted to set up shop,
Many servicemen maintain that such legislation will be of even greater necessity as we approach the postwar years. (Sylvania's survey shows that within 5 or 6 years after the war, the number of radio sets in America will reach 100 million. All of these millions of units are expected to be more complex in construction and will require more of the expert service radio servicemen have been rendering.)

As reports are received referring to impending or passed legislation, this column will carry the information. Meanwhile Sylvania Electric will wel. come additional information regarding this movement from radio servicemen or organizations.

Address Sylvania Electric Products Inc., Emporium, Pa.

## SURVEY SHOWS PUBLIC CONFIDENCE IN SERVICEMEN

## Future Bright Because of This Widespread Trust and Postwar Increase In Sets

"Does the radio serviceman do a good job?" He most certainly does!

This is one of the outstanding facts revealed by the nation-wide, impartial survey conducted by one of America's leading market research organizations, at the request of Sylvania Electric's Sales Research Department.

## PUBLIC IS SA'TISFIED

$92.5 \%$ of the thousands of set owners quiestioned expressed full satisfaction in the jobs radio servicemen are doing-a highly significant fact when it is considered that repair men are responsible for approximately $30,000,000$ repair jobs per year. In addition, of these thousands interviewed, $89.3 \%$ said that the serviceman's charge for work is entirely equi. table.

These facts show that (1) servicemer have the confidence of the Americas public; (2) servicemen have obviousl exhibited good business sense, have charged "fair" prices - resulting in further establishing a nation-wide feeling of assurance in their work.

## POSTWAR OUTLOOK GOOD

There is every evidence, then, that the future of the radio serviceman is bright. After the war there will be nore radios to repair ( 5 to 6 years after -75 million home radios; 25 million auto sets). More shops and more men will be needed (perhaps 30,000 shops in all, employing 90 , 000 men) - to handle 50 million repair jobs per year!
(Future issues of Sylvania News will report further on this survey.)


# SYLVANIA ELECTRIC 

MAKERS OF RADIO TUBES; CATHODE RAY TUBES; ELECTRONIC DEVICES; FLUORESCENT LAMPS, FIXTURES, ACCESSSORIES; INCANDESCENT LAMPS


# EXTENDING AMMETER RANGES WITH SHUNTS 

EVERY Service Man is familiar with the current restrictions on the sale of meters. Consequently the practice of extending the range of an ammeter by placing shunts of suitable value across the instrument is particularly timely. A single reliable meter can, in this mamer, be readily arranged to perform the work of several indivictual instruments.

## Clrcult Resistances

Since the presence of such a shumt naturally alters the shunt resistance of the complete instrument, as far as the external circuit is concerned, this alteration of instrument resistance when used in a multi-range circuit must be considered. This discussion offers certain modifications of the ordinary shunted meter which not only extends the usefulness of the meter as a multi-range instrument, but prevents any alteration of the load resistance of the meter, when changing from one range to another.

## Simple Shunted Instrument

Before proceeding with an analysis of the proposed modifications of the ordinary shunted meter, let us consider

## by LEWIS J. BOSS

Captain, Radio Supervisor, Warwlck Pollce Department Apponaug, R. I.

briefly the simple shunted instrument. In that respect, let us assume that a certain deflection is noted when a current $i_{1}$ passes through $i t$, and let us further assume that we desire to place a shunt in parallel with the meter so that the same indication is obtained when a current $n \times i_{1}$ is flowing through the combination.

## Total Resistance of Meter

If the resistance of the meter itself is represented by $\mathrm{r}_{\mathrm{m}}$ and the resistance of the shunt to be added by $r_{s}$ then the total resistance $R$ of the meter and shunt is represented by
$R=\frac{r_{m} \cdot r_{n}}{r_{m}+r_{n}}$

## Shunts

The shunt must have the proper value of resistance so that the current passing through the meter is still $\mathrm{i}_{3}$ when the total current $I$ is $I=n i_{1}$.

For direct current, the current through the shunt is $(n-1) i_{2}$.

Since

$$
\begin{align*}
(n-1) i_{1} r_{\mathrm{g}} & =i_{1} r_{m} \\
r_{s} & =\frac{r_{m}}{n-1} \tag{2}
\end{align*}
$$

where $i_{1}=$ current through meter
$\mathrm{I}=$ total current
$\mathrm{r}_{\mathrm{u}}=$ shunt resistance
$\mathrm{r}_{\mathrm{m}}=$ meter resistance
Substituting in equation 1 for $r$, we have

$$
\begin{aligned}
& R=\frac{r_{m} \frac{r_{m}}{(n-1)}}{r_{m}+\frac{r_{m}}{(n-1)}} \\
& \text { and } R=\frac{1}{n} r_{m}
\end{aligned}
$$

## Meter and Resistance Values

Since it is desired to arrange matters so that the combined resistance of the meter and shunt shall be equal to that of the meter when used alone, additional resistance will have to be


Figs. 3 (left) and 4 (aboye)
Figs 3. Arranging circuit so that when portion of resistance in shunt to meter is cut out, it is, at the same time, added to the series resistance. Fig. 4. Circuit used to evaluate error factors. Rs = series resistance; $R=$ shunt resistance; $r m=$ meter resistance only; $\mathrm{r}_{1}, \mathrm{r}_{2}=$ successive values of values of $\boldsymbol{R}$.
placed in series with the combination. Referring to Fig. 1, let $\mathrm{R}_{\mathrm{l}}$ be the total resistance between the line terminals under the new conditions, and we have

$$
R_{\mathrm{t}}=r_{2}+\frac{r_{\mathrm{m}} \cdot r_{1}}{r_{\mathrm{m}}+r_{1}}
$$

Since it is required to have the meter read directly on its lowest scale, and as on all scales the total resistance between the line terminals is to be constant, then $\mathrm{R}_{\mathrm{t}}=\mathrm{r}_{\mathrm{m}}$.

From equation 3 we how have

$$
\mathrm{R}_{\mathrm{t}}=\mathrm{r}_{2}+\frac{1}{\mathrm{n}} \mathrm{r}_{\mathrm{m}}
$$

and $\quad r_{2}=\frac{n-1}{n} r_{m}$
also
or

$$
\begin{align*}
& \frac{r_{m} \cdot r_{1}}{r_{m}+r_{2}}=\frac{1}{n} r_{m}^{n} \\
& \frac{r_{1}}{r_{m}+r_{1}}=\frac{1}{n}
\end{align*}
$$

Since these equations express the general case it is convenient to consider the situation when the meter is reading directly. Then $\mathrm{n}=1$, and from 5 we get
$\frac{r_{1}}{r_{m}+r_{1}}=\frac{1}{n}=1 \quad$ for this case.
However, this equation is only satisfied when $r_{1}$ is infinitely great compared with $r_{m}$, or in other words, when the meter is not shunted. Pursuing this thought further we have

$$
r_{2}+\frac{1}{n} r_{m}=r_{m}, \quad \text { or } \quad r_{2}=0
$$

which is also correct for this case.
Equations 2 and $4 a$ furnish the necessary information regarding the values of the shunt and series resistors required, in terms of the meter's internal resistance and the particular multiplying factor wanted. It will be seen that it is quite possible to make up a set of such resistances and mount them in a case containing the meter and a suitable multi-point switch for chang-
ing the shunt and series resistors, according to the proper ratio.

A circuit for changing the series and shunt resistors for the different ranges appears in Fig. 2, in which a cloubleended rotary switch is employed. Such a switch must be very well constructed and have extremely low contact resistance; otherwise the values of the shunt resistor will be upset, especially in the higher ranges, and the indications of the meter rendered false.

Another method of changing the shunt and series resistors that is more efficient than the previously described method will now be considered. In Fig. 1 resistors $r_{1}$ and $r_{2}$ may be considered as one resistance with the meter connected across one end and a tapped point. In view of this, we find it possible to so arrange the circuit that, when a portion of the resistance in shunt with the meter is cut out, it is, at the same time, added to the series resistance. The amount of shunt resistance removed can be made to equal, alnost, but not quite, the required addition to the series resistor. The error involved is very small; smaller, in most cases, than the error involved in reading the meter. The simplification of circuit obtained is considerable, Fig. 3.
When using the meter by itself (direct reading) the link between $B$ and $C$ is opened and the flexible lead from one side of the ammeter is connected to terminal 1 , terminals $A$ and $B$ becoming the line connections. For other ranges the movable connection is plugged into terminals 2, 3, 4, etc., and the link between $B$ and $C$ replaced. The resistance between the line terminals $A$ and $B$ will be practically constant for all ranges and equal to the resistance of the meter itself within very narrow limits.

## Design Procedure

The procedure of calculating and designing suitable resistances to convert an ordinary ammeter into a con-
stant resistance, multi-range instrument is quite simple.

For example, consider the case of a fairly high resistance meter, such as would be used in the measurement of small currents.

Resistance of instrument $\mathrm{r}_{\mathrm{m}}=30$ ohns.

To find $r_{1}$ and $r_{2}$ for the following ranges

$$
n=10 ; 100 ; 1,000
$$

For the case where $n=1$, the meter is, of course, used directly without any shunt.

$$
\begin{aligned}
& \text { When } n=10 \\
& \begin{aligned}
r_{1} & =\frac{r_{\mathrm{n}}}{n-1}=\frac{30}{9}=3.333 \quad \text { ohms } \\
r_{2} & =\frac{n-1}{n} r_{m}=27
\end{aligned} \quad \text { olums }
\end{aligned}
$$

When $\mathrm{n}=100$

$$
\begin{array}{rll}
r_{1} & =0.303 & \begin{array}{l}
\text { ohms } \\
\text { ohms }
\end{array} \\
r_{2} & =29.70 & \\
\text { When } \mathrm{n} & =1,000 & \\
r_{1} & =.030 & \begin{array}{l}
\text { ohm } \\
r_{2}
\end{array}=29.97
\end{array} \begin{aligned}
& \text { ohms }
\end{aligned}
$$

The values, as determined above, are correct for constant resistance between terminals. For the approximate method previously described, zee shall take the raluc of the shunt resistance as correct. This will mean that the amount of series resistance on each range will not be exactly correct, but will have the values as calculated below.

For cases $n=10$ and $n=100$ respectively, $r_{1}=3.333$ ohms and 0.303 ohm.

The amount of resistance subtracted, in changing from $\mathrm{n}=10$ to $\mathrm{n}=100$, is consequently 3.030 ohms, which is added to the series resistor. When $\mathrm{n}=10, \mathrm{r}_{\mathrm{a}}=27$ ohms. The actual series resistance, obtained in this way, when $n=100$, is consequently 30.03 ohms.

The value required, as determined from the calculation above is 29.70 ohms. It is, therefore, evident that (Contimed on page 35)

## PUSH-PULL AMPLIFIERS

 and Phase Invertersby EDWARD ARTHUR

APUSH-PULL amplifier is one in which two small tubes are used instead of one large tube to accomplish the same stage gain, in order to take advantage of certain operating conditions for improved performance. Phase inverters are used in conjunction with push-pull amplifiers as a substitute for the push-pull input transformer. Since an analysis of the uses, advantages, and conditious for optimum performance of push-pull amplifiers aids the study of phase inversion applications, such data will be offered first.

## Triode Circuit

Fig. 1 shows a typical push-pull circurit, driven by a single triode. Any a-c voltage, of audio frequency, developed between points $x$ and $y$ on the primary of transformer $T_{1}$, will appear as an amplified voltage between points $a$ and $b$ on the secondary of that transformer. We assume, of course, that $T$, has a gain ratio, which is usually the case. However, there is one particular distinction between the voltages developed from $G_{1}$ to ground and $G_{2}$ to the same point. The a-f voltage developed between points $a$ and $b$ has a polarity relationship at all times. That is, point $a$ is either positive or negative with respect to point $b$. The inclusion of point $c$ does not alter this relationship, except to establish a common point for voltage measurement. Thus, if two volts were the total voltage between points $a$ and $b$, the voltage from either p-p grid to ground would be one volt, but opposite in sign. It is important that this condition exist to ground, since ground is the common tie point for all voltages in a receiver.

## Additive Voltages

A similar condition exists across the primary of the output transformer, $\mathrm{T}_{2}$ The voltage between $d$ and $f$ represents the voltage between $a$ and $c$ amplified by the gain of the tube $V T_{1}$; the voltage across $c$ and $f$ represents the voltage across $b$ and $c$ amplified by $\mathrm{VT}_{2}$. Since these voltages are additive,

Fig. 1. A typical push-pull output stage is shown here. Any voltake appearing between points $A$ and $B$ is opposite in sign, with point $C$ as a voltage midpoint. This produces the push-pull action.

the output voltage is the sum of the individual voltages.

## Push-Pull Advantages

A similar voltage gain could be attained by using a single tube with twice the gain of either $\mathrm{VT}_{1}$ or $\mathrm{VT}_{2}$. However, there are certain advantages to be gained by the use of push-pull circuits.
(1) Any hum voltage introduced through the $B$ supply to the plates of the push-pull tubes, will cancel out, since the hum voltages across $d$ and $f$, and $e$ and $f$, are in opposition to each other. (2) D-c saturation in the core of the output transformer is avoided, because the magnetic fields created by $\mathrm{d}-\mathrm{c}$ are also in opposition. This is evident from the fact that the outside terminals, $d$ and $c$, are both negative (d-c) with respect to point $f$. the center tap. (3) Feedback or oscillation is minimized, since feedback voltages cannot be fed back through the $B$ supply, (point $f$ is a balance point for any voltages developed in the output circuit).

## Low Harmonic Output

The most important advantage of the push-pull amplifier lies in its low second harmonic output. Reference to any tube data book will show that the maximmm rated output of a tube is limited by its harmonic distortion. The greater part of this distortion is of the second order. When the second har-

Figs. $2 a$ and $b$. Fig. $2 a$ shows a method of substituting an interstage for a push-pull transformer. In $2 b$, an open primary in a push-pull transformer is replaced by an RC network.
monic approaches $5 \%$, the maximum output has been reached for efficient operation. Push-pull amplification cancels this second harmonic distortion, as well as all even order harmonics, thereby permitting operation at either higher power levels, or at reduced distortion factors.

## 6 L6 Amplifier

Let us take the 6L6 as an amplifier application example. As a class $A$ amplifier, with 250 volts on the plate, a single tube will deliver 5.5 watts, at $10 \%$ distortion. Two tubes in push pult will deliver 14.5 watts at $2 \%$ distortion; more output at lower distortionIncreasing the plate voltage to 270 on


SERVICE, MAY, 1945 •

the single tube has no appreciable effect on either the distortion or the power output. However for the 6L6 in push pull, the output increases to 18 watts, at $2 \%$ distortion.

Second harmonic distortion, created within the tube, is eliminated because the voltages are built up in each half of the output transformer, in opposition to each other. This is true for all even order harmonics.

Now, to initiate push-pull action in the input of the amplifier, some method of input to the two grids must be used to simultaneously supply both grids with equal potentials of opposite sign, with reference to ground. That is the input voltages must be $180^{\circ}$ out of phase.

## Push-Pull Methods

Fig. 2 shows two methods of accomplishing a push-pull action without the use of a standard push-pull input transformer. In Fig. 2a, a standard interstage transformer is used. The formula used to determine the proper load re-

Figs. 3a, 6 and c. Fic. 3a showe trpical inverter circuit. In $b$ we see how the push-pull voltages are developed. In $c$, the load impedances for the push-pull grids are separated, for ease in determining balanced values.
sistance, $\mathrm{R}_{\mathbf{1}}$, for the plate of the driver, is:

$$
\mathrm{R}_{1}=\mathrm{R}_{\mathrm{p}} \mathrm{~N}^{2} \text {. where }
$$

$\mathrm{R}_{1}=$ resistance in ohms
$\mathrm{N}^{2}=$ square of the transformer ratio $\mathrm{R}_{\mathrm{p}}=$ load impedance required for plate of previous stage
The potentiometer arm is then used to balance the input voltages to the push-pull grids so that they are equal.
Where the primary of a transformer is open, the circuit shown in Fig. $2 b$ may be used. It should be noted that the stage gain will be reduced by the transformer ratio, since in this circuit arrangement the transformer gain can never exceed $1: 1$. In addition, the plate voltage on the driver tube will be materially reduced, due to the added resistance in the plate circuit, which will further reduce the audio gain.

## Phase Inverter Circuits

The purpose of the phase inverter is to duplicate the performance oi the push-pull input transformer. This may be done with or without the use of an additional tube. Since most input transformers are also sources of gain, it becomes necessary to use an additional tube where increased stage gain is desirable. With the development of the twin triod, the addition of another tube has been simplified. The only additional components required are some resistors and condensers.

## Out-of-Phase Voltages

To develop out-of-phase voltages for supply to the push-pull grids, either one or two tubes may be used. Fig. 3. In Fig. 3a, a single tube is used. Here, $E_{1}$ represents the a-f voltage applied to the grid of the driver tube, and $E_{s}$ and $E_{b}$ represent two voltages, equal in magnitude, but opposite in phase. The bias voltage for the grid of $\mathrm{VT}_{1}$ is developed across $\mathrm{R}_{\mathrm{k}}$. Since any resistor in the cathode circuit is a continuation of the plate circuit, a tube may be represented, as shown in Fig. $3 b$. If the supply source is considered as the ground point, the cathode end of $\mathrm{R}_{3}$ has a positive potential with relation to ground, and the plate end of $R$, has a negative potential with relation to the same point. Thus, these two points are out of phase. Increases or decreases in the plate-cathode current will affect both $R_{2}$ and $R_{s}$ to the same
degree, since they are effectively it series. If their numerical value is the same, the voltages across them will be identical. The grid of the driver tube must be returned to ground, yet isolated from the feed end of $R_{3}$ which is connected to one of the p-p grids. The isolation circuit consisting of $\mathrm{R}_{1}$ and $C_{1}$, is used for this purpose. However, this introduces a shunt circuit across $\mathrm{R}_{3}$. Therefore $\mathrm{R}_{2}$ must be equal to $R_{a}$ in parallel with $R_{1}$, which is expressed by the formula,

$$
\mathrm{R}_{2}=\mathrm{R}_{1} \times \mathrm{R}_{3} / \mathrm{R}_{1}+\mathrm{R}_{3}
$$

$\mathrm{C}_{1}$ must be large enough to prevent low-frequency attenuation, in much the same manner as a tone controf. Capacitor $C_{1}$ here affects the whole system, since it is in series with the input circuit; the load reactance of this circuit will vary with frequency, decreasing as the frequency decreases. In much the same manner, the shunting effect of $R_{1}$ in series with $C_{1}$ across $R_{1}$ will decrease. This will tend to unbalance the voltages applied to the push-pull grids, and result in increased distortion. To minimize its effect, $C_{1}$ should be large enough at the lowest audio frequency being used, so that it does not represent any appreciable portion of the total resistance of the circuit. Fig. $3 c$ shows the load relations of the various grid circuits.

## Increasing Stage Gain

Fig. 4 shows a variation of this principle. Two tubes are used in this circuit to produce greater stage gain.

The input voltage is applied to $\mathrm{VT}_{1}$, amplified, and then applied to the $\mathrm{p}-\mathrm{p}$ grid, $G_{1}$. A portion of this voltage developed across $R_{1}$ is then applied to the grid of $V T_{3}$. However, the voltage across $R_{1}$ is out of phase with the voltage applied to the grid of $\mathrm{VT}_{1}$. Therefore, the voltage applied to the p-p grid, $G_{n}$, will be out of phase with that applied to the p-p grid, $\mathrm{G}_{1}$. For balance, $E_{2}$ must equal $E_{1}$.

## Inverter Circuits

Figs. $4 b, c$ and $d$ show inverter circuits used with inverse feedback. Feedback, in inverters, is used to prevent unbalance and frequency distortion. If, in Fig. 4a, either $\mathrm{VT}_{1}$ or $\mathrm{VT}_{3}$, were to require replacement, some unbalance would possibly result if the new tube did not have the same gain as the old one. Therefor, $\mathrm{R}_{1}$ would have to be adjusted every time the tubes were replaced. In addition, if the tubes did not age equally, the same condition would result. To reduce this effect, inverse (Continued on page 34)



# FIXEDRESISTOR REPLACEMENT AND SUBSTITUTIONS 

## [Part Three of a Series]

## by ALFRED A.GHIRARDI

Advisory Editor

WHEN either fixed composition or wire-wound resistors require replacement, the choice of the replacement unit should always be governed by the desirability of using a resistor that will give satisfactory performance in the part of the circuit where it is to be used, and at the same time have a long useful life.

## Operating Temperatures of Fixed Resistors

It should be remembered that because of the nature of the materials used in their construction, vitreousenameled type wire-wound resistors are able to operate at much higher fullload temperature than are either composition carbon resistors or phenolicmolded wire-wound resistors. For an ambient temperature of $25^{\circ} \mathrm{C}$, composition carbon resistors operate at a full-load temperature ranging from approximately $90^{\circ} \mathrm{C}$ to $110^{\circ} \mathrm{C}$, depending upon manufacture. Phenolicmolded wire-wound resistors are rated on the basis of developing a temperature of $125^{\circ} \mathrm{C}$ at full-load. Vitreousenameled wire-wound resistors, however, are rated on the basis of developing a hottest-spot temperature of $275^{\circ} \mathrm{C}$ (over $550^{\circ} \mathrm{F}$ ) on a 2-terminal resistor suspended in one foot of free air, with the ambient temperature (surrounding air) at $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$. Therefore the fact that a particular
vitreous-enameled wire-wound resistor in a receiver gets very hot should not necessarily be cause for alarm or reason for replacement, unless there are definite evidences that deterioration is being caused by the high temperature.

Because such high temperatures are developed ly vitreous-enameled type wire-wound resistors operated at full rated load, care must be taken when installing them as substitute resistors, either as single units or as a portion of a voltage divider. The full-load developed temperature of $275^{\circ} \mathrm{C}$ (over $550^{\circ} \mathrm{F}$ ) can quickly injure closely adjacent parts, the radio cabinet, etc.

The full-load temperature of $275^{\circ} \mathrm{C}$ is based on operation in free-air with good ventilation conditions. If the resistor is located in a crowded assembly, or if the cabinet and chassis designs restrict free circulation of air, the temperature may rise considerably above this. Therefore, it is a good rule to limit the operation of such resistors (especially the large power sizes of 10 -watt rating or higher) by using oversize units, so they handle only about one-half as muth power as they are rated to carry. Where parts are jammed close together in compact receivers, or where the resistor is to be mounted near a hot power resistor, rectifier tube, etc., we must allow $3: 1$ ratio.

## Power-Handling Capacity of Adjustable Resistors

The uses of adjustable type wirewound resistors call for a word of operating caution. The power-handling capacity of such resistors de-
pends directly upon what proportion of the total resistance is used in the circuit. For example, let us assume that a 1,000 -ohm 10 -watt adjustable resistor is at hand, and a 600 -ohm unit is required. When adjusted to 600 ohms, the 10 -watt adjustable resistor will have a power-handling capacity of only $600 / 1,000 \times 10=6$ watts. Following the $2: 1$ rule stated previously, this 600 -ohm resistor actually should not be used to handle over $6 / 2=3$ watts! From Ohm's law, the maximum allowable current then will actually be

$=70$ milliamperes (approximately).
If this precaution in the use of such resistors is not observed, burnouts or excessive heating may result.

## Resistor-Heating Problems in Compact Receivers

In compact-type midget receivers the resistor problem often is very acute, for in these sets minimum size resistors are crowded in very compact assemblies, and very little facility for ventilation is provided. Accordingly, the temperatures often rise to the point at which at least some of the resistors slowly disintegrate and change in value. If these units are replaced with new resistors of the same wattage rating, the same conditions again prevail. The replacement resistors break down in a short time and the Service Man is condemned for having done a poor repair job. The


## Here's your profit leader for tomorrow!

## A big PRE-SOLD market awaits G-E receiving tubes

MONEY WILL BE MADE by radio dealers and service men who sell G-E electronic tubes, once these are available in volume. The market is ready and waiting. Every month 19 leading magazines with a total circulation of $30,000,000$ tell readers about G-E tubes. Every week listeners in $7,000,000$ radio homes hear a similar message over CBS.

The people who read and hear about G-E electronic tubes are favorably in-
fluenced by the fact that for years, they have known and used G-E Mazda lamps-have been familiar with G-E household appliances.

Here is your big chance, as a radio dealer or service man, to cash in on the popularity that goes with the big. gest name in electronics. Here is your straight, sure road to volume sales of a product known to everybody-one that will be consistently profitable to handle: G-E electronic tubes.

Don't delay the steps to secure your share of this pre-sold tube market that's just ahead. Write for the name of your nearest G-E tube distributor. Address Electronics Department, General Electric, Schenectady 5, N. Y.

Hear the G-E radio programs: "The World Today" news, Monday through Friday, 6:45 p. m., EWT, CBS. "The G-E All-Girl Orchestra," Sunday 10 p. m., EWT, NBC. "The G-E House Party," Monday through Friday, 4 p.m., EWT, CBS.

ELECTRIC


Fiks. 3 (left) und 4 (above)
fig. 3. How to arrange four series-connected replacement resistors to reduce hum pickup. Fig. 4. Replacing a faulty resistor by several equal parallel-connected resistors with values hikher than oripinal resistor.
solution in such cases is to use resistors of a higher wattage rating and also to rearrange the parts uncler the chassis so that more room is provided for air circulation. In some cases this may even necessitate partial rebuilding of the receiver, but it may be more desirable to do this than to have the same trouble reappear in a short time. Often, drilling an adequate number of ventriation holes in the chassis and bottom of the cabinet at strategic places will provide all the additional ventilation that is required. Whenever such measures must be applied it is well to explain the trouble and the proposed remedy to the set owner before proceeding.

## How to Figure Reslator Substitutions

Especially in these days of replacement parts shortages, Servide Men often are forced to make resistor substitutions when replacements are needed. It has become almost a necessity to know how to quickly make up combinations of available resistors to take the place of faulty units whose exact replacements are not readily a vailable.

Any resistor in a receiver may usually be replaced (if space permits) by a combination of suitable units connected either in series, or in parallel, as illustrated in Fig 1. Io rare cases it may be necessary to use a series-parallel combination.

In the case of series-comnected resistors:
(a)-The equivalent resistance, $R$, is equal to the sum of the re-
sistance of each individual unit. Thus, $R=R_{1}+R_{2}+R_{5}+\ldots \ldots R_{\mathrm{v}}$.
(b) -The same current Hows through each of the series resistors, and this is equal to the current that flowed through the original resistor.
(c) -The wattage-handling capacity of the series combination is equal to the sum of the wattage ratings of the individual resistors. Thus, $W=W_{1}+$ $W_{3}+W_{3}+\ldots \ldots W_{n}$.

In the case of parallel-connected resistors:
(a)-The equivalent resistance, R , is equal to the reciprocal of the sum of the reciprocals of the resistance of the individual unit. Thus,

$$
\mathrm{R}=\frac{1}{\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}+\frac{1}{\mathrm{R}_{2}}+\ldots \cdot \frac{1}{\mathrm{R}_{\mathrm{n}}}}
$$

(In the special case of only two resistors, $R_{1}$ and $R_{2}$, connected in parallel the expression for the equivalent resistance, $R$, simplifies down to $\mathrm{R}=$ $\mathrm{R}_{1} \times \mathrm{R}_{2} / \mathrm{R}_{1}+\mathrm{R}_{2}$ )
(b) -The total current divides, part Howing through each resistor inversely in proportion to the resistance. The total current is equal to the sum of all the currents flowing through the individual resistors. Thus, $I=I_{1}+I_{2}+$ $I_{s}+\ldots \ldots I_{n}$.
(c) -The wattage-handling capacity of the parallel combination is equal to the sum of the wattage ratings of the individual resistors. Thus, $W=W_{1}$ $+W_{z}+W_{3}+\ldots \ldots W_{n}$.

The following examples will illus-
trate how these formulas may be applied to calculate the values of series or parallel resistor combinations that may be used as substitutions to obtain either the desired resistance or power requirements, or a combination of both resistance and power requirements, for resistor-replacement purposes.

## Example 1

Required: A satisfactory substitution for a faulty grid or plate resistor of 500,000 ohms. Negligible power is 10 be dissipated by it.

Solution (a): Two or more suitable available lower-value resistors can be connected in series to make the required substitution resistance. Using + resistors, as illustrated in Fig. 2, each would have to be of $500,000 / 4=$ 125,000 ohms value. From the RMA list of preferred value ( $\pm 20 \%$ tolerance) resistors we note that the nearest preferred value resistor to this is 120,000 olms. Comnecting four of these in series would provide a resistance of $120,000 \times 4=480,000$ ohms. This is only $500,000-480,000 / 500,000$ $\times 100=4 \%$ off from the desired value, which in most cases would be a sufficiently close substitution for the faulty resistor.

Solition (b) : A workable substiturion resistor could also be made up by using suitable available RMA preferred

Fixs. 5 (teft, below) and 6 (below) Fis. 5. Replacing a lualey resistor by several unequal parallel-connected resisturs, each of resistance value higher than that of original resistor. Fik 6, voltake divider with open section.


## MARION INSTHUWEVTIS

Solid Allium copper frames
sintered soft iron pole pieces
Very high torque movements
Our engineering department welcomes inquiries especinlly those demanding e.
ments for special applications.

AARIO EIECTRICAL INSTRUMENT CO.


(B) Distributed by and awat
value ( $\pm 20 \%$ tolerance) resistors of unequal values (say three), such as $100,000,220,000$ and 220,000 ohms. This would provide a total of 540,000 ohms, which also would be quite satisfactory

Space limitations and the chance of hum being picked up by a large strungout assembly limit the number of resistors it is wise to use in such cases. The units should be arranged compactly in the form of a grid, as shown in. Fig. 3. Then any hum voltages that may be induced will be induced in opposite direction-sense in each two adjoining resistors, and so will effectively cancel out.

Solution (c): If the resistors available are of higher value than the 500,000 ohms required, then parallel connection is necessary. Suppose the only resistors available are of 2.2megohm ( $2,200,000$ ohms ) value. Then the number of these required to be connected in parallel would equal 2,200 , $000 / 500,000=4$ resistors. These would actually make a combined resistance of $2,200,000 / 4=550,000$ ohms (Fig. 4), but in most cases this value would be a sufficiently close substitution for the faulty 500,000 -ohm resistor.

Solution (d): Available unequal resistors of suitable values can also be connected in parallel to make the required resistance (Fig. 5), Suppose we need the 500,000 -ohins, and a 3.3negohm resistor is at hand. The value of the additional resistor that must be connected in parallel with it to make up the 500,000 -ohm resistance may be determined by means of the expression $R=R_{1} \times R_{2} / R_{1}+R_{2}$. Substituting the known values we have

$$
500,000=\frac{3,300,000 \times \mathrm{R}_{\mathrm{e}}}{3,300,000 \times \mathrm{R}_{2}}
$$

from which, $\mathrm{R}_{2}=590,000$ ohms.
The nearest preferred value ( $\pm 20 \%$ tolerance) resistor to this is 560,000 ohms. If this is used in parallel with the 3.3 -megohm resistor, the actual combined resistance will be equal to

$$
R=\frac{3,300,000 \times 560,000}{3,300,000+560,000}=478,000 \mathrm{ohms}
$$

-a resistance close enough to the desired value for most requirements.

## Example 2

Required: To replace an open section in a voltage divider resistor, or even to replace the complete unit.

Solution: Let the voltage divider resistor be composed of five sections $a-b-c-d-e$, having the resistances indicated in Fig. 6.

Suppose the voltage divider has been checked with an ohmmeter and a section found open. The service notes

Fig. 7
Replacing a resistor by two series-connected resistors of unequal wattage rating.


OHMS

REPLACEABLE


3 w

on the particular receiver in which this resistor is used specify the voltage across this section as 160 volts and the resistance of the section as 3,500 ohms. Fron this information the power-handling requirements for this section can be calculated as follows:
Watts $=\frac{\text { Voltage }^{2}}{\text { Resistance }}=\frac{160^{2}}{3,500}=7.3$ watts
In combining resistors, the total
$4=14,000$ ohms. This, again, is an odd-value resistance. Resistors of the nearest higher preferred value ( $\pm 20 \%$ tolerance), 15,000 ohms, would be used instead.
In either use, the replacement resistors may be connected directly to the terminals of the opened voltage divider section, if it is permanently open.

Other, or all sections could be re-

Fig. 8
Replacing a resistor by three parallel-connected equal preferred value resistors.
wattage rating is cumulative, based on the number and rating of the individual resistors used. Consequently, this will require four 2 -watt equal-value resistors connected either in series or in parallel (total 8 watts). If comnected in series, each must have a resistance value equal to $3,500 / 4=875 \mathrm{ohms}$. This is an odd-value resistance, so resistors of the nearest higher preferred value ( $\pm 20 \%$ tolerance), 1,000 ohms, will be used instead. It is better to use resistors of the nearest higher preferred value rather than of the nearest lower preferred value (which would be 680 ohms) so as to reduce rather than increase the amount of power that will be dissipated in each resistor.

Parallel connection, if employed instead, would require four 2 -watt resistors, each having a value of $3,500 \times$
placed in a similar manner if necessary.

## Example 3

Required: A faulty 10,000 -ohm 3 -watt resistor is to be replaced with resistors of available size and power rating.

Solution: Four practical methods for doing this are possible. Two involve series-connected replacement resistors and two involve parallel-connected units.
(a) Series-connected arrangements:

Method 1: Use three 3,300. ohm 1 -watt resistors in series (total resistance $3,300 \times 3=$ 9,900 ohms; total wattage liandling capacity $1 \times 3=3$ watts).

Method 2: Fig. 7 shows a (Contimued on page 22)


## by HENRY HOWARD

T
HE trend to 2- and 3 -band receivers prompted many unusual circuit designs, particularly in he antenna systems. In the G. E

RHJS-1005 three-band model (Fig. 1), for instance, an electrostaticshielded loop with a direct antenna tap serves on broadcast and as a mass antenna on the two short-wave bands.
(Contimued on page 31)

Fig. I. G.E. 3-band receiver using electro static shielded loop, which is shorted from antenna tap to low side on s-w to prevent absorption spots due to loop resonance.




[^0]


- In maintaining the highest standard of excellence the one and only HICKOK aim must always be the building of instruments that tell all the truth all the time. When quality is built up to a high standard instead of down to a price, the user has greater confidence in his work.
Whether you are selecting tube and det testers, signal generators, oscilloglaphs, volt-ohm-milliammeters or any other service equipment, remember that the standard of quality for a third of a century has never been excelled. Having pioneered the major new developments and vindicated maximum accuracy and dependability, HICKOK equipment has been specified by the armed forces in both world wars. We are still bending every effort to speed the war program and trust it will not be long until we can again take care of your civilian needs with the service equipment that is held in highest esteem. Write for Radio Equipment catalogue.

THE HICEDK ELECTRICAL. INSTRUMENT CDMPANY
10521, Dupont Ave., Cleveland 8, Ohio
(Continued from page 20)
series - connected arrangemen for two resistors of anequa wattage rating, one a 1 -watt and one a 2 -watt resistor (total watts).
From the expression,
Watts $=$ current ${ }^{2} \times$ resistance, $3=$ current $^{2} \times 10,000$
or,
current $^{2}=\frac{3}{10,000}=0.0003$
or,
current $=0.0173$ ampere
Since the same current (0.0173 ampere) flows through both resistors, and since watts $=I^{2} R$, we have
$1=0.0173^{2} \times R_{1}$
from which,
$\mathrm{R}_{1}=\frac{1}{0.0003}=3,333 \mathrm{olmm}$
(A 3,300-ohm 1-watt preferred value ( $\pm 20 \%$ tolerance) resistor will be used.)
Similarly, $2=0.0173^{3} \mathrm{R}_{2}$, from which
$\mathrm{R}_{3}=\frac{2}{0.0003}=6,666 \mathrm{ohms}$
(A 6,800 -ohm 2 -watt preferred value resistor will be used.)
(b) Parallel-connectedarrangements:

Method 1: Use three $30,000-$ ohm (or $33,000-$ ohm preferred value) 1 -watt resistors connected in parallel as shown in Fig. 8. Combiñed resistance will be $33,000 / 3=11,000$ ohms and total power handling capacity will be $1 \times 3=3$ watts.
Method 2: Two replacement resistors of unequal wattage rating may be employed in parallel, one a 1 -watt unit and one a 2-watt unit (total power handling capacity $1+2=3$ watts). This arrangement is shown in Fig. 9.

The values of resistance to employ may be calculated as follows: From the expression
Watts $=\frac{\text { Volts }^{3}}{R}$
we have,
$3=\frac{\text { Volts }{ }^{2}}{10,000}$
from which,
volts ${ }^{3}=3 \times 10,000=30,000$;
then also,
voits $=\sqrt{30,000}=173$
$1=30,000 / \mathrm{R}_{2}$ from which $\mathrm{R}_{2}=30,000$ ohms and,
$2=30,000 / \mathrm{R}_{2}$ from which $\mathrm{Re}_{\mathrm{c}}=15,000 \mathrm{ohms}$

Thus the 10,000 -ohm 3 -watt faulty resistor may also be replaced by a $30,000-\mathrm{oh}$ m 1 -watt resistor and a 15,000 -ohm 2 -watt resistor connected in paralle! (Fig. 9).
Replacing Close-Tolerance Resistors
In rare cases where close-tolerance esistors are used as original equipnent, they are usually identified by a old or bronze band to indicate $\pm 5 \%$ olerance, or a silver band for $\pm 10 \%$ olerance. If a close-tolerance unit is equired for replacement, two resistors, ne higher and one lower than the reuired resistance value and so matched hat their combined resistance is equal o the required value $\pm$ the allowable. olerance, may be used in series or in arallel.

Start your post-war thinking cow - that's important - and keep on buying war bonds hat's even more important.


## P <br> 0 ERVICING

Figs. Ia (above) and $1 b$ (left). In a we have a Etandard 6.3-vole transformer installa. tion. How to use a 2.5 and 5 -volt trans. former to secure 6.3 voles is shown in $b$. The two windings ure connected in series aid. ing to provide the required voltage.

Fig. 2a. Method of reducing high voltage when substitute transformer delivers too much voltage.

Fig. 2b. When all windings provide excess voltage, the primary input should be reduced by inserting a series resistor.

MANY factors may contribute to power transformer breakdowns. Some of these are. defective construction, high temperatures or humidity, excessive line voltages or surges, allied component defects, or any combination of these effects. Higher than normal temperatures may be caused by overloading, insufficient ventilation, high ambient temperature or power-line troubles such as low frequency or bad waveform. When transformers are not properly treated with insulating materials they are stbject to various forms of deterioration due to moisture, which prompts insulation breakdown. Excessive heating can be caused by the gradual breakdown of some unsuspected component such as a filter condenser which gradually draws more and more leakage current. Since exact replacements are still unavailable, servicing of many receivers has presented many problems. In some instances transformer repair is possible. In other instances an approximateexact replacement must be used. Such installations involve several circuit changes.

## Replacing 6.3-Volf Transformers

In Fig. 1a, we have a conventional 6.3 -volt transformer setup that may be altered. The alteration is shown in Fig. 1b. Here we have a method of adapting an old-type transformer with three-filament windings for replacement. In this modified circuit, the oldtype transformer originally had a heavy 2.5 -volt winding, standard rectifier 5 -volt winding and a light 5 -volt winding for power trbes. The modified unit can supply 6.3 volts by combining the 2.5 -volt and the 5 -volt power-tube windings in the proper direction and adjusting the voltage by a series resistor of approximately 1 ohm . If a further substitution of a heatertype rectifier tube is warranted, the substituted unit need have only a 2.5 and a single 5 -volt winding. Types 6 X 5 or 6 ZY 5 G can be used on the same 6.3 -volt winding as the other

# transformer 

by ARNOLD D. PETERS



Figs. 3a (top) and $3 b$ (right). How to in. crease $B$ voltake by changing an electromasnetic speaker to a $\mathrm{p} \cdot \mathrm{m}$ speaker. In $a$, we have the e-m installation, while in $b$, we have the p -m substi. tution.

Figs. $4 a$ (right) and $4 b$ (below). Here we have a method of using a transtormer with an open transformer or a filament transformer as a power transformer with the $B$ voltade coming directly from the line.


shorts, the line voltage may be used for $B$ supply. Fig. ta shows a typical half-wave supply for small sets which may be replaced by the arrangement in Fig. $4 b$, which uses the same transformer or simply a filament transformer. There will be a reduction in power output but the sensitivity will usually not be lowered materially. Since the chassis will become alive with line voltage, certain precautions are imperative. An insulated panel for chassis grip should be inserted so that eontact with the chassis is impossible. It is also necessary to avoid set screws on knobs or live dials, etc. The line plug should also be marked for polarity, when possible, so that the chassis is at ground potential.

## Mounting Transformers

When horizontal-core replacement

Figs. 5a (lleft) and 56 (right). In replacink an upri,ht transformer with a flat-mount type. the method shown in $b$ should be used. The chassis should not he cut. Instead mount as indicated. using spacers.
transformers are used in place of upright types they should be mounted as shown in Fig. 5. This eliminates the tedious job of cutting a large hole in the chassis. Transformers that emit an annoying buzz may usually be cured by wedging a wooden shim hetween the coil and lamination. If this doesn't work, restacking the laminations may be necessary. The preferred method of stacking is to alternate the laminations, one in one direction, the next in the opposite direction, not in groups of

Copper wire coil data chart. These data are useful when rewinding primaries of tranaformers.
four or five as they are sometimes assembled.

## Using Low-Voltage Transformers

Filament transformers, or any transformer with low-voltage windings, are very handy for line-voltage modification either up or down, as shown in Fig. 7. The transformer really becomes an autotransformer with this comection, with an output rating equal to the current rating of the filament winding. Transformer rewinding is necessary in some instances. Most power transformers have from 4 turns-per-volt for large units to 10 turns-per-volt for the smallest units. The primary is usually wound nearest to the core, although this is not always the case. If, however, the primary is next to the core, the filament and high-
(Continved on page 36)

| B. $\mathcal{E} 5$. Gauge | Drom. <br> in <br> M/ls | Circular Mil Ared | Turns per linear inch |  |  |  | Turns persquare inch |  |  | Feet per pound |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Enamel | s.c.c. | s.c.c. | D.C.C. | S.C.C. | $\begin{aligned} & \text { Ename } \\ & \text { S.C. } \end{aligned}$ | D.C.C. | Bare | D.C.C. |
| 10. | $\xrightarrow{100.9}$ | 10380 823 | 10.6 | - | 9.3 10.3 | 8.9 98 | 87.5 | 84.3 | 80.0 | 31.82 | 30.9 |
| 12. | ${ }_{80.81}$ | 6630 | 12.0 | - | 11.5 | 10.9 | 136 | 131 | 121 | 50.59 | 48.9 |
| 13. | 71.96 | 5178 | ${ }^{13.5}$ | - | 12.8 | 12.0 | 170 | 162 | 150 | 63.86 | 61.5 |
| 14. | 64.08 | $410 \%$ | 15.0 | - | 14.2 | 13.8 | 21. | 198 | ${ }^{183}$ | 80.44 | 77.3 |
| 15. | 57.07 | 3257 288 | 16.8 18.9 | 189 | 15.8 | 14.7 16.4 | 262 | 250 | 23 | 101.4 | 97.3 |
| 17. | 50.83 45.26 | 2048 | 18.2 21.2 | 189 21.2 | 19.9 | 18.1 | ${ }_{397}^{321}$ | 306 372 | 327 | ${ }_{161.3}^{129.9}$ | 150 |
| 18. | 40.30 | 1624 | 23.6 | ${ }^{23.6}$ | 22.0 | 19.8 | 493 | 454 | 399 | 203.4 | 188 |
| 19. | 35.89 | 1238 | 36,4 | ${ }_{20}^{20.4}$ | 24.4 | ${ }_{23}^{21.8}$ | 592 | 553 | 479 | 2563.5 | 237 |
|  | 31.96 28.46 | ${ }_{8102}^{102}$ | 20.4 33.1 | 29.4 32.7 | 27.0 29.8 | 23.8 <br> 260 | 775 940 | 725 805 | ${ }_{754}^{625}$ | 323.4 +00.8 | 298 370 |
|  | 25.35 | 642.4 | 37.0 | 36.5 | 34.1 | 30.0 | 1150 | 1070 | 910 | 514.3 | ${ }^{461}$ |
| 23. | 2257 2010 | 509.5 | 41.3 46.3 | 40.6 35.3 | 37.6 41.5 | 31.6 35.6 | 1400 1700 | 1300 1570 | 1080 <br> 180 | 648.4 817.7 | 584 745 |
|  | 17.90 | 404.0 300.4 | 51.7 | 50.4 | 45.6 | 38.6 | ${ }_{2060}$ | 1910 | 1510 | 1031 | 903 |
| 26. | 15.94 | 254.1 | 58.0 | 35.6 | 50.2 | 41.8 | 2500 | 2300 | 1750 | 1300 | 1118 |
| ${ }_{28}^{23}$ | ${ }_{12.64}^{14.24}$ | 301.5 159.8 | ${ }_{72.7}$ | 61.5 68.6 | 55.0 60.2 | 45.0 48.5 | 3030 3670 | 3780 3750 | 23020 | 1639 3067 | 1422 1759 |
| 23. | 11.26 | 126.7 | 81.6 | 74.8 | 65.4 | 51.8 | 4300 | 3900 | 2700 | 266 | 2000 |
| ${ }^{30 . .}$ | 10.03 | 1005 | 90.5 | 83.3 | 77.5 | 55.5 | ${ }^{5040}$ | +660 | 3030 | 3285 | 2534 |
| $31 .$. | - 8.928 |  | 101 | 920 | ${ }_{87.5}^{77.5}$ | 59.2 62.6 | ${ }_{7060}^{5929}$ | 5380 | - | ${ }_{5} 145$ | 2768 |
| $33 .$. | 7.950 .7 .080 | 63.21 50.13 | ${ }_{12}^{113}$ | $\stackrel{101}{10}$ | ${ }^{89.6}$ | 66.3 | 7060 8120 | ${ }_{7}^{6250}$ | $\underline{\square}$ | 5289 | ${ }_{4} 1137$ |
| 34. | 6.305 | 39.75 | 143 | 120 | 97.0. | 70.0 | 9600 | 8310 |  | 8310 | 6168 |
| 35. | 5.615 | 31.52 | 158 <br> 15 | 132 | 104 | 73.5 | 10900 | 8800 |  | 10480 | 8837 |
| 37. | ${ }_{4}^{5.4500}$ | 25.00 19.83 | 175 198 | 1143 | 111 118 | 77.0 80.3 | 12200 | 10000 |  | 13210 1660 | ${ }_{9309} 88$ |
| 38....... | - 3.955 | 15.72 | 24 | 166 | 126 | 83.6 | - | - | - | 21010 | 10566 |
| 39........ | ${ }_{3.145}^{3.531}$ | 12.47 9.88 | 348 288 | 181 194 | 133 140 | 89.7 | - | - | - | 36500 33410 | 11900 |

 make your servicing easier and quicker

Juing the war it's been hard to get metal 'types ...you have had to substitute glass types for metals. Result? We all realize, more than ever, how much easier metal tubes make servicing! And for good reason ...

How many times have you had to add shields to sets...how many hours have you spent realigning . . . when self-shielding metal tubes would have done the trick pronto! How much time have you spent in grounding shields... when easy-to-workwith metal tubes are self-grounding?

Yes, metal tubes save trouble from the word "go." Even when you're just testing tubes, metal types are easier to take out and put in ... without fooling with clumsy shield cans.

We hope it won't be long until plenty of RCA

THE FOUNTAINHEAD OF MODERN TUAE DEVELOPMENT IS RCA LOVES BEST,'

# OUTPUT DESIGN IN 



EVERY p-a installation usually requires specialized attention. Thus it is impossible to provide any standard rules to follow. However, many of the tube circuits are standardized and thus rapid choice of tubes and systems are possible. For instance, assuming the electrical output is known, we can decide on the types of output tubes to use. Today the pentode and bean power types are widely used because they offer high audio output with low excitation requirements. Suppose, for example, we wish to use a pair of 6L6 tubes in a push-pull output stage, Fig. 1. Since resistance coupling is employed we cannot use class $B$ amplification. Therefore, the tubes are going to operate in class $A$. This means that

Fig. 1. High-kain amplifier with push-pull output stage. Electronic mixing and phase inversion are featured.
the plate currents will not vary too much and the need for extra power supply regulation is reduced. From the RCA tube manual we note that for cathode-resistor bias, and plate and screen voltages of 270 , the maximum signal power output will be 18.5 watts. The peak audio voltage, grid-to-grid, is 40 volts. If we assume that $1 / 2$ of this voltage appears between either 6L6 grid and ground, we have 20 volts between the grid and ground, or 20 peak audio volts across $R_{1}$ and

## by WILLARD MOODY

$\mathrm{R}_{3}$. The peak voltage is roughly 1.5 times the effective or root-mean-square value read on an ordinary a-c voltmeter. Therefore, the peak divided by 1.5 will give us the rms value. In this case this would be 20/1.5 or about 13 volts. Assuming a value of 100,000 ohms for $R_{3}$ and 400,000 olims for $R_{1}$, in Fig. 1, the power in the grid circuit is : $\mathrm{P}=\mathrm{E}^{2} / \mathrm{R}=13 \times 13 / 400,000+$ $100,000=.0003$ watt, approximately.

In view of the small amount of power, the grid resistors may be rated at $1 / 4$ watt each. We have indicated that the maximum output is 18.5 watts. Assuming an output of 18 watts maximum and an output transformer effici ency of $80 \%$, the power delivered to the voice coil circuit would be:

Power out $=$ nower in $\times \%$ efficiency $=18 \times 80 / 100=14.4$ watts.

Suppose that the power is somewhat less than 14.4 or 12 watts. Then, the power ratio would be $12 / .0003$ watt, or 40,000 . The logarithm of 40,000 is 4.602. Multiplying by 10 , we find that the power gain is 46 db approximately.

The db gain of the amplifier varies with frequency. To test the response, we can use the setup of Fig. 2. A vacuum-tube voltmeter is connected to the imput to check the input signal level which should be kept constant as the frequency is varied. The output meter may be a special type, such as the Weston power level indicator, which will show the output in decibels with reference to standard level of .006 watt. Then, the departures can be read in dh directly without calculations. The reference frequency usually


Figs. 2 (left) and 3 (above). Fig. 2, a setup used to test audio response. The vacuum-tube voltmeter connected to the input cliecks the input signal level, which sloould be kept constant as we vary the írequency. Output meter may be of the power level indicator type, which shows the output in db in refereace to the standard level of .006 watts. $Z_{L}=$ dummy load resistance $=1.5 \times$ voice coil resistance. Fig. 3, variation in audio power output as a lunction of frequency.
ected is 400 cycles, but 1,000 cycies occasionally used. If we assume it the output is 12 watts at 400 cles, the ratio with respect to the ierence level of .006 watt is $12 / .006$ 2,000 . The logarithm of 2,000 is 0 approximately and multiplying by we get the db equivalent of 33 db . lus, the power level is 33 db above 16 watt standard level.
Suppose the power level indicator ows that the output for a test freency of 4,000 cycles is 30 db . We e dozen 3 db and theoretically we int a flat response from 40 to 10,000 cles within 1 or 2 db for high fidel-
Actually, the response of the amifier may be varied later to make up T deficiencies in the installation of ikes and loudspeakers. However, hen beginning the design we do strive ir Hat response. Indiscriminate peaks id valleys in the response curve of e amplifier make it virtually imposble to accurately control (later) the sponse of the system overall to seare the desired overall curve.
The response curve can be plotted ; shown in Fig. 3. We note a deded slope in the curve between 4,000 nd 10,000 cycles, showing that the igh frequency gain is lower than it nould be. To bring up the high end it the curve, we may use smaller vales of coupling capacity between the rid and plate circuits in Fig. 1. These capacitors are identified as $\mathrm{C}_{1}$, $\mathrm{C}_{1}$ and $\mathrm{C}_{3}$. To equalize the outputs of $/ \mathrm{T}_{2}, V \mathrm{~T}_{2}$ and $V \mathrm{~T}_{3}$, all three capacitors vould need to be changed. To avoid ritical circuit problems, $\mathrm{C}_{1}, \mathrm{C}_{2}$ and $\mathrm{C}_{3}$ nay remain constant in value and $C_{4}$ an be varied. Decreasing the value If $C_{1}$ tends to provide a high-frequency mprovement, since the reactance of $\dot{C}_{4}$ lecreases as the frequency is raised. the reduction in gain is not desirable n some cases. Up to a certain point

Fig. 7. Simple frequency dividing network applied in some p-a system installations.

the high-frequency response of the amplifier can be raised by decreasing the values of $C_{6}$ and $C_{7}$. The impedance reflected by the voice coil load is largely resistive. We then have the equivalent circuit shown in Fig. 4. One-half of the push-pull stage is shown for simplicity. As $f$ rises we will have an increased shunting effect for $C_{8}$ and more of the available current will flow in $\mathrm{C}_{8}$ than in $\mathrm{Z}_{\mathrm{L}}$. Therefore, if $C_{6}$ is lowered in capacity the high-frequency output will rise. Since the voice coil has some inductive reactance and at high audio frequencies it may be appreciable, the equivalent circuit shown in Fig. 5 results. As $\mathrm{X}_{\mathrm{L}}$ becomes larger, it may cause feedback, due to resonance or decreased to the fact that the plate load is higher in value than the grid-plate impedance of the tube. Therefore, there is a limit to how little capacitance may be used before regenetation or uncontrolled oscillation and parasitics start to cause distortion.

The distortion in the output can be measured in a variety of ways. One method is to check the relative intensities of the harmonic and fundamental voltages. Many Service Men, however, merely listen carefully to the output and then decide whether the distortion is appreciable or tolerable. The amount of distortion which can be tolerated is tied in with hearing phenomena and psychology. As we know
(Contimued on page 36)


Fig. 4 (above). This circuit illustrates the reflection of the voice coil load, which is largely resistive. As the frequency rises, we bave all increased shunt effect for $C_{a s}$ and more of the available current flows in $\mathrm{C}_{31}$ than in $\mathrm{Z}_{\mathrm{L}}$. Thus if $C_{a 1}$ is decreased the h-f output will rise.


Fig. 5 (above). Here we have a circuit illustrating the effect of $X_{L}$. As this becomes larger, leedback mav result due to resonance or to the fact that the plate load is higher in value than the grid-plate impedance of the tube. Fig. 6 (helow). An oscilloscope setup to check output.


Fig. 8. An improved type of frequency dividing network, using high-pass filters. This system is used in the more expensive types of p - a amplifier systems.


# ANOTHER QUALITY PRODUC 

CD-604, CD-605 TRANSFORMER-CORD SETS UTC production facilities for these Signal Corps headset adapters permit occeptance of odditional quantity orders for quick delivery. Also ovailable in hermetic construction.


ALL PLANTS
May we cooperate with you on design savings for your applications...war or postwar?


# SER-CUITS 

(Consinued from page 21)
re loop is shorted from anterna tap low side on these bands to prevent sorption spots due to loop resonance. « push buttons operate trimmes Idensers across the loop and shunt emeability tuned coils across the cillator b-c coil. Iron core i-f transtmers in a 6 SK 7 stage feed a 6 H 6 tector and 2 -megohm tapped volume ntrol through a series resistor of , 000 -ohms and shunt resistor of 220 ms .

## Audio Amplifier

The audio amplifier consists of a F5 first a-f, the same type inverter d a pair of 6 Y 6 Gs for output. Two n speakers, $65 / 2^{\prime \prime}$ and $14^{\prime \prime}$, are concted in series. Two resistors, 150 ms and 15 ohms, form a potentizeter across the output transformer condary with the junction grounded. I inversed feedback voltage is taken m the high side of the secondary d fed back to the volume control rough a 4.7-megolm resistor. Asymetrical andio shunt caparitors are ed, from power-tube plate to -ound; $.02-\mathrm{mfd}$ on the top tube and 1 mid on the bottom, the latter be-
ing returned to the low side of the output transformer, 15 ohms from actual ground.

There are 1000 -ohm series grid resistors in the power stage to reduce the effects of overloading signals, such as static crashes. A four-position tone control shunts a $.0015-\mathrm{mfd}$ capacitor across the detector output for bass, $.000+7-$ mid for less bass, circuits as is for normal, and a short across a .003 -midd tone compensator for treble. A 100,000 -ohm resistor is in series with a $.003-\mathrm{mfd}$ capacitor across the volume control. On phono, the i-f cathode is opened from ground, eliminating radio interference regardless of signal strength. A pair of 5 Y 3 G s are in parallel in a two-section resistance filter in the power system.

## Emerson 363

In Fig. 2 we have a two-band battery a-c/d-c portable, Emerson 363, using a loop for each band. The extemal antenna connection rums through

Fig. 2. Emerson $363 \mathrm{a}-\mathrm{c} / \mathrm{d}-\mathrm{c}$ portable, with loops for broadeast and s-w bands. Batterytube filaments serve as a cathode resistor for 117 l 7 .


Parts list for Emerson 363 shown in Fig. 2.
a $.006-\mathrm{mfd}$ capacitor, $455-\mathrm{kc}$ wave trap, ground cloke and a $.1-\mathrm{mfd}$ blocking condenser to a tap near the low side of the short-wave loop for autotransformer type coupling. Some capacity coupling is also obtained through a .0025 -mfd capacitor from the low side of the loop to ground, particularly on the broadcast band where this capacitor has a reactance of about 520 ohms at 750 kc and 260 ohms at 1500 kc . This capacity path is isolated by a
(Continued on page 32)


0.1 -megohm resistor and $.05-\mathrm{mifd}$ filter.

## 117L7 Cathode Resistor Circuit

Tivo 1 N5 i-f stages are used with inter-resistance coupling, using a 25,000 -ohm plate load, 100,000 -ohm grid leak and a . 00022 -mfd mica coupling capacitor. Two output tubes are used, a 3Q5 for battery and 117 L 7 for line power. The output transformer primary is tapped for the 117 L 7 to secure optimum impedance matching to a p-m speaker. On line, the string of battery tube filaments are operated as the cathode resistor of the 117L7. bypassed by a $40-\mathrm{mfd} 25$-volt electrolytic.

## Emerson EX 386

Fig. 3 shows a three-hand a-c/d-c model, Emerson EX 386, with quite a unique voltage adjustment system to insure long component life. This consists of a ballast resistor with a key adjustment. The waveband switch links all the secondaries of the antenna coils in series, switching the ground to the low side of the-various coils. Ordinarily the grid is switched to the high sides. The unused coils are shorted to prevent dead spots due

| 11 | Adjurable 435 ke waveriap |
| :---: | :---: |
| 12 | Filue shoke |
| TI | Thure band anteans crill |
| T2 | Threebend axillator coil |
| T3 | Doubieriumed ass ke fru He cranalocaier |
| T4 | Double-1uned iss kc mrond inf uranalorner |
| 82 | 20,000 ohm 3 , watt cation mesinot |
| RS | 30 ohnt tid watt carban traisor |
| R ${ }_{\text {d }}$ | 3 orisohen \%f wati carbon reviror |
| RS | 3000 ahe 36 wath carbon rexifor |
| R6 | Volume cuntol 3 orrgothen with line avich |
| R7 |  |
| Rs |  |
| R9 | 20,000 ohm I wart carbon rexiror |
| R10 | 140 ohen ! wate wirewound reisor |
| R11 |  |
| R12 | \% ohen I watt wirce wound reximor |
| R13 | Shorring pluy for 105-125 volt a.c. or dic. operatios |
| R14 | Bolias resimar lor 220.230 vold d.c. oppration |
| R15 | Butarn irsintor lor 220.250 vals ac. operation |
| $\mathrm{Cl}_{1} \mathrm{C} 2$ | Tworgang variathe rondrowr |
| C3 | 0.01 off, 400 volr rubuler condrner1 |
| Cs, Cs, Co | Trimuncts, part of asirama coil asarmbir |
| 7 | Trimmer, pare of tis he ervatrap |
| Cis | 0.0034 ml , mica condroma |
| C14 | Single adjuruble paddiing condenery <br> (Ringe: 750.1500 mml ) |
| C1s | Suggle adjusable padding condenarr <br> (Range: $300-500 \mathrm{mml}$.) |
| C16, C17 | Trimmers, part ol frem It mansluraner |
| $\mathrm{Cl}_{18} \mathrm{C} 19$ |  |
| C20, C23 | 0.00011 mil , mies condrnser |
| C21 | $0.1 \mathrm{vol}, 200$ volt rubular condenser |
| C22, C29 | 0.05 ors . 200 wolh tubulat comenenser |
| C2) | $0.002 \mathrm{ml}, 000$ volt intulas cotidenmer |
| $\mathrm{CL}_{4}$ | 0.00006 mf , misat condenart |
| C3 | 0.00011 ank, micas condenser |
| ${ }^{\text {c26 }}$ | 0.00022 mf , mica condrnser |
| C7 | $0.02 \mathrm{mI}, 400$ vole rubules condenirr |
| C28 | 0.024 mf. 400 vohi rubulat condenser |
| C30 | 0.05 mf , 400 vole tubular condenur |
| C31, C32, C33 | Three arction dry electrolptic cundenser C31. C32-40 mi, 130 wols C33-20 mf. 150 voh |

Fig. 3. Emerson EX 386, 3-band a-c/d-c receiver.
to absorption. Inactive oscillator coils are also grounded.

## Hum-Bucking Cathode Circuit

Since a p-m speaker is used, no humbucking coil on the field is possible,
so a hum-bucking cathode circuit is utilized in the power amplifier. A 20, 000 -ohm resistor is run from the recti fier output at the beginning of the til ter to the cathode which is not by passed. The bias resistor is 140 ohms. The first filter section consists of a 40 -mfd capacitor and a 75 -ohm resistor, second 40 -mifd unit, filter choke, and then 20 mfd . The plate of the 50 L 6 is supplied from the first section and the screen from the second; thus very little hum can be expected in the output. Usually, the power tube plate and the screen is supplied directly from the rectifier.

## Garod 3 P 1812

In reply to many requests, we are listing the functions of the tubes used in the Garod 3 P $1812 \mathrm{a}-\mathrm{m} / \mathrm{f}-\mathrm{m} / \mathrm{s}-\mathrm{w}$ receiver, discussed in Ser-Cuits, Aprif Service. The 7V7 is an r-f tube for $\mathrm{f}-\mathrm{m}$; 7Q7 tubes are used as a-m and f-m converters; 7A7 and 7H7 tubes serve as $\mathrm{i}-\mathrm{f}$ 's ; 7 C 7 tubes are used as first and second limiters; 7A6 is a discriminator; 6SQ7 serves as an ave, detector and phono amplifier; another 7A7 is used in the a-m r-f section; 6SQ7 tubes are used as a phase changer and a-f amplifier; while in the output we have 6 K 6 tubes.

## MCONVERTERS

T the recent FCC allocation hearings, Hallicrafters' engineers demonstrated types of converters for permitting pption in the proposed $f-\mathrm{m}$ band of 102 me with receivers designed for 50 mc reception.
Ine was a single tube converter, for in primary service areas where signal ength is high. Three views of this dea are shown. The upper view shows unit uncased. The tube used is a 757

de view of one-rube converter showing the tube, bandpass inductances, and adjustable condensers.
-
a band-pass circuit together with the propriate padder condensers.
The center illustration shows the unit cmbled, while in the bottom view apir the unit mounted in a receiver cab(t. Operation is by means of a switch hinted on the front panel. During a nsition period, when $f-m$ stations may

e tube converter, complete with mounting bracket, power take-off plug, etc.
erate on both bands, the receiver may switched from one band to the other. ming, with this unit, is done with the seiver dial. The converter is powered on the receiver voltage supply.
Converter inatalled in a typical prewar I-m console.


How to build up a top-notch〇 Testing Team! (4) You don't have to do it all at once -just plan ahead and make every purchase count when you buy a new instrument. Then you'll be building up a perfectly-matched testing team-each a specialist, but each backing up the rest of the team.

That's why Jackson testing instruments are not only built to pinpoint accuracy-but are matched in dimensions, appearance and finish too. You can buy them singly, with assurance that they'll assemble into a combination balancing convenience and appearance with Jackson performance standards. Plan now to own a complete testing team.

Service Lab
Assembly of Standard Size Sack Job Instrumeats


Condenser Tester
Model 650 - Menser Mester Cares. ity, Power Factor and Leakage


Tube Tester Jackson "Dynanic" Test Method

Sensitive Multimeter Model 64.2 - 20,000 ohins per volt-complete ranges


Multimeter
Model 643-1000 ohms per volt. Push key range selection


Electronic Multimeter Model 645-A new Jackson instrument of advanced design


Test Oscillator
Model 640-Accurate to $1 / 2 \%$, covers full frequency range


Mail Coupon for New concoit Radio Parts BUYING-CUIDE

Immediate shipment of radio parts and electronic equipment from CHICAGO or ATLANTA. Save time by ordering all your noeds from ONE sourse. Many parts avallable wlthout priorities. CONCORD'S great, new 68-page BuyingGuide includes 1945 Revised Listings of standard lines of Condensers, Transformers, Resistors, Tubes, Test Equipment, Repair and Replacement Parts, Tools, and hundreds of other essential items. Page after page of top-quality radio and electronic parts, and a special 16 page Bargain Section offering hundreds of hard-to-get parts at important savings. Mail coupon now for your FREE copy.
ORDER FROM CHICAGO OR ATLANTA CONCORDcarries vaststocks.CONCORD ships to you at once from the nearest shipping warehouse, CHIC,IGO or ATLANTA. CONCORD invites you to consult our technical experts on special requirements. CONCORD can expedite any "essential" order and speed action. CONCORD now serves the United States Government, Institutions, Industry-and can serve YOU, whether you want one part or a hundred. Telephone, wire, or write your needs.

## (1) B B

RaDIO conporation Lakeyette Padto Cotporation

$$
\begin{aligned}
& \text { CHICAGO 7, ILL. } \\
& 901 \text { W. Jackson Blyd, }
\end{aligned}
$$

CONCORD RADIO CORPORATION 901 W. Jackson Bivd., Dept. S-55 Chicabo 7. Illinols
Please RUSH FREE cOpy of CON CORD'S new 68-page Buylog-Guide and Revised Listings.
Name.
Address.
1
Clty................................

## PUSH-PULL AMPLIFIERS

(Continued from page 14).
feedback is used. In addition, any nonuniformity in frequency response is also egualized.

Fig. $4 b$ shows a phase inverter using

dback voltage. Note its similarity to circuit in Fig. $4 b$ insofar as feedk is concerned.
Che use of feedback in association $h$ inverter circuits is recommended, se it results in improved audio dity. Quite a few set manufacturers orporated this feature in their prer models, and will probably include n their postwar receivers.

## 【TENDING AMMETER RANGES

(Continued from page 12)
htly more resistance has been ed, in series, than is actually rered.
iimilarly, the value of the shunt reance cut out in changing from $\mathrm{n}=$ to $\mathrm{n}=1,000$, is equal to .030 ohm . e added series resistance becomes 303 ohms, while the calculated figis 29.97 ohms.
Jsing the equation

$$
r_{a}+\frac{r_{m} \cdot r_{1}}{r_{m}+r_{1}}=R_{t}
$$

inserting the values found for $r_{1}$ $r_{3}$ for the various ranges, the dal resistance of the combination is nd for any range.
f the meter were not in the circuit, value of $R_{1}$ and $R_{2}$ would equal 27 ns, 3.333 olims, or 30.333 ohms. is represents the maximum possible ersion from the value desired, 30 ns, or ant error of $1.111 \%$. When $=1,000$, the shunt resistance across meter is .030 ohm. The 30 olms the meter itself, considered as a int across this low value of resisce, is, therefore, negligible. The ue of $R_{1}+R_{2}$, as compared to the ired resistance (which is the meter istance), may be considered as the ximum error introduced.
$t$ should be noted that the first mulier determines the maximum error. - example, if $n$ were to equal 5,25 , instead of 10,100 etc., the error oduced would be greater. Taking same meter as an example, when $=5,25$ etc., $\mathrm{R}_{1}=7.5$ ohms and $=24$ ohms. The maximum possible or is then $5 \%$. Therefore, to keep error low, when using this system, first multiplier stage should be as $h$ as practical.
s, for $\mathrm{n}=10, \quad \mathrm{R}_{\mathrm{t}}=30 \quad$ olims
for $n=100, \quad R_{t}=30.330$ ohms
for $\mathrm{n}=1,000, \mathrm{R}_{\mathrm{t}}=30.333$ ohms he errors in percentage for the ve ranges are $0.0 \%, 1.11 \%$ and $1 \%$, respectively.



Here is the practical way to SAVE MONEY on
hard to get RADIO PARTS Capacitors. . Transformers. thers thousands of other hard to get National radio parts are in our stock awaiting immediate delivery. And overy item guaranteed the finu quality at a prico that saves you real money
Look at the sample listing below. these are just a few of the many money saving bargains Radio Men have found at National. Why don't you take advantage of these savings by ordering today

ORDER TODAY FROM THIS MONEY SAVING LIST!

3000 m.f.d. at 3 v. F.P. Condenser in aluminum can 1\% D
lapt. .......................Each. $\$ 1.39: 10$ for $\$ 11.99$ A suverior mike Cable, single conductor, shielded and pre-wer natural rubber cover.
13 c per ft ; ; $100 \mathrm{ft} . \$ 9.90$ Dusl conductor and shield as above foc per $1 t, 100 \mathrm{ft}$. for $\$ 15.95$ CONTINENTAL CARBON RESISTOR KIT NO. CG Assortment. 100 RMA coated $y_{2}$ and 1 Vatt reslslors ( $\%$ 's are one watt). Unusual bargain at $\$ 3.35$ 20 MFD 150 WV Tubular Pigtail Electrolytic. One year guarantee...................35c ; 10 for $\$ 3.30$ 10 MFD 450 WV Tubular Pigtail Eloctrolytic. One year एuarantee. . . . . . . . . ........43c; 10 for $\$ 3.95$ 50 MFD 150 WV Tubular Pigtail Electrolytic.

| Heavy Duty GE Pyranol 10 MFD 600 WV ( 900 Pk) Off filled paper fitter condenser in Hermetically Scaled metal container $3^{\prime \prime \prime} x^{\prime \prime} 4 \psi_{a^{\prime \prime}} \leq 1^{\prime \prime \prime}$ with connections brought through ceramic bushings. List $\$ 9.80 \quad$ Our price $\$ 2.35$ : 10 for $\$ 19.95$ |  |
| :---: | :---: |
|  |  |
|  |  |

Assortment of 200 pes. Speelai Radio Hardware Including Tube Sockets. Terminal Btrips. Grid Cape and Pluge.

## OUTSTANDING OFFER

An assormment of 20 high grade Vitreous Enameled Wire Wound Resistors in 5,10 and Selected as to popular usage. Ohmlte, Electrohn. Selected as to poputar usage. \#ntah. etc. Kit \#72. List price. $\$ 9.60$. Your cost is only $\$ 2.99$. COD orders require $20 \%$ deposit. We accept no
orders for less than $\$ 2.50$, end pay all shipping orders for less than $\$ 2.50$, end of $\$ 25.00$ or more L-265 or AA-3 cerificates are required.

## FREE

Our Intent money vaving bulletin is suving bulletin is ready Now, copy todry. Your copy
Youll matio.


NATIONAL ELECTRONIC SUPPLY — Dept. S. 5
CHICAGO 10, ILLINOIS


# TRANSFORMER SERVICING 

(Continued from page 26) voltage winding may be easily re. moved, cutting the latter with a razor blade and removing one layer at a time allowing the primary winding to re. main. It is then a simple matter add filament or other low-voltag windings when desired.


Fig. 7. Using a filament transformer as an aut transformer for raising or lowering line voltag

## P-A AMPLIFIERS

(Continued from page 29)
the hearing of an individual will de pend upon the conditions under whic hearing is practiced, whether the roon is noisy, distance from source, etc., any upon the physical condition and age the person making the auditory test Further, some people cannot hed equally well with both ears. In vie of all this, it is desirable to check of our own ears and hearing by usin, electrical measuring instruments.

An oscillograph can be connecte across the output of $\mathrm{VT}_{6}$, as shown it Fig. 6. When the waveform become kinky or changes from a sine wav distortion is present. With the ampl fier gain control first at maximurn audio generator at minimum; the out put of the a-f generator can graduall be raised. At first the scope will sho a sine wave. Then, as the output of the generator is raised to the poir where distortion sets in, the wavefor will change. At that particular poin the level at the input of the andio am plifier can be tested with the vacuum tube voltmeter to learn the maximus permissible input signal level befor distortion becomes noticeable. Th plate connection to the output tube ; desirable in single-ended amplifier since the usual oscillograph has a lim
(Continued on page 38)


OLD TIMER'S

by SERVICER

VRED wandered into the place the other evening looking quite glum. When conversation finally began, he d me that his last signal generator had ne sour, and that he had just heard $m$ the factory that he would have to it for at least two months for either epair or for a new one. He didn't know lat he was going to do, for his shop had ws of receivers to be repaired.
'Why not take some old chassis and the oscillator off that as a generator?" sked.
He told me that he had tried it and it he had blown over seven fuses on the $s$ he was trying to service.
'Guess that you must have been using a-c/d-c set," I opined.
lle nodded his head.
'Well, there's no excuse for that, Fred," said. "You know as well as I do that ise models have their ground connected one side of the house lines, and probly when vou hooked the two together u crossed yourself up."
That's just what had happened.

## The Repalr

I went over to his shop and fixed him Took a bit of insulated wire and isted another wire to it, making a very rall coupling condenser. Naturally I saw it that the wires never touched each ier at any point. Then I soldered one re to the grid clip of the oscillator $x$ and used the other as a probe. The thal was weak but steady. Of course, -re was no modulation on it. So I isted more wire together and then the :nal got louder and louder and finally went dead. I guessed that I had coupled - oscillator too tightly to the radio set der test, so I reduced the twisted part the wires and taking a .0005 -nifd mica ndenser I hooked the two sets' grounds zether through it. There was no fuse owout and the signal was as steady and it right for signal tracing.
"There's your signal generator," I told ed.
"Incidentally you could have used an dinary high-pitched buzzer for a signal nerator, in a pincl. Of course, to conit you should put the output through ordinary amplifier stage, hut that isn't ry hard to get together in a repair shop. ou can use any triode with about 2500 ms in the cathode circuit bypassed by 8 -mid condenser. Couple the buzzer to - grid, bypassed by a 5 -megohm retor. Then you insert a $2.5-\mathrm{mh}$ choke in - plate circuit to help keep the r-f aere you want it, and couple the plate -ough a 25 -mfil blocking condenser to a avy ( 10 watt) 3000 -ohn potentiometer. tother condenser of about $.005-\mathrm{mfd}$ is

## SURE THEY'LL BE BACK...

General Industries Dual-speed Home Recording and Phonograph Assem. bly Model GI-R90


Thinking about phonograph mechanisms for your future products? For turntable motors, recorder assemblies and combination record-chang-ers-recorders, you can count on General Industries, as always.

They'll have those same smooth-running qualities, combined with complete dependability and long life, that for many years have distinguished General Industries products. They'll continue to please you and your customers, as always.

As soon as civilian production is authorized, we'll be glad to work with you to get you to the market quicker with your postwar products.
the general industries co.
DEPT. M - . - ELYRIA, OHIO

connected to the arm and a wire from there is used as a probe.

## Signal Generator Frequency

"This signal generator transmits a signal of about 500 cycles, not 500 kc . That means that you will find little or no difference between 1200 kc and 1200.5 kc. For rough alignment this is ideal since you will not have to rock the signal generator back and forth to make sure you have a lined-up job. Sure, you cannot line it up on the nose: but you can speed up alignment just about $30 \%$ since you do not have to make signal generator adjustments while you are getting ready for the final step of alignment."
Many service shops use this system. The buzzer has one disadvantage, it must
be run by batteries. And batteries cost money. However since most of your servicing involves time, with parts and sets being so hard to get, the faster you can finish your work the better. So on that score alone, the buzzer generator will more than pay for its keep.

## Meeting the Problem

What I am driving at is this. So many men are licked before they start because they will not analyze their problems with a bit of care. When they see the only thing with which they have been working for the past few years blow up, confusion appears to set in. The man who is cool in the emergency and the man who can act when the going gets a bit harder, is the man who will succeed every time.


## An Aid in SELLING ... and in STORING

 the newest idea in the Adapter field. It makes it easier for you to SELL adapters, and easier to stock them for your own use. Let this ADAPTOL innovation help your business!

ADAPTOL Adaptors are noted for quality, craftsmanship and precision. They convert for use of available tubes . . . they transform to scarce type tubes. We are the originators of IR5 to IA7 adapters, and of five substitutes for the 12A8 tube. Little wonders of convenience, each with the replacement function clearly stated on its base.


200 types of odapters, including many with BUILT-IN RESISTORS.

WRITE FOR DETAILS
ADAPTOL COMPANY
260C UTICA AVENUE BROOKLYN 13, NEW YORK


72A SPRING STREET
NEW YORK 12, N. Y.
P-A AMPLIFIERS
(Contimued from page 36)
ited deflection sensitivity and better results will be obtained. The signal voltage in the plate circuit of the output tube may be fairly large, 10 or 20 volts not being uncommon, while the voltage across the voice coil or dummy load may only be 2 or 3 volts in many cases.

In laboratories a wave analyzer may be available for checking the fundamental and harmonic voltages individ. ually. Usually, when the distortion becomes readily noticeable the second harmonic voltage may be $5 \%$ or $10 \%$ of the fundamental. In a push-pull stage the second harmonic voltage is the plate circuit of either of the push pull tubes may be appreciable, wherea the second harmonic measured acros the voice coil or dummy load, due the push-pull cancellation action, ma be small. Therefore, as a genera thing it is better to check for distor tion in a push-pull system by connect ing the indicating instrument acros the voice coil. If the oscillograph lack adequate gain, a small a-f amplifie stage may be built up to boost the sig nal. Care must be taken to see that the extra stage has flat characteristics and that the bias on the pre-amplifie tube is highe: than the peak value o the signal voltage, to prevent over loading of the pre-amplifier stage an the generation of harmonic distortion in that stage. A plate-to-plate connec tion could be used, but it has the dis advantage of putting one side of the oscillograph above ground potential which may lead to the reduction of spurious voltages and incorrect con ditions in testing.

## PROJECTION TELEVISION



## ERVICING

 HELPS
## TUBE SUBSTITUTIONS

M1:THOD used to replace a 12 SA 7 with a 6SA7 is shown in Fig. 1. 25L6 may be substituted for the .6 in the same manner, except that the : cord value is then 320 ohms, and $\mathrm{R}_{\mathrm{x}}$ s becomes 320 ohms. However since s is an odd resistance value, 300 or 350 ns may be used, the latter in the highvoltage areas, the former in low-line tage areas.

s. 1 and 2. Original and rewired circuits.

## Using 6 V6 to Replace 5026

n our locality we were able to secure $47,6 \mathrm{SK7}$, and 6 V 6 tubes. Accorddy we set up a circuit using 6V6 tubes replace 50L6 and 351.6 tubes, Fig. 3. $R_{x}$ was calculated at $E=45$ volts; $I=$ ampere. Thus $\mathrm{R}_{x}=300$ ohms. Total rent drain equals .45 ampere. Shunt $.300+$ (tubes) $.150=.450$


Better results were obtained when the ohm bias resistor was replaced with 250-ohm unit. 10 -watt resistors were d for $\mathrm{R}_{\mathrm{x}}$. The load impedance was natched, but not enough to war$t$ changing of the output transmer. As a result of these changes, eral unusual effects will be noticed; a ger warming period, and some distor1 at high volume levels. None of our
(Continued on page 40)
Figs. 3 (above) and 4 (right)
3. Using a 6 V 6 to replace a 35 L 6 or 50 L 6 . 4. How to replace a 2526 with a $12 S N 7$.

(Continued from page 39)

## The Choice of Discriminating Servicemen!

## Highest Accuracy, Dependability and Performance.

The Radiart Reputation was founded on performance - is being maintained by outstanding service on military electronic
 apparatus - will guarantee full satisfaction on all Radiart Post-War Products. . . . Contact Radiart Distributors for full information and a copy of the Radiart Vibrator Catalog-the most complete Vibrator Catalog published.

## SPEED UP REPAIRS WITH THESE G-C AIDS!



## Get This New FREE Dial Belt-Drive Cable

 and Cabinet RepairGuide!Pocket-size, 68-page book contains thousands of listings, specifications and time-saving service instructions. Invaluable to every radio man. Get a copy from your jobber. If he cannot supply you, write us.
 every time. Kits come with 25, 50, 100, 200 or 300 belis.

Order From Your Radio Parts Jobber ALWAYS ASK FOR G-C PRODUCTS GENERAL CEMENT MFG. CO. ROCKFORD, ILLINOIS

## NEW PRODUCTS

## SPRAGUE HYPASS CAPACITORS

Hypass capacitors said to be nonresonant at frequencies as high as 50 megacycles and in some instances, up to 300 megacycles, have been amnounced by Sprague Electric Company, North Adams, Massachusetts. The units can be used for filtering or bypassing over wide frequency bands.


## GENERAL CEMENT ALIGNING KIT

An all-purpose aligning kit. 5022, with alligator and hexagonal screw drivers. enclosed in leatherette case has been projuced by General Cement Manufacturing Co., 919 Taylor A venue, Rockford, I11.


## G. E. GLASS TERMINAL SEAL PAPER CAPACITORS

Hermetically sealed, fixed paper-dielectric capacitors with glass terminal insulators, CP-60, -62, and -64, characteristics E and F , have been announced by G . E .
Glass terminal seals are said to provide an unusually high degree of resistance to humidity, fungus growths, and termites.
Capacitance values range from 0.05 to 0.50 mifd , for voltages of 600,1000 , or 1500.

## OHMITE RITEOHM RESISTORS

Two types of Riteohn precision resistors, series 82 and 83 , have been announced by the Ohmite Manufacturing Company, 4835 Flournoy Street, Chicago 44, Ill.
Both units use enameled alloy resistance wire, non-inductively pie-wound on a nonhygroscopic ceramic bobbin which has a hole through the center for a No. 6 screw. After being wound, the units are vacuum impregnated with a varnish. Riteohm 82 is available in 2,4 and 6 pie types; maximum resistance of 2 pie. 400.000 ohms; 4 pie, 750.000 ohms; 6 pie, 1 megohm. Sizes are $11 / 16^{\prime \prime}$ diameter by $11 / 6^{\prime \prime}$ long, $17 / 16^{\prime \prime}$ long or $13 / 42^{\prime}$ ong for the 2, 4 and 6 -pie units respecively. The minimum resistance available or all units is .1 ohm.
Riteohm 83 is available in small and large 2-pie and 4 -pie tvpes. Maximum resistance of small 2 pie, 200,000 ohms; large 2 pie, 400,000 ohms; 4 pie, 800.000 ohms. Sizes are: $1 / 2^{\prime \prime}$ diameter by $7 / 16^{\prime \prime}$ ollong,
(Continued on page 45)

FM and Television is edited for aggressive, progressive-minded servicemen who are preparing to make the most of postwar opportunities opened up by the new FCC allocations for television and FM services.

Fields Covered * In fact, during the last five years, FM and Television has come to be considered must reading for those concerned with television or FM for broadcasting, police, fire, public utility, railroad, and military conımunications, and facsimile. This publication covers the design, manufacture, and use of such equipment, and presents eircuit and service information available from no other source.

Ediboriad Policy * You will find FM and Television refreshingly different in contents and style. You will discover that engineering data,
however technical, becomes interesting reading when it is thoughtfully planned, well written, and accompanied by informative illustrations. No expense is spared to obtain papers from engineers who are acknowledged authorities, and to prepare, check, and illustrate every article to enhance its value to our readers. As a result, FM and Television is a constant source of stimulating ideas which you can apply to your present work and future planning.
Looking Ahead *You can't make postwar progress in service work if you have only prewar knowledge. Broadcasters and manufacturers are building all their future plans around FM and television. And so must you! Every issue of $F M$ and Television contains information you should study carefully and keep for future reference.

## SPECIAL INTRODUCTORY

## RATE: 6 Months for $\$ 1.00$

[^1]
## FM AND TELEVISION

## 511 Fifth Avonue, New Yopk 17, N. Y.

$\square 1$ enclose $\$ 1.00$ for a 6 months'subicription 1 enclose $\$ 3.00$ for 1 year subseription (12 issues)
$\qquad$



## For Soldering in

 Tight Places. Drakt
## No. 400 Soldering Iron

## Smallest Industrial Iron Ever Designed

60 Watts - $1 / 4$ in. Tip Only 9 in. long. Wt. only 8 os
This mighty mite is backed by DRAKE's 25 years of soldering iron manufacturing experience. The high quality and long-service of DRAKE Soldering Irons have made them outstanding favorites with all types of radio men everywhere. The DRAKE No. 400 is an outstanding value at


Only $\$ 4.50$
Drake Has an Iron 7 for Every Purpose. Ask Your Radlo Parts Jobber
definitely at 55 Chapel Street, Newton, Massachusetts.

## news of the representatives

A. V. Rodman, 1827 So. Hope St. Los Angeles, 15, Cal., has become a member of the Los Angeles chapter of the Representatives

Dave M. Marshank of the Los Angeles chapter has removed to 672 Lafayette Park Place, Los Angeles 5, Cal. V. T Rupp, of the same chapter is now located at 1150 W. Olympic Blvd., Los Angeles 15, Cal.

Arnold M. Sinai of the California chapter has been discharged from the armed forces and is back in business at 1280 Mission St., San Francisco 3, Cal. W. I. Otis, of the same chapter has moved to 600 Camelia St., Oakland 2, Cal.

## SYLVANIA RECOMMENDED TUBE REFERENCE LIST

A pin-up chart of recommended tube types has been published by Sylvania Electric Products Inc., 500 Fifth Avenue, New York 18, N. Y.

Listings include many tube types selected for better performance in equipment now being designed and those that are contemplated for postwar production.

## SPRAGUE TROPICAL RESISTOR CATALOG

A catalog describing Sprague Koolohm resistors having tropicalized glazed onter protective shells and moistureproof end seals has been issued by the Sprague Products Company, North Adams, Mass. Values covered include $5-, 10-, 25-, 50-$ and 120 -watt fixed, as well as 10 -watt adjustable types.

## AERO NEEDLE MOVES

The Aero Needle Company has moved its plant to the Edison Park area in Chicago.

The sales offices have also been moved. New quarters are at 619 North Michigan nue, Chicago, Ill.

## ROLA WINS WHITE "E" STAR

The Rola Company, Cleveland, has received its third "E"flag star.

## WESTINGHOUSE NAME CHANGE

The Westinghouse Electric and Manufacturing Company will hereafter be known as the Westinghouse Electric Corporation.

## JULIUS HABER NAMED RCA VICTOR ASS'T. AD DIRECTOR

Julius Haber has been appointed assistant director of the advertising and sales promotion department of the RCA Victor Division of the Radio Corporation of America. Mr. Haber was formerly director of publicity.

Harold D. Desfor was named director of publicity. He was formerly assistant to Mr. Haber.

## WILLETT JOINS DEMAMBRO SUPPLY

Mell Willett, has joined the Demambro

Radio Supply Company, 1111 Commonwealth Avenue, Boston, Mass. He will be in charge of sales in the electronic parts department.

Mr. Willett was formerly with The Eastern Company, Cambridge, Mass., where he managed the Cambridge and Worcester branches handling radio parts.

## PASCHKES BECOMES SOLAR BOARD CHAIRMAN

Otto Paschkes has relinquished the presidency of the Solar Manufacturing Corp., to assume the newly created post of board chairman. Elected to succeed him as president was Paul Hetenyi, formerly executive vice president.

Mr. Paschkes will continue actively as chief administrative officer.
Other personnel changes included the election of Wickham C. Harter, secretary, to the dual post of vice president and secretary, and the promotion of James I. Cornell, chief engineer, to the second vice presidency.

## N. U. SALES STAFF HONORS J. H. (ROBBY) ROBINSON

In appreciation of the sincere cooperation given them during the past 15 years when J. Homer (Robby) Robinson was affiliated with National Union as sales manager, N. U. salesmen gave a party in his honor at the Advertising Club in New York recently.

A set of golf clubs and a Masonic ring were presented to "Robby" on behalf of the salesmen by Henry Hutchins and Bill Hendrickson.
"Robby" was recently appointed vice president and general sales manager of the American Radio Hardware Company. Mount Vernon, N. Y.

## WARTIME RECORDING DISCUSSED BEFORE R. C. OF A.

F. W. Whitehouse, field and application engineer of the Recordgraph division of Frederick Hart \& Company, delivered a paper recently describing the Recordgraph machine and its use on the war fronts before members of the Radio Club of America. The unit was also demonstrated. Records taken under adverse battle conditions were run.

## 1944 N. U. INCOME REPORT

The net income of the National Union Radio Corporation in 1944 amounted to $\$ 269,735$, after provision for income and excess profits taxes and adjustments applicable to prior years, as compared with $\$ 539,663$ for the year 1943 .

## RADOLEK CATALOG

A 24-page catalog describing a variety

## HOME WIRE RECORDER



William Lear and the Lear wire recording magazine designed for home receiver use. Unit provides one-hour of recording.
 MULTITESTER VBTN
Ranges: DC Voltmeter, $0 / 5 / 50 / 250 / 500$ volts; DC Millammeter, $0 / 1 / 10 / 100$ mills; AC Voltmeter, $0 / 10 / 100 / 500 / 1000$ volts; Ohmmeter, Low range $0-500$ ohms, High range $0-1000,000 / 1$ megohm. 0verall size, $51 / 2 \leq 8 \times 3 \%$. Meter is $91 / s^{\prime \prime}$ round bakelite case with sturdy D'Aronssal movement.

## FREE! NEW FLYER OF HARD-TO-GET RADIO PARTS!



## 744 WEST BROADWAY COUNCIL BLUFFS, IA.

Giant Radio Reference Map. 15c Time zones,
 amateur zones. short wave stations, and other valuable information. Printed in colors. Slze $31 / 2 \times 41 / 2$
feet. Sead only 15 c to cover mailing.
Handy Tube-Base Calculator. 25 c


Shows characteristics that help you substitute arailable tubes for those hard to get. Radlo tube substitution Rence Book......10c Radlo tube substitution data; technical data. WE SPECIALIZE IN HALLICRAFTERS We are one of the country's largest distributors of HALLICRAFTERS which are avallable for immediate delivery on priority. Write for full details.
Wholesale MAIL TODAY
Wholesale Radio Laboratories
744 West Broadmay
Council Blufis, Iowa.
Please rush Mutitester No. 300. $\$ 18.75$ is enclosed, or
E
Enclosed is \$ Send rour reference Bool C.O.D. Circuits." Here"s Book "Tubes and Circults." Here"s my 10 c .
You bet I want a Tube-Base Calculator. 25 c is enclosed.
Shlp me your radio map. 15 c is enclosed for packaging and malling.
Send your free flyer of hard-to-get radio parts.
Name

## Address

Town $\qquad$
of available components has been issued by the Radolek Company, Randolph at Jefferson Street, Chicago, IIl.

## INTERNATIONAL MERIT TO SELL LAUBSCHER NEEDLES

International Merit Products Corporation, 254 West 54th Street, New York 19, New York, has been appointed Western Hemisphere sales representatives for phonograph needles manufactured by Laubscher Brothers, Taeuffelen, Switzerland.

The North American division, comprising U.S.A. and Canada, is under the management of Edward M. Bieber. The Latin American division is under the management of T. William Maas.
The officers of the corporation are:

Ernest T. Laubscher, chairman of the board; Julius Mueller, president; Anna Mueller, vice president ; Ernest T. Laubscher, treasurer: and Harvey McCoy, secretary. The needles will sell under the trade mark Meritone.

## DETROLA WINS "E"

The Detrola radio division, International Detrola Corporation, have received the Army-Navy E.

## C-D REPLACEMENT CAPACITOR CATALOG

Catalog 195 with data on capacities, sizes and prices of Cornell-Dubilier can(Continued on page 44)


OSCILLOSCOPE CRO-3A

EVERY service man needs this portable oscilloscope for accurate and rapid service work on AM, FM and Television receivers. We list only a few of the many uses that make it indispensable in the modern service shop: study wave shapes and transients; measure modulation adjustment of transmitters; check receiver alignment; determine peak voltages; trace electronic tube characteristics. The CRO-3A gives a sharp, clear picture and is equipped with a screen for easy daylight viewing. Write today: Electronics Department, General Electric, Schenectady 5, New York.

Electronic Measuring Insfruments

## GENERAL (8) ELECTRIC

## THIS MULTITESTER I N STOCK

## IMMEDIATE DELIVERY



UNCONDITIONALLY GUARANTEED SATISFACTION OR MONEY BACK
Latest meter desion In all metal case; compact. rugged ; the answer to your need for an all purpose, atcurate Multitester. Case measures $31 / 2^{\prime \prime} \times 8^{\prime \prime} \times 5^{\prime \prime}$. Cómplete with self-contained batterles.

## RADIO REPAIR MEN

ORDER THIS TESTER TODAY

[^2]

## For Quick Temporary Connections

- Made in 10 aizen-from the ting Weo-pee-Wee to the 300 ampere Big Brufe.
- Otfared In both steel and solld copper.
- Red and black rubber insulatore to fit each size.
- A completo line with


## a CLIP FOR EVERY PURPOSE <br> Soud for froe sengles and catados 810

## Wuallochedicer

1565 E. 31 st St. . Cleveland, Ohle

## (Contimued from page 43)

types and cardboard tube type, electrolytic capacitors, paper capacitors, wax impreg nated and Dykanol tubular capacitors, drawn metal shell units, replacement paper units, photo-flash units, auto radio units, transmitting paper types, and also various types of mica capacitors has been issued by Cornell-Dubilier Electric Corporation, South Plainfield, N. J.
Capacitor test instruments and inter, ference filters also are described.

## DALE DISTRIBUTING MOVES

Offices and showrooms of the Dale Distributing Company, Inc., have been moved to 40 East 32nd Street, New York 16, N. Y.

## WAR VETERAN RADIO OPPORTUNITIES DISCUSSED BY GEN. SARNOFF

Opportunities for returning servicemen in radio and electronics are outlined by Brigadier General David Sarnoff, president of Radio Corporation of America in a booklet recently released.

Listed among radio and electronic fields needing servicemen are those of broadcasting, television, radar, radio-facsimile. radio relays, radiothermics, electron microscopy, supersonics, aircraft and marine radio. General Sarnoff suggested that the electronizing of industry also may prove to be an attractive occupation for returning veterans. He called attention to a recent survey which reveals a total of 16,800 electronic devices in use in 796 American industrial plants.

## golenpaul celebrates 15th year WITH AEROVOX

Charley Golenpaul celebrated his fifteenth anniversary with Aerovox Corporation in May.

Golenpaul came to Aerovox in 1930, from Clarostat where he had been general sales manager.

He helped organize the Sales Managers Club and has served several terms as chairman of the Eastern group, which post he again occupies. He is active in various trade movements.


## MECK DIE-CUT DEALER FOLDERS

A series of $3^{\prime \prime} \times 4^{\prime \prime}$ die-cut folders illustrating postwar receivers have been issued by John Meck Industries, Inc., Plymouth, Indiana.

## HOWARD RADIO APPOINTS SMITH BENNY AS EASTERN REP.

Howard Radio Company has appointed Smith Benny Sales Co., 11 West 42nd Street, as Eastern representatives. They will be in charge of distributor appointments in Maine, New Hampshire, Vermont, New York, Massachusetts, Rhode Island, Connecticut, New Jersey, Pennsylvania, Maryland, Delaware and Washington, D. C.

#  

YourGuide to DEPEMDABLE RESISTANCE COHITROL


The service-record of Ohmite Brown Devil and Dividohm Resistors before and during the war... is your best guide to resistancecontrol tomorrow. Widely used in military and industrial equipment...everywhere! Write for Stock Unit Catalog No. 18.

Authorized Distributors Evcrywhere

## OHM'S LAW CALCULATOR

Figures ohms, watts, volts, ampercs ...easily. Solves any Ohm's Law problem with one setting of the slide. Send only 10c in coin.

OHMITE MANUFACTURING CO. 4879 FIOURNOY ST. - CHICAGO 44, U. S. A.
Furuhtwith OHMITE Amcostars. neststons.tapswitcucs

## NEW PRODUCTS

(Continued from page 41)
$5 / 8^{\prime \prime}$ long or $1^{\prime \prime}$ long. The minimum resistance is 10 ohms for all units.
Common applications for these resistors are voltmeter multipliers, attentuation pads, etc.

## SYLVANIA C-R TUBES

Standard 3AP1, 3BP1, 5AP1, 5BP1, 5CP1 and 5HP1 RMA c-r tubes and similar tubes supplied with P4 or other special phosphors, are now available from Sylvania Electric Products Inc., Emporium, Pa .


## G.E PORTABLE OSCILLOSCOPES

A portable oscilloscope, type CRO-3A. has been announced by G. E.

The oscilloscope can be used for the study of wave shapes and transients, measurement of modulation adjustment of receivers, determinations of peak voltages, and tracing of tube characteristics.

Unit is equipped with a 906 -Pl cathoderay tube which has a greenish screen that can be viewed in daylight. G. E. says that moderately high-speed traces can also be photographed on the screen.

The unit has a wide-range sweep circuit featuring a linear amplifier. Sweep rates from 10 to 30,000 per second; adjustable by a 7 -point vernier switch.

## CENTRALAB MEDIUM DUTY POWER SWITCHES

A J-switch series for power applications has been announced by Centralab, Division of Globe-Union, Inc., 900 East Keefe Ave., Milwaukee 1, Wis
Switches will be available in one to five sections, with srorting or nonshorting type contacts. In addition to the complete units, sections and indexes will be available separately for individual assembly in any desired combination. The switching combinations for the present will be one pole, 17 positions ( 18 positions, continuous rotation, with eighteenth position "off") and 3 poles, 5 positions ( 6 positions, with sixth position "off"). All units will be furnished with adiustable stops for limiting the desired number of positions.
Switches will have single hole, bushing mounting. In addition, there will be tie-rod extensions at both the front and rear of the switch to serve as locating keys and offer additional support in mounting. Locknuts, lockwashers, and a $21 / /^{\prime \prime}$ bar knob wil be furnished with each unit. The bar knob has double set screws for secure mounting to the shaft.
Units wil have a double-roller index with minimum life operation of 25,000 cycles. Contact buttons wil be solid sil-


- A mere handiul of these Aerovox wartime capacitor replacements can take care of upwards of $90 \%$ of your usual capacitor replacements. Only nine selected voltage ratings and capacitance values for the "Dandee" electrolytics, only eight capacitance values, all 600 -volt. for the paper tubulars, will do the trick.

Your Aerovox jobber stocks them for your convenience. However, it will pay you handsome dividends to have your own stock always on hand. Remember, sel-owners these days are more impatient than ever. Why not cash in on QUICK SERVICE?

## - Ask Our Jobber . . .

Ask him for an assortment of Aerovox wartime "Dandee" electrolytics and Type " 84 " paper tubulars. Ask for latest cata$\log -\mathrm{or}$ write us direct.


## 1300 substitutions <br> THE REPLACEMENT FUNCTION OF EACH SOCXETTE CLEARLY MARKED ON TTS BASE, <br> IFD presents the moss complete line of tube adapters in the ridio beld. Now it is no longer aecessary to rewire radios to accommodate tubes that are not avail able because JFD has an adapter that permits the ase of cube substivutes <br> tach Sockette is proven by eest 10 answer the puro puse tor which it was designed Slow-moving shelt rubes can now be converted to popular types by the use of JFD_Sucketle. <br> Every concervable type of adapter is incorporated. such as resistor type, loktal type, loktal metal bast type. octul sype, mincature type, tac <br> JFD SOCKETTES must be good, for over a 1,000,000 of them are in use today ... AND THE NUMBER KEEPS GROWING DAILY.



## TUBES-PARTS RADIO DEALERS-SERVICEMEN

Send for our list of available tubes and repair parts. Sylvania, Tung-Sol, National Union.
M. V. MANSFIELD CO.

937 Liberty Avb.
PITTSBURGH 22, PA.

## UNIVERSAL MIDGET TOOLS DANDY SIXTEEN PIECE SET

Midget Pliers, Diagonal Cutters, Four Midget End Wrenches, Needle-nose Pliers, Screwholder, Six Punches and Chisel, Round File, Midget Crescent Wrench. \$14.85. IMMEDIAT SHP MENT-Avernight by Air to Anywhere UNIVERRAL TOOLD Migr. Price Uist and Order Blank Free. CITY, MO. Remember:
COMPANY, 1527 Grand St., KANSAS CIT COMPANY, 1527 Grand St., KANSAS <br> \title{

## 10,000 RADIO MEN <br> \title{ \section*{10,000 RADIO MEN <br> <br> <br> are speeding up their work by using <br> <br> <br> are speeding up their work by using <br> <br> WARTIME RADIO SERVICE <br> <br> WARTIME RADIO SERVICE <br> <br> speeding up their work by using 

 <br> <br> speeding up their work by using}

75 pages - over 1500 detailed, tested tube substitutions and other information you can't be without.

CITY RADIO COMPANY
East Washington at Fifth Street
Phoenix, Arlzona
w-

> PRICE $\$ 3.00$ POSTPAID
> From your jobber or order from
Phoenix

# Speaker Cones Replaced <br> <div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">$4^{\prime \prime \prime}-\$ 1.00$</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">$6^{\prime \prime}-\$ 1.20$</td>
<td style="text-align: left; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">$10^{\prime \prime}-\$ 2.00$</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">$5^{\prime \prime}-\$ 1.10$</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">$8^{\prime \prime}-\$ 1.65$</td>
<td style="text-align: left; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">$12^{\prime \prime}-\$ 2.25$</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| $4^{\prime \prime \prime}-\$ 1.00$ | $6^{\prime \prime}-\$ 1.20$ | $10^{\prime \prime}-\$ 2.00$ |
| :--- | :--- | :--- |
| $5^{\prime \prime}-\$ 1.10$ | $8^{\prime \prime}-\$ 1.65$ | $12^{\prime \prime}-\$ 2.25$ |</table-markdown></div> <br> PROMPT SERVICE <br> MORRISON'S RADIO SUPPLY <br> 331 Center Street <br> Ashtabula, Ohlo 

## - Ted MeEhroy <br> World's Largost Manutacturer of Wiroloss Tolegraphic Apparatus compores cempant orrice reuinems McElroy Manufacturing Gorp. 32 Iroulline Avene - Dosion, Massnciusetis

## ONE-STOP SERVICE

for all your parts requirements

## the STANDARD RADIO

AND ELECTRONIC PRODUCTS CO.
135 EAST SECOND ST., DAYTON, OHIO

## WHEN YOU CHANGE YOUR ADDRESS

the new address, ead do this at least four weeks in advance. The Post Office Department Department does not forward magazince unleas you pay additional postage, and we cannot duplicate coplea Be sure to notify the Subscription Department of SERVICE at 19 E. Forty-seventh St., New Kork 17, N. Y., giving the old as well sa mailed to the old address. We ask your cooperation.
ver, and the terminals lug type. The rotor operating shaft will be square, fitting a staked sleeve in steatite rotors; sections will be grade 1.5 steatite, wax impregnated.


## HICKOK SEALED METERS

Hermetically sealed $21 / 2^{\prime \prime}, 3^{1 / 2} 2^{\prime \prime}$ and $4^{\prime \prime}$ round style meters with internal pivot
construction, have been announced by The Hickok Electrical Instrument Company, 10529 Dupont Ave., Cleveland 8, Ohio. Dimensions are in accordance with American Var Standards C39.2-1 and C39.2-2. Instruments offered include voltmeters, ammeters, milliameters and microammeters, both a-c and d-c.


WALSCO SYNTHETIC INSULATION
Synthetic wire installation, "flexitube," has been announced by the Walter L.

Schott Company, 9306 Santa Monica Boulevard, Beverly Hills, California.

Flexitube is said to be resistant to abrasion and effective over temperatures ranging from minus $35^{\circ} \mathrm{C}$ to plus $75^{\circ} \mathrm{C}$.
Stock colors are red, black, green, and clear; other colors can be supplied. Sizes (B-S' gage) range from 2 to 18.
A sample kit containing various sizes and colors wil be furnished free upon request.

## MARION MULTI-RANGE METERTESTER

A $0-10 \mathrm{ma} / 0-25$-microampere $0-100$-volt multi-range metertester featuring a stepless vacuum tube voltage control; $81 / 2^{\prime \prime}$ mirror scale standard instrument and . $1 \%$ wire-wound resistors has been announced by the Marion Electrical Instrument Co., Manchester, New Hampshire.

 writers developed was that of Thurber in 1843. Then clumsy and slow, it has been brought to its present high level of efficiency and speed by careful application of design.
Here at the waro products corporation Design Counts, also: because, it is only through superior design that the benefits of experience and the finest production facilities can best be brought to the user. For the finest antennas fot all applications ... for home and cutomobile use . . . look to WARD.

## BACKAGAIN...SOON WARD AERIALS

"World's Finest for Car \& Home"

THE WARB PRODUCTS CORPORATION 1523 EAST 4STH STAEET - CLEYELAND 3, OHIO

# JOTS AND FLASHES 

WYILL WHITMORE named advertising manager of Western Electric Co. . . . R-L Electronic Corp., Chicago, appointed to distribute National Union radio tubes.

Astatic jobber s-m, Ray Schottenberg, recently visited jobbers in Virginia and Washington, D. C. ... John Meck Industries, Inc., underwrites full cost of hospitalization and life insurance plan for employees with company over three months. . . . Albany (N. Y.) Hardware \& Iron Co. to distribute Bendix home radios. . . Radio Parts Co. of Phoenix, Arizona, will distribute Hoffman radios. . . . 5th "E" Award to Stromberg - Carison. With the European phase of the war concluded, there is a big possibility that you will be offered various assortments of surplus merchandise through dubious channels . . . don't be tempted.

Play ball with your industry and your customers. . . . Stock and sell only nationally known parts and equipment ... guaranteed merchandise that assures customer satisfaction and a fair profit to yourself. . . . Work as closely as possible with your distributor . . . he can help you, plenty. Have you bought your quota and a bit more of the 7th War Loan Bond issue?

## RADOUIK RadioElectro Parts Service service



Large stocks assure the finest and mest complete selections of all available hems at lowest prevailing prices. Thousonds of active buyers depend on us for their entire Radio repair and replacement requirements. Because we understond service problems, every order is expedited for delivery in double quick time. Everyiting wo do is planned for convenience and satisfaction to our customers. You will find it profitable to make Radolck your buring heodqudimers.

FREE BUYING GUIDES
Bocause of existing conditions we keep our customers right up to the minuto on available mershandise by releosing suppiement frequently instead of sending aur regulor Big Profir Guld. onco a year. Sand the coupon now Buying Guide Supplements os they plements
ore issued.


[^3]RADOLEK CO., Depl. S-102
$\qquad$
nAME

ADDPESS
ORDER FROM RADOLEK

## ADVERTISERS IN THIS ISSUE

## MAY, 1945

ADAPTOL COMPANY AdVERTISN Agency-Hart LbHMAN, ADVERTISNO AEROVOX CORPORATION
Agency-Austin C. Lbscarboura \& Stapp AMERICAN CONDENSER CO.
Agency-Michabl F. Mayger
THE ASTATIC CORPORATION
Agency- Wbarstler Advbrtising, Inc.
BURSTEIN-APPLEBEE CO.
Agency-Frank E. Whalen Adv. Co.
CINAUDAGRAPH SPEAKERS, INC. Agency-Michabl F. Mayger
CITY RADIO CO.
CLAROSTAT MFG. CO., INC.
Agency-Austin C. Lescarboura \& Stafp
CONCORD RADIO CORP
Agency-E. H. Brown Adv. Agbncy
DETROLA RADIO DIV. INTER.
NATIONAL DETROLA CORP
Agency-Zimmer-Kellbr, Inc.
DRAKE ELECTRIC WORKS, INC.
Agency-William Hopfman \& Associates
F-M AND TELEVISION
Agency-Shappe.WILRes Inc
FREED TRANSFORMER CO.
Agency-Franklin Adv. Sbrvice
GENERAL CEMENT MFG. CO Agency--TURNER ADV. AgBNcy
GENERAL ELECTRIC CO.
Agency-Maxon. Inc.
THE GENERAL INDUSTRIES CO
Agency-Fuller \& Smith \& Ross, Inc.
HICKOK ELECTRICAL INSTRU. CO.
Agency-White Adv. Co.
INTERNATIONAL RESISTANCE CO.
Agency-Thb Laibnson Bureau
J.F.D. MFG. CO.

Agency-Mitchrll Adv. AgBncy
JACKSON ELECTRICAL INSTRU. CO... 33 Agency-Kircher, Lytle, Helton \& Collett, 1NC.
KEN-RAD
Agency-MAxON, INC.
MCELROY MFG. CORP.
Agency-Silappe-WILKBS INC
M. V. MANSFIELD CO
M. MANSFIELD CO.
MARION ELECTRICAL INST

Agency-ShapPE-WILKES INC
JOHN MECK INDUSTRIES Inside Front Cover Agency-The Fbnsholt Co.
MEISSNER MFG. CO.
Agency-Gardner Adv. Co.
MORRISON'S RADIO SUPPLY
MUELLER ELECTRIC CO
NATIONAL ELECTRONIC SUPPLY
Agency-LOUIS B. Nidier
NATIONAL UNION RADIO INC
Agency-HUTCHINS
OHMITE MFG. CO.
Agency-Henry H. Teplitz. Advbrtising OMAHA RADIO PRODUCTS CO.
RADIART CORPORATION
Agency-KBNNBTH H. KolpIBN
RADIO CORPORATION OF AMERICA
Agency-KENYON \& ECKHARDT, INC.
RADIO EQUIPMENT CO.
THE RADOLEK CO.
Agency-Turner Adv. Co.
RAYTHEON MFG. CO
Agency-Burton Bbownb, Adveritising
SOLAR CAPACITOR SALES CORP.
(Inside Rack Cover Agency-O. S. TYson \& Co.. Inc.
SPRAGUE PRODUCTS CO.
Agency-The Harry P. Bridge Co.
STANDARD RADIO \& ELECTRONIC PRODUCTS CO.
gency-KIRCHER, LYTLE, HELTON \& COLETT
STANDARD TRANSFORMER CORP. ...
Agency-B URNBT-KUhN Adv. Co.
SYLVANIA ELECTRIC PRODUCTS INC. 1 Agency-Newell-Emmett Co.
TECHNICAL DIV. MURRAY HILL BOOKS INC.
Agency-The Harri P. Bridge Co.
TRIPLETT ELECTRICAL INSTRU. CO. Agency-Western Adv. Agbncy, Inc.
TUNG.SOL LAMP WORKS
Agency-E. M. Freystadt Associates
UNITED TRANSFORMER CO.
Agency-Shappe-Wilkes Inc
UNIVERSAL MICROPHONE CO. Agency-Ralpi L. Powbr Agbncy UNIVERSAL TOOL CO.

Agency-Barrons Adv. Co., Inc.
THE WARD PRODUCTS CORP.
Agency-Burton Browne, Advertising
WESTON ELECTRICAL INSTRUMENT
CORP. - Ggency- Masford Co.
WHOLESALE RADIO LABORATORIES Agency-Ppeipfer Adv. Agrncy

## УOH can't put the squecze

## OI SEALDTITE

## CAPACITORS



Just try it . . . Take a genuine "Sealdtite" capacitor and try to squeeze it. No results. You'll find it has no soft spots, which in ordinary tubulars provide room for moisture, the capacitor's worst enemy, because the Solar capacitor has an internal winding of high quality paper and foil, skillfully molded into solid plastic.

No moisture can penetrate this protective case and its substantial construction permits rough handling, assures long and reliable service. Use "Sealdtite" capacitors. Send for your copy of Catalog V-4. Any Climate-Any Atmosphere-Any Service.
 EXCELLENCE AWARDS

## THESE 10 CONTROLS REPLACE 95\%



If you haven't already put in a stock of N.U. Save-a-shaft Volume Controls . . order yours today from your N.U. Distributor. Here's a real time-saver he can deliver fast! Minimum investment in stock of only 10 types is all you need to get going. NATIONAL UNION RADIO CORPORATION, Newark 2, N. J.

## 7 REASONS WHY

1. 10 types handle over $95 \%$ of your volume control replacement needs.
2. Eliminates shaft sizing and knob fitting.
3. Adaptable to any standard shaft.
4. Controls are complete with switch.
5. If no switch is needed, use same control but don't pull switch lug.
6. Individually packaged with instructions.
7. All sizes $\$ 1.00$ list price.


[^0]:    Tuning Condenser
    $3-30 \mathrm{mmf}$. "C". Antenna Trimmer $3-30 \mathrm{mmf}$. "D" Antenna Trimmer $5-40 \mathrm{mmf}$. "B" Oscillator Trimmer $3-30 \mathrm{mmf}$. ${ }^{\mathrm{C}}$ " Oscillator Trimmer $3-30 \mathrm{mmf}$. "D "Oscillator Trimmer 560 mmf . Padding Capacitor
    1600 mmf . Mica Capacitor 4300 mmf . Mica Capacitor 750 mmf . Mica Capacitor 150 mmf . Mica Capacitor 0.1 mfd . Paper Capacitor 47 mmf . Mica Capacitor 0.1 mid . Paper Capacitor 175 mmf . 1.P. Capacitor 85 mml . $1 . \mathrm{P}$. Capacitor 47 mmf . Mica Capacitor 25 mfd . Paper Capacitor 8.5 mmf . $1 . \mathrm{F}$, Capacitor 175 mmi . I.F. Capacitor 100 mmf . Mica Capacitor 47 mmf . Mica Capacitor .0015 mfd . Paper Capacitor 470 mmf . Mica Capacitor .01 mid. Paper Capacitor .01 mfd . Paper Capacitor .003 mfd . Paper Capacitor .05 mfd . Paper Capacitor $.05 \mathrm{~m} / \mathrm{d}$. Paper Capacito 20 mid . 25 V . Dry Electrolytic 20 mid. 250 V . Dry Electrolytic

[^1]:    Se thal you can become acquainfed with FM AND TELEVISION and fudge its value to you, spend $\$ 1.00$ for a 6 months' subscriplion. Thai dollar will bring you information and engineering date which may well provo to be of inestimable value in your present work and future planning.

[^2]:    OMAHA RADIO PRODUCTS CO
    368 Saunders-Kennedy Bldg.
    Omaha. Nebraska
    Enclosed Is Yull remittance of \$18.75, or my Deposit of $\$ . . .$. and shlo Multitester $_{4}$ MT 100 C.O.D. for balance

    NAME
    ADDRESS
    CITY.......................... STATE.

[^3]:    601 W Pandalph St, Chicago 6,

