A 75^{c} SCIENGE AND MECHANICS HANDBOOK

AM-FM-TV STATLIENS MOLLD-WIDE SHORT WAVE

OVER IA, JOO LISTIISS WITH BOD CHANGES

"MAGIC EYE" INSTALLATIONS

 40 Projects and Experiments FM STEREO INDICATOR • Bonst CB Output POWER AMP MODOLE • High Voltage Source
trouile shooting with the signal tracer

YOU GET A YALYADL:

Containing party by RCA, MALLORY, PYRAMID, GE, CENTRALAR, STACMPOLE, TRIM, CINCH and ather paliable monularturers. Refail volue of ports alone is MORE THAM 25 DOLLARS

PLus a complete

ELECTBONICS COURSE

You REALLY LEARN ELECTRONICS. The progressive "learn by doing" American Basic Science Club system is the EASIEST, MOST YHOROUGH and MOST EXCITING way to b solid background in electronics. Basic enough for beginners . . . rewarding enough for expents. NOWHERE ELSE is a course of this scope available of this LOW PRICE!

ENTHUSIASTIC MEMBERS WRITE:

'bosic principles unforgellably loamed"
it is only after having completed the expers hents in your klts that I can say 1 hase truly and uigopgestably learned the basic principles
if ulentronles. 10 HN R. KANIA, \# Ferkeles tre. Yankers 5, \mathbb{N}.
"your kits ore inleresting and
rewarding"
1 an an electroples student In the Alr Force and find your kiss interesting and rewording. We have not envered ansthing is the schnol that you hape mial cavered in the kles. Hown Miss:

"Far ahead of triend laking

another courso"
A frlend of mine ts takins a correspondulice course in electrontes, and I hare gearned more (rom your first twa kklis than he has in Weñty Iessons. RAY P. BILODEAU, 139 hixchange \$t., l, comintler. Mass.
"The number of concepls presenied
is amoring
Your kits ofter a ranke of expediments usually performeis only io the better high schoal and collese laboratorles. The rumber of concepts presented, and the elarity and concreteness of thelr development is amazing. R. M. HELM. Professer of Physics. Kant

Get it All in One Compléfe Shipment or Divided into these 4 Monthly Kits

Isi KIT - DC AND AC CIRCUITS
Equipment for 26 Projects Ineluding:

- Electroscope - Electromagnetic Relay - Galvanometer - AC Buzzer - Magnetizer and Demagnetizer - Solenold Coin Tosser - Safety AC Power Supnly with Isolation Transformer.

Subjects Covered - Electron Theory - DC and AC

- Eleciro Chemistry
- Pranstormer
- Inductiance

FREE with lst Kit - Surprise "Mystery Box"

2nd KIT -- RESISTANCE, CAPACITANCE AND RECTIFICATION

Eouipment for 18 Projects Including
Subjects Covered

- Strobe Light - variable pulse Neon Lamp "freezes" the motion of vibrating or rotating objects and ehecks RPM - Thermocounle Wheatstone Bridge (measures resistance) - Eutinction Voltmeter © DC Power Supply (Transformer Vacuum Tube Rectifier and 20.20 mid. Capacitor Filter Circuit.)
- Ohm's Law
- Rectification
- Resistance
- Neon Glow Tubes
- Capacitance
- Filter Circuits

ing Iron
 FREE with 2nd Kit - Electric Soldering Iron

3rd KIT - AMPLIFIERS AND OSCILLATORS

Equipment for 14 Projects Including
Subjects Covered:

- Two Stage Amplifier - Capacitance Burolar Alar - Proximity Detector - Variable Froguency Ripple Tank Wave Generator (Produces standing waves. nodal lines, otc. Inwaluable In understanding wave theory) - Code Practice Dscillator.
- Vacuum Tube

Amullfiers

- Frequency and Wave Length Wave Theory Oscillator Circuits

FREE with 3rd Kit-"Steps to a Ham License" Manual
4th KIT - AUDIO AMPLIFICATION AND RADIO

Equipment for 7 Projects Including:
(3.tube regenerative © Short Wave and Broadeast Radios with Hadset) Car Uses $115 V$ AC house Eurrent. Complete minn Alidier. Radio Transmitter Sional Tracer and Continuity Tester (valuable trouble eshooting tools).

Subjects Covered: - Audio Amplifiers - Radio Theory - Regen. Circulis - Tuniag Circuits - Signal Tracing

FREE with 4th Kit - Radio-TV Service Manual
ALL FOUR KITS IN ONE SHIPMENT ONLY $\$ 783$ OR-YOU CAN GET THE FOUR KITS. ONE A MONTH SEND 30 WITH PAY 24 PLUS COD POSTAGE ONLY COUPON ONLY ON RECEIPT OF EACH KIT

ALL SHIPMENTS ON 10 DAY APPROVAL.
YOUR SATISFACTION CR YOUR MONEY BACK WE KNOW YOU WILL BE AMAZED AND DELIGHTED. USE THIS "NO RISK" COUPON FOR EITMER PAID IN FULL OR MONTHIY PLAN

AMERICAN BASIC SCIENCE CLUB, Int., 501 E. Crockelf, San Antonio 6, Yexal
1 Scul me Alseclub"s tilectronies lath in four kits - one a month. I enclose so 00
and will pay $\$ 3.9$ plus COD Postake un arrlsal of each kht. 1 understand that all kits will be on 10 day approrat aith full refund muaranteed and also that

\square Send me ABSClubes flectronics lab (all four kits) In one shipment. I enclose $\$ 17.80$ full payneme. postage naid to me. 1 understand that this will be onl a 10 day approval with full refund guaranteed.

Name

ADDHESS
CITY and STATE

RCA introduces

a new easy Way tolearn

 electronics at homeLearn faster, remember more with this revolutionary new "learning method". And RCA Institutes, Inc. is first to bring it to you!

Forget all your old ideas about learning! The newest method, RCA "Autotext", uses the latest scientific development in the field of home training! RCA "Autotext" is a system of programmed instruction, accurately planned so that as you read a series of statements, questions, and answers, you learn almost without realizing it! It's fun to learn this new RCA way!
We'll prove it to you! RCA Institutes now offers you a complete Home Training Course using RCA "Autotext" called "Introduction to Electronics." In addition, you get a complete set of theory lessons, service practice lessons, and all the kits you need. You learn electronics theory faster with less effort.

FREE OFFER!

We'll send you complete information on the amazing new RCA "Autotext", along with a FREE SAMPLE of a Home Training lesson to prove to you how easy it is to learn this new way. Check "Autotext", and infor mation will be rushed to you.

WIDE CHOICE OF HOME TRAININE COURSES: In addition to Introduction to Electronics, RCA Institutes offers this complete selection of Home Training Courses:

- Electronics Fundamentals* - Communications Electronics
- TV Servicing - FCC License Preparation
- Color TV
- Mobile Communications
- Transistors
- Automation Electronics
- Computer Programming
*Also available in Spanish
All RCA Institutes Home Training Courses are complete step by step easy-to-understand units. You get prime quality equipment in the kits furnished to you to keep and use on the job. In addition, RCA's liberal tuition plan affords you the most economical possible method of home study training. You pay for lessons only as you order them. If you should wish to interrupt your training for any reason, you do not owe one cent. Licensed by the N. Y. State Department of Education. Approved for Veterans.

CLASSROOM TRAINING AVAILABLE IN NEW YORK CITY, LOS ANGELES. AND CHERRY HILL (NEAR CAMDEN) NEW JERSEY. Check "Classroom Training" and we will rush information.

RCA INSTITUTES, INC., Dept. px.73
A Service of Radio Corporation of America
350 West 4th St., New York 14, N, Y.
.Pacific Electric Bldg', 610 S. Main St., Los Angeles 14, Calif.

The Most Trusted Name in Electronics

WITH TRUE PORTABILITY FOR YOUR
TWFM. HI-FI and STEREO

Built in Beauty with Wall Plates by MOSLEY

- Give s you Concealed Wiring!
- Improved Signal for better reception!
- Enables Multiple Set use!

CALL PErshing 1-3036-TVPLATE DEPT. - moil Form below for

FREE "D0-1]-YOURSELF" Instructions

Please send me free "Do-It-Yourself" instructions for improving my $T V / F M$ F and Hi-Fi Stereo systems.

NAME : .
ADDRESS:
CITY/STATE
AVIosley Electronic One.
4610 N. LINDEERGH BLVD.
1,6 ioN. LIND日ERGN 日LVO.

LOOKING FOR NEW IDEAS?

Order your special 4 Issue subscription to 1001 HOW-TO-IDEAS
For loads of money saving, practical tips for the plumbing, electrical, woodworking and radio-TV do-it-yourselfer. 4 ISSUES FOR \$3

SCIENCE AND MECHANICS, HANDBOOK DIVISION 505 PARK AVENUE, NEW YORK 22, NEW YORK

Please enter my special 4 Issue subscription to 1001 HOW-TO IDEAS, starting with 650

1 enclose $\$ 3$
Bill me later

ADDRESS
city \qquad ZONE \qquad STATE \qquad
FOR MORE OUT-OF-THIS-WORLD FUN AND KNOWLEDGE / ORDER YOUR SPECIAL SUBSCRIPTION TO ... SCIENCE EXPERIMENTER

4 ISSUE SUBSCRIPTION -\$3

SCIENCE AND MECHANICS, HANDBOOK DIVISION 505 PARK AVENUE, NEW YORK 22, NEW YORK

Please enter my special 4 , Issue subscription to SCIENCE EXPERIMENTER, starting with 651

I enclose $\$ 3$
Bill me later

NAME \qquad
(Please print)
ADDRESS \qquad

CITY \qquad ZONE \qquad STATE \qquad

The future is YOURS in TELEVISION-ELECTRONICS!

A fabulous field-good pay-fascinating work-a prosperousfuture! Good jobs or independence in your own business!

Modern Training by Coyne RIGHT IN YOUR OWN HOME

Coyne brings you the first truly lower cost, MODERN -QUALITY Televisıon Home Training; training degigned to meet Coyne standards. Not an old Radio Course with Television "tacked on." Here is MODERN TELEVISION TRAINING including RADIO, UHF and COLOR TV. No previous experience needed. Personal guidance by Coyne Staff.

The Institution Behind this Training

Famous for over a half century. COYNE oceupies this entire building which is the new home of COYNE. COYNE'S modern Electricity has produced thousands of successful graduates.

D. W. CDoKt, Jt., President

POUNDED 1 Ess

RADIOTV ExPERMENTER

No. 644 A SCIENCE and MECHANICS Handbook Fall '63 Edition

B. G. Davis President and Publisher	
Joel Davis	Executive Vice-President and Assistant Publisher
Herb Leavy Vice-President	
	and Editorial Director
Garry Winter Editor-in-Chief	
Joe Daffron. Managing Editor	
Al Heighington Art Director	
Leroy R. Kietzman Production Editor	
BYRON G. WELS.	EDITOR
Richard J. Demske. Associate Editor	
Tony Mastey Associate Editor	
Fred W. Sturges. Associate Editor	
Johanna L. Pugni. Assistant Editor	
Donald R. Thayer Assistant Art Director	
Anthony Maccarrone. Art Associate	
Joseph D'Amata. Art Associate	
Tom Ragusa. Technical Assistant	
Michael Makowsky	Production Assistant
Marianne Sullivan Production Assistant	
Frank A. Taggart Cover Art Director	
Charles Mazoujian	Cover lllustrator

TV HAMS SEE AND TALK
Pg. 30

RADIO.TV EXPERIMENTER, Vol. 15. No. 3, is published quarlerly by SCIENCE AND MECHANICS PUBLISHING CO., a subsidiary of Davis Publications, Inc. Editorial, business and subscription ollices: 505 Park Ave., New York 22, N. Y. One-year subscription lfour issuesl، \$3 domestic, \$4 foreign. Advertising offices: New York, 505 Pork Ave., Pl.2-6200; Chicogo: 520 N. Michigon Ave., 527.0330 ; Los Angeles: 6363 Wilshire Blvd., 653.5037. Applicotion for second-class posrage rates is pending at New York, N. Y., and ot additional mailing oflices. Copyright 1963 by Science and Mechanics Publishing Co.

CONTENTS

COVER FEATURE

TV Hams See and Talk 30

FOR THE AUDIOPHILE

Kit Parade 34 Briefcase Tape Recorder 52
Recorder-Amplifier Mixer 38 Keep Your Tape In Shape 54
Mini-Magic 41 First Aid For Your Tape Recorder 60
FM Stereo Indicator 44
Phono Plays FM Tuner 64
Power Amplifier Module 48 Build A Radio-TV Cabinet 66
Perk Up Banjo With Pickup. 50 New Sounds for Stereo 122
Light Where You Need It. 129
FOR EXPERIMENTING
Add on "On The Air" Sign 69 Radio Controlled Garage Doors. 102
How Short-Wave Works 70 Build the Trans-Box. 107
No-Hole Mobile 72
Speaker Box Does Everything 113
Principles of Transistor Ignition 74
Flarescan Blind Landing System 116
Get That QSL 77 A Utility Induction Coil 118
Dual-Powered 100KC Oscillator 80 High Voltage Source 119
Repairing Broken Tube Socket Pins 82
Listen With Loops 127
Build A Surge Resistor. 83
C-B Radio In Driver Education 130
Get The Most From Your Oscilloscope 84 Put More Talkie In Your Walkie. 132
Magic Eye Installations 88 Build a Trickle Voltage Relaxer 134
Rectification, Filtering and Detection 92 New In Electro-Luminescence 140
See In the Dark. 98 Repairing Radio Clocks. 142
DEPARTMENTS
Editorial 29
New Products. 150
Questions and Answers 110
The Crystal Ball 154
Free Literature 148
White's Radio Log. 155

For information, write Department MM1863

ALL-PURPOSE TACHOMETER

Measures all speeds! 0-15,000 RPM 3 Ranges Use it to measure speeds on
tape recorders - lathes culting tools - kart engines - model plane engines - high speed drills * appliance motors * pulley belts auto engines - many other uses Here is a real surplus scoop that we're anxious to share with you The components of this kit if purchased individually cost over $\$ 50.00$. Yet because of a surplus windfall we're able to send it complete to you postpaid for only $\$ 16.95$. Once more this tachometer is guaranteed to outperiorm any $\$ 50$ tachometer available today or your money will be refunded.

SCIENCE and MECHANICS MAGAZINE Kit Division
505 Park Avenue, New York 22, N. Y.
Enclosed is \qquad Please send all purpose fachometer.Check or monoy orEnclosed $\$ 3.00$ deposit, ship der enelosed, ship
post pald. balance C.O.D., plus postage and
C.O.D. eharges. Add 10% for Canadian and Forelgn orders

NAME. \qquad
(PLEASE PRINT)
ADDRESS. \qquad

CITY, ZONE, STATE
N.Y.C. residents add 3% for sales tax.

238 DO-IT-YOURSELF $\quad 25$

ILLUSTRATED CATALOG Now you can get stmple easy-to-understand plans for building boats, electrical equipment. models of gas and steam engines, famous firearms, anilque automobiles, toys, games, cabin trailers, many other projects. In all, 238 useful things you can build it's easy! It's fun! And you can save money! Send now for this brand new catalog.

SCIENCE AND MECHANICS CRAFTPRINT DIVISION 505 Park Avenue, New York 22, N. Y. 6
Enclosed is 258 which 1 understand will be refunded to me with my first order. Please send me the new 1963 edition of the Science and Mechanics Craftprint Catalog.

NAME
(Please print)
ADDRESS

CITY \qquad ZONE STATE

Conar Custom 70 Table Model Kit

The kit builder's newest showcase

Experienced do-it-yourselfer or unskilled novice, anyone would be pleased as punch to show off this set as his greatest triumph in the lively art of electronic kit building. The Conar Custom 70 is a top-quality television receiver . . . complete in every detail. It's fun to build and fun to watch, from the first construction step to the first proud turn of the on-off switch. The one low price includes everything . . . 206 sq. in. picture tube, attractively slim cabinet, the best American-made parts we could find, even a crayon for marking chassis connections. And if you have ever fumbled with loose kit parts in little brown envelopes, you'll appreciate Conar's cleverly-designed packaging arrangement.

This is no portable, rinky-dink set. It's a topquality table model with the equivalent of 21 tubes in a custom-designed circuit. Conar developed the Custom 70 out of experience with more than 10,000 TV set kits. You'll be putting together the kind of set that would retail at
well over $\$ 200$. With our simple diagrams, assembly manual and your screwdriver, pliers and soldering pencil you're ready and able to go to work on one of the most rewarding projects ever offered the do-it-yourself enthusiast. Order as a complete kit, or in four "pay-as-you-build" stages. Either way you build it, you'll have fun and satisfaction. We guarantee it!
features found only in the finest sets

- Extremely stable, trouble free circuit with transformer power supply which isolates chassis (Intenor view above shows custorn 70 without rear cover. inter-lock power cord and shield can.)
- Brilliant glare-free, sharp pleture: plenty of contrast and ture: plenty of contrast and $11 g h t$
- 19° alumlnized 114° self rocusing picture tube with non glare bonded safety face plate and big 206 sq . in. of viewing area.
- New high gain, high signal-to. nolse ratio VHF front-end tuner. Already factory assem=
bled and pre-aligned. Has "Lock-Set." teature-no need to change channels. when you -Us
- Uses 3 stages of pre-aligned video IF; separate prealigned 4.5 mc . sound IF amplifier and widage video amplifier. Band Widit is 3.5 mc . It has keyed AGC sync noise limiter. Audio speakers. speakers
- Uses latest type multi-puppose tubes: has built-in rabbit-ar antenna, optional connections styled to mateh any decort is styled to mateh any decor, Is deep over ali, including tube curvature and rear cover prolection.

GUARANTEE

If you don't think the Custom 70 is all we say it is, just send it back and we'll promptly refund every penny. That goes for performance as well as parts.

- Increases engine power up to 10%
- Assures fast starts at low rpm
- Full power at high rpm
- Up to 20% more mpg
- Prevents fouled plugs
- Increases spark plug life 3 to 5 times over normal
- Insures 75,000 mile breaker point life
- Gives instant starting in sub-zero weather
- Eliminates frequent tune-ups
- Simple 20 min. installation

In conventional ignitions, high voltage at the spark plugs falls off from 28,000 volts to 13,000 volts as engine speeds increase. The result is a weak spark causing incomplete combustion, fouled plugs, loss of power, and poor gas mileage. AEC 77 Transistor Ignition Increases and maintains high voltage at 30,000 volts to guarantee a strong "hot" spark for complete combustion, delivering full engine power beyond $10,000 \mathrm{rpm}$, and up to 20% more mpg .
WORLD CHAMPION RACING DRIVER, PHIL HILL, USES AEC 77 . . . reports "AEC 77's strong spark can make up for worn points and spark plugs. It will make your car run smoother at all speeds and appreciably improve its performance and economy.

AEC 77's use quality components such as General Motors Delco type 2 N 1100 , high voltage, 15 ampere transistors, and Motorola type $1 \mathrm{~N} 2836 \mathrm{~B}, 50$ watt zener diodes while others use two low voltage transistors in series with two 1 watt zener diodes, that can cause synchronization problems and premature failures. Every Transistor 77 (400:1) Ignition Coll is epoxy-oil impregnated and hermetically sealed for maximum insulation and cooling ... While others use tar filled coils that cannot handle the power loads AEC 77 delivers.
Proven in over $2,000,000$ miles of testing, AEC 77 is so dependable in performance, deslgn, and engineering, that every unit is registered and guaranteed for 3 full years.

FREE

TRANSISTOR TUNE UP METER

Available only from Automotive Electronics 77 . at no extra cost . . . with every AEC 77 system ordered.

> COMPLETE DO IT YOURSELF KIT!

AEC K4 - Negative Ground only \qquad
Transistor 77 (400:1) Ignition Coil $\$ 11.95$
Ballast Resistor - (. $5 \mathrm{ohm}-90$ watt) \$ 1.25

> COMPLETE FACTORY WIRED SYSTEMS!

AEC 77 with ($400: 1$) Ignition Coil
6/12 volt systems $\$ 39.95$
AEC 77 Positive Ground for British Cars only 6/12 volt $\$ 54.95$

—ORDER NOW-

Please add 75 c for posfage and handling! AEC, 387 PARK AVE. SOUTH, N. Y.

AUTOMOTIVE ELECTRONICS CO.

387 Park Ave. South, N. Y. 16, N. Y.

NAME

ADDRESS \qquad

CITY.

\qquad ZONE. STATE. AEC-77 For Negative ground cars... 6/12v.... $\$ 39.95$ AEC. 77 For Positive ground cars . . 6/12v. . . $\$ 54.95$ FREE Information on AEC. 77 Systems.

ON SALE NOW
AT MOST NEWSSTANDS
OR USE COUPON BELOW

644-Radio-TV Experimenter Crammed with electronics know-how. Features a detalled story on how to convert your ham shack to TV transmission; how to get more out of your walkletalkie; how to repair the clock on clock radios; and more. Up-dated exclusive listing on White's Radio Log of AM-FM-TV stations. Plus R-TV's recommendations of H1-Fi standards.

645-Gar Repair Handbook Step-by-step servicing and maintenance articles for the budget-conscious owner. In this edition, you'll read about what to do about oll hogs; how to do your own road testing; how to correct vapor lock; new tips and ideas on brake repairing. You'll want to work on the quiz "How good a mechanic are you?"

Woodworker's Encyclopedla If you work with wood-you can't afford to be without this issue! Special feature tells you how to save money when you buy all kinds of wood and lumber-this leature itself is worth many times the $\$ 1$ price. Plus, a rundown on boat-building woods and plans on how to bulld a Kennedy Rocker

Home Appliance Repairs A how-to manual for the layman, designed to help him troubleshoot his own large and small appliancesfrom clothes washers to electric razors. You'll find new tips and hints on repairing and servicing electric irons, automatic toasters, waffle-irons, etc.

648-
Kitchen \& Bath Improvements The ideal book for craftsmen who want to re-do these two most expensive rooms-economically. Here are new directions in bathroom planning-what's new in kitchens... planning, lighting, conveniences. Plus dozens of projects for the handyman.
| SCIENCE AND MECHANICS Handbook Division

```
505 Park Avenue, New York 22, N. Y.
```


Enclosed is $\$$

Please send me the S\&M Hand. books circled below. Each volum is $\$ 1$ (includes postage and handling). Please allow four weeks for delivery.
|
$644 \quad 645 \quad 646 \quad 647 \quad 648$
NAME

ADORESS
CITY
ZONE \qquad STATE

As an electrical trouble shooter the Model 161:

- Will test Toasters, Irons, Broilers, Heating Pads, Clocks, Fons, Vacuum Cleaners, Refrigerators, Lamps, Flvorescents, Switches, Thermostats, etc.
- Will rest all TV rubes (including picfure fubes for open filaments. and burned oup lubes.
- Measures A.C. and D.C. Voliages,
(Both 110 Voll and 220 Volt lines).
- Will measure current consumption (omperes) while the oppliance under rest is in operation.
- Incorporates a sensitive directreading resistance range which will measure all resistances commonly used in electrical appliances, motors, otc.

As an Automotive Tester the Model 161 will test:

 - Both 6 Volt and 12 Valt Storage Batteries Generators - Starters Distributors - Ignition Coils - Regulatars - Relays - Circuis Breakers - Cigarette Lighters - Stop Lights - Condensers - Directional Signal Systems - All Lamps and Bulbs. Fuses - Heating Systoms - Horns - Also will locato poor grounds, breaks in wiring, poor connections, etc.

With lester's cord in outiet, current consumption of appliance is
read direct on meter when line read direct on meter when line

Control circulte of most furnaces use 24 volts obtained from stepcheck room thermostat to see if

Stmply insert tube in approprita socket then follow procedure as outlined in our manual.

$5 m a l l$ electric fan motor Indicates 50 ohms (normal reststenct).

Test Generatora REAO THIS!
 READ THIS!
 READ THIS!

INCLUDED FREE!

This 56-page-book-practically a condensed course in olectricity. Learn by doing.
Just read the following partial liss. of rontents:

- What is electricity? - Blmplifed version of Ohms Late what is vatugre? simplined wattage charts. How to measure voll: leakage - How to matit ait electrical applances and motore using as simplined troublo-thootios tochnigue.
- Fiow to test all TV tubes: also simple procedure for determining which specific tube (or tubes) to cemsing
-
- How to trace trouble in the electrical circuits and parts in eutomobiles and trucks.

Model 161 somes complore
with above book and fost
loods. Only
\qquad
You don't pay for the Model 161 until AFTER you hove exomined if in the privacy of your homel

Try if for 10 days before you buy. If completely satisfied then send $\$ 5.00$ and pay the balance at the rate of $\$ 5.00$ per month until the total price of $\$ 22.50$ (plus small P.P. and budget charge) is paid. If not completely satisfied, return to us, no explanation necessary.
accurate instrument co., inc.
Dept. D-266, 911 Faile St., Bronx 59, N. Y.
Please rush me one Model 161. If safisfactory I agree lo pay $\$ 5.00$ within 10 days and balance at rate of $\$ 5$ per month until total price of $\$ 22.50$ (plus small P.P. and budget charge) is paid. If not satisfactory, I may return for cancellation of account.

Name

Address
City \qquad Zone \qquad Siore

WHAT SECRET POWER DID THIS MAN POSSESS?

Benjamin Franklin
(\wedge Rosicrucian)

Why was this man great? How does any. onc-man or woman-achieve greatness? Is it not by mastery of the powers within our. selves?
Know the mysterious world within you! Actune yourself to the wisdom of the ages! Grasp the inner power of your mind! Learn the secrets of a full and peaceful life! Benjamin Franklin-like many other learned and great men and women-was a Rosicrucian. The Rosicrucians (NOT a religious organization) first came to America in 1694. Today, headquarters of the Rusicrucians send over seven million pieces of mail annually to all parts of the world.

Ehe Rosicrucians

SAN JOSE• (AMORC) CALIFORNIA

THIS BOOK FREE!

Write for Yourfree COPY of "The Mastery of Life"-TODAY. No obliga. tion. No salesmen. A nonprofit organization. Address: Scribe H.Z.M.

SEND THIS COUPON

1	Scribe H.Z.M. The ROSICRUCIANS (AMORC)
1	San Jose, California
1	Pleasc send me the free book. The Mastery of Life, which explans how 1 may learn to use my taculties and powers of mind.
1	NAME
1	ADDRESS
-	CITY
1	ZONE__STATI_

incuding the complit kright - Kit cataloc =

AIWED

 ELECTRONICS FOR EVERYONE
rREI send for it today!

world's largest electronics catalog

ALIIED
 "memes 1964 CATALOG

BIGGEST SELECTIONBIGGEST SAVINGS ON:

- Everything in Stereo Hi-Fi
- KNIGHT ${ }^{\text {© }}$ Super-Value Hi-Fi
- Citizens Band 2-Way Radio
- Tape Recorders \& Tape
- Latest FM-AM \& AM Radios
- Phonographs \& Accessories
- Ham Station Equipment
- P.A. Systems, Intercoms
- Test \& Lab Instruments
- TV Tubes \& Antennas
- Parts, Tubes, Transistors, Books, Tools, Hardware

NO MONEY DOWN:

Now! More Buying Power with Your Allied Credit Fund Plan!
satisfaction guaranteed or your money back

ALLIED RADIO

The World's Largest Electronic Supply House
over 100 great build-your-own Knight-Kits ${ }^{\text {® }}$ see what's new and best in stereo hi-fi save on the very latest in CB radio top buys in tape recording everything in ham radio

SEND FOR YOUR COPY TODAY ALLIED RADIO, Dept. 20-G 100 N. Western Ave., Chicago 80, III.

Name
flease priwi

Address

City \qquad Zone \qquad State

TRANSISTOR IGNITION

TRTISTIRE

 now available as a
2 TRANSISTOR 2 DIODE

Why pay more for !ess?
YOU can have all the fl'TURISTIC ADVANTAGES of TRAN SISTOR ELLECTRONIC IGNITION NOW at LOWEST COST by assembling this TESTE!) KIT yourself. (OMIPLETT:, set of parte to build Wally cirenit in February science and Mechanics. Includes POWER TRANSISTOHS. 2 1-wat ZFNER DIODLS, FINSELB aluninum ILEAT SINK. High-ratia COIL. TRANSFIRE DEX AL , ballast, leads, and nill hardware EVERYTHNG needed for n PHOFESSIONAL JOB! Mahes a sio conversion it lialf the eost.

TKX-2 with $250: 1$ coil. 30 kv output. $\$ 34.95$
TSKX-2 with $400: 1$ coil, 40 kv output $\$ 39.95$
TKX-1 1 transistor with $400: 1$ coil inkv......s $\$ 29.95$ Above kits wired and plastic potted-add $\$ 15$.
Nryntive-ground only. Point insulation kit for positive-ground- $\$ 2.50 \mathrm{pl}$

TX250 henvy duty Coil 250:1 (3 lbs.) $\$ 9.95$ $T 400$ High-efficiency Coil $400: 1$ (:3 lhs.)..... $\$ 14.95$

Ready-to-install Conversions

You can also yet TOP MILEAGE. IILIHFST IERFORMANCE LONG POINT ANI) PLUG LIFE, IMPROVED STARTING with one of our wired TRANSFIRE systems. These include Ili:R METICALLY SEALED AMPLIFIEK. A00:1 COIL. and HAl.
AsT,
Model T 6 or 12 v. Negntive-ground 30 kv . . $\$ 39.95$
Model $T 2$ Two-transistor model 'r. $\$ 44.95$
Model TS Specinl 10kv Negative-xround. $\$ 59.95$
Model TS2 TWu-Transistor Model TS. $\$ 49.95$
Model TP 30 ky /fi or 12 . Positive-ground $\$ 54.95$ Model TPS 40 kv (IIRIKT INSTALLATION. $\$ \$ 69.95$ Murine and other momels availahke too. Custom Daserns. Opportunities.
Specify car. voltage. and grounding when ordering. Cash orders over $\$: 30$ prepaid. $\leqslant 5$ deposit (ood's
PALMER ELECTRONICS LABORATORIES, INC. CARLISLE, MASS, Dept. RT-37 617-AL 6.2626

THIS WON'T HAPPEN TO YOU IF YOU SUBSCRIBE TO

CAR REPAIR HANDBOOK

4 ISSUE SUBSCRIPTION-\$3

SCIENCE AND MECHANICS, HANDBOOK DIVISION
505 PARK AVENUE, NEW YORK 22, NEW YORK
18
Please enter my special 4 issue subscription to
CAR REPAIR HANDBOOK, starting with 645.
\square I enclose \$3 \square Bill me later
NAME
(Please print)
ADDRESS
CITY______ STATE

\title{

BUILD 20 RADIO

\section*{CIRCUITS AT HOME

CIRCUITS AT HOME

 with the Deluxe

 with the Deluxe PROGRESSIVE RADIO "EDU-KITA® PROGRESSIVE RADIO "EDU-KITA® A Practical Home Radio Course A Practical Home Radio Course

 26^{3}

 26^{3}}

Now Includes
12 RECEIVERS

- 3 TRANSMITTERS
+ SQ. WAVE GENERATOR
\star SIGNAL TRACER
* AMPLIFIER
\& SIGNAL INJECTOR
* CODE OSCILLATOR

YOU DON'T HAVE TO SPEND

HUNDREDS OF DOLLARS FOR A RADIO COURSE
The "EEdu-Kit"", offers you an outstanding PRACTICAL HOME RADIO COURSE at tion practice and odern methogs of nome training; ou will feann radio theory, construc tion practice and servichn THIS IS A COMPLETE RAOIO COURSE IN EVEFY DETANC.
You will learn how to build radios. using rexuig chematics In a protessional manner; how to service radios. You whil work with the wire nomd solded punched meial chassis as well bs the latest development of printed circuit chassis. ar oud will learn the basic principles of radio. You will construck, study and work with and practice code, using the prozressive code Osillator, You whil ledt You will learn Trouble-shooting, usint the Proprestive Sienal Tracer Progressive Sismal inidecor, Pro ing instructlonal material
Amat will receive training for the Novice. Technician and Ceneral Classes of F.c.c. Radio Oscillator, Scignal Tracer will bulld Receiver, Transmitter, \$quare Wave Generator, Codo Absolutely no previous knowledge of radio or science is required. The "tcdu. Mit", is the product of many years of tenching and engineering experience. The "Edu.kit" will provide you with a basic education in tlectronics and fadio, worth many tirees the low Price you pay, The sumal THE KIT FOR EVERYONE

You do mot need the slightest background in radio or sclence. Whether you are inter ested in Radio at Electronics because you Wustiness interestin hoblob, woll paying the "Edu.xift worth.wnif youvestment
\star No Knowledge of Radio Necessary \star No Additional Parts or Tools Needed \star EXCELLENT BACKGROUND FOR TV
\star Schocl Inquiries Invited
\star Sold in 79 Countries

chai

Peolning Electronics Testnicions Since 1946

FREE EXTRAS

SET OF TOOLS

- SOLDERING IRON
- ELECTRONICS TESTER
- PLIEASCUTTERS

WRENCH SETOO

- YERUABLE DISCOUNT CARO
- HESTERINSTRUCTION MANUAL
- TRELEVBLEN BOON SHOTING BODIO
- MEMBERSHIP IN RAD BOON CLUBB: AMATEUR LICENEETRAINING

SERVICING LESSONS

 You vill learn trouble shooting andservicing in a profressive manner. you will pracilce repairs on the sets that you conneruct. You will learn symptoms and carr radios. You wlll learn now to unique spotessional signal Tracer. infector and the dyriamic Madioe sichal fectronics fester. Whife you are, learnine in this practical way you Your frends and nelonbors. and enarge the "EEdstit." our consultation Service lems hou you with any technical prob-

FROM OUR MAIL BAG

J. Slatalts. of 25 Poptar Pi., Water. several seti. for my irlends. and made money. The "Edu-Kit, paid for itself. wat ready to gpend $\$ 240$ for a course. Ben Holerlo. P. O. Box 21. Matna. Utah: . The Ed-Kits are wonderful. Mere Itam sendins you the questions and also Radio for the last even years. but like to work with Rading Equipment. I en.
boyed every minute forked with the dilferent inyminute signal Tracer works ine. also like to lef you know that i RadionTV Ciubecombl munthert L. Shum, 1534 Monroe ave. Muntington, W. Yi.: "Thousht it wouid dropyog a few lines to Nay that ine. that wen a barcein can be had at fuch palring price, i have already started re. pairing radios and phonographs. Ny Tiends were really surprised to see me
pet into the swing of it so quickiy. The
rouble-shootine Trouble-shooting
the kit is reatiy swer that comes with
troubie. if there is any to be found.

PRINTED CIRCUITRY

At no inerease in priee, the "Edu-Kit" now includes Printed Circuitry. You build a Printed Circuit Signal injector, a unigute servicing instrument that can detect many Radio and TV troubles. This revolutionary now technique of radio construction is no becoming
A Printed Cireuit is apocial insulated chassis on which has been daposited a condueting material which takes the place of wiring. The various parts are merely piugged in and soldered to terminals.
Printed Circuitry is the basis of modern Automation Electronies. A knowladge of this ubjeet is a neeessity today for anyone interested in Electronics. tries of the world. The "Edu-kit"' has been caretully designed, step by step. so that allows you to teach yoursell at your own

PROGRESSIVE TEACHING METHOD

The Prosressive Radio "Edu-Kit" is the foremost educational radio kit in the world. Mit" uses the modern educational principle of the Learn of electronics fraining. The "Edu tearn tchemithcs. study theory. practice trouble shooting alit in a closely infegrated pro: Eram detitined to provide ann easiy-learned, thorough and interesting. backeroused in radio. function. theory and wiritg of these parts. Then you buid a simple radio. With inis tirst set you wil enijoy listening to regultr broadcast atations, lempr theory, practice teating and techniques. Gradually. in a prosressive manner, and at your own pate, you will Drgfessional Radio Technician.
Tracer. Squaro Whe "Genkeritor course are Receiver. Transmitter, Code Oscillator, Signal "breadboard" experimente, but genuine radio circuits, constructed by meani of professional wising and soldering on mefal chassis, plus the new method of radio constructionknown

THE "EDU-KIT" IS COMPLETE

You will receive all parts and intructions necesary to build soveral diforemt radio and electronics circuits, each guaranteed to operate, OUP Kits contain tubes, tube weckets, vari-
able. electrolytic. mica, ceramic and paper dielectric condencers, resistors, tie strips, hardware, lubing. punched metal chassis, Instruction Manuals, hook-up wire, solder, In addition. you receive Printed circuit materifle. including Printed circult chaskis, spectan iube societs. hardware and intrucionsifyou also recelve miseful sei of rools, a professhonst electric solderlnt Iron. and a selp-powered oynamic aradio and Electronlc: in addition to F.C.C.-type questions and Answers for Radio Ammtetur License training. You whil also receive iessons for servicine with the Prospess ive Signal Tracer and ethe Propres sive signal injector. Mish Fldelity Guide and Gulz Boom, You recelve Membership in Radio-TV club, Free Consultation Service, certincate of Merit and Discount Privileges.
You receive abi parts, tools, inmfructions, efc. Everythine is yours to keep.

ELECTRONIC KITS

\square STEREO \& MONO HIFFI \square TEST INSTRUMENTS
\square HAM GEAR CITIZENS TRANSCEIVERS
\square WALKIE-TALKIES TRANSISTOR RAOIO

- All easy-to-build - with complete, step-by-step, beginner-tested plctorial instructions
- All tremendously economical cost 50% less than comparable wired units
- All professional quality uncompromisingly engineered

EICO Electronic Instrument Co., Inc. 3300 Northern Blvd., L.I.C. 1, N.Y. Please send FREE catalog and name of neighborhood dealer.

Name

Address \qquad

City \qquad Zone State RTE-C

YOUR BEST NEWSSTAND BUYS ARE: \#636 Home Workshop Handbook

Here are over 40 tested projects designed to save you money working in metal, wood and other fields. Included are detailed drawings and step-by-step construction procedures to make the project of your choice practical and rewarding regardless of whether you are a novice or master craftsman.
\#637 1001 How-To Ideas
Crammed with time-and-money-saving tips that are useful and interesting to everyonean encyclopedia of short cuts, time-saving ideas and work easing kinks covering home maintenance, cars, photography, decorating, groundskeeping, plus practical tips for the home workshop and radio-TV do-it-yourselfer.

\#638 Home Repair Handbook
Whether your home is brand new or a vintage model, you will find this fact-filled volume an invaluable aid to keeping it in tlp-top condition. Included are detailed instructions for home maintenance projects large and small, as well as Ideas for making your home more livable than ever. Written in language that even the do-ityuurself novice can understand, yet comprehenslve and stand, yet comprehensive and
infurmative enough to aninfurmative enough to an-
swer the most complex questions of the experienced home handyman.

\#639 Careers and Jobs

Wondering which job is best for you? Here is a fact-flled gulde for the high school or college student about to embark on a career. Special articles deal with investigating highpaying professions based on individual interests talents, training and abillities. In addition, the book gives practical advice to those who are dissatisfled with their present position and seek further self-improvement and a higher salary.
S\&M Handbooks/505 Park Avenue/New York 22, N. Y. | Enclosed is \$ \qquad Please send the Handboaks | circled below. I enciosed \$1 for each Handbook | (includes pastage and handling).

THIS IS COLLEGE...AT NORTHROP TECH

Take a look at the schematic on the board. Lay down your slide rule. So much for the theory; now put it to work. Watch the scope face as you adjust the sweep. All of a sudden you really uniderstand the theory you just studied. Interesting way to learn, isn't it? Northrop Tech students think so! They call it "Action-Learning," and it's the way you earn your B.S. degree in engineering at Northrop Institute of Technology. \square Northrop Tech has close relationships with the aerospace industry for the placement of graduates. In fact, most Northrop Tech men have engineering positions waiting for them the day they are graduated! The demand for engineers is increasing, too: in 1965, there will be only 32,000 engineering graduates to fill 48,000 jobs.* Send in the coupon today for complete information about this unique college. Free lifetime placement
service, part-time jobs, financial aid, individual counseling, NASA and FAA co-operative work-study programs, accreditation.

NORTHROP INSTITUTE OF TECHNOLOGY

A nonprofli, four-year college of engineering-accredlted by Western College Assoclation as a spectalized instlition to confer the 8.5. degree.

tronsistorized ignition system

ADVANCE STYLING AND DESIGN

Complete Banshee Systems are available in the following models:
30 KV Output with F.12T Coil,
250:1 turns ratio, neg. ground
D 45 KV Output with F. 400 T Coll.
400:1 turns ratio, neg. ground 44.95
D 55 KV Output with F.500T Coil,
500:1 turns ratio, neg. ground
B Banshee TS. 30 with F .500 T , positive groundFree Color Brochure
TESTED - APPRDYED - FULLY GUARANTEED OME YEAR
SLEP ELECTRDNIC COMPANY, Automotive Divislon
P.O. BOX $178-$ RV
EIlenton, Florida Ph. (813) 722-1843

YOUR BEST NEWSSTAND BUYS!

(or use coupon below)
No. 640
BOAT BUILDER'S HANDBOOK

Are you definitely sold on a single hulled boat--or a multi-hull craft? Read all about the advantages of the Unimaran : .. and get more basic information about this controversial subject. Keelhauling is another feature story: you'll thrill to speeds up to $150 \mathrm{~m} . \mathrm{p} . \mathrm{h}$.- travelling heretofore reserved for those 7 at Cape Canaveral. And, more on ski rigs fiberglass techniques plus scores of other moneysaving boating tips.
No. 641A
PAINTING AND REFINISHING
Brush-roller-spray gun.
Which one? The choice is yours. But watch these pointers. Here are the pros and cons - advantages and disadvantages of each. You'll also read about special paints for special purposes, the fine art of furniture refinishing and how to paint ceilings the easy way. Much more, too, on preparing surfaces for paint, household touch-up, novelty effects with paint, marbleizing with paint, guide to plaster patching, etc.

No. 642A
HOME STUDY COURSES
An invaluable guide on correspondence courses-
 giving costs, time and scope of training as well as job prospects in each field. A 'must' story on How to Evaluate a Course -what to check before you invest your money. Watch for accreditation -it's like a life insurance policy for the student. Full discussions on dozens of courses including art. air conditioning, alito mechanics, accounting, photography, real estate, engineering, radio and TV, drafting, and more.

SCIENCE AND MECHANICS

Handbook Division, 505 Park Avenue
New York 22, N. Y.
Enclosed is $\$$....................ease send me the SGM
Handbooks circled below. Each volume is $\$ 1$ (includes
Enclosed is $\$$....................ase send me the SGM
Handbooks circled below. Each volume is $\$ 1$ (includes | postage and handling). Please allow tour weeks for detivery.
No. 640 No. 641 No. 642A

Pick the course for your career...

Electronics Technology

A comprehensive program covering Automation, Communications, Computers, Industrial Controls. Television, Transistors, and preparation for a lst Class FCC License.

First Class FCC License

If you want a ist Class FCC ticket quickly, this streamlined program will do the trick and enable you to maintain and serv. ice all types of transmitling equipment.

Electronic Communications

Mobile Radio, Microwave and 2nd Class FCC Preparation are just a few of the topics covered in this "compact" program . . . Carrier Telephony too, if you so desire.

Broadcast Engineering

Here's an excellent studio engineering program which will get you a Ist Class FCC License and teach you all about Program Transmission and Broadcast Transmitters.

Get A Commercial FCC License ... Or Your Money Back!

A Commercial FCC License is proof of electronics skill and knowledge. Many top jobs require it . . . every employer understands its significance. In your possession, an FCC Commercial Ticket stamps you as a man who knows and understands electronics theory . . . a man who's ready for the high-paid, more challenging positions.
Cleveland Institute home study is far and away the quickest, most economical way to prepare for the FCC License examination. And that's why we can make this exclusive statement:

The training programs described above will prepare you for the FCC License specified. Should you fail to pass the FCC examination after completing the course, we will refund all tuition payments. You get an FCC License . . . or your money back!
Before you turn this page, select the program that fits your career objective. Then, mark your selection on the

Cleveland Institute of Electronics
 1776 E. 17th Street, Dept. EX.3

 Aceredited alember

Cleveland 14, Ohio
coupon below and mail it to as today. We'll send you ... without obligation... complete details on our effective Cleveland Institute home study. Act NOW . . . and insure your future in electronics.

Mail Coupon TODAY For FREE Catalog

Claveland Instituta of Electronics 1776 E. 17tb St., Dopt. F.X-3

Cloveland 14, Oblo
Plence send FREE Career Informe-
tion prepared to belp me cet ahead in
Electronice, without fur ther obligation. CHECR AREA OF MOST INTEREST -
\square Electronics Technology' Induatrial Electronic:First Clane FCC License
Electronic Communications

otbee

Your present occupation

Addrem
City
Zone__State
Approved for Veteran's Training under Korean GI Bill. EX.3

Approved for Veteran's Training under Korean GI Bill. EX.

PORT ARTHUR COLLEGE ELECTRONICS COMMUNICATIONS

AM FM Television Broadcast Engineering Industrial Electronics-Automation
CHECK THESE FEATURES: Tuition $\$$.fo per mo.. room \& board $\$ 60$ per mo. in dorm on campus. College operates 5 KW broadcast station. FCC license training with all courses. Well equipped classrooms \& lab.. anm fm transmitters, radar \& marine eqme., television camera chain, experiment lab test eqmit. \& other training aids. Our graduates in demand at good salaries. Free placement service. Have trained men from all 50 states. Approved for GI. Write to Dept. KT-1 for Free Booklet.

$$
\text { PORT ARTHUR } \underset{\text { Established in } 1909}{ } \underset{\substack{\text { COLE } \\ \text { Texas }}}{\text { Arthur }}
$$

TROUBLESHOOT FAST!

You cant add complete JRF-1F-ivudu Nignal Tracing and vigna Injecting to your radlu in mimutes at a fraction of the cost uf cum follow signgls Uli kits. With the new ISOI'ROBE: you can Inject or fothow signals thru radio or amplltier with full roltage isolation beginneer; helpful to the proferer on thone lough ones! fasy for the beginner; heljpful to the profe-slonal. Eiesy finstructions with listing IPL'g spavice tubes by functlon, pin location, and voltages\#181. \$5.95-FMAM- \#231: $\$ 7.85$.
WALTRONICS. 1814 N. sisth st., Milwaukee 13. WIs.

AVAILABLE FOR ONLY $\$ 59.50$

T.V. TRANSMITTER T.179/ART 26. BRAND NEW ALL TUBES

MANY OTHER BARGAINS. SEND FOR FLYER SPACE ELECTRONICS BRONX, N. Y.

GIANT CB SALE!!!

\square SUPER SPECIAL 3 X LIMITER KIT (consists of high pass filter, low pass filter, line filter). (Reg. $\$ 7.00$.)
\square PHILMORE 7-SECTION BASE LOADED INDOOR CB ANTENNA. (Reg. \$4.50.)
sale $\$ 2.99$
$\$ 1.99$
\square GRDUND PLANE ANTENNA-Solid alum. radials. (Reg. \$16.00.)
$\$ 6.99$

- 10-TRANSISTOR "WALKIE-TALKIE" (TRIUMPH) Tuneable squelch, latest model, comp. less batt.
\$29.95
- KIt of 20 assorted molded con. DENSERS. (Reg. \$5.00.)
\square 20,000
O.P.V. MULTIMETER (plus leather case.) (Reg. $\$ 20.00$.)
CB RADIO MOBILE HANDBOOK (Reg. $\$ 2.95$.

Check items wanted. Return ad or order with check or money orters under $\$ 5.00$. Beams and 102 " whips shice charge on Express. 50% deposit on C.0.0.'
ㅁ Ca DEALERS: Write for Quantity Prices!

```
GROVE ELECTRONIC SUPPLY CO.
```

GROVE ELECTRONIC SUPPLY CO.
Pue. Chicago 41, llinois
Pue. Chicago 41, llinois
Ph. 383.6160
Ph. 383.6160
\square Mush items checked
\square Mush items checked

- Send FREE catalog of GIANT CB Value%
- Send FREE catalog of GIANT CB Value%
Name
Name
. (piease. prinit)
. (piease. prinit)
Addrens
Addrens
City. zone. state.
City. zone. state.
*)

```
*)
```


Actomollye:

Sterso|mi/FI

ducational
Kits

Cilizond

Amaleur
Asalo

tnstrumbit

OVER 250 ELECTRONIC KITS are descrlbed in this, the world's biggest kit catalog. Something for every member of the family, for every interest from electronic organs to scientific lab equipment . . . all completely illustrated and specified. Send for your free copy . . . see how you can enioy the finest in luxurious electronic you can enjoy the linest in iukits are beginnerliving at 50% savings. Heathklts are beginnerdesigned for easy assembly by anyone ..b.: everything is clearly pictured and easy step-by: step instructions show you whar so an hou to do it. Millions have done it, so can you bulld your lirst Heathkit soon!

HEATHKIT

Send For Your FRE 1963 Heathkit Catalog. Mail this handy coupon today!

HEATH COMPANY

 Benton Harbo: 18, MichiganPlease send Free Heathklt Catalog.

Name
Address

City \qquad Zone \qquad State \qquad

12 WATT
 TRANSISTOR AMPLIFIER

A beautifully engineered 12 watt Transistor Amplifier for music systems, public address, paging, and many other uses. Complete with husky A.C. power supply. Uses two power transistors with thermister bias pratection. Input impedance 16 ahms. Qutput impedance 200 ohm line. Two volts across 16 ohm input drives to full 12 watt output. Room for additional stages if desired to increase gain. These amplifiers built to run continuous duty. Chassis $91 / 4^{\prime \prime}$ $L \times 23 / /^{\prime \prime} \mathrm{W} \times 478^{\prime \prime}$ high. New original manufacture pack. ing. Shipping weight 12 lbs.

$\$ 895$ Plus Postage

TRANSISTOR BROADCASTER

A unique 2 Transistor Phono Oscillator which
plays through any broadcast band. Radio will operate mike or phono pickup. Originally designed to add Stereo to regular monaural sys. tem and priced at $\$ 16.75$ each.
SPECIAL
CLOSE-OUT
PRICE ONLY
$\$ 250$ Plus Postage

 SPEAKER AND BAFFLE Beautifully styled combination shelf or wall baffle with heavy duty $8^{\prime \prime}$ speaker and volume control. Completely enclosed with screw terminols on back Stands upright or hangs on wall. New Stands upright or hangs on wall. New.
manufacture. Ideal for home music sys. tems, industrial music or paging, or ony auxiliary speaker function, $13^{\prime \prime} \mathrm{W} \times 45^{\prime \prime} \mathrm{D} \times 101 / 2^{\prime \prime}$ high. Blonde or walnut finish.

$\$ \$ 95$ Plus $\$.50$ shipping

CAPITOL COMMODITIES CO. INC. 4757 N. Ravenswood Ave., Chicago 40, Illinois PHONES: LO 1-3355

NEED $\$ \$ \$ \$ \$ \$ \$ \$ \$$ MONEY? IT'S EASY TO BORROW FROM US - BY MALL!
 Borrow $\$ 100$ to $\$ 600$ without collateral or co-signers. Confidential. Repay in small manthly amounts. Tell us how much you need now.
 SEND THIS TODAY
 Sond me Application for Mational Loans By Mail.

 Address
 NATIONAL LOANS
 Dent 51 IO1 S. TEJON, COLORADO SPRINGS, colo.

TEN
delightful, exciting MOVIES FANTASTIC OFFER ALL TEN MOVIES IN 8 mm FOR ONLY ($16 \mathrm{~mm}-\$ 4$) The movie buy of a liferimel Ten subiects, all different, brand new and thrilling, and all yours for only 20 c , ach. You must be delighted or your money back! Rush \$2 (cash, check or money order) to: SENSATIONAL MOVIE OFFER Box 69856, Depl. G36 West Hollywood 69, Calif.

COMING IN THE AUGUST ISSUE

AIR GUNS AND HOW THEY WORK

Here are the latest design innovations that have changed the air gun from the smoothbore BB gun of twenty years ago to easy-to-shoot rifles and pistols with target accuracy.

THE WORLD'S FASTEST JET CARS

Here are the super-dragsters that shatter records set by all other power plants.

THE STRANGE WORLD OF 460° BELOW

See common materials develop magical properties in the cryogenic world of $-460^{\circ} \mathrm{F}$.

You'll also be interested in:
A pictorial article that shows you how to maintain and preserve the trees in your yard.
A space-saving hi-fi hideaway that can be snugged into the outside wall of any closet. Seeing the three Prize-Winning projects by the first winners of S\&M's Craftsman's Contest.

ELECTROMC SDRPIUS BARGAIS s．AVE UP 1090%

RCA 6032 IMAGE－CONVERTER TUBE Combined with suitable op－ tical systens．this 3－elec－ trode tube pernits sjewing of scene with infrared radla－ thon．Scene to be viewed is Ithaged by optleal objertive uponsemi－transparent photo－ cathode．Spectral resp．．S－1 good response up to about 1200 A ．Max．ratings，abso－ lute，grid \＃2，20，000 ${ }^{\circ} \mathrm{DC}$ o peak AC，grid \＃1，2700．
$\$ 9.95 \mathrm{ppd}$
HT－6 WILLARD 6－VOLT STORAGE BAJTERY Rated 2.4 amp hr Approx．dimensions $31 / 2^{\prime \prime} 1 . x 13 / 4^{\prime \prime}$ w．x $21 / 8{ }^{\prime \prime}$ i．Weight： 1 16.3 oz．（plasilc case）Dryaclarged
$\$ 2.50$
POTTER \＆BRUMFIELO RELAY \＃S．MIS SI＇DT 8.000 ohm $11 / 10^{\prime \prime}$ dia．x 1 $11 / 10^{\prime \prime}$
lung．Aprox．
weight 1 oz．Hermetically sealed． standard 7 －pin miniature base．$\$ 2.00$

MINOR SWITCH

 10－position，3－pole with stopper coll and reset coil 6－12 volts D．C．olf－normal non－bridging wiper ap－ prox，dimenslons：4＂long

NICKEL CADMIUM BATJERY 1.2 VOLTS Thechargeable thousands of times．Alkaline storage battery
sintered－plate．F＇lal voltage curve during discharice．Will hold charge for lone period of time．High discharge rate up to 50 amps．Splll－proot，laty be used in ally posftion．Approx． 6－anpere－hour capacity．Lpimensions： $6^{\prime \prime}$ highl ； $2^{\prime \prime}$ wide；1／2＂thick．Approx． wt．： 6 oz．I＇ses potassium hydroxide $(30 \%$ Electrolite）$\$ 1.95$
SIGMI EXTRA－SENSITVE PRECISIOW RELA： Extremely precise，rugged
DC general－purpose sensitlve relay．Batanced armature． single－pole．double－throw Suitable for wide rabre of adjustments．Dimensions
$144 \times 15 / 10$＂xil1／16＂ligh．Welght ： $4 / 40 \%$ ． EF－1 16.000 S： 10,000 coll ohmes Operates 1.0 ma IDC 5FF－16， $000-8: 16.000$ coll ohms． （Hperates 0．is ma DC

－	
Outpur：12，24， 36 volts．In put： 100 volts， 60 cycles， single－plase．Will handle $21 / 2$ amps．Steel case is hermeti－ cally sealed． $31 / 2^{\prime \prime} x 23 / 6^{\prime \prime} x+1 / 3^{\prime \prime}$ ． Wit．： $31 / 4$ poinds．	

DIRECT－READING MAGNETIC CDMPASS

Full－floating earit．compensallug． maknets，and dlal light avall．In
 $31 / 103 \mathrm{ym} \quad 1 \mathrm{~m}$ ils．$\$ 8.50$ post

SILICON RECTIFIERS
All rectlifer lixted at maximum peak in

1X1446	． 965	пmp．	100 dills	50
$1 \times 144 \%$	． 77%	апи\％）	300 molls	60
1．N144：	． 075	ロッ円，	300 volts	75
1×1443	． 1975	มเบท．	400 rults	． 85
1N14．01	5	（atul）	3011 volis	1.00
18145！	5	alup．	29n wolts	1.25
1N145：	5	amp．	300 velts	1.50
1：1453	5	alup．	400 rolts	2.00
1×1454	\％ 26	ampl	1100 volti	3.00
1 $1.14 \therefore$	$\stackrel{4}{4}$	\％ 4 \％	$\because 300$ volls	3.50
1N14．th	25	atup．	300 rislts	4.50
121458	35	แแை．	100 rolis	3.50
1S143t1	35	ณ๐пр．	± 00 robls	4.00
1 N（1515\％	50	а -1 p ．	$51)$ volts	6.00
1才1462	：0	вแр．	100 rulis	7.00
1＊1466	75	a ¢ıl）$^{\text {a }}$	100 rolis	10.00
1N1463	75	a п¢．	\＃ut velts	11.00
1N1448	75	a 1 \＃10．	300 vults	12.50
$1 \times 05 \mathrm{~V}$	150	a пин）	50 vouls	16.50
1．814\％4	150	： $11 \ldots$	100 volis	17.00

x－bamo ponea level test Set，ts－a $6 /$ ap
40， Brand new，in orlginal packing，with accesso－ ties．Measures 10 to dbun．8700－9500 nic
\qquad
All prices FOB Pusadena unless otherwise noted．No（COI）＇s．

CLEARANCE SALE
 beauty and long life to your －Leather Goods • Furniture －Automobile • Housewares

Now，you can do all your polishing chores in less than half the time！The S \＆M＂Job－Tested＂All Purpose Pol－ ishing Kit，complete with attachments is all new．Saves time because it＇s automatic．Saves money because it gives you longer shoe life，or keeps a protective coat－ ing of polish on your furniture and car．It＇s easy to use！Just touch the brush in the polish－the polisher does the rest．

No more stained hands－no more hand polishing－no more mess to clean up afterwards．It＇s perfect for brushing suede shoes or handbags or jackets．
The S \＆M＂Job－Tested＂Polishing Kit features two 2＂ pure bristle brushes，two $4 \frac{1}{2}$＂lambswool polishing bonnets，rubber backing pad and adapter set．Equipped with six foot cord，gleaming mirror finish．U／L ap－ proved．Perfect speed of 900 rpm ，no load．Silent operation thanks to nylon gears that require no lubrica－ tion．Powered by rugged 115 volt，AC 25 to 60 cycle motor．

Order yours today．

Science and Mechanics PRODUCTS DIVISION

57
505 PARK AVE．／NEW YORK 22，N．Y． YES
Send \qquad No． 104 S\＆M＂Job－Tested＂ Polishing Kits． 1 am enclosing $\$ 7.95$ for each．（Price in Canada is $\$ 8.80$ ）．No ship－ ments outside U．S．A．and Canada．
Name \qquad
（please print）
Address
City \qquad Zone \qquad State \qquad

Answer to TV Crossword Puzzle on page 91

you'll find you are in for tempting big reideas? ports on all the worthwhile new mobile homes and travel trailers-colorful "camera tours" through America's most exciting parks-expert articles for your more enjoyable and profitable mobile home living. For new subscribers, mail the coupon below.

- The next 10 ISSUES $\$ 2.69$

INTERESTED IN ELECTRONICS?

Of course you are! And now you can be sure you get all the special S\&M Handbooks specially dedicated to your interestand you'll get them automatically!

Here's what you'll gets
Electrical Handbook (2 issues) Radio-TV Experimenter (4 issues)

Elementary Electronics
Home Appliance Repairs
Junior Mechanics Handhook Radio-TV Repairs
Science Experimenter (2 issues) Surplus \& Salvage Projects

Think of it! 13 big S\&M Handbooks. They sell by mail for $\$ 1$ each, but you save more than 26% when you order your special S\&M Electronics Group subscription. Do it now.

13 BIG S\&M HANDBOOKS ONLY $\$ 9.50$

NOW! send no money to get

Ask any questions about transistor circuits, printed circuits, flat CR tubes, color, test instruments, design factors, trouble-shooting in field or shop-in fact, ask any HOW or WHY about any TV receiver, part, stage, or function ... and you'll find the answer in seconds in this once-in-a-lifetime 7-Volume TV Library!

And along with the answers you'll get big schematics, photos, wave forms, check-points and key-point analysis. PLUS working applications that have been checked-out with expert bench and lab men in every detail. PLUS basic engineering data if you want it . . . ready for your use at the work bench.

This is the kind of TV info you'll use to make money and build your rep. It's all yours in this 7-Volume Library. DESIGN AND SERVICE OF TELEVISION RECEIVERS.
Can Save You Time and Trouble-Earn You Extra Dollars Day After Day:

Whether you work for yourself or for an employer, whether or not you have had technical training-here is ever-READY TV info backed with every possible aid to quick, effective use. This great TV library will help you upgrade your work, upgrade your income and be fully prepared for the jobs of the future.
The publishers okayed an inves mment of $\$ 300,000$ in these books. It took Harry Thomas, Supervisory Engineer of Federal Electric, and a staff of 30 technician-writers two years to produce it. Now I want you to see what a timesaver, work-saver, money-saver it is to know the answers.

Send for the First 2 Volumes To U'se 30 Days At Our Risk

Test the first 2 volumes for 30 days without taking a cent out of your pocket. Test them on your problems-on your jobs. See how the unique, stage-by-stage arrangement practically pulls you to the info or illustration you want. How test instruments ale shown as though on the job, with time-saving ways to use your VTVM with if probes, audio probes, stage-gain-checking probes and many more ideas for getting your money'sworth out of your testing gear: See the special schematics. The strategic use of wave-form diagrams. The treatment of remote controls, boosters and other accessories. The candid discussion of ever'y manufacturer's line, including sets not yet on the market.

Supply Limited! Order Now !
Your first free-examination volumes are ELEMENTS OF DESIGN AND SERVICE IN TV SWEEP OSCILLATORS and ELEMENTS OF DESIGN AND SERVICE IN TV A.G.C. CIRCUITS. Go through them. Test them. USE them for 30 days. You risk notning, can't possibly lose anything, and your profit can be tremendous. If you decide to keep the 2 volumes, you'll be entitled to receive following volumes as they come off the press-with the same free-examination and return privilege. Don't be disappointed. Fill out and mail the coupon below NOW!

[^0]

MOBILE AMPLIFIER

Used by the Nary for intercom. Fiasily converted into a 5 Watt Mobile I'A Amplitier. Ijses 2/12A6 Tubes in I'ush-pull; has Carbon Mic. and Radio Inputs and Headsets output. IIn structions supplied for conserting to Speaker.) Voltage required for operation 12 VIC and 250 Vic 60 MA . With lnstruction Book and one spare tube. Size: $71 / 2 \times 7 \times 10^{\prime \prime}$. Wt.: $15 \mathrm{lbs} . ~ \#(M X-$ 50128 -Price Lass Dynamotor . . $\$ 2.95$ With 12 V . bynamot or for Msobife. $\mathbf{5 6 . 9 5}$
 Conversion Kit with Speaker Output, Transformer, Mic. and Phone Jacks, Switch and Cable with Plug for cigarete lighter and Inst. \$2.00

MIRROR-MATIC

Standard Automobile rearview mirror that automatically changes angle of mirror when headlights of car in the rear strike the light cell, which actuates the relay which in turn filps the mirror. 0perates from 12 Volts INC. Includes 12.55 Tube.

Light cell can be actuated by any light source; therefore can be used to energize relays which will ring bells, turn on lights, start motors, etc. Size: $101 / 2 \times 21 / 2$ $11 / 2^{\prime \prime}$. Price. . . . $\$ 4.50$ Postpaid Address Dept. 23 - Prices F.0.B. Lima 25% Deposit on C.0.D. Orders

FAIB BADIO SALES 2133 ELIDA RD. Box 1105 - LIMA, OHIO

FREE INSTRUCTION MANUAL!

With purchase of 10 SCALE SLIDE RULE - The universal computing tool. Only $\$ 4.00$. Illustrated, self-teaching course $\$ 2.00$. Save! Combination only \$4.05. Post Paid. No C.O.D.

ALSYNCO
Dept. RTE-1, 171 S. Main, Natlck, Mass.

S6.44 AN HOUR Wrompows

STEP JNTO THIS BOOMING

\$19 BILLION A YEAR INDUSTRY

Hundreds of accidents and losses will happen this year in your community. We'll show you how to investigate and adjust these losses for insurance companies, railroads. government offices. You buy NO tools or equipment. You do NO selling. You need NO prior experience or higher education. And you can operate out of your own home. Right now independent Accident Investigators average $\$ 6.44$ an hour. We'll train you quickly to do the same. Start parttime if now employed. Fill the need for an Accident Investigation specialist in your area. Colorful booklet explains everything. Absolutely no obligation on your part. No salesman will call. Write TODAY for FREE Booklet.
UNIVERSAL SCHOOLS, SMH-3 6801 Hillcrest, Dallas 5, Texas

Enjoy the Savings and Pleasure of Building Your Own:

Prexision Dament Refistunte Bn:

Designed so the electronic experimenter can get any value of resistance at 1% accuracy. Made of precision components, this decade resistant box offers such advantages as:
Speed . Fast finger-tip switching action provides any resistance value from 1 ohm to 1,111,110 ohms within seconds.

Accuracy .i. Add or subtract as little as 1 ohm in critical circuits with 1% accuracy.
Convenience. . No knobs to fiddle with when changing from range-to-range. Carrying handle can be set to hold the box at an easy to work angle and efficient bench-top
visibility.
Quick Assembly . Ordinary hand tools are all that's required to assemble this precision instrument in less than
2 hours. 2 hours.

This S\&M Decade Resistance Box kit carries an unconditional guarantee of performance and accuracy. If for any reason you are unsatisfled with the performance, it may be returned within 10 days and your money will be refunded.

A NEW WORLD OF OPPORTUNITY AWAITS YOU WITH N.T.S. ALL-PHASE HOME TRAINING IN ELECTRONICS

You can install and maintain elec. tronic circuitry in missiles and rockets specialize in micro-waves, radar and sonar.

You can succeed in TV.Radio Communications... prepare for F.C.C. License, service advanced satellites for indusiry and delense.

The N.T.S. Master Course enables you to do more, earn more in ELECTRONICS•TELEVISION•RADIO

Yet N.T.S. Training costs no more than other courses far less complete

There's a good reason why N.T.S. Master-Training opens a wide new worid of opportunity for you in Electronics, Television, Radio.
Everything you learn, from start to finish, can be applied directly to all phases of the Electronics Industry.
As a result, the N.T.S. Trained Technician can move ahead faster, in any direction - from TV-Servicing to Radio Communications to SpaceMissile Electronics and Automation for industry and defense. You can go wherever pay is highest and opportunity unlimited.
Electronic circuitry, for example, is one of science's miracles that is basic to the entire field of Electronics. It is used in satellites, computers and space capsules as well as in today's television sets and high fidelity equipment. N.T.S. shows you how to service and repair electronic circuitry for all electronic applications.

YOU WORK ON MANY PRACTICAL JOB PROJECTS.
You build a short-wave, long-wave superhet receiver, plus a largescreen television set from the ground up. N.T.S. training kits contain all the parts you need, at no extra cost. (See box at right.) You also receive a protessional Multitester to use during training and on the job.
ONE LOW TUITION. You need training related to all phases of Elec. tronics. Industry demands it. Only N.T.S. provides it . . in ONE Master Course at ONE low fultion.

RESIDENT TRAINING AT LOS ANGELES
If you wish to take your Electronies.TV. Radio training in our tamous Resident School in Los Angeles - the oldest and largest school of its kind in the world write for special Resident School catalog and intormation, or check coupon.

NATIONAL SCHOOLS
Accredited
WONLO WIDE TRAINING SINCE 1905 Membe!
N.H.S.C.
000 So. Figueroe 51 , Los Anketee 37, C.

You can service and repair the elec. tronle "brains" of industry - com. puters, data processing, and other automation equipment.

You can become a highly.paid TV. Radio Techniclan, an electronics field engineer, or succeed in your own sales \& service business.

YOU ENROLL BY MAIL AND SAVE MONEY. No salesmen means lower costs for us, lower tuition for you.

START NOW. A whole new world of opportunity awaits the man with Electronic Home. Training from National Technical Schools - a recog. nized leader in technical training for 58 years.

NO OBLIGATION.
NO SALESMAN WILL CALL

NATIONAL ©SCHOOLS world-wide traning since tgos

Here is the NEW S\&M Supersensitive PHOTO METER

Every photographer knows that the high quality of his photos depends on the accuracy of his equipment. Here is a precision instrument that meets the highest standards of any meter available. Modern Photography says "This is certainly one of the most unusual, most versatile and most sensitive exposure meters at any price today." U. S. Camera wrote "It is as sensitive as anything on the market. It's so adaptable-those 4 separate ranges of sensitivity have the effect of spreading the meter's scale."

Now, the S\&M Supersensitive Photo Meter is better than ever! A new plastic cap protects the probe and permits diffused light to be read with the cap on. The probe can still be used to read direct light with the cap removed. A new positive meter-lock in the OFF position protects the meter's needle.

The S\&M Supersensitive Photo Meter uses the newest cadmium sulfide light cell to measure light levels from 0 to 10,000 foot lamberts at ASA speeds of 3 to 25,000. It is successfully used with movie or still cameras, microscope, telescope-as well as a densitometer. The computer gives F stops from . 7 to 90 and lists exposure time from $1 / 15,000 \mathrm{sec}$. to 8 hours. 43° angle of acceptance; 4 range selection; EV-EVS-LV settings; weighs only 10 ounces.

And yet-this all-inclusive kit can be assembled with soldering iron and screw driver in less than 2 hours. Step by step instructions make it easy-or, order your S\&M Supersensitive Photo Meter, fully assembled and fully tested. Complete with attractive carrying case.

$\$ 2.00$
carrying case only
No. 103

SCIENCE and MECHANICS-Kit Division/505 Park Avenue, New York 22, N. Y.
Please send the new S\&M Supersensitive Photo Meter as checked below, complete with carrying case. I understand that if i am not completely satisfied, I may return the meter within 10 days for a complete refund.

No. 101

No. 102 No. 103
\$24.95-in kit form
\$29.95-assembled

- \$2-Carrying case only

Add 10% for Canadian and foreign orders. New York City residents add 3% for N.Y.C. sales tax.
Name

For Information on Classified ads-to be included in our next RADIO-TV EXPERIMENTER HANDBOOK and other Handbooks-write C. D. Wilson, Mgr, Classified Advertising, SCIENCE and MECHANICS HANDBOOKS, 505 Park Ave., New York 22, N. Y.

ADDITIONAL INCOME

MAKE $\$ 25-\$ 50$ week, clipplng newspaper Items for publishers. Some cllppings worth 5.00 each Particulars free. National 81 $\$ 5.00$ each. Particulars free. Nationa
Knickerbocker Station, New York 2.
$\$ 100$ WEEKLY possible. Complle mail Ing lists and address envelopes for advertisers. Home-spare time. Particulars iree. National Service 81, Knickerbocker
Sta., New York City 2.

WANT Additional Income? Earn Top commissions taking orders for Science and Mechanics. S\&M Handbooks and a host of S\&M products. National Advertising makes your selling job much easter. Send $\$ 1.00$ for details (refunded with your frst
order). Pete Reynolds, Sclence and Mechanics, 505 Park Ave., New York 22.

AUTO PARTS \& ACCESSORIES

TRANSISTOR Ignition Coll-Instructlons. Special $\$ 8.50$. Anderson EngIneer ing, Wrentham, Mass.

STEP-by-step servicing and maintenance articles for the mechanically-inclined, budget-consclous owner. Now, subscribe, budget-consclous owner. Car Repair Handbook regularly. Only $\$ 3.00$ for the next 4 issues. Order from Car Repair Handbook, 505 Park Ave., New York 22.

BATTERIES, GENERATORS
REBUILD Batteries! Complete Manual
$\mathbf{\$ 3 . 0 0}$. C.O.D. Accepted. Bayer Publica$\$ 3.00$. C.O.D. Accepted. Bayer Publica-
thons, 938 AK , Betty Avenue, Neenah, Wis.

BUSINESS OPPORTUNITIES

INVESTIGATE Accidents. Earn 8750.00

 to $\$ 1,000$ monthly. Men urgently needed. Car furnished. Business expenses padd Pick own job location. Investigate ruli time. Or earn $\$ 6.44$ hour spare time. Write for Free Literature. No obligation. Universal5 , Texas

VENDING Machines- No selling. Operate a route of coin machines and earn amazing pronts. 32 -page catalog ${ }^{\text {Parkay }}$ Machine Corporation, Dept. 41 , 715 Ensor St., Baltimore 2. Md.

ASSEMBLE Artificial Lures at home for storcs. Materlals supplied Free. Prontable! Write: Lures, Ft. Walton Beach. Fla.

PAWNBROKER. Be one. I'll teach you. Amazing profits, Pawnbroker Thayer. Amazing Maine.
made $\$ 40,000.00$ Year by Mailorder! Helped others make money! Start with Helped others make money! Soart with
$\$ 10.00-$ Free Proof. Torrey. Box $3566-\mathrm{T}$, \$10.00-Free Proof. Oklarr.
Oka City 6 , Okla

INCOME Opportunities-Dorens of sucINCOME Opportunities-Dorens of suc-
cessful ways to be your own boss or to concessicul ways to be your own boss or to con-
duct a small business proftably on a part
time basis. This Handbook reveals how time basis. This Handbook reveats how
many franinise operations work. Send many franrinse operations work. Send Mechanics, 505 Park Ave., New York 22

BUY IT WHOLESALE
DEALERS Cost-all 1963 Cars- $\$ 100$. Petros, $5404-$ S South Mozart. Chicago 22

CAMERA \& PHOTO SUPFLIES

BUILD your own supersensitive light meter. Use newest cadmium sulfide light cell, show's ASA speeds 3 to 25.000 . F stops 7 to 90 measures accurately mounlight to bright sunlight. Send $\$ 24.95$ to Kit Divislon. Sclence and Mechanics. 505 Park Ave., New York 22.

CARTOONING, COMMERCIAL ART \& SIGN PAINTING SIGN Painting-Instructions and Equip-
ment. Free Catalogue. Kaufmann Signs, Centertown, Missourl.

Make your classified ad payl This handbook tells how-with examples; included is a Credit Certificate worth $\$ 2,00$ toward the cost of a classified ad in $5 \& \mathrm{M}$. For a copy of "How to Write Classified Ad That Pulls," send $\$ 1.00$ to C.D. Wilson, Science and Mechanics, 505 Park Ave., New York 22, N. Y.

COINS, CURRENCY \& TOKENS
OLJ Coins Wanted. Catalogue 25 t. Lacheen. Box 1355. Philadelphla 5, Pa.

EARTHWORMS

BIG Money Raising Fistruorms and Cricloets. Free Llterature. Carser Farm-O. Plains, Georgia.

EDUCATION \& INSTRUCTION

MeTHEMATICS for Electrictans only $\$ 1.00$. Adem. 5412 East Washington. Indianapolis, Indiana.
ENGINEERING And Art Degrees earned through home study. Electronics, Mechanical. Liberal Arts. Malor AccountIng. When writing specify ccurse desired. Scieaces, urimarily a correspondence school. Resident classes also avallable, $5719 \cdot \mathrm{~T}$ Santa Monica Blvd.. Hollywood, 38, CaJ!.

ELECTRICAL EQUIPMENT \& SUPPLIES

BUILD a high precision all purpose tachometer, 3 ranges. Measures speeds on tape recorders, lathes, cuttirg tools, auto eng mes, many more uses. Onty 1695 . Kark Ave. New York 22 .

EMPLOYMENT INFORMATION

Fegeral Jobs Overseas 300 Posts in 100 Countries throughout the world Where to apply Details $\$ 2.00$ Chase industries, Box 8440S. Baltimore 34 . Md.
OUERSEAS Jobs. List $\$ 1.00$. Universal. P. D. Box 682, (A), Kenosha, Wisc.

FLORIDA LAND

FLORIDA Lake Living-Homesites near Everything. Established area. $\$ 390$ Full Price- $\$ 5.00$ Month. Information, write Lake Weir Shores 52. Silver Springs, Florida. Ad 6-1070-(F-O)

FOR INVENTORS

PATENT Searches-48 hour airmall service, $\$ 600$, including nearest patent service, $\$ 600$, including than 200 registered patent copies. Mare than 200 regisice. Free Inattorneys have used my service, Write Miss Ann Hastirags. P.O. Box 176. Washington 4. District of Columbia.

HOME WORKSHOP SUPPLIES

FREE New Catalog, 2447 Plans, Patterns. World's greatest selection things to do, make. Fun. Profit. Craftplans, 18250-H, Harwood, Homewood, III.

HYPNOTISM

NEW concept teaches you self-hypnosis quickly! F-ee literature. Smith-McKinley. quickly! F-ee Iiterature. Smith-
Box 3038 . San Bernardino. Calif

MONEY-MAKING OPPORTUNITIES
WANT Additional Income? Earn Top commisslozs taking orders for Science and Mechanices S\&M Handbooks and a host of S\&M products. National Advertising makes your selling job much easier. Send $\$ 1.00$ for details rrefunded with your first order. Pete Reynolds. Science and Mechanics, 505 Park Ave., New York 22.

MUSIC \& MUSICAL INSTRUMENTS

SWISS Musleal Moverments. ElectricalMechanica!. Splelman, 131 West 42nd, New York 36.

PATENT SERVICE

PATENT Searches-48 hour alrmail service. 36.00 including nearest patent copies. More than 200 registered patent attorneys have used my service. Free Invention Protection Forms. Write Miss Ant Has'ings. P.O. Box 176. Washington
4. District of Columbla 4. District of Columbia "Invention Record" and "Important InSormation Inventor's Need write: Miss Hayward 1029 Vermont. Washington 5 . Districe of Columbia.

PERSONAL

GRAPHOLOGY Chart $\$ 100$. Walter Kazaks, 234 East 58th Street, New York 22.

PETS-DOGS, BIRDS, RABBITS, HAMSTERS, ETC.
MAKE big money raising rabbits for us. Information 25t. Keeney Brothers, New Freedom. Penna.
EARN $\$ 10.000$ Yearly Rasing Angora Rabbit Wool For US Informetion 254 . Coin. American Angora Company, Malta77. Montana.

SPORTING GOODS, FISHING TACKLE, ARCHERY, ETC.

LEARN to swim easily Teall others
Safe. sure method Guaranteed system $\$ 1.00$. Bertoncini. P.O. Bux 753, Del M:Ir 1. Callfornia.

A special subscription to RADIO-TV E天RPERIMENTER brings you more make-It-yourself projects

4 ISSUE SUBSCRIPTION-S3
$\left[\begin{array}{c}- \text { SCIENCE and MECHANICS / Radio-TV Experimenter } \\ 505 \text { Park Avenue / New York 22, N.Y. }\end{array}\right.$

PLEASE Enter my special 4 issues subscription to $\square 1$ enclose $\$ 3$ RADIO-TV EXPERIMENTER, starting with No. $659 \square$ Bill me later

NAME
(PLEASE PRINT) \longrightarrow
ADDRESS

CITY \qquad STATE

What's All This Noise?

By BYRON G WELS

RECENTLY, the Federal Trade Commission decided to protect the consumer against "unfair acts or practices in interstate commerce." The Federal Trade Commission Act also makes it "illegal for one to engage in Unfair methods of competition."
The question boils down to exactly what do the words "high fidelity" really mean, and when a manufacturer so labels his equipment, how can you tell if the public is being defrauded?
In order to establish good and proper standards, the FTC solicited comments from various groups and individuals. Among these was the manufacturer's organization, the Electronic Industries Assn. The EIA proposed a standard based on the following steps:

A questionnaire was sent to 1000 firms and individuals asking their definition of the term "high fidelity," with their suggestions for a practical certification procedure. One hundred and fifty-four replies were received.

An ad hoc committee was formed which invited the Institute of High Fidelity Manufacturers to form a parallel committee to meet with the group from EIA and try to resolve the problem.

When they received no response to this invitation, the committee informed the FTC that it would limit its endeavors to recommending minimum standards and certification solely for factory-assembled "packaged" phonograph units.

The first draft of these recommendations was circulated to the 154 firms who responded to the original questionnaire, for comments.

All in all, the standards proposed by the EIA are minimal, for they are indeed loose. Perhaps H. H. Scott, a long-time manufacturer of quality hi-fi and stereo equipment sums it up best: "Frankly, this definition of hi-fi sets the art back at least 30 years. . . . The adoption of the EIA proposed standards for high fidelity could do very serious harm indeed. . . . The set manufacturers almost certainly would trumpet that their equipment met 'government standards for high fidelity'. . . . Overall, this would be a cultural step backward, not forward."

Finally, the Federal Trade Commission was contacted and they make very clear indeed that their purpose is a conscientious one. While the EIA caused a good deal of hoop-la with their proposal, the FTC is not going to be browbeaten into a quick decision. Obviously, the EIA is doing their best to protect the mass of manufacturers whom they represent. The FTC on the other hand, is attempting to protect the buying public.

The FTC went on to say that they have received several constructive suggestions regarding this problem, and they invited RadioTV Experimenter to submit its thoughts on the :natter. For your own consideration, here, in essence, is what we recommend:

High fidelity is a relative thing, and the only sure way to protect the consumer is with several categories for high fidelity equipment, not with the either "yes" or "no" label.

To set up standards, the equipment must be tested with a fixed load resistor, and tested at its full rated output. A standard range of frequencies must be applied to the input terminals, and the frequency response will be measured at the output terminals, across the load resistor.

Frequency response will be considered "flat" anly. . . . No allowance will be made "so many db down" at the low or high end.

There should be perhaps five categories of equipment, each to be determined by the flat frequency range of the equipment at fixed loads and at full rated power.

These categories could be identified by letter prefix or roman numeral prefix.

In this way, the manufacturer is required by law to specifically state the area of quality into which his equipment falls. While the manufacturers today are inclined to like the present system (the only added cost now is for a label reading "hi-fi"), it will be found that quality and price will be closely related. We're sure that the public in general and the manufacturers of high quality equipment will appreciate this, but until some positive decision is reached and passed into law, the public must rely on careful purchasing and caveat emptor!

Amateur radio television needn't be terribly expensive. KGIPR operates modestly with surplus gear and does well.

Getting Started in

By FRED BLECHMAN KGUGT and PAUL MERRIMAN KGIPR

A
MATEUR television is not new, but since the Federal Communications Commission approved the use of the $420-450 \mathrm{mc}$. band for amateur television in 1957, only a relatively small number of intrepid experimenters have put ham-TV stations on the air. However, some recent developments promise a new revival of interest in amateur television. For example, the FCC recently removed the 50 -watt power limitation on the $420-450 \mathrm{mc}$. band except in some areas of the south and southwest. Even in those areas where the restriction remains, permission to transmit more than 50 watts may be requested on an individual basis. Also, equipment usable for ham-TV is becoming readily available at reasonable prices, with minimum "home-brewing" required to get a good picture on the air. It appears that all that's needed now is a realization among
the more adventurous hams that amateur TV is no longer a franchise to be enjoyed only by the wealthy or especially brainy ham. This article will not only offer an elementary description of the major components of simple amateur television systems, but will suggest ways the average interested ham can get started in ham-TV, as well as listing sources for equipment and further information.
License Requirements and Band Allocations. What license do you need? Any licensed amateur radio operator, except Novice Class, is authorized by the FCC to transmit television signals in the assigned amateur bands above 420 mc . Specifically, these bands are $420-450 \mathrm{mc}$., $1215-1300 \mathrm{mc}$., $2300-2450 \mathrm{mc}$., $3500-3700 \mathrm{mc} ., 5650-5925 \mathrm{mc}$., $10000-10500 \mathrm{mc}$., $21000-22000 \mathrm{mc}$., and all frequencies above 30000 mc . As a practical matter, however, we will limit our discussion in this article to amateur TV in the $420-450 \mathrm{mc}$. band, since this is the most common usage, and offers the

SOME BASIC ELEMENTS OF THE ICONOSCOPE
FIG. 1

Ham-TV

You probably know that hams get on the air and chat half the night. Now XYL's (wives) must dress for the contact
maximum chance to use inexpensive, available system components.

Performance You Can Expect. As with any radio communication, performance is a result of, among other things, power, path and propagation. The power is the signal leaving the antenna, not all the energy wasted in power conversion, coupling, line losses and mismatching. With a 50 -watt input transmitter, you might get 20 watts into the antenna at these frequencies. This 20 watts, effectively concentrated by your antenna gain, must find its way to a receiving antenna, and any natural or man-made obstructions will attenuate the signal. This attenuation, plus the normal reduction in strength with distance, constitute path loss. The propagation, or extension of the signal in space, is line-of-sight at these frequencies for all practical purposes; don't depend on skip transmissions. The receiving antenna must be high enough to see the transmitting antenna for dependable signal exchange. Also, in the

Fig. 2: The large iconoscope was used as a camera tube in surplus drone planes. Smaller vidicon does same job.

Fig. 3: The "guts" of the system can often be solvaged from military surplus materials and effect huge savings.

Fig. 4: A surplus selsyn is used to focus the camera lens remotely. Useful if camera is out of arms reach.

FIG. 5 FLYING -SPOT SCANNER SYSTEM
case of TV reception, the incoming signal must be considerably stronger than the just-above-the-noise signal tolerable with CW or voice communication; the TV signal contains synchronizing and blanking pulses and a complex spectrum of information that must get through. All this makes high gain antennas, which are quite small at these frequencies, almost a necessity.

With a 50 -watt transmitter, good antenna, clear path and average receiving equipment, a range of 25 miles is not uncommon. With higher power and more exotic receiving units, this can certainly be increased. Ron Olney, W6VCF (Encino, Calif.) holds regularly scheduled two-way contacts with "Ace" Simpson (Azuza, Calif.) 40 miles away, both using antennas only 50 ft . above the ground. K6HXZ (Jim Kampschroer, Sunland, Calif.), K6IPR, and W6WPD (Bob Brown, Tujunga, Calif.) used to work each other regularly, until K6IPR moved over a mountain!

W6ZJU (Vern Thompson) and W6VCF are actively planning a TV repeater station to be installed on Mount Wilson, which should provide ham-TV contacts throughout the southern California area. Other areas can be expected to follow suit as the interest increases and more hams go video.

Programming. Only three things really limit your ham-TV programming: your imagination, your equipment, and FCC regulations. If you only use a flying spot scanner (we'll get to that later), transparent slides or photographic negatives are your limit. But with a live camera, you can show movies, cover local events (parades, sports, accidents), do magic tricks, or just plain make faces. Puppet shows are a natural. Video chess or checkers, pancl shows, quiz games or just about anything except the transmission of music, profanity or obviously improper material, is possible. Your creative talents can leap the bounds of aural transmission and encompass the video spectrum. Lighting and background, for example, become important from both the technical and aesthetic viewpoint; weird effects can be achieved with both.

What Do You Need For HAM-TV? Just what is involved in an amateur TV system? Look at the block diagram of a basic system that allows transmission of live action programs. The equipment specified is that used by K6IPR-TV at his Burbank, Calif., station, and is representative of a low-budget system.

A much more elaborate system is used by W6VCF, involving two racks of equipment. A beginner in ham-TV should not be overcome by the apparent complexity of some systems, since they are all composed of fundamental blocks added together. Getting on the air can be accomplished for less than $\$ 50$, if you salvage most of the parts from old TV sets.

Where To Get The Equipment

HAM-TV equipment is still relatively rare or expensive, but your local electronic surplus houses might have some. The following companies are among those that may be contacted for further specific information and prices. Don't just ask for all the information they have; specify your interest, such as surplus cameras, new cameras, transmitters, etc.

Denson Electronics Corp.
 L.ongview St.

Rockville, Conn.
Cameras (new, used, surplus), lenses, surplus transmitters, vidicon tubes, etc.
U. S. \# 1 Electronics

1920 E. E.dgar Rd.
Linden, N. J.
Surplus cameras, transmitters and power supplies.

Barry Electronics

512 Broadway
New York 12, N. Y.
Closed-circuit cameras and equipment.
Space Electronics Co.
218 W. Tremont Ave.
Bronx 53, N. Y.
T-179/ART-26 35 wall $300-600$ me. transmitter.
J. J. Glass Co.

1624 S. Main St.
Los Angeles 15, Calif.
APS-13 transceiver, other surplus.

FM Surplus Sales Co. 1100 Tremont St. Roxbury 20. Mass.

Motorola T44A-6 450 mc .18 watt mobile transmitter.

Closed Circuit Television Dept. Radio Corporation of America Building 15-6
 Canden 2, N. J.

TV-Eye camera, power supply, controls and cables: $\$ 495$.

Packard-Bell Electronics Industrial Products I)ept. 1920 S. Figueroa St. Los Angeles 7. Calif.

Complete high quality transistorized vidicon camera, including power supply, cables and control box: $\$ 695$.

Columbia Electronics
 4365 W. Pico Blyd.

Los Angeles 19, Calif.
Surplus cameras and transmitters.

Basic System Description. Briefly, the system at K6IPR-TV consists of a live-action surplus iconoscope camera and power supply which convert the viewed scene to video signals with a 4.5 mc . bandwidth and the standard synchronizing pulses. This complete composite video signal is fed through coaxial cable to a video amplifier and modulator which in turn is used to grid modulate the linear amplifier stage of a home-brew 438 mc . crystal-controlled transmitter. An external power supply furnishes the required B-plus, bias and filament power. The transmitter output is carried by coax to a transmit-receive relay (coaxial type), allowing the use of the same high gain antenna alternately for trans-
mitting and receiving. From the coaxial relay the signal is fed through a balun coil (impedance matching transformer) and low-loss tubular twin-lead to the collinear 12 -element UHF antenna. For receiving, a slightly modified tuned-line type Dumont UHF tuner is used to change the received signal to what-looks-like VHF Channel 6 to the standard TV receiver. Monitoring of the outgoing signal automatically appears on the TV receiver, due to signal proximity and relay switch leakage; alternately, the video signal can be fed directly to the TV set (with the slight modi--fication of adding a video input jack) to allow tuneup and adjustment monitoring without broadcasting.
(Continued on page 136)

Kit ParadeThe CONAR Custom Seventy Television Set

After this report was completed, it was sent to the manufacturer, Conar Instruments. Mr. Jack Thompson, manager, commented on the report, and his comments are reproduced with the article. They have been inserted in italics, following appropriate paragraphs

By BaRNEY GERALDS

PERHAPS the nicest thing about this set is that when its finished, the handsome appearance looks like anything but what you'd expect a kit-type TV set to be! It isn't big, or boxy, and it performs beautifully-but we're jumping the gun.
And we're blushing already!
Opening the Kit. When you get the kit, you find that almost all the small parts are packaged under plastic which is vacuum-sealed to corrugated cardboard. Each step in the construction is related to a package of parts, so you can put aside the later packages until you get to them. During the unpacking of the parts for the first steps, you will find a razor
blade to be a handy accessory, for there's one heck of a job breaking through that tough plastic without one.
Our customers tell us the package is a whale of a lot better than a little brown envelope with parts dumped in. Its also an excellent way to use up old razor blades lying around the house.

We're happy to report that all of the parts were there, and we didn't have to go scampering down to the local radio emporium for such things as additional lengths of wire.

For customers who like to scamper, we'll arrange to leave out a few parts. There's a slight additional charge for this service.

Fig. 1: When you get the boxes open, the vest array of parts might throw you, but follow instructions.

Fig. 3: The front of the chassis with most of the mechanical parts in place. Note crayon mark "Front."

The instruction manual is complete and easy to follow, even for a novice. Of course, the old hue and cry of "Read the Book" still applies.

Starting Construction. The secret of success is to work slowly and in small gulps. The enlarged diagrams are a tremendous help and should be referred to often.
Your author ran into one problem here, and this was the confusion regarding which is the front of the chassis, and which is the back.

Your author also failed to read the book. We supply a crayon for marking front and rear of chassis. You'll love our crayons.

This confusion was finally brought home during a later procedure, when it was found that some of the terminal strips had no wires to be connected to them, and on the other side of the chassis were lots of wires with no strips to connect 'em to. We had to remove a few screws and replace several parts before we got straightened out. To avoid future errors, the chassis was plainly marked.

Or better yet, follow instructions.
The only area of difficulty that was encountered in the wiring was making the connection to the high voltage socket coror.a ring.

Some customers thought the corona ring was a cigar band. We revised the manual to clear this up.
The set works, so apparently the problem

Fig. 2: leave all components in place under the plastic on the corrugated cardboard sheets.

Fig. 4- Instruction book is supplemented by large, easy-to-read sheets. Simple tools are all you need.
was overcome despite many misgivings when it came time to throw the switch.

Test Results: When we got the set working, alignment was an easy problem. The instructions are clear and concise on this score. There are a few negative comments, and these will be reflected on now.

We'd rather you stick to positive comments but go ahead.

The back of the set is marked with certain screws that can be removed so that the back comes off and leaves the chassis attached to the cabinet. As the holes were all the same size the screws must ALL be removed in order to open the back, and of course, when the screws are all removed, the chassis slips away from the cabinet. We corrected this obvious fault by taking a tapered reamer to two of the mounting holes on the back cover, and with these holes larger than the screw heads, these two screws remain in place and keep the chassis on the cabinet regardless of the other screws holding the back.

Ah ha-caught you again! The book clearly tells which screws to remove. Maybe we should supply a tapered reamer for kit builders who don't like to read

While the seldom used controls are easily accessible on the back of the set, there is one that seems to be missing, and this is the horizontal hold, or lock. It is located inside the

Fig. 5: Picture tube is assembled to cabinet, sandwich style. Tube and cabinet are one after assembly.

Fig. 6: Rear view of chassis shows printed circuit board that saves lats of hard labor. Hole is for tube.

Fig. 7: The rear of the set with the back cover removed, shows clean layout. All tubes are accessible.
back of the set, near the ringing coil with which it is associated. Here again, we did a minor modification by drilling an access hole in the back and extending the shaft of this control with a shaft coupler.

Normally-in a properly assembled setyou adjust the horizontal hold once and forget it.

While you assemble your set, watch out for the wires associated with the speaker and output transformer. Use ample spaghetti where its called for. At one point, after a minor service problem that had nothing what-
ever to do with audio, we restored the chassis to the cabinet only to find that sound was missing. Turned out that a bare wire from the output transformer to the speaker was shorted to ground when the chassis was slipped into the cabinet. Redressing and tape restored sound.
-See-you saved yourself a $\$ 7.50$ service charge right there.
On the whole, the set looks beautiful and the performance is every bit as beautiful. The unit operates completely free of trouble, except for the troubles that you WANT de-

Fig. 8: Rear of chassis, partially wired. Dog-house will be installed over high voltage section later on,

Fig. 9: Servicing is simply a matter of removing back, sliding chassis toward rear for accessibility.
veloped! We've learned more about how to set up a yoke and make basic adjustments that are usually factory-performed on commercial sets. The instruction book is educational, and this is to be expected, for Conar (COmpany NAtional Radio) is a division of the National Radio Institute.

-Too bad there's not more about technical design of the Custom 70. Transformer power supply, bonded pic tube 3 stages of video I.F., new high-gain tuner and one full year guarantee are features hard to find in commercially manufactured sets priced under $\$ 200$. Anyhow, that's our opinion.

Fig. 10: Arrows on back of set indicate screws to remove to gain access to interior. Note rear controls.

Recorder Amplifier Mixer

By FORREST H. FRANTZ Sr.

Blend and control three separate inputs into a single output

WANT to feed more than one input into a tape recorder or an amplifier that only has one input? It's easy. This unit provides the capability. You may wish to use two mikes and a record player, or one mike and two record players to secure dramatic sound effects and narration set to music.

This mixer can be built from parts costing around $\$ 5$. in a matter of a few hours. It's very compact ($15 / 8 \times 21 / 8 \times 4$-in.), and it's housed in an aluminum case.

Why Use a Mixer? Suppose you want to connect three input devices such as a micro-
phone, a radio tuner, and a record player to a tape recorder that has only one input jack. The first thought might be to connect everything in parallel. The trouble with this though, is that unless each of the input devices has its own volume control, you have no control of the sound level between the individual units. Although the tape recorder volume control will control the conglomerated input of the three devices, there's no way to fade or increase the volume of one relative to the others.

The next thought then, might be to go to

Fig. 1: With the bottom cover removed, the simple wiring and facile parts placement becomes obvious.
a circuit in which each of the input devices has its own volume control. But, the controls interact.

You can get around interaction by using the mixer circuit of Fig. 4. A volume control is provided for each of the inputs. The 220 K series resistors (R2, R4, and R6) isolate the controls from each other and minimize this interaction. The one megohm mixing resistor (R7) completes the circuit to ground. The series resistors cause a small loss in signal strength. But the loss for all practical purposes is negligible.

With the mixer then, you can control the volume for each input channel separately.

Fig. 2: The completed unit presents a handsome appear-
ance and doesn't lake much space. Finish with decals.

You can control the volume of the entire signal combination with the volume control on the tape recorder or the amplifier.

The mixer must be thoroughly shielded to prevent stray hum pick-up. And it should be housed in a sturdy case to withstand rough handling.

Construction: The mixer case is a standard purchase item. Use Fig. 3 as a guide for drilling the holes. A total of seven holes is required. Mark the hole positions 'with a punch. Leave the case assembled to drill. Drill $1 / 8$-in. starter holes and enlarge to size with suitable drills or a taper reamer. Clean off burrs and remove chips from the case.

Cut the potentiometer shafts to a length of $3 / 8$-in. Place the part of the shaft to be discarded in a vise, cut with a hacksaw, and catch the control as it falls free. Mount the volume controls and the jacks on the case. Use Fig. 2 as a guide. Bend and solder the single lug tie-down point to the ground lug on J2. Use rosin core solder and a clean soldering iron.

Proceed with the Wiring: Use Figs. 2 and 4 for guidance. Connect the grounded sides of the volume controls and jacks with a piece of bare wire. Connect the center terminals of the jacks to the high terminals of the respective volume controls. Connect a 220 K resistor from each of the volume control center terminals to the insulated (not grounded!) tie-down lug. Connect a one megohm resistor between this point and ground. Connect the center wire of the shielded conductor to the junction of R2, R4, R6, and R7. Use a solid piece of wire to connect the shield to ground.

Use about 3 ft . of Belden No. 8401 -shielded wire. Be careful not to overheat the shield while you're soldering, or you may melt the insulation and end up with a short.

Connect the phono plug (or a plug to match the particular recorder or amplifier that you wish to connect to) on the other end of the shielded wire. Center wire connects to cen-
ter pin and shield connects to plug shell. Fasten the back of the case and the knobs and you're ready to go.
The jacks are mounted directly above the respective controls, so there shouldn't be any identification problems. If you wish, you can label the jacks (input 1, 2, 3, phono, radio, mike or whatever you wish) and you can scribe pointer lines in the knobs. You can mark directly on the case with India ink, you can use commercial decals, or you can type on white paper and fasten to the case with cellophane tape. Make pointer lines on the knobs by making a recessed line with the corner of a triangular file and filling with white India ink.

Reminder: This mixer is designed to take inputs which do not contain de voltages. Dynamic and crystal microphones and phonograph cartridges have outputs that are free of dc voltage. Most radio tuners have outputs that do not contain de voltages. If a radio
tuner which you intend to use with a mixer has dc in the output, connect a $.1 \mathrm{mfd} ., 600 \mathrm{v}$. capacitor in series with the high side of the mixer input. The presence of dc can be determined by checking to see if an output capacitor has been incorporated in the tuner or by checking the tuner output with a dc voltmeter.

MATERIALS LIST-RECORDER/AMPLIFIER MIXER
Desig.
Size and Description
R2, R4, R6
$220 \mathrm{~K}, 1 / 2$ watt resistors
R7 R3, R5 $\quad 1 \mathrm{M}, 1 / 2$ watt resistors
R1, R3, R5 1 megohm miniature potentiometers
J1. J2 J3 (Lafayette VC.38)
, Phono jack, single hole mounting
P1
(Lafayette MS.568)
phono plug (Lafayette MS-373)
single lug tie down strip (Lafayette MS.231)
three miniature knobs (Lafayette MS-185)
single conductor shielded wire (see text)
$15 / 8 \times 21 / 8 \times 4^{\prime \prime}$ grey hammertone miniature case (Premier PMC-1002)
Parts for this project may be obtained from:
Lafayette Radio, Ill Jericho Tpke., Syosset, L. I., N. Y.

Germanium Crystal Diode Connector for Experimenters

- With the increasing popularity of germanium crystal diodes, radio experimenters and crystal set builders are continually changing these crystals around from one circuit to another. The wire leads become shorter and shorter from continual nicking, bending, or soldering, and sometimes the leads break off at the body of the crystal.

To avoid these troubles, make a connector consisting of a pair of twin Fahnestock clips mounted on a strip of Bakelite (see photo). Insert the crystal diode in one side of the clips and make connections to the diode on the other side of the clips as shown. This device also allows two crystals to be connected in parallel, as is sometimes done to increase the current-carrying capacity of germanium diodes. If you do not have a pair of twin clips, simply fasten four clips to a Bakelite or wood base. To insert a crystal into the clips simply press both clips at once and slip the leads into the clips one at a time. This method makes it unnecessary to bend the leads at all.

Tilting-Head for Microphone

- If your small- or medium-size mike is not equipped with a tilting device, make this simple, neat looking tilting-head which will hold it securely at any desired angle without need for turning thumb-nuts or screws. Remove the cord-protecting springs from the cable connectors, force a connector onto each end of the \#6 gage copper wire for a snug fit, and tighten the set-screws on the connectors. The $5 / 8$ in.- 27 threads on the connectors are standard mike threads which will fit the tops of standard microphone stands, and also the sockets on the bottoms of all microphones made in the United States except RCA, which uses a special thread. Actual tests have shown that \#6 copper wire can be bent over 200 times before it will break. When the wire shows signs of breaking, simply replace with another piece.-Arthur Trauffer.

|N THESE days of increased FM broadcasting, and especially FM multiplex stereo, it is particularly important to properly tune your FM radio or tuner. Many FM radios are being produced without tuning indicators, and a good percentage of these sets use ac-dc power supplies, which do not allow the use of the familiar "magic-eye" tube for tuning indication. Recently, however, a miniature version of the popular 6E5 "magic-eye" tube has been produced in Japan, with certain electrical characteristics allowing its use in ac-dc circuitry. Designated the 6ME5, this new tube is available in this country.

With the addition of a standard socket and two or three resistors (for a total cost of about $\$ 2.50$), you can take advantage of the small size, sensitivity and conveniert operating voltages of this tube, and add it to virtually any radio or tuner.
Before launching off into a sample installation, let's see what makes this new miniature tube so different from the old 6 E 5 . The most obvious difference is the smaller physical size of the 6ME5, which is 70% the length and 70% the diameter of the 6E5. In other words, the 6ME5 can be tucked away in about one-third the space required for the 6E5! The 6ME5 has a standard 7-pin miniature base pin arrangement, with a bakelite shell at the base to allow clamp-mounting without crushing the glass envelope. The 6ME5 is more sensitive than the 6E5, which means that less control voltage is needed to close the eye (Fig. 5). Consequently, weaker stations will be indicated by closure of the "eye."
The operating voltages of the 6ME5 are of particular interest; as little as 125 volts is adequate for the target and plate, and a standard 6.3 volts is used for the filament. Perhaps most important is the filament current rating of 150 milliamperes, allowing the 6 ME5 to be used in standard 150 milliampere series-string ac-dc radios!

Using the Tube: How do you use the 6ME5? To best illustrate a practical application, the schematic (Fig. 2) and the photos show the 6ME5 installed in a Granco FM radio. Normally, a bracket and clamp arrangement would be used to mount the tube; here, two conveniently placed unused plastic supports behind the front panel are utilized. The 6ME5 projects slightly through a hole cut in the panel, and is cemented to the plastic supports after it is properly oriented as described later. The tube may be mounted vertically if more convenient, but this might lead to a viewing problem. (A small mirror

Almost one-third less space is required for the 6ME5.

Less drive closes eye so wecker signals now appear.

Ac-de sets can have funing eyes. Small sixe does it.
mounted at an angle above the eye can be used for viewing from the front, if necessary.)

The 7 -pin miniature socket plugs onto the base of the 6ME5. A five-wire harness carries the required voltages. The added resistors (three, in this case) are mounted right at the tube socket for convenience.

Electrically, the connections are straightforward. Since, as previously described, this tube has a 6.3 volt 150 milliampere filament

LAST IF AMPLIFIER

FINDING MAGIC-EYE CONTROL VOLTAGE IN
FIG. 3
AN FM LIMITER-DISCRIMINATOR CIRCUIT

FIG. 4
IN AN AM RADIO THE AVC VOLTAGE MAY BE USED TÓ CONTROL THE MAGIC-EYE TUBE
rating, it may be used in series with the existing tube filaments. In the Granco, it was most convenient to break the series-string at its beginning (pin 4 of the 50C5). Since the 6ME5 filament (pins 3 and 4) is isolated from the cathode, it is not necessary for either side of the filament to be grounded, and it may be placed in the series-string at any convenient point. Although the voltage
across the existing tube filaments is reduced about 5%, there is no effect on performance. (Most circuits are designed to work at line voltages down to almost 100 volts on a "normal" 117 volt line. This is a greater variation than the 6ME5 introduces.)

The B-plus voltage in typical ac-dc sets is sufficient to supply the necessary plate (pin 2) and target (pin 5) voltages to the 6ME5.

It can usually be found at the B-plas side of the output transformer, or at the rectifier cathode. A 1 megohm, $1 / 2$ watt resistor (R1) must always be wired between the plate and target of the 6ME5.

The cathode (pin 7) of the $6 \mathrm{ME5}$ must be grounded. In ac-de sets, this is the B-minus (negative) side of the large-value electrolytic capacitors in the power supply. In most ac-dc sets, the chassis itself is not B-minus; in the Granco units, however, chassis is Bminus.
The control voltage fed to the grid (pin 1) of the 6ME5 must be negative. In an FM tuner or radio, the ratio detector circuitry includes a 2-10 microfarad electrolytic capacitor: the voltage across this capacitor is a measure of the signal strength of the received station. Simply connect the negative side of this capacitor to the 6ME5 grid through a 10 megohm resistor (R2). If the voltage is too high and closes the eye, add R3 (Fig. 2) as required to form a voltage divider, thus feeding only a portion of the voltage to the 6ME5 grid.

If your FM set uses a discriminator instead of a ratio detector, the control voltage can be found at the point shown in Fig. 3. The limiter tube follows the last IF amplifier, and precedes the discriminator tube.

In the case of AM receivers, the AVC
(Automatic Volume Control) voltage, as shown in Fig. 4, should be used to control the grid of the 6ME5. The top of the volume control in the receiver may also be used to sense the incoming signal strength.
Before cementing or clamping the mini-magic-eye into its firal position, turn the radio on and note the position of the shadow in the eye. Rotate the bME5 until the shadow is at the desired position and then cement or clamp.
The use of the 6ME5 in other applications can follow the same general procedure. Determine a location for the tube, and a means for holding it in position. Follow the sample schematic (Fig. 2) for wiring connections. In transformer-operated sets, of course, the 6 ME5 filament is merely put in parallel with the existing tube filaments, and the B-plus (up to 200 volts maximum) can be found at the plate or screen grid pins of just about any tube. Ground, as already described, may or may not be the chassis; the surest spot to use is the negative side of the power supply filter capacitors.

The versatility of the 6ME5 leaves very little to be desired, and the small effort of adding it to existing equipment, or designing it into new equipment, is well worth the modest investment of time and money. Try your hand at some Mini-Magic and see.

An FM Stereo Indicator

by LEONARD FELDMAN

ALMOST every major population area in the United States now has one or more FM stations broadcasting stereophonic programs during all or part of their "on-theair" time. If you consider the fact that FM stereo is less than two years old, this new dimension in broadcasting is enjoying an even more rapid growth and acceptance than did 'TV in the late 1940's.

Usually, some announcement is made by a station, telling you that a given program is being transmitted in FM stereo. In most cases, however, the statement is made at the very beginning of the program, and perhaps once, at the end. While many stereo recordings have a great deal of stereo "elfect," still more are of ten more subtle in their "spatial" or "dimension" effects. It is often difficult for the casual listener, quickly tuning across the FM dial, to tell whether a given program is in stereo or not. To solve this problem, many manufacturers of FM stereo receivers and stereo adapters have incorporated some sort of indicator on their equipment which instantly tells the user whether or not a station is, in fact, broadcasting stereo. In most cases the device is a small indicator light which is automatically illuminated when an FM stereo station is tuned in.

If you own FM stereo equipment which is not equipped with such an indicator, this project is for you. For less than five dollars worth of material, you can build a separate stereo indicator which is easily connected to any existing FM stereo receiver or tuner. Power requirements for the stereo indicator are quite low, since the entire unit consists of one dual-triode (12AX7) tube which draws about one milliampere of current at a $\mathrm{B}+$ voltage of approximately 200 volts, dc and a filament current of 300 milliamperes at 6.3 volts. ac. These voltages are almost always available from your present amplifier or receiver; a glance at the schematic of your present equipment will indicate where to wire in for the necessary power.

A photograph of the completed stereo indicator is shown in Figure 1 and a schematic diagram of the device is shown in Figure 2. In order to understand how the device is able to sense the presence of a stereo broadcast and indicate that fact by lighting a neon light, a brief explanation is needed concerning the nature of the broadeast stereo signal.

How the Unit Works: Whenever stereo is broadcast, part of the signal is a steady, low level tone having a frequency of 19,000 cycles. While most people cannot hear so

high-pitched a tone, most dogs and some young ladies can barely perceive its presence in a quiet room. Accordingly, there are circuits in an FM set which ultimately attenuate this steady tone so that it never reaches the loudspeaker. Nevertheless, this 19 KC signal is a very important element in the unscrambling circuitry which separates the complex incoming signal into scparate left and right channels. Since this tone is only on the air when stereo is being broadcast, it will be used to supply the trigger circuit which results in the lighting of the indicator.

Examining Figure 2, the input jack to the indicator (J 1), is connected to the multiplex output of your FM tuner. whele the total audio signal (including the low level 19,000 cycle tone, in the case of a stereo broadcast) is present. (Those of you who have all-inone FM stereo sets don't despai"-we'll tell you where to hook in later.) The network consisting of C1, R1, L1 and C2 serves to reject the normal musical frenuencins and accept the low amplitude, 19,000 cycle tone. The parallel combination of L 1 and C 22 is a parallel resonant circuit tuned to 19.000 cycles exactly. Thus, only frequencies at or about 19,000 cyeles will be passed to the "srid of the first triode for further amplification. The plate of this first triode is connected to a second parallel resonant circuit which is again responsive to 19 KC (and which further discriminates against or attenuates all other, audible frequencies). The amplified signal is then passed through a coupling capacitor C-5 and applied to the 1 N 34 diode. The diode is
polarized in such a way that a negative rectified voltage will appear at the grid of the second triode whenever a 19 KC signal is present. Capacitor C6 filters this rectified vollage, rendering it ripple free, negative de voltage.
Triggering of the neon indicator bulb is accomplished by the action of the second triode tube. Assume, for the moment, that no stereo signal is tuned in. There will then be no negative voltage at the grid of the second triode. Since the cathode of this tube is connected to chassis ground, the tube is operating with no bias at all. Under these circumstances, the tube will attempt to conduct heavily. As it attempts to do so, a very great voltage drop will take place across the plate load resistor, R5, resulting in very low plate voltage. In the circuit shown, these conditions stabilize so that the measured plate voltage at pin 6 of the tube is around $45-50$ volts de. The neon indicator lamp is connected from pin 6 of the tube to ground and therefore has the same $45-50$ volts dc across its terminals. It is characteristic of small neon lamps that they will only glow when voltages of around $60-65$ volts or more are applied across the terminals. Therefore, when no stereo signal is tuned in, the lamp will remain dark.

Next, consider what happens when a 19 KC signal is present. As mentioned earlier, such a signal will result in a negative biasing voltage at pin 7 (grid) of the triode. This negative bias results ir. decreased current flow through the tube, which in turn results in le 3 s voltage drup across R5 and higher plate

voltage. As soon as the plate voltage reaches $60-65$ volts, the neon tube fires or glows, indicating the presence of an FM stereo signal.

Construction Hints: We built our indicator on a small chassis, measuring about $1 \times 2 \times 3-$ in. deep, but would suggest something a bit larger for the inexperienced builder. A good wiring layout is shown in Fig. 3, but none of the layout is critical and if you feel you need room to spread out a bit, do so. If you are now using a separate FM tuner in conjunc-
tion with a separate FM stereo multiplex adapter, use two phono jacks (JI and J2) as shown in the wiring diagram. This will enable you to connect one short shielded cable from the MX jack of tuner to indicator jack J 1 , and another cable from J 2 to the input of your multiplex adapter. (It would hardly do to connect the indicator where the adapter was, and have no place to connect the adapter input......) If you plan to tap into a complete stereo receiver, only one cable con-

nected to J 1 will be required. Use shielded cables in all cases. In this latter case the other end of the cable is connected to the output of the FM detector of your present receiver, ahead of any de-emphasis networks. Typical connection points for receivers using ratio detectors are shown in Fig. 4 whereas Fig. 5 indicates a typical hook-up where a discriminator type of detector is used.

The choice of L1, L2, C2 and C4 is extremely important. Since the two parallel resonant circuits must be tuned to exactly 19,000 cycles, C2 and C4 should be 5 "; tolerance capacitors if you use Miller Coil \#992. If you can purchase Miller Coils \#22A682RB1, which are themselves tunable over a wide range, then the choice of C 2 and C 4 is less critical and 10% tolerance units can be used. In the latter case, however, it will be necessary to adjust L1 and L2 under actual operating conditions, for which you will need an ac voltmeter (preferably a vacuum tube type). With the ac meter connected between the cathode end of the diode (+) and chassis, adjust both L1 and L2 in the presence of a known stereo signal for a maximum indication on the meter (at least 1 volt ac).

If you followed the circuit explanation given above, you will realize that the plate voltage appearing at pin 6 of the triode is quite critical, for the entire on-off action of the indicator depends upon a shift of only about 15 volts (from 45 to 60 or so). R5, nominally shown in the schematic as 470 K , may have to be adjusted to some other value if the B+ voltage available differs substantially from the 200 volts in the diagram. If more voltage is available conveniently, R5
should be higher than 470 K in value. If available supply voltage is less than 180 volts, the value of $R 5$ should be less than 470 K (perhaps 390 K). Once the indicator is installed, you can check on this selection as follows: If the indicator tends to light at all times (even in the absence of a stereo broadcast), $\mathrm{B}+$ voltage is too high (or R5 is too low). If the lamp fails to glow in the presence of a stereo signal (or just barely glows, flickeringly), $\mathrm{B}+$ voltage is too low (or the choice of R5 is on the high side).
The Indicator in Use: Once the indicator has been connected to the rest of your system, you need merely tune across your FM tuner dial slowly, until the indicator lamp remains illuminated on a given station-a stereo station. Occasionally, if you spin your tuning dial too rapidly, you may see an instantaneous flash of the neon indicator as you pass from station to station. This is caused by noise pulses, strong enough to momentarily trigger the circuit and are not indicative of stereo reception. Only when the light stays lit are you tuned to a stereo broadcast.

MATERIALS LIST-STEREO INDICATOR	
C1, C2, C4	. 001 mfd 200 v disc capacitor
$\begin{aligned} & \mathrm{Cl}, \\ & \mathrm{C}, \end{aligned}$	1 mfd , 6 volt electrolytic capacitor
C6	. $002 \mathrm{mfd} 400 \vee$ disc capacitor
C5	. $01 \mathrm{mfd} 400 \vee$ disc capacitor
J1. J2	Jack, phono ${ }^{\text {a }}$ (22A682RB1 or 992
L1, L2	70 mh coil Miller $\# 22 A 682 \mathrm{RB1}$ or 992
R1	$100 \mathrm{~K} 1 / 2$ watt resistor
R2	$2.2 \mathrm{~K} 1 / 2$ watt resistor
R3, R4	$470 \mathrm{~K} 1 / 2$ watt resistor (ex valu
R5	1/2 watt resistor (see text for value)
D1	1N34 or 1 N541 diode
11	NE.51H neon tube
V1	$12 \mathrm{AX7}$ tube

1

PARTS group right on the power tronsistor. This hondy hondful tokes up litrle room, does big job.

Power Amplifier Module

Did you ever wish you had a small, inexpensive amplifier so you could try out those little signal circuits that need some boost?

By FRANK WOODS, JR.

T- HE power output capability here depends on the voltage supply, the amount of heat sink provided, and the value of resistor R4 (Fig. 2). The flexibility of the amplifier. module becomes apparent later on.

Construction: Construct the amplifier on the output power transistor Q3. Make connections by twisting component pigtails together and soldering. Some of the pigtails are insulated with spaghetti.

Wire Q2, R4, and Q3 together as a first step. Connect end of R4 to the case of Q3 with a nut and bolt. Connect the other end of R4 temporarily su that you can change to another value later if necessary. Proceed with the remainder of the soldering and wiring, using Figures 1 through 3 for guidance. Go easy with the soldering heat on transistor connections.

Punch two holes in each end of the case
with a hot ice pick. Place the amplifier in the plastic case.

The variables: The amplifier is ready to use with a 6 -volt power supply and an 8 -ohm speaker or a 3 -volt power supply and a 3.2Ohm speaker in the connection arrangement. The arrangement with a 6-volt power supply may also be used without changing the value of R4. The power output capability is around $1 / 4$ watt with these arrangements.

To use an 8 -ohm speaker in the direct connection with 3 volts or any speaker with the transformer connection and 3 volts of power supply, you may have to lower the value of R 4 to 390 K . In any event, check the case temperature of Q3 with your finger. If, after a few minutes of operation, the case becomes too hot to touch, the value of $R 4$ should be increased.

To operate the module at higher power out-

Fig. 1: Fitred into a miniature plastic case, the unit is insulated from other equipment, presents nice appearance.

put capability, transistor Q3 requires heat sinking and ventilation, and the value of R4 must be lowered. Use a 6 -volt power supply. One simple heat sink approach is to use long bolts through the mounting holes on Q3 and to fasten several nuts to each of the bolts. Another approach is to bolt radiating fins made of sheet metal to Q3. In any event, be careful not to short portions of the circuit with the heat sink attachments. Then, with a current meter connected in one of the battery supply leads, select a value of R4 that makes the current rise to about 0.4 ampere. Watch the current closely. If it tends to continue to rise after the comection is made, disconnect the power supply and increase the amount of heat sinking.

Use: Figure 3 shows the amplifier module hooked up with a volume control for general purpose use as a phono amplifier, PA ampli-

FIG. 3

MATERIALS LIST-POWER AMPLIFIER MODULE

Desig.	Size and Description
R2	470 Ohms, $1 / 2$ Watt Resistor
R3	2.7 K, 1/2 Watt Resistor
R1, R4	$470 \mathrm{~K}, 1 / 2 \mathrm{Wafl}$ Resistor (see lext on R4)
C1, C3	$8 \mathrm{mfd} ., 6 \mathrm{v}$. Ultraminiature Electrolytic Capacitor (Lafayette CF-102)
C2	100 mfd., 6 v. Ultraminiature Elettrolytic Capacitor (Lafayetto CF-106)
Q1, 0_{2}	2N1381 Transistor (TI)
Q3	2N307 Transistor (Svlvania or RCA)
	$1 \% \times 21 / \mathrm{m} \times 1$ inch Plastic Case (Lafayatte MS.156)
	Parts Source: Lafayette Radio 111 Jericho Turnpike, Syossef, L. I., N. Y.

fier, signal tracer, etc. Another use for the amplifier is to raise the available power output from a transistor portable for picnic and beach party use.
If you use two amplifier modules and speakers, you can operate stereo. The volume controls may be ganged or separate as you wish.
This module can be used in any of the many applications for audio amplifiers. The power supply may be flashlight batteries, a 6 -volt automobile battery, or an operated power supply with 6 volts output and a capability of supplying 250 ma . for the higher power output arrangements. If you use a battery power supply, connect a $160 \mathrm{mfd} ., 6 \mathrm{~V}$. electrolytic capacitor across the power leads with correct polarity.

You've probably thought of several applications where this handy unit would serve you, so don't procrastinate . . . start soldering!

Perk Up Banjo with Electronic

By ROY L. CLOUGH JR.

ONE of the biggest booms in years is the swing to folk music and the comeback of banjo and guitar-twanging minstrels. Up in the front of the parade is the American classic, or long-necked "folk banjo" out of style for a couple of decades, but now in big demand. Nothing seems quite as well suited to accompany the bawled ballad as the chuckling, sobbing strings of the plucked banjo.
While the banjo has been away things have happened to the other instruments: the electronically amplified guitar can fill a concert hall with ringing chords at the twiddle of a volume control, the four string bass can boom out its beat like muted thunder. The soft voiced volume of the old banjo just isn't in the same league anymore.

It is not difficult to amplify a guitar with an electronic pickup. The characteristic sound of this instrument depends mainly upon the characteristic sound of a taut steel string. The structure of the instrument is mainly to hold the string in such a fashion that it can be
played.
It's different with a banjo. The distinctive tone of this instrument is produced by the interaction of the vibrating string with a taut drumhead like arrangement upon which it's supported by a little wooden wedge-the bridge. When a banjo string is plucked the resultant tone, the timbre of the instrument, is caused by the interferences and reinforcements of harmonics between the string and flexible head. If we try to amplify a banjo by attaching a guitar pickup to it we find we lose the banjo tone entirely-the result sounds like a weak-voiced guitar. This has discouraged many who have tried it. An alternative method, to attach a crystal mike to the body of the instrument works fairly well, but this arrangement tends to pick up noise.

Solving The Problem: A satisfactory way to do the job is with a special type of magnetic contact microphone. This sounds like a banjo, it yields plenty of volume with even a small amplifier and it isn't noisy.

We recommend the make of mike shown in the drawings. Trim off one of its mounting ears and cement it to the underside of the

[^1]
Amplification

When you amplify a banjo by ordinary means, you lose the "twangy-tone". Here's a way to amplify and lose no voice or tone color
calfskin head between the feet of the string supporting bridge. Allow time for the cement to dry, then plug the mike in to an amplifier and voice the instrument by inserting strips of cardboard between the back of the mike and the top of the neek brace until you get the pressure required for the tone you want. This pressure will be moderate-just enough to keep the face of the mike fairly tight against the head. Stick the edges of the cardboard shims together with airplane cement and stick them to the neek brace so they won't fall out. It isn't necessary or desirable to stick them to the back of the mike.

You can still play the banjo without amplification, but installation of the mike will make it a bit quieter-and this is an advantage when practicing. If it is desirable that the mike cord be detachable, install a phone jack in the body of the instrument and a phone plug on the end of the cable. Then you won't have to have a long cord dangling from the instrument when youre not using the amplifier. Don't use more than eight feet of cable with this high-impedance arrangement-but this is about the maximum you should use

Fig. 1: Rubber-covered pickup is mounted on underside of head, beneath bridge. Cardboard shims hold in place.
for any electronic pickup. Sticking the mike to the head does not interfere with tightening the head brackets from time to time because the actual movement of the skin is small.
While the familiar strident voice of the banjo has been quieted by its amplified brethren, the electric guitar and electric bass, a new era can down for this neglected folk instrument. Now it will add its ring with a voice as loud as it was in unamplified days!

Fig. 2: With proper amplification, banjo is restored to its place with guitar and tass in folk-song combos.

Start the modification by (gulp) drilling a pilot hole in the dispatch case. Next, enlarge the hole by using a tapered reamer. Install the tape recorder and run an extension cord to a mating jack which is mounted in the hole. Should you over decide to revert to a tape-less dispatch case, restoration consists only of removing the tape machine and installing a 36 in. chromium plated snap-hole plug cover.

THE dispatch case has gained great popularity recently, and in fact has been described as the masculine answer to the pocket-book! In a survey taken by the Samsonite Corporation, it was found that tape recorders (the small, portable type) tigured prominently in the contents of the average dispatch case.

Starting from there, we mounted a PhonoTrix portable in a Samsonite dispatch case, and drilled a $3 / 8-\mathrm{in}$. hole to accommodate an extension cord that runs from the tape recorder directly to the front edge of the case.

As the microphone controls start and stop on the tape recorder, a business man visiting another office, or dictating on board a train or plane, need not open the case to get at the tape recorder. He simply plugs the microphone into the dispatch case and presses the switch to on. When the business is concluded, he unplugs the mike, and the entire conference is on tape.

Should you decide to restore the case at a future date, insert a small chrome-plated hole plug, and press some cluth Mystic tape on the inside.

Fig. 4: When you ore reody to record, simply plug the microphone into the dispatch case. Mike switches deck.

Fig. 5: The chrome-plated snap-hole plug doesn't mar the appearance of the case. Mystic tope hides inside hole.

KNOW YOUR ELECTRONIC NUMBERS?

Match the number in the column at the left below, with the corresponding answer in the column at the right. If you make a score of 15-excellent; 12-very good; anything less, failure!

1. 1N652
2. 746
3. 6
4. 60
5. $27 \mathrm{MP4}$
6. $162 / 3$
7. 45
8. 300
9. 455
10. 22
11. Width of color-TV chonnel (me).
12. Power line frequency (cps).
13. Tape recorder tape speed (ips).
14. $A M$ radio if frequency (kc).
15. Record player speed (rpm).
16. TV picture tube.
17. Tunnel diode.
18. Electrical equivalent of oneharsepower (watis).
19. Impedance of ribbon TV leod (ohms).
20. Total number of Citizen's Band channels.
21. 80
22. 0.637
23. 1,000
24. 50FE5
25. 9
26. -7
27. -9
28. -8
29. -4
30. -1
31. -2
32. -6
33. -3
34. -13
35. -15
36. -14
37. -5
38. -12

Keep Your Tape in Shape

No tape recorder is any better than the tape used on the machine. You can guarantee the best possible results by using the best tape wisely

By ART ZUCKERMAN

Figs. 1, 2: Pull tape from a reel held in place by a pencil. The more easily the tape unwinds, the easier it will flow from reel to reel on the recorder. Press cellophane tape to oxide coating on tape (dull side), and quickly yank the cellophane tape off. If any of the oxide sticks to tape, tape sheds and is useless.

yOUR tape recorder is a pretty wonderful gadget, and if it is one of the newer, quarter-track machines, that makes it twice as wonderful. You'll never enjoy the full pleasure this marvelous device can deliver unless you use the right tape for the right job-and keep that tape in good condition.
As tracks have gotten narrower, head gaps finer, and full-fidelity speeds lower, new demands have been put on these magnetic memory ribbons, demands that tape manufacturers would once have considered outlandish and impossible.

Today's tapes must be coated densely and uniformly enough to capture high frequencies in ridiculously short lengths. They must provide a loud, clear signal unmuddied by noise, even though the source of that signal is a track only half the width that was available to the old, double-track recorders. They must get thinner and thinner, so more program can be packed on the same old reel size, yet they must be strong enough to cope with normal operating tension.

The increasingly-critical requirements of modern home recording boil down to the fact that you can't just go out, buy any old tape,
and expect to get the results you want. An inferior tape, chosen purely on the basis of price, will very likely rob you. It can create unnecessary maintenance problems for your recorder by shedding its oxide-and even particles of its plastic base - on the heads, capstan, and tape guides. Then you'll wonder why your recorder's frequency response has suddenly taken a nosedive, why musical pitches don't ring true, why you've been developing an insufferable amount of wow or flutter.

When you want to try a new brand of tape, you can avoid many of these problems simply by inspecting it carefully. See whether the edges of the tape are smooth and unbroken. The side of the reel will have a glossy look if they are. Frayed or torn edges on a reel can indicate tape rippage in your tape recorder.

Obviously, you're not going to do too well with a tape if its layers stick to one another on the reel, preventing it from unwinding freely. You can check this simply by putting a pencil through the spindle hole of the reel and watching how smoothly the tape unwinds as you pull out a length.

Few things are more essential for good quarter-track operation, especially at low speed, than a smooth and even oxide coating. Under these operating conditions, particles that are too widely spaced, or actually missing, will cause "drop-out," the literal disappearance of small hunks of sound. A poor coating will also come a cropper on those higher frequencies. If its thickness is uneven as well, you can expect noisy recordings with poor dynamic range-no combinations of crescendos and pianissimos with that kind of tape!
You can get a good clue to the smoothness of a tape's oxide coating by sighting down a length of it at a slight angle, and under a strong light. If you ree marks, the coating is uneven. Or you may see bumps, holes, crushed particles, or splices, all screaming warnings not to buy.

Finally, beware the tape that tends to cup or curl, so that it humps in the middle. It won't wind well, and it won't make proper contact with the tape head, either. If you lay a stretch of tape out on a flat surface, and then find that it stands straight and stiff when you pull out about five inches, you know it's cupped.

So much for problem tapes. They aren't your only buying consideration. You'll find that today's market contains a variety of different kinds of tape, to suit different needs. To start with. there are now two basic types of plastic backing.

One is the familiar cellulose acetate. It is the less expensive kind, yet it is smooth, flexible, hugs heads lovingly for topnotch
frequency response, and cuts cleanly, For these reasons, it is the favorite of tape editors and the workhorse of the recording industry.

But acetate breaks relatively easily, tends to expand and go limp under extreme humidity and heat, gets brittle in excessive cold. It also tends to dry out and thereby acquire a bad friction characteristic which can lead to a nasty, irritating mechanical squeal as it passes through a recorder. While modern, high-quality acetate tapes fight this friction with a silicone lubricant incorporated in the coating, the lubricant may eventually wear away.

The other tape backing is the newer polyester, better known by DuPont's Mylar brand name. It is extremely strong, so strong that the stardard $11 / 2-\mathrm{mil}$ thickness will hardly ever break in normal usage. Polyesters are also impervious to climatic conditions and never dry out, so they require no lubricating additive to fight off squeal or sticking.

But even polyester has its disadvantages. If it is subjected to a very severe stressand that usually means more stress than it takes to break an acetate tape of comparable thickness-it will stretch out of shape. Under really severe conditions, even polyester will break. When it does, it breaks into ragged strips instead of parting cleanly. It is also somewhat harder to cut cleanly. For this reason, it is seldom used when tape must be edited extensively.

Polyester comes into its own in extra-play and long-play tapes. A $7-\mathrm{in}$, reel of conventional, $1 \frac{1}{2}-\mathrm{mil}$ tape contains only 1200 ft . But an extra-play reel, using $1-\mathrm{mil}$ tape, contains 1800 ft . and, therefore, offers 50% more playing time. And double-play tape, only $1 / 2$-mil thick, permits the winding of 2400 ft . on a 7 -in. reel, for double the old standard playing time.

Because a thinner base is obviously a weaker one, polyester backing is used exclusively for $1 / 2$-mil tape and is dominant in the 1-mil field.

If you want to make a continuous recording of a very long program-especially if you want to use the highest speed your machine can deliver-these thin tapes will fill the bill. (For example, the 45 to 48 minutes you get from a straight, $71 / 2-i p s$ pass of 1 -mil tape from a 7 -in. reel equals both sides of most long playing records.) But the $1 / 2$-mil variety, though it offers a non-stop hour of recording at $71 / 2-i p s$, is very fragile and requires extreme care in rapid winding. Furthermore, both $1 / 2$-mil and 1 -mil tapes are particularly susceptible to the print-through malady.

This is the tendency of a recorded strong signal to "print" a magnetic ghost image of itself on the adjoining layers, thereby creating both a pre-echo and a post-echo effect. Obviously, the thinner the insulation pro-

Fig. 3: Mylar tapes .5 mil thick double playing time of normal 1 -mil tape. Small reel from $3-M$ provides $1 / 2$-hour, af $3^{3 / 4} \mathrm{ips}$. Audiotape reel plays I hour.

Fig. 5: Leader tape, an uncoated polyester saves end wear when threading, prevents valuable taped information from being lost. Also used for timing.
vided by the plastic base, the likelier this is to happen. The best solution is to use a light touch on the recording level, even if this means a slight increase in background noise. Storage in a cool spot also seems to reduce the print-through effect.

Double-play tapes really shine when they're spooled onto the $31 / 4$-in. reels used on tiny, battery-operated recorders and for sending through the mail. At $33 / 4$-ips, such a reel of $1 / 2$-mil tape delivers a half hour of continuous recording or, depending on whether you use a half- or quarter-track machine, up to a total of one or two hours.

Regardless of your choice of tape, you'll find that several handy accessories available on the market will make it a lot easier to handle and maintain.

The most persistent minor nuisance identi-

Fig. 4: Threading tape onto take-up reel is always a problem for neophytes. Robins' crank-iype threader solves the problem for the "all-thumbs" tyro.

Fig. 6: Using $3-M$ tape clips will keep the tape end on the reel where it belongs. Keep tope from spilling during storage or transit. Removes easily to use.
fied with tape is the necessity of threading it onto the takeup reel. A tape threader made by Robins Industries takes most of the trouble out of this basic operation. It is a cranklike device slotted to fit over the recorder's takeup spindle A finger on the end of the threader's base plate presses the end of the tape against the reel hub. You simply crank the handle to rotate the takeup reel until the tape is wound on securely, then slip off the threader.

Of course, when you've wound the tape onto the takeup reel, you've taken it out of use as part of the recordable total. But even end lengths can be used for recording if you splice leader to them for threading purposes. Because leader tape is calibrated in $71 / 2-\mathrm{in}$. segments, it can also be spliced between program elements on a tape to provide exactly-
timed intervals of silence. Audio Devices and Scotch are two of the better-known leader brands.

Another minor irritant recordists could do without is the tape end that flaps around when you remove a reel from its container. Tape clips will eliminate this. They are offered under both Robins and 3-Ms Scotch brands.

A number of tape units, particularly European makes, use electrical contacts to turn off the transport at the end of the reel-or even to make it rewind and replay. This calls for a special, metallized sensing tape to bridge the contacts and complete the switching circuit. Scotch provides such a tape, with an adhesive backing, in a dispenser pack. It can be applied to either leader or magnetic recording tape.
Splicing is performed not only to add leader to tapes but also to repair breaks and to edit programs by deleting some sections and piecing others together. The process involves cutting the tape and then cementing segments together in perfect, gap-free alignment. While the job can be done free-hand with a pair of scissors, this is a pretty difficult operation. Using a splicer is much easier and more accurate. It is one accessory every tape user should have.
There are simple, mitre-block types that hold the tape in place and provide channels for a knife to follow. But for effortless splicing, it is hard to beat the Robins Gibson Girl, a unit that resembles a stapler.

Clamps on the Gibson Girl hold both tape ends firmly in place below a cutting arm. One adjustment makes the arm's built-in blades make a diagonal cut when it is depressed. The excess is then blown away, and splicing tape is applied to the butted tape ends. Then the arm is set for trimming and pushed down again. This makes concave cuts on the top and bottom of the joint, to remove overlapping adhesive that could gum up the tape
heads. These trimming cuts are very shallow so as not to hurt a quarter-track recording. Their hour-glass shape gives the Gibson Girl its name.

Only special splicing tape should be usednever ordinary cellophane tape. This will bleed and gum up a reel.

In time, you're bound to collect a few tapes that have been used over and over, and contain nothing you want to keep. Constant reuse may have made them so noisy that an erase head can no longer cope with them satisfactorily. Or you may want to put something on such an overworked tape without fear that a spurious old recording will come blaring out at the end of a valued new program.

You can clear a reel of tape completely of all old program material-even reduce backgrourd noise to a level lower than its virgin state-with the help of a bulk eraser, such as several models made by Robins. This device is essentially a large induction coil in a box surmounted by a removable spindle. It usually has a pressure-type switch. All you have to do is put a reel of tape on the spindle and rotate it slowly as you hold down the button. Then. even more slowly, you remove the reel and inch it away from the eraser until it is at least an arm's length, at which time you release the button, flip the reel, and repeat the process on the other side.

A certain amount of care is necessary to keep your tapes in good shape. For one thing, regardless of the kind of backing they have, you want to avoid curling and excessive wear. If you hear rubbing when a tape is played, the fault may very well lie in the reels. You can find out simply by lining up your eyes with the reels and running the recorder. If the side of a reel appears to rise and fall, it is warped and ready for retirement.

While modern acetate tapes have built-in lubrication, you may have older reels produced before the silicone additive was

Fig. 7: Rubber reel holders mode by Robins lock reel to spindles so that machine can be operated in - vertical position. Skirt holds tape ends in place.

Fig. 8: Scotch sensing tape is a metallic foil tape with an adhesive backing. It is pressed to shiny side of tape, for end-of-reel signal or auto slides.

Fig. 9: Robins splicer has two locking levers that hold tape firmly in place during editing and splicing operations. When tape ends are in position ...

Fig. 10: Cut! The splicer cuts a 45° diagonal, in both pieces of tape. Apply the splicing tape over the cut, move the cutter head to trim, and press again. Result is "waist" cut, hence name "Gibson Girl."

Fig. 11: Note shallow curve above and below splise. This waist prevents possible ooze from ad hesive. Previous and subsequent layers won't stick

Fig. 12: Bulk rope eraser is necessity for serious recordist. Completely removes ony signal from reel in one operation. Many audiophiles use on lape!
adopted. These may have acquired squeal or other friction-cheated problems, but don't throw them away before you try treating them with a silicone-impregnated jockey cloth. Simply run the tape through a section of the cloth and see if the film of lubricant it deposits doesn't improve performance.

Performance also depends on the way you store your tape. Obviously, it must be kept away from any possible source of magnetic influence. This even includes hi-fi amplifiers and speakers. It should never be wound too tightly before storing. You ought to make sure none of your tapes sit too long without being played. A run-through on a transport gives strains and adhesions a chance to work out. If a reel has been stored for six months or more, it's a good idea to rewind it before using, to make sure all the kinks have worked free.

A storage temperature of about $70^{\circ} \mathrm{F}$ will best guarantee tape health, even for polyester tapes. Acetate tapes should be stored in about $40^{\circ}-60^{\circ}$ humidity if possible.

Just about the safest way to store tape, particularly if it will have to stand for a number of years, is in metal, film-type cans. A seven-inch tape reel will fit perfectly in a can designed for a $400-\mathrm{ft}$. reel of $8-\mathrm{mm}$ movie film. In addition to keeping out dust, such a can gives good protection from stray magnetic fields by acting as a sort of shunt or shield.

One final note about choosing tape. When you get right down to it, the well-known national brands are pretty reliable sources of quality. But there are variations from manufacturer to manufacturer in oxide formula, coating thickness, and so on. There are also variations in tape heads. So, for a given head, one tape brand may give better results than another.

If you think it worth your while to search out the ultimate tape for your recorder, you can buy reels of several different brands and splice long lengths from each together. Leader tape can be used to separate and identify each segment.

Then you simply record the same musical passage at the same input level on each tape segment. You should use a passage with wide variations in both tonal and dynamic range.

Now assemble family and/or friends-or trust your own ears if you prefer to work solo-for a playback test. May the winning brand enjoy your permanent and satisfied patronage.

When you finally settle on the one "right" brand, stick with it for the life of your machine, and unless your eye falls on one of the premium types, don't bother re-testing. Of course, there's always the possibility that recorder characteristics will change, as well as tape qualities and prices. Maybe you'd better just keep on looking

Fig. 13: Check for reel-warpage at eye leval while reel lurns. Any warp will quickly become obvious, reel eliminated before it could damage tape.

Fig. 14: Silicone jackey cloth can restore freshness to older, dried-out acetate base tapes. Simply make - loose fold over tape as it travels in machina.

Fig. 15: Film cans, designed for 8 -mm movie film make excellent profective fope storage containers. The metal can helps shield out stray magnetic fields.

First Aid

for

Tape

Recorders

Got some noise in your tape recorder? Getting sounds you didn't record? Maybe all you need is a general clean-up!

By ART ZUCKERMAN

WHEN it starts to get balky, all your pleasure in your recorder can quickly go straight down the drain-unless you can set things right.

Like any other mechanical device, a tape machine will treat you only about as well as you treat it. So, just as you give your car periodic checkups and indulge it with preventive maintenance, you should give your recorder a good, regular once-over and catch minor problems before they become major ones.

Fortunately, some of the most annoying things likely to plague your unit are also the most easily fixed. Often, no more than a thorough cleaning job is required. As for a number of the more demanding prob-

1
Use a demagnetizer such as this one from Audio Devices to remove unwanted residual magnetism from tope heads. Tope on pole pieces soves heads.

4Clean heads periodically with cammercial salvent such as Robins Industries head cleaner. Use soft cotton swab dampened with liquid. Do not drench.
lems, you can often correct them vourself, too, with just a little care and patience.

One of the commonest is too much tape hiss and backgrourd noise. This can generally be traced to a record head-sometimes a playback head, too-that has become permanently magnetized. A tape head, of course, is an electromagnet that should be pristine pure except when a signal is going through it. Residual magnetism is often left, however, when a particularly heavy surge of signal current is generated, especially if the machine is abruptly switched out of record mode before the signal subsides. Carelessly bringing magnetized tools near the heads can also do the damage.

2
Stroboscope tape from Robins Industries appears to stand still when viewed under nean lamp provided speed is accurate. Speed changes also show.

5
Use nail file with caution and you can fluff up o tired pressure pad. This treatment olso takes oxide coat off pad surfoce. Do not seratch the heads.

3 For more stringent lest, splice sections of the strobe tape into beginning, middle and end of a reel, so you con test speed under full-load conditions.

6Align playback head by using Audiotex olignment tape. Corefully ratate odjusting screw until level reaches peak. Use non-magnetic driver.

Such permanent magnetism impresses itself on the passing tape and is thenceforth inscribed as noise-and/or hiss. If head magnetization continues to build up, it can even erase the high frequencies from your tapes during playback!

The best way to fight this problem is to prevent it. If you must stop the tape just as a strong signal is being recorded, use the pause control and wait until the signal level drops appreciably before going into full "stop" mode. If you have no pause control, turn down the record level before going to stop. But if the damage has already been done, the services of a demagnetizer are in order.

Recorders are also subject to a pair of
ills named wow and flutter. These are speed variations. Wow is a low-frequency speed shift that stretches sound out like taffy, and flutter is a rapid fluctuation that can put vibrato where it hadn't ought to be. There are times when you think you've got a case of these pests but aren't certain. Your doubts can be resolved with the aid of a handy little Robins strobe kit.

Wow is often caused by slippage, which can frequently be traced to a buildup of tape oxide and lubricant on the capstan assembly. This is the finely-machined post that revolves to pull the tape past the heads at exact speed, plus the rubber idler wheel that presses the tape to it.

Dint buildup, this time on the heads and

7 While recording the alignment tape from another machine, adjust head for maximum while monitoring. Can be done with S.O.S.

11 If unit fails to record, bridge terminals of record head with a pair of earphones to isolate the trouble. You should hear the program material.

8
Adjust recording bias by recording alignment tape as it is played from a second machine. Again for maximum volume level during monitor.

12
You can by-pass tape recorder's preamplifier put of your amplifier to check out tape preamp.
pressure pads, often produces friction that creates flutter.

A simple cleaning operation is the solution to either problem. For the purpose, Robins makes a special tape-head cleaning fluid that comes in an applicator-type bottle. On some machines, pure alcohol may serve, if the manufacturer's instructions so indicate.

Wait until the cleansed parts are thoroughly dry before running tape through the machine. If the problem persists, clean the motor pulley if you can get to it easily, and check the drive belt for defects that require a replacement. Should all this fail, the repair shop is in order.

Another cause of high-frequency loss
is head misalignment. It is usually noticeable immediately on three-head machines but may only show up on two-head recorders when you play an old tape or one recorded on another unit. For proper recording and playback, the head gaps must be positioned precisely at right angles to the tape edge.

Alignment can readily be corrected on most recorders by a simple screw adjustment. The trick is to figure out how much to turn that screw. Audio Devices and Audiotex both offer alignment tapes for this purpose. Recorded on a precisely-adjusted machine, they consist of a series of steady tone signals. All you do is adjust the playback head gingerly until the tone

9
If you have a VTVM, you can connect a 100 ohm resistor in the ground leg and measure the voltage drop between the head and record amplifier.

If it becomes necessary to disconnect head leads, label leods with small strip of cellophane tape and numbers or letters to identify.

10
Unless you have tape lifters, by-pass the slot during rapid wind and rewind to save wear and tear on your head surfaces. Trip end-of-tape lever.

14 Fastener assemblies, those complex little parts and screws often bezome lost during service work. Place small parts in plastic boxes to sove.
is at its loudest. Then you're on the nose. If you can get hold of a good volt-ohmmeter (VTVM), you can make this job easier by plugging it into the recorder's output and watching for maximum needle deflection.

Suppose all your recently-made tapes sound badly distorted, but your erase head is working properly. Chances are that your bias oscillator, which provides current to the record head, is out of adjustment. As long as you can reach the biasadjust trimming screw, you can rectify this situation. Incidentally, on stereo recorders there is an adjustment screw for each channel.

The setup is pretty much the same as for
aligning heads. Using a borrowed machine as source, you should copy the continuous tone from an alignment tape. As you make the copy on a three-headed machine, you simply monitor the tape and very slowly turn the bias-adjust screw until the tone is at peak loudness. Once again, a VTVM attached to the recorder's output gives a much more reliable indication than your ears. But for this purpose, it must be able to read down to 0.01 volt or less.

If you take the time to perform routine preventive maintenance on your tape recorder, you will have little trouble with it. Catch those little things before they require the aid of a professional (and expensive) serviceman.

Phono Amp Plays

FIG. 1: A small FM tuner plugged into a portable record player gives dance music when the crowd tires of records. The wire barely visible at left of tuner is a "built-in" antenna. FM plug cuts out crystal pickup and SPST switch idles turntable motor.

FIG. 2: Closed-circuit jack is wired into pickup leads and is mounted as close as possible te the pickup.

By ART TRAUFFER

FM TUNERS have been connected to radios, public address systems, and tape recorder and hi-fi amplifiers, but this article describes a simple way to play small economical FM tuners through portable record players. When you want a change from your discs, simply tune in an FM station and enjoy yourself. Audio quality will not be hi-fi, but should sound as good as the average FM table radio. The better the record player the better the FM quality.
To work an FM tuner through the amplifier and speaker of a typical portable record player, mount a standard closed-circuit phone jack onto the motor panel close to the crystal pickup leads, (Figs. 1 and 2) then wire the jack into the pickup leads (Figs. 2 and 3).
The FM tuner connects to the record player through a dual cord and a standard phone plug (Figs. 3 and 4). Thus when you plug in the tuner the phono pickup is cut out of the circuit-pull out the tuner plug and the phono pickup is back in the circuit.
When the tuner is connected to the record player it's best to cut off the motor. Mount a SPST push switch or toggle switch in a hole on the motor board close to the motor, (Figs. 1 and 5) and wire the switch in series with the motor leads (Fig. 6). The joints should be well soldered and taped.

Some portable record players use a special phono motor which is connected in series with the amplifier circuit. In this case you cannot cut out the motor because you will disable the amplifier, but you can shift the speed lever to neutral to idle the turntable.

Small economical FM tuners such as the Granco model T-300 (used here), and the Blonder-Tongue model T-89, both under $\$ 20$, use capacitors in their outputs to make them shock-proof.

If the portable record player has a "hot" chassis, reverse the power cord plug in the outlet so the chassis is on the ground side of the power lines, or install a .1 mfd 400 -volt fixed capacitor in series with the phono pickup ground lead (Fig. 3).

The connecting leads between the tuner and the record player should not be longer than necessary, and it isn't necessary to use shielded phono cable or mike cable unless the leads pick up AC hum.

If desired, you can use a miniature closedcircuit jack and matching plug (Fig. 3) instead of the standard sizes used by the writer.

Besides using the record player amplifier

FM Tuner

and speaker with an FM tuner. you can also use it with $A M / F M$ tuners, or use it as a lowpower utility amplifier. You can also test crystal and ceramic phono cartridges by plugging them into the "tuner" jack.

FIG. 5 The SPST motor cui-off switch mounted in a hole in the panel and wired in series with motor.

FIG. 3: Method of attaching elosed-circuit jock to the pickup leads. Standord phone plug (A) is Switchcraft type 40, Allied Cotalog 41 H 557 or Sub-miniature type 740, Catalog 41 H 518. Standerd phone plug socket (B) is Switchcraft single-closed-circuil jack

HOW THE CORD AND PHONE PLUG ARE CONNECTED TO THE AUDIO OUTPUT TERMIMALS ON THE FM TUNER

FIG. 4: Easy method of connecting the phone plug and cord to the audio output terminals on FM tuner.
type 12A, Catalog 41 H 624 or Sub-miniature plug type 42A, Catalog 41 H 517. Blocking copocitor (C) is Cornell-Dubilier WMF "Mylar" tubular, 1 mfd., 400 volt, type 4PIE, Cotolog 16 L 838. The black end generally goes to the chassis or "ground."

FIG. 6: Schematic shows location of SPST switch to idle motor when amplifier is used with FM tuner.

Make Your Own...

This one has elass and dash .. . for small cash

By WILLIAM J. KIELY

AHIGH degree of elegance, the product of a fundamentally simple design, is the hallmark of this striking TV-radio console cabinet which also serves as a bookcase and record cabinet. However, it has been so planned that there is ample room for the subsequent installation of a stereo unit at a later date.

It's durable too. If your house, like ours, happens to be graced with a brood of ram-
bunctious children you will appreciate the choice of Masonite Royalcote paneling on the cabinet instead of natural wood veneer. The Masonite has stood up to a good deal of bruising punishment from the kids without suffering the slightest scratch.

For the most part the cabinet was built with hand tools. The lack of power tools did not detract from the accuracy of the job but did make it more difficult and time consuming. If you have some power tools-a combination machine for instance-then making this cabinet will be a cinch.

The Top and Bottom Frames are of $11 / 8 \times$ $31 / 2$-in. $\# 2$ pine. The four vertical sections are of $11 / 8 \times 13 / 4-\mathrm{in}$. pine. The frame's top and bottom sections are identical, both being joined by lap joints. With these pieces cut to size, the sections are assembled and secured with epoxy glue (such as Elmer's Glue) applied to each joint. Clamp the joints until the glue sets.

For extra strength, drill two holes in each joint to accept $1 / 4-\mathrm{in}$. dowels. Coat these dowels with glue and force them into the holes, then trim them flush and sand them.

The vertical end sections are also identical and joined with lap joints. The pieces for these sections are assembled in the same manner as the top and bottom sections. The two vertical center sections are almost identical to the end sections except that their depth is $11 / 4-\mathrm{in}$. less in order to permit the recess in the front for the door tracks.

Assemble the four vertical sections and then assemble the top and bottom sections to them with glue. Clamp all six sections together until the glue sets. Then at each of these horizontal-to-vertical section joints drill holes for $3 / 8-\mathrm{in}$. dowels and install these in the manner described before (if you prefer, wood screws can be used instead of dowels for this reinforcing job). Further stability is achieved by installing triangular wood-block braces in the back corners formed by joining top and bottom sections to the end compartments.

The Area between the vertical center sections will depend on the size of the radio and TV units to be installed there. When this is determined cover the interior of this section with $1 / 8-\mathrm{in}$. Masonite hardboard in which holes have been drilled to accept the radio and TV speakers. The radio installs under the TV

and both plug into an outlet secured to the rear base of the radio compartment. From this a wire cord leads to the live wall outlet. The radio compartment is left open on the bottom, the radio mounted on a pegboard which is bolted to the frame.

Secure a shelf brace to each side of the vertical center section to support the shelf for the TV. Three-quarter by 4 -in. boards span these braces with space between them to permit air to circulate in this compartment. (Bear in mind that the arrangement of this compartment will depend on the type and size of the radio and TV units to be installed, so certain innovations may have to be made. These, however, will not affect the identicalness of the two end sections.)

CLOSED cabinet accentuates the modern symmetry of its styling.

Two 4×8 - ft . sheets of Masonite Royalcote provide the material for paneling the cabinet. Cut the top panel from one sheet. There will be more than enough left over to cover the two end doors. Rip the sides and the two remaining doors from the second sheet. Rip the top and sides from different sheets; this will insure uniform patterns on the sides. Use the leftover pieces to trim the front of the TV and radio compartment.

Put On The Side Panels First. Glue and clamp these in place using scrap wood between clamps and panels to prevent damaging the Royalcote. Then secure the panels with fine finishing nails slightly countersunk with a nail set. Apply the top piece in the same manner.
Each panel should overlap

The edges of this cabinet were trimmed by ripping the angular edging from a length of $3 / 4-\mathrm{in}$. $\times 8-\mathrm{ft}$. oak to the same thickness as the Masonite Royalcote. This was done on a table saw. However, you will save a good deal of time and effort by buying your edging ready-cut. Apply it with glue and hold it in place with clamps; then sand it. Miter the two top front corners and butt the front vertical sections against the joint.

The Plastic Tracks for the $1 / 4-\mathrm{in}$. sliding doors are tacked in place with small finishing nails. These tracks are easily cut to size with a hacksaw. Be sure to install the deep track on top and the shallow track on the bottom.

The trim or molding that flanks the track is ripped from $11 / 2-\mathrm{in}$. oak to the same $1 / 4-\mathrm{in}$. thickness as the edging and Royalcote. Glue and clamp the top and bottom strips to the exposed frame sections so that they cover the side of the track. Also glue the end pieces to the exposed frame.
Sand and stain the edging and molding to match the Royalcote paneling, then apply a satin varnish to these pieces when the stain is dry, taking care not to get the varnish on the exposed frame sections as this will prevent bonding of the glue when the panels are applied. Several coats of varnish should be applied with light sanding between coats.
the rear of the cabinet by $1 / 8 \mathrm{in}$. to cover the edge of the back covering material. Use glue liberally in this operation as the Royalcote absorbs it. A helper will come in handy for this job too; the area is large and the panels must be clamped in place quickly before the glue sets. (This operation, not shown, is a simple matter of cutting and fitting the Royalcote to the frame. Complete instructions for its application come with the Royalcote.)
Now install the $1 / 4-\mathrm{in}$. A-D plywood or Masonite hardboard floors of the storage compartments, and the $3 / 4-\mathrm{in}$. pine shelves. These measurements must be exact so that the notches that must be cut will fit snugly around the frame members.
Measure the back of the storage compartments and cut out panels of $1 / 8-\mathrm{in}$. Masonite hardboard to cover them, tacking them in place with small finishing nails. Cover the center TV-radio compartment with a piece of $1 / 8-\mathrm{in}$. Masonite pegboard for ventilation purposes and secure it with small wood screws to permit access to this compartment. The inside may now be stained and varnished to suit.

When the doors are cut to size, mark them at their center heights and 2 in . in from each side. Then drill the $3 / 4-\mathrm{in}$. holes to take the finger door pulls.

AUTOMATIC
 "ON-THE-AR" INDICATORS

HERE are two inexpensive and effective ways to automatically let visitors know when you are "on the air," as well as alerting you if your transmitter is turned on, or left on, inadvertently. Either of these units can be built for less than 50 c , which is a considerable saving over the available commercial units, which range from $\$ 6.95$ to $\$ 8.95$. Also, these units are small enough to allow mounting them almost anywhere.
The secret of the effectiveness of these units is in the construction. They use very little power, and operate automatically when you transmit.

The Smaller Unit: This could easily be added inside the transmitter with only the lettering exposed. The author's unit was built in a small, clear plastic box, such as the type used by Walsco and General Cement to merchandise electronic hardware. Coat the inside of one of the long sides of the box with red nail polish, which will roughen the surface and provide a translucent red effect when back-lighted. Cement aluminum foil to the remaining inside surfaces, including the top and bottom, with the shiny side of the aluminum foil facing the inside of the box. This will provide a heat shicld, as well as reflect the light through the colored side.

On the outside of the box, roughen the surface of the side of the box that has the nail polish on the inside; steel wool or fine sandpaper will do the job nicely. Cover this side of the box with masking tape, and brushcoat or spray paint the outside of the box with a color to match the rest of your equipment. When the paint is dry, remove the masking tape and use a black felt-tip marking pen to carefully print on the air on the roughened surface. Outlining the lettering with Carter's white ink (available at
your $5 \& 10$) will improve the appearance of the tinit. If you preffr, of course, you can cement on black letters cut from newspaper headlines, or use the new dry transfer letters (Radio Shack 61N2160 Instant Lettering, $\$ 1.59$ set of five sheets of different letters).

Wiring: The wiring is simple. Glue an NE-2H neon bulb (Lafayette Radio PL-123, 12c) to the bottom center inside of the box, and solder a $1 / 2$-watt resistor to one of the leads of the NE-2H bulb. The value depends on the voltage with which it will be used. Solder an insulated wire to the free end of the resistor and solder another insulated wire to the remaining lead of the NE-2H. Run these wires through a notch in the back of the box, and connect them (using a plug and socket if desired) to the switched voltage source.
What voltage source? Well, this unit uses so little power that you can safely connect it to any ac or de source from 100 to 300 volts. Of course, this voltage must be at a point that is energized only when transmitting. Many transceivers switch the B-plus with the trans-mit-receive switch. Some units use a changeover relay, and here the coil or the contacts might provide the recuired voltage.

When the voltage to the unit is sufficient the neon bulb lights, and the red glow appeating behind the black lettering is very eye-catching. The NE-2H bulb has two elements; only one will glow if you have it attached to de voltage. Both elements will glow if attached to ac.

A Larger Display: A clear plastic box, approximately $1^{1 / 4} \times 2^{3 / 4} \times 33 / 4-\mathrm{in}$. is used to house a 7 -watt night-light bulb. (Lafayette Radio's MS-159 plastic box, for 18¢, is ideal.) As described for the smaller unit, use red nail

Continued on page 115

How Short Wave Works

By C. M. STANBURY, II

SHORT waves, unlike other radio signals, readily reach out to distant points. In fact when conditions are right, such a station can be heard around the world. Why?
With a dropping sunspot count, the range of usable frequencies will narrow but rare DX (distance) will improve. Again, why?

These are questions every SWL (short wave listener) should be able to answer. If you can't, keep reading.

The lonosphere: All reception beyond 100 miles on frequencies below 30 mc depends upon the Ionosphere, that region of gasses between 50 and 200 miles above the Earth. The Ionosphere is bombarded by ultraviolet radiation from the Sun which produce ionized layers. Speaking loosely, these layers "reflect" radio signals back to, and around the curvature of the Earth. Actually the process is not reflection at all but, as shown in Fig. 2 , refraction. When a wave encounters increased ion density at the layer's lower limit, it is bent. Bending increases as the signal travels further into the layer. If bent enough, it will be returned to Earth and give the appearance of reflection. If however our signal reaches the height of maximum ion density in this particular layer without being bent to Earth, the bending process is then reversed and it will emerge from the top of the layer travelling in approximately the direction as when it entered. So for all practical purposes that term reflection is satisfactory and we'll stick with it.

Now, as shown in Fig. 1, the ionosphere consists of four layers. The F2 layer is at the top and is most highly ionized. Ionization decreases with each descending layer. Needless to say, the greater the ionization the more a wave will be bent. Also (Fig. 1), the more obliquely it enters a layer, the less bending is required. Obliqueness, i.e. the angle of incidence, is dependent upon the hop length. The longer your hop, the lower your angle of incidence and the less bending required. Look at the diagram carefully and you'll see what we mean. And when you do, you'll understand why a nearby signal may pass through all the layers of the ionosphere while a station farther away is reflected and heard. Incidentally, maximum hop length is limited by the curvature of the Earth, height of layer
and geometry. When this limit is exceeded, more than one hop is required (Wave B in Fig. 3).

At night our view of the Ionosphere changes, The D"Region" (which we'll discuss in a moment) disappears while the F1 and F2 layers combine.

Absorption and Frequency: Disappearance of the D Region is particularly fortunate for distant reception. Because of its low altitude and unusual shape, the D Region does not reflect radio signals but instead "Absorbs" them.

In each layer there is some collision between ions. If an ion carrying (propagating) a tiny portion of the radio signal collides with another ion, that bit of energy is lost and the overall signal weakened. This process is absorption. It increases with ionization and with atmospheric pressure thus is worst at low altitudes and almost nil in the rarified F layers. Incidentally, if it were not for this collisional process, layers would not disappear nor even diminish at night.

Up until now, we have discussed two factors which determine the effect of ionization upon a radio signal-height of layer and angle of incidence (obliqueness). But there is a third, even more important, frequency. The higher the frequency the less it is effected by ionization. If a frequency is high enough it will escape absorption but if it is too high, the radio signal will not be reflected back to Earth, not even by the F2 Layer. Between these two extremes lies a range of "Optimum Working Frequencies" (OWF), a range of channels best for reception from a given area.
Which brings us back to that first question -Why are short waves readily heard at distant points? Because no matter the amount of ionization, height of the reflecting layer or angle of incidence, the OWF always falls within the realm of short wave. Of course just where it falls between 3 and 30 mc does depend upon other factors.

Cycles, the Sun and Sunspots: As both reflection and absorption are controlled by Ionization, those forces of nature which regulate this process are very important to the listener. As we've already told you, ionization is produced by ultra violet radiation from the sun and is therefore greatest a little past

Fig. 1: Wave " A " requires too much bending to be returned to Earth by the E-Layer. The F-2 Layer, where ionization is greater, does the trick, effectively reflecting the signal. As wave "B" hits the E-layer at a lower angle of incidence, it requires less bending and is therefore easily reflected by the E-layer. (I=Angle of Incidence)

Fig. 2: Radio waves in an ionized layer.

Fig. 3: This station is transmitting on two frequencies, A and B, A is the higher frequency which passes through the E-Layer where it is partially absorbed before being reflected back to Earth. Frequency B is reflected by the E-layer and therefore suffers little in the way of absorption. It does suffer however, as it requires two hops. The strength of the received signals depends on what happens at paint "M". SW Anyone?
midday and least just prior to sunrise. Logically it should also be at a higher level in summer than winter. This is true for all layers except the F2 which for some mysterious reason reaches a peak for brief periods around 1400 local time during winter.

Ultra violet radiation also varies with the number of spots on the sun due probably not to the sunspots themselves but because of related phenomena on the solar surface. Sunspots follow a regular 11-year cycle. At its maximum, frequencies all the way up to 30 mc are reflected while channels below 7 mc are severcly impaired by absorption even at night.

We are currently approaching a low in the cycle. Frequencies above 18 mc are now seldom useful but reception below 7 mc is tremendously improved. Generally speaking, the OWF range will be narrower resulting in crowding together of stations and a sharp rise in interference. But because the most revealing listening and rarest DX lies at the
bottom of Short Wave, listening potential will be improved, especially on those nights when summer static is not too bad. Unfortunately, atmospheric static does not vary with the sunspot count.
We've answered that second question!

Salvaging Worn Radio-TV Control

- When a volume, tone, or other radioTV variable resistance control becomes worn and gives spotty operation that can't be eliminated with control cleaner, try reversing the two outer wire connections
 (see sketch). This will put the operating range of the control on the least-used portion that is still serviceable and salvage the control for satisfactory use.-Jонл A. Сомsтоск.

No-Hole Mobile

|NSTALLING a rig in a car is always a "custom" job, and examples only serve to illustrate possible solutions to your problem. The photos show how a Lafayette HE45A 6-meter Transceiver was "strainlessly" installed in the author's 1963 Rambler Classic, complete with Squelcher, VFO and adjusta-ble-from-inside antenna-without adding any obvious body holes!

Four things made it easy: (1) Built-in 12V power supply and cable furnished with the HE-45A; (2) Mobile mounting bracket supplied with the HE-45A; (3) Rambler cigarette lighter wiring; and (4) Buddy-Whip antenna.

Slipping the HE-45A under the dash involved drilling only one small hole to mount the bracket; one convenient hole already existed for some uninstalled accessory. Two thumb-screws hold the unit to the bracket at a very handy angle. The Lafayette HE-55 Squelcher ($\$ 10.95$) mounts on the side of the HE-45A. This Squelcher is extremely effective in suppressing spark noise from other cars (the 1963 Rambler itself is very "quiet"), as well as providing the convenience of a
very sensitive adjustable squelch; it is highly recommended for use with the HE-45.

To add to the pleasure of mobile QSO's, a VFO is almost a must. The Lafayette HE-61 ($\$ 19.95$), designed for use with the HE-45, simply plugs into the HE-45A for power. It was mounted between two bent-sheet metal brackets added to the underside of the HE45; right angle brackets added to the HE-61 simply slide into the added HE-45 brackets, which act as support rails.

The HE-45 mobile power cable plugs directly into the cigarette lighter. The Rambler cigarette lighter is conveniently wired through the ignition switch, so the rig automatically goes off when the ignition is turned off, a very desirable feature.

Mounting a mobile antenna usually involves drilling through the body of the car for a ball-mount, or settling for the lower height obtained with a bumper mount. The new 6-meter Buddy-Whip changes this situation. By drilling only 2 small, inconspicuous holes in the rain-gutter above the driver's seat, the Buddy-Whip is quickly and firmly mounted-and virtually theft-proof. The

(well, only 3 small holes...)

By

FRED BLECHMAN, KGUGT

Buddy-Whip is supplied (Marina Communications, 11527 West Washington Blvd., Los Angeles 66, California or Utica Communications, 2917 West Irving Park Road, Chicago 18, Illinois, $\$ 24.50$ postpaid) with extrasmall diameter 52 ohm coaxial cable (cut to a 50.5 electrical full wave length) and window clips; these allow routing the transmission line from the antenna, down the left side of the windshield, through the hood into the engine compartment, and through any existing firewall hole to the transceiver. The clips push into the rubber gasket around the windshield to hold the cable in position.

The driver can position the antenna from horizontal to vertical, or anywhere in between, while driving, by merely reaching up through the side window. An adjustabletension stopnut acts like a clutch if the antenna is hit by an overhead obstruction and allows the antenna to "fold," yet normal driving speed won't cause the antenna to bend back. If it does, tighten the nut!

The photos tell the story. Simple to install, quick and easy to remove, and a pleasure to operate . . . now, if it were only sideband!

Using a buzzer and transformer, we can simulate the manner in which a high voltcge is generated from a low one.

Principles Of Transistorized

By FORREST H. FRANTZ, SR.

 HE first application of the transistor was in the automobile radio. Operating on the low voltage of the automobile battery, the transistorized auto radio does not require the noisy high voltage vibrator power supply common to the vacuum tube radio.Since the transistor does not require heat for operation, power requirements have been reduced about 15 watts, and space requirements about 60 cu . in., on the average.

The voltage required to fire an automobile spark plug is high-tens of thousands of volts. The starting point is a 6 - or a 12 -volt battery (Fig. 1). If the voltage of the battery is chopped by opening and closing the switch, a pulsating voltage-one that changes value with switch operation-is applied to the primary of transformer L. The primary of transformer L has few turns, and the secondary
has many: consequently, the changing voltage in the primary is stepped up considerably in the secondary.

One of the fundamental rules of transformer action is that primary power is equal to or greater than secondary power. In a stepup transformer the primary current must be quite high. In the case of an auto ignition coil, primary current peaks are several amps.
The buzzer-transformer combination (Figs. 2 and 3) is an interesting demonstration of the ignition system step-up principle that can be used for publicity, educational, and in-terest-catching purposes. The battery is a 6 -v. battery. The buzzer L1-S acts as a voltage chopper: The points driven by a rotary cam do the chopping in an auto-ignition system. The transformer L2 is an output transformer with the low impedance winding receiving the chopped battery voltage and the high impedance winding functioning as the

FIG. 2

Ignition
 There's been lots of talk recently about transistor ignition systems. Here's the complete rundown on how they operate...

step-up winding. The output voltage will be several hundred volts and as high as a thousand volts. The resistor R is provided to limit current through the buzzer contact S . The high voltage ignition coil is the step-up transformer in the auto-ignition system.
With this circuit arrangement you will note a considerable amount of sparking at the buzzer contacts (S). This contact sparking is caused by the high current which the contacts must switch. In an automobile ignition system, current demands are considerably more severe and more sparking occurs.

The characteristic of the transistor which makes it a natural for reducing contact or "point" sparking is its current amplification characteristic. If the base input current is IB (Fig. 5), the collector output current will be IB times the current amplification of the transistor. The emitter current is also approximately equal to the base current, times
the current amplification of the transistor.
Assume for the moment that the current which the points in an auto-ignition system switches is 10 amps. Suppose a transistor with an amplification factor of 40 is available. Assume the transistor is connected to supply ignition coil current from the emitter and the points are connected to switch current in the base circuit of the transistor as shown in Fig. 4. Then, if the emitter supplies 10 amps to the coil, only $10 / 40$ or $1 / 4 \mathrm{amp}$. must be switched by the points. This is a considerable reduction in the current handled by the contact.

If the importance of the reduction in current is not immediately apparent, consider the speed at which the points operate. A rough estimate is 200 times a second for highway driving. This high speed switching of a high current causes rapid deterioration of the points. As the points deteriorate, the

available voltage from the ignition coil diminishes. The voltage available from worn points is also a function of engine speed. Thus new points might make 30,000 volts available to the distributor for a wide range of engine speeds. But, after a considerable amount of use of this set of points, the available voltage will drop to something like 25,000 volts at 2000 rpm and about 15,000 volts at 4000 rpm .
A transistor ignition demonstration circuit which employs the buzzer and output transformer of the previously described ordinary ignition system demonstration unit is shown in Fig. 6. Note that the only additional component is an inexpensive power transistor. The decrease in current requirements for the contacts can be shown by comparing the transistor base current to the emitter current. Another indication of the improvement is the reduction of sparking at the buzzer contacts over the "no transistor" scheme.
But, there has been a problem. The induced voltage in the low voltage winding of the ignition coil resulting from make and break action is rather large. This poses a threat to the transistor and can cause it to break down. This factor has delayed transistorized ignition for quite a few years. Delco-Remy has developed a system that uses several transistors to circumvent the voltage breakdown problem.
Another disadvantage of a single transistor system is the inability to fire fouled spark plugs any better than present conventional systems. Further improvements in germanium transistors or the availability of more powerful transistors made from other materials, will pave the way for a single transistor ignition unit that will answer the problems of spark plug fouling. Looking down the road to the day when these transistors become available, Delco-Remy envisions the complete elimination of distributor contact points.

New Look in Electroluminescence

Those cool green night lights you see in the five and dime stores are only the beginning. New applications for EL units are found every day, and products follow

By GEORGE P. NICHOLAS

- LECTROLUMINESCENCE is a big word with a big meaning in electronics.

Called "EL" by engineers, electioluminescence is the light source that one day may brighten the way for space travel, dramatize radar and television pictures on wall-length screens, and provide a ceiling of cool, uniform, variable color light.
Right now, down at earth, EL is being used in such unique applications as a flashing belt that protects night workers from traffic.
EL is a direct way to convert electricity into light. Instead of bulbs or tubes, it uses panels consisting of erystallized phosphors sandwiched between two conductors, the front conductor being transparent.
These panels, only $1,2,-i n$. thick, have some unusual advantages over conventional light sources:

Their power requirements are low.

Fig. 1. Illuminated house number does double duty Makes house easy to find, also serves as doorbell.

The life of the panels exceeds that of most lamps.

As there are no filaments, tubes or vapor, there is almost no heat. There is no sudden failure-hence excellent quality.

The simplicity of these panels and their durability make them virtually indestructible in ordinary use.

Still other features of these panels are the absence of "hot" spots and their thinness which permits them to be installed almost anywhere, even to serve as part of an object's supporting structure.

Electroluminescence is already all around us.

EL panels are used in those flat night lights that plug right into the wall. The instrument panels in Ford tractors have pointer hands that are actually tiny EL panels. EL also makes telephone dials, wall switchplates,
(Continued on page 140)

Fig. 2. Wall switch glows for over five years for under five cents per year. Lights when switch is off.

Get That QSL

By C. M. Stanbury II

ceptions to this rule are telephone test tapes (copy them word for word to prove your reception) and aeronautical messages to and from non-military aircraft involving purely technical matters such as position, weather etc. Ship positions are usually okay too but in other cases include name of station contacted or called to prove your reception.
Reports to aeradios may simply be addressed to the appropriate airport. Aircraft reports should be sent to the Communications Supervisor of the airline at the most convenient office along its route. If the flight heard has a U. S. terminus, this is the place to send your report because American stamps can be used as return postage. Telephone stations should be addressed by the name of the company or operating agency at the transmitter location. This information is usually included in the test tape.

The Prepared Card Technique: Okay, so much for those stations who verify to promote their cause or out of courtesy. Now we come to the stations who don't verify. After DXing a few years you will discover two facts of radio life. First, there is no absolutely sure fire solution to this problem but, secondly, there are few stations which cannot be verified if the DXer keeps at it long enough.

One of the most common weapons used by DXers is the self prepared QSL which someone at the station merely has to sign and drop in the mail. A typical prepared card is dec-

orated and made out by the DXer himself and is especially useful when reporting to Utilities where the operator may not have the slightest idea of what you want. Some DXers automatically include a prepared card with every utility report. When it comes to the non-military aeronautical, and telephone services this is not good practice because many of these will issue their own verifications. Some international telephone stations even have regular QSL cards printed up. Of course if the DXer sends numerous reports to the same airline office, he should include a prepared card after the first couple reports otherwise he is making a nuisance of himself.

The prepared card should never be included with your first report to any broadcast station. A non-verifier may start issuing QSLs at any time and it's your duty toward other DXers to encourage such a policy. This is especially true of Latin America where verification policies are highly eratic and often depend upon the local political situationjust how unpopular were Norte Americanos the day your report arrived? If however after four months you have not received a reply and no one else you know has either, report again (if possible on a more recent logging) and include a prepared card. Incidentally, reports to stations outside the U. S. and Canada should be sent via air mail to avoid loss or theft (which is always a danger).

Special Situations: To list every special case would fill this book and three others
like it. In a sense, every non-verifier is a special case. But one problem which often crops up is to find another address. If one airline office won't verify, try another. This can even be applied to manned space flights. NASA headquarters positively refuses to verify DX reports but operators at individual Capsule Communications Stations may do so (unofficially) if they wish. Thus your scribe heard SIGMA VII in contact with Guaymas and addressed his report along with a prepared card to Proyecto Mercurio, Guaymas, Sonora, Mexico (uncancelled Mexican stamps were obtained from a dealer).
This method can also be applied to broadcasters. A few years ago when RadiodiffusionTelevision Francais on the island of Guadeloupe was not verifying, an imaginative DX'er addressed his report to RTF headquarters in Faris. This effort produced real dividends. Not only did he get his but the Guadeloupe office began issuing regular letter type QSLs to all who sent in correct reports.

Frankly, the matter of address demonstrates a final and most important point. The DX'er who blends ingenuity with common sense when dealing with non-verifiers is going to wind up on top. If you really want the QSL, keep inventing and trying new approaches until you get it. If that's "too much" effort then it wasn't worth going after in the first place. Every really rare catch is, after all, something special.

Now let's go after those big fish!

Dual Powered 100KC Crystal Oscillator

By JAMES A. FRED

THIS frequency standard operates from either a self contained nine-volt battery or the 117 volt ac line. This allows you to operate the oscillator either in your shop or out in the field. To provide power for ac operation a simple voltage doubler using two 1N34's or equivalent diodes are used to supply about fifteen volts de from a 6.3 volt filament transformer. A series resistor of 1500 ohms is used to drop this down to nine volts.
Assembly: All the components except the transformer, crystal, and trimmer capacitor are mounted inside the aluminum box. A $3 x$ 4×5-in. Bud Mini-box will provide plenty of room for the large size parts used. The oscillator pictured was built into an aluminum box that formerly held a war surplus inverter. The front of the box contains the output signal connector, a pilot light, an ac on-off switch, and a battery to ac power changeover switch. This latter switeh can serve as a battery on-off switch too.

Remember that this is an $R F$ device so keep all wires, except power supply wires, as short as possible and use sleeving wherever there is any likelihood of leads touching each other. The crystal used in this circuit is a war surplus type mounted in a metal tube, and plugs into an octal socket. This socket makes a convenient tie point for many of the components as well as providing tie points for the transistor. If you cannot find a 100 KC crystal of this type you will have to mount
a socket suitable for the crystal that you are going to use. The transistor is quite sensitive to heat so hold the lead firmly with your long nose pliers when soldering the leads. Grasp the leads with the plier jaws between the solder joint and the transistor. If you use a different type filament transformer than that specified you may need to change the value of the 1500 ohm voltage dropping resistor so you get 9 volts supply voltage.

Using the Unit: After wiring and double checking every connection, plug in the battery and crystal and push the right hand switch to battery. If you have a standard broadcast band receiver turn it on and tune it to 700 KC . Run a lead wire from the signal output jack on the oscillator to the receiver antenna wire. You should now hear some kind of a whistle or audio tone if there is a station on this frequency. If you don't get a sound here tune the receiver to either 600 KC or 800 KC and see if you get a sound there. You can adjust the frequency of the oscillator a few cycles either side of 100 KC with the trimmer capacitor. This will enable you to correct for a crystal that may be off frequency.
There are many uses for a 100 KC crystal frequency standard of this type. Some of these uses are: checking the dial calibration of radio receivers, checking the accuracy of signal generators, and frequencies of radio
transmitters.

MATEMIALS LIST-DUAL POWERED CRYSTAL OSCILLA ${ }^{-}$OR			
Desig.	Size and Description	Desig.	Size and Description 1 mid. capaciter, Mallory type 601
X1	100 KC crystal war surplus or Petersen 2.6A		25 mfd . capacitor, Mallory type 6025
D1. D2	l N34 or equal	C6. C 7	25 mfd ., 25 vdc , Mallory type TC26
T1	6.3 volt, 1 amp. filament transfo	L1	10 mh . RF chok ${ }^{\text {a }}$, National R. 50
R3	1500 ohm , $1 / 2$ watt resistor	LI	9 volt battery, Eurgess type 2U6
R1	$22,000 \mathrm{ohm}, 1 / 2$ watt resistor		SPST toggle switch. Carling
R2	470 ohm, $1 / 2$ watt resistor		DPDT toggle switch, Carling
Q1	2 N 188 A transistor GE		The above parts can be bought from the Allied
${ }_{C} 1$	4.30 mmf . capacitor, Centralab $822 . \mathrm{EN}$		Radio Corporation. 100 North Western Ave.,
C2	470 mmf . capacitor, Centralab DC471		Chicago 80, III

Mounting Polystyrene UHF Coils

- Here are two methods for mo:unting home made polystyrene UHF coil forms. Drill an undersize hole in one end of a length of

polystyrene rod (A), and let the mounting screw cut its own threads. Use lock-washers when mounting. Heat one end of a length of polystyrene tubing, press the end flat, bend end at right-angles, and hold until cool (B). Drill a hole for mounting screw through the flat portion.-A. T.

Capacitor Pops TV Pix Tube Short

- There's no need io discard a TV set's picture tube just because there's an internal short circuit between some of the inner elements. More often than not, the short is caused by conductive "dandruff" that has flaked off from one or more of the elements and can be removed easily with a charged electrolytic filter capacitor connected to the outer base pins.

Select a healthy capacitor with a high value of capacitance and a high voltage rating (about 50 microfarads at 250 volts), and connect it momentarily to a de source not exceeding the capacitor's voltage rating. (Be sure to observe polarity-plus to positive, minus to negative.) Now connect the charged capacitor to the two element pins that are shorted internally. The current from the capacitor will flow through the internal short and burn it out with a loud pop and flash from the inside neck of the tube.-J.A.C.

Fig. 1: After removing the old pin, it's a simple matter to slip a new pin in from the socket top.

Fig. 2: Once the new pin has been positioned, reach in from under the chassis and pull it tight to lock.

Repairing Socket Pins

By WALTER G. SALM

yOU'RE repairing an old radio or building a kit with a lot of wires connected to the tube pins, and suddenly, without warning, one of the pins breaks off. What to do? Unsolder all the connections and replace the socket? That's a tremendous waste of time.

To Repair the Damage, all you need is a tube socket similar to the type with the broken pin, plus the usual hand tools. Here's what to do:
First step: remove the broken-off pin, being certain that the tube is out of the socket before you begin. If it's on a miniature (7- or 9 -pin) socket, straighten the pin. If it's an octal socket, flatten the little diamond-shaped cutout and straighten. Clean off all of the solder, or as much of it as possible, keeping the chassis in a near-upright position, or tipped at a slight angle, so the solder will flow to the bottom end of the pin. Clip off the end of the pin with its accumulation of solder. Push the remaining part of the pin up through the slot in the socket using a longnose pliers.
With the tip of a pocket knife, push the pin stub up into the slot of the Bakelite, as far as it will go. This should expose enough of the top of the pin (on the upper surface of the socket) for you to grab with a long-nose pliers. Pull the pin all the way through and out (Fig. 1).
Next find a suitable replacement. You should obtain a new pin from a spare socket of the same type that the broken one came
from. Removing this pin will be easier. Flatten the portion of the pin that protrudes from the bottom of the socket with a long-nose pliers. Then push the pin up through the slot in the socket. Be sure to start with the tip of the pliers very close to the socket itself, or you'll bend the pin, making it much more difficult to remove. Such a bend will also weaken the pin, leaving it prone to breakage later on. Work the pin out of the socket a little at a time, until once again, enough of it protrudes above to make removal from the top side easy.

Before inserting the pin in the socket being repaired, crimp the upper part of the pin just a little, so it will make positive contact with the tube pin when the tube is plugged in. Insert the pin in the socket from the top with a straight motion-again to avoid bending the thin metal. Push the pin in just far enough so the long-nose pliers can grab it from underneath. Then pull, hard. Once it's in all the way, fasten it in place by twisting it slightly (the lower portion) if it's on a miniature tube socket, or by pushing out that diamond-cutout with a sharp tool and then bending a little, for octal sockets. If the octal socket pin doesn't have the diamond-cutout, give the pin a slight twist and bend (Fig. 2).
Solder the wires and components back in place and you're in business again. Total elapsed time shouldn't be more than five minutes and you've saved yourself a lot of needlessly wasted time and aggravation.

Surge Resistor

When a television or radio set quits, it's most probably a bad tube. The trouble with bad tubes is usually a filament.

Ey HARRIS EDWARD DARK

MOST filament materials have a much higher conductivity when cold than when hot. The surge-strain on TV, hifi and radio tubes is greatest during the first few milliseconds following switch-on. For the same reason, old light bulbs usually burn out at the time they are turned on, rather than a few minutes later:

When your picture-tube filament goes, you're in for some real expense. Because there are so many other tubes in a TV, it's worthwhile to protect them all from that high initial surge.

Such protection is not only possible but easy to provide because of a very happy characteristic of carbon. This element's con-ductivity-temperature ratio is inverse to that of tungsten and most other metals: Carbon's resistance is greater when cold, less when hot.

A carbon conductor in the ac line makes a good surge resistor, one that can double or triple the life of tubes that must be switched on and off frequently. The positive electrode from an old dry cell is ideal for this application (Fig. 1).
Crush an old flashlight battery carefully with pliers or a vise. Remove the carbon. Make five or six cross-cuts with a hacksaw, each about three-fourths of the way through the carbon (to increase the carbon's resistance). To each end, attach a tube cap or other suitable clamping device (you can't

Fig, 1: The surge resistor takes the heavy current load caused by turning electronic gear on and off.
solder to carbon).
Housing: The carbon should be housed in a glass pill tube or something similar, rather than being merely wrapped with tape, because its temperature will rise 100 to 200 degrees in operation, depending on the TV's current draw.
Next, connect (preferably by soldering) the carbon into one side of the duplex line supplying the TV set, or insert it into one side of an extension cord (Fig. 2). Provide only one outlet, because if the carbon is already warmed by supplying another appliance, it will not have the desired surge resistance when a second power consumer is turned on.

FIG. 2-SCHEMATIC DIAGRAM

FIG. 1

THE MOST FROM YOUR

SGOPE \%

FIG. 6

THE oscilloscope is a highly versatile instrument, which is a helpful tool not only to an engineer or laboratory technician, but also to a serviceman, ham, and basement hobbyist. Very few of us take full advantage of the versatility available in one instrument, and the following will try to point out some of the more important but less understood applications, in which the oscilloscope is a true time-saving device.

Types of Scopes: There are highly specialized scopes available for many different applications, but a general purpose oscilloscope with a good frequency response is still the most popular "workhorse" of the industry. Most of these instruments available today are quite similar in features and performance, so that the following suggestions can be used with almost any oscilloscope the reader might already own or plan to purchase in the near future.

The rapid development and increased popularity of hi-fi and stereo amplifiers created new demands on the serviceman and home Mr. Fixit. It is no longer sufficient to measure a few voltages and decide whether the equipment operates properly or not. The effects of tone controls, equalizing circuits, special filters, can be analyzed only by actually observing the signal waveform, which when properly interpreted-will indicate any possible defects.

Using the Scope. To connect an amplifier for phase-shift and distortion indications, sine wave output of an audio generator is fed into the input of the amplifier under test, another set of leads is brought from the generator to the horizontal input terminals on the oscilloscope, while the internal sweep is disabled by setting the sweep-selector switch to "Hor. Input" position. The output of the amplifier is connected to a resistive load (4,8 , or 16 ohms) of sufficient wattage, so that these tests can be performed at the rated power level indicated by the manufacturer. Vertical input terminals are then connected across this load resistor; we are now ready to perform the tests.

Figure 3 shows an output of a perfect amplifier; a straight line indicates no phase shift between the input and output of the amplifier and no overload distortion. The sharp horizontal breaks shown in Fig. 4 indicate a severe clipping of the signal (overload distortion); in some cases the break can occur on one end only. This, usually, is an indication of malfunction in one channel of a pushpull stage. When a severe phase shift takes place in the amplifier, an ellipse or even a circle appears on the scope in place of the straight line.

A good frequency response is another important characteristic of audio equipment. An oscilloscope provides a simple and fast test

whenever there is any doubt about the performance. Audio generator again is connected to the amplifier and the scope across the load resistor. The sweep selector switch is set to some convenient frequency (approximately 100 cps) in the audio spectrum. A good quality amplifier should have a fairly flat ($\pm 1 \mathrm{db}$) response from 30 cps to 15 kc at the rated power level. It is always wise to consult the manufacturer's specifications, which usually state the frequency response at a given power output.

Starting with the lowest frequency setting on the audio generator we can go through the entire range, always watching the amplitude of the pattern on the screen of the scope. This amplitude (height of the sine wave) should stay constant within the frequency range specified by the manufacturer. Any sharp drop or rise in the height of the wave form indicates a deficiency at the frequency at which it occurs.

It is a good idea to check the frequency response of the audio generator itself directly on the scope, before performing these tests. In some instances these generators do not provide a flat output on all frequency bands, so that corrections must be made in order to obtain proper results with the amplifier tests.

A square wave generator in place of the audio oscillator provides a more detailed information about the condition of audio equipment. Figure 3 shows a typical square wave (1 kc) obtained from an amplifier. The slight tilt of the horizontal sections on the square wave is not excessive. The same amplifier tested at 200 cps shows a completely different picture (see Fig. 5): the large angular displacement of the horizontal sections indicates a poor low frequency response. Figure 4 was photographed with another amplifier, which exhibited an excellent low frequency response but had a pronounced deficiency at the high end. As can be seen from these actual photographs, the square wave method provides very definite answers with no room for any doubts. However, it should be kept in mind that a good reproduction of a square wave through an audio amplifier requires the
best in the circuit and components design: reserve this test for the equipment of highest quality only.

Húm and oscillation are common defects in the audio systems, and the oscilloscope, again, is very helpful in locating the sources of both of them. Before you start trouble-shooting, ground the input of the amplifier, so that no hum is introduced into the system from an external source. The sweep selector is set to Line, ground terminal is connected to the chassis of the amplifier and the lead from the vertical input terminal is used for probing the circuit. Whenever 60 cps hum is present, a single ellipse or circle will be formed on the screen. 120 cycle hum (from a full-wave power supply) is indicated by a horizontal figure 8 (see Fig. 8).
In most of the cases, whenever the oscillation is present in the amplifier, the frequency reaches beyond the audible range. Sweep selector switch should be set to the highest range available, and the same technique can be used as for hum checking. The causes of both of these defects can be many and procedures for corrective measures are beyond the scope of this article.

Frequency Determination: The oscilloscope is also a very convenient tool for determination of an unknown frequency. The procedure is quite simple and the accuracy is limited only by the reference source available. The built in 60 cycle sweep is an excellent and very accurate frequency reference, when we wish to determine the exact frequency in the lower range (up to 500 cps). The sweep selector switch is set to Line and the unknown frequency signal is fed into the vertical input terminals. If this frequency is exactly 60 cps , a perfect circle is formed on the screen (Fig. 6). Figure 7 shows a configuration (Lissajous figure) which is obtained, when the unknown frequency is a second harmonic of the reference frequency. In our case, therefore, Figure 7 shows pattern obtained with 120 cps . If the unknown frequency is a subharmonic ($1 / 2,1 / 4$ etc.) of the reference, the loops will be stacked vertically, but the configuration will not change otherwise.

In cases where higher frequency is to be determined, a signal generator (audio or RF) should be used as the references source. The sweep selector switch is set to Hor. Input and the generator is connected to horizontal input terminals.
The general rule for determining frequencies from Lissajous figures is simple. Referring to Figure 7 it is obvious that the loops touch a vertical tangent in one point, a horizontal tangent in two points. This ratio of $1: 2$ expresses exactly the ratio of the reference source to the unknown frequency. The general formula for this type of frequency determination is, therefore,
number of loops tangent
to the horizontal line
Unkn. freq.*.
..............
x freq. standard (fed into vert. in.)
(fed into hor. in.)
number of loops tangent
to the vertical line
In our case

$$
\mathrm{f}=-2 \times 60=120 \mathrm{cps}
$$

Ac voltages measured with a voltmeter are usually RMS (Root-mean-square) values, which in pure sine wave equal 0.354 times the peak-to-pcak voltages. In many instances we are interested in peak-to-peak readings only, and once again, the scope comes to our rescue. The electron beam of the CRT in an oscilloscope records all the changes instantaneously, and therefore, reads peak-to-peak voltages of any ac signal. All we need is to measure the actual distance between positive and negative peaks, and compare our reading to some known source of ac voltage. By simple process of multiplication or division we find the value of the applied signal.

This procedure is simplified for our convenience, because the necessary calibrator is built-in on most of the modern oscilloscopes. The calibrating voltage (usually 1 i.) is available right on the front panel. A calibrated scale fitting over the face of the cathode ray tube is also included with the instrument. This scale is usually calibrated in inches or centimeters and each unit is divided in tenths, so that the reading can be made quickly and
accurately. Connect the calibrated voltage to the vertical input terminal. Set the vertical input attenuator to the highest position (1) and center the pattern on the screen. Vertical gain is then adjusted so that the trace just touches the 1 inch- or cm-lines on the scale. DO NOT touch this control once the necessary adjustment is made! Disconnect the voltage calibrator from the vertical input terminal, and feed in the signal calibrator from the vertical input terminal, and feed in the signal you wish to measure. If this signal is too large (runs out of screen), switch the vertical input attenuator to the lower position. With .1 setting on the attenuator each unit on the scale is 10 volts peak-to-peak, with .01 setting one unit of deflection equals 100 volts peak-to-peak. In this manner any ac voltage can be measured on your oscilloscope more accurately than on most of the standard voltmeters. Figures 9 and 10 show composite photograpl:s of a voltage calibrator square wave, $1 \mathrm{p}-\mathrm{p}$ tadjusted to cover 2 cm of the scale), and of a sinusoidal signal to be measured. In this case both amplitudes are the same: the unknown signal is $1 \mathrm{v} . \mathrm{p}-\mathrm{p}$ or 0.354 v . RMS.

Modulation: An oscilloscope is a great help to any ham when he needs to check the moculation index on his transmitter. Two types of wave forms can be obtained with a scope of the cheapest variety. Vertical plates of the CRT are loosely coupled to the plate tank coil of the final amplifier in the transmitter. Horizontal plates are connected to the modulator: A potentiometer is necessary to reduce the modulating voltage, which might otherwise damage the instrument.
The wave envelope method (used generally by the broadcasting industry) can be applied to any general purpose scope with an internal sweep. Vertical plates are coupled the same way to the transmitter, but the sweep selector has to be set to some frequency close to the modulating frequency. Figures 11 and 12 illustrate the traces obtained by this method. In case the percentage of modulation can be found from this formula:
(Continued on page 146)

FRONT VIEW
FIG. 1

The Magic Eye

Sees much, tells plenty. A cheap and handy testing instrument.

By C. F. ROCKEY

†IME was when every radio was equipped with a magic eye tuning indicator, which winked saucily as you tuned across the band. Although seen less often today, the 6E5 tube that fulfilled this function continues to be useful to the electronic trouble-shooter. For this is a combined vacuum-tube amplifier and cathode-ray indicator, both in the same envelope. Together, they form a dandy vacu-um-tube voltmeter, at a cost of about two dollars.

All you need, basically, is a magic-eye tube, an Eby baseboard-mounting, six prong socket, and a few small parts. Of course, you also must have a power supply handy, but you can take the voltages necessary out of the piece of apparatus you're testing, if you have no other source. (100 to 300 volts de at a couple of milliamperes, and 6.3 volts at 0.3 amp.)

The schematic diagram (Fig. 4) should be self-explanatory. None of the parts are critical, and may vary as much as $50^{\circ} \circ$ without serious difficulties being involved.

Two features make this instrument particularly handy:

1. It indicates, qualitatively at least, both dc and ac voltages, at frequencies well up into the high audio range.
2. It has a high internal resistance, disturbing the circuit being investigated very little. Only commercial vacuumtube voltmeters, or very expensive voltohmmeters have as high an internal resistance as this simple gadget.
As it stands, the 6 E 5 is a 0 to 8 volt vacuum tube voltmeter. Its primary utility is as a qualitative voltage tester or signal indicator, and most of the applications to be described use it in this way. However, it may be broadly calibrated against a known de voltage source, or by remembering that it requires eight volts between grid and cathode (grid negative) to exactly close the eye. Smaller closure angles are approximately proportional to voltages below eight volts.

Build the gadget on a simple little backboard and base of $3 / 4-\mathrm{in}$. white pine (two pieces $5-\mathrm{in}$. square) as shown in Fig. 3.

Applications: 1. Signal tracing in a PA or amplifier. Connect the ground lead to the chassis of the amplifier. Now, with a signal

TOP VIEW OF TUBE SOCKET

FIG. 2
being supplied to the input of the amplifier, from signal generator, record, or mike, touch the voltage input lead to each successive grid and plate, beginning near the input stages of the amplifier. If a signal is being transmitted this far, you will observe a continual flicker of the shadow, beyond that which occurs when you first touch the lead to the terminal. It is necessary to conneet a capacitor (about $0.01 \mathrm{mfd}, 400 \mathrm{~W} . \mathrm{V}$.$) in series with$ the voltage input lead. With care and practice, a signal as small as 0.1 volt may be readily detected in this way.
2. Checking the front-end performance of a radio. Connect the ground lead to the chassis, or to the common ground bus of the receiver being tested. Connect the voltage input lead to the hot side of the audio volume control. Tuning the receiver across the band should cause the eye to close noticeably each time a signal is tuned in. To adjust the receiver for best performance, tune in a station at the high-frequency end (1400 KC , or higher) and carefully adjust each of the IF transformer trimmers for maximum closure of the eye. When the IF trimmers have been thus adjusted, then adjust the trimmers upon the tuning capacitor for maximum eye closure. When this has been done, you may be sure that your set has been adjusted for good performance. (Note: This procedure applies to a simple superheterodyne broadcast receiver only. Some large, expensive receivers, or communications receivers, require more equipment for proper alignment. Also, better try this on an older set first, for practice, before tackling your best radio.)

FIG. 3

3. Visual monitoring of Tape recorder. Overloading of the tape, causing saturation of the magnetic oxide of the tape on a loud passage, is a frequent form of distortion in home recordings. Since many of the lessexpensive tape recorders have inadequate level indicating indicators, if any at all, this overloading can easily occur.

Your 6E5 makes an effective visual monitoring device, or volume indicator: Connect it to your tape recorder as shown in the diagram below, which will apply to most of the home-recording machines. A schematic diagram of your particular machine, obtained at small cost from the manufacturer, will aid you in making these connections. Borrow an audio signal generator from a friend, or from your neighborhood service shop and, using a 1000 cycle signal, determine the overloadinglevel of your particular machine. Then adjust the potentiometer, so that the eye just closes. Now you can regulate the volume on recordings to keep the eye from completely closing on loud sound peaks. This will give your tapes lots of level without annoying distortion.
4. Tuning and modulation indicator for the amateur transmitter. Although the do plate milliammeter employed in most amateur transmitters will tell you when your transmitter is running the correct power input, it can tell you nothing about the power output and little about the degree of modulation. If yo. use a coaxial cable to feed your antenna, you can use your magic eye to tune for the greatest signal output for a given power input; that is, for greatest efficiency. Refer-

ring to the diagram will show the connections, and it may be used with any amateur transmitter that employs coaxial cable output. The power consumed by this indicator is in the microwatts, and negligible by any ordinary standards, so it does not waste valuable RF watts. It also indicates relative degree of modulation.
If you have one of the more-powerful transmitters, and you find that the eye shadow "overlaps," try a 6G5 tube instead of the 6E5. All connections will remain the same.
These suggestions, drawn from a fairly wide range of applications, by no means limit the usefulness of this neat, widely-available little indicator. It's cheap, almost universal, and difficult to burn out.

Shockproof Solder Holder

- Have you ever been shocked while soldering live wires in a "hot" circuit? This won't happen again if you wrap a length of solder

into a coil and place it in a plastic pill bottle (available at most drug stores). Punch a hole in the lid and thread one end of the coil through hole. Use this holder as you would a pen, pulling out more solder from the coil inside as needed.-John A. Сомstock.

Improved Razor-Blade Dełector

- Here is a more rugged version of the familiar foxhole razorblade "crystal" detector. The original was a piece of pencil lead bridged across the edges of two
 razor-blades and sometimes used by G.I's in foxholes to pick up local broadcasting stations. This was fairly sensitive, but it was very difficult to hold an adjustment, as the least vibration or jar caused the lead to rock and roll on the blade edges, resulting in erratic and noisy reception. For the arrangement shown, blue steel single or double edge blades (such as Pal razors) seem to be the most sensitive, but many other blades also have sensitive spots on them. Use with a conventional circuit and a good antenna and ground.-Art Trauffer.

COLOR-TV CROSSWORD

By JOHN H. COMSTOCK

Are you familiar with the many technical words and terms used in color TV? What better way is thereto test your vocabulary than by working this cross word puzzle?

ACROSS

1. Circuits which amplify the primary colors from the malrix.
2. Freedom from mixture with white or any other color primaries not already present in the desired color.
3. One of the primary colors.
4. Sheet of metal or other material which shields a TV camera from extraneous light.
5. Color TV camera circuit which unites the luminance and chrama channels with the syne signals.
6. Audio term cpplicable to Color IV sound reproduction.
7. $1 / 1000$ ampere (abbr.)
8. Network of three imped-ances-two across the line, the third in the line between the iwo.
9. The blanking pulse which applies voltage to the pix tube grid or cathode to sensitize it only during sweep time.
10. Often mounted on a mast.
11. Type of triede transistor.
12. One-direction cuprent (abbr.).
13. The......tron is a color TV pix tube employing only one electron gun.
14. When you are shocked, the "hang-on-to" iype of electricity (abbr.).
15. Circuit which regulates voltage (abbr.).

Nearly all the words and terms which you need to fill in, are directly or indirectly pertinent to color TV. Solution on page 22.
33. This on a TV antenna causes much signal loss.
34. Two of thechromatic coefficients describe a zolor by its position in a chromaticity diagram.
35. Undesirable TV interference (abbr.).
36. Term opplied when oll calor images are superirposed on each other.
39. Pie-Amalgamation Engicuit (letters symbol).
41. Inductive-capacitive circuit (letters symbol).
42. Mutual conductance (letters symbol).
43. Type of antennaloading.

DOWN

2. Reduction of color intensity when color is mixed with white light.

3. Spurious color at edges of different colored areas.
4. Often coused by insufficient high voltage.
5. Opposite of forward bias.
6. An open winding in this component results in no defection horizontally or vertically.
7. Common connector.
8. People in general who will work this puzze.
9. In the three-color TV pix tube, there is an electron gun for...............primary color.
10. Moving or tilting TV camera to follow subject movement.
11. Numerical indication of the degree of picture contrast.
12. Triongular group of three primary color phosphor dots.
13. National Association of Radio ond Television Broadcasters (abbr).
14. A thin perforated mask found in o three-gun color TV pix lube.
15. Constant voltage level in a TV signal iust before and affer transmission of sync pulses.
16. Expansion or divargence of CRT electron beam due to repelling force of each electron on all ather -lectrons.
17. Something often matched when replacing defective parts.
18. Watery picture pattern resulting from interference beats.
19. This color TV generator pattern is often used ta adjust convergence.
20. Three of them are used in the tricalor TV pix tube.
21.uration is the freedom of a color from white.
22. Cothode current (letiers symbol).

Circuit Principles That Are Involved

Rectification,

ALTERNATING current, usually used for commercial power, is bi-directional, yet most electronic equipment operates from direct current, which is uni-directional. The most common method of changing alternating current (ac) to direct current (dc) is by rectification.
It can be seen that, if we find a device that will only pass current in one direction, and feed ac into it, the output will be dc, since it will pass current only during the time the input current is moving in one direction. A diode tube is such a device, as are selenium and silicon rectifiers.

Electron Flow. If a diode tube is connected as in Fig. 1, electrons would flow from the heater to the plate, since the plate is positive in respect to the negative electrons (from the heater), and unlike charges attract. If we made the plate negative, no current would flow, since the negatively-charged electrons would be repelled by the like negative charge on the plate. The amount of electron flow (or current) would depend on the amount of positive plate voltage, as set by R. The more
positive the plate is, the more current-flows, as shown by the graph in Fig. 1.

At some point, however, the current stops increasing as the plate voltage increases. This is known as the saturation point, at which all electrons that leave the heater reach the plate. The current can then be increased only by increasing the amount of electrons available from the heater.

A Simple Form of Rectifier can be made by connecting a diode as in Fig. 2 (assuming the cathode is heated by a filament not shown). When, on the input side, point " A " is positive and " B " negative, the plate is positive in respect to the cathode, and electrons flow as indicated by the arrows.

On the next half-cycle however, point "A" is negative and " B " is positive. During this half-cycle the plate is negative in respect to the cathode, and no current flows. The output is then a fluctuating direct current that flows only on alternate half-cycles, as shown in Fig. 2, giving us a dc output from an ac input.

Since the rectifier in Fig. 2 passes current only on alternate half-cycles, or half of the

In Virtually All Electronic Circuits

Filtering, And Detection

time, it is called a half-wave rectifier. If a center-tapped input is available, two halfwave rectifiers can be connected in series, as shown in Fig. 3.

Half-Cycle Changes. In This Circuit, "A" is positive, and "C" is negative on half of the cycle. The midpoint of the input, " B " is negative in respect to "A," and positive in respect to "C." Since both tube cathodes are connected to the midpoint through the load, the plate of V_{1} (connected to "A") will be positive to its cathode (connected to " B " through the load) one one half-cycle. Current will then flow from V, cathode to the plate, to " A," to " B," and through the load back to V_{1} cathode (solid arrows). During this half-cycle, "C" (connected to V_{2} plate) is negative in respect to its cathode, and current does not flow through V_{v}.
On the next half-cycle, however, the situation is reversed. "C" becomes positive in respect to " B," and current flows through $V_{\text {, }}$, from cathode to plate, to " C " to " B " and through the load back to V_{2} cathode (dotted arrows). So one tube conducts during one
half-cycle, and the other conducts during the other half-cycle. Since the system has current flowing during the entire cycle, it is called a full-wave rectifier. In practice, usually both plates are in one tube with a single cathode, called a full-wave rectifier tube.

Diode tubes, semi-conductor diodes, or chemical surfaces (selenium, copper oxide, etc.) which pass current in only one direction can be used for these rectifiers. Regardless of which is used, care must be taken in selecting the proper design for the voltage and current involved.

Peak Inverse Voltage. Figure 2 shows that the maximum voltage is across the tube when it is not conducting. At this point the cathode is at peak positive voltage in respect to the plate. This is called the peak inverse voltage, and is 1.41 times the "Root Mean Squared" (rms) input voltage (which is what most meters read, and how transformers are rated). The maximum allowable peak inverse voltage is included in rectifier specifications, and should not be exceeded.

In the full-wave rectifier (Fig. 3), the peak

inverse voltage is related to the $r m s$ voltage on each side of the center-tap, since the circuit is essentially two half-wave rectifier circuits in series.

Rectifiers can also be placed in series or parallel to get greater current or voltage capacity. Tubes are often connected in parallel to increase current capacity. Fig. 4 shows how a series connection in bridge fashion can increase output voltage without increasing supply voltage or rectifier capacity. The diagram shows silicon diodes, but vacuum diodes could be used if there were separate filament supplies (one for D_{1} and D_{3} and one for D_{2} and D_{1}). This is necessary due to the different potentials across the diodes at different times of the cycle.

In the Full-Wave Rectifier (Fig. 3), the voltage output was essentially equal to the voltage between " A " and " B ," or " C " and " B," or half the transformer secondary voltage.

Suppose we use that same transformer in the full-wave bridge rectifier circuit shown in Fig. 4? When "A" is positive, current would flow through D_{1} to "A," through the transformer to "C," through D_{i}, through the load and back to D_{1} (solid arrows). On the other half-cycle, when "C" was positive, current would flow through D_{3} to " C ," through the transformer to " A," through D_{z}, through the
load and back to D_{3} (dotted arrows).
We would then have current flowing during both half-cycles, and the output voltage would be essentially equal to the full transformel voltage, between " A " and "C." At the same time, the peak inverse ratings of the rectifiers need be no higher than the ones used in the full-wave ciscuit (Fig. 3), since the diodes are connected in series for each half-cycle.

Rectifiers are also used in voltage-multiplier circuits. In these, a rectifier and capacitor work together to change the voltage to de and increase it in value. Fig. 5 shows a rectifier-doubler or voltage doubler.
When " A " is positive, D_{1} will conduct, and charge C_{1} to the peak value of the input voltage. When " B " is positive (and " A " is negative), D_{2} will conduct, and charge capacitor C_{z} to peak input voltage. Since the capacitors are each charged to the peak value of the input voltage, and since they are in series, the output voltage will be twice the peak value of the input voltage. However, since any current drawn by the load tends to discharge C_{1} while C_{2} is charging (and vice-versa), the output voltage drops rapidly under load. To minimize this, large capacity condensers (40 mfd . to 100 mfd .) are usually used in this type of circuit.

Obviously, the peak inverse voltage rating

Common rectifiers include vacuum and gas fube types as well as solid state and chemically coated devices.
of rectifiers used in doublers must be high. When one diode is not conducting, the reverse voltage impressed across it is the peak supply voltage, plus the voltage to which one capacitor has been charged. The safe peak inverse value to use is therefore 2.82 times the rms supply voltage.

Voltage Multipliers. By placing two or more of these circuits in series, or combining one of them with a standard half- or full-wave rectifier, various amounts of voltage multiplication can be secured. There are tripler, quadrupler, etc., circuits, even up to cight times the input voltage.
In vacuum tube and selenium rectifiers, output voltage under load is reduced by the voltage drop in the tube or rectifier. This voltage drop increases as the current increases, since these rectificrs can be considered as fixed resistances. This loss can be overcome by using a gas-filled rectifier tube, or silicon rectifier, both of which have a relatively constant voltage drop. regardless of current. Fig. 6 shows the comparative voltage drop, related to current, between a vacuum rectifier tube (such as a 5 U 4), and a gas rectifier (such as an 83).

Gas-filled rectifiers usually contain mercury vapor. When the electrons within the tube reach a sufficient speed (as current starts to flow), they tear other electrons off
the mercury atoms as they hit them. The gas then becomes "ionized," and furnishes additional electrons, which tends to reduce the resistance of the tuke. As more current flows, there are more collisions and more additional electrons furnished. The result is that the tube resistance tends to decrease as current increases, causing a fairly constant voltage drop in the tube.

The nature of silicon rectifiers is somewhat similar in that the voltage drop is relatively constant. To date, however, silicon rectifiers with high voltage and high current capabilities are somewhat expensive.

Up to now all of the de voltages we have seen have been fluctuating. This ripple, or ac component, must be removed, or there would be hum in the output. This is done by filtering. In Fig. 7, we have taken the output of the Fig. 2 circuit, and inserted a large capacitor across it, between the rectifier and the load.

The original output consisted of halfcycles of voltage which rose from zero to peak and back to zero, followed by a nonconducting half-cycle. With the capacitor in the circuit, however, the voltage does not drop to zero, but tends to level off.

On the conducting half-cycle, the capacitor first charges up to peak voltage, and then, as the supply voltage begins to decline, the ca-

pacitor starts discharging. It continues to discharge through the non-conducting halfcycle, but cannot completely discharge before the start of the next conducting half-cycle. On this half-cycle, it again charges to peak voltage, and the procedure is repeated. This results in the more constant voltage output shown at the right of Fig. 7. The shaded areas indicate the charging time of the capacitor, and the dotted line indicates the average output voltage, as related to the peak condenser voltage and the lowest voltage to which it can discharge.

A large capacitor must be used. It cannot completely discharge during the second half of the conducting cycle, and all through the non-conducting cycle. It also is apparent that, with a given size capacitor, filtering action would be better in a full-wave rectifier (Figs. 3 and 4), since there would be less time for the capacitor to discharge.

In actual practice, filter circuits usually take the form shown in Fig. 8. The most common circuit, a capacitor input filter, is shown in Fig. 8A. Here C_{3} removes most of the ripple, as outlined above. The choke $\mathrm{L}_{\text {, }}$ has a high inductance to ac and it, with capacitor C_{2}, smooths the output even more.

Fig. 8B and C are one- and two-section choke input filters. Here the choke greatly reduces the amount of ripple that gets to capacitor C_{1}, minimizing the compensation required of it during discharge time. In Fig. 8 C , an additional choke (L_{2}) and condenser $\left(C_{3}\right)$ further smooth out the ripple. They act essentially as L_{1} and C_{2} in Fig. 8A.

If the load current is high, it can be seen that the capacitor in Fig. 7 (or 8A) would discharge very rapidly, and the average voltage output would fall. For this reason, the voltage regulation of capacitor input filters (Fig. 8 A) is poor, with the output voltage decreasing as the load current increases. In the choke input filter (Figs. 8B and C), the ripple, or fluctuation across the first capacitor is fairly slight, and the voltage can fall less during the discharge cycle. High load currents therefore have less effect on output voltage, and regulation is better. Due to this improved regulation, choke input filters are usually used where there is to be a wide variation in load current.

Rectification Principles are used for circuits other than power supplies in electronic work. Perhaps the most common circuit is in detection. This is the process of separating two alternating voltages, one at radıo frequency and one at audio frequency.

In Fig. 9, our input is a modulated RF wave, and when " A " is positive, the input is rectified by D_{1}, similar to the half-wave rectification in Fig. 2. A rectified half-wave output then appears across the load resistor, R_{1}, and capacitor C_{1} then removes the "ripple" from
this output. In this case, the size of C_{1} is selected so that it can discharge very little at the very high radio frequency rate, but can easily charge and discharge at the relatively low audio frequency rate. The voltage across in then filters out the radio frequency variations, but follows the audio frequency variations.

This output (shown at right of C_{1}) is still dc , always being positive. Placing C_{2} in series with the output corrects this. As long as the voltage across C_{1} is increasing, C_{2} is charging. But the instant that the voltage across C_{1} starts to decrease, C_{4} starts discharging, the two actions resulting in the ac waveform shown below C_{2}. This ac voltage is then amplified for earphones or loud speaker.

Detection can also be done by triode tubes. In this case, the grid is biased so the tube is cut off and cannot conduct during negative half-cycles, giving the same output as diode D_{1}. Another method which gives similar results is to utilize the non-linear part of the tube's characteristic curve.
Detection is also used in listening to code, or CW. Here information is sent by breaking the radio frequency signal, which is above audible range. To enable operators to hear the breaks in the R.F. signal, hetrodyne detection is used. A constant internal R.F. signal is "beat" against the interrupted R.F. code signal.

Suppose a station is sendirg code by breaking its 1000 -kilocycle signal. If we have a 1001 kc oscillator in our receiver, and mix it with the incoming 1000 kc signal, we will get a "beat" note of 1000 cycles, or the difference between the two. This "beat" note can be heard readily.

The "beat" note will only exist when the station has the key depressed, and sending a signal. When the key is open, and the station is not transmitting, our 1001 kc oscillator is still working, but has nothing to beat against, and we hear nothing. When the key is pressed, and the station sends out its 1000 kc signal, the "beat" note is produced, and we can hear the dots and dashes.

While there are certainly other circuits which are used in electronic equipment, these circuits are equally important certainly. However, the principles of rectification, filtering and detection are fundamental. Stress is always applied to amplifiers and oscillators, while these basic circuits outlined here go begging.
As you can see, rectifiers, filters and detectors are closely related to each other, and to a great extent are inter-dependent. These basic circuits are the root of many electronic equipment that we know as part of our everyday lives. . . . Perhaps now we can understand and appreciate the design considerations that went into bringing these benefits.

FIG. 1: Typical of equipment used in World W ar II and still used on Army equipment is this infrared searchlight mounted on an M-60 tank. Tonik commander is using image converter binoculars.

Now You Can See in

A cat will have nothing on us from now on

By otto renius

○N A dark and overcast night, through a drizzling rain that added to the simulation of battlefield conditions, the Army put on a demonstration, sponsored by the U. S. Army Mobility Command, of its new fighting capabilities by seeing in the dark.

Until the advent of this new generation of

U.s. Ahmy photos

the Dark

night viewers, the Army used improved World War II equipment. In fact some of the standard night vision equipment on present NATO tanks is little improved over the German devices of 1945.

For example, on April 12, 1945, the American Fifth Armored Division captured a Ger-

FIG. 2: This is view received on the image convertor. Tank was invisible in pitch black of night until infrared rays picked if up as shown in photo from viewer.
man technician driving his automobile in the dark while fleeing the advancing Russians. His automobile was equipped with infrared driving lights and an image tube that had been manufactured the year before. This enabled him to drive at high speed in the dark with no visible lights showing. Our present tanks (Fig. 1-3) and trucks still use the same type of infrared night driving equipment.

The Germans had developed other night vision systems too; for anti-aircraft gun pointing, for battlefield surveillance, for anti-tank weapons, and for detecting their enemy's use of infrared equipment. Fortunately, the German equipment was so complex for its day that manufacturing difficulties arose and little of it ever saw use on the battlefield.

It is the development of devices for detecting your enemy's use of infrared illumination that makes the employment of this old-style equipment so dangerous on the modern battlefield. All troops can be equipped with simple, hand-held detectors which immediately point out the location of any infrared searchlight or driving lights. Also, with the advent of the infrared homing missile, such as the extremely successful "Sidewinder," who wants to be sitting behind a couple of infra-red-beaming headlights which would guide a missile toward you?

The new generation of night vision equipment (Fig. 4-5) is based upon the use of the so-called "passive" detectors. This means that it is not necessary to beam any sort of radiation at your target in order to locate it. The stars, the skygrow, or the enemy himself radiates sufficient light for you to locate him, identify him, and destroy him. And, if the

FIG. 3: Famed sniperscope is now an excellent police weapon with its built-in, infrared searchlight. A well adjusted scope can "see" up to 300 ft. . but it still isn't up to the Army's new night vision equipment.
moon is out, the new equipment makes the battlefield look as if the noon sun were beaming down on a clear summer day.
The basic principle of operation of all of the new image amplifier devices for night vision is relatively simple: use the energy of the incoming light (and there always is some light, even if you can't see), to generate an electrically charged image which can be amplified by the proper electronic circuitry. No longer is the infrared searchlight necessary. The existing natural illumination is focused on the face of the image intensifying tube by an optical system. This tube face is coated
with a material called a photoemissive surface which emits electrons when the incoming light strikes it. The photoemissive surface "mits several electrons for each particle or "photon" of light striking it. These electrons, being negatively charged particles, can be accelerated and focused electrically.
In practical systems, these electrons are used to form a bright image on a phosphorcoated screen. This is the same way in which your television set gives you a bright image; electrons striking the phosphor screen make it glow. The screen remains dark in the areas where no electrons strike, so that a black and white image can be formed. This image on a light amplifier can either be viewed directly through an eyepiece, coupled to a television camera for viewing on the familiar 12- or 17in. screen, or amplified again by the insertion of another photoemissive surface directly behind the phosphor. By this last method, three or four stages of amplification may be placed in tandem, and gains up to 80,000 or more may be given to the incoming image!

In some hospitals, physicians have been employing both the light amplifying television tube and the direct viewing image intensifier tube in fluoroscopic examinations for several years. In the past, the physician had to dark adapt his eyes for a long period of time before he could see any detail on his fluoroscope screen. Now, by using the light amplifier device, it is not necessary for him to dark adapt his eyes, and he can see twice as much detail on the screen. In addition, if a light amplifier television set is employed, an entire group of doctors can view the same television screen during consultation, while the patient is exposed to less radiation than before.

Industrial uses of the light amplifiers are, at present, also closely tied to x-ray fluoros-

FIG. 4: A sergeant aims a rifle equipped with a new image intensifying scope which turns dim starlight to bright sunlight through the viewer.

FIG. 5: This is a pilot mock-up of image intensifier binoculars for rapid movement of vehicles in dark of night with only star light for intensifiable illumination.

copy. They are used for the examination of everything from rubber tires to electronic assemblies. In fact, one manufacturer uses an intensifier to check the quality of the spark plugs he makes, while another looks for cracks in the welding of critical components before removing the component from its positioning jig. If a defect is seen, the faulty weld can be removed, repaired, and reexamined on the spot!

It won't be long before compact, rugged, light amplifier tubes are available for many other civilian as well as military applications. The equipment employing these tubes may be mounted in aircraft and boats, to aid radar in presenting an actual image in the dark. The size of this type of equipment will initially approximate that of a pair of binoculars. As science progresses though, they may eventually look like a pair of thick-lens glasses. Electric power requirements will be small.

How about the television type of light amplifier? Naturally, through the use of transistors and other improved electronic circuitry, their size will shrink. This would make them practical night vision devices for use in airplane cockpits, for surveillance of highly restricted defense areas where illumination is not desired, or even for submerged submarines.

As modern industrial know-how finds better and better ways to make intensifier tubes, their cost will drop considerably. This will open up interesting new areas for their application. It's not difficult to imagine the image intensifier as standard equipment for police during night patrols. This ability of the police to "see in the dark" would be an extremely effective crime deterrent. It would allow them to view a suspicious looking dark area

FIG. 6. Photo of a now intensifying scope os it appears on regular TV. Night view of tank shows detail naw available with improved night-seeing devices.
without giving away their own position, as they must do with a flashlight or other visible light.

The car of the future might even come equipped with small, dim, headlights, and intensifier type glasses for the driver. This would eliminate headlight glare, and allow a much better view of the area to the side of the road. Sportsmen could also use the compact light intensifier when they want to go out in the field before daylight without frightening the game, or when they want to set up a decoy pattern for ducks, on a pitch black lake.

FIG. 1: The motor drive unit in a vertical mounted installation. A horizontally-based metor unit can usually be mounted easily in a vertical position.

By M. C. ANDERSON

FIG. 2: The up-limit switch shown is about to be operated by the switch arm. This will stop the motor.

Door Opener

will be permanently connected to the running windings inside the motor. The other end will connect to the starting switch and become the third lead. In order to make motors of this type reversible, the fixed end of the starting coil must be cut loose from the field coil and brought outside the motor as the fourth power lead. With the motor disassembled, trace the power leads to the point where they join the motor field coils. These joints will be soldered (or welded) and taped. The two connections to the running windings are easy to identify, since these windings are of smaller wire than the starting coils. The fixed end of the heavier starting coil will be attached at one of these points. Cut it loose, retape the joint and solder a short length of insulated wire to the end of the starting coil to bring it out of the motor case. Drill a hole in the insulating backing of the motor terminal plate and use an 8-32 machine screw as the new fourth terminal. Mark the terminals to identify the starting and running coil connections.

The motor and worm gear are mounted on a sturdy base of wood or plywood and connected by a flexible rubber coupling. This coupling provides mechanical isolation for the motor and a safety factor for shock trans-

mission caused by door movement.
The power output shaft is supported in standard $1 / 2 \mathrm{in}$. line-shaft pillow blocks or bearing hangers. The length of this shaft should be adjusted to the mounting intended. The drive sprocket is a $1 / 2-\mathrm{in}$. pitch gear bicycle sprocket brazed or bolted to the steel V pulley normally used on appliance motors.

The V belt pulleys should be selected to give a total speed reduction at the drive sprocket of between 35 and 40 to 1 .

Dual-Spring Cable-Operated Doors. The door mechanism shown in the photos is a very common type using two overhead tension springs acting on steel cables. This unit may be mechanized by driving only one side of the door, permitting the other side to follow, counterbalanced by its spring. The cable and pulleys on the driven side are removed and replaced by bicycle chain and sprockets. The motor unit drives the door through this chain, and may be mounted to the side of the door (Fig. 1) or overhead.

Run the door all the way up and secure it by tightening a C clamp on the track on

FIG. 5: The coil of the transmitter relay must be completely stripped and rewound with No. 18 Formvar.

FIG. 6: An ordinary garbage can lid makes a handy coil form for winding the required induction coils.

FIG, 7: Brick walk alongside driveway helps simplify problem of bedding down the pickup coil and cable.
either side. Then release the spring on the side to be driven and remove the cable and both pulleys. The pulley at the door end will be replaced by the drive sprocket of the motor unit. It may be necessary to enlarge its mounting hole somewhat to pass the sprocket drive shaft. This can be easily accomplished with a tapered reamer in a large drill brace.

Disassemble the idler pulley unit and replace the pulley with a $1 / 2$-in. pitch bicycle rear sprocket. Since these sprockets have no hub, press or braze a bushing into the center hole to reduce the size and provide a bearing. Join the two lengths of bicycle chain with a repair link and attach the ends to the bottom section of the door and to the track at the same points where the cable was formerly attached.

Pivot-Type Doors. Overhead garage doors which open by pivoting around two centers will require an overhead cable system, in addition to the basic motor drive unit. As shown, the door is driven by the motor sprocket through a length of $1 / 2$-in. pitch bicycle chain which is part of a cable loop. Movement of the cable is transmitted to the door through a $12-\mathrm{ft}$. drive rod of wood or steel tubing. The motor drive unit should be centered overhead on this installation. Steel clothesline cable, clamps and a clothesline pulley make up the cable loop. The cable is tensioned by a turnbuckle.

Crawford Doors. The Crawford door is counter-balanced by a single torsion spring operating on cables wound on cable drums. The 1 -in. tubing on which the cable drums are mounted usually extends an inch or so beyond the drums on either end. This provides sufficient clearance to install a 6 -in. V pulley with a 1 -in. shaft hole.

Transmitter. The simple transmitter circuit is shown in Fig. 4. The buzzer or circuitbreaker is a power type relay, rewound with No. 18 Formvar insulated wire so that the

FIG. 8: The control box should be mounted on the wall near the motor drive. Location is not eritical.
coil will carry a heavy surge of current. The relay must be of the normally-closed type, with the points open when the coil is energized. On the relay shown, a normally-open type which happened to be on hand, the points were reversed to produce a circuit-breaker. Remove the coil from the frame and unwind the wire down to the bare spool, then rewind with No. 18 formvar (Fig. 5).

Connect the coil leads in series with the points, so that the circuit is broken when the pull of the coil opens the points. The result will be a buzzer capable of producing a highcurrent de pulse through the transmitter coil suspended beneath the car. A 1 mfd .200 volt capacitor across the points of the relay protects them against arcing and also produces a clean current cut-off for maximum transmitter effectiveness. The rewound relay may be used on either 6 v or 12 v systems.
Mount the relay at any convenient location under the hood (Fig. 9) and connect one lead to the battery terminal of the voltage regulator. Run the other lead to a pushbutton mounted on the dash and then to the coil, mounted under the car.
The transmitting coil consists of 30 turns of No. 18 formvar insulated wire. A garbage can lid (Fig. 6) approximately $20-\mathrm{in}$. diameter is a convenient form for winding this coil. When all 30 turns are in place, tape the coil at intervals to hold the loops in place, then tape the entire coil with plastic electrical tape. This binds and protects the wire and makes the coil rigid enough to mount easily. Mount the coil as close as possible to the side on which the buried receiving coil will be located. The coil may be flattened into an oval shape if required for mounting. The coil should be suspended a short distance below the metal parts of the car, but must not project enough to be easily damaged. Ground one lead of the coil securely to the frame.

The receiving coil, like the transmitting

MATERIALS LISTREMOTE CONTROL GARAGE DOOR OPENER

Amt. Req.

Size and Description

$100 \mathrm{ohm} .1 / 2$ watt carbon resistor
22 megohm $1 / 2$ watt carbon resistor
22 K । watt carbon resistor
2.5 K potentiometer (sensitivity control)
1.0 midd 200 v capacitor

40 mfd 150 v electrolytic capacitor
6 V ac 4 PDT relay (RY-1 motor reversal, Potter \& Brunfield PM 17 AY)
6 y ac DPST relay (RY-2 motor control. Guardian 1R-500.G6)
5 to 15 K sensitide DPST relay (RY. 3 receiver circuit. Guardian 1R-626-5)
Power relay. SPST. Modified Potter \& Brumfield PR5D or MR5D.
SPST pushbutton switch
SPST toggle switch
DPST pushbuttoe switch
SPDT snap-action switches with lever actuator
DPST locking switch
Filament transformer, 6.3 v
Universal output transformer
lbs. (app.) \#18 Formvar insulated wire
$1 \mathrm{amp}, 110$ v fuse and fuse clip
2021 tube and socket
$4 \times 8 \times 10^{\prime \prime}$ utility box
$1 / 4$ to $1 / 10 \mathrm{hp}$ split phase or capacitor start motor
2 lengths $\quad 1 / 2^{\prime \prime}$ pitch, single bicycle chain
$1 / 2^{\prime \prime}$ pitch bicycle sprocket. rear
Misc. $\quad V^{2}$-belt, pulleys. $1 / 2^{\prime \prime}$ line shaft. bearing hangers. terminal itrips and universal joint, as required.

FIG. 9: Maunt the tronsmitter relay under the hood.
coil is wound of No. 18 Formvar using a $20-\mathrm{in}$. garbage can lid as a winding form. Twenty turns will be sufficient for this coil. Tape the coil for protection with plastic electrical tape. The receiving coil is buried alongside the driveway (Fig. 7). Although the coils are effective up to a distance of about 5 -ft., the closer they can be mounted the more positive the operation will be. Connect the coil to the required length of underground type plastic covered cable and position it on top the ground for a trial run to establish the correct location before starting to dig. When a coil location is found which will trip the door mechanism without fail when you hold the transmitter button while driving up the drive, finish burying the cable and coil.
Control Box. The control box (Figs. $3 \& 8$) contains three relays, two for motor control and reversal and one sensitive type for detecting the induction signals from the receiving coil buried beside the driveway. A midget 2D21 thyratron type vacuum tube acts as an electronic switch, tripping the sensitive relay on signal from the receiving coil. A potentiometer adjusts the sensitivity of the circuit by controlling the standby bias on the vacuum tube.
Any double pole single throw sensitive type relay of 5000 to 15000 ohms impedance will operate satisfactorily in this circuit. The relay shown is a discarded telephone relay. You can use single pole relays in parallel to produce a double pole circuit.

Note that two or more relays may be connected in parallel to provide, for example, 4 pole double throw operation from two double pole double throw relays or double pole control from two single pole relays.

Signals from the receiving coil are fed to the secondary side of a universal output transformer. The terminals of the transformer will usually be plainly marked. The coil leads were soldered to terminals 1 and 2 of the secondary on the transformer shown. The other two leads are connected to terminals 1 and 3 of the primary. If the transformer used is not so marked, select the terminals which give the best sensitivity.

The unit is mounted in one of the aluminum chassis boxes sold by radio supply stores for use with home-built equipment. It is wise to bench-test the circuit before mounting, by connecting temporary leads. Then if adjustments are required, the wiring is accessible without breaking connections.

The control panel may be wired with radio push-back wire or ordinary bell wire on the limit switch circuits, which operate on 6 volts. The motor circuit, however, should be wired with flexible, stranded, rubber-covered wire. The solder terminals on the 4PDT relay specified are closely spaced and care must be taken to avoid shorting them. It is wise to cover these joints with insulating spaghetti or tape,
as a precaution, after soldering is complete.
The mounting locations shown in the photos need not be followed exactly, since location of the components is not critical.

Limit Switch Circuit. The limit switch circuit (Fig. 2) is designed for low voltage (6 V here, other voltages may be used) to avoid the shock hazard present if exposed switches carry 110 v . Both up and down limit switches are operated by the same switch arm. This is bent from heavy gauge galvanized steel or sheet aluminum. It must clear the track over the full travel of the door. Provide a switchoperating surface which is long enough to allow for motor coast after the power is turned off. The lower limit switch is protected by a sheet metal guard, bent to clear the switch-operating arm. Both limit switches must be located well away from the curve of the track, since the door-to-track spacing varies as the door turns the corner, which will cause erratic switch operation.
The limit switches on pivot-type doors must be mounted on the pivot mechanism near the hinge-point. Study the action and locate the switches in a position to be operated when the door has reached full travel less the amount of over-run for your particular motor and gear unit.

The snap-action switches used should first be mounted on sheet metal backing plates, slotted to provide adjustment. The backing plate is in turn attached to the door track with flat head machine screws.

When the motor, control box, and limit switches have been wired it is well to check the direction of motor rotation before attempting to drive the door. Once started in either direction, the motor will continue until the opposite limit switch is tripped.

Rotate the potentiometer until the sensitive relay is pulled in and the motor drive operates, then back off sufficiently to prevent "volunteer" operation.
These checks completed, assemble the door drive and operate the door drive cautiously through a complete cycle. When this has been completed, the door will automatically operate through one cycle on signal from the manual pushbutton or the transmitter.

Extension pushbutton switches are a convenience and may be added as shown in Fig. 2 if required at points other than the control.

These extension switches will permit you to operate the door without being in the car. Additional switches can be extended to other parts of the house, so the garage doors can be remotely controlled, for example, you may want to close the door from inside the kitchen on a cold and rainy night!

Wire Scraper From Old Blade

- An old piece of hacksaw blade can be used for cleaning wires when soldering. It will not cut the strands as will a knife.

> This compact two-transistor unit triples as an AF-RF signal tracer, utility amplifier, and transistor circuit power supply

By FORREST H. FRANIZ Sr.

THIS unit and an audio or RF signal generator are all that are sequired to signal trace broadcast and short wave receivers and audio amplifiers of all kinds.

Power for external transistor circuits is available from the tracer at $1.5,3,4,5$, or 6 volts at the flick of a switch. It does extra duty as a utility amplifier for general lab use. A self-contained loudspeaker makes the unit convenient without the inconvenience of an earphone.

Mount the Battery Holder on the perforated board as in Figs. 2 and 4. Mount the output transformer on this board with a piece of solid wire passing through the holes and around the underside.

Drill the holes for the battery terminals, input jack, volume control, switch and speaker. Cut the volume control shaft to a length of $3 / 8-\mathrm{in}$. Mount these parts. Be careful to avoid shorting of the battery terminals to the case. Wire the front panel. Fasten the cir-
cuit board to the speaker with solid wire. Interconnect the board and the front panel circuitry (Fig. 4). Connect leads from the batteries to the switch (Fig. 6).
The First Switch Position is "off." Other switch positions turn the signal tracer-amplifier on. In addition, section B of S1 selects the battery voltage which will appear across the battery output terminals for powering an external circuit with current requirements of 25 milliamps or less. This feature will prove invaluable for checking out transistor tuners, amplifiers and other circuits and for performing circuit experiments requiring small currents.

For Audio Testing and signal tracing, use a shielded lead with a miniature phone plug termination on one end and extended leads with minigator clips on the other end. To signal trace in tube circuits connect a 47 K resistor in series with the center lead of the shielded input cable. This minimizes circuit

FIG. 1: Looking down on the circuit board, the parts are easily located. Wiring isn't critical, but try to keep leads as short and as neat as possible.

FIG. 2: Wiring is brought through the holes to the underside of the circuit board. Note that no components mount underneath for ase of servising.

FIG. 4: Chassis-mounted parts inside the box cover include the speaker, switch, potentiometer, jacks and two sapacitors. Wire these in place separately.
loading during testing operations.
If you have difficulty, check the battery holder for good contact to the batteries. You may have to fill the contact eyelets with solder. Check the circuit against the wiring diagram. With the audio signal tracing lead in the input jack, you should be able to hear the speaker hum when you touch the center input lead (volume all the way up).

Heart of the Signal Tracer is the high gain, two-stage transistor, audio amplifier on the perforated board. The signal under test enters the tracer through jack J1 and is applied to gain control R1 through isolation capacitor C1. C1 is rated at 600 volts and keeps dc from getting through, but permits audio to pass. The gain control feeds the signal to the amplifier.

Resistors R2, R3, and R4 provide operating biases for Q1 and Q2. Capacitors C2 and C3 provide isolation between dc potentials, but pass ac signals. Resistor R5 stabilizes the

FIG. 5: looking head-on of the front panel, the unit presents on uncluttered, business like oppearance. Finish the panal with decal lettering and lacquer.

FIG. 6: Inside the box with the circuit board installed in place. Box and circuit board are wired separately, ofter installation, hooked up together.

operating point of Q2, C4 is a bypass around R5, and C5 bypasses (effectively shorts) the ac signal around the battery to prevent degeneration due to internal battery resistance.

Transformer T1 couples the output of transistor Q2 to the loudspeaker with the proper impedance match. Section A of switch S1 provides one "off" position, but applies voltage to the amplifier on the other four positions. Section B of S1 switches 0, 1.5, 3, 4.5, or 6 volts to the battery output terminals.
This provides a convenient source for obtaining those much-needed, of ten hard to find test voltages to power transistorized equipment on the workbench. You can also use these voltages to substitute for batteries that are suspect, in equipment under test.

MATERIALS LIST-TRANS BOX

Size and Description
Desig.
Desig
R5
R3
R3 $\quad 4.7 \mathrm{k}, 1 / 2$ watt carbon resistor
$150 \mathrm{k}, 1 / 2$ watt carbon resistor
390 k. $1 / 2$ watt carbon resistor
5 k miniature notentiometer (Lafayette VC.33)
$.1 \mathrm{mfd}, 600$ y paper tubular capacitor
(Aerovox P8292ZN28)
10 mfd 6v ultraminiature electrolytic capacitor
(Lafayette CF-103)
10 mfd 25 y ultraminiature electrolytic capacitor
(Lafayette CF-142)
4, C5 50 mfd 6 v ultraminiature electrolytic capacitor (Lafayette CF-105)
T1 10 k primary, 10 ohm secondary output transformer
(Lafayette TR.93)
S1 $\quad 5$-position, 2 -pole miniatu'e rotary switch
(Lafayette SW-78)
Q1. 02 2N1380 transistor
B $\quad 1.5$ penlight cells. four in series (RCA VS074)
J1 miniature phone jack (Lafayette MS. 370 is jack and plug set)
binding posts (Lafayette MS. 566 is kit of 10 ; only 2 required for this project)
4-cell battery holder (Lafayette MS-170)
$21 / 10 \times 33 / 8^{\prime \prime}$ unclad miniature perforated board
(Lafayette MS-304)
miniature knob (Lafayette MS-185
mointer knob (Lafayette Kid-43)
$21 / 8 \times 3 \times 51 / 4^{\prime \prime}$ gray hammertone aluminum miniature case (Lafayette MC-381)
Parts sourre: Lafayelte Radio. 111 Jericho Turnoike, Syosset, N. Y.

tok Whe twother!

With this issue, Radio-TV Experimenter brings the know-how of an electronics expert to its readers. If you have any questions for Joe, send them on in. All queries will be answered, the most generally interesting will be printed.

QUESTION: I overheard an argument between two hi-fi cranks on the subway the other day. They were arguing whether one amplifier had a "more transparent or opaque sound" than another one. What the heck is transparent or opaque sound?
ANSWER: Strictly speaking, of course, there ain't no such beasts. However, sometimes it is easier to talk in analogy than in direct terms, and this "transparent or opaque sound" bit comes from such an analogy. Suppose you are looking at a view through a window, or better yet, the windshield of your car. If the windshield or window is perfectly clean and has no faults in it, the view you see looking through it is the same as the view you see if you go outside and look at it directly. You can then say that the window or windshield is perfectly transparent. On the other hand, if the window or windshield is dirty, or has a film of rain, or has inner faults, or, like many windshields, has curving surfaces, the image you see will not be clear and may also be distorted. You can then say that the window or windshield is less transparent or more opaque.

A hi-fi system stands between you and what you want to hear, like a window or windshield. If it is perfectly free of distortion the sound you hear will be like the sound you would hear if you were at the original performance and you could say "the system has a transparent sound." On the other hand, if the system distorts the sound and obscures the fine details of it, you could say it is "less transparent" or "more opaque." Basically, when they talk about a system being more or less transparent they mean that like a window or windshield, the system is clean and more or less free of distortion. But this is not nearly so picturesque and besides high priests from time immemorial have known that to sound like one you must invent a language that is fully understood only by other high priests!

QUESTION: I notice that in catalog specifications, communications receivers claim better
sensitivity for CW than for phone. Why is this? P. L. Augusta, Ga.
Question: Most FM tuners have two sensitivity ratings: a $300-\mathrm{ohm}$ rating and a $50-\mathrm{ohm}$ rating. If I understand this right they are more sensitive with a 50 -ohm antenna. Why should this be true? J.I.M., Jersey City, N. J.
ANSWER: The sensitivity of a receiver is limited by the noise of the receiving system. To read a signal it must be stronger than the noise; or, to put it the other way, the less noise in the receiving system, the weaker the signal that you can read and hence the more sensitive the system.

The noise comes from the tubes and resistors in the receiver itself, the antenna, and from space. In measuring receiver sensitivity, we normally consider only the noise generated in the receiver and the antenna. This is random noise and covers the entire frequency range from the audio frequency region all the way up into the light region. The narrower the bandwidth of the receiving system, the smaller the slice of noise that is passed through it. For CW reception we can use a bandwidth of 1 kc or less, whereas we need 3 kc for a single sideband voice signal and 6 kc for a normal double sideband voice signal. Communications receivers provide a means for narrowing the bandwidth when CW is to be received. With this narrower bandwidth less noise passes through the system and therefore a weaker signal can be read. Because we can use a narrower bandwidth for a single sideband signal, the communications receiver will also be more sensitive for SSB than for conventional double sideband AM.

We noted that noise is generated by the antenna as well as by the receiver. An antenna generates noise by the movement of electrons in the material of which it is made. This movement generates a current and, as we know from ohms law, the higher the resistance through which the current flows, the higher the voltage across it. So, the higher the resistance of the antenna, the higher voltage of the noise that appears across the input
of the receiver. Thus a 50 -ohm antenna presents a lower noise voltage than a $300-\mathrm{ohm}$ antenna; therefore, a weaker signal can be read and hence an FM receiver can be more sensitive with a $50-\mathrm{ohm}$ antenna than a $300-$ ohm.

But don't rush out looking for a 50 -ohm antenna to improve the sensitivity of your FM tuner. There are such antennas-usually high gain Yagis. However, generally speaking the lower the radiation resistance of an antenna the narrower its bandwidth. Thus a 50 -ohm antenna will cover only a small portion of the 20 mc wide FM band, and would be useful only for receiving one station or several stations within a 1 or 2 mc slice of the band. If you need or want the highest sensitivity for one station only, one of these $50-$ ohm antennas is a good way of getting it. But if you want to cover the entire band, you will have to use a broad-band antenna which means a 300 -ohm antenna, and accept the penalty of higher noise and lower sensitivity.

Question: Should I get a soldering iron or a soldering gun for my occasional radio experiments? A.W.L., Lima, Ohio.
ANSWER: A soldering gun is a handy tool for the radio serviceman or for the experimenter so active that he is likely to need to solder a joint or two any time; but it is a poorer tool for good soldering in construction work than a good soldering iron. Probably the most useful iron for general construction work, kitbuilding, etc., is a miniature soldering iron with a 25 -watt heating element and a $1 / 8$-in. or $1 / 4$-in. tip. It will provide just enough heat to do a good job but not so much of it that you will damage components.

If you do a lot of construction work, you should probably plan on adding a soldering gun for those quick jobs requiring the soldering or unsoldering of one or two joints; and a heavy duty 100 - or 200 -watt soldering iron for heavy soldering, like soldering to an iron or copper chassis. Whichever you use, you will save yourself a lot of trouble and ensure good joints if you use solder whose composition is 60% tin and 40% lead, rather than the normal 40% tin and 60% lead.
QUESTION: I see a lot of multitesters, Jap made, listed for as little as $\$ 5$ or $\$ 6$. Are they any good?
ANSWER: I have used several and have found them very good indeed. Accuracy is good and they have this additional advartage-if you burn them out, your carelessness is not so expensive.
Question: I would like to listen to WQXR on 1560 kc in New York but I am getting interference from a station in Paducah, Ky. I bought a very good receiver, but it's still
there. Is there any way I can get rid of this interference? J.F.B., Charleston, W. Va.
answer: Possibly. From your location, New York and Paducah are at an angle close to 90°. It is possible a loop antenna can be used to null out the Paducah station.
The simplest way to make a loop is to get the largest ferrite core 'loopstick"-the 7 -in. size (Allied Radio \#91C063) will do. Wind a link coil of hook-up wire between five and 10 turns adjacent to or over the coil on the loopstick. This link goes to your receiver.

Resonate the original coil on the loopstick with a capacitor, to WQXR's frequency. Since WQXR is at the high end of the BC band, a small 50 mmf miniature variable will do. When the loopstick is in the horizontal position it should show a null when it is rotated. Turn it so that the Paducah station is nulled out but WQXR still comes in. When you have found the proper position, you can fix the loopstick in place.
If you want to use the loop over the entire BC band, use a $350-$ or $400-\mathrm{mmf}$. condenser to tune the loopstick.

I had a similar problem once and solved it with a Beverage antenna. This is a long wire, grounded at the far end through a 600 -ohm carbon resistor. The wire has to be several wavelengths long. This means a quarter mile or more in the broadcast band. However, it does not have to be more than 10 or 15 ft . high, can be strung (as in my case) from tree to tree, or between small poles, or scantlings nailed to fence posts. The Beverage contributes gain in the favored direction as well as sharp side nulls and hence gives the desired station a double break. The forward lobes are not exactly in line with the wire unless the wire is more than three or four wavelengths long. So it should be pointed a few degrees to one side of the desired station as shown in Fig. 2. For receiving, the wire is
not critical, it can be small diameter magnet wire, \#22, although of course heavier wire will stay up longer. TV-type, screw-in insulators can be used to hold it up. If you have the space, this sometimes does the job. If this seems like a lot of trouble, keep in mind that some troubles can only be cured with strong medicine.

QUESTION: What is the best loudspeaker for $\$ 100$. M.K., Nashville, Tenn.
answer: Giving honest answers to honest questions like this is the best way for question answerers like me to shorten their careers. It wins them only two friends: the guy who asks the question (and even this is doubtful), and the guys who make the recommended equipment; and wins them the enmity of all the other manufacturers in the business. But here goes: the Acoustic Research AR2.

QUESTION: Do you think technician licensees should be given operating privileges on 10 meters like some propose? W2
ANSWER: Certainly. In fact, they're undoubtedly better qualified to operate on the 10 meter band than most of the general licensees
now privileged to operate there but who don't. Techniques, propagation characteristics, etc., on 10 resemble those on the 6 -meter band much more than those on the lower bands. Techs with experience on 6 thus have more experience, and more relevant experience, than the general who now in an almost unanimously drove do not operate on 10 . This however, is not going to be the criterion for decision, though it might sound sensible. Technicians generally spend less money for their equipment, and a large proportion of them build their own gear. Furthermore, most of them operate with relatively low powers and with normal double sideband AM. Since status on the ham bands, as in other phases of our affluent society, is measured by the amount of money one has or has put into an activity; since commercial gear costs more, and since single sideband and high power run into more money, Techs are going to be the low boys on the ham totempole until they stop experimenting, stop building their own stuff, and start investing $\$ 2000$ apiece for gear. Exclusive clubs do not seem to allow amateur radio mechanics to use even the empty rooms in the club-houses. But don't get me wrong. I'm a realist. I own Collins stock.

Connectors Made From Clothing Snaps

|N THIS electronics age miniaturization is becoming more and more important in order to fit small components into small spaces. There are many instances where a number of electrical conductors must be joined together quickly and easily taken apart. A very efficient stack wire connector can be made from snap fasteners used for clothing. One assembly snaps on top of another and there is no limit how many can be used. There are many ways they can be used, such as speaker connectors, terminal strips and battery connectors. They may also be soldered to ends of resistors and capacitors
for substitution tests, etc.
To make these "midgets" buy a card of plated snap fasteners from any dime or department store. File the plating from the bottom of each male and female fastener and with $50-50$ resin core solder tin the bottom being especially careful not to run solder on the small spring in the female fastener. Place a solder lug or a solderless terminal between the bottom of the male and female fasteners and heat with a small soldering iron. A little extra solder run around the rim will help make a stronger joint. For a stud assembly solder a snap on a screw.-Robert Micals.

Fig. 1: The unit is a versatile test instrument for general use around the labora= tory, as wall as a supplementary speaker for audio use.

Speaker Box Does Everything

By ROY L. CLOUGH JR.

ONE of the handiest pieces of equipment, this little speaker box, performs an impressive list of chores.
It's a remote speaker with constant impedance volume control; It's an impedance match, speaker to plate, of any output impedance from 2000 to 10,000 ohms; It matches either single-ended or push-pull output; It's
a phone patch box to any receiver with isolating capacitors that nullify shock hazard; It can be used as a dynamic mike with input matched to practically any PA or tape recorder and it can be used to test final audio stages where an output transformer is suspect and input stages where the mike is questioned.

Fig. 3: Parts placement is easily seen with the rear cover removed. The hardware cloth grille screen is held in position by pressure from the speaker rim.

You may locate most of the needed parts in the junk box. The rotary switch, for example, can be anything that will perform the required switching operations. We used a war surplus two-deck job. Any two-pole switch that will switch to four different positions will do the job.

A 5 -in. permanent magnet speaker with a 3.2 -ohm voice coil was used. Speaker size isn't too important if you don't mind re-dimensioning the box. You can also use an 8 - or

16-ohm speaker; just check the spec sheet that comes with the transformer for the appropriate connections.
Make the box from $1 / 2$-in. plywood sides. The front and back is $1 / 8-\mathrm{in}$. tempered hardboard. Elmer's Glue-all is entirely adequate to hold it together sans nails or other fasteners. Cover the box with Contact plastic covering material after cutting all the required holes.

The speaker grille is a scrap of $1 / 8$-mesh hardware cloth or screening, held in place by the speaker rim when it is bolted in place.

Mount the "L" pad in the upper right hand corner, install the phono-jack and phone jacks in the appropriate holes. The transformer is bolted to the box behind the speaker. Wiring the switch will be easier if pigtails are attached before mounting the switch. The same is true for the connections to the 4-40 brass nuts and bolts which serve as outside terminals. Check the wiring diagram carefully before making the final connections and you'll have no trouble.

Draw the switching dial plate on a stiff white cardboard, with transparent plastic spray over markings and cement it with vinyl glue to the covering of the box.

How It Works: A 3.2 -ohm speaker is mounted in a heavy, rigid box with a fibreglass lined back cover and rubber tacks under each corner isolate the speaker box from table or bench. The result is good tone

MATERIALS LIST-SPEAKER BOX

No. Req.
1
1

Size and Description
Triad s.62.x universal output transformer (30 ma each side)
Clarostat CIL. 4 "L" pad
.1400 v paper capacitors
.006400 y paper capacitor
phonograph jack
earphone jacks
rotary switch, 2 poles, four positions
$3 / 4^{\prime \prime} 4-40$ brass fillister head bolts
4-40 brass nuts
$5^{\text {" }}$ speaker, PM with 3.2 -ohm voice coil
pointer knobs
assorted scraps of $1 / 2^{\prime \prime}$ plywood, hardboard scrap and vinyl contact type covering, $5^{\circ} \mathrm{sq}$. of wire screen, $1 / 8$ mesh, four rubber-headed tacks.
quality from a small speaker in a cheap enclosure. A universal output transformer is connected through a rotary switching arrangement that permits matching impedances from 2 to 10 K ohms. Between the voice coil and output transformer switch a 4 -ohm "L" pad and a phono jack is inserted which permits constant impedance volume control of the speaker when used either as a 3.2 -ohm remote speaker or when connected to the plate output.

A capacitor network permits the attachment of phones (1500 ohms or higher) to any receiver with no shock hazard. The outside terminals are connected to the transformer in such fashion that either single-ended or push-

Fig. 5: The front of the unit presents a handsome appearance. The controls are easily accessible and all cornections are provided on the front panel face.
pull output may be fed into the box.
By running a shielded microphone cable to the outside terminals the box can be used as a dynamic mike with any PA system or recorder. Switching the plate impedance control will permit matching inputs to practically all amplifiers. If attentuation is desired the "L" pad control can be cut in. A couple of alligator clip test prods plugged into the box terminals can be used to check audio final stages, if, for example, the output transformer of the set under test is suspect.

Still other uses will suggest themselves to the experimenter who will quickly be aware that the speaker box is a very nice thing to have around.

〈Continued from page 89)
polish on the inside of the front of the box, and line the box with aluminum foil, shiny side facing in. Mask the front panel and paint the box. It is not necessary to roughen the surface for printing however, since this box is large enough to allow the use of commercial lettering. Pre-cut $1 / 2$ inch high letters, such as Dennison \#192 Silver Letterset (15 c at your local $5 \& 10$) are glued to the outside front of the box to spell out on the air. Pliobond, or similar cement, should be used, since the gummed backing on the letters won't stick permanently to the plastic.
Inside the box, cement a candelabra screw socket (Dialco \#607 or parallel type Christmas tree bulb socket); the bulb used is a 7C7/W white 7 -watt night light type. Run two insulated wires from the socket through a notch in the side of the box, and connect them to the voltage source.

The voltage source for use with this unit must be 117 volts, ac only. Do not try to connect this directly to your switched transmitter B-plus line, or you will certainly burn
out your power transformer in a short time! Sometimes the equipment has an external 117 vac antenna changeover relay and the wires from the box may be connected to the coil terminals of the relay, thus lighting the bulb whenever the transmitter is on the air. Some transmitters have switched 117 vac available at a socket on the back of the unit; see your instruction book. If no source of 117 vac is available when the transmitter is turned on, check the instruction manual to find a voltage that is switched on when transmitting, and use an appropriate relay; connect tine relay so the coil is energized by the switched voltage, and the relay contacts close the 117 vac circuit to the on the air box. The relay and dropping resistor which only draw from 2 to 4 milliamperes from the Bplus supply, could easily be built inside the box, if desired.
They take considerably less room and use much less power than the common commercial units . . . and do the same job. Will we be seeing you "on the air"?

The Flarescan Blind Landing System

Abstract

Air safety is a continuing problem. We no sooner modernize the equipment thon new advonces make it obsolete...

By F. H. BATTLE JR.

ALEADING contender in blind landing systems is the Flarescan all-weather landing system developed by the Airborne Instruments Laboratory (AIL) division of Cutler-Hammer, Inc. This system, currently being tested by the Federal Aviation Agency at the NAFEC facility in Atlantic City and by the French aviation authorities at the French Flight Test Center, Bretigny, France, is actually based on techniques that were available at the end of World War II, although there is some novelty in the way these techniques are applied. The delay resulted primarily from an imposing list of practical requirements, not essentially scientific in nature. The system design was largely an exercise in matching scientific possibilities to operational and economic objectives.

The two key developments for the system were a rapidly scanning microwave antenna and a precise pulse-data code. The ground-based antenna uses a thin section of a parabolic reflecting surface, sandwiched between conducting metallic planes, and illuminated by a waveguide horn radiator placed at the focal point (midway up the forward edge). The $16,000 \mathrm{mc}$ radio beam emanating from his $8-\mathrm{ft}$. array is only $1 / 2^{\circ}$ thick, vertically, so that a sharp signal is produced as it scans past an aircraft.

The antenna is attached to one end of a long steel rod, the other end of which is anchored at the opposite side of the equipment enclosure. This arrangement forms a torsion

Airborne Instruments Laboratory FIG. 1: The antenna is installed a few hundred feet aside the runway. The runway nearly centered on the beam.
pendulum, which is counterbalanced by a second bar supporting an oppositely rotating weight. The spring constant of the bars, combined with the rotational inertia, tunes the assembly to an oscillatory frequency of 5 cycles per second (cps). The thin, fanshaped beam is thus scanned through a sector of 20 degrees above ground level, 10 times each second.

Flarescan provides guidance to landing airplanes by use of the intercepted beam signals to indicate their elevation angles above the runway surface. Since the landing maneuver occurs between 1000 and 5000 ft . away from the scanner, and since changes of only a few feet in height must be detected, great precision is required in the angular measurements; the system was designed for an accuracy better than 0.05°.

A unique code was devised to represent the angle at which the beam is pointing, not only with precision, but several hundred times during each scan (so as to serve airplanes that happen to be at any angle when they receive the signal). This code, which is transmitted on the beam itself, is simply a series of pulses of radio energy that are repeated at intervals controlled by the angle of the scanning antenna at the instant of transmission. Several dozen pulses are received while the beam passes the airplane, and the airborne equipment measures the average time between pulses to find the angle from the ground station. This is about the sim-
plest possible code structure, and it should encourage the future development of simple and ingenious decoders.

A highly accurate receiver-decoder, now being tested, is suitable for airliner installations (see Fig. 2). It uses transistors throughout, except for the ultra high frequency klystron microwave generator that serves as a local oscillator. (It should soon be possible to replace the klystron with varactor and transistor circuits.)
The smallest unit receives the beam signals, via waveguide from a tiny antenna on the airplane, and converts them fo $60-\mathrm{mc}$ pulses. These travel through coaxial cable to the larger angle-tracking unit, which produces a de voltage proportional to the spacing of the pulses most recently received. As the airplane descends toward the airport, the output voltage gradually decreases in accordance with the diminishing elevation angle.
The link between the radio guidance system and the cockpit controls is provided by the small, thin control unit. Adjastments within this unit are permanently set to match the flight characteristics of the airplane, and to provide an automatic program of the successive elevation angles that would be measured during an ideal landing maneuver. By comparison of the changing voltage from this unit against the output voltage from the angle tracking unit, the human pilot or autopilot can detect deviations from the ideal maneuver and correct the flight path accordingly.

Operationally, it can be used in conjunction with the present standard instrument landing system (ILS). This system is widely installed throughout the world, and although it is not trusted for actual blind landings it is extremely reliable for guidance down to about 100 ft . of altitude. The new scanningbeam station is installed about $1 / 2$ mile farther down the runway than the aiming point
of the ILS glide path. As the airplane follows the straight ILS glide beam, it also measures a continuously decreasing elevation angle from the FLARESCAN location. At 100 ft ., or any chosen altitude, arrival at a preselected angle causes automatic transfer of control to the system, which then guides the airplane along a smoothly shallowing path to the runway surface.

Among the practical requirements that were faced and satisfied in the course of system design were:

1. Gradual transition from present equipment and piloting procedures. (ILS equipment and training are fully utilized, and the new guidance signals appear similar to ILS.)
2. Usefulness at all airports. (Guidance signals are derived relative to the runway surface, and are independent of terrain features.)
3. Unlimited capacity for simultaneous use. (Airplanes are not individually - tracked from the ground, but each tracks itself.)
4. Simplicity, and hence reliability, of equipment. (Only a transmitter on the ground and a receiver in the air are needed; signals are directly usable without geometric computers.)
5. Slow obsolescence. (Wide-sector coverage, data rates, and precision are more than adequate for today's airplanes, and should suffice for the higher performance aircraft of the next generation.)
Although it was designed to allow an extension of this new technique to include functions of the present ILS, a system as well proven as ILS will not quickly be abandoned. Furthermore, the joint FLARESCAN-ILS operation allows cross-checks between two independent systems (a capability much appreciated by pilots) since now signals are received throughout the ILS approach.

FIG. 2: The airborne equipment works with the ground equipment and provides fare-out, fouchdown info.

FLARESCAN SCANNING-BEAM RECEIVER

Utility Induction Coil By VICTOR A. ULRICH

HERE is a heavy-duty variable inductance coil that works well as an antenna tuner and in many other applications. The base is a piece of $: 16 \times 31 / 4 \times 8-i n$. Bakelite, Masonite or plywood. A $13 / 4 \times 71 / 2$-in. porcelain ready-drilled form can be obtained at a surplus store, but shorter coil forms can be spliced to adequate length by fitting a wood dowel inside and gluing forms together with plastic cement.

The end strips are $3 / 64 \times 1-i n$. brass strips folded over once to double thickness. They re-
quire three $1 / 4$-in. drilled holes. Cut two 8 -in. lengths from $1 / 4$-in. brass rod. Mount one near the top of the end strips, centered over the coil; mount the other rod half the distance to the coil. Set back half the thickness of the slider to serve as a backstop and guide for the slider.

Make the contact point of the slider from a brass cabinet door-spring latch. The slider is a $1 / 2-\mathrm{in}$. brass tube. Drill it to accept the $1 / 4$-in. rod and slide it onto the rod. Push a spring into the slider, then solder in the spring latch.

A brass rod, threaded at both ends, runs through the coil form and holds the whole assembly together, when bolted at the ends.

"Pot Rack"-a Big Help in Circuit Adjustment

By C. F. ROCKEY

ALTHOUGH it is possible to calculate proper resistance values for many electronic circuits, there's nothing like finding the optimum resistor sizes by actual trial. One or two "pot racks" like this makes it convenient to do. The accompanying diagram shows the idea.

Although you may mount as many pots as you desire in a single rack, the writer recom-
mends three. Those having a maximum resistance value of 1000 ohms, 10 K ohms, and 100 K ohms probably make the most useful trio for vacuum-tube circuits. The transistor specialist might find 100 ohms, 1000 ohms, and 10 K ohms even handier.

Surplus, wire-wound potentiometers of this sort are available for less than 50 c apiece, and are ideal for this sort of work since they have a higher heat-dissipation rate than the newer midget types. Newark Electric Co., 223 W. Madison St., Chicago, Ill., is a good source of these pots. If they have switches on them, just ignore these.

To use, merely connect the pot of the appropriate range into your circuit using ordinary hookup wire, or better yet, test leads, with a small battery clip at each end. Rotate the pot shaft until optimum performance of the circuit is observed. Then disconnect the pot from the circuit and measure with your ohmmeter.

[^2]

Build This High Voltage Source

By FORREST H. FRANTZ SR.

ALTHOUGH high voltage and high cost may seem synonomous to the experimenter, this isn't always the case. You can construct a high voltage source for interesting electrical and physics experiments at relatively low cost. The high voltage source described in this article can be constructed for about $\$ 5$. It will provide an ac voltage of from 600 to about 1500 volts depending on the characteristics of the individual components used and the adjustment of the buzzer which serves as a vibrator.

The basic supply of energy for the high voltage power source is interesting too. The energy to operate the unit is furnished by two ordinary flashlight batteries. The power source then converts 3 volts into 6C0 to 1500 volts. This is a voltage multiplication of 200 to 500 !

The operation of the high voltage source is based on the conversion of a smooth de voltage into a pulsating dc voltage, amplification of the associated current, followed by voltage step up through a transformer.
A frequently used technique for converting smooth de to varying de is to chop the dc with a vibrator. The scheme is shown in Figure 1. When a dc voltage is applied initially, current flows through the contacts and the coil. The core of the coil is magnetized and the armature which carries one of the contacts is attracted to the core. When this occurs, the current path is broken, the magnetic field collapses and spring tension on the armature pulls it and the attached contact up toward the other contact. Current flows again and the cycle is repeated.

The operation is similar to the operation of an electrical buzzer. The difference, of
course, is that the buzzer is built to make sound while the vibrator is made to chop a voltage. Consequently, vibrators usually have heavier contacts and are placed in sound absorbing enclosures. The important point though, is that a buzzer may be used as a vibrator.
How do you obtain a pulsating voltage from the buzzer? The contact interruptions cause the pulsating de waveform shown in Fig. 1 to appear across the coil. This voltage contains a dc and an ac component. If the reference is considered to be on the center of the waveform the voltage would in fact be an ac voltage. (A pulsating dc voltage changes value but never crosses the zero reference line. An ac voltage changes value and polarity.) A pulsating de voltage applied to the primary of a transformer produces an ac voltage in the secondary.
The contacts of an inexpensive buzzer cannot handle very large currents without undergoing rapid destruction. However, a transistor may be used as a current amplifier. Fig. 2 shows a buzzer equipped with a transistor current amplifier. When the buzzer armature is up (contacts closed) base current flows. This causes a much larger emitter current to flow. The voltage between the emitter and positive battery terminal is almost equal to the base voltage.
The current amplification of the transistor (beta) is the ratio of output to contact current (exclusive of coil current). Thus, if the output current is 1 ampere and the beta of the transistor is 50 , the contact current is $1 / 50$ of an ampere or only 20 milliamperes.

The requirement for high current is imposed by the voltage step-up required. Al-

though a voltage of only about 1 volt rms is available from the circuit arrangement of Fig. 2, the desired voltage output is 600 to 1500 volts. The power available at a transformer secondary is never more than the power into the primary. Therefore high current is required in the primary although the secondary current is small.

The final circuit of the high voltage power supply is shown in Fig. 3. The buzzer and transistor circuit is the same as that of Fig. 2 with one exception. The resistor R has been connected in series with the buzzer V to limit current through the buzzer coil.

The output circuit (which provides the voltage step-up) employs three inexpensive output transformers. The low impedance windings (ordinarily secondaries) are em-

FIG. 4: Follow the parts placement indicated in the pholograph above. Switch is Mueller Minigator clip.
ployed as primaries and are connected in parallel. The high impedance windings (usually primaries) are employed as secondaries. They're connected in series to provide three times as much voltage as a single winding.

Build the high voltage source on a perforated Masonite board. Use Fig. 4 as a guide for mounting components. Mount the transistor on a metal bracket ($1 / 2-\mathrm{in}$. wide with $11 / 2$ in. sides) with a machine screw and nut. The bracket, in addition to supporting the transistor, acts as a heat sink. The transistor collector is connected to the shell and therefore connects to the bracket.

Connect the transistor base lead to the buzzer coil and contact junction with a lead soldered to the coil frame. Solder the base and emitter leads directly to the transistor

FIG. 5: The high voltage source can be used for effectively burning dust particles from capacitor plates.

pins. Use a pair of needle nose pliers between soldering iron and transistor body to avoid heat damage.

Connect taps 1 and 2 of transformers L1, L2 and L3 in parallel in the transistor collector circuit. Connect the high impedance windings brown to blue (red unused) to form the high voltage output circuit.

The switch S is a Mueller Minigator clip. It is clipped to the negative battery terminal to turn the high voltage supply on. When the clip is disconnected, the high voltage source is off.

The adiustment of the buzzer is a major factor in determining the output of the power supply. To adjust the buzzer for maximum output from the high voltage source, connect a voltmeter set to a range in the neighborhood of 1000 to 2000 volts to the output leads of the power supply. Loosen the lock-nut slightly on the buzzer contact adjusting screw and adjust this screw for maximum voltage output. This adjustment is fairly critical and it's tricky. You nay have to repeat it several times to get good results.
The voltage output may be increased by increasing the input voltage-up to a point! The input voltage should never exceed 6 volts. And the input voltage should rever be increased to the point where heavy contact
arcing begins. When heavy contact arcing occurs, the contact points burn out after a relatively short period of operation.

Use the high voltage source in electrical experiments that require high ac voltages. It may be used, with a rectifier and filter to supply high de voltages, or in maintenance applications to burn small particles of dust out of capacitor plates (see Fig. 5). The experimenter will find the high voltage source interesting to construct and use. Since it operates from two regular flashlight batteries and generates a very high voltage, it has wide-eyed wonder appeal. It is also extremely portable.

MATERIALS LIST-HIGH VOLTAGE SOURCE

Desig,	Slze and Description
R	10.0hm $1 / 2$. w resisior
L1, L2, L3	TR. 12 universal oulput transformer
T	CBS 2N255 or Sylvania 2N307 power transistor
V	$11 / 2 \cdot v$ high frequency buzzer (Lafayette MS 436)
B	two 1.5-v batteries series connected (Burgess $=2$)
S	minigator clip (Mueller 30)
	battery holder (Lafayette MS-176)
	$1 / 8 \times 781 / 32 \times 1127 / 32^{\prime \prime}$ perforated board (Lafayette ML-81)
	bracket (see text)

Components may be obtained from Lafayette Radio, 111 Jericho Turnpike, Syosset, L. I., N. Y.

MICROPHONES of all types are used in a recording studio. Each is selected for its ability to pick up a particular

They're doing funny things in studios these days . . .
 Engineers read music scores as well as schematics
 and reedy, thin voices are made strong and virile

"WE USED to just walk into a place, set up mikes, and let the tape roll. That's about all there was to recording," says recording engineer Dave Jones. "Now we make a complete acoustic survey before we even bring in the recording gear."

Jones was rigging his equipment in a Manhattan night club to record the evening's show. He walked across the stage, clapping his hands.
"I'm not applauding myself," he explained. "That's how we test reverberation. The echo of each clap is picked up by microphones in different parts of the hall. We time the echo in all those places. Then we put the recording mikes in spots with just the right balance
between direct sound and echo."
Jones' Methods are typical of a new engineering approach to stereo. From where you sit-in your living room-you can easily tell the difference:

- The walls are pushed back-your living room seems bigger to your ears. Close your eyes and you can "feel" the large space of the hall where the record was made.
- The extra sense of space makes your stereo system sound full-toned, the bass more resonant, even though no changes are made in the system itself.
- Singers and instruments seem spaced out front-to-back as well as left-to-right. The New Type of Sound is an answer to

range of sound. Note boom stands.

ENOCH LIGHT supervises a recording session using his controversial sprockef-driven film recorders.
nel stereo record from the three-channel studio tape, they blend the extra channel that conveys the depth dimension with the regular left and right channels.
"It's like being all over the place at once," a technician explains. "Till now we were satisfied if we could make the listener feel he was hearing the music from the best seat in the house. Now with the new multichannel methods we can do better than that. No sear in the house gets as much of what's going on musically as a multi-mil:e pickup. That's like having extra ears everywhere."

This hardly overstates the case. Some serious listener's today would rather play a record than go to a concert. A famous music critic went to the opening of the new Philharmonic Hall in New York to report on the acoustics. His verdict: "I can hear better on my stereo system."

It takes more than clever mike placement to make a first-rate record. To stay in the

to make a first-rate record. To stay in the
public demand. The novelty of stereo has worn off. Record buyers are tired of hearing music jump back and forth between speakers. Realism, not ping-pong sound, is the new goal.

Engineers began experimenting with the depth dimension in sound, taking in echoes from the rear of the concert hall. They found that the impression of front-to-back depth contributes as much to the stereo space illusion as the familiar left-to-right spread. So they moved the microphones further back from the orchestra to catch more hall echo. But that way they lost the sharp sonic focus that makes the listener feel right up front with the players. Finally, they came up with an electronic trick for having it both ways.

Setting Up Mikes both in front of the musicians and in back of the hall, they fed the signal from the back mikes to a third channel that had been added to studio tape recorders. Latcr, when cutting the two-chan-

ACOUSTIC SCREENS are set up in the studio to control reverberation and separate the chorus in the foreground from the orchestra in the rear. The conductor is stationed centrally, visible to all musicians.
competitive race for better sound, record companies are giving their engineers a free hand and a fat budget to

- revamp control panels
- calibrate microphones
- improve tape recorders
- devise new re-recording methods.

Last year, RCA Victor and London Records built control consoles that enable one engineer to ride herd on twenty mikes simultaneously. He can cook up any desired mixture of sound by blending each mike with any other in varying degrees. Cross-feeding separate stereo channels, he can shrink or stretch the stereo space illusion side-to-side and front-to-back. He can even make an instrument seem to "walk" across the stage though the player is sitting still. All he has to do is to gradually fade the instrument from one channel to another. For the listener, this creates the impression of moving sound. London's "Phase 4 Stereo" and RCA Victor's "Stereo Action" records specialize in this kind of electronic conjuring.

With 20 Mikes Under His Thumb, the engineer can accent any section of the orchestra or even spotlight individual instruments. What's more, he can change the tonal character of the instruments by adjusting tone controls for each of the 20 mikes.

When Larry Elgart's band recorded last fall at Columbia's 30th-Street Studio in New

York, the slide trombone sounded too polite in playback.
"Put some razz on it!" Elgart suggested over the intercom.
In the control room, the engineer turned up the treble for the mike in front of the trombone section. The raspy overtones got an electronic boost. Result: a real trombone snarl on the next take.

Pop Singers in particular benefit from the

COLUMBIA RECORDS, INC

CUTTING the goofs is the tricky job of the tape editor. Ease in cutting, splicing is advantage of tape.

The main control room at Columbia is where the director operates. Here, he phones instructions to studio technicians to shilt the positions of microphones en the studio floor, which adjoins control.
audio engineer's ability to improve on nature. What a singer's voice lacks in quality of power, electronics can supply. Rock-androllers, for instance, are usually picked more for the way they look than the way they sound. The voice is made to order in the control room. A thin whine is turned into a chesty roar, and sex appeal is added by frequency compensation in the right places.

These synthetic singers are in quite a fix
when they appear in person. Their fans wouldn't recognize the real voice, so the singers have someone play their own records backstage while they stand silently mouthing the songs for the audience.
Electronic shenanigans of this kind are strictly pop stuff. Engineers wouldn't dream of gimmicking a Beethoven symphony or a Mozart opera. In classical recording, multichannel techniques serve a different purpose

On this confrol panel, a recording engineer mixes signals from twenty mikes, adjusting level, color.

Re-recording after the session puts final polish on sound. Huge control panel covers all sonic sources.

SPECIAL EFFECTS are produced as Julie Andrews lendis her voice to à recording which is being rhythmically punctuated by the tap dancer in the foreground. An accent mike is on the fancy foofwork.

RCA VICTOR

BING CROSBY sings close to the microphone and demonstrates his famous crooning technique. He was one of the first to utilize voice boosting.
-to capture the fine points of complex scoring that might otherwise be drowned out in the orchestral din. Nowadays many recording engineers read symphonic scores as accurately as any trained musician. They anticipate solo passages and shifts in orchestration and follow through with control adjustments that make the most of the music.
"We even handpick our microphones for classical sessions," says John Pfeiffer, recording director for RCA Victor. "We found some mikes sound better for strings, others for woodwinds, and some are especially good for percussion. We've tested just about every make of mike-German Telefunken, Austrian AKG, Japanese Sony, and American RCA, Altec, and Western Electric mikes. We ran response curves on them all and got each tagged for specific jobs."

Tape recorders are also caught up in the sound race. Everest and Command Records, for instance, came up with machines that don't use tape at all. Instead they record sprocket-driven $35-\mathrm{mm}$ film coated with magnetic oxide. "The sprocket drive keeps the tension absolutely constant across the recording head," explains Enoch Light of Command Records. "That eliminates the last bit of flut-ter-the tremulous wavy sound you sometimes get in the treble. Besides, magnetic film is wider and thicker than tape and that makes for better stereo channel separation, wider range between soft and loud, and a quieter background."

Not All Engineers Agree. Some object to the sprocket drive because it is prone to lowfrequency noise (around 96 cycles per second) that might interfere with clean bass reproduction unless it's carefully filtered out. With double-width tape whizzing past the recording head at 30 in. per second (four times as fast as on your home tape machines) most engineers believe that tape can match and even surpass the sound quality of magnetic film.

Once an engineer's work was over at the end of a session. Now he has a new chore -an added production step called re-recording. He plays the tape recorded at the session and, as he listens, he records the music from the first tape onto a second one. During this transfer the signal runs again through an elaborate control board. That's when fine points of channel balance, tone color and emphasis are touched up-long after the musicians have left.
"If you had a good stereo phonograph at home," says engineer Alan Silver of Connoisseur Society Records, "chances are that it was capable of greater fidelity than was contained on most records. But now the shoe is on the other foot. The new records give even the best stereo system a real workout. We have given the stereo fan a good reason for improving his rig."

Did you ever attend a "silent" dancing party? The dancers wear earphones and only they hear the music. The effect is eerie...

By JOHN POTTER SHIELDS

YES, you can hear loud and clear with no physical connection between your earphones and radio or hi-fi. What's more you can hear when others cannot. The loop system is great for getting the sound from your television without interrupting grandma's nap. With loop listening a housewife can keep up with her chores while hearing her favorite programs without trailing wires and without having the radio or hi-fi blasting through the house. Here's how your loop system works and how to build it.

In Operation, as the signals flow
through the transmitting coil, they generate a magnetic field around the coil which varies in proportion with the currents. The field produced by the transmitting coil induces currents in the receiving coil which are a facsimile of the signals applied to the transmitting coil. These currents in the receiving coil are applied directly to phones or an amplifier for further amplification. The action is exactly the same as a transformer:

For Maximum Range, the transmitting loop should be as large as possible and consist of many turns. To wind the coil, trace a

1. WIRE loop and speaker to select.

2. SCHEMATIC for transistor amplifier which boosts sound.
line conforming to the desired overall dimensions on your workbench. Drive 1-in. nails equal distances around the marking to form a coil form. When the winding is completed, remove the coil from the form and secure its turns in place with tape. Remove the insulation from the leads and attach them to a convenient length of ordinary "zip cord."

Due to its low impedance, the transmitting loop is connected to the transformer terminals of the particular amplifier being used. Due to the low impedance of the output transformer secondary, \#20 or heavier wire should be used to wind the transmitting loop. The coil should not consist of more than 50 turns. If you like, a S.P.D.T. switch can be included in the setup so that either the loop or speaker is connected to the output transformer.

	MATERIALS LIST-TRANSISTOR AMPLIFIER
R1	27K
R2	180K
R3	3.9 K
R4	6.8 K
R5	220 K ((Olson \#R-50, 1/2 watt)
R6	56 ohm
R7	6.8 K
R8	68 K
R9	33 hm
Cl	25 mid 15 volt miniature elec. cap. (0lson \#C-872)
C4	. 002 cap. (01son \#C-307)
T1	500 ohm pri., 3.2 ohm sec. output transformer
01	2N412 transistor
02	2N1265 transistor
Q3	2N1381 transistor
1	S.P.S.T. rotary switch (Allied \#34-B-080)
1	battery holder and 3 pen-lite cells
1	$1 \times 33 / 4 \times 4 / 8^{\prime \prime}$ miniature aluminum chassis
1 pc .	$23 / 8 \times 22 y_{3} 2^{\prime \prime}$ un-clad peg board
1	bag push-in terminais (Olson \#HW-5)
1	phone jack (Allied \#41-H-642)
1	phono fack (Allied \#46-H-214)
1 pr .	headphones (0lson \#PH-55) (4 ohms) or PH-10 (4,000 ohms)
1	$1 / 2 \mathrm{lb}$. \#20 enamel covered magnet wire (for transmitting loop)
1	$1 / 4$ lb. \#30 enamel covered magnet wire (for receiving loop)

The Receiving Loop should be as large in diameter as possible. Since the receiving loop will normally work into medium to high impedance inputs, it should have as many turns as are practical as this will increase both its sensitivity and impedance match. As mentioned earlier, the receiving loop can be connected directly to a pair of phones for short range operation. The phones should have an impedance of between 500 and 2,000 ohms.

A self-contained amplifier can be used to considerably boost the operating range. With the transistor amplifier between the receiving loop and phones, the operating range was extended to about 20 feet. A five inch coil wound with 100 turns of \#30 wire yielded an operating range of about 15 feet.

The transistorized amplifier is straightforward with the exception that a common base input stage is used rather than the more conventional common emitter configuration. This provides a better impedance match between the receiving coil and the amplifier's input. The output transformer shown in the schematic matches the last transistor to the four ohm stereo phones.

Placement of the receiving coil need not be a problem if a reasonably small loop is used.

As Much Power As Possible should be used to drive the transmitting loop in order that the amount of amplification between the receiving loop and phones can be kept to a minimum. Excessive amplification at the receiving end can cause an objectional amount of hum and spurious noise. The ratio of the energy emitted to the surrounding radiation should be as high as possible.

Light Where You Nead It

Often, the best place for the stereo system is decided by sound quality and appearance. It isn't always the best illuminated area in the room . . .

When you sit down to an evening of editing and splicing tapes, good and proper lighting plays an important part. Without it, your eyes will fatigue rapidly, and therefore the amount of time you planned to devote is sharply curtailed.

The lamp shown in the accompanying photographs provides a highly intense even white light, and the three-position switch permits you to operate at full brightness, half brightness, or off. The unit uses a transformer in the base and an automotive lamp provides the light. Three joints and a swiveling head permit maximum flexibility. The lamp can be stored easily when not in use as it collapses to only a few inches in height.

For more information, contact Tensor, Inc., 1873 Eastern Pkwy., Brooklyn 33, N. Y.

HIGH INTENSITY and extreme fexibility are feafures of this work lamp from TENSOR. Lots of joints and swivels.

Using C-B Radio

WHITE PLAINS High School, White Plains, N. Y., is the first school in the country to employ two-way Citizens Band radio equipment as an integral part of their student driver training program.

Dr. C. Darl Long, the school's principal, decided to equip their seven student driver training cars with two-way radios in addition to having a two-way radio installed in a control tower.

Why? Now one teacher in the tower can do the work of seven teachers. The radios are tools for instruction. Previously each teacher set up his own road condition or circumstance with no relation to what the other six teachers were having their students do. All seven cars are on the road at the same time.

Overall control of area is exercised by one nan in the tower.
Coordinated use of the driver training track by all cars at the same time or assignment of each car to a separate area of the course and instantaneous or coordinated reassignment of cars to a new area of the course helps save cost and time.

The Citizens Band radio equipment used by the school is manufactured by Cadre Industries Corp. This is a completely transistorized 5 -watt transceiver with almost no battery drain when left in an on position. The unit also has a built-in squelch and noise limiter (eliminating distracting and annoying static when not in use but still in an on position to receive.
The school started its driver training program in 1959. To date there have been no accidents on the driver training course nor is there a known accident involving a student who had successfully completed the course of study.
The driver education program is part of the school's overall health, physical education, and safety program and every student is required to take the driver education part of the program before graduation. Of the school's total enrollment of approximately 2000 students, between 750 and 800 children successfully complete the program each year.
The one mile driver training course was built for the school by the city of White Plains. The Traffic Engineering Dept. laid out the course, provided the marking and traffic equipment to simulate all phases of driving.

Examples:

- Parking (both parallel and diagonal)
- Broken U turns and full U turns
- Yield Right of Way signs
- Three-way traffic lights
- Full Stop signs
- Traffic circle
- Curved highway

Driver education curriculum covers two years. The sophomore year (14-15 years of age)-18 hours of general safety education (correct way to walk the roads, ride a bike, swimming habits, etc.) stressing the correct attitudes and habits for safety and an introduction into driver education.
The junior year (16 years of age) - 18 hours of classroom lectures and films, 18 hours of simulated driver training and 21 hours behind the wheel on the driver track.
In New York state, in the suburbs, you can get your junior license at 16 years of age.

Fig. 1: Before the student driver gefs anywhere near a car, lots of procedure practice is opplied in classroom.

Fig. 4: When out on the study track, cars are plainly marked. Note infersection sign "Yield Right of Way."

in Driver Education

And at 18, your senior license which permits you to drive at night. New York state, however, has agreed to issue a senior license to all students who have successfully completed the course in their 17th year-one year earlier-provided the student has had a minimum of 72 hours driver education.

Insurance companies have also agreed to a minimum 10% gross reduction in car insurance premiums for the family in which the child has successfully completed the course of study. In round figures this amounts to a savings of one year gross cost to the family over the eight year period in which there is a premium cost for under 25 drivers.

Fig. 2: The sitizens band radio transceivers are placed under the dash. Speaker provides instructions.

There are no costs to the students of White Plains High. The local Board of Education has funds for gas and insurance.
According to Commissioner Edward J. MacDonald, the judges in the community are seriously considering sentencing minor traffic violators to a number of hours on the White Plains driver training course instead of $\$ 5$ and $\$ 10$ fines because of track excellence.

Since all costs for this driver training program is paid for by the city through taxesthe school, the Board of Education and the local elected officials must continually impress the community with the value of the money being spent.

Fig. 3: More and more in-the-class study before going out on the track. Students study well before practice.

Fig. 5: Instructor in tower commands full view of all cars on track, is in constant two-way confact with cars.

Fig. 6: Final briefing instructs student group in use of radio equipment and answers any last questions now.

Put More Talkie in Your Wakkie

By FRED BLECHMAN, KGUGT

THE popularity of Part 15100 milliwatt walkie-talkies is increasing by leaps and bounds. The introduction of the Knight C-100 Citizens Band transceiver kit by Allied Radio (\#83Y804-J \$9.95 plus postage each) has spurred even greater interest in these useful flea-power units.

Many units in this class suffer from a common problem-low modulation percentage. This article will specifically show you how to triple the modulation of the C-100 to almost 100%, using only two new parts. If you have a similar unit, you should be able to apply this information to it. It's really quite simple.
The C-100 "as-built" modulation percentage

Fig. 2: The modified unit contains a simple push-to-make switch. Glue a tab to old switch to activate both.
is roughly 30%, about one-third the safe allowable. The result is that although the transmitted carrier is evident by the quieting of the superregenerative hiss on the companion unit, it's somewhat difficult to hear the message as the distance is increased. Of course, you can hold the speaker near your ear, but that's not very desirable, especially in noisy areas,

Why the low modulation? The small speaker, used in the normal mode when receiving, is used as a dyramic microphone when transmitting. This is a very low impedance device (about 8 ohms). Capacitatively coupling it directly to the base of the audio transistor

Fig. 3: Cut the printed circuitry at the point indicoted by the pencil. Simply scratch with knife blade.
results in an extreme mismatch, and consequent loss in power transfer. All we do to correct this condition is to insert a step-up transformer between the "mike" and the first audio transistor. This increases the applied audio voltage and comes much closer to matching the transistor input impedance.

How do we do it? Figure 1A shows part of the original C-100 circuit. Note that when the speaker is switched from receive to transmit it is fed directly (through C8) to TR-2. See the point marked " X "? This is where we are going to insert the matching transformer.

You'll need an 8 ohm to 500 ohm miniature transformer; the Lafayette Radio TR-116 (111 Jericho Turnpike, Syosset, L. I. New York, 79) is ideal in size and rating. The photos show how the TR-116 is neatly tucked in between the two switches of the C-100.

Now look at Figure 1B, which shows the modified circuit. Switch S3 is very important; with a little explanation it's easy to understand why. In the depressed position, the "bottom" of both transformer windings are grounded and the mike develops audio voltage across the 8 ohm winding. This is stepped-up in the 500 ohm winding and fed to TR-2 through C8. But what would happen if there was no switch here and the transformer stayed grounded in the receive mode? The grounded 8 ohm winding would be almost a short circuit to the high-impedance detected signal from the RF detector! If we lift the ground we're still in trouble, since the 8 ohm and 500 ohm windings of the transformer are now a relatively high series resistance to the base of TR-2 and seriously cut audio volume. The solution is to short out the 500 ohm winding when receiving, leaving only the insignificant 8 ohm winding in series, and ground both windings when transmitting.

The Lafayette Radio MS-449 SPDT miniature push button switch (19¢) is tailor made for this task. Install it just below the sendreceive switch, as shown in the photo. You'll
need only a $1 / 4-\mathrm{in}$. hole. Carefully bend the transceiver crystal towards the center of the board to allow room for this new switch.
The actual wiring is pretty straightforward. Remove the circuit board from the case and cut the printed circuit at the point indicated in Figure 2, using a razor blade or knife. Cement the new transformer in position, bottom up. Solder the black transformer wire and the S3-3 lead to the circuit board as shown in Fig. 2. Replace the circuit board in the case. Connect both green transformer wires to terminal 1 of S3 (see Fig. 1B insert for switch numbering). Connect a wire from terminal 2 of S3 to the end of R10 (68 ohm) closest to the edge of the board (ground). Connect the brown transformer lead, and the lead from the circuit board, to S3 terminal 3. This completes the wiring changes.

It's a little inconvenient to press both S1 and S3 at the same time when transmitting. You can solve this problem by cementing a small tab to the S1 send-receive button; this tab extends over S3. Now when you press S1, S3 will also be depressed.

For less than a dollar, and less time and effort than it takes to describe, you can greatly improve your flea-power transceiver modulation. Try it and see!

desig.	MATERIALS LIST-MODIFIED WALKIE-TALKIE
	Size and Description Price
	(Postage extra)
C-100	Citizens' Band Transceiver Kit Allied 83 Y 804.1
T2	500 ohm to 8 ohm miniature audio output transformer Lafayette TR- 116
\$3	SPDT miniature pushbutton switch Lafayette MS. 449
misc.	wire, small aluminum tab, cement. Allied Radio Corporation 100 North Western Avenue Chicago 80, Illinois. Lafayette Radio Electronics Corporation 111 Jericho Turnpike, Syosset, L. I., New York.

FIGURE 1. C-100 MODULATION MODIFICATION

Trickle Voltage Relaxer

By THOMAS J. HIDLEY

It used to be called a "Shock-Box", and was said to heal many of the ills that man is heir to. Electricity was new.

ALOW voltage trickle can be built from a six or twelve volt relay by reversing the points so the relay will vibrate. Whatever other contacts are on the relay can be eliminated or used for other parts of the assembly. The points can be adjusted so
that even a slight voltage will make the contacts vibrate. The tension of the spring can also be reduced. Two flashlight cells are sufficient. Three is the maximum.

After cutting wood to size, sand, stain and varnish each piece. When dry, assemble all

Fig. 1: Aluminum foil over the cordboard tube serves as the conductor. A surplus relay can easily be modified to serve as a vibrotor to deliver the jolt where it's needed.

MATERIALS LIST-VOLTAGE RELAXER

Amt. Req.
Size and Description
Two pieces $3 / 4 \times 15 / 16 \times 51 / 2^{\prime \prime}$ pine
Top \& Bottom for Battery holder.
(Ends)
Two pieces $1 / 4 \times 3 \times 51 / 2^{\prime \prime}$ plywood
Two pieces $1 / 4 \times 17 / 8^{\prime \prime}$ plywood
(Sides)
One piece $1 / 4 \times 31 / 2 \times 6^{\prime \prime}$ plywood
(Base)
One relay, 6 or 12 volts, with surplus male and break contacts.
One dozen small finishing nails, brads or small wood screws.
Three $5 / 32 \times 1 / 2^{\prime \prime}$ brass bolts, including hex nuts and eight brass washers.
Seven feet stranded hookup wire.
One cardboard tube cut in half.
Two pieces $7 \times 12^{\prime \prime}$ aluminum foil to cover cardboard tubes.
Two $5 / 32 \times 3$ " ${ }^{\prime \prime}$ round head wood screws for mounting relay.
One $3 / 32 \times 1 / 4^{\prime \prime}$ long round head wood screw. For press bution.
One round piece of wood $1 / 4^{\prime \prime}$ thick, $3 / 8^{\prime \prime}$ long. Used for bulton.
Surplus contact points are used to make up a push button assembly, and the contacts for each end of the batteries.
the wood parts, mount the relay and pushbutton assembly. Now it is ready for wiring. Wrap the handles of cardboard tubing with the aluminum foil, and seal along the edges with transparent tape from end to end. Push the overlap of foil into the end of the tubes. using a small nut and bolt backed up with two washers. Cut two $30-\mathrm{in}$. lengths of hook-

up wire and attach them to the handles and the relay as in Fig. 1.

Back in the old days people used such a device for relieving their aches and pains. It can be fun at your next party, or the trickle of voltage can be most relaxing.

Fire Extinguisher Chases Radio Bugs

- The chilling effect of a carbon dioxide fire extinguisher will help you locate a defective part in a radio circuit that plays erratically. Often a set works fine for a few minutes after you turn it on, and then suddenly misbe-

haves or goes dead. The trouble may be a part that expands with heat after current has been flowing through for a few moments. Spray suspicious parts with CO_{z} gas one at a time. The intense cold will contract a defective component so it can work normally.

You can also use Charg-A-Can Freon \#12 with a suitable adapter (sold by refrigeration supply houses). However do not use carbon tetrachloride fire extinguishers since the fumes are highly toxic.-T. A. Blanchard.

Twisted Wires Make Capacitor

- You can make capacitors for coupling or neutralizing simply by twisting two pieces of plastic hook-up wire tightly together. The insulation is left on, and you can easily change the capacitance to adjust your circuit.

The chart shows the result of measurements made with a bridge at 60 cycles per second. The "gimmick" capacitors were made of size 20 plastic solid hookup wire twisted as tightly as possible by hand. Leads were $1 / 2$ in. long. Because dielectric constants of various brands of wire will vary, the chart will not be precise in every case.-C. F. Rockey.

Fig. 6: The transmitter layout is uncluttered, and ease of accessibility is assured by hinged side panels.

(Continued from page 33)

Audio communication is maintained on standard 2-meter (146 mc .) equipment, which is much simpler than adding sound to the TV signal.

Camera or "Flying Spot." If you want live action, you must have a camera. For still picture transmission, a flying-spot-scanner technique may be used; we'll cover that a little further on.

Fig. 7: What may ot first glance appear to be "rats-nest" wiring becomes pure and lucid when you understand.

Various types of cameras are available, using either an iconoscope or a vidicon as the eye. Fig. 1 shows the basic elements of an iconoscope, which was the first practical all-electronic pickup tube, and was widely used for many years. Note the relatively large size of the iconoscope. Also, an iconoscope needs a large amount of light to produce a usable picture. A much smaller and more sensitive tube is the vidicon, shown in

FIGURE 10

Fig. 8: Power supplies are siraightforwaid and uncomplicated. Standard electronic construction is used.

Fig. 1.
The newer and more expensive cameras use vidicons, which provide a good picture with normal room lighting; surplus camera units are likely to use the iconoscope, which requires floodlights on the subject for sufficient indoor illumination. Either tube may be used in normal outdoor lighting.

A representative flying-spot-scanner system is shown in Fig. 5. The raster of a TV receiver is projected through a transparent slide onto the active surface of a phototube. The raster is actually a rapidly moving spot of light sweeping horizontally across the face of the TV tube 15750 times per second, and vertically 60 times per second, as provided by the standard TV receiver circuitry. As the moving light beam passes through the darker parts of the slide, it is attenuated in proportion to the slide density. These variations in light are picked up by the phototube, amplified, combined with synchronizing pulses, and used to video-modulate the transmitter.

The use of a TV receiver to produce the flying-spot is very practical these days, with inexpensive used TV sets readily available. However, complete construction information for building a scanning unit, using a 5 - or 8 -in. cathode ray tube, may be found in chapter 3 of "Ham TV," by Melvin Shadbolt WØKYQ.

Several variations are used. For instance, you can use a slide projector "backwards" by replacing the projector bulb with a phototube, and focusing the TV raster onto the phototube. The use of a photomultiplier tube can provide a gain of $1,000,000$ in the conversion of the light variations into an electrical signal.

The flying-spot-scanner restricts you to the display of transparent stills, such as ordinary photographic negatives (which are shifted electronically to be received as positives),

Fig. 9: In this commercial converter, you only have to reposition the contacts on circular funed lines to alter.

Polaroid transparency film, or slides made with india ink, grease pencil or felt marking pens.

Combined Or Separate Sound? Standard broadcast TV stations send sound as well as picture information on the same channel, but with the audio and video carriers separated by 4.5 mc . A few hams, W6VCF for example, transmit both audio and video on the same band, allowing both picture and sound to be received simultaneously on a conventional TV receiver. But this does represent additional complexity in the transmitting equipment (greater bandwidth, additional carrier generation, etc.), and since all hams have other communications equipment, the voice contact is usually maintained on 2 or 6 meters. Often, duplex voice operation is used; in duplex, one station is on one band, the other on a different band. This allows bath reception and transmission of voice simultaneously (like a tele-

Fig. 11: W6VCF at the controls of his rather elaborate TV rig. The huge console is all "home-brew" at low cost.

Fig. 12: Here's how the lens of the surplus TV camera is focused by the selsyn. Nofe rack and pinion set-up.
phone), rather than switching back and forth. This greatly enhances on-the-air adjustments of the TV image, antenna orientation and experimentation, with the receiving station giving comparative reports.

The Transmitter and Modulator. Several methods may be used to transmit the video information produced by the camera or scanning unit. Fig. 6 shows, in block diagram form, the essential elements of one system. A crystal oscillator, followed by a string of frequency multipliers, drives a linear final amplifier in the 420 mc . band. The video signal is amplified and used to grid-modulate the final amplifier. Notice that the oscillator-

Fig. 13: The author sits in the glow of a photo-flood to provide sufficient light for the TV camera. He's on the air!
multiplier stages could be a standard 2-meter transmitter, such as the Gonset Communicator or the Heath Twoer with the addition of a tripler stage and final amplifier for output on the 420 mc . band. Of course, any 420 mc . transmitter, with the addition of the video modulator, could be used.

Another approach is fully detailed in a recent QST article. Here, the amplified output of a conmercial closed-circuit TV camera (55 mc.) is mixed with 385 mc . output of a string of double-amplifiers, with the additive frequency of 440 mc . resulting. This signal, which contains the video information, is then further amplified for transmission.

A recent article in 73 Magazine details the use of the 432 mc . oscillator section of a surplus radar set to drive a power amplifier, and also shows a video amplifier modulator used with a surplus iconoscope camera.

Another practical approach to obtaining a transmitter for use on the 420 mc . TV band is to slightly modify a used $450-470 \mathrm{mc}$. mobile commercial communications unit, such as the RCA CMU-10A or the similar GE MC-306. These transmitter-receivers are sometimes available from factory dealers as trade-ins on new equipment, and require only an external power supply, video modulator and retuning to the 420 mc . band for use as a Ham-TV transmitter. The receiver section is not used at all, and some dealers will sell the transmitter section separately at a considerable saving.

Antennas-Take Your Choice! No matter how powerful your transmitter, or sensitive your receiver, you need a good antenna for efficient operation. Fortunately, at these UHF frequencies, high-gain antennas are quite small. Because they are not large, arrays of many elements are common. Yagi beams, helical beams, parabolas and collinear arrays each have their ardent supporters. In the final analysis, you should use the highest gain antenna you can manage, and put it as high as you can. The use of commercial UHF antennas should not be disregarded; sometimes only a change in the driven element is required to drop the resonant frequency into the 420 mc . band, which is not far below the commercial broadcast UHF TV channels. Care must be taken that the bandwidth characteristic of the anterna is sufficient.to pass the relatively wide band TV signal.
Two antennas specifically designed for amateur TV use are described in WØKYQ's "Ham-TV" book.
An antenna rotator will be a necessity, and a standard TV type will handle these antennas easily.

Converters and Receivers. Standard acoperated VHF television sets can be used for receiving amateur TV signals without modification. ac-dc sets can only be used safely with a simple isolation transformer. Since the
amateur signals are above the normal TV set's tuning range, a UHF converter is added ahead of the TV set. This changes the frequency of the amateur signal down to channel 5 or 6 of the VHF TV band. Many commercial UHF converters, such as the Mallory Inductuner and the Blonder-Tongue 99, are available for less than $\$ 20$, and most of them can be modified to tune down to the $420-450 \mathrm{mc}$. ham band, which is not far below the 470 mc . lower end of the broadcast UHF TV band. The modification to the converter usually involves adjustment of the oscillator frequency by tuning a slug, adjusting the position of the tuned-line contacts, or adding capacitance.

If you are so inclined, you can build your
own converter from scratch.
Details, Details! ! Well, now that we've covered the generalities, you will want to dig into the details. All we've tried to do in this article is to give you enough information to allow you to go from here on your own with some idea of the overall picture. The following paragraphs tell you where to get more information on theory, practice and actual equipment and modifications. From here on, your own initiative must take over. Write the sources listed for more information: the more specific your request, the more specific your reply is likely to be. Let the editor of this and other magazines know if you'd like some detailed articles on Ham-TV.

(Continued from page 77)
clock faces and electric blanket indicators glow.

Now being tested are electroluminescent highway signs, and airport runway indicators consisting of EL lamps imbedded in the pavement.

A leading authority in electroluminescence, William E. Hall, lt. gen., USAF (Ret.), predicts that EL panels will one day be used as marker strips on bridges and highways, in refrigerator and closet walls, and in luminous sidewalks.

Gen. Hall is board chairman of Madigan Electronic Corp., a Carle Place, Long Island company that is a leading developer of uses for electroluminescence. Madigan is the manufacturer of the belt that emits a strobe-like warning for the protection of traffic police, mineworkers, aircraft crews and others.

Called the Band-O-Lite, the belt is the first that actually emits light rather than reflects it. It makes the first use of a new flexible EL panel developed in close cooperation with Sylvania Electric products and is powered by a Madigan development that is considered an important step forward in the application of electroluminescence.

This development is a portable power source using nickel-cadmium batteries. The Pow-R-Mizer, as it is called for very good reason, applies the required alternating field to the EL panels in the circuit and maintain high overall efficiency by utilizing the electrical energy stored in the dielectric of the

Fig. 3. Fiexible belf for traffic officers winks on and off with tright orange color, is easy to see in the dark.

Fig. 4. Dented but undaunted, this Sylvania Electro-luminescent panel stood up against police riot gun fire.
lamp itself. This portable unit is expected to greatly broaden the uses of EL.
Gen. Hall reports that Madigan will use the Pow-R-Mizer in an unusual exit sign that will be introduced shortly. Called the Exit-Lite, it will be powered by ordinary line current under normal conditions and-during emergency disruption of power-it will automatically be activated and powered by the selfcontained Pow-R-Mizer.

Installation of the Exit-Lite will eliminate the need for emergency secondary power lines which are required for safety purposes by many municipalities.

Madigan is actively developing a number of other new products that make use of EL panels. Among these are illuminated street signs that are clearly visible at distances up to 300 ft . on the most dimly lit suburban streets. It will also bring out a flashing safety helmet designed as a companion piece to the flashing belt.

Gen. Hall reports also that his company is broadening the uses of EL in the branch of electronics known as alpha-numeric display, or the pictorial representation of changing information on a cathode screen.

EL panels are ideal indicators in alphanumeric displays. They are flat, hence have a wide "read-out." Moreover, they are much cooler than such indicators as masked filament bulbs, and thus cause far fewer failures. And they can be rapidly switched.
EL displays will soon help control sea and air traffic, instantaneously signal balls and strikes on scoreboards, and transmit stock market prices to brokers' quotation boards.

Madigan recently delivered to the Army Air Defense Command a display system that depicts air traffic in combat zones. Employing EL lamps and advanced memory storage tubes, the display system was installed in two large air conditioned vans for use in any climate.

The company is now developing another display device, for the Air Force, that uses phosphors which are selectively activated by ultra-violet light. The incoming data is instantly exposed and imaged by the Xerox process.

Asked to describe the new frontiers of EL research, Gen. Hall replies that engineers are now chiefly concerned with ways to improve the brightness of EL panels. The applications of electroluminescence are still limited because the panels do not yet have the brightness required for "primary" lighting.
Madigan's own engineers are attacking the brightness problem with a matched power driver. This company-developed power driver, now being tested, almost doubles the brightness of EL lamps when hooked up between the primary power source and the EL panel.

Fig. 5. Incorporated in a clear glass table top, a soft, even light produces glare-free illumination.

Fig. 6. Decorative wall uses EL panel behind screen, walls, floors, ceilings will turn on with switch in future.

FIG. 1: Start the replacement by first disconnecting the wires from the clock motor coil soldering terminals.

Repairing Radio Clocks

When a radio clock mechanism makes noise, the first step is to apply oil. If the unit is a sealed type, try running it upside down to let the oil seep back into the works. If that doesn't help, try this before changing the unit . . .

By L. RIVMAN Semitronics Corp.

WITH clock radios now as common as the ordinary ac-dc set, it is understandable that you will be called upon to service the timer portion of the clock radio.

Although 75% of the clock radio troubles are in the radio itself, the other 25% of the troubles can be repaired with little or no difficulty.
Look closer into the radio clock timer and you can see it is similar in construction to the mechanism used on electric ovens, dehumidifiers, vending machines, advertising clocks, electric timer switches, x-ray equipment, electric broilers, barbecue stoves, refrigerators, washing machines, dryers, and others.

One of the major difficulties encountered in the service of electrical timer apparatus, has been the procurement of replacement parts. There has been no centralized procurement of parts to repair these millions of appliances. The consumer has had to rely entirely upon the factory service repair stations. The difficulty of having to return the appliance to the factory for repair and service is a troublesome one. Usually, there is a minimum service fee, plus shipping charges. This has made repairing timers quite costly.
The business of supplying spare parts for appliance timers actually arose out of a problem with a noisy clock radio. An employee of the Semitronics Corp. of New York could not
sleep nights due to the excessive noise from the motor of his clock radio. Trying to purchase a replacement motor from a local radio distributor, he was shifted to an appliance dealer. The appliance dealer sent him to the company directly. Atfer finally obtaining the replacement motor, he repaired the clock without difficulty.

Other than the motors in radio and appliance timers that one may experience difficulty with, is the electrical switch. The most common trouble is the burning out of switch contact points. The switch, like the motor can be easily replaced in the timer.

The following list of clock and timer repairs can be accomplished by any competent electrical handyman.

- Replacement of open or shorted motor coil
- Replacement of motor mechanism
- Replacement of knobs and bezel
- Replacement of electrical switch
- Replacement of broken crystal or dial
- Adjustment of alarm and vibrator
- Cleaning of clock mechanism

In order for you to repair an appliance timer intelligently, it is necessary to understand the function of the unit. An appliance timer is a mechanical unit, electrically controlled to operate at a predetermined time or sequence. It may be set to turn an apparatus on, off, or signal at a predetermined time, or at intervals.

Ir a! allock radios, the clock motor is connected directly across the ac power line, indepencient of all switching. Therefore, the clock motor should always be running regardless of switch setting or electrical sequence. The clock motor is independent of the radio.

There are two time switches on the clock radio. One is manual and usually on the front panel. The second switch, in parallel with the
first is automatically clock operated. Since these switches are in parallel either one will operate the timer mechanism (not the clock motor). It is impossible to switch the clock on or off.

The outlet plug receives current when either of the two switches are turned on. Thus an externally connected appliance is automatically activated.

Possible troubles and causes in appliance timers:

Defect	Cause
Clock will not operate	Open ac line Defective motor coil Defective rotor or motor Defective clock switch Binding of parts
Clock noise	Defective motor or rotor loose parts Binding of parts Alarm armature improperly adjusted Loose laminations
Clock Loses or gains time	Defective motor coil Defective motor rotor Binding of parts Bent timing shaft Damaged or broken teeth or gears

Visual Inspection and Test. Inspect for any obvious defects such as bent shafts, hands, broken crystal, broken cabinets, etc.

Measure motor coil to see if it is shorted or open. If O.K., plug into ac line and observe. Note. Never plug clock into dc line.
Removal and Replacement of Parts. To disassemble the clock movements, be sure to observe the following precautions:

1. Knobs on the front of radio clocks are push-on type. Remove by grasping them and pulling

FIG. 2: With the clock motor removed completely from the radio and switching circuit, proceed with work.

FIG. 3: Remove the two screws labeled " A " and "B,"

FIG. 4: Removal of the screws " A " and " B " permit the motor coil and rotor to be disassembled from the frame.
them off gently. Knobs on the beck of the clock are usually screwed on. They may have a reverse thread. Do not apply too much force. Remove with caution.
2. Bezels are usually held on with tabs bent over dial back. Straighten tabs to remove bezel.
3. Crystals may be attached with plastic tabs that snap onto the dial. Remove by gently forcing crystal off. Many crystals are part of the cabinet and cannot be removed.
4. Dials may be removed by straightening the ears that are usually bent over the back.
5. Hands may be removed by grasping them with thin-nosed pliers. Carefully remove each hand individually by grasping with a thinnosed plier as close as possible to the shaft. Avoid bending or scratching the dial.
Excessive heat may cause damage. Do not use a large soldering iron. Apply only enough
heat to loosen the electrical connection.
Cleaning Movement. All movements should be blown out and cleahed with carbon tetrachloride before replacing in cabinet. Oxidized oil may be removed by rubbing with a fine grade of steel wool moistened with carbon tetrachloride,

Lubrication. Do not use too much oil. Oil collects dust. It may stain the crystal and dial, Use only clock oil. Lubricate the two arms and bearing holes and the end of the sweep second shaft of the back bearing plate. Using graphite, lubricate levers and cam gears.

Cleaning for Appearance. Clock radios should be returned as new looking as possible. Clean plastic crystals with soft cloth using only water, and glass crystals with a

FIG. 5: Using thumb and genile pressure, push out the rotor assembly. Do not hammer; push it carefully.

FIG. 6: Insert the new rofor cail or motor, depending on which was the faulty part determined by your tests.

FIG. 8: Reconnect the wire leads to the motor coil soldering terminals and replace the unit into the radio.
turned on.
If the switch contact does not close at the correct time, the minute hand should be moved to make the necessary adjustment. The time set knob should be held firmly while the minute hand is being moved.

To adjust the alarm period, set the clock so that it reads ten minutes after the time set for the alarm. Slowly turn the adjusting screw in until the shut off lever just slides aver the edge of the screw head.

To adjust the tone of the vibrator, connect power to set, have the vibrator operate, and bend the vibrator arm (close to its anchor point) nearer or farther from the field core. Do not over bend.

Replacement parts for repairing clock mechanisms are available from Semitronics Corp., 265 Canal St., New York City.
(Continued from page 87)
$\%$ of modulation $=$ Emax $-E m i n$
$\%$ of modulation $=\overline{\mathrm{Emax}}-\overline{\mathrm{Emin}}$ X 100
It is recommended to couple the transmitter directly to the vertical plates, because very few oscilloscopes contain amplifiers with linear frequency response over 5 MC .

Alignment: The most popular application of the oscilloscope, of course, is in the alignment or servicing of FM and TV receivers. However, the procedures recommended by different manufacturers of these appliances vary to such degree, that it would be difficult to recommend a general procedure. The alignment steps are always fully described in the manuals for any given model, and they should be followed explicitly. In troubleshooting of TV receivers the manuals also
should be consulted for proper wave shapes at critical points of the circuit.

In conclusion we would like to mention, that in recent years oscilloscopes became very popular in industrial applications. Armature, testing, resistance welding, pressure measurements, motor tune-up, testing photographic shutters are just a few examples. In most of these cases the techniques are quite involved and require special accessories or modifications of the scopes. With the wide acceptance of the oscilloscopes the price of this instrument became accessible to anybody interested in electronics. Once you master the techniques of different applications, you will find this instrument a great time saver and a willing helper in most of your problems.

Tube Shells House Tiny Circuits

- Discarded metal vacuum tube shells make neat shielded housings for plugin relays, transistors, and diode circuits. Pry the base from the tube and discard the innards. Solder in your transistor circuit making connections to
 the base pins, and you have a plug-in device that fits tube sockets. If components such as resistors radiate heat, then drill enough vent holes to provide an adequate air circulation.-John A. Сомstock.

Solder Spool Carries Flux Can

 - Attach a cork to the lid of your can of soldering paste and set your spool of solder down over the plug as a means for keeping the can of flux handy. It will always go wherever the spool of solder goes and will also serve as a base to keep the spool from tipping over and rolling off the bench.-J. A. C.
Putły "Tacks" Wire to Terminal

- When you want to temporarily connect a low current-carrying wire to a terminal (as in building experimental circuits) and haven't the time to fasten a test clip to the end, use a small wad of putty or modeling clay to momentarily "tack" the wire in place. Just place the bare tip of the wire to the terminal and press a small wad of the putty or clay over top of it.-John A. Сомstock.

Nailpolish Is "Liquid" Insulation

- Nail polish makes a high-quality liquid in. sulation for coating bare electric wire connections and is especially easy to apply to radio-TV connections that are difficult to reach with tape. After the connection has been soldered and allowed to cool, apply the polish with the handy-applicator brush provided in the bottle. If the connection has to be unsoldered later, just the touch of a hot soldering iron will burn away such insulation with a puff of smoke.-John A. Сомstock.

Tape Splicing Technique

- Clear fingernail polish serves as an excellent cement when splicing recording tape. Taper cut the two ends of tape at a 45° angle, then daub some of the polish on the leading edge of one piece and overlap the other piece $1 / 8 \mathrm{in}$. Let dry for about ten minutes, then daub polish on the overlapping edges to ensure a perfect splice. You'll have a firm, longlasting splice that can withstand considerable tension and flexing as the tape passes through the recording machine, and is just as good as one made with cellulose splicing tape.-Jонл A. Сомstоск.

Charged Plastic Dusts Platter

- If the grooves of your hi-fi phonograph records are filled with dust, here's how to remove it the harmless electrostatic way: Take a piece of Saran plastic wrap and crumple it in your fingers while holding it about an inch above the surface of the revolving platter. The static electricity produced by crumpling the plastic will attract the dust particles and hold them. If you watch very closely, you'll actually be able to see them jump from the platter to the charged wade of plastic.-J.A.C.

The

Crystal Ball

 July-September 1963By C. M. STANBURY, II

"WHERE should I listen for it and when?" This is the question most often asked by SWLs. They can obtain a variety of answers, usually based upon the sunspot count and season (see, "How Short Wave Works" on page 70). Unfortunately, this 100% technical approach can provide only half an answer. For example, suppose 41 M is the best band for Latin America during the evening hours. So what? There just aren't any Latin American SWBC stations on this band. Obviously you must take into consideration the stations themselves. If

31 M is best for Africa but most of the action is on lower frequencies, a "compromise" prediction must be made.

Time in the following table is standard time at the listener's location (for daylight time add 1 hour) which effectively compensates for differences in reception conditions between the east and west coasts of North America. However, Asia will generally be stronger in the West with the reverse true of Europe. This is an important factor when anticipating interference.

Bands in brackets are second choices.

Free literature

GENERAL PARTS DISTRIBUTORS

49. Want a colorful catalog of sur plus goodies? John Meshind Jr. has one that covers everything from assemblies to Zener diodes. You can buy complex units that set the government back thousands, at a fraction of the cost!
50. This catalog is far too detailed to describe here. Circle No. 50, and Lafayefte Radio Electronics Corp. will send one you can examine for yourself!
51. Here's another catalog that's bursting with goodies from Radio Shack Corp. Included is the exclusive line of Realistic equipment. If you can't find it here, you just can't find it!
52. We'll exert our influence to get you on the Olson mailing list. This catalog comes out regularly with lots of new and surplus items. If you find your name hidden in the pages, you win $\$ 5$ in free merchandise!
53. A 16-page catalog of new and surplus bargans fron $A L C O$ Electronic Sales is yours for circling No. 53. We'll get your name on the regular malling list, too.
54. Catering to hams for many years World Rudio Laboratories has a few flyers for you to look over. These include their new transmitter and an assortment of other products that deserve space in any ham shack.
55. This catalog is so widely used as a reference book, that it's regarded as a standard by people in the electronics industry. Don't you have the latest Allied Rudio catalog? The surprising thing is that it's free!
56. Unusual scientific, optical and mathematical values. That's what Edmund Sciemific has. War surplus equipment as well as many other hard to-get items are included in this catalog.
57. Bargains galore, that's what's in store! Poly-Paks Co. will send you their latest four-page flyer listing the batest in merchandise available, including a giant $\$ 1$ special sale.

SCHOOLS AND EDUCATIONAL

57. Three new courses in marine communtation, aircraft communication, and guidance and mobile communications are available from Na tional Radio Institute. The pamphlets are well-illustrated and educational.
58. Here are three pamphlets dealing with television trouble-shooting, radio trouble-shooting and high fidelity. These, from Progressive Edu-Kit: are very complete and easy to understand.
59. Interested in ETV? Adler Elecronics has a booklet describing educational television and this goes into a depth study of ETV in all its ramifications. There's a good science fair project here for someone!
60. For a complete rundown on curriculum, lesson outlines, and full details from a leading electronic sihool, ask for this brochure from the Imdiand Home Study' Institute.

MICROPHONES, SPEAKERS, TAPEHEADS, CARTRIDGES, HEADPHONES

60. Don't miss this bulletin of professional quality microphone stands. Aslas Sound will send it along with a listing of accessories, including ex-plosion-proof loudspeakers!
61. This company makes the headsets that are used as terminal communications by our astronauts. The stereo pliones that Roanwell Corp. has for hi-fi-nicks reflect the same standards of quality.
62. Tone-arms, cartridges, hi-fi, and stereo preamps and replacement tape heads and conversions are listed in a complete Shure Bros. catalog.
63. Here's a beautifully presented brochure from Alrec Lansing Corp. Studio-type mikes, two-way speaker components and other hi-fi products.
64. For the love of mikes! Astatic Corp. has lots. Studio types, ham types, recording types, etc. See its catalog sheets for the details.
65. A name well-known in audio circles is Acoustic Research. Here's its booklet on the famous AR speakers and the new AR turnable.
66. Loudspeakers, enclosures, systems, and mikes are the specialty of the house at Electro-Voice, and they have a catalog to prove it. Speaker enclosures are either finished in your choice or untinished for do-it-yourselfers.
67. Speakers and enclosures from Argos Products Co. feature a new and novel wall-mounting system. To lind out more about this, circle No. 67.
68. If you know stereo, you know Empire. If you DON'T know Empire, you'd better ask for this four-page brochure, and get in on the news.
69. Tape recorder heads wear out. After all, the head of a tape deck is like the stylus of a phonograph, and Robins Industries has a booklet showing exact replacements. Lots of good info on how the things are built, too.
70. A wide variety of loudspeakers and enclosures from Utah Electronics
lists sizes, shapes, and prices. All types are covered in this 16 -page heavily illustrated brochure
71. Here's a "plus" deal. EICO will send you a complete catalog of their new electronic kits, ptus a four-page cour te leading to a novice class amateur license, pius a chart of electronic symbols, and tinally, a booklet explaining the "why" of stereo!
72. Catalog sheets describing the Philmore line of UHF-TV converters, ('B walkie-talkies, speaker-mikes, code oscillators, can be had by circling No. 72.

KITS
73. Here's a firm that makes everything from television kits to pocket stoves. The Conar catalog is yours for the asking. Circle No. 73.
74. Interested in tackling a TV kit? Arkay' Kils, Inc. will send you full literature (including a schematic) of this truly educational kit. It's used in many of the electronic schools.
75. Nothing to hide, that's HarmonKardon!' They send you a batch of literature describing their products, complete with technical laboratory reports. The equipment is of course. beautiful. It sounds as good as it looks.
76. Here's a 100 -page catalog of a wide assortment of kits. They're highly-styled, highly-versatile, and Heath Co. will happily add your name to the mailing list. Circle 76.
77. Do you think you should expect to save money by building kits? Narional Kirs has a four-pager that will be a real eyc-opener.
78. A long-time builder of ham equipment. Hallicrafters, Inc. will happily send you lots of info on the han, CB, and commercial radio equipment, They've also sponsored the CB react teams, and will fill you in on those detals too.
79. A complete line of test equipment as well as a wide assortment of hi-fi and stereo gear from PACO Kirs will come your way if you circle 79.
80. A complete booklet and price list giving you the inside data on Schober Orsoms will come your way if you check 80. We just found out that these beauties sound even better than they look!
110. When a manufacturer of highquality high fidelity equipment produces a line of kits, you can just bet that they're going to be of the same high quality! H. H. Scoft, Inc., has a catalog showing you the full-color, behind-the-panel story.

ACCESSORIES

81. Got "furniture-sag"? Hmmm? Adiustable Caster Co. thinks you'd better level the shelf your turntable sits on before you try to level the turntable itself! Lots of data here.
82. A catalog describing a complete assortment of radio and TV tube procectors. fuses, tight winkers and a wide variety of switches and outlets from Eagle Electric will come your way if you circle No. 82.
83. Are you still paying drukstore prices for tubes? Naionwide Tube Co. will send you their special bargain list of tubes. This will make you light up!
84. Here's some info on a wireless remote control for your hi-fi, or if you prefer, they have a wired version for you. There's also a sweet little phase and balance meter. Stereosomics. Inc. will send it all if you check 84.
85. Some of the teentsy-wcenies that Chicago Miniature Lump Works sells make a $\ddagger 47$ pilot lamp look like a 100 watter! They'll be happy to send you their catalog.
86. Data processing and display equipment, ultrasonic tools, and rechargeable batteries are described in a passel of literature from Guiton industries. Check No. 86 and watch the mailbox!
87. A 12 -page catalog describing the audio accessories that make hi-fi living a bit easier is yours from Swithcraft. Inc. The cables, mike mixers. and junctions are essentials!
88. Here's a goodly assortment of literature covering the products of the Dow-Key Co. They make coaxial relays, switches, and preamps for hams and CBers.
89. Got some questions regarding transistor ignition? W. F. Palmer Labs will send you a booklet which explains what transistor ignition is all about. If you decide, after reading. that this is for you, their kits will let you build your own!
90. A booklet on TV and radio servicing, a tube price list, and an unusual
through-the-mail diagnosis request form entitle you to an analysis of your sick set for a buck! It's all from Century Electronics.
91. Delayed action switches for the home or car, something brand new in miniaturized amplifiers, a new lightdimming switch as well as the other Saxton Products are listed in brochures.
92. Ever try to find your house number in the dark? Your visitors have the same trouble. An electroluminescent panel makes house number casy to read and a door bell button makes this Madigan Electronic unit serve double duty.
93. Great Britain comes through with an assortment of hi-fi needs from the famous Garrard turn-tables to some fancy speakers, 5 -core solder and quality hi-fi tubes. British /hdustries will happily send the whole patkage for your leisurely perusal.
94. Want to see the latest in communications receivers? Nafional Radio C'o. puts out a line of mighty tine ones and their catalog will tell you all about them.
95. "Get the most measurement value per dollar." That's what ElecIronic Measurements Curp. says. looking through the catalogue they send out, they very well might be right!

TAPE RECORDERS AND TAPE

92. Want to see the latest in portable tape recorders? Curious about an intercom with a fabulous wound tosize ratio? Mathew Stuart. Inc. will send all the details at your request.

93 "The Care' and Feeding of Tape Recorders" is the title of a booklet that Starkes-Tarzian will send you. It's 16 pages jam-packed with info for the home recording enthusiast. Includes a valuable table of recording times for various tapes
94. You can learn lots about tape recorders. Big tape recorders for studios, little tape recorders for business men, all kinds of tape recorders from American Concertone.
95. If you are serious about home tape recording this technical bulletin and descriptive literature from Kodak (Yup! They're making recording tape) will interest you.
96. Here's a list of a complete line of tape machines. Also, SONY Superscope will include a list of ways that you can use a tape recorder, and some of these were new to us!

RADIO

97. Are you getting all you can from your Citizens Band radio equipment? Cudre Industries has a booklet that answers lots of the questions you may have
98. Antennas for CB and ham use as well as for commercial installations is the specialty of Antenna Specialists Co. They also have a generator for power in the field.
99. Convert your home or shop from clutter to convenience with the AhroMills cabinets. Those see-through drawers eliminate cigar-box confusion!
100. An assortment of high fidelity components and cabinets are described in the Sherwood brochure. The cabinets can almost be designed to your requirements, as they use modules.
101. Very pretty, very efficient. that's the word for the new Betacom intercom. It's ideal for stores, offices. or just for use in the home, where it doubles as a baby-sitter.
102. Here's some more data on transistor ignition systems for cars. Alutomotive Electronics Co. has the whole story here, including typical wiring diagrams
103. One of the best ways to make a radio signal get up ' n ' git is to put the antenna up high enough, and you will need a place to hang it. Take your pick from this catalog of towers by Tri-Ex Tower Corp.

TELEVISION

104. The smallest television set to date is featured in this beautifully prepared brochure from SONY Corp. You'jl be amazed at the variety this firm offers.
```
Radio-TV Experimenter, Dept. FL-644
505 Park Avenue
New York 22, N. Y.
Please arrange to have the literature whose numbers I have
encircled sent to me as soon as possible.
```



```
Please arrange to have the literature whose numbers I have encircled sent to me as soon os possible.
```



```
\begin{tabular}{lllllllllllll}
49 & 50 & 51 & 52 & 53 & 54 & 55 & 56 & 57 & 58 & 59 & 60 & 61 \\
62 & 63 & 64 & 65 & 66 & 67 & 68 & 69 & 70 & 71 & 72 & 73 & 74 \\
75 & 76 & 77 & 78 & 79 & 80 & 81 & 82 & 83 & 84 & 85 & 86 & 87 \\
88 & 89 & 90 & 91 & 92 & 93 & 94 & 95 & 96 & 97 & 98 & 99 & 100 \\
101 & 102 & 103 & 104 & 105 & 106 & 107 & 108 & 108 & 110 & 111
\end{tabular}
NAME (Print cleorly)
```


NEW PRODUCTS

Terminals Really the End!

Solderless terminals feature aluminum crimping rings and gold-plated metal parts for high conductivity. Teflon bushing cartridge provides for effective moisture shield as well. Crimped with manufacturer's hand or power crimping tools. AMP Inc., Dept. RTE, Harrisburg Pa.

New "Loudenboomer"

The "Slenderette". shown here is only 5 in. wide and can be placed on the floor, on a wall, on a shelf, and contains five (count 'em) speakers. Two $6-\mathrm{in}$. woofers, one $8-\mathrm{in}$. midrange, and two $31 / 2-\mathrm{in}$. tweeters. $\$ 39.95$ from Lafayette Radio, Dept. RTE, 111 Jericho Turnpike, Syosset, L. I., N. Y.

Up to 32 Hours per Reel

Thanks to a new head from Phillips, with a gap of only 0.0001 in ., you can add a new standard speed to tape recorders; $15 / 14 \mathrm{ips}$ provides up to 32 hours on a standard 7 -in. reel. The rest of the unit is fully transistorized and has the other three common speeds as well! Called the Continental 401, it's available for $\$ 399.95$ from Norelco, Dept. RTE, 230 Dusly Ave., Hicksville, L. I., N. Y.

For the Rock-Bound

This six-meter VFO costs a lot less than a handful of crystals, and covers a much wider frequency range. If that isn't enough of an argument for you, remember the last time you lost a rare one because you weren't close enough to his frequency. 'Nough said? It's called the HE-61 and sells for $\$ 19.95$ from Lafayette Radio Co., Dept. RTE, 111 Jericho Turnpike, Syosset, L. I., N. Y.

Fire Insurance

Automatic fire alarm consists of six sensitive thermostatic detectors and a two-horn signal unit. Enough wire to hook the unit up and a lantern battery complete the system. A manual test button permits checking to see that all is functioning properly. Model ML290, $\$ 29.95$ from Lafayette Radio, Dept. RTE, 111 Jericho Turnpike, Syosset, L. I., N. Y.

Multi-Generator

With the big boom in multiplex well under way, you'll need this piece of test equipment to service the new stereo tuners. Gives you channel separation, balance, sync pull-in and hold-in range for adjustment and measurement. Model E-490 available from Precision Apparatus Co., Dept. RTE, 70-31 84th St., Glendale 27, N. Y.

It's MAGIC

Here's an airborne digital computer that actuates vehicle controllers for guidance, or cortrol of missiles, space vehicles or aircraft. Utilizes molecular electronics and the produetion model will weigh in at 34 lbs . AC Spark Plug, Dept. RTE, Milwaukee 1, Wis.

NEW PRODUCTS

Fireless-Works

Using fiber optics, light is bent and distributed in patterns and colors. The display, designed for indoor commercial and industrial use, is accompanied by taped festive music and synchronized swishes, whistles and booms. Mobilcolor, Dept. RTE, 232 E. 53rd St., New York 22, N. Y.

Beam-Current CRT Checker

Tests AND rejuvenates all picture tubes and checks for screen brightness under hi or lo line conditions. Provides correct filament voltage continuously variable from 1.5 to 12 volts, regardless of line conditions. $\$ 44.95$ for the kit, or factory wired at $\$ 59.95, \mathrm{PACO}$, Dept. RTE, 70-31 84th St., Glendale 27, L. I., N. Y.

More Letters

Now it's DDRR. English translation? Directional Discontinuity Ring Radiator. Sorry, we said English translation! It's a new concept in antenna design in which recent tests of the 2 -foot-high model performed with the same efficiency as a conventional $60-\mathrm{ft}$. tower antenna. For more info contact Northrup Corp., Ventura Div., Dept. RTE, Northrup Bldg., Beverly Hills, Calif.

Portable Recorder

Boasting a signal to noise ratio of -42 db , this unit will record four-track mono and playback four track stereo with a second channel system. Operates at $33 / 4$ or $71 / 2$ ips will hande up to a $7-\mathrm{in}$. reel. Model RK-137, $\$ 89.50$ from Lafayette Radio, Dept. RTE, 111 Jericho Turnpike, Syosset, L. I., N. Y.

Whilits Rado 100

An up-fo-date broadcasting directory
AM, FM, TV, and short wave stations

Every effort has been made to ensure accuracy of the information listed in this publication, but absolute accuracy is not guaranteed and, of course, only information available up to press-lime could be included. Copyright 1963 by Science and Mechanics Publishing Co., a subsidiary of Davis PublicaHons, Inc., 505 Park Ave., Now York 22, N.Y.

QUICK REFERENCE INDEX

U.S. and Canadian AM Stations by Frequency. 153
U.S. and Canadian AM Stations by Location. 163
U.S. AM Stations by Call Letfers 172
Canadian AM Stations by Call Letters 180
Mexican and Cuban AM Stations 184
U.S. FM Stations by States181
U.S. FM Stations by Call Letters 184
Canadian FM Stations by Location. 187
Canadian FM Stations by Call Leffers 187
U.S. Television Stations 188
Canadian Television Stations 189
World-Wide Short-Wave Stations. 190
U. S. and Canadian AM Stations by Frequency
U.S. stations listed alphabetically by states within groups, Canadian stations precede U.S.Abbreviations: Kc., frequency in kilocycles; W.P., watt power; d-operates daytime only. Wave length is given in metersKc. Wave Length W.P. Kc. Wave Leagth W.P.|Kc. Wave Length W.P. Kc. Wave Length W.P.

540-555.5
CBT Grand Falls, N,F. CBK Regina, Sask. KVIP Redding, Calli. WFGB San Diego, Callf. WDAK Columbus Florida 50000d WDAK Columbus, Ga. KWRY 8oda Springs, Idahe KWMT FL, Dodie,
KNOE Monree, La, WNOE Monres, ka. Pity 5000 WBic islip. N.Y. City, Md. 500d WETC Wendell.Zobulon, N ${ }^{250 d}$ WARO Canonsburg Pen, N.C. 250 g (WYNN Florenes \& ${ }^{\text {W }}$ WDXN Clarksulits WRIC Riehlands, V^{2} enn. l000d 550-545.1
CFNB Froderleton, N.B. CFBR Sudbury, Dit. CHLN Thres Rivers, Que. CKPG Prince Geerie, B.C. KENI Anshorate, Alatk KOY Phoenix, Ariz. KAFY Bakertfield, Callf. KRAY Crale. Colo. WAYR Orange Park. Fla. WGGA Galnesville, Ga. K FR M Concordi Havilil KFRM Concordia. Kansis KSD Gol Unpus Miss. KOPR Butte Mont. KOPR Butto, Mont. WDBM Statesville, N.C. KFYR Bismarsk. N.Dot WKRC CIneinnati, Ohlo KOAC Corvallis. Oreg. WHLM Eloomsbury, P WPAB Ponte, P.R. KCRS Maldand Tot, R.I KTSA San Antonio. Tax. WDEV Waterbury, VA WSVA Harrisonbure Ve KARI Blalne, Wath. KMRE Spokane, Wash. W8AU Wauseu. Wls.
560-535.4
CJDC Dawson Creok. B. C. 10000 CHCM Marystown, Nind., Can. Ikw IKL Kirkiand Lake, Ont. $\$ 000$ CFD8 Owen Seund, Dnt. CKCN Seven Iles, Que. WOOF Dothan, Ala, KYUM Yugan Ariz. MOA Denver. Colo. WQAM Mlami. Fla. WMO Chicago. WGAM MIddiesbore, ky WGAN Portland, Maln WHYM Barint id d. WHYN 8erinoteld. Mas

N.P.
 10000
 50000 5000

1	K
K	

W
 C CFCB Qussnel, B,C. CFCB Corner Brook, N,F CFWH Whitehorse, N.Ba WAAX Gadsden, Ala. KCNO Alturas, CAlf. KLAC Los Angoles, Calif, WGMS Washinitoa, D.C. WACL Wayeross, Ga. WKYB Padueah. KY. KGRT Lis Cruess. N. Mox, WMCA Now York, N.Y. WMCA Now York, N, Y
WSYR Syracuse, ${ }^{\text {W. Y. }}$. WWNC Asheville. N.C. WLLE Ralolgh. M.C. WKBN Younctomen, ohi WNAX Yankton, S.Dak WFAA Dallas. Tis. WBAP Ft. Worth. KLUB sait Lake city, Ut KYI 8eaftle, Wash. WMAM Marinetto, wis.

$580-516.9$

CJFX Antienish. N. S. CFRA Ottawa, Ont. CKEY Toronte, Ont. CKPR Ft. WIllam, Ont. CKUA Edmonton, A. CHLC Hauterive, Que. WABT Tuskeree, Ala. KABi Ketehikan. Alask KTAN TuEson, Arlz. KMJ Frasno. Calıf. KUBC Montroite, Colo. WDBO Orlando, Fla. WGAC Augusta, Ga. KFXD Nampa, Idaho WILL Urbana, IIn. KSAC Manhattan. Kams. WIBW Topoka, Kans. KALB Aloxandris. Lian. WTAG Worestor Mase. WELO Tupslo. Nils. KANA Anaconda, Wont. WAGR Lumberton, N.C. KWIN Ashidnd, Oret. WHP Harrisburs, Pa.
WKAQ Ben Jua, P.R KOBH Hot Sprime, S.Dak. WRKH Reskweod, Tenn.
KDAV Lubboek, Tox. KDAV Lubboth. Tot, WLES Lavraucilio, Ve

WCHS Charleston W.F.| Nc. Weve Lengrh W.P. $\begin{array}{lllll}\text { WCHS Charleston, W.Va. } & 5000 & \text { CKYL Peace River, Alta, } 10000 \\ \text { WKTY LaCrosse, Wis. } & 5000 & \text { WSGN Birmingham, Als } 5000\end{array}$ 590 - 508.2
CFAR Flinflon. Man. CKRS Jonquiere. Que. CFTK Tefrace. B.C. KOCM St. Johns, N.F. KHAR Anthorape, Alsaka
WRAG Carrollton, Ala, KBHS Hot Springs, Ark. KFXM San Barnardino, Cal. KTHO Tahoe Valley, Calif. KCSJ Puablo, Cois.
1000 WDLP Panama City, Fla.
1000 WPLO Atlanta, Ga.
8000 KEMB Honolulu, Havall KID Idaho Falls, Idahe
WBBY Wood River, Ill. WVLK Lexingten. KY WEEI Rexiniton, Ky WKZD Kalamazoo, Mieh. KGLE Glendive, Hont. WOW Omaha. Nebr. WROW Albany. N.Y. WGTM WIIsen. N.C. KUGN Euneme, Ores
WARM Serman. Pa WARM Seranton, Pa, KTBC Austin. Tan. K8UB Codar Clty, Utah WLVA Lynchbur: Va. KH0 8pokane. Wash. 600-499.7 CFCF Montreal, Qua. CFOC Narth Bay, Ont. CJOR Vineouver, B.C CKCL Trure, N.S
8000
80000
80000
5000 3000 KVCV Reddin. Ariz. 10000 d KZ1X 8an Diego. Callf. 80000 WICC Bridenins, Cole. 5000 WPDG Jeksenvilie. Fla. 500d WMT Cedar Raplds. lowa 1000 WWOW New Orleans, La. WFST Caribou, Maina WCAO Baltimore. Md. WLST Eseanaba, Mich. WTAC Fliat, Mith. KGEZ 部涫pell, Mont.
WCVP Murphy, N C WCVP Wurphy, N.C.
W8JS Winston,s W8JS Winston-Salon, N.C.
KSJB Jimestown. KSJB Jamestown. N.D.
WFRM Coudersport. Ps. WFRM Coudersport. PA
WAEL Mayapuez, P. R. WAEL Mayaquez, P.R.
WREC Mamphis, Tent. WREC Momphis, Tont KROD El Pase. Tox. KTBB Tyler, Tex. $610-491.5$ CKML Mont Lauriar, Que. CHNC Now Carilsle. Que. CJAT Trall, E.C. CKKL Immasen, Man.

WSGN Birmingham, Ala. $\quad 5000$ KFAR Fairbanks, Alaska 5000 KAVL Lanesister, Callf. 1000 KFRC San Franelsce. Calif. 5000 $\begin{array}{lll}1000 & \text { WTOR Torrington, Conn. } 1000 d \\ 1000 & \text { WCKR Miaml. FIa. } & 5000\end{array}$ 10000 WMEL Pensacola, FIa. 500 d S000 WCEH Hawkinsvills, Ga 500 d l000d WRUS Russellville, Ky. 500 d 000d KDAL Duluth, Minn. 5000 1000 WDAF Kansas City, Mo. 5000 1000 KOJM Havre, Mont. KCSR Chadron. Nabr. 1000

$1000 d$ 1000 WGIR Manchester. N.H. 5000 | 5000 | KGGM Albuquaraue, N.Mex. 5000 |
| :--- | :--- |
| 5000 | WAYS Charlotte, N.C. | 5000 WAYS Charlotte, N.C. 5000 WTVN Columbus, Ohio 5000 WIP Philadelohla, Pa. 5000 KILT Houston, Tox.

5000 5000

5000 WVNU Losan, Utah 500 d WHPL WInshester, Va 5000 KEPR Konnowiek. Wash. 5000 | 5000 | |
| :--- | :--- |
| 5000 | $620-483.6$ |

5000 CFCL Timrins, Ont.

\qquad | CKCK Resina, Sask. | 5000 |
| :--- | :--- | CKCM Grand Falls. Nild. $\quad 10000$ KTAR Phoonix, Ariz. 5000

KNGS Hanford, Calif KNGS Hanford, Callif. 1000 K8TR Grand Junction. Colo. 5000d WSUN St. Petersbure. FIa. 5000 5000 0000 KWAL Wallate, Idahe KMNS Sloux City lat WTMT Loulsvilio, Ky. WLB2 Bansor. Mislne WJDX Jackson, Miss. WHEN Syracuse N. Y WDEN Durham, N.C. KGW Portland, Ores. WHJB Greensburb. Pa WCAY Cayee, S.C. WATE Knoxville, Tenn KWFT Wlehita Falls. Tax. WVMT Burlington. $V \mathrm{t}$. WWNR Beckloy, W.Vs WTMJ Milvaulee, WIs. $630-475.9$

CFCD Chatham. Ont.	1000
CKAR Huntrvilie. Dnt,	1000

CHLT Sherbrooks, Que. 10000 CFCY Charlottostown, P.E.I. 10000 CFCY Chariottestown, P.E.I. 10000
CJET 8wlth Falls, Ont. 1000
CKRC Winnipes. CKRC Winnipes. Man. 10000 CKDV Kolbwna, B.Ca.
WAVU Albertvilie, Als. CHED Edmenton. Alte. WJDB Thonesvifie. Ala, KJND Junceus. Alaskis KVMA Matnolis. Art KIDD Monterey. C ${ }^{\text {allf. }}$ KHOW Donver, Colo.

WHuTE'8 RHDIO 200

Kc. Wave Length WMAL Washington. D.C. WSAV Savannah. Ga. WNEG Toceoa Ga.
KIDO Boise. Idaho WLAP Lexingten, Ky KTIB Thibodaux, La, WJMS Ironwood, Mich.
KDWB So. St. Paul, Mi KXOK St. Louis. MO. KGVW Belgrade, Mont. KOH Reno. Noy. KLEA Lovington, N. Mex. WIRC Hickory, N.C. WMFD Wilmington, N.C. KWRO Coquille, Ore WEJL Scranton. Pa. WKYN San Juan, P. R,
WPRO Providene日, WPRO Providence, R,i. KGFX Plerre, S, Dak,
KMAC San Antonio, Tex. KSXX Salt Lake City, Uta KGDN Edmunds. Wash. $640-468.5$
CBN St. John's. N.F. KFI Los Angoles, Calif. WO1 Ames, Iowa WNAD Norman, Okla.
650-461.3
KORL Honolulu. Hawall KIKK Pestadona, Toxas

660-454.3

KNEO Omaha. Nobr. YEBC Greenville, S.C. KSKY Dallas. Tex.

670 -447.5

680-440.9
CHFA Edmenton, Alta. CJOB Winnipes. Man. CKGB Timmins, Ont. KNBR San Fran.. Calif. WPIN St. Potersbu
WCTT Corbin, Ky. WCBM Baltimore, Md WNAC Boston, Mass.
WDBC Eseanaba, Mieh KFEO St. Joseph. Mo. WINR Binghamton, N.Y WRVT Rochester, N.Y WPTF Raloigh, N.C WISR Butler, Pat. P. Rico
WAPA San Junn. P. WMPS Momphis, Tenn. KBAT San Antonio, ${ }^{\text {K }}$
KOMW Omak. Wash. WCAW Charleston. W.Va.
690-434.5
CBU Vaneouver, B.C.
$\begin{array}{lr}\text { CBU Vaneouver, B.C. } & 10000 \\ \text { CBF Montreal, Que. } & 50000 \\ \text { WVOK Birmlngham. Ala. } & 50000 \mathrm{~d}\end{array}$
WVOK Birmlngham. Ala.
KEVT Tueson. Ariz.
KBEA Benton, Ark.
KAPI Pueblo, Colo.
WADS Ansonia, Conn.
WAPE Jacksonville, Fla.
KULA Honolulu, Hawaii
KBLI Blackfoot. Idaho
KGGF Colloyville. Kans
KTCR New Orleans, Lan
KTCR MInnappolis.
KEYR Terrytown. Nobr. KRCO Prineville, Ored WXUR Media, Pa KUSD Vermillion, S. Dak.
KHEY EI Paso. Tex
KPET Lemesa, T
WCYB Bristol, Va.
WNNT Warsaw, Va.
WELD Fisher, W.Va.
700-428.3
WLW Cincinnati. Ohio $710-422.3$
CJSP Loamineton. Ont.
CFRG Gravelbour, Sask. CKVM Ville Marle. KMPC Los Angeles, Calif. WGBS Mismi, Colo. wGBS Miaml, Fla. KEEL Shroveport. WHB Kansas City. Mo WOR New York, M WKJE Mavianuez, P. Rteo WTPR Paris. Tenn KGNC Amarillo, Tox.

50000
$1000 d$
a. 10

1000
10000
10000
50000
10000
5000
1000
250d

30000 250 d

10000
10000
50000
1000 d
10000

50000 d
1000
250 d
250 d
500 d
25000 d
10000
1000 d
10000
5000

500d

1000 d
1000 d
1000 d
000d
500
$1000 d$
10000
10000
250
10000 d
250 d
500 d
50000

1000d
5000 d
10000
0000
1000
50000
50000
5000
50000
1000 d
50000
50000
10000
50000
10000
1000
250 d
10000
250

Kc. Wave Length W.P.
KIRO Seattle, Wash.
WDSM Superior Wis. WDSM Superior. Wis.
$720-416.4$
WGN Chicago, III.
730-410.7
CJNR Blind River, Ont. CKAC Montroul, Que. CKLG No Vancouver, B.C. 10000 WJMW Athons, Ala. KFQD Anchorage. Alaska
KSUD W. Memohis, Ark KSUD W. Memohis, Ark WKTG Thomasville. Ga, KLOE Goodiand, Kans. WMTC Van Cleve, Ky. KTRY Bastron, La. WARB Covington. WACE Chicopes. Mass. KWRE Warrenton. Mo. KWOA Worthington. Minn.
KURL Billings, Mont.
10000
50000
50000
5000
1000
1000 d

10000

50000 250d

500 d
50000
10000 d
1000
50000
5000 d
1000
5000 d
1000
10000
740-405.2
CBXA Edmonton, Alta.
CBL Toronto, Ont.
50000
50000 WUAM Montgomery. Ala.
 KBIG Avalon, Calif. Callif 10000 d

W

Kc. Wave Length W W KEKO Kealakekua, Hawail KEST Boise, Idaho WRMS Beardstown, II KXXX Colby. Kans.
WAKY Loulsville. Ky,
Me, WRUM Rumford, Me
WSGW Saginaw, Mie WSJC Mages, Miss. KGHL Blllings. Mont, WLSV Wellsville. N. Y. WTNC Thomasville, N.C
KXGO Fargo, N. Dak.
Kwil Albany Ore KWIL Albany, Oren. WAEB Allentown.
WPIC Sharon. Pa
WEAC Sharon. Pa.

$$
\begin{aligned}
& \text { WEAN Providenes. R.I. } \\
& \text { WWBD Bamberg. S.C. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { WWBD Bamberg. S.C. } \\
& \text { WETB Johnson City, Tenn. } \\
& \text { WMC Memnhis Tenn. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { WMC Memphis. Tenn. } \\
& \text { KTHT Houston. Ter. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { KTHT Houston. Tex. } \\
& \text { KFYO Lubhock. Tex. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { KFYO Lubhaek, Tox, } \\
& \text { KUTA Blanding, Utah } \\
& \text { wSiG Rount Iackson }
\end{aligned}
$$

$$
\begin{aligned}
& \text { WSiG Mount Jackson. } \\
& \text { WTAR Norfolk. Va. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { WTAR Norfolk. Va. } \\
& \text { KGMI Bollingham. W }
\end{aligned}
$$

$$
\begin{aligned}
& \text { KNEW Spokane, Wash. } \\
& \text { WEAQ Eau Claire. Wis. }
\end{aligned}
$$

$$
800-374.8
$$

$$
\mathbf{C H}
$$ KSSS Colo Sprinos, Colo. KVFC Cortez, Cole. WFSG Boca Raton. Fla.

WKMK Blountston, Fla. WKIS Orlando, Fla. WVLN Olney. IlI. KBOE Oskaloosa, Jowa WTOP Newport. Ky. KPBM Carlsbad. N. Mex. WGSM Huntington. N. Y. KRMG Tulsa, OkIs. WVCH Chester. Pa. WIAC San Juan, P.Rlco WBAW Barnwoll, S.C. WJIG Tumbolt. Tenn. KTRH Housoma. Tenn. KCMC Touston. Ton. WBCI Williamsburg. Va $750-399.8$ WSB Atlanta, Ga. KMM Baltimore. Md, WHEB Portsmouth, N.H. KSEO Ourant, Okla. WPD Portiand. Ore 760-394.5
KGU Honolulu, Hawal WCPS Detroit. Mieh. WORA Mayaguez, P.R

770-389.4

KUOW Minneapolis, Minn. WEW St. Louis. Mo KOB Albuquerque, N. Mex. WABC New York. N.
780-384.4
wBBM Chicaro 111 WJAG Norfolk, Nob. WCKB Dunn. N.C KSBO Forest City. N.C. WAVA Arlington, Va. $790-379.5$
CFCW Camrose. Alla. CKMR Noweastle. N.B. CHIC Brompton, Ont. CKSO Sudbury, Ont. WTUG Tusealoosa. Al

$$
\begin{array}{r|l}
5000 d & \text { WKDN Camden, N.J. } \\
\text { 1000d } & \text { KJEM Okla City. Okia. } \\
\text { j0000d } & \text { KPDO Portland. Oreg. }
\end{array}
$$

$$
\begin{array}{r|l}
10000 \mathrm{~d} & \text { KPDQ Portiand. Oreg. } \\
50000 & \text { WCHA Chambershury. }
\end{array}
$$

$$
\begin{aligned}
& 50000 \\
& 1000 \mathrm{~d} \\
& \text { WCHA Chambershury. Pa. } \\
& \text { Willon. S.C. }
\end{aligned}
$$

10000 WEAB Greer. S.C.
1000d WDEH Sweetwater. Tenn.

KDDD Dumas. Tex.

 WBUH Brigham CWKEE Huntington, W. Va.

810 - 370.2

50000
1000 d
10000_{d}
1000 d
1000 d
250 d
50000
1000 d

10000
50000
1000 d

5000d
5000 d
1000 d
50000
50000
50000
1000 d
50000
10000
1000 d
1000 d
1000 d
1000 d
250 d
1000 d
10000
5000
1000
1000
10000
$500 d$
$5000 d$
1000
$5000 d$
5000
KGO San Franciseo. Calit. 50000 WABW Annapolis. Ind
KCMO Kansas City. Mo WGY Seheneetady. N.Y. WCEC Roeky Mount. N.C. 1000d $\begin{array}{ll}\text { WEDO MeKeespert. Pa, } & 1000 \mathrm{~d} \\ \text { WKVM San Juan, P.R. } & 25000 \\ \end{array}$
820-365.6
WAIT Chicago. Ill. WOSU Columbus. Ohio WFAA Dallas. Tox.
$830-361.2$

KIKI Honolulu, Hawall 250 | KBOA Kennet. Mo. Min. 1000 d |
| :--- |
| WNYC Now York, N.Y. |

840-356.9
WTUF Moblle, Ala. 1000 d WHAS Loulisville. Ky. 50000
$W . P$.
5000
5000
$1000 d$
5000
$1000 d$
1000
$1000 d$
$500 d$
5000 d
5000
1000 d
5000
1000 d
5000
1000
1000 d
1000 d
5000
1000
500
1000 d
5000
1000 d
1000 d
5000
5000
5000
1000 d
1000 d
5000
5000
5000
5000
5 Ke, Wove Length
KFUO St. Louis. Mo.
WKIX Ralolih, N.C.
WJW Cloveland, Ohlo
WJAC Johnstown. Pa,
WEEU Reading, Pa,
WABA Aquadifi, P, R.
WRAP Norfolk, Va.
KTAC Tacoma. Wash.
860-348.6 860-348.6 CBH Halifax, N. S.
CHAK Inuvik, N. W. T.
CJBC Toronto. Ont. WHC Toronto. Ont.
WHRT Hartselle, Ala WAMI Opp, Ala. KIFN Phoenix, Ari KOSE Osceola. Ark
KWRF Warren, Ar KTRB Modesto, Callf. WOWW Naupatuck. Conn WKKO Cocoa, Fla. WERD Atlanta, Ga WERD Atlanta, Ga.
WDMG Douglas, Ga. KWPC Muscatine, Iowa KOAM Pitsburg, Kans.
WSON Henderson, Ky. WAYE Dundalk. Md. WSBS Gt. Barrington. Mass. 250 d $\begin{array}{lr}\text { KNAG Forest. Miss. } & 500 \mathrm{~d} \\ \text { WMRS Belen, N. Mox. } & 250 \mathrm{~d} \\ \text { KAR }\end{array}$ WFMO Fairmont. N.C. WSTH Taylorsvilie, N, C. KSHA Medford, Oreg.
WAMO Pittsburgh. Pa. WTEL Phlladelphia, Pa.
WLBG Laursns, S.C. WLVK Knoxvilis. Tenn.
WMTS Murfreesboro. Tenn. WMTS Murfreesboro. Tonn.
KFST Ft. Stockton. Tex. KPAN Hereford. Tex. $\begin{array}{lr}\text { KSFA Nacogdoches. Tex. } \quad 1000 \mathrm{~d} \\ \text { KONO San Antonio. Tex. } & 5000\end{array}$
KWHO Salt Lake City, Utah
WEYA Emporla, Ve.
WEVA Emporla, Va.

| WF OX Milwaukee, Wis. |
| :--- | :--- |
| $870-350 \mathrm{~d}$ |

$$
\begin{aligned}
& \text { KIEV Giendale, Calif. } \\
& \text { KAIM Kalmuki. Hawali }
\end{aligned}
$$

$$
\begin{aligned}
& \text { KAIM Kalmuki, Hawali } \\
& \text { WWL Now Orleans, La. } \\
& \text { WKAR E. Lansing, Mith. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { WKAR E, Lansing. M } \\
& \text { WHCU Ithaca. N.Y. }
\end{aligned}
$$

$$
\begin{array}{ll}
\text { WGTL Kannapolis. N.C. } & 1000 \mathrm{~d} \\
\text { WHOA San Juan. P.R. } & 5000 \\
\text { KJIM Ft. Worth. Tox. } & 250 \mathrm{~d}
\end{array}
$$

$$
\begin{array}{ll}
\text { KJIM Ft. Worth. Tox. } & 250 \mathrm{~d} \\
\text { WFLO Farmvillo, Va. } & 1000 \mathrm{~d}
\end{array}
$$

880-340.7

WCBS New York, N.Y.	50000
WRRZ Clinton. N.C.	1000 d

WRFD Worthington, ohlo 5000 d

890-336.9

WLS Chicage, III.	50000
WHNC Henderson. N.C.	1000 d
KBYE Okla. City. Okia.	1000 d

900-333.1
CKTS Sherbraoke, Que.
0
CHNO Sudbury, ont.
CKJL St. Jerome. Que. CJVi Victoria. B.C. WATV Birminuham, Ala.
WGOK Mebile. Als. WGOK Mobile, Ala.
WOZK Ozark. Ala. Alaska
KPRB Fairbanks. Ark.
KHOZ Harrison. Ark. KHOZ Harrison, Ark.
KBIF Frasmo, Calif. WJWL Geergetown. Del.
WSW Bello Glade, Fla. WSWN Bello Glade,
WMOP Oeala, Fla.
WCGA Calhoun, Ga. WCGA Calhoun, Ga.
WCRY Macon, Ga. WEAS Savannah, Ga.
KTEE Idaho Falls, Ida. KSIR Withita, Kan. WLSI Pikeville, Ky. WCME Brunswick. Main* WATC Gaylord. Wich. KTIS Minneapolis, Minn.
WDDT Greenville. Miss. KFAL Fulton. Mo. WOTW Nashau, N. Hr. WSPN Saratoga Sprgs., N. Y WAYN Rockingham, N.C.
WIAM Wllliamston. N.C. WIAM Wiliamston, N.C
KFNW Fargo. N.Dak. WCNS Canton, Ohlo WFRO Frement. Ohie WFLN Philadelphia. Pa. WKXV Knoxvilo. Tann
WCOR Lebanon. Tenn. WCOR Lebanon. Tenn.
KALT Allanta, Tex.
W.P.
$250 d$

$$
\begin{aligned}
& \text { WHCU Ithaea. N.Y. } \\
& \text { WGTL Kannapolis, }
\end{aligned}
$$

Kc．Wave Length KMCO Conroe．Tex． KFLO Fioydada．Tix． WODY Bassett，Va． WAFC Staunton．Va． KUEN Wonatehoo，is
910－329．5
cJDV Drumheller，Alta， CKLY Lindsay Ont． CFJC Kamloops，B．C CHRL Roberval Que．
WHO Dadoulio．Ala
KICN Blytheville．Ark KLCN BIM Ari KDEO El Cajon．Calif KEWB Oakland．Callf． KOXR Oxnard，Calif． KPOF Or，Denver，Col WHAY Now Britaing Con WPLA Plant City．F KBGN Caldwell，Ida． WAKO Lawrenceville．III， WSU：lowa City．Iow KOTY Salina．Kans． WLCS Baton Roupe，La． WABI Bangor，Walne WFDF Flint．Mich． WCOC Meridian，Mist． KOYN Billings，Mont． KBIM Roswell．N．Mex． WLAS Jaeksonville．N．C． KCIB Minot．N，Oak． WPFB Middetown．Ohio KGLC Miami，OKIa． KURY Brookings，Oreg． WAVL Apollo，Pa．
WGBI Beranton．Pa WSBA York，Pa． WPRP Ponce，P．R． WNCG North Charleston，8．C．S00d WORD Spartanburg，8．C． 5000 C WJCW Johnson City．Tonm． 5000 KNAF Fredericksburg．Tex． 1000 d KRIO MeAlian，Tax．

KRRV Sherman．Tox

 KALL 8alt Lako Clty，UtahWRNL Richmond，Va． WHYE Roannoke．Va． KORO Pase．Wash． KIXI Seattio．Wash． wHEM Heouver，wash． 1000 WOOR Sturgeon Bay，WIs． 1000 d
920－325．9
CFRY Portage La Prairie． CJCH Hallfax．N．S．Man． 1000 CJCJ Woedstock，N．B，Ont 10000 CKNX Wingham，Ont． WCTA Adalusia．Ala． WWWR Russollive．Ala．1000d KARK Lilio Spring．Cailf 10000 KVEC San uls obispo Cal 1000 KREX Grd Junetion Colo． 5000 KLMR Lamar Colo． 1000 WMEG Eau Gallio．F WYOH Hazelhurst． WGNU Granite city，III． WMOK Metropolis，Ill． WBAA W．Lafayotte，ind． WTCW Whitesburg．Ky． WBOX Bogalusa．La． WPTX Lexington Pk．， $\begin{aligned} & \text { Md．}\end{aligned}$ WMPL Hancock，Mich． KWHL Farlbauit，Min． KRAM Las Vopas．Nev． KOLO Reno，Nev． KQEO Albuquerque．N．Mex． WTTM Trenton．N．${ }^{\text {W．}}$ ． WGHO KIngston，N．Y WIRD Lake Placld，N．Y． WBBB Burimgton．N．C
WMNI Columbus，Ohio KGAL Lobsinon．Oreg． WJAR Providence．R，I． WTND Orandeburg，S．C． KEZU Rapld City．S．Dak． KLIV Livingston．T KECK Odesen Tex． KITN Olympla，Wash． KXLY Spoisine，Wash． WOKY Milveukee．Wis．
930－322．4
CFBC solnt sohn，พ．B．

jo00d

 0 d d KK
W
K
\mathbf{W} WFNC Faydtevilile．N．C． KGRL Bond．Oreg． WESA Chariarol，Pa WGRP Greonvile，Pa．
WIPR San Juan．P．R． WIPR San Juan．P． KTON Bolton，Tax． KATQ Toxarkana．Tox，
WNRG Grundy，Va．
KOOT Yalma，Wash． KQOT Yikima，Wash．
WFAW Ft．AtkInson，W 950－315．6

CKNB Campbellton，N．B．

 CKBB Barrie Ont WRMA Montgomery，Ala．KXJK Forrest City，Ark．
KFSA Ft，Bmith，Arl：． KFSA Ft，8mith，Ar
KAHI Auburn，Cailf． KIMN Denver，Colo WLOF Oriando，Fla．
WGTA Summerville，Ga， WGOV Valdosta，Ga． KBQ Boise，Idaho WAAF Chieage．Ill． WXLW Indianapolie，Ind． KOEL Oelwain，Jowa WBVL Barbourville，Ky． WORL Boston．Mass． WWJ Detrolt．Mich． KRSI St．Louis Park．Minn． 5000 WBKA Hattiesburg．Miss． 5000 d KLHS Lordsburs．N．Mex． WBBF Rochetter． WIBX UTiea，N．Y：N．C．
WYES Graensboro．
KYES Resebure，Oren． KYES ROB Barnesboro，Pa． WPEN Phliadelphla．Pa．
WBER Moneks Corner．S． WSPA Spartanburg．S．C． KWAT Watortown．S．Dak
WAGG Franklin．Tenn． WAGG Frankin．Ton
KDSX Denison，Tex． KPRC Houston．Tex． KSEL Lubboek．Tex． WXG！Rlchmond，Va．
KMER Kemmerer．Wash． KMER Kommarer．W WERL Eagle River．WIs．
WKAZ Charleston．W．V． WKAZ Charleston．W．Va
WKT8 8hoboypan．Wis． KAHU Waipahu．Hawall WWIX Mt．Vernen，III． KIOA Oes Moines．Iawa
WYLO New Orleans，Ls WJOR South Haven．Wie CPC Houston．Miss． SWM Aurora，Me． Nebr． 1000
50000 0000 000 d00001000d
500 d
5000 d5000 d
1000 d
250d
250d$1000 d$0000
5000
000 d000d000d$200 d$250
25010000
1000010000$1000 d$5000 d
1000
5000 d
8000
3000
5000
5000 $000{ }^{0}$ CJCA Edmonton．Alta． CJON St．John＇s．N．F KTKN Ketchikan，Alaska KAPR Douglas，Ariz． KFGT Flagstaft，Ariz． KHJ Los Andises，Calif． KIUP Durango，Colo． WKSB Milford．Dol．Fla． WJAX Jecksonville，Fla WKXY Sarssota，Fla．
WMGR Bainbridge，Ga KSEI Poestello．Id aha KSEI Poeatello，Idah
WTAD Quiney，III． WTAD Quiney．Ill． WFMD Froderick，Md． WREB Holyoke．Mass． KKIN Aitkin．Minn． KKN B Kin．Minn． KWOC Poplar Bluff．Mo． KOFI Kalispell，Mont． KOGA Ogallala．Nebr． WWNH Rochester，N．H． WBEN Buffalo，N．Y． WIZR johnstown，N．Y． WSOC Charlotte．N．C． WEOL Elyria．Ohio WKY oklahoma Cliy Okla． WCNR Bioomshurg．Pa． KSDN Aberdeen，S．D． WSEV Sevierville． KITE San Antonio．T KENY Bellingham．Ferndale WSAZ Huntington．W．Va． 5000 WLBL Auburndate，Wis． 5000 d 940－319．0
CBM Montreal．Que． CJGX Yorkton．Sas KOBY Tueson，Ariz． WIN2 Miami，Fla WMAZ Macon．Ga． $\stackrel{50}{500}$

50000
10000
1000
250
50000
50000

30000

$0<2$
3
3
0
を发
を发
\＆
\ll
不区

甪高号号

0000	W
000	K
000	K

000	KE
000	KC

000	KE
000	KC

5000
KFW K F Cos Angeles，Callf．
歇员员
000
000
WRC

Wove
-312.3
CFAC Calgary．Alta．
CHNS Hallifax，N．S． CKWS Kingston，Ont．
WBRC Birmingham．Ala． WBRC Birmingham．
WMOZ Mobilo．Als． WCVQ Kodiak，Alaska KOOL Phoenix，Ariz．
KAVR Apple Valley，Cali
KNEZ Lompoe，Calif． KNEZ Lompoc，Callf．
KABL Oakland，Callf． WELI New Haven，Conn，
WGRO Lake City，Fla． WGRO Lake City，FIa． WJCM Sebring，Fia WRFC Athens，Ga． KSRA Salmon，Idaho
WDLM E．Moline，III． WSBT South Bend．Ind． KMA Shenandoan， KROF Abbeville．La， WBOC Salisbury，M WFGM Fitehburg．Mass．
WHAK Rogers City．Mich．
KLTF Littie Falls．Minn．

10000
10000

Kc．Wave Langth
W．P．
 W TOT Marianna，Fia． 1000 d
 $990-302.8$

Ke．Wave Lengil WMOX Meridian．Miss． KCH Chillicethe．W KXEN Festus，Wo． KRYN Lexington．Nebr WNL Newport，N．H． WABZ Albermarle，N．C． WFGW Black Mountai WELS Kinston，N，C．
WIOI New Boston，Ohio KBEV Portiand，Oree WUNS Lewisburg， Pa_{w} WHIN Gallatin．Tenn． HORM Savannan．Tonn． KBUY Amarillo．Tex KODA Houston，Tax． KAWA Waco，Tox． WELK Charlottesville，Va． WHEV Marion，Va． WPWH Portsmouth．Va WCST Berkeloy Spros．，W．Ya 250 d WSPT Stevens Pt．．Wis．

1020－293．9

KGBS Les Anjeles，Calif． WCIL Carbondale．II． WPEO Peoria，III．

1030－291．1

WBZ Boston．Mast 1040－288．3

KHVH Honglulur，Hawail KIXL Dallas．Tex．
1050－285．5
CFGP Grande Prairie．Alte． 10000 KSB St．Boniface，Man， JIC 8ault 8te．Mari HRFS Alexander Cit WCRI Scottsboro，Ala．
YWM Show Low，Ariz KOLC Little Rock，Ark KWSO Waseo，Calif． KLmo Lonsmont．Col SSB Crestviow，Fla， WHBO Tampa，Fla WRMF Titusvilie，Fla WAUG Augusta，Ga WBIE Mariotta，Ga． NOZ Decatur， 11 ． WNES Central City，Kan KLPL Lake Providence，L
KCIJ Shreveport．La．
WMSG Dakland，Md
WOMR Silver Sprg．Md LoH Ann Arbor，Mie
NACR Columbus，Miss．
KMIS Portagovillo，Mo
SIS Sedalia．Mo．
KLVC Las Vopas．Nov，
NNC Conway，N．H SEN Baldwinsville，N，Y． WHN Now York．N．Y． FSC rankin．N．C． WWGP Sanford N N．C． wZIP cincinnati，Ohio KCCO Lawton．Okla．
（FMJ Tulsa．Okla
KUBE Pendleton，Oreg． KED 8pringitold，Orees． WBUT Butler．Pa． WWD Everett．P a WLYC Williamsport．Pa． SMT Sparta，Tonn． KLEN Killeen．Tex． KWLD Liberty．Tex． CAS Plainvisw．T COS Slaton．Tox． WBRG Lynchburg，Va， CMS Norfolk，Ve KNBX Kirkland，Wash WCEF Parkersburg．W WECL Eau Clairo．Wis， WLiP Kenosha，Wis
1060－282．8
CFCN Calgary，Alta Ariz
PAY Chieo，Call
WNOE New Orleans，La
WHAP Monroe，N．C．
1000 d
50000
WRIS San German，P．R．$\quad 250$
$1000 d$
1000d
000d
250 d
250d
1000 d
10000 d
1000 d
1000d
.250 d
1000 d
50000
1000 d
1000 d
10000
50000
50000
． 50000 d

5000
80000
1000 d 10000
10000 5000
1000 d
250 d 250 dd1000 d
1000 d1000 d

1000 d
250 d
500 d
5000 d
500 d
250 d
1000 d
500
La．

50$1000 d$
$1000 d$
1000 d
lo00d
1000d
l000d
1000d
$1000 d$
$1000 d$
$1000 d$
$250 d$
1000 d
1000 d

1000 d
1000 d

\qquad
250d
10000
10000

V．P． \mid K．Wove Length
10000 1070—280．2
50000 d CFAX Vietoria，B．C
25000d CBA Stackvillo．N．B．
250d CHOK Sarnia．Ont．
50000 WAPI Birmingham，Ala． KNX Les Angeles，Calif．
WVCG Coral Gables，Fla． WIBC Indianapolit，Ind． KFDI Wiehita，Kans．

250 d WITA San Juan City．Okla． 1000 d
250 K KOO Sloux Falls．S．Dak． 10000
1000 d
250 KORC Wineral Weils，Tex， 250 d
WQA RIchmond，Ve．
1150－260．7
5000 d CHSJ Saint John．N．B． 10000
lo00d CKOC Hamliton，Ont． 10000
250 d CKTR Three Rivers，Que． 10000
00

1000
250
0000WUST Bethesde，Md．KMOX St，Louls．Mo．WWOL Buffalo．N．Y．01130－265．3
CKWX Vancourer．B．C．KRDU Dinuba，Calif．KSDO San Diage，CalifKLEI Kaliua，HawailKWKH Shroveport，LWCAR Detroit，Mieh．WDGY Minneapolis．Minn． 50000
1140-263.0
CKXL Calgary, Alta,
CBI Sydney,
K.S.
BI Sydney, N.S.
KRAK Sacramento, Callif.
KGEM Miami, Fle.
GEM Boise, Idahe
SiV Pokin, III.
KSOO Sloux Falls. S. Dak. 10000
50000万

WBCA Bay Minette, Ala.

W
W
W

 \[4 \geq \leq x \leq
\]
 \section*{エン}
 \section*{エン}KC

$\mathrm{K} L$
KOW

W
V
WGEA Geneva. Ala.

	KCKY Cuscaloosa, Ala.	5000
10000	KXIR Nolidge. Ariz.	1000

 KFSR No, Liftle Rock. Ark. 5000
 \begin{tabular}{ll}
 KFRKD Los Angoles, Calif. \& 2500

KRK, Calif. \& 5000

\hline
\end{tabular}

 KJAX Santa Rosa, Calif.
 KGMC Englewood, Colo.
KGMC Englewosa, Calif.
WCNX Middletown.
$\begin{array}{ll}\text { WCNX Middletown, Conn. } & 500 \mathrm{~d} \\ \text { WDEL Wilmington. Dal. } & 5000\end{array}$
$\begin{array}{lll}\text { WDEL Wilmington. Dol. } & 5000 \\ \text { WNDB Daytons Bch. Fla } & 1000\end{array}$
WTMP Tampa. FIa,
WFPM Fort Valley.
WJEM Valdosta, Ga.
WGGH Marion,

KVIL Highland Park，Tex． 1000 d
KJBC Midland，Tox．
1000 d KJBC Midland，Tox． KPNG Port Nethes．
KOLJ Quanah．Tex． KBER San Antonio，Tex．
KOFE Pullman．Wash． KAYO Soattle，Wash． WABY Dancouver，Was WELC Welch，W．Va． WAXX Chippewa Falls，Wis． 5000 d
WISN Milvaukee， 1160—258．5

WJID Chieago．III．

 KSL Salt Lake$1170-256.3$KOHO Honolulu，Hawail
WLBH MattoKSTT Mattoon，IIIKPEO Ponce，P．R．
KPU Bollingham．
1180－254．1
WKOX Fram'gham. Mass. 1000 d
WL.
$\begin{array}{lll}\text { WLIB Now York, N.Y. } & 1000 \mathrm{~d} \\ \text { KEX Portland, Oreo. } & 50000 \\ \text { KLIF Dallas. Tax. } & 50000\end{array}$
1200-249.9
WOAI San Antonie. Tex. 50000
1210-247.8
K200 Honolulu. Hawail
WCNT Centralia. Ill.
WKNX Saginaw.
WKNX Saginaw. Mich.
WADE Wadesboro, N.C.
WAVI Dayton, Ohio
1220—245.8
$\begin{array}{lll}\text { CJOC Lethbrldpe, Alta. } & 10000 \\ \text { CKDA Vietorla, B.C. } & 10000 \\ \text { CJRL Kenera, Ont }\end{array}$
CKCW Moneton. N.B.
CJSS Cornwall, Ont.
CKSM Shawinigan, Quobee
WEZB Birmingham, Ala.
WABF Fairhope, Ala.
KVSA MeGohos, Ark
KVSA MeGohoe, Ark.
KLIP Fowler C.
KLIP Fowler, Calit.
KIBE Palo Atto, Calif.
KKAR Pomona, Calif.
KKAR Pomona, Calif.
KFSC Denver. Colo.
WOEE Hamden, Conn.
WOTY Arlington, Fla.
WOSL Kissimmee, FJa
WMET MIamI, Fla,
WSAF Sarasota, Fia.
WCLB Camilla Ga
WCLB Camilla, Ga.
WSFT Thomaston, Ga,
W8FT Thomaston, Ga.
WKRS Waukenan. II
W8LM Salom, Ind.
KJAN Atlentle, Iow

C．Wave Length w．P
W．P．

Kc.	Wave	Wave	w.	ve Length	W.	Wave Le	
wso	Slt. Sto. Marie, Mieh. 1000	KVRD Cottonwod, Ariz.	250	KVLF Alpine, Tex.	1000	KWhK Hutenlnson. Kans.	1000
	Sturgls, Mleth, loood	KZOW So. of G	1000 250	KEAN Brownwood	1000 250	XOK Baton Rouge.	
	Cloquet, minit 1000		250	KOCA	250		
K	Internat'I Falls. Minn. 250	if.	250	K80x Raymondylile, rex.	250		
K	Mankıto. M	K MBY Mon	1000	KCKG so	1000 1000	KD	0
	Morr	KPPC Pazadena	100 250				
$\begin{aligned} & k 7{ }_{k} \\ & k w \end{aligned}$	Thief Riv. Fils., M1nn. ${ }_{\text {Winosa, }} \mathbf{2 5 0}$	KLOA Ridgacres	1250	WSSV Pot	1006		od
wc	Corin				1000		
	Hatties		1000d		1000		d
wsso	Starkville. M/3. 250	KkLo San Diepo, Calif	250	K	250		
W	Yazoo city, Mlss. 250		250				
KODE	Joalin, Mo. 1000			W	1000		
		KHDO Cola	1000		1000		
KNCM		KDGO Duranao	1000	WDNE EIki	$\begin{array}{r} 1000 \\ 1000 \mathrm{~d} \end{array}$	W	5000 d 1000 d
KHDN	Har		250		$1000 d$		
K	cwiston, Mont 1000	wWCO Waterb	1000		1000		00
	Libby, Mont. 250		250		1000		
	als			KLBC Cheyent			
	Hastines, Nebr. ${ }^{\text {Ely Nev. }}$ (250	WMMB Melb	1000	KASL Now	250		
	Las Vegas, Nev. 250	W	1000		1000	WPHB Phillipsburg, Pa.	
			1000				
	10000						
	laremont, N.H. $\quad 1000$ Wildwood, N.J. 100	WLAGG Lagrangeg	1000 1000	125			
	lamogordo, N.Mex. 230	WWMS	1000	CHWD Oakville. Ont.	1000	WNOO Chattanooga, Tonn.	od
K	Doming. N.Mox. ${ }^{250}$		250	CKOm Maska			
Kfu	Las Vegas. N.Mex. 250	KVNI Cocur d'Alone, Idah	,		10000	WCLC Jamestown. T	Od
	Roswell, N. Mex. 1000	KFLI Mountain Home. Idaho	- 250	WETU Wetum	$\xrightarrow{50000} 5$		
	Cho	KWIK Poentello, Idaho	250	KHIL WHIC	1000 d		
	Hudson', N. \dot{Y}. 1000	WEDC Chicago, III	1000 d	KFAY faye	1000 d	KTUE Tuli	
	Litte	WSBC Chica	1000	KALO Litle ho	5000		
	White Plains. N. Y. 1000		250			WCHV Charlotiesville, Va.	
	Ashevtiofin. N.C.C. ${ }^{10000}$	Spring ioldicili.	1000	y-Ni			
	High Point. N.C. 1000	WHBU Anderson. In	1000d	KMSL Ukiah, Calif			
		KDEC Decorah, lowa	0	,			
	-	KWLC Decoran, lowa	1000	WNER L			
		KBIL Ottumma.	1000	WRIM Pahokee, Fia.	500 d		000
	Cin	KIUL Garden City, Ka	1000	WDAE Tam			
wco	Columbus, Ohlo 1000	KAKE Wiehita, Kans.	250	Madit		1270-236.1	
W1		WINN Louisvile.	00	WIZZ Str	500 d	CH	0
KADA	N. of Ads, Okla. 250	WPKE Pikeville, Ky.	1000 d	W	1000	CHWK Chilliwack. B.C.	
	onea	WSFC Somerst	1000				
	urns.						
K0	cos Bay, Óres. 250	Lewiston, Maine	1000	W	00		
G	cesham, Oreg. 1000	WCEM Cambrid	1000	W		KBYR Anthord Ais Alaka	
	adiord Oreg 100	WJEJ Ha,	00	WGUY Beo		bro	
k	keviow. Ores. 250					Pine	
	Benver Falls, Pa. 1000	WATP Cad	1000			Kcok rulare: Calit.	
WEEX	Easton. Pa. 1000	wCBY Cheboy	250				
	Harrisbura, Pa.	WJPD Iohpo	000				
	Look Haven, Pa. ${ }^{\text {a }}$		${ }^{10006} 1$			WKRW Car	
	itusville, P_{2} 2 50		100			W	
	areci	dor	1000		1000 d	KN	
	Anders	Aberd	250				
W	Columbia, S.c. 10000	Gulfpor	1000	w ${ }^{\text {are }}$	${ }^{10000} 1$	w	
	1000	KFMO Flat	${ }_{250}^{250}$	WCHO Washiniton Court		w	
		KWOS Jofiers			d		
KSIX	Corpus Christi, Tex. 10	KODE joplin.	1000 d	KaEN Ro		WORX Mad	
	250	KNEM Nevada. Mo.	250	WPEL Emp		WAIN Col	
		Billinas, Mont.		Mont			
	Levelland, Tox. 250	KLIZ Glasgow	250	wnow York	1000 d	KVCL winn	Od
	Natoddoelis. Tex. 1000	KFOR Linco		WTMA Char		W8PR Sari	
K0	Odessa, Tex. 250	KODY North Pistto, Nebr.	1000	WCKM Win	00d	WXYZ Dotro	
	am	KELK EIko. Nev.	100			Y Y B M	
	ymour, Tax. ${ }^{\text {a }}$ (1000	ridgeton,	1000		500 c	WLSm Louisvills. Miss.	
	Wato. Tex. ${ }^{\text {a }}$		250			KUSN St. Joseph, Mo.	
	Murray, Utah 250	rec	1000	K			
$\begin{aligned} & \text { KOAt } \\ & \text { WIO } \end{aligned}$	Price. Utah ${ }^{\text {a }}$		1000d			W0	
Wbel	abindon. ${ }^{\text {a }}$, 1000 d	w		KVEL Varnali, Utah			
	cilition Forge, $V_{2} 1000$		1000	wDVA Danvilis, Va.	8000	W	
	Fraderleksbura, Va. 1000	WSNY Sehen		Franklin,	1000 d	WDLA Walton. N.	
W	Norfolk, Va. 1000		1000	Pultmaniow	5000	w	
KL	Spokane. Washi. 250		250 1000	WEMP MIlwaukee, Wis.	5000		
	Sunnyside. Wash. 1000					WILE Came	
	Loann. W.Va.w y 1000	w	1000	1260-238.0			
	Appleton. Wis. ${ }^{\text {a }}$	W	250	CFRN Edmonton, Alta.	50000	WLBR Lebanon.	
	Janea	W	1000	DY		W8HC Hampton,	d
	Caspor, Wyo. 1000			KP		KNWC 8joux falli 8. WLIK Newport, Tenn.	00d
		KBEK Elk City, ok	250				
1240	241.8		250	Kril san fornando. cail.		KEPS Eaglo Pass,	
	Nassau, Behamas $\quad 250$	KFLY OMmulge					
	\%	KKID Pendieton, Or	1000		d	\dot{v}	
	No	KPRB Redm	230	WNRK Nowart,	300 d	WCVE Solville. Wash.	
	Abbotstord B. C.C. ${ }^{250}$	WRUM Readine, Pa.	1000	WWDC Washinato	5000		
CJA		WKOK Sunb	250 1000			,	5000d
		W	1000	WAME Mant, Fia.	100	WITL Superior, Wis	s000d
CKBS			1000	WHAB Baxley, Ga.	5000	1280-234.2	
	, B.C. ${ }^{250}$		250	wT			
	250	WBEJ Ellzabothton, Tonnt	1000	KIF İ Iaho Falls, Idano	5000		
	Butior. Ala. 1000 d	WEKR Fayetoville, Tonn.	1000			$\stackrel{C}{f}$	$\begin{array}{r} 10000 \\ 10000 \end{array}$
		WKDA Nashlllie, Tonn.	1000	WFPM Belindlana.			
	Jatpre Als. 1000	lon city, reat	1000	KFGQ Boona, low	1000		

Ke．Wave Length WPID Plodmont，Ala WNPT Tuseal oosa Ais． KNBY Newport，Ark． KCGH Arroyo Grande，Calif． KFOX Lonq Beach，Galit． kJor Stockton，Calii？． WSUX Seaford，Del． WDSP Defuniak Springs． WOIK Jaeksonville，Fla．soond WYC Lake Wales，Fla． WIBB Macon，Ga WGBF Evansvillie．Ind． KCOB Newton，lowa WCPM Arkansas City Kans． 1000 WDSU New Orleans．La KWCL Oak Grove．Lis． W EIM Fitehbure．，Mas WTCN MIno．Mollis．MInn． KDKD Clinton．Mo． KYRO Potosi，Mo． KCNI Broken Bow．Nebr． KTOO Henderson．Nev． KR2E Farmington．N．M WROC Roechoster．N．Y WYAT Salisbury，N．C．N．C． 1000 WONW Deflance，Ohio WLMJ dackson．Ohio KLCO Poteau，Dkia． KEBGX Eerwick．Pa， WKST Naw Castlo．Pa WCNN Arecibo，P．R． WJAY Mullins．S．C． WMCP Columbia．Tenn． WONT Dayton．Tenn KNIT Abilene．Tex． KWHI Brenham．Tex． KPAN Morton．Tox． KVWG Pearsall，Tex KNAK Salt Lake City，Utah WYVE Wytherilie，Va． KMAS Shelton，Wash． KUDY Spokane，Wash． WVAR Richwood．W． WNAM Neenah，Wis， 1290－232．4 CFAM Altona，Man． CKSL London．Ont． WSHF Shefield，Ala． WMLS Sylacaupa，Ala． KEOS Flagstafi，Ariz． KCUB Tucsen．Ariz． KDMS EI Dorado，Ark KUNS El 1000 KHSL Chico．Callif．
KMEN San Bernardino
Callfornla 5000 KACL Santa Barbara，Callf．5000d wTUX Wilmineton，Del， WTMC Oeala，Fla． WSCM Panamia Clity Beach． WIRK W．Palm Beh．．Fla． 5000 WOEC Americus，Ga． WTOC Savannah，Ga， WIRL Peoria，Ill． WCBL Benton，Ky． KJEF Jennings，La． WNIL Niles，mich． WOlA Saline，Mich． KBMO Benson，Minn． KBLE Batesvilie， KGVO Missoula．Mont． KOLL Omaha，Nebr． HKNE Keene．N．H WGLC Socorro，N．M． WNBF Binghamton，N．Y． WHKY HIekory，N．C． WEYE Sanford．N．C． WOMP Bellairo，Ohio WHIO Dayton．Ohio KLIG Portland Ore Ores． KLIQ Portland．Ores． WICE Providemes WFIG Sumider WATO Sumteridge．Tenn

$$
\begin{aligned}
& \text { Florida } \\
& \text { Flo }
\end{aligned}
$$

dahe
－M
$1000 d$
.5000 500 d
500 d

1000 d

 1000 d1000 d 5000 5000
5000 1000 d 5000 1000 d 3000
50005000

\qquad	$W 1$
$K B$	
$K B$	

P．｜Kc．Wove Length KBLT Big Lako，Tex． 5000 KIVY Crockett．Tex， 000d KTRN Wichita Falls，Tex． KTRN Wichita Falls，Tex．
WPVA Colonial Hots．，Ve． WAGE Leesburg，Va． WKWS Rocky Mount， KAPY Port Angeles．Wash． WMIL Milwauket．Wis．
wCOW Sparte．Wis． ，
$1300-230.6$
CBAF Moncton．N．B． WBSA Boaz，Ala． WEZQ Winftold．Ala． KWCB Searcy，Ark．
KROP Brawley，Calit KYNO Fresno，Calif． KWKW Pasadena，Calif． WAVz Colo．Spres．．Colo． WRKT Cocoa Beach，Fla． WFFG Marathon，FJa． WSOL Tampa，FIa． WMTM Moultrie．Ga． WNEA Nowman，Ga， WIMO Winder，Ga． KOZE Lewiston，Idaho
WTAO LaGrange，III． WFAX W．Frankfort，III WHLT Huntington，ind． WMFT Terre Haute，Ind． KGLO Mason City to
WBLG Lexington． $\mathrm{K} y$ WIBR Baton Rouge，La，
KANB Shreveport．Lis． WFBR Baltimore，Md． WIDA Quincy，Mass． W00D Grand Rapids．MIeh 1000 d K KMNO Marshall．Mo．
KBRL MeCook Nob

```
                Mlc
```

．

| KPOd |
| :--- | :--- |
| KPT Carson City, Nev, |

 WOSC Fullon. N. 1 .
 WOSC Fullon, N.Y.
 000d WEEE Rensselaor, N.Y.
 WLNC Laurensburs, N.C
 WSYD Mt. Airy. N.C.
 WERE Claveland. Ohio
 WMVO Mt. Vernon.
 KOME Tulsa. Okla.
KOOV Medford, Oreg.
KACI The Dalles, Ore
WTHT Clarion, P
WTIL Mayagues, P.R.
WLOW Aiken, S.C
WKSC Kershaw, S.C.
WQIZ St. George, S.C.
.R.
S.C.
W.P.
Kc. Wave Length

, N, d.
W.P.|K
Kc.500 d
50005000
5000 d5000d
lo00d 1000 d 5000
1000 d 00d 000 5000
1000
10000 KARA Albuquerque，N 1000
1000 d
5000 d WVIP Mt．Kisto，N，Y $5000 d$ WISE Ashavlle，N．C．
WKTC Charlotte，N．C． WTIK Durham，N．C． KNOX Grand Forks，N．Dat． スをちたちたたたス WGSA
W
W
W
W
W KZIP Amarillo，Tex．
WRR Dallas，
WR， WRR Dallas，Tex．
KOYL Odesse．Tor． KUBO San Antonio， WEEL Fairfax，Va． WGH Newport Nows，V
KARY Prosser．Wash． WIBA Madison．Wis． $1320-227.1$ CHQM Vancouver，B，C．
CKEC Naw Glasgow．N．S． CJSO Sarel，P．Q．
CKKw Kitchener， CKKW Kitchener，Ont，
WAGF Dothan，Ala．
WENN Birmingham，Ala． KBLU Yuma，Ariz． KRLW Walnut Ridge，Ark． KHSJ Hemet，Calif． $\begin{array}{lr}\text { KLAN Lemet，Calif，Calitr } & 500 \mathrm{~d}\end{array}$ KLAN Lemoore，Callf． 1000 d
KUDE Oeeanside，Calif KCRA Saeramento，Callf． WAVI Rocky Ford，Colo． WATA Waterbury．Conn
WGMA Hollywood，Fla． w 20K Jacksonvilis，Fla， WAMR Veniee，FIa， WKAN Kankakes，
WKAN Kankakee, Ill.
KMAQ Maquoketa lowa
KLWN Lawrence, Kans.
WBRT Bardstown, Ky.
WBRT Bardstown, Ky.
WNGO Mayfild, Ky.
WNGO Mayfild, Ky
KHAL Homer, L.
KHAL Homer, La.
WICO Salisbury, Md
WARA Attleboro, Mass.
WILS Lansing. Mleh.
WDM, Marquette, Mich
WDMJ Marquatte. Mie
WRIW Pieayune.
KXLW Claytan. Mo.
KOLT Seotstsbluff. Nebr.
WWH G Hornell.
WWH G Hornell. N.Y
WOSR Solvay. N.Y.
WAGY Forest City. N.C.
WAGY Forest City. N.
WGOG Greensboro. N.C
WKRK Murphy. N.C.
WEEW Washington, N.C.
KQDY Minot, N.Oak.
WHOK Lancaster, Ohi
KWOE Clinton, Okla.
KWOE Clinton, OKla
KATR Eusene, Ore.
KATR Eusene, Ore.
WKAP Allontown, Pa.
WGET Gettysburg, Pa.
WGET Gettysburg, Pe.
WJAS Pittshurah, PaWSCR Seranton．Pe．
WUNO Rio PiodraWUNO Rio Piedras，P．R．5000
1000 d

w．p．．P．

KUKU Weridian，Miss 1000 WDAL Meridian，Miss， 1000 d
KUKU Willow Springs，Mo， 1000 d
KGAK Gallup， 5000KGAK Gallup．N．Mex．MO． $1000 d$
5000$\begin{array}{lll}\text { WEVD New York．N．Y．} & 5000 \\ \text { WPOW New York．N．Y．} & \mathbf{3 0 0 0}\end{array}$$\begin{array}{llr}\text { WPOW New York．N．Y．} & 5000 \\ \text { WEBO Oweso，N．Y．} & 1000 \mathrm{~d} \\ \text { WHAZ Troy．N．Y．} & 1000\end{array}$10000
dd0000
d
5000
1000 d
d00000
d
0$\begin{array}{llr} & \text { KVKM Monahans，Ton．} & 5000 \\ \text { KDOK Tyler，Tex．} & 1000 \mathrm{~d} \\ \text { WBTM Danville，Va．} & 5000 \\ \text { WRAA Luray，Va．} & 1000 \mathrm{~d} \\ \text { WOLD Marion，Va．} & 1000 \mathrm{~d}\end{array}$$\begin{array}{ll}\text { WUSM Havelock．N．C．} & 1000 \\ \text { WHOT Campbell，Ohio } & 1000 \\ \text { WFIN }\end{array}$WFIN Findlay，Ohio 1000WELW Willoughby．0． 500WBL Portland，Ore：WICU Erio，Pa．$\begin{array}{ll}\text { WFBC Greonville．S．C．} & 5000 \\ \text { WAE } & 5000\end{array}$$\begin{array}{lr}\text { WAEW Crossville，Tenn．} & \text { lo00d } \\ \text { WTRO Dyersbure．Tenn．} & 500 \mathrm{~d} \\ \text { KMIL Cameron，Tex．} & 500 \mathrm{~d} \\ \text { KSWA Graham．Tex．} & 500 \mathrm{~d}\end{array}$$\begin{array}{lr}\text { KINE Kingsvilie，Tex，} & 1000 \mathrm{~d} \\ \text { KVKM Monahans，Tem．} & 5000\end{array}$00KCFA Spokane．Wash．
WETZ Now Martinsvilie．
WHBL Shoboygan，W
KOVE Lander，Wyo． 1000 d
1340－223．7
CFGB Goose Bay，N 1000CJAF Cabano，Que．
CFSL Wayburn，CFYK Woyburn，Sask．
CFIVW Knife，N．W．T． 1000
250CHAD Amos．Que．CJLS Yarmouth．N．S．CHRD Drummendvilie，Que．$\quad 250$CJQC Quebec．Que．CKAR． 1 Parry Sound，Ont．CKOX Woodstoek，Ont．
WKUL Cullman，Ala．WノOI Florenee．Ala．WGWC Selma，Ala．WFEB Sylacauga，Ala．
KIBH Seward, Alaska
KIKO Miaml. Ariz.
KIKO Miami, Ariz,
KKIT Taos, N.M.
KNOG Nogales, Ariz.
KNOG Nogalos, Ari
KPGE Page, Ariz.
KPGE Page, Ariz.
KENT Proseott, Ariz.
KBTA Batosvilis, Ark.
KBTA Batesvilis, Ark.
KAAB Hot Sprines, Ark.
KBRS Springdale Ark
KBRS Springdale, Ark.
KBRS Spring Areata, Callif.
KENAK Fresno, Calif
KMAK Fresno, Calif
KDOL Mojave, Calif.
KSFE Needles, Calif.
KAOR Oroville, Calif.
250
250
$\begin{array}{lll}\text { KAOR Needles, Callf. } & 250 \\ \text { KATY San Luis Oblif. } & 250 \\ \text { KAT, Salis. } & \end{array}$
KIST Santa Barbara, Callif. 1000
KIST Santa Barbara, Callf. 1000
KOMY Watsonville, Callf. 1000
$\begin{array}{ll}\text { KOMY Watsonville, Callf. } 1000 \\ \text { KOEN Denver, Colo. } & 1000\end{array}$
$\begin{array}{ll}\text { KWSL Grand Junetion. Cole. } & 250 \\ \text { KVRH Sallda, Colo. } & 250\end{array}$
$\begin{array}{lll}\text { KVRH Salida, Colo. Conn. } & 250 \\ \text { WNHC New Haven, Conn. } & 1000\end{array}$
WNHC New Haven, Conn. 1000
WOOK Washington. D.C. 1000
$\begin{array}{lr}\text { WOOK Washington, D. C. } \quad 1000 \\ \text { WSLC Clermont, Fia. } & 250\end{array}$
WTAN Clearwater. Fla.
WROD Daytona Beh. Fis. 10
$\begin{array}{ll}\text { WROD Daytona Beh. Fis. } & 1000 \\ \text { WDSR Lake City. Fis. } & 1000 \\ \text { WTYS Marianna, Fla. } & 1000\end{array}$
$\begin{array}{lll}\text { KELD Columbia. S. C. } & 5000 \\ \text { Sioux Falls. S. Sak } & 5000\end{array}$
$1310-228.9$
CKOY Ottawa, Ont.
CFGM Richmond HIII, Ont. 10000
WHEP Foley, Ala. $1000 d$
WKLIN Sioux Falls, S.Dak. 5000
CKOY Ottawa, Ont.
CFGM Riehmond Hill, Ont. 100000
WHEP Foley, Ala. $1000 d$
WHEP Foley, Ala.
CHGB St. Anne-de-la. PoeatieQuebec 5000 d

K
K
K
WKXYZ Houston，Tex．
KCPX Salt Lake Clty，Utah$\begin{array}{ll}\text { KCPX Salt Lake Clty，Utah } 5000 \\ \text { WDMS Lynehburg，Va．} & 5000 \\ \text { WD }\end{array}$
WスローWEET Riehmond，Va．
KXRO Aberdeen．Wash．WNEB Sebring Fla．Fla．

Rc. Wave Length W.P.|Rc. Wave Length WAGN Menominee, Mieh. 1000 WDCF Dade City, FIa.

WMBN Potaskey, Mleh. $\quad 1000$ WXC Ft. Myers, Fia. WEXL Royal Oak, Mich. WEVE Eveleth, Minn. KROC Roehaster, Minn. KWLM WIllmar, Minn. WAML Laurel, Miss. KXEO Mexico, Mo. KLID Poplar Bluff,
KSMO Salem. Mo.
KICK Springheld, Mo
KPRK Livingston, Mont KATL Miles City, Ment KQTE Missoula, Mont. KGFW Kearnay, Nebr. KSID Sidney, Nebr. KORK Las Vegas, Nov. KBET Rono, Nav. WDCR Hanover, N.H.
WMID Atlantic City, N.J. KNDE Aztee, N,Mex. KRRR Ruidoso, N. M
KKIT Taos, N, Mex. KSIL Silver City, N. Mex. WMBO Auburn, N.Y. WENT Gloversville. N. $\mathrm{Y}_{\text {. }}$
WXYJ Jamestown, WUSJ Lockport. N, Y WALL Middletown, N. Y. W!RY Plattsburgh, WTSE Lumberton, N WOXF Oxford, N.C. WOOW Greanville, N.C. WGNI Wilmington, N.C. KGPC Grafton. N. Dak. WNCO Ashland, Ohie WOUB Athens, ohig WIZE Springfeld, Ohio Ohio

1000
000
000 1000 1000
1000 000 WRPB Warner Robias, KRLC Lewiston, Idalo WAAP Peoria, ill.
WJBD Salom, Ilf. WJ80 Salem, ill.
WIOU Kokomo, Ind. 1000d KRNT Des Moines, Iowa 1000 K KMAN Manhattan. Kans. KMAN Manhattan. Kans.
WLOU Louisvilie, Ky.
WSMB New Orloens. WSMB New Orleans, L
WHMI Howesl. Mich. WHMI Howell. Mich.
KDID Ortonville, Minn. WCMP Pine City, Minn.
WKOZ Kosciusko, Miss. WKOZ Kostiusko, Miss.
KCHR Charleston, MD. KBRX O'Nelli, Nabr. WLNH Laconia, N.H. KABQ Albuquerque, N.M.
WCBA Corning. N.Y WRNY Rome. N.Y.
WBMT Black Mountain, N.C WHIP Mooresville. N.C. 1000 d KQDI Bismarek. N. WADC Akron, Ohio WCSM Celina onie KRHD Duncan, Okla. KTLQ Tahlequah, Okia.
KRVC Ashland, Oree. KLOO Corvallis, 0
WORK York, Pa.
WDAR Darlington, S.C WGSW Greenwood, S.C. WRKM Carthage, Tinn.
KCAR Clarksvilie, Tox. KTXJ Jasper, Tex. KCOR Sen Antonio. Tex.
WBLT Bedford, Ve.
WFLS Fredericksbur. Va. WFLS Fredericksbu WAVY Portsmouth, Za.
WPDR Portage, Wis. KTOW Sand Sprines. Okia. KHVR Enterprise, Oreg KFIR North Bend, Ores. WSAJ Grove City. Pa.
WKRZ Oll Cily. Pa. WHAT Philadoliphla, Pa WRAW Reading, Pe.
WTRN Tyrone, P, WBRE Wlikes, Barre, Pa. WGRF Aguadllia. P.R. WRHI Rock HIII, 8.C W8SC Sumter, S.C. KR8D Rapld City. S. Dak. WBAC Cleveland, Tenn. WKRM Columble, Tonn. WKGN Knoxville, Tenn. WHHM Momphis. Tenn. WCDT Winchester, Tenn. KWKC Abliano. Tox. KTSL Burnett. Tox. KAND Corsicana, Tax
KSET EI Paso. Tox. KSET EI Pase, Tox. KRBA Lufkin. Tox. KPDN Pampa, Tex.
KOLE Port Arthur. Tex. KTEO 8an Anfolo, Tex. KVIC Viotorit, Tex, WTWN 8L. Johnsbury, Vt. 1000 WKEY Covington, Va. WJMA Orance KAGT Anseortes, Wash. KAPA Raymond, Wash. KMEL Wenatches, Wash. W HAR Clarksburg, W.Va. WMON Mont $\begin{gathered}\text { Momery, W.Va. }\end{gathered}$ WOVE Welsh. W.V. WLDY Ladythith, WIs. WRIT Milwaukes. W. KYCN Wheatiand, Wyo

1350-222.1
CHOY Pombroke, Dnt. CJLM Joliette, Que CKLB Oshawe, Ont. CKEN Kentvilite, N. S, WJWT Domopolls, A WELB EIb, Ala. KLYD Bukerstital Ala. KCKC Sen Bernardino. Callf. 500 K8RO 8anta Resa, Calli. KGHF Pueblo. Colo,
WNLK Norwalt. Conn.
WETY. Cesea, FI.

1360-220.4
CKBC Bathurst, Nil
WWW B Jasper, Ala.
WCIQ Mobile, Ala. WMFC Monroeville, Ale. WELR Roanoke, Ala. KRUX Glendal:, Ariz. KFFA Helena, Ark. KFIV Modesto, Calif.
KRCK Ridgeerest, Calif. KGB San Dlego, Callf. WORC Hartford. Conn WOBS Jacksonville, Fia. WKAT Miami Beach
WSFR Sanford, FIa. WINT Winter Haven. FIa
WAZA Bainbridge. Ga. WLAW Lawronceville, Ga. WMAC Motter, Ga. W
W
WKHAK Codar Rapids, IowaKXGI Ft. Madison. IowaKSCJ Sloux city, bwaKBTO EI Dorado, Kans.WFLW Monticallo. Ky.KDBC Monsfleld. La.KVIM Naw Iboris,WEBB Dundalk, MdWLYN Lynn, Mass.WKYO Caro, MiehWKMI Kalamazeo, Mieh.
KLRS Mountain Grove. Mo.
KWRY MeCook, Notr.
WNNJ Nawton, N. J_{*}.
WWBZ Vinaland. N.
WWBZ Vingland, N J.
WKOP Binghamion,WMNS Olean, N.Y.WCHL Chapel Hill, N.C.WSAI Cineinnati, OhioWWOW Conneaut, OhioKUIK Hilisbore, Oreg.WPQR Mekemport, Pa.WELP Easloy. S.C.
1000WNAH Nashville. Tenn.KRAY Amarillo. Toz.
KACY Andrews, Tox.
KRYS Corpus Chrisyi. Tex 1000
KXOL FI. Worth. Tex.
WBDE Gelar V.
WHPG Galax, Va.
WHBG Harrisonburs, Va 5000 d
KFDR Grand Coutec,
KMO Tacoma Wast.
WHJC Matawis, W.Va.
WMOV Revanswood, W.Va. 1000 d
WMOV Ravanswood, W.Va
WBAY Groen Eayows.
wisy Virouqua wis.
-
1000Sion1000

\square| 8. |
| :--- |
| 1 I. |

W.P.|Kc. Wave Length
218.8

$1370-218.8$	
WBYE Calera, Ala.	1000 d
Valleyitold, P.Q.	1000
KTPA Preseett, Ark.	500d
KBUC Corona, Callf.	1000
KEEN San Jose, Callf.	5000
KGEN Tulare, Calif.	1000 d
KMK Blountstown, Fla.	500d
WKOS Ocala, Fla.	s000d
WCOA Pensacola. Fla.	5000
WAXE Vero Beach, Fla,	$1000 d$
WBGR Josup, Ga.	5000
WFDR Manchester, Cas.	$1000 d$
WKLE Washington, Ga	$1000 d$
WPRC Lincoln, Ill.	1000 d
WTTS Bloomington, Ind.	5000
WGRY Gary, Ind.	1000 d
KDTH Dubuque. lowe	5000
KGNO Dodge City, Kans.	5000
KALN Iola, Kans.	500 d
WGOH Grayson. Ky.	$5000 d$
WTKY Tompkinsville, Ky.	1000 d
KAPB Marksville, La.	1000d
WMHI Braddocks Hts.	$500 d$
WKIK Leonardtown, Md.	1000d
WDEA Ellsworth, Me	5000d
WGHN Grand Haven, Mlch.	$500 d$
KSUM Fairmont, Minn.	1000
WDOB Canton, Miss.	1000 d
KWRT Boonville. Mo.	1000d
KCRV Caruthersville, Mo.	1000 d
KXLF Butte, Mont.	5000
KAWL York. Nebr.	$500 d$
WFEA Manchoster. N. H.	5000
WALK Patthogue, N.Y.	500d
WSAY Rochester. N. Y.	5000
WLTC Gastonia,	5000 d
WTAB Tabor City. N.C.	5000d
KFJM Grand Forks, N, D.	1000 d
WSPD Toledo, Ohlo	5000
KAST Astoria, Oreg.	1000
WOTR Corry. Pa.	1000
WPAZ Pottstown. Pa.	1000d
WKMC Roaring Spros., Pa.	. 1000 d
WIVV Vieques. P.R.	1000
WKFD Wiekford, R.I.	500d
WOEF Chattanooga. Tenn.	5000
WDXE Lawrenceburg. Tann.	. 1000 d
WRGS Rogersville, Tenn.	1000d
KOKE Austin. Tox.	1000 d
KFRO Longview. Tex.	1000
KUKO Post, Tax.	500 d
KSOP Salt Lake Cily, Utah	1 1000 d
WBTN Bennington, Vt.	$1000 d$
WHEE Martinsvillo. Va.	5000 d
WJWS South Hill. Ve.	5000 d
KPOR Quincy. Wash.	1000d
WM00 Moundsville, W.Va.	. 1000d
WCCN Nailsville, Wis.	5000d
	1000

	Tenn.	80
	ET B	10
	KBWD Brownwood, Tex.	1000
	KCRM Crane, Tox	1000d
	KTSM El Paso. Tex.	5000
	K HUL Muleshoe, Tex.	1000d
	K30P Pleasanton. Tex	1000 d
	W3YB Rutla	5000
	WMBG Richmond. Va.	5000
	K AK0 Everett, Wash.	5000
	KPEG Spokane, Wesn.	8000d
	WMTD Hinton, W.Va.	1000d
	WBEL Beloit, Wis.	3000
	1390-215.7	
	CK	0
	WHMA Anniston, Ala	80
	KJQN DoQueen, Ark.	5004
	KAMO Rogers, Ark.	1000d
	KGER Long Eeach, Call	3000
	K LEY Tu	
	KFML Oenver, Colo.	1000d
	Wavp Avon Park. Fla.	$1000 d$
	WPUP Gainesville, Fla	5000 d
	WYNR Chicago. 11.	8000
	WFIW Fairfeld, Ill.	100
	WJCD Seymour. Ind.	1000
	KCLN Clinton, lowa	
	KNCK Contordia, Kı	500
	WANY Albany. Ky.	1000d
	WKIC Hazard, Ky.	
	KFRA Franklin, La.	500d
	WEGP Prasque Isle, Me	5000d
	KJPW Waynesville, Mo.	1000 d
	WCAT Orange, Mass.	1000 d
	WPLM Plymouth, Mass. 5000	
	WCER Charlotte, Mich.	1000 d
	KAOH Duluth, Minn.	
	KRFO Owatonna, Minn	500d
	WROA Gulfpert, Miss.	1000 d
	WQ1C Meridian. Miss. 5000d	
	KJPW Waynesville, Mo.	1000d
	KENN Farmington, N.Mox. 5000	
	KHOB Hobbs. N.Mex.	5000 d
	WEOK Poughkoepsio. N.Y. 5000d	
	WRIV Riverhead. N.Y.	1000d
	WEED .Roeky Mount, N.C. 5000	
	WADA Shelby. N.C.	500 d
	VJRM Troy, N.C. 500d	
	KLPM Minot. N.Dak.	5000
	WOHP Bellefontaine, Ohio sood	
	WMPO Middlepart. Pomroy. Ohio	. 1000 d
	WFMJ Youngstown, OhieKCRC Enid, Okla.K,	
	KSLM Salom, Orem.	5000
	W LAN Lancaster. Pa. 5000	
	WRSC State Colloge, Pa.	1000 d
	W ISA Isabolla, P.R. 1000	
	W HPB Belton, S.C.	500d
	WCSC Charleston. 8.C. 5000	
	KJAM Madison, S.D.	8000d
	WTIS Jackson. Tenn. 5000	
	KULP E! Campo. Tex.	500 d
	KBEC Waxahachie. Tex. 500d	
	LGN Logan. Utah	1000
	WEAM Arlington, Va. 5000	
	WWOD Lynchburg. Va.	5000
	KBBO Yakima, Wash.	1000

1400-214.2

CKOH Amherst, N.S.

2501000
CKRN Rouyn, Que.
CKSW Swift Current, Saste 10001000
WXAL Domopoils, Ala.WFPA Ft. Payne. Ala.WJLD Homewood. A
WIHD Opolika, Ale.WIHO Opolika, Ala.KSEW Sitka, AlaskaKCLF Clifton, Arlz.KJK」 Flagstaff. Arlz.
KXIV Pheenix. Ariz.KXIV Pheenix. Ariz.
KTUC Tucson. Ariz.KvoY Yuma. Ariz.$\begin{array}{ll}\text { KELD EI Dorado. Ark. } & 1000 \\ \text { KCLA Pine Blum, Ark. } & 1000\end{array}$KWYN Wynne. Ark.KRE Berkeley, Ark.KREO Indio CalifKQMS Redding. Calif.
KSLY San Luis Obispo, Cal.KSLY San Luis Obispo, CaKHOE Truckee, Calif.KHOE Truckeo, Calif.KUKI Ukiah. Calif.KRLN Canon City ColoKDTA Delta ColoKFTM 「t. Morgan. Colo.HBZZ La Junta Colo.VSTC Stamford, Conn.FILI Willimantic, Conn.WFiRA Ft. Plerce. Fia,WNVE Ft. Walton Bch., FIs.
WRHC Jacksonville, FIs.VPRY Perry, Fla.
FTRR Santerd, FIa.WZRH Zephyr Hills, Fla.
WCRS Alma, Ga.

WHITE'S RADIO LOG
159

Kc. Wove Leagth WSGC Elberton, Ga. WMGA Moultrio. Ga wCOH Nownen Ga WGSA Savannah, Ga KART Jerome, Idaho KRPL Moscow. Idaho WOWS Champai on, Ili. WGiL Galesburg. 'li. WROZ Evansvillo Ind KCOG Centervillo. Iowa KVFD Fort Dodge, low KVoE Emporia, Kans. KAYS Hays, Kans. WCYN Cynthiana, Ky. WFTG London, KY. KAOK Hammond, La. WRDO Augusta, Maine WIDE Biddeford, Maine WWIN Baltimore, Md. WLLH Lowell, Mass, WHMP Northampton, Mass. W/LE Detroit, Mich. WHDF Houghton. Mich. WMAB Munisinf Mith WSJM St Josoph, Mith. WTCM Traverso City, Mich. KMHL Marshall. Minn. KTWN Mpls.-St. Paul, Winn. WHLB Virginia, minn. WNAG Grenada, Milss, WFOR Hattiesburg, Mist. WMOS Jackson, Miss. KFRBC Columbla, Mo KJCF Festus, Mo. KSIM Slkeston. Wo. KDRG Deer Lodge. Mont. KXGN Giendive. Mont KCOW Alliance Nebr. KON Lincoin, Nebr. KBMI Henderson. NeV WBRL Berlin. N.H. WLTN Littieton, N, H. KTRC Santa Fo, N.Mex. Kin KTNM Tueumeari, N. Mex WABY Albany, N.Y. WSLB Ogdensburg. N , WBMA Beaufort. N.C. WSIC Statesvilio N.C. WHCC Waynesvilie. N.C WCNF Woldon, N.C WMAN Mastown. N. Dak. WPAY Portsmouth, Ohlo KWON Bartiesvilis. Okla. KTMC MeAlester, ók KNND Cottage Grove, Oreg. WEST Easton, Pa . WHGB Harrisburg, Pa. WKBI St, Marys, Pa. WICK Seranton. Pa. WCOS Columbia, S.C, WGTN Geergetown. S.C. W JZM Clarksvillo Tonn. LSB Copper Hill, Tenn WGAP Maryville, Tenn. WHAL 8helbyvilie, Tenn. KRUN Ballinger, ${ }^{\text {B ox. }}$ KBYG Big Springs Tex. KILE Mr, Gaiveston, Tox. KEBE Jacksonville, Tox. KIUN Pecos, Tox. KEYE Perryton, Tex. KVOP Plainviow, Tox.
KDWT Stamford, Tox. KDWT Stamiord, KTFS Texarkana, Tex
KVOU Uvalde. Tex. KIXX Prove, Utah WINA Charlottesville, Va WINA Charlotiesville.
WHHV HIllsville. Va. WHIH Portsmouth, Va. WHLF So. Boston. Va. KEDO Longview, Wash.
KTNT Tacoma, Wash.
W.P.|R

Ke. Wave Length WBOY Clarkes burg, W.V.
WHON Roneeverte, W. Va,
WSPZ Spencer W. WSPZ Sponcer, W.Va. WBTH Williamson, wive. WATW Ashiand, Wls. WBIZ Eau Clairs, Wis.
WOUZ Groen Bay. Wis. WRJN Graen Bay, Wis.
 WRIG Wausaurg, Wis, KATI Caspar, Wyo. KODI Cody, Wyo.
1410-212.6
CFUN Vaneouver, B.C.
CHLP Montreal, Que. CHLP Montroal, Que WALA Moblle, Ala. KTCS Fort Smith, Ark. KRWL Carmel. Calip. KKOK Lompoe, Calif.
KMYC Marysvillo, Calit. Redlands, Calif. COL Ft. Collins, Colo WDOV Dover, Del.
 WBIL Leesburg, Fia.
WRFB Tallahassee. WRFB Tallahassee,
WRIX Grifin Ga.
WSNE Cumming WSNE Cummings, W LAQ Rome, Ga. WRMN EMgin, Ga. WTIM Taylorvillo, III. KGZN Grinnoll, Iowa KLEM LoMars, lowa KWBB Wichita, Kans. WLBJ Bowling Green, Ky, Harian. ky. WOOW Halfway, Mo. WHAG Halfway, Md.
250
1000
1000 KGRD Grand Rap., Mich. KHWB Rosteat, Minn
KHW
Rose WOSK Cleveland, Misi KNOP N. Platto. Nobr.
WHTG Eatontown. N. $\rfloor.$
$000 d$
1000
1000
10000
1000
1000
1000
250
1000 d
$1000 d$
1000250
250
1000 d

$1000 d$
1000
1000
1000
W
W
K
1
WHAL VIetoria, Tox,
WKBH LaCrosse, WIs.
KWYO sherlden wos
1420-211.1

CKPT Peterberough. Ont.

 KHCT Tuscaloosa. Ala. KPOC Pocahontas, Ark.KROO Colo. Spros. Colo.
KSTN Stockton. Calif. WLIS OId Saybrook. Conn WOBF Delray Beach, FIa, 5000d WETH St. Augustine, Fí. WAVO Avondale Estates, Ga
WRBL Columbus, Ga.
WPEH Louisvills, Ge. WPEH Louisvillo, Gi. $\quad 1000 \mathrm{~d}$ WINI Murphysboro, 111 . 500 d WIMS Wiehigan City, Ind. WOC Davenport lowa
KJCK Junction City, Kans WTCR Ashland. Ky. WH BN Marrodsbur:, Ky.
WVIS Dwensbero, Ky. KPEL Lafayette, La. WBSM Naw Bedford, Ma WBEC Pittsfteld, Mass WKPR Kalamazoo, ilich. KTOE Mankato, Minn.
WSUH Oxford. MIss. WSUH Oxford. Miss. WQBC Vieksbur: Miss,
KBTN Neosho, Mo, KBTN Neosho, Mo.
250
1000
W.P.

Kc.
Wave Length WMYN Mayodani, N.C. WYOT Wilson, N.C. KT」S Habart, Okla. KYNG Coos Bay, Oren.
wCOJ Contesville, Pa. WCEO DuBais. Pa.
WEUC Ponce. P.R.

10000
10000
10000
5000
500 d
$500 d$
1000
1000

500 d
5000
5000 d
5000
1000
5000
50000
5000
5000
$000 d$
5000d
1000d
1000 d
1000

00 d

1000 d
1000 d
500 d
1000 d
$5000 d$
5000
5000
5000 d
1000 d
10004
1000 d
$1000 d$
$1000 d$
1000d
1000 d
500 d
1000 d
1000 d
500 d
1000
1000 d
5000
1000 d
1000 d
1000 d
5000
3000 d
5000 5000 0000d KBRK Brookings, S. Dak. WENO Madison. Teńn. WHER Momphis, Tonn. KSTB Brackenridye, Tex. KEES Gladowater, Tox. KCOH Houston, Tex KLO OAden, Utah WIVE Ashiand, Va. KBRC wt. Vernon. Wash. WEIR Welrten. W,Ve.
WBEV Beaver Dam, Wis.
$1440-208.2$
CFCP Courtonay, B.C. WHHY montiomery. Ala. KWBY 8cottsdale, Arlz. KHOG Fayotteville, Ark. KOKY Little Rock, Ark. KVON Napa, Callf. KPRO Riverside, Callf. KCOY Santa Maria, C
WBIS Bristol, Conn. WABR Winter Park, Fla WWCC Bremen, Ga, WGiG Brunswick, Ge WHAJ Anna, III. Wlok Normal, ill. WPRS Parls, Ill. WGEM Quincy. III. WROK Roekford, III.
WPGW Portland, Ind WPGW Portland. Ind
KCHE Cherokee. Iowa KEWI Topaka, Kans. WCDS Glasgow. K
WKLX Paris, $\mathbf{K y}$. WKLX Paris, Ky, Klliamsbury, Ky. KMLB Monroa, Ls. WIAB Westbrook, Me.
WAAE Worcester, Mass. WBCM Bay City, Mleh.
WDOW Dowagiac, Mleh. WDOW Dowagiac, Ml
WCHB Inkster, Mieh. KEVE Golden Valloy, MInn. WHHT Lueedale, MIss, WMYB Mllyilis, N. J
1000
1000 l000d
W.P.

$$
x-2 x+\infty
$$

 1450-206.8

KLAM Cordova, Alaska
KNOT Proscott, Ariz.
KNOT Preseott, Ariz.
KENA Mena, Ark
KOWN Eseondido. Callf.
KPAL Palm 8prings, Callif.
KTIP Portorvilio, Calif.
KSAN San Francisco, Calif,
KSAN San Francisco,
KVML Sonara, Calfi.
K VML Sonora, Callf.
KVEN Yontura, Caif
KAGR Yuba City. Calir.
KGiW Alsmose, Colo.
KYOU Greeley, Colo.
WNAB Bridgoport. Conn.
WILM Wilmington, Dol.
WILm Wilmington, Dol.
WWJB Brooksville, Fla.
WMFS Daytona Beach, Fla.
WMFJ Daytone Beath, F
WSKP Miaml. Fla,
WBSR Pensacola, Fia.
WBSR Ponsacola, fis.
WSTU Stuart, Fla.
WTAL Tallahasseo, Fla
WGPC Alany, Ga.
WBHF Carterivillo, Ga
WCON Cornolia Ga,
WCON Cornelia, GA
WMVG Milledgoville, Ga,
WBYG Savannah, Ge
KEOK Payotto, Idaho
KEEP Twin Falls, Idaho
WVON Cicero, III.
WCVS Springheld, ill.
WXVW daffersonville, ind.
WASK Lafayette, Ind.
KLWN Cedar Rapids, lowa
KLWN Cedar Rapids, Iowa
WTCO Campbellsville. Ky.
WPAD Paducah, Ky.
KSIG Crowley, La.
1000
5000
5000
5000 d
1000 d
1000 d WNPS New Orleans, La,
WRKD Rockland, Malno
WKTQ Sauth Paris, Maine
WMAS Sumberland, Md.
WATZ Apringfold, Mass.
WATZ Alpena rownship,
WHTC Holland, Wieh.
whic Iron min. Mich
wiBM Jackson. Mleh.
옹

Ke, Wove Length W.P. \mid Ke. Wave Length W.P.|Kc. Wove Length
 WKBj milan, Tenn. KBBB Borger, Tex.

500d / KCFH Cuero, Tex,

1000 KOGT Orange, Tex.
500d KBEC Centervillo, Utah
W.P.|Kc. Wave Length
lo00d WHLL Wheeling. W.Va.
$\left.\begin{array}{l}1000 \\ 1000 \mathrm{~d}\end{array}\right) \mathrm{WCWC}$ Ripon, Wis.
W.P.

5000 d
5000 d

U. S. and Canadian AM Stations by Location

Abbreviations: C.L., call letters; Kc., frequency in kilocycles; N.A., network affiliation-A: American Broadcasting Co.; C: Columbia Broadcasting System, Inc.; M: Mutual Broadcasting System; N: National Broadcasting Co., Inc.

Locotion Bolivar, Mo. bouvar, Tenn. Bonham, TEX.

Boone, N.C. Boonville, Ind. Boonevill Mi Boonerille, Miss Borger, Tox.

Boston, Mass.
C.L. Kc. N.A. KBLR 1550 WBOL 1560 KFYN 1420 KFGQ 1260

KWBG 1590 WWBG 1590 WBNL 1540 KWRT 1370 WBIP 1400 A WBRV 900 KHUZ 1490 M	KBBBB	1600
WB2	1030	WCOP 1150 WILD 1090 WNAC 680 WEZE 1260 N WHOH 850

Boulder, Coio.

Kowle, Tex, KDEY 1360
KBAN 1410 Bowling Green, Ky, Bowl. Groen, Ohio
Boynton Boath, FIs

Bozeman, Mont,

 Bradbury Mgts., Mo Braddoek. Ha.: Md.WPGC 1580 Braddocks Heights, Md.
Bradenton, Fla.

Bradford, Brady, Pex

Brady, Tex
Brainerd,
Brainerd, Minn.
Brampton, Ont.
Brandon, Man.
Bramson, Mo.
Brantford, Ont.
Brattieboro, Vi.
Brawloy, Calif. Breckenridge. Breckenridge, Minn. Bremen, Ga. Bremerton, Wash. Brenham, Tex. Brevard, N.C.
Brewster,
N. Brewton, Ala Bridgeport, Ala. Brideeport, Conn. Bridgeton, N.J. WSNJ 1240 M Bridgewator, N.S. CKBW 1000 Brigham City, Utah KBUH 800 Brighton, Colo. Bristol, Conn. Bristol. Tonn.

Bristol, Va,

Brockton, Mass,

Broekvilis, Ont. Broken Bow, Ne Brookhaven, Miss. Braakings, Oreg. Broakings, S. Oak Brookline, Mass. Brooksville, Fla. Brownfeld, Tex. Brownsville, Tex.
Brownwodd

Brunswiek, Ga.
Brunswiek, Maine
Bryan, Tex.
Buckhannon, w.Va.
Bucyrus, Ohio
Buffalo, N.Y.

Bufinalo, Wyo. Buford, Ga,
Burbank. Calif. Burley, idaho Burlington, Jowa

Burlington, V t.

Burnett, Tox. Burns, Ores. Buller, Ala. Butier, Pa.

Butte, Mont.

M

N

$3>$ WBET 1460 WOKW 1410

CFJR 1450 KCNI 1280 WCHJ 1470 WJMB 1340 m | KBRK |
| :--- |
| 1430 | WBOS 1600 WWJB 1450 KTFY 1800 KBOR 1600 A

KBWD 1880 M KEAN 1240 WGIG 1440 A WCME 900 KORA 1240 M WTAW 1150

\qquad
\qquad

30 C 포 \begin{tabular}{l|l}
N \& C

N

N

A \& \mathbf{C}

\hline
\end{tabular}

A- M
C. WBBB 920 M WBAG 1150
WDOT 1400 WJOY 1230
WVMT 620
KTSL KTSL 1340
KRNS 1230 WPRN 1240 KMAM 1530 WISR 680 KBOW 1490 C
KOPR 550

- \mathbf{N}

 1\square

C.L. Ke. N.A. KXLF 1370 N CJAF 1340 N WATT 1240 WNEL 1430 | WVJP |
| :--- |
| WGRA | 1100

Lecaflon
N^{C} A^{C}
A WGIV 1600 W80C 930 WIST 1240 N WWOK 1480 V.1.

WBNB 1000 WBNB 1000 KCIO 1490 WBYE 1370 KICO 1490
CFAC 960
CBX
 C

	$\begin{gathered} \text { WGIV } 1600 \\ \text { WKTC } 1810 \\ \text { W80C } 930 \mathrm{M} \\ \text { WIST } 1240 \mathrm{~N} \\ \text { WWOK } 1480 \end{gathered}$
Charlotte Amalio, V.l.	
	WSTA 1340
	WBNB 1000
Charlottesville, Va. WCHV 1260 A	
	WELK 1010
	WINA 1400 M

Clineho, V Clinton, III. Clinton, lowe Clinton, $M 0$,
Clinton,
Cinton,
Ois. Clinton, Okia.
Clinton, S.C. Cloguet, Minn. Clovis, N, Mex.

Coachelle, Callf. Coalinga, Calif, Cocom, Fli.

Cocoa Beach, Fla. Cody, Wyo. Coeur d'Alene, Ida, KVNI 1240 M
Coffeyvillo, Kans. KGGF 690 $\begin{array}{ll}\text { Colieyvilio, Kans. KGGF } & 690 \\ \text { Colby, Kans. } & \mathrm{KXXX} \\ 790\end{array}$ Coldwator, Mich. Coleman. Tex. Colfax wash.
Collefe Park, Ga.

Colorado City, Tax.

$$
\begin{array}{c|c}
\mathrm{C} & \mathrm{C} \\
& \mathrm{C}
\end{array}
$$

KRLN 1400

WARO 540 CHK 1290 | WBYS |
| :--- |
| WOB |
| 1370 | $\begin{array}{cc}\text { WIT } & 970 \\ \text { CNS } & 900 \mathrm{M} \\ \text { HOF } & 1060\end{array}$ HBC 1480 KCAN 1550 KPBM 1440 arson Clity, Nev.

Wash.

$$
>\quad 3
$$ $\begin{array}{ll}\text { KFVS } & 960 \\ \text { KGMO } & 1550\end{array}$ WCIL 1020 WCDL 1440 WFST 600 $\begin{array}{lll}\text { KAVE } & 1240 & \text { C } \\ \text { KPBM } & 740 & \end{array}$ WROY 1460 WKYO 1360 arrington, N. Dak. KDAK 1600 Carrizo Springs, Tex. KBEN 1450

Carroll, Iowe KCiM 1380 Carroliton, Ala. WRAG 590 Carrollton, Ga. Cartersville. Ga, WBHF 1450 m Carthage, Ill. WCAZ 990 Carthage, Tenin. WOMO 1490 Carthase, Tex. KGAS 1590 Casa Grande, Ariz. Casper, Wyo. KTWO 1470 C Cayed. S.C. KVOC 1230 A-M Cedar City, Utah KSUB 590 C Codar Falls, lowa

```
Cedartown, Ga
```

Celina, Ohie
Center, Tex.
conterville, towa
entervile, Miss.
Contervilie, Tenn.
centervillo, Utah
Central City. Ky.
Centralia, II, Chehalis
Centreville. Miss.
Chadburn, N.C. WVOE 1590

Charleston, W.Va, Charlotte, N, C. W
W
W
W
WGSN 1450 NTMA 1250 N

 WK WXVA 1240 N | WXVA |
| :--- |
| WCER |
| I350 | WBT 1100

C

Claveland. Tenn,

Clevoland, Tox. Clewiston Fis cll

Location

C.L. Ke. N.A. Location
C.L. Ke, N.A. Location

Jacksonville, III. Jacksonville, N.C. Jacksonville. Tex,
Jacksonville Beh., Flit. Jemestown. N.Dak. Jamestown, N.Y. Jamestown, Tena. Janesville.
Jasper, Ind. Josper, Tox. Jeflerson City, Tenn Jeffersonv
Jena, La, Jena, La. Jennings, La. Jerseyville. Ill. Jesup, G: Johnson City, Tenn.

Johnston, 8.C. Johnstown, N.Y.

Jolist. 111 .
Joliette, que. Jonesbere, Ark. Joneshoro, Le.
Jonesboro, Tenn. Jonesville, La. Jonguiere, Que. Jop Junction, Tex.
June, City, Kans.
Juneau, Alagita KJN
Kallum, Hawail
KalmukI, Hawall
Kalamazoo, Wieh.

Kallspall, Mont.

Kamloops, B.C

 Kano, Pa. Kankakee, III.Kannapolis.

Kans, City, Kans. Kanses City, Mo.

Keone, N.H. KRNY 1460
Kolowna, B.C. Kolse, Wash.
Kemmerer. Wash. KMER 1490
950 Kemmeror. Wash. KMER 950
Kendallvilio. Ind. WAWK 1570 Kendallvilio. Ind. WAWK 570
Konady. Tex. KAML 890 Konndy, Tox.
Kennott, Mo. Konnowick-Pasco-Ric Wash. Kenort, Ont. Wis. Kenesha, Wis. Kentrille, N. 8 . Keormit. Te Kermit, Tex. Kershaw, s,C.
Ketehikan,
Mlaska

Kewanee, III.
Koyser, W. Ves
Key West, Fla. wK
Kewane
Koyser, WII. Va
Key West, Fla. wK Kimball, Nobr, KLEN 1050 King City. Calif. Kingman, Ariz. Kines Mountaln.

Kingsport. Tenn.

KIngston. N. Y.
Kingston, Ont.

Kingsville, Tos,
Kinston. N.C. $\begin{array}{ccc}\text { WJCW } & 910 & \text { C } \\ \text { WETB } & 790\end{array}$ $C^{\text {L }}$

$$
\begin{gathered}
C \\
M \\
M
\end{gathered}
$$

Kingstree, S.C. CKWS 860

WKIZ 1500
WKA. KOCA 1240

KBOA 830
KEPR 810 C
CJRL 1220
WLIP 1050 CKEN 1350 KOKX 1350 $\begin{aligned} \text { KERE } & 600 \\ \text { KERY } & 230\end{aligned}$
WKSC 1300
TKN $930 \mathrm{C}-\mathrm{A}$

KAAA 1250 A
N.C w WKMT 1220
WKIN 1320 WBAZ 1550 N WGHG 920 WKNY 920 C CFRC 1490 $\begin{array}{ll}\text { CKLC } & 1880 \\ \text { CKWS } & 860\end{array}$

WRHC 1400 | WLDS |
| :---: |
| WJNC | 1840 mM Kirkitand Lake, Ont. Kirksille, Mo.

Kilehmer, Fia. KCOI 1460
KNBX 1050 Kitchener. Ont. CKCR 1220
1490 Kittanning, Pa, WKW 1320
WACB 1380
$\left\lvert\, \begin{aligned} & \text { Lecetion } \\ & \text { Leamington, Ont. } \\ & \text { Leavenwort, Kans. }\end{aligned}\right.$
C.L. Ke. N.A.
CJSP 710 CJSP 710 Lebanon, K\%. Lebanon, Mas. Lebanon, Pa. Le A $\begin{gathered}\text { Lee } \\ \text { Leh } \\ \text { Lei } \\ \text { Lel }\end{gathered}$ N Le N L KCLO 1410
WLBN
1590
KLWA
1230
KGAL
W20 WLBR 1270 WCOR 900 WLBE 790 M WBIL 1410 WAGE 1290 WYNS 1150 WMTL 1580 WESY 1580
KLEM 1410 KLAN I $\$ 20$ WJRI 1340 \# WLIL 730

Loca+lon
Loulsbure, N.C. Louisville, G

WYRN 1480 Loulsville, Ky. WPEH 1420 Loulsvilie, Ky. WAVE 970

KEYJ 1400
KSJB 600
WJTN
WXY
W
WCLC
W
W
W WCLC 1260

WCLO 1230 | $W C L O$ | 1230 |
| :---: | :---: |
| WWW | |
| WW | | WWWB 1360

WARF 1240 WITZ 890 KLIK 850 o. KW WJFC 1480 Knoxvilis, Iowe KF KLW Kodiak, Alaska
Kokeme, Ind,
Koseiusko, Miss.
Laconia, N.H. GO 1150 M Kno: $\begin{array}{llll} \\ \text { LaCrosse. Wis. WEMJ } 1350 & \\ \text { WKBH } 1410 & \mathrm{~N}\end{array}$

Ladysmith. Wis.

WKLO 1280
WKYN 1240
WLOU 1800
WTMT 620 A.
Loulsville. MIss.
WLSM 1270 Loveland, Colo. KLOV 1570 Lovington. N.Mex. KLEA 520 WCAP 980 Lubboek. Tex. KCRD $1590 \mathrm{M} \cdot \mathrm{N}$
KDAV 580 KLBK 1340
KFYO 790 $\begin{array}{ll}\text { KFLL } & 790 \\ \text { KSEL } & 850 \\ \text { KSE }\end{array}$ Lucodals, Miss. WHHT 1440 Lufkin. Tex. KRBA 1340 Lumberton, N.C. WAGR 580 Luray, Va. WRAA 1330 Lynehburt, Va, WLVA 590 WWOD 1890
M
A

A | N | Low |
| :---: | :---: |
| A | Lew |

$$
\begin{array}{cc|c}
10 & & \text { Le } \\
0 & \mathrm{~m} & \mathrm{Le} \\
0 & & \text { Le } \\
0 & & \\
0 & \mathrm{~A} & \mathrm{Le} \\
0 & \mathrm{~N} & \\
0 &
\end{array}
$$

W
CJOC 1220
CHEC 1090
KLVT 1230

Levelland, Fex. fayotte, Ga. WLDY 1340

Lafayotte, La. WAZY 1410

Lafayotte, Tinn.

$$
\begin{aligned}
& \text { Larayotte, Tonn. } \\
& \text { LaFallatte. Tonn. }
\end{aligned}
$$

M Le

C Lake City, S.C.
M Li
Li
Li
oxin

Liberty, K,Y.
Liberty, Tex.
Lihue, Havall Lima, Ohie

Li

Lincoln. Nabr.
$\begin{array}{cccc}\text { Winston. N.C. } & \text { WELS } & 1010 \\ & \text { WFTC } & 960 & \text { A } \\ & \text { WISP } & 1230 & \text { W. }\end{array}$

$$
\geq 3 \quad 32 \quad 3
$$

Linsolnton, N.C. Lindsery, Ont Litehnield. III
Mm $\begin{aligned} & \text { Lit } \\ & \text { Lit } \\ & \text { Lit }\end{aligned}$

A
Lak
Lal
Lal
\qquad
\qquad

N L
 C Lane
 Land Lan Lan
 $\mathrm{N}^{\text {L }}$

 angley Prairio, B.C. Lansiord. ns. ch.

Lay Lap Lar Lar Las LaS Las

aredo, Tex Las
Lat
Lat
Lau
Laur
Lau
Law
Law
Law
Law
Law
Law

Salle, 11 Sruses. Que.
as Vepas, Nev.

Location C.	C.L. Kc. N.A	Location C.L. Kc.	Locotion C.L. Ke. N.A.	Lacation	L.
	KRIG 1410 M	w	Plattevilte, Wis. WSW W 1590 Piattsburg, N.Y WEAV 960 A	ueblo, Colo.	2A 1230
	KOGA 930	linn.	WIRY $13400^{\circ} \mathrm{M}$		0
Ogden, Utah	KLO 1430 m	Park KPRM 1240	Pleasanton, Tox. KBOP 1380		GHF 1350 A. 4
	KANN 1250	Parry Sound, Ont. CKAR-1 1340	Pleasantvilte, N.J. WOND 140 Plymouth, Mass. WPLM 139		KU
	KSVN 730 KVOG 1990	Parsons, Kansil Kak liseo	WPPNC 147	I, Ten	1420
Ogdensburs, N.Y.	WSLE 1400 m	C 1240			-
011 city Pa.	WKRZ 13	4110			
Okoechoise.		Pasadona, Tex. KLVL 1480	K 1240 M	Punta Gorda, Fla	
	LPR 1140	K 65	析	-	40
	CY 1340	Paiat, Miss. ${ }_{\text {WPa }}$	Pacumoke City, Md. WOMV 540 Pointe Clairs, Que. CFOX 1470	atnam	WINY 1350
	KOMA 1520		Pomona, Calif. KWOW 1600	Panah, Te:	KOLJ 1150
	KJEM 800	Pasco, Wash. KORD 910	KKAR 1220	bantico, Va.	WQVA 1530
	WKY 930	Paso Robles, Calif. KPRL 1230 M	Pompano Beach, Fla.	e.	CBV 980
Okmulgea,	KOKL 1240	.Y.			
Old Saybrook, Conn.	WLIS 1420	WALK 1			
Olean, N.Y.	WMNS 1360	WPAC 1580	Ponce. P.R WPRP 910		1380
0	WVLN $740{ }^{\text {a }}$	Pauls Valloy, Okla. KV ${ }^{\text {PH }} 1470$	WEUC 1420	Quesnel, B.C.	370
Olympia, Wash,	GY 1240 M	Pawtucket, R.I. WXTR 550 A	WPAB 550	Quincy, Fla.	${ }_{0} \mathrm{M}$
	N 920	Payotte. Idaho KEOK 1450			WTAO 9300 C
Omaha, Nebr.	KBON 1490 N	Peace River, Alta. CKYL 610	Pontiac, M-eh.	Quiney, Mass.	WJOA 1300
			Pontotoe, Miss. WSEL 144		KPOR 1370
		Poekskill, N.Y. WLNA 1420			WSFE 1490
	KMEO 660 M		KLID 1340	meine	46
	WOW 590 C	Pell City, Ala. WFHK 1430	Poplarvillo, Miss. WRPM 1530		
ak	KOMW 680	Pembrake, Ont. CHOV 1350	Portags, Pa, WWML 1470 Portage, Wis. WPDR 350		$\begin{aligned} & \text { WRAD } \\ & \text { WKIX } \\ & 850 \end{aligned}$
Oneida	MCR 1600	Pendieton, Ores. KKID 1240 A			NOH 1550
Oneida	WBNT 1310	1050	CFR̂Y 920		WPTF 680
Oneon	WCHL IS70		Portageville, Me. KMis 105		LLE 570
neont	WDOS 730	SWV 1570	iberai. B.C. CJAV 1240		1530
Ontario. Call	KASK 1510	Pensacola, Fla. WBOP 980			RTL 1460
Ontario. Oreo	KSRY 1380	WBSR 1450	KONP 1450	f.apid City, S. Dak.	KOTA 1380
opelika, Ala. Opelousas, La	WPHO 1400 M	MEL 610 C	Port Arthur, Ont. CFPA 1230		KIMM 1150
	60	COA 1370 N	Port Arthur, Tex. KOLE 1340		KEED ${ }^{\text {d }} 20$
Opportunity, Wash.	h. K2UN 630	A 790	KPAC 250 m		
Orang	WCAT 1990	Penticton, B.C. CKOK 800		Kat	WMOV 1360
Orang	KOGT 1600	Peoria, ill. WAAP 1350 N			RAL
Orang	WJMA 1340	WMED 1470 C		Faym	KAPA 1340
urg, 8.c.	WDIX 1150 A	WIRL 1290		Baym	促
	WORG 1580	WPEO 1020 M			K
	ND ${ }^{920}$ Y 500	Perry, Fla. WPRY ${ }^{1400}$	Port Lavara, Tex. KGUL 1560	Reading	WEEU
Oregon City, Oreg.	. KGON 1520 M	Perry. Ga, WPGA 980	Portland, Ind. WPGW 1440		
Orillia, On	CFOR 1570	Perryton, Tox. KEYE 1400 M	970 N		
Oriando, Fla.	WDBO 580	Paru, Ind. WARU $1600{ }^{\text {m }}$		Redoing. Calio.	AHR $330{ }^{\text {m }}$
	WHOO	Potaiuma, Calif. KTOX 1490			ams 1400
	WHIY 1270	Petorborough, Ont. CHEX 9880	Portland, Ored. KBPS 1450		VCV 600
	WKIS 740 N	1420 1240	10		
Ormond Bch., Fia.	W WaxQ 1380	Petoskey, mich. WMBN 1340			CKRD 850
Orofine, Ida Oroville, Ca	KLER KAOR 9340	Phonix City, Ala, WPNX 1460 A	620 N	Redfiold, S. Da	KFCB 1380
Orovilis. Calin.	$\begin{array}{r}\text { KAOR } \\ \text { KD10 } 1350 \\ \hline 150\end{array}$	Philadolphia, Miss. WHOC 490	970 C	Redlands, Cailf.	
Osane Ech., M	KRMS 1150	c	PAM 1410	Rod Li	WGCB 1440
ceol	KOSE 860	WFIL 560 A	KPDQ 800	Rod	
Oshawa, Ont.	CKLB 1350	WFLN 900	KWJJ 1080		CUE 1250
Oshkosh, Wis.	WOSH 1490 A	340	750	Redw	
Oskaloosa, $10 \times$	KBOE 740	IRG 990	Port Neches, Tex. KPNG 1150	Reedsb	WRDE 1400
Oswege, N.Y.	GO 1440	P 610	Portsmouth, N.H. WBEX 1380	Reedsport. Ore	470
Othello, Was		WPM 1540	WHEB 750	qedina, Sask.	40
Otseso, Mich Ottawa, Ill.	WDCMC ${ }^{980}$	WPEN 950 M	Portsmouth, Ohio WPAY 1400 C		1300
tawa, Ka	KOFO 1220	60			
awa,	910	260		Reidsville, N.C.	FRC 1600
		Phillipsburg, Kans. K KAN 1490			1220
	CKOY 1310		370	Remsen, N.Y.	WREM 1480
umwa, I	Iz 1240 A	1400	$\text { KLCO } 1280$	Reno. Nev	KOH 630 N
		KHAT 1480	KYRO 1280		-
	$\underset{\mathbf{W}}{ }$	KCAC 1010			
wensh	WOMI 1490 M	KOY 550 A	Potaw Pa W		230
	1420 A	OOL 960 C	WPPA 1360 m	Rensselat	EEE 1300
on Sound, Ont.	CFOS 560	PHO $910{ }^{10}$ A	Poughkespsie, N.Y. WEOK 3390	exbur	KRXK 1230
			WK1P 1450 A	Rica	WJMC
ford.	WOXF 1340	KTAR 620 N	ynette, Wis. KPOWIBU 1240	ATen	KSYC 990
ard, Calif.	KOXR 910	Picayune, Mise. WRJW 1320		Richland, wash.	KALE 960
rark, Ala.	W02K 900	Piodmont. Ala, WPID 1280	- WPRE 980	Richland, Wis.	RCO 1450
adueah, K	WKYB 570 M	Pierro, S.Dak. KGFX 630	KWSK 1570	Riehlands, Va,	WRIC 540
	WDXR 1560 N	15	KWNS 1290	Richmond, In	WKBV 1490 A
	WPAD 1450 C	Plkevilis, Ky. WLSI 900	1490 N	Richmond, Ky.	EKY 1340 m
	KPGE 1340	1240 M	T 1340	Richmond,	WANT 990
ho		Pint Bluti, Ark KCLA 1400			WRGM 1590
nts	WSIP 1490 M	KOTN 1490 M	Presque islo. Me. WAGM 950		WLEE 1480 M
Palatka,		KJBS 1530	Presquo isto, we. WAGM 950		WEET 1320
	800	KPBA 1590	Preston, Idaho KPST 1940		WMEG 1380
alestim	KNET 1450	Pine city, minn. WCMP 1350 Pineville, ${ }^{\text {Wy }}$ WMLF 1230	rs, KY. WPRT 960		RVA 1140 N
alm Beh., Fla,	WQXT 1340 A		Wotah Woc 1310 M		
m Spras., Calif.	if. KCMJ 1010 C		KOAL 1230 M		
	KDES 920	Pipestono Minn. Piqua, Ohie WPTW 1570	Priehard, Ala, WSIM, 1270	Riehmon	WVAR 1280
		Pittsburg, Calif. KKIS 990	Prince George, B.C. CKPG ${ }^{\text {P50}}$	Ridgeerest, Cal	KRCK 1360
alo Alto, Calif.	KIBE 1220	Pittsburg, Kans. KOAM 860 N	Prince Rupert, B.C. CFPR 1240		KLOA 1240
mpa, Tex.	KPON 1340 M	EK 1340	Prineaton Ind. WRAY 1250	Tio piodr Qus.	900
	KHHH 1230	Pittsburih, Pa. KDKA 1020	Princeton Ky. WPKY 1580	Rio Piedras, P.	WUNO 1320
nama City, fla.	W WDP 590	KQV 14.0 A	Prinetor, N.J. WHWH 1350		A1 1520
	WPCF 1430 A	WAMO 860	Princeton W.Va. WLOH 1490 A		TAB 1570
anama City Beac Fla.		WJAS 1320 N	Prinevilla. Orea. KRCO 690	Ripon. Wis. Biverhead N.Y	WCWC 1600 WRIV 1390
Fla.		$\text { WPIT } 730$	Prosser, Wash, KARY 1310	Riverhead, N.Y.	
ad	K	EP 1080 M	Providence, R.I. WHIM 1110	Riverside, Call	KPRO 1440
Paragouid, Ark.	R	- 150	WICE		50
Paris, Ark.	CCL 1460	Pittsfinld, III, WBEA 1580	WJAR 920	Riv	KYOW 14500 M
Paris, 11.	440	Pittsitd, Mass, WEEC 1420 A	W 990		
aris, Ky,	WKLX 1440		O ${ }^{630}$ m	Riviare du loup, Q	1400
Is, Tenn.	1490 A	Plainfield, N.J. WERA I590	Prove, Utah	Roanoke, Ala. Rpanoke, Va.	AJ ${ }^{\text {g60 }}$ c
	KFTV 1250	Plainview, Tox. KVOP 1400 M	Prove, UTA KEYY 1450		$\text { WRIS } 1410 \mathrm{~m}$
Va	Va. WCEF 1050 WPAR 1450	Plant clty, fla. WPLA 1050	KOVO 960 M Pryer, Okla. KOLS 1570	HITE'S RA	LOG 169

Location	C.L. Kc. N.A.	Location C.L. ${ }^{\text {Kc. N.A. }}$	Location C.L. Kc. N.A.	Location C.L. Kc. N.A.
	WHYE 910 WROV 1240 A WSLS 610 N	St. Joseph, Mich, WSIM 1400 8t. Joseph, Mo, KFEQ 680 KKJO 1550 M	$\begin{aligned} & \text { WKAQ } 580 \text { C } \\ & \text { WKVM } 810 \\ & \text { WKYN } 630 \end{aligned}$	Shelbyvilie, Ind. WSVL 1520 Shelbyville, Tenn. WHAL 1400 WLI 1590
Roanoke Rapids,		KUSN $1270{ }^{\circ}$	TA 1140	Sheldon, lowa K1WA 1550
,		CF	K	Wash. KMAS 1280
		8t. Louls, Mo, KATZ 1600	KCJH 1280	Shenandoah. Pa. WMBT ${ }^{\text {S }} 350$
Roberval, Que.	$\begin{aligned} & \text { CHRL } 910 \\ & \text { WTAY } 1570 \end{aligned}$	KFUO 850	KSLY 1400	Sherbrooke, Que. CHLT 630
Ro	KROB 500	550 C	470	
R	KROC 1340		OFY 1050	Sheridan, Wyo. KWYO 1410
		1380	San Rafael, Calif. KTIM 1510	Sherman, Tex. KRRY 91
Rochester, N.M. Rechaster, N.Y.	WWNH 930 m	$\begin{aligned} & \text { KXOK } 630 \\ & \text { WEW } 770 \mathrm{M} \end{aligned}$	San Saba, Tex, Kif KBAL 1410 Santa Ana, Calif. KWIZ 1480	500 480
	WHAM II80 N	IL 1430 A	Santa Barbara, Cal. KDB 1490	WSHP 1480
	WHEC 1460	St.	- KUB	Show Low, Ariz. KVWM 1050 Shreveport, La. KANB
	WRYM 680	KRSI 950	N	
	WSAY 1370	St. Mary's, Pa.	M	131050
Roekford, III.	WROK 1440 A	630	Santa Cruz, Calif. KSCO 1080	L 710
	WJRL 1150	400	Santa Fe, N.Mox. KTRC 1400 A	14
Rock Hill, S.C.	340 m		Santa Maria, Cal.	980
	1150	UN 620 A	16	KWKH 1130
	WAYN 900	WLCY 1380 m	1240	Sidney, Mont. KGCX 1480 M
Rock lshand, 111.		uri Boach,	Santa Monlea, Cal, KDAY 1580	Sidney, Nebr. KSID 1340 A
Rockmart, Ga.	WPLK 1220	8t. Thomas, Ont. CHLO 680	Santa Paula, Calif. KSPA 1400	Sierra Vista, Ariz. KHFH ${ }_{\text {KMV }}$ K 1420 A
Rock Springs, Wyo		Salamanea, N.Y. WGGO 1590	Santa Rosa, Calli. KSRO 1350	Sikeston, Mo. KS
		Salem, 111. WJBD 1350	K	Siler City, N.C. WNCA 1570
Rockville, Md. Rockwood, Tenn.	WINX $\begin{array}{r}1600 \\ \hline 8 K \\ \hline\end{array}$	Salem. Ind. WSLM 220		Siloam Sprgs., Ark. KU
Rocky Ford, Col	KAVI 5820	Salom, Mas. WESX 1230 m	Santa Rosa, N.Mex. KSYX 1420	Silsbee, Tex. KK K
cky Mount, N.C.	WCEC 810		Sapulpa, Okla. KREK 1550	KGM1L
	WEED 1390 A		Saranac Lake. N.Y, WNBZ 1240 A	
	1490	KBZY 1490 N	30	
	S 1290	KGAY 1450	1220	Sioux City, lowa KSC」 1360 A
Rocky Mount, Va.	WYTI 1570	Salem, Va WBLU 1480	$\begin{aligned} & \text { WSPB } 1450 \mathrm{C} \\ & \text { WYND } 1280 \end{aligned}$	KMNS 620 m
Rogers city, mich.	WHAK 960	Salina, Kans. KSAL 1150 M	Saratoga Springs, N.Y.	KTRI 1470
Rogersville, Tenn.	WRGS 1370	980		
	$\begin{array}{cc} \text { KCLU } & \text { I590 } \\ \text { KTTR } & 1499 \end{array}$	Sallnas, Callf. KOTY 910	Sarnia, Ont. CHOK 1070 Saskatoon, Sask. CFQC 600	NWC 1270
Rome, Ga.	WLAQ 1410 A	1	$\text { S } 1170$	Sitka. Alaska KIFW 1230 C -A
	1360	Saline, Mien		
	WROM		800	50
Rome, N.Y.	WKAL 1450 A	1470	ult	Smithrield, N.C. WM
	WRNY 1350	Salisbury, N.C. WSTP 1490 M	an	Smiths Fails, Ont. CJET 630
Ronceverte, W.V. Roseau, Minn.	$\begin{aligned} & \text { WRON } 1400 \\ & \text { KRWB } 1410 \end{aligned}$	Salmon, Idaho WSAT ${ }^{\text {K }}$	Sault Stc. Marie,	Smyrna, Ge. WSMA 1550
Roseburg, Oreg.	KRNR 1490		CKCY 920	Snyder, Tex. KSNY 1450 M
	KRXL 1250	ALL 910 A	Savannah, Ga. WBYG 1450 M	Soda Sprai., Idieho KBRV 540
	KYES 950	KCPX 1320 N	EAS 900 -	Solvay, N.Y. WaSR 1320
Rosenberg. Tex. Rossvillo, Ga.		KLUB 570 M	$\begin{aligned} & \text { WSAV } 630 \\ & \text { WSGA } 1400 \end{aligned}$	Somerset, Ky. WSFC 1240 M
Roswell, 'N.Mox.	K RSY 1230	KNAK 1280		WTLO 1480
	GFL 1430 M	$1370{ }^{\text {c }}$	A	So
	81M 910	630	Savannah, Tenn. WORM 1010	
	KRIK 960	KWHO 860	Sayre, Pa. WATS 960	Sorel, P.Q. CJSO 1320
Rouyn,	CKRN 1400 WRXO 1430		Schefferrille, Que. CFKL 1230 Schenectedy, N.Y. WGY 810 N	So. Bend, ind. WNDU 1490 A
Roxboro, N.C. ${ }^{\text {Royal Oak, Mich. }}$	WRXO: 4300	San Angelo, Tax KTEO 1340	Seheneetady, N.Y. WGY 810 N	WJVA 1580 m
Rupby, N. Dak.	KGCA 1450	KPEP 1420	Scotland Neck, N.C. WYAL 1280	Southbridge, Mass. WEST 960 C
Ruidoso, N,Mex. Rumford, Mo.	KRRR 1340	KWFR 1260	Seott City, Kans. KFLA 1310	So. Boston. Va, WHLF 1400 A
Rumford, Mo. Rupert, idaho	WRUM 790	San Antonio, Tax, KAPE 1480	M	Southern Pines, N.C.WEEB 990
Rushton. La.	KRUS 1490	KCOR KBAT 680 c	KOLT 1320 C	South Daytona Beach. WELE 1590
Rusk, Texas	KTLU 1580	KBER 1150	Seottshero, Ala. WCRI 1050	So. Gastonia, N.C. WGAS 1420
Russell ${ }^{\text {Russens. }}$	WWRSL 980	KITE 930	8cottedale Ariz WWBY 13300	So. Haven, Mich. WJOR 940
Russeliville, Ala.	WWWR 920	KUKA 1250 KUBO 1310	Scottidale, Ariz. KWBY K 1440 Scottsville, Ky. WLCK 1250	So. Knoxviluo, Tonn. WSKT 1580
Russelifilio, ${ }^{\text {Ry. }}$	WRUS 810	KUBOC 6310	Seranton, Pa. WARM 590 A	So. Paris, Me. WKTQ 1450
Rutland, Vt.	WHWB 1000	${ }_{860}{ }^{\wedge}$	WEJL 630	So
	SYB 1380 m	550	WGBI 910 C	
Sackville, N.B. Sacramento, Calif.	$\begin{gathered} \text { CBA } 1070 \\ \text { KCRA } 1320 \mathrm{~N} \end{gathered}$	WOAI 1200 N	$\begin{aligned} & \text { WICK } 1400 \\ & \text { WSCR } 1320 \text { N } \end{aligned}$	So. Williamsport, Pa.
	KGMS 1380 M	$\begin{aligned} & \text { KCKC } \\ & \text { KFXM } \\ & \hline \end{aligned}$	Searcy, Ark. KWCB 1300	Spanish Fork, Utah KONI 1480
	KJAY 1430 m	KRNO 1240	Soaside, Oreg. KSRG 730	
	KRAK 1140 M	KMEN 1290 M	Seattlo, Wash. KAYO 1150 M	
	KROY 1240 C	Sandersville, Ga. WSNT 1490	KIXI 910	Sparta. Tenn.
Safford. Ariz.	KXLA 1470	San Diese, Calif, KCBGl170	$\begin{aligned} & \text { KING } 1090 \\ & \text { KIRO } \\ & 710 \end{aligned}$	WCOw 1290
	KATO 1230	KOGO 600 N	950	WORD 1400 M
Sag Marbor, N.Y. Saginaw, Mich.	WLNG 1600	$\begin{array}{lll} G B & 1360 \\ \text { LLO } & 1240 \end{array}$	KOMO 1000 N	WSPA 950 C
	WSAM 1400 N	130	$\text { KETO } 1590$	
	WS6W 790 C	Sandpoint, Idaho KSPT 1400	KTW 1250	Spencer, W.Va. WSP2
St. Albans,	WWSR 1420	Sand Spring, Okla. KTOW 1340	770	Sookane. Wash. KONC 1440
St. Albans	WKLC 1300	Sandusky, Ohio WLEC 1450 M	Sebring, Flan. WJCM 960	KLYK 1230
Ane.deola.	CHGB 1310	Sanford, Fla. Waifer ${ }^{\text {S }}$	We WSEB 1340	G 1380
St. Augustine, Fia.	WFOY 1240 C	WSFR 1360	Sedalia, Mo. KDRO 1490	KMRE 590 N
St. Boniface, Man.	WETH 1050	Sanford, Mo. WSME 1220	Seguin, Tex. KWED 1580	KNEW 790
St. Catherines, Ont.	i. CKTB 610	sanford, N.C. WWGE 1050	Solma, Ala. WGWC 1340 C	REM 970
St. Charles, Mo.	KADY 1460	WW	81490	
St. Cloud, Minn.	KFAM 1450 N	$\text { RC } \quad 610 \mathrm{M}$	Seminole, Tex WRWd 570	Springdale. Ark. KBRS 1340 A
St. Geerge, S.C.	Waiz 1300	$\text { KCBS } 740 \mathrm{C}$	Seneea Township.	pringheid, III. WCVS 1450 A-M
St. George, Utah	KDXU 1450	KGO 810 A	S.C. ${ }^{\text {Wes }}$ WSNW 1150	
St. Helen, Mich.	WMIC 1590	NBR 680 N		Sprinefield, Mass. WHYN 560 C
St. Helens. Oreg.	KOHI 1600	KKHI 1550 m		WMAS 1450 m
St. Hyacinthe, Que.	CKBS 1240	KSAY 1010	Seymour. Ind. WJCD 1390	WSPR 1270
St. Jerome. Que.	CKJL 900	KSAN 560	Seymour, Tex, KS	Springitio, Mo. KGBX 1260 N
Saint John, N.B.	CFBC 930	KYA 1260	Shamokin. Pa. WISL 1480	KTTS 14
	CHS 1150	San German. P. R. WRJS 1060	Shamroek. Tex KBYP WPIC 790	KWTO 560
St. Johns, Mieh.	WJUD 1580	Sanitobia, Miss. WSAO 1550	Sharon, Pa. WPIs. WTCH 960	Sprinafield, Ohlo WizE 1340 A
8t. John's, Nfld.	CBN 640	San Jose, Callf. KLOK 1170	Shawinigan, Que. CKSm 1220	WEED 1050
	N	IV 1590 m	Shawnee, Okla. KGFF 1450 M	Springfeld, Ores. KEED 1050
	12	KEEN 1370	Sheboygan, Wis. WHBL 1330 A	WDBL 1590
	Yocm 590	KXRX 1500	Sheboygan, Wis. WKTS $950{ }^{\text {A }}$	-
St. Johnsbury, Vt.	WTWN 1340	Sen Juan, P,R. WAPA 880 m	Shemeld, Als WSHF1290	Springhil, La. KBSF 1460
	WTWN 1340	870	Shelby, Mont. KSEN 1150 m	Spruex Pino, N.C. WTOE 1470
170 WHITE'S	3 RADIO LOC	$\begin{array}{ll} \text { WIAC } 740 \\ \text { WIPR } 940 \end{array}$	Shelby, N.C. WOHS 730 M	Stamford, Tex, KDWT 1400 Stanford, KY. WRSL 1520

U. S. AM Stations by Call Letters

C.L.	Lecation		C.L. Location		C.L.	Lacotion		C.L.	Locotion	c.
	Kingman. Ariz.	1230	KARY Prosser, Wash.	1310	KBLY	Gold Beach, Oreg.	1220		Cedar Falls, lowa	50
$K A A B$	Hot Sgrines, Ark.	1340	KASE Austin, Tex.	970	KBM	Henderson. Nev.	1400	KCG	Columbla, Mo.	80
KAAY	Little Rock, Ark.	1090	KASH Eugene, Ore.	1600	KBMN	Bozeman, Mont.	1230	KCHA	Charlos City, lowa	1580
KABC	Los Angeles, Cali	790	KASI Ames, lowa	1430	KBM0	Benson, Minn.	1290	KCHE	Cherokee, lowa	1440
KABI	Ketehikan, Alask	580	KASK Ontario, Calif.	1510	KBMW	Breekinrdg., Minn.	1450	KCHI	Chillicothe, Mo.	1010
KABL	Oakland, Calif.	960	KASL Nowcastio, wyo.	1240	KBMX	Coalinga, Cálif.	1470	KCHJ	Delano, Calit.	1010
KABQ	Albuquergue, ${ }^{\text {A }}$	1350	KASM Albany, Minn.	1150	KBMY	Billings, Mont.	1240	KCHR	Charloston, m	1350
KACE	Riverside, Calif.	1570	KASO Minden, La.	1240	KBND	Bend, Ureg.	1110			
KACI T	The Dalles, Or	1300	KAST Astoria, Or	1370	KBOA	Kennett, Mo.	830		Naw mex	
KACT	Andrews, Tex.	1360	KASY Auburn,	1220	KBUE	Oskaloosa, low	740	кСНV	Coachella, Callt.	970
KACY	Port Hueneme, Calif,	1520	KATE Albert Lea, Mi	1450	KBOJ	Boise, Idaho	950	KCHy	Cneyenne, wyu.	5so
KADA	Ada, Okla.	1230	KATI Casp	1400	KBOK	Malvern,	1310	KCiD	Caldwell, Idano	1490
KADL	Pine Bluff, Ark.	1270	KATL Miles City, Mo	1340	KBOL	Boulder.'	1490	KCll	Washington, iuwa	1380
KADO	Marthall, Tex.	1410	KATN Boise, Idaho	1010	KBON	Bismark-Mandan,		KCIJ	Shrevepart, La,	1450
KADY	St. Charles, mo.	1460	KATO Sattord. Ariz.	1230		Smark Ma	1270	KCIL	Houma La.	1490
KAFP	Petaluma, Calit.	1490	KATA Texarkana, Tox	940	KBON	Omaha, Nobr.	1490	KCIM	Carroll, lowa	1380
	Bakersfiold, Cali	550	KATR Eugene, Ore.	1320	KBOP	Pleasaiton, Tex.	1380	KCiN	Vietorville. Calir	590
KAGE	Winona, Minn.	1380	KATY San Luis Obispo, Cal.	1340	KBOR	Brownsville, Tex.	1600	KCJB	Mimot, N.Dak.	910
KAGH	Crossett. Ark.	800	KATZ 8t. Louis, Mo.	1600	K ${ }^{\text {b }}$	Butte, Mont.	1490	KCJH	San Luls Uuispo, Cal.	280
KAGI	Grants Pass, Or	930	KAUS Austin. Min	1480	KBO	Dalias, Tox.	1480		Sau Hernaturiu, Lal.	
KAGO	Klamath Falis, Ore	1150	KAVE Carlsbad, N.M	1240	KB	Mediord, Ores.	730	KCKG	Sonora, 1 e	1240
KAGH	Yuba City, Calis.	1450	KAVI Reeky Ford, C	1320	KBP	Portland, Oreg.	1450	KCKN	Kansas City, Kans.	1340
KAGT	Anacortes, Wash	1340	KAVL Lancaster, Cal	610	KB	Mt. Vernon.	1430	KCK	Jena, La.	1480
KAHI	Auburn, Calif	950	KAVR Apple Valley, Calip,		KB	Brinkley, Ark	1570	KCK	Coolldge. Ariz.	1150
KAMR	Reddins, Calif.	1330	KAWA Waco, Tex.	1010	KBKK	Brookings, S. Dak.	1430	KCLA	Pine Eluiti, Ark.	1400
KAHU	Waipahu, Mawali		KAWL York, Nob.	1370	KBRL	MeCook, Nebr.	1300	KCLE	Cleburne, Iex.	1120
KA1M	Kaimuki, Hawaii	870	KAWT Douplas, Ariz.	1450	KB	Brishton, Colo.	800	KCLF	Clifton, Ariz.	1400
KAIN N	Nampa, Ida.	1340	KAYC Beaumont, Tex.	1450	KBRO	Bremerton, Wash.	1490	KCLH	Blue Earth, Minn	1560
KAIR	Tuesan, Ariz.	1490	KAYE Puyallup, Wash.	1450	KBRR	Leadville, Colo.	1230	KCLN	Clinton, Jowa	1390
KAJO	Grante Pass, Ore	1270	KAYG Lakewood, Wash.	1480	KBP	Springdale, Ark	1340	KCLO	Loavenworth, Kans.	1410
KAKA	Wiekenburg, Ariz.	1250	KAYL Storm Lake, lowa	990		Soda Sprge., Ida.	540		Palts Tex.	1530
KAKC	Tulsa, Okla.	970	KAYO Seattlo, Wash.	1150	KBRX	O'Nelli, Nebr.	1350	KCLS	Flagstaft, Ariz.	600
KAKE	Wichita, Kan.	1240	KAYS Hays, Kans.	1400	KBRZ	Freeport ${ }^{\text {a }}$ axas	1460	KCLU	Rolla, Mo	1590
KALB	Alexandria, La.	580	KAYT Rupert, idaho	970	KBS	Springhill. Le	1460	KCLV	Clovis. N.Mex.	1240
KALE	Riehland. Wash.	960	KBAB Indianola, lowa	1490	KBS	Bia Spring.	1490	KCLW	Hamliten, Tox.	00
KALF	Mesa, Ariz.	1510	KBAL San Saba, Tox,	1410	KBT	Batesville. Ar	1340	KCLX	Colfax, Wash.	1450
KALG	Alamogerde, N.Mex.	1230	KBAM Longview, wash	1270	KBT	Mouston, Mo.	1250		Toxarkana, T	1230
KALI P	Pasadena, Calif.	1430	KBAN Bowie. Tex.	1410	KBT	Jonesboro, Ark	1230	KCN	Palm Sprgs., Cali	10.0
KALL S	Salt Lake City, Utah	910	KBAR Burloy, Idaho	1230	KBTN	Neosho, Mo.	1420	KCMO	Kansas City. Mo.	810
KALM	Thayer, Mo.	1290	KBAT San Antonio, Tex.	680	KB	El Dorado, Kans,	1360	KC	Mantou Sprgs.. Culo.	1490
KALN	lola, Kan.	1370	KBBA Benton, Ark.	690	KBTR	Denver, Colo.	710	KCNI	Broken Bow. N	1280
KALO	Little Roek, Ark.	1250	KB8B Borger, Tex.	1600	KBUC	Corona, Calif.	1370	KCNO	Alturas, Cali	570
KALT	Atlanta, Tox.	900	K88C Centerville U	1600	KB	Athens, Tex.	1410	KCNY	San Marcos, Tox.	1470
KALV	glva, okla.	1430	K880 Yakima, Wash	1390	KBU	Brigham City, Utah	800	KCOB	Nowton, lowa	1280
KAMD	Camden, Ark.	910	K88R North Bend, Ores.	1340	KBUN	Bemidjl, Minn.	1450	KCUG	Centerville. law	1400
KAML	Konedy, Tox.	990	KBBS Buffalo, Wyo.	1450	KBUR	Burlington, lowa	1490	KCOH	Houston, Tex.	1430
KAMO	Rogers.	1390	KBCH Ocoanlake, Oreg.	1380	KBUS	Mexia, Tex.	1590	KCOK	Tulare, Calit.	1270
KAMP	El Centro. Calif	1430	KBCL Shreyeport, La.	1220	KBUY	Amarillo, Tex.	1010	KCOL	Ft. Collins, Colo.	1410
KAMY	MeCamoy, Tox.	1450	KBEA Mission, Kans.	1480	KBUZ	Mesa, Ariz	1310	KCUM	Comanche, Tex	1550
KANA	Anaconda, Mont.	580	KBEC Waxahachie, Tex,	1390	KBVM	Lancaster, Calif.	1580	KCON	Conway, Ark.	1230
KANB	Shreveport, La,	1300	KBEE Modesto, Calif.	970	KBVU	Bellevue, Wash.	1540	KCUR	San Antonio. Tex.	1350
KAND	Corsicana, Tox.	1340	KBEK Elk City, Okla.	1240	KBW	Brownwood, Tex.	1380		Alliance, Nebr	1400
KANE	Now lberia, La.	1240	KBEL Idabel, Okla.	1240	KBY	okla. City, Okla.	890	KCOY	Santa Maria, Calif.	1400
KANI	Wharton Tex.	1500	KBEN Carrizo Spras.. Tex.	1450		Big Spring, Tex.	1400	KCPX	Sait Lake City, Utah	1320
KANN	0 Oden , Utah	1250	KBER San Antonio. Tex.	1150	KBYP	Shamrock, Tex.	1580		Sacramento, Callf.	1320
KANO	Anoka, Minn.	1470	KBET Reno. No	1340	KBYR	Anchorage, Alaska	1270	KCHB	Chanute, Kans.	1460
KAOH	Duluth, Minn.	1390		1010		Salom, Ores.	1490			
$\begin{aligned} & \text { KAOK } \\ & \text { KAOL } \end{aligned}$	Lake Charles, La. Carrollton Mo	1400 1430	KBFS Belle Fourche. S. Dak.	1450 910	KB2Z KCAC	LaJunta, Colo.	1400	KCHG	Cedar Rapids, lowa	1600
KAOR	Oroville, Calif.	1340	KBGO Waco, Tex.	$\begin{array}{r}1580 \\ \\ \hline\end{array}$		x.	1560		Mraland, To	580
KAPA	Raymond, Wash.	1340	KBHB Sturgis, S. D.	1280	KCAL	Rediands, Callf.	1410	KCRT	Trinidad, Colo.	240
KAPB	Mark	1370	KBHC Nashvilio, Ark.	1260	KCAN	Canyon, Tex.	1550	KCRV	Caruthersville. mo.	370
KAPE	San Antonio,	1480	KBHM Branson, Mo.	1220	KCAP	Helena, Mont.	1340	KCSJ	Pueblo, Colo.	590
KAPI	Pueb	690	KBHS Hot Springs, Ark.	590	KCAR	Clarksville, Tex.	1350	KCSR	Chadron, Nebr	610
KAPR	Douglas, Ariz.	30	KBIF Fresno, Calif.				1050	KCTA	Corpus Christi, Tex	1030
KAPS	Mt. Vernon, Wash.	1470	KBiG Avalon, Calif.	740	KCBC	Des Molnes, lowa	1390	KCT	Gonzales, Tex.	1450
KAPT	Salem,	1220	KBIM Roswell. N.M	910	KCBD	Lubbock, Tex.	1590	KCTY	Salinas, Calif.	980
KAPY	Port Angeles, Wash.	1290	KBIS Bakersfield, Calif.	970	KC8a	San Diego, Calif.	1170	KCTX	Childress, Tex.	1510
KARA	Albuquerque, N.M.	1310	KBIX Muskogee, Okla.	1490	KCBS	San Fran., Calif.	740	KCUB	Tueson, Ariz.	1290
ARE	Atchison. Ka	1470	K812 Ottumwa, lowa	1240	KCCL	Paris, Ark.	1460	KCUE	Red Wing. Minn.	1250
ARI	Blaine. Wash.	550	KBJT Fordyce, Ark.	1570	KCCO	Lawton, Okla.	1050	KCUL	Fort Worth, Tek.	1540
ARK	Little Rock.	920	KBKR Baker, Oreg.	1490	KCCR	Plerre, S. Oak.	1590	KCVL	Colville, Wash.	1270
$\begin{aligned} & A R M \\ & A R R \end{aligned}$	Fresno, Calif. Great Falls, Mont	1430 1400	KBKW Aberdeen, W	140 1500	KCCT	Corpus Christi, Tex.	1150	KCVR	Lodi, Callif.	1570
$\begin{aligned} & \text { ARR } \\ & \text { ARS } \end{aligned}$	Great Falls, Mont. Belen. N. M.	1400 860	KBLA Burbank, Cali	1490	$\begin{aligned} & \text { KCCV } \\ & \text { KCDI } \end{aligned}$	independence, wo. Kirkland, Wash	1510	KCYL	Lampasas, Tex.	1450
KART	Jerome, Idaho	1400	KBL Blackfoot, Ida	690	KCE	Tueson.	790	KDAB	Arvada, Colo.	1550
			KBLR Bolivar,	1550	KCEY	Tunlock, Calif.	1390	KDAC	Ft. Brags, Callf.	1230
			KBLT Big Lake, Tex.	1290	KCFA	8pokane, Wash.	1330	KDAD	Weed, Callf.	80
172	WHITE'S RRDIO	LOG	KBLU Yuma, Arlz.	1320	KCFM	Cuero, Tex.	1800	KDA	Carrington, N.D.	160

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline L. \& Locotlon \& Kc \& .L. Locatlon \& Kc \& Locatlon \& K \& Location \& K \\
\hline KLOU \& Lake Charles. La. \& \& KNOX Grand Forks, N.Dak. \& 1310 \& \& 910 \& KROY Sacramento, Calif. \& 240 \\
\hline Low \& Loveiand, \& 15 \& KNPT Newpor \& 13 \& KPPIK Colorado Spras., Colo. \& 1580 \& KRPL \& \\
\hline KLPL \& Lake Providence, La. \& 1050 \& KNUI Makawao, Hawail \& 1310 \& KPIN Casa Gr \& 1260 \& KRRR Ruidoso \& 1340 \\
\hline KLPM \& Minot, N. Dak \& 1390 \& KNUJ New Ulm, Minn. \& 860 \& KPIR Eu \& 1500 \& KRRV St \& 910 \\
\hline KLPR \& Okia. City, 0kI \& 1140 \& KNUZ Houston, \& 1230 \& KPLA Plain \& 1050 \& KRSC Othello. Wash \& 1400 \\
\hline KLPW \& Union, Mo. \& 12 \& KNWC Sloux Falls, 5 \& 127 \& KPLC Lake Ch \& 1470 \& KRSD Rapi \& 0 \\
\hline KLRA \& Little Rock. \& 1010 \& KNWS Waterloo \& 1090 \& KPLT Paris. \& 1490 \& KRSI St. Louls \& 950 \\
\hline KLRS \& Mountain Grove, \& 13 \& KNX Los Angeles, C \& 1070 \& KPLW Un \& 1220 \& KRSL Russell, K \& \\
\hline KLTF \& Little Falls \& 15 \& kOA Denver, Colo. \& 850 \& KPLY Crescent City, Calit \& 1240 \& KRSN Los Alamos. N. \& 1490 \\
\hline KLTR \& Blackwell, Okla. \& 15 \& KOAC Corvallis, Orag. \& 550 \& KPMC Bakersfield, Calif. \& 1560 \& KRSY Roswoll, N.Mex. \& 1230 \\
\hline KLTZ \& Glasgow. Mont. \& 1240 \& KOAL Price, Utah \& 1230 \& KPNG Port Neches. Tex. \& 1150 \& KRTN Raton \& \\
\hline KLUB \& Sait Lake Clity, Utah \& 570 \& KOAM Pittsburg, Kan \& 860 \& KPOC Pocahontas. Ark \& 14 \& KRTR Ther \& 1490 \\
\hline KLUC \& Las Vegas, Nov. \& 105 \& K0B Albuquerque, N. \& 770 \& KPOD Crescent City, \& 0 \& KRUN Ballin \& 1400 \\
\hline \& Lonoview. \& \& KOBE Las C \& \[
\begin{gathered}
1450 \\
580
\end{gathered}
\] \& KPOF Denver, Coll \& 910 \& KRUS Ruston. \& O \\
\hline KLUV \& Haynes \& 1580 \& KOCA KIlgors. Tex. \& 1240 \& KPOJ Portland, Orea \& \[
\begin{array}{r}
1380 \\
1330
\end{array}
\] \& KRVC Ashland, Or \& \begin{tabular}{l}
1360 \\
1350
\end{tabular} \\
\hline KLVL \& Pasadena, Tex. \& 1480 \& KOCY Oklahoma Cliy, 0kla. \& 1340 \& KPOK Seotisdale, A \& 1440 \& KRVN Lexin \& 10 \\
\hline KLVT \& Levelland. Tex. \& 1230 \& kODA Houston. Tex. \& 1010 \& KPOL Los Angeles. C \& 1540 \& KRWB Roseau, \& \\
\hline KLWN \& N Lawrence. Kan \& 1320 \& KODE Joplin, Mo. \& 1230 \& KPON Anderson. Calif. \& 1580 \& KRXK Rexbu \& \\
\hline KLWT \& Lebanon, \& 1230 \& KODI Cody, \& 1400 \& KPOR Quincy, Wash. \& 1370 \& KRYS Corpus \& \\
\hline KLYD \& Bakersfield, Calif. \& 135 \& KODL The Dalles \& 1440 \& KPOW Powell, Wyo \& 1260 \& KRZE Farmington, \& 1280 \\
\hline \& Spokane, Wash. \& 1230 \& KODY North Pla \& 1240 \& KPPC Pasadena. Calif \& 1240 \& KRZY Alb \& \\
\hline KLYQ \& Hamilion. \& 980 \& KOEL Oelwein, \& 950 \& KPQ Wenatcheo, Wash \& \& KSAC Manhattan \& 580 \\
\hline KLYR \& Clarksville, \& 13 \& KOfe Puliman, Wash. \& 1150 \& KPRE Redmond, Oreo. \& 1240 \& KSAL Sal \& \\
\hline KL2 D \& Denver, Cold \& 560 \& KOFI Kalispell, Mont \& 930 \& KPRC Houston. \& 0 \& KSAM Huntsv \& 1490 \\
\hline MA S \& Shenandoah, 10 \& 960 \& KOFO Ottawa, Kans. \& 1220 \& KPRK Livingston, Mont \& 1340 \& KSAN San Francisco, Calif. \& \\
\hline KMAC \& San Antonio. \& 30 \& KOFY San Mateo. Ca \& 1050 \& KPRL Paso Robles. Calli \& 1230 \& KSAY San Francisco, Calif. \& 1010 \\
\hline KMAD \& Madill, Okla. \& 1550 \& KOGA Ogallala, N \& 930 \& KPRM Park Rapids. MInn \& 1240 \& KSBW Salinas, Calif. \& \\
\hline KMAE \& Mckinney \& \& kOGO San Dlego \& \& KPRO Riverside, Calif. \& 1440 \& KSCB Lib \& 000 \\
\hline MAK \& Fresno, Calit \& 1340 \& KOGT Orange. Tex \& 1600 \& KPRS Kansas City. Mo. \& 1590 \& KSCJ Siour \& 360 \\
\hline KMAM \& M Butier, M \& 1530 \& K \& 6330 \& KPSO Fallurrlas, \({ }^{\text {Tex. }}\) \& 1260 \& \& \\
\hline KMAN \& M Manhattan, Kan \& 1350 \& KOHO Honolulu. \& 1170 \& KPST Preston, Idaho \& 1340 \& KSD St. Louis \& \\
\hline KMAQ \& Maquoketa, lowa \& 1320 \& KOHU Hermiston, Orea. \& 1570 \& KPTL Carson City, Nev \& 1300 \& KSDN Aberdeen. S.Dak \& - \\
\hline KMAR \& Winnsboro, La, \& 1570 \& KOIL Omaha, Ne \& 1290 \& KPUG Bellingham, Wa \& 170 \& kSOO San \& \\
\hline KMAS \& Shelton \& 1280 \& KOIN Portland, Or \& 970 \& kQaQ Austin. Mi \& 970 \& KSDR Wate \& 1480 \\
\hline MBC \& Kansas City, \& \& KOJM Havre \& \& KGDF Spokane, Wash. \& 1280 \& KSEE Santa \& \\
\hline KMBL \& Junction. Tex \& 1450 \& KOKA Shrevepo \& 1550 \& KQDI Bismarck. N.D. \& 1350 \& KSEI Pocatello \& 0 \\
\hline KMBO \& Tucson, Ariz. \& 940 \& KOKE Austin, \& 1370 \& KQDY Minot. N. Dak. \& 1320 \& KSEK Pittsbu \& \\
\hline KMBY \& midonterey, Cal \& 1240 \& KOKL Okmu \& 1240 \& KQEN Rose \& 1250 \& KSEL Lubbo \& \\
\hline KMCD \& Fairfield, lowa \& 1570 \& KOKO Warrensburg. \& 1450 \& KQEO Albuquerque, N, Mex. \& 920 \& KSEM Moses Lake. \& 1470 \\
\hline MCM \& MeMinnville, 0 \& 12 \& KOKX Keokuk, lowa \& \& KQ1K Lakeview, Oreg, \& 1230 \& KSEN Shelby, Mont. \& \\
\hline KMCO \& Conrs \& 0 \& KOkY Little Rock. A \& 1440 \& KQMS Redding, Ca \& 1400 \& KSEO Durant. Okla, \& 0 \\
\hline KMOO \& Ft. Scott, Kans. \& 1600 \& KOL Seattle. Wash. \& 1300 \& KQUT Yakima, Wa \& 940 \& KSET EIP \& \\
\hline M ED \& Medford, Ores. \& 1440 \& KOLO Tueson, Ariz \& 1450 \& Kate miss \& 1340 \& KSEW Sitk \& 1400 \\
\hline EN \& San Bernard \& \& KOLE Port Arthur. \& 1340 \& katy Sall \& 910 \& KSEY Seym \& 1230 \\
\hline \& \& 129 \& KOLJ Quanah. Tex. \& 1150 \& KQV Pitts \& 1410 \& \& \\
\hline 0 \& Omaha, Nebr \& \& kOLO Ren \& 920 \& kaYX Jopli \& \& KSFE Ne \& 40 \\
\hline MER \& Kemmerer. \& 950 \& KOLR Steriling, Co \& 1490 \& KRAC Alam \& 1270 \& KSFO San Francisco, \& \\
\hline M H \& Marshall, Tex. \& 1450 \& KOLS Pryor. \& 1570 \& KRAD E. Grand Forks, \& 90 \& KSGM Chester, III. \& \\
\hline KMIL \& Cameron. \& 1330 \& KOLT Scottsbluff. Ne \& 1320 \& KRAE Cheyenne, wyo. \& 1480 \& KSGT Jackson. Wyo. \& 40 \\
\hline M \({ }^{\text {N }}\) \& rants, N.M \& 980 \& KOLY Mobridge, S. Da \& 1300 \& KRAI Cra \& 550 \& KSHA Medford. Ore. \& \\
\hline MIS \& Portageville, \& 1050 \& KOMA Okla. City, Okl \& 1520 \& KRAK Stockton, Call \& 1140 \& kSIB Cresto \& 20 \\
\hline KMJ Fr \& Fresno, Calif. \& 580 \& KOME Tulsa, Okla. \& 1300 \& KRAL Rawlins, 'wyo. \& 1240 \& ksid. Sidne \& \\
\hline MLB \& onroe, La . \& 1440 \& KOMO Seattio. Was \& 1000 \& KRAM Las Vegas \& 920 \& KSIG Crow \& 1450 \\
\hline KMMJ \& Grand Island. \& 750 \& KOMW Oma \& 680 \& KRAN Morton, Tex. \& 1280 \& KSIL Silver \& 0 \\
\hline MNF \& Albuquerque. \& 1520 \& KOMY Watsonville. \& 1340 \& KRAY Amarilio. Tex \& 1360 \& KSIM SIkest \& 0 \\
\hline KMNS \& Sloux Clity \& 620 \& KONE Reno. \& 1450 \& KRBA LutkJn. Tex \& 1340 \& KSIR Wichi \& \\
\hline KMO T \& Tacoma, Was \& 1360 \& KONG Visalla, Cal \& 1400 \& KRBC Abilane. Tox \& 1470 \& kSIS Sedall \& \\
\hline MON \& Great Falls, Mo \& 560 \& KONI Spanish Fork, \& 1480 \& KRBI St. Pete \& 1310 \& kSIW Woodwar \& 50 \\
\hline KMOP \& Tucson, A \& 1330 \& KONO San Antonio. Tex \& 860 \& KRBN Red Lodge, Mont. \& 1450 \& kSIX Corpus Christl, Tex \& 230 \\
\hline KMOR \& Littiaton, Colo. \& 1510 \& KONP Port Angeles. \& 1450 \& KRCK RIdgecrest. Calif. \& 1360 \& KSJB Jamestown, N.Dak \& \\
\hline KMOX \& St. Louis \& 1120 \& KOOK Billinos, Mont. \& \& KRCO Prineville, Or \& 690 \& KSKI Sun Valloy \& \\
\hline KMPC \& Los Angeles, Cali \& 710 \& K00L Phoenix. Ariz. \& 960 \& KRDG Reduing. Cali \& 1230 \& KSKY Dallas, Tex. \& \\
\hline KMRC \& organ \& 1430 \& K000 Omaha, Neb \& 1420 \& KRDO Colo. Springs, Col \& 1240 \& KSL Salt Lake City \& 0 \\
\hline KMRE \& Spokan \& 550 \& K00S Coos Bay, Ore \& 1230 \& KRDP Reedsport. Oreg. \& 1470 \& KSLM Salem, Oreo \& 1390 \\
\hline KMRS \& orris, Min \& 1230 \& KOPR Butte, Mont. \& 50 \& KRDS Tolleson, Ariz. \& 1190 \& KSLO Opelousa \& \\
\hline KMSL \& kiah, Calit \& 1250 \& KOPY Alice. Tox. \& 1070 \& KRDU Dinuba, Calif. \& 1240 \& KSLV Monte Vista, \& \\
\hline KMUL \& Muleshoe. Tex \& 1380 \& KOQT Bellingham. Wash. \& 1550 \& KRE Berkeley, Calli. \& \& KSMA Santa Maria, Cali \& \\
\hline KMUR \& Murray, Utah \& 1230 \& KORA Bryan, Tex. \& 1240 \& KREB Shreveport. La. \& 980 \& KSMN Mason Clity \& \\
\hline KMUS \& Muskogee. 0 k \& 1380 \& KORC Mineral Wells, Tex. \& 1140 \& KREO Euroka, Calit. \& 1480 \& KSMO Salem. M \& \\
\hline KMV \& Walluku, Hawai \& \& KORD Pasco, Wash. \& \& KREH Oakdale, La. \& 0 \& KSNB Santa Barbara, \& \\
\hline KMVS \& Sierra Vista, \& 1470 \& KORE Eugone, Oreg. \& 1450 \& KREI FarmInoton. Mo \& 800 \& KSNN Pocatello, Id \& \\
\hline KMYC \& Marysville, Cal \& 1410 \& KORK Las Vogas. Ne \& 1340 \& KREK Sapulpa, Ok \& \& KSNO Aspen, Colo. \& \\
\hline KMYT \& Clayton, Mo. \& 1320 \& KORN Mitehe \& 1490 \& KREM Spokane, Was \& 970 \& KSNY Snyder. Tex \& 0 \\
\hline KNAF \& Frederleksbura, Tex. \& 910 \& KORT Grangeville, Id \& 1230 \& KREO Indio. Callif. \& \& KSO Des Mol \& \\
\hline KNAK \& Salt Lake City, Utah \& 1280 \& KOSA Odessa, Tex. \& 1230 \& KREW Sunnyside. Wash \& 1230 \& RSOK Arkansas \& \\
\hline KNAL \& Vletoria, Tex. \& 1410 \& KOSE Osteola, Ark. \& 860 \& KREX Grand Junc., Colo \& 920 \& KSOO Sioux Falls, S. \& - \\
\hline KNBA \& Vallejo. Calit. \& 1190 \& KOSI \& 1430 \& KRFO Owatonna. M \& 1390 \& KSOP Salt Lake C \& 1370 \\
\hline KNBE \& Kanab, Utah \& 1240 \& KOSY Texarkana, Ar \& 790 \& KRFS Sunerior, Nebr \& 1600 \& KSOX Raymondville, Tex. \& \\
\hline KNBR \& San Franclsco, Calit. \& 680 \& KOTA Rapld City. S. Dak \& 1380 \& KRGI Grand Isiand, N \& 1430 \& KSPA Santa Paut \& 1400 \\
\hline KNBX \& Kirkland, Wash. \& 1050 \& KOTE Fergus \& 1250 \& KRGV Weslasco, Tex. \& 1290 \& KSPI Stillwat \& \\
\hline KNBY \& Newport, Ar \& 1280 \& KOTN Pine Blu \& 1490 \& KRHD Duncan. Okla. \& 1350 \& KSPL DIbol \& \\
\hline KNCK \& Concordia. Ka \& 1390 \& KOTS Deming, N.M. \& \& KRIB Mason City, low \& 1490 \& KSPT Sandpoint. idato \& 0 \\
\hline KNCM \& Moberly \& 1230 \& KOUR independence. \& 12 \& KRIG Odessa. Tex. \& 1410 \& KSRA Salmon, Idaho \& \\
\hline KNCO \& Garden City, Kan \& 1050 \& KOVC Valley City. N.Dak. \& 1490 \& KRIH Rayvilie, La. \& 990 \& KSRC Socorro, N.M \& \\
\hline KNCY \& Nobraska City, Nobr \& 1600 \& KOVE Lander, Wyo. \& 1330 \& KRIK Roswell. N. Mex \& 960 \& KSRO Santa Rosa, Cal \& \\
\hline NOC \& Hettinger. N.D \& 1490 \& KOVO Provo. \& 960 \& KRIO McAllen, Tex. \& 910 \& KSRV Ontario, Ore \& \\
\hline KNOE \& Artec, N.Mex. \& 13 \& KOWB Laramie, Wyo \& 1290 \& KRIZ Phoenix. Ariz. \& 1230 \& \& \\
\hline KNOI \& Honolulu, Hawali \& 1270 \& KOWL Bijou, Callf. \& 1490 \& KRKC King City, Calif. \& 1490 \& KSST Sulphur Sprinas, Tox. \& \\
\hline KNOY \& Marysville, Kans. \& 1570 \& KOWN Estondido. Calif. \& 1450 \& KRKD Los Angeles, Calif. \& 1150 \& KSTA Coleman, Tox \& \\
\hline KNEA \& Jonestioro, Ark. \& \& KOXR Oxnard, Calti. \& 910 \& KRKO Everett, Wash. \& 1380 \& KSTB Breckenridge, \& \\
\hline KNEB \& Scottsbluff. Nebr. \& 96 \& KOY Phoenix. Ariz. \& 550 \& KRKT Albany, Ore. \& 990 \& KSTH St. Helen's. Ore \& 1600 \\
\hline KNED \& McAlester, Okla. \& 1150 \& KOYL Odessa, \({ }^{\text {ex }}\) (\& 1310 \& KRLA Pasadena, Catir \& 1110 \& KSTL St. Louls, Mo \& \\
\hline KNEL \& Brady Te \& 1490 \& KOYN Billings, Mont. \& 910 \& KRLC Lewiston. Idaho \& 1350 \& KSTN Stockton. Calif. \& 1420 \\
\hline KNEM \& Nevada, M \& 1240 \& KOZE Lewiston. Idaho \& 1300 \& KRLD Dallas, Tex. \& \& KSTP St, Paul, Minn. \& 1500 \\
\hline KNET \& Palestline, \({ }^{\text {a }}\) \& 1450 \& K021 Chelan, Wash. \& 1220 \& KRLN Canon City Colo \& 1400 \& KSTR Grand Junction, \& 620 \\
\hline KNEW \& Spokane, W \& 790 \& KOZY Grand Raplds, Min \& 1490 \& KRLW Walnut Ridge, Ar \& 1320 \& KSTT Davenport. Jowa \& 1170 \\
\hline KNEX \& McPherson. \& 1540 \& KPAC Port Arthur, Tex. \& 1250 \& KRMD Shreveport, La. \& 1340 \& KSTV Stephenvilie. Tex \& \\
\hline KNEZ \& Lompoe, Calif. \& 960 \& KPAK Minden, La, \& 1240 \& KRMG Tulsa, Ok \& 740 \& KSUB Cedar \& - \\
\hline KNGL \& Paradise. Calif. \& 930 \& KPAL Palm Springs, Calif. \& 1450 \& KRML Carmel, Cali \& 1410 \& KSUD W. Memphis, Ark \& 30 \\
\hline KNGS \& Hanford, Calif. \& 620 \& KPAM Portland, Oreg. \& 1410 \& KRMO Monett, M \& 990 \& \& 1240 \\
\hline KNIA \& Knoxville, lowa \& 1320 \& KPAN Hereford, Tex \& 860 \& KRMS Osape Beach \& 1150 \& KSUM Falrmont, M1 \& 1370 \\
\hline KNIM \& Maryville, Mo. \& 1580 \& KPAP Redding, Calif. \& 1270 \& KRNO San Bernardino. \& 240 \& KSUN Bislee, Ariz \& 1230 \\
\hline KNIN \& Wichita Falls, \& 990 \& KPAS Banning, Calif. \& 1490 \& KRNA Roseburg. Ore \& 1490 \& KSVC Rlchiteld. Uta \& \\
\hline KNIT \& Abilene. Tex. \& 1280 \& KPAY Chico, Calif. \& 1060 \& KRNS Burns, Oreg. \& 1230 \& KSVN Ogden, Utah \& \\
\hline KNNO \& Cottage Grove, Oreg. \& 1400 \& KPBA Pine Bluf, Ark. \& 1590 \& KRNT Des Molnes, lowa \& 1350 \& KSVP Artesja, N, Mex \& \\
\hline NOC \& Natchitoches, \& 1450 \& KPBM Carlsbad, N.Mex, \& 740 \& KRNY Kearney, Nebr. \& 1460 \& KSWA Gra \& 1330

5

\hline KNOE \& Monroe, \& 540 \& KPCA Marked Tree Ark. \& 1580 \& KROB Robstown, Tex. \& 1510 \& KSWC Tueson, Ariz. \& 1550

\hline KNOG \& Nogales, Ariy \& 1340 \& KPCN Grand Prairie. Tex. \& 730 \& KROC Rochester. Minn. \& 1340 \& KSWI Council Bluffs. lowa \& 0

\hline KNOK \& Worth, Tex \& 970 \& KPDN Pampa, Tex \& 1340 \& K ROD EI Paso. Tex. \& \& KSWM Aurora, M \&

\hline KNOP \& \& 1410
1400 \& KPOO Portland, Ore \& 800

1380 \& KROE Sherldan, Wyo \& $$
\begin{aligned}
& \mathbf{9 0 0} \\
& \mathbf{9 3 0}
\end{aligned}
$$ \& KSWO Lawton. Okla, \&

\hline \& \& 1400 \& KPEG Spokane, Wash \& 1380 \& \& \& KSXX Salt Lake city, Utan \&

\hline NOT \& Prescott, Ariz. \& 50 \& \& 1420
1420 \& KROP Abbevilio. La, \& 1300 \& KSYC Yreka, Calif. \&

\hline Now \& Austin, Tex. \& 1490 \& KPEP San Angelo. Tex. \& 1420 \& KROP Brawley, Callf. \& 1300 \& KSYL Alexandria, La, \& $\begin{array}{r}970 \\ \hline 120\end{array}$

\hline \& \& \& KPER Gilroy, Calif. \& 1290 \& KROS Clinton, lowa \& 1340 \& KSYX Santa Rosa, N.Mex \& 1420

\hline 74 \& \& \& KPET Lamesa. Tex. KPGE Pape, Ariz. \& \& KROW Dallas, Dre KROX Crookston, \& \& KTAC Tacoma, Wash \&

\hline
\end{tabular}

C.L. Locafion

KTAN Tueson, Ariz.
KTAR Phaonix, Ariz,
KTBB Tyler, Tex.
KTBC Austin. Tox.
KTCR Minneapolis. Minn, KTCS Fort Smith, Ark. KTOO Toledo. Orei. KTEE Idaho Falls, Idahe KTEL Wall Walia, Wash. KTEM Temule. Tex. KTER Tarrell. Tex. KTFI Twin Falls, Idaho KTFS Texerkens Tex KTFS Texarkana, Tex. KTHE Thermopolis, Wyo. KTHO Tahoe Valley, Callf. KTHT Houston, Tex. KTIB Thibodaux, La. KTIL Tillamook, Orep. KTIM San Rafael, Calif. KTIS Minneapalis, Miñ. KTIS Hobart. Okla. KTKN Kobartikan. Alaska KTKA Taft. Calif. KTKT Tuesin, Ariz. KTLD Tullulah, La, KTLO Min. Home, Ark. KTLa Taniequah, Okla. KTLU Rusk, Tex. KTLW Texas city, Tex, KTMC McAlester, Okla. KTNC Falls City, Nebr. KTNT Taeome, Wash. KTOC Jonasbora, La KTOE Mankato, Minn. KTOH Lihua, Hawaif KTOK Oklahoma City, okla. KTON Belton, Tox. KTOW Sand Spring, Okla. KTPA Prescott, Arki KTRC Santa Fi, N.Mex. KTRE Lufkin, Tex.
KTRG Honolulu. Hawall KTRN Wichita Falls, Tex. KTTS Springfiold, Mo.

KTW Seattle. Wash.
KTWO Casper, Wyo.
KTYM Indlowood. Callf.
KUBA Yuba city. Callf. KUBC Montrose, Colo. KUBE Pondleton, Oraif. KUEN Wenatehoe, Wash KUJ Walla Walla, Wash. KUKU Whilow Springs, Mo KULE Ephrata, Wash. KUMA Pendleton, Oref. KUOA Siloam Springs, Ark KUOM Minneapolis. KUPI Idaho Falls. Idaho KURL Blllings, Mont. KURV Edinburg; Tox.
KURY Broakings, Ore KURY Braokings, Ore. KUSH Cushine. Okla. KUSN S8. Joseph, Mo. KUTI Yakima. Wash.

$$
\left.\begin{array}{c}
1400 \\
1000 \\
940 \\
12 R_{8}
\end{array}\right]
$$

$$
\begin{gathered}
880 \\
1280 \\
1490
\end{gathered}
$$ KTOP Topeka, Kans.

$$
\begin{array}{r}
1280 \\
1490 \\
1340 \\
1370
\end{array}
$$

KTRH Houston. Tex.
KTR sioux City, lowa KTKA Ban An. KTSL Burnett, Tex. KTSM EIPaso, Tex. KTR Holla, Mo. KTUC Tuesan, Ariz. KTUE Tulia. Tex.

KTXO Sherman Tex
KUAM Agana, Guam KUOE Great Falls Mont. KUDL Kansas City, Mo. KUOU Ventura. Calif. KUEQ Phoenix, Ariz. KUIK Hillsboro Orte KUKI Ukiah, Calit. KUKO Post. Tex. KULA Honolulu, Hawai KUMU Honolulu. Hawai KURA Moab. Utah

KUTT Farma, N.Oak.
KUVR Holdredge, Nobr.

1370

\square
740
1470

9990
730

730
550
550
1340 $\begin{array}{r}1340 \\ 1380 \\ \hline 1600\end{array}$.

| Ke. | C.L. Location |
| :---: | :---: | :---: |
| 580 | KUXL Golden Valley, Minn, | KUZN W. Monroe, La, KUZN Waicrsthold, Calif.

KUZZ
KYAL Sauk Hapids. Mi KVAN Vaneouver, Wash. KVCK Woll Point, Nebr KVCL Winnfeld, Lat. KVEC San Luis Obisp
KVEE CONway, Ark. KYEG Las Vegas, Nov KVEL Vernal, Utah KYET Austin. Tex. KYFC Cortoz, Colo. KVGB Great Bend, Kans KVIC Victoria. Tox KVIC Cottonwood, Arlz.
KVIL Highland Park, Tex. KVIM New Iberia. La. K VIP Redding, Calif. KVKM Monahans, Tex. KVLC Little Rock, Ark. KVLF Alpine, Ta, KVG Lagranoe, Tox. KVLL Livingston, Tax.
KVMA Mapnolia, Ark. KVMA Colorado City. Tex.
KVML Sonora. Callf. K YNA Flagstari. Ariz KYNC Winslow, Ariz.
KVNI Coeur d'Alene, I KVNU Logan, Utah
KVOB Bastron, La. K Voc Casper, wyo. K Vod Albuquerque, N. Mex. KYOE Emporia, Kans. KYOG Ogden, Utah KVOL Lafayette. La, KVON Napa, Calif. ス VOP Plainviow, Tox. KVOU Uvalde. Tex.
KVOW Riverton, Wyo,
KVOX Moorhead, Minn. KVOY Yuma, Ariz. KVOZ Laredo, Tex. KVRC Arkadelphia. Ark. KVRD Cottonwood, Ariz. KVRE Santa Rosa, Cal KVRH Salida, Colo.
KYRS Rack Springs, KVHS Rack Springs, Wyo.
KVSA MeGohoo, Ark. KVSF Santa Fe, N.mex
KVSH Valentind, Nobr.
KVSO KVSO Ardmare, Okla.
KVWC Vernon, Tex. KVWD Pearsall. Tax.
KVWM Show Low. Ariz.
KVWO Cheyenne KVWO Cheyenne. Wyo.
KWAC Bakersfield. Callf. KWAD Wadena, Minn. KWAD Wadena, Minn KWAK Stuttpart, Ark. KWAT Watertown, S.OAk. KWBA Baytown. Tex. KWBE Wiehita, Kans. KWBE Beatrice. Nebr. KWBG Boone, Iowa KWCB Saarcy, Ark. KWCL Oak Grove, La.
KWCO Chickasha, Okla. KWEB Rechester. Minn. KWEO Seguin. Tex. KWEL Midiand, Tex. KWEW Hobbs, N.Mex
KWFA Merkle, Tex. KWFR San Ancelo, Tex. KWFS Eugene, Oreg. KWFT Wiehita Falls, Tex. KWG Stockton, Callf.
KwHI Brenham, Tox KWHI Brenham, Tex.
KWHK Hutehinson. Kans. KWHN Fort Smith, Ark.
KWHO Salt Lake City, Utah KWHW Altus. OKa. KW1C Salt Lake Clty, Utah
KWIK Pocatello. Idaho Kwil Albany. Orea. KWIL Albany. Oreg. KWIN Ashland, Oreg.
KWIA Moses Loks, Wash. KWiV Dauglas, Wyo. KWJJ Portland, orea. KWK St. Louls, Mo. KWKC Abllene, TAx. KWKW Pasadena, Calif KWKY Oes Maines, Iowa KWLA Many. La. KWLC Oeforah, low KWLD Liberty, Tex. KWLM Willmar. Minn. KWMT Ft. Dodie, Jow

ominole. Ok KWSK Pratt, Kans.
KWSL Grand Junetio KWSL Grand Junetion, Colo. KWTC Barstow. Calif WTO Springheld,
WTX waeo. Tex.

Tex.
alif. KWVN Coneord,
KWVR Enterprise, Ore
KWVY Waverly, Iowa KWYY Waverly, Iowa
KWWL Waterloo, Iow KWWYK Farmington, N.Mex. KWYN Wynne, Ark. KWYO Sheridan, Wyo. KWYZ Everett, Wash KXA Seattio, Wash. KXEL Waterloo. Iow KXEO Mexico, Mo. KXEW Tueson, Ariz. KXEX Frosno, Calif. KXGI Ft, Madison, Iow KXGN Giendive, Mont
KXGO Fario, N. Dak. KxIC lowa City, low
KXIT Dalhart. Tex. Kxiv Daihart. KXJK Forrest City, Ark. KXKW Lafayette, La, KXL Portiand, Orem. KXLE Ellensburg. Wa
\qquad KXLJ Bolena, Mont. KXLL Missouls. Mont.
KXLO Leviston. Mont. KXLO Lewiston. Mont.
KXLR Littio Rosk, Ark.
KXLW Cieyten. Mo. KXLW Clayton. Mo. KXLY Spokane, Wash.
$K \times 0$ EI Centro, Callf. KXOA Saeramento, Calif.
KXOK St. Louls, Me. KXOK 8t. Louls, Me.
KXOL Ft. Worth. Tex.
 KXOX Sweatwater, Tox.
KXRA Alexandria, Minn, KXRJ Russellville, Ark.
KXRO Aberdeen. Wash. KXRO Aberdeen, Wash.
KXRX San Jose. Callf.
$K \times X L$ Bezeman, Ment. $K X X L$
$K X X X$
$K X Y Z$
Colby, Kans. Mont
$K X Y$ Houston. Tex. KXYZ Houston. Tex.
KYA San Franeisco, Callf.
KYCA Preseott, Ariz. KYCN Wheatland, Wyo KYES Reseburg Oreg.
KYJC Medford, Ores. KYME Boise, Idaho KYNG Coos Bay, Oren KYNT Yenkton, S.Oak
KYOK Houston. Tox
KYOR Blythe, Calif.
Kyos Merced, Callf.
KYRO Potosi, Mo.
KYSM Mankato, Minn.
KYSN Colorado Sprgs.,
KYSS Missoula, Mont.
KYUM Yuma. Ariz.
KY VA Gailup. N. Mex.
KYW Cleveland, Ohio
KZEE Weatherford
KZIP Amarillo. Ten.
KZXX Fort Colitins, Colo.
KZNG Hot Springs, Ark.
KZOK Prescott, Ariz.
K20L Farwell, Tex.
K200 Monolulu. Hawall
K20T Marianna, Ark.
KZow Globe, Ariz.
KZUN Opportunity, Wash
KZZN LIttlefteld. Tox.
VOUS Argentia, Nild.
WAAA Winston-Salom, N.C.
WAAB Worester Mass,
WAAF Chieago. III.
WAAG Adel. Ga.
WAAK Oallas, N.C.
WAAP Peoria, II,
WAAT Trenton, N.
C.b. Locatlon
 WAAY Huntsyifle, Al WABA Aundille, Ala. P, 15 WABB Mobile, Ala. WABC New York, N.
WABF Fairhope, Ala. WABF Gairhope, Ala. WABH Deertold, Va,
WABI Bancer, Maine WABI Banger, Maine
WABJ Adrlan. Mieh. WABL Amite, La. Alss. WABA Cleveland, Ohlo
WABR Wintor Park, Fla WABT Tuskegee, Ala. WAB W Annapolis. Md. WABY Albany. N.Y.
WABZ Albemarle,
N.C. WABZ Albemarle,
WACA Camden. WACB Kittanning, Pa.
WACE Chieopee. Mass. WACK Newark, N. Y. WACO Wase. Tix. WACR Columbus, Miss, WACT Tusealoosa, Al
WADA Shelby. N.C. WADC Akron, Ohio WAOE Wadesboro. N.C. H. $\mathrm{N} . \mathrm{Y}$ WADP Kane, Pa. WADS Ansonia. Co WAEB Allentown, Pa, WAEL Mayaguez, Va. WAFS Amsterdam, N. WAGE Lensburg. V WAGE Desburg. Va.
WAGG Franklin. Tenn. WAGG Franklin, Tenn,
WAGL Laneaster. S. C.
WAGM Presgue isle, waine WAGN Menomines, Mieh. WAGS Bishopvillo, S.C.
wAGY Forest City. N.C. WAlK Galesburt. ill. WAIL Baton Rouge, La.
WA1M Anderson. S.C. WAIN Columbla, Ky.
WAIR Winston-Salem, N.C. WA1T Chicago, III. WAJF Decatur, Ala. W.Va. WAKE Atlanta, Ga. WAKN Aiken. S.C. WAKR AKPOn, Ohio WAKY Louisville; K WALA Mabile, Ala. ${ }^{\text {WALD }}$ Waltorboro. WALE Fall River. WALK Patchopue. N.Y. WALL Middletown, N. WALO Humata, P.R. WALT Tampa, FIa. WAMD Aberdeen, Md. WAME Opp. AIs. WAML Laurel. Miss.
WAMM Flint. Mieh. WAMO Homestead, P
WAMR Vonice, Fla. WAMS Wilmington. Det. WAMY Amory, Miss. WANB Waynesturg, P WAND Canton, onio
WANE Ft. Wayne. In WANN Annapolis. Md WANS Anderson, S. WANY Albany, Ky. WAOK Atlanta, Ga,
WAOV Vincennes, Ind WAPA San Juan, P. R. WAPE Jacksenville. Fla.
WAPF MeComb, Miss. WAPF MeComb, Miss WAPG Arcadia, Fla. Ala.
WAPI Birmingham, Ala WAPL Appleton. Wis Tenn. WAPK Montgomery. Ala. WAQE Towson. Md. WAQI Ashtabula, Ohio
WARA Attlebore. Mass. WARB Covington. La WARD Johnstown, Pa WARE Wart, Mass. WARI Abbeville, Ala. WARK Hagerstown. WARM Stranton. Pa. WARO Canonsburg. WASA Hayri de Grace. WASK Lafayotto. Ind. 1300

C.L. Location

CBA Sackville, N.B.
CBAF Moncten. N.B.
CBE Windsor, Ont.
CBF Montreai, Que.
CBG Gander,Nild.
CBH Halifax. N. S
CBI Sydney N. S.
CBJ Chicautimi. Que.
CBL Toronto, Ont.
CBM Montreat, Que.
CEN Stit Junis's. Nio
CBO Oitama, ont.
CBT Grand Falls. Nind. CBU Vancouver, B CBW Winnipeg. Man. CBX Edinonton. Alta. CBXA Edmonton, Alta. CBY Corner Brook, Nild, CFAB Windsor. N.S. CFAC Calgary, Alta.
CFAM Altona, Man. CFAR Flin Fion, Man.

Canadian AM Stations By Call Letters

	C.L. Location	Kc.	C.L.	Location		. 2.	-ocation	c.
$\begin{aligned} & 1070 \\ & 1300 \end{aligned}$	CFAX Vietoria, B.C.	870	CFNW	Norman Wolls,				
1550	CFBM Brochet, Man,	930 1450		Northwest Territory	1240	CHC	M Marystown Nid.	1270 560
690	CFBR Sudbury, Ont.	1450		Fort Frances, Ont.	800	CHEC	'Lethbridge, Alta.	1090
1450	CFCB Corner Book, ${ }^{\text {Nald. }}$	570	CFOS	Orilia, Ont.	1570	CHED	Edmonton, Alta.	630
860	CFCF Montreal, Que.	600	CFOX	Pointe Sound, 0nt.	560	CHEF	Granby, Que.	1450
1580	CFCH North Bay, Ont.	600	CFPA	Port Arthur, ont.	1230	CHEX	Poterborough, Ont.	980
540	CFCN Caloary. Alta.	0	CFPL	London, Ont.	980	CHFC	Churchill, Man.	680 1230
740	CFCO Chatham, Ont.	630	CFPR	Prinee Rupert, B.C.	1240	CHFI	Toronto, Dint.	1540
940	CFCP Courtenay, B.C.	1440		Saskatoon	600	CHGB	St. Anne de la	
640	CFCW Camrose, Alta.	790	CFRB	Toronto, Ont.	0		Pocatiers, Que.	50
990	CFCY Charlotitstown. P.E.l.	630	CFRC	Kingston, 0	1010	CHiC	8rampton. Ont.	90
690	CFDR Vietoriavillo, Que.	1380	CFRG	Gravelbourg, Sask.	710	CHLC	Hamitoh, Ont.	280
980	CFGB Goose Bay,	790	CFRN	Edmonton, Alta.	1260	CHLN	Three Rivers,	380 580
	CFGM Richmond	1340	CFRS	Simeos.	50	CHLO	St. Thomas. Ont.	680
1010	CFGP Grande Prairie,	1050		age la Prai		CHLP	Montreal, Que.	1410
740	CFGR Gravelbourg. Sask				920	CHLT	Sherbrooke, Que.	650
990	CFGT St. Joseph d'Alm		CF	Weyburn, Sas	340	CHML	Hamilton, Ont.	900
1450	CFJC Kamloops, B.C.	910		Van	590 1410	CHNC	Now Carlisle, Que,	610
960 1290	CFJR Brockville, Ont.	1450	CFVR	Abho	1410	CHNO	Sudbury, ont.	900
	CFKL Scheffervilio, Que.	1230	CFWH		570	CHOK	. ${ }^{\text {S }}$	960
	CFLM LaTu	1240			570	CHOK	Sarnia, ont	070
	N Cornwal, Ont.	1110	CFYT	Dawsomknif	1340	CHO	nt.	1350
	CFNB Fredericton. N.B.	550	CHAB		1230	${ }^{\text {CHOW }}$	Wolland, Ontari	1470
	CFNS Saskatoon, Sask.	1170	CHAD	Amos, Que.	1800		BC.	1320

C.L. Location	Ke.	C.6.	Location	Kc.	C. 6	Location	Kc.	C.b.	Location	
CHRD Drummondville, Que.	1340		Chicol	1280			1280	CKOT	TI	
CHRL Roberval, Q	91	CJMT	Chicoulimi	1420		Mon	1220	CKOV	Kelowna,	0
CHRS St. Jean.	1090	CJNB	N. Battleford, Sask	1460	CKCY	Sault 8te.	920	CKOX	Woods	1340
CHSJ Saint J	1150	CJNR	Blind River, On	730	CKDA	Victeria, B.C.	1220	CK	Ottawa, Ont	1310
CHUB Nanaim, B.C.	1570	${ }^{\text {CJJOB }}$	Winnipeg, Man.	680	CKDH	Amharst, N.S.	1400		Brantford,	1380
CHUC Port Hope,	1450	CJOC	Lethbridge, Alta.	1220	CKOM	Dauphin, Man.	730	CK	Prinee Georse, B.C.	550
CHUM Teronte, Ont.	1050	CJON	St. John's, Nild	930	CKEC	New Glasgow, N.S.	1320		Fort W	
CHVC Niagara Falls, Ont.	1600	CJOR	Vaneouver, B.C	600	CKEK	Crannrook, B.C.	570	CNP	Peterbora	20
CHWK Chilliwack.	1270	CJOY	Guelph, Ont.	1460	CKEN	Kentvillo, N.S.	1350	CKRE	Ville St. Georges,	60
CHWO Oakville, On	1250	CJac	Quebec, Que	1340	CKEY	Teromto, Ont.	580	CKRC	Winnipen. Man.	0
CJAD Montreal, Qu	800	CJFH	Richmond Hill, Ont.	1310	CKFH	Toronto, Ont.	1430	CKRD	Hed Oeer	0
CJAF Cabana, Que.	1340	CJRL	Kenora, Ont.	1220	CKGB	Timmins, Ont.	680	${ }_{C} \mathrm{C} R$	Regina, s	0
CJAT Trail, B.C	610	CJRW	Summerside, P.E.I.	1240		Montreal, Que.	980			1400
CJAV Port Alberni. B.C.	1240	CJSO	Sorel, Que.	1320	CKGR	Galt, Ont.	1110	CKRS	Jonguiere,	590
CJBC Teronto, Ont.	860	CJSP	Leamington, Ont.	710	CKJL	St. Jerome, Qu	900	CKSA	Lloydminstor, Alta.	50
CJBQ Belleville, Ont.	800	CJSS	Cornwall, Ont.	1220	CKKw	Kitehener, Ont	1320	CKSB	St. Boniface, Man,	1050
CJCA Edmouski, Que.	900	CJVI	Victoria, B.C.	900	CKLB	Oshama. Ont.	1350		Lond	1290
CJCA Edmonton. Alta	930 1270	CKAC	Montreal, Que.	730	CKLC	Kinsston. On	1380	CKS	Shawinigan, Quebee	1220
	1270	CKAD	Wilmet Station, N.S.	1490	CKLO	Thetford Mines, Que.	1230		Suatbury on	90
CJCH Halirax. N.S.	920	CKAR	Huntsville.	590	CKLG	N. Vancouver, B.C.	730		Swift Currant, Sask.	1400
CJCS Stratford. ${ }^{\text {chi }}$ O.	920	CKAR	1 Parry Sound, Ont.	1340	CKLM	Montreal. Qu	1570	CKTB	St. Catharines, On	10
CJOC Dawsen Creek. B.C.	1240	CKB	Barris, Ont.	950	CKLN	Nelsan, B.C.	1390	C	Thres Rivars, Qu	30
CJEM Edmundston, N.B.	570	CKBI	Prineo Albert, Sask.	900		Windsor.	1240 800		Shertrooke. Que.	
CJET Smiths Falls, Ont.	630	CK ${ }^{\text {c }}$	Matane, Que.	1250	CKLY	Lindsay, Ont	910		Qu	230
CJFP Riviere du Loup, Que.	1400	CKBM	Montmagny, Que.	1490	CKML	Mont Laurier, Que	610	CKV	Verdun	850
CJFX Antigonish, N.S.	5	CKBS	St. Hyacinthe. Que.	1240	CKMP	Midiand, Ont.	1230	CKV	Ville Marie. Que	710
CJGX Yorkton. Sask.	940	CKBw	Bridgewater, N.S.	1000		Newcastle. N.B.	790	CK	Kineston, Ont.	960
CJIB Vernon, B.C.	940	CKCH	Hull, Que.	970	CKNB	Campbaliton. N.B.	950	CKWX	Vancouver, B.C	1130
CJJC Sault Stey Prair	$\begin{array}{r}1050 \\ 850 \\ \hline\end{array}$	CKCK	Regina. Sask.	620	CKNL	Ft. St. John, B.C.	970	CKX	Brandon, Man.	1150
CJKL Kirkland Lake	$\begin{aligned} & 850 \\ & 560 \end{aligned}$	CKCL	Truro, N.S.	600	CKNW	Nov Westminster		CKXL	Calgary, Alta.	1140
CJLM Joliotte, Que.	1350	CKCM	Grand Falls. Nfid.	620		British Columbia	980	CKY	Winnipeg, Man	380
CJLR Quebec, Que.	1060	CKCN	Seren lles. Qee.	560		Wingham, Ont.	920	CKYL	Paace River. Alta	610
CJLS Yarmouth, N.	1340	CKCa	Quesnel, B.C.	570	CKOC	Hamilton, Ont.	1150	VDAR	St. John's, Nild.	1230
CJLX Ft. William. On	800	CKCa	-1 Williams Lake,	1240	CKOK	Penticton, B.C.	800	VOCM	St. John's, Nid.	590
JJme Regina, Sask.	1300			149	Ско	Saskatoon, Sas	1250		t, John's, Nf	

Mexican and Cuban AM Stations
Mexican stations audible in the Southwest; the more powerful Cuban stations

Location			Locotion	C.L.		W.P.	Lecafion	c.l.	Kc.	W.P.	Location Cruces Guantanamo Habana	C.L. Kc. W.P.						
			Torreon	XEBP	1310	5000	Ciudad Obreav					CMAK	1210	1000				
			Villa Acuna	XEDH	1340	250		XEOX	1430	1000		CMKS	1070	1000				
						250000	Hermosillo	XEBH	920	5000		CMW	590	2500				
BAJA C	CALIFORNIA		DISTRITO					XEDL	1250	500 50000		$\mathrm{CMCY}_{\text {CMO }}$	850 630	15000 25000				
Cuervas El Saugal Ensenada	XEDY 1460	1000	Mexico city	XEB				XEHQ	590	500		CMCU.	660	1000				
	XEDX 1010	500		XEDF	970	100000	Magdalena	XEDJ	1450	100		CMBC	690	50000				
	XEPF 1400	250		XEL	1260	5000	Naco	XETM	1350	1000		CMCD	760	10000				
	XEXK 920	250		XEN	690	20000	Nogales	XEHF	1370	5000 250		CMCH	790 890	10000 5000				
Mexicali	XED 1050	5000		XEQ	940	150000	San Luis	X \times XECB	1450	250 250		CMBZ	830	5000				
	XEAA 1340	250 250		XEW	900	250000	Santa Ana	XEAB	1400	250		CMBL	860	15000				
	XEAO 910	250		XEX	730	500000						CMCF	910 950	10000 5000				
	XECL 990	5000 1000		XEFR	1530 1150	$\begin{array}{r}5000 \\ 10000 \\ \hline\end{array}$	TAM	AULIP	AS			CMBF	950 980	5000 5000				
Tijuana	XEC 1310	250		XELA	830	10000	Cuidad Miquel	XEHI	1470	500		CMBQ	1010	5000				
	XETRA 690	50000		XELZ	1440	5000	Aleman	XEWD		2000			1060	10000				
	XEAU 1470	5000		XEMX	1350	5000	Cuidad Camar					CMCA	730	10000				
	XEAZ 1270	500		XENK	620	5000			1400	250		CMCB	1330	1000				
	XEBG 1550	1000		XEOY	1000	50000	Matamoros	XEO	970	1000	Halsuin	CMKJ	730	5000				
	XEGM 950	2500		XEPH	590	5000		XEAM	1310	250		CMKP	670	1000				
	XEMO XEXX 860 1420	5000 2000		XEQK	1350	1000		XEMS	1490 1340	250	Holsuin Orto	CMKM	560	5000				
CHIHUAHUA				XEQR \times XERC	7930	10000	Nueve Laredo	XEAS	1410	250		CMKO	970	1000				
				XERG	690	250		XEBK	1340	100		CMD	770	1000				
				XERCN	1110	50000		XEDF	790	1000	Marianao	CM2	1560	5000				
	XEM 1390 $\times E B U 620$	500 1000		XERH	1500	50000		XEFE	790 960	5000	Neuvitat	CMJO	1300	1000				
	XEBW 1280	1000		XERPM	660 1470	10000 10000		XEWL	1090	2500	Pinar del Rio	CMAB	880	5000				
	XEFI 580	1000		XEUN	860	5000		XEXO	1370	50000		CMAN	840	1000				
Cludad Camarao $\begin{array}{llrr}\text { XEHA } & 580 & 1000\end{array}$			DURANGO				Reynosa	XEOR	1390	1000		CMAQ	920	1000				
				XERI	810	500	Sagua La Gra	do										
Ciudad Delicia	ias	1000					Durango	XEDU	860	1000	Rio Brava	XERO	1110	1000	Clara	CMHA	1280 570	1000
	XEBN 1240	250	NUEVO LEON				Rio Brave	XEFO	1170	1000	,	CMHG	670	1000				
	X XEJK 1340	250	Linares Monterrey				Tamuico ${ }^{\text {a }}$	XEFW	810	50000		CMH	1410	1000				
Ciudad Juarez	2 XEF 1420	250 5000		XER	1260					1000		CMHO	640	15000				
	XEP 1300	500		XENL	860	5000						CMH	810 1810	1000 1000				
	XEFV 1240	250		XEH	1420	1000		Uoc				CMHM	1130	1000				
	XELO 800	15000		XET	990	5000					Saneti Spiritus							
	XEWG 1490	250		XEAR	570	1000	Camaguay	CMJB	880	1000	,	CMHT	990	1000				
	XEYC 1460	1000		XEAW	1280	1000		CMJL	920	5000	Santiaga	CMOA	1320	1000				
Hidalge N. Casas Gran	XEJS 1150	500		XEFB	630	5000		CMJN	960	1000		CMK	770	1000				
	XETX 1010	250		XENR	1370	500 500		CMFA	1110	1000		CMD	680	1000				
COAHU11			SAN LUIS POTOSI					CMJR	1030	1000		CMKW	800	2000				
				CMJC	1000	1000		信KR	1090	1000								
							San Luis Potosi					CMJF CMHD	1340 890	1000		CMKU	630	2000
Monelova	XEMF 1260	250		XEWA	540	150000	Ciego de Avila	CMJY	760	1000		CMDL	1150	1000				
Piedras Negra	as XEMJ 920	1000	SONORA					cmit	700	1000		CMKN	930	1000				
	XEMU 580	5000						CMSS	800	1000		CMKB	1170	1000				
Sabinas	XEBX 610	5000	Afua Prieta	XEAQ	1490	250		CMJV	900	1000	Victoria de Ims	Tunas						
	XESJ 1250	500		XEFH	1310	1000	Cienfuegas	CMHN	680	1000		CMDa	840	1000				
	XESG 1510	1000	Cananea	XEFQ	980	500	Consulacion D	el Sur	880	1000		CMKT	1520	1000				

U. S. FM Stations by States

Abbreviations; Mc., megacycles; asterisk (*) indicates educational station

Location	c.l.	Mc.	Location	C.L.	Mc.	Location	C.L.	Mc.	Location	C.L.	Mc.
ALABAMA			Culiman	WFMH.FM WHOS FM	101.1	Tuscaloosa	WTBO.FM w	95.7	Mesa Phoen	KBUZ.FM	104.7
Albertville	WAVU.FM	105.1	Homewoed	WILN	104.7	ALASKA				KFCA	-88.5
Alexander City	WRFS.FM	106.1	Huntsville	WAHR	99.1					KOOL-FM	94.5
Andalusia	WHMA.FM	98.1 100.5		WNDA	92.8	Anchoraje	KNIK	105.5		K1TH	101.3
Athens	WHMA-FM	104.3	Mobile	WKRG-FM	99.9		KBYR-FM	102.1		KOY-Fm	102.5
Birmingham	WAPI-FM	99.5	Monteomery	WAJM	103.3	College	KUAC	104.9		KPH0.FM	92.5 98.8
	WBRC-FM	106.9 108		WFMI	98.9 98.3		ONA				
Clanton	WKLF-FM	100.8	Tuscumbia	WVNA	100.3	Globe	KWJB.FM	100.3	WHITE'S	LOG	181

U. S. FM Stations by Call Letters

C.L. Lecation

KAAR Oxnard, Calif.
KABC.FM Los Angeles. Calif. KACA Prosser. Wash. KACE-FM Riverside, Calif. KADI St. Louis, Mo.
KAFE Oakland, Calif.
KAFM Salina, Kans.

KAIM.FM Honolulu, Hawali(s) KAJC-FM Alvin. Tó
KAJS Nowport Beach, Calif. KAKI San Antonia.
KALB.FAM Antonio, Tox.
KALB. FM Alexandria, La.
KALH Denver. Colo.
KAMS San rraneliseo, callf. KANG Mammoth Spring, Ark KANT-FM Lancestor, Calif.
C.L. KANU Lawronce, Kans. (B) KANW Albuquerque, N.Mex. KAPP Rodondo Beach, Cal KARK Littlo Rock, Ark, KARM-FM Frosno, Calif.
KARO Houston, Tex.
 KASU Jonosboro, Ark
KATY-FM San Luis Obispo, Calif
C.L. Location KA2z Austin. Tex. KBBI Los Angeles, Calif. KBBL Wienita, Kans. KBBM Hayward, Calif. KBCA Los Angelei Calit KBCL.FM Shroveport, La. KBCD SAM Franciseo, Calif.(s) KBEE.FM Modesto, Calif. KBEI Kansas city, Mo.
C.L. Locatlon KBFM Lubbock, Tex. KBGL Poeateilo. Ida. KBia Los Anpolas, Calit. KBMC Eusene. Wash. KBMF Pampa, Tox.
KBMS Los Angoles, Calif.
KBOA.FM Kennett, Mo.
KBOI-FM Boise, Idaho
KBOY-FM Madford, Draf.
KBTM-FM Jonesboro, Ar KBUZ-FM Mesa, Ariz. KBY.FM. Anehorage, Alaska(s) KBYU.FM Prova, Utah KCAL-FM Redlands, Calif. KCBH Beverly Hills, Calif. (s) KCBS.F. KCFM St. Lolis, Mo.(s) KCHO-FM Amariilia, Catis. (s) KCIB-FM Frosno, Galif. (s) KCJC Kansas Clty. Kans. KCLE-FM Cieburne, Tox. KCMB-FM Wiehita, Kans. KCMB-FM Angolos, Calif. KCMI Los Angority, Mo. KCMO.FM Kansas City, Mo. (s) KCMS-FM Manitou Springs, Colo. KCOM Omaha, Nebr. KCOM Omaha, Nebr.
KCPX.FM Sait Lake city, Utah KCRA-FM Sacramento, Calit. KCRW Santa Monica, Calif. KCSM San Mateo, Calis. KCUI Polla, Ia.
KCURP©Ma, Kansas Clity, Mo. KCVN Stockton, Calif
KCWS-FM Ellensburg, wash. KDB-FM Santa Barbara, Calit. KDOD.FM Dumas. Tex. KDEF.FM Albuquerque, N.Mox. KDEN-FM Denver, Colo.
KDES. FM Palm Spgs.i Callf. (3) KDFC San Franelseo, Calil. KDKA.FM Pittsburgh, Pa. KDMC Corpus Christi. Tex. KDMI Dos Moines, lowa(s) KDNT-FM Danton, Tox. KDPS Des moines, lowa KOUO Riverside, Calif. (s) KDVR Sioux City, Ia
KDWC West Covina, Calif. KEAR San Francisco, Calif. KEAX National City, Calit. EEBR Seeram. Ariz.
KEBR Saeramonto Callf
KEBS San Dieso, Calif.
KEED-FM Springfield-Eugeno.
KEEN-FM San Jose, Calif.
KEEZ San Antonio. Tex. (s)
KEFM Oklahoma City, Okla
KEFW Honolulu, Hawail
KELE Phoenix, Ariz.
KELT Harlingen. Tex.
KEMO St. Louis, Mo.
KERN-FM Bakersfield. Calif.
KETO.FM Seattle, Wash. (s)
KEYM Santa Maria, Calif. (s) KEZE Anahaim, Cailif.
KFAB-FM Omaha, Nobr. KFAC-FM Los Angeles, Calif, KFAM-FM St. Cloud, Minn, KFCA Phoonix, Ariz.
KFGQ.FM Boane, lowa
KFH-FM Wichita. Kans
KFIL Santa Ana, Callif.
KFJZ Fort worth, Tox.
KFMB. FM San Diego, Calif.
KFMC Portland, Ores.
KFMH Colorado Springs, Colo. KFMK Houston, Tox. (s) KFMM Tueson, Ariz.
KFMN Abilene, Tox.
KFMP Port Arthur. Tex. (s)
KFMQ Lineoln, Nobr.
KFMU Giendale. Calip. (s)
KFMV Minneapolls, Minn
KFMW San Bernardino, Calif.
KFMX San Diego. Cali
KFNB Oklanoma City, Okla. (s)
KFNE Big Sprines. Tex.

- KFOG San Franeiseo. Calit. (s) KFOX.FM Long Boaeh, Calif.
KFRC-FM San Franciseo, Calif. KFRE.FM Fresno. Calif. KFUO-FM Clayton, MO. KGAF-FM Gainesville, Tex. KGB.FM San Diego, Calit. (s) KGBN-FM Caldwell, Idaho KGFM Edmonds. Wash. KGGK Garden Grove, Calit. (s) KGLA Los Angeies, Calif. KGMG Portland, Ores. (s) KGMI Bellingham, Wash. KGNC-FM Amarille, Tex. KGO-FM San Franeiseo, Calif. KGPO Grants Pass, Ore KGUD.FM Santa Barbara, Calif.
C.L. Locatlon KHAK-FM Cedar Rapids, Iowa(s) KHBL Plainvlew, Tex. KHBR-FM Hillsbore. Tex. KHCB Houston, Tox. KHFM Albuquerque. N. Mox. (s) KHFM Albuquerque. N.Mox. (s) KHGM Beaumont. Tex. (s) KHGM Beaumont, Tex. (s)
KHIP San Francisco, Calit. KHIP San Francisco, Calif. (8) KHIQ, Sacramento, cil Calif. KHMS EI Paso, tex.
KHOF Los Angeles, Cali KHOM-FM Turloek. Calif. (s) KHOM-FM Turlock, Cai KHPC Brownwood, TwX. KHSC Areata, Calif.
KHUL Houston, Tox.
KHYI Fromont, Calif.
KICN Omaha, Nobr:
KIEM Euraka, Calif.
KIMP.FM MI. Pleasant. Tox KING.FM Seattle, Wash. K 100 oklahoma, okla. KIRO-FM Seattio, Wash. KISA Kansas City, Mo. KiSS San Antonio. Tex KISW Seattle, Wash.(s) KITH Phoenix, Ariz. KitT San Diego, Callif. KITY San Antonio, Tex. KJAZ Alamoda, Calif. KJEF-FM Jennings, La. KJEM-FM Okla, City, Okla. KJIM Ft. Worth, Tax. KJML Sacramento, Calif KJPO Fresno, Calif. KJRG Nowton, Kans. KJSB Houston, Tox,
KLAC-FM Los Angeles, Callt. KLAY-FM Tacoma, Wash. (3) KLCN-FM Blythovills, Ark. KLEN-FM Killaen, Tax. KLFM Beverly Hilis, Calif.
KLIR.FM Denver, Colo. (s) KLIR-FM Denver, Colo. (8)
KLIZ-FM Brainord, Minn. KLIZ-FM Brainord, KLOA. FM Ridgetrestalif. KLON Long Beach, Calif. (s)
KLRO San Diego, Cal KLSN Seattle, Wash. (s) KLST Colorado Springs, Colo.(s) KLUB-FM Salt Lake City, Utah KLUR Wiehita Falls,
KLYD.FM Bakerstitid, Calif. KLYN-FM Lynden, wash. KLZ-Fm Fresno Calif KMAK-FM Fresno,
KMAP Dallas. Tox.
KMAX Sierra madre, Calif. KMBC-FM Kansas Gity, Mo.(s) KMCP Portland, Ores KMCS Soattle. Wash.
KMER Fresno, Calif. Mox. KMHT Marshall, Tox. KMJ-FM Fresno, Calif. KMLA Los Angoles, Calif. (s) KMLB. FM Monroe, La. (s) KMMK Little Rock, Ark. KMOD-FM Midland, Tex. KMPX San Franciseo, Calit. (s) KMSU Mankato. Minn.
KMUW Wlehita, Kans.
KM YC.FM Marysville, Callif. KMUZ Santa Barbara, Callf. (s) KNBR-FM San Franciseo, Callif. KNCO.FM Garden City, Kans. KNDE-FM Aztoc. N.Mex. KNOX Yakima, Wash. KNEB-FM Scottsbl
KNEV Reno, Ney.
KNEW-FM Scottsbluft, Nebr. KNFM Midiand, Tex. KNIK. FM Anchorago, Alaska KNIX Phoonix, Ariz. (a) KNOB Long Beach, Callf. (s) KNOF St. Paul, Minn. KNTO Wiehita Falls, Tex. (s) KNX.FM Los Angeles Callf KOAP.FM Portland, Ore KOCW Tulso, Okla. (s) KODA. FM Houston. Eiex. (s) KOGM-FM Tulsa, Okla KOIN FA Potlo C KON. FM Portland, Orea. KOKH OM Sattle, Wash KONG.FM Visalia, Calit. (s) K00L.FM Phoenix, Ariz. KORK Las Vegas. Now. (s) KOSE.FM Osegola, Art. KOSE-FM Osecole. KOSU.FM Stillwater, Okla.(s) KOTN-FM Pine Biut, Ark. KOY-FM"Pheenix, Aris. KOZE.FM Lewiston, IJaho KPAT Albuquerque, N.. Mex. KPCS Pasadena, Calit. KPDQ.FM Portiand, Ors. KPEN Atherten, Callf. (s)
C.L. Location KPFA Berkoley. Calit. KPFK ork Aneles Ca KPFM Partland Orea (s) KPFM Portland, Orefl (s) KPLR-FM St. Louis, Mo. KPOI.FM Hanolulu. Hawaii (b) KPOJ.FM Portland, Ores KPOL.FM Los Anjeles. Calif. (s) KPPC-FM Pasadona. Calif. KPPS.FM Parsons Kans. KPRI San ologa, Galif (s) KPRN Seattio, wash. KPRN Saattio, Wa
KQAL. FM Omaha, Nebr. (s) K KBY.FM San Franciseo, Callf. KGFM Portland, Orag. KQIP Odessa, Tex. KGRD Dallas, Tex. KQUE Hauston. Tex. (s) KQV.FM Pittsburgh, Pa. KRAB Seattle. Wash. KRAK-FM Stockton, call KRAM-FM Las Vagas, Nev. KRAV Tulst. Okla. (s) KRBE Houston. Tox. (s) KRCC Colorado Sprinas, Colo. KRE-FM Berkeley, Calif. KREM-FM Spokane, Wash. KREX.FM Grand Junction. Colo. KRHM Los Angeles. Calif. (s) KRKD.FM Los Angeles, Ca KRKH-FM Lubbock. Tex. KRKY Denver, Colos KRMD.FM Shreveport, La. KRNW Boulder, Colo. KRNY-FM Kearney-Holdrege, Nebraska KRON-FM San Franelseo, Callf. KROS.FM Clinton, lowa KROW Santa Barbara, Calif. KROY-FM Saeramento, Calit. KRPM San Jose, Calif. KRAC SAn Joso, Calion. (s) KRSI Minneapolis, Minn. (s) KRSN-FM Los Alamol, N.Mex. KRVM EM Lone, Oreg. KRVN-FM Lexington, Nebr, KSBW.FM Salina Calif KSBW-FM Sierra, Calif. KSDB.FM Manhistan. Kans. KSDS San Diego. Calif. KSEA FM Durant Okla
KSFM Dallas, Tex, (s)
KSFR San Franeiseo, Calif. (s) KSFV San Farnand. Calif. KSHE Crostwood. Mo. (s) KSHS Colorado Springs Colo. KSJD-FM San jose, Caliif. (s) KSJS San Jose, Calif.
KSL.FM Salt Lake city, Utah(s) KSLA Seattle, Wash. (s) KSLH St. Louis, Mo. KSLT Tyler, Tox. Maria, calif. KSO-FM Des Moines, lowa KSOM Tueson. Ariz. KSPC Claramont, Calif. KSPI-FM Stillwater, 0kla. KSPL-FM Diboll, Tox.
KSRF Santa Moniea. Calif. KSRF Santa Monice. C KSTL.FM St. Louis, Mo. KSTN. FM Stockton, Calit
KSUI lowa City, lowa KSUI lowa City, lowa
KSWI-FM Omaha, Nebr. KSYN Joplin. Mo. (s) KTAL Toxarkana. Tex KTAP Tueson, Ariz. KTBC-FM Austin, Toz. (g) KTBC-FM Austin, iox. (s) KTEC Oretech, Oreg. KTIM San Rafael, Calit KTis. FM Minneapolis, Minn. KT10.FM Ottawa, Kans, KTOD Mt. Pleasant, Tex, (s) KTOP-FM Topeka, Kans. KTOY Tacoma, Wash KTPM Sun City, Ariz. (s) KTGM-FM Clovis. N. M. M. KTRH-FM Houston, Tox. KTSM-FM El Paso. Tex. KTSA Kansas City, Mo. KTWR Taeoma, Wash. KTXR-FM Springneld. Mo.(s) KTXT-FM Lubbock. Tix. KTYM-FM Inglowood, Calif. KUAC Collego. Alaska KUDE.FM Oeeanside, Cail?. KUDU.FM

Ventura-0xnard, Calit. (s) KUER Salt Lake City, Utah KUFY Redwood City, Calif. KUGN.FM Eusene, Ores. KUHF Houston. Tex. KUMD-FM DuJuth, Minn.
C.L. Lecafion

KUOA.FM Siloam Springs, Ark. KUOH Honolulu. Hawall KUOW Seattle, Wash. KUPD.FM Tempe. Ariz. KUSC Los Angeles, Calif. KLSN-FM St. Josenh, Mo. KUT.FM Austin. Tex.
KUT-FM Auskn. Calif.
KUTE GLendale, Calin. Calif. KVEC. FM
San Luis Obispo, Calif.(s) KVEN-FM Ventura, Califí KVIL HIghland PK.. Tex. (s)
KVOF - FM EI Paso, Tox.
KVOP.FM Plainview. Tex. KYOR.FW Colorado Springs, Colo.
KVSC Logan, Utah
KWAR Waverly, lowa
KWAX Eugeno. Oreq
KWBE.FM Beatrice, Neb.
KWFM Minneapolis, MInn. (s)
KWG-FM Stoekton. Calif.
KW GS Tulsa. Okla.
KWIX 8t. Louis, Mo.
KWIZ-FM Santa Ana, Calif.
KWJB-FM Globe, Ariz.
KWKH-FM Shreveport, La,
KWME Walnut Creek, Calit.(s)
KWOA-FM Worthington, Minn.
KWOC.FM Poplar Blufi, Mo.
KWPC.FM Museatine, Iowa
KWPM-FM Weat Plains, Mo.
KXEL-FM Watorloo. lowa(s)
KXFM Fort Worth, Tex.
$K X J K$. FM Forrost Clity, Ark.
KXLU Los Angeles, Calif. KXOA Saeramento Calif. KXOL. FM Ft. Worth, ${ }^{\text {T }}$ (
KXQR
Kresno, Calif. (s) KXRQ Saeramento, Calif. KXTR Kansas City, Mo. (s) KXYZ-FM Houston. Tox. (s)
K KYA-FM San Franciz. KYFM Oklahoma City, Okla. KYW.FM Cleveland, Dhie K2 AM Seattle, Wash. (s) K2AM Seattio, Wash
KZFM
Cortez, Colo.
KZOM Oklahoma city Dkla. KZUN-FM $\begin{aligned} & \text { Opportunity, Wash }\end{aligned}$ WAAM.FM Parkersburg, W.Va WABC.FM Now York. N. Y. WABE Atlanta, Ga. WABI-FM Bangor, Maine WABG Clovaland, ohio WABX-FM Detroit, Mich. (s) WACD Waso, Tex. WAEB-FM CIncinnatl, ohio WAEF Syracuso. N.Y. WAEZ Miaml Beach, Fla. (s) WAHR-FM MIam, B. WAIR.FM Winston-Salem, N.C. WAIV Indianapolis, ind. WaJC Indianapolis, Ind. WAJM Montgomery, Ala, WAJP Joliot, III. WAJR-FM Morgantown, W.Va. WAKR-FM Akron, Ohio WAKW.FM Cincinnati, Nhio WALK-FM Patehosu WAMC Albany, NiY.
WAMF Amherst, Mass. WAMO Pittsburgh, Pa WAMU.FM Wathington D.C. WAPI.FM Birmingham, Ala. WAPS Akron, Ohio WAQE-FM Towson. Md. (s) WARD-FM Johnstown. Pa. WARN-FM Fort Plores FIa
C.L.
WBBR.FM
Location WBBS Crawfordsville, Ind. II, WBBWW.FM Youngstown, Ohio (s) ${ }_{\text {ald }}^{\text {alills. }}$ Hills, Pa WBCI- FM Williamsburg, VE. WBCN Boston. Mass. (s) WBEN.FM Buffass. (s) WBET.FM Brackio. N. WBEU.FM Beaufort.' s.c. (s) WBEX.FW Chillteothe, ohlo WBEZ Chicago. lli. WBFG Detroit, Wich.
WBFM New York. N.Y. WBFO Bufralo, N.'N. \mathbf{W} BG WBGO Newark, N.j. ${ }^{\text {Win }}$ WBGU Bowling Green, Dhio WBIR-FM K Noxvilie WBIV Wethersfield. i. Y. WBJC Baltimora, Md
WBKV.FM West Bend, Wis.(s) WBKW Beckloy, W.Va.
WBLY-FM SDringfold, Ohio WBMI Moridan, Conn. (s) WBNS.FM Columbus, ohio (s) WBOE Cloveland, Ohio WBDS.FM Brookiina, Mass WBRB-FM Mt. Clements, Mich. WBRC Birmingham. Ala. WBSM-FM Now Bediord, Mass, WBST Muncie, Ind.
WBU.F.M Charlotto, N.C. (s) WBUF Buffalo, N.Y. WBUR Boston, Mass. WBUT-FM Butler. PE. WBUY-FM Lexington, N.C WBVP-FM Meadider 'Falis, Pa. WBWC Borea, Dhio WBZ-F M Bosion, Mass. WCAC Anderson S.C. WCAO.FM Batilimore. Md. WCBC-FM Anderson, Ind. WCBE-FM Anderson, WCBS.FM Baltimore. Md. WCCG-FM Haw Hork, N.Y. WCCV-FM Charlottosville, Ve. WCEN.FM Mt Plopa. WCFM Willi Peasant, Mich. (s) WCHA-FM Chambersburg. Pa. (s) WCHD Detroit, Mich WCLE-FM Cleveland. Tenn, WCLL.FM Corning. N. CLO FM WCLT:FM Janesvillo. Wis. WCLW-FM Mansfeld, Ohio WCMC.FM Wildwood. N.J. WCME-FM Brumswick, Main WCMF-FM Rochaster. N.Y. (s) WCMI-FM Ashland, Ky. WCMR-FM Elkh. WCNB-FM Connersville, Ind. WCNO Canton, Dhio(s) WCOD Rlich mend, Va. WCOL-FM Columbus Dhio WCOP-FM Boston, Mass. wCou-FM Lowiston Mining WCOW-FM Sparta, Wis. WCPO.FM Cincinnati, onio WCPS-FM Tarbor. N.C. WCRB-FM Waltham, Mass. (s) WCRT.FM Birmingham. Ala, WCSC-FM Charieston. s.c. WCSI-FM Columbus, Ind. (s) WCTA.FM Andalusia, A.Y. WCTC.FM New Brunswick, N.J. WCTM Eaton, Ohio WCTW-FM Now Castle, Ind. WCUF Akron, Ohio
WCUM-FM Cumberland, Md. WCUY-FMM Cleveland His., onio WCWM Williamsbura. Va. WDAE Lancaster. Pa. WDAEE-FM Tampa, Fla. WDAF.FM Kansa, Clity, Mo. WDAS-FM Philadelphla, Pa. WDBN-FM Roanoke, Va. WDBN Akron. Ohio(s). WDBO-FM Orlando, Fla. WOBQ-FM Dubuqua, Iowa WOCX Buffalo. N.Y. (s)
WDDE WODS. FM Syracuse, N . WDEL.FM Wilmington, Del. WDET-FM Dotroit, Mich. WDFM State Collesie, Pa . WOGO Cleveland, Dhio(s) WDHA-FM Dover, N.J.(s)
WDHF Chleaco il WDHF Chleago, III.

WHITE'S RADIO LOG
C.L. Locetion WDJK Allanta, Ga. WDJR OII Cley, Pa,
WDMB-FM Statesville, N.C. WDNC-FM Durham, N.G. WDOC.FM Prestonsburg. Ky. WDOK-FM Chattanooga, Tonn. WDOK-FM Cleveland, Ohlo WDOV-FM Dover, Del. WDRK-FM Greanville, Ohio wOSC.FM Dillan, S.C. WDTM Detroit, Mieh. (s) La, WDTR Detroit, Mich. (8)
WOUB Granvilio, ohio WDUN- FM Gainesvilie, Ga. (s) WDUZ.FM Green. Pa . WDUZ-FM Green Bay, Wis.
WDVR Philadelphia. Pa. WDWS.FM Champaign. IIf. WEAV-FM Plattsburgh. N. Y. WEAW-FM Evanston, III. VEBH Chicago, III,
WEBG-FM Harrisburg ${ }^{\text {III. }}$ WEBR-FM Buffalo, N.
WEDK Springhield, iMas
WEEC Springnold, Ohlo
WEED.FM Rocky Mount, N.C.
WEEP.FM Pittsburah, Pa
WEEX.FM Easton, P_{a},
WEFA Waukegan, III.
WEFM Chicago. III, (s)
WEGO-FM Concord, N.C.
WEIV Ithaca, N.Y.
WEKZ.FM Monroo, Wis.
WELF GIen Ellyn.
WELG EIgin, Ill.
WEMP.FM M ilwaukes Wis
WENR-FM Chleago, III.
WEOK-FM Poughkeepsie, N.Y WEDL.FM Elyria, Ohio WEPM-FM Martinsburg, W.Va, WEPS EIgin, III.
WEQR Goldsboro, N.C
WERE. FM Cloveland, Dhio WERI-FM Westerly, R.I. WERS Boston, mass. WERT-FM Van Wert, Ohie WESC-FM Greenville, S.C. WETL South Bend. Ind. WETL South Bend, Ind WEVC Evansvilio, Ind WEVD-FM Now York, N.Y. WFAA-FM Dallas, Tex. WFAN Washington. D . C . WFAN Washington, D,C, WFAU.FM White Plains, N.Y. WFAW Fort Atkinson. Wis. WFAW Fort Atkinson, Wis.
WFBC.FM Greenville, S.C. WFBE Flint. Mleh.
WFBG.FM Altoona, P
WFBM-FM Indianapolis, Ind. WFBS-FM Winstan-Salom, N.C.
WFCI Manmisbura.
WFCR Amharst Mo WFDS. FM Baltimore. Mo FFM Cineinnati, Dhio WFHM-FM Fitchburg, Mass, WFHR-FM Wisconsin Rapidis, Wis. WFID Rio Piedras, P.R. (s) WFIG Sumter, S.C.
WFIL.FM Philadeiphla, Pa WFIU-FM Findiay, Ohio(s) WFKO Kokomo, Ind WFLA-FM Tampa,
WFLM Ft, Laudordale, Fla, (s) WFLN-FM Phlladelphia, Pa. (s) WFLO Farmville, Va.
W FLT. FM Franklin, Tenn. WFLY Troy, N.Y.
WFMA Rocky Mount, N,C. WFMB Nashville, Tenn. WFWO-FM Frederlek, Md. WFME Detroit, Mich. WFMF Chicapo, III. WFMH-FM Culiman. Ala WFMI Montgomery, Ale. WFML Washington, Ind. WFMM-FM Baltimoro. M WFMS Indianapolis. Ind WFMT Chicago, III. (s) WFMU East Orange, N.J. WF MW-FM Madisonville, Ky WFMX Statesville, N.C.
WFMZ Allontown, Pa. WFNC.FM Fayettevilia, N,C. WFNS-FM Burllngton, 'N.C. WFNY Racine, Wis, WFOB.FM Fostoria, Ohio WFOL Hamilton, Ohlo(s)
WFOS South Norfolk, VI WFPG Atlantic City, N.J. WFPK Loulsville, Ky. WFPL Loulsville, Ky. WFRO-FM Fremont, Ohto
C.L.

Lecotion WFSU-FM Tallahassee, Fla. WFUL.FM Fulton, Ky. WF UR-FM Grand Rapids, Mieh WFUV New York, N.Y. WFVA.FM Fredericksbury, Va. WGAL.FM Lancaster, Pa. WGAR-FM Cleveland, Dhio WGAY Silver Spring, Md. WGBH-FM Cambridge, Mass. (s) WGBI-FM Seranton, Pa. WGCB-FM Red Lion. PL WGCS Goshen, Ind.
WGEM-FM Quiney, III.(s) WGET-FM Gettysburg, Pa. WGGG Glasgow, Ky. WGGM Taylorville. III. WGH.FM Nowport Nows, Va, WGHF Nowton, Conn, (s) WGHJ Lawronce, Mass. WGKA.FM Atianta, Ga. WGLM Richmond, Ind. WGMR Tyrone, Pa. WGMS.FM Washington. D.C. WGMZ Fint, Mich, (s) WGNB St. Petersburg. Fla, WGNC-FM Gastonia, N.C.
WGPA-FM Bethiohen, Ga. WGPM Detroit, Mich.
WGPR-FM Detroit, Wich.(s) WGPS Greansboro, N,C. WGR-FM Buffalo, N,Y. WGRV.FM Greeneville. Tenn. WGTB-FM Washington, D.C. WGTS-FM Takoma Park, id.
WGUC Cincinnati, Ohio
WGWE.FMry Ind.
WGWR-FM Asheboro, N.C.
WGYA Intorlochen, Mieh.
WHA.FM Madison. Wis. (s)
WHAD Delanteld, W/s.
WHAT-FM Greenfold, Mass,
WHAT. FM Philadelphia, Pa. (s)
WHAV-FM Haverhili, Mass.
WHBF.FM Rock Island, III,(s) WHBF-FW Rock 1 sl
WHBI Nowark, N.J. WHBM-FM Xenia, Ohio WHCI Hartford City. Ind. WHGN Hartford, Conn. WHOH.FM BOston, N.Y. WHDL.FM Allegheny, N.Y. WHFB.FM Benton Harbor, Mich. WHFC Chicago, III. WHFI West Paterson. N. WHFS Bothesda, Md. (s) WHHI Hiphland, Wis, WHHS Havertown, Pá. WHIL.FM Medford, Mass. WHIM-FM Providenee R.I. WHIO-FM Dayton, Ohio WHIZ-FM Zanesvills, Oh WHK-FM Cleveland, ohlo WHKP.FM Hendersonvillo. N.C. WHKW Chilton, Wis. WHKY.FM Hickory,
WHLD-FM Niagara Falts, N, Y WHLI-FM Hampstead, NiY. WHLM-FM Bloomsburg, Pa. WHMA.FM Anniston. Ala. WHO.FM Das Moines, Jowa WHOH Hamilton, Ohio WHOK-FM Laneaster, Ohio WHOO-FM Orlando, Fla. (s) WHOS.FM Decatur. Ala, WHP-F-M Harrisbura, Pa, WHPE-FM High Point, N.C.
WHPR Highland Park. Wich. WHPR Highland Park. Mi
WHPS High Point, N.C. WHPS. Hith Point, N.C. Mass. WHRM Wausau. WIs.
WHSA Highiand Twp., WIs. WHSR-FM Einchtster, Mass. WHUS Storrs, Gonn.
WHYL Colfax, Wis.
WHYN.FM Springifa. WIAL Eau Claire. Wis. Mass. WIAM-FM Williamston. WIAN WIBA.FM Madison, Wi WIBC.FM Indlanapolis. Ind WIBG.FM Philadelphia. Pa. WICB Ithaca, N.Y.
WICR Indianapolis, Ind. WIFE Buffalo, N. Y $_{\text {. }}$. WIFI Glenside, Pa. (s) WIKY-FM Evansvilie. Ind WIL-FM St. Leuis, Mo. WILD.FM Frankfort, ind. WIMA.FM Lima, Dhio WINA.FM Charlottesville, Va WINE-FM Kenmors, N.Y.
WINF-FM Manchester, Cont WINF-FM Manchoster, WIOD.FM Mlami, Fla.

C.L.
 Location

 WIP.FM Philadeluhia, Pa WIPR-FM San Juan, P.R. WIRC.FM Hickory N. C. (B) WISH.FM Indianapolis WISH-FM Indianapolis, Ind, (s) WISM-FM Madison WISN-FM Madison, Wis. (s) WIST.FM Charlotte. N.C.WITA-FM San Juan, P.R. WITH.FM Baltimore. Md. WIUS Christianstod WJAC-FM Jhnstown. PA. (s) WJAX.FM Jacssonvili. WJBC.FM Bloomington, Fla. WIBK.FM Detroit. Mich. WjBL-FM Holland, Mich WJBR Wilmington, Dol.(s) wJOX.FM Jackson, Miss. WJEF-FM Grand Rpds., Mieh. (s) WJEJ.FM Hagerstown, Md. WJGS Houghton, Mich WJHL-FM Johnson Clity. Tenn. WJIM.FM Tullahoma. Tenn. (s) WJIV Cherry Vallay, N.Y WJD.FM Chieaed, III. WJLN Birmingham Aark, N.J. WJMC-FM Rise Lako, Wis WJMD Bethesda, Md.(s) WJOF Athens, Ala.
WJOL.FM Joliet. Ill. (s) WJR-FM Detroit, Mich. WJRZ Newark, N.J.
WISC.FM Wilberforce, Ohio
WJW.FM Cleveland, Ohio
WJWR Palmyra, Pa.
WJZz Bridgeport, Conn
WKAK Kankakee, III.
WKAQ.FM San Juan, P.R. WKAT-FM Mismi, FIE. WKAY-FM Glasgow, Ky. WKBC-FM N. Wilkesboro, N. WKBN.FM Youngstown, Ohio WKBR-FM Manchester, N.H. WKBV-FM Rithmond, Ind WKCa Barlin, N.H.
WKCR-FM Now York, N.Y.
WKCS knoxville, Tenn.
WKON-FM Camden, N.J. WKET-FM Kuntington, W.Va. WKFMCN Kettering. Ohio(s) WKKM Chicaso, III. (s) WKIP-FM Poughkeepsio, N.Y. WKIX.FM Orlando, Fla, WKJF Piltsburgh, Pa. (s) WKLF-FM Clanton, Ala. WKLS Marietta. Ga.(s) WKLW.FMM Grand Raptds, Mieh. WKNA Charloston. W.Va. (s) WKOF Hopkinsvilio. Ky. WKOP-FM Sincha, Pa. WKOX-FM Framinghan, N.Y. WKPT-FM Kingspert, Tenn. (8) WKRC-FM Cincinnati, Ohio (s) WKRG-FM Mobilo, Ala. WKRT.FM Cortland, N.Y. WKSU-FM Kont, Oi WKTM N. Charleston. S.C WKTM.FM Mayneld. Ky. (s) WKWK-FM Whealing. W.V. WKYB-FM Padueah, Ky. WLAD-FM Danbury, Conn. WLAG-FM LaGrange, Ga. WLAP.FM Lexington, Ky WLAV-FM Grand Rapids, MIeh. WLBG-FM Laurens-Clinton, S.C. WLBH-FM Mattoon, 111. WLBR-FM Lebanon, Pa, WLOM Oak Park. Mieh. (s) WLDS.FM Jacksonville. III. WLET-FM Toccoa, Ga, WLFM Applaton, Wis. W LIB New York, N. \mathbf{Y} WLIN Merrilt, Wis. WLIP-FM Kenosha. Wis. WLKR-FM Norwalk. Ohio WLLH-FM Lowell. Mass. WLNA.FM Peokskil, N.Y. WLOA.FM Braddoek, Pa. (B)

C.L. Locotion	C.L. Location	C.L. Locotlon
WMAL-FM Wathington, D.C.	WOCB-FM W. Yarmouth, Mass.	Long Braneh. N.J. (s)
,	OHS.FM Shelby	W
WMAQ-FM Chicago.	WOI-FM Ames, lowa	
AS. FM Springield, Mass.	Woio Cincinnati, Ohio	-
WMAX-FM Grand Rapids, Mich.	WOIV Do Ruyter, N.Y.	WRNJ Atlantic
Z-FM Macon, Ga.	WOKZ-FM Alton, 111.	K
O.FM Peoria, III,	WOL.FM Washington	WRNW Mount
WMBI-FM Chieago, III.	WOMC Royal Oak, Mich. (s)	WROC. FM Roch
BM M Mami	WOMI-FM Owens boro. Ky.	WROK-FM Rock
O.FM Auburn	WOMP.FM Bellaire, Ohie	WROW-FM A
MBR-FM Jacksonville, Fla.	WONO Syracuse,	
MCF Memphis, Yenn.	Grand Rapids, Mich. (s)	WRPN.FM R
MCR	WOPA.FM Oak Park, III.	
DE Greensbor	WOPI-FM Bristol, Tonn	WRRN W
EB-FM Orono.		WRSV Skokiei III.
ER Cal		WRSE-FM Elmhurst. III.
EV-FM Mari	WORX-FM Madison, Ind.	WRSW-FM
WMFM Madison.	WOSC.FM Fu	WRTC-FM - artiord, Conn,
WMFP Ft. Lauderdalo, Fla.	WOSJ-FM Atiantie City ${ }^{\text {N }}$	
R.FM High Point, N.C	SU-FM Columbus, Ohie	WRUF FM Gainesville. Fla.
WMHC South Hadley, Mass.		WRVA-FM Richmond, Va.
hio		B.FM Madison. Wis.
L. FM Milwaukeo,	W0	WRVC Noriolk.
IT Marion. N.C	WPAC.FM Patchogue, N.Y.(s)	
	Pa	WRXO-FM Rox
WMLS- FM Sylacauga. Ala.	WPAY-FM Portsmouth	WR
MLW Milwaukee, Wis.	WPEC-FM Minneapolis.	WSAB Mt. Carmel, II
MM Westport, Conn.	WPBS Philadelphia, Pa.	WSAE Spricg Arbor,
WMNA.FM G	WPCA-FM Philadel	WSAI-FM Cineinnati, Ohie
		WSB.FM Atlanta, Ga. (s)
RI-FM Marion	WPEX-FM Ponsatola, Fla. (s)	WSBA.FM
MRN-FM Mari	WPFB.FM Middietown, ohio (s)	WSBC-FM Shieapo, III.(s)
RO-FM Aurora, III.	WPFM Providence, R.I. (s)	WSBF.FA, Clemson, S.C
RT Lansing, Mich.	WPFR Terre Haute. Ind.	WSCB Spriogfield, Mass.
WMSP Harrisburg, Pa.	WPGC Bradbury His., Wd.	WSCH Hartiord
anchester, Ienn.		WSEV.FM Siever
	W	WSFM Blrmingham, Ala, (s)
mT	WPJB.FM Providence, R,I	WSHS Floral Park, N.Y.
WMTW-FM Washington N.H. (s)		
Mt. Washington, N.H.(s)	\mathbf{w}	onda
UB Oxford. Ohio	WPLN Na	WSIX.FM Nashville. Tenn. (s)
MUL Huntington, W	WPLO.FM Atta	WSJG Hallandale, Fla.
MUS.FM Muskegon,	WPPA.FM Pot WPRB Princoto	WSJS. FM Winston.Sale WSKS Wabash. Ind.
MUU.FM Greenvilio, S.C.	WPRK Winter Park. Fla	WSLN Delaware, Ohi
UZ Detrolt,	WPRM San Juan P.R.	WSLS. FM Roanoke, Va. (s)
A.FM Martinsville. Va.(s)	WPRRO-FM Providence, R.	WSMC.FM Collagedale, Tenn.
		WSMI-FM Litehnel d, III.
V.FM mount Vernon.	WPSR E	
NAD-FM Norman	WPPTH.FM	WSNJ-FM Brid
	WPTH Fort Wayne. Ind.	WSNW.FM Sen
FM Annapolis.	WPWT Philad	
NBD-FM Daytona Bea	P M	WSON.FM Hen
BF.FM Binghamton	WQDC.FM Midland. Mich.(wsou
BH.FM New Bediord. Mass.	W QFM Milwauk	WSOY-FM Dee
WNCN NM Mshind Ohio	WQMF Babylon WQMG Greens	WSPA.FM Spartanburg. S.C.(
NDA Huntsville, Ala. (s)	W OMS Hamiltor io	WSPE Sprinqvi
U.F	WQRS.FM Detroit. Mieh	-FM Stove
EM-FM Bay City, Mich. (s)	m	SHW.FM stusboro. Ono
ES.FM Con	R-FM Now York, N.Y. (STC-FM Stamiord, Conn.
EX-FM	OX-FM Palm Beach, Fla.	STO Owemsbora, Ky. ${ }^{(5)}$
NEX-FM Macon, Ga.	WRAJ.FM Anna, III.	WSTP-FM Salisbury, N.C. WSTR.FM Sturgis. Mich.
NFO.FM Nashvilte, Tenn.(s) NGO.FM Mayfield, Ky.	WRAK.FM Williamsport, Pa	WSTR.FM Sturgis. Mith. WSTV.FM Steubenville. Ohio
HC.FM Now Haven, Conn	- FM Princeton. Cid.	WSVA-FM Harrisonburg, Va.
IB Chicapo, III.	FM Columbus, Ga.	WSVS.FM Crewe
IC DoKalb, III,	Baltimore. Md.	WSWM East Lansing, Mich. (s)
N1-FM Nowton, N.J.		
B Cloveland. Ohio (s)		WTAG.FW Worcest
	EO-FM Ashtabula, Ohio	WTAR Norfolk. Va.
OS.FM High Point, N.C.	WREV-FM Reidsville. N.C.	WTAX-FM Springheld. III.
OW - FM York, Pa	WRFD.FM Worthington.	WTBC-FM Tuscaloosa, Ala,
H Highland Park,	Columbus,	WTBO-FM Cumberiand. Md.
L.FM Laurel. Miss.	WRFL Winehester, Va.	wTCX St. Potersburg, fla.
NTI Hackettitown. N. .	WRFM Woodsid	WTDS Toledo. Ohio
UR Evanston, III.	S.FM Alexandor City, Ala.	FM Babylon, N.Y.(s)
C.FM Arlington Hts.. ${ }^{\text {d }}$ I,	FM Reading. Pa.	THI-FM Terre Ha
C.FM Now York. N.Y.		THS Miami, Fla.
	WRIT-FM MIlwaukee, Wis.	WTIC.FM Harttord. Conn. (s)
	WRJR Lewiston, Maine.	S. FM Jackson, Tenn.
		WTJU Charlottesville, V
OC-FM Davenpert, Iowa		WTMA.FM Charleston, S.C.

C.L. M w Locallon wOCB-FM W. Yarmouth, Mass. WOI.FM Ames, lowa wolo Cincinnati, Ohio wokz-FM Alton, NiI. WOL.FM Washington. D.C. WOMI-FM Owensboro. Ky. WOMP.FM Bellaire, Ohio WONO Syracuse, N.Y.

Grand Rapids, Mich. (s) WOPI-FM Bristol. Tonn. WORA.FM Mayaguez, P. R. WORX-FM Madison. Ind. WOSJ-FM Atlantie City, N.J. WOSU.FM Columbus, Ohie
WOTW-FM Nashua. N.H. WOUB-FM Athens, Ohio WOXR Oxford, Ohio WPAC-FM Patchogue, N.Y.(s) WPAD-FM Paducah, Ky, WPAY-FM Portsmouth, Ohlo (s) WPBS Philadelphia, Pa. WPCA.FM Philadelphia, Pa WPEL-FM Montrose, Pa. WPEX-FM Ponsacola, Fla. (s) WPFB.FM Middletown, Ohio (s) WPFR Pers Hau, R.i.(s) WPGC Bradbury His., ind WPGI Pittsburgh, Pa. WPIT.FM Pittsburgh. WPJB.FM Providence, R.I. WPKM Tampa, Fla WPLM-FM Plymouth. Mass. WPLN Nashiville, Tenn. WPPA.FM Pottrville, Pa. WPRK Winter Park. Fla WPRM San Juan. P.R. WPRS.FM Paris, III. WPRW-FM Manassas, Va WPTF.FM Raleigh, N.C WPTH Fort Wayne. Ind. WPWT Philadelphia. Pa. WQAL Philadolphia. Pa. (s) WQOC.FM Midland. Mith. WQMM Milwaukee. Wis. WQMG Greenshoro. N.C.(s) Wars. FM Dotroit. Mich WQXI-FM Atlanta, Ga. WQXT-FM Palm Beach, Fla. WRAJ-FM Anna, III. WRAL-FM WIMamsport, Pa. WRAY-FM Princeton, Ind. WRBS Baltimore. Md. WRC.FM Washington. D.C. WRCM New Orleans, La. WREO-FM Ashtabula, Ohio WREV.FM Reidsville, N.C,

Columbus, Ohio
WRFK Richmond, Va.
WRFL Winehester, Va
WRFS-FM Alexander City, Ala.
WRFY-FM Reading. Pa
WRIT-FM Milwaukeo, Wis. WRJR L L Racine. Wis. WRKT.FM Boston, Mass.
C.L. Location

WTMJ.FM Mllwaukee, Wis. (b) WTNC.FM Thomasvilio, N.C. wTOA Trenton, N.J.
WTOC-FM Savannah, Ga. WTJD.FM Toledo. Onio WTOF Canton. Ohio WTOL-FM Toledo, Ohio WTOP.FM Washington, D.C. WTOS Wauwatosa. Wis, WTSB.FM Lumberton. N.C WTSV.FM Clarement. N. H WTTC.FM Towanda, Pa. WTTR-FM Westminster. Md, WTUN Tampa, Fla. WTVB-FM Coldwater, Mich. WTVN-FM Columbus, Ohio WUCB.FM Chicago. ill. WLFM Utica. N.Y.(s) WLHY.FM Philadelphia. PA. WULX.FM Richmond, Ind. WUNC Chapel Hill. N.C. WUOA Tuscaloosa, Ala. WUOM Ann Arbor. Mich. WUOT Knoxville, Tonn. WUPY Lynn, Mass. (s)
Wisc.FM Columbia, WUSC-FM Columbia, S.C.
WUST.FM Bethesda, Md. WUST. FM Bethesua. WYAM-FM Altoona, Pa,
WWBR.FM Ithaca, N. Y, WVCG-FM Coral Gables. Fla. (s) WVEC.FM Hampton, Va, Mich. WVGR.FM Grand Rapid WYHC Hempstead. N.Y WVJS.FM Owansboro, Ky. WYKO-FM Columbus, Ohio WVLK-FM Lexington. Ky.(s) WYLN-FM Olney. III. WVMC-FM Mt. Carmel, 111 . WVNJ.FM Newark. N.J. WWNO.FM Mansfield. Onio(s) WVOT-FM Wilson. N.C. W. W/SH Huntington. Ind. W VST St. Petersbura. Fla.
W yTS Terre Haute ind (s) W WCF Greentild iw is. (s) W WCO.FM Waterbury. WWDC.FM Washington. D.C. WWGP.FM Sanford. N.C W NHGOFM Horneli, N.Y. WWHI Muncie, Ind.
W NIL.FM Ft. Lauderdale, FIa. W NJ.FM Datroit. Wich. WNKS Macomb. III. WWMT New Orieans, La. (s) WWOD.FM Lynehburg, Va, WWON.FM Woonsocket, R.I WWPB Mlami, Fla. (s) WWST.FM Wooster, Ohio WWSW.FM Pittshurgh, Pa. WWTV-FM Cadillac, Mich. WWVA-FM Wheeling, W.Va. WWWS Greenville, N.C. WWYN.FM Erie, Pa, WKBR Cocoa Beach. Fla.
WKCN Providence. R.I.(s WXFM Elmwond Park. III. WXHR Cambridgo, Mass. WXPN Philadelphia, Pa. WXRI Norfolk. Va. WXTC Annapolis, Md, WKTO.FM Grand Rapids, Mlen. WXUR-FM Media, Pa. WXYZ.FM Detroit, Mich. WYAK Sarasota, Fla.(s) WYBC.FM New Haven, Conn. WYCA Hammond, Ind. WYCE Warwick, R.I. WYCR York. Hanover. Pa. WYFI Norfolk, Va. (s) WYFM Charlotte, N.C. WYFS Winston-Salem, N.C. WYRE.FM Pittsburgh. Pa. WYSo Yellow Springs, Ohio WZIP.FM Cincinnati, ohio

Canadian FM Stations by Location

Locotion	C.L.	Me.
Brampton, ont.	CHIC-FM	102.1
Brantford, Ont.	CKPC-FM	92.1
Cornwall. Ont.	CJSS.FM	104.5
Edmonton, Alta.	CFRN.FM	100.3
	CJCA.FM	99.5
	CKUA.FM	98.1
Ft, William,		
Ont.	CKPR-FM	94.3
Halifax, NS.	CHNS.FM	96.1

Location	C.L.	Mc.	Location	c.L.	Me.	Lecotion	C.L.	Mc.
Kingstan, Ont.	CFRC.	91.9	Oshawa, on:	CKLB.FM	93.5	Toronto, Ont.	CB	. 1
	CKLC	99.5	Ottawa, Ont	CBO.FM	103.3		RB.	99.9
	CKWS.FM	96.3		FMO.FM	93.9		CH	98.1
僺	CKCR-FM	96.7	Quebee, Que.	CHRC.FM	98.1	Vancouver, B.C.	CJ	105.1
Lethbridge. Alta.	CHEC.FM	100.9	Rimouski, Cue.	CJBR.FM	101.5		cha	105.7 103.5
London, Ont. Montreal, Que.	CFPL.FM	95.9	St. Catharioes,			Vordun, Que. Vietoria, B.C. Windsor. Ont. Winnipeg, Man.		96.9
	CBF.FM	95.1	.	CKTB.FM	97.7		CKDA.FM	98,5
	C	100.7	Sherbrooke, Que	HLT.F	102.7		CKLW.FM	93.9
	CF	106.5	Ti	CKGB.FM	94.		CJOB.	97.

Canadian FM Stations by Call Letters

C.L. Lacation

CBC-FM Toronto, Ont. CBF-FM Mentreal, Que. CBM-FM Montreal, Que. CBO-FM Ottawe, Ont.

C.L.

Locotion
CBU.FM Vanesuver, B.C. CFCF-FM Montreal, Que. CFPL-FM London, Ont.
> C.L.

> CFRB.FM Torento, Ont. CFRC-FM KIngston, Ont CFRN-FM Edmenton, Alta.
> CHEC.FM Lethbrides, Alte.
c. 1

Locotion
CHFI-FM Toronto, Ont.
CHLT.FM Sherbrooks, Que.
C.L.

Location

C.L.

CJRT.FM Torento, Ont.
Location|C.L CKCR-FM Kitehener, Ont.
GKDA.FM Victorla, B.C.
CKLB-FM Oshawa, Ont.
Location
C.L.

CKSF-FM Cornwall, Ont.
CKTB-FM St Catharines, Ont CKUA-FM Edmonton, Alta.
CKVL-FM Verdun, Que.
CKWS.FM Kimiton, Ont.

U. S. Television Stations

Territories and possessions follow states. Chan., channel number; asterisk (*) indicates educational station.

Canadian Television Stations

Location	C.L. Chon.
ALBERTA	
Burmis Calgary	CJLH-T
Drumheller	CFCN-TV.1
	CBX
Edmonton	CJLH.TV
Lloydminster	CHSA.TV
Medieins Hat	CHAT TV
Plivot ${ }^{\text {Peor }}$	
	CHCA.TV-2 10
BRITISH	COLUMBIA
A	CFCR TV. 2
Crecont valloy	CHMS-TY

World-Wide Short-Wave Stations

Most international broadcasting is done within frequency limits agreed upon at international conventions. These frequency ranges are listed here, at the right, expressed both in frequency and by meter bands (wave-length).

Reception in the various bands varies according to the time of day and season of the year. Reception in the 60,49 and 41 meter bands is best at night during the winter months. Reception in the 31 and 25 M . bands is best at night, but all year. Reception in the $19,16,13$ and 11 M . bands is best during the day, also at night during the summer in the 16 and 19 M . bands. This listing includes only SWBC often heard in the U.S. and Canada, exclusive of those in the continental U.S.

Abbr.: AlR—All India Radio; RAl—Radiotelevisione Italiana; RTF—Radiodiffusion Television Francaise; VOA - Voice of America; RFE—Radio Free Europe. - denotes stations beaming evening U.S. timel broadcasts to the U.S., tmorning or afternoon broadcasts, V-varies.
Kcs. Call and Location
3225 ELBC. Monrovia, Lib.
3245 YVKT, Caracas, Ven. 3255 ELBC,' Monrovia, Liberia

3265 ZFY Georgetown, Br Guiana Windward Is
3285 HISD. Santo Domingo, D.R 3290 HJCQ, Bogota, Colombla 3295 YVOG. Trujillo, Ven.
3300 B.H.B.S., Belize, Br. Honduras 3305 YVKX, Caracab, Ven.
3315 Fort de France, Martinique 3316 Freetown, Siorra Leone
3322 HIUA, Santo Domingo, D.R. 3325 HisU. Santo Domingo, D.R. 3325 Y aduna, Nigeria
3355 YVLC, Valencia, Ven. 3366 Accra, Ghana
4630 HCGB ,
4725 Rangoon, Burma
4765 HJEF. Cali, Col.
4770 ELWA, Monrovia, Lib.
4770 YVMW, Punto Fiji, Ven.
4780 Y VLA, 'Valencla, Vén.
4905 ZYSg Manaus, Ven. 4810 YVMG, Maract, Braz. 4830 YVOA, San Cristobal.
4835 HJKE, Bogota, Col Ven. 4840v Lourenco Marques, Moz. 4840 YVOI, Valera, Ven. 4845 HJGF, Buearamanga, Col 4850 YVMS, Barquisimeto
4870 Cotoneu, Dahomey Rep. 4880 YVKF.Caracas Ven. 4895 Daker, Senegal
4895 ZYR22, Manaus, Braz. 4900 Y VKE; Caracas, Von.
4900 H , 4900v HJAC, Barranquilla; Col.
4905 HRQNj, Puerto Cortes,

4910 HCIMI, Quito, Eeua. 4910 Conakry, Guinet
4915 Acera, Ghana
4920 VLM4. Brisbane, Aus,
4920 YVKR. Caracas, Ven. 4935 HJLF. Ibague, Col. 4940 HCXZI. Guayaquii, Eeu. 4940 Abidjan. Ivory Coast 4940 YVMO, Barquisimeto, Ven. 4945 HJCW, Bogota. Col.
4945 Paradys, So. Afr.
4950 Dakar, Senegal
4950 YVMM, Coro, Ven.
4960 YVQA, Cumana, Ven.
4970 YVLK, Caraeas, Von.
4972 Yaounde, Cameroon
4985 Radie La Cruz dol Sur, La
4990 Lagos, Nigeria
4990 YVMQ. Barquisimeto.
4995 CR6RZ. Luanda, Angola 5010 HRCPI, Quito. Ecu. 5010 St . Georges, Windward is
190 WHITE'S RADIO LOG

Kcs. Call and Locotion 5020 HJFW, Manizales, Col. 5020 Niamey, Niger Rep. 5030 YVKM, Caracas, Von. 5040 Y YMA : Maracaibo, Ven.
5050 YK 5050 YVKD, Caracas, Ven. 5075 HJGC Bogota, Col.
5875 HRN. Tepucigalpa, Hond. 5952 TGNA, Guatemala, Guat. 5954 TIQ, Puerto Limon, C. R. 5960 HJCF, Bogota, Col.
5980 TGAR, Guatemala, Guat.
5980 4VB, Port au Prines, Haiti 5985 Hilversum, Neth.
5990 TGJA, Guatomala
5995 Fort-de-France, Mart
6995 Fort-de-France.
6005 RIAS, Berlin, Ger.
6010 XEO1, Mexico City, Moxico 6015 PRAB, Recife, Braz. $6015 v$ Habana, Cuba
6020 Hilversum. Neth.
6020 Khabarovsk, USSR 6025 Kuala Lumpur
6025 Lisbon, Port.
6030 Baghdad. Iraq
6030 Baghdad, Iraq
6035 Ranooon, Burma
6035 HRTL, Togucigalpa, Hond.
6037 TIFC, San Jose, C. R.
6040 HJLB, Ibaque, Col,
6040 VOA, Munieh, Germany
6045 HOU31, David, Pan
6050 HCJB, Quito, Eeua.
6050 BBC, London, Eng.
6055 HJEX. Call, COI.
$6055 \mathrm{JO22}$, Tokyo, Japan
6060 RAI, Caltanissetta, it.
6060 RAI, Caltanissetta, it.
6060 YDF, D lakarta, Indonesia
6060 Y ExG, Leok, Mex.
6065 Horby, Swedon
6070 Sofa, Bultaria
6070 BBC, London. Eng
6075 Osteriloos Ger,
6080 Z L7. Wollington. N.z. 6080 Trans World Radlo, Monae 6082 OAX42, Lima, Peru 6085 Munich, Ger.
6090 LRYI, Buenos Alres, Arg. 6090 VLIG. Sydney. Aus. 6090 X ECMT, C. EI Mante. Mox.
6095 ZYB7. Sao Paulo, Braz 6100 Belgrade, Yugo.
6105 XEQM, Merida, Mex
6105 Cologne, Ger.
6110 BEC London. Eng.
6115 ZYC7. Rio do Jan., Braz.
6120 LRXI, Buenos Airbs
6120 4VEH, Cap Haltien, Halt
6120 BBC, Limassol, Cyprus
6130 Port Moresby. Now Guinea 6135 HRMF. La Ceiba, Hond. 6135 Papecto, Tahit
6140 VLW6. Perth, Aus
6145 RTF, Allouls. Frane
6145 v PRL9, Rio de Jan., Braz.
6150 BBC. Londen. Eng.
6155 Wien, Austric
6155 FEN , Tokyo Japan
6160 HJKJ, Boota Col
6160 Algiers, Algeria
6160 Saiden, S. Vietnam
6165 HERS, Born, Switz.

Kcs. Coll and Lecation
6170 BBC. Limassol, Cyprus 6170 Singapore, Sint. 6170 VOA, Tansiors, Moroece 6175 RTF, Allouls, France 6175 Cayenne, Fr. Guiana 8185 Lisbon, Port.
6185 HJCT. Bogota, Col. 6195 HJEZ. Call, Col. 6195 BBC, London, Eng. 6195 Pyongyan! N. Kor
6195 Andorra, Andorra
6200 4VHW, Port-au-Prince, Haitl
6305 Andorra, Anderra
$7095 v$ Tohran, Iran
7105 Madrid, Spain
7110 VOA, Colombo, Ceylon
7110 BBC, London, Enfiand
7120 BBCC, Moroce
7125 BBC, London, England
${ }_{7135} 7135$ Tarsaw, Poland
7135 Talpen, Talwan
7150 Meseow, U.S.S.R.
7155 VOA, Tandlers, Mor.
7160 RTF.' Paris, Franco
7165 RFE, Germ.
7170 Algiers, Als.
7180 Baghdad, Iraq
7185 日BC
${ }_{7185} 7185$ Paradys, Lon. En!.
7193 Bueharest, Roumania
7195 VoA. Monrovia, Lib,
7200 R. Malaya, Sing.
7205 VOA, Salonika, Gr
7210 Dakar, Mali Fod.
7215 Trans World Radio, Monaco
7220 VLD7, Melbeurne. Aus.
7220 Budapest, Hunc.
7230 BBC. London. Éns.
7240 RTF, Paris, Franco
7250 日BC, London, Eng.
7255 Sona, Bul.
7265 Saison, Viotnam
7270 Motola, Sweden
7275 RAI, Rome, It.
7275 Paradys, \mathbf{S}. Afriea
7285 Ankara, Turk.
7290 Sinaporo
7290 लoscow. U.8.8.R.
7290 RAI, Rंome, it.
7295 Makessar, Celebes
7295 RFE. Ger.
7340 Moscow, U.S.S.R.
73984 Damascus, U.A.R,
7480 Poking, China
9009 Tol Aviv, Is
9360y Madrid, Spaln
9380 y Madrid, spaln
9410 BBC . London, Ent.
9480 Paklne, China
9490v Cairo, Egypt
${ }_{9500}$ Magadan. U.8.8.R.
9505 PRB22, Sao Paulo, Braz
9505 HIUA, Sante Demingo, D. R,
9505 Rabat. Mor.
9505 HOLA, Colon, Pan.
9505 NHK. Tokyo, Japan
9505 Belgrade, Yugoslavla
8510 London, England

METER BANDS
4750 10 $5060 \mathrm{kc} / \mathrm{s}(60$ mefer band) 5950 to $6200 \mathrm{kc} / \mathrm{s}$ (49 meter band) 7100 to $7300 \mathrm{kc} / \mathrm{s}$ (4 1 mefer band) 9500 to $9775 \mathrm{kc} / \mathrm{s}(31$ mefer band) 11700 to $11975 \mathrm{kc} / \mathrm{s}$ (25 meter bond) 15100 to $15450 \mathrm{kc} / \mathrm{s}$ (19 meter bond) 17700 to $17900 \mathrm{kc} / \mathrm{s}(16$ meter band) 21450 to $21750 \mathrm{kc} / \mathrm{s}$ (13 meter band) 25600 to $26100 \mathrm{kc} / \mathrm{s}$ (11 meter bond)

Kcs. Call and Lecotion

9515 RAI, Caltanlssetta. It.

9515 XEWW. Wexieo. DF; mex.
9520 VOA, Tanglor, Mor.
9520 Colombo, Ceylon
${ }_{9520} 9520$ Copenhagen Den. -
9520 Port Morsesby, New Gulnea
9520 OAXBE.
9520 OAX8E. Iquitos, Paru
9525 NHK, Tokyo. Japan
9525 Warsaw, Poland
9530 AlR, Dolhi, India
9530 VOA, Courior, Rhodes
9530 Y VMZ Maracalibo, Von.
9535 Y OA. Manila, P.I.
9535 HER4, Bern, Switz.
9540 ZL2, Wellinuton, N.Z.
9540 Warsaw, Poland.
9540 Khabarovek, U.8.8. R.
9545 ZYS43, Curitiba, Braz.
9545 HED5, Bern, Switz.

9555 BBC, London. Ens.

9555 XETT, Moxice CIty, Mox.
9560 Sona, Bulgaria
${ }_{9560}$ RTF, Paris, Franco
9563 OAX4R, Lima, Paru
${ }_{9565} \mathbf{~ R ~ R a d i o ~}$
9365 Radio Liberty Ger.
9570 RAI, Rome, Italy
9575 ZYZ27. R10 do Jan., Braz.
9580 VLA9, Molbourno, Aus,
9580 BBC, London, Ent.
9585 ZYR56. Say Paulo, Braz.
9585 DTF, Allouls, France
${ }_{9590}^{9585}$ DJakarta, Indonesi
9590 ELWA, Monrovid., Libarls
9600 Tashitent U, Sapan
9600 Tashkent, U.8.S.R.
9600 XEYU, Mexleo, DF, Moxise
9600 XEYU, Mexteo, DF, Moxi
9600 CE960, Santiago, Chils
8605 Cologne. Ger.
9610 VLX9. Perth Aus
9610 z YCs, Rio do Jañ, Braz.
9610 Oslo, Norway © ${ }^{2 n .,}$ B
9810 OAXBC . Iquitos, Peru
9615 VOA, Tangier, Moroceo
${ }_{9620} 9620$ ZYRe8, Sac Paulo, Braz.
9620 Sai on, Vistnam.
9625 BBEC, Londen. Ens.
9625 BAC 8 CK , Iquitos, Peru
96250 v CR6RL, Luand., Ang.
9635 Z YR83. Apareeida, Braz.
9630 BBC, London. Ens.
9640 Cologne, Germany.
9640 Aecra, Ghana
${ }^{9640}$ HLKS. Seoul, Korea
9645 HVC, San Josoctican City
9650 BBC.LImassol. Cyprus
9650 Moseow, U.S.8.R.
9650 Amman, Jorden
9655 Radlo Froe Europe. Ger,
9660 VLag., Brisbane. Aus,
9660 Radio Liberty, Ger.
9660 Moseow. U.s.S. R.
9667 Hargolis, somalia
9667 V TGNB, Guatemala, Guat. -
9675 BBC, Londan, Ens.
9675 NHK, Tokyo, Japan

Kes. Coll and Locotion
9680 VLH8, Melbourne, Aus. 9680 XEQQ. Mexico City, Mex. 9680 Lisbon, port.
9685 Havana, Cuba
9690 LRA32, Buenos Alres, Ars:
9690 BBC, Londan, Ena.
9690 BBC, Singapore
9700 Leopoldvilli, Congo Rep.
9700 CE970. Santiago. Chilo
9705 Kabul, Afghan.
9710 BBC , Londan. En
9710 RAl, Rome. it.
9720 Mostow, U.S.S.R.
9725 Europo
9725 BBC, London, England 9730 Braziaville, Congo Rep. 9730 Leipzie. E. Ger.
9730 OZH7, Manila. P.
9735 Cologno. Germany 9735 HIST, Stanto Dominge, O.R. 9740 Lisbon, Port.
9740 Khabarovsk. U.S.S.R. $9740 v$ LRSI, Buenos Aires, Arg. 9745 Brussois. Belg.
9745 HCJB, Quito. Ecua. 9755 ZYW23, Golania, Braz. 9755 RTF, Parls. France 9760 Habana, Cuba 9760 BBC, London, Eng. 9770 Brazzaville, Congo Rep 9770 IVEH. Cáp Haitien, Halt 9772 Oarlo. Egyt
9785 Peking, China
9795 Cairo. U.A.R.
9800 Poking, China
9815 8t. Georges, Windward Ist. 9825 BBC, London. Eng. -
9833 Budapest. Hung.
9840 Hanol. N. Vieinam
9865 Ojakarta, indonefia
992 BBC. London. Eng.
9920 Poking. China
9973 Palin. China
9973 Pekingita, U.S.S.R
0910 Ulan Bator, Outer Mongolia
1290 Peking. China
1290 Poking. China
11672 Karachi. Pakistan
1695 T Tashent, U.S.S.R
1700 TGOB, Quetzatenango, Gus,
11705 NHK, Tokyo, Japan
11705 Horby, Sweden
11710 VLBil. Melbourne, Aus.
11710 AlR. Delhi, India
11710 Aja.
11710 DJakarta, Indonesia
11720 BBC, Limassol, Cyprus
11720 Brussels, Belgium
11725 Brazzaville. Congo Rep.
11725 VOA, Colombo, Caylon
11725 Prague. Czeeho.
11730 Hilvorsum. Noth.
11730 LRA35, Buanos Aries, Arg
11735 Rabat. Moroceo
11735 Khabarovsk, U.S.S.R.
11740 VLCII, Molbourne, Aus.
11740 HVJ, Vatiean State
11740 CEli74, Santiago, Chilo
11740 Peking. China
11745 RFE, Éurope
11745 Calro, Egyd
11750 BBC, London, Ens.
1750 BBC, Sinjapore
11750 FEN, Tokyo, Japan
11755 RFE, Europe
11755 Hilversum, Noth. Rep.
11755 Leopoldvilie, Conne Rep.

Kes. Call and Location
11760 Loureneo Marques, Moz. 11765 ZYB8, Sao Paulo, Braz. 11765 CP39, La Paz, Bolivia 11765 Naven, E. Germany
11770 BBC, London. Eng.
11770 BBC, London, Eng.
11770 VOA, Munich
11750 Germany
11770 VOA, Munich Germany 11775 ZYZ28, Rio de Jan. Braz.
11780 ZLS W illington. ${ }^{2}$.
11780 ZLS, Wellington, N.
11780 NHK, Tokyo, Japan
11780 NHK, Tokyo, Japa
11785 Djakarta, Indan.
11785 VOA, Mololos, ${ }^{2}$.
11785 VOA, Melolos,
11795 Cologne, Ger.
11795 Cologne, Ger.
11795 Djakarta, Inden.
118500 Radio Americas. Havana,
11800 Acera, Ghana
11800 y Warsaw, Poland
11805 V VACII, Melbourne. Aus. 1
${ }_{18} 1810$ Bucharest, Rom.
11815 Paradys, S. Afrlea
11820 Peking, China
11820 BBC. London, Eng.
11820 XEBR, Hermosillo. Mex.
11820 Abidjan, Ivory Coast
11820 ELWA, Monruvia, Lib.
11825 Papeoto, Taniti
11825 Papeote, Tahiki
il830 VOA, Colombo, Coylon ${ }_{11830}$ Montevideo. Uru.
11830 Montovideo. 1830 Peking China
11840 VOA. Tangier, Mor.
1840 YOA, Tangier, Mo
11840 Hanci. N. Vietnam
11845 RTF. Allouls, Frante
11845 RTF: Alous,
11845 St. George's. Windward is. 11850 Sons. Buls.
11850 Brussels. Belgium
11850 Brusrut. Lebabon
11850 Khabarovsk, U.S.S.R.
11850 ZPA . Asuncion, Paraguay 11855 Radio Free Europe, Ger.
11855 OZH8 Manila P.i.
11855y Omdurman, Sudan
11860 BBC, Londor Eng.
11860 Moscow. U.S.S.R.
11865 PRAB. Recife, Braz.
11865 PRA8. Recre, Switz.
11865 HER5. Bern. | 1868 Elizabethville. Congo Rep. 11870 Moscow, U.S.8.R.
11875 Habana, cuba
11875 NHK, Tokyo. Japan
11875 ZYN32. Salvador. Braz.
11880 XEHH, Mexico City, Mex.
11885 Karachi. Pal.
11885 Radio Free Europe, Ger.
| 1890 BBC, London. England
11890 Beirut. Lebsnon
I 1695 Dakar, Mali Fed.
11895 Radio Free Eurape
11895 VOA. Pore, Phil.
11900 CElligo, Valpmaiso, Chill
11905 RAI, Rome, Italy *
11910 Budapest. Hung.
11910 Bangkok. Thai.
11915 HCJB. Quito Eeva. 11915 Cairo, Egypt
11920 OXF2, Manila. P.I.
11920 AlR. Oelh. India
11925 ZYR78. Sa0 Paulo. Braz.
11925 HLK6, Seoul, Korea \dagger
I 1925 Warsaw.Pol
11925 Tashkent, U.S.S.R.
11930 BBC, London. Eng.
11935 Radjo Liberty, Ger.
11940 ZPAS. Enearnation, Par.
11940 AFRTS, Munieh. Ger.
11940 AFRTS, Munie
11945 Peking. China

Kes. Calk and Locotion 11945 BBC, London, Eng. 11945 Cologne Germany 11950 Jidden Saudi Arab. 1950 siversum. Nitna 11955 Melmourne Australia 11955 BBC. London, Eng. 11955 BBC, London, Eng 11960 CEl196. Santiago, Ch. 11960 Conakry, Guinea 11965 Radio Liberty, Ger.

11975 Peking. China
11980 Moseow, U.S.S.R.
11990 Prague. czecho.
12030 Moscow, U.S.S.R.
12055 Peking, China
12080 Lisben. Port.
12095 BBC, London. Eng.
15060 Peking. China
15070 BBC. London. Eng.
15080 Melbourne. Australia
15085 St. Georges, Windward Is1.
15085 Paradys, So. Afriea
15095 Peking, China
15105 AlR. Dehli, india
15110 XEFR, Mexice. O, F.. Mex. 15115 HCJB, Quito. Ecuador 15115 Peking. China
15120 Colonbo. Ceylon
15120 RAI. Rome, Italy
15120 Warsaw. Poland ${ }^{1}$
15125 Seoul, Korea
15125 Listwon. Portugal 15130 RTF. Allouls, France
15130 VOA, Melolos, P, I.
15135 PREi2s. Sac Paulo, Braz.
15135 NHX. Tokyo, Japan
15135 Radio Free Europe, Port. 15140 Pekıng, China
15140 BBC, London, Eng.
15145 ZY K3s, Recife, Brazll
15145 Radio Free Eurode, Port.
15150 Peking. China
15153 0AX4T, Lima, Pery 15155 ZYB9, Sao Paulo, Brazil isl55 ELWA, Monrovia, Libe. 15155 Horty, Sweden
15155 VOA, Melolos, P. I.
15160 RTF' Allouis, Franee
15160 XEWW. Mexico City, Mex.
15160 Ankara. Turkey
15165 ZYN7. Fortaloza, Braz.
15165 Copenhagen. Denmark
15165 Damastus, Syria
15170 Tromso, Norway
15170 Radio Frte Europe, Port. 15175 Luxembourg, Lux. 15175 0s1o. Norway
15180 Me bourne. Australla 15185 VOA, Poro, P. I.
15185 Rallo Froo Europe, Port. 15185 Radio Froe Europer Port
15190 Brazzaville, Congo Rop. 15190 Brazzaville, Congo Rep. 15190 Heisinki. Finland \dagger 15190 Moseow. USSR
15195 Rajio Free Europo, Ger. 15205 XESC. Mexico City, Mex.
5210 ZPA․ Asuncion. Paraguay 15215 Radio Free Europe. Port. $i 5215$ Radio Free Eur
15215 VCA, Okinawa
15215 VCA, Okinawa
15220 Hiversum, Noth.
15220
15225
Ti'versum, Ta Noth.
Taman, China 15235
15230 voA, Colombo. Coylon 15230 VOA, Colomo. Eng.
15230 BEC, London. 15230 BEC, London, Ens.
I 5235 Beirut. Lebanon

Kes. Call and Locotion 15240 VLBis, Melbourne, Aus,
15240 Horby, Sweden
15240 Morby, Sweden
15240 Belgrade, Yugoslavia
15240 Beigrade, Yugoslavia
15245 Leopoldville. Congo Rep. 15250 VOA, Meloios, P. I. 15250 Bueharost, Rumania. 15255 Radio Froe Europe, Port. 15260 FEN , Tokyo. Japan
15265 Colombo. Coylon
15265 VOA , Munich, Ger.
18275 Cologne, Gormany
15275 Warsaw. Poland ${ }^{\dagger}$
13280 ZL4, Wellington, N.z.
${ }^{5} 5285$ Prague, Czecho.
15290 VOA. Tangiers. Mor.
15290 Habana, Cuba
15295 Beirut, Lebanon
1 $\$ 295$ PRL8. Rio de Jan., Brazll
15295 NHK, Tokyo, Japan
I 5295 Cologno, Germany
15300 BBC. London, Eng.
15300 DZH9, Manlia, P.I.
15500 Bucharest, Roumania
15300 v Lourenco. Marques, Moz.
15305 Radio Liberty, Gor.
15510 AlR. Delhi, India
15315 VLCI5. Melbourne, Aus.
15315 HEU6, Bern, Switz. 15325 ZYR228. Sao Paulo. Braz.
15330 VOA, Munich. Germany
15530 VOA, Tanglers, Mor.
15335 VOA, Poro. P. I.
13340 Radio Liberty, Germany
I 5340 y Habana, Cuba
15345 Taipei, Taiwan, China
15345 Rabat, Morocco
65350 Luxembourg, Lux.
15355 Radio Free Europe, Port.
15370 ZYC9, Rio de Jan., Braz.
15370 Radio Liberty, Germany
15375 BBC, London, Eng.
15385
$i 5355$
CXAGO. Montevideo, Urus.
15385 Llgbon, Port.
15385 VOA. Tanglers, Mor.
15390 NHK. Tokyo, Japan
15395 Radio Liberty, Germany
15400 RAI, Rome, italy
15405 Cologne, Germany
5425 Hilversum, Neth.
15440 VOA. Munieh. Germany
15460v PZC. Paramariob. Sur
15465 Paramaribo. Surinam
15475 Cairo. UAR
15555 Peking. Chins
17705 Luanda, Angola 17725 ZYR232, San Jose Dos San Jose Dos
17740 Pokinn. China
17745 Acera, Ghana, Ensland
17780 BBC, London, End
17790 BBC, London, Eng.
17790 BBC. London, Eng.
17840 Melbourne. Australia
17840 Melbourne, Australia
17845 Brussels. Belgium
17845 Brussels. Bolgium
17865 Brussels. Belgium
17865 Brussels. Bel
17875 Habana, Cuba
17880 Lishen. Portugal
17890 HCJB. Quite, Etuador
17895 Lisbon, Pert.
17900 Cairo, Eyypt
21620 Habana, Cuba
WHITE'S RADIO LOG

Kit A-3 Supersensitive Darkroom Meter
 This darkroom version has

 the same sensitivily as the 101 Meter but has the added improvements of a much larger ($41 / 2^{\prime \prime}$) illuminated meter, a paper speed control knob for use with en. largers, and now has a new battery test switch. With
this switch you can always sheck the mercury battery and know when to change it so you can always be assured of consistent readings. This mater is ideal for darkroom and studio applications where ac-
$\$ 36.95$

SCIENCE AND MECHANICS, KIT DIVISION

505 Park Avenue, New York 22, N. Y.

Please send the supersensitive photo kits that have complete plant for assembly, or the assembled and fuily tested S\&M phote alds checked below. I understand that if I am not completely satistied I may return the kits within 10 days for a pletely satisfied
A. 3 Darkroom Meter (Improved)

Add 10\% for Canadian
$\square \$ 36.95$ Kit $\square \$ 41.95$ Assembled and foreign orders.

Enclosed B3.00 depoolt ehlp

NAVE
Please print
ADORESS

CITY \qquad ZONE \qquad STATE

Check or money or.
der enclosed. ship
post pald. - 20 N

N.Y.C. residents add 3% for sales tax.

C-B Loading Coil

Increase the effectiveness of your present CB system by as much as 4 to 8 decibels. This base-loading coil will help match the whip to the transmitter. Encapsulated in weatherproof epoxy, it fits standard mounting threads and is available in several sizes at $\$ 5$. Write Creative Products Co., Dept. RTE, 6944 Plainfield Rd., Cincinnati 36 , Ohio.

Now It's Pellets
The electronic technician of the future will probably have to wear a jewelers' loupe! That disk you see in the corner of the picture is a genuine, U.S.-type dime. Pelletized circuits are dropped in the holes, connected by a conducting cement, and the result is a completed unit. Just don't get those pellets into your pill bottle! For more info, write General Dynamics, Dept. RTE, 1 Rockefeller Plaza, New York 20, N. Y.

Hot Stuff

Called a Jacob's Ladder, this demonstration was staged for engineering visitors. This manmade lightning was used to show the value of a new home lightning protector by General Electric. Product withstood a 7.5 -million-volt charge with no ill effects. GE Dept. RTE, Schenectady, N. Y.

Color Bars, White Dots

New generator comes in kit form, provides color bars, white dots, cross hatch, vertical or horizontal bars. RF output on channel 3 or 4 . Compact piece of lab equipment for the TV serviceman. For more data, write to PACO Electronics, Dept. RTE, 70-31 84th St., Glendale 27, L. I., N. Y.

WHERE You Train is as Important As Your Decision to Train

 Electronies is a grewing and expanding industry. That's why so many ambitious men are eratiliog for carpers in this exciting firll. They recognian the opportuntios to dill in in eresting and importent positions. But where a man trains and houe the school of his choier teaches the many fields of Electronic. Automation, Radio-Television . . . how it encourayes him to rearh his poals and roalize his ambitions . . . is most important to his suceres
This is a fast changing world. A shool offoring Elece tronics courses must kerp pare. 'That's why Nill-with nearly (ion years of sureialized experience-now offers cight ehoices of training. Select the course of mool ins terest to you and receive the hind of home-stude training that prepares you for a sperinlized careor NRI' laree staff of specialists is alway on the job herping your course material up-todate . . . helping you carn your way while you train . . . assistiny you with job placement. In short. NRI is gualified to hilpy you grow.

Special Training Equipment Included

The Nill "loarn-hy prace tice" methot is the timeprowed way to hetur fiay. It makes training rasier. faster. leetter. Miost NRI courses include一ot mo raxtra rost - spectial training equipment to pive shop and laboratory experience in your own hormor. All equigfurnt is yours to krep.
Irojeets you build, experiments you perform, make Nill lessons come to life. Complex sulijests take on real moaning. You measure vollage and current in circuits you buid yourself. You nee a Varumm Tube Veltmeter which you construct. Later on, you progress to more involved experiments. If you like working with your hands, you'll anjoy learning Eloftronics with NRI.

Oldest and largest School of its kind

Nifl training of the 60's is hased on nearly half a rentury of experienter gaited from training thomsands of men like yourself for new caresers. NRI has carned the confidence of students, grabluates and the Plectronics industry. They all recognize NRl training material as ant outstanding educational value. And as the oldest and largest Radio-Television-Electronies home-stu Jy sehool, Nill can supply training at reasonatile cost. Mail the postagef ree card today for facts on the selnool, on op portunitios in Filertronics, on mouthly payment plans and succial Trial Enrollment OITr. NRI TRAMNiNG, Washington 16, D. C.

JOIN THE THOUSANDS WHO TRAINED AT HOME FOR NEW CAREERS WITH NRI

"I want to thank VRI for making it all pas sible." savs Robert L. L'Houreux of Needham Mrass. who sought our jots consultant's advice in making applicat ons and is now an assistant Fiold Fngineer in te I)AT Imativ. I)iv. of Ntı-neapolis-Honeywelt, working on dala svitems.
${ }^{\text {"I }}$ I have gone ahead tinamcially ever since I enrolled with Nikl." writes Gurald W Kallzes, now a chef Instrument Terhnicran of kio Al. gom Nerdic exerentum mmes and part-finu TV enpineer for CKSO-TV. Elliott Jake. Ont. He enrolled wath Nill on linishing thigh school

His own full-time Radio.TV shop has brought s:radily rising income to Harlin C. JRobertson of Oroville. Catif. In addition to emploving a full-time terhmician, two NRI students work for fim part-time. He remarks-atoout NRl training. I think it's tops!'

NOUN NRI COURSES

NOW 8 WAYS to Assure Advancement or Turn Your Hobby Into a New Career

No matter how much or how little education you have, one of NRI's eight rarcertraining hone-;tudy courses can help you toward a better future in the great and prowing fields of Automation-Electronics, Radin-Television. There has never been a time when ambitious men with sperialized Electronics hnow how were as much in demand as today. Indmstries, husineses, kovermment, the military all need men with practical Electronirs training to install, operate pervice and supervise equipment. Automation continues to eliminate jobs for unshilled labor at fast as shilled technicinns are available to run Electronically-controlled machines.

YOU TRAIN AT HOME With the leader IPI

Gond johs await Communications technicians, sime broadcasting now means more than entertainment: becoming an esential in truck s, cars, trains, planew, ships, ete. In the home, Color TV has come of ake along with FM stereo multiplexing and increasine popularity of Hi-fi: television and radio means more opportunities for Service Technicians in spare time or full time lousinessess of their own. XR! training has leen tailored to meet present and future needs of Electronics, Communicalions and Servicing. Check the field of most interest to you and mail the postage.free card now. NRI TRNINING, Washington 10, D. C.

SEF OTHER SIDE

CUT OUT AND MAIL CARD NOW!

64-PAGE CATALOG

No stamp necessary
 NRI pays postage

NRI Training

Washington 16, D. C.
3GB3
Please send your catalog. I an interested it training wheched below. (No salesman will rall.)

[Industrial Electronics

- Molite Communications
C Ralio.TV Servicing
[] Marine CommunicationsComplete Communications: \square
\square Aviation Communications
\square FCC License
- Mah for Electronics

Name \qquad Age \qquad
(Filase bithat)

Adiress \qquad

[^3]
INDUSTRIAL-MILITARY ELECTRONICS

Learn Principles, Practices, Maintenance of Elece tronic equipment used today in business, industry, defonse. Covirs Electronic controls and mesurement, compaters. servos, telemetry, multiplexing, many other suljects.

3

RADIO AND TELEVISION SERVICING
Learn to scrvice and maintain AM-FM Radios, TV sets, Sterro Hi-fi, P'A systems, etc. A profitaluc. interesting field for paritime or full time business of your own.

COMPLETE COMMUNICATIONS

A comprehensive training course for men secking carcers operating and maintaining transmitting equipment in Radiu-TV Broadcating or moliole, marine aviation conumuncations. I'repares you for FCC Lieense.

FCC LICENSE

Prepares you guirkly for First Clas: Licrnse exame. Eury communications station mat have one or more FCC-Hewned eprerators. Alo, valuable for Scrvice Technicians. You train at home.

MOBILE COMMUNICATIONS

Training in installation and maintenance of mobife cquipment and anocriated base stations like thoer used by fire and police, taxi companies, "te. I'repares you for First Class FCC License exams.

MARINE COMMUNICATIONS

Shiphoard transmitting çuipment. direction finders, depth indicators, radar are all covered in this course. You prepare for your First Class Radiotelephone License with Radar Endorsenent.

AVIATION COMMUNICATIONS

For men who want careers working with and around planes. Covers direction finders, ranges, markirs. loran, Shoran, radar, landing systcms, transmitters. I'repares you for FCC License exams.

MATH FOR ELECTRONICS
From lasic arithemetir review to graphs and electronic furmulas in one complete "short course" parkage of five carefully prepared texts. Quick, complete and low in cost.

CUT OUT AND MAIL POSTAGE-FREE CARD

[^0]: Books You Can't Afford to Be Without!

 - TV Sweep
 - TV Dutput \& Deflection Oscillators Systems
 - IV A.G.C. Circuits - IV Video Amplifiers
 - IV Picture Tubes - IV Tuners \& I.F. Amplifiers - TV Sync Separators \& AFC Systems Never before this wealth of trouble-shooting TV info on-Color circuits Transistor circuits. Printed circuits - Short-neck tubes © Miniaturization Wideangle tubes Boosters - Couplers-Master and tennas - Installation - Test instruments much more!
 PLUS facts and figures on-Measured average voltages - Actual waveform amplitudes - Power and current consumption Tubes \& parts. Rule of thumb calculations Substitution chartse Receiver performance...and much more!
 - MAIL THIS NO-RISK COUPON TODAY!. -

 Prentice-Hall, Inc., Dept. 5747-J1
 $61 / 2 \times 9$ Black pebble-grain binding
 Handsomely printed
 Spiral boundstay open at any page Englewood Cliffs,' New Jersey
 Please send me at once, for 30 -day FREE examination, my sample copies of the first two volumes of Design and Serv. sample copies of the first two volumes ice of Television Receivers. Volume 1 is Elements of Design ice of Television Receivers. Volume 1 is Elements of Design and Service in TV Sweep Oscillators and Volume 2 is Elements of Design and Service in TV A.G.C. Circuits. I enclose no money in advance. At the end of 30 days, I will either returr the two volumes to you or I will send you only $\$ 12$ in full payment, which is at the rate of $\$ 6$ per volume. If I decide to keep the first two volumes, I will then be entitled to receive each following volume as it comes oft the press, for free examination and at the same low price, sending no mones in advance.

 NAME
 ADDRESS \qquad
 CITY
 ZDNE.... STATE

[^1]: (1) INSTALL JACK IN BODY SHELL
 (2) TIGHTEN HEAD TO OESIRED TENSION
 (3) CEMENT PICKUP TOUNDERSIDE OF HEAD
 (4) CONNECT WIRES TO JACK
 (5) PLUG IN AMPLIFIER
 (6) PUSH PICKUP AGAINST HEAD BY INSERTING CARDBOARD SHIMS UNTIL DESIRED TONE AND VOLUME IS ACHIEVED
 (7) STICK EDGES OF SHIMS TOGETHER AND CEMENT TO CROSS MEMBER TO HOLD IN PLACE DO NOT STICK CARDEOARD SHIMS TO MIKE

[^2]: Amt. Req. pcs.
 $1 / 8 \times 3 \times 12^{\prime \prime}$ Size and Description $1 / 8 \times 3 \times 12^{\prime \prime}$ plastic or tempered hardboard
 $1 \times 2 \times 3$ " $1 \times 2 \times 3^{\prime \prime}$ soft pine end blocks potentiometers (see text)
 $1 / 4^{\prime \prime}$ shaft knobs Fahnestock clips
 $6-32 \times 1 / 2^{\prime \prime}$ r.h. brass machine screws and nuts
 \# $6 \times 1 / 2^{\prime \prime}$ wood screws
 miscellaneous wire, solder

[^3]: City \qquad 7.one \qquad State
 aceredited memaer national home study council

