

VADO-TRExPRRWM NTER
75c spring :02

DYers' MUST! The New
WHITE'S
RADIO LOG

1000 Revisions in U.S. and Conadian AM-FM-TV STATIONS

World-Wide
Short Wave

VHF CONVERTER FOR SWLS page 33

Cast your ballot for a successful future! 249 I.C.S. COURSES

I.C.S. is the oldest and largest correspondence school. 249 courses. Business, industrial, engineering, academic, high school. One for you. Direct, job-related. Berlrock facts and theory plus practical
application. Complete lesson and answer service. No skimping. Diploma to graduates.

Send for the 3 free booklets offered below and find out how I.C.S. can be your road to success.

ACcOUNTIMA

Accounting
Auditing
Cost Accountong General Accounting Junior Accounting Practical Accounting Public Accountin!
ADYERTISIME
Adverlis ing
Magaz ine Newspaper
Movertising
Anchitecture
AMO EULDIME
constnuction
Archutectural Orawing \& Desiening
Archilectural Interiofs
Arehntecture
Building Contractor with Dfaw in
Building Estimator Buidding Ma intenance Carpenter-Buildar Carpentry \& Millwork House Planning Lumber 0
Mason
Panting Contractor Resding Arch. Blueprints Reading Struct. Blueprints

ART

Adyurtising Layout 8 Illustration
Amateur Artist
Commercual Art
Commercial Cartoon ing
Fastuon Illustratios Fizure Drawing of paintin. Motazine illustrating Show Card a Sign Prod"t'n Sitn Painting a O Slut Painting en oesigning Hont Eantin AUTOMOTIVE
Auto Engine Tunt-up Automobile
Automolule Body Rebuildine and Refinishins
Automobile Electricsi
Technician
Automobile Technician
Diesol Engunes

Diesel-Gas Motor Vehicle Engines
Gas Engines
Internal Combustion Engines aviation
Aero.Engineming Tectnoloty Aureraft \& Engine Mechanic Arcratt Machame

—Usintes

Business Administration Business Correspondence Business Law
Eusiness Management Business Mana gement a Marketine
Business Management a
Production
Business Psycholoty
Canadian Business
Clerk-Typlst
Clork-Typls
Commercial
Condensed Business Practice Federal Tax Course Managing a Small Business Marketing
Office Admunistralive
Ensineering
Omo Management Professional Secretary Programming for Digitat Purchasing Agen Retail BusinessManagement Shorthand
Shorthand
Stenographic
Typewriting
CHEMICAL
Analytical Chamistry Chemical Engineering Chemical Engineering Unit Operation
Chemical Laboratory clemenis of Mu Clemenis of Nuclear Energy Industrial Analytical Chemistry
Industrial Chemislry Professional EngineerChemical
PULP AMD PAPER
Paper Making
Pulp \& Paper Enginerring

Pulp \& Peper Making Pulp Mahing
cIvit Evatnetmine Eridge \& Eulding foreman Civil Enginetring Construction Enginewing Righway Engineering
Mine Survevine o Map Princioler of Mapping Principles of Survering Protessional Engineet-Civil Railroad Enginetring Roadmaster
Sanitary Enginearing Section Foreman Sewage flant Operator Surveyine and mapoing Water Werks Operator

onartime

Aureraft Crafting Architect stal Dralting Eloctrical Dralting Electrical Engunser Orafting Electronic Draftun Incustral Piping Deafting Junior Mechanical Drafting Mechanical Orafing Structural Draltung

ELECTRICAL

Eloc. Apprance Servicine Electrical Contractor Etectrieal Eng'r'g (Power Plant option-Electronic option)
Electrical Engineering Toch. Electrical Instrument Tech. Electric Motor Reparman Illumination Eng'f' Tech, Power-House Engineering Power Liee Design and Construction
Practical Electrician Practical Lineman Professiotal EngineerElectrical Reading Boctrical Blueprints MIOH SCHOOL Good English Migh School Business High Schcol College Prap (Arts)

High School Coilege Prep (Enginetrimg \& Science) igh Sthool General High School Wathamatic: Migh Sthoot Steretarial
Modern Letter Wruting Short Stony Witing EEAOEREMIP industrial foremanshlo Industrial Supernision Personnel-Labor Relations Supervision

MatnEMATtCE

 Mathematies and Mechanles for EngineersMothematics and Physles Mathematics and for Iechnierans

AECHAMICAL

Industrial Erginetrin Industral instrumentation unior Mechanical
Engineering
Mochanical Engineerin! Proless ronat Engineet Oullty Contiol
Introductory Technical Writing

PETROLEUM

Natural Gas Production : Transmuss on
Dit field Tecrnology Petroleum Production Petroleum Piod't'n Eng'i'E Petroleum Refinery Operator Petroleum Refining
Petroleum Tochnology PLAETIC:
Plastics Tectnician PLUMBINE HEATINB, aln COnDITIONIME Air Conditiorang Air Condithoringe with Draw's Air Condthoring Maintenanie Domestic Heating wilh 011
0 \& Gas Domestic Refrigeration Heatins
Meating \& Ai-Conditionine with Drawng

Hoatin
Plumb Plumbur
Plumbinf, Or
Estimatin:
Plumbing of Heating
Plumbing \& Steambtting Practical Plumben Retrigeration Relrigerahon tit Air Conditioning Steamfitting

RAILROAD

Air Brake Equipment Car Inspector EAr Brake Diesel Electrician Diesel Engineer \& firaman Diess! Locomotide Diesel Machinust Reilroad Administretion Railroad Cap Reasirer

salesmanstap

Crestive Salesmaship Real Estate Salamansh Relall Merchandising Retail Sellang
Sales Monagemert
Salesmanship
Salesmanstup © Sales Management

ENOP PRACTAE
Boitermaking
Electre Wolding
Foundry Practice
Gas and Electrec Wefding Gus Welding
Heat I rualment of Motals Industrial Metal ufey Machine Shop Inspection Machine Shop Practice Toolmaking

Metaliurgical

Metalurgical Engineoring
Physical Quality Control
of Metals
Practical Millwighting Reeding Shap B weprints Resslance Woldine Tachnology

Riteing

Sufety Entin'r's Techuology
Sheet Matal Woiker
Tool Enganering Tochnoloty

Toolmaking
Welditg Enginetring Technology
 POWIR
Combustion Engineering Power Planl fnaneering Statoonary Building Engr's
Sthonary Ohesel Eng'r's Stathonary Diesel Eng'r
Stationary Diesel-Eloctrie Engineerung
Stationary fireman
Stationsy Statm Enger's Steam Engine Operation TEXTILES Carding and Spinning Carding
Cotton Manufleturine Cotton Warping so Weavine Dyeing \& Fintshing Hosuery and Circular Knitting

Spinnting

Spunnine
Synthetic
Synthetic Fabric
Manufeter
Syathetic Throwing, Warping \& Weaving
Textile Desisming
Tatile Enginsering
Taxthe Mill Supervisor
Wooten Manulacturing Worsted Manufacturing

thaffic

Motor Tramic Manatement Rairoad Rate Clork
Ifafic Management
TV-RADIO-ELECTRONICS Gen'I Electronics Jechnician Industrial Electronics Pracical Aadro-TV Eng'r' Radio Opersting Radio Servien wilh Prietical Tranining Radio \& TV Servicing Radio \& TV Servicing with Practical Training Serviens Electr'n"c Dovers Servicing Sound Equi'D't Practical Telephony Tolephony and Radio IV Receiver Setycio IV Receiver Servicing TV Toclanicun

Accredited Member,
National Home Study Council
For Real Job Security-Get an I. C. S. Diploma! I. C. S., Scranton 15, Penna.

INTERNATIONAL CORRESPONDENCE SCHOOLS

BOX 84448C, SCRANTON 15, PENNA.
In Hawaii reply P.O. Box 418, Honolulu
Without cost or obligation, send me "HOW to SUCCEED," the opportunily bookiet about the fiold I have indicated below, and a samplatesen
Name of the course in which you are interested
Your Name
Your

Home Addeess
City
Occupation
Camedian residents send coupon to International Cortespondence Schools, Canadian, Ltd., Montreal, Canada. . . Spectal low monthly tuition ratea to mmbers of the U,S. Aumed Forces.

COYNE ELECTRICAL SCHOOL
Dept. 32-9C-New Coyne 8uilding
1501 W. Congress Pkwy., Chicago 7, III.
Send BIG FREE book and details of all the training you offer. However, 1 am especlaily inferested in:
\square Electrlcity
\square Television
\square Both Fields

Nome
Address \qquad
City State and Color $A M-F M$ and Auto Radios Transistors Printed Circults Test Equipment \mid afe I
in Chicago-prepare for today's TOP OPPOR-I TUNITY FIELD. Train on real full-size equipment at COYNE where thousands of successful men have trained for over 60 years-largest, oldest, best equipped school of its kind. Professional and experienced instructors show you how, then do practical jobs yourself. No previous experience or advanced education needed. Employment Service to Graduates.
START NOW-PAY LATER - Liberal Finance and Payment Plans. Part-time employment help for students. GET FREE BOOK - "Guide to Careers" which deacribes all training offered in ELLECTRICITY and TELE-VISION-RADIO ELECTRONICS-no obligation; NO SALESMAN WILL CALL.

Coyne Electrical School, 1501 W. Congress Parkwav Chartered Not For Profit - Chicago 7, Dept. 32-9C

The future is YOURS in TELEVISION! A fabulous field-good pay-fascinating work-a prosperous future in a good job, or independence in your own business!

Coyne brings you MODERN-QUALITY Television Home Training; training designed to meet Coyne standards at truly lowest cost -you pay for training only - no costly "put together kits." Not an old Radio Course with Television "tacked on." Here is MODERN TELEVISION TRAINING including Radio, UHF and Color TV. No Radio background or previous experience needed. Personal guidance by Coyne Staff. Practical Job Guides to show you how to do actual serwicing jobs-make money early in course. Free Lifetime Employment Service to Graduates.

CHARTERED AS AN EDUCATIDNAL INSTITUTIDN NOT FOR PROFIT
1501 W. Cengress Parkway - Chicaga 1, Depl. 32-49

[^0]
 \section*{COYNE offers
 \section*{COYNE offers

 Low cost THED

 Low cost THED

 THLTHORTV

 THLTHORTV RADIO- Training in RADIO- Training in Spare Time AT HOME} Spare Time AT HOME}
"If you haven't earned at least $\$ 100$ in spare

$\begin{aligned} & \text { TV and } \\ & \text { RADIO } \\ & \text { REPAR }\end{aligned}$
time during that period you pay not a cent."
Mere It Is! The most amazing guarantee ever offered on any radio. TV course tanywhere! we't, iend you tbraham Marcus on course to use FREE for one full month! If in that time you haven't actually made Why do we make this sensational offer? First, because these books are Why do we make this sensational onfer first. because these bonks are co easy to use. They are written in the same clear, easy-to-understand tepll you what to do in i-2-3 fanhton. For example, once you niaster the Arst rew chapters of the TV book you are ready for husinems ready to do mervice jobs in the field-lobs that account for over 80% of ant 5 Wervice calls.
You don't have to keep the books when you aend the coupon below. make extra money fxing radios and py fot them unless you actually to keep them, you pay on easy terms. Mall the coupon now.

MAIL THIS COUPON

- Prentice-Hall. Inc. Dept. 5747-DI

Englewood Clits. New Jersey Please gend the Abraham Marcus' TV a RADIO REPAIR COURSE
(3 volumes) for 10 days FREE examination. Within 10 days i
will efther return it and owe nothing, or aend my first payment of $\$ 5, \beta 0$. plus a fow cent postoxe. Then, after I have payment of $\$ 5$, BO. plus a few cents postage. Then, after I have uged the and you will refund my first payment. Or I will keep the course and send vou two more pasmente of 85,60 m month for two months. $\$ 5.25$ less than if booke were bought individually,
Name

WHAT YOU GET IN THESE 3 GIANT VOLUMES

ELEMENTS OF TELEVISION SERVICING. Analyzes and lllustrates more TV defects than any other book, and provides complete
 step-by-step procedure for correcting each. You can actually SEE what to do by looking at the pictures. Reveals for the first time all details, theory and servicing procedures for the RCA 28-t ube color television recelver, the CBS-Columbla Model 205 color set, and the Motorola 19 -inch color recelver.
RADIO PROJECTS. Build your own recelvers 1 Gives you 10 easy-to-follow projects, including crystal detector receiver -diode detector receiver-regenerative receiver-audio-frequency amplifier-tuned radio-frequency tuner-AC-DC superheterodyne receiver-etc.
RADIO SERVICING Theory and Practice. Here is everything you need to know about radio repair, replacement, and readjustment. Easy-to-understand, step-by-step self-training handbook shows you how to locate and remedy defects quickly. Covers TRB receivers; superheterodyne receivers, short-wave, portable, automoble receivers, etc. Explains how to use testing instruments, such as meter, vacuum-tube voltmeters, tube checkers, etc., etc. RADAR KING

Plans $\$ 1.00$, refundable on kits (with assembled antenna) $\$ 19.95$ and wired units $\$ 29.95$. Extra antennas \$4.50 each.

Simultaneous operation of S and X band, S band otherwise specified

WARDELL SMITH, 65 GLENWOOD ROAD, UPPER MONTCLAIR, N.J.

8 TRANSISTOR TWo Band
 portable radio

I Now-at the fick of your finger, you can tune in any | part of the world! Thrill to broadcasts direct from Africa, South America and Europe! Only $\$ 29.50$. A nine volt 006 P transistor batteries only 39 G each. Order yours now.
A. JOHNSON / 233 Barrett Ave., Jamestown, N, Y.

SEE PAGE 148

These are current production factory fresh four-speed changers in original factory cartons, not surplus junk or seconds! ldeal for stereo conversions, new system funk or secondst ldens, or replacementer

Check These Features!

dily constructed mainolate has hicien cartridge included. Stur.

 last record has played, Minimumer automatically shuts of after
 Wood bases in blonde or walnut finith Mounting board
45 RPM Spindle

EXTRA!!!PRESS TO TALK MIKE
 This is a high quality American made low impedance dynamic mike. Perfect for mobile presseto-talk unit, fully chrome plated and complete with 6' four conductor eable. TOTAL cost-Only $\$ 10.95$ fio.b. Northiake. III. ORDER DIRECT TODAY-NO C.O.D.'s pleose.
JOSEPH ELECTRONIC SUPPLY, INC. 48 S. Wolf Rd.

Northloke, Illinois

Surplus Bargain Meter!

- Uses newest cadmium sulfide light cell - Measures foot candles 0 to 10,000
- ASA speeds 3 to 25,000 F stops 7 to 90
- Exposure time $1 / 15,000$ sec. to 8 hrs.
- Measures moonlight to bright sunlight
- 4 Range selection
__ Use with still or movie camera
- EV-EVS-LV settings
_ Use as densifometer
- Practical dark room meter
- Use with microscope and telescope
- Weighs only 10 ozs.

And yet, this all inclusive kit can be assembled with hand tools in less than two hours. Our step by step instructions make it easy.

Here is a real surplus scoop that we're anxious to share with you. The components of this kit if purchased individually cost $\$ 34.00$. Yet, because of a surplus windfall we're able to send it complete to you postpaid for only $\$ 19.95$. Once more, this meter is unconditionally guaranteed to outperform any $\$ 75$ meter available today or your money will be refunded
| SCIENCE and MECHANICS, Dept. 827, Kits Division | 505 Park Ave., New Yoik 22, N. Y.
| Enclosed is $\$ 19.95$. Please send me your complete kit and | plans for assembling the S\&M super sensitive light meter. I understand that if I am not completely satisfied. I may | refurn the kit within 10 days for a complete refund.
NAME
ADDRESS
CITY, ZONE, STATE

START NOWI Break through the Earning Barrier that stops half-trained men. N.T.S. "All-Phase" training prepares youat home in spare tirme - for a high-paying CAREER in Electronics - TV - Radio as a MASTE₹ TECHNICIAN. One Master Course at One Low Tuition trains you for unlimited opportunities in All Fhases: Servicing, Cammunications, Preparation F.C.C. License, Broadcasting, Manufacturing, Automation, Radar and Micro-Waves, Missile and Rocket Projects.
A more rewarding job... a secure future... o richer, fuller life can be yoursi As on N. T. S. MASTER TECHNICIAN you con go straight to the top in industry... Gr in your own profitable business.

SUCCEED IW MANY HIGH-PAYING JOBS LIKE THESE...

I9 BIG KIIS

 yours to keip- TV.Radio Sales, Service and Repair
- Profitable Besiness of Your Own
- Communicat ons Technician - f.C.C. License
- Hi.ff. Stereo \& Sound Recording Speciallst
- TV-Radio Broadcasting Operator
- Iechnician in Computers 2 Missiles
- Etectranics Tield Engineer
- Specialist in Microwaves \& Servomechanisms
- Expert Troutle Shooter
- All-Phase Master Technician

NATIONAL LKMM. SCHOOLS

4500 so. neution sp, los ambatis 3? Write Dept, RKK-32

acchtoitio mimate iecoogniard occeredititing asenct lor arioota
N.T.S. Shop-Tested HOME TRAINING is Better, More Complete, Lower Cost... and it is your key to the most fascinoting, opportu-nity-filled industry todoy!
YOU LEARN QUICKLY ADD EASILY THE N.T.S. SHOP-TESTED WAY
You get lessons, manuals job projects, unlimited consulfation, graduate advisory service.
You build a Short Wave-Iong Wave Superhet Recoiver, plus a largescreen TV set from the ground up, with parts we send you at no addi-
rional cost. You also get a Professional Multitester for your practical job projects.

EARN AS YOU LEARN...

 WE SHOW YOU HOWIMany students pay for entire tuition - and earn much more - with spare time work they perform while training, You can do the same... we show yau how,

SEND FOR INFORMATION NAW... TODAYIIT COSTS YOU MOTFING to investigate.

G\|ANTCB SALE!!!

Cloging out our stock of CB Klte. Oriminally edvertleed at $\$ 39.95$ up. Complete with power supply, tuhes, crystal,
 transmitter must be tuned and tested by or under super. vill ion of person holding a first or second-class FC license. All sales final at this price. Thousands now in uee. Rush
your order in today while the supply lasts.

110 VOLT CB TRANSCEIVER KITS $\$ 19.95$12 VOLT CB TRANSCEIVER KITS $\mathbf{\$ 2 2 . 9 5}$ 6 VOLT CB TRANSCEIVER KITS $\$ 22.95$Eloment CB BEAM ANTENNA Reg. $\$ 19.95$

CB-SPECIAL GROUND PLANE ANTENNA Reg. $\$ 12.98$ all aluminum. Model GP. 27 (3 or more$\$ 7.99$ вa.)................................. 8ALE
COMMAND HOT-ROD CB ANTENS Reg. \$1.98 4.ft. Continuously loaded fiberglass whip + trunk lid mount …..
COMMAND CORSAIR Model CCB-I Reg. $\$ 19.98$ Gumper mount + heavy spring $+102^{\prime \prime}$ st. steel whip 58.69 COMMANO CORSAIA II Model CBB-2 Reg, $\$ 22.95$ double bumper mount + spring $+102^{\prime \prime}$ st. stool
COMMANO STANDARO 11 Model CS. 2 Reg. 59.98 whip duty body mount + spring $+102^{\prime \prime}$ st. steel whip $\ldots \ldots \ldots$... GENERATOR NOISE SUP CB band (3 or mora \$1.49 a.) $11 . P C$. CB SILENCER KIT Model NiN.l Reg.
 RG8u COAXIAL CABLE 100 feet for $\$ 7.98$ RG58u COAXIAL CABLE.... 100 feet for $\$ 2.89$ Check items wanted, Return ed or order with eheck or maney
order cinclude postage, excess returned). Sorry, no con.D. GROVE ELECTRONIC SUPPLY COMPANY
4109 W. Belmont Ave., Chicago 41, ili.
R Rush items checked.
Name Iatest CB sale Catalog
Address
(please print)
City

BUILD YOUR OWN

3 VERY LIMITED OFFER PLANS FOR

We're cleaning house and we found an assortment of eireus plans too good to pass up. Fiverything you need to build your own model clrcus! There are plans for the eteam celliope, the ble top waron. circus animale and many mort, Uriginaily theste plans anld for $\$ 1,00$ each but now you can buy an assorinent of three at our spectal clear. ance price of only $\$ 1.00$. Better bet. why not buy if 18 plant for oaly \$8.00. Order now-while the supply lasts.

SCIENCE AND MECHANICS, Craftprint Division Dept. 2214, 505 Park Avenue, New York 22, N. Y. Enclosed is 81.00 . Please send 3 assorted clicus plans.
Enclosed is $\$ 8.00$. Piome and all 18 assorted clreus planas
Name
Addrese
cit .Zege.....state.

All Purpose SHOP TACHOMETER

Drilling Speeds

Here is a real surplus scoop that we're anxious to share with you. The components of this kit if purchased individually cost over $\$ 50.00$. Yet because of a surplus windfall we're able to send it complete to you postpaid for only $\$ 16.95$. Once more this tachometer is guaranteed to outperform any $\$ 50$ tachometer available today or your money will be refunded.

MEASURES 0-15,000 RPM IN 3 RANGES

Use if to measure speeds on: - tape recorders - lathes - cutting tools • kart engines - model plane ENGINES - HIGH SPEED DRILLS - APPLIance motors - pulley belts - auto engines - Many other uses

SCIENCE and MECHANICS, Kit Division

Dept. 828, 505 Park Avenue, New York 22, N. Y. Enclosed is $\$ 16.95$. Please send me your complete kit and plans for assembling the S\&M all purpose tachometer. I understand that if I am not completely satisfied, I may return the kit within 10 days for a complete refund.

NAME
ADDRESS
| CITY, ZONE, STATE.

BUILD 20 RADIO CIRCUITS AT HOME

 with the New Deluxe

 with the New Deluxe PROGRESSIVE RADIO "EDU-KIT" ${ }^{(2)}$ PROGRESSIVE RADIO "EDU-KIT" ${ }^{(2)}$ A Practical Home Radio Cours
 Now Includes
 12 RECEIVERS
 + 3 TRANSMITTERS
 t SQ. WAVE GENERATOR
 + SIGNAL TRACER
 - AMPLIFIER
 SIGNAL INJECTOR
 * code oscillator
 t No Knowledge of Radio Necessary
 \star Mo Additional Parts or Tools Needed
 - ExCELLENT BACKGROUND FOR TV
 * School Inquiries Invited
 \star Sold In 19 Couniries
 The '"Edu-Kit'" offers you an outstanding PRACTICAL MOME RADIO COURSE at a use of the most modern methods of home training. You will learn radio theory, constructon practice and servicing. THis is A COMPLETE RADIO COURSE IN EVENY DETANL. In You wrofll lessional how to hulld radios, using regular schematics; how to wire and solder punched metal chassis as well as the latest development of Printed Circuit chassie. TF and AF implitiers and osciliators, detectors, resufiers, lest equipment. You will fearn and practice code, using the progressive Code Dseitlator, You will learn and practice sive Oynamic giadio if Electromice Tester. Square Wave Generator and ine accompanying instructional material.

\section*{YOU DON'T HAVE TO SPEND

YOU DON'T HAVE TO SPEND HUNDREDS OF DOLLARS FOR A RADIO COURSE

 HUNDREDS OF DOLLARS FOR A RADIO COURSE} Amateur Licenses. You whil build 20 Receiver, Transmitier, Square wave Generator, Code HIl receive an excellent background for Television. Hi-Fi and fiectronicg. Absolutely no previous knowledge of radio or seience is required. The "EEJu.Kit' ' it the product of many years of teaching and engincering experience. The "Edu-ait' will pro-
THE KIT FOR EVERYONE

in rad io or science. Whether you are inter. ested in Radio ES. Electronics because you business or a job with a future, you will find he "Edu-Kit" with a future, you will hind
ages and backgrounds mave auceessfulty
wed the . Edu-kity in more than 79 councres of the world. The "Edu-Kit" has been ca-efully designed, step by step. so tha allows you to teach yourself gi your own

PROGRESSIVE TEACHING METHOD

and is universally accepted as the standard in the field of flectronics trainimg. The weid

 Kit"' uses the modern educhational principle of . Learn by Doing." Therefore you construcs, learn schematics. study theory, practice troubleoshooting-all in closely integrated pro You begin by examining the various radio parts of the "Edu.kit., You then learn the tunction, theory and wiring of these parts. Then you build a simple radio. With this first tet you will enjoy listening to regular broadcast stations, learn theory, practice teating and trouble-shooting. Then you buld more advanced radio, learn more advanced theory and techniques. Gradually, in a progressive manner, and at your own rate, you will profeakional Radio Technician.Included in the "EEdu-Kit" course are twonty meceiver, Tranomitter, Cgde oscillator, signal "racer, Square wave Generator and signal injector circuits. These are not unprofes srofal "breadboard andoriments, ont genuine radio circuits, contructed by means of

THE "EDU-KIT" IS COMPLETE

You will receive all partz and ingtructiont nocesiary to burld 20 differont radio and elec, ble, electrolytic, mica, ceramic and paper dielectric condensers, resistors, tie strips, coils, elenium rectitiers, volume controls and switehes, efc.an manuats, hook-up wire, soider in addition, you receive Printed Circuit matirials,
apecial tube sockets, herdware and inetructions. You also receive pinted Circuit chasis. professional electric soldering iron, inerd inctioneif powered Beceive a useful tet of tools, Tester. The "'Edu.Kit'" also oncludes Code Instru*tions and the Progressive Code Oscillator will also receive lessonse for servicing with the frograssive Signal Testerse training. Vou the Progres. aive signal Injector, High Fidelity Guide and a Quiz sook. You receive Membership in

PRINTED CIRCUITRY

At no Increase In price, the "Edu-KIt" mow Includes Printed Circultry. Yow build a Printed Circult Sigmal Injector, - unique servicing instrument that can detect many Radio and TV troubles. This revolutionary new technigue of radio constructlon is now becoming popular in commercial radio and TV sete. A Printed Circult is a special Intulated chassis on which has boen de. pased the conducting material of wirling. Tho varlous parts are merely plugered it and soldered - terminals.

Printed Circuitry is the bessls of mod. orn Autemation Electrontce. knowl. odge of thls subject is mecessity today for anyone Interested In Elsetronice.

ORDER DIRECT FROM AD-RECEIVE FREE BONUS RESISTOR AND CONDENSER KITS WORTH $\$ 7$

- Send "Edu-Kit" postpatd. I enelose full payment of $\mathbf{\$ 2 6 . 9 5}$

\square Send "Edu.Kit" C.O.D. I will pay $\$ 26.95$ plus postage.
\square Send me FREE additional information describing "Edu.Kit."
Name
Address

PROGRESSIVE "EDU-KITS" INC.
1186 Eroedway, Dept. 510 N y, Hewlett, N. T.

MAGNAVOX AUDIO AMPLIFIER
 ifg. 10 F

 the Nasy for Intefcommunication and ampll. fleation of radio signals. Uses $2 / 12 \mathrm{~A}$ e tubes in push-pull: also ligli qualtey friput trans former for caploun microplione. and liecelver Input-output transformer lias vardable cuntrol for headset or speaker. Also mounting for 12 Volt Dynamotor. and fistruc-tion book. Voltage required for operation 12 VDC MA. Can be used for moblle or lionie tise. Size: $71 / 2 \times 7 \times 10^{\prime \prime}$. Svt 15 lby Nawy \#CMX-50128. J'rice-Complete with 3/12A8 Tubes (1 *2.95 Price-With 12 Voli Dynamotor. $\$ 6.95$ Address Dept. 28 Prices F.O. B., Lima

MAIL COUPON FOR CATALOG!

सi IT i A DIO SAIES 2133 ELIDA RD. - BOX 1105 • LIMA, OHIO

FARM TELEPHONE CABINETS

Slightly used crank style CABINETS (once used everywhers) for Home Hobby Shops. Complete with trans mitter, receiver, bells, crank and shelf (Less Generutor). Has all of the outside parts. Make beautiful, unique Radio Cabinets, Liquor Chests, Spice Cabinets, Flower Planters, etc. Immediate deliveries assured. $\$ 10.00$, F.O.B. Clicago.

TELEPHONE

HANDSETS

Use as inter-house phone, talk house to garage, as loud speaker system, etc. You recelve transmitter, receiver, 3 conductor cord and simplified, illustrated installation diagrams. Handsets are guaranteed to be the same as used In our great National Telephone System. Price delivered $\$ 2.95$. Two for $\$ 5.00$:
TELEPHONE REPAIR AND SUPPLYCO. Dept. BE- 8

1760 Lunt Ave., Chicago 26

ON SALE Jan. 2nd at most newsstands

complete plans for 33

 exciting furniture projects
fells you step-by-step exactly how to build

__Kitchen Slide-out Service Center
__Kennedy Rocker
__Classic Ice Cream Set
__Modern Dining Set
_-Early American Step Table
__Mirrored Wall Shelf
\qquad Empire Chest
Maple Desk and Chair
__Early American Platform Rocker
_ Nantucket Sewing Basket
__Maple Book Case
__Revolving Book Stand
_Grandfather Clock
_ Sportsman's Gun Cabinet

- Portable Beverage Bar
_Colonial Tavern Table
Pick up a copy at your newsstand or send $\$ 1.00$ with coupon below.

Sclence and Mechanics Magazlne, Handbook Division
Dept. 3000, 505 Park Avenue
New York 22, New York
Enclosed is $\$ 1.00$; please aend me my copy of Furniture Handbook- - \# 591

NAME
ADDRESS
I CITY........................ . $20 N E . .$. . State.

As an electrical frouble shooter the Model 161:

- Will test Toasters, Irons, Broilers, Heating Pads, Clacks, Fans, Vacuum Cleaners, Refrigerators, Lamps, Fluorescents, Switches, Thermostats, etc.
- Will test all IV rubes (including picture tubes) for open filaments and burned out tobes.
- Meosures A.C. and D.C. Voltages,
(3oth 110 Volt and 220 Volp lines).
- Will measure current consumption (amperes) while the oppliance under test is in operation.
- Incorporates a sensitive directreading resistance range which will measure all resistances commonly used in electrical appliances, motors, etc.

As an Automotive Tester the Model 161 will test:

- Both 6 Volt and 12 Volt Storoge Batteries - Generatars - Starters Distributors - Ignition Coils - Regulators - Relays - Circuit Breokers - Cigarette Lighters - Stop Lights - Condensers - Directionol Signal Syso foms - All Lamps and Bulbs - Fuses - Heating Systoms - Horns - Alsa will locote poor grounds, breaks in wiring, poor connections, etc.

INCLUDED FREE!!

 condensed course in electricity. Learn by doing.Just read the following partiaf list. of conionts:

- What is electricity? - Slmplined verston of Ohms Law What charts - How to measure voltage. current. resiatance and leakese. How to teat all electrical appliances and motors using a simplined trouble-shooting technique.
- How to test all TV tubes: slso atmple procedure for determining which speciac tube (or tubes) is cauitig the trouble.
- How to trace trouble in the electricul circuits and parts in automobiles and trucks.

Model 161 comes complote with obove book and test
leods. Only

This 56-page-book-practically -

Try it for 10 days before you buy. If completely satisfied then send $\$ 5.00$ and pay the balance at the rate of $\$ 5.00$ per month until the total price of $\mathbf{\$ 2 2 . 5 0}$ (pless small P.P. and budget charge) is paid. If not completely satisfied, return to us, no explanation necessary.

ACCURATE INSTRUMENT CO.
Depi. D-178, 911 Faile Si., New York 54, N. Y.
Please rush me one Model 161. If safisfactory I agree to pay $\$ 5.00$ within 10 days and balance af rate of $\$ 5$ per month until total price of $\$ 22.50$ (plus small P.P. and budget charge) is paid. If not satisfactory, I may return for eancellation of account.
Address
City \qquad

NOW. . . AMAZING METHODS REVEAL DISGUISED HYPNOSIS

LEARN THESE SENSATIONAL TECHNIQUES \& TRICKS TO CAUSE THE TRANCE WITHOUT SUBJECT'S KNOWLEDGE! Revealing manuscript tells jealously guarded secret techniques used to cause the "Indirect Trance." Read how subjects are hoptcuts that make hypnosis fast and easy. Discover the safe "fake nerve pressure" technique ... the "falling back" test and many others. Read how the author hypnotizes a roumful of people without their knowledge-using a common household cooking ingredient. This is so dramatic and effective it is worth PT the low price of the book alone. But that's not all, nosls" and "t clever Hyonotic "Trance-Fer" chart nosis exclusive ald hielps you cause the "Indirect.
This
Trance." All in a plain wrapper-only $\$ 1.98$ pipd. Money buck if not delighted.
ALLIED-AIDS, Dept. D-34. 1133 BROADWAY, NEW YORK 10, N. Y.

TEN delightful, exciting MOVIES
FANTASTIC OFFER AlL TEN MOVIES IN 8 mm FOR ONLY ($16 \mathrm{~mm}-\$ 4$) s2 The movie buy of a lifetimel Ten subiects, all different. brand new and thrilling, and all yours for only $20 c$ each. You must be delighted or your money back! Rush \$2 (cash, check or money order) to: SENSATIONAL MOVIE OFFER Box 69856, Dept. G-3 West Mollywood 69, Callf. Do It Yourself Plans ILLUSTRATED CATALOG 9 SO understand plans for building boats, electrical equipment, models of gas and steam engines, famous firearms, antique autos, toys, cabin trailers-a complete listing of every plan published by Science and Mechanics. In all, 194 useful things you can build. It's easy! It's fun! And you can save money! Send 25 c now. (Refundable first order). Science and Mechantes Magazine, Dept. 2000, 505 PARK AVE., NEW YORK 22. N. Y

DID YOU HEAR THE NEWS?

SEE PAGE 148 In One Evening

The "MINIMAX"

Minimum cost-maximum performance. You get both In "Minimax." Built in one day at a cost of about $\$ 20.00$, it will carry 2 people, take outboard motors ranging from 3 to 15 hp . and has a water-tight air compartment that will support 900 lbs. even with the cockpit completely filled with water. As to performance, "Minimax" will plane a 165 lb . man up to 15 mph . with a 3 hp . outboard motor. With 10 hp . and over, the hull planing area diminishes until "Minimax" becomes air-borne and rides upon the motor's cavitation plate. Length 8 ft . Beam, 4 ft . Weight 68 lbs. It's easy to build.
SEND FOR COMPLETE
PLANS NOW - ONLY

NOW! EARN MONEY IN TV SERVICING WITHIN ONE SHORT WEEK

Make \$5 to \$10 Per Call IMMEDIATELY

Here is the announcement our Engineering Staff has waited 5 years to make! Here is the final "break-through" in the television industry's giant efforts to perfect a simplified TV servicing system that eliminates the need for expensive training and long study! If you've thought about learning TV Service and Repair . . if you've awaited any opportunity to have a prosperous, secure business of your own, then this is possibly the most important bulletin you'll ever read!

WHAT IS THE AMAZING NEW SYMTRONIC TRAINING METHOD!

Bymtronic is a dynamic new concept based on the known fact that only a certain number of things can go Wrong with any given set. Por the Arst time these troubles, and their eauses, have been isolated into three matn groups. Through a comprehensive, but easily understood crossindexing system it's now possible to pin. point the trouble in one of the point the trouble in one of the 3 roups in a matter of seconds! What previously required long schooling is now avallable to you immediately through the smazing symtronic sysem. Our Free Sample Lesson shows how the Bymironic Method will work on your own set, or a friend's. Write for it today!

CUTS STUDY TIME EXPENSE

Zou want to get started servicing TV sets, not building them! so why spend jons months studying under old fashloned, outdated methods. learning thing you'll never use? Why buy lots of equipment to practice with when Fou don't need it? With the symtrontc Fou don't need it? With the symitronic SIstem the COMPLICATED TECHTICAL THEORY I8 ALREADY TAKEN CARE OF BY OUR OWN 8CIENTIBTS! There is nothing more you need in this line. What we give you is practicsa, down-to-earth know. how based on our many years of solld. acientife experience! Our revolutionary Symtrontc methods let you compete fmmediately with servicemen who have had years of experience!

COMPLETE SYMTRONIC BUSINESS PLAN

 To make car training program the most practical avallable, we also offer * complete Business Plan developed by leading advertising and business consultants. gtep-by-step, you learn how to get business how to operate trom your home, how to charge, how to keep recorde, how to charge, how "Blueprint to success" that complete fully how to start, conduct, and ex-
CASH IN ON THIS BIG PROFIT BIG FUTURE INDUSTRY!

TV servicing is a multi-m:Ilion dollar industry and it's growing like wildare! To keep pace, thcusands of wilaire! To reep pace, thcusands of neeced each year. The pay is big and neeced each year. The pay is big and
there's no limit to your future sucthere's no limit to your iuture success Television is here to stay! In this
feld, too, you get paid for whit you fleld, too, you set paid for what you sccomplish, not how long you work. $\$ 5$ to $\$ 10$ per call is the usual service chasge . even though the job may take only few minutes! Add to this the almost 100% proitt on tubes and parts and you can easily see how Symtrontc can put you ints the big money prectically overnight!

SYMTRONIC PUTS YOU IIM

 YOUR OWN BUSIMESS HOWIImazine - With our amszing trainins method you know everything needed method you snow everything needed to handle any make of TV set, within one short weet! And withcut buytng any expensive tools or equiprient. you levenings of fascinsting readins A rew evenings of fascinating reacing is all it tokes. This is iact ... not netion. In fust 7 days or less you will have sufficient knowledge and abilty, and confidence in yourself, to make from $\$ 5$ to $\$ 10$ per service call - earn $\$ 150$ a meek, working out of your home! Here, unquestionably, is your chance of \& lifetime to get into the booming TV business. to enfoy the freedom and security that comes with a successful business of your own'

PROVIDES "BLUEPRIMT TO SUlcess"

 pand your own TV Eervice Business. In short, we not only ouer the most stresmilined, efective IV training available but a tested and proved Bus,neas Plan that eliminates al guesswork. Here, surely, is a "Busi nese Package" that may easily bring Fou ell the good things you desire. of practical education with st lifetime100's of customers af 4 c each?

THIS COMPLETE MAIL.ORDER PROMOTION RII PUTS YOU IN A PROFITABLE TV REPAIR BUSINESS THE VERY FIRIT WEEN!

No solleiting. No personal selling. No overhead. This amazing "business-in-a-package". Kit puts you in direct contact with every TV set owner in your areal May bring cash orders immediately, builds a fast-growing list of steady customers to make you independens!
No extre cost. Complete Kit included with Course. Contains everytaing you need to put Plan into operation, the same day you get it. No advertising expense except stamps.
Most auccessful business-builder in TV history. Gives prospects an itresistible reason for calling YOU when they need help-makes it impossible zo forget you. Nothing like it on the market.
Entire promotion carried on by mall so you can control the fow of business to meet your personal needs, Use small mailing for part-time business without quitting your present Job. Larger mailing brings more customers for full-time business. No personal selling. Spend all your time making money!
TV Repair Systems, Dept, H-872, 1038 S. La Brea Ave.- Los Angoles 19, Callf.

1. "HOW TO LEARN TV REPAIR FAST (overnight)". A real eye-opener that reveals hew the amazing Symitronic method puts you in this big-pay field right now!
2. AMAZING SAMPLE LESSON proves how the Symitronic method reolly works. Convinces yourself by repairing your sef -or a *riends-the very first day!
3. "HOW TO GET 200-1000 REGULAR CUSTOMERS FAST (less than 1 week)" See the secret workings of the "Business-in-o-Packoge" mail plan that does all your selling for you !
These three big gifts can be worth hundreds of times the tiny 4 ¢ stomp it takes you to get them. Yel they are yours to keep forever-with no obligotion.

All FREE-AIRMAIL COUPON TODAY

TV Servicing Systems, Dept. H-872
1038 S. La Brea Avenue
Los Angeles 19, California
Please rush proof that your Symtronic Method is all you claim, ond informotion on how I can have my own TV Repoir business with customers calling me within a weak. Be sure to include all 3 FREE items rientioned.

Name

Street

City
Zone__State.

AT MOST NAWSSIANDS

SO EASY IT'S SHOCKING, IF YOU USE ENLARGED PLANS

to build electronic projecta. Enlarged size, step-byotep craft print plans-complete with detalled mategials lists-are avallable for the following:
191. TESLA COIL. Produces 70,000 volte at $500,000 \mathrm{eps}$. opecheuhar but bare... 81.00 227. REPULSION COIL. Defies lew of Eravity-electromes-
 and englne tspes... $\$ 1.50$ 251. SOLAR BATTERY AND MOTOR. Battery's volk at 180 258. SUN-POWERED RELAY, LIght-ectivaled control -ith a verlety of practics applications.. 264. HI-FI FM RECORD PLAYER. Fhono onctistor, arm and curntable for hl-à reproduction...00 265. ELECTRICAL COIL-WINDING MACHINE. Motor-powered with foot-controlled reactor.....................................1.00 279. WIMSHURST STATIC MACHINE. Canstan source of tatic electricity.. 1.50 283, VAN DE GRAAFF GENERATOR. Coste 330 to build. Produces up to 250,000 volts.. 81.50 301. VAN DE GRAAFF GENERATOR. Prodcces up to 400.000 volti. This is the apparatua that can itand your pair on end

- . SAVE MONEY! if you orceer two or more creft repular price of each print. Thus, for two prints. drom the 500 , three prints, 7sf, otc. Use hands coupon bolow. Satidsckion

SCIENCE and MECHANICS.
 Cre\$tprint Division. Dept. 2216
 505 Pork Avenue, Now York 22, N. Y.

Enclosed is $\$$ \qquad Please send me the circled plans.
These plans are $\$ 1.00$ each

191	227	258	264	203
These plans are	$\$ 1.50$ each			
243	251	279	203	301

NAME
ADORESS

CITY \& ZONE
STATE
$\square \begin{aligned} & \text { Norg's 206. Plowe send me your Illuetrated catalos of } 180 \\ & \text { craft print plambe }\end{aligned}$

COMPLETE SERVICE TRAINING . . . written so you can understand it!

Fix any TV or Radio Ever Made

EASIER - BETTER - FASTER!

No complicated theory or mothemsticsl These famous Ghirend books fet right down to brate tacke in abowing you how to handle all types of AM, FM and TV service work by approved handle all types of AM, FM and TV service work by approved
profestonal methods. Almost 1500 pages and over 800 clear illustrations show how to handle every phase of troubleshooting and brvicing. Each book ie co-euthored by A. A. Ghirardi whose manuala have helped train more eervicemen than any other bools of couries of their kind!

I-Radio and Television Receiver TROUBLESHOOTING AND REPAIR

A complete fuide to profitable professional methode. For the berimner, it is a comprebensive training course. For the experienced serviceman, it is a quick way to "brush up" on specific jobs, to develop improved techniques or to find last answers to puzzling service problems. Includes invaluable "step-by-step' 820 pages, 117 illuatrations. Price $\$ 10.00$ aeparately.

2-Radio and Television Receiver CIRCUITRY AND OPERATION

This 669-page volume if the ideal guide for servicemen who realize it pays to know whet really makes modern radio-TV receivers "tick" and why. Gives a complete understanding of besic circuits and circuit veristlona; how to recognize them at glanca; how to oliminate fuefework and useless testing in sit fins them. 417 ilus. Price separately 89.00 .
Special low price . . . you save $\$ 2.00$
If rooken into loweone and enat to you an a "eourse," gou'd regare
 lessomer to witit for. You loarn faghaked ristit

- =-=-STUDY 10 DAYS FREE!=-=-

Dept. MM.22, MOLT. RINEHART a wINSTON, Ine.
Teshinicat oiv., 383 Madison Ave.,
New Yark 17. N. Y. 623000 deyend books below for 10 -day FREE EXAMINATION. In 10 booke postpatid and owre you nothing. (pius postage) or return

ratelv 4708578

- Radio \& TV CI责CUITAY \& OPEnATION (SH.00) $=708214$
[Check here for MONEY-SAVING COMBINATION OFFER price of only sit.00 for the two. of Regular price sk at apecial yrice of only sive 2.00 .) it 70900 for
SAVEI Send cash with orcer and wo pay pontage. Same resurn priviloge with money promptly refunded.
Name .
Address .
Clty. zone, sthte .
OUEade U.SA, SIO.SO for TROUBLESHOOTING AREPATR; - only, bus moncy rofumited if you riturn books in 10 days.

Coming in the April lssue

Test Report
 OLDS
 F-85 Cutlass

Checking-Out the

FALCON SQUIRE

"The monthly magazine for craftsmen"
. . with these HOW-TO-DO-IT articles with step-by-step instructions
Four Ways to Build with Stone

Portable Burglar Alarm

Car Servicing:

Installing Motorola's New Electronic Alternator

> On Sale Feb. 27th AT AlL NEWSSTANDS

GENERATORS NOW-4 Models-150,000 250,000 and 400,000 VOLTS PLUS NEW SUB-MINIATURE

Complete Kits 150.000 VOLT MODEL $\$ 27.95$ PP 250,000 VOLT MODEL 32.95 PP Also Plastic Materials for: - REPUISION COIL00 - MNIATURE TESLA COIL........ 21.00 - souped UP TEsLa coll. -- TMPuOE PIROJFCTOR - OHAGUR PIRONBCTOR CHABER. $\cdots 20.00$ 4.25
4.50 9.50 - SUB-MIN GENERATOR 3.95 \& 4.95 - vacuum chasiber KIT. 9.00 \& 11.50

FOREST PRODUCTS, INC.

Dept. RT. 1
$11 \quad 145$ Portla
Cambridge, Massachusetts

PORT ARTHUR COLLEGE ELECTRONICS COMMUNICATIONS

AM FM Television Broadcast Engineering Industrial Electronics-Automation CHECK THESE FEATURES: Tuition $\$ 40$ per mo.. room \& board $\$ 60$ per mo. in dorm on campus. College operates 5 KW broadcast station. Students get on-the-job training at studios on campus. FCC license training with all courses. Well equipped classrooms \& lab., am fm transmitters, radar \& marine eqmt., television camera chain, experiment lab test eqmit. \& other training aids. Our graduates in demand at good salaries. Free placement service. Have trained men from all 50 states. Approved for GI. Write to Dept. RT-1 for Free Booklet.

$$
\text { PORT ARTHUR COLLEGE Port Arthur } \underset{\text { Estabtiened in } 1909}{\substack{\text { Poxas }}}
$$

BURSTEINAAPPLEBEE CO.
Dept. RTV, 1012 McGee Si., Kansus City 6, Mo. \square Rush me New 1962 B-A Catalog No. 621
Name
SEND
FOR IT
TODAY

20 Prize Winning Science Fuir Projects

Step-by-step science show how

_ Demonstrating Bernoulli's Principle Experiments with Glow Discharges Building your own transit level

- Exclting Chemiluminescence Experiment
- Excitching the radio spectrum with Laser

A simple electric bell

- Experimenting with rockets Infrared detectors
- Incredible world of $-320^{\circ} \mathrm{F}$
- Building an ION Exchange fuel cell - Hunting insects with a butterfly gun Midget Van de Graaff generator
- The mathematics of music
- Home built spectrograph
- Sound searching parabolic mike
—— Experimenting with ultra-violet
- Remote reading weather indicator

Sclence and Mechanies Magazine, Mandbook Div.. Dept. 3000, 505 Park Avenue, New York 22, N. Y. Enclosed is $\$ 1.00$, plesse send me my copy of Sclence Experlmenter-586
1
| Name .
| Address .

Specin Sinle

our most popular electrical and electronic projects

1006 Electric Chord Organ

SPECTACULAR OFFER! TWO FOR ONLY $\$ 1.00$

1000 TRANSISTOR TAPE RECORDER
Instunt aretion is yours with this specially designed battery powered transistorized tape recorder. Standard playback speed allows tapes to play in any unit or through its own mike speaker. Built in jach plug permitw recording directly from radio or TV. 75 e
100335 MM COLOR SLIDE PROJECTOR
Brillant color pictures of your 3 m min transparencies with yours with thas unit. A faster lens speed means no cosily cooling systen end operation winh a 100 watt no costly entire projector will cost less than $\$ 12.00$ to build. 78e 1005 MINIATURE ELECTRONIC SPEEDFLASH
Costs only $\$ 26$ to build but will outperform commercial units costing three times as much. It supplies ideal lightinges fither Action candids, yet is featherweikht in design and uses either AC or batteries. lis lamp bulb lasts 20,000 flashes and reciycles in two seconds completely eliminating flash bulb fumbling. 75 c
1006 ELECTRIC CHORD ORGAN
One used accordion, a blower and some simple cabinetry produces full quality musical tone instrument butper. bass blender und a foot pedal colume cuntrol with the and responsive action of the uccordion kesbourd. Tahes unly a few evenings to build. 75 c
1010 ALL PURPOSE TESTING MULTI LAE
This home lub will test and match electronic parts, meas. ure waters chlorine content, match paint, analyze color photo lighting, check soil pll. It's a colorimeter. densitometer. emergency hre and burglar alarm, thotometer, electronic micrometer, remote thermometer and-well. you nume it. Costs about $\$ 25$ to buald and can be wired
1018 MODEL HYDRO ELECTRIC PLANT
With a few ineapensice materials at home, you can build 3 vur own minnature hydruelectric plant. Using only the enerate enough electrieity iu light amuli mon, you can tranblotur radio and stepped up tien provide $110-\mathrm{v}$ cur-
rent. 75 e

SAVE MONEY!

Price of first blueprint, 75 ; ach additional blueprint ordered at the same time only 25 each.

- - - RUSH THIS ORDER FORM - - - - Science and Mechanies Magazine,
Croftprint Division, Dept. 2217
505 Park Avenue, New York 22, N. Y.
Enclosed is \$...... Please send the bluepriats whose numbers 1 have circled below:
$\begin{array}{llllll}1000 & 1003 & 1005 & 1006 & 1010 & 1018\end{array}$
Name
Address
City, Zone and State.
Satlefaction Guaranteed or your momey baek

To guide you to a successful future in

ELECTRONICS RADIO-TV COMPUTERS ELECTRICAL ENGINEERING

This interesting pictorial booklet tells y.uu how you can prepare for a dynamic carcer as an Electrical Engineer or Engineering Technician in many exciting, growing fields:
MISSILES A AVIONICS • AUTOMATION SALES - DEVELOPMENT

ELECTRICAL POWER - ROCKETRY

RADAR • RESEARCH
Get all the facts about job opportunities, length of study, courses offered, degrees you can earn, scholarships, part-time work - as well as pictures of the Milwaukee School of Engineering's educational and recreational facilities. No obligation - i 's yours free.

MILWAUKEE SCHOOL OF ENGINEERING

MAIL COUPON TODAY!

Milwaukee School of Engineering
Dept. RTXe86 1025 N. Milwaukee St., Milwaukee, Wis. Please send FREE "Your Career" booklet
I'm interested in
\square Electronics \square Radio-TV \square Compulers \square Electrical Engineering \square Mechanical Engineering Name \qquad Age.
Address
PLEASE PRINT
正
City \qquad
\square
I'm eligible for veterans education benefits. Discharge date. \qquad

ON SALE - Mar. 6th

at most newsstands

Pick up a copy at your newsstand or send $\$ 1.00$ including postage with coupon below
SCIENCE AND MECHANICS MAGAZINE
Dept. 3000, 505 Park Avenue
New York 22, New York
Enclosed is $\$ 1.00$: please send me my copy of Science Fair Projects-594

Name.
Addrass..
City.
Zone. . State

Astrophotography

Experimental
Ray Tracer

Satellite Computer

Multi-Testing Lab

CONTAINS

__ What Makes a Winning Science Project?
_ Micro-llluminator
-_ Learn with an Orrery

- Supersensitive Light Meter
- Cartesian Diver like Scuba Diver
_ The Eerie Threat of Weightlessness
_- Crater Treasures from the Skies
_ Multi-Lab Reflection Densitometer
__ Multi-Lab Colorimeter
- What Hands Can Reveal
- Solar Hot Dog Cooker
_ Engineer's Level
_ Electrostatic Dust Precipitator
__ Midget Oudin-Tesla Coil
_ Electrolytic Tank Experiments
_- Motor-Rheostat Rig
_ Black Light's Scientific Career
__ Thermoelectric Conversion
_ Solar-Powered Car
_ Inexpensive Microtomes
_- Accurate Chemical Balance
_ Experimental Ray Tracer
_.. Wimshurst Static Machine
_ Talking Coils
_ Basement Ballistics
- High-Voltage Traveling Arc
_ Making and Using Permanent Magnets
_ Magnetic Pendulum

NAME \qquad

MODRESS

GITY \qquad ZONE
STATE.

ON SALE Jan.2nd at most newsstands

Complete step-by-sfep how-to for repairing household appliances

- Control Oven Temperature
- Cure Balky Mixers
- Pick Up Vacuum Cleaners
- Fix Hot Air Gas Furnaces
- Repair Run Down Water Heaters
- Overhaul Appliance Motors
- Repair Electric Table Appliances
- Order Replacement Parts
- Check Your Incinerator
- Keep Food Waste Disposer Running
- Check Electrical Wiring
- Save Money When Calling Serviceman
- Keep Automatic Washer Humming

Pick up a copy at your newsstand or send $\$ 1.00$ with coupon below

[^1]

Complete plans for 40

Home Electrical Projects

\author{

* How to Buy a Room Air Conditioner
}

* Modernizing Old Vacuum Cleaners

* Servicing Electric Clocks

* First Aid for Ventilating Fans

On sale at your newsstand or send $\$ 1.00$ with coupon below for your copy

```
Science and Mechanics Magazine Handbook Division
Dept. 3000, 505 Park Avenue
| New York 22, N. Y.
Enclosed is \(\$ 1.00\); please send me my copy of Electrical
Handbook-585
name
ADDRESS........................................................ .
CITY. . . . . . . . . . . . . . . . . . . . . . .ZONE. .. . STATE.
```


Gxperimentersd Take Your Pidk

These back issues of the RADIO-TY EXPERIMENTER are still avallable:

551 Includes sun-cell TRH receiver, plans for experimenter's test bench, decade ohm box, electronic tic-tactoe, spit-powered oscillator, photoelectric controls, signal tracer, portable bi-fl record player, single-tube organ. Single copy, 75t

562 Contains 53 make-ityourself projects: transistorized Intercom, Citizens Band 2-way radio, 7-tube FM tuner, 6 -meter ham rig, suncelled motor, stereo music center. Single copy, 75

56937 Electronic projectsamong them a complete twometer ham station-a transistor analyzer, an economy frequency standard, a two-tube long wave receiver, a musical annunciator, typacode, and a wireless intercom, 756

576 Includes VHF receiver, transistor tester, volt ohm. meter. multi lab, telephone sentry, opinion meter, making transformers, parabolic mike. battery recharger, fleld strength indicator-33 different projects, 756

582 Contalns orear 35 elec. tronle projects including 5 way $\$ 5$ radio: 1 transistor tuner: 2 transistor amplifter; underwater metal finder ; home hifl reverb system plus the latest expanded edition of White's Radio Log, 756

RUSH COUPON TODAY
Satisfaction guaranteed
 SCIENCE AND MECHANICS, Handbooh Division Dept. 3000, 505 Park Ave., New York 22, N. Y.

Enclosed is \$............. Please send mez
\square All FIVE of the Experiments for $\$ 2.50$. The TWO Experimenters circled for $\$ 1.00$. The circled issue at single copy price of 754. 551582589582

name

ADDRESS
CITY .zons
\qquad

space age hobby
 BUILD-YOUR-OWN ELECTRONICS For modern living

Dazens of new nobbyist hits. Including mazing Electronic selance Lab-over 100 projects!

Everything in Stereo hill components: FM tuners

1 featured in the 444 page
 1962 OLLIED

ELECTRONICS CATALOG

Select from more than 70 exciting Knight-Kits! See-Stereo hi-fi, including new Multiplex Stereo tuners and all-transistor ampli. fiers, short-wave radios, intercoms, Citizens Band radios, electronic science labs, test instruments-all easy to build and a pleasure to own! Send today for your free 1962 allied Catalog!

New-lachometer hit and o ststanding test instioments

New all-transistor intercom: many other kits for modern living

SAVE ON EVERVTHING IN ELECTRONICS

Get the most for your money in: Siereohi-fi systems and components - Recorders and tape . Citizens Band rodios. Amaleur station equipment - TV fuses, antennas, accessories. Electroric parts, fubes, transistors, tools, test instruments, books. Send foday for your FREE 444-page 1962 ALLED catalog!

NO MONEY DOWN

 Easlest Terms
ALLIED RADIO

ALLIED RADIO, Dept. 64-C2

100 N. Western Ave., Chicago so, III.
WORLD'S
BIGGEST
D Rush FREE 1962 ALLIED Catalog
Name
PGEAEE PMINT
Address
City \qquad Zone \qquad State

Qty. Type Price \mid aty. Type Price |aty. Type Price

Qity. Type	Price	Qty. Type	Price	Qty, Type	rice
- 024	. 79	-5Cas	. 84	- 6BN6	14
$1 \times 2 \times 2$. 62	5C25*	. 12	-6BQ6	1.05
183	. 79	5EA8	. 80	- 6867	1.00
10 N	. 55	$5 E \cup 8$. 80	6BS8	90
163*	. 19	516	. 68	6BU8	. 70
$113 *$. 79	578	. 81	$6 \mathrm{BX7}$	1.02
1K3*	. 79	514	. 60	$6 \mathrm{BY5}$	1.15
125	. 62	5U8	. 81	68 Y 6	54
154	. 59	5V3	. 90	6898	. 66
155	. 51	5V6	. 56	6876	. 55
114	. 58	5×8	. 78	6827	1.01
. 114	. 57	5×3	46	6828	1.09
1115	50	6ABG	1.20	$6 \mathrm{C4}$. 43
1×2B	. 82	6484	.46	6CB6	. 55
2AF4	. 96	6AC7	. 96	$6 \mathrm{C06}$	1.42
2BN4	. 64	6AF3	73	6CE5*	. 57

Complete power supply for trensistor circuits and electrical experiments delivers 9 volts.

Inexpensive, Battery Pack To Test Transistor Units

By FORREST H. FRANTZ Sr.

TIME spent by experimenters warking the bugs out of newly-built transistorized units takes a lot out of expensive miniature batteries usually found in such equipment. Ordinary flashlight cells costing only one-tenth as much will do the same testing and adjusting job and last longer when arranged as in Fig. 1.
With six No. 2 (size D) bitteries this versatile supply can handle most transistor circuit operating requirements by furnishing power in six steps from $11 / 2$ to 9 volis.

To Make the Power Supply, join three double battery holders together (Lafayette MS-176) by soldering terminal to terminal. Masonite or plywood backing will make the assembly rigid.
Join holder terminals on one erd with a piece of wire, then insert batteries plus to minus as in Fig. 2. Install clips such as Mueller Mini-Gators on wire leads soldered to terminals at other end.

Clip one lead on the zero terminal and the other on the terminal which furnishes the voltage required by the equipment being
tested (Fig. 2). If you use the lower voltages frequently, interchange batteries or clip connections for longer overall battery life.

Determining Current Drain. To learn how much current your equipment is using, connect a milliammeter in series with the battery and piece of equipment as in Fig. 3. This arrangement is valuable in troubleshooting newly constructed equipment. A one-transistor earphone radio usually requires less than 1 milliamp. You can usually figure on less than 1 milliamp per transistor for all transistor stages except the output which drives a loudspeaker.

Current for a Class A output stage may be as little as 2 milliamps, but it is more likely to be between 5 and 15 milliamps. For a Class B audio output stage (two transistors in push-pull), it may hit between 50 and 100 milliamps on signal peaks. These figures are approximate and represent a relative guide for small transistors such as the CK722, 2N107, and 2N188A. Power transistors such as the 2N255 and 2N307 require much higher currents.

EQUPMENT POWER (WATTS) = VATS \times MILLAMPERES $\times 0.001$

A metronome teaches the music student a sense of timing and pace from the very start. Volume is ample for small group practice or can be cut down so you just barely hear the clicks.

TIMER Sets the BEAT

You don't have to watch a clock or push buttons with this $\$ 16$ electronic metronome-fimer

By JOSEPH R. NOONAN

With the metronome clicking the exact beats per second, the advanced musician knows he's playing at the tempo indicated on the music sheot by the composer.

On the seconds renge, you get a click every $1,5,10,30$, or 60 seconds. Each range has its own control pot on the back of the chassis for calibration.

UNLIKE most clock-type timers that ring only once, the loudspeaker in this unit gives you a continuous audible check on elapsing time. Just set the range switch on $5,10,30$, or 60 seconds, and your hands and eyes are free to concentrate on the work.

The timer uses many standard parts that can be salvaged from old ac-dc radios. Your first step is to mount the tube sockets and pots on the chassis; P1 goes on the top side at the rear of the chassis while P2, 3, 4, and 5 mount along the rear face. This circuit is the ac-dc type, and the chassis is not used as a ground. Therefore use two lug mounting strips at every spot where you need a tie point or support for the parts.

Filament resistor R1 dissipates considerable heat, so mount it on a 2-lug strip above chassis, with one of the output transformer mounting bolts. Run all the wires passing from above the chassis to the underside through one grommeted hole in front of the output transformer. Mount volume control switch P7-S1 and range selector switch S3 on the chassis front. Later when wiring is finished, a second mounting nut on these parts joins the chassis to the front plate of the cabinet, while the rear of the chassis fastens to the bottom plate with two sheet metal screws. Bolt capacitor C 4 by its feet to the inside front face of the chassis at the bottom

Mount the selector switch S2, and the metronome pot P6 on the cabinet face. Bolt
the speaker to the top of the cabinet and wire according to Figs. 5, 6 and 7. There are no special wiring cautions.

Operation of the Circuit depends on the action of tube VI (12AU7) as a multivibrator type oscillator. It generates a pulse heard as a "tick" from the speaker. Timing of the pulse is controlled by the values of the resistors and capacitors in the VI tube circuit. To vary this oscillation, you change the resistance values of the pots through which voltage is fed to the fixed-value capacitors.

Generated pulses are then fed to tube V2 (50C5) through capacitor C2 and volume control P7, and are amplified to speaker volume. Tube V3 (35W4) operates as a half wave rectifier to supply B plus for tubes V1 and V2.

Calibration is Next, after a wiring check. Turn S3 to "seconds" and S2 to the onesecond position. Turn the unit on with volume about half way up. You should hear ticks from the speaker in about 30 seconds. Allow a ten minute warm up period, and then use an electric clock second hand to adjust pot P1 until the click frequency is exactly one per second. Pot P1 is left in this position throughout the rest of the calibration.

Next turn S2 to the 5 second range and adjust P2 for a 5 second click interval. Repeat with P3 for 10 seconds, P4 for 30 seconds and P5 for 60 seconds. Probably the timer won't split seconds on the 60 second range. A 5% accuracy on the one second range means an error of plus or minus only $1 / 20$ of a second, while on the one minute range would account for an error of plus or minus 3 sec onds per minute.

Calibrating the Metronome. With P1 as previously adjusted so the speaker clicks exactly every second on the one second range, turn S 3 to Metronome position. Adjust P6 until the timer ticks eighty per minute when the pointer points straight up. Then calibrate the dial on either side of center to cover a range of 40 to 208 clicks per minute. Pot P6 will cover down to 25 per minute and can be so calibrated if desired. If no use of this extended range will ever be made, a 1.5 megohm can be used instead of
materials list-electronic pulse generator No. Req. Size and Description

RESISTORS

R1- 150 ohm. 10 -watt wire wound
R2- 1200 ohm. 1 watt
R3- 150 ohm, $1 / 2$ watt
R4-470K, $1 / 2$ watt
R5. R6-100k, $1 / 2$ watt
R7-270K, $1 / 2$ watt
R8-1 meg, $1 / 2$ watt
R9-10 meg. $1 / 2$ watt
R10- $22 \mathrm{meg} .1 / 2$ watt
POTENTIOMETERS
P1- 500 K ohm IRC Q11- 133
P2-5 megohm IRC Q11-141
P3. P4, P5-10 megohm IRC Q11-143
P6-2.5 megahm IRC Q11-239 (or 1.5 megohm IRC Q11-138-See Text)
P7-500K ohm volume control with switch S1 CAPACITORS
Cl- 40.40 mfd .150 v . electrolytic (Lafayette C.126)
C2—. 001 mfd .600 v . molded by-pass (Lafayette C.500) C3-. 01 mfd .600 v . molded by-pass (Lafayette C. 503) C4—4 mid. 150 v . oil filled paper (Lafayette CF.115) CHASSIS ITEMS
7 pin miniature tube socket (Cinch-Jones type 7W2A) 9 pin miniature tube socket (Cinch-Jones type 9W1)
V1-12AU7 tube
V2-50C5 tube
V3-35W4 tube
T1—output transformer 2500 ohm to 3.2 ohm speaker (Lafayette TR-10)
S2-5 position rotary switch (Lafayette SW-78)
S3-2 position rotary switch (non-shorting type) $4^{\prime \prime}$ PM speaker 3.2 ohm (Allied 81P616) line cord and plup
$53 / 4 \times 47 / 8 \times 1 \mathrm{~V} / 2^{\prime \prime}$ chassis (Lafayette MC.174)
Misc. pointer knobs, mounting strips, hook-up wire, etc.
the 2.5 megohm value to eliminate the low end and provide a wider spacing of the calibration marks.

TROUBLE SHOOTING GUIDE

Symptom
No click at any setting
Clicks but PI will not catibrate at 1 second

Clicks but does not maintain calibration

Clicks but at erratic in. terval

Remedy

Check rectifier, C1. If R2 overheats, look for short in C1. Check for shorted of open capacitors, C3 and C4,
Too low a timing interval indicates R6 or R8 too high in resistance value, or that C3 or C4 are too large or are leaky.
Too high an interval indicates $\mathbf{C 3}$ or C4 or R6 or R8 too small in value.
Leaky capacitors C3 or C4. Change in resistance values from overheating may be due to restricted chassis ventilation or misplacement of parts.
Defective V1 tube. Poor contacts in $\mathbf{S 2}$ or $\mathbf{S 3}$. Defective P1. Occasional fluctuations may be caused by power line variations.

Amplifier connected to 6-in. speaker in baffe (output) and transistorized tunar (input).

By FORREST H. FRANTZ Sr.

BY USING a ready-made, printed circuit, 3 -transistor amplifier, (Lafayette PK 522, complete with transistors, $\$ 3.75$), the experimenter can avoid the headaches of wiring 12 or 13 resistors, 6 or 7 capacitors, 3 transistors, and an output transformer into an amplifier circuit. This saves not only time, but money.

The midget PA (public address) system in Fig. 1 won't bang off your ears with its maximum power output of 100 milliwatts, but the output signal will drive a single 8 -ohm speaker, 3 -4-ohm speaker, or two 3 -4-ohm speakers connected in series. The power supply is a self-contained 9 -volt battery.

It has two input channels (Fig. 2), and can use either a mike and record player, two mikes, a mike and radio tuner, or a tuner and record player. You may even want to fade music and make announcements with a musical background.

The PA system amplifier will accept any high or medium impedance input device such as a crystal microphone, a crystal phono pickup, a crystal guitar pickup, a vacuum tube

Closeup viow showing input and output jacks.

Midget

Public Address System Amplifier

Abstract

An excellent project for the beginning or advanced experimenter which can be built for less than $\$ 10$ in a few hours' time

tuner, a crystal diode tuner, or a transistorized tuner. The input device must be terminated in a phono plug (Lafayette MS-471) to connect to the amplifier.

The mike in Figs. 1 and 3 happens to be one that goes with my tape recorder. Any crystal mike listed in the Allied or Lafayette catalogs will work sufficiently, but a high output crystal mike such as Lafayette PA-76 rated as -44 db will permit you to realize more volume than a mike rated at $-52 d b$.
Drill the Front of the Case as in Fig. 4. Remove the screws packed inside the miniature case beforehand, and snap the case together during drilling. This provides rigid support and minimizes the chances of bending the case out of shape. Clean off burrs and remove chips from the case when drilling has been completed.

Cut shafts of the volume controls (R6-S, R1, and R3) to a length of $3 / 8 \mathrm{in}$. Place the end of the shaft that will be discarded in a vise and cut with a hacksaw. Catch the control as it falls free. This procedure minimizes the chance of damaging the controls.

Mount the volume controls and jacks (J1, J2, and J3) as in Figs. 2 and 5. Connect the grounding wire, the jack connections, resistors R2, R4, and R5, and the 3 amplifier board holding wires as shown in Fig. 5. Use insulating spaghetti on R2 and R4.

The schematic, Fig. 6, will prove helpful in this and succeeding steps. Use rosin core solder for making connections. The 3 ampli-

Amplifier cannected ta $1 / 2$-in speaker (left) and mike (right!.

fier board holding wires will be soldered to the ground strip on the bottom of the board to hold it in place.
Installing the Subminiature Amplifier. Figures 7 A and 7 B show top and bottom views of the printed circuit audio amplifier. Unsolder and remove the yellow speaker lead, the green and the blue input leads, and the green volume control lead. Don't overheat the board in doing this and be careful not to unsolder other connections.

Place the front of the case and the amplifier in positions relative to each other as in Fig. 8A. Solder the volume control leads (orange to unused outside terminal on R6, red to middle terminal), the orange and red switch leads to switch S, and the black output lead to the center terminal of the output jack (J3).

Now slip the amplifier into place with the ground strip edge of the board resting on the shoulders of J1, J2, and J3 as shown in Figs. 8B and 9. The bottom side of the board rests against the center connection terminals of $\mathrm{J} 1, \mathrm{~J} 2$, and J 3 . The output transformer case

Preliminary wiring and mounting, showing amplifier board holding wires and common grounding wire.
may rest on the insulated part of switch S . Connect the battery (be sure switch S is off) and slip the battery into place (Fig. 9).
Push the amplifier board against the battery and solder the holding wires which were soldered on the ground terminals of J1, J2, and J3 to the copper ground strip that runs along the bottom edge of the amplifier board. Solder the junction of R2, R4, and R5 to the "High" input connection (on the left end of the board just above red battery lead connection). The blue lead was removed from this point during a previous step.
This completes the midget PA system wiring. Place a drop of Duco cement between the output transformer frame and S. Note that everything fits neatly in the case and the battery is held snugly in place.
Mark the outside of the battery end of the case with a grease pencil, or a piece of tape. Slip the back of the case into place. You might have to bend the side flanges of the end of the front of the case out very slightly to do this. Be careful not to let the edges of the back of the case rupture the insulation on the battery connector.

Also, dress leads in the case so that the edges of the back won't cut or short them when the back is pushed into place. Fasten the case together with two screws (provided with the case) at the unmarked end of the case. Don't fasten with screws at the battery end (the end you marked with grease pencil or tape) or you may damage the battery or battery connector. If the back of the case seems to fit loosely at the battery end, remove the back and spring the sides slightly.

To finish off the PA system, type or hand letter the front panel markings shown in Fig. 2 on a piece of paper and cut to $3 / 8 \times 4 \mathrm{in}$. Fasten it to the case with a piece of cellophane tape running the full length of the

Top view of printed eircuit amplifier showing colored leads. Be sure to read instructions packed with this board.

> Under view of printed circuit ampplifier showing ground strip edge of board.
paper and fastening to the sides (ends) of the case. Maybe you would rather stencil the cabinet face with India ink.

Cut a small groove on the front of each of the knobs with a triangular file or a hacksaw. Fill the groove with white paint and wipe excess off of the face of the knob with a rag. Fasten the knobs on the shafts of R1, R3, and R6-S, and the midget PA amplifier is ready to use.

Speaker Selection. The output of the amplifier is 8 ohms. To obtain the best match to this output, connect a single 8 or $10-\mathrm{ohm}$ speaker such as Lafayette SK-61 ($11 / 2 \mathrm{in}$.), SK-66 ($21 / 2 \mathrm{in}$.), or SK-193 (3 in.) to the output. You can also connect two $3-4 \mathrm{ohm}$ speakers in series to the output such as Lafayette SK-25 (4 in.) or SK-27 (6 in.).

In general, the larger the speaker, the greater will be the conversion efficiency from electrical to sound energy. For this reason
the 6 in . series arrangement is preferable. Even a single 3-4 oh.m speaker will work reasonably well.
If you use the $11 / 2 \mathrm{in}$. speaker, it can be mounted in a Lafayette MS-156 plastic case as in Fig. 3. Make the holes in the case with a heated ice pick, fasten the speaker, and

MATERIALS LIST-PA SYSTEM AMPLIFIER

Desig. of No.
68K 1/watt Description
R2. R $468 \mathrm{~K} 1 / 2$-watt carbon resistors, 100°
R5 $\quad 100 \mathrm{~K} \frac{1}{2} \cdot w$ watt carbon resistor. 10%
R6.S $\quad 5 \mathrm{~K}$ miniature patentiometer with ${ }^{\circ}$ switch (Lafayette
$\mathrm{VC}-27$)
50 K miniature potentiometers (Lafayette VC.36)
 AM P \quad 3.transistor subminia:ure audio amplifier (Lafayette PK 3 522)
3 miniature knobs (Lafayette MS.185)
$1 \quad{ }^{15}{ }_{8} \times 21,8 \times 4^{\prime \prime}$ gray hammertone miniature case (Pre$\frac{1}{B} \quad$ mier PMC.1002)
8 9. - olt miniature battery (Burgess 2U6)
Misc. speakers. mike, plugs and cable as desired (see text)
Parts for this projec: may be obtained from Lafayette
Radio, 111 Jericho Turnpike, Syosset. N. Y.

Connecting the printed circuit board to the switch and jacks.

Ground strip edge of board rests on jacks J1, J2, J3.

Amplifier completely assembled with battery tucked in plase.
solder the wire leads to the speaker. I used shielded wire, but you can use ordinary insulated wire. The other ends of the speaker leads connect to a phono plug (Lafayette MS-471). Solder one lead to the center pin and the other to the outer shell of the phone plug. If you use shielded wire, the center conductor solders to the plug center pin and the shield fastens to the shell of the plug.

The 6 in. speaker in Fig. 1 is a Lafayette SK-27 mounted in a baffle. This baffle has been replaced by a more modern-looking one (SB-10) in the Lafayette catalog. Be sure to provide strain relief for the speaker wires with an insulated staple on the inside right wall of the baffle.

Cover Story VHF Converter for Shortwave Or Communications Receivers

Bring in the full 2-meter amateur band, or polise, fire, airline, taxicab, and other commercial calls on your present quality rig for \$35

Ham operator switching on compact VHF converter connected to his powerful shortwave bandspread receiver. With this economical addition, the big rig will pull in 2-meter amateur signals or other VHF bands with the same high quality of sensitivity and stability it offers to high frequency bands.

By EDWIN E. STEINBERG, W9QJO

MANY shortwave broadcast receivers have 7 or 14 mc bands but do not cover very high frequencies (VHF). Most commercial and surplus military communications receivers cover high frequency bands but not VHF.

Whether you're a ham itching to get in on the exciting and rapidly growing 2 -meter amateur hand or simply an interested listener who wants a ringside seat for amateur, government or commercial communications on VHF, here's a converter that's just what you need. You can build it for less than $\$ 35$ worth of new parts purchased from any of several national mail order houses.

You can make a cheaper VHF rig if you're willing to sacrifice sensitivity, stability and reliability, but this is a small amount compared to what you would have to lay out for a complete commercial VHF receiver having equivalent performance.

A commercial artist friend who had never before built any electronic equipment can well attest to the ease of building this converter and success of its operation. As for durability, though, I have had one model in operation for nearly four years; another for
three years. The unit in Fig. 1 has been worked steadily more than five months.

The block diagram in Fig. 2 reveals the simplicity of converter operation. VHF signals are first amplified sufficiently to overcome the circuit noise, which is a characteristic of the converter and receiver circuits that follow. The signals are then combined with an "oscillator injection" signal in a heterodyne mixer to produce the intermediate frequency (IF) output. This output can then be received by a shortwave-broadcast or HF communications receiver.

A frequency (band) spread of four to six megacycles is practical for a VHF converter which allows an operator to tune exclusively by means of the HF-receiver controls. For example, the $144-148 \mathrm{mc}$ (2-meter) amateur band can be covered by a single VHF receiver converter. IF output is from $14-18 \mathrm{mc}$, or 7 11 mc , depending upon the original converter design chosen. Table 2 lists a choice of four bands you can cover.

The HF (shortwave-broadcast or communications type) receiver functions as a "tunable IF" (for the VHF converter) to select the desired VHF station signal. If no such receiver is available, a surplus "command" receiver can be purchased at a reasonable

2
CONVERTER FUNCTIONAL BLOCK DIAGRAM
cost. Use of a command receiver with the VHF converter has the advantage of providing a completely independent VHF receiving installation, so that other receiver equipment remains free for normal use.

Physical Layout and Wiring of VHF equipment is critical and must duplicate that shown in the illustrations. Don't let this scare you off, however, as satisfactory performance can be obtained even if the wiring isn't "pretty." No special precautions are necessary for power supply wiring. Perform the drilling, assembly, and wiring as follows:

To pre-assemble IF transformer T1 as shown in Fig. 3, remove the coil assembly from its shield can, taking note of its position in the can for replacement. Remove the red lead from the coil. Connect capacitor C14 (see Table 2 to determine value) between the

TABLE I-VHF BAND ALLOCATIONS

FREQUENCY BAND
SERVICES
108-144 me Aviation, Sotellite Communications, Military Affilioted Radio Services
144-148 me Amateur (Military Affilioted Radio Services are just bolow 144 me and Civil Air Patrol is just above 148 mc)
148-150 me Government, CAP
150-174 me Land Tronsportation, Taxi, Railrood, Motor Carriers, Telephone Company, Maritime Mabile (Marine), Industrial, Police, Fire, Hospitols, Public Safety
174-216 me Television Channels 7-13
216-220 me Totemetering
220-225 me Amoteur

blue lead coil terminal and the coil terminal from which the red lead was just removed. Do not solder this last connection because two more connections have to be made to this lug. Slip $3 / 4 \mathrm{in}$. of spaghetti tubing over one lead of resistor $R 9$ and connect this lead to the coil terminal in place of the red lead.

Connect C15 between the same lug used for C14 and R9 and the lug with the black lead. Remove the black lead. The lead of C15 can be left long to be used later as a ground connection. Solder all connections just made.

Slip $3 / 8 \mathrm{in}$. of spaghetti tubing over one lead of C16 and connect this lead to the coil terminal with the green lead. Remove the green lead and solder the capacitor connection. Replace the coil assembly in its shield in the original position, and now put aside the transformer, ready for later installation.

Center-punch all holes as in Fig. 4. With a $1 / 8 \mathrm{in}$. bit, drill holes at all punch marks. Enlarge the chassis holes as in Fig. 4. Note that many of the holes remain $1 / 6 \mathrm{in}$. as originally drilled. You can make the cut-out for transformer T1 in many ways. One method is by drilling four ${ }^{1 \pi} / 64 \mathrm{in}$. holes as in Fig. 4 and using a file to remove the remainder of the unwanted aluminum. Then remove all burrs from the chassis.

Mount all tube sockets with \#4-40 x $1 / 4 \mathrm{in}$. roundhead ($r h$) machine screws, lockwashers, and hex nuts. Be sure to fit each socket so that the \#1 pin is positioned as in Fig. 4. Note that one hex nut and lockwasher are not used for mounting the socket for V2, since this screw threads into one mounting stud of C9. Insert a \#4 lockwasher under the other stud of C9 to serve as a spacer and insert a \#4-40 x $1 / 4 \mathrm{in}$. r h machine screw into the capacitor stud to complete its mounting.

Now mount the crystal socket and trimmer capacitors C1, C6, and C10, using \#4-40 x $3 / 8$ in. binder-head machine screws, fiber washers, lock washers, and hex nuts. The fiber washers are used under the screw heads to prevent trimmer breakage and a fiber

Close-up views showing lecation of major parts on top and bottom of chassis.

washer is used under the hex nut to prevent crystal-socket breakage. Use care not to tighten these screws excessively. Breakage can still take place, despite the fiber washers.
Use an insulated tie-post in place of the one mounting nut (closest to V1 socket) on trimmer capacitor C6. Mount the other two insulated tie-posts, using \#4-40 $\times 1 / 4 \mathrm{in}$. rh ma-
chine screws with \#4 lockwashers under their heads. Attach the 5 -lug tie-terminal strip with a \#6-32 $\times 1 / 4 \mathrm{in}$. binding-head machine screw, lockwasher, and hex nut.
Attach coax connectors J1 and J2, mount feed-through capacitor C12, pilot-light assembly I1, and power switch S1. These components are supplied with their own mounting hardware.

You are now ready to wire in all small components, including resistors, capacitors, coil L 3 , and coil L7. Check Table 2 to determine the value of L7. Pre-form coils L1, L2, L4, L5, and L6 as specified in Table 2. Install coils $\mathrm{L} 1, \mathrm{~L} 4, \mathrm{~L} 5$, and L 6 parallel to and $1 / 4 \mathrm{in}$. away from the chassis. Note that L4, L5, and L6 are mounted on a common central axis (Figs. 5A and B). Mount coil L2 on the socket terminals of V1 and position it perpendicular to the chassis. The ground leads of L1, L5, and the plate lead (to pin \#6 of V1) of L4 should be straight. Make temporary solder connections to each of these leads to permit future coil adjustment during alignment.

Mount and wire-in power transformer T2, the pre-assembled IF transformer T1, and the

TABLE 2-COIL, CAPACITOR, AND CRYSTAL DATA FOR VHF BAND COVERAGE SEGMENTS

Part	108-1 12 mc Band	120-125 mc Bond	144-148 mc Band	151-157 me Band	Remarks
11	5 turns, $1 / 2^{\prime \prime} \mathrm{I}$, tap af $31 / 2$ turns	4 furns, $3 /{ }^{*}$ L, top of 3 turns	3 turns, $1 / 2^{\prime \prime} \mathrm{L}$, top at $13 / 4$ turns	3 furns, $1 / 2^{\prime \prime} L$, tap of $13 / 4$ turns	"Knife" for maximum curve omplitude \& minimum tilt
12	$\begin{aligned} & 17 \text { turns, CL W, } \\ & 1 / 2^{*} \text { I.D. } \end{aligned}$	$\begin{aligned} & 15 \text { turns, Cl W, } \\ & 1 / 2^{\prime \prime} \text { I.D. } \end{aligned}$	$\begin{aligned} & 11 \text { turns, Cl W, } \\ & 1 / 4^{n} \text { I.D. } \end{aligned}$	$\begin{aligned} & 9 \text { turns, CL W, } \\ & 1 / 4^{" 1} \text { I.D. } \end{aligned}$	"Knife" for maximum curve amplitude
14	$\begin{aligned} & 7 \text { turns, CI W, } \\ & 1 / 4^{\prime \prime} \text { I.D. } \\ & 3 / 15^{\prime \prime} \text { from } 15 \end{aligned}$	$\begin{aligned} & 6 \text { turns, CL W, } \\ & 1 / 4^{\prime \prime} \text { I.D. } \\ & 1 / 0^{4} \text { from } 15 \end{aligned}$	$\begin{aligned} & 4 \text { turns, CL W, } \\ & 1 / 44^{\prime \prime} \text { I.D. } \\ & 3 / 16^{\prime \prime} \text { Irom LS } \end{aligned}$	$\begin{aligned} & 4 \text { turns, CL W, } \\ & 1 / 4^{* \prime} \text { I.D. } \\ & 1 / 0^{*} \text { from } 15 \end{aligned}$	Space from $\mathbf{L S}$ for required curve width
15	$\begin{aligned} & 5 \text { turns, Cl W, } \\ & 1 / 4^{\prime \prime} \text { I.D. } \end{aligned}$	$\begin{aligned} & 5 \text { turns, Cl w, } \\ & 1 / 4^{*} \text { I.D. } \end{aligned}$	$\begin{aligned} & 4 \text { turns, CL W, } \\ & 1 / 4^{/} \text {I.D. } \end{aligned}$	$\begin{aligned} & 4 \text { furns, CL W, } \\ & 1 / 4^{\prime \prime} \text { I.D. } \end{aligned}$	Use C10 odjustment
16	$\begin{aligned} & 5 \text { furns, CL W, } \\ & 1 / /^{\prime \prime} \text { I.D. } \\ & 1 / 0^{\prime \prime} \text { from } 15 \end{aligned}$	$\begin{aligned} & 5 \text { turns, CL W, } \\ & 1 / 4 \text { " I.D. } \\ & 1 / s^{\prime \prime} \text { from } 15 \end{aligned}$	$\begin{aligned} & 4 \text { turns, CL W, } \\ & 1 / 4^{\prime \prime} \text { I.D. } \\ & 1 / \mathbf{s}^{\prime \prime} \text { from } 15 \end{aligned}$	$\begin{aligned} & 4 \text { turns, CL W, } \\ & 1 / 4^{*} \text { I.D. } \\ & 1 / 3^{n} \text { from } 15 \end{aligned}$	Use C9 odjustment for max. VTVM reading of C12
17	Stancor \#RTC-8517	Stancor \#RTC-8517	Stancor \#RTC-8515, 3 furns	Stancor \#RTC-8515, 4 turns	Values for 14 mc IF output
	Stancor \#RTC-8517	Stancor \#RTC-8517	Stancor \#RTC-8515, 4 furns		Volues for 7 mc If output
$Y 1$	$\begin{aligned} & 31.333 \mathrm{mc}, \\ & \text { 3rd overtone } \end{aligned}$	$35.333 \mathrm{mc},$ 3rd overtone	65.000 mc , 5th overtone	68.500 mc , 5th overtone	For 14 mc output, anti-resonant crystals
	$33.667 \mathrm{mc} \text {, }$ 3rd overtone	37.667 mc , 3rd overtone	68.500 mc , 5th overtone		For 7 mc output, onti-resomant crystals
$\begin{gathered} \hline \mathrm{C14} \\ 8 \\ \mathrm{C} 16 \\ \hline \end{gathered}$	18 mmid ceramic-disk capacitor, Centralub \#ID-180 (Lafayette \#CA-498)				For 14 me output
	91 mmid ceramic-disk capasitor, Centralab \#ID-910 (Lafayette \#CA-33)				For 7 me output
KEY: CI W, close wound		I.D., inside diameter	L, length of coil winding		

filter choke L10. Use \#6-32 x $1 / 4 \mathrm{in}$. binderhead machine screws, lockwashers, and hex nuts to attach the power transformer and choke. Mount and wire-in the fuse extractor post (for fuse F1), then attach the line cord and plug. Complete the wiring of the power transformer and switch S1, then hookup the filter capacitors C17 and C18. Install all tubes, tube shields, and crystal Y1, after studying Table 2 for the proper crystal frequency.

Check all parts and wiring, and look for solder splash or other causes of shortingparticularly in C9. An ohmmeter is the best test for power-supply shorts.

To Adjust the Oscillator, connect the negative voltmeter lead of a vacuum-tube voltmeter to the test point (C12 in Fig. 6). Clip the ground lead of the VTVM to the converter chassis and set its range switch for a full-scale reading of from 3 to 10 volts dc. Now turn on the converter power switch S1. Adjust C9 for a maximum VTVM reading. Proper supply voltages and a good 6U8 tube will result in a peak reading of at least 1.5 volts.

Aligning the converter for the desired VHF band with the aid of a sweep generator and oscilloscope.

How to Align Your VHF Converter. Connect the output of a sweep generator to jack J1 through a short 52 -ohm coaxial cable, and the receiver input (antenna terminals) to jack J2 through a short length of 72 -ohm co-

axial cable. Connect the oscilloscope horizontal input terminal to the sweep generator according to directions given in the sweep generator instruction manual. Connect the 'scope's vertical input terminal to the converter test point (C12) using a shielded cable or oscilloscope probe, as recommended by your oscilloscope instruction manual.

Make certain that chassis ground hookups use short leads or copper braid. After turning on all equipment, allow at least 15 min utes for warmup. Consult your instruction manuals for recommended warmup time.

Set the receiver tuning and band switch at the center frequency of the desired IF band, and receiver controls for AM reception (with, AGC). Set the sweep generator output frequency to the center frequency of the desired VHF band, and the oscilloscope controls for the proper horizontal (base-line) sweep. Adjust trace brightness and focus as in the manuals. Now you can increase the oscilloscope vertical gain to maximum, or until ac hum begins to deflect horizontal trace. Reduce oscilloscope vertical gain only as required to remove any perceptible hum-deflection of horizontal trace. Then increase the sweep generator output to obtain an oscilloscope vertical deflection of from 1 to 2 in.
Adjust trimmer C1 for maximum vertical deflection of the oscilloscope trace between the band-edge markers for the desired VHF band. It may be necessary to stretch or pinch the L 1 coil to adjust C 1 properly. If a "birdie (other than a sweep generator marker)" appears on the oscilloscope trace, "knife" (stretch) L2 just enough to eliminate the birdie. Then readjust C 1 for maximum vertical deflection. Warning: The voltage on L2 can cause a severe shock. Use caution in knifing this coil.
Alternately adjust C6 and C10 to obtain a band-pass curve as in Figs. 7 and 8. While the band-edge markers should be at maximum response, the converter operation will still be satisfactory if the markers are not more than 30% down the outside slopes of the curve. This compromise marker position is often desirable when 5 - or 6 -me band spread is required. You can obtain 3 - or 4 -me band coverage easily with the markers at peak response.
If the response curve is too narrow (markers down the outside slopes of the curve), move L4 closer to L5 to increase coupling. If the response curve is too wide (markers within the maximum-response peaks), move L4 away from L5 to decrease coupling. After either change, you will need to readjust C6 and C10.
If the maximum-response peak adjacent to one band-edge marker is larger than that adjacent to the other marker (tilted response curve), you can readjust C 1 to make response peaks equal in amplitude. But performance

of your converter will generally be satisfactory when one response peak is up to 30% smaller than the other.

Squeeze or stretch coil L2 to obtain the maximum response-curve amplitude, but again use caution to avoid electrical shock. Readjust $\mathrm{C} 1, \mathrm{C} 6$, and C 10 as required for the proper curve shape and maximum amplitude.

Now turn the sweep (and marker) generator output down to zero. Replace the oscilloscope with the VTVM at the converter test point (C12) and repeat the oscillator adjustment described earlier.
Disconnect the VTVM and put back the 'scope. Turn the sweep (and marker) generator output back up to obtain a response curve, then recheck the adjustment of C1 (curve tilt). C6 (curve amplitude), and C10 (curve amplitude).
With tests completed, disconnect the sweep generator and oscilloscope, then adjust the slug in the IF transformer (T,), for maximum noise from the receiver speaker (or maximum " S -meter" reading on noise).

To Operate Your Converter, you'll need a VHF antenna designed for the particular frequency band chosen. It should have a 52 ohm coaxial transmission line (lead-in) to carry the signal input to jack J1 on the converter.
Since the power switch S 1 is the converter's only operative control, tune in the desired VHF signals with your receiver's controls, all of which will function in their normal manner.
You should receive normal VHF signals in the IF band for which the converter was built. However, communications-receiver "S-meter" readings will be higher than the normal settings due to signal amplification in the converter.

Signals received will be stable in frequency since both your converter and the VHF transmitters are crystal-controlled. The level of stability is primarily dependent upon the quality of your receiver.

The complete circuit fits in a 4 -in.-long plastic box. A single hearing aid battery provides $221 / 2$-volt power.

ASENSITIVE relay that trips whenever the station to which a radio is tuned goes off the air enables this novel circuit to act as an automatic Conelrad monitor or as a radio controlled switch.

In a defense emergency, if a national alert should be declared, all broadcast radio stations in the U. S. would automatically go off the air. Should such an emergency occur at

night, you might not know it until it was too late to reach a shelter. With this device attached to any radio tuned to a 24 -hour broadcast station, the alarm would sound the second a Conelrad emergency took place.

Or by simply using the carrier of a wireless phono player that has a normally closed push button switch wired in series with the oscillator's ground return, you can control electrical equipment remotely from any point.

Install the completed unit in a small metal or plastic box. For silent operation, you can add a single-pole, single-throw switch in series with the radio speaker voice coil so that when the set has been tuned, snapping the switch will silence the radio but won't affect the alarm's operation.
When you tune the radio to a station, you'll find that voltage applied to the transistor base results in only a tiny flow of current from emitter to collector. By adjusting the spring which controls the armature tension, set the relay so the contacts drop out at about 50 microamperes and pick up at 2 milliamperes. Now if you tune to a station and then tune away from the station's carrier, the relay contacts should close immediately.

A less expensive relay with similar dropout and pickup characteristics can be selected from a parts catalog. Use your radio volume control as
a sensitivity adjustment, advancing it to a level that provides the most satisfactory pickup and dropout of relay contacts. When properly adjusted, the circuit should not be affected by music or speech, but only by the absence of the station's inaudible carrier, which will cause the alarm to draw current and close the relay alarm contacts.

By reducing the relay armature tension, you will be able to use the device for other applications. For example, the relay can be adjusted to follow the voice of a speaker or the beat of a musical selection.

Assemble the circuit parts on a $33 / 8 \times 21 / 2-$ in.

3 CONNECTING ALARM TO ANY RADIO

For easy assembly, use a perforated circuit board. Make the clips of scrap sheet metal.
perforated Bakelite board. A thin piece of plywood or plain plastic would also serve. Mount the transistor on three flea clips designed for use with the perforated board, or simply use a regular transistor socket. Use two $6-32 \times 1 / 8$-in. binding head screws to fasten the relay base in place.
Mount the miniature audio transformer and battery clips with $2-54 \times 1 / 4-$ in. screws. Use either a stock battery clip, or bend the clips from $1 / 2 \times 1-\mathrm{in}$. strips of tinplate or brass. The center battery retainer clip is a $1 / 2 \times 21 / 4$ in. strip of sheet metal bent U-shape and mounted between the contact clips.
Wire the alarm (Figs. 2, 4, 5) next. The battery can be lifted away from the clips when the unit is not in use, or you can add a switch between the B plus battery clip and the transistor emitter. In the circuit shown, the normally closed contact remains unwired.
The alarm uses a simple transistor type dc amplifier, and uses a $221 / 2$-volt hearing aid battery such as Eveready \#412 or \#412E to provide the operating voltage. Connect the input of the alarm to the voice coil lugs of your radio's PM speaker through the 500 -ohm primary, 3.2 -ohm secondary audio output transformer. Plans show the relay connected to a typical doorbell, however the Sigma relay contacts will handle a full $2-\mathrm{amp}$, 120 -volt non-inductive load to control small motors, lamps and solenoids. Wire each relay contact to a colored light bulb, and the lamps will blink in time with the music.
Another novel application would be to connect the jaw of a toy puppet to a solenoid magnet. Using the original single contact hookup, connect the solenoid in series with a power source and the relay contacts. The puppet will open and close its mouth in perfect synch with the radio voice.
Experimenters are often called upon to fix one of those stubborn receivers that plays for an hour and goes dead. The ideal time to check such a set is at the moment the signal fails, but this would require standing by. Simply connect the alarm and open the voice coil. If and when the radio quits, the bell will signal the fact. The unit also makes an excellent demonstrator to show how radio controls operate.

[^2]
The Quickie

A \$10 three-transistor-pocket portable for nearby reception

By FORREST H. FRANTZ Sr.

ESS than two hours' work and about $\$ 10$ worth of parts will provide you a Quickie (Fig. 1), a small portable radio which will pull in most broadcast stations within a 10mile radius. By using a longer, external antenna, you can receive more distant stations.

The secret of its quick construction and inexpensiveness can be found in the readymade, three-transistor amplifier it uses, (Lafayette PK-522 complete with transistors). This subminiature, printed circuit amplifier costs only $\$ 3.75$, little more than the cost of the transistors alone. Quickie weighs only a few ounces, and is small enough to fit in a coat pocket.

Tuning in a local radio station.

Construction. First place the speaker inside the plastic case positioned against the sides as in Fig. 3. Use the speaker as a template to make the four mounting holes with a heated ice pick. Remove the speaker from the case and make a series of random holes for speaker sound. Start two more holes ${ }^{11 / 10}$ in. from the respective case edges with the heated ice pick to establish centers for the tuning capacitor (C1) and volume control (R1) mounting holes. Enlarge the latter holes to $1 / 4 \mathrm{in}$. diameter with a taper reamer.

Cut off the excess plastic built up around

Speaker in position for mounting.

Madifying the amplifier with a resistor added on under side of printed circuit board (left) and a capacitor moved to top side (right).
small holes with a knife and wash the case in soapy water. Rinse in clear water and dry thoroughly.

Next, cut the shaft of the volume control (R1-S) with a hacksaw to a length of $3 / 8 \mathrm{in}$. An easy way to do this is to place the portion of the shaft to be discarded in a vise. Catch the control as it falls free to prevent damage. Mount the speaker C1, R1-S, and L1. Note that L1 must be remover from the Masonite mounting board. Fasten it to the plastic case with Duco cement.

Connect the parts, including the short antenna lead and the diode (D1) as shown in Fig. 3. Use rosin core solder and a hot, clean soldering iron. Be careful not to overheat the parts and be especially careful not to melt the plastic case. Set the case aside for final assembly later.
Amplifier Modification. Figures 4A and 4B show how the amplifier is modified. The instruction sheet which comes with the amplifier will furnish additional information.

Disconnect and remove the $30-\mathrm{mfd}, 10$ volt capacitor originally mounted on the bottom side of the amplifier board. Be careful to note polarity and connection points. Install this capacitor on the top of the amplifier board and connect to the same points as before, with leads inserted through the top of the board as in Fig. 4B.

Solder the R 2 resistor in the circuit on the bottom side of the board (Fig. 4A). One end of R2 connects across the points to which the red and orange volume control leads are attached. Remove the red and orange volume control leads. The other end of R2 connects to the broad ground strip (Fig. 4A). Disconnect and remove the green volume control lead.

Next, solder two $23 / 4 \mathrm{in}$. lengths of \#22 bare, solid wire to the amplifier board ground strip, keeping in mind that these two wires should be so positioned that the amplifier can be attached through the speaker magnet frame as in Fig. 5. A trial or two may be required to obtain satisfactory positioning.
Final Assembly. With the case assembly and amplifier in position (Fig. 5), complete
the amplifier wiring. The schematic (Fig. 6) may be helpful.

Connect the green amplifier input lead to the ground terminal on R 1 , the blue input wire to the center terminal on R1, and the red and orange switch leads to the terminals of switch S1. Connect the black and yellow amplifier output leads to the speaker terminals.

Shift wire position as needed so amplifier will fit in place.

Now position the amplifier for mounting. Pass the two pieces of solid wire through the inside of the speaker magnet frame, bend them around the outside of the frame, cut them to length, and solder them to the ground
strip along the upper edge of the amplifier. This arrangement will secure the amplifier in place. Check that none of the amplifier components or leads short against the tuning capacitor, volume control, diode, coil leads, or speaker terminals.

Fasten the battery connector to the battery ard insert in place. Attach volume controlswitch knob and tuning. capacitor dial.

It's a good idea to fasten the back of the case to the front with a drop of Duco cement to prevent accidental opening.
To Test Quickie, turn the volume control all the way up. Rotate C1 until a station is heard. The receiver will be most sensitive and directional with the antenna axis oriented horizontally. The antenna pick-up lead on the original model was about 10 inches long, but a longer lead will provide greater sensitivity.

You can't expect Quickie to perform like a superhet. But, considering the number of transistors and the cost, you'll be getting your money's worth.

Desk lamp mike stand

 Record that tall story us-ing the desk lamp reffec-
tor to increase the range
of your hand mike

AMICROPHONE stand for hand mikes (such as those that come with less expensive tape recorders) can be improvised from a flexible neck desk lamp with its cord removed (or at least disconnected), a plug to
fit the lamp's socket, and a $1 / 8 \times 3 / 8 \mathrm{in}$. metal strip. Bend the metal strip to the size necessary for the mike in questicn, and use as shown. To pick up faint sounds attach the lamp's bowl-type reflector to the lamp's socket to "funnel" or focus the sound into the mike. Face the mike toward the inside of the reflector.-Andy Vena.

Grommet Is Pilot-Light Bumper

Keep hands away from the pisture tube and the high voltage cage, even though you have pulled the cheater cord. An 18,000 volt shock can kill! And be sure you aren't standing on a damp basement floor.

Don’t Kick Your TV Set FIX IT

By JACK GRIMES

F you know what not to do as well as what you can do, you can save up to 80% of the cost of maintaining the family's one-eyed monster.

The wise family repairman does not call a serviceman every time his picture tube has the wiggles, or does he immediately jerk out all the tubes and head for the self-service tester at the drug store. Nor does he attempt to become an electronic expert and attack the set with wire cutter and soldering irons.

All too often, a serviceman "loads" the receiver with new tubes, or the owner is informed it will have to go to the shop. Then, from $\$ 20$ to $\$ 100$ may be required for a ransom.
(Editor's Note: In many parts of the country, the TV repair industry has organized to discredit shops that habitually gouge the customer. This once all too prevalent practice is no longer the general rule.)

Sometimes the owner having suffered the gouge, fills a paper sack with every tube in
the set, only to find the drug store tester shows half or two thirds of his tubes weak or shorted. The bill for replacements may be even larger than a shop repair, and the set may still refuse to operate.

Another owner may search the library and newsstands or send off for every repair-it-yourself book he can find. He may invest in a few hand tools only to wind up with the biggest repair bill yet, the cost of a new set.
These examples may sound fictional, but 10 years of active participation in the TV service industry tells me that 90% of all set owners fall into one or more of the three patterns. The other 10% are home repairmen who have the prime quality of common sense. They know the meaning of such basic terms as video, audio, horizontal, vertical, and tuner, and they know that there is only one worthwhile test for any TV tube: Will it work in a particular set?
The Wise Set Owner has usually acquired this knowledge at considerable expense. Seldom has he read it in a "be an electronics expert" book. He knows that he cannot tackle major trouble shooting problems without a shop full of instruments, but he has the sagacity to do all that any TV repairman will usually do in the home. He knows: (1) that 85% of all set troubles are caused by defective tubes; (2) how a defective tube can be located using the set itself as a tube tester; (3) that he should avoid drug-store tube testers, since many of them are built to show a maximum number of shorted or gassy tubes (up to 70% of the tubes showing bad in these checkers may be usable in your set) ; (4) that he can obtain tubes at a wholesale price, and (5) that he can usually save the average $\$ 5$ service call charge.

Because there are so many varying conditions within a set-and so many different tube applications, the only valid check is under actual operating conditions. For example, a weak audio tube may provide all the volume you can use, and could last years in your set, yet might be useless in a transmitter. In one case only a fraction of the tube's capacity is needed; in the other full output is required. Replacement in a transmitter would be necessary-in your set foolish. A tube checker would say the tube was bad.
If you do use a public tube checker, all you can save is a service call. You will still pay list price for a tube, and the present average

Every set has a tube layout, either a decal or sticker fastened somewhere on the inside wall or chassis. Do not remove chassis or tamper with picture rube adjustments. You may need a Photofact folder (see text).
is around $\$ 4.00$. You can buy the same item, wholesale for as little as $\$ 1.00$, from mail order electronic supply houses who advertise in this handbook.

If your set flips, flops, refuses to light or to speak, you may feel you're all set to go to work. Slow down. Before you do anything, make sure that you completely understand all instructions. Remember that you are dealing with lethal voltages. Never put your bare hand into the back of the set without pulling the line plug, from the wall outlet, and even this may not always be safe. High voltage capacitors can hold a charge for several hours, if a bleeder resistor is defective.

The only tools you need are a screwdriver, wrench, and a long insulated wand or stick. Remove the back and find the tube location chart. Compare it with a block diagram (Fig. 5). If you own one of the larger sets, or run into any unusual problem, it would be a worthwhile investment to order a copy of Howard Sams Photofact Folder. These folders are available for every make and model of TV set. (Available Allied Radio, by make and model, 38 KK 500 , $\$ 1.95$ postpaid).

As the signal travels through your set, in places both picture and sound are present, in others only one. From the antenna, both sound and picture travel through the tuner, through I.F.'s (amplifiers) and detector. Sound splits off, and picture feeds only through the video amplifiers to the picture tube. Sound goes through the audio tubes to the speaker.

Additional circuits are required to "draw the picture." These are horizontal and vertical "sweep" circuits (Fig. 5). Horizontal tubes are also responsible for creation of the very high voltages applied to the picture tube. A completely dark screen is usually caused by one of these tubes often located inside a shield (Fig. 1).
Another set of circuits keeps the picture

On this set, the cheater cord was originally riveted to the fiber back board. Rivets were removed so the cord could be used as a cheater.
in "step" with the transmitter. Tubes here are designated "sync." Another tube, "AGC" (automatic gain control), keeps the picture level constant under varying signal strengths.

By studying block diagram and tube chart,

The service tech uses an insulated plastic wand to tap tubes. He watches the screen in a mirror, or reflected from a window. Erratic picture or sound pinpoints the foulty rube.

buy one of the filament testers available for about $\$ 3.00$.

If you notice a pungent acrid odor, you may have a bad selenium rectifier. Turn the set off immediately. It will require shop work. The same applies if you notice any strong smell or smoke.

If all tubes light, inspect each one. After the set has been on for a few minutes, pull the plug and feel each

With cheater cord pulled out, the repairman carefully replaces an old tube with a new one. He works with one hand only to avoid shock.
try to determine which tubes may be at fault. If a set has a perfect picture, but no sound, the first thing to look for would be a bad audio tube. If a picture is pulled up at the bottom, it could be a bad tube in the vertical sweep amplifier circuit. Or if it is squeezed in at the sides, check tubes in the horizontal circuit.

If both picture and sound are affected, the cause must be in a circuit common to bothtuner or I-F. Sound may appear normal while the picture is snowy because the eye sees more trouble than the ear can hear. Snow suggests a tuner tube. A picture that won't stand still is caused by sync circuit trouble. One that blanks out-the AGC circuit.

Now set up a mirror in front of the set, or use the reflection in a window (Fig. 4). Plug in the cheater cord, and proceed with caution. If none of the tube filaments light, look for a blown fuse. Also, the set may be wired in series like Christmas tree lights. When one filament blows, they all go out. You can use the drug store checker to check filaments, or
tube (use one finger
only) except those in the high voltage section. All tubes except the high voltage rectifiers must light or feel warm to the touch. Never get closer than a few inches to the high voltage rectifier tubes while power is on. Even with power plug out, the high voltage circuits can carry a stored charge. To be safe, wait a few moments, and then use a well insulated lead wire to short the high voltage tube cap to ground.

If no burnt out tube filaments are found, turn power on again and tap each tube gently with an insulated wand while you watch the picture in a mirror (Fig. 4). A shorted tube will cause lines in the picture, cause it to shift or tear, or cause noise in the sound system. Watch for signs of arcing within the tubes.
This is the method servicemen use to find a bad tube; logic, inspection, jarring under operation, and finally substitution. Sometimes you'll find that one set has several tubes of the same type number used in different locations. Swapping such tubes within the set will tell you that one tube is bad if the trouble transfers.
You'll Save Money by keeping a complete set of spare tubes (except picture tube) on hand. The set may cost you less than $\$ 5$ if you buy at an electronic jobber, or through one of the mail order wholesalers. Such dealers will send catalogs on request and will sell not only to service shops, but to amateurs and experimenters too.
Never try to replace circuit parts other than tubes and fuses unless you are advanced in electronics. Do not disturb any of the chassis adjusting knobs and screws unless they are clearly marked as to function. For example, the vertical linearity control affects the top of the picture. Height, bottom, and width controls do what they say. Upset other adjustments and your set will have to go to a shop for alignment. In the event that you do call in a repairman, insist that all replaced parts be returned to you with an itemized bill.

Unusually light and comfortable, these earphones give you sound quality comparable to commercial stereo haadsets.

BUILD YOUR OWN HI-FI STEREO HEADPHONES

By ALTON B. OTIS Jr.

USING two replacement transistor radio speakers that cost less than $\$ 2$ each, you can build a stereo headset comparable in sound quality, comfort, and looks to models costing five times as much.

Three factors contribute to the quality of these phones. The speakers, only three inches in diameter, make the phones compact and light in weight. Second, the speakers are sealed to the ear with foam rubber rings, thus high apparent sound levels are obtained with very low power input. Distortion is held to a minimum, increasing over-all response at the same time. Third, the speaker is mounted on a cardboard baffie with a center hole. If you vary the diameter of the hole, the low end of the range is hardly affected. But due to a high frequency beaming effect, the builder can tailor response just by altering the size of the hole.

Make the earphone housings of $8-\mathrm{oz}$. plastic cups of the type used to package food products and novelty items. Drill two $3 / 32$-in. holes $1 / 4 \mathrm{in}$. up from the bottom of the cups directly across from each other on a center line. Drill a third hole at the bottom for the wire lead. Use a spray lacquer such as Krylon to paint both sides of the cups in an attractive color.
Use $3 / 2-\mathrm{in}$. pasteboard, or three layers of
$1 / 20$-in. thick or three layers of posterboard to cut two speaker mounting panels $31 / 2-\mathrm{in}$. diameter to fit the cups. Make a temporary connection from the speakers to a mono source. Be sure phasing is correct. Use rubber cement to temporarily attach each speaker to the mounting panels. Press tightly against the ear during your test. If you want more high frequency response, enlarge the holes until you obtain a satisfactory balance. A $3 / 4-\mathrm{in}$. diameter will usually give you very good results.

With the hole size determined remove the speakers. Trim and cement a piece of baffle cloth to one side of each panel. Mount the speaker on the other side using contact glue. Be sure to avoid spilling glue on the speaker cone or corrugated edge. Cover, but do not completely seal off the opening in the back of the speaker frame with masking tape.

For the earphone rings. cut two pieces of $3 / 4-\mathrm{in}$. thick foam rubber $103 / 4-\mathrm{in}$. long. At the same time cut another piece $21 / 2 \times 53 / 4$-in. for the head band. Brush three heavy coats of rubber cement on the strips allowing a few hours for each coat to dry, and then spray with heavy coats of clear plastic. The rubber cement seals the rubber air tight, yet allows it to remain soft and pliable, while

Applying contact cement for final assembly. The earphone housings, made of plastic cups, are filled with a backing of fiberglass to eliminate stray sounds back of the speaker cones.

WIRE SUPPORT

the spray eliminates surface stickiness of the cement, keeping the foam clean.

Cement the ends of each of the two long rubber strips together in a ring, and contact glue to the cloth side of the speaker mounting panels (Fig. 3).

Make the headset frame of two $25-\mathrm{in}$. lengths of $11-\mathrm{ga}$. tempered brass wire. Bend as in Fig. 3. For a brushed brass effect, sand the wire lightly. Cut and shape the top piece from a piece of tin can metal. Bend the tabs over the curved portion of the brass wire and crimp tightly in place. Bend the end tabs inward over the side tabs and solder the joints firmly. Touch up sharp edges with a file and rinse with turpentine to eliminate traces of rosin flux. Use a metal primer and then paint. The brass should be protected with masking tape during spraying.

Wire the Headset to a $10-\mathrm{ft}$. length of 4 conductor cable, or any convenient length you choose. Strip $20-\mathrm{in}$. of the outer insulation from one end and $2-\mathrm{in}$. from the other. Cut a $3 / 4-\mathrm{in}$. length of $1 / 4-\mathrm{in}$. brass tubing and sand the surface for effect. Clean up burrs and slip over the cable. Separate the four $20-\mathrm{in}$. conductors into pairs and twist together. Wrap a short length of masking tape around the outer insulation where these leads come out of the cable and press fit the tubing over for a neat connection. At the other end connect a three-wire phone plug to match your equipment, soldering one wire from each of the phones to the ground plug. If your headset will be connected to two amplifiers, use a pair of two conductor plugs instead.

Final Assembly consists of attaching the plastic cups to the frame by bending the ends of the brass wire into the side holes and turning up on the inside. Be sure your third wire lead holes face down. In each cup, insert a

MATERIALS LIST-STEREO HEADPHONES

Amt. Req'd
Size and Description
$23^{\prime \prime}$ PM transistor radio replacement speakers (Lafayette Radio SK.193)*
10 ft .4 conductor vinyl covered cable (Belden 8444)
13 conductor phone plug (Switcheraft 12-B)
2 g oz. plastic cups (Austo Pak \#1608, Plastic Container Corp.. West Warren, Mass.)
4 ft . No. 11-gauge spring tempered brass wire.
1 pe. $12 \times 4 \times 3 / 4^{\prime \prime}$ foam rubter matting
$1 \mathrm{pc} .3 / 4 \times 1 / 4^{\prime \prime} 0 . D$. brass tubing
Misc. $3 / 32^{\prime \prime}$ paste board, tin can metal, $3 / 4^{\prime \prime}$ fiberglass mattino, soft coarse weave cloth (for panel opening), contact olue. rubber cement, paint, primer, etc.

* Speakers and other electronic items required will be found in the 1962 catalog of Lafayette Fadio Electronics, 111 Jerict.o Turn. pike, Syosset, L. I:, N. Y.
piece of $3 / 4-\mathrm{in}$. fiberglass matting $11 / 2-\mathrm{in}$. wide by $10-\mathrm{in}$. long. Use a small square of fiberglass in the bottom. Run the twisted wire leads through the bottom holes and tie knots in each pair 4 -in. from the ends.

Solder the leads to the speakers making sure they are correctly phased. Color dots on the speakers make this easy. Use contact glue on the bottom edge of the foam rubber rings and on the inside edge of the plastic cups. Push the speaker assemblies into the cups and position carefully. Contact glue the large strip of foam to the bottom of your head bracket and the project is completed.

Installation. If you are using your headset with a high quality stereo amplifier connect directly to the 8 ohm speaker output terminal. For mono listening connect in parallel to the 4 ohm terminal. If your amplifier is the transformerless ac-dc type or has a high a-c ripple content, the residual hum will make listening uncomfortable. In most cases, the hum can be eliminated by a resistance network (Fig. 4) between phones and amplifier which will permit you to operate at a higher output power level. If one-watt resistors are used, you'll find you can fit the er.tire assembly within the shell of a large size three conductor plug such as Switcheraft 12-B.

Performance Notes. Frequency response measurements in the low and mid range regions indicated that usable response extended to 30 cps , while at 45 cps , it was down only 2 db . Subjective measurements at the high end indicated a top of about $17,000 \mathrm{cps}$ reasonably flat to $12,000 \mathrm{cps}$. There was a 15 db peak at 32 cps due to the high resonant frequency of the small enclosure. Distortion was extremely low at normal levels, and moderate at ear-splitting levels, while transient response was very good.

Connect the booster chassis to your FM tuner with a short length of twin lead. The other twin lead feeds out to the antenna.

More Power for Your FM Set

Simple one-fube amplifier increases FM signal 15 times for better music and DXing

By C. F. ROCKEY

1F you live just beyond the acceptable quality range of a popular FM station, or if you'd like to chase FM-DX (long distance reception), this RF amplifier is the answer. Or, maybe you live in an apartment building where you can't install a full grown antenna for your FM tuner. Then this booster will give your tuner a real chance to exercise its built-in noise-limiting abilities to better advantage. Even on local stations, you'll be surprised at the improvement in music quality.

A $71 / 2 \times 4$-in. cake pan makes an inexpensive easy-to-work chassis just the right size. A coat of spray lacquer in color to match your other equipment will give it a professional touch.
Punch the hole for the tube socket first. If you lack regular chassis punches, just prick a small hole in the right place with an ice pick, and then enlarge the hole to $3 / 4$-in. using the tang of a mill file or a reamer. Next drill the holes for the tuning capacitors (Fig. 3) to $1 / 2$-in. diameter. But do not mount yet.

Insert the tube socket in its hole from the bottom of the chassis. Fasten firmly in place by soldering the socket "ears" to the chassis. You can do it with a common 100 -watt soldering iron. Mount a six-terminal strip centered on the rear of the chassis (Fig. 2) using 6-32 machine screws and nuts. Punch a hole oppo-
site each terminal for feeding the leads through the chassis.

Next mount the power transformer and capacitors. Fasten the rectifier in place by means of a $6-32$ machine screw passed through the center hole. This hole is insulated by the manufacturer for this purpose.

Start the wiring by feeding the black primary transformer leads through the holes to the power line terminals on the strip. Since most sound layouts have one master switch, no separate switch is shown. However, if you need an individual power switch on your booster, connect a SPST toggle switch in series with one of these transformer leads.
Next wire the selenium rectifier as in Fig. 3. The 47 -ohm resistor protects the rectifier from current surge when the electrolytic capacitor charges. Be sure to connect the positive side of the rectifier to the resistor, and the capacitor to the negative side. This connection must be right.

Support the "hot" positive connection of the electrolytic capacitor by an insulated tie point to the side of the chassis (Fig. 3). Solder the negative connection directly to the chassis. The rest of the power supply wiring is simple, but be sure to observe the right polarity on both the rectifier and electrolytic capacitor. The ceramic capacitors may be

MATERIALS LIST-FM BOOSTER

Amt. Req. Size and Description
1 fruitcake pan, Ekco. $4 \times 7 / \mathbf{z}^{\prime \prime}$ opening (approx.) 50 mmf variable capacitors, Cardwell PL 5004 plastic knobs, $1 / \mathrm{s}^{\prime \prime}$ shaft six terminal Jones barrier terminal strip power transformer: 120 v. primary, 120 velt secondary Stancor No. PS 8415
selenium rectifiet, Sarkes-Tarzian type 50 rated at 130 volts at 50 ma .
electrolytic capacitor, $25 \mathrm{mfd}, 150$ w.y. Cornell Dubilier No. 2515

Amt. Req. Size and Destriction

[^3]
wired in either polarity.
Check power supply operation by connecting a line cord to the power terminals. Then read voltage across the electrolytic capacitor. From 140 to 160 volts indicates proper operation. If your wiring is correct but you have difficulty, check the rectifier and capacitor first. The transformer seldom will cause trouble.

Wind the input and output tuning coils, \#14 tinned copper wire, around any convenient round object ($1 / 2-$ in. dia.) such as a drill shank, or fountain pen barrel. Then slide the coil off the form and adjust the turns for uniform spacing over a length of about $3 / 4-\mathrm{in}$. Connect these coils across each of the tuning capacitors as in Fig. 3.

The rest of the amplifier is easy to wire following the schematic. Keep all high frequency leads as short as possible and separate the grid and plate leads as much as possible. Press these leads close to the chassis to confine their electromagnetic fields. There should be no difficulty in wiring and checking the circuit.

Wind L_{1} and $L_{\text {c }}$ of insulated hookup wire, two turns around the same form used earlier. Remove from the winding form and push between the two turns at the grounded end of each of the two tuned coils. Press these turns in as far as possible for the closest possible coupling and cement in place with Duco or equal household cement. Twist the leads of each coil together and connect to the proper terminals.

Keep the input and output leads as far from each other as practical. Ground the inside tuner output terminal to further reduce coupling with the input.

With wiring completed, turn power on and connect your FM antenna lead to the antenna terminals. Use a short piece of 200 ohm twin lead to connect the output terminals to the tuner antenna terminals. If the wiring is correct, the 6AG5 tube should light up.

Tune in a fairly strong FM station on the tuner: Then adjust the booster's capacitors for greatest signal strength. If the booster is operating as it should, this adjustment should increase the volume noticeably. If not, check the wiring carefully for short-circuits.

When a decided boost is obtained on strong local signals tune in a weak one, and readjust the booster tuning capacitors. It is on these weaker signals that this unit really should "pay off." When operating correctly, this booster should pull in several stations which were inaudible without it.

If little or no boost is obtained, but a loud howl, or blocking, is observed at certain dial settings of the booster, the unit is oscillating. This is caused by feedback from the output to the input. To correct, separate the input and output twin-leads more completely or reverse connections at either (but not both) the input or the output terminals. If this does not eliminate the oscillation, invert the chassis and bend the plate and grid wires further apart, or press each closer against the chassis, avoiding short-circuits, however. This will correct the tendency to oscillate.

Suitable for boosting FM signals, this unit should not be expected to perform satisfactorily for TV signals. In order to properly reproduce picture detail it is necessary that all TV circuits be designed to pass a signal bandwidth approximately thirty times greater than required for FM broadcasting.

Transistorized Signal Tracer

For less than $\$ 8$ you can build this compact, portable signal tracer which operates on a self-contained battery

By FORREST H. FRANTZ Sr.

Tracing a signal in transistor radio.

THE signal tracer is a valuable instrument for the experimenter and technician. It can be used to trouble-shoot radios, amplifiers, and other electronic equipment. This transistorized signal tracer (Figs. 1 and 2) will take only an hour or two to build.

Another of its important functions is that of a universal test amplifier to lest microphones, phono pick-ups, and other kinds of transducers. The signal tracer can also serve as an amplifier and speaker for earphone radios.

Because of the printed circuit amplifier it employs (Lafayette PK-522 complete with transistors, $\$ 3.75$), the signal traver can be built quickly and inexpensively. You will appreciate its small size and portability. It has a self-contained speaker and battery, and weighs only a few ounces. No special tools are required.

Construction. Make the necessary small holes in the plastic case with a heated ice pick. Place the speaker inside of the case in the position shown in Fig. 3A and use the speaker as a template to make the four mounting holes. Remove the speaker from the case and make a series of random holes (see Fig. 3B) for speaker sound. Make two holes

Compact unit is a versatile proubleshooter.
$11 / 16 \mathrm{in}$. from the respective case edges with the heated ice pick to establish centers for the Jack J1 and volume control R2-S mount. ing holes. Enlarge these holes to $1 / 4 \mathrm{in}$. diameter with a taper reamer.

Cut off excess plastic built up around small holes and wash the plastic case in soapy water. Rinse in clear water and dry thoroughly.

Next, cut the shaft of volume control R2-S with a hacksaw to a length of $3 / 8$ in. Place the portion of the shaft to be discarded in a vise and catch the control as it falls free to prevent damage. Mount the speaker, R2-S, and J1. Connect C1, R1, and the ground wire as shown in Figs. 3A and 3B. U'se resin core, solder and a hot clean soldering iron. Be careful not to overheat the parts, and be especially careful not to melt the plastic case. Set the case aside for final assembly later:

Amplifier Modification. Figs. 4A and 4B show the amplifier as you will receive it with all leads attached. Use the instruction sheet which comes with it to supplement the figures which appear in this article.

Disconnect and rernove the $30-\mathrm{mfd}, 10$-volt capacitor on the bottom side of the amplifier board (see Fig. 4B). Be careful to note polarity and connection points. Install this capacitor on the top of the amplifier board and connect to the same points as before, with

Mounting speaker and volume control.
leads inserted through the top of the board (see Fig. 4C).
Next, solder resistor R3 in the circuit on the bottom side of the board. One end of R3 connects across the points to which the red and orange volume control leads are connected. Remove the red and orange volume control leads. The other end of R3 connects to the broad ground strip (top edge of board, Fig. 4D). Disconnect and remove the green volume control lead.
Now, solder two $23 / 4 \mathrm{in}$. lengths of No. 22 bare, solid wire to the amplifier board ground strip (see Fig. 4D), keeping in mind that these two wires should be positioned in such a manner that the amplifier can be attached through the speaker magnet frame as shown in Fig. 6B. A trial or two may be required to obtain satisfactory positioning..

Wiring. With the case assembly and amplifier in the relative positions shown in Fig. 6A, complete the amplifier wiring. The schematic (Fig. 5) may be helpful.
Connect the green amplifier input lead to the ground terminal on $R 2$, the blue input wire to the center terminal on R2, and the

View showing holes drilled for speaker sound.
red and orange switch leads to the terminals of switch S . Connect the black and yellow amplifier output leads to the speaker terminals.

Position the amplifier for mounting as shown in Fig. 6B. Pass the two pieces of solid wire through the inside of the speaker magnet frame, bend them around the outside of the frame, cut them to length, and solder them to the ground strip along the upper edge of the amplifier. This arrangement will hold the amplifier in place securely. Be sure that amplifier components or leads do not short against the volume control switch, jack, or speaker terminals.

Fasten a piece of tape to the battery (Fig. 6A), to prevent it from shorting to the speaker terminals. Fasten the battery connector to the battery, and insert it in place (Fig. 6B). Attach a small grommet to the battery case (with rubber cement) to hold the battery in place when the back of the case is closed.
Make a narrow groove on the face of the volume control knob with a hacksaw or triangular file. Fill the groove with white India ink or white paint. Wipe off excess from the front of the knob, and fasten the knob on the shaft of R2-S.

Amplifier before modification with original position of $30 \mathrm{mfd}, 10$ volt capacitor to be relocated.

4 D

Amplifier after modification, the capacitor having been relocated.

To Test the Signal Tracer, turn the volume switch all the way up. Place your finger on the tip terminal of J 1 . You should hear a hum if everything is OK . If not, check for wiring errors, shorts, poor connections, and a bad battery. You'll rarely find bad parts among new purchases.

The Test lead for use in audio signal tracing includes a miniature plug (part of Lafayette MS-370), shielded wire, and two Minigator clips for connection to the circuit under test. Remove about an inch of the outer insulating sheath; and, with an ice pick, loosen the metal braid on the shielded wire back to the sheath. Twist the shield strands together. Strip about $1 / 4 \mathrm{in}$. of insulation from the cen-

ter conductor. Slip the plug handle over the center conductor and the shield. Solder the center conductor to the center (tip) terminal on the miniature plug and solder the shield to the shell terminal of the plug.
Tape as required to prevent shorting and fasten the plug handle. Strip the other end of the shielded wire and fasten the Mini-gator clips. Tape center lead down to the Mini-gator clip handle for strain relief and identification.

MATERIALS LIST-TRAMSISTORIZED SIGNAL TRACER Desig.
R3
R1 $220 \mathrm{~K}, 1 / 2$ watt carbon resistor, 10%
R2-S 10 K miniature volume control with switch (Lafayetle VC. 28)

C1 .01 mfd., 600 volt tebular capacitor (Lafayette C-503)
AMP 3 transistor subininiature audio amplifier (Lafayette PK.
522)

SPKR 21/2" PM speaker, 10 ohm voice coll (Lafayette SK-66)
J1 miniature jack (Lafayette MS-370 includino plug)
B $\quad 9$ volt battery (Burgess 2U6)
minlature knob (Lafavette MS.185)
$11 / 8 \times 31 / 8 \times 37 /{ }^{2 \prime}$ plastic case (Lafayette MS-298)
30° single conductor shielded wire (Belden 8411) and 2 Mini-glator clips (Mueller 30) for test leads
Parts for this project may be obtained from Lafayette Radio, 111 Jericho Turnpine, Syosset, L. I., N. Y.

CONNECTIONS FOR SIGNAL TRACING LEAD

With this test lead you can trace signals in the audio portion of radios, audio amplifiers, and other low frequency radio equipment. You can also test microphones, phonograph pick-ups, vibration transducers, and other "energy changers." When you use it as a test amplifier, connect the test lead shield to ground and the center lead to the high point in the unit under test.

RF and IF Uses. To use the signal tracer in the $R F$ and IF portions of a radio receiver, you'll need a detector attachment such as that sketched in Fig. 7. This detector is similar to the detector in radios and performs the

SCHEMATIC AND PICTORIAL SKETCH OF DETECTOR ATTACHMENT FOR RF SIGMAL TRACING
same job. You can build it on a piece of bakelite or stiff cardboard, or into a small plastic tube.

When you are signal-tracing in a radio or amplifier, the signal should become stronger as you progress from the input to the output end of the unit. If the unit under test is inoperative, you will encounter a point where no signal is present. This localizes the trouble between the no signal point and the last point at which the signal was present. Then it's an easy matter to pinpoint the trouble with voltage measurements and other conventional tests.

Pyramidal Soldering Iron Stand

- You can stand or toss this temporary soldering iron rest onto the bench, and use it in whatever position it comes to rest. Shaped like
 a pyramid, all of whose sides are equal, it can-
not fall over and always rests on a firm base. In addition, it does not get warm in use, as the two small points in contact with the iron do not transfer enough heat to warm up the mass of the metal. Cut out the stand from a piece of 20 -gage sheet metal (steel, brass or aluminum) and file to shape. Bend stand to a 60° angle across the middle, making a sharp corner. This will close up wide notches at each end of the bending line to approximately the same size as the others.-L. C. Mason.

Ventilate Your TV Set

- Television sets develop a lot of heat and sometimes the only provision for ventilation is a series of holes punched in the back panel. Continued overheating can short-
 en the life of those costly television tubes.

To get more ventilation, replace the panel with a simple frame covered with plastic screen such as is shown above.-W. H. McClay.

Low range on most ohmmeters is 0 to 1,000 ohms. This meter gives you dependable readings of low ohmage parts such as this speaker coil. You can calibrate the meter to read even in fractions of an ohm.

Low Range Ohmmeter

Low scale on most ohmmeters is 1,000 ohms. This meter can read down to fractions of one ohm!
By GUS WESENFELD

QUITE a few electrical and electronic parts such as ballast resistors, lamp filaments, speaker coils, and extension lines have resistance so low it cannot be read accurately, or at all, on the ordinary volt ohmmeter. This project which priced out at less than $\$ 12.00$ does the job.
Though the circuit values in the schematic (Fig. 5) provide for a low range scale reading from $1 / 2$ ohm to 25 ohms, you can easily set up a low range reading from $1 / 10$ ohm to 2 ohms, or any other similar range. This can be done by lowering the value of R3, explained later:

Cut the Holes in the plastic case panel (Fig. 2) with a Hy cutter and drill press, or hand coping saw. Thin spiral blades work best. Before you lay out your holes, check the parts for size. Though a $0-1$ milliammeter is shown, you can substitute practically any available milliammeter, even a 0-10 ma. meter
Mount all parts in position, except the meter, safer in its shipping carton until last. Use any thin sheet metal for the chassis. It is held in place by the two upper screws that fasten the switches to the panel. Mount rectifier D1 in place on its mounting stud, and check all wiring carefully.

Pretesting. Turn R1 and R2 counter-clockwise as far as possible. Switch SW1 to off and SWE to high range. Plug in the ac power cord, and with a vom set for a-c, check voltage across the transformer input. It should read 12.6 volts. Next close switch SW1 and measure d-c across capacitor C1.

The filament transformer is housed in a small aluminum box (top). Mount the silicon rectifier on an L-shoped aluminum brocket. It is located between the meter and capacitor fostened to the ponel with the top switch mounting holes.

6 (SEE TEXT)

This should be about 16 volts. Turn S1 off and plug test clips into SO-1.

With your vom on a 10 ma . range, clip the leads to the low range ohmmeter test clips. Turn switch SW1 to on and slowly turn R1 up until the vom reads half scale. Then turn R2 clockwise to bring the meter to full scale. If either test causes the meter to swing down

No.	Size and Description
M1	0.1 ma Meter, Olson Radio \#ME.68
D1	2 amp silicon rectifier, Oison Radio $\#$ RE. 66 or equal
T1	2.6 v filament transformer. Oison Radio T-304
R1	5000 ohm $1 / 4$.watt potentiometer. Lafayette VC. 937
R2	$20.000 \mathrm{ohm} 1 / 4$-watt potentiometer, Lafayette VC. 43
R3	3.9 ohm. 2 watt, carbon resistor (see text)
Cl	```electrolytic capacitor, 25 mfd, 25 W.V., Lafayette #C.129```
SW-1	SPST slide switch, Lafayette \#SW-14
SW-2	DPST slide switch. Lafayette $\#$ SW. 16
S0-1	Cinch-Jones chassis mounting 2 conductor socket \pm S-2402-DB (Allied $\# 22 \mathrm{H} 481$)
P1	Cinch-Jones 2 conductor plug, $=$ P.402.CCT (Allied \#40-H.910)
1	set of universal test leads, Lafayette $\pm F .373$
1	minibox, $23 / 4 \times 21 / 8 \times 15 / 8$, Lafayette MC. 358
1	plastic case, $61 / 4 \times 33 / 4 \times 2$, Lafayette MS-216
1	panel for above, Lafayette MS-217
Misc.	6-32 th machine screws, line cord
Sources:	Olson Radio, 260 Forge St., Akron, Ohio Allied Radio, 100 N. Western Ave., Chicago 80, III. Lafayette Radio, 111 Jericho Turnpike, Syosset, L. I., New York

MATERIALS LIST-LOW RANGE OHMMETER
Size and Description
0.1 ma Meter, Olson Radio \#ME. 68

2 amp silicon rectifier, Olson Radio $\#$ RE- 66 or equal
.6vament transformer. Oison Radio T. 304
3.9 ohm .2 watt, carbon resistor (see text)
electrolytic capacitor, $25 \mathrm{mfd}, 25$ W.V., Lafayette \#C. 129
SPST slide switch, Lafayette \#SW-14
Cinch-Jones chassis mounting 2 conductor socket $\# S-2402 \cdot D B$ (Allied $\# 22 \mathrm{H} 481$)
\#40-H.910)
minibox, $23 / 4 \times 21 / 8 \times 15 / 8$, Lafayette MC. 358
plastic case, $61 / 4 \times 3 \frac{1}{4} \times 2$, Lafayette MS-216
panel for above, Lafayette MS-217
6-32 th machine screws, line cord
Allied Radio, 100 N . Western Ave., Chicago 80, Ill. Layette Radio, 111 Jericho Turnpike, Syosset, L. I., New York
scale, reverse pot connections. With tests finished, complete assembly by installing the milliammeter.

Calibration requires you remove the plastic meter cover. Pry it up with a thin screw driver at several places until the cover snaps off. Use a small sharp screw driver to remove the meter scale plate and replace with a dial (Fig. 4) drawn on white card stock.

Let's assume that you want low scale to read 0-25 ohms. Place a zero mark about $1 / 4-\mathrm{in}$. left of the meter's full scale point. Clip a 3.9 -ohm resistor across the test clips, set R1 to low and switch SW-1 on. Slowly turn R1 clockwise until the meter reads at the new zero mark. Turn SW-1 off, and clip a 25 -ohm resistor in parallel with the 3.9 -ohm resistor. Turn SW-1 on. The meter should rest about $1 / 4-\mathrm{in}$. to the right of zero left. If the needle rests too far to left, you will need a larger value, say 4.3 ohms. If it is too close to zero, try a smaller resistor such as 2.9 ohms. During trials never remove the resistors from the test clips without turning SW-2 off.

After soldering the shunt resistor into the instrument circuit, calibrate the other scale points using 4 or 5 intermediate resistors. When the shunt is in place, you no longer need to turn SW-2 off when changing resistors. Accuracy of the meter depends on the
calibration resistors, for example, if you use 1% resistors you'll get accuracy around 2%.

Calibrating the High Range. Whenever you switch from range to range, be sure to turn the unit off to protect the meter. On high, turn R2 clockwise until the meter reads at the zero mark established earlier. Again use about 5 different values of resistors to mark points on the scale. Ink in your numbers, and replace the plastic cover.

Any low ohmage range can be calibrated. For example if you want a $1 / 10$ to 2 ohm scale, select a trial resistor, say 2 ohms and test as before. Then add another 2 ohm resistor and note the meter deflection. The object is to select a shunt that allows the meter to indicate top value at the desired point on the scale. You'll find the meter may require occasional zero adjustment to compensate for varying line voltage.

Pushbutton

 MUSIC BOX

 MUSIC BOX}

By C. A. KITT

THIS musical toy can be enjoyed by children of all ages, and can be built in less than an hour for a cost of $\$ 3$. To suit your taste in music you have a choice of tunes: "Moonlight Serenade," "Smoke Gets in Your Eyes," "How Dry I Am," "Around the World in 80 Days."
There's no winding. The Swiss-type musical movement is driven by an electric motor energized by a self-contained flashlight battery and pushbutton switch. Depending on who is going to use the music box, the switch can be either the high- or low-pressure type. If low, its leaves will have to be adjusted to obtain desired operation.

Construction. You can house the unit in a small plastic case, which can be sealed shut with Duco or plastic cement if desired. Install the pushbutton switch in a $1 / 4-\mathrm{in}$. dia. hole centered $1 / 2 \mathrm{in}$. from the edges of the case. Then place the musical movement and battery in the case, secure a good fit, and mark mounting holes for the movement. Be sure that the gear wheel on the drum of the movement does not rub against the case.

Make starter holes in the case with a heated ice pick. Enlarge holes to size with a taper reamer and clean them out with a knife.

MATERIALS LIST-PUSHBUTTON MUSIC BOX	
No.	Req. Description
1	Momentary contact switch low pressure (Lafayette MS.449) or high pressure (Lafayette SW-70); low pressure recommended if toy is intended for a baby.
1	Elactric music box movement-‘Moonlight Serenade" (Lafayette MS.760) "Smoke Gets in Your Eyes" (Lafayette MS.761) "How Dry I Am" (Lafayette MS.762) "Around the World in 80 Days" (Lafayette MS-763)
1	Battery (Eveready 935 or Burgess C)
1	$1 \times 25 / 8 \times 35 / 8^{\prime \prime}$ plastic case (Lafayette MS.159)
	Above parts can be obtained from Lafayette Radio, 111 Jericho Turnaike, Syosset. N. Y.

Mount parts and solder the connections, using clean, well-tinned soldering iron and resin core solder. Roughen battery surface to be soldered with a file, then apply soldering heat to the battery for as short a time as possible. Observe correct battery and motor polarity so that movement does not run backward or ${ }^{\circ}$ stick.

If you wish to hide the contents of the case, remove them and paint the inside surfaces of the plastic. This way, the paint will not come off and endanger children.
If you want light with your music, connect a flashlight bulb in parallel with the musical movement. The box will then light up when the switch is depressed.

Adjustable Mike Stand for \$1.50

Build it for your tape, recorder, ham transmitter, club, school, or church

By ART TRAUFFER

yOU'LL have to look closely to realize that the professional appearing microphone floor stand in Fig. 1 is a homemade job. This stand of many uses rests firmly on its three-point wooden base, adjusts freely for any height between approximately 31 and 56 in., and will fit the sockets of all standard mikes.

With some help from his scrap box, the average home craftsman can build the mike stand for less than a dollar. Even if you have to buy everything, the cost should not exceed \$1.50.

Base Preparation. Any knot-free and crack-free slab of wood $11 \times 13 \mathrm{in}$. or larger and at least an inch thick will be satisfactory for the base. You can build this slab easily by gluing together two scrap pieces of $3 / 4-\mathrm{in}$. plywood. The author used yellow pine, which he happened to have on hand. Draw the base layout directly on the wood as in Fig. 2, then cut out the three-legged base with a jigsaw or hand saw. The wood need not be perfectly flat. Since it will set on three points, it cannot rock. File down the saw marks, and round off the ends and sharp edges, sand all surfaces smooth.

The Stationary Upright Tube used is a Newell adjustable closet pole, commonly available in dime stores. You can try other makes, but where diameters differ, you'll need to modify other dimensions accordingly.

No fussing with a set-screw here. When the little miss has finished her solo, the master of ceremonies can take over the mike after friction-sliding it to suit his height.

Remove the metal flanges at each end of the rod by prying out the restraining lugs as in Fig. 3.

Measure the diameter of the adjustable rod you have selected and use the next size smaller drill to bore a hole in the base as in Fig. 4. Carefully ream the hole to make a tight fit with the open end of the large tube. Force the tube through the hole and bend the two lugs outward against the bottom of the base. Now cut a slightly oversize round wood plug from $3 / 4$-in. doweling or scrap and drive it into the end of the tube to secure it tightly to the base.

Finish the wood to match or contrast with other wood pieces in the room where you intend to use the stand. The author applied two coats of a good quality gray paint for a close match with the silver-lacquer coating on the tubes. When dry, attach a screw-type rubber

Remove tube flange by prying lugs out with a screwdriver. Do not cut or bend lugs back until pole has been installed in base.
bumper under the end of each leg of the base. This will allow the metal lugs on the end of the tube as well as any unevenness in the wood to clear the floor, assuring a firm, threepoint support.

Preparing the Tube Top. The most important step is to fit the top end of the telescoping tube with $5 / 8-27$ threads to hold the mike. There are several ways to do this, but the author feels that his method is simple and it also insulates metal mike heads from the metal stand. This is an important safety factor, for shocks have resulted from touching two metal mike stands which were at different ground potentials, or from touching a metal mike stand while the body was grounded.

Remove the hex nut and washers from an Amphenol 75-PC1M chassis unit, which is a non-shorting microphone connector. Place an insulated washer about $13 / 16$-in. od and $3 / 8$-in. id on the chassis unit shank. Then twist the

Insulated installation of connector, ready for any standard mike.

chassis unit tightly onto one end of a $1 / 8$-pipe coupling as in Fig. 5A. Tightly wrap enough $3 / 4$-in.-wide tape around the pipe coupling so the coupling fits snug into the end of the draw-tube (Fig. 5A). Push the coupling into the end of the draw-tube and then wrap two or three turns of $3 / 4$-in.-wide tape tightly around the outside end of the tube (as in Fig. 5). The author used gray Mystik-Tape to match the stand and base.

Friction holds the telescoping tube within the larger tube, so it isn't necessary to make a set-screw for this purpose. To increase the friction, simply spread the open seam at the bottom of the small tube.

Some microphones make their cord connections right through their sockets. If yours is this type, drill a hole through one side of the

DX the Short Waves With a Crystal Diode Radio

By FRANK WOODS Jr.

RECENT availability of truly compact, high gain transistor amplifiers should whet the appetite of the DX experimenter for bringing in distant shortwave stations on a simple crystal diode tuner.

The basic tuner in Fig. 2 pulled in SW transmitters in England, Switzerland and. other distant lands when used with modest amplifiers as in Figs. 1 and 4. Using only a 9 -volt transistor radio battery for power, a $6-\mathrm{ft}$. length of insulated hookup wire for an antenna, and a similar wire for a lead to a water pipe or other good ground, this rig operated a loudspeaker at comfortable listening volume and provided moderately good selectivity for such a modest tuning arrangement.

New parts for this tuner need not exceed $\$ 3$, while a $\$ 10$ bill will take care of at least one of the amplifiers described herewith.

Technical Considerations. Many shortwave stations operate with much more power than the strongest broadcast band stations. Also, shortwave signals travel greater distances than ordinary broadeast band signals. Consequently, the receiving antenna and ground might well deliver about 100 micro-

"Triple-C" basic tuner comprises coil, capacitor ond crystal.

Shortwave fun in a small and simple package; the crystal diode uner combined with a modified "Quickie," three-transistor portable.
volts to the receiver on a signal from a station several thousand miles away.

An inductance coil (L), using a ferrite rod core, and a variable capacitor (C) form the tuning circuit (Fig. 3). This arrangement provides a relatively high Q circuit in the 3.5-7.5 me frequency range. The Q of the ferrite core coil decreases substantially at the high end of this band.

A quick trial with the output of the tuner connected to an audio vacuum tube voltmeter indicated peaks in the 10 - to $30-\mathrm{millivolt}$ range when distant powerful shortwave broadcast stations were tuned in. This is more than adequate to operate an amplifier-loudspeaker combination, which arrangement has been particularly attractive since introduction of the low-cost imported transistor amplifiers.

Tuner combined with powerful sub-miniature, fivetransistor amplifier. All components can be attached to the breadboard or installed in on old radio cabinet.
One of these, Lafayette \#PK-522 is a threetransistor job and costs but $\$ 3.75$. A fivetransistor model, Lafayette \#PK-544, is priced at $\$ 6.95$. If you already have it, you can use a high gain amplifier in your experimental work, but most high impedance input ac-operated tube amplifiers will not perform as well with this SW tuner as \#PK-544.

Building the Basic Tuner. Obtain the parts listed for Project I in the Materials List. Wind 13 turns of the \#18 insulated wire (preferably cotton-covered) close, but not tight, on the ferrite core. Leave about 4 in . of lead on each end of the coil, then pull the turns apart until the winding is about 3 in . long.

Connect the coil (L) to the capacitor (C) as in Figs. 2 and 3, running one lead to a stator lug and the other to the rotor (frame). Use resin core solder and a clean, well-tinned soldering iron. Also solder the diode to one of the stator lugs. To limit the heat reaching the diode, hold it with needle nose pliers between the soldering point and the diode body.

Cut two $6-\mathrm{ft}$. lengths of insulated hookup wire. Solder one (the antenna) to a stator lug on the capacitor and the other (ground wire) to the rotor lug. Attach an alligator clip to the other end of the ground.

Cutting the capacitor shaft to length and housing of the tuner are left to the discretion of the experimenter. However, if you do decide to shorten the shaft, place the end to be discarded in a vise before hacksawing. You may damage the capacitor if you hold the frame in a vise while sawing. 1

Output connections depend on the type of amplifier you choose later. Dial ideas and calibration procedure will be considered after the amplifiers are described.

Tuner Plus \#PK-544 Amplifier. If you decide to tie in this tuner with Lafayette's new 5-transistor subminiature push-pull audio amplifier, add parts listed in Project II of the Materials List and wire according to Figs. 4 and 5. Solder the orange leads from this am-

plifier to the switch (S) and the black, yellow, and green leads to the volume control (R1). Connect the black lead to the low volume end lug and the yellow to the center lug.

Run the black input lead to the capacitor rotor or frame and the blue input lead to the diode. Attach black output leads to the speaker voice coil lugs. The speaker is not specified in the Materials List; nearly anything you have will do. While the amplifier is designed to couple to an 8- to 11 -ohm speaker, this doesn't matter too much since you're not concerned too much about fidelity of shortwave reception. Here are possible speaker-case combinations using Lafayette stoč numb \sim rs:

1. Speakrr \#SK-66, $21 / 2$ in., 10 ohms, \$1.49; mounted on \#ML-81 perforated Masonite koard, 254 , or mounted in $11 / 4 \times 39 / 16 \times 45 / 16-$ in. plastic case, \#MS-162, 32c.
2. Speaker \#SK-108, 4 in., 3-4 ohms, in wood baffle, \$3.25.
3. Good speaker from discarded radio left mounted in the radio case.
If you wish to assemble the entire rig in a single case after you've finished preliminary experimenting, any small radio cabinet will do. You can also assemble it on the perforated hardboard.

With General Purpose or Hi-Fi Amplifier. The tuner may be connected to any high gain battery or ac-operated amplifier you have. However, do not use an ac-dc amplifier (transformerless power supply) because the grounding situation is potentially hazardous. Attach tuner as in Fig. 6 with shielded cable and plug (see Project III in Materials List). Connect the shield lead to the tuner capacitor frame and center lead to the diode and other end of the cable to a phono plug to fit your amplifier.

Modifying the Portable "Quickie." This tuner adapts well to "Quickie," the threetransistor portable radio described on p. 41, with just a few changes needed in the transistor set (Project IV in Materials List).

1. If you have already built Quickie, remove or disconnect the broadcast coil (L1); if now building it, omit this coil.
2. Make a hole near each end of the top of the plastic case, using the heated point of an ice pick to insert the shortwave coil (L) leads (Figs. 1 and 7).

6 (PROJECT III)

Rear view of crystal diode funer encased with "Quickie."
3. Connect the shortwave coil across the variable capacitor on the Quickie.
4. Use the 6 - ft. insulated hookup leads prepared for the tuner as antenna and ground leads on the Quickie.
General Operating Tips. Clip the ground lead to a radiator, water pipe, gas heater, or any other available ground. Spread out the antenna lead, but keep it away from radiators or other grounded objects. If you use a long outside antenna, couple it to the tuner antenna through a $50-\mathrm{mmfd}$ mica capacitor.

You can tune in stations either by rotating the tuning or variable capacitor or by moving the coil core in and out of the coil. While the capacitor is intended for this purpose, the possibility of coil core tuning is worthy of mention because it demonstrates permeability tuning.

You can provide a tuning dial scale by attaching a filing card to the tuning capacitor frame. For calibration points, mark the frequency of the stations you log at the pointer knob settings. Better still, calibrate with a

MATERIALS LIST-CRYSTAL DIODE RADIO
Desig. or No.

Description

PROJECT I—BASIC TUNER

$\begin{gathered} \mathbf{C} \\ \mathbf{L} \end{gathered}$	midget 1-gang TRF tuning capacitor (MS-214)	
	$1 / 4^{\prime \prime}$-dia. $\times 71 / 2^{\prime \prime}$ ferrite core (MS-331) plus insulated +18 magnet wire (see text)	
D	crystal diode (Raytheon 1 N60)	
1	pointer knob (KN .40)	
1	alligator clip ($\mathrm{CN}-268$)	
12 ft .	insulated hookup wire	
PROJECT $\\|$-TUNER PLUS COMPACT AMPLIFIER		
Tuner	parts listed under Project I	
AMP	5 -transistor push-pull audio amplifier (PK.544)	
R1-S	miniature potentiometer and switch (VC-28)	
SPKR	see text. Project II	
8	9 -volt battery (BA.2)	
	miniature volume control knob (MS-185)	

PROJECT $\|\|-W I T H$ GENERAL PURPOSE OR HI-FI AMPLIFIER

Tuner	parts listed under Project I
AMP	any battery or ac-operated high gain amplifier
PL	RCA-type phono plug (MS-167 fits most hi-fi am-
	plifiers)

Quickie all parts listed in material list on p. 42 except Ll Others parts listed under Project I except C and D which appear as C1 and D1 in Quickie circuit

Except where otherwise identified, stock numbers are those of Lafayette Radio Electronics, 111 Jericho Tpke., Syosset, N. Y.
signal generator, if possible. If you don't own an RF signal generator, you may be able to use one at your high school, or at a technical school or college.

Crystal tuner shortwave reception doesn't begin to meet the requirements of the serious ham, but it does provide an interesting series of experiences in hearing DX on extremely modest equipment.

Extending Component Leads

- After the same components have been soldered into several different experimental circuits which then have been dismantled, the length of the
 leads gradually becomes shorter until the parts are no longer usable. You can extend such leads for further use by splicing on a $2-\mathrm{in}$. length of bare wire about the same diameter as the component lead. Wrap several turns of $\# 22$ or smaller bare wire tightly around the larger wire, near one end, to form a connecting sleeve. Scrape both wires clean or remove any enamel coating with solvent. Then push it up until it extends partly beyond the end of the wire. Insert the short component lead into the end of the sleeve and sweat-solder it, using resin sparingly. Grip the short lead with pliers during soldering to prevent overheating the component.-J. A. Сомstock.

Practical work begins with the very first lesson! Voluntary tuition plan! No long-term contracts to sign! No montbly installment payments. Pay only for one study group at a time if and when you order
Build your future In electronics now! SEND FOR THIS free home study CATALOG TODAYI

Just fill out this card and drop
it in the mail.
RCA INSTITUTES, INC., Dept. RX-32
A Service of Radio Corporation of America, 350 West Fourth Street, New York 14, N. Y,

10
The Most Trusted Name in Electronics

RCA INSTITUTES, INC., Dept. RX-32

A Service of Radio Corporation of America
350 West Fourth Street, New York 14, N. Y.
610 South Main Street, Los Angeles 14, Calif,
Without obligation, rush me the FREE 64 -page illustrated book describing your electronic training program (check one). No salesman will call. Home Study School $\square \quad$ Los Angeles Resident School \square New York Resident School \square

Name.
Age
(please print)
Address.

City
Zone
State
Veterans: Enter discharge date.
CANADIANS-Take advantage of these same RCA courses at no additional cost. No postage, no customs, no delay. Enclose this card in envelope and mail to RCA Victor Company, Lid., 5581 Royalmount Ave., Montreal 9, Quebec.

RCA TRAINNG CAN BE THE SMARTEST INVESTMENT YOU EVER MAKE

HOME STUDY SCHOOL

With RCA Institutes Home Study training, you set your own pace in keeping with your ability, finances and time. All equipment and components provided are brand new and of prime quality... and you never have to take apart one piece to build another. Most Important To You, RCA offers a liberal Voluntary Tuition Plan-the most economical home study method available because you pay only for lessons as you order them . . . one study group at a time! If you drop out at any time, for any reason, you do not owe RCA one penny! No other obligations! No monthly installment payments! Licensed by the New York State Education Department. See reverse side for list of courses.

RESIDENT SCHOOLS

If you prefer you mat attend classes at one RCA Institutes Resident Schools in either Los Angeles or New York City. Co-zducational Day and Evening Classes. Free placenent service. The following courses are available at either resident school:

CHOOSE FROM THIS LIST...

	course	Qualifications	Length of Course
A	Batanced llecleonis Technoloty (T.J	Hugh School erad, mith Alecold. Physics or Science	Day 2 bays tue. 674 yrs. © Mr. aty yrs (LA.
B	Television and Generam Electronics (\mathbf{v}. $\mathrm{F}_{\text {p }}$	2 yrs: High School. with algebra, Physics or Science	Day layys. Eve. Ahy yrs. (M.Y.)
C	Ratio and Television Servicung (V.3)	2 urs. High Schaol. wilh algebre Physics or science	Day 9 mos.
D	Transistors	Radio dacmeround	Eve. 3 mas.
E	Electronis Diatting (V-11 V-17)	2 yes. With Schoot. with Alemers. Prysics or Science	Eve. Basic: 1 re. advanced 2 yrs.
F	Color Television	Talevision sackeround	Eve 3 mos.
G	Radio Telegraph Operating +V. 5	2 Its. High School. with Algebra. Physics or Science	Day 9 mos. Eve. 2Yy yrs. (M.Y.) 16 yrs. (L.A.)
H	Computer Prosrammins (C-1)	College Graguate or ingusiry sponsored	Eve. 24 weeks Sat 10 weths
1	Technical Writing (V-10)	High Schoot Graduate	
J	Automation Electionics V.is	Backeround in Radio最化eivers and Transistors	Eve 9 mos. (M.Y.) Sut. 44 weeks (M.Y.)
K	Disital Computers	Electronics Daekiground	Eve. 3 mos. (l.a.)
L	Prepasitory Math s Physics ($\mathrm{P}-\mathrm{O}$)	1 yr Migh School	$\begin{aligned} & \hline \text { Dey } 3 \text { mos. } \\ & \text { or } 6 \text { mos. } \end{aligned}$
M	Preparatory Mathemstics (p-OA	1 yr . Mish School	Eve. 3 mos.

PLACE
34 STAMP
HERE

RCA INSTITUTES, INC., Dept. RX-32
350 West Fourth Street
New York 14, N. Y.

SEND FOR THIS FREE ILLUSTRATED BOOK DESCRIBING RCA RESIDENT SCHOOLS.

Fill in the other side of the card and check Resident School.

RGA INSTITUTES, INC., Dept 'nx. 32

 A Service of Radio Corporation of America, $350 \mathrm{~W}, 4 \mathrm{th} \mathrm{St}$., N. Y. 14, N. Y., 610 S. Main St., L. A. 14, Cal.

Unhampered by a tiny cabinet, the novice can easily put together this basic circuit in four stages, testing as he goes along to "see" how a radio works. Scrap wood panel and base afford room to rearrange or add parts.

Experiments with this receiver will help the student acquire an understanding of radio theory

By C. F. ROCKEY

WHETHER you are a serious beginner in radio theory or just want an effective personal or bedside radio, the quickly-made receiver in Fig. 1 will provide you with many pleasant experiences.

No attempt was made to miniaturize or "doll-up" this project. The beginning student should have room to experiment and move parts around freely. Use of a wooden chassis and panel minimizes tool and bench requirements, and plywood scraps are cheap. You can always build a cabinet later:

Cut the Chassis Shelf as in Fig. 2A from $1 / 4$-in. plywood, tempered Masonite, or plastic. Cut front panel as in Fig. 2B from the same material, but defer mounting it until most of the wiring is completed. Cut two $53 / 4 \mathrm{in}$.-long shelf supports from scrap 1×2 furring strip (actual size $3 / 4 \times 15 / 8 \mathrm{in}$.). Smooth the supports with sandpaper and fasten them to side edges of the shelf with nails or screws as in Figs. 2A and B.

Position the tube socket, transformer, and terminal clips on the shelf as in Figs. 2A and 3 to locate holes for mounting and wiring. Note that no wiring hole is needed for one of the socket lugs. On the underside of the shelf, locate mounting hole for the dry rectifier (Fig. 2A). Locate mounting holes on the front panel (Fig. 2B). Now drill all holes in
panel and chassis, sand surfaces smooth, and finish as desired. On plywood, we applied a walnut oil stain. After the finish dries, attach the t:ansformer, socket, rectifier, and terminals with \#6-32 x 1-in roundhead ($r h$) machine screws and nuts.

The First Step in Wiring is that of the power supply (Fig. 5, Step 1i. All small parts are held in place by the short leads with which they are connected into the circuit. Wherever any of these parts seems "floppy," attach one end to a soldering lug which has been fastened down with a wood screw. As you can see in Fig. 4A, the electrolytic filter capacitors are hung between three lugs fastened to the left-hand chassis shelf suppor't.

An important feature of the circuit design is its "common ground wire" (Figs. 4A, B). This is a piece of \#14 tinned copper or bare copper wire to which each ground is connected. It begins at a soldering lug at the center of the left chassis support, runs under the right-hand power transformer mounting screw, across the shelf to the forward socket mounting screw, and forward to a lug under the variable capacitor mounting screw. Being bare, ground connections can be made anywhere along its length.

Be sure to observe polarity marks upon the dry rectifier and the electrolytic capacitors.

Either a red ring or a plus sign will identify the positive end of each. This end of the rectifier should be connected through the 220 ohm resistor to the power transformer. (Figs. 4A, B). A reversed electrolytic capacitor becomes an electrolytic gas-generator, which

destroys itself and often some other part. Don't let this happen in your set.

After completing as much as you can of the power supply wiring, including the 6.3 -volt heater lead to pin No. 2 on the tube socket, attach the front panel to the chassis shelf supports with nails or wood screws. Mount the potentiometer with switch on the panel and wire this unit. Install the power line cords and hold it safely in place with an insulated staple driven into the left-hand shelf support as in Figs. 4A, B.
To Test the Power Supply, plug in the line voltage and turn the switch on. Charge a 1 mfd paper capacitor (bought for testing purposes) from point X to the ground wire as in (Fig. 5, Step 1). Upon removing the capacitor and shorting its terminals with a screwdriver, a good spark should be observed. No untoward noises or odors should come from any part so far installed, as long as new parts are used. Should this happen, check for wrong wiring.

If you can obtain a suitable $0-150$-volt voltmeter, measure the voltage output of the power supply from both point X and point Y to ground. Observe the effect of varying the potentiometer knob upon the voltage at both of these points. Temporarily disconnect each filter capacitor, separately, and note the effect upon the output voltage.

Connect the 1 mfd testing capacitor in series with your headphones. Ground the phone lead not connected to the capacitor. Touch the free end of the capacitor to various parts of the filter system and note its effect in removing hum. Note the effect of disconnecting one or both filter capacitors upon the hum level from X to ground.
Experiments such as these, along with intelligent study of a good radio textbook, will do much to develop your enjoyment and understanding of radio.
The Non-Regenerative Gridleak Detector is the stage of the radio to build. In this circuit (Fig. 5 , step 2) you will wire only one-

Ferrite tuning coil mounted through chassis is subject of many experiments conducted with temporary "hank" form coils.

half of the 6SN7-GTB tube. Ignore the other half until later.

Mount the tuning capacitor on the panel, following manufacturer's instructions, and ground its frame to the common ground wire by a lug under the mounting screw. Install a five-turn antenna winding on the ferrite tuning coil as in Fig. 6. Fasten the turns in place with Duco or other plastic-type household cement, and insert the coil carefully into the hole provided after the cement is dry

Complete wiring the circuit and recheck your work. Connect headphones to their terminals. Fasten an antenna- 50 to 150 ft . long including lead-in to the antenna terminal. Connect the ground terminal to a cold water pipe or other good, outside "dirt" ground.

After the switch is turned on, the tube heater should glow and warm up in a few moments. Advance the potentiometer to maximum voltage position and rotate the tuning capacitor. If within range of one or more broadcast stations, they should be heard clearly. If no signals are audible, and the tube and headphones are good, recheck your wiring and antenna.

Observe effect of the potentiometer setting upon signal strength when the non-regenerative detector is operating. Note the relative capacitance in the circuit for receiving each of the stations in your area, and compare this to their frequencies. Turn the slug adjusting screw on the coil carefully (Figs. 4A, 6) and note the tuning effect.
Take more \#22 heavy Formvar magnet wire and wind a 50 -turn antenna coil over the regular coil in hank form. The regular coil should be left untouched but disconnected. Take off turns of the hank coil one at a time and note the effect upon signal strength and

MATERIALS LIST-ONE TUBE RADIO

Description

No. Req. 125 volt. 15 milliampere, half wave rectifier power transformer (Stancor PS-8415)
dry disc selenium rectifier (Federal No. 1002A)
$1 \quad 30 \mathrm{mfd} 150$ volt electrolytic filter capacitors (Cornell-Dubilier)
base-mounting 8 prong tube socket (I.C.A.)
ferrite antenna coil (Miller 6300)
variable capacitor 365 mmfd max. (Miller 2111)
6SN7 GTB Tube
100 mmfd mica capacitor (Aerovox)
4000 mmfd mica capacitors (Aerovox)
01 mfd 400 volt paper capacitor (Cornell-Dubilier) 1 mfd 200 volt paper capacitors (one for testing) (CornellDubilier)
2 megohm 1 watt resistor (I.C.A.)
6000 ohm 1 watt resistor (I.C.A.)
56 K ohm I watt resistor (I.C.A.)
2200 ohm 1 watt resistor (I.C.A.)
220 ohm 1 watt resistor (I.C.A.)
50000 ohm potentiometer with switch, linear taper (Mallory) Fahnestock terminal clins
bar knobs set screw type for $1 / 4^{\prime \prime}$ shaft dial plate for tuning capacitor (Crowe) line cord with plug
pair "Dependable" headphones (Trimm)
wood for shelf support and panel.
Miscellaneous wire, rosin-core solder, and hardware, Similar parts made by other manufacturers may be substituted without difficulty. Resistor and capacitor valves may vary within $\pm 20 \%$ without seriously disturbing circuit furction.
sharpness of tuning. This illustrates how to separate stations on different frequencies.
These tests are unnecessary if you just want to build a radio. But to the serious experimenter, they are a truly painless way of learning much valuable theory.
After you have mastered the non-regenerative detector, you are ready to convert it into regentrative form and observe the effects of feedback upon a simple detector circuit. Be sure to disconnect the line voltage when resuming actual building of the set.
The Regenerative Gridleak Detector circuit appears in Fig. 5, step 3, with most connections and parts unchanged. But you'll need to add an additional tickler or feedback winding to the coil system. (Fig. 6). Carefully wind three turns of the magnet wire as close to the main and antenna windings as possible. Cement this winding in place and allow it to dry.

Lift the ground connection from socket lug \#3, and connect one side of the feedback winding here. Ground the other side. That's all there is to it.

Now reconnect the phones, line cord, antenna. and turn on the switch. When the tube has warmed up, advance the potentiometer slowly. The "tube hiss" should increase

Underside of chossis shelf offers plenty of wiring room. Insulated stople on left shelf support protects line cord from undue stroin.

STEP 2: NON-REGENERATIVE GRIDLEAK DETECTOR

sharply at a given point, followed by a soft thud as the voltage is further increased. If this sequence does not occur, reverse connections to the feedback coil, which should correct the condition. This is known as "regeneration." When it occurs, you are "in business."
Set the potentiometer well below the "thud point," and tune in a moderately weak signal. Advance the control, and note the effect of feedback upon signal strength. The signal probably will increase markedly up to the thud point, whereupon music or speech will be marred by an unpleasant squeal. Rotate the tuning dial slowly past the stations and observe the pitch of the squeal and how it varies with respect to tuning.

If you have another radio, tune it to the same station and note any interaction which occurs. For this reason it is always a good idea to keep the potentiometer slightly below the thud point and thus avoid "blooping" other nearby receivers.

You will probably find that addition of regeneration will not make the strong stations much louder. It may even make them weaker, but the quality of reception will be

HOW ADDITIONAL WINDINGS ARE ARRANGED ON FERRITE COIL

5 SCHEMATICS - STEDS 3 \& 4

very much better. You should also hear stations which were inaudible before adding regeneration. As your tuning skill grows, you will receive stations from greater distancesparticularly at night. Also, sharper tuning will "cut through" strong, local stations.

The Audio Amplifier Stage (Fig. 5, step 4) completes the set, and utilizes the second half

of the 6SN7-GTB tube. Wire in the three remaining resistors and capacitor.

When the audio amplifier circuit is added signal strength of the radio will be increased about 10 times. You'll hear many more stations and local station volume will be vastly improved. Though designed for headphone use, the set may provide enough strength to drive a small, permanent-magnet, dynamic speaker for strong lacal stations. This will require an output transformer with a primary impedance of 10000 ohms or more.

After you have completed the set, try tuning the antenna circuit. Connect an additional 365 mmfd (maximum) variable capacitor and coil in series with the antenna as in Fig. 7. You will find this a great help in picking up distant stations. The writer has been able to reccive $W Q X R$ on 1560 kc , even though this New York station is almost a thousand miles away.

If you know the code, or are learning it, connect a 200 mmfd mica fixed capacitor directly across the tuning capacitor. You will then be able to receive radiotelegraph signals (CW) from ships and shore stations.

Multiple Channel Crystal Selectors

By HOWARD S. PYLE, W70E

DESPITE the great popularity of the variable frequency oscillator, many thousands of amateurs cling to the use of quartz crystals, either as an adjunct to their VFO or for crystal operation exclusively.

Regardless of your class of license, it is a pretty sure bet that you have two or more crystals handy. I have nearly 30 available, even though I am also VFO-equipped. Those little rocks are mighty convenient for spot operation, particularly when so arranged that they can be switched instantly. What a difference there is when you no longer have to paw through the box searching for the right frequency and then, when you finally find it, trying to plug it in while digging into a dark, recessed panel opening and groping for the contact holes in the socket!

Now making it all worth while is a subassembly comprising 24 crystal sockets and a 24 -point rotary switch. Introduced recently by the International Crystal Mfg. Co., 18 N . Lee St., Oklahoma City, Okla., the unit (Fig. 2) is compactly mounted with an appropriate dial plate and comes completely assembled and tested. With a few minutes' work, you can install it in its own external cabinet as in Fig. 1 for use with any transmitter equipped with a plug-in crystal socket. It is available from International dealers or the manufacturer for $\$ 12.95$ plus shipping charges.
The switch should hold great interest for novices as well as more advanced ham operators. Restricted by their licenses to crystal operation, novices may nevertheless use any number of crystals as long as their frequencies fall within the limits of the novice band. Separate crystals are required for the $80-, 40-$, and 15 -meter bands. This is also true of the novice $145-147-\mathrm{mc}$ band, though few attempt operation there as it requires an additional transmitter and receiver in most cases.
The average novice, then, generally has at least three crystals if he desires to work in his three lower frequency bands, or two to three for a single band if that is his choice. But many have several for each band for greater flexibility of operation.
General and extra class amateurs in large numbers keep a number of crystals available for spot frequency schedules as well as for participation in one or more social or traffic nets. They prefer to merely plug in or switch to the proper crystal at the scheduled time without "whishing" and "zooping" their VFO to find zero beat.

Even hams licensed to use VFO will find a big 24-way rotary switch for crystals much faster and more convenient for a spot operation

External 24 -channel erystal frequency selector fitted with coaxial cord and plug to fit crystal socket in the transmitter.

Fully wired 24-point switch shown as it comes from manufacturer.

The switch was made to order for them, and for me with my 17 scheduled contacts on prearranged frequencies.

Mechanical Assembly of such a unit, whether in an external cabinet as in Fig. 1 or integrally with the transmitter, is simple. One-hole mounting, the same as for a rotary
switch, variable resistor, or phone jack, is all that is required. I mounted the sub-assembly in an LMB-140 aluminum box chassis, attached a big knob obtained from a piece of war surplus gear, and fitted the dial decal furnished with the switch assembly.

Next, I mounted a card holder frame with a

Side views through chassis box. Left, view toward rear, showing position of switch and how coax cable connection is carried through back panel. Right, view toward front showing sub-plate mounting ready for installation of crystals.

Three-channel crystal selector sub-assembly includes sockets, mounting frame and knob. Right, the threepoint switch installed within a Knight-Kit T-50 amateur transmitter.
plastic window (removed from surplus equipment) on the cabinet top and slid a typed index card listing dial numbers versus frequency under the plastic. All you need do is run a finger down the chart to the frequency you want, match it to its number, and set the switch. This is much faster than setting the VFO. It is surprising how rapidly you will memorize most of your commonly used frequencies so that you can select them without reference to the chart. If preferred, you can neatly mark each frequency or band alongside its equivalent number on the dial plate, using small decals available at ham supply stores.

Wiring Is Extremely Simple. Since all sockets are factory-wired to the switch points, you need only run one wire from the common connection which ties the sockets together on one side, and another from the blade of the rotary switch, as in Fig. 3.

If you're mounting the switch assembly within the transmitter, terminate the opposite ends of these two wires on the two contacts of the existing crystal socket in the transmitter, letting the original two wires remain there. The socket terminals will then form a terminal tie-point.

It's a good idea to cement a small cardboard disk over the face of the original socket to prevent your unthinkingly plugging in a crystal from the face of the transmitter. There's no harm done if you should do this, but two crystals in parallel will hardly be operative!

If you wish to mount the crystal selector assembly in a separate cabinet, connect the

braided shield of a short length of \#RG58 U coaxial cable (not over 18 in . long) to the common terminal of the sockets. Connect the center conductor of the cable to the switch blade terminal. Fit the opposite end with a standard twin-lead plug such as Mosley 301.
In addition to the 24 -point unit, these combination switch and socket sub-assemblies are also available for 3 or 12 channels (priced at $\$ 2.75$ and $\$ 7.50$, respectively). All three sub-assemblies have sockets to fit the increasingly popular crystal holder using 050 in. dia pins spaced 486 in . between inside faces. Check your crystal holder pins for these dimensions if you already have a stock of rocks. If you buy them new, specify this spacing and diameter-they are now standard with most crystal manufacturers. Those made by International Crystal for these switching assemblies are designated as type FA-5 amateur crystals (and holders).

If You Have Larger-Diameter Crystals, such as Bliley AX-2 or Petersen Z-2, you won't find it difficult to make up your own socket-mounting plate with whatever number of sockets you choose. A Centralab, Mallory or similar phenolic-base rotary switch will serve excellently for the selector. These are available in many types and sizes at your local ham store or from the electronic mail order houses.

Choose a single-pole type with sufficient positions to accommodate all of your sockets. Mounted in a small cabinet or in your trans-
mitter cabinet, it will serve every hit as well. as those described here, but will necessarily require a somewhat larger space.

You'll find operation with such a crystal selector arrangement to be a real pleasure. When your net control station tells you to go up or down 5 or 10 kc , merely flip your switch to the proper crystal and there you are! For shifts of up to approximately 10 kc either side of net frequency, you normally will not need
to adjust your grid drive, re-dip your final plate nor tune your antenna; just flip the crystal switch and go to it. A wider frequency departure- $15 / 25$ kilocycles. perhaps-may call for a slight touching up of these controls.

If you're experieneing bad QRM on a schedule or during a casual QSO, tell your man at the other end to go up or down 5 or 10 $k c$, flip your switch and call him-it's that easy.

Compass Galvanometer

MANY electrical measuring instruments are based on the design of the d'Arsonval String Galvanometer, but substitute a needle-suspended coil riding on jeweled bearings for the hanging coil employed in the original precise lab instrument.
The galvanometer is not often used to measure quantity of current flowing in a circuit, but usually to indicate the polarity and presence of small currents by comparison methods.

The d'Arsonval instrument suspends a small coil between the poles of a permanent horseshoe magnet. When a current flows through the coil it becomes an electromagnet and its like poles repel the like poles of the horeshoe magnet, thus causing the coil to turn or twist on the metallic string or ribbon by which it is suspended (Fig. 2). The strength of the current determines the extent of the coil's rotation.

A small pointer attached to the moving coil registers on a curved dial, or a tiny mirror is attached to the galvanometer string. A beam of concentrated light is aimed at the mirror, bouncing the beam off to a wall screen or chart to give great magnification of tiny current changes.
Making a Simple Galvanometer. A small amount of insulated magnet wire, any pocket compass and a $21 / 4 \times 31 / 2$-in. scrap of plywood is what you need to make the simple galvanometer shown in Fig. 1. Cut a strip of cardboard $3 / 4 \mathrm{in}$. wide and $33 / 4 \mathrm{in}$. long. Score the cardboard $3 / 4 \mathrm{in}$. from each end, with a dull knife blade and crease so the cardboard resembles a C or bridge shape. Now glue the cardboard to the edges of the wood base.

Bind the cardboard with a rubber band until glue or cement dries. We wound 25 turns of \#28 magnet wire around the cardboard, but heavier

wire and fewer turns will work, too, with a slight dropoff in sensitivity.
Scotch tape is wound around the finished coil to keep the wire turns in place. Connect the ends of the coil to screw terminals or clips. Slip the compass under the coil in a position where its needle comes under the coil and parallel to the coil turns.

Connect the galvanometer in series with a flashlight battery and bulb, a buzzer or a toy motor. etc. When the circuit is closed the compass needle will be drawn so that it is at right angles to the coil (Fig. 1). A slow swing of the needle indicates the circuit is drawing little current. A rapid swing denotes an increase in current flow.

To show how sensitive this simple galvanometer is, connect what appears to be a dead flashlight cell across the terminals, immediately breaking the circuit. The compass needle will spin at a merry clip indicating there is still some life in the "dead" cell.

The compass galvanometer's needle would be the horseshoe magnet in the d'Arsonval instrument. But, here we cause the magnet to turn with the coil remaining in a stationary position. However, the end result is the same no matter how the galvanometer is constructed.-T. A. Blanchard.

10-4 Train Control

By ERVING EDELL

BUILD this economical dc power pack for your HO layout and you'll be able to control four separate sections of track for realistic operating action from reverse up through full speed forward.

This up-to-the minute design provides features found on few custom control boards.

Power is ample to run four heavy HO locomotives pulling full-length trains at top speed. An emergency panic button shuts off all power instantly to avoid collisions at crossings. It will also help to prevent damage when cars are derailed.

With practice, you can control four trains at once, running them individually at various speeds, forward or reverse. A circuit breaker prevents transformer burnout if wiring is shorted. Power leads can be fed out to sections of track so your trains automatically slow down (Fig. 9) when they are passing a station or run around curves, and then speed up on straight sections. If your train layout

The power pack handles full grown layouts with ease. It will also enhance the performance of smaller loop layouts providing more realistic control. The unit will handle model race car tracks too.
boasts more than four trains, or if you want to control additional sections of track, you can double the power pack design or add more control rheostats and switches.

Make the $71 / 2 \times 12$-in. panel of hardboard or aluminum sheet not over $3 / 18$-in. thick. Following dimensions (Fig. 3) drill the $1 / 2-\mathrm{in}$. holes for the switches and the $3 / 8-\mathrm{in}$. holes for the rheostats. If you are working with a $1 / 4$ in. electric drill, you may want to use a hand reamer to bring the holes up to size. The Mel-Rain circuit breaker requires that you drill three holes to match its mounting plate. You can substitute a 5 -amp Mantua MRC circuit breaker available at hobby dealers.

If the engineer hadn't hit the panic switch, this would have been a three train crash with damage to expensive hand-worked models.

Double or triple the power pack design and you can wire in automatia features that will make your trains behave even more reclistically than the most expensive import layouts.

The Panic Button is made of a $1 / 4$ - in .-diameter phone plug commonly called type PL-55. A matching single closed circuit jack mounts on the panel, so that when you push the plug down into the jack, the spring contacts open to shut off the dic power. You can use the plug as a safety key to prevent unauthorized engineers from running your layout. Or later on, you can add a control cord (Fig. 4) with a kitchen-type pendant switch that will enable you to control power if you're running the layout while standing some distance away from the central panel

Use 18 -gauge solid copper insulated hookup wire to connect your switches and rheo-

The model engineer is setting up o trock cleaning cor. In his hand o pendant switch connected to the ponic button plug gives him complete on-off power control from any point in the room.

MATERIALS LIST-HO.4 TRAIN CONTROL
Amt.
Req. Size and Description
with transformer. open frame type Pri. 115VAC to 17 VAC with center tap. 85 Watt output, 5 amps. ${ }^{*}$
S1 Sarkes Tarzian Model S. 5670 center tap silicon rectifier rated at 4 amps. continuous service at 12 VDC.* R1—R4 Rheostat. 35 ohm 25 watts.
SW1, DPST togale switch
SW2, 3, 4 and 5 DPDT
Olson Electronics Inc. \#SWl 156 or tches, 6 amp 125 volts Pilot lamp assembly and bulb for 110 volts.
Jl closed circuit phone jack, for panic switch.
Pl phone plug for above panic switch.
Circuit breaker. Mel Rain 5 Amp or equal.*
8 terminal barrier strip.
8 terminal barrier strip. Cinch Jones ± 8.141 or equal
$71 / 2 \times 12^{\prime \prime}$ panel, hardboard or aluminum $3 / 16^{\prime \prime}$ thick or less.
$18 \cdot g$ gape solid copper hookup wire
Mise. Wood screws, metal screws, 3 doz. crimp.on or solder type terminals.
Note: All of the above items can be obtained at your local elec. tronic supply house. Ttems marked with asterisk can be obtained in a special kit. Send $\$ 11.95$ for Kit No. 4 . SCIENCE and MECHANICS Kit Department. Dept. 825, 450 East Ohio Street. Chicago 11, III.
stats. The double-pole double-throw center position off switches provide the forward, reverse, and stop train action by flip-flopping the plus and minus connections to the track. You'll find that wiring is easier and neater if you use crimp-on terminals. There is less chance of poor connection that can cause erratic operation.
In the interests of economy, you can simply use a long-nose electrical plier to form clockwise loops on the end of each lead to fit the screw terminals on the parts. Sulder terminals are also a good means of wiring. But be sure to use resin-core solder and a clean iron. Corrosion problems are a sure thing if you use acid-core solder.
If you choose the flush panel method of mounting the control right on your track board (Fig. 6), mount the transformer and rectifier beneath. Be sure to tape all exposed ac leads to prevent accidental shock. If you
(A) Wiring is easy. Just remember that a side of each DPDT switch is connected in series with the rheostat. (B) Power feeds to the center terminals and o crisscross gives you reverse polarity. (C) The silicon rectifiers mount on a heat sink plate, holes drilled for an exact fip.

Flush panel mounting (6A) versus a sloping panel (68), the latier sides made of $3 / 4$-in. lumber cui at a 60° angle.

decide to make the sloping front chassis mounting, the transformer and rectifier assembly will fit inside. Be sure to allow for plenty of air circulation around the transformer.

The recently introduced silicon rectifiers (Fig. 5) mount in a heat sink which you can make of a piece of sheet aluminum at least 0.14 -in. thick. A full wave selenium rectifier similar to the one shown in Fig. 7 can also be used. You'll find plenty of these older type rectifiers in local salvage and surplus stores.

Run the DC Leads from each rheostat out to an eight-terminal barrier strip. Again, crimp or solder lugs are your best choice for connecting the wires that feed out to the

4 SECTION AUTOMATIC SPEED CONTROL
tracks. A 22 -gauge solid hookup wire is minimum size for track wiring. Lighter gauge wires on long runs will not feed full voltage to your tracks.

An additional optional feature that you can add to your control panel is a slow speed control. Simply wire push button switches across each rheostat. When you push the button, you get full speed, but when the switch is oper., your train will run at whatever setting you've got on the control.

AC Volt Board for \$6

Simple I1-step power supply offers a variety of voltages to operate tube heaters, test intermittent equipment, correct line current and handle :other applications

By

FORREST H. FRANTZ Sr.

Checking an ac voltage after con. necting transformer leads and jumper wire to proper binding posts.

EXPERIMENTERS and technicians have frequent use for a variable ac power supply. Inexpensive and simple to construct, this ac volt board provides 11 different voltages from 6 to 146 , including in-between steps at $19,25,31,84,90,96,115,121$, and 140 volts. It supplies one ampere of current continuously and can be pushed to slightly higher currents for short periods of time.
One of its many applications is to provide odd ac voltages for the operation of radio tube heater's and other electronic or electrical equipment. You may want to use extreme line voltage conditions to test intermittent radios, or you may, want to vary the output of dc power supplies by controlling the ac input voltage. The volt board can jack up line voltage during low voltage periods, or lower line voltage during high voltage periods. Of course, the current rating must be considered.
Construction. The board base (Figs. 2 and 3) is a perforated Masonite board that comes cut to size. Drill an extra $1 / 8-\mathrm{in}$. dia. hole to mount the 25 -volt transformer, L1. Enlarge one of the perforated holes with a drill or reamer to $1 / 2-\mathrm{in}$. dia. to mount the switch, Sl . Enlarge another hole to $3 / 8-\mathrm{in}$. diameter for the line cord.

Now mount the components using Fig. 2 as a guide, beginning with the binding posts. Insert the black posts on the bottom row and red ones above, fastening each with a nut. A second nut will hold the connecting wire in place when you get to the wiring. Mount the switch, S1, and then the transformers. Note that a two-lug tiedown terminal strip fastens under the inside mounting nut of the 6 -volt transformer, L2, on the top of the board.
Pass the line cord through the top of the board. Tie a strain relief knot in the cord below the board, allowing enough length beyond the knot for circuit connections.
Wire the unit as in Figs. 2, 3, and 4, carefully noting the numbering diagrams given for the transformers in Fig. 4B. Don't cut the transformer leads to length; for, if you get a set of transformer connections reversed, you won't have any trouble changing leads. Solder connections to the switch and tiedown strip, using rosin core solder and a clean soldering iron. Tape these connections as an additional safety measure. I purposely did not tape these in the model so that construction details would be readily seen.
Cut and fasten wooden supporting strips as in Fig. 3, using almost anything you have

TABLE I—BINDING POST CONNECTIONS

$\begin{gathered} \text { AC } \\ \text { VOLTAGE } \end{gathered}$	6	19	25	31	84	90	96	113	121	140	146
OUTPUT TERMINALS	5.6	3-5	3-4	3.6	$1-6$	1-3	1-5	1-2	1-6	1.4	1-6
INTERNAL CONNECTION		4-6		4.5	$\begin{aligned} & 2-4, \\ & 3-5 \end{aligned}$	2-4	$\begin{aligned} & 2-4, \\ & 3-6 \end{aligned}$		2-5	2-3	$\begin{aligned} & 2-3 \\ & 4-5 \end{aligned}$

available to keep the connections from touching the table. I used a piece of $3 / 8 \times 13 / 8$-in. door stop and cut two $113 / 4$-in. lengths. Fasten the strips with $3 / 8-\mathrm{in}$. wood screws through perforations in the masonite board.

Complete construction by identifying the terminals. You can write the proper numbers on the board with a grease pencil or lettering pen and India ink.
You'll find it convenient to have two leads about 10 in . long with banana plugs at each end for plugging up voltage combinations on the board conveniently and safely. Use flexible test lead wire and insulated banana plugs. If the plugs have a wire holding screw in the insulated handle, wrap a layer of tape around the banana plug handle as a precaution. Tack a piece of Masonite or cardboard about $6 \times 11 \mathrm{in}$. across the bottom of the wooden supporting strips as an extra safety measure.
Using The Volt Board. The ac volt board adds and subtracts to provide the 11 different voltages. Thus, the 6 volts of L2 subtracted from the 25 volts of L1 produces 19 volts. Add these two transformer voltages and the result is 31 .

Table 1 shows all the available voltages, listing the terminals and internal connections which provide them.

To get an output of 31 volts, for example, use binding posts 3 and 6 as output terminals and plug a jumper lead between binding posts 4 and 5 . To obtain 84 volts, use terminals 1 and 6 , run one jumper from 2 to 4, and another from 3 to 5 . Simple, isn't it?

You may wish to fasten Table I on the board for quick reference. A celluloid or clear plastic cover plate will protect it against wear. Voltages given in the table are approximate. I rounded the numbers off since line voltages vary from time to time. These numbers are sufficiently accurate for most uses; but, if you desire greater accuracy, measure with an ac voltmeter.
Safety First. Exercise normal precautions when using the board. Since the line is in the circuit, you can get a severe shock if you ground yourself and touch one of the terminals. Therefore, do not touch a radiator, waterpipe, or other grounded metallic object
while you're working with the board. Do not stand on concrete while you're using the board unless you're wearing rubber-soled shoes.

If you must use the board in a concretefloored shop, always pull the plug before tolching a point in the circuit. A doublepole, single-throw switch would alleviate the need to remove the plug under the circumstances described; but, a switch is easy to overlook accidentally-even when a pilot light is provided.

Extras. You can equip your volt board with some frills if you wish. The schematic in Fig. 4C shows how to cut in a DPST switch and a neon glow lamp pilot light.

You can enclose your volt board in a snappy looking case-commercial or homemade. If you fit it into a metal case, be sure to use insulating shoulder washers to mount the binding posts.

An ac convenience outlet installed on the board will come in handy when you're supplying voltage for plug-equipped radio equipment or appliances. Connect leads about 10 in. long to the convenience outlet. Connect banana plugs to the other ends of the leads to permit easy conrection to any binding post on the board. Fasten the convenience outlet on the volt board. You can stick banana plugs in perforation holes on the board to keep them out of the way when not in use.

Troubleshooting. Intermittent troubles in radios are difficult to find. Sometimes they are caused by variations in voltage or temperature. The ac volt board will provide high and low line voltages while you're trying to make the set quit. This is often quite a problem. High temperatures can be induced by jacking the line voltage up and covering the set with newspapers. You must use discretion, of course, or you may induce a new set of troubles. Operation at increased line voltage should not be attempted for a period of more than a few minutes at a time.

Sometimes you can cause marginal components in a radio to fail by increasing the line voltage. Occasionally this will "cure" defects, too. Thus you can sometimes catch bad components while you have a radio on the bench and prevent having trouble later.

Parts mount easily on a perforated board.

3

Under view of board.

| | |
| :--- | :--- | :--- | :--- |
| Desig. | |
| or No. | |

B TOP VIEW OF TRANSFORMERS
(NUMBERS CORRESPOND TO BINDING POST CONNECTIONS

Experimenter's Antenna Impedance Bridge

By JOE A. ROLF, K5JOK

yOU'LL be able to take the guess-work out of antenna design and construction with the compact impedance bridge shown in Fig. 1. Designed especially for the experimenter, the unit will measure impedances from 0 to 1500 ohms at a corstruction cost of less than $\$ 12$. The only accessory equipment required is a grid-dip meter or signal generator.

The circuit (Fig. 2) is a resistance-capacitance variation of the well known Wheatstone Bridge. C1, C2, R1 and the impedance to be measured form the bridge arms; the remaining components comprise the metering circuit.

Wiring and Construction should pose no problem. The components are readily available; and, by using Figs. 2 and 3, you will be able to assemble the bridge in short order. It is important that C 1 and C 2 be quality 5% silver mica capacitors, and that R1 has a linear taper.
The unit is housed in a $3 \times 4 \times 5$-in. Minibox. A partition of light aluminum isolates R1 from C 1 and C2 to prevent possible interaction at high frequencies. Make all leads short and direct for the same reasons.

In operation, an RF signal from an external source is fed into the input. J1 and J2. C1 and C2 are identical and therefore have equal impedances, so that when R1 is adjusted to equal

Aluminum baffle shields bridge arms C1 and C2 from the rest of the circuit to prevent interaction at high frequencies. Binding posts $\mathrm{J2}$ and $\mathrm{J4}$ are grounded to the cabinet, while 11 and 13 are insulared with extruded washers.

1

The compact impedance bridge simplifies antenna design and construction.
the impedance of the antenna connected across J 3 and J 4 , a zero potential exists between J3 and the junction of C1 and C2. The diode, CR1, rectifies any existing potential between these points and indicates bridge unbalance on the meter. R2 is the meter sensitivity control; RFC1 an isolating choke; and C2 a meter bypass capacitor.

To Test the Bridge, couple your grid-dip meter to the input terminals with a three- or four-turn link as shown in Fig. 4. If a signal generator is used, a direct connection should be made. Adjust the meter sensitivity control for maximum meter deflection with R1 set at mid-scale and connect a 50 - to 1000 -ohm resistor across the bridge output terminals. At some part of R1's rotation, the meter will take a pronounced dip. At this null, the bridge is

balanced and R1 equals the impedance of the resistance across the output terminals.

Bridge Calibration can be made in two ways. The easiest is to connect a volt-ohmmeter across terminals J1 and J3 and calibrate the resistance of R 1 in convenient steps. This method is accessible to most experimenters, but the overall accuracy depends upon the accuracy of the VOM used.
The second method permits much better accuracy, but is not readily available to most builders. This involves measuring the impedance of a number of close tolerance composition resistors at about 3 mc . In either case, the bridge can be calibrated for direct readings; or, as with the author's unit, a $0-100$ logging scale can be used with a separate calibration chart.

It should be noted that the impedance measured by the bridge is the impedance of the antenna at the frequency at which the grid-dip meter or signal generator is set. It is important, therefore, that the signal source operate at the antenna's resonant frequency.
Also, the bridge will react to harmonics generated by the signal source. This is generally apparent when more than one null is noted as R1 is rotated across its range. In most cases, this can be minimized by decoupling the signal source slightly.

MATERIALS LIST-ANTENNA IMPEDANCE BRIDGE	
Desig.	Description
${ }^{\text {Cl }}$	$330 \mathrm{mmfd} 5 \%$ silver mica capacitor
C2 C 3	$330 \mathrm{mmfd} 5 \%$ silver mica capacitor
Ch1	. 005 mmmfd 600 volt ceramic disk capacitor
J1, J2, J3, J4	1N34A diode, or equivalent screw-type binding posts
M	0-1 Milliamp meter (Calrad CMO 38.2) or equiva-
R1	$0 \cdot 1000$ ohm control, linear taper (Centralab B.5)
R2	0r equivalent 0.5000 ehm
RFC	0.5000 ohm control (Centralab 8-10) or equivalent
	3 equivalent
Misc.	$3 \times 4 \times 5^{\prime \prime}$ (Bud CU-2105) Minibox, or equivalent $1 / 16 \times 3 \times 5^{\prime \prime}$ aluminum sheet, screws, hookup wire

The overall accuracy of the bridge depends upon the calibration. With care it should be accurate to 7%, or less, at frequencies up to about 30 mc . Useful readings are possible up to about 100 mc . Accuracy can be improved by using a 500 ohm control in place of R1, but will reduce the maximum range of the bridge to about 700 ohms.
If desired, the bridge sensitivity can be improved by use of a $0-500$ microammeter in place of the 0-1 milliammeter shown. The latter meter however, is more than ample for use with most signal sources. In fact, sensitivity is such that the bridge can be made to double as a simple field strength meter by shorting across the output terminals and attaching a tuned circuit across the input.

Youthful experimenter's dilemma over use of this unidentified radio frequency coil can be resolved quickly by simple formula.

How to Design Your Own RF Coils

This simple mathematical method will also help the experimenter determine inductance of salvaged, unlabeled surplus units

TABLE I

ENAMELED MAGNET WIRE

Gauge No.	Dia. (ln.)
14	.0659
16	.0524
18	.0418
20	.0334
22	.0266
24	.0213
26	.0169
28	.0135
30	.0108

By FORREST H. FRANTZ Sr.

RADIO experimenters who want to build custom electronic gadgets that operate in various frequency ranges frequently need to design their own coils. However, those who salvage unlabeled radio frequency coils from discarded or surplus equipment may find they have suitable stock on hand if they can determine inductance.

The problem reduces to this: For operation at a given frequency, what size coil form, wire and winding length are required, and how many turns should the coil have?

Design of an air core coil of given inductance is relatively easy. And if you know the frequency range to be covered and the tuning capacitor to be used, determining the required inductance is easier yet. The simple calculations that follow are not intended to cover the fine points of RF coil design. Resulting designs may not necessarily be optımum, but they will be adequate for experimental purposes. While they are oriented toward coil design, the procedure need only be reversed to determine characteristics of coils that already exist.

Determining Inductance. Suppose you want to design a coil for the broadcast band. Assume you're using a 365 mmfd . tuning capacitor and the lowest frequency that you want to tune to is 540 kc .

The inductance L of the coil in microhenrys
is bound by using the formula $\mathrm{L}=25400 /\left(\mathrm{f}^{2} \mathrm{C}\right)$ where C represents micro-microfarads and f, megacycles.
In this problem C equals 365 and f equals . 54. Then $\mathrm{L}=25400 /\left(.54^{*} \times 365\right)=25400 /(.291 \times$ $365)=25400 / 106$, or 239 microhenrys.

Note that the low frequency end of the band was used in this computation. To determine the high frequency end of the band that you can expect the 239 -microhenry coil to cover, assume the minimum capacitance of the tuning sapacitor and stray circuit capacitance to be 30 mmfd . The applicable formula is $\mathrm{f}=$ $159 / \sqrt{\mathrm{LC}}$. In this case, $\mathrm{f}=159 / \sqrt{239 \times 30}=$ 1880 kc . Thus, this combination readily covers the broadcast band and the low frequency limit can be extended to assure adequate coverage.

The assumption that maximum circuit capacitance equals maximum capacity of the tuning capacitor is not entirely correct since stray and circuit capacitance is in parallel with the capacitor. But neglecting stray and circuit capacitance for the low-frequency limit merely extends the limit to a lower frequency. This extension is trivial for a $365-\mathrm{mmfd}$. capacitor:

A Simplified Formula for RF coil design, accurate to about 1 or 2%, is

$$
\mathrm{n}=(l / \mathrm{r}) \sqrt{\mathrm{L}(9 r+10 l)}
$$

where L is inductance in microhenrys, n is the number of turns on the coil, r is the radius of the coil in inches, and l is the length of the winding in inches (Fig. 2). If a 1 -in. dia. ($\mathrm{r}=$ $1 / 2 \mathrm{in}$.) is used, the formula simplifies further to

$$
\mathrm{n}=2 \sqrt{\mathrm{~L}(4.5+10 l)}
$$

Now, let's round off the required inductance for the broadcast band (with the 365 mmfd capacitor) to 240 microhenrys and assume a 1 -in.-dia. coil form. We must also assume a winding length so try $11 / 2 \mathrm{in}$. Number of turns then required are

$$
\mathrm{n}=2 \sqrt{240(4.5+10 \times 1.5)}
$$

Thus,

$$
\mathrm{n}=2 \sqrt{240 \times 19.5} \text {, or } \mathrm{n}=2 \sqrt{4680} \text {, }
$$

which is 137 turns.
The wire size used in winding the coil is optional as long as the diameter is sufficiently small to allow 137 turns to fit in 1.5 in . of coil form length. Winding is easiest, of course, if the turns fit one against the other across this coil length. Diameter of the wire which will meet this requirement is l / n or $1.5 / 137$, which is .0109 in . In Table I, which shows the diameter of various gauges of enameled magnet wire, note that \#30 has a $.0108-\mathrm{in}$. dia. and is closest to the diameter computed. Therefore, the coil can be close-wound with 137 turns of \#30 enameled wire.

Counting of turns can be bypassed for all practical purposes when wire size is determined for close winding. You need only mark the winding length off on the form and wind till this length is filled.

Another Coil Design Example: Assume C is 100 mmfd max, and 5 mmfd min., circuit capacitance is 10 mmfd and range of frequencies to be covered about 1.8 to 6 mc . An available coil form has a $3 / 4-\mathrm{in}$. dia. Design the coil.
At this point, I'd like to introduce the method for determining one frequency extreme if the other is known. If minimum and maximum capacities cannot be set, you can't arbitrarily assume that a given tuning capacitor will cover a given range.

In this problem the maximum capacity is 110 mmfd and the minimum is 15 mmfd , if you take circuit and stray capacitance into account. The ratio of high to low frequency is the square root of C maximum divided by the square root of C minimum, or $\mathrm{V} \overline{10} / \sqrt{15}$, or about 2.7. Clearly the frequency range cited in the problem cannot be covered since the ratio is $6 / 1.8$ or about 3.3.
There is a choice of using a tuning capacitor with a higher maximum capacity or of settling for a narrower range. We'll settle for a narrower range and use a low frequency limit of 2 mc . The high frequency limit then becomes 5.4 mc . Then

$$
\mathrm{L}=25400 /\left(2^{2} \times 110\right)
$$

which reduces to 57.8 microhenrys. If you
solve for the high frequency end of the range using 5.4 mc and 15 mmfd you'll get the same result.
Now, computing the number of turns required for the coil, let's assume the winding length to be 1 in . Then
$\begin{aligned} n=(l / r) & \vee(9 r+10 l)\end{aligned}$
Since r is $3 / 8$ and l / r is $8 / 3$ this becomes

$$
\mathrm{n}=(8 / 3) \sqrt{57.8(9 \times 3 / 8+10)}
$$

The result is 74 turns rounded off to the nearest turn.
The wire diameter that will permit close winding is $1 / 74$ or .0135 inches. Table I indicates that \#28 enameled wire will fill the bill.

Limitations and Considerations. The formulae presented apply to single-layer air core coils at radio frequency. At radio frequencies above 30 mc , capacitance becomes very critical and inductance very small. The difficulty of getting accurate capacitance estimates above 30 mc increases. Skin effect-the tendency for RF currents to flow along the outside of a conductor-becomes more pronounced, too. Thus, calculated results tend to become less accurate portraits of practical circuits.

Litz wire, frequently used for coils at broadcast and lower frequencies, contains several conductors insulated from each other. It provides more "skin" surface to carry RF currents. Consequently, coils wound with Litz wire have higher " Q " than coils wound with solid wire. Insertion of a ferrite core increases inductance of a coil.

Coils with these variations require changes from the techniques described above.

Inductance of coils wound on ferrite cores is difficult to estimate. Positioning of the winding on the ferrite core, core dimensions, shape, and composition all contribute. The only recourse is to resort to a measurement. A Q meter or a grid-dip meter will do this accurately. The instruction manual of either instrument will outline the procedure.
You could also use an RF signal generator and a VTVM with an RF probe. Connect a 20 K carbon potentiometer in series with the coil, then connect this combination to the RF signal generator as in Fig. 3. Set the frequency to 1 mc .
Now adjust the potentiometer till you measure equal voltages across the coil and the potentiometer. Disconnect the potentiometer. Then switch the VTVM to the ohmmeter function and measure the potentiometer resistance across the terminals which were connected in the previous circuit. Coil inductance is approximately .159 times the measured resistance.

The signal generator setting of 1 mc was chosen on the assumption that the coil was a broadcast or an IF coil. If it is obviously a higher frequency coil, set the signal generator to 10 mc for the measurement. The resistance multiplier factor then is .0159 .

A Handy Oscillator

Ham Band Marker

 for Alignments and CalibrationsBy EDW'ARD SUMMER

IS YOUR receiver accurate near band edges and other important frequencies? How much does it drift? These are just a few of the many questions answered by the ham band marker in Fig. 1. Easy to build and compact in size, it costs less than $\$ 10$. The marker has no known commercial counterpart.

The Heart of the Marker is a printed circuit module sold by International Crystal Mfg. Co. As a 1-transistor crystal oscillator, the module performs with high stability. It costs only \$4-approximately the same as its component parts. Crystals do not come with the module, but have to be ordered separately.

If you purchase a $3.5-\mathrm{mc}$ crystal for the marker, you will get strong, usable harmonics up to the 6 -meter ham band ($50-54 \mathrm{mc}$). By touching the marker to a TV antenna, you
can observe cross hatching on the TV screen, which will occur up to channel 13 . This cross hatching is evidence of output in the UHF region. The high harmonic output can be traced to the design of the printed circuit oscillator. The output is developed across a resistor, which is not frequency sensitive.

Begin Construction by drilling four holes in a $4 \times 21 / 8 \times 15 / 8-\mathrm{in}$. Bud Minibox (M1) to accommodate the four 6-32 mounting screws furnished with the printed circuit (Fig. 3). Use four 6-32 nuts as stand-off spacers between the printed circuit and minibox to prevent the oscillator from shorting out to the case. Next, drill the holes to accommodate the pushbutton switch S1, coaxial jack J1, and battery holder BH1.

Mount parts as in Fig. 2 and wire them as in Fig. 4. If desired, you can wire a slide

Underview shows printed circuit module and battery.

MATERIALS LIST-HAM BAND MARKER	
No. Rea. Description$1 \quad$ Bl battery (Burgess type U10. 15 volts)	
1 Jl standard coaxial jack (Amphenol type 83-1R)	
1 S.1 pushbutton or slide switch (see text)	
1 M1 natural aluminum Minibox (Bud type	
l BHI battery holder (Keystone type 166)	
Misc. hardware, grounding lug	
Above parts can be obtained from Allied Radio Corp., 100 N . Western Ave., Chicago 80, III.	
$\begin{array}{ll} 1 & \text { PCM1 printed circuit module/oscillator (International Crys- } \\ \text { tal type TRO-2) } \\ 1 & 3500-\mathrm{kc} \text { crystal (International Crystal type FA-5) } \end{array}$	
Last two parts can be obtained from International Crystal Manufac. turing Co., 18 N. Lee, Oklahoma City, Okia.	

switch in parallel with the pushbutton switch S1 for continuous operation. Make all connections to the printed circuit board with the clips included with the board. The coaxial jack facilitates the use of both banana plugs and microphone connectors. Place a 15 -volt battery B1, in the holder, and you are ready for operation.

Many Uses Are Claimed, the most obvious being the alignment and calibration of receivers, signal generators, wavemeters, and grid dip oscillators. People who own general coverage calibrated bandspread receivers will find almost constant use for the ham band marker. When changing from band to band, the usual procedure is to set the main tuning to a "set" or calibration point.
The bandspread dial is supposed to be accurate. In most cases, however, it may be off as much as 100 kc . Use of the marker puts a stop to such inaccuracy.
Set the bandspread dial to a harmonic of $3.5 \mathrm{mc}(3.5,7.0,14.0,21.0,28.0$, or 52.5 mc). Then, with the marker on, tune the main tuning dial until the signal is heard. Your receiver is now "on the nose," accuracy being within a kilocycle or so.

Accuracy and Stability. Accuracy is best at the lowest frequency. At 3.5 mc , the marker is accurate to within 350 cycles; at 7.0 mc , it is ± 700 cycles; and, at the 10 -meter band, it is accurate to within 2800 cycles. This excellent stability is due in part to the battery supply and use of a plated crystal at a low drive level.

Because of its high stability, the marker can be used to measure frequency drift in VFOs and receivers. The procedure is simple: Adjust the receiver for CW reception, and tune in to the marker frequency (3.5, 7.0 , . .). After about a half an hour, tune back to the marker frequency and note how much you moved the dial. This indicates the amount of drift of your receiver.

In almost the same manner, VFO drift can be measured. With the VFO turned on (leave the rest of the transmitter off), "zero-beat" the marker. After waiting awhile, tune the VFO back to zero-beat with the marker, and note how much the dial is moved.

Note: When checking VFO drift, turn the beat frequency oscillator (BFO) off. Its use is not necessary.
The above methods are ideally suited for checking warm-up drift. In most cases the marker can also be used for VFO calibration. If exceptionally accurate calibration is desired, a $100-\mathrm{kc}$ secondary frequency standard should be used in conjunction with WWV or WWVH.
You will doubtlessly find many new applications for your ham band marker; and it will probably be in as constant use as mine is in my ham shack.

Aluminum Windows Serve as Antennas

- An aluminum combination window makes a good antenna for boosting the range of broadcast receivers, table-top radios, and short-wave receivers, since the metal covers a fairly large area. Just clip a length of wire to the aluminum frame and connect the other end to the antenna terminal on the radio, using alligator clips. If you prefer a permanent connection, fasten the end of the wire lead under one of the screwheads on the window frame. If your radio is an ac-dc table model, or any other type which works off the power lines but uses no power transformer or isolation transformer, connect a .01 mfd 600 -volt fixed capacitor between the antenna terminal and the aluminum window frame to isolate the frame from the radio and prevent shocks.-Arthur Trauffer.

Hondy Gear for Hems The 3.-. I Antenna Box

By JOE A. ROLF, K5JOK

This convenient unit selects antennas, measures efficiency, and switches the antenna from receiver to transmitter.

Coax jacks 1, 2, and 3 accommodate three different antennas. The two jacks on the right connect with coax cables from receiver and transmitter antenna terminals.

TIRED of fishing through a jungle of coax everytime you want to hook a different antenna to your transmitter? Do you everwonder just how efficient your antenna system is? Do you still use an old fashioned knife-switch for antenna change-over? If so, this antenna box will solve your problem.

It permits instant selection of any one of three different antennas by means of a convenient coaxial jack system. The antennas are plugged into three coax jacks on the rear of the box (Fig. 2). You can patch the particular one you want into the circuit simply by plugging the phone on the front panel into the corresponding jack as in Fig. 1.

In addition to antenna selection, the unit has a change-over relay controlled by the transmitter which switches the antenna from receiver to transmitter. Also, an SWR (standing wave ratio) bridge measures antenna efficiency.

Layout and Construction are fairly simple (Fig. 3), so they should pose no serious problems, even for the novice. The unit is housed in a $31 / 2 \times 6 \times 8-\mathrm{in}$. Minibox. If you wish to
modify the layout to accommodate differentsized components than those used by the author, there is ample room, but keep the leads short and direct to minimize losses.

All leads in the antenna line are RG 59/U coax cable, since the circuit is designed to be used with coax-fed antennas having 72 -ohm impedances. For 52 -ohm coax-fed antennas, substitute RG $58 / \mathrm{U}$ cable and use a 36 -ohm resistor at R1, instead of the 47 -ohm resistor specified in the Materials List. Actually, no difficulty will be encountered in connecting a 52 -ohm antenna to the 72 -ohm circuit other than error in the SWR reading.
The bridge pickup, L1 (coiled coax in Fig. 3), is a $28-\mathrm{in}$. piece of RG $59 / \mathrm{U}$ with a length of insulated hookup wire inserted between the shield and center conductor. Strip the outside rubber covering from the coax and bunch the copper shield together from the ends so that the insulated center conductor slips out.

With the center conductor removed, insert a $26-\mathrm{in}$. piece of small-diameter hookup wire into a hole punched about $1 / 2 \mathrm{in}$. from one end. Feed the hookup wire through the shield and

Cabinet is small, yet adequate for easy installation of components. Note short, direct two-conductor wire leads between phone jacks on front panel (top left) and coaxial ja:ks on back panel.

out a similar hole punched in the other end of the shield. Insert the insulated center conductor and spread the shield tight again. Wrap the shield ends with bare wire and solder to hold it in place. At midpoint from where the hookup wire enters and leaves the coax, spread the shield and pull a couple of inches of hookup wire out for connection of R1.

Now wind L1 into a $2-\mathrm{in}$. coil, solder together at several points, and solder it to chassis-fastened lugs at the bottom of the cabinet between the relay and SWR bridge switch (Fig. 3). Secure the coil to the chassis to prevent possible shorting with other components.

Since most amateur transmitters are designed to activate an external antenna relay, connect the leads of the relay coil to the appropriate terminals of the transmitter with a short length of 2 -conductor cable. Consult your transmitter manual for these connections. If your transmitter is not designed to activate an external relay, you can mount an

MATERIALS LIST-3.N. 1 ANTENNA BOX

Desig.
C1. C2, C3. C4
CR1. CR2
J1, J2, J3, J4, J5
JP1, JP2, JP3
L1
$\begin{array}{ll}\mathrm{M} & 0.1 \text { milliampere dc meter } \\ \mathrm{PL} & \text { standard phone plug }\end{array}$
R1 \quad 47.ohm, $1 / 2$-watt resistor
Relay
Sl
chassis
Mise.

R2 $\quad 25 \mathrm{~K}, 1 / 4$-watt volume control. C1 taper
Description
.001 mfd. . $100 \cdot \mathrm{volt}$ ceramic disk capacitors 1N34 diodes, or equivalent
chassis-type coaxial jacks
standard phone jacks
$28^{\prime \prime}$ of RG 59/U coaxial cable (see text) DPDT relay, 110 volt ac coil SPDT toggle switch Minibox. (Bud CU.2109) $36^{\prime \prime}$ of small-dia, hookup wire, line cord and plug, 2-conductor cable
additional switch in the antenna box for this purpose.

Check for Antenna Efficiency. With the antenna box connected to receiver, transmitter, and antenna, as in Fig 4, throw the SWR bridge switch (Si) to "Forward" and tune the transmitter as usual. As the transmitter is loaded, the antenna box meter will indicate output. The meter reading will be proportional to the frequency; that is, it will take about 75 watts to give a full meter deflection on 80 meters, and much less for full deflection on 10 meters. Bridge sensitivity is controlled by R2.

In the "Forward" position, the meter indicates power being fed into the antenna, and can be used as a simple output indicator to aid in tuning.

In the "Reverse" position, the SWR bridge measures the reflected power, or standing waves, present in the antenna feedline. Reflected power, stated simply, is power which is not fed into the antenna and radiated as signal. The greater the reflected power, or SWR, the more inefficient the antenna.

To find the actual standing wave ratio of an antenna, note the "Forward" and "Reverse" meter readings and use the following formula:
SWR $=\frac{\text { Forward Current }+ \text { Reverse Current }}{\text { Forward Current }- \text { Reverse Current }}$. Ideally, the resulting ratio derived should be 1:1; however, this is not possible even with the best antennas.
Any efficient antenna system will closely approach an SWR of $1: 1$. An antenna with a high SWR indicates that the feedline is not matched properly to the antenna, or the antenna is not resonant to the operating frequency. This can be remedied with the aid of the SWR bridge.

The bridge is more sensitive on the higher amateur bands. Also, it will give larger readings with higher power, though it will operate satisfactorily with transmitters having power inputs as low as 30 to 50 watts. The unit should not be used with transmitters having an input of over 300 watts.

Black Light for Fluorescent Experiments

ULTRA violet, black light is used "to see the invisible" in a Magic Glo kit offered by Edmund Scientific Co.

A fascinating device for those interested in the science of fluorescence, the kit produces only long-wave black light-completely harmless to the eyes-but causes fluorescence in more than 3000 substances. It is suitable for many experiments, for studying fluorescent rock collections, and for fun-filled science stunts.

The set includes a Magic Glo lamp, stand, invisible water paints, ink, fluorescent crayon, trace powder, pen, brushes, and fluorescent rock specimens. Instructions tell how to perform over 40 experiments and explains the facts about black light.

Priced at $\$ 10.95$ postpaid, the Magic Glo kit is available from Edmund Scientific Co., Dept. RTE, Barrington, N. J.

"Hold it! I forgot to load the sofellite's recorder."

ample, estimated its power at 50 watts and transmitted on 1555 kc . It was heard at least 300 miles away. Fortunately, there are other ways to spot unlicensed broadcasters. Announcing sounds unprofessional, and commercials are rare, although sometimes they are made up or borrowed-one young man went so far as to tape record a USAF recruiting program. The final test is modulation, frequently distorted; some such stations are best heard when tuned slightly to one side of the carrier frequency.

Now, will they verify? Very often, if you can come up with the correct address and include a prepared QSL card which merely has to be signed and mailed back to you, they will (despite a possible $\$ 5000$ fine, if caught). That address is the hard part. It requires careful listening for names, streets, or any other possible clue. In connection with such detective work, a telephone directory and street map of the city or town involved will be most helpful.

Not a Game. Here in the U. S., joy broadcasters are the only outlaw type found, but in many other parts of the world secret radio stations are a deadly serious proposition. This second category is represented by rebel voices operating from the back of a truck, aboard ship, or secretly from a neighboring country. On such a "wanted" list we would find the Redbacked Radio España Independente, a station

	TABLE A-UNLICENSED	SHORT WAVE	TRANSMITTERS
KC/S	STATION		NOTES
6000	Radio Swan		Unlicensed but not clandestine, jammed
6340	FLN Algerian Renaissance Radio		
6430	FIN Algerian Renaissance Radio		Interfere with each other deliberately
6960	Radio España Independente		Jammed
11260	Radio España Independente		Jammed
11835	Algorian Renaissance Radio		After government Radio Alger signs off
12160	Radio España Independente		Jammed

All frequencies, except that of Radio Swan, are subject to variation, and other channels may also be used.

The author's prepared QSL from autlaw WCBJ. This card was signed and mailed a faw hours before the FCC closed the stotion.
of the FLN (Arab nationalist movement in Algeria), and Algerian Renaissance Radio (extreme right wing enemy of the FLN), plus many less permanent SW fixtures. These are all categorized as "clandestine," thus excluding such stations as Radio Swan, which has no license but is completely out in the open.

While clandestine transmitters seldom have power comparable to Radio Moscow or the Voice of America, they do have enough watts to carry them around the world when conditions are right. Rebel stations usually choose frequencies outside those bands allocated for SW broadcasting (some licensed stations do the same), which greatly reduces interference and makes them easier for the DXer to spot. Typical programming consists of long-winded emotional speeches interspersed occasionally with band music. As with our first group of pirates, modulation is often not perfect, but here distortion takes the form of a hum. Occasionally such a station may be jammed.

It is virtually impossible to verify reception of clandestine short wave broadcasts.

For Profit. Outlaws in our third category present exactly the opposite situation: they are difficult to hear, but QSL readily. These commercial stations orerate on shipboard in international waters off Western Europe for the purpose of breaking state radio monopolies enjoyed by every European government except those of Greece, West Germany, Portugal, and Spain. Broadcasting from on board ship is prohibited by the International Telecommunications Union, and it is this fact which distinguishes these outlets from similar but more powerful stations transmitting from tiny Andorra, Luxembourg, and Monaco for precisely the same purpose.

This device is certainly not new. The world's first radio pirate ship was RXKR, operating off the California coast in 1933 under Panamanian registry. However, its purpese was not quite so worthy. RXKR operated as a floating casino, and broadcasts were designed to sell gambling.

Although the modern commercial pirates serve legitimate interests, many groups oppose them, and while such broadcasters will probably increase in number, there are at present only three of them. Radio Veronica (sometimes using the call VRON) transmits on 1553 kc off the Netherlands coast. Radio Nord-not far from Stockholm, Swedenuses 602 kc 24 hours a day.

While reception of these two is difficult, it is certainly not impossible. With a dropping sunspot count and better medium wave reception, BCB DXers using communications receivers (especially listeners in the East and Midwest) stand a good chance of bagging them. The third station, Radio Mercur, operates on FM (88 mc), and is therefore an almost impossible catch.

Reports for Radio Veronica go to P.O. Box 244, Hilversum, Netherlands, and those for Radio Nord to Report Control, Radio Nord, Stockholm 3, Sweden.

Aluminum Windows Serve as Antennas

- An aluminum combination window makes a good antenna for boosting the range of broadcast receivers, table-top radios and short wave receivers, since the metal covers a fairly large area. Just clip a length of wire to the aluminum frame and connect the other end to the antenna terminal on the radio, using alligator clips. If you prefer a permanent connection, fasten the end of the wire lead under one of the screwheads on the window frame. If your radio is an ac-dc table model, or any other type which works off the power lines but uses no power transformer or isolation transformer, connect a .01 mfd 600 -volt fixed capacitor between the antenna terminal and the aluminum window frame to isolate the frame from the radio and prevent shocks.-Arthur Trauffer.

Tube Shells House Tiny Circuits

- Discarded metal vacuum tube shells make neat shielded housings for plugin relays, transistors, and diode circuits. Pry the base from the tube and discard the innards. Solder in your transistor circuit making connections to
 the base pins, and you have a plug-in device that fits tube sockets. If components such as resistors; radiate heat, then drill enough vent holes to provide an adequate air circulation.-Јонм A. Сомstock.

HICH-EFFCLEENCY Two-Channel Mixer

By W. F. GEPHART

AMIXER to superimpose voice on recorded music, operate one amplifier from two microphones, etc., should have the following characteristics:

1) The input impedance should match the impedances of the devices feeding it and the output should be suitable for high-gain amplifier inputs.
2) The input and output impedance should not vary as the mixer's controls are varied.
3) The variation in gain for each channel should be smooth from zero to maximum.
4) There should be no interaction between controls.
5) The mixer should not affect frequency response of the input signals and should not introduce any hum or noise into the signal being fed into the amplifier.
6) The mixer should be versatile enough to permit either fading or direct switching or a combination of both.
Many mixers do not have all of these characteristics and when used with high-fidelity equipment the results are disappointing. Those that do work well usually have expensive, balanced, padtype controls-too expensive for most non-professionals. The mixer described in this article, however, can be assembled of inexpensive parts, possesses all of the characteristics mentioned as necessary, and is well-suited for high-fidelity use.
Figure 2, a schematic diagram of the mixer's circuit, shows that the input circuits are designed for high-impedance inputs such as crystal micro-

Front-panel view of twochannel mixer well-suited for use with high-fidelity equip-ment-and inexpensive!
phones, phono pick-ups, tuners, etc. The two inputs are fed into separate jacks (J1 and J2), through separate "Level" controls (R1 and R2) and into separate amplifiers (V1A and V1B).
Amplified, the signals are then fed through separate sides of the Transfer Switch (SW1), through separate sides of the Function Switch (SW2), and into separate sides of the Fader Control (R7). The signals, still separated, each go to a grid of a dual cath-ode-follower stage (V2), whose plates and cathodes are common. Here, mixing occurs. The output is fairly low impedance, pernitting up to 100 ft . of microphone cable between the mixer and main amplifier.
The function of the Level controls (R1 and R2) is to equalize the levels of the two incoming signals, so that no gain adjustment will be required when switching from one signal to another.

The Transfer Switch (SW1) is used to switch directly from one signal to another without fading. When in the center position, both signals are passed. Moving the switch to either side permits only the signal selected to go through, grounds out the other.

The Function Switch (SW2) determines whether the signals are to be switched directly by the Transfer Switch or faded into each other by the Fader Control (R7). When in the "Direct" position (as in Fig. 2), the signals go directly to the grids of V2, bypassing the Fader Control.

The Fader Control (R7) is a dual potentiometer, wired so that the gain of one signal is increased as the other is decreased. It must be a linear taper potentiometer connected so that as the shaft turns, resistance increases in one element as it decreases in the other. As shown im Fig. 2 (ignoring the small dotted lines), a standard dual potentiometer may be used and, at midpoint, an equal amount of each signal will pass. The fading action is therefore (turning clockwise) from full signal A to half signal A plus half signal B to full signal B. If it is desired to have no signal at midpoint (with fading action from full signal A to zero to full signal B), the potentiometer must be modified. This modification will be explained later.

Figure 2 assumes that external power for the mixer can be secured from the main amplifier. Power requirements are 6.3 volts ac at .7 amps and between 150 and 250 v . dc at 5 $m a$. This power may be brought in by a four-conductor cord wired directly into the mixer or through a power plug.

If power from the main amplifier is not available, a built-in power supply, such as that shown in Fig. 6, can be included. Note that the power line is isolated from the chassis and ground by the two filament transformers. This is necessary not only from a standpoint of safety, but also to prevent interaction between the mixer and main amplifier.

To minimize ac hum, a filament balancing control (R11 in Figs. 2 and 6) is provided. If power is secured from a main amplifier with either side of its filament circuit grounded to the chassis, however, this control should not be included. This control should be set after the mixer is connected to the main amplifier and the inputs are plugged in. With no signal (this may require holding your hand over microphone), both Level controls at full gain, and the main amplifier gain turned up until a hum is heard, adjust the Hum

Control for minimum hum in the speaker.
Figure 4 gives the panel and chassis layout for the unit without the power supply. No dimensions are indicated for the mounting of the two Input jacks and Hum Control in one end of the case and the Output jack: and power plug at the other end; these can be placed where most convenient. If a power supply is to be built in, a larger box ($31 / 2 \times 6 \times 10 \mathrm{in}$.) should be used. The same size chassis piece can be used, but it should be mounted to one side, leaving clearance at one end of the box for the two transformers and selenium rectifier. The pilot light and power switch could be placed symmetrically on either side of the Fader Control, on the panel under the Level contrals. The Hum Control and both Input and Output jacks would then be on the other end of the case.

Back of panel view of mixer with cover removed. Note Input jacke and Hum Control on and panel at right.

Figure 3, a back view of the mixer, and Figs. 7 and 8 show wiring arrangements. Notice that SW1 (shown in Fig. 8), is mounted with $3 / 8-\mathrm{in}$. spacers. This particular switch (Mallory 6243) has a very long arm which. tends to protrude too far from the mixer's front panel unless mounted in this manner. Also notice that shielded sockets and tube shields are used to reduce hum and interference.

Run the filament leads first, twisting the wires together and keeping them close to the chassis (chassis is made of scrap aluminum, with a $1 / 2$ in. bend along one side; a convenient source is the side panel of an old 3 -in. deep chassis). Be sure to use shielded wire where shown in the schematic and elsewhere if long (over 2 in .) signal leads are used. Generally, it will be best to use plastic-covered shielded wire to prevent the groanded shielding from shorting out against other wiring. Within reason, the larger the diameter of the shielding, the better, since small-diameter shielding has a higher

To modify the potentiometer (use a 2 -meg. pot.), cut a strip of shim brass (as thin as is available) the width of the potentiometer carbon strip. Using an accurate ohmmeter, adjust pot's arm to the exact midpoint, and mark it carefully. Cut the brass strip to a length slightly in excess of the circumferential distance from the midpoint of the carbon strip to the end terminal, and cement it (using contact cement) to the inner side of the strip (as shown in Fig. 5). Solder one end to the lug rivet at the end of the strip. Do the same to the other half of the dual potentiometer, using the opposite segment of the carbon strip. While every effort should be made to have the unsoldered end of the brass strips at the same point when the potentiometer is re-assembled, a little variation won't hurt since the midpoint is the point of lowest gain.

Tousethe mixer, connect the input and output cables and balance the hum. Then set both Level controls to midpoint and adjust the main amplifier gain to a satisfactory level for the weaker of the two input signals. The Function Switch should be on "Direct" and the two inputs can be switched with the Transfer Switch to determine which is the weaker signal. After the main amplifier gain has been adjusted, adjust the Level Control for the weaker signal to bring it up to the level of the other signal, switching with the Transfer Switch for comparison. Inputs to the mixer are now balanced.

If direct switching is desired, leave the Function Switch on "Direct" and use the Transfer Switch to select either or both inputs as desired.
If fading from one signal to another is desired, leave the Transfer Switch in the center position and switch the Function Switch to "Fade." With the Fader Control at midpoint, both signals (at half volume) will be heard, and turning the control either way will diminish one signal and and increase the other.

If, after a period of direct switching, it is desired to fade out the last signal instead of making a direct cut-off, first turn the Fader Control to maximum gain for the signal being heard. Leave the Transfer Switch in the proper signal
(TUBES AND SHIELDS REMO'JED FOR CLARITY)

(the one being heard) position, and switch the Function Switch to "Fade." The second signal will still be grounded by the Transfer Switch and the first signal will still be connected directly to the grid of V2-but through the Fader Control at zero resistance. When desired, turn the Fader

MATERIALS LIST-TWO-CHANNEL MIXER

R1, R2- .5 meg. patentiometers*
R3. R4- 1500 ohm, $1 / 2$ watt
R5, R6 . .1 meg. $1 / 2$ watt
R7-Dual 1 meg. potentiometers* (See text)
R8- $47000 \mathrm{ohm}, 1 / 2$ watt
R9- 15000 ohm, 1 watt, wire-wound
R10- 10000 ohm, 1 watt. wire wound
R1l-200 ohm, 2 watt potentiometer (Mallory C200P or M200PK)
C1, C2- 10 mfd .25 volt
C3, C4- $.05 \mathrm{mfd}, 300$ volt
C5-. $2 \mathrm{mfd}, 300$ volt
C6. C7-20 mfd, 250 volt
 electrolyt ic
SWl-DP 3 pos. Lever Switch (Mallory 6243 or Switcheraft 3036L)
SW2-DPDT toggle switch
J1, J2, J3-Phono Jacks \#
V1-12AX7
V2-12AU7

Case-Bud Minibox $3 \times 5 \times 7^{\prime \prime}$
Tube sockets and shields, knobs, shielded wire, etc.
Additional and Substitute Parts Required If Power Supply is To Be Included. (See Fig. 6)
Tl-Filament Transformer: Secondary 6.3 volts © 1 amp
T2-Filament Transformer: Secondary 6.3 volts @ .5 amp
SR1-20 ma. selenium rectifier
R12- $5000 \cdot 0 \mathrm{hm}$, 1-watt, wire-wound
C9-40 mfd, 150 -volt, electrolytic
SW3-SPST toggle switch
PL-6.3-valt pilot light and jeweled socket
If power supply is used, larger, low-voltage quadruple condenser unit can be used to act as C6, C7, C8 \& C9; such as Mallory FP 312 ($100 \cdot 80 \cdot 60 \cdot 40 \mathrm{mfd} @ 150$ volts).

* All potentiometers must be linear taper
\# Jacks may be varied to suit needs; however, adapters made by Switchcraft can be used to adapt various microphone plugs to phono jacks.

Control toward the center position, fading out the signal. The other signal will not fade in since it is grounded out at the Transfer Switch. The
same operation could be performed with the Level controls but this would unbalance the input levels.

Germanium Crystal Diode Connector for Experimenters

- With the increasing popularity of germanium crystal diodes, radio experimenters and crystal set builders are continually changing these crystals around from one circuit to another. The wire leads become shorter and shorter from continual nicking, bending, or soldering, and sometimes the leads break off at the body of the crystal.
To avoid these troubles, make a connector consisting of a pair of twin Fahnestock clips mounted on a strip of Bakelite (see photo). Insert the crystal diode in one side of the clips and make connections to the diode on the other side of the clips as shown. This device also allows two crystals to be connected in parallel, as is sometimes done to increase the current-carrying capacity of germanium diodes. If you do not have a pair of twin clips, simply fasten four clips to a Bakelite or wood base. To insert a crystal into the clips, simply press both clips at once and slip the leads into the clips one at a time. This method makes it unnecessary to bend the leads at all.

Fuse Holder Eases Testing

- Ever wish there were some way you could hang on to both of your test prods with one hand while the other works the meter knob? Take one of those fuse holders used when you replace a pigtail fuse with an ordinary fuse and snap the barrels of your test prods into it. You can often touch the red prod to a hot terminal and the other to a chassis ground point nearby. If the two test points are located farther apart, take the barrel of each prod out of the clips at the lower end of the holder and this will put the prod tips farther apart. You can even use the fuse holder to keep pairs of test leads from becoming separated when many are stored together.

Insulated-Wire Tester

- Convert your Christmas tree lamp tester for insulated-wire testing. Solder an insulated wire lead directly to toothed electrode so temporary connections can be made to insulated wires in radio and electrical test work. Sharp teeth on the tester cut through the insulation and contact

the wire without damaging the insulation. Connect 2 of these testers to an ac voltmeter for electrical work, or, to a volt-ohm-milliammeter for radio service work and experimental work. Testers have fiber handles which make them safe for use on high voltages.-Arthur Trauffer.

Oscillatar permits FM reproduction through FM or TV receiver with any re:ord changer.

A Compact FM Phono Oscillator

BY JOE A. ROLF, K5JOK

STANDARD phono oscillators have been used for years to reproduce records through AM and FM radio systems. As for quality reproduction, they have left much to be desired; but the versatile, transistorized unit in Fig. 1, which can be built for $\$ 10$ or less, will satisfy even the most discriminating listener.
This phono oscillator presents many other uses. With a crystal or ceramic microphone it can be handled as a remote wireless mike, provided one of the resistors (R6) is omitted to improve modulation. It can also serve as a "baby sitter." In any case, you will find it capable of surprising reliability and fidelity.

The unit overcomes the frequency response shortcomings of the typical AM oscillator: It is designed for use with FM systems and TV receivers which are capable of greater fidelity than AM systems. This is true even with the majority of low cost FM table models.
The usual disadvantage of FM-type oscillators is one of modulation. Past units have required either a makeshift cartridge modulator or a complicated reactance type, which meant modification of the record changer, erratic performance, and added construction costs. This is avoided by the use of a unique diode modulator which is easily adjusted.

The Oscillator Circuit, shown in Fig. 3 is a common-base configuration using an RCA 2N384 transistor powered by the 9 -volt battery, B1. The circuit is conventional with the exception of the diode modulator which consists of components CR-1, R4, R5, and B2. The diode, CR-1, is a 500 -milliamp replacementtype silicon rectifier. One of its characteristics is that its shunt capacity varies with re-

Interior view showing parts loyout.
verse bias voltage. By varying this reverse bias, the shunt capacity can be changed as much as 20 mmfd and the rectifier can be used as a small electrically controlled variable capacitor. The function of battery B2 is to furnish the required bias of 1.5 volts. R4 provides a high resistance between the diode and ground.

	MATERIALS LIST-FM PHONO OSCILLATOR
Desig. 81	Description 9-volt transistor battery (Evertady type 216)
B2	1.5-volt pen-lite cell (Eveready type 90V)
Cl	5 mmfd mica or disk ceramic capacitor
C2	. 01 mfd disk ceramic capacitor
C3	5 mmfd mica or disk ceramic capacitor
CR-1	500 milliamp silicon rectifier, replacement type (International Rectifier type SD.500 BU)
J1	pin jack socket
J2	phono jack, input type
L1	4 turns $\quad 18$ enameled wire spaced $3 / 8$ in. over $3 / 8$-in. dia. slug tuned form (National type XR-91)
12	1 turn \#18 enameled wire wound near L1
R1	$1000 \mathrm{ohm} 1 / 2$-watt resistor
R2	2200 ohm 1/2-watt resistor
R3	15K ohm $1 / 2 \cdot$ watt resistor
R4	1 megohm 1/2-watt resistor
R5	1 mepohm 1/2-watt resistor
R6	82 K ohm $1 / 2 \cdot$ watt resistor for changers having .5 -volt out. put (see text for other values)
RFC	. 8 mh RF choke (Miller type 6175 peaking coil)
S1	SPST slide switch
1	RCA 2N384 transistor
1	minibox (Bud type CU 2100A)
1	4-pin transistor socket
1	$1 / 16 \times 7 / 8 \times 11 / 4^{\prime \prime}$ aluminum sheet
Misc.	screws, wire, battery connector for Bl

The audio voltage from the changer cartridge connected at J 2 raises and lowers the bias voltage so that the diode shunt capacity change is proportional to the audio signal. CR-1 is connected in series with C3 across the oscillator coil so that the oscillator frequency changes with modulation. R5, like R4, is an isolating resistor.

R6 is not part of the actual modulator circuit, but limits the amount of audio reaching the diode to control modulation. As will be explained later, this resistor must be chosen experimentally for proper frequency deviation. Since only a minute amount of current flows through CR-1 and associated resistors, B2 can be left permanently in the circuit.

Compact Construction is an advantage of the transistorized design. The unit shown in Fig. 2 was constructed in a $23 / 4 \times 21 / 8 \times 15 / 8-\mathrm{in}$. minibox (Bud CU-2100A). If desired, it can be built into the record changer. Be sure to keep all leads short and direct, particularly those associated with the modulator and tuned circuit. Make them as rigid as possible for stability.
After drilling all holes in the box as in Fig.

4, mount the coil form (with L1 and L2), input and output jacks (J2 and J1) at one end of the box. Attach the $1 / 16$-in. aluminum transistor socket mounting bracket and "on-off" switch (S1) at the bottom center. Mount B2 vertically next to the transistor and B1 will then fit snugly into the remaining space (Fig. 2).

After completing the wiring, clip the leads of the 2N384 transistor to $1 / 4 \mathrm{in}$. and carefully insert the transistor into its socket. Be sure that the socket wiring is correct. It is not necessary to ground the transistor inter-lead shield. Connect B1 and the output of your changer to J1 and turn S1 to the "on" position. Tune your FM tuner or radio to the low end of the band (about 90 mc) and adjust the coil slug until the oscillator carrier is heard.

Once the carrier is tuned in, modulate the oscillator with the changer and retune your FM receiver for best reception. If insufficient modulation is apparent, it is an indication that R 6 is too small for the cartridge in your changer. If overmodulation is present, such as distortion on peaks, R6 is too large. In either case, change R6 to a value of about 100 K or 50 K , respectively, until best audio quality is obtained. The value of R 6 given in the parts list is the best suited for cartridges having .5 -volt output.

Tuning Range and Antenna. With the coils shown, the oscillator will tune from about 95 mc down through TV channel 4. This permits the oscillator to be used with a television receiver tuned to either channel 4 or 5 . Excellent results will be obtained with older TV sets, but some sacrifice in fidelity will be noted with the newer, intercarrier type. Careful tuning, however, will permit reasonably good quality.

When used within 5 ft . of a receiver, no antenna is required for good quieting. For distances up to 50 ft ., a short length of wire, 2 ft . or less, should be connected to J1. Greater range is possible, but should not be attempted due to restrictions governing this type of equipment.

What's Your Radio-TV Theory Quotient? By JOHN A. COMSTOCK

Think you know your radio and television theory fairly well? Or are you a bit rusty on some points? Here's a test designed to reveal how much you really do know of the theory behind radio and TV. If you score 18 or more correct, your TQ is excellent; 15 to 18 correct it's good; 12 to 15, fair; 12 or less-you need to brush up on theory!

1. A and \qquad make up a resonant circuit (fill in the blanks).
2. A resonant circuit is said to be tuned when:
a) The inductive reactance equals the capacitive reactance
b) The inductive reactance is greater than the capacitive reactance
c) When total resistance is zero
d) None of the answers given above
3. When a resistor of 10 ohms is placed in parallel with another resistance of \qquad ohms, the total resistance in such a circuit is 5 ohms.
4. A resistor of 10 ohms, 10 watts, is in parallel with another of the same resistance and wattage rating. What amount of power can be dissipated by the two?
5. The unit of measurement of impedance is the:
a) Farad
b) Ohm
c) Rel
d) Henry
6. Disregarding losses, the amount of power in the secondary of a transformer is the same as that in the primary winding.
a) True
b) False
7. When a \qquad of 15 microfarads is placed in parallel with one of the 10 microfarads, the total \qquad equals:
a) 25 microfarads
b) 15 microfarads
c) 30 microhenries
d) 25 microhenries
8. The device used to convert sound energy into electrical energy is a:
a) Loudspeaker
b) Microphone
c) Antenna
d) Picture tube
9. A transducer is a:
a) Microphone
b) Loudspeaker
c) Light bulb
d) All of these devices
10. The \qquad element in a transistor serves the same purpose as a cathode in a vacuum tube.
11. The $n-p-n$ and $p-n-p$ transistors are:
a) Junction type
b) Point-contact type
12. In television, interlaced scanning is used to:
a) Widen channel
b) Reduce flicker
c) Increase frame rate
d)
13. At what frequency coes the horizontal scanning generator operate in a TV speaker?
a) 30 cps
b) 60 cps
c) 6 Mc
d) $15,750 \mathrm{cps}$
14. The sound transmitter at a TV station employs \qquad modulation.
15. S S signals are sent in the composite video signal to maintain the correct beam scanning pattern on the receiver screen as at the camera pick-up tube.
16. In the United States, a) negative, b) positive, picture tube phase transmission is used.
17. What is an intercarrier type TV receiver?
18. The blanking signals are transmitted to the electron beam in the picture tube during
19. In color TV, what signal corresponds to the video signal in a black and white system?
20. The video transmitter at a color TV station employs amplitude modulation.
a) True
b) False

Answers

1. Capacitor (or capacitance); inductance (or coil).
2. a) The inductive reactance equals the capacitive reactance.
3. 10 ohms $\frac{\left(R_{1} \times R_{z}\right)}{\left(R_{1}+R_{2}\right)}$
4. The total of the wattage ratings, 20 watts.
5. b) Ohm .
6. True (the law of conservation of energy).
7. Capacitor; capacitance; a) 25 microfarads.
8. b) Microphone.
9. d) All of the devices.
10. Emitter.
11. a) Junction type.
12. b) Reduce flicker.
13. d) $15,750 \mathrm{cps}$.
14. Frequency.
15. Sync. (or synchronization).
16. a) Negative phase transmission-white maximum signal, black minimum signal.
17. A TV receiver that uses a common I.F. for amplifying both picture and sound.
18. Blank out; retrace.
19. Th.e " Y " or luminosity signal, a combination of the three colors.
20. a) True.

Small, Inexpenstve and tops in performance for price, that's this sound-level, applause meter.

ACOMBINATION applause and sound level meter is a device that is both useful and entertaining. If you should be looking for a nice quiet location for your new home, for instance, this instrument will help you do the job scientifically. More probable jobs would be locating rattles in cars, vibrations in machinery, and even termites in woodwork.

Applause Meter

This inexpensive and compact applause and sound level meter has plenty of reserve gain and a headphone output. It can double as a hearing aid or remote "listener"

By FORREST H. FRANTZ, SR.

THE METER IS HELD IN PLACE ON THE PANEL BY THE METER CLAMP BRACKET

And when those amateur contests are held, here's your scoring device. We'll say no more about what it can do; as soon as you've constructed it, you'll start to find uses to which to put it.

High - precision sound level meters cost several hundred dollars. They're made out of the highest quality components and they have high caliber circuitry wired into them. As an experimenter, you don't need-and probably can't afford-such precision. This meter can be built for about $\$ 14$ less headphones and battery.

To achieve a slim package you'll need wood strips of the type used for garden trellises. These strips are $5 / 16 \times 11 / 8 \mathrm{in}$. You need two of them $63 / 4$ in. long, and two 3 in . long. Glue and brad them together to form a frame on which the $311 / 18 \times 63 / 4$ in. perforated Bakelite front and back panels will
fit. I enameled my frame gray, but almost any color goes nicely with theperforated boards.

Drill the front and back panels as shown in Fig. 2. I used a fly cutter to cut the $21 / 8-\mathrm{in}$. meter hole. A coping saw will do just as well if you take some time to trim your work with a file. When you drill or saw the boards, back them with wood to prevent splitting. The holes at the corners are used to fasten the boards to the wooden frame.
The small perforated board is the wiring board. It's cut with a hack saw from the small sheet of perforated Bakelite board listed in the Materials List and is mounted on the meter in the final assembly. The only work required on the back panel is the mounting of the loudspeaker, which will serve as a microphone. (A loudspeaker is

LETTERS DESIGNATE HOLE INSERTIONS

PICTORIAL (BOTTOM VIEW) used in preference to a microphone
because it is less directional and more sensitive.) When it is mounted, saw off the long meter mounting screws (not its terminal screws) to a length of $1 / 2 \mathrm{in}$. from the back of the meter. Fasten the end of the screw to be discarded in a vise to do the sawing, and support the meter gently with your hand. Then shorten the volume control (R1-S) shaft to a length of $5 / 8 \mathrm{in}$. from the front of the bushing. Again, the end to be discarded is the end you should fasten in the vise.

Now, secure the meter M, the jack J, the transformer TR-1, and the 10 K volume control to the front panel. The meter is fastened to the panel as shown in Fig. 4. Connect the diode D and the battery as shown in Fig. 3 and complete the wiring for the transformer winding marked
"P." You can use six penlite cells (\#7) in series to ottain $9 v$., three cells in the location occupied by the battery in my model, three on the other side of the board. If you place the front and back panels on the frame, you'll be able to place these batteries more easily. Be sure that they don't short-circuit. You'll want to do some insulating with tape after you complete the entire construction job.
Now you're ready to wire the circuit board. Figures 5 and 6 will help you in mounting the components, the circuit itself is shown in Fig. 7. Connections are made by forcing the component pigtail leads through the perforations and soldering. Excess lead length is clipped off on the side of the board shown in Fig. 6. Note that the plus lead of C3 is used to form a common return, or

IF YOU EXPERIENCE FEEOBACK, MOUNT TRANSFORMER (TRI) parallel to the panel, on BRACKETS, INSTEAO OF drectily on the panel
and fasten the back to the wooden frame with wood screws.

The front of the completed instrument is shown in Fig. 9. To test it, turn the switch $O n$ and advance the volume control. Whistle or make some other noise. You should get deflection before you turn the gain all the way up because this is a very sensitive instrument. Listening with the earphone will be helpful. Note that the meter is disconnected
"ground," for the battery through the switch.
Use rosin-core solder for all connections and use a hot, clean soldering iron. Grasp the pigtails of the transistors between the transistor body and the point at which heat is applied, thus shunting heat away from the transistor during soldering. Tape up (or clip off) the center tap leads on TR2 and TR3; you won't be using them.

After you've completed the construction of the amplifier, you're ready to assemble the three sub-assemblies you've prepared. First, fasten the front panel to the wooden frame with woodscrews. Then place the amplifier within the case and solder the leads from the secondary of TR3 to the phone jack. Connect a lead from the phone jack to the negative terminal of M, connect Cl to the center lead of the volume control, and fasten a lead from the ground bus on the amplifier to the switch.

Now place the amplifier on the back of the meter and fasten the lower nut (which holds the meter clamp bracket against the meter panel) to hold the circuit board in place. Finally, fasten the negative return from the amplifier to the battery. The back of the completed instrument, with the exception of the speaker-mike, is shown in Fig. 8. Solder the leads on the side of the transformer marked " S " to the loudspeaker terminals,

MATERIALS LIST-APPLAUSE METER
$1 / 2$ watt carbon resisto:s, 16% tolerance
R3, R5 470 ohms
R4 100 K
$\begin{array}{ll}\text { R2 } & \\ \text { R1-S } & \\ & 10 \mathrm{~K} \\ \text { miniature volume control \& switch (Lafayette VC. }\end{array}$ 28)

Cl $\quad \mathbf{8} \mathbf{~ m i d}$, 6v ultra-miniature electrolytic capacitor (Lafay. ette P6.8)
C3 30 mfd , $6 v$ miniature electrolytic capacitor (Lafayette CF-104)
C2 25 mfd, $6 v$ ultra-miniature efectrolytic capacitor (Lafay. ette P6.25)
C4 $\quad 100 \mathrm{mfd}$, 6 y miniature electrolytic capacitor (Lafayette MIKE CF.106)
$21 / 2^{\prime \prime}$ PM loudspeaker, 10 -ohm voice coil
TR1 $2 \mathrm{~K} / 10 \mathrm{ohm}$ output transformer (Lafayette TR-93)
TR2, TR3 10K/2K driver transformer (Lafayette TR-96)
T1, T2 $2 N 107$ transistor (General Electric)
D IN64 diode (General Electric)
J subminiature phone Jack (Lafayette MS-282)
M 0.1 ma meter (Shurite 8300Z)
8 battery (Mallory TR146F)
(See text for less expensive alternates)
1 sheet of miniature perforated Bakelite board (Lafayette MS-304)
$2 \quad 311 / 16 \times 63 / 4^{\prime \prime}$ miniatare perforated Bakelite boards (Lafayette MS.305)
1 3K headphone (Lafayette AR.46; the jack is supplied with the headphone and does not have to be obtained separately if the headphone is obtained from Lafayette) 1 miniature knob (Lafayette MS-185)

All circuit components can be obtained from Lafayette Radio, 111 Jericho Tpke., Syosset, N. Y.

when the earphone is plugged in. If you don't hear anything, or if you don't get a deflection of the meter when the earphone is disconnected, turn the amplifier off and check your wiring.

If you get a squeal on the phone, or a constant full-scale deflection of the meter withcut having an input noise, you're having feedback trouble and you may have to shorten some of the input and output leads or turn TR-1 sideways and mount it on a bracket as shown in Fig. 10 to eliminate magnetic coupling.

Since both sides of the instrument case are perforated, the speaker-mike is sensitive to sound from front or back, a decided advantage. In order to be able to make comparisons of readings, provide the volume control with a sca.e marked in India ink on the front panel or fasten a paper scale on the panel with Carter's Rubber Cement. Place an index mark on the knob with a triangular file and fill it with white India ink to make it stand out. My model doesn't have this
feature, but it's worth adding. Then, if the sound level or applause hits peaks that require a reduction in the volume control setting. you can readily interpret levels without loss of reference by using the control setting in conjunction with the meter reading.
There are some modifications to the sound level-applause meter that you may wish to incorporate. One, meter response is fast; if you want to slow it down so that it will tend to hold peaks, connect an electrolytic capacitor across the terminals of the meter. Use from 10 to 100 mfd depending on how "slow" you want to make the meter; a 6 y capacitor is adequate.

If you want to use a crystal microphone instead of the loudspeaker, eliminate TR1 and connect the mike as in Fig. 11.

There it is-an inexpensive sound level meter that can be used for many measurements. It has a microphone to conver* sound to electrical energy; and attenuator (the volume control) to choose a range; an amplifier to get the signal up to strength to drive a meter through the rectifier; and a phone jack to listen in if you wish. These are the features that you find on an expensive instrument. If you're wondering how a two-transistor irstrument can be so sensitive, the answer lies in the transformer coupling which provides better match between the transistors and enables us to work them more efficiently.

"Some wise guy put in a 40-watt bulb in place of a 6CL6 power tube."

Determining leakage current at various collector voltages. Transistor under test is in socket at right of large meter.

HERE'S a valuable addition for the experimenter's lab which will perform more transistor checks than any commercial unit we have yet seen in the under-- $\$ 100$ class. You can build it for $\$ 30$ to $\$ 65$, depending on how you buy the parts.

Most economy-priced transistor testers indicate only the overall current gain, with a fixed input signal at a fixed supply voltage. The checker in Figs. 1 and 2 will, in addition, measure actual de leakage current, net current gain and ac voltage gain at low inputs.

If you live in a metropolitan area, you can buy nearly everything except the two audio transformers in surplus stores for an overall cost of $\$ 30$ to $\$ 35$. Value of all new parts, as listed in the mail order catalogs, is slightly under $\$ 65$-still a substantial saving. Using surplus meters, as I did, will reduce the cost about $\$ 14$. Substituting 5% resistors for 1% resistors could cut out another $\$ 5$.

This checker makes dc measurements with both a varying signal input and a variable supply voltage, checks ac measurements only with a variable supply voltage. All these tests are made under the generally used, common emitter circuit. In this circuit, the signal is placed between the base and emitter, and the output taken from between the collector and emitter as in Fig. 3A. Current gain, or beta, is the ratio of the input and output currents. All schematics in Figs. 3 and 8 show polarities for PNP transistors, but the unit

Deluxe Transistor Tester for an Economy Price

Versatile checker provides complete flexibility in both input and collector voltage tests, plus ac measurements

By W. F. GEPHART

Panel view.

also reverses polarity, so that both PNP and NPN transistors can be tested.

All transistors have some leakage, which is collector-emitter current, that flows even without any signal current flow in the baseemitter circuit. If switch SB in Fig. 3A were opened, this leakage current would be read on meter MC. Net current gain for the transistor would then be the ratio of the difference (total current minus leakage current) in collector current to the input (or base) current.

Figure 3B shows how de tests are made with this unit. The base (or signal) current, set by one of several resistors ($R 1$ through R7), flows from the signal battery (B1) through base and emitter. Collector current flows from the variable supply voltage through M1 and from collector to emitter. If the base current is known, the current gain can be determined by reading meter M1.

In the complete circuit, there are a number of refinements. Since B1 is a mercury-type signal battery with voltage reasonably constant throughout its life, definite signal voltages can be set up without a monitoring meter.। Resistors R1 through R7 provide fixed
input currents from 10 micro-amps to 1 milliamp. Meter M2 has several shunts, giving it full-scale deflection from 1 to 30 ma ; and resistor R14 provides a reasonable load for the transistor under test.

For Measuring Current Gain, the meter reads 1.5 ma full scale (in beta position of S5), and there are three current inputs. For transistors with high gains, the input current is 10 micro-amps, and the meter is calibrated 0-150 (10 micro -amps times a current gain of 150 equals 1.5 ma). For medium gain units (betas of $0-100$), the input signal is 15 microamps and the meter is calibrated from 0-100. For low gain units, the input signal is 30 micro-amps and the meter is calibrated from 0-50.

All of these inputs can be classified as low signal inputs and will indicate gains in line with manufacturers' specifications. The input signals and meter M2 range can be further increased (S1 and S5) to measure current gains at large input signals.

These measurements include leakage currents which can be checked and offset for testing the net current gain. Disconnect the base by setting S1 (base input) on "leakage,"

Intarior view. Internal transistors are located on small chassis behind batteries.

move test switch S 4 to the left and read the leakage current on meter M1. Then move the test switch to the right, and adjust R13 (leakage compensation) to zero the meter, by placing a "bucking voltage" (from battery B2) across the meter.
This compensates for the leakage current reading. After setting $S 1$ to the desired beta range, move the test switch to the left to indicate the total current; to the right for net current, or net beta. The total current is important as a measure of battery life in a transistorized device, while net current gain is important as a measure of performance.

Other refinements are switch S3 (type) which changes the polarity of both the supply and signal voltage for PNP and NPN transistors, and meter M2, which sets the supply voltage to the desired level.

Measurements at audio frequencies are made by comparing output with input. In this case, voltage measurement is more common than that of current (Fig. 3C). Place the audio voltage from a 3000 -cycle oscillator between the base and emitter on R8. Measure output voltage across the primary of T2 in the collector circuit to determine voltage gain.

To minimize loading on the transistor under test, take the voltage from the secondary of T2 and feed it through an emitter-follower (TR2) before reaching the power-consuming M2. Calibrate this meter in accordance with voltage appearing across the primary of T2 rather than the actual voltage across it.

Two ranges are used, switched by S2 (type of test), to give adequate readings with both high and low gain transistors. Since the AF input voltage is set at .1 volt by R17 and R18, the voltage gain is the reading on meter M2 multiplied by 10. In actual practice, true voltage gain depends somewhat on frequency and loading. Check gain at other frequencies by plugging a .1 volt-source into jack J, which is insulated from the cabinet.

Construction and Wiring Sequence. The unit is built in a vertical cabinet, as in Figs. 2 and 4, with a small aluminum chassis held in place by the lower mounting screw of meter M1. Drill the panel and chassis as in Figs. $5 \& 6$. Install rubber feet at the corners of the cabinet bottom.
Now begin the wiring (Fig. 7) with the power supply, which should give about 0-30 volts dc output, and about 15 volts at the junction of R21 and R22. Wire the oscillator and emitter-follower circuits next. The remaining sequence is not important, though resistors R1 through R7 should be wired in toward the last because of the space they occupy. Connect the batteries last to minimize the chance of shorting or drain.

Calibration. Four scales are shown on meter M1 (Fig. 2) (0-30, 0-50, 0-100, and 0-150), which are calibrated lineally. The $0-100$

Desig.	Description	MATERIALS Desig.	LIST-TRANSISTOR CHECKER Description	Desig.	Description
R1	$4 \mathrm{~K} 1 \%$ resistor	R17	82K 1/2-watt resistor	T1	driver transformer (Triad
R2	8K 1% ($4 \mathrm{~K}+4 \mathrm{~K}$) resistor	R18	10K potentiometer		A.81X)
R3	$40 \mathrm{~K} 1 \%$ resistor	R19	100 ohms 1-watt WW resistor	T2	26 volt filament transformer
R4	80K 1% (40K + 40K resistor	R20	400-0hm 4-watt potentiometer		(Merit P.2962)
R5	$135 k 1 \%(120 k+15 k) \text { re. }$ sistor	$\begin{aligned} & \text { R21, R22 } \\ & \text { R23 } \end{aligned}$	820 -ohm $1 / 2$-watt resistor 25K 1\% resistor	T3	modulation transformer 10 K primary $1: 1$ turns ratio (Merit
R6	270K 1\% resistor	824	470-0hm 1/2-watt resistor		A.3007)
R7	400K 1% resistor	R25	$1500-0 \mathrm{hm}$ I \% resistor	TR1	2N107 transistor
R8	5K 1/2-watt resistor	D1	IN536 Silicon rectifier	TR2	2N308 transistor
89	100-0hm 1\% resistor	D2, D3	IN34, IN6	J	closed circuit jack
R10	5.55-ohm 1% resistor	S1	1-pole, 9-position rotary switch	M1	$4^{\prime \prime} 0.1$ ma meter
R11	1.72-0hm 1% resistor		(Mallory 32112J)	M2	$2^{\prime \prime} 0.1$ ma meter
R12	1 K 1 -watt resistor	S2, \$3	6-pole, 3 -position retary switch	NE	NE. 51 bulb and holder
813	25K potentiometer		(Mallory 3263」)	C1	. 1 mfd. 200-volt capacitor
R14	$2 \mathrm{~K} 1 / 2$-watt resistor	54	DPOT spring-return lever switch,	C2	500 mmfd . capacitor
R15	. 27 meg. $1 / 2$-watt resistor		(Switcheraft 3037)	63	. 005 mfd . 200.volt capacitor
816	. 1 meg . $1 / 2$ watt (Not required	55	1-pole, 4-position retary switch	C4, C5	100 mfd . 50 -volt capacitor
	if neon bulb socket includes		(Mallory 3215) DPST togale switch	C6, C8	10 mfd . 25 -volt capacitor 25 mfd . 25 -volt capacitor
	dropping resistor: use only if standard bayonet base socket is used.)	S6	DPST toggle switch		
Misc.	$4 \times 7 \times 12^{\text {m }}$ Minibox (Bud CU-211	3 transistor	sockets (Elco 3309), 6 knobs, 3	ding pos	tie points, rubber feet, hardware

scale is used for reading the $0-1$ ma and $0-10$ ma ranges. Shunts for this meter (R9, R10, and R11) and the multipliers for meter M2 (R23 and R24) are based on 0-1 ma movements with internal resistances of 50 ohms.

After wiring is completed, R18 must be set and the scales on meter M2 calibrated. Both operations require use of an ac-dc vacuumtube voltmeter.
To set R18, connect the VTVM across R8, turn the unit on, and adjust R18 until the meter reads .1 volt ac. A test transistor need not be in the test socket at this time, but switch S2 must be on one of the ac positions.

To calibrate the dc scales on meter M2, connect the VTVM between the bottom side and arm of R20, set S2 on "DC," and mark the points on the M2 scale where the VTVM reads $1.5,3,6,9,15$, and $221 / 2$ volts dc.

Calibrating the ac scales is somewhat more difficult, and requires either an audio oscillator or high gain test transistor, such as a 2N138 or 2N265.

If an audio oscillator is available, set it for 3000 cycles and connect it and the VTVM across the primary of T2. Turn the transistor tester "off," but set S2 (type of test) on "LO AC." Gradually increase the output of the audic oscillator, marking reference points for various voltages (as read on the VTVM) on the meter M2 scale. When full-scale deflection is reached, switch S2 to "HI AC," and make a second set of marks for the second scale.

If an oscillator is not available, turn the unit on with a high gain transistor in the test socket. Connect the VTVM across T2 primary, and set S2 on "LO AC." Gradually increase the supply voltage by turning R20 clockwise and mark reference points on the meter scale, based on the VTVM readings. When full scale is reached, switch S2 to "HI $A C$ " and repeat. Due to the loading effect of D2 and D3, these scales will not be linear. Also, there may be a small standing current that requires the calibration of start part way up the meter scale.

The small transistor socket, upper right on the panel, accommodates over 90% of standard transistors for testing. For other types use the three binding posts located on the left side of the panel, marked E (emitter), B (base) and C (collector).

Testing Procedures. When using the unit, turn the "Leakage Compensation" control and "Voltage" control fully counter-clockwise before starting any test.

Leakage.

1. Set type dial to "PNP" or "NPN" as appropriate.
2. Set type of test dial to "DC."
3. Set base input dial :o "leak."
4. Set collector ma dial to "beta."
5. Turn voltage knob to desired value as read on small meter (M2).
6. Move test switch to "check" and read leakage on large meter (M1). (Read on $0-150$ scale, where 150 equals 1.5 ma . If

70115 V. AC
meter goes off scale, switch collector ma dial to higher range).

Beta Check without Leakage Compensa-

 tion.1. Follow steps $1,2,4$, and 5 above.
2. Set base input dial to estimated beta range.
3. Move test switch to "check" and read beta on appropriate scale of large meter. Beta Check with Leakage Compensation.
4. Follow steps 1-6 for leakage test.
5. Hold test switch on "test," and adjust "leakage compensation" to zero meter M1.
6. Set base input dial to est. beta range.

7. Move test switch to "test" and read net beta on appropriate scale of meter M1.
DC Current Gain Check at Various Input

Signals.

1. Set type dial to "PNP" or "NPN" as appropriate, set type of test to "DC," and "voltage" as desired.
2. Set base input dial for input current.
3. Set collector ma dial to estimated out range. (If unknown, set for 30 ma range and switch downward.)
4. Move test switch to "check" and read output current on M1. To get current gain, divide input current (on base input switch setting) into meter reading. (This type of test can also be made with leakage compensated, as outlined above.)

AF Gain Check.

1. Set type dial to "PNP" or "NPN" as appropriate, and set voltage to desired supply voltage, shown on M2.
2. Set base input dial to "AC," and type of test to "HI AC."
3. Move test switch to "check" and read output voltage on "HI AC" scale of M2. If reading is low, move type of test to "LO AC' for better reading. (Since input signal is .1 volt, AF voltage gain will be the meter reading multıplied by 10 .)
Caution. Whenever turning the unit off, do not leave the type of test switch on either ac position, since the internal oscillator is drawing current from the mercury battery in this position.

Clothespin Switch

A plastic, spring-loaded clothespin makes a nifty emergency switch for low voltage circuits. It offers something more sophisticated than a pair of wires which you touch together when you don't have a switch. And it has some merit and application even when the situation isn't an emergency. Furthermore, you are offered a choice of several modes of operation.

The clothespin switch is a momentary contact, normally open switch. You depress the contact or handle end to close the circuit. The pin I used had the necessary holes in the handles. Simply fasten the stripped wire ends
under nuts serving as terminals with small machine-screw heads serving as switch contacts. Fasten electrical tape over the nuts for insulation, and heed this safe rule: Don't use this switch in circuits with more than 20 volts or 1 ampere.

To make a normally closed momentary. contact switch, attach the machine screws' and nuts at the other end of the pin.

To convert the normally closed momentary contact switch to a regular on-off switch, simply stick a piece of bakelite or thick cardboard between the contacts to effect turn-off. -F. H. Frantz.

This tuned-radio-frequency receiver gives AM stations many of the high fidelity qualities of FM

By THOMAS A. BLANCHARD

WHEN the saga of radio is finally, fully documented by historians, too much emphasis cannot be placed on the Tuned Radio Frequency circuit., From its very beginnings in the "catwhisker" crystal detector, followed by Lee De Forest's vacuum tube detector, radio was guided through its golden days by the T.R.F. circuit. (And they were golden days, in spite of Lee De Forest's half-joking reference to the industry which he made possible through his invention of the triode as "De Forest's prime evil.")
The first T.R.F. receivers appeared with as many as four tuning dials on the console panel. Tuning in a station was something like opening a safe; each stage had to be tuned individually. After a few years, someone struck

Top-front view of T.R.F. tuner. Knob on left is bias control. Use of a cord drive mechanism with knob on right is optional (seo toxt).

upon the idea of connecting the various tuning capacitors to a common dial and individual tuning capacitors were spaced across the full width of the chassis and connected together with belts and pulleys. No one had thought of the ganged tuning capacitor as we know it today.

Before long, however, the development of the superheterodyne receiver began to steal some of the T.R.F.'s thunder. The superhet was both highly sensitive and selective; the T.R.F. was not. Moreover, the superhet could operate on an indoor loop antenna while the T.R.F. required a rooftop hookup. By the early 30's, practically all radio manufacturers had abandoned T.R.F circuits in favor of the superheterodyne. And until the comparatively recent coming of $\mathrm{Hi}-\mathrm{Fi}$, few persons stopped to notice that modern sets do not have that sharp, clear quality that T.R.F. sets, back in the "good old days," had.

Since the T.R.F. amplifies the incoming signal through a series of R.F. stages without introducing "foreign signals" to obtain reception, the quality of its reception is naturally superior to that of the superhet where the incoming radio signal is mixed with a signal of another frequency generated by the set's local oscillator, then amplified through a series of I.F. stages. The background "purr and swish" present in the reception of a superhet cannot be fully realized until a comparison is made with a T.R.F. set tuned to the same station. With a T.R.F. set, you can actually hear every little nuance in a record as clearly as if you were listening to your own record player. With a superhet, this is not possible. Thus, many Hi-Fi fans are turning to binaural tapes, recordings and radio reception. With a binaural system, records are provided with two sound tracks with separate amplifiers and speakers for each track. Binaural radio reception is obtained by receiving a sirnulcast station's FM signal with an FM tuner and its AM signal with a T.R.F. tuner, a T.R.F. tuner like that in Fig. 1. With speakers in opposite corners of the room, you are surrounded by sound, stereophonic-like sound.

Since T.R.F. sets breathed their last commercially popular breath, many great improvements have been made in radio components, particularly in tubes and in coil efficiency. The circuit employed in the tuner described here is basically the same as the circuits of 30 years ago, but in place of the old, pear-shaped O1-A, 26 and 27 triodes, there are modern, miniature multi-element tubes. Similarly, the old, large, low-efficiency, air-wound coils have been superseded by precision-wound, high-Q ferrite-tuned units of extremely small dimensions. (Then too, we cannot overlook the development of the dry electrolytic capacitor. Today, many a 100 mfd . unit is smaller than the early $1 / 4 \mathrm{mfd}$. paper capacitors.)

3
T.R.F. TUNER-PICTORIAL
mounting screws on $1 / 1 / 6-i n$. centers. The mounting holes for shield cans are drilled first, then the 1-in. chassis holes which provide access to the R.F. coil lugs.

Drill a $3 / 8-i n$. hole in the front panel of the chassis for mounting the 50 K potentiometer bias control. An additional $3 / 8$-in. hole will be required for the panel shaft bear-ing-dial cord drive if this type of tuning mechanism is used. (Ordinarily, 3-gang tuners are furnished with a $1 / 4$-in. shaft to which a tuning knob or dial may be attached directly. A Croname slide-rule dial also engages a tuner with a $1 / 4$-in. shaft.)

The rear panel of the chassis has a $3 / 8$-in. hole for mounting the phono jack flanked by two mounting holes on 11/18-in. centers to clear 3-48 x 3/8 in. rh machine screws. Drill two $3 / 8$-in. holes $1 / 2$ in. apart for the interlock receptacle and elongate with a flat file after snip-

Construct your T.R.F. tuner on a stock-size, $2 \times 5 \times 7$ in. blank chassis. Figure 2A shows the general arrangement of parts and their positioning. All components should be assembled first from the Materials List and their individual mounting dimensions used as a final guide to the correct location for drilling and punching chassis holes.

Tube socket openings are made with a $3 / 4$-in. chassis punch. The mounting holes for the 7 -pin miniature wafer sockets are drilled to clear 3-48 x $3 / 8$-in. rh machine screws. Sockets mount on 1-in. centers. The R.F. coils are mounted in aluminum shield cans to which are attached 6-32
ping out the metal separating the two holes. Drill one $3 / 8-\mathrm{in}$. hole on the top of the chassis for the antenna binding post and two for the power transformer leads and insert rubber grommets in the power transformer holes. Finally drill $1 / 4-\mathrm{in}$. holes under each section of the tuning capacitor for the leads which terminate on their stator lugs. The rotors of the tuner are automatically grounded when the $3-g a n g$ unit is bolted to the chassis.

Because tuners vary in design, mounting hole locations and screw sizes vary. Locate these chassis holes after obtaining the tuner. Note, too, that the capacitor in our model is mounted vertically.

Your capacitor may be designed for horizontal operation. There is ample room on the chassis for either mounting.

Before the stationary components are mounted to the chassis, install the coils in the aluminum shield cans. All coils are J. W. Miller, high-Q, unshielded. Each is provided with a $1 / 4-i n$. threaded bushing for universal mounting. When ordering coils, obtain the Miller S-32 shield cans also. A $1 / 4-\mathrm{in}$. hole is drilled in the top center of each can and the coils are mounted in them. (If you have three discarded I.F. transformer cans $11 / 8 \times 21 / 8 \mathrm{in}$., you can mount the coils in them.) Place a fiber or bakelite washer on each side of the chassis when mounting the antenna binding post, and make certain that the mounting screw is in the center of the $3 / 8-\mathrm{in}$. clearance hole. If this binding post is accidentally grounded to chassis the tuner will not work. Wire the tuner as in Figs. 3 and 4.
The unit employs its own isolated power supply; to use, connect to power source and plug its phono output into the "phono" jacks of any radio or TV set or amplifier. A single conductor shielded cable connects the tuner output to the

amplifier. The inner lead of this cable is soldered at each end to a "phono" plug, the outer metallic braid is soldered at each end to the plug shell. Use care when making this connection to see that no stray strand contacts the inner conductor.

With wiring completed, tubes in sockets, output connected to amplifier, and power on, the set is ready for alignment. (For an antenna, a length of wire 4 or 5 ft . long is usually ample.) With the bias control turned to maximum resistance, rotate the tuning capacitor until a local station is heard. Starting with the screw adjustment on the antenna coil, turn in or out for the strongest signal. Next, adjust the screw on the 1st R.F. coil for further improvement in the signal. Turn down the volume control on the amplifier as the signal, through coil adjustment on the T.R.F. tuner, becomes louder. Finally, adjust the ferrite slug screw on the 2nd R.F. coil, and, with a plastic handled screwdriver, make further sensitivity adjustments on the trimmers, starting with C-1.

Unlike its ancestors, this T.R.F. tuner will have almost the sensitivity and selectivity of a superheterodyne. Moreover, it is unlikely that you will ever require more than 12 ft . of indoor an-tenna-even in a remote location. The variable bias control should not be confused with a volume control. Its function is to allow as much signal to reach the tuner as it can handle without overloading the input. On distant stations, the resistance in the cathode circuit will be at minimum (330 ohms). On more powerful and on local stations, rotating the 50 K potentiometer will increase the cathode resistance to the point where the signal is free from distortion. Once you become familiar with this control's function, you can replace the round knob with a pointer and set the bias contral at predetermined points.

F LAYER, REFLECTS ALL SW FREQUENGIES

E LAYER, ABSORBS LOWER SW FREQUENCIES

F2 LAYER, REFLECTS UPPER SW FREQUENCIES
(TWO F LAYERS COMBINE AT NIGHT)

D REGION, ABSORBS ALL SW FREQUENCIES

EARTH

Shart Wave Guidepasts

By C. M. Stanbury II

How to select the markers you need to make your SW listening more interesting - and more comfortable

WHETFER your SW interest is accurate time signals, standard frequencies to check calibration equipment. international news, or any other listening that falls into the non-DX category, you want to turn on your set, tune the appropriate frequency, and just listen-as you would with an AM radio or TV set. Unfortunately, this is not always possible. Short wave provides distant reception, all right, but it tends to be unstable. A station which is loud and clear one night may be almost inaudible the next. On a given evening, Latin American stations may be found throughout the 25 -meter broadcast band, with Europe top dog a weak later.
Happily, SW stations have come up with an effective method for coping with this situation: most use more than one band. If the upper frequer.cy has "skipped," then the lower channel will probably be strong: if the basement spct is absorbed, then the high one should get through. After a little experience (and with our listing in Table A) you'll know exactly where to tune for what. With "Short Wave Guideposts," plus a few moments of checking, listeners will know what to expect for at least the next 24 hours.

Short Wave Theory. Reception is dependent upon reflection around the curvature of the earth by the ionosphere-a region of ionized gases extending in four belts (two at night) from 50 to 200 miles up (Fig. 1). Ionospheric density varies from day to day, causing the erratic reception we have described. Oversimplifying, the upper layers reflect higher SW frequencies-while lower layers absorb basement channels. For reception, frequency must be low enough for reflection but sufficiently high to escape absorption. The result is a narrow band of optimum frequencies, always higher during the day than at night, and seldom the same from one week to the next.

Describing the above as an oversimplification is a gross understatement. To name only a few complications: one of the lower layers is capable of reflection even under normal conditions; the two upper layers combine at night; during ionospheric disturbances (magnetic storms) the ionosphere's reflecting capacities are impaired, while absorption is increased (such a paralysis is usually limited to upper and middle latitudes) .. . and so on, until the SWL is lost in a maze of theory.

An Empirical Approach is needed: which brings us to that term, "skip." Originally it meant a signal had passed through the ionosphere without being reflected-the signal had "skipped." While this usage is still valid, "skip" now also refers to reception conditions from a specific area, such as good Asiatic skip, or no African skip. And skip provides the solution to our problem.
When a transmitter which is usually weak or covered by interference puts in a strong signal, there is good skip from this area and other stations from it will be coming through on nearby frequencies. For example, if in the afternoon Radio Brazzaville on 11725 kc is easily readable, it means that absorption is down and listeners can look for other Africans here on the 25 -meter bands. In other
words, Radio Brazzaville serves as a short wave guidepost.
Such guideposts should indicate the absorption level (how low you may comfortably listen) and the maximum usable frequency. As an absolute minimum you will need at least two sets of markers, one for the tropics and another for upper and middle latitude stations. The system can be as complicated as you desire, but Table A will adequately serve the needs of most. Included are indicators for reflection on each of the high bands during daylight hours and on the low bands at night (with a dropping sunspot count even these will skip, especially after midnight), and six stations to measure absorption. For the casual listener who concentrates primarily on upper frequency bands, reflection is the key
table a-short wave guideposts

BAND	$\mathrm{KC/S}$
13M	21675
	21535
16 M	17890
	17885
	17705
19 M	15375
	15185
	15115
$25 M$	12010
	11930
	11915
	11725
$31 M$	9745
	9673
	9909
49M	6150
	6050
	6025

Note: U/M refers to upper/middle latitudes; band open refers to reftection.

COUNTRY	times	INDICATES
Englond	Daylight	Band open, U/M
Liberio	Daylight	Band open, tropics
Ecuador	Daylight	Band open, tropics
Japan	1930-2030 EST	Band open, Asio
Moroces	Daylight	Band open, U/M
England	Night	Band open, U/M
Philippines	1800-2100 EST	Band open, Asia
Eevador	Night	Band open, tropics
China	Early evening	Polar absorption
England	Aftor Midnight	Band open, U/M
Ecuador	After Midnight	Band open, tropics
French Congo	Afternoon	Tropic absorption
Ecuador	After midnight	Band open, tropics
Cuba	Daylight	Tropic absorption
Israel	Daylight	U/M absorption
England	Afternoen	U/M absorption
Esuador	Aftor midnight	Band open, troples
Netherlands	2030-2250 EST	U / M absorption

issue; but if you are interested in expanding your range, absorption becomes vital.

Using The Table. Suppose you note Tel Aviv on 9009 kc putting in a strong signal: you will have no trouble picking up numerous European and North African stations on 31 meters (9500 through 9775). You should also check the Voice of America relay in England on 6150 . If this one comes through at all, there will be good European reception on 49 meters (5950-6200) and even lower, with Asia showing up after midnight.

This brings us to a gray short wave area, channels below 49 meters. Because of static (a spring and summer problem), and only erratic distance reception, most non-DXing SWLs simply never bother tuning down here. However, under the conditions described above, listening could be as comfortable as on the more conventional bands. We leave it to each individual reader to compile his own set of "basement" guideposts. With reflection possible at several different levels, and the resulting intricate patterns of skip and absorption, such a listing is beyond the scope of this article.

Rare Skip. On April 7, 1961, an east coast listener noted Springbok Radio in South Africa with loud readable signals on 2350 kc at 8 p.m. EST. He promptly tuned down to 1286
(on the broadcast band) and within minutes picked up a $10-\mathrm{kw}$ Johannesburg transmitter carrying the same all-night program.

This admittedly is an extreme example, actually falling into the category of DX. It does illustrate an important point, however, even for the casual SWL: short wave is never a pat proposition. On a one-shot basis, the most unusual and interesting transmissions can be heard with only a little effort, providing the listener is alert.

Look at it another way. Assume you have a special interest, let's say news and commentary from Asia. In the eastern U.S., only English language broadcasts from Japan and Red China are consistently received with good signals. But suppose in the early evening Peking has an exceptionally strong signal on 12010 kc . You should then look for Delhi (11900) with English for Burma at 7:30 p.m. EST, and HSQ Thailand (11910) at 12: 20 a.m., beamed to our west coast. These broadcasts, especially from Delhi, might not be heard at your location more than once or twice a year, but that is certainly better than not at all. With the aid of a good reference list such as White's Radio Log (p. 151), possibilities are endless. To make full use of short wave guideposts, consistent listening and patience are required.

Fire Extinguisher Chases Radio Bugs

- The chilling effect of a carbon dioxide fire extinguisher will help you locate a defective part in a radio circuit that plays erratically. Often a set works fine for a few minutes after you turn it on, and then suddenly misbe-

haves or goes dead. The trouble may be a part that expands with heat after current has been flowing through for a few moments. Spray suspicious parts with CO_{2} gas one at a time. The intense cold will contract a defective component so it can work normally.

You can also use Charg-A-Can Freon \#12 with a suitable adapter (sold by refrigeration supply houses). However do not use carbon tetrachloride fire extinguishers since the fumes are highly toxic.-T. A. Blanchard.

Read Battery Drain Quickly

- To measure the battery drain in radios and experimental electrical circuits, use this special test lead. Cement a thin brass or aluminum strip to each side of a piece of plastic.

Then solder leads to each metal strip and connect them to your VOM. Insert the lead between the batteries and terminals to make quick current-draw readings.-G. A. WesenFELD.

Hand approaching metal plate causes the lamp plugged into control receptacle to light up. Bells, motors, etc. may be plugged into the $110-120 \mathrm{v}$ outlet.

Experimenting With a

Capacity Control

No phototubes or light beams are required with this simple electronic unit which turns lights on or off with a mere wave of the hand

By THOMAS A. BLANCHARD

THIS capacity control is simply another application of the versatile oscillator. In respect to the jobs it can do, it is similar to the photo-electric control. No light beams or phototubes are required to trigger it, however, only the presence of a human being near it.

Capacity control is housed in a stock radio chassis cabinet. Outlet is at left, insulatod control terminal is at right of dial on front panel of control unit.

The circuit can be wired for sensitive or for ultra-stable operation. For sensitive operation, for example, a metal plate could be attached inside a store window. A shopper standing outside, then, placing his hand near or on the window glass would cause a display in the window to light up. When he moved away from the "sensitive" area, the lights would go out. (By substituting a length of insulated wire for the metal plate, a larger area of the window could be made sensitive to the approach of a shopper. There would never be actual contact between the windowshopper and the control because of the plate-glass barrier.)
It works like this: A small R.F. choke and tuning capacitor is inserted in series with the circuit's oscillator coil's cathode lead (see Fig. 3). Varying the capacity across the R.F. choke provides the sensitivity control so that the point at which the plate current relay picks up can be accurately determined.

Omitting the choke and tuning capacitor, gives a much more stable effect. The control then requires actual physical contact for triggering. Thus, if the control wire is attached to a metal door knob, for instance, you have to touch the knob before the circuit will operate. The control lead can be attached to any ungrounded metal object. When touched at any point it will cause the control relay to close. There is no danger of shock.

Suppose you have water seepage in the basement of your home. Mount the control lead $1 / 4 \mathrm{in}$. off the basement floor and if the water rises $1 / 4$ in. it contacts the control lead, causing an alarm to ring. Applications of a capacity control are almost limitless-not to mention its amusement (and educational) value. For example, you can cut a piece of aluminum foil

remaining oscillator coil lug connects the grid of the $117 \mathrm{~L} 7 / \mathrm{M} 7$ through the 500 mmf fixed capacitor.

The plate circuit relay I used was a Sigma Type 4 F with a 10,000 -ohm coil. The less expensive Potter and Brumfield Type LS-5 with 10,000 ohm coil can be substituted for it and is readily available from most electronics parts suppliers.

A small porcelain feed-through insulator brings the sensitive grid actuating lead out through the panel. A capacitor is inserted between this insulated terminal and the \#4 grid pin on the tube socket. This value was originally .01 mfd in the miniature size. If the midget size isn't available, use .005 mfd since it is

MATERIALS LIST-CAPACITY CONTROL

1 metal radio chassis cabinet. $4 \times 5 \times 6^{\prime \prime}$
1 octal wafer socket
$13 / 4^{\prime \prime}$ lead-in or feed-thru insulated bushing
1 amphenol female receptacle \#61-F1
1 10,000-ohm plate current relay: Sigma $4 F$ or P\&B LS.5
1 Hartley oscillator coil, 6/12SA7 type (Stanwyck 225 or 212; Miller 5481-C)
1 R.F. choke approx. 100 uh (see text)
1 midget variable capacitor. 60 to 1000 (max.) mmf.
120 mfd., 150 w.v. electrolytic capacitor, tubular piptail type
1.005 or .01 mfd . paper capacitor. 150 w.v. or higher

1500 or 470 mmf . mica or ceramic fixed capacitor
13.3 megohm. $1 / 2$.watt resistor
$3 /$ " $^{\prime \prime}$ rubber or plastic grommet
6^{\prime} line cord and plup
1 117L7/M7GT vacuum tube
miscellaneous hook-up wire. $5 / 8 \times 21 / 4^{\prime \prime}$ metal spacers, bar knob and dial plate
about 1 ft . square, attach the control lead to one corner and conceal it under a carpet. Your "victim" will jump when he walks over the "hot spot" and rings a bell or causes a table lamp to light up.
The unit (Fig. 2) is constructed in a standard $4 \times 5 \times 6-\mathrm{in}$. radio chassis cabinet (4 in . deep). Lay out the panel as shown in Fig. 4 and mount the components (see Fig. 5). Mount the wafertype octal socket on $1 / 4 \times 5 / 8$ in. long metal spacers secured to the control panel with 6-32 machine screws.
The oscillator circuit is a Hartley electroncoupled type using a $117 \mathrm{~L} 7 / \mathrm{M} 7$ combined pentode and half-wave rectifier. The heater of this tube operates directly off the power line. No step-down transformer is needed.

The oscillator coil is an ordinary 455 kc . radio type of the simple Hartley 3 -terminal design (sometimes called a 6SA7 or 12SA7 coil). This coil, depending upon make, may be mounted with a screw and nut, or snapped into a suitable hole drilled in the control panel.

The outside end of the oscillator coil (the ground side) goes to pin \#7 of the octal wafer tube socket, line cord, etc. The tap or center coil lug attaches to the cathode (pin \#8) through the R.F. choke and midget tuning capacitor for sensitive operation. For stable operation, run the tap directly to pin \#8. The
also physically smaller than a standard size . 01 $m f d$ unit and affords ample coupling capacity in this circuit.

Bring the line cord through a $3 / 8-\mathrm{in}$. plastic or rubber insulating grommet inserted in the hole located adjacent to the tube socket. Linecord leads terminate on socket pins \#2, 6 and 7 as shown in Fig. 5. Connect one lead to socket pin \#2 and one terminal of the female ac receptacie mounted on the panel, another from the receptacle and through the relay contacts to pin $\# 6$ and $\# 7$, thus providing a $110-120-v$ control circuit which is switched on or off by the magnetic action of the relay coil.

Note that the relay is provided with single pole, double throw coniacts. When wired as shown in Figs. 3 and 5, no current reaches the receptacle so long as there is no contact with the porcelain feed-through terminal. Touching this screw, or approaching a metal plate attached to it, however, causes the relay to energize and completes the circuit to the a.c. outlet receptacle.

Now, if the reverse action is desired-causing a light to go out when the control is approached, say-you need only move the receptacle lead from relay contact B to A. The moving contact connection of the relay (the armature connection) is not disturbed.

To test, connect a short piece of hook-up wire across the midget variable capacitor where

the R.F. choke will eventually be located. (In fact, even the capacitor itself isn't needed at this point.) With power applied, the relay should close when the insulated terminal screw is touched. The control can be used for non-sensitive applications in this form.

For sensitive control, the variable capacitor can be any midget type between 60 and 100 mmf . A less expensive com-pression-type trimmer can be substituted here if more readily available. The R.F. choke may require some experimental work in order to obtain maximum sensitivity from the circuit. For the choke, we used a TV "peaking coil" of approximately 100 microhenries. Both peaking coils and R.F. chokes of the miniature type are wound on Bakelite pigtail forms that resemble 1 -watt resistors. When connected across the stator and rotor lugs of the tuning capacitor with plates wide open, the control relay should pull in. Now, slowly closing the plates, you should reach a point where the relay drops out.
When this action is obtained, the choke will be of suitable inductance. However, if the relay remains energized with the plates of the tuner fully meshed, the inductance is excessive, and turns will have to be taken off.
You may find it more convenient to make your own choke. All you will need is fine enameled magnet wire (size \#34 to \#40). Measure off about 12 ft . and scramble-wind the wire on a 1-watt insulated resistor having a high resistance (22 megohms or more.) Carefully scrape off insulation from the leads and solder one to each pigtail.
Add or subtract turns until the relay will release when the variable capacitor plates are about at the half-closed position. Install in the chassis cabinet with a suitable dial plate and bar knob to adjust the tuning capacitor and attach a short lead and metal plate to the control's insulated terminal. Plug a light bulb into the receptacle and rotate the capacitor knob until the light comes on.

Now back off the sensitivity control until the light just goes out. Leave the control alone now, and bring your hand toward the metal plate. At a point ranging from 6 inches to one foot, body capacity will cause the control to turn on the light. Withdrawing your hand will turn off the light.
If the length of the lead and/or size of the metal plate is changed, the control must be

Looking into rear of control box with cover removed. Front pand and chassis are one, making for sim. plified construction.
readjusted. Note, too, that if too much fixed capacity is attached to the control, the relay will remain locked-in. If this happens, use a smaller metal object, or shorter connecting line from control to plate.
Since the capacity control employs the popular ac-dc hook-up, you will find that it operates best when its ground circuit plugs into the ground side of the power line. (Reverse the line plug to determine the best operating position.)
Attach a metal drawer pull to the chassis cabinet for carrying convenience. To provide ventilation for the tube, punch two rows of holes in the back panel of chassis cabinet or use perforated Reynolds do-it-yourself aluminum for the box cover. (You can cut this material with a kitchen shears.)

Transfer letters are applied by laying the sheet on the panel and rubbing the back of the desired letter.

Simplified Panel Lettering

In most cases, transfer letters offer the greatest advantages

By W. F. GEPHART

PROVIDING panel lettering for custommade equipment can be a problem for the experimenter. The usual devices are typewritten strips, custom-made etched plastic plates, or decals. Typewritten strips usually look amateurish, and etched plastic plates are expensive, so decals are most commonly used.

There are disadvantages in the use of decals, however: Complete words are available only in limited colors, and in one type face and size. Making up words that are not included in the package is quite a job, due to the skill required in handling the small individual letters.

Using Transfer Letters, available in art supply houses, overcomes these difficulties. These letters and numbers, on a large sheet, can be transferred individually to another surface by rubbing the area over and around the letter (Fig. 1). The pressure of the rubbing and the heat generated by the friction combine to transfer the letter to the panel.

The Letter-On Co. has complete alphabet and number sets in nine varied styles of type, 11 sizes, and five colors. A set includes capital and lower case letters, numerals, and punctuation marks, all on a large translucent sheet. The sheet is laid on the panel and the letter positioned, and then the letter is transferred to the panel by rubbing it with a burnishing tool. (The rounded end of a fountain pen works very well.)

After the panel is completely lettered, the excess wax adhesive is cleaned off with a cloth dampened with benzol or rubber cement thinner. It is best to spray the panel with a couple of light coats of varnish to protect the letters against scratches. Do not use plastic spray with an acetate base, as this will damage the letters. Ordinary spray varnish, or the spray varnish used in retouching oil paintings, such as "Spray-Var," will give excellent results.
Decals Are Easier to Use and may be applied more quickly; if complete words are

RADIO.TV EXPERIMENTER

available (and one size and color is sufficient), you will probably prefer to use them. But if words must be made up from individual letters, or you want a variety of type sizes and/or colors, transfer letters are better. One transfer lettering set is available in a size and style that matches the decal letters usually sold in radio parts houses. This is "12-point Airport," available in "Prestype," which can be secured from local dealers or from the Letter-On Co., 9605 Bulls Run Parkway, Bethesda, Md. This matches the type used in the "Tekni-Cals" decals. When these are employed, decals can be used for complete words and transfer type to make up words.

For the panel shown in Fig. 2, most of the words were not available in decals. Also, the use of capital letters for the names of the controls and lower case for the functions minimized confusion.

Transfer letters work best on smooth surfaces, such as natural or gray hammertone panels, but they will stick to most surfaces. They are excellent for re-lettering meter faces. For best adhesion, the surface should be slightly warm, and it helps to put a 25 -watt bulb under the panel during lettering.

Employing transfer letters makes possible the use of unusual words, with both capital and lower case
letters.

TV Circuit Puzzle

By JOHN A. COMSTOCK

Here's a unique electronics puzzle. The object is to fill in the empty blocks with the names of the circuits found in a typical television set. By referring to the boxes already labeled and using your knowledge of black-and-white TV circuitry, see if you can supply all the right names. The solution is on page 138.

Transistorized Hi-Fi Preamplifier

 AGNETIC or variable reluctance phonograph cartridges usually require a boost of their output voltage-5 to 30 millivolts-in order to obtain satisfactory operation from a standard power amplifier. (Crystal cartridges, on the other hand, usually deliver sufficient output voltage- 600 to 4000 millivolts, de-

By HAPIOLD P. STRAND

The transistorized preamp under test with α mike and power amplifier shows conslderable galn over direct Input from mike to power amplifier. Control slde of chasil. (inset) has three controls: treble and bass tone control. (left and riçht) and volume control combined with O_{2}-OH switch (center).

pending on make and type-for such operation.) Because of the low output of magnetic cartridges, a device known as a preamplifier is usually employed with them to effect the desired boost. The preamplifier is connected between the cartridge and the power amplifier in a simple plug-in circuit.

For many years, vacu-um-tube preamplifiers have been used for this purpose, but transistorized preamps, such as the unit described in this article, have several advantages over vacu-um-tube preamps, including those of zero hum, without the microphonics usually associated with vacuum tubes, a frequency response of from 20 to $20,000 \mathrm{cps}, 40$ db gain (or better than 52 db below 2 millivolts) for low impedance cartridges, three phono in-

When soldering at torminals, apply sutficient heat for the solder to llow completely around leads.
puts and also a microphone input, bass and treble control, as well as a volume control with switch. Since a small self-contained battery is used with this unit, no outside power connections are required and the unit can be placed up to 175 ft . away from its associated equipment if desired.

The transistorized preamplifier can be built from a kit supplied by Lafayette Radio or you can build it entirely from the group of standard parts given in the Materials List. The chassis, however, is not a standard size, so it is bent up from sheet aluminum to the dimensions given in Fig.
 up in a vise over a hardwood block, but a bending brake will make a better job of it. If you don't have a brake, perhaps your local sheet metal shop will do this for you on theirs.

Lay out the rectangular socket holes on the metal and then drill a number of holes within the rectangular area. Break out the metal between the drilled holes and dress to size and shape with a file. Fix the sockets in their openings on the chassis, positioning them so that the terminal with the widest spacing (collector) will be located with respect to the other components as shown in Fig. 3. (A locking ring is forced down on the lower end of each socket, securing them in place.) Now install the jacks and controls, as well as the long terminal strips. Be sure to place as indicated, with the volume control and On-Off switch in the center. Secure the slide switches in their openings, attach the battery holder to the top of the chassis-using for this purpose one of the bolts securing a terminal
strip, one in a drilled hole $\% / 18 \mathrm{in}$. away - and press the rubber grommet in its hole. Cut off the shafts on all three controls to about $1 / 2$ in. before installing them unless the extra length of shaft is required for mounting in a cabinet.
Although a relatively large number of parts must go on the chassis, good layout and the number of terminals or tie points provided makes a neat job possible.
The pictorial and schematic wiring diagrams

The deaignations TR1, TR2 and TR3 indicato the tranmistors: SW1 is the lov or high level switch J3 is the low Impedance Inpuit J2, the high; II, the output; and SW2 is the phono or mike switch.
found useful, or a 60 watt iron can be used. At points where bare leads may cross, use small spaghetti tubing on them to avoid shorts-except of course where they go to the same terminal.

Figure 5 shows the completely wired unit in an underside view where the neat and compact placement of parts and wiring is evident. Check all connections against the diagrams and then install the battery and 2 N 190 transistors. A battery holder can be made as shown in Fig. 7B; a top view of the unit, ready to be used, is shown in Fig. 6, above.

MATERIALS LIST-TRANSISTORIZED HI.FI PREAMPLIFIER No. Reqd.

Description

transistor sockets MS-275
G.E. 2N190 transistors

9 volt Burgess 206 battery
mate and 1 female battery snap-on clip or snap-on, two terminal insert
D.P.D.T. slide switch (SW17)
D.P.S.T. stide switch (SW16)

RCA type phono jacks and plugs
$10 \cdot \mathrm{~K}$ ohm volume control witll switch $(\mathrm{K}=1000)$, minia ture type VC. 28
$50 . \mathrm{K}$ ohm controls (no switch). miniature type VC-36
miniature knobs for $1 / 8^{\prime \prime}$ shaft MS-185
solder lug terminal strips each with 2 ground lugs, 5 insu. lated lups
(7 total) Cinch-Jones 55-A $1 \quad 22 . \mathrm{K}$ olim $1 / 2$ watt resistor $27 . \mathrm{K}$ ohm $1 / 2$ watt resistors $3 \quad 10-\mathrm{Kohm} 1 / 2$ watt resistors 2200 ohm $1 / 2$ watt resistors $1 \quad 15 \cdot \mathrm{~K}$ ohm $1 / 2$ watt resistor $120 . \mathrm{K} \mathrm{omm} 1 / 2$ watt resistors 13900 ohm $1 / 2$ watt resistor $220 \cdot \mathrm{~K} \mathrm{ohm} 1 / 2$ watt resistor $1 \quad 4700$ ohm $1 / 2$ watt resistor
$\begin{array}{llll}330 \text { ohm } 1 / 2 \text { watt resistor } & 1 & 270 . \mathrm{K} \mathrm{ohm} 1 / 2 \text { watt resistor }\end{array}$
3300 ohm $1 / 2$ watt resistor $\quad 1 \quad 1 \mathrm{meg} .1 / 2$ watt resistor
$1000 \mathrm{ohm} 1 / 2$ watt resistors $1 \quad 560 \mathrm{olim} 1 / 2$ watt resistor
10 mfd .6 volt Argonne capacitors (electrolytic)
2 mfd .25 volt Argonne capacitor (electrolytic)
100 mid .6 volt Argonne capacitors (electrolytit)
10 mfd .15 volt Aroonne capacitors (electrolytic)
100 mfd .15 volt Argome capacitor (electrolytic)
6 mfd .15 volt Argonme capacitor (electrolytic)
2 mifd. 6 volt Argonne capacitor (efectrolytic)
.02 mfd . dise ceramic capacitors
.25 mfd .200 volt capacitor (Aerovax Aerolite P82Z)
.0033 mfd . dise ceramic tapacitor
.1 mfd .200 volt capacitor
.0068 mfd . dise ceramic capacitor
.04 mfd .200 volt eapacitor (Aerovax micro-miniature P832)
rubber grommet for $1 / 4^{\prime \prime}$ hole.
1 pe half-l.ard alfoy sheet aluminum about $.040^{\prime \prime} \times 7^{\prime \prime} \times 41 / 2^{\prime \prime}$ (bend to make chassis)
1 De half-hard alloy sheet aluminum about $.030-.035 \times 3^{\prime \prime} \times 3 / 4^{\prime \prime}$ (bend to make battery clip)
18 round head 4.40 mathine serews $1 / 4^{\prime \prime}$ long
18 4.40 hex nuts
plastic covered hook-up wire about 24 gage (stranded); small spaghetti tubing
Kit \#KT117 for building the Hi-Fi Preamplifier can be obtained from Lafayette Radio, 165.08 Liberty Ave., Jamaica 33, N. Y., for $\$ 18.45$.

A good first test can be made with a microphone and amplifier, together with a speaker. The unit shows excellent gain over results obtained by plugging the mike directly into the amplifier. For phonograph use, simply plug a magnetic cartridge into the input jack instead of the mike. A selection of either high or low impedance jacks with a high-low switch allows the best matching conditions. Connections between the mike or phono cartridge as well as between the preamplifier and the power amplifier should be made with shielded cable to avoid picking up hum. The method of installing these phono plugs to cable is shown in Fig. 7C.

Buttoning Up Earphones

- In order to protect the thin metal diaphragm inside an earphone which has a single large opening in the cap, cement a button over the opening with Duco cement. Sound waves readily pass through the small openings in the button but

the diaphragm is protected from damage by sharp objects when phones are stored or transported. The button also provides a better earseal between the cap opening and the eardrum. -A. Trauffer.

"Junior! Come down from there this very minute!"

Decade resistance box in use in radio eervicing job. Various values of resistance are being applied ceross termincls where a defective resistor was formerly soldered, and which is now unidentifable due to extremo heating.

Ten ohms to ten megohms instantly available for test or experimental work with this handy. portable unit

PROVIDING 51 different standard 1-watt resistors for instant circuit insertion by means of three 17 -point rotary switches and plug-in leads, this decade resistance box is ideal for substitution use in the case of defective or suspect resistors in existing circuits, or as a test selection of values for new circuits. Its application in radio and television service work is obvious, and for experimental work-especially with transistor circuits where the amount of resistance used is often critical-its use is almost a necessity.
The 51 resistors in the unit described in this article range from 10 to 470 ohms, 560 to 12,000 ohms, and from 15,000 ohms to 10 megohms; all of 10% tolerance. Resistors of other values can be used to make up a different set of ranges if desired, and 5% or 1% tolerance resistors can be used where greater accuracy is demanded (and cost is no concern), but the values indicated here will usually be found to encompass all those needed for ordinary servicing or experimenting.

The red plug-in jack on the top panel of the Bakelite case housing the unit is common; the other three jacks (A, B, C in Fig. 2) tap off from the individual switches. With the leads plugged in the common and A, you can use all the resistors in the first group (10 to 470 ohms) ; changing the second lead to the B jack, you get the second group, 560 to 12,000 ohms; to the C jack, 15,000 ohms to 10 megohms.
Dial plates numbered from 1 to 17 are provided at each switch and a chart cemented to the bottom of the case identifies each resistor value. (The bottom is the only location on the case where a space large enough for the chart is
nals at one end, for fitting around the bare wire circular common terminal at the other. (Ohmite or Allen Bradley 1-watt resistors should be used because of their comparatively short length. Some other makes are much loriger and their use may result in a fitting problem within the case.)
Pass the looped ends of the resistors through the switch terminal holes from the back side so that the loops at the other ends will be turned out. Press them down tightly with pliers and

	CADE	ESIS	NCE	\times	
)				
1	10	1	560	1	15k
2	12	2	680	2	22K
3	15	3	820	3	33k
4	18	4	1000	4	47 K
5	22	5	1200	5	68k
6	27	6	1500	6	100k
7	33	7	1800	7	150k
8	47	8	2200	8	320K
9	56	9	2700	9	330k
10	68	10	3300	10	470K
11	82	11	3900	11	680k
12	100	12	4700	12	1.0 M
13	150	13	5600	13	1.5 M
14	220	14	5800	14	2.2 M
15	270	15	8200	15	3.3 M
16	330	16	10K	16	4.7 M
17	470	17	12K	17	10M
$\mathrm{K}=1000$ ohm			$\mathrm{M}=$ megohms		

ohmmeter before installing it to make sure that the marked value is accurate to within plus or minus 10% of its markings. When, as occasionally will happen, a resistor is found that is inaccurately marked, substitute another. (If 5% or 1% resistors are used, testing is not necessary. If you are unfamiliar with resistor color coding, an IRC Re-sist-O-Guide can be obtained for 154 from any electronics supply store.)

With all resistors sol-
solder (Fig. 3B). As shown in Fig. 2, the \#1 terminal is at the right side of the wide spacing on the switch contacts.
The lowest value resistor for each group of resistors goes to the \#1 terminal, values advance counter-clockwise (as viewed from the back). Measure each resistor with a reliable
dered to the switches, prepare the Bakelite top panel. (Fig. 4)). This piece of black Bakelite can be a part of an old $1 / 8-\mathrm{in}$. radio panel or you can send to Forest Products Co., 131 Portland Street, Cambridge, Mass., which will supply one cut approximately to size for $\$ 1.15$ post-paid (send money order or check). Corner holes are

Shape resistor leads around two nalls driven in a block of wood to get them of uniform length and with uniform loops (A); then, starting with terminal \#l on each switch with the lowest value resistor, position looped ends of resistors and solder $a t$ each terminal (B).

With the resistor-equipped switches attached to the panel, aftach formed rings of bare copper wire to free loops, bending them down uniformy over the ring (C); and affer the three rings have been placed and leads connected as shown, solder all points of contact to the rings (D).
dECADE RESISTANCE BOX—MATERIALS LIST
1 Bakelite case $21 / 4 \times 51 / 4 \times 63 / 4$ (MS 218)
4^{\prime} \#18 test lead wire
3 17-position switches (Mallory 31117J)
2 banana plugs (MS 209.black)
3 dial plates (Mallory \#467. marked 1-17)
2 insulated alligator test cllos (black)
3 binding pasts (Superior DF30BC.black)
1 binding post (Superior DF30RC.red)
1-watt carbon resistor, 10\% tolerance, Ohmite or Allen Bradley-
One of each of the following

10 ohms	560 ohms	15,000 ohms
12 ohms	680 ohms	22,000 ohms
15 ohms	820 ohms	33,000 ohms
18 ohms	1000 ohms	47,000 ohms
22 ohms	1200 ohms	68,000 ohms
27 ohms	1500 ohms	100,000 ohms
33 ohms	1800 ohms	150,000 ohms
47 ohms	2200 ohms	220,000 ohms
56 ohms	2700 ohms	330,000 ohms
68 ohms	3300 ohms	470,000 ohms
82 ohms	3900 ohms	680,000 ohms
100 ohms	4700 ohms	1.0 megohm
150 ohms	5600 ohms	1.5 megohms
220 ohms	6800 ohms	2.2 megohms
270 ohms	8200 ohms	3.3 megohms
330 ohms	10,000 ohms	4.7 megohms
470 ohms	12,000 ohms	10 megohms

All of the above material can be obtained from Lafayette Radio, 165.08 Liberty Avenue, Jamaica 33, N. Y. or in New England from their branch at 110 Federal Street, Boston, Mass.
1 piece Bakelite $1 / 8 \times 5 \times 61 / 2^{\prime \prime}$
2^{\prime} of \#16 plastic insulated stranded hook-up wire; $15^{\prime \prime \prime}$ of bare \#14 copper wire; four 4.40 ma chine serews $3 / 8$ " long, binder head plated screws preferred

for 4-40 machine screws; the four Superior combination binding posts require $1 / 2$-in. dia holes; the switches, $3 / 8-\mathrm{in}$. dia. holes. Holes should be made with a twist drill ground as shown in Fig. 4B; regular ground twist drills have a tendency to tear such Bakelite.
Switches come equipped with a round plate having a pin that may be used as a stop. Since all 17 switch contacts are needed for this unit, discard this stop. Cut off the shaft at the first

Back of the completely wired unit is shown in A. Use \#16 insulated wire from the binding posts and also between the ring terminals.
marked point and install, using a washer on each side of the panel, applying cement (such as coil dope) to the lower washer to keep the switch from turning and to keep the dial plate, top washer and nut clamp assembly tight. Then install knobs.

The next step is fitting wire rings to the looped ends of the resistor leads and bending them over tightly with pliers (Fig. 3C). Form the rings from bare copper wire (about \#14

Attach the completed panel to the Bakelite meter case, using 4-40 serews at the four corner holes (B). It fits aush to recess of case.

Completed job shows the lettering that was put on with decals sold for the purpose. After decals have thoroughly dried, apply a thin coat of clear plastic with a small brush to make them permanent. Banana plugs and clips soldered to short tlexible leads make connections quick and easy.
gage), leaving open ends at the wide-spaced switch contacts. Then connect fiexible insulated leads from ring to ring to join them as a common terminal for all resistors and run a lead from one
of the rings to the red binding post. Use \#16 wire (negligible resistance itself) for these connections (see Fig. 3D). Finally, run a length of \#16 wire from each black binding post to the arm contact of the switch it is controlled by (see Fig. 5A).

Banana plugs and alligator clips soldered to short lengths of rubber-insulated, extra-fiexible, \#18 test lead wire make convenient connections between the binding post jacks and the points on the circuit under test. Switches are marked A, B and C, and the binding posts to which each switch is connected are similarly marked for quick identification. You can do this with a fine brush and white paint or use decals as supplied by electronic stores for such work.

The decade resistance box can also be used with the leads plugged into either A and B jacks or B and C, putting the banks of resistors in the two groups used in series for special test cases. Where standard RETMA values only are of interest, however, the leads are used with one in the common and the other shifted to either \mathbf{A}, B or C post jack.

TV PIX-O-GRAM

Do you have a moment to spare? Try your luck working this puzzle. Identify the objects shown on the screen and write their names in
\qquad
the spaces provided below. Time yourself, and see if you can work this one in three minutes or less. Answers on p. 142.

tube Sockets

kube

Powerful unit fits the coat pocket as easily as it separates local stations clearly when plugged into earpiece, phones or speaker.

ONCE you have built and enjoyed a true superheterodyne radio such as that in Figs. 1 and 2 you will never be satisfied with any other AM type. Tops in sensitivity and selectivity, it is no wonder that this circuit is used in practically all commercial radios.

Transistorized Pocket Superhet

> Here's a challenging and rewarding project for the experimenter who has passed the beginner's stage

By HAROLD P. STRAND

Superhets are generally considered complex, so if you are a beginner it may be wise to gain some electronic experience by building one or more of the simpler tuned radio frequency receivers featured in this and previous issues of Radio-TV Experimenter. You will thus become familiar with basic circuit and parts layout which will help you construct a receiver of greater complexity and higher performance.

One advantage of the superhet is that all incoming signals are changed into a single fixed frequency and amplified at this new frequency. This aids uniform amplification and selectivity over a broad range of frequencies. Also, there is less danger of feedback troubles at the lower frequency, which allows greater amplification with high stability.
Four transistors and a diode are used in the circuit (Fig. 6), which is about as simple as you can expect in a superhet. A resistance/ capacity-coupled audio amplifier provides more than adequate earphone volume or will

Side of plastic case is actually top of the set, where all contrals are located for convenient operation.

Held firmly in a bench vise, the perforated Bakelite board is easily drilled and cut to shape desired.
operate a speaker on strong local stations. A 9 -volt battery powers the set. Parts needed will cost about $\$ 23$.

Begin Construction by cutting the perforated Bakelite board down to size $3 \% / 18 \times 4$ in. so it will fit loosely in the box. Bend up a $21 / 8 \times 3 \% 1 / 1$-in. piece of aluminum sheet into a support bracket as in Fig. 5. Attach it to the board as in Figs. 4A and 5, using two \#4-40 screws and nuts with \#10 nuts in between as spacers.
Mark openings for the transistor sockets and the IF transformers with a sharp scriber, then drill some small holes within the areas.

Break out the holes with small diagonal pliers, then dress the sides square with a small flat file for a snug fit as in Fig. 3.

Shafts on the tuning condenser and volume control must be cut before mounting. Clamp the end of the condenser shaft in a vise and make a square cut with a fine-tooth hacksaw at a point $9 / 32 \mathrm{in}$. from the raised bushing of the condenser's plastic case. Dress the end with a file and slightly ream the center hole so the screw retainer will start easily. Cut the volume control shaft at a point $3 / 8 \mathrm{in}$. from the end of the threaded nose.

You can now mount these units and the phone jack on the bracket as in Fig. 3. Also mount two fuse clips (see Materials List) on the board for the antenna coil as in Fig. 3. Straighten out ends of the clips, originally intended to be stops, so that a curved surface is provided along their entire length to clamp the coil at the extreme ends.

Press the IF transformers in their openings as in Fig. 4B. Bend the tabs provided over sharply at the other side, taking care to avoid distorting the terminals. They should be placed so that the brown dot seen at the underside is away from end with the bracket.

Make the battery holder as in Fig. 8A. Snap-on terminals on this battery make it impossible to get a wrong polarity when changing it.

Figure 4A shows where to place a terminal lug on top of the board under one of the battery clip retaining nuts. This will be used for the positive side of the battery circuit. It also shows how to locate the transistor sockets and bend over the terminals to lessen the space

Left, underside of board showing sacket and IF transformer terminals prior to wiring. Right, major components mounted on top of boand. Spring clip holds battery; fuse clips the antenna coil.
they occupy, as well as to simplify connections. Bore a hole through the board just below the aluminum bracket (Fig. 4A) and ream it out for a tight fit with the end of the oscillator coil. Turn this coil so that the green dot terminal is located as in Fig. 7.

Install flea clip terminals as needed in holes located from the pictorial diagram. They serve as tie points and can go anywhere on the board where wire or lead grouping indicates a terminal. Press them tightly in holes with long-nose pliers which rest against side stops to gain sufficient pressure. Don't oversqueeze.

Start the Wiring, after all parts are in place, as in Figs. 6 and 7. Reduce length of antenna coil leads somewhat for neater connections to their respective points. After cutting these stranded wires, remove enough enamel coating at cut ends by rubbing with fine sandpaper to prepare them for soldering. Twist the fine wires together to form a cable. Solder to terminals indicated.

The oscillator coil is marked from 1 to 5 , with the green dot being \#1. Tie points are provided at the left of the coil for a 27 K resistor, $.01-\mathrm{mfd}$ capacitor, and the 100 K resistor used around the coil. Make sure each connection is at the correct numbered terminal and use only rosin core solder. Connect tuning capacitor, volume control, and jack.

Place a terminal clip under the \#5 oscillator terminal (D in Fig. 7) and connect a short wire to this clip. The part of the clip projecting underneath the board is a common negative point for connections of other wires and leads. To receive this negative link, connect a 2 -mfd, 15 -volt capacitor from the middle terminal of the volume control to another terminal clip located just under the 27 K resistor (B in Fig. 7). Then, on the underside of the board, link terminals B and D with a 220 K resistor.

If you find it difficult to solder many wires at one point, add another flea clip nearby and hook it up with a short jumper.

Keep underside wiring neat and parts flat against the board as in Fig. 9A to conserve space. Use \#24 or \#26 plastic-covered, tinned, solid hookup wire. Observe polarity on all electrolytic capacitors as in Figs. 7 and 8.

Use stranded wire at the battery connections for flexibility at the snap on terminals, being sure to get the plus and minus sides right. Use a piece of bare solid wire (hookup wire with insulation removed will do) as a common positive line (Fig. 7). Soldering leads for the plus side of the circuit to this wire helps to keep the wiring compact. Also solder this wire to the two IF cans at their turned-over tabs to greund them. Note that one terminal at each IF transformer is not used.

Now prepare the transistors by cutting off their leads to about $7 / 16 \mathrm{in}$. and install them in sockets as in Fig. 7.

How to Align the Receiver. The lining-up process (Fig. 10) is necessary in all superheterodynes. First, adjust the slug in the oscillator coil until it is about $4 \frac{1}{2}$ turns inside the bottom of the coil form. Adjust trimmer marked OSC at the back of the tuning capacitor until half of its rotor is meshed with the stator or stationary piate. Adjust antenna trimmer (marked ANT) until three-fourths of its rotor meshes with the stator.

An insulated rod with a screwdriver end is

a good tool for these adjustments. You can make one out of Bakelite rod, or other stiff plastic, about $\% / 22-\mathrm{in}$. dia. File the screw-driver edge in one end.

Plug in the phones, turn on the switch, and advance the volume control about three-quarters of the way. Set the tuning dial around 1600 kc (160) and turn slowly until you pick up a station near this top end of the dial. Identify the station from the announcer or a newspaper listing and note if it comes in approximately at the correct dial position. If not, set the station number correctly on the dial and then adjust the oscillator trimmer (slug) of the tuning capacitor until you get maximum volume and clarity. Then adjust the antenna trimmer for best reception.

Try a station at the opposite end of the dial (around 55) and repeat the adjusting process up to the antenna trimmer stage. Should the stations come in correctly, simply adjust the antenna trimmer for maximum volume for a station at the high frequency end and the oscillator slug for a station at the low end.

8 A shapmg the battery holoter

Now tune in the weakest station at the high frequency end and again adjust the antenna trimmer for maximum volume. A slight adjustment may be required at the IF transformers, using the same tool through a small opening to turn the slug. These transformers come factory-set for 455 kc , so it is well to avoid a change unless necessary. Move the slugs slightly in either direction if peaking seems advisable. The various adjustments described have an effect on one another, so it is sometimes necessary to go over the steps a second time.

You'll find the antenna coil is somewhat directional. For maximum volume and clarity, move the unit to a position in which the coil points toward the station. Try this for each

For a good wiring jab, keep capacitors and resistors close to board and use spaghetti tubing an leads crassing bare leads or terminals to avoid shorts. Right, transistars shown in sockets on top of baard where wiring is limited.

Listening in on an ontenna trimmer adicaiment, ane of several steps in aligning the set.
plicated, a radio technician will align it for you with a signal generator.

If No Signals Can Be Heard, carefully recheck the parts against the diagrams and photos. You may discover a missed or wrong connection. While unlikely, one of the coils may be open. The diode or a transistor may be inserted wrong or be defective. Substitute another diode as a test, if necessary, noting how the end with the straight bar (cathode) connects in the circuit. To check transistors, a tester is required. One like that described in this issue ($p .106$) should be pert of every transistor experimenter's lab.

Two spacers cut from pipz are cementec to back of cose to hald board in proper pomion.

Optional speaker requires output transformer for correct impedance match to the 3.2 -ohm voice coil.

Preparing the Case. Once the chassis is adjusted, the next step is to finish the clear plastic case. We applied two coats of a dark maroon enamel to the inside surface only, using a small brush and smooth, even strokes.

After the enamel dries, add a coat of flat black paint to the inside surface. When dry, this will give a more suitable inside finish, while the maroon will show through to the outside to give a professional, Bakelite-type appearance.

When the finish is complete, locate and mark holes for the tuning capacitor volume control, and jack at one end of the case as in Fig. 11A. Also locate two countersunk holes in back for screws to hold the chassis. To avoid cracking the material, drill small holes carefully and then hand-ream them to size.

To hold the board at proper level in the
case, cut two spacers about $11 / 32 \mathrm{in}$. long from any small pipe or similar hollow material. Install them over the holes in the back of the case as in Fig. 11A and B, using a dab of paint to "cement" them in place.

Insert the tuning capacitor and volume control in their drilled holes as in Fig. 8B, using a second nut on the latter to lock the chassis to the case end. The jack will just protrude through its hole. Attach volume control knob and tuning dial to their shafts, then secure lower end of the chassis to the spacers through holes at the back, using \#4-40 fh screws and nuts.

Operating Tips. You can use a 2000 -ohm headset or a single earpiece having about the same resistance value, as in Fig. 2. Crystal earphones are not satisfactory.
Figure 12 shows how to use a speaker for local reception of most strong stations. Mount a $5-\mathrm{in}$. PM speaker on a piece of composition board and fit the board in an enclosure known as a wall. We found reception surprisingly good for a radio designed primarily for earphones.

Behind the speaker in Fig. 12 is a matching transformer (Argonne AR-138) serving as the output transformer. Connect long leads equipped with a plug to the jack of the radio unit, the shorter pair of leads to the speaker terminals. Don't use the red lead center tap.

Transistorized circuits sometimes have a distortion problem, especially at high volume. In this particular circuit, experimenting with the value of the resistor at the base of the output transistor (Fig. 6) may help eliminate the trouble. Resistance between 100 K and 220K will probably be best. Distortion may also be due to a defective transistor, or to position of the set. Move it to align the antenna coil with the station.

Solution to TV Circuit Puzzle, p. 122

LOOKING OVER NEW PRODUCTS

New AM Car Radio Under \$30

A transistor-powered AM car radio retailing at only $\$ 29.95$ comprises the basic model in the 1962 Motorola line. Known as Model 250-X, it is available with choice of two face plates to fit in almost any domestic automobile with minimum installation difficulty. The set includes three tubes, two transistors, 4 -in. speaker with automatic volume control, noise interference rejection and 3 microvolts of sensitivity.

All other AM car radios in the new line have a fully-transistorized chassis, beginning with a manual model 320 T featuring tone control, reverse polarity, chrome knobs and distinctive dial treatment for $\$ 39.95$.

A deluxe manual set, model 2MT has a separate tone control, $5 \times 7-\mathrm{in}$. speaker, adjustable shaft centers for a custom installa-

Hi-Fi Speaker System

Unusually smooth response within $\pm 2 \mathrm{db}$ from 45 to 17,500 cycles per second is reported from the three-speaker Ravinia system. The unit comprises a $12-\mathrm{in}$. compliance woofer, an 8 -in. cone midrange speaker with sealed fiber glass-fill backplate, and a $21 / 2-\mathrm{in}$. ring radiator supertweeter with a similar backplate.

Cross over points are 600 and $3,500 \mathrm{cps}$ with db/octave attenuation. Level controls are provided for optimum midrange and tweeter balance under all room conditions.

Contemporary cabinet is $261 / 4 \mathrm{in}$. wide, $131 / 4$ in. deep and 15 in . high. Model SR 3-W in hand-rubbed walnut is priced at $\$ 139.50$; model SR 3-B in unfinished hardwood ready for stain or paint, \$129.50, and model SR 3-U

tion, and a 6-transistor push-pull chassis delivering 12 watts of instantaneous peak power which is said to be three times above average. Priced at $\$ 51.95$ including installation kit.Available through Motorola dealers.

in utility finish, \$119.50.-Sherwood Electronic Laboratories, Inc., 4300 N. California Ave., Chicago 18, Ill.

Stereo Multiplex Adapter

For an economical way to receive the new FM stereo broadcasts, the Realistic line has introduced a multiplex adapter designed to match with its present monaural FM tuners simply by connecting one wire to the multiplex jack and two wires to the amplifier.

A selector switch and stereo balance control connected with two pilot lights indicate when power is on and when station being received is broadcasting stereo. Adapter has frequency response of 3 db in range of 50 to 15,000 cycles per second; hum and noise, 60 db ; crosstalk, 20 db at 1 kc . Unit measures $73 / 4 \times 43 / 8 \times 6$ in. and sells at $\$ 39.95$ completely

wired or $\$ 29.95$ in kit form.-Radio Shack Corp., 730 Commonwealth Ave., Boston 17, Mass.

LOOKING OVER NEW PRODUCTS

Low-Cost FM Stereo Adapter Kit

Owners of stereo music systems may receive the new stereo broadcasts economically with the new Knight-Kit Adapter KS-10 which can be used with any FM or AM-FM tuner equipped with a multiplex output.

The power cord of the adapter unit is plugged into the switched ac outlet on amplifier or tuner, so that it will turn on and off automatically. It has its own on/off switch, noise filter, and separation controls. The unit, measuring $37 / 8 \times 81 / 2 \times 4$ in., may be installed out of sight.

Priced at $\$ 19.95$, the multiplex adapter kit includes three $36-\mathrm{in}$. cables for input and output hookup, metal case, tubes, all neces-

FM Multiplex Tuner

Drift-free performance without AFC and complete elimination of inter-station noise are credited to the Realistic TM-214 tuner for stereo FM multiplex reception, now available in kit or wired form. Tuner contains 11 tubes plus rectifier and matched germanium diode detectors, has two audio and two tape outputs, three IF and three limiting stages to provide constant output and high-gain bandwidth control without distortion.

From a cold start, drift is held to $.02 \%$; calibration accuracy is rated at $.2 \%$. Signal-to-noise ratio is 70 db monaural or 50 db

sary parts, precut wire, solder, and step-bystep assembly instructions.-Allied Radio Corp., 100 N. Western Ave., Chicago 80, Ill.

stereo; AM suppression is 30 db with $2.8 u v$ into 3000 ohm antenna. Price of the kit is \$149.95; wired, \$189.95.—Radio Shack Corp., 730 Commonwealth Ave., Boston 17, Mass.

LOOKING OVER NEW PRODUCTS

Earphone Stereo

A self-contained stereo system designed for one to four persons using earphones is called the Pioneer Stereoscope Model SH-100. A simple air-pressure system activated by minute movements of the tone arm stylus creates the balanced stereophonic sound through earphone pipes connected directly to the tone arm, which may be attached to any current record player or turntable.
The system features a needle guard, tone arm rest, adjustable stylus pressure, and easily replaced needle. Use of additional pipes and adapters allow up to four persons to listen simultaneously. Complete system sells for $\$ 29.50$ and includes tone arm, cartridge, adapter, one set of earphones, two plastic tubes, suction cup base with metal

Twin Speaker Cabinet

An 8-in. woofer with a long-throw, highcompliance cone and a Spericon supertweeter mounted semi-coaxially with it and $1 / 2 \mathrm{in}$. off center to assure smooth speaker performance and wide high frequency dispersion make up the new Realistic "Solo 9" speaker system.

The unit has a frequency response range of 35 to 45,000 cycles per second, is offered with hand-rubbed, oiled walnut finish cabinet for \$109.95.-Radio Shack Corp., 730 Commonwealth Ave., Boston 17, Mass.

Grid Dip Meter

Compact design of the Model TE-18 grid dip meter, with on-off and oscillator-diode switches on the front panel, permits its operation as a one-handed troubleshooter. In addition to acting as a grid dip oscillator to determine resonant frequencies of tuned circuits, it will also serve as a signal generator, absorption wave meter, field strength meter or oscillating detector.

It covers frequencies of 360 kc to 220 mc in eight calibrated ranges. Coils are lettercoded and marked in megacycles by frequency range.

The unit has planetary drive tuning mechanism with 4:1 reduction gears, grid current meter with $500-u a$ movement, uses a 6 AF 4 A tube, and measures $2 \times 23 / 4 \times 71 / 4 \mathrm{in}$. It is priced at $\$ 24.95$.-Lafayette Radio Electronics, 111 Jericho Turnpike, Syosset, N. Y.

hook, extension rubber tube reinforcements, controller, and screws.-Lafayette Radio Electronics, 111 Jericho Turnpike, Syosset, N. Y.

LOOKING OVER NEW PRODUCTS

Electronic Thermometer

An instant reading thermometer with an accuracy of $1 / 2^{\circ}$ at distances up to 1000 ft . away, if extra wire is used, is the new Realistic Novatherm model. The meter is designed to provide continuous readings, take readings of two different temperatures in two different locations, and traverse the extremes of dry ice to boiling in one second. Front switch selects either external or internal probe.

The $33 / 4 \times 41 / 2 \times 61 / 4-\mathrm{in}$. unit is equipped with 1% resistors and four adjustment potentiometers for accuracy in calibration. It is available as a kit for $\$ 19.95$, or completely wired for $\$ 29.95$.

The thermometer can be used in darkrooms, children's rooms, refrigerators, freezers, tropical fish aquariums and cooking applications. It can also "take" children's temperatures and monitor the temperature in

Sound-Powered Phones

The call-to-answer problem which has plagued sound-powered telephones since they were introduced early in World War II has been eliminated. New models have a tran-sistor-powered 1,000 -cycle oscillator connected across the two communicating wires.

Press of a pushbutton switch sends a clear, 1,000 -cycle note on both wires without harming the phones, which are capable of handling speech for distances up to 25 miles without battery power.-Distributed by Blan the Radio Man Inc., 64 Dey St., New York 7, N. Y.

FM Car Radio Tuner

Designed for use with AM car radios featuring push-pull high fidelity output, the Model FMC-62 FM car radio tuner can be easily removed from one car and installed in another, to amortize its cost over several automobiles. Compact in size, the tuner has a front panel of simulated black leather framed in bright chrome.

Equipped with seven tubes, two limiters with its own RF stage, automatic gain control,

radio equipment.-Radio Shack Corp., 730 Commonwealth Ave., Boston 17, Mass.

and automatic frequency control, the set retails for $\$ 69.95$ at Motorola dealers.

Answers to TV Pix-O-Gram on page 130

> Top left, If transformer. Top center, miniature tube.
> Top right, mast elamp.

Bottom left, capacitor mount. Bottom center, fuse holder. Bottom right, miniature tube socket.

RF-AF Resonance-Frequency Meter

A simple test accessory to increase the usefulness
of your signal generator, VTVM, and oscilloscope

Determining resonant frequency of coil-condenser combination with VIVM at left and signal generator of right. Coil-condenser combinations may be connected to either set of terminals.

By W. F. GEPHART

SOME instruments are available for determining the frequency of resonant circuits, values required for resonance, and "Q" factor. Others determine the frequency of AF or RF signals, but few are versatile enough to fulfill all of these requirements. Most of these instruments are expensive and have greater accuracy than is necessary for typical experimenting.

The unit shown in Fig. 1 is easily constructed and costs $\$ 15$ or less, depending on whether you use new or surplus parts. When operated in conjunction with a signal generator and VTVM (or oscilloscope) as in Fig. 1 , the meter will:

1. Determine the resonant frequency of coil and condenser combinations at either AF or RF.
2. Indicate selectivity and peaking of a resonant circuit.
3. Measure crystal frequencies and give an indication of activity.
Accuracy of the unit will depend on the accuracy of the signal generator used with it, and on the care taken in making the tests. Its range will depend on components used and care taken in parts placement and wiring.

Variations Are Easy in both construction and components used, depending on the features you desire. The author enclosed his model in a $31 / 2 \times 6 \times 8$-in. Minibox in which he fastened the variable capacitor to the top with ceramic insulators as in Fig. 5. However, if a vernier dial is wanted, you may find it more practical to use a regular cabinet and separate chassis.

The unit in Figs. 4 and 5 was designed primarily for audio and low radio frequen-

cies. At high radio frequencies, the internal capacity of the unit becomes important because of the low capacities. In such case, a smaller variable capacitor (100 or 140 mmfd) should be used. In addition, you would have to minimize internal capacity by placing parts and controlling lead length in a more careful manner.
In the unit shown, internal capacity is about 38 mmfd when the three-position DPDT toggle switch (S2) is set at "None." This is too great for high radio frequencies. Much of this is due to the rotary switch (S1). For high frequencies. it might be better to eliminate this switch or substitute a ganged-type ceramic rotary switch with wide spacing.
Drill the front panel of the miniature cabinet as in Fig. 3, modifying where necessary

Calibration far variable capacitor is lettered an cabinet with India ink.
to accommodate any changes in components you propose to make.

Four Important Steps to remember in any case, before drilling, let alone mounting the parts, are:

1. Ceramic-type stand-off or feed-through insulators should be used for the capacitor and inductance terminals.
2. Switch S2 must be a low-capacity lever type.
3. Capacitor and conductance terminals. variable capacitor, and lever switch must all be placed close together to minimize lead length.
4. The variable capacitor must be insulated from the cabinet and should be of the "mid-line" type, in which capacity varies directly with rotation. This simplifies calibration if you mark off the 180° scale in equal segments between the minimum and maximum capacity of the unit.
Minimum capacity in Step 4 is 25 mmfd . and the maximum, 385 mmfd ; the difference being 360 mmfd . Dividing this by 180° means that each scale degree equals 2 mmfd . Since there are 5° segments on the scale, each segment equals 10 mmfd . For more precise tuning, a vernier dial such as National MCN can be used.

Neat parts assembly is importont to the success of the project. Keep wiring short and direct.

The Determining Circuit used for resonant frequency is shown in simplified form in Fig. 6 A . Capacitance and inductance are connected in parallel and this combination is connected in series with a load resistor (R1).
Now connect a signal generator across the resonant circuit-load resistor combination and a VTVM across the load resistor alone. Output of the generator, fed through this generator, is monitored by the VTVM.
At the resonant frequency of the coil-condenser combination, the high impedance of the parallel LC circuit causes a drop in the voltage across the load resistor, which is shown on the meter. Amount of voltage drop is an indication of the " Q " of the circuit. The frequency range over which there is some voltage drop indicates the selectivity of the circuit.

By using an audio oscillator (instead of a signal generator) and iron-core inductances, resonant audio frequencies can also be determined.

Where an external coil and condenser are involved, make these tests with switch S2 turned to the "None" designation. If you have a coil and want to know what capacitance is required for resonance at a given frequency, set this switch at RF or AF, and set the signal generator for the desired fre-

quency, with only the coil connected to the terminals.
Now, with S2 on RF, tune the calibrated variable capacitor (C3) until the VTVM reading drops, indicating resonance. You can then read the capacity required on the C 3 scale. If C3 does not have sufficient capacitance, connect additional fixed capacitors from the capacitor terminals to "pad" C3. The value required would be the sum of the external capacitor and the indicated reading on the C3 dial.

After turning switch S2 to AF, you can cut into the circuit any one or combination of the interral fixed condensers by switches S3 through S12. Start with high capacities and work down. By switching in the capacitors one by one and tuning the audio oscillator on both sides of the desired frequency, you can determine an approximate internal capacity.

In this procedure, if the resonant frequency (with a specific internal capacity in the circuit) is below the desired frequency, too much capacity is involved; if the frequency is too high, too little capacity is being used. After making an approximation, you can determine the exact value by adding small amounts of capacitance externally to the capacitor terminals.

To Test Crystals, try the simple circuit shown in Fig. 6B. In this the crystal is substituted for the resonant circuit but, due to its low impedance at resonance, the VTVM reading suddenly increases at the resonant

frequency. The amount of rise in voltage gives an indication as to the activity of the crystal. Its harmonic content can also be checked by tuning the signal generator to the crystal's harmonic frequencies.

Tuning required in the crystal test is extremely sharp. It is virtually impossible to determine the frequency of an unknown crystal. Even when the frequency is known, it is easy to pass the peak unless care is taken in tuning the signal generator.

Unknown Frequencies are determined by "beating" them against a known frequency, as in Fig. 6C. Connect both the test signal and signal generator across the load resistor, then tune the signal generator through its range.

With RF signals, when the generator frequency equals that of the test signal, the two will lock in phase, reinforce each other, and the output will increase sharply.

With AF signals, the VTVM needle will start quivering, then oscillate, just before the two signals reach the same frequency. The oscillations will slow down and stop when the two frequencies are exactly equal, only to start again as the exact frequency is passed.

In the Case of RF Signals, an ossilloscope is a better indicator than a VTVM because of the locking of the two signals. Connect the vertical input to the VTVM terminals of the unit, and a complex wave pattern will be shown when off-frequency. When the two frequencies are equal, a good sine wave pattern will result (if both inputs are sine

	MATERIALS LIST-RF.AF METER
Desing.	Description
R1	. 5 meg. $1 / 2$-watt resistor
C1, C2	. $005 \mathrm{mfd}, 50$-volt capacitors
C3	$\mathbf{2 5 . 3 8 5} \mathrm{mmfd}$ variable capacitor with mid-line plates (see (ext)
C4	. 0001 mmfd (100 mmfd) mica or disk capacitor
C5	. 0025 mmfd (250 mmfd) mica or disk capacitor
C6	. 0005 mmfd (500 mmfd) mica or disk capacitor
C7	. 001 mmfd (1000 mmfd) mica or disk capacitor
C8	. 0025 mmfd (2500 mmfd) mica or disk capacitor
C9	. 005 mmfd (500 mmfd) mica or disk capacitor
C10	. 01 mmid mica disk or ceramic capacitor
C11	. 025 mmfd ceramic capacitor
C12	. 05 mmfd ceramic capacitor
C13	. 1 mmfd ceramic capacitor
D1	1N34, 1N48. etc. . diode
J	Open circuit jack
S1	5 -pole 3 position rolary switth (Mallory 3263J: see
S2	DPDT 3-position lever (Switchcraft 3037L: see text)
S3.S12	SPST lopgle switch
Mise.	Six binding posts, four ceramic stand-off or feed-through insulators, crystal socket, knobs, hookup wire

waves) and the amplitude will be about twice that of the complex wave.

With AF signals (using an audio oscillator), the needle oscillation of the VTVM will be more pronounced. Phones may be used for an audible check of the zero-beat note.

Due to the lack of a buffer amplifier in the unit, the two frequencies will tend to lock together as the generator frequency approaches that of the test signal. At audio frequencies, this effect is slight, but it does limit the exactness that can be achieved at radio frequencies.

In all three tests, you must be sure that indications are received at the fundamental frequency rather than a harmonic. If the approximate frequency involved is known, this is no problem. If not, you can determine it by working out this formula:

$$
\text { Fundamental Frequency }=\frac{F 1 \times F 2}{F 2-F 1}
$$

First make a test for the lowest frequency which gives an indication (meter dip on resonance test, peak on crystal test, beat-note on frequency comparison test). The lowest frequency will be Fl.

Gradually increase the frequency of the generator until a second indication is noted, taking care not to pass the next frequency that gives an indication. That will be F2.

Charged Plastic Dusts Platter

- If the grooves of your hi-fi phonograph records are filled with dust. here's how to remove it the harmless electrostatic way; Take a piece of Saran plastic wrap and crumple it in your fingers while holding it about an inch above the surface of the revolving platter. The static electricity produced by crumpling the plastic will attract the dust particles and hold them. If you watch very closely, you'll actually be able to see them jump from the platter to the charged wad of plastic.-J.A.C.

For information on Classified ads-to be included in our next RADIO-TV EXPERIMENTER MANDSOOK and other Mandbooks-write C. D. Wilson, Monager, Classified Advartising SCIENCE and MECHANICS HANDEOOK DEPT., 505 Park Avenue, Now York 22, N. Y.

AUTHOR'S SERVICE

PUBLISH your book! Join our successIul authors: publicity advertising promotion, beautiful books. All subjects invited. sond for free manuscripe reports and detalled booklet. Carlton Press, Dept. DGCC, 4 Fifth Avenue, New York City 11 .

AUTO TRAILERS \& SUPPLIES
BUILD Expanding eight loot trailer. Mar Company, Wimington, Mass. Fra-

BUSINESS OPPORTUNITIES

FREE Book "'990 Successful, LittleKnown Businesses.' Wort home! PlymouthIIW, Brooklyn 4, N. Y
SHARPEN Saws and Lawnmowers the proatable way. Send for Free literature. Max Manufacturing Company, 138 Stockton Avenue, San Jose 26, Calif.

BUY IT WHOLESALE

LOOKING for something??? Buyers Service, $9325-\mathrm{D}$ Mendard, Oak Lawn, Illinois.

CAMERAS \& PHOTO SUPPLIES

AT last: Bulld your own supersensitive Heht meter from complete kit with easy to follow instructions. Uses newest cedmium sulide light cell, shows ASA speeds accurately $\mathbf{3}$ F stops 7 to 90 measures accurately moonitght to bright sunlight. Send $\$ 19.95$ to Klt Division, Science and Mechanics, 505 Park Ave. New York 22, returned within ten days for any reason.
CARTOONING, COMMERCIAL ART \& SIGN PAINTING
SURE: You can draw portraits of Relatives and Friends. Make money too with Corydon Snyder's "Art-Aids." Write for particulars or send him 81.00 for completo prodle set to 520 North Paulina St.,

EDÜĆATION \& INSTRUCTION

LEARN While Asleep with our recorder, phonograph or amazing new "Electronic Educator" endiess tape recorder. Details Iree. Research Assoctation, Box 24-CC Olympla, Washington.

ELECTRIC MOTORS

MOTORS: $1 / 4 . P$. General Electric 87.50. $1 / 2$ H.P. Wagner $\$ 14.50$. Send Money Order Rebullt Sizes to 5 H.P., List 10%. A.C. Motors, 3101 N. 32nd St., Philadelphia 32, Penna.

ELECTRICAL EPUIPMENT \& SUPPLIES

MOTOR Repairing simpllied. Free detalls! Modern, Boz 8715, Kansas City 14, Missourl.

COMPLETE EIt with easy to follow in= structions for bullding a high precision all purpose tachometer 3 ranges. Meas ures speeds on tape recorders. lathes, cutting tools, auto engines; model plane engines, many more uses. Only $\$ 16.95$. If not completely satisfied, kits may be returned within ten days for a complete refund. Eit Division, Science and Mechanles. 505 Park Ave., New York 23, New York.

FISHING TACKLE BAIT \& LURES

Fish, Animal, Balts, Lures, Cults Books. Catalogs 204. Myer
Morquand, Lourts,

FOR INVENTORS

DESIGNING Model making. Development work, Blueprints, write, M. Martin, Martindale, Pa .
SAVE High fees! Apply for your Patent yourself, New "Do-It-Yourseli"" Patent Klt now makes it easy! Free "Reristra-
tion Form." Miss Susen Blain 308 tion Form." Miss Susan Blain, 300 Carry Bullding, Washington 5, D.C.

Make your classified ad payl This hand. book tells how-with examplest included is a Credit Certificate worth $\$ 2.00$ toward the cost of a classified ad in S\& M. For a copy of "How to Write a Classified Ad That Pulls," send $\$ 1.00$ to Stience and Mechanics, Dept. CDW.595, 505 Park Are., New York 22, N. Y.

GOVERNMENT SURPLUS

GOVERNDEENT Surplus Avallable Locally. Government Publication. Send Alr Washington. Surplus, Box 36, Everetto Washington.

HELP WANTED

THOUSANDS of job openings, Netion-wide-Worldwide, Box 12 , Detrolt 13 , Mich. HYPNOTISM
HYPNOTIZE Self. Others whlle asleep with amazins hypnotic phonograph records. tapes. Catalog Iree. Research Assoctation, Box 24-C, Olympla, Wash.
NEW concept teaches you se. 1 -hspnosis quicEly! Free literature. Smith -McKinley, Box 3038, San Bernardino. Calif.

LEATHERCRAFT

AMAZING Fiexilife coating makes worn leather beautiful agaln. All colors. Not a lacquer Detalls and leather somple free. Modec. 216 Juckson, Chicago 6. Ili. Irte.
MAGIC TRICKS, JOKER NCVELTIES \& PUZZLES
2700 NOVELTIES, Tricks, Jokes, funmakers, hobbies. World's biggest gadzet catalof, 10%. Johnson-Smith, Dest
Detrolf.

NISSILES \& ROCKETS

ROCKETS Avallable Now: Now 2-Stage Model Spacecraft! Kits, Conez, Englnes. Chemicals. Bigser, 1962 Catalog 25 . Central Rocket Company. Waupaca, Wis. MÖNEYMAKING OPPORTUNITIES
BECOND Income From Ohl Can End Your Tolll Free Book and Oilneld Maps National Petroleum, Pan-American Bulld-

MUSIC E MUSICAL INSTRUMENTS
FLAYER Pisno rolls, perts, books, werve Ice. Litarature dime, Rodgers, 18301

PATENT SERVICE

PATENT Searches, Including coples of nearest patents, $\$ 6.00$. Reports alrmalled Within 48 hours. More than 200 reglstered patent attorneys have used my service. Free invention protection forms. Write Wash Ann Hastings, P. O. Box 178, Washington 4, D. C.
SAVE HIgh lees! Apply for your Patent yourself. New "Do-it-Yourself" Patent Kit now makes it easy! Free "Registration Forme" Miss Susan Blaln, 306
Carry Bulldiag, Washington 5, D. C.
NO Letter to write! Special "Invention For Sale'' form presents your ldea to buyers. Tells them what they must know, Sest way. Packazes of $81 \times$ forms. $\$ 100$ slon, 505 Park Avenics, Crait Print Dlvision, 505 Park Ave., New York 22, N Y

PERSONAL

MEXICAN Lesal Matters. A. Espejo, Box 217-M TiJuana, Mexico.

PETS-DOGS, 8IRDS, RABBITS,
HAMSTERS, ETC.
REGISTERED German Shepherd Pupples, older males, females shipped Pupwhere. Gecrge Gober, Jacksonville, Texas.

PHOTO FINISHING, ETC.

A Free Roll of Kodak Film with each developing and printing Guaranteed Qual ity send for free mallers. Economy Photo Service, Dept. S, P. O. Box 1111, Albany. New York.

PRINTING OUTFITS \& SUPPLIES

PRINTING Presses, Type, Supplies. List 4\%, Turnbaugh Service, Mechanicsburg. Penusylvanín.

RADIO \& TELEVISION

TROUBL-E-SHOOTING Made Gasy: Professlonal Electronic Techniclan Secrets Revealed. complete method $\$ 100$ Signisture Publications, 3150 El Cajon, Sen Dlego 4, Call?.

CONSTRUCT a quality FM Receiver. Challenge to Seasoned Experimenters. Also 26 new, exclting projects in "Radiopage "White's Radio Log" extra Sen $\$ 1.00$ to Sc ence and Mechantes, Handbond Division, 505 Park Ave., New York 23, New York.

STAMP COLLECTING

1,000 DIFFERENT $\$ 1.00$ with approvals only. Alfred Jacobsen, Crompond, N. Y.
States-United Nations-B pages-United States-United Nations-B. N. A. Price $30 \leftrightarrows$ Deduciton on $\$ 3.00$ purchase. Excellent Reference Booklet. 700 Hlustrations. N. Kniffin, 1700 Harvard Street, Swissvale, Pennsylvania.
FREE Toiangles, Pletorlals, Others. 55 Different Coloriul, Low Priced Approvals. L. Balrd, SM-1, Box 8128 Portland 7 Oreson.

WELDING EQUIPMENT \& SUPPLIES

FREE Cetelog, Welders Eits. Bulld 350ampere welder using aircraft generator, plans 25\%. Dunber, Kinneepolis 8, Minn.

Introducing THE S\&M Handsook Library

HERE is a brand-new service available to readers of SCIENCE and MECHANICS and the S\&M Handbooks. Now, for a first time, you can order the S\&M Handbooks you want in advance of publication date (and even be sure you'll receive your copies before the publication date!)
During 1962, S\&M will publish 30 Handbooks-the list and descriptions cover these two pages. By sending your order now, you can be sure you'll never miss the Handbooks you want. Each Handbook is $\$ 1$ land that covers postage and handlingl-but better yet-you can have all 30 Handbooks for only $\$ 20$. . . a full third off!
And, don't miss the four-issue subscription to four all-time favorite Handbookssee the bottom of the order coupon on the other page.

Order your Handbooks now-you'll be glad you did!

S \& M HANDBOOKS - 1962

HOME APPLIANCE REPAIR (No. 590)-A how.10 book covering repair and maintenance of the major home applionces: washer, dryer, water heater, furnoces, incinerators, appliance motors, etc. Checks to make before calling the serviceman. Publication date: Jonuary.
FURNITURE HANDBOOK (No. 591)-Step-by-step instructions to build furniture for every orea around the home. More than 35 proiects to build, plus procedures in upholstaring, springing, clamping, joining and finishing. Publication date: Janvary.
1001 HOW.TO.IDEAS (No. 592)-Crammed with time and money soving tips on maintenance of homes, cars, boots, plus practical kinks for the plumbing, electrical and radio.TV da-it-yourselfer. Spacial bonus price comperator slide pule offered in this Handbook. Publication date: February.
BOAT BUILDER'S HANDBOOK (No. 593)-New edition of this popular semi-annual affers o dozen completely detailed projects for small boots, including an 8 foot water scooter to be built in a day and a 9 foot poddle wheeler. Special discussian on refinishing plastic bools. Publication date: Fobruary.
SCIENCE FAIR PROJECTS including Science Experimenter (No. 594)-Here's on exciting new edition, offering two dozen chollenging projects of prize-winning caliber-iust in time for students to enter models in the 1962 science folrs. Publication dote: March.
RADIO.TV EXPERIMENTER (No. 595)-Over 30 electronics projects for homs. DXers, short-wovers, citizens' band usars and other experimenters. Ineludes the complate White's Radio log of AM,

FM, TV and shart wave stations with latest revisions. Publication dote: March.
CAR REPAIR HANDBOOK (No. 596)-A score of practical servicing articles for the car owner plus new developments in cor repoir tools and accessories. Hints on changeover to summer driving. Publica. tion date: April.
GARDEN HANDBOOK (No. 597)-A definitive Handbook for the home gardener-with scores of tips and photographs. Best ideas for growing prizo-winning flowers, fruits and vegetables. Special sectian devoled to orgonic gardening. Publication date: April.
HOME REPAIR HANDBOOK (Ne. 598)-A Handboak for the hame handyman who wants to sove money by doing his own popaip and mointenance. Filled with valuoble tips on plumbing, painting, glazing, carpentry and other repairs. Publication date: May.
CAMPING HANDBOOK (Ne. 599)-A Handbook for the actlve sportsman-for bath the first-timer and the "ppo." Dozens of fips and ideas on all types of equipment, accessories, elothing, etc., for the autdoorsman. Publication date: May.
INVENTOR'S HANDBOOK (No. 600)-Scores of articles, full of lips for the inventor. How to petent your inventions, where to sell them, how to sell ... plus discussions on cosh sales, royalties, development, licensing, manufacturing, etc. Publication date: June.
WATER SPORTS HANDBOOK (No. 601)-A primer on wotor sports of all kinds: skin diving, seuba diving, woter skling, surf board riding, water polo, swimming and othar water sports. Mors fun and mare zest in the water. Publcotion date: June.

ENGINE HANDBOOK (No 602)-A complete Hordbook on en. gines of all kinds-for every type of mechanical-minded hobbyists and repairmen. Contains step-by-step detailed instruction on repair, maintenance, conversions, funing, alferations. Publication dote: July.
HUNTING AND FISHING HANDBOOK (No. 603)-Fully illustrated hondbook covering all phases of these outdoor sports. Includes sections on equipment, accessories, clothing, plus dezens of tips and ideas. Publication date: July.

25 WHEEL PROJECTS (No. 604)-Detailed plans for 25 home prolects, including such papular items as carts, trailers, race cars, roll-away furniture, and others. This Handbook is a must for the active do-it-yourself croftsmon. Publicotion date: July.

TOOL DIRECIORY (No. 605)-A definitive directory of workshop fools-hand and power-illustrating, describing and giving manu. facturers for all the woodworking and most useful mofolworking tools offered to the home craftsman. Publication date: August.
SURPLUS PROJECIS HANDBOOK (No. 606)-More than two dozen best buys in surplus for 1962, over a score of praceical proiects to make from bargain surplus purchases. Plus, a complato list of surplus dealars, including fult mailing address. Piblication dote: August.

BOAT BUILDER'S HANDBOOK (No. 607)-Defoiled projects for the small boat builder. More than a dozen plons that can be used at ance, including week-end projects as well as advanced plans calling for weeks of building. Plus ideas for preparing for the winter secson. Publication date: August.
SCIENCE EXPERIMENTER including Science Foir Projects (Ne. 608) - Dozens of science projects plus new developments in science, review of sciantific books, information on carsers in science. A must for the high school student-already a favarite with his teccher. Publication date: September.
RADIO.TV EXPERIMENTER (No. 6091-AImest three dezen project articles for the electranics experimenter-expert and novice, plus Information for the ham, short wave listener and DXer-plus oxpanded Whita's Radio Lag, the complete AM/FM, IV and world. wide short-wave broadcasting. Publicotion date: September.
JUNIOR MECHANICS HANDBOOX (No. 610)-A "must" for the youngster starting out. This Handbook is destined to become a
fovarits of school and frade school instructors throughout the country. Publication date: September.
HOME WORKSHOP HANDBOOK INo. 6111-A selection of the most popular how-fo-do-it articles 10° the home craftsman. Includes a wide variety of information on the use of power tools and how to build ond use shop accessories. Fublication date: October.

CAR REPAIR HANDBOOK (No. 612)-More than twenty servicing orticles for the owner, plus the newest in devalopments in cors, accessories. How to get ready for winter driving. Publication date: October.
ELECTRICAL HANDBOOK (Ne. 613)-An indispensoble guide for the amoteur and the do-if-yourselfer, as well as every apertment and home dweller. How to moke minar electrical repoirs, Installotions, hints and ideas by the segre. Publication date: October.

CERAMIC HANDBOOK (No 614)-A how.lo-do-if Hondbook show. ing scores of illustrations covering all phases of moking ceramic projects. Covers the gamut from the tiniest ashtrays to lorge fable center pieces. Publicotion date: November.
HOME MODERNIZATION HANDBOOX (No. 615)-A handy guide to modernizing home or apartmant-inside and ouf. Covers all rooms of the house, gorage, affic and garden and patio. Also cantains plons for the handyman. Dublication date: Navember.
NEW CARS 1963 (No. 616)-A complete comparative sfudy of all domestic and foreign naw cars ovailable in America in 1963-plus arficles highlighting engineering and styling trends and up-to-the minute sarvicing tips. Publication date: November.

MAGIC HANDBOOK (No. 617)-Jips on how to perform the famous tricks of famous magicions-os well as stop-by-step plans on constructing the necessary equiprent. Excellent for the advanced mogicion as well as the beginner. Publication date: December.
WOODWORKER'S ENCYCLOPEDIA (No. 618)-Fully Illustrated Hondbook that is a must for every hondyman working with wood. Speciel sections on use of mony types of tools. How-to-do-it instrucfions for scores of different operations in the warkshop. Publicafion dete: December.

HOME BUILT POWER TOOLS (No. 619)-Stop-by-step instructions for making powar tools from salvage, surplus and/or inexpensive items found oround the workshos or supply store. Fully illustroted, loodes with diagrams. Publication date: Dacamber.

USE THIS ORDER FORM - NOW!

S\&M Handbooks / 505 Park Avenue / New York 22, N. Y.
Please send me the S\&M Handbooks I have circled below. I understand tiat each Handbook is $\$ 1$ and covers postage and handling. All 30 Handbooks are specially priced at $\$ 20.00$.
\square Send all 30 Handbooks, as published. I enclose $\$ 20.00$
\square Send the Handbooks circled below-I enclose $\$$

590	596	602	608	614
591	597	603	609	615
592	598	604	610	616
593	599	605	611	617
594	600	606	612	618
595	601	607	613	619

In all cases, orders will be filled with current issues or future issues upon publication. Bock issues will not be sent unless specified.

```
Enter my order for the following 4-issue Subscriptions. Each subscription is \$3 which is enclosed.with this order.
```

```
Radio-TV Experimenter \(\square\) Science Experimenter \& Science Fair Projects Boaf Builder's Handbook \(\square\) Car Repair Handbook
```

Name
Address
City
Zone \qquad State

ON SALE NOW! newsstands

Complete Pions for-
FAST RUNABOUTS - CATAMARANS - CRUISAES - SAMDOATS resort run boats - duck boats - imboards and Curboards

How to Refinish Plastic Boats, Plan and Run o Roat Rallye, Choose the Right Anchor, Build Remore Helmsman from Solvagad Power Unit

complete plans for

 15 excitingBOATS

Pick up a copy at your newsstand or send $\$ 1.00$ including postage with coupon below

Science and Mechanics Magazine, Dept. 3000
Handbook Division
505 Park Avenue, New York 22, New York
Enclosed is $\$ 1.00$; please send me my copy of Boatbuilder's Handbook-593.

NAME
ADDRESS \qquad

CITY

- Sports Cruiser
- Luxury Inboard Runabout
- Utility Runabout
- Single-Double

Cockpit Runabout

- Racing Sailboat
- Outboard Runabout
- Class F Racing Hydro
- Water Motorscooter
- Paddle-Wheeler
- Duck Boat
- Runabout for Youngsters
- Sailing Catamaran
- Utility Outboard
- Trailer Craft
- Fishing Auto-Topper

Plus Special

Feature Articles
Family-Plan Competition for Boating Fans

Electric Powered Helmsman for your Boat

It's Time to Refinish Your Fiber Glass Boat

Anchoring Small Craft

Every effort has been made to ensure accuracy of the information listed in this publication, but absolute accuracy is nat guaranteed and, of course, only information available up to press-fime could be includec. Copyright 1962 by Science and Mechanics Publishing Co., a subsidiary of Davis Publications, Ine., 450 East Ohio St., Chicago 11 , III.

QUICK REFERENCE INDEX

U.S. and Canadian AM Stations by Frequency.
U.S. and Canadian AM Stations by Location.
.
160
U.S. AM Stations by Call Letters. 169

Mexican and Cuban AM Stations.......... . 177
U.S. FM Stations by States .
178
U.S. FM Stations by Call Letters 180
Canadian FM Stations by Location. 183
U.S. Television Stations. 183
Canadian Television Stations. 185
World-Wide Short-Wave Stations 185

U. S. and Canadian AM Stations by Frequency

U.S. stations listed alphabetically by states within groups, Canadian stations precede U.S. Abbreviations: Kc., frequency in kilocycles; W.P., watt power; d-operates daytime only. Wave length is given in meters
Ke. Wove Length 540-555.5
CBT Grand Falls. N.F. CBK Reqina, Sask. KVIP Rodding, Calie KFME San Diego. Calif. WGTO Cypross Gardens.
WOAK Columbus Gioride 500000 KBRY Soda Springs idaho KWMT Ft Dodes. Jowa WDMV Pocomokse city Ma Mo City. Md. WBIC Islip. N.Y. WERO Canoneburtbulon, N, C 250 d WERO Canongburs. Pa, $\mathrm{Pa}_{\text {, }} 50 \mathrm{~d}$ WYN Floranto. S.C WOXN Clarksville. Tenn. WRIC Richlande, Va

550-545.1
CFNB Frodericton, N.B. CFBR Sudbury, Ont CKLN Prines Rivers, Que. KNP Primee George. B.C KON' Anthoraite, Alaska KAFY Bakersfold KRA: Brakersfield, Calif. KAYR Cralg. Colo. WAYR Orango Park, Fla. WGGA Gainesville, Ga KFRM Contordia Kana WCBI Concordia, Kansas KSD St. Louis. Mo. KOPR Butto Mo. WGR Bufte N M Y WDBM Statesville. N.C KFYR Bismerth N.C. WKRC Cineinnait Ohio KOAC Corvallis Ore WHLM Bloomsburg. Pa. WPAB Ponee. P.R. WXTR Pawtucket, R.I KCRS Midland. Tex. KTSA San Antonio. Tex WDEV Waterbury. Vt. WSVA Harrisonburg, Va KARI Blaine, Wash. WSAU Wausiu, Wis

560-535.4
CJOC Oawson Creak, B.C. CJKL KIrkland Lake. Ont. CFOS Owen Sound. Ont. WOoF Dothan, Ala. KSFO San Fran., Calif. KLZ Oan Frana, Calit WOAM Mismi, Fia, WIND Chical. Fla WMIK MIddlesboro. Ky. WGAN Portland. Malme WHYN Sprinpfield, Mass WOTE Wonros, MICh. WEBC Duluth. Minn.

W.P.
1000
50000
5000 d
5000
50000 d
5000
500 d
5000 d
500 d
250 d
250 d
250 d
250 d
1000 d
1000 d
50000
1000
5000
5000
5000
5000
500 d
5000
1000
500 d
5000

570—526.0
CKEK Cranbrook, B.C. CKCO Quesnel, B.C. CFCB Corner Brook, N.F CJEM Edmunds ton. N.B. WAAX Gadsden, Ala. KCNO Alturas, Galif. KLAC Los Angelas, Calif,
WGMS Washingtnn, D.C. WACL Wayeross. Gia. WKYB Padueah. Ky. WVMI Biloxi. Miss.
KGRT Las Cruces, N. Mox. KGRT Las Cruces, N.mox. WSYR Syratuse. N.Y. WW NC Ashevillo. N.C WSHE Raleigh. V.C. WHAX Yankton sinal WFAK rankton. S.Dal WBAP Fi Worth KLUE sall Worth. Tox. KL: Satt Lake City.
KVi Satile, Wash.
WMAM Marinetts. Wis. 5
580-516.9
CJFX Antignnish. N.S. CFRA Ottawa, OIft. CKEY Toronto. Ont. CKPR Ft. William. Ont. CKUA Edmonton, Alta. CKY Winnipeq. Man. WABT Tuskegee, Ala. KTAN Tueson. Aris KUBC Montrose, Colo WDBO Orlando, Fla. WGAC Aunusta, Ga. KFXD Nampa, Idaho KSAC Manhattar. Kans. WIBW Topoka, Kans. KABW Topoka, Kans. WTAG Worester, Mass WELO Tupelo. Miss. KWIN Ashiand Orec WHP HArristurg Pa WKAQ San Juan. Pa KOBH Hot Springs. S.Dak WRKH Roekvood T Rn KDAV Lubboek. tex. WLES Lawreneovilio. Va. WCHS Chapleston. W.Va WKTY Lacrosen Wis.

W.P.
5000
5000
1000
5000
5000
5000
5000
5000
5000
1000
1000
1000
50001000
5000
1000
10004
$5000 d$
5000
50005000
5000
5000
5000
50005000
5000
5000
50000
500 d
5000
3000
5000
5000
5000
5000
5000 d
5000
5000
5000
5000
1000
500
1000
5000
5000
5004
500d
5000
8000

Kc. Wave Length W.P. $590-508.2$
KHAR Anchorags, Alaska CFAR FlinFlon, Man. CKAR Huntsville. Ont, CKRS Jonquiert, Que. VOCM St. Johns, N.F. WRAG Carrollton. Ala KBHS Hot Springs. Ark. KCSJ Pueblo. Colo. WDLP Panama Cit wPLP Anama City, Fla, WPLO Allanta, Ga KGMB Honolulu. Hawail KID Idaho Falls, Idaho WBBT Wood River. II. WVLK Lexington. Ky.
WEEI Boston. Mass. WKZO Kalamazoo. Mich. wow Omaha. Nebr. WROW Albany, N.Y WGTM Abany. N.Y KUGN Eusene. Ores. WARM Seranton, P a. WMBS Uniontown, Pa. KTBC Austin. Tox. K\$UB Ceder Clty, Uta WLVA Lynehburg. Va KHO Spokane, wash.
$600-499.7$
CFCF Montreal. Qu*. CFCH North Bay, Ont. CFQC Saskatoon. Sask. CJOR Yancouver, B.C. CKCL Truro. N.S. Wins enterprise. Ala. KCLS Thagstafi. Ariz. KVCV Redding. Callf. KOGO San Diepo. Cailf. K21X Ft. Collins, Colo. WICC Bridgeport. Conn. WPDQ Jacksonville, Fla. WMT Cedar Rapids, Iowa WWOM New Orleans, La. WFST Caribou. Maine WCAO Baltimors, Md. WLST Eseanaba, Mie WTAC Flint, Mieh. KGEZ Kalispell. Mont. WCVP Murphy, N, C. WSJS Winston-Salem, N.C KSJB Jamestown. N.D. WFRM Coudarsport. Pa. WAEL Mayaguez. P.R, WREC Memphis. Ten KROD EI Paso. Tex. KTBE Tyler. TEA

610-491.5

CHNC Naw Carlislo. Que. CJAT Irail, B.C.
CKTE St Catharinam. WEGN BIrmintham. Ala
W.P.

Re．Wave Length WTAP Lexinaten，Ky． wims Ironwood，Mien KOW B So．St．paul．Minn． KXOK St．Louls，Mo． KOH R A ono Nov．
KLEA Lovington，N．Mex． RC Hekary，N．C． KWFBO Coaquilio，Orag． WEJL Seranton，Pa． WKYN San Juan，P．R． WPRO Providence．R．I KMAC San Antonio KSXX Salt Lake City，Utan 5000 KGON EDMUnds．Wash． 3000 d KZUN Opportunity，Wash．s00d

640－468．5
CBN St．John＇s，N．F． wol Amas low
WHLO Akron．Ohio WNAD Norman，Okla

650－461．3
KORL Honolulu，Hawail KSMK Nashille．Tenn．
$660-454.3$
KFAR Fairbanks，Alaska KMEO Omaha，Nebr． WNBC Now York，N．Y KSKY Oallas，Tex．

670 －447．5
WMAQ Chicago．III．
680－440．9
CHFA Edmonton．Alta． CHLO St．Thomas，On
CJOB Winnipeg，Man． CKGB Timmins，Ont． KNBC San Fran．，Callt WPIN St．Patersburg，Fia， WCTT Corbin，Ky． WCBM Baltimors，Md． WNAC Boston，Mass．
WDBC Escanaba．Mich． WFEQ St．Josemh．Mo． WRVM Rochester．N．Y． WPTF Raleleth，${ }^{\text {W }}$ WAPA San Juan．P．Rieo． WMPS Momphis．Tonn． KENS San Antonio． WCAW Charleston，W．Va

690－434．5
CBU Vancouver，B．C． WVOK BIrminigham，Aia． K VNA Flatstañ．Arlz． KEVT Tueson，Ariz． KBBA Benton，Ark．
XETRA Los Angeles， KAPI Pueblo，Colo． WADS Ansonia，Conn． WAPE Jacksonville，Fla． KBLI Blackfoot．Idaho KGGF Coffeyvilie．Kans． WTIX Now Orleans，La， KSTL 8t，Louis．Mo． KTCI Torrytown，Nobr KRCO Prineville．Orog． KUSO Vermillion．S．${ }^{\text {K }}$
KHEY EI Paso．Tex，
KPET Lamesa，Tex．
KZEY Tyler，Tex．
WCYB Bristol，Va．
WNNT Warsaw，Va．
WELD Fisher，W．Va．
700－428．3
WLW Cincinnatl，Ohlo
710－422．3
CISP Leamington，Ont．
KKVM Ville Marie．Oue．
WKRG Mobile，Ala，
KMPC Los Angeles，Calif．
KBTR Oenver，Colo．
WGBS Miami，Fla．
WROM Rome．Ga．
WHB Kansas City，Mo．
WOR New York，N．Y．
OZRH Manila，P．t．
WKIB Mayagus，P．
5000
1000
10000
10000
50000
1000 d
1000
10000
50000
1000
5000
1000
250 d
50000
250 d
10000
10000
50000
1000 d
250

Kc．Wave Length KGNC Amarillo．Tax． KURV Edinburg．Tex． WOSM Superior，Wis．

720－416．4
WGN Chitago，III．
730－410．7
CJNR Blind River，Ont． CKAC Montraal，Que． CKDM Dauphin，Man． CKLG No．Vancouver，B．C KFQD Anchorage，A
WJMw Athens．Ala． KSUD W．Memphis，A WKTG Thomasville，Ga． KLOE Goodland．Kans． WFMW Madisonville．Ky． WMTC Van Cleve，Ky． KTRY Bastrop．La． WARB Covington． WMMS Bath，Mains WACE Chicopee，Mass． KWRE Warrenton，Mo． KURL Billings．Mont． KMGM Albuquerque，N．Mex． WOHS Shelby．N．C． WMGS Bowling Green，Ohio KBOY Medford，Ored． WPIT PIttsburgh，Pa． WPAL Charleston．S．C． WLIL Lomeir．Tenn KRZY Grend Preirio，Tex． KSVN Ogden．Utah WPIK Alexandria，Va． WMNA Gretna，Va． KULE Ephrata．Wash． WXMT Merrill，wis．
740－405．2
CBXA Edmonton，Alta．

$$
1
$$

k
KBIG Ahelonix，Aril．Ala．
KCB
KCBS San Franeliseo．Calli 10000 d
KSSS Colo raninet，Calli． 50000 KVFC Cort Spyiss，Colo． WKIS Orland FIE．
KYME Boise idate． WYME Boise，dah KBOE Oskaloosa．，Iowa WNOE OBkalosa，10wa WNOP Nawport，Ky． WFRB Frostburg．Md．
WTAO Cambridge Mass． WPBM Carisbad．N．Mes． KPBM Carisbad．N．Max． WGSM Huntington．N．Y． WPAQ Morehead Clty，N．C． KRMG Tulsa．Okla． WVCH Chbar WBAW Barnwail P．Rleo WBAW Barnwel，8．G． WIRI Humbolt，Tenn． KTRH Houston，Tox． KCMC Houston，Tor． WBCI WIlliamsburg．V

750－399．8

wSB Atlanta，Ga． WBMD Baltimeri，Md． KMMI Grand Island，Neb． WHEB Portsmouth， KSEO Durant．Okia． WPDX Clarksburg．w．va，$\quad \begin{aligned} & 50000 \\ & 1000 \mathrm{~d}\end{aligned}$

760－394．5

KGU Honolulu，Hawall WIR Detroit，Mleh． WCPS Tarboro，
$770-389.4$
KUOM MInneapolis，Minn． WCAL North field，Minn． WEW St．Louis．Mo KOB Albuquerque，N．Max． KXAC Seattle，Wash．
780－384．4
WBBM Chicaso．lif． WIAG Norfolk．Neb． WCKB Dunn．N．C． WBBO Forest City．N．C． KSPI Stlilwater．Okla．
WAVA Arlington，Va． WAVA Arlinston，Va． 790－379．5
CFCW Camrose．Alta． CKMR Nawentlo．N，B CHB Halifax，N．S．
CKSO Sudbury，Ont． WTUG Tusealoost．Ala． WTUG Tusealoosta，AI
KCEE Tuesen，ArIz．

10000
250

10000
250

50000
1000 d
1000 d
1000 d
250 d
1000 d

10000
1000
10000
10000
500 d
8000 d

W．P．｜Kc．Wove Length KOSY Texarkana，Ark
KDAN Eurcka．Calif． KABC Los Aneeles．Calit． WPFA Pensacole，Fla．
WQXI Atlanta Ga WGRA Cairo，Ga． KEST Boise，Idahe WRMS Beardstown，III．

 W

1000 d WLSV Wellsville，N．Y． Y ．
1000
1000 d
5000
5000
5000
1000 d
5000
1000 d
1000 d
500 d
5000 d
5000
1000 d
5000
1000 d
5000
1000
1000 d
1000 d
5000
1000
500
1000 d
5000
1000 d
1000 d
5000
5000
5000
1000 d
1000 d
50

Ke．Wove Length W．P． WEAT W．Palm Beaoh，Fle． 1000 KIMO Hilo，Hawall
WHOH Boston．Mas
WKBZ Moston．Mass．
KFBO St．Louis．Mo．Mh． 1000
50000
 $\begin{array}{ll}\text { WEEU Roading PE．} & 1000 \\ \text { WABA Aquadla，P．R．} & 500 \\ \text { WRAP Noriolk．V．．} & 5000 \\ \text { KTAC Tacomar Want } & 1000\end{array}$ 860－348．6

CHAK Inuvik，N．W． CJBC Torento，Ont．	$\begin{array}{r} 1000 \\ 50000 \end{array}$
WHRT Hartselle，Al	250d
WAMI Opp．Ala	1000 d
KIFN Phoenix，Arlz	1000 d
KOSE Osceola，Ark．	1000 d
KWRF Warren，Ark	250d
KTRB Modesto．Callf．	10000
WOWW Naugatuek，Con	250d
WAZE Clearwater，Fla．	500d
WKKO Cocos，Fla．	1000 d
WERD Atlanta，Ga．	1000
WDMG Douglas．Ga．	5000d
WMRI Marion，Ind．	250d
KWPC Muscatine，Iowa	250d
KOAM Plttsburg，Kans．	10000
WSON Henderson，Ky．	500 d
WAYE Dundal	
WSBS Gt．Barrington，M	250 d
KNU」 New Ulm．Minn．	1000 d
WMAG Forest．Miss．	500d
KARS Belon，N．Mex．	250
WFMO Fairmont．N．C．	1000
KMFR Mediord，Ores．	1000d
WAMO Pittsburgh，Pa．	1000d
WTEL Philadeluhia．Pa．	250d
WLBG Laurens，S．C．	1000d
WIVK Knaxville，Tenn．	1000d
WMTS Murfreesboro，Tenn．	250d
KFST Fi．Stockton，Tex．	2500
KPAN Hereford．Tex．	250d
KSFA Nacogdoches，Tox	1000d
KONO San Antonlo，Tex．	00
KWHO Salt Lake C	
	1000 d
WOAY Oak Hill，W．Va．	10000 d
WFOX MIIwauken，Wis．	$250 d$

KXGO Fargo，N．Dak．
Kwil Albany，Oret
WAEB Allentown．
WPIC Sharon，Pa．
WWBD Bamberg，S．C．
WMC Memphls．Tenn． KTHT Houston．Tox
KFYO Lubbock．Tox KUTA Blanding，Utan WSIG Mount jackson． KGMI Bollingham，wash． KNEW Spokans．Wash． WEAQ EaU Claire，Wis．
800－374．8

V

$$
\begin{array}{r}
1000 \mathrm{~d} \\
500 \mathrm{~d}
\end{array}
$$

870－344．6

KIEV Glendale，Cal	230 d
KAIM Kalmukl．Hawall	1000
WWL Now Orleans，La，	50000
WKAR E．Lansing．Mieh．	5000d
WHCU lthaca，N．Y	1000d
WGTL Kannapolis，N．C．	1000d
WHOA San Juan，P．R．	5000
KJIM Ft，Worth，Tex．	250d
WFLO Farmville．Ve．	1000 d

880－340．7
WCBS Now York，N，Y．$\quad 50000$ WRFD Worthington，Ohle 5000d
890－336．9
WL8 chloago， 111.
50000 WHNC Henderson，N．C． 1000 d
KBYE Okla，City，Okle．
900－333．1

CKTS Sherbrooke，Qua． CHML Hamilton．Ont．	$\begin{aligned} & 1000 \\ & 5000 \end{aligned}$
CHNO Sudbury Ont．	10000
CJBR Rimousk．Que．	10000
CKJL St．Jeroms．	1000
CJVI Vietoria．	10000
CKBI Prinee Albert，Sask	10000
ATV Birmineham，Ala．	
WGOK Mob	1000d
WOZK Ozark，Als．	
KPRB Fairbanks，Alaske	10000
KHOZ Harrison．Ark．	
KBIF Fresno，Calit．	10000
KGRB West Covina，Calli．	$250 d$
WIWL Geargetown．Del．	1000d
WSWN Belle Glade，Fla．	1000d
WMOP Oeala，Fla．	1000d
WCGA Calhoun，Gat．	1000d
WCRY Macon	
WEAS Savannah，Ga．	000d
KTEE Idaho Falis，Ida．	1000 d
KSIR Wiehita，Kan．	250 d
WKYW Lauisville．Ky	d
WLSI Pikevillo，Ky．	5000 d
KREH Oakdale，La．	2500
WCME Brunswiek，Malne	1000d
WATC Gaylord．Mien	1000d
KTIS Minneapolis，Minn．	1000d
WDDT Greenville，Miss．	1000d
KFAL Fulton，Mo．	1000d
KISK Columbus．Nobr．	1000d
WOTW Nashau．N．	1000d
BRV Boonvilis．	1000d
SPN Saratod	
YN Rock	
IAM WIlliamston，N．C．	100
NW Farso，N．Da	100
RO Frament，Oh	50

CHAB Moose Jaw，Sask． CKOK Penticton，B．C．
CFOB Ft．Franess，Ont． CJBX Br．William，ont． CKLW Windsor，Ont． CHRC Quebee，Que． VOWR St．Johns．N．F． WHGY Montopmery． KINY Juneau，Alaske KAGH Crossett，Ark．
KVOM Morrilton，Ark KUZZ Bakorsfield．Calit KOAD Weed，Calif． WLAD Danbury，Cone． WSUZ Palatka，Fla． WIAT Swainsboro，Ga． WBOK Now Orleans，L WCCM Lawronce，Mass． KDBM WKDN Camden Mo． KJEM Okla City，OkIa， WCHA Portiand，OFé WDSC Dillon，S．C． WEAB Groer，S．C． KODO Dumas，Tox，
KBUH Brigham City，Utah WSV8 Crawe，Ve．w WDUX Waupaca，Wis． 810－370．2
CFAX Vletoria，B．C． 10000 WABW Annapolis．Md． 250 d KABW Annspo Cis．Wanses City，Mo． WGY Schentetady．N．Y． 50000 WKBC N．Wilkesboro．N．C．l000d WEDO MeKeesport，Pa．lo00d WKVM Sen Juan．P．R． 25000
$820-365.6$ WAKY Evansvill IIt． WOSU Columbus，Ohic WFAA Dallas，Tex．
WBAP Ft．Worth．Tex．

5000 d
250 d

WBAP Ft．Worth．Tex．	50000

$830-361.2$
KIKI Honolulu．Hawall WCCO Minneapolis，Mina． 50000 KBOA Kennett．Mo，
WNYC New York，N，Y．
840－356．9
WKAB Mobile，Ala，
WKNB Now Britain．Cons． WHAS Loulsville．KY．

1000d
WVPO Stroudsbur．Pa 50000
850－352．7
CKVL Verdun，Que．
CKRD Red Deer，Alta．
50000
1000
1000
5000
5000
5000
WRUF Galneville．FIt．
10000
10000
10000
1000
50000
10000
10000
1000 d
1000 d

$$
\begin{aligned}
& \mathrm{d} \\
& \mathrm{~d} \\
& \hline
\end{aligned}
$$

500d
$1000 d$
$1000 d$
1000 d
1000 d
1000 d
1000 d
1000 d
1000 d
1000d
250d $250 d$
$250 d$ pod

0000
 000d
 0000
 250d
 250d
 000d 000 d
 250d
 250d
 000d
 00d
 000d

宮审
0000
0000
0000
1000
0000
$1000 d$
$1000 d$

YDE Birmingham，Ala．
KICY Nome，Alaske
KOA Danver，Cole

Kc. Wave Length WCPA Clearfold. Pa. WFKN Philadelphia. Pa, WCOR Lebanon, Tenn. KALT Atlanta, Tex. KMCO Conroe, Tex.
KFLD Floydada. Tex. KCLW Hamilton. Tex. WODY Bassott, Va. KUFC Staunton, Va, WATK Antlgo, Wis.
910-329.5
CJDV Drumheller, Alta. CKLY Lindsay, Ont. CFJC Kamloops, B.C CHRL Roberval Que, KPHO Phoenis A Ala KLCN Blythevlile. Ark KAMD Camden, Ark. KDEO EI Cajon, Calif KOXR Oxnard, Callf. WHAY Now Britain, Conn WGAF Valdosta, Ga. WAKO Lawrenceville. III. WSUI lowa Clty, lowa WABI Bangor. Maine WFDF Flint. Mith WCOC Moridian. Mlss KOYN Billings, Mont. KBIM Roswell, N, Mer KCJB Minot Nonvile, N.C WPFB Middidatown, Ohlo KURY Brookings, Ored WAVL Apollo, Pa. WGBI Seranton, Pa.
WSPO Smethport, Pa WSBA York, Pa. WNGG NorthCharleston, S.C. 5000 WORD Spartanburg, S C.C. 5000 d WJCW Johnson City, Tonn. 5000 WEPG S. Pittsburgh, Tenn, 500d KRIO MeAllen. Tox. Tex. lo00d Utah 5000 WWRJ White River Junction.

WRNL Richmond, Vm. WHYE Roanoke, Va
KORD Pasto, Wash KIXI Renton, Wash KISN Vaneouver. Wash. WHOM Hayward, Wis. 1000 d

920-325.9
CJCH Hallfax, N,S.
10000 CKCY Sault St, Mario, Ont 10000 CKNX Wingham, Ont WCTA Adnlusia Ala KWW R Russollville. Al KOES Palm Rorines. 5000 KVEC San Luís Obispo Cal 1000 KREX Grd. Junction, Colo. KLMR Lamar. Colo. WGST Allanta, Ga. KAHU Walphau, Hawall WGNU Grante City III WBAA W. Lafayette, ind, KFNF Shenandoah, lowa WTCW Whiteshurg, Ky. WBOX Bogalusa, L WPTX Lexington Pk., Md. WMPL Hancoek, Mleh, WWAD Widena, MInn. KRAM Las Vogas. Nov KOLO Reno, Nev.
KaEO Albuquerque, N, Mex. WTTM Trenton, N.d. WKRT Cortland, N.Y, WBBB Burlington, N.C. WMNI Columbus, Ohio KGAL Lebanon, Oreg. WJAR Providence, R.I WTND Orangeburg. S.C KEZU Rapld City, S. Dak. KELP EI Paso. Tox. KELP EI Paso. Tox. KTLW Texas Clity. Tox KITN Olympia, Wash. KXLY Spokanc, Wash.
WMMN Fairmont, W, Va,
WOKY Milwaukee, Wis.
W.P.
1000 d
1000 d
1000 d
500 d
1000 d
500 d
250 d
250 d
500 d
1000 d
1000 d
250 d

10000
1000
10000
1000
5000 500d 1000 d
5000 1000 1000d 1000d 1000 d
500 d 500 d
1000 d

$$
\begin{array}{r}
1000 \mathrm{~d} \\
1000
\end{array}
$$1000

1000
10001000 d
10000
1000
1000 d1000 d
50005000
1000
1000 CHNS Calgary, Alta,

0000 WKAD Qulney, Ill.
1000 WFMD Frederiek, Md, 500 D WREB Holyoke, Mass. 5000 WKIN Battle Creek. Mith. WSLI Jatkson, Miss. KWOC Poplar Bluft.
KWO KWOC Poplar Blufi. Mo
KOFI Kalispall. Mont. KOGA Ogallala, Nebr WWNH Roehester. N.H
WPAT Paterson. NJ WPAT Paterson, N.J
WBEN Buñalo, \mathbf{Y} WBEN Buntio, N.Y
WIZR Johnstown N WIZR Johnstown, N, Y,
WSOC Charlotto, N,C. WRRF Washington,
WEOL Elyria, Ohio WKY Dklahoma City, Okla. WCNR Bloomsburg, P KSDN Aberdeen S D 000d WSEV Sevierville, Tenn. 5000d KDET Conter, Tox, 5000d
5000
KENY San Antonio, Tex.
KEllingham. Ferndale Wash. WSAZ Huntington, W.Va.
KROE Sheridan, Wyo. KROE Sherldan, Wyo.
WLBL Auburndale, Wis.

940-319.0

CBM Montreal, Que. CJIB Vornon. B.C. KOBY Tueson, Ariz. KFRE Fresno, Callif WINZ MHami, Fla. WMAZ Macon. Ga. WMIX Mt, Vornon, III. KIOA Des Moines, Lowa WYLD New Orleans, La
WMEW Baltimore. Md. WMEW Battimore, Md
KISH Valontine, Nebr. KISH Valentine, Nebr,
WFNC Fayot teville, N.C KGRL Bend, Oron. WESA Charlorol, Pa.
WGRP Greenville, Pa. WGRP Greenville, Pa,
WIPR San Juan, P, R,
KIXZ Amarillo, Tex. KIXZ Amarillo, Tox.
KTON Belton, Tex. KTON Belton, Tex.
KATQ Texarkana, Tex.

950-315.6

CKNB Campbellion. CIKB Barrie, Ont.

 WRMA Montgomery, A $K X J K$ Forrest City, Ark. KFSA Ft. Smith, Ark. KAHI Auburn, Calff. KIMN Denver, Colo.WNUE Ft. Walton Sch. Fla. WLOF Orlando, Fla. WGTA Summerville, WGOV Valdosta, Ga KBOI Bolse, Idaho
KLER Orofino, Idaho WAAF Chicago, III.
KOEL Oofwein. lowaWWAGM Barbourville,WORL Boston, Mass,Ky.WWJ Detroit. Mieh.WB1CM St. Louls Park, MinnKLIK Hattlesburg. Miss.KLHS Lordsburg, N. MoxKLHS Lordsburg, N. Mex
WBBF Roehester. N. Y.
WIBX Uties. N.Y.
\qquadWPET Greensboro, N.C.WYES Rosoburg, Orop.WNCC Barnesboro, Pa,WPEN Philadelphla, PaWSPA Sparianburg, S.C.
w$K D$
$K P$
K
W.P. Ke. Wove Length
W.P.

CBW Winnipes, Man CBY Corner Brook,
WEIS Conter. Ala. 1000
5000
5000
1000 d
1000
5000 d
1000 d
500

1000
5000
100
500
10000
10000
10000
1000 d
1000
1000 d
5000
$500 d$
CKWS KIngston, Ont.
WBRC Birmingham, Ala.
WMOZ Mobile, Ala.

WCVO Kodiaki, Alasis. | 5000 | K |
| ---: | ---: |
| 1000 | W |
| 250 | K |
| 5000 | W |
| 5000 d | W |

WCVQ Kodiak, Alaska
KOOL Phoonix, Ariz. KA
K
K
W

W KNEZ Lompoe, Calif,
KABL Oakland, Calif WEL New Haven. Conn,
WGRO Lake City, Fla. 500 d
1000
5000
500 d
1000 d
WJCM Sebring, Fla.

KSRA Salmon, Idaho

WOLM E, Moline, III. 5

KROF Abbevilie, La.
K
WBOC Sallsbury. Md.
WBOC Sallsbury, Md.
WFGM Fltehburg. Mass
WFGM Fithburg, Mass,
WHAK Rogers City. Mleh.
KLTF Litle Falls. Minn.

W

1000
5000 d
500 d
5000 d
5000
5000
1000 d
5000
5000
1000
5000
5000
1000 d
1000
5000 d
1000 d
5000
1000 d
5000
1000 d
5000 d

5000 1000 1000
 50000 10000 1000 250

5000
50000
5000
50000
50000
5000 d
10000
1000
1000
1000
5000
1000
1000

$000 d$	W
\mathbf{W}	

1000 d
10000
5000
1000 d
1000
10000
10000
50000
1000
5000
10000
000

W

WCHN Norwich.
WRCS Ahoskie, N.C.
WWIT Ganion, N.
WDAY Fargo, N. Dak.
WREO Ashtabula, Ohio
WATH Athens, Ohio KAKC Tulsa, Okla. KOIN Porthand, Oreg.
WWS Pittsburgh. Pa.
WJMX Florence S. WJMX Florence. S.
KASE Austin. Tex. KNOK Ft. Worth. WNOI ft. Worth, Tex. WDTI Danvllie. Va. WRWV Waynesboro, V KREM Spokane. Wash,

```
WHA Madlson, Wis.
```

$$
10
$$

$$
1
$$

9

$$
2006
$$

CKNW Now Westminster, CFPL London, Ont.
CKGM Montrial, Que. CBV Quebee, Que.
CHEX Peterboro, Ont,
CKRM Realna Sast, CKRM Regina. Sask. WKLF Clanton, Ala, WXLL Big Dolta, Alas
KINS Euroka, Calif. KEAP Fresno, Callf. KFWB Los Angeles, Calli. WXGI Lubbock. Tex. KJR Seatte W, WERL Eagle River. Wis. WKTS Sheboygan, wis.

```
960-312.3
```

KGLN GionwoodSprgs..Colo,
WSUB Groton, Conn. $\begin{array}{ll}\text { WSUB Groton, Conn. Colo, } & 10000 \\ \text { WRC Washington. D.C. } & 5000 \\ \text { W DY }\end{array}$ $\begin{array}{ll}\text { WDVH Galnsville, Fla, } & \text { s000d } \\ \text { WTOT Marlanna, fla. } & 1000 \mathrm{~d} \\ \text { WBOP Pal }\end{array}$ WTOT Marlanna, Fla.
WBOP Pensacola, Fla WLOD Pompano Beach, Fla. WKLY Hartwell, Ga.
WPGA Porry, Ga,
10000
ch.

\section*{5000 d 500 d

 000}100.100
$1000 d$
5000
1000 d
5000 WEAV Plattsburg.
WCFT Dallas, N.C.

e9. 5
5000 d
5000 d
1000 d
W
กก.

0

0
W
KO
W
WKOOD Honelulu. Hawall
WCAZ Carthag.NITZ Jasper, Ind
KAYL5000
5000KRSL Storm Lake, IowaWJMR New Orlisans,WCRM Clare, Mich
Man.500050000EIS Conter. Ala.250
1000 d
500 d
10000
KKIS Pittsburg, Calif, 10000
5000
(LiR Danver, Colo. Galif.1000 d
1000 dKGKL San Annelo. TexKGKL San Angelo,
KOVD Provo, UtahWDBJ Roanoke, VaKALE Riehland. Wash.WTCH Shawano, Wis.970-309.1CKCH Huli, Que.
WERH Hamilton, AlWTBF Troy. Als.KNEA Jonesboro, Ark.
KBIS Bakersfeld, Callf,
KCHV Coachella, Callf.
WCRM Clare, Mich.h. Miss.
KRMO Monett. Mo.Mex. N.C
1000 d 5000
10000 VFAB Miami, Fia.
WEEB Southern Pines.C. 5000
WTIG Massillon, Ohio
KABY Albany, Oreas.KABY Albany, Ores.
WIBG Philadelphia.
wVSC Somerset. Pa
PSonod
250 d
200WVSC Somerset. Pa.
WPRA Mayaguez, P.WLKW Providente, R
WAKN Alken, S.C.250 dWAKN Alken, S.C.
WNOX Knexville. Tenn.50000
1000 dWNOX Knexvllie, Tenn.
KWAM Memphis, Tenn.1000 d
10000KTRM Beaumont, Tex.1000 d
1000

Ke. Wove Length WITT Lawishure, Pa, WHIN Galatin, Tenn.
WORM Savannah. Tonn. WORM Savannah. Tonn. KBUY Amarillo, Tox
KODA Houston, Tex. KODA Houston, Tex WAWA Marlin, Tox. VMEV Marion, Ve. WPMH Portsmouth, Ve. WCST Berkeloy Sprgs., W.Va. 250 d WSPT Stevens Pt., Wis. jo00d 1
1020-293.9
KGBS Los Angoles, Callf. WCIL Carbondale, III. KDKA Pittsburgh, Pa

1030-291.1

WBZ Boston, Mass. KCTA Corpus Christi, Tex

1040-288.3
KHVH Honolulu, Hawall WHO Des Moines. Lowa
1050-285.5
CFGP Grande Prairle, Alta. 10000 CKSB St. Bonifaet, Man. 10000 CJC Sault Ste, Mari WRFS Alexander Cit
WCRI Scottsboro. Ala.
KNi. Show Low, Ariz
KYLC Little Rock, Ark,
KOFY San Mateo, Cal
KWSO Wasco. Calif.
KWSO Wasco. Calif. WSUG Clowiston. Fla. WISB Crestview, Fla. WIVY Jacksonville, FI WHBO Tampa. FIA. WRMF Títusville, FIa
WAUG Augusta, GE. WBIE Marietta, Ga. WMNZ Montezuma, Ga, KZIN Coeur D'Ale
WDZ Decatur, $\| l$. KNCO Garden City, Kant. loo0d WNES Central City, Ky. WZIP Cincinnati, Ohio KLPL Lake Providence, La. KCIJ Shreveport, La. KVPI Villa Platto, La. WQMR Silver Spre. Md. WPAG Ann Arbor, Mich KLOH Pipestone. Minn. KACR Columbus, Miss KMIS Portapevillo.
KRBO Las Vegas, Nev. WBNC Conway, N.H. WSEN Baldwinsville,
WSTS Massena, N.Y.
WMGM New York. N. WBTL Farmvillo. N.C. W LON Lincolnton N.C. WWGP Sanford, N.C
KFMJ Tulss Okla
KUBE Pendicton, Ores.
KEED Springheld. Oret.
WBUT Butler, Pa.
WLYC Williamsport, Pa.
WSMT Sparta, Tenn.
KLEN Killeen, Tex. KWLO Liberty, Tex. KPLA Plainviow, Tex.
KCAS Slaton. Tex.
WGAT Gate City. Va.
WCMS Norfolk.Va.
KNBX Kirkland. Wash.
WCEF Parkersburg. W.Va
WLIP Kenosha, Wis KWIV Oougias, Wyo.
1060-282.8
CFCN Calgary, Alta. CJLR Quebee, Que, KUPO Tempe, Ariz KPAY Chleo, Calif. WNOE New Orleans, La.
WHFB Benton Harbor.
WHFB Benton Harbor,
Mleh. 1000 d
WMAP Monroe, N.C.
WHOF Canton, Ohio
WRCV Philadelphia, Pa.
WRIS San German, P.R.
1070-280.2
CBA Sackvile. N.B,
CHOK Sarnia. Ont.
WAPI Birmingham. A
KNX Los Angeles. Cailf 50000
WVCG Coral Gables, Fla. loo0d
W.P 250d 1000 d
250 d 5000 1000 d 250 d
1000d
5000 d

50000
1000 d $1000 d$
$1000 d$ $1000 d$
50000 50000
1000
0000d

5000
1000 d 10000
10000 5000 250 d 250d

000d
250 d
$1000 d$ 1000 d
250 d

250 d

1000 d
$500 d$
250d
000d
$500 d$
1050
250 d
$250 d$

000d

1000d
000 d
250d
500 d
1000 d
.Y. 250 d
1000 d
50000
250 d 000d
1000d $250 d$ 000d 1000d $1000 d$ 250 d 1000 d $1000 d$
$250 d$ $250 d$
$250 d$ 250d $250 d$
$250 d$ 250 d
1000 d $1000 d$ $1000 d$
$1000 d$ 1000 d 250d $250 d$
$250 d$

- 10000
10000 10000
500 10000
50000 1000 d
250 d 50000
250 250

Wove Length

 WIBC Indianapelis, Ind KIRL Wlehlta, Kens,KHMO Hannlbal. Mo. KHMO Hannlbal, Mo.
WHPE HIsh Point. N.C WHPE HIth Point.
WMIA Arecibo, P.R. WFLI Lookout Mtn., Tenn. WDIA Memphis, Tenn. WKOW Madison. Wis.

1080-277.6

CHED Edmonton, Alta. KSCO Santa Cruz, Call WKLQ Loulsville Ky WOAP Owosso, Mich. WYSL Kenmore, N. Y. WEWO Laurinhurg. N.C. KWJ) Portland, Ores. WYRE pittsburgh, pa KRLD Dallas. Tox. $1090-275.1$

CHEC Lethbridee, Alte. CHIC Brampton, Ont. CHRS St. Jean. Que.	1000
KTHS Littie Rock. Ark. 50000	
WCRA Emngham.	
KHAlt	KHAI Honolulu, IIt. KNWS Waterloo, Iowa WBAL Baltimore. Md WILD Boston. Mass. WMUS Muskegon, Mle

KING Seattle, Warh. $1100-272.6$
KFAX Sall Franeiseo, Callf. 50000 WLBB Carroliton. Ga. 250 d WHLI Hempstaad, N.Y. 10000 d WGPA Bethlehem, Pa $1110-270.1$
CF ML Carnwall. O
CFTJ Galt, Ont. KRLA Pasadena, Cellf. KApA Tampa, Fle. WMBI Chieser Hawal KFAB Omaha. Nab WBT Charlotte, N.C KBND Bend, Ores. WNAR Norristown, P: WHIP Caguas, P.R. R.P.

1120—267.7
WUST Bethesde. Md WWOL St. Louls, Mo KCLE Cleburne. Tex.

1130—265.3

CKWX Vancouver. B,C. KRDV Dinuba, Callif. KEKO Kallua, Hawali KWKH Shrevenort WCAR Detrolt, Mieh. WNEW Minneapolis. Minn. 50000 1140—263.0
CFTK Terrace, B.C. CKXL Calgary, Alt
CBI Sydney, N.S KRAK Saeramento, Calif. 50000 KGEM Boise, Idaho WSIV Pekin. Ill. KLPR PKin. II. 1000 d WITA San Iuan City, Okla, 1000 d KSOO Sloux Falls, S.Oak. 10000 $\begin{array}{ll}\text { KORC Mineral Weils. Tex. } & 250 \mathrm{~d}\end{array}$ WRVA RIchmond, Ve. 50000

1150—260.7

CKSA Lloydminster. Alta. CHSI Saint John, N.B.
CKOC Hamilton. Ont CKOC Hamiliton. Ont CKTR Three Rivers, Que. WBCA Bay Minette, Ala. WGEA Geneva, Ala. WIRD Tuscaloose, Al KCKY Coolidge, Ariz. $\quad 5000$ KXLR No. Little Rock, Ark. 5000 KFSG Los Angeles, Callif, 2500 KRKD Los Angeles. Calif. KJAX Santa Rosa, Calif. KGMC Englewood, Colo. WCNX Middletown, Conn. WDEL Wilmington, Oel, WNDB Davterrrr 5000 WTMP Taytona Beh.. Fla. 1000 WFPM Fompa, Fla. WJEM Vort Valley, Ga WGGH maidosta, Ga. wJRH Marion. III. WJRL Rockford, III. KWKY Oes Moines, lowa KSAL Salina. Kans. WMST Mt. Sterling. WELTE'8 RHDIO LOG WJBO Baton Roupe, Ly
W. 50000 10000
5000

10000
1000名各웅응10000
10000
$1000 d$
5000 Kc
W
W
W
W
\mathbf{K} WGHM Skowhecan, Maine W.P.

Ke. Weve Length W.P. WHMC Galthersburi, Md. 1000 WLBI Danham Springs, La, 250d WCOP Boston. Mass. 5000 WCEN Mt. Plossant, MIeh. WXTN Albany, Minn. KRMS Osame Beach Mo. 500d WBCH Sanford, Maino 1000 d WAVN Hastings, Mich. 250 d WMDC Hazlahurst, Miss, $\quad 250 \mathrm{~d}$
KBHM Branson. Mo. KSEN Shelby, Mont.

WGBR Gurlington. N.C. 1000 d
WCUE

$$
1
$$

$\begin{array}{ll}\text { WHMA Lima, Ohio } & 1000 \\ \text { KNED MeAlester, okla. } & 1000 \\ \text { KAGO Klamath Falls, Oreg. } & 5000 \\ \text { WHUN Huntingdon, Pa } & 5000 d\end{array}$ WHUN Huntingdon, Pa. 5000d
WYNS Lehighton, Pa. I000d
WKPA New Konsington, Pa. Io00d $\begin{array}{lr}\text { WKPA New Kensington, Pa. } 1000 \mathrm{~d} \\ \text { WORA Mayaquez, P.R, } & 1000 \\ \text { WDIX Orangohurg, S.C. } & 5000\end{array}$
W WTYC Rock Hill. S.C.
WSNW Seneea Townshlo KIMM Rapid City, Sarolina
WAPO Chattanooga, Tann.
WCRK Morristown. Tonn. WAPO Chattanoega, Tenn.
WCRK Morristown. Tenn.
WTAW Bryen. Tex. KCCT Corpus Christi, Tex. 1000 d KIZZ El Paso, Tox. KVIL Highland Park. Tex. 1000 d KJBC Midland. Tex.
KPNG Port Niches.

KOLJ Quanah. Tex.
$1000 d$
$500 d$

 $\begin{array}{lr}\text { KAYO Seattle, Wash. } & 5000 \\ \text { KKEY Vancouver, Wash. } & 1000 \mathrm{~d} \\ \text { WELC Welch. Ws. }\end{array}$ WELC Wolch. W.Va. 1000 d WAXX Chippawa Falls, Wis, 5000 dWISN MIlwaukee. Wis. 5000 $1160-258.5$
WJJD Chleano, lli. USL Sait Lake City. Utah 50000 1170-256.3
$\begin{array}{lr}\text { CFNS Saskatoon, Sask. } & 1000 \\ \text { WCOV Montgomery, Alar. } & 10000\end{array}$
000
KCBQ San Diego, Callif KLOK San Josa. Calif.
KOHO Honolulu, Hawail WLBH Mattoon. III, KLBH Mattoon, III, KSTT Davendort, Iow
KVOO Tulse. OKla.
WLEO Ponee, P.R.
 $1180-254.1$

WLDS Jaeksonville, III.	$\quad 1000 d$
WHAM Rochester, N.Y.	50000

$000 d$

1190-252.0

TWOWO Fallojo, Calif. 250d250
1000
$250 d$KRRL Paso Robles, Callf.KRDG Redding. Calif.KEXO Grand june., Colo.KBRR Leadvilie, Colo.WAWO Ft. Waynt, Ind, 50000 KGEK Sterlint. Colo.WKOX Annapolis. Md. lo000d$\begin{array}{ll}\text { WLIB New York. N.Y. } & 1000 \mathrm{~d} \\ \text { KEX Portland, Oret. } & 50000\end{array}$WO
WS
WS
1200-249.9
WOAI San AntonWCNT Contralia, III.
WKNX Saginaw, Mieh.WKNX Saginsw, Wich.
WADE Wadesboro. N.C.WADE Wadesboro. N.

WAVI Dayton, Ohio| WAVI Dayton, Ohio | 1000 d |
| :--- | :--- |
| WCAU | |WCAU Philadelphie, Pa. 50000

220-245.8
CJOC Lethbridge. Alta.CJRL Kenora, Ont.
WEZB Shawinigan, QuobeWPRB Birmingham.WABF Faller, Ala,
KVSA Megohes, Ark.
KLIP Fowler, Calif.
KKAR Palo Alto, Calif.
KFSC Denver. Colo.
WDEE Hamden, Conn.
WOTY Arlington, Fla.
WKBX Kissimmee, Fia
WSAF Sarasota, Fla.
WCLB Camilla, Ga
WPLK Rockmart, Ga,
WSFT Thomaston, Ga.
WLPO LaSalie, Ii.
WKRS Waukegan, I
WSLM Salem, Ind
KJAN Atlantic, Ind.
KOUR Independence, Iowa
KOFO Ottawa. Kans.
1000 d WFKN Frankiln. Ky.

10000
10000
1000
10000

Ke. Wave Length W.P.jKc. Wave Lengrh W. WHSY Hattiesburg Mist WSSO Starkvillo, Miss. WAZF Yazoo City, Mlss.
KOOE Joplin. Mo.
KLWT Lebanan, Mo.
KANA Anatonda, Mont.
KBMN Bezoman. Mont.
KLCB Libby, Mont.
KTNC Falls City, Nobr, KHAS Hastines,
KELY Ely. Nev, Nov wMOU Berlin N. WTSV claremont, N.H wCMC Wildwood, N.I KALG Alamogordo, N.Mex KOYS Doming. N.Mex KFUN Las Venas. N.Mex WNIA Rosweli, N.M. Na_{1} WNIA Choektowaga, N. WENY EImira, N.Y.
WLFH Little Fallis. N.Y. WSKY Ashoville. N.C. WFAI Fayotteyille. N.C. WISP KInston, N.C. WNNC Nownen, N.C KOIX Olekinson N. N.C WCPO Cineinnati Ohio WCOL Columbus. Ohio wiro iroton on WTOL Toledo. Ohio KAOA N, of Ada, Okla. WBBZ Ponea cliy, Okia, KIAL Astoria, Oreg. KOOS Coos Bay, Óres KGRO Grasham, Oreg. KYJC Medford, Oren. KQIK Lakeviow, Oros. WBVP Beaver Falis, WEEX Easton. Pa. Pa WCRO Johnstown. WBPZ Lock Haven, Pa. WNIK Aretibo, P.A. WERI Westerly. R.I. WNOK Columbia. ${ }^{\text {W }}$. wols florence. S. C . KISD Slouz Fails S. Oak. KSIX Corpus Christi, Tex KOLK Del Rio. Tex. KER Kerryilis Toz KLVT Levelland, Tex. KEEE Naeoadothas. Tex. KOSA Odessa, Tox. KHHH Pampa. Tex. K8EY Seymour, Tex.
KSST Sulphur Sprgs., Tex. K MUX Murray, Utal KMUR Murray Utah w joy Burlington, V t WBBI Abinodon, Va. WCFV Clifton Forge, Va. WFVA Frederleksburg, Va. WNOR Nortolk. Va. KQTY Everett, Wash. KLYK Spokang. Wash. KREW Sumnyside, Wh
WLOG Logan. W.Va. WTAP Parkersburg. W.Ve. WHBY Applaton. Wis WCLO Janesville, Wis. KVOC Casper, Wyo.

1240-241.8

CFLM La Tuque Que.

CFNW Norman Weils,
CFPR Prince Rupert, B.C. $\quad 250$ CFWH Whitehorse. Y.T. CJCS Stratford. OnL
CKBS Summerside, P.E. Hyatinthe, Que. CKCQ. 1 Williams Lake. B.C. CKLS LaSarro, Quo. WEBJ Browton. Ala. WOWA Eufaula, Ala. WOWL Florence. Ait WARF Jasper. Ala
KZOW So, of Globe, Ariz.
KOFA Yuma, Ariz.
KVRC Arkadolphla. Ark.
KWAK stuttgart, Ark.
KPLY Crestent City, Ca
KLPC Pasadena. Calif.
KLOA Ridgerest. Calif,
KROY Sacramento. Calif. 1000 KRNO San Bernardino Cal
KSON San Olead. Callf. K8MA Santa Maria, Callis. K8UE Susanvilis. Callf.
KROD Colo. Sprgs., Colo.

KDGD Duraneo, Cofo.

 K8LV Monto Vista, Colo KCRT Trinided, Colo.wwCO Waterbury, Con WWCO Waterbury, Co
WBGC Chiploy, Fia.
wLCO Eustis, Fla. WLCO Eustis, FIs.
WINK Fort Myers, Fla.
WMMB Melbourne, Fla WMMB Melbourne, Fla. WBHB Fitzaerald, Ga.
WOUN Gainesvilis, Ge. WOUN Gaineavilis, Ga WBML Macon, Ga.
WWNS Statesboro, WPAX Thomasville. Ga. WTWA Thomson, Ga, KVNI Coeur d'Alone, Idahe KFLT Mountain Homs, Idaho KWIK Poeatelle, Idata
WCRW Chicaso, Ill. WCRW Chicaso, III. WEDC Chleapo, III.
WSBC Chiealo. Ili. WEBQ Harrisburs. III. WTAX Sprinifild. II
WSDR sterlint. III. WSDR 8 terling, III.
WHBU Anderson, Ind. KDEC Deeorah, Iowa
KWLC Deeorah, Iowe KWLC Doeorah. fowa
KBIZ Ottumwa, lowa KICD Spencer, lowa KIUL Garden City, Kans, KAKE Wlehita Kans
WINN Louisvilie, Ky. WFTM Maysvillo, Ky,
WPKE Plkovillo, Ky.
WGFC Somertot WSFC Somerset, KASO Minden, La.
KANE New Iberia. La.
WCOU Lowiston, Malno WCOU Lowiston, waino WJEJ Hagorstown, Md.
WHAI Greenfield, Mass. WHA Greenfeld, Mass. WATT Cadllae, Mleh. WCBY Chsboypan, Mieh,
WIPO Ishpoming, met. WJM Lansins. Mien. WMFG Hibbing, Minn,
W JON St. Cloud, Mlinn WMPA Aberdeen. Miss. WGRM Gresnwood, Miss.
WGCM Gulfpert. Mis. WMIS Natchez, inlse KFMO Flat River, Mo.
KWOS Jofierson Cits. Mo. KWOS Jonerson Cits.
KNEM Novada, Mo. KBMY Billings, Mont,
KLTZ Glseme. Momt. KBLL Helona, Mont.
KFOR LIncoin, Nobr. KFOR Linedin, Nobr.
KODY North Platte. Nebr.
KELK Elko, Nev. KELK EIki, Nov. WAVE Carlibad. N.J. Mox. KGBB Fresport. N. N. WGYA Goneva, N.Y. WVOS Liberty, N.Y. W SNY SArane Lake, N.Y. 1000 WATN Watertown. M.Y.' W PNF Breyard. A.C.
WIST Charlotto. N.C. WCNG Elizaboth City, N.C. WJNC Jaksonville. N. KDLR Dovils Lake. N. Dak. WHIZ Zanesville, Ohio KVSO Ardmore, Okle. KBEK Elk City, Okla. KBEL Idabel. Oklo,
KOKL Okmulgos, Otia KFLY Corvalis, Oreg.
KKID Pendleton, Oreg. KPRB Redmond, Ores. WRTA Altoona, 'Pa. WHUM Reading. P: WBAX Wilkes -Barr. WALO Humaeao, P. ${ }^{\text {W. }}$ WON WKOK Nawberry. S.C.
WOXY Sumter. S.c. WBEJ Elizabethton. Tenn. WEKR Fayottoville, Tonn. WBiR Knoxville, Tenn. WKDA Nashville, Tenn. WENK Union City. Tenn.
KVLF Alpine, Tox. KVLF Alpine, Tex.
KEAN Brownwood. KORA Bryan. Tox.
KOCA Kifore. Tox. KSOX Raymondville. Tox. KCKG Snora. Tex. KXOX Sweetwater, Tex. WSKI Montpeller, V WSSV Petersburg. WROV Roanoke, ${ }^{2}$.
WTON Staunton,
Va. $K X L E$ Ellensburgh. Wash. KGY Olympla, Wash. WKOY Bluefild, w.Va.
WTIP Charleston, w. Va.
WONE Elkina, W. Ya.

\section*{| 250 | |
| :--- | :--- |
| 250 | |
| 250 | |
| 000 | |
| 250 | |
| 250 | |
| 250 | |
| 200 | |
| 100 | |
| 100 | |
| 250 | |
| 1000 | |
| 1000 | |
| 250 | |
| 1000 | |
| 250 | |
| 250 | |
| 250 | |
| 250 | |
| 250 | |
| 250 | |
| 2000 | |
| 250 | |
| 1000 | |
| 2 | |

} 1000d 1000 d
1000

OMT Mantiowoc, W/s. OBT R Rhnette, wistor, Wis. JMC Rice Lako. Wis. FBC Choyenne, Wyo. CLUK Evanston, Wyo. KASL Newrastlo, Wyo KTHE Thermopolis, wyo. 250-239.9 CHWO Oakville, Ont. CKOM Saskatoon, Saik. WETU Wotumpka, Ala. KWCX willesx, Ariz. KFAY Fayottevills. Ark. CJI Little Rock, Ark
HOT Madera, Galis KTMS Santa Barbara. Calif
KOHI Twenty-NIne Palms. KMSL Ukiah, Calif. WNER Live Oak, FIa. WRIM Pahokee, Fla. WYTH Madison, Ga. WIZZ Streator, ill.
WGL Ft. Wayne, Ind. WRAY Prineeton, Ind. KGFI Cedar Falls, lowa
KF KU Lawrenes, Kans. WREN Topoka, Kans. WLCK 8ettsville, Ky
WGUY Bansor. Maine WARE Wara, Mass.
WWBC Bay City, KOTE Fordus Falls, Minn.
KCUE REd Wing, Minn. KCUE Red Wing, MInn
WHNY MeComb. Miss. WKBR Manehester, N.M,
WMTR Merristown. N.J. WMTR Merristown, N. 1.
WIPS Tleonderona. N. Y. WFAG Farmville, N.C. WBRM Marion. N.C.
WCHO Washiniton Court KQEN Rosoburs, Ores.
WLEM Emporium, Pa. WPEL Montrose. Pa,
WRYT Pitsburnh. Pa WNOW York. Pa. WTMA Charieston, S.C.
WCKM Winnsboro, S.C. WKBL Covington, TAnn, WNTT Tazowelf, T.
KFTV Paris, Tex. KPAC Port Arthur. Tex. KUKA San Antonio; Te KTFO Sominole. To KVEL Vornal, Utah WOVA Dannille, Va. WNRG Grundy, Va.
KWSG Pullman. Wash. KTW Seattlo. Wash ${ }^{\text {W. }}$. 1260-238.0 $\begin{array}{lll}\text { CFRN Edmenton. Alta, } & 50000 \\ \text { OYBU Cobu P.i. } & 1000\end{array}$ WCRT Birmingham, Ala. KCCB Corning, Ark.
KBHC Nashyilie, Ark. KGIL San Fernando, Calif. WMMM Westport. Conn WNRK Nowark, Des. $1 \leqslant$ WWPA Malami, Fla, Fla. Boech. Florides 1000 d WHAB Baxloy, fia. WTJH East Point, Ga KIFI Idaho Falls, Idaho KWEI Weiser, Ida.
WIBV Beiloville, ill. WFBM Indianapolis. Ind. KWHK Boone, 10w: KWHK Hutehinson. Kans. 1000 WXOK Baton Rouse, La, $\left.\quad \begin{array}{r}1000 d \\ 5000\end{array}\right)$
WEZE Boston Mass, WEZE Boston, Mass. $\begin{array}{r}5000 \\ 1000 \\ \hline 0000\end{array}$ WJBL Holland, Mith. K月OX Crookston, Minn.
KOUZ Hutehinson. Minn. KOUZ Hutehinson, Minn. WNSL Laurel, Miss. KGBX Springineld. Mo. WBUB Trenton. N.J. WBUD Trenton. N.J.
KVSF Santa Fo, N. Mex. WBNR Beacen, N. Y.' ${ }^{2}$.
WNDR Syracusb. WNDR Syracuso. N.Y.
WGWR Asheboro. N.C. WCDJ Edenton, N.C. WNXT Portsmouth, Ohlo KWSH Wewoke-séminole
W.P. ${ }^{\text {Ke }}$

Re. Wave Length

 wis. 1000 d | WEKZ Monroe, Wis. $\quad 1000 \mathrm{~d}$ |
| :--- |
| KPOW Powell, wyo. |
| 0000 | 1270-236.1

 CICB Sydnoy, N.S. $\begin{array}{ll}\text { CFGS GUntersville, Alueree } & 1000 \mathrm{~d} \\ \text { WGSV }\end{array}$ WAIP Prichard. Ala. KBYR Anehorage. Alaska KODL Pine Blufis. KAHR Redding, Calif. KCOK Tulape. Callt. WNOG Naples, Fla. WTAL Tallahassee. WKRW Carteriville, Ga, WGBA Columbus, Ga. WJJC Commeree, Ga. KTFI Twin Falls. Idaho WHBF Reet islond ill WCMR Elkhart, Ind. WWCA Gary, Ind. WORX Madison. Ind. KSCB Liberal, Kans. WAIN Columbia, Ky. KVCL Winnfield. La. WSPR Springheld, Mass, WXYZ Detroit, with WVOM loka, Miss. WLSM Louisville. Miss,
KUSN St. Joseph. Mo. KBUB Sparks. Nev, WYSN Dover. N. H. WOVL Vineland, N.s. $\quad 5000$ KRAC Alamogordo, N.Mox. 1000 d WDLA Walton. N.Y.

 KILE Cambridje. Ohio
KWPR Clarempre ohia H. AJO Grants Pass, Ores. WLBR Lebanon, Pa. HNWC Sioux Falls, S. Dak. 1000 WLIK Newport, Tenn. WIDX Bay City, Tox.
WHEM BY Spring, Tex. WEPS Eagio Pass, Tox.
WFJZ Fort Worth, Tox. WTIO Nowport Nows, Va. WHEO Stuart, Va.
kCVL Colville. Wash. KBAM Longviow. Wath, 5000 d
 1280-234.2

Ke. Wave Length WBMA Beaufort, N.C. WSIC Statesville, N.C. WLSE Wallace N. WHCC Waynesville, N. C WCNF Weldon, N.C. KEYJ Jamestown, N. Dak WMAN Manstield. Ohio KWON Bartlesvill OH: KTMC McAlester OkIa KNOR Norman, Okla KNND Cottage Grove, Oreg. WEST Easton, Pa,
WHGB Harrisburg, Pa. WKBI St. Marys. Pa WICK Scranton. Pa, WRAK WIlliamsport, Pa. WCOS Columbia, S.C. WGTN Georgotown, S.C. WJZM Clarksville, Tenn. WHUB Cookeville, Tenn. WLSB Copper Hill. Tenn. WGAP Maryville. Tenn. WHAL Shelbyville. Tent. KRUN Ballinger. Tex. KUNO Corpus Christl. (ILE nr. Galveston, Tex. KGVL Greonville. Tex. KUN Pecos. Tex
KEYE Perryton, Tex.
KVOP Plalnview, Tex
KDWT Stamford, Tex.
KTEM Temple. Tex YO Texarkana, Tex KVOU Uvalde. Tex. KXX Provo, Utah WDOT Burlington. Vt. WHHV Rilisville, Va.
WHIH Portsmouth, Va WHLF So, Boston. Va EDO Winchester, V a, KRSC Longriew. Wash. TSC Othello, Wash WBOY Clarkesburg. W. Va WRON Ronceverte. W. V KWK Wheeling, W.Va, WATH Ailliamson. W.Va wbiz Eau Claire, wi WDUZ Green Bay WIs WRDB Reedsbur WRIG Reedsburg. Wis. ATI Caspar, Wyo.
10
CFUN Vancouver, B.C WALA Montreal, que. CHP Tuscumbia, Ala KERN Bakersfield. Calif.
KKOK Carmpo Cal
KMYC Marysville. Calis
KCAL Redlands, Calis. YPOL Fi. Collins. Colo. wDOV Dover. Del. MYR Fort Myers, Fla WRIX Griffin, Ga. WOAX Cummings, Ga. WLAQ Rome, Ga WRMN Elgin, III WTIM Taylorville, III. KGRN Grinnell lowa KLEM LeAlars, lowa KCLO Leavenworth, Kans. KWBB Wichita. Kans. WLBJ Bowling Green. Ky. MES Harlan, Ky. WGRD Grand Rap., Mich KLFD Litchfield, Minn. OSK Cleveland, Miss WHTG Eatontowin WDOE Dunkirk, N. Y. ELB Elmira, N.Y. WDTT Wateplown N.Y. WEGO Concord. N.C. WRC Durham, N.C MNG Dayton, Ohio WLSH Partland. Oreo KQ Pittsburgh. Pa YCC Clinton, S.C. HCMT Martin. Tenn. KUD Athens, Tex.
KAN Bowie. Tex.
W.P.

250 1000
1000

VLB Clevoland, Tex. KXIT Dalhart, Tex. KADO Marshall, Tex KRIG Odessa, Tex. KBAL San Saba, Tex KNAL Victorla, Tex. WKBH LaCrosse, wis. KWYO Sheridan, Wyo,

1420-211.

CKPT Peterborough, ont CJMT Chicoutimi, Que. KHFH Slerra Vista, Ariz. KPOC Pocahontas, Ark
KSTN Stockton, Callf. KSTN Stockton, Callf.
WLIS old Saybrook. Co WERD Bradenton, Fifa. WDBF Delray Beach, Fla.
WSTN St. Augustine, Fla WSTN St. Augustine, Fla
WRFB Tallahassee, Fla. WAVO Arondale Estates, G WRBL Columbus, Ga.
WPEH Louisville, Ga WLET Toccoa, Ga. WINI Murphysboro, III, WIMS Michigan City, Ind.
WOC Davenport, lowa
KJCK Junction Cliy, Kans. KJCK Junction City,
WTCR Ashland. Ky. WHBN Marrodsburg, Ky.
WVIS Owensboro, Ky. WVIS Owensboro, KY WOKW Brockton, La. WBSM New Bediord, Mass WBEC PIttsfleld. Mass. WAMM Filint, Mich. KTDE Mankato, Min
WSUH Oxford. Miss WSUR Oxiord, Miss. KBTN Neosho, MO.
KODO Omaha, Nebr KSYX Santa Rosa. N. Mex, WAL
WAC W L
W
W
W
W
W W
W
W
W WHK Cleveland, Ohio KYS Hobart, Okla WCOJ Coatesvilie, Pa. WCED DuBois. Pa.
WEUC Ponce, P.R. WCRE Cheraw, S.C. KABR Aberdeén. S.D WKSR Pulaski, Tenn KTRE LufkIn. Tex KGNB New Braunfo KPEP San Braunfols. Tex. WWSR St Albans, Vt_{t} WWSR St. Albans, $V t$. WKCW Warrenton KITI Chehalis, Wash KUJ Walla Walla. Wash,

1430-209.7

CKFH Toronto, Ont. WFHK Pell City, Ala. KAMP EI Centro. Calif KARM Fresno Calis KALI Pasadena, Callif. 1000d KALI Pasadena, Calif 1000 d l000d WSDB Homestead. Fla 1000 WPCF Panama City, Fla 500 d WGFS Covington, Ga. lo00d WRCD Dalton, Ga, lo00d WWGS Tiston, Ga

500 d 5
 500d

l000d WIRE Indianapolis, Ind.
5000 d
5000 KASI Ames. lowa
5000
5000
$5000 d$
5000 d
1000 d
l000d WHIL Medford. Mass,
l000d WION Ionla, Mich,
1000 d WBRB Mi, Cien,
1000d WBRB Mi. Clemens, Mich.
500 W
1000 d KAOL Carroliton, Mo.
500 W WIL St. Louis. Mo
500 d KRGI Grand Island. Nebr.
0 WNJR Newark, N.J.
1000 d WENE Endicott. N.Y.
$1000 d$
5000
1000 d
1000 d
5000
5000 d
5000 d
5000 d
5000
1000 d
1000 d
1000 d
$1000 d$
$1000 d$
$1000 d$
500
F.F.
500
500 d
500
1000
500 d
500
5000 d
5000
100
\qquad

\qquad | K |
| :--- |
| w |
| w |
| k |
| w | WENO Madison, Tenn, KSTB Breckenridge. Tpx. KEES Gladewater, Tex.

KCOH Houston. Tex. KCOH Houston. Tex. WDYL Ashland, Va. WDIC Clineho, Va. WEIR Woirton, W, Yash.

1000
1000
5000 d
000 d
000 d
5000
300 d
1000
000 d
000 d
000 d
000 d

$1440-208.2$

CFCP Courtenay, B.C. KWBY montgomery. Ala. KHOG Fatisdale, Ariz. KOKY LIttle Roek, Ark. K YON Nads, Calif.
KPRO Riverside, Callif. KCOY Santa Maria, Callf. WBiS Bristol Con. WABR Winter Park. Fila. WWCC Bremen, Ga. WGIG Brunswick. Ga. WRAJ Anna, III,
WPRS Parls, III
WGEM Quincy, Ill.
WROK Roekford, ill
WPGW Portland, In
WPGW Portland, Ind.
KCHE Cherokee. lowa
KJAY Topeka, Kans.
WKLX Parls, Ky.
WEZJ Wllliamsburg, Ky.
KMLB Monroe, La.
WJAB
Westbrook.
WAAB Westbrook, Me,
WAA Worcester, Mass.
WBCM Bay City, Mich.
WDOW Down
WCHB Dowagiac, Mich. KEVB Inkster, Mich. WHHT Goiden Valley, Minn. WMVB Millville, Niss. WBAB Babylon, N, Y. WJJL Niagara Falls. N.
WSGO Dswego, N.Y. WBLA Ellzabethtown, N.C.
1000 d KILO Grand Forks. N.D. WHHH Warron, Ohio KMED Medford. Dres. KODL The Dalles, Oreg,
WCDL Carbondale Pe WCDL Carbondale. Pa. WNPV Lansdale, Pa.
WGCB Red Lion, WGCB Red Lion, Pa,
WGOK Greenville, S.C. WZYX Cowan, Tenn. WHDM MeKenzle. Ten
KFDA Amarillo, Tex. KEYS Corpus Christi. Tex. KDNT Denton. Tex.
KETX Livingston, Tex. WKLV Blackstone. Va.
WHIS Bluefield. W. Va. WAJR Morgantown, W.Va.
WJPG Green Bay, wis.

$1450-206.8$

CFBM Brochet, Man.

 CBG Gander, Nid. CFJR Brockvilie. Ont.CHEF Granby P CHEF Granby, P, G. WDNG Anniston. Ala.
\qquad WFIX Huntsilile, Ala. WLAY Muscle Shoals City,

Alabam
KLAM Cordova, Alask
KAWT Douglas, Ariz
KNOT Prescott, Arlz
KNOT Prescoit, Arlz.
KOLD Tucson, Ariz.
KOLD Tucson, Ariz.
KENA Mena, Ark.
KYOR Blythe, Calis.
KPAL Palm Springs, Callf.
KTIP Portervile, Calif.
KSAN San Francisco, Callf.
KVML Sonora, Callf.
KAGR Yuba Clity, Caid
KGIW Alamosa Colo.
KYOU Greeley, Colo.
WNAB Bridgeport, Conn.
WILM Wilmington, Dol.
WOL Washington, D.C.
WOL Washington, D.C.
WWJB Bronksille, FIA WMFS Daytona Beach, Fia.
WSKP Mlaml, Fla, WSKP Miaml, Fla,
WBSR Pansacola, Fia.
WSPB Sarasota, Fla.
WSTU Stuart. Fla,
WTNT Tallahassee, fla Fla. Albany, Ga.
WBHF Cartersvilie, Ga, WCON Cornelia, Ga
WKEU Grimin, Ga. WMVG Mlliedgeville, Ga. WBYG Savannah, Ga. KEOK Payette. Idah KEEP Twin Falls, fdahe WKEC Cleero, III.
wC
WANE Ft, Wayne, Ind.
W.P. Ke. Wave Length W.
3000 d
1000
1000 d
1000 d
1000 d
5000
1000 d
1000 d
5000
1000
1000 d

WXVW Jeffersonville, Ind.	
WASK Lafayette, ind.	25
WAOV VIncennes, Ind.	25
KPIG Cedar Rapids, Iowa	25
KWBW Hutchinson, Kans,	
WTCO Campbellsville, Ky.	2
WWXL Manchester, KY.	
WPAD Paducat.	
KSIG Crowley, La.	100
KNDC Natchitoches, La,	10
WNPS New Orleans, La.	25
WRKD Rockland, Malne	25
WKTQ South Parls, Malne	
WTED Cumberland, Md.	
WMAS Springfield, Mass.	10
WATZ Alpena Township.	
WHTC Holland, Mich.	10
wMIQ Iron Min., Mich.	25
WIBM Jackson, Mich.	
WKLA Ludington, Mlich.	
WHLS Port Huron, Mich.	
KATE Albert Lea, Minn.	
KBUN Bemidjf, Minn,	10
KBMW Breckenriage, Minn,	

WELY Ely. Minn.

 KFAM St. Cloud, Minn.WROX Clarksiale Miss. wCJU Columbia. Miss. WIXN Jackson, Mlss. WDKK MerIdian. Miss
WNAT Natchez. Miss. WNAT Natchez. Miss.
WROE West Point, Misg WMBH Joplin, Mo.
KIRX KIrksvile, M KOK Kirksvile, Mo,
KOKO Warrelisburg, M KWPM West Plains. Mo. 1000
KXXL Bozeman, Mont. KUDi Great Falls, Mont, $\quad 100$ $\begin{array}{llr}\text { KRBN Red Lodge, Mont. } & 250 \\ \text { KVCK Woil Point, Mont. } & 1000 \\ \text { KWBE Beatrice, Nebr. } & 250\end{array}$ KWBE Beatrice, Nebr.
KCSR Chadron. Nebr. KONE Refo. Ney. WKXL Refo, Nev. WFPG Atlantic City, N.J., 1000

WCTC New Brunswick. N.J, 250 \begin{tabular}{ll}
KLOS Albuquerque, N. Mex. \& 250

\hline

KLOS Albuquerque, N.Mex. 250

KLMX Clayton, N.Mex.

\hline 250
\end{tabular} KOMX Clayton, N. Mex. $\begin{array}{lrr}\text { KOBE Las Cruces. N, Mex. } & 250 \\ \text { KENM Portales. N. Mex. } & 250 \\ \text { WCLI Corning. N. Y. } & 1000\end{array}$ WWSC Glen F'alls, N.Y $\quad 1000$

WHDL Dlean, N. Y. $\begin{array}{ll}\text { WKIP Poughkeensie, N.Y. } & 250 \\ \text { WKAL Rome. N.Y. } & 250 \\ \text { WATA Boone. N. } & 250\end{array}$ $\begin{array}{ll}\text { WATA Boone. N.C. } & 250 \\ \text { WGNC Gastonia, N.C. } & 1000 \\ \text { WHVH Henderson. N. }\end{array}$ WHVH Henderson, N.C. 1000
WHKP Hendersonville, N.C. 1000 WHIT New Bern. N.C. WJER Dover, Ohlo WMOH Hamilton, Ohlo
WLEC Sandusky. Ohlo KWHW Altus, Okla. KGFF Shawnee, Okia,
KSIW Woodward, Okla. KORE Eugene, Oreo. 100 250 KFLW Klamath Falls, Oreg. KLBM La Grande, Dreg.
KBPS Portland, Ore@. WLEU Erie. Pa.
WDAD Indiana, $P_{a_{2}}$
WPAM Pottsville. Pa. WPAM Pottsville, Pa.
WMPT So. Williamsport, Pa $\begin{array}{lll}\text { WMAJ State College. Pa. } & 250 \\ \text { WJPA Washington. Pa, } & 250 \\ \text { WWRI W. Warwick. R.I. } & 1000\end{array}$ WOSN Charleston. S.C. 1000 $\begin{array}{ll}\text { WCRS Greenwood. S.C. } & 1000 \\ \text { WMYB Myrtle Beach, S.C. } 1000\end{array}$ WHSC Hartsville, S.C. KYNT Yankton, S.Dak.
WLAR Athens, Tenn. WMDC Chattanooga, Tenn. 250 $\begin{array}{lll}\text { WSMG Greenevilie, Tenn. } & 250 \\ \text { WLAF LaFollette, Tenn. } & 100 \\ \text { WGS Murfestion Tenna } & 1000\end{array}$ WGNS Murfreesboro, Tenn. 1000
KRIC Beaumont, Tex. KRIC Beaumont, Tex.
KBEN Carrizo Spros., Tex, KCTI Gonzales. Tex. KMBL Junction, Tex. KMHT Marshall. Tex. KAMY McCamey, Tex.
KNET Palestlne. Tex. KSNY Snyder, Tex. KURA Moab. Utah

KDXU St. George.

 WSNO Barre Vt. Utah 250 WTSA Bratileboro, Vt. 1000 $\begin{array}{lll}\text { WFTR Front Royal, Va. } & 250 \\ \text { WENZ Highland Springs. Va. } 250\end{array}$ $\begin{array}{ll}\text { WREL Lexington. } V_{a}, & 250 \\ \text { WMVA Martinsvilla, } \mathrm{Va}_{a} & 1000\end{array}$ KBKW Aberdeen, Wash. 1000 KCLX Colfax, Wash. Wash. 1000 KAYE Puyallup. Wash. 10 WPAR Parkersburg, W.Va. 25KFiZ Fond du Lac, Wis. $\begin{array}{ll}\text { WDLB Mlarshflefd, Wis. } & 1000 \\ \text { WPFP Park Falls, Wis. } & 1000\end{array}$ WRCO Richiand Center, WIs 1000

Ke. Wave Length

KBBS Buffalo. Wyo.
KVOW Riverton, Wyo

1460-205.4

CJOY Guelnh, Ont.
CKRB Villo St. Georges,
CJNB N. Battleford. Suebee WFMH Cullman, Ala. WPNX Phenlx City, Al
KZOT Marlanna, Ark. K2OT Marlanna, KTYM Inglewood, Calif. KOON Sallinas. Calit. KVRE Santa Rosa, Calif. KYSN Colo. Spros., WZEP DeFunlak Springs. WMBR Jaeksonville, Fla. WOMF Buford, Ga, WIXN Oixon, Ill. WKAM Goshen, Ind. WOCH North Vernon, Ind. KSO Oes Moines, low KCRB Chanute, Kans. WRVK Mt. Vernon, Ky, KBSF Springhill, La, WEMD Easton, Md. WBET Brockton, Mass WBRN BigRapids. M1
WPON Pontiac, Mich. KDMA Montevideo. Minn. WELZ Bolzoni, Miss. KAOY St, Charles, Mo. KENO Las Vegas. Nev. WOKO Albany, N. Y. WHEC Rochester. N. Y , Y WRKG Fuquay Spros.. N.C. WMMH Marshall, $N . C$ WBNS Columbus, Ohio KPLK Dallas, Oreq.
WMBA Ambridge, Pa.
WBCB Marris burg. P
WGOG walhalia, S.C. WJAK Jackson. Tenn. WEEN Lafayette. Tenn. KLLL Lubbock.'Tex. WACO Waco, Tex. WPRW Manassas, Va WLPM Suffolk.'Va. KCDI Kirkland, Wash. KIMA Yakima. Wash. WBUC Buekhannon, W.Va. WRAC Racine, Wis.
WTMB Tamah, Wis.

1470-204.0

CHOW Welland. Ontario CFOX Pointe Claire. Que WBLO Evergreen. Ala. K2NG Hot Springs, Ark KUTY Coalinga, Call KXOA Sacramento, Cailif. WMMW Meriden, Conn. WPOM Pompano Beach, Fla. WAAG Adel. Ga.
WOOL Athens, Ga
WCLA Claxton, G
WRGA Rome. Ga. WMBD Peoria. III. WHUT Anderson, Ind. KTRI Sioux City. Iowa KARE Waveriy, Kwa KLIB Litberal, Kans. WSAC Fort Knox, Ky KPLC Lake Charles, La WLAM Lewiston, Maín WTTR Westminster Md WSRO Marlborough. Mass. WNBP Newburyport, Mass. WKMF Filint. Mich WKLZ Kalamazoo, Mich KAND Anoka, Minn.
WCHJ Brookhaven, Miss.
WNAU New Albany. Mlss. WNAU Now Albany. Mlss. KGHM Brookfield, Mo. KTCB Malden, Mo. WTKO Ithaca, N.Y WPDM Potsdan. N. Y.
WBIG Greensboro. N.C WPNC Plymouth. N.C. WTOE Spruce Pine, N.C. WOHO Toledo. Ohio
KVLH Pauls Valley, OkIa KVIN Vinita, Okla.
KRAF Reedsport, Oreg.
WSAN Allentown. Pa.
W SAN Allentown. P
WFAR Farrell, Pa ,
WWML Portage, Pa .
WOIC Columbia, S.C.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Ware Length \& \& \& Wave Length \& W.P. \& Ke. \& Wave Length \& W.P. \& \& ve Length \& W.P.

\hline wbor Virginia Beach, Va \& 5000d \& kgGg \& Formest Grove, Ores. \& 100 \& WANB \& \& \& \& - \&

\hline Koar Bellingham, Wath. \& 1000 d \& KOHU \& Hermiston, \& 100 \& WORG \& Orangeburg, s.c. \& d \& \& \&

\hline 1560-192.3 \& \& \& \& 0d \& \& \& \& \& \&

\hline CFRS Simeoe, 0 \& 250d \& \& \& \& \& \& \& \& \&

\hline KPMC Bakersineld. Ca \& \& \& \& \& \& \& \& \& \&

\hline as willows. \& \& \& \& 10000 d \& \& Gainesvilio. Tox. \& 1000 d \& \& st Allis, Wis. \& d

\hline W8YS Canton. 11 \& ${ }_{1000 \mathrm{~d}}^{250 \mathrm{~d}}$ \& WCLE \& Cleveland. Tenn \& 1000 d \& \& Rusk. \& 500d \& \& \%. \&

\hline OXR Paducah \& \& \& Rip \& 1000 \& \& \& 250d \& 1600 \& 187.5 \&

\hline Waxi New York \& 50000 \& Kv \& \& 2500 \& \& Danvilife. \& 1000d \& \& \&

\hline WTNS Coshoeton on \& $$
\begin{aligned}
& 1000 \mathrm{~d} \\
& 5000 \mathrm{~d}
\end{aligned}
$$ \& \& Terrell. Tex. \& \& \& \& 5000 d \& \& \& 10000
50000

\hline KWCO Chickasha \& \& K \& Salt \& 5000 \& \& Wateriown, Wis. \& \& \& \&

\hline RSD Bay \& \& \& \& \& 1590 \& -188.7 \& \& \& \&

\hline KHBR Hillsbero \& 350 d

2500 \& \& Warrenton, w. \& 500d \& w \& \& 5000d \& \& Yuba \&

\hline KGUL Port Lavaca, T. \& 500 d \& W \& Apditon, Whs. \& 1000d \& \& \& \& \& \&

\hline 1570-191.1 \& \& 1580 \& -189.2 \& \& \& an jose, Calit. \& \& \& \&

\hline CHUB Nan \& 10000 \& \& coutimi, \& 00 \& \& \& \& \& \&

\hline ${ }^{\text {Pr }}$ \& \& W \& Tallade ${ }_{\text {ara, }}$ \& \& \& Waterbury, coin \& \& \& \&

\hline Ont. \& \& \& Marked Troe \& 250 d \& \& \& 500d \& \& \&

\hline WCRL Onsonta, Ala \& 250 d \& \& Van Bure \& 000d \& \& Flo \& \& \& \&

\hline Solma. Als \& 1000 d \& \& And \& \& \& S. Daytona Be \& \& \& \&

\hline K8RI Brinkiey, \& 250d \& KWA \& Merced
Santa Monica. \& \& \& S. Day ${ }^{\text {a }}$ \& \& \& \&

\hline KRKC Kine city, cal \& 250 d \& \& \& 㖪 \& \& \& \& \& \&

\hline R Lodi, c \& 1000 d \& \& \& \& \& \& \& \& \&

\hline hiverside, C \& 00d \& WGB \& Ft. Lauderdalo, Fi, \& 1000 \& \& Eva \& 1000 d \& \& \&

\hline KLOV Loveland. Colo. \& 5000d \& \& $$
\begin{aligned}
& \text { aring } \\
& \text { flor }
\end{aligned}
$$ \& \& \& \& \& \& \&

\hline WPAP Fernandina Beach. \& \& * \& Mount Dora, Fla \& \& \& \& 5000 c \& \& \& 1000 d

\hline \& 1000d \& \& \& \& \& \& \& \& \&

\hline \& \& \& \& 5000 d \& \& reat Bend, Ka \& \& \& ckr \&

\hline clayt \& 1000 d \& WLB \& Gainesville, Ga. \& dod \& \& whit \& \& \& Brookline. Mass. \&

\hline WEAD Colloge Park. \& 1000d \& W \& Alenville. \& 1000 d \& \& Whit \& \& \& \&

\hline alta \& \& w \& Aurora, \& 250d \& \& Colar \& 000 \& \& . \&

\hline RL Freeport, III. \& 50 \& \& Pittsheló \& 250 d \& \& Marine city, Mie \& 1000 d \& \& muskegon, Mleh. \&

\hline WbeE Harvey, ili. \& 1000 d \& wKio \& Urbana, ill. \& Od \& \& st. Helen, Mleh. \& \& \& colv \&

\hline Robinson \& 25 \& \& Connersvil \& Od \& \& \& \& \& \&

\hline \& \& \& \& 1000 d \& \& \& \& \& \& 00

\hline WAWK Kendall \& 250 d \& \& Washington, Ind. \& \& \& \& \& \& Nebr \&

\hline WOWI Now Albany. Ind \& 1000d \& \& charles city, lowa \& 500 s \& \& Kansas City, Mo \& \& \& \&

\hline Fairneld. 10wa \& \& \& \& \& \& 龶 \& \& \& \& 1000d

\hline Mar \& \& \& Geornotown, \& 10000d \& \& \& \& \& \&

\hline KWSK Pratt. \& 250 d \& W \& Leitehnold. Ky \& \& \& Aub \& 500 d \& \& (\&

\hline Vaneebure. \& 23 \& WPKY \& Princeton, Ky . \& 250 d \& WEH \& \& \& \& \&

\hline Amite \& \& KLO \& Haynes \& 250 \& \& Ho \& 500 d \& \& \& 000

\hline Wins \& 10 \& \& Bradbury H gts. \& \& \& \& \& \& \&

\hline Towson \& 1000 d \& \& \& 250d \& \& High Point. N.C \& 1000 d \& \& \&

\hline PEP Taunton, Mass. \& 10 \& \& Jo \& \& W \& Akron
Hillsb \& \& \& Tifin. Ohio \& 500d

\hline WMLO Beverly, Mass. WDEW Westñeld, Mass. \& ${ }^{\text {5000d }}$ \& \& , \& 5000 d \& \& $\underset{\substack{\text { Hillsb } \\ \text { Henry }}}{ }$ \& \& kus \& Cushing. Okla. \& dod

\hline RP Flint, Mleh. \& 10 \& W \& Centreville. \& 250d \& \& \& 1000 \& KASH \& Eupene. Ore \&

\hline d R \& \& w \& Lelan \& 1000 \& \& \& 1000d \& KSTH \& ens. Ore \& 1000 d

\hline \& \& \& Pasca \& \& \& Cha \& \& \& illentown. Pa. \&

\hline \& \& \& \& \& \& Guay \& 1000 \& \& Fountain Inn, S.C \& 1000 d

\hline \& \& KESM \& Eldorado Springs, \& Mo. 250 d \& \& Warw \& \& WhBt \& Nar \&

\hline Lexin \& $250 d$ \& KNIM \& ma \& \& \& Abbevilles S.C. \& \& WKBJ \& milan, Tenn. \& 000d

\hline Amst \& \& \& Hammonton, N.J. \& 2500 \& \& \& \& \& \& 500

\hline Ound \& 1 \& \& Washington. N.J. ${ }^{\text {Albu}}$ \& \& \& \& \& KB0R \& Brownsville, To \&

\hline Riverh \& 1000 d \& \& Patehogues ${ }^{\text {N. }} \mathrm{Y}$. . \& \& \& \& \& KW \& midand. Tex. \& 1000

\hline siler \& 10000 \& \& Albemarie. N,C. \& \& \& Carthage, Tex. \& \& \& Cuero. Tex. \& 500 d

\hline Cam \& \& \& \& \& \& \& \& \& \&

\hline \& \& \& columbus, ohio \& 100 \& \& El Paso, Tex. \& 00 \& k \& Orange, Tex \&

\hline \& \& \& Ok \& \& \& . Tex. \& \& \& Centervilie. Utah \&

\hline ck, okla. \& \& \& \& \& \& \& \& \& \&

\hline
\end{tabular}

U. S. and Canadian AM Stations by Location

Abbreviations: C.L., call letters; Kc., frequency in kilocycles; N.A., network affiliation-A: American Broadcasting Co.; C: Columbia Broadcasting System, Inc.; M: Mutual Broadcasting System; N: National Broadcasting Co., Inc.

Locatlon	Kc. N.A.	Location	C.L. Kc. N.A.	Lecation	C.L. Kc. N.A.	Locotion	C.L. Kc. N.A.
Abbeville, Als.			KRAC 1270 KGIW 1450	Alexandria, La.	$\text { KALB } 580 \text { A }$		$\begin{array}{lll} \mathbf{1 X Z} & 940 \\ \text { RAY } & 1360 \end{array}$
Abboville, La,	$\text { KROF } 960$	Alamesa.Colo.	KGIW 1450 m WALG 1590 A		$\begin{aligned} & \text { KDBS } 1410 \\ & \text { KSYL } 970 \mathrm{~N} \end{aligned}$		$\begin{aligned} & \text { RAY } 1360 \\ & 6 Z 1 P \\ & 1310 \end{aligned}$
Aberdeen M, Md.	WABV 1590	Albany, Ga.	WALG 1590 A	Alexandria, MInn.	$\begin{aligned} & \text { KSYL } \\ & \text { KXRA } \\ & 1490 \\ & \hline 1400 \\ & \text { A } \end{aligned}$	A	WMBA 1460
Aberdeen, Miss.	WMPA 1240		WJAZ 960	Alexandria, Va.	WPIK 730 M	Amerieus, $\mathrm{Ba}^{\text {a }}$	WDEC 1290
Aberdeen, S.Dak.	KABR 1420	Al	WANY 1390		KLGA 1600	Ambs, lowa	KSAI 1430
	KSDN 930 A	Albany, Mins.	KASM 1150	Al	KOPY 1070		WO1 640
h.	KBKW 1450	Albany, N.Y.	WABY 1400	All	WOWE 1580	Amhe	CKDH 1400
	KXRO 1320		OKO 1460 m	Allontown. Pa.	WHOL 1600		WABL 1570
ene.	KRBC 1470 A		WPTR 1540 A		WAEB 790	Amery, M	WAMY 1580
Abilene, Tex.	KCAD 1560		WROW 590 C		WKAP 1320	Amos,	CHAD 1340
	NIT 1280	Albany, Orat.	KWIL 790 M		WSAN 1470 C	Amstordam. $\mathrm{N}_{\mathrm{S}} \mathrm{Y}$	WAFS 1570
	KWKC 1340 M		KABY 9900	Alliance ${ }^{\text {Alliance }}$ Nobr.	WCOW 1400	Amaeonda,	WANA 1230
Ada Oklag.		Albomarls, N.C.	WABZ 1010	Alma, Gá.	WCAS 1400	Anacortes, Wash.	KAGT 1340
Adel, G	WAAG 1470	Albert Lea, Minn.	KATE 1450 A	Alma, Mi	WFYC 1280	Anaheim, Calif.	KEZY 1190
Adrian, Mileb	WABd 1490 A	Albertville, Ala,	WAYU 630	Alpena Town	Mieh.	Anehorage, Alaske	KBYR 1270
Aguadilla, P.R.	WABA 850	Albion, Mieh	WALM 1260		WAT		KFQD 730 C
	WGRF ${ }^{1340}$ WRCS 970		KABG 1350 KDEF 1150	Alpine, Tex.	KVLF 1240	Anchorago. Alaska	
	WAKN 990		KGGM 610	Altona, Ma	CFAM 1290	Andalusia. Al	WCTA 920
Aitkin, MInn	WKIN 1000 D		KOB 770 N	Altoona, Pa.	FFBG 1290 N	Al	
Alkrom, Ohio	K		CEO 920 m		RTA 1240 A	Anderson, Ind.	WHUT 147
	WADC 1350 C		KARA 1310		30 C		HeU
					70		123
	WHLO 640 M		KLOS 1450		WHW 1450		WANS 1280
amoporde, N. M.	KALG 1250 M		KRAZ 1580 A		ALV 1430		KACT 1380
			VEAG 1470	A marlllo, Tex.	BUY 1010 m	Annapolis, Md.	WANN 1190
160 WHIT	O		\& 105		KGNC 710 N		WNAY 1480

Locatlon	C．L，Ke．N．A．	Locotlon C．L．Kc．M．A．	ocatlon C．L．Ke．N．A．	on C．L．Ke．
Ana Arbor，Mleh，	WHRV 1600 A WPAG 1050	$\begin{array}{cc} \text { WBMD } \\ \hline 50 \\ \text { WCAO } & 600 \end{array}$	KOOK 970 C KOYN 910	Broken Bow，Nebr．KCNI 1280 Brookfold，ino．KGHM 1470
Anna．	WRAJ 1440	WCBM 680 C	RL 730	ven，Mlss．WCHJ 1470
Anniston，Alm，	WANA 1490 WDNG 1450 A	WITH 1230	Binghamter，N．Y．WINR ${ }^{\text {W }}$ W0P 1360 N	WJMB 1340 M
	WHMA 1390	WSID 1010	WNBF 1290	Brookings，S．Uak．KBRK 1430
	KAND 1470	WIN 1400 A	WAPI 1070	Brookline，Mass．WBOS 1600
Ansoni	DS 690	Bambers．8．C．wWB	Birmingham，Ala．WBHM 1550	Brooksvilie，Fla．WWIB 1450
Anti	WATK 900	Banger，Maine WABI 910 A－M	WBRC 960 A	Brownfield．Tex．KTFY 1300
Antigonish，N．s．	CJFX 580	WGUY 1250 C	1260 A	Brownsville，Tex．KBOR 1600
A	WAVL 910		${ }_{1320} 120$	Brownwood，Tox．KBWD 1380
ley，Cal．	WAVA 960	Bannind，Call． Barboursville，Ky．WBVL 950	ENN 1320 M	Brunswiek，Ga，WGIG 1440
	WHBY 1230 m	Bardstown，Ky．WBRT 1320	N 610	G 1490
Arab	WRAB 1380	Barnesboro，Pa．WNCC 950	C 850	Erunswlek，Malno WCME 900 M Bryan Tox KORA 1240 M
Areadia，Fla，	WAPG 1480	Barnwell，S．C．WBAW ${ }^{740}$	Bisbee，Arnz． KSUN 1230	
kia．	$\begin{aligned} & \text { KENL } 1340 \\ & \text { KVSO } 1240 \\ & \hline \end{aligned}$	Barrie，Ont．CKBE 950	Bishop，Calif．KIBS 1230 A	WBUC 1460
Arseibo，P．R．${ }^{\text {a }}$	WCMN 1280	Barstow，Callf．KWTC 1230 A	Bishopville，S．C．WAGS 1380	Eufialo．N．Y．WBEN 930
	HA 1070	1310	550 N	WBNY 1400
	NIK 1230	Bartiesville，OkIa．KWON 1400 m		970 m
Arkadelohia，Ark．	KVAC 1240 M		Bismarek－Mandan．N．Oak．	$\begin{aligned} & \text { WGR } 550 \\ & \text { KBW } 1520 \end{aligned}$
Arkan，city，kans，	WSTY 1220	Bassotrop，Le．KTRY 730		$\begin{aligned} & \text { KBW } 1520 \\ & \text { NWOL } \\ & \hline 120 \end{aligned}$
Arlington，Va．	WAVA 780	1340	WBMT 1350	Buffalo，wyo．KB
	WEAM 1390	Batavia，N．Y．WBTA 1490 M		
Artesis	VP 990 M		Blackfoot，Idatho KBLI 690	骨 KBA
A	$\begin{aligned} & \text { KDAB } 1550 \\ & \text { WMES } 1570 \end{aligned}$	Batesville，Mlis．WBLE 1290	Blackshoar，Ga．WBSG 1350	3 urlington，lowa KB
Asbury Par	WILK 1310	Bath，Malne WMM8 730	Blackstone，Va．WKLV 1440	Burlington，N．C．WBBB 920
Asheboro，N．C．N	GWR 1260	Bathurst．N．E．CKBC 1400	Blackwell，Okla．KLTR 1580	Burington，Vt．WCAX 620
	1310	Baton Rouse，La．WAIL 1460	Blaine，Wash．KARI 550 Blakely，Ca．WBBK 1260	Burington，Vt．WCAX 620
	N－M－A	Baton Rouge，La．WYE 350	Blanding，Utah KUTA 790	
	WWNC 570 C	WIBR 1300	Blind River，Ont．CJNR 730	340
land，	CMI 1340	W JBO 1150 N	Bloominglon，111．WJBC 1230 A	RNS 1230
	TCR 1420	WLCS 910	Bloomington，ind．WTTS 1370 A	Butier，Ala．WPAN 1220
Ashland，Ohio	WNCO 1340	WXDK 1260	WCNR	Butier，Pa．WBUT 1050
nd，Ores．	KWIN 1400 m	WELL 1400 A		Butte，Mont KBOW 1490
Ashland，Va．	WOYL 1430	Baxley，Gs．WHAB 1260	Bluefield，W，Va．WHIS 1440 N	KOPR 550
	100	，City，Mleh．WBCM 1440 A		
Ahtabula，Onio	WRED 970	1250	450	
Astoria，Ores．	KAST 1370 M		WAVC 1300	
		Bayamon，P．R．WRSJ 1560	Bodalusa La，WIKC 1490 N	WJP 1110
Athens．	$\text { WIMW } 730$	Baytown．Tex．KWBA 1360	920	WRA 790
Athens，GE	WGAU 1340 C	Beacon．N．Y．WBNR 1260	KATN 1010	Cairo，WKRO 1490 Calais，Maine WQOY 1230
	DOL 1470	Beardstown，III．WRMS 790	${ }_{790}^{950} \mathrm{C}$	
	WRFC ${ }^{960}$	Beatries，Nobr．KWBE Beaufort，N．C．WBMA 1400	KGEM 1140 M	BGN 910
ns，Ohio	WATH ${ }^{970}$	Beaufort，S．C．WBEU 960	K100 630 N	BYE 1370
hons．	WLAR 1450 m	Beaumont，Tex．KFOM 560 A	KYME 740	Calexico，Calif．KICD 1490
	KBUD 1410	1385	Bonham，Tex．KFYN 142	
anta，	WPLD 590	1450	B	
		Beaver Dam，Wis．WBEV 1430	595	WCGA 900
	WRD 860	Beaver Falls，Pa．WBVP 1230	Boonvilla，Ind．WBNL 1540	Cambridge，Md．WCEM 1240
	WGKA 1600	WWJS 5600 C	Boonvilis，Mo KWRT 1370	Cambridge，Mass．WTAO 740
	WGST 920 A		Boanevilse．Miss．WBIP 1400	Cambridges，Ohio WILE 1270
	WIIN 970		Boonvilis，N．Y．WBRV 900	Camden，Ark．KAM Camdon， N．j． WCAM 1810
	WQXI 790 N		KBEB 1600	W 800
	WYZE 1480	Beavilie．Tex．KIBL 1490	Boston，Mass．WBZ 1030	amden，8．C．WACA 1590
tlants．	KALT 900	Bolen，N．Mex．KARS 860		Wamden，Tenn．WFWL 1220
tlantic，lowe	KJAN 1220	Belgrade，mont．KGVW 6300 m		Cameron，Tex．WCLB 1220
Alantie Baach，Fla．	WKTX 1600	Bellefontalne，Ohio WOHP $1390{ }^{\text {m }}$	EZE 1260 N	Campbil，Ohio WHOT 1570
	WFPG 1450 C		590 C	Campbellsville，Ky．WTCD 1450
	WMio is ${ }^{\text {W／A }}$	Bell Fourche，S．Dak．K BFS 1450	HOH 850	Campbelliton，N．B．CKNB 930
Atmore，Ala．	WATM 1590	Belle Glads，Fia．WSWN 900	WOR1 950 M	Camose ${ }^{\text {a }}$
ttleboro，	WARA 1320	Belloville，Ont．CJBQ 800	WORL 950 M	Canon City，Colo．KRLN
A burn	WAUD 1230 A	Belleville， 11.	Boulder Cole．KBOL 1490	Canonsburg．Pa．WARO ${ }^{540}$
ubur	KAHi 930		Bowie，Tex．Ky KBAN	Canton，GAI：W日YS 1560
burs	$\begin{aligned} & 840 \mathrm{M} \\ & 1590 \end{aligned}$	Bollingham，Wash．KPUG 1170 m	340	Canton，Miss．WDOB 1370
		KGMI 790 A	WLBJ 1410 M	Canton．N．C．WWIT 970
Auburnd	WTWB 1570	KOQT 1550	Bowl，Creen，Ohio WMGS 730 N	Canton，Onio WCNS ${ }^{\text {WHOF }} 106$
uburadale，V	WLBL 930	KENY ${ }^{\text {Osht }} 930$	KXMN 1230	
年usta，Ca．	WAUG 1050	Beimant，N．C．WCGC $1270 \mathrm{M} . \mathrm{A}$		．KFVS 960
	WBIA 1230 N	18．WGEZ 1490 m	WLOA 155	KGMO 1550
	WGAC 580 A	Belton，S．C．WHPB 1390		$\begin{aligned} & \text { WCIL } 1020 \\ & \text { WCDL } 1440 \end{aligned}$
ta，	WRDW 1480	Belzoni，Miss．WELZ 1460	Bradenion，Fla．WTRL 1490	Caribou，Maine WFST 600
	WFAU 1340	Bemidji，Minn，KBUN 1450 m	WERD 1420	Carlisle，Pa．WHYL 960
	KOSI 1430 m	Bend，Dres．KBND 1110 A	Bradford．Pa．WESB 1490 M	KAVE 1240
，	1280	Bennetsvilte，8．C． WBSC 1550 M		Carmel，Calif．KRML 14
Austin．Mins．	WKKD 5880		Brampton，Ont．CHIC 1090	Carmi．Ill．WROY 1460
	KaAQ 970	Benson，Minn．KBMD 1290	Brandon，Man．CKX 1150	Carnegio．Pa．WZUM 1590
Austia．Tex．	KNOW 1490 A	Bensen，N．C．WPYB 5580	Branso．a．Mo．K8HM 1220	Carrington，N．Dak．KDAK 1600
	KASE 970	Benton，Ark．KBBA 690		Carrizo Springs，Tex．KE EN 14.50
	KTBC 590 C	Benton．Ky WCBL 1290		$\text { Carrollion. Ala. WRAG } 590$
	KOKE 1370	Benton Harbor；Mieh．WRE 14060		Carrollton，Ga．WLBE 1100
	KVET 1300 m			Carroliton．Mo．KAOL 1430
	WBYP 190	WCST 1010	Breckeoridge，Minn．KBMW 1450	Carson City，Nev．KPTL 1300
Avondalo Estat	14	Beriln，N．H．WMOU 1230	Breckanrides，Tex．KSTE 1430	Cartersyllle．Ga．WBHF 1450
thee，N．Mex．	KNDE 1340	Berry Hill，Tenn．WVDL 1470	Bremet，Ga，WWCC 1440	Cartersvillo．Ga．WKRW 1270
Baby	WBAB 1440	Berrywilio，Ark KTCN 1480	Bromerton，Wash．KBRD 1490	Carthage， $111 . \quad$ WCAZ 99
	WGLI 1290	Borwick，Pa，WBAX 1280		Carthage，Mo．KDMO 1490
Bad Axi，Mleh．	WLEW 1340	Bessemer，Ala．WYAM 1450	Brovarion，Aia．WP WEBJ 1240 M	Carthage，Tox．KGAS 1590
alnbridge，Ga，	WMGA 980	Bothesda， Bethiohom．Pa．WGPA 1100	Bridgeport，Ala．WBTS 1480	Caruthersville，Mo．KC
	K BKR 1490	Beverly，Mass．WWLD 1570	Bridgeport，Conn．WICC 600 N	Casa Grande，Ariz．KPIN 1260
akerifiold，Callt．	．KAFY 550 m	Biddeford，Maine W10E 1400 m	${ }^{1} \times$	Casper，Wyo．
	KBIS 970	Big Delta，Alaska WXLL 980		
	KERN 1410 C	B18 Lake．Tex．KBLT 1290	Brigham city．U＇th KBUH 800	
	KGEE 1230	Bis Rapids，Mich．WBRN 1460	Brighton，Colo．KBRN 800	Cedar City，Utah KSUB 590 C
	KUYO 800	Big Sari．，Tix．KBST 1490 A	Brinkley，Ark．KBRI 1570	Cedar Falls，lowa KCFI 1250
	1490		Bris	Codar Raplds，lowa KCRG 1600
	KPMC 1560 A			HAK 1360
	KPUG 1170 m WSEN 1050	Biloxi．Wlss．WLOX 1490 m	Briste，Va．WFHG 980 M	
allim	$\begin{gathered} N \\ N \\ N \end{gathered} 1050$	WVMI 570		WMT 600
			Brookton，Mass．WDKW 1410 Breatrilis Oat CFIR 1450	

otion	C.L. Kc. N.A	cation	C.L. Ke. N.A.	cotion C.L. Ke. N.A	tlo	c.
wan	$\text { GAA } 1340$	Clarksdalc, Miss.		II. Tenn. WLSB 1400	scorah, Jowa	c
	ET 930		L 1600	Coral Gables, Fla. WRIZ 1550	,	
terville, lowa	WCOG ${ }^{\text {W }}$	Clarksville, Ark. Clarksville, Tenn	KLYR ${ }_{\text {WJZM }}{ }^{360}$	Corbin, Ky. WCTT 680 m		12
ntervillo, Utah.	KBEC 1600		WDXN 540	Corbin, Ky. WYGO 1330 m		DSP 1280
ntral City, ky.	WNES 1050	$\begin{array}{cl} \mathrm{Cl}_{8} \\ \mathrm{Cl} \end{array}$	KCAR 1350 WCLA 170	w		WLEP 1480
c	W		WGHC 1570	Corinth, Misk WCMA 1230	De Land, Fl	WJBS
C		Clayt		Corner Brook, Nfid. CBY 790		W000 $\begin{aligned} & 1310 \\ & \mathrm{KCHJ} \\ & 1010\end{aligned}$
trov	WGL	Cl		Corner Brook, Nid. CFCB 570		WDLE 1550
adron	KCSR 1450		WCPA WTAN 1340		Delray, Beb., Fla.	WDBF 1420 KDLK 1230
	WCBG ${ }^{\text {W90 }}$		E 1360	Corning, N.Y. WCAI 1450		KDTA 1400
	WDWS 1400		KCLE 1120	Cornwall, Ont. ClSS 1220		KOTS 1230
apal Hill, ${ }^{\text {N }}$	WCHL 1360		WRWH 1350	KBU	Den	WLBI 1220
Charlorol. Pa.	WESA 940	C	WCLD 1490	Tex.		KDSN 1580
Charlos ${ }_{\text {cher }}$	KCHA 1580 WEIC 1270		WOSk 1410	KCTA 1030 m	Denison, Tox.	KDSX ${ }^{\text {KDNT }} 1450$
Charl	KCHR 1350		WDOK 1260 M	1140	Denver, Colo.	KDEN 1340
crarieston, S.C.	WCsC 390					
	WOSN 1450		WABD 1540	W01R 1370		KLIR 990
Charleston, W.Va.		Cle		${ }_{740}$		Z 7100
		cieveland, Tonn.	号	Cortland, N.Y. WKRT 920		A 850
				corvallio, Orei. KOAC ${ }^{\text {K }}$		220
	WTIP 1240 m	C	w	50		
Charlotto, Mich. Charlott,			KCLF 1400		Dequer	KDLA 1010
	W	cilift	WCFY 1230	Coudersport, Pa. WFRM 600	Des Molnes, lowa	KDL 1010
		cline	WDIC 1430	Ka		
	WSOC 930 m	Clinto Clinto	KCLN 1390			
			1340 M	Covington, Ga. WGFS 143		
	W.1.	clinton,	KRRZ 880	Covington, Tonn. WKBL 1250	Detroit. M	CAA 1130
	WCHV 1260	Cl	KWOE 1320	Covington, Va. WKEY 1340		BK 1500
	WELK 1010		WYSH 380	550		760
	NA 1400		WKLK 12	Cranbirook, B.c. CKEK 570		
rlottetown. P.E. 1 ase clity Va.	W.CFCY 630	Clo	KCLV KYER 980			
tha	CFCO 630	Coachella, Cal	KCHV 970	KPOD 1310		
itanooga, Tene.	W WMPC 1450 M				Is Lake, N .	KDLR 1240 m
	WDEF 1370	Cocoa,	WKK0	WJSB 1050		X $1590{ }^{\text {a }}$
	W			Crowe. Ve. WSVS ${ }_{\text {Crem }}$	Dick	
	WNOO 1260		KODI 1400	Crookston, Minn. KROX 1260	Dick	
Cheboygan, Mleh.	wcB		KVNI 1240			WDBM
Cheothallis, Wash.	1420		KGGF 690			KRDU 1130
Chelan, Wash	KOZ1 220		KXXX 790			0
Cheroke	KCHE 1440	CO	KSTA 1000	Cullman, Ala, WFMHL		
				m	Dothan, Ala.	AGF 1320 DIG 1450
	WVGH 740			Cumberiand, Ky Cumberland, Md.		
Chester, S.C. ${ }^{\text {Cheyonno, Wyo. }}$	WGCD 1490		- 1290		Douglas, Ariz.	
cheyonno, wyo.	K	colonial		10		
	KRAE 1480		K	Cuyahoda Falls, ohio		
a	KVWO 1370 M		KRD		Do	
frago. III.	WAAF ${ }^{\text {Walt }} 820$		KVOR 1300	W.WGTO ${ }^{\text {Wer }}$		
	WBEM 780 C		KSSS 740	Dade city, Fla. WocF 1350		ran 1510
	1000		KYSN 1460	Dadeville, 'Ala. WDVC 910	Dor	WJER 1450
	WCAW 1240					WDOW 1440
	WEDC 1240	columbia, M	WCPU 1450	Daalas, N.C. WCFT 960		WBUX ${ }_{\text {CJDV }}{ }^{1570}$
	WGN 720 m	ia,	$\text { KFRU } 1400 \text { A }$	Dallas, Ores. KPL		
	WIND 360	Columbla	-			
	LS 890	mbia				12
	WMAO 670 N			A		WCED 1420
Chicago Hgts., III.	WM	Columbia, Tenn			Duluth, Minn.	
cka		Columbus, Ga		KODL 1440 A		
eo, Callit.	$\begin{aligned} & 1290 \\ & 1060 \end{aligned}$			WBLJ 12		350
eop	WACE 730			WL		60
.				900		
Childres		Col	WCSI 1010	WHIR 1230		WCKE 780
Chillicothe, Mo.	010		${ }_{500}^{550}$	Danville: Va. WBTM ${ }^{\text {WOTI }}$ (130	Ou_{u}	
	1350					K0GO 1240
Chilliw			$\begin{aligned} & 1230 \\ & 9200 \end{aligned}$		$\begin{aligned} & \text { Dur } \\ & \text { Our } \end{aligned}$	KSFO WDNC W20
chippewa falls, wi			$\begin{aligned} & 920 \\ & 820 \end{aligned}$	Daringinton. S.c. WDAR 1350 Dauphin, Man. CKDO 730		
Christians burg.	WBCR 1260		610	Wa WWOC 1420		
Christlansted, V.1.	WIVI 970			170 m	Ton	Wr80
ureh HIIf, ${ }^{\text {a }}$	WMCH ${ }^{260}$	Coserd	290	Dawson, Ga, WDWW 990		
Cicero.	WHFC 1450	Concor	WKXL 1450	Dawson Creek, B.c. CJJC 56	Eaple River, W13.	WERL 950
Cincinnati, ohio	WCKY 1530	C_{0}	WEGO 1410	Dayton. Ohio WH	Ea	WELP 1360
	CIN 1480	C	KNCK ${ }_{\text {KFAM }} 1350$			90
			WWOw 1360			KERC ${ }^{\text {K }}$ (1590
			WCNB 1580	,		WOH11490
		C	KMCO 900	WNDB1150 M.	-	- Mast
Clare, m	WCRM 990		${ }^{1230}$			
aremont,	TSY 1230		WBNC 1030	980		WDLM 960
arion,			WHAT 13300 C			A
-ksburg, W.Va.			140	Walf		
			c		Easton, Md.	WEMD 1460
			KYNG 1420			1400

Lecatlon	C.L. Ke. N.A.	Lecetion C.L. Kc. N.A.	ocation C.L. Kc. N.A.	on
Eatontown, N.J. Esu Claire, Wis.	WHTO 1410 WEAQ 790 N	Falfurrlas, Tox. KP8O 1260		-
	WBI2 1400	Fallon, Nov. Mass. WALE 1250 m	Franklin, Pa. WFRA 1430 Franklin. Tenn. WAGG 950	620 340
	-	WSAR 1480 A	Franklin, Va. WYSR 1250	RZY ${ }^{730}$
Eau Gail	WMEG 920	Falls Chureh, Va. WFAX 1220	Frederick, Md. WFMD 930 C	
Ebensburs, ${ }^{\text {Pa, }}$	WEND 1580	Falls Clity Nobr. KTNC 1230	Frederick, 0kla. KTAT	
Edenton, N.C.	WCDS 1260	Fargo. N.O. WD. WAY 970 N	Frederickaburg.	R 1570
Edinbura. Tix.	KURV 710	KFNW 900		GRO 1410
dmonds, Wash.	KGON ${ }^{630}$	KUTT 1550	Frederlek:burg. Va. WF FA 1230 A	LAV 1340
a.		$\begin{aligned} & \text { KXGO } 790 \mathrm{~A} \\ & \text { KDHL } \end{aligned}$	Fredericton N, W WFNS 1350	MAX 1480 M 000 N 1000
	CFRN 1260	WKTJ 1380		Grand Rapids. Minn.
	CHED 1080	Farminaton. Mo. KREI 800	Freeport, lil. WFRL 1570	K0zY 1490 m
	CHFA ${ }^{680}$	Farminaton, N.M. KENN 1390	Freeport. N.Y. WGBE 1240	HO KORT 1230
	JCA 930	KWYK 960	Freeport. Tex. KBRZ 1460	Granite City III. WGNU 920
	A	KR2E 1280	WBFC 149	s, N.Mex KMIN 980
Emnoha	CRA 1090	WFAG 1250	KHUB 1340 WF HO 900	1270 m
Elba, Al	WELB 1350	Farmville, Va, WFLO 870	KARM 1430 A	CFGH 1230
Elber	WSGC 1400	Farrill Pa. WFAR 1470		
El Cajon,	KDEO 910 A	Farweli, Tox. K20L 1570		Grayson, Ky. WGOH 1370
El Campo.	KULP 1390	Fayetto. Ala. WWWF 990	KFRE 940 C	Mass
El Contro, Calif.	KXO 1230 m	Fayettevillo, Ark. KHOG 1440	KGST 1600	
	KAMP 1430		KMAK 1340	Gt. Bend, Kans. KV
.	KDMS 1290	Fayettoville, N.C. WFAI 1230 C	KMJ 580	Gt. Falls, Mont. KFBB 1310
			Front Royal, Va. WFTR 145	KMON 560 M
			Frostburg. Md. WFRE 740	
		F	Fulton, Ky. WFUL 1270	FK
		Forgus Falls, wion. коte 1250 m	Fuquay Sprgs., N.C.	WJPG 1440 m
				1400
zabethtown, KY,	WIEL 1400		A	
-				enevilte, tenn. WGRv is
	40	KXEN 1010	WFGN 1570	SMG 14
City 0 kis	WE2N 1600	Findlay, Ohlo WFIN 1330	WDVH 980	HAI 1240
City, Okis	KBEK 1240 A		WGGGG 1230 A	nsbori. N.C. WBIG 1470
	$\begin{aligned} & 1340 \\ & 1270 \end{aligned}$	Fitchburg. Wabs. WEIM 1280 M		1320
Elkln. N.C	FM 1540	Fltzgerald, Ga. WBHB 1240 M	$240{ }^{\text {m }}$	WPET 950
Elkins, W.V.	240	Flagstafi, Ariz. KCLS 600 N	58	eensturg, Pa. WHJB 620
0	KELK 1240 M	KVNA 690 A	Gainesville. Tex. KGAF 1580	cenville. Ala. WGYV is8u
lensbura. Wash.	KXLE 1240	90	Gaithersburg, Md. WHMC 1150	Greenville, Mich. WPLB 1380
Iswo	WDEA 1350	Flat River, Mo. KFMO 1240 M	Galax. Va. WBOB 1360 M	Greenville, Miss. WJPR 1330
mi		Flin Flon, Man. CFAR 590		(WDOT
		1330	Gallatin, Tenn. WHIN 1010	94
	EHH 1590 M	WMRP 1570	$\text { KGAK } 1330 \text { A }$	$\begin{aligned} & \text { NGTC } 1590 \\ & \text { NOOW } 1340 \end{aligned}$
El Paso, Tox.	KROD 600 C	F 1470	230	Greenville. S.C. WESC 660
	KHEYT 1590	Flomaton, Ala. WTCB Floreace, Ala \quad WJOI 1340 m	Galveston, Tex. KILE 1400	m
	1221150	WOWL 1240 A	54	
	KET 1340 m	Florence, S.C. WJMX 970 A	, KNCO 1050	GVL i4u0
			N	nwood, Miss. WABG 960
	KELY 1230	Floydada, Tex. KFLD 900		145
yrim.	WEOL 930	Foley, Ala. WHEP 1310	Wary WGRY 1370	
ninen	WSTL 1600	Fond du Lac, Wis. KF12 1450 M	Gastonia. N.C. WGNC 1450 A	eer, S.C. WEAB 800
mporis, Kay	KVOE 1400	Fordyce, Ark. KBJT 1570		500
mporim. Va.	WEVA 860	Forest. Miss. WMAG 860	city, Va. WGAT 1050	NAG 14
	WENE 1430 A	WBBO ${ }_{\text {WAGY }} \mathbf{7 8 0}$	WATC ${ }^{\text {WGEA }} 1150$	Gresham, Oreg. KGRO 1230
Enplowood.	KGMC 1150	Forest Grove, Orea. KGGG 1570	neva, III. WGSB 1480	Greina. Ga. WMNA Grifin. Ga.
Enid, Okla.	KCAC 1390	Forrest city, Ark. KXJK 950	Geneva, N.Y. WGVA 1240 a	
	KGWA 960 M	Ft. Bragg, Calif. KDAC 1230	Geargetown. Del. WJWL 900	410
terpr	W1RB 600	- 1410 A	Georgetown, Ky. WAXU 1580	Grinnell, Iowa KGRN 1410
hrata.	KWVR 1340	$\text { x } 600$	Georgetown, S.C. WGTN 1400 m	Groton, Conn. WSUB 980
Ephrata. P	WGSA 1310	Ft. Dodge. lowa KVFO 1400 M	Gettysburg. Pa. WGET 1320	Grove city. Pa. WSAJ 1340
Ephrata, W	LF 730	KWMT 540 A		Grundy. Va. WNRG 1250
Erio,	WWYN 1260 A	00	Gilroy. Calif. KPER 1290	Guayama, P.R. WXRF 1590
	WICU 1330 N	AC 1470	Gladewater. Tox. KEES 1430	Gueloh. Ont. CJOY 1460
	ET 1400	00	Glasgew. Ky. WKAY 1490	Gulpport, Miss. WROA 1390
	WEEU 1450		Gilasgow, Mont. KLTZ 1240	1240
Escanaba, M	WOBC 680 m	Ft. Morgan, Colo. KFTM 1400		KGUC 1490
	WLST 600 A	Ft. Myers. Fla. WINK 1240 C	Gitendive. Mont. KXGN 1400	Guthrie, Okla. KWRW 1490
ond	OWN 1450	1410	Gien Falls, N.Y. WSET 1410	Guymon, 0kla. KGYN 1220
Estherville.	SL 1280	Ft. Payne, Ala. WFPA 1400	WSC 1450 A	own, Md. WARK 14
Estowah, Tenn.	WCPH 1220	Ft, pleree, fla WZAB 1250	enville. Ga, WKIG 1580	
Eufaula,	WULA 1240 M	Ft. Piored, Fla. Whan 1330	- Colo. ${ }_{\text {KGL }} 98 \mathrm{~m}$	Haines City, Fla. WHAN 930
Eugene, Oreg.	KORE 1450 M	Ft. Seott, Kans. KMDO 1600	Globe Ariz. K20W 1240 A	Hellifax. N.S. \quad CBH 790
	KASH 1600 A	Ft. Smith. Ark. KFPW 1230 C	WDDY 1420	
	KERG 1280	950 A	Gloversville-Johnston. N.Y.	
Eugen	${ }_{500} 590 \mathrm{~N}$	$0^{\text {m }}$		Hamden, Conn. WDEE 1220
Eunl	KEUN 1490 m	Fi. Stockton. Tex, KFST 860	KTWL 1250	WERH 970
Euroka, Callt.	KINS 980 C	Ft. Valley, Ga. WFPM 1150	Golden M Madow. La. KLFT 1600	KYLQ 980
	KDAN 790	Ft. Walton Bearh, Fla	Minn.	Hamilion. Ont. CHIQ 1280
	ED 1480 M	WNUE 950	KEVE 1440 m	CHML 900
Evanston, lill.	WEAW 1330	Fi. Wayne, Ind. WWGL 1250 A	o. N.C. WFMC 730	$\begin{array}{cc} K K O C & 150 \\ C L W & 900 \end{array}$
	W NMP 1590	Fi. Wayne. ind WOWO1190	O. N.C. WGBR 1150	
Evanston, Wro.	1240	WANE 1450 C		Hammond. Ind. W10B 1230
Evansvilio, ind.	WRO2 1400 C	WKJG 1380 N	Gonzales. Tex. KCTI 1450	Hammond. La. WFPR 1400
	WGBF 1280 N	Ft. William, Ont. CKPR 580	Goodiand, Kans. KLOE 730 M	Hammonton, N.J. WNJH I580
	WIKY ${ }^{820}$	LX 800	Goose Bay, Nfd. GFGB 1340	C. WBHC 1270
	WJPS 1330 A	Ft. Worth, Tox KJIM ${ }^{870}$	Goshun. Ind. WKAM 1460	WVEC 1490
Eveloth, Warti,	WEVE 1340 M	KCUL 1540	Grafton, Grafton, W. Vas	ich. WMPL 920
	KRTY 1230	KNOK 970	Gratbon, W.Xa. KSWA 1330	Hanford, Callf. KNGS Hannibal. Mo. 620 HHMO 1070
Evarsroen, Ala.	WBLO 1470	WBAP 570 A	Granoy. Que. CHEF 1450	Hanover, N.H. WTSL 1400
Fairbanks, Alaska		WBAP 820 N	Grand Coulee, Wash.	Hantor. W.f. WDCR 1340
	AR	KXOL 1360	Granje Prairie. Alta. CF GP 1050	WHVA 1280
	KFAB 900 C-A KGMT 1310	Fostorla, Ohlo WFOB1430	Grand Falls, Nfid. CBT 540	Harlan. Ky. WHLN 1410
Fairfax.	WEEL 1310	WFCT 1430		Harlingen. Tex. KGBT 1530
Falrat	WFIW 1390	WROL 1490	OX 1310 m	Harrisburg. III. WEBQ 1240
Farnald, lowa	MCD 1570	Fountaln Inn. S.c. WFis 1600	Grand Haven. Mleh.	Harrisburg, Pa. WHGE 1400
Fairhope. Ala.	WABF 1220	Fowler, Calif. KLIP 1220	WGHN 1370	WCMB 1460 m
Fairmont. Min	KSUM 1370 M	Framingham, Mass. WKOX 1190	Grand Island, Neb	WHP 580
Fairmont. N.C. ${ }_{\text {F }}$	WFMO ${ }_{\text {WM }}{ }^{860}$ C			WKB0 1230 N
ajardo, P	$\begin{array}{lll} \text { WTCS } & 1490 \\ \text { WOOD } & 1490 \end{array}$	Franklla. Ky: WF KN 1220 Frankila, Le, KFRA 1390	Grand Junetion, Colo.	

Location	C.L. Ke. N.A.	Location C.L. Ke.	Kc. N.	Locatlon	c. N.A.
Harrison, Ark.	$\text { KHOZ } 900$	$\text { RC } 950$	Johnston, S.C. WIES 250	Lafayette, Tenn.	WEEN 1460
Harrisonburg, Va.	WHBG 1360	$\text { HT } 790$	Johnstown, N.Y. $\text { WIZR } 930$	LaFolletto, Tenn.	WLAF 1450
	WSVA 550 N	KTR KXY 740	Johnstown, Pa. WJAC 1400 N	Lagrande, Ores,	KLBM 1450
riford. Cann.	WDRC 1360	$\begin{aligned} & \text { KXYZ } 1320 \\ & \text { KYOK } \\ & \hline 1590 \end{aligned}$		LaGrange,	WLAG ${ }_{\text {WTRP }} 1240 \mathrm{M}$
	1290	Howell, Mich. WHM1 ${ }^{350}$	Jollet, III, WjoL 1340	LaGrange, III.	WTAQ 1300
	OM-A	Hudson, N,Y. WHUC 1230	CJLM 1350	LaGrange. Tex.	KVLG 1570
	WTIC 1080 N	Hugo, Okla. KIHN 1340	Jones boro, Ark. KBTM 1230 M		KB22 1400 m
Hartselle, Ala.	WTKM WHRT 600		Jonesboro, La KNEA 970 KTOC 920	Lake Charles, L	KLOU 1580
Hartsvilie, S.c.	WHSC 1450 m	Humboldt, Tenn. WIRJ 740	WJSO 1590		KPAOK
rtwell, Ga,	WKLY 980	Huntingdon, Pa. WHUN 1150	KANV 1480	Lake city, Fla.	WDSR 1340
Harvard. III.	WMCW 1600	Huntington, Ind. WHLT 1300	Jonquiere, Que. CKRS 590		WGRO 96
Harvey. 111	WBEE 1570	Huntington, N.Y. WGSM 740	Joplin, Mo. WMBH 1450 M	Lake City, S.C.	WJOT 126
Hastings. Mich.	WBCH 1220		KFSB 1310	Lakeland. Fla.	WLAK 1430
Hastings, Nebr.	KHAS 1230	A	KODE 1230		WONN 12
Hattiesburg, Mlss.	WBKH 950 WFOR 1400		Junction. Tex. KMBL 1450		I
		Huntsville, Als. WBHP 1230 M			WL
	XXX 1310	1600	30 A.		Kalk 1230
Haverhill.	WHAY 1490	1450	Kailua, Hawail KLEI 1240	Lake W	WIPC 1280
Havre, Mont.	K0JM 610 M	WAAY 1550 A	Kalmuki. Hawail KAIM 870	Lakewood	KLAK 1600
yre	Md. ${ }_{\text {WaSA }} 1330$	Huntsville. Ont. CKAR 590	Kalamazoo, Mich. WKPR 1420		KFHA 1480
	AS	Huntsville. Tex, KSAM 1490	WK20 590 C	Lake Worth,	WLIZ 1380
wkinsylle	WCEH 610	Huren, S.Dak. KIJV 1340	WKL2 1470 M	Lama	KLMA 920
Haynesville.	KLUV 1580	Hutchinson, Kans. KWBW 1450 N	WKMI 1360	L	KPET 690
Hays, Kans.	KAYS 1400	KWHK 1260	Kalispell, Mont. KGEZ 600 m	Lampas	KCYL 1450
Hayw	WHSM 910	Hutchinson, Minn. KDUZ 1260	KOFI 930	Lane	L 610
Hazard, Ky	WKIC 1390 m	Idabel, Okla, KBEL 1240	Kamloops, B.C. CFJC 91		BVM 13
Hazlehurst,	WMDC 1220	Idaho Falls. Idaho K10 590 C	Kane. Pa. WADP 960	Laneaster, Ohlo	HD
Hazleton. Pa. WA	$\text { AZL } 1490 \mathrm{~N}$		Kankakee, III. WKAN 1320		GAL 1490 N
	K F		Kannapolis. N.C. WGTL 870		LAN 1390 A.
		Independence, la. KUPI 980	Kans, City, Kans. KCKN 134		
	KBLL 1240 N		Kansas clity. Mo. KCMO 810 C		
	KHSJ 1320	Independence, Kans.	KMBC 980 A	Lansdale.	NPV 440
Hempstead. N.Y.	WHLI 1100		KPRS 1590	Lanslord.	WLSH 1410
Henderson, Henderson,	WSON 860	O. KANS 1510	KUDL 1380	Lansing. Mieh	WILS 1320
Hend		Indiana, Pa. WDAD 1450	$\begin{aligned} & 610 \mathrm{~m} \\ & 710 \end{aligned}$		
Hender	WHNC 880 m	1260 A	Kearney. Nebr. KGFW 1340 M	Lapeer, Mich.	C
	RI 1000		Keen N.H. KRNY 1460 M		-
ex.			Keene. N.H. WKNE 1290 N	Lar	KBEZ 149
					OWB 1280
	WHKP 1450 A	XLW 950 M	$\begin{aligned} & \text { CKOV } 630 \\ & \text { KLOG } 1490 \end{aligned}$	Laredo, Tex.	
	KHEN 1590	Indianola, Mlss. WDLT 1380	Kendaliville, Ind. WAWK 1570	LaSalle, III.	WLPD 1220
Hereford	KPAN 860	Indio, Calif. KREO 1400 A	Konedy. Tex. KAML 990	Lasarro. Que.	CKLS 1240
Herkimer, N.Y.	WALY 1420	Inglewood, Callf. KTYM 1460	Kenmore, N.Y. WYSL 1080	LasCruces, N.Mox.	KOBE 1450
Hermiston, Ores.	KOHU 1570	Inkster, Mich. WCHB 1440	Kennett, Mo. KBOA 830	Cruces, N.Wox.	KGRT 570
Herrin, Hettinger, d, Dak	WJPF 1340 M	International F alls Mins		Las Vegas, Nov.	
Hetinger, N,Dak.	KNDC 1490		Wash. KEPR 610 C	Las Vogab, Nov.	KLAS 1230 C
Hibbing. Minn. Hickory, N.C.		Invrik. N.W.T. Kis ${ }^{860}$	Kenora, Ont. CJRL 220		
	WIRC 630	lola, Kansas KALN 1370	Kenosha. Wis. WLIP 1050		RA
,	ex. KVILII50	Oonia. Mich. W1ON 1430			KREO 1050
hlan		WXUC 910	Kermit. Tex. KERB 600		$\begin{aligned} & \text { KUEG } 970 \\ & \text { KFUN } 1280 \end{aligned}$
	WENZ 1450	Iron Mtn., Mieh. WM10 1450 A	Kerrvilie. Tox. KERV 230	Latrobe, Pa.	
gh Point. N.C.	WMFR 1230 A	Iron River, Mich. WIKB 1230 m	Kershaw, S.C. WKSC 1300		
	WHPE 1070	Irondale, Ala. WIXI 1480	Ketchikan, Alaska KTKN 930 C -A		
Hilisboro, Dhie	WSRW 1590	Ironton. Ohio wiro 1230 m		Laurel, Miss.	AML 1340 N
Hillsbora, Orea.	KUIK 1360	Irvine, Ky. WIRV 1550	Key West, Fla, WKWF 1600 M		
Hillsboro. Tex.	KHBR 1560	Isabelia, P.R. WISA 1390	NK12 1500		WLBG 860
Hillsdale. Mleh Hillsvilie, Va.	WCSR 1340	Ishpeming, Mich. WJPD 1240	Kilgore. Tex, KOCA 1240	Laurinburg, N.C	WEWO 1080
Hillsvilie, Va, Hill Hawali	WHHV 1400	WJAN 970	Kilieen, Tox, KLEN 1050 M		W
Hilo, Hawall	KHBC 970 C	Islip, N.Y. WBIC 540	KIMB 1260	Lawrence, Kans.	KKU 1250
	$\begin{aligned} & \text { KIPA } 1110 \\ & \text { KIMO } 850 \mathrm{~m} \end{aligned}$	Ithaca, N.Y. WHCU 870 C	80	Lawrence, Kan	K
Hinesvi	KGML 990	luka, Miss. WVOM 1270	Kings Mountain. N.C.	Lav	
Hobart.	KTIS 1420	Jackson. Ala. WTHG 1290 M	Kings mourtain. WKMT 1220		
Hobbs, N.Mex. K	KWEW 1480 M	Jackson. Mich. WIBM 1450 A	asport. Tenn. WKIN 1320	Lawrencev	WAKO 910
	$\begin{gathered} \text { KHOB } 1390 \\ \text { KDJ1 } 1270 \end{gathered}$	970 620	$\begin{aligned} & \text { W KPT } 1550 \mathrm{~N} \\ & \text { WBAZ } \\ & \hline 1550 \end{aligned}$	Lawrenceville,	WLES 580
Holdre	KUVR 1380		$\begin{aligned} & \text { WBAZ } \\ & \text { WGHO } \\ & \text { WGO } \end{aligned}$	Lawton, Okla.	KSWO 1380
Holland.	WHTC 1450	WJXN 1450	WKNY 1490 M		050
	WJBL 1260	OKJ 1590	Kingston. Ont. CFRC 1490	eadvi	KBRR 1230
Hollywood. Fla.	WGMA 1320	WRBC 1300 M	1380	Leamin	CJSP 710 M
Holyok H Omer	WREB ${ }^{930}$	WSLI 930	CKWS 960	Leamin	CJSP 710
Homer, La. Homestead, F		Jackson, Ohio WLMJ 280	Kingstres, S.C. WDKD 1310	Leavanon.	
Homestead, Homewood, Ala.	WSDB 1430 WJLD 1400	Jackson, Tenn. WDXI 1310	Kingsvilie, Tex. KINE 3330	Lebanon, Mo.	KLWT 1230
Homewolu, Ha.	KGMB 590	160		Lebanon, Or	KGAL 920
					WLBR 1270
	$\begin{aligned} & \text { AI } \\ & \text { OI } \end{aligned}$	Jacksonville, Fle. WJAX 930	230 m	Lebanon. Tenn.	WCOR 900
	KI 830			寺.	790
	KGU 760 N	Wivr 1050	Kirkland Lake, Ont. CJKL 560		1410
	KHVH 1040				WAGE 1290
	KORL 650 m	$\text { WOBS } 1360$	$\text { Kissimmee. Fla. WKBX } 1220$		KLLA 1570
	KNDI 1270	800		hig	WYNS 1150
	KOHO 1170	280	Kıchoner. Ont CKKw 1320	eitch	WM
	K00D 990		WACB 1380		
	KULA 690 A	Jacksonville, III. WJIL 1550			KLEM 1410
Hood River, Oreg.	. KIHR 1340	WLDS 1180	Kago 1150 m	Le	KLAN 1320
Hope, Ark. ${ }^{\text {d }}$	KXAR 1490	Ie, N.C. WJNC 1240 M	L	Lenoir. N.C.	R1 1340 m
opewell ${ }^{\text {Va. }}$,			1320	Leonardtow. Md.	WKIK 1370
	$\text { WKOA } 1480$			Lethbridge, Alta.	
	KHOK 1560		Knoxvilie. Tenn. Wivk ${ }^{\text {a60 }}$		CHEC 1090
W	WWHG 1320	Dak. KEYJ 1400	620	Lev	KLVT 1230
	WLEA 1480 M		WKGN 1340 m		BCB 1490
gs,	KAAB 1350 A	amestown, N.Y. WJTN 1240 A	XV 900	Lewisbur	T 1010
		M	990	Lewisburg, Tenn.	WJJM 1490 M
		Jamestown. Tenn. WCLC 1280	Kodiak, Alaska WCVa 960		
Dak.	k. KOBH 580	Ala, WWW W $1360{ }^{\text {d }}$	iss. WKOZ ${ }^{\text {W }}$ (350 ${ }^{\text {a }}$	Lewiston, Maine	WCOU 1240
oughton, Mich.	WHDF 1400	WARF 1240	Laconia. N.H. WLNH 1350		WLAM 1470
		d. WITZ 990	WEMJ 1490	Lewistown, Mon	XLO 1230 M
	WHGR 1290	Jasper. Tex. KTXJ 1350	LaCrosse. Wis. WKBH 1410 N	Lewistown, Pa.	WKVA 920 A
oulton. Maine	WHOU 1340	Jefferson City. Mo. KLIK 950	WLCX 1490		RF 1490
uma, La.	KCIL 1490 N	240 M	WKTY 580 A	Lexington, Ky,	WLAP 630
Houston. Miss.	WCPC 1320	Jeffersonville. Ind. WXVW 250	Ladysmlth, Wis. WLDY 1340		WBLG 130
ouston. Tex.	KCOH 1430	Jennings. La. KJEF 1290	Lafayette, Ga, WLFA 1590		
	KILT 610	Jerome, Idaho KART 1400	Lafayette. Ind. WASK 1450 m		XTN 1150
	UZ 1230	Jerseyville. ili. WJBM 1480	Latayette. Ind. WAZY $1410{ }^{\text {m }}$	Le	KLEX 1570
	KODA 1010	p, Ga	920		RVN 1010
			Lafayetto, La. KPEL 1420 A		-
64 WH	DI				

Location Lexington Ph Libe

cation	C.L. Kc. N.A	Location C.L. Ke. N.A.	Location C.L. Ke. N.A.	Location	.
	WNAH 1360 M WSIX 980 WSM W50	Norman, Okla, WNAO 640 KNOR 1400 Norman Wells, North.	CKOY 1310 Otlumwa, lowa KBIZ 1240 A		$\text { AT } 1480$
Natcher, Miss.	WMIS 1240	west Territory CF NW 1240	Owatonna, MInn. KRFO 1390		CAC 1010 KOY 550
	WNAT 1450	Norristown, Pa. WNAR 1110	Owego, N.Y. WEBO 1330		KOOY 960
tehltoches, La		N. Adams. Mass. WMNB 1230	Owensboro, Ky. WOMI 1490 M		KPHO 910
Naugatuck, Conr avasota, Tex.	KWBC 1550	N. Augusta, S.C. WGUS 1380			$\text { KUEQ } 740$ $\text { KRIZ } 1230$
ska C		k. CJNB 1460	Owosso, Mich. WOAP 1080		KTAR 620
Neeutles	KSFE	North Bay. Ont. CFCH 600	Oxford, Miss. WSUH 1420	Plcayune, Miss,	WRJW 1320
enah.	WNAM 1280	North Bend, Oreg. KFIR 1340 C North Charieston, s.c.	Oxford. N.C. W0XF ${ }^{1340}$		WPID
Neillsville,	WCCN 1370	WNCG			KGFX KCCR
Nelson. B.C.	CKLN 1390	WorthfleId. Minn. WCAL 770		Pike	WLSI 900
Neon, Ky	W NKY 1480	ipton, Mass,	$\text { WDXR } 1560$		WPKE 1240
Neosho, Mo.	KBTN 1420	W WHMP 1400 M	WPAD 1450 C	Pine Bluff, Ark.	KCLA 1400
Nevada, Mo.	KNEM 1240 WOWI 1570	He Rock. Ark. KDXE 1380 A	Pape, Ariz. KPGE 1340		KADL 127
New Albany, Miss.	WNAU 1470	KXLR KJL 150 150	Pahokee, Fla, WRIM 1250		OTN 1490
Newark, Del.	WWRK 1260	KDDY 1240 N	Palnesville, ohlo WPVL 1460 Paintsville Ky. WSIP 1490 m	Pine city	WCMP 1350
wark, N.J.	WNTA 970	No. Syracuse, N.Y. WSOQ 1220 M	Palatka, Fla. WWPF 1260		WM
	WHBI 1280	No. Vancouver, B.C. CiLLG 730	Palatka, Fla. WSUZ ${ }^{1260}$	Pineville, W. Va,	WWYo
	WNJR 1430	CH 1460	Palestine, Tex. KNET 1450		KLOH 105
	WVNJ 620	No. Wilkeshoro, N.C.WKBC 810	Palm Beh,. Fla. WQXT 1340	Piqua, Ohio	WPTW 1570
Newark, N.Y.	WACK 1420	Norton. Va. WNVA 1350 M	Palm Spros., Calir. KCMJ 1010 C	Pittshurg.	KKIS 990
Newark, Ohlo	WCLT 1430	Norwalk, Conn. WNLK 1350	KDES 920	Plttsburg.	KOAM 860 N
rd,		Norwleh, Conn. WICH 1310	1450		KSEK 1340
Now Bern,	WHIT 1450 M	Norwich, N.Y. WCHN 970	KUTY 1470		KDKA 1020 KaV 1410
	WRNB 1490		N 12200		AMO 860
Newberry, S.C.	WKDK 1240	Oak Grove, La, KWCL 1280	KHHH 1230		WJAS 1320 N
*	W101 1010	Oak Hlli, W. Va. WOAY 860	Panama Clty, Fla. WOLP 590		WPIT 730
New Britaln, Co	WHAY 910 A	Oakland, Callf, KEWB 910	WPCF 1430		WYRE 1080
	KNB 840	KOIA 1310	WT		WWSW 970
cunswick.	WCTC 1450	Oak Park. III. WOPA 1490		Pittsfield,	WBEA 1580
urgh. N.Y	GNY 1220	Oak Ridge. Tienn. WATO 1290	Paradise. Calli. KMET 930		WBEC 1420 A
Newburynort, Ma	WNBP 1470	Oakville, Ont, CHWO 1250	Paragould. Ark. KDRS 1490		
New Cari	WCTW 1550	Ocala, Fla. WMOP 900	Paris, Ark. KCCL 1460		WPTS 1540
Neweastle, N.B.	CKMR 790	WTMC 1290 N	Paris,	Plainview. Tex	KVOP 1400 M
$\mathrm{New} \mathrm{Castle}, \mathrm{Pa}$.	WKST 1280 M	Ocean City, Md. WETT 1590	Paris, Tenn. WTPR 710		KPLA 10
Newcastle, WYo	KASL 1240		Paris, Tex. KPLT 1490 A	Plant City, Fla.	WPLA 910
dew Glasgow. N.S.	CKEC 1320	$\begin{array}{ll} \text { Oceanake, Oreq. } & \text { KBCH } 1380 \\ \text { Oceanside, Calif. } & \text { KOOE } 1320 \end{array}$	KFTV 1250		WSW
w Haven. Conn.	WAVZ 1300	Ocilla. Ga. WSIZ 1380	WCEF 1050	att	EAV 960 A.N
		Odessa. Tex. KECK 920	WPAR 1450 C		
\%	WNE $1240{ }^{\text {a }}$	kOSA 1230 C	W		WOND 1400
	1360	KOYL 1310	Park Falls, W/s. WPFP 1450	Plymouth. Mass.	WPLM 1390
-	150	KOEL 950 M		Plymouth.	WPNC 1470
Now London, Conn.	NLC 1510 M		Pasadena, Calif. K	Plymouth,	WPLY 1420
	V .	Ogalaala, Nebr. KOGA 930	asadena, Calif.		KPOC 1420
	WET2 1330 M	$\text { JN } 1250$	KRLA	ocatello, Idah	KSEI 930 N
New Orleans, La.		N 730	WKW 1300		90
	WJBW 1230	1490	sadena, Tex. KLVL 1480	Pocomoke City, Md.	WDMV 540
	MR 990	Oodensburg, N.Y. WSLB 1400 M	Point, Mlss.		CFOX 1470
	B0K 800	$\begin{array}{lll}\text { Oil City, Pa. } & \text { WKRZ } 1340 \\ \text { Oxla, City, Okla. } & \text { KBYE } 890\end{array}$	Point, Miss.	Pomiona, Callf.	KWOW 1600
	WSMEE 1360 A	KBYE 890	910		0
	NPS 1450		Paso ${ }^{\text {Pab }}$ KPKW 1340		
	WTIX 690	1520	M		
	WWL 870 C	1000 M		Ponea Cliy, Ok	WBBZ 1230 M
	WWOM 600	800			WPRP 910
	WYLD 940	Okmulgee, OKla. K0KL 1240	Paterson, N.J. WPAT 930		WEUC 1420
Newport, A	KNBY 1280 WNOP 740	OId Saybrook. Conn. WLIS 1420	Pauls Valley, Okla. KVLH 1470		WPAB 550
Newport, Ky,	WNOP 1010	Olean, N.Y. WMNS 1360	Pawtucket, R.I. WXTR 550 A		WLEO 170
Newport, Oreg.	KNPT 1310	WHDL 1450 A	Payette, Idaho KEOK 1450		
Newport. R.I.	WADK 1540	Olney, III. WVLN 740	Peace River, Alta. CKYL 630	plar Bluff, Mo.	KWOC 930
Newport. Tinn.	WLIK 1270	mpla, Wash. KGY 1240 M			KLID 1340
	WIKE 4490	Omaha, Nebr KITN 920	$\text { V } 1140$		WWML 1470
nor	$\begin{aligned} & \text { WGH } 1300 \text { A } \\ & \text { WTID } 1270 \end{aligned}$	Omaha, Nebr. $\begin{aligned} & \text { KBDN } 1490 \\ & \text { KFAB } \\ & \text { K }\end{aligned}$	WFHK 1430	Porlage, Wis, Portage la Pralrie	WPDR 1350
		1290	CHOV 1350		
		1420	KID 1240 A		KM
New Rochell	Wvox	E 660	KUBE 1050	ort Albern	CJAV 1240
	h, Fla.			Portales. N. Mex.	KENM 1450
	SBB 1230 M			es, W	KAPY 1000
		Oneida. Tenn. WBNT 1310	B0P 980		
Newton, Kans,	KJRG 950	O'Neill, Nebr. KBRX 1350	OEB 610 C	Arthur, Tox	K0
Newton, Miss.	WBKN 1410	Oneonta, Ala. WCRL 1570	WBSR 1450		C 1250 m
Newton, N.J,	WNNJ 1360		$\begin{aligned} & \text { WNVY } 1230 \\ & \text { WCOA } \\ & \hline \end{aligned}$		KTIP 1450 A
Newton, N.C.	W.NNC 1230	Ontario. Carlo KASK 1510	WPFA 790	Port Hode	CHUC 1500
New Ulm. Minn.		Onelika, Ala. WPHO 1400 M	Penticton. B.C. CKOK 800	(air	WACY 1450
Werk, N Y.	CKNW 980	Onelousas, La. KSLO 1230 A	Peoria, III. WAAP 1350 N		380 A
New York, N.Y.	WABC 770 A	OpD, Ala WAMI 860	WMBE 1470		WOLC 1490
	WBNX 1380	Opportunity, Wash. KZUN 630	WIRL 1290		KGUL 1560
	WCBS 880	Orange, Mass. WCAT 1390	WPEO 1020 M		WPGW 1440
	WEVD 1330	Orange, Tex. KOGT I600	Perry, Fla. WPRY 1400	Portiand,	WCSH 970
	WHOM 1480	Orange. Va. WJMA 1340	WPGA 980		GAN 560 C
	WINS 1010	Orangeburo. S.C. WOIX 1150 A	KOLS 1310		WLOB 1310
	WLIB 1190	WORG ${ }^{\text {WTN }}$			POR 1490 A-M
	WMCA 570	Orange Park, Fla, WAYR ${ }^{\text {che }}$	Petaluma, Callf. KTOB 1490		
	WHGM 1050	Oregon City, Oreg. KGON 1520 M	Peterborough, Ont. CHEX 980		
	WNEW 1130	Orillia. Ont. CFOR 1570	CKPT 1420		EX 190
	WOR 710 M	Orlando, Fla. WOBO 580	WSSV 1240 m		KGW 620
	WAOO 1280	990	Petoskay. Mich. WM M N 18.40		COIN 970
	WPOW 1330	WHIY 1270	Phenix Clity, Ala, WPNX 4600 A		PAM 1410
	WaxR 1560	WKIS 740	Phitadelphla, Pa. WCAU 1210 C		O) 81300
lagar	WNBC ${ }^{\text {W }} 680{ }^{\text {W }}$	Ormond Beh., Fla. WQXQ 1380	WOAS 1480		KW11 1080
	WJIL 1440	Orofno, ddaho KLER 950	WFIL 560		L 750
Niagara Falls, Ont. Niles Mien.	WHVC 1600			Port Neches, Tox. Portsmouth, N.H.	
ales.	WNIL 1290	Osage Bch., Mo. KOSE 860	WIBG 990	Portsmouth, N.H.	$\begin{aligned} & \text { WBBX } 1380 \\ & \text { WHEB } 750 \end{aligned}$
majes, Alask	KNOG 1340 A	Oshawa, Ont. CKLB 1350	WIP 610	Portsmouth, Ohlo	WPAY 1400 C
me. Alask		Oshkosh, Wis. WOSH 1490 A	WJMJ 1540		WNXT 1260 A
Norfolk, Va	WTAR 790 C	Oskaloosa. lowa KBOE 740	PEN 950	Portsmouth, Va.	WHIH 1400
	WCAIS 1050	GO 1440	060 N		WMH 1010
	WNOR ${ }^{2} 230$	Othello, Wash. KRSC 1400	WTEL 860		Y 1350
	WRAP 850	Ottawa, III. WCMY ${ }^{\text {Ottawa, Kans. }}$	WPHB 1260		K0 1370
		Ottawa, Ont. CBO 910	Phoenix, Ariz. KIFN		(1280
166 WHITE'S	RADIO LOG	CFRA 580	KXIV 1400	Potsdam, N, Y.	WPDM 1470

U. S. AM Stations by Call Letters

C.L. Location
 KAAA Kingman, Arlz.

 KAAB Hot Springs. Ark. KABC Los Angeles Cal or KABQ Albuquerque. N, M. KABR Aberdeen, S.Dak. KABY Albany, Oreg. KACE Riverside, Calif. KACI The Dalles. Oreg. KACT Andrews. Tex. KACY Port Hueneme, Callf. KADA Ada, Okla.KADL Pine Bluti, Ark.
KADO Marshall, Tex.
KADY St, Charles, Mo.
KAFY Bakerstheid, Calif.
KAGE Winorla, Minn.
KAGH Crossett, Ark.
KAGI Grants Pass, Oreg. KAGR Yuba City, Calf.
KAGT Anacories, Wash
KAHI Auburn, Calif,
KAHU Walpahu, Hawa KAIM Kaimuki, Hawai KAIR Tucson, Ariz.
KAJl Little Rock. Ark.
KAJO Grants Pass, Oreg.
KAKA Wickenburg, Ariz.
KAKC Tulsa. Okla.
KAKE Wichita, Kan.
KALB Alexandria, La.
KALE Richland, Wash.
KALG Alamogordo. N. Mex.
KALI Pasadena, Calif.
KALL Salt Lake Clty, Utah
KALM Thayer, Mo.
KALN Iola, Kan,
KALT Atlanta, Tex
KALV Alva, okla.
KAMD Camden, Ark.
KAML Kenedy, Tex.
KAMO Rogers, Ark.
KAMIP EI Centro, Callf
KANA Anaconda, Mont.
KANB Shrevoport, La.
KANE Now lberia, La.
KANI Wharton. Tax.
KANN Ogden, Utah
Ke.
1230
1350
790
960
1330
1420
990
1570
1300
1360
1520
1230
1270
1410
1460
1490
550
1380
800
930
1150
1450
1340
950
920
1270
870
1490
1250
1270
1250
970
1400
580
960
1230
1400
910
1290
1970
900
1430
910
9990
1390
1430
1400
1330
1300
1340
1240
1500
1250

C.L.	Location	Kc.	C.L.	Location
KANO	Anoka.	1470	KBAR	B
KANS	Independence, Mo.	1510	KBEA	Benton,
KAOK	Lake Charles, La.	1400	KBBE	
KAOL	Carroliton,	1430	KBBC	Centarville, Utan
KAPA	Raymond, w	1340	KBBR	Nurth Bend, Ores.
KAPB	Marksvilie,	1370	KBBS	
KAPE	San Antonie	1480		
API	Pueblo, Colo	690		
KAPR	Douglas,	930	KBCL	Shravepo
KAPY	Port Angeles, Wash	1290	KBEA	Mission, Kans.
KARA	Albuquerque, N.M.	1310	KBEC	Waxahach
KARE	Atchison. Kan.	1470	KBEE	Modesto,
KARI	Blaine, Wash.	550	KBEK	Eik city,
KARK	Little Rock	920	KBEL	Idabel, Okla
KARM	Fresno, Calif.	1430	KBEN	Carrizo Spros.. Te
KARR	Great Falls, Mont.	1400	KBER	San Antonio. Tex.
KARS	Belen. N.M.	860	$\begin{aligned} & \text { KB } \\ & \text { KB } \end{aligned}$	R + n
KART	Jerome, I daho	$\begin{aligned} & 1400 \\ & 1310 \end{aligned}$	KB	Bulle Fourche, S. Dak.
KASE	Austin, Tox.	970	KBGN	Caldwell, Idaho
KASH	Eupene, Ore.	1600	K BHC	Nashville, Ark.
KASI	Ames, lowa	1430	KBHM	Branson. Mto
KASK	Ontario. Calls.	1510	KBHS	Mot Springs, Ar
KASL	Newcastle, Wyo	1240	KB1F	Fresno, Calt,
KASM1	Albany, Mlinn.	1150	KBig	Avalon, Callf.
KASO	Minden. La,	1240	KBIA	Roswell,
KAST	Astoria, Ore.	1370	KBiS	Bakersfiold, Cat
KASY	Auburn. Wash	1220	KBIX	Muskogee, Okla.
KATE	Alhert Lea, Minn.	1450	$\begin{aligned} & K B 1 Z \\ & K B J T \end{aligned}$	Ottumwa, lowa Fordyce, Ark.
$\begin{aligned} & \text { KATI } \\ & \text { KATL } \end{aligned}$	Casper. Wyo. Mlles City Mont.	$\begin{aligned} & 1400 \\ & 1340 \end{aligned}$	$\begin{aligned} & \text { KBJT } \\ & \text { KBKKR } \end{aligned}$	Fordyce, Ark. Eaker. Oreg.
KATN	Boise, Idaho	1010	KBKW	Aberdee
KATO	Safford, Ariz.	1230	KBLA	Burban
Kara	Texarkana. Tex	940		Red Bluff. Calif.
KATY	San Luis Obispo, Cal.	1340	KBLI	Blackfoot, Idaho
KATZ	St. Louls, Mo.	1600	KBLT	Big, Lake. Tex.
KAUS	Austin, Minn.	1480	KBLU	Yuma, Ariz.
KAVE	Carishad, N.Mex	1240	KBLY	Gold Beach. Ort
KAVI	Rocky Ford, Colo.	1320	KBMI	Henderson, Nev.
KAVL	Lancaster, Calif	610	KBMN	Bozeman, Mont.
KAVR	Apple Valley, Callf.	960	KBMO	Benson, Minn
KAWA	Marlin. Tex.	1010	KBMW	Breckindg., Mi
KAWL	York, Neb.	1370	KBMX	Coalinga, Callif.
KAWT	Douglas, Arlz.	1450	KBMY	Billings. Mont.
KAYE	Puyallup. Wash.	1450	KBND	Bend, Ores.
KAYG	Lakewood. Wash.	1480		Kennett. Mo.
$\begin{aligned} & \text { KAYL } \\ & \text { KAYO } \end{aligned}$	Storm Lake. lowa Seattle Wash.	$\begin{array}{r} 990 \\ 1150 \end{array}$	$\begin{aligned} & \text { KBDE } \\ & \text { KBOI } \end{aligned}$	Oskaloosa, lowa Boise, Idaho
KAYS	Hays, Kans.	1400	KBOK	Malvern, Ark.
KAYT	Rupert. Idaho	970	KBOL	
KBAL	San Saba, Tex.	1410		nd
KBAM KBAN	Longview, Was Bowio, Tex.	$\begin{aligned} & 1270 \\ & 1410 \end{aligned}$	KBON	

Kc	C.L. Location	.
1230	KBOP Pleasanton, Tex	0
90	KBOR Brownsvillo, Te	0
1600	K $60 W$ Butte, Mont.	0
1600	<80X Dallas, Tex.	1480
1340	KBOY Mediord, Oreg.	30
1450	KBPS Portland, Oreg.	450
1490	KBRC Mt. Vernon, W	1430
1380	<BRI Brinkley, Ark.	1570
1220	KBRK Brookings. S. Dak	430
1480	KBRL MeCook. Nebr.	1300
1390	KBRN Brighton, Colu	00
970	KBRO Bremerton, W	490
1240	KBRR Leadville, Colo	30
1240	KBRS Springdale, Ark.	1340
1450	KBRV Soda Spros., Id	40
1150	KBRX O'Neill. Nebr.	1350
1340	KBRZ Freepert, Texas	1460
1010	KBSF Springhlli, La.	1460
1450	KBST Big Spring. Tex	1490
910	KBTA Batesville, Ark.	1340
1260	KBTM Jonesboro. Ark	1230
1220	KBTN Neosho, Mo.	1420
590	KBTO EI Oorade, Kans.	60
900	KBTR Denver, Colo.	10
74	KBUC Corona, Calit.	70
910	KBUD Athens, Tex.	10
970	KBUH Brisham City, Utah	0
1490	KBUN Bemidji, minn.	50
1240	KBUR Burlington, lowa	90
1570	KBUS Mexia. Tox.	
1490	KBUY Amarillo, Tex.	1010
1450 1490	KBUZ Mesu, Ariz. KBVM Lancaster, Calif.	1310 1380
$\begin{aligned} & 1490 \\ & 1490 \end{aligned}$	KBVM Lancaster, Calif. KBVU Bellevue, Wash.	$\begin{array}{r}1380 \\ 1540 \\ \hline\end{array}$
690	KBWD Brownwood, Tex.	1380
1290	KBYE Okla, Cliy, Okla.	890
1320	KBYG BIg Spring. Tex.	1400
1220	KBYP Shamrock, Tex.	1580
1400	KBYR Anchorage. Alaska	1270
1230	KBZY Salem, Oreo.	1490
1290	KBZz Ladunta, Colo.	1400
1450	KCAC Phoenix. Ariz.	1010
1470	KCAD Abilene. Tex.	1560
1240	KCAL Redlands. Callf.	1410
1110	KCAP Helena, mont.	1340
	KCAR Clarksville, Tex.	1350
740	KCAS Slaton. Tex.	1050
950	KCBC Des Moines, lowa	1390
1310	KCBD Lubbock. Tex.	1590
1490	kcbu San Diego, Caltr.	1170
$\begin{aligned} & 1270 \\ & 1490 \end{aligned}$	WHITE'S RADIO LOC	169

c.l.	Locotion	Kc.	C.L. Location	Ke.	C.L. Location		C.L. Location	Ke,
	San Fran., Ca	14	KDMS EI Dorado, Ark.	1290	KF	,	KHFH Fry,	1420
	Parls.	146	KDNT Denton,		KFNF Shena	20	H	
KCCO	Lawton,	1050	KDOK Tyl	11330	KFNV F	1600		
KCCE	Pierre. S.Dak.	1590 +150		$\begin{aligned} & 1340 \\ & 1500 \end{aligned}$	KFNW F	00		
Kcc	Carpus Christi, Tex.	50	KDOM Windom, Minn.	1580	KFOR Li			
KCOI	Kirkland, Wash		KDON Salinas, Callf.	$\begin{array}{r} 1460 \\ \\ \hline \end{array}$	KF		K	
KCEE	Tucson, Ariz.						K	
KCFH	Cuero.	16	KDQN	1390	${ }_{\text {KF }}$			
cFl	Cedar Falls.	12	KD	14	KFRB	00	KHOT madera, Ca	5
KCGM	Columb		KD	14	KFRC San franciseo,	610	kHOW De	
KCHA	Charies City.		KD		KFRD Ro	980	KH02 H	
He	Ch		KDSN Deni	15	KFRE Fre	940	KHQ Spokane, Wash.	
H	Delano		KDSA Deita, Colox.		KFRM	550		
KCHR	Charleston, ${ }^{\text {a }}$	1350	KDTH Dubuque,	1370	KFRU Columbi	$\begin{array}{r} 1370 \\ 1400 \end{array}$	${ }_{\text {KHSL }}{ }_{\text {KHE }}$	
	Tr		KDUB Lubbock, Tex.	1340	kFSA Ft.		KH	
	${ }^{\text {a }}$		KDUZ ${ }^{\text {H }}$	12				
							KHVH	
				,	KFSO San Diego, Callt		KIAL As	
$\mathrm{KClO}^{\text {che }}$	Caldwell, Ida	1490	KOXE No. Little Rock, Ark,		KFSG Los Angeles, C	1150 860	K1BE Palo	20
	Washinoton,		KOXL St. George,	$\begin{array}{r} 1450 \\ 990 \end{array}$	KFST Ft. Stockton,			
IL	Shrev	1050	KDZA Pueblo,	1230	KFFY Paris.	1250		
KC1M	Carroil, 10	1380	KEAN	1240	KFUN Las ${ }^{\text {Vegas, }}$ N.	1230	KICD Spencer, Iowa	
	Victorville	1590	KEAP Fresno, Calif.	980	KFU0 St. Louls	850	Spr	
кCJB	Minot. N.Da		KEBE Jacksonville,		KFVS Ca	960		
	San Luis Dbispo, Cal							
							kiO lda	
KCK	Sonora.		KEED	50	KFXM San KFYN Bon	90		
CKN	Kansas		KEEE			1420		
kCL	Cootidgely	14	K	710	KFYR Bism	590	Id	
			KEEN			10	Kı	
KCLF	Clifton, Ariz.		K		KG	80	KIFW Sitka, Alaska	
	Clinton, 10		KEES Gladewater.	1130		1930	KIHN H	
	Leavenwor			1470	KGAL Leb	920	R Hood	
	staff.		KELA Centralia,	1470		1590		
			KELK	1240				
	IIton		K					
KCLX	Colfax, Wash.	1450	K	20	KGBS Los Andeies, Cal	1020	KıKS Sulphur, La.	
KCMC	Texarkana,	1230			T Harlingen, Te	1530	KILE Galv	
KCM.	Palm		KENA	14	${ }^{\text {KGBX }}$ Spri	1260	K1LO	
			KENI Anchorao					
	nitou		KENL Ar			1480 630	k	
	Itura	${ }_{5} 580$	KENM Portales, N.in	1450	KGEE Bakersfieid	${ }_{1230}^{630}$	K1M ${ }^{\text {Kı }}$	
	San Mar		KENN Farm		Ster	30		
KC	ewton,			1460	K	1140		
${ }_{\mathrm{KCOG}}$	Centervil	1400	KENY Bellingham. Ferniale,		KGER		K1MP AIto, Hawais	
${ }_{<} \mathrm{K}$	Tulare. Callit.	70		930			KIND Independence.	1010
KCOL	Ft. Collins	1410	KEOK Flastatif Ariz	$\left.\begin{aligned} & 1450 \\ & 1290 \end{aligned} \right\rvert\,$	KG	1450	KINE Kinosvi	
Con	Conway	1230 1350	KEPA Kennowick. Wa	610	${ }_{\mathrm{K}}^{1}$	00	KiNG Se	
	San Antonio,	50	KEPS Eaple Pa			1340	KINT EI	
Y	Santa Maria.	1	KERB Kermit.	600	KGFX Pie	630	KINY June	
P	Salt Lake city.	1	K		KGGF Coffeyville, Kans	690		
A	Sacramento.	132	KERG EU		or	1570	K10	
KCRE KCRC	Chanute,	1460 1390	KERV Ke	1230			K10X Bay	
KCRG	Cedar Rapids,	1600	K			790	kios willows, Calif.	
KCRA	Crane. Tex.	138	KEST Boise, idaho	1440	KGHM Br	1470	KIRL Wichita, Kans.	
	Mldand. Te	550	KEUN EUnic	1490	falis,		K1RO Seattle, Wash.	
	Trinidad, colo.	1240	KEVE M Inneapolis, al	1440			¢ Mis	
$\begin{aligned} & \text { Ry } \\ & \text { Sis } \end{aligned}$	Caruthersvilte.	1370	KEVL Whtte Castio, La.	1590			KIRX $\begin{aligned} & \text { Kid } \\ & \text { KISD } \\ & \text { Slo }\end{aligned}$	
	Chadron. Neb	1450	KEET Tueson,		KGKB Tyler	1490	KisN Va	
	Corpus ćhristi,	10	KEWB Oaklan	910	KGKL San	960	KIST Santa E	
KCTI	Gonzates, Te		KEXO Grand lunc.i. Colo.		KGLC Mi	910	ras	
	Childress.	1510	KEYO Grand. Junc. Colo.	1220	${ }_{K G}^{K}$		KITE San Antonio, T	
	Tues	1290	KEYE Perryton		${ }_{k}$	1480		
	Rort	1540	KEYJ Jai	14	KG	590	KITO San Bernardino, Calif.	
	colvill	1270	KEYL Long	14	KG	1550	KIUL Gard	
C	Lodl, ${ }^{\text {c }}$	70	KEYY Provo,	14	KGMI Bell	790		
	Lampas	1450	KEYZ wullisto		KGMS Saer		Kivy c	
	${ }_{\text {Arvada, }}^{\text {ft. }}$ Bralo	230	KEZU Ranid C	920	KGMT Fair	1310	K1X1 R	
Dad	Wend, Calif.	230	KEZY Anaheim	1190	KGNB		KIXL 0	
K OA	Carringto	16	B Omaha, Ne	1110	KG	710	K1x ${ }^{1}$	
AL	Ouluth, ${ }^{\text {a }}$	${ }_{6}^{60}$	KFAL Fulton, Mo.	900	${ }_{K}$			
KOAA	Eureka, Cal		KFAM St. C	1450	<GO	810	KJAM Madison. S. ${ }^{\text {dak }}$	
KOA	Santa Monica,	1580	KFAX San Fr	160		90		
	Manta 8 Brar	19	KFAY Fayel	1250			KJAX Santa Rosa, Ca	
	Mans feld	18	kFBB Gre		KGRI Henderson. Te	1000	KJBC Midland. Tex.	
	Alexandria,	1410	KFBC Chey		K	40	KJCF Festus. Mo.	
-	Dumas. Te		KFBK Sacr	15	KGAN	1410	KJCK Junction City	
	Oecorah,	1240	KFOF Van Buren,	1580	${ }_{\text {KGRT }}$ Kas Cruces, N.M	1290 570	${ }_{\text {KJEM }}$ KJEF Jennings, Laha City, Okla.	
	Albuquera	10	KFDM B	560	KGST Fresno. Calif.	1600	KIET Beaumont. Tex.	1380
KDEO	Et Cajon.	910	KFOR Grand	1360	KGU	${ }^{760}$	KJFJ Web	70
KDES	Palm Soros., Ca	920	KFED St, Josaph. Mo.	680	KGUC Gunnison. Colo.		${ }_{\text {KJIM }}$	
KOEX	Center.	930 1590	K	1360	KGUL Port Lavaea, Tex.	1560	KJNO Jut	
	Durango. Co		K	1260	KGVL Greenville, Tex.	1400	KJOE Sh	
	Twenty-nine Pa		${ }_{\text {KF }}$	30			${ }^{\text {kjor }}$ St	
			KF	1550		630	KJPW W	
K	Oakland Callt	1310	KFiv Modesto, Cali	1960				
K010	Ortonvilie. Mid		KF12 Fond du Las. Wis.	1450		1240	KJ	
kDIX	Dlekinson. N	1230		1290		1220	+	
K0J	Holbroo	1270					AR	
	tis	1020	KF	1310	KHAK Cedar Raplds, lowa		KKAS	
	CoR		KFKF B		KHAR Anchorage, Alaska	590	KK	
	(Del Rlo. To	,	KF	50	KHAS Hastinos. Nebr,	1230	KKHI San Francisco, C	
M	Detroit L	1340	KF		Phoe	1480	KKID Pendleton. Oreo.	240
	evils Lake, N. Dak.	1240	K	1380	Ha	970	KKIN Aitkin	
		1310	KFLI Mountain Home, Ida.	520	Arl	1430	K	
$\begin{aligned} & \text { KDMA } \\ & \text { KDMO } \end{aligned}$	A Montevideo. M	1450	K	1240	Tex.			
			lif.		Okla.	1590	KKOK Lomnoc, Calif.	
170	WHITE'S RADIO		MJ Tulsa, oxla	1500			KLAC Los Angeles, Callf.	

CiL.	Locotion Ke.	C.L. Location	Ke.	Locotion	K	Lecoflon	Ke.
WEDR	Moblle, Als.	WFFG M	00		60		1570
WEEB	Southern PInes, N.C. 99	WFGM Fitchburg, Mass	960	WGOH Grayson, Ky.			
EED	Rocky Mount, N.C. ${ }^{133}$	WFGN Gafiney, S.C.	1570	WGOK Moblle, Ala,	900	WHLT Huntington,	90
EEE	Rensselaer, N.Y. 1300	WFHG Bristol.		WGOL Goldsboro.	1300	WHAA Ann WHMC Gait	
EEI	Boston, Mass. 590 Fairfax, Va. 1310	WFHK Poll City, A WFHR WIs. Raplds,	$\begin{aligned} & 1430 \\ & 1320 \end{aligned}$	WGOV Valdosta, Ga. WGPA Bethlehem, Pa,	950 1100	WHMC Gaithersbu	50
EEN	Lafayette, Tenn. 1460	WFIG Sumter,	1290	WGPC Al	1450	WHMP North	400
EER	Warrenton, Va, 1570	WFIL Ph	560		550	WHNC Henderson, N.C	890
EET	ichmond, Va. 1320	WFIN FIndlay. Ohio	1330		790	WHNY McComb, Miss.	1250
EEU	Reading, Pa. ${ }^{850}$	WFIS Fountain Inn, s.c.	1600				1040
$\begin{aligned} & \text { EEW } \\ & \text { EEX } \end{aligned}$	Waston, Pa. N.C. 1230	WFKN Frank	1220	WGRD	1410	WHOC Ph	
Ez	Chester, Pa. 15	WFKY Frank	1490	WGRF AO	1340	WHOF Canton, Ohio	1060
EGO	oncord. N.C. 1410	WFLA Ta		WGRM Gr	1240	WHOK Laneaster. O	
WEGP	Prespue Islo, Maino	WFLB Fayettevilie, N WFLI Lookout Mtn.,	$\begin{aligned} & 1490 \\ & 1070 \end{aligned}$	WGRO Lake City, Fla. WGRP Greenvillo Pa	$\begin{aligned} & 960 \\ & 940 \end{aligned}$	WHOL Allentown, Pa WHOM New York. N	$\begin{array}{r} 600 \\ 1480 \end{array}$
WEHH	Elmira Heights. Horsoheads.	WFLI Lookout Min.. To WFLN Philadelohia, Pa	$\begin{array}{r} 1070 \\ 900 \end{array}$	WGRP Greenville, Pa . WGRV Greeneville, Te	$\begin{array}{r} 940 \\ 1340 \end{array}$	WHOM New York. WHOO Orlando	$\begin{array}{r} 1480 \\ 990 \end{array}$
Eic	Charleston, III. 1270	WFLO	870	WGRY Gar	1370	WHOP Hopkln	1230
M	Fitchburg. Mass. 1280	WFLR Dunde	1570	WGSA Eph	1310	WHOS D	
EIR	Weirton. W,Va, 1430	WFLS Frederickstur	1350	WGSB Goneva, III.	1480	WHOT Campbell, Ohio	1570
EIS	Center, Ala. $\quad 990$	WFLW Monticello	1360	WGSM Huntington, N.Y.		WHOU Houlton, Maine	1340
K		WFMC Goldsbero, N.C WFMD Fredopitk, Md.	730 930	WGSR MIIIen, Ga.	570	WHOW Clinton, III.	$\begin{array}{r} 1520 \\ 580 \end{array}$
$\left\{\begin{array}{l} k R \\ K Y \end{array}\right.$		WFMD Frederitk. M WFMH Cullman. Ala	$\begin{array}{r} 930 \\ 1460 \end{array}$	WGST Atlanta, Ga WGSV Guntersvilio.	$\begin{array}{r} 920 \\ 1270 \end{array}$	WHP ${ }^{\text {H arr }}$	580 1390
kz	Monroe, Wls. 1260	WFMJ Youngstown	1390	WGSW Greenwood.	1350	WHPE Hig	1070
LB	Elba, Ala. 1350	WFMO	66			WHRT Hartselle, Ala.	60
ELC	Welch. W.Va. 1150	WFMW Madiso	300	WGTC Gree	1590	WHRY An	
-	Fisher, W.Va 690	WFNC Fayotteville,	1390		870	WHSC	0
ELE	S. Daytona, Fla. 1590	WFOB Fostoria, Ohio	1430	w		WHSM Hat	
ELI	New Have	WFOM Marietta,	1230	WGTN Ge	0	WHSY Hatt	1230
LK		WFOR Hattiest	$\begin{array}{r} 1400 \\ 860 \end{array}$	WGTO Cypress Gardens, Fla,		WHTC Holla WHTG Eato	
-	Elmira, N.Y. 1410	w		WGUS Nor	1380	WHUB Co	
0	Tupelo, Mliss. 580	w	00	WGUY Bangor. Ma	1250	WHUC H	1230
ELP	Easloy, S.C. 1360	WFPG Atlantic	145	WGVA Geneva, N.Y	1240	WHUM R	
ELR	Roanoke. Aln. 1360	WFPM Fort Val	1150	WGVM Greenville.	1260	WHUN Hun	
-	10	WFPR Hammond	1430	WGWC Sol	1340	WHUT A	
LY	Ely Minn, 1450			WGWR As	1260	WHVF W	
WEMB	Erwin. Tenn. 1420	WFRC Roid	1600	w			
	Easton, Md. 1460	WFRL Froen	570	WHA Madi	970	WHWB Rutlan	0
MJ	Latonla, N.H. 1490	WFRM Couders	600	WHAB Baxley	1260	WHYE Roanoke, Va,	910
EMP	Milwaukce, W/s. 1250	WFRO Fren		WHAI Greenfield.	1240	WHYL Ca	
NA	Bayamon. P.R. 1560	WFRX West Frankfort.	300	WHAK ROg	960	WHYN Sprin	
END	Whitevilio, N.C.	WFST	600	w	1400	WIAC San	
END	Edensburg, Pa. 1580	WFST Carıbou, Maine	96	Roe	1180	WIAM WIlitamsto	
ENE	Endicott, N.Y. 1430		960	WHAN Hain	930	WIBA Madiso	1310
ENK	Union City, Tenn, 1240	WFTG London, Ky. WFTL Ft. Lauderda	$\begin{aligned} & 1400 \\ & 1400 \end{aligned}$	WHAP Hopew	1340	WIBB Maeon.	
		WFTM Maysville.	1240	WHAR Cla	1340 840	WIBC India	
T	Gloversville. N, Y. 1340	WFTR Fron		WHAT Phil	1340	wibm	1450
NY	Eimira, N.Y. 1230			WHAV Hav	1490	WIBR Baton	0
1	Poughkoepsle, N.Y. 139		1260	w	0	WIBU Poyne	
OL	Elyria. Ohlo 930		1270	WHAY New Britain, Con	910	WIBV Be	12
PG	S. Plits burgh. Tenn, 910	WFUN Hunisville, Ala.	1450	WHAZ Troy, N.Y.	1330	WIBW Tod	
PM	Martinsburg. W.Va. 1340	WFUR Grand Rapids, Mich.	1230	WHB Kansas	710		
ERA	Plainfold, N.J. 1590	WFVA Frodericksburo,	1230	WHBB Selma. Ala	1490	Bridg	
ERE	$\begin{array}{lr}\text { Atlanta, Ga. } & 860 \\ \text { Cleveland, Onlo } & 1300\end{array}$	WFWL Camden. Tenn,	1420 1220	WHEC Canton, Oh	1480	WICE Providence. R.,	
RE	$\begin{array}{lr}\text { Cleveland, Ohlo } & 1300 \\ \text { Hamilton, Ala. } \\ \end{array}$		$\begin{aligned} & 1220 \\ & 1280 \end{aligned}$	WHBF Rock 1sland	1270	WICH Norwieh. Conn.	
		W	1520	WHBG Harrisonburg, Va.	1360	WICK Stranton, Pa	
RL	Eagle River. Wis. 950	WGAA Cadartown. Ga,	1340	WHBL She	$\begin{aligned} & 1280 \\ & 1330 \end{aligned}$		1330
ERO	Canonsburg, Pa. $\quad 540$	WGAC Aupusta,	580	WHBN Harrodsbu	1420	Wicy mat	1490
ERT	Van Wert, Ohlo 1220		$1 \begin{array}{r}1350 \\ \\ 910\end{array}$	WHBO Tampa, Fla.	1050	WIDE Biddeford, MaIne	1400
ESA	$\begin{array}{ll}\text { Charlerol, } \mathrm{Pa} \text { ar } \\ \text { Bradord, } \\ \text { Pa. } & 1490\end{array}$	W		WHBQ Memphis, To	560	WIDU Fayettovilie, N.C	
C		W	1490	WHBT Harriman. ${ }^{\text {W }}$	1600	WIEL Elizabethtown, K	
SN	N, Augusta, S.c. 1550	WGAN Portland, Malin	560	WHBU Anderson.	1240 1230	WIFA EIK	
ESO	Southbridge, Mass. 970	WGAP Maryville. Ten	1400	WHCC Waynesville,	1400	WIGM Mediord, WIs	
WESR	Tasley, Va. 1330	C	220	W HCO Sparta. III.	1230	WIIN Atlan	
EST	Easton, Pa. 1400	WGAS S. Gastonia, N.C	420	WHCU	870		0
ESX	Salem, Mass. 1230	Gate	050	WHDF HO	1400	WIKC Bogalusa, La	
ESY	Leland. M	Athens	1340	WHDH Bos	850	WIKE New	490
	Johnson Clity Tenn. 790	GBA Columb		WHDL Ole	1450	WIKY Eva	
C	Wendell-2ebuion, N.C. 530	um	240	WHDM MeK	1440	WIL St Louls. Mo.	
-				WHEB Port	750	WILA Danville, Va.	
	Ocean City, Md. 1250	W	1400	WHEC Roc	1460	WILD Bosto	
			910	WHEE Mart	4370	WILE Cambridge,	1270
	Wost	WGBR Golds	115	WHEN Syracus			
	Ponee, P.R, 1420	W			$\dagger 310$	WILL Urban	580
EUP	Huntsville. Ala. 1600	WGCB Red Lon, Pa.	1440	WHER Mem	1430	WILM Wilminoton, D	
EVA		WGCM G	1240	WHEW RIveria Be	1600	WILO Fra	
\checkmark V	$\begin{array}{lll}\text { New York. N.Y. } & 1330 \\ \text { Eveloth, Minn. } & 1340\end{array}$	WGEA Grneva, Ala.	1150	WHEY Mllilington,	1220	w	
W	St. Louis, No. 770	WGEE Indianapolis, Ind.	1590	WHFB Benton Harbor			
W0	O Laurinburg, N,C. 1080	WGEM Ouincy, III.	1440	WHFC Cicero, 111.	1450		
XL	Royal Oak. Mich. 1340	WGES Chlc	1390	WHGR Hou	1290	WIMO W	
EYE	Sanford, N.C. 1290	WGET Gettysbura, Pa	1320		1440	WIMS MIchigan city. In	1420
EZB	Birmingham, Ala. 1220	WGEZ Bel	13	WHHT Lueedale, M	1440	WINA Charlottesville, Va	
2 E	Boston, Mass. $\quad 1260$			WHHV Hillsvilie,	1400	WINC WI	400
$2{ }^{2}$		WGFS Covingtonic	1430 50	WHHY Montoomery, Ala	1440	WIND Chicago, lil	
N	Richmond, Va, Elizabethtown, Pa, 1590 1600	WGGG Gainesvile.	1230	WHHM Memphis, Tenn.	1340	WINF Manchester. Con	230
EzY	Cocoa, Flaw, Pa, 1350	WGGH Marion, ili.	1150	WHIE Grimn, Ga.	20	W1	10
FAA	Dallas. Tox. $\quad 370.820$	WGGO Salamanca, N.	1590	WHIH Portsmouth.	1400		
FAB	Mlami, Fla. 990	H Newrort Nows,	1310	WHIL	1430 1110	WINK	
FAG	Farmville. N.C. 1250	HC Clayton,	1570	WHIN Ga,	1010	WINQ Tampa, Fla.	
FAH	A Alliance Ohio 1310	WGHM Skowegan, Main	1150		$\begin{aligned} & 1010 \\ & 1290 \end{aligned}$	WINR Bİnghamton, N.	
FAI	Fayettevilie. N.C. 1230	WGHN Grd, Haven, Mi	1370			WINS Now Y	1010
AR	Farrell, Pa. N 1470	WGHO Kingston, N.Y.	920 140	WHIP Mooresvilie. N.C.	1230	WINT WInter Ha	360
AS	White Plains, N.Y. 1230	WGIG Brunswiek, Ga			1440	WINX Rockville, Md.	600
AU	Augusta, Me. ${ }^{\text {a }}$, 1340	WGIL Galesturg, ${ }_{\text {WGIR }}$ Manehester,	1400 610	WHIT New Bern, N.C.	1450	WINY Putnam, Conn,	350
${ }_{\text {AX }}$	$\begin{array}{lll}\text { Falls Church, Va, } & 1220 \\ \text { Grenville } \\ \text { S.C. } & 1330\end{array}$	WGir mane hester. ${ }^{\text {Whiv }}$	1600	WHiY Orlando. Fla,	1270	WINZ Miami, Fla.	40
FBG	Greenvile, S.C. 1290	WGKA Atlanta, G	1600	WHIZ Zanesvilio. Ohio	1240	wiol Now Boston, Ohio	101
FBL	Syracuse, N.Y. 1390	WGL Fort wayne,	1250	WHB Greensburg. V .	620	wion Ionia. Mich.	1430
BM	Indianapolis, ind. 1260	WGLC Centre	1580	WHJC Matawan. W.Va,	1360	WIOS Tawas Clty. MIth.	1480
BR	R Baltimore, Md. 1300	LI Baby	1290	d, Ohio		Kokomo. Ind	50
FCT	Fountain City, Tenn. 1430	MA Hollywood.	1320	WHKP Hendersonvitle, N.		WIP Philadelohla, Pa.	610
FDF	Flint, Mieh. 910	WGML Hinesvile, Ga	930			WIPC Lake Wales, Fla	1280
FDR	R Manchester, Ga. 13370	WGMM millington, Tonr.	3380 570		$\begin{aligned} & 1400 \\ & 1270 \end{aligned}$	WIPR San Juan, P.R.	940
FEA	M Manchester, S	S Washington, D.C.	7270	WHLF South Eosto	1400	WIPS Ticonderoga, N,Y.	1250
EB		WGNC Gastonia, N.C	1450	WHLI Hempstead, N.	1100	Wira fort Pierce, fla.	0
WFFF		WGNI WIImIngton.	1450	WHLL Wheeling, w.Va.	1600	WIRB Enterprise. Als	
		WGNS Murfreesboro. Tenn.	450	WHLM Bloomsturp. Pa.	550	WIRC HId	0
74	WHITE'S RADIO L	GNY Newburgh. N, Y.	$\begin{aligned} & 920 \\ & 1220 \end{aligned}$	WHLO Ahron, Ohio		WiRJ Humboldt, Tenn.	740

Mexican and Cuban AM Stations

Mexican stations audible in the Southwest; the more powerful Cuban stations

Locotion		$K c .$ CO	W.P.	Location N. Casas Gran	C.L. des XETX	Kc. 1010	W.P. 250	Location		Kc. ON	W.P.	Locotion	$\begin{aligned} & C . L . \\ & \times E R G \\ & \times E \times O \end{aligned}$	$\begin{aligned} & \text { Kc. } \\ & 1090 \\ & 1370 \end{aligned}$	$\begin{aligned} & \text { W.P. } \\ & 25 n 0 \\ & 50000 \end{aligned}$
BAJA	CALIF	ORN						Linares Monterrey	$\begin{aligned} & \text { XER } \\ & X \in \mathbb{R} \end{aligned}$	$\begin{aligned} & 1260 \\ & 1050 \end{aligned}$	$\begin{array}{r} 250 \\ 150000 \end{array}$	Reynosa	XEOR	$\begin{array}{r} 1390 \\ 590 \end{array}$	$\begin{aligned} & 1000 \\ & 5000 \end{aligned}$
					H				XEH	1420	1000	Rio Bravo	XEFD	1170	1000
Cuervos El Saugal	$\begin{aligned} & \text { XEDY } \\ & \text { XEDX } \end{aligned}$	$\begin{aligned} & 1460 \\ & 1010 \end{aligned}$	$\begin{array}{r} 1000 \\ 500 \end{array}$	Cludad Acuna		1010	1000			990	5000 1000	Tampico	XEFW	810	50000
Ensenada	XEPF	1400	250	Pledras Negra	XEM	920	1000		XEAW		1000				
	XEXK	920	230		XEMU	580	5000		XEFB	630	5000		Ub		
Mexicall	XED	1050	5000	Sabinas	XEBX	610	5000		XEMR	1370	500				
	XEAA	1340	250	Saltillo	XES	1250	500		XEOK	920	500	Camaguey	CMJB	880	1000
	XEAO	910 990	250		XESG		1000	SA	5				CMJL	920	5000
	XEGE	1150	1000	Villa Acuna	XEBP	1310 1340	5250	SA	S				CMJN	960	1000
Tijuana	XEC	1310	250		XERF	1570	250000	San Luis P					CMIFA	680 1110	1000 1000
	XETRA	690	50000						XE		150000		$C M J R$	1030	1000 1000
		$\begin{aligned} & 1470 \\ & 1270 \end{aligned}$	$\begin{array}{r} 5000 \\ 500 \end{array}$	DISTRIT	O FE	ERA			NOR				CMJ	1000	1000
	XEBG	1550	1000	Mexico City	XEL	1260	5000						CMIF	1340	1000
	XEGM	950	2500		XEN	690	20000	Agua Priota	XEAQ		250	Ca	CMHD	890	1000
	XEMO	860	5000		XEO	940	150000				500		${ }^{\text {CMJT }}$		1000
	XEXX	1420	2000		XEW	900	250000	Cananea			500		CMISS	700 800	1000 1000
CH	A				X \times XR	730	500000		XEOX	1430	1000		cmjV	900	1000
C	A				$X \in J P$	1150	10000	Hermosill	XEBH	920	5000	Clenfuegos	CMHN	680	1000
Chihuahua	XEM	1390	300		XELA	830	10000		XEDL	1250	500	Consulacion	Del Sur	880	1000
	XEBU	620	1000		XELZ	1440	5000		XEDM	1580	50000	Crues	CMAK	1210	1000
	XEBW		1000		XEMX	1380	5000		XEHQ	590	500	Guantanamo	CMKS	1070	1000
	XEFI	580	1000		XENK	620	5000	Magdalena	XEDJ	1450	100	Habana	CMW	590	2500
	XERA	1490	250		XEOY	1000	50000		XETM	1350	1000		CMCY	550	15000
ludad Camar					XEPH	590	5000	Nogalos	XEHF	1370	5000 250		CMO	830	25000
ludad Dellei	XEHA	580	1000		XEQK	1350	1000	San Luis	XECB		250		CMCU	660	1000
Cludad Dellei					XEQR	1030	10000	Santa Ana			250		CMCD		50000 10000
	XEJK	1340	250		X \times XERC	790 1110	50000	- TAM					CMCH	790	10000
Ciudad Juarez	XEF	1420	250		XERH	1500	50000		-				CMB2	830	5000
		970	5000		XERPM	660	10000	Matamoros	X 60	970	1000		CMBL	860	15000
	XEP	1300	500		XESM	1470	10000		XEAM	1310	250		CMCF	910	10000
	XEFV	1240	250		XEUN		5000		XEMT	1340	250		CMBF	950	5000
	XELO	800	150000					Nuevo Larsd	XEAS	1410	250		CMCK	980	5000
	XEWG	1490	250	DUR	RANG				XE8K	340	00				
Hidalgo	XEJS	1150	500	Durango	XEDU	860	1000		XEFE	790	1000	WHITE'S	RADIO L	OG	177

Location	C.L.	Ke.	W.P.	Location	C.L.	Kc.	W.P.	Location	C.L.	Ke.	W.P.	Location	C.L.		W.P.
				Marianao Neuvitas	$\begin{array}{r} \text { CMZ } \\ \text { CM1O } \end{array}$	$\begin{aligned} & 1560 \\ & 1300 \end{aligned}$			CMHC CMHO	$\begin{array}{r} 1410 \\ 640 \end{array}$	$\begin{array}{r} 1000 \\ 15000 \end{array}$		CMKL CMISW	800 1000	2000 2000
	CMCX	$\begin{array}{r} 1060 \\ 730 \end{array}$	$\begin{aligned} & 10000 \\ & 10000 \end{aligned}$	Neuvitas Pinar del Rio	$\begin{aligned} & \text { CMJO } \\ & \text { CMAB } \end{aligned}$	$\begin{array}{r} 1300 \\ 740 \end{array}$	1000 5000		CMHO CMHW	$\begin{aligned} & 640 \\ & 810 \end{aligned}$	$\begin{array}{r} 15000 \\ 1000 \end{array}$		CMKR	1090	1000
	CMCB	1330	1000		CMAF	680	1000		CMHO	1310	1000		CMKU	630	2000
Holguin	CMKJ	730	5000		CMAN	840	1000		CMHM	1130	1000		CMDL	1150	1000
Holgul	CMKP	670	1000		CMAQ	920	1000	Sancti Sp					CMKN	${ }_{1} 930$	1000 1000
Holguin Orte	CMKM	560 600	5000 1000	Sagua La Gran	CMHA				CMHT	$\begin{array}{r} 990 \\ 1320 \end{array}$	1000 1000	Vie	CMMKB	1170	1000
	CMKV	600 970	1000	Santa Clara	CMHI	570	10000	Santlago	CMIC	770	1000	,	CMDQ	840	1000
	CMDC	370	1000	Sanı Clara	CMHG	670	1000		CMDB	680	1000		CMKT	1520	1000

U. S. FM Stations by States

Location	Abbrev	
	C.L.	Me.
ALABAMA		
Albertvilie	WAVU.FM	105, 1
Alexander City	WRFS.FM	106.1
Andalusia	WCTA.FM	98.1
Anniston	WHMA.FM	100.5
Athens	WJOF	104.3
Birmingham	WAPI.FM	99.5
	WBRC.FM	106.9
	W SF M	93.7
Clanton	WKLF-FM	100.9
Cullmah	WFMH.FM	101.1
	WHOS.FM	102.1
	WJLN	104.7
Huntsvillo	WAHR	99.1
	WNDA	92.9
Mobllo Montgomery	WKRG-FM	99.9
	WAJM	103.3
	WFMI	98.9
Sylacauga Tuscaloosa	WMLS.FM	98.3
	WTBO.FM	95.7
	WUOA	-91.7
ALASKA		
Anchorage	KNIK	105.5
	KBYR-FM	102.1

ARIZONA		
Globe Mesa Phoenix	KWJB-FM	100.3
	KBUZFFM	104.7
	KELE	95.5
	KFCA	88.5
	KOOL-FM	94.5
	KITH	101.3
	KOY.FM	92.5
	KPHO-FM	96.9
	KTAR-FM	98.7
	KYEW	93.3
Tompe	KUPD-FA	97.9
Tueson	KFMM	99.5

ARKANSAS		
Blytheville	KLCN-FM	96.1
Ft. Smith	KFPW-FM	94.9
Jonesboro	KBTM-FM	101.9
	KASU	91.9
Little Rock	KARK	103.7
Mammoth Sprin	KAMS	103.9
Osceoia	KOSE.FM	98.1
Pine Bluff	KOTN-FM	92.3
Siloam Springs	KUOA.FM	105.7

CALIFORNIA

Alameda Anaheim	$\begin{array}{cc} \text { KJAZ } & 92.7 \\ \text { KEZY=FM } & 95.9 \end{array}$
Arcata	KTOO •90.5
Atherton	KPEN 101.3
Avalon	KBEIQ 104.3
Bakersfield	KERN-FM 94.1
Berkeloy	KPXPA 94.1
	KPFB * 89.3
	KRE.FM 102.9
Bijous	KHUR 99.3
claremont	KSPC *88.9
Coachella	KCHV.FM 93.7
El Cajon	KUFM 93.3
Euraka	KIEM 96.3
Frosno	KARM.FM 101.9
	KMJ.FM 97.9
	KRFM 93.7
	KXQR 102.7
Garden Grove	KGGK 94.3
Glendato	KFMU 97.1
	KUTE 101.9
Hayward	KBBM 101.7
	KTYM-FM 103.9
LaSierra	KNFP ${ }^{89.7}$
	KCVR.FM 97.7
Long Beach	KFOX.FM 102.3
	KLON *88.1
	KNOB 97.9
Los Altos	KPGM 97.7
Los Angeles	KABC-FM 95.5
	KBEI 107.5
	KBCA 105.1
	KBMS 105.3
	KC8H 98.7
	KFAC-FAt 92.3
	KFMU
	KGLA ${ }^{\text {P } 03.5}$
	KHJ 101.1
	KM1LA 100.3
	KNX-FM 93.1
	KPFK •90.7

178

WHITE'S RADIO LOG Grand Junctlon KREX-FM	92.3	Bolse	
Manltou Springs KCMS.FAM	102.7	Lewiston	

U. S. FM Stations by Call Letters

Abbreviation: (s)-broadcasts stereo

c.L.

KBBM Hayward, Call KBBW San Diego, Calit KBCW Lan diego, Callif, Calif. KBCA Los Angoles, Calli, KBCO San Franciseo, Calif. KBEC. FM Waxahachio, Tex KBEE.FM Modesto. Callf. KBEY Kansas CIty, Mo. KBFI Bolse. Idaho KBFM Lubbock, Tex. KBIM-FM Roswell, N.Mex, Kbia Los Angeles, Calif. KBNF Pampa. Tex. KBMS Los Angeles, Calil. KBOA.FM Kennett, Mo. KBOI.FM Boise, Idaho KBOY-FM Medford, Oreg.

C.L. Location

 KBTM-FM Jonesbore. Ark, KBUZ.FM Mesa, Arlz. KBYR.FM Anchorape, Alaska KBYU.FM Provo, Utah KCAL.FM Redlands, Callif. KCBH Boverly Hllis, Calif.KCBS. FM San Franelseo, Cali KCBS. FAH San Franelseo, Calit WCFM St. Louis, Mo. (s)
KCHV.FM Coachella, Callit KCHV.FM Coachella, Calit KCJC Kansas City, Kans. KCLE. FM Cleburne, Tex.
KCMB.FM Wiehita, Kans. KCMB.FM Wiehita. Kans. KCMI Los Angeles, Calif.
KCMK Kansas Clty, Mo. KCMO-FM Kansas Clty, Mo.(s) KCMS. FM Manltou Springs, Colo. KCNW Sacramento, Calif.
C.L Locotion

KCOM Omaha, Nebr.
KCPA.FM Dallas. Tex
KGPX. FAI Sali Lake city. Utah
KGPX.FAI Sail Lake City. Calif.
KCRW Santa Monica, Calif.
KCSM San Mateo, Callf.
KCUF Redwood City, Callf.
KCUl Polla, la.
KCUR-FM Kansas City. Mo.
KCVN Stockton, Califi
KDB-FM Santa Barbara, Callf.
KDOD.FM Dumas. Tex

KDEF.FM Albuquerque,
 KEF-FM Alququerque, N. Mex.

KOFC San Francisco, Gall
KOKA.FM PIttsburgh, Pa
KDMC Corpus Christi. Tex
KDMI Des Moines, Iowa
KDNT. FM Mointon, Tex
KOPS Des Molnes. lowa
KDUO Riverside, Calif.
KOVR Sious Clity. la.
KDWC West Covina, Callf.
KEAR San Franelseo, Callif.
KEAX Natlonal Cify, Callf.
KEBJ Phoenis. Arl2.
KEBR Sacramiento. Callf.
KEBS San Diego, Calif.
KEED.FM Springfield-Eupens,
Oregon
KEEN-FM San Jose, Calif
KEEZ San Antoni
KEFM Oklahoma city, okla
KEFW Honolulu. Hawai
KELE Phoonix, Ariz.
KEMO St. Louls, Mo.
KERN-FM Bakersneld, Calif.
KETO.FM Seattle, Wash.
KEX.FM Portland, Ored
KEYM Santa Marla, Calif.
KEZE Anaheim, Calif.
KFAB.FM Omaha, Nebr KFAC.FM Los Angeles Calif. KFAM.FM St. Cloud, Minn KFBK.FM Sacramento. Callf.
KFGA Phoonlx. Arlz.
KFGQ.FM Boone. lowa
KFH. FM Wichlta, Kans,
KFIL Santa Ana, Calit.
KFJC Mountalnviow, Callf.
KFIZ Fart Worth. Tex.
KFMB-FM San Olego, Callf.
KFAMC Portland, Oreg.
KFMH Colorado Springs, Colo.
KFMK Houston, Tex. (S)
KFMM Tueson, Ariz,
KFMN Abllons
KFAMP Port Arthur, Tex.
KFMQ Lincoln. Nobr
KFMU Los Angeles, Calti, (s)
KFMV Minneapolis, Minn (s)
KFMW San Bernardino, Callf.
KFMY Eupens, Orea, (s)
KFNB Oklahoma Clity OkIa
KFOX.FM Long Beach. Calis
KFRC.FM San Franelsco, Callf.
KFUO.FM Clayton, Mo.
KGAF-FM Gainesville. Tox.
KGBN-FM Caldwell Idaho
KGFM Edmonds, Wash
KGGK Garden Grove, Calif.
KGLA Los Angeles. Calif.
orliand. Ore.
KGNC. FA Amarillo. Tex.
K GO.FM San Franciseo, Callf.
KGPO Grants Pass, Oreg.
KGUD.FM SAnta Barbara, Calif.
KHBL Plainview. Tex.
KHBR-FM Hillsboro, Tex.
KHCB Houston Tox.
KHFI Austin. Tox.
KHFI Austin. Tex.
KHFM Albuquerque, N.Mex.
KHGM Houston. Tex.
KHIP San Francisco, Callt.
KHIQ Sacramento. Calif.
KHJ.FM Los Angeles, Callf.
KHMS El Paso, Tex.
KHOF LOS Angeles. Calif,
KHOL.FM Kearney. Holdredpe,
KHOM.FM Turlock. Callif Nebraska
KHPC Brownwood. Tex.
KHQ.FM Spokane. Wash.
KHSC Arcata, Calif.
KHVR Houston, Tox.
KHYI Fremont. Calis
KICN Omaha, Nebr.
KIEM Eureka, Calif.
KIHI Tulsa. Okla
KIMP.FM MA, Pieasant. Tex.
KING.FM Seattle. Wash,
K 100 Oklahoma. Okla.
KIRO-FM Seatile, Wash.
KISA Kansas Clity, Mo.
KISW Seattle, ash.
KITH Phoenix, Arlz.
kity San Diego, Calif.
KIXL-FM Dallas, Tex.(s)

C.L. Location

kJAZ Alameda, Calif. OKl
KJEM.FM Okla, City, Okla.
KJMM San Diegn, Galli.
KJML Sacramento, Cali
KJRG Newton, Kans.
K JSB Houston Ter.
KLAC.FM Los Angeles, Callf.
KLAY+FMI Tacoma. Wash.
KLCN FM Blytheville Ark
KLFM Beverly Hills, Calli.
KLIR.FM Denver, Colo.
KLIZ.FM Brainerd, Minn.
KLOA-FM Rldgecrest. Callf
KLON Long Beach, Calif.
KLSN Seatlle Wash. (s)
KLUB.FM SAlt Lake Gity. Utah KLYD.FM Bakersfeld. Callf. KLYN.FM Lynden, Wash, KMAK.FM Fresno, Calit KMAX Slerra Madre, Callf. KMCP Portland, Oreg.
KMCS Seattle. Wash.
KMER Fresno. Galif.
KMFM Tularosa, N, Mo
KMHT Marshall, Tex.
KMJ.FM Fresno, Calif.
K MLA Los Angolos, Calif, (s)
KMLB. FM Monros, La,
KMMIK Little Rock, Ark.
KMOX. FM St. Louis, Mo KMUW Wichita. Kans. KMYC.FM Marysville, Calif. KMUZ Santa Barbara, Callt. (s) KNBC-FMI San Francisco, Calif. KNDE.FM Aztec, N. Mex. KNDX Yakima, Wash. KNEB-FM Scottsbluff, Nebr. KNER Dallas Tex.
KNEV Reno. Nev.
KNEW-FM Scottsbluff, Nebr. KNFM Midiand, TeI,
KNFP LaSierra, Calif,
KNIK F FM Anchorage, Alaska KNOB Long Beach. Calif. KNOF St. Paul, Minn, KNX.FM Los Angeles, Callf. KOA.FM Oenver, Colo
KOCW Tulsa, okla
KOGM-FM Tulsa, Okla,
KOGO San Dieg, Calif.
KOIN. FM Portland, Oreq.
KOKH Okfahoma City, Okla
KONG.FM Seatie. Wash.
KONG.FM Visalia. Calif. (s)
K.OOL.FM Phoenix. Ari:
KOSE.FM Osceola, Ark.

KOSE-FM Osceola,
KOST Dallas. Tex.
KOSU.FM Silllwater, okla.
KOTN.FM PIne Bluff, Ark.
KOE. FM Lewiston, Idah
KPAT Albuquerque N. Alex
KPAT Albuquerque, N, Mox
KPEN Atherton, Calli KPFA Berkeley. Calif. KPFB Berkoley, Calif.
KPFK Los Angeles, Calit
KPFM Portland, Oreg (s)
KPGM Los Altos, calii
KPLR.FM St. Louls. Mo.
KPOI. FM Honolulu, Hawai

KPPS.FM Parsons, Kans.
KPRI San Diogo, Calif. (s)
KPRN Seattlo, Wesh.
KPSD Dallas. Tex.
KPSR Palm Springs, Calle.
KQAL.FM Omaha, Nebr. (s)
KQBY-FM San Francisco, Callf.
KOFM Portland. oreg.
KQIP Odessa, Tex.
KQRO Dallas. Tex.
KQUE Houston. Tex,
$K Q X R$ Bakersfield, Calif.
KRAK-FM Stockton, Calif.
KRAM.FM Las Vagas, Nev
KRAM-FM Las
KRBE Houston, TfX
KRCC Colorado Springs. Colo.
KRCW Santa Barbara, Callf.
KREFM Berkeloy, Cais.
KREX.FM Grand Junctlon, Colo. K RFM F Fres no, Calif.
KRHM Los Angelos. Callf.
KRIC.FM Beaumont. Tex. KRKD.FM Los Anqeles, Calli, KRKY Denver Cole.
KRKY Denver, Colo.
KRMD.FM Shreveport. La.
KRNW Boulder, Colo.
KRON.FM San Francisco. Galif
KROS.FM Clinton, lowa
KROW Santa Barbara, Calif.
KROY. FM Sacramento, Calif.
KRPM San Jose, Calli
KRRC San lose Calif.
KRVM Eugene. Oreg.
KSEW-FM Salinas, Callf. KSDB-FM Manhattan, Kans.
KSDS San Diego, Gallt.
KSEA San Dlego. Callf
KSEO-FM Durant, Okla.
KSFM Dallas, Tex. (\$)
KSFR San Francisco, Callf.
C.L. Location

KSFV San Fornando, Callif.
KSFX San Francisco, Calif.
KSFX San francisco,
KSHS Coforado Springs, Colo.
KSJO-FM San Jose, Calff. (s) KSJO-FM San lose, Calfif. (s)
KSL.FM Salt Lake city, Utah KSLA Seattle. Wash. (s) KSLA Seattle. Wash. KSLH Tyier. Tex,
KSmiA.FM Santa Maria, Calit. KSO.FM Des Molnes, lowa KSPC Claremont, Calif, KSPI-FM Stilwater, Okia KSRF Santa Monica, Calif. KSTE Emporia. Kans. KSTL.FM St, Louls, Mo KSTN.FM Stockton, Calit KSUI lowa City. Lowa KSYN Joplin. Mo.
KTAL Texarkana, Tex
KTAP Tucson. Ariz.
KTAR-FM Phownix, Ariz.
KTCF Codar Falls, lowa
KTEC Oretrch. Oreq.
KTIM San Rafael. Calf. KTIS.FMI Minneapolls. Minn. KTJO-FM Ottawa, Kans. KTNT.FM Tacoma, Wash KTOD Mt. Pleasant. Tex. KTOP. FM Topeka, Kan KTOY Tacoma, Wash. KTRB-FM Modesto. Callf. KTRH.FM Houston, TEX. KTTS.FM Springitid, Mo. KTWR Tacoma. Wash
KTXT-FM Lubbock. ToX KTYM-FM Inglewood, Calif KUDE.FM Oceanside, Calif KUDU-FM Ventura-Oxnard, Call KUER Salt Lake City, Utah KUFM EI Cajon, Calif.
KUGN. FM Eugene, Oreg. KUHF Hooston. Tex.
KUMO-FM Duluth, Minn. KUOA-FM Siloam Springs. Ark. KUOH Honolulu, Hawall KUOW Sestlle, Wash.
KUSC Los Angeles, Calit. KUT.FM Austin, T CX.
KUTE Glendale
KVCR San Bernardino. Callf.
KVEN-FM San Luls Obispo, Callf. KVEN-FA Ventura, Callits. KVIL Highland Pk., Tex. KVOK KM El Pase, Tex. KVOP. FM Plalnview. Tex,
KVOR-FM Colorado Sprlings. Colo. KVSC Logan, Utah
KWAR Waverly, lowa
KWAX Eugene, Oreg.
KWFM Minneapolls, Minn
KWG.FM Stockton. Callf.
KWGS Tutsa, Okla.
KWIX St. Louls. Mo.
KWIZ-FM Santa Ana, Callf.
KWJB.FM Globe, Arlz
 KWME Walnut Creek,
KWMO Odessa. TeX.
KWOA. FN Worthington, Minn.
KWOC-FN Poplar Bluff, Mo.
KWPC.FW Museatine, Iowa
KWPM.FM West Plains, Mo.
KXFM Fopt Worth. Tex.
$K X I K . F M ~ F o r r e s t ~ C i t y . ~ A r k . ~$
KXLU Los Angelos, Calit
KXOR Fresno, Calif
KXRO Sacramento. Callf.
KXTR Kansas CIty, Mo.
KYA.FM San Franciseo, Callf.
KYEW Pmenix, Ariz.
KYFM OkJahoma Cliy, Okla.
KYW.FM Cloveland OHIO KZAM sestlle, Wash. KZAM Sesitle, Wash.
KZOM Oklahoma city, okla
KZUN.FM Opportunity. Wash WAAB.FN W Orcester, Mass WAAM.FM Parkersburg. W.Va WABC.FA Now York, N. Y WABE Atlanta. Ga.
WABI.FM Banger, Maine
WABQ Cliveland. Ohio
WABZ. Fir Albemarle, N.C.
WAEB.FN CincinnatI, Ohio WAEF Syracuse, N.Y
WAHR.FM Mlami Beach, Fla. WAIC San Juan. P.R. WAIR.FM WInston-Salem, N.C. WAIV Indianapolis, Ind.
WAJC Indianapolis. Ind.
WAJP Joliet. Ill.
WAJR.FN Morgantown, W, Va.
WAKR-FM Akron, Ohio
WALK.FM Patchogue, N.Y
C.L. Locotion

WAMC Albany. N.Y.
WAMU.FM Washington, D.C
W API.FM Birmingham, Ala.
WAPS Akron, Ohio
WAQE.FM Towson, Md. (s)
WARD.FM Johnstown. Pa
WARL.FM Arlingtow, Va.
WARN.FM Fort Pierce. Fla.
WASA.FM Havre De Grace, Md.
WASH Washington, D.C.
WATR.FM Waterbury, Conn.
WAUG.FM Augusta. Ga.
WAUX-FM Waukesha, Wis
WAVI-FM Daylon, Ohio
WAVO Allanta. Ga.
WAVU.FM Albertville. Ala.
WAVY.FM Portsmouth. Va.
WAYL Minneapolls, MInn.(s)
WAYZ-FM Waynesboro, Pa, WAZL. FM Hazelton, Pa. WAZZ Plttsburgh. Pa.
WBAA-FM W. Lalayette, Ind.
WBAB.FM Babylon. N. Y
WBAI New York. N.Y.
WBAP. FM Ft. Worth. Tox,
WBAY-FM Green Bay, Wis.
WBBB.FM Burlington, N.C.
WBBC Jackson. Mich.
WBBF. FM Rochester, N,Y
WBBO.FM Forest CIty, N.C.
WBBQ.FM Augusta. Ga.
WBBR-FM E. St. Louls, III,
WBBS Crawfordsvilie. Ind.
WBBW-FM Youngstown. Ohie
WBCB.FM Levittown-Fairless Hills . Pa .
WBCI. FA Williamsburg, Va.
WBCM-FM Bay City
WBCN Boston, Mass.
WBEN.
WM Bufflo.
WBET.FM Brockion. Mass.
WBEX.FM Chillicotho, ohio
WBEZ Chicago, III.
KBFM New York. N.Y.
WBFO Butalo
WBFO Buffalo, N, Y.
WBGD
Newark,
N..j.
MBGG Nowark, N.J.
WBGU Bowling Green, ohio
WBIE.FM Mariotta. Ga.
WBIR. FM Knoxyllie. Tonn.
WBIV Wethersfid.
WBJC Baltimore
WBJC Baltimore. Md.
WBKV.FM West Bend, Wis
WBKW Beekley. W.Va.
WBKY Lexington, Ky,
WBLY-FA Springield. ohio
WBLY-FA Springneld. Ohio
W'BMI Meridan, Conn, Ohio (s)
WBNS.FM Columbus, Ohio
YBNS-FA Columbus, Oh
VBOE Cloveland, Ohio
WBOE Cloveland, Mor Brunswlek. Maine
BBOS.FM Brookiine, Mass.
WBRB.FM Mt. Clements. Mleh.
WBRB-FM Mt. Clements,
WBRE.FM Wilkas.Barre, Pa.
WBSM+FM New Bedford, Mass.
WBST Muncie, Ind.
WBUR B
WBUT.FM Butler, Pa.
WBUY.FM Loxington, N.C.
WBVA Woodbridge, Va,
WBVP.FM Beaver Falls, Pa,
WBWC Berea, Ohio
WBZ-FM Boston. Mas
WCAC Anderson, S.C.
WCAE. FM Pittsburgh. Pa
WCAD. FM Baltimare. Md
WCAU.FM Philadelphia. Pa
WCBC-FM Anderson. Ind
WCBE Columbus. Ohio

C.L. Location WFML Washington, Ind. WFAM-FM Baltmor WFMS Indlanapolls, Ind WFMT Chicago, III. WFMU East Orange, N.J WFMW.FM Madisonville, Ky. WFAX Statesville, N.C. WFMZ Allentown. Pa. WFNC.FM Fayettevilic. N.C. WFNQ Martiord, Conn WFNS.FM Burlington, N.C. WFOB-FM Fostoria, Ohio WFOL Hamillon Ohlo WFOS South Nortolk WFPIS Loulsville, Ky. WFPL Louisville, Ky, WFRO-FM Fremont, Ohio WFST-FM Caribou, Maine WFSU-FM Tallahassee, Fla, WFUL-FM Fulton, Ky. WF UR-FM Grand Rapids, Mlch WFUV New York, N.Y. WFVA.FM Fredericksburg, Va WGAL-FM Lancaster, Pa. WGAR-FM Cleveland, Ohio WGAU-FA Athens, Ga, WGBH.FM Cambridge, Mass. WGBI-FM Scranton, Pa. WGBS.FM Miaml, Fla. WGCB-FM Red Lion, Pa. WGCS Goshen, Ind WGEM-FM Quincy, IIt, WGFM Schenectady, N.Y. (s) WGGC Glasgow, Ky. WGGM Taylorville, III. WGH-F M Newport News, Va. WGHF Newton, Conn. WGKA-FM Atlanta, Ga. WGLM Richmond, Ind WGMS.FM Washington, D.C. WGNB St. Petersburg, FI WGPA.FM Bethlohem, Ga WGPM Detroit. Mich WGPS Greensboro, N.C. WGRE M Buftato, N.Y. WGRV.FM Greenville, Tenn. WGTB.FM Washington, D.C. WGTS-FM Takoma Ohio WGVE Gary, Ind.
WGWR-F M Asheboro, N.C. WGYA Interlochen, Mich WHA.FM Madison, WIs WHAD Delafield, wis WHAI-FM Greenfleld, Mass. WHAV.FM Haverhlll, Mass WHBC.FM Canton, Ohio WHBF - FM Rock island. Ill. WHCI Hariford City, Ind. WHCN Hartford, Conn. WHCU-FM Ithaca, N. Y. WHDH-FM Boston, Mass. WHDL.FM Allegheny. NY. WHFB.FM Benton Marbor, Mleh WHFI West Paterson. N. J. WHFM Rochester. N.Y. WHFS Bethesda, Md. (s) WHHI Hightand. Wis. WHHS Kavertown. Pa WHIM.FM Providence, R.I. WHIO-FA Dayton, Ohio WHK.FM Cleveland, Onille, N.C. WHKP.FM Renders
WHKW Chllton. W is. WHKY.FA Hickory. N,C WHLA Holmen, Wis WHLIS Hils, N. Y, WHLM.FM Bloomsburg, Pa WHMA.FM Anniston, Ala WHNC.FM Henderson. N.C WHO.FM Des Moines, lowa WHOH Hamilion, Ohio WHOK.FM Lancaster, Ohlo WHOM.FM Ncw York, N.Y WH0O-FM Orlando, Fla. WHOS.FA Decatur, Ala. WHPE.FM High Point, N.C. WHPR Highland Park. Mich. WHPS High Point, N,C. WHRB. FA Cambridge,
WHRM Wausau. Wis, WHSA Hiohland Twp WHSR-FM WInchoster, Mass WHTG-FM Eatontown, N.J. WHUS Storrs, Conn
WHWC Colfax, Wis
WHYL-FM Carlisle, Pa. WHYN-FM Springfield, Mass WHYY Phslatelphia, Pa. WIAL EaU Claire. Wis. WIBA.FM Madison, Wis WIBC.FM Indianapolis, Ind. WIBG.FM Philadelphia, Pa. WICB Ithaca, N.Y.
WiF Gienside, Pa.
WIKY.FM Evansville. Ind. WIL.FM St. Louls, Me.
C.L. Location WILL-FM Urbana, IIt. WINA-FM Charloltesville, Va. WINE-FM Kenmore, N.Y. WINF.FM Manchester, Conn. WINZ.FM Aliami, Fla WiP.FA Philadelphia, Pa. WIPR-FM San Juan, P,R. WIRA-FM Ft. Pierce, Fla WIRQ Rochester, N.Y. WISH-FM Indianapolis, Ind. WISK Medford, Mass. WISN-FA1 Milwaukee, WIs. WISZ-FM Madison, W is WITA-FM San Juan, P.R. WITZ-FM Jasper, Ind. wiUS Chrlstiansled, V.l WJAC-FM Johnstown, Pa. WJAS.FA Pitisburgh, Pa,
WJAX.FM Jacksonvilic, Fia. WJBC.FM Bloomington, III. WJBK-FM Detrolt. Mich. WJBL-FM Holland, Hich. WJBO-FM Baton Rouge, La, WJBR Wilmington, Del.(s) WJCD-FA Seymour, ind. WJDX-FM Jackson, miss, Mich. WJEJ.FM Hagerstown, Md. WJGG Houghton, Mich. WJHL-FM Johnson Clity, Tenn. WJM-FM Lansing, Nich. WJiv Cherry Valley, N,Y. WJJD. FM Chicago, Ill. WJLK-FM Ashury Park. N.J.
WJLN Birmingham, Ala. WJLN Birmingham, Ala. WJMC.FM Rice Lake, WIs. WJOF Athens, Ala, WJOL-FM Joliet, Mich. WJTN.FM Jamestown, N.K. WJW-FM Cleveland, OhIo. WJW-F Palmyra, Pa. WJZ2 Bridgeport, Conn. WKAR-FM E, Lansing, Mich. WKAT.FM Mlaml, Fla. WKAY.FM Glaspow, Ky WKAZ-FM Charleston, W, Va. WKBC-FM Winston-Salem, N.C WKBN.FA Youngstown, Ohlo WKBR.FM Manchester, N.H. WKBV-FM Richmond. Ind WKCQ Berlin, N.H. WKCR.FM New York. N.Y. WKCS Knoxvilie, Tenn. WKDN.FM Camden, N, J. W. Va. WKFM Chicago, III.(s) WKIC.FM Hazard, Ky,
WKIP.FM Poughkeepsie, N.Y. WK18-FM Orlando, Fla, WKIX-FM Raleigh, N.C WKJP Pitisburgh, Pa WKLF:FM Clanton, Ala. WKLS Marictta, Ga.
WKMH-FM Dearborn, Mich. WKNA Charleston. W.Va. WKOF Hopkinsvilie, Ky.
WKOK.FM Sunbury, Pa. WKOK.FM Sunbury, Pa.
WKOP.FM Binghamton, N, WKOX-FM Framingham, Mass. WKPT-FM KIngsport, Tenn WKRC-FM CIncinnati, Ohio WKRG-FM Mobile, Ala,
WKRT-FM Cortland, N, Y WKRT-FM Cortland, WKSU.FM Kent, Ohi WKTM.FM Maytield, Ky. WKYB.FM Paducah, Ky. WLAD-FM Danbury, Conn WLAG-FM LaGrange. Ga. WLAP.FM Lexington, K \mathbf{W}, WLAV-FM Grand Rapids, MIch. WLBG.FM Laurens-Clinton, S.C. WLBH.FM Mattoon, Ill, WLDM Oak Park. Mich. WLDS.FM Jacksonville, Ill WLEC-FM Sandusky, Ohi WLET.FM Toccoa, Ga. WLFM Appleton. Wis WLIR Hicksville, N.Y.(s) WLLH-FM Lowell, Mass. WLNA.FM Peekskill, N.Y.
WLOA.FM Braddock, Pa. WLOB.FM Portland, Malno WLOE. FM Leaksvillo. N.C. WLOL-FM Minneapolis, Minn. WLOM Chattanooga, Tenr. WLOS-FM Asheville, N.C. WLOV Cranston, R.I. WLRJ Roanoke, Va. WLYC.FM Williamsport, Pa WMAL-FM Washington, O.C WMAM-FM Marinelte, W
WMAQ-F 1 Chicago, li. WMAQ-FM Chicago,
WMAS-FM Springfid, Mass. WMAX.FM Grand Raplds. Mich. WMAZ-FM Macon, Ga. WMB1. FM Chicago III WMBO-FM Auburn, N. Y WMBO-FM Auburn, N.Y,
WMBR-FM Jacksonville, Fla

C.L. Location

WMCF Memphis, Tònn. W MCO Now Concord, Ohlo W MCR Kalamazoo, Mich. WMDE Greensboro, N.C. WMER Celina, Ohio WMET.FM Mlaml, Fla. WMEV-FM Marlon, Va. WMFM Madison. Wis WMFP Ft. Lauderdale, Fla. WMGW-FM Meadvilte, Pa. WMHC South Hadley, Mass. WMHE Toledo, Ohio WMIL-FAI Milwaukee, Wis. WMIT Marlon, N.C. WMIV S. Bristol. N.Y WMIX.FA Mt. Vernon, 111. WMLS-FM. Sylacauga, Ala WMNA.FM Gretna, Va WMPS-FM Memphis, Tenn, WMRI-FM Marion, Ind. WMRN-FM Marlon, Ohio WMRO-FM Aurora, 111. WMRT Lansing, Mich. WMTH Park Ridge, 111. WMTI Norfolk, Va.
WMTW-FM AA. Washington, N.H. WMUA Amherst, Mass. WMUB Oxford, Ohio WMUN Muncle, Ind. WMUU-FA Greenvilie, S.C. W MUZ Detrolt, Mlch. WMVA.FM Martinsville, Va, WMVO-FM Mpunt Vernon, Ohio WHZK Detrolt, Mich. WNAD.FM Norman, Okla WNAS New Abany, Ind, WNBC-FA New York, N. Y. WNBH-FM New Bedford. Mass. WNBN New York. N.Y. WNCN New Ashiand, Ohlo WNDA Huntsville, Ala WNBD.FM Daytona Beach, Fla WNEM-FM Bay City, Mich. WNES-FM Central City, Ky. WNES.FM CENTR New York. N.Y WNEX-FA Macon, Ga, WNGO.FM Mayfield, Ky.
WNHC.FA New Haven, Conn. WNIB Chicage. III. WNIC DeKalb, III. WNNJ-FM Nowton, N.J. WNOB Cleveland, Ohlo (5) WNOK-FA High Point. N.C.
WNOS-FM HIgh Point, N.C. WNOW-FM York. Pa. WNSH Highland Park, 111. WNSL.FM Laurel. Nliss. WNTA. FM Newark, N.J
WMTH Winnetka, III. WMTH Winnetka, III.
WNTI Hacket tstown, WNTI Hacket tstown,
WNUR Evanston, III. WNWC.FM Arlington Hts., 111. WNYC.FM New York. N
WNYE New York. N. Y. WNYE New York. N.Y.
WOAK Royal Oak, Mich. WOAK ROMal Oak Hill. W.Va. WOBN Westerville, Ohio WOC-FM Davenport, Lowa Mass
w OCB. Fh W. Yarmouth, Mas WOCB.Fh W. Yarmout
WOHS.FM Shelby, N.C. WOI.FM Ames, lowa Woio Cincinnati, Ohio WOL.FM Washingtom, D.C. WOMC Royal Oak, Mich. WOMP.FM Bellaire, Ohlo WONO Syracuse, N. Y. III. WOPI.FM Bristol. Tinn WOR.FM New York, N.Y.
WORA.FM Mayaguez, P, WORX-FM Madison. Ind. WOSC.FM Fulton, N.Y WOSJ.FM Allantlic City, N.J WOSU-FM Columbus, Ohlo WOTW-FM Nashua. N. H
WOUB -F M Athens, Ohio WOW.FM Omaha, Nebr. WOXR Oxford, Ohlo WPAC-FM, Patchogue, N.Y. WPAD-FM Paducah. Ky. WPAT-FM Paterson, N.J.
WPAY-FM Portsmouth. Ohlo WPBC.FM Minneapolis, Minn. WPBS Philadelphia, Pa. WPCA-FM Philadelohla, Pa, WPEL.FM Montrose, Pa. WPEN-FM Phlladeluhla. Pa,
WPEX.FM Pensacola Fla WPEX. FM Pensacola, Fla.
WPFB-FM Middletown, Ohlo (s) WPF M Providence, R. 1 .
WPG 0 .FM Bradbury H t WPGO-FM Bradbury Hts., Md WPGI Pittsburgh, Pa. WPIT-FM Plitsburgh, Pa WPIT-FM PIttsburgh, Pa.
WPJB-FM Providence, R.I. WPKBM Tampa, Fla.
WPLM-FM Plymouth, Mass. WPLO-FM Atlanta, Ga. WPPA.FM Pottsville. Pa. WPRB Princeton, N. J. WPRM San Juan, P.R. WPRMO.FM Providence, R.I
C.L. Location WPRS.FM Paris, III. WPSR FM manasats, Va, WPSR Evansvilio, ind. WPTH Fort Wayne, N.C. WPTW.FW Plqua, Ohio WPWT Philadelphis Pio WQAL Philadelphia, Pa. WQFM Milwaukee, wis. WQis Hamilton, ohio WQRS-FM Detroit, Mich. WQXI-FM Atlanta, Ga. WQXR-FM Now York. N.Y. (s) WQXT.Fw Palm Beach, Fla. WRAJ.FM Anna, III WRAK-FM Williamsport, Pa. WRAL.FM Ralelgh, N.C. WRAY-FM Prineton, Ind RBL.FM Columbur Ga WRBS Baltimore, Md. WRC-FM Washington, D.C. WRCM Now Orieans, La. WRED Youngstown. Ohio WREO-FM Ashtabula, Ohio WREV.FM Reidsville, N.C.

Columbus. Ohio
WRFK Richmond, WRFL Winchester, $V 8$ WRFM Woodside, N. Y WRFS-FM Alexander City, Ala. WBHS Park Forest, III. WRIT-FM Milwaukes, WIs. WRJN-FM Racine, Wis. WRIR Lowiston. Maino WRKO-FM Boston, Mass. WRLB Long Branch. N.J. (8) WRLX Hopkinsville, Ky. W RLD-FM Lanelt, AI WRMP Detroit, Mieh WRNJ Atlantic City, N.J. WRNL-FM Riehmond, Va. WRNW Mount Kiseo. N.Y. WROC.FM Rochester. N. Y WROK-FM Rockford, III. Wrow .FM Albany, N. Y WROY-FM Carmi, WRPI Troy. N.Y. WRPN.FM Ripon, Wis.

C.L.
wRSw-FM WRTC.FM Warsaw, Ind. WRTC-FM Hartford, Conn. WRTIFM Philadolishia, Pa, WRUF.FM Gainesville. Fla. WRUN-FM Utica, W. Y. WRVA.FM Richmoad, Va,
WRVB.FM madison, Wis. WRVB.FM Madisom, Wis WRVC Norfolk, Va. WRVP Naw York. N.Y.
WRXO.FM Raxborc, N.C. WRXO-FM Roxborc, N.C. WSAI-FM. Clncinnati, Ohio WSAM-FM Saginav. Mich. ws8c.F Allanta, WSBF-FM Clemson S. WSCB Springfold in iss WSEB Springitld. was WSEV.FM Seviervili WSEV.FM Seviervilie, Tenn. WSHS Floral Park, NA. WSID Baltimore, ind. WSIU Barbondale, Ill. WSJG Hallandale, Fla. WSJS.FM Winston.Salem, N.C. WSKS Wabash. Ind.
WSIX.FM Nashville, Tenn. WSLM.FM Salem. Ind. WSLN Delaware, ohio WSLS.FM Roanoke V. WSMC-FM Collegedale, Tenn. WSMD.FM Waldort, Md. WSMI-FM Litehfield, III. WSNJ.FM Brigeton, N.J WSNW.FM Seneea' S.C. WSOC-FM Charlotio. N.C. WSOM Salem, Ohic WSON-FM Henderson, Ky wsou S. Orange, N.J. WSPA.FM Spartanthurg. S.C. (s) WSPD.FM Toledo, Ohio WSPE 8pringville, N.Y. WSPT-FM Stevens Point. Wis. WSRW-Fm Hillsbero. Ohio STC.FM Stamford. Conn WSTP-FM Salisbury, N.C. WSTR-FM Sturgis Mich WSYA.FM Stoubenvillo. Ohio WSVA.FM Harriscnburg. Va
C.L. Locotion WSV8.FM Crewe, Va. WSWM East Lansing, Mich. WSYR-FM Syracuse, N.Y. (s) WTAD-FN Quirey, ill. WTAG-FN Worester, Mass, WTAR Norfolk, Va. WTAX-FM Sprinpfield, III. WTBC-F Tusealoosa, Ala WTBO-F Cumberiand, Md. WTBS Cambridge, Mass. WTCX St. Potershurg, Fla. WTOS Toledo, Ohio WTHI-FM Terre Haute, Ind. WTHS Miami, Fla. WTIC.FM Hartford, Conn. WTJS. FM Jackson, Tonn. WTJU Charlattesvillo, Va. WTMA.FM Charleston, S.C. WTNC.FM Thomasvilite, N.C WTOA Tronton, N.J. WTOC-FM Savannah, Gia. WTOL-FN Toledo. Ohio WTOP.FM Washington, D.C. WTO8 Wauwatosa, Wis. WTRC-FM Elkhart, Ind. WTRT Tolsido. Ohio WTSB-F M Lumberton, N.C. WTSV-FM Claremont, N.H. WTYC. FM Towanda. P WTTV.FM Blostminstor. Md. WTUN Tampa, Fla. WTYN. TAmpa, Fla. WTVN.FM Coldwater, Mich WUCB-FM Chicagos, Ohi WULX.FM Cichgo, WUNC Chapal Hill ind WUOA Tosealoosa. Ai. WUOM Ann Arbor Mich WUOT Kaoxville. Tenn WUPY Lynn, Mass, (s) WUSC-FM Columbia, S.C. WUST.FM Bethesda, Md. WUSV Seranton, Pa. WVAM-FM Altoona, Pa. WVBR-FM thacs. N.Y. WVCG-FM Coral Gables, Fia

C.L. Locotion

 WVHC Hemptead, N.Y. WVIS.FM Owensboro, K̇y WVKO-FM Columbus, ohio WVLN.FM Olney, ili. WVMC-FM Mt, Carmel, III. WVNJ-FM Nowark, N.J. WVOT.FM Wilson, N.C YVOX-FM New Rochelle, N.Y. VVEH Huntington. Ind. WVST St. Potersburg. Fla WVTS Torre Haute. ind. WWCF Greenfieid, wis. WWCO-FM Waterbury, Comn WW DC-FM Washington, D.C WWGP.FM Sanford, N.C. WWHG-FM Horneli, N.Y. WWHI Muncie, Ind. WWIL.FM Ft. Lauderdale, Fla WWJ-FM Detroit, Mich, WWKS Macomb, ill. WWMT New Orieans, La WWOL.FM BuTalo, N:Y. WWON-FM Woonsoeket, R.I. WWPB Miami, Fla. WWST-FM Woostor, Ohio WWSW-FM Pittsburgh, Pa WWTV-FM Cadillac, MICh. WW VA-FM Wheolin. W.V. WWWS Greenville, N.C. WWYN Erie, Pa. WXCN Providenes. RII. WXFM Elmwood Park, II, WXHR Cambride, Mass. WXPN Philadelphis Pa. WXUC Annapolis, Md. WXUR-FM Media, Pa. WXYZ-FA Dotroif, WY日C- FMrasota, Fla. New, Haven, Conn WYCA Hammend, Ind. WYCE Warwiek. R.I. WYCR York. Hanover, Pa, WYFI Norfolk, Va.WYFM Charlotte. N.C. WYFS Winston-Salem. A.C WYSO Yellow Springs, Ohio W Y 22 Wilkes-Barre, Pa W2FM Jacksonvills, Fla.
WZIP.FM Cincinnatl, Ohio

Canadian FM Stations by Location

Location Brampton, Ont. Brantford, Ont. Cornwall, Ont. Edmonton, Alta.		Me.	Locotion	C.L.	Mc.	Lecotion	6.4	Mc.	Locotloa	C.L.	Mc.
	CHIC-FM	102.1		CXLC.Fm	99.5	Ottawa, Ont.	CBO.Fm	103.3		F.RB.FM	
	cjss	104.5		CKWS-FM	96.3		CFRA.FM	93.9		CHFI.FM	98.1
	CFRN-FM	100.3	Kitehener, Ont.	CKCR-FM	96.7	Quebee, Que.	CHRC-FM	98.1		CJRT.FM	98.1
	CJ	99.5	Leihbridge, Alta.	CHEC-FM	100.9	Rimouskl, Que.	CJBR.FM	101.5	Vancourver, B.C.	CBU.FM	105.7
Ft. William. Halifax, N.s. Kingston, Ont.	CKUA.FM	98.1	London, Ont.	CFPL.FM	85.9	St. Catharines,				CHOM.FM	105.7 103.5
			montreal, Que.	CBF.FM $C B M-F M$	85.1 1007		CKTB.FM	87.7	Verdun, Que.	CKVL.FM	96.8
	CHNS.	96.1		Bm		Sher	CHLT.FM	102.7	Vietoria, B.C.	CKDA.FM	98.5
	CFRC.FM	91.9	Oshawa, Ont.	CKLB.Fm	10.7	Timmins, Dnt	CKGB-FM	94.5	Windsor. Ont.	CKLW-5M	93.9
				CKLB.Fm	93.5	Toronto, Ont.	CBC.Fm	99.1	Winnipeg. Man.	cJob	87.5

U. S. Television Stations

Territories and possessions follow states. Chan., channel number; asterisk (*)/indicates educational station.

cation	C.l. Chan.	Location C.L. Chan. L	Location	C.L. Chan.	Location	C.L. Cha	
Lewiston	KLEW.TV	MASSACHUSETTS	NEW	MEXICO	Medtord Portiand	KMED.TV KGW.TV	
Twinfalls	KLIX-TV !	Adams - WBZ.TV ${ }_{4}^{19}$ A	Albuquerque	KGGM.TV 13		KMHTV 27	
ILLINOIS		WGBH.TV		KOAT.TV KOB.TV	Rose bure	KPPV ${ }_{\text {KPIC }}$	
Carbundalo Champaign	$\begin{array}{ccc} \text { WSIU.TV } & 8 \\ \text { WCIA } & 3 \end{array}$		Carlsbad Clovis	$\begin{array}{ll} \text { KAVE:TV } & 6 \\ \text { KVEA:TV } & 12 \end{array}$	PENNSYLVANIA		
Chicago	BM.TY 2	Springfield WHYN.TP ${ }^{\text {W }}$ WW ${ }^{\text {a }}$		KSWS.TV	Altoona	FBG. TV 10	
caso	WEK 7	Worcester WWOR.TV 14	NEW	YORK	Ería	Wicu 12	
		MICHIGAN A	Albany	WTEN 10	Harris burg	55	
Danville	WICD 24	Bay city WNEM.TV ${ }^{5}$		WTRI 35	Johnstown	ARD.TV 56	
Oeeatur	WSTVP 17					WGAL.TV ${ }^{6}$	
Harrisburg	$\text { WSIL.TV }{ }^{3}$	Cheboygan WTOM. TV ${ }^{4}$ Detroit WJBK.TV 2	Binghamton		Lebasaster	WLVH:TV 15	
Peoria	WEEK.TV 43		Bufalo	WBEN.TV ${ }^{4}$	Lockhaven	WBP2-TV ${ }^{32}$	
	WMBD 31		-	WNED.TV ${ }^{17}$	New Castio	${ }_{\text {CASIM }}$	
Quincy	WGEM.TV 10	(Windsor, Ont.) CKLW.TV		WKBW-TV ?			
Rockiord	WXETV 13		Carthage	WCNY-TV ${ }^{\text {WSYETV }}$		HY	
ck 13land	WHEF.TV ${ }^{4}$		Now York	WABC:TV 7		RC	
Springfield	WILL.TV ${ }^{20}$	Lansing WIIM.TV		NEW.TV	Pittsburgh	KDKA.TV	
	WILL.TV 12			WOR.TV			
INDIANA		Saglnaw WKNXTV 57				1	
inton	WTIV ${ }^{4}$	MINNESOTA	Plattsburg	4	Scranton	NEP.TV 16	
nerlill	WSIV-TV 28		Rochester	5		DAU.TV ${ }^{\text {PRE }}$ NV ${ }^{28}$	
	WEHT 50			WVET-TV 10	York	43	
		Austin ${ }^{\text {Lem }}$	Scheneetady	WHEN.TV ${ }_{8}^{6}$	RHODE ISLAND		
Ft. Wayne	WANETV.TV 33	Duluth KDAL		SYR.			
Indiasapolis	$\text { WFBMTA } 21$	Mankato Minneapolis KEYC.TV 12 KMSP 9	Ut	WK	Providen	$\begin{aligned} & \text { WJAR.TV } 10 \\ & \text { WPRO:TV } 12 \end{aligned}$	
	WLWI ${ }^{\text {S }}$	WCco.TV ${ }^{4}$	NORTH	CAROLINA	SOUT	AROLINA	
yot	WFAMCTV 18	Rochester KROC.TV 10	Ashevillo	WISE.TV 62	Anderson	WAIM.TV 40	
Mouth Bend	WLBC-TV 49	St. Paul KSTP.TV ${ }^{5}$	Chapel	WUNC.TV ${ }_{4}$	Charleston	CSSC-TV 5	
re Haute	$\begin{array}{lll} \text { WSBTHV } \\ \text { WTHI.TV } & 10 \end{array}$	MISSISSIPPI	Char	$\begin{array}{ll} i v & 3 \\ v & 9 \end{array}$	Clem	$\begin{aligned} & \text { WUSN.TV } \\ & \text { SBFFFM } \end{aligned}$	
JOWA				,		CCA.TV 25	
		Greenwood WABG.TV ${ }^{6}$		NC		NOK.TV ${ }^{67}$	
Ames Cedar Raplds	KCRG.TV	Jackson WITV 12	Rajelgh Washington	RALTV	Florence Greenville	wFicc.TV	
	WMT.TV	Laurel WOAM.TV	Wilminaton	wsis.TV 12			
Des moines	KRNT.TV	Meridian WCOC.TV 80		WSJ.TV 12	SOUTH	DAKOTA	
	PS.TV -11	Tupelo WTWV	NORTH	DAKOTA	Aberd	KXAB-TV 9	
Fort Dodoe	21	MISSOURI	Bi	кхmb-TV 12	Dead		
	KOTV ${ }^{3}$			2	Mitche		
Stioux city	KTV	Columbia KOMU.TV	${ }_{\text {Fargo }}$	WDAY-TV 6	Rapid City	KOTA.TV	
Waterloo	KWWL.TV			KxGO.TV KNOX.TV 10	Rellar	KPLO.TV 6	
		Joplin K KODE-TV 12	Minot	3	Stoux	ELO.TV 11	
		Kansas City KCM		12	Vermilion	So.tV	
Ension	KTVC KGLO 18	KM KCC.TV		$\begin{aligned} & \text { kxıs.V } \\ & \text { kumbit } \end{aligned}$	T	ESSEE	
Goodland	WHTOV 10	Kirksvllie			Chattanooga	OEF.TV 12	
Grast	KCKT	Poplar Bluff, Mo. KPOB-TV ${ }^{\text {IS }}$		HIO	Chatlanoosa	RGP.TV 3	
Hays Hutichinson	KTVH 12	St. Joseph KFEA.TV ${ }^{\text {St. }}$ Louls	Akron	WAKR.TV 49		WOXI.TV ?	
Pittsturg	KOAM.TV 7	s. kmox.TV	Cincinnati		${ }_{\text {jachson }}^{\substack{\text { jochson }}}$	WJHL.TV 11	
Topeka Wichita		KSO.TV		$\begin{aligned} & \text { WCPO.TV } 99 \\ & \text { WKRC.TV } 12 \end{aligned}$	Knoxrilio	WATE.TY ${ }^{\text {a }}$	
hita	$\begin{aligned} & \text { KAKE.TV } \\ & \text { KARD.TV } \\ & \hline 10 \end{aligned}$	TV1 ${ }^{\text {TV }}$		WLW.T		WBiR-TV ${ }^{10}$	
KENTUCKY				$\mathrm{WCINW.TV}_{3}$	Memphis	WHBQ-TV 13	
Lexinuton	EX.TV 18	ANA		TV			
Loulsplile			Columbus	WNSTV 10	Nashulite	WREC-TV	
	WFPK.TV ${ }^{3}{ }^{3}$	Billings к00k.		Su-tV *34	Nasturio	WSIX:TV	
	WHAS.TV II	Billngs ${ }^{\text {KGHL}}$		WTYN.TV ${ }^{6}$		WSM-T	
Pa	WPPSL.TV 61		Dayton	WHIOTV ?		XAS	
LOUISIANA		Great Falls KFBB-TV	$\underset{\text { Oxfor }}{\text { Lima }}$	WMMA.TV 35	Abile	KRBC.TV ${ }^{\text {9 }}$	
Alexasdria	KALB.TV	Helena KbLL-TV 12	Steu	STV-TV 9	Amarillo	KFOA.TV	
Baton Rouge	WAFB.TY 28	Kalispell Missoula KMSO.TR 9		WSPTE.TV -30		GNC.TV	
	KLFY-TV 10	NEBRASKA	Youngstown	WTOLTV II	Austin	KTBC.TV	
Lake Cha	KPLC-TV ?			KBN-TV 27	Big Spr	KEEOY.TV	
Monrce	KTAG.TV 25	Grand Island Hastings KGINsTV KHAS.TV 1		KST.TV 33	Bryan	K K X - TV	
	KLSE ${ }^{13}$	Hay springs KDUH-TV 4	Zanesvil	WHIZ.TV 18	Corpus Christi	KZSV ${ }^{6}$	
New Orieans	WVUE ${ }^{6}$	Hayes Center Kearney			Dallas	KRLD	
	WWL	Lincoln KOLN.TV 10				KERA	
Shroveport	KSLA.TV 12	McCook KUN.M KOMC	Add ${ }^{\text {Ardmore }}$	KIEN KXII 12	El Paso	KELP K K ${ }^{\text {K }}$	
	KTBS-TV 3	North Platte KNOP	Enld	KOCO.TV 5		KRTSM	
MAINE		Omaha KMTV	${ }_{\text {Law }}^{\text {Lawton }}$ Oklahoma Cit	$\text { KETA : } 13$	(Ciudad Juarez	mex.) XEJ.TV	
Augusta	[88	Scottsbluft NEYADA KSTF 10		$\begin{array}{ccc} \text { KOKH.TV } & 25 \\ \text { KWIV } \end{array}$	ft. Worth	WBAPTVT	
	WLBZ.TV			KY.TV	Harlingen	KGBT-TV	
Poland Spring Portland	WHTW.TV ${ }^{8}$	Henderson NEVADA	Tulsa	Kobotv -i	Houston	KPRC.TV KHOU.TV	
Presaus Ialo	WGAN-TV ${ }^{13}$	Las vesas KLAS.TV		KVOO.TV		KTRKTV !	
MARYLAND		Reno KOLOTV 8	OREGON		Laredo Lubbock	KGNS.TV	
Baltinore	WJZ-TV 13		NEW HAMPSHIREDurhamManchestor WENH-TV - IINEW JERSEYNowarkWNTA.TV I3	Corvallis	KOAC		KT
	WMAR.TV 2					K	
TSaliskury	wBoc-ty 16			KOAP.TV	O	kosa.tV	
84	do	Klamath		KBES.TV		Knt	

Location	C.L. Chon.	Locotion	C.L. Ch		Location	C.L. Ch		Location	C.L. Ch	
Riehardson San Angolo	KAET.TV 23 KCTV		N1A		Tasoma	KTNT.			WISC.T	3
San Antonio	KUAL.TV 41	Bristol	WCYB-TV	5						27
	KENS-TV ${ }^{5}$	Hampton	WVEC-TV	13		KTV		Marinette	WMBV.TV	11
	KLRN •g	Harrisonbury	WSVA-TV	3	Yakima	KIMA-T		Milwauke	WISN.T	12
	KONO-TV 12	Lyachburg	WLVA-TV	13		KNDO.T			WITI.	6
	WOAI-TV 4	Norfoik	WHROTV	15					WMVs.TV	
Sweotwater Tomple	KPAR.TV 12 KCEN.TV	Potersb		8 8	WEST	VIRGINIA			WTMJ.TV	4
Texarkana	KTAL.TV	Portsmouth	WAVY-TV	10	Bluefeld	WHIS-TV		Wausau	WSAU*TV	7
Tyler	KLTV	Richmond	WRYA.TV	12						
Waso	KWTX-TV 10		WTVR	6	Clarksburi	WBOY-TV	12		APNG	
Weslace WIehita Falle		Reanoke	WDBJ-TV wSLS.TV	${ }^{7}$		WJPB-TV				
Wehita Falis	$\begin{array}{ll} \text { KFDX.TVV } \\ \text { KSYD.TV } & 3 \end{array}$		wSLS.TV		Huntington	WHTN.TV WSAZ.TY	13	Chayenne	$\begin{aligned} & \text { KTWO-TV } \\ & \text { KFB-TV } \end{aligned}$	2
		WAS	GTON		Oak	WOAY-TV		Riverton	KWRB-TV	${ }_{0}$
Ogden	KVOG-TV 9	Belllogham	vos.tV		Wheoling	WTRF-TV	7		RICO	
	KWCS-TV "18	Paseo	KEPR.TV	19				Aquadilla	WOLE.TV	
	KLOR-TV II	Riehland	KNDD-TV	25	WIS	ONSIN		Crguas	WKBM-TV	1
salt Lake City		Seattio	KCTS.TV	${ }^{9}$		WEAU		Mayaguez	NORA-TV	5
-			SING.TV	5	Eau Clairs					3
			K1RO-TV	7	Gresn Bay	$\begin{aligned} & \text { WBYFTV } \\ & \text { WFRV } \end{aligned}$	2	Panes	WRIK-TV	8
		Spokane	HQ.TV			LUK-TV		San Juan	WAPA.TV	
			KREM-TV	2	rosse	WKBT	8		WIPR-TV	6
Burlinaton	WCAX-TV 3		KXLY-TV		Madison	WHA.TV			WKAQ-TV	

Canadian Television Stations

World-Wide Short-Wave Stations

Most infernational broadcasting is done within frequency limits agreed upon of international conventions. These frequency ranges are listed here, of the right, expressed both in frequency and by meter bands (wave-length).

Reception in the various bands varies according to the time of day and season of the year. Reception in the 60, 49 and 41 meter bonds is best at night during the winter months. Reception in the 31 and 25 M . bands is best at night, but all year. Reception in the 19, 16, 13 and 11 M . bands is best during the day, also af night during the summer in the 16 and 19 M . bands.

Abbr.: AIR-All India Radio; RAl-Radiotelevisione Italiana; RTF—Radiodiffusion Television Francaise; VOA-Voice of America; FFE-Radio Free Europe. - denotes stations beaming evening IU.S. timel broadcasts to the U.S., †morning or ofternoon broadcasts.
Kes. Call and Location 4830 HCGBI. Quito, Eeua. 4765 HJEF, Call, Col. 4770 ELWA, Monrovia, Lib. 4775 Librovili Gabon Rep. 4700 YVLA, Vilencia, Von. 4790 YVQN, Puerto La Cruz, 4795 Ranjoon, Burma 4805 ZYS8, Manaus, Braz. 4810 YVMG, Maracaibo, Von. 4830 YVOA, San Cristobal.
4835 HJKE, Eogota, Col. 4840 Lourence Marques, Moz. 4840 Y VOI, Valera, Ven. 4845 HJGF, Buearamania, Col. 4850 YVMS, Barquisimato.
4870 Cotonou, Dahomay Rop. 4880 YVKF, Caracas, Von. 4893 Dakar, Mall F'ed. 4895 PRFG. Mancus, Braz. 4898 HJAG, Barranquilla, Col. 4900 YVKP, Caraeas, Von.
4905 HRQN, Puort Cortes,

Kes. Call and Location 4910 HCIMI, Quitm. Esua. 4910 Gonakry, Guinea 4915 Cenakry, Guit
4920 VLM4, Brisbane, Aus. 4920 YVKR, Caracas, Von. 4930 HCIRC, Quite, Eeva. 4930 HCIRC, Quite, Eeua. 4930 Abidjin. Ivory Coast 4940 YVMO. Barguisimeto,
4945 HJCW, Bogota, Col. 4945 Paradys So. Afr. 4950 YVMM, Coro, Von. 4955 CRGRZ, Luanda, Ang. 4960 YVQA, Cumana, Ven. 4970 YVLK, Caracas, Ven. 4975 Yaounde Cameroun 4990 La os, Nigerim 4990 La 0 Os, Nigerimislmato. 5010 HCRCX, Quito, Eeua. 3010 St Georgs, Granada,
3020 HJFW, Manizales, Col. 5020 Niamoy. Niger Rop. 5030 YVKM. Caraces, Von.

Kcs.	Call and
5040	YVNA, Mar
5045	Lome, Toc
5050	YVKD, Carac
5075 5878	HJGC, Bo
5878	HRM, Teg
59	TGNA, Guater
596	
5965	YNWw, Gran
80	TGAR, Gua
5981	Geergotown, Br, G
82	B,
5990	
90	TGJM, Guatemaia. Gu
5995	Fort-do-F
60	4VEC, Cap Hal
6005	RIAS, Berlin.
	Jos
6010	
	PR
6020	Amman, Jo
8020	Kiev, Ukrainian 8
	umpur.
602	Hilvorsum,

METER BANDS

4750 to $5060 \mathrm{kc} / \mathrm{s}$ (60 meter band) 5950 ta $6200 \mathrm{kc} / \mathrm{s}(49$ mefer band) 7100 to $7300 \mathrm{kc} / \mathrm{s}(41$ meter band) 9500 to $9775 \mathrm{kc} / \mathrm{s}$ (31 meter band) 11700 tc $11975 \mathrm{kc} / \mathrm{s}(25$ mefer band) $15100 \mathrm{fc} 15450 \mathrm{kc} / \mathrm{s}$ (19 meter band) 17700 to $17900 \mathrm{kc} / \mathrm{s}$ (16 meter band) 21450 to $21750 \mathrm{kc} / \mathrm{s}$ (13 mefer band) $25600 \mathrm{fc} 26100 \mathrm{kc} / \mathrm{s}$ (11 mefer band:

©035 HRTL, Tegueigalpa,
6037 TIFC, San Jose, C. R.
6037 TIFC, San Jose, C. R
6037 Mont: Carlo, Mon.
6040 HJLB, Ibague, Col.
5045 YDF; Djakarta, Indon. c045 HOU3I, David, Pan. 6050 HCIB, Qulto, Eeua. E050 B BC, London. Ens. 3055 JOZ2, Tokyo, Japa 5055 J022, Tokyo, Japan 6065 XEXG, Leon, Mex. 6065 XEXG, Leon, Me
6065 Horby, Sweden
6070 Sont, Bulgaria 6070 BEC, London, Eng. 6075 Norden. Ger. Eng. 6060 Z L7. Wellington, N. z 6082 OAX4Z, Lima, Paru ${ }_{6090} \mathbf{0}$ VLIG, Sydn.
6000 Luxembourg. Lux.

Kes. Call and Location
6090 XECMT, C. Ei Mante,
1.

6095 2YB7. Sao Paulo, Braz
6100 YOA, Munich. Ger
6100 Belprade, Yugo.
6103 Peking, China
6105 XEQM. Merida, Mex
6105 Tunis, Tunisia
8110 BBC. London, Eng.
6115 2YC7, Rio de Jan., Braz.
6115 Khabarovsk, U.S.S.R.
6120 LRXI, Buenos Alres
6120 BBC . LImassol. Cynrus
6130 Port Moresby. Now Guinea
6130 Madrid/ Spain
6135 HRMF, La Ceiba, Hond.
6135 Papecte, Tahitl
6135 Singapore. Sing.
6140 HCOV5, Azogues, Écua
6140 VLWG, Perth. Aus.
6145 Algiers. Algeria
6147 PRL9, Rio de Jan., Braz.
6150 VLRG, Melbourne, Aus.
6150 BBC , London, Ens.
6155 4VWA, Cap Haltien,
Haiti
GI55 VOA. Salonika, Greece 6l60 HJKJ, Bogota, Col 6160 FEN, Tokyo, Japan 6165 HERS, Bern, Switz. 6165 XEWW. Mexico City,

6165 Saigon, Vietnam
6170 BBC, Limassol, Cyprus
G170 RTF Paris, Grance
b180 BBC. London, England
6185 HJCT. Bogota, Col
6190 VOA, Munich, Ger.
b190 HVJ, Vatican City
195 HJEZ. Cali. Col.
6195 HRD2. La Ceiba, Hond.
6195 Pyongyang, N. Korea 6200 H12LR, C. Trujilio. D.R. 6200 4VHW, Port-au-Prince,
6208 TGHC. Guatemala, Guat.
6215 Pyongyang, N, Korea
6225 Pekine, China
6305 Andorra, Andorra
G327 COCF, Havana, Cuba
6345 Ulan Bator, Mons.
6373 Lisbon. Port.
6790 BBC, Limassol, Cyprus
7105 Madrid, Spain
7110 VOA, Colombo, Ceylon
7110 BBC, London, Enpland
7115 Rabat, Morocco
7115 RFE, Germ.
315 RFE, Germ.
7120 BBC. London. England
7120 BBC. Singapory
7125 Warsaw, Poland
7125 Warsaw. Poland
7140 Monte Carlo. Mtonaco
7145 RFE Ger
7145 RFE, Ger.
7150 Khebarovsk, U.S.S.R.
7160 RTF. Parlis, France
7160 VOA, Tangler, Mor,
7165 RFE, Germ.
7170 Aloiers, Alg.
7180 Baghdad. Iraq
7185 BBC. London. Eng.
7200 BBC, London. Eng.
7200 R. Malaya, Sing.
7200 Omdurman, Sudan
7205 VOA. Salonika, Gr
7210 BBC. London. Eng
7210 Dakar, Mali
7210 Dakar, Mali Fed.
7210 Khabarovsk. U.S.S.R.
7220 LD7, Melbourne. Aus.
7220 Budapest. Hung.
${ }_{7235}^{7230}$ BRC. London. Eng. Talwan, Chlna
7235 Taipel, Talwan, Chlna
7235 VOA, Munich, Ger.
7235 VOA, Munich, Ger.
7240 RTF, Paris. France
7240 RTF, Paris. France
7250 B8C, London. Eng.
7250 BBC, Londo
7255 Sofa, Bule.
7255 Sofia, Bule.
7260 Saigon. Vietnam
7270 Motola. Sweden
7270 Magadan, U.S.S.R
7270 Magadan, U.S.
7275 RAI . Rome. It.
7280 Teheran. Iran
7280 HVJ. Vat. Clly
7290 RAI, Rome, It.
7290 RAI, Rome, It.
7295 RFE, Ger.
7320 BBC, London, En
7320 BBC, London, Eno.
7398 Damaseus. U.A.R.
7505 Peking. China
7650 YNMS, Leon, Nic.
7670 Sona, Bulo.
7850 Tirana, Alh.
$8900 \mathrm{HCJC3}$, Zaruma, Ecua
9020 COBZ Hama Cub
025 Peking Chin Cub 9065 Peking. China
9360 Madrid Spain 9363 COBC, Havana. Cub 9380 Alma Ata, Kazakh S.S.R. 9385 Leopoldvilite, Conpo 9410 BBC. Londón. Eng.
9440 CP38, La Paz. Bol.

Kes. Call and Location 9458 Peking, China 9500 XEWW, Mexleo City
9500 Mapadan, U.S.S.R
9500 Moscow, U.S.S.R. 9505 PRB22. Sat Paulo. Braz. 9505 Rabat, Mor
9505 HOLA, Colon, Pan.
9510 Peking, China
9510 VoA, Tangier. Mor.
9515 RA1, Caltanissetta, It
9515 Ankara, Turkey -
9520 Colombo, Ceylon
9520 Copenhagen, Den.
9520 VOA, Salonika. Gr.
9520 OAXBE, Iquitos, Peru 9523 Paradys S. Afr
9525 BBC, LOndon, Eng.
9525 JOB9, Tokyo, Jap
9530 COCO, Havana, Cuba
9530 VOA. Munich, Ger.
9530 AlR. Dethi, india
9530 VOA Courier. Rhodes 9530 YVMZ, Maracaibo, Ven. 9535 Lagos, Nigeria
9535 VOA, Manila, P.I.
9535 HER4, Bern, Swliz. *
9540 2L2. Wellington, N. 2
9540 Warsaw. Poland
9540 Omdurman. Suran
9545 ZYS43, Curlitiba, Braz.
9545 HED5, Bern, Switz.
9950 Prague. Czecho. ©
9550 AlR. Bombay, Indla
9550 OAXI2. Tumbes, Peru
9555 CP6, La Paz Bol.
9555 BBC. London. Eno.
9555 XETT, Mexico City, Mex. 9560 RTF, Paris, France
9560 Tokyo, Japan
9563 OAX4R. Lima. Peru 9565 ZYK3, Recife, Braz. 9565 Radio Liberty. Ger.
9565 Khabarovsk. U.S.S. R. 9570 Bucharest, Rom. 9575 ZYZ27. Rio de Jan, Braz. 9575 Talpel, Formosa
9575 RA1. Rome, Italy -
9580 VLA9, Melbourne. Aus.
9580 BBC, London. Eng. 9585 2YRS6, Sao Paulo, Braz. 9585 RTF, Parls. France 9588 Peking, China
9590 D jakarta, Indon.
9590 Hilversum, Noth.
9590 Bucharest, Rom. -
9595 JO23. Tokyo, Japan
9598 CE960, Santiago, Chile 9598 CE960, Santiago, Chi
9600 BBC. London. Eng. 9605 Cologne, Gier.
9607 Athens, Greece
9610 YLXP. Perth. Aus,
9610 2YC8, Rlo de Jan., Braz. 9610 Oslo, Norway 9
9610 OAX8C. Iquitos, Peru 9615 VOA, Tangier, Morocco 9620 Y YR98, Sa0 Paulo, Braz. 9620 Peking, China
9620 VOA. Tangier. Mor.
9620 Salgon Vietnam
9625 Brazzaville, Enuat. Un.
9625
9625 OAC, London, Eng.
9 , Iquitos, Peru
9625 OAX 8 K, Jquitos,
9630 CRGRL, Luanda, Ang.
9630 VLG9, Molbourne. Aus.
9630 RAI, Rome. Italy
9630 Komsomolsk, U.S.S.R.
9635 2YR83. ADarecida. Braz.
9635 YOA, Munlch, Ger.
9635 Lisbon, Portugal ©
9640 Cologne, Germany.
9040 Acera, Ghana
9640 Moscow. U.S.S.R.
9645 TFFC. San Jose, C.R.
9645 HVJ. Vatcan City
9655 Radio Free Eurone
9655 Radio. Free Eurane, Ger,
9660 LRX. Buenos Ares, Arg: 9660 VLO9, Brisbane. Aus. 9660 Radio Liberty.
9660 Teheran, Iran
$\mathbf{9 6 6 0}$ Komsomolsk, U.S.S.R.
$\mathbf{9 6 6 5}$ Moscow. U.S.S.R. 9667 Hargels. Somali
9667 TGNA, Guatemala, Guat. 9670 COCQ. Havana, Cuba 9670 Cocq. Havana, Cuba 9670 Prague. Czecho.
9675 RTF, Paris, France 9675 RTF, Paris, France
9675 JOB9, Tokyo, Japan 9675 OB9, Tokyo, Japan 9680 VLH9, Melbourne, Aus. 9680 XEQQ, Mexico City, Mex 9680 VOA, Tangier, Mor. 9680 Paradys, S. Afr. 9685 Algiers, Algeria
9690 LRA, Buenos Aires

Arg.
9690 BBC . London, Eng.
9690 BBC, Singapore
9700 Sona. Bulgaria -
9700 Rahat, Mnrneco

Kes

9705 Brussels, Belg

9705 AlR, Delhi, India
9705 Radio Free Europo, Port. 9710 BBC, London, Eng.
9710 RAl, Rome, $1 t$.
9715 Hilversum, Neth.
9715 Radio Free Europe, Ger.
9720 Paradys, S. Afr
9725 Tel Aviv, Israel
9725 RFE, Port
9725 BBC, Singapore
9730 Brazzaville, Equat. Un.
9730 Leipzle. E, Ger.
9730 OZH7, Mantla,
9735 Peking, China
9735 BBC, London. Eng.
9735 Cologne, Germany
9735 Alf, Madras, India
9740 VOA, Tangier, Mor.
9742 LRSI, Buenos Alres, Arg.
9745 Brussels, Beta
9745 HCJB, Quito, Ecua.
9745 Ankara. Turk.
9745 Moscow, U.S.S.R.
9750 BBC . London. Eng.
9750 Radio Free Eurode. Port.
9750 Khabarovsk. U.S.S.R.
9755 2YW23, Goianla, Braz.
9755 RTF. Parls, France
9755 Saigon, Vietnam
9760 BBC . London, Eng.
9765 Moscow, U.S.S.R.
9770 Brazzavills, Equat. Un.
9770 BBC, London. Eng.
9775 Moscow. U.S.S.R.
9795 Cairo, U.A.R.
9800 Mloscow. U.S.S.R.
9805 Cairo, U.A.R.
9825 BBC, London, Enq. -
9833 Budapest, Hung. ©
9840 Hanoi, N. Vietnam
9850 AlR. Delhi, India
9860 Peking, China
9870 D Jakarta, Indon.
9895 Bengazi, Libya
9915 BBC, London, Eng.
9973 Petting. China
10335 Ulan Bator, Mong.
10530 Alma Ata. Kazakh S.S:R.
11290 Peking, China
11570 Moscow, U.S.S.R.
11600 Peking, China
11630 Moscow, U.S.S.R.
|1650 Peking, China
11675 Peking, China
11675 Karachi. Pak.
11680 BBC . London. Eno.
$l 685$ HVJ, Vat City
1690 Moscow. U.S.S.R. ©
1700 RTF. Parls, France
1705 jOAil. Tokyo, Japan
11705 Horby. Sweden
11705 Moseow. U.S.S.R.
11710 VLBI!. Melbourne, Aus, t
11710 AlR, Delhi. Indla
11710 WBOU. Now York
11710 WBOU, New York, N.Y
11715 VOA, Munich, Ger.
11715 Moscow,
11715 Moscow. U.S.S. R.
1717 Athens, Grease
1720 Erazilia, Brazi
1720 BBC, Limassol. Cyprus
11725 Brazaville, Equat. Un,
1725 Praque. Czecho.
1725 BBC. Singapore
11730 Hilversum, Neth.
II735 Mloscow. U.S.S.R.
11735 Moscow. U.S.S.R. Aus
11740 CEII74, Santiago, Chile
11740 CE174. Samiago, Chile
11740 VoA. Tangier,
1740 VOA. Tangier, Mor.
11745 RFE. Germ.
11750 BBC, London. Eng.
11750 FEN. Tokyo. Japan
1755 RFE, Port.
11755 Hilversum, Neth. ©
11755 Komsomolsk. U.S.S. R.
1760 VLBII, Melbolirne. Aus
11760 YOA. Munleh, Ger.
11760 Lourenco Margues, Moz.
11760 Lourenco Marques, Moz.
11760 Hanoi, N. Vietnam
11765 YYB8, Sao Paulo, Braz 11765 ZYB8, Sao Paulo, Br
11765 Berlin. E, Germany 1765 Berlin. E. Germany
11770 Colombo, Ceylon 11770 Bel ${ }^{1} 170$. Ceylon 11775 2 YZ28, Rio de Jan., Braz. 11775 Moscow. U.S.S.R. 11780 BBC . London. En
11785 DJakarta, Indon.
11785 VOA . Tangier. Moroce
11790 B8C. London. Eng.
17890 B8C, London, Eng.
11790 YOA. Manila. P.I.
11790 Moscow. U.S.S.R.
11795 Cologne, Ger.
11795 D jakarta. Indon
11800 BBC London, Eng.
11805 RAl. Rome It.
11805 VOA, Courier, Rhodes
11810 YLBil, Melbourne, Aus. \dagger
11810 RAI, Rome, It.
11810 Amman, Jordan

Kes. Call and Location
11810 Horby, Swaden -
11815 Madrld, Spain
11820 Pekíne, China
11820 BBC, London, Eng.
11820 XEBR., Herriosillo, Mex.
11825 ELWA, Monrovia. Litb.
11830 Moscow, U.S.S.R.
11835 Algiers. Aig.
11835 VOA, Colombo, Ceylon
11835 CXA19, Montevideo. Urug.
11840 Prague, Czecho.
11840 VOA, Tangier, Mor.
11840 Lishòn, Port. U.E.
11840 Khabarovsk, U.S.S.
1840 Hanoi N. Vietnam
11845 RTF, Paris, France
11845 Karachi, Pak.
11850 Sorta, Bulo.
11850 AlR, Bombay, India
11850 Oslo. Norway -
11855 Radio F'ree Europe, Ger.
${ }^{1} 1855$ DZH8, Manila,.P.i
11860 Peking, China
11860 BBC, London, Eng.
11860 Moscow. U.S.S.R.
11865 PRAB, Recife, Braz.
11865 VOA, Tangier, Mor.
11865 HER5, Bern, Switz, -
11865 Tunis, Tun.
11870 Moscow. U.S.S.R.
11875 2YN32. Salvador. Braz.
11875 VOA. Colombo. Ceyion
11875 VOA, Tangler, Mor,
11880 BBC, London. Eng.
11880 XEHH, Mexlco CJIy, Mex
11885 Peking, Chlna
11885 Karachi. Pak.
11885 Radio Free Europe, Ger,
11890 Moscow. U.S.S.R.
11895 Dakar, Mali Fed,
11895 VOA. Tangier, Mor
11895 VOA. Manila, P.I.
11900 Bucharest, Rumania ©
11900 CXA 10 . Montevideo. Ur.
11900 Moscow. U.S.S.R.
11905 RAl. Rome, Italy © U.S.A.
11905 WDSt. New York, U.A.
11910 B BC, London. Eng.
11910 Budapest. Hung.
11910 Bangkok. Thai.
11910 Bangkok. Thai.
11915 HCJB, Quito Ecua. -
11915 H llversum, Neth.
I 1920 RAI. Paris. France
11920 DXF2, Manila, P. 1.
11920 WLWO. Cincinnati
U.S.A.
Braz.

11925 2YR78, Sao Paulo, Braz.
11925 HLK6. Seoul, Korea \dagger
11925 HLK6, Seoul, Korea
11925 Warsaw, Pol.
I 1925 Moscow. U.S.S.R.
1 1930 BBC. London, Eng.
11930 BBC, Singapore
11935 Radio Liberty. Ger.
11940 CE 1190, Valparalso, Chlle
11940 JOB11.
11940 J0811, Tokyo, Japan
11945 Peking. China
11945 BBC,
11945 BBC London, Eng.
11945 Cologne. Germany-
11945 Cologne. Germany
11950 Warsaw. Poland
11950 Jidda, Saudi Arab.
11950 Moscow, U.S.S.R.
11955 BBC. London. Eng
11955 BBC, London. Eng.
|1955 BBC. Singapore

Kes. Call and Location
15130 VOA, Manila, P.I. 15130 KCBR Delano, Callf. 15130 M BOU. New York, USA 1530 moscow. USSR 15135 PRB23, Sao Paulo, Braz. $\$ 15135$ Jobis, Tokyo, Japan 15135 Radio Free Europe, Port. 15140 Peking. China
15140 BBC, London. Eng.
15140 AlR, Oelhi
15140 AlR, Oelhi. India
15140 Komsomolsk, USSR
15405 Komsomolsk, USSR
15145 Y 33 . Recife, Brazil 15145
15145 Radio Free Europe, Port. 15148 CE 1515 , Santiado, Chilo 15150 OJakarta, Indonesia 15150 Lourenco Marques, Moz. 15150 Liston, Portugal 15150 Moscow. USSR 151552 YB9, Sao Paulo, Brazil 15155 Karach\}, Pakistan 15155 VOA, Manila, P.I 15155 WBOU, NAW YOKK, USA 15155 Moscow. USSR 15160 VTAlS, Melbourne, Aus. 15160 XEWW, Mexico City 15160 Ankara, Turkey City, Mex. 15160 Mnkara, Jurkey
15165 ZYN7, Fortaleza, Braz. 15165 Copenhagen, Oenmark 15170 Tromscus. Norway 15170 Tromso, Norway 15170 OBX4C, Lima, Peru 15170 Radio Free Europe, Port. 15175 Oslo, Norwaya
15180 BBC , London, Eng.
15180 AlR, Delhi, India
15180 Moscow, USSR
15185 Radio Manila, P.1. Free Europe, Port. 15185 WDSI. New York, USA 15190 Brazzavillo, Congo Red.
15190 Komsomolsk. USSR 15190 Moscow, USSR 15195 rayue. Czecho 15195 Radio Free Europe, Ger. 15195 Ankara, Turkey 15200 WOS Wy 15200 MOSI, New York, USA 15205 XESC. Mexico 15205 WOSC, Mexico City, Mex. 15210 VLG15, Melbourie, Aus. 15210 VOA, Manila, P.I. 15210 KCBF, Delano, Cal., USA 15215 Moscow. USSR 15215 Rodio Free Europe. Port. 15220 Hilversum Neth 15225 Taipei, Taiwan, Chln 15225 Radlo Liberty, Germany 15225 Moscow, USSR
15230 VLHI5, Mielbourne, Aus. $15230 \vee 0 \mathrm{~A}$, Colombo, Ceyion 15230 BBC, London. Eng. $15235 \vee 0$, Tangier, Morocco 15235 Komsomolsk Moroct $i 5240$ VLASS, Melbourne, A 15240 Horby, Sweden
15240 Belgrade, Yugoslavia
15245 ZYE21 Belem, Brazil
15250 VOA, Manila, P. 1 .
15250 Bucharest. Rumania -
15250 WLWO, Clncinnati, USA
15255 Radio Free Europe, Port.
15257 FEN. Tokyo, Japan
15260 BBC , London. England
15265 Colombo, Coylon
15265 Moscow, USSR
15270 Peking, China -
15270 AlR. Bombay, indla
15270 VOA . Tangier. Morocco 15270 W 80 U. New York. (VOA) 15270 W DSI; New York, USA 15275 Cologne, Gormany
15275 Karachi, Pakistan
15275 VOA, Manila. P 15275 VOA, Manila. P.I.
15275 Warsaw. Poland. 15275 Warsaw Poland - ${ }^{\dagger}$.
$15280 \mathrm{ZL4}$, Wellington, N, Z. 15280 Moscow, USSR 15285 Brussels, Beloium 15285 Prague, Czecho. 15285 A/R, Bombay, India 15285 WBOU, New York, USA

Kcs, Call and Location
15290 LRU, Buenos Aires, Arg. 5290 Peking, China
15290 KCBR, Oelano. Cal., USA 15290 WLW O. Cincinnati, USA
15295 Rio de Janeiro, Brazil
15295 RTF, Paris
15295 RTF, Paris, France
15295 VOA, Tangier, Morocco
15295 Moscow, USSR
15295 Moscow. USSR.
15300
BBC, London, Eng, \dagger
15300
OZHS, Manila, P.i.
15305 Dacca, Pakistan
15305 Moscow, USSR
15310 BBC, London, England -
15310 KCBR , Delano, Cal., USA
15310 KCBR, Delano, Cal., USA
15315 VLCI5, Melbourne, Aus. 15315 VLCI5, Melbour
15315 Peking, Chinis 15315 Peking, China
5315 HEU6, Bern, Switz. -
15315 Moscow, USSR
15315 Moscow, USSR
15320 VLCI 5, Melbourne, Aus.
15320 AlR, Delhi, India
15320 VOA Tangier, Moroce
15325 ZYR228, Sao Paulo, Braz.
15325 RAI, Rome, Italy
15325 JOBIS, Tokyo, Japan -
15330 VOA, Munich, Germany
15330 VOA, Munich, Germany
15330 VOC, Salonika, Greect
15330 WBOU, New York, USA
15330 WGEO, Schenectady, USA
15335 Brussels. Belgium \$
15335 ZY U68, Porto Aleore, Braz. 15335 Karachi, Pakistan
15335 VOA, Manila, P.I.
15335 Komsomolsk. USSR
15340 Radio Liberty, Germany
| 5340 Moscow, USSR
15345 LRA, Buenes Alres. Arg.
15345 Taipel, Taiwan, China 15345 Athens, Greece
15345 Rabat, Mtorocco
15350 RTF, Paris, France
15350 WLWO, Cincinnati. USA
15355 Radio Free Europe, Port.
15360 BBC, London, Enpland
15360 Moscow, USSR
15360 Moscow, USSR
15365 WLWO, Cincinnati, Ohio
15370 ZYC9, Rio
15370 ZYC9, Rio de Jam, Braz.
5370 Radio Liberty, Germany
15375 BBC, London, Eno.
15375 Cologne. Germany \dagger
15380 VOA. Tangler, Morocco
15380 VOA. Okinawa, Ryukyu Is.
15380 WRUL, Boston. USA
15385 DZF3, Manila, P.
15385 CXA 0 . Montevideo.
15385 CXA60\% Montevideo, Urug.
15385 MOScow, USSR
15390 BBC
${ }^{1} 15390$ BBC. London. Eno.
${ }^{1} 15390$ M10scow. USSR
15395 Radio Libery, Germany
15400 RTF, Paris,
15400 RTF, Paris, France
15400 RAI, RDme, Ifaly
15400 RAI. RDme, Ifaly
15405 Cologne, Germany
15405 Cologne, German
15407 Paramaribo, Surinam 15410 Prague, Czecho. 15410 Radio Liberty, Germany 15410 VOA. Tangier, Morocco 15415 AFRS. Munich. Germany 15417 Peking. China
${ }_{15417}$ B BC. London, Eng. 15420 Brazzaville. Congo Rep. 15420 Madrid, Spain 15420 Moscow, USSR
15425 VLXIS, Perth. Aus.
15425 Hilversum. Neth.
15430 PekIng. China.
15430 Cairo, UAR
15430 Moscow. USSR
5435 BBC, London, Eng.
15440 VOA, Munich. Germany
15440 Moscow. USSR
15445 Brazzaville. Congo Rep.
15445 Hilversum, Neth.
15447 BBC . London. Eng.
15450 Komsomolsk. USSR
15465 Papamarlbo, Surinam
15470 Moscow. USSR
15475 Cairo, UAR
15480 Pcking, China
15480 AlR, Delhi, India
15520 Peking, China
15555 Peking, China
17605 Peking. China
17675 Peking, China
17695 BBC, London, Eng.

Kes. Call and Location
17700 BBC, London, Eng.
17700 M Oscow, USSR
17705 AlR. Oelhi, India
17705 VOA, Tangier. Morocco
17710 VLGi7. Melbourne, Aus.
17710 WLWO, Cincinnatl, USA
17710 Moscow, USSR
17715 BBC, London, Eng. -
17715 VOA Colombo, Coylon
17715 VOA, Colombo, Coylon
17720 Peking. China.
77720 Peking. China © Rep.
17720 Brazzaville, Conyo Rep
17720 Radio Liberty, Germany
17720 Moscow, USSR
17722 San Jose dos Campos, Braz
17725 Radlo Free Europe, Port
17725 AlR. Delhi, Indla
17730 BBC , London, Eng.
17730 BBC, London, Eng,
17730 Radio Liberty, Germany
17735 Radio Free Europe, Port
17735 KCBR, Delano, Calif.
17735 HVJ, Vatican City
17740 WLW O, Cincinnall, USA
17740 BBC London, Eno.
17740 Moscow, USSR
17740 Moscow, USSR
17745 BBC London
17745 BBC , London. Eno.
17745 Karachi, Pakistan
17745 VOA, Manila, P. 1
17747 Peking, China
17750 WRUL, Boston, USA
17750 ソOA, Tangier, Moroceo
7750 Moscow, USSR
17755 Prague, Czecho.
17755 BBC, Singapore
17760 WGEO. Schenectady, USA
17760 AlR, Delhi, India
17760 Moscow USsR
17760 Moscow, USSR
17765 RTF, Paris, France
17765 Peking, China ©
17770 RAI, Rome, Italy
17770 RAI, Rome, Italy
17770 Radio Free Europe, Port.
17770 KCBR. Delano, Cal., USA
17773 Athens, Greece
17775 Hilversum
17775 Hilversum, Neth,
177700 WBOU, New York, USA
17780 W BOU. New York,
17780 VOA , Manila, P.1,
7780 Moscow. USSR
17785 HER7, Berne, Swilz.
17785 AlR, Delhi, India
17788 Talpei, Formosa, China
17790 BBC, London, Eng.
17790 A Prapue. Czecho.
7790 AlR . Delhi. India
17795 WGLWO San Fran., USA
17795 WLWO. Cincinnath, USA
17795 Moscow, USSR
17795 CR6R2. Luanda, Angola
17800 Helsinki. Finland 1
17800 RAI. Rome. Italy
17805 Radio free Europe, Port.
17805 Radio Free Europe, Port.
17805 D2I6, Manila, P. 1 ,
17810 BEC, London, Eng
17810 BBC . London, Ene
17810 AlR . Delhi, India
17810 Hilversum, Noth.
17810 Moscow, USSR
17815 Praque, Czecho.
17815 Prague, Czecho.
17815 KCBR, Delano, Calif.
17815 Moscow, USSR \dagger
$17820 \mathrm{ZLI4}$, Wellington, N.Z.
17823 Ankara, Turkey
17825 J0A17. Tokyo
17825 J0A17, Tokyo, Japan -
17825 Moscow. USSR
17830 AlR, 0 elhi, India
17830 WDSII. New York (VOA)
17830 WLWO., CIncinnati, USA
17835 Radlo Free Eurone, Port
17840 VLB17. Melbourne, Aus.
17840 Horby.' Sweden t Aus.
17840 Moscow, USSR
17840 HVJ. Vatican Clity
17845 Brussels, Belgium
17845 WRUL, Boston, USA
17850 RTF. Parls. France
17850 Moscow. USSR
17855 VOA, Tangier, Moroceo
17855 Radio Free Europe, Port.
17860 Brussels, Belgium
17860 BBC. London, Eng.
17860 Damascus, UÁR
17865 Radio Liberty, Germany
17870 BBC, London, Eng.
17870 WLWO, Cincinnati, USA
17875 PRL2, Río de Jan., Braz.
17875 Cologne, Germany

Kes, Call and Location

17875 Radio Free Europe, Port.
17880 Lisbon, Portugai
17880 Tunis, Tunisia
17880 Komsomolsk, USSR -
17880 Moscow- USSR
17885 Radlo Free Europe, Port
17885
17888 Radio, Free Europe, Port
Taipei, Formosa, China
17888 Taipei, Formosa, China
17890 HCJB, Quito, Ecuad
17890 BBC, London, Eng.
17890 HLK42. Seoul, Korea -
17892 Voice of Free Africa
17895 Liston, Port.
17895 Moscow. USSR
17900 Peking. China
17920 Cairo, UAR
18080 BBC, London, Eng.
21450 Prague, Czecho.
21455 VOA, Tangier, Morocco
21460 KCBR, Delano, Calli
21460 WRUL, Boston, USA
21470 BBC . London, Eng
21480 Hilversum. Neth.
21480 Hilversum. Neth.
21485 Radio Free Europe, Port.
21485 WLWO, Cincinnati, USA
21490 BBC. London, Eng.
21490 Cologne, Germany
21495 Lisbon, Port.
21495 O218, Manila, P.I.
21500 Brazzaville. Congo Rep.
21505 WOSI. New York, USA
21505 Moscow, USSR
21510 Brussels, Beloium
21515
21520 HVJ. Vatican City
2150 Berne Switz
21525 Noscow. USSR
21530 BBC, Liondon. Eng.
21535 ELWA, Monrovis.
21540 VLD21. Melbourne, Aus.
21540 WBOU, New York, USA
21550 BBC, London. Eno.
21550 Moscow. USSA
21560 RAI, Rome, Italy
21565 Hilversum, Neth.
21565 Hilversum, Neth.
21570 WBOU New York (VOA)
21575 Moscow, USSR
21580 RTF, Paris, Fr
21580 RTF, Paris, France
21590 Karachi, Paklstan
21590 Karachi, Pakistan
21590 WGEO, Schenectady, USA
21600 VLG21. Melbourne. Aus.
21600 Radio Free Europe. Port.
21605 AlR, Delhi. India
21605 HE19, Berne, Switz.
21610 WLWO CIncinnati (VOA)
21615 BBC, London. Eng.
21620 RTF, Paris, France
21620 RTF, Paris, Franc
21620 AlR. Delhi, India
21620 JOB21, Tokyo, Japañ
21625 Moscow. USSR
21630 BBC. London, Eng.
21640 BBC, London, Eng.
21650 Cologne, Germany
21650 AlR. Delhi, India
21650 WDSI. New York, USA
21655 VOA, Manila, P.I.
21660 BBC, London, Eng.
21665 Radio Free Eurode, Port.
21670 Oslo.
21675 BBC. London,
21675 BBC. Landon, Eng.
21680 VLC21, Melbourne. Aus.
21680 VLC21, Melbourn
21685 Dacea, Pakistan
21690 WDSI, New York, USA
$2 \$ 700$ A!R, Delhi. Indla
21705 Lisan. Port.
21705 VOA, Tangier, Morocco
21710 BBC. London. Eng.
21720 Radio Free Europe. Port.
21730 Brussels, Belolum
21735 WLWO, Cinclnnatl, USA
21735 WLWO, Cinclnnati, USA
21740 BBC, London, Eno.
21745 ReBR, Delano, Cal., USA
21745 Radio Free Europe, Port.
25610 Hiversum. Neth.
25630 KCBR, Delano. Cal., USA
25650 BBC, London. Eng.,
25670 BBC. London, Eng.
25720 BBC. London, Eng.
25735 VLY25, Melbourne, Aus.
25750 BBC, London, Eng.
25840 BBC. London, Eng,
25840 BBC. London, Eng,
25880 VOA, Tangler, Moroc
25900 Oslo, Norway
25920 BBC, London. Eng.
26040 WBOU. Now York, USA
25950 WBOU. New York, USA
26080 BBC, London, Eng.

Canadian Short-Wave-Domestic and International

Kc. C.L, Location
5970 CBNX St. John's. Nfld. 5970 CKNA Montreal, Que. 5990 CHAY Montreal, Que. 6005 CFCX Montreal, Que.
6010 CJCX Sydney, N.S.
6030 CF VP Calgary. Alta.
6060 CKRZ Montreal, Que.
6070 CFRX Toronto, Ont.
6080 CKFX Vaneouver, B.C.
6090 CBFW Montreal, Que.
6090 CKOB Montreal, Que.

Transmitter at Sackville, New Brunswick

Ke. C.L, Location

6130 CHNX Halifax. N.S. 6160 CBUX Vancouver, B.C 650 CHAC Montreal, Que.
9520 CBFR Montreal, Que. 9585 CKLR Montreal, Que. 9610 CBFX Montreal, Que. 9610 CHLS Montreal, que. 9630 CBFO Montreal, Que. 9630 CKLO Montreai, Que, 9710 CHLR Montreal, Que.

Precision performance is your passport to the amazing world of short-wave listening

hallicrafters

5th and Kostner Avenues, Chicago 24, Illinois
"world-range" radio

\$x.110 Receiver-\$169.95. Standard broadcast. Thepe short wave bands ($1550 \mathrm{kc}-34 \mathrm{Mc}$). Slide rule electrical bandspread dial. Built-in " S" meter, antenna trimmer, crystal filter. Uses R-48 speaker (\$19.95). $_{\text {. }}$.

S-119K Sky Buddy Recelvet Kit-\$39.95. S.119 (factory wired and tested) $\$ 49.95$. Standard broadtast. Two short wave bands (2.5 .5 Mc . and 5.7-16.4 Mc.). Superhetero. dyne circuit. Transformer-type power supply.

SX.62A Receiver- $\$ 395.00$. Standard and FM broadeast. Three short wave bands ($1.62 \mathrm{Mc}-109 \mathrm{Mc}$). Excellent audio. Slide rule dial. Single tuning control. Automatic norse limiter. Uses $R=48$ speaker. ($\$ 19.95$)
\$. 120 Receiver - 56995 . Standard broadcast plus three short wave bands ($1650 \mathrm{kc}-31 \mathrm{Mc}$). Threeway antenna system Slide rule electrical bandspread dial. B.F.O./slectivity control.

Leam Rillile, UEEEVISNOW ELECTRONLCS by Practicing at Home in Your Spare Time
 At Ne Extro Cost you gel ipeciolly doveloped Electronic Troining Klis for proctical experience. Shop and laborolory practice of heme moke teorning eosier, interesting, faster. You do nol need a high school diptoma or previous expe.
 Increasing Demand for Trained Men
 This is the Electronics age. Men with Filectronic know-how are in demand. They enjoy ligh pay and growing opportunities for ad vancerment SatefMissiles. Hockets, Planes. Sterew. TV. Radio. Two Way Communications for thans-

High Pay, Prestige, Bright Future	It ere over wiris the		Averayed sils
What branch of Flecetronics interersts you? Thoul- sands of successfut NR1 graduales prove :hat	in Rua uide má	dorar to preater op:- poriunity for me."	

aces H , fract 10 success. You start in vour chosen careter way ahead of the man who only learns from books. Wou do not need to give up your job. You do nust rexed to go away to school. You learn at homw. get practical knowledge from training kits N1RI provives

WIWIEPEO

Cut Out and Mail-No Stamp Needed
NATIONAL RADIO INSTITUTE WASHINGTON 16, D.C.

2 CB 3
Send me your Filectronic, Radio-lV catatiog without cost or obligation. I am interested in the course checked below: (No representative will call. Please PRIN'I.

Industrial Filectronics $\quad \mathrm{FCC}$ license
Communications
LJ Servicing

Name
Age

Address

City
Zone State
ACCREDITED MEMBER NATIONAI MOME STUDY COUNCIL

for its

Train With the Leader NRI is the world's oldest and larg. est home study lilectronics school. You benefit from the experience NRI has gained from Iraining men for 45 vears. N131 offers you proven courses of home study in Electronics: Principles, Practices and Maintenance-Radio Television Communications-Radio Television Servicing.
Start Soon, Earn More Som after enrolling NR1 shows you hust to apply your knowledge to "arn extra money doing Electronic repairs or servicing Radio and Telpvision suts for friends and nfighbors. 'Take the first step toward success now. Find out what NIS! uffers you. Mait the postage1 fre- card. No olbligation. Cost of Nlff training is iow Mlan available. NA. plan a vailable NA. TIONAL RADIG 2 Wiashington $16, \mathrm{D} . \mathrm{C}$

[^0]: e. w. COOKE, hr., President

 Coyne-tho Inatifulion behind this train. ing. .. Uhe largrat, oldeot, best equ ipped

[^1]: Science and Mechanics Magazine Handbook Division
 Dept. 3000, 505 Park Avenue
 New York 22, New York
 Enclosed is $\$ 1.00$; please send me my copy of home appli. ANCE REPAIRS—— 590
 name
 ADDRESS
 I city
 .ZONE.... StATE.

[^2]: MATERIALS LIST-AIR RAIO RADIO ALARM No. Req.d
 1
 1
 1
 1
 1
 1
 1
 Mise Size and Description
 SPOT relay, 2000 ohm coil (Sigma Type 4F)
 miniature audio output transformer, 3.2 ohm primary/ 500 ohm sec. (Argonne \#AR-119)*
 P-N.P transistor (inexpensive type such as CK. 722 or 2N-107)
 C.0 "Cub" plastic paper capacitor, 0.15 mfd . 400 dewv.
 \#412 or 412E miniature $221 / 2 \cdot v$. battery perforated plastic panel $33_{8} \times 21 / 2$ in.
 $41 / 4 \times 31 / 4 \times 11 / 4^{\prime \prime}$ plastic box to house control
 mounting hardware

 * Available Lafayette Electronics, 111 Jericho Turnpike, Syosset, L. I., N. Y.

[^3]: 1 miniature 7 pin type socket, Amphenol
 Ohmite 2.50 (50 mc) R.F. Choke
 0.002 mifd ceramic capacitors, disk type

 47 ohm, 1 watt resistor
 100 ohm, L watt resistor
 2 lug (insulated) tie point strip
 1 lug (insulated) tie point strips
 6AG5 tube
 Misc. $\$ 14$ tinned copper wire, rosin core solder, hook-up wire, 6.32 machine screws and nuts, twin-led and lime cord

