40 Construction Projects • SWL • Ham Radio

By the Editors of Science and Mechanics
$75 c$ SPRING 1960

VARIABLE PS FOR TRANSISTOR CKTS
build this TR F PORTABLE far less than $\$ 20$

IN 20 MINUTES
TRANSISTOR TESTER-VOM

TV-FM ANTENNAS
TELEPHONIC REMOTE CONTROL ELECTRIC GUITAR

MINIATURE MULTIMETER

6-METER CONVERTER
ELECTRONIC TACHOMETER

ELIMINATING TVI
JACOB'S LADDER
10 20-METER
SW RECEIVER
PLUS
WHITES RADIO $\because \because \because \because$ (1)

LOG
. 500 Changes TV STATIONS AIA-FM-TV SHORT WAVE WORLD-WIDE SHORT WAVE

HOW TO GET A GOOD PAYING JOB IN RADIO-TELEVISION

Build this equipment while learning... it's yours to keep!

EARN WHILE YOU LEARN AT HOME IN SPARE TIME

I'll prove to you that I can prepare you to become a trained Radio and Television Serviceman in a few months' time . . . ready to step into a good paying job with a real future! Mail coupon-postcard NOW!

Only ${ }^{\text {s }}$ starts you
 On Sprayberry
 "Learn by Doing" Training Plan

MASON R. WARNER, President

Menthy the thousands . . . trained Radio-Television Service lechnicians.. are needed atonce! Perhaps you ve thought about enter ng this interevting. top paying fied, hut lack of ready money held you back. Now-iust $\$ 6$ enrolls you for America's finest, most up-todate home study training in Radio- Television! Thi, offer is made because Radio-Telesision must have the additionat men it needs as quickly as possible. Weare willing to do our part hy making Sprayherry Training avalahte for less money down and on easier terms than eecer before. This is your big opportunity to get the training you need . . to step into a fine joh or sour own Kadio-Television Service Business-

Get Practical Experience with 25 Kits of Radio-TV Parts

In addition momern lewons, soumain with actual parts and equipment. Build the tamous Spray herry Training Television Set, Multi-Range Tewter, 2. Band Radio, other T'as Equipment-all sours to keep. Get latewtraining on color TV. Transiteors. Hi-Fiand LHF Contervion to make your training more valuathe.

Radio-TV Needs You Now!
 Get all the facts... FREE!

Radio. Television needs you! Sce how and why Sprasberry Radio-Tclevision home training offer, you more. Three training pians to suit your exate noeds. Low p.asment ...only $\$ 6$ narts you. Backed hy over 2- years of dixtinguished training expe rience. Rubh special postard-reply conpon for catalog and tree sample leson.

The Radio-Television industry is begging for trained men for interesting, profitable service work... get set now!

-OUR पAME \qquad

ADDRESS \qquad

TOWN STATE \qquad

BUSINESS REPLY MAIL First Class Permit No. 34316 , Chicago, 111 .

SPRAYBERRY academy OF RADIO-TELEVISION

'rhis coupon neced, no vimporense one. Junt wrote natle. in upper letr corner, cut outalong doted lone and drop it any mail
bon. Pay no atrention to printing on back ot the card. By return mall you'll receive our bis 60 page cutalos and free sample

SPRAYBERRY
ACADEMY OF RADIO.TELEVISTON Depl 212 F

RADO:TV EXPERIWENIER

Spring 1960 Edition

Terrific TRF Portable 23 Electronic Black Magic 88
Six-Meter Amateur Band Converter 27 Extra Uses for Table Radios 90
Two-Transistor Utility Amplifier 30 Tuned Antenna Coupler 91
SM-FP Unit 33 Learn by Doodling 92
Miniature Multimeter 37 Tube Tester Kit Report 95
Three-Transistor Portable 41 Loop Crystal Set 97
Noise Limiter for Ham Station 44 Printed Circuit Know. How 99
Wave Traps 45 DXing the World 102
Precision Stroboscope 47 Electronic Color Wheel 105
10.20 Short-Wave Receiver 52 VHF Station 107
Telephone Actuated Switch 55 Radio-TV Sound Dimmer 116
Compass Galvanometer 61 Using an Oscilloscope 118
Variable Power Supply 62 Soldering Iron Stand 123
Eliminating TVI 64 The Tunnel Diode 125
Car Battery Adaptor for Radio 68 Electronic Tachometer 127
DC Meter Amplifier 69 Repair That Old Meter 132
Transistorized Photo-Cell Control 72 Why Wait for Air Safely? 134
What to Listen for on Short-Wave 74 TV and FM Aerials 136
How to Memorize Morse Code 77 Learning Electronics 139
Demagnetizer 80 Portable Earphone Plug Box 145
High-Voltage Traveling Arc 82 Electric Guitar 146
Volt-Ohmmeter and Transistor Tester 8525 Years Ago in Radio 156
White's Radio Log 161Cover by Harold R. Stluka

Curtis L. Johnson, Handbook Editor Herb Siegel, Associate Editor, Handbooks Bill Wadkins, Assistant Art Director, for Handbooks

> Published and Copyrighted 1960 by SCIENCE AND MECHANICS PUBLISHING COMPANY

A Subsidiary of Davis Publications, Inc.

450 East Ohio Street

Chisogo 11, Illinais

[^0]B. G. DAVIS

Publisher
JOEL DAVIS
Assistant Publisher
Editorial Board
DON DINWIDDIE
Editor
ART YOUNGQUIST
Home Workshop Editor
P. C. URBAIN

Associate Editor
F. M. EISENZOPH

Art Director
Advertising offices: Chicago: 450 E. Ohio
 A. Kimbill Co.. Inc. 2550 Beverly Blvd. Kimisali co., 881 Market si.. EX 2.3565 .

COYNE offers

 TELEMORTV RADIO Training in Spare Time AT HOME

The future is YOURS in TELEVISION:
A fabulous field-gooc pay-fascinating work-a prosperous future in a good job, or independence in your own business!

Coyne brings you MODERN-QUALITY Television Home Training; training designed to meet Coyne standards at truly lowest cost - you pay for training only - no costly "pot fogether kits." Not an old Radio Course with Television "tacked on." Here is MODERN TELEVISION TRAINING including Radio, UHF and Color TV. No Radio background or previous experience needed. Personal guidance by Coyne Staff. Praclical Job Guides to show you how to do actual servicing jobs-mate money early in course. Free Lifetime Employment Service to Graduates.

ELECTBICAL school

CHARTERED AS AN EDUCATIONAL INSTITUTION NOT FOR PROFIT
1501 W. Congress Parkway Chicago 7, Dest. 30-H9

1. W. COOKE, J, PTasione

Coyme-the Inetitution hohind chia train. -ing id it lap lapht, oldest. bent eqviprod.

Send Coupon or write to address below

 for Free Bookand full details, including easy Payment Plan. No obligation, no salesman will call.

COYNE Television

Home Training Division
Depf. 30-H9, New Coyne Building | 1501 W. Congress Pkwy., Chicago 7. III.
ISend Free Book and details on how I can get | Coyme Quality Television Home Training at low cost and casy terms.
Name
Addrcss
LCity
State

Give Your Family A Lifetime of Musical Joy With A Magnificent Schober Electronic Organ!

Now you can bulld the brillant, full-range Schober CONSOLETTE or the larger CONCERT MODEL with slmple hand tools! No sky118 are needed; no woodworking necessary. Just assemble, clearly marked electronlc parts gulded by step-by-step instructions. You bulld from kits, as fast or as slowly as you please... at home, in your spare time - with a smal table serving as your entire work shop.

Pay As You Build!

Start building your organ at once, investing just $\$ 18.94$! The superb instru*
ment you assemble is as fine, and technically perfect, as a commercial organ . . . yet you save over 50% on quallty electronlc parts, high-priced labor, usual store mark-up!
 Free Booklet Send for 16 -page booklet in full color describing Schober organs you may bulld for home, church or school, plus articles on how easy it is to bulld your own organ and how pleasant it is to learn to play. Also avallable is $10^{\circ \prime}$ LP demonstration record (price $\$ 2.00$ - refundable on first order). Send for literature. No obligation and no salesman will call.
Mail This Coupon For FREE Schober Literature
And Hi-fi Demonstration Record TODAY!
The Sehober Orgon Corp., Depl. RX-1
2148 Iroadway, New York 24, N. Y.
\square Please send me FREE full-color booklet and other literature on the Schober organs.
[Please send me the $10^{\prime \prime} \mathrm{hi}$-fi Schober demon. stration record. I enclose $\$ 2.00$ (refundable on recelpt of my first kit order)

Na数
Address.
City. .

INVENTORS

PROTECT YOUR PATENT

With new patent sales agreement
Now you can sell your patent and be SURE you are protecting your interests 100 percent. Irepared by the Dean of a Jeading law school, this S\&M Patent Sales Contract will help you protect yourself and make sure you or your attorney overlooks no detail. Not a blank, but a true, TESTED Sales Contract that will protect your carn-
ings and intereats. send today 0 fly \& for a copy of our Patent Sales Agreement

SOLD EXCLUSIVELY BY
SCIENCE \& MECHANICS MAGAZINE 450 East Ohio Street, Dept. 411. Chicago 11, IIHnois

See the 1960 кnight-kit line -availableonly fromallied. kNIGHT-KITS are lowest in cost, convenience-engineered for easiest assembly-the only kits with money-back guaranteed specifications. Send today for the 1960 allied Catalog-select your KNIGHT-KITS-and...

SAVE ON EVERYTHING IN ELECTRONICS

Get more for your moncy in Stereo hi-fisystems and components; save on recorders and tape; Amateur station equipment; TV tubes, antennas, accessories; test instruments; electronic parts, tubes, transistors, tools, books. Send today for your free 1960 allied Catalog! EASIEST TERMS only $\$ 2$ down on orders up to \$ $\$ 0$

ALLIED RADIO

FREE catalog

\square Rush FREE 1960 ALLIED Catalog
Name.

Address

\qquad
City \qquad Zone \qquad State

ELLERY QUEEN'S 1960 ANTHOLOGY

A Who's Who of Whodunits!

"The Queen volume contains twenty-three stories . . . none has appeared in an earlier Queen anthology, and only two have been anthologized anywhere. You will, I'm sure, join me in hoping that this new kind of Queen anthology will become (as its title should indicate) an annual event."
-Anthony Boucher, The New York Times

HOURS OF THRILLING

READING . . . collects in one volume the finest stories which have appeared in Ellery Queen's Mystery Magazine over the past 18 years-selected by Ellery Queen himself. Stories by such famous mystery writers as:

Agatha Christie
Erle Stanley Gardner
Mary Roberts Rinehart
Rex Stout
John Dickson Carr

Tales of mystery and of crime by such famous literary figures as:

W. Somerseł Maugham
 Ben Hecht
 John van Druten
 Mackinlay Kantor

And much, much more . . a book everyone will be proud to add to his library - 3 short novels, 20 short stories, 320 pages. If your local newsstand dealer is sold out, fill in the coupon below and we will mail your copy of this mystery treat.

Christy Shop-Method Home Training makes you a more valuable and desirable technician, assures you of more money, faster progress and greater success. This practical step-by-step training makes everything interesting and easy, makes learning fun.
You don't have to leave home or quit your job to learn this simple, easy way. A few hours of your spare time each week soon prepares you for earning while learning and later for a big-pay job or proftable business of your own in this fabulous, fast-growing new industry.
3 new books contain complete information. Describe the course and many opportunities in this fantastic new fleld. Send for your 3 free books today!

C.T.S.'s Complete Course!

C.T.S. training covers every phase of this fascinating new subject. You gel this comprehensive fraining starting with your first lesson. You learn Radar, Sonar, Television, Radio and Electronics in C.T.S.'s Complefe course. This bradder knowledge and greatef understanding means more jobs and higher pay for you. Why be satisfied with less? You learn faster and better with Christy Shop-Method Home Training. Il gives you all the tralning you need in a clear, simple, easy-fo-understand way.

Big pay, interesting work, immediafe success, awalt those thoroughly trained in all branches of electronics. And the C.I.S. Master Shop-Method Home Training Course is the only complefe course in Radar, Sonar, Telavision, Radio and Electronics.

19 TRAINING INSTRUMENTS INCLUDED

In a few months you learn what used to take years of hard work to master, reach your goal sooner and are better prepared to make maximum progress. Send for complete information today!
CHRISTY TRADES SGHOOL Dept. T-211
3214 W . Lowrence Ave. Chicago 25, III.

MAIL COUPON TODAYS

CHRISTY TRADES SCHOOL
Dept. T-211, 3214 W. Lawrence Ave., Chicago 25, III. Gentlemen:
Please send me, without cost or obligation, two FREE Lessens and the now 24.page Wllustrated book tolling all about the C. T.S. Mastor
Shon-Method Hom. Training Course in Radar, Sonar, Telovision, Radio and Electronles, and the many opportunitles this new fiold offers.
\qquad
\qquad
\qquad

$$
\begin{gathered}
\text { State... } \\
\hline
\end{gathered}
$$

prepare for your career in

ELECTRONICS RADIO-TV COMPUTERS

and other fields of electrical engineering

At MSOE, you can equip yourself for a carcer in many exciting, growing fields: MISSILES. RADAR-AVIONICS AUTOMATION - RESEARCH DEVELOPMENT - ELECTRICAL POWER • ROCKETRY
When you graduate from the Milwaukee School of Engineering, you are prepared for a dynamic career as an Electrical Engineer or Engineering Technician. Under a faculty of specialists, you gain a sound technical education in modern, completely equipped laboratories and classrooms. As a result. MSOE graduates are in great demand and highly accepted by industries nationally.
At MSOE, you will meet men from all walks of life and all parts of the country - some fresh out of high school or prep school, others in their twenties veterans and non-veterans.
You can start school in any one of four quarters and begin specializing immediately. Engineering technicians graduate in 2 years with an Associate in Applied Science degree. For a Bachelor of Science degree in Engineering, you attend 4 years. A 3 -month preparatory course also is available.

FREE CAREER BOOKLET:
If you're interested in any phase of electronics, radio or television, be sure to look into the programs of study offered by the Milwaukee School of Engineering. Just mail the coupon.

MILWAUKEE SCHOOL OF ENGINEERING

Depf. RTVE-60, 1025 N. Milwaukee $\$ 1$.
Milwaukee, Wisconsin
Please send FREE Career Booklet. I'm interested in
\square Electronics \square Electrical Power Television
\square Mechanical Engineering \square Radio Computers Electrical Engineering [1 Industrial Electronics please print
Name
Age
Address.
City
Zone........ State
\square I'm eligible for veterans education benefits + 15.225

NOW! McGraw-Hill's Low-Cost Home Course Shows

 even if you've never looked inside a set before!

AT LAST! at Amazing LOW COST the Most Complete TV-Radio Repair Course Ever Pablished. TELLS and SHOWS How to do Every Job Quickly and Easily Make GOOD MONEY, full or Spare Time, in the BOOMING Fepair Business

H°ow would you like to be boss of 1. a nice TV-radio-record changer repair business - making $\$ 50$ to $\$ 75$ spare time, or $\$ 150$ and up in your own shop?

Now, thanks to McGraw-Hill's new 6-volume Course, you can get started right away! This Course brings you EVERYTHING you need to "cash in" on the TV-RadioChanger boom. Over 2,350 pages of money-making ideas and techniques by top lactory engineers and electronics experts. TWO HUGE TROUBLESHOOTERS tell exactly WHERE to begin, WHAT tools to use. THREE GIANT REPAIR MANUALS tell and show how to FIX every trouble the casy way. "polish off" every job like a whiz. Complete Home Study Volume guides you every step of the way, tells how to build your business into a spare- or full-time MONEYMAKER!

EARN While You Learn

Tested - and now used in repair shops and by electronics instructors - Course volumes are simple enough for green beginners, amaze "pros" with quick, easy methods. Start you doing simple repairs - and earning money - from very first chapter. ABC pictures and directions make tougher jobs a "snap." Before you finish you earn many times Course's low cost.

NO previous training needed; TV repair business pays wel in good times or bad. NO complicated formulas. PLAIN ENGLISH pictures and directions cover AN Y job on EVERY SET - tubes, circuits. speakers, new ac/dc, $\mathrm{am} / \mathrm{m} / \mathrm{m}$ hortwave port: ables, Color TV, even what to charge for every job and how to get customers!

Age and Education No Barrier

Age doesn't matter. Past experience doesn"t matter. Your farmal education isn't important. Over 40 MILLION TV sets, 130 MILLION radios - and the shortage of repairmen - mean big money for you. Course makes it easy to cash in, start your own secure, profitable business.

SEND NO MONEY

Try Course 10 days FREE. (We pay shipping!) If you don't agree it can get you started in a moneymaking repair business - return it. pay nothing. Otherwise keep it, earn while you learn; and pay the low cost on easy terms. Mail coupon NOW. McGraw-Hill Book Co., Dept. SMA-4. 327 W. 41 st St., New York 36, N. X.

(3)

5

5394 Valuable Repair Alds: IV, RADIO, CIRCUIT

 and IRANSISTOR Detect-O-Scopes FREE - whether

PARTIAL CONTENTS

Television and Rodio Repairing - Testing, repairing. FaplacItg parts. 566 pages. 700 , Thls-I:-How' pictures, diagran s. By John Markus, Feature Ed., Electronles Magazine.

2
Praclical Radio Servicing -Easy-to-follow directions, dagrams, drawings - Wilh job szeet for every repair jos. 599 puse Alex Levy Electronic TrainIag Experts.

Protitoble Radio Troublesiooting WHERE to look and JHAT to do for every trouble. Fow to avold costly mistakes, tandle customers prontably. 330 pages.
153 "how to" lllus. By villam 153 "how to" Lhus.

Profisable IV Troubleshoofing \bar{X} Short-cuts to SPOT and FIX l:s. By Eugene A. Anthony Servlise Consultant, General Elec. Co Repoiring Record Changers-
Step-by-step plctures and Step-by-step plctures and directions - how to set up service bench. etc. 278 pages. 202 A-B-C pictures. By Eugene Eck
lund, Eng. DuM ont Lab., Inc. lund, Eng. DuMont Lab., Inc. - Getting started in televlsion and radlo servicing. How to get the most out of your course. How to get ahead FAST. By John Markus.

T

MeGRAW-HILL Book Co., Dept. SMA. 327 West 41 st 5 t., Mew York 36, N. Y. Send me - postpald - for 10 DAYS' FREE TRLAL the 6 -Vol. McGraw-Hill TV, Radio and Changer Servicing Course. It okay, I'll remit $\$ 4.95$ in 10 days; then $\$ 5.00$ monthly for 5 months. (A total savings of $\$ 12.85$ on the regular price of Course and Detect.a. Scopes.) Otherwise, I'll return Course in 10 Scopes.) Otherwise days, pay nothing.
ALSO send FREE (0 KEEP whether or not f keep course the TV RADIO, and CLRCUIT DETECT-O-SCOPE CHARTS. plus upScope - total value $\$ 4.00$.

Name.

(Flease Print Clearly)
Address.

Zone No.
 City.
 (if any)
 State

C check merr if you prefer to encloge firat
 payment of she day return privilege for pall
pma.
plat refund.

SMA.4
profitable
TELEvision

RROUSLESHOOTINO \begin{tabular}{|l|}
\hline atpaneno

Recoro changs

\hline

\hline atpaneno

Recoro changs

\hline
\end{tabular}

practicat rado servicing

PROFITABLE RADIO trousicsiooting
\qquad

This Amaring Olfef Saves You $\$ 12.85$
6 BIG VOLUMES Including Home Course Outinel Shows How to Get Ahead Fast

* TRANSISTORIZED POCKET FM RADIO AND CONVERTOR KIT

RADIO-TV SERVICING AID

Powerful 7power magnlfying glass mounted on 3 tweezers. Excellent tool for getting into difficult and hard-to-see places. Ideal for radio kit builders. model craftsmen and for the RadioTV service technician. Special low price, $\$ 2.25$ postpaid . . A REAL SERVICE AID BARGAIN

Fun for the youngster or the veteran in the electronic f.eld . . . A 3-way transistorized pocket FM radio and tuner which tunes the complete FM band from 88 to 108.6 megacycles plus aircraft band from 109 to 145 megacycles. This fantastic set can be used in your car, home, or pocket, and needs no antenna or ground wires. Completely non-directional, this compact FM radio and tuner will play where all other radios have failed. Set has been demonstrated under an X-ray beam and near other electrical devices without any static or distortion. Featuring a two-stage circuit, this FM radio and tuner will produce music of top quality from stations located many miles from the receiver. Kit comes complete with easy-to-build instructions.

KIT, Complete with
Special HI-FI Earplece with earmold, cord, and plug, $\$ 29.95$ posipald. (less Earplece, \$26.95)

TWO-STAGE TRANSISTOR AMPLIFIER OR PRE.AMP KIT

You can build a powerful two-stage amplifier or pre-amp which can be used as a phonograph amplifier or amplifier for a crystal set, and as a pre-amp for crystal or magnetic pick-up. Kit comes complete with two transistors, volume control with switch, attractive plastic case with a snap bottom, and is powered with a single penlight cell with an output of nearly $1 / 3$ of a watt. Complete with easy-to-follow instructions. $\$ 6.95$ postpaid.

SPECIAL SECTION for RADIO BEGINNERS
 Crystal-Set Kit \$1.25 p p
 Headphones (double) $\$ 2.25$ p P
 Ball Bearing Tuning Condenser with Metal Dial and Knob $\$ 1.50 \mathrm{P}$ P
 (Free Crystal with each $\$ 10.00$ order)

Beginners all Wave Kit Two Stage Circuit with Transistor, High Frequency Tube, Drilled Chassis and all Clips and Wire- $\$ 7.95$ less batteries. Many users report up to 12,500 miles on short wave plus the Broadcast Band. Tunes from 16 meters to 160 meters.

WORLD'S SMALLEST TWO BAND RADIO

tUNE IN THE WORLD OF EXCItement With the world's first three stage tranSISTORIZED TWO BAND RADIO KIT FOR ONLY $\$ 5.00$ FULL PRICE-READ CAREFULLY

This set tunes the broadcast band and a click on the band switch lets you enjoy exciting police calls, ship to shore, aircraft, both commercial and military, amateur phone stations, code and foreign stations from all over the world. (It's the best electronic buy ever offered.) Tunes as many stations as sets costing up to $\$ 100.00$. Kit includes the following parts: Min-Tube, Min-Tube Socket. a special detector, printed circuit plate, a band switch, a battery switch. a tuning knob, a two band coil, an (Ekeradio) electronic wand. four condensers, two resistors, two phone clips, antenna trimmer, four rubber mounting feet, hookup wire, a coll mounting clip, and a sheet of easy-to-follow instructions. A 722 or a 107 transistor can be used for the third stage (Not furnished). Any phones will work with this set. Two small batteries furnish the power (Not furnished). This can be mounted on your small board or small plastic box. Send only $\$ 5.00$, a self-addressed gummed label to facilitate shipping of this fantastic kit, and ten cents in stumps to the address below. If the above instructions are not followed, your order may be delayed several months, so read carefully.

ASSURE YOURSELF OF FINANCIAL SECURITY-INDEPENDENCE

Imagine being able to fix anything electrical from the tiniest home electric shaver to large industrial motors! Having a training that makes you command a better job with higher wages or a business of your own. You do not need previous special schooling. Just the ability to read and be mechanically inclined. We furnish you with everything! One of the kits sent to you is our famous ELECTRONIC KIT, an all-purpose trouble detector which shows you where the trouble lies. Training kits whose assembly will give you pracfical shop training af home during your spare time! You learn practical electricity by using your hands. Best of all, these kits are yours to $k \in e p$ and use forever!

REPAIR ELECTRICAL EQUIPMENT!

ILLUSTRATED COURSE
 frazer SHOWS EVERYTHING

The Christy maintenance and repair course is written in simple, easy-to-understand language. Each section is profusely illustrated by photographs ond drawings and shows you what troubles to look for and then how to correct them. In addition, our course shaws you how ta build pawer tools at low cost. Also teaches you welding, nickel plating, generol repairing (saw fling, bicycle and gas stave repairing, etc.). Should complicated technical problems arise or the need for a special repair part, simply call on us. We affer YOU our fREE Advisory Service for LIFE! W teach you how to solicit business get repect arders and what to charge. The Christy Course plus our hame-shop training kits make a combination that will go a long way toward ASSURING YOUR SUCCESS.

RUSH THIS COUPON TODAY!

SO EASY IT'S SHOCKING, IF YOU USE ENLARGED PLANS

to bulld electronic projects. Enlarged size, step-bystep craft print plans complete with detalled mate. rials lists-are available for the following:
191. TESLA COIL. Produces 70.000 volts at 500.000 eps. Spectacular but safe... $\$ 1.00$ 227. REPULSION COIL. Defles law of gravity-electromag243. DEMO ELECTRIC MOTORS. Plans for both windmill und ensine ispes.. $\$ 1.50$ 251. SOLAR BATTERY AND MOTOR. Battery's rolt at 180 ma drives motor....................................... 258. SUN.POWERED RELAY, Light-activated control with 264. HI.FI FM RECORD PLAYER. Phono osclllator. arm and turntable for hl-f reproduction............................... . $\$ 1.00$ 265. ELECTRICAL COIL-WINDING MACHINE. Motor-powered with loot-controlled reactor............................. $\$ 1.00$ 279. WIMSHURST STATIC MACHINE. Constant source of static electriclty.. $\$ 1.50$ 283. VAN DE GRAAFF GENERATOR. Costs $\$ 30$ to build. Produces up to 250.000 volts....................................... $\$ 1.50$ 301. VAN DE GRAAFF GENERATOR. Produces up to 400.000 volts. This is the apparatus that can stand your hair on end!

SAVE MONEY! if you order two or more craft - : SAVE MONEI: prints. deduct 256 from the regular price of each print. Thus, for two prints. deduct 50 c: three prints. 75s. etc. Use handy coupon below. Satisfaction guaranteed or money bacs.

SCIENCE and MECHANICS, Dept. 227
450 East Ohio St.. Chicago 11, Illinols
Enclosed is \$ \qquad Please send me the circled plans.
These plans are $\$ 1.00$ each

191	227	258	264	265
These plans are	$\$ 1.50$	ach		
243	251	279	283	301

NAME \qquad

ADDRESS \qquad

CITY \& ZONE \qquad
STATE
Here's 206. Please end me your Hlustrated catalog of 196 craft print plant.

PCA
 LET RCA TRAIN YOU IN ELECTRONICS

RCA Institutes, one of the world's largest electronic technical schools, offers a Home Study Course in...

ELECTRONICS FOR AUTOMATION

... Now you have four comprehensive courses for your electronic training . . . from basic electronic theory to the more advanced principles of color TV and Automation.

Practical work with the very first lesson. Pay-as-you-learn.

You need pay for only one study group at a time.

RCA INSTITUTES, Inc. Hone Study School, Dept. RTVE-20
A Service of Radio Corporation of America
350 West Fourth Street, New York 14, N. Y.
Without obligotion, send me the FREE cotalog of Mome Study Courses. No salesmon will call.

Vetarans: Enter discharge date

CANADIANS - Toke odvantage of these same RCA courses at ne addifional cost. No postage, no euitoms, no delay. Sund coupon to: RCA Victor Company, Ltd., 5001 Cote de Liesse Rd., Montreal 9, Quebee Te seve time, paste cospon on pesticerd.

New lsotronic Tralning Methodl
 LEARN TV REPAIR IN ONE SHORT WEEK

Now, after 5 years research-a dynamic TV training technique that makes others obsolete! It you've waited for a chance to have your own jrosperous business, here's an opportunity to make up to $\$ 150$ weekly, almost immediaielyf NO EXPENSIVE TRAININE - NO LONG STUOY! You want to get started servicing TV gets - not building them! So, why pay up to $\$ 250$ for high. priced lessons and equipment study long months? Our revolutionary ISOTRONIC method qualifies you to handle any make TV set right away! All the complicated technical theory is already taken care of by our Scientista! This new technique - hailed the most practical in the field technique - hatied the most practical in the field respected scientists, in cooperafion with every major American TV manufaciurer!

PUT YOUR "KNOW HOW'" TO WORK FOR PROFIT!
In addition to the most atreamlined training program of its type, you also benefit from a comstart, conduct, and expand your own TV Service business. Written by expert business consultants Packed solid with practical know.how instead of theory! Yes a complete"Businewg package" de aigned to quickly oring you the good things in aigned to quickly oring you the good things in
life that come with your own successful business.
FREE LESSON PROVES ISOTRONIC METHOD WORHS!
For conclutitve proof, send now for full details and FREE SAMPIE LESSON, Apply it to your own ailing set or a friend's - repair it without a single tool or lesting device - convince yourself that the amazing Isotronic method can put you in a profitable TV business of your own, in one short week! Write today - free lesson supply limited! (No obligation. no salesman will call.) TV SERVICING SYSTEMS, Dept. D-872 1038 So. La Brea, Los Angeles 19, Calthorna

Fill in coupon for a FREE One Year Subscription to OLSON RADIO'S Faneastic Barmain Packed Catalog - Unheard of LOW, L.OW, WHOLESALE PRIC:ES on Brand Name Speakers. Changers. Tubes. Thols, HiFi's. Stereo Amps, Tuners and other Hargains.

NAME \qquad
ADORESS
CITY \qquad ZONE _STATE
If you have a friend interested in electronics send his name and address for a FREE subscription also.
OLSON RADIO CORPORATION

102 5. Forge St., Akron 8, Ohlo

INVENTIONS WANTED!

140 Wealthy Manufacturers Ready to Pay Top Prices

W HEN you get an idea you think may be worth thousands of dollars--a brand-new product wanted by everybody; a way to improve a product already in use; a lower-cost, easier method of servicing, making, or doing something-you can know exactly HOW and WHERE to cash in on it and make big profits.
Our book, HOW TO FIND A BUYER FOR YOUR INVENTION, reveals hundreds and hundreds of needed inventions in every type of business. Lists 140 manufacturers who are eager to buy inventions (patented or unpatented) . . . and pay top cash. Tells you WHO to contact and HOW to sell-helps you get the most cash or royalties for your ideas or inventions!

WHY SO MANY INVENTORS FAIL

Few inventors know how to cash in on their ideas. Some spend their entire lives literally sitting on a gold mine without ever getting to the right man in the right firm. The secret of selling your invention -and your short-cut to success as an idea manis in knowing WHERE your ideas are actually needed, and HOW to contact the man who will say "Yes-BUY!"

That is exactly what the editors of SCIENCE and MECHANICS have now made easy for you to do. Their brand-new guide helps you get the right contact in the right firm. It lists hundreds of inventions urgently needed by top manufacturers. Tells you the name and title of the man to contact in each firm to make a quick sale!

SEND NO MONEY

Examine Guide FREE for 5 Days!
Just mail coupon below and we will rush you a copy of "How to Find a Buyer for Your Invention" to examine FREE for five days. If not convinced that it is worth many times its low cost, simply return it and owe nothing. You don't risk a penny.

Superior's New Model 70 UTILITY TESTER ${ }^{\text {© }}$

As an electrical trouble shooter the Model 70:

- Will test Toasters, Irons, Broilers, Heating Pods, Clocks, Fans, Vacuum Cleaners, Refrigerators, Lamps, fluarescents, Switches, Thermostats, etc.
- Measures A.C. and D.C. Voltages, A.C. and D.C. Current, Resistances, Leakages, etc.
- Will measure current consumption while the opplianer under test is in operation.
- Incorporates a sensitive direct-reading resistance range which will measure all resistances commonly used in electrical appliances, motors, etc.
- Leakage defecting circuit will indicate continuity from zero ohms 105 megohms (5,000,000 ohms).
As an Automotive Tester the Model 70 will test:
- Both \in Volt and 12 Volt Storage Batteries . Generators - Starters - Distributors
- Ignition Coils - Regulators - Relays - Circuit Breakers - Cigarette Lighters - Stop

Lights - Condensers - Directional Signal Systems. All Lamps and Bulbs - Fuses

- Heating Systems - Horns - Also will locate poor grounds, breaks in wiring, poor
connections, etc.
INCLUDED FREE This 64-poge book-practically a condensed course in electricity. Learn by doing.

Just read the following partial list appliances and motors using a simof contents: What is electricity? Simplified version of Ohms law. What is wattage? - Simplified wattage charts - How to measure voltage, current, resistance and leakage . How to test all electrical
plified troubleshooting technique.

- How to trace trouble in the elec. trial circuits and parts in automobiles and trucks.

Superior's New model $82 \bar{A}$ A truly do-it-yourself type

FEATURES:

- Tests over 600 tube types. - Tests OZ 4 and other gas. ailed tubes.
- Employs new $4^{\text {na }}$ meter with sealed alr-damping chamber resulting in accurate vibrationless readings.
- Use of 22 sockets permits testing all popular tube types and prevents possible obso-

TUBE TESTER

TEST ANY TUBE IN IO SECONDS FLAT!

lescence.
 SHIPPED ON APPROVAL NO MONEY WITH ORDER - NO C.O.D.

Try eng of the above tastruments for 10 days Before you buy. It completely sethified then send down par. mont and pay balance osindleated en coupon. No sheerest or finance Charente Added! 11 mot completely satisfied return wilt to us, no explepmetion mesentery.

MOSS ELECTRONIE, INC.

Dept. D. 7073849 Tenth Ave., New York 34, N. Y. Please send me the units checked on approval. If completely satisfied I will pay on the terms specified with no interest or f nance charges added. Otherwise, 1 will return after a 10 day trial positively cancelling ali further obligation.
> - Model 70 ,Total Price $\$ 15.06$ $\$ 3.85$ within' io days. Balance $\$ 4.00$ monthly for 3 months.
insert it Into a mun.
(1) Selector switch topmostthen specified.

THAT'S ALL! Read emission quality direct on bad-good meter scale.

- Dual Scale meter permits testing of low current tubes.
- 7 and 9 pin straIghteners mounted on panel.
- All sections of multi-element tubes tested simultaneously.
- Ultrasensitive leakage test circuit will indicate leakage up to 5 megohms.

Name
Address

City Zone State.... All prices net. F.O.B., N.Y.C. bered socket as desiremasted on our chart clouded).

Production of this Model was delayed a full year pending careful study by Superior's engineering staff of this new method of testing tubes. Don't let the lop nile mislead your We claim Model 82A will outperform similar looking units which sell for much more-and as proof, we offer to ship it on our examine before you buy policy.
Model 82A comes housed in handsome,

(Picture Tube Adapter available for $\$ 5.50$ additional) for $\$ 5.50$ Presa down the quadif button -

82A.
Total Price $\$ 38.50$
Model 82A. $\because 0$. Total Price 838.50 $\$ 3.50$ within ${ }^{3}$ monthly for 5 mons.
\square Include Model 82 A Picture Tube Adapter at $\$ 5.50$

Dr. BRUNO FURST's

 School of Memary and Concentration
WILL SHOW YOU HOW TO

 RememberNAMES, FACES, FACTS, FIGURES \& BLUEPRINTS

For Details See The Article On Page 77 In This Issue.

School of Memory and Concentration

365 West End Avenue,
Now York 24 - SChuyler 4.8299

NO MORE SMASHED FINGERS!

 Atlas and SAIL DRIVER
Drives nails safe and straight into wood, concrete, metal or brick - in corners, hard-to-reach places ... onywhere. No more lost tempers, bent nails or damaged surfaces due to hammer "misfiring". Ideal for Do-18-Yourselfers, Housowives - anyone who uses a hammer.

Special
Introductory $\$$ Each,
Price
Postpaid
Send east. chack or mony ordur No C.O.D. 's aleses.
K-J COMPANY
1423 S. 2al SL. Mumanket 4, wis

HYPNOTISM RECORD \& HAND DISC

And 63 Other Toys and Games You Can Make

OUR 192-page book TOYS AND GAMES YOU CAN MAKE gives detailed plans for making 78 action toys, thrilling games and fascinating playthings (15 of the projects can be completed in just one evening). Only ordinary hand tools are needed, and our simple, easy-to-follow plans show you exactly HOW to proceed. The detailed drawings, photographs, materials lists and step-by-step instructions make it easy as A-B-C.

IT'S EASY! IT'S FUN! SAVE MONEY, TOO!

This giant collection of plans for toys ranges from those for pull toys for tiny tots to those for a suitcasesize powercycle for teenagers-it includes something for every child or young adult. You'll have fun, and you'll pocket substantial cash savings by making these projects yourself.

ORDER YOUR COPY-NOW!

Ordinarily a book like this would sell for $\$ 3.00$ or more, but while our first edition lasts we will send you a copy for only $\$ 1.95$. The quantity is limited, so act now. Attach your check or money order to the coupon below. We guarantee complete satisfaction or your money will be refunded.
SCIENCE and MECHANICS MAGAZINE, Dept. 506
450 Easf Ohio Streot, Chicago 11 , llinois
Enclosed is \$1.95, for which send me, all charges
prepaid, a copy of the deluxe edition of your
192-page hondbook, TOYS AND GAMES YOU
CAN MAKE. If I am not completely satisfied,
may return the handbook within 5 days for full
refund. I take no risk.
NAME
ADDRESS_
CITY_
 ALL PHASES, including Servicing, Manufacturing, Broadcasting and Communications, Automation, Radar, Government Missile Projects.

NATIONAL SCHOOLS SHOP-METHOD HOME TRAINING, with newly added lessons and equipmens, urains you in your spare time at home, for these unlim. ited opporcunities. including many technical jobs leading to supervisory positions.
you learn by building equipment with KITS AND PARTS WE SEND YOU, Your National Schools course includes thorough Practical training-YOU LEARN BY DOING! We send you complete standard equipment of pro. fessional quality for building various experimental and test units. You ad. vance step by step, perform more than vance step by step. performou build a
100 experiments. and you complete TV set from the ground up. that is yours to keep! A big, new TV picture tube is included at no extra charge.
EARN as you LEARN. We'll show you how to earn exira money right from the start. Many of our students pay for their course- and more - while studying. So san you

LESSONS AND INSTRUCTION MATERIAL ARE UP.TO.DATE, PRACTICAL, INTERESTING. Every National Schools Shop-Method lesson is made easy to understand by numerous illustrations and diagrams. All instruccion material has becen de veloped and reseed in our own Resi dent School Shops. Laboracofics and Studios.
SERD FOR INFORMATION TODAY... ic CAN mean the difference berween SUCCESS and faiture for you! Send for your FREEBOOK "'our Future in Television-Radio.Elecrronics" and FREE Sample Lesson. Do is TODAI while you are thinking about your fulure. It doesn't coss you anything o investigate

YOU GET...

- 19 Big Kits—YOURS TO KEEP!
- Friendly. Instruction and Guidance
- Job Placement Service
- Unlimited Consultation
- Difloma-Recognized by Industry
- EVERYTHING YOU NEED FOR SUCCESS!

SHOP.METHOD HOME TRAINING COVERS ALL PHASES OF INDUSTRY 1. Television, including Color TV 2. Radio AM \& FM
3. Electronics for Guided Missiles 4. Sound Recording and Hi-Fidelity 5. FCC License
6. Automation and Computers
7. Radar B Micro-Waves
8. Brosdcasting and

Communications

GET THE BEMEFITS OF OUR OVER

 50 YEARS EXPERILNCE

You are invited lo become a charterer subscriber to

MOBILEHOME JOURNAL, unlike any other publication in its field, recognizes that the mobilehome living story has two sides-male and female. Thus it will include information not only for the head of the house, but also for the heart of the house-features on subejects of vital interest to women as well as articles for the men of the family.

ON SALE APRIL FIFTH

You are cordially invited to became a charter subscriber to MOBILEHOME JOURNAL, the first publicatron in its field dedicated to serving the interests and needs of the complete family unit. You will find fedfores such as these in each exciting issue:

- HOW TO SELECT YOUR NEW MOBILEHOME -d wealth of information for the veteran mobile-homer-and for the novice.
- THE CASE FOR AIR CONDITIONING-a complate analysis of what this essential feature can mean to the typical mobilehomer.
- Why they relaxed their zoning-this hard-hitting article explains why a town that once fought tooth and nail against "those gypsies in the trailer camp" has done a complete aboutface.
- LET'S HIT THE ROAD—pointers for travel trailer fans on how to enjoy a camp-out in high stylehigh in everything but cost.

The first issue of MOBILEHOME JOURNAL goes on sale April 5 th. It will be an issue you won't want to miss. You can assure yourself of receiving it and the succeeding five issuessix in all-at the special half-price charter subscription rate, by filling in the coupon below and mailing it today. Reserve your copy of the first issue now!

BECOME A RADIO TECHNICIAN For Only $\$ 22.95$

BUILD 16 RADIO

CIRCUITS AT HOME
All Guaranteed to Work!
Progressive Radio "Edu-Kit" (A)

PRACTICAL HOME
 RADIO
 COURSE

NOW INCLUDES
$\star 12$ RECEIVERS

* TRANSMITTER
\star SIGNAL TRACER
* SIGNAL INJECTOR
* CODE OSCILLATOR
 * No Additional Parts or Tools Needed :- - - O DOU DON'T HAVE TO SPEND HUNDREDS OF DOLLARS FOR A RADID COURSE
YOU

The "EEdu-kit" offers you an outstanding PRACTICAL NOME MADIO COURSE at a
rock-botiom price. Our Kit is destuned to rain Rado Electronics Tectinicians, making use of the most modern method of home training. You will learn radio theory, construc
tion practice and servicing. THIS IS A COMPLETE RAOIO COURSE IN EVERY OETAAIL
 in a protessional hallner: how to service radios. You will work with the standard ty
RF You will learon the basle prlaciples of radio. You will construct. study and work with RF and AF amplifiers and oscillators, detectors, rectiliers, test equipment. You will dearn
and practice code, using the Progressive code Ofillator. You will learn and practice
 sive Dynamic Radio Electronies Tester and the accompanying instructiomal material.
You will receive uaining for the Noviec. Technician and Qeneral clases of F.c. Radio Amateur Licuners. You will bulld 16 Recelver, Transmitter. Code Osclliator, Signal Tracer background for Television. Hi-Fi ano Electronics.
Absolutely no previous knowledge en radio or sefer is required, The "Edu-Kit", is the product of many years of teaching and engineering experience. The "Edu-Wit" will proplide you with a basic education in Electronics and Radio, wort $\$ 22.95$. The signal Tracer alonp is worth more than the price of the entife Kit.

THE KIT FOR EVERYONE

PROGRESSIVE TEACHING METHOD

Abstract

and Is universally accepted as the standard in the held of electronics training. The world Kit" wes the modern educational principle of "Learn by Doing" Therefore you construct, gram designed to provide an easily-learned, thorough and Interesting backuraund in radio. You begin by examining the various radio parts of the "Edu-kit." You then learn the function, theory and wiring of these parts. Then you build a simple radio, With this first set you will enjoy listenting so regular broadcast statlons, iearn theory, practice testing and trouble-shooting. Then you build a more advanced radio, learn more advanced theopy and technigues. Graduilly. in a proyressive manner, and at your own iate, you will find yourself constructing more advanced multitube radio circult, and doing work ike a find yourself constructing more advanced multi-tube radio circulti, and doing work like a Included in the "Edu-Kit", course are sixteen Recelver, Transmitter, Code Oscillator;

THE "EDU.KIT" IS EOMPLETE

You will receive all parts and intructions necessary to build 16 different radio and elec- ronics circuite, each guarantced to operate. Our Kits contain tubes, tube sockets, vari hardware, tubing. punched metal chasis. Instruction manuals, hook-up wire, solder, etc. In addition, you receive. Printed circuit materials, including Printid circuit chassls,
apecial tubr sockels, hardware and instructionk. You also receive a ufeful sut of tools. a professional electrle soldering tron, and S self-powered Dynamic Radio and Electronici
Tester. The "Edn-Kit" also ineludes Code Instrustions and the Progreasive Code Oscillator, In addition to F.C.C.esype questions and Answers for Radio Amateur License training. You
will also recrive leisons for servicing with the progressive Signal Tracer and the Progres. live sinnal Injector. High Fidelity Guide and a Quiz Book. You recelve membershis in RadiotTV Club. Free Consultation service, Certificate of merit and Discount privileges.

The World's Leading Mystery Magazine

Here are some of the reasons why it's the leader-here and abroad (six separate foreign editions):

- WORLD'S BEST MYSTERY STORIES selected and edited each month by Ellery Queen, the finest mystery editor in the business, able to secure the best mystery and suspense stories written. Since its inception in 1941, EQMM has published stories by no less than seven Nobel Prize and twenty Pulitzer Prize authors.
- BEST MYSTERIES OF THE MONTH reviewed by the famed critic Anthony Boucher, plus a complete listing of all new mystery and suspense hardbounds and paperbacks.
- SPECIAL SUBSCRIBER COVER conservatively designed for the home, not available on newsstands.
- SPECIAL "INVENTORY" PRICES on paperback titles-big savings on topllight thrillers; big savings on hardhound books, to0; and a mail book shopping service that enables you to order mystery books not available at local stores.
- THREE SPECIAL ISSUES each year-these sell for $50 ¢$ on the newsstands; subscribers get them at no extra cost
- money-back guarantee.

These exclusive features make every issue of Ellery Queen's Mystery Magazine a special treat to everyone who enjoys stories of suspense, crime and mystery. To start receiving your copy every month, send in the coupon below today!

Learn Electranics

PREPARE FOR YOUR F. C. C. LICENSE - YOUR TICKET TO A BETTER JOB AND HIGHER PAY!

F.C.C. LICENSE - THE KEY TO BETTER JOBS

An F.C.C. commercial (not amateur) license is your ticket to higher pay and more interesting employment. This licenss is Federal Government evidence of your qualifications in electronics. Employers are eager to hire licensed technicians.

WHICH LICENSE FOR WHICH JOB?

The THIRD CLASS radiotelephone license is of value primarily in that it qualifies you to take the second class examimation. The scope of authority covered by a third class license is extrenely limited.

The SECOND CLASS radiotelephone license qualisies you to install, maintain and operate most all radiotelephone equipment except commercial broadcast station equipment.
The FIRST CLASS radiolelephone ticense qualizes you to install, maintain and operate every type of radiotelephone equipment (except amateur) including all radio and television stations in the United States, its territories and possessions. This is the highest class of radiotelephone license available.

GRANTHAM TRAINING PREPARES YOU

The Granthan Communications Electronics Course prepares you lor a FIRST CLASS F.C.C. license, and it does this by TEACHING you electronics. Each point is covered simply and in detail, with emphasis on making the subject easy to understand. The organization of the subject matter is such that you progress, step-by-step, to your specific objective - a first class F.C.C. license.

CORRESPONDENCE OR RESIDENCE CLASSES

Grantham training is available by correspondence or in resident classes. Either way (residence or correspondence), we train you quickly and well-no previous training required. Even a beginner may qualify for his first class license in a relatively short time.
FOUR COMPLETE SCHOOLS: To better serve our many students throughout the entire country, Grantham School of Electronics maintnins four complete Divisions - located in Ilollywoond, Calif., Seattle, Wash., Kansas City, Mo., and Washington, D.C. All Divisions of Gruntham School of Electronics offer the same rapid courses in F.C.C. license preparation, either by home study or in resident classes.

Upgrade Your Income with a First Class

F. C. C. LICENSE

In resident classes or by home study, Grantham training is the easy way to learn more quickly and to prepare more thoroughly for F.C.C. examinations. And your first class F.C.C. 11cense is the quick, easy way to prove to your employer that you are worth more money.

If you already have practical experience in radioelectronics, the Grantharn course can add a knowledge of theory and an F.C.C. license to that practical experience. This is most important in qualifying you for higher pay and greater job security.

Our free booklet gives details of how you can prepare quickly for a better job in the rapidly expanding electronics industry, Clip the coupon below and mall It to the Grantham School nearest you.

Get your First Class Commerctal F,C.C. License Quickly

for a fascinating hobby, join the ROCKHOUNDS!

get your copy of the GEM HUNTER'S GUIDE the all-time best-selling guide to gem hunting

The GEM HUNTER'S GUIDE contains:

1034 ACTIVE GEM MINERAL LOCATIONS verified and confirmed by regional experts or personal exploration. This is the most comprehensive, detailed listing of North American gem locations available to the hobby-ist-or specialist.
81 MAPS OF HARD-TO-FIND AREAS, the largest group of such pin-point accuracy maps ever published.
53 FULL-COLOR PHOTOS OF GEMS-precious and semi-precious gemstones and minerals shown as they occur in nature.

The GEM HUNTER'S GUIDE also has:

1) Chapters on how to hunt for gem material and how to recognize it when you find it.
2) Chapters on how to identify gem material through field testing by checking color, hardness, crystal formation, transparency and other characteristics.
3) Special chapters, complete with lists of important discoveries, on diamonds and pearls.
4) A chapter on the fascinating and popular hobby of collecting and displaying fluorescent minerals under black light, including a complete table of fluorescent minerals.
5) A complete list of state mining and geological bureaus from which maps and publications may be obtained.
6) A complete list of museums having mineral displays and the cities in which they are located.
7) A complete list of colleges and universities equipped to help the gem seeker.
8) A complete bibliography of books and periodicals of importance to the gem hunter.

Order Now! Get your copy in time for the vacation season!

SCIENCE \& MECHANICS MAGAZINE, Dept. 110

450 East Ohio Strest, Chicago 11, Illinois

Please send me-for i days' FRLDE I:NAMINNATION-a copy of the "Gem Hunter's Guide" packed with pictures, maps, charts, expert advice telling where gems may be found. Unless completely satisfied with the book at the end of 5 days examination, I may; return it and owe nothing. Otherwise, I will keep it and send you 83.95 , plus 50 c to cover postage and handling charges.

Name.
Address
City, Zone \& State.
Save 50c postage and handing charges . . by enclosing only 93.05 WITH this coupon. Then WE will prepay AI.I. delivery charges. Keturn book within 5 days for full refund if not completely satisfied.

SEND NO MONEY

Examine FREE For 5 Days

SEND NO MONEY. Just fill out and mail this coupon and we will send the "Ciem Hunter's (iuide" to examine Free for 5 days at our risk. If you decide to buy the book, it may be the richest investment-in enjoyment and, perhaps, in cash re-turns-you ever make. So rush coupon for 5 days Free examination in your own home.

Terrific TRF Portable

You'll find the Terrific outstanding from the standpoints of sensitivity, selectivity, tone and vol-ume-and it costs less than $\$ 20$

By FORREST H. FRANTZ, Sr.

|F YOU want a portable broadcast band receiver, but wish to avoid the cost and complexity of a superhet, the Terrific is the portable for you.

The first transistor, T1 (see Fig. 3.) performs the dual function of RF amplifier and first audio amplifier. The audio signal is introduced to Tl through capacitor C 4 . The audio output signal of T1 appears across R4 and is transferred to driver transistor T2 through capacitor C6. The RF signal is introduced to the base of T1 and appears across L 2 after amplification. The high-Q tuning circuits C1A-L1 and C1B-L2 assure sharp tuning and high gain. Diode D is the detector. It rectifies the RF signal, and capacitor C7 smooths the peaks of the signal to provide an audio signal across volume control R7.

Transistor T2 is the audio output stage driver. The closed circuit jack between the driver and output stage permits headphone reception. The output stage (transistor T3) drives

The Terrific has a reflexed RF-audio stage, transformerless loudspeaker operation, and is laid out for growth to a superhet or communizations receiver.
the loudspeaker directly. This stage is operated class A, but current consumption has been minimized. Current drain for the entire set is approximately 20 ma . A 45 -ohm voice coil intercomtype speaker permits direct drive. Although this arrangement results in a comparatively low efficiency output impedance match, it eliminates the need for a space-consuming transformer or a miniature transformer which would compromise the frequency response and result in poor tone.
Construction. Cut off the shaft of on-off switch S1 at the groove nearest the switch. Cut the shaft of tuning capacitor Cl to a $13 / 16-\mathrm{in}$. length. Cut the shafts of the volume control R7 and the control R2 to 7/16in. lengths. Enlarge the speaker mounting holes on the voice coil connection side of the speaker to $1 / 4 \mathrm{in}$. and mount R2 and R7 in these holes. Bend out-

put transformer mounting flanges on the speaker up toward R2 and R7 slightly as shown in Fig. 2.

Remove the antenna loopstick coil L1 from its mounting board by cutting into the fiber strip that holds it on the board (Fig. 4). Separate the two leads that are soldered together to form the tap on L1. The wire on this coil is litz wire. Try not to break any of the strands, but if you do, apply solder further back on the lead ends.

Now disconnect the two leads connected to lug 2 of the interstage coil L2 (Fig. 5) and separate them. The loose lead which makes a complete circuit to lug 1 is reconnected to lug 2. Connect the other lead (which makes a continuous circuit to lug 3) to a piece of hook-up wire twisted around the end of the coil as shown. Cut the antenna pick-up lead soldered to lug 1 of the coil to a length of 2 in. for connection to the stator of C1B when the radio is assembled. Set the slug adjusting screw to protrude $1 / 4$ to $3 / 8 \mathrm{in}$. out of the coil.

Next cut out and drill the panel and cabinet sides. These should not be metallic since complete metallic enclosure would shield the antenna coil from radio signals. Perforated Masonite was used for the top panel of the original model to simplify construction. Solid or perforated Masonite may be used for the sides. Although the Masonite perforations in front of the speaker are utilized for sound
transmission, other perforations must be blocked. A cardboard backing sheet was used to prevent front to back speaker sound interference; Fig. 6 shows the layout. Use a taper reamer to make the larger holes in the Masonite. The metal cabinet back is part of a commercially available cabinet, but you may cut and bend your own if you wish.

Cut the perforated Bakelite chassis board with a hacksaw and pocket knife (see Fig. 7). (Cut-outs A, B and C mount IF transformers if the set is converted to a broadcast superhet or a communications superhet, a procedure to be described in a future issue. They may be omitted if you do not wish to have conversion capability.)

Fasten the cardboard baffe to the perforated cabinet top with Duco cement. Mount the speaker, phone jack, tuning capacitor, and antenna coil as shown in Fig. 8. The side of the speaker on which the volume controls are mounted is held in place by a small metal clamp. This may be made from a strip of metal or by rebending a small bracket. Place enough washers between the tuning capacitor and the Masonite board to obtain a $1 / 4$-in. space between them. Fasten the Masonite cabinet front side to the tuning capacitor with a machine screw. Join the two pieces of Masonite to a bracket at the other end. Fasten the antenna coil to the cardboard with Duco cement in the position shown in Fig. 8.

One small piece of perforated Bakelite should be fastened to the antenna coil with Duco, another should be fastened above the speaker clamp with a nut to provide necessary lead tie-down points. Fasten the Bakelite chassis board to the speaker with a machine screw in one of the tapped holes on the back of the speaker. If the output transformer mounting flange on the speaker projects into the chassis board cutouts, bend it further to allow clearance. The chassis screw also fastens a strip of metal $1 / 2 \times 11 / 2-\mathrm{in}$. cut from a tin can. This strip is the common ground tie-down point. Cut gashes into the strip along all four sides so that you can crimp wires in place.
Try to make your wiring and parts placement conform as nearly as possible to that shown in Fig. 8 if you wish to convert the set later. Make connections on the chassis board by passing the parts pigtails and wire lead ends through perforations. The tight mechanical fit that results when two or three
parts pigtails are passed through one hole are very reliable electrically, but solder them for extra assurance. Cut excess lead lengths protruding through the bottom of the chassis board to about $1 / 16$ in. Be careful to avoid passing leads through perforations so situated that leads can short circuit to the speaker frame.

Most of the resistors and capacitors mount above the chassis board as viewed from the back of the set. The transistors mount underneath. Leave transistor T1 pigtails at least an inch long for easy conversion to a superhet receiver later.

Mount the interstage coil, L2, near the back of the tuning capacitor. The resistor shown connected across the primary in the circuit diagram should be connected only if the set oscillates after it has been placed in the cabinet and aligned. It's value will be between 10 K and 100 K . Orient the coil approximately as shown in Fig. 8. Fasten a piece of aluminum foil $11 / 4 \times 3$ in. to the cardboard beneath the coil with Duco cement and make a ground connection to the ground tie-down strip from the bracket at the rear of the pancl. Make battery leads about 9 in . long.

Three sections of the on-off switch are unused in this project. (They will be used if the set is expanded.) Set the on-off knob pointing straight up and down when the switch is "off." Then, when the switch is turned "on" it will point to the machine screw adjacent to it. Paint the head of this screw red to make it obvious when the set is "on."

The shaft of the tuning capacitor specified is slotted for a spring type push-on knob. If you wish to use a set-screw type knob, build the shaft up to full round with sol-

Parts layout of the Terrific.
der. Regardless of the knob you use, a plastic pointer may be fastened to it. The fine black line on the pointer is made by scratching the line into the plastic with an ice pick and flowing India ink into the scratch.

One of the controls, R2. is used only as a fixed resistance in this circuit. It may be replaced with a fixed resistance of 10 K if you don't intend to change the set to a communications superhet receiver later. Or, you may use it as a tone control of sorts by connecting a capacitor of 0.1 to 1 mfd to it as shown in dotted lines on the circuit diagram.

The battery B1 consists of six large penlite cells connected in series to provide 9 v . To fasten the six cells together, lay them side by side on a smooth surface and drop a quantity of Duco cement between them. The negative ends of the batteries should be cleaned with a small file before the battery connections are soldered. Use as little heat as possible to solder these connections.

Drill two $1 / 4-\mathrm{in}$. holes in the metal cabinet back adjacent to the carrying handle to provide access to the antenna and RF trimmers. and drill a hole in the bottom to provide access to the RF coil-adjusting screw.

A whip-type antenna (see Materials List) was used on this set. The antenna is furnished with a jack and plug. Mount the jack and solder the plug into it. The antenna may be screwed onto the plug for non-portable use. For portable use, the antenna is left fastened in the two fuse clips provided on the outside of the Masonite back as shown in Fig. 9. The clip nearest the antenna coil is used for the connection.

To place the radio in the cabinct, place a piece of thin cardboard $21 / 2 \times 81 / 2 \mathrm{in}$. along the rear of the metal cabinet and extending about $1 / 2 \mathrm{in}$. up the sides. Place the $9-\mathrm{v}$. battery on the cardboard against the cabinet back and ends. Place a strip of wood $1 / 4 \mathrm{in}$. thick and about $63 / 4 \mathrm{in}$. long over the battery. Clamp the strip to the metal cabinet with a screw through the cabinet hole between the batteries. Push the battery leads back into the cabinet so that they won't interfere with the operation of the tuning capacitor. Ease the radio into the cabinet and fasten with self-tapping screws.

Since the radio may be used in the "handle up" or "flat on its back" positions, provide rubber feet for both positions to avoid scratching furniture. (Fasten grommets to the cabinet with rubber-to-metal cement.) Paint or ink the tuming dial calibration on the cabinet front.

Alignment. Since there's no IF alignment

Desig.	MATERIALS LIST-TERRIFIC Description ($1 / 2$ Watt Carbon Resistors)
$R 11$	270 ohms
R5	470 ohms
R3, R8	1 K
R4, R10	2.2 K
R9	3.3 K
R1	47 K
R6	68 K
R2, 27	10K volume control (Lafayette) VG-34)
C2, 67	. 001 mfd . subminiature capacitor (Lafayette C-509)
C5	.01 mfd . subminiature capacitor (Lafayette C.612)
C4, C6	$4 \mathrm{mfd} ., 6 \mathrm{v}$. subminiature capacitor (Lafayette CF.101)
C8	$10 \mathrm{mfd} ., 15 \mathrm{v}$. electrolytic capacitor (Lafayette CF-122)
C3. 69	$30 \mathrm{mfd} ., 6 \mathrm{v}$. subminiature capacitor (Lafayette CF-104)
C10	$100 \mathrm{mfd} ., 15 \mathrm{v}$. electrolytic capacitor (Lafayette CF-126)
C11	$160 \mathrm{mfd} ., 15 \mathrm{v}$. electrolytic capacitor (Lafayette CF-127)
C1A-B	2 gang 365 mmf . variable capacitor (Lafayette MS-142)
T1	Texas Instruments 2 N252 transistor
T2	Raytheon CK722 transistor
T3	Texas Instruments 2 N185 transistor
0	Sylvania IN 34A germanium diode
B1	battery, 9 volts (6 Ray-0.Vac 7R, Burgess \mathbf{Z} or Eveready 915 penlite cells in series)
J	miniature closed circuit phone jack (Telex JPM-01)
L1	antenna coil-see text for modification (Miller 2001)
12	interstage coil-see special instruction in text (Miller 2002 antenna coil)
S1	4P, 2T switch and knob-use one section for on-off switch. ing (Mallory 32 42J)
SPKR	31/2" speaker, 45-0hm voice coil (Quam 3A07245)
1	perforated Bakelite chassis board (Lafayette MS-305)
1	perforated Masonite board (Lafayelte ML.81)
2	miniature knobs (Lafayette MS.185)
1	knob for tuning dial
1	metal cabinet back (Use back of ICA 29343 or make)
1	handle for cabinet (available in hardware or variety store)
A	whip antenna (Lafayette F-440)

or mixer tracking to worry about, alignment procedure is extremely simple. The preliminary adjustment of L2 described in the construction procedure will cause the set to be nearly in alignment at the low end of the broadcast band when construction is completed. The set should be mounted in the cabinet for final alignment. Align the highfrequency end of the band by tuning in a weak station between 1400 and 1550 kilocycles and adjusting the trimmer capacitors on the side of the tuning capacitor C1 for maximum output. The antenna trimmer will

SET MAY EE USED IN EITHER OF POSITIONS SHOWN BY CHANGING the antenna mounting ARRANGEMENT. THE ANTENNA TRIMMER SHOULD BE TUUNED with the antenna in the POSITION IN WHICH IT WILL BE USED MOST FREQUENTLY

non Portable
seem to have the greatest effect on tuning. Adjust it till the station comes in at a point on the dial where the RF trimmer tunes the signal to maximum without being all the way in or out. Then tune the set to a weak station between 600 and 700 kilocycles and adjust the tuning slug of the interstage coil L2 for maximum output. Reset the tuning dial to the high frequency end of the broadcast band and readjust the RF trimmer for maximum output.

Out of the metal cabinet the receiver may oscillate at the higher frequency tuning capacitor settings. If it doesn't oscillate when you fasten it in the cabinet and align it, this doesn't matter. But, if the set oscillates when fastened in the cabinet, you'll have to take remedial measures. First, check to be sure that the lead from L2 to the collector of T1 is as short as possible and is dressed against the speaker frame. The same applies to the lead to C1B. If the set still oscillates when it's fastened in the cabinet, connect a 100 K resistor across the primary of L2 as shown in the circuit diagram. If oscillation still occurs, try $47 \mathrm{~K}, 33 \mathrm{~K}$, and 10 K , in turn till oscillation is eliminated. In the original receiver, the 100 K resistor did the trick.

Iron Does Double Duty

- Quite often a small file is needed to file corroded parts and wires clean before the application of solder. If you want to eliminate the necessity of hunting up such a file every time you have a soldering job to do, attach one to your iron's barrel with heavy solid wire. (You may have to break off the file's tang if it is longer than your iron's barrel.)-J.A.C.

Extending Radio Battery Life

- Many portable battery-operated receivers tend to cease operation long before the batteries have terminated their useful life. This is usually due to the set's oscillator shutting of because of reduced voltages on the tube elements. By increasing the signal feed-back voltage however, the oscillator will continue operation even on reduced voltages. A few extra turns of wire added to the "tickler" winding of the oscillator coil will boost the feedback enough to insure a longer battery life, and considerable saving in replacement dollars.

SIX-METER Amateur Band Converter

If you're a Technician or General Class Amateur interested in six-meter operation, this simple low-cost converter will prove a boon to you for either fixed or mobile use

By JOE A. ROLF, K5JOK

THIS converter can be constructed with parts from most ham scrap-boxes, but even with new parts its cost will not run much over $\$ 5$! Naturally, with only one tube, it is not as hot as mary commercial multi-tube units, but it will generally hold its own with crystal-controlled converters costing much, much more.
A 6 U 8 triode-pentode is used-the pentode section as a mixer, the triode as a tunable local oscillator. Tuning is done with the receiver to which the converter is connected, as with a crystal-controlled unit. But with the local oscillator tunable from 47 Mc . to 54 Mc ., a number of different intermediate frequencies can be employed.

With a home broadcast or car radio, for example, the oscillator can be set at 49.4 Mc . so that 49.9 Mc . to 51 Mc . is received when the receiver is tuned across the broadcast band. With a simple screwdriver adjustment, the oscillator frequency can be changed for coverage of any desired 1-megacycle segment of the band. When used with a communications receiver, the oscillator can be set at 48 Mc . and the entire six-meter band covered by tuning from 2 Mc . to 6 Mc . This higher IF not only gives continuous tuning, bit provides better image rejection than the commonly used lower IF.

A $2^{1 / 2} \times 4-\mathrm{in}$. piece of $1 / 4-\mathrm{in}$. Plexiglas, available at hobby shops and many radio supply houses, is used for the chassis. This material can be worked with simple hand tools and greatly simplifies construction. Construction, however, can be modified to allow the use of a mini-box or similar metal box.

Details of the chassis are shown in Fig. 2. Serew holes for the tube socket and antenna

jacks, J 1 and J 2 , are not shown and should be positioned for the particular sized component used; $1 / 8 \times 1 / 4-\mathrm{i} 3$. machine screws mount all parts. By using a $3 / 32-\mathrm{in}$. hole, the screws will tap themselves into the soft Plexiglas. The four $1 / 8-\mathrm{in}$. holes are for mounting the chassis to its cabinet with $1 / 8 \times 1 / 2-\mathrm{in}$. screws.
The tube socket is placed in the middle of the chassis, the input and output jacks are centered at each end of the chassis, $3 / 8-\mathrm{in}$. from the edge. Phono jacks are used and are mounted on top of the chassis with the solder lugs extending through a $1 / 4-\mathrm{in}$. hole in the chassis. One jack is designated "Antenna Input", the other, "Converter Output." If the converter is intended primarily for mobile use, auto radio antenna jacks should be used in place of the phono jacks for direct connec-

be about $1 \frac{1}{4}-\mathrm{in}$. apart as there is no oscillator voltage injection other than by the coil coupling, tube capacity, and stray circuit capacity. Any form of direct coupling of the oscillator to the mixer circuit will result in excessive pulling (a change in oscillator frequency when the mixer is tuned). The oscillator has sufficient output for good conversion efficiency without direct connection to the mixer.

The cabinet is a three-sided box of $1 / 32-\mathrm{in}$. aluminum (see Fig. 5). The power cord of the unit passes through the removable end of the cabinet without unsoldering the power cord plug. As with the chassis. the $1 / 8-\mathrm{in}$. machine screws tap themselves into $3 / 32-\mathrm{in}$. holes.
The converter is powered by the receiver with which it is used. Requirements are low; 100 to 250 v for the plate supply and 6.3 (at 450 ma .) for the filament. These voltages are obtainable from most receivers with the aid of their schematic. A power cord
tion to the auto radio, or auto antenna.
Mount a three-lug terminal strip on the underside of the chassis between the output jack and tube socket. The ground (B -minus) and B-plus leads of the power cord and R3 connect to this strip. Capacitor C3 connects from the plate lead end of R3 to the lug on the output jack.

The oscillator and mixer coil forms are mounted midway between the tube socket and the antenna jack. It should be noted that two different types of slug-tuned forms were used. These were $1 / 4-\mathrm{in}$. dia. scrap-box components, one from a discarded BC radio, the other from a TV set. The form for the oscillator coil had a press-in type mounting and was pressed into a $5 / 16 \mathrm{in}$. chassis hole and secured with Duco cement. The other, a plastic form, had no mounting clip and was glued to the chassis with the slug screw pointing downward. A hole in the bottom of the cabinet permits adjustment of the slug.

Two dissimilar coil forms were used to illustrate the two methods which can be employed in mounting the coils, depending upon the forms available. In the event your scrapbox does not contain suitable slug-tuned forms, they can be obtained from a radio service shop for only a few cents. Most servicemen save discarded coil forms and you'll probably have several dozen to choose from.

For simplest construction, lay out the converter as shown in Figs. 1, 2 and 4. However, the only critical placement (besides keeping leads short) is in the positioning of the RF coils. The mixer and oscillator coils should

MATERIALS LIST-6-METER CONVERTER

Desig.	Description
Cl	20 mmf . ceramic or mica
C2	47 mmf . mica
C3	250 mmf . mica
C4	. 001 mmf . disc ceramic
C5	. 001 mmf . disc ceramic
C6	47 mmf . ceramic or mica
C7	47 mmf . mica
J1, J2	standard phono jacks
Ll	3 turns \#28 DCC wire, close-wound next to grid end of L2
L2	4 turns
13	3 turns \#22 DCC or enamel wire, close-wound on $1 / 4^{\prime \prime}$ slug. tuned form (see text)
PLI	3-contact power plug (Cinch-Jones P-303-FHT \& S-303. FHT)
R1	2 megohm, 1/4 watt
R2	40,000 ohm, 1/2 watt
R3	5,000 ohm, 1/2 watt
R4	10.000 ohm, $1 / 2$ watt
R5	$47.000 \mathrm{ohm}, 1 / 4$ watt
R6	(for 12-v heater source only) 12 ohm. 4 watt
1	608 tube
1	small button 9-pin socket, with shield
10	$1 / 8 \times 1 / 4^{\prime \prime}$ machine screws
4	$1 / 8 \times 1 / 2^{\prime \prime}$ machine screws
1 DC	$1 / 4^{\prime \prime}$ Plexiglas, $21 / 2 \times 4^{\prime \prime}$
1 pc	$1 / 32^{\prime \prime}(.0312)$ aluminum sheet, $6 \times 7^{\prime \prime}$

An underside view of the Plaxiglas chassis showing the placement of components. Threesconduclor cable passes through the chassis end-plate.
the receiver, but the ground connection of the converter's antenna coupling coil (L1) should be made with a .001 mfd capacitor. Filament voltage will have to be supplied by an external 6.3-v filament transformer, or a $6-v$ battery.

A $2-\mathrm{ft}$. piece of 52 ohm coax connects the output of the converter to the receiver antenna terminals. This lead can be any convenient length, though
 an excessively long lead will result in some loss of output. The input lead will depend upon the type of antenna used. Both leads should be fitted with phono plugs.

Alignment of the converter is best done with the aid of a grid dip meter. Since this is a popular piece of equipment with hams, you should have no trouble borrowing one if you don't already have one. With power applied to the converter, check the oscillator output with the meter. Output should be from 47 Mc to 54 Mc , or can be adjusted over this range by changing the coil spacing. Once the oscillator is working, adjust its frequency for the desired IF. If the converter is to be used with a BC receiver, for instance, the oscillator should be set 550 Kc below 50 Mc , or at 49.45 Mc . You will not be able to adjust the oscillator to the exact frequency with the meter, but accurate adjustment can be made later.

Next, adjust the mixer to about 52 Mc with the meter.

With a low IF (such as 550 Kc) some pulling will be noted. This, however, is to be expected at 50 Mc . After the mixer frequency has been adjusted, readjust the oscillator frequency again.

Onee the converter has been roughly aligned with a grid dip meter, accurate alignment can be made with the aid of a six-meter transmitter.

Whilc recciving a known, crystal-controlled frequency, adjust the oscillator until the sig-
nal is tuned at the proper frequency by the IF receiver. A 50.1 Mc signal should be read at 650 Kc if a BC receiver is used, or at 2.1 megacycles with a 2 megacycles intermediate frequency.

With fixed cperation, excellent performance has been obtained with a simple folded dipole, while the use of a two-element beam has shown that the converter has only slightly less gain and sensitivity than a multi-tube converter using a similar antenna system. For mobile operatior: the converter has been used with a $51-\mathrm{in}$. BC-type antenna and has given very good performance on both groundwave and skip reception.

Two Transistor Utility Amplifier

By FORREST H. FRANTZ, Sr.

SCIENCE and electronic experimenters need an audio amplifier as a basic piece of laboratory equipment. An audio amplifier is useful for amplifying low audio signals, detecting and measuring low audio and ac voltages, signal tracing electronic equipment, and as an auxiliary amplifier to bring earphone equipment signals up to loudspeaker level.
This amplifier will cost about $\$ 15$ to build. It is a compact, self-contained unit that has its own batteries and loudspeaker; it needs no external power source or speaker. The input impedance is sufficiently high to permit its use with vacuum-tube circuits. Output terminals are provided for connection to an external meter so that a multimeter may be used in conjunction with the amplifier for measuring very small ac voltages and for audio signal tracing. An RF-IF probe which extends its use for signal tracing is also described.
Circuit Operation. The circuit is shown in Fig. 2. The input signal is introduced at the jack J. Capacitor C1 isolates any dc components which may accompany the signal from the amplifier, but passes audio signals. The signal is presented across R1 and R2. Resistor R1 is in the circuit to keep the input impedance high. This introduces some loss, and if the amplifier is to be used with transistor circuits exclusively, R1 may be eliminated, with a direct connection from J to R2 for increased gain. R2 is the volume control, coupled to T 1 through transformer TR1. The primary impedance of TR1 is 10,000 ohms, and the secondary impedance is 2,000 ohms. Thus, the input impedance of T1 is reflected back to the amplifier at 5 times its value.

Resistors R3 and R4 bias the base of T1. Capacitor C3 bypasses audio frequency signals. Resistor R5 biases the emitter of T 1 and stabilizes operation over a wide range of temperature. Capacitor C4 bypasses audio signals. Without C4, gain would be reduced considerably, Capacitor C5 bypasses high-frequency signals in the collector circuit of T 1 which might otherwise

the collector of T2 to an output terminal. An ac voltmeter or an oscilloscope may be connected from this terminal to monitor the output voltage of the amplifier.

Construction. The amplifier may be con-

3
CIRCUIT BOARO LAYOUT (TOP VIEW)

4
4 CORNER HOLES "X" located for fit to case
PANEL BOARD FRONT VIEW
structed in the smallest amount of time if all parts are available when construction is begun (see Materials List), and if this work sequence is followed: 1) Prepare circuit board; 2) prepare panel board; 3) mount components on circuit board; 4) wire circuit board; 5) mount components on panel board; 6) wire panel board; 7) mount circuit board on panel board, and make interconnections.
The circuit board as purchased is the right size, but eight of its perforations must be enlarged to $1 / 8 \mathrm{in}$. (layout is shown in Fig. 3).

Panel board layout is shown in Fig. 4. The volume and tone of the unit will be improved if a piece of cardboard with a $23 / 8 \mathrm{in}$. dia. hole for the speaker opening is cemented to the back of the panel board. Trace dimensions from the panel board. The center for the speaker hole center is located by tracing the speaker mounting holes through the board onto the cardboard and drawing straight lines through diagonally opposite hole location marks.
Next, mount transformers TR1, TR2, and TR3 (see Fig. 5). Then, mount and wire the remaining components, making wiring connecticns on the bottom of the circuit board.

Now mount the components on the panel board and wire as shown in Fig. 6. Cut R2's shaft to a length of $5 / 18 \mathrm{in}$. before you mount it. Fill the contact evelets on the battery holder with solder to avoid later battery contact trouble.

Note that two machine screws (Fig. 6) are $11 / 4 \mathrm{in}$. long. These are fastened to the panel board with nuts and lock-washers. One of these machine screws serves for speaker mounting, but both are provided to support the circuit board. A nut is placed on each screw with the top of
 the nut $7 / 8 \mathrm{in}$. from the panel. The circuit board is mounted on these and fastened with a nut on each screw. Don't turn them tight initially. You may want to loosen the circuit board to make inter-connections between circuit and panel board. Interconnections are:

1) TR3 secondary leads to loudspeaker; 2) C 7 (negative) to T2 Collector; 3) S to circuit board negative bus; 4) center terminal R2 to C2 negative; 5) battery plus to circuit board common return.

MATERIALS LIST-UTILITY AMPLIFIER

Desig.	Description
	$1 / 2$ watt carbon resistors, 10% plus or minus
R8	100 ohms
R5, R7	1 K
R6	4.7 K
R3	10K
R1, R4	47K
R2, S1	25 K miniature volume control with switch (Lafayette VC.25)
C5	. 01 mfd, 75v Ultraminiature capacitor (Lafayette C.612)
Cl	. $1 \mathrm{mfd}, 400 \mathrm{v}$ tubular capacitor (Aerovox type P822)
C2	4 mfd , 6 r miniature electrolytic capacitor (Lafayette CF-101)
67	$10 \mathrm{mfd}, 6 \mathrm{r}$ miniature electrolytic capacitor (Lafayette CF-103)
C3	30 mfd . 6 r miniature electrolytic eapacitor (Lafayette CF-104)
C4, C6	100 mfd , 6 y miniature electrolytic capacitor (Lafayette CF-106)
C8	$100 \mathrm{mfd}, 15 \mathrm{v}$ miniature electrolytic capacitor (Lafayette CF.126)
TR1, TR2	10K to 2 K driver transformer (Lafayette TR-96)
TR3	500 ohm to 3.2 ohm output transformer (Lafayette TR-95)
T1, T2	2N321 transistor (General Electric)

Desig.
SPKR
d miniature jack (Lafayette MS.282)
binding posts (H. H. Smith 220 Red and 220 Black) battery holder (Lafayette MS.170)
$27 / 16 \times 33 \mathrm{r}^{\prime \prime}$ miniature perforated board (Lafayette MS.304)
$311 / 10 \times 63 / 4$ " miniature perforated board (Lafayette MS-305)
$2 \times 33 / 4 \times 61 / 4^{\prime \prime}$ case (Lafayette MS-216) knob (Lafayette MS-185)

RF Probe Parts:

R9, R10 15K, $1 / 2$ watt carbon resistors (10%)
C9 100 mmfd mica capacitor (Aerovox CM-20B-101)
D1 Germanium diode (RCA or Sylvania IN34A)
miniature plug.plug set (Lafayette MS.370)
small plastic bottle approximately $1 / 2^{\prime \prime}$ diameter by $2^{\prime \prime}$ long (available at drug store prescription counters) (Use Lafayette MS-281 plugs and about 2^{\prime} of Belden 8411 shieided microphone cable for the input audio test lead)
All components for this project may be ohtained from Lafayette Radio, 165-08 Liberty Avenue, Jamaica 33, New York

8
The RF probe fits in the small plastic tube standing behind it. Below, front panel mountings.

Fasten the knob on the shaft of $\mathrm{R} 2-\mathrm{Sl}$ and turn on to full volume. Touch the tip contact on the phone jack. If everything's okay, you'll hear a faint hum, and you can mount the assembled amplifier in the case to complete the job.

The amplifier may be used for audio signal tracing. The input probe lead is shielded with Lafayette MS-281 miniature phone plugs on each end. The sleeves supplied with the jacks should be replaced with more rugged $3 / 8-\mathrm{in}$. Bakelite tubing such as that used on test prods. The center lead attaches to the phone plug shell. A ground lead about 5 in . long equipped with a Mueller Minigator clip should be connected to the shield
at one of the plug ends. These plugs are used at both ends to allow easy attachment of the RF probe.

The utility amplifier will drive an ac voltmeter. The red and black terminals on the front panel have been provided for connecting an external ac voltmeter. This allows the unit to be used for the measurement of small ac voltages and to check amplifier gain. To calibrate, use the circuit of Fig. 7. Set the meter to the lowest ac scale and adjust RP till the meter reads full scale. Now disconnect your meter and measure El with it. The full scale range of the amplifier-meter combination is 10% of E1. Since transformer
coupling has been employed without feedback, the amplifier gain varies with frequency. The full scale sensitivity at 60 cycles is less than the full scale sensitivity at 1000 cycles. Be sure to calibrate at the frequency you plan to measure.

The simple RF probe shown in Fig. 8 can be quickly attached to or detached from the input probe lead (described earlier) to trace RF and IF signals. The circuit for the RF probe is shown in Fig. 2. The level of the signal from the RF probe is low, so best results will be obtained if earphones are connected to the red and black terminals on the front panel of the amplifier.

SM-FP UNIT Increases Value of Receivers

By FORREST H. FRANTZ, Sr.

THE SM-FP (" S " Meter-Front Phone) unit increases the utility of your receiver by providing a visual indication of relative signal strength for tuning, logging and comparison purposes.

An earphone jack (regular or miniature size) on the front panel of the SM-FP unit allows you to connect earphones at the front of the receiver. No more groping around the rear of the receiver where phone jacks (and hot tubes) are frequently located. I don't know of any receivers with " S " meters which sell for less than $\$ 100$. The addition of an " S " meter, therefore, adds considerable value to your inexpensive communications receiver. All of these advantages can be yours for less than $\$ 10$.

The SM-FP unit "S" meter circuit connects to any receiver which has automatic volume control (AVC) without having to make any changes in the receiver circuit; simply tie the input terminals across the outer terminals of the receiver volume control. The secret of this simple universal type of connection? A transistor amplifier for the " S " meter.
The unit is housed in a Bud CU-2104 Minibox, $2^{1 / 4} \times 2^{1 / 4} \times 5 \mathrm{in}$. and finished in grey hammertone. (The same size is available in natural aluminum as Bud CU-3004.) The hole layout for the front of this box is shown in Fig. 4. A $3 / 8$-in. dia. hole should be drilled in the center of the Minibox back and two small holes (about $1 / 8-\mathrm{in}$, dia.) should be drilled in one side of the back. Location of these holes is not critical; they are provided for the connecting cable and top of set mounting re-

spectively. Mount the meter on the front of the Minibox.

The perforated Bakelite circuit board should be prepared next. Layout for it is shown in Fig. 3. Use a hacksaw to cut out the circuit board and smooth the edges with a file. All hole centers coincide with perforations.

Mount R1, R3, and the battery holders on the circuit board. Carbon resistors, transistor, and capacitor are fastened to the board by passing the pigtail leads through the perforations. When junctions between parts occuras with R2 and the emitter of T1-the pigtails pass through the same perforation.

The common bus from the plus terminal of the battery is the long wire running the length of the circuit board in Fig. 5. This bus is returned through the connecting cable to recciver ground. The pigtails of components which return to this common bus are bent back against the board and soldered to the bus. The meter soldering lugs, the switch and the jack are connected while board wiring is in progress. The switch and jack leads should be about 2 in . long to allow positioning in the Minibox mounting holes.

When circuit wiring has been completed, make up a four-lead cable of flexible wire for connection to the receiver. Keep the cable reasonably short. I used a $16-\mathrm{in}$. cable. It helps to use different colored leads. The leads connect to the plus battery bus, R1 and the phone jack. Since the phone jack shell connection returns to the plus battery bus, three of the four connections may be made to the phone jack as shown in Fig. 5 if your receiver is ac operated (has a power trans-

former). Connections for ac-dc receivers are discussed below.

The circuit board is held in place against the back of the meter by the meter connection screws. To assure a good fit and good electrical connections, place cardboard shims between the meter and circuit board as required to elevate the circuit board above the meter binding post studs. Then fasten the binding post screws in place. Fasten the jack and switch on the front panel to complete construction of the SM-FP unit.

To fasten the unit to the receiver, place cardboard shims or use washers to obtain $1 / 8$-in. clearance between the receiver top and the bottom side of the Minibox back. The front of the SM-FP unit slides onto the mounted back. Insert two of the self-tapping screws furnished with the Minibox in the appropriate holes on the top of the case to complete the assembly.
The basic connection scheme for all receivers is the same, but the details obviously may differ. The Heathkit AR-3 receiver to which this unit was attached will be used as an example. The Heathkit AR-3 has an octal accessory socket on the rear of the chassis. Pin 1 of this socket is connected to receiver ground. Pins 2, 4, 5, 6, and 7 are unused. I connected a lead from socket pin 2 to the high side of the volume control of the AR-3. This is my detector voltage pick-up point which feeds to R1, the " S " meter input.

The volume control of the receiver is part of the diode load, and AVC voltage is taken from its upper terminal, the audio component being filtered off by a 3.3 Meg resistor and a .01 mfd capacitor. The correct connection point on practically any receiver may be found by locating the detector load and an RC filter with a 1 to 5 Meg resistor and a .01 to .1 mfd capacitor connected to the load. In most receivers, the volume control is part of the detector load and AVC is taken to the filter from this point. In any event, the detector voltage pick-off may be made without changing any wiring; you simply tap on.

The earphone jack on the Heathkit AR-3 is connected across the output transformer secondary. The third terminal on the jack is connected to the speaker voice coil and feeds the output signal to the speaker. Insertion of the phonc plug breaks the conncetion to the

> Rear view of wired SM-FP unit.
speaker. The phone jack on the SM-FP unit is simply an extension jack.

I disconnected the speaker lead from the jack in the receiver and ran this lead to pin 5 on the accessory socket. I ran another lead from the high side (tip connection) of the phone jack to pin 6 of the accessory socket. These pin connections are connected through a mated plug on the connecting cable to their counterparts on the SM-FP panel jack. I used a defunct octal tube for the cable plug.

Some receivers have the phone jack located between audio stages. A typical arrangement and the required change is shown

front view of perforated board.
in Fig. 7. If your receiver has an arrangement of this type, you may have to shield the AVC pick-off lead in the cable to prevent audio feedback. This feedback may occur whenever the phone jack is in a high impedance circuit. But it will rarely ever occur when the phone jack is in the low impedance output transformer secondary circuit as it is in the Heathkit AR-3.

A note regarding the ground connection is in order since most inexpensive receivers other than the Heathkit AR-3 are ac-dc operated. Chassis ground on ac-dc receivers is usually isolated from the dc ground which is the common negative return of the set. If you're connecting the SM-FP unit to an ac-dc receiver, provide a fifth wire in the connecting cable.

Eliminate the connection between the phone jack and " S " meter common on the SM-FP and insulate the phone jack from the Minibox. This may be done by enlarging the jack mounting hole and using fiber insulating washers. The " S " meter common connects to the $d c$ common of the receiver which is usually connected to the negative terminal of the electrolytic filter capacitor or to the "low side" of the volume control terminal. The shell of the SM-FP pnone jack connects to the shell of the phone jack on the receiver which is usually at chassis ground. The connections for the other three cable wires remain unchanged.

Adjustment of the SM-FP is simple. Turn the receiver on and tune to a point on one of the short wave bands where there's no station or noise pick-up. Turn the SM-FP on and adjust R3 for zero meter reading. Then tune the receiver to the strongest station you can find. If the " S " meter circuit is working properly, the meter needle will be deflected. Adjust R1 for a meter reading just above the plus 30 db point if you're in a good signal pick-up area, or for an S-9 meter reading if you're in a relatively poor area. Now tune off station to a quiet point and readjust R3 for zero reading. You may want to readjust R1 after you get a better feel for the kind of S readings to expect.

Readings are relative and are influenced by your antenna, the sensitivity of your receiver, the band and the place in the band at which stations are received. The important thing is that the S meter allows you to tune your receiver for maximum input and gives

	MATERIALS LIST-SM-FP UNIT
Desig.	Description
R4	$100 \mathrm{hm}, 1 / 2 \mathrm{w}$ carbon resistor (10%)
R2	$470 \mathrm{hmm}, 1 / 2 \mathrm{w}$ carbon resistor (10%)
11	2.2K. $1 / 2 \mathrm{w}$ carbon resistor (10%)
R5	10 K miniature potentiometer (Lafayette VC.32)
R3	1 Mej miniature potentiometer (Lafayette VC.38)
R1	. $02 \mathrm{mfd}, 200$ v capacitor (Cornell-Dubilier Cub)
Cl	2N508 transistor (GE)
,	phone jack (Lafayette MS-282 for miniature plug or Switchcraft 11 for standard phone plug)
B	two 1.5 v penlite cells series connected (Eveready 912)
M	S meter, 0-1 ma movement (Lafayette TM-11)
S	SPST toggle switch (Arrow-Hart and Hegeman 20994-BF)
	two-cell battery holder (Lafayette MS-138)
	Minibox case (See Text)
	perforated miniature Bakelite board (Lafayette MS-305) knob (Lafayette MS.185)

you a better estimate of signal strength than you would otherwise have. I point this out to emphasize that critical calibration of the meter is not required. After you've experimented with the S meter and your receiver for 30 minutes or an hour, you'll be able to set R1 for satisfactory meter deflections.

If the zero signal meter reading changes after the receiver has been operating for a few minutes, it's probable that heat from the receiver is causing the drift. Bend the transistor as near as possible to the center of the Minibox to minimize temperature drift. As

Eliminating Tape Recorder "Click"

- Does your tape recorder leave an audible "click" on the tape every time you depress the stop button while recording? Instead of clipping click from tape while editing, eliminate

it beforehand by manually rewinding an inch or so of the tape back on the supply spool before starting to record again.-Joun A. Сомsтоск.

Preventing Shorts on Breadboard

To prevent short circuits on a breadboard circuit, tape the wire leads to the chassis with masking or plastic tape. This will also improve the appearance of the layout and permit easier tracing of the wircs.-Jонn A. Сомstock.
an additional measure, the distance between the top of the receiver and the bottom of the Minibox may be increased to $1 / 4 \mathrm{in}$. Of course, you can mount R3 on the panel of the SM-FP unit if you wish, but this permits accidental displacement from the zero setting. This extreme should not be necessary. I might add that I didn't encounter noticeable zero drift with my Heathkit AR-3, but it has a wooden cabinet. I call attention to the possibility because it might occur if your receiver has a metal cabinet.

The " S " meter works in this way: The detection voltage of the receiver is fed through R1 to the base of transistor T1. R1 is an adjustable meter sensitivity control. The combination of R1 and C1 filters audio from the signal and passes only the negative dc level of the detection voltage (which depends on received signal strength) to the base of T .

Transistor Tl is a dc amplifier. A very small change of current to the base of T1 is amplified to values as great as 1 ma to drive the S meter. Resistors R3, R4, R5 and the meter form the transistor collector load and meter zero (null) set circuit. Resistor R2 provides dc stabilization for transistor T1 to minimize drift and also increases the base input circuit impedance.

Signal Boosters for Portables

- In many portable radios there is no antenna loop of the conventional type, only a "loop stick." Signal sensitivity on such sets can be appreciably increased by winding two to three turns of insulated wire around the stick, one end of this added wire connected to an outside antenna. No ground is needed. You can also, if the set has a loop, wind a oneor two-turn primary over the loop, giving a step-up in voltage. Finally, if you don't wish to incorporate cither of these primaries in the set's cabinet, you can make a one-turn loop of heavier insulated or bare wire stapled to a wood block and hung upside-down over the receiver as close as possible to the set's loop and in the same plane, one end of this heavywire loop going to an outside antenna as be-fore.-P. M. Armstrong.

Russia Gaining "Hams"

- If they can crack the language barrier, American ham radio operators may have 25,000 new correspondents by 1961-in the USSR. Radio, a Soviet magazine published in Moscow, reports that more than 50 radio clubs in Russia now claim 100 transmitters or more. It said that a drive is in progress to reach a goal of 25,000 Russian radio amateurs by 1961. Russian amateurs will operate in the frequency ranges 3.5 to $3.65,7$ to $7.1,28$ to 29.7 , 114 to 146 , and 420 to 435 mcgacycles.

This multimeter fits in a coat pocket, has a special meter protection feature and you can build it for about $\$ 10$

IF ALLOWED only one instrument, most technicians would select a multimeter. With it, you can shoot trouble, learn how electronics equipment operates, evaluate the performance of electronic gear. You can check for shorts or opens, measure $a c$ and $d c$ volts and milliamperes; and measure ohms. And from these measurements you can compute power, capacitance, and inductance.

This miniature multimeter is designed to measure a wide range of electrical quantities. Accuracy on the dc voltage, milliampere, and ohm ranges is good; accuracy on the ac ranges is not quite as good-unless you calibrate the ac ranges-but it's adequate for most purposes. The limitations of the meter are reasonable in view of its low cost and small size. These are its ranges:
dc volts: $1,5,10,50,100,500$
ac volts: $10,50,100,500$
dc ma: 1,100
ohms: $\quad 0-50 \mathrm{~K}$ (1.5 K at meter mid-scale) $0-100 \mathrm{~K}$ (3 K at meter mid-scale)
Scale switching is accomplished with range

Miniature Multimeter

A worthwhile and gratifying construction project for beginning experimenters, this miniature multimeter is also an exceedingly practical piece of test equipment.
switch S1, the push button switch S2, and by the imput jack circuit made up of $\mathrm{J} 1, \mathrm{~J} 2$, and $\mathbf{J 3}$.

If you buy $\mathbf{1} \%$ precision resistors for R1 thru R6, the total cosi will be slightly over $\$ 10$. You can save close to $\$ 2$ by selecting resistors R1 thru R6 from standard tolerance resistors. Use a Wheatstone Bridge to measure resistance (Wheatstone bridges are available in the science departments of most high schools and the physics departments of most colleges), or use the ohmmeter ranges on a good vacuum tube voltmeter (VTVM) such as the Heathkit V-7A. If you set the zero adjust and the ohms adjust controls carefully for zero and full-scale deflection of the meter, you can select resistors within plus or minus 2% very easily, and you can expect to get close to 1% if you're careful. This method is most accurate near meter center scale.

After you have all of the parts together, drill the chassis box (Fig. 3). Next, letter the front panel with India ink. Wash the box in warm sudsy water, rinse, and dry thoroughly before marking. A piece of thin plastic or clear celluloid cut to fit over the panel markings will assure permanence. Trim the holes with a pocket knife, and while you have

the rubber cement handy. cut out and fasten the meter scale (Fig. 4) on the front of the meter glass.

Next, assemble resistors R1 thru R8 on the rotary switch as shown in Fig. 5. This portion of the wiring is shown inside the dotted line on the schematic, Fig. 2. The numbers indicated on the switch contacts correspond to the numbers on the back of the Grayhill rotary switch (S1). Switch position \#0 is not used.
Check push button switch S 2 to be sure that it makes good contact in the normally "ON" position. If you can detect any resistance at all between these contacts on the low ohm scale of a VTVM, clean and bend them to provide a low resistance contact. Since this switch is in series with R9, the shunt for the 100 -milliampere meter range, contact resistance can impair accuracy.

Cut the shaft of potentiometer R12 so that it extends $1 / 4 \mathrm{in}$. beyond the potentiometer

MATERIALS LIST-MINIATURE MULTIMETER
Desig.
R9
R1
R2
R3
R4
R5
R6
R7
R8
R11
R10
R12
C1
J1, J2, J3
S1
S2
M
D
81, B2
0.67 ohm resistor ($61 / 2^{\prime}$ of $\# 30$ insulated wire)

935 ohm resistor, $1 / 2 \mathrm{w}, 1 \%$
4,935 ohm resistor, $1 / 2 \mathrm{w}, 1 \%$
10K resistor $1 / 2 \mathrm{w}, 1 \%$
50 K resistor, $1 / 2 \mathrm{w}, 1 \%$
100K resistor, $1 / 2 \mathrm{w}, 1 \%$
500 K resistor, $1 / 2 \mathrm{w}, 1 \%$
1 K resistor. $1 / 2 \mathrm{w}, 10 \%$
2.7 K resistor, $1 / 2 \mathrm{w}, 10 \%$

58 K resistor, $1 / 2 \mathrm{w}, 10 \%$
100 K resistor, 2 w. 10%
1 K miniature volume control (Lafayette VC-32)
$10 \mathrm{mid}, 150$ y miniature electroytic capacitor (Aerovox SRE type)
miniature phone jacks (Lafayette MS-282)
single pole, 10 -position miniature switch (Grayhill 5001-10)
miniature push button switch (Lafayelte MS-449) 0.1 ma miniature panel meter (Lafayette TM-400) selenium rectifier (Sarkes Tarzian 50)
1.5 v penlite cell (Burgess $\# 7$)
$15 / 8 \times 21 / 8 \times 4^{\prime \prime}$ aluminum chassis box (LMB-00)
miniature knob (Lafayette MS-185)
small standard knob (Lafayette KN.19)
miniature phons plug (Lafayelte MS.281)
bushings, and mount R12, S2, J1, J3, the meter and the S1-R1 through R8 range switch assembly (see Fig. 6).

Wire from the meter plus terminal to the middle terminal of R12 and from there to terminal 10 on switch S1. Connect a wire to the upper terminal of R12 and let it hang loose for the moment. Connect a wire from the switch arm of S1 to the contact of J3 designated as "C" in the schematic. Connect a $21 / 2$-in. length of wire from contact " B " on J3 to the plus terminal of rectifier D. Connect the other terminal of rectifier D to terminal "C" of jack J2.

Next, mount J2 on the chassis, positioning rectifier D as shown in Fig. 7. Note that the terminals are bent to avoid the possibility of a short. The connecting wires hold the rectifier in place. Run a wire from contact " B " on S2 to the minus terminal of the meter. Connect another lead from the meter minus terminal to contact "A" on J3. Now connect the minus lead of C 1 to the meter minus ter-

minal and the plus lead of C 1 to the plus terminal of rectifier D. Place the negative lead of C1 under the negative terminal screw and solder the other two leads to the negative C 1 lead. Connect one end of R9 to contact " C " of S 2 . Resistor R9 is made by folding $61 / 2 \mathrm{ft}$. of \#30 insulated copper wire on itself till it is 1 in . long. Insulate R9 with tape, and tape it to the meter case.
Next, connect R11 from A on J3 to B on J2. Connect R10 from "B" on J2 to "C" on J3. Connect the loose end of R9 to the junction of R1 thru R6 on the switch assembly (Fig. 8). Connect R7 to the terminals at the upper end of the battery holder to form a junction. Connect the loose end of the wire previously connected to the upper terminal of R12 to the remaining plus battery terminal. Connect the loose end of R8 to the remaining negative battery terminal. Then insert the batteries in the holder and fasten the holder to the chassis with a self-tapping screw. If the screw is long enough to threaten the batteries, use washers under its head. Completed construction is shown in Fig. 9. Putting the knobs on completes the work on the front side.

The "A" terminals of jacks J1, J2 and J3 are grounded to the chassis case and therefore connect to each other through the chassis. The test leads connect to a single jack plug. You'll have to ream out the back end of the plastic plug handle to pass the wire through it. I used \#20 solid hook-up wire for my test leads. Don't strip more of the wire than you must to solder to the jack ter-

Slep-by-step construction of nultimeter (see text).
minals, and provide tape insulation if necessary to protect against shorts. The test leads are terminated with Mueller Minigator clips at the other end. A wooden matchstick taped to the clip end of the positive lead stiffens it and allows you to use this lead as a probe.

To measure dc volts or ohms, plug the test leads in the ohm-dc jack (J3) and choose the range with S1. Use R12 to zero-set the ohmmeter with the leads shorted when you want to make the resistance measurements. You must depress $S 2$ to get the correct reading. When S 2 is not depressed, R9 shunts the meter to protect it against burnout if you should accidentally select too low a range. When you depress S2 to take a reading, the natural reaction to a pegging needle is to release the button. You're warned of very severe overloads that could damage the meter if S 2 were quickly depressed and released by higher than usual readings before S 2 is depressed. To measure milliamperes, select milliamperes with S 1 . The range is 100 ma if S 2 is not depressed, 1 ma if it is depressed.
To measure ac volts up to 100 , plug the test leads info the ac low jack (J2) and use the 10,50 or 100 volt positions of S2. Again, you must depress S 2 to get the appropriate reading. You can use the 1 and 5 volt positions on S2, but they're very inaccurate on ac . To measure voltages between 100 and 500 volts, plug the leads into the high ac jack (J1) and set S1 to the 100 volt setting. Depress $S 2$ to take the reading. Don't change jack plug-in positions with the test clips connected to a voltage!

When you feel sufficiently confident that you won't be jeopardizing the meter by picking a wrong scale or overloading it in some other way, you can change the connection on terminal "C" of S2 to terminal "A." Then the meter will read properly without depressing

S2. If this change is made, S2 is depressed only when the 100 ma range is desired. When S2 is not depressed, the 1 ma range is connected if the range switch is set to ma after the change has been made.
For current measurements, the meter is connected in series with voltage source and load as shown in Fig. 10A. For voltage measurements the meter is connected in parallel with the voltage source or dropping element as shown in Fig. 10B. To determine power, measure current thru the load and voltage across the load. The power in watts is equal to volts times amperes.

To determine capacitance or inductance use the arrangement of Fig. 10C. Adjust the variable resistor till the ac voltage across the capacitor or coil equals the voltage across the resistance. Then, measure the resistance. For a capacitor,

$$
C=\frac{2650}{R}
$$

where C is the capacitance in microfarads and R is the resistance in ohms. For a coil:

$\mathrm{L}=.00265 \mathrm{R}$

9 where L is the inductance in henries and R is the resistance in ohms. This method is approximate. The accuracy is good for all types of capacitors 0.1 mfd or greater except for low-voltage electrolytics. This measurement method should not be used on electrolytic capacitors rated under 100 volts. The scheme is not as accurate for lower than 0.1 mfd capacitance because the capacitive reactance is much greater than the meter impedance. The accuracy of inductance measurements is not too good because of the resistance inherent in the coil which this method assume.s as neg-

10 A current

CAPACITANCE OR INDUCTANCE (ADJUST "R" UNTIL VI = V2)
ligible. It isn't reasonable to use this scheme for coils with inductances of less than 100 millihenries. But filter chokes and audio coils may readily be measured using this method.

Can the scheme be extended to take in lower inductances and lower capacitances under any circumstances? Yes, but you'd need a higher frequency source than the ac line 60 -cycle frequency and you'd need a more sensitive meter.

Jacks J2 and J3 perform some of the switching requirements. Contact " B " is connected to " C " in any jack if the plug isn't inserted. If the test lead jack plug is inserted, " B " is disconnected from "C" in that jack. If the jack plug is inserted in J3. de can pass directly into the switch arm of S1. If the jack is inserted in J2, the ac input is rectified by D. filtered by C 1 and applied to the switch arm of S1 via contacts " B " and "C" on J3. For economy reasons, a half-wave selenium rectifier was employed in this miniature multimeter. This rectifier can't handle voltages much greater than ac line voltage. Therefore, the divider consisting of R10 and R11 was provided to reduce the voltage on inputs up to 500 volts for use with the 100 volt range switch position when the jack plug is inserted in J1.-Forrest H. Frantz, Sr.

Three-Transistor Portable

This receiver, in spite of its simplicity and low cost, has high sensitivity and selectivity

By FORREST H. FRANTZ, Sr.

HERE'S a simple receiver that will pick up plenty of stations with loudspeaker volume. The circuit (Fig. 2) is novel in several respects. Transistor T1 is employed as a combination regenerative $R F$ stage and stabilized audio amplifier, with base and collector circuit tuned to provide high RF gain and selectivity. The selectivity and gain characteristics are enhanced by capacitive feedback and the hi-Q ferrite antenna coil.
The amplified RF signal is detected by diode D, and the resulting audio signal is fed via capacitor C3 to the base of T1 for a second trip through. Coil L2 looks like a short circuit to the amplified audio signal and the signal appears across volume control R5. Transistor audio amplifier stages T2 and T3 build the signal up to loudspeaker driving level.

Construction. The original three-transistor portable was housed in a "do-it-yourself" case constructed from a length of 1×4 with a perforated Masonite front and back (see Materials List). Shave the front edges of the cabinet on the left-hand side to clear for the edges of the loudspeaker and fasten a $1 / 2 \times 1 / 2$
$x i \operatorname{in}$. wood strip to the bottom of the cabinet to hold the batteries. Fasten a piece of Masonite $21 / 4 \times 81 / 4 \mathrm{in}$. with a $3 / 4 \times 13 / 4 \mathrm{in}$. triangle cut from the front right corner (to allow

Circuit board layout, top (above) and bottom (below).

clearance for the volume control) to the side of the case with a small screw and bracket, and to the bottom of the case with a $13 / 4$-in. screw through a scrap block to complete battery holder.
The receiver proper is constructed in two basic units: circuit board (Fig. 3); and front panel (Fig. 4). The circuit board contains most of the components and fastens to the front panel with two machine screws and nuts terminating on the tuning capacitor
frame. The volume control and switch (R5-S), the phone jack (J), the loudspeaker (SK) and ferrite antenna loop (L1) mount on the front panel.

Cement a piece of cardboard to the front panel, making holes as required for mounting parts with a pocket knife. Draw a $51 / 2$-in. dia. circle on the cardboard with center at approximate speaker center. Punch holes in the cardboard within this circle with an ice pick, entering from the perforations on the front.

Cut the shaft of R5S to a length of $3 / 8 \mathrm{in}$., and mount R5-S, SK, L1, and J. Cut a square hole, $3 / 8 \mathrm{in}$. on a side into the cardboard around the panel hole for J; the jack collar isn't long enough to accommodate the extra thickness of the cardboard. Mount L1 on two $11 / 2-\mathrm{in}$. rightangle brackets fastened to the front panel, and fasten the output transformer (L3) on the loudspeaker (SK) by soldering at the mounting flanges. Connect the transformer leads and provide a ground lead from the speaker frame to the ground terminal on the jack.

Next, cut the shaft of C1 to $3 / 4-\mathrm{in}$. length and mount Cl on the board with $6-32 \times 1 / 4$ in. machine screws.
Modify L2 by disconnecting one of the connections to the center-tap (unmarked) lug. Heat the lug and shake off the solder. Then, with heat applied to the lug, use needle nose pliers to loosen the lead with several gentle tugs. Be careful not to damage the litz wire. This modification changes the coil from a sin-gle-winding tapped coil to a two-winding coil. Fasten the coil on the small right angle bracket and mount on the circuit board. Proceed with circuit board wiring. Determine correct pairing of the windings on L2 with

MATERIALS LIST-THREE.TRANSISTOR PORTABLE
Desig.
Description
1/2 Watt Carbon Resistors, $20^{\prime} /$ /o Toletance

Back view of completely assembled front panel.

ClA trimmer considerably or to add tuins to L1 by winding some of the "high-end" lead on the ferrite core. The plates of C1A may be bent to improve tracking. The important things are to be sure that you can tune the entire broadcast band. and that you have the greatest possible sensitivity over most of the band. Don't overlook the fact that this receiver is very directional!

If you wish to miniaturize this set, use a Miller 2001 or 2004 for L1, a Lafayette SK-65 ($21 / 2 \mathrm{in}$.) for SK , and six penlite cells for B. Coil L1 should make a right angle with L2 (but keep L1 horizontal), and these two coils should be separated as much as possible. Coil L1 should be kept away from the speaker or other metal surfaces.

Looking into opened case from front.

The Ham Station

By HOWARD S. PYLE, W7OE

Photos by John F. Hoyt
or reducer, as you please, which required no battery or other source of power, was small and compact and could simply be inserted in the headphone or speaker leads from the receiver. I have used this device in CW traffic net message exchange for several years . . . I would be completely snowed under without it! While I do not habitually work in the phone bands, the listening I have done there indicates that this little limiter is every bit as effective on phone signals as with CW. Were all parts for this unit to be purchased new, the total cost would be less than $\$ 5$. With the possible exception of the crystal diodes, everything is readily available in your own station's scrap-box.
The unit is completely contained in a Bud Minibox which measures just $21 / 4 x$ $21 / 4 \times 4 \mathrm{in}$. Figure 3 gives the schematic. In my own unit (see Fig. 2), I mounted capacitor C1, the two crystal diodes X1-X2, and the fixed resistor R1 between two Birnbach \#1388 lug terminal strips (tie-points) which were in turn secured to the inside of the Minibox at a spacing of 1 in . Volume control R2 mounts on one end of the cabinet with the toggle switch S1 directly below it. The opposite end of the Minibox mounts the "Phones" jack near the bottom and, near the top center, a rubber grommet in a suitable hole to take the cord from the phone plug. Small decals, available at any radio supply store, mark the controls and add the professional's touch.

Use caution in wiring the two diodes. Make sure that their polarities are in oppositionpositive to negative at each end, as shown

	MATERIALS LIST-NOISE LIMITER
Desig.	Description
S1	SPDT toygle switch
R1	15 megohm 2-watt resistor
X1. X2	Sylvania 1N34 crystal diodes
C1	. 0025 mfd . fixed capacitor
R2	10 megohm volume control (Mallory $\pm \mathrm{U} \cdot 20$)
J1	open circuit phone jack
P1	phone plug
	Bud Minibox (CU-3003)

in the schematic. Use eare, too, in soldering to the pig-tails of the diodes since they are easily damaged by too much heat. Solder quickly. but be sure it's soldered.
To install, plug the phone plug into the "Phones" jack on your receiver and plug your headphones into the jack under Re on the Little Muter. That's it! If you prefer speaker operation, insert the Muter in the same way in the speaker leads.

You'll find that Little Muter will cut your audio output, but no matter-with the excessive gain available in modern receivers, this merely means compensating for any loss of audio by running the audio gain control at a slightly higher setting. BUT, you'll find that while the signal comes up. the noise does not come with it in the same ratio! That what you want" I did, and Little Muter gave it to me! When you find conditions such that you don't need it, flip switch S1 to Off and you are conventionally connected to the receiver through your headphone or speaker.

Wave Traps Eliminate Station Interference

1
Broadcast band wave traps an be connected across receiver loop antenna if coil's axis is vertical If trap is enclosed in a metal shield (tin can), orientation is not necessary

SERIES RESONANT WAVE TRAP "SHORTS"
SIGNAL AT ITS SIGNAL AT FRENANT FREQENCY

By FORREST H. FRANTZ, Sr.

ASTRONG local radio station can interfere with reception of other radio stations in several ways. One type of interference that can affect any type of receiver circuit is adjacent-channel interference. If the strong local station is on 790 kc , it may affect stations from 700 to 900 kc in TRF receivers. The interference may cover a wider spread on the receiver tuning dial in the case of a crystal detector-amplifier type receiver Adjacent channel interference in the more selective
superhet circuit is not severe, but it can be troublesome on closely adjacent stations (for instance, 780 kc and 800 kc when the interference local is on 793 kc).

Another type of local radio station interference that can affect any type of receiver circuit is harmonic interference. Although FCC regulations require radio stations to keep signal harmonics low, harmonics of strong locals can cause interference. (The second harmonic of a station on 600 kc , for

Short-wave trap can be mounted on chassis at rear of set if capacitor is mounted on a braciket. Ground connection for capacitor is made through the braciet. The end of the clip lead connects to ithe antenna terminal of the receiver.
example, would be received at 1200 kc .)
Local radio stations can produce interference in superhet receivers that is peculiar to the superhet circuit. This type of interference occurs because the superhet employs a fixed intermediate frequency. The inconning signal is mixed with the local oscillator to produce the IF (usually about 455 kc in AM receivers), and the mixing process produces a number of signal frequencies at the output of the mixer tube. The desired IF signal is the oscillator frequency minus the received signal frequency. Thus, if the receiver is tuned to receive a station on 1500 kc , the local oscillator frequency is 1500 plus 455 or 1955 kc . If the receiver is tuned to $1500-2$ (455) or 590 kc , the local oscillator frequency is 1045 kc . If the 1500 kc station is a strong local, the amount of its signal that appears at the input to the mixer tube even when the receiver is tuned to 590 kc may be very large. One of the signals at the mixed tube output is the received frequency minus local oscillator frequency, in this case, $1500-1045$, or 455 kc ., the IF frequency of the receiver. There is interaction between the 590 kc signal to which the receiver is tuned and the 1500 kc local signal; 590 kc . is the "image" frequency of 1400 kc .
Eliminating Interference. The basic wave trap configuration shown in Fig. 2 is a series resonant wave trap. It is connected across the antenna-ground terminals of the receiver. This wave trap effectively short-circuits the signal frequency to which it is tuned, but has very little effect at other frequencies. The higher the Q of the coil, the more effective the wave trap is. This type of wave trap can be connected across a loop antenna within a broadcast receiver or across the transmission line in the case of a TV receiver. This type of wave trap is recommended for any type of receiver because it will function effectively even if the ground to the receiver is poor.

A wave trap which will suppress frequencies in the broadcast band may be most easily constructed by using a commercially available coil, the Miller \# 6300 high-Q ferrite antenna coil. This coil has a Q of over 250 and will provide good rejection. The coil is adjustable and will tune the broadcast band

with any capacitor having a maxinıum capacitance between 250 and 500 mmf .

The wave trap shown in Fig. 1 uses the Lafayette MS-445 365 mmf . tuning capacitor. This capacitor was chosen for its small size and low cost. It was housed in a tin can. The leads to the receiver antenna and ground terminals should be as short as possible. The antenna pickup lead on the coil must be unwound and may be shortened to form one of the connecting leads. The screw adjustment on the coil may be set so that the capacitor will tune the broadeast band. Or, by setting the screw for maximum inductance, the trap can tune down to about 450 kc . when the tuning capacitor is fully closed. If the screw is set for minimum inductance, the trap will tune up to about 2.5 megacycles with the capacitor fully open.
The short wave trap shown in Fig. 3 can tune the frequency range from 1.5 to approximately 25 megacycles. The coil is a Miller 511-SW-A, three-band short-wave antenna coil. The capacitor is the Lafayette MS-445, the same as for the broadcast trap. The windings on the coil cover 1.5 to $4.5,4.5$ to 10 , and 10 to 25 megacycles respectively. The coil which covers the frequency to be suppressed must be connected in the wave trap circuit. A Mueller Minigator clip permits quick selection of the required coil, but this clip can be omitted and the coil may be soldered in the circuit for a more permanent installation. The schematic (Fig. 4) shows the connections. This wave trap may be fastened directly to the back of the receiver chassis. If you wish to make this wave trap easy to get at, so that it can be used to improve receiver tuning at all frequencies, house components in a metal cabinet and provide a switch for changing connections to the coil.

Save Those Dirty Radio Parts

- When dirty tube sockets, insulators, knobs, tuning capacitors and other metal, bakelite or ceranic radio parts won't come clean in ordinary cleaning solutions, try this idea. Allow the parts to soak a minute or two in a pan of boiling hot water to which a capful of liquid dishwashing detergent has been added, then brush them with a vegetable brush.-J.A.C.

Precision Stroboscope for Only \$21

This accurate "motion stopper" will enable you to analyze motor operation and trouble shoot flaws in mechanisms

By W. F. GEPHART

Adjust the irequency control to synchronize the flashing strobe lamp with the speed of the tan. The blades will appear as though stationary.

WINKING at up to 6,000 flashes per minute, this easily built portable unit will show you fast moving mechanism "stopped," or in slow motion in order to spot wear, vibration or faulty design in power tools, fans, belts, motors, and reciprocating parts.

A simplified version of equipment widely used in industry, this strobe circuit, uses only about $\$ 21$ in parts and performs as well as commercial instruments costing over $\$ 100$. The rate of flashing is adjustable between 600, and 6,000 rpm, and by doubling up, you can measure any speed above or below this range. Unlike mechanical tachometers, the stroboscope absorbs no power from a direct connection to the moving mechanism itself.

How It Works. The basic principle of the stroboscope is simple. You might, for example, want to examine a fan blade rotating at about 300 rpm , (5 times a second). The blades will be in the same place every successive fifth of a second; therefore, if you could blink your eyes that fast, you would see the fan as though it were standing still. By means of the frequency control, Fig. 1, the rate of flashing is adjusted until it synchronizes exactly with the moving part. Adjust the control to flash slightly faster, or slower, and you can see the movement in slow motion. Reciprocating motions, such as the action of a pump, or the teeth of a high speed jig saw are clearly stopped in action.

If you calibrate your unit against a standard, you will be able to use it as a tachometer to make measurements of the rpm of high speed motors.

	MATERIALS LIST-STROBOSCOPE
Description	

bracket will depend on the kind of reflector that you obtain, exact dimensions are not given. Simply bend a piece of hardened aluminum strap, $1 / 2 \times 1 / 8$-in. to focus the center of the reflector directly behind the flashing area of the strobotron tube, which centers about $3 / 4 \mathrm{in}$. down from the top of the tube. Since the power supply, and the regulator tubes generate heat, drill ventilating
holes near these parts in each side of the cover as in Fig. 2.

Wiring the Circult. Begin by wiring and testing the power supply, as in Fig. 3. It consists of a selenium rectifier tripler, with an output of about 430 volts, which is subsequently reduced to 300 volts for both the timing and strobe pulse circuits. Since one side of the power supply is connected directly to the a-c power line, be sure to isolate all interior circuits from the metal case, with the exception of the case ground resistor, which acts as a bleeder to discharge voltages which might otherwise remain stored in the capacitors when the unit was not in use. Make all connections to B - to a bus running through the strobe circuit. Check the output voltage of the power supply before connecting R3 to the regulator tubes. It should be 450 volts or less. If it is higher, increase the value of R3.

CAUTION: High voltages in the power supply, and charges stored in the capacitors can be hazardous. Use extreme care to avoid shock in handling the chassis

when power is on. Never touch any live parts, or non-insulated tools, clips, etc., with bare hands.
Next wire the regulator tubes, and the stroboscope section as in the schematic and the pictorial view, taking care to connect the adjustable frequency control R6, so that it has minimum resistance when fully clockwise. Cover all bare wires with spaghetti tubing, and keep the leads to the larger capacitors, C6 and C7, short, so their leads will support them firmly in position.
After wiring, check your work carefully against the schematic. Then, turn the unit on. The strobotron tube should start firing immediately, with the flashing rate increasing as R6 is turned clockwise. The low and high ranges should overlap slightly; with R6 turned all the way clockwise on low, the flashing rate should be slightly faster than with R6 fully counter clockwise on high. The strobe tube makes a slight cracking sound as it fires on low rates, and normally makes a steady buzz at higher flashing rates.
The strobotron tube operates on the principle of placing a high positive potential on the plate with the cathode grounded. When the difference in voltage between the two grids reaches approximately 100 volts, the gas between the grids ionizes, which in turn "ignites" the gas between the cathode and plate. Once the grid voltages "fire" the tube, the plate takes over control, and the gas remains ionized, with a high current flowing between plate and cathode, until the plate voltage is lowered, even though the voltage difference on the grids is removed.
In this circuit (Fig. 3) the plate resistor and capacitor are used only to prevent the tube from "firing" continually, and the timing between flashes is controlled by changing the grid voltages. The time constant of R9 and C6 is about

An ordinary record turntable and stroboncopic disc are used to calibrate your strobe light.

.005 second, which is the duration of each flash. The grid voltage difference is controlled by a variable R-C charging circuit consisting of R4, R6, ©5, SW2, and C4. When a capacitor charges through a resistor, the voltage across the capacitor increases, as shown in Fig. 4A, until it reaches the charging voltage. Notice that the voltage increases rapidly at first, and then tapers off as it approaches the charging voltage.
If arrangements are made to discharge the capacitor rapidly before it reaches the full charging voltage, a sawtooth wave, as shown in Fig. $4 B$ is formed, and if this voltage " Y " is substantially below the full charging voltage, the curve will be more linear. Repeated charging and rapid discharging gives a series of evenly-spaced peaks, Fig. 4B. Charging of the plate and grid capacitors immediately after firing places a heavy load on the power supply, which would tend to drop the supply voltage from X to X 1 as in Fig. 4C if this tendency was not minimized by the voltage regulator tubes, V1 and V2.

The time between the peaks of the grid capacitor charging cycle is dependent on the time constant of the capacitor and the related resistor. The range switch SW2 provides additional capacity for the low frequency range, and R6 makes it possible to vary the time constant for each range. Wired as in the schematic, your strobe unit will have a low range of 10 to 40 cycles per second (600 to $2,400 \mathrm{rpm}$) while high will cover 25 to 100 cps , (1,500 to $6,000 \mathrm{rpm}$). You can change the coverage of the unit by altering the value of the grid circuit resistance and capacitance. Reducing the values increases the charging rate, which can be increased up to the maximum flashing rate of the tube, which is 240 pulses per second, ($14,400 \mathrm{rpm}$).
It is however impractical to use flashing rates below 15 cycles per second for eye observation, since persistence of vision, the principle which makes it possible for us to see a series of still pictures as a movie, would tend to blur the image. Complete construction by applying the decals to identify the controls, and protect them with a coat of lacquer, or plastic spray.

Calibrating Your Strobe. While the stroboscope will be very useful at this point, calibration will enhance its uses in measuring exact speeds. Rather than calibrate the frequency dial on the back of the case directly, it is suggested that you make a chart (Fig. 6). Two methods of calibrating can be used; the latter requires an oscilloscope, and is somewhat more accurate.
The simpler method is to use a $331 / 3$ and 78 rpm phono turntable, and a stroboscopic disc available at record stores (Fig. 5). Since the accuracy depends on the turntable, check it first, by watching the disc, with a fluorescent lamp, or neon bulb, which will flash at exactly the 60 cycle frequency of your power line. If your turntable is not equipped with a speed adjustment, you can slow it down by loading it with records.

Now, plug in the stroboscope, and allow it to warm up a few minutes. Set the range switch on high, with the control turned clockwise to the maximum flashing rate. Watching the disc, as in Fig. 5, turn the control counter clockwise until the 78 rpm ring appears to stop. Mark this dial reading on your chart, as 60 cycles per second (equal to 3600 rpm). Continuing to turn the dial counter clockwise, the ring will "stop" again at five lower points on your dial corresponding to $2400,1800,1440$, and 1200 rpm. Repeating these
 WHERE FLASHING RATE EQUALS OSCILLATOR FREQUENCY. USE FOR 20-100 C.P.S.

OSCILLOSCOPE PATTERNS

10

AUXILIARY TRIGGER CIRCUIT
steps on low range, you will be able to obtain four calibration points representing $1200,900,720$, and 600 rpm . With all of these points plotted on your graph, you will obtain curves indicating in-between speeds, as in the graph shown in Fig. 6.
CAUTION: Avoid looking directly at the flashing strobotron for more than a few moments. The light can be harmful.
The second method of calibrating requires an oscilloscope and an audio oscillator, connected according to Fig. 7, with a 1 megohm resistor input attenuator. Provided that you have constant line voltage, and warm up your equipment beforehand, it will provide more accurate results. Set the oscillator to 100 cps (equal to 6000 rpm) and adjust the strobe control to get a pattern similar to the one shown in Fig. 8. Since rpm is equal to cycles per second times 60 , reduce the oscillator frequency in steps and take note of the dial settings, on your graph, required to obtain the scope pattern shown.
At frequencies below 20 cps , adjust the strobe for a two-cycle pattern (Fig. 9) since most oscillators will not go below 20 cps . To calibrate the low range, start with the high end of the scale, with the oscillator set at 40 cps , and adjust the strobe dial for the two cycle pattern. The strobe is then flashing at 20 cps , or 1200 rpm . Establish your curve points downward, using the two cycle pattern.

Accessory External Switch. If you wish to observe a motor or mechanism in stopped motion, which is changing speed, you can do it by continuously adjusting the dial, or more conveniently by means of an external switch, and the simple circuit addition shown in Fig. 10. The external switch can operate on a cam, or flattened portion of a shaft. A miniature switch with a nylon contact button which will operate at up to $9,600 \mathrm{rpm}$, without bounce is offered by Licon Division of Illinois Tool Works (Switch \#16-4041).
Tips On Strobe Use. Using the stroboscope, you will notice that often you can "freeze" motion
at several different flashing rates which are multiples of the true speed. High speeds above your top flashing rate can be measured as harmonics. Generally the true speed will produce the sharpest image. When measuring motor speeds, engrave or paint a fine line out from the certer of the shaft. Harmonic speeds will cause the line to appear at several points.

When adjusting the flashing rate for the true
speed of an object, the object will appear to move slowly in its true direction when the lamp is flashing too slowly, and seems to move slowly in the opposite direction when the lamp is flashing too rapidly. If a motor for example, is running at a true speed of 1800 rpm , and your strobe is set at 1801, the image will appear to be rotating slowly at 1 rpm in the direction of the motor rotation.

AMATEUR RADIO PUZZLE

By JOHN A. COMSTOCK

 puzzle on your fovorite hobby. This puzzle contoins many of the words, terms and abbreviations that(For Solution, See Page 89.)

ACROSS:

1) A ham meeting.
2) A call acknowledg. ing card.
3) Tratfic (CW).
4) Code.

I1) A ham radio outfit.
13) What a (.) sounds like.
15) Generator of srequencies.
17) A ham radio conversation.
18) One-million cycles.
21) A vacuum tube.
22) A short-wave listenar.
24) Mutual conduc. tance.
26) A circuit that is chargedelectrically.
28) A bunch of interconnected parts.
29) Type of tube base having eight pins and an aligning key.
30) No connection made.
33) Resistance is expressed in 18 (supply missing letters).
34) Break.
36) Call for all stations.
38) \mathbb{A} bunch of troquencies.
39) A positive-polential grid.
40) A class of amateur operator license.
41) An effect connected with antennas.
43) Unit of inductance.

Do you like hom radio? Then here is an anagram
44) What is the correct time?
50) A radio amateur.
51) Class of ham 1icense.
53) Reversing current.
54) Currant flow.
55) A meter band used by amateurs.
56) A type of antenna named after its inventor.
61) Atter-all.
63) Medium of redio wave transmission.
64) Opposite of signal quin.
65) A type of battery cell.
you use in QSO's every day. See if you con fill in all the empty spaces carrectly.

DOWN:

1) These are troublesome to some amateurs.
2) One-mildon cycles, ohme, etc.
3) Di-di-di-dah, di-dch.
4) Satety signal (CW).
5) An oscillator couppled by it electron stream.
6) Double cotton covered (wire).
7) Distreas call (CW).
8) Vacuum tube cathode current.
9) Plate current flow.
10) A carrier of intelligence in communications.
11) A rig's location.

12) A wave that is continuous.
13) A type of transmis. sion line used by hams.
14) Matching transformer.
15) An amateur radio station record book.
16) Minute.
17) To check equipment tor propes operation.
3I) Something you mut learn to send and receive belore you can obtain your ham license.
18) Type of oscillator circult having a lapped inductance.
19) Ham radio operators often pound one.
20) Mid-tap (abbr.).
21) Shall I aend more slowly?
22) Neon.
23) It's not good for a modulator to do this.
24) A ham license.
25) An inductance used to limit the flow of ac.
26) Potentiometer.
27) Last amplifying stage of a ham transmitter.
28) Something current does in an inductive circuit.
29) Di-di-di-dah, dit.
30) Addrotes.
31) Continuous waves that are interrupted.
32) Watt-hour.
33) Regulates voltage.
34) Unmodulated car. rier wave.

Ten-Twenty Short-Wave Receiver

By HOMER L. DAVIDSON

HERE is a small, transistorized short-wave receiverthat the beginning experimenter can put together-that provides good short-wave listening on the 10 - and 20 -meter bands. And if you get a good specimen of a surface-barrier transistor, it will actually operate up to 8 meters.

Transistor TR1, a Philco surface-barrier type, is the critical transistor. It is used as a superregenerative detector:

The chassis for the transistor and parts is a printed circuit board (Fig. 2). Also on this board is coil L1. There is nothing complicated about laying out this coil. Follow Fig. 2, laying out $1 / 10$-in. resist tape on the lines. Be sure the resisttape has a spacing of its own width between each turn of the coil (a total of 10 turns). The coupling capacitor to the antenna jack and switch is also printed on the board. It is drawn with a ball point resist paint.

A homemade RF choke is wound with 35 turns of No. 28 cotton-covercd wire over a $1 / 4$-in. dowel. The regeneration control R1 and C3 form a time constant creating another oscillation that increases the sensitivity of the small receiver. Use of diode D-1 is optional. On the 10 -meter band the fixed crystal diode seems to strengthen the signal and sharpens the regeneration point of oscillations. But on the lower, 20-meter band there isn't too much improvement. If you have a fixed diode on hand, solder it into the circuit. Otherwise, omit it.

There are two stages of audio incorporated here with a small volume control in the input circuit of TR3. The output of TR3 is fed directly into a earphone. Battery supply Bl furnishes voltage to the regenerative circuit. Regeneration is very smooth with this
type of operation. Battery supply B2 furnishes voltage to the collector side of TR1 and to both audio transistors.

Printed Circuit Layout. Trace the printed circuit directly on the printed copper board from Fig. 2. Place a carbon paper beneath this drawing and transfer it with pencil to the board. (Wash the printed copper side with soap and water to remove any finger marks or grease that might be on it.) A sharp pocket knife will be needed to cut off the tape at the joints. A ball point pen will make coupling loop and all round connection joints. If the paint runs into another circuit, let it dry and then take the pocket knife and cut or scratch out a separation. (This can

FRONT PANEL LAYOUT
also be done after the circuit has been eiched by cutting or scratching out the jointed copper circuits.)

After the circuit has been traced on the copper board, lay down the tape resist and pen point in the rest of the circuits. Let the paint dry several hours, then pour enough etching solution into a small tray or flat dish to just cover the printed board. Rock the tray back and forth for quicker etching. It will take about an hour to complete the process.

Wash the board in clear water and pour the etching solution back into its container. (The solution can be used over and over again.) Now remove the resist material. Use a small knife point to pull off the tape and scratch off the paint resist. Drill all small holes before mounting any parts.

Set Operation. All of the small parts are mounted on the printed circuit board as they are wired into the circuit. Cut the front panel (Fig. 4) from Reynolds aluminum stock, available in

MATERIALS LIST-10-20-SHORT-WAVE RECEIVER	
Desig.	Description
Cl	35 mmfd Hammarlund variable capacitor MC 35-5
C2	10 mmf fixed dist capacitor
C3	. $01 \mathrm{mfd} 200-\mathrm{V}$ paper capacitor
C4-C5	5 mfd 25 V elec. capacitor
C6	. 0022 mfd disc capacitor
R1, R6	10,000-0hm variable resistors
R2	2700 ohm, 1/4-watt fixed resistor
R4	220,000-ohm, $1 / 4$-watt fixed resistor
R5	47.000-ohm. $1 / 4$-watt fixed resistor
SW1	4 position, single throw rotary switch
SW2	DPDT switch on rear R1
SW3	SPST togale switch
D1	1N64 or 1N34 fixed crystal
$T 1$	S.03 transformer or equivalent (standard transformer)
TR1	S8100 Philco transistor
TR2.TR3	2N107 GE transistors
B1	$11 / 2 \cdot \gamma$ penlite cells
B2	three $11 / 2 \cdot y$ penlite cells
RFC	35 turn stramble wound over $1 / 4$ " form
L1	see text description
PRINTED CIRCUIT MATERIALS Techniques Kit-Technicians \#5003P obtainable from Lafayette Radio, 165-08 Liberty Avenue. Jamaica 33, N. Y.	
Alternate Kit	
1-pt	PE. 5 liquid etchant
	PRLT liquid resist ball point pen
1 PCB XXXP copper Lam., 1 side $41 / 2 \times 6^{\prime \prime}$	
$1 \quad$ PRT-2 tape resist $1 / 16 \times 320^{\prime \prime}$	
	Also obtainable from Lafayette Radio

sheets at the local hardware store. Figure 5 gives dimensions of the PC board support. Check correct battery polarity before throwing the on-off switch, plug in a pair of earphones and the unit is ready to go. Turn on the regeneration control in the earphonc. Hook up the antenna and rotate

the tuning dial. Stations and whistles will be heard throughout the bands. When a station is located, turn the regeneration control down until the station is audible.

This little receiver has plenty of volume for earphone operation and some strong short-wave stations can be heard with the earphones laid beside the set. Not only will this small shortwave receiver bring in the 10 - and 20 -meter amateur bands but also aircraft signals and police bands.

Modified Screwdriver Lifts Tube

- A long-stemmed screwdriver with the bit bent at a 25 or 35° angle makes a handy tube lifter for extracting tight-fitting tubes. To make the bend, heat thetip to a cherry red and let it cool slowly to remove the temper. Bend, then reheat the tip and plunge it into oil. The modified tool also
 makes a handy offset screwdriver for reaching into inaccessible places on a chassis.-John A. Comstock.

Phono Turntable Repair

- Poor reproduction from a phonograph having the rim-drive type turntable mechanism is usually caused by slippage of the rubber-tired drive wheel. To renew the grip of the rubber tire, sand it lightly with sandpaper. A non-slip dial compound (such as General Cement's Non-Slip) applied to the wheel will also cure slippage.

Telephone Actuated Switch

Front-panel view of telephone switch remote control unit. Note circular verts in cabinet. Throat microphone

By W. F. GEPHART

ATIMER will turn on a device at some future time, but it doesn't permit a change in plans. For example, it's nice to have the air conditioner on when you get home after a summer outing, but only if it's needed. With this telephone switch, you can be sure it turns on only when needed, because you turn it on by telephoning your home. The only requirement is that you have a dial telephone and the type of service where your telephone rings only when your number is called. Most metropolitan telephone service is of this type.

5 witch operation is based on the timing relationship between ringing signals, and minor circuit modifications may have to be made to fit the ringing sequence of your telephone system. The circuit shown here is based on a system of onesecond rings, spaced at five-second intervals. If your system operates on a different sequence, an understanding of the circuit is required to make the necessary, and minor, changes.

Tube V1 in Fig. 2 is an amplifier which closes relay Ryl when the telephone ring is picked up by the microphone plugged into jack J1. Since this "connection" to the telephone is acoustic, it does not violate telephone company rules against devices attached to telephone lines "directly or by induction." Every time Ryl closes, the "pulse" coil (Ry2A) energizes, moving the stepper relay arm one position. Tube V2 is a timing circuit that closes Ry4 for a given period of time when capacitor C 4 is momentarily shorted out.

To operate the switch you dial your telephone number, let it ring just once, and hang up. You wait a few seconds, then dial your numbet again. Let it ring once to turn on the first device, twice to turn on a second device, etc. Ten seconds after you hang up on the second call, the device plugged into the proper outlet will come on.

The ring on the first call closes Ry1 momentarily and moves Ry2 to Position 1. This completes the circuit to the heaters of thermal relays Ry3 and Ry5, which require 12 and 25 seconds, respectively, to close. During the dialing time for the sec-
is in foreground.

ond call, Ry3 closes, shorting C4, which closes Ry4. The first ring of the second call moves Ry2 to Position 2, which removes the voltage to the heaters of Ry3 and Ry5. Ry3 opens and

Ry5 starts cooling, having had insufficient time to close. If you hang up after the first ring on the second call, Ry2 remains on Position 2, which completes the circuit to the heater of thermal relay Ry6.

After ten seconds, this relay closes, closing control relay Ry7, which turns on the device plugged into SO1. The control relay is then held closed by holding contacts.

Now the device is turned on, but the stepper relay (Ry2) is on Position 2 and Ry6 is still heated. After a time interval in the V2 circuit, Ry4 opens, removing the voltage to the heater of Ry6 and completing tine circuit to the re-set coil (Ry2B) of the stepper relay. The stepper re-sets to zero position, Ry6 cools and opens, but Ry7 remains closed through its holding contacts. The unit is then back to the original condition, except that the first remote-controlled device is now turned on.

As shown here, the unit nas lwo controlled circuits. Additional circuits for Positions 4, 5, 6, etc., could be incorporated for use by adding additional thermal and control relays. In such case, the time interval of V2 would have to be increased.

Proper timing is the key to suecessful operation. The timing of the thermal relays can be extended somewhat by resistance in the heater circuit, such as R1 and R2. Relay Ry3 is rated to close in 5 seconds, but closes at 12 seconds, due to R1, while R2 delays Ry5 from its rated 15

Back viow of unit showing ducl chansiz construction.

Switch-outlet at left replaces regular switch at right (see text) when appliance controlled by wall switch is to be remote-controlled by telephone.
seconds to about 25 seconds. This use of resistors provides nonstandard intervals and speeds up cooling (and therefore opening) time. A 25 -second relay could be used for Ry5, but its normal opening time is about 90 seconds, as compared to the $15-20$ seconds of Ry5 (as used here). Also, the octal version is used for Ry3, as it cools and opens faster than the miniature version. The timing of the V 2 circuit is set by RG , whose adjustment will be discussed later.

Other Calis. Let's assume another caller than yourself lets your telephone ring a number of times before he hangs up. On each ring, Ry1 closes, the first ring moving the stepper relay arm to Position 1. The second ring occurs five seconds later, so neither Ry3 or Ry5 can heat up or close. This second ring moves the stepper to Position 2, which closes the circuit to the re-set coil (Ry2B) through the contacts of Ry4 (since this relay is still open), and the stepper re-sets. The third ring moves the stepper to Position 1, the fourth to Position 2, which resets it, and the sequence continues.

When the caller finally hangs $u p$, the stepper will either be at zero position or Position 1. At zero position, the unit is at normal position, so no further action is required. If ringing stops with the stepper on Position 1, Ry3 closes after 12 seconds, closing Ry4. Some 12 seconds later, Ry5 will close, completing the circuit to re-set coil Ry2B, and returning the stepper to zero position. In another $10-12$ seconds, Ry4 will open, and the unit will be back to normal.

If, during the above, another call comes in after Ry4 closes, but before Ry5 can close and re-set the stepper, the first ring will move the stepper arm to Position 2. Since Ry4 is closed, the circuit to Ry6 will be completed, but the next ring

on this second call will move the stepper to Position 3 before Ry6 can close. The third ring will move the arm to Position 4 before Ry8 can close, and the stepper will then be re-set even if Ry4 is still closed.

If your telephone rings just once (as often happens), Ry3 and Ry4 will close, but the unit will be re-set as mentioned above. If a second call comes in within the 30 -odd seconds while Ry3 and Ry4 are closed, nothing will be turned on unless this second call consists of only one or two rings. Essentially, then, the unit is foolproof.

Use. In Fig. 1, the first ring controlled device is plugged into the socket on the left; the second-ring controlled device is plugged in on the right-hand socket. Switches SW3 and SW4 determine whether the unit is to control the external device by furnishing it with power or simply by closing a circuit.

A light or fan normally controlled by a wall switch can be handled by this unit without radically altering the house wiring. Remove the wall switch and substitute a combination switchoutlet, wiring switch and outlet in parallel and connecting the regular wiring to the terminals. The light or fan can then be operated by the new wall switch (as before with the old) or by "jumpering" the outlet. The telephone switch does this "jumpering" when SW3 or SW4 are set on "External Switch" and an ordinary extension cord is connected between the "External Switch" plug on the unit and the new outlet. The old and new items involved are shown in Fig. 3, with stripes painted on the outlet to distinguish it from a power outlet.

By using impulse relays instead of regular relays for Ry7 and Ry9, the unit can be used to turn things "off" or "on" or both. The impulse relays are wired the same as Ry7 and Ry9, except that holding contacts are not used. The first call throws the relay arm to one position and the second call, using the same code, throws it to the other position.

The "Test" button (SW2) on the front panel parallels the contacts on Ryl and advances the stepper relay each time it is pressed. It can be used for checking the timer circuits and-when impulse relays are used-can be used to turn things "of" or "on" manually. When regular control relays are used, a device that has been turned on by a telephone call can be turned off only by unplugging it or turning the entire unit off for a moment.

Filament transformer T2 provides filament voltage and with D2 and D3, approximately 3.5 volts dc for the carbon microphone. Plate voltage is provided by a voltage doubler (SR1, SR2, C6, C7 and C8) which connects directly to the power line, requiring that no connection be made

to the metal chassis or cabinet.
Construction. Figure 4 shows a back view of the unit. Dual chassis construction is used both to secure adequate room and to minimize the heating effect on the thermal relays. All heat generating items (tubes, pilot lights, etc.) are mounted on the well-ventilated upper chassis, and the thermal relays and control relays are mounted on the lower chassis.

Layouts for the panel, upper and lower chassis are shown in Fig. 5, 6, and 7. The upper and lower chassis are made of scrap aluminum, attached to the panel with aluminum angle. The side sections on the upper chassis are not absolutely necessary, as the connecting bolts between

set to your telephone. If your telephone has an adjustable bell, turn the bell to its loudest point to minimize the sensitivity required. Also, allow the unit to warm up 5 min utes before making adjustment.
Insert a milliammeter in the $\mathrm{B}+$ lead of V1 at Tie Point 3B. Using R4 to vary the plate current, adjust the relay spring so that the relay closes at about 5.8 ma. With this adjustment, the relay should open at about 4.4
the two chassis (which rest on the bottom) will properly support the upper chassis. If scrap aluminum is not on hand, a $31 / 2 \times 6 \times 8$-in. "Minibox" (Bud CU-3009 or CU-2109) will provide all that is required. The flanged side of this box will make the upper chassis merely by cutting the ends of the box to make the side supports, and the other half of the box will make the lower chassis and the $2 \times 2-\mathrm{in}$. mounting for R4.

After the panel and chassis sections have been drilled and punched, mount components on all three and attach the upper chassis to the panel. The upper chassis and panel must be wired before the lower chassis is attached to the panel, and the heavy lines in the schematic (Fig. 2) show this initial wiring. As it proceeds, hold the lower chassis (with components mounted) in place from time to time, to check for clearance.
Figures 8, 9, 10 and 11 show wiring. In Fig. 8 a twisted pair is shown to pin 3 of V2 and terminal 4B of the terminal strip, upper right. The twisted pair leads should be shown to pins 3 and 4 of V2; the lead now going to terminal 4B should be shown to V2's pin 4. Filament and pilot light wiring is done first, followed by the carbon microphone voltage supply. The de power supply is wired next, and then the relay wiring. In wiring between SO1, SO2, PL1, PL2, SW3, SW4 and the contacts on Ry7 and Ry8, be sure to use at least \#14 wire. The tube circuits are wired last.
Testing. Before attaching the lower chassis, temporarily attach ac leads to SW1 and make sure that filament, microphone and plate voltages are available. The filament voltage should be 6.3 $v a c$, the microphone voltage about $3.5 v d c$, and the plate voltage around $260-280 v$ dc. Next, put V1 in its socket and adjust sensitivity control R4.

This adjustment is very critical and must be
ma. Then set R4 so that the tube draws about 4 ma.

To test this adjustment, place the microphone under the telephone with the two buttons resting against the bottom of the instrument as close to the ringer openings as possible, to utilize both sound and vibration. Have a friend call you and see if Ryl closes on each ring, and what current is drawn by V1 during the ring. The $d c$ voltage across R3 during ringing ought to be about $6 v$, increasing the plate current to over 6 ma . There is a fraction of a seeond delay in the relay closing, due to the charging of the capacitors in the V1 circuit, but this minimizes accidental triggering of the relay when the telephone is touched or the receiver raised. If the plate current of V1 drops during the ringing, check the polarity of D1.

After this adjustment has been made, put V2 in its socket and set R6 at mid-resistance point. As V2 warms up, Ry4 will close and reopen after a short interval. This is caused by plate current flowing as C4 charges up. After Ry4 opens, set R6 to maximum resistance and mo-

Before attaching the lower panel, pre-wire it to the extent possible, as shown in Fig. 11 and in the light lines in the schematic, Fig. 2. Then fasten it to the panel and bolt the two chassis together with two 5 -in. $6-32$ bolts and spacers. The spacers are made of $1 / 4-\mathrm{in}$. copper tubing, the ones between the chassis being $31 / 4$ in. long, the lower ones $11 / 2-\mathrm{in}$. long. The wiring is then completed as shown by the dashed lines in Fig. 2 , running some wires from one chassis to the other along the spacers.

To check final wiring and thermal relay timing, plug in both tubes and Ry3, and press the "Test" button once. The stepper relay should move to Position 1, and after about $12 \mathrm{sec}-$ onds Ry4 should close, indicating that Ry3 has closed. This interval was selected as the average time required to hang up after the first call, re-dial a seven letter-digit number, and get the first ring. If this time is too long, or Ry3 doesn't close, reduce the size of R1, by trial and error. If the interval is too short, increase R1.

Next, remove V2, re-set the stepper manually, and plug Ry5 in. Press the "Test" button once, advancing the stepper to Position 1. After about 25 seconds the stepper should re-set, indicating that Ry5 has closed. If this timing interval is off, adjust with Ry3.
For final checks, replace V2, set SW3 and SW4 to "Internal Power," and plug a table lamp (or night light) with the lamp switch "on" into SO1 and SO2. Press the "Test" button once and as soon as Ry4 closes, press it again. After 10 seconds, Ry7 should close, turning on the lamp plugged into SO1. Repeat this test, but press the button twice after Ry4 closes to see if Ry9 and the lamp plugged into SO 2 goes on. To release control relays (Ry7 and Ry9), turn the unit off momentarily.

Before adjusting timing control R6, have a friend call you so you can time the length of the rings and the interval between them. The time Ry4 stays closed must be equal to the total ringinterval time that it takes to move the stepper relay to the last control position (in this case, Position 3), plus 10 seconds. For example, in the unit shown (with two control positions) with a ringing pattern of one second rings spaced five seconds apart, the total time for Ry4 to be closed would lee:

1 second for ring that moved Ry2 to Position 2
5 seconds interval between rings
1 second for ring that moved Ry? to Position 3 10 seconds for Ry8 to close
or a total of 17 seconds, plus 5 seconds leeway for a total of 22 seconds

Set the time on R凹6 by shorting Pins 1 and 2

Desig.	Description
R1	1200 ohm, 1 watt
R2	2000 ohm. 1 watt
R3	. 27 meg. $1 / 2$ watt
R4	2000 ohm potentiometer
R5	27K. 1 watt
R6	5 meg potentiometer
R7	3000 ohm, 1 watt
R8	12K. 1 watt
R9. R10	27 ohm. 1/2 watt
R11	3000 ohm . 10 watt
Cl	.02 mfd .200 v
C2	10 mfd .25 v
C3	$25 \mathrm{mfd}, 25$ v
C4	$50 \mathrm{mid}, 15$ v
C5	$50 \mathrm{mfd}, 6$
C6, C7	$20 \mathrm{mff}, 150 \mathrm{v}$
C8	$20 \mathrm{mfd}, 450 \mathrm{v}$
Ryl	SPDT, 2500-0hm coil (Potter \& Brumfield LM-5)
Ry2	midget 21 pos. stepping relay (Guardian MER.115)
Ry3	$5 \cdot \mathrm{sec}$, thermal relay, normatly open (Amperite 115N05)
Ry4	4PDT, 5000 ohm coil (Guardian Serits 200 coil, and Type 200 M5 contacts)
Ry5	15 -sec. thermal relay, normally open (Amperite 115N015T)
Ry6, Ry8	$10 . \mathrm{sec}$, thermal relays, normally open (Amperite 115N010T)
Ry7, Ry9	4 PDT, 115-Y at coil (Guardian Series 200 coil \& Type 200.M5 contacts)
11	mierophone transformer (Merit A. 2929)
T2	filament transformer. 6.3 v (2) 2 amp. (Merit P-2945)
SW1	DPST 15-amp. toggle switch (Car. ling 2FB54-73)
$\begin{aligned} & \text { SW2 } \\ & \text { SW3, SW4 } \end{aligned}$	SPST push button DPDT 15 -amp. togole switches
	(Carling 2GL-53-73)
$J 1$	open circuit jack
D1, D2, D3	1N66 or 1N34 diodes
SR1, SR2	$65 \mathrm{ma}, 130 \cdot \mathrm{y}$ selenumm rectifiers
PL1, PL2	malp chassis plug (Amphenol 61-M)
S01, 502	femile chassis socket (Amphenol 61-F)
PL	6.3-v pilot lamp and jeweled socket
V1	6AUS
V2	6CB6
	$7 \times 8 \times 10^{\prime \prime}$ cabinet (Buad CU-879),
	scrap alumınum (see text), twn 7. pon miniature sockets, three 9 -pin
	miniature sockets, one octal socket, four $1^{\prime \prime}$ vent plugs, handle, two $5^{\prime \prime}$
	four 1" vent plugs, handle, two 5"
	hardware. T-30 surplus throat mi.
	crophone (available from G\&G Ra.
	din Supply Co, 51 Vesey St., New
	York 7, N. Y.)

per) before Lamp 2 comes on, lengthen the time interval of the V2 circuit, by adjusting R6.
Adaptations. This unit can be used for switching $230-v$ circuits by altering either or both control relays (Ry7 and Ry9) or by building separate $230-v$ adapters.

Both means are shown in Fig. 12. Either alteration requires a power lead to a $230-v$ source. With relay modification, this lead can be brought out of the cabinet at the point normally used for SW3 or SW4.
The control relays specified have 8 -amp. contacts. If additional capacity is required, either heavier relays (requiring additional chassis space and heavier internal wiring) or external power relays will be required. In the latter case, the external relay used to turn the device on should have a $115-v$ ac coil. It would be plugged into SO1 or SO2. When using unit with air conditioners or other heavy-duty appliances, use a portable cord and other connected wiring from an outside relay that has adequate size to carry the current of the appliance safely. Relay contacts should also be capable of carrying the required current.
Figure 13 shows the unit in operation-using the throat microphone strapped to a wall tele-phone--set up to turn on an automatic coffee maker. Whenever using the unit with a telephone with a separate bell, the microphone should be strapped to the bell box, near the bells.
In operation, there are several points to keep in mind:

1) Let the unit warm up five minutes before using.
2) Place the microphone as near the bells as
of V2 together repeatedly until the desired time is reached.
Final tests consist of having a friend call to check operation under actual conditions. With table lamps plugged into SO1 and SO2, and SW3 and SW4 on "Internal Power," have your friend call, let the phone ring once, re-dial and let ring once again. If the first ring on the second call comes in before Ry4 has closed and your friend's dialing speed is average, decrease the time for Ry3 to close. If Ry4 had closed before the first ring of the second call came in, the lamp plugged into SO1 should go on about 10 seconds after the second call. Repeat this test, but let the telephone ring twice on the second call. Lamp 1 will remain on, and 10 seconds after the second ring, Lamp 2 should go on, the stepper relay re-setting shortly after. If Ry4 opens (re-setting the step-
possible, and tight against the bottom (or side) of the telephone or bell box, to get both sound and vibration. Where adjustable bells are available, set to loudest setting.
3) Keep in mind that, when calling, the sound you hear is not the actual bell ringing; it is a ringing "signal" indicating that ringing current is being placed on the line. If the sound is a short, fractional part of a full ring, the bell may have merely "tinkled," and Ry1 may not have closed. In such case, complete the caliing procedure, and if there is any doubt in your mind, repeat it a minute later. Unless impulse relays
are used (to turn "on" and "off"), repeated calls on the same code won't hurt.
4) You can turn on the circuits in any sequence; that is, Number 2 first, followed by Number 1 , or vice-versa.
5) If there is repeated difficulty in Ry1 closing on rings, check your line voltage regulation. In areas of high line-voltage variation, the plate voltage to V1 may vary enough to require different settings for R4. In such case it may be necessary to put two voltage regulator tubes (an OA2 and OB2, series-connected) in the doubler power supply circuit.

Compass Galvanometer

MANY electrical measuring instruments are based on the design of the d'Arsonval String Galvanometer, but substitute a needle-suspended coil riding on jeweled bearings for the hanging coil employed in the original precise lab instrument.
The galvanometer is usually used to indicate the polarity and presence of small currents by comparison methods.
The d'Arsonval instrument suspends a small coil between the poles of a permanent horseshoe magnet. When a carrent flows through the coil it becomes an electromagnet and its like poles repel the like poles of the horeshoe magnet, thus causing the coil to turn or twist on the metallic string or ribbon by which it is suspended (Fig. 2). The strength of the current determines the extent of the coil's rotation.
A small pointer attached to the moving coil registers on a curved dial, or a tiny mirror is attached to the galvanometer string. A beam of concentrated light is aimed at the mirror, bouncing the beam off to a wall screen or chart to give great magnification of tiny current changes.
Making a Simple Galvanometer. A small amount of insulated magnet wire, any pocket compass and a $21 / 4 \times 31 / 2-\mathrm{in}$. scrap of plywood is what you need to make the simple galvanometer shown in Fig. 1. Cut a strip of cardboard $3 / 4 \mathrm{in}$. wide and $33 / 4 \mathrm{in}$. long. Score the cardboard $3 / 4 \mathrm{in}$. from each end, with a dull knife blate and crease so the cardboard resembles a C or bridge shape. Now glue the cardboard to the edges of the wood base.
Bind the cardboard with a rubber band until glue or cement dries. We wound 25 turns of \#28 magnet wire around the cardboard, but heavier

wire and fewer turns will work, too, with a slight dropoff in sensitivity.

Scotch tape is wound around the finished coil to keep the wire turns in place. Connect the ends of the coil to screw terminals or clips. Slip the compass under the coil in a position where its needle comes under the coil and parallel to the coil turns.

Connect the galvanometer in series with a flashlight battery and bulb, a buzzer or a toy motor, etc. When the circuit is closed the compass needle will be drawn so that it is at right angles to the coil (Fig. 1). A slow swing of the needle indicates the circuit is drawing little current. Λ rapid swing denotes an increase in current flow.

To show how sensitive this simple galvanometer is, connect what appears to be a dead flashlight cell across the terminals, immediately breaking the circuit. The compass needle will spin at a merry clip.

The compass galvanometer's needle would be the horseshoe magnet in the d'Arsonval instrument. But, here we cause the magnet to turn with the coil remaining in a stationary position. However, the end result is the same no matter how the galvanometer is constructed.

One of the handiest instruments the serious transistor experimenter can own, this regulated power supply has variable voltage control from zero to 10 volts de.

For Iransistor Cireuits

A Regulated Variable Power Supply

By FORREST H. FRANTZ, Sr.

POWERING experimental transistor circuits with batteries is expensive and exasperating. It's difficult to keep a supply of fresh batteries on hand, and the variation of voltage requirements from one circuit to the next means frequent changes in a battery supply lash-up. Voltages that aren't multiples of single cell voltage can't be obtained from batteries without wasting some battery power, and the voltages of the cells themselves tend to drop quickly.

The obvious answer is a power supply that operates from the ac line. The power supply described in this article has extremely low ripplegood enough for the most crucial
transistor circuit, a varfable output voltage control, and regulation that will keep the output voltage from varying due to changes in line voltages or changes in equipment current demand. Cost of components for this unit is approximately $\$ 15$.

Operating Principles. The common collector transistor circuit configuration (Fig. 2A) performs the regulation task in this power supply. This circuit, sometimes referred to as an "emitter follower circuit," is the transistor counterpart of the vacuum tube cathode follower. The circuit has 100% current feedback and is extremely stable under temperature variations. The voltage from emitter to ground is nearly equal to the applied voltage from base to ground. The emitter voltage remains constant in spite of relatively large fluctuations in the collector voltage or variations in the emitter to ground load resistance. The emitter current is equal to the base current times the Beta of the transistor. Thus, a battery may be used to set the base potential.

The circuit of the regulated variable power supply is shown in Fig. 2B. The transformer is a $12.6 v, 1 \mathrm{amp}$ filament unit. A General Electric 1 N1115 silicon rectifier is employed in a half-wave circuit with a $1,000 \mathrm{mfd}$ filter capacitor. This basic dc power supply provides collector voltage for transistors T1 and T2, and in turn, voltage at relatively high currents for the load.

Base voltage for transistor T1 is supplied by a reference supply consisting of the $12-v$ battery B and the 5 K potentiometer R1. R1 may be adjusted to present any voltage from 0 to 12 to the base of emitter follower T1. Transistor T2 is another emitter follower directly coupled to T1. The current gain of the cascaded emitter followers is so great that for reasonable power loads, the current demand on the battery (beyond the current required by $R 1$) is negligible (R 1 draws 2.4 milliamperes from the battery). The battery switch SB and the line switch SA are ganged to prevent battery current flow when the power supply is turned off. Resistor R2 permits adjustment of the

B CRRCUIT OF REGULATEO POWER SUPPLY

3
DRILLING LAYOUT
terminal voltage to zero under low- or no-load conditions.

The ripple voltage with $9 v d c$ at 200 ma to a terminal load has a peak to peak value of only . 004 volts! At higher currents the variation from straight line dc increases. Th.e ripple increases to . $04 v$ peak to peak when the current to the load is $1 / 2 \mathrm{amp}$.

Construction. The power supply is housed in a Bud CU-2106 aluminum Minibox. The layout for drilling the required holes is shown in Fig. 3. Drill small pilot holes before using

Desig.

R2
R1
C $\stackrel{C}{\mathrm{C}} \mathrm{D}, \mathrm{T} 2$

D

MATERIALS LIST-POWER SUPPLY

Description
1K, 1/2W resistor, 10%

DPST toggle switch (Cuther-Hammer 8360K7)
12.6-v filament transformer (Stancor P.8130) 12.v battery (8 RCA VS074 cells series connected)
$\begin{array}{ll}\text { F } & \text { fuse (see text) } \\ \text { two } & \text {-cell battery holders (Lafayette MS-170) }\end{array}$
binding posts (Grayhitt 29-1 Red and 29-1 Black)
$21 / 8 \times 3 \times 51 / 4^{\prime \prime}$ aluminum Minibox (Bud CU-2106)
$3 / 8$ - and $1 / 2$-in. drills for the larger ones. All components except the battery holders and batteries mount on the front of the box.
Cut the shaft of R1 to a length of $1 / 2 \mathrm{in}$. Mount R1, T1. T2, SAB, the binding posts and the rectifier D (see Figs. 4 and 5). Insulate the binding posts from the box with fiber washers if the specified binding posts (which are provided with insulation "humps") are not used. Insulate the rectifier from the box with the small mica insulators provided with it. Exercise extreme care in mounting the rectifier. Don't use additional insulating washers because the aluminum box serves as a heat sink for it. The collectors of T1 and T2 terminate on the transistor shells. Note that these connect directly to the aluminum box when they're mounted.
Next, the wiring associated with transistors T1 and T2 should be completed. Then mount the transformer (cut off one of the mounting flanges) and complete the circuit wiring, including the installation of C and R2. Two leads approximately 7 in . long should be provided for connection to the battery holders. The fuse F is a $1 / 2-\mathrm{in}$. length of $\# 36$ copper wire with its ends soldered to the nega-

Interior view of Minibox chassis with components in place.
tive binding post (or to a short piece of hook-up wire on the binding post) and the hook-up wire lead from the emitter of T2. It prevents damage to the power supply components if the output terminals are accidentally short circuited.

Mount the battery holders on the back half of the aluminum box and connect the terminals in series. Fill the eyelets which will contact the batteries with solder. Insert the batteries in the holder and connect the holder to the two leads provided for this purpose. Be sure the switch is in the off position when you do this.
Assemble the front and back halves of the box. Dress the leads so they won't short or pinch when the box is compietely assembled. Fasten the four screws, and your power supply is ready.

Salvaging Parts for Experiments

- A fluorescent light starter contains several parts that can be used by radio-electronics experimenters, such as a thermal switch, small paper capacitor, and ncon glow lamp.-J.A.C.

Eliminating TV Interference

How simple filters can cut out annoying TVI from home appliances, neon lights, aircraft, ham broadcasts or other sources

By W. F. GEPHART

TELEVISION interference (TVI) comes from a number of sources, and to eliminate it we must first determine the type and, if possible, the source (Figs 1, 2 and 3).

For best results, the interference should be filtered out at the offending device; if that is not possible, it probably can be eliminated at your TV set. Interference is classified into two types as in Table A, (1) broad-band, where the source consists of many frequencies and harmonics; and (2) narrow-band, where the source has one fundamental frequency and normal harmonics. Most narrow-band inter-

| Ignition or "spark" interference is characterized by multiple bands of "hash" moving up and down the screen, displacement of picture and often a popping noise in the speaker.

2 A-C interference caused by small motor results in a single unmoving band of "hash."

3 Dlagonal lines (sometimes a herringbone or chickenwire pattern) indicate R.F. or oscillator Interierence.

A-C line filter plugqed into outlet, with TV sel plugged into top. Other half of outlet can be utilized.
ference is due to other radiating electronic equipment.

Many cases of broadband, $a-c$ motor interference can be traced by noting what appliances in your home are operating when the interference is present. Cure by connecting one of the line filters detailed in Fig. 4 to the troublesome motor or device itself to eliminate the interference before it gets into your TV set through the power lines or through the antenna's picking up the radiated interference from power lines.

If you can't install the filter at the trouble source, plug a line filter made as in Figs. 5 and 6 into the wall outlet, and plug the TV set into the filter. Connect the binding post on the top to a good ground such as a water pipe. Mount the male chassis-type plug in one side of the filter chassis as near the bottom as possible as in Fig. 6 , and the female socket in the top, slightly offcenter to allow for binding post. The coils should not touch the metal case; the wire is stiff enough to make

TABLE A-COMMON TYPES OF TVI SOURCES
Braad-band Interference

Type	Enters Set Thru	Remedy
Ignition \& spark noise Fig. 1 (most common type)	Usually through A.C lines; sometimes thru antenna if interference is near and intense	Wide-band A.C line filter on set or filter on trouble causing device
Electric Motor noise Fig. 2	A-C line	Filter at motor or on set; Wide-band A.C line filter on set
Non-communication electronic equipment such as neon lights. diathermy units, infra-red heat drying equipment, etc. (characterized by wide bands of curved lines across picture)	A-C line	Same as electric motor

Narrow-band Interference
(Entering through antenna)

Type	Appearance	Remedy
Oscillator radiation from an. other TV set Fig. 3	Diagonal black lines or herringbone or chickenwire pat. tern across screen	Shield offending set (line cabinet with foil or screening) ground receiver (if designed for it), wave trap
Low frequency radio (B.C., police, Hams, etc.)	Diagonal black lines, lines across the screen, usually shifting and moving	Line filter or wide-band R.F. antenna filter
Medium frequency radio (S.W., Hams, aircraft, etc.)	Same as low frequency radio	Specific frequency high-pass filter, wide-band R.F. antenna filter, reorisnt antenna
High frequency radio (F.M.. aircratt, T.V., etc.)	Same as low frequency radio	Wave trap (stub), re-orient antenna

them self-supporting.
Sometimes turning (re-orienting) the antenna slightly, or moving it to another location eliminates narrowband radio frequency (R.F.) interference without affecting the signal. If moving within 20 ft . doesn't improve the signal, further moving probably won't help.

Other types of R.F. interference such as FM transmissions, hams or aircraft are eliminated by simple high-pass filters in the antenna leads which allow high frequency TV signals to pass readily but tend to

8 B WIDE-BAND R.F. FILTER

Wide band R.F. filter attached to sot. Wire from top clip goes to chasais.

Amt.	MATERIALS LIST-TVI FILTERS Description
	A.C Line Filter (Figs. 5 and 6):
2	$1 / 2^{\prime \prime}$ dia. $\times 13 / 4^{\prime \prime}$ long coil rods
1	. 1 mf . 400 volt condenser
2	.05 mf . 400 volt condenser
1	male chassis plug (Amphenol 61.M)
1	female chassis socket (Amphenol 61.F)
1	binding post (not insulated)
1 ($15 / 8 \times 31 / 4 \times 21 / 3^{7}$ aluminum box (Bud CU.2101)
$9{ }^{\prime}$ (approx.)	\#18 enameled wire 10.32 mc . Antenna Filter (Fig. 7A):
1	
1	4.5-25 mmf ceramic trimmer (Centralab 822.AZ)
1	Fahnestock clip
$20^{\prime \prime}$ (approx.)	\#24 insulated wire
	30.120 me Antenna Filter (Fig. 7B):
1	3.30 mmf mica trimmer
1	Fahnestock clip
15" (appro Wid	\#16 bare wire $\begin{aligned} & \text { \#1/ter (Figs. } 8 \text { A and B): }\end{aligned}$
2	$1 / 2^{\prime \prime}$ dia. $7 / 8^{\prime \prime}$ long coil rods
1	$1 / 4^{\prime \prime}$ dia. $7 / 8^{\prime \prime}$ lonj coil rod
4	20 mmf ceramic condensers
2	15 mmf ceramic condensers
3	Fahnestock clips
1 nc	$3 \times 5^{\prime \prime}$ plastic
5' (approx.)	\#18 enameled wre

block out low frequency signals. If the interfering frequency is known, make a "tuned" filter (Figs. 7A or B) that will cover the signal frequency, connecting one to each antenna terminal at the set in such a way that the coils are at right angles to each other, and adjust the capacitors with an insulated screwdriver for best results. If tightening the capacitor on the filter does not eliminate interference, install the other filter shown in Figs. 7A and B.
If the interfering frequency is unknown, or if several frequencies may be involved, install the wide-band R.F. filter in Fig. 8A and B. While not as efficient for any single frequency as a "tuned" filter, it does weaken all frequencies below the TV frequencies. The filter must be made the size shown so the coils are separated to prevent interaction and are at right angles to each other. While it's best to enclose the unit in a metal case, with the side of the case at least $3 / 4$ in. from any coil, and the case grounded, you can assemble the unit on a piece of plastic as in Fig. 8A.

If the frequency of the interfering signal is so

close to a TV channel frequency that an antenna filter might also filter out the desired signal, connect a simple filter or trap to the antenna terminals of the TV set (with the regular antenna lead). If you know the TVI frequency, make the filter of a section of 300 -ohm antenna lead-in cut to exactly $1 / 2$ the wavelength of that signal as in Fig. 9; solder the free ends of the stub together. If you don't know the TVI frequency, cut the

Try a Lemon or Tomato Battery

THE principles of dry cell battery operation involve the use of two dissimilar materials such as zinc and carbon, placed in an electrolyte, usually a moist mixture of charcoal or gypsum, zinc chloride and ammonium chloride (or sal ammoniac). The electrolyte acts more strongly on the zinc, slowly consuming it in the process. The zinc is the negative side of the cell and the carbon is usually used for the positive or other material.

Another action that takes place is that hydrogen is released with a load, from the action of the current on the electrolyte. The hydrogen bubbles released tend to collect around the carbon and act as an insulator, thus increasing the cell's internal resistance. This would normally cause a voltage drop were it not for another chemical element that is added, called a depolarizer, which may be powdered carbon and manganese dioxide.

To demonstrate a simple cell and its action, cut a lemon or tomato in half; the half will be the cell container and its juice the electrolyte. Then break up an old flashlight cell to recaver the carbon rod and a piece of the outer zinc container (Fig. 2). (Use a cell that is not decomposed to the extent that the zinc is destroyed).
Wash the carbon rod and the zinc container from the battery in hot water. Then cut a $11 / 2$ in. wide strip from the zinc container, press the carbon rod in one side of a cut lemon, and the zinc strip in the opposite side.

By connecting the carbon and zinc terminals
lead-in somewhat longer than the calculated length (around 30 in .) and tightly wrap a 2 -in. section of aluminum foil azound the end (Fig. 9) as a short. Move the foil until best results are obtained, then fasten with cellophone tape. Somewhat less efficient is the simply made $1 / 4$-wavelength trap. Cut the lead-in longer than needed, fasten in place and snip off sections until the interference disappears.

If the TVI source is so close that even with the antenna lead filtered, wiring within the TV set picks up the signal, shield the set by lining the cabinet with aluminum foil or copper screening and connecting this shield to the chassis. Also connect the chassis to a good ground, provided the set is designed to have a grounded chassis. Where chassis is not grounded, set should be so labeled according to U.L. standards. Speaking of shielding, check all shields, such as those on tubes, within your TV set, as omission of or loosely-connected shielding can cause interference on your set or your neighbor's.

Eliminating TVI is often a relatively simple matter, but there is no single remedy. Sometimes in apartments or industrial areas, complete elimination is virtually impossible though some improvement can usually be made by the right combination of antenna orientation, shielding, filtering and wave traps.
to a high resistance voltmeter, we can then obtain about a 1.2 volt reading (Fig. 2) which is pretty good for a lemon! However, switching the meter switch to the 10 mil scale shows us that the current capacity is s.nall, for a maximum of about .5 mils will be recorded. Now, put salt on the lemon; the current will rise.

If you put a light load on the cell, however, it will quickly polarize, since it has no depolarizer, and a second check on the voltmeter scale will show a decided drop in voltage. This will slowly rise again and come back practically to its original value.

How Does It Work?

- Twos cases, a pair of wires, one switch, two lampsThrow switch left and the left lamp furns on; throw switch right and the right lamp turns on, left lamp turns off.

How does it worla? The secret is revealed on page 88 together with full details on how 10 build the unit.

Car Battey Alaparior Opeates Portable Transistor Radio

By THOMAS A. BLANCHARD

yOU'LL never have to worry about your portable transistor radio batteries going dead when on a car outing or camping trip if you have this tiny car-battery adaptor tucked away in the glove compartment of your car.
Simply plug the adaptor cord into your car's cigaret lighter or map light socket, attach the cord clips to the radio battery terminals and tune in your favorite program. In this way you save the radio batteries for times when you really need them.
The adaptor will supply power to sets designed for either 6 or 9 -volt operation having NPN or PNP transistors. It can be used with 6 or 12 -volt car batteries grounded positive or negative to the car chassis.
The plastic box into which the adaptor was
 glove compartment. until wax flows into shell.
assembled will be familiar to many of you radio experimenters since a leading line of radio hardware items are packed in these $3 / 4 \times 13 / 8 \times$ $21 / 2$-in. slide-cover containers. Drill or ream three holes in the side of the box and install three phone tip or banana jacks as in Figs. 1 and 2. Mount a 2-lug tiestrip to the bottom of the box with a 6 - $32 \times 1 / 4$-in. screw for securing the various components. These consist of a 25 ma . instrument fuse with pigtail leads, a 600 and 300 ohm 1 watt resistor and wire components.

To connect the adaptor to the car in the side of the a cord and plug

Complete adaptor, not including extension wire, fits into $3 / 4 \times 13 / 8 \times 21 / 2-\mathrm{in}$. box and may be stored in car
from an inexpensive trouble light designed to plug into the dash cigaret lighter socket or a suitable length of light fixture cord and fit it with a plug made from the base of a burned-out dash or dome lamp. If you use the latter, break the glass around the lamp base and scrape the base shell clean. Solder the cord leads into the base and fill the base with sealing wax. The wax can be melted by applying a heated soldering iron

In the event that an instrument fuse is not
readily available, get one of the midget fuses your local service station stocks for auto clock circuits. With a little care, pigtail leads can be

	MATERIALS LIST-CAR BATTERY ADAPTOR
No. Req.	Size and Description
1	plastic box $3 / 4 \times 13 / 8 \times 21 / 2 \cdot i n$, or larger
12 ft	light plastic extension cord
3	phone tip or banana jack
1	phone or banana jack
1	3 -lug tie strip
2	small fest clips
1	300 ohm, 1 -watt composition resistor
1	600 ohm. 1 -watt composition resistor
1	25 ma. pigtail instrument fuse
1	plug-see text

3 SCHEMATIC DIAGRAM
soldered to the ends of any regular glass cartridge fuse with a low current rating.

The output leads of the adaptor are fitted with small clips. One clip lead is fitted with either a phone tip or banana type plug for connecting to the desired output jack. Jack \#1 should be used for operating either a 6 or 9 -volt transistor set from a 6-volt car battery. Tack \#2 is used when operating a 6 -volt set from a 12 -volt car battery. Jack \#3 is used for operating a 9 -volt set on a 12 -volt car battery.

Because of the several variable factors previously mentioned, polarity indications cannot be shown in the wiring plan To determine which lead is positive, which is negative, attach the adaptor to the dash socket and connect the clip leads into the set. If set fails to work, simply reverse the clips and the radio will play.

However, do not expect to sit in the car and play the radio unless the vehicle has a fabric convertible top. As most experimenters well know, loop radios do not work in hardtop automobiles unless an external antenna is used

Meter amplifier (iront panel view shown in. cet) in us with Heathklt volt-ohmmeter.

Sensitive Direct Current Meter Amplifier

This amplifier increases the sensitivity of a milliammeter or microammeter many times! And it can be built from parts you
 probably have on hand-

By FORREST H. FRANTZ, SR.

TRANSISTORS are basically current amplifiers (in contrast to vacuum tubes which are voltage amplifiers). This characteristic of a transistor makes it a natural as a current amplifier for a meter. With a current amplifier, a low cost milliammeter can be made as sensitive as an expensive microammeter, and microammeters can be made more sensitive. Extremely small currents can be measured; and, if series resistors are employed with the transistor amplifier-meter combination, the result is a sensitive voltmeter which draws very little current from the circuit under measurement. Here is an amplifier unit which can be built from about $\$ 5$ worth of parts.

Construction. The circuit is shown in Fig. 2. Miniature perforated board layout is shown in Fig. 3. The entire assembly is housed in a plastic case (See Fig. 4).

First, prepare the circuit board. The board on the Materials List is the exact size required, the hole centers coincide with perforations. Drill a $1 / 8-\mathrm{in}$. hole for each hole position (back the board with a wood block to prevent breakage). The larger holes may be made with a taper reamer or with drills of appropriate size.
Place the finished circuit board against the face of the plastic case for use as a guide in making the case pilot holes. Use a heated ice pick to make pilot center holes, enlarging these to size with a taper reamer. The battery holder holes on the case must be of about $\pi / 16$ in. dia. since the mounting nuts are placed on the front of the circuit board.
Cut the shaft of R3 to a length of $3 / 8 \mathrm{in}$., the shaft of R4 to a length of $1 / 2 \mathrm{in}$. By placing the unwanted end of the shaft in a vise and cutting to desired length with a hacksaw, you do not place any stress on the shaft bushing which could damage the control.

Fasten the battery holder, potentiometers (R3 and R4), switches (S1 and S2), terminals and soldering lugs (plus and minus) on the circuit board. Retaining nuts for all parts (except the battery holder) fasten from the front of the plastic case in the final assembly.

Turn battery holder connection lugs to the side as required to contact adjacent lugs for connecting the cells in series and solder the appropriate lugs together. Then fill the battery contact eyelets on the holder with solder.
Next make connections between the mounted components and wire R1, R2, and R5 into the circuit. (The value of R1 depends on the meter to be used with the amplifier.) Connect the input leads and slip $1 \frac{1}{4} \mathrm{in}$. lengths of spaghetti on the transistor leads and solder it into the circuit.

Now remove the nuts which retain R3, R4, S1, S2, and the terminals (plus and minus). Place the circuit board in the plastic case and refasten the component retaining nuts on the front side of the case. Fasten the knobs on R3 and R4, and place the penlite cells in the battery.

Operating Principles. The number of times a given base current change appears to be amplified in the collector circuit of a transistor is commonly called the Beta. Another way to say this is: Beta equals change in collector current divided by the change in base current that started the process. The Beta of the 2N508 transistor is better than 100 . It would therefore seem that a current of 10 microamperes on the base of this transistor could cause full scale deflection of a 0-1 milliammeter. Actually, however, the Beta of a transistor isn't constant. Generally, meter current amplifiers are operated without a base biasing resistor and the Beta is lower under these conditions than under the test conditions for which a numerical Beta is given. Another factor

DC METER AMPLIFIER				
Table A-Sensitivilies and Calibration Points for Various Meter-Transistor Combinations				
$\begin{aligned} & \text { Value of } \\ & \text { R1 } \\ & \text { (Megohms) } \end{aligned}$	Meter Range	Meter-Amp Sensilivity (Micre Amperes)	Bota of Transistor	Colibration Point
. 58	1 ma .	20 full scale	50 or more	mid-scale
5.8	$100 \mu \mathrm{a}$	2 full seale	50 or more	mid-scale
. 116	1 ma .	50 full scale	20 or more	full-scale
1.16	$100 \mu \mathrm{a}$	5 full scale	20 or more	full-scale
1.16	$200 \mu \mathrm{a}$	10 full seal.	20 or more	mid-scale

which tends to reduce the amount of useful current amplification the transistor has in a meter amplifier application is the leakage current (I_{10}) which flows although the base is open.

The current in the emitter circuit of a transistor is nearly equal to the collector current. The meter connects into a bridge circuit consisting of the transistor and resistors R2, R4, and R5. R4 functions as a "zero" control. With S2 depressed, R4 is adjusted for zero deflection of the meter. If a current flows through the input leads, the meter deflection is proportional to this current.

The potentiometer R3 which shunts the meter is a scale adjustment; its setting determines the amount the meter will be deflected for a given base input current. It is set in the following manner: First, depress $S 2$ and adjust R4 to zero the meter. Then S1 is depressed (with S2 still depressed) and R3 is adjusted for a predetermined scale meter deflection. This calibrates the meter.
The value of R1 is chosen to provide a calibration current which is equal to the meter current calibration point divided by 50 . Thus, for a 1-ma meter, if the predetermined calibration points is to be full-scale reading, the calibration current is 1 ma divided by 50 , or 20 microamperes. The voltage difference from base to emitter is approximately 0.2 v . The battery voltage is 6 v . R1 will have a voltage drop of 6 minus 0.2 , or 5.8 volts and the current through it is to be 20 microamperes. Its resistance $(\mathrm{R}=\mathrm{V} / \mathrm{I})$ is $(5.8 / 20)$ Megohms. The computed value is .29 Megohms or 290 K . A 270 K resistor that is high in value or a 330 K resistor that is low in value can be selected from ordinary 10% or 20% tolerance carbon resistors.

An alternate approach is to let the predetermined meter calibration point be midscale. The current through R1 should then be $20 / 2$ or 10 microamperes, and $\mathrm{R} 1=$ ($5.8 / 10$) Megohms $=.58 \mathrm{Meg}$ olms; 560 K is near enough to this value to use. The battery voltage can be expected to be a few tenths of a volt below 6 anyway, so that 560 K should be more correct than the computed value of 580 K . Table A shows the value of R1 for various basic meter ranges, the predetermined
meter calibration point and the base current that will cause full-scale meter deflection.

After the meter amplifier has been zeroed (R4) and the scale adjustment (R3) has been made, the amplifier input leads are connected into the circuit in which a measurement is to be made and S2 is depressed. The meter reading divided by 50 is the amplifier input current. The conversion may be performed mentally by multiplying the meter reading by two, taking the proper unit conversion into account.

MATERIALS LIST-DC METER AMPLIFIER

Desig.

Description

R5 470 ohm, $1 / 2$ watt, 10% carhon resistor
R2 $2.2 \mathrm{~K}, 1 / 2$ watt, 10% carhen resistor
R1 see text and Table A
R4
100 ohm wirewound potentiometer (Clarostat Series 43. 100)

R5 $\quad 10 \mathrm{~K}$ dime-size potentiometer (Lafayette VC-34)
T $2 N 508$ transistor (GE)-lext gives information for using other transistors
S1, S2 miniature push button switches (Lafayette MS-449)
B 4-1.5 y penlite cells series connected (RCA VS074)
4-cell Battery Holder (Lafayette MS-170)
$2^{1 / 16} \times 33 / \mathbf{s}^{\prime \prime}$ miniature perforated bakelite board (Lafa. yette MS-304)
$1 \times 25 / 8 \times 35 / 8^{\prime \prime}$ plastic case (Lafayette MS-:59)
miniature knob (Lafayette MS-185)
pointer knob (Lafayette KN.41)

Alternatives. Suppose you want to use a transistor other than the 2 N 508 which you may have on hand, say a CK722 or a 2N107. They'll work, but their current gains are low and they have appreciable leakage. To use other transistors, use a single 1 K pot in place of R4 and R5. The zero adjustment will be more critical since no padding resistor is provided, but you'll be akle to zero the meter.

Resistor R1 is computed as described earlier, but the assumptions are different. Assume the input base current to be the meter reading divided by 20 . Thus for a $0-1$ ma meter, figure $1 / 20$ ma or 50 microamperes of input current for fullscale deflection. Then R1 is (5.8/50) Megohms or 116 K for full-scale deflection (110 K is the nearest common value).

If transistors of better quality than the experimenter types are used, current amplification scale factors greater than 20 may be assumed. Even experimenter grade transistors which you might have may have Betas of 50 or more. The reduced values were assumed because Betas vary widely between transistors of a given type. Thus, although some readers may get transistors with low Betas, very few will get transistors with Betas below those assumed for the types covered in this discussion.

The physical construction of the meter amplifier may be varied if you prefer different construction. The amplifier and a basic meter move-

ment may be incorporated in a single case, for example. Shunt multipliers may be provided at the amplifier input if several various low current ranges are desired.

Voltmeter. A resistor connected in series with the input lead and the base of the transistor converts the amplifier-meter combination into a high-sensitivity voltmeter. Assume the current sensitivity of the combination is 20 microamperes for full-scale meter deflection (the case for the model described in this article when employed with a .0-1 ma meter), and the meter is to read full-scale when the measured voltage is 50 v . Then the required series resistor is (50/20) Megohms or 2.5 Megohms. The nearest standard values are 2.2 and 2.7 Megahms. However, standard values of 1 and 1.5 Megohms are available. Connect these in series.

Since this voltmeter arrangement only draws 20 microamperes from the circuit under test, it may be used to make measurements in most vacuum tube equipment without upsetting circuits and introducing loading error in measured values.

Nail Clipper Strips Wire

- A nail clipper makes an excellent tool for radio and TV hobbyists, to use for removing insulation from small-gage wiring First, however, remove

the pressure-handle to avoid exerting too much force and cutting right through the wire.-R. J. DeCristoforo.

Transistorized Photo-Cell Control

A beam of light can be a handy workman around the home

By THOMAS A. BLANCHARD

WHEN this photoelectric-cell switch is placed so its activating light beam shines across a doorway, hall or porch, a person passing through will break the light beam and cause a door chime to sound, a light to turn on or a burglar alarm to ring.
The switch may be wired across any existing 115 -volt switch to control lights, a bell, etc., not exceeding 2 amps., or about 130 watts. It is battery operated and therefore portable and completely independent of the house current which it controls. The entire unit is housed in a $21 / 8 \times 21 / 4 \times 23 / 4-\mathrm{in}$. radio utility box. All components are mounted on $21 / 2 \times 21 / 2$-in. perforated plastic panel.
Place the components on the panel and mark and drill holes for mounting the parts as in Fig. 2. Make the battery brackets as in Fig. 3C and bolt them to the panel with $3-48 \times 1 / 4-\mathrm{in}$. screws. Also drill three $5 / 32-\mathrm{in}$. holes for the $6-32 \times 1 \mathrm{in}$. mounting screws. Make the fiber tube spacers for the mounting screws the same length that the photocell projects through the perforated panel. Transfer the location of these holes and holes for potentiometer and photocell to the front of the box and drill.
The cadmium sulphide photocell is a Clairex CL-2 which is about the size of a small composition resistor. This tiny unit has the general characteristics of a vacuum tube photocell. It is a photo-conductive device like the phototube. It has the unique property of having a very high resistance in darkness, but as it is exposed to light the resistance drops from the megohm range to 10,000 ohms in bright light.
To actuate the control, only a small light change is required so that sufficient current passes

[^1]

Tiny self-contained photoelectronic control being test-actuated at close range with tlashlight. Unit is sensitive enough to respond to feeble daylight at surprisingly long distances.

MATERIALS LIST-PHOTOCELL SWITCH

No. Rea.
Size and Description
$21 / 8 \times 21 / 2 \times 23 / 4^{n}$ aluminum radio utility box
Sigma sensitive relay type 4 F with 200 ohm coil
Clairex photocell type CL-2
$21 / 2 \times 21 / 2^{\prime \prime}$ perforated phenolic (Bakelite) (Lafayette)
500 K miniature potentiometer with switch
P.N.P transistor (type 2N107, 2N34, CK722, etc.)

Lafayefte "flea clips"
$1 / 10 \times 1 / 2 \times 3^{\prime \prime}$ brass for battery clips
9v transistor battery
3/16 I.D. $x 3^{\prime \prime}$ long fiber tube for mounting screw spacers
$6-32 \times 1^{17} \mathrm{~h}$ machine screws for mounting parrel $3-48 \times 1 / 4^{\prime \prime} \mathrm{rh}$ machine screws for battery clips Hookup wire and mise. hardware
through it to provide a base return negative voltage to the transistor, thus causing a large flow of current through transistor to the relay coil. The cadmium cell should not be confused with the short-lived seleniun cell which is a

BATTERY GRACKETS
2 REQ. $\frac{1}{16}$ BRASS
photovoltaic device.
Connect the leads from the photocell and transistor to flea clips and insert them through the holes in the perforated panel. Solder hookup wire to the flea clips on the other side of the panel as in Figs. 2 and 3.
The use of a sensitive plate relay is most important. Fixed relays are set up at the factory with predetermined pick-up and drop-out relay contact specifications. Altering these adjustments is difficult and sometimes impossible. The relay employed is the fully adjustable Sigma $4 F$ with a variable hairspring armature adjustment and screw gapped contacts. The coil resistance of the unit is 2000 ohms.

In this application we adjusted armature tension and contacts so that relay picked up at 700 microamps and dropped out at 500 uA . The relay coil with photo cell in darkness draws just 200 uA and only 1.6 mil liamps in brightest light.

While the life of conventional transistor batteries is limited, those desiring a battery good for 10,000 hours of service may employ the rechargeable nickel-cadmium cells now on the market. Many of these batteries are designed expressly for transistor service and will fit nicely into limited space.

Sensitivity of the photo control can be regulated by adjusting the miniature 500,000 ohm linear potentiometer which is wired in series with the photo control so that the desired pickup and drop-out of relay switch contacts may be adjusted to meet existing light conditions.

What To listen For On Short Wave,

Spring and Summer, 1960

By C. M. STANBURY II
 il-58- que contenía un informe coriecto de nuestia liransmízมón de Esa recla.-

Palacio de conkros

QSL (verification card) from Radiodifusion Argentina al Exterior. Note that on globe map Argentina includes the Falkland Islands (beld by the British) and a large portion of Antarctica. RAE covers South American news from a different point of view. For details on this and other easily received SW brocdcasts see Table B.
BEST SHORTWAVE BANDS, SPRING AND SUMMER, 1960

AN international broadcast is worth the expense only if you-the listener-can receive it and-for one reason or anotheralso enjoy the program. (Admittedly, your interests as a short-wave listener and the interests of a SW broadcaster may not always coincide.) Let's look into the factors that affect reception and then analyze the programs themselves to discover which make for enjoyable listening.

Shortwave signals are weak compared to local broadcasting but this is unimportant, as there is little static on the shortwaves. The serious problems for the broadcaster are finding a clear wavelength, since scores of countries are broadcasting, and choosing a wave length that will be reflected by the ionosphere, a region of ionized air 60 and more miles above the earth upon which all shortwave broadcasting depends. The broadcaster must choose a wave-length which is short enough to escape absorption characteristic of lower frequencies and yet not too short for reflection via the ionosphere. If he's going to stick within the internationally authorized shortwave bands (see Table A), this summer he will be limited to a
total of 1100 kc , a total two-thirds of that covered by the standard broadcast band. The National Bureau of Standards estimates that the average shortwave listener will tolerate four times as much interference as he will on the broadcast band. This compromise is a matter of necessity.

During the summer, every summer, absorption of radio waves by the ionosphere increases, while in the top layer of the ionosphere ionization decreases. This means that the longer 49 and 40 meter waves will not escape absorption (only the Communists use the latter for North America anyway) and therefore will be unsuitable for consistent transoceanic broadcasting, and due to decreased ionization in the top layer of the ionosphere, 13 meters at the top end of the dial will be reflected only sporadically. Which leaves 16 , 19,25 and 31 meters-and of these the 16 -meter band is on the doubtful side. During the past few summers 16 meters has been "Open" (reflected) but with a dropping sunspot count (sunspots increase reflection); international broadcasters will be able to count on this one less and less.

Taking it by regions, daytime European signals will be received best on 19 meters with some on 10 meters, especially in the afternoon. Then evenings these signals will be heard on 25 and 31 meters with 19 also open several hours past sunset. Similar conditions hold for Africa except you probably won't hear any on 19 while dark. Asiatics will first appear around sunset or shortly before on 16 and 19 meters and because it is a peak listening period, such stations having North American broadcasts will transmit them during this period. However during the early am hours of darkness many Asiatic signals should be audible from 19 thru 31 meters. Pacific islands will also be heard during the am hours on 19, 25 and 31 meters.

Latin American stations, with the exception of

Argentına and Chile, can be received much more easily; they will be received in the summertime all the way down to C megacycles (49 meters) and-when static permits-even lower.
The Human Element. As international broadcasting is directed by human beings, for human motives, it is of course far from perfect. And as in any other of man's endeavors, these services range from good, such as the quality program put out by the Swiss Braadcasting Corporation, to the absolute lowest as epitomized by Radio Peking However there is always one constructive way to judge any shortwave station. Does it provide something worthwhile not readily obtainable elsewhere?
In this connection there are two common practices which, in varying degrees, lessen short-

COUNTRY	FREQUENCY OR WAVE-LENGTH	B-STATIONS TO START WITH	
		$\begin{aligned} & \text { TIME } \\ & \text { (EASTERN } \\ & \text { STANDARD) } \end{aligned}$	BROADCASTER ARD DETAILS
SWITZERLAND	11865 and $9535 \mathrm{Kc} / \mathrm{s}$	$\begin{aligned} & 2030-2215 \text { and } \\ & 2315-2400 \end{aligned}$	Swiss Broadcasting Corporation. Swiss news (neutrality and more neutrality), commentary from Swiss newspapers (not so neutral). Good source of factual information about this, one of the world's first republics. You might say it was pro-Swiss but then the Voice of America is pro-U. S. and you really wouldn't want anything else. An interesting little touch with S.B.C.: on each troadcast they give the weather for Switzerland. Finally of note are special international features such as rates of exchange for world's currencies.
NETHERLANDS	$\begin{aligned} & 15220 \mathrm{Kc} / \mathrm{s} \text { (} 16 \text { meters) } \\ & 11730 \text { and } 9590 \text { (} 9715 \mathrm{f} \text {) } \end{aligned}$	$\begin{aligned} & 1615-1705 \\ & 2130-2210 \end{aligned}$	Radio Nedesland. International news from a democratic West European viewpoint. Usually concludes program with a tcpical talk. These probably refect quite accurately the general Dutch viewpoint.
SPAIN	$9363 \mathrm{Kc} / \mathrm{s}$	$\begin{aligned} & 2215-2250 \\ & 2315-2350 \text { and } \\ & 0015-0050 \end{aligned}$	The Voice of Spain. This one operates off regular broadcast frequencies to avoid interference. Features a reasonable quantity of Spanish folt and popular music. Too bad the entire program doesn't consist of same.
ISRAEL	9009 (11845) Kc/s	1530-1600	The Voice of Zion. Another off-hand operation and that time is a little early for 31M but with a clear channel it should get through. Interesting source of lsraeli news from a Zionist point of view. Also israeli folk and popular music, but not enough.
CONGO REPUBLIC	$11725 \mathrm{Kc} / \mathrm{s}$	2015-2100	Radio Brazaville (French povernmert radio). African news from, primarily, a French point of view. Certainly better than none at all.
JAPAN	17855 and $15325 \mathrm{Kc} / \mathrm{s}$	1930-2030	Radio Japa1. News from Asia's leading democracy. Some Japanese folk and popular music; as usual, not enough.
ARGENTINA	9690 (15345) Kc/s	$\begin{aligned} & 2200-2300 \text { and } \\ & 2400-0100 \end{aligned}$	Radiodifusion Argentina al Exterior. South American news from a different if not unbiased point of view. Rest of program consists of Argentine popular music, more polished than most Latin American music and probably less interesting. Compare with the Voice of Spain.
GREAT BRITAIN	16 thru 31 meters	1600-2200	General Overseas Service, British Broadcasting Corporation. This is general programming intended for the entire English speaking world and not ary one specific area. Time given is best for North America, but G.O.S. can usually be heard throughout the day on many frequencies. The G.O.S. is an excellent example of British programming and conservative English thought. Covers international affairs, theatre, literature and music. Also international sports but the latter would be of little interest to the average Anerican.
AUSTRALIA	$11810 \mathrm{Kc} / \mathrm{s}$	$\begin{aligned} & 0714-0845 \text { and } \\ & 1014-1145 \end{aligned}$	Radio Australia. Australian news-the continent ias an area of almost $3,000,000$ square miles, remember. Remainder of propram is mostly entertainment. These broadcasts have twice been voted most popular by the world's short-wave listeners.
CANADA	15195 (11900 or another 25 meter frequency)	2000-2045	Radio Canada. Good source of international and Canadian news. Be. cause of the nation's proximity, the latter is of suecial interest to U. S. citizens.

* Time is given on the 24 .hour clock. 1200 is 12 noon. 1300 is $1 \mathrm{pm}, 2400$ is midnight, and so on. In other words, for times past noon subtract 1200 to get Eastern Standard Time.
\dagger Frequencies listed in brackets are alternate possibilities. If you fail to hear a program on the channels listed first, try these.
wave's usefulness. First, many stations play classical music. Of course if the transmission is intended for an area where shortwave is the only kind of broadcasting, such a feature is certainly justified. But when beamed to North America, it is a waste of time and frequency. As explained, shortwave is anything but a hi-fi media and the classical music fan would do far better on FM, or in some areas, even on the standard broadcast band.
Second, most SW broadcasters when attempt-
ing to give a view of their country, tend to overemphasize institutions and material things, passing by the real human values. While this is a fault common to most governmental undertakings, it is quite understandable here as these values are quite intangible and obviously difficult to put into words.
I have listed in Table B ten broadcasts which I think you'll find interesting. The chart tells which have been picked for all-round excellence and which for only one or two special features.

Easy Transistor Class Identification

- It's almost impossible to determine whether a transistor is of the NPN or PNP variety just by looking at it in a circuit. However, an easy clue to identification lies in the fact that the middle letter of the transistor class designation indicates which terminal of the battery is connected to the collector element. Thus, in the case of the PNP type, the negative terminal of the battery is connected to the collector; similarly, the positive terminal of a battery is connected to the collector element of a transistor of the NPN variety. Either by checking the polarity of the potential on the collector element, or by tracing out wires to the battery, it is a relatively simple matter to determine correctly the class of a given transistor.-John A. Сомstock.

Wire Scraper from Old Blade

- An old piece of hacksaw blade can be used for cleaning wires when soldering. It will not cut the strands as will a knife.Frank A. Javor.

Transistors Wired in Tandem

- When building direct-coupled amplifiers using transistors, wiring can be simplified and space saved by connecting matched pairs of transistors together. Cement or tape the two transistors together back-to-back, and solder the emitter lead of one unit to the base lead of the other.

"This circuit has a response of $\mathbf{2 0 - 2 0 , 0 0 0} \mathrm{cps}$-practically no harmonic distortion up to 25 watts...e"

in 20 minutes!

By Dr. BRUNO FURST

THE International Morse Code is a language of sound used for radio-telegraphy communication. In it, short and long pulses of sound (dits and dahs) are combined to indicate the 26 letters of the alphabet, the 10 numerals, punctuation marks, and other information. Table A gives the phonic sounds of International Morse as well as the written designations of the pulses, a dot for a short pulse (dit), a dash for a long pulse (dah). Except when it is the final syllable of a character, a dit is contracted to di, the t becoming lost in the d of the following syllable.
A brief depression of the telegraph key sends a dot signal; a depression three times as long, a dash. Between signals forming the same letter, there is a pause equal to one dot; the pause between two letters within a word is equal to three dots (a dash); the pause between two words is equal to seven dots.

If the letter a were represented by one dot, b by two dots and so, no help in memorizing the code would be necessary. However, the distribution of dots and dashes is completely irregular (except that the most commonly used characters have the simplest signal combinations) and help is necessary. There is no uniformity in sequence. There is no pattern. Taken all in all, the code presents a confusing picture, difficult to memorize. Here then is a method which has been tested over and over again that enables everybody (even those without previous experience) to learn the International Morse Code in 15 to 20 minutes.

Since the code consists of dots and dashes, the dots are replaced by vowels (a-e-i-o-u-y), the dashes by consonants. For each letter of the alphabet, a specific word which begins with the letter that it stands for is substituted. For example, the cue word Air is substituted for the letter a. The cue words (or cue word combinations) at right above represent the entire alphabet:

A ir	J ust now	S usie
B ruise	K odak	T of
C hina	L ydia	U sual
D ray	M onk	V isuat
E sso	N ofe	With
F iery	O n fop	X-roys
G labo	P arty	Y okels
H is sssay	Q-Club	Z omble
I ssue	R eno	

In order to make easier the task of remembering which word belongs to which letter, memorize this five-sentence story (in it, the cues are used in consecutive order):
"A shell burst in the Air, causing a Bruise to a soldier in China, who was riding in a Dray.
"The soldier, Private Esso, wrote about the Fiery Globe. His Essay is an Issue Just Now.
"With his Kodak he took pictures of Lydia and a Monk writing a Note On Top of a hill.
"Then he went to a Party at the Q-Club in Reno, taking Suzie and her Tot alcng as Usual.
"At the club, Visual With X-rays were Yokels drinking a Zombie."

Because of its very oddity, this story-read once or twice-is easy to remember. So also, because of it, are the cue words, since they appear in it in alphabetical order; each cue word acts as an association for the succeeding cue word. Thus each brings the next to mind. (But if you learn the signals mechanically, by rote, and forget one there is no way in which to recall it.)
Having learned the cue words, apply the following rules: The first letter of each word is used only to indicate the letter of the alphabet being coded. (If the first letter of each word were included in the decoding, many exceptions would be necessary because the Morse Code signs for several consonants start with a dot-F, H, R, etc. -whereas the vowel O starts with a dash.) For the succeeding letters, substitute a dot for each vowel, a dash for each consonant (for example A ir - - or C hina - - -).

Because there are no words in the English language consisting only of four vowels (as
> for an amateur license you must demonstrate ability to send and receive the morse code. here's how you can learn the code - quickly

TABLE A-INTERNATIONAL MORSE CODE

IETTER	SIGNALS	PHONIC SOUND
A	- -	di DAH
8	- . .	DAH di di dif
C	-. - .	DAH di DAH dit
D	-..	DAH di dit
E	-	dit
F	. . - .	di di DAH dip
G	- - .	DAH DAH dif
H	-	di di di dit
1	- .	di dit
J	-- - -	di DAH DAH DAH
K	- -	DAH di DAH
1.	--.	di DAH di dip
M	- -	DAH DAH
N	- •	DAH dit
0	- - -	DAH DAH DAH
P	-- -	di DAH DAH dis
0	- - -	DAH DAH di DAH
R	- - .	di DAH dip
5	-••	di di dit
T	-	DAH
U	-	di di DAM
V	. . -	di di di DAH
W	$:$ - -	di DAH DAH
X	-.. -	DAH di di DAM
\boldsymbol{Y}	-. - -	DAH di DAH DAH
2	- - .	DAH DAH di dif

NUMBER	SIGNALS	PHONIC SOUND
1	. - - -	di DAH DAH DAH DAH
2	- -	di di DAH DAM DAM
3	-	di di di DAM DAH
4	-•••	dl di di di DAH
5	-•	di di di di dip
6	-...	DAH di di di dit
7	- - . ${ }^{\text {- }}$	DAH DAH di di dit
8	-	DAH DAH DAH di dip
9	- - - .	DAH DAH DAH DAH dit
0	- - - -	DAH DAH DAH DAH DAH

PUNCTUATION MARKS \& SIGNS	SIGNALS	PHONIC SOUND
PERIOD		di DAH di DAH di DAH
COMMA		DAH DAH di di DAH DA
QUESTION MARK		di di DAH DAH di dip
ERROR		di di di di di di di dif
DOUBLE DASH	- $\cdot \cdot$	DAM di di di DAH
WAlt		di DAH di di dit
END OF MESSAGE	- •-	di DAH di DAH dit
invitation to TRANSMIT		DAH di DAH
END OF WORK	...-.-	di di di DAH di DAH
FRACTION BAR		DAH di di DAH dit
EXCLAMATION		DAH DAH di di DAH DA
COLON	- - - .	DAH DAH DAH di di dis

the author

Dr. Bruno Furst teaches the art of improving the efficiency of memory. He is director of the School of Memory and Concentration in Xew York City (the school was 20 years old last fall), professor of law at McGeorge College and instructor at Brooklyn College, Adult Education. His system of memory training has been introduced by many business firms, at the ['.S. Army Intelligence School in Washington. and at many Army and Air Force installations.

Aside from his resident classes in New York and other cities in the United States. South America. Africa and Australia, he conducts a correspondence course as well as a self-study course. Readers interested in further developing their memory and powers of concentration can write to Dr. Furst in care of the School of Memory and Concentration at 365 West End Avenue, NYC 24.

Remember this exception by thinking of S.O.S. For example, H is essay and R eno. - .

The s in His is ignored because it is not at the end of the cue word combination. The o in Reno has a dot substituted for it because it is at the end of the cue word.

The entire alphabet is thus transposed as follows:

For learning numbers in the Interna-
needed for H) or of three consonants (as needed for O), one exception is necessary: For the letters s and o a dot or dash is substituted only when they appear at the end of a cue word or cue word combination. In all other positions they are disregarded.
tional Morse Code, no memory help is needed. The signs follow a uniform, progressive pattern (see Table A). The numbers from 1 to 5 start with from 1 to 5 dots; the numbers from 6 to 0 start with from 1 to 5 dashes. All are supplemented by the opposite symbol to a total of five.

Besides the International (Continental) Morse Code, there is an American Code which deviates in several instances from the International Code (see Table B). Considerable auditory skill is needed to read this code because of the irregular spacing used within certain letters (irregular in comparison to International Morse spacing). It is therefore rarely used in radio applications. To apply my method to the American Code, simply change some of the cue words and construct a story of your own. With understanding of the melhod that I suggest, these changes are easily done, and a story that you construct is even easier for you to remember than a story that I or someone else constructs for you.

Of course, knowing the signals will not make you immediately proficient in sending and receiving the Code. Proficiency requires practice. Your ear must grow accustomed to the sound of the Code. But the highest hurdle-the memorization of the Morse Code signals-need not take you more than 20 minutes.

Almost everything that we have to learn and to remember in school, in college and in later life can be made easier and retained longer by using more efficient methods. Whenever you face something new that must be

"I don't remember whether I made that change or not, but I do remember making a mental note to do II. ."

TABLE B-AMERICAN MORSE CODE

LETTER	SIGNALS	LETTER	SIGNALS	NUMBER	SIGNALS
A	- -	N	- .	1	- - -
B	—•••	0	- ${ }^{\text {- }}$	2	-• - .
C	- -	P	-••*	3	. . - .
D	- ••	0	-•-	4	-••-
E	-	8	-••	5	- - -
F	- - -	5	- •	6 -
G	- - .	1	-	7	- - .
H	-•••	U	- -	8	-...
1	-•	V	-•-	9	-.. -
J	-. - .	W	- - -	0	-
K	- -	x	. - .		
1	-	Y	. . .		
M	- -	z	. . .		

learned, do not plunge immediately into parrotlike memorization. Give some thought to the question: Can I find a short-cut which simplifies the task and makes learning and remembering more interesting and more exciting? Invariably the answer is yes.

Lifesaver for Components

- Building a compact capacitor XTAL DIODE transistor circuit? You can save heatsensitive component parts from being ruined by using transistor sockets not only for transistors, but also for ceramic capacitors, crystal diodes and other parts
 easily damaged by too much heat from a soldering iron. Just insert the leads into the socket, then add a touch of service cement to the lead where it enters the socket.

Hi-Fi Speaker Improvement

- Where two separate speakers are used in a hi-fi system to reproduce the high and the low frequencies, apply one or two coats of lacquer to the cone of the larger speaker. This will stiffen the cone and improve its response to the lower frequencies.-John A. Comstock.

File Used as Reamer

- When a rat-tail file breaks, don't throw it away -break it up into a number of $2-i n$. lengths and use them in your power drill to enlarge radio chassis holes. They cut very rapidly and are ideal for enlarging tube socket holes and for similar radio work.-J. A. C.

Demagnetizer for Watches and Small Tools

out for connection with the line and the switch.

The resulting coil, when energized with 115 -volt alternating current, will have sufficient resistance and inductance so that only a small current will flow. If a small tool is placed in the coil opening, a light pull and vibration will be felt from the effects of the magnetic field produced. Since the current in the coil is reversing constantly through 60 cycles or 120 alternations a second, the magnetic field also is in a constant state of reverse, and this causes a complete elimination of the original magnetic polarity in the piece or neutralizes it to zero.
Fig. 3 shows the start of

By HAROLD P. STRAND

THE next time your watch starts to lose time or stops because it is magnetized, you can save yourself a trip to the jeweler's by using this demagnetizer (Fig. 1). With the 115 volt 60 cycle power turned On, the alternating current field, created by passage of current through the wound coil, quickly knocks out all magnetism by simply passing the watch movement through the coil opening. Small screw drivers or punches may also be demagnetized with this device.

The hairspring of the balance wheel of a watch has a tendency to accumulate a permanent magnetism, since it is tempered spring steel. This may happen for no apparent reason, or it may occur while you are wearing the watch around electrical equipment, especially where direct current is used. Magnetized turns of the hair spring will stick together or result in an erratic action of the watch movement.

Remember, when using this device, to turn on the power before placing the piece in the opening and turn off the power after its removal. Otherwise, the sudden switching off of the power while the watch or tool is in place, may result in increasing rather than removing magnetism.

The demagnetizer consists of a rectangular coil, a base board, line cord and switch. To wind the coil, first make up a wooden form which is a permanent part of the unit (Fig. 2). The coil may be wound on a lathe at slow speed, or on a winding machine equipped with a turn counter, but you can handwind the coil by carefully counting the turns. Press a block into the opening of the form, and use a $1 / 4-20$ machine screw, nut and washer in a bored hole in the block to provide a stud that can be held in the chuck for turning (see Fig. 4). Solder a flexible \#20 lead wire to both start and finish ends of the coil, and bring

winding the coil in a small lathe, with the flexible lead wire passed through a small hole in the form and soldered to the starting end of the magnet wire. A short piece of plastic tubing will be slipped over the splice to insulate it. A turn counter has been fixed up on this lathe bed, with a rubber vacuum cleaner belt to drive it. Wind 2500 to 2800 turns (Fig. 4) and then solder on the other flexible lead to the finish end. Wrap a turn of electrical or adhesive tape around the winding to bind it in place and then remove the form from the chuck and tap out the block.

Make the base of the demagnetizer from a piece of maple or birch and sand smooth (Fig. 5). The coil is held in position by two side brackets (Fig. 2) which can be made from any soft aluminum or brass sheet stock about ${ }_{3}^{1} 32$ in. thick. Their width should be such as to tightly grip the sides of the coil form. Use two small round head screws to secure them to the base (Fig. 6).

The next step is to install a cord switch about 4 in . from one end of a 6 ft . length of rubber line cord (Fig. 8). Connect a regular attachment

Amt.
Req'd.

MATERIALS LIST-DEMAGNETIZER
Description
Use
Description
pe. maple or birch $75 / 8 \times 51 / 2 \times 3 / 4^{10}$
pc. maple or birch $75 / 16^{\prime \prime}$ birch or gum plywood. $12 \times 15 / 16^{\prime \prime}$
pc. $3 / 16^{\prime \prime}$ Masonite fiber board. $8 \times 6^{\prime \prime}$
pc. $1 / 32^{\prime \prime}$ soft aluminum or brass. $8 \times 2^{\prime \prime}$
pC. $1 / 32^{\prime \prime}$ soft alum num or brass. $21 / 2 \times 11 / 16^{\prime \prime}$ Jones terminal strio. $\pm 140,2$ terminal cord-type toggle switch
ft . rubber vacuum cleaner cord
attacliment Dlug cap
pc. sheet brass, $1 \times \mathbf{3}_{\mathrm{g}} \times 1 / 32$ thich (bend up to make cord clamp)
Ib. $\# 30$ or \#29 Formex magnet wire
brads. olue, stain. shellac
${ }^{3} 8^{\prime \prime \prime}$ \# 4 rh brass wood serews
$1 / 2^{\prime \prime \prime} \pm 3$ hh brass wood screws
$1 / \mathrm{s}^{\prime \prime}=5 \mathrm{rh}$ briss wood screw
pes. \#20 flexible insulated lead wire, $6^{\prime \prime}$ long

plug cap to the other end. Connect cord to the terminal screws of the terminal strip and make a small clamp to hold cord securely. Place a small cover piece over the live terminals of the terminal strip as protection against accidental shock, screwing through holes in the cover and also down through holes in the terminal strip, to hold the assembly to the base, taking care to avoid contact between cover and live terminals.
Finish the wood base and the coil unit as desired. A coat of mahogany stain was used in the original, and two thir coats of shellac were then applied as final finish. Sand lightly with 6/0 garnet paper and apply one coat of satin varnish which will complete this project.

Dam for Soldering Lug

- For a neater job of soldering a wire or cable to a lug, build a dam around it with a pipe cleaner as shown. This idea is particularly good for automotive or radio jobs, where precision is necessary.-V.H. Lamoy.

High-Voltage Traveling Arc

Favorite laboratory background for the movies' "mad scientist" is the Jacob's Ladder or traveling arc. Make your own for about $\$ 25$

By HAROLD P. STRAND

REMEMBER when you saw a movie scientist working in his laboratory with the powerful crackle of an electrical arc slowly moving upward between two V-shaped rods in the background? These "Jacob's Ladders" pack a lot of drama into usually dull laboratory equipment and are sure-fire attention getters. You can build your own for experimenting and display-like the one in Fig. 1. As you switch it On, a heavy flaming arc jumps between the wires at the short gap above the insulators. Immediately it starts rising to the top getting longer as the distance between rods increases until it dies out near the top. As soon as one arc is extinguished, another one starts. The process is continuous as long as you keep the switch closed.
that the air is heated in the vicinity of the arc and, as heated air naturally rises, it pulls the arc up with it. As a 15,000 volt transformer is used in the base, an arc of considerable intensity results and you need the protection against accidental contact that is provided by the enclosure.

You can amuse yourself and your friends with this high-voltage traveling arc, and it makes a good electrical display at shows and exhibits to attract attention to a particular booth. The transformer, from an obsolete Timken oil burner, was purchased secondhand from an oil burner service shop for $\$ 15$. Be sure to have the transformer tested before purchasing, which can be done by arranging two well-insulated wires from the secondary terminals to form a gap for the arc

Attach the porcelain insu-

With the transformer mounted in the cabinet and the primary connections made with \#18 insulated wire, the high-voltage leads of the automotive iqnition cable are attached to the secondary terminals. Note that the holes under the insulators on the cover have been sealed with sealing compound.
to jump across. If the unit is in good condition, a heavy arc about $1-\mathrm{in}$. long should be obtained. Defective windings will produce a weak and short arc, or no are at all. (CAUTION: Take extreme care in working around such a transformer, as it packs a charge of electricity that can be dangerous or even fatal.) Other makes of oil burner transformers may be used if the rating is about the same, but the dimensions of the box or cabinet given here may have to be modified to suit the size.

Start by making the box from $1 / 2$ and $3 / 4 \mathrm{in}$. birch plywocd, cutting the parts about $1 / 16$ inch oversize to allow for dressing down to final size on the sanding disc.

Bore the required holes in the cabinet, including four $3 / 4-\mathrm{in}$. ventilating holes at the back (Fig. 8A). Assemble sides and ends with a good grade of cabinet glue and $11 / 4$-in brads, then screw bottom onto the end pieces. Carefully sand all surfaces by hand, slightly rounding the corners. Set the brads and fill the holes with Plastic Wood.

The box can now receive its finish. Apply a coat of walnut oil stain and allow this to dry about ten minutes. Wipe off the surplus stain with a cloth, bringing out the grain. Allow the stain to dry for several hours and then apply a coat of shellac which has been thinned somewhat with denatured alcohol. After drying, lightly rub the surface with \#4/0 sandpaper and apply a second coat of shellac, a bit heavier than the first, or with less alcohol. Lightly rub this coat with fine steel wool, taking care to avoid rubbing through the finish at the corners. Apply another coat or two if sufficient shellac has not been built up on the surface. Finish the cover in the same way. Equip the cabinet with rubber knobs or feet at the bottom corners and install a pilot lamp to warn that the power is on and a toggle switch to control the flow of power to the primary. However, a push-button switck can be used instead if desired for momentary operation.

Shape the electrode wires from $5 / 32$ or $3 / 16$ in.

MATERIALS LIST-TRAVELING ARC

Birch Plywood

	Birch Plywood
2	sides, tabinet
2	$1 / 2 \times 63 / 14 \times 61 / 4$ ", ends, tabinet
1	$1 / 2 \times 73 / 14 \times 111 /{ }^{\prime \prime \prime}$, top, eabinet
1	$3 / 4 \times 63 / 16 \times 11 / 2^{\prime \prime}$, bottom, cabinet
1	3 \% $\times 10 \times 25^{\prime \prime}$, back boars, enclosure
2	\% $6 \times 6 \times 10^{\prime \prime}$, end pieces, enclosure
1	$39 \times 1 \times 271 / 4^{\prime \prime}\left(\begin{array}{c}\text { (birch or maple), back support, enclosu } \\ \text { Miscellanneous }\end{array}\right.$
1	15,000 volt, 30 milliampere oil burner ignition trans. former for 115 volts 60 cycles (Timken Model A-R Spec. \#638.291 or equir.)
2	porcelain stand-off insulators, $13 / 6^{\prime \prime}$ bigh, about $2^{\prime \prime}$ d. ameter bases
1	S.P.S.T. loggle switch, 6 amperes at 115 volts, with ON-OFF plate
1	pilot lamp assembly for 115 volts, clear lens (Diaico \#95408.937, Allied Radio \#52E507)
1	NE. 51 neon lamp
8 ft	\#18 or \#16 rubber lamp cord for crimary con
1	attachment plug cap
1 sheet	
2	trodes, from metal products supply company (see local phone dipectory). Cut to length after bending
4	rubber knobs or cabinet feet with wood screw threaded center studs
* 1 sheet	clear rigid vinyl plastic $030 \times 173 / 4 \times 25^{\prime \prime}$
2	solder lugs. $015 \times 3 / 4 \times 11 / 2^{\prime \prime}$ brass or copper
2	solder lugs to fit transformer secondary terminals hish tension automotive ignition cable
Misc. *The F supply	tain, shellac, screws. nuts, washers rest Products Co., 131 Portland, Cambridge. Mass., wil plastic in a $.030 \times 20 \times 25^{\prime \prime}$ piece for $\$ 2.75 \mathrm{ppd}$ in U.S

*The Forest Products Co. 131 Portland, Cambridge. Mass., will supply the plastic in a $.030 \times 20 \times 25^{\prime \prime}$ piece for $\$ 2.75 \mathrm{ppd}$ in U.S.

pigtorial wiring diagram
dia. hard aluminum rod stock so they will be about $3 / 8 \mathrm{in}$. apart at the bottom end and about $21 / 2 \mathrm{in}$. apart at the top (Figs. 2 and 4). The exact spacing will depend on the diameter of the bases of the insulators obtained, since if they are larger than those we used, greater offset will have to be put in wires to get required spacing. Cut \#8-32 to $10-32$ threads on wires, depending on rod size, so nuts and washers can be used as in Fig. 4.

Attach the porcelain insulators with the attached electrodes to the box cover (Fig. 5).

Secure the transformer to the cabinet bottom, using four wood screws at its base. Complete the primary connections with two soldered and taped joints (Figs. 6 and 7). Connect the highvoltage cables to the secondary terminals, using solder lugs on the cables (Fig. 4). Seal the holes in the cover through which the cables pass with a sealing compound, which can be any insulating type of hard-setting cement capable of being melted and poured in the holes (Figs. 4 and 6). Place a piece of rubber (shown on the bench, Fig. 6) on top of the transformer to prevent possible leakage of current to that metal surface.

Attach the cover, using roundhead brass screws. Give the unit a preliminary test in this condition, standing 3 or 4 feet away for safety. The are should form at the bottom and rise, but not in a proper manner as it will when the enclosure is provided.

Construct the enclosure from $3 / 8-\mathrm{in}$. birch plywood (Fig. 8). Make the openings in the two curved end pieces on the jigsaw and attach to the back board with glue and flathead screws. Fit the back brace to the board. Bore four $3 / 4$ in. diameter holes through the back board at the lower end to admit air. Apply walnut oil stain and finish exactly the same as the cabinet.

Cut the $.030-\mathrm{in}$. clear vinyl plastic front to size with sharp scissors, taking care to avoid cracking, and install to the edges of the unit in a simple manner, using small brads with heads or very small tacks along the two sides
 nings at a cost of about $\mathbf{\$ 2 5}$.
(Figs. 8 and 8A). Apply shellac to the edges first, and allow to dry until tacky. Then place the plastic in position on one edge and secure. Bend the material around the curved end pieces, pull it tight and secure it at the other edge. Be sure to drill a small hole for each brad, since this plastic is quite brittle and may crack if you try to drive a brad through it. Avoid the use of plastic that will support combustion, such as some of the cellulose variety. Vinyl plastic will soften if given too much heat, but will not burn easily.

Long testing has proved that the plastic front was sufficiently far enough away from the arc to keep out of trouble. However, if you want added fire safety, cement or tack a strip of sheet asbestos around the inside edge of the top opening, where the intensity and flame of the arc are the greatest.
Drop the completed enclosure down over the wires and secure to cabinet with a single screw through the supporting brace (Figs. 3 and 8A).
While the unit can probably be operated continuously for quite some time without damage, it is well to use it intermittently or for special demonstrations, since the wire electrodes become quite hot due to the moving arc stream. Print a sign or name plate on the front of the cabinet, reading "CAUTION- 15,000 volts," as a general warning to persons who may tend to get careless.

If used properly, however, there should be no danger to anyone.

A Volt-Ohmmeter and Transistor Tester For The Experimenter

By C. F. ROCKEY

F you do much serious radio or electronic experimental work, you will frequently need to make voltage and resistance measurements within your circuitry. And the present intense interest in transistors makes a simple transistor tester increasingly valuable. Why deny yourself these essential measurements when you can build a unit to perform both of these functions in a single Saturday afternoon? One for which the cost will be well below that of currently available, American-made instruments of equivalent utility.

Experience indicates that 99% of all routine electronic circuit tests are those of $d c$ voltage and resistance. While ac voltage and dc current scales would be occasionally useful, the added cost and complexity involved does not justify including them within this device.

The only expensive item is the meter itself. Good meters cost money, poor ones are not worth the little they do cost. But the 0-1 milliampere meter used here is one of the most useful of instruments, and it is well worth its approximate $\$ 10$ cost. (You will find plenty of future use for it, long after you have electronically outgrown this project.) Surplus $0-1$ milliammeters are available, we understand, at something like one-half new-meter price. But be careful. It is easy for the beginner to get stung. Make sure that the meter you use is of the correct current rating, has not been damaged by shock or mishandling, and is of the moving-coil (D'Arsonval) type. The cost of the remaining parts in this project is small.

This project is big; the writer does not believe in miniaturization in home projects. First, I'm not a jeweler and secondly, miniaturization is costly and subject to difficulties in maintenance. You can redesign this job to fit in a much smaller space. But you will sacrifice ease of corstruction and maintenance thereby.

1

Not a "black box," but a white one that is inexpensive and iseful.

Begin by building the case and panel, a simple plywood box $4 \times 61 / 2 \times 131 / 2 \mathrm{in}$. Nail the sides and bottom together to form the cabinet, but leave the top loose. This will be the panel (see Figs. 3 and 5) upon which all parts will be mounted. Quarter-inch ply. wood scraps were used by the author for the panel, sides, and bottom. The ends are three-quarter inch pine stock. Sand the base and panel for a neat job. but do not finish until all holes have been drilled. Then give the panel a final sanding and finish as you prefer. I used some semi-gloss wall paint I had on hand, but orange shellac is acceptable, and dries much faster.

Cut the meter hole squarely in the center of the panel. A hole of $23 / 4 \mathrm{in}$. dia. will fit most modern meters. (The old Weston, vintage of the thirties, used in the writer's job, took a $2 \frac{1}{2}$ - in. hole.) If you have a suitable expansion bit, use this to cut the hole. If not, draw a circle in the right place and drill all around its circumference with a $1 / 2-\mathrm{in}$. drill. This is the hard way, but it works. The rim of the meter will neatly cover any misses.

Next, drill $1 / 8-\mathrm{in}$. holes to mount the two DPDT switches. Use a switch as a template. These switchis are available at many chain hardware storts, "dime" stores, etc, throughout the country. Drill a $3 / 8-\mathrm{in}$. hole for the zero-set potentiometer. Finish the drilling with the $1 / 8-\mathrm{in}$. holes for the Fahnestock clips, the mounting holes for panel, and pushbutton lead holes.

If you consider Fahnestock clips old-fashioned, substitute pin jacks. But you'll find, as the writer did, that they'll lose their grip much sooner, despite their prettier looks.

With all the holes drilled, sand and finish. When finish is dry, mount all parts except the meter. Then wire the circuitry according to Fig. 6. Mount the voltmeter multiplier resistors between two tie-lugs, as shown in Fig. 5. Finally, insert and connect the meter. When the wiring is
completed, check it again.
Why is the flashlight cell soldered into the circuit and allowed to lounge upon the bottom of the case, instead of being fitted into clips? Because of the long anticipated-life of the cell; under normal conditions it will last over a year. Since a really effective battery clip is tricky to build, the writer did not consider it worth the trouble. (A poor clip, found, alas, in many"storebought" instruments will cause no end of vexation. So, unless you can build a good one, solder the cell in and forget about it for a year.)
Put a knob on the zeroset potentiometer, and turn it to its counterclockwise extremity. Short-circuit the "ohms" and the "com. neg." terminals (with the switch in "ohms" position) and adjust the pot to make the meter read exactly full-scale. This is the zero on the ohms scale. If this seems strange, remember that, by Ohm's law, maximum current flows when the resistance is minimum. Use this same setting for transistor tests.

In normal use, one of your tests leads is connected to the "com. neg." terminal, while the other is placed in the clip representing the measuring range you wish to use. The number of volts measured is the meter reading times ten, one hundred, or one thousand, depending upon the range in use. This makes the mental arithmetic easy, and covers voltages found in most radio and electronic projects. For obvious safety reasons, do not attempt to measure voltages above one thousand volts with this instrument.

Be sure to observe polarity when using the voltmeter, otherwise the meter will swing backwards, which may seriously damage it. Also be sure to unplug all power or remove all batteries from apparatus being

tested before using the "olims" scale. Otherwise the meter may be irreparably damaged; more test equipment is probably damaged through this kind of neglect than any other.

You may accurately determine any resistance from the ohm-meter reading by using the following formula:

$$
R=\left(\frac{1500}{I}\right)-1500
$$

Where: $R=$ Resistance of the unknown or measured resistance, in ohms.
$\mathrm{I}=$ Meter reading, milliamperes.

Or, if you wish to carefully place resistance calibrations upon the scale of your meter, as the writer has done, you may use the following table ($\mathrm{K}=$ one thousand):
10 K ohms 0.130 milliamperes
5 K ohms 0.23 milliamperes
3 K ohms 0.33 milliamperes
1.5 K ohms 0.50 milliamperes

1 K ohms 0.60 milliamperes
500 ohms 0.75 milliamperes
100 ohms 0.95 milliamperes
Use a sharp steel pen and black ink. Be sure to disassemble the meter carefully, and in a clean, dry place. Airborne grit is very bad for its insides.

While it is quite impossible to thoroughly test a transistor, in the scientific sense, without several thousand dollars worth of laboratory equipment and much experience, one can obtain a significant check by using this simple unit. Since the maximum applied voltage is $11 / 2 \mathrm{v}$, all but the most delicate and specialized transistors may be checked without fear of damaging them. This is more than one can say of some of the commercial testers on the market. Like all simple transistor testers, and many tube testers also, this device gives only a comparison test, but this is usually sufficient. It will always reveal a bad

MATERIALS LIST-VOLT.OHMMETER AND TRANSISTOR TESTER

1	0 to 1 ma. milliammeter, $3^{\prime \prime}$ size (Weston. Triplett, Simpson, or other yood make)
2	DPDT, plastic base knife switches
1	push-button, flush mounting
9	Fahnestock clips
1 set	test leads. ICA
1	1000 ohm potentiometer, (Mallory, IRC, or any other good make)
1	knob for potentiometer
1	flashlight cell, large size
1	single-point lie-lug
1	double-point tie-lug
1	triple-point tie lug
1	1 Megohm, 1-watt carbon 5\% resistor
1	100 K . 1-watt carbon 5% resistor
1	10K, 1-watt carbon 5\% resistor
1	1K, 1-watt carbon resistor
1	47 olim. 1-watt carbon resistor
1	200 K , I.watt carbon resistor
1	9.1K. 1-watt carbon resistor
	$6-32$ rh machine screws, $3 / 4^{\prime \prime}$ with nuts, $\# 6 \times 3 / 4^{\prime \prime}$ rh wood screws, hookup wire, rosin-core solder, finish
2 DCS	$1 / 4 \times 6 \times 131 / 2^{\prime \prime}$ plywood
2 pcs	$1 / 4 \times 33 / 4 \times 131 / 2^{\prime \prime}$ plywood
2 pcs	$3 / 4 \times 31 / 2 \times 6$ " pine stock

transistor's amplifying ability, its "dc beta." The greater the change, the more the potential amplification. One would normally consider a change in current of 0.4 milliamperes to be about the minimum to be expected of a good transistor, as sold today. For a quick check, then, the current should swing up to at least 0.6 ma . when the button is pressed if the transistor is to develop satisfactory gain in the usual circuit.

Experience with this tester will reveal the great variability of characteristics found in transistors of the same type sold on the market today. Even with the tremendous strides being made in semiconductor technology, it is economically impossible to hold the tolerances within the 10% or so, one finds in vacuum tubes. This is especially so in the case of the cheaper units which most of us are economically forced to use. But with a tester like the one described here, you can pick and choose from your stock, selecting the highest-gain units

In-circuit testing of resistors is possible, but watch out for those parallel circuits and make sure circuit is dead.
transistor, but no simple test can definitely assure of a good one, since too many factors are involved. All cur-rently-available types may be significantly checked with it, and the result will be found valid and reliable.

Practically, a transistor has two properties which will determine whether it is usable or not. These are:

1. The open-base, emitter-collector leakage.
2. The grounded-emitter dc voltage gain, or "dc beta."
This device gives a comparative indication of both of these properties.

Place the "PNP-NPN" switch in the appropriate position for the transistor you wish to test. Connect transistor leads to correct terminals. Then throw the "ohms-trans, test" switch into the
 "trans. test" position. The reading you now observe upon the meter is a function of the open-base, emitter-collector leakage. (This is before the test button is pressed.) The lower the meter reading under these conditions, the better the condition of the transistor. In every case, the meter reading should be less than 0.1 milliamperes, preferably closer to 0.05 milliamperes. If the reading exceeds 0.2 milliamperes it is a sure sign that the transistor has been electrically mistreated, and should be considered questionable, if not downright bad.

If the transistor passes the above test, press the button. The current indication should increase sharply, at least to 0.6 milliamperes. It is the change in current observed which gives the measure of the

for the most critical parts of the circuit. If you do this, you will soon see the improvement in performance of the gear you build. (Incidentany, do not leave switch in "trans. test.")
You can also use this device for comparative checks of semiconductor, "crystal" diodes. Connect the diode from the "emit" to the "coll" terminals, with the meter switch in "trans. test" position. Switching the "PNP-NPN" switch back and forth slowly should reveal a current difference of at least 0.6 of a milliampere, if the diode is usable. The greater this difference, the better.

Electronic

 Black Magic
How does it work? Only two wires

 connect the switch to the lamps, yet throwing the switch in one direction lights one lamp, throwing it in the opposite direction turns the first lamp off, the second onBy FORREST H. FRANTZ, Sr.

FOR every lamp that is to be controlled separately by a single switch throw, two wires are required from lamp to switch-usually. Here, however, one switch and only two wires control two lamps. Extra conductors in the two wires? Hidden wires? Hair-thin connecting wires? Those you demonstrate this device to will look for all of these possibilities. That's one reason connecting clips are used between the switch and lamp cases: to allow observers to convince themselves that the insulation over each lead covers only one wire.

After the observer is convinced that no hidden wires exist, he may take a guess that wireless radio is involved. This goes out the window when you tell him that the entire outfit costs only about $\$ 2$, and at that price radio isn't involved. Magnetic coupling, then? To kill this theory, separate the cases by several feet. Point out that the light bulb intensity remains constant no matter what the physical separation between units.

How does it work then? Electronic black magic.
Construction. Layouts for switch and lamp cases are shown in Fig. 2. The smaller holes, and pilots for the larger holes, are made with a heated ice pick. Plastic that accumulates around the sides of the holes may be trimmed off with a pocketknife after the material has cooled. Larger holes are finished with a hand taper reamer.

Black magic from white boxes. A single switch and a single pair of wires control two lamps.

When you make the holes for the lamps, work slowly and ream the holes just large enough so that the lamps fit into them tightly.

When all of the holes have been made in the cases, wash them with soap and water, rinse and dry with a lintless cloth. Then paint the insides any color you wish. I used white because this encourages the observer to hold the cases up to the light to try to determine their contents. Although he'll be able to see the switch and battery, he won't be able to see enough to determine the
secret. Use two coats of paint if necessary.
Now mount the battery holder and the switch in the switch case (see Fig. 3). Connect the battery holder terminals so that the four penlite cells will be in series. Fill the battery contact holes on the holder with solder. This assures reliable contact. Don't allow the clips to cut the paper covering on the batteries when you insert them. Complete the wiring as shown in
 Fig. 5.

The inside view of the lamp case is shown in Fig. 4. Wire the lamp case, making sure you observe diode polarities. Don't apply heat to the diodes for a long period of time when you solder them into the circuit. Too much heat will damage them.

With construction completed, connect the units

Inside view of switch case.

Inside view of lamp case. Disconnect two cases when not in use to prevent unnecessary drain on batteries.

5
GIRCUIT DIAGRAM
together and try your handiwork. By now you probably know the electronic black magic that's involved, but for the gadgeteer without electronic experience, an explanation is in order.

A diode will conduct in one direction only. A diode connected in series with a lamp and kattery as shown in Fig. 6A will conduct and allow the lamp to light. But if the battery polarity is reversed (Fig. 6B), the diode will not pass current, the lamp will not light. By the same token, if the battery is left as shown in Fig. 6A, but the diode is reversed as in Fig. 6C, the lamp will not light.
Now, referring to Fig. 5, it is apparent that throwing the switch causes the battery polarity to be reversed.

6 C LAMP is OfF Since the diodes are oppositely connected to the respective lamp bulbs, one-and only one-of the lamps will light, the position of the switch determining which one will. No black magic after all.

Crystals Like It Cool

- The crystal elements of microphones and phonograph pickups and crystal diodes and transistors are sensitive to high temperatures. All these crystal and semiconductor elements are enclosed in a case or shell. If exposed to strong sunlight. the temperature inside may rise far higher than that outside the case or shell, damaging the elements so they no longer work and may actually melt. To prevent damage, be sure to shade the pickup arm of a portable phono pickup or shelter a transistor radio being carried or used on a picnic during the summer. And never leave a pickup unit in its case in the win-dow.-James A. McRoberts.

BY making a few wiring changes and adding three insulated binding posts to the back of your table radio as shown in Figs. 1 and 2 you can:

1. Use the speaker only for an experimental dynamic microphone, or speaker can be connected to a code practice set for group instruction or testing a radio you are building by connecting the latter to posts 1 and 2. If the speaker has a permanent magnet, pull out the line cord plug; if it uses a field coil, turn the set on to energize the speaker magnet.
2. Add a small extension PM speaker to the radio for use in other rooms, connecting it to posts 1 and 3 if both speakers are to operate or posts 2 and 3 if only the extension speaker is to be used.
3. Boost the radio fidelity by connecting a large PM speaker housed in a good baffle to posts 2 and 3.
4. Use the radio speaker as a "tweeter" and a large PM speaker connected, in series, to posts 1 and 3, as a "woofer." Place the radio on top of the woofer cabinet. If you want the speakers in parallel, connect the woofer to posts 1 and 2 and a wire jumper from post 1 to 3 . In either case the speakers shculd be in phase (their cones moving in the same direction at the same time) to give the best tone quality. If they are out of phase, reverse the woofer connections for better sound.
The radio still can be used as its designer intended by connecting a wire jumper to posts 1-3.

How to Wire. Fig. 1 shows the installation on an FM table radio; Figs. 2 and 3 furnish the wiring info. Do not disturb the two wire leads, usually red and blue, on the primary side of the output transformer. If you cannot find a place for the posts on the rear panel where they won't interfere with the loop antenna, if any, mount the posts on a strip of insulating material and fasten with an angle bracket to the back of the cabinet.

Caution: If one side of the speaker voice-coil and one of the output transformer's secondary leads are grounded to the chassis of an ac-dc radio, remove these leads from the chassis and connect the latter directly to the voice-coil. This will by-pass a possible hot chassis, and there will be no danger when handling the binding posts. If the radio has a power transformer, there is no danger and no change need be made.-Art Trauffer.

"Hop-Up" That Small Radio with a Tuned Antenna Coupler

Learn By Doodling s, over w wise

HERE'S an easy way to test your knowedge of amateur radio circuits. The six circuits given on these two pages are some of those you'll find it essential to know about when working toward an Amateur Radio Operator's General Class license. We publish them by special permission of The Amerincan Radio Relay League, publishers of the Radio Amateur's License Manual.

The connecting wires have been removed, but all the components are shown. Cover the
outlines on these pages with onion-skin or any other translucent paper and "doodle" in the missing connecting lines. Check your doodling for errors by comparing with the complete circuit diagrams on page 94.

If you find your first doodle in error, study the circuit carefully and try again. Use a new sheet of paper each time rather than doodling directly on these pages. Soon you will be able to draw the entire circuit without using the outline at all.

1. Draw a schematic dias. gram of a full-wave single. phase power supply using a center-tapped high-voltage secondary with a filter cir. cult for best regulation, showing a bleeder resistor providing two different output voltages and a method of suppressing "hash" inter. forence from the mercuryvapor rectifier tubes. Give the names of the component parts and approximate val. uses of filter components suitable for either amateur radiotelephone or radiotelegraph operation.

0

4. Draw a simple shematic diagram of a halfwave rectifier with a filter which will furnish pure de at highest voltage output. showing filter capacitors of unequal capacitance connested in series, with provision for equalizing the de drop across the different ca. pacilors.

4
5. Draw a schematic didgram of a pentode audio powar-amplifier stage with an output coupling trans former and load resistor showing suitable instruments connected in the secondary for measurement of the au-dio-frequency voltage and current, and naming each component part.

5
6. Draw a simple schematic diagram of two RF amplifier stages using triode tubes, showing the neutralizing circuits, link coupling between stages and between output and antenna system, and a keying connection in the negative high-voltage lead including a key-click filter.

6

THE KNIGHT-KIT 400 tube checker is an excellent construction project-and it is the lowest priced cathode emission checker on the market.

The 400 tests for filament continuity, for short-circuits and for cathode emission. The most important of these tests is the cathode emission test. In this test full line voltage is applied between the control grid of the tube and ground through the meter. The resulting electron emission from heater to grid is measured, and this is assumed to be the same as if current from heater to plate (as occurs in actual tube use) were being measured.

Seven filament voltages are available on the unit, although in actual use a tube would require a specific filament voltage, of which there are at least a dozen in common use. Presumably there is no possibility of damage to the grid as the result of carrying line voltage during this test.
We ordered our test kit by mail. It arrived by parcel post, in a sturdy carton. The parts were well padded with corrugated, and all of the small parts were in polyethylene bagsscrews in one bag, washers in another, and so on. Transformer, meter and wafer switch were individually boxed and padded. Resistors were mounted on a card, each of them
designated by a number, keyed to the instruction booklet. All hook-up wire was cut to the lengths required for the project. Instructions call for a certain color wire-that color is pre-cut to the right length, nine different colors, nine corresponding lengths.

Panel and case of the checker were of heavy-gage steel, well constructed, neatly and accurately punched to receive the four tube sockets, meter, load resistor and 13 slide

KNIGHT 400 TUBE CHECKER

- Checks sathode emission, shorted elements, filament continuity of 400 tube types.
- Has sockets for 7 -pin miniature, 9 -pin miniature, octal and loctal-base tubes.
- Meter has red-green "Replace-Good" Scale, special scale for diodes.
- Slide-oul metal drawer has nip-type rube charts in loose-leaf binding.
- For operation from $110-125 \mathrm{v}, 50-60$ cycle ac; has "Hi-lo" line-voltage compensatar switch.
- Carrying weight: $51 / 4 \mathrm{lbs}$,; size: $23 / 6 \times 8 \times 91 / 2 \mathrm{in}$.
- Allied Radio (100 N. Western Ave., Chicago 80) cala$\log \# 83 Y 707$. Price: $\$ 19.95$.

This underside view of the completed panel shows trim parts placement and design.
switches. The panel was handsomely enameled in white, grey and black; all dial markings were clear and distinct. The line cord appeared to be of good quality and plentiful solder was supplied.
Of the 25 tubes that we tested for cathode emission, all but three registered perfect on the meter-so perfect that the needle banged the meter housing in most instances. The tubes tested varied in age from two to 15 years. Of the three that did not register perfect, two registered zero, and were, indeed, burned-out. For one of the tubes that was

The components of the pube checker.
tested, an error in the flip-type tube chart data accompanying the checker caused the tube to test shorted. In testing for shorts in miniature tubes on this tester-as on all other testers-it is necessary to make each test as brief as possible to avoid the possibility of causing a short in the tube due to the relatively high voltage used in the test.
This kit makes an enjoyable construction project, and when used in conjunction with a tube manual, provides a good introduction to some of the ailments that beset tubes and the diagnosis of those ills.-H. Siegel.

Shield Spring for Soldering

- A spring removed from a miniature tube shield makes a handy gadget to hold parts or wires still while you solder them. By tacking the spring down to a scrap piece of wood as shown and clamping the work between the spring's turns, it makes a welcome partner for any electronic hobbyist's bench.-J.A.C.

N THESE days of powerful transmitters, sensitive germanium diodes, and sensitive earphones, a loop crystal set for local stations is practical and sometimes a distinct advantage. For example, for those living within about 4 miles of 5,000 watt stations, and 5

strated by the fact that the set shown (Fig. 1) was assembled and wired by a child under the supervision of the author.
This set differs from other crystal sets in that the tuning coil is wound around the outside of a cigar box to form a loop antenna (Fig. 2), instead of on a small Bakelite or cardboard tube inside the set. Figs. 5 and 6 show the simple layout for
 the 365 mmfd . variable condenser, the 3 post-type binding posts, or Fahnstock clips for the earphones, and the extra antenna connections. Fasten a soldering lug under the head of each binding post screw. Wind the loop, consisting of 23 turns of \#24 gage enameled or double-cotton covered magnet wire, around the outside of the cigar box (Figs. 3 and 4). To start loop winding, connect to righthand plone post (as seen from front view of set) and to variable condenser rotor and frame (Figs. 3 and 6). Then wind 23 turns clockwise around outside of box and connect the other end of loop

MATERIALS LIST-LOOP CRYSTAL SET

$151 / 2^{\prime \prime} \times 9^{\prime \prime} \times 21 / 2^{\prime \prime}$ cigar box
1365 mmfd . variable condenser, single gang, any good make. The one used by the writer was made by Insuline
1 Sylvania 1N34 germanium diode, or any other sensitive crystal
60 it. No. 24 or 26 enameled or double-cotton-covered magnel wire
3 post-type binding posts or Fahnstocic clipg
3 soldering lugs
4 small rubber bumpers
1 Bakelite knob or tuning dial for $1 / 4^{\prime \prime}$ shaft
to antenna post and stator of variable condenser. The width of loop winding will be about $11 / 4$ in. with the turns spaced the diameter of the wire apart. Connect germanium diode cartridge from another variable condenser stator lug to lefthand phone binding post (Figs. 6 and 7). Mount a pointer knob or a graduated turning dial, on the variable condenser shaft, and tack or glue 4 small rubber bumpers onto the bottom of the cabinet. The set is now completed (Fig. 1).

Wind a few turns of Scotch tape over the loop wires to protect the wires (Fig. 8), or brush a couple of coats of shellac over the loop wires. The writer tried shunting a small by-pass capacitor across the phone terminals, but no improvement was noted. This loop crystal set will give you slightly more volume indoors than outdoors, due to RF energy picked up by induction from the house wiring circuit. There will be some variation in signal strength in different parts of the room and different rooms in the house, due also to the house wiring circuit.

Glue a disc of heavy white paper or thin white cardboard onto the panel under the pointer knob on the tuning condenser so you can \log your stations. When an additional antenna is used, however, the \log will shift somewhat due to the added capacity introduced into the tuning circuit by the antenna. A water pipe or gas pipe connected directly to the antenna post makes a very efficient antenna for picking up distant stations. To obtain better results on distant stations connect a water pipe to the antenna post and use a bed spring as a counterpoise. Connect the bed spring to the right-hand phone post, which is the other side of the loop.

If you use a variable condenser larger than the one specified, you may have to remove 1 or 2 turns from the loop in order to cover the entire broadcast band. If you use a smaller capacity condenser you may have to add 1 or 2 turns to the loop. It is best to use a condenser not smaller than 365 mmfd ., which is a standard size for the broadcast band. A little experimenting will give the desired results.

Auxiliary Auto Aerial

- An auxiliary aerial for trips, when you are away from broadcasting stations, can be added to your
 car radio if you have a luggage carrier on top of your car. String an insulated wire back and forth between carrier crossbars and attach one end to regular aerial with a small clip.-W. H. McClay.

Draftsman's Tape Holds Tight

- Draftsman's tape makes an excellent "third hand" to hold electronic components together during assembly or soldering. Due to its high insulation, the tape can be left on permanently.

What Every Young Man Should Know

AS THE radio and TV industry turns more and more to the use of printed circuitry, the experimenter will eventually have to tinker with, or repair, such sets.
Figure 4 shows a popular four-tube superhet table receiver using a circuit that is more or less standard with the industry. Figure 5 shows a hand-wired set which employs the identical circuit. Note the confusion the latter presents compared to the neat underside of the set with the printed circuit board.
A printed circuit starts on the drawing board. First the positions and mounting holes for the individual components are determined, then a drawing resembling a modified peg board is sent to the tool and die maker who creates a punch and die set which will pierce the necessary holes in the panel of phenolic plastic.

Using a copy of the initial drawing. the draftsman next draws in a series of heavy lines connecting the various component holes. This drawing resembles a puzzle maze. Note in Fig. 4 that no paths cross each other on the underside

About Printed Circuits

As more and more manufacturers turn to high-speed production, where radios almost wire themselves, you may wonder how it's done. Or worse-how it can be redone. Despair is changed to easy repair with these tips

By THOMAS A. BLANCHARD

Many printed sets are vertically mounted in cabinet and slide out for quick circuit repair. Note that a fine-tip pencil iron, not over 40 watts, is used to pre. vent wiring damage.
of the board. Where a B-lead must cross a B+ path, a small wire jumper is inserted on the top of the board to complete the circuit.
The drawing is turned over to a photographer for copying. The photographer first produces a regular negative. This film is then printed on another film or reversed in development, to get a positive transparency. This positive copy goes to the silk screen printer.

The printer mounts a piece of fine Swiss silk in a printing frame, coats the stretched silk with a photographic light sensitive emulsion and al-

lows the silk to dry in the dark. Next the positive film is placed in contact with the sensitized silk and exposure made in a bright light, then the silk is developed just the same as a photograph.
Development creates the printed wiring image on the silk screen. The emulsion has washed out of the silk where maze lines appeared, the background has filled in solid. The silk screen is now mounted in a suitable press and a phenolic wiring board is placed underneath. A squeegee now passes over the silk screen forcing a special conductive paint through the tiny weave openings in the silk. When the silk screen is lifted the plastic panel bears an exact reproduction of the draftsman's original drawing.

The conductive paint is graphite in a suitable vehicle. Experimenters can purchase this paint in any radio parts house under the trademark "Tube Koat" (General Cement Div., Textron, Inc., Rockford, III.)

When the phenolic board has dried, it is transferred to a copper electroplating bath. Here a thin film of metal is deposited on the graphite paint, while the rest of the board remains blank. (In some instances the vapor vacuum plating technique is employed to deposit the copper, but the end result is the same.)

The printed circuit is now finished. The plate may be buffed or blast-tumbled with sawdust to

A single dipping into molten solder secures all components to wiring board and estab. lishes the printed wiring paths which re. semble a puzzle maze.
polish the copper image. Next the board is fluxed and protected from damage at the same time by spraying with rosin dissolved in alcohol. The printed boards may now be moved on to the assembly department. The assemblers are sometimes human, but more often automats.
Resistors and capacitors in printed circuitry are identical to those used in usual radio assembly. Items such as coils are fitted with tubular pins instead of the spade type soldering lugs. Tubular pins replace lugs on IF transformers, tube sockets, etc. Since the wiring board has been punched, assemblers simply push each component into its proper position on the "peg board" layout.

With all components in place, the board is dipped into a tray (soldering pot) of molten solder consisting of 60% tin and 40% lead. It is removed immediately and given a momentary blast with a CO . (liquid carbon dioxide) gun which instantly sets the solder. In one fell swoop all parts have been rigidly secured to the wiring board and all connections and conductive paths completed.

There now remains only the matter of sliding the printed chassis into the cabinet, attaching knobs, and hand soldering the output transformer which is mounted on the speaker frame. Because of uniformity of design, tuning capacitor, oscillator coil and IF transformers are often prealigned so that the receiver is immediately ready for shipment to the dealer.

Servicing a printed circuit is easier than working on the old metal chassis construction. Hidden breaks in hookup wire have been eliminated. All wiring is in clear sight, moreover many circuit boards have voltage measurement points and other identifying data printed along with the circuit. Cold circuit joints are practically unheard of. Failure of the set will be in an easily accessible component located on top of the board.

In regular wiring, wafer sockets carrying rectifier and output tubes often char because of the intense heat such tubes produce. The printed circuits employ wafer sockets fitted with eight supporting pillars. Because the sockets provided for hot tubes such as the 35 W 4 and 50 C 5 are a fiberglass laminate, socket charring is eliminated.

These pillars serve a dual function, since measurements can be made from the top of the socket without removing the tube from the set (see Fig. 2).

Most printed circuit receivers contain printed circuits within printed circuits. For example the complete resistance/ capacitor network for the audio amplifier is contained in a small ceramic plate fitted with seven pigtail leads or soldering pins. A breakdown of a component in such a couplate or audet does not always require replacement of the entire unit unless the trouble is a short circuit. Locating the open capacitor or resistor, you need only jump it with a disc capacitor or small composition resistor as the case may be. Dotted area of schematic Fig. 3 shows the tiny couplate and its built-in components.

To replace a defective part on the circuit board, here is a simple and sure method: If a disc capacitor or composition resistor is involved, clip the pigtail leads as close to the component body as possible. Small diagonal wire cutters are the best tool for this. Because circuit boards may contain unused holes, and since some components contain more than two leads, apply a drop of nail polish or model plane dope to the wiring board prior to cutting out the defective part, to identify the holes from which the bad part is being removed. A toothpick makes a good applicator.

With the defective components removed, apply a pencil type soldering iron to the uncerside of the circuit board and pull out the clipped pigtail from the top of the board with flat or needle-nose pliers. With all pigtails removed, the next step is to open the clogged solder holes in the printed circuit.

For this you'll need a metal probe to which radio solder will not adhere. One such metal is stainless steel. Now, while you can buy a probe for $\$ 1$ from any parts supplier, you can get six probes for a dime at your local hardware or dime store. These bargain probes are "Fowl Lacers" used to keep the stuffing in the Thanksgiving turkey.

Again applying the pencil soldering iron to the underside of the board, insert one of the stainless steel pins into the clogged hole and twist as the solder softens. Remove the iron and slowly remove the pin. A neat open hole is the result.

With all holes cleared in this manner, you need only insert the new component and resolder the underside of the circuit. board. Here a word of caution is in order. Do not use dime store solder, nor use a soldering gun, nor any other heavyduty iron. You need a 60 tin- 40 lead solder alloy

Underside of a four-tube set with hand-wired components and conventional metal chassis. Its circuit is Identical to that of the printed set, but note the "jungle" of parts.
such as Kester's "Resin-Five" or Alpha's "TriCore." The iron should have a fine tip.

Since solder carries most of the current load in a typical printed radio circuit, you want to melt only the center of the circuit path. When a new part is being installed, hold the iron steady, allowing the solder to form a molten puddle at the joint. At this point, merely lift the iron away from the connection and allow the joint to cool while avoiding any jiggle of the component which could result in a "cold" bond.
Most printed circuits feature interlock cord sets such as are found on TV sets. This is to insure safety since all ground returns may be live except for the tuning capacitor and volume control shafts which are kept at a safe potential through a capacitor/resistor ground return. With so much exposed wiring, plus a direct ground on the IF transformer cans and detector tube shield, never work on line-powered sets on a metal table, or in rooms with concrete floors, since dangerous or fatal shock could result through carelessness.

When chassis is connected to line, be sure the bench or table is clear of small tools, wire, or solder. Such items shorting on the printed circuit can result in its utter ruin before the power line fuse has a chance to blow.

Removing Lock-In Tubes

- To remove a "Lock-In" or loctal tube with ease, push against the side of the tube with a thumb while pulling gently upward, so as to unsnap the locking arrangement. Sockets for these tubes have spring catches which prevent tubes from falling out during shipping or rough use in portable receivers.

N Tune in on $w^{\prime \prime \mu}, m m^{\prime \prime} s$ the World

By C. M. STANBURY II

THE development of radio has given us a wonderful medium for vicarious travel. However, the average listener hears only what his local AM, FM and TV stations care to broadcast. Only when you make full use of your equipment and ears does the magic dimension of radio come into play. Such application of ears and equipment is known as DXing-distant reception.

Via DX you can move throughout the country learning about people and happenings. The only price is patience and a reasonable amount of equipment and know-how. Your table radio will do for a start; once you decide what you want you may purchase or build more.

There is an element of skill in DXing. In 1920 the reception of KDKA Pittsburgh in New York was a feat. A few years later the same listener was shooting for the Pacific Coast and beyond. He didn't stop until the globe was circled, and today this same pioneer is tuning for the moon. There are as many challenges as there are bands. Colombia on the standard broadcast band is DX. On the short-wave band it's routine. If you saw it on your TV, you'd be one tremendous DXer. Table B shows all the bands of the radio spectrum. However, most of the dividing lines are purely arbitrary, one band shading into the next. Major exceptions are the medium-wave broadcast band and the FM and TV broadcast bands. Like conventional means of travel, each band has its own advantages. And for every individual personality, taste and temperament, there is at least one that is "right."

Early Broadcasting. Radio broadcasting became possible when De Forest invented the vacuum tube, although earlier there had been the dots and dashes of spark-gap transmitters. It was just one step from the vacuum tube to voice transmissions, broadcasting and KDKA. Both KDKA in Pittsburgh and WWJ Detroit clain the first broadcast, but KDKA was first licensed. With the licensing of these stations in 1920, the dash into broadcasting was on and radio's golden era had begun. The twenties were an era of newness for the sake of newness, and radio was of a piece with the era. It caught the public's fancy, and its continual expansion kept its fans enthusiastic, even rabid. Every radio listener was a DXer-even those with local stations to listen to hunted distant calls. Stations took on the character of their locale. Those like WEAF New York acquired sophistication, while rural broadcasters took on a neighborly air. A famous rural broadcaster was Henry Field's KFNF Shen-
endoah, Iowa. Field, realizing the great selling power of his battery-operated pioneer, transformed it into a general store of the air. "I don't know if they're any good but you try them out and let me know," he would say, and whether the product was dried prune or automobile tires, the entire shipment would be sold within 48 hours. The DXer was soon able to shoot for the West Coast, for in 1920 California boasted of KNX and KGER; Seattle, of KTW.

Like everything else in the Jazz Age, radio was wild. The Federal Radio Commission licensed, but the stations chose their own frequencies. Many stations tried several channels before settling on one, only to find that some nearby competitor was camping on the same wave-length. Station WHT in Chicago used two channels, switching from one to the other at 9 p.m. Adding to the complexity and confusion of the game were outlaw stations which were hard to trace. In 1928 the chaos was complete as the FRC was declared null and void. During that year every station did as it pleased.

Despite the anarchy, many stations were on the air to stay. In California, KNX, KFI, KGO, KLX, KYA, KMJ, KXO and KFSD; in Washington, KTW, KHQ, KJR and KGY; in Iowa, KFNF. Some of the eastern pioneers were Baltimore's WCBM, WGY Schenectady, WOR New York, WNAC Boston and WSM Nashville. Also founded in 1927 was the Newark News Radio Club, sponsored by the Newark Evening News. In 1928, Irving Potts, president then, as now, of the NNRC,

TABLE A—RADIO CLUBS

American lonospheric Propagation Association, 360 Zimmerman Blyd., Kenmore 17, N. Y., Covers TV only. National Radio Club, 325 Shirley Ave., Buffalo 15, N. Y. Covers standard broadcasi band only. Publishes DX News which is issued weekly during fall, winter ond early spring. Annual dues are $\$ 4$.
Newark News Radio Club, 215 Market St., Newark 1, N. J. Monthly bulletin contains sections on all branches of DXing. Annual dues are $\$ 4$.

Universal Radio DX Club, 109 Mesa St., Vallejo, California. Devoted primarily to short-wave. Annual dues are S4. Publishes Universalite, which includes experimental space section.
inaugurated a series of DX programs over WOR attracting widespread attention to the club.

The party was over in 1930. The nation had a king-sized hangover. The effect on radio should have been catastrophic, but it wasn't. Despite the fact that numerous stations went broke, radio hung on. For with a twist of the dial, a man could become top dog, champion. For a few hours the depression ceased to exist.

DXers competed in trying to log the most stations. Of the many radio clubs organized during this period only two remain: the National Radio Club and the Universal Radio DX Club. Normally, standard broadcast band (BCB) stations are not heard at a great distance, but on a morning in 1932 scores of night-owls heard a cricket match. Some logged it as Poste Parisien while others claimed it to be Rockhampton, Australia.

Verifications were received from both stationsat first Poste Parisien had been heard carrying a wire broadcast of the match. Later when the European station had faded out, Australia was heard with an on-the-spot description of the same match. When verification of reception established the validity of both sides' claims, the practice of collecting verification cards and letters became almost universal-the cards evidenced the listener's accomplishments and provided the souvenirs that every "tourist" collects. Completing the winter of 1932-33, DX's greatest season, the NNRC scheduled its second historic DX broadcast, a test from LR5 in Buenos Aires. It was a great suc-cess-every listener who tried heard LR5.

The Broadcast Band Today. DX permits you to escape the limits of your local stations. If you're a sports fan, the number of baseball, football and basketball broadcasts available to you will be tripled via DX. Those interested in American folk music will be trying for such stations as WAOK in Atlanta, Georgia. Most of the music played by WAOK is the folk or popular music of the southern Negro, sometimes referred to as rhythm and blues. Similarly, many stations such as WVOK Birmingham specialize in hillbilly tunes. When disasters occur, stations in the disaster area reflect the emergency. DXers are able to listen in.

Examples of broadcast band DX, and others, may be heard on an ordinary radio. Some BCB DX may be had around sunset and during the evening. The first period will produce orief reception from a large number of stations. This is accomplished by tuning to a channel used primarily by daytime stations and catching them as they sign off. Such a procedure will boost total of stations heard and verified, but it doesn't provide very interesting listening.

For best results you should listen between 1 and 6 a.m. Most stations are off during this period leaving four excellent sources of DX: 1) a number of stations operating all night and, because of the comparatively clear channels, easily heard at a distance; 2) stations further west which sign off later; 3) stations conducting equipment tests and frequency checks; 4) and stations which sign on before others of their channel.

A greater challenge is offered by attempting reception of foreign stations on the broadcastband. BCBers have battled static, interference from U.S. and Canadian stations and ridiculously weak signals, to come up with such faraway locations as French West Africa, Russia and Aus-

This chart shows the treqsencies allocated to all the commercial broadcasting media. From right to left, these allocations are: Standard Broadeast, 535-1605 kc.: National and Regional Shortwave, 3000-7000 kc.; International Shortwave, 7000 kc . to 30 megacycles: Very High Frequency Television, 54-88 mc, and 174216 mc.; Frequency Modulation (FM), $88-108 \mathrm{mc}$. The Ultra High Frequency Telovision band begins at 473 me., off the left side of the chart. Amateur band frequencies are also shown.
tralia. Best listening periods here are the early evening and after midright. Ordinary receivers will usually not do-a communications type set is needed for best results.

International Broadcasting. Like the pioneer international wireless telegraphy, the first international broadcast stations used long-wave. The first was at Daventry, England on 187 kc . This station might compete with KDKA and WWJ as first broadcaster (however regular transmissions were not scheduled until 1922). The British Broadcasting Corporation attempted a North American service with the Daventry transmitter but reception was unsatisfactory.

Short-wave was known in the twenties but was not considered of practical use. In India and the islands which now comprise Indonesia, frequencies just above 3060 kc were used for local broadcasting. In this part of the world, static renders the broadcast band almost useless. Shortwave was carried on by experimental stations and culminated in a regular service by the BBC. Enhanced by the broaacasts of King George V, interest grew rapidly, enough to make it an unqualified success. Today, stimulated by World War II and world tensions, international shortwave broadcasting has greatly increased in scope. For more on this, see page 74.
International broadcasting plays a part in improving understanding among peoples. However, many short-wave services are carried on for political, religious or economic (sometimes an appeal to the tourist trade) reasons and are thus necessarily limited in depth and frankness. Similar to commercial broadcasting, there are both far-sighted and narrow-minded sponsors. As on the broadcast-band, you may use comparison but there are never two contrasting stations within the same country to compare. Thus, you can

[^2]
TABLE D-VERIFICATIONS

In order for a station to verify your reception, you must give enough broadcast details so that your report can be checked. In reporting to broadcast stations, there must be a complete general de:cription of the bogram heard. Much hetter than the general dempiption. however, is the definite iten system. ('ommercials, program name and amouncer's name would all be defmita jtems. Song tithes will usatilly not do. however, ince matys sations keep no record of them. In verifing TV stations, visual descripuions are, of course, important. Always emelose return postage.

In reporting to utility stations you maty not regeat specific details of communications heard. Instead, list date/time. frequency. station comtacted or called and. in the case of a mobile facility, position if known. Dany utility stations require the NNier to submit a preysared card for them to sign and mail back to him.
obtain a general picture of Europe or Asia but only a comparatively stilted view of individual countries and their people. You can get closer to a country by tuning in on programs intended for home consumption (usually below 7000 kc) or for nationals abroad. Unless you have command of a second language, however, you'll be limited to English-speaking countries. Another way of penetrating the gloss is by concentrating on programs featuring folk music. The imperfections of short-wave are countered by its avail-ability-you can hear stations at any hour of the 24.

Police and Other Utilities. Broadcasting stations occupy only a tenth of the short-wave bands and only two-fifths of the medium-waves. With the exception of a few narrow amateur bands, the rest of the bands are assigned to utility radio services-ships, aircraft, airports, police and coast guard. This is the most potentially revealing of all radio listening. The authentic bits of life you overhear come straight. These are men going about the business of living, and you are a completely invisible observer. The aeronautical channels are a source of rare countries- $8845 k c$ will produce such places as Kuwait and Bahrain, Arabia. Other faraway countries can be heard via aircraft passing over them.

VHF and UHF. Distant reception on mediumwave and short-wave is made comparatively consistent by the ionosphere, a layer of gases extending from 50 to 250 miles above the earth which are affected by ultra-violet radiation from the sun. The ionosphere reflects and refracts medium and short-waves back to earth thus making distant communications possible. As frequencies above 30 mc aren't normally reflected by the ionosphere, reception over 30 mc does not extend much beyond the horizon. Occasionally, however, DX is made possible via an upward extension of ionospheric effects, or special conditions in the troposphere. The long periods of nothingness punctuated by bursts of exciting reception give this brand of listening a flavor all it's own. For high-frequency DX you need the proper antenna -it should be the right length, directional, and mounted on a rotor. To find the proper length
for FM antennas see the article on page 136.
America's pioneer FM station, in Alpine, N. J., went on the air in 1938. The first commercial FM station on the air was WSM-FM in 1941, now off the air. Cultural offerings are standard on FM. FM, a high fidelity sound system, is ideal for the reproduction of classical music and this music is widely broadcast on FM. Because of the audience it attracts, other intellectual features such as literary reviews are made commercially feasible. During a DX opening you will have your choice of many stations.

Television. Almost simultaneous with the discovery of radio itself, men became fascinated by the prospect of transmitting pictures to distant points. The first commercial VHF TV station WNBT (now WRCA-TV) opened in 1941. Because of high production costs, most broadcasters

TABLE E-RECEIVERS

For best results on ony band, a communicotions type receiver should be used. These are priced from $\$ 75$ up. The major manufadurers selling to the general public ore as follows:

- Hallierafters Company, 4401 West 5th Ave., Chicago 24, Illinois
- Hammarlund Manufacturing Co., 460 W. 34ih St., New York 1, N. Y.
- National Company Inc., Maiden 48, Massachuselts

These companies will furnish information upan request. When purchasing a receiver, these features should bo considered: Frequencies cavered and in how many bands (the more the belter), sensitivity and selectivity, including crystal selectivity. (The latter is essential in foreign BCB DXing.)
stick closely to established program formula, as gambling or experimenting is too expensive. A few misses and the broadcaster would be out of business. Thus 95\% of American TV stations have similar programming. The polish possessed by the BCB outlet does not compare to that of his video cousin. The DX results of this are unmistakable: In comparison with the other broadcasting forms, the number of DX viewers is small, only FM attracts less. The largest TV DX club has 100 members. While most DXers have at one time or another tried for a distant TV station, usually their interest has been only a passing one.

The European TV scene is in startling contrast to the North American. With numerous different nationalities and national customs in close proximity, DX is very popular and the number of such viewers far exceeds those on this side of the Atlantic. This is surprising when you consider not only the language barrier, but that four different TV systems are used in Europe-which means a DX viewer has to make numerous modifications in his set.

Despite it's present inadequacies, TV's potentialities are obvious. The possible uses and human benefits are endless. DX-wise, the future holds unlimited promise. As technological advances multiply, such potentialities will convert an increasing number of DX listeners to DX viewers.

Eletronic C, kiv Wheed

By D. X. FENTEN and J. SCHACHNER

THE Electronic Color Wheel is entertaining, educational, inexpensive, and easily built. To light a lamp, two correct switches must be thrown. The lighted lamp is the color that would result if the colors indicated on the switches were mixed. If, for example, the red and yellow switches were thrown, the orange lamp would light. However, if two color switches are thrown that have no definite color combination, (red and green) nothing happens.

Single- and double-pole, double-throw toggle switches are used to build the color wheel circuit. The second throw on each switch is used to prevent improper readings in the event that more than two switches are closed. However, despite the fact that the DPDT switches are incorporated to prevent incorrect readings, they are not infallible. Errors can occur. By closing a few select special combinations of three switches, for example, a lamp can be lit.

Consider the situation when the red. yellow, and blue switches are closed. Normally, no lamp should light. However, when the red switch is closed, its "lo" contacts close, (see Fig. 2), applying ground to both wiper arms on the blue switch. In effect, this jumps out the red 2c contacts. If the blue and yellou switches are now closed, the green lamp will light. In this manner, an erroneous indication is given. The possibility of an erroneous indication can be overcome in either of two ways-expensive, complex circuitry, or following a simple set of rules of play. As:

2
4) to facilitate wiring. Mount the SPST switch in the middle row between the two lamps, the remaiaing switches in the six remaining holes on the bottom row. Reading from right to left, as in Fig. 2, the switches mount in this order:

w id nd nd

4
5
6
BLUE

Most commercially produced toys are either entertaining or educational, rarely both. Here's a toy you con make that is both, and inexpensive to boot.

1) Set On-Off switch to the Off position.
2) Sel two color switches to the On position.
3) Set the On-Off switch to On. If the proper colors have been selected, the mised color lamp will light.
How to Build. In a piece of $1 / 4$-in. plywood, or other suitable material, bore all the holes necessary to mount the indicator lamp sockets and the toggle switches. Using the Fig. 3 layout as a guide for hole positioning, bore seven ${ }_{2}$-in. holes to aceommodate the toggle switches, and six ${ }^{11} 16-\mathrm{in}$. holes for the indicator lamp sockets.

Mount the indicator lamp sockets in the ${ }^{11} 16 i-i n$. holes so that all the terminals are aligned horizontally (see Fig.

SCHEMATIC

method, so a holder which is most easily installed should be used, or a home-made, improvised version designed and used.

The battery shown in Fig. 4 is a standard $22.5-\mathrm{v}$ hearing aid battery. Simply mounted with two \#6-32x $3 / 4-\mathrm{in}$. screws and a strip of friction tape, it is easily replaced if necessary, and the mount is inexpensive and easily fabricated.

Solder the negative side of the battery to the On-Off switch and wire the 2 c terminals of the red, yellow and black switches to the other side of the On-Off switch. Solder the common side of all the lamps to the positive side of the battery. The other terminal of each lamp is wired to the correct terminal of the color switches. When this has been completed, the control circuit-the switch terminals-is wired, completing the assembly.

Nothing remains but to turn a youngster loose on the wheel.

The switches, unlike the lamp sockets, mount vertically. This will place the "o" terminals on the top and the "c" terminals on the bottom, the " 1 " switch on the left, and the " 2 " switch on the right.

Now mount the battery on the lamp board. The mount will vary according to the size and type of battery used. Each of the many standard size battery holders has its own mounting

MATERIALS LIST-COLOR WHEEL	
No.	Reqd. Description
1	$1 / 4^{\prime \prime} \times 1 \times 1$ plywood
6	DPDT toggle switches, without center Off position
1	SPST toggle switch
7	indicator lamp sockets and lamps
6	indicator lamp jewe's of the following col. ors: orange, pink, oreen, purple, grey, brown.
1	battery (can be either of several normally available, but battery voltage and the required lamp voltage must be the same; $6 \cdot \mathrm{v}$. lamps and a $6 \cdot \mathrm{v}$. battery, $22.5 \cdot \mathrm{v}$. lamps and a 22.5 battery, etc.)

The VHF amateur radiotelephone station in action. The operator is listening for an answer to a two meter CQ.

By C. F. ROCKEY, W9SCH

SELF-CONTAINED in a single chassis-except, of course, for antenna, microphone and headphones-this Very High Frequency transmitter-receiver operates in the 144 megacycle, two-meter amateur band. Probably as straightforward-and simple to construct-as a VHF station can be, its cost runs under $\$ 60$, less than one-fourth the cost of comparable, commercially made equipment. The receiver, tube for tube, develops maximum gain, has maximum sensitivity. It will easily receive signals from within and beyond the range of the transmitter; also, its efficiently engineered R.F. stage greatly reduces signal-radiation interference during reception. And, since all three stages of the transmitter are tuned to a different frequency, selfoscillation of a transmitter stage (with attendant off-frequency operation) is virtually impossible. No tricky "overtone" oscillator circuit, requiring hand-picked crystals, is used; no neutralization is necessary; there is no spurious signal output from the push-push final amplifier.

Construction of Power Supply and Receiver. On the $4 \times 10 \times 17-\mathrm{in}$. chassis, punch socket holes (Figs. 1 and 2) with $1910-\mathrm{in}$. dia. and $3 / 4$-in. dia. socket punches (obtainable at electronics supply store) and mount the power trans-
former, rectifier tube socket, filter capacitors, filter choke coil, terminal strip, and volume control-power switch. (Mounting holes for the transformer are drilled from the data supplied by the manufacturer; tube sockets, filter choke and other station circuit components, except where otherwise indicated, are fastened to the chassis with $6-32 \times 3 / 8-\mathrm{in}$. machine screws and nuts.)

Wiring for the power supply is shown in Fig. 3. (Figure 6 gives a pictorial wiring diagram for both receiver and transmitter sections.) Solder all connections with rosin core solder, checking connections at each step. When the wiring has been double-checked, connect a line cord to the proper terminals on the terminal strip (Fig. 1), insert the 5 Z 3 rectifier tube in its socket, plug the line cord into a power outlet and turn on the power switch. Now connect a d-c voltmeter from $B+$ to chassis; it should read between 300 and 400 volts. If it doesn't, check for faulty wiring or a defective tube and remedy or replace.

With the power supply working, mount and wire the send-receive switch (mount according to manufacturer's instructions; see Fig. 4 for wiring), the receiver's 6AG5 and 12AT7 sockets (with $r h 4-36 \times 1 / 4-\mathrm{in}$. screws) and the sockets for the receiver section's two 6SN7's. Then mount and wire the receiver's main tuning capacitor's

CAUTION: Although anyone may use the VHF receiver, the transmitte? cannot be used without an amateur's license issued by the FCC. Failure to obtain a valid license from the FCC exposes the of fender to a maximum penalty of $\$ 10,000$ and/or two years imprisonment.
vernier tuning dial (according to manufacturer's instructions) and the headphone jack. Wire the audio amplifier sections of the 6SN7's (see Fig. 5) starting with the stage which feeds the headphone jack (all tubes get $B+$ via the $B+$ section of the send-receive switch). As the wiring of each audio amplifier stage is completed, test it by plugging a pair of magnetic headphones into the headphone jack and-with power on and send-receive switch in receive position-

CHASSIS LAYOUT
 touching a screwdriver to the grid of the section under test. Grasp the metal shaft of the screwdriver; touch nothing else. When the end of the screwdriver is brought into contact with a grid, a hum should be heard in the phones. If a stage does not operate, the difficulty is incorrect wiring, a solder-blob short, or a defective component.
Next, wind the second detector coil (Fig. 7), mount it, and wire the 6SN7 second-detector section into the receiver circuit.
Test the second detector by applying power, plugging in the phones, and turning up the volume control. With the control turned about halfway up, a loud, clean hiss should be heard in the phones; backing the control down should cause the hiss to die away smoothly. If no hiss is present in the phones, recheck wiring and circuit components.

High Frequency Section of the Receiver. When wiring the VHF stages of the receiver (or transmit-

ter), keep all leads as short and direct as possible. A lead 1 in . long is considered short enough for ordinary broadcast and shortwave equipment, but at 144 megacycles it is far too long. Also, use a minimum amount of solder; use ceramic bypass and coupling capacitors; and establish one ground point for each stage, returning all chassis grounds for the stage to that point.

In Fig. 5, RFC1 designates an Ohmite Z-144 VHF R.F. choke, the plate load of the 6AG5 R.F. amplifier. The tuning coil in the 6AG5's
grid circuit consists of three turns of \#14 tinned copper wire. Wind this coil on a $1 / 2-i n$. dia. form (we used a $1 / 2$-in. drill shank) and then remove the form, leaving an "airwound, air-spaced" coil. To properly adjust this coil, a grid-dip meter is needed. (With it, also align second detector to 29 megacycles.)

With the 6AG5 and the meter in the circuit (instructions for the use of the grid-dip meter are supplied by the manufacturer), spread apart or squeeze together the three turns of the coil antil the meter indicates that the circuit is resonant to about 146 megacycles. For our receiver, this condition occurred when the coil was about $1 / 2 \mathrm{in}$. long.
Wind and adjust the coil in the grid circuit of the 12AT7 mixer in the same manner, but with both the 6AG5 and the 12AT7 in their sockets and all other connections properly made.

The small, home-made capacitor, labelled "Gimmick" in Fig. 5, consists of two pieces of ordinary hook-up wire (insulation left on) twisted together three times. It couples the signal from the oscillator to the mixer.

The oscillator coil consists of five turns of \#14 wire wound as were the three-turn grid coils. The cathode lead from the oscillator sec-

tion of the 12AT7 is soldered to the coil one turn from the ground end. When the R.F. amplifier, mixer and oscillator circuits are completed, apply power and throw the send-receive switch to the receive position. The tuning range for the oscillator, as indicated by a grid-dip meter, should be from within about 115 to about 132 megacycles. If the oscillator is not oscillating, look for shorts between tube pins or try a dif-
ferent 12AT7. If the oscillator's tuning range is incorrect, squeeze or spread the oscillator coil turns slightly until the correct range is obtained.
When the oscillator is working correctly, plug the headphones into their jack, adjust the volume control for a good, strong hiss, set the grid-dip meter for 145 megacycles and place it about 10 ft . from the set. Now tune the main tuning dial on

NOTE! MAKE ALL.WIRE LEADS AS SHORT AS POSSIBLE. LEADS SHOWN HAVE BEEN MADE LONGER TO CLARIFY WIRING INSTRUCTIONS.

the receiver throughout its range. At some point on the dial the hiss should disappear. Turning the grid-dip meter off should cause it to reappear. If it does, the receiver is operative. If it doesn't, you'll need to recheck the wiring in the mixer and R.F. amplifier circuits only; the oscillator has been checked.

For test purposes, couple a dipole antenna (see Fig. 8) to the 6AG5 R.F. amplifier grid coil
by means of one turn of wire inserted between the two turns at the ground end of the grid coil. With the volume turned up, tune the main receiver tuning dial through its range. If there are radio-equipped taxicabs, mobile radio telephones, or other 144-megacycle amateurs operating within range of you, you should hear them.
Note that when a signal is tuned in, the hiss from the receiver tends to disappear and the

(WHEN WOUND, COAT WITH POLYSTYRENE CEMENT)
voice signal takes its place. The stronger the signal, the more completely the hiss will disappear. Slight readjustment of the volume control and slight retuning will often do wonders to clear up a weak signal.
Finish work on the receiver section by connecting the antenna coil leads of the 6AG5 directly to the appropriate connections of the sendreceive switch (Fig. 4). Then run a short length of 300 ohm "twin-lead" TV lead-in line from the proper switch connections to the antenna terminals on the Jones terminal strip and connect antenna lead-ins to these terminals.
Construction of the Transmifter. Fasten tube sockets for the 12AT7's, 12BH7 and crystal (use 6-32 screws for the crystal socket, 4-36 for tube sockets) and mount the 50 mmf first-tripler tuning capacitor, the "butterfly" second-tripler tuning capacitor, and the 25 mmf final amplifier tuning and antenna tuning capacitors. Be sure that the 50 mmf and the 25 mmf capacitors are mounted with shafts insulated from the chassis. (Drill the shaft hole large enough to give the shaft ample clearance.)

First wire the crystal oscillator (see Figs. 6 and 9), wiring to any two alternate pins desired on the crystal socket. In the oscillator's plate circuit, RFC2 (Fig. 9) designates a National R-100 $21 / 2 \mathrm{mh}$ R.F. choke.

Choose your crystal frequency according to the class of amateur license you hold. If you hold a general class license, any crystal frequency between 8.000 and 8.210 megacycles will do. If you are a novice, choose a crystal frequency between 8.032 and 8.132 megacycles.

When the crystal oscillator circuit wiring is completed, plug the crystal into the socket pins that are connected to the oscillator circuit. Apply power and throw the send-receive switch into the send position. Now, holding it by its glass envelope, touch the base of a 2 -watt neon bulb to the plate connection (pin \#1) of the 12AT7 oscillator tube. A faint but definite bluish-red glow of the neon bulb indicates satisfactory operation of the oscillator circuit. If no glow is observed, recheck the wiring or substitute a different crystal.

Next, wire the first tripler circuit. The first tripler coil is wound as shown in Fig. 10.

With the first tripler wired, apply power and
set grid-dip meter to about 24 megacycles. Hold the grid-dip meter coil near the tripler coil and adjust the 50 mmf capacitor until maximum output from the tripler is observed on the meter. This adjustment must be made with an insulated screwdriver to avoid shocks and to insure accurate tuning.

When a good, strong indication is secured on the grid-dip meter, insert the loop of the transmitter tuning lamp (see Fig. 11) into the firsttripler coil with the loop of the lamp parallel to the turns of the coil. When the lamp is inserted all the way into the coil, and the 50 mmf capacitor is readjusted for maximum tripler output, a noticeable glow of the lamp filament should be observed.

Now, wire the second-tripler 12AT7. The sec-ond-tripler coil consists of 12 turns of \#14 tinned copper wire wound on a $1 / 2-\mathrm{in}$. dia. form. Space the turns carefully to make the entire coil about $13 / 4$-in. long, then remove the form. Connect this

A is superior for outdoor installations.
B is suitable for indoor or temporary use.
RULES FOR ERECTING ANTENNA
(1) Keep it horizontal.
(2) Keep it brocdside to the directions you wish most to work.
(3) Erect it as high above ground at possible.
coil between the two stationary sets of plates of the "butterfly" capacitor. Keep leads as short as possible.
The R.F. choke (RFC3) connected to the center tap of the second-tripler coil is made by scramblewinding 100 turns of magnet wire equal to or smaller than \#22 around a 1 megohm, 1 watt carbon resistor. Solder the ends of the coil to the resistor leads, dope liberally with polystyrene cement, and solder RFC3 into the circuit.

Insert the 12AT7 in its socket and apply power. Tune the grid-dip meter to about 72 megacycles and adjust the "butterfly" capacitor for maximum second-tripler output. Then insert the loop of the tuning lamp between the middle turns of the second-tripler coil and readjust the "butterfly" capacitor for maximum second-tripler output. Then, using an insulated screwdriver, read-

just the first-tripler 50 mmf tuning capacitor until the tuning lamp (still in the second-tripler circuit) glows brightly. Now, adjust the first-tripler 15 mmf mica trimmer capacitor and the first-tripler 50 mmf tuning capacitor alternately, until the tuning lamp glows at nearly full brilliance.
The final stage of the transmitter's R.F. section to be wired is the push-push doubler final amplifier. It operates at the output frequency of 144 megacycles, so make every lead as short as possible. The final-amplifier tank coil consists of three turns of \#14 tinned copper wire $1 / 2$-in. in diameter. Space out the turns until the length of the entire coil is about one in., remove the form, and connect the coil across the final amplifier tuning capacitor. Keep leads to minimum length.
When the final amplifier is completed, tune the grid-dip meter to about 144 megacycles, insert the 12BH7 tube in its socket and, after the tube has heated, apply B+ by throwing the send-receive switch to send. Using the insulated screwdriver, adjust the 25 mmf final-tuning capacitor for maximum indication on the grid-dip meter and readjust the "butterfly" capacitor for maximum output at the final amplifier. Then insert the tuning lamp between the turns of the final amplifier coil. It should gleam brilliantly.
Finally, wire the audio amplifier and modulator. (RFC1 designates an Ohmite Z-144 VHF R.F. choke.) To test the audio amplifier-modu-
lator system, temporarily replace the 15 henry choke coil in the modulator plate circuit with the primary of any loudspeaker output transformer and leudspeaker. With the microphone connected and the send-receive switch in the send position, speaking into the microphone should produce a loud, clear signal from the loudspeaker.
Now insert a single-turn antenna coupling coil into the final-amplifier tuning coil at the end farthest from the $12 \mathrm{BH}^{7}$ socket. Push it well down into the final-amplifier coil to obtain tight coupling and run its leads directly to the 25 mmf antenna tuning capacitor. From there, run leads directly to the proper terminals of the send-receive switch (see Fig. 4).
Give the entire transmitter a final test by connecting a \#48 dial lamp bulb directly across the antenna terminals on the terminal strip. With every component in the circuit and with the

send-receive switch in send position, the lamp should glow brightly. Touch-up the various tuning adjustments for maximum brilliance of the lamp and then speak clearly and directly into the microphone. The lamp should flicker noticeably, indicating that modulation is taking place.

MATE	ERIALS LIST-AMATEUR RADIOTELEPHONE STATION
Req'd. Receiver and Power Supply	
$110 \times 17 \times 4^{\prime \prime}$ aluminum chassis	
1	knob, $1 / 4{ }^{\text {" }}$ shaft
1 terminal strip, 6 termin	
6 g-prong sockets (Amphenol type MIP)	
4	9 -prong sockets (Amphenol, 59.410)
17 -prong miniature socket (Amphenol. 147-505)	
1 power transformer (Stancor type PC. 8410 or equisalen	
1	filter choke coil (Stancor type C-1001 or equivatent)
2 can type electrolytic capacitors. 16 MFD 450 w (Cornell-Dubilier. Type KR-516A or equivalent)	
1 single circuit phone jack	
1	Vernier dial, 0-100-0 scale (National type BM)
1 APDT anti-capacity switch (Federal \#1424)	
1	50 K linear taper potentiometer, with switch (50.000 ohms)
pair 2000 ohm headphones (Trimm "Dependable" or equi	
1	phone plug
5 ft . power line cord with plug	
$\frac{1}{1} .01 \mathrm{mf}$, 400 voit paper capacitor	
81000 mmf disk type ceramic capacitors	
8	50 mmf disk type ceramic capacitors
10 mmf disk type ceramic capacitors	
$1000 \mathrm{ohm}, 1 / 2$ watt composition resistor	
1	220 ohm, 1/2 watt composition resistor
7 100K ohm, $1 / 2$ watt composition resistors (100	
1	$47 \mathrm{~K} \mathrm{ohm}$.1 watt composition resistor (47.000 ohms)
3 3 $47 \mathrm{~K}, 1 / 2$ watt composition resistors (47.000 ohms)	
$2 \quad 22 \mathrm{~K} .1 / 2$ watt composition resistors (22.000 ohms)	
2	$22 \mathrm{~K}, 1$ watt composition resistors (22.000 ohms)
$330 \mathrm{~K}, 1 / 2$ watt composition resistors (330,000 ohms)	
$32200 \mathrm{ohm}, 1 / 2$ watt carbon resistors	
1	$100 \mathrm{hmm}, 1 / 2$ watt carbon resistor
11 meg., 1 watt carbon resistor	
10.5 mf paper capacitor	
6	3 cormic iron core coil form (National type XR-62)
1	ceramic, iron core coil form (National type XR-62)
1	15 mmf midget variable capacitor
	(Hammarlund type HF15 or equivalent)
1523 tube	
2 6SN7GTB tubes	
1	12AT7 tube
1 6AG5 tube	
25^{\prime}	\#14 tinned copper wire
	hook-up wire. solder
	tube polystyrene cement
	tiepoints
	screws
	miscellaneous hardware
10'	300 ohm twin lead TV antenna lead.in wire
12"	\#22 insulated magnet wire
	antenna materials. as desired Transmitter
2	knobs, 1/4" shaft
	choke coil (Stancor type C-1002 or equivalent)
1	0-1 milliammeter (Triplett)
2	0.5 mf .200 v . paper capacitor (Sprague or equivalent)
1	10 mf .50 v , electrolytic capacitor (Sprague or equivalent)
2	Onmite type Z.144 VHF RF chokes
1	21/2 mh RF choke (National R-100)
1	11/4" ribbed plastic coil form (ICA)
3	25 mmf midget variable capacitor
	(Hammarlund type APC 25 or equivalent)
1	50 mmf midget variable capacitor (Hammarlund type APC 50 or equivalent)
2	"Butterfly" type midpet variable capacitor, 10 mmf per section (Johnson 11MB11)
1	11/2.15 mmf mica trimmer capacitor
1	1N34 crystal diode
1	quartz transmitting crystal. about 8 megacycles, see text (Petersen radio "PR" type Z2 or Bliley type AX-2)
1	6SN7GTB tube
2	12AT7 tubes
1	12BH7 tube
1	6V6GT tube
2	\#48: 2 v., 60 MA dial lamps
1	2 watt neon bulb
1	single-button, telephone-type microphone
1	2-lug tiepoint

The R.F. output meter (Fig. 12) assures proper tuning of the transmitter under all conditions. Fasten the 1 N34 crystal diode, the RFC1 choke (an Ohmite Z-144) and the 1000 mmf capacitor to a two-lug tiepoint strip mounted near the transmitter antenna tuning capacitor. The $11 / 2$-in. pickup lead should be brought within about $1 / 2 \mathrm{in}$.
 of the transmitter 25 mmf antenna tuning capacitor and a twisted pair of wires run to the 0 -to- 1 milliammeter on the front of the chassis. Apply power, and throw send-receive switch to send. If the meter reads backwards, reverse the leads to it. Position the pickup lead so that when

RF TUNING METER
the transmitter is operating and the antenna is properly loaded the meter reads about mid-scale. The transmitter may now be easily adjusted by tuning for the greatest meter reading.
Connect the transmitter to one of the antennas shown in Fig. 8, put the antenna as high and in the clear as possible and you're ready to go on the air. With a dipole antenna 25 ft . high, your range of communication will be around 10 miles; with a dipole antenna 50 ft . high, it will be about 15 miles; 100 ft . high will get you out 20 miles. With a high-gain directional antenna system, you can get out in excess of 100 miles under special atmospheric conditions.

Weatherproofing TV's Lightning Arrestor

- Does your TV picture get snowy nearly every time it rains? If your TV's lightning arrestor is located outdoors where it is exposed to the elements, signal loss may result when the arrestor becomes covered with rain. To
 prevent this, install arrestor in a plastic box with a tight-fitting lid. Cut holes in the side of the box to accept the lead-in wire; drill holes in the bottom to fit the arrestor's mounting screws.-John A. Comstock.

Prese the key, and the signal plays through the radio speaker. When plug connecting accessory oscillator is removed (not shown in photo) radio functions normally.

Loudspeaker Code Practice Oscillator For 50'

Stealing power from a superhet radio, and playing through the speaker, this unit will also double as a tone generator

ONLY two main parts, a neon lamp and a resistor, plus the key and plug, are all that you need to build this oscillator. Not only is it handy for code practice, it also provides two full octaves of tone, for testing and experimental purposes.

The oscillator's operation is based on the neon glow relaxation circuit, principle of which is shown in Fig. 2. Such a circuit, while it has been popular for years, requires many more parts, and provides only earphone volume and tone. Our circuit (Fig. 3) actually drives a loudspeaker with lusty volume.

The minimum 90 volt $d-c$ current required to excite the neon glow lamp in the oscillator circuit is obtained from the plate lug of the output tube of any small ac-dc radio. The other lead of the oscillator is connected to the first diode of the radio's detector tube. Since this diode is also the input of the voltage amplifier, the weak oscillator signal is therefore automatically amplified by the set's two audio stages and reproduced by the speaker. The wiring plan (Fig. 3) shows how to make the connections to the tube sockets of most popular radio sets. If you want to use an

MATERIALS LIST-CODE PRACTICE OSCILLATOR
No. Read. Description
1 NE-2 Neon Lamp
$1220,000 \mathrm{ohm} 1 / 4$ or $1 / 2$-watt composition resistor
$135 / 8^{\prime \prime}$ long, $3 / 4^{\prime \prime}$ wide, $3 / 8^{\prime \prime}$ deep plastic box
1 рc. spring hrass, steel, etc.

1. $7 / \mathrm{s}^{\prime \prime}$ dia. plastic garment button
$4^{\circ} \quad 3.48 \times 38^{\prime \prime}$ long th machine screws and nuts
1 subminiature phone plug \& jack (Lafayette MS-281 \& 282)
earlier model receiver, simply check the respective diode and plate pins of the input and output tubes on a tube chart, and connect according to the tube base outlines.

The miniature phone plug and jack allow the oscillator to be connected to the radio set at will. When the plug is removed from the jack, the set again functions in normal fashion. Leads from the tube sockets to this jack should be as short as possible, and the jack must be fully insulated from the metal chassis of the radio, or a short circuit will result. On some sets, you may find that the hardboard back, to which the loop antenna is attached, is a convenient place for the jack, or drill a hole in plastic cabinet.

As a novelty, the code practice oscillator shown in Fig. 3, was built into a small plastic box, such as is used to package emery boards. The key was homemade of spring brass. The serious radio amateur practicing code for license examinations is advised to use a conventional type of sending key, since the "feel" of a solid key under the hand is important in learning speed.

Drill a hole in the plastic just large enough to pass the NE-2 neon glow lamp, cementing it in place with Duco cement. Shape the key by bending a strip of spring brass according to the plan. The knob is a $7 / 8$-in. dia. garment button.

The tone of the oscillator is determined by the setting of the receiver's volume control. If the key is held down, and the volume control rocked back and forth, an electronic siren effect will result.

If, instead, you alternately close the key, and vary the volume control setting, a musical tune will result, much in the manner of the "Uke-Atron." This is an electronic musical instrument, described in S\&M Radio-TV Experimenter, Volume 3 (\#538-50 cents). And it demonstrates the basic principle of electronic organs.

Another interesting feature of the relaxation oscillator is that it not only provides an audible signal, but also a visual signal. Every time the key is pressed, the lamp fires with a bright orange glow.Thomas A. Blanchard

Soundown

By BERNARD DICKMAN

HERE'S a device which will automatically turn down the sound on your television or radio set when you lift the telephone receiver. There are two versions, one of which can be built for less than $\$ 10$, the other for less than $\$ 15$. The first version (Fig. 1A), while it is the less expensive of the two, draws current from the battery all the time the telephone is in use. The second version (Fig. 1B), will draw current only the moment the telephone is lifted from or returned to its cradle.

Part layouts for the two versions are shown in Figs. 2 and 3. The value of the potentiometer is not critical; almost any good junk-box unit will do. Schematics are shown in Figs. 4 and 5. Note particularly the wiring of the micro-switch (S2). In both schematics it is shown with the phone in use. Switch S1, on the schematic for the second version (Fig. 5) is shown in position for use in turning the TV or radio completely off.

After the unit has been wired, connect the micro-switch (Fig. 6) to the telephone. Press it tightly into position under the lip of the handhold of the telephone as is shown in Fig. 1. Pull

Parts placement in Version Two.
the radio turned on, adjust potentiometer $R 1$ to the desired difference in sound from the TV or radio set. Then, when the telephone receiver is returned to its cradle, the sound will automatically return to normal listening volume. If either unit is plugged into the wall socket with the TV or radio line plug inserted into the ac chassis socket on the unit, the radio or TV will be turned off when the telephone receiver is off the cradle. The first version, in other words, can control a radio and a television set simultaneously; the second version can only be used for one function at a time. The first version controls in these two

4

5
VERSION TWO SCHEMATIC
cotter pins tight while holding switch in position. Bend the leaf of the micro-switch around the arm rest. Test to see if switch makes and breaks contact when telephone receiver is lifted from and returned to cradle, then cut cotter pins to suitable length.

To connect either of the versions so that they turn down the sound on a radio or TV, connect the phone plug in series with one of the speaker terminals of the set. The second version must never be plugged into the $117-\mathrm{v}$ wall socket when it is being used with the phone plug. After turning switch Sl on, insert the phone plug into the jack on the unit. With the phone off its cradle and

6
Micro-switch with cotter pins and nuts ready for mounting on phone. ways: 1) with several ac chassis sockets added, several sets can be turned on and off; 2) with one set connected so that sound will be turned down and one set so that sound will be turned off, both radio and TV can be controlled simultaneously.

Desig.

J1 6.v lantern battery
6-y lantern battery
standard phone plug Allied Radio 76 P 461) Allied Radio 35 B 030)
at chassis socket
Allied Radio 80 P 365) nuts (for cotter pins)

$6-v$ lantern battery
 standard phone jack

standard phone plug
ac chassis socket

MATERIALS LIST-VERSION ONE
$0-100$ ohm linear potentiometer (see text)
$6 \cdot v$ dc, DPDT relay (Advance GHA/2C/6VD;
leal actuated micro-switch (Acro 2CMO1-2AXX-A24;
aluminum case $3 \times 4 \times 5^{\prime \prime}$ (Bud Minibox CU-3005;
screws, grommet, line cors and plug, cotter pins,

VERSION TWO

0.100 hm linear potentiometer (see text) $6-\mathrm{y}$ dc. DPDT ratchet relay (Potter and Brumfield AP11D; Allied Radio 76 P 585)
Single pole, single throw slide switch
leaf actuated micro-switch (Acro 2CMD1-2AXX-A24; Allied Radio 35 B 030)
aluminum case $3 \times 5 \times 7^{\prime \prime}$ (Bud Minibox CU-3008;
Allied Radio 80 P 368)
screws, prommet, line cord and plug, cotter pins, nuts (for cotter pins)

Oscillogram pattern of α full-wave, battery charger rectitier showing lower halfcycle, (lont in Fig. 4) inverted and above horizontal centerline, indicating it is being used.

Using an OSCILLOSCOPE

For diagnosing troubles in electronic circuits, the oscilloscope is as useful to the experimenter as the X -ray machine is to a physician

By HAROLD P. STRAND

THE oscilloscope is probably the most useful of all test apparatus commonly employed by electronic technicians and engineers. It can actually give you a moving picture of what is going on in a circuit by means of waveforms and traces on the face of a cathode ray tube. It can be used for many varieties of test, teaching and research work, such as signal tracing, peak-to-peak measurements, frequency measurements, and servicing radio and television receivers. One interesting application is for testing and watching the operation of microphones. The voice produces a varying wave-form on the scope in step with the intensity and type of sounds delivered to the microphone.

It is commonly believed that an oscilloscope is too complex, and too difficult for an experimenter to construct himself. Actually, however, kits are available from electronic supply houses that belie this belief. The scope used for the experiments discussed in this article, for instance, was made from an Allied Radio kit with printed circuit board, that makes the job of building a good, general-purpose oscilloscope quite simple.

This scope is designed for viewing waveforms to 1.5 megacycles. It has built-in regulated cali-
brator to measure exact amplitude of the waveform appearing on the screen, by the flick of a switch. The sweep covers from 15 cycles to 150 kilocycles. These specifications are usually adequate for most general use. The vertical amplifier has a sensitivity of .025 volts (r.m.s) per inch and the input impedance is 3.3 megohms shunted by 45 mmfd . The horizontal amplifier has a sensitivity of .07 volts per inch and an impedance of 2.2 meg ohms shunted by 30 mmfd. The kit is supplied by Allied Radio, 100-A N. Western Ave., Chicago 80, Ill., under Cat. No. 83YU146, $\$ 44.95$ complete. Laced cables, printed circuit board and pre-cut hook-up wires all trimmed, plus easy-to-follow assembly instructions make its construction simple for anyone having some electronic experience.

The wiring of the printed circuit board of this kit especially simplifies its construction. Those of you who have never used this marvel of circuitry, will be pleasantly surprised at the time saved over conventional wiring. The complex part of the circuit will be already wired for you; it is only necessary to insert the sockets and the resistor and capacitor leads in punched holes and solder them on the back to the silvered copper foil pattern. The top side of the board is lettered and marked to help in quickly identifying the parts to be installed.

Soldering to the printed circuit is not difficult if care is taken to apply just the right amount of heat and all excess solder is eliminated. For use on the connections where small diameter wire is involved, an Ungar soldering pencil was found to be very satisfactory. For use at the other terminals, where larger wire is found, such as with the 1 and 2 watt resistors and large capacitors, you use a 60 -watt iron. When you have completed assembly and tests, you can begin your experiments.

The first should be the production of a 60 -cycle sine wave on the screen. A 6.3 -volt filament transformer mounted on a small piece of board, with insulated line terminals and a terminal strip for the low-voltage secondary leads, is made up
for quick connections to the scope with either 6.3 volts or 3.15 volts. You can obtain either voltage by using the two outside or the center and one outside terminal and many experiments can be conducted at a safe, low voltage. This test unit is shown in Fig. 3, connected to the vertical input terminals of the scope.
Set the V. Input Átten. to .1, the Sync Selector to +INT and the Sweep Selector between 15 and 150. Turn on the power to both the scope and the transformer and after the former warms up a few minutes, you should get a sine waveform on the screen by adjusting the V . Gain, H. Gain and the Sweep Vernier controls. The latter is a vernier on the sweep selector and a point will be found where a single cycle wave will appear and the Sync Lock control will hold the trace stationary. The sine wave is adjusted on the screen so as to be equally divided and below the center horizontal line. This represents a good wave-form

Tools meeded to assemble the kit.

Oseilloscope pattern quickly identifies a hali-wave rectifier. Note thet lower half

Testag the completed oscilloscope with α small step-down filcment trans. former. The sine wave shown in the above photograph is one cycle of two alternations of the 60 cycle current.
which is usually obtainable from the standard 60 -cycle line. It shows the rise and fall of the alternating current from 0 to positive maximum, then back to 0 to reach a maximum amplitude in

sine wave voltage values
peak to peak value is the TOTAL AMPLITUDE FROM POSITIVE MAXIMUM TO NEGA. TIVE MAXIMUM. RMS (ROOT MEAN SGUAREI VALUE IS ORDINARILY READ BY VOLTMETERS.
 FTYPE SHOWN \quad 'PULSATING ABOVE IS INYERTEO! CURREN AND USED

10 LINES PER INCH

SINE WAVE FROM 18 VOLTS
RMS (KNOWN VOLTAGE)

 C
VOLTAGE MEASUREMENTS BY COMPARISON WITH KNOWN VOLTAGE

FILTERED DC

SHOWING THE EFFECT OF FILTERING A FULL-WAVE RECTIFIER OUTPUT
a negative direction, from where it returns to 0 . This is one cycle or two alternations. This sine wave is shown in Fig. 5A for further study and the relation of peak voltage to r.m.s. (root-mean-square) voltage as ordinarily measured by voltmeters, is indicated.
The oscilloscope can be used to measure voltage by comparison of the amplitude of the waveform from a known voltage with an unknown voltage. A plastic screen ruled with 10 lines to the inch (Fig. 5C) and applied to the face of the tube is a convenient method of calibration. The waveform from the known voltage can be adjusted between a certain number of lines and without touching the vertical gain control, the unknown voltage is applied, using the same vertical input terminals of the scope. If the trace has a peak to peak amplitude from the unknown voltage that is twice as great as that from the known voltage, the voltage is twice as great. Knowing the value of one signal applied, is is quite easy to calculate other voltages.

To get familiar with the scope controls, turn the Sync Selector to the -INT position and it will be found that the trace is shifted 180 electrical degrees, indicating that synchronization is being effected through the use of the negative half-cycles. If moved to the EXT position, the trace will start to drift, as in this position it requires the use of an external synchronizing source to be connected to the Ext. Sync. terminal.

Further experiments with the controls should include the V. Input Atten. When on the .01 position, the signal voltage connected to the V. Input terminals is divided by a factor of 100 and the trace will be considerably reduced in vertical gain from that shown when the switch is on the 1 position. The .1 marker divides the input signal by 10. This allows some control over the value of the input voltage to the scope and therefore, when applying an unknown voltage or one known to be quite high, always place the attenuator on the .01 position first, advancing the switch later to the other positions if required.

The oscilloscope is useful for indicating either half-wave or full-wave rectification. Such recti-

6

FILTERED POWER SUPPLY

Oscilloscope is connected across choke of a phonograph amplifier

An example of an interesting pattern provided by a microphone.

fiers are used in battery chargers, radio and television power supplies and many other types of electrical apparatus.
For the demonstration of half-wave rectification (Fig. 4) a selenium stack has been connected in series with one side of the secondary of the 6.3 volt test transformer and a dummy resistance load connected across the resulting line, with leads to the V. Input scope terminals. A half-wave vacuum tube would show approximately the same waveform.

A half-wave rectifier uses but one of the halfwaves of the 60 eycle sine wave shown in Fig. 5 A , the other half being lost or wasted. The half-wave that has been cut off is indicated by dotted lines (Fig. 5B) and represents the action of the blocking effect of the rectifier, so that D.C. pulsating current is produced from an alternating current source. An oscillogram of a half-wave rectifier, showing two half-waves above the cen-

B
RATIO 2:1

F
RATIO 3:1
60 CYCLES APPLIED TO HORIZONTAL CHANNEL VARIOUS FREQUENCIES TO VERTCAL CHANNEL

RATIO 5:2

Tio
ratio 5:3

NUMAER OF LOOPS TANGENT
$\frac{\text { TO A HORIZONTAL LINE }}{\text { NUMBER OF LOOPS TANGENT }}=$ RATIO OF FREQUENCY
TO A VERTICAL LINE

VARIOUS LISSAJOUS FIGURES FOR DETERMINING FREQUENCY
ter line with a space between is shown in Fig. 4. In full-wave rectifiers, both half-waves are used for better efficiency, the lost half-wave of the first case being inverted and used to pass unidirectional current. Rectifiers may be either of the dry disc or vacuum tube types.

An example of full-wave rectification in a battery charger is shown in Fig. 1. A dummy resistance load, of a value to show a small amount of current on the meter, has been connected across the spring clips, with leads connecting to the scope. It will be seen that the half-wave lost in the first subject has now been inverted to the space between the half-waves above the line and we have a full-wave rectifier. The pattern has been adjusted by the Vertical Position control so its lower points are on the horizontal line of the screen to get the correct picture. Full wave is obtained from either a bridge type rectifier stack or two half-wave stacks in a circuit with a center-tapped transformer. A full-wave vacuum tube rectifier also delivers this type of current.

The rectifiers illustrated produce pulsating direct current which is unidirectional but is not steady enough for some applications such as electronic power supplies. To smooth out the ripple to an extent as required for the purpose, a filter is added. This usually consists of a choke and two electrolytic capacitors (Fig. 6).

An example of a filtered power supply (Fig. 7) shows the scope connected across the choke in a phonograph amplifier. While the trace on the screen is not exactly a straight line, it has far less ripple than would be the case with the unfiltered rectifier shown in Fig. 1 or in other
words, it now takes the peaks of the waves only with just a slight dip between. Such an oscillogram allows the designer to check the effect of more or less inductance and capacitance so as to result in as little ripple as possible. (Care should be taken while working around apparatus employing high voltage, such as power supplies, since such voltage can deliver dangerous shocks if the worker gets careless and comes in contact with live terminals.)

An interesting demonstration of voice modulation on the oscilloscope is possible with a crystal micropione. Connect the microphone leads to the vertical input terminals, attaching the insulated center wire of the shielded cable to the red terminal (V. Input) and the braid to the ground terminal. When connecting any apparatus always connect the lead from the ground to the GND. terminal where one of the leads does represent

Frequenzy measurements are made with 60 cycles applied to the horizontal channel, by placing the Sweep Selector on this point and applying the unknown frequency to the vertical channel. Here an audio oscillator is boing used to obtain a pattern of 120 cycles.
ground such as with microphones and many radio and TV test connections. Also, use shielded leads to prevent stray pick-up. Various sounded words and letters, as well as whistling will produce a wide variety of interesting patterns one of which is shown in Fig. 8. Musical notes sounded are especially effective. By this means, a good test for the condition or quality of a microphone is provided. A good unit in sensitive condition will respond to very low tones, while a cheap unit or one in bad condition will usually require loud signals in order to get comparable traces or the same gain on the screen. A dead microphone can be quickly identified, since it will have no response.

For use with a crystal microphone, the oscilloscope conirols should be set somewhat generally as follows The V. Input Atten is on 1, the Vertical Gain about $3 / 4$ advanced clockwise, the Horizontal Gain about $1 / 2$ advarced clockwise, the Sweep Selector between 15 and 150, Sync. Selector on +INT. The controls are further adjusted as required in a test.

Frequency measurements are another possi-

bility open to the owner of an oscilloscope. It is often necessary to determine the frequency of some power source and this can be done quite easily by what are known as Lissajous figures. By this method a known frequency is applied to the horizontal channel and the unknown to the vertical channel to produce a variety of patterns that can be interpreted to indicate the frequency of the unknown signal. Fig. 9 shows some of the Lissajous patterns obtained.
The Sweep Selector is set to the 60 cycle position which allows a portion of the 60 cycle line to be applied for the horizontal sweep. For demonstration of various frequencies, which can be taken as the unknown frequency source, an audio oscillator is connected to the vertical input terminals of the scope as in Fig. 10. By adjusting a knob and a range switch, frequencies from 20 to 20,000 cycles are possible; 120 cycles are being delivered to the scope and the pattern shown has two top loops and one side loop. The Sweep Vernier has been adjusted to get the figure shown in Fig. 10. The calculation for frequency of the unknown signal is made by considering the ratio of the loops at the top of the pattern, which represents the unknown frequency, to the loop or loops at the side. In this case the ratio is 2:1. The actual frequency is determined by dividing the loops tangent to an imaginary horizontal line by those tangent to a vertical line or in this case $2 / 1=2$ and multiplying this ratio by that of the standardizing frequency or 60 cycles to get 120 cycles. If the unknown frequency source happened to be 30 cycles, for another example, there would be one loop at the top to two at the side, as indicated in Fig. 9C. It will be noted that there is but one loop at the top, with two at the side or a ratio of $1: 2$. Therefore, $1 / 2=.5$ or the frequency would be $1 / 2$ that of 60 cycles or 30 cycles. This can be carried out for a great variety of unknown frequency measurements up to a point where it will be difficult to count the number of loops or perhaps up to ratios of $8: 1$ maximum. In many cases the figures will not remain very stationary due to phase differences in the two signals, but in other cases where they are exactly in phase, the patterns will be quite stationary.

Radio and television service men often use an oscilloscope to get wave patterns in various parts of circuits and also for lining up the I.F. transformers in a superheterodyne radio receiver. For locating trouble in the audio stage the oscilloscope is often connected across the speaker output leads. Where oscillograms are desired in some parts of the I.F. or R.F. sections, an extra accessory is required, called a demodulator probe. In Fig. 11 the Allied oscilloscope is being employed for peaking the I.F. transformers. A signal generator, shown at the left, produces the necessary 456 kc signal to the grid of the mixer tube through a .001 capacitor. The scope is connected across the detector load resistor. The controls on the scope are adjusted to get a pattern showing the frequency response curve of singlepeaked I.F. transformers. This output waveform can be used in combination with the tone from the signal generator to make the adjustments at the I.F. transformers. It is usually necessary to shunt out the oscillator section of the variable tuning condenser to accomplish this work.

There are so many possible applications of the oscilloscope in electronics and industry that it would be impossible to try and describe them here. In general the operator should have some background knowledge of electricity and electronics in order to handle the instrument properly. There are several good books on the subject which are suggested for study, among them being the following-
Modern Oscilloscopes and Their Use by Jacob H. Ruiter, Jr., Rinehart \& Company, 232 Madison Avenue, New York 16, N. Y.
Obtaining and Interpreting Test Scope Traces by John F. Rider, John F. Rider Publisher, Inc., 480 Canal St., New York 13, N. Y.
The Oscilloscope by George Zwick, Gernsback Publications, Inc., 25 West Broadway, New York 7, N. Y.

Cleaning Fuse Clips

- When tubular fuseholding clips in electrical equipment become corroded, contact resistance increases and the fuse and its holder effectively become a "resistor," thus impairing the fuse's orig-
 inal purpose. To prevent this, place the fuse in the center of a strip of crocus cloth, with the abrasive side out, and force this into the fuse clip holder. Move the fuse and cloth back and forth several times to burnish the overall insides of the clips and expose fresh metal. This will assure a positive contact when the fuse is replaced. If this process tends to make the fuse fit loosely in the clips, pinch them together slightly, then replace the fuse.-Jонм A. Сомstock.

Thermostatically controlled stand regulates heat of iron through three levelssaves on electric bills!

Thermostatically Controlled Soldering Iron Stand

Abstract

A thermostatically controlled soldering iron stand prolongs element life, prevents "frozen" tips and provides the right iron temperature for a variety of jobs. It is one of the few appliances that saves current while working instead of consuming it

By W. McCORMICK

for or the thermostat will regulate poorly.

Now, snip out the thermostat armature klades, one of tin-can steel, the other of brass shim stock (Fig. 4A). Scribe the location of all holes on each blade, centerpunch and drill. Deburr blades, flatten them and rivet them together with 1/1ti-in. diameter eyelet rivets only at holes "C" and "D." Feam hole "E" and force-fit a $1 / 4-\mathrm{in}$. x 2-56 ril machine screw into it with the screw head on the armature's brass side. Run a hex nut on the screw, tighten it and snip off the excess screw shank. File screw shank flush with the nut, make sure nut is still tight, and file the screw head flat.

Now set one of the biackets (Fig. 3A) before you with its foot behind it and its $1 / 2-\mathrm{in}$. dimension in the vertical plane. Place the brass side of the armature against the back side of the vertical bracket leg, approaching the bracket

HERE'S a thermostatically controlled soldering iron stand you can make, mostly of junk, that will control any iron from 80 to 600 watts. The temperature sensing element is a bi-metal thermostat. When two strips of netal having different expansion co-efficients, such as steel and brass, are fastened together and heated, the compound strip will bend, with the more expansive metal. the brass, on the convex side. If one end of the strip is held fast, a swinging motion occurs at the free end. This motion can open and close electrical contacts.

To use this principle to control soldering iron temperature, first make the sheet asbestos thermostat base, Fig. 2. Next, make the brackets shown in Figs. $3 A$ and $3 B$, and the indicator bracket, Fig. 3 C , and indicator dial, Fig. 3D, and cement the dial to the face of the bracket. Do not use material heavier than called

with the brass side of the armature from behind, and rivet the armature and bracket lightly together with $1 / 8-i n$. diameter eyelets. Mount the armature assembly on the thermostat base with $1 / 4$-in. x 4-40 fh machine screws. Adjust the armature blades paralled with the armature base, and set the eyelets.

Next, make the contact leaf shown in Fig. 4B. Place the second bracket with its foot toward you and its $1 / 2-i n$. dimension in the vertical plane. Rivet the contact leaf lightly to the far side of the vertical leg, with the leaf's boss facing from you. Use $1 / 8-\mathrm{in}$. diameter eyelets.

Check the contact leaf for parallelism with the

	MATERIALS LIST-SOLDERING IRON STAND
No. Req'd. Description	
1 DC sheet astesto5, $1 / 8 \times 11 / 2 \times 41 / 2^{\prime \prime}$ (linen-base Bakelite can be used for irons under 200 watts)	
1 pc cold rolled steel, $1 / 16 \times 3 / 8 \times 5^{\prime \prime}$	
1 DC phosphor bronze, spring steel, spring brass or beryllium copper, $1 / 2 \times 21 / 8 \times 1 / 4$ to $1 / 32^{2 \prime}$	
steel sweated together	
	$1 / 8^{\prime \prime} 0.0 . \times 1 / 8^{\prime \prime}$ eyelet rivet
$21 / 10^{\prime \prime} 0.0 . \times 1 / 8^{\prime \prime}$ eyelet rivet	
$12.56 \times 1 / 4 \mathrm{rh}$ machine screw and hex nut	
$4 \quad 4.40 \times 3.10$ th machine screw and hex nut	
1	$6.32 \times 1 / 4$ fh machine screw and hex nut
2 \#6x/2" fh wood screws	
46x/2 2 wood screws	
1	rubber grommet $5 / 10^{\prime \prime} \mathrm{mtg}$. hole (Walsco 7023F)
1 cable clamp $1 / 4$ to $3 / \mathrm{m}^{\prime \prime}$ cable (Walsco 7505F)	
1 assort. comp. spring $3 / 22 \times 11 / 2^{\prime \prime}$ (Walsco 7440F)	
1 instrument knob $1 / 4^{\prime \prime}$ shaft (8urstein Applebee 12A122)	
1 alignment tool (General Cement \#8247)	
1 Amphenol 615 receptacle (ou	
1 Amphenol 2315 receptacle sher	
$\frac{1}{2}$ electric iron cord, asbestos wrapped heayy duty	
1	compression spring, $1 / 32^{\prime \prime}$ I. O. $\times 11 / 2^{\prime \prime}$ approx. (from old ball point pen or Walsco 7440F) $2 \times 2^{\prime \prime}$ piece white-faced cardboard
	\# 303 tin can
1	tin can (any size)
	10" length \#14 ga. stranded hook-up wire
1	hardwood base $4 \times 81 / 2 \times 3 / 4$ "thick

thermostat base, and set the eyelets and mount this assembly on the thermostat base with $1 / 4$-in. x 4-40 fh machine screws. The boss on the contact leaf should face the flat screw head in the armature. Center up
 the contact leaf's boss with the screw head in the armature, leaving about $1 / 32-\mathrm{in}$. between the boss and screw head. Spring the armature a little if necessary. Tighten all the bracket mounting screws.

Now mount the adjustment bracket (Fig. 3B) with its tapped hole facing the back side of the contact leaf's boss, and in alignment with the armature's screw-head contact. (Foot of bracket toward you.) Snip the red tip off the fiber align. ing tool, and cut the fiber shaft, leaving the tool 3 in . long, overall. Thread $1 / 2 \mathrm{in}$. of the fiber shaft with a 6-32 thread. (The bracket hole thread will do this if the fiber shaft is made slightly pointed.) Slip the compression spring on the threaded end of the alignment tool and screw the threaded shaft into the tapered bracket hole one or two turns-not enough to force the contact leaf boss against the screw head in the armature. Put a soldering lug and nut on the screwend nearest the upright of both the armature bracket and the contact leaf bracket. Tighten nuts.

Next, make the thermostat cover and iron pan (Fig. 5). Cut both ends out of a \#303 tin can and snip cylinder lengthwise into two half-round sections. Form and drill. Rivet finished pieces together with $1 / 8-i n$. diameter eyelets and blue over a flame. Form the iron-shank rest (Fig. 4C) from a $6-i n$. length of coat hanger wire.

Now, chamfer the top edges of the hardwood base $1 / 4 \mathrm{in}$., and give it a coat of thinned black enamel. Drill a $5 / 18$-in. hole in the shell of the $110-\mathrm{v}$ outlet and insert the grommet. Then place all the completed parts on the wood base and make a trial layout. The thermostat assembly mounts with \#6 x 1/2-in. fh wood screws. The

indicator bracket, 110-v outlet and the iron-shank bracket mount with \#4 x $1 / 2-\mathrm{in}$. rh wood screws. The cord clamp takes a \#6x $1 / 2$-in. rh screw.

Wire as shown in Fig. 6. Wrap solder lugs around the connections to the thermostat, and crush lug loops on the wires. Trim wire ends, and tape the appliance cord where it passes under the cable clamp. Mount the thermostat cover and iron pan assembly over the the mostat.
To calibrate unit, plug a lamp into the solder-
ing iror outlet and plug the iron stand cord into a $110 / 115-\mathrm{v}$ outlet. Turn the aligning tool clockwise until the bulb just lights without flickering. Put the adjusting knob on the $1 / 4$-in. diameter end of the aligning tool, set it to point to "LOW" on the indicator dial and tighten its set serew. The unit is now fully calibrated and will read "MEDIUM" and "HOT" temperatures correctly. Unplug the lamp, plug in your soldering iron in its place.

Uninue Ciricutit Somplife the Tunnel Diode

Nestled inside this paper clip-with room to spare-is a tunnel diode, one of last year's most startling electronics developments. If an FM receiver were rebuilt using one of the new diodes, all the conventional components shown at the right could be omitted.

THE tunnel diode-newest baby in the fast-growing family of semi-conductors-may soon be giving its first cousin, the transistor, an inferiority complex.
So small that a radio transmitter the size of a $50 ¢$ piece has been built with it, the fantastic tunnel diode can perform almost all the functions of a standard low-power transistor and could lead to enormous savings in cost and complexity of electronic circuits.
A few of its features that have electronics engineers most intrigued are: An amplification noise figure of about one decibel, power requirements as low as one millionth of a watt and operation frequencies as high as 10,000 megacycles.

In some instances, the new diode may replace conventional components. In others, it might be used to improve their performance by working with them.

ELECTRON " ROLLS UP" SLOPE

Here-in an exiremely simplified diagram-is how the tunnel diode operates. Drawing represents a stiucture similar to a Chinese checkerboard, with one side sligh.ly raised. Holes on the left side (which represents an n-type sericonductor) are filled with marbles, with a few lelt over and sittirg on top. Right side (representing a p-type semiconductor) has a few holes vacant. The slope represents the potential barrier. A marble for electron) from the left, can-after being given a push-enter a hole on the right by rolling up the slope and dropping in. Or, without the push, it can miraculously "tunnel" through the board and appear in a hole. The former process is used in conventional diodes and transistors. The latter representie what happens in tunnel diodes.

Photo compares transmitter with 506 piece. It consists of one variable and two fixed ceramic capacitors, tuning coil and the diode itself-inside can in center of transmitter.

The tunnel diode was first reported by a Japanese scientist-Dr. Leo Esaki-in 1958, and although its construction is very similar to an ordinary rectifying diode's, it works on an entirely different principle.

It takes its name from the phenomenon that makes its operation possible: quantum-mechanical tunneling.
As with transistors, it depends on the transfer of an electrical charge across a p-n junction. This is the region between a p-type semiconductor, which has an excess of positive carriers or "holes" (empty electron states), and an n-type, which has an excess of free electrons.
The opposite sides of this junction take on a charge which resists the movement of the "holes" and electrons across it. In the transistor, a charge carrier must be emitted into a region where its energy can be boosted by an outside voltage. It is then collected on an output electrode. The speed of this process is limited by the time it takes the charge carrier-having left the emitter -to traverse the control region and appear on the collector. This time limits the frequency at which the device can function and is quite long compared to, say, the time needed for a signal to travel an equivalent distance along a copper wire. The reason: in the wire, each electron moves only a microscopic distance, and those coming out the other end aren't the same ones that went in as a signal.

The quantum-mechanical theory says there is another way in which the particles can pass the barrier: an electron has a small, but definite, probability of disappearing from one side of the potential barrier and re-appearing simultaneously on the other-even though it does not have enough energy to surmount the barrier. It is as though the particles "tunnel" under the barrier, setting up almost instantaneous surges of current. Thus, in the tunnel diode, the signal moves with the same speed as it would in a copper wire-the speed of light.
The construction of the amazing device gives it some other interesting characteristics.

Its p -n junction is made of materials more heavily loaded-or doped-with impurities than
conventional diodes (semiconductor materials are doped to form either p-types or n-types), and made so that the barrier between p and n sections is extremely thin, less than a millionth of an inch thick.
So long as no outside voltage is applied across the p -n junction, there is no net current-since the electrons tunnel back and forth easily through the barrier in both directions. Apply a small voltage, however, and current appears. Add still more voltage, and current decreases. Add more, and current increases again.

In the range where an increase in voltage results in a fall-off of current, the tunnel diode is said to have "negative" resistance-making it suited for use as an amplifier or oscillator.
This negative resistance quality, combined with speed-of-light operation, makes possible a very high frequency response. Oscillation frequencies higher than 2000 megacycles have already been obtained-matching advanced transistor perform-ance-and engineers confidently expect frequencies of more than 10,000 megacycles in the near future.
Some other outstanding features:

- It is smaller than a transistor and, because of its simplicity, ultimately will be just a fraction of its present size.
- It is affected very little by environment. The tunnel diode can operate at the near-absolute zero temperature of liquid helium or-at the other end of the thermometer-at temperatures up to $650^{\circ} \mathrm{F}$, while conventional silicon diodes won't operate above $400^{\circ} \mathrm{F}$.
- It has a low noise level, only parametric amplifiers and masers competing closely with it. And of these, only the tunnel diode can operate directly from a battery.
- Because it is less dependent on the structural perfection of its crystal than is the transistor, the tunnel diode is less affected by the damage that nuclear radiation can do to such crystal structures.

Soldering Flux Can Carries Vise

- Attach a test-clip to the lid of a can of soldering flux to use as a handy vise for holding small

parts while applying solder. Enlarge hole in clip slightly with a drill and attach to can with a small elf-tapping metal screw.-Joun A. Сомstock.

Lesg bulky than conventional units, complete tachometer clamps to steering column for handy visibility. Instrument can also be installed on dash or used as portable test device.

THE Speed of an engine is the key to its performance. A standard item on the dash panels of many sports cars, the "tach" makes it possible to select the best engine speeds for gas economy. Also it advises the driver when the engine is turning over at just the right specd for shifting-thus cutting down unnecessary clutch and transmission gear wear. And it is essential in making proper carburetor and distributor tune-up adjustments in the garage.

This tachometer is designed to operate on either 6 or 12 volt ignition systems, positive or negative ground. Provided that you change one part, which depends on the number of cylinders, you can use this tachometer on any kind of engine from a "one lung" 2 stroke outboard motor up to an 8 cylinder 4 stroke engine. The photo shows the dial calilrated $0-5000$, which is sufficient for most purposes, but it can also be arranged to read the range, $0-10,000 \mathrm{rpm}$. With an accessory switch, it can even be used to measure the speeds of rotating shafts in appliances and power tools. And unlike conventional tachometers which are bulky and difficult to install, it is compact, and hooks up without costly special cables and switch assemblics. Cost for all parts should be under $\$ 25$.

Construction. The meter, M1, shown in: Fig. 1, is inexpensive, but has an accurate 50 microampere movement. With the attached circuitry the entire assembly extends only $23 / 8 \mathrm{in}$. cleep behind the panel. Begin construction by cutting Discs A and B (Fig. 2), of :::2-in. sheet bakelite with either a jig saw or circle cutter. If you use a circle cutter, drill the center hole for a \#6 screw, and reverse the cutter blade so that the cutting edge is inside. Rotate the cutter counterclockwise, and work through from both sides of the bakelite sheet to obtain neat discs. Make the spacer, C, from a piece of $1 / 4-\mathrm{in}$. brass bar stock, and thread it through with a $6-32$ tap.

Parts layout is not critical, but it is necessary to be careful to avoid crowding the wiring in some spots. Cut out the two templates (F'ig. 3), and fasten them to the bakelite sheets with tape or rubber cement. Turret type terminal lugs can be used for easier and neater construction, however if you prefer, you may choose to use 4-40

Electronic Tachometer

Dependable transistor circuit counts ignition pulses. Readings indicate proper speeds for operating and tuneup of cars, outboards, truck, marine and stationary engines

By JAMES E. PUGH JR.

machine screws instead. Either way, drill the holes carefully for a tight fit. Fasten solder lugs to the bottom of clisc A for mounting and making connections to the meter. Drill two ${ }^{-1}{ }_{14}$-in. holes in this disc for the meter terminal screws. A 6-32 screw fastens disc A to the threaded spacer later and also connects the positive solder lug at the center (Fig. 8), and thus brings the positive terminal through to the back
 of dise B.

Use a 4-40 screw for the calibration switch S1 (Fig. 3). When all parts are assembled, this switch operates by turning the screw in and out of its threaded hole in Disc B, and it contacts the C4-V1 terminal.

Mount potentiometer R7 with its adjustment screw near the disc edge for ease of adjustment. Note that the wiring will be connected to terminals 1 and 2 on this control, so that clockwise adjustment of the screw will increase reading.

Making the Case. The case and brackets (Fig. 5), are made of utility sheet aluminum, with the corners rounded by means of a wooden forming block. Make the block as in Fig. 4 from two pieces of 2×4 glued together. Cut the sheet metal to size, and notch out the slots. Clamp the bottom portion to the block, and use a rubber hammer, or soft wood block to shape the metal
around the form. Bend over the end tabs, and drill the four holes to fit the meter mounting screws. Make the two dust gaskets of cardboard or sheet rubber, and use sheet metal screws to fasten the two halves of the bottom together. Drill the holes for fastening the rear cover to fit sheet metal screws, and install the grommet.
Saw and sand the curve on the two wood blocks, Fig. 5, to fit the diameter of the steering post of your car, and shape the two mounting straps to fit. Fasten to car steering post with four $6-32 \times 1 \frac{1}{4}-\mathrm{in}$. r h machine screws as in Fig. 1.

Wiring. Since the tachometer is designed to operate on any kind of engine, and can also be set up for various speeds you may want later to change part C4, the capacitor which determines the range of the instrument. Select the value of C4, which corresponds to your engine (Table A), and connect it to the D2-D3 feedthrough terminal with a fine wire link, as in Fig. 8. This will reduce the danger of damaging the diodes when soldering C4. Similar links are used at the D2D4 to meter plus, and D3D5 to meter minus connections. Another very important precaution is to hold the terminal wires of the diodes, the transistor, and capacitor C3 with long nosed pliers, between the part and the solder point, to avoid damage from overheating.
How It Works. This tachometer circuit consists of three main sections; a low pass filter, a clipper and pulse amplifier, and a counting circuit. A low voltage pulse is picked up at the distributor breaker points (see Figs. 9 and 10 for connections to engine) and is fed to the input of the low pass filter circuit, as shown on the schematic. This resistancecapacitance filter circuit is de-

Then the output of the filter circuit is fed to transistor V1, where the wave shape is clipped

TABLE A. Calibration dafa for fachomater using 0.50 meter scale. 5000 rpm at full scale reading.

Number of eylinders				
2-strole	4-stroke	Pulses per	60 cps calibration	-ptimum C4
	1	41.7	$36+$.20 U.
1	2	83.3	36	. 10 uf.
2	4	166.7	18	. 068 vi.
	6	250	12	. 04 uf.
4	8	333	9	. 03 uf.

+ of 30 cps
and shaped into a square pulse, and amplified. The Zener diode, (D1) is next in the circuit lineup, and it keeps the pulses at a constant level, regardless of changes in battery voltage. It makes it possible to use the tachometer on either 6 or 12 volt systems, without changing any parts, and with only a minor calibration adjustment.

Next in the counting circuit, the capacitor C4 with the resistive part of the rectifier and meter circuit, convert the square pulses into negative and positive spikes. The electronic enthusiast may enjoy observing these wave shapes on an oscilloscope.

Finally, the diodes D2, D3, D4 and D5, wired as a full wave bridge rectifier, change all the spikes to one polarity to produce a meter current that is directly proportional to the number of pulses coming from the engine.
Calibration. When you have finished the wiring of your tachometer, connect the flexible ground link to correspond to whether your car is wired negative (Fig. 9), or positive ground (Fig. 10). Connect the tachometer to the car battery, or to one of corresponding voltage. Next, connect an audio signal generator to the tachometer ground and input terminals, and set it to 60 cycles per second (or to 30 cps for a 1 cylinder 4 stroke engine).

Adjust potentiometer F 7 to give the meter reading listed in Table A for your kind of engine. Note that if you set the audio signal generator to multiples of 60 cps , the meter reading will increase proportionately, for example for calibrating a 6 -cylinder 4 -stroke engine, the reading at 60 cps will be 12; at 120 cps it will be 24 ; at $180 \mathrm{cps}, 36$, etc.

If you have no signal generator, you may be able to borrow one from a radio ham, or use one at a radio service shop. Otherwise you can calibrate without it, by using the output from a 6 or 12 volt filament transformer. Connect the transformer to the tachometer ground and input terminals, and adjust the meter reading, by means of trimmer pot R7, to the desired point as listed in Table A.

MATERIALS LIST-ELECTRONIC TACHOMETER

M1 0.50 DC Microammeter (Lafayette Radio Co., 165 Liberty Ave., Jamaica 33, N. Y. Cat. \#TM-70)
D1 4.5 volt voltage regulator Zener Diode (Texas Instrument $651 \mathrm{C} 0)$
D2, D3, D4, D5-Two IN35 diodes (paired type) or four IN34A single diodes Sylvania crystal diodes
V1 2N217 Transistor, RCA

CAPACITORS

C1 . 25 mfd .200 volt metallized-paper tubular capacitor, Aero. vox P 822
C2 . 1 mfd .200 volt metallized-paper tubular capacitor, Aerovox P 822
C3 50 mfd . 25-volt ultra miniature electrolytic capacitor, Barco P25.50 (Lafayette Radio)
C4 100 volt capacitor Elmenco tubular, Type DP (See table A for value)

RESISTORS

R1 2800 ohm $1 / 2$ watt 10% Carban resistor
R2 3900 ohm $1 / 2$ watt 10% Carbon resistor
R3 4700 ohm $1 / 2$ watt 10% Carbon resistor
R4 560 ohm $1 / 2$ watt 10% Carbon resistor
R5 See Table A $1 / 2$ watt 10% Carbon resistor
R6 1000 ohm $1 / 2$ watt 10% Carbon resistor
R7 1000 ohm miniature trimmer potentiometer Bourns Wirewound Trimit 273

HARDWARE

1 Threaded bushing, $1 / 4$ inch $\times 1 / 2-6.32$
1 dz. ea. Turret terminals, Keystone Electronics Corp. Type 1532 single end: Type 1522 double end (Allied Radio)

MISCELLANEOUS

terminals, screws, nuts, decals, plastic spray, or varnish, $3 / 16$ soft aluminum sheet metal

Next, disconnect the signal generator, close S1, and select a resistor for R5 that will give a convenient reading near the top of the scale. The value of this resistor, will of course, vary for different tachometers. In the one illustrated in this article, a 47,000 ohm resistor gives a reading of 48. Solder the resistor in place and write the meter reading, with S1 switch closed, on a small piece of white tape. By means of this switch, you can easily check the calibration after the tachometer is installed, simply by closing the switch (with the ignition on, but engine off).

Table A lists the pulses per second that are obtained from various engines at 5,000 . To calibrate

CONNECTION FOR MOTORS, DRILL PRESSES, LATHES, ETC. WHERE PULSE IS SUPPLIED BY SHAFT-ACTUATEO SWITCH.
S.P.O.T. SWITCH actuated BY MOTOR SHAFT
your tachometer to read 0 to 10,000 maximum, simply double the PPS value, and divide the $C 4$ value and 60 cycle calibration point by two. The formula for calibrating the tachometer for use on any engine is: $\mathrm{PPS}=\mathrm{C} \times \mathrm{R}$, in

$$
\overline{60 \times \mathrm{N}}
$$

which PPS is the number of pulses per second; C is the number of cylinders, R is the revolutions per minute, and N is the number of revolutions per each cylinder firing.

The value of N will be 1 for a 2 stroke cycle, and 2 for a 4 stroke cycle engine.
The stability of the tachometer circuit is excellent, and your meter readings should be linear with $.5 \%$ at $70^{\circ} \mathrm{F}$.

Installation. Use small diameter test prod wires for connecting to the engine, and be sure to follow the following precautions to avoid damaging the meter and transistor:

1. Make sure that the flexible ground link is connected to the correct ground position for your car, as shown in Figs. 9 or 10.
2. Be sure that the tachometer terminals are connected to the correct battery terminals, with the "hot" tachometer terminal connected to the coil side of the ignition switch.
3. Never start the engine with the calibrate switch (S1) on.
Using Your Tachometer. The tachometer, installed on your car, will not only add to driving pleasure, but will save you money as well. For example, gas consumption is higher at both low and high rpm, therefore, shift and drive with the engine operating in the middle range as much as possible for maximum gas mileage.

When piston speed exceeds 2500 feet per minute, ring and cylinder wear go up fast. Calculate the engine speed, at which the piston speed is about 2500 fpm , and use your tachometer as a reminder to operate below this range, to minimize wear.
Best gear shifting is obtained when the teeth of the driving and driven transmission gears are moving at about the same speed. Synchromesh transmissions in standard cars reduce some of the strain when the speeds are unequal but with your tachometer you can practically eliminate this wear. And on trucks etc., which have no synchromesh, the tach is even more useful. Driving and driven gear speeds can easily be calculated. Synchronize your gears, simply by adjusting your motor speed to the best speed while in neutral and then shift.
If you own a sports car, or one of the smaller foreign cars, never start, pull a heavy load, or travel uphill at low rpm. To do so causes heavy wear on the connecting rod and main bearings. The tachometer will remind the driver to avoid such abuse. Since maximum torque is developed over a narrow band of engine speeds, the tachometer will help you to select the best rpm for fast passing and pulling heavy loads.
Tuneup With Tachometer. To adjust your carburetor, set the low speed adjustment (air to gas ratio) for maximum tachometer reading at idle speed. Then set the idle adjustment to the recommended value, usually between 400 and 600 rpm .

Adjust your distributor setting for maximum rpm , and then back it off slightly to compensate for the grade of gas being used. It should be adjusted for highest rpm without ping. Generally, the adjustment that yields the highest rpm gives the highest economy, power and speed.

Checking Tool Speeds. You can use the tool to measure speeds in checking performance and servicing of electric motors, drill presses, etc. Often, the rpm especially of metal working machines, is the guide to selecting or grinding tools that will cut at the proper rate of feed. Figure 11 shows the circuit needed to hook up your tachometer, with a switch to supply the pulses, and a dry cell battery. An old distributor will work fine as a switch, or you can use a snap action leaf switch, equipped with a roller. Make a cam for the shaft, or simply file a flat spot, and use a 6 volt dry cell, or low voltage rectifier for a power supply.
Usirg the switch as in Fig. 11, will result in the same readings as for a $=$ cylinder, 2 stroke engine, since one pulse will be obtained for each revolution.
It should be noted that if you install an ordinary contact switch, as in Fig. 11, for continuous service on a rotating macinine, that the life of the switch will be limited. Many makes of roller, leaf and snap switches are available; however, Switch \#11-104, offered by Licon Division of Illinois Tool Works. will operate for many hours at up to 3500 rpm, and is available through distributors.

Compass Making

AMAGNETIZED sewing needle, a cork or round wood disc and a small bowl of water form this simple magnetic compass.
Take a fair-sized stee. sewing needle and magnetize it by stroking it along its length with the South pole of a small permanent magnet, either horseshoe or bar type as in Fig. 2. You use the South pole of the magnet because a piece receiving induced magnetism from contact with a permanent magnet will assume the opposite polarity when separated. Thus a South pole will leave a North pole at the point of the needle and this end will point towards the North, provided that you end your magnet-rubbing strokes in the direction of the point.

Some permanent magnets are marked N and S for identification. If not, use an ordinary pocket compass to test it; the end which attracts the North pole of the pocket compass will be the South pole of the magnet (unlike poles attract), and you can mark this end with an S.
The float for the needle is a $3 / 8 \mathrm{in}$. long piece cut off from a hardwood $3 / 4 \mathrm{in}$. diameter dowel. For the water container, use a small plastic, glass or china dish or saucer. Do not use metal. After magnetizing the sewing needle, place it on the

float and melt a drop of wax over it in the approximate center.
Checking the complete magnetic compass with a standard pocket compass (Fig. 1) shows that the needle is pointing due North. The closer you move the two compasses together, the more you will notice a slight interference between the two magnetized needles. Of course, compasses should be kept away from any iron or steel objects which might cause stray megnetic fields and result in an error.
You can arrange a cardiboard ring on the top of the dish with N, S, E and W markings.-H.P.S.

Repair That Old Meter!

> Simple repairs on meters can easily be made by the home craftsman in his own workshop

By J. B. DEVEREAUX

BECAUSE of the delicacy of such instruments, many home shop mechanics, electrical and radio experimenters hesitate to attempt repairs of any sort on electric meters. Such timidity is perhaps justified in many cases where major repairs are required and where extensive dismantling would impose problems that would finally wind up in brushing the parts off the bench and into the waste can.

On the other hand, there are many simple ailments that can be remedied with a little patience and care and many otherwise good meters may often be restored to serviceable condition with a half-hour's tinker-

Use only very small screw drivers in taking meter out of case.

Voltmeter accuracy may be checked within reason by dry cell giving 1.5 volt readings.
ing. We are here dealing only with moving coil meters inasmuch as they are by far the most common type in use today for direct current. For A.C. we have the moving iron meter which is also relatively simple and can be easily repaired in many instances. Where major damage has been done, and this is evident by examination, then the owner of the meter had best give up the job or send the meter back to its maker for rehabilitation.

The simple ailments that may be cured at home are frictional retardation, bad balance, overthrow and sticky needles. All other troubles are usually hopelessly beyond home tinkering without the knowledge of design and the special assembly tools and skill available to the manufacturer of the meter only.

The meter that requires tapping with the fingers to bring full reading has frictional trouble of some sort. The needles of such meters move to a certain point depending upon the current and there they stop. Thereafter if agitated by tapping, the needle will move forward for another scale unit or two. Such meters are usually troubled with dull

(C)

VITAL PARTS OF MOVING COIL. VOLT METERS AND AMMETERS

HOW TO BALANCE METER POINTER,
pivots, cracked jewels, dirty points or lint. Cracked jewels may result from dropping or other rough handling and the manufacturer only can remedy such ailments. That also goes for dull pivots. Lint may be removed by the aid of a toothpick or a piece of sharp-pointed wood smeared with a bit of light adhesive material. One must be careful, however, to see that the wood is clean and that he does not deposit more in the meter than is carried away.
Workers on meters of any kind must provide a scrupulously clean bench covered with a piece of glazed cardboard. This should be wiped clean with a moist cloth before the meter case is opened. Linty clothes on the worker should also be avoided, it being best to roll up the sleeves. Such precautions may sound a bit silly to amateurs until it is recalled that the barest piece of foreign matter in a milliammeter or milli-volt meter can produce readings inaccurate by as much as 50%.
The meter should be uncased using the right sized miniature screw driver so that the screw slots will not be ruined. If a shunt is present, it should be left soldered in place. Removal may interfere with readings. Should the repairman find that the moving coil has been burned out by heavy current, he will know that so far as the home repair is concerned, the meter is beyond recall. The same holds true if the pivots are found to be dull. Special machinesy would be required to sharpen them and a manufacturer would prefer to replace them with new ones. If the coil, spring, pivots and jewels appear sound then the meter is simply troubled with friction.
Should an examination under a magnifier reveal lint, then the stick moistened with the light adhesive may be tried. Inasmuch as these meters have powerful mag-
 nets, they often accumulate bits of iron or steel and these often introduce frictional factors. Their removal may usually be effected with the sharpened end of a paper clip. One must make sure, however, that all metal filings are removed from the end of the paper clip wire before it is introduced into the meter to pry off any metal chips that may already be there adhered to the magnet. Great care should be exercised in the use of this simple tool to make sure that one does not touch the coil of the sensitive spring.
If the pointer is found to be touching the dial, often the case with rough usage or dropping, then the pointer may be straightened with a small pair of tweezers but here a very steady hand will be required.

Pointing to pivot bearings, which, it broloen, makes factory repalr imperative.

An ammeter removed from case.

Oftertimes, especially in the case of the cheaper meters, frictional losses are introduced by tight pivots. In such a case, the jewel screw may be given a half turn or so.
The meter is given a final examination before being replaced in the case. One watches especially for a hair which may have drcpped in. With a really sensitive meter, this is like introducing a telegraph pole into the works.

An unbalanced meter is brought into balance by means of the simple steps, 1,2 , and 3 shown in drawing number 2. First the pointer or needle is set on zero by means of the zero adjustment screw while the meter is held in a normal or horizontal position. Then the position of the meter is shifted to that shown at B. The tail weight is then adjusted until meter pointer rests on zero. The side weight is then adjusted until pointer is on zero while holding meter in vertical position. This operation is a very delicate one and the meter may be very easily damaged, especially the pointer, if a steady hand is not used Overthrow is often due to a bent pointer, that is, bent to the right. Sometimes in the cheaper meters a flexible tail weight is used and this must be bent one way or another to restore balance. Daubs of shellac are used at times.
Old meters that have been used near heavy transformers will usually have badly weakened magnets and these are always factors in inaccu-
racy. The only hope here is for re-magnetization or replacement with a new magnet.
A.C. meters with moving iron are treated in much the same manner. In the case of a vane moving in a close fitting chamber, lint or tiny particles of iron may cause great trouble, making the meter practically useless at times.

With such meters, the soft iron vane should not be bent since all meters of this type depend upon proper relationship here for accuracy. Any change in the position of the coil around the vanes will also result in inaccuracy.

The accuracy of small meters runs plus or minus 2% of the full scale deflection. In the case of a small voltmeter of a few volts range, simple tests for ordinary accuracy may be run
by connecting to two or more (depending upon voltage of meter) new dry cells in series, each cell adding $11 / 2$ volts. A potentiometer may also be used so that the pointer of the meter may be run up and down the scale.

A multimeter such as is used by radio repairmen may be used to calibrate such meters inasmuch as extreme accuracy can never be had with inexpensive instruments. The multimeter type of check will be quite sufficient. If the repairman does not have such an instrument then he may be asked for assistance. Calibration may be only a matter of a few minutes. In such cases, the multimeter is used with a potentiometer, the former serving as the standard for determining the calibration.

Why Wait For Air Safety? c.m stanuur

S THE U. S. doing anything to improve air safety? Is Washington taking steps to alleviate air traffic congestion? Yes. If you've read any of the magazines in the radio field, you're already familiar with numerous research projects in this field, including radar which, in the future, could increase the effective air space as much as 60 times.

But why wait when the world already has a well established navigational system, a system which in many ways is more effective than even the most advanced radar? This system is DECCA.

DECCA vs. Radar. In the future radar could increase effective air space 60 times. It would do this by dividing the present 10 -mile-wide airway
in three, cutting the required vertical separation in half, and reducing the distance between high speed aircraft flying the same course from 100 to 10 miles. It could do all this in the future.
DECCA cuts the width of the airlane by only half; vertical separation remains unchanged. But separation between aircraft flying the same course is, within 60 miles of the terminal, cut to a mere two miles. The effective airspace is multiplied 100 times. As the distance increases from the terminal, the Master DECCA station and the congested area around them, the system gradually becomes less effective. But at the same time, the air traffic density and danger of air collisions is also diminished.
So DECCA is usually as accurate as radar will be. More important, DECCA is ready now. It has done all these things in Europe for several years and is now doing them in Eastern Canada which is the western terminus for all major North Atlantic routes.

VOR and DME Systems. The Federal Aviation Agency is not, of course, sitting on its hands waiting for this advanced radar to become operational. The FAA is spending millions of dollars for the construction of these comparatively new VHF and UHF navigation devices. A VOR (VHF Omni Range) automatically indicates the aircraft's bearing in relation to the VOR station. It is accurate to within 4 degrees. DME measures the distance from the plane to the facility. A system such as VORTAC which combines VOR and DME, can indicate for the aircraft its position so long as it is within range. Sounds like a match for DECCA, but let's look beneath the surface.

At a distance of 30 miles, VORTAC has a potential accuracy of 1 mile which would permit a minimum separation between aircraft of 2 miles. That's just what DECCA has already obtained at twice that distance. Further we haven't told you about DECCA's potential accuracy, 10 yards within 50 miles.
for a high accuracy, hyperbolic system will arise much more quickly than many here today believe. Before long we will have to get together and adopt such a system." But probably the most telling objection was that of Australia, which has used DME since the war: On the basis of their unequaled length of experience, they concluded that DME, especiatly DME allied with VOR, could not meet the needs of the jet age. Time will tell who is right.

However, let's be generous and assume both systems to be equally accurate. DECCA can serve any number of aircraft simultaneously, DME only 50 . When this number is exceeded, the system automatically accepts the 53 strongest and rejects the rest. How would you like to be riding in the 51st?
Worst of all, VOR and DME systers.s, because they utilize VHF and UHF frequencies, are limited to line-of-sight reception. DECCA is not. Nor for practical aeronautical purposes is DECCA affected by natural barriers such as hills or mountains. The new U.S. system is. In one month in 1958, some 40 VOR/DME navigation facilities were either inoperative, partially out of order, or in some way operating imperfectly. And this figure does not include those being relocated or re-

A control system incorporating DECCA-RAILS (Re. mote Area Instrument Landing System). Although the accuracy of this system is still boing evaluated, chances are good it will enhance DECCA's overall superiority. At present it's only commercicl use is in conjunction with the Bell helicopter service in the Dallas-Fort Worth area.
constructed. What hope has this system in such mountainous regions as the Rockies or the Alleghenies?

The Handwriting on the Sky. I have no desire to sell radar short. The radar of today, although it does not equal DECCA as a navigational aid, is already an important navigational device. In the future it will be on a par with DECCA. Most probably, they will complement each other. Radar, under those circumstances, would be an airborne system providing data on other nearby aircraft. DECCA would act as the overall, stable ground-based system. They would continually provide a cross-check on each other.
But why wait? Why fool around with VOR and DME which, considering DECCA's obvious superiority, are no better than interim measures when no interim measures are necessary. DECCA is here now.

Every moment wasted on VOR and DME systems, when the U. S. should be building DECCA chains, costs us money and lives. In 1958 the Electra disaster brought this out with sickening emphasis. LaGuardia Field is equipped with the newest VOR/DME system-VORTAC--but Flight 320 still wound up in the East River. Nor was tracking via radar enough.
Speaking conservatively, if there'd been DECCA it might not have happened. The American manufacturer of DECCA, Bendix Aviation, has developed RAILS (Remote Area Instrument Landing System) which can be used where conventional ILS is inadequate. By combining DECCA, the aircraft's own absolute altimeter and a computer, the pilot is furnished with glide path guidance, distance to touch down and ground speed.
Maybe Flight 320 was destined to miss the runway and no amount of technology could have saved her. But DECCA could have made her chances for survival better, while VORTAC was powerless. And there'll be more 320 's. How many" That depends upon how much time we waste with VOR/DME, how long we ignore DECCA.

How DECCA Works

A DECCA chain normally consists of 4 stations, a master and 3 slave stations designated red, green and purple. ©y measuring the phase difference between radio waves from the master station and any two of the slaves, a navigation fix is obtained and automatically plotted on a gridded chart. Because it utilizes lightwoight receiving equipment and is extremely simple to operate, DECCA is suited to all types of aircraft, big or smoll, commerciol or private.

Tape Tube Handle

- Pulling miniature and sub-miniature tubes from their sockets in crowded electronics hookups will be much easier if you provide each tube with a handle. Use a strip of masking or Mystik tape looped over the top of the
 tube and secured around the bottom with another strip of tape. Don't use tape on tubes that heat up excessively, because of the possible danger of fire due to tape igniting. Never use plastic tape for this purpose as it ignites easily.-J. A. Comstock.

Custom-Build Your TV and FM Aerials

By R. W. MONTAGUE

ESPECIALLY tailored to receive tough-to-get channels, one or several of these antennas, cut for the needed channels, can be stacked
on your present television mast or mounted in
your attic, if you have a nonmetallic roof.

When carefully directed toward the desired TV or FM station transmitter, these Yagi, high-gain type aerials will give the best single (or dual) channel reception possible with any conventional antenna and are especially useful in the socalled dead or fringe areas. Though usually used to fill in the weak spots in commercial "all-channel" aerials, these antennas may be used alone or in stacks.

First, calculate the materials needed and the dimensions of the components from the information given in Fig. 2 and Tables A (for TV aerials) and B (for FM aerials).

While there are six cross pieces called for in construction of the aerials in the tables, as many as 10 could be used to improve signal strength. For extreme fringe areas, try adding two to four more directors, cut to the same length and spaced the same distance as the last director (L_{B}) in the table. If two close TV channels are available locally (other than 6 and 7, since the FM band lies between these channels), an acrial cut for one of these channels usually will work well for the other. One of these aerials, successfully bringing in channels 7 and 9 , was dimensioned for TV channel 8, unused in the Seattle area where the antenna is located.

It will be noted from Table A that aerials for channels 2, 3 and 4 would be quite large, and it may be that another type of aerial might be more

Band	TABLE A-TV AERIALS																
		Spacing Between Cross Pieces						Length of Cross Pieces									
	Channel	S_{1}	S,	S_{3}	S_{4}	Ss		L_{1}	L,	Ls	L_{4}	Ls	Ls				
$\begin{aligned} & \text { Low } \\ & \text { VHF } \\ & \text { Band } \\ & (B 4 \text { to } 88 \\ & \mathrm{mc}) \end{aligned}$	(Inches)							(Inches)									
	2 3 4 5 6	$\begin{aligned} & 4111 / 16 \\ & 37111 / 16 \\ & 341 / 2 \\ & 30712 \\ & 28 \end{aligned}$	$4619 / 3$$427 / 4$$381 / 2$$3323 / 2$$315 / 6$	3829/2	$\begin{aligned} & 56^{13 / 12} \\ & 51 \\ & 46^{1 / 2} \\ & 40^{21 / 22} \\ & 37^{3} 3 / 16 \end{aligned}$	$\begin{aligned} & 5511 / 2 \\ & 50 \\ & 4511 / 6 \\ & 40 \\ & 371 / 22 \end{aligned}$	$\begin{aligned} & 2431 / 6 \\ & 2207 / 32 \\ & 20113 / 22 \\ & 1763 / 4 \\ & 164 y_{2} \end{aligned}$	$96 \% / 2$87$791 / 2$$691 / 2$$641 / 2$	$\begin{aligned} & 871 / 2 \\ & 79 \\ & 721 / 4 \\ & 63712 \\ & 58142 \end{aligned}$	$831 \%$$751 / 2$69$601 / 12$66	$831 / 2 / 2$$751 / 2$88$601 / 1 / 2$56	$\begin{aligned} & 811 \% / 9 \\ & 7313 / 16 \\ & 6713 / 2 \\ & 59 \\ & 54 \geq 3 / 21 \end{aligned}$	$\begin{aligned} & 80^{21 / 20} \\ & 73 \\ & 661 \% / 2 \\ & 581 / 4 \\ & 54 \end{aligned}$				
				353\%													
				321/32													
				281/3													
				26\%/6													
$\begin{aligned} & \text { High } \\ & \text { VHF } \\ & \text { Band } \\ & \text { (174 to } 216 \\ & \text { mc) } \end{aligned}$		$\begin{aligned} & 1315 / 32 \\ & 13 \\ & 12192 \\ & 12 \% / 2 \\ & 112=62 \\ & 11 / 2 \\ & 111 / 16 \end{aligned}$		$121 \% / 2$ $123 / 12$	$181 / 6$$1717 / 2$17$161 / 2$16$151 / 2$$151 / 2$	$1711 / 68$$17 / 3 / 28$$162 / 12$$167 / 3$$1521 / 12$$151 / 2$$1413 / 16$	$\begin{aligned} & 8111 / 6 \\ & 7811 / 12 \\ & 761 / 2 \\ & 73313 / 2 \\ & 7121 / 2 \\ & 6911 / 6 \\ & 6711 / 12 \end{aligned}$	31$2929 / 8$29$285 / 8$$275 / 18$$261 / 2$$252 / 23$	$281 / 32$ 277/32 $2611 / 32$ 2519/12 24136 $243 / 2$ $2311 / 8$		$262 \% / 2$26$257 / 3$$2413 / 38$$2323 / 32$23$2223 / 3$	26516$2511 / 10$24198$2329 / 8$$237 / 18$$221 / 2$21136	26 $251 / 2$ $24^{1} / 32$ 23185 22^{2} \% 22\% 21188				
	8			lin													
	10			113/8													
	11			11													
	12			$10^{23} 32$													
	13			101/2													
Partial UHF 8and	\|l	l	l	l		$5 y_{32}$ 431/2 41\%	$55 / 18$$59 / 6$$51 / 2$	411/6	$\begin{aligned} & 629 / 32 \\ & 611 / 16 \\ & 621 / 22 \end{aligned}$	61\% $61 / 8$ 61%	$\begin{aligned} & 3213 / 6 \\ & 323 / 6 \\ & 327 / 2 \end{aligned}$	$119 / 8$$117 / 4$$11 \% / 4$	$\begin{aligned} & 109 / 6 \\ & 1013 / 2 \\ & 105 / 8 \end{aligned}$	$\begin{aligned} & 101 / 15 \\ & 915 / 6 \\ & 927 / 2 \end{aligned}$	$\begin{aligned} & 101 / 16 \\ & 91 \% / 15 \\ & 927 / 2 \end{aligned}$	$\begin{aligned} & 92 y_{2} \\ & 923 / 22 \\ & 95 \% \end{aligned}$	92313$917 / 2$$91 / 2$
				43/1													
				41988													

TABLE B-FM AERIALS

Calculate FM aerial dimensions as follows:

1. Learn the frequency of the particular FM station desired.
2. Calculate wave length in in. ($\left.W_{1}.\right)$, using the following formula:

$$
W_{1 ،}=\frac{11,070}{\text { frequency }(\mathrm{mc})}
$$

3. Prepare a table for the aerial desired, simiar to those in TV aerial Table A :

EXAMPLE
A station operating on a frequency of 98 mc would have a W_{1}, of: $\frac{11.070}{98}$ antenna:

| S_{1} | $\mathrm{~S}_{2}$ | $\mathrm{~S}_{3}$ | $\mathrm{~S}_{1}$ | $\mathrm{~S}_{6}$ | $\mathrm{~L}_{1}$ | $\mathrm{~L}_{2}$ | $\mathrm{~L}_{4}$ | $\mathrm{~L}_{1}$ | $\mathrm{~L}_{3}$ | $\mathrm{~L}_{8}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $24.2^{\prime \prime}$ | 27.1 | 22.6 | 32.7 | 32.1 | $55.8^{\prime \prime}$ | 50.7 | 48.5 | 48.5 | 47.4 | 46.8 |

It also may be possible to select a frequency in the middle of the FM band and get good reception for the whole band with a single aeri il. This depends on individual location problems and must be decided by the wearisome method of trial and error.

Start construction by cutting the $15 / 8 \times 13 / 4-\mathrm{in}$. wood spar to the length determined as explained above. Drill the $3 / 6-i n$. cross piece holes as in Fig. 2A, spacing as in Table A or B. Also drill
desirable. However, the information is included in the table (which covers all VHF channels in the U.S. and Canada and some UHF) because in extremely bad signal areas this type of aerial would give the highest gain and may have to be used. Mounted in the attic these aerials would not be so conspicuous. UHF television channels higher than those given in the table are best received by other types of aerials; an extremely small Yagi would be difficult to build.

MATERIALS LIST-AERIALS

 Description
Amt.

pc	* $15 / 8 \times 13 / 4{ }^{\prime \prime}$ fir, pine or oak
pes	*3/8 0.D. alum. tubing or rod (copper can be substituted)
pc	*1/8" (\#10) copper or aluminum wire or lubing
pc	$13 / 4 \times 15 / 8 \times 4^{\prime \prime}$ fir, pine or oak
	$11 / 4{ }^{\prime \prime}$ aluminum nails
	$1 / 4 \times 31 / 2^{\prime \prime}$ galv. carriage bolts, washers and nuts
	\#4 $\times 1$ 1" fh screws and washers
	varnish or paint
	misc, instaliation hardware and lead-in wire to match
	vidual installation (see text)

* Length determined by specifications of desired aerial.
a number of $3 / 4 \mathrm{in}$. holes as in Fig. 2A to reduce the aerial's weight without loss of strength. Cut cross pieces to length from $3 / 8-\mathrm{in}$. O.D. aluminum tubing, the size used in commercial TV aerials, and available from aluminum supply houses or salvage yards (occasionally it is obtainable free from TV repair shops). If using salvaged tubing, first clean off with fine sandpaper. If the tubing is not available, substitute $3 / 8-$ in. O.D. copper tubing or the heavier $3 / 8-\mathrm{in}$. aluminum rod (available from Sears, Roebuck and Co.).
Insert cross pieces, except the dipole, in the proper holes as in Fig. 2. Use paraffin to ease the metal through the tightly-fitting holes. Center the tubes and from the top of the spar, through the tubing, drill a hole for a $11 / 4-\mathrm{in}$. aluminum nail as in Fig. 2B and fasten securely.

Complete and assemble the dipole parts as in Fig. 2C, and check for fit. Remove one $1 / 8-i n$. wire section and insert the dipole into its spar hole. Complete the assembly, then flange the ends of the wires where they pass through the tube. In-
sert \#4×1-in. rh screws with washers through holes drilled in the flattened end of the $1 / 8-\mathrm{in}$. tubing. These screws must be the same distance apart as the distance between the upper and lower dipole tubes. Lead-in wires will be attached to these screws.

At the center of your aerial, located by measuring and balancing, clamp a $15 / 8 \times 13 / 4 \times 4-\mathrm{in}$. piece of wood stock. Center a $1 / 4-\mathrm{in}$. hole $3 / 4 \mathrm{in}$. from each end of the block (Fig. 2D), insert $1 / 4 \times 31 / 2$-in. galvanized carriage bolts, washers and nuts, and draw up tightly. Center a hole in the top of this assembly, sizing it $1 / 8 \mathrm{in}$. under the diameter of the roof or attic aerial mast (usually a $11 / 4-\mathrm{in}$. dia. pole) and drilling with an expansive bit or hole saw. Apply at least three coats of spar varnish or marine quality paint to the now-finished antenna, allowing plenty of drying time between coats.

Install the aerial as in Fig. 2A, with the directors closest to the transmitter of the station desired. Where two stations will be brought in by the aerial, the latter will probably be best directed between the two transmitters. Try it before fastening permanently in place.
There are so many variables involved in aerial installations that it is impossible to describe one lead-in hookup that will work well in each case.

The trial and error method must usually be resorted to in the end. It sometimes is possible to just tie lead-in wiring for the new aerial almost any place into the existing lead-in wire to the set (using standard 300 ohm double-strand television wire) if the new aerial is being used to supplement another aerial. If this doesn't give a good picture or interferes with other channels received, a hi-lo coupler may be needed. Low-band channels (2 through 6) will probably have to be led in through a coupler if high band channels (7 through 13) are also received. As a last resort, a completely separate lead-in wire may be used by coupling into an antenna switch (available from TV supply stores, Allied Radio, Dept. SM, 100 N. Western Ave., Chicago 80, Illinois or Sears, Roebuck \& Co., Chicago) at the back of the television set. However a $40 ¢$ double-throw knife switch available in hardware stores would serve, though less conveniently. When the aerial is installed and hooked up, make fine direction adjustments by turning the aerial slightly in each direction until the best picture is obtained.
These aerials can be stacked on one roof pole about a foot apart, if desired, although aerials pointing in the same general direction should be two feet or more apart, if possible.

Roll-Up Aerial

- Stronger and clearer radio signals from greater distances are possible with an aerial made from a roll-up steel rule. To mount the rule cut a hole in the top of the radio cabinet and bolt a fiber washer to the hole so that the rule will not ground against the cabinet. Insulate rule housing from the set with friction tape, and fasten the housing to the cabinet with a strip of metal bolted to the cabinet. Solder one end of a length of insulated wire to the rule housing, and connect the other end to the aerial terminal of the set as shown in photo below. Range and volume increase as the rule is pulled out and are reduced as the rule is pushed in.-M. A. Timd.

(A) Steel rule, (B) fiber washer, (C) bolts, (D) fristion tape, (E) metal strip, (F) solder wire to case, (G) aerial terminal.

Soldering-Iron Switch

- Install a feed-through tumbler switch with "on" and "off" markings on it on the cord of your electric soldering iron close to the handle, as

shown in the photo. The iron can be kept plugged in while in use and simply turned on or off as needed.-Arthur Trauffer.

Thank goodness, you're here! My husband is sick is the bedroom-and Iack Paar's all blurry!

THERE are two possible approaches to follow in obtaining a radio lab kit. One is to acquire the parts yourself and make up your own kit. The second approach, and the approach that I consider best for beginners, is to buy a commercial kit. I tried both approaches.

The home-rolled version was built on a miniature perforated bakelite board. The board layout, component placement and preliminary wiring are shown in Fig. 2 (front) and Fig. 3 (back). Lay out and drill the board first. Shorten the volume control shafts to $3 / 8 \mathrm{in}$. length with a hacksaw. Solder leads about $11 / 2 \mathrm{in}$. long on the transistor sockets. Mount the parts and complete the wiring to the interconnection lugs (called "flea clips"). Fill the portions of the flea clips that protrude from the front of the board with solder for increased rigidity. The transistor sockets are heid in place with Duco cement. Bend the leads tightly against the board as an added precaution.
A separate battery board cut from a piece of perforated Masonite (see Fig. 4) was provided, the batteries held in place with rubber bands. Brackets provided with machine screws make terminal contacł. A third bracket provided with a metal spring cut from a tin can makes the connection between the two rows of batteries. The experimental board may be mounted on the battery board with brackets, or it may be used unattached as shown in Fig. 4.
The hook-up of Fig. 4 is the simple onetransistor audio amplifier shown scheratically in Fig. 5A. A number of additional, but by no means all of the circuits that can be built with the home-rolled lab kit are also shown in Fig. 5. The resistors and all of the capacitors aren't mounted on the board. They were originally connected by plugging them into the flea clips. However, this wasn't too satisfactory and mini-gator clip leads were adopted for all connections.

The audio one-transistor amplifier of Fig. 5A has very low volume. If another transistor amplifier is connected in front of this amplifier, the two-transistor amplifier of Figure 5B results, with much greater volume. The transistor configuration used is known as the common emitter circuit because the emitters of the transistors are both connected to an input terminal and the common battery terminal. The capacitors between collector of T 2 and between the base of T 1 and volume control center terminal and base of T2 are provided to allow all audio signals to pass, but to prevent transistor bias voltages from being upset. A capacitor has low impedarce for ac voltages, but it has (ideally) infinite impedance

Learning Electronics By Experimenting

"Breadboard" experimentation is a logical way for a beginner to learn electronics, and the approach has considerable merit for the old-timer, too, because it allows him to try his ideas quickly with comparatively conventional parts

Ey FORREST H. FRANTZ, Sr.

for dc voltages. The resistors in the circuit establish the dc bias voltages on the transistor elements that are required to make the transistors function.

It is apparent then that there are two basic groups of voltages that you are concerned with in any piece of electronic equipment. One is the voltage required to make the transistors or tubes function at all-the dc bias voltages. The other is the signal voltage which is the voltage of interest. The dc bias voltages are somewhat like the gasoline requirement in an automobile and might be thought of as fuel supplied at the right place in the proper amount. The input signal voltage corresponds to the driver's demands of the automobile which he injects at the input in the form of throttle and steering commands. The

Froni view of home made lab kit circuit board.

Back view of home-made lab kit circuil board.
the wheels. The two transistor amplifier may be used with the microphone (as shown) or with a phono pick-up, or with a radio tuner.

If the amplifier output is connected to the amplifier input as shown in Fig. 5C, an audio oscillator is created. An oscillator is a device that converts dc operating voltage into an ac signal. It may be thought of as an ac generator driven by a dc voltage. The advantage of an electronic generator (oscillator) is that the frequency may be varied and controlled very readily. The frequency of the oscillator of Fig. 5C may be varied by adjusting the control that functioned previously as a volume control for the amplifier.

The principle of the oscillator's operation is that a part of the signal at the output is fed back into the input and is continually recirculated. The amplifier action of the basic unit builds the signal at the input back up to the proper level for the output signal continuously.
How do you start it?
input signal is handled by the electronic equipment as required (in this case it's amplified) for the desired output. The mechanical, electrical, and pneumatic systems of an automobile operate on the driver's input signals in an analogous way to provide the required energy and direction at

One-stage audlo amplifier hook-up.

Well, all electronic equipment has an amount of noise associated with it. Although this noise is very low, the amplifier will build it up to a point where the transistor characteristics, part values, and dc operating voltage in the circuit limit the output signal size. But at this point, the output signal is high enough to be useful. A key connected in one of the leads from the battery to the amplifier as shown in Fig. 5D would permit quick turn-on and turn-off of the oscillator, and the unit could be used as a code practice set.
Figure 5E is a crystal detector tuner which may be added to the amplifier of Figure 5B to produce a broadcast receiver. The coil-capacitor combination builds up the radio frequency (RF) voltage received from the antenna at a particular frequency determined by the tuning capacitor setting. The tap on the coil permits the signal to be fed to the crystal diode without disturbing the tuning. The crystal diode is a unidirectional device; that is, it passes a signal readily when the anode side is plus, but impedes the signal when it's minus. The waveforms show: A, an RF signal which is the carrier and has the fre-

A. I-TRANSISTOR AUDIO AMPLIFIER

WITH MIKE DISCONNECTED FROM CIRCUIT 5 B AND
C.

FEEDBACK CONNECTION SHOWN, YOU'VE CREATED AN AUDIO OSCILLATOR

KEY IN SERIES WITH BATTERY LEAD CONVERTS UNIT OF 5C TO CODE PRACTICE OSCILLATOR

SIMPLE TUNER
E CONNECTED IN PLACE
OF MIKE IN 5B CONVERTS UNIT TO SIMPLE RADIO

WAVE FORMS
A wf.f.purfoldom
B

WITH BY-PASS CAPACITOR FILL-IN

The Knight 10 -in-1 Transistor Lab Kit with the Electronic Switch Circuit set up.

a text explaining how to adjust and use it, how it works, and how to apply the circuit. In addition to this specific information for each circuit, the manual has sections on how radio works, transistors, capacitors and resistor color codes, and electronic symbols.

The 10 circuits which may be built with the Knight Kit are: a two-stage broadcast radio; a photoelectronic relay; a wireless broadcaster; a code practice oscillator; an electronic switch; a two-stage audio amplifier; a capacity operated relay, an electronic timer; a voice operated relay; and an electronic flasher.

The Knight Kit may also be used for additional experiments and hook-ups, the only limit being the ingenuity of the builder. For example, with an external multimeter, you can measure voltages across various circuit elements. You're cautioned to use a 20,000 ohm-per-volt meter or vacuum tube voltmeter (VTVM), however, since lower sensitivity meters will upset the circuit seriously and may even damage components. Currents may be measured by replacing connecting leads with a meter. And the number of experiments that can be performed can be increased by using components external to the Lab Kit board. Thus, a supplementary board with two transformers, two transistor sockets, a few resistors and capacitors, and a loudspeaker would allow you to add several kinds of amplifiers to the basic audio amplifier, broadcast receiver, or code practice oscillator. The extra parts and board would permit you to add a one-transistor transformer-coupled Class A output stage, a one-transistor-resistance coupled output stage, a twotransistor Class A transistor-coupled output amplifier, a two-transistor Class A resistancecoupled output amplifier, a two-transistor Class B transformer-coupled output stage, and a twotransistor complimentary symmetry output stage. Thus a parts investment of from $\$ 10$ to $\$ 15$ adds six circuits-probably more for the ingenious ex-perimenter-and would provide a comparatively thorough lab course in audio amplifier circuits.

Transformer Principles. Since, in amplifiers, the plate load impedance of an output tube is always much greater than the low impedance of the loudspeaker voice coil which it drives, a voltage step-down transformer from output tube to speaker is necessary to make the speaker look like a high impedance to the tube, and the tube
a low impedance to the loudspeaker. The same technique may be used to increase the input impedance, and hence the ohms-per-volt sensitivity of an ac voltmeter. The advantage of using a transformer to increase meter impedance is that no tubes, transistors or operating power are required.

The chief advantage of a high input impedance ac meter is that circuit loading is reduced and circuit measurements for which 1,000 ohms-pervolt or even 5,000 ohms-per-volt ac meter sensitivities would be inadequate are brought within reach. Another advantage is that ac voltmeters employing the higher quality (better frequency response) miniature transformers to increase input impedance are extremely portable, wide frequency instruments. This is particularly true if germanium diodes are used for rectification in the meter.

TABLE A-SIMPLIFIED IRON CORE TRANSFORMER THEORY
$\mathbf{P}=$ Power (watts $\quad I=$ Current (amperes)
$V=$ Volts $\quad Z=$ Impedance (ohms)
Subscripts: $p=$ Primary $s=$ Secondary
For an Iron Core Transformer correctly terminated, efficiency approaches 100%. Then,
(1) $P_{p}=P_{s} \quad$ (Z_{p} and Z_{s} are assumed resititive)
(2) (a) $I_{p} 2 Z p=182 Z s$
(b) $\frac{E s^{2}}{Z s}=\frac{E p^{2}}{Z p}$
(3) (a) $2 p=2 s \frac{1 s^{2}}{1 p^{2}}$
(b) $\mathrm{Zp}=2 \mathrm{E} \frac{\mathrm{Ep}^{2}}{\mathrm{Es}^{2}}$
(4) (a) $1 p^{2}=18^{2} \frac{28}{Z p}$
(b) $E p^{2}=E s^{2} \frac{Z p}{Z s}$
(5) (a) $\mathrm{ip}=18 \sqrt{\frac{\overline{Z g}}{\mathrm{Zp}_{p}}}$
(b) $E p=E s \sqrt{\frac{2 p}{2 s}}$

To get a feel for what you can do with transformers in this application, let's take a quick look at some examples. Table A summarizes the applicable formulae and theory used in the examples.

A Heathkit MM-1 Volt-Ohm Milliammeter has an ac sensitivity of 5,000 ohms-per-volt. The lowest ac range is $1.5 v$. The meter input impedance for this range is $5,000 \times 1.5$ or 7,500 ohms. The meter will be set to the 1.5 ac v range for all measurements, and series resistances in the transformer primary circuit (Fig. 8) will be used to increase range. To increase the input impedance from 7,500 ohms by a factor of 100 to $750,000 \mathrm{ohms}$ would require a transformer with a $750,000 \mathrm{ohm}$ primary and a 7,500 ohm secondary.

But, in changing the meter impedance with the transformer, the input voltage required for full

Basic ac meter, consisting of germanium diode bridge and de milli- or microammetor, plus instrumentation for determining input impedance and senaitivity (ee Table B, mext page).
scale meter deflection will be changed. The transformer primary voltage for full scale meter deflection is calculated with equation $5 b$ on Table A:

$$
\begin{gathered}
\mathrm{Ep}=1.5 \sqrt{\frac{750,000}{7,500}} \\
\mathrm{Ep}=15 \text { volts }
\end{gathered}
$$

The new sensitivity of the meter is 750,000 ohms-per-15 volts or 50,000 ohms-per-volt!
For ranges other than $15-v$ full scale, the multiplier series resistance will be 50,000 times (Voltage Range minus 15). Thus, for the $50-v$ scale, the multiplier resistance is $50 \times(50-15)$ kilohms, or 1.75 megohms.

This can be improved, however, and approached more practically. The lowest range (15 v) has a low dc resistance in spite of its high ac impedance. This might interfere with circuit op-

table B

In Fig. 9. signal generator output is adjustod for fulf scale defiection of meter " M "" at 1,000 cycles. V_{1} and V_{2} ars measur ad with an audio
voltmeter such as the Heathkit AV -2.
Then:
a) $V_{3}=V_{1}-V_{2}$
b) $I=\frac{V_{2}}{R}$
c) $Z_{1 n}=\frac{V_{3}}{1}$

For example 2, measured values are:
$R=1 \mathrm{~K}, V_{1}=.75 \mathrm{~V}, V_{2}=.15 \mathrm{~V}$.
Then,
a) $v_{3}=.75-.15=.6 \mathrm{v}$
b) $1=\frac{.15}{1000}=.15 \mathrm{MA}$
c) $\mathrm{Z}_{\mathrm{m}}=\frac{.6}{.15 \times .001}=4,000$ ~
and $\sim A$ sensitivity $=\frac{4000}{.6}=6,650 \hat{\tilde{V}}$
eration. A capacitor (0.1 mfd or larger) in series with the primary will eliminate this possible source of trouble. A transformer that has the correct impedance used might be difficult to find at a reasonable price. A considerable reduction in transformer impedance can be tolerated if the impedance ratio is unchanged without changing the final ohms-per-volt sensitivity. For this example an impedance ratio of 50,000 ohms to 500 ohms will be satisfactory if the transformer can handle the input signal level linearly.
If the lowest range of the basic meter in our first example had been $5 v$, the new lowest ac range would have been $50 v$. This would have

Mothod used for experimental verification of calculations: V1 $=5$ volts; R (60,000 ohma) adjusted for fullscale deflection of M. V2 was 1.9 volts. Calculated value of Z-in is 103 K ohmm, sensitivity is $33,400 \mathrm{ohm}$: per volt using the mecasured values.

MATERIALS LIST-HOME.MADE TRANSISTOR LAB KIT	
Desig.	Description
R2	10K. $1 / 2 w$ resistor
R1, R3	$220 \mathrm{~K}, \mathrm{l} / 2 \mathrm{w}$ resistor
R4	10 K miniature volumr control with switch (Lafayette VC. 28)
R5*	50 K miniature volume control (Lafayette VC.36)
C1. $\mathrm{C2}$	10 mfd. 15v. miniature electrolytic capacitors (Lafayette CF-122) tuning capacitor (Lafayette MS-215)
	anterna coil (Lafayette MS-299)
$\begin{aligned} & \mathrm{T} 1 \\ & 0 \end{aligned}$	transistor (Raytheon CK722 or GE 2N107) diode (GE IN64)
	three transistor sockets (Lafayette MS-149)
	flea clips (Lafayette MS-263)
	miniature perforated board (Lafayette MS-305)
	two miniature knobs (Lafayette MS-185)
	one pointer knob (Allied 55 H 074)
	miniature phone jack (Lafayette HS-282)
	minigator clips for connecting leads (Mueller 30)
	perforated Masonite board (Lafayette ML.81)
	brackets
	six batteries (Burgess \#1)
	* Not used in any of the circuits presented in text, but handy to have for experimental work.

beer objectionable. Here's an approach that can be applied to a multimeter or even a basic dc meter movement which overcomes this objection. The Heathkit MM-1 meter cited in example 1 has a 159) microampere lowest current range on the selector switch. Set the meter to this range and connect it to a rectifier bridge consisting of 4 Raytheon 1N66 diodes (see Fig. 9). Instrument the circuit as shown in Table B. The input impedance of the rectifier-meter combination was 4,000 ohms for full scale meter deflection. The sensitivity was 6,650 ohms-per-volt.

Next, the meter-bridge combination was connected in the circuit shown in Fig. 10. The transformer, a Microtran M8, was connected for 15,000 ohms primary impedance (red and blue leads), and 600 ohms secondary impedance matching (brown and violet leads). The impedance ratio is 25 , and the square root of this ratio is 5 . The transformer primary impedance predicted by the theory is $25 \times 4,000$ or 100,000 ohms, and the sensitivity is predicted as $5 \times 6,650$ or 33,200 ohms-per-volt. The voltage input to the transformer primary for full scale deflection should be 100,000 ohms divided by the sensitivity, 33,200 ohms-pervolt. The predicted primary voltage is $3 v$. The actual voltages measured in the circuit are given in the caption for Fig 10. Using the method shown in Table B, these voltages yield the same results as those predicted above within a reasonable percentage of error.
The linearity of the instrument can be improved by setting the meter pointer about 3% to 5% up scale from zero.

[^3]
RADIO-TV EXPERIMENTER

Use the mechanical zero set with zero voltage input to do this. Do it before the measurements shown in Fig. 9 are made. This automatically accounts for the upscale dial position in calculations and adjusts the full scale point. The results of the technique are shown in Fig. 11.

It is apparent that the method of the second
example provided a lower bottom ac voltage range than the first method. This improvement resulted from the increased sensitivity of the rectifier-meter combination and the lower impedance ratio of the transformer windings. The decrease in transformer impedance ratio reduced the sensitivity.

ELECTRONICS ANAGRAM

Here is an anagram puzzle that will challenge your knowledge of electronics. To be absolutely sure you do
(For the solution, see page 154.)

ACROSS:

1) A point of maximum current or voltage in a sta tionary wave system.
2) Form of phono turntable drive.
3) Done with an insulated tool to avoid detuning effects of body capaeitance.
4) Volt-ampere (abbr.).
g) A concentrated number of these will burn the screen of a cathode-ray tube.
5) Unit of loudness.

1i) Volts times am* peres.
14) Carries electrons in motion.
15) Capacitors block it.
17) A type of frequency meter.
19) The rms value of an altornating current wave.
20) One-millionth of an ampere.
21) A radictor of olectromagnetic waves.
22) Inductive opposition to ac (abbr.).
23) Done to locate a microphonic tube.
24) A particular type of tost instrument widely used (abbr.).
25) Potential placed on a certain vacuum tube element (letters symbol).
27) Done to improve operating char. acteristics of elec. tronic components.
28) An ampllier that handles power (abbr.).
29) \boldsymbol{A} TV station's pic-
ture signal is put on a carrier wave in this manner (abbr.).
30) A circuit that can bite.
31) Matching trans. former.
32) A primary color used in color TV.
35) Unit of conduc. tance.
36) What a volume. gain, or tone con. trol is.
37) A coil that opposes RF currents.
39) Connection not made (abbr.).
41) Figure of merit (letters symbol).
42) Transformer, trim. mer (lefters symbol).
43) EMF unit.
44) Capacitance (letter: symbol).
not fill in the wrong word or abbreviation, read each clue very carefully. Many are designed to intentionally mislead.-JOHN A. COMSIOCK
45) Single side band (abbr.).
46) A noise made by electrons in vac. um tubes.
49) Modulation similar to frequency mod. ulation (abbr.).
50) Term connected with 'scopes.
S1) Main oscillator (abbr.).
54) An inert gas (abbr.)
56) What a ham calls his radio outfit.
57) Controlled by radio (abbr.).
58) An antenna system of two or more vertical radiaforts.

DOWN:

1) An electro-acoustic unit of power.
2) Fleming invented the first one.
3) Tosendradio waves into space.

4) \boldsymbol{A} particular typo of transducer.
5) The electron catch. or of a vacuum tube.
6) Code that is periodically intor. rupted.
7) Number of interconnected stations.
8) The kind of signal ordinarily superimposed on a carrior wave (abbr.).
9) Captures cortain frequencies and disposes of them.
10) A positive ion.
11) To eliminate audio echoes.
12) Same meaning as \# 5 down.
13) $5 a m$ as \#20 cctoss.
14) Plays recordings.
15) Voltage drop meas. ured across a resistor (letters sym. bol).
16) A device that finds directions.
17) A tube that utilizes an electron gun (abbr.).
18) Temporary con. nector.
19) A meter that measures volts, ohms, and \quad © mporos (abbr.).
20) Might blow a fuse.
21) Emits sound weves (abbr.).
22) A meter rating.
23) Type of transistor (abbr.).
24) A gain compensating circuit (abbr.).
25) Output power.
26) C-bias (lettors symbol).

Portable Earphone Plug Box

You can quickly connect various sizes and types of earphone jacks to your radio, $\mathrm{Hi}-\mathrm{Fi}$, recorder or TV set with this versatile "Jack in the Box"

HERE'S an easy project for you Hi-Fi fans and experimenters who are so often annoyed by the fact that earphones as well as radios, record players, recorders, etc. come with non-interchangeable plugs and jacks.
If you want to plug in earphones that fit one piece of equipment, into another, you may have to either cut the wire and put on a new plug, or make a special adapter-by then, the program you wanted to hear is over. Here is an unusual answer to the problem; a plug box (Fig. 1) that accepts every common kind of plug. Also, it can be used to connect several earphones, or speakers at once, and will come in handy for test work and hi-fi experimenting.

Figure 1 shows a $3 \times 2 \times 114^{\prime \prime}$ deep hinged plastic box. In its lid are mounted two binding posts, a pair of standard phone tip jacks, and three other commonly used phone jacks. You don't need a blueprint giving sizes and locations of holes. In fact, you may want to modify the layout to fit the special needs of your equipment. Just mount the parts where you please, making sure they are not too crowded. All the holes are quickly made by reaming up to size with the small pointed end of a pen-knife blade.

Wire all the plugs in parallel (Fig. 2), with 20 gage solid copper wire soldered at each connection. If the spring prongs on the large phone jack are too long, bend the ends over to fit. Solder a length of light twin lead, or twisted lead wire to the prongs of the phone jack, and bring it out through a hole in the box side.
The phone box is connected to the radio, record player, or TV speaker through a circuit

[^4]Built in lest than an hour, this "Jack Box" accommodates five kinds of non-interchangeable earphone and speaker connections, permitting instant hookup of many comoinations.

Holes in plastic box lid for mounting parts are reamed up to size with small knife blade. The jacks are wired in parallel, with solid copper hook-up wire.
opening jack. When the phone box is plugged in, the speaker is off; remove the plug, and the speaker is automatically reconnected.

Some ac-dc table radios ground one side of the output transformer, and of the speaker coil, directly to the chassis. If there is a wire leading from one side of the speaker coil directly to the metal chassis, your set is this type. With such a set, your earphones would be "hot" when the power plug of the radic is inserted one way into the power outlet. Eliminate the hazard simply by unsoldering the two chassis connections and wiring them directly together without electrically contacting the chassis.

Before touching any chassis parts, especially of TV sets, pull the power plug, and discharge the high-voltage capacitors, which can cause fatal shock.

If you are a stereo fan, you will easily be able to adapt the plug box to a "twin channel" design. A larger plastic box will provide space for mounting two sets of jacks, and the unit will make it easy to experiment.-Art Trauffer

By J. EVANS KNAPP

Craft Print Project No. 277

Perfect formula for serenading a lovely lady: one electric guitar, play. ing through the phonograph connection of a table-model radio.

VERY few instruments have enjoyed the meteoric rise in popularity the guitar has in recent years. Long established as an ideal portable instrument for accompanying ballads, country and western singers, the guitar of not so many years ago still had its limitations. One was that its music was too soft to be used in orchestras (or at noisy parties).

That's not true today, thanks to the magic of electronics. For, when you hook up an amplifier to a guitar, you automatically give it the same stature as a piano-and far more versatility. You get, not only a full range of volume, but a complete control of tone-everything from throbbing base for rhythm chords to pure, treble melody notes to lead or back up the singer. You find, suddenly that guitars can "talk" sweet or sassy, soft or sharp, boogie beat or ballad strum.

A good guitar deserves a good carrying case. Make the box dimensioned in Fig. 20A, using glue and $3 / 4 \mathrm{in}$. nails at all joints. Then, mark a line on the ends and sides 2 in. from the top and saw the box in two parts, making a top and bottom section. Sand all edges, rounding them

Electric guitar hooked up to a commercial music amplifier. Looks as if this fellow enjoys his rock-billy crooning.
slightly and cover the outside of both top and bottom sections with leatherette. Use waterproof glue or cement and wrap the leatherette around on the inside surface about $1 / 2 \mathrm{in}$.

Next, place $21 / 2 \mathrm{in}$. thick blocks of balsa along the sides and ends of the bottom section and
place your guitar on top of the blocks. Mark around the guitar forming a pattern or outline of the instrument on the balsa blocks. Allow about $1 / 16$ in. clearance all around for the plush fabric covering. Remove the blocks, cut to shape and replace for testing. Also make up the neck block and latch, and the compartment sides. With all of the blocks cut to size, place them in the bottom section together with the guitar to see that everything fits well. Make any adjustments needed and cut a $1 / 16 \times 3 / 8$ rabbet along the upper edges of the blocks that contact the box sides. Then glue the blocks to case bottom and sides.
When covering the blocks with the plush fabric, cement the fabric to the tops first. Allowing enough material to fold over the inside edge about $1 / 2 \mathrm{in}$. and force the other edge down into the rabbet with a dull knife (Sec. A-A, Fig. 20). Then cement a strip around the vertical sides of the blocks, allowing about $1 / 2 \mathrm{in}$. of material to fold flat against the bottom and turn in at the top where it is sewed to the top covering. For the bottom, cut a piece of cardboard the shape of the recess, cover with fabric wrapped around the edges and cement to the bottom of the case. To line the inside of the top or cover, cut pieces of cardboard to cover the sides and underside of top, cover with fabric and cement (Fig. 20).
Fasten the top of the case to the bottom with 1 in . brass butt hinges, install a pair of suitcase catches and suitcase handle to the other side.

Electric guitars are not only more versatile, but they are far easier to play than non-electrics.

But What Will It Cost? The price of guitars ranges from $\$ 15$ to $\$ 25$ for a second-hand, low cost, non-electric one, up to $\$ 500$ or better for a few of the electrics some professionals use. One excellent commercial model electric with four volume and tone controls and about the same size as the one shown in Figure 1, costs around $\$ 136$ new, with its case. In contrast, this guitar with its case will cost you about $\$ 40$ to $\$ 45$ for materials.

You can, of course, use it with a special musical amplifier such as that shown in Fig. 3. But such amplifiers are costly, and a better
solution for the budget-minded, is to play the guitar through a radio (Fig. 1) or an old tape recorder (Fig. 11).

Start construction by making a full-size drawing of the guitar body (Fig. 4), on single weight illustration board. (Because it is impossible to show these parts full size on the magazine page, full-size drawings are available. See box at end

MATERIALS LIST-ELECTRIC GUITAR		
No.	Size and Description	Use
2 pc	$21 / 4 \times 10 \times 24^{\prime \prime}$ pine or hemlock	side bending form
2 pc	$3 / 4 \times 55 / 8{ }^{\prime \prime}$ six foot pine	steam box
2 pc	$3 / 4 \times 3^{*}$ six foot pine	steam box
2 HC	$1 / 2 \times 16 \times 20^{\prime}$ plywood	gluing clamp
1 pC	$17 / 8 \times 21 / 4 \times 31 / 2^{\prime \prime}$ pine or hemlock	neck-block
1 pc	$11 / 8 \times 17 / 8 \times 23 / 4{ }^{\prime \prime}$ pine	tail-block
2 pc	$1 / 16 \times 131 / 2 \times 39^{\prime \prime}$ plywood	case

The above can be purchased from your local lumber yard.

1	pc	$3 / 4 \times 17 / 8 \times 60^{\prime \prime}$ maple	sides
1	pc	$3 / 4 \times 4 \times 24^{\prime \prime}$ maple	overlay
1	pC	$3 / 4 \times 4 \times 24^{\prime \prime}$ walnut	overlay
1	pc	$3 / 4 \times 4 \times 24^{\prime \prime}$ mahogany	overlay
1	pc	$21 / 2 \times 43 / 4 \times 30^{\prime \prime}$ maple	neck
2 pC	$1 / 4 \times 5 \times 39^{\prime \prime}$ poplar	case	
2	pc	$1 / 4 \times 5 \times 13^{\prime \prime}$ poplar	case
4 pc	$1 / 8 \times 8 \times 20^{\prime \prime}$ pine or poplar	sub-top	
1	pr	$1^{\prime \prime}$ butt hinges	and back
1	pr	suitcase catches	case
1	suitcase handle	case	
$1 / 2$	pt	paste wood filler. natural transparent	case
1	pt	clear gloss varnisil	

The above can be purchased from Craftsman Wood Service, 2729
So. Mary St., Chicago 8, III.. or from Albert Constantine \& Son
Inc., 2058 Eastchester Road, New York 61, N. Y.
$121 / 4 \times 11 / 4^{\prime \prime}$ Alnico magnets
Magnets can be purchased from Ronald Eyrich, 12720 Robin Lane, Brookfield. Wisconsin. (12 for $\$ 3.00$. postpaid.)
$1 / 2 \mathrm{lb} \# 40$ Nylclad magnet wire
$6 \mathrm{ft} \# 20$ single strand shielded grid wire
6 ft varnished spaghetti
1 Meq type 11.137 volume controls 500 K type 13.133 tone controls $3 / 4^{\prime \prime}$ walnut knobs
type 11 Little-Jax phone jack
type 14522 pole 3 pos. shorting type lever action switch
.001600 stock 305 Olson capacitors
pickup coils
hookups
hookup
hookups
hookuns
hookups
hookups
hookuns hookut
1 roll Scoteh \#33 plastic backed electrical tape
The above can be purchased from Allied Radio Co., 100 N . Western Ave., Chicago 80, III.
1 pr $\# 2140 \mathrm{~W}$ patent or machine heads \$2158 rosewood adjustable bridge \#2172 bone fingerboard nut
$\# 2179$ rosewood oval $251 / 4^{\prime \prime}$ scale fingerboard
\#2160 trapeze tailpiece
set $\$ 3044$ Lektro-Mannetic strings for
the electric Spanish ouitar
The above numbered parts are from catalog of Continental Music, 717 Chicago Ave., Evanston, Ill., and Allanta, Ga., (distributors). Purchase from your local music store, or from Carvin Co., Box 287. Covina, Calif.

1 pc	$4 \times 251 / 2^{\prime \prime}$ tooling leather	lanyard
1	$5 / 8^{\prime \prime}$ keeper	lanyard
1	$58^{\prime \prime}$ watch band buckle	lanyard
1	No. 3202 swivel lanyard hook	lanyard
1	Lignum Vitae circle (Edgeslicker)	lanyard
1	pt	lanyard
	beat.Lac	lanyard

The above can be purchased from Tandy Leather Co., Box 791, Fort Worth, Texas.

1 pc	$5 / 16 \times 11 / 2 \times 41 / 2^{\prime \prime}$ white opaque plastic	pickup
1 pc	$1 / 4 \times 3 \times 41 / 2^{\prime \prime}$ white opaque plastic	pickup
1 pc	$1 / 16 \times 61 / 2 \times 12^{\prime \prime}$ white opaque plastic	pickup and

The above plastics can be purchased from Cadillac Plastic Co., 727 W. Lake St., Chicago.

2 yds	$36^{\prime \prime}$	width upholstery fabric
3 yds	$36^{\prime \prime}$	width Duron plastic
28	$1 / 4 \times 4^{\prime \prime}$ carriage bolts	case
28	$1 / 4^{\prime \prime}$ thumb or wing nuts	case
1 box	$\$ 183 / 4^{\prime \prime}$ wire brads	gluing clamp
	oluing clamp	

The above can be bought from your local Montgomery Ward Co.

SEVERAL PIECES OF $2 \frac{10^{-1}}{4}$ THICK STOCX, glued together to make one piece
 make the center portion of the bending form. With a knife, carefully cut out the drawing. Draw in the neck and tail blocks, but do not cut them out at this time.

The bending form (Fig. 5) consists of five sections; one center section, and four outside sections surrounding the center section. Make the form from any soft wood you may have on hand by gluing up $21 / 4$ in. thick pieces to make up a block $161 / 2 \times 20 \mathrm{in}$. Use Weldwood or Elmer's Waterproof glue because the part to be bent will be moist from being steamed.

Mark a centerline on the block dividing the $161 / 2 \mathrm{in}$. width and fasten the pattern on the center of the block with two thumbtacks. With a sharply pointed pencil, draw around the pattern and then, using a compass as a marking
gage, draw a second line around the pattern $5 / 32$ in. from the first line. Starting at the top of the body design as indicated in Fig. 5, saw the five bending form pieces to shape on a bandsaw or jigsaw. The material between the two lines is waste, so make your saw cuts in this waste material leaving just a trace of the penciled lines on the center and outside form sections. Two saw cuts will be required. With the center portion cut out, rout out a $1 / 2 \times 1 / 2$ in. rabbet around the top corner as shown in sec. A-A of Fig. 4, to provide clearance for the $3 / 8 \times 3 / 8 \mathrm{in}$. beading. Then saw the outside form into four sections.

Make the steam box Fig. 6 next. Set it up on a low bench or box and prop up one end with some house bricks or block of wood. To generate the steam, place a tea kettle on a hot plate and attach a short length of hose over the kettle spout. Insert the other end of the hose into the steam box and stuff some rags around the hose to hold it in place.

You are now ready to start the actual construction of the guitar by steam bending and forming the body sides. For this you will need a $3 / 2 \times 17 / 8$ $x 60 \mathrm{in}$. piece of maple. Since this thickness cannot be purchased, rip a $3 / 18$ in. thick strip with a circular saw from the $3 / 4 \times 21 / 4 \times 60 \mathrm{in}$. piece of stock called for in the materials list. Dress this strip down on a thickness planer to $3 / 2 \mathrm{in}$. If you do not have a planer, you can use a jointer by backing the strip with a length of scrap stock to support it while pushing it through the jointer. A belt sander could also be used. However, in this case rip the stock $1 / 8 \mathrm{in}$. thick and sand to $3 / 32$ in.

Place the finished piece on edge in the steam box and stuff the top of the box with rags. When the water in the kettle be-

rate the maple strip. By the time the water in the kettle has boiled down to within $1 / 2 \mathrm{in}$. of the bottom the strip should be flexible enough to bend around the form. Holding the middle of the strip against the center section of the form at the bottom where the tail block will be, bend the strip around the form ard clamp the \#1 and \#2 outside form sections in place with a bar clamp. Then continue bending the strip around the center iorm and cut the ends off where they join (Fig. 4). Clamp the \#3 and \#4 outside form sections in place with a bar clamp. Now, carefully turn the entire form over and clamp with two more bar clamps positioned at right angles to the first bar clamps as in Fig. 5. Set the form aside for a day to dry away from artificial heat, as it might cause the strip to check and crack.
In the meantime make the gluing clamp (Fig. 7), form two pieces of $1 / 2 \times 16 \times 201 / 4 \mathrm{in}$. plywood. Again using the full-size pattern of the guitar body, center it on the plywood and, with a compass, draw a line around the pattern 2 in . out from the edge of the pattern. Tack the two pieces of plywood together and saw them out. With the pieces still tacked together, lay out and drill $\overline{1 / 16}$ in . holes for the $1 / 4 \times 4 \mathrm{in}$. carriage bolts (Fig. 7).

The sub-top and sub-back (Fig. 4) are next on the agenda. Although the original guitar has the inlaid cubic design on both the top and the back, you may wish to inlay the top only, in which case you need not make a sub-back. Instead, substitute the sub-back with inlay, with a single piece of $1 / 8 \mathrm{in}$. thick maple plywood.
To meke the sub-top, and sub-back if you intend to inlay the bottom, glue two pieces of $1 / 8 \mathrm{x}$ $8 \times 18 \mathrm{in}$. pine or spruce together edge to edge to form a $16 \times 18 \mathrm{in}$. piece. Then sand the glued-up pieces to $1 / 10 \mathrm{in}$. thickness with a belt sander.
Using the full-size pattern and a compass set at $1 / 8 \mathrm{in}$. lay out the body outline on the sub-top so that it will be $1 / 8 \mathrm{in}$. oversize all around. Tack the top and back pieces together and cut to shape with a jigsaw. Then separate the pieces and, on the back of each, mark the locations of braces A, B, and C in Fig. 4. Make the $3 / 8 \times 3 / 8 \mathrm{in}$. braces as detailed in Fig. 4 and glue to the undersides of the sub-top and back.
Next, lay out the neck and tail blocks (Fig. 4) on $17 / 8 \mathrm{in}$. pine and saw them to shape. Then place the blocks in their respective positions on top the center bending form section and mark around them for cutting, cut out forn, place the blocks
 in position and giue them to the bent side strip. Now, with the side strip and blocks in the bending form, make up the $3 / 8$ $\times 3 / 8$ in. beading strips by cutting $1 / 4 \mathrm{in}$. deep saw kerfs $1 / 4$ in. apart as detailed in Fig. 4. Coat the uncut side of the beading with glue and place them in the rabbet cut in the center bending form so that the glued sides contact the guitar body sides. Be sure the beading is flush with the top edges of the guitar sides and use small wedges between the beading and the rabbet sides to keep the beading in contact with the guitar sides until the glue dries. Do not install beading on the bottom edge of the sides now.

While the glue is drying, make up the guitar neck (Fig. 9) from a solid block of maple. Be sure that the maple you use for the neck is thoroughly dry because green wood will warp and shorten the life of the instrument. The edge grain should be the side of the neck and the flat grain the top. First make full-size, cut out patterns of the neck side, top and templates, from the neck sections (Fig. 9). Be sure to make the dovetail slightly larger than the cutout for it in neck block so that the neck can be snugly

Here a small tape recorder (purchased second-hand for $\$ 40$) not only serves as an amplifier for the guitar, but also will record what you play if you want to hear it later-an invaluable method for improving your playing. And, an extension speaker plugged into that lack on the front of the recorder will give you some stereophonic effects.
and sand edges flush with body sides. Glue the sub-bottom on later.
Your next step is to overlay the top with contrasting woods as in Figs. 8 and 10. First lay out the centerline from the neck block to the tail block on the sub-top. The three pieces of hardwood (maple or holly, walnut and mahogany) that the overlays are cut from should all be exactly the same width ($3 / 4 \mathrm{in}$.). Using a planer blade in the circular saw, rip the hardwood into $7 / 2 \times 3 / 4 \mathrm{in}$. strips. Set the miter gage at 45° and saw 150 diamond-shaped pieces (Fig. 10) from the walnut strips. Then reset the miter gage to $221 / 2^{\circ}$ and cut 150 pieces each from the maple and mahogany strips. Find length A of these pieces (Fig. 10) by measuring length A on the diamond shaped pieces. After cutting six or eight of these pieces make a test assembly with some diamond-shaped pieces to make sure they fit perfectly.
fitted to the body later. Transfer the shape of the side patterns to the maple stock first and saw from the end of the head to the butt curve at the dovetail end of the neck. Do not cut the scrap piece off, but back out the saw. Then make the other cut, which is the top surface of the head.
Now, using the top pattern of the neck, transfer its shape to the top of tl.e maple stock. Beginning at the dovetail, saw to the location of the nut on both sides, back out the saw on each cut. Then make cuts at right angles to the long cuts you just made at the location of the nut, removing the scrap side pieces. Also cut off the bottom scrap piece. To make the cuts on the sides of the head square with the top surface of the head, turn the neck bottom-side up and transfer the shape of the head on the underside of the neck. When sawing the neck sides, tilt the neck up so that the top surface of the head is flat against the jigsaw table. File the underside of the neck with a coarse wood rasp to the shape of the templates and sand.

Set the neck aside for the moment and remove the center bending form from the guitar body but leave the outside bending form pieces around the body. Then glue the bottom $3 / 8 \times 3 / 8 \mathrm{in}$. beading to the lower edge of the body sides. Use masking tape to hold the beading in place. When the glue dries remove the body from the form and carefully sand the edges of the sides and beadings square and flush. Place the sub-top on the body arranging it so the edges of the top project about $1 / 18 \mathrm{in}$. beyond the sides all around. Since the braces on the underside of the subtop rest against the beading, mark and file the beading to provide clearance for the braces. The underside of sub-top must fit flat against the beading. Glue the sub-top to the body and clamp in gluing clamp (Fig. 7) by tightening all thumb nuts down snug. Remove from clamp when dry

After all the pieces are cut, start the overlay by gluing a line of diamond-shaped walnut pieces on the centerline of the sub-top as in Fig. 10. Ignore the cutouts for the pickups at this time since these openings will be cut later. Continue gluing the other pieces in fosition, working from center to edges. After the glue dries, trim edges and sand flush with sides. Sand the top.

To install the walnut trim around the outside top edge (Fig. 4), first roat all around the top edge $3 / 32$ in. deep and to a depth $1 / 14$ in. below the sub-top (Sec. A-A Fig. 4). Rip saw a strip of $1 / 8 \mathrm{x}$ $1 / 4 \mathrm{in}$. walnut and place it in the steam box. When fexible, bend it around the routed body and secure with masking tape. After the strip has dried, remove the tape and strip, apply glue to the routed edges and again tape the walnut strip in place. When the glue dries, remove the tape and sand the walnut trim strip flush with the top and sides.

Make cutouts in the top for pickups and mixer, and drill the holes for the tone controls. First lay out the cutouts and hole locations as in Fig. 10 and then saw out with a deep-throat coping saw. Use a $3 / 8$ in. machine-drill for the holes.

Now, set this part aside and take up the previously made neck piece. On the top side of the head, lay out the $7 / 32 \mathrm{in}$. holes and the three dia-mond-shaped walnut inlay pieces (Fig. 14). Drill the holes and rout or chisel out the head to a depth of $1 / 16 \mathrm{in}$. for the walnut inlays. Glue the inlays in place and sand flush.

Fasten the neck to the body so that the centerline of the neck and the centerline of the body are in perfect alignment. This is very important because a slight discrepancy will throw the strings completely out of alignment and the strings will not come over the fingerboard where they belong. Use a combination coarse and fine rasp to fit the dovetail on the neck to dovetail

of six $1 / 4 \mathrm{in}$. dia. magnets $11 / 4 \mathrm{in}$. long by inserting the magnets through the $1 / 4 \mathrm{in}$. holes. Cement magnets in place with household cement.

Now, wrap one turn of Scotch \#33 electrical tape around all six magnets forming a core on which to wind a coil. Thread an 8 in . length of \#20 shielded grid wire through one of the $1 / 16 \mathrm{in}$. holes in piece B and solder the end of a spool of \#40 Nylclad heavy magnet wire to the \#20 wire. Wind the \#40 wire around all of the magnets at once in even layers to form a coil. It will take about $3,500 \mathrm{ft}$. of magnet wire, or about 6,500 turns on the coil which should test approximately 3,700 ohms on an ohmmeter. If you do not have an ohmmeter, have the coil tested at your local radio repair shop. Complete the coil by soldering the end of the coil to another 8 in . length of \#20 shielded grid wire, threaded through the other $1 / 16 \mathrm{in}$. hole, and wrap four turns of $\# 33$ electrical tape around the entire coil.
Make the top piece (C in Fig. 12) from $1 / 16$ in. thick plastic, cut out the center and tightly fit a piece of stainless steel into the opening. Ce-

in the body.

The top surface of the neck should be a slight angle with the top surface of the body when tested with a straightedge as in Fig. 15. If you file away too much stock, use wooden shims to fill in where needed. When you are satisfied with a good fit, glue the neck
to the body with Weldwood glue and let dry.
Before fastening the back of the body in place, make and install the electrical parts that go inside the body. Starting with the treble pickup, make piece A from $1 / 4 \mathrm{in}$. plastic and piece B from $1 / 8 \mathrm{in}$. plastic according to dimensions given in Fig. 16. When drilling the $1 / 4 \mathrm{in}$. holes for the Alnico magnets, center piece B on top of piece A, tape together and drill through both pieces at once. Assemble both pieces at opposite ends
ment in place if necessary. Also make up piece D in Fig. 12 and place over the coil under piece A. Place piece C on top of piece A and tape the three pieces together. Then drill the $1 / 8 \mathrm{in}$. holes for the $\# 5 \times 3 / 4 \mathrm{in}$. rh screws.
The bass or chord pickup (Fig. 13) is similar to the treble pickup with the exception that the magnets project $1 / 8 \mathrm{in}$. below the bottom piece B and no riser piece is used. Wind the coil with 6,900 turns of \#40 Nylclad magnet wire. The

coil should test at about 4,000 ohms. Next sand the top with \#8 wet or dry sandpaper using it dry. Then apply natural transparent paste wood filler according to directions on the can. When thoroughly dry, again sand with \#8 sandpaper and apply a coat of clear gloss varnish. Only varnish the top at this time, being careful that the varnish does not run down the sides. After the varnish dries, sand with \#8 wet or dry sandpaper, using it wet.

Now, mount the pickups, tone and volume controls and mixer switch to the top in their proper places as shown in Fig. 10. Then drill a $3 / 8$ in. hole through the lower, right hand side (shown

in Fig. 4) and mount the fhone jack. Although the mixer switch is set into the opening cut in the top, it is actually fastered to the pick guard. Make the pick guard of $1 / 16$ in. thick white opaque plastic as detailed in Fig. 16A. Fasten the mixer switch to the guard and fasten the guard to the body top with three screws.

With all of the electrical parts in place, hook them up with soldered connections using \#20 single-strand, shielded grid wire in varnished spaghetti according to the wiring diagram as shown in Fig. 17.

Fitting the back of the body in place is your next step. Use a pad of old blankets to lay the instrument on while you are working on the back. If you do not intend to inlay the back as you did the top, make the back of $1 / 8 \mathrm{in}$. maple plywood. If you do intend to inlay the back use the previously cut $1 / 16$ in. thick subback. Lay out the hand hole opening (Fig. 18) on the back piece and saw it out with a fine jeweler's saw blade in a coping scw. This opening will provide access to the electrical wiring in the event servicing is required. Fit braces A, B and C in Fig. 18, trimming the $3 / 8 \times 3 / 8$ in. beading where needed as you did for the top of the body. Be sure to install the $3 / 8 \times 3 / 8 \mathrm{in}$. vertical braces between the top and bottom center braces on each side of the pickup hole cut in the body top as in Sec. A-A, Fig. 4.

Now, glue the back piece to the body and clamp with the gluing clamp as you did when gluing the top. The inside of one piece of the gluing clamp will have to be cut out to clear the pickups and switches protruding on the top of the body. Tape the piece you cut out for the hand hole in place and glue the inlay pieces in position as you did on the top. When you come to the edges of the hand
hole, cut the pieces of inlay to conform to the opening and glue in place. Place a piece of paper between the cut edges of the inlay pieces so that the hand-hole cover will not become glued shut. When finished, fasten cover to body with four \# $2 \times 1 / 2 \mathrm{in}$. fh screws, countersunk. Trim and sand the edges of the back flush with the sides and sand the inlaid surface flat and smooth. Then rout out the edge for the walnut binding and install the binding as you did around the top.

The fingerboard and bone nut which are purchased parts need only be trimmed to fit as is shown in Fig. 9. The 12th fret should be $125 / 8 \mathrm{in}$. from the bone nut. Glue in place on the neck. When dry, sand and finish the back, sides and neck as you did the top. Use paste wood filler on the inlay surface only and do not apply any type of finish on the fingerboard or nut. When the first coat of varnish has dried, wet sand the entire instrument, except the fingerboard and nut, and apply two more coats of varnish, sanding between coats. The final coat of varnish can be rubbed down with $2 / 0$ pumice and rottenstone.

You can make the tail piece or purchase one at your local music store. To make one, draw the one shown in Fig. 16B full-size on paper and transfer to 12 gage stainless steel. Saw this out with a metal-cutting blade on a scroll saw. Drill the holes and bend to shape. Also make the tail-piece loop (Fig. 16B). Then mount the tail piece and loop to the guitar body so that the center of the six drilled holes for the strings is exactly in line with the body centerline. The leather lanyard can also be purchased or you can make your own according to the dimensions given in Fig. 19.

Next, install the purchased patent or machine heads to the underside of the neck head as in Fig. 13. To string up your instrument, use LektroMagnetic strings for the electric Spanish guitar. After stringing, set the rosewood adjustable bridge in place.

Since this instrument is made on the $25-1 / 4$ in. scale, the bridge will be $125 / 8$ in. from the 12 th fret on the fingerboard. You are now ready to tune your guitar.

- Craft Print No. 277, in enlarged size for building the Electric Guitar is available at $\$ 2$. Order by print number. To avoid possible loss of coin or currency in the mails, we suggest you remit by check or money order (no C.O.D.'s or stamps) to Craft Print Dept. 226, SCIENCE AND MECHANICS, 450 East Ohio Street, Chicago 11, Illincis. Please allow three to four weeks for delivery. To obtain our Craft Print Catalog-which contains descriptions of 196 different plans-send us $20 ¢$ (includes 10 f for postage and handling).

SOLUTION TO ELECTRONICS ANAGRAM Page 144

Why Does the Lamp Light?

- For an interesting electrical experiment, take a paper capacitor of 2 mfd or larger from your junkbox. Do not use an electrolytic ca-
 pacitor in this setup as it may explode. Paper capacitors were extensively used in the power units of early radios and are still extensively used in modern amateur transmitter., so such a paper capacitor should not be hatd to find. Test the capacitor by connecting an ohmmeter across its terminals. If the capacitor is good, the ohmmeter will indicate (after a quick "kick") an open circuit through the unit.

Now connect your capacitor in series with a cleat lamp socket and screw in a 25 -watt, or smaller, bulb. When you connect the series combination to the ac power line, you will note that the bulb lights up, although not at full brilliance.

Since the ohmmeter had just shown us that the capacitor is an open circuit, how, then, can the lamp light?

A capacitor is made of two separate conducting sheets with a good insulating substance (such as
oiled faper) between them. Practically, no electrons can move through the paper to complete the circuit between the plates, yet an ac current passes

Although the ohmmeter indicated an open circuit through the capacitor, the needle did "kick" when the test leads were first applied. This kick is the clue to our apparent paradox; it represents electrical energy flowing in to charge the capacitor. A good capacitor may thus retain a stored charge for hours. The electrical energy in this charge may be nearly completely recovered from the capacitor.

The voltage across the ac power line periodically reverses itself 60 (50 in some parts of the country) times per second. Now, when a capacitor is connected across such a line it is forced to charge and discharge twice during each complete reversal, or 120 times each second. Each time it charges or discharges, electrons move through its connccting wires. Since our lamp is connected in one of these wires, this charge-discharge current causes it to light.

This principle is universally applied to separate ac from dc (unchanging) currents throughout vacuum-tube and transistor circuits.-C. F. Rockey.

AT LAST! MONEY-MAKING "MNOW-HOW", ON TRANSISTORS, COLOR TV AND SEFVICING Coyne's great 7 -volume set gives you all the answers to servicing problems quickly 'For basic "know-how" that's easy to understand you'll find everything you want in Volumes I to 5 on over 5000 praclical lacts and data. Every step trom lundamentals to installing. sarvicing and trouble-shooling all types of radio and TV sets. So up-to-date it includes the latest on COLOR TV and UHF. All this plus Volume 7 TRANSISTOR CIRCUITS-the most complete book ever published on the applications of Transistors in electronics New! Set has color. ful design. washable covers.

EXTRA! 868 Page TV Encyclopedia Included Fer speedy, on-the-1ob use, you also get Volume 6 lamous Coyne CYCLOPEDIA. Answers problems on servicing, alignment, installation etc., in easy ABC ordar. USY FPEE Voicme. V-RADIO LIBRARY FREE for ${ }^{7}$
Servicing Book FREE!

FREE!

5 YEARS OF VALUABLE SUPPREMENTS

With your set you also get Coyne's
arnual Supporment arnual Supplement
Service FREE for 5 service Kecpe your set up-to-cate on everything that will
ow new in radio. of new in radio.
television, electron: ics and electricity.

Educational Book Publishing Division

COWN
ELECTRICAL SCHOOL 1501 W. congrass Piny, Dipt. 25-RE chicasa 1, III.

SEND NO MONEY!

Just maw coupon lor 7 -volume set on 7 days Iree trial. We II include book of 150 TV. Radio Patterns \& Diagrams. If you keep the set, pay $\$ 3$ in 7 days and 83 per month until $\$ 2725$ Dtus postage is paid. (Cash price, only $\$ 24,95$.) Or you can return the ibrary at our expense in days and owe nothing. YOU EE THE JUDGE. EIther way, the book of

FREE BOOK - FREE TRIAL COUPON!

|Educational Book Publishing Division 20-RE
COYNE ELECTRICAL SChOOL. Dept. 20-RE
ISOI W. Congress Pkwy.. Chicago 7.11 .
W. Congress Pkwy..
 | Das:am Book FHEE.

|Address
city
Where Employed.
 124 ©5 plus C.O.D. pontaye on delivery. $\%$ day money-back guarantee.

25 Years Ago in Radio

AQUARTER of a century ago, White's Radio \log was 12 years old and commercial broadcasting itself was not much older. Yet as these pages reproduced from the March 1934 issue of White's show, broadcasting was even then a healthy medium of entertainment. Some of the programs popular in 1934 are still on the air (and most of 1934's sponsors are still going
strong). Indeed, the programming of the Thirties may seem to many to have been radio's golden age, flawed possibly by immaturity, but lusty and vital all the same. Here-for those of you old enough to remember-is what you were listening to 25 years ago. And here-for those of you who missed it-is what your fathers heard, and grow nostalgic about today.

NETWORK RADIO PROGRAMS OF MARCH 1934

C., CBS Network Stations. N.F., WEAF; N.Z., WJZ-both NBC Networks. Eastern Standard Time used exclusively. Sponsors' names appear in parentheses.

A \& PGpsies (Great A \& P Tea Co.)
Monday, 9:00 p.m., N.F.
Abe Lyman's Orch.: Frank Munn (Sterling Products)
Friday, 9:00 p.m., N.F.
Adventures of Tom Mir and his Ralston Straight Shooters (Ralston Purina Co.),
Mon.-Wed.-Fri., 5:30 p.m., also Wed.-Fri., 6:30 p.m., N.F.
Albert Payson Terhume (Spratts Ptd., Ltd.) . . Sunday, 4:00 p.m., N.Z.
Abert Spalding (Fletcher's Castoria)
Wednesday, 8:30 p.m., C.
American Album of Familiar Music (Bayer Co., Inc.) Sunday, 9:30 p.m., N.E.
American Revue (American Oil Co.) Sunday, 7:00 p.m., C.
Amos 'n' Andy (Pepsodent Co.) Daily except Sat. \& Sun., 7 p.m., also western, 11:00 p.m., N.Z.
An Bvening in Parts (Bourjois Sales Corp.)
Armour Program, featuring Phil Baker (Armour Co.)
Baby Roae Mario (Tasty Yeast, Inc.)
Sundey, 8:00 p.m. C.
Friday, 9:30 p.m., N.Z.
Bar \mathbb{I} Days and Nights (Health Products Co.)
Ben Bernie's Blue Ribbon Orchestra (Premier.Pabst Sales Co..... Tues.... Sunday 2.00 .m., N.Z.
Benny Meroar's Review (Plough, Inc.)
Betty Moore, Interior Decorator (Benjamin Moore \& Co.)
Big Ben Dream Drama (Western Clock Co.)
ly except

Big Hollywood Show (Philips Dental Magnesia)
Suuday, 12:15 p.m., N.z.

Bl shof (Ex.Lax Co.)
Bif and Ginger (C.F. Mueller Co.)
Billy Bachelor (Wheatena Corp.)
Monday, 9:30 p.m., C.

Ein Crosb
Monday, Wednesday, Friday, $10: 15$ a.m., C.
Delly except Saturday, 7:15 p.m., N.F.
(John Woodbury Co.) Monday, 8:30 p.m., C.
Boare Carter (Philco Radio \& Television Corp.).......... Daily except Sat. \& Sun., 7:45 p.m., C.
Bobby Benson and Sunny Jim (Hecker H-O Co.) Daily except Sat. \& Sun. 6:15 \& 8:15 p.m., C.
Broadway Melodies (American Home Products Corp.) \quad Sunday, 2:00 p.m., C.
Buck Rogers in the 25th Century (Cocomalt) . Mon., Tues., Wed., Thurs., 6:00 \& 7:30 p.m., C.
Buick Presents (Buict Motor Co.)......
Byrd Expedition Broadcast (General Foods Corp.)......................Saturday, 10:00 p.m., C.
Cadillac Concert (Cadillac Motor Car Co.)..
Camel Caravan (R. J. Reynolds Tobacco Co.)
Sunday, 6:00 p.m., N.z.
Cept
capt. Heary s maxw (House sho Boat (Conoral Foods Corp.)
Carborundum Band (Carborundum Co.)
Charm Secrets (Lavoris Co.)
Chase \& Banborn Hour (Standerd Brands, Inc.)
Cherrolet Program (Chevrolet Motor Co.)
Cities Sormice Program (Cities Service Co.)
Clara, Lu'n' Em (Colgate-Palmolive.Peet Co.)
CLmalene Carntral (The Climalene Co.)
Conoco Travel Adventures (Continental Oil Co.)
Contented Program (Carnation Milz)
Cook Travelorues (Thomas Cook \& Sor)
Monde Sunday, 2:30 p.m., N.E.
Cooting Close-Ups (Pilisbury Elour Mills) Monday, Wednesday, Friday, 11:00 a.m. C.
Corn Cob Pipe Club of Virginia (Larus \& Brothers Co.) Wednesday, 10 p.m., N.F.
Cruise of tho Seth Parker (Frigldaire Corp.)
Dangerous Paradise (John F. Woodbury Co.)
Daath Valloy Days (Paclfic Coast Borax Co.)
Del Monto Ship of Joy (Califorala Packing Corp.)
Djor Kias Recítal (Vadaco Sales Corp.)
Don Quixote Dramatization (Jeddo-Highiand Cosl Co.)
Wednesdey and Friday, 8:30 p.m., N.Z.
Thursday, 9:00 p.m., N.z.
Onirote Thurs..... Monday, 8:30 p.m., N.Z.
Easy Aces (Wyeth Chemical Co.)..... Tuesday, Wednesday, Thu-sday, Friday, 1:30 p.m., C.
Eddie Duchin and his Orchestra (Popsodent Co.)
Tues., Thurs., sat., $9: 30$ p.m., N. z .
Zdmin C. Hill (Barbasol Co.)................ Dally except Saturday \& Sunder. $8: 15$ \& $11: 30 \mathrm{p} . \mathrm{m} . \mathrm{C}$ C.
Bno Crime Claes (Harold 8. Bitche \& Co.).......................................Tuesday \& Wednesday, 8 p.m., N.Z.
FLrst Nighter (Campana Corp.) Friday, 10:00 p.m., N.F.
Fitch Program (F. W. Iltch Co.) Sunday, 7:45 p.m., N.F.

Flodschmann Hour (Standard Brands, Inc.)
Forty-five Minutes in Hollywood (Borden Co.)
Foz Far Trappers (I. J. F'ox. Inc.)
Frank Crummit and Julla Sanderson (Goneral Baking Co.)
Fred Allen's Sal Hepatica Revue (Bristol-Myers Co.)
Fred Waring's Pennsylvanians (Ford Motor Co.) 8undsy 8:30 p. Galazy of Stars (Red Star Yeant \& Products Co.) Tues., Thurs. \& Sat., 11:00 a.m., N.F. Garden of Tomorrow (Tennessee Corp.)
Gems of Melody (Carleton \& Hover Co.)
Gene Arnold and the Commodores (Crazy Crystals Water Co.)
Sun., Wed., Fri., 2:00 p.m., N.F., Mon. \& Thurs., 12 noon, N.Z.
Goldbergs (Pepsodent Co.) Dally except Saturday \& Sunday, $7: 45$ p.m., N.F.
Grand Hotel (Campana Corp.)
Gulf Headuners (Gulf Refining Co.)
Hall of Fame (Lehn \& Fink Products Co.)
Happy Bakers (Continental Baling Co.)
Hoover Sentinels Concert (The Hoover Co.)
Horlick' Adventures in Health (Horlick Malted Milk Co.)
Tuesday \& Thursday, 8:30 p.m., Tuesday, 11:45 p.m., N.Z.
Household Musical Memories (Household Finance Corp.)
Ipana Troubadonrs (Briatol-Mvers Co.)
Irene Rich in Hollywood (Welch Grape Juice Co.)
Jack Armstrong, AllAmerican Boy (General Mills, Inc.)
Jack Frost's Melody Moments (National Sugar Refining Co.
Jane Ellison's Magic Recipes (The Borden Sales Co.)
Jack Pearl (Standard Brands, Inc.)
Joan Marrow (J. W. Marrow Mfg. Co.)
Jergens Program (Andrew Jergens Co.)
Josephine Gibson Hostess Council (H.J. Heinz Co.)
Judy and Jane (J. A. Folger \& Co.)
Just Plain Bill (Kolynos Sales Co.)
Lady Esther Serenade (Lady Esther Co.)
Lazy Dan, the Minstrel Man (American Home Products Corp.)
Leo Relsman' Orch. with Phil Duey (Philip Morris \& Co.)
Let's Listen to Harsis (Northam Warren Corp.)
Iittle Miss Bab-O's Surprise Party (B. T. Babbitt Co., Inc.)
Ifttle Italy (Delaware Lack. \& Western Coal Co.)
Little Orphan Annle (Wander Co.)
Lowell Thomas (Sun Oll Co.)
Madam Sylvia of Hollywood (Ralston Purina Co.)
Malter Program (Malted Cereals Co.)
Manhattan Merry-Go-Round (R. L. Watkins Co.)
Sunday, $9: 00$ p.m., N.F.
March of Time (Remington Rand, Inc.)
Metropolitan Opera Broadcast (American Tobacco Co.)
Minneapolis Symphony Orchestra (General Household Utility Co.)

Molle Show (The Molle Co.)

Music by Gershwin (Health Products Corp.)
Monday \& Friday, 7:30 p.m., N.Z. music on the Air with Jimmy Kemper (Tide Water Oll Sales Co.), Mon., Wed., Fri., 7:30 p.m., O. Myrt \& Marge (Wm. Wrigley. Jr., Co.) Dally except Sat. \& Sun., 7:00 \& 10:45 p.m., O. Mystery Chef (R. B. Davs Co.). Tues. \& Thus., 9:45 a.m., C.; Wed. \& Fri., 9:00 a.m., N.Z.
Nat Shilkret and his Salon Orchestra (Smith Bros.)
National Barn Dance (Dr. Miles Laboratories)
Nestle's Chocolate (Lamont-Corliss \& Co.)..
Old Gold Program (P. Lorillard Co.)
Oldsmoblle Presents (Old's Motor Works)
Orol Feature (J. L. Prescott Co.)
Oxydol's Own Ma Perkins (Procter \& Gamble Co.)
Dally except saturday \& Sunday, 3:00 \& \&:30 D.m., N.F.
Patri's Dramas of Chlldhood (Cream of Wheat Corp.)
Paul Whiteman and his Orchestra (Kraft Phenix Cheese Corp.) …Thursday, 10 p.m., N.F. Pet Mily Way (Pet Milz Sales Corf.) Philadelphia Orchestre (Llagett \& Myers Tobacco Co.)........... Dally except Sunday, 9:00 D.m., O. Playboys (M. J. Breiten-Bach Co.-Popto Mangan)..
Plough's Musical Crulser (Plough, Inc.)
Pond's Program (Lamont-Corliss \& Co.)
Pontiac Presents (Bulck-Oldsmobile.Pontiac sales Co.)
Princess Pat Players (Princess Pat, Ltd.)
Pure Oll Program (Puro Oll Co.)
Real gilt show (Real Silk Hosiery Mills)
(... N.Z.

Richards, Dramatic sketch (Beech-nut Packing Co.)............. Mon., Wed. \& Fri., 8:45 p.m., N. 2
Rin Fudnut Presents Marvelous Melodies (Hudnus Bales Co., Inc.)
Rin Tin Tin Thriller (Chappel Bros., Inc.-Ken-L-Ration)
Rings of Molody (Perfect Circle Co.)
Rome of molody (Porfoct circie co.).... N............ D.................. 8unday, 2:30 p.m., N.Z
Romance of Helen Trent (Edna Wallace Hopper, Inc.)........ Dally except Sat. \& Sun., 2:15 p.m., C.
Roses and Drums (Union Central Life Ins. Co.)
Saturday Night Terraplane Party (Rudson Motor Car Co.)
Sealed Power side 8how (Bealed Power Corp.)
Seven Star Revue (Corn Products Refining Co.)
Sllver Dust (Gold Dust Corp.)
Monder, 8a:urday, 10:00 p.m., N.F.

surer Duat (Cold.Dust Corp.) ...iday, Thuraday \& 8aturday, 7:S0 p.m., 0. Friday, 8:00 p.m., N.E.
Wednesday, 10:00 p.m., C.
Tuesday \& Friday, 9:15 p.m., O.

Binclatr Greater Minetrels (Sinclair Refining Co.)
Monday, $9: 00$. p.m., N.z.
Singing Lady (Kellogg Co.).............Daily except Saturday \& sunday, $5: 30$ p.m., $6: 30$ p.m., iv.z. 8xippy (Philipa Dental Magnesia)......... Daily except Saturday \& Sunday at 5:00 \& 6:00 p.m., O. 8mulng Ed McConnell (Acme White Lead \& Color Works),

Sunday, 6:30 p.m., Wednesday \& Friday, 12:30 p.m. O .
Soconyland Sketch (Standard Oil Co. of N. Y.)
8ongs Your Mother Used to Sing (Wyoth Chemioal Co.)
Stamp Advonturer's Club (Louden Packing Co.) \qquad Thuraday ${ }^{\text {sunday, }}$ 6:00 p.m., 0 .
8weotheart Melodies (Manhattan Soap Co.)
8wift Garden Program (Swift \& Co.)
8wift Review (8wift \& Co.)
Talife Plcture Time (Luxor, Led.)
Texaco Fire Chief Band; Ed Wynn (Teras Co.)
Tito Guizar's Mid-day Sorenade (Brillo MPg. Co.)
o.)...
\qquad Bua, 11:30 a.m., N.F.

Today's Children (Pillsbury Flour Mills Co.)
Dally except sat. of Sun., 10:50 a.m. Nं.
Tony Wons with Keenan \& Philips (S. C. Johnson \& Son)
Tues. \& Thurs., $11: 30$ a.m., $\mathbf{0}$.
Tower Health Exercises (Metropolitan Life Ins. Co.) Dally except Sun., 6:45 to 8:00 a.m., N. $\overline{\text { P }}$.

Trade \& Mark (Smlth Brothers, Inc.)

True Story Court of Human Relations (True Story Pub. Co.)
Voice of Firestone (Firestone Tire \& Rubber Co.)
Voice of Romance (Rteser Co., Inc.)
Wardon Lawes in "20,000 Yearin in Sing Sing" (Wm. R. Warner Co.) Saturdas, 8:45 p.m., C.

Ward's Family Theatre (Ward Baking Co.)
Waves of Romance (Rieser \& Co.)
Wayne King's Orchestra (Lady Esther Co.)
White Owl Program (General Cigar Co.)
Wildroot Institute (Wildroot Co.)
Will Osborne and His Orchestra (Corn Products Refining Co.) Mon., Wunday, Fri., $10: 45 \mathrm{p}$. $\mathrm{a} . \mathrm{m} . \mathrm{N} . \mathrm{F}$
Wizard of Oz_{2} (General Food Corp.) Monday, Wednesday \& Friday, $\mathrm{E}: 4 \mathrm{~S}$ p.m., $\mathrm{N} . \mathrm{F}$.
Vince Program with John McCormack (Wm. R. Warner Co.)
Weduesday, 9:30 p.m., स.Z.
Volce of Experience (Wasey Products, Inc.),
Daily except Sun., 12 noon;'also Tues., 8:30 \& 11:45 p.m., Thurs., 8:30 p.m., C.
Teast Foamers (Northwestern Yeast Co.)
Ye Happy Minstrel and Tiny Band (Wheatena Corp.),
Mon., Wed., Sat., 6:45 p.m.; Tues. \& Thurs., $4: 45$ p.m., C.
Zoel Parenteau's Orchestra (Worcester Salt Co.) Friday, 6:45 p.m., C.

For some auditors, listening to a favorite program was a ritual. At 7:00, for example, everyone stopped everything and the country lis-
tened to Amos ' n ' Andy. Here are the programs of a typical 1934 weeknight (Wednesday in this instance), and the times you tuned them in.

:00 p.m.	Myrt and Marge	
7:15 p.m.	Billy Batchelor	F.
7:15 p.m.	Gems of Melody	N.z.
7:15 p.m.	Just Plain Bill	
7:30 p.m.	Buck Rogers in the 25th Cen	
:30 p.m.	The Molle Show	
7:30 p.m.	Music on the Air with Jimmy Kemper	
7:45 p.m.	Boake Carter	
7:45 p.m.	Goldberg's	N.F.
7:45 p.m.	Irene Rich in Hollywood	N.z.
8:00 p.m.	Eno Crime Clues	N.z.
8:00 p.m.	Happy Bakers	
8:00 p.m.	Royal Gelatin Review with Jack Pearl.	
15 p.m.	Bobby Benson and Sunny Ji	
15 p.m.	Edwin C. Hill, "The Human Side of the News"	
8:30 p.m.	Albert Spalding	
8:30 p.m.	Dangerous Paradise	N. 2.
8:30 p.m.	Lady Esther Serenade	N.F.
8:45 p.m.	"Red Davis" Dramatic Sketch	N.z.
:00 p.m.	Ipana Troubadours	
9:00 p.m.	Philadelphia Orchestra	
9:00 p.m.	Warden Lawes in " 20,000 Years in Sing Sing".	
30 p.m.	Fred Allen's Revie	
	Vince Program with John McCormack	
9:30 p.m.	White Owl Program	
10:00 p.m.	Plough's Musical Cruiser	N.Z.
10:00 p.m.	Corn Cob Pipe Club	.F.
00 p.m.	Old Gold Program	
0 p.m.	Conoco Adventures	N.z.
45 p.m.	Myrt and Marge	
00 p.m.	Amos ' n ' Andy.	N.E.
m	Edwin C. Hill, "The Human Side of the New ${ }^{\prime \prime}$	

If you do it yourself around the home, you'll want a copy of the 1960 edition of 1001 II ow-to Idcas (Vol. 2, No. 564). Compiled by the editors of Science and Mechanics Magazine-The Magazine That Shows You How-1o01 IIow-to Ideas contains tested tips and shortcuts that will save you
many, many hours on your projects-and dollars, too. Whatever area of do-it- (or make-it-) yourself you're interested in, you'll find at least a score of ideas in this book that will show you faster, casier, thriftier ways tc do it.

Get a zopy now.

Get your copy of the 1960 edition from your newsdealer, or send 75 t for a copy to SCIENCE AND MECHANICS 450 E. Ohio St. Dept. 332 Chicago 11, Illinois

THE FRABIJAN'S BUSTED? Don't Throw It Away, Fix It - Subscribe To
 SCIENCE and MECHANICS
 The Magazine That Shows You How
 - Every issue packed with useful, money-saving information on home repairs and upkeep
 - Every issue, projects to build-boats, household accessories, workshop and hobby equipment
 - Every issue, news on science and industry, car test reports
 - Every issue, everything under the sun from satellites to sofas to surfboarding

Science and Mechanics has always been a leader in its field-readers' mail says it's the leader-but the NEW Science and Mechanics is bigger and better than ever. Now a Davis Publication, the NEW Science and Mechanics has the same solid substance, the same respect for facts it's always had. As before, it publishes the latest news on science and industry (written to relate to your needs and interests), plus completely detailed do-it- and make-ityourself project articles. But under its new
aegis, Science and Mechanics has more editorial content than ever before, and it's presented in new, more entertaining and more attractive ways . . . And in every issue of the NEW S\&M there's a big BONUS feature.

For one of the most interesting experiences of your magazine-reading life, and for one of the most useful and practical magazine purchases you'll ever make, subscribe now to the NEW S\&M. The first tip you use from the many in each issue will more than repay you.

The April Issue, Now On Sale, Includes:

Fold-Out Blueprints for minature, battery.powered tape recorder. can bo built
for about $\$ 35$. Completoly portable, compatible-can be played back on ordinary home recorder at $33 / 4$ ips. Equivalent of commercial units costing $\$ 100-\$ 250$.
3-OCTAVE, 120 -BASS CHORD ORGAN. Separate balance control for treble and bass. More chord selection (though less tone control) than $\$ 900$-plus commercial models. Will cost approximately $\$ 50$ to build: easily equivalent of $\$ 250$ commercial organs.
Plus Proiect Articles on onetube tin can receiver. Inexpensive broadcost-band roceiver pulls in stations 70 miles distant.
TRANSMITTER FOR THE NOVICE. Compact 75 -watt transmitter that even a Novice YL can build in a few hours (in fact, one did). The rig puts out a good signal on 40 and 80 meters, features bandswitching, and-with suitable power supplies-can be used either at home or in a car.

USE THE COUPON INSERTED OPPOSITE THIS PAGE TO SUBSCRIBE TODAY

VHITIES RADO LOG
 (3) An up-to-date broadeasting directory AM, FM, TV and Short-Wave Stations Vol. 37

Every effort hos been made to ensure occuracy of the information listed in this publicotion, but absolute accuracy is not guaranteed ond, of course, only information available up to press-lime could be included. Copyright 1960 by Scierce ond Mechanics Publishing Co., a subsidiory of Davis Publications, Inc., 450 East Ohio St., Chicogo 11, Ill.

QUICK REFERENCE INDEX

U.S. and Canadian AM Stations by Frequency 161
U.S. and Canadian AM Stations by Location 170
U.S. and Canadian AM Stations by Call Letters. 178
Canadian Short-Wave Stations 185
World-Wide Short-Wave Stations 186
United States FM Stations 188
Canadian FM Stations 190
United States Television Stations 190
Canadian Television Stations 191

U. S. and Canadian AM Stations by Frequency

U.S. stations listed alphabetically by states within groups, Canadian stations precede U.S. Abbreviations: Kc., frequency in kilocycles; W.P., watt power; d-operates daytime only. Wave length is given in meters

K. Wave Length KSIB Jamestown, N.D. WFRM Coudersport. Pa. WAEL Mayaguez, P.R. WREC Memphis, Tenn. KROD EI Paso, Tex. KERB Kermit, Tex. KTBB Tyler, Tex.
$610-491.5$
CHNC New Carlisle, Que. CJAT Trail, B.C.
CKTB Thompson, Man WKTB St. Catharines, Ont. KAVL Birmingham, Ala. AV- Lancaster, Calif. KFRC San Francisco. Callif. WCKR Miami. Fla. WCEH Hawkinsville, Ga KUAM Agana, Guam KRUS Russeliville, Ky. KOAL Duluth, Minn. WOAF Kansas City, Mo WGJM Havre, Mont. WGIR Manchester, N.H. KGGM Albuquertue, N.Mex. WAYS Chariotte, N.C. WT Columbus. Ohi HIT Hadolphia, Pa KILT Houston, Tex. KVNU Logan, Utah KEPR Koanoke, V a.

620-483.6

CKCK Regina. Sask. KNGS Hantord, Ariz. KNGS Hanford, Calif.
KWSO Mt. Shasta. Cal KSTR Grand Junetion Calif. 1000 d WSUN St. Petersburg. Fla. WTRP LaGrange, Ga. KWAL Wallace, Idaho WTMT Louisville, Ky, WLB2 Bancor Maine WJDX Jaekson, Miss WVNJ Newark. N. WHEN Syratuse, N, Y WONC Durham. N.C. KGW Portland, Oreg. WGAY Gayce, S.C.
WATE Knoxville, Tenn KWFT Wichita Falls, Tex WCAX Burlington, Vt. WWNR Beckley, W.Va,

630-475.9

CFCO Chatham. Ont.

CHLT Sherbrooke, Que CJET Smith Falls, Ont CKRC Winnipeg. Man CKOV Kelowna. B,C. CKYL Peace River, Alta, WAVU Albertvilie, Ala. WJOB Thomasville. Ala. KJNO Juneau. Alaska KIMA Magnolia. Ark. KIDD Monterey. Calif KHOW Denver. Colo. WMAL Washington. O.C. WSAV Savannah, Ga
KIDO Boise KIDO Boise. Idaho KTIB Thibodaux. Ky. WJMS Ironwood Mich KDWB So. St, Paul, $\mathrm{H}_{\mathrm{M}} \mathrm{inn}$. KGVW Bolgrade, Mont. KOH Reno. Nev. KLEA Lovinaton WIRC Hichory, N.Mex. wMFO WIIming. wEil Serantongon, N.C. WPRO Scranton. Pa. WGEX pierrience. R.I. KMAC San Antonio Tex KGDN Edmunds. Wash KZUN Opportunity, Wash.

640-468.5

CBN St. John's, N.F. Wol Ames, lowa
WHKK Akron, Ohio
WNAO Norman, OkI

650-461.3

KPOA Honolulu, Hawall KSM Nashville, Tenn.

660-454.3
KFAR Fairbanks, Alaska KOWCH Omaha, Nebr. WRCA New York. N.Y.
WESC Greenville, S.C. KSKY Dallas. Tex.

10000
10000
50000
250 d

10000
$500 d$ 5000 d 50000
$5000 d$
W.P.|Ke. Wavelength 5000
1000 d 1000 d
1000
5000
5000
1000 d
1000
1000

5000
1000
1000
1000
5000
5000
5000
1000
5000
5000
5000
5000
$500 d$
500 d
1000
1000
$500 d$
$500 d$
5000
5000
5000
1000
5000
5000
.5000
5000
5000
5000
5000
1000
5000
5000

$690-434.5$

CBU Mancouver, B.C.	10000
CBF Montreal, Que.	50000

KBEA Benton, Ark. KAPI Pueblo, Cole. WAOS Ansonia. Conn.
5000
5000
1000
5000 d 5000 1000 d
1000
1000
$500 d$
5000
5000
5000
5000
5000
5000

0000

00070

\section*{| 5000 | |
| :--- | :--- |
| 000 | |
| | |
 1000

500 d}

5000 5000

5000
5000
1000
5000
500
E.I.

1000
5000
5000

1000
 5000

1000
1000

1000 d

1000
1000 d
10000
1000
5000
$\begin{aligned} & 5000 \\ & 5000\end{aligned}, 72$
5000

5000 | 500 | 73 |
| :---: | :---: |
| 000 | C |

5000 CKDM Dauphin. Man. 1000
500 CKLG No. Vaneouver. B.C.
$\begin{aligned} 5000 & \text { KFQO Anchorage, Alaska } \\ 500 & \text { WJMW Athens, AM }\end{aligned}$
000 d KNBY Newport, Ark.
1000 WKTG Thomasville, Ga.
500 d KBLR Goodland, Kans.
5000 WFMW Madisonville. Ky. WMTC Vancleve, Ky. KTRY Bastrop, La.
1000d
500 d WMMS Bath, Maine
WM. 10000
$1000 d$ 1000d 1000 d
1000 d 1000 d

250 d

1000 d

250 d
250 d $\begin{array}{lr}\text { WACE Chicopee, Mass, } & 1000 \mathrm{~d} \\ \text { KWRE Warrenton. Mo. } & 500 \mathrm{~d}\end{array}$
10000
50000
50000
5000 d
1000
1000 d

152

Kc. Wave Length KUEQ Phoenix, Arix.
KBIG Avalon, Calif. KBIG Avalon, Calif.
KCBS San Franeiseo, KSSS Colo, Springs, Colo. KVFC Cortoz, Colo. KYME Boise. I daho WVLN Olney, Ill. WNOP Newport, Ky. WFRB Frostburg. Md. WTAO Cambridgo, Mass. WGSM Muntington. N.Y.
WMBL Morchead City, N.c. WPAQ Mount Airy, N.C. KRMG Tulsa, Okla. WIBS Santurce, P.Rico WBAW Barnwell, S.C
WIRJ Humbolt. Tonn. WJIG Tullahoma, Tenn. KTRH Houston
$750-399.8$

WSB Atlanta, Ga,	50000
WBMD Baltimore, Md,	1000 d
KMMJ Grand Island, Neb.	1000
WHEB Portsmouth, N.H.	1000
KSEO Durant, Okla.	250 d
KXL Portland, Oreq.	10000
WPOX Clarksburg. W.Va.	1000 d
$760-394.5$	
KGU Honolulu, Hawaii	10000
WJR Detrait, Mieh.	50000
WCPS Tarboro, N.C.	1000

770-389.4

KUOM Minneapolis, Minn. 5000d WCAL Northfield, Minn. KOB Albuquerque, N. Mex.
WABC Now York, N.Y. KXA Seattle, Wash.

```
780-384.4
```

WBBM Chicage. Ill. WJAG Nerfalk, Neb
WCKB Ounn, N.C. WBBO Forest City, N.C.
KSPI Stillwater, Okla. WARL Arlingto

CBY Corner Brook. N.F.

 CKMR Newcastle. N.CKSO Sudbury, Ont. WTUG Tusealoosa, Ala KCEE Tueson, Ariz. KOSY Texarkana, Ark
KDAN Eureka, Calif. KABC Los Angoles. Calif. WLBE Leesburg, Fla.
WPFA Pensacola, Fla. WPFA Pensacola, F
WQXI Atlanta. Ga. WGRA Cairo, Ga. KXXX Colby, Kans.
WAKY Loulsville, Ky. WRUM Rumford, Me. KGHL Billings, Mont. WWNY Watertown. N. Y.
WLSV Wellsville, N. Y. WKLM Wilmington, N.C. KXGO Fargo. N. Dak. KWIL Albany, Oreg.
WAEB Allentown. Pa. WAEB Allentown.
WPIC Sharon. Pa. WEAN Providence. R.l. WWES Bamberg. S. C.
WETB Johnson City. Tenn. 1000 d WMC Memphis, Tenn. KTHT Houston, Tex. KFYO Lubbock. Tex. WTAR Norfolk. Va. KNEW Spokgham; Wash WEAO Spukir Wash. WEAU Washington. Wis.

800-374.8

CHAB Moose Jaw, Sask.

 CKOK Penticton, B.C.CFOB Ft. Franes, Ont. CFOB Ft. Frances, On
CJBQ Belleville. Ont. CKLW Windsor, Ont. CHRC Quebec, Que. CJAD Montreal, Que.
VOWR St. Johns, N.F. WHOS Decatur, Ala. WMGY Montgomery, Ala KAGY Juneau, Alaska KAGH Crassett, Ark.
KVOM Morrilton. Ark. KiKK Bakersfieid. Cabif, WHiL Brighton, Colo. WMBM Miami Beach. Fla. WSUZ Palatka, Fia. WJAT Swainsboro, Gia.
KX1C Inwa City, Iowa
W.P.
${ }^{100000}$

Kc. - Wave Length W WBOK New Orleans, La.
WCCM Lawrence. Mas. KREI Farmington. Mo. KDBM Dillon, Mont. WKDN Camden, N.J. KPOQ Portland, Oreg,
WCHA Chambersburg, DZPI Manila. P.I. WEAB Gillon, S.C. WOEH Sweotwater, Tenn. KOOD Dumas, Tox. WSVS Crewe, Va. WKEE Huntington. WDUX Waupaca, Wis. 810-370.2 CFAX Saanich. B.C.
KGO San Franclseo, Calif. KGO San Franelseo, Calif. KCMO Kansas City, Mo. 50000 WKB Schenectady. N.Y.C. 50000 WCEC Rocky Mount, N.C. 1000 d
WEDO MaKeesport, Pa. 1000 d $\begin{array}{ll}\text { WEDO MaKeespert, Pa. } & \text { I000d } \\ \text { WKVM San Juan, P.R. } & 25000\end{array}$ 820-365.6
WAlT Chicago, Ill. WIKY Evansville. Ind. WOSU Columbus, Ohio KIKI Honolulu. Hawail WBAP Ft. Worth. Tex.
830-361.2
W.P.
1000 d
1000 d
1000 d
1000 d
1000 d
250 d
1000 d
1000 d
10000
1000 d
250 d
1000 d
250 d
250 d
1000 d
1000 d
1000 d

1000 d
50000
250 d
500000
50000
1000 d
1000 d
1000 d
25000

5000 d
5000 d
250 d
200 d
250
250
50000

WCCD Minnaapolis, MInn. 50000
KBOA Kennett, Mo,
WOYC WNYC New York, N.Y. 1000d 840-356.9
 WHAS Loulsville,
WVY.
WVD Stroudsburg, Pa. $\begin{array}{r}50000 \\ \text { 250d }\end{array}$ 850-352.7

860-348.6

CIBC Taronto, Ont. WHRT Hartsello.

 WAMT Opp, Ala. KIFN Phoenix, Ariz. KWRF Warren, Ark. KTRB Modesto, CaliWKKO Cocos, Fla. WERD Atlanta, Ga. WDMG Douplas. Ga,
WMPI Marion, ind. KWPC Museatine, Iowa
KOAM Pittsburg, Kans KOAM Pittsburg, Kans
WSON Henderson, Ky. WAYE Dundalk. Md. WSBS Gt. Barrington, Mass.
KNUJ New UIm. Minn. WMAG Forest. Miss. WFMO Fairmont. N.C.
WAMO Homestead. Pa. WTEL Philadelphia. Pa,
WLBG Laurens. S . C . WLBG Laurens, S.C.
WIVK Knoxville. Tenn WMTS Murfreesbore. Tenn. KFST Ft. Stockton. Tex
KPAN Hereford. Tex. KPAN Hereford. Tex. KSFA Natogdoches, Tex.
KONO San Antonio. Tex. KWHO Salt Lake City

Utah WEVA Emporia, Va. WOAY Oak Hill. W,Va.
WFOX Milwaukee, Wis.

870-344.6

KIEV Glendale. Callf. \quad 250d WWL New Orleans, Ld. WKAR E. Lansing, Mich. WHCU Ithaca. N.Y WGTL Kannapolis, N.C KJIM Ft, Worth, Tex. WF LO Farmville, Va. $880-340.7$

000d

50000

50000
2500
10000 d

$\underset{\substack{\text { loood } \\ \text { loood }}}{ }$
1000 d
1000 d
250 d
$250 d$
10000
10000
1000 d
$1000 d$
$5000 d$
5000 d
$250 d$
$250 d$
10000
10000
500 d
500 d 500d
$250 d$
1onod
500 d
1000 d
250d
250 d
1000 d
1000 d
1000 d
250 d

10000
1000
1000
5000
1000
50000

WCRS New Yerkg, N.Y. $500 n \mathrm{O}$

Kc. Wave Length WRRZ CIInton, N.C WRFD Worthington, OhJo

890-336.9
WLS Chicapo. III. KBYE Okla. City, Okla

900-333.1
CKTS Sherbrooke, Que. CHNO Sudbury ont
CJBR Rimouski, Qu
CKJL St. Jerome, Que. CJVI Victoria, B.C. CKBI Prince Alberf, Sask WATV Birmingham, Al WGOK Mobile, Ala. wozk ozark, Ala
KPRB Fairhanks, Alaska KHOZ Harrison. Ark. KBIF Centerville, Calif. WSWN Belle Glade, Fla.
WMOP Ocala, Fia.
WCGA Calhoun, Ga,
WCRY Macon, Ga.
JJIV Savannah, Ga.
KSIR Withlta, Kan. WKYW Louisvillo, Ky. WLSI Pikoville, Ky. KREH Oakdale, La, WCME Brunswick, Malne WATC Gaylord, Mieh. KTIS MInneapolis, Minn. WDOT Greenville, Miss KFAL Fulton, Mo KJSK Columbus, Nobr WOTW Nashau, N.H. WSPN Saratoga Sprgs.. N.Y WAYN Rockingham, N.C. WIAM Willamston, N.C. KFNW Fargo, N. Dak t, Ohio WCPA Clearfield. Pa. WFLN Philadelphia, Pa WCOR Lebanon, Tonn. KALT Atlanta, Tex. KMCO Conroe, Tex. KFLD Floydada. Tex. WAFC Staunton, Va. KUEN Wanatchee, Wast

910-329.5
CJOV Drumheller, Alta. CKLY Lindsay. On CHRL Ramoons, B.C.
CHRL Roberval. Que.
KLCN Blytheville, Ark. KAMD Camden. Ark. KDEO EI Cajon. Calif KOXR Oxnard, Callf. KPOF nr. Donver, Colo WHAY New Britain, Conn WGAF Valdosta, Ga. WSUI Law city, III WLCS Baton Rouge. La WABI Bangor, Maine WFDF Fllnt, Mich KOYN Billinan. Miss, KOYN Billongs, mont. KBIM Roswall Mont. WLAS Jacksonville. N.C. WPFB Milddetown, Ohio KGLC Mlaml, Okl KURY Brookings, Oreg. WGBI Scrantón. Pa, WPRP Ponce. P. R WORD Spartantburg. S.C. WJHL Johnson City. Tonn. WEPG S. Pittsburgh, Tenn. KRRV Sherman. Tex. KALL Salt Lako Clity, Utah WWRI White RIver Junction WRNL Rlichmond, Varmont 000 d Va. KDRD Pasto. Wha KODE Rasto. Wash. KISN Vancouver. Wash. WOOR Sturgcon Bay, w

920-325.9
CJCH Hallfax, N.S. KNX Wostock, N.B. WCTA Adalusla, Ala.
$1000 d$
$500 d$
250d
250
250 d
250 d
1000 d
500
$250 d$

1000
1000
500
5000
10000
5000
5000 d
1000
5000
1000 d
5000 5000 000d 5000 5000 5000
5000 5000
5000 000d 1000 d

5000 d
 1000 d

 1000 5001000
5000
5000
1000

000 K

500 d
1000
1000
1000
1000
\qquad
W.P. 1000d

50000
1000 d

1000d

1000
5000
10000

Kc. Wave Length W.P. WWWR Russellville, Ala, 1000 d
KARK Little Rock. Ark.
5000 KDES Palm Sprifigs, Calif. 1000 d KIUP Durango. Cola. Car. 5000 KREX Grd, Junttion Colo. 5000 KLMA Lamar, Colo. WGST Allanta, Ga, KAHU Wainhau Hawail WBAA W. Lafayette, Ind WTCW Whitesturg, Ky. WBOX Bogalusa. La w KOHL Faritault, MInn. KRAM Las Vegas, Hiov. KOLO Reno. Nor.

KQEO Albuquerque, N.M w
w
w

K
W

KGAL Lebanenus, Ohio
WKVA Lwontown
WJAR Providence, R.I. KEZU Rapid City, S.Dak, WLIV Llvingston, Tenn KECF EI Paso. Tex KTLW Texas Cliy, Tex. KITN Olympla. Wash. WMMN Falrmont, $\mathbf{N}, \dot{\text { Va }}$. WOKY hilwaukee, Wis.

$930-322.4$

CFBC Salnt John, N.B,
$1000 d$
$1000 d$
500d CJON St. John's. M.F.
500d KTKN Ketchikan, Alask 1000d KAPR Douglas, Aciz. 1000d 1000d

d
k 1
k 1
w
w

```
100
```

1000 $1000 d$
$1000 d$

UJ Los Angeles, Calif.
UP Durango, Cofo. KSB Milford, Del. 5000

10000 100 | 5000 | K |
| :--- | :--- |
| 1000 | \mathbf{W} |
| 5000 | w |

1000 KFB Vernon, Sask. 1000 KFRE Fresno, Calif. WMAX Macon, Ga,
000 d KIS Mernon, III,
1000 WYLD New Orleans, La. KXJK Forrest Clty, Ark,
OOD KAHI Auburn. Cablf. 1000
$\begin{array}{ll}\text { K00d KIMN Denver, Calo, } & 1000 \mathrm{~d} \\ \text { WIM } & 5000\end{array}$
1000 WLDF Orlando. Fia, Fla. 1000 d

\section*{Od 	W
K	
K	
K	
:---	
W K KL WA	}

10000 WAAF Chleage, III. 500 d
$\begin{array}{rlr}1000 & \text { KOEL Oelwein. lowa } & 5000 \mathrm{~d} \\ 1000\end{array}$

1000	KOEL Oelwein. Iowa	1000	C
2500	KJRG Newton, Kins.	500 C	W
5000	WBVL BarbourviUo, Ky,	1000 K	K

P. 5000 KEAP Frosno, Cafif. 5000 KGLN Los Angeles, Callf. 5000 00 $\begin{array}{lll} & \text { KLIK Jefferson City, Mo. } 5000 \mathrm{~d} & \text { WDC Washington, O.C, } 5000 \\ \text { WBBE Gainesville, Fia, } 5000 \mathrm{~d}\end{array}$

000	
WPET Greensboro, N.C.	500 d
W WCC Barnesboro, Pi.	500 d WK Pompano Beath, Fla, 1000 d

 $500 d$
$500 d$
$000 d$ $\begin{array}{lr}\text { WITY Danvilie, Ill, } & 1000 \\ \text { KDKA Shreveporl, La, } & 5000 \mathrm{~d} \\ \text { WCAP Lowell, Mass. } & 1000 \mathrm{~d}\end{array}$ $\begin{array}{ll}\text { WPBC Minneapolis, MInn. } 1000 \mathrm{~d} \\ \text { WAPF McComb. Miss. } & 1000 \mathrm{~d}\end{array}$ $\begin{array}{lll}\text { KMBC Kansas City, Mo, } & 5000 \\ \text { KSGM Ste. Genuviove, Mo. } & 500\end{array}$ $\begin{array}{llr}\text { KMER Clovis, N.Mex. } & 1000 \\ \text { KMIN Grants. N. Mex. } & 1000 \mathrm{~d} \\ \text { WTRY Troy. N, Y. } & 5000\end{array}$ WKLM Wilmington, N.C. se00d
WAAA Win.-Salem, N.C. $\quad 1000 d$ 5000
5000 5000
1000
5000 $\begin{aligned} 500 & \text { WBRC BIrmingham. Ala, } \\ 1000 & \text { WMOZ Mobile Ala }\end{aligned}$ 00 WSIX Nashville, Tenn. $\quad 5000$ WELI Now Haven, Conn.
1000 WGRO Lake City, Fla. WMEK Chase City, Va. $\begin{array}{lll} & 500 \mathrm{~d} \\ \text { KUTI Yakima, Wash. } & 5000 \mathrm{~d} \\ \text { WHAW Weston. W.Va, } & 1000 \mathrm{~d}\end{array}$ 00 WPRE PrairieduChlen, WIs. 500d 00 990—302.8 0 d KFVS Cape GIrardeau, Mo. 1000 WBZY Torrington, Conn, 1000 d 1000 d KWYK Farmington. N.Mex. 1000 d WHOO Orlando, Fla. 10000 $\begin{array}{llrll} \\ \text { WFFTC Kinston, N.C. Y. } & 5000 & \text { WCAZ Carthage, III. } & \text { I000d } \\ \text { WWST Wooster, Ohio } & 1000 \mathrm{~d} & \text { WITZ Jasper, Ind. } & 1000 \mathrm{~d}\end{array}$ 0 KLAD Klamath Falls, Oreg. 5000 d WRSL Russell, Kans, 250 d WADP Kane, Pa. WA
WB
WB KGM Mi. Pleasant, Tex.
KGKL San Angelo, Tex.
KOVO Provo Utah

50000
10000
1000
50000
50000
50000
50000
1000 10000

1000
5000 d
1000 d
000
d
100

10000
1000
250
10000
1000

000
WWAY Canton, N.C. WATH Athens, Ohlo KAKC Tulsa. Okla,
KOIN Portland
WWSW WWSW Plitsburgh. Pa.
WNMX Florento. S.C.
KNOK Ft Wor. KNOK Ft. Worth. Tox.
KREM Snokane, Wash.
WWY WWYD PInevilie, W. Va,
WHA Madison. Wis. d W AX Jacksonville, Fla.
WKY Sarasota Fis WMGR Bainbrldge Ga.
KSEI Pocatello, Idaho WTAD Quincy, Illaho WKCT Bowhing Green, Ky. WREB Holyoke, Mass. . 10 WBCK Battle Crenk, Mieh. 1000 KSL Jackson, Miss. MoC Poplar Blivf. Mo. $\quad 1000$
KWO KOFI Kalispell. Nont. 5000 KOGA Ogallala, Nebr. WWNH Rochester, N.H.
WPAT Paterson.
WBEN Butfalo, WIST Charlote, M.Y. WRRF Washington. N. WEOL Elyria, Ohio WKG Oklahoma City. Okla. WCNR Bloomsburs. Pa. KSDN Aberdeen, S.D. KDET Center. Tex. KENY Bellingham-Ferndale WSAZ Huntington, W.Va. 5000 LBL Auburndale, wis.
$940-319.0$
CBM montreal, aos.

ESA Charlerni, P, La.
WIPR San Juan, P.R.
KIXZ Amarillo. Tex.
950-315.6
KNB Campbellion. N.B.
5000 d
5000 d
500 d
50000
5000
5000
5000

1000
5000
1000

$$
\begin{array}{r}
1000 \\
1000 \mathrm{~d} \\
1000
\end{array}
$$

Kc. Wave Length W.P.jKc. Wave Length

KMLW Marlin, Tex. $\quad 250 \mathrm{~d}$ WELK Charlottesville, Va. 1000 d WCST Berkeley Sprgs.,W.Va. 250d WSPT Stevens Pt., Wis. I000d

1020-293.9

KPOP Los Angeles, Calit. WPEO Peoria, III. WPEO Peoria, III. KDKA Pittsburg
$1030-291.1$
WBZ Boston, Mass.
WBZA Springfold, Mass 50000 KOB Albuquerque, N.Mex. KCTA Corpus Christi, Tex, 50000d

1040-288.3
KHVH Honolulu, Hawaii
WHO Des Moines, lowa
KIXL Dallas, Tex.
WIVI Christiansted, V.I.
1050-285.5
CFGP Grande Prairie. Alta. 10000
CKSB St. Boniface, Man. 10000 CJIC Sault Ste. Marie WRFS Alexander City,
WCRI Seottsboro, Ala.
KVLC Little Rock, Ark.
KVLC Little Rock, Ark,
KOFY San Mateo, Ca
KWSO Waseo, Callif.
KLMO Longmont, Colo
WISB Crestivew, Fla. WHBO Tampa, Fla. WRMF Titusville, Fla, WJAZ Albany, Ga. WAUG Augusta, Ga. WBIE Marietta, Ga.
KZIN Coeur D'Alene, Idaho WDZ Decatur, III. KNCO Garden City, Kans. WZIP Covington, Ky. KLPL Lake Providence, La. KCr Shreveport, La. WGAY Silver Spra.o Md. WPAG Ann Arbor, Mich. KLOH Pipestone, Minn. WACR Columbus, Miss. KSIS Sedalia. Mo.
WRBNC Cas Vegas. Nev WSEN Baldwinsuille, WMGM New Ynik. WBTL Farmville, N.C WLON Lincolnton N. WWGP Sanford, N.C. KCGO Lawton, Okla
KUBE Pendieton, Orea. KEED Spring teld, Orag. WBUT Butler, Pa.
WLYC Williamsport. Pa WSMT Sparta, Tenn. KLEN Killeen. Tex. WGAT Gate city, Va. WBRG Lynchburg, Va. WGMS Norinik, Va. KNBX Kirkland, Wash. WEEF Parkershurg. W.V WLIP Kenosha, Wis. KWIV Douolas, Wyo.

1060—282.8
CFCN Calgary. Alta. KPAY Chico, Que. WNAY Chico, Calif. WHFB Benton Harber.
wMAP Monroe N C Mich, 1000 d
WMAP Monroo, N.C. $\begin{array}{ll}\text { WCMW Canton, Ohio } & 1000 \mathrm{~d} \\ \text { WRCV Philadelphia. Pa. } & 50000\end{array}$

1070—280.2

CBA Sarkville, N.B. WAPI Birmingham. Ala KNX Los Angeles. Calit. WVCG Coral Gables. Fla, KFBI Wichita, Kans. KHMO Hannibal, MO. WHPE High Point, N.C. WUlA Memphis, Teili.
KGFY Alice. IEx.
1080-277.6
CHED Edmonton. Alla,

1000 d
1000 d
250 d 1000 d
$1000 d$
$250 d$
500 d
1000 d
000 d
500 d
250d
1000 d
0000d
1000d
1000 d
250 d
$250 d$
250 d
1000d
1000 d
1000 d
1000 d
1000 d
500 d
1000 d N. Y.

$$
\begin{aligned}
& V \\
& v \\
& v
\end{aligned}
$$ 000d 10000

50000
$500 d$
500 d
000d
1000 d
250 d
2500d
1000 d
1000 d
1000 d
250d
1000 d
1000 d
$250 d$
$250 d$
2500d
1000 d
1000 d
1000 A
1000

- 1000 d

000d
250 त
250 d
d

10000
5000
10000
50000
d

50000
5000
50000
50000
50000
50000
10000
10000
50000
50000
10000
10000
5000
10000
50000
50000
1000
10000

KSCo Santa Cruz, Calit. wTIC Hartford, Cenn. WKLO Louisville, Ky. WINE Kenmore, N.Y. W EWO Laurinburg, N.C. WEEP Pittsburgh. Pa. KRLD Dallas. Tex. 1090-275.1
CHEC. Lethbridge, Alta. CHIC Brampton, Ont. CHES St. Jean. Que. WCRA Effingham. III. KNWS Waterloo, lowa WBAL Baltimore. Md. WILD Boston, Mass. WMUS Muskegon. Mich. KING Seattle, Wash. $1100-272.6$
KJBS San Francisco, Calif. 1000 d WLBB Carrollton. Ga. WHL Hempstead, N.Y WGPA Bethlehem. Pa.
1110-270.1
CFTJ Galt, Ont.
$250 d$
250 d
1000 d
5
1000
50000
5000
250 d
1000 d
1000 d
10000
1000 d
50000
W.P.

Kc. Wave Length WRNO Orangeburg, S.C.
WTYC Roek Hill, S.C.
WSNW Senees Township,
WAPO Chattanth Carooga, Tenn.
WCRK Moristown, Tenn.
WTAW Bryan, Tex,
KCGT Corpus Christi, Tex.
KOYE EIPaso, Tex.
KJBC Midland, Tex.
KPNG Port Neches, Tex.
KOLJ Quanh. Tex.
KOFE Pultman. Wash.
KAYO Seattle. Wash.
KKEY Vancouver, Wash.
WELC Weleh, W.Va.
WAXX Chippewa Falls, Wis.

W.P.	Kc.	Wave Length	W.P.
5000	KZEE	Weatheriord,	250 d
000d	WLSD	Big Stone Gap.	000d
	WFAX	Falls Church, V	1000d
1000d	KASY	Auburn, Wash.	250 d

1230—243.8

10000 d
1000
0d
150 $\begin{array}{lr}\text { FCW Camrose, Alta. } & 1000 \\ H F C \text { Churehill, Man. } & 250 \\ \text { FKL Schefferville, Que. } & 250\end{array}$ CFGR Gravelbourg, Sask. $\quad 250$

500 d	CFGR Gravelbourp, Sask.	250
1000 d	CJBG Dawson City, Yukon T. 100	
5000	CFPA Belleville, Ont.	250

5000 CFPA Port Arthur, Ont, 1000
1000 d
1000 d CKEC New Glasgow. N.S. 1000 WAXX Chippewa Falls, Wis. 5000 d CKLD Thetford Mines, Que. 250 WISN Milwaukee. Wis. 5000
.

1160-258.5
WJJD Chicago, tIt. Utah 50000
$1170-256.3$
CFNS Saskatoon, Sask.
WCOV Montoomery, Ala, KCBQ San Diego. Calif. KLOK San Jose. Calif KLBH Mattoon. Ill KSTT Davenuort, Iowa KVOO Tulsa, Okla.
WLEO Pones. P.R. KPUG Bellingham. Wash,
WWVA Wheeling. W.Va.
$1180-254.1$
$\begin{array}{ll}\text { WLDS Jacksonville, } 111 . & 1000 d \\ \text { WHAM Rochester. } N, Y & 50000\end{array}$
CKMP Midland, Ont.
VOAR St. John's, Nild. CKVD Val D'Or. Que. WAUD Auburn, Ala. WIBB Haleyville, Ata,
WBHP Huntsvills, Ala WBHP Huntsville, Ala,
WNUZ Talledega, Ala,
WTBC Tuscaloosa, Ala, KIFW Sitka, Alaska
1000

K C
KF
KB
250
250
250

$$
1
$$

1190-252.0

K W $~$

 KNBA Vallejo. Calif. WANN Annapolis. Md.WKOX Fram'gham, Mass. WKOX Fram'eham, Mas
WLIB New York. N.Y. KEX Portland, Oreg. KLIF Dallas, Tex.
WDTV St. John. V.I.

1200-249.9

woal San Antonio, Tex.
1210—247.8

WCNT Centralia, IlI.	l000d
WKNX Saginaw. Mich.	1000 d
WADE Wadesboro, N.C.	1000 d
WAVI Dayton, Ohio	250 d
WCAU Philadclphia, Pa.	50000

1220-245.8
CJOC Lethhridge, Alta, CKDA Victeria. B,C. CKEC New Glas onw. N.S.
CKCW Moncton. N.B. CKCW Moncton. N.B
CISS Cornwall. Ont. CKSM Shawinigan, Quebec WEDR Rirmingham
WPRN Ruster, Ala, WPRN Rutler, Ala,
KVSA McGehre, Ark KVSA McGehre. Ark,
KIBE Paln Altn, Calif, KFSC Drnver, Coln. WTTT Arlington, Fla. WFEG Miami, FIn. WCLB Camilla, Ga. WSFT Thomaston, Ga. WLPO LaSalle, III. WKRS Waukegan, I
WSLM Salem. Ind. WSLM Salem. Ind. KJAN Atlantic, Iowa
KOFO Ottawa, Kans KOFO Ottawa, Kans
WFKN Franklin. Ky KBCL Bossier City, La, WLBI Denham Springs,
WSME Sanford, Maine WSME Sanford, Maine
WBCH Hastings, Wich. WAVN Stillwater, Minn. WMDC Hazlehurst. Miss.
KBHM Branson, Mo. KGMO Cape Girarde KLPW Union, Mo. WKBK Keane, N.H. WGNY Newburgh. N.Y. WJMK N, Syracuse, N. Y.

$$
\mathbf{w}
$$

 w

 w} WENC Reidsville, N.C. KFYD Uikes, N, Disk. WERT Van Wertatid, Otio KGiN Guymon. OkIa. wiun mexico, Pa.WRIB revidence. R.I. WALD Walterboro, S.C.
WFWL Camden. Tenn. WFWL Camden. Tenn.
WCPH Etawah. Tenn. WHEY Millington, Tenn.
KLBS Livingston, Tox.

Kc. Wove Length W.P.|Ke. Wave Length KITO San Bernardino. Calit. 5000 KOKX Keokuk, lowa WCCC Hartford, Conn. $\quad 5000$ WTMC Ucala, Fla. WSCM Panama City Beach, WIRK W. Palm Beh.. Fla. WOEC Americus, Ga WTOC Sayannah KYTE Pocatello, Idaho WCBL Beoria. ill. KJEF Jennings, Li. WHGR Houghton Lake,

WNIL Niles, Mich.
KBMO Benson. Min
WBLE Batesville, Miss KALM Thayer, Mo. KGVO Missoula. Mont KOIL Omaha, Nebr. WKNE Keene, N.H. WGLI Babylon. N,Y. WNBF Binghamton. N.Y. W HKY Hickory, N.C. WOMP Bellaire, Ohio KUMA Pendleton. Ore KLIQ Portland. Óreg. WTRN Tyrone. Pa. WICE Providence, R.I. WFIG Sumter. S.C. KBLT Big Lake, fex KIVY Croekett, Tex. KRGV Weslaco. Tex. KTRN Wichita Falis, Tex. WAGE Leesburg, Va. w Vow Logan. W.V. WCOW Sparta, Wis.

1300-230.6
CBAF Moneton. N.B. WTLS Tallassee, Ala. KROP Brawley, Calif. KYNO Fresno, Calif. KWKW Pasadena, Calif.
KVOR Colo. Spras Colo KVOR Colo. Sprgs.. Colo.
WAVZ New Haven. Conn. WAVZ New Haven. Conn.
WRKT Cocoa Beach. Fla. WSOL Tampa, Fla. WMTM Moultrie, Ga. WIMO Winder, Ga.
KOZE Lewiston, Idaho WTAQ LaGrange. III.
WFRX W, Frankfort, III. WHLT Huntington, Ind. WMFT Terre Haute, Ind. KGLO Mason City lowa WIBR Baton Rouge, La KLUE Shreveport, La. WFBR Baltimore. Md.
WJDA Quincy, Mass. WJDA Quincy, Mass. WODD Grant Rapids, Mieh. WRBC Jackson. Miss.
KMMO Marshall. Mo KMMO Marshall. Mo. KBRL MeCnnk. Nohi WAAT Trenton. N.J. wOSC Fulton, N.Y. WGOL Goldstore. N.C. WEYD Mt. Airy, N.C. WERE Cleveland. Ohin KOME Tulsa, okla. KDOV Medford, Oreg KACI The Oallcs, Oreg.
WTIL Mayaguez, P.R. WCKI Greer. S.C
KOLY Mobridge, S. Dak. WMTN Morristown. Tenn. WMAK Nashville, Tonn. KVET Austin, Tex.
KTFY Brownfield, Tex. KOL Seattlo, Wash. WCLG Morgantown. 5000 WKLC St. Albans, W.V.Va, 1000 d
1310-228.9
CKOY Ottawa, Ont. WHEP Foley, Ala. WJAM Marion, Ala. KBUZ Mesa, Ariz. KWBR Oakland Cali KTKP Taft Califalt KFKA Gireeley, Colu WICH NORwich. COIN. WOOU Deland. fla. WAUC Wauchula, I la WBRO Wayneshore, Cia. KLIX TwIn Falls, Idaho WISH Indiananolis. Ind.
\square
5000

500 d 5000 1000 d 1000 d 5000
 5000
 5000 000 d
 1000 d

 500 d 500 d
 1000 d
 1000 d
 5000
 5000 5000
 10000
 5000 5000
 1000d
 000 d 5000
 5000
 5000
 1000 d 500 d
 1000
 1000
 000d
 5000 5000
 5000 5000 d 1000 d
 5000
 1000d

5000
1000 d
1000 d
$000 d$
1000

000
 1000

1000
1000 500 d
5000 d
5000 d 5000
\square
\square 500 d
500 d 5000 1000 1000 d
5000 h. 5000
1000 a 1000 d 5000 250d 1000 d

5000
5000
500
5000 5000 5000 d
1000 1000d $5000 d$ 5000
1000 5000
10000 1000d

5000
1000 1000 d 5000 $1000 d$ 000

1000
1000
su00d
sood
1 b00d
1000
1000
1000
5000

WTTL Madisenville, Ky
WOOC Prestonsburg, Ky KIKS Sulphur, La. KUZN W. Monroe, La WLOB Portland, Maine WORC Worcester. Mass. KKMH Dearborn, Mich WXXX Hattiesburg,
KFSB Joplin. Mo. KFBB Great Falls, Mont.
WJLK Asbury Park. N.J. WCAM Camden. N.J. WVIP Mt. Kisco,
WTLB Utica, N. WISE Ashevillo. WKTC Charlotte, N.C. KNOX Grand Forks, N.Oak. WFAH Alliance, Ohio
KNPT Nowport, Ores WBFD Bedford, Pa, WGSA Ephrata, Pa. WNAE Warren, Pa. WDKD Kingstree, S.C.
WDOD Chattanooga, Tenn. WDXI Jackson, Tonn, WBNT Oneida,Tenn. KZIP Amarillo, Tex, WRR Dallas. Tex. KUBO San Antonio, Tex WEEL Fairfax, Va. WGH Newport Nows, Va WIBA Madison. Wls. 1320-227.1
CJSO Sorel, P.Q. WAGF Dothan, Ala. KWHN Fort Smith, Ark 1000 d KRLW Walnut Ridge, A
KHSJ Hemet. Calif. KUDE Oceanside, Cali KCRA Sacramento, Calif KAVI Rocky Ford, Colo.
WATR Waterbury. Conn. WGMA Hollywood, Fla. WHIE Griffin, Ga. WKA K Toccoa, Ga. KMAQ Manuoket, III. KLWN Lawronce, Kans WBRT Bardstown, Ky.
WNGO Mayfield, $K y$. KVHL Homer, La, WARA Attleboro. Mass. WILS Lansing, Mich. WDMJ Marquette, Mich.
WCPC Mouston, WCPC Houston, Miss.
WRJW Picayune, Miss. KXLW Clayton, Mo. KOLT Seottsbluff. Nob
WWHG Hornell. N. Y. WAGY Forest City, N.C KQDY Minot, N.0ak. WHOK Lancaster. Ohi KWOE Clinton, Okla WKAP Allentown. $P_{\text {a }}$
WAMP Pittsburgh. $P a$
WSCR Scranton. $P a$. WSCR Seranton, Pa
WRID Rio Piedras.
WMSC Conm WMSC Columbia, S.C.
KELO Sioux Fails WKIN Kingsport. Tenn.
WMSR Manchester. Tenn.
KVMC Colo. City. Tex. KVMC Colo. City. Tex.
KXYZ Houston, Tex.
KCPX Salt Lake City. Utah KCPX Salt Lake City.
WLLY Richmond. Va.
KXRO Aberdeen. Wa KXRO Aberdean, was,
KHIT Walla Walla, Wa
WQMN Superior, WIs. WQMN Superior,
$1330-225.4$

CBH Halifax. N.

 WROS Scottsboro, A KFAC Los Andeles, Calif. WYSE Lakeland. FIa. WEBY Milton, Fla. WMEN Taliahassee.WMLT Dublin, Ga. WEAW Evanston, Ill. WRAM Monmouth, III, WRRR Rockford. III. KWP Evansville, Ind. KFH Wichlta. Kuns. WMOH Morehead, Ky. KVOL Lafayette, La. WCRE Mavre decirace, Mu WTRX Flint, Mich. WLOL Minneapolls, Minn.
WCRR Corinth, Miss. WJPR Greenville, Mis
W.P.
1000
500 d
5000 d
500
1000 d
1000 d
5000
5000
1000 d
1000 d
5000
5000
250
250
1000 d
1000
5000
1000
1000
5000
1000 d
5000
1000 d
1000 d
5000 d
5000 d
5000
5000
1000 d
1000 d
5000
500 d
5000 d
500 d
5000
1000 d
5000
. 000

5000
10000 500 d
5000 1000d 1000d 1000 d 1000 d $500 d$ 1000 d 1000 d 1000
100
$1000 d$
เిి

Ke. Wave Length
W.P. W.P.|Ked Wave Length KNo Wave Leng
 W.P. KGAK Gallup, N.Mex.
WEVD Now York. N.Y.
WPOW New York. N.Y
WEBO Oswege, N.Y. WEBO Oswego, N.Y.
WHAZ Troy, N.Y. WHAZ Troy, N.Y.
WFIN Findlay, Ohio WKOV Wellston, Ohio KPOd Portland, Ored.
WBLF Bellefonte, Pa. WICU Erie, Pa. WLAT Conway, S.C. WAEW Crossville, S.C. WTRO Dyorsburg. Tenn. KMIL Cameron, Tex. KINE Kingsville, Tex KDOK Tylor, Tox. WBTM Danville,
WESR Tasley,
Wa. KFKF Bellevue, Wash.
WETZ New Martinsyill West Virginia $1000 d$ WHBL Sheboygan, Wis. 1000
KOVE Lander, Wyo.

```
1340-223.7
```

CFGB Goose Bay, Nild.
CFSL Woyburn. Sask.
CFSL Woyburn. Sask.
CFYK Yollow Knife.
CHAD Amos, Que.
CJLS Yarmouth, N.S. Que.
CHRD Drummondvile, Que
CJQC Quebec, Que.
CKAR-I Parry Sound. Unt.
CKOX Woodstock. Ont.
wJol Florence, Ala.
WGWC iorence, Al
WGWC Solma, Ala.
WFE Sylacauga, Ala.
WFEB Sylacauga, Ala.
Kiko Miami, Ariz.
KNOG Nogales, Ariz.
KBTA Batesville, Ark.
KBRS Springdale, Ark
KENL Arcata, Calif.
KENL Arcata, Calif.
KSFE Needles, Calif.
KIST Santa Barbara. Calif.
KOMY Watsonville, Calif.
KDEN Denver, Colo.
WNHC Now Haven, Conn
WOOK Washington. D.C.
WTAN Clearwater. Fla
WROD Daytona Beh.: Fla.
WDSR Lake City, Fla.
WTYS Marianna, Fla,
WNSM Valparaiso-Nicevillo.
WGAU Athens. Ga.
WAKE Atlanta, Ga
WGAA Cedartown, Ga.
WOKS Columbus, Ga.
WBBT Lyons, Ga,
WTIF Tifton, Ga.
KPST Preston, Idaho
WSOY Decatur. III.
WJPF Herrin. III.
WJOL Joliot. III.
WBiw Bedford. Ind.
WTRC EIkhat, Ind.
WTRC Elkhart. Ind.
WLBC Muncie. Ind.
KROS Clinton. Jowa
KLIL Estherville, Iowa
KCKN Kansas City, Kans,
KSEK Pittsburg. Kans
WCMI Ashland. Ky.
WCMI Ashland. Ky
WNBS Murray. Ky.
WNBS Murray. Ky.
WEKY Richmond, Ky
KGAN Bastrop. La.
KGAN Bastrop, La.
KRMD Shreveport, La.
WFAU Augusta. Maine
WFAU Augusta. Maine
WHOU Houlton, Maine
WGAW Gardner, Mass.
WNBH New Bedford. Mass.
WBRK Pittsfleld. Mass.
WLEW Bad Axe, Mich.
WLAV Grand Rap. Mich.
WCSR Hillsdalo, Mich.
WHTE Manlstec. Mleh.
WAGN Menomineo. Mich.
WMBN Petoskey, Mich.
WEXL Royal Oak, Mich.
KOLM Detroit Lakes. Minn.
WEVE Eveloth, MInn.
KROC Roehester. Minn
KWLM Willmar, Minn.
WJMB Brookhaven, Miss.
WAML Laurel, Miss.
KXEO Mexico, Mo.
KSMO Salem. Mo.
KSMO Salem. Mo.
KICK Springfled Mo Mo
KCAP Helena, Mont
KPRK Livinoston, Mont.
KATL Miles City, Mont,
KATL Miles City, mon
KUTE Missoula. Munt.
KHGT Fremont, Nebr.
KGFw Kearney. Nebr.
KGFW Kearney. Neb
KSIO Sidney. Nebr Nev.
KBET Reno. Ney
KBET Reno. Nev.
WOCR Hanover, N.H.
W.wio Atlantic City, N.d.

250
250

250

1350-222.1
CHOV Pembroke, OnI. 10000
1000 CJDC Dawson Creek. B.C. Pocatiere. Que. CKLB Oshawa. Ont. CKLB Oshawa,
CKEN Kentvillo,
WELB EIba, Ala. WGAO Gadsden. Ala. KAAB Hot Springs, Ark.
KLYD Bakersfleld, Calif.

Kc. Wave Length WORK York, Pa.
WDAR Darlingten, S.C. WGSW Greenwood, S.C. WhKM Carthage, Tenn. KTXJ Jasper. Tex. KCOR San Antonio. Tex. WBLT Bedford. Va,
WNVA Norton, Va.
WAVY Portsmouth. Va.
1360-220.4
WWWB Jasper, Ala, WMFC Monrooville. Ala. WELR Roanoke, Ala. KRUX Glondalo, Ariz. KLYR Clarksvilid. Aric KFFA Helona, Ark. KRCK Ridgecrest, Calif. KGB San Dlego, Calif. WDRC Hartford, Conn: WOBS Jaeksonvilie, Fla. WKAT Miami Beach, WINT Winter Haven. Fla. WAZA Bainbridge, Ga. WLAW Lawrenceville WVMC Mt. Carmel, KXGI Ft. Madison, lowa KBCJ Sioux Cify, lowa WFLW Monticello. Ky, KOBC Mansfield, La. KVIM Now lberia, Ls WEBB Dundalk, Mo. WEBE Dundalk, Mo WKMI Kalamazeo, Mieh. KLRS Mountain Grove Mo WNN1 Nowton, N.J. WWBZ Vineland, N. 1 . WKOP Binghamton. N.Y. WMNS Olean. N.Y. WCHL Chapol Hill, N.C. WSAI Cincinnati N. O. WUIK Cincinnatio Onio KUIK Hillsboro, Orem. WPPA Pottsvilio. Pa, WPELP Pottsvilio. ${ }^{\text {W }}$ WLCM Lancaster, S.C. WNAH Nashville. Tenn KRAY Amarillo, Tex. KACT Androws, Tox. KRYS Corpus Cirlsti. Tex. KRYS Corpus Christl. T
KXOL Fi. Worth, Tox. WBOB Galax. Va. WBOB Galax, Va. KFOR Grand Coulee, Wash. KMO Tacoma, Wash; WMOV Ravenswood, W.Va. WBAY Green Bay, Wis. wisv virouque wis.
KVRS Roek Springs, wyo

1370-218.8
WBYE Calera, Ala. KEEN San Josoc, Cail? KGEN Tulare, Calif WCOA Pensiala. WAXE Voro Beach, Fia WBGR Jesup, Ge.
WKLE Washington, Ga. WPRC Lincoln, III. WGRY Gary, Ind.

KDTH Dubuqua, low

 KGNO Dodge City, Kans. WGOH Grayson, Ky. KAPB Marksville, La. WGHN Grand Haven, Mich, KSUM Fairmont. Minn. WDOB Canton, Miss. KWRT Boonville, Mo. KCRV Caruthersvili KALF Butte. Mont.WFEA Manchester, N.H.
WALK Patchogue, N. Y. WSAY Rochester. N.Y WTAB Gastonia, N.C. KFIM Grand Forks, N.D WSPD Toledo, Ohio KAST Astoria Ort WOTR Corry, Pa.
WPAZ Pottstown, Pa. WPAZ Pottstown. Pa. $\quad 1000 \mathrm{~d}$
WKMC Roarint Spres., Pa. 1000 d WDV Vieques, P.R.
WDXE Lawrenceburg. Tonn. WRGS Ragersvilio. Tenn, 1000 KOKE Austin. Tox.
KFRO Longulow. Tox.
KUKO Post, Tox.
$W . P$
5000
500
1000
500
100
50
100
500
50
100 500 d
1000 d
500 d
1000 d
5000
1000
5000
5000
1000

1000 d 100050001000
1000

100
1000
100
500
500
500
1000
100

$$
1000
$$

500
1000
1000
500
500
1000
1000
1000
500
5000
5000
1000
\square
1000
1000
5000
1000
5000
5000
100
1000
1000

1000
1000
5000d
1000 d
1000
100
1000
1000
1000 d
5000

1000 d
1000 d
1000 d
1000 d
1000 d
1000 d

500
100
10000
1000
1000 d
$1000 d$

1000d

5000
$500 d$
5000
500 d
5000
10000 K
00d W

8
5000
l000d
1000
R. Wave Length W.P.
W.P. N Rouyn Que. KSOP Salt Lake City, Utah
WBTN Bonnington, Vt,
WHEE Martinsville, Va,
WJWS South Hill. Va.
KPOR Quincy, Wash. 500 CKSW Swift Current. l000d WMSL Docatur, Ala. 1000 d WXAL Demopolls, Ala,
1000 d
1000 d WFPA Ft. Payne, Ala.
$1000 d$ WJLD Homewood, Ala
5000 d
WJHO Opaliha
1000 K8EW Sitka. Alask, KCLF Clifton, Arlz. KONI Phoennx, Arlz. KTUC Tucson, Arlz
KVOY Yuma, Ariz
1000
1000
10000
5000
5000 KCLA Pino Bluf, Ark. KWYN Wynne, Ark
KRE Berkeluy C KRE Berkelty, Callif
KREO India Calif KSOA Redding. Calif. KCOY Santa Maria, Callf.
KSPA Santa Paula, Calf. KUPA URNiah, Calif, KONG Visalia Callf. KDTA Delta, Colo. KFTM Ft. Horgan, Colo. WSTC Stamford, Conin. WILI Willimantic, Cong, WFTL Ft. Leuderdala,
WIRA Fi. Pierce. Fla, WRHC Jachionville. Fis. WPRY Perry, Fla. WCO8 Alma, Ga. WSGC Elberton, Ga WNEX Mand, Ga. WMGA Moultrio. Gas WGSA Savannah, Ga. KART erome, Idaho
KRPL Moscow, Id hho KSPT Sandpoint, Idaho WDWS Champaign. III. WGIL Gales burp: II. WEOA Evansvilio.
WBAT Marion. Ind. KCOG Conterville, iowa
KVFD Fort Dodge, lowa KVOE Emporis. Kans. KAYS Hays, Kans. WCYN Cynthiana, Ky, WFTG London. KY. WFPR Hammond, La. WRDO Augusta, Maine WIDE Bijdeford, Malno W

Fall River. WSYB Rutland, V t. KRKO Everott. Wash. KRKO Everatt. Wish
WBEL Belolt. Wis,

1390—215.7

WHLN Nolson. B.C. KDQN Dequeen, Ark. KAMO Rogers. Ark. KGER Long Baach, Callf. KFML Denver, Colo. WAVP Avon Park, FIn
WGES Chicago, III. WFIW Fairneld, III. WJCD Seymour, Ind. KCBC Des Moines, lowa WANY Albany. Ky, WKIC Hazard, Ky.
KNOE Monros, Ls WCAT Orange, Mass. WPLM Plymouth. Mass. KRFO Owatonna, Minn. WROA Gulfport, Miss. KENN Farmington, N. Mox. WEOK Poughkeepsie. N. Y WRIV Riverhead, N.Y. WFBL Syracuse, N, Y, WKRK Murphy, N.C WADA Shelby. N.C. WOHP Minot, N.Dak. WFMJ Youngstown, Ohio KGC Enid, okla. WLAN Laneaster, Pa , WHPB Belton, S.C. WTSC Charleston, S.C KUU Jackson, Tenn. KBEC EF Gampo, T8x, KLGN Lopan, Utah WEAM Arlington, Va, KLOQ Yakime, Wash.

CKBC Eathurst. N.
W.P. 250
250
250
 W.P.
 1410-212.6

1420-211.1

Re. Wave Lengt wyts Owensboro, Ky. KPEL Lalayetto. La.
WBSM New Bedord, Mass, WBEC Pittsficld Mass KTOE Mankato, Minn. WSUH Mankato Minn, WQBC Vieksburg, Miss. KBTN Neosho, Mo. KOOO Omaha, Nebr. WALY Herkimer, N.Y. WLNA Peekskili. N. N. WGYN Mayodan, N.C. WYOT Wilson. N.C. WHK Cleveland, Ohio KTJS Hobart, Okla. KYNG Coos Bay, Oreg.
WCO, Coatesville, Pa. WCED DuBois, Pa, WEUC Ponce, P. R: KABR Abraw, S. S.
WEMB EFwin, Tenn. WKSR Pulaski, Tenn. KFYN Bonham, Tex. KTRE Lufkin. Tex. KGNB New Braunfels, Tex, WWSR St. Albans. Yt. WDDY Giouesster, Va. WKTF Warrenton, Va. KUJ Walla Walla, Wash. WPLY Plymouth. Wis.
1430-209.7
CKFH Toronto, Ont KHBM Pall City, Ala. KAMP Ei Centro, Callif KARM Fresno, Calif. KALI Pasadena, Calif. KOSI Aurora, Colo. WSAB Homestead, Fla WPCF Panama city, Fla. WGFS Covington, dia. WRCD Dalton, Ga. WCMY Ottawa, III. WIRE Indianapolis. Ind. KASI Ames, Iowa
WNAV Annan City, La WHAV Annapolis. Md. WION Ionia, Mich. WBRB Mt. Clemens, Mich. WIL St Louis Miss KRGI Grand Island, Nobr. WNJR Nowark. N. J. W MNC Morganton. N WRXO Roxboro. N.C. WCLB Fostoria Ohio KALV Alva, Okla, KTUL Tulsa, Okla. KGAY Salem. Oreg. WVAM Altoona, Pa. WBLR Batesburn, S.C. KBRK Brookings. WENO Madison W. S.Dak WHER Momphis. Tenn. KSTB Breckenridee. Tex. KSIJ Gladewater. Tex. KSOH Houston, Tox. KLo Ogden, Utah KBRC, Mt. Vernon, Wash. WEIR Woirton, W. Va.

1440-208.2

CFCP Courtenay, B.C.
WHHY Montgomery, Ala. KOKY Little Rock, Ark. KVON Napa, Calif. KPRO RIverside, Calif. WBIS Bristol, Conn. WABR WInter Park, Fla. WWCC Bremon, Ga. WGIG Brunswick, Ga, WRAJ Anna, III.
WPRS Paris. III.
WROK Rockford. III WPGW Portland. Ind. KCHE Cherokee. Iowa KJAY Topeka, Kans. WKLX Paris, Ky. WEZJ Williamshurg. Ky, KMLB Monroe, La, WAAB Worcester. Mass. WBCH Bay inkster. Mich. KEVE Golden Valley. Minn. 5000 WMVB Millville, N.J.

5000
1000 d
1000 d
5000
5000

\qquad 5000 5000
1000 d 500 d1000 d

.$\begin{array}{r}50 \\ \text { r. } \quad 10 \\ \hline\end{array}$1000
50005000
$5000 d$容皆응500 d
5005000
$\mathbf{5 0 0 0 d}$5000 d1000
$500 d$5000dconod500 d
5000 d1000
1000 d10000d
1000 d
1000 d10000 d
5000
50001000
1000 d
50005000 d5000 d
500
1000
500 d
5000
5000
0000
W.P. Ke. Wave Length

Ke. Wave Length
WBAB Babylon, N,Y 1000 1000
1000
1000 1000
1000 WjJL Niagara Falls, N.Y.
W.P. N

Wave Lengt
W.P.
\qquad K

N.C.

KB
KB
K
ave Length
W.P. 500d KLOS Albuquerque. N. Mex

\qquad 1000 d
1000 d
500 d
1000 d
1000
500 d
5000
5000
500 d

1470-204.0

BLD Evergreen, Ontario KBMX Coalinga, Calit. KUTY Palmdale, Calif KXOA Sacramerto, Calif.
WMMW Meriden, Conn. WPOM Pompano Beach, Fla,
WDCL Tarpon Sprgs., Fla. WAAG Adel, Ga. WDOL Athens, Ga WCLA Claxton, Ga. WMBD Peoria, ${ }^{2}$
WCBC Anderson KTRI Sioux City, lowa KARE Atehison, Kans. KPAC Lart Knox, Ky WLAM Lowiston, Mai
WJDY Salisbury, Md.
WTTR Westminster, 500 d
1000 d
1000 d WSRO Marlborough. Mass.
WSBP 1000 d
1000 d
KFAM St. Cloud,
WCJU Columbia. Miss.WJXN Columbia. Miss.WOKK Meridian MissWOKK Meridian, Miss
WNAT Natchez $\begin{aligned} & \text { miss }\end{aligned}$.WNAT Natchez. miss.WROE West Point,
WMBH Joplin, Mo.
WMKOKO Warrensburg. i$K W P M$ West Plains, Mo
$K X X L$ Bozeman. MoittKUDI Great Falls, MontKXLL Missoula, Mont.KVCK Wolf Point, Mont,KWBE Beatrice, Nebr.KCSR Chadron. Nebr.
KONE Reno, Nov. WKXL Concord. N.H.
WFPG Atlantle City. N.J. 250 WBCU Union. S.C.

Kc. Wave Lengl KFHA Lakewood, Wash. WISM Madisun, Wis.

1490-201.2

CFRC Kingston, Ont. CKCR Kitehener, Ont. WANA Anniston. Ala. WAJF Decatur, Ala. WALD Lanelt. Ala. WHBB Selma: Ala KYCA Prescoit, Alariz KAlR Tueson, Ariz. KXAR Hope. Ark. KTLO Mtn. Home, Ark. KDRS Paragould, Ark. KXRJ Pusselluifle Ark. KMAP Bakersfield. Calit. KPAS Banning Calif KBLA Buntank. Calif kico calexico. Calif. KOWL Lake Tanoe, Calit. KAFP Petaluma. Calif. KAFP Petaluma, Calitif. KOb Santa Barbara, Calr. KSYC Yreka, Calif. KBOL Boulder, colo. KCMS Manitou Spros., Colo. KOLO Sterling. Colo. WNLC New London, Conn. WTRL Bradenton. Conn WJBS DeLand, Fia WMET MIami Beach, Fla. WSRA Milton, Fla. WRGR Starke FIS. WTTB Vero Beach. Fla WSIR Winter Haven. Fla. WMOG Brunswick. Ga, WMIM Cordele, Ga. WMRE Monroe, Ga, WSNT Sandersville. Ga WSYL Sylvania, Ga. KTOH Lihue, Hawai KCID Caldwell, Idaho WOAN Danville. III WAMV East St. Louis. III. WOPA Oak Park. III. WNDU South Bend. Ind. KBUR Burlington. lowa WOBQ Dubuque. lowa KRIB Masan city, lowa WFKY Frankiort. KKy. WKAY Glassow, KY woml owensboro, Ky. WIP Painisvilie. Ky. WIKC Bopalusa. La. KEUN Eunice. La. KCIL Houma, La. KRUS Ruston ${ }^{\text {K }}$ La WPOR Portland Maine WTVL Watervilie. Maine WARK Hagerstown. Md. WHAV Haverhill Mass. WTXL W. Springheld, Mass. WABJ Adrian. Mieh.
WCBQ Fremont. Mich
WMON Mldiand, Mich.
KXRA Alexandria. Minn
KOZY Grand Rapids. Min
KLGR Redwd. Falls. minn.
WCLD Cleveland Mis
WHOC Philadelohia. Miss.
WTUP Tupelo, Miss.
WVIM Vieksbura. Miss. KTTR Corthage. Mo Kip Rola. KBOW Sutte. Mons. KBOW Butte, Mont. WLDB Amantie City, N.S. KRSN Los Alamos. N.Mex KRTN Raton. N.Mex. WBTA Batavia. N. Y . Y WBTA Batavia. N.Y. WICY Malone. N. Y. WOLC Port Jervis. N.Y. WSSB Durham, N.C. WLOE Leaksyille WRNE Leaksvilie. N.C. WRMT Rocky Mount., N.C. WSIP Sackbury N.C. KOVC Valley city Na, WBEX Chillitethe N.Dak. wJMO cleveland H ghts. oni WMOA M. arierta WM RN Marion. Ohio KW RW Guthrie, Okis. KBIX Musko pee., okkia, KBKR Baker, Oren. KRNR Roseburg. Ores. KBZY Salem, Orea WESB Bradford. Pa. WAZL Hazleton. PA. WARD Johnstown. P
W.P. 1000 d .1000

100
250

1500-199.9
CHUC Port Hope, Ont KXRX San Jose, Callf.
WTOP Washington. D.C. WKIZ Key West. Fla.
WJBK Detrelt. Mich. KSTP St. Paul, Minn.
KTX0 Sherman, Tex.

1510-199.1
$\begin{array}{lr}\text { CKOT Tillsonburg, Ont. } & 1000 \mathrm{~d} \\ \text { KASK Ontario, Cal f. } & 1000 \\ \text { KTIM San Rafael, Calif. } & 1000 \mathrm{~d} \\ \text { KUDY Littleton, Cslo. } & 1000 \\ \text { WKAI Macomb, Ill } & 250 \mathrm{~d} \\ \text { WMEX Boston. Hass. } & 5000 \\ \text { KANS Independenes, Mo. } & 1000 \mathrm{~d} \\ \text { WLAC Nashville. Tenn. } & 50000 \\ \text { KCTX Childress. Tex. } & 250 d \\ \text { KSTV Stephenvillo. Tex. } & 250 \mathrm{~d} \\ \text { KGA SDolane. Wash. } & \text { s0000 } \\ \text { WAUX Waukesha, Wis. } & 250 d\end{array}$
1520-197.4
KACY Port Hueneme, Callf. WHOW Clinton, II:. KSIB Creston, lowa
WKBW Buffalo, N.Y WKBW Buffalo, N,Y. KOMA Okla. City, 0kla, 50000 KGON Oregan City. Oreg. 1000
WWWW Ric Piedras. P.R. 250

1530-196.1
KFBK Sacramento. Callf. $\quad \mathbf{5 0 0 0 0}$ WCKY CIncinnati, Ohio
KGBT Harlingen, Tex.

1540-195.0
ZNS Nassau, B,W I. KPOL Los Angeles. Ca
WSMI Litehfield, III,
WBNL Boonville, Ind. WBNL Boenville, Ind
WLOt LaPorte, Ind. KXEL Waterloo, Iowa KNEX MePherson. Kan
KLKC Parsons, Kans. WDON Wheaton. Hd. WPTR Albany. N Y WABQ Cleveland, ohio WJMJ Philadelphia,
WPTS Pitiston Pa. WPTS Pitiston. Pa. WADK Newport, P.I. KCUL Ft. Worth. Tex.
KGBC Galveston. Tex. WTKM Hartford, Wis.

1550-193.5
CBE Windser, Ont. WAAY Huntsville, Ala. KENT Shroveport, La WLOA

1000
1000
50000
250
10000
50000
250

$1000 d$
1000
$1000 d$
1000
$250 d$
5000
1000 d
50000
$250 d$
$250 d$
50000
$250 d$

5000
10000
1000 d
250 d
250 d
50000
250 d
250 d
250 d
50000
250 d
1000 d
50000 d
1000 d
1000 d
1000 d
10000
1000
500 d

50000

10000
5000
10000

1560-192.3	
CFRS Simcoe, Ont.	
KPMC	Bakerstield, Calif.
WBYS	Canton, III.
KSW	Council Bluffs, Iowa
WOXR	Paducah, Ky.
WQXR	New York, N.Y.
WTNS	Coshocton, Ohio
WTOD	Toledo, Ohio
KWCO	Chickasha, Okla.
WENA	Bayamon, P,R.
KHBR	Hillsboro. Tex.
1	

CHUB Nanaite CFRY Portage Ia Prairie. CBI SIdney, N.S. WCRL Oneonta, Ala. WRWl Selma, Ala. KBJT Fordyce, Ark,
KRKC King City, Callf KRKC King City, Calif.
KCVR Lodi, Calif.
KACE Riverside. Calif. KACE Riverside. Cali
KLOV Loveland. Colo. KLOY Loveland, Colo.
WTW Auburndale. Fla.
WPAP Fernandina Beach. wJOE Ward Ridoe, Flarid WCPK College Park, Ga. WGSR Millen, Ga
WFRL Freeport. iti. WBEE Harvey, III,
WTAY Robinson, III. WILO Frankfort. Ind. WOWI New Albany, Ind. KMCD Fairfield, lowa KNDY Marysulle, Kans. KWSK Pratt, Kans.

W CL
KM
WA
WD
WM
MAR WInnsboro, La. WAQE Towson, Md. WDEW Westfield, Mas
WMRP Flint, Mich

WATM Atmore, Ala.	5000d
WVNA Tuscumbia, Ald	5000d
KPBA Pine Bluff. Ark.	1000 d
KSjO San Jose, Calit.	1000
KUDU Ventura, Callf.	1000
WBRY Waterbury. Conn.	5000
WILZ St. Potersburg Beach	1000d
WELE S. Daytona Beh., Fla.	1000 d
WALB Albany. Ga.	1000
WLFA Lafayette, Ga.	5000 d
WNMP Evanston, 111.	1000d
WAIK Galesburg. Ill.	5000d
WGEE Indianapolis. Ind.	5000 d
WPCO Mt. Vernon, Ind.	500 d
KWBG Boone, lowa	1000
KVGB Great Bend, Kans.	5000
WLBN Lebanon, Ky,	1000d
KEVL White Castle. La.	1000 d
WTVE Coldwater, Mloh.	5000
WDOG Marino City. Mich.	1000d
WOKJ Jacksan, Miss.	5000d
KDEX Dexter, Mo.	1000 d
KPRS Kanses City, Mo.	1000d
KMAM Tularosa, N.Mex.	1000 d
WEHH EImira HoightsHorseheads. N.Y.	
WNYS Salamanca, N.Y.	1000d
WGTC Greenville, N.C.	5000 d
WNOS High Point, N.C.	1000 d
WAKR AKron, Ohio	5000
WSRW Hillisboro. Ohio	500
KHEN Henryetta. Okla.	500 d
KTIL Tillamook, Oref.	250
WXRF Guayama, P.R.	1000
WCBG Chambersburf. Pa.	5000 d
WEEZ Chester, Pa.	1000
WYNG Warwick, R.I.	1000
WABY Abbeville, S.C.	1000
WACA Camden, S.C.	1000 d
KCCR Pierre, S.Dak.	1000 d
WJSO Jonesboro. Tenn.	50000
WOBL Springfeld. Tenn.	10000
KGAS Carthage. Tex.	10008
KERC Eastland. Tex.	500 d
KINT EI Pase. Tex.	10000
KYOK Houston. Tex.	5000
KCBD Lubboek. Tex.	1000
KBUS Mexia. Tex.	5004
KTOD Sinton, Tex.	$1000 d$
WEZL Richmand, Va.	5000 d
KTIX Seattle, Wash.	5000 d
WSWW Platteville, Wis.	1000d
WTRW Two Rivers. Wis.	$1000 d$
KCHY Cheyenne, WYo.	1000 d

CBI Chicoutimi. Que. KPCA Marked Tree, Ark.

1000 d KPCAF Van Buren. Ark. KWIP Merced, Calif. $\begin{array}{r}\text { • } 500 \mathrm{~d} \\ \hline 500 \mathrm{~d}\end{array}$ KPAK Santa Monica, Cal Cold, 5000d WWIL Ft. Lauderdale, Ff. 1000 WGRC Green Cove Springs
WIOK Mount Dora, Fla, WRFB Tallahassee, Fla wCLS Columbus, Ga. WLBA Gainesville. Ga WDQN DuQuoin, III, WBBA Pittsfield,
WKID Urbana. III. WCNB Connersville, Ind, WJVA South Bend, Ind. WAMW Washington. Ind. KCHA Charles City. Iow
WFMA Davenpert, Iowa WGOR Georgetown. Ky WMTL Leltchfeid, KY。
KLUV Haynesville, Ls.
KLOU Late Charies, L

Florida 500d

$N . P$.
$200 d$
10000
$250 d$
$500 d$
1000
54000
$1400 d$
$1 \mathrm{m00d}$
1000
250
$250 d$

1590-188.7

 250d 250d KM Michigan 1000d WONA Winona. Miss. WFLR Dundes, N. Y WBCA Siler City. N.C. WHOT Campbell, Ohio WCLW Manstield. Oh WPTW Plqua, Ohio KOLS Pryor, okla. KGGG Forest Grove, Oreg. 1000 d WBUX Doylestown. Pa. 1000 d wBUX Doylestown. Pa, WMLP Milton. Pa. WFGN Gaffney, S.C. WHLP Centerville, Tenm. WCLE Cleveland. Tenn. WTRB Ripley. Tenn. KVLG La Grange, TexKZOL Mulsshoe. Tex. KTER Terrell. Tex. WKIC Salt Lake City, Utal WSWV Pennington Gap, Va. 1000 d WEER Warrenton. W.Va. 500 d WAPL Apoleton, Wis 1580-189.2

10000
1600-187.5
CHVC Niagara Falls, Ont. 5000 WeUP Huntsville, Ala. 1000 d WAPX Montgomery. Ala 1000 KGST Fresno, Calif.
KWOW Pomona, Callf. KUBA Yuba City, Calif. $\quad 1000$ WKEN Dover. Del. 1000 WKTX Atlantic Beaeh, Fla. 1000d WHEW Riviera Beach, Fla. 1000 d WOKB Winter Garden. Fla. 1000d WGKA Atlanta, Ga. 1000 d WMCW Harvard. $111 . \quad 500 \mathrm{~d}$ W8T0 Linton. Ind. WARU Peru, ind. KLGA Algona, lowa KMDO Ft. Seott. Kans. WNES Central City, Ky WSTL Eminenee, Ky. KFNV Ferriday, La.

WHITE'S RSDIO LOG

KLFT Golden ineadory, La KLVI Vivian La WI WBOS Brookline, Mast. WTYM East Longmeadow. WHRV Ann Arbor, Mleh. WTRU Muskegon, Mich. WKOL Clarksdale, Miss.

1000 d	MAT St.
500 d	KTTN Trenton, Mo.
1000	WONG Oneida, N.Y.
5000	WWRL Woodside, N. Y.
	WGIV
5000 d	WIDU Fayetteville. N.C.
1000	WFRC Reidsville.
5000	WKSK W. Jefferson, N.C
1000d	WBLY Springfieid, Ohio

5000	KU8H Cushlne, OKIa,
$500 d$	KASH Eugene, Orap.
$1000 d$	WHOL Allentown, Pa.
5000	WEZN Elizabethtown, Pa,
$1000 d$	WFIB Fountain Inn, S.C.
$1000 d$	WGUS N. Augusta, S.C.
1000	WHBT Harriman, Tenn.
$1000 d$	WKBJ Milan, Tenn.
$1000 d$	KBEB Borger, Tex.

10004	KPOR
1000	KWEL Mldand.
$500 d$	KCFH Cuero, Tex.
$500 d$	KMAE McKinney, Tex.
1000 d	KOGT Orange, Tex.
500	KBBC Centerville, Utah
5000 d	WBOF Virginia Bch., Va,
1000 d	WHLL Wheeling, W.Va.
s00d	WCWC Ripon, Wis.

U. S. and Canadian AM Stations by Location

Abbreviations: C.L., call letters; Kc., frequency in kilocycles; N.A., network offiliation-A: American Broadcasting Co., C: Columbia Broadcasting System, Inc.; M: Mutual Broadcasting System; N: National Broadcasting Co., Inc.

Location	C.L. Kc. N.A.	on C.L.K. N.	n C.L.Ke. N.A.	C.L. Kc. N.A.
Abbeville, La.	$\text { KROF } 960$	Anchorage, Alaska KBYR 1270	Avon Park, Fla, WAVP 1380	Bennindton. Vt. WBTN 1370
Abbeville, S.C.	WABV 1590	$\text { KFQO } 73 \cup$	Avondale Estates, Ga. WAVO 1420 Aitec N. Mex KNDE 1340	Bensen, Minn. KBMO Benton, Arko 290 KBEA 690
berdeen, M	WAMA 970	Andalusia, Ala ${ }^{\text {WEN }}$ WTA 920	Babyion, N.Y. WBAB 1440	Benton, Ky. WCEL 1290
berdien, Miss.	KABR 1220	Anderson, Ind. WCBC 1470 M	WGLI 1290	Benton Harbor, Mich. WHFB 1060
,	KSON 930 A	WHBU 1240 C	Bad Axe, Mieh. WLEW 1340	KRE 1400
Aberdeen, Wash.	KEKW 1450	Anderson. S.C. WA1M 1230 C	Bainbridge. Ga. WMGR 930	Berkeloy Springs, W. Wa.sT 1010
llene,	KXRO 1320 M	Andrews, Tex. KACT $1360{ }^{\text {m }}$	Beker, Oren. KBKR 1490	Berlia, N.H. WKCE 1230
ene,	KNIT 1280	Annapolis, Md. WANN 1190	Bakerifield, Callf. KAFY 550 m	Berrywille, Ark KTCN 1480
	KWKC 1340 M	AW 810	1 S 970	Berwick, Ps. WBRX 1280
Abingdon,	WBEI 1230	WNAV 1430	KERN 1410 C	Bessemer, Ala. WEZE 1450
da. Okia.	KADA 1230 A	Ann Arbor, Mleh. WHRV 1600 A	KGEE 1230	Bathesda, Md. WUST 1120
Adol, Ga.	WAAG 1470	WPAG 1050	KIKK 800	Bethlehem, Pa WGPA 100
drian, Mich.	WABJ 1490 A		KLYO 1350	
Agana, Guam	$\begin{array}{ll}\text { KUAM } & 610 \\ \text { WABA } \\ 850\end{array}$	Anniston, Ala, WANA 1490 A	KMAP 1490	Big Lake, Tex. KBLT 290 Bid Rapids, Mich. WBRN 1460
Aguadilia, P.R.		WHMA $1390{ }^{\text {A }}$	Baldwinsville, N.Y. WSEN $1050{ }^{\text {A }}$	Bia 8pra.o Tex. KEST 1480 A
Ahoskie, N.C.	WRCS 970	Aneka, Minn. KANO 1470	Ballinger. Tox. KRUN 1400	1270
ken	WAKN 990	Ansonia, Conn. WADS 690	Baltimore. Md. WBAL 1090 N	Bin Stone Gap Va WL8O 1220
Akron, Ohlo	WAKR 1590 A	Antigo, Wis, WATK 900 M	WEMD 750	Bla Stone Gap, Va WL8D 1220
	OC 1350 C			Bifoui, Mis. WLOX 1490
	WCUE 1150	Antigonish, N.8. WAVX ${ }^{\text {ald }}$		Bloxi, Mise. WVOX 1490
	WHKK 640 M	Apalo Pal Cal. WAV有 960	WITH 1230	Biflings, Mont. KBmY 1240
	$\text { KRAC } 1270$	Appleton, Wis. WAPL 1570	19	
Alamosa.Colo.	KGIW 1450 M	WHEY 1230 M	Bamber S C WW ${ }^{\text {C }}$ W90	OYM 910
bany, Ga.	WALB 1590 A	Arcadia, Fla, WAPG 1480	Bambera, S.C. WWBD 790	KOYM 910
	WGPC 1450 C	Arcata, Calif. KENL 1340		
	W JAZ 1050	Ardmore, Okla, KVSO 1240 A		
Albany, Albany,	$\begin{aligned} & \text { WANY } 1380 \\ & \text { KASM } 1150 \end{aligned}$	$\begin{aligned} & \text { WCMN } 1280 \\ & \text { WMIA } 1070 \end{aligned}$	Banming. Calif. KPAS 1490	WNEF 129
Albany, N.Y	WABY 1400	WNIK 1230	Barbourisille, Ky. WBVL 950	Blrmingham, Ala. WAPI 10
	WOKO 1460 M	Arkadelphia, Ark. KVRC 1240 m	Bardstown, Ky, WBRT 1320	
	WPTR 1540	Arkan. City, Kans, KSOK 1280	Barnesboro, Pa. WNCC 950	R 1260 A
	WROW 590	Arlington, Va WARL 780	Barrie, Oint. CKBB 950	0
Albany, Oreg.	KWIL 790 M		Earstow, Callf. KWTC 1230 A	61
	8 BZ 1010	KSVP 990 m	Bartlesville, Okla. KWON 1400 m	WYDE 850
	WZKY 1580	Asbury Park, N.J. WJLK 1310	Bartow, Fla. WBAR 1460	V
bert Lea, Minn	KATE 1450 A	Asheboro, N.C. WGWR 1260	Bastrop, La, KTRY 730	日ishee. Ariz. KSUN 1230 A
Albertvilie.	WAVU 630	Asheville, N.C. WISE 1810		
bion, Mlch.	WALM 1260	CSI $1380 \mathrm{~N} \cdot \mathrm{~m}$-A		
uat	KABQ 1350		Eatasville, Ark. KBTA is 40	Kadí 1350
	KGGM 610	Ashland. Ky. WCMI 1340 C	Batesville, Miss. WBLE 1290	N.Dak.
	1030	1420	Bath. Maine WmM8 730	B0M
	QEO 920 M	Ashland, Ohio WNCO 1340	Bathurst. N.B. CKBC 1400	Black River Falls, Wis
	OS 1450	Ashland, Oreg. KWIN 1400 M		
	HAM 1580 A	Ashland, Wis. WATW 1400	IRR 1800	
Alcoa,	WEAG 1470	Ashtabula, Ohio WICA 970 m	W580 1150 N	Blackwell, Okla. KLTR 1580
		Astoria, Oreg. KASI 1370 m	WLCS 910	Blind River, Ont. CJNR 730
A	KALB 580 A	KARE 1470	OK 1260	Blormington, III. WJEC 1230 A
	KDBS 1410	Athens, Ala. WJMW 730	h. WBCK 930	Bloomington. Ind. WTTS 1370 A
	KSYL 970 N	Athens, Ga WGAU 1340 C	WELL 1400 A	Bloomsburc. Pa. WCNR 930
Alexandria,	KXRA 1490 A	DOL 1470		
exandria,	WPIK 730 M	Athens, Ohie WAFC 960		
ona, low	KLGA 1600	Athens, Ohio WATH 970		
Alice, Tex.	KOPY 1070			
Allegan, Mich.	WOWE 1580	Athens. Tenn, WLAR 1450 M Athens. Tex, KBUD 1410	Bay Minetto, Ala. WBCA 1150 Bayamon, P.R. WENA 1560	Blytheville. Ark. KLCN Bogalusa, WIS WIKC 1490 N
	WAEB 790	Atlanta, Gã. WPLO 590 C	Baytown, Tex. KRCT 650	WBOX 920
	WKAP 1320	1340	BA 1360	Boise. Idatho KBOI 950 C
	WSAN 1470 C	1380	KWEE 1450	KGEM 1140
lliance,	KCOW 1400	WERD 860	Beaufort, N.C. W8MA 1400	
Alliance, Ohio	WFAH 1810	WGKA 1600	Beaufort, S.C. WBEU 960	
ma	wCos 1400	WGST 920 A	Beaument, T6x. KFOM 560 A	Bonhame Tex. Boene, lowa
Alma, Mich.	WFYC 1280	IN 970	$\begin{aligned} & \text { T } 1380 \\ & \text { C } 1450 \end{aligned}$	
al Towns		X 790	990	1450
	ATZ 1450 m	WYZE 1480 N	Beaver Dam, Wis. WBEV 1430	id. WENL 1540
	KVLF 1240	Atlanta, Tex. KALT 900 m	Beaver Falls, Pa. WBVP 1230	aville, Mo: KWRT 1370
Altona, Man	CFAM 1290	Allantie. lowa K1AN 1220	Beckloy. W. Va. wJLS 560 C	Booneville. Miss. WBIP 1400 A
Altoons, Pa.	WFBG 1340 N	Atlantic Beach, Fla, WKTX 1600	WWNR 620	
	WRTA 1240 A	Atlentic City, N.J. WFPG 1450 C		$\begin{aligned} & \text { KHUZ } 1490 \\ & \text { KBB } 1600 \end{aligned}$
	WVAM 1430 C		Bedford, Va. WBLT 1350	Bossier Cily, La. KBCL 1220
Altus, Okla	KWHW 1450	Atmore, Ala. WATM 1590	Beeville, Tex. KIBL 1490	Botton, Mass. WEZ 1030
Alva, Okla	KALV 1430	Attleboro, Mass, WARA 1320	Belgrade, Mont. KGVW 630	WCOP 1150
Amarillo,. Tex.	KBUY 1010 M	Auburn, Ala. WAUD 1230 A	Bellaire, Ohio WOMP 1290 M	WILD 1090
	KFOA 1440	Auturn, Calit. KAHI 950	Eallefontaine, Ohio WOHP 1390	
	KGNC 710 N	Auburn, N.Y. WMBO 1340 M	Bellefonte, Pa. W8LF 1330	EI 590
	K1×2 940 C	Auburn, Wasti. KASY 1220	Bell Fourche, S. Dak. KEFS 1450	$\begin{aligned} & \text { E1 } \\ & \hline 850 \\ & \hline \end{aligned}$
	KRAY 1360	Auburndale, Fla, WTWB 1570	Belle Glade, Fia. WSWN 900	WMEX 1510
	IP 1310	Augusta, Ga. WAUG 1050	Bellevilie. Ont. WJBG 800	WOAL 950
Ambridge, Pa.	WMBA 1460	WBEO 1340 M	Bellevue, Wash. KFKF 1330	Boulder, Colo. KBOL 1490
Americus. Gia	WOEC 1290	WBIA 1230 N	Bellingham, Wash. KPUG 1170 m	Bowre, Tex. KBAN 1410
Ames, Iowa	KSAI 1430	WGAC 580 A	Bellingham, Wash. KPUG 1170 M	Bowling Green, Ky. WKCT 930
	WOI 640	Auvusta, Malne WRDO 1400 N	dale, Was	WLBJ 1410
mite, La.	WABL 1570	Wurnsa mak 1340 m	ENY 930	
mory, Miss.	WAMY 1580	Aurora, Colo. KOSI 1430	Belmont, N.C. WCGC 1270 M.A	
Amos, Que.	CHAD 1340	Aurora. $111 . \quad$ WMRO 1280	Beloit, Wis. WBEL 1380	
Amsterdam, N.Y.	WCSS 1490	Austin. Minn. KAUS 1480 M	Belton S.C. WGEZ 1490 W	Braddock, Pa, WLOA 1550
Anaeonda, Mont.	KANA 1230	Austir. Tex. KNOW 1490 A	Beiton. S.C. WHPB 1390	Bradenton, FIa. WTRL 1490
Anacortes, Wash.	KAGT 1340	BC 590 C	Belzoni, Miss, WELZ 1460	WBRO 1420
		E 1370	Bemidji, Minn, KBUN Bend. Orel. KBND	Bradiord. Pa. WESE 1490 M.
170 WHITE'S	RADIO LOG	Avalon, Callf. Keic 740	Geantsvllie, 8.C. WBSC 1550 m	Bralnerd, Mina. KLI2 138

acation	C．L，Ke．N．A．	Locatlon			
Rio. Tex.	$\text { OLK } 1230$	Elba，Ala． WELB 1950	ville，Tenn．	$y, S . C .$	WFGN 1570
ming．N．Mex．	KOTS 1230	EI Cajon，Callf．KSGC 1400 A	gus Falls．MInn．WKR 1240 M	Gainesville，Fl	
mopolis．Ala．	WXAL 1400 M		mian．		$\text { WGGG } 1230$
nison，low	KDSN 1580	El Centro，Calif．KKXO ${ }^{1230}$ M	W	Gainesville，Ga，	WRGF ${ }^{\text {W }}$ W50
Denison，T	KDSX 950	El Dorado，Ark．KDMS 1290	WPAP 1570	No，ca	UN 1240
nton，Te	KDNT 1440		Festus，Mo．KFN．KXEN 1010		WLBA 1580
C	$\begin{array}{ll} \text { KOEN } & 1340 \\ \text { KFML } & 1390 \end{array}$	rado．Kans．KBTO 1360 n，ilt． WRMN 1410	Findlay，ohio WFIN 1330	Galax. Va.	$\begin{aligned} & \text { KGAF } 1580 \\ & \text { WBOB } 1360 \end{aligned}$
	KHOW 630 A	Elizabeth City．N．C．${ }^{\text {EMN }} 1410$	WELO ${ }_{\text {W }}$ W990 A	Galesbury．III．	－ 1400
	KIMN 950 M	1240	WFGM 960		
	KLLR 9900		I．WBHB 1240 M	Gallifoolis，Ohio	WHEN 990
	KICN 710	Elizabethton，Tenn．WBES 1240 Elizabothtown，Ky．WIEL 1400	Flagstafi，Ariz．KCLS 600 N	Gallup，N．Mex．	KGAK 1330
	OA 850 N	Elizabethtown，N．C．	KVNA 690 KEOS 1290		CMA 230
	KPOF 910	［m	Flat Rlver，Mo．KFMO 1240 M		CKGR 1110
	KFSC KTLN 12280	Elk City，OKİ Pa．WEZN 1600	Flin Flon，man．CFAR 590		KGBC 1540
O．Queen．	KOQN 1990	Eikhart，Ind． WBEK 1240 A ETRC 1340 N	Flint，Mich．WFOF ${ }^{\text {WTR }}$		CBG 1450
Defidder，	KDLA 1010	WCMA 1270		Gardon City	KNCO 1050
Des molnes，lowa	KCBC 1390 A KIOA 940	Elkin，N．C WIFM 1540	WMRP 1570		
		Ekins．W．Va．WDNE 1240	WKMF 1470	Gary，Ind．	WCA 1270
	$\begin{aligned} & \text { KNT } 1350 \\ & \text { KSO } 1460 \end{aligned}$	Elko，NeV．wash．KELK 1240 M	WTAC 600 A		
	KWKY 1150 M	Ellsworth，Mo．WOEA 1350	990	Gastonla，N．	A
Detrolt，Mleh．	WHO 1040 N	IR，N．Y．WELM 1400 A．C	WOWL 1240 A		WGTC 1370
			Floranes，S．C．WJMX 9／0 A	Gay	WA
	WJLB 1400		－	Go	WG
	W／R 760				WGY
	WW」 950 N	El Paso．Tex．KROD 600 C	Fond du Lac，W／s．KFIZ 1450 M	G	
Detrolt Lakes，	70 A		KBJT 1570		
，	KoLm 1340	KHEY ${ }^{690}$	WMAG 860	Getty	d
vils L		KOYE 1590	W880 780	$110 t$	
	\％M	KSET 1340 M	WAGY 1320	Glir	KPER 290
Doxter	KDEX 1590	Ely KTSM 1380 N	Forrest City，Ark．KXJK 950	Glasgow． Ky ，	
Diekins	KDIX 1230	Ely，Minn．WELY 1450 m	Ft．Brage，Calif．KDAC 1250	Glasgow．	KLTZ 1240
Diekso		Ely Novo KELY 1230	Ft．Collins，Colo．KCOL 1410	Glendal	KRUX 1360
Dilion．	KDBM ${ }^{\text {K00 }}$	Elyria，Dhto WEOL 930	Ft．Dodpe，lowa KVFD 1400 M	Gle	KIEV 870
Dillo	WDSC 800 A	Eminenee，Ky．WSTL 6600	KWMT 540 A	Glendiv	KXGN 1400
nub	KROU 1240	Emporia，Va．WEVA 860	Ft．Franees，Ont．CFOB 800	Glen	WWSC 1450
Dadge City，	KGNO 1370	Emporium，Pa，WLEM 1250	Ft．Knox．Ky，WSAC 1470		K0
than，	WAGF 1320		Ft．Laudordale，Fla．WFTL 1400		
	WDIG 1450 M				WJB 1240 A
	OF 560	Enid，Okla，KCRC 1390 A			
Douglat，Ariz．	WT 1450 M	KGWA 960 M	KFTM 1400		
Douglas，Ga	APR 930	Enterprise，Ala，WIRE 600	WINK 1240 C	Col	50°
Dounlas，Wyo．	IV 1050	Ephrata，Wash．WGSA 1310	WMYR 1410		KLFT 1600
Dover，Del，	WDOV 1410	Eris，Pa．WERC 1260 A			
	1800	1330 N	Ft．Plores，Fla，WAR	Goldsboro．N．C	FMC $730{ }^{\text {m }}$
Do	WJER 1450	400	1400		GBA 1150
Doylesto	WBUX 1570	Erwin，Tenn．	Ft．Seot，ldaho KMOD 600		
Drum	CJDV 910		KFPW 1230 C		
		WLST 600 A	\mathbf{A}		
	CHRD 1340	Eseendido，Calif．KOWN 1450	KWH	Goshen，lid．	－
	$\text { WXLI } 1440$	Estherville．Lowa KLIL 1340	Ft．Stoekten，Tex．KFST 860	Grafto	340
D		Eutah，Tonn．WCPH 1220	Ft．Valley，Ga．WFPM 1150	Grafton，W．V．	260
Dubuque，loma	KDTH 370 A	Eugene，Ore，WULA 1240	Ft．Walton Beach，Fla．	Gra	KSWA 1330
	WDBQ 1490 m			号	CHEF 1450
Dululh，Mian．	KDAL 610 C	KERG 1280	Ft．Wayne，Ind．WWGL ${ }^{\text {W }}$（250 A	d	
	1080	590	WOWO 1190	Gram	0
Dumas，	KDOD 800	Euniee，La．KEUN 1490 M	ANE 1450 C		
Duncan，Okia．	KRHD 1350 M	$\begin{aligned} & \text { KJNS 980 C } \\ & \text { KDAN } 790 \text {. } \end{aligned}$	WKJG 1380 N		
	$\begin{array}{l\|l\|} \hline \text { BE } & 860 \\ \text { BB } & 360 \end{array}$	Eustis．Fla KIEM 1480 M	Ft．Worth，Th KJIM 870	Grand Haven，	
0	FLR 1570	Evanston．ill．WEAW 1330	1540		
Ounki N．	WCKE 1410	WNMP 1590	KNOK 970		KMms 750
Du Quoin．	WCKE ${ }^{780}$	Evanston，Wro．KLUK 1240	WBAP 570 A		1430
Durana，Colo．	KIUP 930	$\begin{aligned} & \text { EOA } 1400 \mathrm{C} \\ & \text { GBF } \end{aligned}$		Grand Junetlo	
Durant，Okla．	KSFO 750	WIKY 820	Fostoria，Ohlo WFO日 1430		EXO 1230
Durham，N．C．	WONC 620 C	Eveleth，Minn．	Fountain Inn，S．C．WFIS 1600		
	1410	Everett，Wash．KRKO $1380{ }^{\text {W }}$	Framingham，Mass．W KOX 1190		P 1050
	WSSB 1490	Everareat Mo	Frankiort，Ind．WILO 1570 m		730
Dyersburs，Tenn．	WDSG 1450	Everarean，Ala Fairbanks，Alaska	Franklin，KY．WFKN $1220{ }^{\text {m }}$		WIEF 1230 C
	WTRO 1330	AR C60 A．M－N	Franklin，N．C．WFSC 1050		WFUR 1570
Eagle Pass，Tex．	KEPS 1270	Fairfor Ka KFRB900 C	Franklin，Pa． Franklin，Tonn， F		WLAV 1340 A
E．Grand Forks，	WELP 1360	Fairfax，Va，WEEL 1310			WMAX 1480 m
		Farneld，III．WFIW 1390	Frederick，Md．WFMD 930 C		OOD 1300 N
Eastland，	KERC 1590	Fairmont，Minn．KSUM 1370	Frederick，Okla．KTAT 1570		K02Y 1490 m
E．Lansing，Mich．	WKAR 870	Fairmont．N．C．WFMO $860{ }^{\text {M }}$	Fr		
E．ast Longmeadow．	WOHII 1490 A	Fairniont．W．Va，WMMN 920 C		Grants，N．Mex．	$\begin{aligned} & \text { KORT } 1230 \\ & \text { KMIN } 980 \end{aligned}$
East Longmeadow．	Muss．${ }_{\text {WTVM }} 1800$	Falardo．P．R．WWOD 1490 A	Frodericksbura，Va．WF FA 1230	Grants Pass，Ores．	KAGf 1340 m
E．Point，Ga．	WTJH 1260	Fallurriss，Tex．WPSO 1260	Fredonia，N．Y．WEUZ 1570	bourg，Sask．	CFGR 1230
Easton，Pa，Slis．	WAMV 1490 A	Fallon，Nev．Mass，KULV 1230	Fropport，N11．WFRL 1570		CFRG 710
Easton，Pa．	WEEX 1230	Fall River，Mass．WALE 1400 M	Freeport，N．Y．WGEE 1240 Freeport，Tex．KBRZ 1460	Grayson，Ky．	WGOH 1370
tontown，N．J．	WHTG 1410	Falls chureh，Va．WFAR 1480 A	Fremont，Mich．WCBQ 1490	．Barrington．	${ }^{88}$
Claire，wis．	WEAQ 790	Falls Churen Nebr．WFAX 1230	Fremont，Nebr．KHUB 1340		
	12140	Fargo，N．Dak．WDAY 970	Fremont，ohio WFRO 900	Gt．Bend，Kans． Gt．Falls，Mont．	KVGB 1590 KFBE 1310
	WECL 10	KFNW 900	Fresno，Calif．KARM 1430		KUDI 1450
Edenton．N．C．	WCD 920	KXGO 790 A			KMON 560 M
Edinburo，	KURV 710	Farmington．Mo．KREI 820	940		1400 N
Edmonds，Wash．	KGDN 630	Farmington，N．M．KENN 1390	GST 1600		KYOU 1450
Edmonton，Alta，	CBX 1010	KWYK 960	3	Green Bay，W／s．	WBAY 1360 C
	CBXA 740	KZUM 1280	580		WJPG 1440 m
	CFRN 1260 CHED 1080	Farmville，N．C．WBTL 1050	Front Royal．Va．WFTRO 1450		WDUZ 1400 A
	CHFA 680	Farraville，Va，WFLO 870 Farrell，fa， WFAR	Frostbur，10．d．WFRB 740	Green Cove Spriags	s．Fla．
	CJCA 930	Farrette．Ala，WWAR 1470	Fulten，Ky．WFUL 1270		GRC 1580
	KUA 580	Feyorteville，Arts KHOG 1450	Fulton，Mo．KFAL 900	Greenfield，Mass．	
Edmundston．N．C．	CJEM 570	KFAY 1250	Futton，N．Y．WOSC 1300	Greensboro，N．C．	WBIG 1470 C
Effinharn，III．	WCRA 1090	Fayottevilie，N．C．WFAI 1230 C	ay		WCOG 1320
		WFNC 1390 M	Gadsden，		G 1400 A
172 WHITE＇S	RADIO LOG	$\begin{aligned} & \text { WFLg } 1490 \mathrm{~A} \\ & \text { WIDU } 1600 \end{aligned}$	WETO 930 m WCAS 570	Greentburg．Pa Granvillie，Ala，	$\begin{aligned} & \text { WPET } 950 \\ & \text { WHJB } 620 \\ & \text { WGYY } 1880 \end{aligned}$

U. 5. and Canadian AM Stations by Call Letters

C.L. Location

KAAA Kingman, Ariz. KAAB Hot Springs, Ark. KABC Los Angelas, Cai
KABL Oakland, Calif. KABL Oakland, Calif. KABQ Albuquerque. N. M.
KABR Aberdeen, S. Dak. KABR Aberdeen, S.
KABY Albany, Oreg.
KACE Riverside, Calif
KACI The Dalles, Ore
KACT Andrews, Tex,
KACY Port Hueneme
KACY Port Hueneme, Calif. KADA Ada, Okla. KADY St. Charies, Mo KAFP Potaluma. Calif. KAFY Bakersfiold, Calif. KAGE Winona, Minn. KAGH Crossett. Ark KAGI Grants Pass, Oreg. KAGT Anacortes, Wash. KAGR Yuba City, Cal
KAHI Auburn Calif, KAHU Waipahu, Hawali KAIR Tucson, Ariz. KAJI Little Roek, Ark. KAJO Grants Pass, Ores. KAKC Tulsa, Okla. KAKE Wiehila. Kan. KALB Alexandria, La. KALE Riehiand, Wash. KALG Alampeordo. N. Mex. KALI Pasadena, Calif. ULA KALM Thayer, Mo. KALT Atlanta, Tex KALV Alva, OKla. KAMD Camden. Ark. KAML Kenedy. Tex. KAMO RoEers. Ark. KANA Anaconda, Mont KANB Shrevoport, La. KAND Corsicana, Tex. KANI Kailua, Oahu, Hawaii KANO Anoka, Minn. KANS Independence, Mo. KAOK Lake Charles, La. KAPB Marksville, La. KAPI Pueblo, Colo. KAPR Dougias, Ariz. KARE Atchison. Kan.
KARM Fresno, Calif.
KARS San Antonio, Tex.
KART Jerome. Idaho
KARH Prosser, Wash
KASH Eugene, Ore
KASK Ontario, Calif.
KASL Neweastie, Wyo.
KASL Noweastie, Wyo.
KASO Minden. La.
KAST Astoria, Ore.
KAST Astoria, Ore.
KATE Albert Lea. Minn. KATI Casper, Wyo.
KATY San Luis Obispo. Cal. KATZ St. Louls. Mo.
KAUS Austin, Minn.
KAVI Roeky Ford. Colo.
KAVR Apple Valley. Calir KAWL York, Neb
KAWT Douglas. Áriz.
KAYE Puyalluy, Wash
KAYL Storm Lake, lowa KAYO Seattle. Wash. KAYS Hays, Kans. KAYT Rupert, Idaho KBAL San Saba, Tex. KBAM Lonpview, wash. KBAN Bowie. Tex. KBAR Burloy, Idaho KBBA Benton. Ark. KBBB Borger, Tex. KBBC Centervilie, Utah KBBC Bentervilie, KBCH Oceanlake. Ore』. KBCL Bossier City, La. KBEE Modesto, Calif. KBEK Eik City. Okla KBEL Idabel. Okla. KBEN Carrizo Spris.. Tex. KBET Reno. Nev. KBHC Nashville. Ark. KBHM Branson. Mo. KBHS Hot Springs, Ark. KBIF Columbia, KBIG Avalon. Callif.

Ke.|C.L. Location | 1230 | KBIM Roswell, N. Mex. |
| :--- | :--- |
| 1350 | KBIS Bakersfield. Caiif. | 90 KBIS Bakersfieid, Cailif. 60 KBIZ Ottumwa, Iowa 350 KBJT Fordyce, Ark. 220 KBKC Mission, Kans. 990 KBKR Baker, Ores,

1570 KBKW Aberdeen. Wash. 300 KBLA Burbank, Calif. KBLI Blackfoot. 'Idaho. KBLO Hot Springs, Ark
KBLR Goodland, Kans. KBLT Big Lake, Tex.
KBMI Henderson, Nev. KBMN Bozeman, Mont. KBMO Benson, Minn.
KBMW Breckinrde. KBMW Breekinrda. Min
KBMX Coallinga. Calif. I. KBMY Billings, Mont
KBND Bend, Ores. KBNZ LaJunta, Colo KBOA Kennett, Mo.
KBOE Oskaloosa, Iowa KBOI Boise, Idaho KBOK Malvern. Ark 0 KBOL Boulder, Colo. KBON Omaha, Nebr. KBOP Pleasanton, Tex,
KBOR Brownsville, Tex. KBOW Butte, Mont. KBOY Medford, Ore
0

KBOX Dallas. Tex. KBPS Portland, Oref 00 KBRC Mt. Vernon. Wash. \begin{tabular}{l|l}
430 \& KBRK Brookings, S.Da

910 \& KBRL MeCook, Nebr.

 910 KBRL MeCook, Nebr. 990 KBRO Bremerton, Wash. 1430 KBRV Soda Sorgs.. Ida. 1230 KBRX O'Nelli, Nebr.

1300 \& KBRZ Freeport, Texa

1840 \& KBSF Springhill, La
\end{tabular} 1240 KBST Big Spring. Tex. 1240 KBTA Batesville, Ark. 1470

1510

KBTM Jonesboro. Ark Neosho. Mo. \begin{tabular}{l|l}
1510 \& KBTN Neosho, Mo.

1400 \& KBTO EI Oorado, Kans.

 1340 KBUC Corona, Calif.

1370 \& KBUD Athens, Tex.

690 \& KBUH Brigham City, Utah

690 \& KBUH Brigham City,

930 \& KBUN Bemidji, Minn.
\end{tabular} 1470 KBUR Burlington, lowa 920 KBUS Mexia. Tex. 50

KBUY Amarillo, Tex.

KBUZ Mesa, Ariz | 500 | KBUZ Mesa, Ariz. |
| :--- | :--- | 310 KBWD Brownwood, Tex. KBYE Okla, City, Okla. KBYG Big Spring, Tex.

KBYP Shamrock, Tex. KBYR Anchorage, Alaska KCAL Redlands, Cali 0 KCAP Helema, Mont. KCAR Clarksville, Tex.
KCBC Des Moines, lowa KCBD Lubback, Tex. KCBQ San Diego. Calif. KCCB Corning. Ark. KCCL Parning, Ark. 0 KCCL Paris, Ark. KCCR Pierre, S.Dak.
KCCT Corpus Christi, Tex. KCCT Corpus Christi,
KCEE Tueson. Ariz.
KCFA Spokane Wash. KCFA Spokane, Was
KCFH Cuero, Tex. KCHA Charlos City, lowa
KCHE Cherokes, Iowa KCHI Chillicothe, Mo.
KCHJ Delano, Calif. KCHR Charleston, Mo. Now Mexico

KCHV Coashalla, Calif. KCHY Cheyenne, wyo.

 KCID Caldwell, Idaho KCIJ Shreveport, La KCiM Carroll, lowa KCJB Minot. N.Dak.KCKC San Bernardino, Cal. KCKN Kansas City. Kans KCKY Coolidge, Ariz. KCLE Cleburne, Tex. KCLF Clifton. Ariz. KCLO Leavenworth, Kans. KCLP Rayville. La. KCLS Flagstaff. Ariz. KCLW Hamilton. Tex. KVLX Colfax. Wash.

Kc.	ation	Kc.	C.L.	Location	c.
910	KCMR McCamey. Tex	1450		Sh	0
970	KCMS Manitou Sprgs., Collo.	149		Bellingham, Wash	930
1490	KCNI Broken Bow.	1280	KEOK	Payatte, Idaho	50
1240	KCNO Alturas, Calif.	570	KEOS	Flagstaff. Ariz	1290
1570	KCNY San Marcos. T	1470	KEPR	Kennewick.	
1480	KCOB Newton, lowa	1280	KEPS	Eagle Pass,	-
1490	KCOG Centerville. 10	1400		Kormi	600
1450	KCOH Houston, Tex.	1430	KERC	Eastla	1590
1490	KCOK Tulare, Calif.	1270	KERG	Eugene, Ore	1280
149	KCOL Ft. Collins, C	1410	KERN	Bakersfield,	10
69	KCON Conway.	1230	KERY	Kerrville. Tex.	1230
1470	KCOR San Antonio.	1350	KETX	Livingston. Tex	1440
73	KCOW Alliante.	1400	KEUN	Eunice, La.	
1290	KCOY Santa Marla, Calif.	1400	KEVE	Minneapolis, Minn	10
1400	KCRA Sacramento. Calif.	1320	KEVL	White Castle, La.	0
123	KCRB Chanute, Kans.	1460	KEVT	Tueson, A	690
1290	KCRC Enid, okla.	1390		Oaklaid	910
14	KCRG Cedar Rapids, lowa				1190
14	KCRN Crane, Tex.	1380		Grand June.: C	0
12	KCRS Midland. Tex.	550	KEYO	Oakes, N.	1220
111	KCRT Trinidad, Colo.	1240	KEYE	Perryt	1400
1400	KCRV Caruthersville.	1370	KEZU	Rapid City.	20
83	KCSJ Pueblo, Colo.	590	KEYJ	Jamestown.	1400
740	KCSR Chadron, Nebr.	1450	KEV	Corpus Chr	1440
$\begin{array}{r} 950 \\ 1310 \end{array}$	KCTA Corpus Christi.	1030	KEYY	Provo, Utah	1450
1490	\% Gonza	1510		Omaha,	
1270	KCUB Tucson, Áriz.	1290	KFAC	Los Angeles,	0
1490	KCUE Rod	1250	KFAL	Fulton, Mo.	00
1380	KCUL Fort Wort	1540	KFAM	St. Cloud, M	450
1600	KCVL Colville.	1270	KFAR	Fairbanks. Alask	660
1490	KCVR Lodi, C	1570	KFAY	Fayetteville, Ar	1250
730	KCYL Lampasas,	1450	KFBB	Great	10
1480	KDAC Ft. Brasp	1230	KFBC	Cheye	
1450	KDAL Duluth, Minn.	610	KFBI	W iehita.	70
1430	KDAN Eureka, Calif.	790	KFB	Saeramento,	30
1430	KDAV Lubboek. Tex.	58	KFDA	Amarill	40
1300	KDAY Santa Monica, Calir.	1580	KFDF	Van Buren, A	30
1490	KDB Santa Barbara, Calif.	1490	KFDM	Beaumon	
1340	KDBC Mansfte	1360	KFDR	Grand Coulee, Wash.	0
540	KDBM Dilion, Mont.	800	KFEL	Pueblo,	
13	KDBS Alexandria, La,	1410		St. Joseph, M	680
14	KDDO Dumas, Tex.	800	KFFA	Helena, Ark.	
146	KDEC Deeorah, lowa	1240	KFGQ	Boon	12
14	KDEF Albuquerque. N.Mex.	1150	KFH	Wiehi	30
134	KDEN Denver, Colo.	1340	KFHA	Lakewood. Wash	4880
1230	KDEO EI Cajon,	910	K	os Anteles, Calif.	40
1420	KDES Palm Sprgs., C	20	KF1R	North Bend,	1340
13	KDET Center. Te	930	KFIV	Modesto.	1360
1370	KDEX Dexter.	590	KFIZ	Fond du La	1450
1410	KDGO Durango, Colo.	1240	KFJB	Marshalltow	1230
800	KDHL Faribault. Min	920	KFJ	Klamath Falls,	
145	KDIA Oakland, Cali	1310	KFjN	Grand Forks. N.Dak	7
	KDIO Ortonville. Min	1350	KFIZ	Ft. Worth, Tex.	1270
159	KDix Di	1230	KFKA	Greeley, Colo	1310
10	KDJI Holbrook, Ariz.	1270	KFKF	Bellevue, Wa	1330
1310	KDKA Piltsburgh. Pa	1020	KFKU	Lawrence, Kans	1250
1380	KDKD Clinton, Mo.	1280	KFLD	Floydada. Tex.	00
138	KDLA DeRidder, L	1010	KFLJ	Waisenburg, Co	380
890	KDLK Del Rio. Tex.	1230	KFLW	Klamath Falls, Oreg	1450
1400	KDLM Detroit Lakes, Minn.	1340	KFLY	Corvallis, Oreg.	1240
1580	KDLR Devils Lake, N.Dak.	1240	KFMA	Davenport. lowa	580
1270	KDMA M	1450	KFMB	San Diego. Calif	540
1490	KDMO Carthage	1490 1290	KFMJ	Tulsa, Okla.	1050
1410	KONS El Dor	1290	KFML	Den	1390
	KDOK Tyler, ${ }^{\text {K }}$	1340			40
1350	KDOM Windom. Minn.	1580	$\begin{aligned} & \mathbf{K} \\ & \mathbf{K} \end{aligned}$	Shenandoah. lo Ferriday La	920 1600
	KDON Salinas, Calif.	1460	KFNW	Fargo, N. Da,	1600 900
$\begin{aligned} & 1590 \\ & 1170 \end{aligned}$	KDOT Rend. Nev	1230	KFOR	Lineoln. Nabr	1240
$\begin{array}{r} 1170 \\ 740 \end{array}$	KOOV Medford, Oreq.	1300	KFOX	Long Beach, Cal	1280
1260	KDQN DeQueen, Ark.	1390	KFPW	Ft. Smith, Ark.	1230
1460	K0RO S	1490	KFOD	Anehorage, Alaska	0
050	KDRS Pa	1490	KFRB	Fairbanks. Alaska	0
	KDSN Denison, Sowa	${ }_{1} 980$	KFRC	San Franciseo, Cali	10
1150	KOSX Denison,	950	KFRD	Rosenberg. To	
790	KDTA Delta, Colo	1400	KFRE	Fresno. Callf.	940
1330	KDTH Dubuque. Iowa	1370	KFRO	Kansas Cl	$\begin{array}{r} 550 \\ 1370 \end{array}$
	KDUB Lubbock. Tex.	1340			1400
$\begin{aligned} & 1580 \\ & 1440 \end{aligned}$	KDUZ Hutehinson. Minn	1260	KFSA	Ft. Smith, Ark	950
1010	KOWB St. Paul, Minn.	630	KFSB	Joplin. Mo.	1310
1010	KDWT Stamford, Tox. Ark	140	KFSC	Denver, Colo.	1220
1350	KOXE No. Little Roek. Ark		KFSD	San Diego, Calit	600
	KDYL Salt Lake Clity, Utan		KFSG	Los Angeles, Calif.	1150
1400			KFST	Ft. Stockton, Tex	860
970	KEAN Brownwoo	1240	KFTM	Ft. Morgan. Colo.	1400
1590	KEAP Fresno. Calif	$\begin{array}{r} 1240 \\ 980 \end{array}$	KFTV	Paris, Tex.	1250
149	KEBE Jacksonville. Tex.	1400	KFUN	Las Vepas ${ }^{\text {N,Mez }}$	1230
1050	KECK Odessa, Tex.	920			850
90	KEDO Longview, Wash.	1400	KFFW	Cape Girardeau, Mo.	960
910	KEED Springfeld, Oreg.	1050	$\begin{aligned} & \text { KFWB } \\ & \text { KFXD } \end{aligned}$	Los Angeles, Calif. Nampa, Idaho	980 580
1350	KEEE Nacoodoches, Te	1230 710	KFXM	San Bernardino. Calit	590
1340	KEEN San lose, Calit	1370	KFYN	Bonham. Tex.	1420
50	KEEP Twin Falls, Idaho	1450	KFYO	Lubbock. Tex.	790
1400	KELA Centralia. wash.	1470	KFYR	Bismarek, N.Dak	550
20	KELD EI Dorado, Ark.	1400	KGA Sb	bokane. Wash.	1510
1400	KELK Elko, Nev.	1240	KGAF	Gainesville, Tex	1580
390	KELO Sloux Falls, S. Dak.	1320	KGAK	Gallup, N.Mex.	1330
410	KELP EI Paso. Tex.	920	KGAL	Lebanon. Ores.	920
90	KENA Men	1450	KGAN	Bastrop. La.	1340
600	KENE Toppenish. Wash.	490	KGAS	Carthage. Tex	1590
00	KENI Anchorape. Alaska	550	KGAY	Salem, Orea	1430
00	KENL Areata, Callf.	1340	KGB Sa	an Diego. Calif.	1360
1450	KENM Por	1450	KGBC	Galveston, Tex.	1540
2	KENN Farmington. N.M.	1390	KGBT	Harlingen, Tex.	1530
$\begin{gathered} 1010 \\ 810 \end{gathered}$	KENO Las Vegas, Nev. KENS 8en Antonio. Tex	$\begin{array}{r} 1460 \\ 680 \end{array}$	$\begin{aligned} & \text { KGBX } \\ & \text { KGCX } \end{aligned}$	springfleld, Mo. 8Idney, Mont.	$\begin{aligned} & 1260 \\ & 1480 \end{aligned}$

Kc.	C.L. Location	Kc.	1.	Location	Kc.
910	R McC	1450	K	Sh	1550
970	KCMS Manitou Spras.	490	KENY	Bellingham,	0
1490	KCNI Braken Bow. Nebr.	1280	KEOK	Payatte. Id	0
1240	KCNO Alturas. Cal	570		Flagstaff. Ariz	1290
1570	KCNY San Marcos.	1470	KEPR	Kennew	0
1480	KCOB Newton, lowa	1280	KEPS	Eagle Pass, Tex.	270
1490	KCOG Centerville.	1400	KERB	Kermit. Tex.	0
1450	KCOH Houston.	1430	KERC	Eastland, Tex.	0
1490	KCOK Tulare, Cali	1270		Eugene, Oreg	1280
1490	KCOL Ft. Collins,	1410	KERN	Bakersfield,	1410
690	KCON Conway.	1230	KERV	Kerrville, Tex.	1230
147	KCOR San Antonio.	1350	KETX	Livingston, Tex	40
730	KCOW Alliante,	1400	KEUN	Eunice, La.	0
1290	KCOY Santa Marla, Calif.	1400	KEVE	Minneapolis, Mi	1440
140	KCRA Sacramento. Calif.	1320	KEVL	White Castle, La.	1590
1230	KCRB Chanute.	1460	KEVT	Tueson,	90
129	KCRC Enid, 0	1390		Oakland, Cal	0
450	KCRG Cedar Rapids, lowa	1600		Grand	0
147	KCRN Crane, Tex.	1380		Grand Jun	0
240	KCRS Midland. Tex.	550	KEYD	Oakes, N.	20
11	KCRT Trinidad, Colo.	1240	KEYE	Perryton.	1400
140	KCRV Caruthersvilie.	1370	KEZU	Rapid City.	20
830	KCSJ Pueblo, Colo.	590	KEYJ	Jamestown.	0
74	KCSR Chadron, Nebr	1450	KEYS	Corpus Chris	440
950	KCTA Corpus Christi.	1030	KEYY	Provo, Utah	1450
131	KCTI Gonzales, Tex.	1450	KEYZ	Williston. N. Dak.	1360
149	KCTX Childress, Tex.	1510	KFAB	Omaha. Ne	0
27	KCUB Tucson, Áriz.	1290	KFAC	Los Angeles,	1330
49	KCUE Red Wing. M	1250	KFAL	Fulton, Mo.	10
380	KCUL Fort Worth. Tex	1540	KFAM	St. Cloud, Mi	1450
600	KCVL Colville.	1270	KFAR	Fairbanks. Ala	0
490	KCVR Lodi, Calif.	1570	KFAY	Fayetteville.	1250
73	KCYL Lampasas,	1450	KFBB	Great Falls. Mo	1310
480	KDAC Ft. Brasd	1230	KFBC	Cheyenne. Wyo.	1240
450	KDAL Duluth. Minn.	610	KFBI	W iehita, Kans	1070
430	KDAN Eureka, Calif.	790	KFBK	Saeramento, C	30
430	KDAV Lubbock. Tex.	580	KFDA	Amarillo.	1440
300	KDAY Santa Monica, Calir.	1580	KFDF	Van Buren, Ar	1580
49	KDB Santa Barbara, Calif.	1490	KFDM	Beaumon	0
540	KDBC Mansfeld, La.	1360	KFDR	Grand Coulee, Wash.	0
540	KDBM Dillon, Mont.	800	KFEL	Pueblo, C	70
350	KDBS Alexandria, La.	1410	KFEQ	St. Joseph, Mo	0
460	KDDO Dumas. Tex.	800	KFFA	Helena, Ark.	0
490	KDEC Deeorah, lowa	1240	KFGQ	Boone, lowa	1260
490	KDEF Albuquerque, N.Mex.	1150	KFH	Wichita, Kans	1330
340	KDEN Denver, Colo	1340	KFHA	Lakewood. Wash	480
230	KDEO El Cajon, Calif.	910	KFI Lo	os Anteles, Calif.	640
420	KDES Palm Spros., Callif.	920	KFiR	North Bend.	1340
360	KDET Center, Tex.	930	KFiv	Modesto. Cal	1360
370	KDEX Dexter. Mo	1590	KFIZ	Fond du Lac,	1450
410	KDGO Durango, Colo.	1240	KFJB	Marshalltown, lowa	1230
800	KDHL Faribault. Min	920	KF11	Klamath Falls, O	1150
450	KDIA Oakland, Calif.	1310	KFIM	Grand Forks. N.Dak	1370
0	KDIO Ortonvilie. Min	1350	KFIZ	Ft. Worth, Tex	1270
590	KDIX Dickinson, N.D	1230	KFKA	Greeley, Colo.	1310
010	KDJI Holbrook, Ariz.	1270	KFKF	Bellevue, Wash.	1330
310	KDKA Pittsburgh,	1020	KFKU	Lawrence, Kans	1250
0	KDKD Clinton, Mo	1280	KFLD	Floydada, Tex.	900
380	KDLA DeRidder, La.	1010	KFL」	Walsenburg, Colo.	1380
0	KDLK Del Rio. Tex.	1230	KFLW	Klamath Falls, O	
400	KDLM Detroit Lakes, Minn.	1340	KFLY	Corvallis, Oreg.	1240
580	KDLR Devils Lake, N.Dak	1240	KFMA	Davenport. 10wa	1580
270	KDMA Montevideo Minn.	1450	KFMB	San Diego. Calif.	0
	KDMO Cartha	1490	KFMJ	Tulsa. Okla.	050
410	KDMS El Dorado. Ark.	1290	KFML	Den	1390
4	KDNT Denton. Tex.	1440	KFMO	Flat River. Mo.	1240
350	KDOK Tyler, Tex.	1330	KFNF	Shenandoah. lowa	920
390	KDOM Windom. Mi	1580	KFNV	Ferriday, La.	600
590	KOON Salinas,	1460	KFNW	Fargo, N. Dak	900
	KDOT Reno. Nev.	1230		Lineoln.	40
	KOOV Medford, Oreg.	1300	KFOX	Long Beach, Call	1280
	KDQN DeQueen, Ark.	1390		Ft. Smith. Ark.	1230
460		1490	KFQD	Anchorage, Alaska	730
50	KDRS Paragould, Ark.	1490	KFRB	Fairbanks. Alaska	0
590	KDSJ Deadwood, S. Da	980 1580	KFRC	San Franciseo, Cali	610
	KDSX Denison, Texa	1580	KFRD	Rosenberg. Tex.	80
790		1400	KFRE	Fresno. Calli.	940
	KDTH Dubuque. lowa	1370		Kansas City, Mo.	0
	KDUB Lubbock, Tex.	1340	KFRO	Longview. Tex.	1370
580	KDUZ Hutehinson. Minn.	1260	KFSA	Ft. Smith, Art	1900
	KDWB St. Paul, Minn.	630	KFSB	Joplin. Mo.	1310
	KDWT Stamford, Tex. Ark	1400	KFSC	Denver, Colo.	1220
	KDXE No. Little Roek. Ark	1380	KFSO	San Diego, Calit	600
	KDXU St. George, Utah	1450	KFSG	Los Angeles, Calif.	1150
	KDYL Salt Lake Clity, Utah	1320			860
970	KDZA Pueblo, Colo.	1230 1240	KFTM	Ft. Morgan, Colo.	860 1400
59	KEAP Fresno. Calif	980	KFTV P	Paris, Tex.	1250
490	KEBE Jacksonville. Tex.	1400	KFUN	Las Vepas. N.Mex.	1230
	KECK Odessa, Tex.	920			850
	KEDO Longview, Wash.	1400		Cape Girardeau, Mo.	960
	KEED Sprinaffeld, Orea.	1050	$\begin{aligned} & \text { KFWB } \\ & \text { KFXD } \end{aligned}$	Los Angeles. Cali Nampa, Idaho	980 580
50	KEEE Nacogdoches. Tex. KEEL Shreveport, La.	$\begin{array}{r} 1230 \\ 710 \end{array}$	$\begin{aligned} & \text { KFXD } \\ & \text { KFXM } \end{aligned}$	Nampa, Idaho San Bernardino. Cali	580 590
	KEEN San lose, Calit	1370	KFYN	Bonham. Tex.	1420
	KEEP Twin Falls, Idaho	1450	KFYO	Lubbock, Tex	790
	KELA Centralia. Wash.	1470	KFYR	Bismarek, N. Dak.	550
	KELD EI Dorado, Ark.	1400	KGA Sb	pokane. Wash.	1510
	KELK EIkO, Nov.	1240	KGAF	Gainesville. Tex.	1580
	KELO Sloux Falls, S. Dak.	1320	KGAK	Gallup, N.Mex.	1330
990	KELP EI Paso. To	920	KGAL	Lebanon. Orep.	920
	KENA Mona, Ark.	1450	KGAN	Bastrop. La.	1340
	KENE Toppenish. Wash.	1490	KGAS	Carthage. Tex.	1590
	KENI Anchorage. Alaska	550	KGAY	Salem, Ores.	1430
	KENL Areata, Callf	1340	KGB Sa	an Diego. Calif.	1360
	KENM Portales. N.M	1450	KGBC	Galveston, Tex.	1540
	KENN Farmington. N.M.	1390	KGBT	Harlingen, Tox.	1530
	KENO Las Vegas, Nev. KENS 8an Antonio. Tex	$\begin{array}{r} 1460 \\ 680 \end{array}$	KGBX	$8 p r i n g h e l d . ~ M o . ~$ 81dney, Wont.	1260 1480

K.

1550
930 930
1450
1290
C.L. Location KGON Edmonds, Wash. KGEK Sterling, Colo. KGEN Tulare Caho KGEN Long Beach, Calif. KGEZ Kalispell, Miont. KGFF Shawnes, Okla. KGFF Shawnee, Okia, KGFL Roswali. N.Mex. KGFW Kearnoy, Nebr. KGFW Karnoy, Nebr.
KGFX Plerre, 8. Dak. KGGF Ceffeyvillo. Kans. KGGM Abuquerque, N, Mex. KGHF Pueblo, Colo, KGHL Billings. Mont. KGIL San Fernando, Callf. KGIW Alamosa, Colo. KGKB Tyler, Tox. KGKC Miami 0ts, Tex KGLN Glenwood Spris., Colo. KGLO Mason CIty. lowa KGLU Safford, Ariz. KGMB Honolulu, Hawail KGMC Ensluwood, Cola. KGMO Cape Girardeau, Mo. KGNE New Braunfels. Tox. KGNC Amarillo, Tex. KGNO Dodge Cíty. Kans. KGO Sen rrancisce, Calif.
KGON Orenen City, Oreg. KG08 Torrington. Wyo. KGPC Grafton. N. Dak. KGRN Grinnelf, iowa KGRO Gresham, Oren. KGRT Las Cruces, N.
KGST Fresne, Calif. KGU Honolulu Hawail KGVL Greenville, Tex KGVO Mrenvilia, Ment. KGVW Belerade, Mont, KGW Portland, Ores. KGW Portiand, Ora KGY Olympia, Wash. KGYN Guymon, Okla. KHAM Albuquergue, N.Mex. KHAS Hastings, Nebr. KHBC Hilo, Hawaid KHBC Monticello, Ark. KHBR Hillsbore, Tex. KHEM Bia 8prines. Tex. KHEN Henryotta, Okia. KHEP Phoenix, Ariz. KHEY EI Paso, Tex. KHFH Sierra Vista, KHIL Brishton. Fort Lupton. KHIT Walla Walla, Wash. KHJ Los Angeles, Calif.
KHMO Hennibal, Mo. KHOB Hobbs. N. Mos. KHOG Fayettovilie, Ark. KHOT Madera, Calif, KHOZ Marrison. Ark. KHQ Spokane. Wash.
KHSL Chice, Calif.
KHUB Fremont, Nebr
KHUZ Borger, Tex.
KHVH Honolulu, Hawai KIBE PRlo Alio, Calif. KIBH Seward, Alaska KIBL Beeville, Tex, KiBS Bishoo, Calbf.
KiCA Clovis. N.Mex. KICO Spencer, lowa KiCK Springneid, KiCO Caloxied. Calif. KIO Idaho Falis, Idaho KIDO Monterey, Callf KIEM Eureka, Calif. KIEM Eureka, Calif. KIFI Idaho Fails. Idaho KIFN Phoenix, Ariz. KIFW Sitka, Alaska
KIHN HUgo, OKIA.
KIHO Sioux Falls, S.Dak. KIHR Hood River, O KIKK Bakersfald, Calif. KIK! Honolulu, Hawa KiKO Miami, Ariz. KIKS Sulphur, La,
KJLE Galveston. Te KILO Grand Forks, S.Dak. KiLT Houston. Tex. KiMA Yakima, Wash. KiMB Kimbali, Nebr.
KIML Gillette, Wyo. KiMO Hilo, Hawail KIMN Denver. Colo. KIMP Mt, Pleasant, Tex. KINO Independence, Kans KINE Kinesville, Tex.
KING Seattle. Wash. KING Seattle. Wash.
KINS Eureka. Calif KINS Eureka, Calir.
KINT EI Paso, Tex. KINT EI Paso, Tex. KioA O es Moines, Iowa
KioX Bay City, Tox. .
Irk.l.
Tex.

궁영 | 630 | KIPA Hilo, Hawaii |
| :--- | :--- |
| 1230 | KIRO Seatile, Wash. |
| 1230 | KIRT Mission, Tox. |
| 1140 | KIRX Kirksville, Mo. |
| 1370 | KISD Sioux Falls, S.Dak. |
| 1390 | KISN Vancouver, Wash. |
| 600 | KIST Santa Barbara, Calif. |
| 1450 | KIT Yakima, Wash. |
| 1230 | KITI Chehalis, Wash. |
| 1400 | KITN Olympia, Wash. |
| 1340 | KITO San Bernardino, Calif |
| 630 | KIUL Garden City, Kans. | Kc.

1110
710
1580
1450
1230
910
1340
1280
1420
920
1290
1240
 18
 50 1570
1260 $\begin{array}{ll}260 & K \\ 900\end{array}$ 690 610 KIUP Duraneo. Colo. KIVY Crockett, Tex.
KIXL Dallas Tex. KiXX Provo, Utah $K \times Z$ Amarillo. Tcx. KJAN Atlantic. Iowa KJAT Henderson, Tex. KJAX Santa Rosa, Calif. KJAY Mpeka, Kans. KJBS San Franciseo, Calir.
KJCK Junction City, Kans. KJCK Junction City, K KJF\& Webster City, Iowa KJLT North Platte, Nebr KJNO Juneau, Alaska KJOY Stockton, Calif. KJR Seattle, Wash. KJRG Newton, Kans. KKE Columbus, Nebr.
KKEY Vancouver. Wash. KKIS Pendieton, Orea. KKOG Oeden, Utah KKSN Grand Prairis, Tex,
KLAC Los Angeles, Calit. KLAD Klamath Falls, Orég.20960401580580KLBM La Grande, Oreg.KLBS Livingston, Tex.KLCN Blytheville. ArKLEA Poteau, Okla.
KLEE Ottumwa, Iowa
KLEM LeMars, lowa
KLEN Killeen. Tox.
KLER Oronno, IdahG
KLEX Lexington, Mo.
KLFO Litchheld, Minn.
KLFT Goldon Meadow, La.
KLGA Algona, lowa
KLGN Logan. Utah
KLGR Redwood Falls, Minn.
KLIC Monroe, La.
잉ㅇ
1230
KLIK Jefferson City, Mo.
0 KLIL Esthervilie, lowa
0 KLIQ Portland, Ores.
KLIX Twin Falls, id
KLiZ Brainerd, Minn.
KLKC Parsons, Kans.
KLLA Leosvilie, La,
KLLL Lubbock. Tex.
KLMO Longmont, Colo.
KLMR Lamar, Colo.
KLMS Lineoln. Nebr
LOO Onden, U tah
KLOG Kelso, Wash.
KLOH Pipestone, Mi
KLOK San Jose, Calif.
KLOS Albuquerque. N.Mex.
KLOU Lake Charles, La
KLOV Loveland, Cole.
KLPL Lake Providence,
KLPM Minot, N. Dak.
KLPW Union, Mo.
KLRA Littie Rock. Ark.
KLTF Little Falls, Minn
KLTR Blackwell, Okla.
LTZ Glasgow. Mont.
등
KLUK Evanston, Wyo.
KLUV Haynesvilie, La.
KLVI Vivian. La.
KLVL Pasadena, Tex.
KLWN Lawronce, Kans.
KLWT Lebanon. Mo.
KLYK Spokane, Wash.
LYR Clarksville, Ark
KL Denver. Colo.
KMA Shanandoah. Iowa
KMAC San Antonio, Tex
KMAE Man Antonio. Tex
KMAK Fresno. Calif.
KMAM Tularosa, N. ${ }^{\text {Mex. }}$
KMAN Manhatan, Kans.
KMAN Manhattan. Kans.
KMAP Bakersheld, Call

270	KMAQ Maquoketa, lowa
1270 KMAR Winnshore, La,	

 960
 1010
1330
1090
980
1590
800
940
1270
970
480
500

1150
1220

\square

Locatio
Hawaii

Calif. 230 KIUL Garden City, Kan
KIUN Peeos. TeE,
\square
\qquad , 웅윤
N
KM
KMED Medford, Ored,
KMEL Wenatchee, Wash.
KMHL Marshalf, Minn.
sh.
1340 KOOS Coos Bay, Ores.
1450 KOPY Butte, mont

1450	KOPY Alice, Tex.
1330	KORA Bryan. Tex

980 KORC Mineral Wells. Tex
KM.L Cameron. Tex.
KMJ Fresne Calif.
KMLB Monroe, La.
KMMJ Grand Island, Nebr.
KMNO sious City,
KMNS Sioux Cily,
KMOP Tucsen, Ariz.
$\begin{array}{cc} & 58 \\ & 144 \\ \text { Hebr. } & 101 \\ & 1350 \\ & 620 \\ & 1360 \\ \text { ant. } & 560 \\ & 133 \\ \text { lif. } & 112 \\ \text { a. } & 143 \\ & 158 \\ & 13\end{array}$
KMPC Los Angeles, Calif.
KMRC Moran City, La.
RE Euch, Wash.
5 KORK Las Vegas, Nev.
910
450
340
00 KORT Grangeville Idaho1490
230
1230
60 KOSA Odessa, Tex.
60 KOSE Osceola, Ark
0 KOSI Aurora, Colo.
20 HOTA Rapid City, S. Dak.
1430
1570
KOTN Pine Blufl, Ark.
1880
KOTS Deming. N.M.
KOVC Valley City. N.Dak.
KOVE Lander. Wyo
KOVO Provo, Utah
KOWB Laramic, Wyo.
KOWH Omaha, Nobr.
KOWH Omaha. Nebr.
K.OWL Lake Tahee.
K.OWL Lake Tahee, Callit.
KOWN Escondido, Ca
KOXR Ornard, Calif.
NOXR Ornard, Calif.
moy Phoenix, Ariz.
WOYE EI Paso, Tex.
MOYL Odessa, Tex.
KOYL Odessa, Tex.
KOYN Billings, Mont.
KOZE Lewiston. Idaho
WOZE Lewiston. Idaho
KOZI Chelan. Wash.
910
1500
0
0
0
0 KNBA Vallejo. Calif.
0
0
0
KMVI WMY Walluku, T. H
0
KNAF Fredericksburg, Tex.
5is
KNBC San Firkiand, Wash.
KNBX K Newport, Ark.
0
0
0
0
0 KNCK Concordia, Kans.
10
0
KNCK Concordia, Ka
KNCO Moberiy, Mo.
KNA
KNCO Garden City, Kans.
KNDC Hattinger N. Dak.
KNDE Aztec, N. Mex.
KNDE Aztec, N.Mex.
KNDY Marysville, Kans,
KNEA Jonesboro, Ark.
KNDY Marysvilie, Kan
KNEA Jonesboro, Ark.
KNEA Jonesboro, Ark.
KNEB Scottsbluff. Nebr.
KNED MeAlester, Okla.
KNEB Scottsbluft, Nebr.
KNE
KNEL Brady. Tex.
KNEM Nevada. Mo.
KNEM Nevada, Mo.
KNET Palestin
KNEM Palestins, Tex
KNEU Provo, Utah
KNE Prove, Utah
KNEW Spokane, Wash,
KNEX MePherson, Kans.

1480
970
KLEA Lovington, N. Mex.
KLEE Ottumwa, Iowa

 1000
 1150
1
11
1100
1420
1290
KMRC Morean City.790
1880
KMUR Murray ${ }_{\text {M }}$ Kex
KMUS Muskogee, Okla
KNAF Fredericksburg, Tex.
90 KNAK Salt Lake City,
50 KNAL Vietoria, Tex.

600	KKOG Ogden, Utah
760	KKSN Grand'Prairis, Tex.
400	KLAC Los Angelos, Calif.
290	KLAD Klamath Falls, Orea.

 KLAD Klamath Falls, Or
 KLAK
KLakewood, Colo.
KLA
Cordova, Alaska
KLAM Cordova, Alaska
KLAS Las Vogas, Nev.
KLAS Las Vegas, Nev.
730
570
960
960
1600
1450
1230
Fin
KNEX MePherson, Kans.
KNEZ Lompoe, Calif.
KNGS Hanford, Calif.
KNEZ Lompoe, Calif.
KNGS Hanford, Calif,
KNIM Maryvili Mo.
KNGS Hanford, Calif,
KNIM Maryvilie, Mo.
KNIT Abilene, Tox.
KNOC Natehitoches, La,
KNO Abitene, Tox,
KNOC Natchitoches,
KNOE Monroe
KNOC Natchitoches,
KNOE Monroe, La.
KNOC Moesles, Apiz
KNOE Monroe, La,
KNOG Nogales, Ariz.
KNOE Monroe, La,
KNOG Nogales, Ariz.
KNOK Ft. Worth, Tex.
KNOR Norman, Oila.
KNOT Preoth, Ariz.
KNOK Fi. Worth. Tex.
KNOR Norman, Oila.
KNOT Preseott. Ariz.
KNOR Norman, Okla.
KNOT Prescott, Ariz.
KNOW Austin, Tex.
KNOW Austin, Tex.
KNOX Grand Forks, N,Oak.
KNPT Newport, Ore.
KNOX Grand Forks, N.Oa
KNPT Newport, Ore.
KNUJ New Uim, Minn.
KNUZ Houston. Tex.
KNUJ Now Uim, Minn,
KNUZ Houston, Tex.
KNwS Waterloo,
KNUZ Mouston, Tex.
KNWS Waterloo, lowa
KNX
KNW Low Angeles, Ca
KNX Los
KOA Denver, Colo.
KNX Los Angeles,
KOA Oenver, Colo.
KOAC Corvallis, Ore
KOAL Price, Utah
KOAC Corvallis, Ore
KOAL Price, Utah
KOAM Pittsburg K
Calif.
这
KOAL Price, Utah
KOAM Pittsburg, Kans,
KOB Abbuquerque. N. Mox
KOAL Price, Utan
KOAM Pittsburg, Kans,
KOB Albuquerque. N.Mex.
KOBE Las Cruces, N.Mex.
KOB Albuquerque, N.Mex.
KOBE Las Cruces, N.Mex.
KOBY San Franciseo, Calif.
KOBE Las Cruces, N.
KOBY San Franciseo,
KOCA Kilgore. Tex.
KOCA Kilgore. Tex. Calif.
KOCY Oklahonia City, Okla.
KOCY OKlahonia Ci
KODE Joplin. Mo.
KOOI Cody, Wyo.
KODE Cody, Wyo.
KODI Cody,
KODL The Dalies, Oreg.
KODY North Platte, Nebr.
KODY North Platte, Nebr.
KODY North Platte.
KOEL Oelwein, Iowa
KOFA Yuma. Ariz.
KOFA Yuma, Ariz.
KOFA Yuma, Ariz.
KOFE Puliman, Wash
KOFA Puma, Ariz.
KOFE Pullman, Wash.
KOFI Kalispell, Mont.
KOFI Kalispell, Mont.
KOFO Ottawa, Kans.
KOFY San Matoo, Calif.
1390
1140
KOFY San Mateons. Calif.
KOF
KOFY San Mateo, Cali
KOGA Deallala, Nebr.
KOGT Oranee. Tex.
C.L. Location

KRE Berkeley, Calit.
KREH Oakdale, La.
KREL Farminiton. Mo.
KREM Spokane, Wash.
KRED Indio, Calif.
KAES St, Joseph, Mo.
KREW Sunnyside, Wash.
KREX Grand June., Colo
KRFO Owatonma, Minn.
KRFS Superior, Nebr.
KRGI Grand Isiand, Neb
KRGV Weslaseo. Tex.
KRHD Duntan, OkIa.
KRIB Mason Cily, lowa
KRIC Beaumont, Tex.
KRIG Ddessa, Tex.
KRID MeAllen. Tex
KRID MeAllen. Tex
KRIZ Phoenix Ariz.
KRIZ Phoenix, Ariz.
KRKC King City, Calif. KRKD Los Angeles, Calif. KRKO Everett, Wash. KRKS Ridgeerest, Calif. KRLA Pasadena, Calif. KRLC Lewiston, Ca KRLN Canon City, Colo.
KRLW Walnut Ridge, Ark KRMD Shreveport, La. KRMG Tulsa, OKla.
KRMO Montet, Mo.
KRMS Osage Beach, Mo.
KRNO San Bernardino, Calif.
KRNR Roseburg, Oreg.
KRNS Burns, Oren.
KRNT Des Moines, lowa
KRNY Kearney, Nobr.
KROC Rochester, Minn
KROD El Paso, Tex.
KROF Abbevilie, La,
KROG Sonora, Callf.
KRDP Brawley, Callif.
KROS CIInton, lowa
KROX Crookston, MIn
KROY Saeramento, Callif.
KRPL Moscow, Idaho
KRRV Sherman, Tex
KRRV Sherman. Tex
KRSC Othello, Wash.
KRSI St. Louis Park, Minn.
KRSL Russell, Kans,
KRSN Los Alamos, N,Mex.
KRTN Raton. N.Mex.
KRTR Thermopolis, Wyo
KRUN Ballinger, Tex.
KRUS Ruston, La,
KRYN Gexington, Nebr.
KRWC Forest Grove, Óreg. KRXK Rexburg, Idaho KRXL Roseburg, Oreg. KRYS Corpus Christi, Tex KSAC Manhattan, Kans KSAL Salina, Kans.
KSAM Huntsville. Tex.
KSAN San Francisco, Calif. KSAY San Francised,
KSCB Liberal, Kans.
KSCJ Sioux City, lowa
KSCO Santa Cruz, Calir
KSCO Santa Cruz, Ca
KSD St, Louis, Mo.
KSDA Redding, Callf.
KSDN Aberdeen, S.Dak
KSDO San Diago, Calif.
KSEI Pocatello, idaho
KSEK piftsbure, Kans
KSEM Moses Lake, Wash.
KSEN Shelby, Mont.
KSEO Durant, okla
KSET EI Paso, Tex.
KSEW Sitka, Alaska
KSEY Soymour, Tex.
KSFA Naeogdoches. Tex. KSFE Needles, Calif
KSFO San Francisco, Calif.
KSGM Ste. Genevieve. Mo
KSIB Creston, lowa
KSID Sidney, Nebr
KSIG Crowley, La.
KSIJ Gladewater, Tex.
KStL Silver City, N.Mex.
KSiL Silver City, N.
KSIR Wiehita, Kans
KSIS Sedalin, M
KSIW Woodward, Okla.
KSIX Corpus ChristI, Tex
KSJB Jamestown, N. Dak.
KSJB Jamestown, N.Dak.
KSJO San Jose. Calif.
KSJO San Jose. Cali
KSL Salt Lake City, Utah
KSLM Salem, Oreg.
KSLO Opelousas, La.
KSMA Santa Maria, Cali
KSML Seminole, Tex.
KSMN Mason City, Iowa
KSMO Salem. Mo.
KSNY Snyder, Tex,
K80 Des Moines, 10ws
K80 Des Moines, Jowa
KSOK Arkansas City. Kans.
KSON San Diego, Calif.
K SOO Sioux Falls, S. Dak.
KSOP Salt Lake City, Utah 1370

Kc. $+$

400 900
800
970 KSOX Raymondville, Tex.
K8PA Santa Paula, Calif.
KSPI Stillwater, Okla. KSPI Stillwater, Okla KSPL Diboll, Tex,
KSPT Sandpoint, Idah KSRA Salmon, Idaho
KSRC Secorro, N. Mox.
KSRO Santa Rosa, Calif.
KSRV Ontario, Oreg. KSRV Ontario, Oref.
KSSS Colorado Springs, Colo.
KSST Sulphur Springs. Tex. KSTA Coleman. Tex.
KSTB Breckenriden
KSTI KSTL St. Louls, Mo.

0

 KSTR Grand Junction, Colo. K KSUB Stephenville, Tex. KSUB Codar City, Utah KSUE Susanyille, CaliKSUM Fairmont, Minn
KSUN Bisbes. Ariz. KSUN Bisbee, Ariz.
KSVC Richnidd, Utah
KSVP Artesia, N.Mex. KSVP Artesia, N.Mex.
KSWA Graham, Tex. KSWA Graham, Tex.
KSWI Council Bluffs, Iowa
KSWD Lawton, 0kla. KSWD Lawton, Okla.
KSWS Roswall, N.Mex. KSWS Roswall, N. Mex
KSYC Yreka. Calif.

$$
\begin{aligned}
& \text { KSYC Yreka, Calif. } \\
& \text { KSYD Wichita Falls, Te } \\
& \text { KSYL Alexandria, Lis. }
\end{aligned}
$$

KSYL Alexandria, Le.

$$
\begin{aligned}
& \text { KTAC Tacoma, Wash } \\
& \text { KTAE Taylor, Tex, } \\
& \text { KTAN Tmen唯 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { KTAN Tucson, Ariz. } \\
& \text { KTAR Phoenix, Ariz. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { KTAR Phoenix, Ariz. } \\
& \text { KTAT Froderick, Okia. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { KTAT Frederick, OK } \\
& \text { KTBB Tyler, Tex, }
\end{aligned}
$$

$$
\begin{aligned}
& \text { KTB8 Tyler, Tex, } \\
& \text { KTBC Austin. Tex. } \\
& \text { KTCR Malden Mr }
\end{aligned}
$$

$$
\begin{aligned}
& \text { KTCB Malden, Mo. } \\
& \text { KTCN Berryille, Ark. } \\
& \text { KTCS Fort Smith, Ark. } \\
& \text { KTEE Carmel. Calif. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { KTEE Carmel, Calif. } \\
& \text { KTEL Walla Walla, }
\end{aligned}
$$

$$
\begin{aligned}
& \text { KTEE Carmel, Call, } \\
& \text { KTEL Walla Walla, Wash. } \\
& \text { KTEM Temple, Tex. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { KTEM Temple, Tex. } \\
& \text { KTER Terroll, Tex. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { KTER Terroll, Tex. } \\
& \text { KTFI Twin Falls, Idaho } \\
& \text { KTFS Texarkana, Tex. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { KTFS Texarkana, Tex. } \\
& \text { KTFY Bronwheld, Tex. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { KTFY Bronwfeld, Tex. } \\
& \text { KTHE Thermopolis, Wyo. } \\
& \text { KTHS Little Rock, Ark. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { KTHS Little Rock, Ar } \\
& \text { KTHT Houston, Tex, } \\
& \text { KTIB Thibodaux, La. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { KTiB Thibodaux, La, } \\
& \text { KTIL Tillamook, Oreg. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { KTIM San Rafael, Calif. } \\
& \text { KTIP Portervilie, Calif. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { KTIP Portervilie, Calif. } \\
& \text { KTiS Minneapolis, Minn. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { KTIS Minneapolis, Mi } \\
& \text { KTIX Seatte, Wash. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { KTIX Seattle, Wash. } \\
& \text { KTIS Hobart, Okla, }
\end{aligned}
$$

$$
\begin{aligned}
& \text { KTJS Hobart, Okla. } \\
& \text { KTKN Ketehikan, Alaska } \\
& \text { KTKR Taft. Calif }
\end{aligned}
$$

$$
\begin{aligned}
& \text { KTKR Taft, Calif. } \\
& \text { KTKT Tueson, Ariz. } \\
& \text { KTLD Tullulah. La. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { KTLD Tullulah, La. } \\
& \text { KTLN Denver, Colo. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { KTLN Denver, Colo. } \\
& \text { KTLO Mtn. Home, Ark. } \\
& \text { KTLQ Tahiequah, Okla. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { KTLQ Tahlequah. } \\
& \text { KTLU Rusk. Tex. }
\end{aligned}
$$

KTLU Rusk, Tex. KTLW Texas City, T
 KTLW Texas City, Tex. KTMC MeAlester, Okla

KTMC McAlester, OKa,
KTMS Santa Barbara, Cal
KTNC Falls city, Nebr.
KTNM Tueuncari,
KTNM Tacomear, Wash.
KTNT Tacoma,
KTOC Jonesboro, Li. KTOC Jonesboro, La KTOE Mankato, Minn. KTOK Lihue, Hawaif OK Okiahoma City, Okla. KTDO Henderson, Nev, KTOP Topeka, Kans,
KTOW Oklahoma City, Okla, KTRB Modesto, Ca.
KTRC Santa Fe, N.
KTRE Lufkin, Tex.KTRF Thief River Falls,KTRH Houston, Tex.KTRI Sioux City, IowaKTRM Beaumant, Tex.
KTRN Wichita Falls,
KTRN Wichita Falls
KTSA San Antonio, Tex.
KTSM EI Pato, Tox.
KTTN Trenton, Mo
KTTR Rolla, Mo
KTTS Springfeld, Mo.
KTUC Tueson, Ariz.
KTUE Tulla, Tex.
KTUL Tulsa, Okia.
KTUR Turlock, Calit
KTW Seattle, wash.
KTWO Casper, Wyo.
KTXJ Jasper. Tex.
KTXL San Angelo, Tex
KTYM Inglewood, Calif.
KUBA Yuba City, Calit
KUBC Montrose, Colo.
KUBE Pendleton, Oreg.
KUBO San Antonio. Tex.
KUDE Oceanside. Calif.
KUDI Great Falls, Mont.
KUDL Kansas City, Mo.
KUDU Ventura, Calif.
KUEN Wenatchec. Was
KUEN Wenatchee. W
KUEQ Phoenix, Ariz.

KUGN Eusene, Oreg.
KUjK Hilisboro, Oreg. KUjK Hillsboro, Oreg.

KUJ Walla Walia, Wash. KUKI Ukiah, Calif. | 1 |
| :--- |
| |
| | KUKU Willow Springs, Mo

KULA Honolulu. Hawaii KULA E Enolulu, Hawa KULP El Campo, Tex. KUMA Pendieton. Oreg.
KUNO Corpus Christi. Tex. KUOA Siloam Springs, Ark,
KUOM Minneapolis, Minn. KUPI Idaho Falls, Idaho KURA Moab, Utah KURL Billings, Mont.
KURV Edinburg, Tex. KURY Brookings, Oreg. KUSD Vermillion S.Dak.
KUSH Cushing, Okla. KUSH Cushing, Okla.
KUSN St. Joseph, Mo. KUTI Yakima, Wash. KUTY Palmdale, Calif.
KUYR Holdredge, Nebr. KUZN W. Monrob, La. KVCK Wolf Point, Neb
KVCL Winnfleld, La KVCL Winnfeld, La,
KVCV Redding, Calif. KYEC San Luis Obispo, Calai KVEL Vernal, Utah KVEN Ventura, Calif
KVET Austin. Tex. KVFC Cortez, Colo.
KVFD Ft, Dodee, Iows KVGB Great Bend, Kans. KVHL Homer, La, KVi Seatte, Wash.
KVIC Vietoria, Tax. KVIM New Iberia, La
KVIN Vinita, Okla. KVIN Vinita, Okla.
KViP Redding, Cal KVKM Monahans, Tex, KYLB Cleveland, Tex.
KYLC Little Rock, Ark. KVLF Alpine, Tex. KVLG LaGrange, Tex.
KVLH Pauls Valley, Okla. KVLV Fallon, Nev. KYMA Magnolia, Ark,
KYMC Colorado City, Tex. KVNA Flagstaff, Ariz.
KVNC Winslow, Ariz. KVNC Winslow, Ariz.
KVNI Coeur d'Alene, Idaho
KVNU Looan, Utah KVNU Logan, Utah
KVOC Casper, Wyo. KVOC Casper, Wyo.
KVOE Emporia, Kans
KVoG Opden, Utah KVOG Oeden, Utah
KVOL Lafayette, La KVOL Lafayette, La.
KYOM Morrilton, Ark. KVON Napa, Callif. KVOO Tulsa, okla.
KVOP Plainviow, T KVOR Colo. Springs, Colo.
KVOS Bellingham, Wish. KVOU Uvalde, Tex KVOW Littlefield, Tex. KVoY Yuma, Ariz. KVPZ Ville Platte, La.
KVRC Arkadelphia. Ark. KYRC Arkadelphia. KYRS Rock Springs, Wyo. KVSF Santa Fe, N, Me KVSO Ardmore, Okla KVWM Show Low, Ariz.
KVWO Cheyenne, Wyo. KWAD Wadena, Minn. KWAK Stutlgart, Ark. KWAM Memphis, Tenn. KWA WA Baytown, Tex. KWBR Wichita Kans. KW88 Wichita. Kans. KWBE Beatrice, Neb
KWBG Boone, Iowa KWCB Searcy, Ark, Kans. KWCL Oak Grove, La KWCO Chiekasha. Okla. KWEB Rochester, KWE! Weiser. Idahe KWEL Midland, Tex. KWEW Hobls, N. Mex. KWFR San Angelo, Tex.
KWFT Wichita Falls, Tex. KWG Stockton, Calip, KWHK Hutehinson, Kans. KWHN Fort Smith, Ark.
KWHD Salt Lake City, Ut KWHW Altus, okla. KWIC Salt Lake City, Utah KWIL Albany. Ores. KWIN Ashland, Oreg KWIV Douplas, Wyo. KWIZ Santa Ana, Calif. KWJB Globe. Ariz. KWJC Natchitoches, La. KWJj Portland, Oreg. KWIO Moses Lake, Wash. KWK St. Louis, Alo.
KWKC Abilene, Tex. KWKC Abilene, Tex.
$+$
C.L.
Locafion KWKH Shreveport, La,
KWKW Pasadena, Calif,
KWKY Des Moines, Iowa
KWLC Decorah. Iowa Kc. 1360
1420
1400
1370
1330
650
730
1390
1290
1290
7980
1 130
300
150
240
1340
540
1400
1230
730
930
1320
1400
1340
1240
1600
860
1450
1270
1470
730
860
1450
1450
1370
1490
1250
620 루. $\begin{array}{r}920 \\ 1250\end{array}$ KWLC Decorah, lowa
KWLM Willmar, Minn.
KWMT Ft, Dodge, Iowa
KWNA Winnemucea, Nov.
KWNO Winona, Minn. KWNO Wimona, minn.
KWOA Worthington. Minn. KWDC Poplar Blu\#, Mo.
KWOE Clinton, OKla. KWDN Bartlesville, OkIa.
KWOR Worland, Wyo. KWOS Jefferson City, Mo.
KWOW Pomona, Calif. KWPC Muscatine. Iowa KWPM West Plains, Mo.
KWPR Claremore, Okla。 KWRD Henderson, Tex.
KWRE Warrenton, MO. K
K

1270 980
 \section*{980 1470

}$\begin{array}{lll}1470 & \text { KWRO Coquille, Oreg. } & 1450 \\ 1380 & \text { KWRT Boonville, Mo. } & 1370 \\ 1310 & \text { KWRW Guthrie, Okla. } & 1490 \\ 1450 & \text { KWSC Pullman, Wash. } & 1250\end{array}$

1310	KWRW Guthrie, OkIa,	1490
1450	KWSC Pullman, Wash.	1250
1270	KWSD Mt, Shasta, Calif.	620

600
920
Oklahoma 1260
1570
1050
1230
$\begin{array}{r}1300 \\ 740 \\ \hline\end{array}$
$\begin{array}{r}1590 \\ 1320 \\ \hline 570\end{array}$
570
1340
1360
1360
1470
540
1340
1050
10
1050
1240
1570
1570 KXGI Ft. Mdison, lowa
250 KXGN Gilendive, Mo 30 KXIC lowa City, Jow 320
690
010
1240
610
1230

1230
1400
1490
1490
1330
800
1440
1170
1400 1450
1570 1400
1050
1480
1240
1450
1080
1580
1280
1380
1840
 570
1050
1230
560 1230
$\$ 60$
1280 1230
1470
1350 1400 KWYN Wynne, Ark.
KWYO Sheridan, Wyo. KWYR Winner, S, Dak.
KXA Seattle, Wash.
KXAR Hope, Ark. 770
490

540 | 540 |
| :--- |
| 010 |
| 40 | 60

 10
50 KXLE Ellensbur, Wreg. KXLF Butte, Mont. KXLK Great Falls, Mont. KXLL Missouls. Mont.
KXLO Lewiston. Mont. KXLR No, Littie Rock, Ark. II KXLY Spokane, Wash.
KXO EI Centro, Calif. 920
1250
1470 00 KXOA Sacramento, Calif. 1470 1400 1490
1280 1400 KXRJ Russellville, Minn. 1490 1240
1340
1340
1360
220 KXXX Colby, Kans. 1250
1260 KYA San Franeiseo, Callf. 1260
1480 KYJC Medford, Ores. 1490
1050 KYME Bolse, idaho. $\quad 1230$
1370
820
1240
620
690

990
950
1360
1410
KYOS Merced, Calif.
1360
410 KYDU Greeley, Colo.

1450	KYSM Mankato. MInn.	1283
590	KYSN Colorado.	

1590 KYSN Colorado Spros., Colo. 1460

1300	KYTE Posatello, Idaho	1290
280	KYUM Yuma, Ariz.	560

1560 KYYA Gallup, N.Mex. 1230

1270	KYW Cleveland, Ohio	1100
1580	KZEE Weatherford, Tex.	1220

260
1600
KZEY Tyler, Tex.
KZIN Coeur d'Alene, Idaho 10
480 KZIP Amarillo, Tex. Idaho 10
KZOK Preseott, Ariz.
KZOL Muleshoe. Tiz. KZUM Farmington, N, Mex $\quad 1570$ KZUN Opportunity. Wash. 630 WAAA Winston-Salem. N.C. WAAB Worcester, Mass. WAAF Chicago. Int. WAAT Adel Ga.
WAAY Huntsville. Al WABA Aquadilla, P.Rico WABB Mobile. Ala. WABG Greenwood, Miss. WABI Bangor. Maine WABJ Adrian. Mich,

c.l.	Loe	K	C.L. Locatlon	K	C.L. Location		C.L. Location	
WINK	Fort wiyer	12	S Evansvilie, Ino.	1330	F Key West, Fla.	00	WMBG Richmond,	1380
WINN	Louisville.	12	wJos Jacks	1400	K Wheeling, w.Va	00	WMBH Joplin. Mo.	1450
	Tampa, ${ }^{\text {F }}$	1010	WJR Detroit. M		WKXV Knox	$\begin{array}{r} 1450 \\ 900 \end{array}$	WMBI Chicago. III. WMBL Marehad City, N.C.	110
WINR	Binghamton, N.	$\begin{array}{r} 680 \\ 1010 \end{array}$	WJRD Tuscaloosa. WJRI Lenoir, N.C.	$\begin{aligned} & 1150 \\ & 1840 \end{aligned}$	WKXV Knox WKXY Sarms	$\begin{aligned} & 900 \\ & 930 \end{aligned}$	WMBM Miami Beach, Fla.	800
WINT	Winter	1360	WJSB Crestriew. Fla.	1050	WKY Oklanoma City, Okla.	930	WMBN Petoskey,	40
WINX	Rockville.	1600	W J SO Jonesboro, T	1590	WKYB Pa		WMBO Auburn,	1340
WINZ	Miam	940	WITN Jamest	1240	WKYR Key	1270	WMBR lacksonville, fla	1460
W100	Santord,	1360	WJUN Moxica, $\mathrm{Pa}_{\text {a }}$	20	WKYW Louisville,	900	WMBS Uniontown, Pa.	590
WION	Jonia,	1430	WJVA South Bend, In	1580 850	WK20 Kalamazoo, Mich	0		
wios	Tawas	1480	WJW Cleveland, Ohio WJWL Georgetown	850	WLAC Nashvillo, Tenn. WLAD Danbury, Conn.	0	WMCA New York, N. W MCH Chureh Hill.	
Wiou	Kokomo	1350	WJWL Georgetown, D wJws south Hill Ye		WLAD Danbury, Con WLAF LaFollette	1450	WMCH Church Hill. WMCK MeKesport.	
WIPP	il	$\begin{array}{r} 610 \\ 1280 \end{array}$	WJWS South HIII, Ve WJXN Jaekten, Miss.	$\begin{aligned} & 1370 \\ & 1450 \end{aligned}$	WLAF LaFollette, Tenn WLAG La Grange, Ga.	$\begin{aligned} & 1450 \\ & 1240 \end{aligned}$	WMCK MEKesport. WMCW Harvard, III.	
WIPR	San duan, P.R.	940	WJZM Clarksville.	1400	WLAK Lakeland, Fla	1430	WMDC Hazlehurst.	
WIPS	Ticonderoga, N.Y	1250	WKAB	840	WLAM Lewiston, Ma	1470	WMDD Fajardo, P.R.	0
WIRA	Fort Pierce, Fla.	14	WKAI Macomb 11		WLAN Lancester, Pa.	$\begin{array}{r} 1390 \\ 630 \end{array}$		$\begin{aligned} & 1580 \\ & 1490 \end{aligned}$
WIRB	Enterarise.	630	WKAL Rome, N.Y	$\begin{aligned} & 1450 \\ & 1460 \end{aligned}$	WLAP Lexindton, Ky. WLAQ Rome, Ga,	$\begin{array}{r} 630 \\ 1410 \end{array}$		$\begin{aligned} & 90 \\ & 100 \end{aligned}$
WIRC WIRE	- indian	$\begin{array}{r} 630 \\ 1430 \end{array}$	WKAN Kankakee, ili.	1320		$\begin{aligned} & 1410 \\ & 1450 \end{aligned}$	W	
WIR」	Hum	740	WKAP Allentown, Pa	1320	WLAT Conway	1330	WMEN Tallaha	
wihk	W. Palm Beach,	1290	WKAQ San Juan.	580	WLAU Laurel, Miss	1600	wMET Miami Beach, Fla.	
WIRL	Pearia.	1290	W KAR East Lansinf. Mich	870	WLAV Grand Rap	0	WMEV Ma	010
WIRO	Ironton.	1230	WKAT Miami Base	1360 1490	WLAW Lawrencevill	1360	WMEX Boston, Mas	S0
WIRY	Colatisbu.	13	WKAY Glas oow. WKAZ Charieston,	$\begin{array}{r} 1490 \\ 950 \end{array}$	WLAY Mutele Shoals, WLBA Gainesville, Ga.	$\begin{array}{r} 1450 \\ 1580 \end{array}$	WMFC Menroeville, Ala WMFO Wilmington, N.C.	
ISE	Ashoville,	1310	WKBC N. Wilkesbore, N.C.	810	WLBB Carrollton, Ga.	1100	WMFG H	
ISH	Indianapolis,	1310	WKBH La Crosse,	1410	WLBC Muncie, Ind.	1340	WMFJ Daytona Beac	
	Shamokin.	1480		1400 1600	WLBE Leesburg, Fin.	790 860	WMFR High Point, N.C.	
ISM		$\begin{aligned} & 1480 \\ & 1150 \end{aligned}$	WKB」 Milan, WKBK Keene.	$\begin{aligned} & 1600 \\ & 1220 \end{aligned}$	WLBG Laurens, S,C, WLBH Mattoon, III.	$\begin{array}{r} 860 \\ 1170 \end{array}$	WMFS Chattanooma. Tenn. WMFT Terre Hauto, Ind,	
So	Ponce,	1260	WKBL Covington, T	1250	WLBI Denham Springs, La.	1220	WMGA Moultri	0
ISP	Kinston,	123	WKBN Youngstown.	570	WLBd Bowling Groen, Ky.	1410	WM GM New York, N.Y.	50
		680	WKBO Harrisbur		WLBK Dekab il	1360		
WIST	Charlotte, N	930	WKBR Manchas	1240	WLBL Auburndale. ${ }^{\text {W }}$	930		
WISV	Virouqua, Wis.	1360 1140	WKBW Buñalo.	1590	WLBR Lebanon, Pa.			
	Baltimors,	1230	WKBX Kissimmee	1220	WLB2 Bang	620	WW10 Atlant	1340
Witt	Lewis	1010	WKBZ Musket	850	WLCK Scottsville, Ky.	1250	WMIE Miaml. Fla.	
TY	Danvil	98	WKCE Berlin	1230	WLCM Lancaster, S.C.	1360	K Midd	
$1{ }^{1 / 2}$	Jasper,		WKCT Bowling Grean, Ky.	9	w	910	WMIL Mirwaukee:	
IVI	Christí	1040	WKOA Nash	1240	WLCX		*	
vy	ceques	1370	W	1600	WLCY St. Patersbur	1380	,	
IVY	Jacksonville, F	1050	WKDN Camden	800	WLDB Atlantie City, N.	1490	M1X Mt.	940
	Springfie		WKDX Hamiot, N.	1400	WLDS Jacksonville, ill.	1180	WMIM Cord	90
W122	Stre	12	WKEE Huntington. W. Va.		WLDY Ladysmith. Wis	10	WMLF Pin	
A	Johnstown	1400	WKEN Doy	1600	w		WMLS Sy	
	Norfolk. Jackson.	1460	WKEU Grim	1450	W	$\begin{aligned} & 1450 \\ & 1480 \end{aligned}$	WMLT Dubir, Ga.	
WJAM	Marion, Al	1310	WKEY Covington, Va.	1340	WLEM Emporium, Pa.	1250	Y Millv	
WJAN	ishpeming, Mich.	97	WKGN Knoxville, Ten	1340	WLEO Ponce, P,R.	1170	WMMB Melbourne, Fla	0
WJAR	Providence, R.1.	920	WKHM Jackson.	970		1420	WMMH Marshal	
WJAS	Pittsbur	1320	WKIC Hazard, K	1390	WLEU Eri	1450	WMMN Fairmon	
JAT	Swains boro,	800	WKIO Urbana.	1580	WLEW Bad Axe, M	10	WMMS Bat	
WJAX	Jackso	930	WKK Leonardowe, Md.	1370	WLFA Lafayette, Ga	1590	WMMT MeMinnvilo. Ten	
	Mullin	128	WKIP Poughk	1320		1230	W	
JBE	Albany	1230	WKiS Orlando. ${ }^{\text {F }}$	740	WL	1270	WMNB No. Adams. Mass.	
wIBC	Bloomington,	123	WKIX Rale	850	WLIL Lenoir,	730	C Morg	30
WJBD		13	WKIZ Key Wist, fla.	1500	WLIP Kenosha, Wis.	1050	WMNE Menomon	1360
W/BK	Detroit, Mieh.	1500	WKJB Mayaguez, P.R.	710	WLIS Old Saybrook.	1420	Richwood,	80
WJBL	Holla	1260	WKJG Fort Wayne, Ind.	1380	WLIV Livingston, Tenn	920	NI Colu	20
w180	Baton Rou	1	WKKO Cocoa, Fia	8	WLIZ Lake Worth, fla	1380	S Ola	
BS	DeLand, Fla.	1490	WKKS Yanctou	1570	WLLH Lowell, Mass.	1400		
IC	New Orleant, L	1230	WKLA Ludington, m	1450	WLLY Richmond, Va.	1320	WMOO Mrundsvilu,	
WJCD	Seymour,	1390	WKLE W.	1370				
JDA	Quincy, Mas.	1800	WKLF Clanton, Ala.		WLNH Laconia. N.H.	1350		
WJDB	Thomasvilie, Ala	630	WKLK Cloquet, Mlan	1230	WLOA Bra	1550	WMON Montgomery.	1340
jox	jackson, Miss.		WKLM Wilmingtan, N.C	980	WLOB Portland, Maine	1310	WMOP Ocala, Fla.	
WJDY	Salisbury,	1470	WKLO Louisville, KY.	1080	WLOD Pompano Beach. F	980		
WJEF	Grand Rapids.	1230	WKLV Blackstone. ${ }^{\text {W }}$	1440	WLOE Leaksville, N.C.	1490	WMOV Ravenswood. W.Va.	
WJEM	Gallipolis.		WKLX Paris, Ky	1440	WLOF Orla	950		
WJE	Hagers	1240	WKLY Hartwell.	980	WLOG	1230	WM02 Mob	
JEM	Valdosta.	1150	WKLZ Kalamazoo.	1470	WLOH Princaton. W.V	1490	WMPA Aberdeen.	
WJER	Dover		WKMC Roaring Spres	1370	+	1420	C	0
WJET	Erio, Pa.	1400	WKMF Flint. Mis	1470	WLOK Mem	1480		20
WJGD	Columbia. T	1280				1330		
JHE	S Talladega, Ala,	1580 910	WKMI Kalam	$\begin{array}{\|} 1360 \\ 1220 \end{array}$	WLON WLOS	1050		
WJHL	Johnson City, ion	910	WKNB Kones miain N.C.	840		+350		
WJHO	Opelika, Ala.		WKNB New Britzin, Conn,	1290	WLOU Lovisvilie, K	1350	WMAB Greenvilio. 8.C	
WJIG	Tullahoma, Tenn	740	WKNE Keent	1290	WLow Portsmouth, Va	1		
JMV	Lansing, Mich.	1240	WKNX Saginaw	1490	WLPM Buoxi Miss.	1450	F	
	Commerce,	1270	WKOA Hopkinsville, Ky	1480	WLPO LaSalle, IIt.	1220	WMR1	860
wJjo	Chleago. 111.		WKDK Sunbury, Pa.	1240	WLS Chicago. 111.	890	MRN Marion, Ohle	
WJJL	Niagarg Falis, N.Y	1440	WKOP Binghamicn, N.	1360	WLSB Copper Hili,	1400	WMRO AUrora, 111.	80
WJJm	Lowisburg. Tonn.	1490	WKOV Wellstan, Ohie	1330	WLSC Loris, S.C.	1570	WMRP FII	70
wIKO	Springneld, Mas	60	WKOW Madison. Wis.	1070	WLSD Bia Stone Gap, Ya	1220	MSC Masta.	
WJLB	Detroit, Mich	1400	WKOX Framingham, M	1190	WLSE Wallace, N.C.	1400	MSC Columbia. S.C.	30
WJLO	Homewoed.	1310	WKDY Bluafeld, W.Va.	1240	WLSH Lansford, Pa.	1410	-	
WJLK	Asbury Park.	1310	WKOZ Kosoiuskor Miss.	135	WLSI Pikey	0	Deeatu	
S	Beckjey,		WKPA Now Kensington, Pa,	1150	WLSM Loui	1270	Mt	
M	A Brookhaven, miss.	1340	WKRC Cincinnati, ohi	550	WLSY Wellsville, N.Y	790	WMT Cedar Rapids, Lowa	
JMC	C Rice Lake, W	1240	WKRK Murphy, M.C.	1390	WLTC Gastonia, N.C.	1370	Ky	1380
WJMJ	Philadel	1540	WKRG Mobilo Ala	10	WLVA Lynchburg. Va.	90	WMTC Vancleve,	30
JMO	0 Clovsland Mgts., Oh		WKRM Columbia, Tenn,	1340	WLW Cincinnati, Dhio	700	WMTE Manistee, Mlah.	1340
WJMR	R New Orleans.		WKRO Cairo. Illi.	1490	WLYC Williamsport, Pa	1050	WMTL Leitehfield, Ky	580
JMS	Iranwood.	630	WRRS Waukelan. III,	1220	WLYN LYna.	1360	WMTM M	1300
M	Ath	530	WKRT Cortland, N.Y.	920	WMAB Munising, mich	1400	WMTN Morristown. Ton	
M	X Flo	970	WKRZ Oil City Pa,	1340 930	WMAF Madison, Fla,	1230	WMTR Morristown, N.J.	1250 860
NO	Jacksonville, N.C.	1240	WKSE Milford. Dil,	930	Stel Colle	0	WMTS Murireesboro Ten	
WINO	W, Palm Beach, Fla.	1230	WKSK W. Jefforson. N.C.	1420	State College. Pa	1450	WMUS Muskegon, Mich.	
108 $10 C$	Hammend.	1230	WKSR Pulaskl, Tenn.	1420	AK Nashyllie.	1300 630	WMUU Greenvilit.	1260
${ }^{10 C}$	lamestawn, N.Y	1340	WKST New Castie. Pa.	1280	AL Washington, O.C	630	WMVA	
JOE	Ward Ridge, Fla,	1570	WKTC Charlotte, N.C.	1310	M Marinette. Wis.	1400	WMVB	
WJoL	Florance Ala.		WKTF Warrenton.	1420 730	Mansfeld. Dh	14	w	
W10L	Joliet. 11.	1340	WKIG Thomasvilio Ga.	950	WMAP Monroe. N.C.		w	
WJOT	Lake City, S.C.	1260	WKTM Ma	1050		1450	WMYN Mayodan.	1420
wjoy	Burington, V	1230	WKTQ South Paris, Malne	1450	wMAX Grand Rapids, Mleh,		WMYR Ft, My	1410
WJPA	Washingtor.	1450	WKTX Atlantie Beath, Fla.	1600	WMAY Springfield, lll.	970	WNAB Bridsepert, Con	
WJPD	Ishpeming, Mich.	,	WKTY Lacrosse, Wis.	580	m		WNAC Boston, Mass,	680
WJP	Herrin, 111.	1340	WKUL Culiman, Ala.	1340	MBA A	0		
	8ay.		WK VA Lowistowa.		Macon, Miss.			

Canadian Short-Wave-Domestic and International
Abbreviations: Kc., frequency in kilocycles (to change to megacycles, divide by 100 C); C.L., call letters
*Transmitter at Sackvifle, New Brunswick

Kc. C.L. Location
5970 CBNX St. John's, Nind. 5970 CKNA Montreal, Que. ${ }^{\text {© }}$ 5990 CHAY Montreal, Que." bulo CJCX Sydney til30 CFVP Cynney, N.S. 6030 GFVP Caldary, Alta. 6060 CKRZ Montreal. Que. 6070 CFRX Toronto, Ont. 6090 CBFW Montreal. Que. 6090 CKOX Montreal. Que. 6130 CHNX Halifax. N.S.

Kc. C.L. Locotion

 GIG0 CBUX Vancouver. B.C ICO CHAC Monireal. Que. 5520 CBFR Montreal, Que. 5610 CBEX Montral. Que. 9610 CBFX Montread, Que. ${ }_{9630}$ CBFO Montraal, Que. 630 CBF 0 Montraal, Que. 9630 CKLO Montreal, Que.: 9710 CHLR Montreal, Que.: g740 CHF11705 CBFY Montreal,
11705 CKXA Mone.

Kc. C.L. Location 11720 CBFL Montreal. Que. 11720 CHOL Montreal, Que. 11760 CBFA Montreal, Que. 11900 CKEX Montrail Que. 11945 CKEX Monireal, Que. I 5090 CKLX Monreal, Que.: isI05 CKUS Montreal. Que. 15190 CBFZ Montreal. Que. 15190 CKCX Montreal. Que. 15255 CKSR Montreal. Que.

Ks. C.L. Location
15320 CKCS Montreal. Que. 17210 CHSB Montreal, Que. 17735 CHRX Montreal. Qur 17820 CKNC Montreal, Que. 17865 CHYS Montreal. Que. 21600 CKRP Montreal, Que. 21710 CHLA Montreal. Que.

World-Wide Short-Wave Stations

Most internalional broadcasting is done within frequency limils agreed upon at international conventions. These frequency ranges are listed here, al the right, expressed both in frequency and by meter bands (wove-length).

Not all of the bands are employed at once. In focl, only one or two are usable ol ony one time. The time of the day and the season lor seasons, since the season is opposite in the southern hemispherel are the two chief determining foctors. Broadcasters beaming programs to the U.S. use the best band for the time. Broadcasts not beamed to the U.S., il heard here at all, will be scattered over the bands. Low frequencies are better heard at night than by day. High frequencies are befter heard
$5950 \mathrm{ia} 6200 \mathrm{kc} / \mathrm{s}$ (49 mater band) 7100 to $7300 \mathrm{kc} / \mathrm{s}$ (41 mefer bond) 9500 to $9775 \mathrm{kc} / \mathrm{s}$ (31 meter bond) 11700 to $11975 \mathrm{kc} / \mathrm{s}(25$ mater bond) 15100 to $15450 \mathrm{kc} / \mathrm{s}$ (19 mater bond) 17700 to $17900 \mathrm{kc} / \mathrm{s}$ (16 meter bond) 21450 to $21750 \mathrm{kc} / \mathrm{s}$ (13 meter bond) in summer thon in winter.

The symbol denotes stations beaming regular evening broadcasts to the United States.

Kc. C.L. Location
4768 HJEF Call, Colombia 4775 HJGB Bucaramana, Col. 4783 HJAB Barranquilla, Col. 4790 YVOC Ciudad Bollyar. Vz. 4800 YVME Maracaibo Vonez. 4805 ZYS8 Manacs, Brazil 4810 YVMG Maracalbo Venez. 4815 HJBB Cucuta, Coil.
4820 XEJG Guadalalar. 4820 YVNB Coro, Venez, 4830 YVOA San Cristobal, Vez. 4835 HJKE Bogota, Golombla 4845 CSA9s Ponta, Venez. 4848 HJGF Buearamangada, ${ }^{\text {AZ }}$ 4850 YVMS Barquisimoto, Vz. 4855 HJFN Neiva, Colombia 4860 JKL Tokyo, Japan 4860 YVPA San Filipe, Venez. 4865 PRC5 Belom. Para. Brazil 4865 HJFA Peroira. Colombla 4871 HJBG Cueuta, Colombia 4880 YVKF Caracas, Venez. 4892 YVKB Caracas, Vonez. 4895 HJCH Bogota, Col. 4895 PRF6 Manaos, Brazl 4897 VLX 4 Perth, Aust. 4900 YVQE Ciludad Bolivar, Vz. 4903 HJAG Barranquilia, Col. 4907 Y YMM Coro, Vonez. 4910 JKI Nazaki, Japan 4910 YDB2 Djakarta, Indon. 4915 Acera, Ghana
4915 Y VKR Caracas, Vonez. 4917 H198 Santiago, Dom.Rep. 4917 VLM4 Bristrane, Aus. 4930 HJAP Cartagena, Col. 4940 JKM Kawachi. Japan 4940 YVMQ Barquisimeto, Vz. 4945 HJCW Bogota, Col. 4950 ZQI Kingston, Jamaiea 4951 Dakar. 8enegal
4960 YVQA Cumana. Venez. 4967 HJAE Cartagona, Col. 4985 YVMO Barquisimeto. V_{2} 4985 Y VMO Barquisimete. Vz. 4993 HIIA Santiago. D. Rep. 5010 Gronada, Windward is. 5014 PJC3 Wlilimstad, Curac. so20 HJFW Manizales, Col. 5023 H 182 Santiago, O.Rep. 5045 ZYP23 Petropolis. Brazi 5050 Y 20 Petropolis. Brail
5053 HI2L Ciudad Trujillo, D. 5055 HJDW Medellin. Col. 5075 HJKH Sutatenza, Colom 5758 PZHS Paramaribo, Surinam 5880 HRN Tequeigalpa, Hond. 5920 HRA Tequeigalpa, Hond. 5940 Khabarovosk. U.S.S.R. 5940 Moseow, U.S.S.R.
5952 TGNA Guatemala, Guat.
5960 HJCF Bogota, Coiombia
5965 Shanahai. China
5970 HIAT Cludad Trullilo. D.R.
5981 ZFY Giodrgotewn Br.Gui.
5985 Radio Frue Europe.
3990 TGJA Guatomala, Guat
5995 H050 Panama, Paname
6005 Berlin. Germany
6005 HP5K Colon, Panama 6009 HJFC Armenia, Colombia 6010 GRB London. Enoland 6010 OLR2A Prague, Gzecho 6010 XEOI Mexleo. Mox 6015 PRA8 Recife, Brazil 6018 HJCX Bogota, Col.
6020 Kiov, U.S.S.R.
6020 Radio Free Europe.
Munich, Germany
6020 KNBH(VOA) Dixon, Calli.
6020 XEUW Vora Cruz, Mex.
6024 Brazzaville, Fr. Eq. Afrié
6025 Radio Noderland
6025 HIIJ San Podro, D.R.
6030 Stultgart, Germany
6030 XEKW Morelia, Me
6030 XEKW Morelia, Mox.
6030 HP5B Panama, Pan.

186 WHITE'S RADIO LOG

Kc. C.L. Location 6035 GWS London. England 6035 Monte Cario, Monato 6037 San loso, Costa Rica 6040 GSY London. England 6040 KCBR Delane Calif 6040 Tangier, Tangier 6040 WLWO cincinna 6045 YDF DJakarta, Indionsis 6050 HIIN Ciudad Trujiillo. D.R 6050 GSA London. England 6054 HJEX Cali. Colombia 6055 HEA2 Bern, Switzerland 6060 GSX London, England 6060 KNBH(VOA) Dixon, Calif. 6060 Tangier I, Tangier 6060 WDSI Now York, U.S.A. 6065 SBO Motala, Sweden 6065 XEXE Mexico City, Mex. 6069 J0B Tokyo, Japan 0070 GRR London, England 6075 KGEI San Fran.. U.S.A 6080 Munich III, Germany 6081 OAX4Z Lima, Peru 60850 RU Brussels, Bolgium 6085 VP4RD Port-of.Spain Trinidad
6085 ZYK2 Recifo, Brazil 6090 GWM London, England 6090 VLl6 Sydnoy, Australia 6092 Radio Luxembure 6095 Horby, Sweden 6095 Radio Free Europe. Munich, Gormany 6095 ZYB7 Sad Paulo, Brazil 6095 HJFK Pareira. Colombla 6100 Belarade, Yugoslavia 6100 WRCA Now York. U.S.A. 6110 GSL London. England 6112 H11Z Cludad Trulillo. D.R. 6115 Berlin, Germany
6120 HC2FB Guayaquil. Eeua.
61202 J 14 Limassol. Cyprus 6120 Tangier. Tangier
6120 WRCA Now York
6120 WRCA Now York, U.S.A.
6122 HP5H Panama, Pan.
125 HRQ San edro Sula. Hond.
6125 GWA London, England
6130 XEUZ Mexico,
6130 Radio Spain:
6130 Radlo Spain
6130 COCD Havana. Cuba
6130 Port Moresby. Now Guinea
6135 HJED Cali, Colombia
6140 Munieh, Gormany
6147 PRLE Medellin, Col.
6150 GRW Lio de Janeiro, Br.
6150 TGAZ Guatomala, Guat.
6160 HJKJ Bogota, Colombla 6160 Honolulu. Hawail
6160 Munich. Hawail
6165 GW K London. England 6165 HERS Bern. Switzerland 6167 AVCM Port -au-Prinet, H. 6170 Munich, Germany
6170 GSZ London, England
6170 KCBR Dolaño. Cal.,U.S.A.
6170 YVKO Caracas, Venez. 6172 zJM5 Limassol, Cyprus 6175 XEXA Mexico, Mex. 6180 LRM Mendoza, ArgentIna 6180 Ashkabad, U.S.S.R. 6180 GRO London, England 6182 TGWB Guatemala, Guat. $6185 \mathrm{KCBR}(\mathrm{VOA})$ Delano, Calif 6185 HJCT Bogota, Colombia 6130 Frankfurt. Germany figo H19T Puerto Plata, D. A.
G190 WLW O Cineinnati, U.S. 6190 WLWO Cineinnati, U.S.A. 6195 GRN London. England 6195 Honoluls, Hawail 6200 Parls, france 6215 SP13 Warsaw, Poland 6235 HRD2 La Ceiba, Hond. 6235 Karachi. Pakistan 6248 Budapest. Hungary 6285 TGTa Guatemala, Guat. 6295 OTMI Leopoldvilie.

Belgian Congo
6295 TGLA Guatemala. Guat.
6320 Baden-Baden, Germany 6322 COCW Havana, cuba 6335 TGTA Guatomala, GU
6351 HRPI SanPedro Sula, 6351 HRPI San Pedro Sula,
6374 CSA2I Lłsbon, Port.

Kc. C.L. Location 6405 TGQA Quezaltenango, Guat. 6450 COCY Santa Clara, Cuba 6632 HC2RL Guayaquil. EEU. 6758 YNVP Managual Na, Hond. 6790 NVP Managua, Nie. 6790 2JM6 Limassol, Cyprus 6830 AXB2I Tol Aviv, Israol 6870 HC4EB Manta. Ecuador 105 Paris. Franco
712 CR4AA Praia, Cape V. Isls, 7135 BED7 Tandon, England 7135 BED7 Taipei. Formos 7145 Radio Free Europe Lisbon, Portugal
150 GRT London, England 7165 Moscow. U.S.S.R.
7175 VUD Delhi. India
7180 JOA Tokyo, Japan
7185 GRK London, England
7200 GW2 London, England
7205 Warsaw, Poland
7210 GWL London. England
7210 HE13 Bern, Switzorland
7222 Budapest. Hungary © 7230 GSW London, England 7240 Moscow, U.S.S. R.
7240 Paris, France
7250 GWI London, England 7255 Prague. Czcehoslovakia 7257 JKH Tokyo, Japan 7260 GSU London. England 7260 Moseow, U.S.S.R. 7280 GWN London. England 7285 JKJ Tokyo, Japan 7285 TAS Ankara. Turkey 7290 Hamburg, Germany 7290 VUD Deilhi, India 7295 Moscow. U.S.S.R. 7300 Radio Froe Europe Munich. Germany
7300 SVD2 Athens, Greece 7315 YSO San Salvador. Salv 7320 GRJ London. England 7335 BEC36 Talpol, Formose 7360 Moseow, U.S.S.R.
7670 Sofla, Bulgaria
7850 ZAA Tírana, Albanla
7863 SUX Cairo. Eaypt
7933 HLKA Pusan, S. Korea
7951 Alieante, Spain
8036 FXE Beirut
8664 COJK Boirut. Lebanon
8664 COJK Gamaguey. Cuba
8855 CoCa Havana, Cuba
8955 COKG Santiago, Cuba
9026 COBZ Hayana, Cubs
026 COBO Havana, Cuba
9236 COBQ Havana. Cuba
9290 PRN9 Rio de Janeiro.
9316 LRS Buenos Aires Arazil
9340 OAX4J Lima, Peru A 9363 COBC Havana, Cuba
9969 Madrid. Spain
9380 Khabarovsk, U.S.S.R.
9400 OTM2 Leopoldvilie.
Belgian Congo
9410 GRI London. England
9440 Brazzaville, Fr. Eq. Africa
9452 LRYI Buenos Aires, Arg.
9463 TAP Ankara, Turkey
9480 Moscow. U.S.S.R.
9490 KU139 Agana, Guam.
9504 OLR3B Prague, Czecho
9505 HOLA Colon, Panama
9505 JBD Kawachi, Japan
9510 YVH, Barquisimeto
9510 YVHJ Barquisimeto, Ven
9510 GSB London, Englan 9515 KNBH(VOA) Dixon, Calif. 9515 TAT Ankara. Turkey 9520 Colombo, Ceylon
9520 HJK F Bogota, Colombla 9520 OZF Skamlobak, Donmark 9520 VLT9 Port Morosby,

British New Guinea
9520 WLWO Cineínnati, U.S.A. 9525 GWJ London, England 9525 ZBW3 Vietorla, Hons Kong 9527 Warsaw, Poland
9350 Honolulu. Hawail
9530 Manila. Phlinpines
9530 KCER Delano. Cal
9530 KCBR Delano. Cal. U.S.A.
9530 WABC Now Yort,

Kc. C.L. Location
9531 COCO Havana. Cuba
9535 HER4 Bern, Switzerland -
9335 SBU Stoekhalm, Sweden
9540 Munich. Germany
$9540 \mathrm{ZL2}$ wollington, N, Z
9543 XYZ Rangonn, Nurmal.
${ }_{9548}{ }^{954}$ XEFT Vera Cruz. Mox.
9550 HV) Vatican Crity
9550 Paris, Franco
9550 OLR3A Prague, Czecho. -
9550 Gronada. Windward is.
9555 O1X2 Pori, Finland
9555 XETT Mexice, Mox.
9560 JBO2 Kawachi, Japan
9560 London, Englan
9560 Paris. France
9560 WLWO Cineinnati, U.S.A.
9560 WRCA Now York, U.S.A.
9565 Komsomolsk, U.S.S.R.
9565 ZYK3 Reeifo, Brazil
9570 Algiers, Algeria
9570 GWX London, Ensland
9570 KCBR(VOA) Delano, Callf.
9570 Warsaw, Poland
9570 Bucharest. Rumania -
950 Romer Taly
9580 GSC London, England
9580 VLB9 Shepparton, Aus.
9585 Madid. Spain -
9590 Hilversum, Neth.
9590 WABC Now York, U.S.A.
9600 GRY London. England 9600 KCBR Delano, Cal. U.S.A. 9600 KRCA San Fran.. U.S.A. 9600 Leningred, U.S.S.R. 9605 HP5J Panama. Pan 9605 JKL2 Toyko, Japan 9605 Radio Free Europe. Lisbon, Portugal
9607 Athens, Groete
9610 VLX9 Perth, Australla 96102 YC8 Rio do Janeiro, Brazil 9610 LLG Oslo, Norway 9610 XERQ Mexico, Mox. 9615 Voice of Amor.: Tangier 9615 VLB9 Shepparton, Aus. 9615 WRCA Now York, U.S.A
9618 TiDCR San Jose, C, Rica 9618 ThCR San ose. C, (Nov. to
9620 Horby, Sweden 9620 Parls, france
$9620 \mathrm{ZL8}$ Wellington, N. 2
9625 XEBT Wexico, Mex.
9625 GWO London, England
9630 HJKC Bogote Colotrinidad
9630 H
9630 VO4/10 Delhi, India
9635 Rome,
9635 Munich, Germany
9635 9640 Accra, Ghana
9640 West Germany Radio
9640 DZH2 Manila P Colognc -
9640 GVZ London, England
9645 Karachi. Pakistan
9645 LLH Osilo. Norwa
9645 TIFC San Jose. C. Riea
9646 HVJ9 Vatican Clity
9650 Honolulu. Hawait
9650 Tantior. Tangior.
9650 WDSI(VOA) Brentwood,
9652 2JMA Limassol. Cyprus
3654 OTC2 Leopoldvillo.

> Belgian Congo

9655 JK12 Nazaki, Japan 9656 4VEH Cap-Haitien, Halt 3660 EQC Toheran. Iran
9660 GWP London, England
9660 VLaS Brisbane. Aus. 9665 HEU3 Bern, Switzarland 9668 TGNB Guatomala, Guat.
9670 Munich, Germany
9670 Volee of Amer.: Tangier
9670 Moseow. U.S.S.R.
9675 GWT London. England
9675 J0B3 Tokyo. Japan
9680 Paris. Franee
${ }_{9680} 6800$ EQQ Moxico, Mex,
9680 Moseow ind indi
9680 Voleo of Amerlea, Tanglor alli

Ke, C.L. Locotion 9680 VLR3/VLH9 Melbourne,

9685 Paris, France
9685 WLWO Cincinnati, U.S.A. 9690 LRA Buenos Aires. Arg.
9690° GRX London, Englan
9690 Moscow, U.S.S.R. *
0695 JKM2 Kawachi Japa
9700 GWY London, England
9700 WDSI New York, U.S.A.
9700 Soffa, Bulgaria
9700 Voice of America, Tanaler 9700 KCBR Delano, Cai., U.S.A 9700 F2F6 Ft. de France, Mart. 9710 Moscow. U.S.S.R.
9710 Oakar. Fr. W. Atrica 9710 YOF6 DJakarta, Indonesla 9710 Rome, Italy
9715 Caire, Egypt
9716 Moscow. U.S.S.R. ω
9717 Radio Free Europe, Ger 9720 PRL7 Rio de Janeiro, Brazi 9730 French Equatorial Afriea 9730 Nanking, China
9730 DZH7 Manila, P.I.
9730 Leipzie. Germany
9735 H12T Ciudad. Trujillo, D.R,
9741 CSA 27 Lisbon. Portugal
9745 HCJB (Missionary Station). Quito, Ecuador -
9745 ORU Brussels, Be
9760 CR7BE Lourence Marques. Moz.
9765 TGWA Guatemala, Guat.
9770 London. Envland
9770 PRL4 Rio de Jan., Brazil 9770 PRL4 Rio d
9780 Rome, Italy
9780 Rome, Italy
9785 Monte Carlo, Monaco
9825 GRH London. England 9833 Budapest, Hungary 9865 YDF8 Djakaria, Indenesia 9915 GRU London, England 096 Brazzailie, Fr. Eq. Afriea 10058 SUV Cairo, Egyp
10220 PSH Rio de Janeiro, Brazil 10780 SDRA Pelping, China 11027 CSA2 Motaia. Sweden Ilo27 CSA29 Lisbon, Portunal
Ilog0 CSA92 PontaDelgada, Azores 11455 Peking, China
11475 zNX52 Barbadoes, B.W.t. II513 Tangier, Moroces
11515 Peking, China
11630 Leningrad, U.S.S.
i 1640 All India Radio. Deihl
11650 Peking. China
11670 Bangkok. Thalland
II680 HJCQ Bogota, Colombia
11680 GRG London. England
11685 Pekine. China
11695 HP5A Panama. Panama
11700 GVW London. England
11702 Paris. France
I 1705 JOA4 Tokyo, Japan
11705 SBP Motala, Sweden
11710 Moscow. U.S.S.R.
11710 Voice of America. Tangier
11710 VUOS/7 Dolhi, India
11710 WLWO Cineinnati. U.S.A.
11714 ZJN7 Limassol, Cyprus
11715 HE15 Brrn, Switzerland
11718 Athens, Groeen
11720 PRLR Rio de Jancirn. Brazil 11720 Radio Portugal
11720 OTM4 Leopnldville.

Bclaian Congo
1720 ORY2 Brusseis, Betquum
1724 HNG Bayhdad. Iran
11725 COCY Havana. Cuba
11730 GVV London, England
11750 KGEI San Fran., U.S.A
11730 KGEI San Fran., U.S.A
1730 Hilversum. Nether.
11730 CEll73 Santiago, Chile
11735 BEO6 Taipel, Formosa
11735 LKQ Frederikstad. Nor
1735 Radio Froe Europe, Ger
11740 Moseow. U.S.S.R.
11740 WRUL Boston, U.S.A.
11742 CEII74 Santiago, Chile
11742 CEII74 Santiago, Chile
11750 GSD London, England
11755 Radio Portugal
11760° OLR4B Prapue. Czecho.
11760 Voice of America. Tangier II760 VLAII/VLBII

Shepparinn, Aus
11760 VUD7/1! Dathi. Indi 11764 CR7BH Lourenco

1770 GVU London. England
11770 YDE/YOF7 Djakarta.
Intonesia
1780 BEC London, England -
1780 Moscow, U.S.S.R.
1780 XEOH Mexice, D.F.
1780 ZL3 Wellington. N. 2
11790 WDSI(VOA) New York
11790 GWV London, England
11790 VUD Dondon. Eng
11700 India
11790 WRUL Boston. U.S.
1790 WRUL Boston, U.S.A.

Kc. C.L. Location 11795 West Germany Radio,
11795 YOF3 Djakarta, Cologno 11795 WRUL Boston. U.S.A.
I 1795 Radio Pakistan, Karachi
11795 ELWA Monrovia, Liberia
1800 JK14 Tokyo, Japan
11800 GWH London. England
11800 Bruseels, Bolgium
11810 Moscow, U.S.S.R.
1810 Radio Swedon Nov. (except-
1810 Rome, Italy
1810 VLAll Shepparton, Aus. merning program
1815 Warsaw, Poland
1820 GSN London, England 1820 XEBR Hermosillo, Mex. 11825 JKi6 Tokyo, Japan
1825 moscow, U.S.S.R.
1825 ZYK3 Recifo, Brazi
1830 F2S4 Saigon. Fr.Indo-C. 11830 Moscow. U.S.S.R. 1830 Voice of America, Tangier I 1830 WBOU(VOA) New York,
11830 WDSI(VOA) New York.
11835 CXA19 Montevideo. Uru.
11835 Prague, Czechoslovakia e
11840 VLWiI Perth. Australia
II 840 OLR4A Prague, Czecho.
1 1840 LRT Tucuman, Argentina
II845 Karachi, Pakistan
11847 Paris, France
II850 VLBil Shepparton. Aus.
I 1850 ORU Brussels, Belgium
11850 TGNC Guatemala, Guat.
11850 VUDiI Delhi. India
18550 LLK Osio, Norway
\$1855 DZH9 Manila, Philippines
i 1855 Radio Free Europe
Lisbon, Partuga
11860 GSE London, England
J1860 KW10 San Fran., U.S.A.
11865 CR6RA Luanda, Ancola
1865 HERS Bern, Switzerland -
11870 KNBH, Gan Fran
11870 KNBH San Fran.. U.S.A.
11870 voice of America, Tangier
11870 WRUL Boston, U.S.A.
11875 OLRAC Praque. Czecho.
11875 Radio Portugal Cz
I 1880 Moscow, U.S.S.R.
I 1880 LRS Buenos Aires, Arg.
il880 VLGII/VLHII
Melbourne, Aus.
11880 Horby Sweden
II880 XEHH Mexico, Mex.
II880 GRE London, England 18860 SBP Stockholm. Sweden 11890 Moscow, U.S.S.R. 11890 GWW London, England il 890 KZFJ Manila, P.I.
11890 WBOU New York. U.S.A.
11895 FHE3 Dakar, Fr.W.Af. 11895 Radio Portugal:
II895 Manila, Philipplnes II900 CEli90 Valparaiso, Chile 11900 CXA 10 Montevideo. Uru. 11900 HCJB Calvary Radio Ministry
IIg00 XEXE Mexico City, Mex
11300 Rome. Italy
11910 Budapest. Hungary
11910 Karachi, Pakistan
11915 Radio Netherlands -
11915 Damascus. Syria
11915 HCJB Quito. Ecuadnr -
1195 Radio Portugal
II918 BED4 Tainei. Formosa
11924 FZS4 Saigon, Vietnam
11930 GVX London. England
11935 Warsaw. Poland
11937 Bueharest, Rumania *
I 1950 Radio Netherlands
I 1950 Radio Netherlands ©
I 1950 YSAX San Salvador, Saiv.
11950 YSAX San Salvador,
11955 GVY London, England 11960 Moscow, U.S.S.R.
I 1964 Lisbon, Portugal
11970 Brazzaville. Fr. Eq. Africa
11972 TiHH San
11972 TIHH San lose, C. Rica
11975 Colombo, Ceylon
11980 Moscow, U.S.S.R.
11980 Moscow, U.S.S.R.
11995 CSA32 Lisbon, Portugal -
11998 CEII80 Santiago, Chile
2040 GRV London, England
12095 GRF London. England
12175 TFJ Reykjavik. Ieoland
12175 TFJ Reykjavik.
14492 Radio Moscow
14690 PSF Rio do Janeiro, Brazil 15050 ETAA Addis Ababa, Eth. 15050 V3USE Forest Side. Eth.
15060 Peking. China
5070 GWC London. England
15100 CSA39 Listun, Purtugal
5100 Moseow. U.S.S. H.
IS105 KGEI San Frati., U.S.A.
islos 0AX4X Lima, Peru
I5110 GWG Lenden. England
15110 Moscow. U.S.S.R.
I5115 HCJB Quito. Eevador
15120 Colombo. Ceylon
15120 Moseow. U.8.S.R,

Ke. C.L. Location
I5I20 Romo. Italy
I5120 Warsaw. Poland -
15125 CSA36 Lisbon. Portugal
15130 Voice of America. Tangler
15130 WABC New York, U.S.A.
15130 WLWO Cincinnati. U.S.A.
15130 KCBR(VOA) Dolane, Calif. 15130 WBOU Bound Brook. N. J..

15135 Radio Japan, Takyo 15135 PRB23 Sao Paulo, Brazil 15140 GSF London, England
5150 YDC Djakarta, Indonesia 15145 ZYK2 Recife, Brazil
5I50 0AX4R Lima. Peru
ISI50 CEISIS Santiago, Chile
ISis5 SBT Motaia, Sweden
15156 ZYB9 Sao Paulo, Brazl!
15160 VUO5/7 Delhi, india
15160 VLBIS Shepparton, Aus.
15160 TAU Ankara. Turkey
15165 WLWO Cincinnati, U.S.A
I5l65 ZYN7 Fortaleza, Brazil
$\$ 5170$ LKV 0s10, Norway
15170 TGWA Guatomala, Guat. 15170 Moscow,U.S.S.R.
5175 LLM Oslo, Norway
5180 GSO London, England
15180 Moscow, U.S.S.R.
15180 OZH2 Shamlebak, Den. i5190 VUD5/11 Delhi, India
15190 0iX4 Pori, Finiand 15190 OiXA Pori, Finland
15195 TAQ Ankara, Turkey 15195 TAQ Ankara, Turk
15200 Moscow, U.S.S.R.
I5200 VLAISJViC!S
Shepparton, Aus.
15205 XESC Mexieo, Mexieo
15205 Voice of Amerien. Tangier
15210 Munieh Germany. 15210 GWU London. England 15210 GWU London. England
15210 WBDU(VDA) New Yor
15210 VLGI5 Melbourne, Aus. 5220 Hilversum, Neth. 15220 ZL10 Wellingtan, N.Z. 5225 JBO3 Kawachi, Japan 15228 Komsomolsk, U.S.S.R.
15230 GWD London, England 15230 GWD London, England 15230 Moscow. U.S.S.R.
15230 OLR5A Prague, Czecho
15230 VLHI5 Melbourne, Aus
5230 WRUL Boston, U.S.A.
15235 BEO3 Taipei, Formos
I 5235 JOB5 Tokyo, Japan
5240 Radio China (Canton) -
I 5240 Belgrade, Yugeslavia
15240 KRCA San Fran., U.S.A
5240 Paris, France
5240 VLH1S Malbourne. Aus.
5240 WLWO Cincinnati, U.S.
15250 Bueharest. Rumania
5250 Voice of Amer., Manila, P.I
5250 WLW0 Cincinnati, U.S.A
15250 WLWO Cincinnati. U.S.A.
5250 Voice of Amer., Tang 15260 GSI London, Engl
IS260 Karachi. Pakistan 15270 KCBR Delano, Ca I5270 Munich, Germany
55270 WBOU(VOA) New
15270 Sverdlovsk. U.S.S.R.
15280 Munieh, Giermany
15280 Z L4 Wéllington. N. Z
15280 Moscow. U.S.S.R.
IS280 Vaice of Amer.
I 5285 CR G Lourcnen
Marques, Mozambique
15285 WBOU(VOA) New York.
15285 WRUL Boston. U.S.A.
15290 LRU Buenos Aires. Arg
15290 VUO5/9 Delhi. India
15300 OZH8 Manila, P.I.
15300 GWR London. England
15300 Singaporo, Malaya
15305 HER6 Bern. Switzeriand
15305 RV97 Novosibirsk. U.S.S.R.
15310 KCBR Dolano, Calif.
15310 GSP London. England
is320 VLGis Melbourne. Aus.
15320 Moscow, U.S.S.R.
15320 OLR5B Pragut, Czech.
15325 Rome. Italy
15330 KGEI San Fran., U.S.A.
15330 Sofla. Bulparia
15330 WLWO Cineinnati, U.S.A.
15335 Brusscls. Belpium
15335 Karachi, Pakistan
15340 Moscow. U.S.S. P.
15340 KCBR Delano, Cal., U.S.A.
15340 Voice of Amer,, Tangier
15345 Athens, Greece
15345 Formosa Radio
15347 LRA Buenos Alre
15347 LRA Buenos Alres, Arg.
15350 Paris. France
15350 WRUL Bosto
15350 WRUL Boston, U.S.A.
15350 WLWO Cincinnati, U.S.A.
I 5350 VUOs Uelh, fualis
15352 Radio Lunembury
15360 London. England
15364 ZYC9 Hiode Jan..
15365 Radle Notherlands, Brazi
15390 Maseow Nothorland
15390 Moseow, U.S.S.R.
15390 Radio China (Canton)
15400 Paris, France
15400 Faris, France
$1 \$ 400$ Rome, Italy

Xe. C.L. Location
15405 DMQIS Cologne.
15405 PZC Paramaribe, Surimamy
15410 Moscow, U.S.S.R.
15420 Paris, France
I 5420 Brazzaville, Fr. Equat. Africa
15425 Radio Netherlands ${ }^{\circ}$
I 5435 GWE Lendon. England
15440 Moscow. U.S.S.R.
15445 Radio Netherlands
i.5595 Brazzaville, Fr. Eq, Africa

15620 Madrid, Spain
15880 Peking, China
11700 GVP London, England
1:1710 WRUL Boston, U.S.A
11715 GRA Lendon. England -
17720 LRAS Buenos Aires, Arg.
i 7730 GVQ London. England
17750 WRUL Boston. U.S.A.
17750 Rome, Italy
17760 WGEO Schenectady
17760 VUO Delhi, india
17770 KCBR Delano. Cal
17770 Rome, italy
17770 Voice of America. Tangier
1:770 Radio Sweden. Stockholm
$1: 775$ Hilversum, Netherlands
1 7780 WBOU New York, U.S.A
17780 Voice of Amer., Manila. P.I. 17784 HER7 Bern, Switzerland
17785 JOA Tokyo, Japan
17790 GSG London. England
17795 WLWO Cincinnati, U.S.A.
17800 KNBH San Fran.: U.S.A.
17800 WLWO Cincinnati, U.S.A.
I 7800 WLWO Cincimnati, U.S.A,
I 7800 Radio Australia, Melbourne
17800 Radio Poland ${ }^{\text {R }}$
17800 KRHO Hondlulu, Hawali
17800 Stockholm, Sweden
1280001×5 Pori, Finland
17804 Romo. Italy
17805 DZ16 Manila, P.J.
17810 Formosa Radio
17810 Formosa Radio
17810 GSV London. England
17810 Moscow. U.S.S.R.
17815 WRUL Boston, U.S.A.
I?820 Colombo. Ceylon
17825 LLN Oslo, Norway
17825 TAV Ankara, Turkey
17825 Radio Japan, Tokyo
17825 Radio Japan, Tokyo
18830 Moscow. U.S.S.R.
17830 WDSI(VOA) New York.
York.
U.S.A.
I.835 Karachi, Pakistan

17840 Radio Swoden
1:840 Brazzavilfe. Fr. Eq. Afrlea
17840 Moscow. U.S.S.R.
880 VLCI7 Shepparion. Aus.
8840 HVJ Vatican City.
$1: 840$ HVJ Vatican Cit
18850 Paris. France
17860 ORU3 Brusseis, Bolgium
17865 Damascus Syria
17865 Damascus, Syria Portugal
$1: 890$ HCJB (Missionary Station)
17910 Grenada. Windward is.
18250 TFTO Paris. France Geneva, Switzerland
20088 Moscow. U.S.S.R.
20088 Moscow, U.S.S.R.
21470 GSH London, England
21480 Hilversum. Netherlands
21490 Paris. France
21500 WRCA New Ynrk, U.S.A
25510 VUD5 Oelhi. India
21520 HERB Bern, Swifzerland
21520 WLWO Cincinnati, U.S.A.
21530 GSJ Londen, England
21550 GST London, Enoland
21560 Moscow. U.S.S.R.
21560 Rome. Italy

United States FM Stations

Abbreviatians: Mc., megacycles, asterisk (*) indicates educational station

Location	C.L.	Me.	Location	C.L.	Mc.	Location	C.L.		Location		Mc.
Brantford, Ont. Cornwall, Ont.	CKPC.FM cJss.FM	92.1 104.5		CKLC.FM	${ }_{96} 9.5$	Ottawa, Ont.	CBO.FM	103.3	locanon	CFRB.FM	Mc.
Edmonton, Alta.	CFRN.FM	100.3	KItehener, Ont.	CKCR-FM	${ }_{96.7}^{96.3}$		CHRA.FM	${ }_{98.1}^{93.9}$		CHFI	9
	CJCA-FM	${ }_{98.1}^{99.5}$		CHEC-FM	100.9	Rimo	CJBr.FM	101.5	Vaneouver, b.c.	CBU	105.7
Ft. Willian	CKUA-FM	98.1	London, ont. Montraal, Que.	CFPL-FM	95.9	St. Catharines,			Verdun, Qua.c.	CKVL.F	96.
Ont.	CKPR.FM	${ }_{96}^{94.3}$		CBM.FM	100.7	Sydney, N.S.	CJCB.FM	94.9	WIndsor. Ont.	CKL	${ }_{93.9}^{98.5}$
KIngston, ont.	CFRC-FM	91.9	Oshawa, Ont.	CKLB.FM	${ }_{93.5}^{106.5}$	Toronto, Ont.	CKGBE.FM	94.5	Winnipeo, Man.	cJob-FM	03.1

United States Television Stations

(Territories and possessions follow states). Chan., channel number; asterisk (${ }^{*}$) indicates educational station.

Canadian Television Stations

How to $\mathrm{CR} A \mathrm{C}$ the education harier

BIG-par POSIIIONS

Is there an "education barrier" between you and promotion? Are young college graduates being brought in to fill positions above you?

You can break down that barrier . . . gain real security, responsibility, prestige . . surprise fellow employees and win their respect. You can match yourself against the smartest of the college boys and come out a WINNER. Here's how!

AN HOUR A DAY THE I.C.S. WAY!

If you can spare an hour a day, if you have the determination to make good, if you're willing to invest pennies now for dollars later onthen I.C.S. can help you. You can be a man or woman, young or old, skilled or unskilled. So long as you
can understand simple language and illustrated training manuals. you need have no doubis. The I.C.S. hour-a-day plan is success-prove日. You learn while you earn-any. where, any time.

Just pick the subject you want!

Only I.C.S. offers you such a wide range of subjects to choose from. Drafting. Engineering. Television. Aeronantics. Business. High School. 258 courses in all. I.C.S. is the oldest, largest home-study school. It is also the best known in business and industry.

Free cafalog plus free books!

When you mail the conpon below. you get a complete catalor on the subject you check with information about employment opportnnities. traming requirements. ctc. And you get ${ }^{\text {H How to }}$ Surceed -36 pages of valuable tips on winning recognition, pay ralses, success. Also, a free sample lesson in basic nathematics.

For Real Job Security - Get an 1. C. S. Diploma! I. C. S., Scranton 15, Penna.

Accredited Member,

National Home Study Council

INTERMATIOMAL CORRESPONDENGE SGHOOLS

BOX 62248A, SCRANTON 15, PENNA.
(Partial Ilst ol 258 courses)
Without cost or obligation, send me "HOW to SUCCEED" and the opportunlty booklet about the field BEFORE which I have marked X (olus sample lesson):

Name
AB_{8} \qquad Home Address
\qquad A.M. 10 P.M

Mail Postage-Free Card for

 SAMPLE LESSON FREE Shows you how easy, practical it is to Train at lome for Ralo TEEEVSION EEECTRONCSOldest and Largest Home Study RadioTelevision Training School. N.R.I. has Trained Thousands for Good Pay Jobs Since 1914 mbitious a sample lens al home in spare fime for Radio-Tv, Let us send you AT HOME in your spare time for better pay and a brighter future Wie will also send N.R.I.'s 64-page cata'sg to show you that Radio Téevision is taday's field of OPPORTUNITY for properly trained men.
Television Making Good Jobs, Prosperity making more good jobs Nathington 16, D. C

The technical man is looked up to. He should be. He dou: important work, is respected for what he knows, gets good pay for it. There are splendid opporfunities for the man wel trained in Radio-Television Servicing or Eroadeasting. Government. Aviation, Police, Ship, Miero-Wave Relay. Two-Way Communications tor ouies, tanis, frucks are growing Radio.TV fields
N.R.I, is the Tested Way to Better Pay N.R.I. Training is practical, thorough. You get the be vafit of N.R.I's 40 years' experience. Many success. ful N.R.I, men start without any knowledge of Radio. mary without high school education. Find out what Rasio-Television training can mean to you Make the lirst move today foward becoming one of that seluct group-a Radici-TV Technician. Send postage-free Ford for Actual Lesson and 64-page Cafalog. both FREE. NATIONAL RADIO INSTITUTE, Dept, OBS3,

Withous Extra Charge NRI Sends Equipment fori

WHAT N.R.I. GRADUATES DO AND SAY

See Other Side

Train ng is based on LEARNING-BY. DOING. N.R.I. trainlng includes kits | of paris which you use to build equip. on circuits common to both Radio and Shown at left is low. power Transmiter you build as part of N.R.I. tions Course. FREE Catalog shows other you get, things you learn

BUSINESS REPLY CARD

No Postage Stamp Nacessary If Mailed In The United Sectes
POSTAGE WILL BE PAID BY
NATIONAL RADIO INSTITUTE
Washington 16, D.C.

[^0]: The Radio.TV Experimenter contains a selection of the most popular slectronies projects and radio and TV maintenance articles that have appeared in Science and Mechanics Magazine, plus a number of projects and helpful apticles on the same subjects appearing for the first time.

 Science and Mechanics Handbook Annual No. 2, 1960-No. 565

[^1]: Front and rear views of panel showing placement of parts.

[^2]: table c-best seasons for the bands
 Long Wave: Late fall and winter
 Medium Wave: Fall, Winter and early spring
 Short Wave: All year round
 Very Migh Frequency (VHF) and Ulira Migh Frequency (UHF): bate spring, summer and fall

[^3]: The linearity of α transformer-diode-rec. tifier-meter type ac voltmeter can be improved by off-selting the meter needle from eero end calculating series resistance for exact fit at full seale.

[^4]: MATERIALS LIST-PHONE PLUG BOX
 No. Req. Size and Description
 $13^{\prime \prime}$ long $\times 2^{\prime \prime}$ wide $\times 11 / 4^{\prime \prime}$ plastic box with deep-hinged cover (available in 10 -cent stores, etc.)
 1 Standard single phone jack, Switeheraft ت12B (Allied 41H-632)
 2 Miniature phone jacks of the type needed to fit your plugs
 2 Standard phone tip jacks
 2 Standard binding posts, with soldering lugs to fit
 1 Short length lightweight insulated twin-lead, or twisted-lead wire
 Misc. Machine screws, nuts, washers as required

