EPGIMIIGSPMIGINI.

"Tough-Dog" Linearity
Magnavox Video PHILADELPHIA

Four-Channel Tape

NORN

PTS Electronics repairs more tuners than all other tuner repair companies combined. With company-owned Servicenters located throughout the United States and Canada, PTS can provide same-day service on any make or model color, black and white, tube, transistor or electronic/varactor tuner. Our technicians use original parts, and the repaired unit is returned to you in a protective package. Plus, our senvice is covered by a one year limited warranty on workmanship and parts.

A complete listing of all PTS Servicenters appears on the opposite page.

PTS ELECTRONICS, INC.

PRECISION TUNER SERVICE
For More Details Circle (1) on Reply Card

CONTENTS

22 A "Tough Dog" Vertical Problem-Learn more about troubleshooting methods, as you sympathize with the technician's trou-bles-Walter P. Weaver.

MIDWEST
 Home Office

BLOOMINGTON, IN 47401 5233 5. Hwy. 37, P.O. 27 CLeVELAND, OH 4134 5682 Stote Rood 216.845 .4480 KANSAS CITY. KS 66106 19A Merriom Lare P . 0.6149
$913-831-1222$ MINNEAPOLIS, MN 5540
B15-W. Loke St.. P.O. 8458 ${ }^{612 \cdot-824-2333}$
5T. LOU15, MO 63130
8456 Poge Blvi.. P. . 24256

DETROIT, M1 48235
I3707 W. 8 -Mile Rd.
3707 W. 8-Mile Rd
313 -862.1783
GRAND RAPIDS, M1 49501
134 Wolker Northwes
P.O. 1435

616-454-2754
CINCINNATI, OH 45216
8172 Vine St. P.O. 15491
$513-921-2298$
MILWAUKEE, WI 5321
7211 Fond du Loc 414.464.0789 COLUMBUS. OH 43227 4005A E. Livingston 614-237.3820 28 E 14th St^{46202} 28 E .14 th St
317.631 .1551
DAVENPORT. IA 52805
2024E. River Dr., PO. 187 319-323.3975
OMAHA, NE 68132
5008 Dodge Street 402.558 .1800
CHICAGO Berkeley, 16016 17565 . Toft Stree 312.449-2082 SOUTH
ATLANTA, GA 30311
180 Campbellton Road
P.O. 42558 404.753.0007

JACKSONVILE. FL 32210 918 Blanding Blivd., P. 0.7923 904.389.9952

WASHINGTON, DC
Silver Spring, MD 20910
8880 Brookville Rd. 301.565.0025

CHARLOTTE. NC 28225
726 Seigle Ave., P.O. 5512
704.332.8007 BIRMINGHAM, AL 35201
210 N 9 th St PO 1801 210 N. 9 Sh St. P.O. 18
205.323 .2657 MEMPHIS TN 38 II 3614 Lamar Ave., P.O. 18053 901-365.1918
NORFOLK. VA 23504
3118E. Princess Anne Rd. 118 E. Princosss Anne Rd B04.625.2030
NEW ORIEANS Metairie, LA 700004
3920A A Arline Hwy.. P.O. 303 504.837.7569

2703 SMPA, 133690
$813-839.5521$
 $615-885-0688$

PTS ELECTRONICS, INC. PRECISION TUNER SERVICE

NORTHEAST

SPRINGFIELD, MAOIIO3
191 Chestnut, P.O. 3189 PHILADELPHIA
Pper Darby. PA 19082
$1722-44$ Stote RP., P.O. 207 215.352-6609

PITTSQURGH. PA 15202 Rerview Ave W, P.O. 4130 ${ }^{412.761 .7648}$ I58 Morkel St PO. 421 58 Morken St., P. 8.
$201-791.6380$ buffalo, NY 1421 993 Sycomore St., P.O. 1241 716.891 .4935
BOSTON boston Arlington, MA 02174 ${ }^{617.648 .7110}$ 418 solar St., P.O. 207, Solino Sto 315-475.2330 SALTMORE, MD 21215 5505 Reistarstown Rd. 301-358-1186

PACIFIC

SaCramento. Ca 9584 4611 Auburn Blvad. P.O. 41354 916.482-6220 SANDIEGO, CA 92105 $714.280-7070$ LOS ANGELES, CA 90023 4184 Pocific Woy PORTLAND OR 9721 5220 N.E. Sandy Blvd. P. 0.13096 503-282.9636 SEATTLE, WA 9B109 432 Yole Ave. N. P.O. 9225 206-623.2320

MOUNTAIN DENVER Arvoda, CO 80001
4958 Allison St. P.O. 672 303-423.7080 SALT LAKE CITY. UT 84106 1233 Wilmingion Ave. 801.484-1451 PHOENIX, AZ 85009 2916 West McDowell Rd. 602-278.1218

SOUTHWEST

LONGVIEW, TX 75601 110 Mopac Rd. P.O. 7332 OKLAHOMA CITY. OK 73106 3007 N. Moy, P.O. 60566 405-947-2013
HOUSTON TK 77207 HOUSTON, TX 7720 HOUSTON, TX 71207
4326 Telephone Rd. P.O. 26616
$713-644.6793$

CANADA

MONTREAL,PQ MONTREAL,PQ 514.381.5838

About the cover-Our cover reminds us that parts and circuits
8 Reports From The Test Lab-B\&K-Precision model 530 semiconductor tester measures the frequency bandwidth of bipolar transistors. A go/no-go in-circuit test with lead identification, and out-of-circuit leakage and beta tests also are featured-Carl Babcoke, CET.

Second class postage paid at Shawnee Mission, Kansas and additional malling offices. Published monthly at 9221 Quivira Road, Overland Park, Kansas 66212 by Intertec Pubilshing Corp., 9221 Quivira Road, Overland Park, Kansas 66212 . Send Form 3579 to 9221 Quivira Road, P.O. Box 12901, Overland Park, Kansas 66212.
© Copyright, 1977, Howard W. Sams \& Co., Inc. All rights reserved. Material may not be reproduced or photocopied in any form without written permission of publisher. continue to change. Photo courtesy of Howard W. Sams \& Company.

DEPARTMENTS

4 Electronic Scanner
12 Symcure
13 Troubleshooting Tips
15 Reader's Exchange

67 Photofact Bulletin
71 Test Equipment
72 Advertisers' Index

Save design, troubleshooting and evaluation time with the Fluke Temperature Probe.

The 80T-150 Temperature Probe can be used with any voltmeter to quickly locate malfunctioning and overstressed components, or to confirm difficult thermal calculations.

The Fluke 80T-150 applications. Additionally, Temperature Probe eas- a 350 V standoff allows ily converts any DVM to measurement of live cira direct reading ther- cuits. It is fast respondmometer ($1 \mathrm{mV} /$ degree). ing and battery powered. Range is $-50^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C} \$ 125$.* (or $-58^{\circ} \mathrm{F}$ to $+302^{\circ} \mathrm{F}$), and the probe can be used in surface, air or liquid

Call today-800-4260361 toll-free-and ask for Application Bulletin

AB- 28 for information on other ways to make thermal measurements with the $80 \mathrm{~T}-150$. Or, write: John Fluke Manufacturing Co., Inc., P.O. Box 43210, Mountlake Terrace, WA 98043.
*U.S. Price Only
de Only
-

For Literature Only Circle (5) on Reply Card

Seeking Original JapaneseReplacement Parts for CB Repair Use?													
CB REPAIR PACKAGE $\$ 77.00$ value for only $\$ 59.00$				SPECIAL PACKAGE OF MOST COMMON DRIVERS \& FINALS									
Now repair almost all CB's with this package of Japanese Transistors					is kit contains	6 each of:							
				$\begin{aligned} & \text { 2SC } 775 \\ & \text { RSC } 1018 \end{aligned}$		2sc 756							
2SK 19 FE	ET	2sc				C 799							
2SD 235		${ }^{2 S C}$		2SC 2SC 1326 1806									
710		2SC				$\$ 140.00$ value for Just $\$ 99.95$							
2SC 775	4 pcs	2SC 756	3 pcs										
CHECK OUR NEW REDUCED PRICES!													
Uriginal Japanese Transistors, FET, IC, Diodes													
	288463 1.50	2SC517 3		2SC 1061.140	(esc 1678	$25 \mathrm{~K} 19{ }^{1.60}$							
	288474 1.20	2sc 536		2SC 1166	25C1684.59								
				2sc 1173		25k 34.1 .10							
${ }^{254640} 680$							Dods						
	(25c 371			Sc 1213	25C 1908								
25A 68.70	[sc 372	¢8C 696											
120	[85 380	2sc 711			2SC 1975								
$733 \quad 59$	zSC 387	XC711 59		2SC 13074.90	280								
	2SC 3 2034				280 180								
$\begin{array}{lll}25877 \\ 288 \\ & 59 \\ 59\end{array}$	25C 454 59	[8c		2SC 13301.50	250 888	$\begin{array}{ll}\text { skK } 45 \\ \text { MK 10 } & 2.50 \\ 2.00\end{array}$							
		[5C		25C 1359		2.00							
	-	(ex		2SC									
(tar	\|rer	$\begin{array}{ll}\text { zC } \\ \text { zsc } 7174 \\ & 1.60\end{array}$	2sc 10141.20	2SC 1.499	(er								
						7045M 3.0							
MMEDIATE DELIVERY WITHIN 48 HOURS					FUJI-SVEA ENTERPRISE								
Mirymurn) order: SiO.00. Ohio residemes add $4{ }^{\circ} \mathrm{om}$ sates tiax.													
					P.O. Box 40325								
					incinnati, OH 452								
MANUFACTURER INOUIRIES WELCOMED					(513) 874-0220								
All Parts Guaranteed Against Factory Defects					(513) 874-022								

Electronic Servicing

Editorial, advertising and circulation correspondence should be addressed to: 9221 Quivira Road. P.O. Box 12901. Overland Park Kansas 66212 (a suburb of Kansas City Missouri). (913) 888-4664.

EDITORIAL

RONALD N. MERRELL, Director CARL H. BABCOKE, Editor
MICHAEL SCHEIBACH, Associate Editor DUDLEY ROSE, Art Director
CINDY NELSON, Editorial Assistant MARY CHRISTOPH, Graphic Designer

EDITORIAL ADVISORY BOARD
LES NELSON, Chairman
Howard W. Sams \& Co. Indianapolis
JOE A. GROVES. Technical Consultant Howard W. Sams \& Co., Indianapolis

CIRCULATION
GREG GARRISON. Director
EVELYN ROGERS. Manager
5 ABP

Member. American Business Press Member, Audit Bureau of Circulations

ADMINISTRATION

GEORGE H. SEFEROVICH, President MIKE KREITER, Publisher

ADVERTISING SALES
Overland Park, Kansas 66212 (a suburb of Kansas City, Missouri) Phone: (913) 888-4664
PAT FOX, Production
Regional and Advertising Sales Offices with Advertising Index

ELECTRONIC SERVICING (with which is combined PF Reporter) is published monthly by Intertec Publishing Corp.. 9221 Quivira Road. Overland Park. KS 66212

ELECTRONIC SERVICING is edited for technicians who repair home-entertainment electronic equiprnent (such as TV, radio, tape stereo. and record player), and for industrial lechnicians who repair defective productionline merchandise, test equipment. or industrial controls in factories
Subscription Prices: 1 year- $\$ 6.00,2$ years$\$ 10.00,3$ years $-\$ 13.00$. in the U.S.A. and its possessions. All other foreign countries: year-\$7.00. 2 years - $\$ 12.00,3$ years $\$ 16.00$. Single copy 75 cents: back copies $\$ 1$ Adjustment necessitated by subscription termination to single copy rate. Allow 4-6 weeks delivery for change of address. Allow 2-3 weeks for new subscriptions.

INTERTEC PUBLISHING CORP Subsidiary of HOWARD W. SAMS \& CO., INC

dicinonicclanner
 news of the industry

The U.S. Court of Customs and Patent Appeals has reversed a lower court ruling requiring the government to impose countervailing duties on imported Japanese electronic products. The court, by a three-to-two vote, said that rebates issued by the Japanese government on certain exported electronic items do not constitute a "bounty or grant" under the U.S. countervailing duty law. Electronic New's reports that Zenith plans to take the case to the U.S. Supreme Court. Even if the Supreme Court agrees to hear the case, however, a final ruling is not expected before next spring.

Several Japanese firms are planning to introduce microprocessor-controlled microwave ovens in the U.S., Retailing Home Furnishings reports. Matsushita Electric Industrial Co., Mitsubishi Electric Corp., and Sharp Corp. have already announced plans to enter the U.S. market, with Hitachi, Ltd., Tokyo Shibaura Electric Co., and Sanyo Electric Co. expected to follow. Prices on the ovens will range from $\$ 300$ to $\$ 600$ for deluxe ovens using microprocessors.

TV dealers report that gross profits on color consoles increased by $\mathbf{2 \%}$ in 1976 over 1975, according to a Cost of Doing Business survey conducted by the National Appliance Radio-Electronics Dealers Association. According to the survey, the biggest gain in television sales was in color consoles, which rose from 23% to 25%. Color portables increased from 22.1% to 23.7%, while monochrome portables moved from 22.9% to 24.1%.

A new telephone communication system using light beams instead of electricity has been inaugurated in Great Britain. Telephone calls on the new system travel via laser light over hair-thin fibers of glass, replacing traditional metal cables. The system was designed and installed by Standard Telephones and Cables, the major British telecommunications company of International Telephone and Telegraph Corporation (ITT).

The Phoenix branch of PTS Electronics, Inc. recently moved to a new facility at 2916 West McDowell Road. In addition to tuner repair, PTS-Phoenir offers module rebuilding/exchange; purchases dud modules; maintains a complete inventory of tuners, tuner parts and modules; and offers a fuill line of tuner test instruments and accessories.

More than $\mathbf{7 5 \%}$ of fatal and non-fatal shocks are directly related to eight consumer products through failure, repairs and installation, a Consumer Product Safety Commission study concludes. Retailing Home Furnishings reports that, according to the study, power tools, light fixtures and lamps, televisions and radios, pumps, heating systems, appliance and extension cords, antennas contacting power lines, and installed wiring are the major causes of these accidents. The stady also says that 50% of all fatal shocks are due to failure of products while in use, although 21% of the electrocutions might have been prevented by safety features.

Do mong busmes....

with Sprague Replacement Component Assortments

Whatever you're servicing . . . CB radios, TV sets, $\mathrm{AM} / \mathrm{FM}$ radios, $\mathrm{Hi}-\mathrm{Fi}$ equipment, or other electronic gear . . . you've won half the battle when you've got ready access to the right replacement components. Sprague assortments can save you a lot of aggravation.

Sprague component assortments include only the most-popular, most-frequently-used parts you use in everyday service work . . . and they come pre-filed in durable 6-drawer or 9-drawer cabinets at no extra cost to you!

With 43 different assortments to choose from, there's one sized and priced just right for you. Select from assortments of capacitors, trimmers, resistors, transistors, diodes, rectifiers, ICs, LEDs, and switches.

For complete information, get descriptive brochure M-946A (if you service CB radios ask for M-994A as well) from your nearest Sprague distributor. Or, write to Sprague Products Co., 71 Marshall St., North Adams, Mass. 01247.

Home videocassette recorders (HVCRs) will have large mass-market sales if prices drop below about $\$ 800$, predicted 100 department and specialty stores. The results of a survey were published by Retailing Home Furnishings. Sony, Zenith, RCA. and Quasar were mentioned as the favorite brands.

Two states, Virginia and Connecticut, have passed legislation banning the use by motorists of speed-radar warning devices. This year, nearly one million drivers are expected to buy the small microwave receivers. The units monitor highway-speed radar, and beep and flash warnings with increasing tempo as a speed trap is approached.

Appliance-TV dealers blame rising operating costs as the primary reason for declining gross sales margins, a Retailing Home Furnishings' report concludes. The National Appliance and Radio-Electronics Dealers Association (NARDA) recently released a survey of more than 1800 retailers which showed that gross margins in 1976 were 2.6 points behind 1975 levels.

The Commission on Postal Service has recommended that the U.S. Postal Service legin utilizing electronic communications in the delivery of mail, Electronic News hats reported. The commission said the Postal Service should begin using electronic commonications immediately to be more comperitive in the business-user marken. and decide within two years if it should adopt a complete electronic message service. Fighty percent of tirst-class mail today is business-related, but aceording 10 a recent study by Arthur D. Little lne.. 23 pereent of first-class mail will be diverted to electronic communications by 1985.
"Caruso-A Legendary Performer" (RCA CRMI-1749) has been named top classical music album of 1976 by the Audio Excellence Record Awards, a new critics poll. The album is a collection of the great opera singer Enrico Caruso's performances restored by computer from noisy discs made in the early 1900 s. The system involved converting the voice and music from the original Caruso discs into computer signals. The material was then sonically improved and re-recorded.

General Electric now will accept the NARDA-developed warranty claim form for all GE television in-warranty service claims, it has been announced by "Dutch" Meyer, manager of product services. "We fully support the goal of minimizing the number of different television warranty claim forms the independent service technician must currently deal with." Meyer stated.

A video recording unit will be included in the GTE Sylvania line this fall. Robert O'Neil, vice president-marketing for consumer-electronic products. said an agreement had been reached with the Matsushita Company of Japan to use its four-hour VHS (video home system).

FEATURES

- A UHF Tuner with 70 channels which are detented and indicated just like VHF channels.
- A VHF Hi Gain Solid-State Tuner
- AC Powered
- 90-Day Warranty

Demonstrate the SUBSTITUNFIS to your customers and show improved reception with their TV sets.

You may place your order through any of the Centers listed below.

FLASH!

NOW AVAILABLE - TUNER SERVICE PARTS CATALOG OF ALL SARKES TARZIAN VHF AND UHF TUNERS, INCLUDING EXPLODED VIEW DRAWINGS. OVER 200 PAGES. ORDER YOUR COPY TODAY. SEND $\$ 2.50$ WITH ORDER TO BLOOMINGton head office.

PROVIDES YOU WITH A COMPLETE SERVICE FOR ALL YOUR TELEVISION TUNER REQUIREMENTS.

VHF OR UHF ANY TYPE
(U.S.A.) \$10.95 UHF/VHF COMBINATION (U.S.A.) \$17.95

MAJOR PARTS AND SHIPPING CHARGED AT COST

FAST, EFFICIENT SERVICE AT ANY OF THE CONVENIENTLY LOCATED SERVICE CENTERS LISTED BELOW

ONLY ORIGINAL FACTORY PARTS USED

All tuners ultrasonically cleaned, repaired and realigned.

EXACT REPLACEMENT

Exact Replacement Tuners are available at a cost of \$14.95 and up. (U.S.A. Only)
Send in your original tuner for comparison purposes to any of the Centers listed below.

UNIVERSAL REPLACEMENT

UNIVERSAL REPLACEMENT TUNER $\$ 13.95$ (U.S.A. Only)
This price buys you a complete new tuner built specifically for this purpose.
All shafts have a maximum length of $10 \frac{1}{2}$ " which can be cut to $11 / 2$ "
Specify heater type parallel and series 450 mA or 600 mA

If you want to branch out into the TV Tuner Repair Business write to the Bloomington Headquarters about a franchise.

Learn electronics easier... with HEATHKIT

Unique Heathkit Electronics Courses are

 designed to provide you with a complete overview of basic and advanced electronics. You learn at your own pace, without pressure or deadlines, and all material is presented in a clear, logical, step-bystep fashion. It's the ideal, effective way to learn about electronics if you're a beginner, or to "brush up" on the latest techniques and theory.We're so confident you will enjoy and benelit from these five courses, that if for any reason you are dissatisfied, we will refund the full pur-

faster....at lower cost... Learn-at-home Courses!

COURSE 1: DC Electronics

An ideal introduction to electronics. Covers current, voltage, resistance, magnetism, Ohm's law, electrical measurements, DC circuits, inductance and capacitance. Discusses matter, atoms, current, flow, voltage rises and drops, series and parallel connections, magnetic fields, voltage dividers, network theorems, more. Includes text, records and 56 parts for 20 different experiments. Average completion time, 20 hours. 2.0 Continuing Education Units and certificate for passing optional final exam.
Course EE-3101
39.95

COURSE 3: Semiconductor Devices

Essential for understanding latest solid-state equipment. Covers fundamentals, diodes, zener diodes, special diodes, bipolar transistor operation and characteristics, FET's, thyristors, integrated circuits and optoelectronics. Discusses holes, current flow, N and P types, biasing, tunnels and varactors, PIN, IMPATT, gain, cutoff and leakage current, SCR's, bi-directional triodes, light sensitive and light emitting devices, more. Includes text, records and 27 parts for 11 different experiments. Average completion time, 30 hours. 3.0 Continuing Education Units and certificate for passing optional final exam.
Course EE-3103

LEARN DIGITAL TECHNIQUES

Our most advanced self-learning course prepares you for the world of computers and microprocessors, with particular em phasis on circuit design. Covers digital fundamentals, semiconductor devices for digital circuits, digital integrated circuits, Boolean algebra, flip-flops and registers, sequential logic circuits, combinational logic circuits, digital design and digital applications. Discusses TTL, ECL, CMOS, PMOS, NMOS; integrated circuits; SSI, MSI and LSI; ROM's, PLA's, microprocessors,
computers and more. Assumes completion of Heathkit courses 1 through 4 above, or equivalent knowledge. The special digital techniques experimenter/ trainer helps you perform all the experiments in the course, and when you complete the course, build and design your course, build and design your
own circuits. Course includes own circuits. Course includes
text, records and 44 parts for 24 different experiments. Average completion time, 40 hours. 4.0 Continuing Education Units and a certificate for passing final exam. order digital technlaues program ano traliner....s ${ }^{\text {s }} 109^{95}$

HEATH IM-17 VOLT-OHM METER

All Electronic Learning Programs require a VoM to make electrical measurements. We suggest the Heath IM-17 as the ideal "all-purpose" unit. All solid state with FET input for better accuracy. Portable battery operation, zero and ohms adjust, accessory probe jack. Comes with DC polarity switch, three tes leads; batteries not included. Easy 3 hour assembly.

ORDER KIT IM-17
7 $\$ 32^{95}$

COURSE 2: AC Electronics

Provides an understanding of most commonly used circuits. Covers alternating current, AC measurements, capacitive and inductive circuits, transformers and tuned circuits. Discusses waveforms, period and frequency, meters, scopes, series and parallel circuits, RC filters, dividers, phase shifts, reactance, vectors, transformer theory and characteristics, series and parallel resonance, more. Includes text, records and 16 parts for 8 different experiments. Average completion time, 15 hours. 1.5 Continuing Education Units and certificate for passing optional final exam.
Course EE-3102 39.95

COURSE 4: Electronic Circuits

Outstanding explanations of basic circuits. Covers basic amplifiers, special purpose amplifiers, operational amplifiers, power supplies, oscillators, pulse circuits, modulation and demodulation. Discusses amplifier functions and configurations, class of operation, audio characteristics, video amplifiers, buffers, IF's, rectifiers, voltage multipliers, voltage regulation, basic oscillators, RC waveshaping, clipping, AM, FM and SSB, modulation fundamentals and more. Assumes knowledge of courses 1 through 3 or equivalent and requires an oscilloscope for some experiments. includes text, records and over 110 parts for 18 different experiments. Average completion time, 30 hours. 3.0 Continuing Education Units and certificate for passing optional final exam.
Course EE-3104
49.95

HEATHKIT EXPERIMENTER/TRAINER

For use with Heathkit Electronics Courses 1 through 4 - helps you perform all the experiments quickly and easily. Has solderless breadboarding sockets, dual variable power supply for positive and negative voltages, sine and square wave signal source, center-tapped line transformer. After you complete the course, the trainer is ideal for experimenting and breadboarding with your own circuit designs.
Kit ET-3100
$\$ 5995$

[^0]Chassis-Sylvania E21
PHOTOFACT-1587-1

Symptom-Too bright, and no control
Cure-Check C924, and replace it if shorted

Chassis-Sylvania E21
PHOTOFACT-1587-1

Symptom-Vertical does not lock
Cure-Check R412, and replace it if open or increased

Chassis-Sylvania E21
PHOTOFACT-1587-1

Symptom-Snivets on low channels
Cure-Replace transistor Q400, and check snivets again

Chassis-Sylvania E08
PHOTOFACT-1481-2

Symptom-No vertical sweep
Cure-Check diode SC352, and replace it if open

Chassis-Sylvania E08

PHOTOFACT-1481-2

Symptom-Repeated operation of "shut-off"
Cure-Check R437, and replace it if increased in value

Chassis-Sylvania E08

PHOTOFACT-1481-2

Symptom—No sound, no picture, no raster
Cure-Check for open R504 and shorted Q504 regulator transistor

troubleshootingicine

Poor degaussing

Any color set with automatic degaussing

My favorite method of testing the degaussing action of a color set is to disconnect the degaussing coil while the power is turned off. Then, turn on the power, and connect the coil, while watching for the characteristic swirl of colors on the face of the picture tube.

Usually, this swirl of colors is not seen, because it is over before the screen lights up. Some older models had pushbuttons mounted on the front panel for the users to operate. That was a good idea, and the swirl was a pretty effect to watch.

John Brocco Tomah, Wisconsin

Dark picture

Zenith 25EC58

(Photofact 1370-2)

The contrast control worked okay, but the picture could not be adjusted bright enough for a good picture. However, the line intensity with the service
position of the setup switch was normal.
The Q207 collector voltage was +200 volts, which

is too high. In the service position, it dropped to a normal +180 . This led me to check the waveform at continued on page 14

225 Main Street, Dept. 9A, Canon City, Colorado 81212, (303) 275-8991

trudlesthotinu "ind

continued from page 13
the base of Q204, but it was in tolerance, about 10 volts PP.

Voltage and resistance measurements were taken around Q201 and Q202, but without success. Since they were in sockets, I removed them for testing.

Q202, the blanking amplifier, was shorted. In my parts box, I found a 2 N 2369 , which proved to be a satisfactory substitute, bringing all functions back to normal.

This set was repaired without pulling the chassis; I removed the bottom metal cover to provide room for the tests.

Al Potter
Parlin, New Jersey

No raster

RCA CTC38XT
(Photofact 1000-3)
Audio was okay, but there was no high voltage or raster, and the breaker would trip after a couple of minutes. Plate current of the 6LQ6 was excessive, but the flyback was not heating. New horizontal-sweep tubes only made the breaker trip sooner.

The boost voltage was low, and so was the drive to the grid of the 6 LQ6 horizontal-output tube. No problem was found in the horizontal oscillator circuit. The frequency checked within tolerance, according to calibrated scope. (I have had similar symptoms when the frequency was double the correct value.)

Next, I disconnected one at a time all loads from the flyback, such as the yoke, capacitors, and focus coil. But, there was no improvement.

I was tempted to change the flyback, but the symptoms did not check with all of the other cases.

After much worry, I remembered that the filter capacitor for the $B+$ supply of the horizontal had not been checked. Although, I didn't understand why this should increase the 6LQ6 current, I tested it, finding C3A was open. Operation was fine, after the can was replaced.

John Huff
Stockton, California

Needed: Service and operation manual for Solar Exam-Eter, Model CF. Will buy, or copy and return. Allan Morains, 13451 Oak Park Blvd., Oak Park, Michigan 48237.

For Sale: Heathkit IO-4540 scope, new, $\$ 120$. Will sell in kit form or assembled. Charles Okulicz, 326 High Street, New Britain, Connecticut 06051.

Needed: Power transformer (7034) for York clock radio, Model DCR92. Garrison TV, 1010 Mitchell Ave., Waterloo, Iowa 50702.

Needed: Instruction manual for Seco Model 500, two-way-radio test set (combination crystal checker, RF signal, and field-strength meter). Will buy, or pay for photo-copy, postage \& handling. G.P.R. Christensen Repair, Peever, South Dakota 57257.

For Sale: Heathkit $5^{\prime \prime}$ scope Model 10-12, also Eico Model 369 TV/FM post-injection sweep/marker. With manuals; used but good; $\$ 250$ for both. George Lengbridge, 9858 Hawley Road, El Cajon, California 92021.

Needed: Power transformer (part 32-10006-3) for Philco Model M-1666WA AM/FM radio. Send price. John Iannelli, 1501 Saunders Cres., Ann Arbor, Michigan 98103.

For Sale: PF Reporter and Electronic Servicing from 1953 to present, most copies. Entire set, 24 years, $\$ 100$ plus shipping. Roy Berthold. 66 Reid Ave., Port Washington, New York 11050.

Needed: Tube chart, schematic and/or operating manual for Instrument Design Model T31 tube tester. Will copy and return and pay charges. Elbert Barnes Jr.. 902 East 58th Street. Tacoma, Washington 98404.

Needed: RCA Victor Service Data bound volumes for 1949, 1951, 1952. Write with condition and price. Carleton Surver, 256 West 88th Street, New York, New York 10024.

Needed: Lectrotech V5 Vectorscope in good operating condition, with service and operating manuals. Please state age, price, and condition. Raymond Lohman, 99 Burton Aye., Hasbrouck Heights, New Jersey 07604
continued on page 16

Everything you've dreamed of in a scope...including a sensible price.

See them at your VIZ distributor.

VIZ
6883
Whether it be for servicing or scientific research, the new WO-527A $15 \mathrm{MHz} 5^{\prime \prime}$ triggered-sweep oscilloscope is designed for a wide range of applications. With its host of useful functions and its advanced solid-state integrated circuits, it's hard to believe it's so reasonably priced.

- Easy-to-use pushbutton controls
- Triggered or automatic sweep; ac or dc triggered
- Unique trigger level control with LED polarity indicators
- 10 mV to $20 \mathrm{~V} / \mathrm{cm}$ in 11 ranges
- 19 calibrated sweep ranges
- Preset, automatic TV sync separation circuits
- Built-in calibrated time-base
- Special line selector for TV line-by-line display
- 10 times sweep magnifier

Now ReA offers you three time and moncy-saving options in Color TV rest Jigs.

continued from page 15
Needed: Schematic for antique radio, Truetone Model 0935, RPC Chicago, serial A-278440. Will buy, or copy and return. K. R. Beerwinkle, 1215 King Arthur, College Station, Texas 77840.

Needed: for Rem Cathode-Recovery Unit and CRT Tester: Transformer T-61382; black sealed disc module; and schematic. Active TV, 14547 South Halsted, Harvey, Illinois 60426.

Needed: Schematic for an old Hallicrafter Model SX-28A radio receiver. Will copy and return. R. C. Spence. 2407 Brooklyn, Parkersburg, West Virginia 26101.

Trade: Precision RF generator, Model E200-C (in working order) for Heath RF generator, Model IG-102. St. Mary's Electronic Club., c/o Rev. Henry Preneta, R.D. 3, Parker, Pennsylvania 16049.

Needed: One $60-\mathrm{Hz}$ motor pulley for a Sony turntable Model PS-110. Also, GE Transistor Manual, 7th edition. William B. David, 209 Fir Avenue, Montgomery, Minnesota 56069.

Needed: Tuner VHF switch control knob for a Philco B\&W television, Model UN-3532-BE, chassis 15125. Paul Capito, 637 West 21st Street, Erie, Pennsylvania 16502.

For Sale: Rider's radio manuals, volumes 1 through 20. Best offer. Robert Beck, 14 Adams Street, Farmingdale, New York 11735.

Wanted: Correspondence with electronic technician with experience in picture-tube rebuilding and equipment. George Kopteros, P.O. Box 75. Kayetsou 40, Mytilene, Greece.

Needed: Schematic and tube-location for Supreme Model $561 \mathrm{AF} / \mathrm{RF}$ signal generator. Will buy, or copy and return. R. A. Heiman, 6320 Edgerton Way, Carmichael, California 95608.

Needed: Heath IG-72 audio generator and bottom-ofline Heath scope. Good condition desired. Bob Kramer, 539 S. State Street, Aurora. Illinois 60505.

Needed: CRT Number 150JB4 (6 ") for Singer TV6U (Sony). State price. Paul Abelquist. 3344 Prince of Wales Court, Virginia Beach, Virginia 23452.

Needed: Service manual for a JFD Electronics Model 600 mini camera. Allan Eisenhaur, 9 Leonard Road, Hyannis, Massachusetts 02601.

With the new RCA 10J106A Color TV Test Jig you can troubleshoot a TV chassis without bringing the cabinet and picture tube into the shop. The 10J106A helps you isolate picture tube or chassis malfunctions quickly, and without disturbing your customer's picture-tube alignment.
The 10J106A features a 19 -inch shieided picture tube; built-in high voltage meter calibrated to 35 kV ; two unique front-panel switches for easy changing of yoke impedances; and a built-in speaker. Yoke, picture tube socket, and high-voltage extension cables are supplied, plus a Set-Up Index and instruction book. With the 10J106A you can service thousands of sets whether tube, hybrid or solid-state - including Precision-in-Line types.

The new RCA 10J106AX Color TV Test Jig is exactly the same as the 10J106A except that it comes without a picture tube for those who prefer the economy of installing their own tube.
The RCA 10J107 Color TV Test Jig Adapter modernizes most oider test jigs to perform like the 10J106A. And, if you're a do-it-yourselfer, you can build your own jig from a salvaged TV receiver.
See your RCA Distributor for all the details about which option suits you best. Or contact RCA Distributor and Special Products Division, Deptford, NJ 08096.

For Sale: Triplett TV/FM sweep/marker generator Model 3434, without manual; $\$ 50$ plus shipping. Lyle Ralston. $141 / 2$ North Broadway. Watertown. South Dakota 57201.

Needed: One Roberts 400CX or AKAI 355 tape recorder for parts only. Transport and electronics, if possible. Ronald Singleton. 193 Albany Ave., Brooklyn. New York 11213.

Needed: Service information and schematic for a U.S.L. (United Scientific Laboratories) Contact 23 CB transceiver, Model CB 7000. Will buy, or copy and return. Pontek Technical Services. 4993 S. Hollister Road, Route 2, Ovid, Michigan 48866.

Needed: Schematic, manual or any other information for a DuMont Model 208 scope. Will buy, or copy and return. Al Cameron, Route 3, Box 93, Samson, Alabama 36477.

For Sale: Rider's radio manuals, volumes 1-14, individual volumes in fair condition. Will accept fair offer to include postage or will ship by freight. Lawrence Beitman. 1760 Balsam Road, Highland Park. Illinois 60035.

Needed: Rider's radio manuals, volumes 1-8. State price and condition. Troch's Television, 290 Main Street, Spotswood. New Jersey 08884.

For Sale: Heathkit post-marker/sweep generator, complete, $\$ 175$; Gonset Comm II 2 -meter $12 \mathrm{~V} / 115 \mathrm{~V}$ with extras, $\$ 75$; B\&K-Precision Model 700 tube tester. \$125. Allan Eisenhaur. 9 Leonard Road, Hyannis, Massachusetts 02601.

Needed: Schematic/service manual or copies for telephone-answering cassette recorder Mark II, manufactured by Craft Electronics. Will buy. V. R. Silva, 2451 Church Lane. San Pablo. California 94806.

For Sale or Trade: Allied SX-190 short-wave radio receiver, $\$ 160$ plus shipping. Also, Kenwood QR-666 receiver ($150 \mathrm{KHz} / 540 \mathrm{KHz}$ to 30 MHz), good condition, $\$ 195$ plus shipping. Have several military surplus receivers for sale, or trade for test gear. Bill Coleman, Jr., Coleman Electronics, P.O. Box 1601, Rocky Mount, North Carolina 27801.

Needed: Used B\&K TV Analyst or a signal generator for VHF. Bill Coleman, Jr., Coleman Electronics, P.O. Box 1601, Rocky Mount. North Carolina 27801.

Needed: Schematic and/or assembly manual for Lafayette Genometer kit 38-1001, model 156, manufactured by Accurate Instrument Company. Will buy, or copy and return. William E. Schaefer, 1136 Limekiln Pike, Ambler, Pennsylvania 19002.
continued on page 18
(The New VOM For Today's Needs.)

- 0.25\% Accuracy
- Full Overload Protection
- Really Drop-Proof
- Full One Year Battery Life

Dana Laboratories, Inc.
2401 Campus Dr, Irvine, Ca 92715, (714) 833-1234
For More Details Circle (12) on Reply Card

®AGER INTERNATIONAL

SUITE $710 \cdot 1180$ SOUTH BEVERLY DRIVE • LOS ANGELES, CALIFORNIA 90035 Telephone: (213) 879-1575, TWX 910-490-2121

For More Details Circle (13) on Reply Card

Rualdurexchange

continued from page 17
Needed: New or used VU meter for an AKAI M-7, Roberts part \#88-66. Not available through normal channels. Dean Rivard, Rivard Radio and TV Service, 410 W. College, Burkburnett, Texas 76354.

Needed: Manufacturer's name for a model X-260 dual-channel scope. (Name plate has been removed.) Thomas J. D'Ambrosia, Madison TV Service, 146 W. Madison Avenue, Clifton Heights, Pennsylvania 19018.

Needed: Service information for Recordio (WilcoxGay) model 230, chassis 78W. William F. Clark, 7401 Jewel Lane, Indianapolis, Indiana 46250.

Needed: Schematic for Radio City Products VTVM model 665A, serial number 917 (unit has megohm insulation test and a capacitance test). Will copy and return. Steve Wright, Audio Rivington, 5 Rivington Street, New York, New York 10002.

Needed: Up to four T-155 impedance-matching transformers for Bogen MXM. Please quote price to: Director of Special Services Department, Building 154. Naval Training Center, Great Lakes, Illinois 60088.

For Sale: B\&K model 465 picture-tube tester and rejuvenator, excellent condition, $\$ 60$ or best offer. Jack Burgess, P.O. Box 124, West Blocton, Alabama 35184.

Needed: Schematic for Acoustech V stereo amplifier (Acoustic Technology Laboratories). Tim Ritter, 6830 Marshall Road, Upper Darby, Pennsylvania 19082.

Needed: Schematic for Crosley model 66 CT radio. Will buy, or copy and return. Edward Skrobiszewski, 2445 S. Marilyn Drive, Perry, Utah 84302.

Needed: 8 -inch speaker with 1400 -ohm field coil and output transformer (primary 350 ohms DC centertapped, and secondary 0.09 ohms DC) for an old Philco radio model 14. L. S. Speckin, 4840 Weiss Road, Saginaw, Michigan 48603.

For Sale: Sideband generator, $90-110 \mathrm{MHz}$, new with manual, $\$ 80$. Also, have some test equipment (mostly army surplus). Write for information. William Lackey, 304 Curtis Avenue, Point Pleasant Beach. New Jersey 08742.

Needed: Hickok model 189 Tracemeter; also one 1B85 geiger-counter tube. ARO Electronic Service, 735 Mills Street, Kalamazoo, Michigan 49001.

Needed: Schematic and parts list for Magnavox AM-FM record player, model 1ST278R. Jesse Chaves, 9768 Michaels Way, Ellicott City, Maryland 21043.

Needed: Schematic and/or service manual for Telfunken Gavotte 55 radio chassis 11611. Will buy, or copy and return. Duane Ballew, 15216 State Road \#16, Gig Harbor, Washington 98335.

Needed: Schematic and parts list for Western Auto model DC-4850 auto radio. Material no longer available from manufacturer or Sams. Charles Prater, Edna, Kentucky 41419.

Needed: Sams MHF manuals, numbers 12, 23, 30, 36, 41, 44. State price and condition. (These are no longer available from Sams.) Elmer Blush, Blush Electronics, 627 Main Street, Olean, New York 14760.

Needed: Instruction book and schematic for Feiler signal-tracer analyzer model TS-2. Will buy, or copy and return. George Maruscik, 2016 S. Etting Street, Philadelphia, Pennsylvania 19145.

Needed: Schematic for a model 6800 National guitar amplifier. Will buy a copy. Kenneth McCabe. McCabe Electronics Service, 1237 Ottawa Avenue, Ottawa, Illinois 61350.

For Sale: Complete Bell \& Howell home entertainment course, including color TV. Texts plus scope with probes, digital multimeter, design console, and all tests and answers for \$295. R. Bruce Stevenson, 105 N. 21st Street, Vincennes, Indiana 47591.

For Sale: Sencore TF-151 transistor tester, \$50; Precision model 220 marker/adder, $\$ 25$; Heath electronic switch, $\$ 35$; Heath linearity-pattern generator model LP-1, \$25; VTVM, \$10. Charles B. Cerates, 10420 Wise Road, Auburn, California 95603.

Needed: B\&K-Precision model 415 sweep generator and American Technology model ATC-10 dot-bar generator. Rich Roman, Action TV \& Radio, 1180 Los Altos Avenue, Los Altos, California 94022.

For Sale: RCA high-sensitivity AC VTVM model WV-76, \$35; RCA Dynamic transistor/FET tester, model WT-524A, $\$ 100$; RCA Quicktracer transistor checker, model WC-528, \$10; RCA color/B\&W picture tube tester, model WT-509A, \$75; RCA transistor-radio Dynamic Demonstrator, model WE93A, \$20; Conar R-C tester, model 311, \$25; Hickok Dynamic mutual conductance tube tester, model $6000 \mathrm{~A}, \$ 30$; Eico signal tracer model 147A, \$40; Simpson VTVM model 311 with RF and HV probes, \$75; Sencore Electrolytics substitution box; 4 to 350 $u \mathrm{f}$ at 450 VDC, $\$ 15$; Heathkit VTVM signal generator and oscilloscope applications, with manuals, models 1-2-3 $\$ 10$ each, or 3 for $\$ 30$. William Shevtchuk, One, Lois Avenue, Clifton, New Jersey 07014.

[^1]

The GE PRO*Award Program will end October 31, 1977.

Time is running out.
Don't miss this opportunity to win free awards while choosing from the new expanded line of replacement semiconductors from GE. The best value and finest quality is the PRO^{*} Line. So stick with the PROs. You'll be the winner!
Mail your orders to:
GE PRO* Award Headquarters
Box 535
Louisville, KY 40201
*Premium Reward Offer
TUBE PRODUCTS DEPARTMENT GENERAL ELECTRIC COMPANY OWENSBORO, KENTUCKY 42301

A"ToughDog" Vericical Problem

By Walter P. Weaver

Figure 1 Severe non-linearity with bottom foldover is shown by this picture of part of the TV screen.

Probably every TV technician has fond memories (or nightmares) about repairs that were exceptionally difficult. However, it would be hard to top this true story. Read it, and sympathize with the writer.

Confidence Before The Battle

The customer's voice on the phone said her television picture was upside down and half-way up the screen. I mentally translated those symptoms to mean: "vertical foldover," and wrote it on the service order.

As I pulled Photofact 1077-2 for the RCA CTC36 chassis, I thought of many sure-fire foldover corrections. My contidence was undisturbed, for I had solved other similar problems on this same chassis, and didn't anticipate any serious difficulties.

Symptoms and home tests

After the TV was turned on in the home, severe bottom foldover appeared on the screen (Figure 1).

By carefully adjusting the height and linearity controls, I could obtain fair linearity. However, this could not be considered as a satisfactory solution, because the slightest movement of either control brought back poor linearity, and the locking also was too soft.
"Try simple things first," I reminded myself, as I removed the back and replaced the 12JQ6 vertical-output tube. There was no improvement.

The next suspect was C4 (Figure 2). This capacitor (or the equivalent in other brands and models) is noted for reducing the height, and afterwards the best adjustments of height and linearity controls can achieve only poor linearity and fair height. Unfortunately, paralleling a new 50 -microfarad tubular capacitor across C4 caused no noticeable change of either height of linearity.

An analysis of the DC voltages of both multivibrator stages was in order at this point. Several voltage readings (such as Q1 collector, and control grid, cathode and pin 6 of the 12JQ6) were excessively high. However, these voltages didn't point to anything specific, because with
multivibrators it's very difficult to know if a wrong reading is the cause of the problem of is the effect of it.

Resistance checks of the height and vertical linearity controls (plus the resistors around them), and the collector resistors of Q1 were normal. Q1 tested okay in-circuit.

Other vertical tests are too complex to be done in the customer's home, so the TV was brought back to my shop.

Scope and replacement tests

On my test bench, the scope showed distorted waveforms everywhere in the vertical circuit (Figure 3). Of course, this is similar to the problem of interpreting DC voltages in closed loops. Often all conditions are wrong, and nothing points to a definite defect.
Adding to the confusion, the picture intermittently jumped from foldover to a normal picture, and occasionally had only a horizontal line. The added symptoms pointed toward a loose connection of the wiring or inside a component. However, moving and tapping on all parts in the vertical-sweep
section could not stop or start the problem.
My usual infallible logic indicated the defect should be in the output stage, so I checked the resistors and replaced the capacitors (including R121, C68, and the linearity control) between plate and control grid. Again, there was no improvement.
By this time my confidence was beginning to fray around the edges, and I took time out to work on another (easier) repair.

Control leakages?

While away from this "dog," I remembered several cases of leakage between the element of a variable control and the case or shaft, which are grounded. I decided to substitute temporarily the height, linearity, and hold controls. Unfortunately, the height control, linearity control, and the bluescreen control are all PC components in a single package. So, con= siderable time was required to open the important paths and substitute external controls. The results were a big nothing!
continued on page 24

Figure 2 The component that caused a simple repair to become a "tough dog" is in this schematic of the RCA CTC36 vertical sweep. Two unusual features are the transistor oscillator and the diode inside the output tube. Otherwise, the circuit is a conventional multi-

A

B

C
Figure 3 These are the distorted waveforms found before the repair. (A) The sawtooth at the grid of the output tube is flattened. (B) The plate waveform of the output tube also shows the wrong tilt that indicates foldover. (C) Even the waveform at the diode inside the 12JQ6 output tube is badly distorted

Figure 4 Service/normal/raster switches, such as this one, can cause many kinds of unexpected intermittents and non-linearities of vertical sweep. For a foolproof test, disconnect the wire going back to the vertical circuit. Restoration of normal height and linearity is proof that the trouble originated in the switch.

What about varistor R114? Ohmmeter tests of varistors usually are futile, but I substituted R114 with a resistance-substitution box and tried all values from 50 K to 10 M . None of the values helped the poor linearity; therefore, the varistor couldn't be defective.

Cooling tests

Perhaps coupling capacitor C65 was leaking positive voltage to the 12JQ6 grid. I frosted it with cooling spray, and finally replaced it. Neither test proved anything.

While I had the can of coolant in my hand, I cooled all of the capacitors of the vertical-sweep circuit. I tested diode X10 and finally tried a new one. None of these tests improved the foldover.

Next, my attention focused on the positive-feedback loop from the output plate to the base of Q1. Logic told me a defect here would affect the frequency and locking more than the linearity, but I was beginning to panic. Anyway, the components of the loop do have some waveshaping effects. Again, the resistors were checked and the capacitors were replaced-you guessed it!-without any change of symptoms or hint of a bad component.

No more suspects

By now I had wasted so much time the job would require a ticket written with red ink, and the vertical components were almost all checked. Nothing much remained but the board, wiring, and the connections.

Leakage tests were made, copper paths were examined, and soldering was checked and reheated. All were okay; but, the linearity remained bad.

What about the output transformer, deflection yoke, and pincushion circuit? Ringing, ohmmeter, and shorts tests found nothing wrong; all components were okay.

Zero Confidence

My confidence now was sliding toward a minus rating. Somewhere, I must have made a serious mistake or overlooked something important. Yet, I had checked all components. Or had I? For the first time, I noticed on the schematic the normal/service/raster switch.

As shown in Figure 2, the switch
opens part of the AGC circuit to kill the RF and IF gain for a blank raster, disconnects the video amplifier from the CRT cathodes and shorts the 12JQ6 grid circuit to ground through R110 in the service (line) position.

Switches sometimes develop leakage internally. Could that cause foldover? It was the last component of the circuit, and that alone called for testing. Also, it was not with the other vertical components, which would eliminate most effects of mechanical movement.

With the first whiff of coolant on the switch, the picture rolled, jumped, and then began to drift into normal height and linearity. Some tuner cleaner sprayed into the switch appeared to cure the problem. But to make sure, I replaced the switch (see Figure 4).

Comments

At this point, I was not at all proud of myself, although I eventually had found the source of the problem. I knew what to do, in general, but blew it when I panicked and abandoned my logical methods.

No, the answer to this and other technical problems is a complete knowledge of how the circuit works. Equally essential is a large application of logic, based on the knowledge of circuit actions. The knowledge requires hard and continuous study that goes hand-inhand with practical experience. The logic comes by the discipline of mind and habits.

Most of the things I did were correct. It's smart to "play the percentages," which means to remember which components have caused the same problem in the past. Also, doing the simple things first is good, provided you don't stop when stronger measures are necessary. But, real electronic competence lies beyond these elementary methods.

My infallible hindsight tells me that my worst mistake was failing to follow logic based on knowledge, even though it is not exactly logical to expect vertical foldover from a service switch. Nevertheless, I did allow myself to weaken and follow false paths after the problem escaped my first efforts. In the service business, wasting time is the unpardonable sin.

SHIOCKING:
 by Edmund A. Braun

Now that you have a few minutes to spare, have fun solving this Just-across-word Puzzle based on electronic terminology. Each word is connected to the word above and below by one or more letters bul only one is usually shown as a clue. Each correct answer is worth 4 points; a perfect score is 100 . If
you're a novice and miss a few, don't worry; you'll have added a few words to your vocabulary. It should be quite easy to get a high rating except for someone who thinks that "clockwise" refers to someone who can tell time, or that "Kelvin bridge" spans the Kelvin River! So put on your thinking cap and GO!

1. The current carrying part of a relay that opens or closes a circuit.
2. Pertaining to a circuit that is etched instead of wired
3. Type of wire splice.
4. Receiver cabinet that stands on the floor
5. Greek letter to denote dielectric constant, permittivity.
6. Self-saturating type of magnetic amplifier
7. Electronic circuit for altering frequency response of an amplifier
8. Having dielectric properties similar to those of iron compounds.
9. Equipment used to generate, amplify and modulate an RF carrier signal.
10. Instrument to measure active power in an electrical circuit
11. Invisible force which attracts ferrous metals
12. Device for receiving and storing an electric charge; a condenser
13. Breakdown of the air between two electrical conductors.
14. One million megacycles
15. Either terminal of an electric source.
16. A lie detector
17. Formerly a micromicrofarad.
18. Interception and rebroadcast of beacon signals.
19. Computer-memory tube capable of storing 256 binary digits for rapid access.
20. Direction in which the hands of a timepiece rotate.
21. The exponent of the power to which a fixed number must be raised to produce a given number.
22. The use of radio-frequency fields to produce heating in body tissues.
23. Fuse containing a spring which completes an auxiliary circuit when blown.
24. High resistance device to prevent current flow
25. Time required for a signal to pass through a device or conductor.

We know you wouldn't sneak a peek so we'll tell you frankly the solution's on page 70

The questions you ask applicants during job interviews can get you into serious trouble, if they are in violation of the anti-discrimination laws. Here are specific examples of proper versus unacceptable pre-employment questions.

Thousands of businessmen have found to their sorrow that the questions asked of prospective employees during interviews no longer are a private matter between two people. March 25, 1972 was the dividing line, for on that date President Nixon signed into law the "Equal Employment Opportunity Act Of 1972." The law touched off a flurry of lawsuits, and the repercussions continue.

Don't believe that you are immune from prosecution because your business is small and there are few employees. It's true that the federal government is not supposed
to handle cases against businesses having fewer than 15 employees. However, the various state "Fair Employment Commissions" also are active in filing for alleged violations.
Specifically prohibited is discrimination in employment because of race, color, religion, sex, or national origin. Details of the laws are listed elsewhere.
Enforcement of the laws can be condensed into these sentences: If you ask a wrong question of a qualified applicant, and then fail to hire him or her, the applicant might make a claim of discrimina-
continued on page 28

BUSS
 ELELTRONIC FUSES.

Nearly every type of fuse and fuse holder you need to protect electronic circuits and devices you can get from us, easy. For example, Buss ${ }^{\circledR}$ Semiconductor Fuses; 700 volts, with extremely low $1^{2 t}$ and Ip let-thru values. TRON ${ }^{\circledR}$ Rectifier Fuses, $1 / 2$ to $1,000 \mathrm{amps}$, up to 600 volts.
Fusetron ${ }^{\circledR}$ dual-element time-delay fuses. Buss quick-acting glass tube fuses. Buss signal-indicating, alarm-activating fuses. TRON subminiature pigtail fuses. Buss sub-miniature GMW fuses. Buss telecommunications fuses. Buss military fuses. And
Buss fuse holders and fuse blocks. Get your hands on exactly what you want. Write us now. Ask for Buss Bulletin SFB.

Dangerous Questions
 continued from page 26

tion against you. Even if you were to win in court, the triumph would cost you much time and money.

Most cases of complaint seem to involve women who are fighting for economic equality. Running a close second are cases with black or brown males. Others involve Italians, Poles, Jews, Greeks, or others in second-generation or third-generation American ethnic groups. These same trends are found in both federal and state actions.

Avoid, Don't Fight

It's easy to avoid breaking the laws on discrimination, if you follow a few guidelines. Some general and specific suggestions are mentioned here.

First, remember that using the precise word is important, and another can be substituted without taking away your right as an employer. For example, when placing want ads, don't use the word "man," or any other similar word which suggests a preference for a person of just one sex. In other words, don't advertise for an "office girl" or a "service man." Instead, think of terms such as "office assistant" or "technician."

The Only Defense

One of the few legal defenses against a practice that has discriminatory effects is to plead "business necessity or job-relatedness." The practice must be proved necessary to the safe and efficient operation of the business, and that no alternative of less discrimination is available. This concept has been narrowly defined by the courts.

Of course, for jobs requiring technical knowledge, it certainly is proper to ask about past technical experience or for a demonstration of present technical competence under the necessity of job-relatedness.

Arrest Records

Because members of some minority groups are arrested more often than are whites (in proportion to their percentage of the population), any questions about arrests must be handled with care.

Both the courts and the U.S. Equal Employment Commission have held that a conviction for a felony or a misdemeanor does not by itself lawfully constitute an absolute bar to employment. An employer must give fair consideration to the relationship between a
specific conviction and the applicant's fitness for the particular job.

These decisions indicate that conviction records should not be cause for rejection unless their number, nature, and recentness would cause the applicant to be unsuitable for the position. If inquiries about convictions are made, they should be accompanied by a statement that a conviction record will not necessarily be a bar to employment.

Other Discriminations

Employers should not reject applicants who have less-than-honorable discharges from military service.

Discrimination because of age, for persons between the ages of 40 and 65 years, is prohibited; therefore, be careful of questions about age.

Any consideration of citizenship that has the purpose or effect of discriminating against persons of a particular national origin is illegal, in most cases.

A study of the examples of acceptable and unacceptable questions (that follow) should clarify other specific cases of discrimination.

U.S. Laws Concerning Discrimination

- Title VII of the Civil Rights Act of 1964, as amended by the Equal Employment Opportunity Act of 1972, prohibits discrimination because of race, color, religion, sex, or national origin for any term, condition, or privilege of employment. It is enforced by the U.S. Equal Employment Opportunity Commission for businesses having 15 or more employees.
- The Equal Pay Act of 1963 requires all employers that are subject to the Fair Labor Standards Act (FLSA administered by Wage and Hour Division of the Department of Labor) to provide equal pay for men and women who perform similar work. (Women are doing electronic servicing.)
- The Age Discrimination in Employment Act of 1967, also administered by Wage and Hour, prohibits employers from discrimination against persons 40 to 65 , in any area of employment because of age.
- All of these laws have rules, regulations, and guidelines, which are not always clearly defined, but they are strictly enforced. Many have been defined only as the result of lawsuits.
- State and local laws which are designed to eliminate discrimination in employment are known as "Fair Employment Practice Laws" (FEP), and these do apply to any electronicservice business, even those with one or two employees.

A. product inspired by space technology

OutdoorTVAntennas... designed to provide the best possible picture in the home.

Permacolor is a product of the RCA Distributor and Special Products Antenna Engineering Laboratory, a specialized facility dedicated to the engineering and development of antenna technology. Permacolor designed by the same corporation which developed the microwave antenna used on the Apollo lunar landing missions.
The Permacolor line is a complete line with advanced engineering features that offer the best possible reception in almost any area, from deep fringe to metropolitan locations. The line consists of: 10 UHF-VHF/FM all band combo models, 7 VHF/FM models, 5 UHF models, an FM only model, and a selection of 75 ohm and 300 ohm antenna kits; plus the amazing Mini-State - the first true miniaturized rotating antenna system.
Permacolor is the first antenna with solid, permanent connections from elements to feed line. The first antenna with pivoting, polypropylene insulators. And, the first antenna with a weather-resistant blue and gold vinyl finish.
Remember. . .Permacolor Antennas are the only outdoor TV antennas that are designed, engineered, and manufactured by RCA - a world leader in electronics.

Perma-tuned circuits ... an original RCA development. Arrangement of elements forming tuned circuits results in full-range, all-channel reception which is maintained throughout the life of the antenna by means of solidly riveted connections of flexible aluminum between elements and feed lines.

Polypropylene insulators ... an extremely tow loss material that resists weathering for peak performance and long life. Entire insulator pivots and snaps into place. Holds its element over a span of almost 6 inches, for great strength.

Permanent electrical connections flexible aluminum straps and RCA designed splined rivets provide a positive electrical path for the signal to flow from the elements to the receiver with virtually no chance of any interruption; overcoming a major problem found in other antennas.

RCA Model 4BG48
Deep Fringe TV Antenna

RCA Permacolor Outdoor TVAntennas so advanced you'll never be satisfied with anything less.

Combination bowtie and curner reflector On UHF-VHF/FM models result in fullrange, no compromise, all-chammel reception.

Break-olf elements . . allow you to control FM broadcast reception to suit local conditions. UHF response can be extended to bring in channels 70 to 83 if desired.

V-shaped mast clamps . . . double set of teeth bites into mast, prevents antenna from slipping, and keeps it aimed in the proper direction. Antenna is preassembled, elements unfold with ease and lock into place.

A few of the Permacolor Antenna models available:

[H]

 Permacolor
DISCRIMINATION—Acceptable and Unacceptable Pre-Employment Inquiries

Subject	Acceptable Pre-Employment Inquiries	Unacceptable Pre-Employment Inquiries
NAME	"Have you worked in this business under a different name?" Maiden name of a married woman applicant?	Former name of applicant whose name has been changed by court order or otherwise? "Your name sounds Spanish, are you from Puerto Rico?"
ADDRESS OR DURATION OF RESIDENCE	Applicant's place of residence? Place and duration of previous residences in the United States? How long applicant has been resident of this State or City?	"How long have you lived in the United States?" "What kind of accent is that?"
BIRTHPLACE	"Can you, after employment, submit a birth certificate or other proof of U.S. citizenship or age?"	Birthplace of applicant? "There must be some reason you won't tell me where you were born." Birthplace of applicant's parents, spouse or other relatives? Requirement that applicant submit a birth certificate, naturalization or baptismal record prior to employment.
AGE	"Can you, after employment, submit a work permit if under eighteen?" "Are you over eighteen years of age?" "If hired, can you furnish proof of age?" Or, statement that hiring is subject to verification that applicant meets legal requirements.	Questions which tend to identify applicants 40 to 64 years of age. "Don't you think this job is too hard on an old man like you? At your age you could fall down and really hurt yourself."
RELATIVES	Names of applicant's relatives already employed by this organization? Name and address of parent or guardian if applicant is a minor?	Marital status or number of dependents? "How do I know you will be able to get a baby sitter?" Name or address of relative, spouse or children of adult applicant? "With whom do you reside?" "Do you live with your parents?"
NOTICE IN CASE OF EMERGENCY	Name and address of person to be notified in case of accident or emergency?	"Give me the names of two relatives." Name and address of relative to be notified in case of accident or emergency?

Subject	Acceptable Pre-Employment Inquiries	Unacceptable Pre-Employment Inquiries
ORGANIZATIONS	Organizations, clubs, professiona! societies, or other associations of which applicant is a member, excluding any names the character of which indicate the race, religious creed, color, national origin, or ancestry of its members?	"List all organizations, clubs, societies, and lodges to which you belong."
REFERENCES	"By whom were you referred for a position here?"	Requirement of submission of a religious reference, such as name of a minister.
PHYSICAL CONDITION	"Do you have any physical condition which may limit your ability to perform the job applied for?" (You describe the nature of the job.) Statement by employer that offer may be made contingent on passing a physical examination.	"Do you have any physical disabilities?" (Some states have laws protecting the handicapped.) Questions on general medical condition. Inquiries as to receipt of Workers' Compensation.
RELIGIous	It is best to make no comment about religion.	Applicant's religious denomination or affiliation, church, parish, pastor, or religious holidays observed? "Do you attend religious services or a house of worship?" Applicant may not be told "This is a (...Catholic/Protestant/Jewish/ atheist/etc.) organization."
WORK DAYS AND SHIFTS	Statement by employer of regular days, hours or shift to be worked.	"A woman like you couldn't work the long hours we men work each day."
RACE OR COLOR	General distinguishing characteristics such as scar?	"You look pretty dark to me?" Complexion, color of skin, or other questions directly or indirectly indicating race or color.
PHOTOGRAPH	Statement that photograph may be required after employment.	Requirement that applicant affix a photograph to his application form even if you really do it for identification. Request applicant, at his option, to submit photograph. Requirement of photograph after interview but before hiring.

DISCRIMINATION—Acceptable and Unacceptable Pre-Employment Inquiries

Subject	Acceptable Pre-Employment Inquiries	Unacceptable Pre-Employment Inquiries		
EDUCATION	Applicant's academic, vocational, or professional education; schools attended?	Date last attended high school? (Viewed as an anti-Black question.)		
CITIZENSHIP	"If you are not a U.S. citizen, have you the legal right to remain permanently in the U.S.? Do you intend to remain permanently in the U.S.?" Statement by employer that if hired, applicant may be required to submit proof of citizenship.	"Are you a U.S. citizen? This place is 100\% American."		
Whether applicant or his parents or spouse are naturalized or native-born United States citizens?				
NATIONAL	Date when applicant or parents or spouse acquired U.S. citizenship?			
ORIGIN OR				
ANCESTRY			\quad	Requirement that applicant produce
:---				

Zenith tuners and sub-assemblies repaired with the latest advancements builtin!

Tuner
Replacement
Only Zenith
quality replace-
ment compon-
ents used
throughout.
Each tuner
packaged in
shrink-type
film to keep it
factory-fresh
and clean
for use.

No waiting. No turn-around time.
Just bring to your Zenith distributor the Zenith tuner or sub-assembly that needs repair.

You'll walk out with a Zenith factory repaired and reconditioned replacement serviced by the same people who made the original.

Not only will component failure be repaired, but the replacement part will be reconditioned to incorporate the latest factory technical advancements.

Don't risk your reputation when you get all this backed by a limited one-year warranty.

See your Zenith distributor now for Zenith repaired and reconditioned tuners and sub-assemblies!

CARTOON CORNER

"He's from the police and he wants to know about your sign."

"All I said was, it must be nice being married to a service repairman and have your appliances working great all the time.

"Thank goodness! The last of 28 screws."

"I had a successful TV business until | decided not to sell or service any foreign made TV set."

Troubleshooting 4-Channel Auto Tape Players,
 Part 2 By Homer L. Davidson

Practical methods are given for signal tracing to find the sources of hum, noise, low volume, or intermittent gain. Also, solutions are offered for solving mechanical and electronic problems of wrong tape speed.

What Gain Per Stage?

Although most audio transistors are capable of large voltage gains (perhaps as high as 2,000), it's seldom we find such high gain in tape machines. There are several reasons for this. Probably the designers deliberately select circuits and values that provide less than
maximum voltage gains in order to achieve other desirable characteristics.

The following conditions must all be fulfilled before any transistor can produce its maximum voltage gain:

- The forward bias must be optimum for that individual transistor,

as it is used in the circuit. The bias giving maximum gain is very critical, often requiring a bias-adjustment control. Sometimes a bias change of only 0.05 volts will reduce the gain to near unity; either an increase or a decrease will reduce the gain;
- Collector impedance must be very continued on page 38

Figure 7 Although signal injection and signal tracing can be done in any stage, most stereo amplifiers divided naturally at the volume control. Inject an audio tone at the volume control and trace each stage to the speaker. Or, inject a small-level tone at the input of the preamplifier and
trace it through the stages to the volume control. An excellent alternate is to apply the tone through separate isolation capacitors to the same point of two stereo amplifiers. Check voltages and audio levels between the bad channel and another which is normal.

Figure 8 Sine waves from an audio generator are best for signal-injection and signal-tracing tests. Use an isolation probe, or connect a capacitor in series with the hot lead.

4-Channel

continued from page 37
high (above 50 K ohms, for example), and that includes the load or the input to the next stage;

- Several volts of C / E voltage must be present;
- No negative feedback or degeneration is permitted.

As you can imagine, a circuit with all of those features is not practical. Stabilizing networks minimize most drift, and eliminate the need for adjustable bias, but they do reduce the gain. Few circuits permit a high collector load. And negative feedback is imperative for low noise and distortion.

Also, many audio stages are emitter followers, which give a power gain while providing an output level that's equal to the input. (Emitter followers-where the signal enters the base and is taken from the emitter-that feed very low impedances are susceptible to a loss of gain. The output might be from 10% to 50% of the input.) Notice that the output transistors of Figures 6A and 6B are emitter followers, having unity gain (input and output AC signals are equal),
while the NPN transistor of Figure 6 C is a special case that has the unity gain of an emitter follower. Therefore, stage gain might measure between -10 dB and +10 dB .

Signal tracing

One highly-effective method of finding which stage has the defect is to inject an audio signalusually a sine wave from an audio generator-and measure the signal levels in the following stages.

Figure 7 shows the block diagram of a typical tape channel. The circuit divides naturally into two parts: the stages between the tape head and the volume control; and the stages from the volume control to the speaker.

Decide whether to inject the tone at the head preamplifier or the volume control (see Figure 8). Then apply a sine wave of suitable amplitude through separate capacitors to the same point of two channels. As you use your scope to follow the signals downstream, check the levels and waveforms of the bad channel against those of the normal channel. This gives you a valuable built-in standard.

Without a normal stereo channel

Figure 9 Transistors of this type often develop intermittent operation that originates with the leads. Therefore, move the transistor leads around, using a plastic or insulated tool, and be alert for intermittents.
to serve as a guide, you would be forced to guesstimate the gain of each stage. After some practice, you can examine the circuit and arrive at a ballpark figure for gain. However, the comparison against a normal channel is easier, faster, and more accurate.

Suppose one certain audio stage of the faulty channel showed a slight loss of gain, compared to a gain of about 20 for the comparison stage of the good channel. Unquestionably, the low-gain stage has a dectect in it.

Next step is to measure the DC voltages and the resistances of the stage, followed by transistor tests, both in-circuit and out-of-circuit. In most cases of low gain or distortion, this series of tests will find the defect within a short time.

Of course, multiple directcoupled stages introduce many possible traps for the unwary. Even so, analysis of the DC voltages usually can pinpoint the origin of the problem.

Hum and noise

Transistors can't cause hum; tubes are notorious for generating hum. In addition, auto stereo
amplifiers operate from the +12 volt car battery, thus eliminating the possibility of filter hum. It's almost impossible for these units to have conventional hum.

However, auto tape units are more susceptible to various kinds of noises than are the home models.

The playback head is magnetic, and it can act as a pickup coil for ignition noise or the popping sound of opening and closing light switches. Even so, such noises are not problems very often.

The most likely noises come from transistors and resistors, which can generate either impulse popping noises or "pink" noise that sounds the same as an FM receiver without an input signal (a rushing, hissing sound).

Such frying or hissing noises can start at any time. Unbypassed re-sistors-such as emitter resistorsin the preamplifier stages can become noisy, perhaps from aging. Transistors, too, sometimes begin intermittent or continuous noise.

Often the noisy transistors and resistors will respond to the hot-and-cold treatment. Either heat the entire chassis slightly, or wait until the noise starts, then carefully spray each suspected resistor or transistor with canned coolant. A sudden change of noise might indicate the bad component.

With resistors and transistors, a slight change of temperature usually is sufficient to vary the noise level; don't overdo the heating and cooling. Also, use the small tubing that comes with the spray can to direct the coolant to just one component at a time; otherwise the results will be confusing or erroneous.

The same temperature cycling can identify a surprising number of intermittent transistors. Usually, the intermittent occurs after the ambient temperature has reached normal operation; therefore, a small spray of coolant often restores the correct performance.

Watch those leads

TO-22-type output transistors (and similar ones), as shown in Figure 9, are prone to intermittents that start and stop from movements of the leads. This is particularly a problem where the leads have a 90° bend before reaching the chassis or a socket.

Move the leads around by using a plastic screwdriver or alignment tool. Any transistors that change volume or distortion during the manipulations should be replaced. (Don't forget to use silicone grease where mica insulators are used between chassis and transistor.)

General Speed Problems

Regardless of brand or model, tape players in autos frequently exhibit these symptoms:

- The tape speed slows down after
a few minutes of playing;
- The music plays too fast;
- Wow or flutter can be heard with the music;
- The music sounds "flat," or the customer believes the music is playing too slow; or
- The tape doesn't move.

These problems all originate in the motor or the mechanism that moves the tape. Often the customer's complaint must be interpreted. For example, a complaint of the continued on page 40

NEW FROM LEADER One-Button Range Digital Multimeter.

Now, Easy Pushbutton Operation Is Yours!

Model LDM-851 . . . \$199.95
See your distributor or write direct for details.

Figure 10 (Top) Remove the flywheel and capstan shaft assembly before you clean out the old grease and apply fresh lubrication to the bearing shaft.

Figure 11 (Top right) Holding the flywheel should stop the motor. If it does not, the belt might be loose or defective.

Figure 12 (Right) Fast tape speed can be caused by a belt that rides too high on the motor pulley and the flywheel, as shown.

4-Channel

continued from page 39
machine running slow, or making the music sound "flat," usually is not caused by an error of the average tape speed. Instead, the speed is varying; and this changes the pitch of the musical notes, sometimes "sharp" and sometimes "flat."

Slow variations of tape speed are called "wow," while "flutter" either is a rapid speed change or a fast change of volume (amplitude).

Check the lubrication

Many cases of slow tape speed, or slowing down after a few minutes, are caused by old driedout oil and grease, perhaps in the bearings (Figure 10). Therefore, fresh lubrication is required for proper analysis, as well as for good maintenance. However, to minimize call-backs, you should locate the bearing that's causing the problem,
before you do a complete lube job.
At the other extreme, excessive oiling can produce problems of slow speed. For example, a rubber belt or rubber-tired wheel will slip after oil or grease reaches the surface. DO NOT use too much oil and grease. In fact, do not touch the rubber. You might have gotten oil from tools or the tape mechanism on your fingers. And even skin oils can cause slippage.

Use a clean cloth dipped in alcohol to clean oil and grease from rubber parts, or to remove caked lubrication from shafts and bearings.

Don't try to free a flywheel/ capstan (that is "frozen" or turns hard) by merely oiling it from the outside. Such "fixes" are only temporary at best. Instead, remove the flywheel/capstan assembly, and clean both the shaft and the
bearing with alcohol. Use a cotton swab dipped in alcohol to clean inside the bearings, and to remove oxide and tape scraps from around the capstan bearing.

Just before reassembly, place one drop of \#20 machine oil on the bearing area of the capstan shaft. During the insertion of the shaft, make certain the oil doesn't run onto the drive area of the shaft.

Remember: either too little or too much lubrication can cause serious speed problems.

Simple tests

The cause of wrong or erratic tape speed often can be located by a visual inspection of the mechanism. This is called "eyeballing." You can find most bad belts by looking for cracks or oil on the inside surface.

Loose or stretched drive belts can
be found by turning on the power and using fingers to stop the flywheel (Figure 11). Notice whether or not the motor stalls from the load. It should stop, if the belt has sufficient friction and the proper tension. If the motor continues to rotate, replace the belt.

Check the flywheel rim and the motor drive pulley for a shiny surface indicating slippage of the belt.

Remove the belt and try to spin the flywheel; it should spin freely. Then rock the flywheel back and forth to check for worn capstan bearings. If there is any sign of bearing wear, replace both the bearings and the flywheel/shaft assembly.

A cartridge that's wound too tight can slow down the speed, or cause wow and flutter problems. Try several cartridges to determine whether or not the symptom is caused by the questionable cartridge.

Electric or electronic defects

Cases of excessive tape speed are rare, but possible. If the motor has an internal governor, it probably is the cause of very-high speed. Replacement of the motor is the only solution.

However, some machines have a voltage-regulator circuit for the motor, and too much voltage to the motor produces excessive tape speed. Check the voltage against the schematic figures.

Also, a simple mechanical defect, such as a belt that rides too high on a motor pulley, can cause fast tape speed (see Figure 12).

Comments

Treat all transistorized equipment with cautious respect. Certain kinds of intermittent shorts during tests that are made carelessly can ruin several transistors. If you want to inject a sine wave from a generator, turn off all power to the tape unit, connect the generator through an isolation capacitor to the point, and then turn on the tape-player power.

To avoid disastrous shorts, use the same care when you measure voltages. If the board has no convenient point for the test, solder a small length of bus wire to the copper wiring, and connect the meter lead or test equipment to it.

SpaceSaver: New RCA Flameproof Film Resistor Kit

RCA's convenient, preloaded and prelabeled Flameproof Resistor Kit contains a wide range of the most-needed, standard value resistors in $1 / 2,1$ and 2 watt ratings. Two of each rating for a total of 330 resistors; all $\pm 2 \%$ tolerance. Packed in a sturdy metal-frame cabinet for easy availability.
Service Technicians prefer RCA Flameproof Film Resistors because of their inherent safety characteristics. Design Engineers prefer them because they won't flame or short even under severe conditions. Look to RCA - your best single source for a complete line of flameproof film resistors.
Contact your authorized RCA Parts Distributor for all the details, or write to RCA Distributor and Special Products Division, 2000 Clements Bridge Road, Deptford, NJ 08096.

For More Details Circle (16) on Reply Card

Just a few letters
Spell the difference
That is professionalism
If you are a service technician, Servicing:

* TV
* CB
* Video
* Antenna systems
* Industrial electronics
* Medical electronics

Don't be
"Just another repairman"
Be a CERTIFIED
ELECTRONICS TECHNICIAN
Write to ISCET for details
On how and where To take the exam

ISCET-1715 Expo Lane Indianapolis, IN 46224

317-241-8172

Watch

Box 865, Burlington, lowa 52601
Len Finkler LTD.
Downsview, Ontario M3J 2A6

The Basics of Industrial Electronics, Part3

By J. A. "Sam" Wilson, CET

Passive transducers undergo a change of resistance, capacitance, or inductance when the energy level being sensed changes. For example, we learned that most thermistors have a decrease of resistance when their temperature increases. Other passive transducers are described this month.

Many transducers used in in-dustrial-electronic devices vary their resistance in response to a change of the energy being monitored. Here's how they work.

Changing The Resistance

One or more of the following conditions must change before the resistance of a conductor or a semiconductor can be varied:

- Cross-sectional area. Lower resistance requires a larger crosssectional area of the material.
- Length. Longer paths for the charge carriers increase the resistance.
- Temperature. PTC materials increase resistance with an increase of temperature, while NTC materials decrease resistance with an increase of temperature.
- Type of material. Individual formulas for conductors and semiconductors produce materials having different resistances.

Notice, as we discuss some examples of resistor transducers, which of these four conditions is changed.
continued on page 44

At the left, a Hall-effect transducer senses rotation of the vanes. The sensor at the right shows the two halves, with a powerful magnet on one side and an IC on the other. The vanes block most of the magnetism when they are between the halves. Halleffect sensors can detect very slow counts (where magnetic devices are useless); that is their main advantage. This unit is rated from zero to 100,000 counts per second. (Courtesy of the Micro Switch Division of Honeywell.)

Figure 1 DC voltage applied to a slab of semiconductor material (A) causes paths of the charge carriers (electrons) to be distributed evenly throughout. (B) When a magnetic

flux is applied to one edge, the charge-carrier paths are reduced near the flux and are bent around the area. This is the magnetoresistive effect.

Figure 2 (A) Without flux, electrodes at A and B receive no voltage when the semiconductor passes current. As in Figure 1, the current paths are distributed evenly. (B) When a magnetic flux is applied to one edge of the slab, a

voltage is developed between the electrodes; A is positive and B is negative. This is the Hall effect, and it is used extensively in industrial transducers.

Figure 3 (A) Insulated plates mounted at the edges of the semiconductor slab don't affect the current paths when no voltage is applied to them. (B) Voltage connected to the plates decreases the number of current paths near the

negative plate thus reducing the current. This is the field effect, which is the basis for Field-Effect Transistors (FETs).

Figure 4 Rotating magnets reduce the semiconductor current as they pass Negative-going pulses of voltage are produced across the load resistor R1. A divider equal to the number of magnets makes the output signal directly indicate the shaft rotation per second.

Industrial Electronics
 continued from page 42

Cross-Sectional Variations

Physically changing the crosssectional area to obtain a variable resistance usually is not possible or desirable. But, the same effect can be produced electronically.

For example, Figure 1 shows a slab of semiconductor material that's connected across a source of voltage. Arrows show typical paths of the charge carriers (Figure 1A), and you will notice that they are spread evenly across the material. (These charge carriers are electrons.)

However, when a magnetic flux passes through the slab (Figure 1B); the paths of the charge carriers move to the outside, around the flux. The result is less current, because the resistance has been increased by a reduction of the effective cross-sectional area. Stronger magnetic flux minimizes the current even more.
This is called the magnetoresistive effect.

The Hall Effect

The setup of equipment in Figure 2 is similar to that for demonstrating the magnetoresistive effect. However, two extra terminals (A
and B) have been added to the semiconductor material.
In Figure 2A, when current is passed through the semiconductor, no voltage is developed at A or B.
But the addition of a magnetic flux at the edge of the semiconductor (Figure 2B) warps the paths of the charge carriers, with few around A and many around B. Therefore, terminal B measures negative in respect to terminal A. In other words, a voltage is generated when flux is present. That characteristic makes it an "active" transducer.
This phenomena is called the "Hall" effect, and it's interesting to know that it was first discovered in 1879, although modern semiconductor techniques are required to make practical use of it.

Hall generators are used extensively as sensors for the measurement of magnetic field strength, and as sensors of shaft rotation or for counting in industrial electronic systems.

The Field Effect

Another important principle called the "field" effect needs an explanation at this point.

In the absence of an electric field between terminals A and B of the semiconductor slab in Figure 3A, the electron-current paths are evenly distributed, and the current is maximum.
When a positive voltage is connected to B and the negative end to A, the electron-current paths are concentrated around B and they

avoid the area around A. Therefore, the semiconductor current is reduced.

Experienced TV technicians will recognize the principle behind Figure 1 as being similar to magnetic deflection of a picture tube, while the electrostatic deflection of a scope tube is illustrated by Figure 3.

And, of course, this also is the way Field-Effect Transistors (FETs) operate.

Speed Measurements

The speed of shaft rotation can be measured by the magnetoresistive effect, as shown in Figure 4. Both fan blades are magnetized (or two bar magnets are used for other applications). Every time a blade passes close by the semiconductor slab, the current is reduced. There-
fore, negative-going pulses are developed across load resistor R1.

When a divide-by-two circuit is added to the output pulses, the pulses-per-second equal the shaft revolutions-per-second. (A fourbladed fan, or four magnets, would require a divide-by-four circuit.)

Varying The Length Of Current Path

Most variable resistors (potentiometers, rheostats, or variable volt-age-dividers as shown in Figure 5) are designed to change the resistance by a variation of the length of the resistive element.

Measuring lateral position or thickness

Lateral position of an object can be monitored by connecting a rotary rheostat with rack-and-
continued on page 46

And In This Corner... The P.A. Champ! New Champion

Compact to fit more places, from offices to auditoriums. Versatile, to meet up to 90% of all P.A. needs. Solid state, for better performance and longer life. The finest, low cost, line ance and longe
on the market!

Model PC-10
10 WATT AMPLIFIER WITH SINGLE MICROPHONE, CAN ALSO BE USED AS A REMOTE LINE AMPLIFIER.

Model PC-20-1
20 WATT AMPLIFIER WITH SINGLE MICROPHONE

Model PC-20-2, PC-35, PC-60, PC-100

Model PC-112
Special high performance FM-AM monaural tuners can be used with any amplifier, since volume control is located on front panel

ADDS FOUR MICROPHONES TO ANY AMPLIFIER.

To Order, Call Toll Free,
800-323-0228
or, write for complete information today.
Precision Electronics, Inc.
9101 King Street • Franklin Park, Illinois 60131
In Canada, Superior Electronics
In Caribbean, E. D. Magnus, Chicago, III.
Foreign, Morhan Exports, New York, N.Y
For More Details Circle (20) on Reply Card

Figure 7 Resistance of a strain gauge changes when the device is bent. (A) shows how the wire is applied to the paper backing, and (B) gives one application whereby the strain gauge senses the bending of the beam.

Industrial Electronics
continued from page 45

pinion gears (see Figure 6A). The motion of the bar turns the shaft of the control (thus varying the length of the resistive element), and the resulting current is read on the meter. This circuit works best with slow-speed movements. Also, it has memory, so stoppage of the bar movement is indicated.

Calibration of the meter scale shows the desired position plus any permissible deviation, and the meter can be mounted separate from the machinery to provide remote readings.

Figure 6B illustrates one method of monitoring the thickness of a moving object (such as lumber or

Although this sensor has the appearance of a strain gauge, it actually is a nickel-iron-wire temperature sensor that's designed to be embedded inside a heated aircraft window. (Courtesy of Minco Products)

insulation for homes). A slider bracket attaches to the shaft of a rotary potentiometer or rheostat, and a spring holds the slider against the plate or moving object. In this case, increased thickness causes more resistance and a lower reading on the meter. The meter scale can be marked in inches or with high and low tolerance readings.

Strain Gauges

When force is applied to a solid mass, bending or deformation occurs. Stress is the force that's applied to a physical body, and strain is the resulting change of shape.

Therefore, a strain gauge is used to measure the deformation that results from stress. A typical strain gauge is illustrated in Figure 7.

Small-diameter resistance wire is fastened securely to a non-rigid backing material, such as paper or plastic. When the device is bent or twisted, the length of the wire is increased, and the stretching of the wire makes it thinner (reduces the cross-sectional area). Both of these effects increase the resistance. (This change is not large compared to that of thermistors or varistors, and usually requires amplification or use in a bridge circuit to increase the sensitivity.)

Although Figure 7 shows the strain gauge measuring the bending of a beam that's under stress, the
bending of any material can be detected.

Resistance Versus Temperature

Thermistors are resistive transducers that undergo a relativelylarge change of resistance when its temperature is varied. This was discussed at length previously. One of the applications was an alarm that signalled when a tank was empty. Although the schematic was similar to Figure 8, the principles are different. Last month, the self-heating effect of a thermistor changed according to whether or not it was in the liquid. Conductivity of the liquid was not a factor. Compare that with the next description.

Transducers That Change Material

A simple example of a sensor that utilizes a change of material is shown in Figure 8. In this case, the liquid in the tank has a low electrical resistance. At normal liquid depths, the A and B electrodes are separated by air, a good insulator. When the liquid is overfilled and rises above the electrodes, the conductive liquid completes the circuit and activates the alarm relay. The normally-open pair of relay points are used for this kind of alarm.
For an empty-tank alarm, the electrodes are placed at the bottom. When the tank is full, the electrodes are in the liquid, thus activating the relay all of the time. A low level of liquid exposes the electrodes to the air, the relay opens and lights the warning through the normally-closed points.

Capacitor Parameters

A capacitor stores energy. Physically, it consists of two conductors that are separated by insulation (usually called dielectric), as illustrated in Figure 9.
The capacitance (or capacity) is a measure of how much energy a certain capacitor can store. These three factors determine the amount of capacitance:

- the areas of the plates that face each other. Larger areas produce increased capacitance;
- the distance between the plates. The capacitance is inversely proportional to the distance between the plates. In other words, the

Figure 8 Some sensors depend on a change of material for a signal. In this example, the liquid readily passes electrical power, and the circuit can be arranged to show overfilling or an empty tank. When the electrodes are in air, the relay has no power. Then, when they are immersed in the conductive liquid, the relay coil is energized.

Figure 9 The factors that determine capacitance are shown here.
capacitance is decreased by a wider separation of the plates; and

- the type of material that's used for the dielectric. The "dielectric constant" rates various materials relative to a vacuum.

It is important for us to understand that the energy of a capacitor is stored in the dielectric, and a vacuum is a poor storage unit; most materials are much better. Thus, the dielectric constant predicts how much more energy the various materials can store compared to a
vacuum.
The equation for capacitance is: Capacitance equals the plate area divided by the distance, times the dielectric constant (K).

Capacitance transducers must vary either the plate area, the distance between plates, or the material of the dielectric.

Next Month

Capacitive transducers and some of their typical applications will be the main topic next month.

Servicing Magnavox Modular Color TV, part
 By Gill Grieshaber, CET

In the IF stages of the Magnavox T995, MOSFETs are the amplifiers, while discrete transistors handle the $A G C$ and sync-separation functions. The Videomatic module has special variable gain-reductions of the video and chroma signals that allow them to track contrast and brightness adjustments. A unique circuit in the low-level video module clamps the top of the blanking pulse of the composite video to the DC voltage selected by the brightness control. These are some of the interesting details of the IF and video stages.

Signal Processing

Paths of the various signals in a Magnavox T995 chassis are shown in Figure 1. Most of these signals are connected in conventional fashion, although the stages are assigned to the various modules by a layout that is unique to this one model. We'll show you where the important test points are, and what
signals and levels to expect there, so you can service the T995 efficiently.

Tuners And The IF Module

The Videomatic digital tuner. control system includes two var-actor-type tuners, but this system will not be described yet. So, we will skip over the tuners, and start

Figure 1 Paths of the IF, video, and chroma signals in the Magnavox T995 color receiver are shown in this block diagram.

Figure 2 Shields cover only parts of the M104 IF module, so voltages and signals can be measured easily at the video transistor and two of the dual-gate MOSFETs. Therefore, these modules either can be repaired or exchanged.
with the M104 video-IF module (see Figure 2). Three dual-gate MOSFETs and one bipolar transistor are used. The video and sound-IF detectors are separate, with the sound-detector signal picked off before the $41.25-\mathrm{MHz}$ sound trap that's in the output of the third-IF stage.

Q4, the bipolar video transistor of Figure 3, is driven from the video-detector (through the 4.5 MHz trap), and the output is a positive-going video signal for use by the AGC/sync circuits on the M103 module, plus a negative-going video signal that supplies the video circuit (module M105) and the chroma bandpass (module M111). These two signals have the usual composite-video waveforms.

The photograph in Figure 4 shows the approximate locations of the modules described this month.

RF And IF AGC Circuits

On the M103 AGC/sync module (see Figure 5) are the noise-gate, AGC-keyer, and sync separator stages; the complete schematic is in Figure 6.

Diode D7 clamps the IF AGC voltage to the DC voltage from R21 and R22. When the IF AGC attempts to rise above the +4 volts produced by the R21/R22 voltage divider, the diode conducts. Therefore, the IF AGC can exceed +4 volts only by the 0.7 -volt drop across the diode.

In the same way, diode D1 clamps the RF AGC voltage so it
can't rise above the +10 volts supplied by R4 and R5.

The "detector-level" control (R11) sets the emitter DC voltage (bias) of Q1, the AGC keyer. Therefore, this control affects contrast and overload in exactly the same way as did the AGC controls in old tube-equipped sets.

Although the "RF-AGC delay" control (R7) actually determines the amount of DC AGC voltage that's applied to the IF MOSFETs, the effect is to vary the RF AGC voltage. Therefore, R7 determines the amount of snow in TV signals of moderate level.
For your guidance during AGC troubleshooting, Figure 6 shows the RF and IF AGC voltage actually obtained from no signal and three signal strengths. Good accuracy of these various signal levels was possible by using the gray-quad pattern from an American Technology model ATC-10, which has a 0 -to-9 calibrated knob for the channel 3 output level. Refer to these voltages when you question the AGC operation of a Magnavox T995.

Noise gate

Zener diode Z 1 maintains the emitter of Q2 (noise gate) at a constant DC voltage, and the base resistor (R 14) returns to the emitter. Therefore, Q2 has no DC forward bias and can't amplify until the AC base signal exceeds +0.6 volt. In addition, diode D4 normally is reverse biased, and this prevents
any video signal from reaching the base of Q2. So, when the picture has no noise pulses, Q2 does nothing.
If the video signal has large amplitude noise peaks, these peaks can forward bias D4 and reach the base of Q2, where they act as forward bias. During those peaks, Q2 amplifies the pulses, and inverts the phase. These inverted pulses are added to the video (that has the original noise pulses) at the output of R17. There the two polarities of noise pulses cancel, leaving the video without noise.
This noise cancellation removes the pulses from the video sent to the AGC (preventing loss of contrast during heavy noise) and to the sync separator (preventing vertical roll from bursts of noise). However, the noise pulses remain in the video signal which is sent to the chroma and video modules, and they can be seen on the screen as black dots or short lines.

AGC keyer

The emitter DC voltage of Q1, the AGC-keyer transistor, is adjusted and stabilized by the voltage divider that includes R11, which is labelled "detector level." Amplitude of the video signal that reaches the base of Q1, therefore, determines the bias and the conduction of Q 1 , which acts as a variable resistor in series with D3, thus controlling the rectification of D3. Positive horizontal pulses (Figure 7) pass continued on page 50

Figure 3 A block diagram of the M104 IF module shows a conventional array of circuits. Input and output pin
numbers are given, plus typical AGC voltages produced by various signal levels.

Magnavox

continued from page 49
through C9 to the anode of D3. Rectification of the pulses makes the D3 anode negative, and produces a positive voltage at D3 cathode (which also is the Q1 collector).

For example, if a stronger TV carrier increases the video level, Q1 conducts more, making the collector less positive, and producing a higher negative voltage at the D3
anode. The voltage divider, consisting of R6, R7, and R8, mixes the variable negative with a fixed amount of positive voltage, in a ratio determined by the setting of R7. Usually the IF AGC voltage is slightly positive, becoming slightly negative only from a very strong station signal. The first and second MOSFETs in the IF module receive the AGC voltage from R7.

We previously described the action of R22, R21, and D7, which prevents the IF AGC from becom-
ing more positive than about +4 volts.

RF AGC

The varying negative DC voltage from the anode of D3 goes through R2 and is mixed with a fixed positive voltage from R1, producing an RF AGC voltage that always is positive. Instead of a negative voltage that becomes more negative as the result of an increase of signal strength, the RF AGC voltage now is a positive voltage that becomes

Figure 4 Locations of the signal-processing modules are indicated by arrows. These modules are all on the left half of the chassis.

Figure 5 Controls and transistors of the M103 AGC/sync module are pointed out.
less positive when the signal strength increases.

Of course, a weaker TV signal reverses all of these voltages, thus increasing the gain of the RF stage.

Separating The Sync

The sync-separator stage has a single circuit, and it functions very well. Although R19 brings in some positive forward bias for the base of Q3, the base never measures positive. The base/emitter junction operates as a diode to rectify the video brought in through C7 and C8. (The base is equivalent to the anode of a diode, and the emitter acts as a diode cathode.) Therefore, the shunt rectification develops a voltage that is negative (as averaged by a DC meter). When the TV is tuned to an unused channel, the "diode" rectifies the snow, and the base remains slightly negative.

Shunt-rectifier circuits draw current only at the tip of the waveform. The base waveform is positive-going video. Therefore, base current (also, forward bias and amplification) occur only during the horizontal and vertical sync pulses. So, the output at the collector of Q3 consists of negative-going sync pulses (Figure 8).

Videomatic Switches

Although the Videomatic switch board usually is next on a block diagram, I will not discuss it at this time. Its function is to switch in the AFT, the LDR (for sensing room illumination), and either the manual or the preset color controls. However, neither the video nor chroma signals pass through it, so it will be covered later.

Videomatic Module

Processing of the video and chroma signals takes place in the M105 Videomatic module (see the partial schematic of Figure 9). Although some amplification occurs (the video channel has a gain of about 2 ; slightly more on the Videomatic function), the gain is almost incidental. Instead, a secondary control of the contrast and color levels is the main action that's desired. This is not a large control of contrast and color saturation, but both levels are varied by small amounts to make the chroma level track with contrast changes,
continued on page 52

Lost time means lost profit. Castle's N signal analysts provide the timesaving precision you require on the bench or in the customer's home.

MEZZER ${ }^{\text {™ }}$ TV FIELD STRENGTH METERS

SUBBER ${ }^{\oplus}$ TV SIGNAL CIRCUIT ANALYSTS

VIDEO FROM IF (TP 20)

Figure 6 Here is the complete schematic of the M103 AGCI sync module. Notice the ranges of the voltages that change with signal strength.

Magnavox

continued from page 51
and to allow the Light-Dependent Resistor (LDR) to control the contrast according to the room lighting.
In summary, the Videomatic feature selects preset color, contrast, brightness, tint, and AFT, and slightly varies the chroma and video gains to provide better tracking.

As shown by the waveforms of Figure 10, both the input and output video signals are very similar in shape and amplitude, except for a high-frequency boost (from the Q2 emitter-bypass capacitor) that gives about four times the usual burst amplitude.

LDR operation

During Videomatic operation, the LDR determines the DC base voltage of Q1, and the output voltage from the emitter in turn
varies the video gain by changing the DC voltage at pin 2 of IC1. The video-output level approximately doubles when the LDR illumination is changed from no light to the beam from a flashlight. Covering the LDR when the room has average brightness reduces the contrast a noticeable amount.

Chroma control

The gain of the chroma channel is varied in two ways; therefore, the circuitry (Figure 9) is more complex than that of the video channel. One kind of control is produced by applying a DC voltage from the contrast control to pins 6 and 10 of IC1.

One of the chroma modules (which will be covered next month) has the principal AutomaticChroma Control (ACC) that operates according to the amplitude of
the burst. Module M105 has an auxiliary ACC circuit that attenuates the chroma output when the input amplitude increases. The entire chroma signal (not the burst alone) operates this ACC.

R46 and diode D5 comprise a variable voltage divider. The diode does not rectify, because it is operated at a forward bias that forces D5 to have an intermediate forward resistance (rather than the usual on/off switching). The diode takes the place of the lower leg of a resistive voltage divider. Therefore, a higher forward bias gives a lower resistance and a lower output-signal amplitude. The anode of D5 is bypassed to ground by C11; so, it is a "ground" for the chroma signal, while the DC control signal is applied there. Here's how this extra ACC circuit works:

- Transistor Q3 amplifies the Q5

chroma output, and the collector signal goes to a voltage-doubler rectifier (C7, D1, D2, and C9). The negative DC output voltage is applied to the base of Q 4 ;
- Q4 has no forward bias, except the negative voltage from the doubler;
- An increased chroma output produces more negative forward bias at the base of Q4; therefore, Q4 conducts more, bringing additional positive DC voltage from Q 4 emitter to its collector, where it goes to the anode of D5;
- A higher positive voltage at the anode of D5 reduces the anode-tocathode resistance, which in turn decreases the chroma level at the output of R46; and
- Diodes D7 and D8 are clamps which prevent the D5 anode voltage from exceeding about +1.2 volts.

Of course, during times when the

Figure 7 Top waveform is the 8-VPP video signal at the base of AGC keyer Q1 on the M103 module. At the center appears the slightly-distorted pulses at the collector of Q1 (16-VPP), and the 85-VPP pulses at the bottom are found at the anode of D3, the AGCkeying diode. All waveforms were taken while a strong station was being received.
chroma level is low, D5 has less forward bias, acts as an open circuit, and the full chroma signal goes through R46 to the base of Q5.

Figure 8 These are the sync-separator waveforms of the M103 module (when the signal was supplied by a model ATC-10 American Technology pattern generator). Bottom trace shows the 9-VPP base input at Q3, while the $25-V P P$ negative-going sync pulses from the collector are shown at the top.

Early M105 modules blanked the burst by applying positive horizontal pulses to diode D3. When the positive pulses reached the continued on page 54

Figure 9 This is the complete schematic of the M105 Videomatic module, which varies the contrast according to the brightness of the room lighting, changes the chroma level in step with variations of the contrast control, and
provides a secondary ACC that's controlled by the overall chroma level (not just the burst). Accurate DC voltages are shown for the LDR operation at various light levels, and for the auxiliary ACC action.
cathode of D6, they reverse-biased D6, which opened to prevent the chroma signal from passing through to the base of Q5.

Later-production modules omit D3 and the components inside the dotted lines, although the pulses still appear at connector pin 7. I noticed this change first when the output chroma waveforms showed the burst present with the other bar pulses.

Figure 11 shows the increase of output chroma amplitude when the TV is operated in a dark room, and then a flashlight is turned on the LDR.

M108 Low-Level Module

The video signal receives more amplification and processing in the M108 low-level-video module (see Figure 12 for the early-production schematic). Several interesting features are found here.

In addition to the delay line, the module also includes part of the brightness-limiter wiring, plus a unique circuit that clamps the blanking pulse (of the composite video) to the DC voltage from the brightness control. This clamping circuit will be described in detail.

Delay line and service switch

Both the delay line and the service switch are conventional cir-
cuits, requiring little explanation. However, you should notice that R25 (the resistor that matches the input of the delay line to prevent standing waves) and R4 (the resistor that matches the output) act as voltage dividers, reducing the delayline output to half of the amplitude of the input at pin \#2.

Brightness limiter

Part of the brightness-limiter circuit was explained along with the horizontal-sweep operation. Beam current of the picture tube is sensed by the negative voltage it causes at the "low" side of the HV tripler. This voltage partially cancels the positive voltage at the base of Q6.

The remainder of the explanation will be made later, along with details of production changes in the new modules.

Back-porch clamp

Perhaps the most interesting new circuit of the Magnavox video stages (see Figure 12) is the one that clamps the top of the blanking pedestal (composite video) to the DC voltages that come from adjustments of the brightness control.

Now, the blanking pedestal should be the part of the video waveform that would be seen as perfect black on the TV screen. In continued on page 58

Figure 10 The 4.2-VPP video output waveform (\#6) of the M105 Videomatic module (bottom trace) is similar to the 2.4-VPP input (\#4, shown by the top trace), except for the high-frequency boost that quadruples the burst amplitude. INSTALLATION COSTS
without cutting into insulation! SAFE! Grooved Guide positions wire for proper staple envelopment! Grooved Driving Blade stops staple at right depth of penetration to prevent cutting into wire or cable insulation!

No. T-25—Fits wires up to 1/4" in diameter.
Same basic construction and fastens same wires as No. T-18.
Also used for RADIANT HEAT WIRE

Uses T-25 staples
with $1 / 4^{\prime \prime}$ round crown in $9 / 32^{\prime \prime}, 7$ $3 / 8^{\prime \prime}, 7 / 16^{\prime \prime}$ and $9 / 16^{\prime \prime}$ leg lengths

No. T-75-Fits wires and cables

other words, the picture-tube conduction barely should reach zero current during both porches of the blanking pedestal, or for video having the same black level.

If CRT is not cut off completely, but some current flows during the blanking time, the areas of the picture that should be jet black will appear as dark gray. But, if current cutoff occurs from video of less black level than the pedestal, the dark gray areas will be black. Either too little or too much cut off produces a poor picture.

When you balance the contrast and brightness adjustments for a pleasing picture, you are setting the CRT cutoff for this optimum point. However, problems of proper balance can arise when automatic brightness or contrast circuits are used. One example is the LDR cell in the Magnavox that adjusts the CRT contrast according to the amount of illumination in the room.

Conventional capacitive coupling in the video permits the black level to vary excessively with contrast or other amplitude changes. Therefore, many TV models have either a DC-restorer or directcoupled video stages between the video detector and the picture tube to preserve the correct black level.
Magnavox has taken a different approach by including one coupling capacitor followed by a circuit that
clamps the blanking pedestal of the video to the $D C$ voltage from the brightness control. After the brightness control is set properly, variations of video amplitude have no effect on the black-level point.

Back-Porch Clamp

Figure 12 gives the automatic-black-level circuit provided in the early M108 modules. The operation is as follows:

- Positive-going horizontal-sweep pulses are given a delay of phase by R1 and C1, which comprise a low-pass integration filter;
- D4 rectifies the sawtooth delayedphase waveform, and passes only the tips of the signal;
- A small-value coupling capacitor (C2) removes the low-frequency hash and passes narrow positivegoing pulses to the base of Q1, the pulse clipper/amplifier. Q1 has no bias except the positive pulses; therefore, the output at the collector consists of negative-going narrow pulses;
- Q2 supplies both polarities of these narrow pulses through capacitors to diodes D1 and D2;
- A DC voltage, having a value determined by adjustment of the brightness control, is brought to the diodes through R9 and R10;
- These narrow pulses have been delayed so they occur during the time the back porch of the blank. ing pedestal is at the base of Q3;

Arrows point to the major components on the M108 module.

Figure 11 The top trace of (A) is the 0.8 -VPP chroma input of M105 at \#11, and below it is the 1.2-VPP output at \#13, when the Videomatic is off. Turning on the Videomatic activates the LDR, and the output chroma level (bottom trace of B) goes up about 2-VPP amplitude, for normal room brightness.

- Therefore, during the back-porch time, the DC voltage from the brightness control passes through R9 and D1 (or R10 and D2) and goes on to the base circuit of Q3, where it charges coupling capacitor C3 to the brightness-control voltage. Power from the brightness control flows through either diode, depending on the polarity of the voltage between C3 and the brightness control. The charge in C3 supplies the base current for Q3, so the voltage drops slowly between the new chargings that occur during each rear porch; and
- This replenished DC voltage in C3 maintains the correct black level (regardless of contrast changes) at the picture tube, because of the direct-coupled stages between those points.

Other Video Stages

Q3 is an emitter follower that drives the base of Q 4 , which is a normal common-emitter type of amplifier, except for the ABL connection to the emitter. The collector of Q4 drives Q5; and the output from the emitter goes

Figure 13 In new-production M108 modules, the narrow positive-going phase-delayed pulses at the base of Q1 force Q1 to become a short circuit between collector and emitter. Therefore, the DC voltage from the brightness control reaches the base of Q3 during the back-porch of
each video waveform. The brightness-limiter circuit, including Q6, increases the positive voltage at CRT cathodes, when the CRT current becomes excessive (thus reducing the brightness). This is accomplished by increasing the Q4 emitter voltage.

Magnavox

continued from page 59
emitter of Q1 is connected to the collector of Q1 (also to C3 and the base of Q3).

C3 is charged completely during these pulses, to the same voltage that comes from the brightness control, and the large capacity allows only a small voltage drop (the base current for Q3 comes from C3) before it is replenished by the next pulse.

Q1 is an open circuit, except during the pulses, so it can't have any effect on the video signal that also is at the collector. Q2 is not used in the new circuit.

The advantage of establishing the bias of Q3 only during the time of the back porch of the blanking pedestal is that the back porch retains the same DC voltage (and the same black level at the picture tube) regardless of any changes of contrast (video level).

The voltages of Figure 13 for black picture, normal brightness, and excessive brightness, plus the waveforms of Figure 15 prove this explanation of the black-level clamp operation is correct.

Output waveform

Video at the output (pin \#10) of M108 module should be (and is) positive-going. However, a glance at the waveform there (Figure 16) almost would convince you that theory is wrong, and Q4 did not invert the phase.

The unexpected appearance of negative blanking along with positive video is produced by a hori-zontal-blanking circuit that's external to the module.

Automatic Brightness Limiter operation

Figure 13 lists the DC voltages in the ABL and Q4 stages for black raster, normal color bars, and excessive brightness. (Operation of
the ABL in early-production M108 modules is similar.) Notice that PNP-type Q6 is reverse biased for normal and black rasters. Only when the brightness and CRT beam current are excessive does Q6 have forward bias.

The DC voltage at ABL input (pin \#11) is modified by a negative DC voltage coming from the "cold" end of the HV tripler. Higher beam current produces more negative voltage, which decreases the positive voltage at pin \#11 and the base of Q6.

During times of excessive picturetube current, Q6 has forward bias, and it conducts. Some of the +24 -volt supply at the emitter of Q6 comes through the C/E junction to make the collector more positive. The collector is connected to the emitter return of Q4, so this emitter also becomes more positive. We know from the voltages of the Q1 and Q3 stages that a higher voltage to the base of Q3 produces in-

Figure 12 Early-production Magnavox M108 low-level video modules had this schematic. (Figure 13 gives the changes in brightness-limiter and black-level circuits.) Q1 amplifies clipped and narrowed horizontal pulses that have been delayed in phase so they arrive during the back-porch time.

The DC voltage from the brightness control (\#3) goes through either D1 or D2 during the time of each horizontal pulse and on to the base of Q3. Therefore, the black-level of the video waveform (the back-porch of the blanking pedestal) is clamped to the brightness-control voltage.
through the service switch to the M113 CRT RBG module.

New M108 Circuits

New-production M108 low-level video modules incorporate radical changes of the back-porch blacklevel clamp circuit, and the ABL stage has some minor changes (see Figure 13).

New black-level clamp

The pulse-delaying and wave-form-changing components ahead of Q1 in the new black-level circuit are nearly the same as shown in the original circuit of Figure 12. Narrow positive-going pulses (Figure 14) are applied to the base of Q1. Forward bias from R3 and R26 is not sufficient to make Q1 conduct.

Therefore, Q1 conducts only during the positive base pulses.
However, Q1 is NOT an amplifier. Instead, it operates only as an on/off switch. Each base pulse forces the C/E junction to become a virtual short circuit. Therefore, for the duration of each pulse, the brightness-control voltage from the continued on page 60

Figure 13 In new-production M108 modules, the narrow positive-going phase-delayed pulses at the base of Q1 force Q1 to become a short circuit between collector and emitter. Therefore, the DC voltage from the brightness control reaches the base of Q3 during the back-porch of
each video waveform. The brightness-limiter circuit, including Q6, increases the positive voltage at CRT cathodes, when the CRT current becomes excessive (thus reducing the brightness). This is accomplished by increasing the Q4 emitter voltage.

Magnavox

continued from page 59
emitter of Q1 is connected to the collector of Q1 (also to C3 and the base of Q 3).

C3 is charged completely during these pulses, to the same voltage that comes from the brightness control, and the large capacity allows only a small voltage drop (the base current for Q3 comes from C3) before it is replenished by the next pulse.

Q1 is an open circuit, except during the pulses, so it can't have any effect on the video signal that also is at the collector. Q2 is not used in the new circuit.

The advantage of establishing the bias of Q3 only during the time of the back porch of the blanking pedestal is that the back porch retains the same DC voltage (and the same black level at the picture tube) regardless of any changes of contrast (video level).

The voltages of Figure 13 for black picture, normal brightness, and excessive brightness, plus the waveforms of Figure 15 prove this explanation of the black-level clamp operation is correct.

Output waveform

Video at the output (pin \#10) of M108 module should be (and is) positive-going. However, a glance at the waveform there (Figure 16) almost would convince you that theory is wrong, and Q4 did not invert the phase.

The unexpected appearance of negative blanking along with positive video is produced by a hori-zontal-blanking circuit that's external to the module.

Automatic Brightness Limiter operation

Figure 13 lists the DC voltages in the ABL and Q4 stages for black raster, normal color bars, and excessive brightness. (Operation of
the ABL in early-production M108 modules is similar.) Notice that PNP-type Q6 is reverse biased for normal and black rasters. Only when the brightness and CRT beam current are excessive does Q6 have forward bias.

The DC voltage at ABL input (pin \#11) is modified by a negative DC voltage coming from the "cold" end of the HV tripler. Higher beam current produces more negative voltage, which decreases the positive voltage at pin \#11 and the base of Q6.

During times of excessive picturetube current, Q6 has forward bias, and it conducts. Some of the +24 -volt supply at the emitter of Q6 comes through the C/E junction to make the collector more positive. The collector is connected to the emitter return of Q 4 , so this emitter also becomes more positive. We know from the voltages of the Q1 and Q3 stages that a higher voltage to the base of Q3 produces in-

Figure 14 These waveforms snow the correct phases of the signals in the black-level back-porch clamp circuit of the M108 module. The top trace of (A) is the normal video signal, while the bottom trace shows the horizontalsweep pulses that enter the module at \#5. After integration by R1/C1, the phase has been delayed and the shape approaches a sawtooth (top trace of $B)$. At the output of D4, only narrow pulses (bottom trace of B) and some ripple can be seen. (C) This dual-trace photo contrasts the narrow delayed pulses at the base of Q1 with the video that appears at the collector (bottom trace). Q1 does not amplify, so no negative pulses are added to the video.
creased CRT brightness. Q3 is an emitter follower; so more forward bias of Q4 also gives increased brightness.

A more-positive emitter has the same action as a less-positive base. Therefore, the higher Q4 emitter voltage reduces the brightness of the picture and decreases the CRT current. Without the $A B L$, the

Figure 15 (A) shows expanded views of the input video (top trace) and the video at the collector of Q1 and the base of Q3 (below). Only a small discontinuity shows on the back porch, where the brightness DC voltage is switched in to charge C3. These waveforms were made from a late-production M108 module. (B) shows the video at the base of Q3 with a black raster (top), normal brightness (center trace), and excessive brightness (trace at the bottom). The DC voltage at the base of Q3 was nearly equal to that from the brightness control for all three conditions.

Figure 16 Horizontal blanking that's external to the M108 module changes the output waveform in a peculiar way. Top trace is the negative-going video input to M108, and below is the positive-going video, but with negative blanking pulses.
brightness could be turned too high, causing damage to CRT and other components.

Next Month

Chroma processing and demodulation, plus the matrixing of $B \& W$ and color signals will be explained for the Magnavox T995 next month.

The highly detailed sixty-page manual for B\&K-PRECISION's popular Model 1040 CB Servicemaster is now available as a reference guide. The CB Servicemaster manual is far more than just an instruction book-it contains detailed information on virtually all aspects of CB transceiver servicing. Individual chapters include: CB Performance Testing, CB Receiver Adjustments and Troubleshooting CB Transceivers.

In "CB Performance Testing," twenty-two different test procedures are detailed and the importance of each specification is explained. Troubleshooting information describes how to locate a CB transceiver fault in the shortest time possible for most efficient servicing.
The price of the B\&K-PRECISION CB Servicemaster manual is \$5 (postpaid) and includes a $\$ 10$ discount certificate toward the purchase of B\&K-PRECISION Model 1040 CB Servicemaster. The \$10 discount certificate is being offered for a limited time only. Send your check or money order directly to B\&K-PRECISION, Sales Department, Dynascan Corporation 6460 W. Cortland, Chicago, IL 60635.

BK paEcision
 DYNASCAN CORPORATION

Emerson-to-Thordarson Parts Coss Reference

Inciependent manufacturers and distributors make available many hard-to-find components for the repair of TV and stereo machines. This Thordarson Meissner cross reference of Emerson parts is one good example.

| | | | | EMERSON \# | THORDARSON |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| EMERSON | | | | | |

EMERSON \#	THORDARSON \#	EMERSON \#	THORDARSON	EMERSON *	THORDARSON \#
708062	17-3494	708270	Y 105	708463	Y 245
708064	Y 13^{8}	708271	19-1003	708464	WC 53
708066	WC 22	$708272 / \mathrm{A}$	19-3300	708465	WC 45
708068	WC 22	708273	19-4400	708468	WC 54
708071	17-3496	708274	19-3660	708475	19-1008
708073	Y 13	708275	HS 21	708476	Y 116
708082	WC 11	708276	20-1053	708479	Y 116
708082-1	WC 11	708279/A	19-3500	708481	Y 105^{8}
708090	19-3075	708288	Y 49	708493	19-3125
708091	19-1920	708312	19-1005	708496	Y 116
708092	19-1921	708313	Y 61	708506	Y 116
708093	19-3036	708321	Y 10^{5}	708512	19-3125
708094	19-3125	708322	Y 61	708514	Y 147
708095	19-3180	708330	Y 62	708516	Y 147
708096	19-3075	708332	Y 61	708517	19-2023
708097	17-3400	708334	Y 535	708518	19-3060
708099	19-1923	708336	19-4950	708521	19-7047
708100	19-4251	708432	WC 14	708522	19-7068
708108	19-4060	708344/48	Y 62	708523	19-1003
708109	19-3250	708346A	19-3100	708524	19-2026
708111	19-4840	708351	19-4400	708526	19-7047
708112	19-1921	708352	Y 68	708529	WC 44
708114	19-1923	708353	Y 60	708531	19-3300
708115	19-3660	708357/58	19-3660	$708532 / \mathrm{A}$	Y 105^{8}
708116	19-5100	708359	Y 65	708534	Y 144
708117	Y 13	708367	Y $53{ }^{8}$	708538	$19-4216$
708122	Y 6	708370	19-4201	708539	Y 147
708130	Y 3	708373	Y 60	708549	Y 147
708130-L	Y 3	708379/A/B	Y $53{ }^{8}$	716037	HS 3^{3}
708130-R	$Y 3$	708381	Y 60	716052	HS 7
708131	Y 13	708382	Y 68	716052-A	HS 7
708135	Y 13	708392	Y 53	716073	HS 7
708137	Y 10^{5}	708393	Y 65	716074	HS 5
708141	FC 1	708394	WC 18	716083	HS 7
708144	Y 68	708401	19-3180	716084	HS 8
708150	Y 13	708402/403	Y 625	716102	HS 20
708151	17-3496	708405	19-3275	716103	HS 29
708156	WC 22	708406	19-3093	716117	HS 7
708158	HS 8	708407	Y 61	$716121 / \mathrm{A}$	HS 11
708162	Y 10^{5}	708415	Y 105^{8}	716136A	HS 11
708163	Y 10^{5}	708416	WC 18	716148	HS 25
708164	20-1004	708424	FC 7	716149	HS 26
708165	Y 10^{5}	708425	19-3075	716151	HS 27
708174	Y $16{ }^{5}$	708426	19-2028	716163	HS 7
708175	17-3496	708427	20-1058	716177	HS 7
708176	Y 185	708429	19-3036	720013	17-1043
708180	HS 8	708431	19-3660	720017	17-1012
708209	19-1003	708432	20-1057	720024	16-3487
708210	17-3496	708434	HS 23	720025	16-3487
708211	Y 185	708436	WC 41	720026	16-6770
708212	Y 185	708437	WC 38	720027	17-1011
708213	20-1049	708438	17-6028	720031	16-6758
708214	Y 10^{5}	708439	17-6022	720032	16-6758
708226	WC 23	708440	19-1005	720033	16-6758
708228	WC 18	708441	19-1035	720042	17-1006
708232	Y 618	708442	19-3060	720043	17-1006
708241	17-6013	108443	19-3125	720044	17-1005
708243	19-3500	708444	WC 36	720056	19-1021
708247	19-4950	708448	Y 107	720067	16-3487
708248	19-3036	708451	Y 105^{3}	720073	17-1003
708249	WC 23	708452	Y 1055	720075	16-6758
708255	HS 5	708456	WC 45	720076	16-6770
708265	17-6013	708461	FC 6	720081	17-3495
708269	Y $61{ }^{8}$	708462	WC 37	720081-A	17-3495
				con	ued on page 64

Service notes giving wiring or mounting deviations are listed after the cross references

EMERSON \#	THORDARSON \#	EMERSON \#	THORDARSON \#
720084	16-6758	720317	20-1080
720085	16-6770	720318	17-3418
720089	17-1064	720322	17-1052
720091	17-1005	720336	20-1054
720092	17-3495	720337	17-1052
720093	1.7-1004	720364/A	17-3489
720096	17-1063	720393	16-6786
720097	17-3400	720394	16-6787
720098	17-1064	720404	20-1054
720103	17-1026	720445	17-3418
720105	17-1006	720447	17-1036
720106	17-1069	720448	17-1029
720108	17-1004	720449	17-1097
720109	17-1003	720451	17-5015
720125	16-6770	720452	20-1079
720126	16-3487	720453	20-1080
720127	17-1067	720454	17-3418
720128	17-1067	720455	17-3418
720129	17-1069	720466	16-6780
720131	17-1063	720467	16-3490
720133	17-1069	720469	20-1052
720135	17-3495	720471	17-1052
720139	17-1070	720472	20-1050
720141	17-3495	720474	17-3418
720142	17-5001	720475	17-3419
720146	17-3495	720476	17-3414
720147	17-5001	720477	17-3420
720148	17-4523	720478	17-6031
720149	20-1049	720479	17-6032
720151	19-1020	720481	17-6033
720154	20-1049	720486	17-1052
720155	17-5004	720512	17-1114
720156	17-5001	720513	17-1052
720157	17-3495	720514	17-3419
720166	20-1049	720515	17-6017
720175	17-4523	720516	17-6023
720178	17-3495	720517	17-6020
720181	17-4522	720518	17-3420
720182	17-3495	720540	17-3418
720185	17-3495	720541	17-5015
720187	17-6758	720558	20-1052
720198	17-4522	720563	17-6054
720199	17-4522	720566	17-5027
720201	17-5004	720570	17-6061
720204	17-4522	720575	17-6062
720213	17-4522	720579	17-6065
720215	17-5038	720580	17-6063
720216	17-4523	720582	17-6062
720221	17-1024	720583	17-6064
720226	17-4522	720589	20-1079
720229	19-6012	730002	22R05 ${ }^{1}$
720231	17-4523	730005	26R00 ${ }^{1}$
720238	17-4523	730018	$24 \mathrm{R9} 4$
720241	17-4522	730022	26R21
720243	17-1027	730023	26R95
720246	17-3495	730024	26F65
720247	17-4523	730026	26 R95
720259-2/-3	16-6780	730029	26 R95
720259-4	16-6780	730031	26R95
720289	17-4504	730032	26 R88
720294	16-6780	730037	26R88
720295	16-6780	730039	26R88
$720297 /$ A	17-1072	730041	26R79
720298	17-1028	730043	26 R88
720299	20-1054	730044	26 R88
720315	20-1079	730046	26R79

EMERSON \#	THORDARSON \#
730051	21 F09
730052	26R88 ${ }^{1}$
730054	21 F09
730060	26 R113
730061	26 R113
730062	26 R113
730064/65	26 R113
730074	26 R 47
730078	$26 R 116$
730079	26 R 47
730094	26 R116
730108/111	26R116
730109	26R120
730113	26R113
730114	26R116
730118	26R150
730120	26R150
730126	26R106
730129	26R150
730149	26R152
730152	21 F09
734004	$22 \mathrm{S56}$
734018	26S49
734028	24S60
734044	24S50
734051	$26 \mathrm{S49}$
734052	24S50
734058	24.550
734058-1	24S50
734063	24S50A ${ }^{1}$
734064	24S50A
734074	26S49
734082	24S501
734084	26548
734088	$24 \mathrm{S48}$
734099	24S51 ${ }^{1}$
734103	24S48
734104	24S53
734107	24553
734122	26558
734123	24S51
734126	24S64
734130	24S481
734134	24S64
734139	24S53
734144	24S531
734146	24S48 ${ }^{1}$
734161	24S53 ${ }^{2}$
734162	24S512
734163	24S642
734168	24548
734172	24S48
734176	24S48
734178	24S53
734181	24S64 ${ }^{1}$
734188	26S58 ${ }^{1}$
734195	26S53
734202	26S49
734205	24S48
734212	24564
734215	26 S 53
734221	22S861
734223	24S61
734225	24553
734226	24553
734228	24S53

EMERSON \#	THORDARSON\#	EMERSON \#	THORDARSON\#	EMERSON \#	THORDARSON \#
734248	24506	738047	FLY 2	738155	FLY 231
735151	FLY 5017	738048	FLY 2	738156	26572
737002	26C42	738048A	FLY 2	738158	HS 8
737003	20C491	738050	26S22	738159	26S72
737011	20 C 491	738052	26S57	738160	FLY 230
737012	$20 \mathrm{C64}$	738053/51	FLY 2	738161	26S85
737015	20C491	738054	26S22	738162	FLY 231
737016	26C44	738059	26S571	738163	FLY 2293
737017	26C41	738060	FLY 8	738168	FLY 150
737018	26 C 93	738055	HS 8	738169	FLY 232
$737019 / 23$	26C80	738066	26S24	738170	26S70
737027	26C77	738067174	FLY 13	738171	26S72
737028	26 C 78	738068	FLY 13	738177	FLY 231
737031	26C80	738059	FLY 133	738180	$26 S 75$
737033	26C77	738070	26S73	738182	$26 \mathrm{S72}$
737036	26C77	738071	HS 8	$738186 / 88$	FLY 258
737037	26C78	738073	FLY 13	738189	26S72
737038	26C77	738075	FLY 13	738190	FLY 292
737039	26C77	738076	26S24	738191	FLY 292
737043	26C77	738078	FLY 202	738192	FLY 293
737044	26C77	738679	FLY 160	. 738193	26S85
737047	26C77	738080	26S51	738195/A	FLY 277
737048	26 C 79	738081	26S51	738196	26S86
737049	26 C 81	738082	FLY 13	738197	FLY 294
737056	26 C 77	738083	FLY 13	738202A	FLY 295
737057	26 C 81	738084	FLY 160	738203	26 S 33
737058	26 C 79	738085	FLY 13	738206	FLY 293
737059	26 C 81	738086	FLY 13	738210	FLY 2933
738000	FLY 1	738087	FLY 202	738213	FLY 295
738003	WC 14	738090	26A04	738214	FLY 277
738004	24 A 88	738091	FLY 89	738222A/M	FLY 324
738005	24 A 90	738094	FLY 160	738223	FLY 277
738008	24A89	738095	FLY 160	738415	Y 105^{8}
738009	FLY 1	738096	FLY 89	739000	FLY 1
738010	24S86	738097	26S51	750033	16-6758
738010-1	24S86	738098	26S51	906186-501 !	
738011	26S531	738099	FLY 89	-502/-563/	
738012	FLY 1	738100	FLY 89	-504/-507	Y 245
728013	FLY 1	738102	26S72	962159	15-1082
738014	FLY 4	738103	FLY 141	970013	20-1051
738015	FLY 1	738105	$26 S 72$	970014	19-1008
738016	24S86	738106	FLY 142	970015	17-3414
738017	24S86	738107	FLY 142	970016	Y 229
738019	HVO 50	738108	26S72	970116	Y 229
738020	$24 \mathrm{AB9}$	738109	FLY 141	970241	19-1005
738022	24A89	738110	26 S 72	970243	19-1001
738023	24A89	738111	FLY 142	970244	19-1004
738024	FLY 4	738119	FLY 143	970383	20-1051
738026	26S51 ${ }^{1}$	738121	26 S 72	970485	$22 \mathrm{S86}$
738026A	26S51 ${ }^{1}$	738122	FLY 143	970706	19-2012
738027	26S511	738124	26 S 72	970800	Y 229
738028	FLY 1	738126	$26 \mathrm{S85}$	970842	19-3275
738029	26S52	738127	26S711	970844	19-2032
738029-2	26S52	$738128 / 29$	FLY 143	970845	19-1008
738030	24A88	738134	26S12	970998	FLY 422
738031	24489	738137	26S85	971423	Y 109
738032	26S53	738138/A	FLY 2308	972026	Y 210
738032-A	26S53	738139	26S721	972133	Y 210
738033	26553	738140	FLY 143	981289	26C81
738034	FLY 46	$738142 / 145$	FLY 228	981292	WC 53
738035	HS 3	$73: 3147$	26S72	981294	19-1008
738037	HS 8	733150	$26 \mathrm{S72}$	981295	19-7068
738039	FLY 5	733152	26S85	981296	19-2028
738042	24A89	738153	26S72	981297	19-2024
738044	26S57	738154	FLY 229	981300	26S64
				continued on page 66	

PANASONIC
TR-682SX, TR-872
1669-1

RCA
Chassis CTC72AJ/AN/AP/AR
1669-2
MGA
CS-1993 . 1674-1
Remote Control 939P00304, 939P005021674-1-A

SEARS
562.51041600, 562.51161600

1674-2

GENERAL ELECTRIC
Chassis 25 MB
1674-3

PANASONIC
TR-233/-749/-822/-832/-852/-862
1676-1

ZENITH
Chassis 19HC45
1676-2

MOTOROLA

Chassis E14TS-/F12TS-/F14TS-/G12TS-/
H12TS-/YG12TS-IZDF14TS-/ZVF12TS-/
ZVG12TS-IZWF14TS-465T
1676-3

RCA

Chassis KCS201AA/W 1670-1

WARDS AIRLINE

GEN12337A, GEN-12557A . 1670-2

MGA

CS-1790 . 1671-1
Remote Control 939P00305, 939P00502 1671-1A

RCA
Chassis KCS202C/F/R/W .1671-2

GENERAL ELECTRIC
Chassis 25YM 1672-1

PANASONIC
Chassis T204-A . 1672-2
SEARS
528.4428/29/31/32/33 (Series) 1673-1

WARDS AIRLINE
GAl-17227A/237A/437A . 1673-2
PANASONIC
CT-926/-936/-946/-976
1675-1

For More Details Circle (25) on Reply Card

C. T. CURTIS CB TEST STATION

Model 105

DEALERS - SERVICEMEN
A CB Tester Complete in Itself

- Easy, fast test of all CB's
- 3A. Adjustable/Regulated Power Supply
- 60 channel calibrated signal generator. XTAL synthesized
- 12 Watt Dummy Load
- 0-10 Watt peak R.F. power meter.
- 31⁄2 digit DVM .01-19.99 Volt
- Small-compact 8'x12"x8'

List price $\$ \mathbf{7 2 5 . 0 0}$
Distributors' inquiries invited.
Charles T. Curtis
Consulting Electronic Engineer 2558 Park Rd.
Warrington, Pa. 18976

> Each report about an item of electronic test equipment is based on examination and operation of the device in the ELECTRONIC SERVICING laboraton: Personal observations about the performance, and details of new and useful features are spotlighted, along with tips about using the equipment for best results.

By Carl Babcoke

Bandwidth Test

Perhaps the most unique of many innovations in the model 530 semiconductor tester from B\&K-Precision (Figure 1) is the test giving the frequency where the gain of bipolar transistors is one (unity). Details will be given later.

Other Features

Three separate basic semiconductor tests are provided. First, there are in-circuit or out-of-circuit tests of lead identification, good/ bad condition, and polarity. Sharing the socket and input jacks, but nothing else, are out-of-circuit metered measurements of leakage and gain. The bandwidth test (previously mentioned) has its own sockets,
switch, and meter.

In-Circuit Tests

Along the right edge of the front panel are located the controls for the go/no-go in-circuit tests (see Figure 2). At the bottom are the on/off switches for power and speaker, with the 3 -pin transistor socket and three banana jacks for connecting the transistors mounted just above. At the top are the polarity LEDs, the lead-selection lever switch, and the window for the lead colors. Bipolar transistors, FETs, and SCRs can be tested.

Here is the sequence of tests:

- Connect the device by the socket or with leads in the banana plugs;
- Select the "HI" position of the drive switch;
- Turn on the power and slide the lever switch through the six possible combinations of leads;
- With bipolar transistors, usually two positions will light one of the LEDs (an audio tone sounds when either LED is lighted, unless turned off);
- The LEDs are labeled NPN and PNP, and the lighted one indicates the polarity; when lighted, either LED proves the transistor is good; - Change the drive switch to "LO." Only one LED now should light;

Figure 1 Model 530 semiconductor tester from B\&K-Precision checks solid-state devices in three separate ways. Operation is rapid and positive, without ambiguous readings.

Figure 2 Controls for the in-circuit/ out-of-circuit good/bad and leadidentification tests are located at the extreme right.

- The window beside the lever switch indicates the color code of the transistor elements (it's not necessary to use standard coding, just leave the transistor connected, and proceed with the other tests).

Tests for SCRs, diodes, and FETs are similar, but the terminology is different. Some devices that resemble transistors (such as triacs, diacs, and multiple diodes) cannot be tested. Refer to the instruction book for these.

Base and collector are fed coded pulses (which are different for "HI" and "LO" drive). Logic circuits sample the times when the transistor draws current, and this allows the identification of PNP or NPN.

Also, the pulses make the test nearly immune from errors caused by in-circuit loads. Factory specs call for valid good/bad indications down to 10 ohms or 15 microfarad with "HI'" drive, and down to 1.5 K ohms or 0.3 microfarad in "LO" drive. Several tests using resistorsub boxes seemed to verify these limits.

Leakage And Gain

Near the center of the panel (Figure 3) are the controls for the

Figure 3 in the center of the panel are found the controls and meter for out-of-circuit leakage and gain measurements
out-of-circuit measurements of leakage and gain. The device remains connected as it was for the previous in-circuit tests.

One precaution, first set the NPN-PNP switch according to the results of the in-circuit tests. Otherwise, these next measurements will give no readings or wrong readings.

Press down the "PUSH TO TEST" button, adjust the "VOLTS" variable control to the test voltage desired and read the leakage on the meter that's just above. Current limiting is provided to prevent damage to the tester or the transistor. Also, four ranges of current are read on the meter. This gives the effect of a \log scale for reading a wide variation of current.

The "GAIN" switch has a spring to return it to the center (off) position. To the left is the "TRANSISTOR BETA" position, with "FET GM" on the right. Just below the gain switch is one that selects either "LO PWR" or "HI PWR." That refers to the power rating of the device, and a transistor often gives a different beta on each power. This is normal, for beta does change with base drive.
continued on page 70

need beths?

Standard and special belts and tires ready for immediate shipment - fit over 3,000 new and obsolete makes of tape recorders, projectors, dictating machines, video recorders, and turntables. Simplified cross reference system makes ordering easy with one day service on most items. Drive tires, wheels, phono idlers also listed. Call ol write for free catalog.
DEALER INQUIRIES INVITED.

PROJECTOR-RECORDER BELT CORP.

 319 Whitewater St., Whitewater, WI 53190 - (414) 473-2151For More Details Circle (28) on Reply Card

PUT YOUR FINGER

 ON THE TRUTHIt's the one and only flat-rate increment system that gives you the great feeling of pricing every job right. A system that treats both customer and shop owner fairly. Fast finger-tabs in both editions: 6x9 Hard Cover, steel
ring-bound - $\$ 19.95$ ea. post pd.

Solution to

SHOCKING!

1 contact	14 teracycle
2 printed	15 electrode
3 pigtail	16 polygraph
4 console	17 picofarad
5 epsilon	18 meaconing
6 amplistat	19 selectron
7 compensator	20 clockwise
8 ferroelectric	21 logarithm
9 transmitter	22 diathermy
10 wattmeter	23 grasshopper
11 magnetism	24 insulator
12 capacitor	25 delay
13 sparkover	

Start with 100 points and deduct 4 points for any part you may not have
answered correctly

Your rating:

60-64 You struck out. Sorry.
68-72 You're on first.
76-84 You're on second.
88-96 You're on third.
100 OHM RUN! Congratulations!

WE'RE GROWING!
to better represent YOU
the successful service business operator.
*Over 2500 firms belong
*39 State Affiliates
*167 Local Associations
YOU CAN JOIN!
and learn how to make money and work less hours.

Write today for a membership application and more information.

1715 Expo Lane
Indianapolis, Indiana 46224
Phone (317) 241-8172

Test Lab

continued trom page 69

Frequency Cutoff

The subject of transistor frequency response is not a simple one, so I'll not attempt to explain it in detail just now. But remember this: The B\&K-Precision model 530 does an excellent and needed job of measuring unity-gain frequency; but that figure does NOT directly tell the normal efficient frequency of operation. In other words, a transistor giving a reading of 34 MHz is not to be used at 34 MHz , but probably below 10.7 MHz . The meter reading indicates the frequency where the transistor gain is 1 , or unity. A transistor can't even oscillate when the gain is only 1 .

After you have tested many transistors for unity-gain frequency, you will be able to make sound judgments about the general uses for transistors having certain ranges of frequency. Some examples will be given later.

Testing transistors for the frequency of unity gain is very simple. Separate sockets are marked for PNP or NPN types, and a 3-pin plug with short wires and clips is provided for transistors that don't fit the socket.

Insert the transistor into the proper socket, observing the correct C/B/E markings. Start with the "RANGE MHZ", switch in the $0-1500 \mathrm{MHz}$ range. If no reading is obtained, change to next lower $(0-500 \mathrm{MHz})$, or go on to the $0-100$ MHz range. Use the highest range that gives a reading above the minimum listed in the instruction book. Often, a transistor will give a reading with two (or even all three) ranges. Believe the one that provides the highest reading.

The picture in Figure 4 shows an RCA SK3018 giving a reading of 400 MHz on the $0-500 \mathrm{MHz}$ range. A transistor designed for audio use will not give a reading on any range.

Comments

The B\&K-Precision model 530 semiconductor tester was easy and simple to use, presenting no problems of operation or interpretation.

Several dozen transistors are kept in the lab for evaluating all brands of transistor testers, and all of the past readings are recorded. If you ever have compared beta readings

Figure 4 Controls, meter, and circuitry for measuring the frequency where a bipolar transistor gives a gain of one are at the left. They are completely separate from the controls for the other tests. A test frequency of 1 MHz is used for the $100-\mathrm{MHz}$ range; 10 MHz for the $500-\mathrm{MHz}$ range; and 30 MHz for the $1500-\mathrm{MHz}$ range.
made on two different models, undoubtedly you found the readings differed by 10% to 200%. This is normal, because the transistor beta does change with each slight variation of forward bias.

Therefore, it is not a criticism for me to say the model 530 gave figures that were approximately the same as those from curve tracers. conventional static-beta meters, and other varied types of equipment.

Many of these transistors could not be identified by their markings. However, an old 2N408 tested okay, but gave no reading on the frequency test; a 2 N 410 (probably used in the IFs of ancient transistor radios) gave a $1-\mathrm{MHz}$ reading; a 2 N 2613 read $12-\mathrm{MHz}$ on the 100 MHz range; and a SK3018 read 70 on the $100-\mathrm{MHz}$ range and 400 on the $500-\mathrm{MHz}$ range. A defective SK3018 measured low gain and a $10-\mathrm{MHz}$ unity gain, thus proving the tests are valid.
The B\&K-Precision model 530 should be a welcome addition to any service bench, especially for the frequency tests. Not only can unknown transistors be evaluated for suitability in RF circuits, but the condition of transistors with standdard numbers can be verified.

TRANS-VISTA ELECTRONICS
Distributors Of Transistors And
Famous Trans-Vista Electron Tubes
80\% To 90\% OFF
LISt paices of tubes below

Type	List Price	Your Cost		Type	List		
Price						\quad	Your
---:							
Cost							

Trans-Vista sells all types of tubes at 80% off list prices. To figure your cost multiply current list price by 20 . Order Today!

TRANSISTOR SPECIALS

Our Simitar Your Our Similar Your $\begin{array}{llllllll}\text { No. } & \text { To } & \text { List } & \text { Cost } & \text { No. } & \text { To } & & \\ \text { TVE5 } & \text { ECG123A } & \text { Cost } \\ 2.20 & 79 & \text { TVEB } & \text { SK3019 } & 2.55 & 84\end{array}$ $\begin{array}{lllllll}\text { TVE5 } & \text { ECG123A } & 2.20 & .79 & \text { TVE8 } & \text { SK KO19 } & 2.55 \\ \text { TVE7 } & \text { ECG128 } & 3 & 30 & 91 & \text { TVE9 } & \text { ECG152 } \\ 4.20 & 1.09\end{array}$
 1 million transistors in stock. Order any type not listed at 75% off list prices.
Terms: All shipping charges paid on pre-paid orders. Send full remittance, un-used money returned. COD orders 25% deposit.
PHONE ORDERS CALL (201) 688-1466
All tubes individually boxed, branded, lab tested new, 2 nds., or used. 1 year warranty. Money back if not satisfied. Use this ad as order form. Send for free tube and transistor lists.

FREE "FULL MEMORY ELECTRONIC CALCULATOR' ($\$ 24.95$ Value)
Free With This Ad And Order Of $\$ 75.00$ Or More Of Tubes And/Or Transistors

NEW! TV PROJECTOR!
Enlarges picture up to 5×6 Guaranteed to work on b/w
$\$ 49.95$ or color 21 TVs or smaller.
Comes complete with expensive lens housing and instructions. Assembles in minutes. Shipped pre-paid \$49.95

DISC \& LOW LEAKAGE	
CAPACITOR ASSORTMENT	
Up to and including one	Prepaid.
MFD. Guaranteed.	$\$ 5$

TRANS-VISTA
 795 Colonial Arms Road
 Union, N.J. 07083 (Dept. ES-9)

For More Details Circle (22) on Reply Card

For More Details Circle (27) on Reply Card

I'rs NO PUZZLE

OELRICH SERVICE FORMS
FOR TV.RADIO 22 WAY RADIO SERVICE LEGAL FOAMS FOA CALIF. FLA dtah now at youa pais jobbea or waite for catalog b64 OELRICH PUBLICATIONS

For More Details Circle (32) on Reply Card

Field Strength Analyst
PTS Electronics' new Field Strength Analyst (model 5001) combines the features of an all-channel field strength meter and TV tuner analyst in one piece of equipment

When used as a field strength meter, model 5001 is tunable to all UHF and VHF channels and has a three-position attenuator switch which allows signal measurement from 0 to 100,000 microvolts. The meter scale is calibrated in microvolts and dBs. The analyst portion can be used to substitute the VHF or UHF and/or any combination of the two for any 41 MHz television receiver. It also can be used to check the IF and AGC stages of a television receiver.
The model 5001 is powered by either AC or DC, and has a detacha ble AC line cord.

For More Details Circle (35) on Reply Card

DVM With Frequency Counter

A $51 / 2$-digit DVM from Dana fea tures a built-in frequency counter in addition to measuring $\mathrm{ACV}, \mathrm{DCV}$, and ohms. Model 5100 has .43 yellow LEDs for reduced eye fatigue, and a switchable filter which provides in herent noise rejection at multiples of 10 Hz . In some cases, the built-in counter (measuring frequencies from 10 Hz to 20 MHz) eliminates the need for a separate frequency counter.

Optional accessories include current shunts, high voltage probe 5 to 50 KV, RF probe, and a true-RMS AC converter.

For More Details Circle (36) on Reply Card

These features supplied by the manufacturers are listed at no-charge to them as a service to our readers. If you want factory bulletins, circle the corresponding number on the Reply Card and mail it to us

I \& T VALUE SALE

G.E., Sylvania, Zenith, RCA, Etc.
75% off List New Jobber-Boxed Tube

Y153 Y162 132 DYS2C DVG9AC ea $\$ 8.95$ Diodes, Rectifiers, Equivalent
6500 PIV Color Focus Rect
2.5a 1000 PIVIR 170

Syl - Zen. Tripler 212-139
Admiral Triple;
Astatic Audio-Cartridges-Needles Equī $\begin{array}{lll}\square \text { Astatic } 133 & \text { ea } \$ 1.95 \quad \square 142 \\ \square \text { BSR SC7M2 } & \square S C 8 H 2 & \square S C 12 \mathrm{H}\end{array}$ ea. $\$ 1.45$
ea. $\$ 1.90$ \square BSR SC7M2 \square SC8H2 SCl2H EV 26 ea. $\$ 1.50$ EV 5015 GELC2 ea $\$ 85$ GECC650 $\square 660$ Panasonic EPC 42 ea. $\$ 2.00$
Tetrad All Numbers SN- 1 to 6
Tetrad All Numbers SN-1 106.

Varco CN75 TN4B ea. \$140 \square ST4X | Zenith 142 166 $\quad 167 \quad 168$ |
| :--- |
| N44 |
| 77 |

CB Hardware and Wire

3 ft RG 58 2PL259 ea. \$1. 25
20 Ht RG 58 1PL259-1 Spade Lug
CB Lightning Arrestor
50 ft 590 Incl Conn ea. $\$ 189 \quad 100$ it $\$ 399$
500 ft . 59 U Coax Mill Ends.... 3 ft
400 ft 300 ohm wire 40 hanks White
1000 ft .300 ohm foam wire 100° hanks Bik
$300 \mathrm{ft} 25^{\circ}$ coils Zip Cord
500 ft .18 guage speaker wire 50 coils
General
60 Min. Irish Cassette Tapes
$\$ 300$ Surprise Package $\$ 400$ Asst. Belts $\quad \$ 10.00$
100 Asst. Caps $\$ 4.00$ Asst. Belts 10 for $\$ 7.00$
TV Lightning Arrestors.
$75-300$ othm Matching Transformers
Deluxe lock Mounts w/PL259
CB Noise Eliminator Kit
RCA to RCA 6. Shuelded cable
$18^{\prime \prime}$ earplug. (Min. 50)
Speco 2 station Intercom
$19^{\prime \prime}$ \& $25^{\prime \prime}$ Color Boosters
Cell Batteries
Piggy Back Antennas
25 ft . Headphone Extensions
25 ft . Headphone Extensions
Stereo "Y Adaptors $2 / \mathrm{s}^{\text {" }}$
3.5 mm Miniplug to alligator clips 10 for $\$ 5.00$
10 for $\$ 4.40$

4" 4 for $\$ 4.00$ Seakers
$3 \times 5 . . .4$ tor $\$ 5.00$
4×10
5×7 speaker kit incl. gritl
1 Pr. $20^{\prime \prime}$ Speaker Baffles Incl Speakers
$\square 1 \mathrm{Pr} .12^{\prime \prime}$ Speaker Bafftes. Incl. Speakers WANTED: Electronic Merchandise WILL PAY CASH

- LETTERS OF CREDIT AND ALL CHECKS PLACED ON DEPOSIT WHTH MANUFACTURERS HANOVER TRUST BANK N Y C - MASIER CHARGE MIN. $\$ 100$-C.O.O S 50% DEP - MINIMUM OROER \$75 FOB BROOKLYN. N. Y - CATALOGS \$3. REFUNDABLE UPON YOUR OROER SEND CHECK OR MONEY ORDER TO:

T\& T SALES CO

4802 Avenue K
Brooklyn, N.Y. 11234 Phone: (212) 241-5940

Advertising rates in the Classified Section are 35 cents per word, each insertion, and must be accompanied by cash to insure publication.

Each initial or abbreviation counts a full word

Minimum classified charge $\$ 3.00$

For ads on which replies are sent to us for forwarding (blind ads), there is an additional charge of $\$ 3.00$ per insertion to cover department number, processing of replies, and mailing cosis

Classified columns are not open to advertising of any products regularly produced by manufaclurers unless used and no longer owned by the manufacturer or a distributor

FOR SALE

POCKET DIGITAL TV COLOR/BAR GENERATOR 16 patterns. Complete plans $\$ 4.95$. Kit/wired $\$ 39.95$ up. Workshop, Box 393E8, Bethpage, N.Y 11714
BUILD ELECTRONIC DEVICES in your home. Get started in your spare time. Big profits. Experience not necessary. Ask for free literature telling how. Electronic Development Lab, Box 1535 , Pinellas Park, Fla. 33565.

4-77-1f
FOR SALE: RCA TEST EQUIPMENT \& TUBES Sweep Generator, Marker, Adder, Scope, VTVMS Harold Bentley, 8012 W. Sunbury Ct., Milwaukee WI 53219.

8-77 2t
SELLING PHOTOFACTS 1-550 in Binders, and 1-1.037 filed. Also Rider's manuals. Beitman, 1760 Balsam, Highland Park, IL 60035. 9-77 1 t

TEST EQUIPMENT for sale: Selling out due to health. Equipment, parts, supplies. Nearly all new and at BIG savings. Write: Hartwell Elec. Rt. \#2, Bidwell. OH 45614

9-77 it
TV \& RADIO TUBES 36c EA!! Free color catalog. Cornell, 422.1 University, San Diego, California 92105.

8-76-tf
REPLACEMENT COLOR YOKES-DEALERS ONLY Zenith 95-2501-2532-2638-2667-S-89633 etc. 16.95 Magnavox $361380-1$ 18.95, Sylvania, GE etc. 14.95 to 19.95. Request for price list on your Letterhead. David Sims Enterprises, Inc., 665 Jericho Turnpike, Huntington Station, N. Y 11746.

TUNER SUB ONLY \$19.95, wired tested com plete with batteries and ready to use on tube or transistor sets. This unit is without knobs or cabinet but very compact with no wires or controls dangling. Easy to use, simply hook set's coax to sub and view picture (instructions provided). Only $\$ 19.95$, we pay the shipping. This is not a gimmick. If not completely satisfied, return within 10 days for full refund. TEXAS TUNER WIthin 10 days for fult refund. TEXAS TUNER Texas 76117. Phone (817) 834-8201. 9-77 3t

SERVICES

ATTENTION ELECTRONIC MANUFACTURERS, printed circuit assembly and related work wanted. Via drop ship method. Gilbert Whitley, RR 2, Metamora, Hllinois 61548.

BUSINESS OPPORTUNITY

STEREO REPAIR BUSINESS for sale. Carry-inhigh end warranty station-high income neigh borhood-good equipment and parts supplygood reputation, 7 years. Health forces sale $\$ 25,000$. Bob Grady Electronics, 1059 Silber Road, Houston, Texas 77055 9-77 1

START ELECTRONIC FACTORY IN YOUR HOME GET STARTED IN YOUR SPARE TIME ONE MAN OPERATION. EXPECT BIG PROFITS. EXPERI ence not necessary. practically no INVESTMENT. WRITE FOR FREE LITTERATURE TELLING HOW. ELECTRONIC DEVELOPMENT LAB, DEPT. A BOX 1535, PINELLAS PARK, FL 33565.

8-77-t
PHILCO \& ZENITH RADIO-TV SALES \& SERVICE SHOP for sale. 37 years same location. Doing $\$ 60,000$ plus. A- 1 credit. All customers on cash basis. Reason for selling-want to retire. Excel. lent opportunity for young graduate or military retiree. Call 919-835-2302 nites only, Elkin, N.C 9-77 1 t

TV SALES \& SERVICE SHOP, located in fast-growing town 22 miles south of Kansas City Test equipment, technical literature, parts in ventory, and service vehicle valued at $\$ 20,000$; will take less and partially finance qualified buyer. Shop established for five years with little competition within 20 -mile radius. Service al brands. Louisburg Electronic Center, Louisburg, Kansas 66053. (913) 837-2578.

9-77 1 t
MATV INSTALLERS: Want more profits with less headaches? Information $\$ 5.00$. Box 809 , Boynton Beach, Fla. 33435 . 9-77 eom ti

WELL ESTABLISHED TV SALES/SERVICE BUSINESS in a fast growing area (POp. 55,000) Eighteen years in business, room to expand, good climate and plenty of parking. Address inquiries for additional information to: ARH, Rt. 1. Box 27A, Dothan, Alabama 36301. 9-77 11

AUTO RADIO \& TELEVISION REPAIR SERVICE. Established customers, 40 yrs. same locationvery little competition. Gross $\$ 15,000$ yr. Large bldg., $\$ 60.00 \mathrm{mo}$. rent. All stock \& equipment, 1970 Ford van. $\$ 7.000 .00$ buys all. Owner leaving state. Stewarts Radio \& TV, 400 Sycamore. Shenandoah, lowa 51601, Ph. 712-246-1743 or 712-385-5725

9-77 $1 t$
TV AND STEREO SALES ANO SERVICE-Paint Store combination. Well established growing business in mountain town, low rent, heavy traffic location, figures available to qualified buyers. Valley Realty, Box 1051, Glenwood Springs, CO 81601. call collect (303) 945-8601

9-77 2 t

WANTED

WANTED: CB radio repair contract work. A\&R Service, North Haven, Conn., 203-239-0155 (evenings).

9-77 3t

HELP WANTED

VIRGIN ISLANDS shop expanding. TV/Stereol Antenna Techs Needed Solid state exp. required. Resume 10: Glenn, Box 6-L, Sunny Isle, St. Croix, U.S.V.I. 00820

7-77-3t
TV TUNER TECHNICIAN wanted, $\$ 6.00$ per hr . Minimum requirements are 2 years experience with any major tuner service. Must be able to produce 8 per day without supervision. DFW Electronics, 4210 N.E. 28 th Street. Fort Worth, Texas 76117, (817) 834-8201

9-77 1 it

EDUCATION-INSTRUCTION

REPAIR TV TUNERS - High Earnings: Complete Course Details, 12 Repair Tricks, Many Plans, Two Lessons, all for $\$ 2$ Retundable. Frank Bocek, Box 3236 Enterprise, Redding Calif. 96001

American Technology Corp. 13
Antenna Corp. of America. 41
Arrow Fastener Co., Inc. 57
B\&K Precision, Dynascan Corp.61

Bussmann Mfg. Div.

McGraw-Edison Co

27

Castle Electronics............. . . 51
Charles T. Curtis, Consulting
Electronic Engineer 68
Dana Laboratories, Inc. 18
John Fluke Mfg. Co., Inc........ 2
Fuji-Svea Enterprise 2
General Electric Co., Tube Div. . . 21
Heath Company 8-11
ISCET . 41
Jensen Tools and Alloys 7
Kager Int'I. 18
Leader Instruments Corp. 39
MTI Inc. 68
Mallory Distributor
Products Co.
Cover 4
Master Appliance Corp. 14
NESDA 70
Oelrich Publications 71
PTS Electronics, Inc. . . . Cover 2-1
Precision Electronics 45
Projector-Recorder Belt Co. . . . 69
RCA Distributor \& Special
Products16-17, 29-30, 41
Sperry Tech, Inc............... . . 69
Sprague Products Co. 5
GTE SyIvania ECG/Consumer
Renewal
T \& T Sales Company 71
Thordarson Meissner, Inc. 67
Trans-Vista Electronics 71
Tuner Service Corp. 7
Viz Mfg. Co..................... . . 15
Winegard Company Cover 3
Zenith Radio Corp. 34-35
REGIONAL ADVERTISING SALES OFFICES
Indianapolis, Indiana 46280
ROY HENRY
2469 E. 98th St
Phone: (317) 846-7026
Greenlawn. New York 11740
CHUCK HORNER
P.O. Box 175

Phone: (516) 757-7863
Mountain View, California 94043 DENNIS TRIOLA
2680 Bayshore Frontage Road, Room 102 Phone: (415) 961-0378
London, W.C. 2, England JOHN ASHCRAF T \& CO.

12 Bear Street
Leicester Square
Phone: 930-0525
Badhoevedorp, Holland
JOHN ASHCFAFT \& CO
JOHN J. LUCASSEN. Mgr
Sloterweg 303
Phone: 2968-6226
Tokyo 105, Japan
INTERNATIONAL MEDIA
REPRESENTATIVES LTD
2-29, Toranomon 1-chome, Minato-ku Phone: 502-0656

Crack the toughest ghost problems with a Winegard CH-7210 Chromstar VHF-UHF antenna, or the $\mathrm{CH}-4210 \mathrm{VHF}$ model. These "ghost killers" are specially designed, with super sharp directivity and high front-to-back ratio. They reject unwanted "ghost" signals from the sides and rear.

Features include special phasing coupler, rugged construction, and Chromstar line quality, performance and long life. Ideal size for city and suburban installation... even in attics. Ask your Winegard distributor for one of these Winegard antennas and try it on your next problem installation.

Fill your needs from these 3 winning lines from Mallory.

Each of these Mallory lines of components is bubble-packed, easily identified. Almost all feature basic specs and/or instructions on the back of the cards.

Mallory EPC components consist of the most popular products for technicians, hobbyists and audio enthusiasts.

Mallory
PTC semiconductors.

Capactors • Controls • Fastening Devices • Resistors • Security Products • Semiconductors • Solderless Terminals • Switches For More Details Circle (3) on Reply Card

[^0]: heath
 Schlumberger

 ## Order Form/Agreement

 Heath Company, Dept. 555-331
 Benton Harbor, Michigan 49022
 Please send me items checked below and include FREE $\$ 7.95$ value Weller Soldering Iron (GDP-1105).
 \square Send one course (checked below) with the Experimenter/Trainer (ET-3100) at the special price of only $\$ 89.95$ plus $\$ 3.00$ shipping and handling
 $\square D C$ (EE-3101; \square AC (EE-3102) \square Semiconductors (EE-3103) Send me the Electronic Circuits Course (EE-3104) with the Experimenter/Trainer ($\mathrm{ET}-3100$) at the special price of only $\$ 99.95$ plus $\$ 3: 00$ shipping and handling.
 \square Send all four of the courses above (EE-3101, 3102, 3103, 3104) with the Experimenter/Trainer at the special price of just $\$ 199.95$ plus $\$ 4.50$ shipping and handling
 In addition, please send the following courses (less trainer)
 \square DC (EE-3101) $\square A C$ (EE-3102) \square Semiconductors (EE-3103) for just $\$ 39.95$ plus $\$ 1.50$ shipping and handling each
 \square Electronics Circuits (EE-3104) for just $\$ 49.95$ plus $\$ 1.50$ shipping and handling
 \square Send me the Digital Techniques Course (EE-3201) with Its Experimenter/Trainer (ET-3200) for only $\$ 109.95$ plus $\$ 3.00$ shipping and handling.
 \square Also send me that IM-17 VOM kit for just $\$ 32.95$ plus $\$ 1.50$ ship ping and handling
 Michigan residents add 4% sales tax.
 I enclose \square check \square money order tor $\$$ \qquad or, Charge to my \square BankAmericard Acct. No \qquad Exp. Date \square Master Charge Acct. No._Exp. Date_ \square If Master Charge, include Code No.

 Signature: X
 Name (please print)
 ADDRESS
 CITY \qquad - \square Electronic S
 Electronic Servicing ED-105A

[^1]: There is no charge for listing in Reader's Exchange, but we reserve the right to edit all copy. If you can help with a request, write direct to the reader, not to Electronic Servicing.

