(B)

FOR THE ELECTRONIC SERVICE INDUSTRY

GARAGE-DOOR OPENERS—page 12
POCKET-SIZED PORTABLES—page 20
SERVICING PULSE-WIDTH AFC—page 36

IF YOU NEED A BATH

Since you have a service reputation to maintain, IRC exclusive RESISTEG Coating for power wire wound resistors will interest you. Unlike vitreous enamel coatings, the IRC RESISTEG Coating is cured at only $205^{\circ} \mathrm{F}$; and
windings do not shift during the curing cycle, do not tend to arc-over after you've installed them. Furthermore, with IRC you have the assurance of conservative ratings, high stability, and high reliability.

At Raytheon, we test tubes to find out how good they are, not how bad. Accepted methods of testing tubes like the 1B3GT often resulted in subpar tubes. To improve and maintain the quality of Raytheon 1B3GT Tubes, Raytheon developed an expensive but super-accurate method of life testing these tubes.
Tests on the improved Raytheon 1B3GT far exceeded our expectations. Receiver life tests of the Raytheon 1B3GT showed not a single failure at 600 hours. (No worries about early life tube failure here.) At 1850 hours a sensational 93% of these tubes were still operating at rated efficiency in spite of the fact that these sets were operated at 10% above their rated line input and cycled on and off every two hours.

These torturous Raytheon Tube tests not only prove the quality of Raytheon Tubes, they help maintain
that quality. Tubes are constantly checked and tested and any variance in quality is instantly noted and quickly corrected.

That's why you can use Raytheon TV and Radio Tubes with complete confidence in their quality with full knowledge that you are giving your customers tubes that are RIGHT ... for Sound and Sight.

New Raytheon 1G3, 1 J3 and 1K3 Tubes are also subjected to the Raytheon Fly-Back Tests - and as a result meet Raytheon's highest standards of quality. Ask your Raytheon Tube Distributor for them.

RAYTHEON MANUFACTURING COMPANY

Repuration Builder \&6: it pays to be honest about delays

- Break delivery promises . . . and you build business for your competition.

- But . . . keep customers informed of progress and you'll find them with you . . . not against you.

make "on the spot" repairs with Sprague "Universal" Ceramic Capacitors

don't be vague...insist on

- Another way to build and hold a reputation is to insist - on top quality replacement parts. Callbacks due to - replacement failures not only cost you money . . .
- they also cost you customers! Replace with less than the
- best and you place your reputation at stake.
- In capacitors, the best is Sprague.
". "Take "Universal" Ceramic Capacitors, for example.
- "Universals" are capacitor replacement miracles . . - just four of these remarkable capacitors in your - emergency parts kit meet 90% of all ceramic . replacement needs . . . take the place of forty-two - regular capacitors with capacitance values from - $400 \mu \mu \mathrm{~F}$ to $.015 \mu \mathrm{~F}$. Handy reference card packed with - each "Universal"' tells you how to wire the leads to get - the capacitance you need. "Universals" make excellent - replacements for molded mica, ceramic tubular, - ceramic disc, and paper tubular capacitors in many - applications. You can't. afford to be without them. - They're a sure way of keeping your customers happy with quick service!
- Get your copy of Sprague's latest radio and TV - service catalog, C-612. Write Sprague Products Co., - Distributors' Division of Sprague Electric Company, 105 Marshall Street, North Adams, Mass.

SPRAGUE

world's largest capacitor manufacturer

PUBLISHER

 Howard W. Sams GENERAL MANAGER Mal Parks, Jr.
EDITOR

Verne M. Ray
ASSOCIATE EDITORS
Leslie D. Deane Thomas A Lesh Calvin C. Young, Jr. CONSULTING EDITORS
William E. Burke C. P. Oliphant Robert B. Dunham George B. Mann Paul C. Smith
ART DIRECTOR EDITORIAL ASSISTANT Con W. Bradley Judy Ann Hurlay PHOTOGRAPHY CIRCULATION Robert W. Reed Pat Tide

ADVG. PRODUCTION

Carol B. Gadbury
ADVERTISING SALES OFFICES

MIDWESTERN
 PF REPORTER,

2201 East 46th Street, Indianapolis 5, Ind.
Clifford 1.4531 EASTERN
Paul S. Weil and Donald C. Weil,
39-01 Main Street, Flushing 54, New York.
Independence 3-9098. WESTERN
The Mourice A. Kimball Co., Inc.
2550 Beverly Bivd., Los Angeles 57. Calif. Dunkirk 8-6178; and 681 Market Street, San Francisco 5, Calif. EXbrook 2-3365.
Published monthly by Howard W. Sans \& Co., Ine., at Indianapolis 5, Indiana.
Entered as second class matter Oetaber 11,
1954 , at the Post Office at Indianapolis, Indiana, under the Act of March 3, 1879.
Copyright 1958 by Howard W. Sams \& Co.eInc. No part of the PF REPORTER may te raproduced without written permission. No patent licbility is assumed with respect to the use of intormation contained herein.
Subscription prices in U.S.A. and possesstons: 1 yr., $\$ 3.00 ; 2$ yrs., $\$ 5.00 ; 3$ yrs., $\$ 7.00$. In Canada and Pan America: 1 yr., $\$ 3.60$; 2 yrs., $\$ 6.00 ; 3$ yrs., $\$ 8.50$. Foreign subscriptions: 1 yr., $\$ 6.00$; 2 yrs., $\$ 11.00 ; 3$ yrs., $\$ 15.00$. A limited quantity of back issues are availeble of 35 c per cepy.

next month

VERTICAL RETRACE-LINE ELIMINATION

Here's a feature that will help you become a big hit with customers who are troubled with retrace lines across their TV screens.

SERVICING ROOM AIR CONDITIONERS

For those of you who have been doubtful about servicing air conditioners, this article, written by an expert in the field, will provide the basic technical information you need to get started.

TECHNIQUES OF TRANSISTOR

 RADIO SERVICINGWe've learned a lot about the practical servicing of transistorized units in our labs. This knowledge is passed along to you in this timely article. Don't miss this and the many other interesting items scheduled for next month's issue.

VOLUME 8, No. 7 Humirama JULY, 1958

 FOR THE ELEOTRONIC SERVIOE INDUSTRY

CONTENTS

This Month's Cover 58
Letters to the Editor 4
Shop Talk 8
Analyzing modern antenna designs.
Converting to Stereo-Disc Reproduction Calvin C. Young, Jr 10All you need to know to do the job.
Installing Electronic Garage-Door Openers 12A picture story to familiarize you withthe equipment and its installation.
Dollar \& Sense Servicing 16
The FM Signal Thomas A. Lesh 18The upswing in FM broadcast popularitycalls for a thorough subject review.
Pocket-Sized Portables Les Deane 20
An analysis of ' 58 transistor radios.
The Troubleshooter 26
A While-U-Wait Repair Bench .Herb Sulkin 60
Quicker Servicing 30
Pulse-Width Horizontal AFC 36
A feature designed to save you many hours on the bench.
Servicing New Designs 40
Servicing Industrial Electronics 44
How binary circuits are used in decade counters.
Product Report 61
Free Catalog \& Literature Service 64
Supplement to SAMS Master Index 65

SUBJECT REFERENCE INDEX

ANTENNAS
High-gain VHF types,
Finney Model TCR-1 56
JFD "Satellite-Helix" 8
9
Trio "Zephyr" and "Color Roya
58
Winegard "Color 'Ceptor" 30
Shop antenna system
Shop antenna system
AUDIO
Stereo disc recording,
cartridge specifications 10
52
playback equipment 52 52
Westrex 45/45 system 10
32
Turntable re-flocking
BUSINESS
Entering industrial field 16
Naming TV shops 16
Service "specials" 16
CIRCUITS AND DESIGNS
"Delta" sound detector,
General Electric Chassis Q3 40
Eccles-Jordan stages 44
FM auto radio, 42
Lincoln Model 88BH 42
General Electric "Designer" TV . 40

COMPONENTS AND MATERIALS

Newly introduced
61

SERVICING

Bench construction idea.......... 28
Capacitors, checking leakage 32
Christmas-tree effect 38
Fuse blowing 26
Garage-door opener, installing ... 12
Horizontal pulling 27
Hunting in horizontal AFC 38
Overloading 27
Transistor portables,
battery replacement 20
removing case from chassis 22
Tube socket-loose contacts 32
Vertical oscillator drift 26
6SN7GT, replacing with -GTB ... 28

THEORY

Decade counter 45
Frequency modulation 18
Multiplex FM transmissions 48
Pulse-width horizontal AFC 36

Localize troubles in TV, radios, amplifiers, etc., right from the top of the chassis . . . and without making a single direct connection to the circuit! The new Wintronix Model 850 does all this by the modern, easy-to-use Induced Waveform method. Helps you quickly spot those often overlooked tube and circuit defects that mean callbacks or extra troubleshooting.

Simply connect the output of the Model 850 to any 'scope, then slip the Phantom Detector Probe successively over each tube in the receiver under test. By viewing the waveform of the received signal (from b'dcast station or generator) at each stage, you quickly localize troubles to the offending stage. Works equally well for RF, IF, video, sync, and audio circuits. A real time and trouble-saver for portable TV.

See and try the new Wintronix Induced Waveform Analyzer at your local Wintronix dealer or write for free literature.

WINSTOH
 electronics inc.,
 4312 Main St., Phila. 27, Pa.

Dear Editor

I am an independent serviceman's wife and always enjoy your covers. However, if you can supply us with the Philco transistor radio pictured on the May cover for $\$ 19.95$, we'll take several. They happen to list for $\$ 59.95$, and they cost us $\$ 39.30$!

Mrs. Betty LeWarne
Saratoga, Calif.

Dear Editor:

Why was the price on the radio shown on your May cover only $\$ 19.95$? Isn't that a Philco that sells for $\$ 59.95$ retail? It would be nice if good transistorized radios were really that low.

I do no service work in my husband's shop but do enjoy his magazines-pictures and all.

Mrs. Clifford H. Johnson Dodgeville, Wisc.

Leave it to the girls to trip us upguess we just can't fool 'em. Our prop man didn't goof-he was just carried away with the spirit of the occasion. Besides, he didn't think the piggy bank would hold that much.-Ed.

Dear Editor:

Here is something for honest technicians to try in areas where they are plagued with phony ads offering $\$ 1.95$ and $\$ 2.50$ service calls. We "bugged" a set by deliberately burning out a 6J6, and then set up a tape recorder and called in one of the cut-rate tube jockeys. He came in, turned on the set, flipped the channel selector, and then said, "Well, this set will have to go into the shop; it needs a new tuner." He was asked for an estimate, which we have in writing- $\$ 39.50$ plus $\$ 10$ for labor. He was paid $\$ 1.95$ for his call and then was told what we had done. You can guess the rest.

On another set, we burned out the high-voltage fuse and then called in a guy who charges $\$ 2.50$ per home call and guarantees all parts for one year. He removed the back from the set, took out a jumper wire he had rigged, and then remarked, "Yep, just as I thought -your picture tube is burned out." Of course it was, since he had plugged into the AC line and burned it out! He won't be pulling this stunt again for awhile.

Name Withheld by Request
Los Angeles, Calif.
This one speaks for itself.-Ed.

Dear Editor:

We wish to make a field survey of FM reception in our local area. The station signals we wish to check are those from Boston and New York, up to 100 miles away. We plan to use strictly portable equipment, but it must be high-quality so we can check out this territory precisely. Components we intend to use are yagi antennas, a hi-fi FM tuner, a good low-drain audio amplifier, $8^{\prime \prime}$ loudspeaker, a DC-to-AC inverter with wellfiltered output, and 6 -volt storage batteries to furnish power. Having gained

THE RIGHT CARBON CONTROL COMBINATION

There's no fuss, no muss, when it comes to getting the exact carbon control you want - when you ask for Clarostat. You get your choice of shaft - 13 types to select from-and with just a light tap, the shaft is permanently attached. Also, pick your switch, and in a moment you have the exact combination you need. Ask your Clarostat distributor for the new, bigger, 1958 Catalog.

SHAFT

CONTROLS

Series A 47: $1 / 2$-watt, $15 / 6_{6}^{\prime \prime}$ diameter controls. 500 ohms to 10 megohms.

Series A 47F: $1 / 2$-watt, $3 / 16^{\prime \prime}$ diameter controls, with taps located at $30 \%, 50 \%$ or 70% of rotation, depending upon resistance value. 50 K to 3 megohms.

Series AD 47: $1 / 2$-watt, $15 / 16^{\prime \prime}$ diameter dual controls for audio, radio, TV and industrial uses. Various taps available. 50 K to 5 megohms.

SWITCH

Choice of five switch types including SPST and DPST, for various power ratings. UL approved.

"THERE'S ABSOLUTELY NOTHING, MADAME, THAT WILL MAKE ROCK'N ROLL SOUND LIKE RACHMANINOFF."

Right - but a new Webster cartridge will bring out the best in any record. Equally important, there's a Webster replacement cartridge to fit most every model record player and changer. You'll make money on them, too. They're priced right - they're easy to install - there's never a call-back.

BUY WISELY...BUY WEBSTER!

V-8 Plug-in Cartridge -

Ceramic cartridge and needle combination installs as a unit when needles are replaced. Available with a 1-mil and 3-mil sapphire point, or a 1-mil natural diamond and 3-mil sapphire point.

Free-large print of this Lichty cartoon suitable for framing. Write today!

ELECTRONICS
DIVISION
WEBSTER
ELECTRIC RACINE.WIS
much information from your many field surveys in the past, we would appreciate your comments on our plan.
C. C. Pool

Montauk Point, L. I., N. Y.
The job you propose to undertake is no small thing. As you probably realized from studying our UHF field survey reports of a few years back, the reception conditions in any given area can be determined only by a block-to-block coverage of the area to be checked.
In our opinion, you would save a great deal of effort by making a preliminary check of signal strength with a simple rig consisting of a battery operated fieldstrength meter and a portable antenna tower. This test would pinpoint your potential "problem" locations where you would be most interested in making more elaborate checks.

Quite possibly, these final tests could all be made in or near buildings, using regular AC line current. Such checks would be vastly simpler than full-scale field tests. In our UHF surveys, we employed a gasoline-powered AC generator with an output capacity of about 750 watts at 117 VAC. This would supply plenty of power to operate all the necessary gear without special modifications, but its noise level (both electrical and mechanical) might be too high to suit your special needs.-Ed.

Dear Editor:

Some time ago, one of your readers suggested that you publish an article regarding the danger of X-ray radiation from CRT's, and I'm wondering why you haven't done so.

CRT manufacturers state that precautions must be taken whenever high voltage exceeds 16 kv , but they don't say what the precautions are. While I haven't yet encountered voltages higher than 15 kv , I'm afraid that one of these days I will come across a set with voltage up in the danger zone.

Does X-ray radiation originate only from the face of the CRT, or from the envelope as well? Does it also emanate from the chassis?

Gonzalo Esquivel
Miami, Fla.
Most X-rays radiate from the front of the picture tube, where electron bombardment takes place. It also occurs at the high-voltage rectifier because of the amplitude of the pulses applied to its plate.
Judging from all information obtained to the present time, the TV service technician is relatively safe from radiation danger. Scattered cases have been reported where technicians were burned by X-rays, but these have involved daily, continuous exposure to picturetube screens over a long period of time. These cases usually involved direct contact with the screen, such as grasping the front end of the picture tube while making rear-panel adjustments to sets on a production line. On the whole, however, we see no reason for technicians to be unduly alarmed about the amount of X-ray exposure involved in their normal work routine.-Ed.

BEAM CURRENT (MICROAMPERES)

Another positive fact about Du Mont Positive Quality . . You get not only sharper pictures with a Du Mont picture
tube - "blossoming" in picture highlights is minimized - line width is retained, resulting in sharper, clearer
pictures that make and keep customers happy. Always use Du Mont Positive Quality picture tubes and receiving tubes . . .
*Send for your free copy of the
Du Mont Picture Tube Data Chart.

television tube division, allen b. du mont laboratories, inc., 750 bloomfield ave., clifton, N. J.

MILTON S. KIVER

Author of ...
How to Understond and Use TV Test Instruments and Anolyzing ond Trocing TV Circuits

Every television antenna engineer starts with the same basic antenna elements and each is impelled forward in his research toward the same goal, i.e., to develop an array that will work uniformly well over the low and high VHF bands with good directivity and high gain. In the end, there are as many different antenna combinations as there are engineers, and each claims some advantages.

In this, the last of the current series, several popular wide-band antennas will be examined in some detail.

The "Sleeve Dipole"

An interesting approach to wideband antenna design is the JFD Satellite-Helix array shown in Fig. 1. The front-end helix section has already been described in the previous installment of this series; the
back section, consisting of seemingly conventional dipoles (both folded and straight rod) is the part that contains the novel design. To understand the variations in this back section, let us examine the approach followed by JFD engineers.
The basis of the low-band element design stems from what is known as the "sleeve dipole." The sleeve dipole evolves from the ver-tical-whip and ground-plane array, a basic type of communications antenna (see Fig. 2A). In this array, there is considerable inefficiency and narrow bandwidth due to the sharp break between the dipole and the ground plane. In Fig. 2B, the dipole has been broadened and tapered so that there is a more gradual transition between the two. Figs. 2C and D

Fig. 1. JFD "Satellite-Helix" uses "sleeve dipole" to obtain broad-band respanse.
show the evolution to the more familiar type of sleeve dipole.

Letting D equal the diameter of the outer sleeve, and d the diameter of the inner conductor, the ratio D / d is one of the major determining factors in the operation of the unit. The other important factors are the length of the sleeve versus the length of the dipole and the electrical shape of the termination.

As used in the Satellite-Helix antenna, the sleeve dipole varies from the above in several respects. Initially, due to the requirements of television receivers, it is a balanced array. Furthermore, since television signals are horizontally polarized, a complete cylindrical sleeve is not required (see Fig. 3). This has the advantage of being relatively insensitive to polarized waves other than horizontal. Rods "ff" in Fig. 1 form the sleeve around dipoles "bd."

For low-band operation, neither rods "ff" or crossbars "cc" have any effect, and "bdb" acts as a half-wave dipole. However, over the high band, rods "ff" function as a sleeve, and the portion of the low-band dipole included between the "ff" rods is effectively prevented from receiving any incoming signals. Only the portions of the low-band dipole designated "eb" in Fig. 3 are effective in picking up any signals. Both of these sections are essentially onehalf wavelength long on the high band.

At this point, we might pause and note that the sleeve rods "ff" eliminate the central section of the antenna over the high band. Since it is this section which produces the out-of-phase current on the high band, the removal is beneficial.

Crossbars "cc" act as a transitional device between the abrupt termination of the sleeve rods and the exposed ends of the dipole. This is similar in action to the tapered section of the ground plane in Fig. 2B. It tends to extend the bandwidth over which rods "ff" are effective in producing a response pattern with very few side lobes.

The length of rods " ff " is chosen to present a 300 -ohm impedance to feedpoint d. As a matter of fact, the entire enclosure between " ff ",
and "de" acts as an air-dielectric coaxial cable. Sections "be" are active on channels $7-13$ while the lengths of sections "bd" are selected for optimum operation on channels 2-6.

The long rod at the rear of the array in Fig. 1 is a low-band reflector. In front of this is a threesection high-band reflector. Next comes a folded dipole, with an extra center rod to maintain the impedance of this driven element at 300 ohms in the presence of the other elements near it. In front of the folded dipole are two other simple dipoles. All three elements are interconnected and all three are stagger-tuned to slightly different frequencies to provide uniform reception over the low band.

Each driven unit has a short rod in front of it and a short rod behind it, as in Fig. 2, and each possesses a pair of crossbars. Note that each set of crossbars is placed in a different position to provide uniform reception over the high band. In front of the foremost dipole, there is a three-section high-band director and in front of this, a lowband director. Finally, a helix is added to increase further the highband response.

The Wing Dipole

The heart of the Zephyr and Color Royal models, developed by Trio $\mathrm{Mfg}_{\mathrm{g}}$ Co., is the wing dipole. This element was developed from two half-wave dipoles, cross-connected as shown in Fig. 4A so that they are fed 180° out of phase from the same transmission line. The current relationships between the two sections are indicated by the arrows in the illustration. At this phase difference, a bidirectional response pattern will be obtained. Actually, the phase relationship between the two sections may vary from 90° to 180° and give a variety of directional patterns ranging from bidirectional (at 180°) to unidirectional (at 90°). Spacing between the two sections also affects bandwidth and gain; in general, gain is inversely proportional to bandwidth.

The over-all element lengths selected provide three half waves on the high band and one-half wave over the low band (see Fig. 4C). This particular ratio is chosen because it is the general frequency
relationship between the high and low VHF television bands.

The arrangement shown in Fig. 4C will function satisfactorily on one high channel, but it does not possess sufficient bandwidth for broad band operation. The first step toward extending the coverage was to decouple the two sections, as shown in Fig. 5A, where the undriven section is magnetically coupled to the driven section. Spacing between the sections was experimentally determined to be $3.5^{\prime \prime}$, and this is maintained in the final array design.

The next step was to further decouple the two sections to achieve additional gain and improved directivity (see Fig. 5B). In this form, the center decoupled segment was found to serve as a director, and for this purpose it was shortened somewhat. The two enddecoupled segments, by the same token, tend to function as reflectors and are therefore lengthened.

The next problem encountered was the fact that the impedance of the driven array was quite low over the low band range. This was overcome by making it into a folded dipole, of which one section was veered forward (see Fig. 6). The added section improved the directional pattern on the low band and had only a minor effect on the high band.

Actually, in the Zephyr Royal and Color Royal models, the two rear-decoupled reflectors are omitted. This, however, tends to recuce over-all gain by about 2 db . (Ir. some Trio models, these reflector elements are left in; however, over-all gain of the Zephyr and Color Royal models is sufficiently high that omission of the two reflectors is not important.)

With the foregoing as background, the operation of both units is readily understood. The Zephyr Royal, Fig. 7, has three wing dipoles. The shortest one, closest to the front of the antenna structure, is tuned to channel 6 on the low band. The third harmonic of this falls in the neighborhood of channel 13. Note that in this wing dipole (and the others, as well), the forward reflector element is held in position by insulators which keep it physically attached to the active sec-

Fig. 2. "Sleeve-dipole" principle developed from whip-and-ground-plane array.

Fig. 3. Geometric characteristics of, and spacing between, "Satellite" elements.

Fig. 4. Steps used in developing broadtand response for Trio's wing dipole.

Fig. 5. Changing the coupling from physical to magnetic. extends the response.

Fig. 6. Wing dipole in final form. Decoupled reflectors are sometimes omitted.

COLUMBIA CD (Ceramic)
Frequency Response: 30 to $20,000 \mathrm{cps}$; Compliance: $2 \times 10^{-6} \mathrm{~cm} /$ dyne; Tracking force: 5 to 7 grams; Output Voltage: $4 V$ at $1,000 \mathrm{cps}$; Equalization: RIAA; Mounting centers: $7 / 16^{\prime \prime}$ and $1 / 2^{\prime \prime}$; Stylus: 8-mil diamond; Output terminals: three; Channel Isolation: 20 db .

DUOTONE Model GPS 80-1 (Acos Hi -g) Frequency response: 20 to $17,500 \mathrm{cps}$; Compliance: $2 \times 10^{-6} \mathrm{~cm} /$ dyne; Tracking force: 6 grams; Output voltage: 1.7 V ; Equalization: RIAA; Mounting centers: Standard EIA ($1 / 2^{\prime \prime}$ centers); Stylus: 7 mil; Output terminals: three; Channel isolation: 20 db minimum.

ERIE Sterieo (Ceramic)

Frequency response: 30 to $15,000 \mathrm{cps}$; Compliance: $1.7 \times 10^{-6} \mathrm{~cm} /$ dyne; Tracking force: 5 to 6 grams; Output voltage: .4 volts; Equalization: 7 db bass boost at $1,000 \mathrm{cps} ;$ Mounting centers: $1 / 2$ and 7/16 standard; Stylus: 7 mil; Output terminals: three; Channel isolation: 20 db .

GE Model GC-7 (magnetic) Frequency response: 20 to $17,000 \mathrm{cps}$; Compliance: $2 \times 10^{-6} \mathrm{~cm} /$ dyne vertical, $3 \times 10^{-6} \mathrm{~cm} /$ dyne lateral; Tracking force: 3.5 to 7 grams; Output voltage: 6 mv at $5.5 \mathrm{~cm} / \mathrm{sec}$; Equalization: 100 K ohms; Stylus: .7-mil diamond; Output terminals: four; Channel isolation: 20 db .

ASTATIC Model 13 TB (Ceramic) Frequency Response: 30 to $15,000 \mathrm{cps}$; Compliance: $1 \times 10^{-6} \mathrm{~cm} /$ dyne; Tracking force: 5 to 7 grams; Output voltage: .5 V at $1,000 \mathrm{cps}, 5 \mathrm{~cm} / \mathrm{sec}$; Equalization: 2 meg plus cable C; Mounting centers: .437" and .5"; Stylus: . 7 -mil LP and 3-mil 78; Output terminals: four; Channel isolation: about 20 db .

converting to

STEREO-DISO

REPRODUCTION

What is stereo? How is it different from regular hi-fi? Can we play our old records on a stereo player? Can we play the new stereo records on our present hi-fi? When can we get a stereo system? Can we add stereo to our hi-f? If you are a "heads-up" technician and your customers know that you offer service and advice on TV, radio, phonographs and hi-fi, no doubt you have already been plagued with such questions. And quite possibly you have not been able to answer them all to the degree you would have liked.

Stereo Recording Systems

To be able to understand and answer the questions asked of you regarding stereo, you must understand the basic system of recording as applied to stereo discs. At the present time, all stereo records are cut in accordance with the Westrex $45 / 45$ system, although there are other systems under investigation. Undoubtedly, there will be considerably more laboratory work on these other systems, but since the present

ELECTRO-VOICE 26DST (Ceramic) Frequency response: 20-16,000 cps; Compliance: $2 \times 10^{-6} \mathrm{~cm} /$ dyne; Tracking force: 6 grams; Output voltage: .5 V rms (Westrex 1A); Equalization: RIAA; Mounting centers: $1 / 2^{\prime \prime}$ and $7 / 16^{\prime \prime}$; Stylus: .7-mil diamond LP, 3-mil sapphire 78; Output terminals: three; Channel isolation: 20 db .
standards for stereo recording adopted by the recording industry parallel the Westrex system, it will be of primary concern in this discussion.
The first consideration in stereo disc recording is the impression of two separate sound tracks into a single groove. As you know, a conventional LP is a lateral recording; that is, the audio modulation is cut into the record in a side-toside motion, while the vertical cut or depth of the groove is held constant. If you can remember back far enough, you may recall the old drum recording. These were vertical recordings in which the modulation was cut into the drum in an up-and-down or vertical direction; the lateral cut was constant.

If we combine these two recording techniques on a single-groove disc recording, we have the ver-tical-lateral stereo system. However, if the vertical cut is equal to the lateral cut (necessary for true stereo) and the cartridge has sufficient vertical compliance to follow the vertical modulation, the transmission of rumble from the

RONETTE Binofluid (ceramic)
Frequency response: 20 to $15,000 \mathrm{cps}$; Compliance: $3.5 \times 10^{-6} \mathrm{~cm} /$ dyme; Tracking force: 4 to 6 grams; Output voltage: .35 V at 1,000 $\mathrm{cps}, 1 \mathrm{~cm} / \mathrm{sec}$; Equalization: RIAA; Mounting centers: adapter bracket with $1 / 2^{\prime \prime}$ centers; Stylus: .75mil sapphire; Output terminals: three; Channel isolation: 26 to 28 db .

by Calvin C. Young, Jr. Specs on the recording systems and special cartridges, plus amplifier and speaker requirements

turntable becomes a problem.
The Westrex $45 / 45$ system combines the vertical and lateral systems of recording in such a way as to retain the most desirable features of each, while minimizing the undesirable. To understand this system, consider that the instantaneous combination of leftand right-channel input signals can result in any of four separate output signals: left channel signal only, right channel signal only, two signals in phase, and two signals out of phase. Naturally, there will be varying degrees of inphase and out-of-phase conditions because of differences in the input frequencies to each channel.

In the Westrex $45 / 45$ system, these signals produce the cuts shown in Fig. 1. However, the signals are applied to the recording cutter so that in-phase signals produce out-of-phase coil movement and lateral cuts, while out-of-phase signals produce in-phase coil movement and vertical cuts. For random phase differences, a complex groove with both vertical and lateral components will be

SHURE Model M3D (magnetic)
Frequency response: 25 to $15,000 \mathrm{cps}$; Compliance: $2 \times 10^{-6} \mathrm{~cm} /$ dyne; Tracking force: 3 to 6 grams; Output voltage: 5 millivolts at $1,000 \mathrm{cps}$; Equalization: 50,000 ohms; Mounting centers: $1 / 22^{\prime \prime}$; Stylus: .7-mil diamond; Output terminals: four; Channel isolation: 20 db minimum.
recorded. This is possible because of the way in which the coils in the recording head are wound.

Fig. 2 is a drawing of a basic recording head showing the physical relationship between the two drive coils and the cutting stylus. Notice that the two drive coils are mounted at 45° angles from vertical and are attached to the same stylus. This physical relationship is why movement of a single coil causes the stylus to etch one side of the groove at 45° and movement of the other coil causes the stylus to etch the other side of the groove at 45°. If both coils move toward or away from the stylus in unison, the stylus will move up or down. If one coil moves toward the stylus and the other coil moves away, the stylus will move side-to-side, or laterally.

Fig. 3 is a photomicrograph of grooves recorded with a single frequency input signal applied to first one channel and then the other. Notice that one side of the groove on each channel is essen-- Please turn to page 51

SONOTONE Model 8T (ceramic)
Frequency response: 20 to $12,000 \mathrm{cps}$ with roll-off to 20 kc ; Compliance: 2×10^{-6} $\mathrm{cm} / \mathrm{dyne}$; Tracking force: 5 to 7 grams; Output voltage: . 3 V ; Equalization: 1 to 5 megohms; Mounting centers: $1 / 2^{\prime \prime}$ and 7/16"; Stylus: 7 -mil LP and 3 -mil 78 (turnover); Output terminals: three or four; Channel isolation: 20 db .

Fig. 1. Basic record cuts using the Westrex $45 / 45$ system of stereo recording.

Fig. 2. Basic recording head showing coil placement and attachment to stylus.

Fig. 3. Photomicrograph of stereo grooves cut with single modulation frequency. (Courtesy of Westrex Corp.)

Fig. 4. Block diagram comparison between monaural and stereo playback systems.

WEBSTER ELECTRIC SC-1D (ceramic) Frequency response: 30 to $15,000 \mathrm{cps}$; Compliance: $2 \times 10^{-6} \mathrm{~cm} /$ dyne; Tracking force: 5 to 7 grams; Output voltage: .5 V at $1,000 \mathrm{cps}$; Mounting centers: $1 / 2$ " and 7/19"; Stylus: .7-mil diamond or sapphire LP, 3-mil insert for 78; Output terminals: three; Channel isolation: 20 db min.

ELECTRONIC
 GARAGE-DOOR OPENERS

Before you begin an actual installation of a garage-door opener, here are some hints that will save you time and trouble. First of all, almost any dooroperator mechanism has a minimum headroom requirement. By headroom, we mean the space above the high-are point (highest point in the door's travel). Check this clearance and make sure it is sufficient for the unit you plan to use.
The next concern is electric power. The AC circuit into which you connect the operator should be "hot" 24 hours a day to avoid those cases of "hubby" arriving home at midnight and finding he can't open the garage doors.
The third point is to disable the existing door lock, or remove it entirely. It isn't needed, and it may accidentally become locked and prevent the doors from opening. Finally, take time to read and understand the installation instructions provided with the door opener of your choice.

Editor's Note: Alliance and PermaPower units were used in preparing this article. Both were found very satisfactory in the operation of overhead doors of the sectional, curved-track type used in many residential installations.

Alliance Rear-Mounting Bracket

When positioning the "business end" of the operator mechanism, be sure that adequate clearance is allowed to permit the door to be completely raised. (Check positioning with the door open.) The beam or beams to which the operator is

Determining High-Arc Point of Door
Because the operator mechanism is mounted above the door, the high-are point of the door's travel must be determined. A 2' carpenter's level is needed in order to make this check.

Alliance Door Bracket

Mounting the Door End of Operator
Position the end of operator over center of door and directly above the high-arc point. The wooden member on which it mounts should be at least $2^{\prime \prime}$ thick and rigidly fastened to a structural member

Perma-Power Door Bracket

To eliminate binding of the door in the up cycle, the door brackets should be mounted so that the pulling point is as even as possible with the upper pair of door rollers.

Joining Alliance Drawbar and Slide Rail

fastened should be braced to the rafters with a $I^{\prime \prime} \times 6^{\prime \prime}$ board on either side of the operator mounting point. This will distribute the load and prevent overtaxing any one supporting member of the garage roof. Before you attempt to

Securing Perma-Power Motor to Beam locate the correct rear-mounting position for the Alliance unit, the drawbar-and-slider unit must be assembled and attached to the motor. The assembly can then be raised and the correct mounting position marked.

Alliance Operaror-to-Door Connection

The door should be in the down position and the operator at the forward end of its travel before you connect the actuator arm between the door bracket and the operator. The actuator arm must hook on the trolley of the Perma-Power unit in the manner shown; otherwise, the arm will disengage on the first down cycle.

Mount the receiving antenna according to the following rule: If the driveway runs straight into the garage, the length (or broadside) of the antenna should run at right angles to the garage door as shown for the Alliance unit. If the driveway makes a right-angle bend just outside the garage, the broadside position of the antenna should be parallel to the door, as shown for the Perma-Power unit. Do not shorten the antenna or antenna lead on either unit.

Alliance Operator Installation

Perma-Power Operator Installation

Auxiliary Switch Location
An auxiliary switch, which permits the user to open or close the door on entry or exit, should be mounted near the doorway into the house. This is provided so the mechanism can be actuated while the car is gone or without having to wait for transmitter warm-up.

Alliance Transmitting Antenna
There are three possible locations for the transmitting antenna-under the gravel pan behind the front bumper, behind the grille (provided the structure is fairly well open and will not restrict signal radiation), or under the side of the car

Perma-Power Transmitting Antenna

body. Allow at least a $2^{\prime \prime}$ clearance between the antenna and any part of the automobile, but don't allow it to project below the lowest part of the bumper This latter precaution will protect the antenna from low ground obstructions.

Alliance Transmitter Installation

Connecting the Transmitter Button

Adjusting Alliance Clutch

When mounting the transmitter in the engine compartment, keep it as high as possible and away from the fan blades and belt. This will help to insure trou-ble-free operation even in very wet weather. Be sure the power cable is connected to the correct jack. Both 6and 12 -volt jacks are provided for universal application; connecting the cable to the 6 -volt jack on a 12 -volt car will cause damage to the transmitter.

Perma-Power Transmitter Installation

Mounting Transmitter Button

Adjusting Perma-Power Clutch

Adjust the electrical trips on the PermaPower chain until the door opens all the way and just coasts to the complete down position. Moving the electrical trip or "chain dog" toward the trolley allows the door to open more fully. When door travel is correct, install the backstop to insure that the door will stop in case the dog fails to shut the mechanism off in time.

Use Delco Radio Service Parts!

 you'll need for Delco Radio and other radio service work. Delco Radio also provides:

- Wide selection of special application parts - Effective warranty program
- Complete technical training program - Dealer identification signs

Get the facts today on this truly profitable dealer setup, and grow with General Motors!

Avallable everywhere through Electronic Distributors associated with...

回UMS周
vaite watars sxity

DELCO RADIO

 DIVISION OF GENERAL MOTORS, KOKOMO, INDIANA

Special This Week Only. Having a hard time keeping busy during these summer months? If so, you might take a hint from the garages that advertise a special flat-rate charge for some combination of standard maintenance jobs such as brake adjustment and wheel balancing. Applying this idea to the TV field, you could offer to clean a TV chassis and safety glass and check all service adjustments for a fixed fee of $\$ 3.95$ or $\$ 4.95$. At this price, you obviously won't be hauling in big profits; but you'll be building good will and bringing in some cash instead of sitting around waiting for the phone to ring.

You could even make free courtesy calls to those customers on your list who haven't requested service lately. It might be that some of them are ready for a set of rectifiers or a new picture tube, and you could offer to install these at a lower prite during the summer than during the fall rush.

This does not imply that you should follow a regular policy of offering cut-rate labor charges with the object of talking customers into unnecessary service work. To the contrary, this is a suggestion that you try various methods of keeping your work load up to a normal level during slack periods. Special offers should not receive any more advertising promotion that required to fill up the gaps in your schedule; if you get to the point where you have to hire another man to handle the flat-rate calls, it's time to let your offer expire!

$\$ \&$

What's In a Name? Considering that an active imagination and a whimsical sense of humor are (or should be) typical traits of TV technicians, we are surprised that more original and distinctive names are not bestowed on service shops. Actually, most shop names are about as imaginative as the label on a feed sack. They run
the gamut from Aaron's TV to Zilch TV, with occasional titles such as A A Active TV Service (first in the local phone book listing) thrown in for a little variety.
Various other businessmen, such as drive-in restaurant owners, seem to have a knack of thinking up store names that will make the public look, laugh, and remember. How about the "Dizzy Whizz" drive-in of Louisville, or the "MOO-O-O-O-O-O!" dairy bar of Pittsburgh?
We feel sure that there are many shop-owners in the country who have given free rein to their imagination when adopting names for their businesses. How about dropping us a line with your suggestions for catchy names which have been applied to TV-radio service organizations. The most interesting and original will be published in future issues.

Test Your Tact-V. Talk about booby traps! Among the worst ones in the TV field are those simple defects that result from customer meddling or the negligence of some other serviceman. You've undoubtedly run into several such cases yourself. For instance, you may have been called in to service a set with no raster, only to find that the plate cap lead on the 1B3 was put on carelessly and had worked loose. Or maybe you once remedied a case of unstable sync by turning the AGC switch to its correct position.

You can usually find such troubles in a matter of seconds-but how do you handle a call of this type? Should you immediately correct the defect and begin to pack up your tools, perhaps mumbling something about your competitor's sloppy work?

Not if you want to collect your usual fee and leave a satisfied customer! If you're too speedy and make the trouble seem elementary, he will not be in much of a mood to pay you. Once you have
started working on a receiver, it's good business to earn your full price by making a thorough check of set operation.

For instance, check the operation and settings of rear- and front-panel controls. See that the RF and horizontal oscillators are adjusted properly. Add the final touch by wiping off the cabinet and the safety glass. In this way, you convince the customer he is getting his money's worth. Remember, no customer feels like paying a $\$ 5$ or $\$ 6$ service charge for 2 minutes of your time. Save a call-back (or the loss of a customer) by doing a thorough job.

$\$ \&$

Needs of Industry. The industrial electronics field is a world of opportunity for servicemen who are willing to work and study hard.

Let's face facts-it takes a lot of ambition to break into the industrial field. A technician can't expect to go in "cold," but must put in some time on advance study of industrial processes and controls. An independent technician might work out an arrangement whereby he could spend some spare time in a small industrial plant, familiarizing himself with its operation and preparing to take over its electronic maintenance.

Most industrial firms are still handling the bulk of their own service needs, but they would be glad to find outside sources of service in order to promote the growth of the field. Thus, many companies would give their blessings to an independent service contractor entering the businessonce he proved himself to be thoroughly competent. Otherwise, nothing doing! The stakes are too high when the production of an entire factory depends on the proper functioning of electronic gear.

This is a good point to keep in mind when you're just getting started. Don't let your inefficiency or lack of knowledge hold up the works. If you don't feel you can complete the job in a reasonable length of time, let your customer know, or get some help.

The booming industrial field is too vast to be conquered by a broadside assault; however, if you're really interested in some specialized branch of the field, dig in and build yourself a solid background in that specialty. Experience is demanded - and rewarded.

THIS DISPLAY WILL SELL

Get this PA-215 Display Gard FREE from your CBS-Hytron distributor

THE FM SIGNAL

 HOW IT RIDES THE AIR WAVES by Thomas A. LeshHow much do you know about frequency modulation? For instance, can you explain the exact reasons why FM radio is better than AM for hi-fi music broadcasting? Or, do you know what kind of fringe-area performance to expect in FM? A thorough description of the basic properties of the FM signal will provide detailed answers to these and other practical questions.

The simplified waveform drawings in Fig. 1 point out the fundamental difference between amplitude and frequency modulation. In AM, the amplitude of an RF carrier wave is varied continually at an audio-frequency rate, but the carrier frequency itself remains constant. On the other hand, FM is a continual variation of carrier frequency without any change in amplitude. In both AM
and FM, the fluctuations produced in the carrier will range from slight to extreme as the relative amplitude (volume) of the modulating audio signal varies from weak to strong.

Figs. 1B and 1C, respectively, show amplitude and frequency modulation of a carrier by the 1-ke signal in Fig. 1A. A change in the frequency of the modulating signal would cause the number of carrier fluctuations per second to change in both A.M and FM, but the original patterns as seen in Fig. 1 could be restored to view simply by changing the sweep frequency of the scope. However, an amplitude change in the modulating signal would actually alter the shape of the patterns, indicating that the effect of the audio signal on the carrier had been increased or reduced.

Fig. 1. Amplitude and frequency modulation of an RF carrier by l-kc audio signals of two different strengths.

The effect of an increase in audio signal strength (Fig. 1D) is shown in Fig. 1E for amplitude modulation and in Fig. 1F for frequency modulation. Higher peaks and deeper valleys are produced in the AM signal, and more "bunching" and "stretching" of alternate groups of RF cycles is apparent in the FM signal; in other words, both signals undergo wider swings away from the unmodulated condition. There is a limit to the relative audio amplitude which can be permitted in each system, and the maximum level is termed " 100% modulation." This point is reached in AM when the carrier level is reduced to zero at the negative peak of each audio cycle. Any further increase in modulation level results in carrier cutoff and distortion of the modulating signal.
In an FM system, an increase beyond 100% modulation will not result in distortion but will cause the bandwidth of the FM channel to be exceeded. The permissible limit is arbitrarily selected and varies from one FM system to another. A frequency swing of $\pm 75 \mathrm{kc}$ from the unmodulated or "center" frequency is considered 100% modulation in FM radio, but the corresponding figure for TV sound is only $\pm 25 \mathrm{kc}$.
The fact that FM radio and TV sound both have the same upper audio frequency limit of 15,000 cps demonstrates that the bandwidth of an FM system does not directly determine the highest audio frequency that can be transmitted. The ratio between the maximum carrier-frequency swing and the highest reproducible audio

CWW WIHEGARD

Fig. 1. G.E.'s Model 766A has removable plate on one end for replacing batteries.

Although the subject of disassembling a radio may sound rather elementary to the experienced technician, problems are bound to arise when you first encounter certain design features of new pocket-size receivers.

Familiarizing yourself now with the construction of these miniature units will save you embarrassment in front of a customer later on. It will certainly make future troubleshooting jobs on transistor radios much easier and, what's more important, it will also lessen your chances of damaging their delicate cases, components, and wiring.

Most receivers are housed in
small plastic cabinets-some with attached carrying handles. Rough treatment of this assembly (such as prying on a plastic case with a screwdriver, dropping it, or twisting a handle in the wrong direction) will definitely put a crimp in your servicing activities and cause you to lose valuable time in procuring a special replacement for the damaged part.

To aid the technician, set manufacturers and Рнотоғаст folders often make mention of special procedures that must be followed in the disassembly of particular transistor radios. It's advisable to pay special attention to these hints at least until you become better

POCKET.

Getting Familiar with

 '58 Transistor Radios by Les Deaneacquainted with the general construction of transistorized receivers and are accustomed to working with their small, fragile components. An examination of a few of these radios will show you what we mean.

Battery Replacement

Like any other portable equipment, transistor radios often fail due to weak or dead batteries. The first step in servicing, therefore, calls for a battery substitution or a check of the battery voltage under load. In the majority of cases, getting to the battery compartment requires little specialized skill; after all, the units are designed with the idea that the owner should be able to change batteries without difficulty.

Not to go off on a tangent-but do you have change for a buck? No, I don't need it; but you may, when removing a battery panel or rear cover from one of these new portables. It seems that many of them are held in place by a large brass screw having a wide groove in the head known as a coin slot. Actually, it's more desirable to use a coin in this application than an ordinary screw-

Fig. 2. In the Philco Model T-4, the case can be opened by prying out on clip and separating the two individual sections.

Fig. 3. To get at the batteries of the Westinghouse H-655P5, the handle, two screws, and the rear cover must be removed.

SIzED PORTABLES

driver, because the metal of the coin is relatively soft and is less likely to mar the decorative head of the screw. In addition, the blade of a screwdriver will usually be narrower than the slot and will have a tendency to bite into the brass where the corners of the blade make contact.

To give a more vivid picture of what you might run into when replacing or testing batteries, let's take a look at some typical transistor portables. The new General Electric Model shown in Fig. 1 features rechargeable batteries, but will also operate on conventional "AA" cells. To get to the batteries in this outfit, you merely loosen the coin-slotted screw in the end plate near the speaker grille and lift off the plate. The batteries are positioned in a cylindrical holder that runs almost the entire length of the case. The two small cells will fall out when the radio is tilted slightly toward the open end. A "C" clip, shown in Fig. 1, permanently secures the brass screw to the end plate and thus eliminates the chance of mislaying the screw. We will see later how the chassis of this receiver is removed.

In the Philco design pictured in Fig. 2, the batteries are made accessible by prying outward on a small metal clip located on one side of the plastic case and then pulling the back cover up and off. After this operation, the four "AA" cells may be replaced or tested and almost all of the major components on the printed wiring board can be seen.

Some other transistor portables have a slightly different latch style or a hinged rear panel. This hinged back is sometimes spring-loaded and merely snaps open or closed. Leather-type cases often have snap fasteners like those commonly found on clothing.

As can be seen in Fig. 3, disassembly of a late model Westinghouse for battery replacement is a little more complex. In this particular model, the wire carrying handle is removed first by gripping it on both sides and sep-
arating the arms until they are free from the notches in the side of the plastic case. The two brass screws on the back of the set are then removed and the rear cover is lifted off.

After these steps, the battery holder can then be slipped from the front section of the case as shown. One must be careful, however, not to place too much strain on the leads between the chassis and the battery terminals. Note that only the printed wiring side of the chassis is exposed by removal of the rear cover. To do much troubleshooting, the chassis board must be removed from the front section of the case. We will see presently how this is accomplished.

Some units with snap-in type battery holders have special pullout tabs for removing old batteries. An example of this can be seen in Fig. 4, where two short pieces of plastic tape are attached to the battery compartment. When the cells are installed, the tape is mashed down into the four grooved sections, leaving only the ends sticking up as tabs.

The two most popular supply voltages used in transistor portables today are 6 and 9 volts. The 6 -volt supply is usually made up of four $11 / 2$-volt "AA" cells connected in series, while the 9 -volt source is generally derived from a single unit. In a few cases, however, the 9 -volt system is also composed of $11 / 2$-volt cells in series. Other sets employ 4 -, $131 / 2-$, or $22^{1 / 2}$-volt supplies, although these are not as common as the 6 - or 9 volt design.

If you plan on servicing these "personalized" receivers, it's a good idea to stock at least a few of the most popular battery types. In the $11 / 2$-volt line, you may find three different sizes in use-but the one most often encountered will be the small "AA" size (commonly known as penlite) which are approximately $2^{\prime \prime}$ in length and about $1 / 2^{\prime \prime}$ in diameter. When several $11 / 2$-volt cells are used in a series or parallel arrangement, always remember to change the

Fig. 4 Zenith portable incorporates a pull-oul tape for quick removal of the battery cells.

Fig. 5. To temove the chassis of the Royal " 300 ," disassemble the name plate and control knobs

Fig. 6. Westinghouse H-655P5 chassis remov. ed from the front section of its plastic case.

WITH THIS ACME ELECTRIC AUTOMATIC VOLTAGE STABILIZER

If you're harassed with a television or other electronic equipment installation that just won't operate right, chances are that a fluctuating voltage condition exists and prevents tubes and other components from functioning properly.
One sure way of making voltage behave is with the Acme Electric automatic voltage stabilizer. Regardless whether the input voltage ranges from 95 to 130 volts, the output voltage will automatically be corrected to 115 volts $\pm 3 \%$.
Another feature to remember, this unit uses no current unless the TV set is in operation. An automatic relay disconnects primary circuit under "no load" conditions and automatically connects circuit when load is applied to the secondary circuit. Secondary voltage is indicated on voltmeter while unit is in operation. Furnished complete, ready to plug-in. See this Acme Electric Automatic Voltage Stabilizer at your dealer.

ACME ELECTRIC CORPORATION

 94 Water street cuba, new york

Fig. 7. In this G.E. model, the chassis board slides out one end of the metal case. Be sure to use caution when handling its delicate loop stick and speaker leads.
complete set of cells at one time.
For 9 -volt systems, you will find at least six different styles of batteries in wide use. Their sizes and terminal contacts differ, and the units are therefore not interchangeable. It may pay you to contact your local distributor to see exactly what he has to offer in the way of a complete battery replacement line for transistor radios.

Pulling the Chassis

Battery replacement is one thing, but troubleshooting a transistor portable is another. In order to check transistors, measure voltages and resistances, or even for signal tracing, one must remove the chassis-which is usually a small printed-wiring board of very compact design.

Besides nimble fingers and a good deal of patience, you should be equipped with a few tools such as a pair of needle-nose pliers, a set of spin wrenches, a small- and a medium-size screwdriver, a small Phillips screwdriver, and a pair of tweezers. A soldering aid and low-voltage iron will also come in handy.

Suppose you were called upon to service a Zenith Royal " 300 " like the one pictured in Figs. 4 and 5. You would find that the rear cover and carrying handle can be disassembled by removing two brass screws from the back of
the set (see Fig. 4). To pull the chassis, you would proceed to remove the two fairly large Phillipshead screws from inside the battery compartment.

Near the middle of the assembly, next to the tuning capacitor, you'd find a red-colored stud about $1 / 4^{\prime \prime}$ in diameter and almost $1^{\prime \prime}$ long. The stud has a screwdriver slot in the exposed end and can be removed by turning it counterclockwise.

Next, turn the set over and remove the small Phillips-head screw at the top of the front section. This screw holds the front nameplate which covers both control knobs. After removing the plate, pull the tuning and volume control knobs off and lift the chassis out of the case.

It might be well to pause here for a moment and mention the fact that not all transistor portables have knobs of the familiar pushon type. Many of the tuning dials in particular are equipped with a decorative thumb screw which must be completely removed before the knob can be taken off. If you fail to notice this feature before pulling on the knob, you may find yourself holding only part of a knob in your hand.

When servicing the Westinghouse receiver presented in Fig. 3, you must first remove the wire handle and rear cover as previously mentioned. The push-on
type tuning knob should then be removed. Since it is recessed slightly, it may be necessary to insert a loop of string under the knob and pull it up carefully. Proceed by taking out the $1 / 4^{\prime \prime}$ hexhead screw located under the knob; next, turn the entire set over.

As pointed out in Fig. 6, you can then remove the two long hex-head screws from the speaker end of the unit and lift the printed board, sleeve supports, and speaker from the front section of the case. Be sure to note the placement of the rubber support shown in Fig. 6, and all washers and spacers removed during disassembly.
As another example, let's see what's required to remove the chassis of the G. E. Model 766A. In this procedure, we first take off the end panel and unsolder the chassis-to-case lead. (See Fig. 1.) Leave the connection to the panel terminal intact. Referring now to Fig. 7, we next straighten the mounting tab holding the speaker grille to the case and remove the grille by swinging it upward and back toward the end opposite from the tab. By lifting the speaker out of the case, the two speaker leads can then be unsoldered.

After removing the push-on type volume control knob, remove the thumb screw from the center of the tuning shaft and lift off the tuning knob. Under the knob you'll find a small hex-head screw which fastens the case to the chassis. Using a $3 / 16^{\prime \prime}$ spin wrench, remove it. Its mounting hole is pointed out in Fig. 7.

Next, remove the Phillips-head screw that secures the top end-

Fig. 8. Speaker of Silvertone 9202 must be removed to make parts accessible.

SUITS NEED PRESSING-

MERIT DEFLECTION YOKES DO NOT!

Merit deflection yokes are cosine wound TO FORM, not pressed. Pressing can lead to distortion and poor focusing. Pressing after winding frequently causes breakdown.

MERIT COILS AND TRANSFORMERS HAVE "BUILT-IN" ADVANTAGES.

Each Merit yoke is
100% LIVE TESTED
the specs arie the proot
the BEST BUYS are EICD
for COLOR \& Monochrome TV servicing
COLOR
and Monochrome
do to 5 mc lab $\&$ tv 5" OSCILIOSCOPE

$=460$

Factory.
wired
Kit
"

- Features DC Amplifiers!

Flat from DC-4.5 mc, usable to 10 mc VERT. AMPL.: sens. $25 \mathrm{rms} \mathrm{mv} / \mathrm{in}$; input $Z 3$ megs; direct-coupled \& push-puil thruout; K-follower coupling bet. stages; 4 -step freq-compensated attenuator up to 1000:1 SWEEP: perfectly linear 10 up to 1000:1. cap. for range to 1 cDs) presest kV V $\&$ (ext. cap. for range
positions ($30 \& 7875 \mathrm{cps}$) ; pre-set IV V \&
a positions (30 \& 7875 cps); auto. sync. ampl. \& lim. PLUS: direct or cap. coupling; bat. or unbal. inputs; edge-lit engraved lucite graph screen; dimmer; filter; bezel fits std photo equipt. High intensity trace CRT. 0.06 usec rise time. Push-pull hor. ampl., in volt calib, sens. $0.6 \mathrm{rms} \mathrm{mv} / \mathrm{in}$. Built in volt. calib. 2 -axis mod. Sawtooth \& 60 cps outputs. Astig. control. Retrace blank-
ing. Phasing control.

Entirely electronic sweep circuit (no mechanical devices) with accurately-biased increductor for excellent linearity. Extremely flat RF output: new AGC circuit automatically adjusts osc. for max output on each band with min. ampl. variations. Exceptional tuning accuracy: edge-lit hairlines, 6:1 vernier. Swept Osc. Range 3-216 mc in 5 fund. bands. Variable. Marker Range $2-75 \mathrm{mc}$ in 3 fund bands: $60-225 \mathrm{mc}$ on harmonic band. 4.5 mc Xtal Marker Osc xtal supplied. Ext. Marker provision, Sweep Width $0-3 \mathrm{mc}$ lowest max deviation to $0-30$ mc highest max, dev. 2 -way blanking. Narrow range phasing. Attenuators: Marker Size, RF Fine, RF Coarse (4-step decade) Cables: output, 'scope (4-step decade) vertical.

COMPLETE with steel cover and handle. SPEED, ease, unexcelled accuracy \& thoroughness. Tests all receiving tubes (\& Color \& Monochrome pic tubes with adapter). Composite indication of Gm ., Gp \& peak emission. Simultaneous sel of any 1 of 4 combinations of 3 plate voltages, 3 screen voltages, 3 ranges of continuously variable grid voltage (with 5% accurate pot). New series-string voltages: for 600 , 450,300 ma types. Sensitive 200 uá meter. 5 ranges meter sensitivity (1% shunts \& 5% pot). 10 six-position lever switches: free-point connection of each tube pin. 10 pushbuttons: rapid insert of any tube element in leakage test circuit \& speedy sel. of individual sections of multi-section tubes in merit tests. Directreading of inter-element leakage in ohms. New gear-driven rollchart. Checks n-p-n \& p-n-p transistors: separate meter readings of collector leakage current \& Beta using internal dc power supply.

See the 50 Elco models
See stock at your neigh
EICO
Write for
FREE Catalog PF-7
$33-00$ Northern Boulevard, L. I. C. 1, N. Y
plate to the case. With this plate removed, snap out the plastic antenna cover and slide the chassis assembly out the tuning-dial end of the case. The battery end-panel will still be attached to the chassis, but this can be turned and pulled through the case along with the chassis. As the chassis is removed, handle the loop stick with care so as not to break its delicate leads.

Room to Work

The disassembly of these extremely compact receivers will not always end with removal of the chassis. Naturally, most of the parts and printed wiring will be accessible; but in some radios, a portion of the circuitry may still be jammed beneath a speaker, tuning gang, shield, or speakermounting plate. Take, for example, the Silvertone unit pictured in Fig. 8. By removing this chassis, we have exposed the soldered contact side of the board and perhaps some of the components on top, but it's still difficult to trace wiring or apply test instruments because of the speaker's position.

The speaker of the Silvertone may be removed by bending the .22 mfd capacitor (Fig. 8) downward and outward so that you can reach the two Phillips-head screws that hold the speaker frame to the mounting bracket on the chassis. When loosening these two screws, watch how you

Fig. 9. Servicing Emerson Model 888 may require removal of tuning capacitor.
grasp the delicate chassis, for in most cases the screws will be so tight that it may require considerable force at first to break them free. Actually, if you contemplate troubleshooting the chassis, it might not be a bad idea to loosen the speaker-mounting screws while the assembly is still in its case. You might keep this point in mind when servicing any transistor portable. Remember, too, that if one side of the speaker voice coil connects to ground through the mounting frame, a short clip lead must be used from the proper speaker terminal to chassis.

As a second example of additional disassembly that may be required, let's investigate the Emerson model shown in Fig. 9. To service this unit properly, it's necessary to remove not only the speaker but also the tuning capac-

Fig. 10. To give yourself enough room to work on the Motorola Model $6 \times 39 \mathrm{~A}-2$, the large speaker-mounting plate should be separated from the main chassis.
itor. Since about a dozen parts are located underneath the tuning gang, this unit should be separated from the main chassis by removing two small Phillips-head screws from atop the mounting bracket. The tuning capacitor and loop can then be moved out to one side as shown in Fig. 9. To operate the receiver, however, you must install a ground lead between the capacitor and chassis.
Turning now to another disassembly problem often encountered in transistor portables, note the speaker-mounting plate positioned over the entire printedwiring side of the Motorola chassis in Fig. 10. When troubleshooting or replacing chassis components in this set, you may have to remove this panel completely. This is done by using a $3 / 16$ " hex wrench to remove the bandswitch screws and tuning-gang screws identified in Fig. 10. Next, unsolder the speaker voice-coil contact on the opposite side of the board. This is not a lead but a stud-like terminal connected directly between speaker and printed wiring. After the three plate-mounting studs have been unsoldered, the chassis board and tuning gang can be separated from the speaker assembly and moved as far away as the length of the antenna leads will permit.
To operate the receiver in this disassembled condition, you must use clip leads from the chassis to one side of the voice coil and to the tuning-gang frame. Take care in handling the apparatus so as not to break the antenna or tun-ing-gang leads still connected to the printed wiring.
In conclusion, remember that transistor portables are much more fragile than ordinary radio or TV receivers and should therefore be serviced accordingly. Never work with the chassis on a metal bench top or subject the transistors to excessive heat or abnormal voltages. Be extremely cautious when probing, and keep in mind that certain p-n-p type transistors have one of their elements connected to the outer shell -so don't short it out. In general, save yourself trouble by never going any further than absolutely necessary with the unit's disassembly.

No delays! It's always smooth sailing when you use Centralab ceramic capacitor kits. No extra trips to your distributor, no wasted time. The units you need are on hand when you need them.
To keep you on an even keel, these heavy gauge steel kits contain balanced inventories of the most frequently used values. Individual values are prominently and clearly labeled, so you can locate the Hi-Kap you need, instantly. The new rigid plastic package permanently separates and protects the units-yet is easily opened to remove a single capacitor.
So don't be left at sea. Ask your distributor about these four timesaving kits-and while you're at it, be sure to get your free copy of Catalog 30 , listing the full line of Centralab capacitors and other quality components.
FREE: $\$ 4.75$ cabinet ($4^{\prime \prime} \times 77^{\prime \prime} \times 11^{\prime \prime}$) with each kit.
D6K-200 Kit-200 Tubular Ceramic BC Hi-Kaps (27 values) DDK-200 Kit-200 Standard Ceramic Disc Hi-Kaps (31 values) TCK-80 Kit- 80 TC (Temp. Compensating) Hi-Kaps (40 values) HVK-150 Kit-150 High Voltage Disc Hi-Kaps (19 values)
Centralab products are listed in counterfacts, photofacts, and the radio-electronic master.

Vertical Frequency Drift

A General Electric Model 21 C 113 has a stubborn case of vertical rolling. When the set is first turned on, it operates normally for several minutes; then the picture starts to roll. Moving the vertical hold control clockwise to a new setting will lock in the picture for a few more minutes, but the rolling soon starts again. The oscillator eventually gets so far off frequency that the rolling cannot be stopped with the hold control.

I have checked the integrator and replaced the blocking transformer T2, but to no avail. On a previous occasion, I tried several different 6BL7's in the circuit and succeeded in finding one that would lock in the picture permanently. Now I have to replace this tube again, and I feel that it must be possible to remedy this complaint by a production change or some other method more satisfactory than simply trying several different tubes.

Louis J. Markovic
Pittsburgh, Pa.
The only production change we can find listed for this vertical sweep circuit is the addition or removal of a 120 K resistor between $R 81$ and $R 4$. This would affect the range of the hold control, but it wouldn't have much influence on your symptom of frequency drift in the oscillator.
I have one standard recommendation to make in any case of trouble encountered in the "S" liñe chassis used in this receiver: Check all ground connections in the circuit. The riveted ground lugs employed in this chassis are noted for their tendency to make

poor contact. It's a good practice to solder all these lugs securely to the chassis whenever one of these sets comes into your shop.

Some measure of success in curing vertical drift may be obtained by replacing C74 with a .033- or .039-mfd paper capacitor rated at 300 volts or better. The original is a ceramic type which may tend to change value during the warm-up period. Instead of a paper capacitor, various ceramic units with different temperature coefficients could be tried as an experiment. You could also investigate the possibility that C71, C72 or C75 is changing value with heat.

Horizontal Pulling

A Zenith Chassis 17Z30Q has very bad horizontal pulling. Tube substitution hasn't helped. The set receives signals from both a cable system and a UHF translator, and the pulling is much worse in the former case. Our theory is that the horizontal sync pulses are clipped quite badly on a cable system, and that these Zenith sets are extremely sensitive to defects in the sync signal. Are there any changes I can make in the horizontal circuits to remedy this situation?

Incidentally, the vertical sync pulse looks OK when you view it on the CRT by adjusting the vertical hold control.

Wesley Shreeve
St. Johns, Ariz.
Since you say that the vertical pulse looks normal, I have an idea that the signal delivered by the cable is satisfactory. However, it is probably stronger than the translator signal, and this could
account for the fact that it causes worse pulling.

You can make a more accurate check of signal quality by setting up a known good receiver and viewing the waveform at the cathode of the picture tube with a scope. If the signal is normal, the sync pulses will make up about 25% of the total amplitude of the signal at this point.

Also check the corresponding signal in the Zenith set. If the sync pulses are much "stubbier" than in the other set, one or more RF, IF, or video stages are being overloaded. In this event, the first thing to check is the AGC control.

This brings up an interesting point: A 6BU8 is employed as a sync and AGC tube, as described in "AGC Circuits for ${ }^{2} 58 "$ in our April issue. This recentlyintroduced circuit might need some adjustment for better performance in your area-so check the 6BU8 stage thoroughly, using a scope if possible. Be especially on the lookout for excessive bias or signal amplitude at pin 7-either condition could cause the tube to be cut off by each sync pulse, thus causing a loss of sync. You might relieve this situation by slightly reducing the value of R55.

Fuse Resistor Blows

I have an RCA Model 17D8185 (Chassis KCS109C) in which the 5.6 -ohm fusible resistor overheats and opens. I have checked and substituted selenium rectifiers and filter capacitors. The B+ voltage reads 240 volts. Picture and sound are both OK until the resistor burns out. I have tried disconnecting various $\mathrm{B}+$ feed lines, but cannot isolate the trouble.

Frank Szwanek
Mullen, Nebr.
Since $B+$ is down only 20 volts from the normal value of 260 volts, you are apparently not drawing much more current than normal-just enough to cause the fusible resistor to burn out. Therefore, it's understandable that the results of disconnecting different branches of the $B+$ line are inconclusive.
If you have not done so already, be sure to check the 150 -mfd capacitor wired between the fuse resistor and the junction of the two selenium rectifiers.

Check the cathode currents of the sweep output tubes. If either reading is greater than the value given on the schematic (110 ma for the horizontal and 28 ma for the vertical), the increase might be sufficient to cause the resistor to burn out.

Observe the damper circuit carefully for arcing, which could produce an intermittent low-resistance path between $B+$ and ground.

Check plate and screen voltages of all tubes. If any of these are markedly lower than normal, look in the associated circuit for such troubles as leaky bypass capacitors.

Just in case you can find nothing wrong with the set, measure $B+$ current at the output of the filter. If it is well within the rating of the selenium rectifiers, you may be safe in replacing the original fuse resistor with a 5- or 4.7 -ohm unit.

Damper Fuse Goes

Recently, I was called on to repair an RCA Victor Model 21D8588, a nearly new receiver using Chassis KCS108. The fuse in the damper plate circuit was blown, and the 6AU4 damper tube turned out to be shorted. Replacement of the fuse and tube restored normal operation, or so I thought. Trouble is, the fuse keeps on blowing every week or so. I pulled this set into the shop on the second callback and made voltage and waveform checks, but these were all normal according to service information. Before returning the chassis, I put new capacitors in the damper circuit just to be on the safe side, but the fuse went out again.
E. J. Carolan

San Antonio, Texas

Insert an ammeter in series with the 3/10-amp fuse to determine whether the excessive current is continuous or intermittent. A steady current that exceeds the rating of the fuse might indicate a partial short somewhere in the horizontal output circuit, or excessive conduction of the $6 D Q 6 A$ output tube The latter condition could be remedied by adjusting the drive control. You may also need to check the vertical oscillator and the accelerator-grid circuit of the picture tube to be sure they are not causing an abnormally high current drain on the $B+$ boost line.
If the average current through the fuse is well below 3/10 amp, you're stuck with an intermittent, in which case you can't do much except to replace suspected parts one by one and go through "wait-it-out" tests to see if the fuse stops blowing.

'Seesaw" Rolling

Oh, what a headache this problem caused me-and how simple the final solution was! On an Emerson Chassis $120169-\mathrm{B}$, the picture would roll one way for six seconds, lock in for six seconds, and then roll in the other direction for six seconds. I finally discovered that this baffling effect was being produced by the fringe-compensator circuit. The switch had mistakenly been left in the "fringe" position after a previous service call.

Elmer B. Cook

North Highlands, Calif.
The fringe compensator removes noise interference from the signal at the plate of the sync preamplifier. When the control is properly adjusted, the noisesuppressor diode is driven into conduction by all noise pulses which exceed sync-pulse level. In strong-signal areas, the fringe-compensator circuit must be disabled to prevent clipping of the sync pulses.
This strange case of back-and-forth rolling was evidently caused by a sort of "hunting" effect in the fringe compensator. Probably, there was a periodic variation in the height of the vertical sync pulses.

Lack of Width

An RCA Victor Chassis KCS68CB has

insufficient width. I have tried replacing the yoke, horizontal output transformer, linearity coil, and every capacitor between the horizontal oscillator and output stages. By the way, $B+$ voltage is normal.

Leo Martinez
Oakland, Calif.
Width problems in this chassis have caused many headaches for technicians. Here are a few hints pertinent to this circuit:

1. Check the position of the jumper at one end of the width coil. If lug 2 is connected to lug 1 (lower position), more width should be obtained than if lug 2 is connected to lug 3 (upper position). Remove jumper for maximum width.
2. Try several different $6 C D 6$'s in the horizontal output circuit and use the one which yields the most width
3. For positive results in making substitution checks of the two 6W4GT damper tubes, it is necessary to replace both tubes at the same time.
4. The linearity slug and control adjustments will affect width considerably, so it would be worth experimenting to see if you can find settings which will give acceptable linearity, together with sufficient width.

Overloading

I have a Motorola Model 17T22 with an intermittent condition. Symptoms are a loud buzz in the audio and a loss of both vertical and horizontal sync. I can't get much information from voltage readings, because the set begins to function

properly whenever I touch the components with a test probe. Waveforms are distorted everywhere except in the horizontal sweep stages.

Ray's Electronics

Austin, Texas

Your trouble sounds like a first-class case of overloading in the IF or video stages. Try substituting (not just checking) tubes in these circuits; if this doesn't work, then use a source of variable negative bias voltage to clamp the AGC line. Success in clamping may mean that you have AGC trouble. Unfortunately, though, it isn't sure-fire proof as long as you have an intermittent condition.

Your set may be one of those having a three-position area-selector switch; if so, check its setting and state of repair. It must be set in the "Local" position for satisfactory reception of strong signals.

This Motorola receiver has an unusual arrangement in which the cathode circuit of the audio amplifier supplies a $D C$ bias voltage for the grid of the 12BY7 video amplifier. A malfunction of this circuit could produce trouble such as you describe. For example, gas or grid emission in the 12BY7 could induce a flow of negative grid current through the high-resistance grid circuit. This current would tend to reduce the difference between grid and cathode voltages, thus making the 12 BY 7 more sensitive to overloading. Another possibility is an open $10-m f d$ capacitor in the audio amplifier circuit. In this case, the cathode would be left unbypassed and spurious signals could be fed to the grid of the video output tube.

division of G-C TEXTRON INC.
Western Plont: Los Angeles 18 , Calif
Main Plant: ROCKFORD, ILLINOIS, U.S.A.

FREE Informafion About This BUSINESS OPPORTUNITY

key to car radio service market

How many car radios have you serviced lately? Most service operators are missing this tremendous market becmuse they have no regular contact with car oumers!

This VIS-C-ALL Auto-Radio Service Merchandiser literally moves your shop into the gas stations and garages where car owners must go. It multiplies your sales of parts booms your repair volume, too. And without increasing your overhead!

Let us tell you how easy it is to increase your net profit by $\$ 50$ a week. See distributor or write us.
VIS-U-ALL products company 303 Fuller N.E., Grand Rapids 3, Mich.

Radia-TV

Servioe rurzle

1		2			[4	5	5				
			CIICl	CN:				7				8		9
10				11						-1/1)?				
		14		E			12	15	13	13				
16	17		(1) Cl ?											
										- \% 1 \%	CIV)		- ${ }^{\text {cmon }}$	
21		22		$\text { X } 23$					124	24	25		26	
				1							27			
28														
			33		34		30				31	32		
35						,								

ACROSS

DOWN

1. TV circuit that prevents oscillations.
2. Signal-separating process.
3. Width of TV channel in megacycles.
4. Scene on a TV screen.
5. Blank terminal. (abbr.)
6. Regulating tube. (abbr.)
7. Gap-bridging current.
8. Signal of 3.58 mc . (two words)
9. Electronic particle.
10. Picture tube. (abbr.)
11. Grid voltage. (symbol)
12. Beam-deflection device
13. Amplifier in a color set.
14. Circuit protecting component.
15. Property of color.
16. Test instrument. (abbr.)
17. Type of circuit. (abbr.)
18. Signal-pickup device. (abbr.)
19. Grid resistor. (abbr.)

FREE! for regular fhotofact subscribers

Abstract

You get your File Cabinets = REE if you are a regular subscriber to PHOTOFACT Folders and buy all new Sets as issued each month. Your Foiders come to you in special envelopes, each including a "Bonus Certificate." Sixty (60) of these entitle you to a single-drawet File Cabinet. ABSOLLUTELY FREE...

FREE for photofact library purghasers

Get FREE File Cabinets as youl complete your profit-building PHOTOFACT Library. here's how:

FREEI

Single-Drawer File Cabinet with your purchase of 60 Sets of PHOTO. FACT Folders. Cabinet Worth ... $\$ 895$

FREE:

Two single-drewer File Cabinets with sour purchase of 120 Sets of PHOTOFACT Folders. Cabinets Worth $\$ 1790$

FREE
Three single-drawer File Cabinets with youri pire chase of 180 Sets of PHOTOFACT Folders. Cabinets Worth $\$ 2635$ Cabinets Worth $\$ 258$

FREEI

four single-drawer File Cabinets with your purchase of 240 Sets of PHOTOFACT Folders. Cabinets Worth. $\$ 3580 \overline{0}$

WEW EASY-BUY PLAN

It's easy to complete your present PHOTOFACT Library or start a PHOTOFAC Library. Use the EASY-BUY PURCHASE PLAN:

- NO INTEREST
- NO CARRYING CHARGE
- as little as \$10 DOWN
- UP TO 24 mONTHS TO PAY

Get the world's finest TV-Radio Service Data. get FREE File Cabinets with your PHOTOFAACT purchases...take advantage of the Easy-Buy Plan. See your Sams Distributpor today, or write to Howard W: Sams for füll details.

HOWARD W. SAMS \& CO.,INC. 2201 E. 46th St., Indianapolis 5, Indiana

[^0]\square I'm a Service Technician: \square full time; \square part time My Distributor is

Shop Name:
Attn.
\qquad State

Antenna System for the Shop

A suitable antenna system is a must for the professional service shop. Sets must be tested on all channels received in a particular locale before they can be considered repaired. If your antenna system doesn't provide a nearperfect signal on every channel in your area, you should seriously consider bringing it up to "snuff." A study of the two systems outlined in this column should provide you with the data necessary for such upgrading.
The location of your shop with respect to the transmitting towers of the TV stations received is the first consideration. Whether your shop location is subject to electrical interferences such as ignition, appliance, diathermy, ghosts and co-channel is another factor. In fact, these two points will determine whether you need a complex system complete with booster amplifier, or a simple system using only a multiset coupler.
If your shop is located in a class-A signal area, and isn't subject to interference problems, the simple system (Fig. 1.) should be satisfactory. The antenna you select should be one that you know gives good results in your area. If there are several stations

Fig. 2. Shop antenna system for weak signal areas where noise level is high.
to be received, a rotator should be employed in conjunction with a high-gain, directional, all-channel antenna. Another alternative is to use a separate antenna for each channel with suitable antenna couplers. In any case, be sure that adequate lightning protection is provided.
The down lead should be kept as short as possible-not to exceed 75'. This will prevent excessive line losses and pickup of interfering signals. The individual feeders from the multiset coupler should be approximately equal in length, and should not be over 25^{\prime} long. These feeders should be supported with stand-off insulators and terminated with outlet plugs.
If your shop is located in an area where the signal strength is poor or where the interference pickup is excessive, you need something on the order of the more complex system shown in Fig. 2. Again, the antenna you select should be one you know gives good performance in your area. This is an even more important consideration than in a good signal area because the signal level at the antenna terminals is going to be a big factor in determining the signal-to-noise ratio of the entire system.
Mount the booster amplifier on the mast as close to the antenna as possible so that signal loss in the line ahead of the booster will be

COAXIAL
CABLE 72Ω

Fig. 1. Shop antenna system for strong signal areas where noise level is low. minimized. The down lead from the booster should be 72 -ohm coaxial line to prevent noise pickup, and to simplify the job of providing multiple outlets in the shop. Suitable booster amplifiers, tap-off units and 72 - to 300 -ohm matching units that can be used to assemble the system shown in Fig. 2 are readily available through most electronic parts distributors.
If your shop engages in selling TV receivers, as well as servicing them, don't forget to include a number of well-placed outlets in the sales area. Nothing discourages a sale quicker than a poor picture on a set.
A single all-channel antenna, booster amplifier, 150^{\prime} of coaxial cable, five tap-off units and five 72 - to $300-\mathrm{ohm}$ matching units should cost about $\$ 100$. This cost can be listed as a business expense for income tax purposes. In addition, you will find a reduction in the service and testing time needed on many repair jobs.

Re-Flock Old Turntables

Remember that "dog-eared" turntable on the changer you serviced last week? From now on,

BUSS FUSES

can help protect your reputation for sales and service

When you sell or install BUSS fuses - you help avoid 'kicks' or complaints from customers that the fuses you furnish fail to protect when trouble occurs - or that the fuses blow needlessly.

BUSS fuses provide dependable electrical protection under all service conditions because . . . every BUSS fuse is tested in a sensitive
electronic device that automatically rejects any fuse not correctly calibrated, properly constructed and right in all physical dimensions.

Why take a chance with your good name by furnishing fuses that might be faulty? Standardize on genuine BUSS fuses. They protect your profits and reputation.

To meet service needs . . . there's a complete line of BUSS fuses, plus a companion line of fuse clips, blocks and holders.

For more information on BUSS and FUSETRON Small Dimension fuses and fuseholders, write for bulletin SFB.

BUSSMANN MFG. DIVISION
McGrau-Edison Company
University of Jefferson, St. Louis 7, Mo.

Pare Riee's

OFFICIAL PRICING DIGEST

Flat rate and hourly service charges, based on and show. ing regional and national averages, plus up-to-date list or resale prices on over 63,000 components. Arranged alphabetically by manufacturers and products, numerically by part number. Compact, convenient size fits in tube caddy, toolbox or pocket. $\$ 2.50$ per copy from your distributor.

ELEGTROMIC PUBLISHING GOMPANY, INC. 180 N. WACKER DRIVE, CHICAGO 6, ILL.
this condition presents you with a first-class opportunity to make a profitable service sale. "New Flock," a plastic-backed turntable mat made by Colman Tool \& Machine Co., can be installed in a few minutes, and presents a like-new professional appearance. "New Flock" (Fig. 3) is available in $8^{\prime \prime}, 9^{\prime \prime}, 91 / 2^{\prime \prime}, 10^{\prime \prime}, 12^{\prime \prime}$ and $16^{\prime \prime}$ diameters, and is supplied with a suitable adhesive to secure the new mat to the turntable. The old flocking must first be removed, a job easily done with a sharp putty knife. Do not remove the flocking from the perimeter edge of the turntable, since the new mat covers only the top-unless, of course, you want to paint the side of the turntable. This will take a little longer, but makes a betterappearing job.

Checking Capacitors for Leakage

The easiest way to check a paper tubular capacitor for leakage is to disconnect one end from the circuit (the one closest to ground potential) and insert a VTVM across the broken connection as shown in Fig. 4. A DC voltage reading is an indication of leakage current through the capacitor and is sufficient reason for replacement of the component.
Electrolytic capacitors require a different type of test because they normally pass a certain amount of leakage current. If abnormally high leakage is suspected, it is advisable to measure the actual current by inserting a milliammeter in series with one lead of the unit. Generally, a new electrolytic should not pass more than a few milliamperes unless it is a high-capacitance, high-voltage type; in that case, current up to about 10 ma may be acceptable. To determine whether the leakage current of a new DC dry electrolytic capacitor is within safe limits, you can apply the following formula recommended by EIA:

$$
\mathrm{I}_{\max }(\text { in ma })=\mathrm{kC}+0.3
$$

where $\mathrm{C}=$ capacitance in mfd and $\mathrm{K}=$ constant given in table.

$$
\begin{array}{cl}
\text { DC working voltage } & \mathbf{k} \\
3 \text { to } 100 & .01 \\
101-250 & .02 \\
251-350 & .025 \\
351-450 & .04
\end{array}
$$

Fig. 3. "New Flock" plastic-backed turntable mat is easily and quickly applied.

Sample problem: What is $I_{\max }$ for a capacitor rated at 100 mfd and 150 WVDC?

$$
\begin{aligned}
\mathrm{I}_{\max } & =.02 \times 100+0.3 \\
& =2+0.3 \\
& =2.3 \mathrm{ma} .
\end{aligned}
$$

Before making the current measurement, be sure to apply rated voltage across the capacitor for about 5 minutes to allow it to "form." If this is not done, a high, misleading reading will be obtained.

Noisy Operation in Portable TV

Recently a customer called to have a $14^{\prime \prime}$ portable TV repaired so it could be taken to an aged relative out of the state. The customer carefully explained that she wanted to make sure the set was in good shape because it was difficult to obtain service in the small town where the relative lived.
It was thus felt that the necessary tests could not be made in the home, so the receiver was taken into the shop. All tubes were tested in a high-quality tester and four were replaced. Next, the operation of each control was checked. The only discrepancy was that the vertical hold control would not roll the picture in both directions. Replacement of an .002 disc capacitor in the vertical oscillator circuit, and cleaning the hold control

Fig. 4. Setup for testing paper capacitors for leakage uses VTVM and B+ source.

BELDEN 8275 CELLULINE. LEAD-IN

U. S. PATENT NO. 2,782,251 AND CANADIAN

PATENT NO. 516,068 AND FURTHER
U. S. AND CANADIAN APPLICATIONS PENDING

This heavy wall of brown virgin polyethylene protects the cable against mechanical abuse and damage from
Lead-In Wire for Every Need

- . For Standard Installations

300 OHM

- 8225

For standard installations where strength is required

WELDOHM
-8230
Belden Weldohm Transmission Line withstands $21 / 2$ times the abuse of all copper cable

The lead-in with proved superiority for VHF \& UHF

With Patented Belden Celluline, lowest possible losses are assured because each separate cell of the cellular plastic core is filled with sealed-in inert gas. Absolutely waterproof, no end sealing necessary. Thick outer wall protects cable from abrasion and sun damage. Non-kinking.

Weldohm conductor has great strength -long life. Stripping is simplified for fast installation.

- . But for the good jobs where the situation
is critical-use 8275
Specify Belden Rotor Cables Every type-Round and Flat

CELLULINE. LEAD-IN

Magnet Wire - Lead Wire - Power Supply Cords, Cord Sets and Portable Cord - Aircraft Wires Welding Cable - Electrical Household Cords - Electronic Wires - Automotive Wire and Cable

SUMMER vifi SPECIAL!

Or buy 4 and receive 2 free with an extra "special" discount! Under either plan, you can't afford to miss the extra profits of this "Summer Vi-Fi Special"!
$\mathrm{Vi}-\mathrm{Fi}$ is the only indoor antenna that has the modern, slim lines of the new tv sets. Vi-Fi is the only indoor antenna with transformer coupling and variable inductors for sharp pictures. Vi-Fi is always a good buy; this "Summer Special" makes it the biggest antenna bargain ever!

Your Authorized amphenol Distributor has all the details. See him right now!

${ }^{w}$ BIGGEST antenna

 BARGAH EVER!
SEE YOUR

"SNOW WHITE" LINT-FREE GARMENTS like the inspector's coat in this picture, are worn throughout General Electric's tube factories. Banning lint and dust helps prevent tube short-circuits . . . is one more reason why G-E Service-Designed Tubes (listed below) outperform all others!

183-GT	6AF4	6BG6.GA	6BX7-6T	6SN7-6T8
133	6AF4-A	6BK7-B	$6 \mathrm{BZ7}$	12SN7-GTA
1X2-A/B	6AL5	6806-GA/6CU6	6CB6/A	25Ba6-GA/25Cu6
5U4-GB	6AV5-GA	6B06-GTB	6CD6-GA	25Ba6-GTB
5Y3-GT	6AX4-GT	6Ba7-A	6.6	25CD6-GB

Easy to see, in G-E Service-Designed Tubes ... high-precision workmanship!

What you're looking at is a comparator-or industrial "magic lantern"-which shows the plate of a General Electric Service-Designed 6BQ7-A magnified in area 1,600 times.

The G-E inspector is checking close-to-perfect workmanship. Remember, the plate itself is less than $1 / 2$ inch wide and long! Yet symmetry of structure is apparent; so are the plate's clean, precise outlines. Tolerances of this part are held to a few thousandths of an inch.

General Electric Service-Designed Tubes do a superior job in television sets because they're
far better designed and built. High-precision manufacture such as you see above-of plates, cathodes, heaters, grids-pays off for you in fewer customer complaints and callbacks.

Best news of all: Service-Designed Tubes cost you no more! Your G-E tube distributor has them. Phone him today! Distributor Sales, Electronic Components Division, General Electric Company, Owensboro, Kentucky.

Progress Is Our Most Important Product GENERAL
ELECTRIC

PULSE = WIDTH HORIZONTAL AFC

Theory combined with Servicing Hints to Save Troubleshooting Time

Fig. 1. Schematic of popular pulse-width AFC and oscillator circuit.

What can cause squealing,squegging, pie crusting, and Christmas treeing?
Answer: One often-overlooked stage-horizontal AFC!
Fig. 1 is a schematic of a pulsewidth system typical of many now found in the field. Some other circuits of this type (especially the newer versions) are simpler in design, but operate on the same principle. In normal operation, two different signals meet at the grid of the AFC tube-the horizontal sync pulses (Fig. 2A) and a sawtooth wave fed back from the horizontal oscillator or sweep circuit (Fig. $2 \mathrm{~B})$. When the oscillator is running at the correct frequency, the signals combine as shown in Fig. 2 C . Note that the pulses neatly

(A) Sync pulses.
straddle the positive peaks of the sawtooth, with the leading edge resting firmly on the positive-going slope and the trailing edge sliding down the steep negative slope.

When the horizontal oscillator slows down, the sawtooth lags behind the pulse signal so that the pulse occurs slightly before the sawtooth reaches its peak. The pulse therefore gets a firmer footing on the positive slope of the sawtooth; that is, only a relatively small proportion of the total width of the pulse drops down the negative slope. The broader-than-normal pulse that remains on the peak of the sawtooth serves to reduce the bias on the AFC tube, and the tube conducts more heav-

(B) Feedback sawtooth.
ily, thus causing the voltage across R6 in the cathode circuit to shift in a positive direction. This voltage change is passed along through R7 to the oscillator grid, forcing the oscillator to speed up.

Now suppose the oscillator tries to run at too high a frequency. The sawtooth begins to lead the pulse signal, and has already reached its peak and is starting the steep downward slope by the time the pulse arrives. Then the pulse "loses its footing" and most of it falls down the negative slope; only a relatively narrow pulse stays up on top of the peak. This increases the grid bias on the AFC tube and slows down the oscillator.

A seemingly slight defect in this circuit can cause a loss of sync that cannot be corrected by adjusting the horizontal hold control. Result-a service call. Mild cases of trouble usually produce twitching and tearing of the picture, while more severe defects are associated with the familiar pattern of slanting black bars. A less common symptom of sync loss (Fig. 3) is an out-of-phase condition in which the horizontal blanking bar appears in the middle of the screen and shifts back and forth.
There are so many possible reasons for loss of horizontal sync that a methodical troubleshooting procedure is a "must" for curing

(C) Combination of A and B .

Fig. 2. Waveforms in AFC grid circuit.
it. If changing tubes doesn't help the situation, the hold control should be turned slowly through its range and the effect observed; in addition, alignment adjustments B1 through B3 should be performed according to the instructions in the associated service data. These adjustments may be sufficient to restore the oscillator to such a condition that the AFC circuit can keep it on the right frequency. But check to see if any adjustments have to be set outside the middle third of their range to lock in the picture, or if frequency drift occurs. If so, the circuit is still not operating properly.

Disconnect the AFC circuit from the oscillator and see if the latter can be momentarily synchronized by adjustment of B 1 over the middle portion of its range. If not, check for a trouble such as a change in value of C7 or C8 which would throw the oscillator off frequency-or for any defects which could cause unstable operation. Watch for intermittent troubles! If the oscillator seems OK, check the AFC circuit.

Using Test Equipment

What will a scope tell you about AFC operation? Quite a lot, if you're careful when checking the waveform at the grid. The scope will load this circuit even if a lowcapacitance probe is used, but you can temporarily readjust the horizontal frequency slug to sync the picture while you are watching the signal. The grid waveform should look like Fig. 2C and should have an amplitude of about 35 volts peak-to-peak. Adjustment of trimmer B2 will have some effect on waveform height. If the sync pulses are missing, perhaps coupling capacitor C1 is open; if they are distorted, the sync section of the receiver may be at fault. Similarly, a loss of the sawtooth wave might indicate that C2 is open, and distortion of the sawtooth might mean trouble in the oscillator or output stages.

As for the plate and cathode waveforms, the presence of any signal more than a few volts in amplitude means trouble. A small amount of $B+$ ripple and verticalpulse signal is normally present, but all other signals are supposed to be removed by bypass capacitors C4 and C5. When C4 opens,
horizontal pulses as high as 80 volts peak-to-peak will appear in the plate circuit; and when C5 opens, degeneration takes place and a signal resembling Fig. 2C appears at the cathode. An open condition in either capacitor will usually unbalance the AFC circuit enough to cause loss of sync.

The word of the scope isn't always final in this circuit. Some defects upset the DC voltages in the circuit without greatly distorting the signal waveforms, requiring the use of a VTVM to find the trouble. For instance, a slight leak in coupling capacitor C 1 or C 2 will let the input signals pass through normally, but it will also provide a leakage path to the plate circuit of the sync amplifier or horizontal oscillator and from there to $\mathrm{B}+$. AFC grid voltage then becomes less negative than the normal -20 to -30 volts. This causes the tube to develop too much control voltage, throwing the oscillator off frequency.

Two voltages of opposite polarity are developed across R6-a positive one produced by the cathode current of the AFC tube, and a negative one furnished by the grid-leak bias circuit of the oscillator tube (C7, R7 and R6). These combined voltages determine the bias levels of both the AFC and oscillator stages. If the resultant voltage across R6 is more positive than normal, this is either an indication of insufficient grid-leak bias on the oscillator, or of excessive AFC cathode current. A more negative voltage than normal indicates too much grid-leak bias or not enough conduction of the AFC tube.

Although the voltage present at the top of R6 is not usually given in service data, a normal reading at the cathode of the AFC tube usually indicates that the voltage across R6 is also normal-barring certain conditions such as an incorrect value of R6 or R5. AFC cathode voltage is in the order of -5 volts when an input signal is present.

The plate voltage normally varies from about 110 to 210 volts according to the hold control setting, so it is not too reliable as a trouble indicator. On the other hand, grid and cathode voltages in a defective AFC stage will often be different enough from the normal values to

Fig. 3. This out-of-phase condition is due to improper horizontal AFC control.

(A) Appearance of picture.

(B) AFC grid waveform.

Fig. 4. Horizontal oscillator operating at about 25 kc produces these symptoms.

(A) Foldover in raster.

(B) Oscillator plate waveform.

Fig. 5. Severe foldover such as this can be caused by improper AFC operation.
give valuable clues which may lead you to the source of trouble. For example, an open condition in C5 will cause degeneration which reduces the cathode current of the AFC tube. This action lowers the cathode voltage - in some cases, down to as low as -20 volts.

If out-of-tolerance VTVM readings cannot be corrected by replacement of tubes and suspected capacitors, you should consider the possibility of a change in value of some resistor in the circuit. Ohmmeter checks of individual resistors should be made in the part
of the circuit where voltages seem most abnormal. Note that some AFC resistors are special types; replacements for these should have the correct tolerance and wattage ratings.

Special Troubles

Oscillator Far Off Frequency

Fig. 4A illustrates what happens to the picture when the horizontal oscillator gets out of control and runs at nearly double the correct frequency. The AFC grid waveform (Fig. 4B) contains almost two full cycles of sawtooth for each

The D.600 ELECTROLYtic substitute is designed to shunt test all electrolytic capacitors. A new, unique circuit allows the test to be accomplished without the charging surge, which often heals the defective electrolytic
temporarily- thus destroying the test. Two ranges ($10-40$ MFD-450 V) (50 MFD up450 V) provides test substitutes for all electrolytic capacitors; no surge switching; features neon indicator and special thumb switch.

Utilizing a sensltive, relaxation oscillator principle, the D-400 HI LEAK ANALYZER Probe is designed to quick-check capacitors for any condition of leakage or for an open circuit.
Testing is accomplished by application of 100 volts D.C. to insure accurate and sensitive measurements. A built-in indicator makes the D-400 completely portable-just plug-in to any A.C. line and use.

Tests leakage up to 500 megohms; tests capacitors for open circuit condition; tests leakage up to 500 megohms between cathode and filament of tubes.

The D-700 SYNC MASTER is designed expressly for all video, sync, sweep, and audio signal tracing. The SYNC MASTER may be matched to ANY oscilloscope-using only TV signals-by means of two built-in calibrating controls-low and high frequency compensation.
Signal tracing accompllshed without frequency discrimination and with minimum loading; ideal for setting synchroguide waveforms; adds frequency compensation and step attenuation ($\mathrm{X} 10, \mathrm{X} 100$) to scopes not having this facility.
Hi Leak Analyzer

DOSS
ELECTRONIC RESEARCH
Also Manufacturers of the
D. 100 Sweep © Analyzer

D-200 Q'ides ${ }^{7}$ Master
D-500 Slave Oseillator 820 baltimore
KANSAS CITY 5, MISSOURI ADVANCED Techniques of TV Troubleshooting

ORDER NOW instruments: me af once, the following \square D-700 Sync Master $\$ 10.95 \square$ D-400 Hi Leak Analyzer $\$ 12.95$ Name Co.

Address

- Co.

My Distributor

City-_ State
Note: Your Purchase will be credited to the abave distributar (we cannot ship your instruments unless you specify your distributar). DOSS ELECTRONIC RESEARCH - 820 Baltimore, Kansas City 5, Missouri
sync pulse. The basic cause of this trouble is that the oscillator grid voltage is too positive and the oscillator is being triggered too rapidly.

The most probable defect in this case is leakage in one of two capacitors. If C7 is leaky, electrons escape into the plate circuit of the oscillator and the grid-leak bias on the oscillator grid is reduced. Leakage in C3 reduces the grid-to-cathode voltage of the AFC tube by placing a shunt across $R 4$, and then the AFC tube conducts too hard and produces too much positive control voltage across R6. Fairly severe leakage in C1 or C2 could produce a similar symptom.

Related to the trouble shown in Fig. 4A is squegging or Christmas tree effect, which is a pulsing of the oscillator at a random frequency, accompanied by coarse irregular horizontal lines on the screen and bursts of squealing from the flyback.

One difficulty connected with AFC servicing is that the same defect doesn't always produce the same symptom. For example, leakage in C 2 once produced the unusual effect shown in Fig. 5A. Severe foldover in the center of the raster corresponded to a deep notch in the positive slope of the sawtooth wave (Fig. 5B). When circuit alignment was attempted, the symptoms in Fig. 4 appeared. AFC grid voltage turned out to be +33 volts.

Hunting

C6 and R8 are an anti-hunt network which prevents the AFC circuit from reacting too quickly to changes in its input signal. Without this network, the AFC overcontrols the oscillator-like a nervous driver who is constantly making small steering corrections. As a result, oscillator frequency never stabilizes, and the horizontal lines in the picture are not all the same length.

A very characteristic rippled effect called pie crust then appears. Usually it's most noticeable near the top of the picture, but it may affect the whole image. Here, at last, is one horizontal AFC defect that doesn't require much troubleshooting. Replace C6 and R8, and chances are that the wrinkles in the picture (and those on your brow, too) will be ironed out.

WESTINGHOUSE HELPS TV SERVICEMEN ＂GET A FAIR SHAKE！＂

ルレルと

＂Build Consumer Confidence＂Promotion

Today most people are unaware of the buy they get in TV and radio service．Now，Westinghouse helps you edu－ cate them with a program designed to win you friends and influence sales！You get a complete kit free！Keystone of the promotion is the mailing piece shown left．It describes how many hundreds of parts there are to check ．．．how much knowledge it takes to be a serviceman ．．．equipment costs ．．．etc．It shows how TV servicemen，like doc－ tors and lawyers，constantly study to keep up with advances．In addition you get window displays， streamers，everything you need－all free！Don＇t wait，put this promotion to work for you now ．．． CALL YOUR WESTINGHOUSE DISTRIBUTOR

TV On the Half Shell

Some of the styling features in the newest TV sets, while admittedly designed for attractiveness, also succeed in making the sets easier to service. A case in point is the new General Electric "Designer" series introduced this spring, which have cabinets less than $8^{\prime \prime}$ in depth to create an illusion of extreme shallowness. The neck of the 110° picture tube and a good part of the chassis naturally extend beyond the back edge of the cabinet, but these are neatly encased by a deeply-contoured metal cover. Because of the "closely-tailored" shape of this cover, the full depth of the receiver is not noticeable from the front. At first glance, the receiver has the startling appearance of being about the same size and shape as a small suitcase.
As seen in Fig. 1, the receiver typifies an interesting trend in
chassis layout. These days, it's getting more and more difficult to classify TV chassis into clear-cut "horizontal" and "vertical" types. The M4 chassis in the new GE set has both horizontally- and vertically-mounted printed wiring boards. These are mounted on a frame which is basically horizontal in layout, but which has a large section at one side that juts upward and forward in a sort of L shape to support the tuner and operating controls. Since a power transformer is mounted near the bottom, the chassis has a low center of gravity and is not likely to tip over during bench servicing.

Shallow-cabinet construction is to the technician's advantage because most of the chassis parts are accessible after removal of the back. For tuner servicing or extensive repairs, the cabinet can be removed from the chassis by taking out 4 or 5 screws (depending
on model) underneath the receiver and one at the left of the tuner. The picture tube remains attached to the cabinet.

Caution: Before removing the back, pull up the built-in antenna rods until they can be swiveled. Also, when disassembling this receiver, unsolder the speaker leads. This is easily accomplished at the terminal board adjacent to the audio output transformer.

New FM Sound Detector

Another new General Electric chassis, the Q3 used in $14^{\prime \prime}$ portables, is equipped with an ingenious "Delta" sound detector circuit using a 3AV6 dual-diode/ triode. The FM sound signal is demodulated in this circuit by a simple, well-known process called slope detection. Although this system has seldom been applied to commercial circuits in the past because of its poor ability to reject AM noise interference, the "Delta" design has made the slope detector practical by coupling it with an efficient noise-suppression circuit.
Fig. 2 is a schematic of the detector stage. Let's study the operation of the slope detector and then turn our attention to the noise-rejecting circuitry.

A frequency-modulated $4.5-\mathrm{mc}$ signal, fed into the secondary of T1 from the sound IF stage, is developed across C 2 and then coupled through C3 to the grid circuit of the 3AV6 triode section. The tuned circuit at this point (L1, C4 and R4) develops the actual driving signal for the grid. This circuit is not tuned exactly to 4.5 mc as in most sound detectors, but to 4.563

Fig. 1. In new General Electric "Designer" series, most of chossis is exposed when curved back cover is removed.

Fig. 2. "Delta" sound detector circuit of latest GE 14" portable TV sets works on the slope-detection principle.

Fig. 3. Frequency response curves of tuned circuits used in sound detectors.
part of the signal will cause diode conduction. This loads down the output circuit of the sound IF tube and tends to swamp out or "compress" amplitude modulation, especially on the positive side of the signal envelope.
For vertical sync pulses and other interference which may be too strong to be removed by this process of AM compression, a noise-cancellation feature comes into play. Any extremely positive swing of the input signal causes heavy conduction of the diodes, thereby developing a negative
pulse across the diode-load circuit composed of R3 and the series combination C1-R1. The portion developed across R1 is fed to the plate detector, where it cancels out the undesired AM pulse. This cancellation takes place in the plate circuit of the detector.

R1 should be adjusted for maxinum cancellation. To do so, tune in the noisiest signal available and adjust the fine tuning control for maximum sound amplitude, where sound interference appears in the picture. This will emphasize buzz and noise in the sound, making
mc. The result is shown in Fig. 3. Although tuned-circuit response in other sound detectors falls off symmetrically on each side of 4.5 mc , the entire bandpass of the sound IF signal will fall on one slope of the "Delta" tuned circuit's response curve - hence the name "slope detector." Amplitude of the signal developed at the grid changes linearly in accordance with variations of the incoming signal frequency; thus, any frequency modulation present in the input signal will develop a corresponding amplitude modulation in the signal that is finally applied to the grid of the 3AV6.
The latter signal is superimposed on a grid-leak bias voltage developed across C3 and R5. The value of bias is such that the triode operates as a plate detector, both rectifying and amplifying the signal The audio recovered in the plate circuit is coupled to the audio output stage without going through an intermediate amplifier.
No amplitude modulation, except that due to slope detection, should be present in the signal at the 3AV6 output. It is the job of the diode circuit and AM rejection control to prevent the presence of AM interference signals in the plate circuit of the detector.
Either positive- or negative-going AM interference signals can enter the detector circuit, but positive AM at the grid of the 3AV6 is most troublesome because it remains in the audio output after rectification. Therefore, the noiserejection circuit must concentrate on flattening out the positive peaks of the incoming signal.

Both diodes of the 3AV6 are wired into the input circuit in such a way that the positive-going

Fig. 4. The Model $88 B H$ FM tuner is an accessory for the 1958 Lincoln.
the adjustment more sensitive. R1 is not especially critical, and its adjustment will have little effect on the audio output in some areas. If there is any doubt as to the correct setting, it is best to place R1 at the midpoint of its range. It must never be set at the maximum clockwise position, since the signal would then be shorted to ground.
The "Delta" circuit, like the - BN6 and -DT6 quadrature-grid detectors, can be aligned adequately by using an ordinary TV broadcast as a signal source-provided that you can obtain a weak enough input. For accuracy's sake, signal strength should be held down to the point where the sound is barely audible above the background noise level. It is often necessary to disconnect the antenna entirely from the receiver.

First, tune L1 for the loudest and clearest audio output. If you are performing more than just a touch-up alignment, you will notice that several peaks occur as the slug is turned. To locate the correct one, turn the slug all the way in (toward the chassis) and then start backing it out. Tune to the first strong peak that you encounter.
Tune the take-off coil in the grid circuit of the sound IF stage, and then adjust T1-both for maximum audio. None of the adjustments are critical, but L1 should be tuned as carefully as possible
so that the response curve of the detector will be linear over the entire passband of the sound IF signal.
In case one of these receivers should develop insufficient audio output and excessive buzz, and quick remedies such as tube replacement and touch-up alignment do not help, try replacing C3-it could be leaky. Loss of output could result from a short in C3 or an open condition in either C 1 , C 2 or C 3.

FM Auto Radio

The object in Fig. 4 is an FM radio tuner for use in automo-biles-the first of its type to be produced in this country. The unit is designed as an accessory for the Model 85BH radio in the 1958 Lincoln. Output of the tuner is fed to the main radio chassis, where it undergoes two stages of audio amplification before being applied to a push-pull audio output stage employing two 2N399 transistors.

Although the main chassis is powered entirely by the 12 -volt "A" supply, the FM tuner obtains a B+ potential of 75 volts from a self-contained power supply consisting of a $400-\mathrm{cps}$ transistor oscillator, power transformer, and selenium rectifier. A schematic of this circuit appears in Fig. 5. The B+ bleeder resistor is a "varistor" which regulates the output voltage to within $\pm 10 \%$ of the nominal value.
The bias on the transistor can be

Fig. 5. Power supply of FM tuner uses 2N419 transistor as 400-cps oscillator.
adjusted to allow maximum oscillator efficiency while keeping transistor current within safe limits. The adjustment procedure is as follows: Turn the control all the way counterclockwise, thus reducing transistor current to a minimum. Then apply 14.4 volts to the "A" power supply lead, and advance the bias control while monitoring the voltage at the top of the varistor with a VTVM. The correct bias setting is that which produces a B+ voltage of 75 volts.

Circuitwise, the Lincoln FM tuner is similar to conventional AC-powered hi-fi tuners. The tube lineup includes a 12AT7 cascode RF stage, a 12AT7 mixer-oscillator, two 12AU6 IF's, two 12AU6 limiters, a 12AL5 discriminator, and a 12AT7 used as án AFC tube and audio amplifier. Continuous tuning is provided, and an AMFM switch disables the tuner when it is not in use. The AM and FM chassis are connected to a common antenna by means of a coupler unit.

The audio signal is fed from the tuner to the main chassis through a 3 -prong plug. In case the AM radio is to be used while the FM unit is disconnected, a jumper must be placed across the two end prongs of the plug in order to provide a signal path from the AM detector to the first audio stage.

The 2N419 transistor in the FM power-supply circuit is fastened to a small subchassis that contains most of the power-supply components. To make the transistor accessible for removal, it is necessary to unscrew the subchassis from the tuner chassis and unsolder two interconnecting leads. It is not advisable to remove the front panel of the tuner in an attempt to get at the transistor, since this operation would involve unstringing the dial cord.

When a serviceman needs a Mylar capacitor, he turns to Pyramid for the capacitor with high reliability, high resistance to moisture penetration and high insulation resistance.
Pyramid's Mylar capacitor guarantees the serviceman a highly dependable capacitor, designed for today's modern circuit requirements, at a price competitive with standard paper capacitors.
Available in standard capacitances and voltage ratings - Pyramid Mylar capacitors are ideal for use as by-pass and coupling capacitors.
Write today for complete information about Mylar capacitors or see your Pyramid distributor. Remember when a serviceman uses Pyramid, he uses the finest and eliminates costly call-backs.

by Melvin Whitmer

A binary stage counts by two's; that is, two negative input pulses produce one negative output pulse, the conducting tube section being the same as for a zero count (before the pulses were applied).

The circuit of Fig. 1 is slightly different from those described in the previous article. For instance, the cathode is connected directly to ground and grid bias is obtained from a B-supply, while cathode bias due to tube conduction was used in earlier descriptions. In addition, dual diodes used for inputpulse coupling have been replaced by capacitor-resistor coupling network R1-C1.

Input pulses are momentary negative voltages composed predominantly of high frequencies: C1 offers a low impedance to the applied pulse which reaches the triode plates and then the grids through C2 and C3. A negative

Fig. 1. Eccles-Jordan will change conduction status with each negative pulse.
pulse applied to a cut-off tube will not affect it; however, a conducting tube will be driven into cutoff. Thus, assuming that V1 is conducting, the first pulse cuts it off. Its plate load then generates a positive pulse which overrides the small negative input pulse at the grid of V2 and drives this tube into conduction. A second pulse will cause V2 to go into cutoff, and the resultant positive plate-voltage pulse will drive V1 into conduction, returning the stage to its original state.

Lamp NE1 in Fig. 1 is a gasfilled tube which requires a potential difference of about 70 volts between its plates before it will ionize. This feature allows selective lighting of the lamp by V1. Current through R3 develops enough voltage to cause ionization only when V1 conducts. The lamp goes out when S1 is momentarily opened and will not light again

Fig. 2. Four Eccles-Jordan stages in series provide a reduction factor of 16.
until the first negative input pulse cuts off V2 and causes V1 conduction. R2 limits the current through NE1 to a few microamps.

Cascading Eccles-Jordans

From the previous installment, you may recall that a greater division of input repetition rate is made possible with the use of additional stages in series. A block diagram of four stages connected in this manner is shown in Fig. 2. Switch S1 is used to reset all stages (lamps out). Each stage divides the repetition rate by two, and the total division is the product of all dividing factors; thus, sixteen negative input pulses are required before one negative output pulse is formed.

The neon lights are identified according to the number of input pulses required to turn them on. The first light is No. 1, while the second is No. 2. The third input pulse will cause both to light; thus, more than one light may be on at a time; and the number of applied pulses is the sum of all the lamp numbers that are on. A fourth input pulse causes the third lamp to light and the first two to go out; therefore, it is No. 4. Up to 7 input pulses can be indicated with the first three lamps-but on the eighth input pulse, the fourth lamp will light and the others will go out; therefore, it is No. 8. All numbers up to 15 can be indicated by some combination of these four
lamp numbers. Finally, the sixteenth input pulse produces a negative output pulse and turns off all lamps.

Changing Binary to Decade

A scale of 16 is very useful, but it does make readout rather difficult. For instance, if this unit provides low repetition-rate pulses for a mechanical counter, determining the actual number of input pulses requires multiplying the number indicated on the mechanical counter by 16 and adding to this the number indicated by the lights.

Readout would be simplified if the scale factor were changed from 16 to 10 . Fig. 3 shows one type of scale-factor adjustment commonly used in decade units. Feedback coupling is provided from the plate of V2B through R17 and C7 to the grid of V1A. The second stage (V2) receives a negative pulse from V1B after two input pulses have been applied, causing V2B to go into cutoff. This generates a positive pulse which will be coupled through R17 and C7 back to V1A grid. A positive pulse applied directly to the grid will cause V1A to come back into conduction and drive V1B into cutoff, forming a scale factor of three.

Two consecutive feedback loops connected in the same manner will provide a scale factor of 5 rather than 8 , and is the basic feedback arrangement used to provide a scale of 10 (see Fig. 4). The first feedback loop returns a positive pulse after application of the second negative input pulse, while the second feedback loop couples back a positive pulse on the third negative input pulse, driving V2A into conduction and V2B into cutoff. Integration and differentiation of the feedback pulses is such that the positive pulse generated at

Fig. 4. Two consecutive feedback loops change reduction factor from 8 to 5 .

Füg. 3. Positive feedback from 2nd Eccles-Jordan reduces scale from 4 to 3.

V2B plate at this time will not change the state of V1. After 5 input pulses, all " B " sections will be conducting, which is the condition for zero count; therefore, counting will start over.

The feedback-connected scale of 5 can be increased to 10 by placing just one more Eccles-Jordan circuit before or after it. In seriesconnected stages, individual scale factors are multiplied to obtain the over-all divisor. It does not matter whether you say five times two, or two times five--the answer is still ten. Fig. 5 shows a block diagram of a decade counter with the scale of two preceding the scale of five. A positive pulse for the first feedback loop is generated by V3B on the fourth negative input pulse, and a positive pulse for the second feedback loop is formed by V4B on the sixth negative input pulse.

Digital Readout Lamps

Mechanical counters can be read very easily using the decade scaler of Fig. 5, but the lamps still present a problem since lamp-

Fig. 5. Scale of 5 coupled to scale of 2 makes circuit into a decade counter.
lighting sequence is changed with feedback. A method which would use ten lamps with only one lamp on at a time would simplify the task of determining the total number of pulses. Fig. 6 partially illustrates an arrangement which allows each lamp to light only under certain circumstances. Stages V1 and V2 provide a voltage change for every input pulse, and the same section will always be cut off by all the even or all the odd pulses; plate-load resistors are split to provide the voltage change desired.

Conditions of the circuit are V1 cut off while V4 and V8 are conducting (stages in between not shown). Zero lamp has 250 V applied to the left side, since V1 is cut off at this time. The voltage value at the common connection of the lamps will depend on the conduction states of both V4 and V8. R1 and R2 form a voltage divider; thus, the voltage at the right side of the lamps is controlled by the conduction of V4 and V8 collectively. When both are conducting, there is no voltage drop across R1 and R2. The result-

Fig. 6. Method of connecting lamps so they light for only one set of conditions.

EARN MORE!
 MAKE FASTER, EASIER AUTO RADIO REPAIRS

These Howord W. Sums "AUTO RADIO" MANUALS

 SHOW YOU HOW!

Most complete auto radio service data available:Schematics, voltages, resistance readings, alignment, chassis photo views keyed to components, replacement parts recommendations everything you need to know for quicker, easier servicing. Each volume, $8 \frac{1}{2} \times 11^{\prime \prime}$.

AR-7. Covers 56 auto radio models produced in 1957. Only $\$ 3.75$ AR-6. Covers 77 models produced during 1955-56. Only $\$ 3.95$
AR-5. Covers 96 models produced during 1954-55. Only.
\$3.50
AR-4. Covers 61 models produced during 1953. Only.
$\$ 3.00$
AR-3. Covers 83 models produced during
1950-52. Only $\$ 3.00$
AR-2. Covers 73 models produced in 1949-50. Only .
$\$ 3.00$

GET EXTRA HELP wITH SAMS "AUTO RADIO REMOVAL" MANUALS

Solves the toughest problem in auto radio servicing-shows fastest ways to remove radio, power supply and speaker units. Covers all standard and sports model cars. $51 / 2 \times 81 / 2^{\prime \prime}$.
ARR.57. Covers all 1957 cars. ARR-56. Covers all 1956 cars. ARR-55. Covers all 1955 cars. Each Volume, only..... $\$ 2.95$

Pulse and Lamp No.	V1	V2	V3	V4	V5	V6	V7	V8
0	(N)	C	N	(C)	N	C	N	C
1	C	(N)	N	C	N	C	N	C
2	(N)	C	(C)	N	N	(c)	N	C
3	C	(N)	(C)	N	N	C	N	C
4	(N)	c	(C)*	(N) *	(C)	N	N	(c)
5	C	(N)	C	N	C	N	N	c
6	(N)	C	N	C	(C) \dagger	$(\mathrm{N})^{\dagger}$	(C)	N
7	C	(N)	N	C	C	N	C	N
8	(N)	C	(C)	N	C	N	(c)	N
9	c	(N)	(C)	N	C	N	C	N
0	(N)	C	. N	C	N	C	N	C
LEGEND: $\mathrm{N}=$ nonconducting $\mathrm{C}=$ conducting			* state changed by feedback from V6 \dagger state changed by feedback from V8 Circles indicate stages to which lamp connects					

Fig. 7. Chart showing lamp connections and conditions under which each lights.
ant voltage across the zero lamp is therefore 75 V , and across the one lamp, only 25 V . Lamp zero lights since more than ionizing voltage is applied, while the one lamp cannot light. Lamp one will light when one pulse is applied, changing the state of V2 from conduction to cutoff. V1 goes into conduction, and the zero lamp goes out.

All even-numbered lamps from 0 to 8 are connected to V1 splitplate load, while odd numbers 1 to 9 are connected to V2 plate load. Resistors similar to R1 and R2 are connected to sections throughout the chain in a manner which will allow each lamp to come on for only one set of conditions (see Fig. 7) ; i.e., the split plate-load stage to which it connects must be cut off, while the other two stages (at the other end of the lamp-coupling resistors) must be conducting. Every selection of cutoff tube and two conducting tubes is a unique situation; that particular sequence never appears except for a specific two input-pulse time. Thus, V4 and V8 conduct on zero and one input pulse, but on all other counts from two to nine, one or both will be cut off.

A commercial decade counter is illustrated in Fig. 8. Numbers 0 to 9 are transparent parts of a plastic shield painted black. Behind the number plate is a row of neon lamps which connect to the tubes at the back. A ruggedized version of the 12AU7 is used and carries the designation 5964 , designed with counter operation
in mind. Grid current will not damage the tube and cathode emitting elements are thicker than those for standard 12AU7's.

An application of feedback decade units is shown in the head photo. The natural frequency of a crystal is determined in this crys-tal-sorting operation by placing it between two electrodes connected to the oscillator by a special jig. Oscillator output is a sine wave, and the frequency meter counts either the positive or negative half-cycle. The exact frequency is read on the lights. Seven decades connected in series allow a maximum count of $9,999,999$!

Fig. 8. Lamps are placed behind a plastic

The FM Signal

(Continued from page 18)
frequency is of some importance, however. This "deviation ratio" or "modulation index" for FM radio is

$$
\frac{75,000}{15,000}=5
$$

but for TV sound it is only

$$
\frac{25,000}{15,000}=1.67
$$

In general, the higher this ratio, the greater the ability of the FM system to reject certain kinds of interference which tend to shift the carrier frequency of the desired signal. This interference is of two types-direct FM produced by radio and T,V stations, and indirect FM or spurious phase modulation of the desired signals by miscellaneous types of interfering signals. As the deviation ratio of an FM signal is increased, modulation of the carrier produces wider frequency swings which do a progressively better job of swamping out the small frequency shifts produced by interference. An FM radio signal can suppress an interfering signal when the ratio of desired to undesired signal strength is as low as 2:1, except in the case of co-channel interference which requires a $10: 1$ ratio. By comparison, an AM signal must be approximately 100 times as strong as an interfering signal in order to override it.
The lower deviation-ratio of the TV sound signal makes it less immune to interference than the FM radio signal, but this presents no practical problem because higher transmitter power is normally used in TV than in FM radio.
We have not yet considered the most annoying of all types of interference-amplitude modulation of the carrier by atmospheric static, auto ignition, and other noise sources. Perhaps the most valuable feature of FM is its ability to eliminate this noise interference almost completely. Since amplitude variations of the carrier provide no useful information in FM, they can be stripped off and discarded by passing the signal through some kind of limiter stage in the receiver. Some types of FM detectors, such as. the ratio
detector, accomplish limiting as a by-product of demodulation. In most commercial FM receivers, noise elimination is highly effective except when the input signal is extremely weak.
This noise-rejecting ability of FM allows a station to deliver a clean signal to practically all of its service area. Thus, an FM station in the VHF band, although theoretically restricted to line-ofsight transmissions, can dependably serve an area as large as that covered by a low- or mediumpowered AM station on the longwave broadcast band. Even though the AM signal may travel for a longer distance, reception in fringe areas is often marred by interference from other stations in the crowded broadcast band as well as by fading and static.
Just how far will the FM signal reach? Several factors such as transmitter power, antenna height, terrain, and receiver sensitivity enter into any exact computation of range, but a moderately lowpowered FM radio station (about 5 kw) should generally be able to maintain a signal strength as high as 50 microvolts in all but a few "problem" locations at distances up to $30-50$ miles from the transmitter. This signal intensity is adequate for most receivers, and deluxe hi-fi FM tuners can produce a clear output from much weaker signals than this. With a sensitive tuner and a high-gain antenna, consistent reception at distances of well over 100 miles has often been reported.
The sensitivity of a high-quality tuner is often expressed as a certain number of microvolts "for 20 (or 30) db quieting." An RF input of this specified value (usually less than 5 uv) is the weakest signal which is capable of holding internal receiver noise down to an unobjectionable level during pauses in modulation. " 20 db quieting" means that the tuner output level measured during reception of an unmodulated carrier is 20 db lower than the output measured during $400-\mathrm{cps}, 30 \%$ modulation of the same carrier. At RF signal levels lower than the specified minimum, the carrier becomes too weak to suppress internal receiver noise to a satisfactory degree.
better reception on 1,2 or 3 tv sets... with one antenna

> NEW B-T B-23 TWO-SET BOOSTER

From B-T comes the most important advance in better TV reception for 1958 a broadband TV amplifier that boosts signal strength on all VHF channels and operates 1,2 or 3 TV sets with one an-tenna-no tuning required.

Combines two functions in one -

- BOOSTS signal strength on 1 or 2 TV sets - up to 6 db gain operating two TV sets from one antenna.
- COUPLES 2 or 3 TV sets-using the present antenna. Outperforms nonpowered couplers in any reception area by more than 2 to 1 .

Check these B-23 features:

- Ideal for color - add a color TV set and keep present black-and-white set, use the same antenna - the result, sharper, clearer pictures on both sets Low noise figure-designed to work with new VHF sets Reduces interference Easily installed at antenna terminals of set
- Automatically amplifies channels 2-13 - Ideal small TV system

For operating 3 to 8 TV sets, use the B-T Labs DA8-B - more than 10 db gain on all VHF channels.
The DA8-B Distribution Amplifier is a broadband, all-channel unit that requires no tuning, impedance matching devices, pre-amps or other special fittings. Ideal for all small TV systems (garden apartments, motels, TV showrooms). Approved for color. Only $\$ 94.50$
The B-23, the DA8-B, and other B-T quality engineered products, are available at electronic parts distributors.

For further information, use coupon.

STOCK and SELL

TRANSISTORS

They're growing because transistor receiver servicing business is growing by leaps and bounds. Raytheon Transistors help service dealers to build a larger volume of this profitable work because Raytheon Transistors combine dependable performance with low cost and ready availability.
Then, too, engineers, hobbyists and experimenters buy thousands of Raytheon Transistors because of their economy, matched electrical characteristics and because there is a Raytheon Transistor suitable for almost any application.

Your nearest Raytheon Tube Supplier will be glad to show you how you can make more money if you stock, sell and use Raytheon Transistors.

Why Fi Is Hi

FM's wide audio-frequency range of $30-15,000 \mathrm{cps}$ is certainly an important reason for the hi-fi quality of FM sound, but it should be emphasized that wide-band response is neither an exclusive feature of FM nor the sole requirement for high fidelity. Standard AM broadcasting could provide a frequency range equal to that of FM if a wider channel were allocated for each station, but such a move is impractical for two good reasons:

1. The long-wave AM broadcast band is already overcrowded, and the only way to widen channels would be to force numerous stations off the air.
2. AM already has the drawback of being highly susceptible to interference, and an increase in bandwidth would tend to aggravate this problem.
"Moving upstairs" to VHF and changing to FM transmission proved to be the best way to satisfy both major requirements for hi-fi broadcasting-wide frequency range and freedom from noise.

Allocations

FM radio fits into the VHF band between 88 and 108 mc , and this slice of the spectrum is split up into 100 channels of $200-\mathrm{kc}$ width each. Channel numbers are assigned according to the following system:
Center
freq. $(\mathrm{mc})$$\quad$ Channel \#

Like TV channels, the FM radio frequencies are assigned to different areas according to a fixed allocation table. Co- and adjacentchannel stations are well separated geographically to minimize any possibility of interference.

Note that each channel covers 200 kc . Even though a bandwidth of only 150 kc would be sufficient to accommodate the normal ± 75 kc maximum swing of carrier frequency, an additional 25 kc is provided on each side of the channel
as a guard band. To explain why these "margins" are needed, we must take into account a characteristic of FM which has not yet been mentioned; namely, that frequency modulation of a carrier produces not only a deviation of the carrier but also a complex system of sidebands. While a full explanation of their nature is beyond the scope of this article, we can simply state that appreciable sideband energy will sometimes appear more than $\pm 75 \mathrm{kc}$ from the center frequency of the channel, even under normal conditions. The guard bands accommodate this energy and prevent adjacentchannel interference.

Multiplex Broadcasting

Some FM stations have a profitable sideline of furnishing background music for a fee to stores and other business establishments. Until recently, "storecasting" consisted of feeding the station's regular broadcast signal to a special receiver which automatically cut out all spoken announcements. This receiver was keyed off and on by a supersonic "beep" before and after each break in the music.
The "beep" system had the disadvantage that there was no legal means for the broadcaster to prevent anyone from devising a home-made "storecaster" receiver and using the service without paying for it. To correct this and other problems, the FCC this year outlawed "beep" broadcasting. Adopted in its place is multiplex transmission, in which a regular broadcast and one or more separate "storecasts" are simultaneously carried on one FM channel. All except the broadcast signal

are considered private communications, and it is illegal for unauthorized listeners to receive these.

Another promising use for multiplexing has been successfully tried out--dual-track stereophonic sound broadcasting by a single FM station. Various other multiplex applications are feasible, including facsimile transmission of still pictures.
How can two or more separate signals be used to modulate the same carrier at the same time? It's easy to do, if each signal is placed within a different portion of the frequency range (with no overlapping of frequencies) so that the signals can be separated by filters in the receiver. At first thought, it might seem to be impossible to find room for more than one audio signal, since the main broadeast signal already occupies the audible range up to 15 kc. However, it is feasible to make room for the "storecasts" by converting them to supersonic frequencies, which can be considered equivalent to audio for modulating purposes. A supersonic subcarrier is generated for each "storecast," and is frequency modulated by the desired audio information.

The audible broadcast signal is added to the supersonic "storecast" signals to produce a widerange composite signal, which is then fed to the modulator in the transmitter. Modulation of the RF carrier by this signal is basically no different from modulation produced by an ordinary $0-15 \mathrm{kc}$ audio signal; the main difference being that a greater number of frequency swings per second are produced by the supersonic com-

" When you get that picture fixed and not before !"

MALLOR $\underset{\text { maner }}{\text { and }}$
service-engineered product

Solve Hot

Filler Problems with
Mallory FP Capacitors

 -
 -

They all like its new features!

TOM CLEMENTS National Service Mgr.
"I PARTICULARLY LIKE BEING ABLE TO READ PEAK-TO-PEAK VOLTAGES on the SIMPSON 311, not only for sine wave voltages, but also for complex AC voltages. With the RMS and Peak-to-Peak values on the same scale, the technician can read both values of a sine wave at the same time."

"THE HIGH 22 MEGOHM DC INPUT IMPEDANCE is a terrific feature. This greatly reduces circuit loading and permits measurements in relatively high impedance circuits. The SIMPSON 311 will surely be a favorite in our servicing field."

Converting to Stereo

(Continued from page 11)
tially straight, while the other varies in width because of the equal vertical and lateral motions of the stylus. Variations in the vertical cut are indicated by the differences in shading on the photograph, which was made with overhead illumination.

Playback Cartridge Design

Because of the vertical component in the stereo record groove, the cartridge and needle used for playback must have both excellent vertical and horizontal compliance. The greater the compliance in a given direction, the less resistance there is to movement in that direction. Stereo cartridges have fairly high vertical compliance figures, averaging about 2 $\times 10^{-6} \mathrm{~cm} /$ dyne. The less expensive monaural playback cartridges have relatively little vertical compliance and will smooth out the vertical component of the stereo groove, even if used with the correct size needle. Anyone who desires to play both stereo and monaural records with a single cartridge can do so by merely changing to a stereo cartridge, which can be used on monaural records without adverse effects. In fact, reproduction of monaural records is often better with a stereo cartridge than with the original cartridge. To give you an idea of what is available, photos and specifications of several stereo cartridges accompany this article.

Both stereo and monaural records can be played on a stereo system with excellent results. While a stereo record can be played on a monaural system if the cartridge has sufficient vertical compliance (the professional grade dynamic cartridges do), there is little reason for so doing because there is no stereo effect and, after all, this is the reason for buying a stereo record.

Additional Equipment Requirements

The actual conversion to a stereo setup consists of expanding the single channel monaural phonograph system into a dual channel system. This is illustrated in Fig. 4, a block-diagram com-

Compare these features before you buy!

- 22 MEGOHM Input Impedance
- Peak-to-Peak Readings of Complex AC Voltages
- Accessory RF Probe with High Frequency Response and Accuracy
- New "TIMESAVER" Probe Tip
- Unbreakable Metal Case
- AC Balance Adjustment

This new Simpson VTVM has all the capabilities you need to run highly accurate tests on practically any job. Note its timesaving features, too-slimline probe; special two-way probe tip; and Adjust-A-Vue Handle. You might expect Model 311 to cost a good deal more than it does, but the price complete with probe, lead, ground cable, clips, and Operator's Manual is a sensible

${ }^{5} 64^{95}$

DC VOLTS: 0.1.5, 5, 15, 50, 150, 500, 1500
($\pm 3 \%$ accuracy)
AC VOLTS: $0-1.5,5,15,50,150$, 500, 1500
($\pm 5 \%$ accuracy)
AC PEAK-TO-PEAK: 0.4, 14, 40 , $140,400,1400,4000$ volts ($\pm 5 \%$ accuracy)
OHMS: X1; X10; X100; X1000; X10,000; X100,000; X1 megohm (meter can be set for center zero for FM alignment)

AC FREQUENCY RANGE: 30 to 100,000 cycles per second

INPUT IMPEDANCE: 22 Megohms SIZE: $71 / 2^{\prime \prime} \times 55 / 8^{\prime \prime} \times 41 / 2^{\prime \prime}$ deep WEIGHT: $41 / 2 \mathrm{lbs}$.
RF PROBE: 50 cycles to 100 megacycles, $\pm 5 \% ; 0-150$ volts maximum, RMS. Input capacitance, 10 mmf
\$10.95
HIGH VOLTAGE PROBE: Gives measurements from 0-30,000 volts, DC $\$ \mathbf{1 0 . 9 5}$

SEE YOUR ELECTRONIC PARTS DISTRIBUTOR, OR WRITE

SIMPSON ELECTRIC COMPANY

World's Largest Manufacturer of Electronic Test Equipment

5200 West Kínzie Street Chicago 44, Illinois
Phone: EStebrook 9-1121 In Canada:
Bach-Simpson Ltd.
London, Ontario

Table I—Specifications for monaural equipment to be duplicated.

PREAMPLIFIER

Gain (Input-to-output on phono channel)

60 db
Inputs available Phono, Tuner, Aux, Mag Phono, Tape
Bass boost and droop in db 15 and 14
Treble boost and droop in db 15 and 15
Equalization positions RIAA, NAB, EUR, Col.
Cathode follower Yes
Maximum output signal voltage 1.5 V

AMPLIFIER

Power output (watts) 12
Input voltage (signal) needed to obtain full power output 1.5
Output impedances 4, 8, and 16
Frequency response 20 cps to $50 \mathrm{kc}+$ $2 d b$.
Distortion figures (IM\%) 5\% at 12 watts

SPEAKER SYSTEM

Number and sizes of speakers 1-12", 1-5"
Type of crossover network LC at 4kc Type of enclosure total
Size of speaker magnets $12^{\prime \prime}-6.9 \mathrm{oz}$; $5^{\prime \prime}$-1.79 oz
parison of monaural and stereo systems. The preamplifier, even though represented by a single block, actually has separate circuits for each channel. The controls of one channel are ganged to the equivalent controls of the other channel for convenience of operation.

Several manufacturers have just announced the introduction of stereo preamplifiers which can be substituted for the existing single channel preamplifier in most hi-fi sets. A usable stereo system can be provided, however, by the addition of a single channel preamplifier, power amplifier, and speaker system (Fig. 5) to the existing monaural system. Obviously, then, you must first know the capabilities and operating characteristics of the original system. For comparison purposes, list the preamplifier, power amplifier, and speaker specifications as outlined in Table I. If the system is of the so-called package type, the owner's manual should give most of the data. If any of the components such as speaker or power amplifier are of the conventional hi-fi

Fig. 5. Block diagram of changes necessary to convert monaural system to stereo.
type, then simply obtain duplicate units.

Another important consideration is the existing monaural cartridge. Make it a point to choose the crystal, ceramic, or magnetic stereo cartridge that most nearly duplicates the output voltage of the original monaural cartridge. This will insure that the output voltage from the preamplifier will be sufficient to drive the power amplifier to full output.

In the event that exact duplicates of the preamplifier and power amplifier cannot be obtained, use equipment which will give nearly the same performance and balance the outputs of the two channels as follows: Apply a sine wave signal of $1,000 \mathrm{cps}$ to the input of one preamplifier, adjust the volume control to mid-range, terminate the amplifier with a dummy load resistor (usually 8 or 16 ohms), and measure the voltage drop across the dummy load. Repeat this procedure with the second preamplifier and power amplifier combination, making sure the attenuator on the signal generator is left in the original position. Adjust the input control of the second amplifier until the voltage across the dummy load is equal to the voltage obtained with the first combination. In this balanced condition, true stereophonic reproduction can be obtained.

Once you have the equipment necessary for the duplicate channel, the next step is to install the recommended cartridge load resistors in the input circuit of each preamplifier. The existing load resistor should be removed. Fig. 6 illustrates the location of this component in both original and stereo circuits. The value of these load resistors is specified for each stereo cartridge.
The lead wires from the stereo cartridge to the two preamplifiers should be equal in length and of the type specified for use with each cartridge. The length of this wire should be 3^{\prime} or less, the shorter the better-the reason being that the capacity offered by the wire, if excessive, can cause a loss of high frequencies and a reduction of the signal output from the cartridge. Be especially careful to obtain a good ground connection at both preamplifier inputs; in fact, the entire system should be very carefully bonded together. This can best be accomplished by connecting the preamplifiers to the power amplifiers through shielded cables.

Incidentally, if the existing monaural system or the second amplifier or preamplifier doesn't employ an isolation transformer, be sure the stereo cartridge selected has four terminals (separate grounds for each channel) and that the ground in each cable is insulated from the other. This precaution will eliminate introduction of hum and prevent possible damage to some of the equipment.

At this point we are still faced with the problem of where to locate the additional amplifiers. Naturally, the preamplifier unit or units will be near the record turntable. The power amplifier, how-

Fig. 6. Schematics indicating load resistors for monaural and stereo cartridges.

Fig. 7. Example of speaker placement with respect to listening area for stereo.
ever, can be remotely located and mounted inside or on the rear of the second enclosure.

Complete the job by making sure the customer understands how to operate the system and has the speakers properly spaced and placed for best stereo operation. A good sample placement for speakers (Fig. 7) is where the distance between them is the same as to the listening seats. This is not a hard and fast rule, so experiment a little and place them where the stereo effect is best.

Conclusion

That the electronics industry is solidly behind the swing to stereo is emphasized by the rush to introduce stereo conversion kits as well as components for separate stereo units. Several set manufacturers have already introduced kits to convert their respective monaural outfits to stereo. In addition, stereo conversion kits for application with any existing monaural system are now available through many parts jobbers. Thus, it is easy to see that the opportunity for profitable conversions of even the table model or massmarket type of hi-fi phonographs is present and growing-so get on the band wagon and reap your rewards.

Non-rusting gold anodized aluminum elements snap into place. Everything is furnished; there is nothing else to buy. You get perfect reception up to 50 miles from transmitters.
COMPLETE KIT NO. A- 125
(shown above)
List $\$ 18.95$
TURNSTILE KIT NO. A-124
standard aluminum elements. List \$15.95 FM Golden Dipole Kit No. A-267...List \$17.25 Dipole Kił No. A-261 stondard aluminum elements List $\$ 14.95$

- at your dealer or write direct

TELGO ELEGTRONIGS MFG. CO.
Division of G-C Textron Inc. Los Angeles-Rockford, Illinois

"OK! OK! So the Fred Astaire always comes out in you when you hear a JENSEN NEEDLE."

W ORKMAN TV INC.

The

 BELIMITERUSED IN RCA TV SETS FOR PROTECTION OF DEFLECTION CIRCUITS

AVAILABLE AT YOUR LOCAL PARTS JOBBER ASK FOR BULLETIN \#SBI wor \boldsymbol{O} MAN

Shop Talk

(Continued from page 9)
tion of the wing dipole.
The center wing dipole is cut to resonate between channels 4 and 5 on the low band, while the third wing dipole is tuned to channel 2. All three are interconnected with an open-wire transmission line having $2^{\prime \prime}$ spacing between conductors. This line is purposely made longer than the actual distance between dipoles in order that the units may be properly interconnected for the response pattern desired. This is characteristic of an end-fire array, which is basically what this arrangement forms.

Now let us consider the other elements in the array. A long reflector is mounted at the rear of the cross-arm to make the front-to-back ratio as high as possible. This is followed, as we move forward, by the three wing dipoles. However, in front of the center wing dipole, there is a three section director. This element aids the high-end response of the second dipole; three insulated sections are employed because the wing dipole acts as if it were comprised of three half-wave, highband dipoles. Another high-end director, this time a single half-wave unit, is positioned in front of the foremost wing dipole.

Still remaining is the folded dipole which is mounted at the front end of the structure. This is veered forward, in common with the other dipoles, its purpose being to serve as a director for the low-band elements. At the same time, the central section of its forward rod is insulated from the two ends of the

Fig. 7. "Zephyr Royal" employs three wing dipoles in an end-fire array design.
rod, so it performs as a high-channel reflector, also.
The Color Royal, Fig. 8, is closely similar to the Zephyr Royal, the chief difference being the more extensive reflector system, which provides for flatter response over the VHF range. Low-band gain for both arrays varies between 6 and 8 db ; over the high band, the gain averages about 10 db . Directional patterns are quite sharp.

Use of Parasitic Elements

Another approach to broad-band operation and high gain is employed by the Finney Co. Their basic approach to the construction of the antenna in Fig. 9 was to take a conventional dipole or folded dipole and position a short rod near the center section. The spacing between the small parasitic element and the long driven element is of the order of 1% to 5% of the half wavelength to which the driven dipole is resonant. At the low-band frequencies, where the driven element is functioning as a half-wave antenna, the effect of the small parasitic rod may be ignored. However, over the upper band, when the driven element is being oper-

Fig. 8. "Color Royal" uses more extensive reflector system for flatter response.

Fig. 9. Parasitic element is placed close to driven element in Finney arrays.
ated essentially on its third harmonic, the parasitic element eliminates the effect of the central current loop and leaves only the two end-current loops in operation (see Fig. 10). As we have seen previously, a half-wave dipole, operated at its third harmonic, will produce three current loops. Two of the loops (those on each end) will be in phase, while the center loop will be 180° out-of-phase. If the center loop is permitted to remain, it will break up the response pattern into a series of side lobes. By adding the small rod, equal in length to one-half wave at the upper frequency, we can remove the effect of the center section of the driven dipole,

Thus, the Finney antenna may be said to function at the higher frequencies so as to produce the effect of two center-fed, half-wave dipoles spaced a half-wave apart in a collinear (i.e., in-line) array and driven in phase. As far as operation is concerned, this combination provides substantially the same over-all radiation pattern as an array that has three half-wave elements connected together for inphase operation.

During development of this antenna it was found more desirable to convert the small parasitic rod to a unit having two elongated loops in order to increase its effectiveness over a broader frequency range (see Fig. 11). Note that while this element now looks like a folded dipole, it still functions as a simple dipole. The two loops come together at the center.

A Finney antenna that employs this particular combination is shown in Fig. 12. Essentially,

Fig. 10. On high band, parasitic element minimizes effect of reverse current.

Here are the TEN E-Z-Hook Tip advantages:

1. Easy to attach - slips 6. Eliminates intermittance easily over test prod tip. 2. Stays on-special chuck sures positive contact. holds tip firmly on prod. 7. Eliminates adjacent shorts . Easy to conmect or dis- -insulated designgive connect - patented design operates with light forward pressure.
2. Safer checks - hands stay clear of wiring.
3. Won't slip off - exclusive hook design clamps sive hook design clamp firmly around conductor maximum protection. 8. Connects anywhere fits large or irregular shaped conductors. 9. Frees your hands holds test prod for you . Makes testing easier saves time - eliminates aggravation.
 No. 56-1 E-Z-HOOK Tip Only 89 cea. ORDER THROUGH YOUR PARTS DISTRIBUTOR

E-Z.HOOK TEST PRODUCTS Dept. F-6 is36 Woodburn Ave Covington, Ky.

Fig. 11. In actual Finney arrays, parasitic element takes the form of "bowtie."
it consists of two arrays joined together by an open-wire transmission line. The front section covers the high end of the low band and the upper end of the high band (by means of its third harmonic operation). The rear section covers the low end of the low band and the corresponding low end of the high band. In this latter section we find, at the very rear, a reflector designed for the low band. In front of this is a three-section, high-frequency reflector. Then comes a folded dipole with a small parasitic element in front of it. The length of this folded dipole is designed for best response somewhere in the neighborhood of channel 2. Finally, a three-section, high-frequency director is placed at the head of this rear section.

The front section has a somewhat altered sequence of elements. Just behind the folded dipole (cut to about channel 5) is a threesection, high-frequency director. Then comes the folded dipole and another small parasitic element. Next, there is a three-section, high-frequency director, then a low-frequency director and, at the head of the section, still another high-frequency director. The net result is a highly-directional, highgain array suitable for use over all 12 VHF channels. For even

Fig. 12. This Finney antenna is essentially two arrays joined with open line.
more gain, two-bay stacking can be used.
It is interesting to note that the two folded dipoles are separated by a quarter wavelength on the low VHF band and, further, that they are fed 90° out-of-phase. This arrangement produces a cardioid (or heart-shaped) response pattern with the null point facing the rear of the array. On the high band, the dipoles are three-quarter wavelength apart and are fed three-quarter wavelengths (270°) out-of-phase. The result is the same cardioid pattern.

A second Finney antenna array of interest is the Model TCR-1 shown in Fig. 13, a unit which possesses the ability to receive certain stations (say channels 4 and 6) from one direction and other stations (say channels 7 and 10) from the reverse direction. The array is so designed that neither set of signals interferes with the other. Furthermore, the array will not respond to channel 4 or 6 signals coming from the same direction as channel 7 or 10 signals, nor will it respond to channel 7 or 10 signals coming from the direction of the channel 4 or 6 signals. While these particular channels were selected for illustration, the possibilities are unlimited and the company has already marketed over 100 different combinations.

Dynamic Picture Tube Tester Makes Skeptical Set-Owners

Satisfied Customers!

Pix-Chex gives proof positive of picture tube failure to skeptical set-owners and you! You prove your point when you point to your Pix-Chex indicator Answers ail questions for you and your customers yet easily fits your pocket and your pocketbook!

- CHECKS EMISSION

CHOCKET SIZE
in set in the tube
in set, in the box

- Transformer
powered.
Checks gridcathode short.

Available at your jobbers

$$
\text { ONLY } 4, \frac{95}{\text { NET }}
$$

- Checks heatercathode short. - Detects shorts up to 50,000 ohms. - Checks filament. No gimmick rejuvenators.

Fig. 13. Finney TCR-1 array receives selected signals from opposite directions.

The line-up of elements of Model TCR-1 is shown in Fig. 13. Element No. 1 is a three-section director cut for channel 10. Element No. 2 is a channel 4 reflector by itself, but with the phasing element in front of it (item No. 3), it also functions as a director on channel 10 . The next element, No. 4, is still another three-section channel 10 director. Element No. 7, by itself, is cut for channel 4, but because of elements 5 and 6 near it, the dipole also functions on channels 7 and 10.

All of this dual operation, of course, follows directly from the effect which the small parasitic dipole (or phasing element) has on any larger element positioned close by.

Element No. 8 is a three-section channel 7 reflector. The forward folded dipole, element No. 10, is cut for operation on channel 6 . Because of the presence of element No. 9, however, it will also function on channels 7 and 10. Finally, the foremost element, No. 11, is a channel 6 director.

" $\mathbf{T}^{\prime \prime}$ Matching

The Winegard antennas shown in Figs. 14 and 15 both use, as their basic elements, the dipole arrangement shown in Fig. 16. The long back rod CD is continuous and connects to the shorter front element only through rods A and B. These two rods are each about $4^{\prime \prime}$ long and are made of metal. Connection to this antenna is made at the center of the shorter front element, points FG.

To understand how the combination operates, let us consider it first over the low band and then over the high band. Over the low band, we can disregard those portions of the front element that extend to the left of $\operatorname{rod} A$ and to the right of rod B. What is left of this front element then serves as a "T" matching section between the transmission line and the long back rod CD. This becomes clearer if we redraw the arrangement to the form shown in Fig. 17. From this illustration, we see where the "T" designation arose.

The purpose of the " T " section is to provide a match between the 300 -ohm transmission line and the low-band antenna CD. The positions of rods A and B are adjusted

now... see what $\$ 3995$ buys in a DC POWER SUPPLY

NEW dual purpose KPS-2

. . . powers transistor circuits, "hybrid" and 12 volt auto radios without hum

Compare with any other kit and see how many more safety and time-saving features the new Electro Kit KPS-2 offers you ... and yet, it costs less than other kits.

Two output ranges: one for tran-
sistor circuits... one for today's 12
v. auto radios.

Low ripple: up to $5 \mathrm{amps} .0 .5 \%$. up to 75 MA 0.15%.

Milliammeter indicates minute transistor current variations.
Transistor protection provided by extra fuse.

Conduction cooling: patented for long life.

Easily assembled with "step-on-step" diagrammed instruction sheets

NEW deluxe K-612T

... only kit in the market to give you 10 amps. at 12 volts!

Ample regulation for operating $n \in w$ solenoid tuning controls in today's auto radios

Powers transistor circuits, 12/6 volt "hybrid" and vacuum tube auto radios, marine radios
The new K-612T offers the same reliable, time-proven design and patented conduction cooling preferred by servicemen in the famous D-612T assembled power supply.

No finer kit at $\$ 44^{95}$ net.
Two variable DC ranges, $0-8$ and $0-16$ volts $1 / 2 \%$ ripple up to 5 amperes; 2% at 10 amperes

At better Parts Jobbers everywhere
Send for literature giving full details

Electro Products Laboratories

Canada: Atlas Radio Lfd., Toronto

One of the "hottest" things in the industry today is stereoand what better way to represent this theme photographically than by use of twins.

For those with their minds on other things, we suggest you ignore the subtlety of all this and simply soothe your tired old eyeballs by concentrating on the two lovely bits of femininity. If you have a jealous wife or girlfriend, however, perhaps you'd better do your staring with the issue hidden behind a schematic--pretending to be laboring on a problem with a tough-dog set.

Fig. 17. T-matching section formed between the transmission line and dipole.
two arrays in Figs. 14 and 15. In the first array, there is a long reflector at the rear of the structure. This serves to reduce reception from the rear. Then come the two driven elements. Directly in front of the front driven dipole there are three sets of short directors, each with two rods.* Two rods are employed to produce the same electrical effect as a large diameter single rod. When the rods used are small in diameter, they tend to resonate quite sharply at one frequency, which makes them effective only at this frequency (as directors). At all other frequencies, their effectiveness is reduced sharply. This operating range can be broadened by increasing the rod diameter; however, for the desired coverage over the upper VHF band, a fairly large diameter would be required. Electrically, the same effect can be achieved by using two smaller diameter rods positioned close together, and that is the procedure followed here. Thus, the three sets of two small rods are equivalent to three large diameter directors.

For the low band, two directors are used. However, at the center of each of these directors, there is a small loop as shown in Fig. 19. Each rod is cut in half and the loop connects the two halves together. The inductance of these

Fig. 18. Two-conductor coupling between T-matched sections. Lead-in goes to X-Y.

For an Ever Increasing Market Peima Power Garage Door Opener Rado controlled

BAR/DOT GENERATOR
-the complete color signal test instrument

All operating controls are on the front panel-and a single switch selects all functions. Electronically regulated power supply for stable, reliable operation. NTSC pattern.
At your distributor......... \$485.00

ELECTRONICS, INC.
A Sursidiary of hycon mag.co 370 So. Fair Oaks, Pasadena, Calif
 to us, and then to streamline our shop operation and run the sets through on a "While-U-Wait" basis.
Our first step was to construct six double-decked mobile tables to hold the chassis, and also a labor-saving bench with bays to accommodate the tables. (See Fig. 1.) We chose round tables instead of the usual rectangular shape so that the technician would be able to revolve them a full 360°, thus bringing his chassis to an optimum working position without undue exertion or disturbance of the components attached to the set.
To lend mobility to these "turntables," we made a special arrangement for the power and antenna receptacles. The required outlets were installed dead-center over each of the two working positions in the bench (as shown in Fig. 2) by running a cable outward from the wall and suspending it from the ceiling on a spring. In this way, we achieved unhampered table motion-even with power, antenna and speaker leads all connected to the chassis.

We next copied a design idea from modern, step-saving kitchens and con-

Fig. 2. Receptacles suspended overhead.

by Herb Sulkin

Fig. 3. Test area for "cooking" chassis.
structed a "test area" behind the technicians and running parallel to the bench. (Fig. 3.) A finished chassis can be swung quickly out from the bench and over to the test area, where it can immediately be re-connected to fittings similar to those in the bench receptacles.

While working at our bench, we find it easy to notice any trouble symptoms that develop in the sets in the test area and to make necessary adjustments. An added feature of the test panel is a cycling switch that turns some or all of the chassis on and off at set intervals.
The bench cost about $\$ 300$, each table cost $\$ 75$, and the panel and receptacles amounted to about $\$ 200$-a total of roughly $\$ 1,000$ for the whole setup. Considering the cost and trouble involved in construction of all this equipment, the reader may be wondering if it is practical; but it has "paid off" for us from the very first day of use.

We found that the ease of handling TV chassis, with almost complete freedom from lifting sets, was a factor in enabling us to employ older and more experienced men as technicians. Our production figures for the first six months we used this equipment, as compared to the six months previous to the change, revealed a gain of six extra bench jobs per week over our former average of 40 per week. At this rate, we anticipate our initial investment will be written off after ten months of operation.
Our minimum labor charge for "While-U-Wait" service is $\$ 5.00$ for 30 minutes or less. Seven out of every 10 sets now brought to us can be put into working order within 20 minutes, although a full half hour is still required just to obtain an estimate on a lengthy bench job.

HAIR-PIN

 LOOPFig. 19. Each low-frequency director in Figs. 14 and 15 has small center loop. coils, with the capacity between the two sections of the rods they connect, and the stray capacity of the mounting hardware, form parallel tuned circuits that resonate in the central part of the high VHF band. The high impedance of this circuit at resonance effectively isolates the two halves of each rod electrically on channels 7 to 13 .

This is done to prevent these long rods from acting as reflectors and shielding the high frequency directors from the oncoming signals, thereby counteracting the effectiveness of the directors. By inserting the loading coils, we effectively break each long rod into two smaller ones, and each then functions independently as a highband director. These aid the other high-band directors, and the gain and directivity are enhanced.
On the lower channels, 2 to 6 , the inductance of the loading coils is negligible and each long director rod performs its normal function. The coils act simply to connect each half of the rod together.
In the antenna array of Fig. 15 , the same sequence of directors are employed, only here there are more of them. At the rear of the array are three reflectors. The two extra reflector elements, in conjunction with the regular reflector, create a flat tuned screen designed to more effectively block signals arriving from the rear. In addition, these elements increase the gain uniformly across the low band. Over-all gain is said not to vary more than $\pm 1.2 \mathrm{db}$ over any channel.

This five-part series has been presented to acquaint you with the various types of TV antennas now on the market with the hope that it will aid you in serving your customers. While we were not able to cover every make and model, the theory behind the basic design of the most popular brands has been discussed and you should be able to use this information to analyze and understand variations in the designs heretofore presented.

Caddy With Tube Tester

A caddy with built-in tube tester is being marketed by Vis-U-All Products Co., Grand Rapids, Mich. The tester provides checks for quality, grid-cathode or heater-cathode shorts, interelectrode leakage, grid emission, and gas. Sensitivity of the leakage test can be regulated to suit the owner. An adapter is furnished for checking picture tubes. An adapter is also available for checking selenium rectifiers. Dealer net price of the Model V100 Caddy Tube Tester is $\$ 99.50$.

For further information, check 39 T on Literature Card.

Silicon Rectifier

A silicon rectifier with pigtail leads is now being offered to the radio-TV replacement market by the General Instrument Distributor Div., Brooklyn, N. Y. This new unit, the PT5, is intended for B+ rectifier applications and has an output rating of 500 ma DC . The AC input voltage rating is 130 volts. The case is shaped like a top hat measuring $5 / 16^{\prime \prime}$ in height, $.270^{\prime \prime}$ in diameter at the top, and .375 " across the "brim." No mounting hardware or heat sink is required.

For further information, check $44 T$ on Literature Card.

Controls for Stereo Amplifiers

It takes more than just a session of random knob-twiddling to establish the correct settings for the pairs of identical controls used in dual-channel stereo sound amplifiers. First of all, each pair must be properly bal-anced-that is, both controls must be adjusted individually until identical levels have been established in both sound channels for the volume, bass boost, or other characteristic being controlled. Once a balance has been established, further adjustments should be made simultaneously to both controls of a pair, in order to maintain an equal effect on both channels.

These stereo requirements are met in a new series of dual concentric controls just introduced by Clarostat Mfg. Co., Dover, N. H. The units are similar to regular TV controls, except for the addition of a

When Converting Your Phono to Stereo

The ERIE AUDIO-AMPLIFER KIT

featuring

 "PAC" and an ERIE Printed Wiring Board
With these Plug-in Components:

- ERIE "PAC" (Pre-Assembled Components)
- ERIE PRINTED BOARD
- TUBE SOCKETS
- output transformer
- CAPACITORS
- filter capacitor
- toNe control
- volume control and switch - tubes

SPECIFICATIONS FOR ERIE STANDARD AUDIO-AMPLIFIER

- Frequency Response: 30 cycles to 12,000 cycles $+0,-3.5 \mathrm{db}$
- Sensitivity: 0.56 volt RMS (input at 1 KC) for 2 watt output.
- Power Output: 2 watts - Input Impedance: 2 megohms.
- Output Impedance: 4 ohms - AC Power Consumption: 17 watts.
- Overall Dimensions: $6 \mathrm{~s} / \mathrm{s}^{\prime \prime} \mathrm{L} \times 4^{5} / 6_{6} \mathrm{~W} \times 37 / \mathrm{B}^{\prime \prime} \mathrm{H}$.
- Shipping Weight: 2 lbs.

See and hear it at your local distributor or write for nearest source.

LEADING SET MAKERS SPECIFY TUNG-SOL

electron tube division tung-sol electric inc. NEWARK 4, NEW JERSEY
clutch arrangement. Pulling outward $1 / 8^{\prime \prime}$ on the rear shaft causes the clutch to be disengaged so that the controls can be individually adjusted for balance. After this operation has been completed, the controls can be locked together again by pushing in on the shaft.

Two lines of controls are available in the new style-Stereo D47's having a $15 / 10^{\prime \prime}$ diameter, and Stereo D37's with a $11 / 8^{\prime \prime}$ diameter. A wide range of multiple-tap combinations (with a maximum of three taps per control) are available in the latter series.
For further information, check 41T on Literature Card.
Phono Cartridges

Jensen Industries, Inc., Forest Park, Ill., has announced a new line of 32 phono cartridges designed as replacements for 80% of all cartridges now on the market. Both turnover and single-needle types are available in a wide variety of output-voltage ratings and mounting styles. Some of the units are equipped with Jensen's new hairpinshaped needle that is held in the cartridge by friction. A catalog of the new line gives an actual-size silhouette of each cartridge for ease in identification. List prices range from $\$ 4.95$ to $\$ 8.50$, including replaceable needles.

For further information, check 38 T on Literature Card.

CRT Tester

Hallmark Electronics Corp., Philadelphia, Pa., has announced the Model PC-100 "PixChex," a compact pic-ture-tube checker. Tests can be made for gridcathode and heatercathode shorts (or leakage up to 100 K ohms), cathode emission, heater continuity, and open cathode or grid. The instrument is operated from the AC line by means of a transformer-type power supply. Dimensions of the metal case are $4^{\prime \prime}$ long by $11 / 2^{\prime \prime}$ wide by $2^{\prime \prime}$ deep, and net price is $\$ 4.95$.
For further information, check $48 T$ on Literature Card.

Ceramic Cartridge

A medium-output ceramic phono cartridge of the turnover type, the ACOS Type GP65-1, is being imported from Great Britain by Duotone Co., Inc., Keyport, N. J. Nominal output is 0.16 volts, and frequency response is substantially flat from 50 to $12,000 \mathrm{cps}$. Also being supplied is the Type GP65-3 cartridge with higher output (1.0 volt, nominal value) and somewhat less high-frequency response. Both units have a needle pressure of 10 grams and a recommended load resistance of 2 megohms.
For further information, check $45 T$ on Literature Card.

MERCHANDISING AIDS

Cartridge Exchange Offer

Shure Bros., Inc., Evanston, Ill., has an-
 nounced a plan whereby any purchaser of their newly-introduced monaural "Professional Dynetic" cartridge can trade it in later for a stereo version of the same unit and receive an allowance of 75% of the original purchase price. Offer expires at the end of 1959.
For further information, check 40 T on Literature Card.

Tube Caddy

Electron Tube Div., Westinghouse Electric Corp., Elmira, N. Y., is offering through its distributors a new Model 55 tube caddy with four separate sections and a cover. Any desired combination of sections can be assembled together with snap catches. A mirror is mounted in the cover. The caddy has a total capacity of more than 350 tubes plus tools and equipment.
For further information, check $42 T$ on Literature Card.

Rectifier Pocket Pack

Sarkes Tarzian, Inc., Bloomington, Ind., is packaging pigtail-type "K" Series silicon rectifiers in pocket-size " 5 -Paks." Cartons of five pocket packs are also available.
For further information, check $43 T$ on Literature Card. Cartridge Merchandiser

Electro-Voice, Inc., Buchanan, Mich., has designed a counter display stand holding 12 Power-Point phono car-tridge-needle combinations. The cartridges are mounted in transparent plastic boxes that snap into place in the display. Color-coded specification cards are inserted into the boxes.
For further information, check $46 T$ on Literature Card.
Microscope Display
Recoton Corp., Long Island City, N. Y., is furnishing a No. 1400 counter display, consisting of a birchwood cabinet for needle storage and a 100 -power microscope for inspection of stylus wear, free to dealers who buy a selection of diamond needles.

For further information, check $47 T$ on Literature Card.

LEADING INDEPENDENT SERVICE DEALERS CHOOSE TUNG-SOL

TUNG-SOL ${ }^{\circledR}$
 RECEIVING TUBES

July, 1.958

Acme Elect	
Amphenol Electronics Corp. 34	
Belden Mfg	
Blonder-Tongue	
CBS-Hytron	
Centralab, A Div. of Globe-Union, Inc.	
Clarostat Mfg. Co., Inc.	
Delco Radio Div., General Motors Corp.	
Doss Electronic Research 38 DuMont Labs., Inc., Allen B.	
CO	
Electronic P	
Erie Resistor Corp. E-Z-Hook Test Products	
General Cement Mfg. Co. 28, 53 General Electric Co. 35 Gernsback Library, Inc. 55	
Hallmark Electronic Corp. Hycon Electronics, Inc.	
International Resistance Co. (IRC) 2nd cover	
Jackson Electrical Instrument Co. . . 64 Jensen Industries, Inc. 54	
Littelfuse, Inc. 4th cover	
Mallory \& Co., Inc., P. R. 49 Merit Coil \& Transformer Corp. 23	
Perma-Power Co. 59 Pyramid Electric Co. 43	
RCA Electron Tube Div. 3rd cover Raytheon Mfg. Co.	
Sams \& Co., Inc., Howard W. ..29, 42, 46 Service Instruments Corp. .. . 32, 53, 58 Simpson Electric Co. 50, 51 South River Metal Products Co. 52 Sprague Products Co.	
Tung-Sol Electric, Inc. 62,	
Vis-U-All Products Co. 28, 52	
Webster Electric Co.	
Westinghouse Electric Co. 3919	
Winston Electronics, Inc. 44Workman TV Inc.	
kman	
celite, Inc.	

(Advertisement)

ACCESSORIES

1T. E-Z-HOOK - A convenient reference sheet titled, "How to Build the Five Most Useful Scope Probes," with scheSee ad page 50 . See ad page 56.

ANTENNAS

> 2T. WINEGARD-Two illustrated catalog sheets describing features of Scotchman TV antenna and Scotchman stamp pre. mium offer. See ad page 19.

ANTENNA DISTRIBUTION

3T. BLONDER-TONGUE - Catalog sheet B-23 describes important profit features $\stackrel{\text { of the }}{\text { See ad page }} 47$.

AUDIO EQUIPMENT

4T. AMERICAN MICROPHONE-16-page, two-color catalog on microphones for tape recording, broadcast, public address, and general purposes, as well as handsets, phono cartridges and arms, mobile equip. ment, and accessories.
5T. CENTRALAB-20-page booklet on a quickly installed hi-fi compensated volume control that improves the response of increasing the volume by automatically normally lost by ordinary volume con trols. See ad page 25 trols. See ad
6T. SWITCHCRAFT-Catalog S. 58 contains illustrations, prices, schernatics, dimen-
sional drawings sional drawings on hundreds of electronic components including jacks, plugs,
switches, etc.

CAPACITORS

7T. SPR,AGUE-"ABC's of Ceramic Capacitors," comprehensive brochure on theory and applications. See ad page 2.

CARTRIDGES \& NEEDLES

8T. JENSEN-New Jensen Needle Handbook DL-101, a complete guide to needle reference in handy pocket-size book. Also cartridge catalog DL-I18. See ad page 54.

CONTROLS

9T. CLAROSTAT-Precision potentiometers for prototype work. Series $42.900-5 \mathrm{~K}$ to $100 \mathrm{~K}, 3$ watts. See ad page 5.

FUSES

10T. BUSSMANN - Quick reference catalog to all types of fuses used in the elec. tronic industry. Buss Bulletin SFUS.
See ad page 31.
11T. LITTEIFUSE
117. LITTELFUSE - Illustrated price sheet on fuses, fuse-holders, etc. Sce ad $4 t h$ cover.

POWER SUPPLIES

12T. ACME-Variable Voltage Adjustor Cata \log VA. 312. Sec ad page 22.

RESISTORS

13T. IRC-Bulletin DC3C on close-tolerance 14T. resistors. See ad 2nd cover. WORKMAN TV-No. CS 40 replaceSee ad fage 54. CANDOHM resistors.

SALES PROMOTION

15T.VIS-U-ALL - Auto-radio service mer chandising manual. See ads pages 28,52 .

SERVICE AIDS

16T. CBS-HYTRON-Bulletin E-292 describes new $8 \mathrm{JP4}$, an aluminized $110^{\circ} \mathrm{TV}$ test picture tube. See ad page 17.
17T. GENERAL CEMENT-General catalog No. 158 on complete line of products.
Sce ads pages 2853 Sce ads pages 28, 53.
18T. HALLMARK—Catalog sheet and price

19T. PERMA-POWER-Descriptive literature on the new "Magneformer" used to magnetize and demagnetize metallic hand tools. Sce ad page 59.
20T. SERVICE INSTRUMENTS-New complete catalog of all Sencore units. See ads pages 32, 53, -58 .

SHOP EQUIPMENT

21T. EQUIPTO -48-page reference manual completely describing all types of steel shelving, cabinets, work benches and tables, and other shop and office equipment.

TECHNICAL PUBLICATIONS

22T. GERNSBACK-Descriptive literature on Gernshack Library books. See ad page 55.
23T. WESTINGHOUSE-"Tech-Lit" Service covering schematics and technical service data for all Westinghouse radio, TV and hi-fi sets. See ad page 39.

TEST EQUIPMENT

$B \& K$-Bulletin AP12 gives helpful information on new point-to-point signalinjection techniques with Model 1075 "Dyna-Quick" 'Models $500 \mathrm{~B}, 650$, and automatic 675 portable dynamic mutual conductance tube and transistor testers plus Model 400 CRT cathode rejuvenator plus Model 400 CRT cat
25T. DOSS-Instruction manuals containing details on the new D-600 "Electrolytic Substitute", D-700, "Sync Master," and D-400 "Hi Leak" Analyzer. Also on D-200 "Video Master" D-100 "Sweep, Analyzer," and D- 500 "Slave Oscillator."
26T. EICO-New 1958 16-page catalog shows you how to save 50% on test instruments tory-wired form. See ad pagc $2 f$ and fac-tory-wired form. See ad page 24 .
27T. ELECTRO - PRODUCTS - Illustrated folders on new $D C$ power supply that powers transistor portable or "hybrid" auto radios, available in kit or factorywired form. Also deluxe, ruggedized kit for transistor or heavy-duty work. See ad page 57.
28T. JACKSON-Folder covering entire line of "Service Engineered" test equipment.
29T. RCA-Form 3F767, flyer on Model WV-84B ultra-sensitive DC microammeter. Form 3F764, RCA test-equipment line flyer. See ad 3 rd cover.
30T. SIMPSON-New test equipment bulletin 2060. See ads pages 50, 51.

31T. TRIPLETT-Circular on universal VOM
32T. WINSTON-Complete data on full line of equipment, including the new $6 \cdot \mathrm{in}-1$ Hi-Fi Audio System Analyzer. See ad page 4.

TOOLS

33T. XCELITE-Illustrated catalog on full line of tools, plus literature on new products. See ad page 55.

TRANSFORMERS \& COILS

34T. MERIT - Service Technician's Hand. book lists part numbers and prices of products in company's line. See ad page 23.

TUBES

35T. DUMONT-Picture-tube data sheet. See ad page 7.
GENERAL ELECTRIC-Receiving-tube interchangeability chart. Lists 122 tele vision and radio types which can directly replace 180 others. (ETR-1749). See ad page 35.
37T. RAYTHEON - Revised 14-page Television Picture Tube Characteristics book let includes data on aluminized black-and-white and color tubes, face-plate deflection angle, bulb dimension, ion-trap information, and basing diagrams. See
ads pages 1,48 .

ORDER YOUR SUBSCRIPTION TODAY TO THE INDUSTRY'S LEADING MAGAZINEPF REPORTER

\square Service Manager \square Student

Cify__Zone___Stote._._S Name__
Firm_______
Address__
PF REPORTER, 2201 East 46th Street, Indianapolis, Ind.
 Please enter my subscription to PF REPORTER for: * ayvว yヨayo NOlldiyosgns *
 \square Service Manager \square Student \square Dealer with Service Shop $\} \quad \square$ Part-Time \square Independent Serviceman

 \qquad molea eak دo Aluliod tuld

$\begin{array}{\|l} \hline 1 \\ T \end{array}$	$\begin{gathered} 17 \\ T \end{gathered}$	T
2	$\left\|\begin{array}{c} 18 \\ \mathrm{~T} \end{array}\right\|$	T 3
$\begin{aligned} & 3 \\ & 1 \end{aligned}$	$\begin{gathered} 19 \\ T \end{gathered}$	T
$\begin{aligned} & 4 \\ & \hline \end{aligned}$	$\begin{gathered} 20 \\ T \end{gathered}$	T ${ }^{36}$
$\begin{aligned} & \mathbf{5} \\ & \hline \end{aligned}$	$\begin{aligned} & 21 \\ & T \end{aligned}$	T
$\begin{aligned} & 6 \\ & \hline \end{aligned}$	$\begin{gathered} 22 \\ T \end{gathered}$	$\begin{aligned} & 38 \\ & T \end{aligned}$
$\begin{aligned} & 7 \\ & 7 \end{aligned}$	$\begin{gathered} 23 \\ T \end{gathered}$	39
$\begin{aligned} & \hline 8 \\ & T \end{aligned}$	$\begin{gathered} 24 \\ T \end{gathered}$	$\begin{array}{\|c} \hline 40 \\ T \end{array}$
9	$\begin{gathered} 25 \\ T \end{gathered}$	T1
$\begin{array}{\|c\|} \hline 10 \\ T \\ \hline \end{array}$	$\begin{gathered} 26 \\ T \end{gathered}$	$\begin{array}{\|c} 42 \\ \hline \end{array}$
$\begin{array}{\|c\|} \hline 11 \\ T \\ \hline \end{array}$	$\begin{gathered} 27 \\ T \end{gathered}$	$\begin{array}{\|c} 43 \\ \hline \end{array}$
$\begin{gathered} 12 \\ T \end{gathered}$	$\begin{gathered} 28 \\ T \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline 44 \\ \hline \end{array}$
$\begin{gathered} 13 \\ \mathrm{~T} \end{gathered}$	$\begin{array}{\|c\|} \hline 29 \\ T \end{array}$	$\begin{gathered} 45 \\ T \end{gathered}$
$\begin{gathered} 14 \\ T \\ \hline \end{gathered}$	$\begin{array}{\|c} 30 \\ \mathbf{T} \\ \hline \end{array}$	$\begin{gathered} 46 \\ T \end{gathered}$
$\begin{array}{\|c\|} \hline 15 \\ T \\ \hline \end{array}$	$\begin{array}{\|c} 31 \\ T \\ \hline \end{array}$	$\begin{gathered} 47 \\ T \end{gathered}$
$\begin{array}{\|c\|} \hline 16 \\ T \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 32 \\ T \\ \hline \end{array}$	$\begin{gathered} 48 \\ 7 \end{gathered}$

||||||||||||||||||||||| | BUSINESS REPLY CARD |
| :--- |
| No Postage Stamp Necessary If Mailed in the United States |
| 3\& POSTAGE WILL BE PAID BY |
| PF REPORTER |
| 2201 EAST 46TH STREET |
| INDIANAPOLIS 5, IND. |

FIRST CLASS
PERMIT No. 1076
(Sec. 34.9, P. L. \& R.)
Indianapolis, Ind.

||||||||||||||||||||||

$$
\begin{gathered}
\text { BUS\|NESS REPLY CARD } \\
\text { No Postage Stamp Necessary If Mailed in the United States } \\
\hline 3 \& \text { POSTAGE WILL BE PAID BY } \\
\text { PF REPORTER } \\
\text { Reader's Literature Service Dept. } \\
\text { 2201 EAST 46TH STREET } \\
\text { INDIANAPOLIS 5, IND. }
\end{gathered}
$$

SUPPLEMENT TO SAMS FEBRUARY 1958 MASTER INDEX

Covers PHOTOFACT Set Numbers 390 through 407 Released MARCH through JULY

This Supplement is your index to new models covered by Рнотоғact since March 1958. For model coverage prior to this date see the Sams Master Index dated February 1958. Use this Supplement with the Sams Master Index-together they are your complete Index to Рнотоғact coverage of over 30,000 receiver models.

$\begin{aligned} & \text { Sot Folder } \\ & \text { No. } \end{aligned}$	$\begin{gathered} \text { Sot. Folder } \\ \text { No. No. } \\ \text { HC-Cont. } \end{gathered}$	$\begin{aligned} & \text { Set Folder } \\ & \text { No. No. } \end{aligned}$ LAFAYETTE	$\begin{aligned} & \text { yoter Folder } \\ & \hline \text { Ho. } \\ & \hline \text { No. } \end{aligned}$	
60 (Ch. 1202470) 304-7	C1545, UHF	1A.69 397-8	32)	
7A (Ch. 1202580)		LINCOIN	$\begin{array}{r} 32 \\ -10 \end{array}$,
F. $111225 \mathrm{~F}^{111165}$, 1120 F		(See Auto Radio	08)	07, U Ch . GH,
(Ch. 120257p ${ }^{\text {a }}$ (PCE 308-1, 319-1) 296 -6		Son	5K23B-1A, 5K23CW-1A, 5K23M-1A	
-1) 296-6				
39 © $с$ h. 1202855				
			st22 W. 1 (Ch. HS. 625). 405-10 ${ }^{5 T 22 Y-1}, 5 T 23 \mathrm{~N}-1,5223 \mathrm{P}$.	
	$21 \mathrm{CL} 573, \mathrm{UHF}, 21 \mathrm{Cl} 574, \mathrm{UHF}$			
)….....(PCB 319-1) 296-6	-21TI539, UHF, 2irisio -UHF,	,		
$\begin{aligned} & 12024521 \\ & \cdots(\mathrm{PCB} 322-1) 299 \end{aligned}$	UH, 217544	Chasis Amp.isibe,		-17ku98 uich ou ciui 395-5
(Ch. 12028989)	(1) ${ }^{2}$		${ }_{5288}$	
(Ch. 120331 H)		BA...395-10		:177)
		MP-170AA	.1. W, w. ${ }^{\text {W }}$	
383M, MC		88...404-8		
	U2" Line)391-1		(Ch. Hs-588)	
Ch. 120380H) …386-15-5	GRUNDIG MAJESTIC	${ }^{\text {39A }}$		
${ }^{85}$ (Ch .120381 M$) \ldots 3866$	"Concert Boy" 57404-6	O2AA, U25.		ch.
27 (Ch. 120389M) . 386	3028 406		366	${ }_{\text {ch. }}^{\text {Ch. }}$ CD,
(288, 1289 (Ch. 120390H6	${ }_{8058}^{7088}$	O8AA, U25-09AA, U25.10AA,	401-2	Ch. Gri Gru395-2
		402		Ch. GU, GUU …….. ${ }^{\text {395-2 }}$
${ }^{120387 M, ~ M C 1 ~}$	harman-ka	26.03 AA ,		
${ }^{105}$ (Ch. 1204010	4			
118 (Ch. 1204035) ${ }_{400}^{400}$	hoffman	${ }^{034 A}, ~ V 24.04 A A, ~ V 24.064 A$	37. $\mathrm{THS}^{\text {S }}$ 537	Pacemaker
Ch. 120377C) 40	\bullet	,		${ }_{\text {PM }}$
C.C. 12037	-	03AA, V25.04AA, V25.05AA,	7,	2285 ……...........399-9
(Ch. 120370	- B1251, U (Ch. 3324, 333). 3			
1426 (Ch. 120369C)	-81261. U (ch. 334, U). 4	-102A		ing)
	- 83311, U ich. 332, טj)... ${ }^{\text {a }}$			
(PCB $249.1,1269-1)$		MCINTOSH ${ }_{\text {MC-30 }}$	is:	-16RP1 (See Photofact Servi
	-..........(PCB 398-5)			
	332	MERCURY		
PCB 249-1, 269-11 23		(See Auto Radio Listing)		
202335	- k 1241) U (Ch. 332	meteor	-	Photo
		-7144 (Ch. 528.50060, 62, 63, 64,	2	C6, $215 \mathrm{SC7}, 21 \mathrm{sC8}$ (Ch. 8853)
Ch. 120245D. .(PCB 318.1) ${ }^{\text {290 }}$		7145 (ch. 528.50070	(PCB 397.4$)^{345-9}$	2
	- M1225i, U ICh. 3324, 333i. 393	751		2r
		$\bullet 7146$ (Ch. 528.50060, 62, 63, 64 ,	PCB 397.41 345-9	
Ch. 12120258 H . 1 PCB	-m3311, U $\left(\mathrm{Ch}, 332, \mathrm{uj}\right.$) ${ }^{\text {a }}$	-7147 (Ch. 528.50070, 71, 73, 74.		
20285T, 120	-m3321. U (Ch. ${ }^{\text {332U }}$, 333). 39		54.4) 345	Ch
Ch. 1202898 B . (PCE 322-1) 29	-m331, U (Ch. 334, u) . 40	-65, 66, 67)......... 389	168 (Ch. H5.468)	
Ch. 1203668 .	-m3351, U ICh. 422, U)	${ }^{181}$ 71) (Ch. 528.50070, 71, 73,74,		$\bullet 24 \mathrm{VTI}$ (Ch. 8853)392-2
Ch. 120369 C				
Ch. 120377 C				
C. ${ }^{\text {ch. }} 120382 \mathrm{H}, \mathrm{HC}$,	\cup (ch. 332.4)...393	528.50006, 528.50067, 5		
120383 mmM Mc 406	\checkmark (Ch. 332U. 333). 39	${ }_{50070}$. $528.50071,{ }^{528.50073}$		PHIICO
			Ch. H5.571, Hs.573447-9	A
	U ich. 332, u) 39			
20390H, HC, 120391	- P3321. U (Ch. 332U, 333). 393	(See Auto Radio Listing)	Ch. Hs.408 $400{ }^{\text {a }}$-10	
			Ch.	
	-RP.409 (TV Remoto Controli 4	Also See Auto Radio Lis		
i20403s, i204044 400-2	-s	mote	Ch. Hs. 632 22...6...... 406 -10	
FIRESTONE		Y12		is
4.A. 166 (Code 1.7.-5110) 407			Ch. TS-423, A APCB ${ }^{\text {¢ }}$ 399.4) 366-7	
$\begin{aligned} & 001 \\ & .394-11 \end{aligned}$	-W1251, U ICh. 332U, 3331, 39	wT	. 40	$2 . . .404-12-5$
	-w3311, U iCh. 332, Ui)..393-1	${ }^{\text {ch }} \mathrm{Ch}$		
393-8		- r2ićbeG, mG (ch. is -537) 401-2		
(Code 120.7.PTR1 151	Ch. 372, U. 3733 398-2		399.4) 366-7	-
4901	Ch. $334,{ }^{\text {che }}$.			3204日, i, \ll $\mathrm{ich}^{387-17-5}$
	Ch. 419°........321-5-5	Is 537 y	Ch. vis-423. y	$\cdots{ }^{1}$, ${ }^{387-17-5}$
			Ch.	
	-175305 17530		366-7	$8141, \ldots . . .339972$
ISee Photofact Servicer		TS.537Y		sti $\left\{\mathrm{Ch}_{\mathrm{h}} \mathrm{B}(42\}\right.$
(See Phototact Servicer)			rs $544, Y \ldots \ldots .3$ 393-:	2
fisher		$M, M A, Y 21 \mathrm{K7} 8 \mathrm{~B}$.	MUNTZ	
			${ }_{0}^{724}{ }^{724}$ Series)
	88	393		d
0 .	K.771, $721 . K-774$ isimilar	2iT3is, bA, CH, CHA, MGA.		399-2
)
fonovox	- Chasis). (PCB 394-55) 371-13		kx-25393-10	2
7060 402	-721-mT 770 (similar to chasis)	GA, MG, MGA, M, MA (Ch. TS		
	miar	- Y2ita7Mo ich mts-5374	uto Radio Listing)	Ch. 8psi, Al A99-2
ae Auto Realio Lis	- Chassisi			
general electric	-17io (Similar to Chasis)	TS. 54.4	${ }_{57}^{58}$	-
	-51 371-13			${ }^{\text {RCJ30 }}$ (TV R Remote Conroil $403-2$
e) . $397-1975$	(similar (PCCB 304sis) 371-13	-4, ${ }^{345-9}{ }^{\text {Ch. }}$	${ }_{\text {BC15, }}$	RT-200-11. RT-20.404-12-5
	335, 1736, 1740.1741 Similor to Chassis). . (PCB 394.5) 371-13			1800 Code
	(Also See Recorder Listing)			
	V. 515 (925X400) \ldots...... 407	181 - 353-8		U,
-UhF,	402		Cl	TE12U)
Line) 391	406	(Ch. HS-609) 4	BJ)306-11	- 348

RCA VICTOR-Cont. | Sol Folder |
| :--- |
| No. No. |

 - 2108281, U, $21 \mathrm{DB282}$, U ${ }^{\text {KCS }} 116 \mathrm{Ch}$. -2108305 U 2108306 U 21D 8307, U (Ch. KCS116A, B) - 2108525, U, 2108526, U, 400-4 $21 \mathrm{D}-$ $8527, U,{ }^{21 D 8528,}$ U (Ch.
KCS108C, D) - 21 D8545, U, $21 \mathrm{DB546}$, u, 21 D . 8547, U (Ch. KCS108C, D) -2108565, U, $2108566, ~ U, 21 \mathrm{D}$
8567 U (Ch. KCSIO8E, F) 390-2 -2108588, U (Ch. KCS $108 \mathrm{C}, \mathrm{D}$) - $2108605, ~ \mathrm{u}, ~ 21 \mathrm{DB} 807, \mathrm{U}, 21 \mathrm{D}$ 8808, U (Ch. KCŚ108C, D) -2108628, u' (Ch. KCSi16C, D) - 21DF8635, U, 21DF8636, U CTP5C.... 21DF8649, U 1 Ch - 21 DF8646, U, 21 DF 8649 , U (Ch.

 98A, C) U, 21 (PCB $393-5$ (Ch. $347-14$

- 21 I7117 -21I7117, U (Ch. KCS98A, C)
 KCS98A, C) (PCB 393-5) 347-114
$-21 \mathrm{~T} 7352, \mathrm{U}, 21 \mathrm{~T} 3555, \mathrm{U}, 21 \mathrm{I7} 357$ - 21 Y7352, U, $2117355, \mathrm{U}, 21 \mathrm{IT357}$
U (Ch. KCS98E, F)
 $21 T 7375, G, G U, U, 21 T 7377, G$
$G U, U$ Ch. KCS983, K, L, M GU, U (Ch. KCS981, K, L, M) - 21 T8202, U, $21 T 8205, \cup, 218207$,
U (Ch. KCS 113A, B). 398-3 U (Ch. KCS 113A, B). 398-
21I865, U, 21 T8267, U (Ch.
KCS113A, B)

$2118405, ~ U, ~ 21 I 8407, ~ U, ~(C h . ~$
$K C S 113 P$,
R)

21 i8445, U, $21 T 8447, \cup, 21 T^{2} 448$,
$U(C h . K C S 113 E, F) \ldots 398-3$
 $21 T 8465, U, 21$ T8466, U, 21 T8467
U, 21184 C8, U (Ch. KCS113E, F) - $21 \mathrm{~T} 8485, \mathrm{u}, 21 \mathrm{~T} 4486$, U, 2178487 U(Ch. KCSI13E, FI. . 398 -
 CIP5B)
$24 D 8655$ (
24D8657, U,
(Ch. - 24D8655, U. 2408657, U, ${ }^{(\mathrm{Ch}}$
KCS108C, D) $240847 h$, U, $24 D 8678$,
KCSI08C, D,

RAULAND

1925, A.
REGENCY

ROCKLAND
88-1.5, $88-1.5 R \ldots405-14$
88-1.S, 88-1
Chassis AMP.154AA396-3 SETCHELL-CARLSON

$\begin{aligned} & 5800, \text { R, } 5801, \\ & 158,158 \mathrm{RP}) \\ & \hline \end{aligned}$	$\begin{aligned} & 5803 \text { (Ch. } \\ & \ldots .396-4 \end{aligned}$
Ch. C-102 .	402-3
Ch. Cl02A	407-15-5
Ch. 158, 158 RP .	396
Ch. 258-A	406-14-5
SHERWOOD	
S. 100011	390-10
S-2000	396-9
S. 3000	401-12

SILVERTONE

6062, 6063,6064 (Ch. 528.39900)
0237 iCh. 567 36006) 478-12
7100A, AY, AZ (Ch. 528.50023 $24,25,26,27,28)$

- $7101 \mathrm{~A}(\mathrm{Ch} .528 .50034,35,36,37$, 38, 39). ...(PCB 405-4) 339-1
 7103R CCh. $528.50033 .34 .359-13$ 7103 R (Ch. $528.50033,34,35,36$,
$37,38,39)(P C B ~ 405.4) 339-13$ $-7110 \mathrm{~A}(\mathrm{C} \mathrm{h} .528 .50023,24,25,26$,
27 F 28)...(PCB 405.4) 339-13 27. 28)....(PCB 405.4) 339-13
-711 A (Ch. $528.50034,35,36,37$, $38,39) \ldots$ (PCB 405-4) $339-13$
- $7112 \mathrm{~A}(\mathrm{Ch} .528 .50023,24,25,26$ 27, 28)....(PCB 405-4) 339-1 38, 39)...(PCB 405.4) 339-13 -7114 (Ch. 528.51040) (See Phato
- 7115 (Ch. 528.51050)
(See Photofact Servicer). 394
7116 (Ch. 528.51040) (See Photo
-7117 (Ch. 528.51050)
(See Photofact Servicer) 394
- 7120 (Ch. 528.51040) (See Photo
fact Servicer).
- 7121 (Ch. 528.51050]
(See Photofoct Servicer). 394
7122 (Ch. 528.51040) (See Phot
foct Servicer)....
-7123 (Ch. 528.51050)
7123 (Ch. 528.51050)
(See Photofact Servicer). 394
-7124 (Ch. 528.51040) (See Photo
foct Servicer)
-7125 (Ch. 528.51050)
(See Phototact Servicer). 394
71264 (Ch. $528.50023,24.35$,
27, 28)....(PCB 405-4) 339-1
7127A (Ch. 528.50033, 34, 35.36,
- 7128 (Ch. 528.51040) (See Photo-
foct Servicer)
-7129 (Ch. 528.51050)
-7130 (Ch. 528.51040) (See Photo
fact Servicer) …...... 393
7131 (Ch. 528.51050)
(See Photofact Servicer). 394
- 7132 (Ch. 528.52040)
(See Photofact Servicer) 396
- 7133 (Ch. 528.52050) (See Photo
fact Servicer)
S......... 398
-7134 (Ch. 528.52040) (See Photo
fact Servicer
- 7135 (Ch. 528.52050)
(See Photo
(Sact Servicer)
-7136 (Ch. 528.51040) (See Photo
fact Servicer)
- 7137 (Ch. 528.51050)
(See Photofact Servicerl. 394
$-7138,7140$, (Ch. $528.46300,301$)
67164 (Ch. $528.50084,85,86.87$)
- 7165 (Ch. $528.50036,37,38,39$)

7167 (Ch. $528.50036,37,38,39$)

6172 (Ch. 528.51040) (See Photo-
193

foct Servicer).
0173 (Ch. 528.51050)
7175 Photofact Servicer). 394
-7175 (Ch. 528.52050 (See Photo
fact
Servicer)

fact Servicer)
191 (Ch. 528.51050)

(See Photofact Servicerl 394
7192 (Ch. 528.51040) (See Photo fact Servicef)
7244 D . 7246 B
 8777 (Ch. 528.53100 (Ch. 132.42700) 8009, $8010,8011,8012$ (Ch. 132.428001391-12 132.42800)
$8013,8014,8015$ (Ch. 132.429001 8017A, 8018 A C'Ch. 528.530301 8019. 8020 (Ch. 528.532001 8021. B022, 8023 ich. 528.530401 8059 A, 8060 A 8061, A 8069. A (Ch. 528.53150)...394-15
$8100 \mathrm{BE}, \mathrm{GR}$ (Ch. 456.50061 651 $8102 \mathrm{AQ}, \mathrm{Cl}, \mathrm{YL}$ (Ch. 528.501251 8104CH, CO (Ch. $\quad 528.501251$ - 8106 (Ch. 528.50125) \cdots. 389—3
$\bullet 8110(\mathrm{Ch}$
$528.50144) \ldots .389-3$

SILVERTONE-Cont.

- 8111 (Ch. $528.50150,152,153$, $154,155)$..(PCB 400.5) 389—3
$-8112(\mathrm{Ch} .528 .50144) \ldots 389-3$
 - 8114 (Ch. $528.51100,102,104$) - 8114 в в © Ch. $28.51106,107,108$, $160.161,163,164,165,166$,
167,168, -8i15'(Ch. $528.51110,112,1131$ 8115 iCh. $528.51170,171,172$, 173,175$) . \ldots . . .397-31$
 8116 (Ch. $528.51106,107,160$, $161,163,164,165,166,1681$ 8117 ich. $528.51110,112,113\}$ 8117 iCh. $528.51170,171,172$,
$173,175 \ldots . . .397-3$ 8150 (Ch. 528.50144)......3889-3 3 -8151 (Ch. $528.50150,152,153$,
$154,155)$ (PCB 400-5) 389-3 $154,155)$. (PCB 400-5) $389-3$
$8152(\mathrm{Ch} .528 .50144) \ldots .389-3$
 - 8154 (Ch. $528.51100,102,104$) -8154 iCh. $528.51106,107,160$, $161,163,164,165,166,168)$ - 8155 (Ch. $528.51110,112,113$) -8155 (Ch. $528.51170,171,172$, - 8156 (Ch. $528.51100,102,104$) - 8156 iCh. $528.51100,107.180$, $161,163,164,165,166.1681$ - 8157 (Ch. $528.51110,112,113$) 8157 (Ch. $528.51170,171,172$, $173,175)$
-8158 (Ch. $528.51100,102,104)$
$390-3$
- 8158 Ch. $528.51106,107,160$, $161,163,164,165,166,168)$
- 8160 (Ch. $528.51140,142,1431$
- 8160 (Ch. $528.51140,142,143$)
- 8160 iCh. $528.51180,181,182$ 8160 (Ch. $528.51180,181,182$,
$183,184,185,187$) ...397-3 - 816: (Ch. $528.51150,152,1531$ - 8161 (Ch. $528.51190,191,193$, - 8162 (Ch. $528.51140,142,143$)

8182 (Ch. $528.51180,181,182$,
$183,184,185,187) \ldots 397-3$ 183. (184, 185,187$) \ldots .397-153$)
-8163 (Ch. $528.51150,152,390-3$

8183 (Ch. $528.51190,191,193$,
194)

- $8182{ }^{194}$ (Ch. $528.51100,1029104$)
- 8182 (Ch. $528.51106,107,160$,
$161,163,164,165,166,168)$

8183 (Ch. $528.51110,11291131$
$\ldots 390-3$
-8183 (Ch. $528.51170,171$ 172,

- $8184 \mathrm{lCh} .528 .51104,140,142$,

$180,181,182,183,184,185$,
$1871,397-3$
185
-8185 (Ch. $528.51150,152,153$)
-8185 (Ch. 528.51190 191 ${ }^{3}$

$1431)$			
-8186			
(Ch.	528.51161,	182,	163
180,	181,	182,	183,
184,	185		

$180,181,182,183,184,185$,

- 8187 (Ch. $528.51150,152,153$ 3
- 8187 (Ch. $528.51190,191.193$,
194 (Ch. $528.51140,142,1431$
-8188 (Ch.
- 8188 CCh. $528.51180,181.182$.
$183,184.185,1871 \quad$ 397-3
- 8190 , 8190 A (TV Ch. 528.52100,
8190, ${ }^{8190 A}$ (TV Ch. 528.52100 ,
10102 and Radio Ch.
528.531901
528.531901
$8191,8191 \mathrm{~A}$ ITV Ch. 528.52110 .
111 391-
111.112 and Radio Ch .
528.531901

528.531901
$-8193,8193 \mathrm{~A}$ IV Ch. 528.52110 ,
$\begin{array}{ll}111, \\ 528.531901 & \text { and Radio } 391-\mathrm{Ch}_{3}\end{array}$
-8196 (Ch, $528.51240,241,242$
- 8197 (Ch. $528.51250,251,253$

8198 Ch. $528.51240,241 \quad 242$
$245)$
8190
${ }^{245190}$ (Ch. $528.51250, \quad 251$ 397-35)
8200,8202 (Ch. $132.43200,2011$
8236, 8238 ich. 528.59030 , $\mathbf{5 9 8 - 1 2}$
8239, 8242 (Ch. 528.59020 , 590 ,

SILVERTONE-CONT.
8244, 8245, 8246, 8247, 8248
$8244,8245,8246,8247,8248$
(Ch. 528.59010) $10.400-10$
9017 (Ch. 528.53200$)^{2} \ldots .397-12$ 9019,9020 (Ch. 528.533101
9118,9119 (Ch. $528.51220,230$) 9224 (Ch. 528.46400$) \ldots . .382-11$
$9242(528.59020) \ldots . .400-10$ 9244,9245 (Ch. 528.590
$\begin{array}{ll}C_{h} . & 132.42700 \\ \text { Ch. } \\ \text { Ch. } \\ \end{array}$ $400-10$
$395-14$
$391-12$
Ch. 132.42900 , 132.43200
396-10
Ch. $456.50061,85$......3 389-1
Ch. 526.46400 (PCB 400-5) 388-1
Ch. 528.50023, $528.50024,528$.
$50025, \quad 528.50026, \quad 28.50027$
528.50028. (PCB 405-4) 339-13

Ch. $528.50033,528.50034,528$.
$50035, \quad 528.50036,528.50037$
$50035,528.50036,528.50037$
$528.50038,528.50039$
Ch. $528.50080,5828.50082$ 339-1
$50083.528 .50084,528.50085$
528.50086, $528.50087^{528.50084,5}$

Ch. $528.50144 \ldots, 50152$,
$528.50153,528,50154 ;$
$528.50155(P C B 400-5)$
389 Ch. 528.51040 (See Photofact
Servicer)
Ch. 528.51050
(See Photofact Servicer). 3
Ch. $528.51100,528.51102$,
Ch. $528.51100,528.51102,390-3$
528.51104
Ch. $528.51108 \ldots 51106,51107,397-3$
Ch. $528.51110,528.51112,390139$
Ch. $528.51140,528.51142,390-3$
528.51143
Ch. $528.51150,528.51152,390-3$
Ch. $528.51160,528.51161$.
$528.51163,528.51164$,
$528.51165,528.51166$,
$528.51167,528.51168$,
$528.51167,528.51168$,
$528.51170,528.51171$,
$528.51172,528.51173$,
$528.51175,397-3.3 .31181$,
Ch. $528.51180,528.51181$,
$528,51182,528.51183$
$528.51184,528.51185$
528.51187, 528.51190
528.51191. 528.51193 ,

528.51194	397-3
Ch. 528.51220	400-14-5
Ch. 528.51230	00-14-5
Ch. $528.51240,528.51241$	
$\begin{array}{r} \text { h. } 528.51250,528.51 \\ 528.51253 \ldots \ldots . . \end{array}$	
Ch. 528.52040	
(See Photofact Servicer)	
Ch. 528.52050 (See Photof	
Servicer)	
$\begin{gathered} \text { Ch } 528.52100,528.52101 \\ 528.52102, \ldots . . \end{gathered}$	
Ch. $528.52110,528.52111$	
528.52112	
Ch. 528.53030	39
Ch. 52R.53040	392-10
Ch. 528.53150	394-15
Ch. 528.53190	391-3
Ch. 528.53200	397-12
Ch. 528.53310	397-12
Ch. 528.59010, 528.59020	0 400-10
Ch. 529.50030	398-12
Ch. 5R7.3¢006	402-12
Ch. 547.30nno	
Ch. 567.59020	0
Ch. 567.59030	398-12

Set Folder No. No.	Set Folder -LER-Cont. No. No.	Set Folder No. No.	Set Foider No. No.	Set Folder No. No.
1A19.2398-13	Ch. 775.57 Cont.		ZENITH-Cont.	OLDSMOBILE
3A14.3 …..............3400-11	Ch. 775.57 , ${ }^{\text {Ch. }}$ 72916, 72917, 729174,73016	HF-100BN, HF.101BN (Ch. V-2500.		989127395-18-5
358 397-14	4.5) 371-13	Ch. V-2259-3 392-13		989131396-16-5
4A21, 4A22 397-15		Ch. V.2296-13396-14	Ch. 12721, \ldots........... 394-16	PACKARD
	TRUETONE (Also See Auto Radio Listing)	Ch. V-2364.1, $2,-3,4399-155$	Ch. 15A26, Q 407-3	AC-2906, AC. 2907 396-16-5
STROMBERG-CARLSON	D28328, D2834B 384-16	Ch. V-2383-1 \ldots......... 392		PONTIAC
AU-62 391-13	D3614B, D3714A	Ch. V-2390-3 ${ }^{\text {che.o..... }}$ 405-16	17A30, Q, 17A3	822 396-16-5
SR-402 395-17	…(PCB403-5) 343-14	Ch. V.2500-1.401-14	17	
SR-403B400-12		(Also See Re	$\begin{array}{cc} \text { cer } \\ 17 \end{array}$	STUDEBAKER
Studeb	DS770B, DS771 B, DS772B	Changer Listing)	Ch. 19A20, Q, U.......357394-14-5	AC-2905 397-19-S
(See Auto Rodio Listing)	- DSTE, DStis	A512W, Y (Ch. 5A02)397-18	Ch. 19A30, Q, U........ 406-4	AC-2906, AC-2907396-16-S
SYLVANIA (Also See Record		${ }_{A} 730 \mathrm{E}, \mathrm{R}, \mathrm{R}, \mathrm{Ch}$. $\mathrm{TAOLO}^{2}, 7$	Ch. 20 J 23 (See Photofact Servicer)	truetone
Changer and Recorder Listing)	D5892, A, D5894, A......397-17	$\text { 7405) } \because \because .$		C4623B
- 31 C606 Series (Ch. 1-534-1, -2)	DC3715B, DC5901A, DC5902A DC5905-15	Al410L, LU, Al411P, PU, Al412G, GU (Ch. 15A26, U).... 407-3		
-317304 Series (Ch. 1.534-1,	, 403	- Al716L, LU, Al7İG, GU, A171		
	2D1824A, 8, 2D1825A, B, 2D1826A, B, 2D1827A, B........394-3	(719), JU (Ch. 15A26	AUTO RADIOS	RECORD
Ch. 1-534-1, 2391-4	-2Di830A, 2DIB31A, $2 \mathrm{DIB32}$	15P, PU (Ch. 15231		
Ch. 1.808.1396-11	2D1833A \cdot......... 403-4		AIRLINE	
TECH-MASTER	1834A, 2D1835A, 2D1836A	(2001 Ch - 1526a	FJB-6571 (See Photofact Servicher	dmiral
FM-18 398-14	D1840a, 2DI841a, 2 D1842a			RC. 550A, GA [See Model RC. 500 - Set $132.2(C M .4)$ and Model RC
TM-15A 402 -14	2D1843A, 2D1844A, 2 D18	Ch.	AMERICAN MOTORS	$\begin{aligned} & \text { : } 132-2 \text { (CM-4) and Model RC- } \\ & 0-S e t: 185-2(C M-5)] \end{aligned}$
16A396-12		,		7.1, $1 \mathrm{~A},-1 \mathrm{~B},-4,-4 \mathrm{~A}, .6 \mathrm{~A}$,
${ }_{630}^{21} \times 5.630-51$.......... 391-14	2D2720C....(PCB 398-5) 357-10			
	-2D2830A, 2D2831A, 2D2832A,		automatic	
-1930N 390 -4	2D2833A . .a.e....403-4			co
2430N 3 39-4			CTR-77, cik.jiA . . . 403-12-5	'Conquest' ${ }^{\text {a }}$. 390-5
TELEFUNKEN	-203820A, 20382144063	EU, R, RU, C'Ch. i7A20, U'		TEERS
"Gavotte 7"399-12	- 20C18408, 20C18418, 20C1842B,		FIP-37A403-12-5	GS-77, GE, GED.......399-7
TONFUNK	8438, 2DC18448, 2DC184	(Ch. 17 A30) … 390-13-S		RCA VICTOR
W706 403-9	-2DC2840B, 20C2841B, 20 C 2842 B ,	U, R, RU, (Ch. 17A		RP-208-2, -3, 4, -5 391-II
7046M399-13	- 2DC3840A	282E, r (Ch. 17A30) 390-13-5		sylvania
trav-ler		9, JU, A2330E, EU, H, HU,		1-318-1, -2, 3401-13
A392-11		2329R, RU	92	V-
17M765 (Ch. 743-48) . 402-16-5	1210, 1211 404-11	(Ch. i9a30, U).	CK	959
PCB 399.4$]$ 337-14	V-M (Also See Record	MU ${ }_{\text {EU }}$	981902 404	Enith
621-30U, $621.31 \mathrm{U}, 621-32 \mathrm{U}$,	Changer and Recorder Listing)		981903 406	7402-15
	${ }_{991}^{155 A}$.393- 31	A2360M, MU, R, RU (Ch. 19A30, U)	CA	S.14078, ${ }^{\text {s-14079, s.14082, }}$
(Ch. 627-26) (PCB 403-5) 335-14		2673E, EU, R, RU, (Ch. 17A20,	7266565 (See Photofoct Servicer)	S-14083, S-14084, S-14085
21-74U, 621-75U (Ch. 628A6)	1290 392-12	$\text { U } 28$		
		$\text { - A2673E, R CCh } 17 A 301 \text { 390-13-S }$	7270405 …...............395-18-5 7270555 $7295-18-5$	5-14086402-15
717-мT-500 (Ch. 775.37)		- A3000E, R(Ch. 17A210) . 393-4	7270555 is	
-721-k-610 (Ch. 718.17 , 775-17)		A3000E, R (Ch. 17A31Q)	Servicer) 397	
371-13	webster-chicago	OOIE, H, R, (Ch. 17A20Q)	7258065 (See	CORDERS
$\begin{array}{lll}721 . K-610 \text { (Ch. 775.88) 402-16-S } \\ 721-K-611 & \text { 421.K.612 } \\ 721-K .\end{array}$	1853356-17	$.393$		
613 (Ch. 736-47, 737-47)	WELLS-GARDNER	E, R(Ch. 17A30Q) $390-13-5$	987724. 987727 ,987730 393-13-S	
(PCB 394-5) 371-13	- 321 AM54.A-436 (See Photofact	- A3004, E, R (Ch.	987724, 987727,987730 393-13-5 $3748611^{3} \ldots \ldots393-13-5$	AIRLINE WG.3740A, WG-3741A, B 349
CB 394-5 ${ }^{\text {371-13 }}$		(Ch. 17A31Q	EDSEL	
-721-1P-650 (Ch. 775.88) 402-16-5		390-13-5		
	Servicer - 2321 IAM54-A-438 (See Photofact	- A3006E, H, r ich. 17A20Q)		
	-2321AM54.A-438 (See Photofact	$393-4$		770, 775G-1, 775G-10 ...403-6
(PCB 394-5) 371-13	321 AM54.A-494 (See Photofact	006E, H, R (Ch. 17A30Q)	FORD	GRUNDIG MAJEStIC
-721-MT-600 (Ch. 775-88) $402-16-5$	er) 400	- A3007R (Ch, 17A30Q). ${ }^{\text {a }}$ 30-13-5		TK5, TK8, TK8/3D, TK8E, TM8, TMBE, TM8U407-10
-721-mT-601, U (Ch. $736.47,737-47$)	WESTINGHOUSE	- A3008E, r (Ch. 17A200). 393-4	FEG-18805 ...e.......399-6	
(PCB 394-5) $371-13$	- H-17T241, H.171242, H.17T243,	- A3008E, R (Ch. 17A300) 390-13-S	74BF (FEG-18805) 39	KNIGHT
-721-T.602 (Ch. 736-47)	171244, H-171245 (Ch. V-		${ }^{744 \mathrm{MF}}$ (B7A.18805.A1) $\quad .4$ 401-8	KN-4010 (91 RZ750)405-8
CB 394-5) 371-13	2373-11,	- A3009E, H CCh. TA300) 39		KN-4020 (91R2751)405-8
-724-K.772 (Ch. 776.17)	$17 \mathrm{TU} 411, \mathrm{H}-17 \mathrm{TU} 24$	OE, H, R, A30		91R2750, 91R2751 405-8
-1710, A (Ch. $72917, \mathrm{~A}, 775.27$)	H.17TU243, H-17TU245 (Ch. (V) V. 23	A $3012 \mathrm{H}, \mathrm{R}, \mathrm{A} 3013 \mathrm{H}, \mathrm{A} 3014 \mathrm{H}, \mathrm{R}$	LINCOLN	rca victor
PCB 394-5) 371-13		- A $3010 \mathrm{E}, \mathrm{R}, \mathrm{A} 30 \mathrm{H}, \mathrm{E}, Y, \mathrm{~A}^{3012 \mathrm{H},}$	${ }^{85 B H}$ (FFC-18805-C, -D) 394-17-5	TR-2A.1, ${ }^{-2}$..........397-10
2916, 72917, 730161		R, A $3013 \mathrm{H}, \mathrm{A}, 3014 \mathrm{H}, \mathrm{R}$ (Ch.	Serial No. 50,000) (. . 401 (Above	8TR2, BTR3 (Ch. RS-156F, ${ }^{\text {H }}$)
(PCB	(Ch. V.2364-1, -3), 399-15-5	19A30Q) 406-4	88BH (FFC-i5491.B) …394-17-S	$\begin{array}{r} 397- \\ 397= \end{array}$
(PC8 394-5) $371-13$			FFC-15491-B.......334-17-5	
-1722, 1723, 1723U, 1724 (Ch .	.	-A4007E, R (Ch. 19A30Q) 406-4	FFC.18805-C, - ${ }_{\text {cFe }}$	REVERE
740.78, 775 -88)	- H-21kU210, $\mathrm{A}, \mathrm{H}-21 \mathrm{KU} 211, \mathrm{~A}$	HFIOG, L, Y, hFIIF, LICh. 3A04,	FFC. $18805-C$, D (Above Serial No. 50,000)...........401- $16-5$	T.7000, TR.8000 395-13
-1722, 1723, 1725 (Ch. 740.17)		32041)		SYLVANI
${ }^{1730}$ (Ch. 729.26).... 399-15-5	- (Ch. V-2381) . 387		MERCURY	4901 (Ch. 1.400-1, -2, 1.628-1)
1731 (Ch. ${ }^{\text {775.57) ...399-15-5 }}$	217206, A, H-211207, A	292, E...394-16		
1760, 1760 (Ch. 743-18)	(Ch. V.2364-1, 31..399-15-S	Royal 7001 (Ch. 7AT43, 7AT4323)		Ch. 1-400-1, -2 404-10
401-16-5	-21T2198, H -21T221B,	Royal	FEW-18805-T $\ldots394-17-$ 3	Ch. 1-628-1 404-10
Ch. 627-26 (PCB403.5) 335-14	$\mathrm{H}-21 \mathrm{~T} 222 \mathrm{~B}$ (Ch.	Royol 1000 405-17.5		viking
Ch. $62846 \ldots$ (PCB 399.4) $337-14$	388	$2636 \mathrm{E}, \mathrm{EU}, \mathrm{R}, \mathrm{RU}$ (Ch. 17Y23, U)	50,000) ….........401-16-5	P860(CM-9) 344-15
	-21TU206, A, H-21TU207, A	(See Photofact Servicer) 402	MOPAR	RP61 (CM-9) 344415
Ch. 736-47, 737.47	H-435T5A, H-43715A, H.43885A	(See Photofoct Servicer) 402 (${ }^{\text {a }}$	700 (TAR.58) - 405-9	WEBCOR
(PCB 394.5) 371-13	(Ch. V-2390-3) 405-16	2675EZ, RZ (Ch. 17233)	845, 846 …......... 390	
Ch. 740-17...(PCB 394-5) 371-13	-58015, H-58175, H-583T5,	357-14-5	848 (P.5801) 406	${ }_{2822}^{2812, ~ 2816}$...............393-12 ${ }^{393-12}$
Ch. 740.78 . ${ }^{\text {che.... 402-16-5 }}$	(Ch. v.2259-3)392-13	-24000Ez, rz (Ch. 172330)	8_{851}. 407-13	
	H-621PG, H-622P6 (Ch. V.2296-3)	357-14-5	923 398-17-5	289,2896393-12
Ch. ${ }_{\text {Cha }}$	H-63676, H-637T6, H.63876 ${ }^{396-14}$	Z4006EZ, RZ Chh. 1723301	924 (C-5809)398-17-5	wilcox gay
Ch. 775-17, -27, -37, 776 -17	H-63391-1)	Ch. 3A03	925 (P-5803)398-17-5	406
51 371-13	H-644T6, H-645T6 (Ch. V-2391-2)	Ch. 3A04 401-15	MOTOROLA	wollensak
Ch. 775.88402-16-5	403-11	Ch. 3204 401-15	8mX 401-16-5	T.1500400-13

NOTE: PCB Denotes Production Change Bulletin. - Denotes Television Receiyer. S Denates Schematic Coverage Only.
IMPORTANT NEW BOOK - JUEY PUBLICATION!
THE ANSWER TO EVERY MULTIPLE TV INSTALLATION PROBLEM. Complete information on feeding TV signals to two or more TV sets served by one antenna system. Every type of system is described ... tells how to sell,

replace with © Sillveramaa picture tuses

with each purchase of an RCA Silverama Picture Tube

The new RCA Magnetic TOOL/RAK is a workbench "must" for every TV Service Technician. Smartly designed in appearance and functionally sound in use...this magnetic "grip" TOOL/RAK facilitates easy, orderly placement of your tools when they are not in use. Just place tools on the RCA Magnetic TOOL/RAK-they stay put! Installed close at hand, the TOOL/RAK saves valuable time and eliminates fussing and fumbling for misplaced tools on crowded workbenches

Now, for a limited time only, you can obtain one RCA TOOL/RAK FREE, with each and every RCA Silverama Picture Tube you purchase from your Authorized RCA Tube Distributor

Get your TOOL/RAKS while they last-place your order today!

DOZENS OF PRACTICAL USES!

LITTELFUSE

 IN ONE PLAGE AT YOUR DISTRBUUOR

[^0]: \square Send details on your FREE File Cabinet offer and EASY-BUY Plan.

