INDEX

the monthly REPORT to the ELECTRONIC SERVICE INDUSTRY

TV PICTURE ANALYSIS

S! 103 Je!!!!!q punom entuos

TWICE AS MUCH GAIN AS ANY EVER MADE

DON'T BE VAGUE... ASK FOR cnnocur
shorts even if in parallel with a resistor as low as 2 ohms.

Yes, Kwik-Test is a basic instrument you can't afford to be without. You'll realize that more and more as capacitors in old TV sets begin to go . . . and as the number of capacitors in each set increase with the introduction of new and more complicated receivers.

Get a 10 second demonstration of the amazing Kwik-Test capacitor checker at your Sprague distributor. Don't delay! Once you try it, you'll be sure to buy it! Or write for descriptive data circular M-600 to Sprague Products Co., 105 Marshall Street, North Adams, Mass.

$$
\text { only } \$ 34.50_{\text {net }}
$$

JAMES R. RONK Edifor

LESTER H. NELSON Nanaging Editor
W. WILLAM HENSLER Technical Editor

Editorial Staff
PHYLLIS J. AUKERMAN WILLIAM E. BURKE HENRY A. CARTER ROBERT B. DUNHAM DON R. HOWE FRED MCKINNEY GLENNA M. MCROAN EVEIYN S. MOUSER AARGARET NEFF c. P. OLIPHANT GLEN E. SLUTZ PAUL C. SMITH

ANTHOVY M. ANDREONE Art Director

 GLENN R. SMITH Staff Artist ROBERT W. REED PhotographyARCHIE E. CUTSHALL DOUGLAS BOLT Production

$$
\star
$$

HOWARD W. SAMS Publisher

Business Department:
Donald B. Shaw, V. P. Treasurer
F. T. Dobbs, Secretary

Joe H. Morin, Sales Mgr.
Ann W. Jones, Advertising
Shirlev A. Owens, Literature
Service Mgr.
d. C. Keith, V. P. Charge of Circulation

Printed by
THE WALDEMAR PRESS doseph C. Collins, Mgr.

CONTENTS

Color Within 6 Megacycles C. P. Oliphant 5
Shop Talk Milton S. Kiver 7
TV Picture Analysis Paul C. Smith 8
Analyzing Horizontal Deflection Waveforms Glen E. Slutz 11
Notes on Test Equipment Paul C. Smith 15
The Transistor Story (Part III) 17
Deflection Components for Color TV
Improving UHF Installations Through Cooperative Effort
W. William Hensler 22
In the Interest of Quicker Servicing Henry A. Carter 27
Audio Facts Robert B. Dunham 29
Examining Design Features Don R. Howe 31
Dollar and Sense Servicing John Markus 35

+ More or Less - 92
Photofact Cumulative Index No. 43
Covering Photofact Sets—Nos. 1-233 Inclusive. 93
SUBDECT REFERENCE

ANTENNAS AND ACCESSORIES
UHF Antennc Considerations 22 AUDIO

Cabinet for a Home Music System . . . 29
McIntosh Model C-108 33
COLOR TV
Band-Sharing Techniques 5
Deflection Components 19
SERVICING
Eliminating RF Interference 61
Solderless Lugs 27
Standard Coil Replacement
Parts Kit No. 1011 27
Troubleshooting Light 27
Unshielded Picture Tubes 61
TELEVISION
Douglas Remote Control Model 327.
31
Horizontal Deflection 11

Motorola Chassis TS-602 81
Picture Analysis 8
Tubes Working Under Maximum Strain . 7
Westinghouse Chassis V-2233-1, $-2,-3$,
and -4.
TEST EQUIPMENT
Capacitance Checking with VOM's and VTVM's15
Checking Scope Performance 15
Hickok Model 225 Electronic Volt-Ohmmeter 68
Hickok Model 650C Universal Video Generator 69
RCA WA-44A Audio Signal Generator 69
RCA WR-49A RF Signal Generator 69
Simpson Model 1000 Tube Tester 69
Static Charges on Meter Windows 15
TRANSISTORSNew Developments17MARCH • 1954

Copyright by Howard W. Sams \& Co., Inc.
No part of the PF INDEX may be reproduced without written permission. No patent liability is assumed with respect to the use of information contained herein.

[^0]
rea Vorohmysts'

outsell all other VTVM'S

> RCA WV-97A SENIOR VoHOhmyst $\$ 6750$ Susgested Usor price

by C. D. Oliphant

Band-Sharing Techniques Employed to Enable Transmission of Color Information Within the 6-Megacycle TV Channel

The color signal represents the scene being televised according to the brightness, the hue, and the saturation of the colors which are present. The brightness of each color is removed and transmitted as a separate pcrtion of the color picture signal. This portion is referred to as the luminance signal and is the same as tie video signal in our present-day monochrome transmission. Hue and saturation of the colors make up ansther portion of the color picture signal, and the combination of the two is referred to as the chrominance signal. Hue is represented by phase modulation of the color subcarrier, while saturation is represented by amplitude modulation of that subcarrier. Brightness, hue, and saturation are defined as follows:

BRIGHTNESS. That attribute which makes an area appear to emit more or less light.

HUE. The name of a color. Neither black nor white nor any of the values of gray are considered hues.

SATURATION. The degree to which white ligkt is absent in a particular color.

Before entering the discussion on the fundamentals of how brightness, hue, and saturation of colors are transmitted, let us investigate the reasoning kehind the adoption of this method.

The lirst and most important criterion for a color television system is that it mast be compatible. One of
the requirements for compatibility is that the color signal must be transmitted in the allotted band of 6 megacycles, which is standard for monochrome transmission. From this, it can be seen that the present standards for transmission of black-and-white pictures had to be retained and at the same time color had to be added. This had to be accomplished in such a way that the monochrome receivers would be able to receive the color signal in black and white w ithout necessary adjustments or converters. It was realized that a great deal of information had to be transmitted within the limits of 6 megacycles. This meant that the video portion of the composite signal had to be within the limit of 4.25 megacycles.

From the very beginning of color-television research, it was known that to reproduce a color picture satisfactorily three separate pieces of information had to be transmitted. Whatever this information might be, it had to represent in some form or another the three chosen color primaries red, green, and blue. If a separate signal representing each primary color were used, three times the normal bandwidth would be needed. This would result in a bandwidth of 12.75 megacycles. In order to lower the bandwidth, two considerations were brought into use. The first was that color information should be transmitted with a minimum of duplication, and the second was that only information useful to the eye need be transmitted.

Since a signal representative of the brightness of each color had to be transmitted for the purpose of proper operation of the monochrome receiver, it would also be duplicatory to transmit the brightness of each color in the chrominance signal. Therefore, it was decided to subtract the brightness from each of the colors and transmit the total brightness by the normal amplitude-modulation method. After subtraction of the brightness from the three primary colors, we have: the brightness signal, red minus brightness, green minus brightness, and blue minus brightness. It would be needless to transmit four pieces of information when only three are needed. To overcome this, it was discovered that the signal representing green minus brightness could be recovered at the receiver by the proper mixing of the other signals. Therefore, only three pieces of information were necessary. The next problem was how to get all this information into the allotted video bandwidth of 4.25 megacycles. This would seem to be an impossibility; but after considering the characteristics of human vision, it was found that a method could be devised which would permit the transmission of the necessary information in the moderate bandwidth available.

The knowledge of the characteristics of human vision was one of the most important factors that governed the development of color television. Human vision is not fully understood; however, it is known that the process of seeing is very complicated. Many facts have been determined about it through experiments. The results of these have been very useful in the formation of the NTSC color television system. Every person does not see color in the same manner;

[^1]
and maintained. The rugged, simple, light-weight mask sharply reduces assembly and exhaust problems. And the spherical design of mask and screen simplifies convergence circuitry and adjustment.
The CBS-Colortron is now a 15 -inch, round tube. But, as soon as tooling is completed, it will be made in larger sizes. Watch for the new CBS-Colortrons. You'll see plenty of them soon. And you'll be sold on sight by their logical simplicity . . . their superior performance . . . their many advantages.

COLOR TV IS COMING . . . faster than you think. The revolutionary new CBS-Colortron . . . a practical color picture tube . . . hastens the day. Already it is in lower-cost, mass production . . . made possible by its simplified, advanced design.
As in black-and-white tubes, the CBS-Colortron's screen is deposited directly onto the inside of its face plate. A unique photographic technique makes this possible. Because each aperture mask serves as a negative to print its tri-color screen, perfect register of mask and screen is automatically achieved

CBS-Colortron OFFERS MANY ADVANTAGES

Cross-section (face plate, aperfure mask, funnel, tri-color electron gun) shows simplicity of CBS-Colortron and its adaptability

Spherical screen and aperture mask of CBSColortron simplify convergence and focus. Electron beams remain in focus over entire surfoce of screen.

Light-weight (6 oz .), rugged, simple aperture mask of CBSColortron minimizes problems of exhoust, handling, exhoust, hondling
and ossembly.
to low-cost, mass production.

Manufacturers of Receiving 「ubes Since 1921

COMPLETE CBS-Colortron DATA FREE!

Take a look into
the future
the future.
Write today for
complete in-
formation on
CBS-Colortron
15HP22: Con-
struction . .
operation . .
application... installation and ad justmentelectrical and mechanical data. Four packed pages . . . free!

MILTON S. KIVER

President, Television Communications Institute
fr recent news release by CBS Hytron of Danvers, Mass., states that they have under development a series of tubes specifically designed for the five areas in the receiver where there is the greatest strain on the tubes and where tubes might fail prematurel. The nature of the transmitted signal determines the circuitry which must be employed in order to reproducetine image on the face of the picture tube. Some circuits are required to produce more energy than others and are referred to as the stress points or "hot spots" of a set. These circuits are designated by CBS-Hytron as the low- and highvoltage rectifiers, the horizontaland vertical-deflection amplifiers, and the damper diode.

Thus far, two of these new tubes have been puilt: the 5AW4, which is designed to replace the 5 L 4 G ; and the 6CU6, waich replaces the 6BQ6GT. Others in the series are in the process of development.

This news item is of interest because it emphasizes a problem that has been with us for as long as commerical television has; to wit, that many of the components now in use in television receivers were not originally designed for television. Rather, they were carry-overs from radio with perhaps some modifications to enable them to do the job until something better was developed. Gradually, new types of components are being developed to provide us with a set which will be less subject to breakdown than the sets built heretofore.

Consider, for example, the horizontal-deflection system. The deflection wave generated by the horizontal oscillator is essentially saw-tooth in form and combines a relatively'slow rise with an extremely rapid retrace. This wave is applied first to the horizontal-output amplifier and then to the high-voltage, damper,
and deflection-yoke circuits via the output transformer.

Let us start first with the horizontal-amplifier tube. This is a power amplifier and hence must be capable of developing sizeable amounts of current. Moreover, because of the form of the applied wave, the current fluctuates over a wide range from cutoff to peak current. This, in itself, places a severe electrical stress on the insulating structure of the tube. If we consider the high operating temperature caused by the large current and the high-peak pulse voltages of 5,000 volts or more which are present on the plate during retrace time, we can begin to appreciate why this tube becomesa likely candidate for failure long before the average lifetime of some of the other tubes in the set.

In view of the rigorous demands which this tube must satisfy, it becomes particularly important that the service technician adjust the drive control carefully. For, if the drive control is set so that the peak-to-
peak value of the deflection wave is too low, the negative grid-leak bias developed between the grid and the cathode of the power amplifier will be lower than the recommended value and the average current flowing through the tube will rise. This excessive current will eventually lower the tube emission and cause the tube to become useless. On the other hand, when the driving voltage is too great, the peak voltage developed at the plate during each horizontalretrace interval (by the inductarice of the horizontal-output transformer) may force the tube insulation to break down.

In the vertical system, the output amplifier is subject to essentially the same conditions as the horizontaloutput amplifier; and hence it, too, is a likely candidate for a shortened life. So are the high-voltage rectifier and the damper diode, although for these tubes current drain is not so much a consideration as strong sharply

* * Please turn to page 37 * *

Fig. 1. Shortened Life of High-Voltage Rectifier Can Be Due to Too High a Filament Voltage. An Effective Remedy Is to Increase Value of Series Filament Resistor R1.

Fig. 1. Reproduction of Original Test Pattern.

An understanding of the different elements of a television test pattern and of their purposes provides the service technician with an inexpensive and extremely useful tool. The most obvious use of the pattern is to help in judging and adjusting the horizontal and vertical size and linearity of the picture. Actually, the test pattern may also be used to check the frequency response of the video sections of the receiver, to check for proper interlace, to aid in proper focusing, and to check for phase shift in the receiver circuits. Other applications may come to mind because, like other servicing aids, its possibilities are governed to some extent by the knowledge and ingenuity of the service technician.

A point not always considered is the fact that the test pattern was not designed solely for the benefit of receiver adjustment or checking but that it is just as useful for the proper adjustment of the transmitter. However, this article deals principally with its usefulness in receiver servicing.

The test pattern shown in the illustrations throughout this article is known as the RCA Indian head, a reproduction of which is shown in Fig. 1. Other test patterns are in use, and their various elements serve a
was applied directly to the video amplifier feeding the picture tube. In this manner the possible degrading effect of bandpass limitations in an RF and a video IF section was avoided. The resultant picture appears in Fig. 2.

Linearity and Size

The large circles at the center of the pattern and the smaller circles at the corners can be used to check and adjust the horizontal and vertical size of a receiver. The resulting circles should be as round as possible, and the picture should fill the mask properly. The fine-lined squares also provide a good check for linearity.

Focusing

The horizontal and vertical wedges can be used as an aid to proper focusing. If the point of sharpest focus is not the same for both horizontal and vertical wedges, it is generally preferable to focus for best

$\underset{\mathbf{T}}{\mathbf{T}}$ PICTURE
 by Paul C. Smith

purposesimilar to that of the elements shown here.

In order to obtain the best possible picture of the Indian-head pattern from a signal applied to a receiver, the output of a monoscope

Fig. 2. Test Pattern Obtained by Apply. ing Video Signal Directly to Video Am. plifier of Receiver.
resolution of the vertical wedge. Another point to remember is that the contrast and brightness controls must be properly set to avoid blooming or enlargement of the spot.

The diagonal, stepped wedges are useful when adjusting the contrast and brightness controls. When these controls are correctly adjusted, each step in the wedges will be separate and distinct in tone from the others.

Frequencies Represented by Test-Pattern Elements

The significance of each element of the test pattern can be more fully appreciated if we remember that each variation in the pattern of light and dark on the picture tube represents a corresponding variation of the signal voltage applied to the picture tube. The waveform of the signal voltage across one horizontal line of the test pattern is shown in Fig. 3. It can be seen that the different elements of the test pattern are repre-
sented by square waves of various frequencies. Such square waves are a severe test of the frequency response of an amplifier, because they contain not only their fundamental frequency but many harmonics as well. The sharp rise and fall of the leading ard trailing edges of the square wave provide a good test for transient response.

Another important point to consider is the speed of the beam trace as it crosses the face of the picture tube. The horizontal sweep occurs at the rate of 15,750 cycles per second; the resiprocal of this frequency shows that the time required for one complete cycle is 63.5 microseconds. The sweep is blanked out for 10.2 microseconds, leaving 53.3 microseconds available for picture information. Since a white line followed by a black lime can be considered as one cycle (a positive half-cycle and a negative half-cycle), it can be seen that oaly 53 pairs of black and white lines on one horizontal trace are

Fig. 3. Voltage Waveform Represented by a Single Horizontal Line of a Test Pattern.

a certain number of lines spaced closely together at the center of the pattern and further apart at the outer portions of the wedges. The lines are marked at regular intervals, and the resolution at these marked points is indicated by corresponding numbers.

> Service Information Provided by the Test Pattern and by the Broadcast Program When a Test Pattern Is Not Auailable
necessary to represent a frequency of one megacycle. It is an easy matter to accommodate several times this number across the face of the picture tube so that a frequency of several megacycles will still produce a pattern of separate and distinguishable lines or dcts, provided the spot size is not a limiting factor. This frequency must be passed by the receiver amplifier system so that the maximum number of resolvable vertical lines in the test pattern gives a good indication of the receiver's response.

Resolution

The portion of the test pattern used to indicate frequency response and resolution are the horizontal and vertical wedges. The horizontal wedges incicate vertical resolution, and the vertical wedges indicate horizontal resolution.

Referring to Fig. 1, it can be seen that the wedges are made up of

These numbers should be multiplied by 10 to obtain the resolution number.

The resolution number of any given receiver is determined by the smallest picture details that it can reproduce as separate, distinct ele-
ments. It is the number of these smallest reproducible elements that can be contained in a distance equal to the height of the test pattern. This is true regardless of whether vertical or horizontal resolution is being considered. The height of the pattern is taken as a reference because of the pattern aspect ratio which is four wide to three high. If it is assumed that the limit of resolution is the same horizontally and vertically (that is, if we are just able to distinguish lines of equal width in each direction), the picture would then be able to contain four-thirds as many lines horizontally as it would vertically. Therefore, when the width of a vertical wedge is compared to the width of the picture rather than to the height and when the resolution number is calculated as before, the resultant number must be multiplied by three-fourths in order to comparecorrectly with the vertical resolution.

To check the resolution of a receiver, the point nearest the center of the circle where the individual lines of the wedge are just distinguishable

* * Please turn to page 45 * *

Fig. 4. Vertical Linearity Misadjustment.

PIRDVED from coast to coast

In every UHF area, Mallory Converters bring clear, trouble-free all-channel reception to thousands and thousands of familics. Make sure your customers gat this PROVED PERFORMANCE.

Mallory UHF Converter

Prove to yourself that the Mallory Converter can be a profit-maker for yom. Ask your Mallory distributor for details on the Mallory 88 Converter. It's a fest-seller . . . easy to install . . . and performance is outstanding.

MALLORY

CAPACITORS • CONTROLS • VIBRATORS • SWITCHES • RESISTORS RECTIFIERS • POWER SUPPLIES • FILTERS • MERCURY BATTERIES APPROVED PRECISION PRODUCTS

ANALYZING

HORIZONTAL-DEFLECTION

A careful study of the following material can be of benefit to any service terhnician engaged in the repair of television sets. The subject covered is that of horizontal deflection which is considered to be one of the most complicated operations performed by a television receiver. We know this to be true because of the number of letters which come to us requesting the solutions to problems having to do with horizontal deflection.

In order to be most effective, an explanat:on of horizontal deflection should be presented with a minimum of involved theory and without the numerous mathematical equations which very often accompany such theory. It so happens that the waveforms which can be observed at varicus points in a horizontaldeflection system offer a basis upon which to develop such an explanation, and we have chosen to analyze these wavefcrms to describe horizontaldeflection operation.

A typical deflection circuit was selected; iss schematic is shown in Fig. 1. No:e that it is a conventional systen: and conforms generally to the design used in many present-day television receivers. Points at which waveforms were studied are designated by W-numbers on the schematic. Voltage waveforms were observed with respert to chassis or common ground: surrent waveforms were secured by inserting small, noninductive recistors in series with the current paths in question and by viewing on the oscilloscope the voltages developed across these resistors. At points having high peak voltages exceeding the input rating of the osailloscope, the voltage waveforms were fed through a capacitance voltage divider before they were applied to the scope. In circuits where loading effects had to be
avoided, a high-impedance probe was used in the process of obtaining the desired waveforms.

In order to facilitate comparisons between the various waveforms observed, the oscilloscope was synchronized externally with the saw-tooth voltage at the grid of the horizontal-output tube. By synchronizing the scope in this manner and by maintaining the frequency and amplitude of its horizontal sweep at a constant value, we endeavored to show each waveform with reference to approximately the same time base. Then by placing associated waveforms one above the other, we made possible a check on the instantaneous conditions in each.

To launch this discussion, let us first consider the purpose of a horizontal-deflection system in a receiver using magnetic deflection.

The function of such a system is to move the electron beam across the face of the picture tube from left to right at a constant speed and then to return it quickly to the left side of the screen to start again. The first action is called beam trace and the second, beam retrace. The frequency of this repetitive sequence of events is 15,750 cycles per second. Control of the beam is accomplished by a magnetic field, the nature of which is determined by a current through the horizontal-deflection coils. At any instant, the direction of current flow governs whether the beam is on the right or left side of the screen and the amount of current determines the distance the beam is away from midscreen. For proper scanning, the current in the horizontal-deflection coils must have a saw-tooth waveform with a short edge which produces beam retrace and a long edge which produces beani trace.

Fig. 1. Schematic of a Typical Horizontal-Deflection System.

There is a reason manufacturers and service organizations have learned to rely on BUSS fuses to operate properly under all service conditions. Every BUSS fuse normally used by the Electronic Industries is tested in a sensitive electronic device that rejects any fuse that is not correctly calibrated, properly constructed and right in all physical dimensions.

Once properly installed, a BUSS fuse will blow only to protect. If a BUSS fuse does blow, the service man knows there is trouble in the circuit. When he has corrected the trouble and installed a new BUSS fuse the job is finished. There won't be any costly and time-wasting "call-backs" due to the fuse failing to operate properly. . . because a BUSS fuse will carry its rated current and it is properly constructed to prevent poor contact heating causing needless blows.

And by standardizing on BUSS fuses, you can fill your exact fuse needs from one source. The line is complete-dual-element (slow-blowing), renewable and one time types ... in sizes from 1500 ampere up.

To your customers too, the BUSS trademark represents quality.

Millions and millions of fuses, used throughout the country for over 39 years, have firmly established BUSS as the knoun brand. When you furnish a BUSS fuse, there are no "kicks" or "comebacks" from the customer. It's just good business to handle only genuine BUSS fuses.

The waveforms in Fig. 2 show the relationship which exists between the video signal $W 4$ on the picturetube cathcde and the deflection-coil current W5. Beam trace begins at the end of the horizontal-blanking pedestal and lasts until the leading edge of the next horizontal sync pulse. The slight curvature in the trace portion of the saw-tooth wave would seem to indicate that the linearity of the picture was not perfect in the test receiver; the beam moves faster midway in beam trace than it does at the beginning and end. However, observation at the time these tests were taken revealed that whatever nonlinearity may have existed was not apparent to the eye.

Having established the purpose of horizontal deflection, let us assume that the horizontal oscillator in the test receiver is functioning properly and that a normal drive voltage is present on the grid of the horizontaloutput tube. Fig. 3 is a group of waveforms which are directly associated with the horizontal-output amplifier. Waveform W1 in Fig. 3 is the grid valtage on the amplifier, W2 is the plade-voltage waveform, and W10 is the cathode current through the tube. The high-frequency ripples which are noticeable in the waveform of current should be disregarded, since they are caused by stray coupling of the high-amplitude voltage oscillations present in the plate circuit of the tube and are not truly representative of the current.

When the waveforms in Fig. 3 are compared, it can be seen that the

Fig. 2. Waveform W5, the Deflection-Coil Current, and Waveform W4, the Video Signal on the Pisture-Tube Cathode.
current through the tube does not begin until after approximately 30 per cent of the trace period has elapsed. The delay is caused by-the tube-bias level which keeps the grid beyond cut-off for the first part of the trace period. Once current starts to flow, it rises at a nearly linear rate until the initiation of horizontal retrace. At this instant, the grid voltage W1 goes sharply negative and cuts off the current through the tube. The rapid cessation of current through the inductive plate load of the tube produces a rapidly collapsing magnetic field which in turn develops the high peak of voltage that appears on the plate of the output tube. See W2 in Fig. 3. A damped train of oscillations follows this sharp peak on the plate, because the distributed capacitance in the plate load together with the inductive load itself comprises a tuned circuit which oscillates at its natural resonant frequency to produce these fluctuations. When we refer to the plate load on the horizontal-output tube, we are speaking of components up to and including the coils in the deflection yoke - not just the primary of the output transformer. The fluctuations in waveform W2 endure for several cycles, because the output amplifier is cut off and consequently places no load on the oscillating circuit.

The next logical points for investigation are in the damper -tube and deflection-coil circuits connected to the secondary of the output transformer. Fig. 4 shows four waveforms: the plate voltage waveform $W 3$ on the damper tube, the current W5 through the deflection coils, the damper-tube current W8, and the current W9 through the secondary. of the horizontal-output transformer. In addition, Fig. 5 is presented as a simplified schematic of the circuits under consideration.

Observe that the oscillatory tendency mentioned in connection with the plate voltage on the horizontaloutput tube is also present in two of the waveforms in Fig. 4. Note also that the fluctuations are confined solely to the currents W9 and W8 through the transformer secondary and through the damper tube respectively; they do not appear in the deflection-coil current W5. Thus we have in these waveforms a good illustration of damper action.

What happens is that the dampertube plate voltage W3 is positive with respect to the cathode during the period in which the oscillations occur, and hence the damper tube conducts. The impedance which the conducting damper offers to the fluctuations is much lower thar that

Fig. 3. Waveforms Directly Associated With the Horizontal-Output Amplifier. W1, Grid Voltage; W2, Plate Voltage; W1 O, Cathode Current.
offered by the deflection coils. Consequently, the damper tube shunts the oscillatory portion of the applied signal around the deflection coils and permits the current W5 through the coils to follow a linear change in accordance with the requirements for proper scanning.

If one were to judge from the square wave $W 3$ on the plate of the damper, one might suppose that the damper tube conducts throughout the period of beam trace. This is not the case. Fig. 6 shows the voltage waveform W6 on the cathode of the damper tube with respect to ground, and it can be seen that the cathode voltage rises in a positive direction during the trace period. The rise is caused by the charging of capacitance C shown in the schematic of Fig. 5. (Capacitance C in Fig. 5 corresponds to capacitors C63 and C64 in Fig. 1.)

also these models TR-2•TR=11•TR=12


```
    SOUTH PLLAINFIELD,N.N.
```


by PAUL C. SMITH

Presenting Information on Application, Maintenance and Adaptability of Service Instruments

CAPACITANCE CHECKING WITH VOM'S AND VTVM'S

Every service technician may not be the owner of a capacitor checker, yet it is probably safe to say that along with his other test equipment he does possess either a VOM or VTVM. These latter instruments can be used for making approximate checks of or comparisons between the capacities of paper capacitors. Capacity checks of electrolytic capacitors will usually require a different setup. In the instruction manuals accompanying their equipment, several manufacturers include detailed instructions for making such tests. The method of operation usually depends upon the use of an AC signal source, such as the line voltage, applied across a voltagedividing network, with the meter reading the AC voltage across a portion of the network. The unknown capacity is made a part of the network, so that the voltage read on the meter depends upon the capacity. The reading obtained is compared with a table in the instruction manual, and the value of the unknown capacity is found opposite this reading in the table.

As stated before, this method provides only approximate values with the accuracy depending upon several conditions: (1) the accuracy of the assumed value of the dividing network components, (2) the impedance of the applied voltage source, (3) the accuracy of the measurements of the applied voltage, and (4) the be-
havior of the $A C$ meter under varying load conditions.

Some of the more elaborate VTVM's incorporate a complete circuit for checking capacity, and these units are quite accurate.

STATIC CHARGES ON METER WINDOWS

Many meters having glass or plastic windows for protection of the meter movement and scale accumulate static charges on these windows at the slightest opportunity. These charges leak off very slowly on some meters and on others give every indication of staying for hours. On an ultrasensitive meter having a long lightweight pointer, the pointer may be attracted to the window with enough force to bind the meter move ment. This prevents any readings from being obtained; or at best, the reading will be of questionable accuracy.

A light application of antistatic liquid of the type sold in most music stores for treating plastic LP records was found to remove the static charge immediately with no apparent harm to the window surface. Two different brands of liquid were tried with identical results. In each case, the effect was not permanent and the window would again accept a charge after a few minutes. However, if the operator is careful not to recharge the window by accidental contact or brushing, he should be able to obtain the desired readings.

CHECKING THE PERFORMANCE OF YOUR SCOPE

It is good practice to check the performance of your test instruments from time to time. During constant use, their efficiency may fall off in a manner so gradual that it is not noticeable unless special attention is givento their condition. Even a major defect may go unnoticed, if the resulting effect on operation does not depart too far from normal.

A good example of this latter condition was found in our laboratory when checks of several scopes were made. These scopes were selected at random from the ones that were at hand and not because any particular one was thought to be in poor operating condition. The first one selected showed more than normal minimum hum with no signal input. This could be the result of one of several possibilities such as cathode-to-filament leakage or short in a tube, weak filter capacitors, or other less obvious causes.

A tube tester was used to check all tubes (excepting the cathode-ray tube), and they were indicated to be normal. The cathode-ray tube was not considered to be at fault since its response to the focus, intensity, and positioning controls seemed satisfactory. Such an assumption need not always be true, of course, since some apparently obvious conditions can be caused by the most unlikely and obscure defects. However, in the long run, time will be saved if more common possibilities are checked first. When a tube check failed to

[^2]

TECHNICAL APPLIANCE CORPORATION, SHERBURNE, N. Y. In Canada: Hackbusch Electronics, Ltd., Toronto 4, Ontario

Transistor Story

Part III
New Developments in Transistors

The production of transistors has but recently reached a point where they are fairly plentiful on the commercial market. Their scarcity in the past has been due mainly to the high percentage of rejects during manufacture, up to 98 percent in some cases, and to the requirements of the military services. This scarcity of available units for experimentation purposes has held back the development of new circuits and equipmert which could utilize transistors.

The government has recognized this lack of suitable circuits and has taken at least one step to promote their development. The Business and Defense Services Administration has amended a prior order concerning transistors so that manufacturers need not accept military orders for more than 25 percent of their output when more than one manufacturer produces tre same item. Where a certain type of transistor is being produced by only one manufacturer, the military may take only 50 percent of the outpat. This order should greatly increase the number and types of transistors available to experimenters anc commercial users.

Many items of electronic equipment incorporating transistors should be appearing on the market in the near futare. Eventually, much of

Fig. 1. Circuit Utilizing Two Cross-Connected Transistors Which Can Be Replaced by One Symmetrical Unit.
this equipment will be in need of competent servicing. The progressive service technician should start now to provide himself with the background of knowledge that will be required in this new field. New types of transistors are being announced continually; and since the previous articles have covered only the junction and point-contact transistors, some mention should be made of these newest types. The information contained herein has been compiled from numerous notices and articles which have appeared in various trade publications over the past several months. Some of the explanations may seem rather sketchy and others unnecessarily involved, but they have been gathered together to keep the service technician up-to-date in transistor development.

The theory of the junction transistor has been expanded to produce several new types of transistors which base their operation upon junctions of N -and P-type germanium layers. Perhaps the most notable of these is the symmetrical junction transistor.

During the first several years after the initial announcement of the transistor was made, most development engineers endeavored to produce a junction unit in which the emitter and collector electrodes were entirely different in their electrical properties. This difference was needed in order to obtain the most efficient junction transistor. The symmetrical junction unit reverts back to those early days in that it is a $\mathrm{P}-\mathrm{N}-\mathrm{P}$ (or $\mathrm{N}-\mathrm{P}-\mathrm{N}$) junction transistor in which the two $\mathrm{P}^{\prime} \mathrm{s}$ (or $\mathrm{N}^{\prime} \mathrm{s}$) are made as similar as possible; no one can tell emitter from collector by any means. This unit has been developed to replace a cross-connected pair of junction transistors which have been used in circuits similar to that of Fig. 1.

In such a circuit the pair of transistors provide a low-resistance switch for currents flowing in either direction. The switch is closed when the common base lead is held negative and open when the base lead is
positive. Notice that the collector of the first transistor is connected to the emitter of the second and that the emitter of the first is connected to the collector of the second. In this way, identical paths are presented to currents flowing in either direction when the switch is closed. The symmetrical junction transistor can replace the cross-connected pair because of the exact similarity of emitter and collector.

Another product of developmental work is the $\mathrm{P}-\mathrm{N}-\mathrm{P}-\mathrm{N}$ junction transistor. The construction of this unit is shown in Fig. 2 and can be identified as a $\mathrm{P}-\mathrm{N}-\mathrm{P}$ junction transistor with a $\mathrm{P}-\mathrm{N}$ junction replacing the P-type collector. This P-N junction is known as a "hook" collector. Very little information has been released concerning this unit, and as yet it has not been produced commercially. The most that can be said about it now is that the hook collector has the effect of greatly increasing the current gain; values of alpha as high as 50 have been recorded. As brought forth in a previous article, the alpha of the ordinary junction transistor cannot exceed unity.

The junction transistor has often been likened to a triode vacuum tube in that each has a controlling input element, an output element, and an emitting element. The resemblance ends there, however; for

$$
\text { * * Please turn to page } 51 \text { * * }
$$

Fig. 2. Construction of P-N-P-N Junction Transistor Having a Hook Collector.

Choose Superotor for All-Channel Reception . . VHF, UHF and Color!

The problem of deflection in a color picture tube that employs three electron guns is quite different from that in a black-and-white picture tube. Since three guns are employed in the color tube, there are three electron beams. This means that these three beams must be acted upon in a precise manner in order to achieve proper deflection, focus, and convergence. Performing these operations simultaneously on three beams

DEFLECTION COMPONENTS for Color TV

results in a need for a larger number of external components than are required for the monochrome tube.

There are three deflection components in a monochrome receiver which have counterparts in the color receiver. These components are the deflection yoke, the hori-zontal-output transformer, and the vertical-output transformer. However, because of more requirements by the color picture tube, the deflection components in the color receiver are designed with different specifications. Added to those components, which perform the same function in both receivers, are a number of other new components that are necessary for the proper operation of the beams of the colqr picture tube. It is the purpose of this discussion to introduce to the service technician the external components that are needed for the operation of the color picture tube having three electron beams and employirg the shadow-mask principle.

For the purpose of presentation in the following discussion, the components of the color picture tube have been classified into two categories, dynamic anc static. The dynamic components include those that produce a varying stress on the beams. The components falling under the category of static are the ones that, when once adjusted, produce a fixed stress on the beam. The dynamic components include the deflection output transformers, the deflection yoke, and the vertical and horizontal transformers
for dynamic convergence and focus. All others fall under the category of static. The dynamićc category will be discussed first.

A horizontal-output and highvoltage transformer designed for use in a color receiver is shown in Fig. 1. The transformer A is the one used in a color receiver. Compared with A is transformer B which is one that is used in a monochrome receiver. Note the difference in physical size of the two. Transformer B is used in a monochrome receiver which em ploys a 27 -inch picture tube. It is for deflection angles of 90 degrees and provides an output of 16.7 kilovolts at 140 microamperes. Transformer A is used in a color receiver which employs a picture tube that produces a $121 / 2$-inch picture. The color picture tube has a deflection angle of 45 degrees. This transformer pro-

by C p. Oliphant

vides an output of 20 kilovolts at 750 microamperes.

The horizontal-output transformer for a color receiver serves a larger number of functions than does the one in a monochrome receiver. This can be realized by noticing the great number of terminals on trans former A of Fig. 1. It has an autotransformer winding and seven isolated windings. Taps on the autotransformer winding provide deflec-tion-yoke, damper-tube, driver-tube, and width-control connections; additional taps on it supply voltage pulses for keyed AGC and voltage for the rectifier tube supplying the DC voltage to the focusing electrode of the picture tube. The isolated windings supply filament power to the highvoltage and focusing -voltage rectifiers as well as voltage pulses for the color-synchronizing circuit. A peaking-voltage pulse for the hori-zontal-driver circuit is also supplied by an isolated winding. There is a total of 14 taps on transformer A of Fig. 1 plus four sets of filament leads.

The output transformer of the vertical-deflection system used in a

* * Please turn to page 88 * *

Fig. 2. Output Transformers in the Verti-cal-Deflection System.

CHANNEL MASTER'S fabulous
 Champion

the world's most powerful all-channel VHF antenna -OUT-PERFORMS AND OUT-SELLS THEM ALL!

Never before in the history of television has an antenna received such an overwhelming reception. Channel Master's CHAMPION - in a few short months - has rocketed to the top as the nation's most-wanted, best-selling, best-performing VHF antenna!

CHAMPIONSHIP Performance: Only the CHAMPION has the unique new "Tri-Pole", a triple-powered dipole system in which the Low Band dipole also functions as three dipoles tied together, in phase, on the High Band.

All-aluminum. Assembles faster than a 5-element Yagi! The CHAMPION is another great contribution of the Channel Master Antenna Development Laboratories.

CHAMPIONSHIP Promotion: The CHAMPION is the antenna America knows best!

- Publicized in leading magazines! - Outstanding dealer Cooperative Advertising Program! - Free newspaper mats, window streamers and TV film commercials!

THE

STACKED
CHAMPION
OUT-PERFORMS

TIE SEPARATE ANTENNAS TO ONLY ONE TRANSMISSION LINE

CHANNEL MASTER infer-action filfers

Only Channel Master
filters are
permanently sealed in a block of moisture-proof, high melting-point electrical-wax, locked in an attractive styrene case.

- Single lead

- No switching
- No signal loss
- No inter-action, effective isolation.

Use with
leads of any length!
New, specially designed High and Low Pass filters entirely eliminate the need for critical lead lengths! This new, extremely effective circuit makes the TENNA-TIE the most effective filter of its type now available.

- only \$3.50

Vhf-UHF
ULTRA-TIE

JOINS - separate VHF and UHF antennas for use with a single lead.

SEPARATES - VHF and UHF signals at the set or converter where separate terminals are provided.
"Free-space" terminals.
new dow price - $\$ 3.75$

VHF-UHF
TRIPLE-TIE

Ties together all three TV receptian bands:

1. Law Band VHF
2. High Band VHF
3. All UHF

High and Law Pass filters enable the Trip!g-Tie to adapt all Hi-La VHF installations ta UHF - quickly and effectively. "Free-Space" terminals far perfect allweather UHF reception.
new low price- $\$ 4.86$

THE ANTENNA IN COLOR TELEVISION

by Harold Marris, Vice President, Sales and Engineering

Now that color telecasting is a reality, we will see an ever-increasing flow of color sets to the consumer. Although much is being said and written on the subject of color sets, many unanswered questions remain abcut the role of the television receiving antenna in colcir television.

Will present antennas work on color?
Will a special antenna be needed?
The results of thorough laboratory and field tests made by engineers of the Channel Master Antenna Development Laboratories show that practically all present TV antenna types will perform satisfactorily on color. Gain variations as high as 3 DB across one channel can be tolerated. When this figure is exceeded blurring or smearing of the picture may accur. Although thete are certain antennas on the market which do have excessive gain variation, this is not the case of the vast majority of present installations.

There are also indications that fringe area color reception may be more critical.
 This may necessitate the use of fringe area antennas in areas closer to the TV station.

In the nation's most advanced television research laboratory, Channel Master antennas have always been designed for full band width and minimum variation in gain on any one channel.

For this reason, every Channel Master antenna which you have installed in the past, as well as the ones you install today, will provide reception of outstanding quality when color TV comes to your area.

Channel Master antennas were the antennas selected for the tests which led to the F.C.C.'s approval of the National Television Standards Committee color system.

by W. WILLIAM HENSLER

IMPROVING UHF INSTALLATIONS THROUGH

The old saying that " Experience is the best teacher" can certainly be applied to UHF installation work. The knowledge a person accumulates in overcoming problems of specific installations is positive, regardless of the degree of reception obtained in each case. As far as the individual effort is concerned, however, this can frequently be expensive. Experimentation is costly in terms of time or materials.

It naturally follows then that if collective experience is available, experimentation necessary to solve individual difficulties will be greatly reduced, better results assured, and greater benefit will accrue to both installer and customer.

The UHF surveys which previously have appeared in PF INDEX were efforts in that direction. It is true that some results or experiences may be peculiar to the individual location, but the majority of the material available from these surveys may serve as a reference basis for corresponding operations.

Recently a similar survey was conducted in the Anderson, Indiana area. The institution of the planning for this operation was a little different and, we believe, worthy of recounting here along with the results which were obtained from the survey.

The members of the Radio and Television Service Engineers Association of Anderson, Indiana, realizing that the UHF problems existing in their city were of extreme importance to their own welfare, decided that some steps should be taken in the form of a cooperative movement to alleviate the difficulties. This organization, which has been in existence for many years, is quite active; and, of course, individual association meetings had treated many of the views and techniques adaptable to the problem. This interchange of information was, naturally, helpful to a certain extent; but it was felt that a survey conducted in their area, similar to surveys initiated in other areas, would provide greater and more accurate information for all. Since the PF INDEX had published
the results of similar surveys, our field group was contacted by the Anderson organization for any help that it could provide. The PF INDEX staff was most interested in the undertaking because not only would it furnish additional tests and information but would also make possible, through working with the service technician, a greater understanding of his exact requirements.

Plan of Operation

The first step planned was that of compiling a list of locations in the area where difficulties had been experienced in obtaining satisfactory UHF reception. Association members were asked to supply lists of such locations resulting from their individual experience or knowledge. Relatively poor results had been encountered in a number of locations in Anderson, so compilation of a list of representative sites was not difficult.

The next step, using the final list as a guide, was to make a preliminary check of an many positions as
possible within a reasonable length of time. The purpose of this exploratory work was to identify the sources of trouble and classify them to some extent to cover as many types of failures as practicable in the event to follow.

After completion of this phase, a field day was to be held, with as many association members attending as possible. The field day would furnish the opportunity of seeing how the tests are conducted, the nature of the troubles encountered with possible solutions, and the over-all results of the survey. In other words -- to secure for the individual technician, the collective experience referred to at the start of this article.

General Condision of the Tesp Area

UHF reception desired in Anderson is that of WLBC-TV, the Muncie, Indiana transmitter operating on channel 49. Anderson is located approximately 20 miles from the WLBC-TV transmitting tower. The proximity of Anderson to the trans mitter would make it appear that very little difficulty should be encountered in reception of the Muncie signal; however, experience available up to survey time certainly did not bear out this supposition.
and 41 respectively of the PF INDEX. The following brief equipment list may be of interest to those not familiar with the previous reports.

Antenna tower trailer, telescoping type, maximum height extended 38 ft . (without antenna mast).

Portable gasoline-driven generator.

Adjust-a-volt line-control transformer.

UHF converters (4 types).
Conventional TV receiver.
Field-strength meters, volt-watt meter.

Transmission line (5 types).
Antenna rotator, antenna mast (4 ft.) and mast sections.

Twenty-four types of receiving antennas inc luding bow ties, conicals, corner reflectors, V 's and V beams, colinears, parabolic reflectors and yagis.

Compass, miscellaneous hand tools, antenna couplers, tape and connector lugs.

Position 1

Our first tests were conducted at the southwest edge of the city identified as position 1 on the map of Fig. 1. The complaint was that the signal was weak. Directly in line with the transmitter was a manufacturing plant which might have contributed to the signal loss. After setting up our equipment, a test was made using a single bow tie which was used as a standard for making comparisons of signal strength at the various positions. When using this antenna, it was found that an elevation of 36 feet would be required to obtain a snow-free picture. Although it would be practical to mount the antenna at this elevation, it was evident from the results shown in Fig. 2 that a higher-gain antenna should be employed at this position. Note that the rise in signal pickup increased in a nearly linear fashion as the antenna height was increased. The vertical response pattern was essentially free of any sharp dips or peaks even when using a single antenna. This indicated that the proper height for the permanent installation was not so critical as is experienced in some locations. Thus, it was possible to determine

COOPERATIVE EfFORT

The general terrain in the area is essentially flat although there are occasional rolling hills. The city of Anderson lies in a small valley running at nearly a right angle with the oncoming TV signal. Fig. 1 is a layout of the city with direction of the transmitter indicated. In studying the layout of the selected test positions and in checking reception at some of these points, it was clearly established that there is a distinct r ise of terrain in the direction of the TV transmitter. (Fig. 22 appearing later in connection with test results illustrates this factor.)

Equipment

The equipment used in the preliminary tests and the field-day event at Anderson duplicated, to a large extent, that which had been available for previous surveys at South Bend, Indiana and Norfolk, Virginia. Detailed descriptions of such equipment were provided in the March-April and Nov -Dec. 1953 issues numbers 37

Fig. 1. Map of

Anderson Showing

Test Positions and
Direction of
Transmitter.

Technical sPECIFICATIONS

- Frequency Range: 0.5 cycles to 700 KC , down 3 db .
- Accelerating Potential: 1775 Volts (high intensity), provides very sharp focus.
- Square Wave Response: Flat, 60 cps . to 100 KC , with less than 1% tilt, less than 2% overshoot.
- Dual Fuse: $\mathbf{B}+$ is fused and the line is fused. Fused B + provides protection against transformer damage. This is another HICKOK exclusive feature.
- Amplifier: Push-pull, vertical sensitivity 20 MV RMS per inch.

Horizontal, 30 MV RMS per inch.
Vertical Input Impedance: 15 MMF, 2.2 Megohms.
Horizontal Input Impedance: 52 MMF, 0.1 Megohms.

- Sweep Oscillator Range: 18 cps . to 50 KC .
- Withstands shock, vibration, and humidity. CRT is shock-mounted, and external connections to CR Tube are provided.
- Blue hammertex steel case.
- $13^{\prime \prime} \mathrm{H}_{\mathrm{y}}, 171 / 4^{\prime \prime}$ D., $95 / \mathrm{B}^{\prime \prime}$ W. 23 lbs. net.

THE HICKOK ELECTRICAL INSTRUMENT CO.
10566 Dupont Avenue - Cleveland 8, Ohio

Fig. 2. Results Obtained at Position 1.
what height would be the most practical for this particular installation and then select an antenna which would provide sufficient gain at that particular height. The measuring equipment which was employed during our tests was checked, and it was found that a relative reading of 200 was required to produce a completely snow-free picture. Referring again to the graph of Fig. 2, it can be seen that severak antennas would provide such a signal above the 31 -foot level. Flacement of the antenna below this point was not recommended because of the low signal pickup.

In summarizing the results of our tests at position 1, it can be stated that little or no difficulty should have been experienced in making a UHF installation. The selection of a medium-gain antenna; the placement of the antenna at a reasonable height, the use of the proper lead-in and its proper placement; and the use of UHF receiving equipment in good operating condition should have produced satisfactory results.

Position 2

Our next test position was located in very low terrain. It is identified as position 2 on the map of

Fig. 1. The graph of Fig. 3 shows the results of the tests made at this location. Note that the maximum reading obtained is 53 which is far below the minimum requirement for a snow-free picture. Also note the abrupt changes in signal pickup as the antenna height is changed. In such a low signal area, proper positioning of the antenna becomes increasingly important since it is quite difficult to get a satisfactory picture even under the best conditions.

A high-gain antenna should definitely be used in an area such as position 2. It is also recommended that an antenna having considerable vertical height be employed to lessen the effect of the sharp rise and fall in signal strength at various elevations. Vertical stacking of antennas will accomplish this. At this particular location, a stacked yagi antenna would be a wise choice. Here is another example of the need for selecting an antenna suited to the particular situation at hand rather than using the distance from the trans mitting tower as the determining factor. The mention of the yagi type of antenna is intended only to emphasize the need for a high-gain antenna. There are many other units which would provide adequate gain. Ex-

Fig. 3. Results Obtained at Position 2.

JFD JeTOMIC

Produces brilliant deep fringe UHF pērformanze-plas Produces heretofore unachieved gatin of
Stacked* UHF Rhombic on Charinels 14 to 83
Stacked JeT wonical on every VHF Channel 2 to $1=$
Featuring exclusive no-loss isolation, network-Only 1 lead to set.
Model JeT 454
Single
$\$ 16.50$ list Model JeT 454 S $^{*} \quad$ Stacked $\quad 3450$ list

* complete with stacking transformers

Guaranteed to out-perform any other VHF Cr. UHF-VHF antenna. Both units factofy pre-assembled witr renowned Jet-action all-aluminum cqnstruction. Write for Forms 230 and 241.

the most powerful

Channels	14	21	28	35	42	49	56	63	70	77	83	
Competitor A Conical with Bowtie (2 stack)	4.0	3.25	2.0	1.0	1.0	0.75	0.5	0.7	0.9	0.75	0.3	$=$
Competitor B Bedspring with URF	0.75	0.75	0.9	1.0	0.8	1.0	15	1.6	1.25	1.25	1.0	-
Competitor Conical with V (2 stack)	3.0	3.3	4.0	4.6	4.9	6.0	4.8	4.5	\%.25	4.0	3.75	2
Competitor ID Filter typ	0	2.0	2.5	2.75	2.9	2.9	2.4	2.2	¢. 0	1.3	1.0	

JFD SUPER-JeT

Delivers Spectacular Deep fringe VHF performanze-plus Packs Unprecedented gain of:
Single 10-Element VHF Yagi on each charne- Fron 2 to 13. Stacked UHF Bowtie - Reflector off side lobes on Channels 14 to 83.

Model JeT $213 \quad$ Single $\quad \$ 1870$ list
Model JeT 213 S $^{*} \quad$ Stacked 38.35 list
* complete with stacking transformers

In the Interest of... Quicker Servicing

by HENRY A. CARTER

Trouble-Siooting Light

Flashlights have been used extensively by almost every service technician in the field. The flashlight has long been recognized as a handy source of light for temporary use. However, the shortcomings of the flashlight are numerous. Let us list some examples:

1. A flashlight requires frequent battery replacement.
2. The bulb works loose from vibration of the truck.
3. Contects get corroded inside the case where they cannot be cleaned. This causes a poor connection and results in a flickering light.
4. It lights only a small area of the chassis of a receiver because of its narrow beam; therefore, it must be held in the hand and directed at each spot where the light is needed.

A very good substitute for the flashlight is shown in Fig. 1. It consists of a small lamp with a large clamp. This lamp is manufactured for use on small machines and tools such as sewing machines and drill presses, and it may be purchased through most any appliance wholesalers. It has a plastic reflector which can be revolved to direct the light to various points and which can be snapped off for easy replacement of the bulb. A switch is provided at the base of the lamp. A few advantages of this type of light source are:

Fig. 1. Trouble-Shooting Light With Clamp and Test-Line Cord Attached.

1. Light is spread evenly over a broad area.
2. The lamp is small and will not be in the way.
3. The lamp can be clamped to almost anything, even to a tube if necessary, because of the very light weight of the lamp and the large clamp which distributes the pressure.
4. There is no battery to need replacing.
5. The hood can be rotated to direct light away from the service technician's eyes.
6. The lamp is inexpensive to own and operate.

The lamp cord may be tapped into the test-line cord as was done to the one shown in the photograph of Fig. 1. With this arrangement, the lamp is always handy and the service technician is not so apt to leave either the light or the cord in the home. Furthermore, since many homes are not overly well supplied with AC outlets, the requirement of only one outlet to power both the lamp and the receiver is a convenience in this respect.

Solderless Lugs

The ends of antenna transmission lines and test-equipment leads are frequently terminated by lugs of various kinds. Some require solder ing for a good electrical connection, but the drawback to the requirement is that a soldering iron or gun must be plugged into an available AC outlet and heated. If a service technician is working on the roof of a house installing an antenna, it is very unlikely that he will be in a position to do this. When caught in this situ ation, the service technician may choose to wrap the bare ends of the lead-in around the terminal screws and tighten them. This action places agreat deal of pressure on the strands
of wire and weakens them so that they may very soon break from the weight of the lead-in and from the action of the wind.

An answer to this problem is the use of solderless terminal lugs such as those shown in Fig. 2. These may be purchased in kit form or as separate items. The kit shown includes ten different types and sizes. Included among the many items in this kit are butt connectors for splic ing and flag type connectors similar to those used in automobile wiring.

There are a number of manufacturers making solderless lugs for the service industry. These lugs are available from your radio parts dealer. The kit shown in Fig. 2 is manufactured by Vaco Products Company.

Standard Coil Replacement Parts Kit No. 1011

Replacement parts for Standard Coil TV tuners are now available in kit form. The kit consists of a sturdy carton 12 inches long, $81 / 2$ inches wide, and $31 / 2$ inches deep; and it contains 104 items of the most commonly used parts for servicing Standard Coil TV tuners. This kit may be seen in Fig. 3. A list of the parts included in it is given in Crart 1.

* * Please turn to page 61**

Fig. 2. Solderless Terminal-Lug Kit for Quick Application.

Audio:Facta

A Cabinel for a
Home Music System

The high-fidelity enthusiast usually finds quite early that he must do somethirg about making his home music system acceptable in appearance if he is to be allowed to make it a part of the room furnishings. A suitable cabinet, such as the one to be described, can well be the answer to the problem.

In our specific case a cabinet to house the audiosystem was needed in order to clear up the clutter of equipment being used. We wanted to get the amplifier and its power supply off their perch on top of the bookcase; clear the desk top of the preamplifier and the FM tuner; remove the turntable from its place beside the desk; and in the process do away with all of the cords, cables, and wires connecting them together.

An account of how this cabinet was converted for use with our sound system should be of interest to those who may wish to modify a similar cabinet for use with a particular installation. The cabinet is shown in the photographs of Group 1 before any changes were made. It may look very familiar to many readers, because a large number of these Ortho phonic phonographs were manufactured by the Victor Talking Machine Company and sold in the 1920's. Acoustical in operation and driven by a spring motor, it had seen a lot of use in its day. For years it had graced a corner of the second-floor hall as a familiar landmark filled with albums containing, among other records, some single-sided ones recorded by Kreisler, Caruso, and Paderewski and one of those flexible brown "Hit of the Week" records of " I Found a Million Dollar Baby," by Don Vorhees and His Orchestra.

The dimensions of the cabinet made it particularly suitable for this conversion. The large exponential horn in the center of the cabinet (Figs. 1 and 2) required space as did the curved tone arm and 12 -inch

by Robert B. Dunham

Group 1.

Cabinet Before Modification.
turntakle in the top compartment. The space used by these original parts was adequate to accommodate the amplifier, preamplifier, tuner, and transcription type turntable and arms.

Figs. 1 and 2 show the cabinet after all demountable parts had been removed. From this point on it was necessary to use hammers, saws, and chisels to remove the horn and other unwanted parts. This part of the operation required some effort, since this well-constructed cabinet showed no evidence of deterioration in any way. All dismantling and remodeling was done with care so that the extericr construction would not be damaged and the finish would not be marred. Consequently, very little work, other than some rubbing and polishing of the varnished walnut sur faces, was needed on the finished outside portions because of the excellent condition of the cabinet.

Most of the modifications are evident in the illustrations. Probably

By the MAKERS of the FAMOUS "BEAMED POWER" COMMUNICATION ROTARIES

by DON R. HOWE

voltage applied to the sync-amplifier grid.

Under weak signal conditions, the events mentioned in the foregoing paragraph occur in the same sequence; but the voltage changes are in the opposite direction. A decrease in negative voltage from the video detector is counteracted by a decrease in positive voltage from the voltagedivider network. Hence, grid conduction in the sync-amplifier tube and an undesirable reduction in the input impedance of this tube are prevented.

It may be seen from the foregoing explanation that the sync control tube acts as a variable impedance in the voltage-divider network. The end effect is to regulate the amount of bias applied to the sync-amplifier tube in accordance with the strength of the received signal. Such regulation insures that proper sync amplification is maintained.

Douglas Model 327 Remote-Control TV Receiver

The Douglas Model 327, shown in Fig. 2, features a chairside control unit for remotely operating the television receiver. The cabinet housing the control unit also contains a three-speed phonograph which may be played through the audio system of the receiver.

Two separate chassis are utilized in this receiver. The tuner chassis is contained in the chairside unit, and the sweep chassis is in the cabinet that houses the picture tube. A six-wire cable is employed for interconnecting the two chassis.

The tuner chassis consists of the video detector, audio detector, and all preceding stages. The controls on this chassis permit turning the set on or off, selecting the desired TV channel, adjusting the volume and contrast, and choosing either TV or phonograph operation. The sweep chassis incorporates all of the additional stages necessary for operation of the receiver. Each chassis contains its own individual power supply.

Fig. 2. The Douglas Model 327 With Chairside Control.

Insulate tools the easy way!

Just dip tools in

Insl-x Tool Dip, the same materialused by major utility companies for insulating power linemen's tools, is now available in a handy six-ounce container to the electrical trade.

Simply dip the tool into the Insl-x container, withdraw, and you have a smooth, tough coating that gives more than adequate protection.

Any desired thickness for use of tools on high voltage circuits may be built up by dipping in INSL-X.

The Insl-x coating is bright red so you can spot your insulated tools at a glance. Also available in black.

List $\$ 1.79$
12 oz .Packed 12 to case

USE INSL-X INSULATING SPRAYS FOR ELECTRICAL

AND TELEVISION INSULATION

Insl-x E-16 for the television serviceman and Insl-x E-26 for the electrical trade are both quality insulating sprays of extra high dielectric strength that are guaranteed to completely insulate, rustproof and waterproof.

Packaged in aerosol cortainers, Insl-x is easy to apply. Just press the button and spray

See your jobber or write for complete technical data, Dept. 203

Fig. 3. A Schematic Diagram Showing How AGC Keying Pulses Are Fed Over the Relay Control Line in the Douglas Model 327.

The detected video signal is fed from a cathode follower on the tuner chassis to a video amplifier on the sweep chassis by means of the interconnecting cable. This cable also carries the detected audio signal to an audio amplifier in the sweep chassis.

A 6-volt AC relay is used to control the application of line voltage to the sweep chassis. The voltage to operate this relay is taken from the filament string in the tuner chassis.

Note that many of the filaments in the tuner chassis have individual bypass capacitors. These capacitors prevent any portion of the AGC keying pulse in the filament line from appearing across the heaters. Capacitor C1 in the sweep chassis offers a high impedance to the 60cycle line frequency and low impedance to the AGC keying pulse. This condition insures that the 6 -volt relay receives the current it requires from the 6.3 -volt supply in the tuner chassis.

Since a keyed AGC system is used, some method must be employed to supply a horizontal pulse from the sweep chassis to the AGC tube on the tuner chassis. This pulse is carried over the same line used to control the 6 -volt relay. The manner in which this is accomplished is shown in the schematic diagram of Fig. 3.

Mcintosh Model C-108 Construction and Chassis Layout

Chassis layout and construction constitute important factors from the standpoint of the service technician. The ease and rapidity of servicing depends to a great extent
upon the accessibility of components for testing and replacement. The McIntosh Model C-108 audio compensator is an excellent example of a design which features components readily available for servicing and yet assembled in a comparatively compact unit.

The removal of two plates from the chassis exposes all components. A top view of the unit with the cover removed is shown in Fig. 4. It may be seen from this view that most of the resistors are mounted on a terminal board providing many convenient test points. The controls mounted on the front panel have their terminals exposea in such a manner that testing and soldering operations can be readily performed.

Fig. 4. A Top View of the McIrtosh Model C-108 Chassis With Cover Removed.

$\$ 50000{ }^{\text {Trau s sul" }}$ 50,000

For Dealers and Servicemen" who use RCA Tubes

Here's all you do-

Get an entry blank from your RCA Tube Distributor Salesman. Complete the following sentence in 25 additional words or less:-
"I useandrecommend RCA Tubes because" It's as easy as that . . . and you may enter as often as you like, but each entry must be on an official entry blank.

Hints to help you win

See your RCA Distributor Salesman right away. He has a copy of the "clue book" waiting for you. This book contains full details on the whole exciting "Tell and Sell"

Campaign, including contest rules.

You may win first prize... so don't waste a moment. Contest closes April 30, 1954.
*Your RCA Distributor Salesman will be glad to help you ... because if you win, he wins a duplicate prize!

RADIO CORPORATION OF AMERICA
EZECTRON TUEES

OBSTACLE-GAIN. Now they admit, after all these years during which service technicians knew it to be a fact, that " high mountain ridges can actually vecome powerful aids for reducing both transmission loss and tropospheric fading," (U.S. Bureau of Standards Technical Report No. 1805). The word for it is obstaclegain.

As an example, tests were made in Alaska with transmitting and receiving antennas 160 miles apart. Both were 800 feet above sea level, with a 9,000 -foot mountair range in between. Calculated transmission loss for a smooth earth was 207 db at 38 mc , but actual loss was only about 134 db ; this meant that the mountain had an obstacle-gain of 73 db , way more than the best antenna known. Over a 30 -day period, signcl strength varied less than 2 db , which is pretty good.

Here at last is a practical explanation of extreme fringe-area reception in mountainous terrain. To service technicians it means that receiving antennas in valleys need not necessarily be on high masts. Give a try to an crdinary installation first if there are mountains in the airline path to the transmitter.

Obstacle-gain also means that you may be able to make set sales and installations in remote valley hamlets where TV hasn't even been tried yet. Save this virgin territory for the next business slump, but better make tests first before promising anyone good reception over the hills and far away. The effect varies greatly with frequency and other factors, some unpredictable.

FOGHORNS. Out on the West Coast where fog is fog till eleven most nearly every day in some places,
engineers found a way to cut down on the cost of foghorns on piers and other land establishments. They buy one mournfully toned horn, make a recording of it on disc or tape, then use the recording with an appropriately powered amplifier and speaker at each location. Now, when service technicians out there get a government questionnaire asking what they do for a living, they can truthfully answer, 'I fix foghorns."

WETBACKS. Big probleminthe Southwest is getting enough labor temporarily to meet seasonal agricultural demands. Mexicans are willing and welcome for this purpose and can usually swim across the Rio Grande without getting caught by immigration officers, but the practice is frowned upon by Federal authorities.

Where does radio come in? According to an Associated Press story, one Arizona farmer used it to alert his Mexican "wetback" field hands when Federal officers were approaching. The farmer and his wife were indicted by a Federal grand jury for using radio to flash warnings to all parts of their vast agricultural holdings so laborers illegally in the country could head for cover temporarily and make themselves scarce.

AUDIO-DIGEST. On the premise that doctors spend many hours a day in their cars yet don't have enough time to read all their technical literature, an Audio-Digest service has been inaugurated by the Los Angeles College of Medical Evangelists. For $\$ 2.50$ a week, a doctor gets a one-hour tape-recorded summary of medical news. This he can play back on the magnetic tape
recorder installed in his car as often as he likes while making his rounds.

VIRUS. According to a Colorado doctor, the viruses that bedevil us each winter and spring carry negative electric charges but have to pick up little shocks of positive electricity before they can cause sickness. If some way can be found to prevent viruses from getting their positive charges, it is believed that a new weapon may become available for the fight against polio, flu, and possibly even cancer. In any event, it's always a good idea to keep your fingers off B-plus terminals.

DOLLARS. This year people will pay out about $\$ 250,000,000$ for TV service compared to around $\$ 150,000,000$ last year, as estimated by Frank J. Moch, president of the National Alliance of TV and Electronic Service Associations. With over $25,000,000$ sets in use right now, this averages out to around $\$ 10$ a set, which is quite conservative.

POPCORN. When fire gutted a California TV-receiver plant recently, Associated Press reported that picture tubes went off like popcorn. Some 4,000 sets were destroyed by the fire in this temporary plant of Pacific Mercury, occupied temporar ily pending completion of its own $\$ 750,000$.plant. The firm is a main supplier of Silvertone sets for Sears Roebuck, which is part owner.

[^3] Sams' Photofact Index, Counterfacts, Rider Manuals and Tek-Files

CHICAGO STANDARD TRANSFORMER CORPORATION 3594 ELSTON AVE., CHICAGO 18, ILL.
EXPORT SALES: Roburn Agencies, Inc. 39 Warren Street • New York 7, New York

Shop Talk

(Continued from page 7)

peaked voltage pulses.* In the damper diode, the relatively close spacing of the base pins has frequently led to arcing and insulation breakdown between tuke elements. There have been developed only recently tubes such as the 6 V 3 , for example, which separate the plate and the cathode from each other. This separation is accomplished by bringing the lead of one of these elements out the top of the tube.

In the case of the low-voltage rectifier, the principal cause of reduced tube life is the large amount of current which is drawn through the tube. Eventually the emission starts decreasing, resulting in a reduced output DC voltage and lowered operating efficiency of the set. In the more economically built sets, picture width is immediately affected together with set sensitivity. It takes no more than a 10 per cent reduction of voltage to produce a 30 per cent or more drop in sensitivity. In a strong signal area, this may be of no particular concern; in a weak signal area, the effect can be marked.

Other tubes that ordinarily fail before their normal life span are those in which fairly high positive or negative voltages are applied to the

* Shortened life of the 1B3GT highvoltage rectifier can also stem from too high a filament voltage. An ef fective remedy is to raise the value of the series filament resistor. See Fig. 1. Thus, if a 3.3 -ohm resistor is used, replace it with a 3.9 -ohm unit. If it contains a $3.9-\mathrm{ohm}$ resistor, substifute a 4.3 -ohm resistor. In other words, increase the value one step at a time.
cathodes while the heater elements are held at essentially ground potential. The author well remembers the large number of times a certain receiver failed because of the insulation breakdown between the cathode and filament of a 6AH6 video amplifier. The cause of these repeated failures was the application of -90 volts to the cathode while the heater was held at DC ground potential.

The recent practice by set designers in using some of the tubes in the receiver as voltage dividers has also been responsible for a rash of burned-out, audio-output tubes. The situation is this. The full output voltage (say 350 volts) of the DC power supply is applied to the plate circuit of the audio-output amplifier. Because of the voltage drop in the tube, what appears at the cathode is perhaps 125 to 150 volts. This then serves as the plate voltage for a large number of lowcurrent video tubes which operate in parallel of the 125 -volt to $150-$ volt line. The total current of these smaller tubes passes through the larger audio-output amplifier, which is able to carry it successfully.

The chief cause of breakdown of the audio-amplifier tube is the large difference of potential between cathode and heater. The break when it does come usually reduces the cathode voltage to a value not far from zero, effectively inactivating all of those tubes which operate off the 125 -volt to 150 -volt line.

There are other tubes in the set that may fail, but failure arises more from deficiencies in the construction of the tube than it does from the nature of the currents and voltages in the circuit. Into this category would fall such troubles as gassy tubes, leaky or shorted tubes, and microphonic tubes. The latter defect
is particularly interesting, since a tube which is microphonic in one circuit may function satisfactorily in another. While microphonism is in a sense a defect that stems from the tube, it also owes its origin to the circuit as well. The RF oscillator is especially sensitive to microphonics; the sweep systems are practically not at all. As a general rule, the signal circuits in a receiver are the ones most susceptible to this malady; within this group, the lower the signal level the more critical the stage.

The foregoing discussion has been concerned solely with tubes; but there are other components, principally capacitors, which will cause more trouble in certain circuits than they will in others. As with tubes, the sweep circuits appear to be the chief offenders, again because of their sharply changing voltage and high peak-to-peak amplitudes. Of course, when the trouble affects a capacitor, it is not because suitable components are not available. It may be that the capacitor had some small defect in it or because the manufacturer or set designer did not provide as much reserve protection as he should have. The cost of a capacitor rises with its operating voltage, and competition today is such that not too much profit is left to provide as much leeway as many engineers would prefer. Whenever you as a service technician have occasion to replace a capacitor in one of the sweep circuits, always use a replacement that at least equals and preferably exceeds the working voltage of the unit replaced. The cost of capacitors is seldom a significant item in a repair bill, and a few extra cents spent on a more rugged replacement will in the long run more than repay itself in better customer relations. Incidentally, whenever you do anything like this, it may not hurt to call it to the customer's attention. You need not mention it directly or

Fig. 2. The Emcircied Capacitors All Lie Directly in the Path of Sharply Peaked, High-Amplitude Pulses and Are More Prone to Failure Than Some of the Other Capacitors in the Circuit.

Here's another sensational Raytheon first. It's a different kind of flashlight that sheds a new light on Radio-TV servicing - makes it faster, easier, more profitable.

RAYTHEON BROW-LITES are available through your Raytheon Tube Distributor. Ask him how to get a supply for you and your men.

Here's why Service Dealers from coast to coast are hailing the RAYTHEON BROW-LITE:

- FREES BOTH HANDS - work is easier, faster
- DIRECTS LIGHT AUTOMATICALLY-you see what you look at in a clear, bright light
- USES STANDARD PARTS - $11 / 2$ volt penlite batteries and 3 volt penlite bulb
- ANYONE CAN USE IT - fits easily above glasses
- EASY TO CARRY - folds compactly to pocket size
- REPLACES FLASHLIGHTS - easier, safer to use
- DURABLE - made of rugged plastic

Fig. 3. Appearance of "Spook" Interference With Weak Signal.

Fig. 4. "Spook" Interference With Signal of Normal Strength.
specifically single out one particular component. Merely state that all parts used in replacement are equal to and in most cases exceed manufacturer's specifications.

The capacitors which are most likely to give you trouble in the horizontal-sweep system are those which are close to or come in contact with the final horizontal-output amplifier stage. This would include the following units (see Fig. 2):

1. The coupling capacitor between the horizontal oscillator and the output amplifier.
2. The small capacitor (usually 56 mmf) shunted across part of the horizontal winding of the deflection yoke.
3. The capacitor unit coupling the retrace pulse to the plate of the keyed AGC tube.
4. The capacitor which feeds a pulse from the horizontal-output transformer to the horizontal AFC tube.

These are the principal units. There may be others in special circuit designs. Note that all of those just mentioned lie directly in the path of sharply peaked, high-amplitude pulses. The recurrent electrical stress which these voltages bring to bear on the capacitors will aggravate any mechanical flaws that may exist and lead in time to a complete breakdown. In short, the tolerance limits are narrower.

In the vertical circuit, peak-to-peak voltage requirements are lower because screen height is only three-fourths of screen width. Hence, the operating requirements for the vertical circuit are lower and the tolerance limits are wider when compared with the horizontal circuit.

Even so, the vertical circuit is subject to frequent breakdown.

Keep these receiver "hot spots" in the back of your mind whenever you do work on a high-voltage or a high-current circuit. The components discussed may not be the ones responsible for the breakdown of a particular set, but their position makes them likely offenders and they will generally tend to cause more trouble than other components in the same section of the receiver.

REVIEW. The rather colorful names of "spook" and "snivet" are for two kinds of interference described by Mr. M. B. Knight in two articles in Radio \& Television News. They are "The Spook" in the March 1953 issue and "Meet the Snivet" in the November 1953 issue. The magazine is published by the Ziff-Davis Publishing Company, 366 Madison Ave., New York 17, N. Y. The yearly subscription rate in the United States and its possessions is $\$ 4.00$, and the price per single copy is 40 cents.

The Spook.

The spook, which was discussed in the earlier article, originates in the horizontal-deflection circuits of a television receiver. The radiation emanating from these circuits is picked up by the RF or IF sections of the set and amplified, detected, and then applied to the grid or cathode of the picture tube. In the picture, it takes the form of a narrow vertical line or band located very close to the left-hand edge of the screen. See Figs. 3 and 4. With weak incoming signals, the spook line is quite black and has ragged edges (Fig. 3). When the signal is of normal strength, it is not black but has within its margins crawling diagonal lines. These are
caused by the beating or heterodyning between the spook interference and the television signal.

Now, at first thought, it would appear that this so-called spook is simply another manifestation of the familiar Barkhausen oscillations. However, there are several characteristics that distinguish the spook from them. First, spook interference is strongest on the low-frequency channels, whereas the Barkhausen may be more pronounced on either the low- or high-frequency channels. And second, spook interference does not originate in the horizontal-output tube from which the Barkhausen oscillation comes, nor does the spook disappear with any of the remedies that normally eliminate the Barkhausen lines.

An investigation of the horizontal-deflection system of a television receiver revealed that the radiation was strongest from the damper tube and its associated leads. Furthermore, the spook line appears at the same instance that the damper tube begins conduction, and this action commences approximately one microsecond after retrace completion. The source of the radiation from the damper tube stems from the fact that the damper-tube current rises fromzeroto its maximum value of 300 to 400 milliamperes in onetenth microsecond or less. Any wave having a rise time this fast is certain to contain many harmonics. In the present instance, the strong current flow produces sizable harmonics (of 15,750 cycles) within the television channels. However, since the energy in each higher harmonic becomes progressively less, the spook interference is most prominent on the lower VHF channels.

Once the source of this interference was known, steps were devised

Fig. 5. Several Examples of "Snivets" on a Picture-Tube Screen.
to reduce its effect on the picture. These steps took one or more of the following forms:

1. See that the high-voltage enclosures are grounded at as many points as possible. If there are any large holes in the cage, they may be covered with ordinary copper-wire screen to provide more effective shielding.
2. Dress the antenna lead-in line as far away from the deflection circuits as possible. Also carefully dress the deflection leads that leave the high-voltage enclosure.
3. Insert small RF chokes in the plate and cathode circuits of the damper tube. Chokes having inductance. values between 1 microhenry and 5 microhenrys are suitable and can be bought commercially. If you wish, you can make your own chokes by winding approximately 30 turns of AWG No. 28 enamel or Formex wire on a one-watt resistor.
4. As additional protection, a $100-\mathrm{mmf}$ capacitor should be added between the chassis and the $\mathrm{B}+$ side of the choke that is placed in the damper-plate lead.

The Snivet.

The second effect which Mr. Knight discusses is the snivet; and before we determine its origin, it might be best to take a look at it and see what it is. Several examples of snivets on a television screen are shown in Fig. 5. They always appear on the right-hand side of the screen and are more likely to be seen when no television signal is present. This is because the snivet is seldom strong enough to interfere with a usuable television signal.

In common with the spook and the Barkhausen oscillations, the source of snivet interference lies in the horizontal-deflection system. The snivet interference stems from the construction of the horizontaloutput tube and the manner in which it operates. In a beam-power tube, the elements are so shaped that a
virtual suppressor grid is formed between the screen grid and the plate. When operating at peak currents for which the tube is designed, the proper suppression characteristic is obtained. At still higher currents, the tube tends to become oversuppressed; and it is because of this that the snivets appear.

The oversuppression appears on the characteristic charts of these tubes as a break or discontinuity in the knee region of the curves and is evident generally at high current values. See Fig. 6. What happens is that as the plate voltage is increased, the operating point of the tube moves up along the curve to the knee and beyond. However, when the plate voltage starts decreasing, the curve departs from the original in the region of the knee and tries to maintain the high current. Obviously, this condition cannot be long maintained; and at some slightly lower voltage, the plate current drops suddenly and returns to the curve traced out when the voltage was rising. It is this sudden drop that produces the RF radiation leading to the screen appearance of the snivet. The RF radiation is picked up in the tuner or IF circuits, amplified in the normal manner, and then fed to the picture tube together with the television signal.

Snivets always appear on the right-handside of the screen because the output tube operates near the knee of its plate characteristics during that part of the scanning cycle. The sharp drop in plate current con-

tains many harmonics of 15,750 cycles, and Mr. Knight expected the interference to be more troublesome at the lower frequencies. To date, this has not been found to be true. Snivets can be found as high up as the UHF region, indicating that there are some facets of this phenomenon which are not yet fully known.

Steps to remove the effects of this form of interference follow the same general pattern indicated for the suppression of spooks. That is, make certain that the high-frequency compartment is well shielded and securely grounded and keep the antenna leadin as far away from the deflection circuits as possible. In many instances, substitution of other horizontal-output tubes of the same type as that used in the set have been found tobe helpful. Furthermore, the production of snivets is very sensitive to the operating conditions of the horizontal-output tube. Slight adjustment of the width, linearity, or drive controls may cause the disturbance to disappear.

The author is of the opinion that small RF chokes in series with the plate and screen of the output tube would also be helpful in reducing the visual effect of this form of interference.

It is interesting to note that radio receivers using beam power tubes in the audio-output stage are also subject to this trouble. When heard, snivets appear as a rasping noise in the speaker. The snivet is heard only when the tube is delivering maximum output.

As a test to determine whether a radio receiver is afflicted with this trouble when a rasping noise is heard, feed in an audio signal at the first audio amplifier (say from the phonograph, if used). Under these conditions, no snivet raspy noise should be heard because the RF radiation which must be picked up by the RF stage is missing. If a raspy noise is still heard, it is not due to snivets.

Fig. 6. Plate Characteristics of a 6BQ6GT. Note Loop and Break in the Top Curve.

Merit devotes their undivided attention to service requirements for transformers and coils. THERE is no competition for the time and effort of merit engineers and production, whose sole responsibility is to design and produce what the service field wants and needs when it is needed

Merit--exclusively for service.

2
Merit actively aids in service. Merit transformers and yokes retain actual operating characteristics of the original components but design improvements
$O_{\text {MERIT TRANSFORMER }}$ 4427 North Clark Street simplify replacement installation. Merit installation instructions are more complete than any others available.

Merit's is the most complete replacement catalog and the Merit replacement guide is ahead of service requirements.

Merit transformers are tape marked* for quick positive identification.

Find Merit's complete line is listed in John Rider's Tek-File and Howard Sams' Photofacts and Counter Facts.
*originated by Merit.

3 It is the Werit policy to simplify Service. Merit has proved it is possible for one transformer to serve a multiple purpose -that is replace more than one particular unit without sacrificing the essential operating efficiency of any of the various original components. Exact replacements are included in the Merit line only when substitution would complicate replacement labor. A stock of Merit replacements is always live -there are no dust-catchers in the Merit line.

Chicago, Hollywood, Hollywood. 3 modern plants prove Merit means: Service needs serviee Wherever the customer is located there is a Merit plant dedicated to turning out service requirements fast for his area.

The whole country is Merit's backyard and all customers are preferred.

TV Picture Analysis

(Continued from page 9)

is compared with the number opposite that point. Some test patterns may not be numbered, but they may have instead some reference dots alongside the wedges. In that case, the station transmitting the test pattern should be able to furnish the necessary resolution numbers corresponding to the dots. A rough approximation to these numbers can be obtained by a little measurement and computation. Measure the width of the wedge at the desired point and compare it to the height of the test pattern. The width of the wedge will be found to be some fraction of the pattern height, such as one-sixth or one-eighth. Invert this fraction and multiply it by the number of black and white lines in the wedge to give the resolution number for that point. This method assumes that the receiver is adjusted for correct linearity, width, and height and that the pattern does not extend past the borders of the picture mask.

Vertical Resolution

The vertical resolution does not depend upon the high-frequency response of the receiver but upon the size of the scanning spot and other factors. The number of visible horizontal scanning lines is 525 minus those lost during vertical blanking, which leaves approximately 490 lines. Theoretically, if the size of the scanning spot were small enough, the maximum vertical resolution would be 490 lines; actually, the effective number is somewhat less, being approximately 71.5 per cent of that number, or 350 lines.

Horizontal Resolution

Horizental resolution does depend on the frequency response or bandwidth of the receiver and also, to a certain extent, on the size of the
scanning spot. The fact that both horizontal and vertical resolution are affected by spot size indicates that the spot should be properly focused before checking resolution in either direction.

It is becoming common practice to think of horizontal resolution in terms of receiver frequency response rather than in terms of resolution lines. To convert horizontal resolution to receiver bandwidth in megacycles, divide the number of lines by 80. This mathematical calculation is based upon the following reasoning. It requires 53.3 microseconds for the spot to traverse one visible horizontal trace; but resolution is based on three-fourths of a line, as explained previously. Three-fourths of 53.3 microseconds is 40 microseconds. During a 40 -microsecond interval, a one-megacycle signal will complete 40 cycles. Since each cycle can be represented by a pair of black and white dots, 80 dots would be produced by the one-megacycle signal, 160 dots by two megacycles, and so on. These dots, when repeated for severalhorizontal lines, make up the vertical lines. Therefore the number of dots (or resolution lines) divided by 80 gives the receiver bandwidth in megacycles.

As stated previously in this article, proper spot focus is important in order to avoid an incorrect resolution reading. A weak signal can also give a faulty indication causing the resolution to appear worse than it actually is. Signal reflections, resulting in ghosts, will also reduce the apparent resolution.

To the right and left of the inner circle, the test pattern contains a vertical column of rectangles. The rectangle at the top of the right-hand column has a width corresponding to a 50-line resolution. In other words, its width is one-fiftieth of the testpattern height. The other rectangles

Fig. 5. Horizontal Linearity Misadjustment and Poor Inter. lace.

Fig. 6A. Normal Video IF Response Curve.
of this column extend to 300 -line resolution, in steps of 25 lines each. In a similar manner the left-hand column covers a range from 325 to 575 lines. When the receiver suffers from ringing, a succession of some of these rectangles will appear displaced to one side, usually to the right. The square-wave signal associated with the rectangle on the pattern causes the shock excitation of a critical circuit in the receiver, and the result is a train of damped oscillations which give rise to the series of displaced images on the pattern. Ringing is usually the result of overpeaking in the video amplifier.

The series of eleven horizontal bars below the inner circle provide a test for low-frequency response and phase shift. The lengths of these bars represent a signal range from approximately 19 kc to 600 kc . If the receiver has a poor low-frequency response, the leading or trailing edges of these bars will not be sharply defined. The horizontal wedges in the pattern also represent a signal of comparatively long duration and therefore may be used to judge the low-frequency response.

A gray horizontal wedge in comparison to a black vertical wedge indicates poor low-frequency response. On the other hand, the reverse of this condition indicates excessive low-frequency response.

Interlace

The four diagonal lines within the large circle can be used to check receiver interlace. Perfect interlace occurs when all the scanning lines of one field fall midway between the lines of the other field. Fartial interlace will result in a jagged appearance of the diagonal lines. Another indication of imperfect interlace is the presence of a moire or flickering diamond pattern near the narrow ends of the horizontal wedges. Complete pairing of scanning lines will cause a marked reduction in vertical resolution.

Typical Symptoms

The illustrations which follow will serve to show the effects of vari-

Fig. 6B. Test Pattern, Receiver Aligned as for Fig. 6A.
ous misadjustments and improper alignment upon the quality of the received picture. Fig. 2 may be used as a comparisonsince it was obtained by applying the video signal directly to a video amplifier. In this illustration the lines of the vertical wedge are distinguishable well up to the 400-line mark, indicating good response to 5 mc . Although a signal of this type is not normally available in the service shop we have shown the results of this test to illustrate the ability of a properly operating video amplifier to produce a picture of excellent resolution. The sections which limit the ability of a receiver to produce a picture of this quality are the RF and video IF circuits. Therefore anything which can be done to improve the operation of the RF and video IF sections is desirable.

Figs. 4 and 5 represent misadjustments causing poor vertical and horizontal linear ity, respectively. Fig. 5 is also a good illustration of
poor interlace. A moire pattern is very evident in both horizontal wedges and in the small concentric circles at the center of the pattern in Fig. 5.

Fig. 6A shows the video IF response curve of a receiver that is normally aligned. The curve is 3.5 mc wide at 50 per cent response, and the video marker is at the point of 50 per cent response.

Fig. 6 B is the test pattern obtained with the receiver aligned as above, and Fig. 6C is a photograph of a studio broadcast obtained with the same alignment. An enlargement of a small portion of the test pattern is included in Fig. 6B, and examples of ringing and slight phase shift can be noticed. Ringing is usually more apparent around small picture detail where small succeeding details have an extreme contrast range from black to white. Since the test-pattern elements are almost entirely black areas upon a white background, a properly
aligned receiver may show evidence of ringing when receiving a test pattern and very little or no ringing on the average studio picture. Fig. 6C contains very few areas of small and contrasting detail and consequently shows little evidence of ringing. Fig. 7 is similar to Fig. 6C in that respect. This picture of a painted background in a studio set was taken with the receiver IF aligned to a $3-\mathrm{mc}$ bandwidth. Although some relatively fine detail is present, it occurs at points where the contrast range is not great; and therefore no ringing is noticed.

Figs. 8A, B, and C were obtained with the receiver video IF section realigned to place the video marker at approximately 10 per cent on the video IF response curve. The bandwidth was approximately 2.5 mc wide at 50 per cent response. With the video carrier falling at 10 per cent, the lower video frequencies will receive less than normal amplification. As a result a number of

Fig. 6C. Photograph of Transmitted Studio Program; Same Alignment as for Fig. 6A.

Fig. 7. Studio Backgraund Scene; Receiver Video IF Bandwidth of 3 Megacycles.

G.E TUBES ARE SERVCE-TESTED FOR TV.SET INTERCHANGEBBLITY!

IN INDIANAPOLIS:

Howard W. Sams \& Co., Inc., regularly checks the performance of currentproduction G-E tubes in all popular TV chassis, at various line voltages.

AT GENERAL ELECTRIC:
the Howard Sams reports are studied, and any case of unsatisfactory tube performance receives detailed investigation. Corrective steps in manufacture or testing follow at once.

A General Electric executive micro-inspects a tube structure for proper assembly.

A General Electric plant employee, using a comparator, checks a greatly magnified tube grid.

Simplify your tube requirements, reduce call-backs, with G-E interchangeable tubes!

Since September, 1953, the Howard Sams TV. radio technical organization has checked G-E receiving tubes for servicing interchangeability. A number of tubes of each type-fully representative of normal production-are tested periodically in TV chassis of different makes. Accurate instrumentation is employed.

Any unsatisfactory tube performance in any chassis is reported to General Electric. There, further tests are held to confirm the Howard Sams finding, and establish the cause of the difficulty. With the aid of laboratory study, corrective steps are decided on by G-E tube management and applied immediately. These may take the form of an improvement in manufacture or inspection, or revised test specifications.

Result: you are always installing tubes that are more fully interchangeable and high-quality! Your General Electric tube distributor is your source for a product that is constantly being improved! Tube Department, General Electric Company, Schenectady 5, New York.

fig. 8 A. Videc IF Response Curve With Video Marker at 10 Per Cent; Bandwidth Approximately 2.5 Megacycles at 50 Per Cent Response.
deviations from normal reception are seen in the tesi pattern, Fig. 8B. Vertical retrace lines are visible in the upper half of the pattern. The vertical-refrace blanking pulses are of 60 -cycle frequency and have been attenuated $t y$ the poor low-frequency

An improper alignment, as illustrated in Fig. 8A, results in a narrowing of the bandwidth. Along with this undesirable condition we have another, in that successive stages of the stagger-tuned IF strip have been tuned closer to the same frequency. This results in regenera tion and near oscillation, as evidenced by the very dark portion at the bottom of the vertical step wedge. Some ringing is shown by the faint image displaced to the right of the testpattern elements.

The above faults are not readily apparent in Fig. 8C because the frequency and contrast ranges are much less than that of the test pattern. A little ringing is present in the areas of greatest contrast near the tele-

Fig. 8B. Test Pattern; Receiver Aligned as for Fig. 8A.
response tc a point where verticalretrace blanking is not completely effective. In receivers which employ a vertical-retrace blanking circuit, blanking does not depend upon the vertical-refrace blanking pulses and will therefore not be affected by loss of low frequencies.
phone hand set and near the man's white collar and tie.

An extreme example of phase shift and poor low-frequency response is shown in Fig. 9. In this case the $.05-\mathrm{mfd}$ coupling capacitor between two video amplifier stages has been
replaced by a $5-\mathrm{mmf}$ capacitor in order to simulate an open capacitor. Since the $.05-\mathrm{mfd}$ capacitor had been coupled directly to a 1 -megohm grid resistor, replacement by the smaller capacity of 5 mmf did not greatly reduce the response to the higher video frequencies. The lower frequencies represented by the horizontal bars at the bottom of the test pattern show extreme phase shift, as evidenced by the long white bars to the right of each black bar. Note that these white bars are less pronounced when following the shorter black bars which represent a higher frequency. Verticalretrace lines are even more apparent than in Fig. 8B. The sync and vertical blanking pulses were attenuated to the point at which increased contrast was required in order to keep the pattern in synchronization. This resulted in a blending of the two darkest steps of the tone wedges.

When the video carrier falls near the top of the videoIF response, low frequencies are emphasized. This is the case in Figs. 10A and B. Horizontal elements of the test pattern, Fig. 10A, are darker than vertical ones. The video IF response was 2.5 mc wide at 50 per cent on the response curve. Since the video carrier is high on the curve, video frequencies approximately 2 mc and above are displaced to that part of the response where amplification is greatly reduced. Consequently, frequencies above 2 mc receive little or no amplification and the picture suffers a loss of detail. This is evidenced in the test pattern by lack of resolution in the vertical wedge. If each horizontal trace could be seen as a series of square-wave voltages as in Fig. 3, we would see that the corners of the square waves would not be sharp, as they should be, but rounded. Consequently, leading and trailing edges in the pattern elements have a blurred or smeared appearance

Fig. 8C. Photograph of Transmitted Studio Program, Same Alignment as for Fig. 8A.

MAKE EXTRA PROFIT OF $\$ 240.00$ AND UP ON JENSEN PHONOGRAPH NEEDLE SALES IN 1954!

There's a golden opportunity to earn fast, extra profit every time you make a radio or TV Service Call. Here's how:

1. Simply say, "As long as I'm here, may I check your phonograph needle? If it hasn't been changed for the last 60 hours of play, it will absolutely ruin your records-every time it plays."
2. Tell your customer you recommend a new Jensen and take the proper needle out of your Jensen kit and install it in just 2 or 3 minutes. Pocket the profit at not one cent of extra sales cost to you because you're there in the customer's house anyway!
A service dealer in California just reported selling 50 needles per week by this method. Previously he sold only 1 or 2 needles a week!

$\mathbf{9 3 \%}$ of your customers are using worn needles. It stands to reason that you can easily sell at least 1 -needle-a-day out of the 8 or 10 calls you make. Selling just 1 out of 8 customers a new Jensen will average $\$ \mathbf{2 4 0 . 0 0}$ extra profit in a single year. And to net an extra $\$ 1000$ profit a year from your regular service, call business, you only need to sell every other customer.

GET READY TODAY for those extra profits tomorrow. See your distributor for the Jensen Phono-Needle Caddy No. 300 and One-A-Day folders for your service men and join the money-making Jensen "One-A-Day" Club now!

... THE SALES TOOL THAT MAKES FAST, EASY NEEDLE PROFITS FOR YOU ... THE JENSEN PHONO-NEEDLE CADDY!

This sensational Jensen Phono-Needle Caddy holds 12 replacement needles-the right needles to meet record player requirements in over 50% of your service calls. The novel accordian type plastic case folds down to only $5^{\prime \prime}$ by $2^{\prime \prime}$ and is only $1^{\prime \prime}$ thick. Slip it into your coat pocket or kit-takes hardly any space!
ONLY \$9.75 TO DEALERS (complete installation tools included at no additional cost) RESALE VALUE OF NEEDLES \$19.50.

Fig. 9. Test Pattern, Normal Video IF Alignment but With Open Coupling Capacitor in Video Amplifier Stage.
somewhat similar to that obtained in photography with a soft-focus lens.

This is probably the least objectionable of any of the misalignment
aligned to place the video carrier at approximately 60 to 70 per cent of maximum amplification, as indicated by the response curve. Being higher on the response curve, the video car-

Fig. 10A. Test Pattern; Recriver Aligned to Place Video Marker at 90 Per Cent Response. Bandwidth 2.5 Megacycles at 50 Per Cent Response.

faults dealt with in this article. In fact, this type of alignment is often used in weak-signal areas to increase the video signal amplification. When this is done, the receiver is usually
rier receives greater amplification than it would with normal alignment; and this sometimes means the difference between a very weak picture and one that is acceptable. The fact that

Fig. 10B. Photograph of Transmitted Studio Program With Receiver Aligned as for Fig. 10 A .
the video IF stages usually have to be more sharply peaked in order to raise the video carrier on the curve also means additional gain in the IF strip.

These are a few of the applications to which the test pattern or transmitted picture may be put in judging receiver alignment and performance.

The important thing to remember is that, in addition to its usefulness for linearity and size adjustments, it represents a squarewave signal of various frequencies and duration. Knowing the type of signal applied to the receiver, the service technician can judge the condition of the receiver by the visible indications appearing on the screen of the picture tube.

Figs. 6C, 7, 8C, and 10B were taken from telecasts of programs originated by WFBM-TV, Indianapolis, Indiana. The pictures do not in any way reflect upon the quality of the transmitted signal of WFBM-TV, since some of the photographs were taken to show the effects produced by a poorly adjusted receiver. We wish to express our thanks to WFBM-TV for permitting us to use these photographs.

Paul C. Smith

The Transistor Story (Part III)

(Continued from page 17)
physical structure and electrical operation of the two are quite different.

A new type of transistor has been developed which is quite similar to a vacuum tube in both structure and operation. This unit is an analogue junction transistor and can have a structure (as shown in Fig. 3) in which the electrodes functioning as the cathode and plate are made of N -type germanium, the electrode functioning as the grid is made of P-type germanium, and the area ser ving as the vacuum is made of pure germanium. The electrical field existing between the cathode and plate electrodes will extract electrons from, and form a space charge around, the cathode electrode. The grid electrode is negative with respect to the cathode electrode and will not attract electrons to itself. The electrons will tend to flow between the portions of the grid electrode and continue on to the plate electrode which is positive. This electron flow can be varied from saturation to cutoff by controlling the negative bias voltage applied to the grid electrode. It is evident that the operation of the
 IN PRIZES ...easy lo win

HOW TO WIN

To win one of these 503 prizes all you have to do is complete in 25 words or less 'I like Pyramid capacitors because \qquad You fill in this statement on a Pyramid contest entry blank which can be obtained from any electronic parts jobber selling Pyramid capacitors. You have this entry blank countersigned by your jobber or one of his salesmen and forward it to us attached to a Pyramid Dry Electrolytic Capacitor box top -the top being the part which carries the description of the item. There is no limit to the number of entries which you may make in this contest but each entry must be accompanied by a box top. Full rules for the contest appear on the entry blank.
It's so easy. Here is the kind of statement that might win:
"I like Pyramid capacitors because the line is so complete that I can always get what I need and don't have to worry about an off-brand capacitor."
"I like Pyramid capacitors because they always check out perfectly and don't deteriorate and so I know I won't have to call back at my expense."

PYRAMID

PYRAMID FEATURES:
(1) Only one quality-the best at no premium. All Pyramid capacitors are made of materials commanded by rigid military specifications.
(2) All Pyramid capacitors are non-hygroscopic.
(3) Highest quality insulator material used in all production results in low leakage factor.
(4) Exclusive non-contamination technique guarantees close tolerances and no deterioration. Peak performances for life.
(5) Pyramid capacitors operate unchanged at ambient temperature of 85° centigrade.
(6) Designed by service technicians across the country for their requirements.
(7) Individually packaged for protection.
(8) Permanently legible, high visibility ratings on each item.
(9) 100% absolute electronic inspection before shipment.
Pyramid is in its 10th year as a leading manufacturer of high-quality capacitors.
analogue transistor closely follows the basic theory of the vacuum tube.

Another field-controlled device is the field-effect transistor shown in Fig. 4. This is essentially a triode transistor which depends on the controlling action of electrical fields for its operation. It consists of a block of P-type germanium sandwiched between two layers of N-type germanium. These two N -type layers have a very large amount of added impurity, and they are identified in Fig. 4 as $\mathrm{N}+$. The output current is carried by holes moving from the so-called "source" at the left to the so-called "draia" at the right. The source and drain electrodes are composed of highly impure $\mathrm{P}+$ germanium. The $P-N$ junctions at the top and bottom are biased in reverse and thus do not contribute any significant amount of current. The reverse bias results from the fact that the $\mathrm{N}+$ lay ers are grounded, and the P-region receives a negative potential from the source and the drain. This reverse bias produces the space charges, shown in Fig. 4, which are areas lacking in carriers; therefore, all the output current will be restricted to the center channel. A controlling action upon the current will depend upon a change in size of this channel. This can be done by varying the bias on the $\mathrm{P}-\mathrm{N}$ junctions; the current can be controlled from saturation to cutoff.

The theory of the field-effect transistor gives promise of future production of units having high gain and efficiercy at higher frequencies than are possible with the ordinary junction transistor.

Transistors having more than three electrodes thave been developed, and they are expected to give results comparable to those of tetrode and pentode vacuum tubes. The first of these more complex units to be an-

Fig. 3. Cross-Sectional View of Analogue Transistor.
nounced was a four-electrode $\mathrm{N}-\mathrm{P}-\mathrm{N}$ junction transistor in which an additional connection was made to the base. This lead was added on the opposite side of the base from the conventional base lead. This extra lead, a very thin base layer, and a very small collector area all contribute to the excellent high-frequency response provided by this type of transistor. Fig. 5 illustrates the construction of the unit.

The theory of operation of this four-electrode transistor should begin with the statement that the better transistor is the one having the lower internal base resistance! This low base resistance could be achieved by using germanium of low resistivity or by using an extremely small base

Fig. 4. Construction and Operation of FieldEffect Junction Transistor. (Nomenclature of Electrodes Is That Proposed for Acceptance.)
layer. The first method is impractical because manufacturing techniques cannot control the resistivity of a germanium sample to close tolerances, and the second method is ruled out because of the difficulty in controlling the diffusion process which is used to make the junctions.

The four-electrode transistor achieves a very low internal base resistance by purely electrical means. When the emitter, collector, and base 1 leads have their normal voltages applied, the internal base resistance is that of the entire P layer. A negative bias of about 6 volts is then applied to the base 2 lead. A potential gradient is thus established between the base 2 and base 1 leads. Because of the external circait conditions, the emitter is normally biased at -0.1 volt with respect to the base 1 lead. The connection of the base 2 lead puts the majority of the emitter-base junction at a reverse bias; with respect to the emitter, the base bias varies from -6 volts at the base 2 lead to +0.1 volt at the base 1 lead. Only a small portion of the base near the base 1 lead has the

Fig. 5. Construction of Jetrode Junction Iransistor.
proper bias for conduction; this portion will be about one-fiftieth of the entire base. Effectively, this operation simulates a base layer with the top forty-nine fiftieths removed. It can be seen that the base resistance under these conditions will be greatly reduced.

One disadvantage of this unit is that the current gain or alpha is reduced slightly, but the increased efficiency at high frequencies more than makes up for the loss in alpha.

Another four-electrode transistor which has been announced is the tetrode point-contact transistor. This unit consists of two emitters and a single collector touching the base layer. It can be likened to two triodes with the grids connected in push-pull and the anodes connected in parallel. Circuits utilizing this unit could include mixers, demodulators, a pushpull detector having amplification, and others. One manufacturer has promised a pentode point-contact transistor consisting of three emitters, one collector, and a base.

There are probably many more new transistors undergoing development than have been announced. We know that quite a few manufacturers are working to produce transistors having power-output ratings greater than the 200 -milliwatt maximum which now exists. One manufacturer is producing units rated at 20 watts, but these have not as yet been available for commercial sales.

The ordinary junction and point contact transistors comprise the bulk of the transistors commercially available today, and they are constantly being improved. Such techniques as hermetic sealing, vacuum sealing, and welding of connections in place of soldering them have all contributed to a reduction in the number of transistors that fail after being put into service.

William E. Burke

TeleMatic Triumbh

13 db GAIN*

IN UHF RECEPTION

*Only 8 db
Noise Figure with the

Amazing New TeleMatic Booster!

Color Within 6 Megacycles

(Continued from page 5)
however, an average of the over-all results may be used as a standard for the study of human vision.

Color is perceived in terms of the three major attributes: brightness, hue, and saturation, It has also been determined that fine detail in color is not seen and that objects of medium detail are better resolved in certain colors than in others.

In order to illustrate this phenomenor, tests were conducted using sheets of colored paper cut in various sizes. A number of things were discovered when these pieces were greatly decreased in size and viewed at a distance. Listed below are the findings:

1. Blues be come indistinguishable from grays with equivalent brightness.
2. Yellows also become indistinguishable from grays. In the same size range where this happens, browns are confused with crimson, and blues with greens; reds remain clearly distinct from blue-greens; colors with pronounced blue lose blueness, while colors lacking in blue gain blueness.
3. A further decrease in size results in reds merging with grays of equivalent brightness; also, bluegreens become indistinguishable from gray.

When viewing extremely small objects, the ability to identify color is lost and only response to brightness remains.

From the foregoing data received from experiments on human vision, the following choice of bandwidths were made.

1. Full-band transmission of the luminance cr brightness signal.
2. Moderately wide-band, partly single-sideband transmission of a single color-mizture signal distinguishing, for example, orange-red from blue-green. This represents the area in which medium detail is seen.
3. Narrow-band, double-sideband transmissicn of an additional colormixture signal distinguishing, for example, green from purple. Less detail is seen in this area.

A widely used standerd method for representing colors diagrammatically is the CIE (International Committee on Ilumination) chro-

Fig. 1. CIE Chromaticity Diagram for the Visible Spectrum.
maticity diagram. This is a diagram on which are plotted all colors visible to the eye. Shown in Fig. 1 is a CIE diagram of the visible spectrum. 1 It is a plot of the super -green on the y-axis against the super-crimson on the x-axis. The most saturated colors plot as an inverted horseshoe curve with its open end closed by the nonspectral purples. Any particular color plots as one point on the chromaticity diagram. The point where the color is located specifies the chromaticity of that color, but nothing is stated about its brightness.

Any set of primaries can be plotted on the chromaticity diagram. The rule which governs the choice of primary colors is that no two primaries should be the same and that the combination of any two should not be capable of matching the third. The three primaries chosen by the NTSC are shown plotted in Fig. 2. They form a triangle with its three points at red (R), green (G), and blue (B). This is known as the color triangle for this particular set of primaries. Any color which falls within the area of the triangle can be
${ }^{1}$ D. W. Epstein, "Colorimetric Analysis of RCA Color Television System," RCA Review, Vol. XIV, pp. 227-258, June 1953.

Fig. 3. Bandwidth Limitations of $\mathbf{Y}-, \mathbf{Q}-$, and I-Signals Prior to Modulation.

Fig. 2. Color Triangle of the Three Primaries Chosen by the NTSC.
reproduced by proportionately mixing the primary colors.

A line drawn from yellow-green to purple represents the colors in which less detail can be seen (see Fig. 2). The line shown from orange to cyan indicates the colors in which medium detail can be seen. These lines represent the two axes of the color signal under linear transmission. The line from yellow-green to purple is the Q-axis, while the line from orange to cyan is the I-axis. Q and I are two components which make up the chrominance portion of the color picture signal. Colors along the Q-axis are depicted when only the Q-component is active. During this time the I-component is inactive $(I=0)$. Conversely, when only the I-component is active, colors along the I-axis are depicted. The Q-component is inactive at this time $(Q=0)$. During the time both the $I-$ signal and Q-signal are active, depending on their relative amplitudes, any point in the color triangle can be represented by a resultant chrominance signal. There are three conditions which result from the foregoing. When all three signals (Y, Q, and I) are active, the color system reproduces in the threeprimary method. This is when reproduction is accomplished in full color. When the Q-signal is inactive

Fig. 4. Bandwidths of Y-, Q-, and I-Signals As They Are Radiated.

ODEL WS A versatile urait capable of replasing the majority of 78 RFM cartridges in the field
MODEL BX Designed primarily for RCA Automatic record changers and Columbia players Unusually high fidelity

FREE

Replacement Chart

Write for your free copy of new Featheride Replacement Chart It shows how, with only 5 Featheride models, you can replace luundreds of different cartridges of many makes

fill Practically All Replacement Needs!

- Profit-minded servicemen and technicians are joining the big swing to webster electric Featheride Crystal Cartridges these days. And with good reason, too-they have learned that, with just five Featheride models, they can fill virtually any and every replacement need quickly and profitably!
- Featheride Replacement Cartridges are crystal cartridges-made, inspected and individually packaged according to webster electric's rigid standards. That means the user is assured of the finest possible reproduction of recorded music of which his record player or changer is capable.
- You profit twoways when youcarry the Featheride Five in your kit. You build good will by giving your customers the best the market affords, and you save time and trouble on every cartridge replacement job.

WEBSTER XELECTRIC RACINE

 WISCONSIN

"Where Quality is a Responsibility and Fair Dealing an Obligation" WEBSTERELECTRIC COMPANY, RACINE, WISCONSIN - EST. 1909
and the Y - and I-signal active, the system reproduces in a two-primary (orange-cyan) fashion. During the time that only the Y -signal is active (Q and I inactive), the system reproduces in monochrome.

The bandwidth limitations prior to modulation of the three signals (Y, Q, and I) are shown in Fig. 3. The Y -signal has a full bandwidth of 4.2 megacycies. The I-signal has a band limit of 1.3 megacycles, and the Q-signal is lumited to 0.5 megacycle. Associated with the se band limitations are the sets of colors reproduced by the frequencies in each band. Fine detail is contained in frequencies above 1.3 megacycles and is reproduced in monochrome. Larger areas are represented by frequencies between 0.5 and 1.3 megacycles. These are reproduced in a two-color orange-cyan system. Frequencies below 0.5 megacycle are representative of still larger areas and are reproduced in a three-color (red, green, and blue) system.

The Y -signal is transmitted by the vestigial sideband method the same as is done with the present monochrome signal. The I-signal is also transmitted with vestigial sidebands. The Q-signal is transmitted double sideband. Fig. 4 shows the bandwidths of the three signals as they are radiated.

In the for egoing discussion, we have attempted to show how three pieces of color information can be transmitted in the allotted band of 4.25 megacycles. If color information is limited to that which is only useful to the eye, and no duplicate information is transmitted, the color television

Fig. 5. Color Triangle With the Vector Representing Hue and Saturation.
signal can be contained in the allotted band.

As was stated in the opening of this discussion, the color information is contained in the color signal in the form of brightness, hue, and saturation. Brightness represents the amplitude modulation of the picture carrier, hue is the phase modulation of the subcarrier, and saturation is the amplitude modulation of the subcarrier. One way of illustrating this is through the use of the color triangle. Fig. 5 shows the color triangle with a vector representing the two quantities (hue and saturation) of the color signal. The three primary colors are shown at the corners of the triangle. The colors in between these are the secondary colors which are formed by the proper mixing of the primaries. Pure white is in the center where all the colors are mixed. This is where the color vector originates. Hue is designated by the angle of the vector, while saturation
is the relative length of the vector or its distance away from pure white. Although the vector is not shown, brightness is represented by another vector which is perpendicular to the plane of the illustration and which passes through the center of the white area. The length of this vector determines the degree of brightness. Present along this vector are the different shades from gray to black which are representative of the luminance or monochrome signal.

During the time of transmission of the color signal, the vector of Fig. 5 is always changing in respect to the televised scene. The vector rotates in accordance with the hue, and lengthens and shortens with changes in the saturation. At the same time, the brightness vector which is perpendicular to the plane is changing in length according to the brightness of the colors. It is obvious that at the time there is no color being transmitted, the color vector would not be present. The brightness vector is the only one that is in use; therefore, the picture is being transmitted in monochrome.

Now let us investigate the makeup of the video modulation waveform produced from the scanning of a color-bar chart. This chart is shown in Fig. 6A. It is comprised of four vertical bars with the first bar being blue, the second red, the third green, and the fourth a referencewhite bar. Each color is assumed to be fully saturated.

Shown in Fig. 6B is the composite waveform for the scanning of a single line of the bar pattern. The horizontal sync pulse is followed by the color burst on the back porch of

Fig. 6. Scanning of a Single Line of a Color-Bar Chart. (A) ColorBar Chart. (B) Composite Color Signal Showing One Scanning Line.

Fig. 7. Scope Pattern of a Composite Color Signal.

NOT JUST CLAIMS

FACT- 53 CLAIMS GRANTED

 IN 5 UNITED STATES PATENTS \#2,585,670; $2,609,503 ; 2,625,655 ; 2,644,091 ; 2,661,423$, others pending.5 These antennas positively receive ALL channels 2-83 from All directions without a rotor motor.

FACTThese antennas have consistently OUTGAINED and OUT-PERFORMED all others in actual public demonstrations.

These antennas will unquestionably OUT-
PERFORM all others, on YOUR roof, with YOUR set, or YOUR money back.

FACT

 SAVES YOU MONEY. Eliminates rotor motor, uses only ONE transmission line, uses only ONE antenna for both UHF \& VHF-and only ONE simple, quick installation.Perfect pictures have consistently been received as far as 3 times the guaranteed distances.

THE ONLY one antenna, ONLY one transmission line, ONLY one installation. You solve once and for all your PRESENT and FUTURE antenna problems.

Fig. 8. Composite Color Signal Representative of One Scanning Line of a Completely Saturated Red.

Fig. 9. Composite Color Signal Representative of One Scanning Line of a Completely Saturated Green.
the blanking pedestal. Following the color burst are the modulating sine waves of each of the colors. The reference line of the sine waves is the luminarce level associated with each color. This level corresponds to the percentage stated in the equation for the total luminance signal. This equation is
$\mathrm{E}_{\mathrm{Y}}=0.30 \mathrm{E}_{\mathrm{R}}+0.59 \mathrm{E}_{\mathrm{G}}+0.11 \mathrm{E}_{\mathrm{B}}$.
The relative luminance levels of the three colors are in proportion with the reference white.

The kurst and chrominance frequencies shown in Fig. 6B are not drawn to the correct time scale. This was done so that the phase relationship of the chrominance frequencies to the color burst could be more clearly shown. Only one cycle is shown for the color burst and each of the three color modulations. The
color burst actually contains a minimum of eight cycles. The phase of each color modulation is compared to that of the color burst. A sine wave representing the color burst has been shown above the subcarrier. It is not part of the composite signal but is usedas a reference point for the subcarrier. As seen from Fig. 6B, the red component leads the color burst while the green and blue components lag.

Each of the three color signals, as shown in Fig. 6B, are at full saturation. If they were less saturated, the only difference in the waveform would be a lower amplitude of the three color signals. Saturation is determined by amplitude modulation of the subcarrier; therefore, for a less saturated color the amplitude of the sine wave would be decreased. The luminance level and phase of each sine wave would remain the

Fig. 10. Composite Color Signal Representative of One Scanning Line of a Completely Saturated Blue.
same as that shown for fully saturated colors.

Normal viewing of a composite color signal on the scope does not show the phase relationship of the color burst and the subcarrier. Shown in Fig. 7 is a scope pattern of a composite signal. Visible are the sync pulses, color burst, and color bars. The luminance level cannot be seen, but it is at the center of each color bar.

The composite color signal shown in Fig. 8 represents a scanning line of a color-bar chart which contains only red. The subcarrier of Fig. 8 is made up of only a modulation which is representative of the red. Note that in Fig. 8 as well as in Fig. 6 B it is in the same phase relationship with the color burst. - Since red is the only color on the bar chart, the subcarrier is extended for a longer time interval. As was the case in Fig. 6, the sine wave appearing above the subcarrier is not a portion of the composite signal. It is shown-as a means of illustrating the phase relationship between the color burst and the subcarrier. Again the color burst and subcarrier actually contain more oscillations but were not shown here for reasons of simplicity.

Suppose now that a color-bar chart consisting of a fully saturated green is being scanned. The resultant waveform is shown in Fig. 9. In comparing this signal with the one in Fig. 8, the differences between the two signals are the phase and the luminance level. Since a different color is being scanned, the phase of the subcarrier is changed. The other portions of the composite signal

THE ORIGINAL

 CRYSTAL CARTRIDGE IS astailc
SCIENTIFIGALLY SELECTED BY MANUFACTURERS AND THEIR ENGINEERS

Player and changer manufacturers have made Astatic Crystal Cortridges their overwhelming choice . . . because of Astatic's ability to match exactly the performance characteristics called for . . . because of Astatic's ability to turn out hundreds of thousands of uniform duplicates of each cartridge from its unparalleled precision production lines. These same factors work to assure perfect matching of requirements . . . perfect results . . . when you REPLACE THE ORIGINAL WITH ANOTHER ASTATIC CRYSTAL CARTRIDGE!

Ask for details on the new, FREE steel storage cabinet and dispenser for Astatic Crystal Cartridges.
EXPORT REPRESENTATIVE

KNOWN THE WORLD OVER . . . FOR HIGHEST QUALITY AT LOWEST POSSIBLE COST

401 Broadway, New York 13, N. Y.

In the Interest of
 Quicker Servicing

(Continued from page 27)
Parts that are preceded by an asterisk in the chart are individually boxed. The smaller components are in envelopes, as may be seen in Fig. 3. The individually bored parts permit the distributor to sell them separately or together as a whole kit, depending upon the service technician's needs.

If the parts in this kit were purchased separately, they would cost the service dealer $\$ 25.03$. However, the kit sells for $\$ 22.50$ as a whole. Purchasing the parts in kit form and replacing each as it is used also has the advantage of keeping parts available at all times, and consequently the bothersome chore of an emergency t-ip to the distributor may be forestalled.

Unshielded Picture Tubes

Somet mes the replacing of a tuner with a new more sensitive one such as a cascode type will bring up new problems. The more sensitive cascode tuner may pick up stray signals the old tuner did not. A very strong source of such interference may be a netal picture tube or a glass one without an external coating. This interference can be discovered by placing the probe of a sensitive scope near the bell of the picture tube. If there is any radiation from the tube, it will register on the screen of the scope. The waveform which this radiation produces is very similar to the waveforms of voltage on the high-voltage rectifier and on the plate of the horizontal-output tube. The radiation affects the horizontal and vertical synchronization of the receiver by entering the tuner and distorting the signal, particularly during horizontal-retrace time. The picture may lose vertical synchroni-

Fig. 3. Kit of Re. placement Parts for Standard TV Tuners.

zation or suffer from horizontal pulling as a result.

There are two ways that this effect can be eliminated or minimized. One is to replace a glass picture tube with one of the same size and

Fig. 4. Picture Tube Which Has Been Shielded With Aluminum Foil.
with the same electrical characteristics but having an outside coating. This is naturally rather expensive. The shielding effect can be gained at very little expense by covering a glass picture tube with aluminum foil as shown in Fig. 4. The glue used to

LIST OF COMPONENTS IN REPLACEMENT PARTS Kit No. 1011					
DESCRIPTION	PART NO.	QUANTITY	DESCRIPTION	PART NO.	QUANTITY
* Fine Tuning Assembly	31A-066-22	4	Mounting Bracket	31B-021	5
Detent Spring	31B-055	10	Fine-Tuner Tension Spring	318-008	6
Roller	31B-016	5	Fiber Washer	11D-022	6
*IF Coil Assembly	31A-082	1	Oscillator Slug Retainer Spring	31A-010	6
*IF Coil Assembly	31A-078	2	*Trimmer Kit (Antenna)	31B-207	5
*Sound-Trap Assembly	31A-067	1	*Trimmer Kit (All Others)	31B-206	5
Osciliator Tuning Slug	31B-015	6	*Sound Take-Off Coil	XM-752	2
Retainer Spring	31B-030	6	$10 \mathrm{mmf} \pm 5 \% \mathrm{~N} 750$ Capacitor	$13 \mathrm{LBU}-100 \mathrm{D}$	5
*Contact Plate and Bracker	318-278	1	$10 \mathrm{mmf} \pm 10 \%$ NPO Capacitor	13L8C-100K	5
*Coil Support Assembly	31B-203-22	1	$120 \mathrm{mmf} \pm 5 \% \mathrm{~N} 750$ Capacitor	13D-045	5
Fine-Tuner Grourd Plate	31B-012	2	$120 \mathrm{mmf} \pm 10 \%$ Capacitor	13 L8D-121K	5
*Fine-Tuner Ceramic Disc	31B-252	5	1000 mmf GMV Capacitor	13L8X-102 Z	5
* Parts ind	dually boxed.		$47 \mathrm{mmf} \pm 10 \%$ N1400 Capacitor	13L8Q-470K	5

cement the foil to the bell should be a type that will withstand the heat inside the cabinet. The covering in the photograph was attached with iron glue.

A piece of spring steel can be fastened to the yoke bracket and extended to the foil in order to ground it. Another method of grounding is to fasten a soft spiral spring to the top of the chassis under the picture tube and to position it vertically so that it makes contact with the foil.

Eliminating RF Interference

One type of interference in the audio system of a receiver is caused by rectification of RF signals. Although the number of such complaints are comparatively few, they are rather difficult to eliminate when they are encountered. The Washington Television Interference Committee has investigated the causes for this type of interference and has made some recommendations for its cure. The Electric Institute of Washington and RETMA have published a report on the findings of this committee. Following are highlights of the report.

The grid circuit of the first stage of audio amplification can, under certain conditions, rectify an RF signal. The first requirement for this rectifying action is that the RF signal be quite strong. If the receiver is located near a transmitting station (such as standardbroadcast, amateur, police, or taxi) this condition can exist. Certain wiring practices and circuit designs can contribute to a rectifying grid circuit. For example, an exceptionally long lead which connects the arm of the volume control to the grid can pick up consider able RF energy. If the lead from the detector to the volume control is overly long, this lead may also serve as an antenna. An ungrounded volume control can pick up considerable signal in the
shaft which extends outside the cabinet. In severe cases there may even be sufficient signal pickup in the filament lines to produce interference, particularly in AC-DC receivers.

The first thing to do if this type of interference is encountered is to determine whether the signal is actually being picked up in the audio section or whether it is cross modulating either the RF section or the IF section of the receiver. This test is quite simple to do in an AC set. Merely remove the last IF tube from its socket, and listen to see if the interfering signal can still be heard. If it can, there is no doubt about its origin being in the audio section. If it cannot be heard, it is reasonable to assume that the interfering signal is originating in the RF section or IF section. In the case of AC-DC receivers, it will be necessary to bypass the plate of the last IF stage of the receiver in order to locate the source of trouble. This can be done by connecting a small bypass capacitor between plate and ground. With this hookup, no signal is being applied to

Fig. 5. Typical Audio-Amplifier Circuit.
the detector for rectification. Thus, if any signal is heard, it is being injected in the audio system. The bypass capacitor must be used in the AC-DC receiver instead of removing the tubes. The removal of one of the tubes would cause the complete set to be inoperative. It is true that the audio section of the receiver would function for a few seconds after the tube is removed; but in some instances, the interfering signal is intermittent in operation and the set must be monitored for a considerable time. The use of the bypass capacitor will permit this.

Let us assume that it has been determined that the signal is being rectified in the audio section. This condition can be present in any type of receiver. It can even exist in audio amplifiers such as phono amplifiers, PA systems, and hearing aids. Whatever the type of equipment, this condition is most likely to originate in the grid circuit of the first audio amplifier. The bias of this stage is usually quite low, and therefore the stage does not require a very strong
signal to achieve rectification. If the interfering signal is modulated, the modulating signal will be heard along with the signal which is being tuned. If the interfering signal is unmodulated or is an FM signal, loss of amplitude and distorted sound will result.

Fig. 5 shows a circuit of the most commonly encountered audioamplifier stage. Note the large value of the gridr \in sistor. In order to effect a cure for this type interference, it is necessary to remove the RF signal from the grid of the tube. This can be done by either bypassing the undesired signal to ground or by eliminating the wiring which is picking it up. Even a combination of these measures may be required.

Leads 1 and 2 shown in Fig. 5 are the ones most likely to pick up the RF sigral. This is particularly true it the-g are quite long. Fig. 6 shows this same circuit after it has been modified slightly in an attempt to eliminate the presence of the RF signal on the grid. A small mica capacitor which may range in value from 50 to 250 mmf has been added between the grid and ground. The leads on this capacitor should be as short as possible. The capacitor will present a low impedance path to ground for the RF sıgnal but will not affect the audio signal to any noticeable degree. R5 has been added in series with the signal path to further attenuate the undesired signal. Here again the leads should be kept as short as possible. The lead of C 1 which connects to the junction R2 and R5 should also be short. The last step in the modification is the addition of shielded lines in place of leads 1 and 2. Phono cable which has an insulated covering serves very well for this application. Note that the shields are connected to ground on only one end. This lessens the danger of establishing ground currents in the shields, which would result in hum.

If the interference is still present, check the lead dress of C 1 , R2, R5, and C5. These components should be cressed to the chassis as closely as possible. A choke having an inductance of 1 millihenry may be used instead of R5. The choke provides a little better attenuation of the undesired signal than does the resistor. The difference is so slight, however, that in most cases the resistor will be satisfactory. In stubborn cases, a small mica capacitor may be connected from the grid of the audio-output tube to ground. It could be that the signal is being rectified in this circuit, although it is a remote possibility.

LOWEST LOSS - The chart above gives the characteristics of the AMPHENOL model 114-328 and four competitive lightning arrestors. The superiority of the AMPHENOL arrestor is obvious-negligible losses over UHF frequencies. The same standard measurement procedures applied to four competitive lightning arrestors illustrate the high loss on UHF resulting in poor pictures at the receiver.

FROM THE LABORATORIES OF AMPHENOL comes a new concept in lightning arrestors, designed not only to protect the television receiver from the hazards of lightning but to give full protection to the signal strength as well. This is the new model 114-328 amphenol Lightning Arrestor, the result of long months of research by skilled engineers. This Arrestor's low-loss performance means better picture quality - VHF or UHF. Its unique design assures easy installation - a sure-grip of flat, tubular or open-wire lead-in.

[^4]
STOP HACKING that chassis

No "redesign" headaches when you use genuine RCA VICTOR

Service Parts

Remember: When servicing RCA TV receivers use genuine RCA Victor Service Parts. These parts are tailored to the chassis, both mechanically and electrically. They are the only exact replacements.

You save 5 ways when you use genuine RCA Victor Service Parts. Here's How:

- Direct mechanical fit
- Exact circuit replacement
- Less installation time
- Eliminates need for extra parts
- Original performance assured

Be sure-use genuine RCA Service Parts-and enjoy a more profitable service business.

Get a copy of the new RCA TV Service Parts Guide, Form No. SP-1017, from your local RCA Distributor. Lists key parts from 249 RCA Victor TV receivers.

RADIO CORPORATION OF AMERICA
SERVICF PARTS

If after making the changes recommended the interference is still present, bypass the filaments of the audio tubes to ground. This will prevent the coupling of the undesired signal from the filament to other elements of the tube. Because of the long length of the filament string in the $A C-D C$ receiver, it is quite possible for the signal to be picked up in this circuit.

In the case of the ungrounded volume control, an insulated shaft should be installed. If this is not possible, it may be necessary to install a new control which will accommodate an insulated shaft. Of course, this should be done only in those cases where it is found that the control is picking up the signal. The previously mentioned steps should be taken first. Under no circumstances should the control be connected to B minus in an $A C-D C$ receiver if it was originally left ungrounded. To do so would remove the shock safety factor that the manufacturer has used.

Fig. 6. Audio Circult Modified to Eliminate RF Interference.

In some cases it may be necessary to connect a capacitor from each side of the line to the chassis or B minus. The capacitors can be of a value from .005 to .01 mfd . If the interference is still present, a line filter should be installed between the set and the wall socket. These filters are readily available at your parts distributors.

In locations where an extremely strong signal is present, it may be necessary to shield the audio tubes. This prevents direct pickup of the signal by the elements within the tube.

According to the report covering the findings of the Washington Television Interference Committee, the measures just pointed out should prove effective in a great number of cases. They are certainly worth trying.

When it comes to high-voltage capacitors, you just can't beat CRL Precision Attachable Terminal Hi-Vo-Kaps for dependability. Here's why:

They are 100% factory-tested at twice rated working voltage - withstand continuous overload up to 40,000 v.d.c.
Terminals and taps have heavy 8-32 thread-cannot strip or break off, when terminals are tightened.
Terminals seat flat at bottom of tap.
No gaps between te:minals and capaci-
tor body - no possibility of corona.
Positive mechanical bond between stub terminals and internal electrodes prevents loosening, when terminals are attached.
Keep a stock of CRL Precision Attachable Terminal Hi-Vo-Kaps on hand. Separate packaging of terminals and capacitor body lets you buy only the terminals you need. See your Centralab distributor.

Write for bulletin 28-2

on CRL Precision Affachable
Terminal Hi-Vo-Kaps. Address
CENTRALAB, A Division of Globe-Union Inc.,
942C E. Keefe Avenue, Milwaukee 1, Wisconsin.

A D
DIVISION OF GLOBE-UNION INC.
Milwaukee 1, Wisconsin

Notes on Test Equipment

(Continued from page 15)
reveal any faulty tubes, attention was directed to the filter system. This involved operation of the scope with the protective case removed.

CAUTION. Whenever the scope is operated in this manner, the service technician shoulc use proper care since voltages up to 1,000 volts or more are present.

The filter system was checked first for excessive load condition by applying an ohmmeter from $\mathrm{B}+$ to ground. (Power was turned off during this measurement.) Then the scope was turned on, and an electrolytic capacitor of moderate capacity was placed in parallel with each section of the filter. This gave a slight decrease in hum level, as indicated on the screen of the scope, but not enough to warrant replacing any of the fiter capacitors. A final check of the different sections of the filter capactors with a capacitor checker showed all sections to have the capacity indicated on the schematic:

An attempt was made to localize the source of the hum signal by shorting various signal points in the circuit. The scope employed pushpull circuits to drive the deflection plates, and it was found that shorting one side of these circuits had more apparent effect on the hum signal than shorting the other side. Further investigation located the defect an open capacitor which normally coupled one side of the push-pull vertical amplifier to one of the vertical-deflection plates.

Replacement of this capacitor also cleared up two other symptoms previously noted: (1) a tendency to clip one side of an applied signal before the other when signal strength was increased and (2) an apparent lack of senstivity on the wideband setting of the frequency-response switch.

In troutele shooting this scope, it was noted that one of the best instruments tonse for the purpose was another scope: For shops having only one scone, this would be somewhat like a person with poor eyesight trying to repair his only pair of spectacles. However, service shops owning two or more oscilloscopes will probably never be faced with this dilemma, because it is unlikely that both scopes would fail at the same time. Lacking an extra one, a satisfactory job of trouble shooting could still be done with a

One replacement resistor that doesn't hold up can cause a faulty repair job . . . and one faulty repair job can cost you one good customer. For your higher wattage replacement needs, the most dependable resistors you can buy are OHMITE wire-wound resistors. They provide an extra margin of safety that puts your mind at ease, and helps you build confidence among your customers. OHMITE vitreous-enameled resistors have all-welded construction for greater reliability. Brown Devil resistors are available in 5, 10, and 20 -watt sizes, 0.4 to 100,000 ohms. Other fixed resistors to 200 watts. Dividohm adjustable resistors, useful as voltage dividers, available in sizes from 10 to 200 watts, and 1 to 100,000 ohms. Order a supply, today.

OHMITE
 MANUFACTURING COMPANY

3644 Howard St., Skokie, Illinois (Suburb of Chicago)

Be Right with

tube checker, a volt ohmmeter, and an $A C$ meter.

Here are some tests which the scope owner can apply to check the condition of his instrument. A source of $A C$ sine-wave signal is needed for some of the tests. This source can be an audio generator; or in some cases where a $60-c y c l e ~ s i g n a l ~ i s ~$ satisfactory the test-signal source supplied at a binding post on some scopes may be used.

Sensitivity of the Vertical Amplifier

Two methods can be used for checking the sensitivity of the vertical amplifier. The easier and more accurate method will be discussed first - the use of a scope calibrator.

Connect the calibratcir to the vertical-input terminals, and set the vertical amplifier control and input attenuator $S D$ that maximum sensitivity is obtained. Adjust the calibrator for \exists vertical deflection of one or two inches on the sccpe. Read the input signal from the scope calibrator. Since this reading is in peak-to-peat: volts and most scope manuals give the amplifier sensitivity in rms volts per inch, it will be necessary to convert to rms volts. This can be done by dividing peak-to-peak volts by 2.8. The value obtained in this manner is then divided by the scope deflection in inches to obtain the sensitivity. For example, assume that a deflection of two inches on the scope is obtained by a 140 -millivolt signal from the calibrator. Then

$$
\begin{aligned}
\text { sensitivity } & =\frac{140}{2.8 \times 2} \\
& =\begin{array}{l}
\text { per inch. }
\end{array}
\end{aligned}
$$

The second method entails the use of an audio sine-wave generator and a meter for reading AC rms volts. Since the modern oscilloscope has a high sensitivity, it will be recessary to attenuate the generator output by means of a simple divider network. A $4,700-\mathrm{ohm}$ and 510 -ohm resistor across the generator output terminals would allow approximately one-tenth of the generator output to be applied to the scope from across the 510 -ohm resistor. Connect an AC VTVM across the divider network. This meter must operate as a VTVM on the AC positions to obtain reasonable accuracy. Adjust the generator output for a convenient vertical deflection on the scope, as in the first method. Then read the rms voltage applied to the divider network. As an example, it might be 500 rms millivolts for a two-ineh deflection. Only
one-tenth of the voltage appearing across the network is applied to the scope. The voltage applied in this case is 50 millivolts. Since the measurement is already in rms volts, no conversion is needed; we merely make the following calculation:

$$
\begin{aligned}
\text { sensitivity } & =\frac{50}{2} \\
& =25 \mathrm{rms} \text { millivolts } \\
& \text { per inch. }
\end{aligned}
$$

Sensitivity of the Horizontal Amplifier

Horizontal sensitivity is obtained in much the same manner as the vertical sensitivity, except that the signal must be applied to the horizontal amplifier. The horizontal amplifier sensitivity is usually much less than the vertical sensitivity (that is, it requires a greater input for one-inch horizontal deflection). The signal most commonly applied to the horizontal amplifier is taken internally from the horizontal-sweep circuit and is of such magnitude that less amplification is necessary.

Frequency Response of the Vertical Amplifier.

One of the best and also one of the fastest methods for checking amplifier response is through the use of square waves. This requires some source of square-wave signal, such as a square-wave generator. If such a generator is not available, the horizontal sync pulses in a TV video signal provide a good check. It is an accepted rule that good square-wave response indicates good response of the amplifier to frequencies from one-tenth to ten times the fundamental frequency of the square wave. Thus, if an oscilloscope showed acceptable square-wave response as the square-wave frequency was varied from 250 cycles per second to 250,000 cycles per second, good scope response would be indicated for the frequency range of from 25 cycles to 2.5 megacycles.

Another method for determining the frequency response of an amplifier, such as the vertical amplifier in a scope, is to take a number of output readings over the frequency range while maintaining a constant input. These readings can then be plotted as a graph to give an indication of the response. This method is more time consuming than the other.

Fig. 1 shows the response of an oscilloscope to the video-output signal of a monoscope. The oscil-

Halldorson's Mow FB412 FLYBACK

An exact replacement for Part No. C201-21025-1

Services 85 models and chassis of

AIRLINE RAYTHEON TRUETONE

Another needed flyback for fast. economical sure-fire servicing. Get it now-at your distributor -and be ready to service these popular TV sets not covered before. Quality-made by one of the oldest firms in the business.

Write for descriptive
Bulletin No. 116 today.

HALLDORSON TRANSFORMER CO.

4500 N. Ravenswood Ave.
Chicago 40, Illinois
For your convenience
Halldorson Replacements For your Replaces
Holldorson $\begin{aligned} & \text { reen } \\ & \text { onew being lised in } \\ & \text { PHOTOFACTS and } \\ & \text { COUNTER FACTS }\end{aligned}$
COU
loscope was synchronized to show the horizontal sync pulses. The vertical amplifier was set to the 4 -mc bandwidth position. Fig. 2 shows the response of the scope to the same signal, but the bandwidth switch was set at the $2-\mathrm{mc}$ position. It can be seen that the square-wave response is poorer, as indicated by the rounded corners. Fig. 3 shows the effect of too much input capacity. The scope was left at the $2-\mathrm{mc}$ position, and an additional capacity of .006 mfd was placed in parallel with the scope input capacity by bridging across the input terminals. As a result, the front porch of the horizontal sync pulse almost disappeared.

Synchronization

Turn the sync amplitude or locking control to zero. Set the sync selector to INTERNAL and apply a moderate signal to the vertical input. Using only the coarse- and fine-frequency controls, synchronize the signal as nearly as possible. Then advance the sync-amplitude control to lock the signal. Only a slight adjustment of this control should be necessary if the circuit is operating properly.

Frequency Coverage of Sweep

The fine-frequency control or sweep vernier gives a continuous

One body with 6 interchangeable

 terminals for the widest mounting combinations.

C-D's NEW Mity Whe

(type MMU)
CERAMIC CAPACITORS

- Interchangeable terminals take less room in your parts kit - let you do the job right
- Just attach the needed terminals to fit the job...
- Always the right ceramic unit handy - and without tying up money in a big stock
- With the improved construction and processing at point where coronaeffects attack
- Rugged - stable - durable
- Use it at Full Rated Voltage
- Precision manufactured with extralarge safety margin - greater dependability
- Now at your C-D Jobber. For his name and address see your Classified Telephone Directory. Catalog on request, Dept. RC-34, Cornell-Dubilier Electric Corp., So. Plainfield, N. J.

CONSISTENTLY DEPENDABLE CORNELL-DUBILIER
There are more C-D capacitors in use today than any other make.
PLANTS IN SOUTH PLAINFIELD, NEW JEASEY 1 NEW BEDFORD, WORCESTER AND CAMBRIDEE, MASSACHUEETTS; PROVIDENCE AND HOPE VALLEY, RHODE ISLAND: INDIANAPOLIS. INDIAMA; BAMFORD and fuquay springs, morth carolina. subsidiahy radiart corforation. clevelando ohio

Fig. 1. Oscilloscope Response Using Amplifier of 4-Megacycle Bandwidth.
range of sweep frequencies for each setting of the coarse-frequency control. The top frequency of each range should equal or overlap the bottom frequency of the next higher range. The frequency limits of each range can be checked with an audio-signal generator.

Connect the generator output to the vertical input of the scope. Set the sync-locking control to zero. With the fine-frequency control at each extreme of its range, vary the signal-generator frequency to obtain a stationary pattern of two or three cycles on the scope. Divide the generator frequency by the number of cycles on the scope pattern to obtain the sweep frequency.

Sweep Linearity

Connect an audio generator to vertical input terminals, or use the $60-\mathrm{cps}$ test signal if one is included on scope. Synchronize the signal with the frequency and locking controls of the scope. Choose a frequency such that several cycles are visible on the screen. Using the horizontalamplifier control, expand the trace to fill the screen horizontally. The pattern should be evenly spaced throughout its length; if it is crowded or stretched at any portion, nonlinearity of sweep is indicated. If this nonlinearity condition does not disappear as the sweep width is

Fig. 2. Oscilloscope Response Using Amplifier of 2-Megacycle Bandwidth.

Fig. 3. Response Showing Effect of Added Input Capacitonce.
reduced, by means of the horizontalamplifier control, the indication is that the sweep signal being applied to the horizontal amplifier is nonlinear; and the cause should be sought in the sweep-generating circuit. On the other hand, if this nonlinearity disappears as the sweep width is re duced, that indicates that the nonlinearity was rot caused by a defect in the sweep circuit but was caused by some defect in the horizontal amplifier. When some trouble exists in the horizontal amplifier, it is possible that the amplifier may be over driven when the sweep width is adjusted to maximum. Maximum sweep width on most scopes is such that it extends past the borders of the screen, making it necessary to move the sweep to either side with the horizontal-positioning control in order to view the ends of the sweep.

Vertical Linearity

Apply a weaksignal to the vertical input. Adjust the vertical gain to minimum and position the resulting spot on the screen to the center of the ruled grid. Advance the verti-cal-gain control slowly, and note whether the signal expands at an equal rate akove and below the middle horizontal line of the grid. Decrease the signal input and increase the scope sensitivity in order to check

Fig. 4. Simpliffed Partial Schematic of an Oscilloscope Showing Step Attenuator and Gain Contral in Vertical Amplifier.
the extremes of the vertical-amplifier range. Most oscilloscopes incorporate both a variable gain and a step attenuator for the vertical amplifier. These controls are usually placed in the circuit in the order shown in Fig. 4. The attenuator appears first, followed by an amplifier stage and the vertical-gain control. Under these circumstances, it is possible to overload the first stage by applying an input signal that is too large for the attenuator position. Then the pattern on the screen would be distorted no matter how
much it might be reduced with the vertical-gain control. Some scopes have the attenuator positions marked with the maximum signal value that they are designed to handle. This helps the operator to avoid the possibility of distortion by overloading.

The foregoing paragraphs cover most of the operating controls encountered in the average generalpurpose scope. Laboratory scopes and scopes for special applications would, of course, have additional controls.

COAXIAL TUNING: Does it have this most efficient UHF tuning system known? No troublesome noise-producing wiper contacts? Highest stability? Granco has-for the best in UHF reception.

FINE TUNING: Does it have simple and positive tuning - high-ratio single tuning knob? Granco provides "on the button" tuning without need of a safecracker's touch!

PRESELECTION: Does it have tuned circuits that reject unwanted signals, with only the desired channel tuned in? It's a "must" in areas having two or more channels, UHF or VHF. Granco has.

AMPLIFICATION: Does it have low-loss tuning and associated circuitry, plus true high-gain amplification of only the tuned-in channel? Granco has.

GRANCO has them all, plus!

Get the complete story on Granco UHF Converters from your jobber or from us. Better yet, make your own comparative tests. Remember, it's performance that counts most with your customers!

Positioning, intensity, and focus controls have not been discussed in detail since their operation can be checked by merely varying each control and seeing that the scope trace responds as it should. It might be well to mention that normally the focus and intensity controls are interacting - that is, when the intensity control is adjusted, the focus is also affected.

RECENT RELEASES

 MODEL 225 ELECTRONIC VOLT-OHMMETER

The Hickok Model 225 electronic volt-ohmmeter is a new, laboratory size instrument with large, 9 -inch, easy-to-read meter. The instrument is housed in a blue Hammertex finished steel case to match other Hickok equipment. Dimensions of the case are 16 by 13 by 7 inches.

Four panel controls are provided as follows: FUNCTION SELECTOR, RANGE SELECTOR, ZERO ADJ, and OHMS ADJ. The function selector positions are: OFF, +DC, -DC, AC, and OHMS.

Input impedances are: (1) volts DC, 10.5 megohms; (2) volts AC, infinity ohms shunted by 150 mmf . The meter sensitivity is 350 microamperes. Ranges are from 0 to 1,200 volts DC and AC rms, with the lowest range being from 0 to 1.5 volts. On this low range, one scale division represents .025 volt. Peak-to-peak voltage may be read from 0 to 3,200 volts. Resistance measurements can be made from 0.2 ohm to $1,000 \mathrm{meg}$ ohms in 7 ranges. A zero-center scale is provided.

An unusual feature is the inclusion of a continuity-test buzzer. This enables the operator to make quick checks for continuity in circuits where no appreciable resistances are involved. The buzzer receives its
operating power from the 6.3 -volt winding of the power transformer and therefore can be operated whenever the instrument is turned on, regardless of the settings of the other controls. Continuity checks can be quickly made, since the operator is not required to glance back and forth from the meter to the point of application.

The volts-test lead serves for both AC and DC measurements through the use of a special probe with a slide switch. When the switch is in the DC position, a 560,000 -ohm resistor is in series with the lead; in the AC position, this resistor is shorted and the input is direct to the connector on the panel.

The Hickok Electrical Company has announced their new Model 650C videogenerator. This instrument includes all features of the Model 650 generator plus new features which will allow servicing and adjustment of color TV receivers. The Model 650 C provides means for accurate adjustment of: locus, convergence, centering of individual beams, purity yoke, dynamic convergence, linear ity, and aspect ratio.

Of special interest to owners of the Model 650 is the annourcement of a factory-wired assembly which the owner can use for converting his 650 to a 650 C .

The RCA WA-44A audio-signal generator is designed to provide a sine-wave signal covering the range
from 11 cps to 100 kc . This extended range is made possible through the use of a novel RC type of oscillator circuit.

SPECIFICATIONS

(a) HI output jack, for 100,000ohm impedances or greater.
(b) LO output jack, for 1,500ohm impedances or greater.
(c) HI open-circuit output voltages, variable up to 15 volts rms.
(d) LO open-circuit output voltages, variable up to 2.5 volts rms.
(e) Output level, constant to less than $\pm 1 \mathrm{db}$ over entire range with $1,100 \mathrm{cps}$ as reference frequency.
(f) Line-frequency signal, available and variable up to 6 volts.
(g) Hum, less than 0.1 per cent of rated output.
(h) Total harmonic distortion, 2 per cent or less from 30 to 15,000 cps.

The tuning dial is divided into separate sectors for each range, thus avoiding possible confusion between ranges. A small slot in the front panel allows for dial calibration if this should become necessary. The ranges are as follows:

A 11 cps to 110 cps
B 110 cps to $1,100 \mathrm{cps}$
C 1.1 kc to 11 kc
D 11 kc to 100 kc
Physicaldimensions are 10 1/2 inches wide by 7 inches high by 6 inches deep. Weight is 10 pounds.

WR-49A RF SIGNAL GENERATOR

This signal generator is designed to provide a continuous wave or modulated RF signal from 85 kc to 30 mc useful for general radio and television servicing and other applications.

Six range settings are provided, and the dial is calibrated with an individual sector for each range. "The
broadcast band, 550 kc to $1,600 \mathrm{kc}$, is covered in a single range.

Provision is made for either internal or external audio modulation of the RF sine-wave signal.

SPECIFICATIONS

(a) HI RF output, up to not less than .05 volt rms.
(b) LO RF output, up to not less than .01 volt rms.
(c) RF attenuation range, 65 db .
(d) Internal modulation, up to 70 per cent (at $1-\mathrm{mc}$ setting).
(e) Internal-modulation frequency, approximately 400 cps .
(f) External-modulation frequency, 15 kc maximum.
(g) Voltage required for 30 per cent modulation at $400 \mathrm{cps}, 10$ volts rms (at 1 -mc setting).
(h) Impedance at AF IN/OUT connector, approximately 16,000 ohms.
(i) Audio-frequency output, at least 8 volts rms across $15,000-$ ohm load.

Physical dimensions are 10 $1 / 2$ inches wide by 7 inches high by 6 inches deep. Weight is 8 pounds.

MODEL 1000 PLATE-CONDUCTANCE TUBE TESTER.

This new Simpson tube tester has provisions for testing any receiving tube, including 9 -pin miniatures and subminiatures with base arrangements in a line or circle. Eleven sockets are provided for

Controls consist of on-off circuit switch, range switch, zero adjust, ohms adjust, besides switch built into probe for changing from DC to AC or ohms. Meter is electronically protected against overload.

Dealer net price . . . $\$ 95.00$

High Voltage Probe (to $30,000 \mathrm{v}$ DC) and High Frequency Probe $(200 \mathrm{mc})$ available as accessories.

See it at your electronics distributor's or write us for fully descriptive bulletin.

JACKSON ELECTRICAL INSTRUMENT CO.
DAYTON 2, OHIO
"SERVICE ENGINEERED" TEST EQUIPMENT

IN CANADA: THECANADIAN MARCONICO.
checking any of the aforementioned tubes.

All receiving tubes in current use are listed on the two-column roll chart. Many industrial and transmitting types can also be tested and are listed. Obsolete tubes are listed in the back of the operator's manual, thus reducing the length of the roll chart while still providing complete coverage of tubes to be tested.

The windows of the plastic chart are removable so that new information can be added to the chart from time to time. The dimensions of these windows are such that two lines of the chart can be viewed at one time, thus avoiding confusion when checking dual-purpose tubes.

The meter dial reads directly in percentages of normal plate conductance. Colored sectors indicate GOOD, FAIR, WEAK, and REPLACE. The meter is also calibrated so that interelement resistance can be read when performing a shorts test.

Proper tube-operating voltages are applied to each tube element through the use of toggle switches. Push buttons provide for checking any element in a shorts test. An external lead is permanently attached to the tester for connection to grid or plate caps. A supplementary clip lead is provided for tubes having two caps.

The BIAS control is a vernier adjustment for the tube-operating voltages selected by the toggle switches. One toggle switch selects any of six meter sensitivity ranges, and the RANGE control provides a vernier adjustment of the range selected.

This tube tester is housed in an attractive burgundy -colored carrying case. The top is removable, allowing the tester to be used either as a portable or counter model. The use of pins of unequal length in the split hinges is a feature which makes it easy to replace the top.

Improving UHF Installations Through Cooperative Effort

(Continued from page 25)
signal strength as the antenna elevation was changed.

This condition is particularly noticeable in the case of the single bow-tie antenna. Although there was a definite rise and fall in signal pickup as the antenna elevation was changed, the signal pickup at any elevation provided adequate signal for snow-free reception. This strong signal pickup made it evident that the difficulty which was being experienced in the city proper was not due to inadequate. signal strength in the general area; instead it was caused by obstructions or low terrain.

The upper line in the graph represents the amount of signal which was picked up when using a stacked conical type of antenna with parabolic reflectors. Such an arrangement provides an antenna having considerable vertical height. Note the more even signal pickup as the antenna elevation is changed. In most cases, an antenna of this type can be used to advantage in locations where there is a sudden rise and fall in pickup as the antenna elevation is changed. Even if the antenna is placed in a pickup point where there is maximum signal, it is very possible that as conditions change throughout the seasons the maximum signal point might vary.

It is also interesting to note in the graph of Fig. 4, that there is a very small increase in signal pickup as the anterna elevation is increased. Since all of our tests were conducted with a lead-in of the same length, it is probable that a permanent installation at the lower level would produce
a higher reading than was obtained. This increase would be due to the decreased losses in the shorter leadin.

Position 4

Our next test position was located at the eastern edge of Anderson. This point is designated on the map as position 4. It appeared to be at a slightly higher elevation than that of position 3. The results of some of the tests made at position 4 are shown in the graph which is presented in Fig. 5. As can be seen on the graph, the readings followed an even more pronounced rhythmic pattern than was experienced at the previous location. After studying the results, it becomes quite evident that there is a definite advantage in placement of the antenna at a point around the 32 -foot level. A few feet on either side of this peak would result in a lower signal pickup. One very significant point in connection with the results obtained at this position is that almost identical vertical patterns were obtained even though several different basic types of antennas were used. In reviewing our experiences in previous field surveys, it can be said that the uniformity of the curves shown in Fig. 5 is far better than was obtained in any other tests. It would certainly be advantageous if a pattern of this type were present at every location; but, unfortunately, such is not the case.

Position 5

It was decided that a series of test locations which could be established in a line parallel with the oncoming signal would be advisable. Such a series of locations were
established, and they are identified on the map as positions 5,6 , and 7. Position 5 is at the lowest elevation point, while position 6 is a little higher, and position 7 is the highest of the three. Note that positions $5,6,7$, and 4 are approximately in a line parallel with the signal arriving from the station. It was hoped that a series of tests at these positions would indicate the amount of signal which was being lost because of terrain conditions. Our tests provided this information for us so successfully that positions 5 and 6 were among those which were tested again during the field-day event.

As mentioned, the terrain at position 5 was exceptionally low. In looking toward the direction of the transmitter, a very definite rise could be noted. Fig. 6 illustrates this quite well. The transmitter is in a direction in line with the tower. Note in the background that there is a very distinct rise. Our first test was made using a single bow-tie antenna with reflector so that a comparison with signal pickup at the various locations could be made. The results of this are shown in Fig. 7; as can be seen, they are not gratifying. In addition to the unsatisfactory conditions caused by the low terrain, we were plagued on this particular day with a snowfall which (as was later discovered) contributed greatly to a loss in signal. Since it was rather difficult to keep our lead-in dry during the snowfall, no further tests were made at this point. We did return on two later occasions. As can be seen on the graph of Fig. 7, a reading of only 25 was obtained even up to a rather high elevation point. Then there was a sudden rise in signal pickup. Even so, the maximum signal which was obtained provided us with a relative reading of only 55 .

Fig. 6. Rise in Terrain As Seen From Position 5.

Fig. 7. Results Obtained at Position 5 During First Series of Tests.

HIGH VOLTAGE CERAMICONS

THE
 REPLACEMENT for high voltage TV filter applications

The ERIE 413 High Voltage Ceramicon is an innovation in capacitor design and has had wide acceptance by servicemen everywhere.

Now, for even greater convenience, each body is individually packaged with 7 terminals in 5 different styles. With a minimum stack the serviceman is now able to supply the correct replacement terminals for practically any receiver rated at 20 KV or lower. Inventory is reduced, service time is reduced, profits are increased. The illustrations above tell the story.

ELECTRO PRODUCTS LABORATORIES

4501-Fd North Ravenswood Avenue - Chicago 40, Illinois

SPECIFICATIONS

TUNING: Single knob, continuous over entire UHF band.
COVERAGE: All channels, 14 through 83, black-white or color.
SIZE: $\quad 61 / 4^{\prime \prime}$ wide, $4 \frac{1}{4} 4^{\prime \prime}$ high, $41 / 4^{\prime \prime}$ deep.
AC POWER: Self powered. Available for 25 cycles.
SHIELDING: Completely electrically shielded, negligible spurious responses.
CIRCUIT: $\quad 6 A F 4$ resonont lines oscillator, 1 N 72 crystal mixer, high-pass input filter.
OUTPUT Automatically tunes channels 2 through 13.
CHANNELS:
CABINET.
Pressed steel, baked maroon hammertone finish. Available in blond as Model C-254.

Fig. 8. Results Obtained at Position 5 During Second Series of Tests.

Fig. 9. Results Obtained at Position 5 During Field Event.

Fig. 8 is a graph showing the results of some of the tests made at this same fosition at a later date, when weather conditions were much more ideal than those prevoously experienced. Note the similarity in the readings in Figs. 7 and 8 . The similarity is due to the fact that the signal pickup is fairly constant at the lower levels. Then, in both instances, there is a sudden rise in signal pickup. Although we were unable to go higher than the 42-loot level with the available equipment, the graph would lead one to think that a further increase in height would have produced an increased sigral pickup.

It is interesting to compare the results obtained using a single bowtie with reflector. In the first test, as shown in Fig. 7, the maximum recorded signal strength was 55 . The graph in Fig. 8 shows that the maximum signal strength using the same antenna is 75 . Note that at the lower levels, the pickup was much more than at the same levels in the previous test.

Now let us consider the results which were obtained during the third series of tests at this same location. They were made during the field event for the purpose of illustrating
to those in attendance how important the vertical pattern was when consid ering antenna heights. The photograph of Fig. 6 was taken during the field event. Fig. 9 is a graph showing the results of tests which were made during the same event at position 5 . Two antennas were used. One was the bow tie with reflector, and the other was a corner reflector. Again, it is interesting to compare the results with those obtained on previous days. Note in the graph of Fig. 9 that a maximum reading obtained while using the bow tie with reflector was 175 . This shows a marked improvement over the earlier results. The results of a test made using a corner reflector are also on the graph of Fig. 9. Note that, at about the 36foot level, the reading obtained was 200. This provided us with a completely snow -free picture.

Position 6

Our next tests were performed at position 6; and during them, a very interesting situation arose. There were two points where an almost complete cancellation of the signal was experienced. These were approximately 25 and 30 feet above the ground. The installation of an antenna
at either height would have produced extremely poor results. Without adequately probing the location, the installer might select either of these heights for the permanent installation, since the houses in the area were such that the use of a five-foot length of mast would place the antenna with in this range. When additional tests were made during the field-day event, it was found that only one cancellation point was still present. It was the one at the 25 -foot level. The results of the tests made at the earlier time are shown in Fig. 10. Note that the signal strength decreases to nearly zero at the 30 -foot elevation and to about 25 at the 25 -foot level.

Now compare this with the results obtained during the field event and shown in Fig. 11. The reading at the 25 -foot level is the same as it was during the previous test. The dip at the 30 -foot level is no longer present, but there is a marked increase in signal pickup above this. These conditions emphasize the importance of mounting the antenna at the proper level. After obtaining the results shown in Fig. 10, the antenna should have been mounted at the 40 foot level. Thus, satisfactory reception would have been assured at all times.

Fig. 10. Results Obtained at Position 6 During Preliminary Tests.

Fig. 1 1. Results Obtained at Position 6 During Field Event.

Fig. 12. Results Obtained at Position 7.

Fig. 13. Results Obtained at Position 8 During Preliminary Tests.

Position 7

Our next test site produced the results shown on the graph of Fig. 12. The test location is identified as position 7 on the map. Although this position is only a few blocks closer to the station than position 6 , there is a marked increase in signal level. The readings shown on this graph must be compared with those shown in Fig. 10 for a true comparison, since both sets of readings were taken on the same day. After making the first test using
a single bow-tie antenna, it was decided that no further tests were required at this location. The signal strength was adequate and was void of any nulls or peaks.

Notice on the map that position 7 is quite close to position 4. Comparison of the readings taken at the two points (Figs. 5 and 12) discloses that the maximum readings at each point are very nearly equal. This would be expected since the two points
are at approximately the same elevation. There is considerable difference in the vertical pattern. The rhythmic rise and fall of the signal at position 4 was caused by reflections which aided or cancelled the signal as the antenna was raised and lowered. Position 7 was located in a residential district as opposed to the open country of position 4. The buildings surrounding our test site at position 7 apparently broke up the reflections from the ground.

When you specify Seletron "Safe Center" Selenium Rectifiers you eliminate arc-over danger, short circuits and heating at the center contact point. Assembly pressure, or pressure applied in mounting the rectifier cannot affect its performance-a Seletron feature accomplished by deactivating the area of the plate under the contact washer.

The millions of Seletron Selenium Rectifiers in satisfactory service as original equipment in the products of leading manufacturers are millions of reasons why you can specify Seletron and be safe!

Consult your local jobber!

$\begin{gathered} \text { MODEL } \\ \text { NO. } \end{gathered}$	$\begin{aligned} & \text { PLATE } \\ & \text { SIZE } \end{aligned}$	STACK THICKNESS	MAX. INPUT VOLTAGE R.M.S.	MAX. PEAK INYERSE VOLTAGE	MAX. D.C. OUTPUT CURRENT
$1 \mathrm{M1}$	1" sq.	3/8"	25	75	100 MA
8 Y 1	$1 / 2^{\prime \prime}$ sq.	\%"	130	380	20 MA*
$16 Y 1$	$1 / 2^{\prime \prime}$ sq.	$\frac{15}{18}$	260	760	20 MA*
811	H" sq.	${ }^{181}$	130	380	65 MA
5M4	$1^{\prime \prime} \mathrm{sq}$.	1	130	380	75 MA
5M1	$1^{\prime \prime} \mathrm{sq}$.	7/8'	130	380	100 MA
5 P 1	$1 \frac{3}{16}{ }^{\prime \prime} \mathrm{sq}$.	7/8"	130	380	150 MA
6P2	$1 \frac{3}{16}{ }^{\prime \prime}$ sq.	$1{ }^{\frac{1}{16}}$	156	456	150 MA
5R1	$11 / 2^{\prime \prime} \times 11 / 4^{\prime \prime}$	7/8"	130	380	200 MA
501	11/2" 39.	11/"	130	380	250 MA
601	11/2" 59.	11/8"	156	456	250 MA
602	11/2" 59.	13/"	156	456	250 MA .
604 (\dagger)	11/2" ${ }^{\prime \prime}$		130	380	300 MA
50S1	$11 / 2^{\prime \prime} \times 2^{\prime \prime}$	11/8"	130	380	350 MA
60S2	$11 / 2^{\prime \prime} \times 2^{\prime \prime}$	11/4"	156	456	350 MA
551	$2^{\prime \prime} 54$.	11/8"	130	380	500 MA
652	2" 59.	13/8"	156	456	500 MA

*) This rectifier is rated at 25

fig. 14. Results Obtained at Position 8 During Field Event.

Position 8

Test fosition 8, as shown on the map, is located along the bank of the river. This particular site was chosen because it is one of the lowest spots in the area. The results of the initial tests are shown in the graph of Fig. 13. The maximum readings obtained with any of the antennas used were below the requirements for a snow-free picture. Realizing that an installation at this position would be rather difficult, we chose to use it as one of the test sites for the field event. Initial tests were made to determine signal strength and readings were taken to enable us to make comparisons during the field-day event.

The conditions for UHF reception were very good on the day of the field event. By referring to the graph shown in Fig. 14, it can be seen that the signal pickup for the bow-tie antenna was more than double that obtained on a previous day (see Fig. 13); yet the tests made during the field event were taken under exactly the same conditions as the previous ones. The tower was placed so that its location was as near as possible to that used during the preliminary tests. The same lead-in was used, the field-strength meter was calibrated at regular intervals so that it would contribute as little error as possible, the supply voltage
was held constant, and the lead-in was held so that a minimum of losses would be experienced. Since all these precautions were taken, it becomes more evident that the signal strength varies over considerable limits from day to day.

Position 9

Tests werealso made at points 20,25 , and 35 miles from the transmitter. These are identified as posi tions 9, 10, and 11, respectively.

The results of the tests made at position 9 are shown in Fig. 15. Again, the bow tie with reflector, was used in order to obtain readings which could be compared to our other tests. The maximum reading was obtained at the 28 -foot level. The signal pickup at this level was sufficient to provide a snow-free picture even though we were using a relatively low-gain antenna. It would not be difficult to make a good installation at position 9 when using a fairly high-gain antenna. The antenna should not be mounted at the 37 -foot level, however, because there is a slight dip at this point. This lower signal level is probably the result of a cancellation from ground reflections, as was the case at position 4. In previous field tests conducted in other areas, this action was not noticed to any great degree beyond the 20 -mile point.

Fig. 15. Results Obtained at Position 9.

Position 10

The results of the tests which are shown in Fig. 16 were quite unique. These readings were obtained at position 10 , which is 25 miles from the transmitter. The interesting thing about them is the absence of any great change as the antenna elevation is changed. These tests were the most uniform of all we have made to date in any area. Not only was the signal uniform throughout the vertical range, but the signal level was considerably higher than would normally be expected at this distance. The picture obtained with the bow -tie antenna had only a trace of snow. The corner-reflector and the yagi antennas provided a completely snow free picture. At this location, there is no advantage to increasing the height of the antenna above the 26 -foot point. The surrounding land was extremely flat; and because of the distance from the transmitter, the reflections were so weak that they were of no consequence.

Position 11

Our last tests were made at position 11, which is 35 miles from the transmitter. The graph of Fig. 17 shows that the signal level is considerably lower than was obtained in the preceding tests. The picture obtained while using the stacked yagi antennas

Fig. 16. Results Obtained at Position 10.

Fig. 17. Results Obtained at Position 11.

Fig. 18. Discussion of Tests To Be Made During Field Event.

Fig. 19. Setting up Equipment for Tests at Position 5.
was a passable one even though it did contain some snow. It is very probable that better results could be obtained by mounting the antenna at a higher level. If this is done, a leadin which has extremely low losses should be used. Otherwise the longer lead-in will contribute more loss than was gained in signal pickup at the higher level.

The Field-Day Event

The field-day event was very successful. There was a good turn-
out making those responsible for putting on the event feel that their efforts were worth while. The weather was almost perfect, being marred only by the low temperature. There is a certain amount of plain manual labor connected with a project such as this, and everyone was willing to do his share of the work. The activity, along with a plentiful supply of hot coffee, prevented anyone from getting overly cold.

Before going out into the field, everyone was briefed on the locations
which were to be visited that day. Also explained were some of the results obtained at other positions, since it would be impossible to visit all test positions in one day. The briefing operation is pictured in Fig. 18. The group is being shown the various graphs which were produced from the results of preliminary tests.

Figs. 19 and 20 illustrate the interest and willingness to help evident throughout the field event. Fig. 19 shows a group of those attending with some of their number

Fig. 20. Viewing Picture on Monitor Receiver at Position 6.

Fig. 21. Describing the Merits of a New Type of Standoff Insulator.
alternately manning positions on the antenna trailer tower.

When the picture of Fig. 20 was taken, the group was being given an explanation of measurement methods employed in taking the readings. There is a television receiver located in tre trunk of the car, although it is not readily discernible in the photo. This receiver was used as a monitoring unit so that picture quality could be checked at any time.

As time would allow, a general discussion was conducted after each test at which time the important points about it were brought out. Fig. 21 shows the group getting some information about a new type of standoff insulator.

The results obtained or conclusions drawn from experiences occurring during the field event are grouped for purposes of comparison with material of similar nature either in "Test Position Results" or "Summary of Findings." This arrangement has been followed to provide the most concise treatment of the many factors encountered without undue repetition.

Summary of Findings

It is obviously impossible to test every location in a given area; however, it does seem logical that, by making a series of tests under a
variety of conditions in the specified area, an over-all pattern can be established from which conclusions can be drawn. Reference to the crosssectional view of the Anderson area, shown in Fig. 22, may help in the understanding of distance and topographical factors involved in the preliminary test-position results and the field-day measurements.

Additionally, Fig. 22 identifies several individual test positions and provides, above the identifying symbol, a graph showing the type of vertical pattern obtained there.

On the basis of the over-all pattern furnished by the test results, it would appear in order to expect satisfactory UHF reception in the great majority of present and potential Anderson installation.

Positions 1, 3, 4, 7, 9, and 10 should produce satisfactory signal level with relatively minor probing, providing that the proper antenna for distance from the transmitter is selected and that usual good installation techniques are followed with respect to type and routing of the lead-in.

Positions 2, 5, 6, 8, and 11 represent more difficult, but certainly not insolvable, applications.

Position 2 and 5 have the disadvantage of low terrain in common;

Fig. 22. Cross Section of Terrain Showing Some of the Test Positions and Graphs Showing Signal Strength at Each Position.
and high-gain antennas at relatively high elevation are called for to insure adequate reception.

Position 6 requires probing to insure maximum possible signal because of the presence of the sharp dips or "nulls" at certain antenna heights.

The results at position 8 are not conclusive and monitoring would be advisable if a UHF installation were to be required at this location.

Position 11 was by general agreement satisfactory, even though the distance (35 miles from the trans mitter) caused a lower signal level and slight snow in the received picture.

The factors of good installation techniques are just about the same in Anderson as they would be in any other community. The previous article covering UHF experiences in Norfolk, Virginia included an illustration which sums this point up just about as well as anything we might say. It appeared on page 93 of the November-December issue of the PF INDEX and is repeated within this article. See Fig. 24. For those who have seen it, it may serve as a reminder; for those who have not, it may help in preventing unnecessary difficulties in installation.

ACKNOWLEDGMENTS:

This report would not be complete without expressing our thanks to the members of the Radio and Television Service Engineers Association, to their President, Joe Groves, and to the other officials who contributed so importantly in arranging the survey and field event. It was a privilege to have the opportunity to work with all. Some of the officials

YOU BUILD
साज KITS IN ONE EVENING-

but they last a lifetime...
and you save last a lifetime 50\%!
22 Kits and 24 Instruments -
 the Industry's most complete line of MATCHED TEST INSTRUMENTS!

565 K Multimeter $\mathrm{Flit} \$ 24.95$. Wired 539.25
 struments are now in use the world over! That's the proof of EICO's leadership in Value to the Serviceman!
For latest precision engineering, finest components, smart professional appearance, lifetime performance and rock-bottam ecanomy - see and compare the EICO line at your jobber's today before you buy any higher-proced equipment! You'll agree with over 100,000 athers that only EICO Kits and Instruments - no other - give you the industry's greatest values at lowest cost.

Write NOW for FREE latest Catalog

ores INSTRUMENTS \& KITS ELECTRONIC INSTRUMENT CO., Ine. 84 Withers Street, Brooklyn 11, N. Y.

Fig. 23. Some of the Members and Officials at the Field Event.

Left to Right: Harold Scott, Trustee; Clyde Nottingham, Vice President; Roy Shephard, Former Secretary; Bill Hensler, Technical Editor of PF INDEX; Joe Groves, President; John Hoppes, Treasurer.
of the organization appear in the photograph of Fig. 23, taken during the field event. A special vote of thanks to Mr. Harold Scott for very kindly providing storage space for our field measuring equipment during the survey.

Our further thanks to Mr . Don Burton, President and General Manager of WLBC-TV at Muncie, who cooperated withus in every way pos sible to assure our having adequate test-pattern time, without which our survey would have been impossible.

Mr. Burton attended the field event in order to answer questions which association members might have concerning the operation of the UHF station.

We feel, and we are sure that association members join in this opinion, that the operation was most successful and that the results obtained demonstrate the value of cooperative effort.
w. William Hensler

Fig. 24. Comparison of Good and Bad UHF Installations.

New replacement confrol
helps ycu provide hi-fi reproduction at low-volume levels

SEMIOR
 COMPENTROL*

with ievel-set

Wombalion colume control Weind Privigu idectrotic erant

There's nothing else like it for improving tone performance
Now, Centralab's new Senior Compentrol with level-set lets your customer control bass and treble range to suit himself - something he cannot do with an ordinary compensated volume control. A uni versal unit, Senior Compentrol replaces any value without additional amplification. You install it easily and quickly - make money on the job.

Be set to cash in on today's increasing awareness of tonal quali ties by your customers. Get several Senior Compentrols from your Centralab distributor - net price, $\$ 4.50$.

Centralab also has a Junior Com pentrol It is furnished in $1 / 2$ and 1 meg., plain and switch types, for use in radio sets (5 or more tubes, AC or DC), audio amplifiers, or phono combinations.

Centralab

A divis on of globe-union inc. Milwaukee 1, Wisconsin
*Trademark

Wrife for 20-page booklef 42-182, telling the whole Compentrol sforyand Centralab Catalog 28. Address CENTRALAB, A Division of Globe-Union Inc., 942 C E. Keefe Ave., Milwaukee 1, Wisconsin.

Examining Design Features

(Continued from page 33)
A bottom view of the unit is shown in Fig. 5. Most of the capacitors are mounted on the terminal board. Since the terminals used on the board are of the slotted type, the capacitors and resistors may be unsoldered and removed with a minimum of difficulty.

Motorola Chassis TS-602 Sync Separator and Noise Gate

The Motorola Chassis TS-602 employs a 6CS6 heptode as a combination sync separator and noise gate. See Fig. 6. In order to accomplish sync separation, a positive composite video signal is applied to grid No. 3 of the 6CS6. The sync pulse of the applied signal is sufficiently positive to cause the tube to conduct. When conduction occurs, the grid also draws current. The flow of grid current causes a negative potential to appear on the grid because of grid-leak bias. A clipping action will then occur so that separated sync pulses appear in the plate circuit.

The 6CS6 tube also acts as a noise gate. If a strong noise pulse should appear just prior to the time of tube conduction, premature triggering of the 6CS6 tube may occur. In order to overcome this difficulty, a noise gate is incorporated.

Fig. 6. A Schematic Diagram of the Sync Separatior and Noise Gate Used in the Motorola Chassis TS-602.

Operation of the noise gate depends upon a negative composite video signal being fed to grid No. 1 of the 6CS6. This signal is taken from the output of the video detector. The bias on the No. 1 grid is such that the applied signal will not cut off the tube under normal conditions. The presence of a strong noise pulse, however, will drive the tube to cut off. Since the tube is cut off, the noise pulse appearing with a positive polarity on grid No. 3 will not cause tube conduction. This action may also prevent the passage of a sync pulse, but the loss of one sync pulse does not prove deterimental to the performance of the set because of the flywheel effect existing in the horizontal oscillator of the receiver.

No Redesign Problems

with RCA "Universal" HV Transformers

 231 T1 and 232T1

Why redesign, when mechanically and electrically, these two RCA "universal" horizontal-output and high-voltage transformers meet practically every mounting and circuit requirement.
Excellent for conversions. Comprehensive instruction booklet packed with each transformer.
Available through your local RCA Distributor.
(A)

RADIO CORPORATION OF AMERICA
ELECTRONIC COMPONENTS
CAMDEN, N. \%

EACH KIT AVAILABLE WITH 4 DIFFERENT MOUNTING HARDWARE ACCESSORIES

Here's profitable selling to the "do-ityourself" market. Wide range of styles to meet every requirement . . . 16 Telco combinations to choose from. See them at your favorite distributor now!

"LOCAL" UHF BOW TIE KIT For local and in-town installations.

"FRINGE" UHF TWO STACK BOW TIE KIT

No. 9031* (Series 1 accessories)............................ $\$ 16.75$ No. 9035 (Series 2 actessories)......................... 16.75 No. 9039
No. 9043 $\begin{gathered}\text { Series } 3 \\ \text { (Series } \\ 4\end{gathered}$ actessories act........................ 16.75

"DELUXE" UHF CORNER REFLECTOR KIT Where extra high gein is re-
quired. Ne. 9032* (5eries 1 accestaries) K6. 9036 (Series 2 occessaries) Ms. p040 (Series 3 actensaries).
"DOUBLE V" UHF \& VHF ANTENNA KIT
For receiving both UHF \& VHF signals on same antenna.

 No. 9037 (5eries 2 accessories)....................... 14.95 No. 904 (Series 3 accessories) 14.95

WRITE TODAY for your free TELCO Catalog.
television hardware mfg. co.
DIVISION OF GENERAL CEMENT MFG. CO. 903 Taylor Avenue Rockford, III.

Analyzing Horizontal Deflection Waveforms
 (Continued from page 13)

As a result of the increasing voltage on the cathode, the potential difference between plate and cathode of the damper drops to zero and conduction

Fig. 4. W3, Plate Voltage on the Damper Tube; W5, Deflection-Coil Current; W8, Damper-Tube Current; W9, Secondary Current in the Harizontal-Output Transformer.
ceases before the completion of beam trace. From this time until near the end of retrace, capacitance C discharges through the boosted B+line so that when the plate of the damper returns to a positive condition at the beginning of the ensuing beam trace (see W3 in Fig. 4), the charge has left capacitance C and the damper is allowed to conduct maximum current.

It has been shown that the oscillatory portions of currents W8 and W9 in Fig. 4 do not circulate through the deflection coils. If the oscillations were averaged out of these currents, the resultant waveforms could be analyzed to determine their respective contributions to the deflection-coil current W5. The dotted lined placed on the waveforms in Fig. 4 serve this purpose. Disregarding the oscillations, therefore, note that the transformer secondary does not begin to contribute a changing current to the system until after about 30 per cent of the trace period

Fig. 5. Simplified Schematic of Deflection Circuits.
has elapsed. During this initial time interval, the damper tube conducts and supplies the deflection coils with a decreasing positive current derived from the energy in the oscillations which follow retrace. Consequently, if a damper tube fails and there is any picture at all, the picture is confined to the right side of the screen. In normal operation, the energies obtained from the transformer secondary and from the transient oscillations overlap, but the resultant currents add together in such a manner that a linear change in deflectioncoil current is preserved throughout the trace.

The amount of current supplied by the transformer secondary during the overlap interval is adjustable by means of the horizontal linearity coil. The action may be explained as follows:

The alternating current in the secondary of the transformer is

Eleatorocics (5) CARTRIDGES Guarantee FINER REPRODUCTION LONGER RECORD LIFE MORE NEEDLE PLAYS

MODEL 43
Ceramic Cartridge
Plays $78,45,331 / 3$ rom with single 8.3-mil all-purpose needle-tip. Outpu 43. Osmium
List $\$ 6.50$ 43-5. List $\$ 6.50$

MODEL 46-T eramic Turnover. rpm with separate -mil Osmium and 1-mil Sapphire tip olt. With turnover 46-T. List $\$ 10.00$ 46. Wist 10.00 46. Without turn-
over mechanism over mechanism. MODEL 16-TT $\$ Crystal Twin T, lt.
Uses one piece twintip needle for $78,45,331 / 3$ rom. Merely tur i selector handle for $1-\mathrm{mi}$ Sapphi
or 3 -mil Osmium tip or 3 -mil Osmium tip. 16-TT. List $\$ 10.00$ 16. Same withe ut tilt
mechanism. List $\$ 9.00$

MODEL 12 crystal Cartridge Crystal Cartridge
lays. 78 rpm with $3-\mathrm{mil}$ needle. Light weight. High compliance. Tracks perfectly.
Output 2 volts. With snap-in holder. With snap-in holder.
12. Osmium. List $\$ 7.50$
12-s. Sapphire.

MODEL 60 亿

Crystal Duo Volt:
high or medium output (2 or 4 volts on $332 / 3-45$, and 3 or 6 volts on 78). No soldering. Uses any
standard 3 -mil, t -mil or purpose needle.
60. Less needle e centers.

6

BASIC TYPES make

 over $\mathbf{9 2 \%}$ of all replacementsWith these preferred types, you can quickly make most replacements. By demonstrating the improvement in performance, you can make many more zales. Furthermore, the new E-V high output, high compliance, permanent Ceramic Cartridges are not affected by moisture or heat - and are directly interchangeable with silent-needle type crystal cartridges that do not use a thumb screw. F-V cartridges are widely used in original equipment and for replacement. Send now for FREE Phono-Cartridge Replccement Chart No. 170-A

Fig. 6. Voltage Waveform W6 on the Damper-Tube Cathode.
furnished through coupling from the horizontal-output amplifier. Comparison of the secondary current waveform W9 in Fig. 4 and the outputamplifier current W10 in Fig. 3 shows that the two are very similar except for a polarity reversal. The starting time for conduction in the output amplifier can be controlled to a certain degree by the voltage supplied to the plate of the tube. Note in the schematic of Fig. 1 that the supply voltage for the plate of the horizontaloutput amplifier is obtained from the junction of the linearity coil L20 and capacitor C62 on the boosted B+ line The voltage waveform W7 at this junction is shown in Fig. 7. There is a positive peak occurring a short time after the beginning of beam trace.

Adjustment of the horizontal linearity coil causes the following events to occur. The phase of waveform W7 changes, and the peak in this waveform shifts its position. The shift in the peak varies the voltage supplied to the amplifier plate at a time when the tube is near conduction. The amount of current starting through the tube varies because of the platevoltage change. As a result of the foregoing events, the waveform of deflection current changes shape and alters the linearity of the picture.

Before ending this discussion, we want to call attention to various other circuits which draw energy from the horizontal-deflection systems in many TV receivers. Space does not permit a very detailed account of these circuits.

Fig. 7. Voltage Waveform W7 at Junction of L2O and C62.

Buit for SERVCOA

 RCA REPLACEMENT SPEAKERS

Quality engineered for superior speaker performance

- High sensitivity
- Alnico V magnets in all PM types
- Rugged mechanical construction with welded housing assembly
- Moisture-resistant cone and voicecoil suspension assures high efficiency and dependability
- Dust-sealed and rust-resistant
- Rim mountings designed to RETMA standards

RCA replacement speakers are available through your local RCA Distributor. You'll find PM and field-coil types for virtually all your replacement needs . . . at popular prices!

RADIO CORPORATION OF AMERICA
ELFCTRONIC COMPONEWTS
CAMPEN, N. 1

25° at a Glance!
at your radio parts DISTRIBUTOR OR
ELECTRONIC EQUIPMENT SUPPLIER

Now it's easy to compare Dynamotor performance efficiency under actual operating conditions. Nameplate information plus this simple slide chart enables you to read instantly the efficiency percentage right from the Calculator scale. Reverse side gives other useful information. Handy $3^{\prime \prime} x$ $6^{\prime \prime}$ pocket size, color printed on sturdy laminated stock, varnished to resist soil. For sale by radio parts distributors and electronic equipment suppliers, or $25 c$ postpaid.

Carser Moior Cos

2651 N. MAPLEWOOD AVE. CHICAGO 47

World's largest Exclusive Manufacturers of mobile radio rotary power Supplies

Audio Facts

(Continued from page 29)

Fig. 1. Front View, All Demountable Parts Removed.
the most noticeable change (the only one visible when the doors are closed) is the new base. The original base, which was fitted with 13 -inch
legs, was replaced by one only 5 inches high. This was done to reduce the height of the cabinet and to make it more suitable for the location in which it was to be used.

The single storage compartment for 12 -inch records was located behind the right-hand outside door and was not changed other than for the back that was fitted into it. The two smaller left-hand compartments for 10 -inch albums were remodeled into a large one of the same dimensions as the one on the right side. This provided more storage space for 12 -inch records, gained some space in the interior of the cabinet for equipment, and resulted in a more symmetrical layout. This modification can be seen in the photographs of Group 2.

A walnut panel was fitted into the space originally occupied by the grille covering the horn mouth. Two shelves, one for the preamplifier and control unit and the other for the FM tuner, were installed in place behind the panel. Holes for the shafts and a rectangular opening for the tuner dial were located and then cut in the panel. The tuner and preamplifier were mounted in place, as shown in the photographs in Group 2.

The width coil in most receivers is an energy-absorbing circuit which shunts current that would otherwise add to the deflection-coil current. As the inductance of a width coil is decreased by means of its adjustable slug, the more energy the coil absorbs and the less the width of the picture becomes.

The high-voltage system makes use of a stepped-up version of the high pulse voltage present in the deflection system during retrace time. The step-up is gained by an extra winding on the output transformer; and the resultant voltage is rectified, filtered, and applied to the picture-tube anode.

Several feedback and control voltages are derived from the horizontal-deflection system. The principal functions to which these voltages contribute are: control of horizontal-oscillator frequency, keying of an automatic-gain-control tube, horizontal-retrace blanking, and pulse-shaping of the horizontaloscillator output.

Glen E. Slutz

Fig. 2. Rear Vlew, All Demountable Parts Removed.

The tuner was placed below the preamplifier where its controls are accessible and suff ic iently convenient, considering how little they are used. The controls for the preamplifier and control unit were given the more prominent and convenient position
because they are used so often during operation, no matter what the program source.

The generous amount of space in the top compartment was one of the features in the original cabinet which made it a logicalchoice for remodeling. A large amount of space is needed for convenient and proper mounting of transcription type turntables and pickup arms.

The original motor board (Group 1) was discardedand the opening enlarged to allow a larger board to be fitted Felt strips were fastened to the edges and flanges of the opening to serve as a shock mounting for the new motor board. This practice is recommended by the manufacturer of the turntable used in this installation. The board was made large enough to allow plenty of space for mounting the 12 -inch turntable and two pickup arms. Two arms have provec to be very useful since more than one type of cartridge is therefore available at all times.

Although there are disadvantages in cabinets with lift lids, the arrangement has been very satisfactory in this case because of the excellent automatic lid supports and the large amount of space in the compartment. Actually this is one of the very few methods by which protection and concealment can be obtained for a turntable in anything near a usable and practical manner. You only have to move the bust of Margherita di Valois, the little rosewood clock, and an ash tray when you wish to play a record.

Looking into the back of the cabinet, the positions of the various pieces of equipment can be seen. The back was left off as a means of supplying sufficient ventilation.

The amplifier and its power supply can be seen in their present location on the bottom of the cabinet. We intend to install a shelf or shelves across the back between the record compartments to hold the amplifier and the power supply.

Buit for SERVCF

Easy to Install

Accommodate Tubular, Oval, Foam and Jacketed UHF Lines. Lowcapacitance design. Standing-wave ratio approximately $2: 1$ at 800 Mc . Low loss-approximately 1 db at 800 Mc. Listed by Underwriter Laborataries, Inc.

Weather-resistant . . . continually dissipate static charges . . . do not unbalance line . . . easy to install. Listed by Underwriter Laboratories, Inc.

Type 240A1

TV SET COUPLERS

Permit operation of two or more TV sets from single antenna. Easy to install . . . no need to cut or splice twin lead.
Individually packaged RCA UHF and VHF Arresters, and TV Set Couplers are available in handy display cartons containing 10 units. Get yours from your local RCA Distributor today.

As evidence of Triad s continuing efforts to meet your TV replacement needs exactly and completely -6 new flybacks have been added to the line. A total of
19 are now available, with more being added all the time. These flybacks are precisely engineeted for specific
replacements and carefully constructed of the finest materials. Their resulting
bigh performance and long life insures satisfied castomers and helps you build and hold your service business.

Type No.	List Price	
9.37	\$11.00	Universal type. Universal mounting. Replaces RCA 231-11
0.32	11.00	Has AGC tapped winding Matches all yokes.
0.33	11.00	Universal type. Universal mounting. Has AGC tapped winding similar to D.32, but low impedance secondaries.
D.35	11.00	Universal type. Universal mounting. Replaces RCA 223-T1, 224-T1, 230-T1 and 232-T1,
DA-36	5.50	Coll only. Replaces coll in Zenith Part No. S-18567
DA-37	5.50	Coil only. Replaces coil in Zenith Part No. S-19032,

Available from stock. See your jobber for these - and all of your TV replacements.

Write for Catalogs TR-54C and TV.54C

The preamplifier and control unit is mounted on the top shelf at the front of the cabinet. This is a slightly modified version of the preamplifier and control unit described in Audio Facts in the July-August 1952 PF INDEX No. 33. The separate power supply which incorporates a DC heater supply is visible at the upper left on top of the record storage compartment. The AC receptacles controlled by the off-on switch can be seen below this power supply.

An input trànsformer visible at the upper right on top of the record compartment couples the magnetic cartridge, preferred for most listening, to the input of the preamplifier. This location and position were found by switching on the system and turning the gain controls up to a level far above the normal operating level and by moving the transformer around until the least amount of hum was heard from the loudspeaker. Finding a satisfactory location was not difficult, because the hum level was not objectionable with the transformer in most of the positions when the system was operated at a normal listening level.

The large amount of space available in this cabinet could be utilized in many ways, all depending upon personal preferences and needs. For instance, some individuals might prefer doing away with the record storage compartments altogether, while others might consider extending the storage space completely across the lower portion of the cabinet.

We did not want to disturb the construction of the cabinet front by modifying the doors or constructing new ones, so the side compartments worked out very well. There is additional space which could be used for other equipment, particularly if more shelves are installed.

We feel that our efforts have been well rewarded, for the cabinet has proved to be very convenient and its appearance is such that it rates very well in the home. Any audio enthusiast who has a chance to convert a similar cabinet to his needs will certainly find that the project is not too difficult and the results are worth while.

Robert B. Dunham

The BADELCD

CORNER REFLECTOR UHF Model US-151

IS MADE FOR UHF AREAS WHERE GHOSTS ARE VIOLENT AND INTERFERENCE IS ROUGH!

* EASY TO INSTALL!
* OPENS LIKE A BOOK!
* MOUNTS IN

FRONT OF MAST,
NOT BEHIND IT!

ASSURES CLEARER, SHARPER TELEVISION PICTURES!

- It's a superb high gain, extremely directive, broad band antenna with ample ability to banish ghosts and reject interference. Covers all UHF channels.

SENSATIONALIY LOW PRICED

Preferred or

 Original Equipment Proven torReplacement

Available from leading iobbers!

Dollar and Sense Servicing

(Continued from page 35)
CONVERTING TO VHF. Out in Portland, Oregon, service technicians now face the unique situation of having to convert sets for VHF television. Just as Portland's one-and-only KPTV on channel 27 was celebrating its first kirthday, KOIN-TV began putting out test patterns on channel 6.

The conversions generally involve adding VHF antennas and touching up the channel-6 tuning strips. Where the UHF signal feeds through the channel-6 strip or where the sets were improperly converted to channel 27 inttre first place, there's more work to be done.

RINGING DOORBELLS. To buildup the UHF audience in localities where people tend to be satisfied with what they' re getting on VHF, some new UHF stations are plunking out dollars to put dealer salesmen on the street ringing doorbells for UHF. On a typical call, the salesman gives program \log to housewife, offers to demonstrate UHF converter, fills out report form, and returns it to station. In return he may get free individual news paper ads, radio-TV spots, or a straight 25 cents per call. In Reading, Pa., this plan is producing a converter sale in about one out of every two calls, which is quite good.

DOLLARS. Another spot check into the public lives of service technicians by the GE Tube Department comes up with the conclusions that the average service technician charges about $\$ 10$ for a TV service job and $\$ 7$ for a radio job, divided just about $50-50$ between parts and labor. He works about 45 hours a week regardless of the size of the business, but his rates go up with the number of technicians in the shop.

Why should charges for service work vary with the size of the business? The survey showed that a shop with one or two men averaged $\$ 8.75$ per TV job, with the average rising steadily with the number of men, up to $\$ 11.50$ per job for an organization having over 25 men. The same situation holds for radio-only areas, with the little shop getting $\$ 6.75$ average and the over-six-man shop averaging $\$ 12$ - even more than for TV.

Is the small shop small because it doesn't charge enough? Not always, because many are small by owner preference; some owners like independence without the responsibilities of managing a large crew of men and meeting a correspondingly large payroll week after week.

Is. the large shop charging excessively? Very rarely, because nobody is getting rich quick on a $\$ 11.50$ average per call. The only conclusion we can arrive at from these survey figures is that the averages are way too low for everybody. Get them up. First, though, "'bone up" on business techniques for making people smile as they pay you for a job well done.

TOOTHACHES. From an antique dealer we acquired for $\$ 15$ one Improved Patent Magneto-Electric Machine for Nervous Diseases; it is in beautiful condition - truly a museum piece. It has two coils that rotate between the poles of a large horseshoe magnet when the crank on the box is turned. Haven' t been able to trace the circuit yet because there doesn't seem to be any circuit, but it surely does shove out the electrons even at 1 rpm of the crank. Quoting from instructions: "In applying it for toothache, tic-doloreux, or neuralgia, the operator takes one handle and places his fingers over the part affected while the patient holds the other handle."

The thing got first prize at London in 1862 and is lots of fun at parties, but we can't say much more for it otherwise. Be on the lookout for anything old like this; antique collectors and dealers will gobble them up. Maybe in another ten years those old goosenecked-horn loudspeakers of radio's early days will be just as valuable.

GHOST FACE. The TV singer whose face wouldn't come off the screen of a Long Is land set, even when the plug was yanked, got a lot of publicity in the New York City papers. For 51 hours it stayed, with her press agents making the most of it. They even managed to get from an engineer the semiplausible explanation that some "electronic explosions in the set" during the gal's program had burned in the image. Mebbe so

Three popular styles: SPST, Three popular styles: SPST,
SPDT, universal DPST. Rated SPDT, Universal DPST. Rated
at $5 \mathrm{amps} .-125$ v.a c . at 5 amps. 125 v.a.c.
$1 / 2 \mathrm{amp} .125 \mathrm{v.d.c}$ $1 / 2$ amp. 125 v.d.c;
12 amps. 12 v.d.c.

In just seconds, Type KB Fastatch converts any plain-type control with blue-and-white label to a TV-AM-FM switch-type. Snap - and it's on. No ears to bend, no loose parts.

Your Centralab distributor can furnish Fastatch switches from stock. He also has Centralab Blue Shaft Controls from 500 ohms to 10 megs in a wide variety of tapped units. See him soon.

Write for your copy to CENTRALAB, A Division of Globe-Union Inc., 942C E. Keefe Avenue, Milwaukee 1, Wisconsin.

Centralab

A DIVISION OF GLOBE-UNION INC. Milwaukee 1, Wisconsin P. 1854

John Markus

UHF-VHF Antennas

Maximum signal slrength for all-channel UHF and VHF reception. (Channels 2-83).

ICA Printed Circuit FILTER

Permits combining of UHF ontenna with a VHF type. Only one transmission line required.

Write Dept. PF:
tor catilion of complete UHF-VHF line.

insuline

CORPORATION OF AMERICA INSULINE BUILDING 36-02 35th AVENUE LONG ISLAND CITY, N. Y
West Coast Branch and Warehouse:
2419 S. Grand Ave., Los Angeles, Calif. CANADIAN MARCONI COMPANY, Toront

Deflection Components for Color TV

(Continued from page 19)

color receiver does not differ from that used in a monochrome receiver. Both types of transformers are shown in Fig. 2. Transformer A is one that is employed in a color receiver, while transformer B is one that is used in a monochrome receiver. Both perform the same functions; namely, they provide a linear vertical sweep, a mple deflection, and coupling between the vertical-output stage and the vertical coils of the deflection yoke.

The deflection yoke used with a color picture tube is quite different from that used in a monochrome receiver. This is especially true of the physical size, which can be seen by referring to Fig. 3. Deflection yoke A is one that has been designed for use in a color receiver. The other two yokes are typical ones employed in standard monochrome receivers. Yoke B is a 90 -degree unit, while C is a 70 -degree unit.

The color yoke is employed with a picture tube that has a hori-zontal-deflection angle of 45 degrees and contains three electron guns. A picture tube of the three-gun type places more stringent demands on the deflection yoke. Instead of deflecting a single beam, the yoke must be wound to produce proper magnetic fields for simultaneous deflection of three beams. In order to provide the necessary flux distribution for proper convergence of the beams, the windings of this yoke are flared widely at the end placed nearest the tube cone. The yoke is designed to provide full deflection, uniform focus, and convergence of the beams.

For protection from arcing between the yoke coils and the grounded coating of the picture tube, the color yoke contains an insulating líning made of a flame-retardant polyethylene material. It covers the windings near the cone of the tube and is also placed between the yoke and the neck of the tube.

The three beams of the color picture tube must properly converge so that they pass through the aperture mask and strike the correct color dot. The beams pass through the field of the deflection yoke and are then made to converge by the field produced from the difference of potential between the convergence electrode and the inner coating of the picture tube.

A DC potential of approximately 9,000 volts is applied to the conver -
for the finest articles on servicing TV, radio, high-fidelity - don't miss

RADIO-ELECTRONICS

 MARCH ISSUEA partial list of the features scheduled for this issue

- Control Unit for Golden Ear Amplifiers
- What is Optimum Load?
- Higt-Fidelity Loudspeakers (Beginning a new series by H. Harlley, eminent British Loudspeaker manulacturerl
- TV Remote Control Units
- Basic Color TV - Part Ill
- Getting the Most from Rabbit Ears
- TV Signal Tracing
- High Gain - Low Drain Portable

On Sale February 24th

 at all better parts distributors and newsstands - $35 \not \subset$ per copy
$\$ 1.95$ ot your parts distributor. Publishar's price $\$ 6.50$ Have complete access to the many thousands of products vital to your daily sales and service operations. In the customer's home, across the operations. In the customer's home, across the tharoughly complete descriptions, specs, illustrations thoroughly complete descriptions, specs, illustrations
and prices . . all systematically organized in and prices. all systematically organized in
18 big sections for instant reference. Increase your sales... sell directly from the Master. Facilitate your stock problem . . . use the Master for iiffy comparison of all electronic products. The Master is the only Official Buying Guide for the TV-RadioElectronics industry. It contains unabridged catalog data direct from the manufacturers. For buying and dataing cirect from the manufacturers. For buying and
selling - the Master gives you all the needed facts selling-the Master
in a single yolume.
Over 100,000 in active daily use. Get into the Master habit. Order your copy today!

Just a fow of the products Included: Tubes - Test Equipment - Tools - Transformers - Capacitors Resistors - Relays - Coils - Attennas - Recording \& PA Systems - Hardware Tronsmitters - Receivers Kits - Wire - Cable and thousands of allied products I

Eliminate Incomplete Small Catalogs and Catalogs
Loose
Loose
Liferature

UUTSB QATNOG PDB. TME.
 II LAFAYETE 51. NEW YORK 13, N. Y.

Fig. 3. Deflection Yokes.

(A) COIOR RECEIVER.

(B) 90-DEGREE

(C) 70-DEGREE
gence electrode. This voltage is obtained from the high-voltage supply of the recezver. To provide uniform convergence over the entire raster, a dynamic-convergence voltage is superimposed on the DC component of the convergence potential. This superimposed voltage is obtained from the horizontal-and verticalsweep sections of the receiver. A pulse is taken from the cathodes of

Fig. 4. A Horizontal Dynamic-Convergence and Dynamic Focus Iransformer.
the vertical-and horizontal-output tubes and fed to a convergence amplifier stage where they are amplified and then cospled to the convergence electrode ol the picture tube. Coupling is accomplished by means of transformers. Tapped from the same transformers are voltages which are applied to the focus electrode of the picture tube. These voltages provide uniform focusing of the beams during the scanning of the raster.

Fig. 6. Purifying Coil, Beam-Positioning Magnets, and Neck-Shield Assembly.

Pictured in Fig. 4 and Fig. 5 are the convergence transformers. Fig. 4 shows the horizontal dynamicconvergence and dynamic-focus transformer. It is a variable in ductance transformer with a tapped secondary winding for purposes of coupling the output of the convergence amplifier to the convergence and focus electrodes of the picture tube. It utilizes an adjustable ferrite core

Fig. 5. A Vertical Dynamic-Convergence and Dynamic-Focus Transformer.
to permit tuning of the transformer to the horizontal scanning frequency.

Shown in Fig. 5 is the vertical dynamic-convergence and dynamicfocus transformer. It employs a potted type of construction and is nonadjustable. The secondary is tapped for purposes of coupling the output of the convergence amplifier to the convergence and focus electrodes of the picture tube.

Shown in Fig. 6 is an assembly that is placed around the neck of the picture tube. This assembly consists of a neck shield, three beampositioning magnets, and a purifying coil. It is clamped on the neck of the tube by the adjustable clamp shown

Fig. 7. Beam-Positioning Magnets.

when your customer wants

 Hi-Fi, put in a Webcor DiskchangerThe quickest, surest way to win customer confidence and repeat business, is to install only Webcor High-Fidelity changers. A Webcor changer gives absolutely TRUE Fidelity . . . year after year . . . with extraordinary trouble-free operation.

And its ease of installation is amazing. A simple template and pre-cut mounting board give you quick, profitable installations. If you are not now carrying Webcor changers, call your Webcor distributor for further details today.

Fig. 8. Purifying Coil.
on the inside of the shield. The shield of the assembly is for the purpose of isolating the extraneous magnetic fields from the beams pass ing through the neck of the picture tube. The unit has been disassembled for a better view of the beampositioning magnets and the purifying coil, which are shown in Figs. 7 and 8.

The purpose of the beampositioning magnets shown in Fig. 7 is to aid in the proper convergence of the beams. The beams are adjusted by their respective magnets so that all three beams enter the convergence field in such a way that the force exerted upon these beams will cause them to converge at the aperture mask. Thus, the magnets can be used to correct slight dissymmetries caused by manufacturing variations in the tube and also by the effects of stray fields.

The magnets are each supported by the neck shield and are spaced at

120-degree intervals so that the magnets correspond with the positions of the three guns. These magnets are in the form of magnetized, headless bolts. They are slotted at each end to provide a means of adjustment with a nonmetallic tool. They are adjusted by turning them in or out, and then they are held in place by a knurled nut which is shown on each magnet.

The purifying coil removed from the neck shield is shown in Fig. 8. This coil is used for multibeam alignment. By producing a transverse magnetic field, the purifying coil aligns the common axis of the beams so that the common axis coincides with the axis of the picture tube. The axis is changed by rotation of the coil or by changing the current flowing through the coil. As a result of the action of the purifying coil and the beam-positioning magnets, the beams are aligned in the proper axis; and when focused, converged, and de-

Fig. 10. Comparison of Components Mounted on a Color Tube With Those Mounted on a Monochrome Tube.

Fig. 9. Field-Neutralizing Coil.
flected they approach each hole in the aperture mask at the proper angle. In so doing, they strike only their respective color dots, producing color purity.

To further protect the beams from being affected by the earth's magnetic field and other extraneous magnetic fields, a cone shield and a neutralizing coil are employed. The cone shield is made of Mumetal (a high-nickel alloy) or some other type of shielding material, and it is made to cover the entire cone of the tube. A high-voltage insulator is placed between the outside of the picturetube cone and the shielding unit. This insulates the high-voltage anode from the magnetic shield and other grounded elements.

The field-neutralizing coil is placed around the faceplate end of the color tube. Its function is to neutralize extraneous magnetic fields which cause a tangential displacement of the beams from their color centers. This is accomplished by adjusting the direction of current flow in the coil. The field-neutralizing coil is shown in Fig. 9.

From the foregoing discussion, it is seen that a larger number of external components are needed for the proper operation of the color picture tube than are needed for the monochrome picture tube. For a comparison of the components used on the color tube with those used on the monochrome tube, refer to Fig. 10. Fig. 10A shows a color tube with its components, while Fig. 10B shows a monochrome tube with its components.
O. P. Oliphant

TV SUPPLEMENTARY SHEET NO. 9

RTV No.	MFR. \& PART No.	DESCRIPTION	SHAFT TYPE	SHAFT LENGTH	LIST PRICE
371	General Electric RRC-184 K83J474	2 Meg. Ω carbon (S) $500 \mathrm{~K} \Omega$ carbon (Z) Tap 250 K Conc. Dual--SPST	1/8 Cut-Out 1/32 Flat	$\begin{aligned} & 2-1 / 8 \\ & 2-15 / 16 \end{aligned}$	\$4.30
372	Bendix LH262020-1 RV0D03	$50 \mathrm{~K} \Omega$ carbon (S) $500 \mathrm{~K} \Omega$ carbon (Z) Conc. Dual--SPST	1/32 Flat 1/32 Flat	$\begin{aligned} & 1-13 / 16 \\ & 2-9 / 32 \end{aligned}$	\$3.70
373	Bendix LH262045-1	$100 \mathrm{~K} \Omega$ carbon (S) 1500Ω carbon (V) Conc. Dual	1/32 Flat 1/32 Flat	$\begin{aligned} & 1-11 / 16 \\ & 2-9 / 32 \end{aligned}$	\$3.10
374	General Electric RRC-176 K-82 J576-2	2 Meg. Ω carbon (S) 500K Ω carbon Tap 250 K Conc. Dual--SPST	1/8 Cut-Out 1/32 Flat	$\begin{aligned} & 1-1 / 8 \\ & 1-7 / 8 \end{aligned}$	\$4.30
375	General Electric RRC-186 $K 83 J 475-1$	2 Meg. Ω carbon (S) $500 \mathrm{~K} \Omega$ carbon (Z) Conc. Dual--SPST	1/8 Cut-Out 1/32 Flat	$\begin{aligned} & 2-1 / 8 \\ & 2-15 / 16 \end{aligned}$	\$3.70
376	Hallicrafter $25 B 913$	$\begin{aligned} & 2500 \Omega \text { carbon }(V) \\ & 1 \text { Meg. } \Omega \text { carbon }(Z) \\ & \text { Conc. Dual--SPST } \end{aligned}$	1/8 Cut-Out 1/32 Flat	$\begin{aligned} & 1-5 / 8 \\ & 2-1 / 8 \end{aligned}$	\$3.70
377	General Electric RRC-192 K83J870-2	$3000 \Omega 2$ W-W.W. (S) $500 \mathrm{~K} \Omega$ carbon (Z) Conc. Dual--SPST 5A	$\begin{aligned} & \text { 1/8 Cut-Out } \\ & 1 / 32 \text { Flat } \end{aligned}$	$\begin{aligned} & 2-9 / 32 \\ & 3-1 / 8 \end{aligned}$	\$3.70
378	Emerson 390207	$\begin{aligned} & 1500 \Omega \text { carbon }(S) \\ & 1 \text { Meg. } \Omega \text { carbon (Z) } \\ & \text { Conc. Dual--SPST } \end{aligned}$	$\begin{aligned} & 1 / 32 \text { Flat } \\ & 1 / 32 \text { Flat } \end{aligned}$	$\begin{aligned} & 1-1 / 2 \\ & 2 " \end{aligned}$	\$3.70
379	Hoffman 4892	2500Ω carbon (V) 1 Meg. Ω carbon Tap 300 K Conc. Dual--SPST	1/32 Flat 1/32 Flat	$\begin{aligned} & 1-7 / 16 \\ & 2^{\prime \prime} \end{aligned}$	\$4.30
380	Belmont 10A-20956	2500Ω carbon (V) 1 Meg. Ω carbon (Z) Conc. Dual--SPST	1/8 Cut-Out 1/32 Flat	$\begin{aligned} & 2-3 / 16 \\ & 2-5 / 8 \end{aligned}$	\$3.70

Copyright 1953-Clarostat Mig. Co., Inc.

This supplementary sheet is for use as an up-to-theminute addition to your Clarostat TV Manual. Manuals are available through your distributor or directly from Clarostat. Price $\$ 1.00$.

CLAROSTAT MFG. CO., INC.
DOVER, NEW HAMPSHIRE

Windex

INDEX TO ADVERTISERS March, 1954

Advertiser Page No.
All Channel Antenna Corp. 58
American Phenolic Corp. 62, 63
The Astatic Corp. 60
Belden Mfg. Co. 66
Bussmann Manufacturing Co 12
Carter Motor Co. 84
CBS-Hytron 6
Centralab (Div. Globe-Union, Inc.) . 64, 81,87
Channel Master Corp. 20 \& 21
Chicago Standard Trans. Corp.21
Clarostat Mfg. Co., Inc. 91
Cornell-Dubilier Electric Corp 68
Davis Electronics 46
by Sales Co. 88
Electro Products Labs. 74
Electro-Voice, Inc. 83
Electronic Instrument Co., Inc. 80
Erie Resistor Corp 74
General Cement Mfg. Co. (Telco) 82
General Electric Co. 48
Granco Products, Inc. 70
Halldorson Transformer Co 67
Hickok Electrical Instrument Co. 24
Insl-X-Sales Co. 32
Insuline Corp. of America 88International Resistance Co. . . 2nd CoverJackson Electrical Instrument Co. . . . 72
Jensen Industries, Inc 50
JFD Manufacturing Co26
Leader Electronics 18
Littelfuse, Inc er
Mallory \& Co., Inc., P.R. 10
Merit Transformer Corp. 41 to 44
Ohmite Mfg. Co. 65
Oxford Electric Corp 86
Planet Manufacturing Corp. 78
Precision Apparatus Co., Inc. 28
Pyramid Electric Co52
Quam-Nichols Co 69
Radelco Mfg. Co. 86
Radiart Corp 14
Radio Corp. of America . $4,34,64,81,83,85$Radio Electronics88
Radio Receptor Co., Inc. 76
Raytheon Manufacturing Co. 38
Regency Div., I.D.E.A., Inc.]
Sams \& Co., Inc., Howard W. 94, 122
Sprague Products Co.2
Sylvania Electric Products Inc. 3rd CoverTechnical Appliance Corp.16
Telematic Industries, Inc. 54
Telrex, Inc. 30
Triad Transformer Corp. 86
United Catalog Publishers, Inc 88
Videon Electronic Corp. 74
Waldom Electronics, Inc 78
Webster-Chicago Corp. 89
Webster Electric Co. 56

While every precaution is taken to insure accuracy, we cannot guarantee against the possibility of an occasional change or omission in the preparation of this Index.

The title pages of PF INDEX issues Nos. 40 and 41 of SeptemberOctober, and November-December 1953, respectively, told you of the planning for our publication during 1954. The change in frequency of issuance from bi-monthly to monthly was outlined, as was the price adjustment attendant thereto.

We sailed blithely along through the January 1954 issue (which incidentally included announcement of a revised subscription policy) and only the appearance of the February issue brought us to an abrupt realization that all factors of issuance might not be exactly crystal clear. Specifically, questions arose regarding the Cumulative Index to Photofact Folder Sets.

Bear with us a moment and I believe you' 11 understand why we goofed. We planned no change in policy for Cumulative Index issuance, i.e. compilation and release six times a year as in the past, hence (we felt) no need for announcement. Actually, some confusion was created because the doubled frequency of PF INDEX release (12 per year) meant that alternate issues would not contain a Cumulative Index.

The sketch appearing at the bottom of this column will undoubtedly provide a better idea of the shape of things to come. As indicated, the January, March, May, July, September, and November issues will contain the six Cumulative Index releases for this year.

Our apologies.
J. R. R.

Cumulative Index No. 43

Photofact folders

the World's Finest
TELEVISION, RADIO \& ELECTRONIC

PHOTOFACT SERVICE MANUALS

Here's the radio-TV service data that saves time and helps you earn more! Preferred and used daily by thousands of Radio and TV Service Technicians. Complete, accurate-based on analysis of the actual equipment. Uniform treat ment for each model. Includes Standard Notation Schematics; full chassis photo coverage; complete circuit analysis and replacement parts data; wave forms, alignment data; record changer analysis - everything you need for quick, profitable servicing. Each volume in deluxe binding.
VOL. 1-Post-war models to Jan. 1, 1947 VOL. 2 -Jan. 1, 1947 -July 1, 1947 VOL. 3-July 1, 1947-Jan. 1, 1948 VOL. 4-Jan. 1, 1948-July 1, 1948 VOL. 5-July 1, 1948-Dec. 1, 1948 Vol. 6-Dec. 1, 1948 -May 1, 1949 Vol. 7-May 1, 1949-Oct. 1, 1949 OL. 8-Oct. 1, 1949-Dec. 1, 1949 vol. 9-Dec. 1, 1949-Mar. 31, 1950 VOL. 10-Mar. 31, 1950 -July 31, 1950 VOL. 11 -July 31, $1950-$ Oct. 31, 1950 VOL. 12 -Oct. 31, 1950 -Jan. 1, 1951 Vol. 13 -Jan. 1, 1951 -Apr. 30, 1951 VOL. 14 -Apr. 30,1951 -Aug. 1, 1951 VOL. 15 -Aug. 1, 1951 -Oct. 31, 1951 VOL. 16-Oct. 31. 1951-Jan. 31, 1952 VOL. 17 -Jan. 31, 1952 -Apr. 30, 1952 VOL. 18 -Apr. 30, 1952 -July 31, 1952 VOL. 19-July 31, 1952-Nov. 30, 1952 VoL. 20-Nov. 30, 1952 -Feb. 28, 1953 Vol. 22-May 31, 1953-Mept. 15, 1953 Vol. 22-May 31, 1953 -Sept. 15, 1953 Vol. 24-Lept. $15,1953-$ Dec. 15,1953 VOL. 25 - Apr. 1, 1954 --June 30, 195
(2) Each Volume in Deluxe Binder. . $\$ 21.00$

PHOTOFACT FOLDER SETS

The easiest way to own the world's finest TV-Radio Service Data. Issued three set.s per month-put in your standing order for them
(8) Per PHOTOFACT Sel............... $\$ 1.75$

PHOTOFACT SERVICE DATA ITEMS

Deluxe Photofact Binder, Each \$3.50 3) PF INDEX Binder (holds' 12 issues) ... 2.50 Index Tabs for Sets 1.10
Index Tabs for Sets 11.20
Volume Labels for Vols. 1.10
Volume Labels for Vols. 11-20
Volume Labels for Vois. 21-30
I) Index Cards, Sets $1-100 \ldots$ Index Cards, Sets 101-200 Index Cards, Sets 201-300 Mailing envelope
2.50 per set 2.50 per set 2.50 per sef 2.70 per 100

ONLY $\$ 25$ DOWN

PUTS THE COMPLETE
Рнотоfact
SERVICE DATA LIBRARY
IN YOUR SHOP TODAY
(all in one handy file cabinet)
See Your Parts Distributor for the Full Details

INVALUABLE TELEVISION BOOKS

Telecasting Operations. The only complete coverage of every phase of Telecasting, from theory age of every phase of Telecasting, from theory production-indispensable to anyone interested n Telecasting. 600 p., $6 \times 9^{\prime \prime}$. Order $\mathrm{OH}-1$ \$7.95 Photofact Television Course. Gives a clear, complete understanding of TV principles, operation and practice. 208 pages, $81 / 2 \times 11^{\prime \prime}$. Order TV Servicing Short-Cuts. Describes actual TV service case his tories; shows how to solve similar troubles in any receiver. 100 pages, $51 / 2 \times 81 / 2^{\prime \prime}$.
Order TK-1
IV Test instruments. Tells how to operate each test instrument used in TV service work. 175 pages, $81 / 2 \times 11^{\prime \prime}$. Order TN-1 $\$ 3.00$ UHF Converters. Describes 21 popular converters; shows how they work. 44 pages, $81 / 2 \times 11^{\prime \prime}$ Order UC-I
UHF Antennas, Converters \& Tuners. Covers all antenna types, transmission lines and match ing networks, UHF converters and tuners. 136 pages, 5 //2 $\times 8$ //5". Order UHF-1 150 Television Antennas. 2nd Edition. Tells how to elect, install and service antennas. 224 pages select, install and service antennas. 224 pages,
$51 / 2 \times 81 / 2^{\prime \prime}$. Order TAG-1 Servicing TV in the Customer's Home. Short-cut methods for repairs in the field. 96 pages $51 / 2 \times 81 / 2^{n}$. Order TC-1 $\$ 1.50$ Making Money in TV Servicing. Tells how to set ap and operate a profitable TV service business 36 pages, $51 / 2 \times 8$ 4/2". Order MM-1 $\$ 1.25$ TV Tube Locotion Guides: Vol. 4. Shows tube posi tions and functions in hundreds of TV receivers Helps quickly locate faulty tube. 192 pages $51 / 2 \times 81 / 2^{\prime \prime}$. Order TGL-4 $\$ 2.00$ Yol. 3. Covers receivers not included in Vols. 1, 2 and 4. 192 pages, $51 / 2 \times 812^{\prime \prime}$. Order TGL-3. \$2.00 Yoi. 2 Covers receivers not included in Vols. 1 and 3.208 pages, $51 / 2 \times 81 / 2^{\prime \prime}$. Order TGL-2 $\$ 2.00$ Vol. 1. Covers hundreds of sets made by 56 mfgrs. 208 pages, $51 / 2 \times 81 / 2^{\prime \prime}$. Order TGL-1 $\$ 1.50$

look for the Howard W. Sams' "BOOK TREE" at your PARTS
DISTRIBUTOR
Make it a habit to
"browse" at the "Book Tree.' It's loaded with the time-saving, profit-building books you want and need. Keep ahead with these timely, practical publications that help you learn more and earn more daily.

Get these Photofact Books at your Parts Distributor

audio publications

Recording \& Reproduction of Sound. Oliver Read's biggest selling volume on all aspects of Audio; covers recording and amplifying method nd equipment. Authoritative, complete. 810 pages, $6 \times 9^{\prime \prime}$. Order RR-2
Audio Amplifiers Vol 4 . Audio Amplifiers. Vol. 4. Full analysis of 75 audio amplifiers and tuners made during 1951 and 952. 352 pages, $81 / 2 \times 11^{\prime \prime}$. Order AA-4.. $\$ 3.95$ Vol. 3. Covers 50 amplifiers and 22 tuners made during 1950. 352 pages, $81 / 2 \times 11^{\prime \prime}$. Order AA-3
$\$ 3.95$
Vol. 2. Covers 104 amplifiers and 12 tuners pro duced during 1949. 368 pages, $81 / 2 \times 11^{\prime \prime}$. Order

RECORD CHANGER MANUALS

Voi. 4. Full service data on 38 changers and re corders made during 1951. 288 pages, $81 / 2 \times 11^{\prime \prime}$ Order CM-4
Vol. 3. Covers 44 changers made in 1949 and 1950. 288 pages, $81 / 2 \times 11^{\prime \prime}$. Order CM-3 .. $\$ 3.00$ Vol. 2. Covers 45 models made in 1948 and early 1949. 432 pages, $81 / 6 \times 11^{\prime \prime}$. Order CM-2 . $\$ 4.95$

HANDY SERVICE GUIDES

AM-FM Servicing Short-Cuts. Describes actual AM and FM service case histories; shows practica ways to solve similar troubles in any AM or FM receiver. 152 pages, $51 / 2 \times 81 / 2^{\prime \prime}$
Order RK-1
$\$ 1.30$
Radic Receiver Tube Replacement Guide. Shows where to replace each tube in 5500 receivers made from 1938 to 1948 . 196 pages, $51 / 2 \times 812^{\prime \prime}$ Order TP-1. $\$ 1.25$

Dlai Cord Stringing Guide. Vol. 4: Shows correct way to string dial cords in radio receivers mad rom mid-1951 through 1953. With index. 96 pages, $51 / 2 \times 81 / 2^{\prime \prime}$. Order DC-4
Vol. 3: Covers receivers produced from 1950 through mid-1951, and TV-radio receivers from 1946 through mid-1951. 96 pages, $51 / 2 \times 816^{\circ}$ Order DC-3 Vol. 2: Covers receivers produced from 1947 through 1949. 96 pages, $5 \frac{1 / 3}{} \times 81 / 2^{\prime \prime}$ through 1946. 112 pages, $516=8 \mathrm{kn}^{\prime \prime}$ Order DC-1

AUTO RADIO SERVICE MANUALS

Vol. 3. Full service data on 47 chassis (80 models) used in 1950, 1951 and 1952 auto radio receivers 288 pages, $81 / 2 \times 11^{\prime \prime}$. Order AR-3 $\$ 3.00$
Vol. 2. Covers 60 chassis (90 models) used in 1948, 1949 and 1950 auto radios. 288 pages $81 / 2 \times 11^{\prime}$. Order AR-2
$\$ 3.00$
Vol. 1. Covers 100 auto radio models made from 1946 to 1949 by 24 manufacturers. 396 pages, $81 / 2 \times 11^{\prime}$. Order AR-1

COMMUNICATIONS RECEIVERS

Vol. 2. Full analysis of 26 popular communica tions receivers made during recent years. 190 pages, $81 / 2 \times 11^{\prime \prime}$. Order CR-2......... $\$ 3.00$ Vol. 1. Covers 50 well-known models produced from 1946 to 1948.264 pages, $81 / 2 \times 11^{\prime \prime}$. Order

Cumulative Index to Photofact Folders

No. 43 - Covering Folder Sets Nos. 1 through 233 - World's Finest Electronic Service Data

HOW TO USE THIS INDEX

To find the PHOTOFACT Folder you need, first look for the name of the receiver (listed alphabetically below), and then find the required model number. Opposite the model, you will find the number of the PHOTOFACT Set in which the equired Folder appears, and the number of that Folder. The PHOTOFACT Set number is shown in bold-face type; the Folder number is in the regular light-face type.

$\begin{aligned} & \text { Set Folder } \\ & \text { No. No. } \end{aligned}$	$\begin{aligned} & \text { Set Folder } \\ & \text { No. No. } \end{aligned}$
AD	Admiral-Cont.
CT-1 48-1	Chossis $20 \mathrm{VVI}_{1}$ Tol. Roc.
ADMIRAL XAlso seo Record Changar (isting)	(en
Chassi ULEK1 30	
	Chasis 2021 (Alio noo
	Chossis 21 Al Toi. Roc. MAloo
	$\mathrm{Ch}^{\text {chasis }}$ is 218
885 ……..... 24-1	${ }^{\text {PCB }} 23$ 25-ser
${ }^{\text {Hi }}$	Chosis 21 l 1
Chasisis 4114 ki 77-7	see PCB 25
Chossis 451 (...........100	Chassit 21F
Chasisis ${ }^{\text {a }}$ (1)	
Chossis sat	
Chassis SBE (soo Model 6 To2-Sat	
Chassis 5BT Phono	
${ }_{58 \mathrm{~S}}^{58 \mathrm{~A}} \ldots$	
Chossii sca	Pce
Chassis $5 \mathrm{SDE}_{2}$ …i......118	Chassis 21P1, 2101 Tell Rec, (Alco
	8ee PCE
-asis 5F!	Chasis 21 W 1 Te
	Sil7-2! ${ }^{\text {a }}$
Chomit $5 \times$:	
(ositis 5 Ni	Chasis 22AL, 22AzA Tol Roec,
	Chassis 22 Cz
Chasisis 571 $\mathbf{6 8}^{88}$	Chosisis 222 E Tol: Roc.... 20
	Chasis 22F2 Toll Roc.....222-2
Charit $5 \times 2 \mathrm{x}$.204-2	Chossii 22 mm , $22 \mathrm{P2}$ Tol, Ree.
Chossis oAT	
Chorsis OA: 103-1	Chassis $2401,24 E 1,2441,24 \overline{\mathrm{G}}$,
	114
ssi	Chossis 30A1 101. Rec...... $57-2$
Chassis 812 2	Chassis 3081, 30C1, 300 il Tel
Sssis ${ }^{\text {amm }}$	
	ch 1981)
Chossis 6ot 78-1	(e)
80r	Model 12212 Tel. Rec. (5 See
Chauti ${ }^{\text {dit }}$	12222 Tel.
Chasisis ow	
autia ${ }_{\text {ary }}$	${ }_{\text {Modol }}^{1981)}$ 12228 rel. Rec. (Soe Ci.
Chasis Chat	Modalis 401, 4D12, 4013 (See Ch.
onii 7 gm	
Chassin 80	
	$4{ }^{4}$
Chastii 981 49-2	
Chosio 9Et	Roc. (see Ch. 2081)
	c.
	oc.
	Modol: 4H137A, B Tol. Rec. (Soe
Chasis 19C1 Tel. Rec. (Soe PC8 78 ${ }_{203-21} 217-1$ and Ch . 19E1-Se 203-2)	[See Ch. 30B1] (See Ch. 30B1\} Model: $4 \mathrm{HI} 45 \mathrm{BA}, \mathrm{B}, \mathrm{C}, \mathrm{CN}$ Td. Rec. (See Ch. 20Bi)
	-
Roc	
	A6S,
	474, 8

IMPORTANT-1. The letter " A " following a set number in the Index listing, indicates a "Preliminary Data Folder." These folders were designed to provide immediate basic data on TV receivers. Many of these were later superseded by regular Photofact Folders. In those cases where short production runs and/or limited distribution prevented availability of a sample chassis the " A " designation has been retained
2. Models marked by an asterisk (\%) have not yet been covered in a standard Folder. However, regular PHOTOFACT Subscribers may obtain Schematic, Alignment Data or other required information on these models without charge by supplying make, model or chassis number and serial number. (When requesting such data, mention the name of the Parts Distributor who supplies you with your PHOTOFACT Folder Sets.)
3. Production Change Bulletins contain data supplementary to certain models covered in previously issued PHOTOFACT Folders, and are listed in this Index immediately following the listing of the original coverage of the model or chassis. These Bulletins should be filed with the Folders covering the models to which the changes apply.

o. No.		ADMIRAL-Cont.
Hodels 4HI55A, B Tel. Rec. (See	Model 7C62A (See Ch. 6MI)	Model 26R35 Tel. Rec. IEse C
Ch. 2081)	Models $7 \mathrm{C63}, \mathrm{7C63-UL}$ (500 Ch.	H1)
Models 4 H155S, SN (See Ch. 3081)		${ }^{\text {del }} 26$
Models 4 H15SA, B Tol. Rec. (Soo	Model 7 C63A (500 Ch .7 Cl$)$	Model 26 R36 Tol. Rac. (Soo Ch.
che is 4 HII 56 S , SN Tel. Rec. (See	E1)	24H1)
Ch. 30811	M	del 26836 A Tol.
Models 1H157A, B Tel. Rec. (S	Modela 7G11, 7G12, 7G14, 7 7 Gl 16 (See Ch. 7 G 11$)$	Model $218 \mathrm{Br37}$ Tol. Rec. (Soe
Models 4 Hl 57S, SN Tel. Rec.	models 7P32, 7P33, 7P34	
Ch. 30811		Model 1181) 218 R 37 A Tol.
	Models 7	21B1)
Mode ${ }^{\text {che }}$ 2H165S	odiels 7 TOO, 7 TOIM.UL, 7 TO4,	
Ch. 3081$)$	T04,	Models $2 \times 1 \times 36 \mathrm{AS}$, S Tol. Rec. (500
$4{ }^{4} 6$	M	
Ch	Model 7110 (5 ee Ch .5 Sk$)$	$26 \times$
Modeis $4 \mathrm{HI} 166 \mathrm{~S}, \mathrm{SN}$ Tol. Rec. (See	Model 7112 (Soee Ch . 4 AB)	
	M	
		,
Hols 4 HI 107 S , SN Tel. Rec. (Modoli $8 \mathrm{Cl} 4.8 \mathrm{BC15}$, 8C16,	Res
$\mathrm{Ch} .30 \mathrm{Bl})$ (${ }^{\text {a }}$		dels
Modols 4R11, 4R12 (See Ch. 4R1)	M	
	M	Modols 26x65, 26x66, 26×67 Tol.
Modeli 4W18, 4W19 (Seo Ch. 4W1)	M	
431	9E1)	
(odels SE21, 5E22, 5E23 (5ee Ch.	Models $12 \times 11,12 \times 12$ Tel. Rec. (See	
5E2]	Ch. 2021)	dels $26 \times 735,26 \times 76$ Tel.
Models 5E31, 5E32, 5E33 (See Ch.	odals 14R11,	
dels 5E38,	del larlo Tel. Rec. (See Ch.	$1)$
dels 5F11, 5 12 (See Ch. 5Fl)	20 II	Models
dels 5G21, 5G21/15, 5G22,		
${ }_{\text {Ch. }}^{5} \mathrm{G} 22 / 15$	del 16	
Ch. ${ }^{\text {chels }} 5121$	Model	720
5121	Modols ifR11	2FI)
dels		Modols 27
ISee Ch	odeis 170	
${ }^{5} 512$	Mod	
dols	Ch 21Fl] ${ }^{\text {a }}$	odels 27
(s	17K16 Tal. Rec. (Sao Ch.	
$\begin{gathered} 5 R 11 \\ \text { h. } 5 R 1)^{5} \end{gathered}$	17	
del 5s21an (See Ch. 5C3)		adels 27M25, 27M26, 27 M 27 Tel .
dol 5S22AN (Seo Ch. 5CJ)	Models 17M15, 17M16, 17M17 Tol.	
del	15 ee	Models 27 m 3 . 22
	19A	
dels 5 W11, 5 W12 (See		Models $29 \times 15.29 \times 16$
dels $5 \times 11,5 \times 12,5 \times 13,5 \times 14$	Models 19Alss,	Roc. $1500 \mathrm{CHF}^{\text {che }} 24$
dels $5 \times$	Models 20×11, 20×12 Tol. Rec	2411
5×21		硣
	20×122	
s 6A21, 6A22, 6A23 (See Ch.	20	
del	$\begin{aligned} & \text { doel } 20 \\ & 20 Y 1) \end{aligned}$	
(see Ch. 10al)	odels 20x145, 20x146,	2141)
22 (See Ch. 812]		Modal 29×27 Tol. Roc. (See Cr.
$\begin{gathered} \begin{array}{c} \text { adels } \\ 5 R 21 \end{array} \end{gathered}$) 2	. Roc. Soer Ch
Sdel ${ }^{\text {ap32 }}$ (5 ees Ch . 6		
odels 6Q11, 6Q12, 6Q13, 6Q14 (Sea Ch. 601)	Models 24A11, 24 Al 2 (See Ch. 20A1)	
(en	Model 24A125 Tol. Rec. (Soe	J08175, SN Tol. Rec. ISee Ch.
Modol oRP48. GRP49, GRP50 (5ee	20al)	30B
Ch. 3A)	dol 2atizan toi. Roc. [soo	Modela 30C155, SN, 30C165, SN,
P1.	2A126	
41	odeli 24A126,	
	Models 24C15, 24C16,	
Models 6S11, 6512 (See Ch. 6 S1)	Rec. (Soe Ch. 2081)	Models $32 \times 15,32 \times 16$ Tol. Rec. 15 SeO
Model bT01 1-19	Models 24811 , 24812 Tol. Rec. (So	Ch .20211
Model 6T02, 6T04........ 1-20	ch.ls 24	Soed Ch. 20 L
odel otos	Tel. Rec. (See Ch. 20Xi)	Models $32 \times 35,32 \times$
Modol 6TOS, 6 TO7 [Soe Ch. AA1)		(Seo Ch
Model 6T11 (See Model 6TO2-Set	Rec. (Soo ch. 20Ai)	dels 34R15, A. 34
del otil (See Ch. 4Al)	Models (See Ch. 2181]	
Model 6 T44A (Soe Ch. 781)	Model 26 R25 Tol. Rec. (${ }^{\text {See }} \mathrm{Ch}$	21 Cl
odels SV11, oV12 (See Ch. oVl)	241)	dela
Models 6W1I, oW12 (See Ch. 6WI)	Modal 26R25A Tol. Rec. (Soe Ch	Ch.
Models SY18, orla (See Ch. ©Y1)	1811	Models 36x35, 36x36, 36x37 Tol.
Models 7 C60B, 7 C6OM, 7 C6OW (Soo Ch. 681)	Model 24 H 11 ${ }^{26 R 26} \mathrm{Tol}$. Rec. (Soo	
Cols 7 C61, $7662, \mathrm{TC62-UL}$ (5ee	Model 26 R26A Tal. Rec. (5ee C	Tol. Rec. 15ee Ch .24 Ei ond Ch .

ADMIRAL-Cont.

 Tol. Roc. (Soen Ch. 21 Gl or 2101
and Ch. SO2)
 Madels 3755

 ond (ch. 3C1)
 Tel. Rec. (SSeo Ch. 21 GI or 21 Q 1
ond Ch.
 model Ch7K55, 37K56, 37K57 Tal.

 (Soe Ch. 24 GI and Ch. 502 2)
model $39 \times 17 \mathrm{C}$ Tol. Rec. (See Ch 21111
Modelt
$39 \times 25,39 \times 26$
Tol. ReC

 Models $57 \mathrm{M1O}$, $57 \mathrm{M11}, 57 \mathrm{M} 12 \mathrm{Tal}$. Rec. (S000 Ch. $2121 \dot{A}$)
Modol
1210×10 Tal. Rec.
 Model 121 DX 12 Tol. Rec. ISee Ch.
1901)
Mat 19 Cl 1
model 12
 Model 1210×16 Tol. Rec. (Soe Ch Modal 1210×10 A Tol. Rec. (Soe

Model 1210×17 Tol. Mac. (Soe Ch.
$19 \mathrm{Cl})^{2}$

 Mod. Reci (Soo. Ch . 21 mi)

Modol
22 M 11
121 MlO Tol. Roc. (See Ch

Models $121 \mathrm{M} 11,121 \mathrm{M} 12 \mathrm{Tol}$. Roc.
Soe $\mathrm{Ch} .21 \mathrm{Mil1}$

 Model $2210 \times 15 L$
19011
Tol. ReC. ISee Ch. 19011
Model 2210×16 Tel. Rec. (See Ch.
1901)

 Modol 221 DXIT Tal. Rec. ISeo Ch. Modol $221 \mathrm{DX17A}$ Tel. Rec. (See Ch
 Modol $221 \mathrm{DX26} \mathrm{Tol}. \mathrm{Kec}$.1 Sae Ch .

 $19 \mathrm{Cl})$
Model 221 DX 38 A Tel. Rec. (Soe Ch

 Modele $221 \mathrm{~K} 35,221 \mathrm{~K} 36$ Tol. Rec.

 22m1)

 $\underset{\substack{\text { Model } \\ 22(2220 \times 17}}{22201}$ Tol. Rec. ISee Ch.

AIRLINE-COHt.
25WG.3049B Tel. Rec. (See Model 25WG. 3056A Tel. Rec...192-2 25 WG .3059 A Tel. Rec. 15 see Model
15 WG .3049 A -Set 164.21 25WG-3060A Tel. Rec...212-2 25WG-3060A, B, C Tel, Rec. 25WG-3070A Tel. Rec....212-2 2 B, C, $25 \mathrm{WG} .3073 \mathrm{~A}, \mathrm{~B}, \mathrm{C}$ Tel,
Rec
206-2 $25 \mathrm{WG} 3075 A_{1}$, B , Tel CeC . 25 wG. 3077 A, B, C Tel Rec.
 $35 B R-3153 A$ Tol. Roc.....221-2
$35 B R-3167 A$,
$35 B R-3168 A$,
$35 B R$.
 UHF Conv. (Similar to Chossis) 35 GMD- 3309 A (Late Version) Tel.
UHF Conv. (Similor to Chassis) 35GSE-1555C (See Model 25GSE-1555A-Set 174.3)
35GSE.1556C
(See Model 25GSE-
$15564-5 e t ~$
174.3) $15564-$ Set 174.3) (Sec. (See PCB
$35 \mathrm{GSE}-3074 \mathrm{~A}$ Tel. Res. $3063 \mathrm{~A}-\mathrm{Set} 195.2$)
5GSE. 3085 A Tel. Rec. (See PCB $72-5$ Set 212.1 and Model 25 GSE .
3083 S . 3063A-Set 195.2)
35GSE.3087A Tel. Rec. (See PCB 72
-Set ?12.1 and Model 25GSE. 3063A-Set 195-2] 35GSG-2016B
35GSL-3064A, B Tel. Rec. $2218-3$
$35 G S L-3083 \mathrm{~A}, \mathrm{~B}$ Tıl. Rec. $218-3$
 35WG.1572B (See Model 25 WG.
1570A-Set 177-4) 35WG.15738
35WG-2751C, D(Soe Model 15WG2745 C -Set 130.2)
35 WG 2755F, $\mathrm{G}(\mathrm{See}$ Model $15 \mathrm{WG}-$
$2745 \mathrm{C}-\mathrm{Set} 130.2$) $35 \mathrm{WG}-3171 \mathrm{~A}, 8$ Tel. Rec. 222-3
$35 \mathrm{WG}-3173 \mathrm{~A}, \mathrm{~B}$ Tel, Rec.. 222-3
 35WG-3179A Tel. Rec.....222-3
$54 \mathrm{BR}-1501 \mathrm{~A}, 54 \mathrm{BR}-1502 \mathrm{~A}$
$54 \mathrm{BR}-1503 \mathrm{~A}, \mathrm{~B}, \mathrm{C}, 54 \mathrm{BR}-1504 \mathrm{~A}, \mathrm{~B}$, ${ }_{54 \mathrm{BR}-1505 \mathrm{~A},}^{\mathrm{C}} \mathrm{B}, \quad 54 \mathrm{BR}-1500 \mathrm{~A}_{\mathrm{t}}^{3}$ 54KP-1207A, B
$\begin{array}{lll}\text { 54KP.120JA, B } \\ \text { 54WG.18J1A, } 54 \text { WGG.1801B } & 8-1 \\ \text { 54WG.25J0A, } & \text { 54WG.2700A } & 4-15\end{array}$ 61.6780 (Similar to Chasis) 01.6781 isimilar to Chassis) 01.6782 (Similar $10 \begin{gathered}\text { Chassis) } \\ 146-3\end{gathered}$

 $648 R-916 A$
$648 R .9163$

SABR-1808A $648 R-200 \mathrm{~A}$ $64 B R-7000 \mathrm{~A}$

$64 B R-7100 A$,
$7120 A$

$7120 A$
$64 B R .7300 A$,
73204
, $6482.7310 A$,

7320A
$64 \mathrm{BR} 7810 \mathrm{~A}, ~$
$1 \mathrm{BR}-7820 \mathrm{~A}$

64WG 1050
64WG.105OB, C , D iSee
64WG OSOA-5et $10-21$ 64WG-1052A
64WG.1052B (See Model 64WG-
1052A.-5et 9.21

 64WG.1804A, B.......... $4-2$
64WG-1804C (See Model o4WG
$1804 A-$ Set $4-27)$
 64WG-2007A, 64 WG-2007B 64WG-2009A, 64WG-20098
64WG-20108, 64WG-2010B
SAWG-2500A

 $74 \mathrm{CR1812B}{ }_{7}$.
74BR-2001A (See Model 74ER-
$2001 \mathrm{~B}-$ Sel 23.2)

 74BR.2702B
$74 \mathrm{GSG} .84 \cdot \mathrm{JOA}, 74 \mathrm{GSG} .8700 \mathrm{~A}$
25-3 74GSG-8810A, 74G5G-8820A

AIRLINE-Cont.
 2504A-5et 28.1) 18
74WG.2505A
74WG.2700A, B (See Model 54 W 2500A-Set 4.15]
74WG.2704A
74WG.2704B, C 15 See Model 74WG 74WGG2704B, C iSee Model 74WG
2704A-Set $28-11$
74WG.2705A, B (See Model 74WG. 2505-5et $18-7$)
74WG.2709A
$74 W G-2711 A$ (See Model 74WG 74WG-2711A ISee Model 2505A-Set 18-7)
B4BR.1815B, 84BR.1818B
 84GHM.924 84GSE-2730A, 84GSE-2731A 7G-1
84GSE-3011A Tel. Rec. B2-1
$84 \mathrm{HA}-1527 \mathrm{~B}$, $84 \mathrm{HA}-1528 \mathrm{~A}$ (See 84HA-1527A, $9.1527 \mathrm{C}-\mathrm{Set}$
Model 97.3
$84 \mathrm{HA} 7529 \mathrm{~A}, 84 \mathrm{HA} 1530 \mathrm{~A} .85-2$ 84HA7529A, 84HA1530A
84 HA .1810 A
(See Model 84 HA .1810 A
$1810 \mathrm{C}-5.4 \mathrm{See}$
$84 \mathrm{HA}-1810 \mathrm{C}, ~$
$84 \mathrm{HA} \cdot 3002 \mathrm{~A}, 8 \mathrm{HA} \cdot 3002 \mathrm{~B}$ Tel. R

84WG.2728A (See Model 84WG
2718A-Set 45.5)
B4WG.2732A, B (See Model 84VG
3WG. 2732A. B (See Model 84 $V G$.
2712A-5et 43.3) Model 84WG. 84WG.2734A (SSe Model 84WG.
2718A-Set 45.5)
84G. 3006 , $84 \mathrm{WG} .3008,84 \mathrm{WG}$
3009 Tel. Rec. (See Model 94. 84WG.3006, 84 WG. 3008,84 W/G
3009 Tel. Rec. (See Model 9
WG. 90004 -Set 72.4) $94 B R-1533 A$
$948 R-2740 A, 94 B R .2741 A, ~ B 8-1$
$89-1$ $94 B R 3004$, 'C, 94BR3005.
 4 AR-30178 Tel. Rec. (See PCB 7-
Set 110.1 and Model $948 R-3017 \mathrm{~A}$ Set $89-2$)
4GAA. 3654 A
$4 \mathrm{GCB}-1064 \mathrm{~A}$
94 GCB-3023A,
B, C Tel
9GGMM.934A $167-3$
$94 G S E-2735 A, 94 G S E-2736 A 72$ O 3
4GSE-3011, B (See Model $84 G S E$. 94GSE-3011, 8 (See Model 84 GSE .
3011A-Sel 83.1) 9GSE-3015A Tel. Rec.... 107-2
94GSE-3018A Tel. Rec....93A-2 $94 G S E-3018 \mathrm{~A}$ Tel. Rec....93A-2
$94 \mathrm{HA.1527C}$, 94HA.1528C 67 -3 94 HA .1527 C , 94HA. 1528 C 94WG.1059A
94 WG-1804D
$94 W G .1811 \mathrm{~A}$
94 WG. 2742 A,
94 WG .275 A
94 WG.2745A,
94WG.274BA.94WG.2749A 90-1 91
9WG.2748C
2748 C
(See Model 94 VFG . 2748A-Set 90.1)
4WG-2749A
4WG-2749A

94WG. 30098 Tel. Rec..... 85-3
94WG. 3010 A, B, C Tol. Rec. (See
Set $110-2$ and Model 94 WG
Set $110-2$ and Model 94 WG -
$9006 \mathrm{~A}-5 \mathrm{et} 72.41$ 94 WG. 3022 Tel, Rec...... 85-3
$94 \mathrm{WG}-3026 \mathrm{~A}$ Tel. Rec.... 85-3 94WG-3026A Tel. Rec.... 85-3
94WG-3028A Tel. Rec. ISee Model 94WG.3006A-Het 72.4)

ALDENS

114G, $116 \mathrm{G}, 117 \mathrm{G}, 120 \mathrm{G}$ Tel. Rec
(Similar to Chassis).....162-7

ALGENE

ARSU
22-3
ALLSTATE
$6284(\mathrm{Ch} .528 .6284) \quad . . .228-2$
6286.4 (Ch. 528.6286 .4$) .225-3$ 6287.4 (Ch. 528.6287 .4)...225-3
6295.6 (Ch. 528.6295 .61). 229-2

altec lansing

AMBASSADOR

 A17CS, Al7is Tel. Rec. (See Model
20PC Set 178.3)
A20CS Tel. Rec. (See Model 20PC Cet 178.3) Rec. (Soe Model
 20PC-Set 178-3) Ree, (See Model ${ }^{2} 1 \mathrm{C} 2 \mathrm{~A}-\mathrm{Set} 191.4$)
CD2020 Tel. Rec.........175-2
 C2020 Tel. Rec.
C2050 Tel. Rec. Model C1720 C2052 Tel. Rec. (See Model T1853 C2-550 Tel Rec. (See Model C1720
 11853 - Set 197.3) Model T1853
C2155 Tel. Rec. (See Model $\underset{\text { C2420 Tel. Rec. }}{\text { Sel }} 197.31$ 17-2
 12020 Tel. Rec.
14 MC MT Tel. 14 MC , MT Tel. Rec, $162-2$
14 MT (2nd Prod.), 14 MTS Tol. Rec ${ }_{10 M C,}^{M T}$ MT, MXC, MXCS, ${ }_{162-1}$ 16MT (2nd Prod.), MTS Tel, Rec. 17MC, MT, MXC, MXCS, MXT, MXTS Tol. Rec.
17 MC (2nd Prod.). MCS, MI (2nd Prod.), MTS Tel. Rec. ... 173 - 22
ITPC, IJPCS Tel. Rec. (See Model $17 P C, 17 P C S$ Tel. Rec. (See Model
20 OPC —Set 178.31
17 PT 17PTS Tel Rec. (See Model 17PT, 17PTS Tel. Rec. (See Mode
20 PL - Set 178.3) 20 C Tel. Rec. MT, MTS Tel. Rec
$20 \mathrm{MC}, \mathrm{MCS}, ~$ 20PC, 20PCS, 20PCS2 Tel. Rec. 20PT, 20PTRS, 20PTS Tel. Rec. (See Módel 20PC-Se: 178.3$)$
$21 C D 2 A, ~ B ~ T e l . ~ R e c . ~(S e e ~ M o d e l ~$ $21 C 2 A, 21 C 2 A L O$ Tel. Rec.. 191-4

 9121, M, LO, XB, Tel. Rec. (See
Model 21 C2A Set 191.4)

AMC (AIMCEE)

1C23 Tel. Rec. (Similar to Chossis)
1C72 Tel. Rec. (Similar to Chassis)
1 T71 Tel. Rec. [Similar to Chassis)
$17 \mathrm{C}, \mathrm{CB}$ Tel. Rec. Isimilar to Chos-
17 CG , $17 \mathrm{C3}$ Tel. Rec. (Similar to
17T Tol. Rec. (Similor to Chassis
17TG Tel. Rec. (Similar to Chassis)
1720 Tel, Rec. (Similar to Chessis)
20 CD Tel. Rec. Isimilar to Chassis
20 CD 2 A, I Tel. Reo..... 188-3
20 CD 2 B Tel. Rec. (See Model 20C2A 20CD2B Tel. Rec.
-5 el $188-31$
(Similar to Chassis)
20 Cl Tel. Rec. (Similar to Chassis)
20CAA, Tel. Rec. $188-3$
20 C 2 B Tel. Rec. (See Model 20C2A
20 C 22 et Tel. Rec. (Similar to Chas.
20D, DB Tel. Rec. (Similar to Chas
${ }_{2 \text { sis) }}^{\text {sis }}$ Tel. Rec. (Similar to Chassis)
20 T 2 A, . 1 Tel. Rec. 188-3
2072 B Tel. Rec. (See Model 20C2A 20 T 21 Tel . Rec

…... 139 -1

21CD2A. B Tel. Rec. (See Mode)
2002A-5et 188.3)
21C2A Tel. Rec. (See Model 20C2A

24T2A, ${ }^{-1}$ Tel. Rec........188-3
$114 \mathrm{C}, 114 \mathrm{~T}$ Tel. Rec. (Similar to
Chassis) $10 \mathrm{C}, 110 \mathrm{CD}, 116 \mathrm{~T}$ Tel. Rec. (Simi.
lar to Chassis)....... $111-3$

AMERICAN COMMUNICATIONS (See Liberty)
AMPLIFIER CORP.
ACA.1000C, ACA-IO0GE 63-2 AMPLIPHONE
10
20
AMPRO (See Recorder Listing) ANDREA
 BC Model C.VL17-Set 152-1)
BT-VL17 (Ch. VLI7) Tel. Rec. (See Model C.VLI7-Set 152-1) $27-3$
Co-v15 CO-U15
CO-VK15, COVK16 (Ch. VK1516)
27 Tel. Rec. (Also see PCB ${ }^{8}-5 \mathrm{Set}$
$112.1)$
 covilo (ch. vilo) Tel. Rec. covM2i ich, VM2i) Tol. Rec. C.VK10 Tel, Rec. ISee PCB 8-Set
112.1 and Model COVKI 5-Set 12.1 and Model COVKIS-Set
$103-41$
$76-5$
 c.vili ich. viiti Tel Rec. c.vM21 ich. vм.21) Tel
P. 163
T 16
$\mathrm{~T} . \mathrm{U} 15$
$\mathrm{~T} . \mathrm{U1}$
T

T-VK12 Tel. Rec
TVK12 Tel. Rec.
TVK.1278, M Tel.
TVL. 12 Tel Rec

T. Vili (Ch. vili) Tol 125 Rec

T-VM21 iCh. VM21) Tel. 152 Rec. $^{\text {Rec }}$
2c.viif iCh. vili) Telin Rec.
2 C vi20 (Ch. vi.20) Telitisec.
2 C VM21 iCh. VM2i] Tel. Rec.
Ch. Vkisio (See Model CO.VK15)
Ch. Vilo (See Model Covi-16)
Ch. V116 (See Model COVI-16)
Ch. VII7 (See Model C-VIt)
Ch VI19 (See Model CO.V(19)
Ch. VIIT (See Model C.VIT)
Ch. VII9 (See Model CO.VL19)
Ch. VI20 (See Model 2 C -VI20)
Ch. VM2I (See Madel C.VM21)

ANSLEY

32 1P 41 53 701 APEX $4 B 5$ $192 A$

APPROVED ELECTRONIC

FM Tuner	41-2
A. 600 AC	175-4
A710	177-5
A-800	176-2
A-850	175-5

ARC 60125-5

ARCADIA	
37D14.600	$9-3$
ARIA 554-1-61A	7-2

ARLINGTON

ARTONE

ARVIN

355 I (Ch. RE.213) (See Model 3561

- Sel 78.2)
 $\begin{array}{lll}360 T F M, & 361 \text { SFM } & \text { (Ch. RE. } 260\end{array}$ 440 T (Ch. RE-278) (See Model 440 T 442 (Ch. ${ }^{\text {(C) RE-91) }}$).

558 (Ch. RE. 204)

$652 . \mathrm{P}$ (Ch. RE292) (See Model
650.P-Set 175.6)
54.P (Ch RE.292) (See Model

540T-Sel 143.4)
7417 (Ch. RE352)

53T (Ch. RE-348).
758T (Ch. RE.350)
760 T (Ch, RE-342).
780TFM (Ch. RE333) …223-3
2120 CM (Ch. TE289.2, TE289.3)
Tel. Rec. (Also See PCB $20-$ Set

124.

2121 TM (Ch. TE289-2, TE. 289.3)
Tel, Rec. (Also see PCB $20-\mathrm{Sel}$
$134-1$)
2122TM (Ch. TE-289) Tel. Rec.

$2123 T M$
Tel ReC. TE-289.2, TE289.3)
20-Set

Tel. Rec. (Also see PCB 20-Set
i34-1)30-3

ARVIN-Cont. 2126 CM (Ch. TE289-2, TE-289-3)
Tel. Rec. (Also

 $3100 \mathrm{~TB}, 3100 \mathrm{MM}, 3101 \mathrm{CM}, 3120$
 40800 (Ch. TE282) Tol. Rec. $104-2$
40402 4081 T Tel. Rec. (See Model 4080 T 4162CM (Ch. TE-286] Tel. Rec.
[Ch.
(3) $5170 \mathrm{CB}, \mathrm{CM}, 5171 \mathrm{TM}, 5172 \mathrm{CB}, \mathrm{CM}$ (Ch. TE.302, $-1,-2,-3,-4,-5 A$
6) Tel. Rec. (AIso see PCB $50-5$
5et 184.1) Set 184-1). .3.302) Tel. Rec. (See
5173 M (C. TE. Model 5170 CB) TE3201 Tel: Rec,
5175 , 5178 (Ch. TE $5204 \mathrm{CM}, 5200 \mathrm{CM}$ (Ch, TE-300) Tel.

 Rec. (See PCB 66-Set 203.1
ond Model o175TM-Set 181.4)
173TM.UMF (Ch. TE332, -3,-4) Toif Rec. (Also See PCB $88-$ Set 231.1). $208-2$
6175 TM (Ch. TE-331, -1, -2,-3,-4)
Tel. Rec. (Also see PCB $60-5 e)$ 175 TM [Ch. TE-331, $-1,-2,-3,-4)$
Tel Rec. (Also see PCB 66 Set
203.1) 6179MM ICh. TE.33i, -1, -2, -3,-4)
Tel. Rec. (Also see PCB $66-$ Sot
 Model 6213 TM-Sot 195.4)
6213 TB-UHF (Ch. TE330, - $1,2,-3$,

 $204.1)$
$6215 \mathrm{CM} . \mathrm{UHF}$ (Ch. TE330, 1, 2, -3,

 TE-341,-2) Tel. Rec. (Also see
PC8 $63-5 \mathrm{Set} 197.1$) 188 - 4
210 CM . CR (Ch. TE. 337.11 Tel.
 Tel. Roc. (See Model 7210 CM -
Set 189.3)
212 CFP -UHF, $\mathbf{7 2 1 2 \mathrm { MEA }}$ UHF (Ch.

 (See Model 7210 CM -Set 189.3)
7216 CB .UHF (Ch. TE. $341,-21 \mathrm{Tel}$.
Rec. (Also see PCB 63 -Set Rec. (Also see PCB $83-\mathrm{Sel}$
$197.1)$
$7218 \mathrm{CB}, \mathrm{CM}$ Ch. TE. 337.11 Tel $7218 \mathrm{CB}, \mathrm{CM}$ (Ch. TE-337.1) 189 Tel Rec.
7218 CB UHF
 TE-341, -2) Tel. Rec. (Also see
PCB 73-Set $197.11 \ldots 188-4$ 7219 CM (Ch. TE.337.1) Tel. Rec.
(See Model 7210 CM -Set 189-3) 7219 CM .UHF (Ch. TE-341-21 Tel.

 7279CM-UMF ICh. TE340,
Tel. Rec. E171TM. UHF (Ch. TE332-5) Tel.
Rec. (See PCB 88 Set 231.1 and Rec. (See PCB 88-Set 231.1 ond
Model 673 TM UHF-Se 208.21 8179TM.UHF (Ch. TE332.4) Tel.
Rec. (See PCB B8-Set 231.1 and Model 6173 MM -UHF-Sol 208.21 8211 TB (Ch. TE319-3] Tel. Rec.
[See PCB $67-$ Set 204-1, PCB 89 (See PCB 67-Set 204-1, PCB 89
$-S_{\text {et }} 233-1$ and Model 6213 TM 8211TB-UHF [Ch. TE330.7) Tel, Rec. (See PCB 88 -Set 231.1. and
Model 6213 TB. UHF-Set 208.21 8211 TM (Ch. TE319.31 Tel. Rec. (See PCB 67-Set 204.1, PCB 89
-Set 23J-1 and Model $6213 T M$
-Set 195-4) 82111M. UHF (Ch. TE330.7) Tel. Rec. (See PCB 88-Set 231.1 and
Model 8213 FB UHF-Set 208.21 8213 MM (Ch. TE319-2) Tel. Rec. (See PCB 67 -Set 204-1, PC8 89
-Sel $233-1$ and Model $6213 T M$ 8213TM. UHF 1 (Ch. TE330.6) Tel. Rec. (See PCB 88-Set 231.1 and
Madel 8213 TB - UHF-Set 208-2) 8213 TMA (Ch. JE319.21) Tel. Rec. (See PCB 67 -Set 204.1. PCB 89
-Ser 233.1 and Model $6213-2$. Set 195.11

ARVIN-COnt 8213TMA.UHF (Ch. TE330.61) Tel
Rec. (See PCB 88-Set 231.1 Model 6213 TB.UHF-Ser 208 -2]
$8215 C B$ UHF (Ch. TE330-8) Tel. Rec. (See PCB 88-Set 231-1 and 82 ISCBA (Ch. TE319-21) 208-2) See PCB 87 SE Sot $204-1$ Tel. PCB 89
(SCBA
Set 233.1 See PCB 233.1 and Model 8213 TM
Set B21 SCBA.UHF
821 SCBA-UHF (Ch. TE 330.611 Tel.
Rec. (SUe PCB 88 - Set $231-1$ and
Model 6213 TB . UHFModel 613TB-UHF-Set 208-21 (See PCB 67 -Set 204.1, PCB 89
-Set 233.1 and Model 82131 M - Set 195.4)

日215CM-UHF (Ch. TE330-6) Tel.
Rec. (See PCB 88-Set $231-1$ and Rec. (Ses PCB 88-Set $231-1$ and
Moddel 6213 TB UHF-Set 208-2)
8215CMA (Ch. TE319-21) Tel. Rec. Model 1 Ch . TE319-21) Tel. Rec.
8215 CMA .
(See PCB 67 -Set 204.1, PCB 89 (See PCB 67-Set 204.1. PCB 89

- Set 233.1 and Model 6213 TM... Set 195.4)
8215 CMA .
Rec. (See PCB 89. TE330.81) Te) Rec. (See PCB 88-Set 231.1 and
Model 6213 TB UHF-So1 208-21
8218 CB 8218 CB (Ch. TE319.3) Tel. ReC.
1See PCB 67 -Set $204-1$, PCB 89
$-5 e t ~$一5et 233.1 and Model 6213 TM
$8218 \mathrm{CB}-\mathrm{UHF} \mathrm{CCh}$. TE330.7) TeI, Rec. (See PCB 88-S Sol 231.1

ond Model 6213TB UHF-Set | $208.2)$ |
| :---: |
| 218 CM |
| (Ch. TE319.31 | [See PCB 67 Set 204-1, PCB 89

-Set 233.1 and Model 6213 TM Set 233.1
-Set 195.4)
8218CM-UHF (Ch. TE330.7) Tel, Rec. (See PCB 88-Set 231.1 and
Model 6213TB-UHF-Set 208-2) Ch. RE. 91 (See Modol 442)
Ch. RE-200 (See Model 444)
Ch. RE-200M (See Model 444M) Ch. RE-201 (See Model 544)
Ch. RE-202
(See Model 555)
 $\mathrm{Ch} . \mathrm{RE}$ 206 (See Model 664)
Ch. RE-206.1, $206-2$ (See Model
664 Late)
Ch. RE- 209 (
Ch. RE-228 (See Modet Model 140P)
Ch. RE-228.1 (See Model ISOTC
Ch. RE- 229 (Soe Madel 865)

Ch. REE-2
Ch. RE-2
Ch. REE-2
Ch. RE-
Ch. REE
Ch. RE
RE- 242
$R E-243$
$R E-244$
$R E \cdot 24$
$R E-25$
$R E-25$
CE-252 (See Model 253J)
RE-253 (See Model 280TFM)
RE-254, 255 , 256 259 (
Ch. RE-280 (See Model J6OTFM)
Ch . RE-265 (See Model 264T)
Ch . RE. 267 (See Model 350P)
Ch. RE-267-1, RE-267-2 (See Model
Ch. RE. 273 (See Model 356 I)
Ch. RE. 274 (See Model 341 I)
Ch. RE-274 (See Model 341I)
Ch. RE-277, RE-277-1 (See Model
480TFM)
Ch. RE-278 (See Model 540T)
Ch. RE. 280 (See Model 446P)
Ch. RE-280 (See Model 446P)
Ch. RE-281 (See Model 450T)
Ch. RE-284 (See Model 460T)
Ch. RE. 284 (See Model 4601)
Ch. RE-287.1 (See Model 482.CB)
Ch. RE-288-1 (See Model 482CFB)
h. RE-288.1 (See Model 482C
h. RE-292 (See Model 650 P)
h. RE-297 (See Model 5517)
RE

Ch. RE. 306 (See Model 554CC
Ch. RE. 307
(See Model 657T)
Ch. RE. 308 (See Model S53)
Ch. RE. 310 (See Model 582CFB)
h. 313 (See Model 580TFM)
RE-327 (See Model 555 WWT)
RE. 333 (See Model 581TFM)
h. RE-327 (See Mode 5 SiFM)
h. RE- 333 (See Model S81TFM)
h. RE-342 (See Model 760 T)
h. RE- 347 (See Model 748)
h. RE-347 (See Model 74SP)
h. RE-348 (See Model 753T)
h. RE-350 (See Model 758T)

Ch. RE- 350 (See Model 758 T)
Ch. RE32 (See Modol 741 T)
Ch. TE.272.1, 2 (See Model
Ch . TE-278 (See Model 3160 CM)
Ch TE282 (See Model $4080 T$)
Ch TE.288 (See Model 1162 CM)
Ch. TE-288 (See Model 4162 (M)
Ch. TE-289 (See Model 2122 TM)
Ch. TE-290 (See Model 2160)
Ch. TE-300 (Se Model 5204)
-6 (See Modal si 70 - ${ }^{-3}$)
Ch. TE-315,-1,-2, -3, -4, -5, -5A,

- 6 (See Model 5210)
Ch. TE.319, 1. 2 (See Model $6213 \mathrm{TM} \mid$
Ch. TE.319.3 (See Model 8211 TB) Ch. TE319.21 (See Model 8213 TMA)
Ch. TE. 320 (See Models 5175
Ch. TE.320 (See Models 5175.

UHF)
Ch. TE330-7 (See Model 8211 TB.
Ch. TEJ30.61 (See Model 821 SCBA.

Ch. TE332-4 (See Model B179TM.
Ch. TEJ32.5 (See Model 8:71TB.
Ch. TE. 334 (See Model 5213 TM)

ARVIN-Cont.

AUDIO DEVELOPMENT (ADC)

AUTOMATIC

TV. 707 . TV. 709 , iv- 710 Tel. Rec.
TV. 712 rel. Rec. ISee Model TV-

TV-1205 Tel. Rec. (See PCB 5-Set
106.1 and Model TV-1249-Set
$103-5$ (
TV.124-51
TV. 1294
TV- 1250 Tel. Rec. $103-5$
TV. 1249 , TV- 1250 Tel. Rec. 103-5
TV-1294 Tel. Rec. ISee PCB 5-Set N. 129.1 Iel. Rec. See PCB
100.5 and Model IV. 1249 -Sel 103.5)
TV. 1605 Tel. Rec. (See Model TV.
$1249-$ Set 103.5)
TV. 1615 Tel. Rec. (See Model TV. TV. 1615 Tel. Rec. (See Model TV.
$1249-$ Set 103.5)
TV. 1649 TV. 1650 TV. 1651 Tel. TV.1649. TV.1650, TV. 1651 Tel
Rec. $143=-$
TV. 1694 Tel. Rec. iSee Model TV TV. 1694 Tel. Rec. (See Model TV.
$1249-$ Set $103-5)$
TV. 5006 Tel. Rec......... 145-4
TV. 5020 Tel. Rec......... $134-4$ TV. 5020 Tel. Rec...........134-4
TV. 5061 Tel. Rec.......... 145 145-4
TV. 5077 Tel. Rec.......... 134 TV. $5116 \mathrm{R} \mathrm{Tel}. \mathrm{Rec........}$.134 - 41
TV.5150 Tel. Rec........
TVX 707 -Set. $80-61$
TVX404 Tel. Rec. $707-$ Set 60.61
601,602 (Series A)
$6013-11$
602 (Series B)

AviOla (Also see Record
Chenger Listing)
509.
601
608

509	7-3
601	15-3
608	16 -
612	15-3
618	16

ELL-AIR

PlitC Tel. Rec. (Similar to Chassis)
PI20C Tel. Rec. (Similor to Chassis)

BELL SOUND SYSTEMS

BELL SOUND SYSTEMS-Cont.

BENDIX

 Set 111.3)
Ci76, 8 Tel. Rec. (Soe Model 2051 Claz Tel. Rec. (See Model Cli72-
 Set 134.5$\}$.
C 200 Tel. Rec
CROO Tel. Re
FB21C Ch .
Model FB2ICU- 7 Sel. Rec. (Si3-2)
FB21CU
Fb2ICU (Ch. T-14-4) Tel. Rec.
FM2IC (Ch. T1A.7) Tel. Rec. (Swo Model FB21CU-Set
FM2ICU (Ch. 114.4) ${ }_{\text {Tel. }}$ (Rec.
 HB2IC ($\mathrm{Ch} .114-7$) Tel. Rec. (Seo Model F821CU—Set
HB2ICU
(Ch.
(14.2
Tel.

HM21C ICh. T14.7) Tel. Rec. (See HM2ICU (Ch. ${ }^{\text {Modet }}$ (14-4) Tel. Rec. KB2IC (Ch. Ti4.7) Tel. Rec.
Model FB21Cu-Set 213 (See KB2ICU (Ch. T14.4) Tel. Re
KMIIC Tel. Rec. (See Model OAK3 Set 183-2)
KM2ICS (Ch. T14.7) Tel. Rec. (See
 OAKJ Tel. Rec................2133RB2IC(Ch. TiA-6) Tel. Rec (For
 Sel 213.2)
TB21CS (Ch. T14-7) Tel. Rec. (See Model FB21CU-Set 213-2)
TB21CU
(Ch. 144 (TR24DS, DU ich. TiA. $10,-1113 \mathrm{Tel}$ TMITC Tel. Rec. (Seo Model OAK3 TM21CS (Ch. T14.7) Tel. Rec. (See
Model FB2ICU-Set 213.21 TM2ICU (Ch. T14.4) Tel. Ke TM24DS, DU iCh. TI4.10, 2113-2 Rec.
T170 Tel. Re............. 215-3
Set T171 Tel. Rec. (See Model ci72T173 Tel. Rac. (See Model 2051 -
Set 111.3). Set 111.3). (See Model 2051-
T 190 Tel. Rec. (Se Mor
 $17 \mathrm{K2}$ Tel, Rec. (See Model C172Sel 134.5)
$20 \mathrm{k} 2,2012$ Tel. Rec. (Seo Model C172-Set 134.51
21 kD Tel. Rec.............183-
 21×3 Tel. Rec............
$5512,5513,55 P 2,55 P 3 \ldots$

55×4 $65 P 4$

115
$235 B 1,235 M 1$ Ch. Codes MA,
235B1. 235M1 (Ch. Codes MA, MB,
MC, MD) Tel. Rec...... 69-4
$300,300 w, 301,302 \ldots .$.
325 M 8 Tel , Rec. (For TV Ch. only
See Model 235 MI -Set 69.4)

$526 \mathrm{MA}, 526 \mathrm{MB}, 526 \mathrm{MC} . . .29$
$613 \ldots$
10.

636 A. B, C.............. 15 (See Model 636A-Set 15.4)

BROOK ELECTRONICS INC.

10 CB iSoe Model $10 \mathrm{C}-$ Set
10C4 Model $4 \mathrm{~B}-\mathrm{Set} 230.41$
$100^{\text {and Model } 48-\operatorname{Set} 230.41_{4}^{\prime}}$
10 A
12 A
12
12A2. 12 AJ iSee Model 12A-Sot
89.J and Model.JC-Set 184.41 $12 \mathrm{A4}$ (See Madel $12 \mathrm{~A}-\mathrm{Set} 88.3$
and Model $48-$ Set 230.4) BROOKS LABORATORIES, INC. ST. 14 A
ST-10 $183-3$
$195-5$

BRUNSWICK

BRUSH SOUND MI Recorder Listing)

BRUSH MALL-A-VOICE (See
Recorder Listing

sutier bros.

CADILLAC (Auto Radio)

7253207	
7256609	60-8
7258155	
7258755	109
7260205 (Soe	Model 7258755-Sel
109.21	
7260405	152
7260905	152
CALLMASTER	(See lyman)

CALLMASTER (See tyman)

CAPEHART

8. 504.Plo Tel. Rec. (For TV Ch. See Model 461P-Set 87-2, For Radio
Ch. See Model 35P7-Set 135.4 RP. 152 (Ch. C.297).
TC. 20 (Ch. (R.71)
TC. 62 (Ch
 T. 30
T. 522
(Ch. CR. 76). T17MX (Ch. CTh7) Tol.
Ch. CT-27-Set $160-21$
 2T20MC (Ch. CT. 38) Tel. Rec. (See Ch. CT. 38 -Set $160-2\}$
3 CI7MX (Ch. CT. 271 Tol. Ch. (T.27-STEt 100.2$\}$
$3 C 2128, M$ (Ch. CT-57) C2128, M (Ch. CT-57) Tel. Rec.
H212B, M (Ch. CT-57) Tel
Rec SF212M (Ch. CT-57) Tel Rec 6F212B CC. CT.57) Tol 187 Rec. 7F212M (Ch. CT-57) Teli Rec 8F2128 iCh. Cr.57i Tol. 1a7$9 F 212 \mathrm{M}$ (Ch. (T.57) Teli ${ }^{\text {Rec }}$
10 (Ch. C. 312) OW212M (Ch. CrRB8) Tel. Rec.
(For IV Ch. anty sea Mode 1W211M (Ch. CT58/C305) Tal
Rec. (for TV Ch. only seo Mode
IT172M-Set 187.3)

 $29 \mathrm{PA}, 30 \mathrm{P4}$
$32 \mathrm{Pq}, 33 \mathrm{Pq}$
 $110 \mathrm{NA}, 116 \mathrm{P4}, 118 \mathrm{PA} . . .685$ 65 $3198 \mathrm{x}, \mathrm{uX} \mathrm{(Ch}. \mathrm{CT.27)} \mathrm{Tel}$.
(See Ch. CT-27-Set 160.2 .
 Sot ${ }^{142.1)}$ (Ch. Cr.27) Tel. R
3208 X .

Tel. Rec. (See Model 323 M -Sel
112.3 . PCB 13 Set 122.1 anc
PCB 24-S Set 142.1) PCB $24-\operatorname{Set} 142.1)$
$322 R A B X, ~ R A M X ~(C h . ~ C T-27) ~ T o l . ~$

 Model $323 \mathrm{M}-\mathrm{Set} 112.3, \mathrm{PCB} 13$
$\left.-\mathrm{Se}^{2} 12.1\right)$ 326 MXX (Ch. CT. 27) Tel. Rec. (See
Ch (CT-27-Set $160-2$)
 $332 \mathrm{Be}, \mathrm{M}, 334 . \mathrm{M}(\mathrm{Ch} . \mathrm{Cx}-33 \mathrm{M}$) Tel
Rec. $5 \mathrm{Mee} \mathrm{Model} 323 \mathrm{M}-\mathrm{Se}$ Rec. (See Model 323M-Sel
112.3 PCB 13-S St 122.1 ond
PCB 24 SSet 142.1)
 Set 160.2$)$
$338 \mathrm{Mx}(\mathrm{Ch} . \mathrm{CT} .45) \mathrm{Tel}$. Rec. (See 339 mX (Ch. CT-38) Tel. Rec. (See Ch. Cr.38-Set 160.21)
 $413 \mathrm{P}, 414 \mathrm{P}, \ldots647-8$
$461 \mathrm{P}, 462 \mathrm{P} 12$ Tel. Rec.... $37-2$ 501P, 502P, 504P Tol. Rec. (For TY
Ch. See Model $461 \mathrm{P}-\mathrm{Se}_{\text {el }} 87-2$, for Radio
Sof $135-4$)
610p, 651P, 661P Tel. Rec. 95A-1 1002F, $1003 \mathrm{M}, 1004 \mathrm{~B}$ (Ch. P.8]
1005B, M, W (Ch. C.296). 132-5 1006B, M, W (Ch. C.2870). 132-5
 3001,3002 ich. CX-30A-2, Prod.
C.272) Tel. Rec.....99-2
 Tol. ifoc.
$93 \mathrm{~A} .5)$

CAPEHART-COnt
3005 (Ch. CX-32, Prod. C-2791 Tel Rec. (See Ch. CX. $32-$ Set 93A.5)
$300 \mathrm{~s} . \mathrm{M}$ (Ch. CX.31, Prod. C-274) Tel. Rec. (See Ch. CX-31-Set 3007 (Ch. CX-30, Prod. C. 276) 3008 iCh. CX-32, Prod. C-278) Tel Rec. (See Ch, CX-32-Set 93A.5)
$3011 \mathrm{~B}, \mathrm{M}, 3012 \mathrm{~B}, \mathrm{M}$ (Ch. CK-33) ${ }_{4001 . \mathrm{M}} \mathrm{RCh}$. ©X-3i, Prod. C.274) Tel. Rec. (See Ch. CX 31 -Sot 4002.M iCh. CX-31, Prod. C-288)
Tal. Rec. $\left\{\begin{array}{c}\text { See Ch. CX-31-5et }\end{array}\right.$ Ch. C. 297 (See Model TC. 10 (Ch. C. 312 (See Model 10)
Ch. $C .318$ (See Model 1007 AM) Ch. C. 318 (See Model 1007 Am)
Ch. CR. 36 (See Model TC. 1011) Ch. CR71 (See Modal TC. 62)
Ch. CR.76 (See Model T.522) Ch. CR.76 (See Model T. 522)
Ch. CT. 27 (Ch: Series CX.33D)
Tel. Rec.

 Ch. CT-57 (Ch. Series (X.36) (See Ch . CT.74 (See Model 12 F 272 M)
$\mathrm{Ch} . \mathrm{CT} .75$ (Ch. Series CX .37) Te). Ch. CT .77 iCh . Series $\mathrm{Cx}-37$) Tot . $\mathrm{Ch}_{\mathrm{Rec}}^{\mathrm{ReC}} \mathrm{CT} 81 \mathrm{Ch}$. Series $\mathrm{CX}-37$) 203 Tel $\mathrm{Ch}_{\substack{\text { Rec. Series } \\ 3001 \text { (}}}$. 30 , A (See Model Ch . Series CX-30-A.2 (See Model
3001) $\mathrm{Ch}_{\substack{\text { Series } \\ 3004-M \text {] }}}(x-31$ (See Model Ch . Series CX. 32 (See Model 3005)
Ch Series CX .33 (See Model 325 F)
 Ch. Series CX.33L (See Mode
Ch. Series CX.330X (See Ch $\begin{gathered}\text { CT. } 27 \text {) } \\ \text { Series } \\ \text { iT172M) }\end{gathered}$
CX-36 (See Model Ch. Series CX-37 (Soe Ch. CT.75) CAPITOL
D. 17
T.13
U. 24

CAROWELL, ALLEN D
CE. 26 14-6
CAVENDISH (See Bell Air) CBS COLUMBIA (Also see 17C18
${ }^{17 \mathrm{C} 18 \text { (Ch. 817, -1) Tel. Rec. }}$ 17C18 (Ch. 817-2) Tel. Rec. (See Model 18 Cl 18 -Set 214.2)
17MO6 (Ch. $750-3$) Tel. Rec. (See Model $18 \mathrm{Cl} 18-\mathrm{Sel} 214-21$
17 Mis (Ch 8i7.2) Tel Rec. (See Model $18 \mathrm{CC} 18-$ Sot $214-2)$
17 T 18 (Ch. 817, 1) Tel. Rec 17 Tis iCh. 17 Fij) Tel. Rec. Se 5

 18118 (Ch. 817-6) Tel. Rec. $214-$ $18 \mathrm{m08}(\mathrm{Ch} .817-2)$ Tel. Rec. (See Model 18 Cl 18 - Sot 214.2).
18 mos (Ch. 817-6) Tel.
18 M18 (Ch. 817.6) Tel 214 Rec. $_{2}^{2}$

 18728 (Ch. $817-61$ Tel. Rec. (Seo
 20 m 18 (Ch. 820-2) Tel. Rec. (See Model 18Cl8-Set 214.21
20 M 28 (Ch. 820, Tel. Rec. 20 M28 ich. $820 \cdot 2$) Tel. Rec. (Seo
 20广is ich. 820.2) Tel. Rec. (See Model 18 Cl (Ch-Sot 1021$)_{\mathrm{T}}$ Tel. 21 Cis (Ch. 821) (See Model 17 Cl 18
-Se1 $188-5)$
$21 \mathrm{C} 21(\mathrm{Ch} .1021) \mathrm{Tel}$. Rec. $199-4$
$21 \mathrm{C} 318 \quad(\mathrm{Ch} .1021)$ Tel. Rec. 21 C 31 B (Ch. 1021) Tel. $\mathrm{ReC}_{\text {Re, }}$ 21 C 41 Ch .10211 Tel . Rec. $199 .-4$ 21 Til (Ch. 21 Tel Rec. 199 $22 \mathrm{CO6}$ (Ch. $751-31$ Tol. Rec.
Model 18C18-Set 214.2) 22C08 (Ch. 821-6, .64) Tel. Rec. 214 - 2 22C11, B (Ch. 1021) Tel. Rac. (See
Model 21Cl1-Set 199.4) Modal
22 Cl (Ch. 821-6, -6A) Tol. Rec. 22C21 (Ch. 1021) Tel. Rec. (See 22 C 28 (Ch. 821.6, -6A) Tel $\mathrm{Rec}_{\text {. }}$ $22 \mathrm{C31B}$ (Ch. 1021) Tel. Rec. (See
Model $21 \mathrm{C} 11-\mathrm{Sef}$ 199-4)

CBS COLUMBIA-Cont.
22 C 38 (Ch. 751-3) Tel. Rec. (See $22 \mathrm{C38}$ (Ch. $821-3)$ Tel. Rec. (See $22 \mathrm{C41}$ (Ch. 1021) Tel. Rec. (See Model 2 icl1-5et 199-4) 22 C .
 Model 18C18-Sef 214-21
22 C 61 B (Ch. 1021-2) Tel. Rec.

 22M08, $22 \mathrm{M18} \mathrm{Ch}$ ($821.6,-64)$
 Rec. (See Modol 18C18-Set
2144 (Ch, 1021) Tel. Rec. (See
22111 (Ch Model $21 \mathrm{Cl1}$-Set $109-4$)
22118 (Ch. $821-6,-6 A) \mathrm{Tel}$ Rec. 22T28, B (Ch. 82i.4) Tel. Rec. (See $27 \mathrm{C31}$ (Ch. 1027.1) Tel. Re

2001 Tel. UHF Conv. 207-2
Ch. 2AI (See Model 22K38)
Ch. 2 Al (See Model 22 K 38)
Ch 750.3 (See Model 17M06)
 Ch. 1021 (See Model 21 C11)
Ch. 1021.2 (See Model 22C618)
Ch. 1027.1 (See Model 27C31)

CENTURY (Also see Industrial Television)

ENTURY (20th	
100x, 101. 104.	12-5
200	21 -5
300	21-6
CHALLENGER	
CC8	63-4
CC18	67-7
CC30	68-6
CC60	70-3
CC618	66-4
CD6	65-4
20 R	69 -5
60R	62-7
200	69-5
600	62-7

CHANCELLOR
(Also see Rodionic)

35P	30-25
Chevrolet	
985792	6-5
985793	19-6
985986	
986067	90-2
986146	28-6
986240	75-5
985241	58-7
986388	104-5
987443	189-4
986515	149-5
986516	150-6
986668	219-2
986669	224-6

CHRYSLER (See Mopar)

cisco

${ }_{9} 1 \mathrm{~A}$

$37-4$
$20-3$

CLARION

CLEARSONIC
 COLLINS AUDIO PRODUCTS ${ }_{\text {FMA- }}$ 45-D

COLLINS RADIO

75A.1 75A.2 COLUMBIA $\ldots \ldots \ldots . .$.

${ }_{360}^{202}$ Serles B-.........215- 215
COMMANDER INDUSTRIES
Commander 3 Tube Record Player
CD 61919-10
CONCERTONE
CONCORD
CONCORD
IN434, IN435, IN436 (Slmilar to Chassis)
IN437 (Simi
IN437 (Similar to Chassis), 121-5
IN549 (Similar to Chassis.
INS54, INS5S (Similar to

N819 (Similor to Chassis). 136
$1-403$ …
(Soe Model 6ESIB-Sel ${ }^{4} 20$
Set 19.8)
$1.516,1.517,1.203$ (See Model
$1.601,19.602,1.603$
7G26C-Sei 20.51
-4
CONTINENTAL EL
(See Skyweight)
CONVERSA-FONE
MS-5 (Master Statlon) 55.5 (Sub-
Station)
16-7.........

CO-OP

GAWC2, SAWC3, GAATWCR, 6AA7
WT, GAATWTR 56-8

CORONADO

FA43.8965 Tel. Rec. (See Mode
$43.8965-5 e t 86.3$) $43.8965-5$ et 86.3)
$\begin{aligned} & \text { K. } 21 \text { (43.9041) Tel. Rec... 182-3 } \\ & \text { K. } 72(43.9031) \text { Tel Rec.. } 182-3 \\ & \text { K. } 731 \text { (43.9030) Tel. Rec. } 182-3\end{aligned}$ K.731 (43.903
RA37.43.9855

OSRA1.43.7755A,
OSRA1.43.7901A
OSRA2.43.8230A
OSRA2.43.8230A
OSRA2.43.8515A
05RA4.4.9878A
05RA33-43.8120A
O5RA $33-43.8120 A$
OSRA
OS.43.8360A
O5TVI-43-8945A Tel. Rec 102-
OSTV1.43-8945A Tel. Rec. 145-
OSTVI.43.9005A, OSTV1.43.9006A
Tel. Rec.
OSTVI-43.9014A Tel. Rec......128-5
05TV2.43.8950A Tel. Rec. $141-4$
05TV2.43.9010A Tel. Rec.. $146-5$
05 TV2.43.90108 Tal. Rec...
05 TVE
$15 R A 1.43 .7654 \mathrm{~A}$
$15 R A 1.43$
$15 R A 1.43 .7902 \mathrm{~A}$
$15 R A 2-43.8230 \mathrm{~A}$

15RA2-43.8230A
I5RA33.43.8245A, isRA33.43

$8246 A$
ISRA 33.43 .8365
15RA33.43.8365
$15 R \mathrm{TV} .43 .9237 \mathrm{~A}$
1

 1 5TV2.43.9012A, i5TV2.43.9013 $15 \mathrm{TV} 2.43 .9025 \mathrm{AA}, \mathrm{B}, 15 \mathrm{TV} 2.43$. $9028 \mathrm{~A}, 8 \mathrm{Tel}$. Rec.....144-3
$15 \mathrm{TV} 2.43 .9101 \mathrm{~A}, 15 \mathrm{TV} 2.43 .9102 \mathrm{~A}$ Tel. Rec.
$15 \mathrm{TV} 4.43 .8948 \mathrm{~A}, 15 \mathrm{TV} 4.43 .8949 \mathrm{~A}$ 25TV2.43-9022A Tel. Rec. $183-7$
25 TV 2.43 .9022 B $65-$ Set 202.1 and Model 25 TV2 43.9022 A - $\mathrm{Set}^{183.4}$

35TV2.43-9022C Tel. Rec. (See PCB
$65-5.1 \quad 202.1$, PCB $72-501$
 25IV2.43.9045A: B
25iv2.43-9045C Tel.aRec. (See PCB
25 Rec. 68 -Set 205.1 ond Model 25 TV 2
43.9045 A -Set 199.5) 25TV2-43-9060A Tel. Rec. 19925 V 2.43 .9060 B Tel. Rec. iSee PCB $68-S e t 205.1$ and Modol 25 TVZ
43.9060 A -Set 199.51 43.9060A - Set 199.51
$35 R A 2.43-5101 \mathrm{~A}$
$35 R A 2-43-5101 A$
$35 R A 4.43-9856 A$
35RA4.43.9856A
35RA33.43.8125
35RA33.43.8145
35RA33.43. 8125
35RA33.43145
35RA33-4.818225
$35 R A 37.43 .8355$
$35 T V 2.43 .9022 \mathrm{C}$

$214-$
$2217=$
224
219
225

35TV2.43.9022C Toi. Rec. ISee PC
$65-5 \mathrm{Ser} 202.4$ PCB $72-5$
212.1 ond Model 25 TV 2.43 $9022 \mathrm{~A}-\mathrm{Set} 183.41$
35 TV2.43.90450 Tel. Rec. (See PCB
68 -Set 205.1 PCB 71 -Set $68-\mathrm{Sel} 205.1, \mathrm{PCB} 71-\mathrm{Set}$
211.1 and Model $25 \mathrm{TV} 2.43-$ 9045 B -Sot 199.51
35TV2.43.9045E Tel. Rec. (See
Model 35TV2.43.9045D). $357 V 2.43 .9060 \mathrm{C}$ Tel. Rec. (See PCB
$66-\mathrm{Set} 205.1$. PCB 711 Sel
211.1 and Model 25 TV .43. 9060A-Sef 199.5)
35 TV 2.43 .9060 D Tel.
Mec. (See Model 35TV2-43-9060C) 232-3
45RA1-43.7660A
 Set 134.6) Tel. Rec. (See
$45 \mathrm{TV2} .43-9045 \mathrm{~F}$ 4 MTV2.43.9060E Tel. Rec. (See Model 35TV2•43-9045D)
$\begin{aligned} & \text { M3-2027 } \\ & 43-5005\end{aligned} \ldots \ldots \ldots \ldots \ldots \ldots$ 28-36

11.41
43.7801
(See Model 43.7601B-Set 10.111
43.76018
43.7601 B
43.7602 (See Model $43-76018$ - ${ }^{10-11} 1$
10.111
43.7651
43.7652 (Soe Model 43.7851-5 9 43.7851
43.8101
81154 See Model QiRA31.43. 81154 -Set 81.5)
43.8130 C . 43.8131 C (See Model
$942433-43.8130 \mathrm{C}$ - et 82.3) 94RA33-43.8130C-Set 82.31
$43.8160 \ldots \ldots . .12$-7 43-8177 (See Model 43.8178-5er
21.81
43.8178
 43.8201 (See Model 43.8178-Set 21.81

$43-8305^{\circ}$
43-8312A

david togen	DEWALD-Cont.	MONT-Con	ECA
"Twin'	0.517131-4	Beverly Model RA. $105 . \mathrm{B2}$ (50e Mod-	101 (Ch. AA) 1-25
		Brodford (S ${ }^{\text {eos }}$ Mo	102 10................ ${ }^{14-14}$
		Brookrllio Modol RA-113-81, -82	
${ }_{\text {D810.1 }}$ (Seo Modal DBio- ${ }_{\text {Set }}$	DT-120, or.iz2 Toll Reco.. 100	(See Model RA.113)	100 ${ }^{\text {7-10 }}$
102.41	OT-160 Tel. Rec........ ${ }^{82-5}$	game Model RA-113.BS, -B6	108 ${ }^{3-6}$
DO10 231	DT-161 Tel. Rec......... 100	Model RA. 1131	121 13-15
	DT-162, DT-163 Tal. Rec. $1118=5$	Hury Modal RA-103 1See	131 16-12
EQR	162R, DT-163	RA. 1031	132 ${ }^{45-9}$
	192	Corlton Model RA-117.A3 ISeo	
	DT.190 Tol. Rec.........118-5	Chathom (Soe model RA-103)	
	DT-1900 Tel. Roc. LAlso see PCO 58	Chathom Modol RA. 160 (See Model	ECHOPHONE
			EC-113 3-13
 100 -	(See Model RA.168)	EC-306 ${ }^{\text {14-8 }}$
6x50 ${ }^{\text {25-11 }}$	DT-1030, Dr-1030A Tel ${ }^{\text {der }}$ Rec.	Chaster (See Model RA	EC. $403 \mathrm{ECC} 404{ }^{\text {22-14 }}$
	DT-X -100 Tel Rec. ${ }^{\text {a }}$	Clifiton (Seo Model RA-102) ${ }_{\text {cel }}$	
H50, His¢, н2LSO	E.520 …..........128-5	Modal RA-164)	EX. 306 (Seo Model EC-306-Set
H623	E-522	Club 20 ISee Moda	
			Edwards
		$\begin{aligned} & \text { evon Model } \\ & \text { el RA-isol } \end{aligned}$	Fidelotuner 33-4
	E.170, ET-171, Tel. Rec. (Also soe	Devonshire (Soo	EICOR
		Eysox Model MA. 167 (See Model	(Also see Recorder Listing)
	ET-172 Tol. Rec. (Also see PCB 38	RA. 1671	15135-6
		寺	EKO
	5-1900 \% R Tel. Rec. (Also	Flonders Model RA-162-83 (See	(See Recorder Listing)
isc227-6	ET-1900 (Revised) Tai. Rec. 208-3	Guilford Model RA-111-A2, AS	ElCar
	FT-200 Tel. Rec. (See PCB 58,	(See Model RA.111	602 5-19
${ }_{\text {PH }}^{88.510 .1}$ LSee Model PH10-Sel	192.1 136.7) and Model DT-162R	Hanover Model RA-109.A2. -A6 [See Model RA- 109A]	Electione
		Hanover (See Model RA.109A.FAS)	T5TS3 12-34
${ }^{\text {Px }}$	Iel. Rec. See PCB ${ }^{\text {sid }}$	Honover Mod	
Px15	192.1 and Model DT-162R-5et	RA-162] Madel RA-170 [5ee	Electro
	F-404	Hanover M	820
R602 … 67	f. 405	anover II Model RA.171	electromatic
R.604 175		Model RA-171)	APH3OI. A, APH3OI.C 7-11
R701 227	G-174 Tel. Rec. 208-3	Hostings (See Model	
	G .201 Tal		
2AR, 2RS \ldots.......... ${ }^{28}$	G-210, G-211 rol. Rec. . . 220	RA.	ElECTRO-TON
		LYnwood Model RA-169 (See Model	
11 x 74-2	DODGE (5ee Mo	Manchu (See Model Ra-10 ${ }^{\text {a }}$ (${ }^{\text {a }}$	700. 712 (See Model 555-Set 13-161
	(
	DORN'S (Soe Bell Air)	Meodowbrook	Electro-voice
$21 \times$................. 14-2	DRE		Tel. UHF Conr...... 222-s
dearborn	e)	47A)	ElECTRONIC
	G1, ${ }^{17 T W}$ Tel. Rec. (Similar to		AMERICA (5e
decca	Chosis)149-13	Mr. Vernon Model RA-1 12 - A^{3}, - AG	Electronic specialty co.
DP1	DUK	dol RA	
	1A45.A	Nowbury (See Model RA-162)	E/L (ELECTRONIC Labs.)
	1A300,	Model RA. 170)	75 (Sub.Station) \cdots ala ${ }^{\text {20-6 }}$
DELCO	${ }_{44100}$ …............186-5	Newbury 11 Model RA-171 (See	
	48100 iSeo Model 1AlOO-Set	Oxiord Model RA-17.167 (See Model	76RU (-Rodio.Utiliphone*) $20-6$
R.1227, R-12 $29, \mathrm{R}, 1229.1215$	186.5)	Oxiord Model RA-167 (See Model RA.17)	$7108,7104,7107$, 710 W , Ortho-
R-1230-A, R-1231-A,		Park Lone Model RA-117.AT (See	
${ }^{\mathrm{R}-1233}$-123........ 42-8		Odel RA-17A)	
			2660 "mastor Utiliphona". 8-8
${ }_{\text {R.1238 }}^{\text {R.23 }}$.............. 38-4		Rec. (Seo Model RA.lilial	2701 ${ }^{\text {4-28 }}$
R.1241 62-11		Revere (See Modol RA-101)	3000 Orthosonic 31-10
	03 Tel. Rec. \|aliso see PCB ϵ -	Revere Model RA.113.83, - $\mathrm{BA}^{\text {d }}$	EMERSON
		R1dgewood Model RA.1SS.BA [See	502 (Ch. 120000, 120029)
R.124日, R R 249, R.1250... 66		Model RA-165)	
R.1251, R1252 21-10	RA-104A Tel. Rec. laito soe PCE 9	Ridgowood "is1", Mo	${ }_{504}^{503}$ (Ch. 12000. ${ }^{\text {che }}$
	Set 114.11	Rayal Sovereign (Soe Model RA.	505 (Ch. 120002)) 8-9
TV.71, TV 714 Tol. Rec... $99 \mathrm{~A}-3$	Set 108.1 C. 1 Also see ${ }^{\mathrm{PCR}} \mathbf{7 2 - 8}$	1194)	505 (Ch. 12004) (Seo Model 523
TV. 101 (See Model TV.102-Set	RA.105B Tel. Rec......... 95-3	Rumson (Seo Modol RA. 103 S	
${ }^{88,31}$ (1)	-106 Tel. Rec. (15upp. to RA-105,	Sovor (See modal	
TV. 100 To. Rec.......... 88.85		Shollurno Model RA.165.85 (500	308 ich. 120008) 7-12
TV.201 Te. Rec........... 59-8	${ }_{8 \text { a toi. Roc........ 95-3 }}$	Model RA-165]	1ch 120000 - 1200^{8-10}
DeSoro See Mopar)	109A. FAS Tol. Roc. See PCB 54	Sherbrooke Models RA-109-A3, A7 (See Model RA-109A)	
detrola	Sol 110.71 and model RA-10s	Sherbrooke (5ee model	
554.1.61A (500 Aria Model 554.1.		Sherbrooke (Soo M	
	Sot 124.11 M.......110-.7	Somerser (See Model RA-162)	
588.13 .22 D …......... 9-10	S-110A Tol. Rec. 1 Also see PCE 9		
571, s71A, 5718, 571L, 571AL.		Scmerset il model RA. 171 (See	515, 516 ……..... 12-11
	A2. A4, AS Tol. Roc. 106	Model RA-171)	
$571 \times, 5714 x$. 572.220 .2084	RA-1i2-A1, A2, A3, A4, A.5,	Strotiord (See Model RA. 105 A	${ }^{517}$ (Ch. 120010) (Soe Model 341
577.1 .64.		Model RA-17.AS	
	Sel 170.11	Sumier Model RA-117-A) (Soe	
579.2-58B iseo Modol 579-501	RA-113-81, - ${ }^{\text {82, }}$ - ${ }^{\text {B3 }}$,	Sumior Mol Modil Modol RA-17A)	520 (Ch. 120000, 120029) 2-1
		Sustex (See Model RA-103b)	${ }_{521}(\mathrm{Ch} .120013 .120031){ }^{7-13}$
$582 . \cdots-\ldots \ldots \ldots \ldots . .19 .14$	RA-116A Tel. Rec.	Sution Model RA-103 (Soo Model	${ }_{523}^{522}$ …............. ${ }^{\text {chen }}$
\$11-A		Torrytown Models RA-113-87, -B8	
	RA.119A Yal, Rec. ${ }^{\text {Re. }} 156-5$	(See Model RA-113)	
			${ }_{528}^{527}$ (Ch. (Ch 120039) Tel. Roc. ${ }^{\text {a }}$ 21-13
	185.1 ond Modol RA.113-Sat		529, 529.9 (Ch. 120028).. 18-15
dewatd	119.51	Wakefield $\because 41$ ", Model RA. 187	530 (Ch. 120006, Ch. 120056)
		(See Model RA-167)	531. 532, $333 \ldots \ldots . . .{ }^{32-6}$
A500w isob Model A500 - Sp	Sot (10.7)	Wellbury (See model RA. 105A)	${ }_{534}$ (Ch. 120007) 27-8
4.22)	RA.147A Tol. Rac. (Seet PCB 49-	Westioury il (See Model RA-109A.	535 20-9
	Set 183.1 and Model RA-117A-	Westerly Modol RA-112.A2, -AS	
		Wosser Model RA-112A)	
	55-Set 189.1)179-1	Westwood (Soee Model RA.110A)	538 (Ch. 120051) (Sa0 Model 549
A602. A6CS $16-10$	4.162, -81, -84, -B5,	Whithal See model RA. 10 A	
${ }_{\text {A } 008 \text { I Soe Model As02-Sel }}$	21 through 26 Tol. Rec. (A)so	Whitehall il Model RA-162-87 (See	5404 ïh. 120042) $20-10$
35	see PCB 5S-Sot 189.1.1.19-	Model RA-162)	541 , ${ }^{16-13}$
${ }_{802} 01$ …............. ${ }_{45}^{34-8}$		Wickford Model RA-162-81 15eo	
	Set 206-11189-7	Wimbledon Model RA-162-B6 (See	545 (Ch. 120047) Tel. Rec. Photo-
504 ..-............ ${ }^{43-9}$			${ }^{\text {ct }}$ Servicer
8.506 ..-- + .	- 321 Prs	Winslow (Seo Model RA-109A-FAS)	${ }^{1200491}$)...... ${ }^{21-15}$
	889 -Set 208-11		
	RA-160, RA-167, RA-168, RA-109,	Winthrop Model RA-103 (See Model	549 (Ch. 120051) 26-12
8.612 42-9	RA. 170. RA 1771 Tol. Roc. $216-2$	031	550 (Ch. 120006) (See Model 512
	Andover Madol Model RA.17A) RA-17-Ab	duosonic	
85.100, 8T-101 Tol. Rec... 79-6	Andover Model RA-147A (Soe Med-	K1, K2 19-15	
C.516 64 - 69	el RA-147A)	k3, k4 19-16	552 20.8
	Ardmore Model RA-112-A1, (See Model RA.112A)	dynavox	553A ${ }^{24-17}$
		AP.514 (Ch. AT)........ ${ }^{28-9}$	556, 557 (Ch. 1200188). . 70-4
	Model RA-162)	M.510 ${ }^{15}{ }^{8}$	
D.6517A -.............. 167-5	Banbury Model RA-162.B21 through B26 (See Model RA-162)		

EMERSON-Cont
Model $650-$ Set 113-2). Rec. (Sèe 650 D (Ch. 120123.8) Tel (Also see PCB 48-Set $182-1$) 650F (Ch. $120138 \cdot \mathrm{Bl}$ Tel. Rec. o5ib iCh. 120120$\}$ Tel. Rec. 65ic iCh. i20i09) Tel. 651 C (Ch. 120124) Tel. Rec. 6510 (Ch. 120124 . 8) Tel. Rec 652 (Ch. 120032 B$)$ 653 Bh (Ch 120080 B) $\begin{array}{llll}6538 & \text { (Ch. } 120136.81159-5 \\ 654 & \text { (Ch. 1201188) Tel. Rec. }\end{array}$ 654 B Ch i 20118 Bj Tol. Rec. (See Model 654 -Sel 113.2)
6540 (Ch. 1201238) Tel. ssee PCB 48-Sel 182-1).109-3
 655 B (Ch. 20123 B) Rel. 109 Rec. 6550 (Ch. 12012381 Tol. Rec. (Seo Model 6500 - Set 109.3)
655 F (Ch. 120138.8) Tel
$656 \mathrm{~B}, 657 \mathrm{~B}$ (Ch. 120122 Bi) $1111-5$ 6588 [Ch. 120124. B) Tel. Rec. 658 C (Ch, 120124) Tel. Rec. (Sae Model $6290-$ Sel 116.51
658 C (Ch, 120124B) Tel. Rec. 660 B [Ch. 120133B1 Tel. Rec 601 B ICh $1201348, G$, H) Tel. Rec.
Also 6028 (Ch. $120127 . B$) Tel. Rec. (Also
 see PCB $18-$ Set $130.11 .125-6$
6048 (Ch. 120133-B) Tel. Rec. 865 - 1 Ch .120131 B and Radio Ch . 6668 (Ch. $120135 \mathrm{~B}, \mathrm{G}, \mathrm{H}$ and Radio Ch. 1201328) Tol. Rec. (Also see
 Tel. Rec. (Also see PCB 48 -Sot
182.1) 669 B (Ch. $120129 \mathrm{~B}, \mathrm{O}$ Tel. Rec.
(A) So see PCB 24-Set 142.1 and PCB $47-$ Set 181.1)... 126 ond
6098 (Ch. 120148.8) Tol. Rec. 609 B (Ch. 120148 -B) Tol, Rec.
$6718 \mathrm{Ch} .120137 .8) \quad 118$ 6710 (Sh Mod
 $674 \mathrm{BiCh}, 120134 \mathrm{~B}, \mathrm{G}, \mathrm{Hi}$ Tel. Rec 675B iCh. 2001298, of Tel. Rec. (Also see PCB 24-Set 142-1 and
PCB $47-$ Set 181-1)...126-5
 6760 iCh. $1201448, G, H$ Her. Rec
(Also see PCB 48-Set 182 -1 676 F (Ch 1201438) Tel. Rec. (Also see PCB
677 BE 678B (Ch. $120134 \mathrm{~B}, \mathrm{G}, \mathrm{H}$)
Tei. Rec. (Also see PCB 48-Se)
 6798 Ch. $130116-\mathrm{BI} \ldots 142=7$
6808 (Ch. $120144 . \mathrm{B}$ G) Hel
 6800 (Ch. 120140 B) Tel 128 Rec, 6800 iCh $120141 \mathrm{~B}, \mathrm{G}$, Hi Tel. Rec. TSee PC8 $48-5 \mathrm{Sel} 182$.
Madel $6760-5$ et 138.41 681 B (Ch. 120140 B$)_{\mathrm{Sel}}^{\mathrm{Mel}} \mathrm{Tel}$ Rec. $6810 \mathrm{iCh}, 120144 B, \mathrm{G}, \mathrm{H}) \mathrm{Tel}$. Rec.
(Also see PCB $48-\mathrm{Sel} 182.1 \mid$ 68if iCh. $20143 \mathrm{~B}, \mathrm{HI}$ Tel. Rec [Also see PCB $50-5 e l$ i $84-1$] 683B [Ch, 120141-8] Tel. Rec. 6848. 6858 (Ch. 1201348, G, H1
Tef. Rec. 686B (Ch. 1201448 , G. H) Tel. Rec.
(Also see PCB 48-Set 182-1) 6860 (Ch. 120140 B) Tel. ${ }^{\text {Rec. }}$ 680 F (Ch. $120143 \mathrm{~B}, \mathrm{HIT} \mathrm{Tel}$ Rec.
(Also see PCB $50-\mathrm{Set}$ i84-1) 686 L (Ch. 120142 B) Tel. Rec. (Also
see PCB $50-\mathrm{Set} 184-1) .148-6$ 6878 (Ch. $1201448, G, H$ Hel. Rec.
(Also see PCB 48 Set $182-1$) 6870 (Ch. 120140 B) Tel. Rec. (See 687 F (Ch. 1201438 , H) Tel. Rec.
(A1so see PCB $50-$ set
184-1) 687 (Ch. 1201428) Tel. Rec. (Also
see PCB $50-S e t ~$
184.1).148-6 s88e PCB 50-Sel 184.1). 148-6
 6918 (Ch. 120145-8) 160-3 6928, 6938, 6948/Ch. 1201298, D Tal. ReC. (See PCB 24 -Set
142.1, PCB 47-Set 181.1 and $695 \mathrm{~B} / \mathrm{Ch} .120146$ - BI......162696 (Ch. $120144 \mathrm{~B}, \mathrm{G}, \mathrm{H})$ Tel. Rec. (See PCB 48-Set 182.1 and
Model 676 D Set 138.4)

EMERSON-COnt
 6961 CCh 120142B) Tol. Rec. (Also
see PCB $50-5 e t ~ 184.1$. 148 see PCB $50-$ Set $184.11 .148-6$
678 [Ch. 1201298 , D) Tel. Rec (See PCB 24-Set 142.1, PCB 47
-Set 181.1 and Model 8698 -
Sel 126-5) 698 B (Ch. 1201278) Tel. Rec. (See
PCB $18-S \mathrm{Sot} 130-1$ and Model 662B-Set 125.61 6990 (Ch. 120180 -8) Tel. Rec. 700 BCh . $20153 . \mathrm{Bj}$ Tel. Rec. 7000 (Ch. 120158 -8) Tel. Rec. 701 B (Ch. 120153.8) Tel. Rec. 7010 iCh . 120158 Bl Tel. Rec. 701 F (Ch 1201438) Tel. Rec. (See $676 F-5 e 1148.61$ 7028 (Ch. 120136 - ${ }^{7}$)

$7038(\mathrm{Ch}$ $7038 \mathrm{lCh} .120097 . \mathrm{Bl}$	$705 \mathrm{~A}, \mathrm{~B}$ (Ch. $120155 \mathrm{~A}, \mathrm{BI} .208$
184	

 708 B (Ch . $120165-\mathrm{B}$) (See Model $7068-$ Sel $178-51$
709 A (Ch. 120162-A) Tal. Rec. 710 B (Ch . $120146 . \mathrm{B}$) (See Model $695 \mathrm{~B}-\mathrm{Se}_{\mathrm{e}}(162-5$) 120164 B Tel. Rec.
 7128 (Ch. 120164 B) Tel. Rec. 712F (Ch. 1201698) Tel. 208 Rec.
 7160 (Ch. 120163-D) Tel. Rec. 710 F (Ch. $120168 . \mathrm{D}$) Tel. Rec. (See
PCB o1-Set 195.1. PCB 71-Se1
211.1 and Model 7160-Set 7170 (Ch. 120163.0) Tel. Rec. 717 (Ch. 20108.0) Jol. Rec. (See
PCB 61 Set 195-1. PCB 71 Set

PCB of Set les.1. PCB
211.1 ond Model 7160 -Set $\begin{array}{ccc}190-2) \\ 188^{\circ}(\mathrm{Ch} & 120150-\mathrm{B}) & \text { 191—7 }\end{array}$ 7188 (Ch. $120150-8) . \quad 191-7$
7190 (Ch. 120183.0 Tel. Rec. 719 F (Ch. $120168-\mathrm{D}$) Tol. Rec. (See

PCB 61-Set 195-1. PCB 71 -Set
21.1 and Model 7160 -Set ${ }_{720 \mathrm{~B}}^{190.21}$ (Ch. 120184.8) Tel. Rec. 7200 (Ch. 1201898) Tol. 720F (Ch. 120169 -D) Tel Rec. 7210 ich. i201ss.0j rol. Rec. (Also see PCB 65-Se1 202-1 and
PCB $77-$ Set 218.1. $197-5$

 211.1 and Model 7160-Set 728 D (Ch. $120166 . \mathrm{DI}$ Tel. Rec. PCB 77 -Set 218-1)...197-5
PCB 731 D (Ch. $120167 . \mathrm{D}$ and Radic Ch.
$120152-81$ I Tel. Rec. (See PCB 65 -Set 202.1 and Model 7210-
 $7320 \mathrm{iCh}, 120164$-8) Tel. Rec. (See Model 7118 -Set 183.61
733 F (Ch. 120169 F and Ra
733 F (Ch. 120169 F and Radio Ch.
120152 F) Tel. Rec.....206-4
7348 (Ch 201698) Tel
 PCB 85 -Set 202.1. PCB 77-Set
218.1 and Model 7210-Set 737A, B (Ch. 120172A, B). 207-3 $738 \mathrm{~m}^{\text {(}} \mathrm{Ch}$. $\mathrm{i} 20150 . \mathrm{B}$) (See Model 740 D (Ch. $120173 . \mathrm{D}$ I Tel. Rec. (See PCB 65-Set 202-1, PCB 77-Set
218.1 and Madel 7210 -S 197.51
$741 \mathrm{Ch}, 120168-\mathrm{DI}$ Tel. Rec. (See PCB 61 -Set 195.1, PCB 71-Set
211.1 and Model 7160-Set 742B (Ch. 1201698) Tel. $206{ }^{\text {Rec. }}$ 743A (Ch. 120171-8) Tel. Rec. (See 7438 (Ch. $120171 . \mathrm{Bl}$ Tel. Rec. 15 ee Set 218-1 and Model 7210 -Set Set 218
197.51
7448 (Ch. $120175-8)$......231-6
7458 (Ch. 120176.8$)$ …..227-7 7468 (Ch. 120177.8) …..228-9 7500 (Ch. 120166.D1 Tel. Rec. 15 See
PCB $65-$ Set 202.1, PCB $77-$ Set 218.1 and Model 7210 -5et
$197.5)$ 751 D (Ch. $120168-\mathrm{DITel}$ Rec. 1 See
PCB 61 Set $195-1$, PCB $71-$
Set 211.1 and Model $716 \mathrm{D}-5 \mathrm{t}$ PCB $211-1$ and Model 716 D -Sel
Set 190-21
7568 (Ch. 120125.B) (See Model 757 F (Ch. 120194)
757 F (Ch. 120194.01 Tel . Rec. (See
PCB 61-Set 195.1 PCB 71 Set $211-1 . \mathrm{PCB} 86-51229.1$ and Model 7160-Set 190-2

EMERSON-Cont.
7571 (Ch. $120168-\mathrm{DI} \mathrm{Tel}$. Rec. (500
PCB of-Sat 195.1 . PCB 71 Set $211-1$, PCB 86-Set 229.1 and Model 7160-Set 190-2)
760 F (Ch. 120194.D) Tel. Rec. (See $\begin{array}{ll}\text { PCB ol-Set 195.1, PCB } 71 \text {-Set } \\ 211.1 \text { PCB } 86-5 e t ~ & 229.1 \text { - }\end{array}$ Model 7160 -Set $190-21$ 760 J (Ch. $120168-\mathrm{D}$) Tel. Rec. (See
PCB 61 -Set 195.1 PCB 7) PCB 61 -Set 195.1. PCB 71-Set
211.1 , PCB 86-set 229.1 and Model 7160 -Set $190-21$
 PCB 65-Set 202-1, PCB 77-Set
218.1 and Model 721 D -Set $197.5)$
$650(\mathrm{Ch}$
Model 74001
767 C (Ch. 120169. B) Tel. Rec. (See
Model 711 F -Sel 200.4) Model $711 \mathrm{~F}-5 e t$ 206-4)
769 F (Ch. $120173-\mathrm{D}$) Tel. Rec. (See Model 740 C (Ch.
7120169.8) Tel. Rec. (See Model 711 F-Set 206.4)
780A (Ch. 120171 -B) Tel. Rec. (See Model 73681
7820 (Ch, 120166.0$)$ Tel. Rec. (See
 Ch. 120019 (See Model 527)
Ch. 1200258 (See Model 585) Ch. 1200258 (See Model 585)
Ch. 120047 (See Model 545) Ch. 120047 (See Model 545) Ch. 120066 (See Model 571)
Ch .120066 B (See Model 571)
Ch Ch. 200848 (See Model 609)
Ch.
Ch .1200868 (See Model 571) Ch. $120087 \mathrm{~B} \cdot \mathrm{D}$ (See Model 606)
Ch. 120088 l (See Model 585)
Ch. 120089 B (See Madel 608A)
Ch. $120090 \mathrm{~B}, \mathrm{D}$ (See Model 585) h. 1200910 . QD (See Model 6201
Ch. 1200920 (See Model 619) h. 120094 A (See Model 649A) Ch. ${ }^{\prime} 20096 \mathrm{~B}$ (See Model 632) Ch. 120098 B (See Model 621)
Ch. 120098 P (See Model 622) Ch. 1200998 (See Model 630) Ch. 120103 B (See Model 600)
Ch. 1201048 , 8 (See Model 626)
h. 120109 (See Model 631)
$\mathrm{Ch} .120110, \mathrm{~B}, \mathrm{BC}, \mathrm{C}$ (See Model
$\mathrm{B} 14, \mathrm{~B}, \mathrm{BC}, \mathrm{C}$) Ch. $12, \mathrm{~B}, \mathrm{BC}, \mathrm{Cl}$, (See Model 848 B)
$644, \mathrm{~B}, \mathrm{BC}$. C)
Ch. 120114 (Soe Model 633)
Ch. 120114 B (See Model 829)
Ch. 1201148 (See Model 629)
Ch. 1201188 (See Model 650) C. 120120 (See Model 650)
1201238 (See Model 6298, C) 6500) h. 120124 (Soe Model 651 C) Ch. 120124 B (See Model 629D)
Ch. $120127 . \mathrm{B}$ (Sce Model 6228) h. 120127.B (See Model 6228)
h. 120128.8 (See Model 6638)
h. 120129.8 (See Model 6698) h. 220129.8 (See Model 6698)
h. $120131 . \mathrm{B}$ (See Modol 6658)
h. 120133 B (See Model 600 B)

 Ch. 1201408 (See Model 6768)
Ch. $120141-8$ (See Model 6838)
Ch. 120142 B (Soe Model 6861) Ch.
Ch .120142 B (Soe Model 686 l)
Ch .120143 B . H (See Model 676 F)
$\mathrm{Ch}, 120144 \mathrm{~B}, \mathrm{G}, \mathrm{H}$ (See Model Ch. ${ }^{\text {67 }} 1201$
120148.B (See Model 669B)
h. 120149 A (See Model 725A)
$120150 . \mathrm{B}$ (See Model 718B)
h. 120150. (See Model 718B)
h. 120151.8 (See Model 724B1
h. 120152.8 (See Model 731D) h. 120152.8 (See Model 731D)
h. 120152 F (See Model 733F)
h. 120153.8 (See Model 7008)
120154.8 (See Model 704) Ch .120154 - B (See Model 704)
Ch.120155 A , B (See Model 705A
B)
 Ch. 120160.B (See Model 699D)
Ch. 120162.A (See Model 709A)
Ch. 120163.D (See Model 716D) h. 120163.0 (See Model 7160)
h. 120164.8 See Model 711 B
h. 120166 (See Model 7210) Ch. $120167-$ S See Model 73101
Ch. 120168 D (See Model 716F)
Ch. $120169 . \mathrm{B}$ (See Model 711F) h. 120169.8 (See Model 711 F
h. $120169 . \mathrm{S}$ (See Model 720 F
120169 F (See Model 733 F Ch. 120171.B (See Model 736B1
B) 120172 A , B SSee Model 737 A
Ch. 120173-D (See Model 740D)
Ch. 120175-8 (See Model 744B)
Ch. 120175-8 (See Model 744B)
Ch. 120170.8 (See Model 7458)
Ch. 17n177-B (See Model 748
Ch. 12019
EMPRES5
ESPEY (Alsa see Philharmonic)

78
188
31
5118
31
511
512
512
5128
513,51
521.
581
58

ESPEY-Cont.
6542 (Ch. FJ97 (See Model 6516545 (Ch. FP97).......... 5-16 6546 (Ch. FJ97) (See Model 651 -
Set 9.14)
 Set 9.141
$6611,6612,6613,6614$,
6630,6631,
6632,6634,
6635
 S552 9.14) 90-7

ESQUIRE

DL2IT Tel. Rec.........200-5
DL21T8 Tel. Rec.
2 G. 925 Set 200.5

S6CS5-See Tol. Roc. isee Model
S7C70 Tel. Rec

FARNSWORTH (Also see Record Changer Listing)

EC. 280
EK-081, EK-082, EK-083... 26-1

 ET-064, ET-065, ET-066... $4-2$
GK. 100 , GK-102, GK-103, GK-10 GK.111, GK-112. GK-114, GK-115 8 GK-140, GK-141, GK-142, GK-143.
GK-144 GT.050, GT.051, GT.052.. $35-1$
GT.060, GT.061, GT-064, GT-06 K-267, K.669 (See Model EC-260Ch. 150 (Soe Model ET-060) $\mathrm{Ch} .152,153$ (See Model EC. 260)
Ch. 156,157 (See Model EK.081)
Ch 158, 159 (See Model ET.064) Ch. 162 (See Model EC-260)
Ch. 170 (See Model GK-100) Ch. 193 (SSee Mode1 EK-081)
Ch. 194, 201, 216 (See Model GK

104 (Select-A.Call) 18-17 135 FEDERAL TEL. \& RADIO CORP
 1031,1032 \{Soe Model lojot-Se
8.13) $\left.\begin{array}{c}1040 \mathrm{~T} \\ 1040 \mathrm{~TB} \\ 23.91\end{array}\right)$ 15407.

321MS39A Chossis) $2321 \mathrm{ms3ga}$ Chossis)	Tel. Rec. (Similar to Tel. Rec. is imilor to to
FERRAR	
$\begin{aligned} & \mathrm{C} .81 . \mathrm{B} \\ & \mathrm{~T} .618 \end{aligned}$	$17-16$
WR-11	15-10

FIRESTONE (AIR CHIEF)

4.A. 2 (Code No. 297.6-LMMU.143)
4.A. 3 (Code No. 297-6.LMFIS-134)
4.A. 10 ICode No. 297-7-RN228

4.A. 15 (Code $177.7-4 A 15$). $36=$
4.A.17
(Code No. 213.7.7270

4-A.20 (Code 5.5-9000-A). 15-1
4.A-21 (Code No. $5.5-9001 \mathrm{~A}$
4.A.22x Code No. 5.5.90018
$\begin{array}{ll}\text { 4.A. } 23 & (5-5-9003 \cdot A) \\ \text { 4.A.24 } & \text { (Code 291.6-566)... } \mathbf{1 3}^{2-2}\end{array}$
4. A. 25 (Code 291.6.572
4. A. 26 (Code $307.6-9030$
4.A.31 KCode No. i77.5.4A3
 4-A.42 (Code No. 177-7.4A42)
4.A.80 (Code No. 307-8-9047A)

4.A. 68 (Code No. 332 - B-1436531
4.A. 80
4. A. 70

JOT14A-O56 Tel. Rec. [Similar to
38T12A. 058 Tel. Rec. (Similar to
Chassis)
317 T 3 Tel . Rec. (Similar to Chassis)
$318 T 4$ Tel. Rec. (Similor to Chassis)
1874 T Tel. Rec. (Similar to Chas-
sis) $85-3$
1874.872 Tal................ Rec. (Similar to

\qquad

\qquad

B. F. GOODRICH

GOTHAM
GRANCO
Ctu Jhf Conv.............217-6
W. T. GRANT (5ee Grantline)

GRANTLINE

.
HALLICRAFIERS-Cont.
 Mod $1050-$ Sel 211.7$)$
10810 (Ch . AZ1200D) Tal. Rec.
 Model (Ch. BA 20001 T Tel. Re
 Model (1050-Set 211.7) and
$1085 A$ (Ch. All 2000) Tel. Rec. O85A (Ch. AJI200D) Tel. Rec.
(Also see PCB 81-Sel 222-1)
 ISee PCB $81-5 e 1$
Model $1050-522.1$
211.71
 10850 (Ch. A212000) Tel. Rec.

 (See PCB ${ }^{81-5 e t} 222.1 \quad$ ond
Model $1050-5$ Set $211-7$) 1088A (Ch. All200D) Tel. Re
(Also see PCB 81 -Sel 222.

 See PCB 88-Set
Model $1050-$ Set 211.7)
1111 P (Ch. A12000) Tel. Re 1113 F ich. Di2000) Tel $188=$ Rec. 14808 iCh. R9000) Tol

17810 M Tel. Rec.
$17811-\mathrm{H}$ Tel. Rec.

17819 Tol. Rec.
17824.
$17824 . \operatorname{Tel}$.
Rec.

 $17800 \mathrm{H}, \mathrm{I} 88 \mathrm{Bi}$ i. Hel. Rec. $156-6$
17905 Tol. Rec. ISee Model 17810.

hOFPMAN-Cont.
21 P3078 (Ch. 211, M) Tol, Rec. 21 P3io ich. $196 \mathrm{M}, \mathrm{T}$ Tol. Rec.
 21 P508 © Ch. 211, Mj Tel $194^{\text {Rec }}$
 21 p 702 lCh . 191, B) Rel. Rec
201$21 \mathrm{P} 702 \mathrm{ch} .196 \mathrm{M}, \mathrm{I}$ Tel. Rec ${ }_{2} 1 \mathrm{P} 717 \mathrm{Ch}, 211 \mathrm{TI}$ Tel. Rec. Model 218122 Sol 194.4)
21P902 (Ch. 182) Tol. Rec. ITV Ch only
$21 \mathrm{P9O5}$
Ch
$213, \mathrm{Mj}$ Tol. 201-5 $21 P 908$ ich. $199, \mathrm{M}, \mathrm{T}$ and Rodio
 24 M708 Ch i87, в, $\subset 159-$ $24 \mathrm{M708}$ (Ch. 187, B, C) Tel. Rec $27 \mathrm{M7O9}$ ICh, 1971 I Toi. Rec.
600 (Ch. 1541 Tel. Rec.

 S30, 631 iCh. 1591 Tel
631 (Ch. 1701 Roc. $219=6$
$. .954-8$
$.954-8$ 32.633 cch. 1001 Tol $150^{\text {RoC }} 7$ 632,633 (Ch. 1601 Tel. Rec.
$632,633,634,635$
(Ch. 17 Rec.
$6344,635 A$ iCh. ij3) Jel $150 \rightarrow$ s38, 637 ch 183) 150 838, 637 (Ch. 183) Tel 141^{Rec} $6368,637 \mathrm{BiCh}$. 183 в) Tel. Rec 638, 639 ich. i 801 Tel 144 Rec. $816,817$ (Ch. 145$)$ Tol. Rec.
$820,821,822$ (Ch. 146) Tol. 826, 827, 828 (Ch. 143) Tel. Rec $830,831 \mathrm{Ch}$. $1511_{\mathrm{Tol}} 95 \mathrm{~A}=8$ 332 ich. isil Tol. Rec. (Soo Model
 $840 \mathrm{iCh}, 153)$ Yol. Roc.....93A 938 $830-\operatorname{Sel} 97 \mathrm{~A} .61$ 847, 848, 849 (Ch. 1561 Tol. Rec $860,861,882$ Ch. is7i Tel Roc B66, A, 867, A, 868, A (Ch. 173)
Tel, Rec.
$150-7$ Tel, Rec.
870, B71, 872 ich. 1701 Tol, Rec. 870, 877,878 (Ch. 171) Tel. $150-$
 $880 \mathrm{RC} 881,882,883,884,885$, ${ }_{886} 887$ (Ch. 183) Tel 141 Rec 8868, 8878 ich i 8381 Tel. Rec. $890,891,892 \mathrm{CCh}$ 175) Tol. Rec. 8 $893,894,895,896,897$ (Ch. 185$)$
Tel. Rec. $141-7$
 902 ich. idi, Radio Ch. 137) Tol. 912. و13 ich. i47) Tol. ResA Ber. 914. 915 ich. isol Toll Rer. 917. 918 ich. is2) Tela Roc. 920 ch . 152 J Tel. Rec. 15 se Model 948 830-547, 948 (Ch. 164) Tel. Rec. $950,951,952(\mathrm{Ch} .172), 950 \mathrm{~A}$ 953, Q54, 95s ich. 184) 181 $960,861,962$ (Ch. 1761 Tol. Rec.
63, 984, 965 (Ch. 186) Tel 14
Ch. 102 (S5e Mode AAOOI)
Ch.
103 (Soe Model A200)
Ch. 107 TSee Model AS00]
Ch. 108ST (See Model ASO1)
Ch .114 (See Model B1000)
Ch. 119 (Soe Model A202)
Ch.
123 (See Model $\mathrm{C504}$)
Ch. 123 (See Model CsO4)
Ch. 137 (See Model 902)
h. 137 (See Model 902)
Ch. 140 (Seee Model 610)
O.

HOFFMAN-CONt

HOWARD

HUDSON (Auto Radio)

 HUDSON (Dept. Stores) 30T14A-056 Tel. Rec. (Simllar to
Chassis)
38T12A.058 Tol..........19-3 3sThassis) 058 Tol. Rec. (Similar to
Chassis) 317 T 3 Tal . Rec. (Similar to Chossis)
318 BTA Tol. Rec. (Similar to Chossis) 31814 Tol. Rec. Similar to Chorsis 8
3187 is Tel. Rec. ISimilor to Chos ${ }^{3}$ -
$\begin{aligned} & \text { sis) }\end{aligned}$
 31876 A Tel. Rec. Isimilor to Chos-
sis.
$85-3$ 318TGA.950 Tel. Rec. ISimilor- to
Chossis)
$85-3$ 318 TgA .900 Tel . Rec. isimilor to
Chassis) $321 \mathrm{MS31C.A}$ Tel. Rec. ISimilar to
Chassis)
$182-5$ 321 MS39A Tel. Rec. ISimllar to
Chassis) $226-11$
$51876 A$ Tel. Rec. (Similar to Chas 518 sisa-918 Tel. Rec. (Similor to Chassis)
51810 Tl .
Tal. Rec. isimilor to 231818sA.954 Tel. Rec. (Simllor to Chossis)
$23189 \mathrm{~A} .-912$ Tel......... (Similor to
Chossis)
2321 MS 39 A Tel. Rec. isimilor to to

HUDSON ELECTRONICS

Jack	KAYe-halbert-Cońt.
JP. 50	731. 733 (Ch. 231, 242) Tel l , ke
	734, 735, 736,737 (Ch. 2423) 401 I.
$12 \mathrm{C}, 12 \mathrm{~T}$ Tel. Rec....... 132 -8	PCB 63- Set 197-11. 146
14C. 14 T Tel. Rec. 132-8	
17XC. 17XT Tel. Rec. (See Model	914 (Ch. 253) Tel. Rec. (Also see
10 C - $5=1132.8$)	
20xC, 20×T Tal. Rec. ISae model	Ch. 231 (See Model 231)
10 C	Ch. 242 (See Model
150	Ch. 243 (Se
153 (See Modal 150-Set 130	Ch. 253 (5e
214A, 217A, B, C, 220A, B, 221A,	C. 2335 x (See mod
254 173	ch.
255 ……...........179 17	KAY MUSICAL
312 Tel. Rec. 133	
	42
412 Toil. Rec............ 132 -8	KItChenaire
416 Tel. Rec........... 132	Tube Radio.
	IGGt
1700, ${ }^{\text {Set Tel. }}$ (Rec. (5 ee Model lac-	(Also see Resorder Listingi
Set 132-8)	4D-450
2000 C Tel. Rec. (Seo Model laC-	4 G .420
Set 132	5A150, SAl52, SAl54... 12
5000, 505) Tel. Rec	
5200, 5253	5B-160
5600 (565	58.175, 58.
Ch. 114 H	
Ch. $116 \mathrm{H}, 117 \mathrm{H}$ Tel. Rec.. $162=7$	
	${ }_{50-455}$
Ch. 321-8, - D Tol. Rec. ... 226	50, 5E-251 (Similar to Chassis)
jefferson-travis	Chor
	5F-525, SF-526 (...... ${ }^{\text {53-13 }}$
MR3 17-19	5F-565
JEWEL	563 (Simllor to Chassis) 973 -1
	143-10
	5H-571 (See
21 (9, 21T) Tol. Rec......185-7	5H-605131-10
	5 H -607, 5 H -608 (Similar to Cmos -
	5H-678, 5H.679 (Similar ${ }^{10} 0{ }^{\text {che }}$
	${ }_{54.700}$
	5נ-705 174
801 (Trixi0) 43-14	5k715
814 $511-10$	6 6. 122
910 99-8	6A-127 9-19
915 99.8	6A-195 …........... 16-19
9204 a	6B.122 15ee Model OA-122-Set
921 (See Modol $9220-501$ S5-101	
935,936 (See Model 920-Set 55 10)	$\begin{gathered} 68.127 \\ 9.19) \\ \text { ISe } \end{gathered}$
949105-5	вC.225 30-14
	60-225, 60.226 (Seo Model 6 C - 225
	30.14
	$6 \mathrm{D}-235$
${ }^{960 U}{ }_{97} 981$ 961 (Seo Model $960-501$	60-360
	${ }^{66-400}$ (See Model 449-Set ${ }^{\text {835-5 }}$)
${ }_{5007}^{98}$................ 181	
5010 -	78.220 27-14
5020 ${ }^{136-10}$	70.405 39
S020U isee Model so20-Set 136.	${ }_{88.210}$ …............ ${ }^{\text {20-17 }}$
5040 1 188	${ }^{86}$-200, 86.201
	11 C .300
5200 …............194-19	${ }_{12 \mathrm{H}-610}$
${ }_{5205}$ …..............195	14F.490, 14F-495, 14F496. ${ }^{63-12}$
5250 205-7	15H-609 (See Model sill --5er
22\%-12	
Kaiser-frazer	$20 \mathrm{H611}$ …..........164-1
100170 123-8	${ }^{93-017}$............... 31-15
${ }_{200001}^{100205}$ - ${ }^{\text {139 }}$ 35-13	
200002 …............ 56-13	${ }_{931146}$ a............... 3 36-15
KAPPLER	${ }^{93.155}$............. ${ }^{37}$
102T 54-10	
karadio	${ }_{93} 9350$
M806 $\ldots \ldots \ldots \ldots \ldots \ldots$ 231-3	93.360 …............. 79
1276 11:-	
KAYE-HALBERT	96.779 160
KAYE-HALBERT	
012 (Ch. 243) Tel. Rec... . 169-9	96.354 (Similar to Chassis) ${ }^{\text {a }}$
014 (CC. 233) Tel. Rec. (Also seo	
PCB $63-$ Set 197.1)...146-8	
	lafayette
	FAISW, FAISY
044.045 , 046 (Ch. 253) Tel. Rec.	
(Also soo PCE $63-5$ at 197.1)	$\mathrm{MCl}_{\text {mC11 }}$
(Axo............145-8	
074, 076, 077 (Ch. 253) Tol. Rec.j	mCl^{13}................ 15-16
A1so see PCE $63-\mathrm{Set}$ 147.1)	mel6 27-16
…..145-8	PS64 (Similar to Chastls).. 38-5
114DX (C). 253DX) Tel. Rec. \|Also see PCB 45-Set 179.11.170-9	
	IN437 (Similar to Chosisi) 121-2
012 -Set 169.91	IN549 (Similar to Chassis). 38-5
146 (Ch. 853) Tel. Rec. (See Nodel 014-Set 146.8)	ins51 ISimilar to Chastis). 38-6
(${ }^{\text {(Ch. }}$ 253DX) Tel. Rec. (Soe PCB	INS54, IN555 (SImilar to Chasis)
$\begin{aligned} & 45-5 e p 179.1 \text { and Model } 1140 \mathrm{x} \\ & \text { - } 501170.91 \end{aligned}$	56, ins57 (Similar to Chamis)
31, 232, 233, 234, 235, 236, 237,	
238, $239,240,2411 \mathrm{Ch}$	INS39 (Similar to Chassls). 90-7
	IN560 (Similar 10 Chastis). 109 - 7
424, 425, 426 (Ch. 253) Tel. Rec. (Also sse PCB 63-Set 197-1)	IN561, IN562 (Similor to Chamis)
1 Ano	IN019 (Similar to Chassis). 69-7
5. 426 (Ch. 2530x) Tel. Rec.	184 Tol. Rec. (Similar to Chasis)
15ee PGEB 45-5et 179.1 and	
Model 114DX-Sel 170.9	185, 1p186 Tel. Rec. (Simllar ${ }^{\text {fo }}$
((Ch. 253DX) Tol. Rec. (See	Chasis)149-13
PCB 45-Set 179.1 and Nodel 1140 X -Set 170.91	178MI Tel. Rec. (Simlitar to Classis) 149-13
PCB $63-5$ et 197-1)....145-8	149-13
724 (Ch. 253) Tel. Rec. (Also see PCB 63-Set 197.11... 146-8	27 BmI Tal. Rec. (Similar to Chossis) 149-13

MAGNAVOX
104 Series (Ch. CT301 thru CT314) 104 Series (Ch. CT301 thru CT314)
Te1. Rec.

 Chassis AMP-111A, B, C. \quad 68-10
Chassis CR-188 1155 Regency 5 Smphony)
Chossis CRIOAA, CR190B... 18-22
46-1 $\begin{array}{ll}\text { Chassis } \\ \text { Chassis } & \text { CR-192A } \\ \text { CR }\end{array}$ Chassis CR-198A, B, C (Hepple-
white, Moden Symphony) $17-20$
 $\begin{array}{lll}\text { Chassis CR-207A, B, C, D. } & \text { 41-12 } \\ \text { Chassis CR-208A, CR-208B 43-13 }\end{array}$ Chossis CR-208A, CR-208B CR-210B Chassi $C \mathrm{R}-211 \mathrm{~A}, \mathrm{~B}, \ldots$ B $68-10$
Chassis CT-214, CT-218 Tel. Rec. Chassls CT-219. CT. 220 Tel. 82 Rec. Chossis Ci-221 Tel. Rec... 82-7 8
 Chassis $\mathrm{CT}-232$ Tel. Rec...93A-9
Chassis
CT-235 Tel. Rec...97A
Chassis
CT. 236 Tel. Rec.. $93 \mathrm{~A}-9$

 Chassis CT239 Tel. Rec..93A-9
Chassis CT244, CT245, CT246 Tet.
Rec. 9.93 A , Rec.
Chassis
CT $247, ~ с T 248, ~ c i ~$ 249 Tel. Chassis CT250, CT251 Tel. Rec. Chassis CT252, CT253 Tol. Rec. Chossis CI255 Tel. Rec.
Chassis CT257, CT258, CT259,
CT260 Tel. Rec. Chassis
CT265 Tel.
CT262,
Rec...........155-10 Chassis
Rec. CT266, CT267, CT269 Tol Chassis CT-270 CT-271, CT-272,
CT-273, CT-274, CT-275, CT-276 CT-273, $\mathrm{CT}-274, \mathrm{CT}-275, \mathrm{CT}-276$
$\mathrm{CT}-277, \mathrm{CT}-278, \mathrm{CT}-279, \mathrm{CT}-280$
CT-281, CT. 281 . CT 282 Tel, Rec. $148-8$ Chassis CT283 Tel. Rec....155-10
Chassis CT284 CT285 Tel. Rec Chassis CT286 Tel. Rec.... 155-10 Chassis CT286 Tel. Rec....155-10
Chassis CT287, CT288 Tel. Rec.
Chassis CT289 Tel. Rec.... 155-10

MAGNAVOX-COnt
Chassis CT291, CT293 Tel. Rec Chassis CT294 Tel. Rec.....1131114 Chassis CT295, CT290 Tei. Rec Chassls CT297 Tel. Rec.... 155-10
Chassls CT301 theU CT314 Tel. Rec. Chassis CT331 thru CT349 16105 Serles) Tel. Rec.......168-1 Chassis CT350 thru $357(105$ Series)
Tel. Rec. (See Ch. CT331-Set $168.10)$
Chassls CT358 (107 Series) Tel Chassls CT358 (107 Series) $\begin{aligned} & \text { Rec. } \\ & \text { Chassis CT358AA, AB, BA, BB, } \mathrm{CB},\end{aligned}$ Chassis $\mathrm{Cl}^{358 A A}, \mathrm{AB}, \mathrm{BA}, \mathrm{BB}, \mathrm{CB}$,
DC (107 Series) Tel. Rec. (See Ch. CT358-Set 226-4)
Chassis CT 359 CB , DC 107 Series Tel. Rec. (See Ch. CT358-Ser
220.4).
 Series) Tel, Rec......205-
Chassis CT372, CT373 iosi, M, N
 Chassis CT38SCs, DC (1077 Series) Chassis MCT228 Tel. Rec. 95 A -

MAGNECORD

MAGUIRE (Also see Record

 Changer (isting)$500 \mathrm{BI}, 500 \mathrm{BW}$, $500 \mathrm{DI}, 500 \mathrm{DW}$ $561 \mathrm{B1}, 561 \mathrm{BW}, 561 \mathrm{DI}, 561 \mathrm{DW}$

majestic

27.18)
7 C 432 (Ch. 4706).......17
7 C 447

 $7 P 420$ (Ch. 4705). 75730 ich
$75433,75450,75470$ (Ch
 7YR752 (Ch. 780 CA

 8FM889 (Ch. BCO7D) 818885 (Ch. 481083 .
85452.85473 (Ch 10FM891 (Ch. 10 C 23 E) (See Modal 12C4, 12C5 Tel RaC.108-7
 12T2, 12 T 3 Tel. Rec.......108-7 12T6 Tel. Rec. (See Model 12C4-
Set 108.7) Set 108.7)
14CT4 Tol. Rec. 133-8 1412 Tol. Rec. (See Model 12C4-
 17C42, 17 C 43 (Series 112 , 112-2) $233-4)$
$17 \mathrm{C} 62,17 C 64,17 C 65$ (Series 106 17C62, Rec. (Soe PCB 43 Series 106)
Tol. Ret 177.1
and Model 70-Set 153-8) and Model 101$)_{\text {Tel. Rec. } 127-7}$
$17 \mathrm{GA}, 17 H A$ (Ch. 101) Tel. Rec, 17isA1, i7ToBi (Series 106) Tel.
Rec. (5ee Model $70-$ Set 153.8 Rec. (5ee Model
ond PCB 43 -Sot 17711
$17 \mathrm{~T} 40,17 \mathrm{~T} 41$ (Series 112, 112.2)
 $233-4$)
17 T 62 (Series 106 T Tel. Rec. (Sees
Model $70-$ Set $153-8$ and PCB 43 Model $70=$ Sel 153.8 and PCB 43
-Se1 177.1) $19 \mathrm{Cb}, 19 \mathrm{C}$ Tel. Rec.......133-8
$20 \mathrm{CB2}, 20 \mathrm{CB3}, 20 \mathrm{CB4}$ (Serios 108) 20C82, 20C83, 20C84 (Serios 108)
Tel. Rec. ${ }^{\text {See }}$ Model 70 Set
153.8 and PCB $43-$ Set $177-1$)

 (See Model 70-5et $153-8$ and
PCB 43-Set 177.11 20F85, 20F86. $20 \mathrm{FB7}$ (Series 108)
Te1. Rec. (See Model $70-5$ er
 20 F 81 I (Series 108$)$ Tel. Rec. (See
Model $70-$ Set 153.8 and PCB 43 Sel 177-1)
20T8A1 (Series 108) Tol. Rec. (See 20T8A1 (Series 108) Tol. Rec. (Seo
Model 70 Set 153.8 and PC8 43
-Set 177.1)

MAJESTIC-COnt.
20T82, 20T83, 20784 (Series 108) Tel. Rec. (See Model 70-Set
153.8 and PCB 4-Set 177-1) $21 \mathrm{C} 30,21 \mathrm{C} 31$ (Serles 108) Tol. Rec. (See Model 70-Set 153.8 and
PCB 43-Set 177-1) 21040, 21041 (Series 108) Te Rec. (See Model $70-\mathrm{Set} 153-8$
and PCB 43-Set 177.11 and PCB 43-Set 177.1)
21050, 21051 (Series 108) Tel. Rec. (See Model 70-Set 153.8
 Rec. (See Model 70-Set 153.8
and PCB 43-Set 177.1) and PCB 43-Set
21 F88, $21 F 89$ (Series $108-5\}$
Tel. Rec. (See Model 70-Set 153-8 and PCB 1 P62, 21 P63 Set
(Sories 110, 111)
 Rec. (See Model 70-Sot 153-8
ond PCB 43-Set 177.1)
22 Thru 35 (Series 106.5) Tel. Re
(See Model $70-5 \mathrm{Set} 153.8$ and (See Model 70-Set
PCB 43-Set 177.1)
$70,72,73$ (Serles 106

O6) Tel. Rec
Sel $177-1$ 80 FMP 2
$153 .-8$
$137-6$
Tel. Rec.
 141, 141 B (Ch. 100), 141 C (Ch. Rec.
143 Tol. Rec. 1 Seo PCB $37-$ Set
$166-2$ and Model 17 DA-Set $166-2$ and model 17DA-Sot
$127.7)$
$150,160 \mathrm{~B}, 162,163(\mathrm{Ch}, 101) \mathrm{T}$,
 170 (Ch. 101) Tel. Rec.... 127-7
173 Tol. Rec. See PCB $37-$ Sol
$160-2$ ond Model $170 A-S o t$ 700 , 701 (Series 106] Tel. Rec.
(Also see PCB 43-set i77-1) 712.715, 717, 718, 719153 15-8 1061 Tel. Rec. (Also see PCB 43
-Se1 177.1) $153-8$ $800,801,802,803,804$ (Seriss
108 T Te1. Rec. (Also seo PCB 43
 910,911 (Ch. 1031 Jol.
Rec.
$\therefore 27-7$ 1042, G, GU, T Tel. Rec. (Seo Mod.
e1 12 C 4 Set 108.7)
$1043, \mathrm{G}, \mathrm{GU}, \mathrm{T}$ Tol. Rec. (See Mod101, $12 C^{\prime} 4$ Sel 108.7). (See Model
1142 , 1143 Tel. Rec. (See Model 12C4-Set 108-7) Tel. Rec. (See Model 12CA Sot 108.71
245, G, GU, T, TX Tel. Rec. (Soe
Model 12 C 4 Set 108.7) Model 12 C 4 -Set Mo87)
1348 Tol. Rec. (See Model
Set 108 -7)
400 , B (Ch. 100) Tel. Rec. 127-5 400, B (Ch. 100) Tel. Rec. 127-s
401 (Ch, 105) Tel. Rec. (Also see PCB 37-Set $166-21 \ldots$...127-7
$1546, G, G U, T$ Tol. Rec. iSee Mod1547, G, GU, T Tol. Rec. (See Modol 12 CA Set 108.71
$1548, \mathrm{G}, \mathrm{GU}, \mathrm{T}$ Tol. Rec. (

 1605, 1605 B (Ch. 102) Tol. Rec. 1s10, 1610 B (Ch. 1021 Tel. Rec. 1646, 1047, 1648, 1649 Tel. Re
(See Model $12 C 4$ S Sot 108.7)
$1671,1672,1673,1674,1675 \mathrm{~T}$ $1671,1672,1673,1674,1675$ Tel. 133 S .
Rec. 1700 Cel Rec. 1 See PCB 37 -Sel
166.2 and Model 1704 Set
 710 C (Ch. 101) Tol. Rec. (See PCB
$37-5 e t \quad 160-2$ and Model 17DA 1720,1721
Set
127.71
720,1721 Tel. Rec. ISee PCB 37-
Set 186.2 and Model 170 - Set
127.71 1900 Tol . Rec.
$1974,1975 \mathrm{Tel}$. Re
$2042 \mathrm{~T}, 2043 \mathrm{~T}$ Tel.
$95 A-10$
$133-8$
$12 C$ '
2540 Set
$2547 \mathrm{~T}, 25.7$) 25 T Tol. Rec. (See

7809A (See Model 7YR72
h. $7809 A 1$ (See Model 7 YR753
hC110 (See Model 7 FM887

88060 See Model 8FM744)
88070
(See Model 8FM776)
88080 (See Model 8FM773)
Ch. 88080 (See Model 8FM775)
h. 10C23E (See Model 10FM891)
h. 12826E (See Model 12FMA75)

Ch. $12 C 22 E$ (See Model 12FM89S)
h. $18 C 90$, $18 C 91$ (See Model
7TV850]
Ch. 4501 (See Modal 5A410)
Ch. 4504 (See Modal 5A430)
Ch. 4506 (See Model 5A445)
Ch. 4702,4703 (See Model 75433)
Ch. 4705 (5ee Model 7 P420)
Ch. 4706 (See Model 7C432)
Ch. 4707 (See Model 7(447)
Ch. 4708 R (See Model 7JK777R)
Ch. 4810 (Seo Model 85 452)
Ch. 4810 B (See Model 8J1885)
Ch. 41201 (See Model 12FM475)

MIRRORTONE (Also see Meck) A.17C, T [Ch. 9040) Tel. Rec. A- $21 \mathrm{C}, \mathrm{CB}, \mathrm{T}, \mathrm{TB}, \mathrm{X}, 2$ (Ch, 9040) Tel. Rec.
14 MTS Tel. \qquad Mz. $163=7$
 Rec. (Seo Model 20PC-Set 175. 17PCSB, 17PCW Tel. Rec 2045 17PT (Ch. 9025) (Series : P") Tel.
Rec. (See Model 20 PC Set 175 . 171) Tel. Rec. $\quad 204-5$
1PTE, $50 \mathrm{MC}, \mathrm{MT}, \mathrm{MZ}$-C, MZ Tel. Rec. 20MC, MT, MZ-C, MZ-T Tel. Rec. 20PC Tel. Rec..........175-12
$20 \mathrm{PCSB}, 20 \mathrm{PCW}$ Tel. Rec.. 204 -5 20pit Tel. Rec. (See Model 20PC20PTE, 20PTS, 20PTSB, 20pIW Tel
 21 ODCS Tel. Rec.......... 204- 204
$2400 C S$ Tel. Rec.......

MITCHELL

MOLDED INSULATION CO.
(Also see Vir)
MR. O (Wiretone) 41-1 MONITOR
 MONITORADIO

AR. 1	164-5
AR. 3	175-13
MR.32	233-5
M.51A	162-8
M-101	159

MONTGOMERY WARD

(See Airline)

MOTOROLA-CONt.
GMT2A (Ch. 2A and P6-2 or Pg .2) GMT 2 M 1 Ch .2 M and P6. 2 or P8.21) GMPT (See Ch. 8A-Set 46.18)
GMPT-A (See Ch. 10A-Set $180-1$ $101)$
$H 12 A$
(Ch. 2 A and PO-2 of ${ }^{\text {P8-2 }} 197-7$ HJIM iCh. 2 M and P6.2 or $\mathrm{P8}-71$ HNO iSe Ch. 1OA-Set 106.10] HNO (See (Ch. $2 A$ and $P 6.2$ or 88.2) HN2M (Ch. $2 M$ and P6. 2 or P8-2) $197-7$ HNB, HNQ ISee Ch BA-Set 40.16) HOTC (See Ch. 10-Set 106.10 $\begin{array}{ll}112 \mathrm{~T} 2 & \text { (See Ch. } \mathrm{Ch} \text {. } A \text {-Set } \\ \text { Set 134.8) }\end{array}$ KR1 (See Ch, iA-Set 134.8)
KR2A
Ch KR2A (Ch. $2 A$ and Po-2 or P8-2) KR2M 1Ch. 2 M and 98.2 or Pg.21 KR8, KR9 (See Ch. BA-Set 46.10)
KR9A (See Ch. IOA-Set 106.10) NHIC 139 - 9 Sot 184.91
NH3C (See Nosh Model NH3C-Set 216.61
NH 6

NH6
NH8
NH8 (See Ch. 8A-So1 46.16) ${ }^{\text {O-24 }}$ OEO (See Ch. 10A Set 106.10) OE2 (See Ch. 8A-Set 46-16)
OE2A (Ch. 2 A and P6.2 or P8-2) OE2M ICh, 2 M and P6.2 or P8.2)
 PCO (See Ch. 10A.Set 106 -10
PC2 (See Ch. 8A-Set 46-16) PC2A (Ch. 2A and P6-2 or P8.2)
 PC8, PC9 (See Ch. 8A-Se1 46.16)
PC9.A (See Ch. 10A-Se1 106.10) PC. A (See Ch. 10A-Sel 106.10]
PD2A [Ch. 2A and PG-2 or P8-2) PD2M [Ch. $2 M$ and $\mathrm{PO}-2$ or $\mathrm{P8-21}$ SROB (Ch. OB)
SR18 (See Ch. 18 - Set 136.11 SR18 (Soe Ch. 1B-Set 136.111
SR2A ICh. $2 A$ and P6.2 of P8-2) SR2M ICh. $2 M$ and $P 6.2$ or $198-21$ SRO, SRR, SR9 (See Ch. 8A-Set
46. 16) SR9A Soe Ch. 10A-Set 106-10
TC-101. B Tol. UHF Conv..196-
TK.17M Tel. UHF Conv...193-5 TK.17M Tel. UHF Conv.... 193-5
TK19M Tel. UHF Conv.... 193-5 TK19M Tel. UHF Conv.

$$
\begin{aligned}
& \text { TK. } 1 \text { PME TeI. UHF Conv. } \\
& \text { ol TK } 7 \text { Sot Sot } 193.5 \text {) }
\end{aligned}
$$

 TK. 24 M Tel. UHF Conv.... I 1
TK. 24 ME Tel. UHF Conv. See TK. 24 ME TKI MM-Set 193.5)
el TKee Mo
TK. 31 M Tel. UHF Conv. (See Mod
TK 17 M - Set 193.5) TK 17 M -Set 193.5)
TK. 33 M Tel. UHF Conv. (See Model

 $\mathrm{Ch} . \mathrm{HS}$-1081 Tel. Rec.
VKIOS (Ch. TS-90) Tel.

Tel. Rec.
VKIOG, VKio7 iCh. TS.9E, TS.9E
Tel. Rec.
VTK. 17 M , ME Tel. UHF Conv. (S VTK. 17 M, ME TsI. UHF Conv.
MOdel TK17M-Set 19J-5 VT71B, M.A (Ch. AB through JI Tel.
Rec. 16
VT-73, vT-73A (Chassis TS. 4) Late) Tel. Rec. Ts-31 Tol. Rec..
VTIOI ICh. Ther
VTlo5 (Ch. TS.9D) Tel. Rec. Ph
fot Servicer
vilos, vT105M iCh is 82 VIIO5, VT105M (Ch. TS-9, TS.9A,
TS.9B, TS.9C) Tel. Rec.. $67-13$
vT107 (Ch. TS.9D) Tel. Rec. Photo. foct Servicer...... 82
vilo7. B. M (Ch. is.9, A, 8 ,
Tel. Rec.
 WSiC (See Willys Model 677012WS2C (See Willys Model 679517-
Set 172.12) $Y 24 \mathrm{KI}, \mathrm{B}, \mathrm{Y} 24 \mathrm{K2}, \mathrm{~B}, \mathrm{Y} 24 \mathrm{KJ}, \mathrm{W}$
(Ch. TS-602Y) Tel. Rec. $233-6$ Y27K2, B, Y27K3 [Ch. TS-602Y
Tel. Rec.
2mF
 3 MF (Soe Ford Model 3 MF -Set
206.5) $3 M F T$
215.7 (See Ford Model 3 MFT-Set 5A1 (Ch. HS-6).
 SC1 (Ch. HS.228)
 SC3 (Ch. H5.282).
SC4 (Ch. H5.270) $5 \mathrm{C}(\mathrm{Ch} . \mathrm{HS}$ 271) (See Model 5Cl
(Cet (116.9) SCO (Ch. HS.272) (See Model 5C1
Set 116.9)

MOTOROLA－CONF．
5HIIU， 5 H12U，SHI3U（Ch，MS
 512 （Ch．HS．250）（See Modal 511－ Sel 100.7 ）
5 （Ch．HS－224）（See Modal 5 II －Sat 100．7）
$511 \mathrm{Ch} . \mathrm{HS}-250$ ）， 511 CH （Ch．H5． $224)$
$5(2$（Ch．HS－250）（See Model 5JI－ Set 1007 ）
512 CH （Ch． HS 224）（Seo Model 5 I SM1，SM1U， $5 \mathrm{M} 2,5 \mathrm{M} 2 \mathrm{U}$（ $\mathrm{CH} . \mathrm{HS}$ ．
$249, \mathrm{HS} .223$ ）

 $5 \times 1 i \mathrm{iu}, 5 \times 12 \mathrm{u}, 5 \times 13 \mathrm{u}$（Ch HS ．
2431 $5 \times 21 \mathrm{U}, 5 \times 22 \mathrm{u}, 5 \times 23 \mathrm{u}$（Ch， HS क 11 ． 6 （ 611 B （Ch．HS－204）．117－10

7Fi1，7FIB（Ch．HS－26S）． $112=12$
7VTI，7VT2，7VTS
（Ch．TS．18）Tel 8FDT（Seo Ch．8A－Set 46．161）
日FM21，日FM21B（Ch．HS．247） 50t 121 －
 －ITCh is．is，A）Tel．Rec．（See Model 7VT1二Sel 83－6）
QVII， 9 VTS （Ch． $15.18, ~$

 lovk22（Ch．TSiA，A，B）Tol．Ree
 lovtio ici．TSIA，A，Bi Tel，Rec 10 VT 24 （Ch．TSIA，A，si Tel 1 Rec． 12K1，B iCh．rs23B）Tel．${ }^{\text {Rec．}}$ 12K2，B［Ch．TS－23B］Tel．Rec
 12 T （Ch．TS－53）Tel．Rec．， 115 － 7
$12 \mathrm{VFAB}, \mathrm{R}, \mathrm{R}-\mathrm{C}$（Ch．TS．23，A and 2VF4B，R R－C（Ch．TS．23，A and
Radio Ch．HS－1901 Tel．Rec． 12 VF20B，B．C，R，R－C CCh．TS－23A，
B and Radio Ch．HS．1904）Tel 8 and Radio Ch．HS．1904）Tel
Rec． $12 \mathrm{VK11}$（Ch．Ts－23，A，Bi Tel．Rec．

 12 VTI 3 （CH．T5－23，A，B）Tel．Rec．
 TS．15C，TS－15CliTel．Rec． $77-0$
14 KI ，B（Ch．TS．88）Tel．，Rec．
 14F18（Ch．TS．216）Tel．Rec．See Model 14T4－Set $158-81$
$14 \mathrm{P2}, 14 \mathrm{P} 2 \mathrm{Ch}$（Ch． IS .275 ）Tel．Rec． 14ii，в iCh．Ts－8si Tel．Rec
 $14 \mathrm{T3}$－ $\mathrm{S}=+121-10$ ）
14 Ch ， CS ） 216 ）Tel．Rec $16 F 1 \mathrm{ICh} \mathrm{IS} .60$ and Rodio CC ． HS
2341 Tel Ret $16518 \mathrm{H}, 16 \mathrm{FIH}, \mathrm{Ch}$ ． SS .89 and Ra－ dio Ch．HS．324）Tel．Rec．（For
TV Ch．see Set 121.10 ．For Rosdio
Ch．see Model 16 F1－Set 102.81
 $16 \mathrm{K2}$ iCh．TS．74）Tol．Rec．102－8
 16 TI ICh．is． 601 Tel．Rec． $102-8$
 $10 V F 8 \mathrm{~B}, \mathrm{R}$ ICh．TS．16，－A and Ra－
dio Ch．HS－2111 Tol．Rec．（For TV dio Ch．HS－2111 Tol．Rec．（For
Ch．See Set 93.7 ，for Rodio Ch．
see Model 99 FM21 R－Set $80-10$ ． lovkl（Ch．TS．52）Tel．Re：．
 17F1（Ch．TS． 118 and Radio Ch．
HS． 253 T Tel．－Rec．．．．．．．． $121-10$ HS．253）Tel．－Rec．．．．．．．．121－10
17F1A（Ch．TS－89 and Radio Ch．
HS．253）Tel．Rec．．．．．．．121－10 17518 （Ch．TS． 118 and Radio Ch．
HS．253）Tel．Rec．．．．． $121-10$
17F18A（Ch．TS．89 and Radio Ch．
HS－253）Tel．Rec．．．．．．． $121-10$
17F2W ICh．TS． 118 and Rodio Ch ．
HS．253）Tel．Rec．
 17F3， B ICh．TS． 118 and Radio Ch．
HS． 2531 Tel．Rec．．．．．． $121-10$ 17F38A（Ch．TS．89 and Radio Ch．
HS－253）Tel．Rec．．．．．．．．121－10 17F4 ICh ．TS：118 and Radio Ch．
HS．253）Tel．Rec．（5ee M，Mel

MOTOROLA－COnt．
17F4A（Ch．TS－89 and Radio Ch HS－253）Tel．Rec．．．．．．．121－10
17 FF 5 （Ch．TS－118 and Radio Ch． H5．261］Tel．Rec．（See Model
14KIBH）．．．．．．．．．．．121－10 14K1BH）
175A， $17 F S B A$ Ch，TS－89
and Ro－ dio Ch．MS． 26118 and H5－261）Tel．Rec．．．．．．121－10
17Fo．B（Ch．TS． 118 and Rodio Ch． HS．253）Tel．Rec．（See Model
$14 \mathrm{KIBH}-$ Set $121-10$ ） 14K1BH－Set $121-101$
$17 \mathrm{~F} 6 \mathrm{BC}, \mathrm{C}$（Ch．TS．174 and Radio Ch．HS．253）Tel．Roc．（See Model
14 KiBH Set 121.10 ） $121-10$ 17F7B（Ch．TS．118）Tel．Rec．（Soo Model 1 $\mathrm{KKIBH}-$ Set 121.10 ）
17 FFBC （Ch．TS． 174 and Radio 17F7BC（Ch．TS． 174 and Radio Ch
HS．253）Tel．Rec．（See Mode
 Model i4K1BH－Set i21．10）
$17 \mathrm{FBC}(\mathrm{Ch}$ ．TS．174）T Jel．Rec．（See 17F9，B（Ch．TS．118）Tel Rec． 1 Se Model $14 \mathrm{~K} 18 \mathrm{H}-\mathrm{Sel} 121.10$ ）
$17 \mathrm{~F} 9 \mathrm{CC}, \mathrm{C}$（Ch．TS． 174 and Radio $17 F 9 B C$ C（Ch．TS． 174 and Radio
Ch．HS－261）Tol．Rec．（See Madel 14K1BH－Set 121．10） H5－302）Tol．Rec．．．．． 165 17F12，A，B，BA Ch．TS．325，A
326，A，and Radio Ch．H5．319 Tel．Rec．Thell 171 －8 TV Ch．only see PCB 49－Set
183.1 and Model 21F1－Set 17F13．9）B（Ch．TS．395A， 02 and Rodio Ch．HS．319）（For TV Ch Mode1 17F12－S5et 171．8） MFI38C（Ch．TS． 408 A ond Radio
$\mathrm{Ch} . \mathrm{HS} .319$ ）Tel．Rec．（For IV Ch ．see Model 21 Cl －Set 191.
13 for Rodio Ch ．see Model
17 f 12 Set 17 F 13 C （Ch．TS． 408 A and Radio
Ch ．HS．319）Tel．Rec．（For TV Ch ．see Model 21 Cl －Set 191 ．
13 ，for Radio Ch ．see Model K1A 17 KIBA （C
Rec．
RKIBE（Ch．TS．95）Tel．
T21－10 7 K1BE，E（Ch．TS－172）Tel．Rec （See Model 14 KIBH S Sel 121.10 C
17 K 2 BE ，E Ch．TS．172］Tel．Rec． （See Model 14KIBH－Sel 121.10 $17 \mathrm{~K} 3 \mathrm{~A}, 17 \mathrm{~K} 3 \mathrm{BA}$（Ch．is 891 Tel T． 17 KeC （Ch．TS．95）Tel Rec． 121_{-10}^{10} 17K4E（Ch．TS．172）Tel．Rec（See Model 14 KIBH －Set 121.10 ）
$17 \mathrm{KS}(\mathrm{Ch}$ TS．118）Tel．Rec．（See Model $14 \times 1 \mathrm{BH}-$ Set 121.101
I $7 \mathrm{KSC}(\mathrm{Ch}$ ．TS．174）Tel．Rec．（See TKSC ICh．TS．174）Tel．Rec．（See
Model 14KIBH．Set 121．10） $17 \mathrm{~K}_{6}$（Ch．il8）Tal is9－10
 17 K 6 C （Ch．TS．174）Tel．Rec．（See
Model $14 \mathrm{~K} 18 \mathrm{H}-$ Sot 121.10 ） 17K7，B（Ch．TS．118）Tol．Rec．（See Model $14 \mathrm{KIBH}-\mathrm{Sel} 121.101$
$17 \mathrm{K7BC}, \mathrm{C}(\mathrm{Ch}$ ．TS．174）Tel．Rec． 17 Ke Model 14 KS bu－Set 121.10 $17 \mathrm{~K} 8, \mathrm{~B}$（Ch．TS－236）Tel．Rec．
17K8A，BA（Ch．TS．228）Tel 17K9，B（Ch．TS．220）Tel． 165 Rec． 17K9A，BA（Ch．TS．228）Tel Rec； 17 KOBC （Ch．TS－221，A）Tel．Rec． 7K10，M（Ch．TS．228）Tel．Rec． 7KIOA（Ch．TS－174）Tel．Rec．（See 7K10E（Ch．TS－314A，B）Tel．Re
17K1I，8，C（Ch．TS．236）Tel．Rec． I7KIIA，BA（Ch．TS．228）Tel．Rec．
 7K13A（Ch．TS．326A，B）Tel．Rec （See Model 17F12－Sel 171．8\} 7 KI 3 ICh ．TS－4011 Tel．Rec．（See
PCB $49-S e t 183-11$ ond Model 17K14，A，B $\{\mathrm{Ch}$. TS．395，02\} Tel.
Rec． 7 KI ABC （Ch．TS．408A）Tel．Rec． 7K14C（Ch．TS．408A）Tel．Res
（See Model 21 Cl －Set 191．13） 1See Model 21 Cl －Set 191．13） Rec．（Ch．TS．395，．．．192－6 7 Kl 4 WC （Ch．TS－408A）Tel．Rec．
 7K158C（Ch．TS．408A）Tel．Rec． 7 KISC （Ch．TS． 408 ）Tel．Rec．（See
Model 21 Cl －Set 191．13） 17K16［Ch．YS．3954，．02）Tel．Rec． 17 KIOC （Ch．T5－408A）Tel．Rec． 7T1，17T1B（Ch．TS．118）Tel．Rec． 17T1A，17T1BA（Ch．TS－89）
Rec．
Tel． 7T2A，17T2BA iCh．TS－89）Tel． 17T2，17T2B（Ch．TS．118）Tel．Rec．

MOTOROLA－Cont．
1713 （Ch．TS． 1181 Tel．Rec．121－10 I7T3G（Ch．TS．221，A）
 17T4（Ch．TS． 118 ）Tel．Rec．isee Model $14 \mathrm{K1} 1 \mathrm{BH}-\mathrm{Sel}$ Sel 121－10\}
7 T 4 C （Ch．TS－174）Tel．Rec．（See Model $14 K 1 \mathrm{KH}-\mathrm{Set}$
17 I
（Ch．TS－221－10）
Rec． 1715A ich．TS．214）Tel，Rec； 17isC iCh．TS－228）Tel 165 Rec． 7 17 Tis iCh．TS．236）Tel 7T5E，F ICh．TS－314A，${ }^{8}$ TS．
 $17 \mathrm{~T} 6 \mathrm{BF}, \mathrm{F}$（Ch．TS－228）Tol．Rec． 1716 G （Ch．TS－314A，B）Tel．Rec．

 17926 Ch．TS． $325 A$, B）Tel．Re
（See Model 17F12－Set 171.8 ） 17 TYA （Ch．TS．320A，8）Tel．Rec．
（See Model 17 FI －Set 171.8 ） （See Model 17F12－Set 171．8）
17 TVE （C．TS． 325 A ，B1 Tel．Rec．
 （See PCB 49－Set 183.1 and
Model 21F1－Sel 173.91 17 T10（Ch．TS．325B）Tel．Rec．（See 17T10A ICh．TS．326A，B）Tel．Re
（See Model 17F12－Set 171．8） （See Model 17F12－Set 17.8 ）
$7 \mathrm{T1} 10 \mathrm{C}$（Ch．TS－401）Tel．Rec．（See
PCB 49－Sel 183.1 and Model PCB 49 －Sel 183
21 F1－Set 173.91
7T11（Ch．TS－395，02）Tel．Rec． 17T1iC ICh．TS． $408 A$ ）Tel．Rec．
（See Model $21(1-\mathrm{Sel} 191.13$ ）
17 TIIE （Ch．TS－400A）Tel．Rec． 17TIIEC（Ch．TS．408A）Tel．Rec．
（Sea Model $21 C 1-S e l ~ 191.131$ 7T12，B（Ch．TS－395A，－021 Tol．
Rer． Rec．
1712 Ch TS－408A）Tel．Rec．
（See （See Model 21C1－Sel 191．13）
17112 W （Ch．TS．395A， 021 Tel．
192－
 （See Model 21CI－Se 191．13）
17 T 13 （Ch．TS．410A）Tel Rec．（A1s0 1713（Ch．TS．410A）Tel．Rec．（Also
see PCB $76-5 e t 217.1$ ）．194－－9 $7113 Y$ ICh．TS．410Y）Tel．Rec．
1See PCB 76 Set 217.1 and See PCB 76 －Set 217.1
Model 17T13－Set 194．9） $\begin{array}{llll}7 T 14 & \text { ICh．VTS．410A）Tel．Rec．} \\ \text {（See PCB } & 76 & \text { Set } 217.1 & \text { and }\end{array}$ $7 T 14 Y$（Ch．VTS．410Y）Tel．Rec． （See PCB 76－Set 217－1
Model 17T13－Set 194．9） 1951 （Ch．T5．67，A and Rodio Ch．
HS－230）Tel．Rec．．．．．．．111－9 19KI（Ch．TS．67．A）Tel．Rec． 19K2，19K28（Ch．TS．101）Tel．Rec．
 Rec．（See PCB 53－Set 181
Model 19K2－Set 122．5）
 Tel．Rec．
20F1，B ICh．TS．119，A and Radio 20FI，B ICh．TS． 119 ，A and Radio
Ch ．MS．2301 Tel．Rec．（Also see 20F2，B（Ch．TS． $1198, \mathrm{Cl}$ Tol．Rec．
（See PCB $53-$ Sot $187-1$ and Moe PCB 19 K 2 －Sel 122.51
$20 \mathrm{KI}, \mathrm{B}, 20 \mathrm{K2}$（Ch．TS．119B，C）
Tel．Rec．（See PCB $53-$ Sel 187.1 Tel．Rec．（See PCB 53－Set 187．1
and Model 19K2－Sel 122．5） 20K3，B，20K4，B（Ch．TS－119C，C1，
O1 Tel．Rec．（See PCB $53-$ Set
187.1 and Model $19 K 2$ Sel
122.5 ） $122.5)$
$20 \times 6,20 K 6 \mathrm{~B}(\mathrm{Ch} . \mathrm{TS} .307)$ Tel．Rec． 2011, B， 2012 iCh．TS－1198，C）
Tei．Rec．（See PCB $53-S e t 187.1$ Yel．Rec．（See PKB 53－Sel
and Model 19K3－Sel 122.51 2012A，2012AB（Ch．TS．307）Tel．
 Model 19K2－Set 122.5
2013，20т3B（Ch．T5－307）Tel．Rec 21 Cl ，B（Ch．TS．292A，B，C）Tel．
Rec．（Also see PCB 63 －Set 197.1 and PCB 73－S 214.11 191－13 $21 \mathrm{ClBD}, \mathrm{BDY}(\mathrm{Ch}$ ．WTS．292A，AY，
B，BY，C．CY）Tel．Rec．（See PCB $21-5 e t 197.1 \mathrm{PCB} 73-501$
214 and Madel 21 Cl －Set 191. 21 ClBY （Ch．TS．292AY，BY，CY） Tel．Rec．（See PCB 63－Set 197－1，
PCB 73 －Set 214.1 and Model PCB 73－Set 214．1 and Model
$21 C 1$－Set 191－13）
 Set 197.1 PCB $73-$ Set 214.1
ond Model 21 Cl Set 191．13） 21 CIY （Ch．TS－292AY，BY，CY）Tel． ReC．（See PCB 63－Set 197．1，
PCB 73 －Set 214．1 and Model 21C1－Set 191．13）
21F1，B（Ch．TS．351，A and Radio
Ch ．HS．316）Tel．Rec．．．173－ 9 21F2，B Ch．TS．292A，B，C and
Rodio Ch．HS． $316 A 1$ Tel．Rec． （Also see PCB 63－Set 197．1 and
PCB 7J－Set 214．1）$\ldots 191-13$

MOTOROLA－COnt 1F2BY，21F2F，FB，FBY，FY ICh． Rodio Ch，HS－316AI Tel．Rec． （5ee PCB 63 －Set 197－1，PCB 73
－Set 214.1 and Model 21 Cl － 191－13）
IF2Y（Ch．TS－292AY，BY，CY and Radio Ch HS－31 AA1 Tel．Rec．
ISee PCB 63 －Set 197－1，PCB 73 Set $191-13$ ） 3．B（Ch．TS．292A，B，C）Tel Rec．（Also 106 PCB 63－Sel 197－1
and PCB 73－Set 214．1）．191－13 1F3BD，BDY（Ch．WTS．292A，AY． $\mathrm{B}, \mathrm{BY}, \mathrm{C}, \mathrm{CY}$ and Radio Ch ．HS－
$316 A 1$ Tel．Rec．ISee PCB $63-$ and Model 21 Cl －Set 191.131 21 F 3 BY （Ch．TS－292AY．BY，CY and Rodio Ch．HS． 318 A）Rel．Rec．
（See PCB 63 －Set 197．1，PCB 73 Sel 191．13）
F3D，DY（Ch，WTS．292A，AY，B BY, C ，CY and Rodio Ch．HS
$316 \mathrm{~A} \mid$ Tel．Rec．See PCB 3 ． 316A1 Tel．Rec．（See PCB 63－
Set 197－1，PCB 73－Set 214－1 and Model 21 Cl －Set 191.13 ） Radio Ch．HS－316A）Tel．Rec．
（See PCB 63－Set 197．1，PCB 73 Sel 191．13）and Model 21 Cl － Set $191-131$
1 kI
B （Ch．
21K2，B iCh．is．35i）Tel．${ }^{173} \mathrm{Rec}$ $21 \mathrm{~kJ}, \mathrm{~B}, \mathrm{wiCh}$ TS－35ibi Tel．Rec IKA，M Ch．TS． $292 \mathrm{~A}, \mathrm{~B}, \mathrm{Cl}$
Rec．（Also see PCB 63－Sel 197．1
and PCB 73－Set 214－1）．191－13 and PCB 73－Set 214－1）．191－13
1K4AY（Ch．TS．292AY，BY，CY） Tel．Rec．（See PCB 83 Set
197.1, PCB $73-S e t$ 214．1 and Model $21 \mathrm{Cl}-\mathrm{Set}$ 191．13）
$21 \mathrm{K4B}$（Ch．TS．292A，B，C）Tel Rec．（Also see PCB 63－Set 197．1
and PCB 73－Set 214．1）．191－13 $21 \mathrm{KABD}, \mathrm{BDY}$（Ch．WTS．292A，AY，
B，BY，CY，CY）Tel．Rec．（See PCB
63－Sel 197.1 PCB 73－Set $63-$ Set 197.1 PCB $73-$ Set
$214-1$ and Model 21 Cl －Set 191 ．
 Tel．ReC． 15 ee PCB 83 －Set
197．1，PCB 73 －Set 214.1 and Model 21 Cl CBY Set 191.131
21KAC，CB，CBY，CW，CWY，CY，D
DY Ch．WTS． 292 A DY CCh．WTS． 292 A ，AY，B，BY
C，CY）Tel．Rec．ISee PCB $63-$
Set 197.1 PCB 73 Set ond Model 21 Cl －Set 191.131
21 K 4 W （Ch．TS－292A，B，C）Tel Rec．｜Also see PCB $63-5 \mathrm{set}$
197.1 and PCB $73-\mathrm{Set} 21411$ 21K4WD，WOY（Ch．WTS－292A AY，B，BY，C，CY）Tel．Rec．（See
PCB $\mathbf{~ S 3}$－Set $197-1$, PC8 $73-$ Se 214．1 and Madel 2 iCl －Set 191 21 KAWY ， 21 KAY ICh．TS．292AY BY，CY）Tel．Rec．（See PCB 63－1

Set 197－1，PCB 73－Set 214－1 | and Model $21 \mathrm{Cl}-5 e t$ |
| :--- |
| $\times 5,8$ Ch T 5 |
| 202 A | 1 KS ， 8 （Ch．TS．292A B，C）Tel

Rec．（Also see PCB 63 －Set 197.1 and PCB 73－Set 214．1）．191－13
 214.
131
1 K 58 y

21 KSBY （Ch．TS－292AY，BY CY Tel．Rec．（See PCB 63 －Set ig7．1．
PCB $73-5 e t 214.1$ and Model 21C1－Set 191．13）
C，（Y）Tel．Rec．（See PCB o3
Set 197.1 PCB 73 ．Set and Madel 21 Cl －Set 191．13）． 21 KSY （Ch．TS－292AY，BY，CY）Tel
Rec．（See PCB $63-5 \mathrm{e}$ ）197．1 PCB $73-S e t 214.1$ and Mode
21 Cl －Set 191.131 ， 21Ko（Ch．TS．292A，B，C）Tel．Rec （Also see PCB 63－Set 197．1 and
PCB 73－Set 214．1） $191-13$ $21 \mathrm{K6D}, \mathrm{DY}$ ICh．WTS．292A，AY，B BY．C，CY）Tel．Rec．（See PCB 6

- Set 197.1, PCB $73-S e t 214$. IKKY Rec．（See PCB 63－5et 197．1 PCB 73－Sel 214．1 and Mode
21C1－Set 191．13） 21 K7（Ch．TS． $292 \mathrm{~A}, \mathrm{~B}, \mathrm{C}$ ）Tel．Rec． 1Also see PCB 63－5pt 197.1 and
PCB 73－Set 214－1）．．191－13 $21 \mathrm{K7D}, \mathrm{DY}$（Ch，WTS． $292 \mathrm{~A}, \mathrm{AY}, \mathrm{B}$,
BY，C，CY）Tel．Rec．（See PCB 63 －Set 197．1，PCB 73－Set 214 21 KTY （Ch．TS． 292 AY ，BY，CY）Tel Rec．（See PCB 63－Set 197．1
PCB 73－Set 214.1 ond Mode 21 Cl －Set 191．13） $21 \mathrm{Kg}, \mathrm{Y}$（Ch．WTS－292A，AY，B
$\mathrm{BY}, \mathrm{C}, \mathrm{CY}$ ）Tol，Rec．（See PCB 63 －Set 197．1，PCB 73－Seq 214－

 214.1
131
21 K 11
$21 \mathrm{KII}, \mathrm{B}, \mathrm{BY}, \mathrm{Y}$ ICh．VTS－292A AY＇8，BY－S＇C，CY）Tel．Rec．（See 214.1 and Model 21 Cl －Set 191 ． 2111，B（Ch．TS．351）Tel．Rec． 2112，B（Ch．TS．351）Tel，Rec

MOTOROLA－COnt．
21 T 3 ICh．TS．501A，B）Tel．Rec．
（Also see PCB o3－Sei 197－1） $21 T 4 A$ ich．TS． 3244, B）Tel．Rec
（Also see PCB $63-$ Set 197 ． $21 \mathrm{~T} 4 \mathrm{AC}, \mathrm{ACE}$ ICh．TS． $292 \mathrm{~B}, \mathrm{Cl}$ Tel． Rec．ISee PCB $63-$ Set $197-1$
PCB 73 －Set $214-1$ and Mode PCB $73-S e 12141$ and Model
21 Cl －Set $191-131$
21 TACY （Ch．TS．292AY，BY，CY Tel．Rec．（See PCB 63 －Set
197.1 PCB $73-$ Set 214.1 ond Model $21 \mathrm{Cl}-501$ 191．13）
21 TAEA（Ch．TS．324A，B）Tel．Rec （Also see PCB 63－Set 197－1）
 2197．B，BY，Y iCh．VTS．292A，AY，
B，BY，C，CY）Tel．Rec．（See PCB B，BY，C，（Y）Iel．Rec．（See PCB
o3－Sel $197-1$ PCB $73-5$ St
214.1 ond Model $21 C 1-$ Set 191.
 TS．602）Tel．Rec．TS． 6021 Tel．
$\begin{aligned} & 27 K 2, ~ B, ~ 27 K 3 ~(C h . ~ \\ & \text { Rec．}\end{aligned}$ 2331－1 $42 \mathrm{ReC}(\mathrm{Ch} . \mathrm{HS}-306)$
$45812(\mathrm{Ch} . \mathrm{HS}-8)$ $47 \mathrm{BI} 1 \mathrm{Ch} . \mathrm{HS}-721$
$4811 \mathrm{Ch} . \mathrm{HS}-113$ 49ll10， 49 ll3Q iCh．HS．183 51C1，siC2，sic3， 51 CA iCh．MS
288）（See Model 5 Cl Sel 116.9 ） 288）（See Model 5Cl－Sef 116.9
51114.5112 Ch （ChS．224）（See Model 511 －Sat $100-7$ ）
51 m 2 O
（Ch．
5281 U （Ch．H5－3051．．．．．．．149－1 $52 \mathrm{Cl}(\mathrm{Ch} . \mathrm{HS} .309) \ldots$ 191－15
$52 \mathrm{ClA}(\mathrm{Ch} . \mathrm{MS} .309)$（See Model 52ClA（Ch．MS．309）（See Mode
52 Cl －Sel 191．15）
 $52 \mathrm{Co}-\mathrm{Sel} 177.101$
$52 \mathrm{C7}(\mathrm{Ch} . \mathrm{HS} .3101 \ldots 177-10$ $52 \mathrm{C7A}(\mathrm{Ch} . \mathrm{HS} 310)$（See Mode 52 CB （Ch．HS－310） $177-10$
52 CBA （C．MS－375）iSee Model
$52(\mathrm{CB}$ Set 177．10） $52 \mathrm{CB}-\mathrm{Set} 177.10\}$
$52 \mathrm{CW1}, 52 \mathrm{CW} 2,52 \mathrm{CWJ}, 52 \mathrm{CW}_{4}$ $52 \mathrm{HI} 1 \mathrm{U}, 52 \mathrm{H} 12 \mathrm{U}, 52 \mathrm{HI} 3 \mathrm{U}, 52 \mathrm{HI} 4 \mathrm{U}$

 52R11， $52 \mathrm{R12}$（C2R13， $52 \mathrm{R14}, 52 \mathrm{R}$
$15,52 \mathrm{R16}(\mathrm{Ch} . \mathrm{HS} 289) .188-1$ 52R11， 52 R 12 ， $52 \mathrm{R} 13,52 \mathrm{R14}, 52 \mathrm{R}$ ．
15， 52 R 16 （Ch．HS．289A）（Se
 32R11A，52R12A，52R13A，S2R－
$14 \mathrm{~A}, 52 \mathrm{R} 15 \mathrm{~A}, 52 \mathrm{R16A}$（Ch．HS，
3171 52R11U， $52 \mathrm{R12U}, 52 \mathrm{RI} 3 \mathrm{U}^{178-52 \mathrm{R}}$ 52R14， $52 \mathrm{R15U}, 52 \mathrm{RIOU}$ ICh， HS
3151 53LC1，s3ic2． $531 \mathrm{C3}$ iCh ${ }_{3}{ }_{7}^{\mathrm{HS}}$ 55 FII （Ch． HS .30 ）
$55 \times 11 \mathrm{~A}, 55 \times 12 \mathrm{~A}$
 $57 \times 11,57 \times 12$（Ch．H5－60）．28－
$58411,58 A 12$（Ch．HS－158）S2－1

 58R1iA，58R12A，58R13A，S8R 1841,
$58 \times 11,58 \times 12$（Ch．MS．125i $\begin{aligned} & 69-11 \\ & 53-15 \\ & 59-12\end{aligned}$ 59 F 11 （Ch．H5－188） 5911io， 1891120,59144 （ch．H
 $59 \times 11,59 \times 121$（Ch． HS .180$)^{81-1}$
$59 \times 21 \mathrm{U}, \quad 59 \times 221 \mathrm{U}$（Ch． HS .192 $61 i 1.6112$（Ch．HS－226）（See Mod

 62xiiv， $62 \times 120,62 \times 13 \cup$（Ch．HS $62 \times 21 \mathrm{Ch}, \mathrm{HS}-326 \mathrm{j}$
$6311,6312,6313 \mathrm{Ch}$. osfil（Ch．H5． 31 ）
O5F12（Se日 Model 65F21（Ch． HS .261 ．
$65(11,6512$（Ch． HS .7$)$ $65 T 21,65 T 21 \mathrm{~B}$（Ch HS 321 B－2 $65 \times 11 \mathrm{~A}, 65 \times 12 \mathrm{~A}, 65 \times 13 \mathrm{~A}, 65$ 67F11，67F12，67F128［Ch．HS－63）
67F1A（Ch．HS．122）．．．．．55－15 44－1
67F61BN（Ch．HS－69）．．．． 67 F 61 BN （Ch．H5－69） 67111 （Ch．HS．59） $67 \times 11.67 \times 12,67 \times 13 \mathrm{ich}$ ． 67хм21（Ch．MS．64） $68 F 11,68 F 12,68 F 14, ~ 68 F 148$
$68 F 14 M$ 68111 （Ch．HS．119）．．．．．． $45-18$
6811 （Ch．HS．144）．．．．． $54-14$

MOTOROLA-COnt.
Ch. TS-395, -02 (See Model 17F13) Ch. TS.400A (Soe Model 17TIIE)
Ch. TS.401 (Seo Model 17F12D) Ch. TS.408A (See Model 17F13C)
Ch. TS.408Y (See Models 17F13C Ch. TS.408Y (I
Ch . TS.410A (See Model 17T13) Ch. TS.4 10 Y (See Model 17113 Y)
Ch TS.-501A (Seo Model 21T3) Ch. TS. 501Y (See Models 21 T 3 and
TK. 24 M) Ch . TS 602 (Soe Model 24 K 1]
Ch . TS- 602 Y (See Model Y24K1) Ch. TS-602Y (See Model Y Y 24 KII
Ch. VTS. $292 \mathrm{~A}, \mathrm{AY}, \mathrm{B}, \mathrm{BY}, \mathrm{C}, \mathrm{CY}$ (See Model $21 \mathrm{K10}$, Y)
Ch . VTS-410 (See Model 17 IT14)
Ch. VIS.410Y (See Model 17114

MUNTZ
M30 [Ch. TV.1GA1] Tel, Rec. M31 [Ch. TV.16A2] Tel_ Rec. M31 ChC, TVITAZ1)Tel. Rec. $116-10$
M31R (Ch. TV17A3) Tel Rec M31R (Ch. TV17A3) Tel. Rec. (See
Model M32 (Ch. TVI7A3)-Sel M31R, M32 (Ch. TV-16A3) Tel. Rec M32 (CC. TVI7A2) Tol Rec. 116-1
M32 (Ch. TVI7A3) Tel. Rec. $116-10$ M32R (Ch. TV17A3) Tol. Rec. (See 116.10) M33 (Ch. TV17A4) Tel. Rec. 116-10
M34 (Ch. TV17A4) Tel. Rec. (For TV Ch. only see Model M33-Set
116.101 M41, M42 (Ch. TV17A
(See Model 1750)
M46 (Ch. TV17Aㄱ) Tel. Rec. (See Model (Ch. TV17A7) Tel. Rec. (See
Model 2053)

 Model 2055 - Set 207.5
$32151,321 T 2$
(Ch. 1782) (Soo Model 2055 Sel 207-5)
324 T 2 (Ch. 17 BB , Above Serial No 374500) Tel. Rec. (See PCB $87-$
Set 230-1 ond Model 2763A-Set 32712 (Ch. 1788 , Above Serial No.
374500) Tel. Rec. (See PCB 86 .

Set 230.1 and Model 2763A-Se 1750, 1751, 1752 (Ch, 17A3A) Tel.
Rec. (See PCB 33 Set 159.3 and Model M31-Set 116-101
2053 (Ch. 17A7) Tel. Rec. (See PCB
33 -Set 159.3 and Model M31-$33-S e t 159.3$
Set 116.101
Set 116.101
2053-A $1 \mathrm{Ch} .1781,17821 \mathrm{Tel}$. Rec.
(See Ch. 17 Bl . 2053-A (Ch. 1781,17821 Tel, Rec.
(See Ch. 1781 Set $183-8$).
2054 (Ch. 17A7) Tel. Rec. (5 ee PCB $33-$ Set 159.3 and Modal M31-
Set 116.101 2054-A (Ch. 1781, 17821 Tel . Rec
(For TV Ch. only see Ch. $1781-$ Set 163.8)
$2055(\mathrm{Ch} .17 \mathrm{~A}) \mathrm{Tel}$. Rec. (See PCB
33 Set Set 116.101
2055 Ch .1782 , Above Seriol No 2055 (Ch. 1782, Above Serial No.
369500 or Ch. $17 B 6$ Above
Serial No. 3619500) Tol. Rec. 2055. A 1 Ch . $17 \mathrm{Bi}, 17 \mathrm{~B} 21$ Tel. Rec (See Ch. 17 BI - Set 163.8 20554 , AU. (Ch. 17B2, Above Seriol
No. 369500 or Ch. 1786 , Above
Serial No. 3619200) Tel. Rec. Serial No. 36192001 Tel. Rec.
2035 (Ch. 17B2) Tel. Rec. (See
 $2055 \mathrm{~B}(\mathrm{Ch}$. 1788 , Above Serial No
369500 or Ch. 17 BC . Above 369500 or Ch. 17B6, Above
Serial No. 3619500 Tel. Rec. 2056 (Ch. 17A7) Tel. Rec. (See
PCB 33 -Set 159.3 and Model
M31-Set 116.101 M31-Set 116-10)
2056.A (Ch. 1781, 17821 Tel . Rec.
(See Ch. 1781 -Set 163.8) (See Ch. 17B1-Set 163-8)
2060 Tel . Rec...........1642068 (Ch. 17B2, Above Serial No
369500 or Ch. 1786 . Above
Seriol 369500 or 3619500) Tel. Rec
Serial No.................207-s 2158 A 1Ch. 1782 , Above Serlal No
369500 or Ch. 1786 Above 369500 or $\begin{gathered}\text { Ch. } 1786 \text {. } \\ \text { Serial No. } \\ 36195001 \text { tol Rec } \\ \text { Rec }\end{gathered}$ 2158.A (Ch. 1785, 1786) Tel
(See Ch. 17BS-Set 163-8)

2159A (Ch. 1782, Above Serial No
369500 or Ch. $17 \mathrm{B6}$. Above Serial No. 3619500) Tel. Rec. $2159 . A(C h .1785 .1786)^{\text {Tol. }}$
(See Ch. 17BS-Sot 163.8) 2162 (Ch. 17B2 Above Serial No.
369500 or Ch . $17 \mathrm{B6}$. Above
Serial No. 3619500 Tel. Rec 207 -2162-A (Ch. $17 \mathrm{B5}, 1786$) Tel. Roc.
(See Ch. 17 BS -Set 163.8) $2457 . A$ (Ch. 1783. 1784) Tel. Rec
(See Ch. 1783 Set 163-8) 2461-A (Ch. $17 \mathrm{B3}, 17 \mathrm{B4}$) Tel. Rec.
(See Ch. 17B3-Set 163.8) 2763A, 2764A, 2765A (Ch. 17B8, Above Serial No. 374500) Tel.
Rec. (Also See PCB $86-$ Set
$230.1) \ldots208-7$

MUNTZ-Cont
Ch. 1781, 1782 Tol. Rec.. 163-8 Ch. 1783, 17B4, 17B5, 1786 Tel.
Rec. 780 (Above Serial No. 3619 .
Ch. 180 (See Model 2055)
Ch. 1786 (Above Serial No.
Sh. (See Model 205s)
Ch.
(Above Serlal
(AB8 Ch. 3745001 (See Model 2763A)
Ch. 37 A 2 (See Model 317T2)

MURPHY

122 (Soe Model 112-Sel 2.15)
MUSITRON

PT-10	1520
PX	16-28
SRC-3	13-21
101 "Piccolo""	13-21
103 "Piccolo"	15-21
105	21-26
202	21-27

MUTUAL BUYING SYNDICATE (See Drexel or General)

NASH

NATIONAL CO.

HFS
HRO.7R, HRO.7T
SO-12
SO HRO. 50
HRO.50R1, HRO.50TI1129-11
HRO. 60 HRO-60 N NC.TV7M, NC.TV7W Tel
 See-FV.12C, w Tel. Rec. (Also see
PCB 1-Set 103-19)... $94-5$

 1-Set 103.19) 1202 Tel. Rec.
NC.
(Also see PCB 1201 NC-TV 103.19) (Also see PCB 1-Set 103.19) NC.TV-1225, NC.TV.1226 Tel. Rec.
(Also see PCB 1 -Set $103-19$)

NC NC NC NC

NC. 88
NC. 125 NC. 1173 NC.
$\begin{array}{ll}\text { NC. } 173 \text { R } & \text { NC. } 173 \text { T } \\ \text { NC. } 133 R, & \text { NC-183T }\end{array}$
TW. 124 Tel. Rec.
TV. 1226 Tel Rec. Rec.
TV. 1601 Tel. Rec.
TV. 1625 Tel. Rec...........119
TV-1701, TV-1702 Tol.
Re TV.1725, TV.1727 Tel. 145 Rec. TV.1729, TV.1730, TV.1731, TV-
TV32 Tel. Rec.....14s-7
TV.2029, TV. 2030 Tol. Rec. $14 \mathrm{~S}-7$ NATIONAL UNION

G. 613 "Commuter G.619 $571.571 \mathrm{~A}, \mathrm{~s}, \mathrm{silB}$ $19-23$ $11-35$ $17-22$

NEWCOM

NOBLITT SPARKS (See Arvin)

NORELCO

PT200, PT300 Tel. Rec.... 155-13 588A Tel. Rec.......... 164 B - 7
1200 A Tel. Rec. (Seo Model 588 A

OAK Record Changer Listing)

 OLDSMOBILE98237520-25

OLYMPIC

OX-214, DX-215, DX-216 Tel. Rec ox-619, Dx-620, Dx-621, Dx-622 Tel. Rec.
DX-931, $\mathrm{DX}-932$ Tel. Rec...106-11
DX-950 Tel, Rec.......... 106-11 DX-9SO Tel. Rec...
RTU-3H (Duplicoto
RTU-3H (Duplicator) . 62-1
TV-104, TV-105 Tel. Rec... 67-15
TV.106, TV.107. TV. 108 Tel. Rec.
(Seo Model TV-104-Set $67-15$)
TV.922 Tel. Rec........... S8-14
TV. 928 Tel. Rec. (See Model TV.
922 -Set 58.14)
TV.944, TV-945 Tol. Rec.. 67-15
TV-946 Tel. Rec. (See Model TV.
104 Set 67.15)
TV.947 Tel. Rec........... 8S-10
TV-948 Tel. Rec. (See Model TV.
104-Set. $67-15$ I
TV.949, TV.950 Tel. Rec.. 85-10
$\begin{array}{llll}\mathrm{XL}-210, & \mathrm{XL}-211 & \mathrm{Tel} \text {. Rec.. 109-8 } \\ \mathrm{XL} .612, & \mathrm{XL} .613 \mathrm{Tel} . & \text { Rec. 109-8 }\end{array}$

OLYMPIC-Cont.
$6.501,6-502,6.502 \cdot P, 6.5034-10$
$6.501 \mathrm{~V} . \mathrm{U}^{2}(5)$

191 (See Model 7.724-Set 29

 $17 \mathrm{C}_{24} 26$

170 Tel . Rec. (See Model 752 -Sel 126.81
$17 \mathrm{~K} 31,17 \mathrm{~K} 32$ Tel. Rec...182-182
$17 \mathrm{~K} 41,17 \mathrm{~K} 42$ (Ch. TK17) Tol. Rec. $17 \mathrm{~K} 41,17 \mathrm{~K} 42$ (Ch. TK17) Tel. Rec.
17 K 50 (Ch TKI7) Tel Rec 1966 $17 K 50$ (Ch. TKI7) Tel. Rec
17K55
[Ch. TM.17)

17720 Tel Rec.
$17 T 40$ (Ch. TK17) Tel. Rec
7756 (Ch. TK17) Tel. Rec
20C45 (Ch. TL20) Tol Rec.
$20 \mathrm{C} 52,20 \mathrm{C} 53$ (Ch. Ti20)
$20049 \mathrm{Ch} . \mathrm{Cr20)}$ Jel. Rec. 196
20 K 43 (Ch. TL20) Tel. Rec. 196
$20 k 51$ (Ch. TL20) Tel. Rec. 19
21 C 28 Tel. Rec............. 182 21C65, 2iC6E ICh. iN-211 To
Rec. $21 \mathrm{CJ3}$ iCh. iN.21)
Roc.
21029 Tel. Rec............218. 182-7

 $21 \mathrm{~T} 69,21770$ (Ch. TN. 21) T

$152-11\}$
$752,752 \mathrm{U}, 753,753 \mathrm{U} \mathrm{Tel}$. Rec.
754 Tal. Rec. ISee Model 752 -Sel

$126.8)$
758 Tel. Rec. (See Model 752-Set

764, 764U Tol. Rec...... $126-8$
707 Set 126.8]. Rec............126-8
768,709 , 773 Tol, Rec. (See Modol
$752-S o t ~ 126-81$
83 Tol. Rec.........139-11
785 Tel. Rec. ISee Model 762-Sel
139.111 .
791. 992 Tel. Rec. (See Modal 752
$967,968,970$ Tel. Rec.... 139-11

Ch. TK17 (See Model 17T40)
Ch. T120 (See Model 20C45)
Ch. T120 See Model 20C45)
Ch. TM. 7 (See Model 17C57)
Ch. IN- 21 (See Model 21C65)

OPERADIO

ORTHOSONIC

PACIFIC MERCURY

PACKARD

PA-382042		,
PA-393607		57-15
416387		160
416394		145-8
$\begin{aligned} & 439279 \text { (See } \\ & 160.7)^{2} \end{aligned}$	Madel	416387-St
$\begin{aligned} & 439310 \text { (See } \\ & 100.7)^{2} \end{aligned}$		416387

PHILCO-Cont
$\begin{array}{lll}\text { SI.PTI234 } & \text { Tel. } & \text { Rec........136-12 } \\ \text { SI.PTI282 } & \text { Tel. } & \text { Rec.......136-12 }\end{array}$ $51 . P T 1282$ Tel. Rec.....136-12
$51 . T 14438, \mathrm{~L}, \mathrm{M}, \mathrm{X}, \mathrm{XL}(\mathrm{Code} 1211$ (Ch. 31, A1) Tel. Rec...125-10
$51-T 1443 P$, PM, PL, PW (Code 1211 1.T1443P, PM, PL, PW (Code I211
(Ch. 3PI, API and Radio Ch. RT-4) Tel. Rec......123-11
$51 . T 1001$. T. S1.T1002 (Code 121)
(Ch. 33 , Cll Tel. Rec.... 138 -

 and Model $50.71800-5 \mathrm{Set} 110$.
101 51.T1004 (Code 122) (Ch. B, I)
Tel, Rec. (See PCB 20-Sel 134.1 Yel, Rec. (See PCB 20-Sel 134.1
ond Madel $50.11600-\mathrm{Sel} 110$.
101 51.T1606 (Coder 121 and 122) Tol.
Rec. (See PCB 20-Set 134-1 and
 $51 . \mathrm{T1s06}$ (Code 131) Tel. Rec. (See
Model $50-\mathrm{Fl} 600$. Code 121-Set 91A-10)
51.T1600 (Code 132] Tel. Rec. [For
Defl. Ch Model 50. 11600 Def. Ch. see Model 50.11500
(Code 121)-Sel 91A. 10 , for RF Ch , see Model 50 .
122 -Set 110.101
51. $\mathrm{T1} 1007$ (Code 121) (Ch. 33, Cl)
Tel. Rec. $\ldots138-7$ Tel. Rec. 11607 (Code 122) iCh. $32, \mathrm{Cl1}$
Tel. Rec.
 Yel. Rec. See PCB 20-Set
and Model $50-71000-S e t ~$
ind 51.TI634 (Code 122) (Ch. B, J)
Tel. Rec. (See PCB 20-Set 134.) Tel. Rec. (See PCB 20-Set 134.1
and Model 50.11000 -Set 110. S1. T1034 (Code 123) (Ch. 33, C1)
Tel. Rec. SI.T16 Rec. (Code 124) (Ch. $32, \mathrm{Cl}$)
Tel. Rec. 51.T1800 Code 1211 (Ch. 33, C2]
Tel. Rec. 148 13 T1.T1800 1 Code 122 ICh. $32, C 21$
Tel. Rec. 51.T1830 iCode i2ilich. $33, \mathrm{C2}$
Tel. Rec. 51-T1832 (Code I2ii) Ch. $33, \mathrm{Ca})$
Tel. Rec. 51.11833 (Code i2i) (Ch 3P1,
CPI) Tel. Rec CP1) Tel. Rec.
51.T1834 (Code 12ij Ch. $33, \mathrm{C21}$
Tel. Rec.
$148-13$
 51.T1836 (Code i23I (Ch. 34, Ch)
Tel. Rec.

 $51 . \mathrm{TI} 872$ (Code 122) Ch . 35 , CPI
and Radio Ch. RT-4) Tel. Rec. 51-T1874iCode 12111 CCh . 3P1, CP1
and Rodio Ch. RT.4) Tol. Rec. 51.V1875 (Code 121) (Ch. $\begin{aligned} & \text { 13P1, CP1 } \\ & \text { and Rodio Ch. RT-2) Tel. Rec. }\end{aligned}$ ond Radio Ch. RT-2) Tel. Rec.
(For TV Ch. see Set 135.10 , for
Rodio Ch see Model $51.72102-$ Rodio Ch see
Set 132.101
51.71878 iCode
51 T1 878 (Code 1211 (Ch. 3P1, CP1
and Radia Ch. RT.4) Tel. Rec.
 Tel. Rec (Code 121) (Ch. 35, 321
51-T2130
Tel. Rec.
51.1213 (Code 121) (Ch. 35, F2)
 51. T2133 Code 121)(Ch. 3R2, FR2)
Tel. Rec.
51. T2134 (Code 124)(Ch. 35, F2)
 51. T2136 (Code 124) (Ch. 35. F2)
Tel. Rec. 132 -10
51.T2138 (Code 124) (Ch. 3R2. FR2)
Tel. Rec.

 Tel.
51.530
51.532
51.530
51.532
51.534

51.579
51.691
$51-632$$\cdots$
$51-932,51.931 .51 .932$.
51.934
51.1330
$51.1730,51.1730$ (1) 51.1733, 51.1733 (1). $137-9$ Tel, Rec., (See Model 51-Tis01,
S2-T1612 (Code 122) (Ch. 32, C11)
Tel. Rec. (See Model $51-\mathrm{Ti} 601$, Code 122-Set 138.7)
52-T1802 (Code 123) (Ch. 37, C2)
Tel. Rec. (See Madel $51.71800-$ Set 148.13]
52.T1802 (Code 124) (Ch. 71, G1)
Tel. Rec. (Also see PCB $57-\mathrm{Sel}$
191-1)

PHILCO-Cont.
32.71804 (Code 122) (Ch. 32, C2) Se1 148.13)
52.71804 (Code 123) (Ch. 37, C2) Tel. Rec. ISee Model $51.11800-1$
Set 148.131 Set 148.131
S2.T1808 (Code
52. 11808 (Code 121 ICh. 41 , D1,
DIA) Tel. Rec.
1
190e D1A) Tel. Rec. (See PCB 50-Set
190.1 and Model 52.12108 -Set
17191 171.91
52.11808

52-T1808 (Code 122) (Ch. 33, C2)
Tel. Rec. (5ee Model $51 . \mathrm{T} 1800$) Tel. Rec. (5ee Model Si-T180052. T1810m (Code 122) (Ch.
C2) Tel. Rec............148-13
 C21 Tel. Rec.........1488-13
52.11812 (Code 122 (Ch. 33 . CC)

 O1A) Tel. Rec. (See PCB 50-Se1
190.1 and Modet 52.72100 -Set
 (Ch. 7i, G11 Tel. Rec. A1so see
PCB $57-$ Set 191-11....17952.T1831 (Code 122)(Ch. 33, C2)
Tel. Rec. (See Modol S1. 11800) Tel. Rec. (See Model S1.-11800-
Set 148.13)
52 - 11839 (Code 121 (Ch. 41, D1. D1A) Tel. Rec. (See PCB 56 - Sei
190.1 and Model 52 -T2100-Set 190.1 and Model 52-72100-Sel
171.91 52.11839 (Code 122) (Ch. $33, \mathrm{C2}$)
Tel. Rec. ISee Model $51 . \mathrm{T} 1800-$
 Tel. Rec. (Seo Model $51 . \mathrm{T} 1800-$
52 -T1840 (Code
DIA) Tel. Rec. 15) (Ch. 41, D1, 190.1 and Model 52.72106 -Set
S2l $52-71840$ (Code 122) (Ch. 33, C2) Tel. Rec.
52 T1840 (Code 123) (Ch. 37, C21
Tel. Rec.
 D1A) Tel. Rec. (See PCB 56-Set
$190-1$ ond Model $52 . \mathrm{T} 2100$-Set 52-T1841t (Code 1231 (Ch. 33, C2)
Tel. Rec. (See Model $51.71800-$ S2-T1842 (Code 121)(Ch. 41, D1, 32 -T1842 (Code 121 (Ch. 41, D1,
D1A) Jel. Rec. (See PCB 50 Sel
190.1 ond Model 52.72106 Sel 171.9)
2.71842 (Code 122) (Ch. 33, C2)

 Tel. Rec. (Soe
Set 148.13)
2.T1844 ICode 1211 ICh. 41. D1, D1A) Tel. Rec. [See PCB 56 Set
190.1 and Model 52.72100 Set 2 171.9) (Code 1221 (Ch. 33, C2) Tel. Rec.
52 Ti Ti844 Code 1231 iCh. $37, \mathrm{C21}$
T48-13
 Tel. Rec. (Ch. $3 R 2$ CR2) (Code
124) Tel. Rec. (See Model 51. 124) Tel. Rec. (See
T1833-Sel 135-10)

52-T1830 (Code 121) ICh. 41. D1,
DIA) Tel Rec. ISee PCB 56 Sei
D1A) Tel. Rec. (See PCB 56-Sel
190.1 and Model $52-12100$-Set
52-T1850.W ICode 124) (Ch. 71. GII Tel. Rec. (Also see PCB 57)-

Sel 191.1). 52-T1882 (Code i2iiich. 44, D4, | D4A) Tel. Rec. (Also see PCB 57 |
| :--- |
| $-\operatorname{Set} 191.1$) | 52. T1882, W (Code 1221 Ch. 33 ,

CPI and Radio Ch. RT-4) Tel. Rec. IFor TV Ch. see Model 51 .
T2102-Set 132.10 for Radio Ch .8 s
135.10
52.11883 (Code 121 ICh. A4, D4;
D4A) Tel. Rec. (Atso see PCB 57
 Tel. Rec. (Also see PCB So-Sel $190-11$
52 T2110 (Code 122) (Ch. 35, F2) Tel. Rec. ISee Model 51.72102-
Set 132.101 52.12120 (Code 1211 (Ch. 41, 01 ,
D1A1 Tel. Rec. (See PCB $57-S$ Sei
190.1 and Model 52.72106 -Set 190.1 and Model 52.72106 -Set
171.01 52.12120 \{Code 124\} \{Ch. 71, G1\}
Tel. Rec. (Also see PCB 57° Set Tel. Rec. (Also see PCB 57-Set
190.11 (Code 121) [Ch. 41,
$52-12122,1$ (Code
 Set 190 - ${ }^{\text {S } 2140 \text { (Code } 121 \text { (Ch. } 41, ~ D 1 .}$ 52-T2
DIA) Tel. Rec. (Also see PCB So

- Set 190.11 . 52 -T2142 (Code 121) (Ch. 41, D1,
DIA) Tel. Rec. (See PCB 56-Se) $190-1$ and Model $52-\mathrm{T} 2106$-Set
171.91 52-T2)42 (Code 122 (Ch. 35, F2)
Tel. Rec. (See Model $51-T 2102-$ Tel. Rec. (See Model 51-T2102-
Sel 132-101 52 . 2144 (Code 121) (Ch. 41, D1,
DIA) Tel. Rec. (Also see PCB 52-T2145x (Code 121) Tel. Ree. 52-T2145x (Code 1251 Ch .44 . D4,
D4A) Tel. Rec. (Also see PCE
 124)(Ch. $71 . \mathrm{GIITel}$. Rec. (Also
s7-Set 191.11. 179 -

PHILCO-Cont,
52-T2151 (Code 121) (Ch. 41, DI,
DIA) Tel. Rec. (See PCB 56 - Se 190.1 and Model 52-12106-Set 171.9)
52.72157 (Code 125) (Ch. 42, G2) 52.T2157 (Code 125] [Ch. 42, G21
Tel. Rec.
 and Radio Ch. RT-61 Tel. Rec.
(For TV Ch. see Model 51 . T2102 Set 132.10 , for Rodia Ch. see Set 159.2 A$)$
$52 . \mathrm{T} 2176$ (Cod
52. T2176 (Code 124) (Ch. 35, F. 2
and Radio Ch. RT-6) Tel Rec and Radio Ch. RT-61 Tel. Rec.

(For TV Ch. see Madel 51 . 21102 (For Tet 132.10 . for Radio Ch. see $52 . \mathrm{T2182}$ (Code 121) (Ch. 44, 0.4 | D. 4 A and Radio Ch . RT. 61 IFo |
| :--- |
| IV Ch. see PCB $57-\mathrm{Set}$ |
| 191.1 | iv Ch . see PCB 57 -Set 191.

and Set 181.9 , for Rodio Ch . see Set 159.2 A$)$
52 -T2224 (Code 121) (Ch. 41, 01 D-A) Tel. Rec. (See PCB 56-Sei
$190-1$ and Model 52.72100 -Sel 171.9) and mol 121 (n. 11 -S2-T2244 (Code 121) (Ch. 41, DI
DIA) Tel, Rec. (Also see PCB 32 T2245 (Code 121$)_{\mathrm{ICh}} \mathbf{4 4}, \mathrm{D} 4$, D4A) Tel. Rec. (Also see PCB 57
Sel $191.11 . .181-9$ 52-T2252 (Code i 213 iCh. 41 , D1.
DIA) Tel, Rec. (See PCB $57-\mathrm{Sei}$ D1A) Yel. Rec. (See PCB $57-$ Se
191.1)
$52-\mathrm{T} 2252$ (Code 124) $1 \mathrm{Ch} .71, \mathrm{G1}$
 52-12253 (Code i2i) iCh. 14, ${ }^{4}$.
 52.12254 (Code 121) (Ch. 41, D1,
D1A) Tel. Ree. (See PCB 56 Sei
190.1 and Model $52.72106-\mathrm{Se}$ $171-9)$
$52-\mathrm{T} 2256$
52-12256 (Code 1211 (Ch. 41, D1,
D1A) Tel. Rec. 1 See PCB 57 -Se D1A1 Tel. Rec. 1 See PCB 57-Set
191.1 and Model 52. T2106-Set
 D1A1 Tel. Rec. (See PCB 56-Sel
$190-1$ and Model $52-72106$-Se 52.12259 (Code 1211 (Ch. 41. D1,
DIA) Tel. Rec. (See PCB 56-Sei D1A) Tel. Rec. (See PCB 56 Sel Sel
190.1 and Model 52.72106 Sel
171.91 52-72282, 52.12283 (Code 121$\}$ Ch .44 D.4, D.44 and Radio
$\mathrm{Ch} . \mathrm{RT} .61$ For V Ch . see PCB
57 Sel 191.1 and Set 181.9 for $57-S e l 191.1$ and Set 181.9 ,
Radio Ch. see Set $159-2 \mathrm{Al}$ $\begin{array}{ccc}\text { Rodio } & \text { Ch. see } & \text { Set } \\ \text { R }\end{array}$ 159-2A1

 52.1340 iCodes 121 i22).160-12-8
$53 .+1824$ (Code 123) (Ch. 81 H.1 H.1A) Rel. Rec. (Also 100 PCB
$83-$ Set 224.1$)$ 201-7
$53 . \mathrm{T1824}(\mathrm{Code} 124)(\mathrm{Ch} .71 . \mathrm{G1)}$
 53-T1825 (Code i23) CCh . 81 , H-1 H.1A) Tel. Rec. (Also see PCB
$83-$ Set $224-1)$
 $53 . \mathrm{T1} 826$ (Code i23) (Ch 81, $\mathrm{H}-1$,
$\mathrm{H}-1 \mathrm{Al}$ Tel. Rec. (Also see PCB H.1A1 Tel, Rec. (Also see PCB
$83-5 \mathrm{Set} 224.1)$
$33-\mathrm{T} 1826$ (Code 124 (Ch. $201, \mathrm{FI}$ 33.T1826 (Code 124) (Ch. 71, G1)
Tel. Rec. (Also see PCB 57-Set
191.1).............179-9 53-11827, F. HM (Code I26) (Ch.
91, J.11 Tel. Rec. (See PCB 66 . Sei 203.1 and Model 53.11853 Set 185.10)
53-11827. F. HM (Code 128) (Ch.
 $\begin{array}{lll}\text { Sel 203.1, } & \text { PCB 82-Sel } 223.1 \\ \text { and Madel } \\ 53 . \mathrm{T} 1853-\mathrm{Set} & 185 .\end{array}$ 101
53 T1852 (Code 1231 (Ch. $81, \mathrm{H-1}$
H-1A) Tel Rec. (Also See PCB 83 H.1A) Tel Rec. (Also See PCB 83
-Set 224-1).......201-7
 Tel Rec. (Seee PCB 57 -Set 191.1
and Model $52 . \mathrm{T} 802$-Set 179.91 53 T1852F (Cade 123)(Ch. $81, \mathrm{H}-1$)
$\mathrm{H}-1 \mathrm{~A} \mid$ Tel. Rec. (Also See PCB Bj

53-T1852L (Code 123) (Ch. $81, \mathrm{H} \cdot 1$
H-1A) Tel, Rec. (Also See PCB 83
Set $224.11 .201-7$
 G-11 Tel. Roc. $150 e \mathrm{PCB}$ 57-Set
19.1 and Model 52.71802 Set 979.91
53.11853, l (Code 126) (Ch. 91)
J1) Tel. Rec. (Also see PCB óSet 203-11 (Coode 1281 185. 91. J .21 Tel . Rec. A See PCB ob-Set
203.1 PC8 2 -Set 223.1 ond model 53. $1853-5 e l$ 185.10)
 53-T1883 (Code 125)(Ch. 44, G4)
 53-T1886, (Code 125) (Ch. 44 ,
G-4 and Radio Ch. PT.9) Tel, Rec. (TV Ch. Only)....196-1;
33-T2124. I (Code 123) (Ch. 81,

PHILCO-Cont.
53.12125, 1 (Code 1231 ICh. 81
 G11 Tel. Rec. (See PCB 57-Se 191-1 and Model 52-71802-Se

53.12120

S3. H .14120 (Code 123) (Ch. 81, H. 1 H.iA) Tel. Rec. (Also see PCB
83-Set 224.1$) \quad201-7$ 53.-2126 (Code 125) (Ch. 42, G2)
Tel. Rec. 53.T2127 (Code 126) (Ch. 91, 111 Tel. Rec.
203.1 Also see PCB 86 -
20. 53.12152, \imath (Code 123) iCh. 81
 53-12152, 1 (Code 124) (Ch. 71 G1) Tel. Rec. (See PCB 57-Set
191.1 and Model $52.71802-S e 1$ 179.9) (Code 125) (Ch. 44, G.4
53. 2183 (Code
and Radio Ch. RT.9) Tel. Rec. ond Radio Ch. RT.91 Tel. Rec.
ITV Ch. only)...19611 53-12225, ((Codes 123 and 133)
(Ch. 81, H-1, H-1A) Tel. Rec (Also see PCB 83-Set 224.1) 53.12226 iCode 1231 iCh. $81, \mathrm{H}-1$
 53.12227 (Code 123) (Ch. 81, H-1,
H. 1 A) Tel, Rec. (Also see PCB 83 -Set 224.11
53. T2228 (Code 126] (Ch. 201 , J1
Tel. Rec.
 Tel. Rec. 1 See PCB 86 -Set
$203-1$ PCB 82-Set 223.1 and Model $53.11853-S e 1 \quad 185.10$)
53. 2255 (Code 1331 (Ch .81 . H1 53-T2260 (Code 123) (Ch. 81, H. H.1A) Tel. Rec. (Also see PCB
83-Het 224.1).....201-7 53-T2200 (Code 125) (Ch. 42, G2)
Tel. Rec. 53-T2262 (Code 123) (Ch. 81, H.1
H.1A) Tel. Rec. (Also see PCB H.IA Tel. Rec. (Also see PCB
$83-\mathrm{Set} 224.1$) 53-T2262 (Code 125) (Ch, 42, G2)
Tel. Rec. 53-12204 (Code 123) (Ch. 81, M-1,
H.1A) Tel. Rec. (Also see PCB
B3-Set 224.1)....201-7 83-Set 224.1$) \ldots(\mathrm{Ch}$. 201-7
53-T2264 (Code 125)
Tel. Rec. 53-T2206, 1 (Code 126) (Ch. 91 , J.1) Tel. Rec. (Also see PCB
Sel $203-11$ 10 33-T2266, L (Code 128) (Ch. 91,
J-2) Tel. Rec. (See PCB 66 Sel $\mathrm{J}-21 \mathrm{Tel}$. Rec. (See PCB $66-\mathrm{Sel}$
203.1 PCB $82-\mathrm{Sel} 223.1$ and 203.1 PCB 82 -Set 223.101
Modet 53 -T1853-Set 185.101 53-T2268 (Code 126) (Ch. 91, 11 Tel. Rec. (Also see PCB $86-\mathrm{Se}$
$203-1)$ 185-10 53-T2269 (Code 126) (Ch. 91, J1)
Tel. Rec. (Also see PCB o6-Sel
 53-T2269 (Code 128) (Ch. 91, J. 2)
Tel. Rec. (See PCB 86 Sel
203.1 PCB 82 Set 523.1 and Tel. Rec. (See PCB 86-Sel
203.1 PCB 82-Set 223.1 and
Model $53.71853-S e t 185-10$) 53.2270 (Code 128) (Ch. 91, JII
Tel. Rec. (Also see PCB o6-Sel Tel. Rec. (Also see PCB 80- Sel
$203.1)$ 53.12270 (Code 128) (Ch. 91, J.2) Tel. Rec. ISee PCB 66-Set
203.1 PCB $82-5 e t 223.1$ ond
Modet $53 . \mathrm{T} 1853-$ Set 185.10) Modet 53.T1853-Set 185.10)
53-T2271 (Code 1201 [Ch. 91) 53-T2271 (Code 1201 (Ch. 81 . J1)
Tel. Rec. (Also see PCB 6653.12271 (Code 128) (Ch. 91, J.2 53.12271 (Code 128)(Ch. 91, J.21
Tel. ReC. (See PCB. 86 Sel
203.1, PCB $82-$ Set 223.1 and Tel. Rec. 1 See PCB 86 -Se
20.1, PCB $82-$ Set 223.1 and
Model 53. T1853-Sel 185.101
 H1) Tel. Rec.
53-12273 C, M (Code 126) (Ch. 91,
J1) Tel. Rec. (Also see PCB $80-1$ I1) Tel. Rec. (Also see PCB $60-10$
$\mathrm{Sel} 203-11$ 53.12273. C (Code 128) ICh. 91
J-21 TeI. Rec. (See PCB 66 . Se 203.1 PCB 82-Set 223.1 ond
Model $53 . \mathrm{T1} 853-\mathrm{Set} 185.10$) $53-12274$ (Code 123) (Ch. 81, H.1
H-1A) Tel. Rec. (Also see PCE H-1A) Tel. Rec. (Also see PCB
$83-$ Set $224-1)$......201-7 53-T2285, 1 (Code 126) (Ch. 94
J.4 ond Rodio Ch. RT. 8 T Tel Rec 53-12285. ᄂ (Code 128) ICh. 94, J. and Radio Ch. RT.8] Tel. Rec.
(See PCB $85-$ Set 220.1 ond
andel $53.12285-$ Set 213.51
 Model 53.T2285-Set 213.5) 53.122855 (Code 128) (Ch. $94, \mathrm{J.5}$
ond Rodio Ch. RT. 8 T Tel. Rec.
 53-T2286 (Code 126) (Ch. 94, J-4
and Rodio Ch. RT.8) Tel, Rec 53-72287 Code 1201 CCh. 94 , Jand Radio Ch, RT-11) Tel ${ }^{\text {Rec }}$ R.
(TV Ch. only).......2i3-5 53. $\mathbf{1 2 2 8 7}$ (Code 128) (Ch. 94, J-5 and Rodio Ch. RT-11) Yel. Rec.
1For TV Ch. See PCB $85-\mathrm{Sel}$
226.1 ond Madel $53-\mathrm{T} 2285-$ Set 213.51
$53 . \mathrm{V1827}$, HM (Code 120) (Ch. 91 53. U1827, HM (Code 128) (Ch. 91,
1.11 Tel. Rec. (See PCB 66 Sei
203.1 . PCB $82-$ Set 223.1 ond 203.1. PCB 82 -Set 223.1 ond
Model $53 . \mathrm{T} 853$-Set 185.103
 203.1, PCB 82-Set 223.1 and
Model $53.71853-5 e t 185.101$

PRILCO-Cont.
53.U1852 (Code 123) (Ch. 81, H.1 PCB B3-Set $224-1$ and Model $53.11824-$ Set 201.7 for UHF Tuner
223.91
53.U1853, 1 (Code 126) (Ch. 91. 203.1. PCB 82-Se1 223.1 and Modei' $53.11853-$ Set 185.10)
$53 . \mathrm{U} 2124$ (Code 123) (Ch. 81, H.1. 53. U21 24 (Code 123) (Ch. 81, H-1,
H.1A) Tel. Rec. (For TV Ch. see PCB 83-Set 224.1 ond Model
53-T1824-Se1 201.7 for UHF
Tuner see Model UT21A-S 223.91
53.42125
 $\mathrm{H}-1 \mathrm{~A}) \mathrm{Tel}$. Rec. (For TV Ch. see
PCB 83 -Set 224.1 and Model S3-T1824-Set 201.7 for UHF

Tuner see Model UT2lA-Set 53-U2220 (Code 123) (Ch. 81, H-1, PCB B3-Set 224.1 and Model 53.71824-Set 201.7 for UHF | 223.91 |
| :--- |

33. U2227 (Code 123) (Ch. $81, \mathrm{H}-1$, PCS 83-Set $224-1$ and Model $53.11824-$ Set 201.7 for UHF 223-91
53.U2255 (Code 123) (Ch. 81, H.1. H.1A) Tel. Rec. (For TV Ch. see
PCB $83-5$ 2 224.1 ond Model
$53.11824-S e t 201.7$, for UHF S3.71824-Set 201.7 for UHF
Tuner see Model UT21A-Set
223.91

 Tuner see Model ÚT21A-Set
223.91 (Code 126) (Ch. 91. 53.02266, (Code 126) (Ch. 91,
J.1) Tei. Rec. (See PCB 86 Set
203.1 PCB $82-5$ Set 223.1 and

 Model $53-\mathrm{Tl} 853-\mathrm{Seq} 185.10$)
53-U2209 (Code $1261(\mathrm{Ch}$. 9 1
J.1) Tel. Rec. (See PCB 60 J.11 Tel. Rec. ISee PCB ob-Sel
203.1 PCB, $82-$ Set 223.1 and
Model $53-\mathrm{Ti} 853$. Set 185.101
 J.11 Tel. Rec. (See PCB 80 S-Set
203.1 PCB $82-$ Set 223.1 and
Model $53-1853$ Sel 18510)

 53.U272 (Code 123) (Ch. 81. H.1,
H.1A) Tel. Rec. (For TV Ch. see
 53-T1824-Sot 201.7 for UHF
Tuner see Model UT21A-Set 223-91 (Code 120) (Ch. 94, J.4
53-U2285
and Radio Ch. RT-8) Tol, Rec. 53. nd Radio Ch. RT. 8 I Tol., Rec.
(See PCB 85-Set 220.1 and Model 53-T2285-Set 213-5)
53 - U2280 (Code 120) (Ch, 94, , 53.U280
and Rodio Ch. RT. 101 Tel. Rec.
(For TV Ch. Only See PCB $85-$
Set 226.1 and Model $53.72285-$

PONTIAC-Cónt.
984296, $984570 \cdots \cdot \ldots, 1655^{94}$ 984688 (See Model 984592 -Set 165.8
984817
porto baradio (also see
Porta Products
PA. 510 ($9008-\mathrm{A}$), PB- 520 ($900 \mathrm{E}-\mathrm{B}$) PA-510, PB-520 (Revised). 48-21

PORTO PRODUCTS

SR-600 (Ch. 9040A "Smokeretta') (See Porto Baradio Model pi

PREMIER

PURE OIL (See Puritan)

FURITAN

501 (Ch. 5015 WG), 502 (Ch. 25 D . 25 WG)

503 W. iSee Model
503 (Ch. $6 A 35 W G$
504 (Ch. GA35WG).
$504 W$ (See Model

 506-:iet

RADIO APPARATUS CORP.
See Policalarm \& Monitoradio
RCA VICTOR (Also see
Changer and Recorder Listing) A55 (Ch. RC. 1087)...... 109-10
A-82 (Ch. RC. 1094)..... 137-10

 A1.A, B1.B, B1.C iCh. KCS24.1,
KRS20.1, KRS21.1, KRK1-1) Tol. Rec. (For TV Ch. only see Model
8PCS 41 - Set 90.91
 KRS20.1, KRS21-1, KRK1.1) Tol.
Rec. (for TV Ch. only see Mocel
BPCS41-Sel BPCS41-Sel 90.9)
 BX6 (Ch. RClO82), BXS7 ICh. RC.
BXS5 (Ch. RC1088), BXI.
108BA).

 M1.12287, M1.12288
M1.12289, M1.12280
 Mi-12295.

$\mathrm{Ml} .12298^{\circ}$ $\mathrm{M1.12298}$ $\mathrm{M1.13159}$

 $\mathrm{M1} 13167$$\mathrm{P} \times 600$
 S1000 iCh, KCs31.1, RCo6i7B1 Tel.
Rec.
 T184 (Ch, KCSAO) Tel. Rec. 109-11
TA. 128 (Ch. KCS42A and Radio Ch. RKI3SD) Tel. Rec. (For TV Ch
see Set 110.11 for Rodio Ch see Model TA. 169 -Set 108.10)
IA. 129 (Ch. KCSAIA.1 and Rodio
Ch RK135D) Tel Rec (For TV Ch. Ch. RK 1350) Tel. Rec (For TV Ch.
see Set 110.11 , for Rodio Ch. see Set 110.11 , for Radio C
Model TA. 170 -Set 108.10 TA169 (Ch. KCSA3 and Radio Ch.
RK1350) Tel. Rer. $108-10$
124, TCl 25 TC127 Ch KCS348)

 U2 (Ch. KCs79) Tel. UHF Conv U70 iCh. KCs701 Tel UHF Conv; $\mathrm{X} 551, \mathrm{X} 552(\mathrm{Ch}, 10898, \mathrm{Cl} 129-9$
$\times 711$ 1R81 (Ch. RC. $1102, ~ A, ~ B, ~ C) ~(A)=0 ~$
I $1 \times 51,1 \times 52,1 \times 53,1 \times 54,1 \times 5.6$,
$1 \times 55,1 \times 57$ (Ch. RC. $1104,-1, \mathrm{H}$, $\mathrm{B}-1, \mathrm{C}_{\text {, }} \mathrm{D}_{1}$ E) (Also see PCB si-
Set $185-1)$ 1×591, 12592 (Ch. RC1079K, ${ }^{1 / 3}$
 28×63 iCh. RC. $11151 \ldots 193=7$
 2C521, 2C522, 2CS27 (Ch. RC2ES3 (Ch. RS.142)... 2ES31 (Ch. RS. 142).
2ES3 (Ch. RS. 1421 . 2R51, 2RS2 (Ch. RCII19). 196-13 257 iCh. RC1117D)222-11 2510 (Ch. RC1111 and Audio Ch .
RSI41) 2151 (Ch. KCSA5) Tel. Rec. (Als)
see PCB $11-$ Set 118.1). 111 -11 2160 (Ch. KCSA5A) Tel. Rec. (Alss
see PCB 11-Set 118.11 . 111111

RCA VICTOR-Cont.
2781 (Ch. KCS46 and Rodic Ch. seo Model 2Tist-Set 111.11, for Rodio Ch. see Model 47141 -Set
139.121

 2XF91 (Ch. RC. 1121$) \ldots 20,206-9$
$2 \times F 931,2 \times F 932,2 \times F 933,2 \times F 934$

 RF91 (Ch. RC1129)
$3 \times 532,3 \times 533, \quad 3 \times$ $\begin{array}{lll}3 \times 532, & 3 \times 533, & 3 \times 53 \\ 3 \times 536 \\ \text { (Ch. RC1128) } \\ 4101 & \text { (Ch. KCS. } 61 \text {) }\end{array}$ 4i4i (Ch KCSB2 and Radio Ch.
RCl 1090 I Tel. Rec. ors ICh. KCS47, II Tel. Rec. ISee
PCB 12 Sel 120.1 and Model $6754-5 \mathrm{St} 113.7$)
64
OTS4 (Ch. KCS47, T) Tel. Rec. (Also
see PCB 12-Set 120.1). 113 see PC8 12 -Set $120.11,113-7$
oT 64 , 6 K 65 (Ch. KCS47A, AT) Tel.

 6772 iCh. KCS408) Teli Rec. 6T74, oI75, or73 iCh. KCS47A,
AT) Tel. Rec. (Also see PCB 12AT) Tel. Rec. (Also see PCB 12 -
Set 120.11). 18 I and Rodio 6T84 (Ch. KCS 48, T ond Radio Ch .
RC. 1090) Tel. Rec. (For TV Ch . see PCB 12-Set 120.1 ond Mod.
el 6T54-Set $113-7$ for Rodio Ch. see Model $4 T 141$-Set 139.
T2 182
6786 Rodio Ch. RC-1092) Tel, Rec.
(For TV Ch. 120.1 ond Model 6154 -Se:
113.7 , for Radio Ch. see Model 9189——Set 122.8). KCS478) Tel.
T103, 71104 (Ch. KCS. Rec.
$71038,7 \mathrm{~T} 104 \mathrm{~B}(\mathrm{Ch} . \mathrm{KCS} 47 \mathrm{~F}) \mathrm{Tel}$. Rec. [See PCB 26-Set 146.1 and Model 7 7103-Set
7T111 (Ch. KCS47GF-2) Tel. Rec.
 $7 T 112 \mathrm{Ch}$ (KCS 47 G$)$ Tel. Rec. (Soo 7T112-Set 134.9) and 7T1128 (Ch. KCS 47GF-2) Tel. Rec.; (See Model 7T1118-Set 156.11)
7 T 122.7123 (Ch. KCS 47 CJ Tel .

 $71122 \mathrm{~B}, 7 \mathrm{TH} 123 \mathrm{~B}$ (Ch. KCS 47 GF C)
Tel. Rec. (See Model 7 T 111 B Set 150.111
$7124,7 T 125$ (Ch. KCS 47G) Tel.
Rec. ${ }_{71}{ }^{\text {Rec. }} 24 \mathrm{~B}, 7 \mathrm{TH} 258$ (Ch. KCS 47 G$)$ Tel. Rec. See PCB 26 -Set 146.1 and 7 Model (Ch. KCS47D) Tel. Rec. 7143 (Ch. KCS 48 CA and Radio Ch .
RC1092) Tel. Rec. (For IV Ch. see Set 134.9, for Radio Ch. see 8B41 (Ch. RC-1069), 8842 [Ch 8841 (Ch, RC. 1069), 8842 (Ch. RC.
10894), 8843 (Ch. RC. 1069)
$76-16$ 8846 iCh. RC. 1069 C) isee Model 8841 -Set 76.16)
$8 B \times 5$ (Ch. RC. 1059)

 18)
8F43 (Ch. RC. 1037 B)...... $97-13$
8PCS4, B, C (Ch. KCS24B.1, KRS.
20A.1, KRKIA.1, KCS24C.1,

 $1060 \mathrm{~A})$
$8 R 74,8 R 75,8 R 76$ (Ch. RC. 1060 ,

 8TK29 (Ch. KCS32A, C and Radio Ch, RK135, A) Tel. Rec
8 TK 320 (Ch. KCS33A-1)

 BTV41 (Ch. KCS25D.1, KCS25E-2,
RK117A, RS.123A) Tel, Rec 8TV 321, B, 8TV323, B CCh. KCS.
 8V7 (Ch. RC. 61 5) (See Model 77V1
-Set 38.18)
 $\begin{array}{cc}\text { (Ch. RC-616A, RC. 616H) } & \text { S6-20 } \\ 8 V 111 \\ 8 V 112(C h . ~ R C-616) & 58-18\end{array}$ 8visi,
8x53 1Ch
8×51 (Ch. RC. 1064).
$8 \times 71,8 \times 72$ (RC-1070)
$8 \times 521(R C \cdot 1066), 8 \times 522{ }^{63-15}$ (RC-
8×5418
$1065 A)$
8×542 (Ch. RC-1065, RC-
$59-16$
$3 \times 544, ~$
$8 \times 541-545, \quad 8 \times 546$
$89-161$

RCA VICTOR-Cont.
$8 \times 681,8 \times 682$ (Ch. RC. 1061$)^{59-16} 65-10$
98×5 (Ch. RC. $1059 \mathrm{~B}, \mathrm{Cl}$ (See Mod

9EY31, 9EY32 ©......... 9 98-10

RS5-123A) Tel. Rec, if Tel 90 Ree
(Ch. KCS49,
9777 iCh. KCSA9A, AT) Tel. Rec
979 ICh. KCS49, A, AT, T1 Tel

$9 \mathrm{Ti} 26 \mathrm{iCh}, \mathrm{KCS49C}]$ Tel. $134=\mathrm{Rec}$
$9 \mathrm{~T} 28 \mathrm{Ch} . \mathrm{KCS} 49 \mathrm{C})$ Tel. 134 Rec
$91147(\mathrm{Ch} . \mathrm{KCS}$ 80A and Rodlo Ch
RC1092) TeI. Rec. (For TV Ch
see Set 134.9 , for Rodio Ch. see Model $9789-$ Set 122.8)
91246 (Ch. KCS28C) Tel. $74{ }_{\text {Rec }}$
91246 (Ch, KCSj8) Tel. Rec. 93 -8
91256 (Ch. KCS38C) Tel. Rec 91270 (Ch, KCS29) Tel. Rec. 85-13 9IC245 (Ch. K(s34B) Tel. 74 Rec. 91C247 (Ch. KCS34, 8) Tel. Rec 9TC 249 (Ch. KCsj4, B) Tel. Rec. $9 \mathrm{C} 272,91 \mathrm{C} 275 \mathrm{Ch}$ KCS29Cl PTEl 9Tw 309 iCh. KCSAII and Radi Ch. RK135C) Tel. Rec. (For TV

Ch. see Model TA.129-Set 110 11 for Radio Ch. see Sel95A. 11 | 9TW333 (Ch. KCS30.1, Radic |
| :--- |
| RC616N |
| Tel. Rec..... 74 |

 61881, owlos ICh. RC. 118 BC OW106 (Ch. RC. 622)
9×561 (Ch. RC-10798) 9×562 (Ch $9 \times 561(\mathrm{Ch}, \mathrm{RC}-10798) 9 \times 101 \mathrm{Ch}$.
$\mathrm{RC}-1079 \mathrm{C})$
$9 \times 571(\mathrm{Ch}, \mathrm{RC} \cdot 1079), 9 \times 5721 \mathrm{Ch}$. $\mathrm{RC}-1079 \mathrm{~A})$
$9 \times 641(\mathrm{Ch} . \mathrm{RC} \cdot 1080), 9 \times 642(\mathrm{Ch}$ 9×651 (Ch. RC.1085), 9×652 (Ch RC-1085A)
$0 Y 7$ (Ch. 1057B)
OY51 (Ch. RC-1077)......988-1 RC1077B)131-13 16 T152 [Ch. KCSA7E] Tel. Rec $175349 \mathrm{Ch} . \mathrm{KCS78F}$ Yel. Rec 175349 G (Ch. KCS78M) Tel. Rec (See Model 175349 -Set 228.15)
175349 GU (Ch. KCS78L) Tel. Rec.
(See Model 175349 U -Set 228.
175349 U (Ch. KC578H) Tel. Rec 175350 [Ch. KCS7afl Tel. Rec 17\$350G (Ch. Kcs78M) Tel. Rec 175350 GU (Ch KC5781) 228-15 (See Model 175350 U -Set 228 1751
17500 (Ch. KCS78H) Tel. Ree 17S35i, u iCh. KCS78F, ${ }^{2281} \mathbf{2 1 2 8} \mathrm{Tel}$

 171153 (Ch. KCSO6) Tel. 158 Rec 171154 (Ch. KCS66) Tol. Rec. (Se
Model 17153 -Set $158-11$) 171155 (Ch. KCS66) Tel. Rec 171160 (Ch. KCS60) Tel Rec 171162 (Ch. KCSO6A) Tel. Rec
(See Model $17 \mathrm{~T}!53-5 \mathrm{et} 158.11$ 171163 (Ch. KCS66C) Tel. Ree
171172,171173 (Ch. KCS66A) Te1
Rec. (See Model $17 T 153$-Se Rec. (See Model 17T153-Se
158.111 $17172 \mathrm{~K}, 17173 \mathrm{~K}, 177174 \mathrm{~K}$ ICh
KCS66D) Tel. Rec...... 169-13 171174 (Ch. KCS66A) Tel. Rec 171200 , 177201,171202 (Ch
KCS72) Tol. Rec. (Also see PCB
 17 T 211 (Ch. KCS72) Tel. Rec. (Also
see PCB $59-S e 1$ 193.1). 184-12 17 T 220 (Ch. KCS72) Tel. Rec. (A)so
see PCB $59-\mathrm{Set}$
(93-1). 184-12 1712500E (Ch. KCS74) Tel. Ree 17T2500E (Ch. KCS74M1) Tel, Rec (See Model 17T2500E - Se 17T261DE (Ch. KCS74) Tel. Rec
 17T301, U, 17T302, U (Ch. KCS78, 17T310, U (Ch. KCS78, B) Tel. Rec

RCA VICTOR-Cont
171352U (Ch. KCS781) Tel. Rec 171361, u iCh. KCS78F, 228-1
Rec.
228-1
 210317, U iCh. KCSB1, 8) ${ }^{\text {Rec }}$ Rec.
$210326, ~ U, 210327, ~ U, ~$
U, 2103210828
$U, 210330, ~ U ~(C h$ $\mathrm{U}, 210329, \mathrm{U}, 210330, \mathrm{U}^{(\mathrm{Ch}}$
$\mathrm{KCS} 81, ~ B)$
Tel . Rec..... $208-8$ 210346 , U ICh. KCSgiD, E, Radi Ch. RCIIIIA and Audio Amp
Ch. RSIAIA) Tel. Rec. 219 $210358, \mathrm{U}$ (Ch. KCS81F, J T Tol Rec.
210368, U
Rec. KCS. Kif,
230
230 $210377, \mathrm{U}, 210378, \mathrm{u}, 210379$ U, $210380, \mathrm{U}$ (Ch. Ḱcs81F, 211159 (Ch, KCSOBC, E) Tel. Ree Model 211176 -Sot 157.8] 21 SISOD (Ch. KCS68F) Tel. Rec 211105 iCh. KCSOBC, E) Tel. Rec.
(See PCB SS-Se1 100.1 and (See PCB $50-$ Se1 190.1
Model 21T176-Sel 157.8) (See Model $21 \mathrm{TI} 59 \mathrm{DE}-\mathrm{Se}$
(197.9) 217174DE (Ch. KCS88F) Tel. Rec 21 Ti7SDE (Ch. KCSS8F) Tel. Rec (See Model 2III59DE - Se 21176, 211177, 211178, 211170 (Ch. KCS68C) Tel. Rec. (Also see
PCB 56-Set 190.1)... $157-8$ 21T178DE (Ch. KCSO8F) Tel. Rec. 21 Ti79 1Ch. KCSOBC) TeI. Rec
(Also see PCB 56-Set 190.1 21 TIT9DE (Ch. KCS 68 F) Tel. Rec 21T197DE (Ch. KCS68A, Rodio Ch
RC1111A and Audio Ch. RSIA1A 21T207. G (Ch. KCsi2A) Tel. Rec. (See PCB 59-Set 193-1 an
Model 17T200-Set 184-12) $21 T 208$ fCh. KCS72A) Tel. Re
(Also see PCB $59-$ Set 193.1 . 21T2i7, 21T218 (Ch. KCSS2A) Tol.
Rec. (Also see PCB So-Sol
 72A) Tel. Rec. (Also see PCB
-Set 193.1) (A).... 184-12 21 T 42 ICh KCS720.1 and Radio Ch. RCl117BI Tel. Rec. $202-$
$21 \mathrm{~T}_{2} 44 \mathrm{Ch}, \mathrm{KCS} 72 \mathrm{D}-2$, Rodio Ch RC1111B, and Audio Ch. RS141C 217303, U (Ch. KCS82, B) Tel R Rec $217313, U, 217314, \mathrm{U}, 211315, \mathrm{U}$ Rec.
$21 \mathrm{~T} 322, \mathrm{U}, 217323, \mathrm{U}, 217324, \mathrm{U}$ 21 T 350 U (Ch. KCS83E) Tel. Rec 211363 (Ch. KCs83) Tel 232$21 \mathrm{~F} 363 \mathrm{G}, \mathrm{GU}$ (Ch KCs83C, E) Tel Rec. (See Model 21T363, U-
5et 232.5) KCs838) Tel... Rec 211364 iCh. xCs83] Tel 232 Rec. 21T3s4G, GU ICh. KCSB3C, E
Tel. Rec. (See Model 211364, U 21 T364U 232.5) (Ch. KCS83B) Tel. Rec $211385, \mathrm{U}$ (Ch Kcse3, B) Tet Rec 21 T372, U, 21 IT373, U, 213374 ,
(Ch. KCS83, 81 Tel. Rec. 232-
 21 1r375G, GU (Ch. KCS83C, E) Tel
Rec. (See Model $21 T 375$, U—Se 232.5
211375

211375 U (Ch. KCS83B) Tel Rec 45EY1 (Ch. RS. 132F).
$45 . E Y-2$ (Ch. RS.138, A, H
$45 . E Y .3$
 45.EY-4 (Ch. RSI 40)
45 EY 15 (Ch. RS. 132 H)
45 EY. 26 (Ch. RS. 138 L . $45 . \mathrm{W} \cdot 10 \mathrm{Ch}, \mathrm{RCl} 1090 \mathrm{~A}) .138$

$54 \mathrm{B1}, 54 \mathrm{~B} \cdot \mathrm{~N}, 54 \mathrm{~B} 2,58 \mathrm{BB}$ | RC589 |
| :---: |
| 54 |

5485 (Ch. RC1047) $55 A U$ (Ch. RCIO17)

55AU (Ch. RC1017)
55 U (Ch. RC1017),
$55 F(C h) R C 10015)$
S5F (Ch. RC- $1004 E$).
$55 F A$ ISee Model 55 F (Chet 4.61
$50 \times$, $56 \times 2,56 \times 3$ (Ch. RC. 101
56×5 (See Model 56×10-Set 1.12
56×10 ICh. RC. 102381 1-12 56×10 ICh. RC. 1023 BI
58 AV , 58 V ICh. RC-604 $59 A V 1$, 59V1 (Ch. RC. 6051 63E (Ch. RS-127).........28-28 64F7, 64F2 (Ch. RCIO37). ${ }_{\text {(Ch. RClO37A) }}^{645}$ 65BR9 (Ch. RC. 1045 I..... 23-16 65 F (Soe Model 55F-Set 2.61 65AU, 65U (Ch. RC. 1017 A) 14-23 65U.I (See Model 65AU-Set 14 $65 \times 1.65 \times 2$ (Ch. RC. 1034). $4-30$
$31-26$ $65 \times 1,65 \times 2$ (Ch. RC. 1064). ${ }^{31-26}$
65×8, 65×9 (See Model 65×1-Se 66 BX (Ch. RC-1040, RC-1040A $66 E$ (Ch. RS.126),
$6 \delta \times 1, \delta 6 \times 2,67 \times 3,66 \times 4 \quad 17-26$
$7-23$

RCA VICTOR-RAYTHEON

RCA Victor-cont.	rCA VIctor-Cont.
Ch. KCS83, B (See Model 21T363, U)	Ch. RS.123C (See Model GPCS41) Ch. RS. 1230 (See Model RVISI)
	Ch. RS. 126 (See Model 606)
Ch. KCS83E (See Model 21 TI3S6U)	Ch. RS. 127 (Seee Modol
Ch. KRK.1A (Soe	Ch. RS. 132 F . H (5 ee Model 4 SEY)
Ch. KRK. 1 (See Model 648PTM	Ch. RS. 132H (See Model 4S.EY.15)
Ch. KRK14.1 (Soog Model 8 PP	Ch. RS-138, A, H ${ }^{\text {See Model }} 45$.
C. KRK4 1 See Model 9PC41	
	.
Ch. KRS20-1. (See Model 628 CPK)	Cr. RS. 140 (See Model 45.EY.4)
Ch. KRS208.1 (See Model 9PC41A)	Ch. RS. 141 1 S
Ch. KRS21A.1 (See Modol 8PCS41)	Ch. RSIAIA (see Model 210346 , U
Ch. RC. 589 (See model SABI)	
Ch. RC. 605 (See Model S9AVI)	
RC. 600	Bentley (Soe Model 4 T101)
Ch. RC. 6008 C	Benton (See Model 21T1750E)
Ch. RC.608	${ }^{\text {Britulo (}}$ Soeo Model
	Ca
j30rv1), Rell	$\text { Calhoun See Model } 171173 \text {, } 17 \mathrm{~T} \text {. }$
Ch. RC610C (See model slovi),	
Ch. RCo	
Ch. RC. 616 (See Modal 8 V111)	
Ch. RC.616A, RC. 616 H (See Modal	17 T 172
	Cumberlo
Ch. RCol68, C, J, K (See Model 8TV321)	Deauville (See Model 21 T31S, U) Dobson (See Model 21 T322 U)
Ch. RC.616N (Soo Model 9TW33	Donley (See Model 211177)
	Fairfax (See Model 6T84)
18, RC-618A (Soe Model	Foir
RC-618, B, C (See Model	Formington (See Model 21TI66DE)
	Glendale (See Model 17T302)
Ch. RC-622 (See Model	
	Honley (See Modol 177310)
	Hartiord (Soe Model 6787)
Ch. RC-1017 (Soe Model SSAU)	
Ch. RC. 1017A (See Model 65AU) Ch. RC. 1023 B (See Model 56×10)	Highlond (7 J1128)
Ch. RC. 1034 (See Model 65x1)	Millsdole (See Model 9177, 97128)
RC. 10	
RC. 103	Kendoll isee Modal 17T174, iTT.
	K)
RC.1040, RC.10404 (See mod.	Kent (Soe Model ot54, 7tlo4,
RC. 104	
RC-1045 (See Model 65BR9)	$\text { y } 1 \text { So }$
Model	
(Se	4
Ch. RC. 1050 , RC. 1050 B (See Modal	
	e Mode
Ch. RC-1059 (See Model 88X5)	Prentiss (See Model 217314,
RC. 1059 C ISee	15
$\begin{aligned} & \text { iodel } \\ & \text { RC. } 10 \end{aligned}$	Provincial (See Madel 6176, 71. 1258, 9T128)
Ch. RC. 106	Regency isee Model 6774,71123,
RC-1001 (See Model 8x681)	
Ch. RC. 1004 (Soe Model 8×533)	Rockington
Ch. RC-1084 (See Model (65x)	
RC-1065, RC-1065A (See Mod $\times 5411$	
RC-1066 (See Model 8×5211	
100	$1!$
Ch. RC-1068 (See Model	10,
RC. 1069 A , B ISeo M)
Ch. RC. 1070 (See Model 8	
RC. 10704 (See Model ${ }^{\text {R711) }}$	1
RC. 10774, B (See Model	
	Westlond (Soe Model 211242)
	d (See Model 117154)
RC-1079	(SSee Model
Ch. RC. 1080 C (See Model 2×61)	Yorktown (See modei 210327, U)
Ch. RC. 10800 (See Model ${ }^{\text {2 }}$ K 62)	
RC. 108	RME
	DB.22A
Ch. RC. 10858 (Soe Model 2×521)	
Ch. RC. 1087 (Soe Model A5S)	152A
Ch. RC.1088, RC. 1088 A (See Model	
Bx5	
X ${ }^{\text {xs }}$	200
h. RC Ch. RC-1092 (See Model 9189)	iola
Ch. RC. 1094 (See Model A.82)	61-2, 61.3 (Ch. RC. 1011)
Ch. RC-1090 (See Model A-108)	-25
	${ }_{\text {(Ch. RC. }}$
RC	(Ch. RC. 1023 B) ${ }^{\text {a }}$ (2-35
C. RC. 10984 (see Model B.411)	62.2 (See RCA model 6SU.1-Sel
RC. 1102 (See Model 1R81)	
Ch. RC. 11110 (See Model Pxo00)	1.... 36-20
	Ch. RC. 1011 (See Model 61.11$)$
RCIIIA (See Model 210346,	Ch. RC.1023. RC-10238 (See model
Ch. RC. 1114 (See Model 28400)	Ch.
Ch. RC-1115 (See Model 28×33)	.81
C. RC. 11117 A (50e Model 2 US7)	RC-1058, RC-1058A (See Model
Ch. RC.1117C (See Model 2 SS7)	RC. 1063 A (See Model 75ZU)
	RADIO CRAFTSMEN
	RC-1 Tuner), RC. 2 (Audio Amp.)
RC.1120. A See Model 2 25S21)	39-19
Ch. RC. 1121 (Soe model $2 \times$ F991)	Kitchenaire 6-14
Ch. RC. 11214 (Seo Model $2 \times \mathrm{KF}$	RC. 8
Ch. RC-1126 (See Model 38x51)	RC. 10 110
C. RC. 1128 (See model 3×521)	(101. Rec......... 96-9
Ch. RC.1129 (See Model 3RF9) ${ }_{\text {Ch. }}$	O0A Tel. Rec. (Also see PCB 39
Ch. RK. 117 (See Model 711 V 2)	-Set 170-21....... 117-11
Ch. RK. 1174 (See Model 8TVA1)	RC101 Tel. Rec..........142-10
Ch. RK. 121 (See Model 612 VII	${ }_{\text {RC200 Tel. Rec. (Also see PCB }}{ }^{40}$
Ch. RK-121A (Seo Model o48PTK)	-1 172-11) 140-9
Ch. RK-121C (See Model RVISI)	01 Te
RK-135, RK.135A (See Model	176
87K291	176-9
C. RK-135A-1 (See Model 8Tk320)	202 Tel .
Ch. RK-135C (See Model 9TW309	500 16
Ch. RK-1350 (Soe Model TA169)	204
RS. 123 (See Model o12V1)	radio development
Ch. RS.123A (See Model 9PC41A) Ch. RS-123B (See Model 648 PV)	

Ch. RS. 123 C (Sont. .in.

Ch. Mod 1

 ${ }^{\text {coint }} 173 \mathrm{k}$)
 Cumberlond
Dcauville (See Model 21T315, U,
Dobson (See Model 21T322, U)
Donley (See Model 211177)
Foirfax (See Model $6 T 84$)
Fairfax (See Model 6T84)
Fairfield (Seee Model 6T71, 6T72. Formington (See Model $21 \mathrm{T1} 66 \mathrm{DE}$
Glendale (See Model 17T302) Hampton (See Model 1771160) Hartord (Soe Model 6T87) Haywood (See Model 7T1118)
Mighland (See Model 6T65, 7T112,
7 TI1128) Millsdale (Seo Model 9T77, 9 T128
Hilton \langle See Model 21T316, $W 1$ Hitton (See Model $21 T 316$, U)
Jefirey
See Model $21 T 313$, U)
Kentridge (See Model 210328, UI
Kendall (See Modal 171174 , I7T.
Kont (See Model 6T54, 71104
7 T1048) Kingsbury (See Model 6764)
Kirby (See Model 21T303 Lexington (See Model 2ís323, U)
Merrilt (See Model $210317, \mathrm{U}$) Modern (See Model 6T75, 7T124)
New Port (See Models $6 T 53$ 7T103 TriO3B)
Northompton (See Model 9179) Penfield (See Model 211244),
Prentiss (See Model 217314 , U) Provincial (See Madel 6T76, 71
$1258,9 T 128$) Regency (Ste Model 6T74, 71123
$7 T 123 B$) Rockingtonham (Sue Model 21r17
Rutherford (See Model 210346)
Rutland (See Model $6 T 86$ TT143) Sedgwick (See Model 9T89, 91147)
Shelby (See Model 2T51) Somervell See Model 2T81, 411411 Staunton (See Model 21D326, U
Stockton (See Model 21 T324, U) Sunderland (See Model 21T197DE)
Suffolk (See Model 21I176) Talbot (See Model 16T152)
Wayne (See Model 17T301) Wastland (See Model 211242)
Whitfield (See Model 171154 Winston (Soe Madel 7T1132),
York (See Model MTS7, 9T105)

45 200

VHF 2.1
VHF. 152

RADIOLA

 $61-10$ (Ch. RC. 10238)
62.2 (See RCA Model $654.12-35$
14.23 Sel
 Ch. RC-1011 (See Model 61.1)
Ch. RC-1023, RC-1023B (See Model Ch. RC. 1023 B (See Model 0 - 101
Ch . RC. 1034 (See Model 61.81 Ch. RC. 1058 , RC-1058A (See Mod
Ch. RC. 1063 (See Model 75ZU)

RADIO CRAFTSMEN

RC-1 Tuner), RC. 2 (Audio 186-1

PR-2	50-15
RADIONIC (Also Soe Chancellor)	
Y62W, Y728	26-22
RADIO MFG. ENGINEERS (See RME)	
RADIO RECEPTOR	
C.1709-P Tel. UHF Conv... 222-12	
RADIO WIRE TELEVISION (See Lafayeffe)	
RANGER	
118	28-27
RAULAND	
BaU21	211-10
ba21	87-10
W.819-A	43-16
1810	179-10
1814	99-13
1820	100-10
1821, 1822	59-17
1825	97-14
1835	60-17
1841	58-19
1904	140-10
1916	229-12
1932	148-14
1960	208-9
1961	212-4
2100 (Sub-station)	39-20
2101-A (Master Station).	39-20
2105 (Master Station).	36-21
2206, 2206H, 2212, 2212M	H. 2218 ,
$2218 \mathrm{H}, 2224,2224 \mathrm{H}$.	80-13
2306, 2312, $2324 \ldots . .$.	87-10
2400 Series	33-12
3406, H	210-6
3412, H	210-6
3424. H	210-6

QAYTHEON-CONT
 M. 1601 (Ch. $16 A \times 23,25,261 \mathrm{Tel}$.
Rec.
 (Ch. 16AY28) Tel. Rec. (Also see
PCB 19-Set 132.11. $124-8$ $\mathrm{M}-1612 \mathrm{~A}$ (Ch. $16 \mathrm{CY21i},, \mathrm{M} .16128$
(Ch. 16AY28) Tel. Rec. (Also see PCB 19-Set 132-1)...124-8 M-1613A (Ch. 16AY211), M-1613B
(Ch. 16AY28) Tel. Rec. (Also see (Ch. 16AY28) Tel. Rec. (Also see
PCB 19 Set $132-1) .124-8$
A. 1626 (Ch. $164 Y 212$) M.i7ila iCh. i7AY24). $\mathrm{M}-1711 \mathrm{~B}$
(Ch. 17AY2I) Tel. Res. (Also see

 M. 1713 A (Ch. 17AY24), M-17138
1Ch. 17 AY21) Tel. Rec. (A1so see
PCB $19-501132.1\} \ldots 124=8$
 Model M-1711B-Set $124-81$
M-1728 (Ch. 17 AY 211 I Tel . Rec.
(See PCB $19-$ Set 132.1 and See PCB 19-Set 122.1
Model M. 1711 S-Set 124.8)
$.1726 \mathrm{~A}, \mathrm{M} .1728 \mathrm{~A}$ (Ch. 17 AY 21

[Also Soe PCB $87-5 \mathrm{et} \quad 230.1$ Ren
M-1733bA, iA, mA (Ch. 17T1) Tol.
Rec. See PCB 87 Sel 230.1 and
Model C-1735A-Set 189.14
A-1734A (Ch. 17T2) Tol. Rec. (For
TV Ch. See PCB 87 -Set 230.1
ond Model C.1735A-Set 189.
and Model C. 1735 A-Sel 189.
14 For UHF Tuner See Model
UHF-100-ESet UHF-100-Set 207-8)
A.1737, iA, mA [Ch, 17T4] Tel.
Rec. (Seee PCB 87 -Set 230.1 and Model C.1735A Set 189.141 M-2007A, M.2008A (Ch. 20AY21)
Tel. Rec. (See PCB 43-Set 177.1
ond Model C.2001A-Set 149.9) M-2101A (Ch. 21 AY21) Tel. Rec.
(Seo Model C.2103A)
 M. 2107 bA,
(Seo PCB 87 mA Tel. Rec. 230.1 and Model C.1735A-Set 189.1
 Model C.1735A-Set 189-14)
PR-51, A Ch. 4P12, A). 218-
P-301 Tel. Rec. (See Model 70×21

 (Also see PCB 19-Set 132.1) RC. $1619 A$ iCh $16 A Y 211$ T Tel. Rec.
(Also see PCB 19-Set 132.1$]$ RC. 16198 (Ch. 16AY28) Tel. Rec.
(Also see PCB 19-Set 132.1) RC-iJisA iCh. ITAYY4) Tel. Rec.
(See PCB 19-Set i32.1 and (See PCB $19-$ Set $^{2} 132.1$
Model M-1711A-Set 124.8) RC-17188 (Ch. 17AY21) Tel Rec.
(Also see PCB 19-Set 132.1)
RC. $1719 A$ iCh. i7AY24) Tel. Rec.
(See PCB 19-Set 132.1 and (See PCB 19-Set 132.1,
Model M-1711A-Set 124.81 $\mathrm{RC}-1719 \mathrm{~B}$ (Ch. 17 AY 21) Tel. Re
(Also see PCB 19 Set 132 .
RC-1720A (Ch. I7AY271 Tel Rec.
RC. 2005 ClCh (Ch. 204Y21) Tel. Rec.
(See PCB 43-Set 177.1 and (See PCB 43-Set 177.1
Model C.2001A-Set 149.9)

 Set 233.1 and Model C-2112A UC. 17354 , UC. 17364 (Ch. 1712)
Tel. Rec. (For TV Ch. See PCB Tel. Rec. IFor TV Ch. See PCB
$87-$ Set 230.1 ond Model C.
$17354-$ Set 189.14 For UMF Tuner See Model UHF-100-Set
207-8) UC.1740A, UC.1742A (Ch. 17T5)
Tel. Rec. (For TV Ch. See PCB 87.-Set 230.1 and Model CI735A Sot 189.14, For UHF Tuner SA
Model UHF. 100 -Set 207.8) UC. 2109 A , UC- 2110 A (Ch. 21 T 2)
Tel. Rec, (for TV Ch. See PCB 87 Set 230.1 and Model C. $1735 A$
-Set 189.14 , For UHF Tuner See
Model UHF. 100 S Set 207.81 UC. 21284 , UC. 21304 (Ch. 21 TO) C.2128A, UC.2130A (Ch. 21IS)
Tel. Rec. (For TV Ch. Soo PCB
$87-S_{\text {et }} 230.1$ and Model C. 87-Set 230.1 and Model C.
1735 - 189.14 For UMF
Tuner See Model UHF.100-Set
 Set 230.1 and Model C1735AModel UHF.100-Set 207-8) UM-1738iA, mA (Ch. 17T5) Tel.
Rec. (For TV Ch. See PCB 87Set 189-14. For UHF Tuner See Model UHF. 100 -Set 207.8) See
(Ch. 21 T2) UM-2107bA, iA, MA (Ch. 21 I2)
Tel. Rec, (For TV Ch. See PCB 87
Set 230.1 and Model $\mathrm{C}-1735 \mathrm{~A}$ Set 230.1 and Model C-1735A
-Set 189.14 For UHF Tuner See
Model UHF-100-Set 230.11

RAYTHEON-CONT.
 Rec. (For TV CM. See PCB 87-
Set 230.1 and Model C. 1735 -
Set 189.14 , For UMF Tuner See Model UHF.'100-Sot 207.E] UHF. 100 (UMF Tuner).....207-8
$70 \times 21,70 \times 22 P$ Tel. Rec. $81-13$ 10AXF23 Tel. Rec. (Also see ${ }^{\circ} \mathrm{CB} 3$

- 5 ol 105.1)........ $75-14$ 10AxF44 Tel. Rec. (S.e Model
C. 1102 STS Sel 94.8 and Model

 Ch. AP12, A (See Model PR-51,
Ch. $8 A F 25 A$ (See Model FRR1A) Ch. 10A)22 (See Model M70]) ch. 12AX22 (Seo. Model C1102)
h. $12 A \times 26,12 A \times 27$ (See Model
 Ch. $16 \mathrm{AX23}, 25,26$ (See Madel
C. 1602)
Ch 16 AY 28 (See Model C.1615B) Ch. 16AY28 (See Model C-1615B)
Ch. 16AY21 (SSe Model C-1515A) (Also 300 PCB 19-Set 132-1)
h. 16 AY212 (See Model M-1626) h. 17Arr21 (Soe Model C.1714B)
h. $17 A Y 21 A$ (See Model C.1729) Ch. 17AY21A (See Model C-1729)
 Ch. 1772 (See Model M.17344)
Ch. $17 T 4$ (See Model ($-1741 A$) h. 1774 (See Model C-1741A)
h. 1775 (See Model C-1740A) h. 20 AY 21 (See Model C-2j01A)
21 AY 21 (See Model C-2103A) Ch. 2111 (See Model C-21084
 Ch. $21 T 5$ (See Model C-2127A)
Ch. $21 T 6$ (Sea Modol UC-212EA)
RECORDIO (Wilcox-Gay

510 end

515.
516.

710, 710 A, Tlox Tel. Rec. 150-11 $800 . \mathrm{B}$
800 BT
800 BT Tol. Rec. Ifor TV Ch. seo PCB
4 - Set $52-19$, for Rodio Ch. see Model $800-\mathrm{B}-$ Set 14.27). Rec
817 C (Ch. 9029,9031$)_{\text {Tel }}$. Rec (See Model 820C_Set 178.8)
$817 \mathrm{C}(\mathrm{Ch} .9036,9037,9038,9039)$ Tel. Rec.
817 CU (Ch. 2029,9031 Tel. Rec. (See Model 820C-Set 178.3$)$
817 T (Ch. 9029,9031) Tel. Rec
(5ee Mel (See Model 820 C -Se 178.91
817 T $1 \mathrm{Ch} .9036,9037$. 9038 ,
9039 Tel. Rec.
 817 TU (Ch. 9029,9031) Tel. Rec
(See Model $820 \mathrm{C}-501$ 178.9)
 $820 \mathrm{~T}, 820 \mathrm{TU}$ Tel. Rec. (See Mode
$820 \mathrm{C}-\mathrm{Sel} 178.9)$ (Ch. 9036
821 C

$\begin{array}{ll}2510 \\ C h, 9030,9037,9038, ~ & 2039 \text { (See }\end{array}$ SCOTT (H. H.)

111 -8	4
112.B	144
$120 . \mathrm{A}$	183-13
-210.A	70-15
210.8	145-9
$211 . A$	8114
$214 . \mathrm{A}$	(120-A, 220-4)182-13
$220 \cdot \mathrm{~A}$	182

SEARS-ROEBUCK

SEEEURG (See Record Changer Listing)	
SENTINEL	
1U.284GA	
U.2841, 1U-28	28
- 28	
3 C	
2931	
2941, IU-294N, 1U-29	
U312PG, 1 U31	5
1U.3131, 1U-313W	
IU.314E, 1U.314I, IU-314W	
S. 316	
IU-335FG, PI, PM, PW, . 105-9 1U338-1, IU338.R, IU338.W	
1U339-K 11112	
10-343	
1U.344	
14345 P	
1 l 346 20.	
11416 Tel. Rec.......... 117-12IU419, 14420 Tel. Rec.... 115	
142208 Tel. Rec..... 124	
1U421. IU422 (Series "YA") Tel. Rec. (See PCB 16-Set 126-1 and Model 412 -Set 100.111	
14423 Tel. Rec. (Also see PCB 19-9	
1U423B, IU423-17 Tol. Rec. ISee PCB 19-Set 132.1 and Moodel 144238-Set 125.9)	
5424 Tel. Rec. (Also see PCB $19-$ Set 132.1)	
424-17 (See PCB 19-Set 132.1 and Model 1U424--Set 124.9) .425 Tel. Rec. $127-10$	

SENTINEL-Cont.
1U428 Tel. Rec. (Seo Model 1U425) 1U429. ivi30, iU43i Tel. Rec. (See PCB 25-Set 144.1 and $14-432$ Tel. Rec. (Also see PCB 21
$-5 e t ~ 136-1)127-10$
 $136-1$ and Model lU425-Set
127.101

 1U438-Set 157.9)
IU447-A, IU448-A IU449-A.
450-A, IU451-A Tel. Rec. $178-10$

 14500 Tel, Rec. . 226. 8

284 GA 2841 284 A

$289 \mathrm{~T}^{\circ}$
292 K
293 Ser
293 Series
293 CT
2931.2931

$309.1,309-\mathrm{N}, 309-\mathrm{R}, 309 . \mathrm{W}_{10}^{38-30}$
$312 \mathrm{PG}, 312 \mathrm{PW}$
$313.1,313 . \mathrm{W}$
$314 . \mathrm{E}, 314.1, \mathrm{~B} / \mathrm{i} . \mathrm{w}$
$3115.1,315 . W^{2}$
$315 \mathrm{PM}, 316 \mathrm{PT}$
$316 \mathrm{PM}, 316 \mathrm{PT}$
332 SSce Model
$-{ }^{-1} 48$
sel 39 335PG, PI, PM, PWW.
338.1, $338 \cdot R$, j38.W.

$339 . K^{\prime}$ $340-\mathrm{C}$

342 K
343
344
345 p \ldots
344
346
400
401
400 TV Tel. Rec............
401,402 Series Tel. Rec
405 TVM Tel. Rec..
00 Series Tol. Rec..
07 Series Tel. Rec..
07 Series Tel.
09 Sories Tel.
11 Saries Tel.
$\therefore \begin{gathered}1-14 \\ 29-22 \\ 1-1\end{gathered}$
SETCHELL-CARLSON-Cont.
${ }_{570} 531$ (Ch. 152) Tel. Rec.... 209-12 2500. 25001 P Tel. Rec.... 144-9 5301, 5302 (Ch. 152) Tel. ${ }^{\text {Rec. }}$
Ch. 152 (See Model 53)

sHaw

Ch. 224 (Runs 301, 302, 303, 304, 304-1, 2, 305, 305-2) Tal, Rec.

SHERATON

C.268, M (Ch. 260.C) Tel. Rec.

C-26B24 (Ch. $260-\mathrm{C}$) Tel. Rec.
$\mathrm{C}-26 \mathrm{M} 24$
(Ch. $260 . \mathrm{C}$) Tol. Rec.
C30B, M Tel. Rec.......176-13
C30824, C30M24 Tel. Rec. 176-13
C30B24, C30M24 Tel. Rec. 176-13
C-2125 (Ch. 250×1 Series) Tel. Rec.
$218-10$
T-20M, в iCh. 260.Cl Tel. Rec** 176

-2155 ich. 250×1 Series) Tel Rec. 218 .
7 mit2o (Ch. $3300 x$ Series) Tel.
Rec. (See PCB 89-Set 233.1 and
Model 17MT20-Set 210.9) ${ }^{21 \mathrm{BCI}}$ (Ch. 5300X Series) $210^{\text {Tel }} 9$.
 See PCB 89-Set 233-1
Model 17MT20-Set 210.9) Model 17MT20-Set
 (See PCB 89-5e: 233.1 ond Model 17MT20-Set 210.91
$218 T 10$ (Ch. 5300X Series) 210

Model $17 \mathrm{MT20-Se1} 210.91$
21 MClO
(Ch. 5300X Series) Te

2MCIO Ch. 5300 CX -A) Tel. Rec.
(See PCB 89-Set $233-1$ ond
[See PCB 89-Set 233-1
Model 17MT20-Set $210-9$]
21 MDIO [Ch. 5300 Cl Series) Tal.
Rec. (Ch. S300x-A) Tel. Rac.
(See PCB 89-Sel 233-1
Madel 17MT20-Set $210-9$) 21 MII 10 O (Ch. 5300X Series) Tel. Rece "ICh. 5300 Dx -A) Tel. Rec.
 (Soe PCB 89-Sel 2331
Model 17 MT 20 Sol $210-9$)
Ch. $260-\mathrm{C}$ (See Model C.268)
Ch. $250 \times \mathrm{L}$ (See Model C2125)
Ch. $250 \times \mathrm{L}$ (See Model C2125)
Ch. $5300 \times$ (See Model 17MT20)
Ch. $59.300 \times$ (See Model 17MT20)
Ch. 5300 X -A (See Model 17MT20)
SHERIDAN ELECTRONICS
SIGNAL

AF25
141

241
$341 . A$
$341 . \mathrm{T}$
37-19
$44-21$
$33-25$
$39-23$
$25-25$
SILVERLINE (See General
IIVERTONE (Also see Changer
and Recorder Listing)
. 2 (Ch. 132.878).......101-10
1,2 (Ch. 132.878)..
5,6 (Ch. 132.881).
15,11 (Ch. 132.896)
15 . 16 (Ch. 132.884,
18 Tel. Rec....
190 B Tel. Re
$421,422 \mathrm{~T}$
410

423,424 Tel. Rec. (Also see PCB
$19-$ Sef $132-1) \quad . . .124-9$ 423B, $423-17$ Tel. Rec. iSoe PCB
$19-S e t ~ 132-1$ and Model $423 B$

 $\begin{aligned} & 132.1 \\ & 124-9)\end{aligned}$ and Model , 424-Sel
25 Tel. Rec............ 127-10
 25 Sel 144-1 and Model 14 432 Tel. Rec. (Also see PCB 21-10
Set $136-1$). $127-10$ Set 136-1). isee PCB 21-Set
435 Tel. Rec.
$136-1$ and Model $425-S e t ~ 127-$

 Rec. (See Model \&38-Set 157.9)
$452,453 \mathrm{Tel}$. Rec. (See Model IU452. $47 . A$ Sel $178-10$) Model (Also
447 Sel
$454,455,456,457$ Tel. Rec. 454, 45 , 456,457 Tel. Rec. (Also
see PCB $63-S e t ~ 197.1)$. 191-17
$458,459,460,461$ Tel. Rec. (See $458,459,460$. 461 Tel. Rec. (See
Model $14.458-$ Set 199.10$)$
462,463 (Ch. 2WA) Tel. Rec. 462, 463 (Ch. 2WA) Tol. ${ }^{\text {Rec. }}$.
464, 465, 466 (See model $105-454$ Ch. 2 SeP (91.1 (Se Model 462)

SETCHELL-CARLSON

53 (Ch, 152) Tel. Rec..... 209-12
50 Tei. Rec.
 151. 151 C2O, ${ }^{151-B 20, ~ 151 . C 20.1 R-B 20-~}$

SILVERTONE-COR
137 (Ch. $549.100-1$ and Rodio Ch. 101.831 .1) Tel. Rec. (For TV Ch.
See Model $101-\mathrm{Set}$
I
02.12 for Radio Ch. see Madel 8127 -Set
38 (Ch. 549,100-3 and Radia Ch. 101.831.11 Tel. Rec. (For TV Ch. see Model 102A-5ot 161.9, for
Radio Ch. see Model $8127-$ Set 39 (Ch. 110.700) Tel. Rec. 140 (Ch. 110.700 Tel . Rec. 141 (Ch. 132.889.1) Tol. Rec.
141 (Ch. 132.889 .2) Tel. Rec. $42 \mathrm{Ch}, 100.115$ ond Radio Ch . 100.959) Tel. Rec...... i 43 A -
43 Tel. Rec. (See Model in
 144 (Ch. 478.312 and Radio Ch .
478.240) Tel. Rec...... 160-11 49 (Ch. 100.107-1) Tel. Rec. (Seo Model 133-Set 156.12)
150.14 (Ch. 478.338) Tol
151.16 isi.17 iCh. $528.630-12$ 152.16. 16 A © Ch, $549.102,549$. 59 (Ch. 478.309) Tol. Rec. iis-1 $160-12$ (Ch. $549.100-4$) Tel. Rec 161.16 (Ch. 100.112) Tel. Rec. 162.17 iCh. $110.700-10$) Tol. Rec. $163-16$ (Ch. 478.319) Tel. Rec. $164-14$ (Ch. 478.3131 Tel. Rec..
165.16 (Ch. 100.120) Tel. Rec $166-10$ iCh. 478.3391 Tel. Rec.. $166.17 \mathrm{KC}, 478.339$-A) Tel. Rec.
$167-16,167.16 A$ [Ch. $549.101, .1$ 168-16 (Ch. $549.100-3$) Tel. Rec 109.16 (Ch. $349.102 .549 .102-2$ 170-16 (Ch. 549.102 .549 .102 A) 173.16 (Ch. $110.700-10$) Tol, Rec
 176.19 (Ch. $549.100-6$) Tel. Rec
177.19 (Ch. $110.700-40$) Tel. Rec 179.16, $180-16$ iCh. 132.890) Tel Rec. © Ch. $549.101-21$ Tel. Rec. $186-19$ (Ch. 549.101 .3) Ief. Rec.
$187.16,188.16$ (Ch. 110.700 Tel. ec. (See Model 118-Se 189.16 (Ch. $110.700-1,101$ Tol 191.16 (Ch. 110.700 .50 T Tel. Rec. Ch. 132.890$)_{130-1}$
 $217,218$ (Ch. 528.174$)$ (See Model
$215-5 a t(17.3)$ 220 (Ch. 528.173)......1110-13
 237 (Ch. ${ }^{488.237), ~} 238145-10$
238 (Ch. $548.360-1,548.361)$ (See Model 239-Set i $15-12$)
239 (Ch. $548.360-1$. 548.3611
 ${ }_{249}$ (Ch. $548.360-1,548.361$
 1038 (Ch. 528.219) (See Model $1040-50 t$ 181-12)
$1040.1045(\mathrm{Ch} .528 .194) .181-12$ 1040, 1045 (Ch. 528.194). 181-12
10404 (Ch. 528.194 .1) (See Mode 1040 - Set 181.12)
1045 A (Ch. 528.194 .1) (See Mode $1040-\mathrm{Sel} 181-12)$
$1052(\mathrm{Ch} .132 .011) \quad 174-10$ 1052 A (Ch. 132.011) 1) (See Model
1052 Sel 174.10) 1053 (Ch. 132.011)... 174 -10
$1053 \mathrm{~A}(\mathrm{Ch} .132 .011$ (See Model 1053 -Sel 174.10)
1054 (Ch. 132.0121_...173-1 1054 (Ch. 132.012)
1054 Ch ($132.012-1$) (See Mode 1055 (Ch. 132.012)173-12 1055 A (Ch. 132.012.1) (See Mode 1058,1059 (Ch. 101.860). 162-1
1062.1063 (Ch. 101.860). 162-1 1066 (Ch. 100.202), $162-10$
1110.16 (Ch. $110.700-90$), 1117. 17 (Ch. 110.700 .96) Tel. Rec. ${ }_{1130-17}{ }^{\text {Tel. }}$ (Ch. $\quad 110.700-961$ Tel 1130.17 .1130 A .17 ich . $1,10.700$

1141.20 (Ch. $110.700-120$) Tel.
$1145.20 \mathrm{ich} .110 .700 \cdot 1401 / \mathrm{Tel}$
Rec.
1150.14
Rec. (Ch. 478.361, A) Tel:

SILVERTONE

SILVERTONE-CONT.
$1162.17 \quad(\mathrm{Ch} .110 .700-96) \mathrm{Te}$) $1102-17$ iCh. $110.700 .100,104$ 1106.17 (Ch .478 .339 .8$) \mathrm{Tel}$. Rec.
1171.17 (Ch. $110.702 \cdot 10$, S0) Tel. Rec.
$1172.17 \mathrm{iCh}^{2}$
$110.700-100_{201}^{-104)}$
 1170.21 iCh. 100.2081 Tel. Rec. 181.20 Ch Rec. 110.700 .1201 Tel .
Rec.
2011183.21 iCh. $110.700-1501$ Te Rec.
184.20 iCh. $528.631, ~-i l ~ T e l . ~ R e c . ~$ 1186.21 (Ch. 100.208) Tel. Rec. 1188.20 (Ch. $110.700-1401$ Tel.
Rec.
1191.17 (Ch. 110.700 .97) $\frac{\mathrm{Tel} .}{8}$ Rec
1239 iCh. 488.237 i (See Model 237 1200 (Ch. $456.150,-2$) Tel. Rec.
1261 (Ch. $456.150-2)$ Tel. Rec. 1266 (Ch. 456.150 - 2) Tel. Rec.
$1268-21$ (Ch. 456.150 .11 1270-21 (Ch. 456.150 .11 Tel Rec 1271.21 Ch. $456.150-11$ Tel. Rec 1272.21 (Ch. 456.150 .1) Tel. Rec.
1273.21 (Ch. 456.150 .1) Tel. Rec. $1274.21 \mathrm{Ch} .456 .150 .1) \mathrm{Tel}$. Rec
1275.21 Ch 1300 ($\mathrm{Ch}, 319.200$), 1300 - 1 (C)
 Model I-Se1 101.101 $110)$
2007
(Ch .757 .100).........2111-13 2009, 2010, 2011, 2012, 2013 (Ch 2014, 2015, 2018 (Ch. 132.021 $196-1$ 2022 (Ch. 132.027)197-1
$2023,2024,2025,2026,2027(\mathrm{Ch}$ 132.896-1) (See Model 10 -S 2028 (Ch. 528.230$), \quad 203-8$
$2035 A^{2}(\mathrm{Ch} .528 .195,-1,-2)$ 2041 (Ch. 328.2355 . 20811
2041 (Ch. 528.235 .1 (See Mode 2041 (Ch. 528.235.1) (See Model
20041 -Set 208.11) 2056 (Ch. 132.020 .3$\}$ 10..207-9
$2060 . \quad 2061$ (Ch. $101.861,-1)$ 2063, $2064(\mathrm{Ch}, 101.800,-1)_{(S e 0}^{203}$ Model 1058 -Set 162.11\}
2100 (Ch. 110.700-100, 104) Tel
 2101 iCh. 647.0231 Tel. Rec. $217-15$
2105 (Ch. 132.024 . 2105 (Ch. 132.024, -1, 21 Tel
Rec.

 $\begin{array}{llllll}632, & -1, & -2, & -3, & -4, & -5, \\ 523 . & \mathrm{Ch} \\ \mathrm{Rel},\end{array}$
 2140 (Ch. 110.817 .1$)$ Tel. Rec. 2145 ich 132.024, 1, 21 Tel. $2145 A$ iCh. 132.024.3. -311 Tel Rer.
2145 B
(Ch. $132.024-4)$ Tel. Rec.
Ren
198-13 2150 (Ch. $110.700-1401$ Tel Rec. 2150 A (Ch. 110.820 .11 Tel Rec. 21508 iCh. $528.631,-1, C_{h} 528$. $632 \mathrm{~A}, 1,-2,-3,-51$ Tel Rec, $\begin{array}{r}2160.2182 \text { (Ch. } 528.831,-1, \mathrm{Ch} \text {. } \\ 529.632,-1, \\ 2,\end{array}, 4,-5, \mathrm{Ch}$. 529.632,
528.632 A,

Rec.
$170 \cdot \mathrm{C}$ (Ch. 100.209 Tel $212-7$ 2170.D.E iCh. $100.210,193-10$ 2172 Rec. $100.210,-1,21$ Thel 10
Rec. 2174 (Ch. 132.035 j Tel. Rec. (See
PCB 79 - Set 220.1 and Model $3174-$ Set 206-11)
$2195-21$ (Ch. 100 208
 PCB 59. Sot 193.1 ond Model
1176.21 Sel 165.12 for TV Ch. and Model 1066 -Set 162.10 for 2200, 2202. 2203 (Ch. 528.229) 2210 (Ch. 132.880) (See Model $210-5 \mathrm{Set} 109.121$
2225 Ch .528 .2331
2246 th. $137.914,1$,
2276. 2277 (Ch. $456.150-14.18$)

3032 (Ch. 528.2521

SIVERTONE-COn
3041 (Ch. 528.235 .1) (Soe Model 3045, 3046 Set 208.111 304. 3046 (Ch. 528.254). 216-10 3061, 3062 ($(\mathrm{Ch} .101 .861 .1)$ (See Model 2000-Set 203.9) 3105 (Ch. 132.024-5,-6) Tel. Rec.
 3109 (Ch. 528.264) Tel ${ }^{\text {Rec. }}$ $3110 \mathrm{ich} 528.248,-1,.-21{ }^{2} \mathrm{Tel}$,

 31518, C © © Ch. 528.263, 1, 21, $27-12$ ${ }_{31}{ }^{\text {Rec. }} 00$ (Ch. $528.248,1,227 \mathrm{Tel}$,
 3170 ICh. 528.239 Tol. Rec.
$3170 . \mathrm{B}$ (Ch. $100.210,-1, \quad .31$ Tol. 3170 CeCh (Ch. $288.249,-11$ Tel. Rec.
 3171 ich. 528.247 . 11 Tel 3174 ich. 132.035 .21 Tel. Rec 3175 ich. $132.044 \mathrm{Tel}_{\mathrm{Tl}}^{\mathrm{R}} \mathrm{Renc}$

 41 i3 ich. $528.263-1,-2){ }_{2}^{2127} 1$ 4114 (Ch. 528.264-2) Tel., Rec.
 4116.4117 (Ch. 528.266 Tel Rel Roc. 4118 (Ch. $528.263 .1,-21$
 4120 (Ch. $456.150,-2)$ Tol. Rec.
$4126(\mathrm{Ch}$.
$528.264 .1,-2)$ Tel. Rec $41271 \mathrm{Ch} .528 .263 .1,-21$ Tel Rec 4128 (Ch. S28.204.2) Tel. Rec 4129 iCh. 528.263 .21 Hel. Rec 4131 ich. $528.263 .1 i_{\text {Tel }}^{22}$ Rec.
 4140 ich. 528.247, i) Toll. Rec. 41400 (Ch. $528.206-1$) Tel. Rec. 4143 Ch. 528.247, i) Tell Rec 41430 ich. 528.266 -1 Trel. Rec $227-12$ 4145 iCh. 528.247, il Tel Rec 4145 ich . 528.266 .11 Tel . Rec. 4149 ich. 328.270 T Tel $227-12$ 4150 (Ch. 528.247 . - 11 Tel Rec 41500 ich. 528.2861 rel Rec.
 41530 ich. 528.2881 Toll Rec.
 41550 iCh. 528.2861 Tel Rec
 132.816 A 1

6016 (Ch. 132.8201
8050 (Ch. 132.825

 $809 \mathrm{Ch} 101.672 \cdot 1 \mathrm{Bl}, 60931 \mathrm{Ch}$
107.672 .1 Al
$8100 \mathrm{Ch} .101 .060 .1 \mathrm{~A}) \quad 10-29$
$6-29$
 \$105 (Ch. 101.622-28)
 $\begin{array}{llll}6200 \mathrm{~A} \text { (Ch. } 101.800-31) \ldots & 65-12 \\ 6200 \mathrm{~A} \text { (Ch. } 101.800-1) & 9 . & 9-29\end{array}$

SIL VERTONE-Cont.	IVERTONE-Cont.
6203 (Ch. 101.800A) (See Madel 6200A-Set 9.29)	$8201 \text { (See Madel 6200A }$
${ }^{6220 .}$. 22204 (Ch. 101.801, $101 .{ }^{3}$.	82101 Ch 101.820
8230 (Ch. 101.802$)^{\prime} \ldots \ldots .11{ }^{\text {a }}$	
(Ch. 101.802.1]... 11-21	See
($\mathrm{Ch} .101 .060-18) .20$	8230 (Ch. 101.835) 59-18
6286 (Ch. $528.8288, .1$, 31185	8231 (See
${ }^{6287}$ (Ch. 528.6288	8250 Ch
(Ch. 101.677. B).... ${ }^{20}$	
95 (Ch. 528.6295)98-12	822A)
85 ICh. 139.150, Ch. 139.150	$132.857) \ldots . . .65-13$
	9005.9000 (Ch .132 .858$)$. $72-11$
	${ }^{9022}$ (Ch. 132.871)..... $76-17$
(Ch. 101.807, 101.	
((Ch. 132.807.2) ... 29-24	Ch. 135.244-i) . ${ }^{\text {a }}$ (1). 83-10
7054 (Ch. 101.808) $15-$	1
7070 (Ch. 101.817	
70801 Ch	
80 , 7080A (Ch. 101.809.21	$\begin{aligned} & 101 \text { (Ch. } 101.809 .3 \\ & 7080-\text { Set } 58.20 \end{aligned}$
8070 (Ch. 101.817-1A) (See Model)
(Ch. 101.834)	Ch. 101.851 .11 (Seeo Model
2431	$8107 \mathrm{~A}-\mathrm{Sel} 64.10)$
80 (Ch. 101.852$)$	9111 (Ch. 110.4991 Tel. Rec. (See
	Model 9123 -Set 79.161
84 A (Ch. 101.809.18)	-
	9113 (Ch. 110.499$)$ Tel. Rec. (See
SA 8086 B (Ch. 101.814	
61-18	(See Model 9124-Sel 79.16)
7085 (Ch. 101.814) 30-27	Ch
7088 (Ch. 110.466)..... ${ }^{27}$	${ }^{478.221)}$ Iel. Rec...... 97-16
7090 (Ch. 101.810)...... 15-32	9110 (Ch. 478.22
$7095(\mathrm{Ch}, 101.826)$ (See Mode	9119. 9120 (Ch. 101.885) Tol.
7100 (Ch, 101.811).	
7102 (Ch .101 .814 .1	
03 (Ch. 110.466-1) ... 27-25	9122 (Ch. 101.864) (See Model
15	
1825	
1.825.2ci... 62	
7145 (Ch. 436.2001 23-21	178
7148 (Ch .431 .188$)$,	Ch. 478.253$)$ Tel ${ }^{\text {Rec. }}$
\%	
53 (Ch. 109.627).	
7166 (Ch. 101.823 , ${ }^{\text {che }}$	
	(See Model 9120-sel 79.15)
7210 (Ch. 101.820) .-32-31	128 A (Ch. 101.888) Tol. Rec...
7220 (Ch. 101.801.	
(ch. 101.819 A)....31-28	
7230 (Ch. 101.802.24) (See Model	
6230-Set 11-211	9131 (Ch. 478.210) Tel. Rec. 84-10
300 (Ch. 435. 240)	$9132 \mathrm{lCh} .110 .499-11 \mathrm{Tel}$. Rec.
7350 (ch. 435.410)	
7353 (See Model 735	134 (Ch. 101.866
${ }^{8000}$ (Ch. 132.838) 31	
	1139. 9140
${ }_{8005} \mathrm{lCh}$. 13	
8010 (Ch. 132.840) 40-21	9153 (Ch. 435.417).
8011 (See Model 8010-Set 40.	
${ }^{8020}$ (Ch. ${ }^{\text {che }}$	
Ch	8270 (Ch. 5472451)..... $82-11$
8024. 80.	9270 (Ch. 547.245$)$
(Ch. 101.8391..... 49	Ch. 100.043 See Model
8052 (Ch. 101.808.1C)... $68-15$	Ch. 100.107 (See Model 133)
8053 (Ch. 101.808.1D) (See Model	Ch. 100.107.1 (See Model 149)
	Ch. 100.111 (See Model 143A)
090 (Ch. 101.827)	Ch. 100.112
(Ch. 101.825.36	Ch. 100.115
874 (Ch. 101.825	Ch. 100.120
8100 lCh .	Ch. 100.202
$81014,81018,8101 \mathrm{C} 1 \mathrm{Ch}$.	Ch
$101.809 .3 \mathrm{C})$ ….... $58-20$	Ch. 100.208 (See model 1 170.21)
02 (Ch. 101.814-28]... 61-18	Ch. 100.208.1 (See Model 2195.211
102A (Ch. 101.814-38).. 61-18	
${ }_{81028}{ }^{\text {(Ch. }}$ (101.814-28).. $61-18$	00.21
$8_{8105,} 81054$ (Ch. $101.8331435-20$	Ch. Ch .100 che
8106, A (Ch. [01.833.1A) (5ee	Ch .101 .862 .2 E (SSe Model 6105)
	Ch. 101.662-20 (Seo Model 6105)
81	Ch. 101.662.3C (500 M
$81{ }^{8109}$ (Ch 101.855	Ch. 101.662-4E (Soe Model 0108 A)
${ }^{8112,8113 ~}{ }^{1 / \mathrm{Ch}}$. 10	Ch. 101.062 .5 FF (See
Ch. 101.825 .35)	Ch. ${ }_{\text {ch. }}$ (01.672.14 (Seo Model 6093)
	Ch. 101.672 .18 (Seo Model 6092)
	Ch. 101.677 B (5 ee Modol 6290)
81150 (ch. 101.825-4) (See Model	101.73
(Ch. 101.825 .3 S	101.800.1. 14 15ee Mod
8118 (Ch. 101.825-3F)... $62-18$	
8118 A, B, C (Ch. 101.825.4)	$\mathrm{Ch}^{\text {Ch. } 101.800 .31}$
	801, 14 (Soe Model 8230)
	Ch.
8124.8125.8126 (Ch. 101.8314	Ch .
	Ch. 101
Sel 41.201	Ch. 101.808.10 (See model 8053)
$8127, A^{\text {a }}$, B.	Ch. 101.809 (See Model 7080, Ch.
	O9.1A
41-20	Ch. Ch .101 .809 .1 l (See Model
	Ch. 101.809.2 (See Model 7080,
Recorder Amp. 101.773) Model 8127 -Set 41.20)	Ch. ${ }^{\text {Ch. } 10101.809 .21) ~} 809.3 \mathrm{C}^{\text {(See Model }} 81011$
	Ch. 101.810 (See Model 70901
(1)	
8133 ch	Ch. 101.813 (See Model 7050)
	Ch. 101.814 (Seo Model 7085)
${ }_{8144} 814{ }^{\text {che }}$	Ch. 101.814.1A (See Model 1027
48 (Ch. 109.632$) \ldots . . .{ }^{45-23}$	Ch
8149 (Ch. 109.633$)$	ch.
8150 (Ch. 109.634) 32-22	Ch .
${ }^{8152}$ (16h ${ }^{\text {che }} 109.035$) (See Model	Ch.
35-1	Ch. 101.821 (See Model 80901
$55 \mathrm{IC}$. . $463.1551 . \ldots . .{ }^{50}$	C. 101.82215
8100 (Ch. 109.6364)... 50	Ch. 101.8223
	C. 101.823. 1 (See Model 7160)
8169 (Ch. 109.638) (See Model $8168 \mathrm{Set} 46.23)$	$\mathrm{Ch}, 101.823 \cdot \mathrm{~A}$, 1 A (See Madel
200 lCh . $101.800-28$) (See Mode 6200A-Set 65-12)	Ch. 101.825 (See Model 7115) Ch. 101.825-14 (See Model 7

SILVERTONE-CORt
Ch. 101.825.16 (See Model 7117

Ch .10 .825 .3 F (See Model 8117
Ch .101 .825 .3 F (See Model 8118
Ch .101 .825 .3 G (See Model 8097
Ch .101 .825 .4 (See Model 8097 A)
Ch. 101.8299 (See Model 8100)
Ch. 101.829 .1 (See Model 8133)
Ch .101 .829 .1 (See Model 8133)
$\mathrm{Ch} .101 .831(S e \mathrm{Model} 8128)$
Ch .101 .831 A (See Model 8127)
Ch . 101.831 A (See Model 8127)
Ch .101 .831 .1 (See Model 8124
Ch . 101.833 (See Model 8105
Ch .101 .834 (See Model 8072
Ch .101 .835 See Model 8230)
Ch.
Ch .101 .839 (See Model 8230
Ch
Ch. 101.846 (See Model 8133
Ch. 101.849 (See Model 954
Ch . 101.851 (See Model 9260)
Ch (She 101.851 I
(Sheo Model 8109)
Ch. 101.852 (See Model 8080)
Ch. 101.854 (See Model 8132)
Ch .101 .854 (See Model 8132)
Ch .101 .859 (See Model 9133)
Ch .101 .859 .1 (See Model 67
Ch .101 .859 .2 See Model
Ch. 101.859 .2 (See Model Mod 64)
Ch. 101.860 (See Model 1058)
Ch. 101.861 .11 (See Model 20
Ch. 101.864 (See Model 9122)
Ch .101 .864 (See Model 9122)
Ch .101 .865 (See Model 9119)
Ch. 101.865 (See Model 9119)
Ch. 101.865 -1 (See Model 9120 A
Ch. 101.866 (See Model 9133)

Ch. 101.868 (See Model 9122 A)
Ch. 109.626 (See Model 7152)
Ch. 109.627 (See Model 7153)
Ch. 109.631 (See Model 7153
Ch. 109.632 (See Model 8148
(Sh 10.633
Ch. 109.633 (See Model 18149)
Ch. 109.634 (See Model 8150)
Ch .109 .635 (See Model 8153)
Ch .109 .635 (See Model 8153)
Ch .109 .635 . (See Model 8153 A)
Ch .109 .636 (See Model 8180)
Ch .109 .336 A (See Model 8150 A)
Ch .109 .636 A (See Model 8180 A)
Ch .109 .638 (See Model 8168)
Ch .109 .638 (See Model 8168)
Ch .110 .451 (See Model 8051)
Ch 110.452 (See Model 8052)
$\mathrm{Ch} .110 .454($ See Model 6072)
Ch.
Ch .110 .454 (See Model 6072)
Ch .110 .466 (See Model 7086)
Ch .110 .466 .
Ch (See Model 7103)
Ch .110 .466 .1 (See Model 7103)
Ch .110 .473 (See Model 8103)
Ch .110 .499 (See Model 9123)
$\mathrm{Ch} .110 .499-1$ (See Model 9124)
$\mathrm{Ch}, 110.499-2$ (See Model 9126)
Ch.
Ch.
Ch
Ch
110.700 (700 I (See Modol 1111 Model 116)
Ch. $110.700-2$ (See Madel 134
Ch. 110.700 .10 (See Model 116)
Ch. 110.700-20 (See Model 134)
Ch. 110.700 .40 (See Model 177.19)
Ch. 110.700 .90 (See Model 1116 .
$\mathrm{Ch}_{\mathrm{i}}^{\mathrm{l}}{ }^{161}$) $10.700-98$ (See Model 1117.
Ch. $110.700 \cdot 100$ (See Madel 1117.
Ch.) 110.700 .120 (See Model 1181.
20)
Ch.
20)
20.
(
20)
Ch. $110.700-150$ (See Model 1183.
21)

Ch. $110.702-10$, 50 (See Mod

Ch. 110.820 .1 (See Model 2150 A)
Ch (132.011 (See Model 1052)
Ch. 132.011 . (See Model 1053A)
Ch. 132.011-1 (See Model 1053A)
C. 132.012 (See Model 1054)
Ch. 132.012 -1 (See Model 1054A)
Ch. 132.012-1 (See Model 1054
Ch. 132.021 (See Model 2014)
Ch. 132.022 (See Model 2009)
Ch . $132.024,-1,-2$ (See Mod
2105)
Ch .132 .024 .3 (See Model 2105
Ch 132.024.3 (See Model 2105A)
Ch . 132.024.4 (See Model 2145B)
Ch (132.024.5, of (See Model
3105)
Ch. 132.024.31 (See Model 2105
Ch. 132.026-3 (See Model 2056)
Ch. 132.027 (See Model 2022)
Ch. 132.027 (See Model 2022)
Ch .132 .035 (See Model 2174
$\mathrm{Ch} .132 .035-2$ (See Model 317
Ch .132 .044 (See Model 3175
h. 132.044 (See Model 3175)
h. 132.045 , - (See Model 3106)
h. 132.053 (See Model 3052)
h. 132.053 (See Model 3052)
Ch. 132.807-2 (See Model 702)

Ch.
Ch.
Ch.
132.816 (See Model 6011 (See Model 6012
h. 132.818 (See Model 6002)
h. 132.818 -1 (See Model 8003)
h. 132.820 (See Model 6016)

Ch. 132.826 .1 (See Model 6 (C
h. 132.838 (See Model 8000
h. 132.839 See Model 8005
132.840 (See Model 8010

Sh 132.841 (See Model 8020 | ch. 132.84 |
| :--- |
| Ch. 132.85 |
| Ch. 132.86 |
| ch. |

Ch .1 | Ch. |
| :--- |
| Ch. |
| Ch. |
| Ch. |
| Ch |

h. 132.877
h. 132.878
h. 132.8
Ch

Ch .13
Ch.
Ch .13
Ch.
Ch
Ch
132.882 (See Model 105)
$132.884,-1,-2$ (See Model I
132.887
(See Model 51)

Ch. 132.8989 .2 (See Model
Ch. 132.80 (See Model 179.1
Ch. 132.890 (See Model 179-10)
Ch. 132.898 See Model 101
Ch. 132.896 . (See Model 2023)
Ch. 132.896-1 (See Model 202
Ch. 134.111 (See Model 72)
Ch. 135.243 (See Model 8073)

Ch. ${ }^{22439.150 .-1}$ (See Madel o685)
Ch. 185.706 (See Model 1304)
Ch .319 .190 (See Model 1301)

SPARKS-WITHINGTON

SPARTON (Also
 SAW17.A (Ch. 417A). MOdel SAWO2
SAHO6, SA106 (See MOde SA116 (Ch. S.16) 30-29
SAM26-PS (Ch. 5.26.PS). \quad-17
 SAMOG $/ \mathrm{Ch}$.
GAM26 (See MOdel GAW2GPA-Set $15.33\}$
$S A W 2 O P A$
GAW26PA (Ch. PC5-6-26). 15-33 6.66 A (Ch. 666 A).
$7 \mathrm{AMA46}$ (Ch. 7.46).

7AM46PA, 7BMACA, 7BWA6PA
(See Model 7AMA6-Set 1.31) $84 \mathrm{MA6}$ (Ch. 8.48) 10AB76-PA, 10AM76.PA, 10BM76
PA ISee Model 10BW7O.PA-S 15 -34)
BW76.PA (Ch. 10.76PA) $15-34$ 100. 101 (Ch. SA7).
$102,103.104$ (See

102, 103. 104 (See Model $100-$
Set 38.23) 121 (Ch. 819)
121 (Ch. 8(9)
122 (See Modol $121-$ Sel 57.19)
$130,132,135,139$ (Ch. 5410) 141 iSee Model 121 -Set 57.101
1414 (Ch. 81101 $141 \times x, 142 \times x$ (Ch. 8 wio) $12 \epsilon^{9-12}$ 142 (See Model 121 -Set 57.19)
150 , 151 , $152,155 \mathrm{Ch}$. 4 El 10) 230 (Ch. 5A10, A)210-1
232 (C. 5A10. A)..... $210-1$

 $1005,1006,1007,1008(\mathrm{Ch} .857)$ 1010 (Ch. 717). 1015 (See Model lobw 3 3-22
101 $\begin{array}{ll}15.341 \\ 1020,1021, & 1023 .\end{array}$
 ${ }_{221}^{1031 \text { A A See Madel } 1030-50137 .}$ 1035, 1035A, 1036, 1036A, $1 \mathrm{CB7}$
$1037 \mathrm{~A}, 1039,1040,1041 \mathrm{KCh}$
 1051, 1052 (Ch. 689)]... 58-21
 $1072 \mathrm{Ch} .819)$
$1080 \mathrm{Ch} .918 \mathrm{~A})$
T TV-Set 64.11)
1080A (Ch. 8110) (See model 141A
1081 (Ch. 918 A$)$ (See Model 4900
TV-Set 64.11) 1081A (Ch. 8110) (See Model IA1A 1055. 1088 (Ch. 8W10) ...126-12 1090. 1091 (Ch. $8 \mathrm{~W} / \mathrm{O}$).... 126-12 $\left.141 \times x-S_{\text {et }} 126.12\right)$
1300,1301 (Ch. 613)197-12

SPARTON-COnt.
4900 TV (Ch. $24 \mathrm{TV9C}, 3$ TV9C, 918A Tel. Rec.
4916.018 [Ch. 24 TLIO 4920 4921. 4922 (Ch. 24 IM10 Tei. Rec.
4935 (Ch. 23TCiO) Tel. Rec. 133-1 A 4939 TV . 4940 TV 4941 TV ICh $24 \mathrm{rvg}, 3 \mathrm{TV9})$ Tel. Rec. 6411
4942 (Ch. 23 TClO Tel. Rec. 4944. 4945 (Ch. 3TB10. 24TB10) Tel. Rec.
4951, 4952 isee Model 4900 4 -10
 Model 4935$)$
4960 (Ch. 23iciol Tel. Rec. 4904, 4965 (Ch. 23 TB10) Tel. Rec. $4970,4971,4972$ (Ch. $8510192-6$
5002,5003 (Ch. 23TDIO) Tel. Rec. 5000, 5007 (Ch. 23TOLO) Tel. Rec. 5005 x (Ch. $25 \mathrm{TKiOA} \mathrm{Tel} \mathrm{T}_{121-13}^{\mathrm{Rec}}$
 soio, 5011 ich. igtsio, A) Tel.
Rec. Rec. 5015 ich . 19 TSio , Al Tel.
Rec. $104-11$
 $50258 A$ Tal. Rec. See PCB 22-Set
$138-1$ ond Model $5025-501$ 128-

 5068, 5069 (Ch. 24 TV 9 Cl Tel. Rec. See Modet 4900TV-Set 64.11)
S07.e 5072 (Ch. 19TS10, A) Tel.
Rec.104 11 Rec. .al. Rec. ISee PCB $22-$
5075 BA Tel
Ser 138.1 and Model $5025-$ Set Ser 138.1 and Model
128.13).
5076 (Ch. 265S160, B) Tel. Rec. $50708 A$ Tel. Rec. ISee PCB 22 -Set
138.1 ond Model S076-Set 128 . 131
5076 er Tol. Rec........... 128-13
5077 Tel. Rec............128-13
 Set 138.1 and Model 5077-Sel
128.131
50788 Tel. Rec............128-13
5079 Tel. Rec........... 128-13

 5080C Tel. Rec. (See PCB 22-Set
139.1 and Model $5080-$ Set 128 . 13)
5082, 5083 (Ch. 2650160 . 2650.
170) Tel. Rec. (For TV Ch. see $170)$ Tel. Rec. (For iv Ch. see
Set $128-13$ for Rodio Ch. see Model1141XX-Set $126-121$
SOR2, 5083 (Ch. $2650170 \times$ XP)

Tol. Rec. (for TV Ch. see PC8 22 | Tol. Rec. 1For TV Ch.sen PCB 22 |
| :--- |
| Set 138.1 ond Model 5082 - |
| Set 128.13 , for Rodio Ch. see | Model 141 XX-Sel 126.12)

5085, 5086 (Ch. 2RD190, 25RD190)

$26 S 0170$ and Radio Ch. 8 WIO)
(For TV Ch. see Set $128-13$, for
Rodio Ch. see Model 141 XX-Se 126.121
$5101,5102,5103$ (Ch. 2655170, P)
Tel. Rec. (See PCB 22-Sat 138-1 Tel. Rec. (See PCB 22-Set 138-1
ond Model 5025-Set 128.13)
5104 , 5105 (Ch. 205S1700, P) Tel. 104, 5105 (Ch. 20SS1700, P) Tel.
Rec. (See PCB 22-Set 138.1 and
 $5107 \times$ [Ch. 26SS1711 To1. ReC..
5110 (Ch. 26551700,285517000) Tol. Rec.
5125 (Ch. 2751700,265517000$)$
 Tel. Rec. (See PCB 22-Set 138-1
ond Model 5025-Set 128.131 $155,5156,5157$ (Ch. $2650170 x$,
XP) Tol. Rec. (See PCB $22-$ Set
138.1 and Model S025-Set 1285158 (Ch. 2850170, P) Tel. Rec. See PCB 22-Set 138.1 and
Model $5025-$ Set 128.131 $5162 \mathrm{X}, \mathrm{S} 163 \mathrm{X}(\mathrm{Ch}, 26 \mathrm{SS} 17 \mathrm{IA}) \mathrm{Tel}$.

 5182. $5183,5188.5189$ (Ch, 2650

Rec. Por TV Ch. see PCB 22-Set
138.1 and Model $5025-$ Set 128 .
13 for Radio Ch. see Model
$141 \times x-5$ et 126.121 5191,5192 (Ch. 25SD201, 2SD201)
Tel . Rec.
See Model $5170-\mathrm{Set}$ 147-111
5207,5208 亿Ch. 2655172, A1 Tel.
Rec.

SPARTON-CON
5212 (Ch. 2151721 Tel. Rec. 5220 (Ch. 20SDi72C) Tel. Rec. 5225,5220 ich. 2650172 Cl Tel.
Rec. Rec.
5240,5241 (Ch. 215212) Tel Rec.
Rel 5250, 5252, 5253 (Ch. 215172)
 5265 (Ch. 2650i72, A) Tel. Rec. 5267. 5268 (Ch. 26SD172. Al Tol.
 5271 (Ch. 20SDi72C) Tel. Rec.
(See Model $5207-5 e t$ 167.14) 5272. 5273 (Ch. 26SD172C) Tel.
 s288, 5289 Ch. 25 CD 2021 Tel.
Rec. 5290 Ch. 25502021 Te1. Rec.... ${ }^{*}$
 52964, 5297 A (Ch. 25CD202) Tel.
Rec. Rec.
298
(Ch
Rel. Rec. 5299 (Ch. 25CD202) Tel. Rec. (See 5301 (Ch. 21si73-0) Tel. Rec. 5325 [Ch. 250i73A) Tel. Rec. $5325 A$ (Ch. 270173) Tel. Rec. 5326 [Ch. 250173A) Tal, Rec. 3264 (Ch. 2701731 Tel. Re 5340. 5341 (Ch. 215213) Tel. Rec. 5342 (Ch. 2502131 Tel. Rec.... 5343 iCh. 2502131 Tel. Rec...... 343A (Ch. 27D213) Tel. ${ }^{\text {Rec. }}$ 5362 (Ch. 25D173A) Tel. Rec. 3382 A iCh. 270173) Tel. ${ }^{\text {Rec. }}$ 5363 [Ch. $250173 A 1$ Tel. Rec. 5363 A iCh. 270i73) Tel. Rec. 5380, 5381 (Ch. 215213) Tel. Rec. 5382A (Ch. 27D213) Tel. Rec. 5382 B (Ch. 27 D 213 A) Tel. Rec. 53B3A iCh. 270213) Tel. Rec. 3838 (Ch. 270213A) Tel. Rec. (See Model 5382 B Set 210.111
5384 A (Ch. 270213) Tel. Roc. 5388A (Ch. 270213) Tel. Rec. 3386 (Ch. 270213A) Tel. Rec, (Seo Model 53828-Set 210.11)
53878 (Ch. 270213A) Tel. Rec. [See Modal 53828 Set 210.111
10352 (Ch. 270213 and Rodio Ch. $8 \mathrm{~W} 10)$ Tel. Rec. (For TV Ch. see
Set $210-11$, for Rodio Ch. see Model $141 \times x \rightarrow 5$ et 126.12). 10352 A (Ch. 27D213A ond Rodio
Ch . 8 W 10 T Tel. Rec. (For TV Ch . $\mathrm{Ch} . \mathrm{BW} 10$) Tel. Rec. (For TV Ch.
see Modal $5382 \mathrm{~B}-\mathrm{Set} 210-11$, for Radio Ch. see Model $141 \times x$ Set 128.12)
0353 (Ch. 270213 and Rodio Ch . $8 W 101$ Tel. Rec. (For TV Ch. see
Set 210.11 , lor Radio Ch. see Model $141 \times \mathrm{X}$-Set 120-12) 10353A (Ch. 270213A and Radio Ch .8 WiOl Tel. Rec. (For TV Ch.
see Model 53828 - Set 210.11 . Set 126-121 1132,11324
Rec. 15 Ch .215213 A$) \mathrm{Tel}$ Model 5240 -Set 201-10) 2734 (Ch. 2702134 and Radio Ch . 4342 (Ch. 27 D 213 A and Radio Ch.
8 W 101 Tel. Rec. (For TV Ch. See
Model 5382 B - 5 et 210.11 . for Radio Ch. see Model 141 ixxSet 126-121)
5312.15314 (Ch. 215213 A) Tel.
S240-Set 201.101
2312,22313 (Ch. 20.42131 Tel 23322. 23323 KCh. 20 U 2131 Tel Rec.
24542
iCh. 2942731 Tel. $224-13$ 25544 iCh. 29U273) Tol. ${ }_{224-13}^{\text {Rec }}$ 26542 (Ch. 270273) Tol, 224-13 Rec. 26544 (Ch. 27D273) Tel. 224 Rec
Ch. PC-5-6-26 (See Mol
PA)
(See Model 5085)
Ch. 2 RD190 (Svee Model 5085)
Ch. 2SDO21 (See Model S170)
Ch. 2 SD201 (See Model S170)
Ch. 3 T810 (Sse Model 4944]
3T110 (See Model 4916)
Ch. 3T110
3AR1
Ch. 3TRIO (See Model 5052)
Ch. 3TV9, 3TV9C (Sea Model 4900
Ch. 4E3 (See Model 3011
Ch. 4E10 (See Model 150)
Ch. 5A7 (See Model 100)
Ch. 506 (See Model 3AWO6)
Ch. SAlO (See Model 130)
Ch . 5AlO, A (See Model 230 Ch. 5AlO, A (See Mode)
Ch. 5C3
(See Model 342)

SPARTON-Cont

EDJEGE STARK

STEWART-W ARNER

AVC1 (Code 9054 B). AVC2 (Code
9054 C). AVT1 (Code 9054 -A) 9054C). AVTI (Code 9054.A)
Tel. Rec.

ST. GEORGE (See Recorder Listing) STRATFORD

STRATFORD
$916,917,920,921,1016,1017$
$1020,1021$ (Ch. $6353, c)^{\text {Tel }}$ (

Rec.
TV-10L. TV.ioiw (112020$)^{72-12}$ Tol. TV.10PM, TV.1OPY 1112025 , TV.10PM, TV.10PY 1112025 .
112022) Tol. Rec...............
TV-12 (See Model TV. 125 -Set 88. 16)
TV-12 PGM (For TV Ch. only see
Model TV. 125 S-Set 68.16) MV.12MSM (For TV Ch. only see Model TV.125 -Set 68.161
TV.12lm (See Model TV.125-Set (68-16)
TV.-125 (Ch, 12) Tel. Rec...
18 Series Tel. Rec......... 135 18 Series Tel. Rec...........135-12
17 Series Tel. Rec.........135-12
$138-11$
 116 Series Tel. Rec...... 135 s 12
117 Series Tel. Rec. (See Model
119 CDM Set 130.14) 110 CDM -Set 130.14 . 130 Model
110 C Tel. Rec. (5ee PCB 43-Set
177.1 and Model 119 CDM -Set 177.1 and Model 119 CDM -Sel
130.14) 130.141
$119 C D M, 119 \mathrm{CM}$ Tel. Rec. $130-14$
$119 \mathrm{M} 5 \mathrm{~A}, \mathrm{D}, \mathrm{G}, \mathrm{I}, \mathrm{M}, \mathrm{R}$ Tel. Rec. $119 R P M 2$ Tel. Rec..........130-144 13014
$317 R P M, 317 T M$ Tel. Rec. $146-10$

 421 Series (Revised) Tel. Rec.
$521 \mathrm{CDM}, \mathrm{CM}, \mathrm{CO}, \mathrm{CSO}$ Tel. Rect
$224-14$ $521 \mathrm{CsG}, 521 \mathrm{Csi}, 521 \mathrm{CsM}, 521 \mathrm{CSO}$
521 C 5 R Tel. Rec. (See Model

1120 (See Model 1220 Series-Set
$50.19)$
50.19)
1121.HW, IW, MI.O, M2.W, M2.Y,
PFM, PFW, PGM, PGW, PLM,
PLW, PSM (Series 10.11 .12)

15 1200 1202 1204

1202 iSeries 101.
1204 Ch. 112021 .
$121042 .$.
1210 M 2 M . $1210 \mathrm{M} 2 \mathrm{WW}, 1210 \mathrm{M} 2-\mathrm{Y}, \begin{array}{r}34 \\ 1210 \mathrm{OG} \\ \hline\end{array}$

1220 Serles

1400
1407 PFM .1407 PLM
1409 m 2 M
1409 m 2.
$1409 \mathrm{M2M} .1409 \mathrm{M} 2 \mathrm{Y}, 1409 \mathrm{M} 2 . \mathrm{W}$,
$1409 \mathrm{M} \cdot \mathrm{A} .1409 \mathrm{M} 3 \cdot \mathrm{M}, 1409 \mathrm{PG}$.

STUDEBAKER

AC2111 (55127)	160-15
AC2113 (55123)	172
AC-2300 (5-5327)	229-14
AC-2301 (5.5323)	213
S.4624, S-4625	21-32
S.4626, 5-4627	19

SUPREME (Lipan)

711
7125
733
733
7381 P
750.
SUTCO (Sutton)
21.A Tel. UHF Conv....... 201-11

SWANK
5 Tube Radia-phona (DU101) 5-21
C33M Tel. UHf Conv........199-13
spivania
SH758 (See Hudson Model 236486 Set 214.4)
SH759 $(S e e$ Hudson Model 236476 1.075 (Ch. 1.139) Tel. Rec. (Also
1.075 PCB see PCB 48-Set 182.1). 92-8
1.076 (Ch. 1-108) Tel. Rec. (Also see PCB 2 S Set 103.20 and PCB
$49-5$ St 183.11
$9 . .96-11$ 1.090 (Ch. 1.168) Tel. Rec. (Also
see PCB $49-5$ Set 183.1). $99-17$ $1.113,1.114$ Tel. Rec. (Also see
PCB 48 - Set 182.1).. 92 -
$1.124,1.125$ Tel. Rec. (Also see PCB $48-\mathrm{Set} 182.1)$. 92 -
$1.125 .1(\mathrm{CH}$. 1.186) Tel. Rec. (Also
see PCB $49-$ Set 183.1). 113 - 9
see PCB 49-Set 183.1). 13 -9
1.128 (Ch. 1-108) Tel. Rec. 1 Also
see PCB 2 Set 103.20 and $P C B$

see PCB $48-$ Sel 182.11 . 92 S 8
1.197 (Ch. 1.139 Tel. Rec. Tee
PCB $48-5 \mathrm{et} 182.1$ and Mode PCB ${ }^{48 \text { - }} 1$ Set 182.
$1-075-$ Set $92-8)$
$1.197 .1(\mathrm{Ch}$, 1.186$) \mathrm{Tel}$ Rec. (Also
see PCB
1.210 (Ch Set 183.1 . 113 -
see PCB 49-Sel 183.1). 113 -9
1.210 (Ch. 1-139) Tel. Rec. (See
PCB $48-5$ et 182.1 and Model
PCB $48-$ Set 182.1 and Mode
$1.075-$ Set 92.81
$1.245,1.246$ (Ch. 1.139 Tel. Rec
(S00 PCB 488 Set 182.1 and
Model $1.075-$ Set 92.81 Model 1.075-Set 92.8)
$1.245 .1,1.246 .1$ (Ch. 1.186)

 228.11 ich. 1-507.11 Tol. 174-16 22 M iCh. 1387 I Tol. Rec. (Soe
Model 2221 M-Set 137.13) Model $2221 \mathrm{M}-$ Set (137-13)
22 M .1 .2 (Ch. $1-387-1$) Tel. Rec
(Also PCB 41-Set 174.1 22M-11 (Ch. 1.507 .1$)_{\text {Tel. Rec. }}$ $23 \mathrm{~B}, \mathrm{~B} .1, \mathrm{M}, \mathrm{M} \cdot \mathrm{I}$ (Ch. 1.387 .1)

Tel. Rec. (Also see PCB 41 -Se | Yel. Rec. |
| :--- |
| 14.11 |
| 23 B |
| 11 |

 $23 \mathrm{M}-11$ (Ch. 1.507.1) Tel. Rec.
24 M (Ch. 1.462 .11 Tel $174-13$

 $24 \mathrm{M}-3$ (Ch. 1.387-1) Tel. Rec. (See
PGB \& S Set 174.1 and Model
$24 \mathrm{M} .1-$ Set 154.12) $25 \mathrm{M}, 25 \mathrm{M} .1 \mathrm{Ch} .1-387.1$ and Ra-
dio Ch .1 .603 .1$) \mathrm{Tel}$ Rec. IFor dio Ch. 1.603.1) Tel. Rec. IFo
TV Ch. see PCB 41 Set 174 .
and Model 22 M . 1 Sel 154.12
and Model 22 M -1-Sel 154.12
for Rodio Ch. see Model 1788 -
Set 192.91
$71 \mathrm{M}(\mathrm{Ch}, 9 \mathrm{l} .441)$ rel. Rec. (See $71 \mathrm{M} .1(\mathrm{Ch} .1 .502 .1) \mathrm{Tel}$. Rec. (Also see PCB 42 Set 176.11 .16312
728 (Ch. 1.366) Tel. Rec. (See PCB
$55-$ Set 189.1 and Model $7110 X$ 55 Set 189.1 and Model 7110 X
-Set 124.10) 72B.1 (Ch. 12.502 .

$728.11 \mathrm{Ch} .1 .502-3$) Tel. Rec. (See
PCB 42-Sel 176.1 ond Model
$71 \mathrm{M} .1-$ Sel 163.12) $71 \mathrm{M} .1-$ Sel 163.12)
72 M (Ch. 1.366 Tel. Rec. (See PCB
$55-S e t 189.1$ and Model 7110 X $55-$ Set 124.101 and Model Rec. (Also
$72 \mathrm{M.1}(\mathrm{ICh} .1 .502 .1) \mathrm{Tel}$.
$\mathrm{see} \mathrm{PCB} 42-5 \mathrm{Set} 176-11.163-12$ $72 \mathrm{M} .1(\mathrm{Ch} .1-502.1) \mathrm{Tel}$. Ree. (Also
$\mathrm{see} \mathrm{PCB} 42-5 \mathrm{Set} 176.11 .163-12$
$72 \mathrm{M} .2(\mathrm{Ch} .1 .437 .3)$ Tol. Rec. (See $72 \mathrm{M} .2(\mathrm{Ch}, 1.437-3) \mathrm{Tel}$. Rec. (See
Model 73 BB .5)
 Model 71 M .1 -Set $163-121$
$73 \mathrm{~B}(\mathrm{Ch} .1-306)$ Tel. Rec. $150 e \mathrm{PCB}$
$55-5 e t 189-1$ and Model 7110 x
 738.5 (Ch. 1.437 .3) Tel. Rec. See
PCB 41 Sot 174.1 ond Model
7140 MA -Set 131.15)
 $71 \mathrm{M.1-Set} 163.12$)
73 MM (Ch. 1-366) Yel. Rec. (See PCB $55-$ Set 189.1 and Model 7110 x

 Rec. (See PCB 41 -Set 174.1 and
Morel $7140 \mathrm{MA}-$ Set 131.151 $73 \mathrm{M}-11 \mathrm{CCh}$ (1-502.3) Tel. Rec Modal $71 \mathrm{M}-1$-Set 163.12)
748 (Ch. 1.3561 Tel. Rec. See PCB $55-$ Set 189.1 and Model 6140 M
$-S_{\text {et }} 120.101$ $74 \mathrm{~B}-1$ (Ch. 1.437 .11 Te . Rec. (See
PCB 41 - Set 174.1 and Mode $7140 \mathrm{MA}-$ Set $131-151$
74 B 2 (Ch. 1.437 .21 Tel . Rec. (See
PRR 41 Set 174. and Model
7140 MA Set 131.15) 74 M (Ch. 1.356) Tol. Rec. ISee PCB 55 -Set 189.1 ond Model 6140
M Set 120.101
$74 \mathrm{M}-1$ (Ch. 1.437-1) Tel. Rec. (See
PCB 41 -Set 174.1 and Model
PCB 41 -Set 174.1 and Model
7140 MA Set 131.151
$74 \mathrm{M} \cdot 2$ (Ch. 1-437-2) Tel. Rec. (See
PCS $41-\mathrm{Set} 174-1$ ond Model PC8 41 -Set
7140 MA Set $131-15$)
74 M .3 (Ch. $1-437-2) \mathrm{Tel}$. Rec. (See Model $74 \mathrm{M}-21$
$758, \mathrm{M}, \mathrm{M} .1 \mathrm{Ch} .1 .437 .1$ ond Ro
dio Ch I No Ch. I-603.11 Tel. Rec. (For
TV. Ch. see Model 5150 M -Set TV Ch see Model
131, for Rodio Ch
$178 \mathrm{~B}-$ Set $192-9$)

SYIVANIA-Cont.
1058 [Ch. 1-504.1] Tel. ${ }^{\text {Rec. }}$ 105 Bu (Ch. 1.504 .2 , 4) Tel. Rec 105 M (Ch. 1.504 .11 fel. Rec. losmu (Ch. 1-504.2, 4) Tel. Rec. 120B (Ch. 1.510 .1) Tel. Rec 120 BU (Ch. $1.510 .2,4)_{\text {Tel }}^{212-8}$ Rec.
 1268 (Ch. 1.510 .1$)_{\text {Tel. }}^{212}$ Rec. $126 B \cup$ (Ch. $1.510-2$, 4) Tol, Rec 1261 ich. $1.510-11$ Tel ${ }^{212-8}$ Rec. 12010 (Ch. 1-510.2,-4) Tel. Rec. 120 M [Ch. 1.510 .1$]_{\text {Tel }}^{212}$ Rec. 126 MU (Ch. $1.510 .2,4$) Tel ${ }^{\text {Rec }}$ 150A, i (Ch. 1.437.3) (Codes CO6
 172 K (Ch. $1.508-1,-3$) Tel. Rec.
(Also see PCB $70-5 \mathrm{Sel} 210.1$)
172 KU iCh. 1.508 .21 Tel . Rec. (Also
see PCB $70-S .1210 .11$. 192 172 M (Ch. $1.508-1,-31 \mathrm{Tel}$. Rec 172 MU ich. 1.508 .21 192lAlso see PCB 70-Set 210 -1] 175 B iCh. $1.508 .1,-3$] Tel. Rec
(Also see PCB $70-5 e 1210.1$ 175 BU (Ch. 1.508.2) Tal. Rec. (Also 175 sec PCB 70-Set 210.1). 192 - Ch . $1.508 .1,-31$ Tel \{Also see PCB 70-Set 210.1 175 mU iCh. 1.508 .2 T Tel. Rec
[Also see PCB $70 \ldots$ sel 210.1] 17518 Series (Ch. $1.518 .1,-3) \mathrm{Tel}$
Rec. 175.18 Series CCh . $\begin{array}{r}1518-21 \\ 229-15\end{array}$ 1788 ICh. I.508-1, -3) Tel. Rec.
(Also see PCB $70-5 e 1$ 210.1)
 175i, M iCh. $1.508 .1,-3$) Tel. Rec.
(Also see PCB $70-5 e 1210.1$) 176 MU (Ch. $1.50 \mathrm{~g} \cdot 2$ I Tel. Rec.
(Also see PCB $70-\mathrm{Sel} 210.1$)
 (Also see PCB 70-Set 210.11 1778 Cl (Ch. 1.508 .2) Tel. Rec.
(Also see PCB $70-5 \mathrm{Set} 210.1$) 177M ICh. I.508-1,-3) Tel. Rec.
(Also see PCB $70-5 e \mathrm{Se} 210.1$. 177 mu ICh. 1.508-2) Tel. Rec.
(Also see PCB $70-$ Set 210.1) $178 \mathrm{ICh}, 1-508.1$. 3 and Radio
 1788 U (Ch. 1.508.2 and Radio Ch .
$1.603-11$ Tel. Rec. (Also see PCB 1.603 .11 Tel. Rec. (Also see PCB
70 -Set 210.11 . 192 - 9 178 M (Ch. $1.508 .1,3$ and Radio Ch .1 .603 .1 Tel. Rec. (Also see
$\mathrm{PCB} 70-\mathrm{Set} 210.11 .192$. 17 g
178 MU (Ch. 1.508 .2 and Rodio Ch . 178 m
$1.603-1)$ Tel. Res. (Also see PCB
$70-$ Set 210.11 200 M (Ch. 1.504 .1) $\quad 192$ Rec. 200MU (Ch. $1.504 .2,4) \mathrm{Tel}_{1}^{212-1}$ Rec. 205 Series Ch. $1.5041,-2,-41$ 220 Series (Ch. 1.510.1, 212 - ${ }^{-41}$ 225 M (Ch. 1.510 .1) Tel. $212{ }^{\text {Rec. }}$ 22 smu (Ch. 1.510.2, 4) Tel, Rec.
 250 Series (Ch. 1.504-1, 2 -2 ${ }_{\text {Tel }}{ }^{-4}$. Rec. 270 Series (Ch. $1.510 .1,{ }^{-2,-4)}$
Tel. Rec. (See Model $1208-$ Sel 271 Sel 1 Ch i 5101
 212.81 Cn, 1.510.1

 372 Serias (Ch. 1.518.5) Tel. Rec
(See Model 175.18-Set 229.15)
 372 " U " Series (Ch. 1.518 .6) Tel.
Rec. (See Model 175.18 Sel 373 Series (Ch. 1-518-1, 3 and Rodlo Ch . 1.603 .11 Tel , Rec.
(For TV Ch. See Set 229.15 , For
Radio Ch. See Model 1788-Set
$192-91$
373 Series $1 \mathrm{Ch}, 1.518-5$ and Radio $\mathrm{Ch}, 1.803 .1 \mathrm{I} \mathrm{Tel}$ Rec. (For TV
Ch . See Model $175.18-$ Set 229. 15. For Radio ${ }^{\mathrm{C}}$
$1788-\mathrm{Set}$
192.91

SYLVANIA-Cont.
373 "U" Series ICh. 1.518-2 and Radio Ch. 1.603.1) Tel. Rec. (For
TV Ch. See Set 229.15, Far Radia Ch. See Model 1788-Set 192:9) $373 .{ }^{2}$ Series (Ch, 1.518-6) and TV Ch. See Model 175.18 -Set 229.15 , For Rodio Ch. See Model
 375 Series (Ch 1.518.5) Tel. Rec. (See Model 175.18-Set 229.15)
375 SUS Series (Ch. 1.518.21 Tel.
Rec.
 229.15)
376 Series (Ch. 1-518.1, - 31 Tel.
Rec
 377 Rec. Series iCh. $1-518.1,-229-15$ 377 Serios (Ch, 1.518-5) Tel, Rec
(See Model 175.18-Set 229.15)
 377 Rex Series (Ch. 1.518 .61 Tel. 229.151
3868 (h.
(1.512 .1) Tel. Rec. 3868 C (Ch. $1.512 .21 \quad \begin{array}{r}\text { Tel. } \\ 220-10 \\ \text { Rec. } \\ 220-10\end{array}$ 386 M iCh. $1-512-11 \mathrm{Tol}{ }^{220-10}$ Rec.
385 mij ich $1.512 .21 \quad$ Tel 4301 (Ch. 1.254$\} \ldots \ldots$ 220-10

 S13B, CH, GR, H, M, RE, YE (Ch,
$1.801-21$, $540 \mathrm{~B}, \mathrm{BA}$,
 $Y E(\mathrm{Ch}, 1.602 .1)$.
543 ($\mathrm{Ch}, 1.602-2$)
$563 \mathrm{Ch}, 1.601 .3$). $5838(\mathrm{Ch} .1 .801 .3)$
$593\left(\mathrm{Ch} . \mathrm{C}^{1.602 .3)}\right.$
1110 Ch 1.329) $110 \times$ iCh. 1.3291 Tei. Rec. (Seee
PCB $47-$ Set 181.1 ond Model $1210 \mathrm{X}-\mathrm{Set}$
$210 \mathrm{Ch}(\mathrm{Ch}$
1.3811 Tel
see PCB 44-Set 178.11). 128-16 $2130 \mathrm{~B}, \mathrm{M}, \mathrm{W}$ (Ch. 1.462) Tel. Rec.
(See PCB S5-Set 189.1) and (See PCB SS-Set 189-1
Model S130B-Set 120.10)

 4120 M (Ch. 1.260) Tol. Rec. (Also
see PCB 55-Set 189.1). 124-10 $4130 \mathrm{~B}, \mathrm{E}_{\mathrm{y}}, \mathrm{M}, \mathrm{W}$ (Ch, 1.2601 Tel .
Rec. $5130 \mathrm{~B}, \mathrm{M}$, W ICh. 1.290) Tel Rec.
(Also see PCB $17-$ Sel 12881) 51408, M Ch. 1.290) Tel. Rec.
(Also see PCB $17-$ Sel 128.1)
 $6110 x$ (Ch. 1.261) Tel. Rec. (Also
see PCB $55-$ Set 189-1). 124-10 see PCB S5 (Ch. 1.261) Tel Rec.
$61208, \mathrm{M}$, W Ph.
(Also see PCB $55-$ Sel 189.1) 6130B, M, w iCh. i.2si) Tel. Rec.
(Also see PCB $55-$ Set 189.1) 6140 M , w (Ch. i-271) Tel 120 Rec. 7110 C (Ch. (-366 Tel. Rec. (Also
see PCB $55-5 \mathrm{Sel} 180.1$) $124-10$ 7110×8 (Ch. 1.441) To1. Rec. TSee
PCB $55-$ Set 189.1 ond Model $7110 \times$-Set 124.10)
$7110 \times \mathrm{F}$ (Ch. 1.366 .66) Tel. Rec.
(Also see PCB 55-Set 189-1) 7110XFA (Ch. 1.442) Tel. 131 Rec. 711 M
(Ch. 1.441) Tel. Rec. (See
PCB $55-$ Set 189.1 and Model 7110 X -Set 124.101
7111 MA (h. 1.3661 Tel . Rec. (See
PCB $55-$ Set 189.1 and Model $7110 x-S e+124.101$
7120 (Ch. 1.368$)$ Tel. Rec. (Also
see PCB $55-$ Set 189.1). sec PCB S5-Set 189.1).124-10
7120 SF (Ch. 1.366-66) Tel. Rec.
(Also see PCB 55-Set 189.1) 7120 M (CH. 1-360) Tel. Rec. (Also
 7120 MFA (Ch. 1.442) Tel. Rec. 7120 W (Ch. 1.3681 Tel. Rec. (Also
see PCB 55 -Sel 189.1). 124-10 7120 WF (Ch. 1.360-66) Yel. Rec.
(Also see PCB $55-\mathrm{Set} 189.1$ i)
 7130BF ICh. $1-366-66$) Tel. Rec.
(Also see PCB 55-Set 189.1)
 7130 mF (Ch. 1.366 .66) Tel Rec.
(Also see PCB $55-\mathrm{Sel}$ i89.1) 7130 MFA (Ch. 1.442) Tel. ReC.
syivania-Cont.
71300 (Cli. 1.360) Tet. Rec. (also 7130 WF (Kh. 1.366 .66) Tel Rec.
(Also see PCB $55-\mathrm{Set} 18 ? 1$)
$7140 \mathrm{M}, \mathrm{W}$ (Ch. 1.356) Tel. iec.
(See PCB 55 Set 189.1 and Model 61 40 M -Set 120.10)
7140 MA , 740 WA (Ch 1.437) $7140 \mathrm{MA}, 7140 \mathrm{WA}(\mathrm{Ch} .1 .437) \mathrm{Tel}$.
Rec. 7150M (Ch. 1-357) Tel $\begin{gathered}\text { Rec } \\ \text { 131-15 }\end{gathered}$ 71008 (Ch. I.357) Tel. Rec. 131-15 Ch. 1.108 (See Mocel 1.0701
Ch .1 .139 (See Mocel 1.0751 Ch .1 .188 ISee Model 1.0901
Ch 1.1886 See Model 1.125 .1

 Ch. 1.290 See Model 5130 B)
Ch. 1.356 See Model 7481
Ch. 1.357 See Model 7150 M)
Ch. 1.366 See Model $7110 \times$)
Ch. 1.366 .36 (See Model $7110 x$ Ch. 1.366 See Mod?l 7110×1
Ch. 1.368 .36 (See Model $7110 \times \mathrm{XF}$)
Ch 1.381 See Model 1210 x)
Ch .1 .387 See Model 2221M) Ch. 1.387 See Model 1210XI
Ch. 1.387 . (See Model 221M.
Ch. 1.437 (See Model 140 M) Ch. 1.437 ISee Model 7140 MA)
Ch. 1.437 . (See Madel 74 B .11
$\mathrm{Ch} .1-437 \%$ (See Medel 74 B .2)
 Ch . 1-437-3 (Codes CO6 and
(See Mocel 1 SOA)
Ch . 1.441 Se Model $7110 \times \mathrm{B}$)
 Ch.
Ch .1 .462.
Ch .1 .502.
Ch .1 .502 (See Model 24 M)
$\mathrm{Ch} .1502-$ (See Model 71 M .11
Ch .13 M .1
(See Model 73 M .11 Ch. 1.502: (See Model 73M.11)
Ch. 1.504 .1 (See Model 1058)
 Ch. 1.508- (See Model 172K) Ch. 1-508- (See Model 172 KU
Ch ($1.508-\mathrm{S}$ (See Model 172 K) Ch. 1-510.1 (See Model 120B)
Ch. 1.510-2, 4 (See Model 120sU
Ch. 1.512 .1 (See Mold 3 . Ch .1 .512 .1 (See Model 386 B)
$\mathrm{Ch} .1 .512 .=$ ISee Model 386 BU
 "U. Ser es)
Ch. 1.518 .3 (Soe Model 175.18
Series) Ch. $1.518-5$ (See Model 372 Series?
Ch. $1.518-\epsilon$ (See Model 372 ist: Series)
Ch. $1-801.1$ (See Model 5118]
Ch. $1.601-2$
(See Model 5138) $\mathrm{Ch} .1 .601-2$
Ch (See Model 5138
Ch .801 .3
Shee Model 5638
 $\mathrm{Ch} .1 .002-2$ (See Model 543)
$\mathrm{Ch} .1 .602-3$ (See Model 593)
Ch .1 .803 .1 (See Model 178B) Ch. 1.003 .1 (See Model 1788)
Ch. 1-604.1 (See Model 4338)

TAPEMASTER

(Also see Recorder listings)

TECR-MASTER

1930 Te!. Rer.

TELE-KING-Cont.
162 rel. Rec..........129-12
172 (Ch. TVG) Tel. Rec. (See Model 174 (Ch. TVG) Tel. Rec. (See Model 201, 202 Tel. Rec........131-16
203 (Ch. TVG) Tel. Rec. (See Model 201 - Sel
210 Tel . Re
310 Tel . Re
 $129-12$)
510 Tel. Rec. (See Model 410-Sel $88-121$
512 Tel. Rec
512 Tel. Rec. ${ }^{88} 12$
510 Tel. Rec. (See Model 114 -Sel
612 Tel . Rec.
710 Tel . Rec.
710 Tel.
712 Tel.
81.121
716 Tel.
(See Model 410-Sel
Rec. (For TV Ch. ${ }^{\text {129-12 }}$
716 Tel. Rec.
B18-3CR Tel. R \qquad 129-12
Ch .0 orly
see Model 162-Set 128-121
¢16C Tel. Rec......129-7
016CAF Tel Rec (For TV Ch only 816CAF Tel. Rec. (For 120 Ch. only
see Model 162 Set 129.121)
819 C Tol. Rec........ 141 919CABTel. Rec. (For TV Ch, only
see Model 114-Set $141-13$) 920 (Ch. TVG) Tel. Rec. (See Model
$201-5 e t 131-16)$
$1014(\mathrm{Ch}$. TVG) Tel. Rec. (See Mo.d.
el 201-Set 131.16).
$\begin{aligned} & 1016 \text { (Ch. TVG) Tol. Rec. (Se } \\ & \text { Model 201-Set 131-16) }\end{aligned}$ Model 201 -Set 131-16)
Ch. RD.
(See Model RK41)
Ch. TVG Tel. Rec. (See Mo
Ch. TV. (See Model K21)

telequip

TV. 209 Tel. Rec. See PCB 21 -Smt
136.1 ond Model TV. 249 - $\mathbf{S n t}^{2}$ 57.21)
TV. 210 Tel. Rec. (See PCB 21-S
2 136.1 and Model TV.249-5*1
57.21)
V.220 Tel. Rec.......... 95-6
 TV. 250 et 130.11
TV.l. Rec.

 TV. 282 Tel. Rec.
TV. 283 is. TV. 283 Tel. Rec..........7 71-14
87.13)
TVee Model TV. 285 -Set 87.13)
TV.284

TV 284 Tel . Rec. TV. $285 \mathrm{Tel}, \mathrm{Rec}$.

TV-286, 287,288 Tel. Rec. ${ }^{87-13}$
TV. 300 , TV. 301 ICh. TAA, TAE
Tel. Rec.
TV. 300 , TV. 301 (Ch. Tw) Tel. Rec.

TV.306. TV. 307 iCh. TV, TZ Tel Tel
Rec. TV. 308 (Ch. TAC) Tel. Rec. 109-14
TV 314 (Ch. TAJ) Tel. Rec. 125-1?
TV. 315 (Ch. TAA, TAB) Tel. Rec
 TV. 317 Tel. Rec. Tel . Rec. 12411
TV.18 (Ch. TAM)
TV.322. TV 323 (Ch. TAM) To1 TV.322. TV-323 ICh. TAM) TA1
Rec. TV.
TV. 324 TV 325 , TV- 320 ICh. TAP TAP.1, TAP. 2) Tel. Rec.. 127-12
TV-328, TV.329 (Ch. TAP. TAP-1.

 TV 340 (Ch. TAP, TAP I, TAP-2
Tel. Rec.
 TV.348. TSe 349 ICh. TAP. 2) Tel
Rec.
127. 127.12)
TV.322 Tel, Rec. (See Model TV
324 324-Set 127.12), 8002, 8003
TV.355. (Ch. 8001, 8002. $145-17$
Tel. Rec. TV. 355 -U (Ch. BOIO, 8016 . Tel. Rec.
TV-357
iCh. $8001,8002,8003$
 Rec.
TV-358, TV. 350 (See Model TV-32
IV

 TV. 374 [Ch . 8001, 8002, 8003] Tel. Rec. (See PCE 35-Ser 104 .
ond Model TV. 330 -Set 145.11 TV. $374 . \mathrm{U}$ (Ch. 8010, 8016) Tel. TV-379-U (Ch. 8010. 8016) Tel.
Rec. TV.384.U (Ch. 8010, 8016) Tel.
Rec.

TEMPLE-COn

TRAV-LER-Cont

trela

TRUETONE
D1034A, B, C (See Model D1046A
-Set 102-15)
 D10468, C, D 15
Sef 102.151
D1090 Tel. Rec. D1090 Tel, Rec...............
D1092 Tel. Rec. Similar.

$\begin{gathered} \text { sis) } \\ 0-1234 A, \end{gathered}$

01242
01612
01644
01645 (Factory 26476.650)
01747 . D1748 D1752 (Factory D1752 (Factory 7901.14).
D1835 (Factory Model) D1836, D1836A Ifoctory
8561^{44-25}
25-25 8561
01840 (Fact. No. 138 PCXM)
01845
45-2
31-31 D18
D18

D1952 (See Model D1949-Set 60
${ }^{201890}$ (Factory No. 74F22)

Rec.
D1993. B Tel. Rec
D 1994 Tel. Rec
D1996 Tel. Rec. (See Model D298
-Set $\delta 8.181$
D2017. $\mathrm{D} 2018 \ldots101-15$

02603
02604

D2615 (Factory Model obiiol 2-18 D2018 (Factory Model oD117)

D2817
D2620
D2621
D2622
D2623
D2624 (Factory $27014-600)$
D2
11
D2626 (Foct. No. 457.2).
02630 (Factory 27 D 14.602

D2634

D2840 (Factory No. 4599 .
D2642
D2644 (Factory No. 101 C)
D2645 (factory 4B19).
D2663 (Ch. AC1).
D2692
D2700 (Factory No. 470).
D2710 (Factory No 24022

D2743 $\begin{aligned} & \text { S2745 Model Di64 }\end{aligned}$
D2748 (Ch. 7150).
D2806 22807 (Facic $26-27$
del 1811
$44-26$
$36-27$

D2815 ifactary No. 26482
D2951 (Factory No. 189
$D 2906$
02907
D2910
D2919 (Fact. No. ODF21)
02982
02983
02985
02987
02990
D2990 ter
D3120A
Rec.
Rec.
Rec.
Rec.
Rec.

203-12

truetone-Cont.	N-CAMP
D31304, в 203-13	576-1-6A ${ }^{\text {a }}$ - ${ }^{\text {7-29 }}$
	VIDEO CORP. Of AMERICA
032654 ……........ 189	(See Videola)
	videodrne
D3615'(Factory 25802.008) 18-32	10FM, 10TV, 12 FM , 12 TV Tel. Rec.
D3619 (Factory Spl 10).... 10-33 69-15
D3630, D3630N	VID
${ }^{\text {03721 }}$	
D3722 1 (F	Vs.165, vs.166, vs
D3810	
D3811 (fort. No. $1148 \times \mathrm{H}$). 47-24	VIDEO PRODUCTS
${ }^{03840}$ (1..........i 49-20	530.DX Sories Tel. Re
D3910 (Fact. Modol 140611) 74-10	630. x
	${ }^{630.0 \times 24 C ~ T e l . ~ R e c ~}$
0.4321, A229-16	VIEWTONE
046200 (Factory No. SC12) 26-28	
04730 (Factory $28(19.61)$	RC-201A, RRC. 201 11-32
${ }_{0} 4832$ (Fact. No. 25 C22-82) $47-25$	VISİO MASTER
d842'(Fact. No. 26C21-81) ${ }^{\text {a }}$ (0-21	14 MC , MT Tel. Rec. SSimilor
10884 Tel. Rec........ 105-11	Chassis) . . arc. 117^{17}
2010888 Tel. Rec....... 145	16MC. 16 MT , 16 mxxc , 16 mxCs ,
201089A Tel. Rec.......113-10	16 MXI , 18 MXTS
$201093 \mathrm{~A}, 201094 \mathrm{~A}$ Tol. Rec.	17 MxT , 17 mxis Tel. Rec. ${ }^{\text {a }}$ (Simi.
	lor to Chassis).........117-8
O95 Tel. Rec.	viz
1185 A Tei. Rec.	RS-1 14-31
2011858 -Set	VOGUE
1858	
Sot 154.13)	WARWICK (See Clarion)
185E Tel. Roc. (See PCE	
	WATterson
13)	ARC.4591A
1190A, B Tel. Rec...... 147-12	PA-4585.
11914 (Ch. brC20ar22 Tel.	
11944 Tel Rec........isi-1	
201195A (Ch. 16AX216) Tel. Rec	
201225A (Ch. 21aY21A) Tel.	
1230 Brel . Rec. (Also see PCB 59 -Se1 193-1) 185-14	WAVEFORMS
2354 Ch .17 MS 345 S) Tol. Rec.	
	A-20 191-20
-1. Rec. ${ }^{\text {S }}$ See	
PCB 74-Sel 215.1 and Model 201235A-Set 188-13)	WEBCOR (See Webster.Chisago)
201303A Tel. Rec........ 207-11	WE
315A Tel Rec....... 224	
2013254 Tel. Rec........ 20	
22	
2D13314, B, Tel. Rec.233-11	${ }^{8.124 .1}$
Rec.	8. 13551
1354	${ }_{\text {F.123.1 }}^{\text {8. }}$ - \ldots............204-12
	F.134.1 \ldots.............205-12
2043 Tol. Rec........161-10	F. 136.1
2020478 Tel. Rec.i.al 161	${ }_{\text {T.138-1 }}^{\text {F6.14 }}$
202049 A (Ch. 16AY210] Tel. Re	
	10 C 821
${ }_{\text {2020ec }}^{\text {Rec. }}$, B (Ch. 16AY2io) Tol.	129.1. 129
2 D 2052 C (Ch. 17 AY 23) Tel. Rec.	130119-13
2020520. E (Ch. 17AY28) Tel.	
Rer.:	
22053 Tel. Rec. ${ }^{\text {a }}$ 120-11	
202149 A (Ch. 17A 212$)$ Tel 17	
202152 A (Ch. 17	780112-12
2D2215A (Ch. 21ar21A) Tol.	762.
	$\begin{gathered} 1024 \text { (See } \\ 203.16\} \end{gathered}$
	1034 (See Model B.134.1-Set
	205.121
202312 Tel. Rec....... 204	${ }^{1035}$ 15ee
202313 A Tel. Rec........ 224	1036 iSee Model 8.136-1-Sal
202315A Tol. Rec........224-17	207-121
22^{23214} Tel. Rec........ 204-1!	
2 D 2322 A .	(Also see Recorder Listing)
20233AA. B rei. Rec......203-	81-15A142-15
	82-25, 82.25A,
	${ }^{84.25}$
TV.3 Tel. Unf Conv. 231-17	11054226-10
utrradine	WEBSTER (Telehome)
	W608
NITED MOTORS SERVICE (S	604M …............ 57-23
Delc 3 or Buick, Cadillac, Chevralet, Oldsmabile and Pantiac)	WELLS-GARDNER
u. s. television	$317 \mathrm{GS34C} 218$ Tel. Rec. 1 Also Se
Cis030 Tel. Rec.	
C19031 Tel. Rec.........994-12	${ }_{\text {PCB 84-Sel }}$ 225.11 195-12
T-10823 Tel. Rec.......... 89-15	$3176534 \mathrm{C}-278$ Tel. Rec. 1 Also Seo
6030 Tel. Rec.........994-12	${ }_{\text {PCB }} 84-5 \mathrm{Set} 225.11$ (195-12
T19031 Tel. Rec.......99A-12	S31C-222. 224 Tel. Rec.
5A16, 5B16, 5C16 [See Model 5CO6-5et 17.91	-194-14
	$321 \mathrm{MS} 31 \mathrm{C} 280,-282,284 \mathrm{Tel}^{\text {Tela }}$
	${ }_{321 \mathrm{MSc}}^{\text {Rec }} 39.322 \mathrm{Tel}$ Rec. ... $226-11$
UNITENE	321M539-372-2 Tel. Rec... $2266-11$
	321 Mss9-376-1 Tel. Rec. 2226
UNIVERSAL CAMERA	${ }_{2321 M 539-324 ~ T e l . ~ R e c e . ~}^{23226-11}$
(See Record Changer Listing)	
(See Resord Changer Listing)	WESTERN AUTO (See Truetone)
V-M (Also see Recerd Changer Listing)	WESTINGHOUSE (Also see Record Chonger Listing)
110191-19	H-104, H-105 4-11
139-15	104A. H.105A, H.107A. H.108A
18	H-107, H.108, H-110. H-111 4-19
159	H.113, H-114, H.116 (See Model
5	${ }_{\text {H. } 119}{ }^{\text {Sef }} 11.34$)
12	H-122
	H.122A, 8 (See Model H.122-Set

Westinghouse-Cont. H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H $H-147$
$H-148$
$H .148$?
 37)
H.153, H. 153 A (Ch. V.2103) 35-25
H.154 (See Set 21.36 ond Model

$\begin{array}{llll}\mathrm{H}-162 \\ \mathrm{H}-164 \\ \mathrm{H} 165 & \text { (Ch. V-2119-1).... 36-28 } \\ \mathrm{H} & \text { 32-29 }\end{array}$ H-166, H-167 (See Model H-164)
 H .168 B (Ch. V.2118) (See Model
$\mathrm{H}-168$ S. Sol 34.27)
 H-153-Set $35-25$)
H-178 (Ch. $V .2123$)
H-181 Tol. Rec..........35-20

H-182 (Ch. V-2128, V-2128-1) | $\mathrm{H}-183, \mathrm{H} .183 \mathrm{~A}$ |
| :--- |
| H .184 | \qquad $53-25$

$48-26$
$5 e 135$.

 V2078 (DX) (Ch. V.2130-210X or
V.2130-220X and Radio Ch.
v.2137 Tel. Rec...... B4-13

H-217, A (Ch. V-2146-110X, V.
2137 V. 2149 Tel. Rec. (See Sol
$99 \mathrm{~A}-14$ and Model $\mathrm{H}-217 \mathrm{~B}-\mathrm{Set}$ $99 \mathrm{~A}-14$ and Model H-217B-Se
91.14 /Ch. V-2146-35DX, V-2137.
 Tel. Rec. 1 Ch, V-2130-310X or
H-225 (OX)
V-2130-320X) Tel. Rec. $84-17$ $\mathrm{H}-226$ (Ch. V-2146-21DX, 250X,
V-23 49) Tel. Rec. (See Model

H-25i iCh. V. $2150-81,-82,-84)$
Tol. Rec. (See 994.14 and Model Tel. Rec. (5ee 99A.14 and Model
H-609T10-Set 95.7)

 H-307T7, H-30817 (Ch. V-2136)
H-309P5. H-309PSU (Ch. $100-2136$)

 H-315C7 (Ch. V-2138.1). $112-13$
$\mathrm{H}-317 \mathrm{CT}$ (Ch. V-2136.1) (See Model H. $317 \mathrm{C7}$ (Ch. V-2136.1) (See Model
H.316C7-Set 112.13)
H.318TS, U (Ch. V-2157, U) H-318T5, U (Ch. V-2157, U) н.32015, U (Ch. V-2157, U)
 V.2157-1, U) (Ch. v.2157.2, U)
H.32315, u
 H. 326 C7 isee Model H-310C7-Set 112.131
H. 327 T 6 U (Ch. V. 2157.3 U) $126-14$
H .328 C . U (Ch. V. $2136-4$) $137-15$
 H. 38 PCQ 52 -Sel 186.1 . $171-12$
H. 332 P 4 H. 332 P 4
Set 171.121

M-333P4.U (Ch. V-2164. U) (Also see PTVU H-335T7U iCh H.334) H.334TZUR ICh V.2136-5R1 149-14 H.336T5U, H-337T5U ICh.
$2157 U$.
H.

WESTINGHOUSE-Cant.
H. 341 TSU (Ch. V-2157.4U) 140-13 H-342PSU, H.343P5U [Ch. V.2156

 H.348P5, H-349PS (Ch. V-2156.1U) (See Model H-342PSU-Sel 138 -
13) H.350T7, H. 35177 [Ch. V.2180.1)
(Also see PCB 52 Set 186-1)
 H-355T5, H-356T5 [Ch. V-2157-5] $\mathrm{H}-357 \mathrm{ClO}$ (Ch, V.2180-5). 161-12
$\mathrm{H} .359 \mathrm{~T}, \mathrm{H} .360 \mathrm{~F}$ (Ch. V.2157.6) H. 36176 (Ch. V.2181.1)..181-21 H-365T5, H-368T5 (Ch. V.2157-7) H.367TS [Ch. V. $2157-8$). 189-1
H.368P5, H-369P5 (Ch V-2156.1U 15ee Model H.342PSU-Sel 138.
H-370T7, H-371T7 [Ch. V. 2180.8] H-372P4, H-373P4, Ch, V-2182. and H. 377 Optional Pwr. Supply H.374T5, H.375T5 (Ch. V.2157-9) H. 376 PL iCh. V.2182.1 and H .377 Optional Power Supply. 188-14 R. 188.14 or Set Suppiy)
H33.12) H-378T5. H-379T5, H-380T5, H.
381T5
(Ch. V.2184-1\}. $211-17$
 H. 38315 (Ch. V. 2157.10 (Se Model H-382T5-Set 215.14)
H-385TS, H-386T5 (Ch. V. 215711)
H.387TS iCh. V.2is7.1i) (See Hodel H.385T5-Sel 204.13)
H.388TS (Ch. V.2157.12).215-15 $\mathrm{H}-38815 \mathrm{~S}$ (Ch. V.2157.12), 215-1
$\mathrm{H}-391 \mathrm{~T}, \mathrm{H} .392 \mathrm{~T}$ (Ch. V.2157-14)
 H-400P4, H.401P4, H-402P42-10 ${ }_{H}^{403 P 4}$ (Ch. V.2164-2) 205-13

 41) Tel. Rec.
H.603C12 (Ch. V. 2151.01 ond
$2149-31$ T. Tel. Rec...... $100-14$ 2149.3) Tol. Rec...... $100-14$
H. 604 TlO A (Ch. V. 2150.91 A .94
.94 A) Tel. Rec. (See Set 99 A .1 -94A) Tel. Rec. (See Set 99A.14
ond Model H-609510-Set 45.71 H-605T12 (Ch. V-2150-101) Tel

 H. 00.8 Cl 2 ICh V. $2152.01, \mathrm{~V}-2149$
3) Tel. Rec. (See Model H. 603 C
 Hec. 610 T 12 Ch R-2150-1361 Tel
Rec.
 Rec.
H-613K16 (Ch. V-2150-146) 112-14
Rec. Rec.
H. 614 T 12 (Ch. V-2150.136) Tel
Rec. Rec.
H. 615 SCl 2 ich
Rec.

 CA) Tel. Rec. (Also see 'PCB 10
Set 116.1)

 H-620K16 (Ch. V.2150-i86. A, C
CA) Tel. Rec. (Also see PCB 10 CA) Tel Rec. (Also see PCB 10
-Sel 116.11 . $103-17$ H. 622 K 1 t (Ch. V. 2150.186 A, C
CA Tel. Rec. (See PCB io-se 116.1 and Model H.617Y12-Se
103.171 H.625512
($\mathrm{Ch} . \mathrm{V} .2150-197$ T Tel
 H. $627 \mathrm{Ki6}$ [Ch. V.2171] Tel, Rec H. 828 Kib , H. 829 K 16 (Ch. V. 2171

 H.633CiJ, H-634Ci7 iCh. V-21731
Tel. Rec. H-636T17 (Ch. V.2175) Tel. Rec H. $637 \mathrm{T14}$ (Ch. V.2177) Tel. Rec H-638k20 (Ch. V.2178) Tel. Rec H. 639 TIT ICh. V-2192. 11 Tel. H.640117 (Ch V-2175.3, -4), H-
 M. $641 \mathrm{KI7}$ (Ch. V-2175.1, -5), H
 H-642K20 (Ch. V-2178-1, -31 Tel H. 642 K 20 A IC. V. 2194, V. 2194 A
V. 2194.11 Tol. Rec.... $137-16$ H. 643 K 16 ICh. V.2179, V-2179.1
Tel. Rec.

WESTINGHOUSE-CONT.
H.646K17 (Ch. V.2192) Tel. Rec H-647Ki7 iCh. V.2i75.31 Tel. Rec H-648T20 ICh. V.2201.1) Tel. Rec
(Also see PCB 42 -set i76.1 H-649Ti> iCh, $\mathrm{V}-2200 \mathrm{O} 1 \mathrm{i}$ tal. Rec [Also see PCB 42-Set 176.1] H-649r17 (Ch. V-2192-4) Tel. Rec
(See Model H-639T17-Set 133 (15) M2 (Ch. V.2192.4) Tel. Rec
H. 650×21 (Sh.
(See Model H-639T17-Set 133. (See Model H-639T17-Set 133
 H-65ixi7 iCh. V.21921 Tel. Rec (See Model H.639T17-Set 133 M. $651 \mathrm{KI7}$ ICh. V.2200.1) Tel. Rec
(Also see PCB 42-Set 176.1 H-652K20 ICh. V-2194-2, 31 Tel. Model H. $642 \mathrm{K20A}$ Set $137-16$ H - $652 \mathrm{AK20}$ (Ch. V-2201.1) Tel. Rec
(Also see PCB 42 Set 176 -1 H-653K24 ICh. V-2202-2, V-2215 Set 164.1) (Also see PCB 35-H-65417 (Ch. V-2175.3. -4, V.

 see PCB $42-\mathrm{Sel} 176-1) .154-15$
$\mathrm{H}-657 \mathrm{KI7}(\mathrm{Ch}, \mathrm{V}-2192.4,5,-6$ Tel. Rec. ISee PCB 28-Set is0-1
and Model H.639TI7-Set 133 H-658T17 (Ch. V-2192, -1) To
 H. 659117 (Ch. V-2204.1) Tel. Rec
(Also see PCB 42-Set $176-1$) H.660C17. H.661C17 CCh. V.2203.1
 H-662K20 (Ch. V-2201-1) Tel. Rec.
(Also see PCB 42-5et $176-1$) H-663717 (Ch. V-2192-2) Tel. Rec
 H-604Ki> (Ch. V-2200.1) Ifel. Res 1Also see PCB 42-Set 178.1) H. 665116 (Ch. V.2206-1) Tel. Rec

 H. 673 K 21 CCH V. 2217111 Iel Rec
(See Model H. 667 T 17 -Set 167
 (See Model H.667T17-Set 167
15)
H. $678 \mathrm{~K}: 7, \mathrm{H} .679 \mathrm{~K} 17$ (Ch. V-2216.1 $-2,-3)$ Tel. Rec. (Also see PCS $40-\mathrm{Sel} 172.1$.
179.1 PCB and PCB 52-Sel $186-11$ -681T17 (Ch. V.2215.1) Tel. Rec -Set 186.1 and Model H. 887 TI 17 H-688K24 (Ch. V. 2219-1)(Also see
PCB $52-\mathrm{Set}$ 186-1) (174-14) H. 689716 (Ch. V.2214.1) (See PCB
40 Set 172.1 PCB 58 -Set 192.1 and Model H.667T17-Se1 167.151
H .690 K 21
H. 690×21 H- 691 K 21 (Ch. V- 2217 1) Tel. Rec. (See Model H-667T17 H.692T21 (Ch. V.2217.2, 31 Tel
Rec. (See PCB 43-Set 177.1
PCB 52 Set 180.1 and Model PCB 52-Set 186.1 and Model
H-667T17-S Sot 167.15) H-695K21 (Ch. V-2217-2, 3) ReC. STee PCB $183-$ Set 177.1,
PCB $52 \ldots$ Set 186.1 and Model
$H-667117-S$ Set 167.151 H-667T17
H. Set 169×17
 PCB
186.1 and Model H. 667 T 17 -Set
167.151 H. 700117. H7OIT17 (Ch. V-2218-2 3) Tel. ReC. ISee PCB 40-Set
172.1 , PCB $45-$ Set 179.1 PCB 52 -Sel 186.1 and
T17-Sel 167.151
H. $701 \mathrm{K21}$ (Ch. V.2217-2) Tel. Rec See PCB 43-Set 177-1 an
Model H-667117-Set 187.15) H. 702 KIT , H. 703 K 17 ICh . V- 2216.2 -3) Tel. Rec. (See PCB 40-Sel
172.1 PCB 45 -Set 179.1 PCB 52 -Set 186.1 and
$767 T 17-S e 1167-15\}$
H. $704 \mathrm{T17}$ \{Ch, V.2216-2\} Tel. Rec (See PCB 40-Set 172-1, PCB 45
Set 179.1, PCB 51 See 185.1, PCB 52-Set 180.1 On
H-667T17-Set 167-151
 H. 705 K 17 (Ch. V-2216.2. -3) Tel.
Rec. (See PCB 40-5et 172-1, Rec. ISee PCB 40-5et 172.1,
PCB 15-5el 179.1, PCB $52-$ Set 186.1 a
Set 167.15)

WESTINGHOUSE-ZENITH

WESTINGHOUSE-Cont
H-710T2) (Ch. V.2217.2, -31 Tel Rec. (See PCB
PCB 43-Set 177.1, PCB 43 -Sel
177 SCB $52-$ Set 188.1 and 178-1, PCB $52-\mathrm{Set} 18.1$ and
Model H-66717-Set 167-15) Model H-667T17-Sel 167-151
H. 710 T 21 (Ch. v.2217.4, 51 Tel H. 710 T 21 (Ch. V.2217.4, - 51 Tel.
Rec.
H. 711 T 21 (Ch. V.2217.2, 202-10 Tel. Rec. ISes PCB 40-Set $172-1$,
PCB 43 -Set $177-1$ PCB 22 -Set 180.11 and Model H.667117-Sel
187.151 . 711121
 Rec. 1 See PCB $40-\mathrm{Set}$ 172.1,
PCB 43-Set 177.1, PCB 52-Se1 188.1 and Model H.667T17-Se
167.151 H. 714 K 21
 PCB 4 -Set 177.1 PCB $52-\mathrm{Se}$
186.1 and Model $\mathrm{H} .667117-\mathrm{Se}$ 167.15
H.7 Rec.
Reh.
R.2217-4, -51 Tel
$202-10$
 ReC. (Se: PCB 40-Set 172-1
PCB 43 -Set 177.1, PCB $52-\mathrm{Se}$ $187.15)$
$.715 K 21$ (Ch. V.2217.4, -5) 1el. H-715K21 (Ch. V.2217.4, 202-10
R-718K20 (二h. V.2220-2) Tel. Rec.
 PCB 43-Sel 177-1, PCB 52 -S
$186-1$ and Model H.66717-Sel H. 720 K 21 (Ch. V.2217.4, - 51 1el. H. Rec,
$\mathrm{H}-721 \mathrm{~K} 21 \mathrm{Ch}, \mathrm{V}-2217.2, ~ 31 \mathrm{Tell}$, Rec. ${ }^{\text {Ser PCB }}$ 40-Set 172.1
PCB 43 -Set 177-1, PCB 52-Sel 186.1
167.15
H.721k21 (Ch. V.2217.4, -5) Tel. Rec.
H-722K2i
Rec.
iCh. V.
V. $2217-2, ~ 202-10 ~$
Pel Rec. 1 Sen PCB 40-Set 172.1,
PCB 43 -Set 177.1 PCB 32 -Se
$186-1$ and Model H. 667117 -Se $107-15)$
4.722×21
(Ch. V.2217.4, -5) Tel
 H. $724 \mathrm{~T} 20, \mathrm{H}-725 \mathrm{~T} 20\left(\mathrm{Ch}, \mathrm{V}_{2220-2)}^{202-193-12}\right.$ Tel. Rec.
H.30C21 V-2218.1 ond Radio
Ch. V. $2180.9,-101$ Tel. Rec Ch. V. 2180.9 . 1 . 190 - 16 Ch. V. 2180.9 ; 101 Tol. Rec.
IAlso see PCB $59-5$ Set 193.1 ond ACB 68 see SCE 205-1)...190-16
PCB 730 C 21 (Ch. V.2218.1i ond Rodio Ch. V.21 $80.9 .-10$) Tel. Rec
(Also see PCB $59-$ Set 193.1 H. 732 C 21 (Ch. V.2218.1 190 and Radio
Ch. V.2180.9. 10) Tel. Rec H.732C21 Ch V.2218.11 ond Ro
dia Ch. V.2180.9, 10 Tel. Rec. la:so see PCB 59-Set 193-1) H.733C21 Ch. V.2218-1 and Radio
Ch. V.2180.9, 101 Tol. Rec H 733 C 21 (Ch, $\mathrm{V}-2218.11$ ond Ro-
dio Ch. V-2180-9, 10) Tel. R\#c dio Ch. V-2180-9, -10) Tel. Rec
(Also see PCB $59-$ Set 193.1) $\mathrm{H} .736 \mathrm{Ti7}$ (Ch. V.2227.1) Tel. Rec
[Also Ste PCB 89-Set 233-1] H.737Ti7 (Ch. V.2216.5) Tel. Rec H-737117 Ch. V-2232-2) Tel Rec H .738 TiO iCh. V.2227.1] Tel. Rec.
[Also See PCB 89 -Set 233.1]

 H.747KU21 ICh. V.2233-4
Rec. Tol $\mathrm{H}-750121$ (Ch. V.2221-1) Tel Rec.
$\mathrm{H}-750 \mathrm{~F} 21$ (Ch. V-2233-3) T.l. Rec. H. 7511 T 21 (Ch. V.2217.4, $\begin{gathered}-51 \text { Tol } \\ 202 \text {-10 }\end{gathered}$ Rec.
H-751121
(Ch. V-2233-2) Tel
Rel
Rec. H. 752 F 21 iCh. V.2217.4,
Rec. 212 T TII. Rec. $752 \mathrm{~T} 21 \mathrm{Ch}, \mathrm{V} 2233-21$ Tel. Rec
Ren H. 753 K 21 (Ch. V .2221 .11 Tel Rec.
H .753 K 21 (Ch. $\mathrm{V} .2233-3$) Tel. Rec H. 754 k 21 (ch. v.2217.4, -51 Tel H. 754 K 21 (Ch, V 2233-2) Tel. Rec H-755k21 Ch. V. $2233-21$ Tol, Rec. $\underset{\text { H. } 756 \mathrm{~K} 21 \text { (Ch. V.2217-4, }, ~-51 ~ T e l . ~}{\text { Rec. }}$ H. 756 KeC 21 iCh. V.2233-21 Tol. Rec. H. 757 K 21 (Ch. V-2217.4,
Rec.
21 Tel. H.757K21 (Ch. V.2233.2) Tel. Rec. H. 759 S 21 Ch. V 2217.4,
Rec.
202 Tel
H. $758 \mathrm{BK21}$ (Ch. V.2233-2) Tel. ReC
H. 7 ROMK21 Ch. $\mathrm{V} 2217.4,51 \mathrm{Tel}, ~$
Rec.
H. 759 K 21 (Ch. V.2233-2) Tel Rec

WESTINGHOUSE-Cont.
H. 760 T 21 (Ch. V.2233.2) Tel. Rec.

 H-701TU2i (Ch, V.2233-2) Tol. Rec.
 H. 125i $_{\text {Ch. V.2102 (Se. Model H.104) }}{ }^{3-19}$ Ch. $\mathrm{V} \cdot 2102$ (See Model H-104)
Ch. $\mathrm{V} \cdot 2102$-1 (See Model H.138) Ch. V.2102-1 (See Model H-138)
Ch. V. 2103 (See Model H.153)
Ch. V.2103-3 (See Model H.214) V. 2103 -3 (See Model H.21
$V-2107$ (See Model H-133) Ch. V. 2107 (See Model H-133)
Ch. 2118 (See Model H.161) Ch. V. 2119 -1 (See Model H.164)
Ch. V. 2120 (See Model H.165)
Ch. V. 2122 (See Model H.157) Ch. V. 2122 (See Model H.157)
Ch. 2123 (See Model H.178)
Ch. V.2124-1 (See Model H-169) Ch. V.2124-1 (See Model H-169)
Ch. V.2127 (See Model H.183)
Ch. V.2128. V.2128.1 (See Model Ch. 1821 Ch. V.2128.2 (See Model H.202)
Ch. V.2130-1 (See Model H-196) Ch. V.2130.1 (See Model H-196]
Ch. V-2130.110X. 120 X [See Mod Ch. V-2130.21DX,-220X [See Mod
 el H. H 25 (DX)
$\mathrm{Ch} .2131, \mathrm{~V} .2131 .1$
(See Model Ch. V. 2132 (See Model H.186M)
Ch. V. 2133 (See Model H.188) Ch. V. 2133 (See Model H-188)
Ch. .2134 (See Model H-190) Ch. V. 2136 (See Model H.307TT)
Ch. V.2136.1 (See Model H-316C7)
Ch. V. $2136-2$ (See Model H.324T7 Ch. V. 2136.2 (See Model H.324T7
Ch. V. 2136.4 (See Model M.328C7
Ch. V.2136.5R (See Model
 Ch. V. 2137 (See Model H.203)
Ch.
Ch .2137 .1 (SSe Model H.199) Ch. V.2137.2 (See Model H.198)
Ch. V.2137-3, V-2137-3S (Sm
 H .2101
Ch V-2146-05 (See Model H-21.5)
Ch V.2146.110X
(See Mode $\begin{array}{cc}\text { Ch. H.217) } \\ \mathrm{Ch} \text {).2146-210X, } & \text {-250X (Sve }\end{array}$ Model H-226)
Ch.2lide.3SDX $_{\text {H. }}$ (See Model Ch. H - V . 21 Bl)

 Ch. V.2149.1 (See Model H-216)
Ch. V-2149-2
(See Model H-231) Ch. V.2149.3 (See Model H.603:-
Ch. V. 2150.01 , V.2150.02 (See Model H-223)
Ch. V.21 50.31 (See Model H.242)
Ch. V. $2150-41$ (See Model H. 601 E . Ch. V-2150-4) (See Model H-601E
i2!
Ch. V - $150-51$ (See Model H-23)
Ch. V.2150-61 A. B (See Mod
 of H-2511
Ch. $V-2150.91 \mathrm{~A}$ (See Model H-604
T10) Ch. V.2150.94 (5ee Model H. 604
Ch. $\mathrm{V} . \mathrm{A}$) 150.94 C (See Model H
60910) Ch V. V 150.101 (Soe Model H
60572)
$\mathrm{Ch} . \mathrm{V} .2150 .111$, A (See Modm $\mathrm{H}-60612$) $\mathrm{V} .2150-136$ (See Model H
$\mathrm{C}, \mathrm{T} 12$ (

 $\mathrm{Ch}_{\mathrm{H} . \mathrm{V}, \mathrm{V} 7112150.177 \mathrm{U}}$ (See Model H Ch. V.2150.186. A, C, CA (Se Model H. 618116)
Ch. $V .2150 .197$ (See Model h S25T12
Ch. V. 2151 (See Model H. 302PS
Ch. V.2152-01 (See Model H. 603 Ch. V.2152.16 (See Model H Ch. V. 2153 (See Model H303P4)
Ch. V-2153.1 (See Model H.312P
 Ch, V.2157, U (See Model H-318Ts)
Ch. V.2157.1, 1U (See Model H
 $\begin{gathered}\mathrm{H} .323751 \\ \mathrm{~V} .2157 .3 \mathrm{U} \\ \mathrm{Ch} \\ \mathbf{3 2 7} 6 \mathrm{~T} \text {) }\end{gathered}$ (See Model H. Ch. $\begin{gathered}327.2157 .4 U ~(S e e ~ M o d e l ~ H 338 ~\end{gathered}$ Ch. V. 2157.5 (See Model H-355T5)
Ch. V-2157.6 (See Model H-359T Ch. V. 2157.6 (Soe Model H-35975
Ch. V. 2157.8 (See Model H.387TI) Ch. V. 2157.8 (See Model $H-38715$
Ch. V. 2157.9 (See Model H-37415)
Ch. $V .2157 .10$ (See Model H.38215 Ch. V. 2157.10 (See Model H.38215
Ch. V. $2157-11$ (SSee Model H3515) Ch. V. 2157.12 (See Model H-38815)
Ch. V. 157.14 (See Modell H-391Ts H. $310 T 5$

 Ch. V .21
640117

WOOLAROC-Cont.
3.01A lSee Model 3.71A-Set 36.

ZENITH (Also sé
Record Changer Listing)
 $\begin{array}{lll}\text { G510. GSiOr (Ch. } 56021 \text {). } & 84-14 \\ \text { G511 G511 }\end{array}$ G511, G51IW, G511Y [Ch. 5GO1]
85-14 6516 (Ch. 5G03).........109-15
6615 G615W Goisy iCh SG05) G860, G803, Go6s iCh. 8GG01 G723 (Ch. 7G04)
G725 (Ch. 7602).......... 103-18 G881. G882, G883. G884, G885
(Ch. 8G20)98-16
 G23222 (Ch. 23G24) Tel. Rec. (See Ch. $23624-\mathrm{Sol}^{2} 91 \mathrm{~A} .131$ 2322Z1 (Ch. 23G2421) Tel. Rec
(See Ch. 23G24-Set 91A.13) (See Ch. 23G24-Set 91A. 131
G.2327 Z (Ch. 23 G 24 T Tel. Rec (See Ch. $23 \mathrm{G24-Set} 91 \mathrm{~A} .13$)
$\mathrm{G.2340,R}$ (Ch. 23G22) Tel. Rec G2340RZ. Z (Ch. 23G24) Tel. Rec. (See Ch. 23G24-Set 91A.13)
G234021, G2340RZ1 (Ch. 23G2421) Tel. Rec. (See Ch. 23G24-Se G2346R (Ch. 23G22) Tel, $98-17$ G2350RZ, i (Ch, 23G24) Tel. Rec. (See Ch. 23G24-Set 91A-13)
G2353EZ (Ch. 23G24) Tel. Rec (See Ch. 23 G 24 -Sel $91 \mathrm{~A} \cdot 13$).
G 2353 ZZ ($\mathrm{Ch}, 23 \mathrm{G} 2421$) Tol. Rec. (See Ch. 23G24-Sel 91A.13)
G2356EZ (Ch. 23G24) Tel. Rec.
 G2420-EOX Ch. $24 G 20.0$) $)^{93-11}$ Tel. G2420R iCh. 24 G 201 Tel. ${ }^{\text {Rece }}$ G2420.ROX iCh. 24G20-OXI ${ }^{\text {Tel }}$ G2437RZ. G2d38RZ, Z. G2439RZ (Ch. 24 G 281 Tel. Rec. (Seo Ch
$24 \mathrm{G} 28-5 \mathrm{~S}+914.121$ G2441 [Ch. 24G24] G2441 [Ch. 24G24) Tel. $98-17$
G2441R [Ch. $24 \mathrm{G} 22 / 24$] Tel. Rec G2441RZ, Z (Ch. $24 G 26$) Tel. Rec. G2441Z1. G2441RZ1 (Ch. 24G2o
21) Tel. Rec. (See Ch. 24 G 26

G2442E, R (Ch. 24G22/24) Tel.
Rec. G2442RZ ICh. 24 G 261 Tel Rec (See Ch. 24G20-Set 914.12)
G2442EZ1, G242RZ1 ICh. 24 G 2621) Tel. Rec. (See Ch. 24 G 26 G2448R (Ch. 24G22/24) Tel, Rec. G2448RZ (Ch, $24 G 26)$ Tel. Rec G2448RZ1 (Ch. 24 G 2621 I Tel. Rec (ISee Ch. 24G20-Sel 91A.12)
 G2854R-OX (Ch. $28 F 201$ Tel, Rec
(Ssee Model $287900-$ Set 04.15) (See Model 287960-Set 04.15)
G2951, R. OX. ROX, G2952; R,
ROX (Ch. 29 G 20 , OXI Tel. Rec. G2957, R 1 Ch
Ch. 23 G 20 T 23 and Radio
$98-17$ G2958R (Ch. $23 G 23$ and Radio Ch
oG201 Tel. Rec.... $98-17$
G. 3059 R (Ch. $24 \mathrm{G} 23 / 25$ and Radio
Ch. 6 G 20) Tel. Rec.... $98-17$ G4002 (Ch. 24G23/25 and Rodio
Ch. 6 G20) Tol. Rec $98-17$ G3157RZ, Z (Ch. $23 G 24$ and Radio $\mathrm{Ch} .8 \mathrm{BG20} / 221$ Tel. Rec. (See Ch
23 G 24 and Ch . $8 \mathrm{G} 20 / 22$-Sel 23 G 24
$914.13)^{9}$
G315721, G3157R21 (Ch. 23G242 and Radio Ch .8 G 22) Tel. Rec.
(See Ch. 23 G 24 and $\mathrm{Ch} . \mathrm{BG} 20$)
3158 RZ (Ch. 23 G 24 and Radio Ch. 8G20/22) Tel. Rec. (Seo Ch.
23 G 24 and Ch . BG20/22-Sol 914.13

G3158RZ1 (Ch. 23G242I and Radio Ch .8 G 22 T Tel. Rec. (See Ch.
23 G 24 ond Ch . $8 \mathrm{G} 20 / 22$-Sel 23 G 24
$91 \mathrm{~A}-131$
and $\mathrm{Ch} .8 \mathrm{G} 20 / 22$-Se G3173RZ, Z, G.3174RZ $1 \mathrm{Ch} .23 \mathrm{G2}$
and Rodio Ch. 8G20/221 Tel and Radie Ch.
Rec. (See 23 G 24 and Ch . 8G20/22-Set 91A.131 Ch, 8G20/22) 24G26 Tel, Rec. (For TV Ch . see Ch. 24G26-Sel 914 A For Radio Ch. see Ch. 8G20/22

- ${ }^{\text {Sot }} 91 \mathrm{~A}-13$) G3259RZ1 (CC. 24 G 2621 and Radio
Ch. 8 GH 22 Tel. Rec. (For IV Ch. Ch. 8G22) Tel. Rec. (For IV Ch Radio Ch, see Ch. BG20/22-Set
Radio Ch.
91431
632027 .
G 3202 Z (Ch. 24 G 20 and Radio Ch . $8 G 20 / 221$ Tel. Rec. (For TV Ch.
1ee Ch. 24 G 28 - Set 91 A .12 , for
Rodio Ch. see Ch. 8G20/22-Set
G326221 (Ch. ${ }^{24 G 26 Z 1 ~ a n d ~ R a d i o ~}$
Ch. 8 G 22) Tel. Rec. (For TV Ch. Ch. $8 \mathrm{G221}$ Tel. Rec. (For TV Ch.
see Ch. $24 \mathrm{G} 20-$ Set 914.12 , for see Ch. 24G20-Set 914.12 , for
Rodio Ch . see Ch . $8 \mathrm{C} 20 / 22$-Sel

ZENITH-Cons.
$3275 R Z$ (Ch. 24 G 26 and Radio
h. 8G20/22) Tel. Rec. (For T Ch . see Ch. $24 \mathrm{G20}$-Set 91A.12,
for Radio Ch. see Ch. BG20/22 G32762 (Ch. 24G2 G 32762 lCh .24 G 28 and Radio Ch
$8 \mathrm{G} 20 / 22$) Tel. Rec. (For TV Ch $8 \mathrm{G} 20 / 22$) Tel. Rec. (For IV Ch
see Ch. $24 \mathrm{G} 20-\mathrm{Set} 91 \mathrm{~A} .12$. Radio Ch. see Ch. 8G20/22-Se
 H500 (Ch . 5 H 4 O). $152-12$
$151-12$
 H615 iCh. 8 GOS).
HO15Z1 (Ch. $8605 Z 11$ 140-1
 H723 (Ch, $7 \mathrm{HO4}$).......122-1
H7232 (Ch, 7H042).... 134 -
 H72322 (Ch. 7H0422).... 178-17
H724 (Ch. 7 HO 2).........126-15 H724Z [Ch. 7H02Z) (See Model
H7232—Set 134.14)
H. 72421 (Ch. 7H02Z1)163-1 H. 72421 (Ch. 7 HO 2 ZI).
H 72422 (Ch.
 H880R2 (CC. BH2O1.....127-1 H3467R-Se 120.131 HIO86R, H-1087R (Ch. 10H20) (Seo Model H3467R-Set 120-13)
H2029R
 H2041R ICh. 2OH2O) Teli Rec
H. 2052 R H2053E CC 20 H 201 Tel H. 2052 R , H2O53E (Ch. 20H20\} Tel H2220, R, R2227E, H2227R (Ch

 H2242E, R (Ch. 22 H 22) Tel. Rec. H2250R (Ch. 22 H 20) Tel. Rec H2252R, H2253E (Ch. 22H21) Tel
 H2255E (Ch. 22 H 20) Tel $114-1$ H2328E, EZ, R, RZ iCh. 23H22 Z Tol. Rec
H2329R, RZ iCh. $23 H 22$, Z) Tel
Rec. (See Model H2328EZ-Sel 118.111
H2330E, R (Ch. 23H22) Tel. Rec (See Model H2328E-Set 118.11)
H2341R (Ch. 23H22) Tel. Rec. (See H2341R (Ch. 23 H 22) Tel. Rec. (Se
Model H2328E-Set $118-111$ $\mathrm{H}^{2352 \mathrm{R}, \mathrm{RZ}, \mathrm{H} 2353 \mathrm{E}, \mathrm{EZ} \mathrm{Ch}}$ H 2436 Q Ch .24 H 21 I Tell Rec. (Se
Model H3477R-Sel 20.13)
 H2443R (Ch. 24 H 20) Tel, Rec. (Se Model H2437E-Sel 120-13)
H2445R (Ch. 24H21) Tel. H2447R (Ch. 24 H 21$)_{\text {Tol }}^{120-1}$ H-2449E (Ch. 24 H 20) Tel ${ }^{\text {Rec }}$ H 2868 iCh 2 H 2 O ond Radio Ch 8H202) Tel. Rec. (For TV Ch. see
Model H.2029R-Set 144.15. To Madio Ch. see Model 1880-S 168-14)
H 3068 Ch .22 H 21 and Radio Ch $8 H 20 Z$) Tel. Rec. (For TV Ch, see
Model H2229R-Set 151.13 , for Radio Ch. see Model J880-S 168.144
$\mathrm{H} .3074(\mathrm{Ch} .20 \mathrm{H} 20$ and Radio Ch
10 H 207 , 10 H 20 Z) Tel. Rec. (For TV Ch
see Model H2O29R-Sot 144.15 Set 151.13)
H3108R (Ch. 23 H 22 and Radio Ch 8 H 20) Tel. Rec. (For TV Ch. se
Model H2328E-Set 118.11, fo Radio Ch. see Modal H880:RZ H3267, R (Ch, 24 H 20 and Radia Ch. $8 \mathrm{BH20}$) Tel. Rec. (For TV Ch
see Set 120013 , for Radio Ch. see H32T3E, H3274R (Ch. 22 H 21 and Redio Ch. 1OH2O2 Tel. Roc.
H3284R (Ch. 22 H 22 ond Rodio 13
13 H3467R Ch, 24 H 20 and Rodio Ch
 10H20) Tel. Rec. (See Mode
$H 3467 \mathrm{R}$-Set 120.131 H 3475 R (Ch. 24 H 20 and Rodio Ch
10 H 20) Tel. Rec....... 120 H3477R (Ch. 24 H 21 and Radio Ch
10 H 20 Tol. Rec....... $120-13$ H 347 HE (Ch. 24 H 21 and Rodio Ch
10 H 20) Tol. Rec........ $120-13$ H 3490 EG (Ch. $24 \mathrm{H2t}$ and Rodio
Ch 1 0 H 20 Z) Tel. Rec. (For TV
Ch. See Madal H2445R-Sel 120
13. For Radio Ch. 1402 (Ch. 4 1401 . $1 / . .$. 14201 (Ch, 41607$).$
$1504, \mathrm{Y}(\mathrm{Ch}, 5141)$.
1514 (Ch. 5103)............176-1 J615, F, G, W, Y (Ch. 6105 1616 (Ch. o O (Ch 6102) 172-13 1733, G, R. Y (Ch. 7103). 186-17 J880, J880R [Ch. 8H202). 168-1

ZENITH-Cont.
Jlo83E, EZ (Ch. 10H202) (See
Model H3273E-Set 151-13) J1086, R, RZ (Ch. 10 H 2021 (Se Model H3273E-Set 151.13)
J1087, Z (Ch. 10H20Z) (See Model H3273E-Set 151.13) (See Model H3273E-Set 151.13)
J2026R (Ch. 20121)
J2027E, R, J2029E, R, J2030E, R (Ch. 20121) Tel. Rec.... $159-18$
J2031R (Ch. 20121) Tel. Rec. (See Model $12026 R$ Set 159.18)
12032R (CC. 20122) Tel. Rec. (See Model $12051 \mathrm{E}-\mathrm{Set} 159.18 \mathrm{Bl}$ 12040E, J2042R, J2043R, J2044E, R
(Ch. 20121) Tel. Rec.... 159-18 (Ch. 20J21) Tel. Rec.... 159-18
J2049R (Ch. 20J21) Tel. Rec. (Se Model $12027 \mathrm{E}-\mathrm{Sef}$ is. Rec. (Se
J2050R (Ch. 20J21) Tel. Rec. (See

 22127E, R, J2129E, R, J2130E, R

 (Ch, $21 J 21$ I Tel. Rec. $159-18$
12868 Ch 1 Ch 20121 nod Radio Ch.
8 H 20 Z I Tel. Rec. (For IV Ch, see 8 H 20 Z) Tel. Rec, (For iv Ch. se
Set 159.18 , for Rodio Ch. se
Molel 1880 - Set 108.14). 12968 R (Ch. $21 J 20$ and Rodio Ch
8 H 20 Z) Tel. Rec. (For TV Ch, se $8 \mathrm{H2OZ}$ I Fel. Rec. (For TV Ch . see
Set 159.18 , for Rodio Ch. see Model 1880 -Set 168.14)
13069 E (Ch 20121 (
13069 E (Ch. 20121 and Radio Ch .
10 H 20 Z) Tel. Rec. (For TV Ch
see Set 159 .
10H2OZ) Tel. Rec. (For TV Ch.
see Set 159.18 for Rodio Ch.
see Model H3273E-Set 151-13) see Model H3273E-Set 151.13)
1319 E (Ch. 21320 ond Radio Ch.
10 H 2 Z) Tel. Rec. (For TY Ch 10 H 20 Z) Tel. Rec. (For TV Ch.
see Set 159.18 , for Radio Ch. see see Set 159.18 , for Radio Ch. see
Model H3273E-Set 151-13)
401 (Ch, 4 KKO) ${ }^{230-14}$ K401 (Ch, 4 K40)
$K 412 G, R, W, Y(C h, ~ 4 K O 1) 195-13$ $\mathrm{K412G}, \mathrm{R}, \mathrm{W}, \mathrm{Y}(\mathrm{Ch} .4 \mathrm{KO1}) 195-13$
K 510 , KS10W, K51OY (Ch. $5 \mathrm{KO2}$ KS15 (Ch. 5K03) (See Model 1514

 K600R (Ch. 6K02).
K725, F, G (Ch. 7KO1)...203-18 212-10
 K1812E (Ch. 19K22) Tel_ Rec. K-1812E-3 (Ch. 19 K 22.3) Tel. Rec. K1812R (Ch. 19K22) Tal Rec. K1812R-3 (Ch. $19 \times 22-3$) Tel. Rec. KI815E, R (Ch. 19 K 20) Tel. Rec. Kız20E (Ch. 19K20) Tel Rec K1820E-3 (Ch. 19 K 20.3) Tel. Rec. KI820R (Ch. 19×20) Telis Rec K-1820R-3 (Ch. 19×20.3) Tel. Rec K1846E (Ch. 19K20) Tel 184-1 K-1846E.3 iCh. 19 K 20.3) Tol, Rec KI8ムSR (Ch. 19K20) Tel, Rec K.1846R-3 (Ch. 19K20.3) Teligec KI850E, R iCh. 19K20) Tel, Rec. K1880R (Ch. 19K20) Telisec. K.1800R. 3 (Ch. 19K20.3 and Radi $\mathrm{Ch} .8 \mathrm{8H202}$) (For TV Ch. see Se
219.13 , for Radio Ch. see Model 1880-Set 168-14)
K2229E(Ch. 19K24) Tel. Rec. (See K2229E-3 (Ch. 19K24.3) Tel. Rec K2229R (Ch. 19K23) Teli Rec. K2229R-3 (Ch. 19K24.3) Tel. Rec. K2230E, R (Ch. 21K20) Tel. Rec. K2235E (Ch. 19K23) Tel. Rec. (See

ZENITH-Cont.
K2235E.3 (Ch. 19K23.3) Tel Rec. K2235R (Ch. 19 K 23) Tel. Rec. (See Model K1812E-Set 184.15)
$\times 2235 \mathrm{R}-3$ (Ch. 19K23.3) Tel Rec k2235R-3 (Ch. 219×23.3 Rec. K2240E, R iCh. 21 K 20) Tel. Rec. K 2258 E (Ch. 19 K 23) Tel. Rec. (See Model
$\times 2258 \mathrm{E}-3$ (Ch. $19 \mathrm{~K} 23-3$) Tel. Rec.

$219-13$ K2258R (Ch. 19K23) Tel | T19-13 |
| :--- |
| Rec. | $\times 2258 \mathrm{R} .3$ (Ch. 19 K 23.3) Tol. Rec. 2260R (Ch. 21 k 20) Tol $\mathrm{i87-14}$

 K2262R (Ch, 19 K 23 Tel. Rec. (Seo $\times 2262 \mathrm{R}-3$ (Ch. 19K23.3) Tel. Re K2263E (Ch. 21 K 20) Tel. Rec. $k 22 \Delta 3 E \cdot 3$ ich. $21 \times 20.31 \begin{array}{r}187-14 \\ \text { Tel Rec. } \\ 220-12\end{array}$ k2286, R (Ch. 21 k 20) Tel. Rec.
 K2267E (Ch. 21×20) Tel 187 Rec. K2207E. 3 (Ch. 21 K 20.3) Tel. Rec. K2288R (Ch. 21 K 20) Tol Rec. K2270H, R Ch . 21 K 201 Tel , Rec. $\times 2271 \mathrm{H}$ (Ch. 21×20) Tel. Rec. (See Model K2230E—Set 187.14)
$\times 2271 \mathrm{H} .3$ (Ch. 21×20.3) Tel. Rec. K228SR (Ch. IOK23) Tel. Rsc. K2286R.3 (Ch. 19K23.3 and Radio Ch. 7 K 21 I) Tel. Rec. (TV Ch. only) K2287R (Ch. 21 k 20 and Radio Ch .
8 H 202) Tel. Rec. (For TV Ch. see Set 187.14, for Radio Ch . see Model 1880 -Sel 168.14).
$\mathrm{K} 2287 \mathrm{R} \cdot 3$ (Ch. 21 K 20.3) Tel Rec. K2288E Ch. I9K23) Tel. Rec, K2290R, K2291E (Ch. $21 \mathrm{K20}$ and
Rodio Ch. 10 H 20 Z) Tel. Rec. (for TV Ch. see Set 187.14, for Radio Ch see Model H3273E-Set 151 .
I 329 (Ch. 21 K 20 and Radio
K 291 (Ch.
 Ch. see Model H3273E-Set 151.131
$K 2872 R, ~ K 2873 E(C h . ~ 29 K 20) ~ T e l . ~$

 Lo22, F, G, W (Ch. 6103). 222-16
1721 (Ch, 7 (LO5) 1721 (Ch. 7 LOS) 11083E, (Ch. 10120) llo86R (Ch. 10120)233-13 t1812E (Ch. 19(26) Tel. ${ }_{223-14}^{\text {Rec }}$ 11812 EU (Ch. 19206) Tel. Rec. (Foi
TV Ch. See Model II812E-Sel TV Ch. See Model 11812 E -Sel
223.14 , For UHF Tuner See Model 12571RU-Set 227.16) 11812 R (Ch. 19126) Tel ${ }_{223-14}{ }^{\text {Rec. }}$ l1812RU iCh. igi26) Tel. Rec. FFor TV Ch. See Model
Set 223.14 or UHF Tuner Seo
Model (2571RU-Set 227.16) t1820E (Ch. 19126) Tel ${ }_{2}{ }^{\text {Rec. }}$ l 820 EU (Ch. $19(26)$ Tel. Rec.
(For TV Ch. See Model L1820EFFor TV Ch. See Model tur20E-
Set 223.14 , For UHF Tuner See Model 12571RU-Sot 227.16) ll 820 R (Ch. $19(26) \mathrm{Tel}{ }_{223}{ }^{\text {Rec. }}$ L1820RU (Ch. $19(26)$ Tel. Rec.
(For TV Ch. See Model L1820R-
Set (For TV Ch. See Model L1820R-
Sot 223.14 , For UHF Tuner See
Model 2571 RU-Set 227.16)

ZENITH-Cont.
$1846 E, E U, R, R U(C h .19 L 25)$ Tol.
Rec. L2229E (Ch. igi28) Tel. 223 Rec. 2229 E ICh. 191281 Tel. Rec. (For TV Ch. See Model $12229 \mathrm{E}-\mathrm{-}$
Set 223.14 , For UHF Tuner See Model (2571RU-Set 227.16)
(2229R (Ch. 19128) Tol. Rec. 12229 RU Ch. 19128 Tel. Rec. IFor 223.14. For UMF Tuner See
Model i2571RU-Set 227.16)
 L223SEU iCh. 19128 T Tel. Rec. For
TV Ch. See Model L2235E-Set 223.14, For UHF Tuner See
Model (2571RU-Set 227-16)
 L2235RU iCh. 191281 Tol. Rec. (For
TV Ch. See Model
$22335 \mathrm{R}-$ Sot TV Ch. See Model 2235 R -Sot
223.14, For UHF Tuner Soe
Model i2571RU-S St 227.161 Model $12571 \mathrm{RU}-$ Set 227.16)
(2236E, EU, R, RU (Ch. 19127) Tel. Rec.
L2258E, EU, R, RU (Ch. 191272 TeI
$232-11$
 Rec.
(2281, EU, R, RU, UCh. 19127
ond Rodio Ch. ALO3) Tel. Rec. and Rodio Ch. 4103) Tel Rec.
(2325R, RUU (Ch. 19i27 ond Radio
Ch. 8120) Tel. Rec. ...232-11 Ch, 8120) Tel. Rec. ${ }^{2}$ 232-11
L2571R, RU (Ch. 22l20) Tel, Rec. L2572R, RU iCh. 22120) Tel, Rec 12573E, EU iCh. 22120) Tel, Rec.
$227-16$ $12574 \mathrm{R}, \mathrm{RU}$ iCh. 22120) Tel, Rec.
12575E, EU Ch. 22120 Tel. Rec. L257SE, EU CCh. 22120$)$ Tel Rec.
L2592R, RU CM. 22120 and Radio 12592R, RU (Ch. 22120 and Radio
Ch, 10120 I Tel. Rec. $227-16$
125934 HU (Ch. 22120 and Radio $2593 \mathrm{H}, \mathrm{HU}$ (Ch. 22120 and Radio
$\mathrm{Ch}, \mathrm{OLOL} 20$) Tel. Rec. ...227-16 L2876E, EU, R, RU (Ch. 22i20) Tel.
Rec.
 12879E, EU ICh. 22t20) Tel. Rec. 12894HU Ch. 22120 ond Rodio
Ch. 10 L20) Tel. Rec ...227-16
 4 E E4iZ),
 50810 (Ch. SEO2).

50810 (Ch. SEO2)....... 54-21	Ch. SCO4 (5ee Model
5G003 (Ch. 5C40)...... 17-35	Ch. 5C40 (See Model 5G003)
56003Z (Ch. 5C40Z), 5G003Z1	Ch. SC40Z (See Model SG0032
(Ch. sc402z) \ldots...... 30-31	Ch. SC4OZZ (5ee Model SG003ZZ)
5G036 (Ch. SC51)....... 30-32	Ch. SC51 (See Model SG036)
5R080-5R086 [Ch. 5CO2, 5C04)	Ch. 5E02 (See Model 50810)
	Ch. 5G01 (See Model G511)
60014, 60014W, 60029, 60029 G	Ch. 5G02 (See Model G510)
(Ch. 6COI) 9-35	Ch. 5G03 (See Model G516)
60015, 6 D015Y, 60030 (Ch. 8 COS,	Ch. SG40 (See Model G500)
6C052) 3-24	Ch. SG41 (See Model G503)
60815, 60815W, 6D815Y (Ch.	Ch. SHOt (See Model H511)
6E05) 55-24	Ch. 5 H 40 (See Model H500)
6G001. 6G001Y (Ch. 6 (40) 3-14	Ch. SH41 (See Model H503)
6G001YZI (See Model 6G001-Set	Ch. 5103 (See Model J514)
3.14)	Ch. 5J41 (See Model J504)
6G004Y (Ch. 6C41)...... 20-35	Ch. $5 \mathrm{KO2}$ (See Model K51)
6G038 (Ch. 6 (50) 32 -30	Ch. SK03 (See Model K518)
6G801 (Ch. 6E40)....... 53-26	Ch. 5K04 (5ee Model K526)
6R084 (Ch. 6C21) 20-36	Ch. St03 (See Model (518)
$6 \mathrm{RO87}$ (Ch. 6C22)...... ${ }^{\text {(}}$ 7-32	Ch. 5141 (See Model 1505F)
7R886 (Ch. 6E02) 34-30	Ch. 5142 (See Model (507)
7H820, 7 HR 20 W (Ch. 7EO1) 43-24	Ch. 6C01 (Seo Madel 60014)
$7 \mathrm{HR22}$ (Ch. $7 \mathrm{CO21}$. 7H822WZ,	Ch. 6COS, 2 (See Model 6D015
7H822I (Ch. 7E022) 55-25	Ch. 6C06' (See Model 7R070)
7H918 (Ch. 7F03)........ 75-18	Ch. 6C21 (See Model SR084)
7H920, 7H920W (Ch. 7F0I) 77-13	Ch. 6C22 (See Model 6R087)
7H921 (Ch. 7F04)........ 73-16	Ch. 8C40 (Soe Model 6 G001)
7H922 (Ch. 7F02)........ 87-15	Ch. 6C4l (See Model 6G004Y)
$7 \mathrm{RO70}$ (Ch. 6C06) 37-25	Ch. OC50 (See Model oG038)
$7 \mathrm{R887}$ (Ch. TE22)........ ${ }^{\text {54-22 }}$	Ch. 6E02 (5ee Model OR886)
8G005Y (Ch. 8C40)..... 7-33	Ch. 6E40 (See Model 6G801)
8G00SYT (21) (Ch. BC40T) (21).	Ch. 6GO1 (See Model G600)
8G005YT (22) (Ch. 8C40T) (22)	Ch. 6G05 (See Model G615)
53-27	
8H023 (Ch. 8CO1) 4-40	Ch. 8 G 20 (See Model G2957)

ZENITH-Cont.	NITH-Cont.
8 H	Ch. 6H02 (See Model H664)
8НОSО, 8MOSI, ВНО 2 , 8MO61 1-33	Ch. 6102 (See Modal 1644)
8H832, 8H861 (Ch. 8E20). 52-24	Ch. 6.003 (See Model J616)
9 O 079 , 9M079E, 9H079R, 9\%081.	Ch. 6105 (See Model J615)
$9 \mathrm{HO82R}, 9 \mathrm{HO85R}$, 9H088R [Ch.	Ch. $6 \mathrm{KO2}$ (See Model K666R)
8C21) 7-34	Ch. 6 K03 (See Model K622)
9H881, 9H882R, 9H885, 9H888R	Ch. 6103 (See Model (622)
9H984, 9M984iP (Ch. 9F22) 64-14	
9H995 (Ch. 9E21Z)...... 74-12	Ch. 7E02Z (See Model 7H822WZ)
	Ch. 7E22 (See Model 7R887)
$12 \mathrm{H094}$ (Ch. $11 \mathrm{C211}$.... 2-20	Ch. 7FO1 (See Model 7H920)
144789 (Ch. 130221..... 41-24	Ch. 7F02 (See Model $7 \mathrm{H922}$)
271965R (Ch. 27F20) Tel. Rec.	Ch. 7F03 (See Model 7H918) Ch. 7F04 (5ee Model 7H921)
28T925, E, R [Ch, 28F22] Tel. Rec.	Ch. 7601 (See Model G725) Ch 7 GO 12 (See Model H725)
281926E, R (Ch, 28F25) Tel. Rec.	Ch. $7 \mathrm{G02}$ (See Model G724)
(5ee Model 281925-Set 64.15)	Ch. $7 \mathrm{GO4}$ (See Model G723)
$28 \mathrm{T960E}$ (Ch .288201 Tol . Rec. (5 em	Ch. $7 \mathrm{HO2}$ (See Model H724)
Model 281960-Set 64-151	Ch. 7H02Z (See Model H724Z)
281960 E .2 (Ch. 28F202) Tel. Rec.	Ch. $7 \mathrm{HO2Z1}$ (See Model H724Z1)
(See Modol 281960-Set 64-15)	Ch. 7H0222 (See Model H724Z2)
281960.GO, 281960K (Ch. 28F20)	Ch. $7 \mathrm{HOS4}$ (See Model H723)
Tel. Rec. (See Model 28T960-	Ch. 7H04Z (See Model H7232)
Set 64-15)	Ch. $7 \mathrm{HO4Z1}$ (See Model H72321)
28T961E, 28T961.GO (Ch. 28F21)	Ch. 7H04Z2 (See Model H72322)
Tel. Rec. (See Model 281961-	Ch. 7103 (See Model J733)
Set 64.15)	Ch. $7 \mathrm{KO1}$ (See Model K72s)
28T962R (Ch. 28F20) Tel. Rec. (See	Ch. 7 K 20 (See Model K 777 E)
Model 289962-Set 04.15)	Ch. 7105 (See Model (721)
28T962R-Z (Ch, 28F20Z) Tel.	Ch. 8COl (See Model 8H023)
(See Model 281962-Set 64-15)	Ch. 8C20 (See Model 8H032)
$28 \mathrm{T963}$ \{Ch. 28F2I) Tel. Rec. 64-15	Ch. 8C21 (See Model 9H079)
28T964R (Ch. 28F23) Tel. Rec.	Ch. 8C40 (See Model 8G005Y
	Ch. 8C40T(Z1) [See Model 8G005-
T996RLP (Ch. 28F23 and Radio	
$\mathrm{Ch} .9 E 212)$ Tel Rec. (For TV Ch.	Ch. ${ }_{\text {8C4OT }}(22)$
see Model 42T999RLP-Set 74.	
13, for Radio Ch. see Model	Ch. 8E20 (Seo Model 8H832)
$9 \mathrm{H995}$-Set 74.12)	Ch. $8 \mathrm{G20}$ (See Model G881)
37 T 998 RLPU (Ch. 28F20 and Radio	Ch. 8G20/22 91 1A-13
Ch. 9E2IZ) Tel. Rec. (For TV Ch.	Ch. 8H20 (See Model H880R2)
see Model 28T960-Set 64.15,	Ch. 8H20 Revised (See Model H880)
for Rodio Ch.	Ch. 8H2OZ (See M
Set 74-121	Ch. 8120 (See Model 12285)
42T999RLP (Ch. 28F23, Rodio Ch.	Ch. 9E21 (See Model 9H881)
13D22) Tel. Rec. (See Model	Ch. 9E212 (See Model 9H995)
289964 R1	Ch. 9F22 (See Model 9H984)
Ch. 4C52 (See Model 4K016)	Ch. 10H20 (Seo Model H3467
Ch. 4C53 (See Madel 4k035)	Ch. 10H202 (See Model H3273E)
Ch. 4E41 (See Model 4G800)	Ch. 10120 (See Model Ll083E or
Ch. 4E4IZ (See Model 4 G800Z)	(2592R)
Ch. 4 F40 (See Model 4G903)	Ch. $11 \mathrm{C21}$ (Sea Model 12H090)
Ch, 4 H 40 (See Model H.401)	Ch. 13022 (See Model, 14H789)
Ch. 4140 (See Model J402)	Ch. 19K20 (See Model K1815E)
Ch. 4J601 (See Model 1420T)	Ch. 19K20.3 (See Model K1820E-3)
Ch. 4KO1 (See Model K412G)	Ch. 19 K 22 (See Model K1812E)
Ch. 4K40 (See Model K401)	Ch. 19K22-3 (See Model K1812E-3)
Ch. 4102 (See Model S.9010)	Ch. 19K23 (See Model K2229R)
Ch. 4L03 (See Model L2281)	Ch. 19K23-3 (See Model K2235E-3)
Ch. 4140 (See Model L401)	Ch. 19K24.3 (See Model K229E.3)
Ch. 4141 (See Madel L403F)	Ch. 19125 (See Model 11846E)
Ch. 4142 (See Model L406R)	Ch. 19126 (5ee Model l1812E)
Ch. SCOI, SCOIZ (See M	Ch. 19127 (See Model 12238E)
500111	Ch. 19128 (Sse Model (2229E)
Ch. SCO2, SCO2Z (See	Ch. 20 H 20 (See Model M2029R)
5R080)	Ch. 20121 (See Model J2027E)
Ch. SCO4 (5ee Model $5 \mathrm{RO80}$)	Ch. 20122 (See Madel J2026R)
Ch. 5C40 (See Model 5G003)	Ch. 21320 (See Model J2127E)
Ch. 5C402 (See Model SG0032)	Ch. 21121 (See Model 12127 R)
Ch. SC4OZZ (See Model SG003ZZ)	Ch. 21 K 20 (See Model K.2230E)
Ch. SC51 (See Model SG036)	Ch. 21 K 20.3 (See Madel K2260R-3)
Ch. SEO2 (See Model S0810)	Ch. 22H20 (See Model H2226R)
Ch. 5GOl (See Model GS11)	Ch. 22H21 (See Model M2229R)
Ch. 5602 (See Model G510)	Ch. 22H22 (See Model H2242E)
Ch. 5G03 (See Model G516)	Ch. 222120 (5ee Model (2571R)
Ch. SG40 (See Model GS00)	Ch. 23G22 (See Model G2322)
Ch. SG41 (See Model G503)	Ch. 23G23 (See Model G2957)
Ch. SHOI (See Model HSTl)	Ch. 23G24914-13
Ch. SH40 (See Model H500)	Ch. 23G2421 (See Model G232221)
Ch. SH41 (See Model H503)	Ch. 23H22, 23H22Z ISee Model
Ch. 5103 (See Model J514)	H. 2328 E)
Ch. 5141 (See Model J504)	Ch. 24G20 (See Model G2420E)
Ch. $5 \mathrm{KO2}$ (See Model K51)	Ch. 24G20-OX (See Model G2420.
Ch. SK03 (See Model K518)	EOX
Ch. 5K04 (See Model K526)	Ch. 24G21 (See Model G245
Ch. Sl03 (See Model (518)	Ch. 24G21-OX (See Model G2454.
Ch. SL41 (See Model 1505F)	ROX1
Ch. SL42 (See Model 1507)	Ch. 24G22/24 (See Model G2441 ${ }^{\text {] }}$
Ch. 6CO1 (See Model 60014)	Ch. 24G23/25 (See Model G3059R)
Ch. 6C05, Z (See Model 6D015)	Ch. 24G24 (See Model G2441)
Ch. 6CO6 (See Model 7R070)	Ch. 24G26914-12
Ch. 6C21 (See Model 8R084)	Ch. 24G2621 (See Model G244121)
Ch. 6C22 (See Model 6RO87)	Ch. 24 H 20 (See Model H2437E)
Ch. OC40 (Soe Model oG001)	Ch. $24 \mathrm{H21}$ (See Model H2445R)
Ch. 6C4l (See Model 6G004Y)	Ch. 27F20 (Seo Model 271965R)
Ch. OC50 (See Model oG038)	Ch. 28F20 (See Model 28T960E)
Ch. 6E02 (5ee Model 6R886)	Ch. 28F202 (See Model 28T960E.2)
Ch. 6EO5 (See Model 60815)	Ch. 28F21 (See Model 281961E)
Ch. 6E40 (See Model 6G801)	Ch. 28F22 (See Model $281925 E$)
Ch. 8GO1 (See Model G600)	Ch. 28522 (See Model 281925E)
Ch. 6G05 (See Model Gol5)	Ch. 28F23 (See Madel 281964 R
Ch. sG05Z1 (See Model H61521)	Ch. 28F25 (5ee Model 28T926E)
Ch. 6 G 20 (See Model G2957)	Ch. 28x20 (See Model K2872R)
Ch. 6 HOI (See Model H681E)	Ch. 29G20 (See Model G2951)

ZENITH-Cont.
Ch. 6 HO2 (See Model H664)
Ch. 6502 (See Madel 1644) 6103 (See Model 1544) 6105 (See Model J615) $6 K 03$ (See Model K622)
8103 (See Model (622) 7EO1 (See Model 7H820)
7E02 (See Model 7H822) $7622 Z$ (See Model 7 H8822WZ)
$7 E 22$ (See Model 7 R887) 7FO1 (See Model 7H920) 7 F02 (See Model 7H922) 7F03 (See Model 7H918)
7F04
(See Model 7H921 7G012 (See Model H725)
7602 (See Model G724) 7H02 (See Model G723) 7H02Z (See Model H724Z) 7HO221 (See Model H72421)
7H0222 (See Model H72422) 7HOU (See Model H723)
7H04Z (See Model H7232) 7H04Z1 (See Model H723Z1)
7H04Z2 (See Model H72322) 7103 (See Model J733)
$7 \mathrm{KO1}$
(See Model K725) 7105 (See Model K771 1721 8CO1 (See Model 8H023)
8C20 (See Model 8H032)
8C21 (See Model 9 HO 079)
8 C 40
(See Model $8 \mathrm{GOO5Y}$ Ch. BC40r(21) [See Model BG005 Ch. 8C40T [Z2) [See Model 8G005 Ch. $8 E 20$ (See Model 8H832)
Ch. 8 G 20 (See Model G 881) Ch. 8H20 (See Model H880RZ) Ch. 8H2OZ (See Model 1880) Ch. 8120 (See Model 1228 Ch. 9E21Z (See Model OH91) Ch. 9F22 (See Model 9H984)
Ch . $10 \mathrm{H2O}$ (Seo Model H3467R) 12592R) (See Model L1083E
Ch. $11 \mathrm{C21}$ (See Model 12H090) 13022 (See Model, 14478
$19 K 20$ (See Molel K181 $9 K 22$ (See Model K1812E)
$19 K 22-3$ (See Model K1812 $19 \mathrm{K23-3}$ (See Model K2235E
19 K 24.3 See Mol

RECORDCHANGERS

(CM-1) indicates service data also available in Howard W. Sams 1947 Recard Changer Manual. (CM-2) indicates service data available in Howard W. Sams 1948 Record Changer Manual. (CM-3) indicates service dala available in Howard W. Sams 1949 , 1950 Record Changer Manual. (CM-4) indicates service data available in Howard W. Sams 1951, 1952 Recard Changer Manual.

ADMIRAL-Cont.		
RC500 (C.M-4)		132-2
RC. 550 [See Model RC. 500 -Set		
(132-2 (CM.4) and Model RC-550		
-Set	185.2]	
RC600 218 -2		
AERO		
46A	...(CM-1)	19-34
47A (CM-2)	77-2
aviola		
100	. . . (CM-1)	33-32
BELMONT		
C. 9	(CM-2)	34-31

RC. 521 , RC. 522	205
3RC. $521,3 R C .522$.205-4
columbia	
104	124-2
CRESCENT	
C-200	(CM-1) 20-37
6 Series	(CM-3) 89-4
250 Series	(CM-2) 78 -5
350 Series	(См-2) $80-3$
500 Series	197-4
FARNSWORTH	
P.51, P56	(CM.1) 13-36
P.72, 973	(CM.2) 75-8

MARKEL

70,71 (CM-2) 84-8
74. 75
Supplement-Set 131.11 (CM-3) and

MILWAUKEE ERWOOD $10700 \mathrm{CM}^{(\mathrm{CM}-1)} 16-37$

 motorola

MOTORO,A-Cont.		
${ }_{\text {RC4O iSee Model }}^{\text {RC37 }}$ $(\mathrm{CM}-4)]$	$=[\mathrm{CM}-4]$	$141-8$
OAK		
8060	(CM-1)	19-35
9201	(CM.3)	$115-10$
Philco		
D10, D104	(CM-1)	14-21
	[CM.1)	25-30
M. 7	(CM-1)	2a-35
M.8	((CM-2)	83-7
M.9C	(CM.2)	74-7
M.12C	($\mathrm{CM}_{\text {- }}$ 3)	109-9
M-20	(CM.3)	103-11
M22	(CM.4)	140-6
RCA		
RP188	(CM.3)	72-10
RP. 176	(CM.1)	25-31
RP. 177	(CM.2)	44-27
RP.178	(CM-2)	79-12
RP190 Seríss	(CM -4)	144-7
RP.190.1		144-7

SEEBURG	
K (CM.1)	11-36
	24-34
м (cm.1)	32-19
5, 50(Cm.2)	78-12
SILVERTONE	
$101.761-2,101.762 .2$ (CM-2)	77-10
$\begin{array}{r} 101.761 .3,101.782 .3 \\ \ldots . .1 \mathrm{CM}-2) \end{array}$	83-11
	88-11
SPARTON	
C48(CM-2)	87-11
THORENS	
CD. 40(CM-1)	39-29
CD43	222-15
TRAV-LER	
A(CM.3)	72-13

UNIVERSAL CAMERA	
100	(CM-1) 36-30
UTAH	
550	(CM-1)
650	(CM-1) 22-34
7000	(CM-1) 27-31
7001	(CM.2) 83-15
V-M	
200-B	(CM.1) 15-36
400	(CM-1) 26-33
400 (Late)	(CM.2) 90-13
402. 400 C	(CM-2) 82-12
402D. 4000	(CM-2) 87-14
404 [See Model (CM-31)	405-Set 73-14
405	(СМ-3) 73-14
406, 407	(CM-3) 102-17
800	(CM-1) 21-38
800-D	(CM-2) 84-12
802	(CM.3) 77-12
810	(CM-3) 115-14
950 [See Sel 107	.13 (CM-3) and
[131.171

ZENITH		
511478	$1)$	23-35
511680	(CM-1)	27-32
514301	(CM.2)	75-17
513875, 5.14002, 514006 , 514008		
	(CM-2)	85-15
514004, 514007	(CM-2)	79-18
514012, 514014	(CM-3)	110-14
514022	(CM-3)	112-15
S14023	($\mathrm{CM}-3)$	105-14
514024, 514025	(Cm.3)	112-15
514026	(CM-3)	105-14
514027	(CM.3)	112-15
5.14028, 5.1402	S. 14	030, 5
14031	(CM-4)	145-13
5.14036	(CM-4)	145-13
5-14053, 5-1		5.14056,
5.14057		26
miscellaneous		
Series 700F	(CM.2)	89
Series 700F 33/45	($\mathrm{CM}_{\text {M }} \mathbf{3}$)	75-11
Series 700FLP	(CM.2)	101-8
Series 700FS	(CM-2)	104
Sories 700R	(CM -2)	91

RECORDERS

AMPEX 400A, 4014.............213-1	
AMPRO	
730(CM-4) 133_4	
731 (for alectrical unit see Folder 166.5; for mechanical unit see Folder 133-4)	
731-R (See Modeol 731)	
ERUSH SOUND MIRROR	
8K.401(CM-1)	. (CM-1) 42-25
BK. 403 (CM.2)	. (CM.2) 78-3
BK-416 - ${ }^{\text {c/.....(Cm-2) }}$	(CM-2) $81-4$
	39, BK-441, BK-442;
BRUSH MAIL-A-VOICE	
BK.501, BL-502, BK-503...(CM.1)	
CONCERTONE	
1401 (401, (Cm-4)	. $1 \mathrm{Cm}-4)^{155-4}$
CRESCENT	
H-1A(CM-4) 130-5	
H-2Al Seves(CM-3)	
…........(CM-4) 128-3	
H-20A1 iSee Model H22AL—Sel 125.41	
H-22Al	. 125-4

CRESCENT-Cont.	GENERAL INDUSTRIES-Cont.
H2000 Series (CM-4) 120.4	R90L [See Model R90-Sel 35.28
M.2001 Sories(CM-4) $120-4$	$(\mathrm{CM}-1)]$
M-2500 Series ...(CM-4) 120-4	250(CM.4) 143-8
M.3000 Series ...(CM.4) 120-4	
$\begin{array}{ccc}\text { M. } 3001 & \text { Series } & . . .(C M .4) ~ 120-4 ~\end{array}$	INTERNATIONAL ELECTRONICS
	PT3 (CM-2) 88-4
1000 Series Revised (CM-3) 77-4	KNIGHT
CRESTWOOD	$96.144(\mathrm{CM}-4) \ldots158$
CP. 201(CM.3) 118-4	
DUKANE	
11A55FF, 11855187-5	WC-3II-D (CM-2) 80
EICOR	MAGNECORD AUDIAD
230 223-6	AD-1R(CM-2) 84-7
1000 (CM.3) 90-4	PTS, AH, AHX, AX. 190-6
EKOTAPE (WEBSTER-ELECTRIC)	PT63-A, AH, AHX, AX.... 190-6
$\begin{array}{rll} 101-4,5, & 102.4,5,103-4,5, \\ 104-4,5 & \cdots \cdots(\text { CM.3) } 116-12 \end{array}$	MASCO
101-8, 101.9, 102.9 103-8 170-6	DC37R (CM.4) 148-9 D37 (CM-4) 148-9
	D37R (CM-4) 148-9
205, 206. 228-8	LD37. LD37R . . . (1 (M-4) 148-9
	52, 52C, 52CR, 52L, 52lR, 52R
GENERAL INDUSTRIES	214-6
R70, R90(CM-1) 35-28	375(Cm-3) 117

SILVERTONE-Conf.	
771 , $71(C M .1)$	26-32
101.774.2, 101.774.4 (CM.3)	114-10
St. GEORGE	
1100 Serier(CM.1)	40-24
TAPE MASTER	
PT-121PT-125	
WERSTER-CHICAGO	
79.80(CM-1)	37-26
178(cm-3)	113-12
210 (CM-4)	159-17
228 (cm.4)	156-13
2010 [See Model 210-Sat (CM-4)]	159.17
webster electric (See Ekotope)	
WILCOX GAY	
2A10, 2A10B 2A11, 2A11B 180-10	
3A10, 3All	200-13
3 Clo	215-17
3 F10	220-11
WIRE RECORDING CORP.	
WP(См.2)	76-19

ADDITIONAL PHOTOFACT BENEFITS

From time to time, PHOTOFACT Folder Sets include valuable
"tonus" aids, as well as useful data of a special nature. The fol-
lowing materials are extra benefits incorporated in the PHOTO FACT Folder Sets indicated, at no additional cost.

Set No.	Se	Set No.
1-RTMA Production Source Code (Jan. 1, 1953)	7-"Let's Look at the Sync Pulses". 64	12—Photofact Television Course appearing ierially in. 38-51, 54
2-TRADE DIRECTORY- Parts Manufacturers 12	8-Replacement of Disc \& Plate Type Ceramic Capacitors	13-CR Tube Dimension Chart 112 14-CR (Electromagnetic) Tube
3-National Electrizal Code on Antennas... 88	- Certificate entitling subscriber to PHOTO- FACT Volume labels for Vols. 1-10.... 62	Characteristics Chart 112
4-Record Changer Cross Reference by Manufacturer and Model. IIs	10-Certificate entitling subscriber to PHOTO- FACT Volume labels for Vols. 11-20. . . 102	15-CR Tube Interchangeability Chart........ 112 16 - NPA maintenance and rapair
5-Mica Capacitor Color Codes. 48		
6-Ion Trap Alignment. 62	11-Alliance Model ATR Rotator 216	-General Electric Clock D

COYNE

FAMOUS SHOP-TESTED REFERENCE BOOKS

Transistors. Explains in simple language the theory and practical applications of Transistors in TV-Radio-Electronics. Explains Transistor circuitry, installation, testing, servicing. 100 pages. Order CTB-7
$\$ 1.50$ TV Servicing Cyclopedia. Covers every phase of TV, including color and UHF. Explains theory, servicing, testing, antennas, circuits, convertors-covers everything. 750 pages. Order CTB-1
Practical TV Servicing. How to service by alignment, by picture pattern; how to install antennas; how to handle any TV service problem. Data on color and UHF. 400 pages. Order CTB-4
Latest Testing Instruments. Covers proper use of all modern TV, radio and electrical testing equipment. Packed with time-saving shortcuts. Full analysis of all instrument types. 350 pages. Order CTB-3.
Television and Radio Handbook. 3000 useful facts on practical radio servicing. Covers most frequently recurring problems; troubleshooting hints. Data on UHF conversion. Practical help for speedy servicing. 375 pages. Order CTB-5
. $\$ 2.75$
Industrial Electronics. Practical, simplified information on basic principles and practices of electronics. The ideal book for orientation in the entire field. Easy to understand. 468 pages. Order CTB-2.
$\$ 3.75$
Applied Practical Radio-Television. Complete 5 -Volume Library; 1780 pages of latest "knowhow" on Radio and TV. Vol. 1, Radio \& TV Principles; Vol. 2, Radio, TV and FM Receivers; Vol. 3, Radio \& TV Circuits; Vol. 4, Radio \& TV Testing Methods; Vol. 5, TV Servicing. Complete 5 Volume Set. Order CTB-50.
$\$ 15.00$
Applied Practical Electricity. 8 Volume Library covering everything on the subject, including home wiring, motors, refrigeration, air conditioning, automotive diesel, etc. 3000 sub jects. 3634 pages in 8 volumes. Order set CTB-180.
$\$ 24.00$
Electrical Trouble-Shooting. Complete troubleshooting course; also covers refrig., industrial electronics. 626 pages. Order CTB-101 . . . \$6.95 Electricians Handbook.Code requirements, rules tables, charts, testing guides; data on motors, currents, etc. 348 pages. Order CTB-102 \$2.75

BOMCE AUTHORITATIVE TV

 8. RADIO HANDBOORSVideo Handbook. Full data on TV design, construction, production, installation, operation and servicing. 14 complete sections cover the entire field clearly and practically. 892 pages. Order BB-2 . \$5.95 Radio Handbook. 18 sections;
 clearly explains radio and electronic theory; covers all phases thoroughly, including parts and circuit analyses, Sound, Recording, Testing, Antennas, TV, etc. 890 pages. Order BB-I

HOWARD W. SAMS \& CO., INC.

Order these books from your PHOTOFACT DISTRIBUTOR

youre on easy street with PHOTOFACT

FIELD SERVICE HINTS \& TROUBLE-SHOOTING AIDS

NOW! GET THE PROOF FOR YOURSELF!

ERE Photofact TV Folder-

 iust ask us for it!Learn for yourself how photofact pays for itself by earning bigger profits for you! We'll send you the proof-a free specimen photofact ty Folder that shows all the features found consistently and exclusively only in photofact. Send for your free specimen TV Folder now. Examine it. Compare it. You'll see why photoract belongs in your shop! And you'll want to ask your parts distributor about the pay-as-you-earn-plan. Only $\$ 25$ down brings you the entire photofact Library. Write for free specimen TV Folder-learn now how to earn more! HOWARD W. SAMS \& CO., INC. 2201 E. 46th St., Indianapolis 5, Ind.
HOWARD W. SAMS \& CO. INC.

The First Practical, Understandable Book About TRANSISTORS

distributed by HOWARD W. SAMS \& CO., INC.

NEW COYNE PUBLICATION

"TRANSISTORS

AND THEIR APPLICATIONS IN TELEVISION-RADIO-ELECTRONICS"

by Louis E. Garner, Jr.

he subject stand language the theory and practical applications of Transistors. Clears up common misconceptions; clarifies Transistor circuitry, installation, testing techniques, theory and servicing. An important book for everyone in Electronics

CONTENTS

Chapt. 1: History of Transistor development and simplications for the electronic industry. Chapt. 2: Non-mathematical explanation of how Transistors work; description of basic types. Chapt. 3: Physical and electrical properties of transistors. Chapt. 4: Transistor amplifier circuits. Chapt. 5: Transistor oscillator circuits. Chapt. 6: Special Transistor circuits (D.C. amp., R.F. det., Clippers, Phase Inverters, etc.). Chapt. 7 : Transistor Components (sub-miniature parts and power supplies). Chapt. 8: Care and servicing of Transistors. Chapt. 9: Practical Transistor circuits (experimental circuits with parts values; audio and r.f. circuits). Chapt. 10: Reference data; commercially available Transistors and their characteristics, etc.

Have All the latest information on Transistors in this authoritative, low cost book - it's a "must" for your library.
100 PAGES. $51 / 2 \times 81 / 2^{\prime \prime} \$ \$ 50$
ORDER CTB-7. Only...
ORDER TODAY

HOWARD W. SAMS \& CO., INC.

ORDER THIS OUTSTANDING PRACTICAL BOOK FROM YOUR PHOTOFACT DISTRIBUTOR

Another Outstanding Service Success Story... with SYLVANIA!

From Easement Repair Shop to prosperous Service Business... featuring Sylvania Tubes, Parts and Fromotion Programs!

The steady and substantial growth of the Ball Television and Radio Service, from basement shop to the large handsome brick building, shown below, is a tribute to the fair practices and alert policies of the owner, Mr. Ted Ball.

Showing modern, efficient repair booths
in Ball Television and Radio tod.

Says Mr. Ball: "My men are as skilled and experienced as any you'll find anywhere, and each is instructed to do the best job possible with the best of parts... and that, of course, includes Sylvania Tubes."

Ted Ball is another important Radio-TV Service Manager that appreciates the quality performance, dependability, and the nation-wide high reputation of Sylvania products.

Mr. Ball also knows about the business-boosting power of Sylvania's promotion and display offers. Find out how Sylvania can step up your business. Your friendly Sylvania Distributor is ready and anxious to give you full cooperation. Call him today.

Sylvania Electric Praducts Inc., 1740 Broadway, New York 19, N. Y

In Canada: Sylvania Electric (Canada) Lid., University Tawer Bldg. St. Catherine Si., Montreal, P. Q.

things are NOT as they seem...
This is a perfect square within the circle -it is an optical illusion that the sides bend.

Things are not as they seem These two fuses look alike . . . But they are not.

This fuse may burn out anywhere along the length of the filament even in the cap-this blown fuse is impossible to detect visually.

This Littelfuse has a controlled blowing pointthe filament is plated throughout its length except in the very center-the fuse will always blow here. A blown Littelfuse can be detected immediately-a Littelfuse feature.

Littelfuse holds more design patents on fuses than all other manufacturers combined.

[^0]: The PF INDEX is published manthly by Howard W. Sams \& Co., Inc., 2201 East 46 th Street, Indianapolis 5, Indiana. The PF INDEX is on sale at 25% a copy at 1093 jobbers of Electronic, Parts throughout the United States and Canada. (In Canada 30 cents.) When available, back numbers may be obtained by sending $35 \dot{\phi}$ for each copy desired. Acceptance under Section 34.64 P. L. \& R. outhorized of Indianapolis, Indiana
 SUBSCRIPTION DATA: For those desiring the convenience of delivery to their homes or shops, each issue of the INDEX will be mailed direct, promptly upon publication. The subseription charge is $\$ 4.00$ annually in the United States and U. S. possessions.

[^1]: * * Please turn to page 55 * *

[^2]: * * Please turn to page 65 * *

[^3]: * * Please turn to page 87 * *

[^4]: AMERICAN PHENOLIC CORPORATION chicago 50, illinois

