

Nov. • Dec. • 1952 including INDEX No. 35 COVERING PHOTOFACT FOLDER SETS 1 THRU 188

Tube Troubles in TV Receivers Merle E, Chaney
Printed Circuit Components W. William Hensler.

A Guide to TV Model Identification (Part II)
C. P. Oliphant . \qquad
U.H.F.

Nerle E. Chaney \qquad
Waveform Analysis (Part IV)
Glen E. Slutz. 33
In the Inferest of Quicker Servising
Glen E. Slutz.
Examining Design Features
Merlo E. Choney
Audio Facts
Robert B. Dunham
Dollar and Sense Servicing
John Markus.
Photofact Cumulative Index No. 35 Covering Plotofac Sets Nos. 1-188 Inclusive 61
PF INDEX Subject Reference Table 109

+ More or Less - .

HOW TO REDUCE YOUR INVESTMENT
 IN TV REPLACEMENT CONTROLS WITH IRC'S \#14 DEALER ASSORTMENT

This Compact Assortment Or Shelves Full of Controls?

If you service television sets, you'll use a great number of exact duplicate concentric duals. Chances are you'll keep a lot of them on band-to meet the requirements of dozens of TV models and manufacturers' parts numbers. So your investment in exact duplicate controls can amount to several hundred dollars - unless you use IRC's \#14 Dealer Assortment of concentric dual replacements.

Compare the Cost-

 $\$ 26.76$ versus$\$ 331.74$
IRC's \#14 Dealer Assortment of concentric dual replacements costs only $\$ 26.76$ (dealer wholesale price). Yet with it you can cover any of 157 different concentric duals-used as exact duplicate replacements for 254 dif ferent manufacturers' parts numbers among 57 trade names! Equivalent coverage in factory-assembled exact duplicate controls would require an investment of $\$ 331.74$.

And Compare the Convenience

You can keep a bushel of factory-assembled controls on your shelves and still not be sure of having the one you're going to need. Or you can keep a \# 14 Dealer Assortment handy and supply almost any exact duplicate control that's called for-at once! That's real convenience and economy-and it means prompter servicing and more satisfied customers.

Why Invest 90% More in FactoryAssembled Controls?

All concentric dual controls coatain many common parts. The \#14 Dealer Assortment provides a generous stock of these basic parts and gives wide interchangeable coverage at low cost. Compared to factoryassembled concentric duals, you save as much as 90% of your control stock investment cost.

Each \#14 Dealer Assortment is housed in a goodlooking, all-metal, 4-drawer cabiner. This cabinet provides a total of 28 compart-ments-each identified as to contents-to keep parts safe where you can find them in a hurry. Cabinet measures $53 / 8^{\prime \prime} \times 516 / 6^{\prime \prime} \times 1078^{\prime \prime}$ and is attractively finished in blue, yellow and silver. It stacks compactly with the popular IRC Resist-o-Cabinets. Cabinet costs you nothing extra; you pay only the price of the parts.

You Can Assemble Almost Any Concentric Dual In Less Than A Minute!

It's a fact-actual assembly, with the simplified parts in the \#14 Dealer Assortment, can be made in less than 60 seconds! And you'll need no special tools or skills. Each \#14 Assortment contains a variety of IRC Base Elements, Exact Duplicate Shafts and Switches-which you can easily assemble into specific Exact Duplicate Controls. No fling, slotting, soldering, hammering or cutting of shafts. And easy-to-follow pictorial instructions show you how to make actual assembly without trouble.

See the New \#14 Assortment At Your Distributor

Your IRC Distributor has the new \#14 Dealer Assortment in stock and will be glad to show it to you. If you're really interested in cutting control inventories as they've never been cut before, visit him today, Let him demonstrate the convenience, compactness and ease-of-use of this new kit of concentric dual replacement parts. It's going to mean money in your pocket!

HERE'S THE COVERAGE YOU GET IN THE \# 14 DEALER ASSORTMENT

Trade Name	Part Nos.	Trade Name	Part Nos.
Admiral	15	Motorola	1
Air King	7	Muntz	1
Airline	9	National	1
Andrea	1	Olympic	3
Ansley	2	Packard Bell	6
Artone	1	Pathe	2
Arvin	3	Philco	12
Automatic	3	RCA	12
Belmont	2	Radio \& Television	2
Bendix	1	Raytheon	1
Brunswick	4	Regal	4
Capehart-Farnsworth	2	Silvertone	6
Coronado	5	Skyrider	1
Crosley	9	S.M.A. TV	1
Delco	3	Sonora	1
Dewald	1	Sparton	3
Dumont	4	Starrett	5
Emerson	13	Stromberg-Carlson	5
Fada	5	Sylvania	1
Firestone	5	Techmaster	2
Garod	4	Tele King	1
General Electric	18	Tele-Tone	11
Hallicrafters	10	Trad	3
Hoffman	2	Transvue	1
Interstate Stores	1	Truetone	8
Jackson	4	Video Corp.	2
Majestic	2	W ells-Gardner	7
Meck	4	Westinghouse	10
Mitchell	1	Total	254

Plus Concentric Dual Coverage for Auto Sets, Home Radias and Future Model TV Sets

Pick of the Trade

One serviceman can service 780 radio homes or 125 television homes, or he can install 250 television sets. Accordingly, in ten years there would be a need for more than twice as many servicemen if service requirements remained essentially as they are today. Frank Mansfield,
Sylvania Electric Products Inc. Electronics, August, 1952

AUTO RADIO BUSINESS TRIPLES IN SIX YEARS. In 1946 there were approximately eight million radio-equipped passenger cars in the U. S. Today, there are over 24.5 million. This represents more than 65 per cent of the nation's 37 million automobiles and 22 per cent of all radios in the U.S.

Between 1949 and 1951 the following percentages of cars sold have been radio equipped: General Motors, 74.1 per cent; Ford, 70.4 per cent; Chrysler, 66.7 per cent.

Electronics, September, 1952

$\star \star \star$

"CRYSTAL GAZING." It looks like five and a half million TV for 1953, and six million if our optimistic view of new-station building takes place. There are $181 / 3$ million sets in use now and there can be 20 million in use by year end. It looks like 10 to 11 million radio sets for 1953.

By putting the progress figures of TV against those of radio, which is said to be more than 95% saturated in total of homes now, we arrive at a round figure of about 5 million TV sets a year for replacement of obsolescence. This should come up as an appropriate standard in six or eight years from now. In that interim set production can go as high as 6 or 7 million per year.

We emphasize that these are round-house figures. They are arrived at by placing the historic radio curve over the TV curve to date. There are many variables. Obsolescence of TV sets, now showing up to cover a span of 7 or 8 years, can be speeded up greatly by the advent of color. Who can tell how much?

Another factor to look forward to in the advent of color is maintenance of unit cost. Sometimes we forget that radio prices went progressively down as sales went up. This has been going on in TV to date. Its arrest by the necessity of greater cost in color TV receivers may hold the dollar per unit ratio up considerably.

High-dollar, low-volume industrial television is opening up an entirely new vista. Use of industrial television in factories, mines, laboratories, railroad and supply yards, in process control, remote inspection and other operations, is being explored or in valuable use, and these are but beginnings.

We are inclined to believe that, maybe, some day TV broadcasting revenues may approach movies. Here is some startling information. Television Digest says four networks and 109 existing stations will likely achieve gross revenues of $\$ 400$ million or more this year.

The 23 thousand plus movie houses will take in about 1.2 billion. Thus, with very few stations on the air, TV revenues are already running about $1 / 3$ of movie box-office. TV telecasters will double and triple, while movie houses are on the decrease.

The four TV networks have already gone ahead of the four radio networks in time sales. It isn't likely that radio will go up from here on in.

So, anyone who sells TV short is wearing blinders.
After WWII, television hit us hard as an entirely new enterprise. TV today is a growing oak, not a mushroom.

WBB in Electroric Markets September, 1952

ABOUT THE COVER: The photograph is of B. F. Coates, owner of Standard Radio Lab, 937 S. W. 29th Street, Oklahoma City, Oklahoma. Mr. Coates' letter is quoted in part: 'JJust a few lines to let you know that we consider Sams' Photofacts to be the most useful tool in our shop. During this period of time when everything is geared to its top speed, our customers expect fast service on their Radio and TV sets. This we feel we are able to give them regardless of make or model, with a complete set of Sams' Manuals at our finger tips."

AND TECHNICAL DIGEST

VOL. 2 •NO. 6 NOVEMBER-DECEMBER, 1952

JAMES R. RONK, Editor
Editorial Staff: Merle E. Chaney - Robert B. Dunham Ann W. Jones - Glenna M. McRoan - Glen E. Slutz Margaret Neff • L. H. Nelson • C. P. Oliphant Technical Director: W. William Hensler Art Directors: Anthony M. Andreone - Pierre L. Crease Photography: Robert W. Reed Production: Archie E. Cutshall • Douglas Bolt Printed by: The WALDEMAR Press; Joseph C. Collins, Mgr.

CONTENTS

Shop Talk
Milton S. Kiver 5
Tube Troubles in TV Receivers
Merle E. Chaney 7
Printed Circuit Components
W. William Hensler 11
A Guide to TV Model Identiflcation (Part II) C. P. Oliphant 19
U.H.F.
Merle E. Chaney 23
Waveform Analysis (Part IV) Glen E. Slutz 33
In the Interest of Quicker Servicing Glen E. Slutz 43
Examining Design Features
Merle E. Chaney 47
Audio Facts
Robert B. Dunham 53
Dollar and Sense Servicing John Markus 59
Photofact Cumulative Index No. 35 Covering Photofact Sets Nos. 1-188 Inclusive 61
PF INDEX Subject Reference Table 109

+ More or Less - 118

HOWARD W. SAMS, Publisher
COPYRIGHT 1952. Howard W. Sams \& Co., Inc. 2201 East 46 th Street - Indianapolis 5, Indiana
The PF (PHOTOFACT) INDEX and Technical Digest is published every other month by Howard W. Sams \& Co., Inc. at 2201 East 4 6th Street, Indianapolis 5, Indiana-and is included as a part of PHOTOFACT folders from PHOTOFACT Distributors without additional cost.
SUBSCRIPTION DATA: For those desiring the convenience of delivery to their homes or shops, Howard W. Sams \& Co., Inc. will mail each issue of the INDEX direct, promptly upon publication. The subscription charge is $\$ 2.00$ for eight issues in the United States and U. S. possessions. Acceptance under Section 34.64 P. L. \& R. authorized at Indianapolis, Indiana.

ASTATIC REPLACEMENT CARTRIDGE GUIDE For RCA 45 RPM Players, Player Attachments and Record Changers

WHEN YOU REPLACE CARTRIDGES MATCH THE EXCELLENCE OF THE RECORDS THEMSELVES TO GIVE YOUR CUSTOMERS THE FULL ENJOYMENT OF 45 RPM.

Astatic leadership in the pickup cartridge replacement field has no greater evidence than in the brilliant performance of the models AC-J and CAC-J on 45 RPM Records. Precision engineered and manufactured, to meet the higher requirements in smooth, wide range response, tracking excellence and similar factors, these superior Astatic units are your greatest assurance of enthusiastic customer satisfaction . . . of maximum business volume from the ever-growing swing to 45 RPM.

EXPORT DEPARTMENT

401 Broddway, Now York 13, N. Y. Cable Address: ASTATIC. New York

With the opening up of the UHF band to television broadcasting, the subject of noise becomes an increasingly important one to the television technician. Noise, in a television receiver, appears visibly on the screen as a multitude of light and dark spots. A nother name for this is snow. When the signal becomes sufficiently weak, the snow or noise spots may so completely obscure the picture as to render it useless for enjoyable viewing.

The increased importance of noise in UHF receivers stems from the fact that signal strengths may be lower at UHF frequencies and therefore many UHF receivers will be normally operating under conditions comparable to VHF receivers located in fringe areas today. To make the best of these conditions, the technician will want to have a good understanding of noise and what can be done to overcome it.

The ability of a receiver to amplify a signal is not limited by the amplification which can be obtained from vacuum tubes, but by the noise which arises from the tubes and the associated receiver networks. (This immediately points up the underlying fallacy of the argument that increasing the amplification of a system sufficiently will cure noisy pictures. There is more to it than that, as we shall see.) This noise is known as random noise because it possesses no fixed frequency, but extends from zero to frequencies far above any being used today. Therefore, it affects every type of receiving circuit.

The noise developed in a receiver comes from two sources, thermal agitation in conductors and electron flow through tubes. Thermal agitation arises from the random motion of electrons within a conductor. There is no external voltage applied, but the electrons, using their own energy, move to and fro along a conductor. This movement of electrons constitutes a current flow. Since, at any given instant, a few more electrons are moving in one direction than in the other, a voltage is set up in the conductor which is proportional to the net current flow and the value of the conductor resistance. The polarity of the voltage due to thermal agitation changes constantly, electrons moving first in one direction then another. Because of this, there is no definite pattern to the random volt age, or, for that matter, any one frequency at which the energy changes. It has been found that the energy is distributed uniformly throughout the entire frequency spectrum used for communications.

The amount of voltage that is developed by thermal agitation in conductors can be computed from the following relationship.

$$
\mathrm{E}^{2}(\mathrm{rms})=4 \mathrm{KTR} \times\left(\mathrm{f}_{2}-\mathrm{f}_{1}\right)
$$

where
$E=$ the rms value of the noise voltage generated across the resistance.
$\mathrm{K}=\mathrm{a}$ constant.
$T=$ the temperature of the conductor (this is expressed in absolute degrees, Kelvin, which is equal to 273 plus the temperature in degrees centigrade).
$R=$ the value of the resistance of the conductor, in ohms.
$\mathrm{f}_{2}-\mathrm{f}_{1}=\mathrm{the}$ bandwidth of the receiver, in cycles.

An inspection of the formula indicates that, with all other factors constant, the wider the receiver bandpass, the greater the amount of thermal agitation volt abe developed. Note that the actual frequency at which the set is operating is not a factor in the equation; only the bandwidth is important. Thus, a receiver having a bandpass of 1 mc and operating at 200 mc will develop as much thermal agitation voltage as another set having the same bandwidth but operating at 10 mc .

The second source of receiver noise is developed in the tubes. There are several components to this noise.

1. Shot Effect. The current that flows in a tube is not a continuous fluid but a moving congregation of separate particles, the electrons. Noise voltages are produced, even when so-called steady currents are flowing, because at any single instant, the number of electrons impinging on the plate differs from the number reaching this anode at any other instant. Over a measurable period, the current is steady, but instantaneously it fluctuates rapidly due to the non-fluid nature of electrons. It is these instantaneous fluctuations that represent the noise.
2. Noise Due to Current Division. The noise voltages produced by the foregoing shot effect increase as more positive elements are added to a tube. This is due to the random division of the current between the plate and the other electrodes.
3. Induced Grid Noise. At sufficiently high frequencies, when the frequency of the signal has a period comparable to the electron transit time, the number of electrons approaching and receding from the grid are seldom equal. This produces an induced grid current which fluctuates irregularly, developing a noise voltage at the grid.

The noise energy developed by these three effects is distributed evenly throughout the frequency spectrum. In this respect it resembles the noise voltage due to thermal agitation. Both together can be combined under the general heading of random noise.

Experience has shown that the majority of television receiver difficulties are caused by failure of tubes. This fact contributes greatly to the part that field service plays in the television servicing industry.

Although tube failures are most frequently the cause of improper operation of the television receiver, this fact does not reflect upon the quality of tubes as such, but rather upon the service they are called upon to perform. No doubt it is possible to produce vacuum tubes whose life expectancy could be measured in years. The cost of producing such an infallible instrument however, would take TV out of the home and make it only a laboratory phenomenon.

Why, we might ask, are tubes subject to failure under ordinary use in a television receiver? The answer to this could be that the television receiver tubes are called upon to perform heavy work under a variety of conditions, and simultaneously meet exacting requirements.

These conditions are not normally encountered in broadcast radio receivers. It is not unusual for tubes in radio receivers to perform satisfactorily throughout the life of the receiver.

Another factor influencing tube failures in TV sets is the vast number of tubes necessary to effect television reception. The chances for tube failure are much greater as the number of tubes in use increases.

A list of tube deficiencies that are likely to be encountered in television service work are listed below.

1. Low emission.
2. High gas content.
3. Grid emission.
4. Warped elements.
5. Loose elements (Microphonic).
6. High resistance interelectrode leakage.
7. Shorted elements.

8. Intermittent or open filaments.

Quality control during the manufacturing process is designed to provide tubes with given characteristics for each type. Constant useage, however, in a television receiver can impair the operation re-
sulting in any of the above listed deficiencies. An explanation of each of the general categories follows.

Low Emission -

When the emission from a heated cathode or filament of a vacuum tube falls below a minimum figure, the tube is considered too weak for satisfactory service. The quickest way to determine this in practice is direct substitution with a new tube. In some instances the emission in a tube is so low that the particular stage in the receiver is completely inoperative.
Gassy Tubes -
The presence of gas in a high vacuum type tube often leads to difficulty in a television receiver. Excess gas in a tube leads to grid current due to ionization of the gas particles. The flow of grid current due to gas ionization decreases the tube bias. If the grid resistor in this case is sufficiently large, the grid may go positive. Tube damage often results due to the increased currents, and distorted output may occur due to non-linear operation. Grid current in a gassy tube is greater at normal bias than at cut-off bias.

To maintain grid current due to gas ionization at a minimum, tubes are evacuated during the manufacturing process. At the same time the tubes are pumped, the tube structure is heated to drive out additional gas. The exhaust tip is then sealed to insure air-tight construction. In most instances, the remaining gas content is still too large for satisfactory operation. During the construction process a volatile metal, chosen for its gas absorptive qualities, is placed in a trough and welded to part of the tube structure. This is known as the getter. The"getter" material is then flashed causing it to deposit on the inner surface of the tube envelope. In the case of glass envelope tubes, the getter may be flashed by RF induced currents. For metal tubes, the getter holder may be welded between one tube element and the shell or ground. Passing a heavy current through this circuit causes the getter to deposit on the inner surface of the tube envelope.

Care must be exercized to insure that the getter material does not fall between tube elements, causing a short. In addition, the position at which the getter falls on the envelope must be such that a minimum of heat is directed back upon the tube elements.

The getter material is readily observed in a glass tube since it forms a mirrorlike surface on the inside of the glass envelope.

This combination of features explains why

- Complete frequency coverage with one probe, 20 cps to over $110-$ me. Insulated and shiclded RF tube probe, found usually only with laboratory instruments, is included. - Peak to Peak ACV and RF with one probe.
- One volt full scale reading on AC \& DC.
- Onemain selectorswitch,
allranges.
- ACrms-Peak to Peak
- 32 Ranges
- Zero center mark for FM discriminator alignment plus any othergalvanometermeasurements. - High input impedance 11 megohms on DC.

[^0]Heavy current carrying tubes usually exhibit high gas content by giving off a blue glow. This blue glow should not be confused with fluorescence. Fluorescence in a tube is actually an indication of high vacuum. It is observed as a layer of color occupying a space close to the glass envelope.

Grid Emission -

Any element in a vacuum tube may emit electrons if sufficient heat is applied. If the grid emits electrons, the effect is known as grid emission. Grid currents arising from gridemission may cancel the tube bias causing heavy plate currents to flow.

Grid emission may be due primarily to a small amount of cathode emitting material falling upon the grid. This may have been initiated by high gas content in the tube causing overheated elements.

Since heat is the chief cause of the difficulty, measures are incorporated in the manufacturing process to hold the heat down.

To maintain the grid at a low temperature, the tube plate is usually coated black to keep its temperature down. Connecting leads from the grid to the tube pins consist of a good heat-conductive material, thus carrying away additional heat.

The reduction of bias occasioned by grid emission in a tube is not so severe when a cathode bias resistor is used. As tube currents tend to increase with decreasing tube bias from grid emission currents, the cathode bias increases, tending to maintain the correct bias.

Grid emission can be considered the cause of grid current when this current is about the same for both normal and cut-off bias.

It should be pointed out that grid currents due to grid emission are in the opposite direction to the flow of current in a normal tube where the grid may be driven positive by the signal. Very often in television receivers, the sync separator stages are biased by positive-driven grids. However, the flow of grid current due to grid emission may partially or completely cancel tube bias. Unlikely as it may seem, grid current may flow even though the grid is negative with respect to the cathode.

Although it is probably true that all triode, pentode, etc., type of receiving tubes have gridemis-

Figure 1. Direction of Grid Current Flow in a Normal Operating Tube When the Grid is Driven Positive by Signal Components.

Figure 2. Direction of Grid Current Flow When the Grid Emits Electrons.
sion, it is found that minor amounts of grid emission are permissible without affecting tube performance. For some applications, it is observed that certain types of tubes have grids plated with a metal whose emission capabilities are so restricted that grid emission is held to an absolute minimum.

Figure 1 illustrates an amplifier stage employing a tube with normal characteristics whose grid is driven positive periodically by the signal. This might be a video amplifier or sync separator stage in a television receiver. Note the direction of grid current flow. It is from the grid down through the bias supply.

In Figure 2 the direction of grid current flow is from the bias source, through the grid resistor to the grid. This is caused by the grid emitting electrons.

Warped Elements -

Either the application of incorrect bias, too high plate voltage, or faulty components in the circuit resulting in high current drain through the tube is the cause. Even though the tube may remain in operating condition, it is probable that the tube characteristics have been altered. Since element spacing is of primary importance in establishing tube characteristics, any variation thereof can easily impair correct tube functioning in a specific circuit.

An illustration of the effect of warped plates in a rectifier tube is shown in Figure 3. This is an extreme condition since the warping of the plates, due to excessive heat dissipation, actually caused an internal short, melting holes in the plates. The primary cause of the trouble was a shorted capacitor in the $B+$ circuit. The $B+$ and power transformer were not fused. Because of heat dissipation due to the excessive current through the rectifier tube, the plates were warped sufficiently to cause a short within the tube. At the point where the short existed, the plates melted. The next component to break down was the power transformer which finally got hot enough to burn the insulation between windings.

Another example of the effect of excessive heat dissipation is shown in Figure 4. This tube is a 6 V 6 GT and was employed as the audio output tube in a receiver. The audio coupling capacitor connected to the grid became leaky, causing the tube to draw excessive current. The stress created by the heat dissipation caused the welding bond, where the two halves of the plate structure were fastened, to pull apart.

PRINTED CIRCUIT COMPONENTS ly W.Wiliantlaculu \equiv m-m

The basic arts employed in the manufacture of printed circuits are by no means new. The early Greek craftsmen employed methods of attaching metals to ceramics for decorative purposes. A Frenchman as early as 1880 conceived the idea of multiple carbon resistors. Production of variable composition and fixed ceramic resistors was started in this country as early as 1922.

The small demand of the infant electronic industry at that time, however, resulted in a rather slow development of what we now know as the printed circuit.

The demand for extremely small and compact electronic gear for use in World War II, greatly accelerated the research and production of printed circuits. The requirements of such circuits were extremely critical. In the case of the mortar fuse, for instance, a complete transmitter and receiver had to be built that was no larger than a person's fist. Such a unit had to function under the most adverse conditions of varying temperature and humidity. They also had to withstand the shock of being fired from the mortar without damage or failure of any components. Any such failure would make the fuse inoperative. These rigid requirements led to the casting of printed circuits in their first important role in the electronic industry.

Through the technique of printed circuits, the third dimension of resistors, capacitors, inductors and wiring is virtually eliminated. An entire circuit can be constructed into one thin, solid unit which in turn can be covered with a coating to protect it against mechanical damage as well as damage caused by adverse humidity conditions. The complete circuit can be constructed to conform to close electrical tolerances. These close tolerances can be maintained when the unit is incorporated in a piece of equipment since the placement of parts and lead length does not present the problem that is encountered when the individual parts are wired into the circuit. Production time of equipment can be cut considerably since several components can be wired into the circuit by connecting the few leads extending from the printed circuit.

These features are put to good use in many commercial applications. One very good example of this is the hearing aid. Through the use of printed circuits all of the components required for several stages of amplification can be made into a very small, thin package. Thus the prime requisite, of the hearing aid, that of compactness, can be realized.

Although this advantage of providing compactness is enjoyed in the small, personal portable radio,
most commerical applications in radio and television receivers are for other reasons.

Construction of the Printed Circuit

Before discussing the various applications of the printed circuit, let us look at the construction and manufacturing processes employed in the manufacture of the units.

The foundation of the circuit is the base plate, which is made of ceramic. These base plates can be divided into two major classifications; those having low dielectric strength, and those have high dielectric strength. The high dielectric base plates are used where considerable distributed capacity can be tolerated or is even desirable. The low dielectric base plates are used where the distributed capacity must be held to a minimum.

Figure 1 shows a diode filter used in AM receivers as it appears during several steps of manufacture. Figure 2 is a schematic of this diode filter unit.

The first step in construction is the compounding and mixing of the ceramic base material, which is mixed in large quantities. This completed, it is screened, dried and then pelleted into the desired shapes. It is then fired in kilns ranging in temperature from 2200 to 2900 degrees Fahrenheit depending upon the type of ceramic. Such a oase plate is shown at (A) of Figure 1.

Next comes the screening of the silver on the wase plate to form the wiring of the circuit. The silver is pressed onto the base plate in the form of a silver compound. The unit is again fired at 1200 degrees Fahrenheit, which changes the compound to a metallic silver. The thickness of the silver is approximately 20 /ten thousandths of an inch which is adequate for all but high current circuits, since the

Figure 1. Construction Steps in the Diode Filter Printed Circuit.

Figure 2. Schematic of Diode Filter Unit Shown in Figure 1.
conductivity of the silver plate is only slightly less than that of pure silver. The silver adheres to the base plate with a tensile strength of 3000 pounds. The diode filter unit at (B) in Figure 1 has completed this stage of manufacture.

The next step is the addition of the resistive element. The formula of a basic resistive material varies according to the resistance required in the circuit. With any given wasic resistive mix, the resistance placed on the base plate can be controlled by changing the area or thickness of the element, or both. In this manner several resistors can be screened at the same time providing their resistances do not have a range of greater than 2 to 1 . If such is the case, a separate screening step must be performed using a different basic resistive mix. The unit is then cured at a high temperature to fix the body of the resistor. The black portion on the plate at (C) of Figure 1 is the resistive material. This particular circuit requires only one resistor with a value of 47 K ohms. Note that the completed unit is only half the size of the base plate at (A). This is due to the manufacturing process employed whereby two units are left attached during some of the steps of construction. The two units at (A) and (B) of Figure 1 are shown before they are separated into single units.

The resistive elements are then tested on special jigs designed to speed the testing procedure. A system of lights are employed to show open or off tolerance units. If the unit is within tolerance, the light shows green. If it is out of limit, the light shows red. On multi-resistor units the tester checks each of the sections in prescribed order.

The next operation is that of applying a protective coating over the resistor element. The coating is of a special material which prevents absorption of moisture from the air. The coating also acts as an insulator, which is essential when capacitors are attached to the unit. These capacitors are required on those units where, for purposes of keeping the distributed capacity to a minimum, a low dielectric constant ceramic base is used. Thus in order to obtain suffi cient capacity, separate ceramic capacitors are attached to the proper points in the unit. The diode filter shown in Figure 1 utilizes the distributed capacity of the unit and does not require the addition of separate capacitors. A high dielectric constant base plate is used. The units are again cured at temperatures in excess of 350 degrees to set the protective coating.

The plates are then immersed in a solder bath to tin the leads.

Figure 3. Construction Details of a Printed Coupling Circuit.

The wires which will extend outside the unit to attach to the external circuits, are then added. The ends of the wires are passed through the holes in the base plate and bent over on the reverse side, or are held by special jigs. This holds the wires in place until the soldering operation is completed. A whole tray of the units are then immersed into a hot wax bath at temperatures above the melting point of solder. In this manner a mass soldering operation is performed. Note that the unit at (C) of Figure 1 has completed the soldering operation.

The final process is that of adding the phenolic coating. Its only purpose is for the protection of the unit. In applications where space is extremely important, such as in the hearing aid, the coating may not be used. For commercial applications in radio and TV, however, the coating is added to strengthen the units and prevent damage caused by handling.

The final step is that of testing the completed unit. In the final test, the unit is tested as a complete circuit rather than as several components. Thus, proper operation is assured since the complete circuit operates properly within prescribed limits.

Types of Coupling Circuits

The design of the various coupling plates is an interesting process. After selecting a circuit which is to be reproduced by a printed circuit, the circuit is wired using standard components. Tests are then made to determine the overall function of the circuit. The printed circuit is then designed so that it performs this function, although the printed circuit may or may not appear to have the same number of com-

Figure 4. Schematic of Coupling Circuit Shown in Figure 3.
ponents as used in the original circuit. For instance, the distributed capacity of the printed circuit may be utilized to perform the function of bypass capacitors used in the original circuit. Such technique is illustrated in the construction of the coupling plate shown in Figure 3. A schematic of the circuit is shown in Figure 4.

This circuit is designed to operate as a coupling circuit between a triode audio amplifier and an audio output stage. In the conventional circuit two resistors and two capacitors are used to perform this function. Three of these components can actually be seen in the printed circuit of Figure 3. Note that the front and back side of this particular plate are identical. This occurs in this particular unit since the input and output circuits are identical. The large silver plate in the center of the unit constitutes one of the plates of the capacitor C1. Due to high dielectric constant of the base material of this coupling plate, a capacitance of 5000 mmf . exists between the two plates. The dark strips on either side of the plates are the resistors. These appear to be the only elements incorporated, however, the capacitance shown as C2 and C3 in Figure 4 is made up of the distributed capacitance in the circuit.

Another audio coupling plate that is used quite frequently is shown in Figure 5. This unit is similar to that previously described except that it incorporates those components required for the input of the triode audio stage. Figure 6 shows the circuitry of this coupling plate as employed in a typical $\mathrm{AC}-\mathrm{DC}$ receiver. That portion within the dotted lines represents the circuitry within the printed circuit. Only seven leads need be connected to complete the wiring.

The photo in Figure 7 shows a partial view of a chassis incorporating this printed coupling circuit. Note the apparent absence of components usually as sociated with this circuit.

The most popular application of the printed circuit in television is that of the integrator plate. Here the uniformity in electrical characteristics of the printed circuit is put to good use. The schematic of Figure 8 is a popular type integrator circuit used by many television manufacturers. The input to this

Figure 5. Construction Details of an Audio Coupling Circuit.

Figure 6. Partial Schematic Showing Incorporation of Printed Coupling Circuit.
circuit is the composite sync signal. The values of the various components are selected to produce the desired signal at the output of the circuit. For example, the waveform at Figure 9A shows the composite sync signal which is fed to the input of the integrator. Note the difference in width of the vertical pulses as compared to the horizontal and equalizing pulses. It is this difference in width which is the bas is of operation of the integrator network. As can be seen in Figure 9 B , which is the output of the integrator network, a charge is built up at the time of the vertical sync pulses. It is this pulse which is used to trigger the vertical oscillator to provide vertical synchronization. The photo of this waveform was taken with the vertical oscillator removed, to show more clearly the action of the integrator network on the sync signal. With the oscillator operating, a large negative spike is present just following the vertical sync signal.

Examination of this sync signal with the oscillator removed is often helpful in servicing a receiver having improper vertical synchronization. The large

Figure 7. Coupling Circuit Wired Into Small Radio.

F 0 R GREATEST TV PICTURE Quality AMPHENOB -HENETV ANTENNAS

Por	Malerial	Yield Sirangih	Sist	
		pri	o.d.	Wall
Mant (eolv.)	46" Thinwall Sleal Conduit	32.000	0.922*	.040
lorga Folded Oipole	35 thmal	19.000	500'	.04\%
Small Folded Dipole	3 s \% H A Al .	19.000	375 ${ }^{\circ}$.04"
Renecror	$35 \mathrm{~h} \boldsymbol{\mathrm { H } \times \mathrm { Al } \text { . }}$	19.000	500\%	.046"
Crossarm	35 nmal .	26,000	175"	.065"
Center suppert \& Conting	Al. Alloy 45.000 pri tensile sile ength			

EXCELLENT RADIATION PATTERNS
These are the radiation patterns of the AMPHENOL Inline antenna at 58 mc ., 66 mc ., and 88 mc ., in the 10 w band, and $174 \mathrm{mc} ., 194 \mathrm{mc}$., and 215 mc . in the high band. Notice the uniformity of these lobes at all trequencies. The lack of lobes off the sides and negligible ones off the back maintains high front-to-back and front-to-side ratios necessary for the rejection of various interferences. The

presence of a single forward lobe is usually a very desirable feature, especially when it is wide enough to provide adequate interception area for some differences in transmitter location, changes in the wave front's direction of travel, or physical movement of the antenna in high winds. Furthermore, it is not too critical of orientation. It is necessary only to aim it and forget it

HIGHER GAIN

These gain curves of the AMPHENOL Inline antenna represent the intercepted voltage of the AMPHENOL Inline Antenna as plotted against the intercepted voltage of a reference folded dipole cut to the frequency being compared. There is no channel in either the low band or high band where there is more than a three decible change within the channel that can cause picture modulation or "fuzziness." Gain of the AMPHENOL Inline antenna is quite flat over all channels.

You will tind more gain designed into the high band because of greater need for it, due to higher losses at these frequencies. Also, notice the drop-off on channel six. This is at the edge of the FM band and is subject to FM inter. ference, so the Inline's gain is purposely held down at that frequency.
The excellent broadband character istics, impedance match, single forward lobe radiation patterns on all channels. maximum gain, lightning protection, and superior mechanical features of the AMPHENOL Inline Antenna make it the antenna for greatest TV picture quality!

for All the factors determining BETTER TV PICTURE QUALITY

Write for this book containing the characteristics and lest performance dato of various types of antennas.

AMERICAN PHENOLIC CORPORATION

Figure 8. Typical Integrator Network.
pulse fed from the vertical oscillator may mask the vertical pulse so that it can hardly be seen. With the oscillator removed, the signal should resemble that of Figure 9A and 9B.

Considerable attenuation is experienced in the integrator network. For example, the waveform at Figure 9A has an amplitude of 50 volts. At Figure 9B the waveform is approximately 9 volts. This is normal and is not to be interpreted as a defective integrator network.

In the design of previously mentioned printed circuits, it was possible to point out many of the resistive and capacitive elements corresponding to the components in the conventional circuit. Such is not the case of the integrator plate in Figure 10, which is shown during various stages of manufacture. At (A) and (B) of Figure 10 are shown the front and back sides of the base plate. (C) shows the back side of the plate after a large silver plate has been added. This plate is connected to ground in the integrator circuit. The front side of the plate is shown at (D) after two small plates have been added. These represent the input and output terminals of the circuit. (E) and (F) show the front and back sides of the unit after the resistive element has been added. Note that a resistive element is used only on the front side. In the conventional circuit employing standard components, three resistors are used. In the printed circuit shown in Figure 10, however, the technique of designing the circuit to perform the desired function without the use of individual components is used. By referring again to Figure 10 F it can be seen that the resistive element

Figure 9. (A) Input to Integrator Network. (B) Output of Integrator Network.

Figure 10. Construction of a Printed Circuit Vertical Integrator.
covers a large area of the plate. With this element directly opposite the ground plate on the reverse side, considerable distributed capacitiance exists between the resistive element and ground. This, in effect, is an infinite number of resistors and capacitors arranged in a Jadder network as shown in Figure 11A. This network provides even better integrator action than the conventional circuit shown in Figure 8 since an infinite number of integrating steps take place instead of only t wo or three. Schematically the integrator plate may be shown as in Figure 11B.

Figures 10 G and 10 H show the front and back sides of the plate after the wires have been added. This completes the manufacturing process except for the addition of the protective coating.

So far our discussion has been about units employing high dielectric bases. In units where the distributed capacity must be held to a minimum, separate capacitors are attached to the base plate such as shown in Figure 12A. This particular unit is a vertical integrator plate, the schematic of which is shown in Figure 13. Note the similarity of this circuit with

Figure 11. (A) Ladder Type Integrator Employing an Infinite Number of C apacitors and Resistors. (B) Simplified Schematic of the Circuit of (A).

the key to

 better television

 better television}

Unlike most components in the TV sel, the shortcomings of the picture tube cannot be made up through adjustments of the associated circuitry.

The end result, the picture, sells the set.
Because they know they can depend upon
the consistently high quality, more and still more set manufacturers are specifying Du Mont Teletrons.

There is nothing finer.
So insure peak performance by specifying Du Mont Telelrons. Technical data on the many sizes and types, sent on request.

CATHODE-RAY TUBE DIVISION
ALLEN B. DU MONT LABORATORIES, INC., CLIFTON, N. J.

[^1]

Figure 12. Construction Details of an Integrator Plate Employing Separate Capacitors.
that shown in Figure 8, the difference being the addition of the differentiator network (C1 and R1) at the input of the network.

The base plate of this unit serves only as a base to which the resistors and wiring are screened. The four capacitors shown (C1 through C4) are separate ceramic capacitors, each employing a base of correct dielectric constant and plates of proper size to produce the desired capacitance. These capacitors are attached to the base plate by sweat soldering them to the previously tinned areas. The capacitors are held in place during this soldering process by metal jigs. Soldering is accomplished by immersing the plates and jigs into a hot wax bath. After the jigs are removed and cooling is completed, the final process of adding the protective coating is all that remains. Figure 12B shows the completed unit.

Replacement of the Printed Circuit

In the event that a printed circuit need be replaced, it should be replaced with a similar unit. In this way the characteristics of the overall circuit will not be changed. Any attempt to replace the printed circuit with several standard components usually results in inferior operation of the circuit. This may be due to the fact that the distributed capacity of the circuit is changed or it may be that the electrical characteristics of the printed cannot be duplicated using standard components.

Figure 13. Schematic of Unit Shown in Figure 12.

Figure 14. Schematic of Special Audio Compensating Printed Circuit.

This is particularly true in the case of special compensating circuits such as that shown in Figure 14. This unit was designed to act as an audio compensating network through the use of $\mathrm{R}-\mathrm{C}$ and feedback networks. Note particularly the low value of C2 (20 mmf .). Any attempt to replace this unit with standard components would probably destroy the overall operation of the circuit. Several terminal lugs would be required and since they were not provided for in the original design of the chassis, the components would need be spread over a larger area on the chassis. The distributed capacity of the new wiring would alter the electrical characteristics of the circuit and impair its operation. Note that although there arefour capacitors and six resistors employed in the unit, only six leads are required to make all the necessary connections.

The printed circuit is rugged. It is sealed against moisture to assure proper operation through out its life. It can withstand considerable abuse in handling. Actually about the only damage that can be done is the breaking of leads which, of course, can happen to any component. One of the most important features of the printed circuit, as far as replacement is concerned, is the fact that it can withstand considable heat without damage during the soldering operation. This is not the case with standard components since excessive heat can damage both resistors and capacitors. Even accidental contact with the side of a soldering iron results in no damage to the printed circuit.

There is a natural tendency to look with disfavor at the use of the printed circuit as far as replacement purposes is concerned. This is due to the fact that in some cases, particularly with units having seven or more leads, it seems that the unsoldering and resoldering of so many leads requires a greater amount of time than would be required to replace only one component. This is usually more than offset, however, by the fact that oftentimes it is necessary to remove several leads in the conventionally wired circuit before that defective component canbe located. If a check of the input and output signal at the printed circuit indicates improper action, the unit can be replaced without further checking.

More and more manufacturers are using printed circuits as original equipment in their receivers. The technique has already been extended to the construction of coils in IF transformers, and for the coils in television tuners. Only time will unveil the many possible uses of the printed circuit. One thing is practically assured however, the printed circuit, having proved itself as part of the electronic industry, will enjoy even greater usage in the future.

Only complete line of TV replacements.

BURTOM EROWME ADVERTISINC

"COSINE" YOKES
Complete with leads \& network.

MATCHED FOR DIRECT DRIVE

MERIT . . . HQ for PRACTICAL TV Service Aids

- MERIT'S 1952 Catalog No. 5211 with new MERIT IF-RF Coils.
Other MERIT service aids:
- TV Repl Guide No. 404, 3500 models \& chassis.
- Cross Ref Data, IF-RF Coils, Form No. 14. See your Jobber or write: Merit Coil and Transformer Corp., 4425 Clark Street, Chicago 40 .

These three MERIT extras help you: Exclusive: Tapemarked with specs and hook-up data. Full technical data packed with every item. Listed in Howard Sams Photofacts.
*Merit is meeting the TV improvement, replace. ment and conversion demand with a line as complete as our advance information warrants!

PART II

The following is a continuation of TV Model Identification, the first part of which appeared in PF INDEX and Technical Digest No. 34, for September-October, 1952.

PHILCO

MODEL NUMBER: The model number is found on a sticker along with the tube layout chart on the inside wall of the cabinet. The first two digits denote the year of production, the letter "T" (not used prior to 1950) signifies television, and the next two digits show the series.

CHASSIS NUMBER: The chassis are identified by ink stamping the RF unit with two digits, such as 44 , and the power unit with a letter followed by a number, such as $D-4$ or $J-1$. These numbers may be found either on the rear apron or on the front apron of the chassis of each respective unit.

RUN NUMBER: Major changes are identified by code numbers found either ink-stamped on the rear of the chassis or printed on the label with the model number. The code begins with 121. However, not all code 121 sets may be so marked. If no code number is shown, the set may be assumed to be code 121.

The run number represents minor changes in the chassis and is ink-stamped on the apron of each chassis. Two methods have been used in showing this number. It may appear along with a numerical
series, of which the last two digits represent the run number, or it may appear preceded by the word "Run". For example, if the series is 3309114002 the chassis is run number 2. When the receiver is of the two-unit type each unit is stamped with its own individual run number.

SERIAL NUMBER: The serial number is printed on a sticker which is glued to the rear chassis apron of the power unit. It is identified by a series of numbers preceded by a letter.

RCA VICTOR

MODEL NUMBER: A number of methods have been used to designate the model. These methods are shown by giving the breakdown of a model number that appears in a particular category. In Model 630TS the number 6 signifies the year 1946, the number 30 is the number of tubes, including the picture tube, and T is for television. In Model $9 \mathrm{~T} 125,9$ is for the year 1949, T is for television, and 25 is for the number of tubes, including the picture tube. In Model TC164, the T is for television, and the 16 is for the picture tube size. In Model 6T54, the 6 signifies a 16 -inch picture tube and the T signifies television. In the late models, such as 21T176, the 21 is the size of the picture tube and the T is for television. When a letter B is shown following the model number of a 17 -inch set, it signifies electrostatic focus is being used. Any other number or letter is a further description of the particular model.

These model numbers are printed on the tube layout sticker on the inside wall of the cabinet or may be found on a sticker on the rear apron of the chassis.

NO!the most expensive sets don't always work better in the fringe areas,

BUT...

ANY television receiver equipped with a

TARZIAN TUNER

will do the best job of pulling in distant stations

It's no wonder that manufacturers of many of the better known TV sets on the market today depend upon the trouble-free TARZIAN TUNER for the excellent performance of their sets.
No other commercial tuning unit possesses so many of the desirable features found only in the TARZIAN TUNER. For unexcelled selectivity . . . stability . . . and receptionespecially in fringe areas-there is no better tuner than the

TARZIAN TUNER

The sensible Tarzian approach to UHF-a full band, all station tuner-is a typical engineering example of keeping up with-or rather-one step ahead of-developments in the ever changing industry.

SARKES TARZIAN, Inc., Tuner Division, Bloomingłon, Indiana

Tarzian Tuners and Tarzian Picture Tubes are available for the growing replacement market. Write for complete information.

RCA Victor (Continued)
CHASSIS NUMBER: The chassis numbers are found ink-stamped on the rear apron of the chassis. The number consists of three letters, such as KCS, followed by a number and, in some instances, another letter.

RUN NUMBER: No run numbers are employed.

SERIAL NUMBER: These numbers are found printed on a sticker and placed on the rear apron of the chassis.

SPARTON

MODEL NUMBER: No definite pattern is used in assigning model numbers, other than the fact that the first two digits signify in what year the set was manufactured. This number is found on a sticker placed on the back of the safety cover of the cabinet.

CHASSIS NUMBER: This number consists of a series of digits and letters in such a way as to show the characteristics of the set. For purpose of reference the breakdown of the 26 SD 172 chass is is as follows: The first two digits (26) indicate the number of tubes being employed in the main chassis of the receiver. In this particular set this total number includes the picture tube. However, in some earlier sets the number of tubes designation did not include the picture tube. The first letter (S) indicates a rectangular picture tube is employed. The letter T is the designation when a round picture tube is used. The second letter (D) indicates a deluxe type chassis. The two digits 17 indicate picture tube size while the laṣt digit indicates the year of production.

This number is found on a sticker placed on the rear apron of the chassis.

RUN NUMBER: No run number system is being employed.

SERIAL NUMBER: At one time the serial number was stenciled into the rear apron of the chassis, but on present sets it is embossed on a metal plate and is riveted to the rear apron of the chassis.

MISC. MARKINGS: If, at any time, other inkstamped identifications a re present on the chassis they are for use in the production of the set and have no value to the service technician.

STEWART-WARNER

MODEL NUMBER: The model number is inkstamped on the left end of the rear chassis apron and printed on a combination name label and tube layout chart which is affixed to an inner wall of the cabinet.

CHASSIS NUMBER: No chassis number is employed to identify the set.

RUN NUMBER: The run number is shown by a code letter which is rubber stamped on the rear apron of the chassis. It is identified by the word "Series". The initial production receivers do not have this series coding. When the first circuit change is made the chassis is stamped 'Series A". The second circuit change would be designated " B ", etc. If both the first and second circuit changes were incorporated in one chassis it would be stamped "Series AB". Cnly the circuit changes that are designated by a letter are incorporated in the receiver.

SERIAL NUMBER: The serial numbers are metal stamped into the rear apron of the chassis.

STROMBERG-CARLSON

MODEL NUMBER: The model number is ink-stamped in the middle of the rear chassis apron. They are of the type 317,321 , and 324 , with the last two digits indicating the picture tube size. Any letters appearing after the digits are a description of the type of cabinet.

CHASSIS NUMBER: The use of a chassis number is not employed.

RUN NUMBER: Run numbers are not being used. However, the date code that is ink-stamped on

New CBS-HYTRON Germanium Diodes Guaranteed Moisture-Proof!

WHY CBS-HYTRON GERMANIUM DIODES ARE BETTER RECTIFIERS

1. MOISTURE-PROOF . . . eliminates humidity and contamination problems
2. SELF-HEALING . . . self-recuperating from temporary overloads
3. SUBMINIATURIZED . . . only $1 / 2$ inch long, $1 / 4$ inch in diameter
4. SOLDERED WAFER . . . omission of plating eliminates flaking
5. LOW SHUNT CAPACITY . . . $0.8 \mu \mu \mathrm{fd}$ average
6. SELF-INSULATING CASE . . . mounts as easily as a resistor
7. EXCEPTIONAL LIFE . . . 10,000 hours minimum under rated conditions
8. NO FILAMENTS . . . low drain, no hum

Vital germanium wafer in a CBS-Hytron diode is guaranteed moisture-proof. Sealed against deadly moisture . . . fumes . . . and contamination, a CBSHytron diode keeps moisture where it belongs . . . out! First, by a chemically and electrically inert impregnating wax. Second, by a glass-filled phenolic case. With moisture-proof CBS-Hytron germanium diodes, you can be sure of maximum trouble-free life.
Superior techniques also permit CBS-Hytron to omit plating of the germanium wafer. Soldering is directly to the base. Thus flaking is eliminated and quality improved. Universal design of CBS-Hytron diodes follows Joint Army-Navy specifications. "Clip-in" feature gives you versatility, ruggedness, and electrical stability. Flexible pigtails of copper-clad steel welded into sturdy nickel pins also insure you against damage by soldering heat.
Check the eight important-to-you reasons why CBS-Hytron moisture-proof germanium diodes are better rectifiers. Send today for complete data and interchangeability sheets. Specify CBS-Hytron guaranteed moisture-proof

UHF

A description of circuits and equipment for Ultra High Frequency reception.

by MERLE E. CHANEY

PART IV

Arvin All-Channel Tuning System

Inclusion of UHF as an integral part of a television receiver, is accomplished by Arvin Industries, Inc., through the use of individual VHF and UHF tuning units. To facilitate and simplify operation, these tuners are ganged together by a pulley arrangement. This provides tuning both the VHF and UHF bands with common front panel controls. The VHF and UHF units are shown in Figure 1, installed in an Arvin television receiver.

The double conversion system is employed in UHF position to provide a 41 mc IF signal. The UHF tuner, continuously tuneable between channels 14 and 83 , provides a 127 mc signal to the VHF unit. To accept this frequency, the VHF tuner shown in Figure 2, is designed with an additional switch position marked "UHF"' between channels 6 and 7. In switch position "UHF" of the switch, t he 127 mc of the UHF unit is fed to the VHF tuner where the second conver sion of the signal provides a 41 mc signal to the video IF section of the receiver. A bottom view of the UHF tuner is shown in Figure 3.

The manner of indication of the desired channel is a feature of the Arvin system. Since a switch type tuner is used for VHF reception, the desired VHF channels are switched in directly, with tuning touched up with the fine tuning control. When the selector switch is turned to " UHF" position, the knob is then in a vertical position with a window visible through the top of the knob. The window holds a prism lens through which UHF channel numbers are viewed. As the tuning knob is rotated (same knob as fine tuning)

Figure 1. VHF and UHF Tuning Units Employed in Arvin TV Receivers.

Figure 2. Arvin VHF Tuning Unit.
the desired UHF channel may be readily selected. An illustration of the tuning knobs with channel indications is shown in Figure 4. Rapid UHF tuning is achieved by a coarse tuning provision. When the UHF tuning knob is pressed in slightly, the drive ratio is reduced for fast tuning. With the pressure released, the drive ratio is increased for sharp tuning.

The UHFunit is turned off with the exception of filaments during reception on any VHF channel. Just as soon as the selector switch is turned to "UHF" position, the following sequences occur.

1. B+ power is applied to the UHF tuner unit.
2. The UHF output is applied to the input grid of V 1 .
3. The VHF antenna input circuit is grounded.

Figure 3. Bottom View of UHF Unit.

offers you a lot more switch in a lot smaller package

Centralab's new miniature switches give you more flexibility :. . provide more positions per pole, even with smaller size. For example:
1 pole - 12 active positions per section (former 1 -pole switch had only 11 positions). 2 poles -6 active positions per section (former 2 -pole switch had only 5 positions).
These switches feature one-piece shaft construction, for more accurate indexing. They are available with one to six sections per shaft, one to 18 poles per switch. Sections are Steatite in either shorting or non-shorting arrangements. Adjustable stop allows selection of positions or continuous rotation. More, these switches are guaranteed to stand a minimum of 50 hours of salt-spray tests. No other units on the market as stock items will do as well.

Separate Steatite sections, index assemblies, hardware and accessories also available.

For your miniature or mobile rigs . . . insist on Centralab switches. Centralab offers you the exact switch you want, when you need it, always available from one source . . . and at attractive low prices!
The Centralab miniature switch line is
only one of the more than 470 new items
listed in Centralab's new Catalog 28. Get
your copy of this 32-page index to the
latest developments in the fast changing
electronics field. See your distributor or
write direct.

Figure 4. Control Knobs with Prism Mirror For Viewing UHF Channel Markings.
4. The VHF antenna circuit is isolated from the input of V1 and the UHF circuit.
5. The VHF input circuits are switched out and the matching transformer L10 applies the 127 mc UHF unit output to the grid circuit of V1.

An examination of the schematic of Figure 5A, shows that the UHF tuning unit contains a 3 element concentric line tuning element. Two sections form the preselector circuits, with the third acting as the tuned element in the UHF oscillator. A crystal mixer provides the intermediate frequency for application to the cascode amplifier stage. The output transformer is tuned to a frequency of 127 megacycles.

With the exception of the extra switch position to accommodate the UHF tuner output the VHF tuner section oper ates identically to usual VHF tuners. The schematic of the VHF tuner appears in Figure 5B.

The apparent advantages of the system employed by Arvin are:

1. Incorporation of UHF tuning provisions in the receiver.
2. Full 82 channel coverage.
3. Common tuning controls for both VHF and UHF.
4. Simplicity of operation.
5. Unique system of UHF channel indication.

UHF Mallory Converter Model TV-101

The Model TV-101 UHF converter developed by P. R. Mallory \& Company, Inc. is designed to operate in conjunction with any standard television receiver. A cabinet view of this unit is shown in Figure 6. Two front panel controls are employed. On the left, the function switch uses three positions: OFF, VHF, and UHF. The tuning control at the right operates the Mallory Inductuner * and a dial pointer on a slide rule type dial designating the channels.
*Registered Trademark of P. R. Mallory \& Co., Inc.

Figure 5A. Arvin UHF Tuning Unit.

3 PRIMARY TERMINALS
Tapped primary takes care of 250- to 350 volt "B" supplies, and accommodates any of the commonly used horizontal output tubes.

27 SECONDARY TERMINALS

Permits matching of any horizontal output cube to any yoke having horizontal-coil inductances from 8 to 30 MH . Accommodates all commonly used damper tubes
"UNIVERSAL" TYPE MOUNTING BRACKET

Multiple slots and mounting holes permit transformer to be easily installed either vertically or horizontally in most TV chasses.

EXTRA-LONG FILAMENT LEADS

At last . . . leads long enough to reach filament terminals of hv rectifier in any set! No more splicing. Special insulation avoids possibility of voltage breakdown.

ARC SHIELD

Forget irksome corona problems. This arc shield reduces corona discharge to a level where it is no longer troublesome.

CUSHION-MOUNTED CORE

No more "singing" transformers! Ferrite core is cushioned to reduce $15-\mathrm{kc}$ acoustic radiation.

EXTRA PLATE CLIPS

Four plate clips are supplied to fit all commonly used driver and hy rectifier tubes such as 1B3-GT,1X2A, 6BG6-G, 6BQ6-GT, and 6CD6.G.

ONLY 5

Nown.

 the new RCA-231T1 makes replacement jobs a snapNo more "patch" jobs... no more wasted time. Now you can simplify your stocking and servicing problems with the new RCA-231T1 "universal" transformer for TV receivers using transformers having isolated secondary windings for yoke connections. And it's excellent for substitution checks on question-
able horizontal output and HV transformers.

Mechanically and electrically ... the new RCA-231T1 meets practically every mounting and circuit requirement. Moreover, it provides excellent voltage regulation, ample width, and good deflection linearity. Useful over a high-voltage range
from 10 to 15 KV , and designed for all deflection angles from 50° to 66°. Uses ferrite core for highest efficiency.

Save yourself time, money, and embarrassing callbacks . . . order a supply of 231T1's from your RCA Parts Distributor today . .. and be ready for any emergency.

RADIO CORPORATION OF AMERICA ELECTRONIC COMPONENTS

Figure 5B. Arvin VHF Tuning Unit With 127 mc IF Amplifier Position.

The only lightning arrester with the strain relief ups is
mamifaclured by JFI). A patent is its proof? The twin-lead will bend only at ε point separate from sour comet -
therefore, your lwin-lead cannot leak away.
Only the exchsive JFI) strain relief lip prevents the
contact washers used in all arresters from ripping your lead-in apart, strand by strand until the wire is torn through and
the picture on exiur screen obliterated. Write for Form 81.

FOR RIBBON TWIN-LEAD

No. AT 105' ("Little (giant" with hardware for walt or window sit mounting) List $\$ 1.25$

Vo, 4 T10:5S ("Little (Bant" with lL approved stampers steal strap for pipe mounting List \$1.5!
Fin. . $1 T 102$ (et Jumbo" with UL approved stainless sited strap for L'niversat (lounting) List 52.25

FOR TUBULAR TWIN-LEAD
Vo. ATIA3 ("Fum bor with UL, approved stainless step strap for llaiversal (Mounting) List $\$ 2.25$

JED MFG. CO.

Genoxity demy

II orth's Largest Manufaryiurm of $T 1$ Antrums med Acressmice

The serener is in the lips

the secret is

in the lips
"Little (;aam" Lighting Arrester U.S. Pat. No. I). $\mathrm{I}_{(0,0)}$

Figure 6. Mallory UHF Converter Model TV-101.
To facilitate the installation of the converter, the unit comes equipped with a built-in UHF antenna. The antenna is formed of wire large enough to be self supported when connected to the UHF antenna input terminal strip. In some instances, the built-in antenna will provide sufficient signal strength for correct operation of the converter unit. Due to obstructions such as trees, buildings, a nd in low areas it may be necessary to employ an external UHF antenna. This can be determined at the time of installation.

In addition to the built-in antenna, a length of 300 ohm twin lead is provided for connecting the converter output to the television receiver's antenna input terminals. The connecting lead length was chosen to provide maximum efficiency and should not be shortened or lengthened.

With the converter installed and ready for operation, the converter unit is turned to UHF position and the television receiver is tuned to either channel 5 or 6. (If a strong VHF signal is normally received on one of these channels then the television receiver tuner should be tuned to the other channel). Tuning in the UHF station is accomplished with the UHF con-

Figure 7. Top Chassis View of Mallory Converter. Early Version. (Before Serial \#200,000).

Figure B. Bottom Chassis View of Mallory UHF Converter. Early Version. (Before Serial \#200,000).
verter tuning control. A top chassis view of the converter is shown in Figure 7.

A bottom chassis view of the converter unit in Figure 8 shows the critical lead dress and wiring arrangement. For best operation, disturbance of the lead dress should be avoided.

An examination of the converter circuits shows it to contain a three element tuning unit of the concentric line type. See Figure 9. Items L1 and L2 are the variable tuning inductors forming a double tuned preselector circuit while the third inductor L3 is used in the oscillator circuit. The preselector circuit is designed for maximum selectively consistent with broad bandpass requirements. The local UHF oscillator, employing a 6AF4 tube, operates below the frequency of the incoming signal to provide the correct relationship between video and sound frequencies applied to the VHF tuner in the television receiver. Note in the schematic of Figure 9 that the oscillator signal is takenf rom the filament of the oscillator tube. In this instance the interelectrode capacity existing between the cathode and filament (about 2.7 mmf .) forms the coupling device for the signal. This method achieves a minimum of loading and interaction between the mixer and oscillator circuits, thus permitting more stable oscillator performance.

Signals from the UHF oscillator and from the preselector circuits are fed to the crystal mixer type 1N72, resulting in a new frequency at the mixer output. This intermediate frequency is coupled by the input transformer L14 to one triode section of a type 6 BK 7 or 5BQ7 tube connected as a cascode amplifier. The input triode section is grid driven and employs inductive feedback for neutralization. The output triode section is a cathode-fed, grounded-gridamplifier.

The output circuit of the cascode amplifier stage is designed for either a 300 ohm or 72 ohm impedance load and is connected through the function switch to the UHF output terminals.

Note that this converter is equipped with an auxiliary AC output receptacle. The receptacle is located on the back of the chassis and is designed to

What Rauland means by "Perfection Through Research"

Rauland is one of the few companies devoting so much top engineering talent full time to picture tube improvement and perfection.

The result of this painstaking research has been to give you many more picture tube advancements since the war than has any other manufacturer...
more dependability and faster installation in the field for service dealers and service men . . . and greater assurance of customer satisfaction when you install Rauland replacement tubes.

That's why more and more jobbers, dealers and service men are standardizing on Rauland replacement tubes.

All-electronic tri-color tube in electronic receiver system (left) in comparison with mechanical system (right).

Careful study of the formation of thin metallic films in a vacuum . . . basis for the aluminizing of tubes.

Rubber model for studying electron optical designing-basis for Rauland's exclusive Indicator Ion Trap.

Inspection and checking of perforations $.0075^{\prime \prime}$ in diameter in masks of tri-color picture tubes.

Examination with polarimeter permits careful control of strains for superior glass-to-metal sealing.

Alignment of the screen and parallax mask of tri-color tube containing approximately a million fluorescent dots.

Rauland large-screen projectors using three different optical systems, all of which give theater-size pictures.

A physicist using a Rauland-developed radiation meter in checking X-ray radiations from cathode ray apparatus.

THE RAULAND CORPORATION

Figure 9. Schematic of Mallory Converter Using Type 6BK7 IF Amplifier Tube.
provide power to the television receiver. When using this outlet, the receiver's on/off switch is left in on position, and power to both units is controlled by the converter unit function switch. If desired, the receiver's power cord may be inserted in a wall socket, allowing power to both units to be controlled individually.

The function switch on the converter performs the following operations:

1. OFF position. Power to the converter and to the AC receptacle is off.
2. VHF position. Power to the converter and to the AC receptacle is turned on. The converter filaments are on but $B+$ is removed from the plate circuits. Also, the VHF antenna is connected through the switching arrangement to the converter output terminals and to the TV receiver for normal VHF reception.
3. UHF position. In this position, B+ is supplied to the converter tubes, the VHF antenna is grounded, and the converter output signal is connected

- Please turn to page 91 . .

Figure 10. Schematic of Mallory Converter Using Type 6CB6 IF Amplifier Tube.

...These 5 Matched "Precision" Instruments provide a Complete MODERN SERVICE LABORATORY for TV-FM-AM at only moderate cost.

\star Build Your Service-
Sales future on a Firm
Foundation with

N. Y.

Net Price: $\$ 173.70$
 Net Price: $\$ 135.75$

Narraw and Wide Band Sweep for F.M. and

BUY PERFORMANCE - NOT SPECIFICATONS!-BUY "PRECISION" OTHER MATCHED COMBINATIONS
The instruments shown above illustrate one of many possible

 and basic, modern, efficient Laboratory at moderate cost. case $101 / 2 \times 12 \times$

SERIES E-200-C-Modern Multi-Band
for A.M., F.M., and TV alignment.
Exceptional Accuracy and Stability! 1000 pr .
 steel case $101 / 2 \times 12 \times 6$ ". Net Price: $\$ 73.25$ steel case $101 / 2 \times 12$
SERIES E-400 - Wide Range H.F.

The Value of

Waveform Analysis

by W. William hensler and glen e. slutz

Part IV

The television service technician in Figure 1 is confronted by a receiver having a defective horizontal sweep system. He has made his preliminary visual inspection of the set and has checked tubes by substitution. Now, having failed to find the trouble by using these methods, he is in the act of reaching for the oscilloscope leads. This is a wise move, and if we could follow it on to its conclusion we would likely observe him check the character of a few of the critical waveforms in the ailing horizontal system.

Horizontal sweep circuits in television receivers often develop troubles which are difficult to locate. Some idea of the waveforms to be expected at various points in each of the more commonly used systems can be a great help to the service technician. More than that, if the technician is able to analyze and interpret the significance of what he sees on his oscilloscope, he is even further ahead. The purpose of this discussion is to serve as a basis for achieving practical, working knowledge of the waveforms associated with various horizontal AFC (automatic frequency control) systems and sweep generators.

Checking the waveform at the grid of the horizontal output tube has the effect of splitting the horizontal sweep section of a TV receiver in half, as far as servicing is concerned. If a wave pattern similar to either of those shown in Figure 2 is obtained at the grid and a check with a voltage calibrator indicates a peak-to-peak amplitude in line with service literature specifications, the probability is that the system is operating normally ahead of the output tube and that the trouble exists somewhere in the defection output circuits. On the other hand, if a waveform with a distorted shape or insufficient

Figure 1. Seeking Help From an Oscilloscope.

Figure 2. Waveforms Typical of Those Found on the Control Grids of Horizontal Sweep Amplifiers.
amplitude is found on the grid of the output tube, the sweep generator and AFC circuits should be checked for defects. It might bear mention here that the amplitude of horizontal output grid voltage required for normal operation will vary with different receivers. A few sets operate with low drive voltages of about 50 volts peak-to-peak; others require saw-tooth voltages ranging in amplitude up as high as 140 volts peak-to-peak.

The frequency of the horizontal sweep generator can often be checked by examination of the picture tube image. If the frequency is below 15,750 cycles per second, the diagonal bars will slant downward to the left; if the sweep frequency is too high, the bars will slant downward to the right. In those instances where there is no image or the sweep frequency is far from its correct value, a rough determination of the frequency may be made by observing the waveform on the horizontal output grid by means of an oscilloscope and noting the approximate scope sweep frequency needed to synchronize this waveform. Sometimes synchronization cannot be attained. This is an indication that the horizontal sweep generator in the television receiver is "running wild"; in other words, the generator is not producing a periodically recurring alternation of voltage at its output. Under

Westinghouse

announces a great new division for full-scale manufacture of RELIATRON ${ }^{\sim}$ ELECTRONIC TUBES

To Produce and Market A Complete Line of Tubes
receiving . TELEVISION PICTURE • TRANSMITTING • INDUSTRIAL • SPECIAL PURPOSE

Westinghouse proudly announces a completely new division of the Westinghouse Electric Corporation-the electronic tube division, with headquarters at Elmira, New York.
This division is pledged to become the leader in research, development, manufacture and marketing of electronic tubes. To achieve this aim rapidly and surely, Westinghouse has built two of the most magnificent, modern electronic tube plants in the world at Elmira and Bath, New York.
OLD IN EXPERIENCE; NEW IN FACILITIES, EQUIPMENT, TECHNIQUES It has collected at these plants one of the greatest electronic tube engineering and production teams ever assembled. This experienced team was recruited from the most talented of Westinghouse's 100,000 employees and augmented by key experts from throughout the industry.

The Westinghouse Electric Corporation, too, is a veteran of wide electronic tube experience. To cite only a few instances:

- Westinghouse produced the first dry-battery operated vacuum tube in America-the WD-11.
\star Westinghouse developed and produced the first vacuum tubes utilizing an indirectly heated cathode, introducing ac radio operation.
* Westinghouse pioneered in high-powered transmitting tubes for use in both pulsed and CW radar applications. The famous Westinghouse Type WL-530 was in the Pearl Harbor radar set which gave the warning of the approach of Japanese planes in 1941. These tubes led the way to all subsequent radars.
Ł Basic development of the cathode ray television system was performed in Westinghouse Laboratories.

RELIATRON Tubes are backed by Westinghouse Reliability

Because of Westinghouse experience and the unlimited resources and facilities of its new Electronic Tube Division, it is now producing electronic tubes which are the finest ever made...Westinghouse RELIATRON Tubes.

TUBE RESEARCH AND DEVELOPMENT

Westinghouse tube leadership is based on the untiring efforts of its research staff. These men are now improving present tube types and developing new types for superior service and new applications, including UHF.

QUALITY CONTROL

RELIATRON Tube performance is assured by exacting quality control. Every step in the manufacture of RELIATRON Tubes-from raw materials to finished product-must meet standards which are the highest in the industry.

ENGINEERING AND SALES SERVICES

Whatever your tube problem, you will find Westinghouse electronic tube sales representatives and application engineers at your service. Sales and engineering offices are strategically located throughout the country to serve you.

ADVERTISING

Trade acceptance of Westinghouse RELIATRON Tubes will be aided by a nationwide advertising campaign second to none. Sales promotion programs for distributors and service dealers will be hard-hitting sales builders. Your product or service will profit from the fullest consumer acceptance.

DISTRIBUTORS, EQUIPMENT MANUFACTURERS, WRITE NOW

For complete information on the Westinghouse line of RELIATRON Receiving Tubes, Television Picture Tubes, and transmitting, industrial, and special purpose tubes, write or wire Westinghouse Electric Corporation, Dept. K-11, Elmita, New York. Or call your nearest Westinghouse Electronic Tube Division Sales office.

WESTINGHOUSE IN ELMIRA, NEW YORK

360,000 square feet of steel, glass and brick designed for one thingto house the most efficient electronic tube production in the world. Here are produced Westinghouse FELIATRON television picture tubes, transmitting tubes, industrial tubes, special purpose tubes-all of unsurpassed quality. Here, too, is located the headquarters of the Westinghouse Electronic Tube Division with sales, engineering and production management ready to extend a warm welcome to you.

WESTINGHOUSE IN BATH, NEW YORK

This Westinghouse Receiving Tube plant is another 220,000 square feet of modern production efficiency. It lies only a few miles from a major source of glass tube envelopes. It is served by all modern transportation media to assure prompt shipment of your requirements-only hours away from all principal markets. Here at Bath the most modern equipment is operated by the industry's leading craflsmen. From it are shipped the finest receiving tubes in the industry-Westinghouse RELIATRON Tubes.

WESTINGHOUSE ELECTRIC CORPORATION, ELMIRA, N. Y.
ET-95001

When It's A Fuse You Need...

WHY IT IS MORE PROFITABLE FOR YOU TO USE BUSS FUSES FOR SALES AND SERVICE

Millions of BUSS house fuses, industrial fuses and fuses for the automotive trade have firmly established the BUSS reputation for quality. This, plus their dependability, means sales easier to make and with never a "comeback".
And in service work when you install BUSS fuses and something goes wrong, you and your customer both know you can depend on the fuse fo clear the circuit.
Beware of "off-brand" fuses - they may blow when nothing is wrong, causing trouble and delay ... or they may not blow quick enough to protect. Why chance losing a customer's good will? Be safe - and be profit wise - furnish only BUSS fuses.

Bulletin SFB gives complete facts on BUSS SMALL DIMENSION fUSES
If you'd like a copy, just write...

BUSSMANN MFG. CO. University at Jefferson ST. LOUIS 7, MO. (Division MaGraw Eiectric Co.)

Figure 3. Photograph of CR Tube Image With Horizontal Oscillator Operating at Random Frequencies.
a condition like this the image on the picture tube, if there is one, might appear somewhat similar to the photograph in Figure 3.

Frequency difficulties such as mentioned above and the presence of distortion or insufficient amplitude in the waveform on the output tube grid all point toward the existence of trouble ahead of the horizontal sweep amplifier. The remainder of this discussion will be devoted to the treatment of this type of trouble as it might likely occur in each of the more popular horizontal AFC and sweep systems.

Phase Detector and Multivibrator -

The horizontal system which is comprised of a phase detector and a multivibrator sweep generator is being used a great deal in present-day TV receiv-
ers. A typical circuit of this type is shown in Figure 4. Certain points are indicated on the schematic and reference is made to the waveforms which are normally found at these points. Each waveform is reproduced in Figure 5 as it would be observed under normal operating conditions.

Waveform W1 in Figure 5 is the pulse which is fed back to the phase detector from the horizontal output transformer. In this case, the pulse happens to have jagged, multiple peaks, due possibly to certain transient, oscillatory conditions in the output section of the receiver. Quite often the pulse is a clean, single-peaked voltage surge. The presence of the jagged peaks, as seen in W1, does not necessarily indicate improper operation, however. An integrating resistance-capacitance combination (R2 and C1) changes the pulse to a saw-tooth wave, as illustrated by W2 in Figure 5. The saw-tooth may have a peak-to-peak voltage of from 10 to 25 volts.

A sync phase inverter supplies the horizontal sync pulse to the phase detector network. A positive sync pulse (W3 in Figure 5) is applied to the plate of one diode section and a negative pulse (W4 in Figure 5) is fed to the cathode of the other diode. These pulses are within a few volts of having equal amplitudes. If an unbalanced condition were to develop in the comparative amplitudes of these pulses, or if a leaky coupling capacitor were to admit a high DC potential to the phase detector circuit, one diode would conduct more than the other and the automatic control of the sweep frequency would be adversely affected. This condition is one to check for in a set with horizontal sweep trouble. The test may be made with a VTVM on the grid of the multivibrator control section (Pin 1 of the 6SN7 in Figure 4). The DC control voltage at this point should not exceed five volts plus or minus. At the same time there should be no appreciable AC voltage on this grid. Going back to waveforms W3 and W4 for a moment, notice the saw-tooth component in these figures. This phenomenon is produced by the differentiating action of the

Figure 4. Schematic of Typical Horizontal AFC System Using Phase Detector and Multivibrator.

...superlative "Direct Drive" and "Vertical Drive" cartridges reproduce all the recorded music on these wide-range highfidelity records.

These Shure "Direct Drive" and "Vertical Drive" Cartridges have been perfected to meet the greater requirements of high needle point compliance and fidelity demanded by the fine-groove recordings. The cartridges provide extended frequency response, high output, and high needle point compliance. They also feature the famous "Muted Stylus" and "Simple Mọunt" needles designed for longer record and needle life, faithful tracking and clear full tone qualities. These individually replaceable needles are easy to remove and insert.

Figure 5. Waveforms Observed in Phase Detector and Multivibrator Circuits of Figure 4. Peak-To-Peak Voltages are Indicated as They Were Found on the Particular Receiver Upon Which These Tests Were Taken. Considerable Variation Will be Found With Different Receivers. (Oscilloscope Sweep Rate is 7875 cps.$)$
coupling capacitors C3 and C4 which link the sync phase inverter with the phase detector stage. The same action might account in part for the slight difference in the peak-to-peak voltages of the positive and negative sync pulses.

The waveform W5 in Figure 5 is the typical pattern which may be found at the grid of the second triode section in a normally operating multivibrator with ringing coil. Absence of the sine wave component in this waveform would be an indication that the ringing coil (horizontal hold control in Figure 4) was not performing its normal function. The sharp positive pulse in waveform $W 5$ is not a sync pulse; it is the square wave output of the multivibrator. This fact is mentioned here because of the frequently held misconception regarding this pulse. The actual sync information goes no further than the phase detector in this AFC system.

Very often a horizontal multivibrator circuit will have a variable resistance in series with R11 in the second triode section. This serves as a horizontal hold control while the ringing coil becomes a 'horizontal frequency" adjustment. The waveforms are the same with either arrangement. Waveform ${ }^{\circ}$ W6 is the last one pictured in Figure 5. It has the characteristic saw-tooth shape which is desired for the horizontal driving voltage. This produces the square wave voltage across the output transformer which in turn results in a saw-tooth current through the deflection coils.

Synchroguide* AFC System -

Another widely used method of controlling the frequency of the horizontal sweep in TV receivers is
*Registered Trademark of Radio Corporation of America.

Figure 6. Schematic of Typical Horizontal or AFC System Using Synchroguide* or Pulse-Width Circuit.

The Winning COMBINATION for a perfect $T V$ picture!

Here's What You Get - ALL YOU NEED TO GET THE MOST OUT OF ANY TV SET!

* CDR Rotor, Model TR-11 \$44.95
* Thrust Bearing, Model TA-6. . . 4.95
* Radiart Booster, Model TVB-1 . 29.95
* Connecting Kit, Model TA-7 . . .

If Bought Separately . . . \$80.85

SPECIAL RETAIL

 COMBINATION PRICE...

Model RAC-4497. . .

Here's a rare opportunity to really get the most out of any TV setputting it to work at peak possible performance ... and at a real savings! We have combined these 4 Radiart units into one package and af real savings! The quality can't be beat... and the two cabinets form a handsome piece of furniture for any home. Will handle any antenna array... meter dial on remote control cabinet... and the booster improves picture quality beyond compare! ACT NOW!
the pulse-width system. Such a circuit is reproduced in Figure 6. Again, as with the phase detector and multivibrator circuit, certain points are shown at which waveforms may be observed with an oscilloscope. Each of these waveforms is reproduced in Figure 7 as it would probably be found with normal set operation.

W7 in Figure 7 shows the synchronizing pulse as it is obtained from the sync amplifier section of the receiver. It is a positive-going pulse which means that its application to the control grid of the first section of the 6SN7 tube would tend to increase conduction in the triode. W8 in Figure 7 is the negative pulse which is derived from the damper tube plate. This is a high amplitude pulse (approximately 1,000 volts) and necessitates the use of special equipment in conjunction with the oscilloscope in order to protect the latter. To obtain the waveform pictured, a capacitance voltage divider was employed; in this way the pulse voltage was reduced to a level that would not endanger the input circuits of the oscilloscope. W9 of Figure 7 shows the saw-tooth output of the horizontal sweep generator obtained from point " D " on the transformer, T1.

All of these three voltage waveforms (W7, W8, and W9) are coupled back to the grid of the first section of the 6SN7 tube. They combine to produce the characteristic waveform shown in W10 of Figure 7. Note the positive pip on the peak of the wave. The width of this pip varies as the frequency of the horizontal oscillator (second section of the 6SN7) tends to change. The positive pip controls the average conduction of the first section of the 6SN7. This in turn produces a change in the developed cathode voltage, part of which is coupled to the oscillator grid through R8 as a frequency-controlling voltage.

The voltage waveform on the oscillator grid is reproduced in W11 of Figure 7. The waveform on the
plate of the same tube (W12 in Figure 7) is very similar to that on the grid - both are indicative of blocking oscillator action. The damped oscillations which occur directly following the sharp pulse produced by tube conduction are due to transient oscillations set up in the untuned transformer winding between terminals " A " and " C ". The shunting resistance of R10 partially, but not wholly, damps this oscillatory tendency.

W13 shows the waveform at point "C" on the synchroguide transformer. This is the pattern which generally must be viewed in order to set the "horizontal phase" adjustment properly. The adjustment is made so that the broad and sharp peaks of the wave come at equal heights, and the receiver must be synchronized horizontally during this operation. Sometimes the application of the oscilloscope leads to the test point will throw the set out of synchronization. When this happens, the horizontal hold control will very often bring the picture back into synchronization. The phase adjustment may then be made, and it will hold good despite any necessary resetting of the horizontal hold control after removal of the scope leads.

W14 in Figure 7 may be observed at terminal " F " of the synchroguide transformer. This test point is extremely sensitive to loading by the input capacity of the scope leads; and consequently it may be necessary to use the cathode follower attachment which was described in detail in the January-February, 1952, issue of the PF INDEX and Technical Digest. The waveform W14 pictured in Figure 7 was secured with the use of the cathode follower attachment; and other instances may be encountered, particularly in horizontal sweep systems, where the attachment might be used to advantage.

- Please turn to page 101 *

Figure 7. Waveforms Observed in Synchroguide* Circuit of Figure 6. Peak-To-Peak Voltages are Indicated as They Were Found on the Particular Receiver Upon Which These Tests Were Taken. Considerable Variation Will be Found With Different Receivers. (Oscilloscope Sweep Rate is 7875 cps.)
*Registered Trademark of Radio Corporation of America.

Fast Fit for the Job at Hand . . .

START FAST . . FINISH FAST . . .

- Because of the wide and easy adaptability of Mallory Midgetrols, it's easy to stock - or get fast from your distributor-just what you need to do your job.
- Round tubular shaft designed and built for fast, easy and accurate cutting.
- Factory-tested AC switch may be attached instantly without disassembling control.
- Speedy adaptability to both split-knurl and flatted type knobs.

Every Mallory Midgetrol is packed with two shaft ends to make it easy for you to use either split-knurl or flatted type knobs. The Mallory Midgetrol line, in addition to round shaft standard controls, includes dual concentric controls that offer fast, easy assembly in five steps without special tools. Front and rear sections are factory assembled and inspected. AC switch attachment is easy.

In the Interest of... Quicker Servicing

by GLEN E. SLUTZ

Methods of Checking Interlace -

The television system which has been adopted in this country calls for a picture composed of 525 horizontal lines; and these lines are scanned or reproduced in two fields, each having 262-1/2 lines. The system demands that the traces which are scanned in one field interlace, or fall between, the lines of the other field. The transmitted television signal is such that it triggers the vertical sweep generator in the receiver in a manner which positions the lines accurately on the picture screen.

Poor interlace may be detected by close examination of the lines in the received image. Figure 1 shows the difference between good and poor interlace by means of two expanded views of a diagonal bar on a test pattern. Notice the stair-step effect produced by the poor interlace in Figure 1B. Also note how the lines seem to be wider apart and give the impression of a coarser picture in the poor interlace illustration than in the other.

A second method for checking interlace in a television receiver is by means of the horizontal lines which occur during the vertical retrace between fields. Up to 21 horizontal lines are blanked out during each vertical blanking interval. This makes a total of 42 lines per frame, Of these 42 lines a small number actually cross the visible picture (somewhere in the neighborhood of 6 to 8 lines).

On certain receivers, if the brightness control is advanced, these horizontal lines will appear as light diagonal traces slanting upwards to the right on the picture. Actually, the lines slant and are widely spaced due to the relatively high speed of vertical retrace compared to vertical scan. If interlace is good in the receiver under test, each line should appear evenly separated from its neighbor above and below. If on the other hand the receiver has poor interlace, the diagonal traces on the screen will "pair" together and often show signs of instability. Figure 2 shows photographs of a picture tube with the brightness high and the vertical retrace visible. In Figure 2A the interlace is as it should be; while in Figure 2B "pairing" has started to occur and interlace is poor.

Not all receivers will permit the use of this second method of checking interlace. Some receivers of recent design employ vertical retrace blanking circuits which completely cut off the electron beam in the picture tube during vertical retrace. However, on the sets which do not use this special circuit a certain amount of eyestrain may be avoided by
checking interlace with the wide-spaced lines that occur during vertical retrace.

A defect in the capacitors and resistors which make up the integrator network is a very likely cause for poor interlace in a TV receiver. If the horizontal sync pulses gain access to the vertical oscillator, the timing of the triggering action on the oscillator may be disrupted, thus bringing about faulty interlace in the picture. If the integrator net-

Figure 1. Expanded Partial Photograph of a Test Pattern Illustrating (A) Good Interlace and (B) Poor Interlace.

only URRD antennas assure you

The new "TROMBONE" and
"U-VEE" Antennas are the first

$\because \ddots_{\ddots} \ddots_{\ddots}$

to cover all channels

practical antennas

both UHF and VHF...
Fully proved . . . Thousands in use in UHF areas prove

Figure 2. Visible Vertical Retrace Lines Illustrating' (A) Good Interlace and (B) Poor Interlace.
work checks all right, the vertical oscillator itself and the sync amplifier should be investigated.

Removal of Tube Socket Rivets -
The rivets which secure tube sockets in most chassis occasionally present a removal problem. A method which has proved successful in numerous cases calls for the use of a band or electric drill and a set of small diameter drills. In short, the idea is to drill out one end of the rivet without damaging the chassis or associated parts.

The spread end of the rivet is the preferred end because it doesn't require center-punching to start the drill tip. However, the head of the rivet may be used if it is more accessible. Some type of support, such as a wood block or vise, can be employed to aid in exerting cutting pressure on the rivet. (See Figure 3.)

The drill size is selected slightly greater than the body diameter of the rivet. Any tubes or movable parts which might interfere with the drilling operation should be set aside. If the head of the rivet is chosen, it should be "started" with a center punch.

Figure 3. Removing a Rivet by Drilling.
During drilling, trouble may be experienced with the rivet spinning at the end of the drill. Applying the block against the opposite end of the rivet together with angling the attack of the drill bit as shown in Figure 3 will serve to alleviate this difficulty. When the drilling is performed at an angle, the direction of slant should be changed frequently so that the spread edges of the rivet are cut away evenly. Care should be taken not to go too far with the drill and risk enlarging the chassis hole. The rivet may be withdrawn as soon as the spread edges separate from the body oi the rivet.

A Preliminary Check for Cathode-Coupled Multivibrator Operation-

The circuit shown in Figure 4 is fairly typical of a kind widely used in horizontal AFC systems. The phase detector supplies a corrective voltage to the grid of the multivibrator and in this manner maintains the synchronization of the multivibrator. It should be pointed out, however, that the potential on the grid (pin 1 of the 6 SN 7) serves only as a frequency control and normally contributes nothing to the operation of the multivibrator as such. The grid may be grounded and the cathode-coupled multivibrator will continue to operate at a frequency determined by the constants in the system.

The set whose schematic is reproduced partially in Figure 4 had an inoperative horizontal oscillator. This was discovered when no signal was found at the input to the horizontal output tube. The next step in checking the set was grounding the control grid of the multivibrator (pin 1 of the 6SN7). When this was done the multivibrator suddenly snapped into operation, although it still had no synchronization. This test strongly indicated that the trouble existed ahead of the multivibrator. After the grid was removed from ground, a check of the voltage on the grid was made. A vacuum tube voltmeter registered a high positive voltage. This positive voltage had been maintaining conduction through the first triode section of the multivibrator, and the high cathode voltage thus developed had kept the

255 Grant Avenue - E. Newark, N.J.

When you replace with Astron Capacitors you are equaling or bettering original equipment-add to this:

- The service your customer expects
- The exact performance characteristics you demand
- Reduced call-backs everyone demands

And you have a few of the reasons why Astron Capacitors help "serve up satisfaction" to your customers. Alert jobbers are stocking Astron Capacitors-make sure you talk to your supplier today or write to us for the name of the Astron Distributor nearest you. Send for catalog AC-3.

on Every service call

Examining

 DESIGN FEATURES

 DESIGN FEATURES
 \author{ by MERLE E. CHANEY

}

WESTINGHOUSE PORTABLE RADIO AND AC POWER SUPPLY UNIT

A method is employed by Westinghouse to increase the utility of their portable radio Models $\mathrm{H}-372 \mathrm{P} 4, \mathrm{H}-373 \mathrm{P} 4$, and $\mathrm{H}-376 \mathrm{P} 4$. This is done by making available an optional AC power supply unit, Model H-377. The portability of the radio is not restricted since the power supply may be readily unplugged and the receiver operated on its self-contained batteries. To save the batteries in locations where AC power is available, the AC power supply unit may be plugged into the receiver. A photo of receiver Model H-373P4 is shown in Figure 1.

The receiver proper is of flat design, containing 4 tubes in a superheterodyne circuit. See Figure 2. The antenna is wound on a ferrite core to provide a high degree of sensitivity and adaptability to small space requirements.

The design of the receiver and power supply is such that the switch on the volume control turns off power to both units. A switching device is incorporated in the receiver to accommodate the auxiliary B+ supply.

The power supply, Model H-377 (See Figure 3) is a very compact unit providing both filtered A and B voltages. It includes a power transformer, two seleniumrectifiers, a low voltage filter choke, and filtering capacitors and resistors. The two plate selenium rectifier is connected as a full wave rectifier providing the required filament voltage. A variable potentiometer in the filament supply circuit is adjusted for 1.4 volts output. The circuit for the Model H-377 power supply is given in Figure 4.

Figure 1. Westinghouse Model H-373P4.

Figure 2. Chassis of Westinghouse Model H-373P4.
Because of the small current requirements of the $B+$ circuits in the receiver, a miniature type half wave selenium rectifier is used. This rectifier is enclosed in a small tubular plastic material case with a pig tail lead at each end. Thus the B+ rectifier is self supported by the leads and because of the insulated case may be easily fitted into a very small space.

ZENITH CH. 21 K 20

Tuner-

The Zenith turret type tuner employed in Chassis 21 K 20 is designed with a number of interesting

Figure 3. Westinghouse Model H-377 Auxiliary Power Supply (Cover Removed).

MADE TO ORDER FOR THE

 COMPONENT PARTS TRADE

The Permo Line gives you everything you need to make needle replacements fast, easy and profitable. You get (1) Handy and accurate service data, (2) Individual needle packages complete with (3) Installation tools and accessories with instructions, and (4) Stock-display and re-order case. See your jobber for fastmoving assortments or individual needles.

Developed Scientifically
Enginearad Spectically
Made Precisely

Priced Competitivaly
Packagal Pratically
Simple Inventory Control

Installation Tools, Aceessories and Instruetions Suppliad

Complate Service Data
National Distribution

PERMO, INC.

6415 Ravenswood, Chicago 26, Illinois

Figure 4. Schematic of Westinghouse Model H-377 Auxiliary Power Supply.
features. This tuner installed in the chassis is shown in Figure 5. Probably the outstanding feature, from the standpoint of servicing, is the ease with which the tuner may be removed. Unsoldering leads is not required for tuner removal since the IF and connector leads employ a plug-in arrangement. To remove the tuner from the television chassis merely unplug the connector cable, unscrew set screw on fine tuning pulley shaft, remove four wing nuts or hex heads holding tuner in, and pull the tuner out of its case. This procedure for tuner removal is illustrated in Figure b.

Figure 5. The Zenith Turret Tuner Employed on Chassis 21 K 20 .

Another feature of this tuner is that UHF strips may be substituted in place of any VHF strip on the rotor. To facilitate this procedure, the tuner can be removed without taking the chassis from the cabinet. These tuning strips are best removed by inserting the end of a screwdriver in the rectangular slot on the strip. Gently pressing the screwdriver in the direction of the tension spring holding the strip in place, allows the strip to be lifted straight out. Avoid apply ing a prying action on the screwdriver as this might damage the strip. Figure 7 is a photo of the tuning drum with a pair of strips removed.

Another point of interest to the service technician is the adjustment of the local oscillator. Be-

Figure 6. Zenith Tuner Removed From Chassis. primary or fringe-there's a performance proven VEE-D-X antenna or combination of antennas that will provide brilliant reception. All Vee-D-X antennas for UHF were developed and extensively field-tested with the experimental UHF transmitter (KC2XAK) located at Bridgeport, Connecticut (since 1949) and only 60 miles from the Vee-D-X development laboratory. So, be safebe sure with Vee-D-X performance proven UHF antennas.

THE UHF COLINEAR
A high gain allA high gain allchannel fringe area
antenna. Here is the antenna. Here is the
mighty mite of allmighty mite of all-
channel UHF recepchannel tion and considered by a leading TV set manufacturer as the finest UHF antenna yet perfected. Rugged four-bay construction of solid aluminum elements with fiberglass cross arms. List $\$ 11.10$ Also available in side-by-side stack.

Single channel primary and fringe area antenna. A rugged, efficient 12 -element yagi that delivers 14 db gain. Unusual band width of 60 mc . Boom constructed of tough-assteel weather-resistant fiberglass with solid aluminum elements. List $\$ 7.65$

UHF VEE-D-X ADAPTING BRACKET Permits addition of UHF antenna to ex isting VHF installa tion. Can be mount ed three different ways to mast or antenna boom. Fast, easy, inexpensive to rinstall. Supplięd plain (list \$1.50) or with Mighty Matc MM-30 (list \$5.50)

FREE!

UHF ANTENNA GUIDE An authentic guide to UHF antenna systems. Tells how, what, and where for every area. Mail coupon for your copy.

THE VEE-D-X "V" All-channel primary area antenna. Excellent broad band characteristics. Supplied as a straight UHF antenna or with Vee-D-X Mighty Match for use in combination with a VHF antenna using a single transmission line. The plain " V " lists $\$ 2.75$

VEE-D-X MIGHTY MATCH (Model MM-30)

Provides a most efficient method of combining VHF-UHF antenna systems with a single transmission line. Entirely automatic in action. Employs new printed cir-
cuit filters. List $\$ 4.00$

Figure 7. Turret Drum of Lenith Tuner With a Pair of Strips Removed.
cause the tuner is physically positioned at the back of the chassis, the local oscillator adjustment slug is reached from the back of the receiver. Adjustment of this slug may be made without removing the back cover from the cabinet.

The tuner employs two tubes: A type 6BK7 dualtriode as a cascode-coupled RF amplifier and a type 6 U 8 pentode-triode as the mixer-oscillator.

To prevent unwanted coupling and signal radiation, extensive shielding is employed. First, the tuner unit is contained in a metal case completely enclosing all four sides and the bottom of the tuner. Both the RFamplifier and mixer-oscillator tubes employ metal shields. Inside the tuner, two drums containing the tuning strips make up the rotor. The

Figure 8. Partial Schematic of Zenith Video AmpIifier Stage Containing Variable Frequency Response Provision,

Figure 9. Vertical Range Control Employed in Zenith Chassis.
strips on one drum contain the antenna coils, while the second drum holds strips containing the RF and oscillator coils. These two drums are shielded from each other by metal plate. Further shielding is provided between the input triode and output triode circuitry of the RF amplifier.

Picture Control to Vary Frequency Response -

A method is employed in Zenith 21 K 20 Chassis to vary the video amplifier frequency response to achieve a maximum of picture quality under a variety of conditions. The control, located at the front of the chassis, is usually set at about mid-position for normal reception. Turning the control clockwise increases frequency response. In this position it is often possible to improve picture quality, particularly when viewing transmissions of the older, faded-out films. Increasing the frequency response in this instance tends to give a crispening effect to the picture.

Turning the picture control counter-clockwise tends to reduce ringing in the picture in many instances, particularly where this effect may be the result of improper transmission. Primarily, the reduced frequency response position of the control is employed during fringe reception. Snow and noise becomes less pronounced yielding a more satisfactory picture.

A schematic of the first video amplifier stage is shown in Figure 8. Note that the picture control (R7) shunts the peaking coil L2. These components are in the plate load circuit of V1, the video amplifier. The position of the picture control can easily cause a degraded picture during normal signal reception. It is important therefore, that after this control is adjusted to accommodate fringe reception that it again be reset when switching to a local station.

Vertical Hold Range Control -

A vertical hold range control available at the front of the chassis is designed to improve the operation of the vertical hold control. Both controls are in series and the setting of the range control determines the holding range of the vertical hold control. To correctly set the range control, first set the vertical hold control at mid-position and synchronize the vertical sweep with the incoming signal by adjusting the range control. This circuit is extremely helpful in maintaining proper vertical hold control range as the tubes and other components age. See Figure 9.

Federal QUALITY assures set owners the dependable, long-life performance that keeps your job profits INTACT!

Quality that clicks... profit that sticks! No wonder servicemen everywhere rely on Federal-the original miniature-for moneymaking replacements!

Every step of the way-from raw materials to finished, packaged unit-Federal selenium rectifier production is under rigid quality control. According to tests by receiver manufacturers, Federal miniatures show a life expectancy of well over RTMA guarantee. Hundreds of thousands of factory tests prove superior immunity to shelf-aging.

Be sure of your replacement profits, Mr. Serviceman. Depend on Federal...backed by a record of over $35,000,000$ units in the field. Remember: "It pays to replace with the BEST!"

Look for it on your distributor's counter

America's oldest and largest manufacturer of selenium rectifiers

Audio-Facts

by Robert B. Dunham

A picture of some of the equipment used in connection with measurements and waveforms appearing in this article. The instrument in use is an oscilloscope fitted with a scope camera.

In the Audio Facts article in the SeptemberCctober issue of the PF INDEX and Technical Digest frequency response was mentioned as one of the characteristics usually given when listing the ratings of a power amplifier. Cbtaining the correct response is certainly not limited to power amplifiers but is an important item in practically all phases of audio work.

The reproduction of music from phonograph records is probably the most used application of high fidelity playback equipment. When considering equipment for playing records, such terms as equalization, pre-emphasis, crossover, rolloff, boost and droop (terms directly connected with frequency response) are encountered. Due to the recording characteristics followed when the records are made and the type of phono cartridge used for playback, compensation must be incorporated in the playback circuit if the output from the speaker is to be somewhere near a faithful reproduction of the original. This compensation (or equalization), which may be necessary in various sections of the system, the reasons why it is needed, how much, and its measurement, merit consideration and study.

The characteristics of constant velocity (inherent property of the original recording cutters) are followed when cutting records. Velocity is equal to amplitude multiplied by frequency. Since velocity is held constant only frequency and amplitude change. This sums up to the basic result that as the frequency of the recorded signal increases the amplitude decreases. In the opposite direction, if the frequency

Figure 1. Cver-Modulation of Grooves at Low Frequencies.
is lowered the amplitude of the signal cut on the record increases. This high amplitude in the low frequencies cannot be tolerated, for the swing of the cutter stylus would become so wide when recording low tones, that it would cut far beyond the space allowed for its groove, resulting in the condition shown in Figure 1.

To overcome this over-modulation on the record, the recording characteristic for the low frequencies is changed to constant amplitude. Below a certain frequency (called the crossover frequency) usually located between 300 and 800 cps , the amplitude of the signal is held below a certain level. Therefore, we have constant amplitude recording at low frequencies, changing over to constant velocity above the crossover frequency.

Compensation must be employed during the cutting of the record to accomplish the desired result and the correct compensation or equalization must be used when playing back the finished record.

Figure 2 and Figure 3 are representative recording and playback response curves illustrating how the playback curve compensates for the recorded curve to result in the original response.

Noise, particularly record surface noise, which is most objectionable at the higher frequencies, is reduced by recording the high frequencies at a higher level. The boosting of the high frequencies raises their level high enough (Figure 4) so that during the playback of the record, when the proper equalizing network is used to reduce them to their normal level, the noise is also reduced or eliminated completely (Figure 5). Rolloff is the term used to indicate the

GREATEST VALUE PER \$ IN TV TEST EQUIPMENT! The New RCP Model 740

 TOPS IN ACCURACY - PERFORMANCE - DEPENDABILITY andCONSTRUCTION COMPARE IT WITH EVERY HIGH PRICED
SIGNAL GENERATOR IN THE INSTRUMENT FIELD TODAY!

Enasually fine circuit design, extreme stability, ragyed mechanical construction. Smart looking wi- with new brushed aluminum etched panel cad dal. Size $10^{\prime \prime} \times 6^{\prime \prime} \times 6^{\prime \prime}$. Weight 8 lbs. MOBEL 740 - COMPLETE, WITH OUTPUT Cable. READY TO OPERATE

HERE - AT LAST! One compact, efficient instrument - which gives the performance of several combined instruments, -Each of which is higher priced and all of which are needed for properly servicing TV and FM receivers.

SIGNAL GENERATOR

Generates a modulated or unmodulated carrier signal covering every channel (VHF) and every IF band on any TV or FM Receiver - ALL ON FUNDAMENTALS. It will supply a 540 cycle signal at the audio output.

MARKER GENERATOR

Accurate to within $1 / 10$ of 1% on $9-11$ megacycle band, and better than $1 / 2$ of 1% overall. Perfect for alignment.

PATTERN GENERATOR . . .

Produces either horizontal or vertical bars or cross hatch.

$$
\begin{array}{llll}
\mathbf{D} & \mathbf{A} & \mathbf{T} & \mathbf{A} \\
\hline
\end{array}
$$

RANGE: 9 megacycles to 220 megacycles ALL ON FUNDAMENTALS -- bands 9-11 meg; 21-47 meg; 54.220 meg.

MODULATION: Internal modulation has been provided. Both 540 cycles ond 220.5 kilocycles are ovailable.
TUNING: Dial continuously calibrated thru 340°, giving extremely long calibration scale; enables easy reading and tuning. Each TV channel is precisely spotted on and tuning. Each forchannel is precisely spotfed on fine anti-backlash reducing mechanism.

The only single easily portable instrument that provides for testing ond alignment of: Front Ends, IF's, Horizental and vertical linearity, syncs, sweeps, size, position, focus coil, deflection coil, ion trop.
-
WRITE FOR THE LAfEST CATALOG ON THE RCP INSTRUMENT LINE TO DEPT. PF

RADIO CITY PRODUCTS CO., Inc.

111 WEST ${ }^{25 t h}$ st
NEW YORK 1, N. Y.

Figure 2. Recording Curve.

Figure 3. Playback Curve.
frequency at which the attenuation starts and the rate at which it progresses, such as a rolloff at 4000 cps of 6 db per octave.

Also, equalization must be made in the playback equipment to accommodate the cartridge used when playing the record. It is normal for a crystal cartridge to have a comparatively high output with emphasis on the low frequencies. A magnetic or variable reluctance cartridge generally has a low output with the emphasis on the high frequencies.

It can be easily realized that with all the above conditions some knowledge is needed in determining what and how much compensation is required.

Frequency response can be measured by connecting an audio oscillator to the input of the equipment under test and while maintaining a constant input level, measuring the output with a suitable meter or oscilloscope and plotting a curve on graph paper.

A quick and convenient way of checking the frequency response, especially of phono cartridges, is to use the Clarkstan Audio Sweep Frequency Transcriptions. These are available in 78 rpm recorded flat $\pm 1 \mathrm{db}$ and in 33-1/3 rpm, for microgroove, recorded on a modified NARTB curve. By playing the sweep frequency record on an appropriate turntable, and connecting the output leads of the phono cartridge to the vertical input terminals of an oscilloscope, the resulting waveform will provide a view of the complete response from 70 to 1000 cps . The marker pips, visible in Figures 6, 7, 8 and 9, are at $70,1000,3000,5000,7000$, and $10,000 \mathrm{cps}$.

The output of a representative crystal cartridge, connected directly to the input of the oscilloscope with no equalization, is shown in Figure 6. Figure 7 is the waveform obtained when a variable reluctance cartridge is used under the same conditions. The characteristic difference in response is very evident. The 78 rpm Clarkstan. Sweep Fre-

Figure 4. Recording Curve With Pre-Emphasis of High Frequencies to Reduce Noise.

Figure 5. Playback Curve Illustrating Reduction of Noise.
quency Recording, and single stylus (300 mil) cartridges, were used in both instances. As mentioned above, this 78 rpm sweep record is recorded flat $\pm 1 \mathrm{db}$. But these were played on the outer grooves where the high frequencies play back at a higher amplitude than on the inner grooves.

By feeding the output of the same crystal cartridge into the No. 2 input and the oscilloscope to the output of the preamplifier and control unit (described in the July-August 1952 PF INDEX), with the tone controls set for flat response, the waveform in

Figure 6. Output of Crystal Cartridge.

Figure 7. Output of Variable Reluctance Cartridge.

LiLl?

More and more SERVICE TECHNICIANS are using the B-T UNIT SYSTEM to plan and install Master TV Systems for VHF and UHF, for I Set or for 2000, and without outside engineering assistance. And today hundreds of thousands of set owners enjoy the benefits of Better Television

MORE TV SET OWNERS enjoy Better Television with B-T UNIT SYSTEMS

The B-T UNIT SYSTEM was designed expressly for the Service-Technician to help him meet the various problems which arise in his work. The B-T UNITS are intended for use wherever the Technician finds any one or all of the following requirements to exist: Amplifying Weak Signals . . Handling Multi-directional Signals without a Rotator . . Multi-set Distribution from a Single or Multiple Antenna Installation. (See Typical Applications)

B-T UNITS include:
MIXER AMPLIFIER
MA-4

- Basic Chassis and Power Supply
$\$ 52.50$
- Individual Channel
- Plug-in Amplifier

Plug-in Amplitier
Strips $\$ 19.50$

- UHF Conversion Strip To be announced

distribution AMPLIFIER DA-8

No Loss Distribufion to 8 Sefs \$87.50

DISTRIBUTION AMPLIFIER DA-2
No Loss Distribution to 2 Sefs $\$ 39.50$

COMMERCIAL ANTENSIFIER CA-1

All Channal
Line Amplifier
27db Gain $\quad \$ 77.50$

(14)

The B-T UNIT SYSTEM is the result of exhaustive study projects conducted by Blonder-Tongue Laboratories, whose research facilities are entirely and continuously devoted to Better Television. All B-T UNITS are broad band, and require no channel tuning or band-switching.

TYPICAL APPLICATIONS

FOR USE ${ }^{\text {a }}$	MA-4 plus Individual Channel Strips	CA-1 All Channel Line Amplifier	$\begin{gathered} \text { DA-8 } \\ \text { Each Feeds } \\ 8 \text { Sets } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { DA-2 } \\ \text { Each Feeds } \\ 2 \text { Sets } \end{array}$
WEAK SIGNaLS	$\checkmark \quad 0$	R V		
MULTI-SET DISTRIBUTION			\checkmark	\checkmark
MULTI-ANTENNA INSTALLATIONS	\checkmark			
COMMUNITY TV SYSTEMS	\checkmark	\checkmark	\checkmark	\checkmark

NOTE: These Units may be used alone or in any number of combinafions. See Your Distributor, or Write to B-T Service Department for full specifications of B-T Units and Accessories.

Figure 8. Output of Crystal Cartridge Through Preamplifier and Control Unit.

Figure 9. Output of Variable Reluctance Cartridge Through Preamplifier and Control Unit.

Figure 8 was obtained. Still using the 78 rpm sweep record the response shown in Figure 9 was recorded when the variable reluctance cartridge was plugged into the No. 1 input with the crossover rolloff switch in its No. 1 position, and the tone control set for this overall response.

Figure 10 illustrates the response, at the output of the preamplifier section, with the crossover and rolloff switch on position No. 3, of the variable reluctance cartridge playing back the flat 78 rpm sweep frequency record. The high frequency rolloff of this position is evident.

Figure 10. Output of Variable Reluctance Cartridge Through Preamplifier.

Figure 11. Output of Variable Reluctance Cartridge Through Preamplifier and Control Unit (33-1/3 NARTB).

In Figure 11 the $33-1 / 3 \mathrm{rpm}$ Clarkstan Sweep Frequency Record, with a modified NARTB recording curve for microgroove, was used. A variable reluctance cartridge, fitted with a 1 mil stylus, playing through the preamplifier section with the crossover and rolloff switch in the No. 1 (NARTB) position, produced this response.

The waveforms were photographed with a Model 296 DuMont Oscillograph-Record Camera mounted on a Model 670 Hickok Oscilloscope which was equipped with a type 5UP11 cathode-ray tube. The P11 phosphor of the 5UP11 tube produces• a bright blue trace (of sufficiently short duration) which is very suitable for photographic work since film is sensitive to blue.

The Sweep Frequency Transcriptions play back at a rate of twenty sweeps per second, so shutter speeds of $1 / 10$ th and $1 / 25$ th of a second were used. The nearly complete double sweep, when using $1 / 10$ th of a second exposure, is clearly evident in Figures 8,9 , and 10.

The effects of turntable rumble and vibration from other equipment operating in the area, along with fluctuating line voltage, are noticeable, resulting in low frequency "wiggles" of the complete waveforms. Modulation of the trace by noise can be observed particularly in Figures 6 and 8.

These examples illustrate how easily response can be checked by viewing the waveforms reproduced from the Audio Sweep Frequency Transcriptions.

A few of the characteristics having to do with frequency response, encountered when considering recording and playback equipment, have been mentioned. Many different recording curves have been followed by the various recording companies, and many fine points have not been discussed here, but these basic things do form a firm foundation for greater understanding of the subject.

ROBERT B. DUNHAM

ERRATA:

The schematic of the Preamplifier and Control Unit on page 43 of the July-August P F INDEX and Technical Digest should be changed as follows:

There should be no connection from the bottom of R2B to the top of R2C. This is part of the standard IRC LC1 Loudness Control. The portion affected is shown below.

Also on the schematic diagram, C8 should be .005 mfd . and C 9 should be .004 mfd . The correct values appear in the parts list.

FAST...

MOST PRACTICAL LOW COST TV INSTALLATION AID BUILT

This new Signal-Range Calculator quickly shows the approximate Grade "A", Grade "B", and Principal City coverage for all VHF and UHF television channels. Expected field strength in microvolts-per-meter is also given for distances up to 100 miles from the TV transmitter.
Coverage radius is read directly from the rule for stations operat ing with effective radiated powers from 10 to 1000 kilowatts, and for antenna heights up to 3000 feet.

Easy to Use...

All you need to know is TV station's published power and antenna height. Helps you determine antenna type and accessories needed for adequate TV microvolt signal at fringe installations up to 100 miles.

Quickly Shows...

- TV station coverage contours.
- Signal strength for any distance from 5 to 100 miles.
- Signal strength of different stations for every location.
- Increased station coverage when antenna height and operating power is increased.
- Expected coverage of new UHF stations soon to be in operation
- Teaches you the facts which influence transmitter coverage.
- Lists FCC required field signal-strength.

Practical...Handy...

Designed to FCC rules and regulations governing TV stations. Accuracy in nearly all cases is within 5% of the FCC charts.

Simple to Use

. . This calculator will help you determine antenna type and accessories needed for adequate TV microvolt signal at fringe insulations up to 100 miles.

FITS
YOUR
POCKET

Attractive, durable leather case included.

You need it now . . .

With this Signal-Range Calculator you can figure and compare expected signal strengths from stations operating with different powers and on different channels. For example, if Station " A " by observation or measurement has an inferior signal to Stafion b you can determine if difference in strength can be explained by transmitting conditions, or whether difficulty is at the receiver. Helps you determine effect new channel changes will have, as well as answer questions about expected coverage of UHF stations soon to begin operation.
This fine new calculator will help you determine in advance the antenna type and accessories necessary for adequate TV microvalt signal at fringe installations up to 100 miles. Copyrighted and designed exclusively for Pioneer Electronic Supply Co. by nationally known communication engineer d. B. Epperson, Associate Member of Federal Communications Consulting Engineers. Atractive leather case and instructions included

Price $\$ 5.45$ net

Never Before Has There Been So Handy a TV Customer-Convincer

 ORDER FROM YOUR PARTS JOBBER TODAY. OR WRITE DIRECT.We'll send postpaid if order includes your check or moneyorder However, if you wish, just order by postal card and we
will gladly ship C.O.D.-you can pay postman on arrival. Attractive leather case and complete instructions are included.

Dollar and Sense Servicing

HAIRWAVES. Powerful promotion for replacement of so-called permanent phonograph needles is that used by Fidelitone on record-carrying envelopes for record shops. It says: ''There is no permanent phonograph needle. It, like a permanent hair wave, will wear out and must be replaced.

GHOST. In one home having radio-controlled garage doors, the doors would open mysteriously at a certain time each night even though no car was in sight and no one was around. By staying up several nights with shotgun in hand, watching and listening from behind the bushes, the owner finally associated the action with the passing of a certain electric locomotive on a nearby railroad line. A service man eliminated the ghost-like action by changing the AM system over to FM.

* * *

FREE HYMNS. A glowing red juke box in a New Jersey church is loaded with hymns and wired to work without nickels. Visitors may come into the church at any time during the day and select their own favorite music for prayer. The idea for this installation in St. John's Lutheran Church in Harrision, N. J. is credited by its pastor, Rev. T. P. Bornhoeft, to a church in the South where a pastor made available a sermonette and hymns on a record, for visitors to his church, at twenty-five cents a spin.

* * *

BLASTING CAPS. The recent tremendous boost in two-way radio installations incars and other mobile equipment has created a new hazard in connection with the use of blasting caps. There is danger that operation of the transmitter will set off the caps if their wire leads happen to be related to the wavelength of the transmitter.

Safety rules issued by an Ohio power company specify that if electric caps are within 300 feet of any radio transmitter the caps should be kept tightly enclosed in an all-metal can. The can must not be opened when the transmitter is in use. When driving a radio-equipped company car down into a quarry, the base station must be notified before entering the quarry.

BANDING. An implosion-proof picture tube, announced by Kimble Glass Division of Owens Illinois Glass Company, has a metal band around the envelope where it joins the face plate. This is presumably fused to the glass. The banding is reported to be inexpensive and entirely practical for minimizing implosions. Banded 21 -inch tubes are now available. All 27 -inch Kimble tubes are scheduled to be banded.

EMERGENCIES. A calendar distributed in West Virginia lists emergency telephone numbers in the following order: Doctor, TV repairman, fire, police. This order is obviously wrong, because most people expect the TV serviceman to get to their home a lot faster than the doctor does.

PSYCHOLOGY? The British Post Office has announced that it is using a special TV van for detecting the estimated 250,000 license dodgers in England. They claim that the van is equipped to receive the second harmonic (20.25 kc) of the horizontal scanning frequency employed in British sets. Three elaborate frame antennas are mounted on top of the truck, with the implication that triangulation permits locating a receiver right down to the exact floor or room of a house. Whether it really works or whether it is psychology combined with a few lucky guesses does not matter; the mere presence of the van in their neighborhood makes people pay up in droves for their yearly license to watch government-sponsored television programs.

OVEESHOOT. In their attempts to design television transmitting antennas that give high gain by minimizing useless above-horizon radiation, engineers have got too good. They've narrowed the desired beam so much that it overshoots vital population centers. Thus, one of the early KECA-TV antennas atop Mt. Wilson threw a null right across the center of Pasadena, giving weak and sometimes unusable service even though the transmitting antenna was in plain sight. Tricky phasing of antenna currents was evolved to provide null fill-in. A similar technique was used by ABC to fill in nulls created by its Empire State Building antenna in New York City.

REDIFFUSION. In Montreal, a Canadian branch of Rediffusion Inc. is promoting closed-circuit TV programs from its own studios to about a hundred subscribers. These are advertised as including all CBC programs. Charges reported in Retailing Daily are $\$ 5.60$ weekly for the first year, $\$ 4.60$ for the second and $\$ 3$ for the third. The same company furnishes wired radio services in such far-away places as Hong Kong, Singapore and Malta as well as in England. Receivers in Montreal are 16 -inch British sets. Opposition to the practice is developing among members of Canadian RTMA, who don't like the resale of programs for which they've paid and don't like to see British sets used in preference to those made in Canada.

You're always right with Sprague's $85^{\circ} \mathrm{C}\left(185^{\circ} \mathrm{F}\right)$ smaller, versatile and dependable

 $\operatorname{sen}+\infty$ You only need to stock one 'lytic tubular for every application when you buy Sprague Atoms . . . whether it be an auto radio set . . a home radio-phonograph combination... or a television receiver. Sprague Atoms, the smallest dependable electrolytics, are always right sizewise to fit the most crowded chassis. And they're right temperature-wise to fit the hottest TV receiver!Write for Catalog C-608 to Sprague Products Company, 105 Marshall St., North Adams, Mass.

INSIST ON
ATOM' ELECTROLYTICS

THE WORLD'S LARGEST CAPACITOR MANUFACTURER

NEW FIFTH EDITION OF TV CAPACITOR REPLACEMENT MANUAL

A new, fifth edition of Sprague's "TV Capacitor Replacement Manual" has just been announced by the company as the fifth revision necessary to give servicemen the latest information on TV's ever-changing circuits.
44 jam-packed pages cover virtually every TV receiver model made. Along with rating data and mfr.'s part nos. for electrolytics in each model, it lists the catalog no. for each recommended Sprague replacement.

A new section, to make it more complete, is a "Printed Circuit Guide for TV", a handy reference in the trend toward printed circuits.
Free copies of this manual M-487 are available from Spraque distributors, or from Sprague Products Co., North Adams, Mass. Send 10ϕ for mailing and handling.

this One high-VOLTAGE TV CAPACITOR REPLACES 12 OR MORE TYPES

The new Sprague Type 20DK-T5 molded-case ceramic capacitor recently announced by the Sprague Products Company, North Adams, Mass. offers a simple solution to a vexing problem faced almost daily by television technicians.
This 500 mmf , 20,000 volt "doorknob" filter has been designed as a truly universal replacement for the dozen or more similar types used as origina! manufacturer's parts but which differ only in the type of terminal used.
, This new capacitor is equipped with female-threaded brass inserts on both faces of the plastic case and is furnished with a complete set of thread-in terminals. From these, the serviceman can select any two he needs to fit the particular receiver he is repairing
Thus, only one Sprague universal capacitor instead of a dozen or more exact replacements need be carried in the kit to assure on-the-spot repairs.
The new Sprague Type 20DK-T5 ceramic unit has a moisture-resistant, non-flammable case of thermosetting plastic. Molded guard rings surrounding the terminals lengthen the creepage path and protect against troubles from conducting dust particles which may collect on capacitors after installation

INDEX тo PHOTOFACT
 radio and television service data folders

HOW TO USE THIS INDEX

To find the PHOTOFACT Folder you need, first look for the name of the receiver (listed alphabetically below), and then find the required model number. Opposite the model, you will find the number of the PHOTOFACT Set in which the required Folder appears, and the number of that Folder. The PHOTOFACT Set number is shown in bold-face type; the Folder number is in the regular light-face type.

IMPORTANT-1. The letter "A" following a Set number in the Index listing, indicates a "Preliminary Data Folder." These Folders are designed to provide you immediately with preliminary basic data on TV receivers pending their complete coverage in the standard, uniform PHOTOFACT Folder Set presentation.
2. Models marked by an asterisk (\%) have not yet been covered in a standard Folder. However, regular PHOTOFACT Subscribers may obtain Schematic, Alignment Data or other required information on these models without charge by supplying make, model or chassis number and serial number. (When requesting such data, mention the name of the Parts Distributor who supplies you with your PHOTOFACT Folder Sets.)
3. Production Change Bulletins contain data supplementary to certain models covered in previously issued PHOTOFACT Folders, and are listed in this Index immediately following the listing of the original coverage of the model or chassis. These Bulletins should be filed with the Folders covering the models to which the changes apply.

Admiral-Cont.	ADMIRAL-Cont.
Models 37F35, A, B,	Models 321F6s, $321 \mathrm{F66}$,
37F36, A, B Eel. Rec.	$321 \mathrm{Fb7}$ (Ch. 21 Nl o
(See Ch. 21 Fl Set 135 and Ch. 5D2 Set 118)	Radio Ch. SD2) (For TV
Models 37F55, 37F56, 37F67	Prod. Chge. But. 30, Set
	156-2. for Radio Chassis
(For TV Chassis 21 GI see	Models 321K15, $321 \mathrm{kl6}$,
Ch. 21 FF ; for TV	321 k 18
Chassis 21 Q 1 see Ch . 21P1; for Radio Ch.	(See Ch. 21 F1 Set 135
${ }_{5 D 2}$ see $\mathrm{Ch}, 2 \mid \mathrm{Bl}$)	Model 32 ik 27 Tel . Rec,
odels 37K15, A, B,	(See Ch. 2lFi Set 135
37k16, A, B Tel. Rec.	and $\mathrm{Ch} .3 \mathrm{Cl1} \mathrm{Set} \mathrm{117)}$
(See Ch. 21 Fl 1 Set 135	Models 321 3 35, 321K36
and $\mathrm{Ch}, 3 \mathrm{3C1}$ Set 117)	Tel. Rec.
Models $37 \mathrm{~K} 27, \mathrm{~A}, \mathrm{~B}$,	(See Ch. 21 FI Set 135
37K28, A, B Tel. Rec.	and Ch .3 Cl Set 1171
(See Ch. 21F1 Set 135 and Ch .3 Cl Set 117 l	Models 321K46, 321K47,
Models $37 \mathrm{~K} 35, \mathrm{~A}, \mathrm{~B}$,	(See Ch. 21 Fl I Set 135
	and Ch .3 Cl Set 117)
(See Ch. 21 Fl Set 135	odels $321 \mathrm{~K} 65,32 \mathrm{~K} 60$,
and Ch .3 Cl Set 11	$321 \mathrm{Ko7}$ Tel. Rec. ${ }^{\text {a See }}$
37K55, 37K56, 37K57	Ch. 21F1) (Also See
	Prod. Chge. Bul. 30,
21 Fl ; for TV Ch. 2101	
See Ch. 21P1: for	
Radio See Ch. 3 Cl)	$321 \mathrm{M} 254,321 \mathrm{M} 26 \mathrm{~A}$.
M15, 37M16 (Ch. 21G1,	${ }^{321 m 27 A}$ Tel. Rec. (See
2101 and Rodio Ch.	Ch. 22A21 180 180
	421M15, 421M16, (Ch.
for TV Ch 21 Q1 See	2lyi) Tel. Rec. (See
Ch .21 Pl ; for Radio	
	Rec. (See Ch. 22 AA), 180
	${ }^{421 M 355,421 M 36,421 M 37}$
Models $39 \times 10 \mathrm{~A}, 39 \times 17 \mathrm{~A}$	${ }_{\text {Sec. }}$ (See Ch. 22A2) 180
Tel. Rec. [See	520 MIS , 520M16, 520 M 17
Ch. 2401 (seet 103) and	Tel. Rec. (See Ch.
Radio Ch, S82 [Set 1001]	${ }_{22 \mathrm{~A} 2)} 180$
	52/M15, $521 \mathrm{M16,5} 521 \mathrm{Ml7}$
$C_{\text {Ch. }} \mathbf{2 4 D} \mathbf{D}$ (Set 103) and	${ }_{\text {lel }}$
Rodio Ch. SD2 (Set 118)]	$521 \mathrm{M} 15 \mathrm{~A}, 521 \mathrm{MlioA}$,
	521 ml İA Tel. Rec.
(See Ch. 2181) . ${ }^{\text {che. }} 118$	(See Ch. 22A2) 180
Tet. Rec. See	aermotive
Ch. Recil isee	AERmotive
	181.AD 12-
Models $39 \times 25 \mathrm{~A}, 39 \times 26 \mathrm{~A}$	AERO (See Record Changer
Tel. Rec.	
	airadio
39×37 Tel, Rec.	SU-41D \ldots........... 11-1
(See Ch. 2181) 118	SU.52A, B, C (Receiver) .. 13-2
47M15, 47M15A, 47M16,	TRA.1A, B, C (Transmitter) ${ }^{13}$
${ }^{47 \mathrm{Mi} 17 \text { Tel. Rec. }}$ (${ }^{\text {Ree }}$	3100 37-1
	AIRCAStLE
Iet. Rec. (See Ch.	C-300 136-3
21 11) 177	
${ }^{52 \mathrm{MlO}}$, $52 \mathrm{M} / 77^{\text {Tel. }}$ Rec 177	EV 760 (See Model
(See Ch. 21w 1) $\ldots \ldots 177$	
57M10, $57 \mathrm{M} 11,57 \mathrm{M12}$	
Tel. Rec. (See Ch. 21w 1 177	
Models 121k15, 121K16,	
121 K 17 Tel . Rec. 1 See	
Ch. 21Fl) (Also See	
Prod. Chge. Bul. 30 , Set 156-21 135	
121K15A, 121 Kl 16 A,	${ }_{\text {PC. } 8,8, \mathrm{PC}-358}$......... 99-1
$121 \mathrm{~K} 1 j_{\text {a }} \mathrm{Tel}$. Rec. (5 ee	
Ch. 22A2) $\ldots180$	${ }_{\text {PXX }}{ }_{\text {P }}$
$121 \mathrm{M10} 121 \mathrm{Ml14}$,	REV248 ${ }^{\text {a }}$,
	RZU248 (See Model
Ch. 22A2) 180	REV248) 127
$21 \mathrm{MH1} 121 \mathrm{Ml2}$ ICh.	Sc. 448 62
${ }^{2} 2 \mathrm{mlij}$ Tel. Rec. (See	
	WEU-262 91-1
Prod. Chge. Bul. 30-Set 135	WRAI.A \ldots.......... 47-1
156-2] .1........ 135	WRA.4M $60-1$
	x日702, xb703 Tel. Rec... 93 A -1
	XL750, XP775 Tel. Rec... 93A-1
Models $221 \mathrm{~K} 26,22 \mathrm{~K} 28.135$	$\underset{\text { OA-358-VM }}{\text { See Model }}$ S 388 VM) . 127
Models 221K26, 221 K 28 Tel. Rec. (See	
Ch. 21Fi) 135	78 52
Models $221 \mathrm{~K} 35,221 \mathrm{~K} 36$	${ }^{9} 0$-101........... 50
Tel. Rec. (See	
Models $221 \mathrm{~K} 45,221 \mathrm{~K} 46,135$	12 C , 12 T Tel. Rec.
mode 21 K 47 Tel. Rec . See	(See Model 14C)..... 140
Ch. 21F1) (Also See	${ }^{14 \mathrm{C}, 14 \mathrm{Tel} \text {. Rec. }140-3}$
Prod. Chge. Bul. 30,	
Set isc-21......... 135	$16 \mathrm{C}, 16 \mathrm{~T}$ Tel. Rec. (See Model 14C)...... 140
	17 C , I7T Tel. Rec. ${ }^{\text {a }}$. 140
	(See Model 14C)...... 140
$221 \mathrm{M} 26,221 \mathrm{M} 27$ (Ch.	
	$8_{88} 88 \mathrm{w}$. ${ }^{\text {a }}$.
Ch. 21 Fil (AAlso see	
Prod. Chgee Bul. 30.13135	
Model 320RI7 (Ch. 2iji)	${ }_{150}^{1068} 153 \cdots \cdots \cdots \cdots \cdots \cdots{ }^{136-3}$
$\mathrm{Ch.}_{\text {Chel }} \mathbf{2 1 8 1)} 320 \mathrm{R} 25$ (Ch, 21.11$)^{118}$	1981^{83-1}
Model $\begin{gathered}\text { Tel. Rec. } \\ \text { See }\end{gathered}$	200 ${ }^{139}{ }^{13}$
Model 320R26 (Ch. 2111)	212 …............. 68-3
Tel. Rec. (5 ee	213 . ${ }^{\text {a }}$.
Ch. 2181) 118	2271, 227 W 84-1
	312 Tel Rec. 15 ee Model 14Cl
(See Ch. 21 F 1 Set 135 and Ch. 5D2 Set S	$31 /$ Tel Rec. (See model 14 C$)$
Models 32 IF 27 Tel. Rec.	350 136
${ }^{(S e e} \mathrm{Ch}^{\text {2 }} \mathbf{2 1 \mathrm { F } 1}$ Set 135	$3^{358 \mathrm{Vm}}$. 127
and Ch. SD2 Set 118)	
Models 321F35, 321F36	
Tel. Rec.	
(See Ch. 21F1 Set 135 and Ch. 5D2 Set 118)	472.JP24 (See Model
Models 321F46, 321F47,	
F49 Tel. Rec	472 MP25) 168
lsee Ch. ${ }^{\text {and }}$ SD2	472.MP24 (see Model 472.MP25)

AIR KING-Cont.
(See Modei 16 Cl \}..... 121
$16 \mathrm{Cl}, 16 \mathrm{C} 2,16 \mathrm{Cs}$
18C1, $16 \mathrm{C} 2,16 \mathrm{C}$
Tel. Rec.
(See Model 16C1) 121
See Model. $16(1) \ldots . .121$
16 TlB Tel. Rec.
16T18 Tel. Rec.
(See Model 16 Cl)..... 12
17 C 2 (Ch 700.96)
17C2 (Ch. $700-96$)
Tel. Rec.............151-2
17Cs, Bec. (See
Te. Rel
 Rec. (See Mode) 17C2). 151
$17 \mathrm{K1}$ (Ch. 700.96) Tel.
Rec. (See Model 17C2) 151 Rec. (See Model 17C2) 151
17 KlCh (700.110 .
700.130) Tel. Rec..... 150-2 $700.130)$ Tel. R
17 Ml (Ch. $700-90$)
17 Ml (Ch, $700-98$ (
Tel. Rec. See

AIR KNIGHT (SKY KNIGMT)
CA-500
CB. 500 P
N5.RO29
AIRLINE

15GHM-936A.	
15GHM-1070A184-3	
15GSE.2764A	
$15 G 55.3043 \mathrm{AA}$. Tel . Rec....	
15GSE-3047A, B elel. Rec.	
15 GSE -3052A Tel. Rec.	
15GSL-1564A, B, 15 CSSL	
$15 \mathrm{WG}-1540 \mathrm{~A}$,	
15WG-2745C.	
E, F ,	
15WG-27520, E..... 151-4	
$15 W G-2761 A$ See	
G-2	
Model 15WG-2758A).	
Tel. Rec.	
$15 \mathrm{WG}-3050 \mathrm{~A}, \mathrm{~B}$ Tel. Rec. 145	
15WG-3059A Tel. Rec. (See Model 15WG-3049A1 . 164	
25GAA.9948	
25GAA -996A	
250C.994A	
25G5E.1555A	
$25 G 5 \mathrm{E}$	
GSE. 30	
B	177-4
,	
WG-2765D (Se	
2WG. 2765 E (See Modil	
15WG-275	
25WG-30498 Tel Rec	
${ }_{3049 \mathrm{~A}}$ (See Model	
G-3059a Tel Rec	
ERR-1505A; B	
WG. 2500 A ,	
64BR-915A648 P .916 B (See Model	
648R-9108 (See Model$74 \mathrm{BR}-976 \mathrm{~B})$	
Br-917A	
BR. 1051 A	
BR10518	
Br10	
$1503 \mathrm{~A}, \mathrm{~B}, \mathrm{C}_{\mathrm{C}} 5$	
64BR.1514A	
${ }_{648 \mathrm{R}-2200 \mathrm{~A}}^{64 \mathrm{~S}}$ (See Model	
$\begin{gathered}648 R-1208 A) \\ 64 R-7000 \mathrm{~A}\end{gathered} \cdots \cdots \cdot \cdots \cdot{ }_{51-2}^{16}$	
64BR-7100A, $648 \mathrm{BR}-71104$,	
8R.7300, 648 R -7310A,	
ARR-7810A, 64BR-7820A	
64WG-1050A64WG-1050,S4WG.	
1050 C , $6 \mathbf{6}$ WG-1	
64WG-1050A)	
${ }_{64 W G .10528 ~(S a e ~ M o d e l ~}^{\text {64 }}$	
${ }^{64 W G-1052 A)} \cdots \cdots \cdot{ }^{6}$....... ${ }^{8}$	
WG-1511A, 84WG.	
64WG.15128	
54WG.1801A, B)	
WG. 1807 A , 64WG. 807 B	
1809B (See Models 64W-151A B 64WG	
${ }_{64 W \mathrm{~W}} \mathbf{2 0 0 7}$ B	
WG-2009A.	
¢4WG.2010B 18-6	
64WG-2500A ${ }^{\text {Mee }}$ Model $54 \mathrm{WG}-2500 \mathrm{Al}$. 4	
WG-2700A, 64 WG-2700B $\{$ See Models 54WG-2500A; 54WG-2700A) BR.916B 17-5	
R-1053A . . .	
ABR-1501B 解-1501B $74 B R-1502 B$ 4BR-1507, 74BR-1508A. $4 B R-1513 B, 74 B R-1514 B$ (See Models $64 B R$. 1513A, B; 64BR- $1514 \mathrm{~A}, \mathrm{~B})$ 24	

AIRLINE-Cont.	
	22
${ }_{748 \mathrm{BR}-1812 \mathrm{E}}$	
74BR-2001A (See Model	
	23-2
74 BR -2003A	
$7{ }^{748 R R}$-2701A	24-5
74 BR -2702A	
28	25
${ }^{7} 78 \mathrm{CR}-27028$	
748 C$748 \mathrm{R}-2715 \mathrm{~A}$	
$748 \mathrm{R}-2715 \mathrm{~A}$	
748 R -2717A	
cicsc-840	
GSG-8700	60
$74 G S G-8810 \mathrm{~A}$	
74 HA -8200A	
$74 \times \mathrm{R}$-2706B	
74WG-925A 24	
Madel 64WG-1050A) . . 10 74WG 10528 (S	
Models 5 WWG.1052A, B)	
74WG-1054A	
74WG.105AB (See Model	
74WG-1057A	
74WG-1207B (See Model	
$\begin{aligned} & \text { 64WG-1207B) } 18 \\ & \text { 74WG-1509A, } \end{aligned}$	
74 WG-1511B, 74WG.	
64WG-1511A, ${ }^{\text {F }}$	
64WG-151	
$74 \mathrm{WG}-1802 \mathrm{~A}$	25
74WG-1803A (See Model 74WG.1802A)	
74WG-1804C (See Models 64WG-1804A, 8)	
74WG-1807A, 74WG- 1807B (See Madelis	
64WG.1807A	
74WG-2004A 27-2	
74WG-2007B, ${ }^{\text {74WG- }}$ 2007C (See Models	
G. 200	
20098 (See Models	
$6^{64 W G-2009 A, ~ B)}$	6
74WG-2010A (See Model	
74WG-2500A (See Model 54WG-2500A) 4 74WG-2504A ${ }_{28}^{4}-1$	
$74 \mathrm{WG-2504A}$)	
74WG.2505A 74WG-2700A, 74WG.	
2700B (See Model 54WG-2700A)	
74WG. 2704 A . 74 WGG .	
(See Model ${ }^{\text {M }}$	
74 WG .2505 A)	
${ }_{84 B R \text {-1005A }}$	
884RR15030, 8488 R .15040	
${ }_{8}^{8488 R-2719 \mathrm{~A}}$	
$84 \mathrm{GHM}-926 \mathrm{~B}$	
84GSE.3011A Tel. Re	$82-1$
${ }^{84 H A} .1527 \mathrm{~A}, 84 \mathrm{HA} .1528 \mathrm{~A}$	
$84 \mathrm{HA}-1810 \mathrm{C}$.....	
84HA.2727A	
${ }_{84 \mathrm{HA} .3010 \mathrm{~A}, \mathrm{~B}, \mathrm{~B}, \mathrm{C}}^{8}$, Rec.	
$\xrightarrow{\text { Tei.t. Rec. (AAso See Prod. }}$	
Set 118-11......... 94-2	
84WG.1080A) 42	
WWG. 2015 Sa .	
34WG. ${ }_{\text {d }}$	
8WG.25068 \cdots - \cdot...... 58-5	
84WG.27128 ISee Model	
84WG.-2718A, 84WG	
84Wg.2721A, B	46
4WG.2724A (See ${ }^{\text {a }}$, ${ }^{\text {a }}$	
84WG-2718A, B_{i} 84WG.2720A	45
4 WG-2732A, B (See Madel 84WG-2712A,	

ARVIN-Cont.	autromatic-Cont.
Ch. RE-228 (See Model 150 Cl	${ }_{8-44}^{\text {Tom Thumb Personal AITP }}$ 23-4
Ch. RE-228.1 (See	
Model 1501C Latel.... 39	C-54
Ch. RE-229 (See Model	C60
${ }^{6651}$. \ldots.......... 18	C-60x ${ }^{24}$
Ch. RE-231 (See Model	C.65x (See Model C.60X) ${ }^{24}$
$5524 \mathrm{~N})$	C300
$\mathrm{Ch.}_{\mathrm{i}}^{\text {ReOT-232 }}$ (See Model 49	
Ch. RE. 233 isee Model ${ }^{\text {a }}$	
152 T) 33	F.100 …l........... 103
Ch. RE-237 (See Model	F.151 …............ 147
Ch. RE-242 (See Model	
$\mathrm{Ch}^{\text {Che Re-2 }} 243$ (See Mode	
Ch. ${ }^{240 P \text { Pe. } 244 \text { (See Model }}{ }^{\text {a }}$	S.551 ${ }_{\text {TV-P490 Tel. Rec.a.... } 1461}$
	TV.P490 Tel. Rec.... 81
Ch. RE-248 SSeo Model ${ }^{\text {a }}$	Tel. Rec.
	IV.712 Tel. Rec
Ch. Re. 251 (See Mode	(See Model TV-707)... 60
${ }_{\text {RE. } 252}^{421}$ Ses Model ${ }^{\text {a }}$	
	S ${ }^{\text {See model }}$ Soe Prod
Ch. RE-253 (See Model	
280TFM)	TV-1249, TVI250 Tel.
Ch. RE-254	
${ }^{259}$ (See Model 241 P) . 47	TV. 1294 Tel. Rec,
RE-265 (See Model	$8 \mathrm{ct.5}$-Set 106-11) 103
2647)	-1605 Tel. R
Ch. RE-267 (See Model	Modet TV-1249) [.... 103
350P) 17.69769	TV. 1615 Tel. Rec. (See
RE-267-1,	Model
	TV.1649, TV. 1651 Tel. Rec. 143
${ }_{356 \text { T) }}$ (S......... 78	TV. 1694 Tel. Rece. (See
Ch. RE-274 (See Mode)	Model TV-1249) 103
415	TV-5006 Tel. Rec....... 145
Ch. RE-277, RE-27	TV. 5020 Tel. Rec....... 134
(See Model 4807FM) ... 107	TV. 5061 Tol. Rec.
Ch. RE-278	(See Model TV- 5006) . 145
(See Model 5401).... 143	V-5077 rel. Rec
Re-280 ${ }^{\text {See }}$	(see Model TV:5008). 145
Model 4609).... 106	TV.516R Tel. Rec
CM. RE-281	TV. See Model TV.5020) . 134
Ch. RE-284 Stee	W-S560 rel. Rec. ${ }^{\text {See Model }}$ TV-5020). 134
Model 4607). 107	TVx313 Tel. Rec
Ch. RE.287-1	(See Model TV.707) ... 60
(See Model 462.C8) . 1116	TV $\times 404$ Tel Rec
RE-288-1	(Seee Model TV-707)... 60
650.p) $\ldots175$	612 x (
Ch. Re-297	$613 x$ (See Model $612 \times$)... ${ }^{-34}$
(See Mode! 5517)	614x. $616 \times \ldots . .$.
Ch. Re-306	620 . \ldots............ 12
	640, Series $8 . \ldots \ldots \ldots . .1{ }^{10}$
(See Model 657-T] . . 168	
Ch. Re. 308	720 ….............. 21
Ch. Re. 310 (10)	aviola (Also see Record
(See Model 582 CFB). . 156	Changer listing)
Ch. RE-313 (See	509
. RE 327 tSee Model	601
6555W1) 187	
	612 (See Model 601) 15
	618 (See Model 608).... 16
3160 CM) 93	BELL-AIR
Ch. TE282 (See Model	Plic C Tel, Rec
	(Similar to Chossis)... 149-13
${ }^{\text {ChiSee Model }} \mathbf{4} 162 \mathrm{CM}$. . 130	${ }^{\text {Pl2OC Tel. Rec. }}$ (Simile ${ }^{\text {a }}$
Ch. TE. 289 ISoe Model	(Similar to Chossis)....149-13
2122TM) 9 97A. 1	BELL SOUND SYSTEMS
$\mathrm{Ch}^{\text {CHE-TE-289-2, TE-280-3 }} 120$	
(See Model 2120 CM) . 120	RC-47 (RE-CORD O-FONE) $30-3$
$\mathrm{Ch}^{\text {M }}$ TE. 2900 (See	
Ch M TE300 \See Model ${ }^{\text {M }}$ - 126	RT.65, B 171
$5204)$ (${ }^{\text {chee }} 149$	${ }_{35}^{350} \ldots \ldots \ldots \ldots \ldots \ldots$
(See Model Sliock	420 . ${ }^{\text {a }}$
Ch. TE315, ${ }^{-1}-2,-3,-4$,	4401, 440 S Belfone ${ }^{\text {a }}$. 25
52101, -6, See Model 151	
Ch. TE319 (See Model	${ }_{21228}^{2122}$ 2122AR $\quad 153$
62131M)	
$\mathrm{Ch}^{\text {h }}$ TE. 320 l (See	2145, A 161
Models 5175 , 51761 ... 179	${ }^{2159}$,
	3715 …. 22
	3725 $22-9$
$\mathrm{Ch}_{\text {- TE337 }}$ Tee Model 7210	${ }^{37289}$............... 24.11
	3750 31-5
Model 7210 CM -UHF) . 188	BELITONE
astoria	500 5-33
A-21, A.72, A.731	
Tel. Rec. (See	A.6D110 17-7
Tinar chas	$3 \mathrm{AW7}$. 10-7
	${ }_{4817}$
	$4_{4 B 112, ~ 48 i i 3(S e r i e s ~ A) . . .10-6 ~}^{\text {a }}$
atlas	${ }_{50110}^{5010}$ …......... 22-10
AB-45 $14-5$	
audar	
166-6	6D111 ${ }^{\text {2-33 }}$
MAS 4 - 8 ingo Amp. ${ }^{\text {a }}$... 26 -6	
$\mathrm{P}_{\text {P. } 14.4}$	${ }_{21421}$ Tel Rec.......... 93A-4
	22A21, 22AX21, 22AX22 93A-4
	Teievision Receiver 55-5
PR.6 $\ldots \ldots \ldots \ldots \ldots$ 13-10	BENDIX
PR.6A \cdots.......... ${ }^{\text {19-4 }}$	C172 Tel. Rec. 134 -5
	${ }_{\text {Cl7 }} 7$ Tel. Rec.
	(See Model 2051) ... 111
Telvar RER-9 85-2	C176, B Tel. Rec.
WC-7T (See Model AV.7T) 166	Clisee model 2051)..... 111
AUDIO DEVELOPMENT (ADC)	(See Model (172).... 134
71-F 128-3	C192 Tel. Rec.
Automatic	${ }^{\text {(See Model }}$ C172) $\ldots . . .134$
Tom Boy 27-4	(See Model ' 172) 134
Tom Thumb Buddy 53-7	OAK3 Tel. Rec. 183-2
	T170 Tel. Rec) (See Model

BENDIX-Cont

558
69
69
7
7
9
1
75
79
79
95
11

CAPEHART

B. 504 -P16 Tol. Rec. 1 See
Mode: 461 P Ser 87

Mode: 461 P Sel 87
and 35 SF Sel 135)

T17мх (Ch. CT-27) Tel.
Rec. (See Ch. (T.27).
Rec. (See Ch. CT.27).
$1 \mathrm{~T} 172 \mathrm{M}, 2 \mathrm{C} 172 \mathrm{Ch}$ (Ch.
CT-52) Tel. Rec.
2T 20 Mx (Ch. CT. 38) Tel.

3Cl7Mx (Ch. CT-27) Tel.
Rec. (See Ch. CT-27). 160
Rec. (See Ch. CT-27)
3C212B, M (Ch. CT.57)
Tet. Rec. (See Model
Tef. Rec. (See Made
ITI72M) (Ch. CT 57)
H2128, M (C.
H212B, M (Ch. CT 57)
Tel. Rec. (See Model
SF212M (Ch. (T.57) Tel 187
Rec. (She Model
6F2128 \{Ch, CT-57) Tel... 187
Rec. (See Model
1 T172M)
187
7F212M (Ch. CT-57) Tel.
Rec. (See Model
1 T172M)
8F212B (Ch. CT. 57) Tel.
Rer (See Model
Rec. (See Model
$1 T 172 \mathrm{M}$)
$9 F 212 \mathrm{M}$ (Ch. CT-57) Tel.
9F2 212 M (Ch. CT 57) Tel.
Rec. (See Model
Rec. (See Model
1 T 172 M)

$9 \mathrm{N4},{ }^{21 P 4}, 24 \mathrm{NA}, 2$
31N4, $31 \mathrm{P} 4,30 \mathrm{P} 4$,

14 NA 4 (See Model
$19 \mathrm{PP4}$)
15 l

CX. 3311 Tel. Rec.
(See Model. 323 Mm) (Also
See Prod. Chge. Bul. 13
See Prod. Chge. Bul. 13
Set 122.1 \& Bul. 24

Rec. (See Ch. CT-27), 160
321 ABX , AMX (Ch. Cr-27)
Tel. Rec. (See Ch.
$321 \mathrm{~B}, 321 \mathrm{~m}, 322 \mathrm{~B}, \mathrm{Ch}$.
322 M (Ch. CX-33) Tel.
$322-\mathrm{M}(\mathrm{Ch}$. Cx-331 Tel
Rec. (See Model 323 M)
Rec. (See Model 323M)
1Also See Prod. Chge.
Bul. 13 Set $122-1$ and

43.6451 10-10	
43.6485	46-9
43.6730 (See Model	
43-98851	11
43.7601, 43-7602 (See	
Model 43.7601 Bl ...	
43-70018	10-11
43-7651	9
43-7652 (See Mode)	
43.76511	
43-7851	47-5
43.8101 (See Model	
$43.8130 \mathrm{C}, 43.8131 \mathrm{C}$	
(See Modal 94Ra33.	
$43.8130 \mathrm{C})$	
43-8160	12-7
43.8177 (See Model'	
43-8178)	21
43.8178	21
43-8180	10-12
43.8190	19-11
43-8201 (See 43.8178)	21
43.8213	7-5
43.8240, 43.8241	12
43.8305	8
43.8312A	8 -4
43.8330	19-12
43.8351, 43.8352	12-9
43-8353, 43.8354	28-7
43.8420	24-13
	8
43.8471 (See Model	
43-8312A)	
43-8576B 9	
43.8685 11	
43-8965 Tel. Rec...... 86-3	
43.9196	14-35
43-9201 24-14	
$94 R A 1.43 .6945 \mathrm{~A} \cdot \ldots . .69$.	
94RA1-43.7656A,	
94RA1-43.7657A	73
$\begin{aligned} & \text { 94RA1-43.7751A } \\ & \text { 94RAI-43.8510A, } \ldots . . .87-87-1 \end{aligned}$	
94RA1-43-8511B	75
94RA2-43-8230A (See	
Model ${ }_{\text {M }}$ ORA2-43-8230A) 162	
94RA4-43-8129A,	
94RA4.43.8130A,	
94RA4.43-8130B,	
94RA4-43-8131B	62-10
94RA31-43-9841A	
94RA33.43-8:30C,	
94RA33-43-8131C82-	
94TVI-43-9002A Tel. Rec.	
94TV2-43-8970A	
94 IV2.43-8971A,	
94TV2-43.8973A,	
94TV2-43.8985A,	
94TV2.43-8986A,	
94TV2-43.8987A,	
94TV2-43-8994A,	
94TV2-43-8995A	
Tel. Rec.	78-4
94TV6-43-8953A Tel. Rec. 106-3	

IMPORTANT

РНоtOfact Publications are available from:

YOUR PHOTOFACT DISTRIBUTOR

The easiest way to own the world's finest Radio-TV Service Data is to subscribe to PHOTOFACT Folder Sets with your distributor, who will see to it that you receive each Set as published (issued 2 to 4 Sets per month).
PHOTOFACT Folder Sets, Each Only
$\$ 1.50$
DeLuxe Binders for filing PHOTOFACT Sets, Each Only 3.39
Complete PHOTOFACT Volumes, Each Only. 18.39
(Each Volume includes 10 Sets of PHOTOFACT Folders in DeLuxe Binder. Vol. I contains Sets 1-10; Vol. 2 contains Sets 11-20, etc.)

PHOTOFACT EASY-PAY PLAN. You can own a library of PHOTOFACT Volumes for a down payment of only 18.39 Easy monthly payments-no interest or carrying charges. For full Easy-Pay details, see your distributor or write to Howard W. Sams \& Co., Inc.

O-Cont	ORONADO-Cont
197.197U (See Model	20A, 8, 9021 A,
94RA31-43-8115A) ${ }^{81}$	Tel. Rec, (See
2027 (See Model 43-2027) 11	V1-43-8958A) (A)
5005 (See Model 43-5005) ${ }^{28}$	see Prod. Chae, But
6301 (See Model ${ }^{4351}$ (See Model 43.6451) 10	
0485 (See Model 43-6485) 46	9025
6730 (See Model 43-8685) 11	
6945 A (See Model ${ }^{\text {a }}$ (09	15TV2-43-9025A) 144
94RA1.43.6945A) ... 69	
7601, 7602	731 [43-9030
(See Model (43.7601 B). 10 7601 B	${ }^{9} 931$ (See Model
(See Model (43.7601 B). 10	${ }^{2} 041$ (See Model
7605 A (5 ee Model	K-21 [43-9041]) ...
948 A 1-43-76054)	$9101 \mathrm{~A}, 9102 \mathrm{~A}$ Tel. Rec.
7651 (See Model 43.7651) ${ }^{\text {c }}$	(See Mode)
7652 (See Model 43-7651)	151V2-43-9101A) - ${ }^{\text {a }} 152$
7656A, 7657A (See Model	92304 (See Model
94RA1-43.7656A) 73	15RA37-43-9230A)
7755A, 7755B (See Model	9841 A (See Model
05RA1.43.7755A) ... 109	4RA31-43.9841A)
	9876A (See Model
	CORONET
OSRA1-43-7901A) 115	C2 6-8
7902 A (S5ee Model	CRESCENT (Also see Changer
15RA1-43-7902A)	and Recorder Listings
$94 \mathrm{RA3} 1-43.8115 \mathrm{~A}) \ldots 81$	H-16A1
$15 \mathrm{~A}, \mathrm{~B}, 8116 \mathrm{~A}$	CRESTWO
ISee Model	
	CROMWELL
20A ISee Mode 05RA33-43.8120A) ... 11	(mercantile Stores)
$8: 29 \mathrm{~A}, 8130 \mathrm{~A}, 8130 \mathrm{~B}$,	1010
$8131 \mathrm{~A}, 8131 \mathrm{~B}$	1020 89
	Os
$8130 \mathrm{C}, 8131 \mathrm{C}$ (See	
$\left.{ }_{94 R A} 33.43 .8130 C\right) \quad 82$	
8160 (See Model 43.8160) 12	COB' TOB,
8177 (See Model 43-8178) 21	том [Ch, 356-1,
8178 (See Model 43-8178) 21	356-2) Tel. Rec 168-6
8180 (See Model 43-8780) 10	17PDB, PDM, PHB,
8190 (See Model 4338190) 19	PHM, PHN, PHNI
	359 and Radio
8230 A (See Model ${ }^{\text {a }}$	$361)$ Tel. Rec.
OSRA2-43-8230A) 162	СОВ, СО́m (Ch. 357)
40, 8241	Tel. Rec. 175
(See Model 13-8240) 12	-21CDM
45A, 8246 A (See Model	
	COM (Ch 357
	Rec. (See
2A See	DU-20COM) ${ }^{\text {a }} 175$
	EU.17 COM , TOB, TO
51, 8352 (Sodel 43.8330) 19	ICh. 380, 3833 Tel.
See Model (43-8351). . 12	dit CO, Cols
	Tola, Tols lCh
(See Model 43-8353).. 28	Tel Rec.
(soe Model 43.8353$) \ldots 28$	EU-2ICOB, COM, CON,
05RA37-43-8360A ... 102	COBa,
8365 (See Model	381, 384 M Pl . Rec.
5RA33.43-8365] $\quad 169$	Model
8420 (See Model 43-8420) 24	TOL, Toís (Ch. 386)
8470 (See Modet 43-8305) 8	Tel. Rec. (See Model
8471 (5ee	EU-17 COL)
Model (43-8312 ${ }^{\text {A }}$	-21 Cole, COLE
$8510 A .8511 / ~(S e e ~ M o d e l ~$ $94 R A 1-43-8510 A)$	3871 Tel. Re
85108,85118 (See Model	Model EU. 17 COL ...
	-2 CDMU, CDBU, CDNÚ,
8515A (See Model	
OSRA2-43-8515A) 110	S 11.442 mlu, SII. 444 mu ,
8576B (5ee	S11-453MU (Ch.
	331-4) rel. Rec.
	-459MU (Ch. 321.4)
8908 Tel. Rec	Tel. Rec. Soee
8935 A Tel. Rec	S11.442miv)
${ }^{89404}$ Tel. Rece.	
	(See Model
$45 A$ Tel. Rec.	442 ml 10
	CIDC1, $317 \mathrm{CDC2}$,
OSTVL-43.8945A) 145	(Ch. 331-4) Tel. Rec.
$8948 \mathrm{~A}, 8949 \mathrm{~A}$ Tel. Rec.	(See Model
	442 Ml
15 TV4.43-89484	S17COCI, Sil ${ }^{\text {co }}$
8950 A Tel. Rec.	Sl7COC3 Ch
	S20CDC1, $\mathrm{S20COC2}$,
(See Model	S20CDC3 (Ch. 323-8)
94TV 0 -43-89	Rec.
$957 \mathrm{~A}, \mathrm{~B} \mathrm{Tel}$. Rec	9.101
(See Model	
15TV1-43-8957A) 162	9.103, 9.104 W ${ }_{59}^{60-10}$
8958A, B rel, Rec.	
	9.117 51
8960 Tel. Rec........	9.118 W (See Model 9.102) 50
8965 Tel. Rec........... 86	${ }_{9.121,}^{9-122 W}$
8960 Tel. Rec.	$9.201,9.202 \mathrm{M}, 9.2038 \ldots . .52-5$
8970A, 8971 A. 8972 A	$9.204,9-205 \mathrm{M}$........ 63
${ }^{89734,} 89854 \mathrm{~A}, 8988 \mathrm{~A}$,	9.207 M - $12 \ldots \ldots \ldots \ldots . .15$
	9.2138 (See Model 9.209$) 53$
(See Model $94 \mathrm{TV} 2.43 .8970 \mathrm{~A})$	$9-214 \mathrm{M}, 9.214 \mathrm{ML}$...... 65
	9.302 47
9002A Tel. Rec. (See Model	9-403M, 9-403M. 2 Tel.
(See Model $94 \mathrm{TV} 1-43.9002 \mathrm{~A})$	Q-404M Rel Rec.
	[See model 9.403 M]
(See Model $\text { OSTVT-43-8945A) } 145$	107, $9.407 \mathrm{M}-1.1$ $9.407 \mathrm{M}-2 \mathrm{Tel}$.
9008 A Tel. Rec.	$9-409 \mathrm{M3}$ Tel. Rec.
9010 A Tel. Rec.	$9-4138,9.413 \mathrm{~B}-2,9.4148$
(See Model 05TV2-43-9010A) 146	
	9.419 Ml , 9-419M1-LD,
9010 Brel . Rec. [See Model	9.419 Mz , 9-419m3
O5TV2-43-90108) 153	
14 A Tel. Rec.	
(See Model OSTV1.43.9014A) $\ldots .128$	(See model (9.403M).
05TV1.43.9014A ${ }^{\text {a }}$. $\ldots 128$. $422 \mathrm{M}, 9.422 \mathrm{MA}$ Tel. Rec.
12A, 9013A Tel.	$9-423 \mathrm{M}$ Tel. Rec. 91 A
$9015 \mathrm{~A}, \mathrm{~B}, 9016 \mathrm{~A}, \mathrm{~B}$ Tei. Rec. (See Model 15TV1.43-8957A)	$9-424 \mathrm{~B}$ Tel. Rec. (See Model 9-403M)... 79 9.425 Tel. Rec. 95 A. 2

$10.135,10-136 E, 10-137$
$10.138 \quad 10-139,10-140$

 Tel. Rec.
0.412 MU Tel. Rec.
(See Model $10-404 \mathrm{MU}) .114$
$0-414 \mathrm{MU}$ Tel. Rec...... 116
Rec. (See Model
Rec. (See Model
$10.4: 4 \mathrm{MU}$) 116
10.416 mU Tai Rec....... 116
(See Model. Rec. 0.414 MU) 116
$0-416 M 1$ (Ch. 292)
Tel. Rec. (See Mode
$10-414 \mathrm{MU}), 2 \mathrm{Ch}, 292 \mathrm{Tel}$.
Rec. (See Model
10.414 MU)
$0-418 \mathrm{MUU}$ Tel Rec....... 16 (See Model 10.404 MU$) .114$
$10-419 \mathrm{MU}$ rel. Rec...... 104

(See Model Rec. $10-404 \mathrm{mu}$) 114
$10-421$ MU Yel. Rec...... 106 $10-421 \mathrm{MU}$ Yel. Rec........106-4
10.427 MU Iel. Rec..... 125-1A
$10-428 \mathrm{MU}$
Tel. Rec.......129-5 10.429 M (Ch .2921 Te

Rec. (See Model
10.44 MU).......... 116
$10-429 \mathrm{MU}$ Tel. Rec.
(See Model 10.414 MU) 116
$1.100 \mathrm{U}, 11-101 \mathrm{U}$,
$11.102 \mathrm{U}, 11.103 \mathrm{U}$
$11.104 \mathrm{U}, 11-103 \mathrm{U}$
11.105
 $11.108 \mathrm{U}, 11-109 \mathrm{U}$
$11-1140,11.1150$,
$11.1160,11-1170$
$11.1160 \mathrm{U}, 111170$,
$11.118 \mathrm{U}, 11.119 \mathrm{u}^{\prime}$

$11-128 \mathrm{U}, 11-129$
(Ch. 312)

Tel. Rec Tel. Rec.
(See Model 11.442)
(A1so See Prod. Chge.
Bul. 22 Set $138-1$. 126
$1.445 \mathrm{MU}(\mathrm{Ch}, 321,-1,2)$
Tel. Rec. (See Model ${ }^{2} 126$
11.442 MU) 126
1.446 MU (Ch. 325) rel.

Rec. (See Mode
11.442 MU)

Rec. (See Model
11.442 MU)
11459 MIU MU

Rec. (See Mo
11.442 MU)
126
$1-461$ WU (Ch. 320)
Tel. Rec. (See Model
11.441 MU).
1.465 (Ch. 321, -1,
14) Tel. Rec. (See

Model 11.442 MU)...... 126
1.470 BU (Ch. 331) Tel.
Rec. (See Mode)
126
$11.442 \mathrm{MU})$
$1.471 \mathrm{BU}(\mathrm{Ch}, 320) \mathrm{Tel}$.

11.442MU1.
11.4738U Tel. Rec.
(See Model $11-442$)
(Also See Prod. Chige.
Bul. 22 -Set 138-1)
11-4758U (Ch. $321,-1$
2) Tel. Rec. (See
2) Tel. Rec. (See
Model 11.442MU)
1.476BU (Ch. 325) Tel.
Rec (See

Rec. (See Model
$11.442 \mathrm{MU})$
$1.477 \mathrm{BU}(\mathrm{Ch} .321,-1,21$

1.488U (C. 331) Tel.
Rec. (See Model
$11-442 \mathrm{MU}$)
$11-550 \mathrm{MUU}$ (Ch. 337)......126 $139-5$
11.5608 Ch (Ch. 337)....
(See Model 11.550 MU). 139
$17 \mathrm{CDC}, 17 \mathrm{CDC} 2,17 \mathrm{CDC} 3$,
17CDC4 (Ch, 331,
$331-1,331-21$ Tel.
$331-1,331-21$ Tel. Rec.
(See Model $11-442$). 126
$17 \mathrm{COCl}, 17 \mathrm{COOC2,17COC} 3$
(Ch. 331. 331-1,
331.2) Tel. Rec.
(See Model 11-442) 126
$20 \mathrm{CDC}, 20 \mathrm{CDC2}, 20 \mathrm{CDC3}$

Ch.
Tel. Rec
$\delta F A$.

DAVID BOGEN-Cont.

$11 x$	76-10
210 (See Model 110)	77
210 (See Model livi	76
$21 \times$ (See Model $1: \times$)	74
DEARBORN	
100	22-
DECCA	
DP-11	24-1
DP-29	19-13
Pr-10	25-12
delco	
R.705	42-7
R-1227, R-1228, R-1229	15-6
R.1230.A. R-1231-A,	
R-1232.A	14-33
R. 1233	42-8
R-1234, R-1235	7
R-1236, R-1237	29-7
R-1238	38-4
R-1241	62-11
R-1242	31
R-1243	32-4
R-1244, R-1245, R-1246	52
R-1248, R-1249, R-1250.	66
R-1251, R-1252	21-10
R-1253, R-1254, R-1255.	47-7
R-1408, R. 1409	15-7
R1410	
rV-71, TV-71A Tel. Rec	99A-3
TV-101, TV-102 Tel. Rec.	88-3
TV-160 Tel. Rec.	85-5
TV-201 (Television Receiv	59

DeSOTO (See Mopar)

DETROLA

554-1.61A (See Aria Model 554-1-61A)	
558-1-49A	7
568-13-2210	9
$\begin{aligned} & 571,571 \mathrm{~A}, 571 \mathrm{~B}, 571 \mathrm{~L}, \\ & 571 \mathrm{AL}, 571 \mathrm{BL}, \end{aligned}$	10
571X, 571AX, 5718X.	9-11
572-220-226A	8-
576-1-6A	8
579	7
579-2-58B (See Model 579)	
582	19
$610 . \mathrm{A}$	55
$811 . \mathrm{A}$	50
626 Series	11-5
7156	48
7270	

DEWALD

A500, A5001, A500W, A501, A502, A503.	
A504, A505	16
A-507	26-10
4-509	31-9
A. 514	27
A602, A605	16-10
A608 (See Model A602).	
B. 400	35
B-401	34
B-402	45
B-403	52-7
B. 504	43-9
B. 506	38
B-510	34
B. 512	35-4
B. 515	63-6
B-612	42-9
B-614	56
BT-100, BT-101 Tel. Rec.	79-6
C-516	64-4
C. 800	
CT. 101 Tel. Rec. (See Model BT-100).	79
CT-102, CT-103, СT-104	
Tel. Rec	82
D.E517A	167-5
D. 508	106-5
D-517	131-4
D. 518	100
D519 (See Model B-506)	
D. 616	102

Dr-120, DT-122 Tel. Rec. 100
 (See Model Dr-120).... 100
Dr. 182 , Dr-1 83 Tel. Rec. 118 -
 (See Model DT-182) . 118
OT. 1900 Tel. Rec. (See Model DT-I 62 R). 136
DT. 1020 DT. 1020 A Tel. Rec. (See Model DT-120) 100
DT.1030, DT-1030A Tel. Rec. (See Model DT-120) 100
Or-X. 160 Jel. Rec.
 ET-140, ET-141 Tel. Rec.
(See Model DT-IS2)
ET-140R ET-141R Tel. Rec.
(See Model DT-162R). 136 ET-170, ET-17I, ET-172
Tel. Rec.
(See Model DT-162R).. 136
ET-1900, ET-190R
ET-190D, ET-190R
rel Rec.
(See Model DT-162R)... 136

DODGE (See Mopar)
DORN'S (5ee Bell Air)
DREXEL (Mutual
Buying Syndicate)
17CGI, 17TW Tel. Rec
(Simitar to Chassis)....149-13
DUKANE

IA45.A
10325.

4A100 4 Flexiphone

DUMONT	DUMONT-Cont.	${ }_{602}^{\text {ELCAR }}$ (
	RA Vernon Model	ELECTONE
A-103 Tel. Rec. (Also	RA-112-A3, A6 (See	tSTS3
See Prod. Chge. Bul. 6	Model RA.i12A) 119	ELECTRO
Set 108-1) 90-3	wbury	в20 14-9
RA-103D Tel. Rec. (Also See Prod. Chge. Bul. 9	(See Madel RA-1 122) $\ldots 179$ Park Lone Model	Electromatic
	RA.117.A7 (See Mode)	APH301-A, APH3OI-C ... 7-11
-104A	RA-117A) 131	606A, 607A 5-32
(See Model RA.103D)	Parklane (See Model RA-147A) S	ELECTRO-TONE
But 9 -Set 114-1). 93	Plymouth	555 13^{13}
-105 Tel. Rec. (Also	(See Mode	706, 712 (See Model 555) 13
See Prod. Chae Bul. 6 S2-8	Mode	ECTRONIC Cor
	Model RA.11IA) 106	OF AMERICA (See
-106 Tel. Rec. (Su)	Revere ${ }^{\text {a }}$,	ELECTRONIC SPECIALTY CO.
1o RA. 105 . Set 721	See Mod	(See Ranger)
Set 108-1)	RA.113.B3.-B4	E/L (ELECTRONIC LABS.)
.108A Tel	Model RA	Sta
ISee Mode	Ridgewood (See Model	Model 76RU) 20
, 109 A-FAS, Tel, Rec.	65	76K, 76M, 76 W
ee Model RA-1091 Also	Royal Sovereig	(See Model 2701).... 4
Prod. Chge. Bul.	(See Model RA-119A). 156	,
54.5 Set	son	7108,
109-A 1	See Mo	Ch. 28751.. 20
(Also See Prod.	oy (See Model RA.103) 90	Orthosonic
(Also See Prod. Chge. ${ }_{\text {a }}$	(See Model RA-103D). . 93	
-110A Tel. Re		2600 "Master Utiliphone
	R4. 1651	
(Also Sea	Ra.lo	3000 Orth
Bul. 9 -Set 114-11	RA-109-A3, -A7 (See	EMERSON
,111-A1, A2, -A4, ${ }^{\text {a }}$	Models	2 lCh .12000
AS, Tet, Rec. . ${ }^{\text {a }}$, . . 106 -	erbrocke (See	200291 2-1
-112-A1, -A2, -A3,		503 (Ch. 120000, 120029) 1-18
A4, -A5. A6 Tel.	isbrooke	504 ($\mathrm{Ch} .120000,120029$)
Bul. 38-Sel 170-1)....	odel RA.130A	${ }_{505}$ (See Models Sol, 5021. 2
	Sherwod (See Model RA.101).	${ }_{505}^{505}$ (Ch. Ch .120041$)$ (12
	Serset	50 Model 5231...
Rec. (See Model	(See Model RA-162) . . 179	506
RA-112A) (Also see Prod	Stratiord	
Chge Bul 38-Set 170-1) 119	(See Model RA-105A). 72	508 (ch. 120008) 7-12
-116A Tel	athmore	509 (See Model 507
RA-117.Al, -A3, -AS,		
		511 ISee Madel 50
RA. 120 Tel. Rec. (See	RA.117.Al (See Model	511 (Ch. 120010) (See
Model RA-113) (Also	RA-117A)	S41
see Prod. Chge.	sssex	512 (Ch. 120006) 9-12
51-Set 185-1)........ 119	(See Mode! RA.105b).. 95	${ }_{512}{ }^{\text {a }}$ (Ch. 120056)...... 26
-1 30A Tel. Rec. (See	Tarrytown (See Model	514 (Ch. 120007)....... 27
Model RA-109)	RA-120)	515.516.
see Prod. Chge. Bul.	rrytown Mo	515, 516 (Ch. 120056
RA-147A Tel. Rec. ${ }^{\text {See }}$	Model RA-113) 119	1200561 26
model RA-117A) (A)	akefield (See Mode	517 (Ch. 12001
see Prod. Chge. Bul		11
83.11		See Mode
RA-160, Al Tel. Rec. 179-4	(See Model RA- 104A),. 93	519 (Ch. 1200301
	West	\$20 (Ch .120000 .120029$)$
${ }^{\text {Tela }}$. Rec. (See Model	Model RA.ilial 119	
RA-100) (See Model 179	Westbury	${ }_{522}$ (See Model 507) ...) ${ }_{8}$
RA-164 Tel. Rec.	(See Model RA-105A). . 72	s23 ${ }^{50}$ 5-37
RA-165 Tel.	estbury II (See	s24 17
Andover Model RA.117-A6	Model RA-109A-FAS) _ 110	525 ${ }^{2}$
(See Model RA. 117 A). 131	Westminster	527 (Ch. 120019) Tel . Rec. $21-13$
(See Model RA.147A - 131	Westminister II \|See	529.529 .9 (Cb, , 20028) 18-15
more Model RA-112-A	Model RA. l ISAI	$530 \mathrm{lch}, 120006$,
- AA^{4} (See Model	Sestwood	Ch. 120056) 32-6
RA.112A)	(See Model RA. $11041 \ldots 93$	931, 532, 533
nbury Mode: RA.162-B4 (See Model RA. 1601	Whitehall	934 (Ch. 120007)
Bontury Model RA-162.	Whitee moll ${ }^{\text {a }}$ /	535 Models 514 Ch .120007127
${ }^{\text {B21 }}$ through B26 (See	(See Modet RA-130A). . 175	336 (Ch. 120036) $21-14$
model RA-160) 179	White holl Io Mo	536A ${ }^{\text {24-17 }}$
Beverly (See Model RA. 1651		${ }_{538}^{537}$ (Ch. 120051$)$ isee
dford	Wickford Model	Model 549 Ch .120051
(See Modet RA. 108 A)	${ }_{\text {RA- }}$ (See M-B	
ookville Modet	(see Mode RA.180)... 179	${ }^{5404}$ (Ch. 120042) 20
	Wimbledon Model	
RA-13) Mratiol. 119		
RA. $113.85,-86$	inslow 'See	545 (Ch. 120047) Tel. Rec.
(See Model RA-13) $\ldots 119$	Model RA-109A-FAS)	Phototact Servicer
RA-1 17-A3 (See Model	Model RA.109.A1, .A5	
RA-117A) $\ldots \ldots . . .131$	(See Model RA-109A). 110	548 (Ch. 120051)....... 30-8
(See Model RA-1031.90	DUOSONIC	549 (Ch. 120051)
(See Model RA-103) . . 90 Chester	K1, K2 19-15	$550(\mathrm{Ch}, 120006)($ See Model 512 Ch 1200
(See Model RA-147A). 131	K3, K4 19-16	550 (Ch. 120056) (See
Clifion model RA-102)	DYNAVOX	Model $1212 \mathrm{Ch}, 120056$) 26
Clinton (See Model	AP-514 (Ch. AT) 28-9	${ }_{551} 51 \mathrm{~A}$ (See Model 536 Al . 24
RA.164)	M-510 …......... 15-8	${ }_{5534} 53$ (See Model 536 A).. 24
Club 20 mal Pa 10sa)		5.56, 557 ($\mathrm{Ch}, 120018 \mathrm{~B}$). . $70-4$
(See Model RA-108A). . 99	3-P-801 \ldots............ 36-3	${ }_{5578}$ (Ch. 1200488) ${ }^{\text {43- }} 10$
${ }_{\text {Colony }}\left(\right.$ See Model RA-105A ${ }^{\text {a }}$, 72	ECA	${ }_{558} 5$ (Ch. 120058) 31-11
	101 (Ch. AA) 1-25	
RA-160.A) (See		
Modet RA-1601 179	${ }_{105}^{104} \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdot{ }_{16=11}^{16}$	563 (Ch. 1200638) 73-4
(See Model RA-101).	106 ${ }^{\text {7 }}$, 10	56.4 (Ch. 120027) (See
	108 3-6	Model 540A Ch. 20042
(See Model RA-162)... 179	${ }_{131}^{121}$............. 13-15	
Fairfeld ${ }_{\text {ISee }}$ Model RA.110A1 93	${ }_{131}^{131} \ldots \ldots \ldots \ldots \ldots \ldots \cdot{ }^{131}$ 16-12	566 (Ch. 120051) (Se
(See Model Ra- 110 A).. 93	${ }_{201}$ a \ldots.............. 15 15-9	Model 549 ch 1200
landers Model ${ }_{\text {RA-162.B5 }}$ (See Model	204 32-5	507 (Ch. 1200100 (S5e
$\begin{aligned} & \text { RA-162-B5 (See Model } \\ & \text { RA-180) } 179 \end{aligned}$		$507(\mathrm{Ch} .120042)(5 \mathrm{Ee}$
Guilford Model	(Also Soe Hallicrafters)	Model 540A)
	EC-14 ${ }^{\text {che........... }}$	
Model RA-111A) 106	ECl13 3-13	
Hampshire (See Model RA-10:). .	${ }_{\text {EC- } 306}^{\text {EC 403, }}$	$\left.{ }_{571} \mathrm{Ch} .120066\right)$
hover Model		Television Receiver 46-25
RA-109.A2, Ab (See		571 (Ch. 120066)
Model RA-109A) 110	EX 3006 (See Model	${ }_{571}$ (Chel. Rec. 200086]
Hanover (See Madel RA-109A-FAS) . . . 110	EC.306)	Tel. Rec. 76-11
Hastings	EDWARDS Fidelotuner 33 \qquad	Model 540 ACh . 120042120
		5738 (Ch. 1200398) 42
(See Model RA-106A). . 99	EICOR (Also see Recorder Listing)	574 (Ch. 120064) (See Model 570).
Isfield	15 135-6	120068A,
Meadowbrook II (See Model RA.147A) . . 131	EKOTAPE (See Recorder Listing)	A (Ch. 120069 A$). . . .$. 40-5 (Ch. 120012 B$). . .$. $41-6$

EMERSON-Cont.
578 (Ch. 1200501

5
5
5
5
591
5
5
5
5
5
6
6
6
6
6
6
6
6
6
6 591 (Ch. 120055 A 93 (Chassis 20063 B)
(See Models 563) 394, 595 (Ch. 120071 A) (See Model 581).
596 (See Model 579A) 597 (Ch. 1200738)
599 (Ch. 120075) 600 (Chassis 120103 -B)
Tel. Rec. (Also See Prod Tel. Rec. (Also See Prod.
Chge. Bul. 9. Set $114-1$)
 602 (Ch. 120072 A . 603 (Chossis i20063 ${ }^{2}$) (See Model 5631).
604 A 605 (Ch. 1200768)... 606 (Ch. 120068) (See Model 571)
$606(\mathrm{Ch} .1200668)$

606 (Ch. $120087 \mathrm{~B}-\mathrm{D}$) Tel.
Rec. (See Model 571 Ch
 Rec. (See Model 571
Ch. 120086 B)....... Ch. 120086 B)
607 (Ch. 120074 A)
(See Model 597)......
608 A (Ch. 1200898) Tel.
Rec. 76
90
 610 (Chassis $120100 \mathrm{~A}, \mathrm{~B}$)
(See Model 587).
61 . 61 (Ch. 12008 B - Di
Tel. R (See Model 571
Ch. 12008 B)

 (See Model 587)
618 (Ch. 1200258) 618 (Ch. $120090 \mathrm{~B}, \mathrm{D})$ Te
Rec.
619 (Ch. 20092 D$)$ Tel
Rec. (See Model 571

EMERSON-Cont.
647. B, BC, C(Ch. 120113

B, BC, C) Tel. Rec. -
(See Model 614)......97
648 B (Ch. 120110 E) Tel...
Rec. (See Model 614).. 97
Rec. (See Model 614).
648 B (Ch. $120134 \mathrm{~B}, \mathrm{G}, \mathrm{H})$
Tel. Rec. (See Model
661 B) (Also see Prod.
Chge. Bul: 48,
Set 182-1) 137
649 A (Ch. 120094 A$)$
Tel. Rec............. 106 -
650 (Ch. 120113C) Tel.
Rec. (Seo Model 614)
(Ch. 120110)
$650,650 \mathrm{~B}$ (Ch.
120118 B) Tel. Rec......113--2 $6500(\mathrm{Ch} .120123-\mathrm{B}) \mathrm{Tel}$
Rec. (Also see Prod

Rec. (Also see Prod
Chge. Bul. 48 ,
Set 182.1)
$650 \mathrm{~F}(\mathrm{Ch} .120138 . \mathrm{B})$ Tel. Rec. \ldots...........133-1
6518 (Ch. 20120 Tel. Rec. (See Model o29B) 119 651C (Ch. 120109) Tel.
Rec. (See Model 631). 93 A Rec. (See Mode) 629D) 116 Rec. (See Model 629D) 116 652 (Ch. 120032 B
(See Model 642)
653 (Ch. 120080 B

Tel. Rec.
(See Model 650) 113
654D, 655 D (Ch. 120123 B)
Tel. Rec. (See Model
650 D) (Also see Prod
Chge. But $48, \ldots . . .109$
Sel $182-11$..........
 Rec. (See Model 65
655 B (Ch. 120123-8)
Tel. Rec. (See
Model 8500) 109 655 F (C. 120138 - 8 Tel.
Rec. (See Model 650 F). 133 Rec. (See Model 650F). 133-1A
656 , 6578 (Ch. 120122B) 111 - 5 Rec. (See Model 6290) 116 858C (Ch. 120124 T Tel.
Rec. (See Model 6290) 116 658 D (Ch. 120124 B)
 661 B (Ch. $120134 \mathrm{~B}, \mathrm{G}, \mathrm{H}$)
Tel. Rec. (Also see Prod.
Tel. Rec. (Also see Prod
Chge. Bul. 48,
 $120128 \cdot \mathrm{~B}) \mathrm{Tel}$. Rec.
(Also See Prod. Chge.
But. 18 .Set $130-11$). 125-6
6648 (Ch. $120133-\mathrm{B}$) Tel.
Rec. (See Model 660 B). 131
Rec. (See Model 660B).
o65-B (Ch. 120131 - Band
Radio Ch. $120130-8$)
Tel. Rec. $120135 B$, G, H
666 (Ch.
and Radio Ch 120132 B)
Chge. Bul. 27-Set
148.11 133-5
$667 \mathrm{~B}, 668 \mathrm{~B}$ (Ch. 120134 B,
G, H) Tel. Rec. (See
Model 661 Be (Also see
Set 182.1)
669 B (Ch. $120129 \mathrm{~B}, \mathrm{D}$)
Tel. Rec. (Also see Prod
Chge. Bul. 24, Set
142.1 , and Prod. Chge
142.1, and Prod. Chge.
Bul. 47, Set $181.11 \ldots \ldots 126-5$
6698 (Ch. $120148-\mathrm{B}) \ldots \ldots$.
Tel. Rec.
6718 (Ch. $120137-\mathrm{B}) \ldots \ldots 118-6$

 Rec. (See Model 660B). 131
674 B (Ch. $120134 \mathrm{~B}, \mathrm{G}, \mathrm{H}$)
Tel. Rec. (See Model
Sbib) (Also see Prod.
Chge. Bul, 48,
Set 182.1)
$6758(\mathrm{Ch} .120129 \mathrm{~B}, \mathrm{D})$
Tel. Rec. (See Model
Tel. Rec. (Also see Prod.
Chge.
Chge. Bul, 47,
Set i81-1) 126
6768 (Ch. 120140 B)
Tel. Rec. $126{ }^{\text {Sel }} 128-6$
670D. Rec. $120144 B, G, H)$
Tel. Rec. (Also see Prod
Tel. Rec. (Also see Prod
Chge. Bul. 48,
Chge. Bul. 48,
Set $182-1$)
676 (Ch. 120143)
Tel. Rec. (Aiso see
Re!. Rec. (Aiso see
Prod. Chge. Bul.
$50-5 \mathrm{et} 184.11148-6$
$677 \mathrm{~B}, 678 \mathrm{~B}$ (Ch. 1201348, 778, 678 B (Ch. 120134 C
G, H) Tel. Rec. (See Model Chib) (Also see
Prod. Che. Bul. 48,
 6808 (Ch. 120144.8) Tol.
Rec. (See Model 670D) 138 $680 \mathrm{~B}(\mathrm{Ch} .120144 \mathrm{G}, \mathrm{H})$
Tel. Rec.
(See Madel 676D)
6800 (Ch .120140 B) Tel.
Rec. (See Model 676 B). 128
680 D (Ch. $120144 \mathrm{~B}, \mathrm{G}, \mathrm{H})$
Tel. Rec. (See Mode1
676D) (Also see
Chge. Bul. 48,
Set 182.1$)^{48,} 138$
$6818(\mathrm{Ch} .120140 \mathrm{~B}) \mathrm{Tel}$.

EMERSON-Cont.	ESPEY-Cont
Ch. 120047 (See Model	${ }_{513}^{5128} \ldots \ldots \ldots \ldots \ldots \ldots{ }^{182}$
${ }^{5451}$ Photofact Services 82	
Ch. 120066	${ }_{58}^{524}$ (See Model 188).... ${ }^{\text {a }}$
(See Model 571) 46	
Ch. 120066B	
ISee Model	641.642
Ch. 120066 B	651
(See Model 606)	652, 653 (Sea Model 651)
Chi 120084 B	751 (See Model 188).... 90
See Model 609)..... 90	11-2, 6511.5.
Ch. 1200868	6514. $6516,6517.6520$.
Ch. 1200878-D	(Ch. Fi97) Soe model
(See Model 571)..... 76	651
Ch. 120088 B	6540, 6541
(See Model	6542 (Ch. F997)
Ch. 120089 B	(See Model 651].
(See Model 608A)	6545 (Ch. FJ97)......... 5--16
Ch. 120090 B	6546 (Ch. FJ971)
(See Model 58)	See Model
1200908, D	6547 (See Mod
(See Model 618)	6540, 8541
1200900	6560 (Ch. Fs97)
	[See Model (${ }^{\text {S }}$]
Ch. $1200910 . \mathrm{QD}$, 76	11, $6612,6613,6014.2$
	6615. $0630.6631 .0632 .18-16$
(See Model 571)...... 76	7541 ($\mathrm{Ch} . \mathrm{F} 197$)
Ch 120094 A	(See Model 651).
(See Model 649A).... 106	7552 (See Model 188)... 90
12009	
(See Model	Esquire
	60.10, 65.4 14-11
(Soe Model 632)..... 93A-7	511
(See Model 621)..... 108	${ }_{520}^{517}$ (See Model 520)
Ch. 120098 P	550 177-6
(See Model 621)..... 108	
ise M98	FADA
1201038 (See Model	G.925 Tel. Rec........ 89-6
Chge. But. 9 Set 114.1) 87	P82 $\ldots \ldots \ldots \ldots \ldots \ldots \ldots{ }^{\text {21-16 }}$
1201048, BJ	P100 $27 .-10$
iSee Model 608 al.... 84	178
Ch. 120107 B	P.130 ${ }^{135}$
${ }^{(S \text { See Model }}$ 571).... 76	$\mathrm{R}^{\mathrm{RCC15}}$, R7C25 Tel. Rec... 158
Ch. 120109	R-1025 Tel. Rec.
See Mode	${ }_{\text {R }}$ (See Model R-1025) ... 114
Ch. $120110, \mathrm{~B}, \mathrm{BC}, \mathrm{C}$ (See Model 614, B, BC, C). . 97	S4C20 Tel. Rec....
120110 E	54 CAO Tel Rec.
See Model 614) 97	S4TIS Tel Rec
	(See Model ${ }^{\text {a }}$ (200) . . 142
20114	\$4730 Tel. Rec.
	(See Model S4C20) ... 143
Ch. $1201148{ }^{\text {a }}$	StS 555 Tel. Rec........ 134
(S5ee Model 6291.... 93A-6	(See Model SbC55)... 134
(See Model 6501 113	56165 Tel. Rec.
Ch. 120120	(See Model S6CS5)... 134
(See Model 6298, Cl . 119	S7C20, $57 \mathrm{C} 30 \mathrm{Tel}$. Rec.
. 1201238	Isee Model SbCss).... 134
(See Model 6290) 116	57165 Tel. Rec
Ch. 1201248	(See Model SbC55)... 134
(See Model 6290) 116	59 ClO Tel. Rec.
Ch. 1201248	
	S200el S6CS5)..... 134
(See Model ($602 \mathrm{~B}, 063 \mathrm{~B}$)	${ }_{51015}$ Tel. Rec., is..... 109
6698) (Also see Prod.	Model S1015) 109
Chae. Bul. 24,	S1055, S1055 (Tel. Rec.
Set 142.11) 126	(See Model S6C55) ... 134
$\mathrm{Ch}^{\text {che }} 120131$ - ${ }^{\text {d }}$	(See Model Soc55)... 134
	${ }_{51065} 10 \mathrm{Tel}$. Rec.
Model 6008) 131	(Soe Model SoC55).... 134
1201348.	TV30 Tel. Rec. 74
(See Model 661B) $\quad 137$	7 742 Tel. Rec. 179
1201338, G, H ${ }^{\text {See }}$	7.52 Tel. Rec (See Model 7C42). 179
Model 666B) (Also see Prod, Chge. Bul. 27 -	7132 Tel . Rec. 177
	${ }^{20} 222$ Tel. Rec. 180
Ch. 120136-B (See Model 6538) 159	
Ch. 120138-B (See Model	24 TlO Tel. Rec. ${ }^{\text {Reee }}$
650F) ${ }^{\text {F }}$ (${ }^{\text {a }}$.	Model 20C22) ${ }^{\text {a }}$ (1)... 180
Ch. 120140 B (See Model	1731, 175C, $177 C 0$
${ }^{6768)} 120141.8{ }^{\text {cee }} 128$	Tel Rec. 215 C Tel. Rec.
Ch. 120141.B (See Model 6838)	602 el Rec. 14-12
Ch. 1201428 ises	605. 600 Series 1-13
Model 670F) 148	609.010 Series........ ${ }^{1-15}$
$\mathrm{Ch}^{\text {Model }}$ (776 FI) ${ }^{\text {a }} 148$	
	${ }_{700}^{62}$ Series ${ }^{\text {a }}$ 32-23 ${ }^{\text {a }}$
Ch 1201414 C , H 15 se	711, 740 28-10
Model $77001, \ldots . . .138$	721 Tel. Rec. 732177
Ch. 120148-B (See Model	(See Model 7732) $\ldots . .177$ 775T Tel. Rec.
Ch. $120153 . \mathrm{B}$ (See Model	
7008, 7018)	
120154.8 S See	795 [............. 36
	799 Tel. Rec. (See
Ch. $120158-\mathrm{B}$ (See Model 7000, 701 D$)$	
Ch. 120160-B (See Model	${ }_{855}^{845}$ …............ 97-6
$\mathrm{Ch}^{699 \mathrm{D}} 120162 \mathrm{~A}$ (See Model ${ }^{165-14}$	
Ch. 120164-B isee	Model TV301.... 74
Model 71181	${ }_{9}^{925}$ (Seee Model G.925). . 898
$\mathrm{Ch.}^{1201088.01580}$	
Ch. $120169 . \mathrm{B}$ (5 ee	965 (See Model G 925)
Mode! 711F)	Tel. Rec.
	1000 Series 1-17
Model 733F)..	1001 17-15
Empres 5	FAIRMONT
55, 56 7-14	$30 \mathrm{Tl} 4 \mathrm{~A}-056$ Tel. Re
ESPEY (Also see Philharmonic)	
RR13, RR13L 13-17	(Similar to Chassis).... 109
${ }_{7 C}^{88} \cdots \cdots \cdots \cdots \cdots \cdots \cdots{ }_{15}^{47}$	31773 Tel. Rec.
${ }_{188}$ (1)................. 159	31874 Tel. Rec.
31.1101^{103}	(Similar to Chassis).... 85-3
s1	318145 Tel . Re

freEd EISEMAN

	1620C) Tel Rec. ... 113-1A
	1, 102, 103, 104 (Ch.
	19001 Tel .
	Ch. 1620A, B
	Ch, 1916-16, 1916-19
GALVIN (5ee Matorola)	
GAMBLE-SKOGMO (See Coronado)	
	GAROD (Also See MAJESTIC
	4A-1, 4A-2 29
	48.1 51
	5A-1 22
	5A-2 5 5-28
	5A-3 44
	5A-4 40
	5API.Y "The Companion" 15-12
	50, 5D-2 12-12
	5D-3, 5D-3A 22-16
	50-4, 50.5 33
	5RC-1 36
	6A.2 28-13
	6BU-1A "The Senatar' .. 13-18
	6DPS, 6DPS.A 12-13
	OTZ1, 10TZ2, 10TZ3,
	10TZ4, IOTZ5 Tel. Rec. 60-12

IMPORTANT

How to obtain a sample PHOTOFACT Folder

Service Technicians who have not yet enjoyed the advantages of the world's finest Radio-TV service data, may obtain a Free Sample PHOTOFACT Folder and see for themselves how they can save time and earn more. To get your free sample, simply state the PHOTOFACT Set Number and the Folder Number (not applicable to listings bearing suffix Ietter "A" or an asterisk *). Mail your request on your business letterhead (or enclose your business card) to:

HOWARD W. SAMS \& CO., INC
 2201 East 46th Street
 Indianapolis, Indiana

This offer is limited to one sample Folder. (PHOTOFACT Distributors do not stock sample Folders.)

690 Tel. Rec.
(See Model 680)...... 113
715 A, 716 Tel. Rec.
715 , A, 716 Tel. Rec
(S.ee Model 680).... 113
730,
(5ee Model 680)....... 113
732, 743 (Run 1) Tel. Rec.
740 . 74 (
(See Model 680)........ 113
745 Tel. Rec............
750 105-4 751 Tel. Rec.
750,751, Tel. Rec. (See
Model 745). 105
760,761 Tel. Rec. (See
Model 7451
805,800 Tel. Rec.......... 136 -9
(See Model 805) 136
$8104,811 \mathrm{Tel}$. Rec. 124 -
815 Tel. Rec.
(See Model 8104) 124
$818,820,822$ Tel. Rec.
818, 820, 822 Tel. Rec. 124
(See Model 8104).....124
832,833 Tel. Rec.121-1A
860,861 Tel. Rec.
(See Model 810 A$) \ldots . .$.
8704
$\begin{aligned} & \text { 870, } 871 \text { Tel. Rec. } \\ & \text { (See Mode! } 810 \mathrm{~A})\end{aligned} \ldots . .124$

1000 (Ch. W 1000 D)
Tel. Rec.
180
1001, 1002, 1003, 1004
(Ch, F1100D Tel. Rec. 169-7
1005, $1006\{\mathrm{Ch}$ All00D]
Tel. Rec.
1007 (Ch. F1lood) Tel.
Rec. (See Model 1002).
Rec. (See Model 1002). 169
1008 (Ch. X 10000) Tel.
1008 (Ch. X1000D) Tel.
Rec. (See Model 1000). 180
1010 P 1 Ch . A-1200D.
Tel. Rec. W1200D)
1012 P (Ch. A. 12000. 18-6.
1012 P (Ch. A. 1200 D,
$\mathrm{K} 1200 \mathrm{D}, \mathrm{W} 1200 \mathrm{D}$)
K1200D, W12000)
Tel. Rec. (See
Model 1010P)
1013 Ch (F12000) Tel. 188
Rec. \{See Model 1010P\} 1
1015, 1016, 1017, 1018,
$1019(\mathrm{Ch}$.
Allood Tel.
Rec. (See Model 1005). 177
1019 (Ch. Z10000) Tel).
1019 (Ch. Z 210000) Tel.
Rec. (See Model 1000). 180

l12000, X 12000 i Tel.
Rec. (See Model 1010P)
1022 C (Ch. G12000) Tel.
Rec. (See Modet 1010P) 188
1025 (Ch. (1000D) Tel
Rec. (Ch. D1200D.....172-4
1026 P (
1026 P (Ch. D1200D,
$11200 \mathrm{D}, \mathrm{XI200D}$) Te.
Rec. (See Model 1010 P$) 188$
1027 C
Rec. (See Madel (Ch. G1 200D) Tel.
1027C (See Model 1010) 188
Rec. (See Model
Rec. (See Model 1010 P) 188
1111 P (Ch. Al2000) Tel. Rec. (See Model 1010P) 188
1113 P (Ch. D1200D) Tel.
Rec. (See Model 1010P) 188 Rec. (See Model IOLOP) 188
14808 (Ch. R9000)
 17810 M Tel. Rec. 152-9
17811 H Tel. Rec. 17812, 17811,17814
17815-H Tel. Rec.
(S5ee Model 17804 C$) \ldots 155$ 17816, 17817 Tel. Rec.
(5 ee Mode! $17811 . \mathrm{H}$). 156 (See Model Re.
17818 Tel. .
(5ee Model i (5ee Model 17804C).. 15
17824 Tel. Rec.
 1789. (Ch. F1100D) Jel.
Rec. (See Model 1002). 169 17838 Tel. Rec.
(See Model
17804C). 155 (See Model 17804 C).
$17848,17849,17850 \mathrm{Tal}$. 17848, 17849,17850 Tal.
Rec. See Model
17804C. 155 17860-H, $17861-\mathrm{H}$
(See Model 17811.H) . 156 17905 Tel. Rec.
(See Model 17810-M). . 152 17906 Tel. Rec.
(See Model 178244) . . 16 17930, 17931, 17932, 17933,17934 Tel. Rec.
(See Model 17824A)... 165 20823 (Ch. M900D) Tel. 202838 (Ch. L9000) Tel.
Rec. (See Model 14808) 167 Rec. (See Model 14808) 167
20823 C Tel. Rec. 20823 C Tel. Rec.
(See Model 17824 A$) \ldots 165$ 20872 Tel. Rec
20882 Tel. Rec.
(See Model 17804C) . . 20990, 209905,20994
Tel. Rec.
21923 Tel. . . . 21923 Tel. Rec.
(See Model 17824A) ... 165 21928 Tel. Rec.
(See Model 17824A) . . 165 21940 Tel. Rec.
(See Model 17824A) ... 165 21980 Tel. Rec.
(See Model 17824A) ... 165 Chassis W10000 (See

Model 1000) 180 | Chassis |
| :---: |
| Model 10000 (See | Model 1000) (S...... 180

Chassis Z10000 (See Chassis Al 1000 isee
Model 1005) Chassis A12000 (See Model 101OP)
Chossis DI2000 (See Model Chossis D12000 (See Model
1010P)

hallicrafters-Cont. Chassis F1200D (See Model 1010P)	HOFFMAN-Cont. 632, 633 (Ch. 160) Tel. Rec
Chassis G12000 isee	632, 633 (Ch. 171)
Model 1010p	See Model
(hassis k12000 (See Model 1010p) 18	
Chassis 412000 isee	Tel. Rec. (See
Model 1010P) 188	150
Chassis W1200D (See Model 1010P) M...... 188	
Chossis Model 12000 (1010 P) Se 188	$636 \mathrm{~B}, 637 \mathrm{~B} \text { (Ch. } 183 \mathrm{~B})$ Tel. Rec.
hamilton electronics	(See Model 208102) . . 168
H-15-S............. 16-17	Telel. Rec. 144 -5
H-50-25 16-18	16. 817 (ch. 145)
hamilion radio corp. (Seo Olympic)	$820,821,822$ (Ch. 146) Tel. Rec.
HAMMARLUND	
	${ }^{830}, 831$ (ch. isi) Tel.
harver-wells	832 (Ch. isil Til. Rec. 974
AT-38-6, AT-3B-12 $\ldots .$. $32-11$ ATR-3-6, ATR-3.12 $\ldots .$. $36-14$	836, 837 (Ch. 153) Tei.' 93A-8
heath	
HBR-5 24-20	846 (Ch. 1511 Iel. Rec.
hofrman	
A.300 ….......... 4-41	Tel. Rec. See Model
A-309 (Ch. 1191	8471
	(S5eo Model 630) . . . 150
	870, 871 , 872 (Ch. 170$)$
${ }_{\text {A. }}^{\text {A }} \mathbf{4 0 0}$ (Ch. 110 S) 12	1. Rec. (See Model
${ }_{8.1000}^{\text {B-4 }}$................. 20.14	876, A, 877, A, 878, A
c-501 48-11	(Ch. 171)
C-502 51	(See Model 630) $\ldots 150$
	$880,881,882,883$,
	$885,886,887$ (Ch. 183) Tel. Rec.
${ }_{\text {c509, }}$ C510.	(See Model 636) 141
C. 511 (See Model C-501) 48	$887 \mathrm{~B}(\mathrm{Ch} .183 \mathrm{~B})$
C. 512 (Seo Model C-502) 51	Roc. (See Model 208102) 168
C-513 (Seo Model C.503) 50	${ }^{890} .891 .892$ (Ch .175)
${ }^{\text {C. } 514} \mathbf{C} 518$ (See Model C.504) 47	Rec. (Soe Model
	${ }_{893} 8301894,895,896,897$
C1006, Cl^{1007}........ 54-9	(Ch. 185)
CT.800, CT.801, CT-900,	(See Model 636)..... 141
${ }_{7 M 103} \mathrm{CT} 901$ (Tol. Rec.)	
(Ch. 190) Tel.' Rec.	Rec. See Mode 208102) 168
M109, 7B110, 7 P111,	137) Tel Rec.
Ch. 200) Tel. Rec	2, 9131
1098, 781108	Rec. isee Model
7P1118 (Ch, 210, M)	4, 915 ich.
7m112, 78113 (Ch, 202)	Rec. (Soe Model 610)... 97A
Tel. Rec.	Rec. (See Model 830)... 97a
1128, 781138	920 (Ch. 152) Tel. Rec
7P1148 (Ch. 212, M)	(See Model 830)..... 97a
${ }^{\text {Tel. }}$	
7 7304, (Ch. 190)	$\begin{aligned} & \text { 184, Rec. (See Model } \\ & 847 \text {, } \end{aligned}$
	951, 952 Ch. 172
208501 (Ch. 183 T) Tel.	953, 954, 955 (Ch. 184)
Rec. (See Model 20810	
Rec. (See Model 208102)	
$20 \mathrm{M1O1F}$, 20 B 102 F	Tel. Rec. (Seo
$\mathrm{CH}_{6} 1941$ Tel. Rec.	Model 9501 - .i... 12
M500, 208502 (Ch.	963,964,965 (Ch. 186)
(5e8 Model 636 B).... 168	(Seee Model 636)...... 141
P702 (Ch. 1911	isee Modol
Tel. Rec.	
M106, 211	(See Model A200).
${ }_{\text {21el. Rec }}$	Chassis 107
M115, 218	Chassis 10ass ASou)
$21 \mathrm{Pl17}$ (Ch. 198, M)	(See Model ASOI).....
Tel. Rec. .i.l......	Chassis 1105
${ }^{21 m 12121218122}$	(Seee Model A700)..... 12
${ }^{2} 1$	Chassis 114
Tel. Rec.	(See Model B1000).... 20
(Ch. ${ }^{\text {M 901) }}$ Tel.	Chassis 119
21 m 305 (Ch .201) Tel. Rec.	Chassis 123
$21 \mathrm{M305B}, 218308 \mathrm{Bb}$	(See model C504).
21P307B (Ch. 2II, M) Tel. Rec.	Ch. 138 (See Models
21 м 308,21 вз09,	Ch. 140 ISoe Mod
${ }_{\text {Tel. Rec. }}^{21 P 310(\mathrm{Ch} .196 \mathrm{M} . \mathrm{T})}$	Ch. 141 (Rodio Ch. 137)
21 M503, 218504 ,	Ch. 142 (See Model ${ }^{\text {cil2) }}$ 97A
${ }^{21 P 5 S 5}$ (Ch. 191)	Ch .143 (See Model 826) 95A
21 m 5062	$\mathrm{Ch}^{145} 15$ (See Models
21 PSO 8 (Ch. 2i1, M)	Ch. 140 (See Modei 820)
${ }^{\text {Telel. }}$ Rec.	Ch. 147 (See Model 826] 95A
219702 (Ch. $196 \mathrm{M}, \mathrm{T})$	
Tol. Rec, \ldots.......	Ch. 151 (5ee Model 830) 97A
${ }^{2199900,218901 .}$	Ch. 152 (5eo Modol 9171 97A
$21 \mathrm{M903}, 218904$	Ch. 155 (Seo Model 600) 954
${ }_{\text {21 P9OS }}(\mathrm{Ch} .213, \mathrm{M})$	Ch. 156 (5eoe Model 847).. 97A
	Ch. 157 (Soe Model 860).. 97A
${ }^{\text {Tel Rec }}$ Rec.	Ch. 170 (see Model 946).. 97A
$24 \mathrm{M7O8}$ (Ch. $187 \mathrm{~B}, \mathrm{~B}, \mathrm{C})$	(Seeo Model 630) , 150
Tel. Roc. (See Model 248707)	Ch. 172 (Seee Model 950). 127
	Ch. 174 (Soe Modol 950) 127
600, 601 (Ch. 154, 135)	Ch. 175 (See Model 830). 150
	Ch. 178 (S5eo Model 950). 127
(See Model ol0) 97a	C ${ }^{\text {coe }}$,
${ }_{6} 13$ (Ch. 1491 Tel. Rec.	Ch. 187 , B C C (Seo
(Soo Model ciol)	Model 2487071 159
Tel. Rec.	Ch. ${ }_{\text {Ch, }} 1901$.
T30. 631 (Ch. 170) Tol. Rec. 150-7	Ch. 192, в

hoffman-Cont.	Jackson
Ch. 196	OP.51
Ch. 200	JP-
Ch. 201	JP.
Ch. 202	JP-
Ch. $211, \mathrm{M}$	JP-2
Ch. 212, M	
Ch. 213 ,	1P-400 isee Model
Ward	10C, 10 T Tel.
4724 CC , 4724F,	12C, 12 IJTal . Rec
472C, 472F $\ldots \ldots \ldots$. 31 -14	(See Model loc).
4745	14 C .14 T
Photofact Sectivicer 84	oc ior Tel Pex
$481 \mathrm{~B}, 481 \mathrm{C} 481 \mathrm{M}$	
	$17 \times \mathrm{Cl}$ Model loc)..... 132
$901 \mathrm{~A}-\mathrm{E}, 901 \mathrm{~A}-\mathrm{H}$, $901 \mathrm{~A}-1$.	(See Model locl 132
促	$\times \mathrm{C}$, $20 \times \mathrm{teTel}$. Rec.
901A Series Series)	(See Model 10C).
902 ${ }^{\text {a }}$	
906. 906C …......... 17-18	$214 \mathrm{~A}, 217 \mathrm{~A}, \mathrm{~B}, \mathrm{C}$.
909 M $25-15$	$220 \mathrm{~A}, \mathrm{~B}, 221 \mathrm{~A}, \mathrm{~B}$
920 5-7	Rec.
HUDSON (Auto Radia)	
D847 (Fact. No. ©MH0899) 25-16	${ }^{312}$ 2 Tel. R
DB48	$10 C) \ldots .132$
223908	316 Te
	355
229403 (Ch. 749.2$)$ (5 ee	${ }_{412}^{350}$
Model 225908 "Late") 167	(See Model 10C) 132
HUDSON (Dept. Stores)	415
	400\% Tel
Simil	(See Model IOC) 132
	1700C, T Tel. Rec.
to Chossis). . . 10	(See Model 10C) 132
el. Rec.	2000 C Tel. Rec.
Similar to Chossis).... 72-4	
8 T4 Tel. Rec.	
318145 Tel . Rec.	5000) Tel. Rec....... 88
Similor to Chassis).... 85-3	5600, 50500 Tel. Rec.....
814-872 Tel.	Ch. 114 HTel Tec ${ }^{\text {Rec.... }} 168$
${ }^{31815 A}$ I Tel. Rec.	Ch. $116 \mathrm{H}, 117 \mathrm{HJTel}$ Rec.
(Similat to Chassis].... 85-3	(See Ch, 114H) 162
(Similar to Chassis) 85-3	
819A.900 Tel. Rec.	
(Similar to Chassis).... 78-4	$324 \mathrm{~A}, \mathrm{Tel}$. Rec
(Similar to Chassis) ...182-5	JEFFERSON-TRAVIS
518 TSA Tel. Rec.	MR.28 10-22
(Similar to Chassis). . . 85-3.	MR3 17-18
${ }^{518989.918} 8$ Tel. Rec.	JFWEL
518 T 10 A .916 Tel. Rec	I7C9, 17T9, ITIW7
(Similar to Chassis)	Tol. Rec.
2318 TAAA-954 Tel. Rec.	${ }^{21} 12.2199$ Tel Rec.
(Similar to Chassis).... 78-4	${ }^{304}$. 35-12
HUDSON ELECTRONICS	$502 \mathrm{~A}, \mathrm{~B}, \mathrm{C}, 503 \mathrm{~S}$,
RPM-71 186-6	504A, B, C; 505A, B, C 15-14
${ }^{39 \mathrm{HB}}$. 1^{86}	
${ }^{332-\mathrm{H}}$..............123	${ }_{814}^{801}$ (Irixie) ${ }^{\text {45 }}$ 514 14
	915 (See Model 910)
${ }^{374 \mathrm{H}}$. C 188-7	${ }_{9204,} 921$.......... $55-10$
HYdE PARK	935, 936 (See Model
AR14L Tel. Rec........ . 169-8	
AR17L Tel. Rec.	
	956 144
14 TR , 16 TR Tel. Rec .	${ }^{960, ~ U . ~} 961$
(See Model MsTl2) . . 168	${ }^{985}$ (See Model
$17 C D$ (1st Prod.) Tol. Rec.	
(See Model MST12) . 168	5020, U 136
17 (see Model AR1 14i) Rec. 169	${ }_{5040}$................ 160
$17 C R R$ (1st Prod.) Tol. Rec.	${ }_{5050}^{5050}$................ ${ }^{128}$
(See Model MST12) . 168	${ }_{5100 \mathrm{E}}^{5057}$ -
17 CRR (2nd Prod.) Tel	515,
(See model AR141)	KAISER-FRAZER
	100170 128
RoG (2nd Prod.) Tel. Rec.	100205 200001
(See Model AR141).... 169	
	KAPPLER
$20 C D$ (2nd Prod.) Tol.	1025 54-10
(SSee Model AR144).	karadio
${ }^{\text {(S Seol Model MSII2) . . . } 168}$	
$112 \times$ Tel. Rec.	1275, 12754 85-7
(See Model MSIL2) ... 168	1276 115
${ }^{203 D}$ (1st Prod.j) Toil. Rec. 168	Kayf-halbert
	012 (Ch. 243) Tel. Rec... 169
(See Model AR141).... 169	014 (Ch. 253) Tel. Rec... 146
312 Tel. Rec.	024 (Ch. 253) Tol. Rec.
(See Modol MST12).... 168	
(Soe Model MST12).... 168	${ }^{(C h} .242$) Tel. Rec.....139-7
1000, 1001 Tel. Rec. (See Model AR14L).... 169	044, 045, 046 (Ch. 253)
3163 CR Tel. Rec.	(Seo Model 014) 146
(Seee Model MST12).... 168	074, 076, 077 (Ch. 253)
8163CR Tel. Rec. (See Model MST1 2) 168	Tel. Rec. (See Model 014)....... 146
8193 CM Tol. Rec.	
(See Model MST12) . . . 168	Rec. (Also see Prod.
CORP. (Soe Simplon) Similar to Chassis) . 85-3	122 (Ch. 243) Tel. Rec. (See Model O12)
	(Ch. 2533 Tel.
(Also Soe Contury)	
-40R. IT-42R (Ch. IT-26R,	See Model 1140
-39R, (T-46R) 99A. 7	,
	31, $232,233,234,235,170$
	236, 37, 238, 239.
(Soe Recorder Listing)	240, 241 (Ch. 231 or
Internatio	(See Model 033).
(ELEISION CORP.	
$\begin{aligned} & \text { E-16 Tel. Rec....... } \\ & \text { F-16 Tel. Rec. } \end{aligned}$	$425,426(\mathrm{Ch} .253) \mathrm{Tel}$. Rec. (See Model 012)

LAFAYETTE-CORH.
N559 (Similar to Chassis) 90-7
IN560 (Similar to Chassis) $109-7$ IN561, IN562 $\begin{array}{cc}\text { (Simitar to Chassis).... } & \text { 97-8 } \\ \text { IN819 (Similar to Chassis) } & 69-7\end{array}$ IP 184 Tel. Rec
(Similar to Chassis).....149-13
Ipl85.1P186 Tel. Rec. (Simitar to Chassis)....149-13 (Similar to Chassis) . . . 149-13 $27 \mathrm{BM1}$ Tel. Rec.
(Similar to Chassis).... 149-13 20 CP Tel. Rec
(Similar to Chassis) . . . 149-13 LamCO

LEAK

LEAR (See Record Changer
LEARADIO

Chassis R-971	51-11
RM-402C (Lecravian)	42-15
561, 562,563	1-26
565, 565BL, 560, 567, 568	9-20
1281-PC (Ch. 78).	49-11
6610PC, $6611 \mathrm{PC}, 6612 \mathrm{PC}$	9-2!
6614, $6815,6616,6619$	3-18
6617PC	16-22
LEE (See Royal)	
LEE TONE	
AP-100	16-23
LEWYT	
605	
615A	11-13
	42-16
LEXINGTON	
	13-2
LIBERTY	
A6K, A6P, 6 K	20-18
507A	$20-19$

LINCOLN (Auto Radio)
ICH748 (1H-18805)
ICH748 (1H-18805)
(See Ford Model

2CH753 (FAA.i8805-A)
(See Ford Model
2CF754)
 8 ML 882 ($81-18805 . \mathrm{A}$).
 $8 M 1985 E(81.18805-B)$,
$8 M 1985 Z(8 \mathrm{H} .18805-\mathrm{A})$,
8ML9852E (8H-18805): 83-4
LINCOLN
LINCOLN
SA. 110 S
LIPAN (See Supreme)
LULLABY (See Mitchell)
LYMAN
LYRIC (Also See Rauland)
546T 546 TY 546TW
MAGIC TONE

500, 501	
504 (Bottle Receiver)	22-18
508 (Keg Radio)	38-9
510	52-10
900 (See Model 508)	38
MAGNAVOX	
104 Series (Ch. CT301 thru (T314) Tel. Rec..	61
Chossis AMP-101A, AMP-1018	43-12
Chassis AMP-108A, AMP.108B	41-10
Chassis AMP-109	
Chassis AMP-110	
AMP.111A. B, C.	68-10
Chassis AMP.116	
Chassis CR-188 [155B	
Chassis CR190A, CR190B.	46-14
Chossis CR-192A, CR-1928	41-11
Chassis CR-197C	37-11
Chassis CR-198A, B, C (Hepplewhite, Modern	
Symphonyl	17-20
Chassis CR-199	63-13
Chassis CR-200A, B, C, D, E, F	44
Chossis CR-202	
Chassis CR-203	
Chassis CR-204	
Chassis CR-206	
Chassis CR-207A, B, C, D	41-12
Chassis CR-208A, CR-208B	43-13
Chassis CR-209	
Chassis Models CR.210A, CR-210B	52-11
Chassis CR.211A, B (See Ch. AMP-11IAI..	68
Chassis CR-213	
Chossis CR-215	
Chassis CR-216	
Chassis CR-217	
Chassis CR. 223	
Chassis CR-229	
Chossis Cr-214, CT-218,	
Tel. Rec.	62-13

MAJESTIC	170 (Ch. 101) Tel. Rec. (See Model I7DA)
G. 414 Tel. Rec. 133-8	173 Tel, Rec. (See Model
G.614 Tel. Rec. (See Model G-414).... 133	17DA) (Also see Prod Chg Bul 37-
G-624 Tel. Rec.	Set $166-2)^{\text {a }}$. 127
(See Model G-414) ... 133	7 \%0, 701 (Series 106) Tel.
G. 914 Tel. Rec. (See Model G-414) . . . 133	Rec. (See Model 70) (Also see Prod Chge
5A410 (Ch. 4501).	Bul. 43-Set 177-1).. 153
5A430 (Ch. 4504) 1-30	712, 715, 717, 718, 719
5A445, 5A445R 23-12	(Series 106)' Tel. Rec.
5AK711 27-17	(See Model 70) (Also
5AK731, 5AK780, (Ch. 5805A) 28-19	$\begin{aligned} & \text { see Prod Chge. Bul. } 153 \\ & 43 \text {-Set } 177.11 \text { al. } \end{aligned}$
$5 \mathrm{C}-2,5 \mathrm{C}-3 \cdots \cdots \cdots \cdots$ 169-10	800, 801, 802, 803, 804
SLAS, 5LA6 130 30-9	(S'eries 108) Tel. Rec.
5LA7, 5LA8 132-9	(See Model 70) (Also
6FM714 (Ch. 6B02D) 50-10	see Prod. Chge. Bul.
6fM773 (Ch. 6B11D)..... 57-10	43-Set 177-1) 153
$7 \mathrm{BK758}$ (See Model 27	902,903 (Ch. 103)
7JK777R) 27	Tel. Rec. (See
7C432 (Ch. 4706),	Model 17DA) 127
7C447 (Ch. 4707) 14-17	$9 \mathrm{ro,911}$ (Ch. 103)
7FM877. $7 \mathrm{FM888}$ 56-14	Tel. Rec. (See
	Model I7DA) 127
	1042, G. GU, T, 1043,
711866 (Ch. 7C25A) 60-14	G, GU T Tel. Rec.
7^{78420} (Ch. 4705) 26-17	(See Model 12C4)..... 108
75433, 75450, 75470 (Ch. 4702, 47031 22-19	$11.42,1143$ Tel. Rec. (See Model 12C4) 108
$7 \mathrm{TV} 850,7 \mathrm{TV} 852 \mathrm{Ch}$.	
$18 \mathrm{ClO}, 18 \mathrm{Cl} 1 / \mathrm{Tel}$. Rec.	1244, G, GU, T, TX, 124.
7YR752 (Ch. 7B04A) … 29-13	\{See Model 12C4)..... 108
(7800A.1) 7YR772 (Ch. 7809A) .. 42-17	1348 Tel. Rec. (See
8FM744 (Ch, 88060) 30-15	Model 12C4) 108
8 FM 775 (Ch. 8808D),	1400, 1400 B (Ch. 100).
8FM776 (Ch. 88070) .. 29-14	1401 (Ch. 105)
$8 \mathrm{FM889}$ (Ch. 8C07D) 54-12	Tel. Rec. (See
$8 \mathrm{Jl885}$ (Ch .48108$)$..... 47-11	Model 17DA1 127
85452, 85473 (Ch .4810$)$ - 8-19	1546. G, GU, F, 1547
l0FM891 (See Model 65	
10FM981) (Ch. IOC23E)....65-85	Rec. (See Model 12C4). 108
$12 \mathrm{C4}, 12 \mathrm{CS}$ Tel. Rec. . . . 108 - 7	1600, 16008 (ch. 101)
12 FM 475 , 12 FM 778 ,	Tel. Rec. ${ }^{\text {See }}$
$12 \mathrm{Fm779}$ (Ch. 41201) . 28-20	Model 170A)127
12FM895 (Ch, 12C22E)... 59-11	1605, 1605B (Ch. 102).
$12 \mathrm{~T} 2,12 \mathrm{~T}$ Tel. Rec. ${ }^{\text {See }}$	tel. Rec. (See
Model 12C4) 108	model 170A) 127
12 T ¢ Tel. Rec. ${ }^{\text {a }}$ See	1610, 1610 B (Ch. 102)
Model 12T2) 108	Tel. Rec. (See 127
C4 Tel. Rec.	Model 17DA) . . . 127
(See Model 12C4) 108	1646, 1647, 1648, 1649
CT4 Tel. Rec.	Tel. Rec. (See
(See Model G-414).... 133	model 12C4) 108

MAJESTIC-COnt.
$1671,1672,1673,1674$,
1675 Tel, Rec.
(See Model G-414) ... 133
TSee Model G-414).
1700 C Tel. Rec. (See Model 17DA) (Also see
Prod, Chg. Bul. 37-
Set $166-27$
(See Model 17DA) ..., 127 (See Model 17DA)
1710 CT Tel. Rec. (See
Model 17 DA) (Also Model 17DA) (Also see
Prod. Chg. Bul. 37-

1974, 1975 Tel. Rec.
(See Model G-414).... 133
$2042 \mathrm{~T}, 2043 \mathrm{~T}$ Tel. Rec.

(See Model 12C4),
2546T, 2547T, 2548T,
2549 T Tel. 'Rec. (Sée
Model I2C4)......... 108

Ch. 5805A
(5ee Model SAK731).... 28
Ch. 8802 D (See Model 6FM714)...

(See Model GFM773)....
Ch. 7 BOAA
(See Model TYR752)....
Ch 7809 A
(See Model 7YR772)...
Ch 7B09A1
(See Model 7YR753)... 42
Ch. TCllo
(See Model 7FM887)...
Ch. 7C25A
(See Model 7J[866)...
Ch. 8B000
(See Model 8FM744) ... 30
Ch 8BO7D
(See Madel 8FM776) .. 29
(See Madel 8FM776)...
Ch 8B08D
(See Model 8FM775)...
Ch. 8CO7D
(See Model 8FM889)....
Ch. 10 C 23 E

(See Model 12FM895) . 59
Ch 18COO, 18C91
(See Model 7TV850)....
iSee Mo
Ch. 4504
Ch. 450 Madel SA430) $\ldots 1$
Ch. 4506
iSee Model 54445
Ch. 4702 4703
(See Model 75433)....
Ch. 4705

(See Model 7C432) 14
Ch 4707
(See Model $7(447$) $\ldots . .14$
Ch 4708 R
(See Model 7JK777R).

MANTOLA (B. F. Goodrich Co.)
RG30-RP
R643-PM (See Model
R643-PM (See Model
R R 43 W)
R463W
R643-PM. R643W

R655W (Ch. No. 501 APH)
R6S2, R662N
8

MASCO-Cont. JMP. 6 JMP. 12 (See Model	
JMP. 12 (See Model	
4.5NO 45	
9	
MA-17P (See Model MA.17) 14	114
MA.17P (See Model MA.17) 14	
MA-25	
A-25	
MA.25NR	
MA.25P (See Model MA.25) 16 MA.25PN ISee Model MA-25N) MA. 35 \qquad 43	
MA. 50	
M.50NR 5^{53}	
MA. 75	
MA.121 $\cdots \cdots \cdots \cdots \cdots{ }_{10}^{24-21}$	
MA. 125	
MA. 808	
MAP.	
MAP-18	
MAP-105	
MAP. 105	
MAP-120N	
-60 …........... 127	
MB. 60 (lote)	
MC. 25. MC.25P	
MC-25N, MC-25PC, MC-25PN. MC-25RC	
	117-8
MCR.5. MC. 12	
	151
ME-27	
MHP-110 ${ }_{\text {MHP } 110 \times}$	
Midgetalk	
$\mathrm{MPA}_{\text {M }}^{\text {- }-3, ~ M P T-4 ~}$	
${ }_{\text {MSD- }-16}$	
$\text { MU. } 5$	
T.16123-8	
	20
MASON	
$\begin{aligned} & 45+1 A, 45,45-3,45-4, \\ & 45-1 B, 45,1 \end{aligned}$$14$	
45-5 (See Model 45-1A) 14	
MATIISON	
630 K Tel. Rec.$630-2,-5,5 S R B$	
1950-30 Tel. Rec.	
MAYFAIR 510, 510W. 520, 520w, 530 , 530 W 550, 550W	
McGOHAN (Don) MG-30-B	
	16-27
MECK (Trail Blaxer-Plymouth)	
CD-500 (PX-5C5-E	
CM. 500 (507-W18	
CR-500	
CW. 500 l .	
EF.730. EG.731Ch.He0031	
IM717C, CU, T, TU (Ch.9021 , JMフIOC, CU, T,	
TU (Ch. 9021) Tel. Rec. 148 -717C, T, JM-720C, T,	
JM-72IC, CD (Ch. 9032)	
M510T, MM512T, MMS16C, MM516T	
Mel. Rec. AAlso See Prod.	
$\text { Chge. Bul. } 12$	
MM616C, T (Ch. 90181	
Tel. Rec.	
(Aiso See Prod. Chg	
MM-617C, T, (Ch. 9032)	
$\begin{aligned} & \text { Tel. Rec. See Model } \\ & \text { JM- } 717 \mathrm{C} \text {) } \end{aligned}$	

MOLDED INSULATION CO.
(Also see Vix)
MR-6 (Wiretone) 41-15

MONITOR

MONITORADIO

MONTGOMERY WARD

MOPAR

MOTOROLA (Also see Reciord Changer Listing)
 AR.96ger Listing)

BK8, BKBX (See Ch. BA).
CR. 6 (Chryslei)
CR. 6 (Chrysler)
CR-76
CTO (See Model CT9
CT1 (See Ch. IA).
CT- 6 (Chevrolet
CT8 (See Ch. 8A)....
CT8-A (See Ch. 10A)
FD. 6 (Ford)
FD7 (Ford)
FDor) (See Model
FD8 (See Ch 8A).
GMOT (See Ch. 1OA) GM9T-A (See Ch. 8A). 10A) HNO (See Ch. 10A)....
HNB, HNO (See Ch. BA). LOTC (See Ch. 10 A
IL2TC (See Ch. 1A) $112 T \mathrm{C}$ (See Ch . 1 A)
112 T 2 (See Ch. 1 A)
KR1 (See Ch. 1 A). KR (See Ch. 1 A).
KR8.
KROA (See Ch.
NHIC (See Ch. 10 A)
NH2AC (See Nash AC. 15 'si) NHB (See Ch. BA)
OEO (See Ch. 10A OE2 (See Ch. BA)
OEG (OIdsmobile) (See Model CTO).
OE8, OE9 (Sen Ch. BA) PCO (Se
PC2

12K2 (Ch. TS.53)

Tel. Rec. (See Model $\quad 92$
12T3 (Ch. TS-53) Tel.
Rec. (See Model 12K2). 115
$12 \mathrm{VF4B}, \mathrm{R}, \mathrm{R}$-CICh.
TS.23, A and Radio
Ch. HS 190) Tel
(See Model 10 T2) Rec.
2VF26B
(Ch. S. 23 C. R, B R-C
Rodio Ch. H'S 190 A$)$
10T2) (Ch. TS. $23, \mathrm{~A}, \mathrm{~B}$) 92
12 VKII
Tel. Rec.
(See Model 10T2) 92
12 VK 15 (Ch. TS.30, A)
Tel. Rec. (Also Prod.
Chge. Bul. 5 -Set 106-1) 93-7
$12 \mathrm{VK} 18 \mathrm{~B}, 12 \mathrm{VK} 18 \mathrm{R}$ (Ch.
$\mathrm{TS} .15 \mathrm{C}, \mathrm{TS}-15 \mathrm{Cl}$
T,
TS.15C, TS-15ClI Tel.
Rec. (See Model VKlot
Ch. TS-9E)
12 VT 13 (Ch. TS-23, A, B)
12VTI3 (Ch. TS-23, A, B)
Tel. Rec.
(See Mode! loT2)...... 92
$12 \mathrm{VII6} 12 \mathrm{VTl} 68$,
$12 \mathrm{VT16R}$ (Ch. TS. 15 C,
12VT16R (Ch. TS-15C,
IS-15Cl) (See Model
IS.15Cl) (See Model
VK106 Ch. TS-9E)
Tel. Rec.
R7.

$14 \mathrm{~K} 1 \mathrm{BH}, 14 \mathrm{~K} 1 \mathrm{H}$
(Ch. TS-115) Tel. Rec. 121-10
14P1B (Ch. TS-216) Tel.
Rec. (See Model 14 T4). 158
Rec. (See Model 14T4). 158
14 P 2 Ch 14 P 2 U
(Ch. TS.275) Tel. Rec. . 174 -
$14 \mathrm{KI}, \mathrm{B}(\mathrm{Ch} . \mathrm{TS}$-88) Tel.
Rec. (See Model 14Ki). 112
14 TJ (Ch. TS-114)
Tel. Rec. (See
Model 14 KIBH)

Tel. Rec.
(See Model 14 K 1 BH) $\ldots 12$
14T4. B (Ch. TS 216)
Tel. Rec. 158 -8
16F1 (Ch. TS-60 \& Radia
Ch. HS-234) Tel. Rec... 102-8
$18 \mathrm{FIBH}, 18 \mathrm{FIH}(\mathrm{Ch} . \mathrm{TS}-89$
8 Rodio Ch. $\mathrm{HS}-234)$

8 Rodio (h. HS
Tel. Rec. (See
Model I 4 K 1 BH)
Model I4K1BH) $\ldots \ldots 121$
$16 \times 21,1-\mathrm{B}$ (Ch. TS-52)
Tel. Rec.
16K? (Ch TSA) Tel Re 93A-10
(See Model 16F1)..... 102

Model I4KIBH). See 121
16 T (Ch. TS 60) Tel. Rec.
(STiH2
(See Model 16 Fl$)$
$16 \mathrm{~T} 1 \mathrm{BH}, 16 \mathrm{~T} / \mathrm{H}(\mathrm{Ch}$

(See Madel 14K1BH)
$16 \mathrm{VF8B}$, R (Ch. TS.16 A
16 VF8B, R (Ch. TS.16. A
and Rodio Ch. HS. 211)
and Rodio Ch. HS-211)
Tel. Rec. (See Model
12VK1S) (Atso see Prod
12VKISI (Atso see Prod.
Chge. Bul. 5.5 Set 106.1) 93
16VK1 (Ch. TS-52) Tel
Rec. (See Model 16 KK) 93 A
Rec. (See Model 16K2) 93 A
IoVK7 (Ch. TS-16, A) Tel.
Rec. (See Model
12 K 15 (Also Prod

17F1 ICh. TS. 198 \& Rodio
Ch. HS.253) Tet. Rec.
(SSe Model 14 Ki BH) 121
(See Model 14K1BH)
17F1A (Ch. TS.89 \& Rodio
Ch. H5.253) Tel Rec
Ch. HS.253) Tel. Rec.
(Sie Model 14 KIBH) 121
17FIB (Ch. TS $118 \&$ Radio
Ch. HS-253) Tel. Rec.
(See Model 14 KiBH) 121
17 FlBA (Ch. TS.89
Radio Ch. HS.253)
Tel. Rec. (See
Model 14 KIBH)
17F2W
R
17F2W (Ch. TS.1188
Rodio Ch. HS 253)
Rodio Gh. HS.253)
Tel. Rec. (See
Modet 14K1BH) 121
17F2WA (Ch. TS-898 \&
Rodio Ch. HS-253)
Tel. Rec. (See
Model 141 KH) $\ldots \ldots .12$
Model (4KIBH)
17F3B (Ch. TS-118 \&
Radio Ch. HS 2531
Tol. Rec. (See
Model 14 KIBH$) \ldots . . .12$
$17 \mathrm{~F} 3 \mathrm{BA}(\mathrm{Ch}$ TS.898
17F3BA (Ch. TS. 898
Rodio Ch. HS-253)
Rodio Ch. HS-253)
Tel. Rec. (See
Model i4KiBH) 12
17F4 (Ch. TS-1) \& \& Radio

17F4A (Ch. TS. 898
Radio Ch. HS-253)
Radio Ch. HS-2
Tel. Rec. (See
Model 14 KIBH)
Model 14 KIBH) 12
$17 \mathrm{FS}, 1755 \mathrm{~B}$ (Ch. TS. 118
17F5, $17 F 5 \mathrm{~B}$ (Ch. TS. 118
\& Rodio Ch. HS-261)
Model ISKIBH) 12
17F5A, 17F5BA (Ch. TS-89
\& Radio Ch. HS-281)

$17 \mathrm{FBBC}, \mathrm{C}$ (Ch. TS.174
and Rodio Ch. HS-253)
and Rodio Ch. HS-253)
Tel. Rec. (See Model
TKK1BH)

MOTOROLA-CONT. 58R11A, 58R12A, 58R13A, 58R14A, 58R15A.	
$58 \times 11.58 \times 12$	
(Ch. HS-125)	53-15
$59 \mathrm{HIIU}, 59 \mathrm{H} 121 \mathrm{U}$	
(Ch. HS.210)	97
59111Q, 59L12Q, 59114Q	
(Ch. HS.187)	78-10
S9R11, 59R121, 59R13M,	
$59 \mathrm{R14E}$, 59R	
59R16Y 1Ch. HS	79-10
$59 \times 11,59 \times 121$	
(Ch. H5-180)	$81-11$
$59 \times 21 \mathrm{~L}, 59 \times 221 \mathrm{~L}$	
(Ch. HS-192).	98
-111, 6112 (Ch. HS.226)	
62LIU, 62L2U,	
62130 ($\mathrm{Ch} . \mathrm{HS}-308$)	
2xilu, $62 \times 12 \mathrm{U}$.	
62×134 (Ch	
HS. 314	
65F11 (Ch. HS.31)	6-19
65F12 (See Model 65 F	
$65 F 21$ (Ch. HS-26)	4-12
$05111.65512(\mathrm{Ch} . \mathrm{HS}-7)$. 8-22	
(Ch. HS-32)	
$65 \times 11 \mathrm{~A}, 65 \times 12 \mathrm{~A}$,	
$65 \times 13 \mathrm{~A}, 65 \times 14 \mathrm{~A}$, 65×148 (Ch. HS-2)	
67F11, 67F12, 67F12B,	
(Ch. HS-63)	
67F14 (Ch. HS 122)..... 55-15	
-7111 (Ch. H5-59) 31-21	
$67 \times 11.67 \times 12,67 \times 13$	
(Ch. HS.58) 30-20	
$67 \times M 21$ (Ch. HS.64)	32-14
68F11, 68F12, 68F14	
$68 \mathrm{Fl} 14 \mathrm{~B}, ~ 68 \mathrm{~F} 14 \mathrm{M} \cdots . .58$ - 13	
68t11 (Ch, HS.119)	45-18
E8Tll ($\mathrm{Ch} . \mathrm{HS} .144$)	
$68 \times 11,68 \times 12 \mathrm{ch}$.	
HS.127). 88×114.	
68×12A (Ch. HS.127A). 56-16	
69111 (Ch. HS-175).	76-15
$69 \times 11.60 \times 121$	
(Ch. HS.181) 82	
$72 \times \mathrm{M} 21$ (Ch. HS-303) ...176	
75821 (Ch. HS.91)	
$75 F 31$ (Ch. HS-36). 75F31A, B (Ch. HS-36A).	
76F31 Ch. HS 98) 29-18	
77 FM 21 (Ch. $\mathrm{HS}-89$)	
77FM22, 77 FM 22 M .	
77FM22WM, 77FM2	
$7 \times M 21.77 \times M 22$	
$77 \times$ M22B (Ch, HS-102). 34-12	

MOTOROLA-CONF. 78F11, 78 Fl 1 M (Ch. HS. 150), 78F12M (Ch. HS. 155	56-17
$78 F M 21,78 F M 21 M$ (Ch. HS.132), 78FM22M	
(Ch. HS.128)	59-13
$79 \mathrm{FM} 21,79 \mathrm{FM} 21 \mathrm{~B}$. $79 F M 21 \mathrm{R}$ (Ch. HS-178).	$88-7$
79XM21. $79 \times \mathrm{M} 22$	
($\mathrm{Ch} . \mathrm{HS}$-168)	85
85 F 21 (Ch. HS.22)	
85 K 21 (Ch. HS-52)	5
$88 F M 21$ (Ch. HS-133)	54-15
91 FM21 (Ch. HS-230A)	
(See Model 19FI).	111
95F31, 95F31B (Ch. HS-39)	
95 F 33 (Ch. H5.38)	
Q9FM21R (Ch. HS-170)	80-10
107F31. 107F318,	
(Ch. HS.87)	
309	63-14
400	99-10
401	131-12
401 A	179.
405 (Ch. AS.13)	
405M	21-25
408	38-12
409 (See Model 408)	38
	98
501	133-10
501A 1	148-12
505 (Ch. AS-14)	4-37
	39-13
509 (See Model S08)	
	97-10
605 (Ch. AS-15)	5-1
608	39-14
609 (See Model 608)	39
700	100
	137
705 (Ch. AS-16)	7 -19
700	40-12
709 (5ee Model 708)	40
800	103-10
801	138
Ch. AS. 13 (See Model 405)) 3
Ch. AS.14 (See Mode! 505)	4
Ch. AS-15 (See Model 605)	5
Ch. AS.16 (See Model 705)	7
Ch. AS-22 (See Model BK.6)	10
Ch. HS-2 (See Model 65×11 A)	4
Ch. HS-6 (See Model 5Al)	12
Ch. HS-7 (See Model	
65111)	- 8
Ch. HS-8 (See Model	
45812)	9
Ch. H5-15 (See Model 5A5)	1
Ch. HS-18 (See Model	
WR6)	5

IMPORTANT

Quick, Easy PHOTOFACT Filing Method

The preferred 30 -Second method for filing PHOTOFACT Folders
Your PHOTOFACT Folder Sers come to you in convenient envelopes. When you remove a Set from its envelope, you will find the Folders already arranged in proper filing order, and preceded by an Index Separator. This Separator lists each receiver covered in the Set, and has an index tab showing the Set number. To file, here's all you do:

1. Remove the Index Separator and the Folders from the envelope. The Folders and manila TV Jackets are already arranged in proper numerical filing order except the TV folders, which are placed last in the Set.
2. Open your binder and place the entire contents, taken from the envelope, behind the preceding Set of folders, laying aside the TV folders.
3. Now, insert the TV folders in their respective manila jackets and your filing is complete.

To locate the folder you want, refer to instructions
on the first page of this index listing.
ALWAYS REFER TO THE PHOTOFACT INDEX

MOTOROLA-COnt. Ch. HS-246 (See Madel 9FM21)... I14 Ch. HS. 247 (See Model 8 (M21)	```MOTOROLA-CONt, Ch. TS. 228 (See Madel ITF11).... 165 Ch. TS-236 (See Model 17K8) . 152-4A```
Ch. HS 249 (See Model	Ch. $75-27515 \mathrm{ee}$
Ch. HS-250	Ch. Model 2924 P (See
(See Model 511) 100	Model 21 (1)
Ch. HS-253 (See Model 17F1)......... 121	Chossis T5. 307 (See Model 20K6)..... 183
Ch. H5. 258	Chossis TS-314, TS-315... *
	Ch . TS-314A, B, TS.315A,
Ch. HSS. 259 (See Model 5×21 U).... 120	
Ch. HS-26) (See	$\mathrm{Ch}_{\text {Model } 21} \mathrm{Cl} \mathrm{l}^{\text {a }}$
Model 17F5) 121	Ch. TS-325, A, TS-326, A
h. HS-262	(See Model 17F121....171
(See Model 5CI) 116	Ch, TS-351. A, B (See
h. HS 264	Model 21F1)......... 173
(See Model 6F111.... 117	Ch. ${ }^{\text {S }}$ - 395 (Tel. Rec.
Ch. H5. 265	(See Model I7F13).
(See Model 7F11).....ll3	Ch. TS-400 Tel, Rec.
Ch. HS-270	(See Model I7T11E).
(See Model 5C1) 116	Ch. TS-401 (See Model
Ch. HS-271, HS-272	17F120) 173
(See Model SCi] 116	Ch. TS-410 (Tel. Rec.)....
Ch. HS-283 (See Model	Ch. TS-501A (See
51 MIU) 149	Model 21 (3)
Ch. HS-289 (See	Ch. 1 A 13
Model 52R111....... 188	Ch. 1B 136 -11
Ch. HS 300 (See	Ch. 84............... ${ }^{\text {. }}$ 46-16
Model 52 MlU] 188	Ch. 10A............. 108 -10
Ch. HS-302 165	Ch. 10a................. 100 -10
Ch (See Model 17F11) ... 165	MUNTZ
Ch. HS M 303 (See ${ }_{\text {Model }} 72$ M M 21$) \quad 176$	M 30 (Ch. TV.16A1)
Model 72 (Sm2	Yel. Rec. ${ }^{\text {a }}$, ${ }^{\text {a }}$
Modet 62l\|U) 183	M 31 (Ch. TV.1642)
Ch. HS-310 (See Model	Tel. Rec. See Model M301
$52 \mathrm{C6)} \mathrm{}. \mathrm{}. \mathrm{}. \mathrm{}. \mathrm{}. \mathrm{}. \mathrm{}. \mathrm{}. \mathrm{}$.	Model M301
Ch. HS.313 (See	Tal. Rec. .l.a. . . 116-10
Ch. HS-314 (See	M3IR (Ch. TVI7A3) Tel.
Model $62 \times 11 \mathrm{ul}$..... 175	Rec. (See Model M31), 116 M31R, M32 (Ch. TV-16A3)
Ch. HS. 315 (See Model	M3IR, M32 (Ch. TV-16A3)
52R11U) 177	Model M30).......... 108
Ch. 317 (5ee Model	
	Rec. (See Model M31). . 116
Ch. H5.319150e	M 32, M32R (CH. TV17A3)
Madel 17F12) 171	MJel. Rec.
Ch. M-5 (See Model AR96.23)	(See Model M3:) 116
Ch. OB (See Model SROB) 105	M33 (Ch. TVi7A4) Tel.
Ch. Ob- ${ }^{\text {Chee Model SROB) }} 105$ Ch. (See Model	Rec. (See Model M31). . 116
VK-101) 51	M34 (Ch. TV-17A4) Tei.
Ch. TS-48 Thrij ${ }^{\text {j }}$ - ${ }^{\text {a }}$	Rec. (For Tel. Rec. ${ }_{\text {chassis }}$ See Model M 11116
(See Model VT-71)..... 55	M41, M42 (Ch. TVITA3A)
Chassis TS.4) Late (See Model VT-73)	Tel. Rec.
Ch. TS. 5 (See Model	(See Model M31) 116
Vkio1) 51	M46 (Ch. TVI7A7) Tel. Rec. (See
Ch. TS-7 (See Model	Model M31) 116
vk1011............ 51	
Chossis TS-8 (See	Tel. Rec. (See
Model VF103) 73	Model M3) 116
Ch. TS-9, T5-9A, TS-9B,	M-158 Tel Rec. 97A-10
TS.9C (See Model	M-159 Tel. Rec......... 97A-10
VT105) 67	M-159A, B Tel. Rec.... 97A-10
Ch. TS-9D (See Model	M-169 Tel. Rec. 96-6
Vt105) Photofact	1750, 1751, 1752 (Ch.
Servicer 82	17A3A) Tel. Rec. (See
Ch. T5.901	Model M31) (Also see
Ch. TS-9E, TS-9E1 (See Model VK106) 77	Prod. Chge. Bul. 33 , Set 159-31
Ch. TS.14, A, B (Se mad lor2)	2053 (Ch, 17A7) Tel Rec.
Ch. Ts-15	(See Model M31) (Also
(See Model Vfl2l).... 91A	Set 159-3) \square 116
Ch. TS-15A	2053A (Ch. 1781, 17B2)
Ch. TS-15B	Tel. Rec. (See Ch. 17B1) 163
Ch. TS.15C, IS.15Cl (See Model 12VK188).. 77	2054 (Ch. 17A7) Tel. Rec. (See Model M31) (Also
Ch. TS-16, A- (See Model 12VK15)... 93	see Prod. Chge. Bul. 33 , Set 159-3)
Ch. TS-18, A (See Model 7VTII	2054 A (Ch, 1781, 1782) Tel Rec. (for TV Ch
Ch. T5.23, A, B	see Ch, 1781) 163
(See Model 1012).... 92	2055 (Ch. 17a7) Tel. Rec.
Ch. TS-30, A (See Model 12VK15) 93	(See Model M3l) (Also see Prod Chge Bul 33
Ch. 15.52 (Set 159-3) …..... 116
(See Model 16K2)..... 93A	2055A (Ch. 1781, 1782)
Ch. TS. 53	${ }^{\text {rel }}$ Rec. (See Ch.
(See Model 12K2) 115	1781) 163
Ch. IS-80 (See Model $\begin{array}{lll}1651 & 102\end{array}$	$20558(\mathrm{Ch} .17 \mathrm{~B})$ Tel. Rec. (See Ch. 17B1) 163
Ch. TS-67 (See Model 19F1).... 111	2056 (Ch. 17A7) Tel. Rec. (See Model M31) (Also
Ch. TS. 74 (See Model ${ }^{\text {a }}$	see Prod. Chge. Bul. 33,
16F1) 102	Set 159-31 116
Ch. TS-88	2056A (Ch. 1781, 17821
(See Model 14ki) 112	Tel. Rec. (See Ch, 1781) 163
Ch. TS-89	2060 rel Rec. ${ }^{\text {2 }}$, 164-6
(See Model (6F1BH)... 121	2158A, 2159 A (Ch, 1785,
Ch. TS-94	(1786) Tel. Rec. (See 163
(See Model 16K28H).. 121	2162A Ch 1785 17B6) 163
Ch. TS-95 (See	Tel. Rec. (See Ch, 1781) 163

OAK (See Record Changer Listing)	
OLDSMOBILE	
982375	$20-25$
982399	59-14
982420	57-1.2
982421	87-7
982454 982455	60-16
982543 … 157-7	
982544, 982573	96
982579 (See Model	
	157
982697.982698	
(See Model 982544).	96
982699, 982700 150-10	
OLYMPIC	
$\text { DX. } 214 \text {, DX. } 215 \text {, }$	
DX-619, Dx-620, DX-621,	
DX-622 Tel. Rec. (See	
Model Dx-214)...... 106	
DX-931, DX-932	
Model DX-214) 106	
Model DX 214 See\square 106	
RTU-3H (Duplicator)	82-15
TV.104, TV-105 Tel. Rec. 67-15	
TV-106, TV-107, VV-108	
TV-104)	
TV. 922 Television Receiver	iver 58-14
TV.922L Tel. Rec. (See Model TV.104) 67	
TV928 Tel. Rec.	
TV.944, TV.945, TV.946	
TV. 947 Tel. Rec.	85-10
TV.948 Tel. Rec. (SeeModel TV.104)	
TV-949, TV-950 Tel. Rec. (See Model TV-947).	
Tel. Rec. (SeeModel Cl (210) 10	
${ }_{6.501,}^{6.503}$ 6.502, 6-502.P,	
6.501 V .U (See Model	
$\begin{array}{cc}\text { 6.501 W.U. } \\ \text { 6.501W.U, } 6.502 . U & \cdots\end{array}$	
6-504, 6-5041 3-25	
$6.601 \mathrm{~W}, 6.601 \mathrm{~V}, 6.602$	2 . 8-24
6-604 Series ${ }^{\text {cos }}$	
150. 6.604W. 220 (See	
Model 6.604 Series)... 22	
$8.600-\mathrm{A} \cdot ~ 11-17$	
6.617U (See Model 6-617) ${ }^{\text {a }}$	
7.526 30-21	
${ }_{7}^{7.532 \mathrm{~W}}, 7.532 \mathrm{~V}{ }^{32-15}$	
7-622, 7.638 34-14	
$7-724$ (see Model 7.7241129	
7-925.7.934, 7-936.	
7.939	31-22
8.451 48-15	
8.533V, 8-533W 57-14	
8.925, 8-934, 8-936.... ${ }^{\text {45-19 }}$	
17C, 170, Tel. Rec.	
17C14, Tel. Rec. 182	
17K31, 17 K 32, Tel. Rec.(See Modeli 7 (244)... 182	
17T33, Tel, Rec. (See	
Model 17C24) 18	
21 K 26 Tel. Rec. (See Model 21C28	
51.421 W 15	151
489 154	
$\begin{aligned} & \text { 51-435-W (See Model } \\ & 9.435 \mathrm{~V}) \end{aligned}$	
752, 752U, 753, 753u, Tel. Rec. 126-8	
754 Tel. Rec. (See Model 752). 126 755. 755 U Tel. Rec (See Model 752) 126	

IMPORTANT

How to obtain PHOTOFACT Volume Labels

A certificate redeemable for a complete set of Volume Labels for PHOTOFACT Volumes 1 through 10, is included in PHOTOFACT Set No. 62. A certificate redeemable for a complete set of Volume Labels for Volumes 11 through 20, is included in PHOTOFACT Set No. 102.

Simply mail these certificates to Howard W. Sams \& Co., Inc., for your free Sets of Labels.

 PHILCO-COnt.
49-1002 (Code 121)..... 55-17 49-1002 (Code 121)
Tel. Rec. 49.1040 (Code 121) Jel. Rec. (See Model 4940 (C)............. 914 Tel. Rec. 92-5 49-1075 (Codes 121 and
1221 Tel. Rec...........93A-11 49-1076(Code 122)
(See Model 49-1075)... 93A
49.1076 49.1076 (Code 123),
49.1077 (Code 122)
(See Model 49-1040) ... 92
49.1100 (See Model 48-485) 49-11 $101(5)$
$49.909)$ 49.909
49.1150
 49. 11150 (C.
Tel. Rec.
(See Model 49-1040) ... 92 49.175 (Codes 1218 23) Tel. Rec.
Model $49-1150$

 49-1
Tel. Rec.
(See Model 49-1075) ... 93A
49-1240 (Code 124)
Tel. Rec. Tel. Rec.
See Model 49.1040)
49.1275 (Code 121)

(See Model 49-1075) ... 93A
49.1278 (Code 122)
Tel. Rec.
(See Model 49-1075) ...93A 49. 1278 (Code 123).

$$
\begin{aligned}
& 49.1279 \text { (Code 122), } \\
& 49.1280(\text { Code } 121)
\end{aligned}
$$

$\underset{49-1405}{49-1405)}$

$48 \cdot 147$
40.1475 TCodes 121 A or
$\mathrm{B}, 123 \mathrm{~A}$ or $\mathrm{B}, 123 \mathrm{~A}$ or

B, 123 A or B, $123 \mathrm{~A} A$ or
B (See Model 49.1450) 77
49.1480 (Codes 121 A or
B. 123A or B, 123T A or
Bee Model 49-1450) 77
49.1600
49.1601 (See Model
49.1600)
49.160249
$49.1602,49-1603$
$49.1604,49.1605 \ldots 55-18$
49.1606, 49-1607.
49.1|609 49-16T1
(See Model 49.1606] 49
49.1615
50.7701
50.7701 (Code 121)
50.7702 (Code 122)

Tel. Rec.
$50-\mathrm{T} 1104$ (Code 123)
Tel. Rec. (Also see Prod
Set 154.11114-9
50-Til $105,50-71106$
50-T1400, 50-T1401.
50-T1402 (Code 121)
Tel. Rec. (See
Model $50 . \mathrm{Tl1104)}$ (Also
see Prod. Chige. Bul.
2%, Set 154-1 14
50-Ti403. 50-T1404
(Codes 121 ond 122)
(See Model 50.71104)
(Also see Prod. Chge.
(Also see Prod. Chge.
Bul. 29. Set 54 (1) ... 114
50-T1403 (Code 125).
$50-\mathrm{T1404}, 50-\mathrm{T1} 406$
(Codes 123, 124, 125)
(Codes 123, 124, 125)
Tel. Rec.
115-8
50-T1406 (Code 121 and
$122)$ (See Model
122) (See Mode
$50-\mathrm{T} 1104$) (Also

Prod. Chge. Bul. 29,
50-T1430 (Code 121)
Tel. Rec. (See
Model 50 T1104) (Also
Bul. 29, Set 154-1) ... 114

PHILCO-Cont.
5D-T1432 (Cont. 122) (See
Model 50. T1 104) (Also
see Prod. Chge. Bul. 114
29. Set 154-1), 114.
Tel. Rec. (See
Model $50-$ T1403) 115
$0 . T 1443$ (Codes 122, 123)
$50-\mathrm{J} 1443$ (Codes 122, 123) 115
Tel. Rec.
$50-\mathrm{T1} 447,50-\mathrm{T1} 471$,
$50 \mathrm{TI} 478,50.71479$

Rec. (See Model

50.T1484 Tel. Rec.
(See Model 50-Ti476). . 128
(See Mode 50-ri476). . 128
50. 11800 Tel. Rec.
(Code 121)
54. T1
(

10-10
Tel. Rec. (See
50.11600 Code 12:).. 91A
50.71630 Tel, Rec....... 99A.8

122) Tel, Rec. (See
$\begin{array}{ccc}\begin{array}{c}\text { Model } \\ 50.520, \\ 50.5201 \\ 50.522, \\ 50.50 .522-1,\end{array} & 50-524 & 78\end{array}$
$\begin{array}{lll}50.522, & 50-522.1, & 50-524 \\ 78 \\ 50-526 \\ 50.527, & 50-527.1 \\ 50.620, & \ldots . . & 80 \\ & \end{array}$
$\begin{array}{ll}50.621, & 50.921,50.922 \\ 50.920 \\ 50.925 & 8 \\ 5\end{array}$
50.925 (Code 123) $50-926$ 99- 12
50.1420 50.1421
$\begin{array}{cccc}50-1422, & 50-1423 & \ldots & 97-11 \\ 50.1720 & 93-8\end{array}$
$50-1721,50-1723, \ldots$
50.1724
$93-8$
98
$50-1725$ (See Model
$50-1720$) 93
$50-1726$ (See Model
49.1613)
50.1727 , 917
$\begin{array}{ll}50-1727 \\ 51-P T 1207,51 . P T 1208 \cdots & 86-7\end{array}$
5T-PT1234 Tel. Rec.
(See Model 5:-PT1 207) 136
(1-PT1282 Tel. Rec.
(See Model S1-PTI 207) 136

(Code 121) Tel. Rec., 125-10
$51 \mathrm{Tl} 443 \mathrm{PL}, 51$ Ti443PM, 123-11
$51 . \mathrm{T} / 443 \mathrm{PW}$ Tel. Rec. 123-1
S1-T1443PW Tel. Rec.
51 -T1601. T, 51 T1 602
\{Codes 121, 122\}
Tel. Rec. $138-7$

Tel. Rec. (See Model
50 Tl 1600 Code 1221
Also See Prod. Chge.
3ul. $20-$ Set 13411 . 110
51 Th 606 (Codes 121, 122)
Tel. Rec. (See Mode1
SO. T1 1600 Code 1221
TAlso See Prod. Chge. 110
Sul. 20 Set $134-11$. 10
Bul. $20-$ Set 134-1) 110
51 T1 T160 (Code 13 I) Tel.
Rec. See Model
$50-$ T1 600)
I
51 Tl 1606 (C
$51-\mathrm{T} 1607$ (Codes 121, 122)
$\begin{gathered}\text { Tel. Rec. (See } \\ \text { model } 5 \text { T T T } 1601 \text {) }\end{gathered} \ldots . . .138$
51.T1634 (Codes 121, 122)
51. T1634 (Codes 121,
Tel. Rec. (See Mode!
O-T1600 Code 1221

Also See Prod. Chge.
Bul. 20. Set 134.1) 110
51-T1634 (Codes 123, 124)

51-T1800 (Code 121, 122)
Lel. Rec. C.........148-13
T-T1830 CC
lel. Rec. (See Mode
51-T18001
51-T1832 (Code 121)
Tel. Rec. (See Model
Sil. T1800).
51-T1833(Code 121) 148
51-T1834 (Code 121) 135-10
Tel. Rec. ISee Model
$51-\mathrm{T} 1800$)
148
51-T1835 (Code 121)
Tel. Rec.
(Fee Model 51-T1833) , 135
51-11836 (Codes 123, 125)
Tel. Rec. (See Model

PHILCO-Cont.
51. T1838 (Code 124)

Tel. Rec.
(See Model 31-T1833). . 135
(See Model $31-$ T1833)
$51-11870$ (Code 121)

51. T1871, 51.1872 (Codes

121, 122) Tel. Rec.
(See Madel 51 . 11833 \} . 135

51.T1876 (Code 121) Tel
Rec. (See Model

Rec. 51833)............. 135
$51-\mathrm{T} 2102$ (Code 122)
51-T2102 (Code 122)
Tel. Rec.
R10
51-T2130 (Code 121)
51-T2102)
$51-\mathrm{T} 2132,51$-T2133 (Cade
$121) \mathrm{Tel}$. Rec. (See

(See Model 51-T2102) 132
$51-T 2136$ (Code 124)
Tel. Rec.
(See Model $51 \cdot$ T2102) 132
$51 . T 2138$ (Code 124)
Tel. Rec. 5 (S2102) 132
(See Model 51-T2102)
51-T2170(Code 121)
Tel. Rec.
(See Model 51 -T2102), , 132
(See Model $51 . \mathrm{T} 2102$
$51 . \mathrm{T} 2175,51-\mathrm{T} 1766$
(Code 124) Tel. Rec.
(See Model S1-T2102) , 132
$51-530$
$51-532$ (See Model
51.5301
5122
51.534 (See Model
$51-5301$ Mo............ 122
$51.620-51-5371$
$51-631$
$51-632$ (See Model........136-13 106
$\begin{array}{r}51-632 \text { (See Model } \\ 51-629) \\ \hline\end{array}$
$51.930,51.931,51-932.153-11$
$51.930,51-931,51-932,153-11$
$51-934$
$51.102-10$
51.934
51.1330

$51-1733,51-1733$ (1)
51-1734 …...........137-9
52 - 11610 Code 122 (See
Model $51-T 1601$ Code
52.11612 (Code 122) Te. 13

Rec. (See Model
52 - 11802 Code 123 Tel.
Rec. (See Model
52.11810 Code 123) ... 148
52 -T1802 (Code 124)
(Ch. 71, G1) Tel. Rec. 179-9
(Ch. 71, G1) Tel. Rec. 1
52 .T1804 (Code 122) Tel.
Rec. (See Modet
52 Ti 1810 Code 122) ... 148
$52 . \mathrm{T} 1804$ (Code 123) Tel.

52-T1808 (Code 121
(Ch. 41, DI) Tel. Rec
(See Model 52 T 2106
Code 121)
52. 11808 Code 122

Rec. (See Model
$52-\mathrm{T} 1810$ Code 122)... 148
52. 71810 (Code 122, 123)

Tel, Rec. (See Model
$51 . \mathrm{T} 1800$)
S............. 148
52.T1812 (Code 122, 123)

Tel. Rec. (See Mode!
$51-T 1800$)............. 148
52-T1820 (Code 121)
(Ch, 41, D1) (See
Model 52-T2106.
Code 121)
52 -T1821, 52 T1822 (Code
171
$52-\mathrm{T1821}, 52.12822$
$124(\mathrm{Ch}, 71 . \mathrm{G1})$
Tel. Rec. (See
Model 52 -T1 802$\} \ldots . . .179$
52-T1831 Code 122 T Rec. (See Model
$52 . \mathrm{T} 1810$ Code 122) ... 148 52.71839 (Code 121) T1839 (Code 121) Rec
(Ch. 41, D1) Tel. Rec
(See Model 52 - 212106
Code 121) 17
52-T1839 Code 122 Tel.
Rec. (See Model
52.11810 Code 122)... 148 52.11839 Code 123 Tel. 52.1839 Code 123 52 -11810 Code 123)... 148

IMPORTANT

How to obtain Service Data on Pre-War Models

Photo copies of schematics covering pre-war (prior to 1946) receivers can be obtained by regular PHOTOFACT subscribers at 50ϕ each (our cost). Additional data can be supplied at a nominal cost per page. When requesting pre-war data, please mention the name of the Parts Distributor who supplies you with your PHOTOFACT Folder Sets.

PHILCO-COnt.
52. 1 Ch 40 (Code 121)
(Ch. 41, D. 1) Tel. Rec
(See Model $52-\mathrm{T} 2106$
Code 121).
52 -T1840 (Code 122, 123)
Tel. Rec. (See Model
$\$ 1-\mathrm{T} \mid 800$) 148
52-T1841L (Code 121)
(Ch. 41, D. 1] Tel. Rec
(See Model 52-T2106
Code 121)
52-T184iL Code 123 Tel.
Rec. (See Model
52 - 1810 Code 1231... 148
52-11842 (Code 121)
(Ch. 41, D-1) Tel. Rec
(See Model 52-T2106
Code 121)
52.11842 (Code 122, 123)

Tel. Rec. (See Model
$51 . \mathrm{T} 1800$)
S2-Ti842L Code I 24 Tel.
Rec. See Mode
52.11810 Code 122) ... 148
32-T1844 (Code 121)
(Ch 4 I. D-1) Tel. Rec

Tel, Rec. (See Madel
5)-T1800)
2.11844 Code 124

Rec.
52 -1 1810 Code Model 1221... 148
52. T1 845 (Code 124),
(Ch. 71, G1) Tel. Rec.
(See Model $52-71802$) 179
52.T1850 (Code 121)

Model 52 -T2108
Cade 121)

$52 . \mathrm{T1882}$ \{Code 122\}
Te|, Rec. (See Model
51 -T2102) 132
52-T2106, 52-T2108.
(Ch. 41, D.1) Tel) Rec. 171-9
2-T2110 (Code 122)
Tel. Rece. (See Model
$51-\mathrm{T} 2102)$ J. Mode
$2-\mathrm{T} 2120(\mathrm{Code}$ 121)
(Ch. 41, D I) 1 See
Model $52-72106$.

$52-\mathrm{T} 2122$, L (Code : 21
Ch. 41, D 1 ISee
(Ch. 41, D1)
Model $52-\mathrm{T} 2106-$

(Ch. 41, D-1) Tel. Rec
(See Model 52. T2106
(See Model 52-T2106
Code 121) 171
52-TT142 (Code 121)
(Ch, 41, D-1) Tel. Rec.
(See Model $52-\mathrm{T} 2106$
Code 121).
52 T2l 42 (Code 122)
Tel. Rec. (See Mode)
Te!. Rec. (See Mode)
5)-T2102).
2-T2144 (Code 121)....
52 T2144 (Code 121)
(Ch. 41, D-1] Tel) Rec
(See Mode1 52-T2106
Code 121) 171
52-T2145X(Code i21) ...171
Tel. Rec.
52.T2145X(Code 125)
52. T2145X(Code 125)
(Ch. 44, D.4) Tel. Rec.

52 -T2150.W, $52-\mathrm{T} 2151 \mathrm{~L}$
(Code 124) (Ch. 71, G1)
(Code 124) (Ch. 71, G1)
Tel. Rec. (See Model)
52-72151 (Code i2i)
(Ch. 41, D1) (5ee
(Ch. ${ }^{41, ~ D 1)(5 e e ~}$
Model $52 . \mathrm{T} 2106-$

.186-10
(Ch. 44, D-4) Tel. Rec
(See Model 52-T1882), 181
2 T2224 (Code 121)
(Ch. 41, D1) (See
Code 121). 171
52 T2244 (Code 121)
Tel Rec (See
Model 52 -T2106) $\ldots 17$
52 -T2245 (Code 121$)^{2}$

52-T2252 (Code 121)
(Ch. 41, D1) (See Model 52-T2105-
52-T2252 (Code 124) 17
(See Model 52 Ti 802). . 179
52-125. 44 , D. 4) Tel. Rec.
(Ch.
(See Model 52 -T1882). 18 1

Model 52.T210s.
52-T2256 (Code 121 (Ch.

~oゅ

28400 , 2840 28402 ...159-12
2B403, 28404, 28405,
(Ch. RC. 114 14) 10
Ch. KCS45
Tel. Rec. (Also See
Prod. Chge. But. 11
-Set 118.1)
$2760(\mathrm{Ch}$. KCS45A) Tel (11)-11
Rec. (See Madel 2T51)
Bul 11 . Set 118 -1).... 111
Radio Ch. RC1090) T
Rec. [See Madel 2T5
lSet 111) and Model
4TIOI (Set 139)]
2US7 (Ch. 1117A)......182-8
4T101 (Ch. KCS 6)
Tel. Rec.139-12
41141 (Ch. KCS62 and
Redio Ch. RC1090)
Rec. (See Model 4T101) 139
6T53 (Ch. KCS47AT, T) Te!
RTS. (See Model STS T)
Rec. See Mode Gis4)
(Also see Prod. Chge.
Bul. 12, Set $120-1$)... 113
6/54 (Ch. A, AT, T) Tel.
KCS47.
Rec. (Also See Prod.
Chge. Bul. 12 Set
Rec. (Also See Prod.
Cha. Bul. 12 -Set
I20-1)
120-1)
6T64, $6 T 65$ ICh. KCSA7,
A, AT, T Tel. Rec. (Also
A, AT, T Tel. Rec. (Ailso
See Prod. Chge. Bul. 12
Set 120 -1)
GTV1 Ch. KCS47, A, AT,
T) Tel. Rec. (See Model
T) Tel. Rec. (See Model
oT54) (Aiso See Prod.
Chge. But. 12 . Set

Chge. But. 12-Set
$120-1) .113$
$6 T 72$ (Ch. KCS 40 B)

Tel. Rec. (See
Model T164,
$6 T 74.6 T 75,677 \%$

$6 T 74,6175,677$
(Ch. KCSA7, A, AT, T)
Tel. Rec. (See Model
\{Ch. KCS47, A, AT, T)
Tel Rec. (See Model
GT54) (Also See Prod.
Chge. Bul 12 .

Chge, Bul. 12 -Set
$120-1)$

$120-1)$ (Ch. KCS48 and
OTB4
Radio Ch RC1090 or
Rodio Ch. RC1090 or
RC1092) Tel. Rec. [See
Model $6 T 54$ (Set 113)
and Model $4 T 10$ (Set
139) or Mode! $9 T 57$
(Set 1221)
[Set 122)]
6T $86.6 T 87$ (Ch. KCS48 and Radio Ch. RCIO90 or
RC1092) Tel. Rec. (See Model $6 T 54$ (Set. 113)
and Model $4 T \mathrm{TO}$) and Model 4T10!
139) or Model 955

KCSA 4 B, C) Tei. Rec.
(Also see Prod. Chge.

71111B (Ch. KCS47GF-2)
Tel, Rec, $156-11$
7 T112. B (Ch. KCS47B.
C) Tel. Rec. (See
Model TIIO3) (Also See

Prod. Chge. Bul. 26
Sot 146.11134

C) Tel. Rec. ISee Model
7T103i

Cl103) Re. Also see Prod.
$\begin{aligned} & \text { Chge Bul. } 26-S e r \\ & 146.11\end{aligned}$

rCA victor-Cont
17T154 (KCSO6) Tel. Rec.
(See Model 17T153)
17 T 55 (Ch. KCS66)
Tel. Rec. (See Model
I7T1 53] 158
17T160 (Ch. KCS6a) Tel.
Rec. (See Model 17 Tl 53) 158
17 T 162 (Ch. KCS66A) Tel.
Rec. (See Modet
17 T 153 158
177153 (Ch. KCs68C) Tel. 15
$17 T 1501$. 169
KCS6 6 A) Tel, Rec.
(See Model 171153 . . 158
17171174 K (Ch. KĆS66D)
Tel. Rec.
(See Model 171150) . 169
17 T 174 (Ch KCS 64)
17 T 174 (Ch. KCSo6A)
Tel. Rec. (See Model
$17 T 200$ 17T201 17T202 158 (Ch. KCS72) Tel. Rec....184-12
17 T 211 (Ch. KCS72) Tel. Rec. (See Model 17T200) 184 171220 (Ch. KCS72) Tel.
Rec. (See Model 17T200) 184 $171250 D E$, Tel. Rec.
17 T 2610 F Tel.
21159, 21T165, (Ch
KCS 68 CB E) Tel. Rec
KCS68C, E) Tel, Rec.
(See Model 21T176)...157
2111590 E (Ch. KCS 68 F)

21T176, 21T177, 217178

(See Model 45EY1).... 135
45.W. 10 (Ch. RC1096A).. 138
$54 \mathrm{B1}, 54 \mathrm{B1} . \mathrm{N}, 5482$,
$54 \mathrm{B3}(\mathrm{Ch} . \mathrm{RC} 589)^{2}$.
$54 \mathrm{B3}$ (Ch. RC589)
$54 \mathrm{BS}(\mathrm{Ch} . \mathrm{RCl} 047$)
55 AU (Ch. RClo17).
550 (See Model $55 A U$)
55 U (See Model 55AU
55 F (Ch. RC- 1004 E).
55 FA (Sec Model 55 F)

$1-22$
$17-28$
$2-21$
2
$4-6$
4

63 E (Ch. RS.127)
$64 \mathrm{FI}, 64 \mathrm{Fz}$ (Ch. RClo37),
64 F 3 (Ch. RCiO37A) 654 FQ (Ch. RCl RC-1037 $)$
$\begin{array}{lll}65 F \\ \text { (See Model 55F) } & \text { 23-... } & \text { 43-16 } \\ \text { 65AU (Ch. No. RC-1017A) } & \text { 14-23 }\end{array}$ $65 \mathrm{U}, 65 \mathrm{U}-1$ (See Model
65 AU)

60 BX (Ch. RC-1040,

$66 \times 1,66 \times 2,66 \times 3,66 \times 4$
$66 \times 7,66 \times 8,66 \times 9$
(See Model 66×1) \ldots.
$66 \times 11(\mathrm{Ch} . \mathrm{RC}-1046 \mathrm{~A})$
$66 \times 12(\mathrm{Ch} . \mathrm{RC-1046)}$
$66 \times 13,66 \times 14,66 \times 15$
66x13, $66 \times 14,66 \times 15$
(Ch. RC- 1046 Bj27-20
67V1, 67 AVI
(Ch. RC-606)
68R1, $68 R 2,68 R 3,68 R 4 \quad 9-27$
(Ch. RC 608) $\ldots \ldots \ldots, 23-17$

$5 \times 14,75 \times 15$ (Ch.
RC. 10501 .
75×111 (inal
75×19 (Ch. RC. 1050 B)
(See Model 75×11)..... 3
$77 \cup$ (Ch. RC-1057A) $77 \mathrm{U}(\mathrm{Ch} . \mathrm{RC}-1057 \mathrm{~A})$
$77 \mathrm{~V} 1(\mathrm{Ch} . \mathrm{RC}-615)$ 77 V 2 (Ch . RC. 600 - C

630SS Tel. Rec......... 54 -
64TV TC. KCSSAI.1.
KCS25C.2, RK!17A.
RS-123A) Tel. Rec..... 914
RS-123A) Tel. Rec.
648 PTK (Ch. KCS24-1,
KRK1-1, KRS20-1,
KRS21A-1, RK-121A
(See Model BPCS41)... 90
648 PV (Ch. KCS24A-),
KRK-1A, KRS20-1
KRS21A. 1, RK-121A
RS-123B) Tel. Rec.
(S.123B) Tel. Rec.
(See Model BPCS41)

RCA VICTOR-COnt.
 7liV1 (See Model 7liv2) 22
7liv2, 711 Va (Ch. RK-117 \& RS 123)

22-24 721 RCS (Ch. KCS20-1, 2)
Tel. Rec. (See similar
Model $730 T \mathrm{~V}$! 1 70
$730 \mathrm{TV} 1 \mathrm{Ch}, \mathrm{KCS27}$,
RC610Al Tel. Rec......7.70-7
730 TV 2 (Ch. KCS27,

74IPCS (Ch. KCS24B-1,
KRK1A-1, KRS20A-1,
KRK1A.1, KRS20A.1.
KRS21A.i, RS-123C
Tel. Rec. (See
Model 8P(S41) $\ldots . . .$.

(See Model BTS30)...... 54
Ch. K(S21-1
(See Model
(See Model 8PCS41)...
(See Model 8PCS41)... 90
h. KCS24B-1

(See Model 8PCS41) ... 90
h. KCS25A1.1
$\mathrm{Ch}^{\text {ISee Model }}$
(See Model 64.1 TV).... *
Ch. KCS25D. 1
(See Model 8TV41)....
$\mathrm{Ch}_{\text {KCS2SE-2 }}$ KCV

iSee Mode
Ch KCS27
(See Model 730TVI)... 70
Ch. KCS28, A, B, C
(See Model 8T 2411 74
Ch. KCS29.KCS29A
Ch. KCS29, KCS29A

Ch. KCS30-1
(See Model 87241).... 74
Ch. KCS31.1 (See Model
Ch. KCS $32, \mathrm{KCS} 32 \mathrm{~A}$
KCS32B. KCS32C
Modee
8TK29
Model 8TK29)
Ch. KC533A-1
${ }^{\text {Ch. KCS33A-1 }}$ (See Model 8 270).......
Ch. KCS34, B. C $\begin{aligned} & \text { (See Model T100\}........ } 93 \\ & 93\end{aligned}$
Ch. KCS-38, C

(See Model T1001..... 93
$\mathrm{Ch}_{\text {K KCS40, A, B (See }}$
Model Tis4)

Ch. KCS4)-1 (See
Model TA-128),
Ch. KCS42A 1See
Model TA.128).
Model TA. 128)
Ch. KC543 (See
Ch. KCS43 1 Se
Model 14169
Ch. KCS45 A
.110
Model TA169) 108

(See Mode) 6T54) 113
Ch KCS47B, C
(See Model 7 7103) 134
Ch. KCS47D
(See Model 7r132)..... 1434

Ch. KCS47GF-2 (See
Model 7 T 111 B$)$
Model KC548 (See
Model 2T8i)
Ch. KC54BA
(See Model TTI 43) $\ldots 134$
Ch. KCS49. A, AI, T

Ch. KCS49B, Model 91105) $\ldots 134$
Ch. KCS498F
(See Model 91105) $\ldots 134$

Ch. $\begin{array}{l}\text { iSee Model } 9 \text { (147) ... } 134 \\ \text { Ch. KCSól }\end{array}$

(See Model 4T101) 139
Ch. KCS62
Ch. KCS62
iSee Mod
(See Model 4T101).... 139
Ch. KCSS6, A \{Se日 Model
Chossis KCSOOC
(See Model 17T150)...... 169
Chossis KCSO
Chassis KCS66D
(See Model 177172 K]. . 169
Ch, KCS68C, $C B$
(See Model 21176) $\ldots 157$
Ch. KCSSAE
Model 21 Sile
Mot Ch. KCSO8F (5ee
Model 21 IT159DE)
Ch. KCS72
Ch. KCS72A (See Model 18 Ch. KC574
Ch. KRK-1A
(See Model 8PCS41]... 90
Ch. KRKI-1
(See Model 8PCS41)... 90
Ch. KRKIA.1
(See Model 8PC541)... 90
Ch. KRK4
(See Model 8PCS41)... 90
[See Model 8PCS41]... 90
Ch. KRS20A.1
[See Model \&PCS41]... 90

RCA VICTOR-COnt.
Ch. KRS20B-1
(See Model 8PCS4:)... 90
Ch KRS21A-1 Ch. KRS21A-1
(See Model 8PCS41)... 90
Ch. RC- 589
 (See Model 58AV)..... 1
Ch. RC. 605 Ch. RC. 606
Ch. RC. 606
(See Model 67 V 1)......
Ch. RC. 606 C
(See Model
C7V2)

$C h$ RCO10C
iSee Model $610 \mathrm{~V} 11 \ldots . .31$
$C \mathrm{~h}$ R R- 613 A

$\begin{aligned} & \text { (See Model 77V11..... } \\ & C h \\ & \text { RC- } 616\end{aligned}$
iSee Model $8 \mathrm{~V} 11111 \ldots . .5$
(See Model 8V111).
C RC. 616 , RC. 616 H
(See Model 8V911
58
56
Ch. RC-616B, RC-616C
ISee Model 8T241).... 74

(See Model 51000) 91 A
C_{n} RC- 618 , RC. 618 A
Chee Model 8V901..... 56
Chassis RC-618 B, C
Chassis RC-618 8, C
(See Model OW101) ... 73
Ch. RC-622
(See Model Al06) $\ldots \ldots .97$

Model 2US7)
C7. RC-10238

(See Model 66×11,
Ch. RC. . Mo40, RC. 1040 A
iSee Model 66 BX].....
97
7
14
Ch. RC-TOA0C
(See Model 88×6)....... 44
Ch. RC-1045
44
23

Ch. RC Model 86×1
(See Model 54 B 5)
Ch. RC-1050. RC-1050B
isee Model $75 \times 1+1$.
Ch. RC-1057A

Ch. RC. 1059
$\begin{array}{lll}\text { Ch. RC-1059 } & \\ \text { iSee Model } & 8 B \times 5) \ldots . & 46 \\ \text { Ch RC-1059B, RC-1059C } \\ \text { (See Model } 98 \times 5) \ldots . . & 46\end{array}$
Ch RC-1060
Ch. RC-1060A
(See Model $8 R 72$)..... 5
Ch. RC-1061
53
65
(See Model 8×61)..... 65
Ch. RC- 1064
(See Model 8×53) 39

Ch. RC-1066
(See Model $8 \times 521) \ldots . .5$
Ch. RC-106AA
(See Model 8×522).... 5

Ch (RC-1069A, 8
iSee Model 8841) 7
Ch.RC-1070
iSee Model 8×711

Model 9x571). 107
$C h . R C .10798, R C-1079 C$
(See Mode! $9 \times 561) \ldots . .101$
(See Mode' 9×561)..... 101
Ch. RC1079K,
(See Model 1×591)... 159
Ch. RC. 1082 (See Model
Ch. RC-1082 (See Model
EX6I 103
Ch. RC-1085, RC. 1085 a

 Ch. RCIO日9B. C
(See Model X551) 129
Ch. RC1000
Ch. RCl 090
(See Model
$\begin{array}{cc}\begin{array}{c}\text { (See Model 4T101) } \\ \text { Ch R. } 1092 \text { (See } \\ \text { Model } 9 T 57\end{array} & 139 \\ \text { Ch Rel }\end{array}$
Model 9TS
Ch. RCl094
Ch. RCl $\begin{aligned} & \text { (See Model A.82) } 137 \\ & \text { Ch. RC1096 }\end{aligned}$
Ch.RClO96 A.82) 137
(See Model A.108).... 141

RCA VICTOR-COIt.

Ch. RC1098A $\begin{gathered}\text { (See Model B-411) } 132\end{gathered}$

Ch. RC-1114 (See Model 181
(See Model 2US7)182
Ch. RK-117

(See Model 8TV41)....
h. RK-121
(See Model 612V1).... 17
(See Model 612V1).... 17
Ch RK-12IA
(See Model 8PCS41)... 90
Ch RK-12IC R1S
(See Model RV151)...6. 61
Ch. RK-135, RK-135A
(See Model 8TK29) 88
Ch. RK-135A-1
(See Model 8T270) 85
h. RK13SC
(See Model 9TW 309). 95A
(See Model 9TW309).. 95
Ch. RK1350 (See
Model TA169). 108
Ch. RS-123
(See Model
Ch. RS-123A, B, C)....
(See Model B, C....
(See Model BPCS41)... 90
$C h$ RS-123D
Chee Model RV151)....
Ch. RS-126
(See Model 66 ($) \ldots .$.
(See Model 66E)......
RS-127
(See Model 63E)......
(See Model 9EY3) 158
Ch. RS-132F, H
(See Model 45EY1) 135
(See Model 45EY1) 135
Ch. RS.138, A, H
(See Model 45 EY. 2) .165
Ch RS140 (See Model
45-EY-4) 173
Bently (See Model 4T101)
Bently (See Model 4T101)
Bristol (See Model 17T153)
Bristol (See Model 171
Coldwell (See Model
Coldwell 171621
Calhoun (See Model
17 T 173 , 17 T 173 K)
Clarendon (See Model
Clarendon (See Model
217179)
Covington (See Model
$17 T 172,17 T 172 \mathrm{~K}$)
Cumberland (See Model
2To0)
Jonley (See Model 217177)
Faifox (See Model 6184)
airfox (See Model 6184)
Fairfield (See Model 6771)
Fairfiel
$6 T 72$, 7 T 122 , 7 T 122 Bi
Homptón (See Model
17 Tl 60)
Harford (See Mode) 6187)
Haywood (See Model
Haywood (See Model
$7 T 1116$)
Highlond (See Model 6165,
TT112, 7 (T112B)
Hillsdale (See Model 9177,
Hillssale (Sile Model 91
QT126)

Kendoll (See Model
$17 \mathrm{Tl} 174,17 \mathrm{I} 174 \mathrm{~K}$)
Kingsbury
oTbu) (See Model
Modern (See Model 6 T75
$7 T 124)$
Newport
TT10T53, 71103,
7T1038)
Northampton (See Mode
9T79)
Preston (See Model 17T155)
Frovincial (See Model

Regency (See Model
$6 T 74,7 T 123,7 T 123 B)$
ot74, $7 \mathrm{Tl} 23,7 \mathrm{~T}$ 23B)
Rockingtonham (See Model
Rullond (See Model 6T86.
7T143)
71143)
Sedawirk
OT1 47) (See Model 9789 ,
Shelby \{See Model 2T511,
Somervell (See Madel 2T81,
AT1411
Suffolk (See Model 21 17176)
Talbot ISee Model 16T1
Whitfield
$17 T 1541$
Winston (See Madel
$7 T 122$)
York $(5 \mathrm{ee}$ Model $9 T 57$.
9T105)
-ME

RADIOLA

$\begin{aligned} & 6.1-1.612 .6^{61-3} \\ & \left(\mathrm{Ch}^{6} \cdot 10^{\prime 1+1)}\right. \end{aligned}$	14-25
$61-5$ (Ch. RC. 1073) 69-10 (Ch. RC-10238)	12-25
61.8. 61-9 (Ch. RC-1034)	27-21
$\begin{aligned} & 62-2 \text { (See RCA Model } \\ & \mathbf{\delta 5 U - 1)} \end{aligned}$	14
732U (Ch. RC-1063A)	36
$\begin{aligned} & 757 \times 11.762 \times 12(\mathrm{Ch} \\ & \mathrm{RC}-1058 . \mathrm{RC}-1058 \mathrm{~A}) \end{aligned}$	36
Cn. RC-1011 (See Model 61.1).	14
Ch. RC. 1023, RC. 1023 B (See Model 61-5).	12

RADI RC.

C400	
RC-2 (Audio Amp.)	39-19
'itchenaire"	6-14
RC-8	$86-13$
RC. 10	110
RC-100A Tel. Rec. (Also	
See Prod. Chg. Bul.	
39-Set 170-2)	11
RC101 Tel. Rec......... 142-10	
RC200 Tel. Rec. (Also	
See Prod, Chg. Bul, 40	
Set 172-1)	140
RC201 Tel. Rec. 151-10	
	176
10 17	
202 Tel .	
500 16	
RADIO DEVELOPMENT \&	
RESEARCH CO.	
RADIOETTE	
	50-15
RADIONIC (5ee Chancellor)	
Y62W, Y728 26-22	
RANGER	
	28-27
RADIO MFG. ENGINEERS	
RADIO WIRE TELEVISION (See Lafayefte)	
RAULAND	
BA21 -.............. 87-	
W.819-4	43
1810 179	
	99
1820 100-10	
1821, 1822 59	
1825 97	
1835 60	
1841 …............. 58	
1904 140-10	
1932	
$2100-5$ (Sub-station)	
(See Mode: 2101 -A). 2101.A (Master Station)	$\begin{aligned} & 39 \\ & 39-20 \end{aligned}$
2105 (Moster Station)... 36-21	
$2206,2206 \mathrm{H}, 2212$,$2212 \mathrm{H}, 218,2218 \mathrm{H}$.	
2306. 2312, 2324	
(See Model BA21)	
2400 Series 33-22	
RAY ENERGY	
AD	
AD4	7-25
RE-1X	13

RAYTHEON (Also See Belmont)
A-7D×22P Tel. Rec.
(See Model $7 \mathrm{D} \times 21) \ldots . . .81$
Models A.10D×24,
B-10D 22
B-10D
Al $22 ~ T e l . ~ R e c . ~$
(Also See Prod. Chge. 75-14
Bul, Set 103.191
Bul. 1 -Set 103.19$)$
Cllo2 (Ch. 12AX22)
Tel Rec (Also See Prod
Tel. Rec. (Also See Prod.
Chge. Bul. 3 Set 105-1) 94-8

Rec. So See Prod. Cnge.
Bul. 3 -Set 105 - 1).

C-1602, A, B, C (Ch.
$164 \times 23,25,261$,
C. 1602 Series 2 (Ch

16 a $\times 291$ Tel. Rec. (Also
See Prod. Chge. Bul. 16 99-14

C. 1815 A (Ch. 16AY211],
C-1615B (Ch. $16 A Y 28$)
C. 16158 (Ch. 16AY28)
Tel. Rec. (Also see Prod.

C. 1616 A (Ch. 16 CY 211),
$\mathrm{C}-1616 \mathrm{C}$ ($\mathrm{Ch}, 16 \mathrm{AY} 28$)

Tel. Rec. (See
Model $C .1615 A) \ldots 124$
C-1714A (Ch. 17AY24) Tel.
Rec. (See Model
C. $1615 A) \quad 124$

Tel. Rec. (See
Model C.1615A)

- $1715 A(C h, 17 A Y 24)$
-1715A (Ch. 17AY24),
C-1715B (Ch. 17AY21)
Tel. Rec. (See
Model C-1615A)
124
C-1716A (Ch. 17AY24),

C. 1724A (Ch. 17AY2
Tel. Rec. (See

Tel. Rec. (See
(Model C. 1615 A$)$ (Also
see Prod. Chse. Bul. 19.
Set 132 -11
C. $729 \mathrm{~A}, \mathrm{C}-1731 \mathrm{~A}$
(Ch. 17 AY 21 A)

Tel. Rec. . 176-10
C.2001A, C.2002A iCh

2AAs2 see Prod. Chg
(Als. 43 -Set 177.1)

RAYTHEON-CONT.
C. 2006 (Ch. 20 AY2Y)
Tel. Rec. (See Made

Tel. Rec. (See Made
C.2001A) (Aiso se
C.2001A) Chge. Bul. 43 - 149
Set 177-1).
C. $2103 \mathrm{~A}, \mathrm{C}-2105 \mathrm{~A}$
(Ch. 21AY21) Tel. Rec. 173-1A
(Ch. 21 AY21) Tel.
C2108A (Ch. 21T1)
Tel
Tel. Rec. (Seee
Model M.1733A)
Model M.1733A)
C. $2109 \mathrm{~A}(\mathrm{Ch} .2112)$
Tel. Rec. (See
Model M. 1733 A).

C.2110A, C.2111A (Ch $21 T 1)$ Tel Rec. (See

21T1) Tel. Rec. (See
Model M.1733A).
M701 (Ch. 10 AX 22 Tel
Model M.1733A)
M 701 (Ch. 10AX22) Tel.
Rec. (See Model Clilo2)

$M+101, M 1103, M 1105$
$(C h, 12 A \times 22)$ Tel. Rec.

Seet 105-1)
M1105B, M-1206, M-1107
(Ch. $12 \mathrm{AX} 26,12 \mathrm{AX} 27$)
Tel. Rec.
(See Model C-1 104 P).. 141
$M-1402, M-1403, M-1404$
(Ch. $14 A \times 21$) Tel. Rec.
(See Model C-1401). 12
(See Model C-1401) .123
M. 10101 (Ch. $164 \times 23,25$.
26) Yel. Rec.
(See Model Cl 602).... 99
$M-1611 A(C h .16 A Y 211)$,

M-1611A (Ch. 16AY211),
$M-1611 \mathrm{~B}$ (Ch. 16AY28)
 $M-1612 \mathrm{~B}$ (Ch. 16 AY 28) Tol. Rec. (See Model
C-1615A) 124 M-1613A (Ch. $16 A Y 2111$,
M. 1613 (Ch. $16 A Y 28$) M-1613B (Ch. 16AY28)
Tel. Rec. (See Model
C-1615A)

M-1711A1Ch. $17 A Y 24)$,
$M-1711 B(C h .17 A Y 21)$

$\mathrm{M}-1713 \mathrm{~A}$ (Ch 17 CY 24),
$\mathrm{M}-1713 \mathrm{~B}$
(Ch
M-1713B (Ch. 17AY21)
Tel. Rec. (See Model

(See Model C-1615A).
M1726 (Ch. 17 AY21)
Tel Rec (See Model
Tel. Rec. (See Model
C-1615A) (Also see Prod.
Chg. Bul. $19-$
Sef 132.

C.1729A)
M-1733A (Ch. 1711)

176
Tel. Rec.
M. 1734 A (Ch. 17 T2)
Mel. Rec. (See
Todel 1733 A).
Model 1733 A$)$
C. $1735 \mathrm{~A}, \mathrm{C}-1736 \mathrm{~A}$
(Ch. 17 It$) \mathrm{T}$ el. Re
(See Model M-1733A)
M-2007A. M-2008A (CC.
20 AY 2) Tel. Rer. (See
model (-2001A) (Also
see Prod. Chge. Bul.
43-Set 177.1) 149
M-2101A $(C h, 21 A Y 21)$
Tel. Rec. (See
Model C-2103A)
M- $2107 A(C h .21 T 1)$
M-2 lel. Rec. (See
Thadel M-1733A)
P-301 (See Model 7D $\times 21$)
Tel. Rec.
Tel. Rec.
RC-1405 (Ch. 14AX21) Tel.
Rec. (For TV Chassis see
Model C-1401) 123
$\mathrm{RC}-1618 \mathrm{~A}$ (Ch. 16AY211),
$\mathrm{RC}-1618 \mathrm{~B}$ (Ch. 16AY28)
$\mathrm{RC}-1618 \mathrm{~B}$ (Ch. 16AY28)
Tel. Rec. (See Model

Tel. Rec. (See Model
C-1615A
124

$R C$-1619A (Ch. 16AY211),
RC-1619B (Ch. $16 A Y 28$)
RC-1619B. (Ch. MAYY
Tel. Rec. (See Model
C-1615A).......... 124
RC-1718A, RC. 1719 A (Ch.
17AY24] Tel. Rec.
(See Model C-1615A). 124
(See Model C-17198 (Ch.
RC-1718B, RC-1719
$17 A Y 21$ Tol Rec. (See
Model C. 1615 A)

RC-2005A (Ch. 20AY21)
Tel., Rec. (See Model
C-2001A) (Also see

7DX21, $7 \mathrm{D} \times 22 \mathrm{P}$ Tel. Rec. $81-13$
10AXF43 Tel. Rec.
(See Model A-10Dx24)
(Also See Prod. Chge.
Bul. 3 -Set 105-1).... 7
1OAXFA4 Tel. Rec. [See
Model C. 1102 (Set 94) Model C. 1102 (Set 94)
and Model A. 100×24
(Set 75)]
$10 \mathrm{D} \times 21,10 \mathrm{D} \times 22$ Tel. Rec.
(See Model A-100 $\times 24$).
(Als
(Also See Prod. Chge.
Bul. 3 -Sef 105-1)....
10D $\times 24$ Tel. Rec.
(See Model A-10D $\times 24$)
185
$180 \times 21 \mathrm{~A}$ Tel. Rec.
(See 7DX21).
(See 7Dxil) 8

REMLER-Cont.
5505, $5510,5515 \cdots$ Scottie
Pup. (See Model 5500). 27 5520,5530 "'Scottie Jun.
ior." (See Model 5500) 27

RENARD

L-IA, PT-IA, IBST-I 9-28 REVERE (See Recorder Listing
ROYAL (Lee)
AN150 AN 60
AN150, AN160........179-11
20CP, 20TW Tel. Rec.
20CP, 20TW Tel. Rec.
(Similar to Chassis)....149-13
SCOTT (E. H.)

SEARS-ROEBUCK

SEEBURG (See Record
SENTINEL

SENTINEL-CONt
$14446,1 U 447$ (Series
$\times 0$, $\times \times 0,2 \times D$ ')
Rec. (See Model 1U438) 157
1U44.

12PG, 312 PW (See Modei

332 (See Mod
332 (See Model $313-1$)
333 (See Modal $315-1$)
335 PG PI PM PW

$338-1,338-R, 338-W$ (See
Model 1 U338) $\ldots . . .122$
Mod
$339 . \mathrm{K}$
15 Kee

401,402 Series Tel. Rec..
405 TVM Tel. Rec.
(See Model 400TV).... 72
406 Series Tel. Rec.
400 Series Tel. Rec.
(See Model 401 Series). 70
407 Series Tel. Rec.....
409 Series Tol. Rec
411 Series Tel. Rec.
(See Model 401 Series) 70
(See Model
$412,413,414,415$ (Series
$Y 4, Y(1)$ Y'A, YB, YC, YD, YE, YF
Yel. Rec. (Also See
Prod. Chge. Bul. 4 -Set

(See Model lU416) 117
419,420 Tei. Rec:
(See Model 14419) ... 115
(See Model lU419)... 115
420B Tel. Rec. (See Model
(U420B)

(See Model 412) (Also
See Prod. Che. Bul. 16
Set 126.1 . 1
Set 26.1 . 424 Tel Rec. (See
Model 1 U 420 B) (Also
Model 1U420B) (Also
See Prod. Chge. Bul.
19 Set $132-11, \ldots124$
$4238,423-17$ Tel. Rec.
(See Model $1 U 420-8) \ldots 124$
$424-17$ Tel. Rec.
(See Model 1 U420-B) . . 124

428 Tel. Rec. (See Model
1 U 425) 127
429. 430,431 Tel. Rec.
(See Modet
(Also See Prod. Chge
Bul. 25 . Set $144-11$.... 124
432 Tel. Rec. (See Mode!
1U425) (Also see Prod.
Chg. But. 21-........ 127
Set 136.1)
435 Tel. Rec.
(See Model 10425)
(Also See Prod. Chge.
BuI. $21-$ Set 136-1).... 127
$438,439,440,441,443$,
444 (Series' $\times \mathrm{XD}$, XXD,
$2 \times \mathrm{T}$ Tel. Rec:
(See Model 1 U 38) .
(See Model $1 \mathrm{U438}$) ...157
446 (Series 'XD, XXD,
$2 \times D^{\prime \cdots}$ Tel. Rec.
(See Model IU-438).... 157
452,453, Tel. Rec. (See
Model $1 \mathrm{U} .447-\mathrm{A}$) $\ldots . .178$
Model 1 U. 447-A)
$454,455,456,457$

SETCHELL-CARLSON	
150 Tel. Rec	
151-820, $151-820-1 \mathrm{R}^{\text {, }}$,	
151-C20, 151-C20.LR	
Tel. Rec. 155-15	
416	2-14
427 21-29	
437 39-22	
447 40 -20	
458.RD 106 - 13	
469 99.15	
570 97	
2500, 2500tp Tel. Rec.	
SHERATON	
C.26B, M (Ch, 260-C	

SILVERTONE-CORt.
159 (Ch. 478 309) Tal.
Rec. (See Model 120). . 115

162.16 (Ch. $110.700 \cdot 10$)"
(See Model 116)...... 139
163.16 (Ch. 478.319)
Tel. Rec.
164.14 (Ch. 478.313)
Tel. Rec.
$165-16$ (Ch. 100.120$)$
Tel. Rec.
160.16 (Ch. 478.339)
$\left.\begin{array}{l}\text { Tel. Re. } \\ 166.17 \text { (Ch. } 478.339-A)\end{array}\right)$
$167-16,167-16 \mathrm{~A}(\mathrm{Ch}$.
$549.101,-1) \mathrm{Tel}$. Re
168.16 (Ch. 549.100 .31
Tel. Rec.
(See Model 102A) 161
169.16 (Ch. 549.102,
169.16 (Ch. S4.
$549.102 .2)$ Tel. Rec
$170.16(\mathrm{Ch} .549 .102$
$549.102 \mathrm{~A}) \mathrm{Tel}$ T. Rec.
173.16 (Ch. $110.700-10$
(See Model 116)....... 139
175.16. A (Ch.
$549.100-5,-7,-8,-9)$
$549.100-5,-6,-7,-8,-9)$
Tel. Rec. (See Model
102A)............. 161
176.19 (Ch. 549.100 .6)
Tel. Rec. (See Model
$102 \mathrm{~A})$
177.19 (Ch. $110.700-40)^{161}$

179-16, $180-16$
(Ch. 132.890) Tel. Rec. $130-12$
Tol. Rec.
$186-19$ (Ch. 549.101 .3)
Tel. Rec. 18.
$187-16,188.16 \mathrm{Ch}$.
$110.700-10)$ Tel. Rec.
(See Model 116 . $11 . \ldots 139$
$189-16$ (Ch. 110.700 .1 ,

249 (Ch. 548
$548.361)$
(58. M

1052,1053
$105 \mathrm{~h} .132 .011)$
1054,1055
$1 \mathrm{Ch}, 132.012) \ldots(173-12$
$1058,1059(\mathrm{Ch} .101 .860) .162-11$ 1062, $1063(\mathrm{Ch} .101 .860$) (See Model 1058)
$1066(\mathrm{Ch} .100 .202)$
(St)
(See Model 69) 1116.16 (Ch. 110.700 .90).
1117.17 (Ch. 110.700 .
$1130-17$ (Ch. 110.700 .88$)$
1135.17 (Ch $110.700-86$)

Tel. Rec..............
141.20 (Ch. $10.700-83)$
1150.14 (Ch. 478.361 ,
A) Tel Rec.
$1162-16$ (Ch. $110.700-90)$

Tel. Rec.... 110.700 .98)
1162.17 (Ch.
Tel. Rec.
1166.17 (Ch. $478.339 . \mathrm{B})$
Tel. Rec.
$1170-21$ (Ch. 100.208)

Tel. Rec.
$1186-21$ (Ch. 100.208)...181-13
$186-21$ (Ch 100.208)
Tel. Rec. (See Madel
Tel. Rec. (See madel
$1176-21)^{165}$
1191.17 (Ch. 110.700 .97$)^{165}$

2063,2064
(C. $\left.{ }^{2} .101 .860 .1\right)$
2101 (Ch 647 (1058) 162
2el. Rec. 132.035).....
2174 (Ch.
Tel. Rec. 12.045)
3108 (Ch.
3170 (Ch. 528.239)
3175 (Ch. 132.044)
6002 (Ch. 132.818) 5-35
6011 (Ch. 132 .818)

6050 (Ch. 132.825-4)
6051 (Ch. 110.451).
6052 (Ch. 110.452)
052 (Ch 110.452) 13-29

SILVERTONE-COnt.
Ch. 109.627 isee Model 71531..... 26
 Ch. $110.700-2$ - 20
(See Model 134)
(110.
$\mathrm{Ch}_{110} 110.700-90$
$\begin{aligned} & 110.700-96 \\ & \text { (See Model } 1116-16) \ldots \\ & \text { Ch. } 132.011(50 e\end{aligned}$
Model 1052$) \ldots \ldots . .174$
Model 10521
Ch. $132.012(12$ ee
Model 1051 17
$\mathrm{Ch}^{\text {Mode }} 132.035(5 \mathrm{se}$
Model 2174)
Model 31751 (5ee
Model 31751
$\mathrm{Ch} .132 .045(5 \mathrm{~s}$
Model 3106$)$
Model 3106) \ldots.

Ch. 132.818
(See Model 6002).........
$\mathrm{Ch}^{132.818 .1}$

Ch. 132.830
(See Model 8005), 33
Ch. 132.840
(See Model 8010) 40
Ch 132.841
(See Model 8020) 43
$\mathrm{Ch}_{132} 132.858$
(See Model 9005) 72
Ch. 132.868
(See Model 8021)..... 70
Ch. 132.87 (
(See Model 9022) 7

Ch. 132.877
$\begin{array}{c}\text { (See Model } \\ \text { Ch } \\ \text { (} 132.878\end{array}$

(See Model 1) 101
Ch 132.880 (See
Model 210)
Ch. 132.88)
Ch. 132.88 i

$\xrightarrow{\text { (See Model }}$

 (See Model 90731.
$\mathrm{Ch} 135.244,135.244 .1$

 Ch. 185.706
(See Model
(See Model 1
Ch .319 .190
(See Model
Ch. $319.200,319.200 .1$
(See Model 1300)
$\mathrm{Ch}_{\mathrm{H}} \mathbf{4 3 1 . 1 8 8 , 4 3 1 . 1 8 8 . 1}$
(See Model 7148).....
Ch. 431.199
(See Model 8144).......

Ch. 434.140
(See Model 7111)...... 30
$C h .435 .240$
(See Model 7300)..... 4
${ }^{C h} \begin{aligned} & \text { (See Model 7350)..... } 38\end{aligned}$ Ch. 435.417 (See Model 9153)....

SILVERTONE-CONt.

SIMPLON

SKY KNIGHT (See AIr Knight)
SKYRIDER (See Hallicraffers)

SK YROVER

SKY WEIGHT

SONOGRAPH

SONORA

SONORA	
RBU-176	5-31
RE-207 (See Model RB.176)	
RCU-208	
RDU-209	
RET. 210	24-24
RGMF-212, RGMF-230	27-26
RKRU-215 (Ch. RKRU)	
RMR-219	19-28
RMR-220, RMR-245	
(See Modal RMR-219	
QU. 222	8

SONORA-Cont.	SPARTON-Cont.
RX-223 \ldots.......... 19-29	4939 TV , 4940 TV , 4941 TV
WAU.243 $27-27$	(Ch. $24 \mathrm{TV9}$, 3TV9] Tel.
	Rec. ISoe Model
	490007
	4942 (Ch.
WDU-249 …....... 37-20	Tel Rec
WEU-262 33-28	$4935)^{2}$...... 133
WGFU-241, WGFU-242 .. 24-25	4944. 4945 lCh. 3TB10.
	${ }^{24 \text { TB10) }}$) Tel. Rec..... 86-10
WKRU.254A $\ldots \ldots \ldots \ldots$ 34-20	4951, 4952 (See Model
WLRU-219A	俍
WLRU-220A (See Model WIRU-219A)	
$1{ }^{\text {245a }}$	
[RU-219A) Modil 37	1960
WXTU-700, WXTUA-700A ${ }^{37}$	496
Wxil Rec..........a	Mol. Roc.
	4964, 4989 (Ch. 23tBio)
	Tel. Rec.157-
101 48-24	4970. 4971 (Ch. 851
	(See Model 141A)
	5002.5003 (Ch. 231D10)
	${ }^{\text {Tel. Rec. }}$ (ch 23iDiol ${ }^{\text {102-13 }}$
305, Tel Rec Re, 174 - 11	S006. 5007 (Ch. 23TD
300°............... 108	50021 Rec. (See
323, 324, 325 Tel. Rec.	$5006 \times$ (Ch. 25TK $10 A)$
(See Model 305) 174	Tel. Rec. 121-13
332 Tel. Rec. (See	$5007 \times$ (Ch. 255k10A)
Model 305) 174	Rec. (See M
${ }^{350}$, 351 Tel. Rec. 173	5006
352 Tel. Rec. 182	5010,
402A (See Model	14, 5015 ich
402 F (See Model	A)
	${ }^{\text {A Soee model }}$ S010)..... 104
SOUND, INC.	2655160 T Tel. Rec. 128-13
促	2581 Tel. Rec.
MBGP3. MBGPG, MBGP3O,	(See Model 5025
M MB6R4	See Prod. Chge. Bul. 22
	Set 13
SPARKS-WITHINGTON (See Sparton)	$\begin{aligned} & 5029,5030 \text { (Ch. } \\ & 2650160) \text { Tel. Rec. } \end{aligned}$ $\text { (Soe Model } 5025 \text {). } 128$
SPARTON (Also see	5035. $5036,5037 \mathrm{lCh}$.
Changer Listin	${ }^{26551601)}$ Tel. Roc.
	Tel. Rec. .l........ 97A-13
Model 5 AWOb).	56, $5057 \mathrm{lCh}, 19 \mathrm{TS10}$,
5A116 (Ch. 5-16) 30-29	A) Tel. Rec.
5AM26-PS ($\mathrm{Ch} .5 .26-\mathrm{PS}$) - 5-17	
	Tel. Rec.
5 Model 5A110 (Ch. 5.16) 30	(See Model 4964) , . 157
6AM06 (Ch. 0.06) …) 34-21	5008. 5069 ($\mathrm{Ch} .24 \mathrm{TV9C)}$
OAM26 (See Model	Mo. Rec (See
	5071,5072 ICh. 19 TS 10.
	A) Tel. Rec.
	(See Model 5010)
TAMAGPA, 7 BM 4 SPA ,	7sba Tel
TBWALPA, BAMA6	(See Model 5025) (A)
(See Model 7 AM46)....	See Prod. Chge. Bul. 22 Set 138-11 128
AB7S-PA, 10 AM	776 (Ch. 2655160
$108 \mathrm{m7} 7$-pa (See	${ }_{\text {col }}$
	Model 5025) 128
	507588 Tel Tec
102. 103, 104	(See Model S025) (Also
(See Model 1001	See Prod, Chge. Bul. 22 Set 138-11 128
122 (See Model 121).... 57	50768 BP Tel. Rec.
130, 132, 135,139	(See Model 5025)128
	5077, 5077ba Tel. Rec.
$4{ }^{\text {(See Model 121).... } 57}$	
141 A (Ch. 81010$) \ldots . . .{ }^{\text {a }}$ 92-b	See Prod. Chge. Bul. 22
150, 151,152, 155	5079, 50798 Tel. Rec. ${ }^{\text {a }}$
(Ch. 4E10) 91-12	(See Model 5025) (Also
000, 1001, 1003	${ }_{\text {See }}$ Set Prod. Chge. 13 Bul. 22128
(Ch. 1227) 10 \% 60-18	$5080,5080 \mathrm{C}$ Tel. Rec.
105, 1006, 1007, 1008 (Ch. 8-57) …........ 29-25	(See Model 5025) (Also
1010 (Ch. 717) 35-22	See Prod. Chge. Bul. 22.128
1015 (seo Model	
$10 \mathrm{BW78PA}$) 15	5082,5083 ch 2050160,250
020, 1021, 1023 (See Model 10001.... 60	Tel. Rec.' (See Model
1030. 1030 A (Ch. 618)... 37-22	5025 Set 1288 and
	Model
[See Model 1030) 37	Bul. 22 -Set 138-1).
1035, 1035A, 1036	5085.5086 (Ch. 2RO190,
1036A, 1037, 1037A,	25RD190) Tel. Rec.....139-14
	5088, 5089, 5090
1040xx, 1041 xx (Ch.	Tel. Rec. (See Model
${ }^{8 W 101} 1 \times 1$ (l ee Model	3025 Sel 128 and
	Model 141XX Set 126)
1038, 1059, 1000, 1061,	5101, 5102, $5103,5104$.
1064, 1071. 1072	[See Model 5025) (A)so
(See Model 121)..... 57	See Prod. Chase. Bul. 22
1080 (Ch .918 A$)$	Set 138-1) …..... 128
(See Model d900IV) ... 64	5107, 5108 (Ch $26551700.265517000)$
1080A (Ch. 8L10) (See Model 141A).... 92	Tel. Rec.)
1081 (Ch. 918 A)	
(See Model 4900 VV 64	
1081A (Ch. 8LIO) (See Model 141A).... 92	265517000 I Tel. Rec.
1085, 1088 (Ch. 8W10)	(See Model S107)....
(See Moder $141 \times \times 1 \times 126$	565silioodl rel. Rec.
1090, 1091 (Ch. 8W10) (See Model 141 XX) ... 126	(See Model 5107)....
10, 1211 (Ch. 8 W	5152, 5153,5154 Tel. Rec.
(Soe Model $141 \times \mathrm{XX}$) $\ldots 126$	See Prod. Chge. Bul. 22
$4900 T V$ (Ch. 24TVOC, 3TVOC O(8A) Tal Rec 64-11	Sot 138-1) 157.1 .128
3TV9C, 9(8A) Tal. Rec. 64-11	5155, 5156, 5157 (Ch.
	2650170x, ${ }^{\text {2650170xp) }}$
Tel. Rec. ${ }^{\text {2 }}$	(See Model 5025$)($ Also
4920, 4921,4922 (ch.	22-Sot 138-1) 128
24 TM10) Tel. Rec. (See Model 4916)..... 164	5158 Tel. Rec. (See Model cos
	See Prod. Chge. Bul. 22 Sel 138-1)

SPARTON-COnt
$5162 \mathrm{x}, 5163 \mathrm{x}$ (Ch
$2855171 \mathrm{~A})$ Tel. Rec
(See Modet $5107 x$)
$5165 \mathrm{X}, 5166 \times 1 \mathrm{Ch}$
26SD171) Tel. Rec. 166-13
5170 S 5171 (Ch. 25SD201,
$2 S 0201$ Tel. Rec. $147-11$
2S0201) Tel. Rec. . 147-11
5175X (Ch. 26SDI71) Tel.
Rec. (See Model 5165x) 166
5178x (Ch. 26SDIFI) Tel. 166
Rec. (See Model 5165) 166 5182 , 5183 Tel. Re
(See Mode! S025) (Also
See Prod. Chige. Bul. 22
5188,5189 Tel.
(See Model 5025) (Also
See Prad. Chge. Bul. 22
See Prod. Chge. Bul. 22
Set 198811
191,
$2550201 \mathrm{~A}, 2502011$
(See Model 5170). 147
5207.5208 (Ch. 265S172.
5207. 5208 (Ch. 26SS172, $167-14$ A) Tel. Rec.........167-14 5210 (Ch. 26 SSSi72B) Tei. 2 Rec. (See Model 5207). 167
5212 (Ch. 21S172) Tel. Rec. 260 iCh. 2650172 Cj T 174-12 Rec. (See Model 5207). 167 5225, 5226 (Ch.
26 SO 172 C) Te . Res
26SD172C) Tel. Rec.
(S5ee Model $52071 \ldots . .167$
5250, 5252,5253
(See Model 5212). Rec. 174
5262.5263 (Ch. 2655172,
(See Model 5207) $\ldots 167$
265 (Ch. 26SD172, A)
3265 (Ch. 26SD172, A)
Tel. Rec.
(See Model 5207)..... 167
5267 . 5268 (Ch. 26SD172.

5270 (Ch. 26 SDI72C) Tel
Rec. (See Model 5207). 167 Rec (Ch. 26 SDIT2C) Tel. 167
Rec. (See Model 5207). 167 52 Rec .15 lee Mo
$5272,5273 \mathrm{ICh}$
$26 S \mathrm{~S} 172 \mathrm{C}$) Tel. Rec.
Rec. (See Model 52071.167 5288,5289 (Ch.
25 CD 202) Tel. Rec. . . 178 -11 5290 (Ch. 25SD202)
$5291,5292,5293,5294$,
5295 (Ch. $25 C D 202$)
$\begin{gathered}\text { (See Model } 5288 \text {) } \\ \text { 5296A, } 5297 \mathrm{~A} \\ \text { (Ch. }\end{gathered}178$
$5296 \mathrm{~A}, 5297 \mathrm{~A} / \mathrm{Cl}$
25 CO
2021 Te,
(See Model 5288).... 178
5296,5297 (Ch
$25 \mathrm{SD202)} \mathrm{Te}$.

(See Model 5288)
$5342,5343,(C h .250213)$
5382, 5383, (Ch. 250213)
Te. Rec.
Model 5342
Ch. PC- $5-6-26$
(See Model 6AW26PA). 37
Ch. 2 RDD 190
Ch. See Model S085)..... 139
Ch. 2 SO201 (See Model

(See Model 4944).
Ch. 3TR10 (See Model
Ch. 3ivg. 3ivgic........ 97 A

(See Model 5AWO6)
Ch. 5A10 (See Model 130)
94
Ch. 5A10 (See Model 130) 94
Ch. 5.16
(See Model 5Allo).... 30
(Soe Model 5All6).... 30
Ch 5-26PS

(See Model OAMO6)
Ch. 717 (See Model 1010) 34
35
(Seo Model 7AM46)
Ch. 819 (See Model 121), 5 Ch. BLIO (See Model 141 A$)$
Ch .8510 (See Modal 414) Ch .8510 (See Model 14
$\mathrm{Ch} .8 W 10$ (See Model) $141 \times \mathrm{x})$
Ch
8.46
Ch (See Model 8AM46).
Ch. $8-57$ (See Model 1005) 29
Ch. 918 (See Modet 1035) 62
Ch Ch. 918 (See Modet 1035) 62
Ch. 918A
(See Model 4900IV)
Ch. 10-76PA
(See Model 108W76PA) 15
Ch .1217 (See Model 1000) 60 $\mathrm{Ch} .1217(5 e e$ Madel 1000$) 60$
$\mathrm{Ch} .19 \mathrm{~S} 10,19 \mathrm{TS104}$ (See Model 50101..... 104 Chassis
(Soe Model $52!2$) $\ldots . .174$
Ch 23 MB10 Ch. 23 CClO (See Models
$4935,4942,4954$.

Ch isee Model 50021..... 10

Ch. $\begin{aligned} & 24 T L 10 \\ & \text { (See Model 4916) } 16 \\ & \text { Ch. } 24 \mathrm{TM} 10\end{aligned} \mathrm{l}$

SPARTON-CORt. Ch. 24TR10 (See Model	STEWART-WARNER-COIt. A92CR3, A92CR3S
5052] . 34iva......97A	(Code 9028.C), A92CR6,
	A92CR6S (Code 9028-F) 29-26
Ch 25C0202	${ }_{\text {a }}$ (Code 9044, B, C)... 58-22
${ }^{\text {(See Model }} 52$	
Ch. 250213 (See	
Model 53421	B72CR1 (Code No. 9038A) 47-22
Ch 25 RD 190	892CR1, B92CR2, B92CR3,
${ }^{\text {(See Model }}$ M085) 139	B92CR4, 892CR8,
Chassis 2550172	
Ch .255 L 201 (See Model	K, L, M1... ${ }^{\text {a }}$, C, 0, 65-14
51701	${ }^{\text {CSITI (Code 9054.A). }}$. ${ }^{\text {a }}$
Chassis 2550202	41-22
See Model	T.711 (Code 9031-A)
Ch 25TK10A (See Model 121	Yel. Rec. 95A-12 T.711M (Code 9031.AM)
Ch. 2650160, 2650170,	Tel. Rec
S160,	1 T-711\|.... 95A
(See Model 5025) 128	T-712 (Code 9031-8)
Ch. 2650170x, 26S0170xP	Tel. Rec
	ode
Chassis $\begin{aligned} & \text { (See Model } 5165 \times \text {) ... } 166\end{aligned}$	Tel
Chassis 2650172 a	(See Model T-711).....994
(See Model 5207)	$21 \mathrm{C}-9210 \mathrm{C}$ Tel. Rec.
Chassis 26SDI72C	21 T .9210 ATel
(See Model 3207) 167	31
Chassis 2655	024-C) .. 39-24
	Code 9018-C
(See Model S107)	S1I136 (Code 9018
Chassis 2655171,	517146 (Code 901
	511176 (Code 9018-8). 15-35
lassis 26	T11 1 Code 9022.A
	81726
(5) Ma ${ }^{\text {a }}$	$62 \mathrm{Tl} \mathrm{C}^{\text {Code } 9023}$
See Model 48W17).... 50	$62 \mathrm{TC16}$ (Code 9023-0)
isee ${ }^{\text {d }}$	${ }^{62526}$ (Code 9023.E),
(See Model (86W17A).. 49	${ }^{621 \mathrm{C}} 36$ ($\mathrm{Code} 9023 . \mathrm{F}$). ${ }^{2-21}$
(See Model 6.60A).... 51	$72 \mathrm{CR16}$, 722
	9001.
SPIEGEL (See Aircastle)	9002-A, $9002 . \mathrm{B}, 9002 \cdot \mathrm{P}$
51	
410 40-22	\bigcirc
	9007 A, F, G a
1020 (............... 89-5	Models 9 9,
Starre	9100F,' 9100
Gotham Tel. Rec	Tel
Hency Hudson, Henry Parks	03-B,-C, 9104-A, - B,
Tel. Rec	
in Hon	,
	$9108 A^{\prime}$ B,
(See Model Henry	
Hued Mod	3 A T
7 CG -1	(See Model 91064) ... 118
Tel. Rec. ${ }^{\text {a }}$	$120 \cdot \mathrm{~A},-\mathrm{B}, \mathrm{C},-\mathrm{O},-\mathrm{E},-\mathrm{F}$
Al7ig-l (Ch. 17SI) Tel.	137
Rec. 15	9121-A, 9121-B, 9122-A
Al7CG-1) . 165	Tel
C-2 (Ch. 1851)	9124.4 rel. Rec.
Teel. Roc.	${ }^{9125 . A ~ A e l . ~ R e c . ~}$
(1)	(See Model 10120 (${ }^{\text {also }}$
el. Rec.	see Prod. Chge Bul.
(See Mod	S1. Set 185-1)
Ors	9127.4 Tel. Rec. . 162-13
Tel., Rec.	9150.B, 9150-D, 9150.0Z 140-12
(See Model Alick-1).165-2A	$9151 . \mathrm{A}$
${ }^{178 M 1}$ (Ch. 1251)	
Tel. Rec. (See Model	$9160 \mathrm{AL} \mathrm{Bu}, \mathrm{Cu}$,
$178 \mathrm{ml11}$. 1149	OU, EU171-10
${ }^{278 M 1}$ (Ch. 1251)	
Tel. Rec. (See Mode)	9162A, B .
178 Ml 1	$9164 . \mathrm{A}$
29AM1 (Ch. 14SI)	${ }^{9} 9162 \mathrm{~A}$)
Tel. Rec. (See Model 17BMII 149	
(BM1 (Ch. 1551)	202-A, B, C, DA, DB,
Tel. Rec. (See Model	DD, DDA, E, F, FA
$178 \mathrm{ML1}$ 1	Tel. Ree (Thru
37881 (Ch. 1251)	Series "B'') ${ }^{\text {a }}$
Tel. Rec. (See Modol	9202.A. B, C, DA, DB.
17 BM14 . .-....... 149	DD, DRA, E, F, FA
AM1 (Ch. 1451)	
Tel. Rec. ISee	2034 Tel Pec 168
178 ml	${ }^{92034}$ Tel. Rec........ 166-14
Chassis 1751, 1851	
steelm	(Series A, B, C, D, E)
AF1100 180	
107 178	Sr. GEORC
200 ${ }^{23}$	
${ }_{303}^{215} \ldots \ldots \ldots \ldots \ldots . .165-13$	stratovox
	579.1.58A 6-32
330 186	
350, 351 ….......... 21-31	Stromberg-Carison
${ }^{357}$. $51178{ }^{17}$	
${ }_{517}^{487} \times \cdots \cdots \cdots \cdots \cdots{ }^{\text {a }}$	AR-37 …..........128-14
595 $164{ }^{10}$	AR-37A \ldots.......... 173-15 3
597 . .a........... 183-16	
177-12	AU-33 \ldots.............334-12
4000 176-12	AU. $34 . \ldots \ldots \ldots \ldots \ldots$ 128-15
5000 … $186-13$	AU-35 $\ldots \ldots \ldots \ldots$..... 138-10
5101 162-12	AU-42 137
6000 163-11	AV.38, AV-39-...... 126
STEWART-WARNER	TC. 10 Tel Rec Also See
C1 (Code 9054B), AVC2	Prod Chge Bul. 1 Set
(Code 9054C) A AT1	103-191 . .l. . . . 79-17
(Code 9054-A) Teet, Rec. 64-12	TC.19 Me. Rec..........99-17
A5112 (Code 9020 - B).	TC-125 Tel. Rec.......... 95A-13 TS-15, TS-16, TS- 125
AS112 (Code 9020-8):	TS-15, TS-16, TS-125 Series Tel. Rec....... 72-12
A5174 (Code 9020-D)'. . 17-32	TV.101, TV.101w (112020) ${ }^{\text {a }}$
ICR1 (Code 9034-Cl).	Tel. 'Rec.)
A61CR2 (Code 9034.0).	
A6ICR3 (Code 9034-E), A61 CR4 (Code 9034.F). 39-25	112022) Tel. Rec.
1 P 1 (Code 9036-A). ${ }^{\text {a }}$	TV- 12 Series PHOTOFACT Servicer
A61P2 (Code 9036.8), A61 P3 (Code $9036 . \mathrm{C})$	TV. 125 (Ch. TV-12)
TIT (Code $9026-\mathrm{A}$). ${ }^{\text {a }}$. ${ }^{\text {a }}$	Tel. Rec. 68-16
272 Coode 90	16 Series Tel. Rec.......135-12
A72T3 (Code 9026 -C.	17 Series Tel. Rec.

SYLVANIA-CONt. Ch. $1-215$	TELE-KING-Cont. 203 (Ch. TVG) Tel. Rec.
(See Model 1.250).... 103	(See Model 201).......
	210 rel Rec. 310 Tel Rec.
Ch. 1-260 (Seo Model	410 Tal . Rec
4120 Ml . \ldots........ 124	416 Tel. Rec.
Ch. 1.261 (See Model	(See Mode!
4120M1 124	510 Tel. Rec
C. 1.271	(50e
	${ }^{512}$ (Soel. Roc. Model 410) 88
Model (5150 M) 131	516 Tel . Rec.
iSee Model $513081 . \ldots 120$	${ }^{1508}$ Model 11
Ch. 1.356 (See Model	(5 es Model 410)...... 88
513081 [........... 120	O Tal. Rec.
Ch. 1.357 (See	(See Model
Model 5150 m)	12 Tel . Rec
Ch. 1.366, 1.366-66 (See Model 4120M) 124	
Ch .1 .381 (500	ISee Model
Model 1210X) 128	$816-3 \mathrm{CR}$ Tel. Rec
(500 Model 2221 M] . . 137	Model 162) 12129
Ch. 1-387-1 (Seeo	916C Tel. Rec.
Model $22 \mathrm{M}-11$....... 154	(Seee Model 16
Ch. 1.137	${ }^{910 C A F ~ T e l .2 ~ R e ~}$
$\mathrm{Ch}^{\text {(See Model }} 1.437 .1$ (See	lFor TV C
Model 748.11131	919 C Tel. Rec.
h. 1-437-2 (See	ISee Model
Model 7 4B-2)	19CAF
Ch. 1.437.3 (See Model 738-51 131	(For TV Ch. only, ${ }_{\text {dee }}$
Ch. 1.437-3 Codes	920 (Ch. TVG) Tel. Rec.
CO6 and UP) (See 187	See Model 2011.
1.441	
(See Model (120M)... 124	1016 (Ch, TVG) Tel. Rec
$1-442$ (Soe	Sed
Model S150M) 131	Ch. TVG Tel. Reci, 131
Ch. 1.462-1 (Sees 22-M	See Model 201)
1.502.1 (See Model	Chassis (See Model K21) $\ldots \ldots . . .17$
1M-1)	
1.502.2 (See	TELEQ
Model 73M-11) 163	Ch. 12TR, 14T, 14TR, 16
Ch. 1.502.3 (See	$16 T \mathrm{~T}, 19 \mathrm{~T}, 19 \mathrm{TR}$
Model 73M-11) 163	恠,
$\mathrm{Ch}^{\text {c }} 1.507 .1$	C316MF Tel. Roc
(See Model 228-11)...	C317MF Tel. Rec
	C320MF Tel. Rec
Ch. 1-510-1, -2 [See Model	Csiod Tel. Rec
175-8)	${ }_{\text {csill }}$
h. $1.601-1$	66170 Tel . Re
(See Model Slib).... 160	C6190 Tel. Rec
(See Model 5418).... 159	${ }^{6} 6200$ Tel.
1.603.1	C8200 Tel.
TECH-MASTER	${ }^{\text {T2 }} 2161 \mathrm{Lel}$ Tel. Rec
1930 Tel. Rec. C 159-14	T2172 Jel. Rec.
	Tild
telechron	T470
8H67 "Musalarm" 44-23	TA17MF Tel. Rec. S135, 5136.1404
telecoin	$5135,5136,51404$
	TELESONIC (Medeo)
telicrait	1635 20
relecraft	1636
$30114 \mathrm{~A}-056 \mathrm{Tel}$. Re	1642
(Similar to Chassis).... 119	1643
${ }^{38 T 12 A-058 ~ T e l . ~ R e c . ~}$ [similar	tele-tone
$3173{ }^{\text {a }}$ Tel. Rec.	TV149 Televisian Rec.... 56-22
(Similar to Chassis).... 72-4	TV. 170 Tel. Rec......... 83-12
31814 Tel. Rec.	TV. 208 B Tel. Rec....... ${ }_{90}^{90}$
Similar to Chassis).... 85-3	TV. 200 Tol. Rec.
T4S Tel. Rec	${ }_{\text {(See Model }} \mathbf{2 0 9}$ MV.249)
Similar to Chassis).... 85-3	(A)so See Prod. Chge.
318T4.872 Tel. Rec. [Similar to Chossis) . . . 85-3	Bul. 21 -Set 136.1) . . 57
8T6A Tel, Rec.	$\checkmark 210$ Tol.
[Simitar to Chassis) 85-3	(See Model TV-249)
8 T6A.950 Tol. Rec. (Similar to Chassis) 85-3	Bul. 21. Set 136.1)... 57
$31819 \mathrm{~A}-900 \mathrm{Tel}$. Rec.	TV 222 Tol . Rec.
Simitar to Chassis).... 78-4	
STSA Tel. Rec.	TV. 249' Television Rec.
(Similar to Chassis).... 85-3	(Also See Prod. Chgo.
(Similar to Chasis)....78-4	
$5181104-916$ Tel. Rec.	TV. 254 Tol. Rec.
(Similar to Chassis).... 78-4	(See Model TV. $2501 . . .{ }^{\text {a }}$
	TV.2s5, TV-256
2318194-912 Tel. Rec.	TV259 Tel. Rec.
	('See Model TV249).
TELE-KING ${ }_{\text {K21 }}$ (Ch TVI) Tel Rec 177-13	TV. 2883 Tel. Rec.
K21 (Ch. TVJ) Tel. Rec. . 177-13	(See Model TV. 285) . . . 87
K72 (Ch. TVJ) Tel. Rec. (See Model K21)...... 177	TV-284 Tel. Rec......... 93 - ${ }^{\text {T }}$
K731 (Ch. TVJ) Tel Rec.	TV.285 Tel. Rec.
(See Modet K21) . 177	
KC21 (Ch. TVJ) Tei. Rec.	TV. 300 , TV. 301 (Ch. TAA,
CTI (Ch. TVJ) Tel. Rec.	${ }^{\text {TABb }}$ Tel Rec........ 99A-12
(See Model K21) 177	TV-300. TW) Tel. Rec..... 107-10
	TV-304, TV-305 (Ch. TAA,
22 B (Ch. TVJ) Tel. Rec	TAB) Tel. Rec.
(See Model K21) . .a. 177	TV-304, TV-305 (Ch. TX) ${ }^{\text {(}}$
(Ch. TVJ) Tel. Rec.	T1
(See Model K21)	Model TV.300) 107
(See Model K21)..... 177	(Ch. TY, TZ)
516 Tel. Rec.	Tol. Rec. 104-12
	Tv. 308 (Ch, TACl
Only See Model 1621.. 129	
114 Tel. Rec.,..........141-13	TVel. Rec. ${ }^{\text {Then }}$
116, 116 C Tel. Rec. (See Model 114)..... . 141	TV. 315 (Ch. TAA, TAB)
7, 117C, 117LO Te1	TV. 310 (Ch. TAH)
Rec. (See Model 114).. 141	Tel. Rec.
IITCA, CAF Tel. Rec.	TV.317 Tel. Rec
(For TV Ch. only, see Model 114)	TV318 (Ch. TAM) 124°
62 Tel. Rec. 129-12	,
172 (Ch. TVG) Tel. Rec.	TV322, TV323 (Ch. TAM)
[See Modal 201]...... 131	TV318)
$\begin{aligned} & 174 \text { (Ch. TVG) Tel. Rec. } \\ & \text { (See Model 201) } \\ & \text { 201, } 202 \text { Tel. Rec.......... } 131 \end{aligned}$	TV324, TV325, TV326 (Ch. TAP, TAP-1 TAP.2) Tel. Rec.

truetone-cont.
201095 Tol. Ren.
2010954 (Ch. 104×27)... 134-11

201185A, B, C, D, E Tei
Rec. AAso see Prod.
Chge. Bul. 43-Set
$177-1$ and see Prod
Chge. Bul. 46-Set
$180-1$.

\section*{ULTRADYNE
 | |
| :---: |
| | |
| | |
| | |
| | |
| | |
| | |}

s. TELEVISION

UNITONE
UNIVERSAL CAMERA (See
Record Changer Listing)
UTAH (See Record Change
V-M (Also see Record

VIDEO PRODUCTS
$630.0 \times \mathrm{Ce}$ Tel. Rec.........176-13
$630-0 \times 24 \mathrm{C}$
(See Model $\delta 30$-DXC) . . 176
©30FM38, 830 K 3 B
Tel. Rec.
$630-\mathrm{k} 3 \mathrm{C}$
(See Madel o30.DXC) . 175
o30-K24C Tel. Rec.
(See Model o30-DXC). . 178
VIEWTONE
RC-201A, RRC-201 11-32
VISION MASTER
(Similor to Chassis)....117-8
$16 \mathrm{MC}, 16 \mathrm{MF}, 16 \mathrm{MXC}$,
16 MXCS
16 MXTS Tel. Rec.
16 MXT
17 MC . 17 MT (hassis).....117-8
17MXCS, 17 MXT .
17MXTS Tel. Rec.
(Similar to Chassis)....117-8

WESTINGHOUSE-CANE.
$\mathrm{H}-655 \mathrm{~K} 17$, H -656K17
$\mathrm{H}-657 \mathrm{~K} 17$ (Ch. V- $2200-1$)
Tel. Rec. (See Model
H.648T20) (Also See
 4-5, -6) Tel, Rec, (See
Model H- 63917) (Also
See Prod. Chg. Bul, 28 See Prod. Chg. Bul. 28.
Set $150-1$ 1 1133
$H .658717$ (Ch. V-2192, -1)
H.658T17 (Ch. V-2192,
Tel. Rec. (See Modei) H-639171) (Also See
Prod. Chge. Bul. 28
Set 150 1). Bul. 28
H. 659717 (Ch. V-204-1). 133
Tel. Rec. (See Model Tel. Rec. (See Model
H.64820) (Also See
Prod Cho (Bul Prod. Chg. Bul. 42 -
Pre
 V.2203-1 and Radio Ch
V-2180-31 (Also see Prod. Chge
Bul. 46 Set $180-1$)..
 Tel Rec. (See Model
H-648T20) (Also See
 H. 663 TIT (Ch. V-2192,
Tel. Ree. ISee Model
H. 63917) (Also Sel H-639T17) (Also See
Prod. Chge. Bul. 28-S Prod. Chge. Bul. 28-Set
$150-11133$ H. 663 T17 $1 \mathrm{Ch} . \mathrm{V} 220 \mathrm{i}$)
Tel. Rec. (See Model Tel. Rec. (See Model
H. 648120 (Also See Prod. Chg. Bul. $42-$
Set 176 -1).
$-604 \mathrm{K17}$ (Ch. V-2200-1) Tol. Rec. (See Model
H. 648120)(Also See Prod Chg Bul. $42-$
Set 176-1) 154 He 66516 (Ch. V. 22006.1)
Tel. Rec. (See Model Prod. Chg. Bul. 42 .
H. 648120) (Also See
 (Ch. V. 2216) Tel. Rec.
(Also see Prod. Chg. Bu 40-Set 172.1). Chg. Bul. 167-15
H-673K21 (Ch. V-2217-1)
Tel. Rec. (See Model
Tel. Rec. (See Model
H-667II7)
H.676T21 (Ch V-22i7-1)
H. $676 T 21$ (Ch. V-2217-1)
Tel. Rec. (Soe Model
H. 66717)
H. 66717 I
H- 678 KIIF H- 679 K 17
$\mathrm{H}-678 \mathrm{~K} 17 . \mathrm{H}-679 \mathrm{~K} 17$
(Ch. V.2216.1.
el. Rec. (See Mode
H. 667 T I7) (Also see
Prod. Chge. Bul.
$40-$ Set $172-1$, Prod.
Chge. Bul. 45. Set
179.1 and Prod. Chge.
Bul. 52 -Set 186.1) 16
H8.
Bul. 52-Set 186.1)
H. $681117(\mathrm{Ch} . \mathrm{V}-2215-1)$
Tel. Rec (See Model) Tel. Rec. (See Mode
H. 667 T 17) (Also see Prod. Chge. Bul. $45-5 \mathrm{e}$
179.1 ond Prod.
Bul. 52 -Set $186-1$) 167
H. 688×24 (Ch. $V .2219-11)$
(Also see Prod. Chge.
Bul. 52 -Set $186-11$ 174-14
H-689716 (Ch. V-2214-1)
H. $690 \mathrm{k} 21, \mathrm{H} .691 \mathrm{~K} 21$
(Ch. V. 2217-1) Tel.

H-692121 (Ch. V-2217.2,
3) Tel. Rec. (See Model
H-667I17 (Also see
Prod. Chge. Bul. $43-5 \mathrm{se}$

H-695k21 (Ch. V-2217-2,
-3) Tel. Rec. (See Model
H-667II7) (Also see
Prod. Chge. Bul. 43.5 e

177.1 and Prod. Chge.
Bul. 52 Set $186-11$. 16
$.699 k 17$ (Ch v. 2216.2

-3) Tel, Rec. (See Model
Model H-607TI7) (Also
see Prod. Chge. Bul. 40 .
see Prod. Chge. Bul. 40 .
Set 172 , Prod. Chge. Bul.
45 -Set 179.1 and

V-2216-2. -31 Tel. Rec
(See Model H-667T17)
(Also see Prod. Chge
(Also see Prod. Chge.
Sul 40. Set 172.1
Bul. 40-Set 172.1
Prod. Chge. Bul.
$45-$ Set 179.1 and
Prod. Chge. 8ul.
52.5 et $186-167$
H. $701 \mathrm{K21}$ (Ch. V-2217.2)
H. $701 \mathrm{K21}$ (Ch, $\mathrm{V}-2217 \mathrm{R}$)
Tel. Rec. (See Model
H. 667 Tl 7) (Also see
H. 667 T17) (Also see
Prod Chge. Bul. 43-1.
Sel 177.11.......

H-702K17, H-703K17
(Ch. V-2216-2, -3)
(Ch. V-2216-2, -
Tel) Rec. (See Model
H. 667 Tl) (Also see
H. 6071 Chye. (Also see
Prod. 40 .Set
172 -1. Prod Col

172-1, Prod. Chge.
Bul. 45-Set $179-1$ and
Prod. Chge. Bul.
52 Set 186.11
H-704T17 (Ch. V-2216-2)
Tel. Rec. (See Model
H- 667 T 17) (Also
$\mathrm{H}-667 \mathrm{~T} 17$) (Also see
Prod Chge. Bul. 40-S
Prod. Chge. Bul. 40-Se
172.1 , Prod. Chge.
Bul. 45-Set 179-1.1.5e
Prod. Chge. Bul. $51.5 e$
Prod. Chge. Bul. Sise
$185-1$ and Prod. Chge
Bul. 52 -Set 186.1)

WESTING HOUSE-Cont.
H-705K17 (Ch. V-2216
Model Hec. (Soee (Also
see Prod (A)
see Prod. Chge. Bul.
40. Set 172.1
40.Set 172-1, Prod.
Chge. Bul. 45-5et 179-1
and Prod. Chag. Bul.
$52.5 \mathrm{et} 186-1) .167$
$.706 \mathrm{~T} 16(\mathrm{Ch}, \mathrm{V}-2207-1)$
H.706T16 (Ch. V.2207-1)
Tol. Rec,
H-708T20 (Ch. V-2220.1)

(Ch. V-2217-2, 3) (See
Model H.667ri7) (Also see Prod. Chge. Bul.
$40-5$ et $172-1$ Prod. 40.Set 172-1, Prod.
Chge. Bul. 43-Sel 177-1

$\mathrm{H}-713 \times 21, \mathrm{H} .714 \mathrm{~K} 21$,
$\mathrm{H}-715 \mathrm{~K} 21$ (Ch. V-2217-2,
-3) Tel. Rec. (See Model
H-667T17) (Also see
Prod. Chge. Bul. 40.5 ot
$172-1$, Prod. Chge. Bul.
43.Set 177.1 and Prod.
Chge. Bul. 52 -5et
${ }_{H-718 K 20}^{186-1}\left(\mathrm{Ch}, \mathrm{V}_{-2220-2)^{167}}\right.$
H-720K21, H 721 K 21
H-722K21 Ch V
H-722K21 (Ch. V-2217.2,
-3) Tol. Rec. See (AIso
Model H-667117)
see Prod. Chge. Bul.
sed Set 172.1 Prod.
Chge. Bul. 43 .Set
40.Set 172.1, Prod.
Chge. Bul. 43-Set 177.1
and Proo. Chge. Bul.
52 Set 186.11 167

52-Set i86-1)........ 16
H. $724 \mathrm{~T} 20, \mathrm{H}^{2}-725 \mathrm{~T} 20$
(Ch. V.2220-2)
Tel. Rec.

 Ch. V-2lo3
See Model H-153) 35
Chassis V.2103-3
(5.

Ch. ${ }^{\text {(See Model }}$ H-178) ... 35
Ch. V-2124-1
(See Model H-169) 37
Ch . V-2127
(See Model H-103) ... 48

Chassis V.2130-1
(See Model H-196).... 65
Ch. V-2130.110X. Ch. $\begin{gathered}V-2130.110 X \\ V-2130-120 X\end{gathered}$

$\mathrm{V} .2130-220 \mathrm{X}$ (See
Model H196A [DX]) ... 84 Model
Ch. $V-2130.310 \mathrm{~A}$
$\mathrm{~V}-2130-320 \mathrm{X}$
$V 2130-320 x($ See
Model H196A (DD]) 84
Ch V.2131, V-2131.1
(See Model H.185).... 54
Ch. V-2 M2
Ch V V-2133 M M

Ch. V-2136.5U
Ch. V-2137
(See Model H-203).... 62
Ch. V. $2 \mid 37.1$

$C h . \quad V-2137.3$,
$\mathrm{V}-2137-35 \mathrm{See}$
Model H-231)
Ch. V-2144, V-2144-1.... 974
Chee Mode! H.210)... 6
Ch. V-2146-05 (See Model
Ch. V-2146-11DX(See994
Model
$\mathrm{Ch}_{\mathrm{V}} \mathrm{V}-2146-210 \mathrm{DX}$,

Ch. V.2146-45-2176).... 91
(See Model H-216)..... 97A
Che V-2148
(See Model H3OOT5) ... 88
Ch V-2149
(See Model H-217B)
Ch V-2149-1
(Seé Model H.216) 97A
Ch. V.2149-3
(See Model
Ch. H V.23(1) $150.01, \mathrm{~V}$) 100
Ch V.2150.01, $\mathrm{V}-2150-0278$
(See Model $\mathrm{H}-223$).... 78

ZENITH-Cont.
G-2454.ROX (Ch
(See Model G2420E)... 93 G2951, R, OX, ROX,
$29 \mathrm{G20}, \mathrm{OX}$) Tel. Rec. 95-8 G2957. R (Ch. 23 G 23 , Rodio Ch. 6G20) Tel.
Rec. (See Model G2322) 98 G2958R (Ch. 23G23 \&
Radio Ch .6 G 201 T)
Radio Ch. 6G20) Tel.
Rec. (See Model G2322) 98
Rec. (See Model G2322)

- 3059 R (Ch. $24 \mathrm{G} 23 / 25 \&$
Radio Ch. 6G201 Tel.
Rec. (Seo Model G2322)
Rec. (See Model G2322)
G3062 (Ch. $24 \mathrm{G} 23 / 258$
Radio Ch. 6G201 Tel.
G3157RZ, Z (Ch. 23 G 24.

1 Ch
23G24211
G3el. Rec.
8G20/22) ${ }^{231}$ (R24
(See Model G3157RZ)
G3158RZ1 (Ch, 23G242i) 91A Glel. Rec, \mathcal{Z} (Ch. 23 G 24, 8G20/221 Tel. Rec
(See Model G3157RI).. 91A G3174RZ (Ch, 23 G 24.
8G20/22) Tel. Rec.
(See Model G3157RZ). . 914 G3259R2,
8G20/22) Tel. Rec.
G3259R1
G3262Z Rec. $\mathrm{Ch}, 24 \mathrm{G} 26$,
8G20/22) Tel. Rec.
(See Model G3259RZ). 9
$3262 Z 1(\mathrm{Ch} .24 \mathrm{G} 262 \mathrm{I})$ (See Model G3259RZ)
G3262Z) (Ch. 24G26Z1)
Tel Rec G3275RZ ICh, $24 G 26$.
$8 G 20 / 221$ Tel. Rec.
$8 \mathrm{G} 20 / 221 \mathrm{Tel}$. Rec.
(See Model G359RZ).. 91 (See Model G3259R
G3276Z \{Ch 24 G 26,
$8 \mathrm{G} 20 / 22$ T Tel. Rec.

$\mathrm{H} 724(\mathrm{Ch}, 7 \mathrm{HO2})$
H 724 Z (Ch. 7 HO 2 Z$)$

H724Z2 (Ch. 7HO272)
H725 (Ch. 7GO1Z).
H880, H880R (Ch. BH 20
H725 (Ch. 7G01Z)....135-15
H880, H880R (Ch. BH20
Revised) 127.-14
H880RZ (Ch. BH2O).....114-12
H-1083E (Ch 10H20) H-1083E (Ch. 10 H 20)
(See Modei H2 437E). .120
H1086R, HiO87R (Ch H1086R, H 1087 (Ch
$10 \mathrm{~Hz} 20)(5 \mathrm{Se}$
Madel H 2437 E$)$
H2029R, H2030E, H2O3OR 120
(Ch. 20 H 20 Tel. Rec...144-1
(Ch. 20 H 2 O Tel.
H 2041 R (Ch .20 H 2 O)
Tel. Rec.
TSee Mod
(See Model H2029R) 144
H2052R, H2053E (Ch.
H20H20) Tel. Rec.
(See Model H2029R) . . 144

H2227R [Ch. 22H20)
Tel. Rec. $114-13$
H2229R H2230E, R
(Ch. 22H21) Tel., Rec. 151-13
H2241R (Ch. 22 H 21)
Hel. Rec. (See Model
H2229R) (Ch......... 151
H2242E,R (Ch. 22 H 22)
$\mathrm{H} 2242 \mathrm{E}, \mathrm{R}$ (Ch. 22H22)
Tel. Rec. (See Model
Tel. Rec. (See Model
H2229R)............ 151
H2250R (Ch.
H 2250 R (Ch.
22 H 20) Tel. Res
22 H 20) Tel. Rec.
(5ee Model H2226R) . . 114
H2252R, H2253E (Ch.
22 H 21) Tel. Rec. (See
Model H2229R) See 151
H2254R (Ch. 22H22)

Tel. Rec. (See Model
H2229R1
H2255E (Ch

H 2255 E (Ch. 22 H
Tel. Rec. (See
Model
Model H2226R) $\ldots \ldots 114$
H2328E, EZ, R, RZ (Ch.
23 H 22, Zi Tel. Rec.....118-I1
23 H 2, , If Tel. Rec......118-11
H2329R, RZ (Ch. 23 H 22 .
H2329R, RZ (Ch. 23H22,
Z) Tel. Rec. (See
Model H2328EZ)
Model H2328EZ) $\ldots \ldots 118$
H2330E, R (Ch. 23H22)
Tel. Rec. (See Model
H2328E)..
H2341R (Ch. 23221
H2328E1
H2352R, RZ H2353E, EZ 118
H2352R, RZ, H2353E, EZ
(Ch. 23 H 22 , Z) Jel, Rec.
(See Model H2328EZ).. 118
H2436O (Ch. 24 H 21)
Tel. Rec. (See Model
H2437E)
H2437E, R, H2438R..... 120
H2437E, R, H2438R,
H2439R $(\mathrm{Ch} .24 \mathrm{H} 20)$
Tel. Rec.
H2443R (Ch, 24 H 201
Hel Rec. (See Model
Tel
2437 E)

ZENITH-Cont.	
28T925 E, R (Chassis 28F22)	
Tel. Rec.	64-15
28T926E, 281926 R (Chassis 28F25)	
Tel. Rec. (See Model	
28T925)	64
287960, 281961, 281962.	
28 T 963 (Ch. 28F20,	
28F20Z, 28F21)	
Tel. Rec. (See	
Model 2819251	64
28F23) Tel. Rec....... 74-13	
Rec. (See Models	
$37 \mathrm{T998}$ RLPU (Chassis	
28F20, 9E2 121 Tel. Rec.	
(See Model 28 T925 (Set	
64) and Model 9 H 995	
(Set 74)]	
Radio Ch. 13D22) Tel.	
Rec. See Model 74	
Ch. 4 C52	
${ }^{\text {(See Model }} 4 \mathrm{KO16}$	
Ch. 4C53	
(See Model 4K035)	6
Ch. 4 E41	
(See Model 4G800).... 35	
Ch. 4 E4IZ	
(See Mode1 4G8002)... 52	
Ch. 4 F40 (See Model	
4G903)	
Ch. 4 H 40	
(5ee Model H.401).... 156	
Ch. 4)40 (See Model	
(See Model 50011)	3
Ch. 5C02, 5CO2Z	
$\mathrm{Ch}^{(S \mathrm{ee}} 5 \mathrm{Model}$ (5 R080)	
Ch. 5 CO 4	
Ch. ${ }^{\text {(5ee Model }}$ S 5 R080)	
(See Model 5G003) . . 17	
Ch. 5C40Z, 5C40ZI	
$\mathrm{Ch}^{\text {(See } 5 \mathrm{M} 51}$ Model 5G003Z) ... 30	
(Sce Model 5G036)	

ZENITH-Cont. Ch. OHOT (See Model Ho6le)	
6H02 (See Model	
Ch. 6102 (See Model J644)	
Ch. 6105 (See Model	
Ch. 7EOI	
7E02, 7E022	
Ch. 7 E22	
Ch. 7 FO (See Model	
Ch. $7 \mathrm{FO2}$	
(See Model 7H92	
Chassis 7FO3 (See Model.7H918)	
hossis 7 FOA	
Ch. 7601	
Ch. 7GOIZ See Model	
Ch. 7G02	
$\mathrm{Ch} .7 \mathrm{G04}$	
Ch. 7 HOL (See Model	
Ch. 7 HO 2 Z	
Ch. $7 \mathrm{HO2Z1}$	
Ch. $7 \mathrm{HO2F2}$ (See Model	
Ch. 7 HO 04 (See Model H7231	
Ch. $7 \mathrm{HO4Z}$ (See Model	
Ch. $7 \mathrm{HO4Z1}$	
(See Model H72321).	
Ch. 7H04Z2 (See Model	
Ch. 8COI	
Ch. 8C20	

ZENITH-Cont. Ch. 8C2. (See Model 9H079).... 7	ZENITH-Cont. Ch. 22 H 20 (See Madel H2226R) 114
Ch. 8C40 (See Model 8G005Y)... 7	$\mathrm{Ch}_{\mathrm{H} 2229 \mathrm{R} \text {) } 22 \mathrm{H} 21 \text { (See Model }}$
Ch. 8C4OT(Z1), 8C40T(22) (See Model 8G005YT(Z1) 53	Ch. 22 H 22 (See Model H2229R). . . 151
Ch. 8E20 (See Model 8H832).... 52	Ch. 23G22 (See Model G2322) Tel. Rec........ 98
Ch. 8G20 (See Model G881)..... 98	Ch. 23 G 23 (See Model G29571
Ch. 8G20/22 (See Model $\begin{aligned} & \text { G3157RZ) } \\ & \text { (SA }\end{aligned}$	
Ch. 8H2O (See Model H880RZ) 114	Ch. 23G24Z1 (See Model G2322Z1).
Ch. 8H20 Revised (See Model M880) 127	Ch. $23 \mathrm{H} 22,23 \mathrm{H} 22 \mathrm{I}$ (See Model H-2328E). . 118
Ch. 8 H 20 Z (See Model J880).,... 168	Ch. 24 G 20 (See Model G2420E)............ .93
Ch. 9E2 1 (See Model 9H881).... 43	$\begin{aligned} & \text { Ch. } 24 \mathrm{G} 20 . \mathrm{OX}(\text { See Model } \\ & \mathrm{G} 2420 \mathrm{E}) \end{aligned}$
Chassis 9E2IZ (See Model 9H995).... 74	Ch. 24G21 (See Model G2454R) 93
Ch.9F22 ${ }_{\text {iSee Model }}$ 9H984) 64	Ch. 24G21.OX (See Model G2454-ROX)
Ch. 10 H 20 (See Model H2437E). . 120	Ch. 24G22/23 (See Model G24A1R)... 98
Ch. 10H2OZ (See Model H2229R) 151	Ch. 24G24 (See Model G2441) . . . 98
Ch. 11 C21 (See Model 12H090) . . 2	Ch. 24G24/25 (See Model 3059R) \qquad
Ch. 13022 (See Model 14H789). . . 41	Ch. 24G26 (See Model G2437RZ). . 91A
$\begin{gathered} \text { Ch } 19 \mathrm{K20} \text { (See Model } \\ \text { K1812E) } \end{gathered}$	Ch, 24G26Z1 (See Model G2441Z1).
Model K1812E) 184	Ch. 24H2O, 24H21 (See Model H2437E). . 120
(See Model H2029R)... 144	Ch. 27F20 (See Model 27T965R). . 95
j2026R) (N......... 159	Ch. 28F20, 28F202, 28F21,
Ch. 20J22 (See Model $\text { j2026R) } 159$	$\begin{aligned} & \text { 28F22 (See Model } 84 \\ & \text { 28T925) } \end{aligned}$
$\begin{aligned} & \mathrm{Ch.}_{\text {2 } 21 / 20}(\text { See Model } \\ & \text { j2026R) } \end{aligned}$	Ch. 28F23 (See Model 28T904R). 74
$\mathrm{Ch}_{\mathrm{j} 202 \mathrm{OR})}^{21121} \text { (See Model } 159$	Ch. 28F25 (See Model 28T925)... 64
Ch. 21 K 20 (See Model K-2230E	Ch. 29 G 20 (See Model G2951).... 95

RECORD CHANGERS

(CM-1) indicates service data alsa available in Haward W. Sams 1947 Recard Changer Manual. (CM-2) indicates service data ovailable in Howard W. Sams 1948 Record Changer Manval. (CM-3) indicates service data ovailable in Haward W. Sams 1949 , 1950 Recard Changer Manual. (CM-4) indicates service data available in Haward W. Sams 1951, 1952 Recard Changer Manual.

$\begin{aligned} & \text { THORENS } \\ & \text { CD. } 40 \ldots \end{aligned}$. [CM.1]	39-29
TRAV-LER		
A	(CM-3)	72-13
UNIVERSAL CAMERA		
UTAH		
550	(CM.1)	8
650	(CM.1)	22-34
7000	(CM-1)	27-31
7001	(CM-2)	83-15
V-M		
200-B	(CM.1)	15-36
400	(CM-1)	26-33
400 (Late)	...(CM-2)	90-13
402, 400C	(CM-2)	$82-12$
$402 \mathrm{D}, 400 \mathrm{D}$	(CM.2)	$87-14$
404 (See Model 405)		
	(CM-3)	
405	(CM-3)	73-14
406,407	. . (CM.3) 1	102-16
800	(CM-1)	21-38
$800 . \mathrm{D}$	(CM.2)	84-12
802	(CM.3)	77-12
910	(CM-3)	115-14
950	(CM.3)	107-13
950 Supplemen	nt.	$131+17$
WEASTER		
50	(CM-1)	24-35
56	(CM -1)	17-36
70	(CM.1)	29-28
77	. (CM-4)	137-14
100	(CM-4)	135-14
106	(CM.4)	146-12
133	. (CM-2)	82-13
148	(CM-2)	86-12
246	(CM-2)	74-11

WESTINGHOUSE

MISCELLANEOUS

RECORDERS

SILVERTONE

$70(\mathrm{Ch}, 567.230$,
$567.2311 \ldots(\mathrm{CM}-4) \quad 121-11$

silverto

$101.774 .2,101.774 .4$

ST. GEORGE

1100 Series(CM-1) 40—24
TAPE MASTER
WEBSTER-CHICAGO

$\begin{array}{lllll}210 & \cdots . . .(C M-4) & 159-17 \\ 228 & \cdots & (C M-4) & 156-13\end{array}$
WEBSTER ELECTRIC
(See Ekotape)
WILCOX-GAY
2A10, 2A108, 2A11, $180-10$
2AIIB180
WIRE RECORDING CORP.
WP
WP

"SHOP TALK" (Cont'd from Page 5)

It is customary (and convenient) to express the noise voltage produced by a tube in terms of a noise voltage applied to the grid, the tube itself assumed to be noise free. The rms value of this voltage is then such that, when amplified by a noise-free tube, it produces at the output just as much voltage as a noisy tube would produce with its input shorted.

In a receiver, the noise developed by the first stage is actually the most important because at this point in the system the level of the incoming signal is more closely on a par with the noise level than at any other point in the receiver. Thus, an RF amplifier is more important than the mixer--because whatever noise voltage appears at the grid of the RF amplifier is amplified by the tube and appears that much larger at the grid of the mixer. Even if the noise voltages of both tubes are comparable, that appearing at the grid of the RF amplifier is effectively more important because it receives the amplification of the RF amplifier while the noise developed at the grid of the mixer does not. Hence, what we seek in the first tube is low internal noise and high gain. A tube with a high noise level would be undesirable no matter what its gain.

Referring to our VHF experience, we can now see why boosters will not always be beneficial. As sume that in our regular TV receiver (without a booster), the noise voltage existing at the grid of the RF Amplifier is 10 microvolts and the received signal is 30 microvolts. This is a signal-to-noise ratio of 3 to 1 . We figure that if we place a booster ahead of our set, we should get a clearer picture. This may not be so.

Suppose our booster, in its input circuit, develops a noise voltage of 20 microvolts. The incoming signal is still 30 microvolts. If the booster gain is 10 , then what the RF amplifier will receive is 200 microvolts of noise and 300 microvolts of signal. What is the signal-to-noise ratio now? 3 to 2 , which is not as good as 3 to 1 .

So, in this instance, this booster will not heip you improve the quality of your picture.

On the other hand, if the noise existing at the grid of the RF amplifier of the booster is less than 10 microvolts, and the same signal of 30 microvolts is received, then the signal-to-noise ratio will improve and with it, the quality of your picture.

From these facts concerning noise, we see immediately that in choosing a booster we want one which has low noise circuits. This is certainly as important as gain--because you can have all the gain in the world--yet if a large noise voltage exists at the grid of the first amplifier stage of the booster, you will get a high noise voltage out. And nothing you can do thereafter will reduce the noise.

That the booster manufacturers recognize the situation is amply revealed by the following excerpt from the literature of one such manufacturer. He states, in part, that, "The noise factor of the initial amplifier stages in the TV receiver fixes the quality of reception. If the noise factor is high, reception is poor. Our booster not only supplies the signal with sufficient RF gain to overcome the nois y television tuner, but possesses a low noise factor to furnish the best in reception." Other booster manufacturers,
while not giving as extensive an explanation, do stress in their literature the fact that low-noise circuits are used.

Thus, boosters are designed with two aims in mind: To improve the signal-to-noise ratio and to amplify the weak incoming signal. Both are important and both are needed. A booster capable of high gain but incapable of providing a good signal-to-noise ratio will give a picture filled with distrubing noise spots. A booster possessing a minimum of internal noise but capable of little gain will not amplify the signal sufficiently to permit it to override the set noise. So again the picture will be covered with noise spots. Thus the booster must have both attributes or it might as well have none.

The over-night popularity of the cascode circuit is due primarily to its reduced noise. Its gain is higher than that obtainable from a well designed pentode but not so much so as to account for its widespread adoption.

It is interesting to note that the antenna is also a source of noise. Every antenna possesses resistance and a noise voltage due to its thermal agitation will be developed by the antenna and fed to the receiver. However, at frequencies beyond 100 mc , the receiver noise is considerably greater than the noise generated by the antenna.

As an indication of the ability of a receiver to take a weak signal and amplify it so that an intelligible output is obtained, a quantity known as a noise figure is frequently used. This noise figure compares the total noise which is present in the output of the receiver (with antenna connected to the set) with that portion of this noise which is generated by the antenna alone. This particular ratio is chosen because every receiver must be used with an antenna and since the antenna generates some noise voltage due to thermal agitation in its wires, noise would be obtained at the receiver output even if the receiver generated no noise itself. However, if the receiver introduced no noise, then the ratio of the total noise output of the system to the noise output due to the antenna alone, would be 1. In all receivers, the noise figure is greater than 1 because the receiver introduces noise.

At the low frequencies, when the input impedance of the first tube is high, the signal from the antenna is generally applied to the grid of the tube through a step-up transformer in order to achieve an impedance match. Under these conditions, the tube noise voltage is small in comparison to the applied signal and a good signal-to-noise ratio is maintained. The sensitivity of the receiving system, then, is limitedonly by the amount of noise voltage developed by the antenna and this is generally small. With increase in frequency, the tube input impedance decreases and a step-up transformer is no longer needed to match the antenna impedance to the input impedance of the receiver. Tube noise now is on a level with the received signal and exerts a limitation on how small a signal can be received to develop a useful output. The sensitivity of the receiving system has decreased.

Before we leave this subject of noise, it should be pointed out that we have said nothing about noise generated outside the receiver. This noise may be picked up by the antenna and/or by the transmission line. To overcome this noise we must attack it at its source, or, if this is not feasible, to try to keep as
little of it as possible from reaching the signal via the antenna or the lead-in line. Standard methods of attack include increasing antenna height, repositioning the antenna, and using shielded lead-in line. It has also been found helpful to position the booster at the antenna (or at least as close to the antenna as possible). This serves to strengthen the signal before it has been subjected to the noise and thus enables it, with its amplified strength, to better overcome the adverse effects of the noise. The reader will recognize that here again we are acting to improve the signal-to-noise ratio.

In UHF converters and receivers there are currently no RF amplifiers. This is not because there are no suitable UHF tubes available for the purpose, but rather because these tubes are much too expensive for use in mass-produced television receivers. When a low cost tube can be produced, it will undoubtedly be employed to reduce the noise figure of present UHF circuits. In the meantime the incoming UHF signal is fed directly to a crystal mixer. Crystals rather than triodes are used because of their low noise content and because they require very little injection voltage from an oscillator to produce an efficient mixing action. The crystal mixer will attenuate the signal by 8 to 9 db but even this disadvantage is not enough to outweigh its low noise. Triode mixers, on the other hand, will contribute some gain to the signal, but because their noise content is higher, they are not used.

REVIEW. It is customary in this portion of the column to review an outstanding article that appeared in one of the radio or television publications. This month we will deviate from this practice and instead consider several brief constructional articles that concern auxiliary equipment useful to the television technician.

One such piece of auxiliary equipment is the bias box. This is a device which will supply small negative biasing voltages for any radio or television receiver being worked on. Such a biasing voltàge would be required when aligning a television receiver or when you suspect that the AGC system is defective. In the first instance you need a specified negative bias (usually -3 volts) for the video IF system. In the second case you wish to stabilize the AGC bias at an average value to see whether the set will return to normal operation.

A simple, compact bias box which will provide whatever bias voltages are normally required is described by F. R. Barlett in the Septeriber, 1952 issue of Radio \& Television News magazine. The circuit, shown in Figure 1, is seen to consist of a 6AL5 voltage doubler plus a simple filter network. Input power is obtained by direct connection to the 6.3 volt winding on the power transformer of the receiver it self. Or, if desired, a separate 6.3 volt step-down transformer may be employed, in which case the unit becomes self-contained.

The 6AL5 delivers a negative voltage nearly two and one-half times the rms input. The RC filter removes all objectionable AC ripple. Since no current need ordinarily be supplied to the biasing circuits, the output range of voltages remains close to the noload value.

To use, simply clip the ground lead to the TV chassis, the AC input lead to a hot filament pin, and the bias lead to the AGC bus. Then adjust the voltage divider potentiometer for the desired bias value as

Figure 1. Circuit of Bias Box.
indicated by a VTVM or other high impedance voltmeter.

CAPACITOR SUBSTITU TION BOX

One of the jobs which a service man is called upon to do quite frequently is check capacitors in radio and television circuits. A capacitor may be open, be partially shorted, or fully shorted. Cpen capacitors are checked by bridging a test capacitor across them; partially or totally shorted units must first be disconnected from the circuit (by opening one lead), and then substituting a good capacitor in their place. What frequently makes this procedure time consuming is the search that the service man must make for a replacement of suitable walue.

An auxiliary device which permits capacitor substitution simply and easily is shown in Figure 2. Using only 21 capacitors and an equal number of SPST switches, a range of 54 different capacitances can be obtained. All units, when switched into the circuit, add directly to whatever other capacitances are also active. And by judicious switching, all of the commonly employed capacitance values can be formed. (If an exact value is not obtainable, one reasonably close to it can almost always be produced.)

The two out put terminals are marked " + and - " to distinguish between them when electrolytic capacitor substitution is required. For the mica and paper units, the polarity markings are of no consequence. A $4 \times 5 \times 9$ inch metal box with switches and terminals on the front will adequately house the capacitors. The circuit was devised by George E. Row and described in the December, 1951 issue of RadioElectronics Magazine.

Figure 2. A Suitable Capacitor Substitution Box.

High Standard of Performance and Wide Range Reproduction at a Sensible Price!

```
8", 10" and 12" sizes .. 12" and 15"
Co-Axials .. 31/2" and 5" Tweeters
Write for Catalog Today.
```


QUAM-NICHOLS COMPANY COTTAGE GROVE \& 33rd PLACE, CHICAGO 16, ILLINOIS

When you specify Seletron "Safe Center" Selenium Rectifiers you eliminate arc-over danger, short circuits and heating at the center contact point. Assembly pressure, or pressure applied in mounting the rectifier cannot affect its performance-a Seletron feature accomplished by deactivating the area of the plate under the contact washer.

The millions of Seletron Selenium Rectifiers in satisfactory service as original equipment in the products of leading manufacturers are millions of reasons why you can specify Seletron and be safe!

Consult your local jobber!

$$
\begin{aligned}
& \text { RP SELETRON DIVISION RP } \\
& \text { RADID RECPPTOR CDMPANY. INC. } \\
& \text { Salos Departmgnt: } 251 \text { West 19th St., Now York II, M. Y. } \\
& \text { Factory: } 84 \text { Morth 9th St., Brooklyn 11, M. Y. }
\end{aligned}
$$

CAPACITOR PROBE

Another useful little gadget employing a single .01 mfd . (1,000 volt) capacitor is shown in Figure 3. Each end of the capacitor has an alligator clip for quick and easy attachment to various points in a circuit. As an indication of how to use this device, suppose it is desired to check the audio stages in a receiver. (No sound is being obtained from the speaker and we wish to determine whether or not the audio stages are at fault.) Clip one end of the lead to the hot filament terminal of any nearby tube. The other end of the .01 mfd . capacitor is then touched to the control grid of the final audio amplifier. If this stage is operating properly, a loud 60 cyc c e buzz will be heard from the loud speaker.

By the same method we can check all audio amplifiers working back one stage at a time.

In a television receiver, further application of this simple device can be made in testing video amplifiers, sync separators, and the vertical and horizontal sweep systems. Without going into a lengthy discussion on how each of these stages can be tested, they all depend upon the fact that the 60 cyc le vertical pulse portion of a video signal will produce an audible out put when fed to the audio system of the receiver. The horizontal system will likewise produce an audible output if the operating frequency is lowered sufficiently with the horizontal hold control. For those who desire a fuller explanation, reference should be made to the author's'"Servicing TV in the Customer's Home" published by the Howard W. Sams \& Co., Inc. The capacitor probe is especially useful when set servicing must be done in the home where the normal complement of service test equipment is not available.

ATTENUATION PADS

In repairing a television receiver, the technician would frequently like to know how the sensitivity of a

Figure 4. 10 and 20 db Pads for 300 Ohm Balanced Lines (A and B) and 72 Ohm Unbalanced Lines (C and D). COURTESY RCA and DuMONT.
set compares with that of other receivers. This can be done roughly by inserting an attenuator pad between the set and the antenna transmission line, and noting the quality of the picture produced on the screen. If this test is made with a number of receivers, you will soon come to distinguish between sensitive and insensitive receivers.

A suitable attenuation pad for 300 ohm balanced lines which will introduce a 20 db attenuation is shown in Figure 4A. (A 20 db attenuation means that the set will receive $1 / 10$ the input signal it normally gets.) If this proves to be too much, a 10 db pad (input voltage reduced to $1 / 3$) can be built. See Figure 4B. Similar pads for unbalanced 72 ohm inputs are shown in Figure 4 C and 4 D , and are employed in the same way.

Besides being useful for comparative sensitivity measurements, these pads can also be gainfully employed for a variety of other purposes. They can be used, for example, to determine how well a booster will perform. Insert the pad at the end of the transmission line and note how much improvement is wrought with the booster in and then out of the circuit,

Another application of the attenuation pad is the simulation of weak signal conditions for the servicing of sets that normally operate in these areas. The performance of many fringe area sets can be improved by judiciously realigning their video IF system so that the low frequencies are emphasized at the expense of the higher video frequencies. (Doing t his tends to make noise spots less prominent while increasing picture contrast.) Also plate load resistors in the video frequency amplifiers can be increased in value toward the same end. By using the attenuation pad you can reduce a normal shop signal to fringe area level and thereafter determine directly whether any changes made are beneficial.

The foregoing auxiliary service equipment are those which the technician will find most useful. They are all simple to build and the resulting speed-up in service time will more than pay for their small expense.

Radio-TV Speakers Waterproof Speakers Auto Remote Speakers

Weatherproof Intercom Stations

Stocked by Leading Jobbers

CLEVELAND ELECTRONICS, INC. 6620 EUCLID AVENUE - CLEVELAND 3, OHIO Morhan Exporting Corporation, 458 Broadway, New York, N. Y.

Flat Response: 50 to 10,000 cycles
Just Compare the range of this new $8^{\prime \prime} \mathrm{Hi}-\mathrm{Fi}$ with any other speaker up to 3 times its cost. We have... and you too will be surprised \ldots at the quality response of this CLETRON Red Devil.
3.2 ohm or 8 ohm lists at $\$ 8.50$.

Write today for free technical literature of comparison tests.

It's a Red Devil for Performance Built with CLETRON Aluminum Voice Coil Form
to the output terminals and to the receiver's antenna input terminals.

The converter power supply consists of a power transformer, a 6X4 tube connected as a half-wave rectifier, and a conventional RC filter network. One winding on the transformer provides heater power to the converter tube filaments.

Mallory TV-101 (Serial \#200,000 and up).

The late version Model TV-101 employs several changes over the earlier $r u n$ of this model. These changes can be seen in the schematic in Figure 10.

Several minor circuit and component variations are noted in the late version. Chief among these are the use of a 6 CB 6 pentode tube for the IF amplifier and the use of a selenium rectifier in place of the 6 X 4 rectifier tube.

Although the outward appearance of these units remain the same, they are readily identified by noting how many tubes are used. The early version employed three tubes, while the late version has two tubes. Top and bottom photos of the late production TV-101 unit are shown in Figures 11 and 12 respectively.

Regency UHF Converter

The Regency UHF converter Model RC600 is designed to operate with any standard televisionreceiver. It is housed in a plastic cabinet h aving a large slide rule type dial and two front panel operating controls. See Figure 13. The large knob on the front is for tuning while the small knob below it operates the selector switch.

On the back of the cabinet is an outlet receptacle shown in Figure 14. When the television receiver is plugged into this receptable, the converter selector switch turns power on and off for both units.

The converter is connected to a receiver in a manner similar to the way boosters are employed. However, if a booster is normally used on VHF, the booster should be reconnected between the VHF antenna and the VHF terminal strip on the converter.

Electrically, the converter is composed of a preselector, local oscillator, mixer, IF amplifier, and power supply. The entire tuned

STANCOR NEWS BULLETIN

NEW STANCOR TRANSFORMERS

A-4747-Input transformer for single button mic. or low imp. line to single grid. Pri.: 70 ohms;sec. $1,300,000$ ohms.
Turns ratio, $1: 137$. Ideal for mobile transmifter use.

A-3335-Output transformer for P-P plates to V.C. An economical unit
used with eve's and inverse reedback. 10,000 to $6-8 / 3.2-4$ ohms. Max. pri. DC, 40 ma.,
10 watts.

P- 6468 -Fllament transformer for a palr of Eimac 4-250A's where CT is oper-
ated near ground potential Sec .5 .0 V . CT, 30 amps .
RMS insul. 2500 V .

P-6410 - Electrostatically shielded isolation transformer designed for servicing small receivers, ampliflers and test equipment. rated at 50 watts.
sk your Stancor distributor for Bulletin 450R for additional information on these and other new Stancor transtomers.

STANDARD TRANSFORMER CORPORATION

0

Amazing, New CONRAC "TUNER-KLEEN'R"

a sure-fire producer of extra profits! it's new! it's different!

every TV owner needs it!

Conrac's new perpetual "Tuner-Kleen'r" is a sure-fire producer of profits for every serviceman in a television area. It's something that's long been needed in the industry... and that will be enthusiastically received by every owner of a television set. It is quickly and easily snapped into position in all standard tuners and from then on the Conrac "Tuner-Kleen'r"perpetually cleans all the stationary and revolving contact points for clearer television reception. Every turn of the tuner puts the Conrac "TunerKleen'r" to work. Let it start working for you for extra profits ... and more and more satisfied customers.

CONRAC, INC.

Since 1939 • Glendora, California

Figure 11. Top Chassis View of Mallory Converter. Late Version. (Serial \#200,000 and up.)
portion of the converter is contained in a cylindrical drum type unit seen in Figure 15, measuring $4^{\prime \prime}$ in diameter and $3^{\prime \prime}$ in depth. External to the drum is the tuning drive mechanism and power supply. Components observed under the chassis are the rectifier components, selector switch, and input filter. See Figure 16.

The preselector and oscillator tuned circuits are composed of tuned lines curved to provide compactness and continuous tuning. The tuning is accomplished by moving slider contacts over the surface of the tuned lines.

In Figure 17 is a schematic of the Regency converter. It is observed that two tubes (oscillator and IF a mplifier) are employed in this unit. The preselector and oscillator lines are designed to maintain tracking throughout the UHF television band. When a UHF signal is received by the converter this signal and the local oscillator signal are heterodyned, providing the intermediate frequency at the crystal mixer output. This intermediate frequency is ampli-

Figure 12. Bottom Chassis View of Mallory Converter. Late Version.

Figure 13. Regency Converter Model RC600.
fied by the cascode coupled amplifier stage employing a type 6BK7 tube. The signal is then fed from the IF output transformer to the selector switch and to the UHF output terminals of the converter.

Only a few steps are required to install this converter in conjunction with a television receiver. First disconnect the VHF antenna from the television receiver and connect it to the terminals on the back of the converter marked VHF ANT. A short lead of 300 ohm line is then connected from the receiver antenna terminals to the converter terminals marked TO RECEIVER. Connecting a UHF antenna to the converter and plugging the converter line cord in an AC outlet, completes the installation. It is usually desirable to plug the television receiver line cord into the power receptacle on the back of the converter thus turning both units on and off with a single control. In this instance, the television receiver on-off switch should be left in on position.

The three positions of the selector switch perform the following functions:

1. OFF - Power to converter and AC receptable is off.

CONNECTER OUTPUT TUNING (SEE TEXT)
Figure 14. Back of Converter Unit Showing Terminal Strips Power Receptable and Output Tuning Adjustment.

Stymied for exact duplicates like these?

TL-1, 2, 3:
Width and
Linearity

Coils

get acquainted with the complete

exact duplicate

TV Replacement Transformers

built-to-fit electrically and mechanically

Get to know the chicago complete exact duplicate TV transformer line! Stop hunting, stop taking chances, stop wasting your time and effort on makeshift "fits." chicago has everything you need in TV transformer replacements-units that fit exactly electrically and mechanically - units that slip right into place, with the right lead lengths, with specs that match the originals on the nose. They're right for the job because chicago has been making the world's toughest originals for years, because chicago makes more originals than all others combined. To save time and effort, to eliminate costly callbacks, to earn more -ask your distributor for chicago exact replacements-and be sure.

FREE! TV Replacement Catalog

Write for your copy of CHICAGO'S latest Exact Duplicate TV Transformer Catalogget acquainted with your complete guide to every replacement requirement. Do every job right-osk your distributor for CHICAGO built-to-fit replacements.

साज KITS IN ONE EVENINGbut they last a lifetime... and you save 50\%!
22 Kits and 24 Instruments -
 the Industry's most complete line of MATCHED TEST INSTRUMENTS!
Over $1 / 4$-million EICO ln struments are now in use the world over! That's the proof of EICO's leadership in Value to the Serviceman!
For latest precision engineering, finest components, smart professional appearance, lifetime performance and rock-bottom economy - see and compare the EICO line at your jobber's today before you buy any higher-proced equipment! You'll agree with over 100,000 others that only EICO Kits and Instrúments - no other - give you the industry's greatest values at lowest cost.

Write NOW for FREE latest Catolog PF-11

Laboratory

 Precision ar Lowest Cost625K Tuber Tacter

Kit
Wired
S3
Si9.95.

@gs INSTRUMENTS \& KITS
ELECTRONIC INSTRUMENT CO., Inc.
84 Withers Street, Brooklym 11, N. Y.

Figure 15. Rear Chassis View of Regency Converter.
2. VHF - Power is applied to AC receptacle and the VHF antenna is connected through the switch to the receiver antenna terminals. The filaments of the converter tubes also receive power.
3. UHF B+ is applied to converter circuits, the converter output is connected through the switch to the receiver antenna terminals.

The frequency of the signal supplied to the converter output is set at 195 mc or Channel 10 at the factory. Should a strong VHF signal be received on this, or adjacent channels, the converter output can be adjusted to fall on any channel from 8 through 12. This is readily accomplished by turning the receiver to the desired channel $(8,9,11$ or 12$)$ and turning the

Figure 16. Bottom Chassis View of Regency Converter.
adjustment located on the back of the converter unit for the best picture obtainable.

If tube replacement is required in this converter, the chassis must be removed from the cabinet. Both tubes are contained inside the tuning drum. The 6BK7 amplifier tube is reached from the front of the tuning drum and the 6AF4 is removed by first removing the small shield at the top of the drum. Tube replacement is facilitated by the use of tube pullers built around each tube.

MERLE E. CHANEY

Figure 17. Schematic of Regency Converter.

Your most valuable business asset is a SATISFIED CUSTOMER!

insure customer good will with DEPENDABLE OHAM|TEGESISTANGE

Don't endanger your business reputation by using "just-as-good" replacement parts. Protect customer good will with OHMITE resistance units - known the world over for dependability.

Servicemen, amateurs, and engineers everywhere agree that these quality components provide extra reliability and long life. Insist on OHMITE resistance units... it's good business!

OHMITE MANUFACTURING COMPANY, 4872 Flournoy St., Chicago 44, III.

only \$67-50 for this DYNAMIC ${ }^{\circ}$

 tube tester

In the Model 115 "Challenger" Tube Tester, the famous Jackson Dynamic ${ }^{\circledR}$ test principle is employed. Separate voltages are applied to each tube element. Tests can be made under actual use conditions.

A feature of this instrument is the high voltage power supply. It affords more accurate results because of high plate voltages-over 200 v . for some types of tubes.

Spare socket positions are provided for future use, thus avoiding obsolescence. Push-button and selector switch controls simplify operation. The 4 -inch-square meter is easy to read. The instrument gives complete short tests. It is applicable to over 700 types of tubes including TV amplifiers and rectifiers. The built-in roll chart is frequently revised to provide data on new tubes. This service is free for one year.

Finish is attractive Challenger Green with harmonizing knobs, meter cover, and push-buttons. Size, as of all "Challenger" instruments, is $13^{\prime \prime} \times 91 / 2^{\prime \prime} \times 51 / 2^{\prime \prime}$. Weight, 11 lbs .

JACKSON

ELECTRICAL INSTRUMENT CO
"Service Engineered"
Test Equipment
DAYTON 2 , OHIO
In Canada:
The Canadian Marconi Co.

Figure 4. Typical Phase Detector and Multivibrator Horizontal AFC System.
second triode section cut off. Consequently, the multivibrator could not operate.

Upon further investigation it was found that capacitor C68 had shorted. This had placed a high positive potential on one plate (pin 7) of the 6AL5 and a serious unbalance had resulted so that the correcting voltage on the multivibrator swung strongly positive

The repair of the set consisted of replacing the shorted capacitor C68 and the resistor R86, which showed signs of having overheated. The 6AL5 phase detector was tested for possible damage as a result of the heavy current flow in the one diode section. The 6AL5 was replaced with a new tube when an appreciable difference was noted in the emission characteristics of the two diodes as checked on a tube tester.

The important point in this troubleshooting experience is the test performed on the multivibrator by grounding the grid of its first triode section. The test is quickly performed and tells a lot about the condition of the multivibrator. If in the above situation, the multivibrator had not started when the grid was grounded, it would have immediately indicated

Figure 5. Under-Chassis View of a Corona Problem.
that something was probably at fault in the multivibrator itself. When the multivibrator started as it did, it was a clue to look elsewhere for the trouble.

Remedy of a Corona Problem -

The following is a television servicing experience which is worth relating because the problem can sometimes occur in sets whose designs place points of high potential in close proximity to parts having potentials near ground. An example of such a condition is shown in Figure 5. Here the 1 B3 high voltage rectifier is situated beneath the chassis and not far from the socket for the horizontal output tube.

A general visual check was being given this receiver when a buzzing noise was heard. On close examination under reduced lighting, two small, sputtering sparks were seen at Point 1 on the ceramic capacitor which functioned as the coupling capacitor to the horizontal output grid. The capacitor was replaced and for a time the condition was absent. However, after a brief period of bench operation, the sparks made their reappearance on the new capacitor. Upon close examination, a sharp protrusion of wire was discovered at Point 2 on the filament connection to the 1B3 high voltage rectifier. When this wire projection was clipped off and plastic corona inhibitor was sprayed on the capacitor and over the 1B3 socket, the sparks disappeared and did not return.

The distance between points 1 and 2 was about 1-1/4 inches. What had been occurring was a corona discharge between these points since the 1B3 carried about 14 kilovolts while the coupling capacitor was near ground potential in comparison. The sharp wire projection on the 1B3 filament served to concentrate the potential existing across the gap so the $1-1 / 4$ inches was not great enough to prevent corona discharge. The situation may not have come about if the 1B3 had been fitted with a corona ring which acts to distribute the high charge over a larger surface area, thus increasing the spark-over distance for a given voltage.

GLEN E. SLUTZ

Use
 CRIEPRINTED CIRCUITS

RIE Resistor began the development of Printed Circuits in 1940. Since then the advantages of Printed Circuits have been amply demonstrated and Erie has made important contributions in the field.

A complete line of Erie Printed Electronic Circuits is available, including Diode Filter, Triode' Plate Filter, Vertical Integrator, Audio Output Circuit, and Pentode Plate Coupler.

Order through your jobber.

ERIE PRINTED

 CIRCUITS affer these aduantages- Fewer soldered connections mean less installation time.
- One installation unit replaces several.
- Fewer connections mean fewer wiring errors.
- Circuit stability is improved through simplification.
- Lower costs for procurement and stock mąintenance.

E

 RI rer\qquad

How to use

to cut down contract service calls

Krylon is a tough, quick-drying Acrylic coating with many important TV applications. To apply, just push the button on the aerosol can and spray-that's all you do!

Because of its high dielectric strength, Krylon helps prevent corona. Here technician Bernard Vanella-on the staff of dealer Mort Farr, Philadelphia- "Krylon-izes" high voltage coil and insulation the socket of the high voltage rectifier, component parts of the rectifier circuit.

Edward Weigand, Farr service man. sprays Krylon on entire antenna. Krylon shuts out moisture, rain, salt spray-prevents corrosion and pitting-keeps picture quality at peak.
"'Krylon-izing" increases your customer's satisfaction and jumps your own profits! Nationally advertised to your customers!

TECHNICAL CHARACTERISTICS

Dielectric constant-2.8 to 2.4 (1,000 cycles)
Dielectric strength-400 to 800 (number of volts necessary to cause electric arc through Krylon coat one mil thick)
Electrical resistance- 10^{10} ohms $/ \mathrm{om}^{3}$
See your jobber, or write direct.
KRYLON, Inc.
Dept. 259
2601 N. Broad St., Phila. 32, Pa.

STROMBERG-CARLSON (Continued)

the left side of the rear chassis apror is used as a reference as to the time various production changes have been instituted. A typical number is "51-16-3" where the " 51 " stands for the year of manufacture, the " 16 " for the week and the " 3 " for the day of the working week.

SERIAL NUMBER: The serial number is a six digit number that is metal-stamped into the bottom center area of the rear chassis apron along with 'Made in U. S. A.".

MISC. MARKINGS: The six digit number that is ink-stamped in the upper left corner of the rear chassis apron is the part number of the chassis.

SYLVANIA

MODEL NUMBER: The model number denotes the series and identifies the type of cabinet used. The number is found on the tube layout chart on the inside wall of the cabinet.

SYLVANIA (Continued)

CHASSIS NUMBER: The chassis number is incorporated in the identification of the serial number and will be explained in that respective section.

RUN NUMBER: In the earlier sets employing a bridge chassis, the run numbers for the chassis and bridge were identified separately. The chassis run number was ink-stamped on the rear apron of the chassis. It consisted of the letter " C " followed by two digits. The bridge run number was stamped on the under side of the bridge and consisted of a " B " followed by two digits. The first production was C 00 or B 00 after which the number was increased for each production change. The chassis and bridge run numbers are not necessarily the same. Check both to obtain complete information.

In later sets, the run number is incorporated as a part of the serial number as described in the following section.

SERIAL NUMBER: The serial number incorporates the chassis type, run change and serial designation. The first two numbers are representative of the last two numbers of the chassis type. The third and fourth digit indicate the run change, and the remaining figures are the serial designation.

In the example above the serial number represents a 1-139 chassis incorporating all changes through 14.

Some chassis, from the 1952 production, have serial numbers composed in a slightly different manner than the one above. This method is shown as follows:

In the example above the serial number represents a $1-502-2$ chassis incorporating run change C 01. The engineering variation number identifies major variations, such as a different tuner unit or picture tube, from chassis of the same general type.

The serial number can be found printed on a sticker glued to the rear apron of the chassis.

WESTINGHOUSE

MODEL NUMBER: Up to the middle of 1949 both radio and television were signified by an " H "

Mr. Electronic Service

 Technician

You have seen and will continue to see, in the chassis of TOP-NAME Radio and TV sets, an increasing number of Planet electrolytic capacitors - conspicuous because of their shiny red cardboard jackets. They are in those quality sets because components engineers have proven for themselves that PLANET condensers are "ENGINEERED FOR QUALITY".

You can take advantage of their findings by purchasing from your distributor Planet universal replacement types of the same high standard of quality. Ask for PLANET by name.

"ENGINEERED FOR QUALITY"
 GUARANTEED FOR ONE YEAR

Write now for
latest FREE catalog \mathbf{N}.

PLANET MANUFACTURING CORP. 225 BELLEVILLE AVENUE BLOOMFIELD, NEW JERSEY

PHOENIX IS FIRST AGAIN!
FIRST WITH SENSATIONAL DUOTENNA
 ALL-CHANNEL

HIGH GAIN ON ALL CHANNELS 2-83
Phoenix revolutionizes the antenna field with this amazing new aerial concept. GET ALL THE FACTS!

PHOENIX ELECTRONICS, Inc. lawrence. mass.

A HOT Little BOOSTER for HOT Front Ends

VIDEON JR. won't oscillate with the hot front ends of new sets!

PERFORMANCEWISE—lt's tops
PRICEWISE-It's right . . . and as
for customer satisfaction, you cut costly call backs when you install a VIDEON JR.
Write For Descriptive Folder And Name Of Your Distributor

WESTINGHOUSE (Continued)

number. However, after this time radios assumed $\mathrm{H}-300$ series and television $\mathrm{H}-600$ series, with additional information. As an example, model number $\mathrm{H}-625 \mathrm{~T} 12$ is broken down as follows: The number being in the H-600 series, signifies television. "T" signifies table model and " 12 " signifies the picture tube size. Other cabinet designations are " K " for consolette and " C " for combination (TV-Radio-Phonograph).

The model number appears on the picture tube label, back cover, and tube layout label.

CHASSIS NUMBER: The chassis number is a "V" number, such as V-2219-1, which is stamped on the rear apron of the chassis. If any letters follow this number it signifies a factory tube substitution which is shown on the tube layout label.

RUN NUMBER: The equivalent to a run number is either a new number after the dash in the chassis number or a block letter ink-stamped on the rear chassis apron, such as B.

SERIAL NUMBER: Any number larger than the chassis number is the serial number. It appears printed on a sticker and is found glued to the rear apron of the chassis. This number may be marked "Chassis Number" instead of "Serial Number".

ZENITH

MODEL NUMBER: The model number is stamped on the back portion of the cabinet on the upper rail. The letter signifies the calendar year of production, the first two digits signify the number of tubes, including the picture tube employed, and the last two digits signify the basic cabinet design. The calendar years are noted as follows:

$$
\begin{aligned}
& \text { E - 1947-1948 Calendar Years. } \\
& \text { F - 1949 Calendar Year. } \\
& \text { G - } 1950 \text { Calendar Year. } \\
& \text { H - } 1951 \text { Calendar Year. } \\
& \text { J - } 1952 \text { Calendar Year. }
\end{aligned}
$$

CHASSIS NUMBER: The chassis number is ink-stamped on the rear apron of the chassis and on the tube layout label on the inside wall of the cabinet. This number overlaps the model number, but is assembled in a different manner. The first two digits signify the number of tubes including the picture tube, the letter signifies the calendar year of production, and the last two digits signify the type of chassis.

RUN NUMBER: No run number or markings are used in the production of the chassis.

SERIAL NUMBER: The serial number is embossed into the rear apron of the chassis.
C. P. OLIPHANT

"WAVEFORM ANALYSIS" (Cont'd from Page 41)

The waveform on the grid of the horizontal output tube is shown in Figure 7 as W15. On the particular receiver used to obtain these waveform photographs, the amplitude of the drive voltage was slightly low. However, the shape of the wave is typical of many receivers and will be frequentiy encountered in practice. Notice the flattening at the peak of the saw-tooth wave. This is produced as a result of grid current flow. The flattening of a small portion of the saw-tooth peak will not degrade the output of the amplifier. However, if the trouble in a receiver should happen to be insufficient width and the flattened portion on the drive waveform is found
to be in excess of service specifications, a gassy output tube or leaky coupling capacitor may be causing insufficient bias and consequently giving rise to the abnormal compression of the saw-tooth peak.

Two of the most popular horizontal AFC systems, and the waveforms associated with them, have been covered in this discussion with the general aim that the information set forth may further the usefulness of the oscilloscope in the servicing of TV receivers.
 member, only Clarostat offers 2-, 3- and 4 -watt wire-wound controls.

ASK YOUR CLAROSTAT DISTRIBUTOR

for these new Pick-A-Shaft wire-wound controls. Ask for new catalog-or write us.

Controls and Resistors
clarostat mfg. co., inc., dover, new hampshire

Laughs in the Life of a TV Serviceman

"I wrote for a fix-if-yourself TV book and did exactly what it said - my set hasn't worked since!"'

Some people think repairing a TV set is as easy as fixing a leaky faucet. They'd save time and money by calling a serviceman right away -whether or not their set is a Raytheon.

Most servicemen like to take service contracts on Raytheon TV receivers. They find Raytheon has fewer part and tube failures than
most sets. That means extra profits, more satisfied customers.

Then there's Raytheon's famous service clinic that helps you spot, and fix, 98% of TV set troubles. Write for popular FREE booklet, How to Interpret What You See. No obligation. Address Raytheon Television and Radio Corp., 5921 West Dickens Avenue, Chicago 39, Illinois.

Editors and Enginecrs PUBLICATIONS

BETTER TV RECEPTIOM

in Fringe and Low-Signal Areas NEW SECONO EDITION
This is the book which has taken the failure out of many unsuccessful fringe area installations and has improved the picture for many discouraged TV owners. Practical, easy to understand. How to select the best transmission lines, boosters and receivers. How to eliminate "ghosts" and minimize fading. You can greatly improve receiver performance by using the information in this book.

$\$ 2.50$ per copy (plus any tox)

antenna

OVER 300 PAGES OF PRACTICAL INFORMATION FOR EVERY RADIO MAN One of the most comprehensive practical antenna books ever published.
$\mathbf{\$ 3 . 5 0}$ per copy (plus any tax)

BUY FROM YOUR DISTRIBUTOR

ADD 10% ON DIRECT MAIL ORDERS IO
EDITORS AND ENGINEERS, ITD.
BOX $689 R$, SANTA BARBARA, CALIF.
Bookstores order from BAKER \& TAYIOR. Hillside N.J

type coaxial, Jensen H-222 combines a special directradiator unit for frequencies below 2000 cycles with a compression-driver high frequency unit loaded with a sixcelled horn based on the famous Jensen Hypex* formula.
Enclose the H-222 Coaxial in a Jensen Model BL-121 BackLoading Folded-Horn Cabinet for superior acoustic performance. In this universal design, a long folded flare path expands the Hypex* formula, gives better bass response-even when placed on a sidewall. In a corner, walls act as extensions of the horn.
*Trade Mark Registered
JENSEN HI-FIDELITY AT MODERATE COST

Ask your Jobber or write for Brochure 1020

DIVISION OF THE MUTER COMPANY 6601 S. Laramie Ave., Chicago 38, Illinois IN CANADA:

BELGIAN COMPROMISE. With France adopting an 819-line television system and most of the rest of Europe using 625 lines, the choice of standards for Belgium was a question loaded with dynamite. The country is politically divided into Dutch and French speaking groups. The decision recently announced is to have dual-system sets, with trans mitters using the standard corresponding to the prevailing language group in each locality. Engineers assured the Belgian government that only a few extra parts and a switch would be needed in each receiver to change from one standard to the other.

PREVIEW TV. Newest variations of pay-as-you-see TV is a patented device that turns on the set for a few minutes at the start of each program, to give potential customers a peek at it without charge. At the end of the preview period, the gadget turns the set off and lights up a sign instructing the user to deposit a coin in order to see the rest of the program. A number of motels have already signed up for installations of this new television entertainment device.

CRANKS. To cut short a promising career as a serviceman, consider each complaining customer as just another crank, and think of each job as just another headache intruding upon your daydreaming.

On the other hand, show a keen personal interest in the problems of each new customer and you'll go places. But remember that the problems of difficult customers are not always technical. They have something to get out of their system, and your best bet is to listen sympathetically while they blow off steam. Do this, and you' ll soon develop a real feeling of pride in your abilities as a diplomat. You' 11 find that it's just as much fun fixing up the feelings of people as it is to fix up ailing sets, and equally rewarding in the long run.

SLUGS. Latest proposal is to include them with soap bar purchases, for use in buying additional pay-

One of the many outstanding features of Jensen Hypex* Projectors is the patented hyperbolic-exponential flare which gives improved low-frequency performance over the exponential type.
Hypex* by Jensen was the first basic improvement in horns since the exponential type was proposed in 1919.
*T.M.Reg.

e ensen
 JENSEN MANUFACTURING COMPANY

DIVISION OF THE MUTER COMPANY
6601 S. LARAMIE AVE., CHICAGO 38. ILLINOIS
IN CANADA:
COPPER WIRE PRODUCTS, LTD., LICENSEE

Send 25c for your copy of Jensen
Technical Monograph No. 5,
"Horn-Type Loudspeakers."
16 pages, fully illustrated,
describing the design and
acoustical properties of horns.

as-you-see programs in the system advocated by International Telemeter Corp. Why not go one step farther, and develop a system of keyed slugs that work only for a particular program sponsored by the donor of the slugs.

BOOKS. In normal times, a book publisher makes about the same profit before taxes as the author of the book gets in royalties. Today, however, the author is making about twice as much as the publisher. The author's royalty, usually 10% of the retail sale price of the book, automatically brings him more as book prices go up, so he keeps in step with the rising cost of living. The publisher is confronted with steadily rising costs of paper, typesetting, engraving printing and overhead yet is afraid of raising his book prices linearly in step, for fear people will stop buying books.

As a result, many meritorious book manuscripts are going unpublished these days because market prospects are not good enough. For cloth-bound books, the larger publishers have to sell about 8,000 copies today in order to get out of the red on production costs.

There are two trends--to prices approaching and even going beyond $2 ¢$ per page for cloth-bound books, and to paper-cover books produced by highly efficient smaller publishers using latest time-saving drafting techniques, composition on modern Varitype typewriters instead of linotype, and offset reproduction that eliminates engraving costs. In the television and radio servicing field are excellent examples of the latter technique, giving servicemen the new books they need at pre-war prices.

BLIND. Because many blind people like to listen to TV programs so they know what their sighted friends are talking about, an FM radio receiver that picks up TV sound as well as FM stations has been developed by Pyramid TV Service Company in New York City. Numbers of the TV channels are marked in Braille on the tuning disc. Selling price is around $\$ 60$.

REBELLION. In Havana, Cuba, political party head Emilio Ochoa appeared on a Sunday night television program and urged half a million members of his party's youth movement to march against the government's military camp "to see if the soldiers would fire on them'. Ochoa was hauled into court on charges of inciting rebellion by television.

REPEATS. Just as theaters repeat the same film over and over during its scheduled run, so is television trying out continuous performances in its search for lower-cost programs. New York's WNBT started tests this fall of after-midnight programs repeating the same film, so that viewers can tune in any time and see the complete show just as at theaters.

In WOR's variation of the repeating-program technique, the same hour-and-a-half stage drama is repeated each weekday from 7:30 to 9:00 P. M. for a five-day run. Viewers can choose whichever day is
most convenient for seeing the show, or can see part of it one evening and catch the rest later in the week.

* * *

DIP -SOLDERING. Hallicrafter's president Bill Halligan announced mass production of printedcircuit clock radios, designed in such a way that about a hundred connections can be made with a single dip of the chassis in a large solder pot. With this technique, a team of 20 girls can turn out a thousand sets a day, whereas 100 girls were needed to do the same job using conventional electric soldering irons.

A trend to use of dip soldering means that there' ll have to be a small solder pot in each service shop also. This is necessary for unsoldering transformers, electrolytic capacitors and other multiterminal components that are supported as well as connected by their own rigid leads on the dip-soldered chassis. To get such a part out, all leads have to be unsoldered simultaneously by lowering them into a small pool of hot solder.
C.O.D. CALLS. This year, television servicemen will be paid close to $\$ 750$ million to keep TV sets running, with over 95% of this being paid on a C.O.D. basis the day the work is done. Less than 5% of the TV sets in use today are under contract. Dealers are selling contracts with only about 10% of their new sets on the average, and even this figure is dropping.

Still more important to a serviceman is the drop from 5.5 average calls per year per set two years ago to an average of 3.5 calls now. There are two reasons for this; manufacturers are making more reliable sets and the public is becoming more tolerant of minor defects in pictures.

To a servicing organization, this drop in calls per year means that six men can handle the same number of regular customers that ten did two years ago. Many organizations have had to letsome servicemen go for this simple reason.

TV servicing is rapidly approaching a billion-dollar-a-year business that will soon overshadow even new-receiver sales figures. Figuring an average of $\$ 12.50$ per call, divided about $50-50$ between parts and labor, the average set owner will pay out to servicemen over $\$ 40$ a year for the 3.5 calls needed to keep his set running. Remember that this is an average figure; it can run as low as $\$ 10$ one year, but skyrocket up to $\$ 75$ or more in the year that the picture tube is replaced. These figures should be explained slowly and carefully when a customer objects to the amount of a service charge.

COSTS. A television set is considered to be 0.69% of the annual living cost of the average family, and a table-model radio 0.31%, according to Bureau of Labor statistics. The average TV set price dropped over 10% in 1951 and radio sets dropped about 1%, offsetting rises in other things making up the consumer price index.

Also measures capacitance

\star Large $9^{\prime \prime}$ Meter Scale

* Zero-Center DC Scale \star Polarity Reversing Switch RANGES
Volis, $A C-D C$ and mils $D C: 0-1200$ in 6 ranges.
Volts, AC, Peak-to-Peak: $0-300$ in 5 ranges.
Resistance: 0.1 ohm to $10,000 \mathrm{meg}$. in 8 ranges.
Capacity: 1 mmf to 1000 mf in 7 ranges.
Current, DC: 5 microamps to 1200 milliamps.
Input Impedance; AC, 3 meg. on 1200 VAC scale. 1200 meg. (shunted by 6 mmf). DC, 12 megohms.
Inductance: 50 mh to 100 henries.
Frequency: 30 cps to 300 megacycles. Decibels: -20 to +25 , in 3 ranges. For unexcelled accuracy and dependability, the Model 209A is one of the finest instruments ever built. In addition to being the most reliable VIVM available, complete HICKOK design has included additional features to make the 209A the only true VTVM in its price range.

Extra features include:

- Frequency characteristic to 300 megacycles
- Very accurate capacitance scale
- Perfectly matched high frequency probe
This fine instrument provides the sensitivity range and completeness of test necessary for today's fast and profitable radio-TV service. Also, meets the high requirements of the electronic or industrial laboratory engineer.
Write today for complete information or see your nearest HICKOK jobber.
THE HICKOK ELECTRICAL INSTRUMENT CO.

"TUBE TROUBLES"

(Cont'd from Page 9)
After the coupling capacitor was replaced, the tube would operate in the circuit with no noticeable deficiency. However, it was noted that the tube operated a little too hot and with some glow indicative of too much residual gas. The source of this gas was the metal plate which was heated to a high temperature by the heavy current, thus releasing a quantity of gas. In a normally oper ating tube, the absorbed gas contained within the metallic element structures is usually not driven out as long as the tube is operated within its design ratings.

Another interesting point in reference to this particular tube trouble, was that a tube tester indicated adequate emission. However, the tester did indicate that the tube was slightly gassy and that the transconductance was lower than normal.
Loose Elements (Microphonics) -
Heat cycles and mechanical vibration may cause elements in a tube to loosen slightly from the supporting structure. This gives rise to a condition in audio work called microphonics. Sound waves striking such a tube, or mechanical vibration, causes the tube element spacing to vary and the modulation due to vibration is impressed on the signal.

Masco's years of sound "know-how" have been incorporated into its Model MA-125 to provide the high power and wide range reproduction required for extra large industrial and outdoor installations. It continues to emphasize superior performance and long, troublefree operation.

Compare these features: 125 watts of power at less than 5% distortion; 4 input channels; separate controls for each input; stabilized inverse feedback; constant voltage outputs; oil-filled filters; automatic safety interlock switch; available for rack mounting

List price $\$ \mathbf{3 1 2 . 5 0}$

Where booster amplifier only is desired, the Masco MB-125 provides a power amplifier of 0 db sensitivity which can be driven by a pre-amplifier or telephone line.

List price $\$ 237.50$
60 and 75 watt Hi -Power Amplifiers also available. Write to factory for details.

Figure 3. A Photo of a Rectifier Tube Damaged as the Result of Warped Plates.

The usual procedure for locating a microphonic tube is to lightly tap the tubes while noting the effect on the sound or picture to determine which tube is the troublemaker. Since some microphonic tubes are highly sensitive to vibration, tapping almost any tube on the chassis results in microphonics. Tube substitution in these instances will usually help in locating the faulty tube.

Interelectrode Leakage -

High resistance leakage between tube elements may also give rise to grid currents. The cause of leakage current is the presence of a conductive path between tube elements. Leakage is indicated when it is found that grid current is greater at cut-off than at. normal bias.

If interelectrode leakage is indicated and yet the tube is found to be okay, it may be that the socket it -

Figure 4. A 6V6GT Tube Defective Because of Broken Welded Bond Due to Excessive Heat Dissipation.

Figure 5. Leakage Paths Which May Exist in a Tube or Tube Socket.
self is at fault. This may be due to condensation of moisture, dust, or foreign matter, or to carbonization from arc-over between socket pins.

Figure 3 is an illustration of a stage biased with an AGC voltage. If leakage exists between the grid and cathode, tube bias may be sharply reduced. In fringe areas, leakage of this type may go unnoticed since AGC bias may be quite low. During the reception of a strong signal, on the other hand, sufficient bias would not be present due to the leakage. This condition might cause overloading of the stage.

Shorted Elements -

A common failure in vacuum tubes is a direct short existing between tube elements. This may be caused by mechanical breakdown due to severe shock, warped elements caused by excessive heat dissipation, sagging filaments or from small particles of conductive material falling across two elements.

Often this failure in a tube will burn out additional components such as a plate load resistor and cathode resistor and could easilv overload the rectifier and power transformer. The location of the tube in the circuit, the size of the load resistors and the use of fuses determines the extent of trouble which a shorted tube will cause.

Intermittent or Open Filaments -

Open filaments in television tubes are a frequent cause of receiver failure and are usually quickly located. Intermittents may be more troublesome but are usually located without too much difficulty.

In the case of the picture tube, it is often found advantageous to check the soldering bond between the base pins and the connecting leads to the filament. An apparent open or intermittent filament condition may be cured by the application of a hot iron to the filament pins on the tube base.

Most Complete Line!

Burgess has the only complete battery line. Because they make batteries for every dry battery use, consumer acceptance is greater for Burgess Radio Batteries.

Highest Quality!
Burgess product quality is tops. More than 40 years of making only dry batteries, protects dealer reputations... Burgess quality control is your best guarantee of satisfied customers and repeat business.

Manufacturer Identity!

There's no private label competition with Burgess... and there's no question about the manufacturing source, either. You can be sure that every Burgess Battery you sell is a product of Burgess Battery Company.

Nationally Advertised!

Burgess advertising is a real sales help all along the line. Folks really remember those distinctive two-color ads in leading national magazines. you'll see it reflected on your profit sheet all through the year.

 Oldest Line!

Burgess is the oldest line for radio dealers and servicemen. Burgess was first to see the great future of portable radios...that's why it's the major radio battery line today.

Best

Promotional Program:

You'll like the aggressive way Burgess promotes sales for you in '52! For instance, the 1952 portable radio promotion ... (the Burgess Portable Battery Prize Carnival) . . . is the soundest, most complete sales promotional program everorganized.

Order Your Stock from Your
Burgess Disfributor Today!

GURGES BATtERIES

burgess battery Company freport, ilinois

If YOU SERVICE TV

 -YOU NEED THEM!
"TV Servicing Short-Cuts

Based on Actual Case Histories"

shows you how to solve commonly recurring troubles
the book that really teaches fast, expert service techniques
This book describes a series of actual TV service case histories, each presenting a specific problem about a specific receiver. The symptoms of the trouble are described and then followed by a step-by-step explanation of how the service technician localized and tracked down the defect. Finally, there is a detailed discussion of how this particular trouble can be tracked down and solved in any TV set. The discussions which follow each case history are invaluable they explain how to apply the proper time-saving servicing techniques to any TV receiver. Here, in one volume, is the successful experience of experts-to make your service work easier, quicker, more profitable. Over 100 pages, $51 / 2 \times 8 \frac{1}{2} 2^{\prime \prime}$, illustrated Pays for itself on a single service job.
ORDER TK-1. Only
$\$ 1.50$

"HOW TO UNDERSTAND AND USE TV TEST INSTRUMENTS"

shows you how to get the most from your test instruments
Provides basic ex planations of how each test instrument operates; describes functions of each control and shows their proper adjustment to place the instrument in operation. Covers: Vacuum Tube Volt meters, AM Signal Generators, Sweep Signal Generators, Oscilloscopes, Video Signal Generators, Field Intensity Meters, Voltage Calibrators. Describes each in detail; explains functions; tells proper use in actual servicing; shows how to avoid improper indications Because this book gives you a clear, complete understanding of your test instruments, you get more out of them, save time, and add to your earning power. Over 175 pages, $81 / 2 \times 11^{\prime \prime}$, illustrated.
ORDER TN-1. Only
$\$ 3.00$
HOWARD W. SAMS \& CO., INC.

ORDER THESE OUTSTANDING
TV BOOKS
FROM YOUR
PHOTOFACT DISTRIBUTOR

PF INDEX Subject Reference Toble

The following subject Reference Table for the PF INDEX and Technical Digest is intended to provide a ready reference to subjects in the various articles that have appeared in PF INDEX and Technical Digest issues Nos. 24 through 35 inclusive.

The table has been divided into major subject headings in common usage in the electronic field. These headings are listed in alphabetical order, and a descriptive breakdown of the material is then given under these classifications. Following the subject listing the name of the article appears in quotes, as well as the issue number of the PF INDEX and Technical Digest in which it was published. With the issue number of the PF INDEX and Technical Digest known, the page on which the article appears in that issue may be found by referring to the Table of Contents on the front cover of that issue.

All subjects which are covered extensively enough in the text treatment to be helpful in the servicing or the understanding of the operation of a circuit will be found in the Reference Table. Since it is sometimes difficult to
remember in exactly which issue of the PF INDEX a particular article or reference chart was included, this tabke should be of assistance in locating the desired material quickly and positively.

In the event that a discussion of a particular component design or operation also includes material pertaining to the servicing of that component, the material would be listed under the component heading and also under "Servicing".

For example: PF INDEX and Technical Digest issue No. 24 contained material on "Servicing Selenium Rectifiers". This material is listed under both "Selenium Rectifiers" and "Servicing".

A sincere effort has been made to list each subject under all headings to which the user might normally refer. A cross-reference system is then employed to direct attention to the particular heading under which a breakdown of article reference is given.

SUBJECT	INDEX Number
AGC (Automatic Gain Control)	
Adding Keyed AGC to the 630-type Chassis	
'Keyed AGC Application"	26
'Keyed AGC Operation"	25
AGC Rectifier, Arvin TE-331	
"Examining Design Features"	34
AUDIO	
Altec Lansing A-333-A Amplifier	
"Audio Facts"	32
Altec Lansing A-433-A Remote Amplifier "Audio Facts"	32
Amplifier, General Performance Rating Methods	
"Audio Facts"	34
Frequency Response, Checking Phono Cartridges with Sweep-Frequency	
Record	
"Audio Facts"	35
How Far Can I Mismatch?	
"Shop Talk"	29
Improving Audio Response in TV Receivers	
"Audio Facts"	29
"Shop Talk"	26
Preamplifier, Providing Phono Preamplification, Tone Compensation and Remote Operation; Design and Construction	
"Audio Facts"	33
Square-Wave Clipper Unit to Operate from Service-Type Generator	
Service-Type Generator "Experiments in Audio".	26
Williamson Amplifier, Design and	
Construction	
"Audio Facts"	30
Williamson Preamplifier	
"Audio Facts"	31
Williamson Tone Compensation and	
Filter Units	
"Audio Facts"	31
AUDIO DETECTORS	
Gated-Beam Circuit, Zenith Ch. 20J21	
"Examining Design Features".	31
CONVERTING TO LARGER	
PICTURE TUBE SIZES	
General Information	
"High, Wide and Handsome".	25
'Converting the Motorola VF103"'	27

SUBJECT INDEX No.
CONVERTING TO LARGER
PICTURE TUBE SIZES (Continued)"Converting the Olympic XL210"28
Converting the 630-type TV Chassis
"High, Wide and Handsome". 25
RCA Victor 730TV-1"Converting the RCA Victor 730TV-1to 14 -Inch Operation"26
CAPACITORS
Ceramic Capacitors - Construction, Identification, and Use 'Ceramic Capacitors" 27
COLOR TELEVISION
'The CBS Color Television System" 27
"A Comparison of CBS Color and Present Monochrome Standards" 28
CIRCUIT DESIGN
Arvin Chassis TE-331, Combination VideoDetector and AGC Rectifier, Electro-statically Focused Picture Tube"Examining Design Features".34
Bendix Models: $21 \mathrm{~K} 3,21 \mathrm{KD}, 21 \mathrm{~T} 3,21 \mathrm{X} 3$,and OAK3; Voltage Regulation, NoiseInverter Circuit, Anti-Pin-CushionMagnets
"Examining Design Features". 34
Filters"Shop Talk"31
General Electric Model 24C101, DeflectionCircuit, Vertical Blanking, Sound Circuits"Examining Design Features".31
Magnavox CT-331, Combined Video Detectorand Sound IF Stage"Examining Design Features".32
Motorola Chassis TS-325, TS-326, Hor-izontal Size and Centering, AreaSelector Switch"Examining Design Features".32
Olympic Models: $21 \mathrm{C} 28,21 \mathrm{D} 29,21 \mathrm{~K} 26$,21T27, Variable-Delay AGC, Hor-izontal Retrace Blanking, VerticalRetrace Blanking
"Examining Design Features". 34

The oldest operating Taco TV Antenna still in operation will win a cash prize for you! Check your records - check the installations you service - win that cash prize! At the same time, the owner of the installation selected as the oldest will receive a brand new Taco antenna installation absolutely FREE!
Get all the details from your Taco distributor today - or write: ANTENNA CONTEST

Technical Appliance Corporation, Sherburne, N. Y.
CASH PRIZE!

The right part when you need it for service This permanent, hard cover Official Buying Guide of the electronic-TV parts and equipment industry with its comprehensive detailed index, eliminates the need for maintaining files of small catalogs and manufacturers' literature. Radio's Master catalogs 90% of TV and electronic equipment. Not merely part number listings complete descriptions, specifications and illustrations written and compiled by each manufacturer. Enables you to make comparisons or substitutions right now!

UNITED CATALOg publishers, INC.
110 Lafayette St., New York 13

SUBJECT
INDEX NO.
CIRCUIT DESIGN (Continued)
Philco RF Chassis 71 - Deflection Chassis
G-1, Automatic Width and Brightness,
Compensation, Variable Noise Gate,
Tuner AGC, Damper Tube Type 633,
AC Line Isolation, Horizontal
Oscillator Circuit
"Examining Design Features". 33
Plated Circuit Radio Receiver, Motorola
Model 52R
"Examining Design Features". 34
Power Supply, Separate Supply for Westing-
house Models H-372P4, H-373P4,
H-376P4 Portables
"Examining Design Features". 35
RCA Chassis KCS66, A, Noise Suppression
Circuit, Input Circuit, KRK11 Tuner
'Examining Design Features'. 30
Radio Craftsmen RC201, Boost Switch,
Bridge Power Supply
"Examining Design Features". 29
Sweep Protection, Norelco Projection
System
"Examining Design Features". 31
Sylvania 1-260 Chassis, High-Voltage
Supply
"Examining Design Features". 30
Video Amplifier Frequency Response
Control Used in Zenith Receivers
"Examining Design Features" 35
Zenith Chassis 20J21, Electrostatically
Focused Gated-Beam Audio Detector
Centering Magnet, and Magnetic Shield
'Examining Design Features'". 31
CRYSTAL DIODES USED AS VIDEO DETECTORS
"Video Detection and Amplification"28
DC RESTORER
Combined DC Restorer and Sync
Separator
"DC Restoration and Sync Sep-
aration'33
DC Restoration, General
'DC Restoration and Sync Sep- aration" 32
Diode Type'DC Restoration and Sync Sep-aration'32
Grid Leak Type
'DC Restoration and Sync Sep- aration" 32
DETECTORSVideo (See Video Detectors)
FUSESReplacement Chart and General Dis-cussion
'Radio and TV Fuse Replacement" 32
HIGH-VOLTAGE SUPPLY
Sylvania 1-260 Chassis "Examining Design Features" 30
HORIZONTAL SWEEP SECTIONFold-Over Reduction'In the Interest of Quicker Ser-vicing".33
Horizontal Oscillator, Philco Deflection Chassis G-1
'Examining Design Features" 33
Pulse-Width A. F. C
'Shop Talk' 33
Ringing Coil, Checking
"In the Interest of Quicker Ser- vicing". 32
Servicing 'Shop Talk" 32
Servicing with Scope
"Value of Waveform Analysis" 35
'Insurance Protection in the Service Field' 30
Servicemen Need Protection 'Shop Talk" 25
IF AMPLIFIERS, VIDEO
Alignment, General
"Video IF Amplifiers" 26
General Information
"Video IF Amplifiers" 26
Trap Circuits
"Video IF Amplifiers" 26
Tuned Circuits
"Video IF Amplifiers" 26
INTERCOMMUNICATION SYSTEMS
Layout and Interconnection, General
"'Intercommunication Systems" 31
MEASUREMENTS"The Decibel"31
PHONOGRAPH CARTRIDGESCrystal Cartridges, Construction andReplacement"Crystal Phonograph Cartridges" . . 29
Frequency Response, Checking PhonoCartridges with Sweep-FrequencyRecord"Audio Facts"35
PICTURE TUBES
'Electrostatically Focused Picture Tubes' 27
'Picture Tube Replacement Chart' 26
17HP4, Electrostatically Focused
'Examining Design Features' 34
17RP4, 17VP4, 20LP4, 21 LP 4 Replacement
"In the Interest of quicker Ser- vicing" 34
POWER SUPPLYBridge Power Supply, Radio Crafts -men RC201
"Examining Design Features" 29
Bridge-Type Rectifier "Power Supplies" 33
Filter Circuits
"Power Supplies" 33
Full-Wave Rectifier "Power Supplies" 33
Half-Wave Rectifier
"Power Supplies" 33
High-Voltage Types in TV Receivers(See High-Voltage Supply)
Impedance Considerations
"As I See It"26
Operating Characteristics, Peak Plate Current, Inverse Peak Voltage,Ripple Voltage"Power Supplies". 33
Rectifier Substitution Factors"As I See It"26
Regulation
"Power Supplies" 33
Selenium Rectifiers, Use of
"Power Supplies" 33
Vibrator Type, Servicing and General Description
"Vibrator Power Supplies" 34
Voltage Multiplier Circuits
"Power Supplies" 33
PRINTED CIRCUITS"Printed Circuit Components"35
RETRACE BLANKING CIRCUITSHorizontal, Olympic Models 21 C 28 ,$21 \mathrm{D} 29,21 \mathrm{~K} 26,21 \mathrm{~T} 27$; Variable DelayAGC, Horizontal Retrace Blanking,Vertical Retrace Blanking'Examining Design Features"34

sets - All functions completely electronic sets. All functions completely electronicscale deflection of $11 / 2$ volts for both AC-DC volts. SPECIFICATIONS
DC VOLTAGE: Input resistance 16.5 megs or $12 / 3$ megohms per volt. Ranges: 0 to $1.5,10,100,300$, 1000 up to $30,000 \mathrm{v}$. (with accessory probe).
AC VOLTAGE: Input resistance 2 megohms. Ranges: 0 to $1.5,10,100,300,1000$. Frequency response flat from: 25 to 100,000 cycles.
OHMS: 1000-10,000 100,000 10 megohms, 1000 megohms. Compact, portable bakelite case measures $41 / 4 \times$ 51/4 $\times 21 / 8^{n}$.
MODEL 106
$\$ 35.90$
Wrife Depf. pf 11 for Iapest FREE cafalog.

TELEVISION TECHNOTES can add 50% to your TV servicing efficiency-and profits. It maps out short cuts which lead you right to the heart of those back breaking troubles-and cut down time wasting trouble shooting. Tells you in which sets specific troubles most frequently occur, what they look like, what they do and how to locate and correct them. The greatest practical low-priced handbook for the technician to come along yet! Get your copy at your parts distributor today!

Published by the publishers of RADIO-ELECTRONICS Magazine GERNSBACK PUBLICAIIONS, INC.

This pair helps you make the kind of installations you like ... the profit. able kind. Pre-cut mounting board saves work and time in changer replacements - helps you make more money per job. Best of all - V-M 951 changers have $A L L$ the top quality features that make satisfied customers: play records of any size, any speed automatically and shut off after last record; simple, absolutely jumproof mechanism; patented tri-omatic spindle that gently lowers records to spindle shelf to protect them from center-hole wear and chipping; plus all the other famous tri-o-matic features that have made V.M changers the most popular in the world today! Minimum mounting space, $133 / 16^{\prime \prime}$ wide, $117 / \mathrm{B}^{\prime \prime}$ deep, $71 / 4^{\prime \prime}$ overall height. SEE YOUR V-M JOBBER FOR FULL DETAILS.

ON DISPLAY-ROOM 618 - AUDIO FAIR - HOTEL NEW YORKER - OCT. 29, 30, 31, NOV. I
 pratraid br Gim GET XCELITE Nutdrivers

in a complete range of sizes!

You'll wish you'd done it sooner when you see how a complete set of XCELITE Nutdrivers speeds and eases the job! You can choose from a blade length of $6^{\prime \prime}$ down to Stubby ($31 / 4^{\prime \prime}$ overall). You can get all regular nut drivers in nine nut sizes, $3 / 16^{\prime \prime}$ to $1 / 2^{\prime \prime}$, Stubby drivers in $1 / 4^{\prime \prime}, 5 / 16^{\prime \prime}$ and $3 / 8^{\prime \prime}$. And XCELITE hollow shaft nut drivers come in seven nut sizes - insulated if desired. WRITE today for our complete catalog!

XCELITE INCORPORATED

(formerly Park Metalware Co., Inc.)
DEPT. Q
ORCHARD PARK, N. Y.

Originators Not Imitators

RETRACE BLANKING CIRCUITS (Continued)
Vertical,Olympic Models 21C28, 21D29, 21 K26, 21 T 27 ; Variable Delay AGC, Horizontal Retrace Blanking, Vertical Retrace Blanking
"Examining Design Features". 34
"Vertical Retrace Blanking Circuits" ... 28
RECTIFIERS
AC-DC Rectifier Problems
"As I See It"

SERVICING

TV Model Identification

$$
\begin{aligned}
& \text { "A Guide to TV Model Identification" } \\
& \text { (Admiral, Andrea, Arvin, Capehart, } \\
& \text { DuMont, Emerson, Fada, Hoffman, } \\
& \text { Magnavox, Majestic, Meck, Motorola, } \\
& \text { Muntz, Olympic, Sentinel) } 34
\end{aligned}
$$

(Philco, RCA Victor, Sparton,
Stewart-Warner, Stromberg-Carlson,
Sylvania, Westinghouse, Zenith) ... 35
AC-DC Equipment
"Shop Talk"
Alignment Tools and Accessories
"In the Interest of Quicker Servicing" 30
Attenuation Pads for Reduction of Signal Level
"Shop Talk". 35
Auxiliary Hi-Voltage Supply, Use of
"In the Interest of Quicker Servicing" 34
Capacitor Probe, Use in TV Servicing
'Shop Talk".
Capacitor Substitution Box, Use in Servicing
"Shop Talk". 35
Cathode-Coupled Multivibrator, Mreliminary Check
"Quicker Servicing" 35

SUBJECT
INDEX NO.
SERVICING (Continued)
"Close Tolerance Parts in TV Receivers" 33
Coding of Test Leads
"In the Interest of Quicker Servicing" 33
Corona, Remedy
"Quicker Servicing" 35
Extension Cables, Use in TV Servicing
"In the Interest of Quicker Servicing" 29
External Sync Application to Scope
"In the Interest of Quicker Servicing" 34
Germanium Diode Detectors
'Shop Talk"
31
Horizontal Distortion
"Shop Talk"
32
Horizontal Fold-Over Reduction
"In the Interest of Quicker Servicing" 33
"Horizontal Output Transformers,
Checking"".
Horizontal System, Servicing with Waveforms 35
Hum-Tracing Source
"In the Interest of Quicker Servicing" 32
Identification of TV Receiver Types by
Tube Complement
"Shop Talk"28

Interlace, Method of Checking

"Quicker Servicing' 35

Low B+ Voltage, Checking

"In the Interest of Quicker Servicing" 29
"Oscillations in TV Receivers" 29
Cverload in Video IF, Checking with Scope
"The Value of Waveform Analysis"
Phono-Jack Installation in AC-DC Receivers
"In the Interest of Quicker Servicing"32

Picture Tube Circuit Tester
"In the Interest of Quicker Servicing" 33
Portable Radio Servicing Hints
"In the Interest of Quicker Servicing" 33

by T-V PRODUCTS CO.

Amazingly Powerful Reception

Rugged All-Aluminum Construction

Lifetime Factory Warranty

Complete factory Preassembly features sensotional "Quick-as-a-Wink" construction. No Nuts or Bolfs to Tighten... rugged rivet ossembly prevents damage by wind ond storm vibrotion.

Everybody's talking about the nee Pyramid Imp!

over the country service-engineers are praising the newest and finest molded tubular paper capacitor-the Pyramid IMP!

IMPS ARE REALLY RUGGED!
The tough thermosetting plastic will take an astounding amount of abuse-yet IMPS will still look and perform like new!

IMP LEADS CAN BEND AND BEND! Tinned leads that are really securely anchored you'll be amazed at how much punishment they'll take without breaking!

IMPS WONT FREEZE OR
MELT! They'll operate faithfully in temperatures ranging from $-40^{\circ} \mathrm{C}$. to $+100^{\circ} \mathrm{C}$. $\left(212^{\circ} \mathrm{F}.\right)$-and that's the boiling point of water!

IMPS ARE MOISTURE-PROOF! No moisture can get through the varnished plastic case, or even through the lead anchor-points.

IMPS are available in all popular ratings in 200, 400 and 600 volt ranges. See your local distributor.

If you haven't tried the new IMP, send for your free sample today-
SUBJECTPower Consumption Measurement"In the Interest of Quicker Servicing" 31
Residual Spot Removal'In the Interest of Quicker Servicing" 34
Ringing Coil, Checking"In the Interest of Quicker Servicing"32
"Routine vs. Infrequent TV Troubles" 31
Safety Ball for High-Voltage Lead
"In the Interest of Quicker Servicing" 31
"Signal Substitution in Television Servicing" 33
TV Receiver Intermittents
'Tracking Down TV Receiver Inter- mittents" 27
Tube Kits
"Shop Talk" 31
Tube Sockets, Removal
"Quicker Servicing' 35
"Tube Troubles in TV Receivers" 35
Vertical Deflection Troubles
"In the Interest of Quicker Servicing" 30
Vertical System, Servicing with Waveforms "The Value of Waveform Analysis" 31
Waveform Analysis, General
"The Value of Waveform Analysis" 30
THE SYNC SEPARATOR
Combined DC Restorer and Sync Separator"DC Restoration and Sync Separation"
Heptode Tube Sync Separator33
"DC Restoration and Sync Separation" 33Narrow-Band Sync System
"DC Restoration and Sync Separation"Triode Type"DC Restoration and Sync Separation"32
Separate Vertical and Horizontal Stages
'DC Restoration and Sync Separation" 33
6BN6 Sync Separator"DC Restoration and Sync Separation"33
SELENIUM RECTIFIERS
Servicing"Shop Talk"24
TELEVISICN TUNING UNITS
General Instrument Model 44
'Television Tuning Units' 25
General Instrument Models 45A and 45B "Television Tuning Units' 24
Hallicrafters Printed Circuit Tuner
"'Television Tuning Units" 25
Input Circuits
"Television Tuning Units" 24
Local Oscillator Circuits "Television Tuning Units" 24
Mixer Circuits 'Television Tuning Units' 24
Mixer Plate Circuits
"Television Tuning Units' 24
R. F. Amplifiers
''Television Tuning Units' 24
Sarkes Tarzian Model TT-3 'Television Tuning Units" 24
Servicing the TV Tuner
'Television Tuning Units' 24
Standard Coil
"Television Tuning Units" 24
U. H. F. Tuners and Converters
(See U. H. F.)Zenith Cascode Turret Tuner Used in21K20 Chassis"Examining Design Features"35
TEST EQUIPMENTCathode Follower for Oscilloscope Use,Construction"The Value of Waveform Analysis" 30
"In the Interest of Quicker Servicing"3330
Coding of Test Leads'
SUBJECTTEST EQUIPMENT (Continued)
Construction of Equipment to Assist in
Determining the Audio Component Im-pedance
"An Impedance Measuring Device" 27
Demodulator Probes 'Shop Talk" 34
External Sync, Procedure for Use
"In the Interest of Quicker Servicing" 34
Hickok Videometer Model 650, TV Servicing
"Signal Substitution in Television Servicing" 33
High-Voltage Probes "Shop Talk" 34
Meter Probes
"Shop Talk" 34
"Oscilloscope Modification for 120-Cycle Synchronization" 28
Oscilloscope Probes "Shop Talk" 34
Peak-to-Peak Probes "Shop Talk" 34
RF Probes "Shop Talk" 34
Signal Generator, Calibration Checking 'Shop Talk" 34
Signal Injector Probes "Shop Talk" 34
Voltage Calibrator "The Value of Waveform Analysis" 30
"In the Interest of Quicker Servicing" 32
What Test Equipment Will I Need and How Much Must I Spend for It? "Shop Talk" 26
T. V. I. (TELEVISION INTERFERENCE)
"Eliminating Broadcast Interference" 29
TV INSTALLATION
Antenna Installation Hints "In the Interest of Quicker Servicing" 31Lightning Protection for TV Installation.TV Antenna Grounds"Shop Talk"30
Saving Time and Labor "Shop Talk" 32
U. H. F.
Arvin All Channel Tuner "U. H. F." 35
Crosley Ultratuner 'U. H. F." 30
DuMont UHF Converter "U. H. F." 30
G. E. U. H. F.-101 Translator
"U. H. F." 30
General Information "U. H. F." 30
Mallory TV-101 Converter
"U. H. F." 35
Raytheon UHF - 100 Tuner "U. H. F." 34
Regency Model RC-600 Converter "U. H. F." 35
Sarkes Tarzian U. H. F. Tuner Units "U. H. F." 30
Standard Coil 82-Channel Tuner 'U. H. F.' 32
Stromberg-Carlson U. H. F. Converter "U. H. F." 30
Sylvania Model C31M Converter (Ch. 1-506-1) "U. H. F.' 34
Transmission and Reception in Bridgeport, Conn. Area "Shop Talk" 27

- - Please turn to page 118 * *

Halldorson means more money in my pocket because I can do more servicing in less time, with the assurance that a joh done will "stay-put," and with a feeling of confidence backed by Halldorson's 40 -year reputation for quality plus. Now's the time for everyone to Hook Up with Halldorson . . for one of the most diversified lines in America. . . staying ahead with new component additions that you'll need. Send for the Halldorson Catalog and regular bulletin releases . . . and be convinced!

Halldorson Transformer Company, 4500 N. Ravenswood Avenue Chicago 40, Illinois, Dept. PF-11

Windex

AND TECHNICAL DIGEST

INDEX TO ADVERTISERS
November-December 1952 Issue
AdvertiserPage No.
Alprodco, Inc 91
American Phenolic Corp. 14
Astatic Corp., The 4
Astron Corp. 46
Blonder-Tongue Labs., Inc. 56
Burgess Battery Co 108
Bussmann Mfg. Co. 36
Carter Motor Co. 110
Centralab (Div. Globe-Union, Inc.) 24
Chicago Transformer Co. 94
Clarostat Mig. Co., Inc. 102
Cleveland Electronics, Inc. 90
Conrac, Inc. 92
DuMont Labs., Inc., Allen B. 16
Editors \& Engineers, Ltd. 102
Electro Products Laboratories, Inc. 118
Electro-Voice, Inc 10
Electronic Instrument Co., Inc. (EICO) 94
Electronic Measurements Cor 112
Erie Resistor Corp. 98
Federal Telephone \& Radio Corp. 52
General Cement Mfg. Co. 102
Grayburne Corp 112, 113
Halldorson Co., The 116
Hickok Electrical Instr. Co.... 104, 106
Hytron Radio \& Electronics Corp. . . 22
Insuline Corp. of America 110International Resistance Co. . . 2nd CoverJackson Electrical Instrument Co. . 9696
Jensen Mfg. Co.
JFD Manufacturing Co. 28
Krylon, Inc. 98
LaPointe-Plascomold Corp., The 50
Littelfuse, Inc. 4th Cover
P. R. Mallory \& Co., Inc 42
Merit Transformer Corp 18
Chmite Manufacturing Co 96
Permo, Inc 48
Phoenix Electronics, Inc 100
Pioneer Electronic Supply Co. 58
Planet Manufacturing Corp 100
Precision Apparatus Co., Inc 32
Pyramid Electric Co. 114
Quam-Nichols Company. 88
Radio City Products Co., Inc. 54
Radiart Corporation 40
Radio Corp. of America 26, 117
Radio Electronics 112
Radio Receptor Company, Inc. 88
Rauland Corporation, The 30
Raytheon Television \& Radio Corp. 102
Regency Division, I, D. E. A., Inc. 6
108
Sams \& Co., Inc., Howard W 108
Shure Bros., Inc 38
Mark Simpson Mfg. Co. 106
Sprague Products Company 60
Standard Transformer Corp. 92
Sylvania Electric Products,Inc.3rd Cover
Sarkes Tarzian, Inc. 20 20
Technical Appliance Corp.
Triplett Electrical Instrument Co. 110
8
r-V Products Company 113
United Catalog Publishers, Inc. 110
Videon Electronic Corp. 100
V-M Corporation 112
Ward Products Corp 44
Westinghouse Electric Corp. 34, 35

For Radio and TV Servicing... ...there's an RCA YoltOhmyst to fill your needs

RCA WV-97A Senior VoltOhmyst ${ }^{\text {(}}$

Especially useful as a television signal tracer-made possible by its high-impedance, full-wave signal rectifier for direct reading of peak-to-peak voltage up to 4200 volts. Measures ac in the presence of dc ... dc in the presence of ac. Frequency response flat from 30 cps to 3 Mc .

- Electronic ohmmeter measures resistance from 0.2 to one billion ohms.
- Directly measures complex waves from 0.2 volt to 2000 volts peak-to-peak.
- Measures rms values of sine waves from 0.1 volt to 1500 volts.
- Measures dc voltages from 0.02 volt to 1500 volts with constant input resistance of 11 megohms- 1 -megohm resistor in dc probe.
- Over-all accuracy on dc, $\pm 3 \%$ of full scale.
- 7 non-skip ranges for resistance and ac and dc voltage measurements.
- Negative-feedback circuit provides over-all stability-all-steel case shields. bridge circuits from external fields.

RCA WV-87A Master VoltOhmyst

Combines all the outstanding features of the Junior and Senior VoltOhmyst plus more ranges, more functions, and an easy-to-read $71 / 2^{\prime \prime}$ meter. Measures . . .

- Peak-to-peak values of unsymmetrical complex waves from 0.2 to 2000 volts.
- Peak-to-peak values of symmetrical complex waves from 0.2 to 4200 volts.
- RMS values of sine waves from 0.1 volt to 1500 volts.
- DC voltage from 0.02 volt to 1500 volts.
- Resistance from 0.2 ohm to 1000 megohms.
- Small direct currents from 10 microamperes to 500 milliamperes.
- Large direct currents from 500 ma up to 15 amperes.
$\$ \| \mathbf{2}^{50}$ complete with matched probes and cables.

RCA WV-77A Junior VoltOhmyst

Unquestionably the greatest value in all-electronic volt-ohmmeters. The WV-77A is factory-calibrated against the finest laboratory standards. Equipped with five ranges for measuring dc voltage, ac voltage, and resistance. Measures dc from 50 millivolts to 1200 volts; ac from 100 millivolts to 1200 volts rms; and resistance from 0.2 ohm to 1 billion ohms.

- DC input resistance, 11 megohms on all dc ranges.
- Response flat from 30 cps to 3 Mc on 3 -, 12 -, and 60 -volt ranges.
- Sturdy 200 -microampere meter movement electronically protected against burn-out on all functions.
- Degenerative bridge circuit provides freedom from effects of line-voltage changes.
- Metal case shields instrument from external fields.
$\$ 4750$ complete with matched probes and cables.
Get complete details from your RCA Test Equipmenf Distributor.
RADIO CORPORATION OF AMERICA
TEST EQUIPMENT
HARRISON. N. .

Make those battery operated portables "sing" again. No need for high battery replacement costs to shut them up when its so economical to convert them to permanent AC all-electric operation with an EPL Battery Eliminator. Gives years of hum-free reception. Uses less than one-fourth the power of the cheapest $A C$ radio.

Net $\$ 11.10$

Simple as ABC

A... Slips into battery space.

B . . . Insert battery plug or plugs.
C . . . Plug into AC outlet.

- Filtering eliminates - Operates any 1.4 hum.
- Guaranteed 3 years V. 4 to 6 tube ra dio from 115 V . $50 / 60$ cycle outlet.

Low Cost Filtered DC POWER SUPPLY

EPL conduction cooling doubles rectifier rat ing, gives lowest cost per ampere output. Dissipates over 3 times the heat and withstands high overloads, l-12.5 amps. 6 volts continuous output, instantaneous rating of 25 amps .

Net $\$ 37.50$
See Your Distributor! Request Folder!
ELECTRO PRODUCTS LABORATORIES 4501 -Fs Ravenswood Ave., Chicago 40
In Canada: ATLAS RADIO CORP. LTD. Toronto, Ontario

+ More or Less -

The fates have been kind for this issue. In order to include all of the Subject Reference Table it has been necessary to devote a portion of the space normally reserved for this column to the presentation of the reference material.

To be quite honest about it, this doesn't work any particular hardship. With this, the twelfth issue of the PF INDEX and Technical Digest closing the second year of publication, all the space needed here is to thank those who have, by giving of their time and effort, made possible whatever measure of success this publication enjoys.

Additionally, may this column express sincere appreciation to all those who have written in with suggestions as to methods and subjects for presentation. We have tried, and will continue to try, to make the content of the PF INDEX and Technical Digest reflect the preferences and requirements of the service field.

In closing, may we wish each and every one of you Greetings of the season and our hope for a Happy and Prosperous New Year.

\author{

- J. R. R.
}

PF INDEX SUBJECT REFERENCE TABLE (Cont'd. from Page 115)
SUBJECT INDEX NO.
VIDEO AMPLIFIERS
Direct Coupled
"Video Detection and Amplification" 31
''DC Restoration and Sync Separation' 32
Gain, Control of
"Video Detection and Amplification" 31
High-Frequency Compensation
"Video Detection and Amplification" 28
Low-Frequency Compensation
"Video Detection and Amplification" 28
Noise Clipping
"Video Detection and Amplification" 31
Peaking, Shunt \& Series
"Video Detection and Amplification" 28
Traps, 4.5 mc .
"Video Detection and Amplification" 31
VIDEO DETECTORSCircuit Operation
"Video Detection and Amplification" 28
General
"Video Detection and Amplification" 28
Germanium Crystal Diode Usage
"Video Detection and Amplification" 28
"Shop Talk" 31
High-Frequency Compensation
"Video Detection and Amplification" 28
Polarity Considerations
"Video Detection and Amplification" 28
Typical Circuits
"Video Detection and Amplification" 28
VERTICAL SWEEP SECTION
Servicing with Scope
"The Value of Waveform Analysis" 31

SYLVANIA PICTURE TUBES

Ouì-perform, out-last all orhers tested!

Fifty minutes on ... ten minutes off ... hour after hour for 500 consecutive hours, Sylvania Picture Tubes were tested side by side with the tubes of other leading manufacturers.

These intensive tests, made under punishing, accelerated voltages were conducted under supervision of an outside, independent

Read the remarkable record.
The chart at right tells the story. Note that only Sylvania Picture Tubes showed no failures. And, in over-all point quality, Sylvania won over all other brands by a wide margin.
These important conclusions definitely place Sylvania Picture Tubes in the highest rank. They also mean the highest in trouble-free operation... better business . . . more satisfied customers for every dealer who orders Sylvania Picture Tubes. For full details about these important tests write today to: Sylvania Electric Products Inc., Dept. R-2011, 1740 Broadway, New York 19, New York.

radio tubes; television plcuure tubes; electronic products; electronic iesi equIpment; fluorecen tubes, fixtures, sign lublig, wring oevices: light BULBS; PHOTOLAMPS; JELEVISION SETS

United States Testing Co.
1415 Park Ave., Hoboken, N. J.

Manufacturer	Number of Tubes Tested	Number of Failures	Overall Point Quality
A	8		
B	8	1	81
C	8	6	78
D	8	1	62
E	8	4	83
F	8	5	67
G	8	4	42
H	8	5	52
SYLVANIA	8	NONE	92

ifs a logg, logg line

from lloember th May...
as the days grow shorter and the evenings colder, more TV activity brings increased demand for fuses. Don't play a waiting gameanticipate ${ }_{\text {}}$ order your Littelfuses ahead -there is no substitute.

3 AG FUSES
SLO-BLO FUSES
INSTRUMENT FUSES
PIGTAIL FUSES
8 AG U/L FUSES
TV SNAP-ON FUSE HOLDERS
ONE-CALL TV KITS
FUSE EXTRACTOR POSTS
FUSE MOUNTINGS
SERVICE BOXES

LITTELFUSE Desp Ploines, Illinois

[^0]: Suggested U.S. A. Dealer Net $\$ 6950$ - Prices subject to change without notice.

[^1]: - Trade-Mark

