

Mar. • April • 1952 including INDEX No. 31
 COVERING PHOTOFACT FOLDER SETS 1 THRU 164

CONTENTS

Shop Talk
Milton S. Kiver
4
Video Defection and Amplification (Part II)
W. William Hensler

The Value of Waveform Analysis (Part II)
W. William Hensler and

Glen E. Slutz
Routine vs. Infrequent TV Troubles Mathew Mand19

In the Interest of Quicker Servicing
Glen E. Slutz
Intercommunication Systems Arthur Kozik
Examining Design Fealures Merle E. Chaney31

Audio Facts
Robert B, Dunham
The Decibel

> Arthur Kozik41

Dollar and Sense Servicing
John Markus 43
PHOTOFACT CUMULATIVE INDEXNo. 31 Covering Photofact FolderSets Nos. 1-164 Inclusive45

+ More or Less - 86

Features Both Exact Duplicate Controls and Amazing New CONCENTRIKITS with Exact Duplicate Shafts

Whether you prefer the convenience and simplicity of factory-assembled Exact Duplicate Controls, or the wide coverage and faster servicing at lower stock cost afforded by Universal Replacements-the new IRC-TV Control Line gives you what you want! On either type, you have full coverage of 295 different concentric dual controls handling 416 Manufacturers' Part Numbers specified in over 5,000 TV models.

IRC UNIVERSAL REPLACEMENTS

Two new, four-piece CONCENTRIKITS of improved, simplified design plus a full line of Exact Duplicate Shafts and an expanded series of IRC Base Elements feature:-

- "Less-than-a-minute" assembly-in shop or home!
- No filing, slotting, soldering, hammering or cutting of shafts!
- Assembly of both carbon and wire-wound concentric duals! - New reduced prices!

No special tools or skills are needed to assemble these new, simplified CONCENTRIKITS. Easy-to-follow pictorial instruction sheet shows you how to make actual assembly in less than a minute. Assembled CONCENTRIKIT Controls are Exact Duplicates.
New IRC Exact Duplicate Shafts take the labor and complexity out of control assembly. Absolutely no alterations needed. Shafts
 are supplied in proper lengths and with factory-tooled ends for completely satisfactory fit. Accurate specifications are assured.
One CONCENTRIKIT assembles carbon concentric duals. The other assembles wire-wound/carbon controls.
New reduced prices. Wide replacement coverage at low stock cost. CONCENTRIKITS enable service technicians to save time and money-to give faster service on TV controls.

IRC CONCENTRIPAKS

 COVER MAJOR TV SETSIRC CONCENTRIPAKS are selected assortments of CONCENTRIKITS, Exact Duplicate Shafts and Base Elements, providing big replacement coverage of specific makes of TV sets. Housed in large, sturdy partitioned plastic stock box, with full replacement data. Cover RCA, Admiral or Philco concentric duals. Prices start at $\$ 7.44$.

IRC EXACT DUPLICATE CONTROLS

295 new IRC Exact Duplicate Concentric Dual Controls provide satisfactory mechanical fit and electrical operation for over 90% of TV Controls. They feature:-

- Accurate, dependable specifications!
- Factory assembly under rigid quality control!
- Both carbon and wire-wound types!
- Easy installation-no modification required!

IRC Exact Duplicate Controls are made to carefully prepared specifications. Shaft lengths have not been compromised. Shaft ends are accurately machined for good knob fit. Electrical characteristics are carefully engineered for satisfactory operation.
Easy installation is assured with IRC Exact Duplicates. No need to improvise-to re-
 verse connections-to alter controls in any way.
Both carbon and wire-wound concentric duals are included IRC now supplies the broadest line of Exact Duplicate Concentric Duals-covers more part numbers with greater accuracy.

IRC STANDARD CONTROLS FOR TV

IRC Type Q Carbon Controls and Type
 W Wire-Wound Controls provide wide coverage of TV single controls. Full standard line includes 61 Type Q Controls featuring the exclusive IRC Knob Master Shaft for easy fit to knurled or spring-type knobs-plus 39 Type W and Type WK Wire-Wound Controls. Wide selection of resistance values, taps and tapers.
Send for Full Details and Free Replacement Data Full information on new IRC TV Control Line is yours for the asking. Specify Catalog DC1C. Complete replacement data by Manufacturers' Parts Numbers also is yours at no charge. Specify Form SO12. Ask your IRC Distributor or send post card to us for your copies.

INTERNATIONAL
RESISTANCE CO. 423 N. Broad Street-Philadelphia 8, Pa. Wherever the Circuit Says -W

Pick of the Trade

TWAIN'S SPIDER: This story about Mark Twain may be old hat to you but the sentiment's right timely. Twain, while editor of the Virginia City Enterprise, received a letter from a subscriber who had found a spider in his paper. "Was this a sign of good or bad luck?" the reader asked.

Twain's reply: "Neither good luck nor bad. That spider was merely looking over our pages to find out what merchant was not advertising, so that it could spin its web across his door and lead a free and undisturbed existence forever."

Electronics Markets-December, 1951

HEARING-AID RECEIVER units in the past were manufactured along the lines of conventional headphones. Because of their smaller size, their impedance ranged between 50 to 120 ohms. Recent achievements have permitted the attainment of 400 -ohm impedances in units about the diameter of a nickel. Current de velopment is directed toward a 9000 -ohm impedance in a unit smaller than a dime. No. 42 wire is being used experimentally

Tete-Tech—January, 1952

SIGHTLESS PERSONS are finding new spheres of usefulness. One foreign station has begun to use blind men as radio monitors in its main studios. The suggestion is sensible since a blind man's sense of hearing is much more acute than a sighted person's and as a result he will be more critical of the audio signals reaching his ears.

Tele-Tech-February, 1952

NEWS HIGHLIGHTS: The NBC TV Sales Planning and Research Department reported that as of January 1st, a total of $15,777,000$ TV sets were installed in the U.S. The RTMA reported that $5,348,798$ TV sets had been produced during 1951 as compared with $7,463,800$ in 1950 . Radio output was estimated at $12,299,146$ as against $14,589,900$ for the previous year.

Radio Electronics
Weekly Business Letter February 4, 1952

PEANUTS will not pay for a new television station. Complete very-high-frequency television stations using 100 kilowatts on channels 2 to 6 and 200 kilowatts on channels 7 to 13 would cost $\$ 593,500$ in the first case and $\$ 587,500$ in the second, including remote-pickup truck and double-hop microwave relay equipment. Ultra-high-frequency stations will cost at least $\$ 1,500$ more.

$$
\text { Electronics-February, } 1952
$$

Point-contact transistors will be mass-produced in 1952. These units display uniformity and reliability comparable to the vacuum tube. The new "junction transistor" with advantages of high gain per stage, low noise, and extremely small power consumption (one-millionth watt) is held back by limitations in the higher frequencies and in pulse circuits; so that considerable experimental work lies ahead. Transistors' simple construction, sturdiness, long life, low power drain, resistance to shock and vibration make them ideal for many applications.

$$
\text { Radio \& Television Retailing—January, } 1952
$$

The advent of "upstairs" TV will inaugurate a bright new era, teaming with possibilities for broadcasters, manufacturers, dealers and Service Men.
Technically, the arrival of channels 14 to 83 will introduce many intriguing factors. Receivers may find themselves equipped with transittime tubes, crystals in many circuits and vacuum tubes as substitutes for coils and capacitors. Many of the design techniques acquired during the development of radar will undoubtedly find their way into transmitters.
Commenting on the significant expansion that the ultrahighs will provide, Dr. DuMont said recently that in the 1239 communities scheduled to have TV, 897 will feature ultrahigh stations exclusively; quite a contrast to the limited number of uhf's now in operation.
L.W. in TeleVision Engineering-January, 1952

AND TECHNICALDIGEST

VOL. $2 \cdot$ NO. 2
MAR.-APRIL, 1952

JAMES R. RONK, Editor
Editorial Staff: Merle E. Chaney - Robert B. Dunham W. William Hensler - Ann W. Jones - Arthur Kozik Glenno M. McRoan - Glen E. Slutz
Art Directors: Anthony M. Andreone - Thomas Culver Production: Archie E. Cutshall - Douglas Bolt
Priñted by: The WALDEMAR Press; Joseph C. Collins, Mgr.

CONTENTS

Shop Talk
Milton S. Kiver 4
Video Detection and Amplification (Part II) W. William Hensler7

The Value of Waveform Analysis (Part II)
W. William Hensler and Glen E. Slutz 13
Routine vs. Infrequent TV Troubles Matthew Mandl 19
In the Interest of Quicker Servicing Glen E. Slutz 25
Intercommunication Systems Arthur Kozik 29
Examining Design Features
Merle E. Chaney 31
Audio Facts
Robert B. Dunham 37
The Decibel
Arthur Kozik 41
Dollar and Sense Servicing John Markus 43
PHOTOFACT CUMULATIVE INDEXNo. 31 Covering Photofact FolderSets Nos. 1-164 Inclusive45

+ More or Less - 86

HOWARD W. SAMS, Publisher

COPYRIGHT 1952• Howard W. Sams \& Co., Inc. 2201 East 46 th Street - Indianapolis 5, Indiana
The PF (PHOTOFACT) INDEX and Technical Digest is published every ather month by Howard W. Sams \& Co., Inc. ot 2201 East 46 th Street, Indianapalis 5, Indiano-and is included as a part of PHOTOFACT folders from PHOTOFACT Distributors without additional cost.
SUBSCRIPTION DATA: For those desiring the convenience of delivery to their homes or shops, Howard W. Sams \& Co., Inc. will mail each issue of the INDEX direct, promptly upon publication. The subscription charge is $\$ 2.00$ for eight issues in the United States and U. S. possessions. Acceptance under Section 34.64 P. L. \& R. authorized at indianapolis, Indiana.

[^0]
MILTON S. KIVER President, Television Communications Institute

There is an old and venerable expression to the effect that, "the best things in life are free," and while you may or may not agree to this (depending upon how many "best' things you have received free in your life), it is true that many good things are free. Take the television service industry as one example in point. Public acceptance of the products that the television manufacturers produce depends not only on how well this product is designed and merchandised but, to a great extent, upon the facilities available for installing and maintaining this product in operation after it has been bought. Capehart, in a very excellent movie, calls this the "sale after the sale." Other manufacturers, while not going to the extent of making a special movie, do recognize that their well-being is intimately tied in with the capabilities of the men who service their sets. And because they fully appreciate this relationship, many of the more progressive manufacturers have special departments whose only job is to keep you - Mr. TV Serviceman - fully informed about TV in general and their sets in particular.

These manufacturers put out well-edited monthly, bi-monthly, or quarterly publications containing news of their newer products, circuit explanations of their receivers, servicing suggestions, and comments on the field in general.

As a guide to some of the more informative and important literature available, the following list has been prepared. Most of this information can be obtained merely by sending your name to the firm mentioned and indicating that you want to have your name placed on their mailing list for the particular material involved. For some of the others there is small nominal charge designed to defray the cost of mailing the piece to you. In each instance the information you receive is worth many times what you have to pay for it.

1. Sylvania News - Obtainable from the Sylvania Electric Products Company of Emporium, Pennsylvania.

2. Radio Service News and Radio Phono Tele-

 vision Service Tips - both available from your local RCA parts distributor.3. DuMont Service News published monthly by the Teleset Service Control Department of the Allen B. DuMont Laboratories, Inc., 35 Market Street, East Patterson, New Jersey. A year's subscription to this monthly publication is only $\$ 1.00$.
4. Tele-Clues and Techni-Talk are two General Electric publications. They can be obtained from:

Advertising \& Sales Promotion Section
Tube Division, Electronics Department
General Electric Company
1 River Road
Schenectady 5, New York

5. Philco has several small monthly publications covering a variety of subjects from servicing to customer relations. The yearly subscription payment for these must be made to your local Philco distributor.
6. The Aerovox Research Worker - A formidable title for a publication that has been widely used by radio and television servicemen for many, many, years: To receive it, simply send your name to the publication in care of the Aerovox Corporation, New Bedford, Massachusetts.

All of these publications carry information of particular interest to radio and television servicemen. There are other publications which are not slanted specifically to the service industry and these were not included. In this group there are such papers as The Hewlett-Packard Journal, the Amphenol Engineering News, and The Audio Record, just to name a few. Also, no attempt has been made to list those radio and TV manufacturers who do not issue house organs (such as the above) but who do send out, from time to time, service bulletins on their sets indicating specific remedies for certain abnormalities.

Just to show you what you have been missing by not receiving the aforementioned six publications, Sylvania News, in December, 1951 issue, contains an excellent article by H. Allen White on 'Servicing a TV Set with Pull at Top of Picture." Radio Service News of RCA contains a very informative TV servicing article by John R. Meagher in almost every issue. (John is the fellow who was responsible for the RCA Pict-O-Guides.)
"Using the Oscillograph for Television Servicing" is the title of several articles by Walter Boiko in recent issues of the DuMont Service News. For those who seek information on small screen to large screen conversion, recent issues of the G. E. Techni-Talk will be of considerable interest. And, ways and means of tracking down sync troubles accurately and quickly will be found in the Philco

Service publication. From this quick glance of what these bulletins offer, their value to every practicing TV serviceman is manifestly obvious.

TUBE KITS. The man who is just breaking into the television service field, either on a full time or part time basis, is confronted with many organizational problems. First and foremost is the problem of instruments and this has been covered in a previous issue of the Photofact Index (May, 1951). Next is component stock, and since tubes are the most frequent replacement, the proper balance of this portion of your stock is an important consideration. To those who are faced with this problem, the following listing will be of interest. Taken from the files of Central Television Service of Chicago, it is broken down into three categories: Tubes carried by the Shop Man at his bench, tubes carried by the Outside Service Man, and finally, tubes carried by the men who install the antennas and otherwise prepare newly arrived sets for operation. Central Television services a wide variety of receivers and these tube lists were compiled so that the men carrying tube assortments could perform the maximum of service.

SHOP MAN		
1-6W4	2-6C4	2-19BG6G
2-1B3/8016	2-5U4G	2-6AH6
2-6SN7GT	2-5Y3GT	2-6J5
4-6J6	2-6AT6	2-6AB4
2-6AU6	2-5V4G	1-6AG7
2-25L6GT	2-6V6GT	1-7F8
4-6AC7	3-12AU7	1-7F7
1-12AT7	2-6AK5	3-12SN7GT
1-25Z6GT	2-6K6GT	1-50B5
2-6SL7GT	2-6AK6	1-35W4
7-6AG5	1-12AU6	1-6SQ7GT
3-6BG6G	1-6AV6	1-6BQ6
1-6AS7	2-6AQ5	1-25BQ6
1-7W7	1-12AX7	1-6AQ7
2-6BA6	1-7Z4	1-6SJ7
1-6H6	1-19T8	2-6X4
1-6T8	2-6BE6	1-7N7
1-6SK7GT	1-6C5	1-6SG7
1-6X5GT	2-6BH6	1-6S8
2-6AL5	2-6SC7	

OUTSIDE SERVICE

$1-1 \mathrm{~V} 2$	$2-6 \mathrm{AK} 5$	$1-6 \mathrm{~W} 4$
$1-7 \mathrm{~B} 4$	$2-12 \mathrm{AV} 6$	$1-6 \mathrm{BD} 5$
$2-6 \mathrm{C} 4$	$1-6 \mathrm{SB} 7 \mathrm{Y}$	$2-6 \mathrm{BG} 6 \mathrm{G}$
$1-5 \mathrm{~V} 4 \mathrm{G}$	$1-12 \mathrm{BE} 6$	$1-14 \mathrm{~F} 8$
$1-7 \mathrm{C} 7$	$2-1 \mathrm{~B} 3 / 8016$	$2-6 \mathrm{SN} 7 \mathrm{GT}$
$1-6 \mathrm{H} 6$	$1-7 \mathrm{~B} 5$	$2-6 \mathrm{AU} 6$
$2-6 \mathrm{AC} 7$	$1-6 \mathrm{CB} 6$	$1-25 \mathrm{~W} 4$
$1-7 \mathrm{X} 7$	$1-5 \mathrm{~W} 4$	$2-6 \mathrm{X} 4$
$1-6 \mathrm{~L} 6$	$1-7 \mathrm{~F} 7$	$1-6$ AR5
$1-6 \mathrm{AK} 6$	$1-655$	$1-19 \mathrm{BG} 6$
$2-12 \mathrm{AU} 7$	$4-6 \mathrm{AG} 5$	$1-6 \mathrm{SQ7QT}$
$1-6 \mathrm{SC} 7$	$1-7 \mathrm{Z} 4$	$1-6 \mathrm{AV5}$
$2-6 \mathrm{BJ} 6$	$1-6 \mathrm{~N} 7$	$1-25 \mathrm{Z} 6 \mathrm{GT}$
$1-1 \mathrm{X} 2$	$2-6 \mathrm{~L} 5$	$1-6 \mathrm{X} 5 \mathrm{GT}$
$1-7 \mathrm{~B} 6$	$1-12 \mathrm{BA} 6$	$1-7 \mathrm{~A} 7$
$1-6 \mathrm{CD} 6$	$1-6 \mathrm{AQ} 5$	$1-6 \mathrm{AS} 5$

1-5Y3GT	1-6BN6	1-19T8
1-7F8	1-2X2	1-6T8
4-6J6	1-7C5	1-6BA6
1-6AG7	1-6F5	1-35W4
2-12AT6	1-5Y4G	2-6SJ7
1-6S4	1-7N7	1-6AS7
1-6AL7	1-6X5	1-25BQ6
1-6SG7	1-6AH6	2-6V6GT
1-7AF7	2-12AT7	3-6BC5
1-6BQ6	1-6SA7GT	1-50C6
4-5V4G	1 - 6AQ5	1-6BH6
1-7C6	1-6SH7	1-6BE6
1-6F6	1-12SN7GT	1-7AD7
2-6AB4	1-6SA7GT	1-6Y6G
1-7W7	1-6AT5	
1-6K6GT	1-25L6GT	

INSTALLATION

$2-1 \mathrm{~B} 3$	$1-5 \mathrm{Y} 3$	$1-6 \mathrm{AG} 7$
$1-6 \mathrm{~T} 8$	$1-12 \mathrm{AT7}$	$1-25 \mathrm{BQ} 5$
$1-6 \mathrm{BQ} 6$	$1-6 \mathrm{BQ} 6$	$1-6 \mathrm{AK} 5$
$2-6 \mathrm{AB} 4$	$1-6 \mathrm{AH} 6$	$1-25 \mathrm{~W} 4$
$1-12 \mathrm{AU} 7$	$2-1 \mathrm{X} 2$	$1-6 \mathrm{SJ} 7$
$1-6 \mathrm{C} 4$	$1-6 \mathrm{~V} 6$	$2-6 \mathrm{~J} 6$
$1-6 \mathrm{AQ} 5$	$1-6 \mathrm{BH} 6$	$1-6 \mathrm{AL} 5$
$2-5 \mathrm{U} 4$	$1-6 \mathrm{AG} 7$	$1-6 \mathrm{AL7}$
$1-6 \mathrm{~W} 4$	$2-12 \mathrm{SN} 7$	$1-25 \mathrm{~L} 6$
$1-6 \mathrm{BJ} 6$	$1-6 \mathrm{CB} 6$	$1-6 \mathrm{~S} 4$
$2-6 \mathrm{AG} 5$	$2-6 \mathrm{AV} 6$	$1-6 \mathrm{AK} 6$
$1-19 \mathrm{BG} 6$	$1-5 \mathrm{~V} 4$	$1-25 \mathrm{Z} 6$
$1-6 \mathrm{SN} 7$	$2-6 \mathrm{X} 4$	$1-6 \mathrm{~K} 6$
$1-6 \mathrm{BA} 6$	$1-6 \mathrm{BN} 6$	

GERMANIUM DIODE DETECTORS. An old and time tested saying among servicemen is that new circuits bring with them new troubles. One of the latest circuit innovations that is taking more than its apparent share of servicing are germanium diodes employed as video second detectors. These components, when defective, have been found to reduce the video output unduly or else open up. Weak output manifests itself by a picture lacking adequate contrast, accompanied by a vertical roll due to insufficient sync pulse. If you look closely at the picture, you will note that although the picture is held in horizontal sync, there is frequently a bend at the top of the picture and the hold-in range of the horizontal hold control is not as wide as it normally is.

To check a germanium diode, disconnect one side of the unit from the circuit and check the front-to-back ratio with the ohmmeter range of a VTVM. A relatively low resistance (several hundred ohms or less) should be obtained in one direction and a relatively high reading (about 1,000 to 1,500 times as much) should be noted in the other direction as the ohmmeter leads are reversed.

When these rectifiers are replaced, it is extremely important that the proper polarity be observed. Also care should be taken to see that the leads are not pulled so tight as to cause excess tension. Finally, remember that germanium diodes are easily ruined by heat. When soldering, grip the wire leads between the body of the diode and the solder point with a pair of long nose pliers to conduct away some of the heat which would normally be absorbed by the diode itself.

- Please turn to page $67 *$ *

elnternally equalized to follow Columbia Records, Inc., ideal frequency response for the recording characteristics of LP records. Offers today's highest performance standards on either $331 / 3$ or 45 RPM records. Model CAC-78.J for 78 RPM; CAC-AG-I with All-Groove needle for all record types: CAC.W-J and CAC.78W.J have special terminals and fittings for quick, easy installation in record changer tone arms with plug-in heads.

- No interaction between needles here. And output and response characteristics of each side are established independently of the other. Nothing can even slightly reduce performance quality because the new, revolutionary design combines two complete cartridges on a common mounting plate. Another unparalleled Astatic achievement.

WRITE FOR ILLUSTRATED LITERATURE GIVING COMPLETE DETAILS ON ANY OF THE ABOVE ASTATIC CARTRIDGES.
ω

- Known as the "smooth response cartridge" because of the new mechanical drive system developed by Astatic engineers. Today's leader in popularity. Model AC-I for slow speed records, AC-78-J for 78 RPM, AC-AG-J with All-Groove needle for all record types.

- Popular double-needle turnover version of the AC-J Outstanding for tracking excellence and low needle talk, in addition to smooth response. Uses Astatic "A" Needles, easily changeable without tools.

- Replaces over 125 standard 78 RPM cartridges, with reproduction better or equal the previous unit. Dual-output is low (1.2 volts) with condenser harness on, high (4.0 volts) with harness off. A low-cost cartridge that streamlines replacement chores all the way from inventory to actual installation.

Video Detection and Amplification

by W. William Hensler.
A discussion of requirements and commercial application of Video detectors and amplifiers.

Part II

Direct Coupled Video Amplifiers

Through the use of direct coupled amplifiers the resistance-capacitance coupling network can be eliminated in the video amplifier. Since this coupling network is the source of most of the low frequency distortion, the use of direct coupled amplifiers makes possible the design of a video amplifier having good low frequency response, with fewer components than are required in the conventional resistance-capacitance coupled amplifier. Since fewer components are required, it would seem that this type of circuit would be employed exclusively.

There are several design problems that arise in using the direct coupling principle, however, which prevent widespread usage. The most important of these is the fact that successive stages are effectively in series, which necessitates a high B plus voltage. Figure 4-10 is a simplified schematic showing the requirements of the power supply when two direct coupled stages are used. Note that if a B plus voltage of 200 volts is required for each stage that 400 volts are required to supply both stages. This is somewhat higher than the voltage supplied by the conventional power supply. As a result, the power supply must be designed to provide a higher output voltage, the added cost of which is considerably higher than the saving afforded by the elimination of the coupling components in the video amplifier. As a result direct coupled amplifiers are seldom employed when more than one stage of video amplification is required.

In addition to good low frequency response, the direct coupled video amplifier has another advantage in that no DC restoration is required. A direct coupled amplifier is in effect a DC amplifier. The DC referance level of the video signal, therefore, is not lost as is the case in the resistance-capacitance coupled type.

The limiting factors for good high frequency response in the direct coupled amplifier are the same as those of the conventional resistance-capacitance coupled amplifier. The peaking circuits, therefore, are the same as those employed in other circuits.

A direct coupled video amplifier is shown in Figure 4-11. The detector is a conventional series detector employing a series peaking coil. The network of C2 and L3 make up a 4.5 mc filter which will be discussed later. R2 is the resistive load of the detector. Note that the grid of the video amplifier is directly connected to the junction of R 2 and the 4.5 mc trap. The voltage drop across R2, caused by the conduction of the detector, and a small amount of self

Figure 4-10. Simplified Schematic of Direct-Coupled Amplifier.
bias developed across R3, make up the bias for the stage. Since the response of a direct coupled amplifier is essentially flat down to DC, partial degeneration is obtained in the cathode circuit of the video amplifier through the use of a rather small bypass capacitor. By allowing a small amount of degeneration at the low frequencies to take place. a more uniform response can be obtained over the entire frequency range.

A 10 mfd . electrolytic capacitor (C4) is used in the screen circuit to prevent degeneration. The plate circuit employs both series and shunt peaking to extend the high frequency response of the amplifier.

The network comprised of R6 and R7 forms a voltage divider, the purpose of which is to obtain the correct bias for the picture tube which is direct coupled to the junction of the resistors: C5, which shunts R6, prevents the loss of the high frequency components of the video signal. The reactance of C5, however, is rather high at the extremely low frequencies, and it is the function of R 6 to couple the very low frequencies to the picture tube grid. With the values of R6 and R7 equal, as is the case in Figure 4-11, only one half of

Figure 4-11. Single Stage Direct-Coupled Amplifier.
any change in the average voltage level at the plate of the video amplifier will be coupled to the picture tube grid. The absence of such a network might cause excessive "blooming" or 'black-out" due to too great a change in the picture tube bias. The ratio of the divider network is governed to a great extent by the gain of the video amplifier stage.

Through the use of high transconductance tubes, one stage of amplification provides sufficient gain for full modulation of the picture tube. This makes possible the use of direct coupling without placing critical demands on the power supply. The type 6AG7 tube which has a high transconductance rating, is being used quite frequently as a video amplifier. Its transconductance is sufficiently high so that considerable gain is realized even though a low plate load is used.

Figure $4-12$ is a partial schematic of a direct coupled video amplifier employing a type 6AG7 tube. This stage is so designed that a gain of approximately 27 is realized. Note that the grid of the stage is directly coupled to the output of the detector. Also that the contrast control is directly coupled to the output of the stage. The arm of the contrast control is connected to the cathode of the picture tube through the appropriate peaking coils. The unusual feature of this circuit is that the gain of the stage is not varied. Instead, the desired signal level is selected by means of the contrast control in the plate circuit. The contrast control is a low resistance, frequency compensated unit. By means of the multiple feed network and the divider composed of $R 5$ and R6, very little

Figure 4-12. Constant Gain Video Amplifier.
voltage is dropped across the contrast control. This allows adjustment of the contrast control over its full range wihtout changing the voltage applied to the picture tube cathode any great amount. Thus under normal conditions no adjustment of the brightness control is required. Since direct coupling is employed throughout, no DC restoration is required.

Noise Clipping

The majority of video detectors are so designed that their output is of a negative polarity; that is, the sync pulse is negative going. This signal is then coupled to the grid of the video amplifier. Any noise pulses of greater amplitude than the sync pulses will drive the video amplifier stage to cutoff, thus effect ively eliminating the high amplitude noise peaks. If these noise pulses were allowed to pass through the circuit, there is a possibility that it might trigger the horizontal or vertical oscillators and thus cause erratic operation. Again referring to Figure 4-12, it can be seen that this stage is designed to provide a negative going signal at the video amplifier grid. Since the gain of the stage is not varied, as previously pointed out, it is possible to design the stage so that the cutoff point is just at the peak of the sync pulses. The amplitude of the signal at the video detector is held within limits by means of the AGC circuit.

In some receivers a rather elaborate bias system to obtain this noise clipping may be employed. Figure 4-13 is partial schematic of a video amplifier employing this circuitry. Since a triode is used, the cutoff point of the stage can be varied by changing the plate supply voltage. This is the theory of operation of the circuit.

R6 is a dropping resistor that is common to the B plus supply of both the video amplifier and the video IF amplifiers. With this arrangement the available supply voltage for the video amplifier can be varied by the amount of current being drawn by the video IF amplifiers. Under weak signal conditions the video IF amplifiers will draw maximum current since very little AGC bias will be applied to the stages. This reduces the supply voltage to the video amplifier which in effect changes the cutoff point of the stage so that noise clipping is accomplished.

Figure 4-13. Variable Plate Supply Video Amplifier.

Take it at face value, and you can't be wrong! The big, BIG no-glare illuminated dial, the fine control Output Attenuator, the wide frequency range, improved shielding to control radiation, and other performance features-all proved for action and accuracy. Give it the bench test-you'll find more competence packed in its handsome metal case than any test oscillator you ever used. It's double-copper shielded and individually calibrated against precise crystal standards. It is competent every step of the way.

Seven long 330° scales for easy reading it any epot on the dial All Illumincted - no glare. Top acale is 16° long. Dial has 10 to 1 ratio vernier tuning.
 fundamentals; through 120 MC by strong harmonics.

ONLY $\$ 79.50$ at your Distributor (Price subject to change)

Under strong signal conditions, more AGC bias is applied to the IF amplifiers which reduces the current flow in these stages. This increases the plate voltage of the video amplifier which prevents clipping of the video signal which is now at greater amplitude.

Control of Gain

Most of the early television receivers employed a manually operated control to vary the bias on the video IF amplifiers for controlling the contrast of the receiver. When AGC is employed, the AGC bias is automatically set at a level which provides proper bias for the signal being received. Since this bias level is not controllable by the operator, a different type of contrast circuit must be used.

There are four basic methods employed for varying the g ain of the video amplifier. These are accomplished by varying:

1. The bias of the stage.
2. B+ supply voltage.
3. The amount of signal applied.
4. The value of the plate load.

Following is a description of these various circuits:

Circuit A of Figure 4-14 employs a contrast circuit which varys the bias of the stage. When the arm of the contrast is moved to the top, no voltage is developed across the contr ast control. At this setting maximum gain is realized in the stage. When the arm is moved to the bottom the voltage developed across the control increases the bias of the stage which reduces the gain. This is the simplest of control circuits and is used quite frequently.

The circuit B of Figure 4-14 combines items 1 and 2 above as a means of varying the gain of the stage. The grid resistor R1 is returned to the bottom end of the cathode resistor R2. Thus the voltage developed across R2 is the bias for the stage. The contrast control R3 is added in the cathode circuit. As the arm of the control is varied, the voltage across the control will vary. Any voltage developed across R3 produces the same results that would be obtained if the B plus supply were lowered, since the difference voltage between the lower end of the cathode resistor and B plus is lessened. This type of circuit provides very smooth control over the full range and is also used in many receivers.

Another method for varying the B plus supply voltage is shown in circuit C of Figure 4-14. In this circuit the contrast control, in series with appropriate resistance, is placed across the B plus supply voltage. The plate and screen returns are then connected to the arm of the control. As the control is varied, the gain of the stage will also vary because the supply voltage will be increased or decreased depending on the setting of the control. Due to the fact that all the tube current plus the bleeder current flows through the control, this type circuit places additional requirements on the power handling capabilities of the control and as a result is used only occasionally.

A circuit which varies the amount of signal input to the video amplifier stage is shown at D in Figure

Figure 4-14. (A-G) Various Types of Contrast Control Circuits.

4-14. This basic circuit can be recognized as the one which is employed as a volume control circuit in most audio amplifiers. The contrast control, R1, is the resistive portion of the video detector load. As the arm of the control is moved up, a signal of greater amplitude is picked off the same as is done in the conventional volume control. Note that in this particular circuit the control is uncompensated.

Two other contrast control circuits employing this principle are given in E and F of Figure 4-14. The contrast control of circuit E is in the cathode circuit of a cathode follower which was added in the circuit to provide a point where the low resistance, uncompensated control can be used. In addition to the added cost of the extra stage, another disadvantage lies in the fact that care must be taken in the design of such a circuit to prevent overloading. .The contrast control of circuit F in Figure $4-14$ is placed in the plate circuit of the first video amplifier. The amount of signal input to the next stage is governed by the setting of the control. The control in this circuit is also a low resistance, uncompensated unit.

Circuit G of Figure 4-14 is probably the least used of all. The contrast control, R4, shunts a portion of the plate load of the video amplifier stage. With the arm of the control at the top, no signal is deve-
F 0 R

GREATEST

 TV PICTURE Quality CMPHENOD -INLINETV ANTENNASOUTSTANDINE MEGHANIGAL SPEGIFICATIONS

Part	Material	Yield Sirength	Sire	
		psi	-.d.	Woll
Mast (galv.)	M" Thinwoll Steal Conduit	32,000	0.922"	.040"
Lorge Foided Oipole	Js $1 / 2 \mathrm{HAl}$.	19.000	. $500{ }^{\circ}$.048\%
Small Folded Dipole	3s \% H Al.	19.000	. $375^{\prime \prime}$.049
Reffector	js \% H Al.	19.000	.500'	.049*
Crosserm	35 H Al .	26.000	. 875°	.065"
Conter Suppart 41 Costing	Al. Alloy $45,000 \mathrm{pli}$ tensile strength			

for All the factors determining BETTER TV PICTURE QUALITY

Wrife for this book containing the characteristics and fest performance dafa of various types of anfennos.

EXCELLENT RABIATION PATTERNS
These are the radiation patterns of the AMPHENOL Inline antenna at $58 \mathrm{mc} ., 66$ me., and 88 mc ., in the low band, and 174 mc ., 194 mc ., and 215 mc . in the high band. Notice the uniformity of these lobes at all frequencies. The lack of lobes off the sides and negligible ones off the back maintains high front-to-back and front-to-side ratios necessary for the rejection of various interferences. The

presence of a single forward lobe is us. ually a very desirable feature, especially when it is wide enough to provide adequate interception area for some differences in transmitter location, changes in the wave front's direction of travel, or physical movement of the antenna in high winds. Furthermore, it is not too critical of orientation. It is necessary only to aim it and forget it.

HIGHER GAIN

These gain curves of the AMPHENOL Inline antenna represent the intercepted voltage of the AMPHENOL Inline An. tenna as plotted against the intercepted voltage of a reference folded dipole cut to the irequency being compared. There is no channel in either the low band or high band where there is more than a three decible change within the channel that can cause picture modulation or "fuzziness." Gain of the AMPHENOL Inline antenna is quite flat over all channels.

You will find more gain designed into the high band because of greater need for it, due to higher losses at these frequencies. Also, notice the drop-off on channel six. This is at the edge of the FM band and is subject to FM interference, so the Inline's gain is purposely held down at that frequency.

The excellent broadband characteristics, impedance match. single forward lobe radiation patterns on all channels, maximum gain, lightning protection, and superior mechanical features of the AMPHENOL Inline Antenna make it the antenna for greatest TV picture quality!

AMERICAN PHENOLIC CORPORATION

The Value of

Waveform Analysis

by W. WILLIAM HENSLER and GLEN E. SLUTZ

Part II

In a previous article in PF INDEX No. 30, the characteristics of waveforms which can be used in trouble-shooting were identified and discussed. Also the various pieces of equipment associated with the observation and analysis of waveforms were reviewed. These included the oscilloscope, the voltage calibrator, and a cathode follower attachment. This article will point out a few specific instances when analysis of waveform characteristics is helpful in troubleshooting.

For a beginning, let us take up a typical vertical sweep system consisting of a blocking oscillator and output amplifier. The schematic for this circuit is shown in Figure 1. The waveform at point W1, which represents the sync input as it arrives from a sync amplifier and separator system, is pictured in Figure 2A. The scope's horizontal sweep frequency is set at 30 cps for this pattern, and therefore the horizontal sync pulses show only as a hazy band across the screen. The vertical pulses, however, appear as widely spaced, sharp spikes. The trailing edges of these vertical pulses are partially formed by the action of the vertical oscillator itself. With an inoperative oscillator the sync information at point $W 1$ would look like Figure 2B, and at the same time, of course, there would be no vertical deflection on the picture tube, just a bright horizontal line.

The waveform at point W2 under normal operating conditions is pictured in Figure 3A. This is very similar to the normal waveform at the input W1 with the exception that the horizontal pulses are
absent at W2 due to the action of the integrator network. If there are horizontal pulses showing at point W2, some trouble is likely in the integrator network. Again, a considerable part of the wave pattern at W2 is due to the operation of the blocking oscillator. The actual sync pulse is visible only as a slight positive pip on the leading edge of the waveform. If this pip is not present, it means that the sync pulse is not reaching the grid of the oscillator and there is, as a result, nothing to "hold" the picture vertically. The picture will roll either up or down depending upon the setting of the vertical hold control. Figure 3B is the waveform at point W2 with capacitor C1 open. The loss of sync is evidenced by the missing pip. Some sets become afflicted with weak vertical hold; in other words, the picture will hold vertically over only a very small range of the hold control. A possible cause for this trouble is a low amplitude sync pulse which may be detected by examination of the waveforms at points W1 and W2. Frequently, the source of such trouble is in stages preceding the integrator network; however, it may be due to a defect in the integrator if the sync is normal at point W1.

Point W1 on Figure 1 is a check point for vertical oscillator operation. The waveform at this point is reproduced in Figure 4 and is typical of the normally operating blocking oscillator. The peak-to-peak voltage is approximately 50 volts, which brings us to the reason for checking the waveform at point W3 rather than directly on the grid of the oscillator.

In short, the voltage on the grid is usually in the range of 100 volts peak-to-peak. This is too high

Figure 1. Typical Vertical Sweep System.
 utor a , vote of thanks for letting me in on this wonderful Plan."
"Fair enough! I've sure been losing sales I shouldn't, Sam. I need the CBS-Hytron Easy Budget Plan. CBSHytron tubes are tops, too. Thanks for the tip. I'll see my CBS-Hytron distributor today."

HELPFUL SERVICE FOR YOU FROM.

Figure 2. Waveforms at Point W1. (A) Normal. (B) With Inoperative Blocking Oscillator.
for serviceable use of the cathode follower attachment (see PF INDEX No. 30). Yet placing the scope leads directly on the grid has a loading effect which interferes with the normal operation of the oscillator. Consequently, the waveform at point W3, which is identical to that on the grid in every respect except amplitude, is ordinarily preferred in oscillator checks.

The control grid of the 6 K 6 vertical output amplifier is the next point of interest in our investigation. The symbol W4 denotes this point in Figure 1. With normal operation of the sweep system, the waveform obtained at this point is shown in Figure 5A. Its peak-to-peak amplitude is approximately 80 volts. The wave shape is characterized by the sharp pulse during retrace followed by the linear rise of voltage that causes the beam to move downward over the picture screen as it traces the field. Should the coupling capacitor C 8 become open, the waveform of Figure 5A would be absent at point W4 but would be found on the oscillator side of C8. Also, of course, an open in C 8 would result in complete loss of vertical deflection on the picture tube.

The circuit comprised of C6 and R11 is essential for the proper formation of the trapezoidal sawtooth at point W4. The voltage across the resistor determines the characteristics of the square wave portion of the pattern while the discharge curve of the capacitor shapes the sawtooth part of the pattern. With a leaky capacitor C6 the waveform at W4 assumes a shape identical to that shown in Figure 5B. By close inspection, the bending of the leading - edge of the sawtooth away from a straight line can be detected; this is an indication of poor vertical linearity. Much more evident is the change in peak-to-

Figure 3. Waveforms at Point W2. (A) Normal. (B) With Open Capacitor C1.
peak amplitude of the waveform, only 40 volts as compared with the normal 80 volts of Figure 5A. As would be expected, the picture on the kinescope suffers a loss of vertical height and linearity under the above condition.

If C6 should open, an entirely different effect is produced. The vertical oscillator changes frequency abruptly to nearly 20 or 30 times its normal rate. The wave pattern at point $W 4$ assumes the shape shown in Figure 5C. Since the oscilloscope horizontal frequency is still only 30 cycles per second, the increase in the vertical oscillator frequency is readily apparent on the waveform. The amplitude of the voltage is very high, upwards to 130 volts peak-to-peak, and the image on the kinescope screen is just an unintelligible cross-hatch of lines moving wildly about. From this evidence, it must be concluded that the discharge capacitor plays an important role in the correct operation of a blocking oscillator sawtooth generator.

The waveform of voltage which is present across the vertical deflection coils is not always measurable with respect to ground, as was the case with the waveforms discussed above. Such would be true with the circuit of Figure 1; neither side of the secondary of the output transformer T 2 is grounded or by-passed through a capacitor to ground. Therefore it would be necessary to measure the voltage

Figure 4. Wavetorm at Point W3 with Normal Operation.
 Antenna Mounted. List. . .\$88.00 Model 3000 Super Tune-o-Matic.

4-tube. List. $\$ 57.50$
Model 3002 Tune-o-Matic. 2.tube. List. $\$ 39,50$

Figure 5. Waveforms at Point W4. (A) Normal. (B) With Leaky Capacitor C6. (C) With Open Capacitor C6.
waveform directly across the transformer secondary (Points W5 and W6 on the schematic). If either point were grounded or by-passed to ground through a capacitor the waveform on the deflecting coils could be measured with relation to ground in the same manner as the other waveforms.

Figure 6A is a photograph of the waveform between points W5 and, W6 when the set is operating normally. The leading edge of the sawtooth is more nearly the ideal straight line than the corresponding portion of Figure 5A; this is due to the compensating action of the vertical linearity control in the cathode circuit of the output tube.

Sometimes the coupling capacitor C8 develops a leaky condition, allowing a bias shift in the output tube. The waveform on the deflection coils under such a condition is illustrated in Figure 6B. The clipping on the peaks of the sawtooth indicates overloading in the 6 K 6 due to the decreased bias. The picture tube screen shows an image that is expanded at the top and has a pronounced foldover at the bottom. An abnormal increase in the height of the picture also occurs. The peak-to-peak voltage of the waveform changes very little; the normal is 47 volts as compared with 41 volts in Figure 6B. This amplitude measurement includes the negative retrace pulses and therefore is not a determinant factor in picture height. The rate of rise in voltage represented by the slope of the leading edge of the sawtooth governs the height of the picture. By close inspection of Figure 6 B it c an be noted that the voltage rises a slightly greater amount and in a shorter time than the corresponding voltage in Figure 6A. This is the
reason for the increased picture height under the abnormal conditions of Figure 6B.

If decoupling resistor R15 suffers considerable overheating, its value is liable to increase and bring about a condition of insufficient height and poor vertical linearity in the picture. Figure 6C shows the waveform on the deflection coils when R15 is 33,000 ohms instead of the correct 10,000 ohms. The slow initial rise of the sawtooth voltage accounts for the squeezing at the top of the picture. Also note the low overall rise in the sawtooth which is responsible for the lack of picture height.

An open cathode bypass capacitor C9 may cause degeneration in the output stage, and a very compressed picture may result. The waveform on the deflection coils with such a condition existing looks like Figure 6D. This waveform illustrates extreme lack of height. One or two shorted turns in the output transformer produces an effect very similar to this one produced by an open cathode capacitor.

- Please turn to page 75 .

FOLD-OVER

Figure 6. Waveforms Across Vertical Deflection Coils. (A) Normal. (B) With Leaky Capacitor C8. (C) With too Great a Decoupling Resistor R15. (D) With Open Capacitor C9.

The TV scope for professioncls

 RCA WO-56A DUAL CONTROLS FOR "COARSE" AND "FINE" ADJUSTMENTS

No hunting or fumbling for controls whon adjusting Vertical Amplifer Gain, Sweep Frequency, Syne Iniection, and Horizontal Amplifer Goin.

FEATURING-

- Giant RCA 7JP1 cathode ray tube.
- Direct-coupled, 3-stage, push-pull, vertical and horizontal amplifiers.
- Frequency-compensated and voltage-calibrated attenuators on both amplifiers.
- A set of matched probes and cables.
- Panel source of 3 volts peak-to-peak calibrating voltage.
- Identical vertical and horizontal amplifiers with equal phase-shift characteristics.
- Retractable light shield for maximum visibility.
- New filter-type graph screen with finely ruled calibrations.
- Magnetic shield enclosing CR tube to minimize hum-pickup from internal and external fields.
SPECIFICATIONS -
- Vertical Deflection Sensitivity: $\mathbf{1 0 . 6} \mathbf{~ r m s}$ millivolts per inch.
- Frequency Response: Flat within -2 db from dc to 500 kc ; within $\mathbf{- 6 ~ d b}$ at 1 Mc ; useful response beyond 2 Mc .
- Input Capacitance: Less than 10 uuf with WG 216 L Low-Capacitance Probe.
- Square-W/ave Response: Zero tilt and overshoot using dc input position. Less than 2\% tilt and overshoot using ac input position.
- Linear Sweep: 3 to $\mathbf{3 0 , 0 0 0} \mathbf{c p s}$ with fast retrace.
- Trace Expansion: 3 times screen diameter with corresponding centering control range.
- Power Supply: $\mathbf{1 0 5} \mathbf{1 2 5}$ volts $50 / 60$ cycles; power consumption 65 watts.
- Size $13 \%^{*} h, 9^{\prime} w, 16 \%^{\prime} d$. Weight only 31 pounds (approx.).

ADVANCED SWEEP FACLIITIES -

- Preset fixed sweep positions for vertical and horizontal television waveforms.
- Positive and negative syncing for easy lock-in of upright or inverted pulse waveforms.
- 60-cycle phase-controlled sweep and synchronizing.

The WO-56A has a special circuit for automatic contral of synchronization over a wide range of input-signal lovals.

Supplied with direct probe, low-capacltance probe, and ground cable.

Built for laboratory, factory, or shop use, the WO-56A combines the advantages of high-sensitivity and wide-frequency range in a very small instrument with a large cathode-ray tube.

Designed with the user in mind, this new'scope can be depended upon to provide sharp, bright, large, and accurate pictures of minute voltage waveforms over the entire useful surface of the 7 JP 1 screen.

The amplifier selector switches are provided with both "AC" and "DC" positions so that measurements can be made with or without the effects of any dc component.

Square-wave reproduction is excellent, whether the application is low-frequency TV sweep-alignment or observation of high-frequency steep-fronted sync and deflection voltage waveforms.

A special sync-limiter circuit automatically maintains proper synchronization of the sweep oscillator over a
wide range of input-signal levels without the need for manual adjustment of the sync-vernier control.

The excellent linearity and fast retrace of the sweep or time base are functions of the Potter-type oscillator. Undistorted reproduction of the sawtooth waveform is assured by use of a horizontal amplifier with a wide-band characteristic. The preset sweep positions provide rapid switching between vertical and horizontal TV waveforms.

Truly, the WO-56A is a most useful and practical instrument for everyday work in the fields of television, radio, ultra-sonics, audio, and a wide array of industrial applications.

For details, see your RCA Distributor, or write RCA. Commercial Engineering, Section CX 67, Harrison, N. J.

Routine vs Infrequent TV Troubles
 By M

During the daily routine of television servicing, the technician encounters a number of receiver defects which are of a common nature. Usually the symptoms are such that it is easy to ascertain which stage is giving trouble because the technician becomes familiar with cause and effect. The lack of a raster would indicate high voltage failure; absence of picture, sound, and raster might be caused by failure of the low voltage supply; and horizontal pull or tear may mean troubles in the horizontal sweep oscillator.

On occasion, however, troubles develop in one stage which influences the behavior of another. In some instances symptoms might be typical for troubles in one section of the receiver, but are caused by defects in another stage. Localization of the exact cause may thus become a time-consuming process because of the misleading character of the symptoms which are present on the screen or from the loudspeaker.

No hard or fast rules can be given to help find the exact defect under such conditions. Description of typical cases will, however, help the technician identify similar situations should he encounter them in the future. He can also keep a loose-leaf file of those he encounters himself. A description of the symptom and its cure will be of material aid when that particular "tough one" is encountered again at a later date.

Interstage Influences

The interaction of stages gives rise to many false symptoms. One such condition is the slight instability which sometimes causes the horizontal or vertical sweep systems to be critical with respect to synchronization. Often this is more readily apparent with the horizontal circuits encountered in modern receivers using the synchroguide type of horizontal lock. This stabilizing system is easily upset by a decrease in sync amplitude. Thus, sync instability, or a slight weaving effect at the top of the picture would normally indicate that the horizontal lock sys-

Figure 1. Picture Carrier IF Should Be at Least on the 50% Point of Slope.
tem has developed some defect or needs readjustment. This would, of course, have to be checked first but if found to be all right the trouble may lie elsewhere and not in the sweep systems where the symptoms seem to point.

Normally the sync separator stage would also be checked, but if this proves to be operating properly the trouble may lie in a stage which handles the composite video signal. Thus, if a tube characteristic changes slightly in a video IF or video amplifier stage, it could cause some sync clipping. This would tend to have a pronounced effect on the synchroguide type of lock system because it would decrease sync amplitude. Often a slight change in characteristic occurs in a tube as it ages, though this may not show up in an emission type tube checker. Under such conditions the faulty tube may be difficult to find unless direct substitution is undertaken. The trouble could also be caused by excessive sync clipping and in most instances the picture quality would still be good and so would contrast and brilliancy.

Another contributing cause could be improper alignment. In the split-sound type of receivers utilizing the IF bandpass characteristic shown in Figure 1, it is essential that the picture IF be placed at the 50% or 60% point on the slope.

If it is lower on the slope of the curve it would mean a decrease in the amplification of the lower sideband frequency components of the signal. Inasmuch as these contain the sync pulse information, it would result in a lower amplitude sync than required for good stability. It is better to set the picture carrier somewhat higher than 50%, particularly in fringe areas where sync stability would be influenced by weak signals.

Figure 2. Diagonal Line Interference.

MERIT
HQ for TV Service Aids
MERIT'S new 1952 Catalog \# 5211 is now available introdu:ing MERIT IF-RF Coils and giving complete MERIT Coil and Transformer data and listings. Ot zer MERIT service aids for TV imprevement, replacement and conversion problems: TV Replacement Guide \#404, September 1951 issue - covers 3000 models and chassis of 82 monufociuners; Cross Reference Cata on IF RF Coils, Form \# 14 Write: Merit Coil and Trarsformer Corporation, 4425 North Clark Street, Chicago 40, Illinois.

MEPIT MDF-73 . . . original of the "cosine" series - low horizontal and high vertical inductance. Now used by such famous sets as Radio Craftsman, the cosine series will improve $10,000.000$ sets now on the market!

These three MERIT extras help you:

Exclusive: Tapemarked with specifications and hook-up data

- Full technical data packed with every item
- Listed in Howard Sams' Photofacts

*Merit is meeting the TV improvement, replacement and conversion demand with a line as complete as our advance information warrants!

The same holds true, of course, with the intercarrier type of response curve and the service bulletin of the particular receiver should be consulted. The receiver should be aligned so that the response curve conforms to that recommended.

The AGC system could, of course, influence sync stability and this is another circuit which should be checked.

Diagonal Bar Interference

The diagonal bar interference shown on the pattern of Figure 2 usually indicates that the receiver is picking up an interfering signal from a nearby RF source and the heterodyne thus produced will give the slanting and weaving line interference shown. Usually this is caused by a poor front-end in another nearby receiver where the local oscillator energy feeds into the antenna and radiates.

This type of interference can also be obtained from adjacent channel spillover. If the adjacent channel interference is that from the next higher station the diagonal line pattern may be very severe. If, however, this occurs for every station, it would indicate that the trouble lies in the receiver itself. In one instance, this diagonal bar interference was found to be caused by an oscillating first sound IF stage. Here, an open screen bypass capacitor caused the trouble and sufficient oscillating energy was produced to feed into the picture circuits and give the interference shown. The clue here, however, was that the sound was very weak and distorted.

It will be noted in Figure 2 that the linearity was not quite correct. On the bench the linearity of the receiver was corrected to give a perfectly round circle as well as a perfectly round center hub to which the wedges converged. When this receiver was installed in the cabinet the picture distorted as shown in Figure 3. Upon inspection it was found that the limitations of the table model cabinet size for this particular receiver caused the speaker field to be too near the picture tube. The speaker was mounted facing toward the top of the cabinet and the picture tube was a round glass type. Obviously the linearity had initially been adjusted while the receiver was in the cabinet and the magnetic fields which were influencing the linearity adversely, had been compensated for by the controls.

Figure 3. Linearity Affected by Presence of Undesired Magnetic Field.

Despite this, however, perfect linearity could not be secured and Figure 2 represented the best compromise. In this instance, the speaker was moved over $1 / 2$ inch and this was sufficient to prevent the magnetic fields of the alnico slug from distorting the top right section of the picture. This meant that a small portion of the speaker cone was not directly under the speaker grill but this did not materially decrease sound output.

Obviously, this is a matter of initial design but it illustrates the conditions which are sometimes encountered if the technician desires to put the receiver in the best operating condition. The magnetic fields of transformers can also influence picture linearity and additional shielding may have to be employed in receivers where component parts are crowded too closely together. Metal tubes, in particular, can prove troublesome in this respect. During bench servicing the PMspeaker must not be allowed to touch the metal-sided cone section of the picture tube because it will magnetize that portion and cause picture distortion.

Degenerative Effects

Often, what appears as a misadjustment of the controls can be caused by troubles within the circuit itself. This applies to picture width, picture height, focus, brilliancy, etc. One of the causes for incorrect width or height is the degeneration which is produced when a defect occurs in either a cathode capacitor or a screen bypass type. The same holds true, of course, with reduced emission from either the vertical or horizontal output tube. Figure 4 shows a condition where a capacitor across the cathode resistor of the vertical output tube developed a defect. Gradually the picture shrunk over a period of several weeks and this necessitated an advance of the height control. Eventually the height control was ineffective in filling the mask and finally the picture height reduced to that shown in Figure 4.

Thus, if the height or width controls have to be advanced to their extreme setting in order to fill the mask, or if the height and width are beyond where correction can be made by the controls, the tubes and associated parts must be checked for degenerative effects which might be present. Reduced drive could also cause a decline of sweep amplitude and thus de-

Figure 4. Shrinkage Caused by Degenerative Effects.

Every serviceman knows the importance of the right

 RAMLAGEMENT MEEDLE! Use (II)TED and be awre!PHOTOFACT FOLDER SEI

in many cases . . .

made the original needle
Walco makes needles that go into many phonographs as original equipment! That's one of the reasons you're more certain of quality when you replace with WALCO.

Walco replacement needle system is one of the most copied in the inglustry because it is far and away the most effective.

Smart service men are concentrating on Walco exclusively because it helps them to centralize their buying and systematize their sales. Walco furnishes a perpetual cross index, kept up to date with FREE information mailed every few months.

Yes - the Walco way is the best way for YOU! Ask your jobber!

LISTED BY Howard We Wams

 Phonograph Equipment PHONO NEEDLE(FOR REPLACEMENT in original equipment Cartridge)

DIAL LIGHTS
crease the height or width. For this reason the drive circuit should be checked. Excessive drive can cause output tube overload and shorten its life expectancy. Grid drive should not be greater than that necessary for proper width (or height) consistent with good linearity. In the horizontal system excess drive manifests itself by extending the left side of the picture abnormally.

Drive circuits for the vertical and horizontal sweep are shown in Figure 5 and are typical of those

Figure 5. Typical Drive Circuits.

Figure 6. Horizontal Output Grid Waveform.
used in modern receivers. Values here should be within that specified by the manufacturer or in the absence of specific instructions to the contrary, they should be within 10% of rated value. This applies to both the sawtooth forming capacitor as well as the associated resistor.

Often insufficient drive is caused by a defect which has developed in the stage following the drive circuit. This is particularly true where the discharge capacitor network is attached to the cathode resistor as shown in Figure 5B. Insofar as design goes, this is done to give the sawtooth a more rapid discharge and to form the negative spike shown in Figure 6. The amplitude of the negative spike will establish the grid drive because it sets the conduction level of the tube as shown. Thus, a decline of voltage across the cathode resistor of the horizontal output tube would influence the drive to a considerable extent. A reduction in horizontal drive will not only reduce the width, but will also reduce the high voltage and cause picture blooming.

Outside Interference

Often outside interference of a severe nature can simulate the type of trouble which could be developed in the receiver itself. This is particularly true where bar interference is encountered.

A 60-cycle hum introduced into the video amplifiers would generate the dark bar pattern shown

* Please turn to page 70 .

Figure 7. A 60-Cycle Hum Video Section.

Here's a simple, easy way

 to test printed electronic circuits| Centralab P.E.C. No. | Circuit Diagram | Test Instructions |
| :---: | :---: | :---: |
| PC-2
 Single Resistor | $\int_{1} \begin{gathered}\text { M } \\ \\ 1\end{gathered}$ | Check resistance directly across leads 1 and 2. |
| PC-21
 Dual Resistor | | Check resistance directly across leads 1 and 2 , and leads 2 and 3. |
| $\underset{\text { Resistor-Capacitor }}{\text { PG30 }}$ | | First - Short both leads to ground to remove any charge from C_{1}.
 Second - With ohmeter on bigh scale - check across leads 1 and 2 . If C_{1} is shorted, scale will show resistance. If C_{1} is OK , needle will swing way over and gradually return- showing charge effect indicating C_{1} OK and resistors intact. (Actual values can be determined only with.a 1 MC bridge.) |
| PC-33
 Resistor-Capacitor | | Check resistor across leads 1 and 2. Check capacitor across leads 2 and 3. |
| $\begin{gathered} \text { PC-36 } \\ \text { Resistor-Capacitor } \end{gathered}$ | | First - Short both leads to ground to remove capacttor charge.
 second - With ohmeter on high scale - check for capacitor charge effect - see PC-30 above. |
| $\begin{gathered} \text { PC-50, } \\ \text { 51,52 } \\ \text { Filpec (Filter plate) } \end{gathered}$ | | Check resistance across leads 1 and 2. Short leads 1 and 2 together. Check total capacity ($\mathrm{C}_{1}+\mathrm{C}_{2}$) across lead 3. |
| $\begin{gathered} \text { PC-70, } \\ 71,80,81 \\ \text { Couplate } \end{gathered}$ | | Check C_{1} across leads 2 and 3 on capacitor bridge. For R_{1} and C_{2} - short leads 1 and 2 to ground to remove capacitor charge. Check high scale on ohmeter for see $\mathrm{PC}-30$ above. To check capacitor charge effect - see $P C-30$ above. To check R_{2} and C_{3}, short leads 3 and 4 to ground - proceed as above for charge effect. |
| $\begin{aligned} & \text { PC-90, } \\ & \text { 91, } 92 \\ & \text { Pontode } \end{aligned}$ | | Check C_{8} across leads 5 and 6 on capacitor bridge. Check C_{2} across leads 5 and 1 on capacitor bridge. Note: C_{2} seldom if ever, causes trouble.) To check R1 and C_{1} - short leads 4 and 1 to ground, check high scale on ohmeter for charge effect see PC- 30 above. Check R_{1} across leads 5 and 3 . Check $\mathbf{R}_{\mathbf{1}}$ across leads 6 and 2. |
| PG-100
 Vertical Integrator | | Use ohmeter. Check across leads 2 and 3 for total re-
 $\begin{aligned} & \text { gether. } \\ & \text { capacity of ork } \\ & \mathrm{C}_{1}\end{aligned}+\mathrm{C}_{2}+\mathrm{C}_{3}$ on capacitor bridge. |
| PC-101
 Vertical integrator | | Short all leads to ground. Check high scale on ohmeter for charge effect across leads 1 and 3 . (See PC - 30 above) Ground again. Check charge effect across 1 and 2 Ground again. Check charge effect across 2 and 3. |
| PC-150, 151 Audet (out. put stage) | | Use capacitor bridge. Check C_{2} across leads 3 and 4 . Check C_{1} across leads 1 and 2. Check $C_{\text {a }}$ across leads 5 and 6 . (Note: C_{2} and C_{5} seldom, if ever, cause trouble.) Use ohmeter. Check for charge effect. (See R_{s} across leads 6 and -7 . Check R_{s} across leads 5 and 4. |

This simple series of tests - which you can make yourself with a VOM and simple capacitor bridge will determine whether a Centralab Printed Electronic Circuit is good or bad.

It takes elaborate testing equipment to accurately find the values of each individual component within a PEC. But for everyday service problems, it's sufficient to know only if a resistor or capacitor is in a circuit. Once this is arrived at you can assume that the component is good . . . because of the great strength and durability of ceramic fired-on construction.

Next time you want to check a Centralab Printed Electronic Circuit - try these tests. They are simple, fast and accurate-will save you time and work.

In the Interest of . . . Quicker Servicing

by GLEN E. SLUTZ

Safety Ball for High Voltage
At first glance, the hollow, rubber ball pictured in Figure 1 would seem to be out of place in an art icle about radio and television servicing. A ball such as this would more likely be sought in a child's playbox than on a television service bench.

However, this one has undergone a simple operation which has converted it into a very useful and handy service aid. It was sent to us by John W. Hill of Long Beach, California. The ball measures approximately $2-3 / 4$ inches in diameter and has had a small 3/16 inch hole cut through its surface.

Figure 1. Safety Ball.
Whenever a television receiver is being serviced without the picture tube connected, the high voltage lead should be fixed so that there is no danger of it shorting or of the service technician coming in contact with it. The ball performs this function simply and effectively. The clip on the end of the high voltage lead snaps securely into the hole in the ball, and then the ball may be allowed to roll freely at the end of the lead during the servicing procedure. Figure 2 shows the safety ball with the high voltage clip in place. The danger of shock to the operator is greatly reduced and the possibility of the high voltage shorting to the chassis is minimized by this novel measure. Thank you, John, for this useful service suggestion. We welcome the opportunity to pass along any service practices which might be of general interest to our readers.

Figure 2. Safety Ball with Anode Lead Clipped in Place.

Power Consumption Measurement

The meter pictured in Figure 3 is a Triplett Model 660 "Load-Chek." It is a combination wattmeter and voltmeter which has proved itself in helping to locate hidden shorts and overloaded circuits. The meter plugs into the power line and the test receiver connects into the outlet on the face of the meter.

The voltmeter records the line voltage and the wattmeter registers the power consumption in the test set. In this way the instrument is capable of detecting low line voltage as well as abnormal power consumption in the receiver. A "hi-lo" switch permits the use of two wattmeter ranges.

As an example of the usefulness of this meter, let us suppose that we have a set which registers a power consumption of 300 watts, yet its rated power is listed at only 1.8 amps at 115 volts, or approximately 210 watts. By removing the rectifier tube we may determine on which side of the tube the short exists. If the short were on the rectified side of the tube, the wattmeter would show a decided drop upon removal of the tube. In the case of a power transformer with shorted turns or shorted filament winding, the removal of the rectifier would cause only a slight drop in the wattmeter reading. In some instances, a tube drawing too much current can be detected by observing the wattmeter as the tube is removed. The same is true of shorted capacitors; if unsoldering one end of a capacitor results in the

Rauand the Oiginal LOW FOUUS VOITAEE ELEETROSTAIC TUBE

Perfected in Rauland Electronics Laboratories, this tube that gives edge-to-edge sharpness of focus without coils and magnets is proved and ready as the materials pinch becomes painful

BETTER in all ways! Gives better over-all focus-hair-line sharpness from edge-to-edge -with NO critical materials for focusing... and STAYS SHARP under considerable variation in line voltages.

REQUIRES NO re-engineering of present television chassis... NO added high voltage focus circuit . . . NO added receiver tubes ... NO additional components except an inexpensive potentiometer or resistor.

FOCUSES by using D.C. voltage already available in the receiver.

ELIMINATES focusing coils and magnets ... saves critically scarce copper and cobalt.

This new Rauland development is now available in substantial quantities in 17 and 20 inch rectangular tubes. For further information, address . . .

THE RAULAND CORPORATION

Figure 3. Power Consumption Meter (Triplett Model 660).
wattmeter reading dropping to near normai level, the capacitor is probably shorted and causing the overload.

After a set has been repaired, it is good practice to check the power consumption again to make sure that no excessive power drain remains. This will help insure against "come-back" service calls.

Antenna Pointers

Several types of TV and FM antennas such as the simple dipole, the conical, and the fan, normally present an open circuit to direct current, and hence to an ohmmeter measurement. In case the lead-in from one of these antennas should develop a break

Figure 4. Setup for Checking an Antenna with an Ohmmeter.

Figure 5. Spraying the Antenna Resistor with Plastic.
somewhere along its length, the detection of this open circuit would not ordinarily be possible with an ohmmeter check at the receiver-end of the lead-in. (See Figure 4.) An open circuit in a ribbon twin-lead, resulting from strain or wear of one kind or another, is frequently not visibly apparent. Therefore if it were possible to determine the condition of an antenna sys-tem by a simple ohmmeter check, a saving of time and work would be achieved.

A slight circuit addition has been devised to make an ohmmeter check meaningful in these cases. At the time of installation of the antenna a 100,000 ohm, $1 / 2$ watt resistor may be connected across the antenna terminals of the transmission line (between points A and B of Figure 4). This resistor is of such a high value that it will not affect the operation of the antenna. Yet it will endow the circuit with a finite DC resistance and thus make a continuity check significant.

The resistor must, of course, be protected from the effects of weather. After it has been mounted in place, a generous coating of plastic from a spray bomb may be applied as shown in Figure 5. This serves very well as weather protection. At the same time the plastic may be sprayed over all exposed bolts, nuts, and joints in the antenna assembly. By inhibiting the formation of rust and corrosion, this - Please turn to page 77 .

Figure 6. "Hot" Chassis in an AC-DC Receiver.

REPLACEMENT IS EASY! Average Jensen Needle replacement time is one minute. And Jensen's own JENSELECTOR quickly gives you exact needle replacement number for any record player without knowing model or cartridge number.

INTERCOMMUNICATION SYSTEMS

 By ARTHUR KOZIK

 By ARTHUR KOZIK}

An Explanation of the Basic Requirements of These Systems and Considerations for Installation

Through the ever increasing importance of communication within an organization, which is essential to its efficient operation, the intercommunication system is becoming more prominent as an indispensable item. With systems of this type, communication can be complete to any key point in the organization with just a flick of the finger. Conversation can be carried on, orders issued, questions asked and answers received in a matter of seconds.

Schools, offices, factories, and even homes may employ an intercommunication system. These
systems may vary from a simple two-station arrangement, to very complex installations incorporating many stations. The nature of the system will depend largely upon the actual requirements that the system may be compelled to fulfill. These intercommunication systems are inexpensive and dependable. They do, however, require service occasionally as do radios, television sets and other related electronic equipment. Since these systems do require service, and due to their ever-increasing popularity, the service technician should have a basic understanding of their operation.

An intercommunication system is composed of master stations and remote units so connected that - Please turn to page $71 \leqslant$ *

Figure 1. Typical Intercommunication System With Remote Unit.

GENERAL AND TECHNICAL SPECIFICATIONS

* Tests A11 Modern Cathode Ray Tubes:-Magnetic and Electrostatic, 'Scope Tubes and Industrial Types.
* Tests Rll CR Tube Elements:-Not just a limited few.
* Absolute Free-Point 14 Lever Element Selection Systom independent of multiple base pin and floating elemen terminations, for Short-Check, Leakage Testing and Quality Tests. Affords maximum anti-obsolescence in surance.
* True Beam Current Test Circuit checks all CR Tubes with Electron-guin in operation. It is the Electron Beam (and NOT total cathode emission) which traces the :pictures or pattern on the face of the CR tube.

Total cathode emission can be very high and yet Beam Current (and picture brightness) unacceptably low. The CR-30 will reject auch tubes because it is a true Beam Current tester. Conversely, total cathode omission can be low and jet Beam Current (and picture brightness) perfectly acceptable. The CR-30 will prop erly pass such tubes because it is a true Beam Current tester. The significance of the above rests in the fact that Beam Current (and picture brightness) is primarily associated with the condition of the center of the cathode surface and not the overall cathode area (See illustration below)

* Voltage Regulated. Bridge TYpe VIVM provides the heart of the super-sensitive tube quality test circuit Such high sensitivity is also required for positive check of very low current anodes and deflection plates.
* Micro-Line Voltage Adjustment

Meter-monitored at filament supply.

* Accuracy of test circuits closely maintained by use of factory adjusted internal calibrating controls; plasti conservatively rane type cabled wiring; highest quality conservatively rated components
* Built In, High Speed, Roller Tube Chcut
* Test Circuits Transformer Isolated trom Power Line.
* 45/8" Full Vision Meter with scale-plate especially designed for $C R$ tube testing requirements.
* Heavy Gauge Ruminum Panel etched and anodized. * PLUS many other "PREÇISION" details and features.

SERIES CR-30-In hardwood, tapered portable case, with hinged removable cover. Extra-Wide Tool and Test Cable Compartment. Overall Dimensions $171 / 4 \times 133 / 4 \times 63 / 4^{\prime \prime}$. Complete with standard picture tube cable, universal CR Tube Test Cable and detailed Instruction Manual.
Shipping Weight:-22 lbs.
Code: Dcrisy NET PRICE:-\$99.75
See the CR-30 on display at leading electronic equipment distributors. Order now to assure earliest possible delivery.

DESIGN FEATURES

by MERLE E. CHANEY

GENERAL ELECTRIC MODEL 24C101

The General Electric Model 24C101 television receiver possesses several features that are of interest. A $24^{\prime \prime}$ tube type 24AP4 is employed as the picture tube. It is of the round metal type requiring a sweep angle of 70° and a high voltage anode potential of around 12,500 volts.

Deflection Circuits

The demand for greater sweep for the $24^{\prime \prime}$ picture tube is met by parallel tubes in both the vertical and horizontal deflection circuits. A type 6BL7GT dual triode tube with sections paralleled is used as the vertical output tube. The horizontal output stage employs two 6AV5GT tubes in parallel to provide the necessary sweep horizontally. In addition the damper stage also has paralleled type 6W4GT tubes.

Examination of both vertical and horizontal output transformers shows that air gaps are provided in each transformer core. Their purpose is to prevent saturation of the transformer during the time of high peak current. The air gap is formed by a thin insulating material inserted in the core legs.

To make possible the elimination of any wiggle at the beginning of each horizontal line, an adjustable
trimmer is inserted from ground to the junction of two halves of the horizontal deflection yoke coils. Wiggle results from an unbalanced condition between the distributed capacity of the two horizontal coils. Adjustment of the trimmer to compensate for unequal distributed capacities vwill aid in eliminating this trouble.

Vertical Blanking

Blanking of the picture tube during the time of vertical retrace is accomplished through the use of one section of a dual triode tube. A positive-going pulse voltage from the plate of the vertical output tube is connected to the grid of the blanking triode. This triode shapes the pulse and inverts polarity. Since conduction in the blanking tube occurs only during vertical retrace time, the resulting negative pulse applied to the picture tube accomplishes picture tube blanking and elimination of vertical retrace lines.

Sound Circuits

Intercarrier sound is employed in the Model 24 C 101 receiver. However, the sound takeoff is at the plate of the second video IF amplifier. This is a departure from the usual method wherein the sound takeoff is subsequent to the video detector. In this set the signal from the plate of the second video

Figure 1. Partial Schematic of General Electric Model 24C10 Showing Sound Take-off Circuit.

2,OOO,OOO

set owners use
jed panorama
indoor tv antennas
triple-chrome plated dipoles

MODEL TA135 DELUXE 6.95 list
MODEL TA 136 STANDARD COMPANION 5.95 list MODEL TA 137 ECONOMY COMPANION 5.50 list COMPLETE WITH TWIN LEAD
absolutely tip-proof

JED MFG. CO.
BENSONHURST 6-9200 BROOKLYN 4, N. Y.
detector is fed to a separate sound takeoff amplifier tube. The output of this stage is tuned and detected by a series-connected crystal detector type 1N64. A beat note at 4.5 mc is obtained and is accepted by a 4.5 mc trap in the grid circuit of the following stage. This sound intermediate frequency of 4.5 mc is amplified by the first sound IF amplifier and then fed to a limiter stage for removing peaks of amplitude modulated components. Audio is detected through the use of a ratio detector which also functions to remove any remaining amplitude modulated frequencies. One section of a dual triode amplifies the audio and the other section acts as a phase inverter for coupling the signal to a push-pull audio amplifier stage.

Alignment of the sound stages first necessitates correct alignment of the video IF stages. After the video IF stages are aligned a response curve for the sound takeoff amplifier is observed by a scope connected to the detector load. Marker generator settings of $47.25 \mathrm{mc}, 45.75 \mathrm{mc}$, and 41.25 mc establish the points to which the desired response curve must conform. With the sweep generator set at 43 mc and a bandwidth of $9 \mathrm{mc}, \mathrm{L} 13$ (Figure 1) is tuned until the 45.75 mc marker is 7 times the amplitude of the 41.25 mc marker. Some variations in response curve shape may exist from one set to another, but the determining factor for correct alignment of this stage is the 7 to 1 ratio in amplitude between the video and IF markers.

By employing this type of sound IF system, the tuning advantages of the intercarrier system are retained. The video IF can be aligned for proper response without regard to the sound signal since it is picked off in the early stages. Since the sound signal is not passed through the video detector or the video amplifier, there is no chance of introducing amplitude modulation and the sound IF signal in these stages, thus minimizing chances for the introduction of 'sync buzz." Also the attenuation of the sound IF signal ahead of the video detector reduces the amount of 4.5 mc beat present in the video amplifier. This makes possible complete 'trapping" of this beat signal ahead of the picture tube.

ZENITH CHASSIS 20J21

Electrostatic Focus Circuit

Zenith Chassis 20 J21 employs a low voltage type electrostatically focused picture tube. For correct operation, the focus element requires a voltage between 0 to 400 volts DC. This is obtained by connecting a 7.5 megohm control as a bleeder on the $B+$ boost circuit and applying the voltage from the control

Figure 2. Low Voltage Focus Control Circuit.
arm to the focus element, pin 6 , of the picture tube. See Figure 2 for a partial schematic of the focus control circuit.

Centering Magnet, Ion Trap and Magnetic Shield

Figure 3 is a photo of the centering magnet, ion trap and magnetic shield in place on the neck of the electrostatically focused picture tube. A single type ion trap is employed and its operation and adjustment remain the same as that used for magnetically focused tubes.

Close to the deflection yoke is the centering unit for positioning the raster. In appearance it is similar to the single type ion trap. However, the magnet has a knurled rod welded on for rotating the magnet while the pole pieces remain stationary. Maximum shifting in one direction is accomplished by turning the knurled extension through 180°, while maximum shifting of the raster occurs in the opposite direction during rotation of the magnet from 180° to 360°.

An alternate centering device may be used in this chassis for centering the raster. This unit consists of two magnetized rings mounted on the neck of the tube. Either ring may be rotated in relation to the other, or both rings rotated simultaneously until the raster is properly centered. Tabs formed on the ring mounting device facilitate the centering adjustment.

The magnetic shield occupies a position on the picture tube neck mid-way between the ion trap and the centering unit. Its purpose is to shield the electron beam from stray magnetic fields from the power transformer, thus preventing hum distortion of the picture. In those chassis where the magnetic field from the power transformer is small, the magnetic shield is not employed.

Gated Beam Audio Detector Circuit

The modulation on the intercarrier sound IF signal is detected by a method different from that commonly used. A single tube type 6BN6 functions as a limiter, audio detector and 1st AF stage.

Special circuitry is required for the 6BN6 tube to accommodate its unconventional design. A drawing of the internal construction of the tube is shown in Figure 4. The tube is designed to provide a thin

Figure 3. Centering Magnet, Magnetic Shield and Ion Trap Used on Picture Tube.

The BUSS Trademark can help in SALES
or SERVICE

The name BUSS is recognized as standing for fuses of unquestioned high quality. Millions and millions of BUSS fuses in daily use in Homes, Buildings, Automobiles, T-V, and other Electronic devices and in Industry have built for BUSS a reputation for quality and an acceptance enjoyed by no other fuse manufacturer.
That is why BUSS Fuses protect your profits and goodwill as surely as they protect the user.

Figure 4. Internal Construction of 6BN6 Tube.
stream of electrons that areguided or focused toward the anode or plate. In the path of the electron stream is a limiter or first grid and a quadrature or second grid. These grids act as gates in the electron path. Either grid can cut off the electron stream.

Another feature of the tube is that only a small variation of signal voltage can produce maximum plate current or effect current cutoff. Therefore, limiting of the signal is accomplished, since large positive signal components have no greater effect over plate current than do the smaller positive signals.

The negative portion of a cycle of a strong signal applied to the limiter grid stops the electron flow toward the quadrature grid and plate. Likewise the positive portion of the signal results in maximum current flow, or saturation. Thus limiting is accomplished.

Connected to the quadrature grid is a resonant circuit tuned to the sound IF center frequency. A
voltage is produced on this grid by means of space charge coupling. The quadrature grid is so named because the voltage produced on this grid is 90° out of phase with that on the limiter grid when the incoming signal is unmodulated. Since the quadrature grid can also cause plate current cutoff on negative portions of its resonant frequency it is seen that only about one-fourth of the electron stream originating at the cathode finally reaches the plate. When the incoming signal is modulated, the phase difference between the limiter and quadrature grid voltages changes, which changes the length of time the grid gates are open, resulting in a change in the amount of time that plate current flows. Since plate current changes with the modulation on the incoming signal audio detection is achieved.

Figure 5 is a partial schematic showing the audio detector circuit used in the Zenith 20J21 chassis. L1, in the plate circuit of the 1st video amplifier, is tuned to the intercarrier frequency of 4.5 mc which is applied through a 47 mmf . capacitor to the grid of the 1st sound IF amplifier, one triode section of a 12 AT 7 tube. The 4.5 mc IF signal developed across the sound IF amplifier plate load R13, $220 \mathrm{~K} \Omega$, is coupled by a .01 mfd . capacitor to a tap on the limiter grid coil L5, which is tuned to 4.5 mc .

Oscillation in the 1 st sound IF amplifier V3, is prevented by neutralization of the grid by means of a feedback voltage from the limiter grid coil L5 through a 6 mmf . coupling capacitor, C , to the grid of V3. The quadrature grid coil L6, shunted by a 10 mmf . capacitor is resonated at 4.5 mc . The voltage developed in this circuit is aided by a small amount of feedback obtained from the use of a 690Ω resistor in series with the plate lead of the 6BN6 detector. A $330 \mathrm{~K} \Omega$ resistor, R17, functions as the detector load.

Figure 5. Gated Beam Audio Detector Circuit.

(11) Adjustia Conespiakers Tru-Match transformers FOCALIZER ${ }^{*}$ units
 FIRST

QUAM ADJUST-A-CONE SPEAKERS

ADJUST-A-CONE Suspension

Permits precision centering of voice coil in final production operation.

Special Voice Coil Impodances

 Speakers used in Intercommunications systems have voice coil impedances that vary from the standard 3.2 Ohms. Quam Speakers with these special impedance can be furnished promptly.
U-Shaped Coil Pot

Provides an unbroken flux path of sufficient cross section to carry full energy of magnetic field.

Universal Bracket

Furnished with all $3 \frac{1}{2} 2^{\prime \prime}$ to $6 \frac{1}{2 \prime \prime}$ speakers, this bracket simplifies the most difficult installations. May be attached to any two of the four mounting holes in the pot.

- Engineered by sound equipment experts, Quam Tru-
- Match Transformers are built in a complete series of
- single purpose units designed to serve any replacement
- requirement. With highest quality electrical steel and
- maximum copper per winding, quality insulation and
- complete vacuum impregnation and underwriter approved
- leads, these transformers are designed and built to stand up.

- QUAM FOCALIZER UNITS

- FOR REPLACEMENT OF WIRE WOUND FOCUS COILS
- The perfect units for replacement or rebuilding tele-
- vision sets for larger tubes, now used as original equip-
- ment in many leading sets. The Quam Focalizer* Unit
- provides sharper focus of the television picture and is - unaffected by temperature and voltage fluctuations. No - wiring required. Kits are available for anode voltages - up to 12 KV and for 12 KV and up, and are furnished - complete with centering handle and mounting plate for - easy and simple installation.

Engineered for the replacement and public address fields, Quam Adjust-a-Cone Speakers are offered in a complete line of EM and P.M. Speakers in the following sizes: $3^{1 / 2^{\prime \prime}}, 4^{\prime \prime}, 5^{\prime \prime}, 514^{\prime \prime}, 61 / 2^{\prime \prime}, 7^{\prime \prime}, 8^{\prime \prime}, 10^{\prime \prime}, 12^{\prime \prime}$, $4^{\prime \prime} \times 6^{\prime \prime}, 5^{\prime \prime} \times 7^{\prime \prime}$, and $6^{\prime \prime} \times 9^{\prime \prime}$. Public Address P. M. Speakers in $8^{\prime \prime}, 10^{\prime \prime}$, and $12^{\prime \prime}$ sizes with $6-8$ Ohm Voice Coil Impedance. Coaxial Speakers in 12" and $15^{\prime \prime}$ sizes. Television Speakers in $5^{\prime \prime}, 4^{\prime \prime} \times 6^{\prime \prime}$, and $6 \frac{1}{2} 2^{\prime \prime}$ sizes with 62 and 95 Ohms Field Resistance, and 3.2 Ohm Voice Coil Impedance. Special Field Resistances supplied promptly when T.V. circuits demand it.

QUAM-NICHOLS COMPANY cottage grove \& 33 rd place chicago 16, illinois MAKERS OF QUALITY SPEAKERS FOR OVER A QUARTER OF A CENTURY

The audio signal developed is coupled through a . 01 mfd . to the volume control. De-emphasis is obtained by a .001 mfd . capacitor across the volume control.

R14, a $500 \Omega \mathrm{buzz}$ control is for the purpose of establishing the limiter grid bias and consequently is instrumental in enabling the 6BN6 to reject amplitude modulated components which might be present in the incoming signal.

The video signal from the 1 st video is further amplified by the 2 nd video amplifier, V2A. The 2500Ω contrast control in the cathode leg of the 2nd video amplifier controls the gain of V2A. L3 and L4, peaking coils in the video output, help to maintain high frequency response of the signal applied to the picture tube grid.

NORELCO TV RECEIVER PROTECTION SYSTEMS

Norelco television receivers, Models 588A and 1200 A employ a protection system against burning of the picture tube screen, in the event that either the horizontal or vertical sweep should fail. This provision also insures that the picture tube beam is cut off during the warmup period until both sweeps are functioning properly.

Two protection circuits are used, one for each sweep system. The horizontal protection circuit functions to cut off the picture tube if failure occurs in either sweep.

Figure 6 is a partial schematic of the Norelco television receiver showing the two protection circuits. Note that the brightness control is connected in series with a triode section of a 6SN7GT tube forming a section of a voltage divider network. If the triode is not conducting, one end of the brightness control is connected to an infinite impedance. The voltage present at the junction of R18 and R19 is then applied to the picture tube, cutting off the beam. When the triode conducts, the voltage divider circuit is completed and the required range of voltages are provided at the arm of the brightness control.

The circuit constants are selected so that the triode will not conduct without a signal applied to the cathode. Tube bias is provided by connecting the cathode to a voltage divider network between +335 VDC and ground. With the grid grounded in this circuit, negative swings of an AC signal obtained from the junction of two damper resistors effect tube conduction. Since pulse type signals are applied to the tube, conduction occurs only a fraction of the time. A charge is then developed across C 10 , a .01 mfd . capacitor connected to the plate of the tube. The RC time constant of this capacitor, the brightness control, and R18, a 47 K resistor, is designed to hold the potential of the low end of the brightness control to a fairly steady level.

If failure occurs in the horizontal sweep, the triode becomes non-conducting and the voltage applied to the picture tube cathode jumps to around +100 VDC, immediately cutting off the beam.

by Robert B. Dunham

WILLIAMSON PREAMPLIFIER

The Williamson Amplifier discussed in PF INDEX No. 30 will amplify faithfully the output of a radio tuner, phonograph pickup, etc., when properly connected directly to the amplifier input. A signal of approximately two volts will drive the amplifier to full rated output. But for several reasons it is much more satisfactory and at times necessary to employ some means of preamplification, control or compensation between the signal source and the amplifier input.

This can be accomplished by the use of a separate preamplifier containing the necessary amplifier stages, filter circuits, switches, so-called 'tone controls," and such, to compensate for the low voltage output of a magnetic pickup, the preemphasis of high frequencies in some recordings, deficiencies of the speaker system, or acoustics of the room, to name a few. The preamplifier is usually constructed in such a way that it can be mounted in a location for convenient operation of the controls and connected to the amplifier through suitable cables.

While a separate power supply is to be preferred, power for operating the preamplifier can be obtained from the Stancor-Williamson amplifier, if certain precautions are taken. The 6.3 volt winding of the Stancor PC 8412 power transformer has a rating of 5 amperes. Since the drain of the 6SN7GT and

807 tubes is only 3 amperes, the remaining 2 amperes should be sufficient for most any preamplifier. While the $\mathrm{B}+$ drain of a preamplifier is usually only a few milliamperes, care must be taken when connecting to the amplifier power supply, since the decoupling problem is critical due to the excellent low frequency response of the Williamson amplifier. Any added current drain through the decoupling resistors results in a definite drop in voltage on the plates of the 6SN7GT tubes, disrupting the operation of these circuits. The possibility of feedback and motorboating will be reduced if the B+supply for the preamplifier is connected at the 435 volt end of the 150 ohm 10 watt filter resistor.

Many preamplifiers, to do some or all of the previously mentioned functions, have been designed with their circuits described and discussed in various publications. Several suitable units are available commercially.

In the October and November 1949 issues of "Wireless World," Mr. Williamson gave specifications and schematics for the construction of a phonograph preamplifier and a tone compensation and filter unit for use with the Williamson amplifier. They are rather elaborate pieces of equipment but are very good examples of thorough design to achieve the desired results. The schematic for the phonograph preamplifier is shown in Figure 1 and for the tone compensation and filter unit in Figure 2. The EF37

Figure 1. Phono Pre-Amplifier.

MILLIONS OF＂SAFE CENTER＂SELETRON RECTIFIERS

IN USE IN RADIO AND TV！

\rightarrow Seletronk
 SELENIUM RECTIFIERS

When you specify Seletron＂Safe Center＂ Selenium Rectifiers you eliminate arc－over danger，short circuits and heating at the center contact point．Assembly pressure，or pressure applied in mounting the rectifier cannot affect its performance－a Seletron feature accomplished by deactivating the area of the plate under the contact washer．

The millions of Seletron Selenium Recti－ fiers in satisfactory service as original equip－ ment in the products of leading manufac－ turers are millions of reasons why you can specify Seletron and be safe！

Consult your local jobber！

MODEL NO．	PLATE SIZE	STACK THICKNESS	$\begin{gathered} \text { Max. INPUT } \\ \text { VOLIAGEE } \\ \text { R.M.S. } \end{gathered}$	MAX，PEAK INVERSE Voltage	max．D．C． OUTPUT CURRENT
$1 \mathrm{M1}$	$1^{\prime \prime} \mathrm{sq}$ ．	\％＂	25	75	100 MA
$8{ }^{\text {81 }}$	1／2＂${ }^{17}$ Sq．	告＂	130	380	20 MA＊
16 Yt	$1 / 2^{\prime \prime}$ sq．	年＂	260	760	20 ma＊
811	$\mathrm{H}^{\prime \prime} \mathrm{sq}$ ．	㝵＂	130	380	65 MA
5M4	1＇sq．	H＂	130	380	75 MA
$5 \mathrm{M1}$	$1{ }^{\prime \prime} \mathrm{sq}$ ．	\％＂	130	380	100 ma
${ }_{5 P 1}$	13＂$\frac{3}{18}$ sq．	7／3＂	130	380	150 ma
${ }_{5}^{682}$	$1{ }^{13^{\prime 3}}{ }^{\prime \prime}$ sq．	$1{ }^{3}$	156	456	150 MA
581	$11 / 2^{\prime \prime} \times 11 / 4^{\prime \prime}$	7／8＂	130	380	200 Ma
501	$11 / 2^{\prime \prime}$ sq．	11／2＂	130	380	250 ma
601	$11 / 2^{\prime \prime} 39$.	11／8＂	156	456	250 MA
602	11／2＂sq．	13＂	156	456	250 Mk
604 （t）	$11 / 2^{\prime \prime}$ sq．		130	380	300 ma
50.51	$11 / z^{\prime \prime} \times 2^{\prime \prime}$	11／＂${ }^{\prime \prime}$	130	380 456	$350 \mathrm{MA}$
${ }_{5}^{6951}$	$11 / 2^{\prime \prime} \times 2^{\prime \prime}$	$11 / 4^{\prime \prime}$	156	456	$350 \mathrm{MA}$
551 652	2＂ 2＂ 2q4． sq．	$\begin{aligned} & 118^{\prime \prime} \\ & 1 *{ }^{\prime \prime} \end{aligned}$	$\begin{aligned} & 130 \\ & 156 \end{aligned}$	$\begin{aligned} & 360 \\ & 456 \end{aligned}$	$\begin{aligned} & 500 \mathrm{MA} \\ & 500 \mathrm{MA} \end{aligned}$

（ \dagger＂This Sectifier is rated at ${ }^{25}$ 25，

RR SELETRON DIVISION RR R ADID RECEDTDR COMPANY．IN．

Sales Departmont； 251 West ISth Sl．，Wew York II，W．Y． Factory： 84 Morth 9th St，Brooklyn II，N．Y．

These 2 Boyce Beoks Pay for Themselves！
You can master anything in TV．Radio and Electronics with this Library Set．These handbooks are your lifelong tools－uge them every day on the board．at the bench，or in the field－for construction，production，servicing，in－ measuring and testing．You get coverage of everything in TV，Radio \＆Electronics－in practical form－in plain talk，all terms explained；schematics，working diagrams and pictures all clearly illustrated for your quick and easy reference．These authoritative books are prepared by the
well－known engineers，Joseph J．Roche and Morton Scheraga，under the direction of William F．Boyce，fa－ mous for the preparation of hundreds of handbooks and manuals for the U．S．Signal Corps，U．S．Navy，U．S．Air Force．Western Electric Co．，General Electric Co．，Bel struction and reference．The armed services make them available to their technicians in libraries，schools，and in the field．Engineers．Draftsmen，Laboratory and Produc tion men in every industry have purchased over 50,000 of these books making them the most widely used in Radio derive from this set will prove to be worth many times the price．See the set at your Parts Jobber，bookstore，or order by mail today

Rodio Electronics Handbeok（No．B8－1）．．．$\$ 4.95$
Video Handbook（No．B8－2）．．．．．．．．．．．．$\$ 5.95$

Order from your Radio Parts Jobber or write direct to
Howard W．Sams \＆Co．，Inc．，Indianapolis 5.

English tubes are low noise pentodes similar to the 1620 and 6 J 7 .

An input transformer, selected to match the particular magnetic pickup employed, is used for the input of the phonograph preamplifier. The value of resistor $R 1$ depends upon the transformer used. The feedback circuit formed of C4, C5, R6 and R7, in the plate circuit of the first EF37 tube V1, feeding back to the grid provides correct equalization for Decca and EMI records. C4 is switched out of the circuit when EMI records are played. A parallel T network composed of C9, C10, C11, C12, R14, R15, R16 and R17 feeds back from the plate of V2 to the grid, giving a sharp cutoff of frequencies below 20 cps to eliminate turntable rumble.

V3 is a cathode follower stage, permitting the use of a long output lead, thereby allowing the preamplifier to be mounted near the turntable.

In the tone compensation and filter unit of Figure 2, controls R27 and R31, with switches S2 and S3 form a variation of a well known bass and treble boost and droop circuit. With switch S2 in boost position, C19 is shunted out of the circuit and the low frequencies are boosted as control R27 is rotated clockwise toward maximum. If R27 is turned counterclockwise to minimum, C20 is effectively shunted and the bass boost is reduced to the normal flat response. When S2 is switched to droop position C20 is shunted out and if R27 is turned clockwise toward maximum the bass is attenuated. Now, rotating $R 27$ counterclockwise to minimum will return the low frequency response to normal due to the effective shunting of C19.

With switch S3 in boost position, capacitor C21 is in the circuit and C22 is switched out. If treble control R31 is turned clockwise toward maximum, the
high frequencies are boosted. R31 rotated counterclockwise to minimum will reduce the high frequencies to the normal flat response. Switch S3 in the droop position cuts C21 out of, and C22 into, the circuit. Treble control R31 rotated clockwise toward maximum will reduce the high frequencies. The high frequency response is returned to the normal flat response when R31 is rotated counterclockwise to minimum. The maximum level of the treble boost can be set by C21, an adjustable trimmer type capacitor.

Following tube V5, an interesting circuit is used to control the high frequency cutoff. The really sharp cutoff of 30 to 40 db per octave, which is obtained here with a five position switch, capacitors and resistors, would usually require the use of resonant circuits with one or more chokes. A circuit such as this one, is very useful in eliminating objectionable noise with a minimum loss of response when playing records, listening with a radio tuner, etc., since most of the noise is located in the extreme high frequency end of the sound spectrum.

Resistor R34 with the capacitors on section A of switch S4, and R35 with the capacitors on section B, form a two-stage RC network in the grid circuit of V6. In the plate circuit of V6 the capacitors and resistors on sections C, D and E of switch S4 form-a parallel T network with the output fed back to the grid through resistor R36. This cascading of filter networks on switch S 4 results in a very sharp cutoff or rolloff of frequencies in its five positions of:1. $5000 \mathrm{cps} ; 2$. $7000 \mathrm{cps} ; 3$. $10,000 \mathrm{cps} ; 4$. 13,000 cps and 5. Linear.

This preamplifier, with its flexible control, is capable of giving great satisfaction to the discriminating listener who really knows what he wants to hear.

Figure 2. Tone Compensation and Filter Unit.

General Cement

 more than a name it's a complete package OF TV AND RADIO SERVICE NEEDS!
g-c amp miniature tube puller
No. 5093 for 7 -pin tubes-
No. 8106 list $\$ 1.75$
No. 8106 for 9 -pin tubes-
list \$1.75

No. 8280
DELUXE TELEVISION ALIGNMENT TOOL KIT

16 cools complete w

No. 19.1
GCC DE-OX-ID CONTACT CLEANER Dissolves corrosion and oxide dion on contacts and controls list 856

g-c miniature tube pin STRAIGHTENER No. 5191 for 7-pin No. 8105 for 9 -pin tubeslist \$1.05
No. 8655 Duplex pin straightener-list $\$ 2.50$

No. 47-2
GCC TELEVISION HIGH VOLTAGE CORONA DOPE
Prevents shores on high volta
TV circuits -list $\$ 1.20$

No. 30-2
GCC RADIO SERVICE CEMENT
Especially made for radio and
speaker repairs -list $65 \$$ speaker repairs -list 65\$

The prime purpose of this article is to acquaint the service technician with the decibel, a term which may be encountered quite frequently. At one time, unless you were a sound technician, you had little or no use for it, but it has since become more prominent in all phases of service work. A knowledge of its application should be very helpful in the service shop.

The decibel, most commonly used in the audio field, is a unit of measure to determine the ratio between two powers, two voltages or two currents. A decibel is one-tenth ($1 / 10$ th) of a bel, which was named in honor of Alexander Graham Bell, the inventor of the telephone. The decibel (db) and the human ear have similar patterns of linearity, each being of a logarithmic nature. The human ear is unable to determine any given amount of power, but can readily detect the differences of power. One decibel is the amount of difference that can just be detected by the normal ear.

The unit 'phon," also associated with sound, is the actual measure of a given level of sound and should not be confused with decibels. Decibels are used to express the "difference" of powers, voltages and currents. To illustrate this, the output of an amplifier delivering 1 watt of power is increased to 2 watts. If we were to say that we had a gain of 1 watt it would be meaningless, unless we also stated that the original level was 1 watt. In this instance we have doubled our power. However, a gain of 1 watt, if the original level were 50 watts would only be a small percentage of the total power. In this case the power is far from being doubled. Thus it can be seen why a method need be incorporated to express the difference. The decibel can be used to express huge differences of power without the use of large figures, and can also express the smaller ratios effectively. Caution must be exercised, however, for they are both plus and minus and must be totaled algebraically. If we were to have -5 db at the grid of a tube and +5 db at the plate, it would be expressed as 10 db gain, which is the algebraic difference.

-6 db	-6 db	+6 db
$\frac{-2 \mathrm{db}}{+4 \mathrm{db} \text { (gain) }}+2 \mathrm{db}$	+6 db (gain)	+2 db
+8 db (loss)	+2 db	
-4 db (loss)		

A minus sign ahead of the amount indicates a power loss, and a plus sign indicates a power gain. Many voltmeters have a db scale that can be used to measure the gain or loss of power. For information as to the use of this scale on your meter consult the instruction book that covers the specific piece of equipment.

Microphones are sometimes rated in terms of decibels below 1 volt. The following chart can be used to calculate the voltage output, basing 0 db at 1 volt.
$-50 \mathrm{db}=0.003162$ volt rms.
$-55 \mathrm{db}=0.001778$ volt rms.
$-60 \mathrm{db}=0.001$ volt rms .
$-65 \mathrm{db}=0.00056$ volt rms.
$-70 \mathrm{db}=0.00032$ volt rms.
The following formula is used to find decibels when powers are known:
$\mathrm{db}=10 \log \frac{\mathrm{P} 1}{\mathrm{P} 2}$
Example
The difference between 10 watts and 40 watts expressed in decibels is as follows -

$$
\begin{array}{ll}
\mathrm{db}=10 \log \frac{\mathrm{P} 1}{\mathrm{P} 2} & \mathrm{db}=10 \log \frac{40}{10} \\
\mathrm{db}=10 \log 4 & \mathrm{db}=6.02
\end{array}
$$

Therefore, the power difference is 6.02 db
To express voltage or current differences in db , use the formula -

$$
\mathrm{db}=20 \log \frac{\mathrm{E} 1}{\mathrm{E} 2} \text { or } \mathrm{db}=20 \log \frac{\mathrm{I} 1}{\mathrm{I} 2}
$$

Example:

To find the difference between 10 volts and 40 volts -
$\mathrm{db}=20 \log \frac{\mathrm{E} 1^{\circ}}{\mathrm{E} 2}$
$\mathrm{db}=20 \log \frac{40}{10}$
$d b=20 \log 4$
$\mathrm{db}=12.04$
Thus the voltage difference is 12.04 db . The above is true only if both E1 and E 2 are measured across impedances of equal value.

To simplify the use of the decibel and to reduce the need of computing by formula, the following partial table is included. Note that this table is given in intervals of one db , and for further breakdown into fractions of a db, a more complete chart should be employed.

To find ratios beyond the range of the table (when the quantity of db is greater than 20) subtract +20 db successively until the remainder falls within the limit of the table. Then multiply the value in the column under Voltage Ratio by 10 for each time you subtracted 20 db , and by 100 if Power Ratio is desired. (See examples of this procedure following the table.)

Your No. 1 servicing magazined
 RADIOHi.i.

COMING SOON

- TV Service with Simple Instruments
- Brightness Control Problems
- Voltage Regulated Power Supplies
- Audio Impedance Measurement
- The Load-Check Meter

ON SALE AT PARTS DISTRIBUTORS
SUBSCRIPTION RATES
1 Year $\$ 3.50 \quad 2$ Years $\$ 6.00 \quad 3$ Years $\$ 8.00$
RADIO-ELECTRONICS Dept S
25 West Broadway New York 7, N. Y.
 THE NEW
SERIES
OF COMPLETELY iano we mean completely PRE-ASSEMBLED CONICAL

ANTENNAS

FOR ALL T-V INSTALLATION PROBLEMS

${ }^{W}$PRODUCTS

152 SANDFORD ST, B'KLYN. 5, N
boaturing
"Quick-As-A-Wink"
Incredible engineering magic eliminates all nuts and bolts. Not a nut, wing-nut, or thumb-screw of any kind to tighten. The time saved by using these Ouick-As-A-wink" pre-assombled antennas, will permit at least 1 extra installation every day.

- Amazingly powerful signal reception on all channels.
- All-aluminum construction.
- Lifetime factory warranty.
- Sold thru selected, legitimate distributors only.
WRITE FOR SEN COMPLETE (ATLING-15

It'j... KESTER

FLUX.CORE SOLDER

IN DEMAND

IN DEMAND and used by the manufacturers of original equipment ... Best for you, what could be better . . . Kester Rosin -Core, "ResinFive" and "Specialized" Solders!
KESTER SOLDER COMPANY
4232 Wrightwood Ave., Chicago 39
Newark 5. N. J. \cdot Brantford, Can.

IDollar and Sense Servicing

PIGEON ROOST! Because pigeons persistently roost on the $B B C$ microphone mounted about twenty feet away from the Big Ben Westminster clock in London, the cloth wind-breaking cover on the microphone has to be replaced every three months. The microphone is high up on the famous steeple, just above the public gallery in the tower. The familiar tolling of this famous clock can be heard regularly on short-wave broadcasts from England.

ALIGNMENT AID. Bouquets to CBS-Columbia, who are making all alignment adjustments accessible from the top of the chassis in their newest television receivers. Last of the adjustments to get up top was for the discriminator transformer; it'll have two concentric screws, requiring two different sizes of screwdrivers. Other set manufacturers who're doing the same, or plan to, deserve equal credit from servicemen - provided they make it possible to connect alignment instruments from the top of the chassis also.

17 IS MINIMUM. Picture tube sizes are settling down to 17,20 and 21 -inch rectangular glass. Just a few 24, 27 and 30 -inch rounds are being made. Met-al-coned tubes appear to be on their way out. Newest development is the cylindrical-face tube, which minimizes reflections from room lights. Practically all the 17 and 21 -inch rectangulars being made now by Du Mont are cylindricals, and Sylvania is also making some of them.

ERSATZ. Not much evidence of conservation of metal as this is written, though a few new sets do show it in use of cloth webbing to hold down picture tubes, in composition-board backs for sets, in plastic or composition picture-tube end cups, and in finergage hookup wire.

At the factories, resistor and capacitor leads are being cut shorter and the scrap pieces saved for salvage worth around 20 cents a pound today. Amazingly, this salvage piles up to thousands of pounds in just a few months when a large television factory has all its production lines running.

LAST OF THE MOHICANS. Atlanta's WLTV went on the air near the close of 1951 as the 108 th and last of the FCC-authorized vhf television stations in this country. Add to this XELD-TV in Matamoros, Mexico, which serves a Texas audience, and we have 109 stations dishing out programs and commercials to U.S. viewers. As of year-end, 95 of these were receiving network programs by coaxial cable or microwave relay. By the end of 1952 , only four are expected to be without network service, Albuquerque, Phoenix, Seattle and Matamoros.

SKIM MILK. Regions served by television stations are estimated to contain 27.5 million families, of which some 15.5 million now have TV sets. These
represent the cream of the market and quite a bit of the skim milk too.

The trend among set manufacturers is toward super-fringe receivers that will open up new markets. Sensitivity in many of these new sets is 20 microvolts or better, as compared to 100 microvolts or higher for the average set of a year or two ago. One manufacturer even guarantees 150 -mile reception in his advertisements. The sets will generally have a FRINGE-LOCAL switch or its equivalent, since such high sensitivity can give picture troubles when used on strong nearby stations. In some of the new sets, the gain reduction is achieved simply by cutting plate voltage of the video IF amplifier strip from 180 volts to 90 volts; this had the advantage of giving full bandwidth and hence full picture detail at both settings.

MEN. In Memphis, a man threw a chair at his wife, then ducked her head in a bathtub when she blocked his view of their TV screen. In Bridgeport, a man put his TV aerial up after dark each night and took it down at bedtime, so he could stay in a lowrent housing project yet keep his forbidden TV set.

BEEFSTEAK. Black eyes get a dose of electricity in place of steak at a Long Island VA hospital. If the electrical juice is applied within an hour or before much blackening has occurred, results are claimed to be very good. Voltage and current figures have not been released, but the picture-tube second anode lead of a TV set probably has too many volts for the purpose.

FLUORINE. If your local water company starts using fluorine in the water to prevent tooth decay, better stop using that water in storage batteries. Use distilled water instead, as fluorine can make a battery go dead quick.

FOR YOUR CARTOON IDEA

Have a pet peeve about service customers and their peculiarities? Help us keep the above "SERVICEMAN'S DIARY', cartoon series going by sending in your ideo. No need to draw it-iust write it out. Sprague will pay $\$ 10.00$ for every idea that is used.

TWIST-LOK ' 'LYTICS

The easiest to use, most reliable electrolytics for television replacement use

A QUICK GUIDE TO TV CAPACITOR REPLACEMENTS

This new 4th edition of the Sprague TV Replacement Capacitor Manual shows complete, set-by-set listings of original equipment capacitors and their recommended replacements on a total of 1561 television receiver models by 63 manufacturers. Rating data and manufacturer's part numbers are listed for the original capacitor. Sprague catalog numbers and electrical specifications are given for the replacements.
Special, section lists capacitor "Service Packages" which contain all the electrolytic capacitors necessary to service any brand of TV set. Sprague jobbers will supply these kits for over 22 of the most popular brands of TV receivers.

Free copies of the new manual M-481, are available from local Sprague distributors, or may be obtained from Sprague Products Company, North Adams, Mass. Send 10 c to cover mailing and handling.

WALL CHART SOLVES CAPACITOR PROBLEMS

A giant wall chart for use in busy service shops is now being offered to servicemen by Spraque Products Company, North Adams, Mass. Beautifully lithographed in colors, size 22" x $28^{\prime \prime}$ the chart includes handy service application data; details of common circuit troubles and their remedies; replacement data on electrolytics; formulas; transformer, resistor and capacitor color codes; schematic symbols, and other related information. Everything is arranged for quick, easy reference. Popular types of Sprague Capacitors and Koolohm Resistors are illustrated.
The Wall Charts are now available free from Sprague distributors.

INDEX To PHOTOFACT

radio and television service data folders

HOW TO USE THIS INDEX

To find the PHOTOFACT Folder you need, first look for the name of the receiver (listed alphabetically below), and then find the required nodel number. Opposite the model, you will find the number of the PHOTOFACT Set in which the required Folder appears, and the number of that Folder. The PHOTOFACT Set number is shown in bold-face type; the Folder number is in the regular light-face type.

MPORTANT-1. The letter " \mathbf{A} " following a Set number in the Index listing, indicates a "Preliminary Data Folder." These Folders are designed to provide you immediately with preliminary basic data on TV receivers pending their complete coverage in the standard, uniform PHOTOFACT Folder Set presentation.
2. Models marked by an asterisk (*) have not yet been covered in a standard Folder. However, regular PHOTOFACT Subscribers may obtain Schematic, Alignment Data or other required information on these models without charge. (When requesting such data, mention the name of the Parts Distributor who supplies you with your PHOTOFACT Folder Sets.)
3. Production Change Bulletins contain data supplementary to certain models covered in previously issued PHOTOFACT Folders, and are listed in this Index immediately following the listing of the original coverage of the model or chassis. These Bulletins should be filed with the Foiders covering the models to which the changes apply.

important Рhotofact information

We want you to receive maximum benefits through your use of this Index and of PHOTOFACT Folders. To keep you fully informed about PHOTOFACT, we have prepared the table of informative subjects listed below. Be sure to read each item carefully.
Subject
Page No.

1. Explanation of letter "A," asterisk (*), and Prod. Changes 45
2. How and where to buy PHOTOFACT Folders.49
3. How to obtain a sample PHOTOFACT Folder. 53
4. How to file PHOTOFACT Folders easily and quickly. 57
5. How to obtain PHOTOFACT Volume Labels 58
6. How to obtain Service Data on Pre-War Models. 59
7. Extra benefits you get in PHOTOFACT Folders 65
admiral_Come No. No,

Models 8C11, 8C12, 8 BCl 13
[See Chossis 30A1 (Set
[See Chassis 30A1 (Set
57) ond 8DI (Sot 67)]
58) and
Tel. Roc.

Models $8 \mathrm{Cl} 4,8 \mathrm{8Cl}, 8 \mathrm{8Cl}$
8 Cl
,
8C17 (See Ch. 8D1)... 67
$M o d e l$
Models 8D15, 8D16
67
67
Model 8RP46 67
(See Chasils 3A1)
Model 9814, 9815, 9816

Models 9E15, 9 E 16 ,
9E17 (See Ch . 9 E 1) $\ldots . .$.
Models $12 \times 11,12 \times 12 \mathrm{Tal}$
Models $12 \times 11,12 \times 12$ Tel.
Rec. (See Ch. 20x1)

Model 15K21 Tel. Rec.
(See Ch. 20Ti)......117-2
(See Ch. 20Ti)........ 11
models 16R11, 16R12 ToI.
Models $16 R 11$, $16 R 12$ Tol.
Rec. (SEe Ch. 2181 I
Models 17 K 11 , $17 \mathrm{K12} 12 \mathrm{Tol}$.
Rec.
(See
Model 17×16 Tol. Rec.
Sole Ch. 21F1) Rec. 135
Models 17K21, 17 K 22 Tel Models $17 \mathrm{~K} 21,17 \mathrm{~K} 22 \mathrm{Tel}$.
Rec.
ISee Ch. 21F1)
Rec. (See Ch. 21F1)
(Also Soe Prod. Chge.
(Also Ses Prod. Chge.
Bul. 30, Set $156 \cdot 2$).... 135 17M15, 17M16, 17M17

Modols $19 A 115,19 A 11 S N$,
$19 A 12 S, 19 A 12 S N$
19A12S, $19 A 12 S N$ ísee
Ch. 19SA1) Tol. Ree
Ch. 19A1) Tol Rec..... 59
$\begin{aligned} & \text { Modece. } 20 \times 11,20 \times 12 \\ & \text { Rec. (Soe Ch. 20X1)...i00 }\end{aligned}$ Model 20×122 Tal. Rec. 100 Model 20x122 Tel. Rec.
(See. Ch. 20x1)...... 100 $\begin{aligned} & \text { Model } 20 \times 136 \text { TrI. Rec. } \\ & \text { (See Ch. 20X1). } 100\end{aligned}$ Models $20 \times 145,20 \times 146$, 20x147 Tel. Rec.
(Soe Ch. 20x1)...... Model 22×12 Tol. Rec.
(See $\mathrm{Ch}, 20 \times 1$) 100 Models $22 \times 25,22 \times 26$,
22×27 22×27 Tel. Rec. (See Ch. 20x1)....... 100
Models 24A11, 24 A 12 T 4
 Model 24A125 Tol. Rec.
(Soe Ch. 20AI) 77 Model 24A1 25AN Tel. Rec.
(See (See $\mathrm{Ch}, 20 \mathrm{Xl}$)........
Models (See Ch. 20A1)
(Sol Tel.
Modec.
$24 C 15,24<16$, 24 Cl 17 Tol . Rec. (See Ch. 20A1)....... 77 Rec. (See Ćh. 20T1)... Models $24 \times 15,24 \times 15 S$,
$24 \times 16,24 \times 165,24 \times 175$ Tol. Rec. (See Ch.
20×1 and 4 L 1) 20×1 and $4 L 11, \ldots \ldots . .100$
Models $25 A 15,25 A 16$, modelis
$25 A 17$ Tel. Rec. $25 A 17$ Tot Rec.
(Soe Ch. 20A1). Models 26R11, 26 R12 Toi. 77 Rec. (See Ch. 21B1)...118
Models. $26 R 25$ 26R26 Models 26R25, $26 R 26$ Tol.
Rec. (Soee Ch. 24D1) 101 Model: 26R25A, 26R26A Tel. Roc.
(See Ch. 2181).... $M o d e l:$
$26 R 37$
$26 R 35,26 R 36$, 26R37 Tel. Rec. (See
Ch. 24DI) 103 Models 26R35A, 26R36A 26R37A Tol. Rec. (See Ch. 21B1) Models 26x35, 26x
Tol. Rec. ${ }^{\text {Sen }}$
Ch. 24D1) 103

AIRLINE-AUTOMATIC

ARVIN-Cont.

ASTRASONIC	
T.3	
74	8 53-6
Atias	
	8.45 14
AUDAR	
P-4A 19-3	
RE-8A	
Talyar ReR-9 65-2	
AUDIO DEVELOPMENT (ADC)	
71-F128-3	
AUTOMATIC	
Tom Boy Tom Thumb Buddy. Tom Thumb CameraRadio 49-6 26	
Tom Thumb Personal Artip 23-4B-44	
C60 ${ }_{\text {24-20 }}$	
${ }_{\text {C-65X }}$ (S6e Model C-60X). ${ }^{\text {24 }}$ (102_1	
C.351 148-3	
F-100	
	790 23
	-90
5.551	
TV.P490 Tol. Rec....... 81-3	
TV.707, TV-709, TV-710 Tel, Rec. 60-6	
TV. 712 Tel. Rec. (Sep Model TV-707)... 60	
TV. 1205 Tel. Rec. (See Modal TV-1249) (Also See Prod. Chge. Bui. 5 -Sat 106-1)	
TV-1249, TV1250 Tel. Rec. 103-5	
TV. 1294 Tol. Rec. (See Mode! TV-1249) (Also Ste Prod. Chge.	
	TV-1605 Tel. Rec. (See
$\begin{aligned} & \text { TV-1615 Tel. Rec. (Sep } \\ & \text { Model TV-1249)...... } 103 \end{aligned}$	
TV-1649, TV-1650,TV-1651 Tel. Roc....... 143-5	
$\begin{aligned} & \text { TV-1694 Tel. Rec. (See } \\ & \text { Model TV.1249). } 103 . .103 \text {-4. } \end{aligned}$	
TV-5020 Tel. Rec........ 134	
TV-5061 Tol. Rec. (See Modei TV-5006) . . 143	
TV-5077 Tel. Rec. (See Model TV-5006). . 145	
TV-5116R Tel. Rec. (See Model TV-5020). . 134	
TV-5160 Tel, Rec. (See Model TV-5020) . . 134	
TVX313 Tel. Rec. (See Model TV.707)... 60	
TVX404 Tol. Rec.(Soe Model TV-707)... 60	
601, 602 (Seritas A)...... 13-11	
	${ }^{601}{ }^{\text {6 }}$, 602 (Serias B)....... 22-5
613X (5ee Model 612X)	

CORONADO-ELECTRO

IMPORTANT

Photofact Publications are available from:

YOUR PHOTOFACT DISTRIBUTOR

The easiest way to own the world's finest Radio-TV Service Data is to subscribe to PHOTOF ACT Folder Sets with your distributor, who will see to it that you receive each Set as published (issued 2 to 4 Sets per month).
PHOTOFACT Folder Sets, Each Only.
$\$ 1.50$
DeLuxe Binders for filing PHOTOFACT Sets, Each Only
3.39

Complete PHOTOFACT Volumes, Each Only
18.39
(Each Volume includes 10 Sets of PHOTOFACT Folders in Deluxe Binder. Vol. 1 contains Sets 1-10; Vol. 2 contains Sets 11-20, etc.)
PHOTOFACT EASY-PAY PLAN. You can own a library of PHOTOFACT Volumes for a down payment of only 18.39 Easy monthly payments-no interest or carrying charges. For full Easy-Pay details, see your distributor or write to Howard W. Sams \& Co., Inc.

electromatic 	EMERSON-Cont. 582 (See Model 548)..... 30 583 (Soe Model 57381
Electro-tone	${ }_{584} 584$ (Ses Model 5598
${ }^{555}$.12............ 13-16	
706,712 (Soo Model s5s) 13	
Electronic corp	120
F America (See tca)	
elictronic spicialty co. (See Ronger)	
	590 Ch .120101
E/L (ELECTRONIC Labs.)	
75 (Sub-Station) (See	$\begin{aligned} & 593 \text { (Chassis 120063日) } \\ & \text { (Soe Model: 563),..... } 73 \end{aligned}$
76E, $76 \mathrm{~K}, 76 \mathrm{M}, 76 \mathrm{~W}$	594, 595 (Ch. 120071A)
(See Modol 2701).... ${ }^{4}$	Sope Modet 5811
76RU (*Radio Uniliphono.-) 20	596
$7108.710 \mathrm{M}, 710 \mathrm{O}, 710 \mathrm{w}$,	${ }_{599} 597$ (Ch. ${ }^{\text {che }} 1200738 \mathrm{l}$)
Oritosonic (Ch. 2875). . 20-7	599 (Ch. 1200758)
	600
(Ch: 2887)	Tal. Roc. (Al)
2660 "Master Uriliphone': 8-8	
	(Soe Model S99].
30	802 (Ch. 120072 A .
Emerso	-10
501,502 (Ch. 120000,	(Soe Model 563)....
120029) ${ }^{2-1}$	
${ }^{503}$ (Ch. 120000. 120029) $1-18$	605 (Ch. 1200768)...... 66
504 (Ch. 120000,120029)	606 (Ch. 120066) T
505 (Ch. 120041) (Sto	${ }^{\circ} 00{ }^{\text {chel }}$ R. 12
Model 523)	606 ich. 120
	Roc. (Soee Model 571 Ch.
508 ich. 120	O0
509	
50, ${ }^{\text {ch }} 120000$, 120029).. 5-36	
	(h. 120074A)
511 (Ch. 120010) (50	608A Ch. 120089 Bl Tei. ${ }^{\text {a }}$
	Rec.a... 84
512 (Ch. 120006)...... ${ }^{511}$ 9-12	609 (Chostis 120084.B)
512 Ch. 120056)...... ${ }^{26-11}$	1. Roc.
	0 (Chonis
(Ste Model 512	Tol. Roc. (Soe Model 571
201 ..1..... 26	Ch. 1200868)
17 (ch. 124)	613A (Ch. 120085
${ }_{518}^{\text {Model }}$ (Soes MAdel $5071 . . .{ }^{16}$	814, B, BC, CICh. 120
519 (Ch. 120030) 30-7	6140 (Ch, 120095.8)
520 (Ch. 120000, 120029)	Tal. Rec. 95A
dol3 501,5021	5
521 Ch. 120013.120031	(S000 Model 561) 63
${ }_{523} 5215$	616 (Chassis 120100A, 8)
524 $17-12$	
	Tal. Rec.
${ }_{528} 527$ (Ch. 120019) Toi. Roc. ${ }^{\text {a }}$, 13	618 (Ch. 1200908, D) Tel.
	(CCh. 120092)
Ch. 200561 32	${ }^{\text {Roc. }} 12008088$
531, 532, 533......... 11-6	620 (Ch. 1200910.001
534 (ch. 12000	Tol. Rec. ISeo Modal
27	571 Ch. 12008
	621 (Ch. 1200988)
536A ….............. 24-17	622 (Ch. 1200989
537 ${ }^{23-7}$	Tel. Rec. (Seos)
538 (Ch. 120051)	Mod
539 madel	
${ }_{5404}$ (Ch. 120042)..... 20 20-10	624 (Ch. 120087 B . ${ }^{\text {I }}$
541 ……ai..... 18-13	Tol. Rec. (Sooo Model
545 (Ch. 120047) Tol. Rec.	823 (Ch. 1201058)103-8
Hotofoct Servicer 82	$12010483)$ Tol.
546 (Ch.120049) $21-15$	(See Model 608A)..... 84
548 (Ch. 1200511) ${ }^{3}$ 30-8	627 (Ch. 1201078)
549 (Ch. 12005) 26-12	Tel. Rec. (Soe Modol
550 (Ch. 1220001 (5 se	${ }_{628}{ }^{\text {(Ch. }}$ (200098 B)
Modeh. 120056) (Seo	Tel. Rec. (${ }^{\text {cose }}$
Modol 512 Ch 120056) 26	Model 6211 . ${ }^{\text {a }} 108$
551 A (S500 Modol 536 Al . 24.	629 (Ch. 1201148) Tol
\$52 (Sos Model 525) 20	Rac. (Sae Model 63I). 93A
	6290 (Ch. 1201248$)$ (190-6
	Tel. Rec. 1 .. 116-5
	630 (Ch. 1200998)
	Mel Roc. ${ }^{\text {a }}$ Sod
${ }^{363}$ (Ch. ${ }^{1200638)}$)..... 73-4	631 (Ch. 1201097 Tel.
	Rec. 93A. 6
565 (Ch. 12001881)	${ }^{632}$ Tol. Rece 120096)
(Soe. Model 5556$) \ldots . .70$	633 (Ch. 120i14)
Model 1209 Ch. 120051 (26	${ }_{\text {Rec }}$ (See Model 631). 93A
558A (Ch. 120070A).... 580	BC. c) Tel ${ }_{\text {Rec }}$ c.
	(Sseo Model 614] . . . 97
570 (Ch. 120064) 97-3	
Television kretiver 46-25	Rec. (Soe Model olab). 95A
$571{ }^{\text {(Ch. }}$. 1200 c 6 Bl	Rec. iSeo Model 571). . 76
571 (Ch. 120086 B)	639 (Ch. 1201038) Tot.
Tol. Roce	Rec. (See Madet 600) (Also See Prod. Chge.
	640 (Ch .1201121 93
574 (Ch. 120064) 42-11	$\left.6418 \mathrm{C}^{\text {(}} \mathrm{Ch} .1201258\right)$.
	643 A (Ch. 1201114) 91
	644. B, BC, C Cht 120113,
	Soe Model old ${ }^{\text {coc. }}$. 97
578(Ch. 120050) ${ }^{\text {cheo }}$	645 (Ch. 120115) 94-4
	${ }^{646 A}(\mathrm{Ch} .120121 \mathrm{~A})$
	6468 [Ch. 220121 B] .102-6
$\begin{aligned} & (\text { See Modal 570)....... } 97 \\ & 581(\mathrm{Ch} .120014 \mathrm{~A}, \mathrm{Bi}68-7 \end{aligned}$	B, BC, C) Tel. Hec. (See Model 6l4).

globe	AFTERS-Cont.
601 20-13	760, 761 Tol. Rec. (500
	805, 806 Tol. ${ }^{\text {mob }}$
	${ }_{810}^{805}$ \% ${ }^{\text {col. Rec. }}$
${ }_{51}$ …................ 19-18	(Seo Modoi 805)
62 C 19-	810A, 811 Tal. Rec. 124
	815 tol. Rec. ${ }^{\text {a }}$ (0a) 124
	$818,820,822$ Tel Roc.
457 …............... ${ }^{39}$	(Soe Model 810A) 124
$5500{ }^{21}$	82 I Tol. Roc.
${ }_{551} 517 \times \cdots \cdots \cdots \cdots \cdots \cdots \cdot \cdots$ 16, 16	
	860, 861 Tel. Rec.
${ }_{553} \ldots \ldots \ldots \ldots \ldots \ldots \ldots{ }^{28}$	(Sop Model 810 A) 124
559 30-	
GODFREY 6AD 28-16	880 Tal. Rec. (See Model 810A) 124
65m 28-17	1000
GON-SET 3.30 Meter Converter 81-11	$\begin{aligned} & 1002 \text { 1003, } 1004 \text { ich. } \\ & \text { F11 00D) Tu. Rec......163-1A } \end{aligned}$
10.11 Motor Convartar ... 37-	1005, 1006 (Ch. All00D)
e. F. GOODRICH (Also See Manfola)	1002)................163-1A 1007 (Ch. FiOOD) Toi.
92.523, 92-524, 92-525,	Rec. is co Me
$\begin{aligned} & 92.526,92.527, \\ & 92.528 \\ & 92 . \end{aligned}$	1008 (Ch. X1000D) Tel.
	016, 1017, 10
000	1-1A
	1025 (Ch. Cloood Tol.
W. T. GRANT (See Grantline)	
GRAMTLINE	
300 (Serier B) 9-16	178100
500, 501 (Seriee A) ${ }^{\text {a }}$. ${ }^{\text {a }}$... 9 9-17	17810 M Tol. Rec.
501-7 ${ }^{35-10}$	
504.9................. 21 219	
	(Soe Model 17804C).
605, $606 \times \cdots \cdots \cdots \cdots, \ldots, 17$	
${ }_{641}^{641} \ldots \ldots \ldots \ldots \ldots \ldots .{ }_{10}^{12-15}$	17819 Tol. Rec.
	(S900 Model 17804C).. 155
	${ }^{824}$ Tel. Rec.
	$17824 . \mathrm{A}$ Toi. Rec
SOPG, 51PG163-6	S38 Tol. Reck
hallicrafters (AIso See Echophone)	17848, 17849, 17850 Tel . Rec. (See Model 17804C) \qquad
CA.2, CA-2A	17860-H, 17861-H
	Tol. Rec.
5.38 ${ }^{\text {a }}$ (.............. ${ }^{3}{ }^{3-7}$	
	17906 Tol. Rec
s.408 ……........ 122	17930, 17931, 17932.
	Rec. (Soo Model 14808)
	20823, B, C (Ch. M9000)
	Yel. Rec. ${ }_{\text {Modal }}$
5-55, s.56 5708	20872 Tal. Rec
	20882 Tol. Rec.
5-76, 5-760 14.146 -7	
	21923 Tol. Rec
	21928 Tel. Re
	${ }_{21980}^{21940}$ Tal.
5X-62 ${ }_{10112}^{12}$	H.15-5............ 16
	H.50-25 16-18
T.54 (latie) Tell. Rec...... 91-6 ${ }^{\text {a }}$	hamilton radio
T-61, T-64, T-67 Tol. ${ }_{\text {Toec. }}$	(See Olympic)
	hammarlun
T-68 (Tal. Roc.)	
T. 69 Tel. Rec...	HARVEY-WELLS
	AT-38-6, AT-38-12 32-11
	ATR-3-6, ATR-3-12 36-14
5R19, 5R19, ${ }_{\text {LR2 }}$	heath
400, 406, 409, 410, 411.	HBR-S .
${ }_{50}^{112}$-1........... 32-9	hoffman
503, ${ }_{\text {Soser }}$	A-200 (Ch. 103) 4-23
505, 506 (lato) (s)	
Model T - 54 Late)...... 91	
Sos model T6i)	(So0 Model A-202) 1
tso toe Prod. Chge.	
8ul. 32 -50t 158.1) ... 65	
${ }_{514}$ Toli. Rec. iseo	${ }_{8}^{8.400}$. ${ }^{17} \mathbf{1 7 - 1 4}^{17}$
Model 1-54 Loto)...... 91	${ }_{\text {b. } 501}^{\text {b.1000 }}$ …............... 48-11 $^{\text {a }}$
	C.502 51
518, $519,520 \mathrm{Tal}$. Rec.... 92-3	C.503 \times............ 50.9
	${ }_{\text {C09,' }} \mathbf{c} 510$
Model 518.	
524 Tol. Rec. (Soes	C.514 (500 Modal c.504) 47
	C1006, 1007
$518)$	Ст-800, CT-801, CT-900,
605, 606 Tol. Rec.107-5	c7-901 (Tot. Rec.) ... 63-11
680, 681 Tol. Rec........13-3	
(Soe Model 680) 113	208501 (Ch. 183T)
	c. (5ee Model 636B)
Model 680).....113	M101 (Ch .183 T) $\mathrm{Tal}^{\text {a }}$.
\% 8801.	
(Soes Model ${ }^{\text {mad }}$	183 T) Tel. Rac.
740, 741 (Run 1) Toil. Rec	硣
745 Tel. Rec.	ol. Rec. 159-

142, 143 Tel. Rec.
(See Model 12C4)..... 108 1244, G, GU, T, TX, 1245,
G, GU, T, TX Tel, Rec. (See Model 12C4)..... 108 1348 Tol. Rec. (See
Model 12 C 4)....
1400 1400B (Ch. 100). Tel. Rec. (See Tel. Rec. (See
Model ITDA) T $1547 \ldots .127$ 1546, G, GU, T, 1547,
G, GU, T, $1548, \mathrm{G}, \mathrm{GU}$ T, Gu','G, GU', T'Tol.
Rec. (See Model 12CA). 108 1600, 1600B (Ch. 101) Tel. Rec. (Seo
Model 17DA)......... 127
$605,1605 \mathrm{~B}$ (Ch. 102) 605, 1605 B (Ch. ${ }^{10}$ (Sel. Rec. (See Model 170A) 127
 Model 17DA) 127 646, $1647,1648,1649$
Tel. Rec. (See
Model $12 C 4) \ldots \ldots . . .108$ 671, 1672, 1673, 1674, 1675 Tol. Rec.
(Soe Model G-414).... 133 1710 (Ch. 101) Tol. Rec.
(See Modal 17DA)
1900 Tel. Rec 900 Tel. Re 95A.10
974, 1975 Tel Rec
(See Model G-414)....
2042T, 2043 T Tel. Rec.
(See Model 12C4)..... 108 2546T, 2547T, 2548T, 2549 T Tol. Rec. ($\mathrm{S} \% \mathrm{O}$
Model Ch. 5801 A

Department P do not stock sample Folders.)

IMPORTANT

How to obtain a sample PHOTOFACT Folder

Service Technicians who have not yet enjoyed the advantages of the world's finest Radio-TV service data, may obtain a Free Sample PHOTOFACT Folder and see for themselves how they can save time and earn more. To get your free sample, simply state the PHOTOFACT Set Number and the Folder Number (not applicable to listings bearing suffix letter "A" or an asterisk *). Mail your request on your business letterhead (or enclose your business card) to:

HOWARD W. SAMS \& CO., INC.
2201 East 46th Street
Indianapolis, Indiana
This offer is limited to one sample Folder. (PHOTOFACT Distributors

PACKARD-BELL-Conf.

PHILCO	
C. 4608 (Set Mopar Model 802)	18
C. 4608 (Revised) (See Mo-	
C-4908 (See Mopar	
Model 805)	71
CR-2	35-17
CR.4, CR-6	33-17
CR-8	38-13
CR-9	44-17
CR-12	39-16
CR-501	142
CR-503	128-10
CR-505 130-10	
P-4635 (See Packard Model PA-382042)	20
P-4735 (See Packard Model PA-393607) 57	
PD-4908 (See Mopar	
5-4624, S-4825 (See Stu- deboker Model S-4624). 21	
S-4626, S. 4627 (See Studebaker Model S-4626). 19	
UN6. 100	19-26
UNo.400 30-23	
UN6.450 18-26	
UN6.500 17-24	
UN6.550	31-24
46.131 5-13	
46.131 (Revised)	2-16
46-132 4-20	
46.142	36-16
46-200 5eries 1-24	
$46-200 \cdot 1,46-201,46-202 \text {, }$	
46.200 Series) 1	
46-350 10-24	
46-420, 46-420-1 $\cdots \cdots \cdots$. ${ }^{46-4212}$	
46-421; 46-421.1	
46-427 2-25	
46-480 19-25	
48.1201 4 - 35	
46-1201 (Revised) 29-21	
$48 \cdot 1203$........ ${ }^{6-23}$	
46-1209 13-24	
46-1213	12-33
46-1226 15-24	
47-204, 47-205 33-18	
48.141, 48-145 25-23	
48-150 ${ }^{\text {a }}$, 3 34-16	
48-200, 48-200-1 33-19 37-1648.206	
48-206 ….......... 37-16	
48-214 (Seo Modal 48-200) ${ }^{33}$	
$\text { 48-250, 48.250.1 } 32 \text { 32-17 }$	
48.300 37-17	
48-360 …......... 38 3-14	
48-460, 48-460-1 ${ }^{34-17}$	
48.461, …........... 38.15	
48-464 26-20	
48-472, 48-472.1 43-15	
48-472 (Revised) 48-18	
48-475 40-14	
48.485 ….............. 47-19	
Tel. Rec.	

IMPORTANT

Quick, Easy PHOTOFACT Filing Method

The proferred 30-Secend methed for filing PHOTOFACT Felders
Your PHOTOFACT Folder Sets come to you in convenient envelopes. When you remove a Set from its envelope, you will find the Folders already arranged in proper filing order, and preceded by an Index Separator. This Separator lists each receiver covered in the Set, and has an index tab showing the Set number. To file, here's all you do:

1. Remove the Index Separator and the Folders from the envelope. The Folders and manila TV Jackets are already arranged in proper numerical filing order except the TV folders, which are placed last in the Set.
2. Open your binder and place the entire contents, taken from the envelope, behind the preceding Set of folders, laying aside the TV folders.
3. Now, insert the TV folders in their respective manila jackets and your filing is complete.

To locate the folder you want, refer to Instructions
 on the first page of this indox listing.
 ALWAYS REFER TO THE PHOTOFACT INDEX

RCA Victon-Comf.

 109
 Model 14 (S00).
Ch. KCS43 (Model TAIS
Ch. KCSA5, A
(See Model \qquad

 (Soe Modio! 7T103) $\ldots . . .134$
Ch. KCS470
(500 Model 7T132) . . . 143 Ch. RCSA7E (Soe
Model 16T152)......... 160
Ch. KCSA7GF.2 (See
 Ch. KCS48 (Soe
Ch. KCS48A
Ch. KCS48A
(Soep Model 7143).... 134
Ch. KCS49, A,
(Soe Model $7 T 143$).
Ch. KCS49, A, AT, T.
(Soe Model OTST)

Ch. KCS60, T
(S0e Model 9789) 122
Ch. KCS60A
(See Model 91147).... 134
Ch. KCse Model 97147).... 134
Ch. KCSK1
(See Model 47101).... 139

(Ses Model 17T150)....
Choscsis KCS66D
(Seo Modip 17T172K)...
(Soe Modip 17T172K)...
Ch. KCS68C, CB
(Soee Model 21 T176)... 137
(Soe Model 21 T176)... 137
Ch. KRK-1A
(Soe Model BPCS41)... 90
(Soe Model BRCS41).... 90
Ch. KRK1-1
(Soe Model BPCS41)... 90

Ch. (Kop Model BPCS411.... 90
Ch. KRS20A-1
(Spe Model BPCS41) ... 90

Ch. KRS21A-1
(Sse Medel 8pCS41).... 90
Ch. RC-589
(See Model 54B1)...... 7

Ch is.

Ch. RC- 60
Ch. RC- 61
Ch. RC-610
Ch $(506$ Model 610Y1).... 3
Ch RC6 MA, RC6108
(Seo Model 730TV1).

914
Ch. RC- 618, RC-618A
iSop Modal BVOO)...... 36
Chassis RC-618 B C
Chassis RC-618 Ef C
(See Model
owiol)... 73
Ch. RC-622
isoe Model
Ch. RC- $1004 E$
(See Model 55F)...... 4
Ch. R. 4011
Ch. RC. 1011 (Sile) 56 X)
Ch. RC-1017
(See Modal 35AU)......
(See Modal 55AU) 2
Ch. RC. 1017A
(See Modal 65AU)..... 14

Ch. RC. 1034
(See Model 65x1)..... 4
Ch. RC-1037. RC-1037A
Ch. IC-1037, RC-1037A
isee Model s4F1).....

Ch, RC-1038, RC-1038A
isee Mode! 66×1).....
Ch. RC-1040,
(6.1040 .

SILVERTOME-COnt.		
1300 [Ch. 319.200)		
1300-1		
1301 (Ch. 319.190)..... 91-11		
6002 (Ch. 132.818) 5-35		
6011	Ch. 132.816)	
6012 (Ch. 132.8164$). .15$-27		
6050 (Ch. 132.825-4) 15-28		
6051 (Ch. 110.4511	
60		
071	Ch. 132.826-1	
6072 (Ch. 110.454) 13		
6093 (Ch. 101.672-1A) 10-28		
$6104 \text { (Ch. } 101.662-20 \text {) }$		
$6105(\mathrm{Ch} .101 .622-2 \mathrm{~B}) \ldots \text { 7-26 }$		
6111 (Ch. 101.662 .3 C) ${ }^{\text {a }}$ (${ }^{\text {a }}$		
$6111 \mathrm{~A}(\mathrm{Ch} .101 .662 .5 \mathrm{~F})$		
6200A (Ch. 101.800-3).. 65-12		
$\begin{gathered} 6203\} \\ \{50 e \end{gathered}$	(See Model 6200A).	
101.801, 101.801-1A) . 9—30		
8230 (Ch. 101.802-1).. 11-21		
62854	(Ch. 101.666-1B)	
8290 (Ch. 101.677-8).... 20-29		
6293	(Ch. 528.6293-2)	
6295 (Ch. 528.6295		
6685 (Ch. 139.150,		
Power Shifter 15-30		
7010		
$\begin{aligned} & 7011 \\ & 7012 \end{aligned}$		
7013		
7016		
7017		
7025 (Ch. 132.807-2) 29-24		
7070 (Ch. 101.817) \ldots.... 30.36		
7080 (Ch. 101.809) 16-32		
7080, 7080A (Ch.		
	.809-2)	58-20
7085 (Ch. 101.814) 30-27		
7095 (Ch. 101.826)		
	Model 715	
7100 (Ch. 101.811) 17-29		
7102 (Ch. 101.814.-1A).(See Madel 7085)...... 30		
7103 (Ch. 110.468.1)		
[See Model 7086\} .		
7105, 7106		
711	(Ch. 434.140)	30
7115 (Ch. 101.825)		
7116 (Ch. 101.825-1A),		
7117 (Ch. 101.825-18) 16-33		
7119	(Ch. 101.825-2C)	62-18
7145 (Ch. 436.200) 23		
7148 (Ch. 431.188$)$,		
7148A (Ch. 431.188-1) 23-22		
7152	(Ch. 109.626)	25-26
7153 (Ch. 109.627) 26 26-30		
7165 (Ch. 101.823-A, 1A).		
	-823-1)	0-
7210 (Ch. 101.8201. 32-20		
7220 (Ch. 161.801-2C) (See 6220) 9		
7226 (Ch. 101.819A) 31-28		
(Soe 6230)		
	(Ch. 435.240)	45-22
7350 (Ch. 435.410) 38-22		
7351		
7352		
7353 (See Model 7350)... 38	7353 (Sea Modal 7350)... 38	
8000	(Ch. 132.838)	31-29
8003 (Ch. 132.818.1).... 53-22		
8804 (Sseo Model 8003)... 533		
8010 (Ch. 132.840) 40-21		
8021 (Ch. 132.868)..... 70-10		
8024, 8025 (Ch.		
478.206.1) 80-15		

IMPORTANT

How fo obfain Service Dała on Pre-War Models

Photo copies of schematics covering pre-war (prior to 1946) receivers can be obtained by regular PHOTOFACT subscribers at 50ϕ each (our cost). Additional data can be supplied at a nominal cost per page. When requesting pre-war data, please mention the name of the Parts Distributor who supplies you with your PHOTOFACT Folder Sets.

Stimart-WARMER-Com.	${ }_{\text {SYLVANIA }} 1.075$ (Ch. 1.139 T Tot, Roc. 92
	1.075 (Ch. 1.139 Tot. Rec. 1.070 (Ch. 1.108) Toi. Rec.
	(Atso Soon Prod. Chioe.
\%	
Toil Roc.	
Rec.	${ }^{\text {Told }}$ Toi. Rec.
	${ }^{1-128}$
	Ait
	1-197.1 (1-ch. 1-186)
	(Soos Modol 1-125.1) ...113
9203A Toi. Rec. 149	
	1.245, 1.240 (CI)
stratovox	
579-1.58A 6-32	(24.5.1. ${ }^{1-246-1}$
stromilar-Carlso	
	ISomom
	1-247-1 (ch. 1-231)
AR.37	1.250. 1-25i 1.252
A0.35130130	${ }^{2}$
${ }_{\text {col }}$, M,
Prod. Chaoe. Buili -Sat	
1031-190........... 79	amich. 1.162 .11$)$
rc-125 Tol Roc........ 95A-13	
	${ }_{\text {coll }}$
Opm, rv-iopyiiizois,	and Redio Ch. 1.6031
2022	
Photofact Somi	
Fal. Rec.	(1500 Modol 1200 m)... 124
	71M.1 (Ch. $1.502-1)$
Soes sorio 160	
116 Sarioc Yol. Rec.	(ch.
Serios itit Roe	ch. 1.5
(S500 Modol i 19 CDM) . . 130	72 m , 73b,
${ }_{\text {cosem }}$	(120M) 124
misA	${ }^{3 \times 3.2}$-2 ch.
(seom Mosoi inc icom) . . 130	718.1, 74M.1 (ch. 1.437 .11$)$
	Tol. Reci. (Soet Modol 131
cofic imi: Rec....... 1	
	738 , M, Mol
20 (S50 Model 1220	Tol. Rec. (for TV Chosih
$1100-\mathrm{H}, 11100 \cdot \mathrm{Hl}$........ 20	only, itio model sisom,
(12002),	108, $510 \mathrm{H}, 510 \mathrm{~W}$
${ }_{1101-\mathrm{HW}}^{101101-\mathrm{HY}}$	(Sheo model 1-250) 103
1101 -HPW ……....... 41-23	5118
1105 (Sarros 100 -11) 12-29	
1120 (150e Model 1220	
HW, iw, M1	
PSMM ' Sorliof 10.11 .12)', 10-31	${ }_{1210 \times 1 \text { (Ch. } 1.381)}^{\text {(Sos Modil }}$
	Toll ke.
${ }_{1200}^{1200}$ i............. 575-20	
	${ }^{11400.1}$
$1212 \mathrm{Mz-Y}, 1210 \mathrm{PG}$,	Rec. ${ }_{\text {Rec }}$
(S50iese 10.111) 37-23	
	${ }^{412004}$ (C.C. $1-2801$)....124-10
	41308, $1130 \mathrm{E}, 1130 \mathrm{~m}$,
	\$130w (ch. ${ }^{\text {a }}$
1500132-15	
1608 (..................150-12	M (ch i. 2001
kir	Re. 1 So
	(24) ${ }^{\text {a }}$ (11.... 120
supreme (Lpan)	
	Rot. (Siso Modol 124
${ }_{733}$...................: 80-19 60	
odiophono	(120mic. .. 124
$\begin{aligned} & 3-21 \\ & 17-33 \end{aligned}$	

SYLVANIA-Cont.
7110 C
(Ch. $1-366$)
$7110 \times(\mathrm{Ch} .1-366)$ Tel.
Rec. $(\mathrm{Sen}$ Model 4120M) 12
Rec. (See Model 4120M) 12
7110×8 (Ch. $1-441$)
Tol. Rec...7.
$7110 \times \mathrm{FF}$ (Ch. $1-366-66$ Toi.

 Tol. Rec. (So4
Model 5150 M$)$
$7111 \mathrm{M}(\mathrm{Ch} .1 .441)$
7111MA (Ch. IO. 360)
7111 MA (Ch. $1-36$
Tel Rec.
Mos
Med
$\underset{71208,7120 \mathrm{M} \text { (} 7120 \mathrm{~W}124}{ }$
71208, $7120 \mathrm{M}, 7120 \mathrm{~W}$
(Ch. $1-360$) Tol. Rec.
(Se0 Model 4120M).... 124
$7120 \mathrm{MF}, \mathrm{MF}$ WF (Ch.
1-366-60j Tel. Rec.

$71308,7130 \mathrm{M}, 7130 \mathrm{w}$
(Ch. 1-366) Tol. Rec.
(Soe. Model 4120 M). . . 124
(Soe Model
$7130 \mathrm{BF}, \mathrm{MF}, \mathrm{WF}$ (Ch.
lise
1.366-66) Tol. Rec.
(Soe Model 4120M).... 124
7130 E (Ch. 1.366 Tol. Rec. 124

7130 E (Ch. 1-366 Tel. Rec.
(Soe Model 4120M).... 124
7130 MPA (Ch. 1-442)
7130 MFA (Ch.
Tel Rec. (Soe
Model 5150 M).

Tel. Rec. (Ses Modet
$5130 \mathrm{~s})$
7140 MA (140wi....... 120

(Soe Model 5150M)..
7150 M (Ch. 1-357)

Ch. 1-168 (Sce
Model 1 -090).......... 99
Ch. 1.186
(See Medel $1.125-1) \ldots .113$
(See Model 1-125-1) ... 113
$\mathrm{Ch}_{1} 1.215$
(Soe Model 1-250) 103

 (See Model 5130 B) 120
Ch. 1274 (Soe.
Model 5150 M) 131

 Ch. 1.381 (500
Model
(210X) Ch. 1-387 ${ }_{\text {(Soe Model } 2221 M)}$... 137 Ch. 1.387 .1 (See
Model $22 \mathrm{M}-1)$
Ch. 1.437, 1.437 .1 154
Ch (Soe Modei 4120M)... 124 Ch. 1.442 (S50e

Ch. 1-601.1
Ch. 1.602.1
(See Model 5418).... 159
Ch. 1-603-1
Ch. 1-603-1 ..

TELECHRO		
ELECOIN		
M5T54 25		
telecraft		
30T14A-058 Tel. Rec. (Similor to Chassis) 119-3 38T12A-058 Tel. Rec. (Similar to Chassis) . . . I09-1		
$317 \mathrm{~T}_{3}$ Tel. Rec. (Simllar to Chassls) 72-4		
$318 T 4$ Tel. Rec. (SImilar to Chassis).... 85-3		
318745 Tel . Rec. (Similar to Chasilis) 85-3		
$31874-872$ Tel. Roc. (Similar to Chassis).... 85-3		
$31876 A$ Tol. Rec. (Similtar to Chassis) 8s-3		
$31876 A .950$ Tel. Rec. (SImilar to Chassis) 85-3		
318T9A-900 Tel, Rec. (Similar to Chassis) . . . 78-4		
51878 A Tel. Rec. (Similar to Chessis) Bs-3		
51819 A .918 Tel. Re		
518 TIOA-916 Tel. Rec. (Simllar to Chassis). ... 78-4		
$2318564-954$ Tol. Rec. (Similor to Chassis).... 85-3		
231879A-912 Tol. Rec. (Similor to Chassit). . . . 78-4		

westinghouse-cont.
H.312P4, H.312P4U,
H.313P4, H. 313 P 4 U,
$H .315 \mathrm{C}$
$\mathrm{H}-313 \mathrm{P} 4, \mathrm{H} .313 \mathrm{P} 4 \mathrm{U}$,
$\mathrm{H}-314 \mathrm{P} 4, \mathrm{H} .314 \mathrm{PAU}$,
H 315 P,
$H .315 \mathrm{P}$
 $\mathrm{H}-317 \mathrm{C7}$ (Ch. v-2136.1)
(Soe Modol H316C7)...112 (Soe Model H316C7) ... 112
-318T5, U
(Ch. V-2157, U)117-15
-320T5, U (Ch. V-2157, (Ch. V2 VC, V-2157,
H-320T5, U (Ch.
U) (See Model H-318T5) 117
H. $321 T 5, U, H-322 T 5, U$ (See Model H-318T5).. 117
H. $323 T 5$, U (Ch. V. $2157-2$,
U) (Soe Modol H-318T5) 117 U) (Soo Modol H-318T5)' $\mathrm{H} .324 \mathrm{TV}, \mathrm{H} .325 \mathrm{T7}, \mathrm{U}$
(Ch. V-2136.2)

$$
\begin{aligned}
& \text { H-338T5U) } \\
& \text { H-3485, H-3495 iCh. } \\
& \text { V-2156. } 1 \mathrm{U} \text {) (See Model } \\
& \text { H. } 2430511
\end{aligned}
$$

$$
\begin{aligned}
& \text { H350T7, H35117 } \\
& \text { (Ch. V-2180.1)154-14 } \\
& \text { H354C7 (Ch. V-2180-2) } 158-13 \\
& \text { H-355T5, H-356T5 } \\
& \text { (Ch. V. } 2157-5 \text {) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { \& V-2149-3) Tol. Rec.... } 1 \\
& \text { H. } 604 \mathrm{~T} 10, \mathrm{H}-604 \mathrm{THOA}(\mathrm{Ch} . \\
& \text { V-2150.99A, -94,-94A) } \\
& \text { Tol. Rec. (Supp. fo }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Tol. Rec. (SUpp, to } \\
& \text { H-609T10. Set } 95 \text {).... 99A-14 } \\
& \text { H-605T12 (Ch. } \\
& \text { V. } 2150-101 \text { Tel. Rec... } 97-19
\end{aligned}
$$

$$
\begin{gathered}
\text { H. } 605 \mathrm{~S} \\
\text { V. } 21 \\
\text { H. } 606 \mathrm{~K} \\
111,
\end{gathered}
$$

$$
\begin{aligned}
& \text { V. } 2150 \text {-101) Tel. Rec... } 97-19 \\
& \text { H. } 606 \mathrm{~K} 12 \text { (Ch. V-2150. } \\
& 111, \text { A) Tel. Rec......120-12 } \\
& \text { H- } 607 \mathrm{Ki2} \text { (Ch. V-2150. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { H- } 607 \mathrm{~K} 12 \text { (Ch. V- } 2150 . \\
& 111, \text { A) Tel. Rec. } \\
& \text { (See Model } 606 \mathrm{~K} 12 \text {) ... } 12
\end{aligned}
$$

$$
\begin{aligned}
& \text { (See Model } 606 \mathrm{~K} 12 \text {)... } 121 \\
& \text { H-608C12 (Ch. V.2152.01, } \\
& \text { V-2149-3) Tel. Rec. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { H- } 608 \mathrm{Cl} 12 \text { (Ch. V- } 2152.01, \\
& \text { V-2149-3) Jel. Rec. } \\
& \text { (Seo Model H-603Cl2). } 101
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{H}-613 \mathrm{~K} 16 \text { (Ch. V-2150- } \\
& 146 \text { Tel. Rec. } 107 \text {-12 } \\
& \mathrm{H}-614 \mathrm{~T} \text { (Ch. V.2150- }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 136) Tel. Rec. } \\
& \text { (Ses Madel H610T12).. } 105
\end{aligned}
$$

$$
\begin{aligned}
& \text { (See Madel H610T12).. } 10 \\
& \text { H-615C12 (Ch. V-2152-16) } \\
& \text { Tel. Rec. (See }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Tel. Rec. (See } \\
& \text { Model H. } 611 \mathrm{Cl})^{2} \ldots \ldots .11
\end{aligned}
$$

$$
\begin{aligned}
& \text { H-617T12 (Ch. V. } 2150 . \\
& 176, \mathrm{U}_{2} .177 \mathrm{Tel} \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 176, U. } 177 \mathrm{U} \text { Tel. } \\
& \text { Rec. Also See Prod. } \\
& \text { Chge, Bul. } 10 \text {-Set }
\end{aligned}
$$

$$
\begin{gathered}
\text { H-618T16 (Ch. V-2150.18 } \\
\text { A, C, CA) Rel. Rec. } \\
\text { (See Model H-617T12) } \\
\text { (Alse See Prod. Chge. }
\end{gathered}
$$

$$
\begin{aligned}
& \text { (Also See Prod. Chge. } \\
& \text { Bul. } 10.5 \mathrm{Set} 116.1 \text {). } 103 \\
& \text { H. } 619112, \text { U(Ch. V-2150. } \\
& 176.11 .177 \mathrm{~L} \text { tel Rec. }
\end{aligned}
$$

$$
\begin{aligned}
& H .619112, \text { U (Ch V- } 2150 \\
& 17 . \mathrm{U}, 177 \mathrm{U} \text { Tol, Rec. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 176, U, 177U) Tol. Rec. } \\
& \text { (See Model H-SI7.I12) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Bul. } 10-\mathrm{Set} 116-1) . \\
& \mathrm{H}-620 \mathrm{~K} 16(\mathrm{Ch} . \mathrm{V} 2150-
\end{aligned}
$$

$$
\begin{aligned}
& \text { H-620K16 (Ch. V-2150- } \\
& \text { 186, A, C, CA) Tol. Rec } \\
& \text { (See Model H-617T:2) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 186, A, C, CA) Tol. Re } \\
& \text { (See Model H-617Ti2) } \\
& \text { (Also See Prod. Che } \\
& \text { Bul. } 10 \text { Set } 116.1 \text {). }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (Also See Prod. Chige. } \\
& \text { Bul. } 10 \text { Set } 116.1 \text {. } \ldots 10 \\
& \text { H. } 622 \mathrm{~K} 16 \text { (Ch. V-2150. } \\
& 186, \text { A, C, CA) Tel. } \\
& \text { Rec. (S.e Model }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Rec. /See Model } \\
& \text { H-6i7II2) (Also See } \\
& \text { Prod. Chge. Bul. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { H-617112) (Also See } \\
& \text { Prod. Chge. Bul. } \\
& \text { 10-Set 116-1) } \ldots \ldots .103
\end{aligned}
$$

$$
\begin{aligned}
& \text { H-625T12 (Ch. } \\
& \text { V.2150-197) Tel. Rec. . } 114-11 \\
& \text { H-626T16 (Ch. V-2172) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { H-626T16(Ch. V-2172) } \\
& \text { Tel, Rec. } 116 \text {-13 }
\end{aligned}
$$

$$
\begin{gathered}
\text { H-627K16 (Ch. V.2171) } \\
\text { Tel. Rec. }
\end{gathered}
$$

$$
\begin{aligned}
& \text { H- } 627 \mathrm{Kl} 16 \text { (Ch. V. } 2171 \text {) } \\
& \text { Tel. Rec. } \\
& \text { (See Model H. } 626 \mathrm{~T} 16 \text {). } 116
\end{aligned}
$$

$$
\begin{aligned}
& \text { H. } 628 \mathrm{~K} 1 \text {, } \mathrm{H}-629 \mathrm{~K}-16 \text { (Ch. } \\
& \text { V. } 2171 \mathrm{~T} \text { Tel. Rec. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { H. } \mathbf{V} 2171 \text { Tel. Rec. } \\
& \text { (See Model H-62ot16). } 116
\end{aligned}
$$

$$
\begin{aligned}
& \text { (See Model H-626T16) } \\
& \text { H-630T14 (Ch. V-2176) }
\end{aligned}
$$

H-630T14 (Ch. V-2176)
Tol. Rec.
(See Model H-626T16)
H. $633 \mathrm{C} 17, \mathrm{H} .634 \mathrm{C} 17$ (Ch.

V-2173) Tel. Rec.
$\begin{aligned} & \text { H-63T17 } \\ & \text { (Ch. V-2175) }\end{aligned}$ H-636T17
JtI. Rec.
Tal. Rec.
(See Model H-626T16). 116
H-637T14 (Ch. V-2177)
H-bal. Rec.
Tee Model H-626T16). 116
(Seer Moll H. $638 \times 20(\mathrm{Ch} . \mathrm{V}-2178$)

WESTINGHOUSE-COMt. H. 639 T 17 (Ch. V. $2192, \cdot 1$)
Tel. Rec. 133_15

WESTINGHOUSE-Cant.

Ch. V. 2123 (See Model H-178).... 35	
	V-2124.1 (See Model H-169).... 37
Ch. $\mathbf{V} .2127$	
Ch. V-2128, V-2128-1	
V-2128.2	
Chassis V-2130-1	
V-2130-22DX (See Model H196A [DX]]... 84	
$\begin{aligned} & \mathrm{Ch}^{\mathrm{V}} \mathrm{~V}-2130-310 \mathrm{X} \\ & \mathrm{~V}-2130-320 \times(\text { SSe } \\ & \text { Model H196A }[\mathrm{DX}]) \ldots 8 \mathbf{8 4} \end{aligned}$	
Ch. V.2131, V-2131-1	
$\mathrm{V} .2132$	
Ch. V-2134	
Ch. V-2136 (Soe Modol	
$\mathrm{V}-2136-2$	
$334 \text { ITUR) } 149$	
Ch. V.2136-5U (See Model H-334T7U) . 142	
${ }^{\text {Ch. }}$ (See Model M-199)... 69	
```Chassis V-2137-2 (See Model H.198).... }7```	
Ch. V.2144, V-2144-1   (Sec Model H.2101	
Ch. V-2146-05 (See Model	
Ch. V.2146.11Dx (Ste	
$\mathrm{Ch}_{\mathrm{V}} \mathrm{V}$ V-2146-210x,	
(See Model H-217B) . . . 91	
Ch. V-2146-35DX   (See Madel H-217B) . . . 91	
Ch. V-2146-45 [See Model	
Ch. V-2148   (See Model H300T5). . . 88	
$\mathrm{Ch}_{\text {(Soee Model }} \mathrm{H}-216$ ) . . . . 97a	
Ch. V-2149-3   (See Model H-603C12). 100	
Ch. V. $2150-01$, V-2150.02   (See Model H-223).... 78	
Ch. V-2150-41   (See Model H.600T16). . 98	
Ch. V.2150-51 (See Madel H-231)	
Ch. V. $2150-91 \mathrm{~A}$   (See Madel H-604T10). . 99A	
Ch. V. 21 50-94 (See   Model H.604T10, A). . . 99A	
Ch. V-2150-94C (See Model H.609110)	
Ch. V-21 50-101 (Soe	
Ch. V.2150-111, A (See Model H-606K12). 120	
Ch. V- 2150.136   (See Model H-61 OT1 2). . 105	
Ch. V-2150-146 (See   Model H-613K 16 ].... . . 107	
Ch. V-2150-176, U   (Soe Model H-617T12). . 103	
Ch. V-2150-177U (5ee   Model H.817T12)..... 103	
Ch. V-2150-186, A, C, CA   (See Model H.617T12). 103	
Ch. V. 2150 -197   (See Model H-625T12). . 114	
Ch. V-2152-01 (See   Model H603Cl2) ...... 100	
Ch. V.2152.16   (See Model H.611C12). 112	
Ch. V. 2153   (See Model H303P4)... 89	
Ch. V.2153-1 (See Model   H-3I2P4)............. 98	
Ch. V-2156   (Soe Madel H-309P5). . 101	
Ch. V-2156-1U   (See Model H-342P5U). 138	
Ch. V-2157-3U (See   Model H-327T6U) .... 126	
	${ }_{\text {isee Model }}^{\text {V.2157.4U }}$


ESTINGHOUSE-Cont.	zenith-Cont.	2ENITH-Cont.
Ch. V-2157.5	G23272 (Ch. 23G24)	H723 (Ch. 7H04) ...... 122-12
( See Model H-35555). 161		H7232 (Ch. 7H042)......134-14
Ch. V.2161, V.2161U 9	(See Model G23222)... 914	H724 (Ch. 7H02) ....... 126-15
Ch. V -2171 $_{\text {Soe Model }} \mathrm{H}$-31015)... 99	G.2340, R (Ch. 23622$)$	H-72421 (Ch. 7H0221) . . 163-14
(Soo Model H-626T16). 116	2) ${ }^{\text {2 }}$ (1)......... 98	H725 (Ch. 7G012).....135-15
Ch. V 2173	$2340 \mathrm{Rz}, \mathrm{Z}$ (Ch	H88O, Revisedf
(See Model		Revised) ......... 127-14
, V -2175.1, $-3,-4,-5$	(See Model G23222)... 91A	H880RZ (Ch. 8H20)...... 114-12
(Soo Model H-639+17) . 133	221, Rz1	H-1083E (Ch. 10 H 20 )
V.217s, v.2176,	$23 \mathrm{G} 24211 \mathrm{Tel}^{\text {a }}$ Rec.	(See Model H2437E). . 120
V. 2177 (Sea	(Ch. 23G22)	H1086R, H1087R (Ch.
Model V , 626716 ) $\ldots . .116$	Rec. (See Madel	Model H2437E) ..... 120
Chiodel H -638K20) . . . ${ }^{\text {a }} 129$		H2029R, H2030E, H2030R
Ch. V-2180.1	G2350kz, 2 (Ch. 23624 )	(Ch. 20 H 20 Telt. Rec. 144
(See Model H35077)... 154	(See Model G23222)... 91A	H2041R (Ch. 20H20)
Ch. V.2180.2 H-354C7 158	G2353E (Ch. ${ }^{23 \mathrm{G} 22 \text { ) }}$	Tel. Rec
(See Model H-354C7) . 158	Tel Rec. (See Model	(See Model H2029R1. . 144
	${ }_{62322)} \ldots \ldots \ldots \ldots{ }^{\text {c }}$	H2052R. H20
V.2180.5	G2353E2 (Ch. 23624)	
(See Model H.357C10). 161	(Seeo Model G23222)... 91A	H2226E, R, H2227E
	G2353EL) (Ch. 2362421)	H2227R ' ${ }^{\text {Ch. }}$ 22H20)
		Tol. Rec. . . . . . . . . 11413
is V-2192-2, ${ }^{-4}$	G2356EZ (Ch. 23G24)	29
Ch. V-2194, V.2194A,		Rec...151-13
	ISee Model	2241R (Ch. 22H21)
Model H-642K20A) $\ldots 137$	G2420E (Ch. 24G20)   Tel. Rec. . . . . . . . . . . . 93-11	Tel. Rec. (See Model H2229R) ............ 151
Ch. V.2194.2, ${ }^{-3}$	G2420-EOX (Ch	2242E, R (Ch. 22H22)
		Tel. Rec. (See Model
is ee Model H6487201. 154	del C2420E)... 93	H2229R) $\ldots \ldots \ldots \ldots \ldots 151$
Ch. V-2201-1 See Model	G2420R (Ch. 24G20)	H2250R $/ \mathrm{Ch}$.
H.648120) ......... 154	(Soe Model (2420E) $\ldots 93$	
Ch. V-2202-2 (See Model	62420-ROX 1 C	H2252R, H2253E © Ch.
	$24 \mathrm{C20}$	22 H 2111 Tel. Rec. (Se
2203.1 (See Model	(See Model G2420E) ... 93	Model H2229R\} ..... 151
	G2437RZ. G2438RZ, z ,	H2254R (Ch. 22H22)
Ch. V-2204-1 (See Model   H. 64   154	G2439RZ (Ch. 24G26).. 91A-12	Tel. Rec. ISee
Ch. V.220¢-1 ${ }_{\text {See }}$	2441 (Ch. 24G24) Tol	H2229R) $\ldots \ldots \ldots \ldots . .151$
.60551	Rec. (See Model G2322)	2235E (Ch. 22 H 20$)$
Ch. V.2210-1 (See Model	G244iR (Ch. 24G22/24)	Tol. Rec. (See
H.653K24) ......... 160	(See Model C2322).... 98	
Chassis V-2214-1   (See Model V-2214-1)	G2441RZ, ${ }^{\text {a }}$ (Ch. 24G26)	23H22, zi Tel. Rec.....118-11
Chassis v-2216-1/ (See		2329R, RZ (Ch. 23H22,   2) Tel. Rec. (See
Models H.678K17 and H-667T17)		Model H2328E2) ..... 118
Chossis V-2217-1	$24 \mathrm{C26211} \mathrm{Tel}$. Re	H2330E, R (Ch. 23H22)
del	G2442E, R (Ch. 24G22/24)   Tel. Rec. (See Madel	Tel. Rec. (See Model
wilcox-gar	$2)$	2347R (Ch. 23 H 22 )
Witcox-gar	2 (Ch. 24G26)	Tel. Rec. (See Modid
(Also See Majestic)	Tel. Rec. (See Model G2437R2) . 914	$\begin{aligned} & \text { H2328E) } \\ & \text { H2352R R } \end{aligned}$
(Also See Recordio)	(442EZ2) RZ1 (Ch.	
06, G.402, G.403,	621)	(See Model ' 2328 E 2). 1118
G-404 Tel. Rec. (See   Majestic Model 12T2). . 108	2448R (Ch. 24G22/24)	H2437E, R, H2438R,
G. 414 Tel. Rec. (See	G2322) ........... 98	Tel. Rec.
Maiestic Model (6.414) 133	2448RZ (Ch. 24G26)	2443 R (ch. 24 H
G.426, G. 427 Tel. Rec. (See Majestic Model	Tel. Rec.   (See Model G2437RZ). . 91A	Tel. Rec. \{See Model
${ }^{1212)}$.............. 108	G2448R2I (Ch. 24G2621)	H2445R (Ch. 24 Hz 1 ) Tel
.614, G.624 Tel. Rec. See Moiestic Model	Tel Rec.	Rece (Soe Model
	62454R (Ch. 24G21)	H2437E) ........... 120
	(See Model (2420E)... 93	${ }^{1} \mathrm{H} 2447 \mathrm{R}$ (Ch. $24 \mathrm{H21)}$ ) Tel.
Maiestic Model ( - 414) 133	G. 2454 .ROX 1 Ch	R2437E) .......... 120
		H2449E ( $\mathrm{Ch} .24 \mathrm{H2O}$ ) Tel.
Tel. Rec. . .l.........101-17	(See Model (2420E)... 93	Rec. isee Model
43.1-C (Ch. Of Series) 98-15	2951, R, OX, ROX	H2437E)
Tel. Rec. . .......... 98-15	62952, R, ROX (Ch. ${ }^{\text {29G20, }}$ Ox) Tel. Rec. $95-8$	H 2868 (Ch. 20 H 20 , Rodio
(See Model 00.446 M ) . 101	2957. R(Ch. 236238	H3068R (Ch. 22 H 21 ) Te.
ot Series Tel. Rec........)	Radio Ch. 6 C201 Tel	Rec. (See Model
9 S Series Tel. Re	Rec. (See Model 62322$) 98$	H2229R) ............ 151
9w Series Tel. Rec	P958R (Ch. 23G238	H3074 (Ch. 20Н20) Tel.
		Rec. (See Model
$8030 \text { (670777) ........ 50-23 }$	G-3059R (Ch. $24 \mathrm{G} 23 / 258$	
670777 (See Model 8030150	- Radio Ch. 6G20) Tel	Set 151.13)
677012 .............. 156	Rec. (See Model G2322) 98	H3168R (Ch. 23 H 22
$\underset{\text { W-446 }{ }^{\text {WILPENChum }} \text { " . . . . 21-11 }}{ }$	Rec. (See Model G2322) 98	Rec. (See Madel H2328E
-446 'DENchum" ..... 21-11	G3157RZ, Z (Ch. 23G24.	H880R2 Sel 114)
	8G20/22] Tel. Rec..... 91A. 13	H3267, R (Ch. 24 H 20 an
[Ch 0.902		
$\begin{aligned} & \text { 1A }(\mathrm{Ch} .6 .9022 . \mathrm{J}), \mathrm{K}) \ldots 6-37 \\ & 3.2 \mathrm{~A}(\mathrm{Ch} .6 .9022 \mathrm{~K}) \ldots \end{aligned}$		
$\begin{array}{rrr} 3.2 A(C h & 6.9022 . K) & 6-37 \\ 3.3 A(C o d e \\ 7-9003-D) \end{array} \cdots \quad 6-38$	G3158RZ (Ch. $23 G 2$ $8 G 20 / 22)$ Tel. Rec	(Set 120) ond Madel H880RZ [Set 114)]
54 $\ldots$............... 22-32	(See Model G3157R2).. 91A	H3273E, H3274R (Ch.
3.6A/5 .............. 24-32	G3158RZ1 (Ch. 23G2421)	${ }^{22 H 21}$ and Radia Ch.
	Tel. Rec. $\ldots \ldots \ldots \ldots$	$1 \mathrm{HH2021}$ Tel Rec. (See
	3173 RZ , Z (Ch. 23 G 24.	Model H2229R1.....
		H3284R (Ch. 22 H 22 and
	G3174RZ (Ch. $23 \mathrm{C24}$, . ${ }^{\text {a }}$	Rec. (Soe Model
	${ }^{8620 / 221) ~ T e l . ~ R e c ~}$	H22298) ........... 151
	(See Model G3157R2).. 91A	H3467R (Ch. $24 \mathrm{H2O}$ and
${ }^{3} .61 \mathrm{~A}$ (See Model 3 -7iA) ${ }^{36}$	63296RL (22) Tel. Rec... 914 A -12, 13	
3.70 A 3.71 A $\cdots$	G3259R21 (Ch. 24 G 2621 )	Ret 437 E ) ........... 120
3.714 $\ldots$.............. 36-29	1. Rec. . . ........	H3469E (Ch. 24H20)
ZENITM	G3262Z (Ch. 24G26, 8G20/221 Tel. Rec.	Tel. Rec. (See   Model H2437E)....... 120
G500 (Ch. SG40) . . . . . . 83-16	(See Model G3259Rz). . 91A	H3475R (Ch. 24 H 20 and
G503 (Ch. 5G41) ....... 99-19	G326221 (Ch. 24G26z1)	Radio Ch. 10H20) Tel.
G510, Gsior (ch. SG02). 84-14	Tel. Rec. . $3 . \ldots \ldots$	
GS11, GS11W, GS11Y (Ch. SG01) 85-14		$\underset{\text { H2477R (Ch. } 24 \mathrm{H} 21}{\text { H2 and }} 120$
C516 (Ch. 5003) ...... 109-15	(See Model G3259Rz).. 91A	Rodio Ch. 10H20) Tel.
G615, G615w G6isy	G32762 (ch. 24626 ,	
(Ch. 6GOS) ......... 86-14   G660, G663, G665		H2437E) $\ldots . . . . . . . . .120$
G660. G663. G665   (Ch. 6G01) ........... 96-12	H-401, $G$ ( $\mathrm{Ch}, 4 \mathrm{H} 40) \ldots 156$ - is	H3478E (Ch. $24 \mathrm{H21}$ and Rodio Ch. 10H20) Tel.
	H500 ( Ch . 5H40) ...... 152-12	
	H.503, Y (Ch. $5 \mathrm{HH41)} \mathrm{\ldots}$, 151-12	
G88, G882, G883, 9884 ,	H511, H511W, H511Y   (Ch 5H01)	(Ch. ${ }^{10 \mathrm{H} 20 \mathrm{Z} \text { ) }}$
		(See Model H2229R). 151
	H615 (Ch. 6 COST, ...... 140-14 H661E, H661R (Ch.	H086, J1086R, Jlos6Rz
G23222 (Ch. 23624)	6H01) .............125-13	(Ch. 10H20Z)   (Sea Model H2229R). . 151
Tel. Rec. .......... 91A-13	H664 CCh. 6H02)........ 149-15	11087, 10872
$\begin{aligned} & \text { G-232221 (Ch. 23G24Z1) } \\ & \text { Tel. Rec. . . . } \end{aligned}$	H665, R, RZ, 2 (Ch. 6HO1)   (See Model Ho6lE) ... 12	(Ch. 10H20Z)   (See Modet H2229R).. 151



RECORD CHANGERS
(CM-1) indicates service data also available in Howard $W$. Sams 1947 Record Changer Manual. (CM-2) indicates service data available in Howard W. Sams 1948 Record Changer Manual. (CM-3) indicates service data available in Howard W. Sams 1949, 1950 Record Changer Manual.


	CRESCENT-Co		Masco	SILVERTONE
			DC37R (See Model D37R). 148	$70 \text { (Ch. 567.230, }$
	H-19 Seriet 'Stono' ' . . . 122-3			
	H-22A1 . . . . . . . . . . . . . 125-4	EKOTAPE		771 ...........(CM-1) 26-32
BRUSH SOUND MIRROR	M-2000 Series . . . . . . . 120-4	$\begin{aligned} & 101-4,5,102-4,5,103-4, \\ & 5,104-4,5 \ldots . \mathrm{CMM}^{2}, 116-12 \\ & 109,110,111,112 \ldots .152-5 \end{aligned}$	LD37, LD37R (See   Model D37R) ........ 148	$\begin{array}{r} 101.774-2,101.7744 \\ (\mathrm{CM}-3) \\ 114-10 \end{array}$
BK.401 .......... (CM-1) 42-25	M-2001 Series (See Model M-2000 Series) 120			
BK-403 .......... (CM-2) 78-3			375 ............(CM-3) 117—7	5T. GEORGE
BK-416 $\cdots \cdots \cdots(\mathrm{CM}-2) 81$ -	M-2500 Series (Soe		PENTRON   9T-3 ...................... 153-10   9T-3C Recorder ......... 162-9	
BK-437, S, 8K-439,	Model M-2000 Series) 120			1100 Series ...... (CM-1) 40-24
BK-443p . . . . . . . . . . 164-3	(See M-2000 Series). . . 120			WEBSTER-CHICAGO
BRUSH MAIL-A-VOICE	M-3001 Series (See   Model M-2000 Series). 120	INTERNATIONAL ELECTRONICS   PT3 ..............(CM-2) 88-4	RCA   MI-12875 $\qquad$ (CM-2) 85-12	
	M. 3500 Series (See   Model M-2000 Series) 120	KNIGHT$96-144,96-499 \ldots . . . . .158-6$		
CONCERTONE	1000 Series ......(CM-2)		$\begin{aligned} & \text { REELEST } \\ & \text { CIA } \ldots \ldots \ldots \ldots \ldots . . . \text {. } 123-13 \end{aligned}$	WEBSTER ELECTRIC (See Ekotape)
401 ..................135-4	1000 Series Revised (CM-3) 77-4	LEAR DYNAPORT $W C .311-D \ldots . .(C M-2) 80-8$		
	CRESTWOOD	magnecord audiad	REVERE	WIRE RECORDING CORP. ${ }_{\text {WP }}$
H-2A) Series ....(CM-3) 119-4	CP-201 .........(CM-3) 118-4	AD-18.........(CM-2) 84-7	149-	

## Mr. Jobber:

YOUR CERAMIC CONDENSER STOCKING PROBLEAS ARE NOW SOLVED WITH THE INTRODUCTION OF THIS UNIQUE ERIE RESISTOR


Complete package consists of a perforated outer sleeve and two trays each contãining 25 Ceramicons. The package will "Breakaway" along the perforated edge thus making two "half boxes," each a neat box of 25 which your larger dealers and industrial customers will find ideal for keeping their stack of Ceramicons clean and orderly.

## now is the time to "Breakaway from less efficient methods of stock KEEPING AND MERCHANDISING OF CERAMIC CONDENSERS. THIS EXCLUSIVE NEWIY designed package by erie resistor PROVIDES FOR: <br> - <br> 

* Easy stacking on shelves
* "At a glance" inventory control
* Quickly dispensing one or several polyethylene bags containing 5 ceramic condensers of the same capacity (note: Trays slide from either end of package)

Sleetromice Dicision ERIE RESISTOR CORP., ERIE, PA. LONDON, ENGLAND TORONTO, CANADA
pratirnid by the experis
Money-Saving Tips on Buying SCREWDRIVERS and NUT DRIVERS -


XCELITE "99" SET


If you need several sizes of nut drivers, Phillips and regular screwdrivers, you'll save by buying sets over individual tools. For instance, the CK-3 set gives you 6 screwdrivers and a $7 / 16^{\prime \prime}$ nut retainer handle for only $\$ 4.35$ : And the 13 -tool " 99 " set lists at $\$ 10.95$.

## XCELITE INCORPORATED

(Formerly Park Metalware Co., Inc.)
Dept. Q Orchard Park N. Y.

## Look to XCELITE

## REPLACE WITH V-M

## V-M TRI-O-MATIC 950 Record Changer

FEATURES: AUTOMATIC SET DOWN SELECTION -- All size rec ords, $7^{\prime \prime}, 10^{\prime \prime}, 12^{\prime \prime}$. No controls necessary. - POSITIVE RECORD PROTECTION - Records are LOWERED - NOT DROPPED - on spindle shelf, and flat air cushion dropped to turntable. - COMPLETELY. AUTOMATIC OPERATION on all records - $331 / 3,45$, and $78 \mathrm{rpm} ; 7^{\prime \prime}, 10^{\prime \prime}$ and $12^{\prime \prime}$. POSITIVE INTERMIX of any TEN $12^{\prime \prime}$ or $10^{\prime \prime}$ recards of the same speed. AUTOMATIC SHUTOFF All sizes, all speeds. Tone Arm returns to REST and motor shuts off. - DUAL NEEDIE - Reversible Cartridge. - COM. PLETELY JAMPROOF - SIMPLE, CENTRALIZED CONTROL • MINIMUM MOUNTING SPACE - $133 / 6^{\prime \prime}$ width $\times 117 / 8^{\prime \prime}$ depth, over-all height $7 \frac{1}{4}{ }^{\prime \prime}$
"SHOP TALK" (Continued from page 5)
REVIEW. The review this month is concerned with an explanatory article on filters with the intriguing title of:

"Filter Facts and Faddle" by James R. Langham

Radio-Electronics November 1951
Copyright 1951 by
Radcraft Publications, Inc.
Erie Avenue F to G Streets Philadelphia 32, Penn.

Subscription Price $\$ 3.00$ per year U. S. A., Possessions, and Canada

RCA, in describing their new receiver line, makes reference in their technical servicing literature to a new type of input filter in the antenna matching unit which is designed to provide extremely high attenuation to signals of all frequencies below 47 mc . Thus far, this is fairly straightforward. But then the explanation continues (with not so much as a byword) to state that the filter circuit consists of a high-pass M-derived filter with a pi intermediate section and terminating half sections. (This, believe it or not, is precisely the language employed.)

A statement of this type is at once a compliment and a challenge to the service technician. It is complimentary in that, for a change, it speaks to the service technician in engineering parlance, placing him on the same plane as the design engineer. It is a challenge because it indirectly stipulates that if the technician is to be given more information of this calibre, that he maintain and extend his technical know-how.

Descricave statements like that made by RCA make articles like "Filter Facts and Faddle" so timely and so much of interest to the alert serviceman. For it is surprising how much haziness and uncertainty exists concerning some of the fundamental concepts upon which radio and television are built. And with the direction of TV circuitry design veering more and more toward increasing complexity, now is the time to relearn fundamentals so that an understanding of the circuits to come will be based upon a firm and well constructed foundation.

Filter action in any circuit depends primarily upon the fact that


Figure 1. A Low-Pass Filter. (TType.)
the impedance of a capacitor decreases with frequency while that of an inductor increases with frequency. In combination, these two diverse actions c an be united to aid each other perform a specific task. Thus, a low pass filter combines inductances and a capacitor in the manner shown in Figure 1. The coils will offer low impedance to $D C$ and to low frequency $A C$ currents but will oppose the higher frequencies with increasing force. Whatever high-frequency signal does pass by the first inductance will find another trap existing at the shunt capacitor. As a result, high frequency signals, passing through a filter of this type, suffer a certain amount of loss or attenuation. On the other hand, DC and low frequency signals see little impedance in the inductance and a very high impedance in the capacitor. There is thus little compulsion
for them to leave the signal patn and they continue on into successive circuits. Their attenuation is relatively small.

The main classes of filters are: $\mathrm{T}, \mathrm{Pi}$, and half sections. See Figure 2. There are additional classes but for the most part they represent extended versions of these basic types. The T and Pi filters are so named because their physical structures resemble the letter $T$ or the Greek symbol $\pi$. The half sections are also known as half-tees, half-pi's, and ladders.

The simple T or Pi type filters shown in Figure 2 are useful in permitting certain frequencies to pass and in attenuating others. However, a single filter section, like a single tuned circuit in a receiver, does not possess sufficient selectivity. In other words, there is no sharp line of demarcation between the desired and undesired frequencies. To permit the desired frequencies to pass easily but to heavily attenuate all other (i. e. undesired) frequencies requires perhaps three, four, or five filter sections connected one after the other or in tandem. Usually, this is a costly procedure. However, by using a special filter which is so designed that it imposes a high


Figure 2. The Three Classes of Filters. While all Are High-Pass Filters, They Could Just as Well Have Been Low-Pass by the Interchange of Capacitor and Inductor Positions.


Figure 3. Three Classes of High-Pass Filters: T, Pi, Half Sections. LowPass Filters also Fall Into These Three Classes.


- As an experienced television dealer, you know the troubles you've had with customers in fringe areas and other difficult locations. But no longer! Alprodco Towers now offer you - for the first time ... for every time -a sure-fire antenna mounting system that will really get that picture. Keep your customers satisfied - keep those TV sales sold-with Alprodco! Write today for full details.


## Exclusive! ALPRODCO'S New Portable EREC-TOWER

Test TV signal strength anywhere with this new Alprodco rig . . . use it also to raise a 100 ft . Alprodco Tower into position! Erec-Tower rises to 80 feet, is foolproof and quickly, easily portable. Requires only two men to operate. A good traveling ad for you . . . be the first in your area with Erec-Tower.

Send for Liferature-Dept. D.

## Alprodco, Inc. <br> KEMPION INDIANA mineral wills, texas <br> dUELIN, oEÓfoía

## only \$ $\$ 750$ for this "Challenger" tube tester



In the Model 115 "Challenger" Tube Tester, the famous Jackson Dynamic ${ }^{\circledR}$ test principle is employed. Separate voltages are applied to each tube element. Tests can be made under actual use conditions.
A feature of this instrument is the high voltage power supply. It affords more accurate results because of high plate voltages-over 200 v . for some types of tubes.

Spare socket positions are provided for future use, thus avoiding obsolescence. Push-button and selector switch controls simplify operation. The 4 -inch-square meter is easy to read. The instrument gives complete short tests. It is applicable to. over 700 types of tubes including TV amplifiers and rectifiers. The built-in roll chart is frequently revised to provide data on new tubes. This service is free for one year.

Finish is attractive Challenger Green with harmonizing knobs, meter cover, and push-buttons. Size, as of all "Challenger" instruments, is $13^{\prime \prime} \times 91 / 2^{\prime \prime} \times 51 / 2^{\prime \prime}$. Weight, 11 lbs .

## JACKSON

ELECTRICAL INSTRUMENT CO
'Service Engineered' Test Equipment DAYTON 2, OHIO

In Canada:
The Canadian Marconi Co
attenuation at one frequency - say near the cut-off frequency of the single filter section - and then combining this unit with the single filter section, we can obtain essentially the same results as we would have by placing many simple filter sections in tandem.

The name of a special filter which is capable of achieving the foregoing conditions is the M-derived filter. It, too, consists of capacitors and inductances, but these are combined in somewhat different fashion than the simple filter of Figure 2. A comparison of the basic and the $M$-derived filters is shown in Figure 3 and it can be seen that the high attenuation at a specific frequency imposed by the M-derived filters, stems from the parallel and series resonant circuits which these networks contain.


Figure 4. A Comparison of the Effectiveness of Basic and M-Derived Filters.

Some appreciation of the greater effectiveness of the M-derived filter (at a specific frequency) over the single filter is shown by the curves in Figure 4. The attenuation of the simple filter rises gradually bey ond the cut-off frequency but with the M-derived filter, it skyrockets. However, as we move deeper and deeper into the cut-off range, the attenuation of the M-derived filter decreases and it is soon overshadowed by the attenuation of the simple filter.

In view of this behavior, it is common practice to combine the two to form a filter unit possessing a fairly steep and well defined line of demarcation between the pass


Figure 5. Combined M-Derived and Simple Filter Sections.
band (where the frequencies pass freely) and the stop band (where the frequencies are attenuated). Such a combined filter might appear as shown in Figure 5.

Some readers are undoubtedly wondering about the significance of the letter M. There is no particular reason why the letter $M$ was chosen (say in preference to $P, Q, R$, etc.) but $M$ itself has a value between 0 and 1 in the design equations for the M-derived filter. And as $M$ approaches 0 , the attenuation curve becomes steeper and the frequency of peak attenuation moves in closer to the cut-off frequency of the simple filter. In the design of these filters, the value of $M$ chosen is used in the calculation of the capacity and inductance values for that filter.

The combined filter unit in Figure 5, while substantially complete, still requires the addition of what are known as end sections or, as RCA states, terminating half sections. The reason for including these two half sections stems from the fact that the characteristic impedance either of the basic low pass filter or its M-derived companion varies with frequency. To achieve a uniform and maximum transfer of power over the band of frequencies which is passed, it is desirable that the impedance of the filter section remain as constant as possible. Now, it has been found that when an $M$-derived filter is designed using a value of 0.6 for M , that the characteristic impedance of this section remains fairly constant over the pass band. Another fortunate feature is the fact that splitting this $\mathrm{M}=.6$ section in two does not affect the value or the constancy of its characteristic impedance.

Thus, to achieve the desired matching of the filters shown in Figure 5 to the circuit into which it is connected, another M-derived filter (with $M=0.6$ ) is split in two, and each half section is placed at one end. The completed unit now appears as shown in Figure 6.

- Please turn to page 70 -


Figure 6. The Complete Filter, Containing Two End Sections, an M-Derived Section, and a Basic Filter.


Figure 7. The Filter Network of Figure 6 in More Compact Form.

low cost replacement speakers by Jensen. . . makers of the World's Finest Loudspeakerthe G-610 Triaxial

## - ensen

JENEEN MANUFACTURING COMPANY
division of the muter company
6601 S. Laramie avenue - chicago 38, illinois
Viking speakersmanufactured with the same engineering and production skills which go into every Jensen productare designed especially for low-cost replacement and utility applications. The Viking line includes 12 models from $31 / 2^{\prime \prime}$ to $12^{\prime \prime}$ with $4^{\prime \prime} \times 6^{\prime \prime}, 5^{\prime \prime} \times 7^{\prime \prime}$ and $6^{\prime \prime} \times 9^{\prime \prime}$ ovals, all P.M. An accessory bracket, designed especially for the Viking series, solves chassis and transformer mounting problems.

Note that the first M-derived filter section which was combined with the low pass (or high pass) filter itself can (and usually does) have values of M other than . 6 . What the actual value is will depend upon where we want the peak attenuation frequency to fall, and this, in turn, depends upon what frequency we particularly wish to get rid of most. In the article, the author wanted the filter to fit in a 500 -ohm speaker line and to attenuate a strong 10 kc whistle that his set had developed due to the interference of two received signals. In the RCA M-derived filter, rejection of frequencies below 47 mc is desired.

In the final formation of the complete filter network (containing all sections and half sections), parallel capacitances along the line are combined into single units. See Figure 7. The same sort of combination would occur if adjacent inductances were shunting the circuit. This makes for compactness in construction, although to the novice it frequently results in some confusion.

For those readers who desire specific formulas for the various filters, reference should be made to the original article.
"TV TROUBLES"
(Continued from page 23)
in Figure 7. Such interference may be caused by heater-to-cathode leakage in a video IF or video amplifier stage. A full-wave rectifier ripple voltage ( 120 cycles) would develop bar interference.

If pronounced interference of any type is present, the transmission line from the antenna can be disconnected from the receiver terminal post and the selector switch rotated through all the channel positions. If the diagonal bar interference is still present it would indicate that the trouble is in the receiver and is not being picked up externally.

There are other such symptoms which often occur to give false indications of the defects because of their deceptive characteristics which hide the true identity of the fault. Inasmuch as they are often unusual occurrences, they are beyond the ordinary experience of the technician and are sometimes difficult to localize. For this reason the television technician must always be more alert in servicing than he would have had to be in the case of radio receiver servicing. A knowledge of general circuitry and a suspicion of cause and effect will usually be of material aid.
 handsomely styled durably constructed

## BASS REFLEX

 CABINETS by
"THE DECIBEL" (Continued from page 41)

Minus (-)		Db	Plus ( + )	
Voltage	Power		Voltage	Power
Ratio	Ratio		Ratio	Ratio
1.00	1.00	0	1.00	1.00
. 8913	. 7943	1	1.122	1.259
. 7943	. 6310	2	1.259	1.585
. 7079	. 5012	3	1.413	1.995
. 6310	. 3981	4	1.585	2.512
. 5623	. 3162	5	1.778	3.162
. 5012	. 2512	6	1.995	3.981
. 4467	. 1995	7	2.239	5.012
. 3981	. 1585	8	2.512	6.310
. 3548	. 1259	9	2.818	7.943
. 3162	. 1000	10	3.162	10.00
. 2818	. 0794	11	3.548	12.59
. 2512	. 0631	12	3.981	15.85
. 2239	. 0501	13	4.467	19.95
. 1995	. 0398	14	5.012	25.12
. 1778	. 0316	15	5.623	31.62
. 1585	. 0251	16	6.310	39.81
. 1413	. 0199	17	7.079	50.12
. 1259	. 0158	18	7.943	63.10
. 1122	. 0126	19	8.913	79.43
. 1000	. 0100	20	10.000	100.00

Example of finding ratios beyond range of the above table:

1. Given 55 db
$55 \mathrm{db}-20 \mathrm{db}-20 \mathrm{db}=15 \mathrm{db}$
Voltage Ratio:
$15 \mathrm{db}=5.623 \times 10 \times 10=562.3$
Power Ratio:
$15 \mathrm{db}=31.62 \times 100 \times 100=316200$
If the number is a minus figure add +20 db successively until the sum falls within the limits of the table. Then to find the voltage ratio divide the value from the left column by 10 for each time you added 20 db , and by 100 to find power ratio.
2. Given -43 db
$-43 \mathrm{db}+20 \mathrm{db}+20 \mathrm{db}=-3 \mathrm{db}$
Voltage Ratio:
$-3 \mathrm{db}=.7079$ divided by 10 , divided by 10
$=.007079$
Power Ratio:
$-3 \mathrm{db}=.5012$ divided by 100 , divided by 100

$$
=.00005012
$$

The above table is but a portion of a complete table and is included to help illustrate the use of the decibel. More complete tables are readily available in many handbooks and various publications. The use of a table will minimize the use of mathematics and formulas; and should be quite useful in the shop.

When referring to the decibel it should be noted that no standard level has been adopted upon which to base the unit. However, a base of 6 milliwatts (.006w) as zero db is used in the majority of cases.

It can be seen by using the above tables that 3 db is one-half power, and that 6 db is one-half voltage.

Some television manufacturers use the decibel to indicate the correct positioning of the markers on the overall pattern during alignment. As an example, a manufacturer states that the sound carrier be at -26 db to -29 db . By this it is meant that the sound carrier be from .035 to .05 up the slope of the overall pattern. It is also stated that the video carrier should be placed at -6 db . Since 6 db equals one-half the voltage, this would place the video carrier at $50 \%$ on the response curve. The most frequently used values, used in alignment work, are $3 \mathrm{db}, 6 \mathrm{db}$ and 26 db . A mental memorandum of these three values, and their respective ratios, should be quite helpful in normal service work.

$$
\begin{aligned}
& 3 \mathrm{db}=.707 \text { voltage ratio } \\
& 6 \mathrm{db}=.501 \text { voltage ratio } \\
& 26 \mathrm{db}=.05 \text { voltage ratio }
\end{aligned}
$$

Thus the decibel may be frequently encountered by the service technician. The preceding discussion is intended to help in providing a better understanding of the decibel and its use.
"INTERCOM." (Continued from page 29)
communication between key points may be established. The remote unit ordinarily' consists of a permanent magnet speaker, enclosed in a suitable cabinet, and a press-to-talk switch, usually of the rotary type. This switch, having a single pole with a double throw, incorporates a spring return to keep it at the "Listen" position at all times when no pressure is being applied. Normally a terminal board is present on the rear of the cabinet to allow the connection of a cable from the master station.

The master station is composed of an audio amplifier, a selector switch, and a volume control. A press-to-talk switch and permanent magnet speaker is employed in the master station also. The press-to-talk switch in this case, is also normally a rotary type, but has a double pole with double throw,
and a spring return as in the case of the remote unit. Pole No. 1 selects the signal to be coupled to the input of the amplifier (see Figure 1) by selecting the speaker of the master station or that of the remote unit. Pole No. 2 controls the output of the amplifier, by selecting the opposite speaker to be coupled to the output. Thus if the speaker of the master station is coupled to the input, the remote unit will be coupled to the output, and if the remote unit is driving the amplifier, the master station speaker is receiving the output.

The selector switch may be of a non-shorting rotary type, or possibly a series of push buttons. These switches have very definite positions which are numbered $1,2,3,4,5,6$, etc. In the case of the rotary type, one position will normally be marked, "Silent," and one may be marked, "All." With this switch in the "Silent" position, no remote unit can be

# PREVENT CORONA 

in high voltage circuits with UHIDI


> Spray on antenna and leadin terminals, too; Krylon prevents corrosion and pitting

Krylon is an Acrylic spray-not a vinyl plastic. Spray it, right from the 12 oz . aerosol can, on the high voltage coil and insulation...in the socket of the high voltage rectifier ... on component parts of the high voltage rectifier circuit. Krylon dries in a few minutes to form a permanent protective coating of high dielectric strength.

Both inside the set and on the antenna, Krylon seals and protects... makes TV sets perform better, longer... cuts down service calls ... builds customer good will. Two types-clear (list $\$ 1.95$ ) and nonconducting aluminum (list \$2.25). Also in gallons for application by brushing or dipping. See your jobber, or write direct.

## KRYLON, Inc.

2601 North Broad St.
Dept. 253
Philadelphia 32, Pa.
heard unless the press-to-talk switch of the remote unit is depressed to the "Talk" position. The master station must have the selector switch placed to the corresponding position of that remote unit, before an answer can be conveyed to that remote unit. The "All" position is so designed that the master station may talk to all remote units simultaneously. The volume control is to control the volume or "loudness" of the system.

The audio amplifier may be of the AC-DC type, or an AC type, depending upon the power required. The input of the amplifier couples through the special transformer of the voice coil-to-grid design. This provides proper impedance match for coupling a speaker voice coil to the grid of the input tube. The rest of the amplifier is of a standard design, with the exception of the output transformer being coupled to the selector switch. Once again a terminal board is normally placed on the rear of the cabinet for the cable connections.

Systems incorporating one master station may have as many remote units as there are positions on the selector switch, or may use any part of this quantity. In the case of a two-station system, the selector switch may be completely removed. Figure 1 illustrates a typical system and the function of the selector switch.

Problems other than those encountered in servicing the equipment may arise if the technician is called upon for installation. If the directions that accompany this equipment are followed, little or no trouble should be encountered. The cables should also be selected only after an examination of the manufacturer's specifications. These cables may be of many types. Cables of one twisted pair may be used depending on the installation. In all cases twisted wires should be used. A certain amount of pickup may be introducęd into these lines either by cross modulation from adjacent pairs or from 60 cycle power lines. By the twisting of these lines, the signal that is picked up on the lines tends to be canceled. If these lines are not twisted hum is almost sure to occur. Another advantage of the twisted pair is that in many systems, lines from one or more remote units are run side by side for a certain distance. Due to capacitive coupling between these lines, "Cross Talk" may develop. Therefore each pair of lines to, each remote unit are twisted to reduce this "Cross Talk" and other disturbances to a minimum.

Some master stations are equipped with center tapped transformers which allow a balanced line to be used. The tap is grounded and ther efore each line is an equal amount above and below ground which also helps to minimize any "Cross Talk" or other interference that may be introduced into the line. This does not, however, eliminate the twisted lines. Twisted pairs should be used in every installation. Ordinary wire is not recommended for these lines, for a leakage as high as 20,000 ohms per 100 feet may prevail in humid weather. In some cases, shielded cable may be used, and when a line is run outdoors, cables with weather proof insulation should always be employed.

These cables, upon installation, may be made to terminate in a multiple contact socket. Each unit may also be equipped with a polarized plug for its


Figure 2. Intercommunication Unit Arrangements. (A) Master and Remotes. (B) All Master Units.
respective socket. In this manner a substitute unit may be readily installed in the case of unit failure, allowing more time for service requirements without the inconvenience of having stations, or the complete system, inoperative during service time.

In some installations, master stations are used entirely throughout the system. The block diagram for this system is shown in Figure 2B. By incorporating master stations exclusively it is possible for any station to call any other station or all stations as desired. With remote units, communication is between any remote unit of the system and the master station only, as shown in Figure 2A. One remote unit may not communicate with another.

As a further refinement to the multiple master system, remote units may be employed also, with hookup to any master of the system. This remote unit will be able to communicate only with the master station to which it is attached. Any combination of master stations and remote units may be used, the various hookups too numerous to cover completely. A system to cover each application and give the service desired can be accomplished. Some typical hookups are shown in Figure 2.

Since these systems are beconing more numerous and popular as a method of communication within an organization, and essential for the smooth operation of these concerns, the necessity of fast and dependable service is becoming greater. More and more calls will be had by the technician for installation and servicing of these systems. It is hoped that the above article will be helpful in the better understanding of this subject.

## AND TECHNICAL DIGEST

## INDEX TO ADVERTISERS <br> March-April 1952 Issue

Advertiser ..... Page No.
Alprodco, Inc ..... 68
American Phenolic Corporation ..... 12
Astatic Corporation, The ..... 6
Bussman Manufacturing Company ..... 34
Carter Motor Company ..... 42
Centralab (Div. Globe-Union, Inc.) ..... 24
Clarostat Manufacturing Company, Inc. ..... 84
Coyne Electrical and Television-Radio School ..... 82
DuMont Laboratories, Allen B. ..... 85
Electro Products Laboratories ..... 40
Electro-Voice, Inc ..... 16
Electrovox Company, Inc. ..... 22
Electronic Measurements Corporation ..... 38
Erie Resistor Corporation ..... 66
General Cement Manufacturing Company ..... 40
Grayburne Corporation ..... 84
Hickok Electrical Instrument Company ..... 74, 76
Hytron Radio \& Electronics Corporation ..... 14
Advertiser Page No.
Industrial Television, Inc ..... 78
Insuline Corporation of America ..... 38
International Resistance Company ..... 2nd Cover
Jackson Electrical Instrument Company ..... 68
Jensen Industries, Inc. ..... 28
Jensen Manufacturing Company ..... 70
JFD Manufacturing Company, Inc ..... 32
Kester Solder Company ..... 42
Krylon, Inc. ..... 72
Littlefuse, Inc. ..... 4th Cover
Merit Transformer Corporation ..... 20
Ohmite Manufacturing Company ..... 76
Precision Apparatus Company, Inc. ..... 30
Quam-Ni chols Company ..... 36
Radio Corporation of America ..... 18, 80 ..... 18, 80
Radio Electronics ..... 42
Radio Receptor Company, Inc ..... 38
Rauland Corporation, The ..... 26
Regency Division, I. D. E. A., Inc. ..... 8
Sams \& Company, Inc., Howard W. ..... 38, 78, 84 ..... 38, 78, 84
Sprague Products Company ..... 44 ..... 44
Standard Transformer Corporation ..... 82
Sylvania Electric Products, Inc. ..... 3rd Cover
Technical Appliance Corporation ..... 74
Triplett Electrical Instrument Company ..... 10 ..... 10
T-V Products Company ..... 42
V-M Corporation ..... 66
Ward Products Corporation ..... 86 ..... 86
Xcelite, Inc. ..... 66 ..... 66
While every precaution is taken to insure accuracy, we cannot guarantee against the possibility of an occasional change or omission in the preparation of this Index.


## "DESIGN FEATURES" (Continued from page 36)

The vertical sweep failure protection circuit is designed to load down the horizontal oscillator sufficiently to stop its operation. This stops the horizontal sweep and removes the signal from the horizontal failure protection circuit, which in turn causes picture tube cutoff.

In detail, a signal from the vertical output transformer secondary winding is applied through a .25 mfd . capacitor to a triode, V4A, connected as a diode. This diode acts as a peak voltage rectifier. Positive pulses are conducted through the diode to
ground, charging C12 to the peak voltage of the applied signal. This voltage is developed across R23, a 1 megohm diode load resistor. An integrating network, composed of R24, R25, C13 and C14, filters the signal which is then applied to the grid of a triode section of a type 6SN7GT tube, V5A. A large negative bias is formed on the grid which prevents tube conduction. Although the plate is connected across the horizontal multivibrator triode, no loading occurs since the tube is non-conducting. As soon as the sweep signal from the vertical circuit ceases, the charge on C12 rapidly bleeds off through R23. With V5A unbiased, a heavy current flows, which loads the horizontal oscillator plate circuit with about 5000 ohms, thus stopping its operation.

Figure 6. Norelco Deflection System.

## "WAVEFORM ANALYSIS" (Continued from page 17)

If it is desired, the waveform of the current through the deflection coils may be observed on an oscilloscope. This is done by inserting a small resistor ( 15 or 20 ohms ) in series with the vertical deflecting coils and applying the voltage developed across the resistor to the scope terminals.

This voltage is a true picture of the current through the coils. It would look very much like the sketch in Figure 7 and would describe the actual vertical movement of the electron beam in the picture tube.

In a future article, we shall continue discussing the applications of waveforms in other television circuits.


Figure 7. Current Wave in Vertical Deflecting Coils Showing its Relation to Movement of Electron Beam on Picture Tube Screen.


## Neem TUBE TESTER



Larger, easy-to-read meter scale and a calibrated GM circuit provide increased accuracy in testing today's newer tubes.

This handy new HicKOK portable is a sound investment in highest quality electronic test equipment-whether for the radio-TV service bench, the inspection line or the laboratory.
FEATURES . . .

- Exclusive HICKOK Tube Gas Test, Tube Noise Test and Future Tube Life Test provide for accurate electronic circuit balancing.
- Now calibrated GM circuit.
- Separate Grid Signal: 2.5 volts AC.
- HICKOK Dynamic Mutual Conductance circuits with most accurate tube evaluation directly in micromhos.
- Bias Fuse prevents accidental damage to bias potentiometer.
See the 533AP at your Jobber's today, and write for full information on the HICKOK complete 10 -model line of Dynamic Mutual Conductance Tube Testers.
the hickok electrical instrument co. 10566 Dupent Avenue Cleveland 8, Ohio
"QUICKER SERVICING" (Continued from page 27)


Figure 7. Floating Ground in an AC-DC Receiver.
plastic coating appreciably lengthens the life of the antenna.

## Phono-Jack Installation in

## AC-DC Receivers

There continues to be a demand for the installation of phonograph jacks in AC-DC radio receivers. The problem itself is relatively simple; but there are one or two associated points which merit more consideration than they frequently receive.

An AC-DC receiver ordinarily has what is known as a "floating ground." In other words, the negative sides of the filter capacitors and the cathodes of the various tubes, instead of being connected to the chassis, are returned to the power switch by leads. This lead network is called a "floating ground" or "common B-" to distinguish it from the chassis. The floating ground has been adopted as a gafety measure. Figure 6 shows what is liable to happen when the chassis of an AC-DC set is permitted to function as the ground return to the power plug. Since one side of the 110 volt line is connected to earth ground, it is possible to insert the power plug in such a way that the chassis of the set is "hot" with respect to earth ground.

Any contact (represented in Figure 6 by the dotted line with the double arrow) between earth ground and the chassis will result in a virtual short circuit of the 110 volt line. When a floating ground is employed, this is not so prone to happen since a


Figure 8. Phono-Jack; Low Side to Chassis.

PHONO JACK


Figure 9. Phono-Jack; Low Side to Floating Ground. sizeable impedance is effectively in series with the line. In Figure 7 this impedance consists of a 0.2 mfd . capacitor ( Cl ) shunted by a 220,000 ohm resistor (R1). The resistor is generally, but not always, in the circuit and the capacitor may be any value between .05 and 0.2 mfd . With this impedance in series with the power line supply, the probability of a dangerous shock is greatly reduced.

## When it is desired to install a phonograph jack

 in a receiver having a floating ground such as described in the preceding paragraph, the choice of a connecting point for the low side of the jack is important. Connecting the low side of the jack to the chassis is the most convenient procedure. This circuit is equivalent to that shown in Figure 8. From the point of view of safety, the circuit is satisfactory. However, sometimes hum appears in the output of this circuit due to voltages between chassis and floating ground. The remedy for this hum would seem to be in the circuit of Figure 9. Here the jack is insulated from the chassis and the low side is directly connected

Figure 10. Phono-Jack; Low Side Through Capacitor to Floating Ground.


COMPLETELY AUTOMATIC HIGH UNIFORM GAIN SINGLE OR DUAL INPUT FULL, 5 MC BANDWIDTH CLEARER PICTURES CONCEALED INSTALLATION


IT-75A Fully Automatic, All-(Channel IUTOBOOSTEK - $U_{p}$ to 19 db ( 9 times) pain. Separate inpurs for high and low band anrennas or single high-low antenna - May be peaked in the field for maximum performance on any channel - Installed at rear of receiver.


IT-90A Fully Automatic, All-Channel Cascode dUTOBOOSTER-Up to 30 db (30 times) gain - Exrremely low signal-to-noise Cascode input citcuit - Ideal for sub-fringe artas, community antenna systems - 2 stage amplification - Separate controls for independent gain adjusement on high and low channels (set by installer) - Automatic on-off - Hy-pass switch removes unit from line but does not alter impedance. Installed at rear of receiver.

WRRE FOR SPECIFICATION SHEETS.
AUTOGOOSTERS ARE AVALLABLE AT JOBEERS EVERY WERE ORDER


Industrial Talevision, Inc.
359 lexington avenue clifion n.
359 LeXington avenue clifion. n.J. GRegory 3.0900
to floating ground. The hum disappears very nicely with this setup, but the danger of shock is increased since the phonograph pickup is now connected directly to one side of the AC line. If the set owner should happen to insert the power plug with a polarity that made the phonograph "hot" with respect to earth ground, he might suffer a serious shock in the event he placed his body between the pickup and, say, a radiator or water pipe. For that reason, the circuit of Figure 9 is not recommended.

An alternative circuit ar rangement is shown in Figure 10. A capacitor (C2) is placed between the low side of the jack and floating ground. Some hum remains with this setup, but there is a reduction over the hum content of the Figure 8 circuit. At the same time the phonojack is isolated from the power line and the shock hazard is thereby reduced. The larger the capacitance of C2, the less hum will appear in the output. Mounting space, of course, dictates the upper limit of the capacitance which may be used. The voltage rating of the capacitor should be at least 400 volts to provide an ample safety factor. The inclusion of this capacitor does not completely eliminate the possibility of shock. A shock may occur even with an isolating capacitor in the circuit but the current flow will be harmlessly small. If the user should complain, however, a simple reversal of the power plug in the wall socket is all that is required.

The primary windings of antenna transformers are frequently isolated from floating ground in the same manner and for much the same reason as phonograph jacks. An external antenna is very liable to make contact with earth ground. Without isolation this could result in 110 volts across the low impedance primary. So either the low side of the primary connects to the chassis, which is isolated, or a capacitor is found between the primary and the common $B$ minus line. If this capacitor is sufficiently large, it may be used as the isolating capacitor for the phono-jack as well as the antenna primary.

The suggestions in the preceding section relative to the installation of phono-jacks are possibly already very familiar to many radio technicians. However, procedures and methods which have to do with safety cannot be overemphasized, especially in this accident-ridden society of ours.

## NEW! 2ND EDITION of the only complete reference on audios

## "The Recording \& Reproduction of SOUND"

by OLIVER READ


## CONTENT5:

## A Partial List of Authorifative Chapfers:

Behavior of Sound Waves; Basic Recording Methods;LateralDiscRecording;Microgroove Recording; The Decibel; Phono Reproducers; Styli ; Microphones; Loudspeakers and Enclosures; Dividing Networks and Filters; Attenuators and Mixers; Home Music Systems; P.A. Systems; Amplifiers; AM and FM Tuners - PLUS HUNDREDS OF OTHER SUBJECTS

Now you can have all the right answers to any subject in the field of Audio. Learn how to select and get the most out of recording equipment. Tells you how to select the proper amplifier for given applications, how to test amplifier performance, how to eliminate hum. Explains microphone, speaker and pickup principles and selection factors. Shows how to utilize inverse feed-back, expanders and compressors. Covers hundreds of subjects-a vast wealth of reliable information found in no other single volume. If you work in the field of Audio, this book belongs in your library. Order your copy today!
$6^{\prime \prime} \times 9^{\prime \prime}$
Hard Covers ONLY \$795 ORDER
800 pages 700 illustrations
TODAY
$i$
ORDER THIS BOOK
from your
Parts Jobber Today
Published by
HOWARD W. SAMS \& CO.
loped across R3. When the arm is moved to the bottom, maximum gain is realized from the stage. R2 is shunted with a 100 mmf . capacitor to prevent loss of high frequency components.

Another method of controlling the gain of a stage is that wherein the screen voltage is varied. The circuit for obtaining this variable voltage is very similar to that shown in circuit $C$ of Figure 4-14 except that only the screen voltage is varied. Since only the screen current flows through the control instead of the total tube current, less power need be dissipated in the control. Consequently this circuit is used more frequently than that of circuit $C$.

Regardless of the circuit used for controlling the contrast of the receiver, sufficient range should be provided so that a picture of proper contrast can be obtained. As a rule the normally operating receiver will, when receiving a good strong signal, produce a picture having excessive contrast at one extreme of the control and too little contrast, or a "washed out" picture, at the other extreme. The frequency response should remain essentially constant over the full range of the control.

## Elimination of 4.5 mc Beat

Although the video amplifier is designed to pass signals up to 4 mc , signals of a higher frequency are also amplified. If the sound IF signal is not sufficiently attenuated before it reaches the video detector, a 4.5 mc beat will be produced. This beat note will be further amplified by the video amplifier producing interference in the picture. In the case of intercarrier receivers the sound IF signal is purposely fed to the video detector so that the 4.5 mc signal is produced. In either case traps must be employed to prevent interference. Both parallel and series resonant traps are employed for this purpose. Figure 4-15 shows some of the basic circuits employed in television receivers.

Circuit A of Figure 4-15 employs a series resonant trap which shunts the video detector load.

With C1 and L3 tuned to resonance at 4.5 mc , the beat frequency is effectively shorted to ground thus preventing the beat note from passing through to the picture tube and causing interference. C1 has a value of 5 mmf . and L3 is a tunable choke having sufficient range to tune the circuit to resonance. This circuit employs the very minimum of components and enables the manufacturer to incorporate an efficient trap circuit at a minimum of cost.

Circuit $B$ also incorporates a series resonant trap similar to that of circuit A except that it is placed in the plate circuit of the video amplifier instead of the detector circuit. In addition to the low cost of this type of circuit, it has another distinct advantage in that it can be placed practically anywhere in the video amplifier circuits between the signal path and ground. In fact the distributed capacity which it adds to the circuit can be used to an advantage in balancing the input and output capacitance of the video amplifier stage. This type of series resonant trap is especially suited for use in non-intercarrier sets where it is desirable to eliminate all 4.5 mc interferance without the need of a take-off point.

The circuit at $C$ of Figure 4-15 incorporates a parallel resonant trap placed in series with the video detector circuit. When L3 is properly tuned so that it resonates with C 1 at 4.5 mc , the trap circuit presents maximum impedance at this frequency. This circuit is very frequently used in receivers having separate sound IF systems.

In circuit. D of Figure 4-15 a transformer type trap is used. The primary of the transformer is placed in the plate circuit of the video amplifier. This winding is shunted with a 47 mmf . capacitor which allows the circuit to be tuned to resonance at 4.5 mc . The secondary is also shunted by a capacitor of proper value. Since the secondary is inductively coupled to the primary, the secondary can be used as a take-off point in the intercarrier type receiver.


Figure 4-15. (A-H) 4.5 mc Trap Circuits.


Famous RCA-515S2 15" Duo-cone high-fidelity speaker

## A complete line of quality speakers from one dependable source

RCA quality-line speakers employ full-size Alnico V magnets for top efficiency and performance... yet they are popularly priced for replacement needs. You'll find a PM or field-coil type to meet virtually every requirement for home and auto radios, for television receivers, as well as for public address and high-fidelity systems.

From the miniature $2^{\prime \prime} \times 3^{\prime \prime}$ to the superb $15^{\prime \prime}$ Duo-cone-each RCA quality-line speaker is skillfully designed, fabricated from the finest materials, and produced under the most rigid quality-control methods.

RCA quality-line speakers offer you a better selling potential, because they're backed by the greatest
name in radio-a name that insures unqualified customer acceptance.

Look to RCA-and your RCA Parts Distributor -as the dependable source for all your speaker requirements.

## Get the Handy RCA Flip-Up Speaker Index

 Here are all the electrical and mechanical specifications on the complete line of RCA speakers-right at your fingertips. Get your free copy today from your RCA Parts Distributor.

Another method of employing a sound take-off with this type of trap is the use of capacitive coupling from the plate of the video amplifier. With this method a tuned choke is placed in the plate circuit of the video amplifier. With this choke tuned to resonance at 4.5 mc , maximum signal at this frequency will be developed at the plate of the video amplifier. Through the use of a very small coupling capacitor the sound IF signal can be coupled from the video amplifier to the sound IF stages. Since the value of this capacitor is so small (usually 1 to 3 mmf .) the response of the video amplifier is not affected. Actually the video amplifier is designed to allow for this added capacity. When making replacement of this coupling capacitor, the new unit should have exactly the same value or the video response may be affected.

Another point where a parallel resonant trap may be placed in the circuit is in the lead connecting to the modulated element of the picture tube as shown in E of Figure 4-15. Since the circuit L3-C3 presents maximum impedance at 4.5 mc , a minimum of this signal will be coupled to the picture tube. This circuit is oftentimes employed as the second trap. Its purpose is to eliminate any 4.5 mc beat which was allowed to pass the first trap.

Another circuit which is very effective in eliminating an unwanted signal is that incorporating degeneration. Circuit $F$ of Figure $4-15$ employs this principle. L2 and C 1 form a parallel resonant trap which is placed in the cathode circuit of the video amplifier. With these components resonating at 4.5 mc , maximum degeneration takes place in the stage which prevents passage of the undesirable signal.

Another degenerative circuit is shown in circuit G. In this case a transformer is employed to provide
a sound IF take-off point. When the primary of T1 is resonated at 4.5 mc with C 2 , minimum gain of the unwanted signal will be had in the stage due to the degeneration in the screen circuit. Since the 4.5 mc signal is developed across the primary of T1, the signal is inductively coupled to the secondary. The low side of the secondary is grounded and the high side is connected to the sound IF system. Although less power is developed in this circuit than that of circuit D, it has the advantage that no distributed capacity is added to the plate circuit of the video amplifier.

The circuit H of Figure 4-15 is unique in that it is a series resonant circuit with provisions for a sound IF take-off. Instead of having only one capacitor as was the case of circuit B, two capacitors are used. C3 is a part of the tuned circuit, therefore a part of the 4.5 mc signal will be developed across it. Thus the 4.5 mc signal can be coupled from across this capacitor and fed to the sound IF amplifiers.

Proper adjustment of the 4.5 mc traps is very important. This is especially true in the intercarrier receiver or in those sets which have a minimum of sound IF trapping in the video IF amplifier.

One of the simplest methods of adjusting these traps is that of injecting a 4.5 mc signal across the video detector load and adjusting the trap or traps for minimum output at the modulatedelement of the picture tube. When two traps are employed it is sometimes difficult to adjust the second trap since most all the signal is removed by the first trap. It is recommended that a tuning wand be inserted in the coil of the trap not being adjusted. By doing this only one trap is effectively in the circuit. This allows much more accurate adjustment of the traps.

## "DOLLAR AND SENSE" (Continued from page 43)

HUM. If hum is excessive when a variablereluctance pickup is used in place of a crystal pickup, it's most likely due to induction from the magnetic field of the drive motor, according to RCA service data. The remedy proposed is shielding the motor with a 0.02 " steel box having a nonmagnetic metal lining. This, however, raises the impedance of the motor and reduces its torque, making it necessary to raise the voltage applied to the motor.

An alternative solution is adding a $1 / 8^{\prime \prime}$ steel plate between the mechanism and the motorboard.

WIND POWER. To ease the loneliness of life on a canal or river barge when there's no electrical connection to the tugboat, some of the boys have put in auto radios operating from storage batteries that are charged by a wind-driven generator. With no ignition noise, no vibration and no tire static, it's a life of leisure for the auto radio too.

SHOCK. Though serious effects from electric shock are rare in television and radio servicing work, they can and do occur. Much more common, and still within the scope of activity of the serviceman, are
accidents in homes from contact with ordinary powerline voltage. The important thing to remember in any case is that electric shock often produces only apparent death.

Prompt application of artificial respiration is now recommended, to be continued until the patient breathes by himself or there are definite signs of rigor mortis. Trained men have carried on to success after eight hours of effort, even though conventional stethoscope tests indicated no heart beats and the pulse could not be detected. Prompt manual artificial respiration is far more important than rushing the victim to a hospital. These recommendations are abstracted from a comprehensive survey article, "Electric Shock," by Wills Maclachlan in the October 1951 issue of Electrical Engineering.

BUGS. The brown-banded cockroach has taken a liking to TV sets, according to the National Pest Control Association. Heat from the tubes keeps the roaches warm while they feast happily on the glue that holds the cabinets together. Some have got between the picture tube screen and the safety-glass window, precipitating urgent service calls by housewives. Control of the pests is difficult because squirting tubes and wires with liquid insecticides can ruin the set.

## COYNE SHOP-TESTED TECHNICAL BOOKS

Radio - Television • Electronics

Distributed by
HOWARD W. SAMS \& CO., Inc., Indianapolis 5, Ind.
APPLIED PRACTICAL


RADIO-TELEVISION
Brand new! Over 1500 pages on the latest in Radio and TV and UHF COLOR TV and UHF. 000 illustrations. Shows how to install. align, balance all Radio align, balance all Radio e test instruments for TV service . . . latest data on use iors convertors, much more. Get this 5 -Volume Library now.

No. CTB-11-Vol. 1........ $\$ 3.25$ No. CTB-12-Vol. 2........ 3.25 No. CTB-13—Vol. 3........ 3.25 No. CTB-14-Vol. 4........ 3.25 No. CTB-15—Vol. $5 \ldots \ldots .$.

5 VOLUME SET COMPLETE
No. CTB-50 $\$ 15^{00}$


CYCLOPEDIA OF TELEVISION Completa, Up-to-Date Reference Manual Fact-packed reference book that covers every phase of Television, including COLOR TV and UHF. Gives you complete understanding of how TV receivers work, how to repair and keep them operating properly. Special complete section on picture pattern servicing dozens of actual photos). 750 pages, over 450 photos, diagrams, charts, drawings, test patterns. In quick reference alphabetical order. Order your copy now.

No. CTB-1 $\qquad$ $\$ 5.95$

## practical

TELEVISION SERVICING, TROUBLE-SHOOTING MANUAL SHOWS YOU HOW TO: align; service: install, adjust and tune every part of the audio and video sections; pandle all problems. Covers sweep handle all problems. Covers sweep, amplifiers, tuners, etc. Latest data on COLOR TV and UHF! 18 big chapters, 300 illustrations (many in 4 colors)- 1500 TV facts. Complete, practical, up-to-date.

No. CTB-4
$\$ 4.25$

## ELECTRONICS

Electricians will find this book a "gold mine" of easy-to-follow "on-the-job" electronic data. Starts right at the begin-ning-explains in simple language all the basic principles of electronics. Fully illustrated with helpful photographs, diagrams. and tables. Endorsed by leading manufacturers, union officials and educators. 400 pages.
No. CTB-2
$\$ 3.75$

## MODERN RADIO INSTRUMENTS

 AND TESTING METHODSThis up-to-the-minute book tells all about modern radio and electrical testing equipment and how to use it. Packed with mon-ey-making shortcuts on trouble-shooting. servicing, construction and other jobs. Over 350 pages, 220 photos and diagrams. Covers Multipliers. Resistors, Ohmmeters, Oscilloscopes and many other subjects. At Coyne radio shops.

## No. CTB-3

 $\$ 3.25$
## RADIOMAN'S HANDEOOK



Here is a remarkable radio "answer" book. 3.000 facts packed into 350 pages give you complete instructions to speed trouble-shooting. Illustrated with hundreds of charts. diagrams. tables. circuits and short-cuts. Fully indexed.
No. CTB-5
$\$ 2.75$

## Order These COYNE Publications From Your PHOTOFACT Distributor



## FEDERAL COMMUNICATIONS COMMISSION CHANGES

Wayne Coy resigned as chairman of the F. C. C. on Friday, February 21. Although Mr. Coy had frequently expressed a desire to return to private business, his resignation at this particular time came as somewhat of a surprise. It was generally felt throughout the industry that Mr. Coy was determined to stay with the commission until the allocation freeze was lifted, and policies instituted under his leadership of the commission be proven out, one way or the other.

Commissioner Paul A. Walker succeeded to the chairmanship of the F. C. C. by presidential appointment on February 27th. Initial industry reaction has been very favorable. Not only is Mr. Walker highly regarded; additionally, his familiarity with present issues and processes in the commission would seem to mitigate against further delay in implementing the F. C. C. program to lift the freeze.

Robert T. Bartley of Texas was named to the commission vacancy. Mr. Bartley has had previous experience with the commission, serving as director of its Telegraph Division from 1934 till 1937.

## "DOLLAR AND SENSE" (Continued from page 81)

DEFINITION. "Near as I can tell," says my elderly RFD uncle, Doug Johnson, "this television is a dingus to let you see radio shows. But they haven't perfected it yet. You can still hear 'em.' --Seen in "The Man Next Door," in January Better Homes and Gardens.

AGING. Neatest idea yet for aging TV sets at the factory is the new overhead conveyor line at one Brooklyn plant. Here they put each finished chassis on a sort of platform swinging below the conveyor line, and plug the chassis into a power outlet at the top of the platform support. About a dozen such platforms have their outlets hooked together by zipcord, with the group getting power from a caterpillar-tread trolley that rides on one of the platforms and contacts a 117-volt power rail. The sets get a two-hour ride up near the ceiling of the plant, entirely out of the way. During this ride, power gets cycled off and on three times automatically just as in actual use. The conveyor line dips down to bench level at the half-way point so an inspector can see if there is still a raster on the screen. If not, the chassis gets pushed off and repaired before finishing its aging.

CUSTOMERS. A month after a technician was dismissed for being discourteous to television repair customers, he was seen in a police uniform by the shop foreman.
"I see you've joined the force, Tom," said the foreman.
"Yes," replied Tom. "This is the job I've been looking for. On this job the customer is always wrong." - - Seen in November 1951 Radio and Television Maintenance.

DXING. With a two-stack array cut for channel 6, a rotator and a booster, appliance dealer Howard McKee of Longmont, Colorado, has logged two dozen television stations even though he's over 500 miles away from the nearest station. Many came in as reflections from nearby 14,000 -foot Longs Peak, and one even came as a reflection from a black thundercloud.

Achievements like this make good publicity stories for local newspapers in areas not yet served by television, and establish the reputation of the dealer or serviceman in the television field without a penny of advertising expenditure.

CENTERING MAGNET. Some sets are coming out now with magnetic mechanical centering devices, which fit around the neck of the picture tube right behind the deflection yoke. These have rotating and tilting adjustments that make centering of the picture on the screen quite easy in sets having electrostaticfocus picture tubes. The device is a combination of circular steel washers and small permanent magnets.

PAPER MOONS. Single-turn loops punched out of foil-coated cardboard are serving as built-in television antennas. It's fascinating to see how quickly and ingeniously these are installed in cabinets at the television factories. The antennas come as square sheets in which two, three or even four concentric loops have been punched almost through the cardboard. The operator first pokes out the loops by
hand, like poking paper dolls out of a cutout book. This gives different sizes of loops but nobody worries about it.

At a punch press, connecting leads and lugs are quickly riveted to the two ends of a loop. After this, it takes only a few seconds to staple the loops to the inside of the wood cabinet with an air-actuated stapler. This handy production tool spits and drives staples as fast as the operator can pull the trigger.

A refinement with added eye-appeal is a loop with a little circle inside, presumably for high-band reception. The two paper-foil loops are in parallel; even with this, they still get three sets of loops out of each sheet. A technical extra feature on this one is a length of hookup wire about two feet long, connected to one loop terminal to oserve as a matching stub.

BREATHLESS. If you hear on phonograph records a singer who seems to keep it up for three full minutes without taking a breath, chances are that the recording was made first on magnetic tape. The singer sings till he runs out of breath, rests a bit, then backs up a few bars for a new start. The tape is then cut and spliced to eliminate overlap, giving the effect of continuous singing, then re-recorded conventionally on a record. Some people like the result.

ON ICE. Though performers on skates move in all directions at high speed during performances of the Ice-Capades, vocal numbers pour out of the speakers smoothly at constant level. Such flawless pickup would require a forest of microphones, but none are used. Instead, all vocal work is recorded beforehand on magnetic tape. During each performance the orchestra plays the live accompaniment and the skating vocalists pantomime their parts while the recording is piped to the arena amplifiers. Illnesses or accidents merely call for new faces to pantomime the songs on the tape.

TARDINESS. Dave Garroway's new 7 to 9 morning program on the NBC television network is good enough to make a lot of people late for work. Who can resist when he puts one camera down at Bolling Field in Washington to cover the takeoff of a jet interceptor, and has another at Mitchell Field on Long Island ready to pick up its arrival there just twenty-odd minutes later. Next to the Kefauver hearings, this is the best use we've personally seen for Washington-New York coax.

Another early-morning attention-getter was the camera set up to catch the starting of the moneymaking presses at the Bureau of Engraving in Washington.

When the weather's lousy, we get a lift by looking at Garroway's charts and noting that it's a lot worse somewhere else.

HALF-WAY POINT. Though textbooks and articles still laboriously describe signal-tracing procedures starting from the speaker and going step by step to the antenna, or vice versa, few indeed are the servicemen who do it that way. They head instead for the half-way point - the top terminal of the volume control - and make a finger test which isolates the trouble immediately to half the set.


Your time is money! That's why Clarostat's latest catalog gets right down to what's-what in CONTROLS and RESISTORS. Instead of lengthy sales blurb, you get better listings of more values to meet the greatest range yet for servicing and initial-equipment needs. Proved easier, faster, safer and more profitable to work with this latest Clarostat catalog.

Ask for your copy
Your Clarostat distributor has your copy waiting for you. Ask for if. Or if you prefer, write us directly.

Controls and Resistors
clarostat mfs. co., inc., dover, new hampshire
In Canada: Canadian Marconi Co.. Itd.. Toronto, Ontario


## INDISPENSABLE! Photofact books



Phot ofact Television Course. Covers TV principles, aperation and practice. 216 pages; profusely illustrated; $81 / 2$
$\times 11^{\prime \prime}$. Order TV-1. . . . . . . . . . . . . . . . . . Only $\$ 3,00$ Television Antennas. New 2nd edition. Describes oll TV ontenna types; tells how ta select, install, solve troubles. Soves time; helps you earn more. 200 pages; illustrated.

Television Tube Locarion Guide. Volume 2. Accurate dia grams show position and function of all tubes in hundreds of TV sets; helps yau diagnose trouble without removing chassis. 224 pages; pocket-size. Order TCL-2. Only $\mathbf{\$ 2 . 0 0}$
Telavision Tube Location Guide. Vol. 1. Over 200 poges of TV receiver tube position diagrams on hundreds

Making Money in TV Servicing. Tested proved methods of operating a proftable TV service business. Covers all important phoses. Authoritative, valuable guide to success.
Over 130 pages. Order MM-1. ............ Only $\$ 1.25$

Servicing TV in the Customer's Home. Shows how to diagnose trouble using capocitor probe and VTVM. Shortcut methods help save time, earn more on outside service
calls. Order TC-1 ......................... . . Only $\$ 1.50$

1949-1950 Record Chonger Manual. Vol. 3. Covers 44 madels made in 1949, including multi-speed shongers and wire and toperecorders. Original dato based on actual analysis of equipment. 286 pages; $81 / 2 \times 11^{\prime \prime}$; poper. bound. Order CM-3. . . . . . . . . . . . . . . . . . . . . Only $\$ 3.00$
1948-1949 Changer Manual. Vol 2. Covers 45 models made in 1948-49. Paper bound. Order CM-2. Only $\$ 4.95$
1947-1948 Changer Manual. Vol. 1. Covers 40 postwor models up to 1948. Order CM-1 . . . . . . . Only $\$ 3.95$
Recording \& Reproduction of Sound. A complete outhoritative treatment of all phoses of recording and amplifcotion. $6 \times 9^{\prime \prime}$. Order RR-1 . . . . . . . . . . . . . . . Only $\$ 5.00$


Audio Ampliffers. Vol. 3. Cleor, uniform, occurate data on 50 importont oudio amplifiers, plus full coverage of 22 FM and $A M$ tuners, produced during 1950. 362 . pages, $81 / 2$ $\times 11^{\prime \prime}$. Order AA-3........................... Only $\$ 3.95$
Audlo Ampliffers. Vol. 2. A complete onalysis of 104 well-known oudio omplifiers and 12 tuners made $1949-50$. $3 \delta 8$ poges, $81 / 2 \times 11^{\prime \prime}$. Order AA-2........ Only $\$ 3.95$
Audio Amplifers. Vot. 1. 102 amplifiors and FM tuners made through 1948, 352 p. Order AA-1.... Only $\$ 3.95$ Auto Radio Manual. Complete service data on more than 100 post-war outa radio models, Covers over 24 mfrs . 350 pages, $81 / 2 \times 11$. Order AR-1........ Only $\$ 4.95$ of 50 papular communications models. 246 poges, $81 / 2 \times$
$11^{\prime \prime}$. Order CR-1.......................... Only $\$ 3.00$
Radio Receiver Tube Placement Guide. Accurate diograms show where to replace each tube in 5500 radio models, covering 1938.1947 receivers. 192 poges, pocket
Oial Cord Stringing Guide. Vol, 2. Covers receivers mode . . . . . . . . . from 1947 through 1949. Shows you the one right way to string a dial cord in thousands of models. Pocket-size. Order
DC.2 . . . . . . . . . . . . . . . . . . . . . . . . . Only $\$ 1.00$

Oial Cord Guide. Vol. 1. Covers sers produced 1938 through 1946. Order DC-1................ . . Only $\$ 1.00$

[^1]HOWARD W. SAMS \& CO., INC.



Regardless of your antenna requirement, there's a WARD Antenna for you. You can always rely on any WARD antenna. Specify WARD for every antenna need . . . found at radio distributors everywhere . . . for when you demand WARD you get the best.



A recent report on "The Impact of TV Expansion," released by the Radio-Television Manufacturers Association, contains a tremendous amount of information valuable to service technicians and organizations.

This report was prepared at the direction of Dr. W. R. G. Baker, Chairman of RTMA Television Committee, by atask force consisting of: Admiral Edwin D. Foster, representing RCA, C. Wesley Michaels, representing General Electric, Keeton Arnett, representing Allen B. DuMont Laboratories, and Committee Chairman William H. Chaffee, of the Philco Corporation. It is primarily intended for the guidance of RTMA members, and, further, to assist governmental units, such as the F. C. C. and N. P. A., in calculating the effect of TV expansion on the economic, productive, and material situations. Many of the estimates included will also be of value to the service field generally, and data for those which follow has been abstracted from the report, courtesy of the RTMA.

The report contains three major sections, as follows:

1. The Development of Time Tables. These are concerned largely with the starting date and rate of construction permit grants by the F. C. C.
2. Television Station Requirements. These, of course, are basically dependent upon F. C. C. allocations for projecting further into the availability of material and manufacturing facilities for transmitters, studio equipment and buildings, and towers.
3. Potential Television Receiver Demand. Although this is largely interdependent with Sections 1 and 2, preparatory action by receiver manufacturers is certain to produce a considered minimum even if estimates under Sections 1 and 2 are too optimistic.

One of the major assumptions in the report is that the F. C. C. will act to provide television service in areas not presently served before directing its attention on improvements in television facilities for areas already served by one or more stations. These improvements, of course, would be power increases and greater antenna height.

This indicates the creation of a demand for television installation and service in areas practically untouched to date. It is true that we cannot identify the areas to be immediately affected, since it is not known where the F. C. C. will start geographically to allot construction permits. Remember, however, the estimate figures in the report indicate a probability of 22 new VHF stations on the air by the end of 1952, with an additional 100 VHF and 60 UHF stations on the air by the end of 1953. Couple these figures with probable increases in existing facilities to cover wider areas, and you have a potential market far in excess of TV service requirements at the present time.

Additionally, it is interesting to note that it is the opinion of the task force committee, which prepared the report, that there will be no serious drawback in the obtainment of materials and manufacturing facilities which would prevent completion of the fairly conservative schedule indicated above.

As a final point, consider the estimate of potential increased demand for television receivers. In the third quarter of 1952, this approximates 25,000 units, with the fourth quarter accounting for another 100,000 . The first quarter of 1953 approaches 250,000 , with the second quarter believed to be approaching the 400,000 mark. Please note that these are increases above the present existing demand.

Even if $50 \%$ of the foregoing estimates were not to be realized (which is considered unlikely short of a full-scale war), there still is going to be a tremendous demand for new television servicing facilities, and alert technicians will benefit by preparing themselves now for the activity which is sure to come.

- J. R. R.


# This Amazing SCREW DRVIVR! 

## 4 Screw Driversin1

## ... with every 100 Sylvania

## Receiving Tubes or 4 Picture Tubes

## purchased between April 1st and May 15th

It's the greatest time-saving tool you ever saw! Just slip the rightsized bit in place and a permanent Alnico magnet charges the bit...holds both your bit and screw in place for fast, easy, onehand operation.

Made of fine tool steel, this slim-shaft driver is $81 / 2$ inches long. Equipped with 2 Phillips and 2 slotted bits, ( 3 bits in handle compartment and one in shank). And the shank itself is a power driver for $1 / 4$-inch hex-head screws.
You get it FREE when you buy 4 Sylvania TV Picture Tubes or 100 Sylvania receiving tubes. But, better hurry! Offer closes May 15th. Your Sylvania Distributor is the man to see ...TODAY!


[^2]From:


Servicemen can cover $94 \%$ of fuse replacements with this kit

One-Call Kit Contains 45 TV fuses
( 6 most in demand types) and 6 TV
snap on fuse holders in a clear
plastic hinged-cover bench box.
Another LITTELFUSE first.
Call your jobber today. Lituelfuse, Inc.,
4757 Rarensurood, Chicago 40.
LOngbeach 1-4970.



[^0]:    ABOUT THE COVER: The photograph is of William J. Schneider, owner of Fairview Radio \& Television Service, Fairview Park, Ohio. Mr. Schneider writes: "My two employees and myself find that your folders are a definite requisite to expediting the service and repairs of radios and TV sets. They are indispensable in the present day trend for accurate, prompt and profitable radio and TV service."

[^1]:    Order from your Photofact Parts Jabber

[^2]:    

