Pick of the Trade

"THERE'S NO BUSINESS

LIKE OUR BUSINESS!'

AS WE GO TO PRESS there is talk of peace. There is imminent hope for an armistice in Korea. There is doubt as to the depth of, adjustment to be made by industry. There is prophecy of recessiln, some say minor, some say crippling. The majority think that late-1953 and early 1954 will see a change.

What will this do to our industry of electronics with its million peoplesemployed?

The picture of the overall economy need show little if any reflection. These factors can prevent the electronics industry adjusting down on the same curve of the overall economic adjustment.

1. Armament. Reduction in armament appropriations will affect electronics probably less than any other i ustry. Aircraft production is more and more an electronic dollar. Guided missiles are more and more an electronic dollar. Electronics more than any other art has the technological ability to make this nation the titan of the world in armamert. The electronic circuit is approaching the point of controlling all phases of warfare.
2. Amusement. Television is going ahead as fast as production will permit. Out of the laboratories will come color, for an entirely new phase which will accelerate-in public acceptance in proportion to the speed with which set prices come down. Prices come down? Watch what mechanized assembly, transistor circuits, miniaturization and simplification will do to prices of home electronic amusement devices in the near years ahead. Multiple TV-set homes? Sure
3. Industify. The electronic circuit is being accepted in industry.

The transistor, the magnetic amplifier, the quality component, the simplified and now mechanized assembly now perm of electronic controls as rugged and dependable as a lathe or a magnetic switch assembly with versatility impossible by other means.

Industry músiaccept electronics or industry will not go ahead. Industry must accept electronics because it can only increase progress by increasing efficiency. Developments in industrial electronics, both for control, and in communications will be consistent bordering on the spectacular.

Indications are that our business (electronics) will reflect less dip, if any, than the average-and it may experience no dip at all.
-W. B. Blood
Electronic Markets, April, 1953

ABOUT THE COVER: Pictured is the South Side Chicago Branch of Central Television Service. Central Television Service is the bagest independent service company in the mid-west, with five branches; north and south sides of Chicago, Oak Park, Illinois, Des Moines, Iowa and Denver, Colorado.

Organized in 1947 by its fanders. Phil Ban, General Manager, and Carl Korn, Chief Engin, of monthly service calls for all five branches exceeding 15,000 per month. The South Side Branch alone averages over 4,000 service calls per month, has its own garage s vicing i/ trucks.

Sid Reisberg, manager of this banch, (pictured at right) attributes its grow and successful operation, from the technical standpoint, to the use of skilled employees, simple but accurate record systems, dep ie service information, and the intelligent selection and io lest equipment.

Shop Talk
Milton S. Kiver5
Servicing with the ScopeC. P. Oliphant7
Replacement Technique for Horizontal Output Transformers" Glen E. Slutz 11
UHF (Circuits and Equipment for UHF Reception) Merle E. Chaney 15
A Small, High Quality Amplifier Robert B. Dunham 19
Examining Design Features Merle E. Chaney 23
UHF Operational Survey -W. W. Hensler 29
In the-Interest of Quicker Servicing 等
Glen E. Slutz 33
A Multiple Antenna Switching Device $4{ }^{4}$
Testing Selenium Reciffiers C. P. Oliphant 43
Audio Facts
Robert B. Bunham 45
Dollars and Sense Servici.ig John Markus 47
Photofact Cumur ye Index No. 39 Covlring Photofact Sets Nos. 212 Inclusive 49
Autronic Eye C.-P. Oliphant 108
A Stock Guide for TV Tubes 123
+More or Less - 126

HOWARD W. SAMS, Publisher

COPYRIGHT 1953 - Howard W. Sams \& Co., Inc.
2201 East 46 th Street - Indianapolis 5, Indiana
No patent liability is assumed with respect to the use of information contained herein.
The PF (PHOTOFACT) INDEX and Technical Digest is published every other month by Howard W. Sams \& Co., Inc. at 2201 East 46 th Street, Indianapolis 5, Indiana--and is included as a part of PHOTOFACT folders from PHOTOFACT Distributors without additional cost.
SUBSCRIPTION FATA: For those desiring the convenience of delivery to their homes or shops, Howard W. Sams \& Co., inc. will mail each issue of the INDEX direct, promptly upon publicatikn. The subscription charge is $\$ 2.00$ for eight issues in the United States and U. S. pc sessions. Acceptance un/ier Section 34.64 P. L. \& R. authorized at \ln diailepalis indiana.

COLOR TELEVISION. For some months now there have been very definite and persistent rumblings in the television industry concerning color television. At the recent I.R.E. convention held in New York City, no less than 10 papers were devoted to this subject. There is hardly a month that passes that some technical magazine does not carry an article on some aspect of color television. And those of us who are acquainted with the manufacturing end of this business know that considerable research is being devoted to color.

The question then is not "Will we have Color Television?' ', but rather, "How Soon?" The concensus of opinion seems to lean toward 18 months although one hears predictions of color sets this year while others feel that 4 to 5 years is the best we can hope for. Be that as it may, more and more will be heard of color television as time goes on and it behooves the serviceman to at least possess a reading familiar ity with the more common color terms.

The situation as it exists today is this: There is one system, the CBS field sequential system, which has been officially approved for color broadcasting. However, because of its incompatibility with existing receivers, no major set manufacturer (aside from CBS) has been willing to go ahead with it. Instead, the industry, through the National Television System Committee (or NTSC), has been concentrating on a compatible system which is an outgrowth of a system originated by RCA. Its name, appropriately enough, is the NTSC color television system. Field testing of this system is now in progress and when sufficient data has been accumulated, petition will be made to the F.C.C. for official approval. The latter step is expected shortly.

In the meantime, the service technician need not stand still. For aside from the $w \epsilon^{\text {b } k t e r ~ o f ~ s t r a n g e ~}$ circuits that he wild eventually have to face, there is also a number of new concepts which he will have to
master first. So why not put the present formative period to good use learning these new ideas and becoming fully familiar with them?

Perhaps the best place to start is with the well-known black and white television system now in use. This is called a Monochrome system because it deals with one color. The television signal occupies a bandwidth of 6 megacycles (approx.) and this is all we need to form a highquality picture.

Now, it might be felt that since we must have 6 mc to transmit a picture in one color, that we would require three times as much, or 18 mc , to broadcast a picture in three colors. The latter figure is chosen because colored images are producedthrough a combination of three primary colors (i.e., red, green, and blue). Actually, the first system which RCA presented before the F.C.C.required an overall bandwidth of 14.5 mc instead of 18 mc .* See Figure 1. The reduction in bandwidth was achieved by taking advantage of the fact that the human eye can resolve considerably less detail in a blue image than it can in a green or red image. The inclusion of detail beyond that required by the observer is obviously a waste of valuable frequency space. Hence, the blue portion of the color video signal had its sideband reduced to approximately 1.3 mc .

A further reduction in signal bandwidth was made possible by the application of the so-called " mixedhighs" principle. This principle is
based on the physiological fact that the eye is not sensitive to color in fine detail. Thus, if you present a picture in which the large areas are in color and the fine detail is in black and white, your eye will șee a complete color picture.

The first application of the " mixed-highs" principle to a color television system is shown in Figure 2. Each of the video color channels receives its signals from an appropriate color camera. However, the high video frequencies of each of the color chains are separated from the rest of their signals, combined with each other, and then transmitted over the green channel. The high video signals are those possessing frequencies above 2 mc . Frequencies from zero to 2 mc are considered as containing the larger detail of the image. The red and blue channels, devoid of the higher video currents, transmit only the low frequencies on narrow sidebands. The green carrier still maintained a full sideband, 3 mc , containing the green lows and the three mixed-high video frequencies.

At the receiver, the lows of each channel are received separa-
*It is possible that an 18 mc color system was initially planned by RCA. However, it probably never progressed very far and is important only from a historical point of view.

Figure 1. The first electronic color television presented by R C A required a bandwidth of 14.5 mc .

rea Voliohmysts*

outsell all other VTVM'S

RCA WV-97A SENIOR Volrohmyst $\$ 6750$ Sugosted

> RCA WV-87A MASTER VohOhmys $\$ 1 \mathbf{1 5 0}$ Suggested User Price

Because they're factory-calibrated under laboratory conditions... incorporate more features . . . have unusual accuracy and stability . . . in short, offer you more for your money-RCA VoltOhmysts outsell all other makes of vacuum-tube voltmeters.
All RCA VoltOhmysts employ a degenerative bridge circuit to compensate for line-voltage changes . . . a sturdy 200 microampere meter movement electronically protected against burn-out...large,
easy-to-read scales . . metal shielding against external fields ... and have an input resistance of 11 megohms on all dc ranges.
Before you buy a vacaum-tube voltmeter, be sure to get the full details on the RCA VoltOhmyst best suited to your needs. See your RCA Test Equipment Distributor today... or write RCA, Commercial Engineering, Section 67GX, Harrison, N. J. * Tmk ®

RADIO CORPORATION OF AMERICA

Several Practical Procedures for Using the Scope to Enable Speedy, Efficient Radio Servicing.

The oscilloscope is a versatile testing unit that is widely used in the process of television servicing. The scope provides a means of visually checking the operation of the television circuit. When used systematically, it is considered to provide the most rapid method of localizing the component which is causing the difficulty. Other than being used for trouble shooting a television circuit, it is also used during the process of aligning receivers.

The above statement does not mean that the scope can be used in television servicing only. In fact, it can be employed in all phases of electronics. However, it is not employed very extensively in trouble shooting a radio circuit. Just as in the case of the television circuit, the scope could be put to great advantage in radio servicing.

Before the advent of television, the scope was not normally purchased for use in a service shop as a.major tool for radio servicing. It was considered too costly an item for this use. The signal tracer was believed to be more advantageous for this type of work, with results of providing a good means of tracing the signal. However, with the service shop now set up for television servicing, it normally is equipped with a scope which can be used to provide an alternate means of signal tracing. For this reason it is believed that it would be helpful in time saved to the serviceman if the scope were employed for radio servicing also. It seems since the scope is in use so much during television servicing it would be wise to keep on using it whenever a radio receiver needed trouble shooting.

Other than providing a means of visual alignment of the receiver, the scope could very easily be used for the following during radio servicing.

1. Signal tracing.

2. Checking the overall performance of the receiver.
3. Checking for overloading and distortion and finding the cause of these conditions.
4. Discovering and finding the source of ham, oscillations, regeneration, and noise.

A method of trouble shooting a radiocircuit, which is straightfor ward and requires very little time, is presented in the following discussion. Since the use of the scope is incorporated in this procedure, it could be referred to as the visual means of trouble shooting a radio circuit as compared to the audio method. This method provides a means of visually checking the operation of each stage of the receiver.

The necessary test equipment to be used is a scope, and a signal generator to provide a modulated RF signal.

Starting with the assumption that the set to be checked is a weak or dead receiver, the recommended procedure is as follows:

The normal starting point in checking a receiver is the audio stage. It is felt that the conventional method of checking this section is a fast and sure way, that being the finger or screwdriver touch system. By point-to-point probing through the audio section an audible click or hum is heard in the speaker if this section is functioning. If the note is not heard, then a quick voltage or resistive check would soon detect the trouble.

With the audio section known to be all right, the scope can be used now as the means of tracing the signal. First, adjust the signal generator for a modulated 1000 kilocycle output. The RF Amplitude should be set at maximum gain. Loop-couple the output of the gene-
rator to the input of the receiver. Connect the ground terminal of the scope to ground or the B minus point of the receiver. Touch the vertical output probe of the scope to the plate of the IF tube. This is test point 1 as shown on the schematic of Figure 1. Tune the receiver through the mid-range and note whether a modulated pattern appears on the scope as is shown in Figure 2. Instead of tuning the receiver to tune in the generator signal, the receiver could be set at approximately midrange and the frequency dial of the generator may be rocked back and forth until the correct conditions are met. If the signal is received at this point the trouble lies behind this test point, that is between test point 1 and the input of the audio stage.

If no signal, or a very weak signal, is seen on the scope at this point, the trouble lies in the IF stage or preceding stage or stages. If this is the case, move the scope probe to the plate of the converter stage (Test Point 2). Tune the receiver across mid-range or rock the frequency dial of the generator for an indication of the signal on the scope. If the signal appears at this point and was not present at the plate of the IF tube, move the scope probe to the grid of the IF stage (Test Point 3). If no signal appears at this point, the trouble is between test points 2 and 3 . However, if the signal is present, check for bad IF tube or improper tube voltages.

If there was no signal at the converter plate, touch scope probe to the oscillator grid (Test Point 4) for a check to see if the oscillator is operating properly. An identifying pattern should appear on the scope as shown in Figure 3, which is an unmodulated carrier. This indicates that the oscillator stage is in operation. If the oscillator is functioning, move the scope probe to the conver ter signal grid. If the signal is present, check for bad converter tube or improper tube voltages. If signal is not present at test point 5 , the trouble then lies ahead of this point.

ANOTHER GREAT JFDFIRST

NEW JFD "GOLD SHIELD" UHF ANTENNAS ARE GUARANTEED AGAINST RUST FOR ONE FULL YEAR

Don't let antenna rust "eat away" your UHF prof ts with costly call backs. Only the spectacular new JFD "Gcld Shield" UHF antennas are protected against rust and the serious damage rust causes to UHF pictures. JFD Bronzidite . . . the miracle anti-rust Army-Navy-Aercnautical "spec"
plating . . . safeguards your antenna installation and your reputation. Every nut, screw, bolt, washer and bracket is "Bronzidite" plated. Depend on the new JFD "Gold Shield" UHF antennas . . . your guaranteed line to surer profits. See them at your Jobber or write for brochure "218.

$$
\begin{array}{|llllllllll|}
\hline \text { B } & \text { R } & \text { O } & \text { N } & \text { Z } & \text { I } & \text { D } & \text { I } & \text { T } & \text { E } \\
\hline
\end{array}
$$

Figure 1. Circuit of a Typical AC-DC Receiver, Showing Test Points Discussed in Text.

This narrows the trouble down to the inputcircuit or to the RF stage if one is used. A resistance or voltage check of the input circuit should reveal the difficulty.

For a quick reference of the preceding discussion refer to Chart 1. When the scope probe is at a certain test point, the chart points out what steps should be taken under the conditions of no signal or signal present.

The scope used in the above discussion was of the wide band, high sensitivity type, which is normally used for television servicing. The vertical input lead of the scope was a normal, shielded lead. A properly shielded lead should be used sothat hum will not be picked up and give a false indication. If the signal is weak in the receiver, a high impedance probe should be used so that the scope loads the receiver as little as possible.

	NO SIGNAL	SIGNAL PRESENT
Test Point 1.	Trouble in Preceding Stages Move to Test Point 2.	Trouble Behind - Check Circuit after this point. (See Figure 2 for Scope Pattern).
Test Point 2.	Trouble in Preceding Stages Move to Test Point 4.	Move to Test Point 3.
Test Point 3.	Check Circuit Between Points 2 and 3.	Check for bad IF Tube or Improper Tube Voltages.
Test Point 4.	Check Oscillator Section.	Move to Te st Point 5. (See Figure 3 for Scope Pattern).
Test Point 5. Check Preceding Parts or	Check for Bad Converter Stages.	Tube or Improper Tube Voltages.

If a wide band, high sensitivity scope is not available, a narrow band scope can be used. With this type of scope, however, a demodulator probe must be used if the IF and RF portions of the receiver are to be signal traced. The scope pattern will be in the form of a sine wave rather than a modulated carrier as obtained without the demodulator probe. It is interesting to note that the demodulator probe can be used in signal tracing any portion of the receiver, including the audio stage. This eliminates the need of connecting and disconnecting the demodulator probe in any signal tracing procedure.

When using a medium or low sensitivity scope, it may be impossible to obtain an indication at the grid of the converter or RF amplifier. This deficiency is not too serious., however, since the output of the signal generator can be coupled to the grid of the first stage, thus bypassing the input circuit. If this is necessary to obtain a signal, the trouble must lie in the input circuit. It must be remembered that when signal tracing the early stages of the receiver, the output of the signal generator must be kept at maxi mum setting in order to obtain a useable pattern on the scope.

UHF or

there is an ampHinom

antenna for every area

Whatever the location, whatever the problems presented by different areas, the expanded line of AMPHENOL antennas will provide top reception.

for VHF. For over four years the dependable INLINE has provided top viewing satisfaction to its users. With excellent gain and directional response, the INLINE is also available in a Stacked Array for additional gain in fringe areas and in a Piggy Back for multi-directional reception.
for UHF. Keeping pace with this expanding new market are a full line of Amphenol. UHF antennas.
BO-TY and Reflector. With its rejection of unwanted signals off the back and sides, the BO-TY is excellent for major signal areas. Where additional gain is desired in fringe areas, two BO-TYs can be easily stacked.
CORNER REFLECTOR. The high ascending and strong forward radiation pattern of the new CORNER REFLECTOR make this Amphenol antenna ideal for fringe areas. Of exceptionally sturdy construction, the CORNER REFLECTOR also has the advantage of being mounted in front of the mast to insure no signal interference from the mast
or accessories.
rhombic. Another Amphenol antenna built to give the high gain needed for UHF in outlying districts. It also features rejection of ground reflections, an important consideration in UHF.
YAGI. There are 11 custom models of the YAGI for top reception
across the entire UHF band. Each feature extremely high gain across the entire UHF band. Each features extremely high gain on its assigned channels as well as a strong forward radiation pattern.

The above listing should make the choosing of the right antenna an easy task. For UHF or VHF, Amphenol antennas assure top reception.

AMERICAN PHENOLIC CORPORATION
Chicago 50, Illinois
CuPHINOD

REPLACEMENT TECHNIQUE-for

by Glen E. Slutz

Most service technicians will agree with this statement about tele vision repair: a maximum of know how and a good deal of patience are required in the task of replacing a horizontal output transformer and getting the set to function properly afterwards. The problem presents itself too frequently to pass it by, as evidenced by the number of ques tions which are being asked by service technicians everywhere concerning the subject. Therefore, if this report, based as it is on actual exper ience, contributes some worth while information on replacement technique, it will have served its purpose.

Horizontal out put transformers in those television receivers which employ the flyback principle of high voltage generation are somewhat more complex than most other components. There are instances of replacements where upwards to fourteen distinct connections need to be made to the transformer itself. The physical aspects of positioning the unit and mounting it within the high voltage cage are considerations which must be carefully observed. Moreover, the presence of high voltage in the area calls for adherence to proper insulating practice in order to avoid arc-over or corona effects. Then, too, the electrical interdependency between the transformer and several other components, some of which are adjustable, limits severely the range of conditions under which the transformer will give satisfactory service.

Assuming that a horizontal output transformer is known to be defective, the first decision to be made is the choice of a suitable replacement unit. Here Photofact folders come to the aid of the technician, providing him with the manufacturer's part number of the exact replacement unit together with catalogue numbers of applicable transformers from the lines of various parts manufacturers. The latter units may be exact replacements for the defective transformer or they may be of the universal type designed for abroader field of use.

An exact replacement may be defined as one which corresponds physically and electrically with the original factory part as it was when new. Naturally the exact replacement is preferredusually over a universal transformer and is used when available. However, frequent occasions arise where the manufacturer's part is difficult or impossible to obtain, and in these instances a recommended, universal type is selected. Another well-founded advantage of choosing a universal transformer is that it obviates the necessity of stocking a large number of exact replacements. This is a point which appeals to inventory-wise shop managers.

Chart 1 is a list of universal horizontal output transformers with isolated secondaries made by five manufacturers of replacement parts. These units, although they differ in some respects with one another, are

CHART 1

Universal - Type Horizontal Output Transformers Having Isolated Secondaries.

Manufacturer	Transformer Part No.
Chicago	TFB-5
Merit	HVO-7 HVO-X7* HVO-10\#
RCA	231T1
Stancor	A-8130
Triad	D-14

* HVO-X7 differs from îvo-7 in having improved insulation.
\# HVO-10 differs from HVO-7 in being adapted to low-inductance width coils.
horizontal output transformers

Contralab Controlsalways within reach ...always right!

These handy Blue Shaft Kits help take "parts hunting" out of repair service

IF you're like thousands of other busy Service Engineers, you can't afford to sacfifice profit time - hunting for repair parts. The smart, sure way to faster service is to have your Centralab controls on hand when you need 'em - in these handy Blue Shaft Control Kits. Assortments contain values you use every day, in plain or switch types. Switches are factory attached and tested for immediate installation Included are exacl service replacements for popular radio and TV sets
Three kit deals are available: B-A Kit contains 22 controls (8 types) in $1 / 2$ and 1 megohm. All units C 2 (audio) taper. Newest, revised Kit B-B has 22 controls (15 different types), plus 4 "Fastatch"* type KB line switches. Ten handy Plasti-Pak Kits of 12 controls each also save time. You pay for parts only - no charge for containers.

You can count on your Centralab Distributor for exact Blue Shaft replacements to keep kits well stocked. So see him soon - he'll be glad to supply the kits you need.

Centralab

A Division of Globe-Union Inc.

942 E. Keefe Avenue - Milwaukee 1, Wisconsin
In Canada, 635 Queen Street East, Toronto, Ontario

FAST MOVERS... NO "SLEEPERS"

Kit Deal B-A - 22 controls. $1 / 2$ meg and 1 meg. B types have standard $3^{\prime \prime}$ shafts. full-iength fluted mill. BSK types have $21 / \mathrm{s}^{\prime \prime}$ split-knurl shafts. In

	PLA	TYPE			SWIT	TYPE	
3	B. 60	$1 / 2 \mathrm{meg}$.	C2	5	B-60-5	$1 / 2$ meg.	C2
2	B. 70	1 meg.	C2	3	B.70-5	1 meg.	C2
2	BSK-60	$1 / 2$ meg.	C2	3	BSK-60-S	$1 / 2$ meg.	C2
2	BSK. 70	1 meg.	C2	2	BSK-70-S	1 meg .	C2

Plus one metal cabine
Kit Deal B-B (Revised) - 22 controls and 4 "'Fastatch", switches
All hove stondord $3^{\prime \prime}$ shafts, full-length fluted mill. In hondy metal cabinet.

	PLAIN TYPE			$\begin{aligned} & 2 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { B. } 83 \\ & \text { B. } 84 \\ & \text { B. } 87 \end{aligned}$	2.5 megs. 3 megs. 5 megs.	$\begin{array}{cl} \mathrm{Cl} \\ \mathrm{Cl} \end{array}$			
1	B. 5	1,000	Cl							
1	B. 10	5,000	Cl						ASTA	
1	B-26	25,000	Cl		SWITC	CH TYPE			WITC	
2	B-31	50,000	C1	3	B. 60.5	$1 / 2 \mathrm{meg}$.	Cl	2	KB-1	SPST
2	B-40	100,000	Cl	1	BSK-60-S	$51 / 2$ meg.	C2	1	KB-2	DPST
1	B-59	500,000	C1	2	B-70.S	1 meg.	C2	1	KB. 3	SPDT
2	B. 69	1 meg .	C1	1	BT.80-S	2 megs.				
1	B-75	2 megs.	Cl		T.600K	2 megs.	Cl 3			

Plus one metal cabinet

Handy Plasti-Paks - 12 controls. 10 individual kits, also B type. Ploin and switch type. C2 (oudio) toper. Split-knurl shafts. In useful plastic cantainers.

Figure 1. View of Original Horizontal Output Transformer Before Replacement (6BG6G and 1B3GT Tubes Removed for Photograph).
similar in basic construction and in application. The factual report which follows is an account of an actual replacement performed by a technician who was obliged to use one of these universal type transformers.

The Replacement Procedure -

The television receiver which needed the transformer replacement employed a 20 inch picture tube. A Stancor A-8130 transformer was selected as the replacement unit. (This unit is representative of the types shown in Chart 1. Any one of the others in the chart could have been used.)

Figure 1 is a picture showing the high voltage compartment of the receiver before the replacement was performed, and Figure 2 is a partial schematic of that portion of the receiver circuit involved in the change. The markings in script writing on the schematic are notations which were made from time to time by the technician during the course of the work. The X's indicate the breaks which were made in the circuit, and the colors identify the loose wires. (Identification of

* * Please turn to page 90 * *

Figure 2. Partial Schematic of Horizontal Output Section of the Television Receiver Before Replacement.

A PF INDEX (

 A description of circuits and equipment

 A description of circuits and equipment for Ulira High Frequency reception.

 for Ulira High Frequency reception.} COVERAGE

by MERLE E. CHANEY

RME UHF CONVERTERS

The RME Model 200 UHF Converter is designedfor use with television receivers having tuning provisions to cover the VHF band from channels 2 through 13. The converter output is established at either the frequencies of channel 5 or 6 and therefore may be accepted by the tuner of a receiver whenturned to these channels.

On the front of the cabinet are the selector switch and the tuning control. (Figure 1). Channel indication is provided by a slide rule type dial graduated with channel numbers. between 14 and 83.

Employing but two tubes for its operation (a 6T4 or 6AF4 oscillator and a 6BC5 IF amplifier) rectification is obtained using a selenium rectifier. Figures 2 and 3 are top and bottom views respectively of the converter chassis with the tuner shields removed.

Other features of this unit are the AC receptacle on the rear of the chassis for providing AC power to the television receiver and an interesting tuning system. An explanation of the tuning system should aid in forming a clearer idea of the working of this unit.

Figure 1. RME UHF Converter Model 200.

The tuner proper is completely incased in a copper-plated metal box, chassis, or énclosure. Under normal circumstances the tuning unit should not be disassembled. This reduces the possibility of accidentally damaging the components or altering the lead dress. There are however two inspection plates allowing access to the crystal mixer (Type 1N72, 1N82, or CK710) and to the components associated with the oscillator circuit.

The heart of the RME tuner lies in the tuning assembly which is shown in Figure 4. Parallel resonant lines are employed as the
tuning elements for the preselector and oscillator. These lines are formed by a plating process on a plastic base. Between the two pair of lines is a narrow strip of plated metal which is grounded and provides shielding between the two circuits. The plastic base, containing the parallel resonant lines, is supported in the tuning enclosure approximately one-half inch from the metallic sides.

Tuning of these lines is performed by two shorting bars which slide over the surface of the lines to either shorten or lengthen them. The shorting bars are attached to an insulated plate which inturn is mounted on a threaded tuning shaft. As the shaft is rotated the shorting bars either shorten or lengthen the effective length of the lines.

Tuning indication is achievedby a dial cord attached to the shorting bar strips and extended through the tuner chassis to the dial pointer. The dial pointer is maintained at the desired position through the use of a coil spring which takes up slack in the dial cord assuring a positive tuning indication.

The functioning of this converter unit may be seen by observing the schematic, Figure 5. L1 forms the preselector parallel resonant line-

Figure 2. Top Chassis View of RME Converter.

Figure 3. Botfom Chassis View of RME Converter.

BISS FUSES $S_{S_{\text {ell Easier- }}}$

STAY SOLD...

Yes, BUSS fuses sell easier because they are better known. You never have to spend valuable time selling the BUSS brand - your customers know the name BUSS because it has been the accepted standard of unquestioned quality in fuses for more than 37 years. Fuses for industrial, commercial, farm, automotive and home use.

And, BUSS fuses stay sold... because every BUSS fuse is of uniformly high quality . . .every fuse is electronically tested....every fuse is checked for physical dimensions. That's why there are no "kicks" or "comebacks" with BUSS fuses.

These important safeguards build customer goodwill and confidence in your company.

Bulletin SFB gives complete focts on BUSS SMALL DIMENSION FUSES
If you'd like a copy, just write...

BUSSMANN MFG. CO. University at Jefferson Sr. LOUIS 7, MO. (Division McGraw Electric Co.)

Figure 4. Tuning Unit Used in RME Converter Showing Parallel Tuned Lines \& Shorting Bars.
with an accompanying shorting bar. The oscillator resonant line is made up of L2 and the shorting bar. The two shorting bars are ganged to effect a constant tracking of the preselector and oscillator tuned circuits. The oscillator frequency is established from 76 to 88 megacycles above that of an incoming signal. Beating the two frequencies at the crystal mixer yields the desired intermediate
frequency signal represented by channel 5 or 6.

A pentode tube, type 6BC5, functions in the amplifier stage. This stage of amplification provides a signal gain to compensate for losses in the mixer and RF circuits. Transformer coupling the output of the IF amplifier to the selector switch and then to the terminal strips provides a 300 ohm balanced output.

On the schematic, it is observed that the function switch is shown in "OFF" position. This setting of the switch grounds the VHF antenna lead and turns power off to tr"e converter and to the TV receiver puwer receptacle.

In position 2 or VHF position, the VHF antenna lead is ungrounded and connected through the switch to the output terminal strip. At the same time, power is applied to the TV power receptacle and to the converter filaments. This position allows the television receiver to operate in the usual manner for VHF reception.

UHF position, position 3, again grounds the VHF antenna, connects the converter output to the output terminals, and applies $B+$ to the converter tubes. With the TV receiver set to receive channel 5 or 6 signals, depending upon which channel is not used in the area, the converter output is accepted by the tuner of the receiver and treated in the same manner as VHF signals. The converter tuning control is adjusted to receive best picture and sound from an available UHF signal. In some

Figure 5. Schematic of RME Converter Model 200.

A NEW CBS-HYTRON CTS-RATED* TUBE

"CTS-RATED: Rated for Continuous Television Service. In TV receivers, five tubes work . . . like transmitting tubes . . . hard! Account for almost 90% of your replacements. You know them: rectifiers, deflection amplifiers, damper diode. Larger-screen sets aggravate this problem. CBS-Hytron recognizes your need for huskier tubes for these sockets. Brand new designs, not just improved tubes. CTS-Rated 5AW4 . . . another CBS-Hytron first . . . is your answer for the low-voltage rectifier socket. It is CTS-Rated: (1) For heavier average (250 ma . max. $\mathrm{d}-\mathrm{c}$) and peak (750 ma . max. d-c) currents, (2) With big safety margins at these currents. You can depend upon the 5AW4 for continuous, trouble-free service. Yes, more CBS-Hytron CTS-Rated tubes are coming. Watch for them.

CBS-HYTRON 5AW4

NEW HEAVY-DUTY WORK HORSE CUTS 5U4G CALL-BACKS

Worried about slumping TV set performance, because of heavily loaded 5U4G's? Forget it. Use new CBS-Hytron CTS-Rated* 5AW4. A replacement for the 5U4G, the 5AW4 recaptures . . . and keeps . . . that new-set sparkle. Maintains full voltage, despite heavy load. Minimizes burn-outs. Avoids filament shorts while testing chassis on side. Loafs on tough jobs. Gives long, long, trouble-free life. The 5AW4 will cut your call-backs. Boost your profits. See it . . . buy it . . . soon. At your CBS-Hytron jobber's.
\dagger Patent applied for
COMPLETE 5AW4 DATA FREE
See your CBS-Hytron jobber. Or write direct today.

CBS = HYTRON Main Office: Danvers, Massachuse解

tion, which is not true with many low mu power triodes. Its small size and moderate power supply requirements result in a complete unit of small dimensions.

Since high-fidelity widerange reproduction, with a minimum of distortion, is desired, only high quality output transformers are considered. Such transformers may be expensive but quality cannot be skimped here without a definite loss in the final results. All those listed in the parts list have been tried in actual use and have given excellent performance.

The layout of parts can be seen in the illustrations (Figures 1,2 and 3) of the complete amplifier. Mounted on a standard 7" x $9^{\prime \prime} \times 2$ " chassis none of the parts are crowded. Actually the total number of parts is small enough to allow the amplifier to be constructed on a smaller chassis if it must be installed in a limited space.

The filter and decoupling capacitors C1 and C2 are mounted on insulating mounts and the meter jacks in the cathode circuits of the output stage must be insulated from the chassis. A ground bus (visible

Figure 1. Amplifier Front View.

STANDARD TRANSFORMER CORPORATION

3594 ELSTON AVENUE • CHICAGO 18, ILLINOIS
EXPORT SALES -
Roburn Agencies, Inc., 39 Warren St., New York 7, N.Y.

Figure 3. Amplifier Bottom View.
in bottom view, Figure 3), grounded to the chassis only at the input jack, is used for all circuit grounds to eliminate hum from ground loops.

The circuit (Figure 4) is conventional. No tone controls are included since the complete amplifier is included in the feedback loop and, also, it is intended to be used as most high-fidelity power amplifiers are used, set away in a well-ventilated location and remotely operated.

The gain control $R 1$ is inserted in the input circuit for convenience in making adjustments. The first stage is conventionally resistance-coupled to the second which is direct-coupled to the split load phase inverter. Load resistors R10 and R11 should be a matched pair. R12 and R13 can also be matched to aid in signal balance.

The balance control R2 and the closed circuit jacks in the cathode circuits of the output stage are

Figure 4. Schematic of Complete Amplifier.

Examining

DESIGN FEATURES

by MERLE E. CHANEY

Fleetwood Model 600 Remote Control TV System -

Featured in the Fleetwood 600 receiver, manufactured by Conrac Inc. of California, is the provision for operation of the sweep chassis and picture tube up to distances of 40 feet. The receiver is especially designed for custom installations and consists of two separate chassis (Figure 1) each containing its own power supply. The tuner chassis (Figure 2) is made up of the RF tuner, video and sound IF' stages,
and power supply including the volume and picture contrast control. It is connected by a 40 foot cable to the sweep chassis. The cable carries the detected video signal to the video amplifiers, picture tube, and sync circuits. It also carries the detect ed audio signal and includes a low voltage cable lead for actuating the power supply relay in the sweep chassis by the on-off switch in the tuner chassis. A bottom chassis view of the tuner unit showing the layout of components is shown in F'igure 3

Figure 1. Tuner and Sweep Chassis Used in Fleetwood 600 Receiver System.

Since two power supplies are utilized in this system, high voltages and currents are not fed through the connecting cable. The low current requirements necessary to actuate the sweep chassis power supply relay are met by connecting the relay through the cable to the filament line in the RF chassis.

Although a long line is used to feed the video signal to the sweep chassis, the receiver system is designed with satisfactory operational characteristics. The video cable consists of a cathode-coupled coaxial line to effect low impedance coupling with correct termination of the line for efficient transfer of the video signal.

Contained on the sweep chassis, shown in Figure 4, are only those components associated with the sync and sweep generating circuits. When the receiving system is installed, the required adjustments are made at the sweep chassis. The operating controls on the tuner chassis are then used to establish correct picture and sound for the normal range of received signals. A bottom view of the sweep chassis is shown in Figure 5. Note the relay for turning on sweep chassis power.

Facilitating the operation of the tuner section is the use of dial lights to indicate each VHF channel

Figure 2. Tuner Chassis Unit in Fleetwood 600 Receiver.

Figure 3. Bottom View of Tuner Chassis in Fleetwood 600 Receiver.

Figure 4. Fleetwood 600 Sweep Chassis.

Figure 5. Bottom View of Sweep Chassis in Fleetwood 600 Receiver.
setting. Although a turret type tuner is used, diallight switching is effected by a wafer switch mounted on the end of the tuner shaft.

Another feature incorporated in the 600 chassis is the provision for taking off the detected sound by means of a plug inserted in the sound detector output. Thus, high fidelity sound systems may be used to provide high quality sound reproduction where such installations are desired.

GE 415F -

Sub-assembly as employed in radio receiver construction is illustrated particularly well in the GE Model 415F. A top chassis view of this receiver is shown in Figure 6. The entire radio circuit with the exception of the speaker unit, volume control and filter capacitor is mount ed on a narrow plastic strip which is
set in below the chassis as shown in Figure 7.

Tubes and IF transformers protrude through the top of the chassis and allow ready replacement. Dip soldering is employed to effect connections at the tube sockets on the sub-assembly while an additional process allows the IF transformers to be clipped into position. It is observed that only one soldering point is found at each of the IF transformers. Remaining connections are made by clip connections. On top of the chassis proper, the IF transformer is secured in position with a small bracket and metal screw. Quick replacement of these transformers can be made by unsoldering a single lead, removing one screw and lifting out the component.

Another kink employed in this receiver is a moving dial light which is attached to the tuner pully and il-
luminates an area immediately behind the dial pointer at any setting. The dial scale is made of thin translucent plastic permitting the light to penetrate through in step with the movement of the dial pointer.

The sub-assembly in Figure 7 may be readily lifted free of the chassis by the use of a few preliminary steps. First remove all tubes from their sockets. Take out the IF transformers by first unsoldering one lead at each unit, and removing the single screw holding each transformer in position. The transformers may then be pulled out. The final step is to carefully pry out the line cord strain relief anchor which allows the sub-assembly to be lifted away from the remainder of the chassis. Connecting leads between the sub-assembly and components on the mainchassis are sufficiently long to permit this procedure without additional unsoldering.

gera BIGGER SHARE

The new UHF market is a big one . . . and the Mallory UHF Converter is ready to help you make the most of it. Thousands of sets will need converting when UHF television goes on the air in your area . . . and the Mallory Converter can be your fastest moving item.

- The Mallory Converter adds all existing UHF channels to any TV set... without sacrificing reception of existing VHF channels.
- Mallory precision quality insures high quality picture definition...easy tuning.
- Your customers have nothing more to buy, no further adjustments to make. . . even if they move to another broadcast area.

ASK

YOUR MALLORY DISTRIBUTOR

for complete details of the Mallory Converter. It has been a "best seller" in areas where UHF is already on the air. It can be your answer to a bigger share in the new UHF market.

Installation is fast and EASY All you need to do is connect the antenna lead and power lines from the Converter to the set. It can be done in your customers' homes in a matter of minutes.

Setchell-Carlson
Unitized* Chassis TV Receiver -
Those service technicians who have not had occasion as yet to check over a Setchell-Carlson TV set employing sub-assemblies throughout should be interested in learning about many of the features used to simplify the work of diagnosing and testing this receiver. The main features associated with the Model 152 and some of the previously produced Setchell-Carlson models, is that each circuit or group of circuits is contained on an individual chassis. These chassis units are provided with terminal jacks that plug into similarly spaced pin plugs on the main chassis. Found on each chassis are locating ears allowing the individual chassis units to mount onto the main chassis in the exact desired position. A top chassis view of the model is shown in Figure 8.

Afactor contributing to the maintenance of these receivers in the field, is the possibility of performing most of the servicing work by removing the rear cover of the cabinet. When troubles seem to be localized to a certainstage of this receiver, two thumb screws are removed and any unit can be lifted out. Visual inspection and measurements can be made of the components contained in the sub-chassis suspected to be at fault and component replacement can often be effected without the necessity of removing the entire chassis. (Bottom view of Video IF' sub-assembly unit is shown in Figure 9).

[^0]

Figure 9. Video IF Sub-Assembly Unit in Setchell-Carlson Showing Terminal Jacks and Locating Ears.

In those instances where stubborn difficulties do not allow ready diagnosis of the trouble, the entire chassis may be removed. Although each of the sub-assembly chassis units are plugged onto the top of the chassis, voltage measurements can be readily performed because large holes punched in the main chassis under each unit position give access to tube sockets and terminal connections, (See bottom view of main chassis in Figure 10).

Another feature found in the Model 152 receiver is the one employed to give additional protection in the horizontal output and high volt age stage. The horizontal output transformer, HV filter capacitor, and $H V$ rectifier $t u b e$ are mounted inside a hermetically sealed plastic container (Figures 11 and 12). This complete unit called the "Hermadome" (patent applied for) may be partially disassembled for testing by removing the dome shaped cover. A gasket forms an airtight seal between the two halves of the plastic contain-
er. Although the unit is airtight, the air trapped inside the case remains while circulation from the outside is prevented. The trapped air is dehumidified through the use of crystal granules held in the top of the dome. A paper disk observed through the semi-opaque plastic dome is chemically treated to indicate the presence of high moisture content, in which case the crystals should be replaced with a new or active supply. The protectionthus afforded the horizontal output transformer and high voltage supply should provide added life by minimizing some of the possible difficulties to which this stage is frequently susceptible.
$\frac{\text { Westinghouse Radio }}{\text { Model H-381T5 - }}$

An unusual type of chassis construction is observed in the Model H-381T5 Westinghouse radio re-

* * Please turn to page 121 * *

Figure 8. Top Chassis View of Setchell-Carlson Receiver Showing Sub-assemblies.

Figure 10. Bottom Chassis View of Main Chassis Showing Bus Leads Carrying Power and Continuity Between Subassembly Units in Setchell-Carlson Receiver.

"speaks" for itself in any company

ing to desired circuit thru a single $21 / 2^{\prime \prime} \mathrm{knob}$ flush with the face panel. The molded switch itself embodies the most advanced engineering practices. Fully enclosed, the silvered contacts are kept permanently clean. Its rugged construction means stronger performance and longer life.

These two factors are but samples of the many ways in which on-the-job needs have been anticipated and provided for in a beautiful streamlined tester. It provides A.D-D.C. Volts, D.C. Mirco-amperes, Milliamperes, Amperes, Ohms, Megohms, Decibel and Out Put readings in a no-short design embodying interior construction with all direct connections; no harness cabling. Its fool-proof unit switch construction houses precision resistors in insulated recesses in direct connection with switch contacts.

Study the following Ranges and descriptions and compare them point by point with any similar instrument for conclusive proof that Triplett 630 "speaks" for itself in any company.

Ranges

D.C. Volts: 0.3-12-60-300.1200-at 20,000 Ohms/Volt (For Greater Accuracy on TV and other High Re. sistance. Circuits.)
A.C. Volts: $0.3-1$
A.C. Volts: $0-3-12 \cdot 60-300 \cdot 1200-6000$-at 5,000

Ohms/Volt
(For Greater Accurack in Audio and other High Impedance A.C. Circuits.)
Decibels: $-30+4,+16+30+44+56+70$
(For Direct Reading of Output Levels.)
D.C. Microamperes: $0-60$ at 250 Millivolts.
D.C. Milliamperes: 0-1.2-12-120-ot 250 Millivolts
D.C. Amperes: 0-12-at 250 Millivolts.
*Ohms: $0.1,000 \cdot 10,000-$ ($4,4.44$ at center scale).
*Megohms: $0-1-100-(4,400-440,000$ center scale) Output: Condenser in series with A.C. Volt ranges.
*Resistance ranges are compensated for greatest accuracy over wide battery voltage variations. Series Ohmmeter circuits for all ranges to eliminate possibility of battery drain when leaving switch in Ohms position.

Get a Triplett 630 into your own hands at your distributor.
U.S.A. Dealer Net $\$ 3950$

TRIPLETT ELECTRICAL INSTRUMENT COMPANY BLUFFTON, OHIO

One of the most valuable as sets in any venture is experience. This is most certainly true in the radio and television servicing business. Mistakes are to be expected when entering into a new field. One can accept these mistakes as just a part of the price for gaining that experience. Sometimes the price is rather expensive. An alternative is that of profiting from the experience of others. With this in mind we have prepared the following report relating the experiences of others in the field of UHF.

In order to present factual data, we conducted a series of surveys in three UHF areas in the south during the week of May 16th. The areas selected were Mobile, Ala., Baton Rouge, La., and Jackson, Miss. These three areas represent three different types of operation as far as UHF television coverage is concerned. In Mobile, there is a VHF station as well as a UHF station. In Baton Rouge, there is a VHF station in the fringe area. In Jackson, there is no television reception from other than the local UHF station. We were able to talk to several dealers in each of these areas. Each of them was most cooperative and we sincerely hope that some of their experiences related in this report will be helpful to you.

Baton Rouge, Louisiana

In April of 1953 , station WAFB-TV, Channel 28, commenced operation in Baton Rouge, Louisiana. This station provided reception for the owners of an estimated 20,000 receivers. These sets had been installed to operate on the channel 6 station in New Orleans some 65 to 70 miles distance. Thus, in addition to the sale of receivers equipped for UHF reception, there was the need of converting the existing receivers so that they could receive the local television station.

This conversion process was done in several ways. Those receivers which were equipped with
turret type tuners were converted in most instances by means of UHF strips. Others were converted through the use of external converters. Often times it was possible to employ the existing VHF antenna installation to provide satisfactory UHF pickup. This situation could not be positively forecast, however, and the adaptability of the VHF antenna could be determined only after actual tests. If the VHF antenna did not provide satisfactory reception, a UHF antenna was installed which often could be mounted on the exist ing mast. If satisfactory signal pickup could not be obtained at any point on the mast, a separate installation was required.

In order to fully grasp the magnitude of the conversion job which confronted many of the dealers in this area, it might be well to point out the technique employed by one specific dealer. This dealer had nearly 3,000 sets which had been sold prior to the inauguration of the local UHF station. These sets had been sold and installations made to provide reception from New Orleans on channel 6. In most cases, the antenna had been installed without a rotator. After the channel assignment had been made to Baton Rouge and the station had announced their proposed starting date, this dealer began installing UHF strips in those receivers which would accommodate this type of conversion. It was felt that sets which were located near the transmitting antenna might operate satisfactorily using the VHF antenna for signal pickup. In those instances no UHF antenna installations were made. It was explained, however, to the customer that a UHF antenna might be required, which could be determined after the station came on the air. In those locations at a greater distance from the transmitter, a UHF antenna was installed on the existing mast, with the antenna aimed as accurately to the customer that final positioning of the antenna could not be made until the station commenced operation.

The dealer was successful in converting approximately threefourths of all the sets which he had previously sold for VHF reception before the UHF station came on the air. During this process of conversion, however, many sets were sold which were intended to receive the local UHF station only. Since many current receivers are now employing some form of built-in UHF antenna, no antenna installation was made for those sets which were installed near the transmitting antenna. The customer was made fully aware of the fact, however, that should the built-in antenna not work satisfactorily in that specific location, an external antenna would need be installed after the station came on the air. The dealers there found that several of these sets did operate satisfactorily using the built-in antenna only. The distance from the transmitting antenna was not the deciding factor, however, as to whether the built-in antenna would provide satisfactory operation. Surrounding terrain, the type of buildings, and the construction of the buildings in which the receivers were installed were a deciding factors as to the success of operation, and as we know from our experience in VHF reception, the positioning of the receiver itself is of great importance.

The indeterminate factor on the use of the built-in antenna is; what constitutes satisfactory reception? In many VHF installations satisfactory reception is alsoclaimed from built-in or indoor antennas. Even then there may be certain disadvantages to this type of operation. Moving vehicles near the home or even people moving about in the room sometimes affect reception. In view of this, care should be taken not to guarantee results from the built-in antenna. The dealers in this area have adopted a policy of "we can try the built-in antenna in your location' . If the reception is satisfactory to the customer then no external antenna need be installed. Of all the UHF areas which we have visited, more built-in antennas are

The sensationally strong Fiberglas boom used in the construction of VEE-D.X UHF antennas has the highest strength ratio to weight of any material known, and its bright red color makes it easy to identify as a genuine VEE-D-X antenna.

TV SERVICE MEN EVERYWHERE VOTE VEE-D-X UHF ANTENNAS FIRST FOR CONSTRUCTION PERFORMANCE - EASE OF INSTALLATION.

Besides the rugged Fiberglas boom, VEE-D-X UHF antennas are designed with strong, yet light weight solid aluminum elements (to prevent ice loading) and (a VEE-D-X exclusive) Flex-Clamp on the Bow-Tie and Corner Reflector, for positive vise-like grip and ease of installation.

And every VEE-D-X UHF antenna is engin eered for powerful performance in all areas! No wonder TV service men are saying, "These VEE-D-X UHF antennas are Power-FULL in both performance and construction."

the world's finest uhf antennas

La Ointe nirctronics unc.
ROCKVILLE, CONNECTICUT

ROTATOR
Finest in design, construction and per. formance. Produced in collaboration with three world famous monufacturers. Designed to perform with pin-point accuracy. Beautifully styled control console operates with convenient downward pressure. Choice of two colors.

LONG LONG JOHN
This 12 -element yagi is engineered for grand slam power in fringe areas. It is the highest gain single channel antenna ever developed. Rugged fiberglas boom construction. Strong, light in weight and factory preassembled construction for ease of installation. Model LIJ.U.

CORNER REFLECTOR This is the power-full all-channel VEE. D-X antenna that minimizes probing. Also the answer for UHF fringe and areas where noise or reflection prob. lems exist, Rugged Fiberglas boom construction. Ready for installation in less than 30 seconds. Model COR-U.
being used in the Baton Rouge area than in any of the others. Keep in mind, however, that we are talking about a very small percentage of the total installations. We mention it to point out that in this area, built-in antenna systems are being used with some degree of success. As you will note, from this report, reception conditions in some of the other areas are not so well suited for this type of operation.

After the station came on the air, there existed the problem of adjusting the local oscillators on all these sets which had been installed prior to the time that the station had commenced operation. For instance, the dealer just previously mentioned was faced with the problems of adjusting the oscillators on approximately 2,000 sets which had been converted for UHF' reception. Realizing the importance of getting the job done quickly, a plan was set up whereby the city was divided into various areas with each area having a given number of receivers requiring adjustment. All available technicians were assigned to these areas making it a sort of mass operation. In this way the entire job was completed within four days. It could have been done in even less time if it were not necessary to make callbacks in those instances where the customer was not at home at the time of the original call, or in those cases requiring a new antenna installation, or the repositioning of an antenna which had previously been installed. There was a certain percentage of installations which did work satisfactorily at the position where they were originally placed. The dealer felt that the time required in repositioning antennas which were installed before the station started operation was not lost entirely. The thinking behind this was, even though several of the antenna installations would need to be changed, there would be hundreds of them that would require no further attention. In this way it was possible to have all of the installations opera ting properly as quickly as possible after the station started operation.

The reason for pointing out the experiences of this particular dealer is to cite a case where antenna installation prior to the on-the-air date of the transmitter might be an advantage. You may recall in our previous writings we have recommended that the antenna not be installed until an actual on-the-air check can be made. This definitely is the case in areas where rough terrain is encountered, since in some
instances it might be that no signal at all may be received in a specific location. If an installation is made under these conditions prior to an actual on-the-air test, it may result in the loss of the sale of the receiver as well as the loss of labor on the antenna installation.

The sale of television receivers in the Baton Rouge area is following the same patternthat is being experienced in other areas. There seems to be a slow-up of sales, probably brought about by the potential customer adopting a "wait and see" attitude. The fact that the Baton Rouge station is not interconnected with the networks may also have some bearing on this situation. Of course, they can buy a receiver and have an elaborate external antenna installed for reception from New Orleans but since it is quite expensive, they choose to wait until such time as the local station can provide live programs.

This situation, of course, is not new. Many potential customers have used the same excuse in almost all areas where network programming is not provided. Another thing which might contribute to this feeling is that some of the stations come on with only a few hours of telecasting a day. After their on-the-air time is increased, there is more interest in their programming.

Fortunately, the Baton Rouge station was not one of those which came on the air with reduced power as an interim mode of operation. Experience has shown that this type of operation leads to confusion on the part of the viewer as to what can be expected from UHF reception and needless to say, presents terrific problems on the part of the dealer and installer.

Generally speaking, the dealers in Baton Rouge are pleased with the operation of the station and are happy that operational difficulties on the part of equipment that is associated with UHF is at a minimum. The dealers and installers in this area are to be commended for the part which they played in converting the thousands of VHF receivers in that area for UHF reception, as well as the part which they played in making the necessary UHF antenna installations.

Jackson, Mississippi

Prior to the start of operation of UHF station WJTV on channel 25 , it is estimated that there were less
than 200 sets in Jackson, Mississippi. Thus, the dealers and installers were not confronted with the conversion job that existed in Baton Rouge. They could, in effect, start with a clean slate selling receivers which were converted, prior to the sale, for UHF reception. This being a new television area it would be expected that there would be a "buying spree" for television receivers. When we talked with several of the dealers in Jackson, they pointed out that the sales were of a gradual nature. This had one advantage in that it did not over burden the installation crews at a time when experience in UHF techniques was in demand. Some operational difficulty from UHF equipment was, or is, being experienced in this area. There were a few "bugs"' that showed up in certain types of receivers which required special handling by the respective companies. As is the case with any new equipment, such things are likely to occur and only through actual operation of equipment will they be detected. Then it is only a matter of correcting the difficulty in existing equipment, as well as making the change on the equipment that is being produced.

The Jackson station commenced operation in January of 1953 and one of the things of importance that has been detected since that time is the effect of foliage on UHF reception. In January and February some of the installations were in sucha position that the signal had to pass through trees. After the trees had leaved out, considerable attenuation was experienced, so much in some instances that the antenna location had to be changed. One dealer related a rather unusual experience in this connection. He found that the leaves had attenuated the signal so greatly that a satisfactory picture could not be obtained. The home was located such that the signal had to go through or over a small forest, made up of very tall trees. It would have been necessary to install a 50 or 60^{\prime} mast on top of the house to clear the top of the trees. More by accident than anything else, he chose to try to mount an antenna near the ground and allow the signal to go under the trees. To his surprise, the results were quite good. Since satisfactory reception could be obtained at this point, no attempt was made to make the elaborate installation which would be required to clear the trees. If such a situation is encountered, it might be well to try to operate

* * Please turn to page 112 * *

SERIES ES-500-A affords the ultimate in performance, visibility and operational flexibility at moderate cost. PRECISION engineers have incorporated every necessary feature which they found to be required to meet the needs of the rapidly advancing art of electronics, A.M., F.M., and TV.

SUMMARY OF IMPORTANT FEATURES

\star Push-Pull Vertical Amplifier - High Sensitivity, Wide Range, Voltage Regulated. 20 millivolts (02 v .) per inch deflection sensitivity. 10 cycles to 1 MC. response. 2 megohms input resistance Approx. 22 mmf . input capacity.
\star Compensated Vertical Input Step Attenuator-X1, X10, X100
\star Direct Peak to Peak Voltage Checks thru use of internal, semi-square wave, regulated voltage calibrator.
\star Vertical Phase-Reversing Switch. Non-frequency discriminating
\star Push-Pull, Extended Range, Horizontal Amplifier-150 Millivolts (. 15 v.) per inch deflection sensitivity. 10 cycles to 1 MC response at full gain.
\star Linear Multi-Vibrator Sweep Circuit-10 cycles to 30 KC
\star Amplitude Controlled, Four Way Synch. Selection: Internal Positive Negative, External and Line

* 'Z'' Axis Modulation input facility for blanking, timing, etc
* Internal. Phasable 60 cycle Beam Blanking for elimination of alignment retrace; clean display of synch. pulses, etc.
* Sweep Phasing Control for sinusoidal line sweep usage
\star Direct Horizontal and Vertical Plate Connections.
\star High Intensity CR Patterns through use of adequate high voltage power supply with separale
* The Circuit and Tube Complement: 6C4 "V" cathode follower. 6CB6 amplitier and inverter Push-push-Pull 6/6s driver. 7N7 H vibrator, linear sweep oscillator. 5 Y 3 low voltage rectifier. 2 X 2 high potential rectifier. VR-150 regulator. $5 \mathrm{CPI} / \mathrm{ACR}$ Tube.
\star Four-Way, Lab-Type Input Terminals-Take banana plugs, phone tips, bare wire or spade lugs. Matches SP-5 Probe Set cable connector
\star Light Shield and cross-ruled Mask, removable and rotatable
* Extra Heavy-Duty Construction and components.
\star Heary Gauge, Etched-Anodized, No-Glare, Aluminum Panel. \star Fully Licensed under Western Electric Co. patents.
Seried ES-500 A: In louvered, black-ripple, heavy gauge steel case. Size $814^{\prime \prime} \times 141^{\prime \prime} \times 18^{\prime \prime}$. Complete with light shield, calibrating
mask and comprehensive instruction manual
NET PRICE $\$ 173.70$

Series SP-5 - OSCILLOSCOPE TEST PROBE SET FOR TV SIGNAL TRACING, ALIGNMENT, TROUBLE SHOOTING AND WAVEFORM ANALYSIS
\star Specifically engineered for use with precision Cathode Ray Oscilloscopes, Series ES-500 and ES-500A.
\star Includes four of the most important test probes for general purpose, as well as specialized use

1. HIGH IMPEDANCE-LOW CAPACITY PROBE
2. SIGNAL TRACING-CRYSTAL PROBE
3. RESISTIVE-ISOLATING PROBE

Each probe is specifically engineer
\# Each probe is specifically engineered for efficient application to the special test problems requiring its use.

* Distinctively colored heads and individual labelling permit positive identification of each probe.
* A single, universal. coaxial cable accommodates each probe through a quick-change, self-shielding connector.
* A specially-designed, shielded plug provides for positive cable attachment to the ES-500 and ES-500A Vertical input posts.
* Each probe head terminates in a patented clip-on tip which frees both hands of the operator.

Series SP-5, in custom-designed, vinyl-plastic, carrying case, complete with four probe heads, universal coaxial cable. and detailed operating instructions. NET PRICE \$23.50

See the ES-500A Oscilloscope and the Series SP-5 Test Probe Set at leading Radio Parts \& Equipment Distributors.

In the Interest of... Quicker Servicing

by GLEN E. SLUTZ

Disposal Methods for

 Picture TubeThere are numerous types of picture tubes which have somesalvage value even after they have gone bad and been replaced. Distributors have lists of such tubes furnished them by the various tube manufactur ers. These lists give the accepted types and the amount of allowance on each type. Tubes which are not on the lists - and there are several are worthless and eligible only for the trash heap. In connection with this point, however, a potential source of trouble for the service shop owner exists.

A cathode ray tube encloses a very high vacuum and the pressure of the surrounding air on the glass of the tube adds up to several thousands of pounds. Consequently, the sudden release of this great amount of energy, such as might be brought about by the tube breaking, is a violent occurrence. Implosions of picture tubes can send jagged pieces of glass flying with the speed of bullets. A high vacuum picture tube resting on a heap of rubble might be likened to an ocean mine washed up on a deserted beach somewhere;
it may lie for a long time undisturbed but finally someone comes along with an inquisitive nature and - blooey: diaster strikes! Law suits are possible aftermaths of such incidents.

The best way to avoid trouble is to deprive the picture tube of its dangerous vacuum by puncturing it under controlled conditions prior to its disposal. Different methods of making this puncture are recommended by various authorities. CAUTION: With every method, protective goggles and gloves should be worn by the operator.

General Electric Co., manuvacturer of picture tubes, has this to say: " Don't leave any picture tubes lying around. There are two safe ways of disposing of used tubes: (a) Place the old tube in a shipping carton properly sealed, and then drive a crowbar or similar instrument through the closed top of the container. (b) An alternative method in the disposing of more than one tube is to use a metal ash can with a plunger operated through the closed top." *
*G.E. Techni-Talk, Oct.-Nov., 1949

Another tube manufacturer, Sylvania Electric Products, Inc., recommends a method for picture tube puncture in their bookletentitled Servicing TV Receivers, Volume II. Quoting from the chapter on safety precautions - -
" Before disposing of a defective cathode ray tube, it must be rendered harmless. To do this, wrap the tube with cloth and place in the cardboard shipping container with the socket upper-most. Using pliers, twist the key from the bottom of the socket. Then, using a small file inserted in the hole left when the key is removed, break the glass exhaust tip. This permits air to enter the bulb and renders it safe for disposal. During this operation, wear glasses and gloves." \#

A variation of this method calls for drilling a small hole down through the center post on the base of the tube. Then a nail is inserted
\#Servicing TV Receivers, Vol.II, published by Sylvania, 1951, Page 127

* * Please turn to page 37 * *

Figure 1. Method of Picture Tube Puncture with a Screwdriver Through the Anode Connector.

Figure 2. Close-up of a Picture Tube Showing Anode Connector After Puncture.

EXAMINE THE NEPCO LINE-

Quality materials with the strength to stay on the job...

* Extra heavy zinc galvanizing on all parts.
* Baked on "Shera-solution" for extra corrosion protection.
* Rigid heavy gauge steel used in all mounts ($l^{3 / 4^{\prime \prime}} \mathrm{x}^{1 / 8^{\prime \prime}}$).
* Two 15 ' stainless steel chimney bands, 5/6" eye bolts, and 4 heavy gauge banding clips with patented imbedding screws available with each chimney mount.
* All hardware corrosion-protected in the same complete manner as the mounts.
* Every item in the NEPCO Line is engineered, tested and field proved to assure long service on the job.

Plus features
 for fast, easy installation and handling

* Unique adjustable mast clamp with one bolt mounting.
* Exclusive antenna mast clamp with positive alignment in all planes.
* Patented imbedding type screw for positive electrical and mechanical locking.
* Versatile mounts that accommodate all types of in. stallations.

Radio \& Television Department, Pittsburgh, Pa.

Yes, the ASTRON BLUE-POINT's tighter seal and tougher shell give you heat and moisture protection to a degree never before possibleproviding a longer life and greater dependability than has ever been achieved in a molded plastic capacitor! BLUE-POINT is a capacitor you can rely on completely, under every condition.

BLUE-POINT is suitable for continuous operation at $85^{\circ} \mathrm{C}$. The bonded seal uses a special thermo-setting, heat-resistant, non-inflammable bonding agent-positive protection
against moisture. Solder leads as close to the capacitor as you like-they won't pull out! Every BLUE-POINT is clearly marked with voltage and capacitance, bears outside foil identification. Every BLUE-POINT is tested and guaranteed. Look for the ASTRON BLUE-POINT when you buy capacitors from your jobber, or if he doesn't carry it, send us his name. Insist on ASTRON BLUE-POINT, the capacitor you know you can depend on. Order a supply today.

For complete performance chorocteristics, specifications ond listings, write for Bulletin AB-20A

Patent Pending
DEPEND ON-INSIST ON
ASTRON CORPORATION

255 Grant Ave., E. Newark, N. J.
†Trade Mark
Safety Margin capacitors for every radio, television and electronic use.

IN THE INTEREST OF QUICKER SERVICING (Cont'd. from page 33)

and moved about sothat it breaks off the exhaust tipon the glass envelope. This allows air to enter the tube rather slowly so that in many cases the phosphor screen material is undisturbed by the incoming air stream. This feature is desirable when the tube is to be kept for counter or window display of some kind. One detail to observe in preserving the phosphor is to position the neck and gun of the tube so that they are not directly above the screen face at the time the exhaust tip is broken. We experienced some flake deposit from the gun down ontothe screen of a 16 GP 4 recently because this was not done.

Still another method of tube puncture was given several trials in our laboratory with marked success. The tubes used were glass-shelled tubes (10BP4's) having the characteristic second anode connector recessed in the bulb wall. Figure 1 illustrates the set-up employed. The tube was positioned in a picture tube carton so that the second anode connector lay opposite a small hole punched through the wall of the carton. Then a long, sharp-bladed screw-driver was inserted through the hole and fitted into the anode connector. The carton was sealed shut, and a sharpblow on the screw driver was enough to drive the blade through the metal anode cap of the tube. No violent implosion occurred in any of the trials we conducted using this method. If implosion had occurred, the walls of the tube carton were there to absorb the shock. As it was, the tubes were visibly unchanged except for the clean hole in each anode connector Figure 2, and a portion of each screen blown clean of phosphor.

This last method can be used only with glass tubes, of course. With metal tubes it is necessary to use other means. We speedily dispatched a metal tube (16GP4) not long ago by a method which is worth mentioning. The tube was set facedownward in a tube carton with padding placed below it to raise the neck a few inches over the top of the carton. A heavy cloth was wrapped about the neck at its juncture with the flared cone, and the flaps of the carton were closed down around the neck. Safety goggles and gloves were donned and the neck of the tube was broken off with a long-handled

Figure 3. Breaking the Neck of a Picture Tube.
tool, See Figure 3. Only the neck of the metal 16PG4 broke, the cone and face of the tube remained completely intact. There was no flying glass as a result of the broken neck.

Before leaving the subject of picture tube disposal, it is well to re-emphasize the care which should go into such an operation. A respect for a tube's distructive potentialities should be kept in mind and rough handling prior to the actual puncture avoided.

"Trouble Shooting Aids"

Beginning with Photofact Set No. 200, a new service has been incorporated with the folders covering television receivers. This service is designed to furnish the service technician with aform of check sheet to aid in the rapid location of troubles in a specific television receiver.

The list of ailments is grouped according to the portion of the receiver affected; for example, hori zontal sweep, vertical sweep, hori-

Figure 4. Using "Trouble Shooting Aids."

TACO, originator of the patented "TWIN-

DRIVEN" antenna principle brings you broad band antennas to cover the entire VHF band. Here are the answers for your fringe installations.

TACO INTRODUCES:

The TRI-TUNED 7 -element Model 1840. TRIPLE-DRIVEN low band yagi with an unbelievable directivity pattern, and highest gain on Low-Band channels 2 thru 6 inclusive.

The SILVER STREAK BAZOOKA Model 1860, utilizing eleven working elements each contributing to an ideal directivity pattern with highest gain across the band from channel 7 thru 13.

Figure 5. Partial Schematic of AM-FM Radio Showing AVC Circuit and Wafer Switches.
zontal sync, vertical sync, video, audio, high voltage, etc. Some of the troubles may be further identified by actual photographstaken of the picture screen and reproduced with the chart, see Figure 4. In some instances, defects which may be peculiar to certain sets are pinned downto failures of single components which may or may not be located in the receiver section seemingly involved.
" Trouble Shooting Aids", as this service has been named, are especially intended for use by the service technician who has a good electronic background but who may be a relative newcomer to the specific field of television servicing. It is hoped that the "old hands" in TV will also benefit from the new service since it offers a trouble shooting outline tailored to the specific receiver make and model.

Problem with an AM-FM Multiband Radio

This is the record of a tricky service experience which probably has been and will be repeated frequently enough to earn a mention in this column. The subject was an AM-FM multiband radio of conventional design with the exception that the converter was biased from the AVC line. The complaint was distorted sound on AM only when tuned
to a strong local station. This was indicative right away that the trouble very likely lay in the AM section of the set ahead of the second detector. The fact that the FM operation of the set was satisfactory eliminated the FM portion of the set together with the audio amplifying section which functioned for both AM and FM reception.

Figure 5 is a partial schematic of the AM section of the receiver together with the AVC circuit and the wafer switches involved in band switching. The symptoms being what they were, the first component to be suspected, after tube substitution proved fruitless, was the AVC filter capacitor, C6. If this were leaky or shorted, the AVC voltage would be too low and the resulting overload in the IF amplifiers would cause the distortion on strong signals. How ever, both C6 and C7 proved to be in good condition when checked. Measurements of the grid voltage on the converter tube (pin 6) with a vacuum tube voltmeter showed nearly zero volts. Yet considerable negative voltage appeared to be available across the second detector load R8.

The wafer switch was investigated next. The rear portion of the second section of this switch was located in the plate circuit of the converter. When the connections to
points 9 and 1 on the front side of the wafer section were removed and joined externally, the distortion trouble was found to disappear and the set functioned normally. In this way the defect was definitely found to be an insulation leakage between the front and rear portions, A and B, of the wafer switch section. The wafer switch was replaced with a new unit and set operation was restored to normal.

Knob Retaining Springs

The flat springs which hold front panel knobs securely in place are prone to turn up missing at the very time a set is being reinstalled in the customer's living room. Be prepared for such an eventuality. Watchmakers and jewelers frequently have broken mainsprings from clocks which they readily supply upon request. The springs come invarious widths; two or three of these in the technician's tool kit will enable him to replace a knob spring with only a snip of his diagonal cutters. The cut should be made so that the piece of spring steel is very slightly longer than the slot in the knob. This will cause it to flex a little when it is set in position and hence hold the knob firmly on its shaft.

GLEN E. SLUTZ

RCA Crystal Cartridges in RCA " 45 " record players have the precise weight for proper tracking

RCA Crystal Cartridges are designed specifically for RCA "45" pick-up arms. Together, they provide the correct weight for proper tracking-optimum lateral stylus compliance to minimize record-wear. Exact dimensions make them easy to install in any RCA Victor "45" record changer.

There's an "original" RCA Crystal Cartridge specially designed for every model RCA Victor record changer made. Use genuine RCA Crystal Cartridges and avoid replacement problems.

Jewel-polished RCA Sapphire Styli are microscopically shaped for " 45 " grooves

RCA jewel sapphires are rouge-polished to a superfine finish, and have the proper tip radius for "45" records. Record and stylus are designed to play together.

Genuine RCA jewel Sapphire Styli, with correct tip radius, are available for replacement in all type RCA Crystal Cartridges desigued for RCA Victor 45, 78, 78-33, and 3 -speed changers.

RCA Crystals and Styli are made better-cost no more

Because they're mass-produced by precision methods, RCA Crystal Cartridges and Styli meet the highest quality standards, yet cost no more. Smart packaging makes them easy to sell... handy dispensers make them easyto display.

Remember . \therefore customers count on you to return their RCA Victor record changers to their original high performance standards . . . by using genuine RCA Crystal Cartridges and Styli. Order a model inventory today from your RCA Parts Distributor.

Genuine RCA Victor Service Parts are readily available from your RCA Parts Distributor

A large number of reception areas are so located that multiple type antenna systems are desirable. In these instances it is found that satisfactory reception from a number of stations is feasible, using separate high gain antennas orientated and selected for specific channels. This is particularly true because of the rapid influx of UHF television in the commercial broadcdsting field, and the antenna problems peculiar to the use of this frequency spectrum.

The use of more than one antenna presents a certain problem, namely that a separate lead-in must be provided from each antenna with provisions at the receiver site for connecting each lead to the receiver. To overcome this obstacle, the Leader Electronics Company has designed an antenna switching device known as the "'Tenna Switch". Produced in two models, one model accommodates up to four separate antennas while the other model operates with up to seven antennas. Several features are associated with this method of antenna selection. Probably the main
one is the fact that a single lead-in is used to couple the signal from any one antenna to the television receiver by means of a direct connection through the switch.

The " Tenna Switch" consists of t wo separate units, the control box and the selector switch box. For convenience the control box is located on or near the television receiver while the selector switch box may be mounted on the antenna mast, or centrally positioned to effect the switching of several antennas mount ed on separate masts. A cable is employed between the two units to effect the switching.

A number of methods are recommended for mounting the control box at the location of the television receiver. Supplied with the unit is a mounting bracket to aid in the permanent positioning of the control box. Some of the possible ways for mounting the control boxare to screw the case on to the wall or to the back of the receiver or on the table supporting the television receiver. Channel numbers or call letters may

Figure 1. Control Box and Selector Switch Box, Components of the "Tenna Switch," Model TS-1A, manufactured by the Leader Electronics Co.
be placed on the face of the control box correlating the switch positions with the desired antenna selected for aspecific channel. Figure 1 shows the control box and the selector switch box. Components found inside the control box are the manually operated selector switch and the powertransformer. The power transformer is a step-down type delivering 18 volts at the secondary. This supplies the power to actuate the motor device in the selector switch box. The motive power for the switch is provided through a vibrator and latching gear arrangement. The vibrator is connected in series with one of the switch sections so that in the normal off position the slot in the shorting wafer is lined up with the position selected by the control box. When a new position is selected on the control box, 18 volts is applied to the vibrator which actuates the gear drive for the selector switch until the slot in the shorting wafer is lined up with the new position, turning off the power to the vibrator. A schematic of the " Tenna Switch" is shown in Figure 2. It is observed that the selector switch box is merely a remotely controlled device actuated by a manually operated control box.

There are several practical applications for the." Tenna Switch" in addition to the use of the device for connecting several antennas to the receiver by means of a single tramsmission line. It can be used by dealers for demonstrating several television receivers. This method is accomplished by working the switch in reverse. The termination of the transmission line is connected to what is normally the output. Severalreceivers can then be operated by connecting to what normally would be the input connections. With this the dealer can make the neces sary antenna connection to the receiver by manipulating the control switch. Of course, the same thing can be done with a single switch, but for purposes of maintaining neatness it might be necessary to mount the

The selenium rectifier has always been regarded as an efficient and economical means of converting alternating current to direct current. It has been employed in various industrial applications and in the last few years has expanded in use to be included in radio and television design. It is a versatile unit which has considerably changed the design of the DC power supply. This change can be contributed to a number of factors which are classified as to its small size, light weight, high efficiency, cool operation, power handling capabilities, long life, and the fact that it requires no heater or filament voltage.

The construction of the selenium rectifier consists basically of three parts; a base plate, a layer of selenium, and a layer of an alloy. Refer to Figure 1 for enlarged sketch of a selenium rectifier plate.

The base plate is made either of iron or aluminum metal. Aluminum is being used more than iron for the base plate. The base plate is nickel-plated by chemically etching and electroplating with a very thin layer of nickel. 'The etching serves as a mechanical means for the selenium to adhere to the base plate.

After being nickel-plated, the base plate is covered with a very thin layer of selenium. High purity selenium, on the order of 100 per cent pure, is used. Impurities of the selenium are measured in parts-per-million. If the difference of impurities is.between 7 and 10 parts-per-million, it may result in poor operation by the rectifier. The process of applying the selenium is a very critical and difficult process.

The thin barrier layer on the selenium is formed when the rectifier is heat treated. During the time the barrier layer is formed, the selenium is completely converted to a metallic form and the crystals are arranged in the order for rectification. A low-melting alloy is then sprayed on the selenium after the barrier layer has been formed.

The base plate of the rectifier is the negative electrode while the alloy acts as the positive electrode. Current flows readily from the base plate to the alloy but encounters a high resistance in the reverse direction. As a result of this action, effective rectification of an alternating input current results. The efficiency of the rectifier is dependent, to some extent, on the ratio of the resistance in the conducting direction tothat of the blocking direction.

As considered by the manufacturer, the selenium rectifier is a rugged component and should last for the lifetime of the apparatus in which it is being used. However, failures do occur, especially under severe operating conditions. These failures are usually caused by the breakdown of some other component in the circuit or by placing the rectifier in ahigh heat area. The failures of selenium rectifiers may be classified as follows:
a. Shorted Rectifier - the result of excessive current drain, high heat, or mechanical abuse.
b. High forward resistance accompanied by reduced output voltage - usually caused by operating the selenium rectifier beyond rated capacity for extended periods.

Figure 1. Cross Section of a Selenium Rectifier Plate.
c. Reducedrectification capabilities accompanied by reduced current capacity - caused by excessive heating for long periods, or an abnormal increase of forward current for an extended period of time.

In the past,testing of a selenium rectifier that is suspected of being bad has been done without too much accuracy. The surest method of testing has been to replace the unit with a new one that is known to be in good operating condition. However, it is not always convenient to do this because it would oblige the serviceman to have in stock all the different size rectifiers that are employed in radio and television chassis. If this stock is not available, a special trip to the parts distributor has tobe made. This is time consuming and, on occasions would be time wasted, especially if the selenium rectifier is not the part that is causing the trouble in the receiver.

A method of making tests with the ohmmeter has been used; however, this method does not always produce an accurate answer. The readings obtained on the ohmmeter are worthless in both the forward and reverse directions. The resistance of a rectifier in either direction is dependent on the voltage across it; therefore, the static characteristic resistance reading depends on the voltage and scale of the ohmmeter. Since the internal resistance of a selenium rectifier is non-linear, erroneous readings are obtained on the ohmmeter.

The Jackson Electrical Instrument Company has recently introduced to the trade atesting unit called a Selenium Rectifier Tester. (See Figure 2). This unit, Model 710 , is for testing selenium rectifiers rated from 25 to 300 volts with currents from 20 milliamperes to 650 milliamperes. With the use of this test instrument an accurate rating of the selenium rectifier undertest can be had. A dynamic test rather than astatic test is

Mandl's new

TELEVISION SERVICING

pinpoints the trouble for you

shows you exactly how to correct it

You'll learn-
simple signal tracing procedures - how to improve reception in fringe areas. How to use the oscilloscope and other test equipment. How to troubleshoot keyed A.G.C. and synchroguide circuits; align I.F. stages - And many trade tricks for diagnosing troubles in minimum time

THE NEW REPRINT of this book includes the latest innovations and circuits. You'll the latest innovations and circuits. You ll find, for instance, explanation of the proposed color systems, the, principles of the cascode (Golden Grid tuner and the latest technical data on this and on automatVHF receivers and of new types of highHrF receivers and of new rypes of high-
frequency I.F. systems; the cause and cure of frequency $1 . F$. Systems; the cause and cure of puling and weaving; the functions, applications, and servicing of transistors; and the for UHF stations.

YOU'LL EASILY LEARN FROM THIS BOOK

A COMPLETE MASTER TROUBLE INDEX

makes it easy for you to locate the source of trouble quickly. In the form of a handy chart it lists the various hums, sound distortions, streaks, bars, focus defects and 100 other trouble symptoms in sound and picture together with the possible causes of each and the page on which servicing instructions are given.
$\$ 5.50$

Men on the job recommend these top-ranking aids

Television for Radiomen

'By the time you are through with this book you'll have a GOOD foundation in TV" writes you have a GOOD foundation in TV, writes a radio and the author has treated a much written-about the author has treated a much written-about ten by a man nationally known for his many helpful articles on TV operation and servicing, this book explains VERY fully and clearly the construction, function, and operating principles of EVERY circuit and element in TV reception, the principles of transmission, and the techniques of installing, aligning, and adjusting today's TV receivers. From this book you'll find it easy to acquire the fundamental knowledge you MUST have to qualify for the many good jobs now waiting for you in television. $\$ 7.75$

Television and FM Antenna Guide

by E. M. Noll and M. Mandl
A basic course on antenna theory combined with a complere handbook on all types of antennas, including all commercial models, high-gain anrennas for fringe areas, antennas for special locations and for the proposed UHF allocations. Shows you exactly how to determine, quickly and accurately, the best type of antenna for the site and the best position for it; how to minimize standing waves, noise, etc. on the trans. interference, and all over techniques for petion interference, and all other techniques for getting the most out of the antenna system. Based on
extensive testing done by the authors. $\$ 5.25$

Radio and Television Mathematics

by Bernard Fischer

'By far the best book for preparation for FCC exams," writes one radioman, echoing the opinion of countless others, "A book for the place of honor beside its natural partner, the slide step solutions not only for every question requiring mathematics in the FCC study guide, quiring mathematics in the FCC study guide, in radio, TV, and industrial electronics. You'll ind, conveniently arranged under radio topics such as antenna power, plate-to-plate voltage and 400 others, the formulas to use, the numerical values to substitute, and the step-by-step solutions to 721 problems. Whatever YOUR problem, whether it is how to correct the power factor of a motor, convert polar to j-notation in a matter of seconds, find the impedance and length of a matching stub between a TV antenna and its transmission line, or any of hundreds of orher problems you're apt to encounter, here is the clear and exact solution. $\$ 6.75$

An Introduction to Practical Radio
by D. J. Tucker
One of the best "fundamentals" book ever published, widely praised by authorities.," The chapter on Kirchhoff's laws is a model,' writes the reviewer in Electronics. "Also goes further into the use of vectors for solving a-c circuit prob-

Here are ALL the basic how's and why's of radio, in terms you can EASILY understand and appl. The necessary mathema 5 is explaine at the poines where it is used. Each principle is construction and operation of radio apparatus "This book is everything you say it is "Ppays one of the thousands of satisfied users. You'll find it admirable for a solid foundation in radio or for a brush-up on points you may have forgotren $\$ 5.00$

The Macmillan Company 60 hifth avene, new york i1, n.r.

Intermodulation -
When a new amplifier, manufactured or home built, is installed and turned on for the first time, probably the first reaction to receive the most attention is if it will make a sound and if it is loud. This soon changes to how it sounds. And this, how it sounds, is the important thing no matter how far advanced we go into the subject of high quality sound equipment.

Most high fidelity sound systems are used primarily for the reproduction of music for enjoyment. If the music as heard from the speaker does not sound the same as it did originally, due to distortion in the sound system, full enjoyment cannot be achieved. Consequently distortion, which can develop in any part of the system, must be kept down to a minimum.

This is a problem usually of greatest concern during the design and development of the equipment. But an understanding of why and how this distortion does originate, how to measure it, and how to reduce it is necessary for satisfactorily installing and servicing high quality sound equipment.

No doubt all of us, as we listened to music from a loud speaker, have wondered where the extra odd sounds and noises come from and why. If we tried to describe them

Figure 1. 60 CPS and 3000 CPS with 0.5% intermodulation.
we could only come up with such things, as rattle, broken up, noisy, split, muddy and, upon occasion, some unprintable terms. These distortions have been analyzed and made the subject of much research and discussion. The result has been their reduction in many high quality systems to a negligible amount.

One type of distortion which has received much attention recently is that due to intermodulation. There are several very good reasons for this wide spread interest. One is that its measure corresponds very closely to the amount of ear disturb ing qualities present in the signal.

The following definition of intermodulation distortion is found in the Standards of Radio Receivers, Institute of Radio Engineers- - ' The production, in a nonlinear circuit element, of frequencies corresponding to the sums and differences of the fundamentals and harmonics of two or more frequencies which are transmitted through that element."

In other words intermodulation is the result of modulating a high frequency by a low frequency if nonlinearity is present in the circuit handling the signal. The nonlinearity producing this effect can be present in any part of the sound system, including the human ear.

Since this distortion is the beating of all the fundamentals and

Figure 2. 60 CPS and 3000 CPS with 12% intermodulation indicated as difference in upper and lower portions.
all harmonics in all combinations, the result is a conglomeration of noise in no way musical. With music being made up of complex tones, consisting of many fundamentals and harmonics, it is easy to understand how a non-linear circuit will produce a multitude of beats which will be heard as annoying, noisy distortion in the reproduced music.

Any of the convenient methods of measurements will reveal the percentage of intermodulation present. If excessive, the necessary steps can be taken to reduce nonlinearity, thereby reducing the distortion. A reduction in non-linearity will also reduce harmonic distortion since it is also due to this defect.

In an amplifier one of the common causes of non-linearity is the operating characteristics of the tubes. So the simple changing of a tube or the adjusting of bias can reduce intermodulation distortion an appreciable amount.

Various pieces of equipment, varying from moderately priced kits to laboratory apparatus, are available for measuring intermodulation. Fairly easy methods can be used to make comparative measurements as the bdsic principles are simple.

Figure 3. 3000 CPS carrier with 12% intermodulation.

Two signals, one usually between 40 and 100 cps the other 2000 and 12000 cps , are fed into the input of the equipment under test. Normally these are mixed with the low frequency having four times the amplitude of the high frequency. If non-linearity exists in the circuit tested, the high frequency, called the carrier, will be modulated by the low frequency. The intermodulation in the output can be viewed on the screen of an oscilloscope, how well depends upon the amount and the method employed.

In Figure 1, 60 cps and 3000 cps are combined at a ratio of 4 to 1. These are fed into the input of an amplifier and this waveform is obtained on the oscilloscope connected to the output. The 0.5% of intermodulation in this signal is not perceptible.

The waveform in Figure 2, is obtained in the same way but with

Figure 4. 12% intermodulation after removal of both 60 CPS and 3000 CPS components.

Figure 5. 3000 CPS carrier with 0.5% intermodulation.

Figure 6. 0.5% intermodulation after removal of 3000 CPS carrier and 60 CPS component.

Figure 7. Block diagram of Intermodulation Meter.
12% inter modulation developed with in the amplifier. It is now visible as a difference in the upper and lower portions of the waveform as indicated.

Now, if this combined signal at the output of the amplifier is passed through a filter and the 60 cps portion removed, the 3000 cps signal, or carrier, only remains as shown in Figure 3. Now 12% intermodulation is much more apparent.

If the signal in Figure 3 is rectified and passed through a filter to remove the 3000 cps carrier, only the intermodulation distortion remains. The 12% distortion is shown in Figure 4.

When the 60 cps portion of the signal in Figure 1 is removed by the high pass filter as shown in Figure 5 the 0.5% intermodulation is hardly visible. In Figure 6 with the 3000 cps carrier rectified and removed the 0.5% distortion is still not so apparent to the eye.

Waveforms such as these give some idea of how comparative checks can be made. But to actually read directly in percentage and with accuracy, an intermodulation distortion meter or wave analyzer is needed.

The waveforms shown were made in conjunction with a Measurements Corporation Model 31 Intermodulation Meter. Its basic form is given in the block diagram in Figure 7.

In this instrument 60 cps and 3000 cps are combined at a ratio oi 4 to 1 and fed into the input of the equipment to be tested. The output of the amplifier (if that is the equipment being checked) is connected to the input of the analyzer section. The signal then passes through the high pass filter to remove the $60 \mathrm{cpscom}-$ ponent; then it is rectified in the detector scetion and passed on through the low passfilter to remove the 3000 cps carrier. Bysimply
setting the level controls and switches, the percentage of intermodulation distortion is read directly on the meter.

As mentioned before a test for intermodulation distortion is a very convenient and comparatively simple method of checking the operation of equipment such as an amplifier. For instance some quick checks with the Model 31 Intermodulation Meter were instrumental in improving the operation of a small power amplifier constructed in ourlaboratories. Frequency response and power measurements were very satisfactory as also were checks made with square waves. But some tests for intermodulation disclosed that a reduction in resistance of the cathode resistor in the output circuit, and the addition of a cathode bypass capacitor, reduced the intermodulation distortion at a high operating level from a value of 5.5% to less than 1%. There was a corresponding reduction of distortion at all levels with more efficient operation, resulting in what we were striving for - - better sound.

ROBERT B. DUNHAM

AUDIO FACTS CORRECTION NOTE:

The diagram below indicates a correction to Figure 7B, on page 112 of PF INDEX and Technical Digest No. 38 for May-June 1953.

Additional data on preamplifier and control unit described in Audio Facts (PF INDEX No. 33) may be found on page 119.

IDollar and Sense Servicing

DETECTIVE ASSIGNMENT. Not uncommon today among servicemen is a customer request for equipment that will record verbal or telephone conversations without the knowledge of the speakers. There are often the added specifications that the recording be acceptable in court as evidence, that all equipment be concealed, and that the equipment be voice-activated so it will operate unattended.

Research on one such assignment turned up a recorder that will meet practically all detective specs. It's a self-powered unit weighing only 8 lb ready for use, small enough to fit into a briefcase, and produces permanent unalterable recordings that have been accepted in some courts already as evidence. A voiceactivated self-start-stop accessory is available at about $\$ 20$ additional cost.

Both sides of a telephone conversation can be picked up and the start-stop device actuated by a small coil wound unobtrusively around telephone wires. Recording is by embossing on endless plastic belts costing about $25 ¢$. Both sides of the belt can be used. The unit also serves for playback, having its own loudspeaker as well as manual and remote foot controls for start-stop and back-spacing during transcribing of recordings.

Battery cost is about $1 ¢$ per operating hour. A power pack is available for $A C$ operation if desired. Cost of the instrument depends on sensitivity; a model having a microphone pickup range of 4 feet and a $1-1 / 2$ hour recording capacity on each side of the plastic belt sells for around $\$ 350$. A similar model with 6 foot sensitivity costs around a hundred dollars more. Longer recording capacity boosts the cost higher yet. The manufacturer is Miles Reproducer Co., Inc., 812 Broadway, New York, N. Y.

The microphone may be concealed up to 60 feet away from the recorder unit. When used for telephoning recording, dial clicks are clearly recorded, and can be counted
to determine what numbers are called. Counting can be done more readily by playing back at slower speed.

The legality aspects of telephone recording should of course be discussed with the customer and checked before making an installation; your local telephone company can provide this information. Many telephone companies will also rent similar recording equipment; this is generally not suitable for detective work, however, because it intentionally produces sounds that tell the calling parties they are being recorded.

Magnetic tape is not acceptable as evidence because it can easily be altered. Words or entire sentences can be erased or cut out. New words or sentences, spoken by a good mimicing actor, can be spliced into the tape at any point and a re-recording made to eliminate the splices. So far, no one has figured out how to change embossed lateral recordings as easily.

UHF HEADACHES. Not always does the debut of aHF station bring on a TV boom. In quite a few cases, UHF converters and sets sell good until the station goes on the air, then peter out. A TV Digest analysis of this situation presents five possible major causes of public disillusionment.
(1) The station gave widespread publicity to its coming-onthe air date, then m issed it by a month or more, or operated with annoying intermittency during its first few weeks on the air.
(2) The station and/or set dealers failed to let the public know that separate outdoor UHF antenna installations would be needed in most cases.
(3) Dealers didn't bother to install the necessary equipment to give good demonstrations in their own stores. This neglected the old axiom that "you can't sell it unless you show it."
(4) Servicemen were not prepared to make adequate UHF installations, which require special trans mission line and much more care in placement and orientation of the outdoor antenna.
(5) The new station carried none or few good network programs. This is the vicious circle that VHF television had to and did lick, wherein a station cannot attract sponsors until it has an audience, and a potential audience won't buy UHF equipment until it can see top-notch shows.

Fortunately the first four conditions are less prevalent in recently added UHF cities than in the pioneering localities, proving once again the value of actual experience with a new development.

WORK. When burdens grow too heavy, you can only do one of two things--throw off part of the load for others to carry, or unearth within yourself some new reservoir of strength or new inspiration to carry on. If you' re over forty and irritability is one of the accompanying symptoms, see your family doctor before hiring that hard-to-find extra man; oftentimes doc can prescribe tonic, pills or injections that will change your whole outlook on life and boost your working efficiency tremendously. Try it; its's worth gambling one or two day's salary of that new man.

MULTI-DIALER. Cute trick in meter-making is a rack-and-gear arrangement that simultaneously slides the meter scale and switches appropriate range circuitry in new Marion meters. Whereas Simpson mounts its Roto-Ranger scales on a multi-faced cylinder giving a choice of 18 different scales, th is newest development has five scales printed on a flat face that slides up or down. Such is the newest solution to the bio-mechanical problem of reading the wrong scale on a multimeter.

* * Please turn to page 122 * * "TV Guide" is of interest to the entire television and radio industry. Consequently, with Mr. Foster's permission, we are reprinting it here as a public service for every television and radio service technician in America.

UNFORTUNATELY

Because of the Greed of a 7 em,

NORMAN FOSTER

THE ENTIRE TV SERVICE INDUSTRY MUST SUFFER

HERE IS WHAT I HAVE DONE TO GUARANTEE YOU hONESt tV SERVICE

1. The name, Foster Television is not taken from a street, a deck of cards, or a country, and it is not an adjective. It comes from the name of its sole owner, Norman Foster. I have spent 22 years in the Radio, Electronics and Television service business, and in these years I have worked for just about every type of Operator, good, bad and indifferent. When the time came that I could open my own business, I decided that because of the reputation that the Radio and Television repair business has always had, a company operating so honestly that they could invite their customers into the shop to watch their work being done could be a success. The volume of business we did last year proves I was right.
2. The reason that a service man would attempt to sell you something you do not need is because he had something to gain personally. Many Television service operators hire men, driving their own cars, on a percentage basis. This is advantageous because the service company can be in business with practically no investment. Under these conditions if this man needs money, it's only human nature that he is going to want to do the thing to your television set that will make him the most moneywhether it be 5 tubes or haul it to the shop.
3. Every man that I have, works by the hour and punches a time clock. He drives a company owned new truck bearing my name and his equipment and uniforms are furnished to him without charge. He has orders to repair your set in your home whenever possible. He receives the same amount of money whether he repairs I set or 10 , and whether he charges $\$ 1$ or $\$ 10$. His rate of pay and his advancement are based on the number of sets he can repair in the home.
4. Our service call price is a flat $\$ 3$ and covers all labor necessary to make any repair possible in your home except cleaning a screen, for which we charge $\$ 1$ extra. It is evident that on this basis we do not make money on every job, but with the large volume of business we do, it has averaged out to a modest profit at the end of the year. You can bring your set into our shop and not only save this service charge, but also see it repaired while you wait. There is no minimum charge on this service. You pay only for the actual time spent on your set.
5. How fast can service be? I have a large fleet of trucks operating throughout Chicago from 9:30 A.M. to I I:00 P.M. I do not advertise one hour service and I do not believe that anything but a coincidence could give such fast service. Because it is impossible to predict in advance how long each job will take a man, the best we can do is to offer same day service. Occasionally at this time of the year, bad weather causing slow driving, makes it necessary to postpone calls received late, until the next day.
6. Quality of parts. I use only nationally advertised tubes and parts. Every tube I sell is new, fresh and cartoned, bearing a name and a date, and is coded by the manufacturer to indicate that it is a tube manufactured and guaranteed for replacement use. I do not use bulk or surplus tubes. Every picture tube I sell bears a scrial number and has a factory registration certificate to guarantee that it is a new first quality tube. I do not sell rebuilt or rejuvenated picture tubes. I use only Sprague plastic sealed condensers, which are far superior to the parts used in many TV sets.
7. I guarantee every part I replace for 90 days. If a part or tube I have replaced fails, it is replaced at absolutely no charge to you. Our guarantee is further underwritten by the American Mutual Liability Insurance Co. by arrangement with the Raytheon Manufacturing Co.
8. I have not satisfied everybody and I do not claim to. I cannot repair a set that needs a new picture tube for $\$ 3$ and I cannot give a $\$ 60$ service contract with each call. Nothing less would satisfy certain people. However, if you hear a complaint against Foster Television, that same person will generally have one against the plumber, the auto mechanic, the dentist and nearly everyone else who is unfortunate enough to do business with him. I need and value your patronage and I will sincerely respect it.

2922 MILWAUKEE AVENUE

INDEX io PHOTOFACT

RADIO AND TELEVISION SERVICE DATA FOLDERS

HOW TO USE THIS INDEX
To find the PHOTOFACT Folder you need, first look for the name of the receiver (listed alphabetically below), and then find the required model number. Opposite the model, you will find the number of the PHOTOFACT Set in which the required Folder appears, and the number of that Folder. The PHOTOFACT Set number is shown in bold-face type; the Folder number is in the regular light-face type.

IMPORTANT-1. The letter "A" following a Set number in the Index listing, indicates a "Preliminary Data Folder." These Folders are designed to provide you immediately with preliminary basic data on TV receivers pending their complete coverage in the standard, uniform PHOTOFACT Folder Set presentation.
2. Models marked by an asterisk (*) have not yet been covered in a standard Folder. However, regular PHOTOFACT Subscribers may obtain Schematic, Alignment Data or other required information on these models without charge by supplying make model or chassis number and serial number. (When requesting such data, mention the name of the Parts Distributor who supplies you with your PHOTOFACT Folder Sets.)
3. Production Change Bulletins contain data supplementary to certain models covered in previously issued PHOTOFACT Folders, and are listed in this Index immediately following the listing of the original coverage of the model or chassis. These Bulletins should be filed with the Folders covering the models to which the changes apply.

	Sat Folder No. No.
ADAPTOL	
CT. 1	48-
ADMIRAL (Also see Record Changer Listing)	
Chassis UL5K1	30
Chassis ULZC1	25-2
Chassis 3Al	2-24
Chassis 3C) (Also See	
Prod. Chge. Bul. 15-Se1 126.11	117
Chassis 4Al	3-31
Chassis 4B1	24-1
Chassis 401	49
Chassis 4H1	71
Chassis 4J1, 4K1	77-
Chassis 4L1	100-1
Chass is 4R1	108
Chassis 4S1	100-1
Chassis 4 Tl	143-2
Chassis 4 W 1	143
Chassis 5A3	191
Chassis 581 (Se	
Chassis 5B1 P	24
Chassis 5B1A	18
Chassis 5B2	100
Chassis 5C3	197
Chassis 502	119-2
Chassis 5E2	139-2
Chassis 5 Fl	57
Chassis 5G2	137
Chassis 5 Hl	26-1
Chassis 5J2	136-2
Chassis 5K1	30-1
Chassis 512	160-1
Chassis 5M2	157
Chassis 5N1	31
Chassis 5R1	59
Chassis 5R2	165-3
Chassis 5T1	68-1
Chossis 5W1	79-2
Chassis 501	76-3
Chassis 5X2	204-2
Chassis 5 Y 2	188
Chassis 6A1 [See Model 6TO1-Sot 1-19)	
Chassis 6A2	103-1
Chassis 6B1	48-2
Chassis 6 Cl	53-1
Chassis 6E1, GEIN.	6-1
Chassis 612	140-2
Chossis obl	26-2
Chossis OMI	25-1
$\begin{gathered} \text { Chassis SM2 (See } \mathrm{Ch} \text {. } \\ \delta, 2 \text {-Set } 140-2) \end{gathered}$	
Chassis 601	78-1
Chassis 8 Rl	54
Chassis 8 S 1	107
Chassis 6V1	62-1
Chassis OWI	71-1
Chassis or1	75-1
Chossis 7B1	18-2
Chassis 7C1	25-2
Chassis 7E1	36-1
Chassis 7G1	54-2
Chassis 8 Cl801 (Sae Sel$67.1)$	
Chassis 8D1	67-1
Chassis 9Al	32-1
Chassis 981	49-2
Chassis 9E1	68-2
Chassis 10al	3-30
Chassis 19A1 Tol. Rec.	
(Also see Prod. Chgo.	
Bul. 5-Set 100-1).	... 59-2
Chassis 1981, 19C1	
Chassis 19E1 Tel. Rec... 203-2	
Chassis 19F1, I9Fla Tal. Rec.210-2	
Chassis 19Gl (See Ch. 19E1-Se中 203-2)	
Chossis 19H1, 19K1 210	
Chossis 19N1 (See Ch 19E1-Set 203-2)	
Chassis 20A1, 20B1 Tel.	
Rec. (Also soe Prod.	
Chgo. But. 23, 77	

Chossis $2401,24 \mathrm{El}, 24 \mathrm{~F}$
24GI, 24H1 Tel. Rec.
Also see Prod. Chge.
Bul. 9 - Set (114-1)... 103-
Chassis 30A1 Tet. Rec.... 57-2
Chassis $3081,30 \mathrm{Cl}$,
3001 Tel. Rec........71-2
Model 4011, 4012, 4 Di
(See Ch, 401)
Models $4 \mathrm{Hi5}, 4 \mathrm{H} 16,4 \mathrm{HI}$
(A or B) Tel. Rec
(See Ch, 20A1)
models $4 \mathrm{H} 15,4 \mathrm{HI6}, 4 \mathrm{HI7}$,
Models, $4 \mathrm{H} 15,4 \mathrm{HIG}, 4 \mathrm{H} 17$
$4 \mathrm{H} 18,4 \mathrm{HIS}(\mathrm{S}$ or SN)
4H18, Rel. [See Chassi
30B1) Rec. See Chassis
Models $4 \mathrm{HT} 8,4 \mathrm{HI} 9$ (C or
CN) Tol. Rec. (Seo
Models $4 \mathrm{HII5}, 4 \mathrm{HIIO}$
4HII7 (S or SN)
Tel. Rec. (See Ch. 30B1)
Models $4 \mathrm{HI} 26 \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{CN}$
Tol. Rec. (See Ch. $2|A|$
Model 4 HI 26 (S or $S N$)
Model 4 HI 26 (S or 5 N)
Tel. Rac. (See Ch. 3081
Tol. Rac. (See Ch. 3081)
Models. (Hee Ch. 21A1)
Rec. (Sen
Model 4 HI 37 (S or SN)
Tel. Rec. (See Ch. 3081
Modals $4 \mathrm{H} 145 \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{CN}$
Models 4 HI 45 SH CN Tel
Mec. (See Ch. 30 Bl)
Models 4H146A, B, C Te
Roc. (Seo Ch. 2081)
models 4 H 146 S , SN Tol
Rec. (See Ch. 30B1)
Models $4 \mathrm{HI} 147 \mathrm{~A}, \mathrm{~B}$ Tel.
Rec. (Soe Ch. 20 Bl).
Models $4 \mathrm{H} 147 \mathrm{~S}, 5 \mathrm{SN}$ Tel
Roc. (See Ch. 30B1)
Models. 4H155A, \& Tel
Rec.
Models 4 H 155 Ch . 20 SN
(Ses Ch. 30B1)
models $4 \mathrm{H} 15 \delta \mathrm{~A}$, B Tel
Rec. (See Ch. 20BI)
Models. 4 H 1565 SN Te
models $4 \mathrm{H} 1565,5 \mathrm{SN}$ Tol
Rec. (See Ch. 30B1)
Mec. (See Ch. 30B1)
Models 4 H157A, B Tel.
Rec.
See Ch
Models 4H1575. SN To
Models 4 H 157 S , SN Tel.
Models 4H165A B Tel
Rec. (See Ch, 20bl)
Models 4 H 165 S , SN Tel
Rec. (Soe Ch. 3081)
models $4 \mathrm{HI} 166 \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{CN}$
Tel. Rec. (See Ch. 20B1)
Mec. (See Ch, 30B1)
ADMIRAL-Conf.
Chassis 2011 Tel. Rec.
|Also see Prod. Chge
Bul. 15-Set 126.1 a
Bul. 15-Set 126.1 and
Bul. 26 -Set 146.11. 117-
Chassis 20 V 1 Tel. Rec.
Also See Prod, Chge.
Also See Prod, Chgo.
Bul. 15-Set 126.1 and
Bul. 15 -Set $126-1$ and
Prod, Chge. Bul. 20-
Set i46.1),
Chassis 20x1, 20 Y 1
Chassis 20x1, 20Y1
Chassis
Tel. Rex.
Rhas
Re.
Chassis 2021 (Also....... Sea
Prod. Chge. Bul. $7-$
Prod. Chge. Bul. 7-100-100
Choss is 21 Al Tel. Rec.....100-1
(Also See Prod. Chge.
Auso See Prod. Chge.
Bul. 23-Sep 140.1). 77-1
Chassis 2181, $21 \mathrm{Cl}, 21 \mathrm{Di}$
Chassis 21B1, 21CI, 21Di
Tel. Rec. (Also See Prod.
Tel. Rac. (Also
Chge. Bul. 25-
Chge. Bul. 25
....118-2
Chassis 21E1 (See Chossis
Chassis 21E1 (See Chossi
2101 Set $118-2$ and
2101 Sol $118-2$ and
Prod. Chge. Bul. $25-$
Set 144-1).
Set 144-1)
Set 144-1)
Chassis 21F1, 21G1 Tel.
Rec. (Also soe Prod.
Chge. Bul. $30-$ Sot
and Prod. Chge. Bul.
Chgo. But. 30-Sot 156-2
and Prod. Chge. Bul.
46 Set $180-11, \quad 135-2.1$
46 Set $180-1$ I) 13
Chassis $21 \mathrm{HI}, 21111$ Yol.
Rec. (Also see Prod. Chge
Rec. (Also see Prod. Chgo.
Bul. $25-$ Set 144.1$)_{\text {. }} 118-2$
Rec. (Also see Prod. Chg
Bul. $25-\mathrm{Set} 144,1) . .$.
Chossis $21 \mathrm{KK}, 21 \mathrm{ll}, \mathrm{Tel}$.
Chossis 21K1, 2111, Tel.
Rec. (Also seo Prod. Chge.
But. 46 Set $180-1$).. $135-2$
Roc. (Also see Prod.
But. $46-50 t 180.1$....
Chassis. 21 M , 21 N 1 Tel .
Chassis $21 \mathrm{MI}, 21 \mathrm{~N}$ ITel.
Rec. (Soe Prod. Chge.
Roc. (Soe Prod. Chge.
Bul. $30-$ Set $150-2$.
Bul. $30-$ Sel $156-2$,
Prod. Chge. Bul. $46-$
Sat $80-1$ and Chassis
Sot 180-1 and Chassis
$21 \mathrm{F1}$-Set $135-21$

Chassis 21P1, $21 \mathrm{Q1}$ Tel.
Rec. (Also

Chge. Bul. $\mathbf{3 0 - S e t ~} 50-2$
ond Prod. Chee. Bul.
46-Set 1.80-1).....135-2

Chassis 21 W 1 Tel . Rec.
Chassis $21 \mathrm{X} 1,21 \times 2$ (See
Chassis $21 \times 1,21 \times 2$ (5ee
Prod. Chge. Bul. $62-$
Prod. Chge. Bul. $62-$
Set 196-1 and 'Ch.
21 W1-Set 177-2
21W1-Sel 177-2)
Chassis 2 YY Tel. Rec.....177-2
Chassis 21 Y 1 Tel . Rec..
Chossis $21 Z 1,2121 \mathrm{~A}$
Chossis $2121,2121 \mathrm{~A}$
Tel.
Chassis 22A2, 22AZ

Chossis $22 \mathrm{C2}$ Tel. Rec.... 2011
Chossis 22C2 Tel. Rec.....201-2
Chassis 22E2 Tel. Rec....201-2
Chassis $22 E 2$ Tel. Rec..... 201-2
Chassis 22 MI Tel. Rec.. 180-2
$\begin{array}{ll}\text { Chassis 22M1 Tel. Rec... 180-2 } \\ \text { Chassis } 22 \mathrm{Y} \text { 1 } & \text { Tel. Rec. 180-2 }\end{array}$
Chassis 22 Y i Tel. Rec...180-2
Chassis 23A1 Tel. Rec....211-2

```
Sst Folde
ADMIRAL-Conf.
Models 4H167A, B, C,CN
Tel, Rec. (See Ch. 20B1)
    M
    Models 4R11, 4R12
    (See Ch. 4R1)
    (See Ch. 4TI)
    Model: 4W18, 4W19
    (See Ch. 4W1)
    Models 5A32/12,
        5A32/15,5A32/16
        5A33/10'(500 Ch. SA3)
        Models SE21,5E22, 5E23
        MSee Ch.SE2)
        (Soe Ch. Sf1)
        Modals,5G21,5G21/15,
        5G23/15 (See Ch. 5G2)
        Models 5121, 5/22, 5123
        (See Ch.'5J2)
        Models 5K11, 5K12,5K13
        5K14 (5ee Ch. 5K1)
        Models 5L21,5L22, 5L23
        Moee Ch. 5L2)
        (Seo Chassis 5M2)
        Models 5R10 (See Ch. 5R1)
        Models 5R11, 5R12,5R1
        Model SS2IAN
        (See Ch, 5C3)
        Model 5S22AN
        M(See Ch.SC3)
        (Soe Ch. 5C3)
        Model 5T12 (Ch. ST1)
        Models 5W/1, 5W/1
        Models 5\times11,5\times12,5\times13
        5\times14 (See Ch. 5\times1)
        Models }5\times21,5\times22,5\times2
        Model (5Y22. (See Ch. 5Y2)
        Models 6A21, 6A22, 6A23
        (See Ch. GA2)
        Model OC11 (Soo Ch. BC1)
        Model 6C71 (Soe Ch. 10A1)
        Models 6121, 6)22
        Model OMM22
        (See Ch. 6M2) 
        6N25, 6N26, 6N27
    Model SP32 (Soe
    Model 6P32 (Soe
    Models 6Q11, 6012,8013,
        SQ14 (Soe Ch. OQ1)
        Model OR11 (See Ch. 6R1)
    ORP50 (Seo Ch. 3AI)
Set Folder
No. No.
```


important Photofact information

We want you to receive maximum benefits through your use of this Index and of PHOTOFACT Folders. To keep you fully informed about PHOTOFACT, we have prepared the table of informative subjects listed below. Be sure to read each item carefully.
Subject
Page No.

1. Explanation of letter " A," asterisk ("), and Prod. Changes.49
2. How to obtain a sample PHOTOFACT Folder 58
3. How to file PHOTOFACT Folders easily and quickly 62
4. How to obrain Service Data on Pre-War Models . 66
$\begin{array}{ll} & \text { Sot Fo } \\ \text { ADMIRAL-Cont. } & \text { No. }\end{array}$
Set Folder
No. No.
Models SRT41, SRT42, SRT43
Modes ort41, ORT42,
(See Ch. 581 Phona)
(See Ch. 581 Phona)
Model ORT41A, 7RT42A,
6RT43A (Soe Ch. 5B1A)
Model GRT44 (Soe Ch. 7B1)

(5ee Ch. ©S1)
Modal 8 TO1
Model
oT02,
Model
oT05
$1-19$
$1-20$
$1-19$
Model 6TOS, 6707
(See Ch. 4Al)
Model GTli (See
Model $6 T 11$ (Ste
Model 6702 -Set 1.201
Model 6TO2-Set 1.20)
Model 6T12 (See Ch. 4A)
Model $6 T 12$ (See Ch. 4A1)
Model 6T44A (See Ch. 7B1)
Model oT44A (See Ch.
Models oV11, oV12
$M o d e l s$
[See Ch.
SV1)
SV1)
(Sese Ch. 6 VI 1
Models $6 \mathrm{~W} 11, \mathrm{oW} 12$
(Seo Chassis own
(See Chassis oWI)
Models 6 Y 18 o Y 19
Models ofyss, or Y 19
(See Chassis oY
(See Chassis 6 Y 1)
Models $7 \mathrm{C} 00 \mathrm{~B}, 7 \mathrm{CSOOM}$,
Models $7 \mathrm{COOB}, 7 \mathrm{CSOM}$
7 C 60 W (500 Ch .6 BI)
7C60W (Soe Ch .681$)$
Models $7 \mathrm{CO} 1,7 \mathrm{CS} 2,7 \mathrm{C} 62 \mathrm{UL}$
(See Ch. om1)
Model 7 CS 2 A
Model 7 Cb 2 A
(See Ch. $6 \mathrm{M1]}$

(See Ch. 7 ClI
Model 7 C 3 A
(See Ch .7 Cl
Modee Ch .7 Cl$)$
Models

Model $7 \mathrm{C73}$ (Soo Ch . 9A
Models $7 \mathrm{G11}, 7 \mathrm{G12}$
Models 7G11, 7G12,
7G14, 7GI5, 7GI6

7 P35 (See Ch. 5H1)
Model 7RT41, 7RT42,

Models 7101 , 7101 M -UL
7T04, 7 T04-Ul
(See Ch .5 Ni)

Model $7 T 10$ (See Ch. 5K1)
Model $7 T 12$ (See Ch. 4B1)
Model $7 T 12$ (See Ch.
Models 7T14, 7115
Models Ch. SK1)
Models 8C11,8Cl2,8 8 Cl 3
Tel. Rec. (See Ch.
$30 \mathrm{~A})$ and Ch. BCi)
30A) and Ch. 8C1)
Models 8 Cl ($8 \mathrm{Cl} 15 \mathrm{BC16}$

8 Cl 7 (Soe $\mathrm{Ch}, \mathrm{gCl})$
Models $8015,8 \mathrm{D} 16$
Models 8015, 8D16
(See Ch. 8D1)
(See Ch. 8D1
Model BRP46
Model CRP46
(Soe Chassis 3A1)
Models 9814,9815,9B16
(See Ch. '9B1),
Madels $9 E 15,9 E 18,9 E 17$
Models 9E15, 9E18, 9E17
(See Ch. QE1)
Models $12 \times 11,12 \times 12 \mathrm{Tel}$.
Rec
Models. (See Ch. 2021 Tel.
Rec.
Models $14 R 11$,
Models $14 R 11,14 R 12$ Tel.
Rac. (See Ch. 2011)
Model 14R18 (See Ch. 2011)
Model 14 R1 6 [See Ch. 20 T
Model 15 K 21 Tel. Rec.
Model $15 \mathrm{K21}$ Tol. Re
(See Ch. 20T1)
Model 16 M 12 Tel . Rec.
(See Ch

Models 16R11, 16R12 Tal.
Rec. (See Ch. 2181)
Models $17 \mathrm{D} \times 10,170 \times 19$.
Models
170×12 Tel. Rec.
TSee
 Models
Rec.
17K11,
M Rec. (Soe Ch. 21F1)
Model 17K10
> model 17 K 16 Tol. Rec.

(See Ch. 21F1j
Models $17 \mathrm{~K} 21,17 \mathrm{~K} 22 \mathrm{Tel}$.
Models $17 \mathrm{~K} 21,17 \mathrm{~K} 22$ Tel
Rec.
Rec. (See Ch. 21F1)
Models $17 \mathrm{M} 15,17 \mathrm{M16}$,
Models $17 \mathrm{M} 15,17 \mathrm{M}$
17 M 17 Tel . Roc.
1SM17 Tel. Rec.
(See Ch. 21F1)
(See Ch. 21 Fl)
Models $19 \mathrm{~A} 115, \mathrm{SN}$,
Models $19 \mathrm{~A} 11 \mathrm{~S}, \mathrm{SN}$,
$19 \mathrm{Al} 2 \mathrm{~S}, \mathrm{SN}$ Tel. Rec
19A12S, SN Tel. Rec
(See Ch. 19 Al).
(See Ch. 19A1)
Models 19A15S, SN Tel
Rec. (See Ch. 19A1).
Models $20 \times 11,20 \times 12$ Tol.
Models $20 \times 11,20 \times 12$ To
Rec. $[5 e 0 \mathrm{Ch} .20 \times 1\}$

crath

these practical books GIVE YOU THE "KNOW-HOW"

"|RE ANTENNAS, CONVERTERS AND TUNERS"

Milton S. Kiver gives you all the answers on: UHF Antennas: Full analysis of each UHF type-design, operation, directional char acteristics, input impedance, gain-tells you type best suited for any given location and conditions.
Transmission Lines, Matching Networks: te-ls how to select proper line to deliver maximum signal to receiver.
Installation Practices: Practical advice on proper antenna location and routing of line to set; tells how to check for antenna mismatch, how to determine whether system is properly installed.
UHF Converters: Full analysis of all existing self-contained types, including turret tuner strips.
UHF Tuners: Covers tuner design and operation, ranging from parallel-wire to "butterfly" types-tells how they work.
This book keeps you ahead in TV, makes you a UHF expert, for extra profits. Get your copy today.
ORDER UHF-I Only
\$1.50

"\|RF converters"

Covers 21 Models Be among the first to understand the design and operation of the new UHF converters and tuners. This book describes all the popular units and tells how they work with present VHF sets. Covers the following makes:
 Arvin, Crosley, Dumont, G.E., Mallory, Motorola, RCA, Raytheon, Regency, Sarkes-Tarzian, Standard Coil,Stromberg, Sutco, Sylvania. To stay ahead in TV, you'll want this essential book. ORDER UC-1. Only.
$\$ 1.00$
ORDER THESE BOOKS TODAY!

-HOWARD W\% SAMS \& CO., IIM.

ORDER THESE OUTSTANDING

TV BOOKS

FROM YOLiR
PHOTOFACT DISTRIBUTOR

Howard W. Sams PHOTOFACT Publications

PHOTOFACT SERVICE MANUALS

Here's the radio-TV service data that saves time and helps you earn more! Preferred and used daily by thousands of Radio and TV Service Techniciansans of Rado and analysis of the ectual equipment Uniform treat ment for the actual equipment. Uniform treat men Schematics. full chassis photo Nota tion Schematics; full chassis photo coverage; complete circuit analysis and replacement parts data, wave forms, alignment data; record quick, profitable servicing. Fach volume in quick, profita

VOL. 1-Post-war models to Jan. 1, 1947
VOL. 2-Jan. 1, 1947 -July 1, 1947
VoL. 3-July 1, 1947-Jan. 1, 1948
VoL. 4 -July 1, 1947 -Jan. 1, 1948
VOL. ${ }^{4}$-JaL. Jan. 1, 1948 -July 1, 1948
VOL. 5—July 1, 1948 -Dec. 1, 1948 VOL. 6-Dec. 1, 1948 -May 1, 1949 VOL. 7-May 1, 1949-Oct. 1, 1949 vol. 9-Dec. 1, 1949-Dec. 1, 1949 vol. 10-Mar. 31, 1950 - July 31, 1950 VoL. 10 -Mar. 31, 1950 -July 31, 1950
VoL. 11 -July 31, 1950-Oct. 31, 1950 VoL. 12 -July 31, 1950 -Oct. 31,1950 -Jan. 1, 1951 VOL. 12 -Oct. 31, 1950 -Jan. 1, 1951 Vol. 13 -Jan. 1, 1951 -Apr. 30, 1951
Vol. 14 -Apr. 30,1951 -Aug. 1, 1951 Vol. 14 -Apr. 30, 1951 -Aug. 1, 1951 VOL. 15 -Aug. 1, 1951 -Oct. 31, 1951 VOL. 17 -Uct. 31, 1951 -Jan. 31, 1952 -Apr. 30, 1952 VOL. 18 -Apr. 30, 1952 -July 31, 1952 Vot. 19-July 31, 1952-Nov. 30, 1952 VOL. 20-Nov. 30, 1952-Feb. 28, 1953 VOL. 21-Feb. 28, 1953-May 31, 1953 Vol. 22-May 31, 1953-Mept. 15, 1953 VOL. 23-Sept. 15, 1953-Dec. 15, 1953
(2) Each Volume in Deluxe Binder. . $\$ 21.00$

PHOTOFACT FOLDER SETS

The easiest way to own the world's finest TV-Radio Service Data. Issued three sets per month-put in your standing order for them.
(2) Per PHOTOFACT Set............... $\$ 1.75$

PHOTOFACT SERVICE DATA ITEMS

(2) Deluxe Photofact Binder, Each........ $\$ 3.50$ (2) PF INDEX Binder (holds 12 issues) ... 2.50 (1) Index Tabs for Sets 1-10. (1) Vol Tabs for Sets 1-20..
(1) Volume Labels for Vols. 1-10. .50 (1) Volume Labels for Vols. 21-30 . 40

Volume Labels for Vols. $11-30 \ldots .25$ (1) Index Cards, Sets 1-100 ... $\$ \mathbf{2 . 5 0}$ per set (1) Index Cards, Sets 101-200 .. 2.50 per se (1) Index Cards, Sets 201-300 .. 2,50 per set (1) Mailing envelopes........... 2.70 per 100 EASY-PAY PLAN: Ask your Parts Distributor for details an our atpractive Time Payment terms tha enable you to own and use the PHOTOFACT Service Data Library on a convenient pay-as-you-earn basis.

AUTO RADIO SERVICE MANUALS

Vol. 3. Full service data on 47 chassis (80 models) used in 1950, 1951 and 1952 auto radio receivers. 288 pages, $81 / 2 \times 11^{\prime}$. Order AR-3 $\$ 3.00$
Vol. 2, Covers 60 chassis (90 models) used in 1948, 1949 and 1950 auto radios. 288 pages, $81 / 2 \times 11^{\prime \prime}$. Order AR-2
$\$ 3.00$
Vol. 1. Covers 100 auto radio models made from 1946 to 1949 by 24 manufacturers. 396 pages, $81 / 2 \times 11^{\prime \prime}$. Order AR-1.

HANDY SERVICE GUIDES

Dial Cord Stringing Guide. Vol. 2: Shows correct way to string dial cords in radio receivers made from 1947 through 1949 . 96 pages, $51 / 2 \times 81 / 2^{\prime \prime}$. Order DC-2

1938
Vol. 1: Covers receivers produced from 1938 through 1946. 112 pages, $51 / 2 \times 812^{\prime \prime}$. Order DC-1

Radio Receiver Tube Replacement Guide. Shows where to replace each tube in 5500 receivers made from 1938 to 1948.196 pages, $51 / 2 \times 81 / 2^{\prime \prime}$. Order TP-1.

INVALUABLE TELEVISION BOOKS

Photofact Television Course. Gives a clear, complete understanding of TV principles, operation and practice. 208 pages, $81 / 2 \times 11$. Order
$\$ 3.00$
TV Servicing Short-Cuts. Describes actual TV service case histories; shows how to solve similar troubles in any receiver. 100 pages, $51 / 2 \times 812^{\prime \prime}$ Order TK-1. $\$ 1.50^{\circ}$

TV Test instruments. Tells how to operate each test instrument used in TV service work. 148 pages, 81/2 $\times 11$. Order TN-1............. $\$ 3.00$
UHF Converters. Describes 21 popular converters; shows how they work. 44 pages, $81 / 2 \times 11$ Order UC-1 $\$ 1.00$
UHF Antennas, Converters \& Tuners. Covers all antenna types, transmission lines and match ing networks, UHF converters and tuners. 136 pages, $51 / 2 \times 81 / 2^{\prime}$. Order UHF-1.
Television Antennas. 2nd Edition. Tells how to select, install and service antennas. 224 pages $51 / 2 \times 81 / 2^{\prime \prime}$. Order TAG-1................. $\$ 2.00$

Servicing TV in the Cusfomer's Home. Short-cut methods for repairs in the field; helps eliminate chassis removal. 96 pages, $51 / 2 \times 81 / 2^{\prime \prime}$. Order
TC-1 $\$ 1.50$
Making Money in TV Servicing. Tells how to set up and operate a profitable TV service business 136 pages, $51 / 2 \times 81 / 2^{*}$. Order MM-1 $\$ 1.25$
TV Tube Location Guides: Vol. 3. Shows tube positions and functions in hundreds of TV receivers. Helps quickly locate faulty tube, 192 pages, $51 / 2$ $\times 81 \%^{\prime}$. Order TGL-3

Vol. 2. Covers receivers not included in Vols. and 3. 208 pages, $51 / 2 \times 81 / 2^{\prime \prime}$. Order TGL-2 . $\$ 2.00$ Vol. 1. Covers hundreds of sets made by 56 mfgrs. 208 pages, $51 / 2 \times 81 / 2^{2}$. Order TGL-1. $\$ 1.50$

AUDIO PUBLICATIONS

Recording \& Reproduction of Sound. Oliver Read's biggest selling volume on all aspects of Audio funly covers recording and amplifying methods and equipment. Authoritative, complete. 810
pages, $6 \times 9^{\text { }}$. Order RR-2............... $\$ 7.95$

Audio Amplifers. Vol. 3. Full analysis of 50 audio amplifiers and 22 tuners made during 1950. 352 pages, $81 / 2 \times 11$. Order AA-3.

Vol. 2. Covers 104 ampifiers and 12 tuners pro
dol. Covers 104 amplifiers and 12 tuners pro duced during 1949. 368 pages, $81 / 2 \times 11^{\prime \prime}$. Order AA-2
$\$ 3.95$
Vol. 1. Covers 102 amplifiers and tuners produced from 1946-1948. 352 pages, $81 / 2 \mathrm{x} 11$ " Order AA. 1

RECORD CHANGER MANUALS

Vol. 4. Full service data on 38 changers and recorders made during 1951. 288 pages, $81 / 2 \times 11^{\circ}$. Order CM-4.
Vol. 3. Covers 44 changers and tuners made in 1949 and 1950. 288 pages, $81 / 2 \times 11$. Order CM-3
$\$ 3.00$
Vol. 2, Covers 45 models made in 1948 and early 1949. 432 pages, $81 / 2 \times 11^{\prime}$. Order CM-2 . . . $\$ 4.95$

Vol. 1. Covers 41 post-war models made up to 1948. 396 pages, $81 / 2 \times 11^{\prime \prime}$. Order CM-1.... $\$ 3.95$

COMMUNICATIONS RECEIVERS

Vol. 2. Full analysis of 26 popular communications receivers made during recent years. 190 pages, $81 / 2 \times 11$. Order CR-2 $\$ 3.00$

Vo!. 1. Covers 50 well-known models produced CR-1

Prder
1.00

Get these PHOTOFACT Publications af your Parts Distributor

ADMIRAL-Co	AIRC
Model 221DX38A Tel. Rec. See Ch 10Cl or lofl	C.300 - 136 -3 ${ }^{3}$
Models 221 Klo , A Tel.	EV-760 85
Rec. (See Ch. 21k 1)	
(See Ch. 2iki). Rec.	
Models $221 \mathrm{~K} 35,221 \mathrm{~K} 36$	71
Tel. Rec. (See Ch. 21K1)	
dels $221 \mathrm{k} 45,221 \mathrm{k} 46$,	Pa
221 K 47 Tel T. Rec.	PC-8, PC-358 ${ }^{99}$
(See Ch. 21 M1)	PM. $78.15 \ldots \ldots$...... 100
Models $221 \mathrm{~K} 45 \mathrm{~A}, 221 \mathrm{K46A}$,	PM-358
	PX \ldots............. ${ }^{137-35}$
Models $221 \mathrm{M} 26,221 \mathrm{~m} 27$	REV24
	RZU248 (See Model
Modil Rec. (see Ch. $220 \times 15 \mathrm{Tel}$ Rec.	
(See Ch. 19H1)	TD.6 103
Model $222 \mathrm{D} \times 155 \mathrm{Sel}$. Rec.	WEU-262 91
(See Ch. 22,2)	WRA1-A 47
Models 2220×16, 2220×17	WRA-4
Tel. Rec. (See Ch. 22 C 2)	X8702, $\times 8703$ Tel. Rec... 93
odels 2220x26, 2220x27	XL750, XP775 Tel. Rec
	OA-358.VM (See Mod
Tel. Rec. (See Ch. 22C2)	06-F, 06.1
Models $2280 \times 16,2280 \times 17$	78
Tel. Rec. (See Ch. 23A1)	O 50 -2
	10C, 10 T Tel. Rec. 15
See Ch. 21 T1)	del 14C-Set 140
Models 320R25, 320R27 Tel. Rec. (See Ch. 21رl)	12C, 12 T Tel. Rec. (See
Modeis $3210 \times 15,3210 \times 16$,	14 C , 14 T Tel. Rec. . . ${ }^{\text {a }}$. $140-3$
${ }^{3210 \times 17}$ Tel. Rec.	15 67-2
	C, 16 T Tel. Rec. (See
odels 3210×154 $3210 \times 16 A$, $3210 \times 17 \mathrm{~A}$	Model 14 C -Sot 14
	7 C
	20×1
odels 3210x15L	88, 88w142-2
$321 \mathrm{D} \times 16 \mathrm{~L}, 321 \mathrm{DX17}$	101 … 86-1
Tel. Rec. (See Ch. 19N1)	1028 98-2
Model $321 \mathrm{DX258}$ Tel. Rec.	1068
(See Ch. 19E1 of Ch. 19G11	150, 153 126-2
Model 3210×26 Tel. Rec.	
(See Ch. 19 E	200139-3
Model 321 D 268 B Tel. Rec.	201 81-1
(See Ch, 19E1	$211{ }^{\text {65-1 }}$
Ch.	${ }_{212}$ - 68-3
mode 32 Cb 278 Tel . Rec.	
(See Ch. 19 El or	2271, 227 W
Models $321 \mathrm{~F} 15,321 \mathrm{Fl}$	${ }^{312}$ Tel. Rec.
Tel. Rec. (See Ch. 21 l1	315 Tel. Rec. (See M
and $\mathrm{Ch}, 502)$	14 C -Ser $140-31$
Model 321 F 18 Tel. Rec.	350136-4
odel 321 F 27 Tel . Rec	412 Tel. Rec. See Model
(See Ch, 21Ll and	16 Tel. Rec. (See Model
Ch. 502)	14 C -Set 140.31
odels 321F35, 321F36	72.JP24,472. JP25
Tel. Rec. (See Ch.	
Models 321F46, 321 F 47	8-1
Tel. Rec. ISee Ch.	472.MP25-Set 168.1)
$21 \mathrm{L1}$ ond $\mathrm{Ch}, 5021$	472.MP25168-1
del 321 F49 Tel. Rec.	
(See Ch. Ch. 5D2)	472.17XUT, 472.17xUT.1
	472.XUT.2, 472.XUT. 3
odels 321F65, 321 F66.	(Ch. 217B) Tel. Rec. (Seee
Ch. 21W1 and Ch. 5D21	Model 20XUT--Set 185.3)
odels 321 K 15 , 321K16	Rec. (See Model $20 \times \mathrm{XT}$ -
Yel, Rece, (See Ch ,	Set 185.3)
Model $321 \mathrm{~K} 18 \mathrm{~S}^{\text {Tel }}$. Rec	
See Ch. 21 L 1 and Ch .	Tel. Rec. (See Model
Model 321 k 2	20XUT-Set 185-31
(See Ch. 21 ll	568.205
ond Ch. 3C1)	568.205 .1 (See Model
odels $321 \mathrm{~K} 35,321 \mathrm{~K} 36$	200-Ser 139.31
Tel. Rec. Seee Ch. 21 LI	. 305
and $\mathrm{Ch}, 3 \mathrm{Cl11} 32 \mathrm{~K} 47$	572
Models $321 \mathrm{K46}$, $321 \mathrm{K47}$ Tel. Rec. (See Ch, 21 L)	594.935 (See Model $935-$ Set 128.2)
and Ch .3 Cl 1$)$	${ }_{602.182144}$..........114-2
Model $321 \mathrm{K49}$ T Tel. Rec.	803-PR-8.1 133-2
(See Ch. 21 L1	${ }_{604}$ (1).......... ${ }^{53} \mathbf{3}^{2}$
Models $321 \mathrm{~K} 65,321 \mathrm{~K} 6$	
321 K 67 Tel , Rec. (See	607-314, 607.315122-2
Ch .21 Nl and 3C11	607.316, -1, 607.317, -1.138-2
odels 321M25, 321M26,	610.C351174-2
S 321 M 27 Tel. Rec.	610.CL1528, M 208 -1
	610. D200. ${ }^{1422^{3}}$
(See Ch. 22 Y 1)	${ }_{610.4400}$ (.............. 178 -2
Model 3220x16 Tel. Rec.	
Moil. Rec. (See Ch. 21 Y 1)	${ }_{621}^{621}$ (Ch. FJ-91)........ 14-2
odeis $421 \mathrm{M} 15 \mathrm{~A}, 421 \mathrm{Ml} 3 \mathrm{~A}$	${ }_{841}^{626} \ldots \ldots \ldots \ldots \ldots \ldots$ 18-3
Tel. Rec. (See Ch. 22Y)	${ }_{651} 81$.................. 15-1
Models $421 \mathrm{M} 35,421 \mathrm{M} 36$.	652.A25, $652.435 \cdots 169$ -
${ }^{421 \mathrm{M} 37}$ Tel. Rec.	652.6T1E, V 205-2
	${ }_{652.32751}$ A210-3
	652.4875211-3
22A2A)	
odels 520 M 15.520 M	
$520 \mathrm{M17}$ Tel. Rec.	915i, w 12129
	935128-2
52 M 17 Tel. Rec. (See Ch. 21 Y1)	Model'9511-Set 129-2)
	1400C, 1400 T Tel. Rec... 140-3
$521 \mathrm{Ml7a}$ Tel. Rec.	1700 C , 1700 T Tel. Rec... 140-3
(See Ch. 22Y1)	3170 Tel. Rece. For TV Ch.
AERMOTIVE 181-AD 12-1	See Set 140-3, For Radio Ch. See Model
AERO (See Record Change	150-Set 126-21
Listing)	4170 Tel. Rec. (For TV Ch.
MCEE (See AMC)	Radio Ch. See Model
airadio	350-Set 136.4)
SU.41D 11-1	5000, 5001 16-2
SU-52A, B, C (Receiver). . 13-2	5002 . 5004.
100 A, B, C (Iransmither 33-1	5008, $5009 . . .1$...... 46-1

AIRCASTLE-COnf.

010, 5011, 5012	$13-4$
5015.1	118-3
5020	16-3
5022	123-2
5024	45-1
5025	24-2
5027	49
5028	44
5029	51
5035	46
5036	72
5044	121-
5050	48
5052	45
5056-A	120
6042	61
6050	74
6053	97-1
6514	18
6541	17
6544 (See Model 6541 Set 17.21	
6547	17
6615, 6612, 6613, 6630, 6631, 6632, 6634, 6635	15-2
7000, 7001	14-3
7004	19
7014, 7015	57
7015 Early	47-2
7553	45-3
90081, 9008W	99-2
90091, 9009W	97-2
90121, 9012W	94-1
10002	54-1
10003-1	46-2
10005	62-3
10021-1, 10022-1	59-3
10023	58
10024-1	58-2
108014, 108504	57-4
121104	73-1
121124	$61-2$
127084	55-2
131504	60-2
132564	69-1
138104	54-3
138124	64-1
139114 (See Model 139144 -Set 59.41	
147114	56-3
149654	71-4
150084	71-4
144 (See Mode	

159144 (See Model
139144 -Wet 59.4)
AIR CHIEF (See Firestone)
A-400 (Ch.

AIRLINE-Cont.	
74BR.2001A (See Model 748R-2001B-Set 23-21 74BR-2001B 23-2	
$748 \mathrm{R}-2701 \mathrm{~A}$	24
${ }^{748 \mathrm{R} .2702 \mathrm{~A} \text { (See Model }} 7$	
$748 \mathrm{C}-2702 \mathrm{~B}$	
74 GSG -810A ${ }^{\text {a }}$, $60-3$	
74 SSG-8820A $4 \mathrm{H} \cdot 8200 \mathrm{~A}$	52-2
4H4.82004 58	
74 KR .27068	
74 KR -2713A	
74WG.925A 24-6	
Model 64WG-1050A- Set 10.2)	
74WG.1052B (See Model 64WG.1052A, BSet 9.21	
WG-1054A	22
WG-1054B (See Mode)	
1056A	
74WG.1057A	32
${ }^{7} 7 \mathrm{WGG}$-1207B 18	
74WG.1509A	
7 WGG .1	
WG-1511B,	
64WG-1511A-Set 5-5)	
WG-1803A ISee Mod	
74WG.1804C (See Model	
64WG-1807A-Set 5-4)	
74WG-2002A	26
74WG.2004A ${ }_{\text {7 }}$ 7WG.2007B, \ldots..... 27	
7WG.200	
WG-2009	
64WG-2009A-Set 0-2)	
WG-2010A (See Model	
74 WG-20108	
${ }^{74 W G .2500 A-S e l} 4.15$)	
74WG-2504B, C [5 eo Model	
$74 \mathrm{WG-2505A}$	18-7
54WG.2500A - Set 4.15)	
$74 W \mathrm{G}-2704 \mathrm{~B}, \mathrm{C}$ (See Model 74WG-2704ASot 28.1)	
74 WG.2705A, B (Soe Model 74 WG-2505-Set 18-7)	
848R.1815B, 848R.18168	
84GCC. 9938	
84 GCD .987 A	
84GHM-926884 GSE -2730	
${ }_{84 G S E .273 i A ~ ~}^{70}$	
$\begin{aligned} & \text { (See Model 94HA- } \\ & 1527 \mathrm{C} \text {-Set } 67-3 \text {) } \end{aligned}$	
84HA1529A, B4HAI530A 85-2 84HA.1810A (See Model	
${ }_{8}^{8444.18 .1810 C}$ C-Set 69.2$)$	
84HA-3010A, B, C	
Tel. Rec. (A) io see Prod.	
Sset 1188.11.	
${ }_{84 \mathrm{~K} \text { - } 2511}^{81}$	
84 84W. 1050 A	
84WG.2015A	38
${ }_{84 W G .2506 ~}^{1500}$ Model	
${ }_{84 \mathrm{WG}-2508 \mathrm{~B}}^{\text {84 }}$.......... 58	
$8^{8 W G .2712 A ~} \cdots$...... 43-3	
84WG.27128 (See Model 84WG-2712A-Set 43-3)	
84WG-2728A (See Model B4WG-2718A-Sot 45.5)	
84WG-2734A (See Model	
84WG.3006, 84WG. 3008,$84 \mathrm{WG}-3009$ Tel. Rec.	
(See Model 94WG 3006A-Set 72-4)	
4BR-3017A Tel. Rec.... 89-2	
488.30178 Tell. Rec.	
(See Prod. Chge. Bul. 7-Set 110-1 and Model	
Tel. Rec.	

Q4GSE-2735A
94GSE-273

AMBASSADOR

Al7CS, Al7TS Tel. Rec.
(See Model 20PC-Sel
(See Model 20 PC -Set
$178-3$)
A 20 CS Tel. Rec. (See Mode
A 20 PC Tel . Ret. $178-3$)
S 2100 CS Tol.
A 21 QDCS Tel. Rec. (See
Model $20 \mathrm{PC}-$ Sel 178.3) Model 20PC-Sel 178.3)
A24QDCS Tel. Rec. (See
Model 20PC-Sot 178-3) Model $20 \mathrm{PC}-$ Set 178 -
AMITC, CB, CIM, PT, TIM, Tel. Rec..........171-2
AM20C, T Tel. Rec.....171-2
T1720, T2020 Tel. Rec...175-2
T2020 Tel. Rec............175-2 C2050 Tel. Rec. ISee Mo.
(1720-Set 175.2$)$ c1720- Sec its.
C2052 Tel. Rec. (See T1853-Se1 197-3) C2152, A Tel. Rec. [Se
Model $71853-S e t 197-3$)
C2150 Tel Rec (See Mode] C2150 Tel. Rec. (See Model
C1720-SB+ $175-2$) C2155 Tel. Rec. (See Model
T1853-Set $97-3$) T1853-Set 197-3)
C2420 Tel. Rec..... C2420 Tel. Rec......
C2020 Tol Rec.
PL17CB, CG, PG, TM

CD2020 Tel. Rec. 14 MC , MT Tel. Rec. $\triangle M C, M T$, MXC, MXCS MXT, MXIS Tel. Rec 1 ISMT (2nd Prod.), MTS Tel. Rec. MXC, MXCS, MXT, MXTS Tel. Rec.
17 MC (2nd Proa.). MCS. MT (2nd Prod.), MTS
Tol. Rec. 7PC. $17 P C S$ Tel. Rec.
See Model 20PC-
(See Model 2OPC-
Set 178.3)
17PT, 187TS
Sei 178-3)
20 C Tel. Rec..............171-2
2OMC, MCS, MT, MTS
Tel. REC. . . 173-........... 21CD2A, B Tel. Rec. See 173-2 191-4)
$20 \mathrm{PC}, 20 \mathrm{PCS}, 20 \mathrm{PCS} 2$ TeI. ReC. 20 CLS 2
2OPT, 2OPTRS, 20PTS Tel. 178-3 Rec. (See Model
20PC-Set 178-3) $21 \mathrm{C2A}, 21 \mathrm{C} 2 \mathrm{ALO} \mathrm{Tel}$. Rec. 191-4 21 CO 2 B Tel. Rec. (Soe
Model 21 C 2 A . Sel) 23p Tel. Rec............1711-2 921 Tol. Rec. (Seo Model 9120, to Tel. Rec....... 1919120 , to Tel. Rec....... 19
9121,10 Tel.
Model 21 C 2 A - Set 191-4) 9820 , 10, 9821, LO

AMC (AIMCEE),

1C23 Tel. Rec.
(Similar to Chassis)...139-11 1 C72 Tel. Rec. Chassis)... 126_8 (Similar to Chassis) ... 126-8
$1 \pi / 1$ Tol. Rec.
(Similar to Chassis)...126-8 (Similar to Chassis)...126-8
17 C CB, T Tel. Rec.
(Similor to Chassis). . 126-8

AMC-Cont.
17CG, $17 \mathrm{C3}$, 17IG Tel. Rec.
(Similar to Chassis). . 149-1
 $20 \mathrm{C} 2 \mathrm{~A},-1$ Tel. Rec., .. 139-1
$20 \mathrm{C} 22,20 \mathrm{D}$, DB, 20 T 21 20C22, 20 D
Tel. Rec.
(Similar to Chassis)... 139-11
$20 \mathrm{CD}, 20 \mathrm{C} 1,20 \mathrm{TG}$ Tel. Rec. 20CD, 20Cl, 20TG Tel. Rec.
(Similar to Chassis)... 149-13
$20 \mathrm{CD} 2 \mathrm{~A},-1$ Tel. Rec. ... 1882012A, ${ }^{-1}$ Tol. Rec........ 18
$21 \mathrm{CDOLA}, \mathrm{B}$ Tel. Rec. (See
Model 20C2A. Sel 188.31
21C2A Tel. Rec. (See Model
20 C 2 A -Sel 188.31
$24 \mathrm{~T} 2 \mathrm{~A}, 1 \mathrm{Tel}$. Rec...... 188-3 114C, 114 T Tel. Rec.
(Similar to Chassis) . . 111 (Similar to Chassis)...111-3
$116 \mathrm{C}, 116 \mathrm{CD}, 116 \mathrm{~T}$ Tol. Rec.

AMERICAN COMMUNICATIONS AMPLIFIER CORP.
ACA.100DC, ACA.100GE 63-2 AMPLIPHONE
10
20
............................... 21-1
21-
12
AMPRO (See Recorder Listing)

ANDREA

BT-VK12 Tel, Rec....... 76-5
BC-VLI7 (Ch. VLIT)
BC-YLIT (Ch. VIIT) Teil.
C.V117-Set 152.1)

BT-VLI7 (Ch. V(17) Tel
Rec. (See Model
C. $V 117$ Set $152-1)$
Co-U15
co-VK15, covkio ich. 27-3
VK1s18 Tel. Rec. (Also

COVK-125 Tel. Rec. 103-4 -5
COVVL10 (Ch. VII6)
Tel. Rec.125-3

Teki Rec. M............204
C-VKis Tel. Rec. See
Prod Chge. Bul. Bul. 8-
Set $112-1$ and Model
Covk15
CoVK15-Set $103-41$
cVK-126
CVK-126 Tel. Rec........ $76-16(\mathrm{Ch}$.
CVL-16)

Tel. Rec.
C.VM21 (Ch. VM.2i)
Tel. Rec.
$\begin{gathered}\text { P-163 } \\ 116\end{gathered}$
(Ch. 163). T.U15
T.U16

TVK12 Tel. Re
TVK.1278, M Tel......... Rec.
TVL-12 Tel. Rec.........
TVL-12 Tel. Rec.
TVL-16 (Ch. $\mathrm{Vt}-16$)
Tel. Rec.

T.VM21
Tel
Rec.
(Ch. VM2i)

Tel. Rec. $\ldots 1204-12, ~$
VJ.12, VJ.12.2 Tel. Rec..

Ch. VK151O (See
Model CO-VK15)
Ch V VII (Sae
Modal COVL.16)
Ch. VLIT (See

$C h$ VL20 (See
Model 2C-V120)
$C_{\text {Model C.VM21) }}^{\text {Model }}$

ANSLEY

APEX
 9120,9121 Tel. Rec
$9820,98208,9821$

181—3

APPROVED ELECTRONIC

FM Tuner	41-2
A. 600 AC	175
A710	177-5
A.800	176-2
A. 850	175-5
ARC	
801	25-5
ARCADIA	
37014.600	$9-3$
ARIA	
554.1.81A	7-2
ARLINGTO	

RLINGTON

30114A-056 Tol. Rec.
(Similar to Chassis). . . 119-3

ARLINGTON-Conf.
38T12A-058 Tel. Rec.
(Similar to Chassis). . . 109-1

ARTONE

ARVIN

140 P (Ch. RE-209)...... 25-6
150. TC, 151-TC (Ch. RE-228)
150 TC . 151 IC25-7 (Ch. RE.228-1) Late.. 39-
152T (Ch. RE-233)...... 33Model 152 T -Set 33.1 $160 \mathrm{~T}, 161 \mathrm{Y}(\mathrm{Ch}$. RE-232). 182 TFM (Ch. RE-237)...
$240-\mathrm{P}$ (Ch. RE-243).... $49-5$
32 —
42 - 2 240-P (Ch. RE-243)..... 241P (Ch. RE-244, RE-254,
RE-255, RE-256,
RE-259)
$2427,243 T$ (Ch. RE-25i) 242T, 243 T (Ch. REE 251 i)
244 P (Ch. RT-24, RE-254,
RE-255, RE-256, RE-255,
RE-259 250-P (Ch, RE- 2481....
$253 \mathrm{~T}, 254 \mathrm{~T}, 255 \mathrm{~T}, 256 \mathrm{~T}$
 $280 \mathrm{TF}^{2} \mathrm{M}, 281 \mathrm{TFM}$

ARVIN-Cont.
$544,544 \mathrm{~A}$
A

ARVIN-Cont

ASTORIA

A-21, A-72, A.73L Tel. Rec

ASTRASONIC

$\mathrm{T} \cdot 3$ 748

121-4
atlas

aUDAR

MAS-7T \because Bingo Amp.
P.1A
P. 4 A
P.
P. 7
P. 7
PR-
PR-6A
PR

PR-6A
RE-8A
Telvar
Telvar BM-25, BMP-25. Telvar FMC-1

AUDIO DEVELOPMENT (ADC)

AUTOMATIC

Tom Boy	27 -
Tom Thumb Buddy	53-7
Tom Thumb Camera-Radio	49-6
Tom Thumb Jr.	26-7
Tom Thumb Personal ATTP	23-4
B. 44	60-5
C51	178-4
C. 54	186
C80	5
C. 60 x	
C-65X (See Model C-60x-Set 24.101	
с300	102-
C. 351	148-4
CL-152B, M	192-3
Cl -164B	192
D200	104-3
D. 251	174-4
F-100	103-6
F. 151	147
F. 790	23 -5
M-86	34
M-90	67
P. 651	173
S-551	146
TV.p490 Tel.	
TV.707, TV.709, TV-710	

TV.707, TV.709, TV.710
Tel. Rec. \quad R........... 60
TV. 712 Tel. Rec. (See
TV. 712 Tel. Rec. (See
Model TV.707-Set $60-6$)
TV.1205 Tel. Rec. (See
Prod. Chge. Bul. $5-$
Prod. Chge. Bul. 5-
Set $106-1$ ond Model
TV.1249_Set 103-5)

BELL-AIR

BELLTONE

C172 Tel. Rec............134-5
C174 Tel. Rec. ${ }^{\text {See Modal }}$
2051-Set (111-3)
C176, B Tel. Rec. (See
Model 2051-Set 111.3)
C182Tel. Rec. (See Model
C172-Ser 134.5)
$C 192$ Tel. Rec. (See Model
C172-Set i34.5)
C172-Set 134-5)
C200 Tel. Rec........... 134
KM17C Tel. Rec. (See Model
OAK3—Set 183-2)
OAK3 Tel. Rec.........183-2
TMITC Tel. Rec. isee Model
OAK
OAK3-Set $183-2$)
1170 Tel. Rec.
1170 Tel. Rec. (See Model
2051 Set $111-3$)
$2051-S e t$
T 171 Tel. Rec. (See Model
Mind
C172-Set. 134.5)
T173 Tel. Rec. (See Model
T173 Tel. Rec. (See Model
2051 -Sel $111-3$)
T190 Tel. Rec. (See Model
2051 -Set $111-3$)
2051 -Sot 111.31
$0526 A, 05268,0526 \mathrm{C}$

17 K 2 Tel . Rec. (See Model
C172-Set 134.5)
20K2, 2012 Tel. Rec. (See
Mod C172-Set $134-5$)
2iko Tal. Rec.

6360 (Soe Model
636A-Sel 15-4)

CONRAC
10.M.36, 10.W-36
(Ch. 36) Tel. Rec
(See Ch. 36)
$11-8-36$ (Ch. 36) Tel,
Rec. (See Ch. 36)
$12-M-36,12 . \mathrm{W}-36$
2-M-36, 12 -W-36
(Ch. 36) Tel. Rec
(Ch. 36) Tel.
(See Ch. 36)
13-B.36 (Ch. 36) Te
Rec. (See Ch. 36)
Rec. (See Ch. 36)
$14 . M .36,14 . W-36$
(Ch. 36) Tel. R
(See Ch. 36)
15-P-36 (Ch. 36) Tel
Rec. (See Ch. 36)
16. Be.
Rec. (See Ch. 36)
16.8 .36 (Ch. 36) Tel
Rec. (See Ch. 36)
$17 . \mathrm{P}-39$ (Ch. 39) Tel.
Rec. (See Ch. 39)
Rec. (See Ch. 39)
$18 . \mathrm{M}-39,18 . \mathrm{W} .39$ (Ch. 39)
Tel. Rec. (See Ch. 39)
$20-\mathrm{M}-39,20-\mathrm{W}-39(\mathrm{Ch}, 39)$
Tel. Rec. (See Ch. 39)
$21 . B .39$ (Ch. 39) Tei.
(Rec. (Sh. Ch) 39)
$22 . \mathrm{P}-39$ (Ch. 39)
22.P-39 (Ch. 39) Tel
Rec. (See Ch. 39)

Rec. (See Ch. 39)
$23-\mathrm{M}-390,23-\mathrm{W}-390$ (Ch.
391 Tel. Rec. (See Ch. 39)
Rec. (See Ch. 36)
25.W-36 (Ch. 36) Tel.

Rec. (See Ch. 36)
$26 . \mathrm{B}-36$ (Ch .36) Tel
27-M. 40,27 .W-40 (Ch. 40)
Tel. Rec. (See Ch. 40)
$28-\mathrm{B}-40 \quad(\mathrm{Ch} .40) \mathrm{Tel}$.
Rec. (She Ch. 401
$29 . \mathrm{P} .40(\mathrm{Ch} .40) \mathrm{Tel}$
$30-\mathrm{M}-40,30-\mathrm{W}-40(\mathrm{Ch} .40)$
Tel. Rec. (See Ch, 40)
$31-\mathrm{P}-40$ (Ch. 40) Tel.
${ }^{\text {Rec. }}$ (See Ch. 40)
32. M-44, 32-W-44 (Ch, 44)
Tel. Rec. (See Ch. 44)

Rec. (See Ch. 44)
34.P-44 (Ch 44) T)
34.P-44 (C. C .44 T I
Rec. (See Ch .44)
$3 \mathrm{Rec} . \mathrm{Me}, 3 \mathrm{CH}, \mathrm{W}-61(\mathrm{Ch} .61)$
Tel. Rec. (See Ch. 61)
$36-\mathrm{B}-61$ (Ch. ©1) Tel.
Rec. (See Ch. 61)
$37 . \mathrm{P} .61$ (Ch. 61) rel

Tel. Rec. (See Ch. 61)
$39-\mathrm{M}-61$ (Ch. $\mathbf{~ 1)}$ Tei)
Rec. (See Ch. 61)
$40-\mathrm{M} .64,40-\mathrm{W}-64,(\mathrm{Ch} .64)$
Tel, Rec. (See Ch. 64$)$
41-8.64 (Ch. 64) Tel
Rec. (See Ch. 64)
42 . P-64 (Ch. 64) Tel
Rec. (See Ch. o4)
43-B.64, 43-M-64 (Ch. 64)
Tel. Rec. (See Ch. 64)

Ch. 40 Series Tel. Rec..
Ch. 44 Tel. Rec. (See Prod.
Chge. Bul. 27 -Set 148.1
and Ch, $40-5$ Set $140-4$)
and Ch.
Ch. 61,64 Series Tel. Rec. $185-5$
CONTINENTAL ELCTRONICS

CONVERSA.FON

CORONADO-Cont.	CORONADO-Cont.
165 (See Model 9aRA3).	8985A, 8986A, 8987A
43.8115A-Se1 81.5) 197.U (See Model 94RA3).	O4TV2.43.89704-
43-8115A-5et 81-5)	Set 78-4)
2027 (5ee Model	8993A, $8994 \mathrm{~A}, 8995$
43-2027-Set 11-3)	Tel. Rec. See Model
5005 (See Model	${ }_{\text {Set 78.4) }}$
6301 (See Model ${ }^{\text {a }}$	9002 A Tel.
43-6301-Set 7-4)	9005A, 9006A Tel. Re
${ }^{6451}$ (See Model $\left.{ }^{43.6451-S e t} 10-10\right)$	
6485 (See Model	9008 A Tel. Rec.
43.6485-Set 46-9)	9010 A Tel. Rec.
	Model 105 SV 2.43 -901
¢945A (See Model 9 9 4 RA).	90108 Tel. Rec. (See
43.6945A-Set 69.6)	Model 057V2-43-90108-
01. B, 7602 (See Model	Set 153-23 $9012 \mathrm{~A}, 9013 \mathrm{~A}$ Tel. Rec...
76054 (See Model 94 RA).	9014 A Tel. Rec.
43-7605A - Sel 65-51	Model OSTV1-43.9
651, 7652 (See Mode!	Set 128.41
43.7651-Sel 9.7)	90154.8 B, 901
${ }^{7654 \mathrm{~A}}$ (See Model 15RA1.	${ }^{\text {Rec. }} 15 \mathrm{~V} 1.43 .89957 \mathrm{Cl}$
	Set 162.4)
94 RA 1-43-	020A, B, 9021A, B Tel.
Set 73-2]	Rec. ISee Prod. Chge.
51 (See Model 94RA).	Bul. 34. Set 102.10 and
$755 \mathrm{~A}, \mathrm{~B}$ (See Model	Sef 161-3)
OSRA1.43.7755A-	9022A Tel. Rec. (See
Set 101.2)	$9.022 \mathrm{~A}-\mathrm{Set} 183.41$
43.7851 - Set 47.51	025A, b, 9026A, B Tel.
401A (see Model OSRA).	Rec. (See Model (5TV2
7902 A (Seo Model 1 15RAI.	9030 Tel. Rec. (See Model
43.7902A - Set 134.6)	K.73L [43.9031]-
O1 (See Model 94RA31.	Set 182.3) (${ }_{\text {coem }}$
Model 9 ¢RA31-43-	Set 182-3)
8115 A -Set 81.51	9041 (See Model K-21
20A (See Model O5RA33.	43-9041]-See ${ }^{\text {d }}$
8129A, $8130 \mathrm{~A}, \mathrm{~B}, 8131 \mathrm{~A}$,	
$8129 \mathrm{~A}, 8130 \mathrm{~A}, \mathrm{~B}, 8131 \mathrm{~A}$, B (See Model 94RA4-43.	9101 A-Set 152-4)
	9169 (See Model
$130 \mathrm{C}, 8131 \mathrm{C}$ (See Model	43.9196-Set (4.35)
94RA33.43-8130C- Set 82-3)	$\begin{aligned} & 920 \text { (See Model } \\ & 43.9201 \text { Set 24.14) } \end{aligned}$
60 (See Model	9230 A ISee Model 15RA37.
43.8160-Set 12.7)	9841 A (See Model $94 \mathrm{RA31}$.
77, 8178 (See Madel $43.8178 \text {-Set } 21-8)$	9881 4.9841 A - Set 79.31.
180 ISee Model	9876 (See Model 05RA4. 43-9876A-Set 103-71
	CORONET
43.8190-Sel 19.11)	CORONET
201 (See Model	C2 6-8
	CRESCENT (Also see Changer
${ }_{82} 823.8213$ (See Model 7.51	and Recorder Listings) 76
82304 (See model 05RA2.	H-16A)
	CRESTWOOD
43.8240-Set 12.8)	(See Recorder Listing)
8245A. 82.46 A (See Model 15RA $33.43 .8245 A-$	CROMWELL
15RA33-43-8245A- Set 174-5)	(Mercantile stores)
8305 [5ee Model	$\begin{aligned} & 1010 \\ & 1020 \end{aligned} \text {. 88-8 89- }$
8312 A (See Model	crosley
43-8312A-Set 8.41	DU. 17 CDB CDM, CHB,
8330 (See Model $43.8330-\text { Set } 19-12)$	CHM, CHN ICh. 356.1, 188
351, 8352 (See Model	el. Rec.i. ${ }^{\text {a }}$
$43.8351-$ Ser 12.9)	${ }_{1.356-3,4,41}$ Tel. Rec.
353, 8354 (See Model 43.8353-Set 28.7)	(See Prod. Chge. Bul.
8360A (See Model OSRA3T-	Model DU-17CDB
8365 (See Model 15RA33.	Set 168.61
$43.8355-$ Sel 169-4)	
8420 (See Model $43.8420-S e t$ 24.13)	Prod. Chase. Bul. $58-$
8470 (See Model ${ }^{\text {M }}$	Su-17COB-Set (168-6)
	DU-17COB, COM ${ }^{\text {che }}$
43-8312A-Set 8-4)	
8510A, 8511A (See Model 94RA1.43-8510A-	356-3, -4) Tel. Rec. (5ee
Set 71.71	Prod. Chge. Bul. $58-$
	DU-17CDB-Set 168-6)
94RA1.43-85108- Set 75-6)	DU-17PDB, PDM, PHE, PHM, PHN, PHNI
8515 (See Model OSRA2. $43.85154-5 e t 110.51$	359 and Radio Ch. 360,
8576 B (See Model	361) Tel. Recic.....163-4
43-85768-Set 9-8)	356-1. 2) Tel. Rec. . . 168 -6
8685 (See Model 43.8685-Set 11.4)	
8908 Tel. Rec.......	Model OU-ıTVOL-
8940 A Tel. Rec..	Set 168.6)
	DU.1710M (Ch .
OSTV1-43-8945A- Set 145.5)	DU-20COM, CHB, CHM,
8948A, 8949A Tel. Rec.	
[See model STV4.43. 89484-Set 175.7)	
8950 A Tel. Rec. [Se Model	
05TV2.43-9010A- Set 146-5)	D.2SBE, CE, GN, MN, TN, $202-2$
8953A Tel. Rec. [ISee Model	
94TV6-43-8953A- Set 106-3)	(Ch. 380, 383) Tel., Rec. 186-3
${ }^{8957}$ Sel Tel. Rec. (See Model	EU.17COL, ${ }_{\text {385) Tel. Rec. }}$
157 V 1.43 -8997A- Set $62-4)$	Eu17TOL Tols ich. 193-3
8958A, B Tel. Rec. (See	
Prod. Chge. Bul. 34 -	384) Tel. Rec. 186-3
Set 161.31	Model EU-21COLBe-
8960 Tel. Rec.	Set 193.31
	EU-21CDM, CDN, COBa , COMa (Ch. 381, 384)
8966 Tel. Rec.......	
8970A, 89871 A, 8972 A,	EU-21COLBd, cold (Ch. 386) Tel. Rec.... 193-3
Model 94TV2-43-8970A- Set 78-4)	EU-21COLBe, COLe (Ch. 387) Tel. Rec.... 193

crosley-Co	CROSLEY-Cont.
eu-21 comua, совUa,	$11-460 \mathrm{MU}$ (Ch. 331)
COMU, CDBU, CDNU,	11-461 WU (Ch. 320)
EU-2icos, EU-21 Cosb	
${ }_{\text {(Ch. }} \mathbf{3 8 7 1}$ Tell Rec. Ree	-465WU (Ch. 321, 1, 126-4
Set 193-3)	11.4708 U (Ch. 331)
EU-2IPDBU, EU. 21 PDMU	Tel. Rec.
(Ch. 392, UHF Ch. 391	.47) BU (Ch. 320
and Radio Ch. 362.1	Tel. Rec.
Rec	11.4728 B (Ch. 331)
$\mathrm{EUV}_{\text {Tel }} \mathbf{1 T O L}$ Rec, TOLB (Ch. 386) 193	11-473Bu Tel. Rec. ${ }^{\text {TSee }}$
CBE, CT, RD, WE	Prod
(Ch. 10 E, ${ }^{\text {coE-1) }}$, ... 203-6	Set 138.1 and Model
SBE, CE, SL, TN, WE	11-442-Set 120-4)
Ch. 15.20E)	2) Tel Pe
	11.4768U (Ch. ${ }^{-2} 22^{\text {2 }}$)
E30be, GN, MN, TN	
(Ch, 30E, 30E-1)....206-3	${ }^{11.47780 / C h .}$
S11-442M1U, SI1.44	11.4838 U (Ch. 331)
331-4) Tel. Rec. 153-3	
S11-459mu ($\mathrm{Ch} .321-4$)	11.550 MU (Ch. 337)
Tel. Rec.153-3	
1-47231U, $511-474$	17
(Ch. 331-4) Tel. Re	
TCOC1, S17COC2,	Seat ${ }^{\text {d }}$-142
S17CDC3, S17CDC4	
TCOCl SITCOC2	$17 \mathrm{COC1}, 17 \mathrm{COC2}$,
${ }_{517 C O C 3}(\mathrm{Ch} .331-4)$	$17 \mathrm{COC3}$ (Ch. 331, -1)
Tel. Rec. . ${ }^{\text {a }}$	
OOCDCI, S20CDC2.	
20 COC 3 ch .323	$20 \mathrm{CDCl}, 20 \mathrm{CDC2} 20 \mathrm{CD}$
Tel, Rec.	TCh, ${ }^{\text {cen }}$,
9.101 ${ }^{58} 8$	FB
9.103, 9.104 W $60-10$	
	S6TD
	S6TG
9-119, 9.120W ${ }^{50-5}$	$56 T J$
$9.121,9.122 \mathrm{~W}$ …e. 54-8	S6TN-L, 56iw-L
$9.201,9-202 \mathrm{M}, ~ 9-203 \mathrm{~B} . .52-5$	${ }_{5672}$
	Sti
	S67U,
$9.209,9.212 \mathrm{M}$. 53-10	
9.2138 (See Mode	575 TQ -Set 33-2)
9.209-5et 53-10) 65-6	5814 - 36
0.302 , $47-6$	58 TC
$9.403 \mathrm{M}, 9-403 \mathrm{M} .2$	${ }^{581 \mathrm{~W} W-S e t} 38.2$
Tel. Rec. . .l. $79-4$	585
0.404 M Tel. Rec........ 79-4	${ }_{5816} 881$
$9.407,9.407 \mathrm{M}$	${ }_{66 C A}, \mathrm{CP}, \mathrm{CO}$
9-407M-2 Tel. Rec.... ${ }_{9}^{66-6}$	Model b6CS-Set 18.14)
$9-413 \mathrm{~B}, 9-413 \mathrm{~B}-2,9.414 \mathrm{~B}^{\text {a }}$	obCS, 66C5M .
Tel. Rec. 79-4	${ }^{66 T A}$, ${ }^{\text {b6TC, }}$ 66TW
$419 \mathrm{Ml}, 9.419 \mathrm{Ml}$	${ }^{68 C P}$, 68 CCR
$9.419 \mathrm{M2}, 9-419 \mathrm{M3}$	$681 A^{\prime}$, 86 CR, 86 CSS
$9.419 \mathrm{M3} 3$ LD Tel. Rec,. 9403	
$9-420 \mathrm{M} \mathrm{Tel}$ Rec.	${ }_{87 C Q}^{86}$............. 36
9.422M, 9.422 MA Tel. Rec, 81	88CR
0.423 M Iel. Rec........ 91A.4	87 CQ -Set 36.5)
${ }^{9.424 \mathrm{~B}}$ Tel. Rec........ ${ }_{959}{ }^{\text {79-2 }}$	881A, 887C 38-3
9.4 10.135 , 10-136E, 10.137.	88TA, 887 C (Revised) (5
$10.138,10.139,10.140$	
(Ch. 285)93-3	${ }_{\text {8 }}^{\text {88TA- Set }}$ 38-3)
$10.307 \mathrm{M}, 10.308,10.30980{ }^{80}$	
$10.404 \mathrm{MU}, 10.404 \mathrm{Miu}$,	$148 \mathrm{CP}, 148 \mathrm{CO}$
Tel. Rec. 114-3	148 CR (See Model
10.412 MU Tel. Rec.	
	348 CP -TR1, 348 CP - TR 2.
	348 CP . TR3 Tel
Rec. (See Model (11-4)	154927 Tel. UHF Conv
10-416mU Tel. Rec.116-4	Ch. $10 \mathrm{E}, 10 \mathrm{E}-1$
$10-416 \mathrm{Ml}$, $10.416 \mathrm{M}-\mathrm{U}$ (Ch.	(See Model El0日
2023 Tel. Rec.	
Set $116-4$)	Ch. $30 \mathrm{E}, 30 \mathrm{E}-1.1$
10.418 mU Tel. Rec..... $114{ }^{\text {a }} 3$	$\mathrm{Ch}, 292 \mathrm{Tel}$. Rec. (See
	Model 10-414MU)
10.421 mU Tel, Rec..... 106-4	Ch. 301
10.427Mu Tel. Rec......125-1A	See Model $11-1000$
	(See Model 11.106U)
Rec. (See Mode)	- 303
10-414MU-Set	311. 1 (Sea
10.429MU Tel. Rec......116-4	Model D-258E)
11.100U, 11-101U 11.1020	Ch. 312
11-104U, 11-1054	See Model 11.126U)
(Ch. 301) .a........127-5	
1.106U, 11.107U,	Ch. 321, 321.1, 321-2
	(isee Model 11.445 MU)
$11.1140,11$-iisu.,	, 321-4 Tel. Rec. (See
11-1160, 11.17U,	
11-1260, 11-127u,	is $323-3,323.4$
$11.128 \mathrm{U}, 11-129 \mathrm{U}$	Ch. 323-6
	(See Model S20CDCI)
(16h, 333)	$\mathrm{Ch}_{\text {(See Model }} \mathbf{3 2 5}$ (1.446MU)
11-301U. 11 -302u.	Ch. 330
303U, 111.304 U	(See Model 11.114U)
11-305U (Ch, 303) ... 124-3	331. ${ }^{1,1}$ - ${ }^{-2}$
11.442 MU (Ch. 331)	Model 311.442 MlU
Tel. Rec. ${ }^{\text {126-4 }}$	
Prod Chat Tel. Rec. (See	Ch. 337
Srod 338.1 and Model	(See Model 11-550MUY
11-442-Set 126-4)	Ch. 356.1. 356.2 (5 ee
11.445 MU (Ch. $321,-1,2$) Tel Rec …......126-4	Ch. $356.3,-4$
. 446 MU (Ch. 325)	(See Model Du-17CDB)
Tel. Rec. 126 -4	${ }^{\text {Ch. }}$ Model ${ }^{\text {a }}$ DU-20COM
11-447MU CCh. 321, -1, 126	${ }^{357-1} 15$
2) rel. Rec,........126-4	Model 359 Tel . Rec. ${ }^{\text {dee }}$
$11-459 \mathrm{MTU}, \mathrm{MU}$ (Ch. 321, -1, -2) Tel. Rec. 128-4	Ch. 360, 361 Tel. Rec. (See Mode! DU-17PDB)

EMERSON-Cont
607 (Ch. 120074A)
608 A
(Ch. 120089 B) 608 A (Ch. 120089B) 609 (Ch. 120084-B) 610 (Ch. $120100 \mathrm{~A}, \mathrm{~B}$)
611.612 (Ch. 120087 B D) Tel. Rec.
$\mathbf{6 1 3 A}(\mathrm{Ch} .120085 A, \mathrm{~B})$
$\mathbf{6 1 4 , \mathrm { B } , \mathrm { BC } , \mathrm { C } (\mathrm { Ch } , 1 2 0 1 1 0}$

$\$ 15^{\text {Tel }}$ ($\mathrm{Ch} . \mathrm{Ch}^{\mathrm{Rec}} 120001 \mathrm{~B}$).
$\$ 16$ (Ch. $120100 \mathrm{~A}, \mathrm{By}$
818 (Ch. $120090 \mathrm{~B}, \mathrm{O})$
Tel. Rec.
$619(C h, ~+200920)$
620 (Ch. 1200910 -OD)
Tol. Rec.
621 (Ch. 1200988$)$
622 (Chec. 120098 P)
623 (Ch. $120101 \mathrm{~A}, \mathrm{~B}$)
624 (Ch. 120087 B -
624 (Ch. $120087 \mathrm{~B}-\mathrm{D}$)
Tol. Rec.
625 (Ch. 120105 B) $1201048 \mathrm{H})$ Tel. ${ }^{R} \mathrm{R}$
$627(\mathrm{Ch} .120107 \mathrm{~B})$ Tel. Rec.
28 (Ch. 120098B) 629 (Ch. 120114 B) Tel... Set $93 \mathrm{~A}-6$)
$29 \mathrm{~B}, 629 \mathrm{Ch}$
$6298,629 \mathrm{C}$ (Ch.
120120 Iel .
c......119- $=$

120120 Tel. Rec.
6290 (Ch. 120124B)
Tel. Rec.
630 (Ch. 1200998 B) 116-5
631 ©er Rec. 120109$)^{\prime}$
1el. Rec. 120098)....... 934.8
832 (Ch. 200968)
TsI. Rec.
833 (Ch. 120114)
 635 (Ch. 120108$).9$
838 C (Ch. 120106 A$).{ }^{9}$
$637, \mathrm{~B}, \mathrm{BC}, \mathrm{C}(\mathrm{Ch} .120110$, 637, B, BC, C(Ch. ReC.....
B, BC, C) Tel. Re....
637A (Ch. 120095-B)
Tel Rec. $120087 D$ i Tel.
Rec. (See Model $571-$
Rec. (See Model 571-
Sol 76.11)
639 (Ch. 1201038) Tel.
Rec. (Also sea Prod.
Chge. Bul. 9 -
Set 114.1)
640 (Ch. 120112$). .$.
641 B (Ch. 120125 B),
 $643 A(C h, 120111 A) . .$.
$644, B, B C, C(C h .120113$.

 B, BC, C) Tel. Rec..... $97-4$
648B (Ch. 120110 E)
Tel. Rec.
6488 (Ch. 6488 (Ch. $120134 \mathrm{~B}, \mathrm{G}$,
Tel. Rec. (Seee Prod.
Chge. Bul. 48 - Sot
$182-1$ and Model
661 B . Sot 137-4)
649A (Ch. 120094 A)
Tel. Rec. 106-7
650 (Ch 120113Ci Tol.

Sel 97.4)
850 (Ch. 120118B)

Rec. $\{$ See Model 650-
Set 113 -2)
$650 \mathrm{D}(\mathrm{Ch} .120123$ - $)$ Tel.
850 D (Ch. 120123 -8) Tel.
Rec. (Also see Prod.
Chge. Bul. 48-

EMERSON-COHT.
741 D (Ch. 120168 -D) Tel.
Rec. (See Prod. Chge.
Rec. (See Prod. Chge.
Bul. 61 Set 195.1 , Frod.
Chge, Sul, 71 -Set 211-1.
Chge, Bul, 71-Set 211.
Sot 190-2)
742 Ch (Ch. 120189 B)
Tal. Rac. 20109 B)......206-4
751 C (Ch. 120168 -Di Tel.
Rec. (See Prod. Chge
Bul. 61 -Set $195-1$.
Prod. Chge. Bul. 71 -
Prod. Chge. Bul. 71
Sot $211-1$ and Model
7180 - Set 19021
$718 \mathrm{D}-$ Set 190.2)
1002 16-14
1003 (See Model 1002
Ch. 120019
iSee Modsl 527
Ch ${ }^{1200258}$
iSee Model 585
Ch. 120047
(See Model 545)
Ch. 120060
(See Mode)
5711
Ch . 1200 mB
iSee Model
5
Ch. 1200848
(See Model 6091
571)
(See Model 57
Ch. 120087 B)
(See Model
Ch . 120088 B
Ch. ${ }^{\text {ISee Modal }} 120089 \mathrm{~B}$
(See Model 808 A)
Ch. $120090 \mathrm{~B}, \mathrm{D}$
iseo Model 5
Ch.
120091 D .0 D

CSee Model
Ch. 1200920
iSee Model
Ch

$\mathrm{Ch}_{\text {i }} 120094 \mathrm{~A}$
Ch. 120095 B (

(See Model 621
$\mathrm{Ch}_{\mathrm{H}} 120098 \mathrm{P}$
(See Model 622
$\mathrm{Ch}_{\text {. }} 120099 \mathrm{~B}$
(See Model 630)
Ch. 120103 B
(See Model 600
Ch. 120104 B
Ch . $120104 \mathrm{~B}, 8 \mathrm{BJ}$
CS See Model 62 C
Ch 120107B
Ch. (See Model 6278)
$C_{\text {. }}$ 120109
$\mathrm{Ch}^{\text {(See Model B31) }} 120110, \mathrm{~B}, \mathrm{BC}, \mathrm{C}$ (Se
Model 614, B, BC, C
Ch. 120110 E
(See Model 848 B)
$\mathrm{Ch} .120113, \mathrm{~B}, \mathrm{BC}, \mathrm{C}(\mathrm{Se}$
Model $644, \mathrm{~B}, \mathrm{BC}, \mathrm{C})$
Ch. 120114 ,
(See Model 633)
(S 12011 B
Ch. ${ }^{\text {Soe Model }} \begin{gathered}\text { Mod } \\ \text { Ch. } 120118 \mathrm{~B}\end{gathered}$
(See Madel 650)
Ch. 120120
(See Model 629B, C
Ch. 1201238
(See Model 6500)
Ch. 120124
(See Model 651C)
Ch. 120124 B
Ch. 120124 B
(See Model 6290)
Ch. 120127-B ${ }^{\text {iSee Model }} 822 \mathrm{~B}$)
$\mathrm{Ch}_{\text {. } 120128-\mathrm{B}}^{\text {(See Mol }}$

Ch. 120131-B
Ch. 1201338
(See Model 660 B)
$\mathrm{Ch} 120134 \mathrm{~B}, \mathrm{G}, \mathrm{H}$
(See Model o6ib)
$\mathrm{Ch} .120135 \mathrm{~B}, \mathrm{G}, \mathrm{H}$
(See Model 668B]
$\mathrm{Ch}^{120136 . \mathrm{B}}$
(See Madel 653B)
$\mathrm{Ch}^{2} 120138-\mathrm{B}$
(See Model 650F)
Ch. $120140 B$
isee Model 676 B]
(See Model 676B)
Ch. 120141-B
(See Model 6838)
Ch. 120142 B
(Seo Model 686
Ch. 120143B, H
(See Model o76f)
Ch. $120144 \mathrm{G}, \mathrm{H}, \mathrm{H}$
(Soe Mol
(See Model 676D)
Ch. 120148 -
(See Model 6698)
(See Model 6698)
Ch. 120149A (See Mode)
Ch. $120150-\mathrm{B}$
(See Model 7188)
Ch. $120151-\mathrm{B}$ (See Model
Ch. 120152 -
(See Model 731D)
(See Model 733F
Ch. 1201 M3-B ${ }^{\text {(Seee Model 7008) }}$
Ch. 120154 -B
(See Model 704
Ch. $120155 \mathrm{~A}, \mathrm{~B}$ (See
Model 705A
(See Model 700D)
$\mathrm{Ch} .120160-8$
(See Model 6990)
Ch 120162-A

EMPRESS

ESQUIRE

FADA

IMPORTANT

How to obfain a sample PHOTOFACT Folder

Service Technicians who have not yet enjoyed the advantages of the world's finest Radio-TV service data, may obtain a Free Sample PHOTOFACT Folder and see for themselves how they can save time and earn more. To get your free sample, simply state the PHOTOFACT Set Number and the Folder Number (not applicable to listings bearing suffix letter " A " or an asterisk *). Mail your request on your business letterhead (or enclose your business card) to:

HOWARD W. SAMS \& CO., INC Department P
2201 East 46th Street Indianapolis, Indiana

This offer is limited to one sample Folder. (PHOTOFACT Distributors do not stock sample Folders.)

GENERAL ELECTRIC-Cont.
16 C 115 Cl . $16 \mathrm{C} 116,16 \mathrm{Cl} 17$
16C115, $16 \mathrm{Cl} 16,16 \mathrm{Cl} 17$
Tel. Rec.
16 KI , 16 K 2 Tel . Rec. . . . 161-1A
$16 \mathrm{TI}, 16 \mathrm{~T} 2,16 \mathrm{~T} 3,16 \mathrm{~T} 4,123-4$
rei. Rec.
16 T5 Tel. Rec. (See Model
16T4-Se: $123-4)$
$17 \mathrm{Cl} 101,17 \mathrm{C} 102 \mathrm{Tel}$.
17C103, 17C104, Rec. 123-4 17Cios Tel. Rec.
(Also see Prod. Chge.
Bul. 32-Set i58-1)... 141-6
7 C107 17C108 17C109

Tel. Rec, (Also see
Prod. Chge. Bul. 32-
Prod, Chge. Bul. 32- 141 - 8
Set $158-11$,
17 C 110 , 17 Cl 11 Early.
"D," and "W" Versions/
Tel. Rec.180-5 17C112 (See Prod. Chige.
Bul. 32 -Set $158-1$ and Bul. $32-$ Set 158-1 an
Model $17 \mathrm{ClO3-Set}$
174113 Tel. Rec........166-10
$17(114$ Tel. Rec. (See Prod.
17 C 114 Tel. Rec. See Prod.
Chge. 32 -Sei $158-1$ and
Chge. 32-Set 158-1 a
Model 17C103-Set

hallicrafters-Cont.	HOFFMAN-Cont.
Ch. Al 2000 (See	$218701 \text { (Ch. 191, B) }$
Ch. AG12000	
(See Model 1072)	Tel. Rec. 195-8
AH12000	218901 (Ch. 192) Tel.
(Soe Model 1077) AJl 2000	Rec. (TV Ch. Only) ...201-5
(See Model 1081)	${ }^{1}$ Tel. Rec. 211-8
Ch. All 200 D	21 M106 (Ch. 191,
$\mathrm{Ch}^{\text {(See Madel }}$ AR12000 1050)	
(See Model 1072A)	Tel. Rec. .a........195-8
${ }^{\text {Ch. AY1 }}$ (See Model 1074 AT)	
Ch. D12000 15ee	21 M 300 (Ch. 191, B)
Model 1021p)	Tel. Rec.
F12000 (See	M 3051 Ch .
	Tel. Rec.
Ch. Gl200D (See Model 1022C)	21 M305B (Ch. 211, M)
Ch. k 220015	$21 \mathrm{M308}$ (Ch. $196 \mathrm{M}, \mathrm{Tj}$
Model 1010 P)	Tel. Rec.
Ch. LI200D (See	${ }^{21} 10503$ (Ch. 191, B) 201-5
Ch. W10000 (See	
Model 1000)	Tel. Rec.
. W12000 (See	M700 (Ch. 191, 8)
Ch. Model $\times 10000{ }^{\text {M }}$ (See	
Model 10081	
. $\times 12000$ (See	M900 (Ch. ${ }^{1921}$ Tel.
Ch. Z 10000 l (See	Rec. (TV Ch. only) 21 M903 (Ch. 213, M)
Model 1019)	Tel. Rec.211-8
hamirton electronics	21P108 (Ch. 191, B) 201-5
	$21 \mathrm{Pl17}$ (Ch. 196, M)
H-50-25 16-18	Tel. Rec. . ${ }^{\text {a }}$ (1i. 195-8
HAMIRTON RADIO CORP. (5ee Olympic)	
hammarlund	Tel. Rec. ${ }^{\text {a }}$, 194-4
HQ-129.X …....... 8-18	21 P 10 (Ch. 196M, T) 195-8
Sp-400-x 10-20	
harvey-wells	Tel. Rec. 21, 201-5
AT.38-6, AT-38-12 32-11	P508 (Ch. 211, M) 194-4
ATR-3-6, ATR-3-12 36-14	$21 \mathrm{P702}$ (Ch. 191, B)
heath	Tel. Rec. 201-5
HBR-5 24-20	21 P702 (Ch. 196M, T) Tel. Rec. 195-8
HOFFMAN	21 P902 (Ch. 192) Tel.
A. 200 (Ch. 103) 4 4-23	Rec. (TV Ch. only)
A. 202 (Ch. 119) 11-11	21 P905 (Ch. 213, M)
	248707 (Ch. $187, \mathrm{~B}, \mathrm{C}$)
A.401 (Ch. 102) $\ldots{ }^{\text {a }}$ 11-12	Tel. Rec.
A.500 (Ch. 107)e ${ }^{4-34}$	$24 \mathrm{M708}$ (Ch. 187, в, C) 159-6
A.501 (Ch. 1085T) ${ }^{3-35}$	000 Tel. Rec, 154$)$ Tel. Rec
	601 (Ch. 155) Tel. Rec... 95 A-8
B.1000 …........... 20-14	610 (Ch. 140) Tel. Rec
C-501 48-11	612 (Ch. 142) Tel. Rec... 97A-6
C-502 51	613 (Ch. 1491 Tel. Rec.. 97
C-503 \ldots......... 50	630, 631 (Ch. 159)
C.504, (Ch, 123) ${ }^{47}$	630.631 (Ch. 1701
	Tel, Rec. 150
	632, 633 (Ch. 160)
C.513 50-9	Tel. Rec.
C-514 47-10	32, 633, 634, 635
CT-800, СT-801, СТ-900,	636, 637, (Ch. 183)
CT-901 (Tel. Rec.) ... 63-11	
	Tei, Rec. .l.
78113 (Ch. 202) Tel. Rec. 205	638, 639 (Ch. 180) 144
$7 \mathrm{P1138}$ ($\mathrm{Ch} .212, \mathrm{M}$)	
Tel. Rec. $19.1 .1 . . .194-4$	
	820, 821, 822 (Ch. 146)
$7 \mathrm{M103}$ (Ch. 190, 8)	Tel, Rec.
Tel. Rec. 200 Tel 201 201	$826,827,828$ (Ch. 143) Tel. Rec.
7M109 (Ch. 200$) \mathrm{Tel}$. Rec. 201 $7 \mathrm{Ml} 1098(\mathrm{Ch} .210, \mathrm{M})$	830,831 (Ch. 151) Te
Tel. Rec. .a........ 205-	Ree.97a.6
7 M 112 (Ch. 202) Tel. Rec. 205	
7M112B (Ch. $212, ~ M)$ Tel. Rec. 194-4	836, 837 (Ch. 153) Tel.
$7 \mathrm{M} 302 \mathrm{Ch}, 190, \mathrm{~B}) \quad 201-5$	
Plos (Ch. 190, 日)	846 (Ch. 151) Tel. Rec. (See
Tel. Rec. 201-5	Model 830
$7 \mathrm{Pl118}$ (Ch. 210, Ml 205	
(1148 (Ch. 212, m)	${ }^{860}, 861,862$ (Ch. 157)
Tel. Rec. (See Model	
781138-Set 194.1)	(Ch. 173$)^{\prime}$ Teí. Rec. . . 150-7
7P304 (Ch. 190, B)	870, 871,872 (Ch. 170) 150-7
208102 (Ch. 183T)	876, 877, в78 (Ch. 171)
	Tel. Rec. 150-7
20 B 102 F (Ch. 194) Tel. Rec. 201-5	876A, 877A, 878A (Ch. 1731 Tel Rec (Ch. 150-7
208501 (Ch. 1835)	880, 881, 882, 883, 884,
	885, 886, 887 (Ch. 183) 141-7
$20 \mathrm{M101F}$ (Ch .194$)$	
Ms00 (Ch. 183T) 201 -s	
Tel. Rec. 168-8	893, 894, 895, 896, 897
20 P 502 (Ch. 183T)	(Ch. 185) Tel. Rec. ${ }^{\text {a }}$.141-7
${ }_{\text {Tel }}^{\text {Tel. }}$ Rec. $\left.107 \mathrm{Ch}, 191, \mathrm{~B}\right)$	${ }^{8968}$, 8978 (Ch. 183T) 168-8
Tel. Rec. . .n. 201-s	902 (Ch. 141, Rodio Ch.
218116 (Ch. 196, M)	37) Tel. Rec.
	912.913 (Ch, 147) 95A-8
B301 (Ch. 191, B)	Tel. Rec. 97A-6
Tel. Rec. ${ }^{\text {Pren }}$	917.918 (Ch. 152) 97A-6
Tel. Rec. ${ }^{\text {B308 (Ch. } 21.1 . ~ M) ~ 194-4 ~}$	920 (Ch. 152) Tel. Rac. (See
218309 (Ch. $196 \mathrm{M}, \mathrm{T})$	Model $830-5 \mathrm{Set} 97 \mathrm{~A} .61$
Tel. Rec. . .1. 195-8	6, 947, 948 (Ch. 164)
B507 (Ch. Tel. Rec.	90A, $951 \mathrm{~A}, 952 \mathrm{~A}$ (Ch. 174 Tel. Rec.

MOFFMAN-Cont.	hYde Park-cont.
953, 954, 955 (Ch. 184)	14TR, 16TR Tel. Roc.....168-9
	17 CD (195 Prod.)
${ }^{960}{ }^{\text {ata }}$ 961, Rec, $962,(\mathrm{Ch} .176)$	
963.944, 965 (ch. 186$)^{127-6}$	17CD (2nd Prod.)
Tol. Reme.i. 141	17CRR (1st Prod.)
Ch. 102 (Soe Model A401)	Tel. Rec.
	$17 C R R$ (2nd Prod.) Tel. Rec.
Ch. 1085 ST (Soe Model A501)	17Rog (1st Prod.)
Ch. 114 (See Model 11000)	
Ch. 119 (Soe Model A202)	Tol. Rec. 169-8
Ch. 123 (S5ee Model C504)	2000 (1)st Prod.)
Ch. 137 (Soe Modol 902)	Tel. Rec
Ch. 141 (Seee Model Mo2)	
Ch. 142 (Soo Modol 612)	20 TR Tel. Rec.
Ch. 143 (See Model 826]	112 XTel . Rec.
Ch. 146 (Soe Model 828)	2030 (1)st Prod.) Tol. Rec.
Ch. 149 (See Model 613)	2030 (2nd Prod.)
Ch. 150 (See Model 914]	Tel. Rec. 169
Ch. 151 (500 Model 830)	312 Tel. Rec. 168
Ch. 152 (Soe Model 9,7)	819 Tol. Rec. 168
	1000, 1001 Tel. Rec..... 169
Ch. 155 (5ee Model 6011	${ }^{3163 C R}$ Tel. Rec. 168
Ch. 156 (Seea Model 147)	
Ch. 157 (See Model ${ }_{\text {che }} \mathbf{8 6 0}$)	industrial electronic
Ch. 170, 171 ,	CORP. (See simplon)
Ch. 172 Model 630)	INDUSTRIAL
Ch. 173 (See Model 634A)	(Also see Century)
Ch. 174 (5ee Model 950A)	1T-40R, $1 \mathrm{~T}-42 \mathrm{AR}$ (Ch. $1 \mathrm{~T}-28 \mathrm{R}$,
Ch. 175 (See Model 890)	Tel. Rec. . .-........ 99a
Ch. 183 (5ea Model 838)	
Ch. $18388,183 \mathrm{M}, 183 \mathrm{~T}$	(See Recorder Listing)
	JACKSON
	DP. 51
Model 2487071	JP. 20
Ch. 1900 , (See Model 7 B104)	JP. 30 ${ }^{153}$
Ch. 191, B (S00 Model 218107)	JP. 50159
Ch. 192 (See Model 218901)	JP. 200
Ch. 194 (See Model 208102F)	JP-300 :............... 17
	JP. 400 - ${ }^{100}$.......... 171
Ci. 200 (Seee Model 781108)	12C, 12 T Tei. Reca......\|32-8
Ch. 201 (See Model 21 M 305)	14C, 14 T Tel. Rec....... 132
Ch. 202 (See Model 78113)	$1^{16 C} C^{\text {c }} 16 T$ Tel. Rec....... 132
	${ }^{17 \times C, 17 x T}$ Tol. Rec. (Sees
(Sobe Model 21B122)	-8)
212.	Modal 100
(See Model 781138)	150 130
Ch. 213, M (See Model	153 (500 Model 150-Sel 130-8)
2189041	$214 \mathrm{~A}, 217 \mathrm{~A}, \mathrm{~B}, \mathrm{C}$,
howard	$220 \mathrm{~A}, \mathrm{~B}, 221 \mathrm{~A}, \mathrm{~B}$,
$472 \mathrm{AC}, 472 \mathrm{AF}$,	${ }_{24}$ Tel. Roc. 171
472C, 472F'........ 31-14	${ }_{255}^{254}$.................1739-8 ${ }^{\text {179 }}$
474. 7 ¢TV............ 32-12	312 Tel. Rec. 132
${ }^{4}$ Photofoct Servicer 84	316 Tel. Rec.132
481B, 481C, 481M 67 -11	
482, $482 \mathrm{~A}, \ldots \ldots \ldots . .48{ }^{48}-12$	416 Tol. Rec. 132-8
$901 \mathrm{~A}-\mathrm{E}_{1} \cdot \mathrm{H},-1,-\mathrm{M},-\mathrm{W}$ (See Model gola Series-	1400 T Tel. Rec. ISee
Sot 1.81	
	Model 10C-Set 132-8)
	2000 C Tel. Rec. (See
	del 10C-Set 132.1)
	5000, 5050 Tel. Rec..... 88
	5200, 5250 Tel. Rec..... 888
MUDSON (Auto Radio)	${ }^{5600}$ Ch. 114 H Tel ${ }^{\text {a }}$ Rec..... 162
O847 (Fact. No. ©MHOB9) 25-16 DB848 (Fact. No. ©MH889) 39-9	Ch. $110 \mathrm{H}, 117 \mathrm{H}$
	${ }^{\text {Tel }}$ Rec. Re. \ldots.
225908 (late)	$\mathrm{Ch}_{\text {Ch. }} 317 \mathrm{~A}, 320 \mathrm{~A}, 321 \mathrm{~A}$. 162
	324A, Tol, Roc. .
HUDSON (Dept. Store	JEFFERSON-TRAVIS
-	Mr.28 10-22
30T14A.056 Tel. Rec. (Similor to Chassis) . . . 119-3	MR3 17-19
38T12A.058 Tel. Rec.	JEWEL
ISimilar to Cil	Tei. Rec. . .1. ${ }^{\text {a }}$. . . . 187-7
7 T 3 Tol. Roc.	2109, 2119 Tel. Rec..... 187-7
	300 23-11
(Similar to Chossis) . . . 85-3	
318 TdS Tel. Rec.	
	814 51-10
	910 ….............. 999-8
318194.900 Tel. Rec.	${ }_{92154}^{15} \ldots \ldots \ldots \ldots \ldots \ldots{ }^{99-8}$
(Similar to Chasis).... 78-4	921 (See Model $920-\mathrm{Set} 55-10)^{\text {a }}$
${ }^{\text {a }}$ (Similar to Chassis). . . 182-5	935, 936 (See Model 920-
51 ITSA Tel. Rec.	Set 55-10)
(Similar to Chassis).... 85-3	
51819 A .918 Tel. Rec.	
	${ }_{960}^{960997}$
(Similar to Chassis)78-4	960U, 961 ISee Model 960
2318 TSA.954 Tel. Rec.	
(Similar to Chassis).... 85-3	
	${ }_{5010}$.............111-7
mudson electronics	${ }_{50200}{ }^{5020}$ ise Model 5020 - ${ }^{\text {a }}$
RPM-71186-6	${ }_{\text {Set }}$ 136-10)
3w191-11	${ }_{5050}^{5040}$. \cdot. ${ }^{160-5}$
	50574 : ${ }^{\text {a }}$. 10907
	5100, E, U 159
${ }_{312 \mathrm{H}}^{312}194-5$	${ }_{5200} 5200$....... 194
	${ }_{5250}^{5205}$.................... ${ }^{\text {206-4 }} 7$
	${ }_{100170}$ KAISR-FRAZER 128-8
388 191 12	${ }_{100205}$. 13139
HYdE PARK	200001 …........... 35-13
AR141 Tel. Rec. $169{ }^{\text {- }}$	200002 56-13
AR17L Tel. Rec. $\cdots \cdots169-8$ MST12, MSTIATel. Rec... $168=9$	KAPPLER 102 F 54-10

magnavox

104 Series (Ch. CT301 thru CT314) To1. Rec....161-A Chastis: AMP-101A,
AMP-101B43-12 Chassis AMP-108A,
AMP. $1088, \ldots$. 41 - 10
Chassis AMP-111A, B, C. . 68 - 10 Chassis AMP-111iA, B,
Chassis CR-188 (155B Regency 5ymphony)
Chassis CR190A, CR190B, Chassis CR190A,
Chassis CR-192A,
Chassis CR-197C $\begin{aligned} & \text { Chassis } \\ & \text { Chossis CR-197C } \\ & \text { (Hepplowhite }\end{aligned}, \quad$ B, C
(Hepplewhite, Modern
Symphony) Chassis CR-199 Chassis
E, F
F
C $17-20$
$63-13$
 Chassiis Models CR-210A.
 Chassis CT-214, CT-218
Tol. Rec.
Chassis CT-219, CT-220 Tel.
Chassis

Chassis

Chassis CT-224 Tel. Rec... 82
Chassis CT-232 Tal. Rec.. 93A-9
Chassis CT. 235 Tel. Rec.. 97A-8 Chassis CT-236 Tel. Rec.. 93A-9
Chassis CT237, CT-238 Tel.
Chassis CT237, CT. 238 Tel.
Rec. (See Sot $95 A .9$ and
Chassis CT239 Tel. Rec...
Chassis CT244, CT245,
CT246 Tel. Rec.
Chassis CT247, CT248,
Chassis CT247, CT248,
CT249T1. Rec....
Chassis CT250, CT251
Chassis CT250, CT251
Tel. Rec.

Chassis CT257, Cr258.
CT259, CT260 To1. Rec. 119-1A
Chassis CT262, CT263.

CT269 Tel. Rec.
Chassis CT-270, CT-271,
CT-272, CT-273, CT-274
CT-272, CT-273, CT-274,
CT-275, CT.276, CT-277,
CT-278, СТ. 279, СT.280,
CT-278, CT.279, CT-280,
CT-281, CT-282
Tel. Rec.
Chassis CT283 Tel. Rec......158-810 Chassis CT283 Tel. Rec...155-10
Chassis CT284, CT285 Tel,
Rec. Res.
Chassis CT286 Tel. Re.....131-1A
Chassis CT287 Chassis CT287, CT-288 Tel.
Chassis
Rec.
Chassis CT289 Tel. Rec. 131 -1A

 Chassis Rec. CT294 Tel........
Chassis CT295, CT296
Chassis CT297 Tel. Rec...155-10
Chassis CT301 thru CT314 Tol. Rec.
Chassis CT331 thru CT 349
 Chassis CT358 (107 Series)
Tel. Rec.

M, N Series) Tel. Rec. 205-
Chass is CT372, CT373 (1051, M N Serias
M_{1} Tel. Rec. 205-6
Chossis MCT228 Tel. Rec. 95A-9

MAGNECORD

(See Recorder Lisping)
MAGUIRE (Also see Record

Changer Listing)

50081, $5008 \mathrm{FW}, 500 \mathrm{DI}$,

MAJESTIC

MAJESTIC-Cont.	mantola (B. F. Goodrich Co.)
1042, G, GU, T Tel. Rec. (See Madel 12C4Set 108-7)	$\begin{aligned} & \text { R630-RP } \\ & \text { R643-PM (See Model R643w } \\ & \text {-Se1 4.29) } \end{aligned}$
1043, G, GU, T Tel. Rec.	${ }^{2} 6435 \mathrm{~W}$
(Soe Model 12C4	
1142,1143 Tel. Rec. (Soo	R655w (${ }^{\text {che }}$ No. 501 APH)
Model 12C4-5et 108.7)	R662, R662N
1244, G, GU, T, TX Tel. Rec. (See Model 12C4-5et $108-71$	$\text { R.743-W } \text { Ro..............23-13 }$
1254-5et $108.7{ }^{12}$	R643W-Sot 4-29)
1245, G, GU, T, MX	R-7543 18-
1348 Tel. Rec. (See Model	${ }_{\text {R-75343 }}^{\text {R }}$ (............. 39
1244-Set 108.7)	R-76143 (See Modol
400, B (Ch. 100) Tol.	2486-Set 25.17)
Rec.	76
1401 (Ch. 105) Tsl. Rec.	R76262 (foct. No. 7160-17) $51-12$
Bul. 37-Set 166-2)...127-7	R-78162 ${ }^{43}$
1546, G, GU, T Toi. Roc.	2486
(See Model 12C4Set 108-7)	92-502 (See Model R643WSel 4-29)
1547, G, GU, T Tol Rec.	92.503, 92-504 (See Model
(Sseo Model 12C4-	505, 92-506 (Sea Model
Set 108-7)	R664PM-Sot 23-131
1548, G, GU, T Tel. Rec. (Son Model 12C4-	$\begin{aligned} & 92.520,92.521,92-522 \ldots, 68-11 \\ & 92.529 . \\ & \cdots .150-8 \end{aligned}$
1549, G, GU, T Tel. Rec.	MARKEL
(Se Madel 12C4	(See Record Changer Listing)
$1600,1600 \mathrm{~B}(\mathrm{Ch} .101)$	Mark Simpson (See Masco)
Tei. Rec.127-7	masco
1605. 16058 (Ch. 102)	(Also see Recorder Listing)
	IM-5 41-
1610, 16108 (Ch. 102)	1 m .
1646, 1647, 1648, 1649	JM-5 (Moster Station),
12 C --5el 108-7)	JR (Sub-Station) $\cdots \cdots .187$
671, 1672, 1673,167	
1675 Tel. Rec.........133-8	נMP-12 \ldots.............. 147
1700 C Tel. Rec. 1 See Prod.	MA.8N119
Chge. Bul. 37-Sot 166.	MA-10HF112
ond Model 17DA - Sat	MA.10EX 113
127-7)	MA-12HF $\therefore{ }^{51}$
1710 (Ch. 101) Tel. Rec. 127-7	
1710 C (Ch. 1013 Tel. Rec.	MA.17N 50
(Soe Prod. Chge. Bul.	
37-5et 166.2 and Model	MA.17PN \ldots........ 50
17DA-Set 127-9)	MA.20HF ${ }^{28}$
1720, 1721 Tel. Rec. (5 ees	MA.25 _........... ${ }^{16}$
Prod. Chge. sul ${ }^{\text {Sot }}$ Sol-2 and Modol	
$17 \mathrm{DA}-\mathrm{Set}^{\text {en }}$ 27-7)	MA.25N …......... ${ }^{\text {43-14 }}$
1900 Tel.-Rac. 954-10	MA-25NR $\ldots{ }^{\text {49-12 }}$
1974, 1975 Tal. Rec..... 133	MA.25P 16
2042T, 20431 Tel. Rec.	MA.25PN (5 oos Model
Sot Mos-7	(
Sot	MA.35 3 ${ }_{4}{ }_{4}$
2546T, 2547T, 25491 Tol.	
Roc. Soemodel 12C4	MA.35RC 21
	MA.50 ${ }^{\text {a }}$ MA.......... 30
Chissoo Model 5AK711)	MA-SNO (Soo Model
Ch. 5805A	MA.50NR 53-14
(Seo Modal 5AK731]	MA-60 119
h. 6802 D	MA-75 28
(Soe Model 6FM714)	MA-75N 52-27
Ch .68110	MA-77, MA-77R 190
(Saee Model 6FM773)	MA-121 \ldots............ 24-21
	MA-125 \ldots.........188 ${ }^{18}$
(Soe Model 7rk752)	MA-808 26
	MAPP-15 $\cdot \ldots \ldots \ldots . .{ }_{59}^{26}$
Ch .7809 Al	MAP.18 ${ }^{\text {59-12 }}$
(See Model 7YR753)	
Chis 7 Clid ${ }^{\text {a }}$	MAP-120 21-21
$\mathrm{Ch}^{\text {(See }} 7 \mathrm{CL25A}$ Model 7 PM887)	MAP-120N
	MB-8N 196
Ch. 8806 D	
(Soo Model BFM744)	MB.60 127
Ch. 88070	M8.60 (Late) 148 -10
(Soe Model 8FM776)	
Ch. 8808 D	
	MB-125 211
	MC-10 \ldots........... 47-12
(Sobe Model 8FM889)	MC-25, MC-25P 17-21
	$M C-25 \mathrm{~N}, \mathrm{MC}-25 \mathrm{PC}$, MC-25PN, MC-25RC.... 57-11
Ch. 12826 E	MC.128, MC.126P111-8
(Soe Model 12FM475)	MCR-5 15-18
$\mathrm{Ch}_{5} 12 \mathrm{C22E}$	ME-8 15215
See Model 12FM895)	ME-18, ME-18P151-8
	ME-27 1 15-11
Ch. 4501 Model	ME-36, ME-36R 154-7
(Soeo Model 5A410)	ME.52 ${ }_{\text {MHP. } 110}$
Ch. 4504	MHP.110X …........115-5
(5eg Madet 54.30)	Midgetalk 116
Chisee Model 5A445)	
Ch. 4702,4703	MPA-3, MPT.4 16-25
(Seo Model 75433)	MSD. 16 1150
Ch. 4705	
(See Model 7P420)	RK-5 (Early) 33-11
(Sees Model 7C432)	RK-5, RK-5L, RK-5M,
${ }_{\text {i }} 4707$ \% 7 (4471	
(Seo Modol 7C447)	
	T.16 TD-16
	WF.1A 209
h. 48108	
(Soe Model 8JI885)	86, 811 2021
Ch. 41201 [See Model 12FM475)	mason
	45-1A 14
mallory	45-18, 45.7P, 45-3, 45-4,
TV-101 (8elow Serial No.	Set 14-18)
200,000) Tel. UHF Conv. 194-7	MAYFAIR
TV-101 (Serial No. 200,000	510, 510w, 520, 520W
and Abave) Tel. UHF Conv. 194-8	

Megohan (Don)	MEISSNER-Cont.
MG.7195-7	661 (See Maguire Model
MG.108 190	866-Set 12.18) 27-19
MG.188 191-6 ${ }^{\text {¢ }}$	2961 Series …....... 27-19
MG-20.8 ${ }^{\text {MG30. }}$ M 189	MERCURY (Automobile)
MG-30-8 B8- $^{\text {c }}$	GM891 (OM-18805-4
Megrade	
M-100 16-27	GF890-Se
MECK (Trail Blazer-Plymouth)	1CM747 (1 M-18805) (See Ford Model ICF743-
CD. 500 (PX-5CS-EW-19 . 33-12	Sef 17.
CE-500 (5CS-P12) 34-10	1 CM747.1 (19M-18805)
CM-500 (5D7-W18) 34-11	$2 \mathrm{CM752}$ (FAB-18805-A)
CR-500 ${ }^{38}$	6 ¢MM790.
CW^{500}............. ${ }^{40}$	8мм9890 (Ch, 8 E
CX. 500 ${ }^{48}$	(8M. 18805
DA601, DB6021 81	вмММ990 (8M.1880
EC720 .-............ 85	8MM991) (8M-18805
Ef-730, EG-731	8Mm991-E (8M-18805) 83-
	MERCURY (Paciific-Mercury)
JMフITC, cou, To, tu 'ch	2013 (Ch. 150-2) Tol. Rec.
2011.	(${ }^{\text {a }}$
TU (Ch. 9021 I	57-501
Jm	(1) ${ }^{\text {a }}$
JM.721C, CD (Ch. 903	
	Model 2013-Sot 172
	2081 1Ch. 150.4 ond R
Tel. Rec.'. 110	Ch. 1555 Tel. Roc....198-
M614C, T (Ch. 9018)	2113.2115 lCh.
Tel. Rec. (Also Sae P	${ }^{-81)}$ Tel Rect.
120.11 (${ }^{\text {a }}$	Prod.
	2116. 2217 (Ch. 150.81)
Tel. Rec. (Also Seo	Tel. Roc. (Seo
Set 120.1) \ldots.......117-8	19
M-617C, T (ch. 9032)	${ }^{501} 172.0150$
Tol. Rec. (Sos Modol	
	Ond. Rec.
Tel. Rec. (Also Soe	92 (Ch. 150.10
Prod. Chge. Bul.	adio Ch. 160).
Set 120-1)	Ch. 150.5
-620C,	5
Tel. Rec. (See	Chge. Bul ${ }^{57}$
JM-77 (${ }^{\text {cot }}$	4120 (Ch. 150-2) Tell. Rec.
6C, T (Ch. 9023)	Also see Prod.
	Bul. 57-Set 190.1)...172-6
$620 \mathrm{C}, \mathrm{T}$ (Ch. 9023)	4220 (Ch .150 l Tal. Rec.
Tel. Rec. (Soe Model,	Aul 57
PM-SCS-DW10 10.	4317 (Ch. 150-7, -12)
PM-5CS.PW 10	tol. Rec
RC. 5 C5-P	4317 (CH .150 .9)
RC-6A7-P6	Re
SA-10, SA-20 101-4	320 (Ch. 150-2, 15
XA.701 Tel. Rec. 61-16	Rec. (Also see Prod.
XE-705 (See Madel XA-701-5 5181.1	Sot i91-1) ${ }^{\text {chos }}$
xF-777 Tol. Rec......... 101-5	4621 (Ch. 150.81) Tel.
XL750 Tel. Rec.	
$\times \mathrm{N} .752$ Tel. Rec....... 101	172.6 an
$\times 08$ Tet. Rec........... 11	Ch
xp-775 Tel. Rec........101-	191]
XQA Tel. Rec	4721 (Ch. $150 \cdot 10$ ond
XQA.776 Tal. Rec...... 101-5	Rodio Ch. 180
	(See Model 2013)
XRA, XRPT Tol. Rec..... 110-9	Ch. 150.4
xR-778 Tel- Rec....... 101	(500. Modal 2081)
	${ }^{\text {chi }}$ S ${ }^{\text {Seg Modal }} 24011$
XSE (Ch. 9018) Tol. Roc.	Ch .150 .7 (${ }^{\text {a }}$
(Also Soe Prod. Choo. ${ }^{\text {(}}$	(Sos Modol 4317)
XSD (Ch. 9018) Tol.	Ch. 150-9
Rec. (Sae Modol ${ }^{\text {a }}$	(5 ee Model
MM614C-Sot 117.8 and	
Prod. Chgo. Bul. 12-	Ch. $150-12$
SpT Tol. Rec	(Soe Model 4317)
xS.786 Tol. Rec........ 101-5	$\mathrm{Ch}^{150} 150-15$ d
XTA, XTR Tol. Roc..... 110 O- $^{\text {a }}$	Ch. 150.31 is ${ }^{\text {chel }}$
	(See Model 2181)
$\underset{487}{ } \times 1800$ Tet. Rec............	$\mathrm{Ch}, 150.51$
44^{4} …........... ${ }^{35-14}$	(See Model 2401)
	(See Model 2181)
	Ch. 150-81
$514 \mathrm{C}, \mathrm{Y}$ ($\mathrm{Ch}, 9018$) Tol.	(Sob Modol 2113) 20811
Rec. (Sea Modil	Ch. 155 (50e model 208)
Mmbitic-Sot 17.8 and	LA
Prod. Chgo. Bul. 12Sal 120-11	M68 2-30
614C, $614 \mathrm{TL} \mathrm{(Ch}$.	MIDWEST
Teli. Rec. (Soomodel)	P6, PB.6 14-19
$\mathrm{O}_{16 \mathrm{C}, \mathrm{T}}(\mathrm{Ch} .9018)$ Tol.	
	R-12. RG-12, RT-12 44
MM614C-Set $117-8$.	(Ch. RGT.12) , 44-13
and Prod Chge.	16, RG-16, RT-16 .16 45-16
617C. 6177 l (Ch. 9022)	58, ST-8 (Ch. STM-8) ... 15-19
Tel. Rec. (Soomodel	S.12, SG-12, ST-12
Roc. (seo Model	
MM614C-Set 117.8 and	TM.8 [Ch. STM -8\| 15-19
Prod. Chgo. Bul. 12Set 120-1)	716. A (See Model S.10-5et 21-24]
MEDCO (See Telesonic)	MILWAUKE ERWOOD (See Record Changer Listing)
TV.1 ICh 24TV) Tol. Roc. 56-15	MInERVA
4 E172-5	1-702 12-20
${ }^{54}$ (Soo Maguira Model	${ }_{\text {L.728 }}$
571-Sat 44-10)	W.117. Tropic Master . . . ${ }^{6} 1{ }^{-17}$
H (50e Maguire Modei	W-177.3 11-14
${ }_{885}^{661-S o t ~ 12-181 ~ . ~ . ~ . ~ 161-5 ~}$	
	W-728
9-1065 …........... 3-15	${ }^{702 H}, 702 \mathrm{H}-1 \mathrm{l} \cdot \ldots \ldots . .{ }^{30-18}$
9.1091A, 9-10918 35-15	729 (Portapal) 23-14
9-1091C116-8	mIRRORTONE (Also see Meck)
9.1093 ${ }^{55-13}$	14MTS Tol. Rec........ 163-7
17A ATV Tol Rec isoo Model ${ }^{\text {105-6 }}$	
${ }^{24 T V}$ Tel. Rec. (Soe Model	
574 (See Maguire Model $571 \text {-Sot } 44.101$	'P') Tel. Rec. (See Model 20PC-Set 175-12)

MOTOROLA-CONt. Rodio Ch. HS-261) Tel.
Rec. (See Model
14 KI BH-Set 121.1 7F11 (Ch. TS-228 and
Rodio Ch. HS-302) Tel. Rec.
$7 \mathrm{FI} 12, \mathrm{~A}, \mathrm{BA}, \mathrm{BA} \mathrm{Ch}$,
TS.325, A, $326, \mathrm{~A}$, and TS.325: $A, 326, A$, and
Radio $\mathrm{Ch} . \mathrm{HS}-319$) Tel. Rec.
TFI2D (Ch. TS-401) Tel 171-8 Rec. (For TV Ch. Only 49-Set $183-1$ ond Madel 7F13, B (Ch. TS-395A and Radio Ch. HS-319)
(For TV Ch. 92-6, For Radio Ch Model 17F12-Set 171.8)
FFI3BC (Ch. T5.408A Radio Ch. HS-319) Tel. chal 21 Cl 191-13, for Radio Ch. see Model
7F13C (Ch. TS.408A and
Radio Ch. H5-319) Tel Rec. (For TV Ch, see 191-13, for Radio C see Model 17F12-Set
171.81

Tel. Rec. (See Model
$14 \mathrm{K1} 1 \mathrm{BH}-$ Set 121.10)
7K2BE, E(Ch. TS-172) $14 \mathrm{K1BH}$-Set 121.10)
TS. 118) Tel. Rec TS.891 Tel. Rec....
7K4A (Ch. TS-95) 7 K 4 E (Ch. TS. $\mathrm{T} / 72 \mathrm{Te}$
Rec. Se Model $14 \mathrm{KIBH}-\mathrm{Set} 121 \mathrm{l}$
17 K 5 (Ch. TS-118) Tel Rec. (See Model
14 KIBH Set 121-10) $7 \mathrm{K5C}$ (Ch. TS.174) Tel.
Rec. (See Model $14 \mathrm{~K} 1 \mathrm{BH}-\mathrm{Set} 121-10$) Tel. Rec.
17 Ko (Ch. TSilig) Te
Rec. (See Model Rec. (See Model
$14 \mathrm{~K} 1 \mathrm{BH}-\mathrm{Set} 121-10$)
17 KoC (Ch. TS.174) Tel. Rec. (Soe Model
$14 \mathrm{KI} 1 \mathrm{BH}-\mathrm{Set} 121-10)$ Rec. (See Model $14 \mathrm{~K} 1 \mathrm{BH}-\mathrm{Set}$ 121-10)
$7 \mathrm{K7BC}, \mathrm{C}$ (Ch. TS. 174) Tel. Rec. (See Model
14 K 1 BH -Set 121.101 Tel. Rer. R . Tel. Rec.
$17 \mathrm{Kg}, \mathrm{B}$ (Ch TS.220) 17 KOA . BA (Ch. TS-22B) Tel. Rec.
17 K 9 BC (Ch. TS-221, -A) 7K10, M (Ch. TS.228) Rec. (See Model $14 \mathrm{K1} 1 \mathrm{BH}$-Se Set $121-10$)
$7 \mathrm{K10E}$
 $17 \mathrm{~K} 1 \mathrm{iA}, \mathrm{BA}(\mathrm{Ch} . \mathrm{TS} 228)$
Tel. Rec.
165-7
 Tel, Rec. (See Model
17F12-Set 17F12-Set 171-8)
$17 \mathrm{K1} 130$ (Ch. TS-401) Tel Rec. (See Prod. Chge.
Bul. 49-Set 183.11 \& Model 21F1-Set 173-9 -02) Tel. Rec.......... 192-6
17K148C (Ch. TS.408A) 21 Cl -Set 191.13)
17 K 14 C (Ch. TS.408A) Rec. (See Model 21 Cl -
 17K14WC (Ch. TS.408A)
Tel. Rec. (See Model Tel. Rec. See Mode
21 C 1 Set 191.131
17 K 15 B (Ch. TS -395 A .02) Tel. Rec........ 192-6
17 K 15 BC (Ch. TS-408A) Tel. Rec. (See Model
$21 \mathrm{C} 1-$ Sel 191.13)
17K15C (Ch. TS-408)
21. Rec.-Set 191.13)

Tel. Rec. 192-6 Tel. Rec. (See Model
21 Cl -Set $191-131$
$17 \mathrm{T1}, 17 \mathrm{T1B}$ (Ch. TS.118)
1711A, 17T1BA (Ch. 121-10
17T2A, 17T2BA ICh

- tsibl tec.......i21

MOTOROLA-COnt.
1712, 17T2B (Ch. TS-118) $\begin{aligned} & \text { Tei. Rec.121-10 }\end{aligned}$
 17T3A (Ch. TS-89)
Tel Re.121-10
17T3G (Ch. TS-221, -A) 1713G (Ch. TS.221, A)
Tel. Rec.
1713×1 (Ch, is 118A. 159-10 Tel. Rec. MS.) 18 AAA, B)
Tel. Rec. (See Model
$14 K 1 B H-S e t ~ 121-101$
17T4 (Ch. TS.118) Tel. Rec
(See Model 14K1BH-
(See Model
Set 121-10)
Set $121-10$)
$17 \mathrm{THC}(\mathrm{Ch}$. TS.174)
Rec. (See Model
$14 \mathrm{~K} 1 \mathrm{BH}-\mathrm{Se}^{2}$ 121-10)
17T4E (Ch. TS.221, -A)
Tel. Rec. . .14)159-10
17T5A (Ch. TS-214)
Tel. Rec.
17T5C (Ch. TS-228)

Tel. Rec. TS-236)
17TSE, F FCh. TS. $314 A, \ldots$ B, 152-4A
TS-315A, B) Tel. Rec, 167-13
TS-315A, B) Tel. Rec, .. 167-13
17T6BD, C, D, (Ch. TS. 236)
Tel. Rec. 1 , (Ch. IS-238)
$17 \mathrm{~T} 6 \mathrm{BF}, \mathrm{F}$ (Ch. TS 228).
Tel. Rec.
17 T6G (Ch. TS-314A, B)
Tel. Rec.167-13
17T7. A Ch. TS-325. 171-8
171. A (Ch. Tel. Rec.171-8

17P8, A, B, BA (Ch
TS. 325 , TS -326)
Tel. Rec.
17 TO (Ch. TS-325A, B)171-8
1el. Rec. (See Mode
17 F 12 -Set 171.8)
17T9A (Ch. TS. 326A, B)
Tel. Rec. (See Model
17 F 12 Che 171 (
17 Fl 2 -Set $171-8$)
17P9E (Ch. TS-325A, B)
Tel. Rec. (See Model)
Tel. Rec. (See Mode
17F12-Set 171.8)
17TEEF (Ch. TS-401)
Yel. Rec. (See Prod
Chge. Bul. $49-S e t$
$183-1$ and Model 21 FI -
17T10 (Ch. TS.325B)
Tel. Rec. (See Model
17 F 12 -Set 71.81

Tel. Rec. (See Model)
17F12-Set 171-8)
17110 D (Ch. TS-401)
Tel. Rec. (See Prod,
Chge. Bul. 49-Set 183 -
and Model 21FI-Set
1773.9) Ch . TS-395. 02

Tel. Rec.
17Tlic (Ch. TS-408A)
Tel. Rec. (See Model
21 Cl Set $199 . \mathrm{F} 3$)

17T1IEC (Ch. TS-408A)
Tel. Rec. (See Model
$21 \mathrm{Cl1}$ —Set 191.13)
$17 \mathrm{H} 2, \mathrm{~B}$ (Ch, TS.395A,
.02) Tel. Rec. .
17r12C (Ch. TS-40BA) ...192-6
Tel. Rec. (See Model
$21(1-$ Set $191-13$)
21C1-Ser 191-13)
1712 C
(Ch. TS.395A.
-02) Tel. Rec.
17 T 12 WC (Ch. TS - 08 A) 192-6
Tel. Rec. (See Mode
21 Cl - Sel 191.131
17113 (Ch. TS-410A)
Tel. Rec. . 19 F 1 (Ch. TS. A and 194-9

19K1 (Ch. TS-67, A)
Tel. Rec. 111 -
$19 \mathrm{K2}$. Rec. 19 K 2 B (Ch. TS-ion)
Tel. Rec.
$19 \mathrm{K2E}$, BE ($\mathrm{Ch}, \mathrm{TS}-119, \mathrm{~A})$
Tel. Rec. ISee Prod.
Chge. Bul. 53 -Set
Chge. Bul. 53-Set
$187-1$ and Model $19 \mathrm{~K} 2-$
Set $122-5)$
$19 \mathrm{~K} 3,19 \mathrm{K4}, 19 \mathrm{~K} 4 \mathrm{~B}$
(Ch. TS-101) Tel. Rec, 122-5
20F1, B (Ch. TS.119 A
20F1, B ICh. TS.11, A and
Radio Ch. HS-2301
Tel. Rec. (Also See
Prod. Chge. Bul. 53
Set i87-1).
$20 \mathrm{~F} 2, \mathrm{~B}$ (Ch. TS-119B, 122-5 2OF2, B (Ch. TS-119B,
Tei. Rec. ${ }^{2}$ See Prod.
Ch. Chge. Bul. 53-Set 187-1 and Model
Set 122-5)
$20 \mathrm{KI}, \mathrm{B}, 20 \mathrm{~K} 2 \mathrm{Ch}$.
TS.'I $19 \mathrm{~B}, \mathrm{C}$) Tel. Rec.
(See Prod. Chge. Bul.
$53-\mathrm{Sel}^{2} 187-1$ and Model
$19 \mathrm{~K} 2-5 \mathrm{e}^{+} 122-5$
$20 \mathrm{K3}, 8,20 \mathrm{~K} 4, \mathrm{~B}$ (Ch
$20 \mathrm{KJ}, \mathrm{B}, 20 \mathrm{~K} 4, \mathrm{~B}$ (Ch.
TS-119C, C1, D) Tel
Rec. (See Prod. Chge.
Bul. 53-Set 187.1 and
Bul. 53-Set 187.1 and
Model 19K2—Set 122.5) 20K6. 20 K 6 B (Ch. TS-307) 183 $2071, \mathrm{~B}, 20 \mathrm{~T} 2 \mathrm{ch}$.
IS. 119 B, C) Tel. Rec.
(See Prod. Chge. Bul, 53
-5et 187.1 and Model
2012A, 20T2AB (Ch
TS-307) Tel. Rec...... 183-9
20 T 2 B (Ch. TS-1198, C
Tel Rec. (See Prod.
Tel. Rec. (See Prod.
Chge. Bul. 53 -Set $187-1$
and Model 19K2-Set
122.51
20T3, 20 T38 (Ch. TS-307)
Tel. Rec.183-9

MOTOROLA-CORt.
$21 \mathrm{Cl}, \mathrm{B}$ (Ch. TS-292A, B)
Cligec. (Also See Prod
Chge. Bul. 63-Set
197-1) (C. TS-351, A....191-13
21F1, B Ch. Thet
21F1, B (Ch. TS-351, A
and Radio Ch. HS.316)
and Radio Ch. HS-3161
Tel. Rec.
TF2. B, 21F3, B (Ch.
TS. $292 \mathrm{~A}, \mathrm{~B}$ and Radio
$\mathrm{HS}-316$) Tel. Rec. (For TV
Ch . See Prod. Chge. Bul. 63-Set 197.1 and Set
$191-13$, For Radio Ch.
See Mod
$173-91$
21k1, B (Ch. TS.351)
Tel. Rec. .O......173-9
21k2, B (Ch. TS.351)
Tel. Rec.
$21 \mathrm{K3}$, B, W (Ch. TS-35ibi 173-9
Tel. Rec. (See Model
Tel. Rec. (See Mo
21 FF -Set 173.9)
21 K 4 B W 1 Ch
$21 \mathrm{K4}$, A, B, W (Ch.
TS.292A, B) Tel. Rec
(Also See Prod. Chge.
Bul. 63-Set 197-1) . 191-13
Bul. 63-Set 197.1)...191-13
TS.292A, 8) Tel. Rec.
(Also See Prod. Chge.
But. $63-$ Set 197.1)...191-13
21 TI . B (Ch. TS.351)
Tei. Rec.173-9
21T2, B (Ch. TS.351)
Tei. Rec.

Rec. (Also See Prod.
Chge. Bul 63-
Chge. Bul 63-
Set 197-1)
Set 197.1) T.3.......191-13
21T4A (Ch. TS.324A B)
21T4A (Ch. TS. 324 A ,
Tel. Rec. (Also See
Tel. Rec. (Also See
Prod. Chige. Bul. 63
Set i97.1) Bul. 63-.........191-13
21 TAAC, ACE (Ch. TS-
$21 \mathrm{TAAC}, \mathrm{ACE}$ (Ch. TS-
$292-\mathrm{B}$) (See Prod. Chge
Bul. 63 -Sel 197.18
21 MAEA (Ch. TS. $324 \mathrm{~A}, \mathrm{~B}$)
Tel. Rec. (Also
Chge. Bul. 63
Set i97-1)
1T5A, BA ICh. TS $324 A$,
B) Tel. Rec. (Also See
Prod Che Bul

45812 (Ch. HS.8).
47811 (Ch. HS-72).
47811 (Ch. HS-72)
48111 (Ch. HS-113).
(Ch. HS.183)
(Ch. $\mathrm{HS}-183$)
$51 \mathrm{Cl}, 51 \mathrm{C} 2,51 \mathrm{C3}, 51 \mathrm{Ca}$
77-7
(Ch. HS-288) (See
Model 5 Cl -Set 116.9)
$51 \mathrm{LIU}, 5112 \mathrm{C}(\mathrm{Ch}, \mathrm{HS-224)}$
(See Model 5J7-
(See Model
Set $100-7$)
$51 \mathrm{M1U}, 51 \mathrm{M} 2 \mathrm{U}$

$52 \mathrm{Cl}(\mathrm{Ch} . \mathrm{HS}-309)$) 19
$52 \mathrm{ClA}(\mathrm{Ch} . \mathrm{HS}-309)(\mathrm{See}$
Model $52 \mathrm{Cl}-\mathrm{Set} 191-15)$
Model 52 Cl -Set 191-15)
52 C 6 (Ch. HS-310) …177-10
52C6A (Ch. HS-375)
(See Model 52C6-
Set 177-10)
52C7 (Ch. HS-310)177-10
52C7A (Ch. HS-310) (See
Model 52C7-Set 177-10)
52 CB (Ch. HS-310) $\ldots \ldots$. 177 - 10
52C8A (Ch. HS-375)
(See Model $52 \mathrm{C8}$ -
Set $177-101$
52 CW 152 cW
52 CW 3
52CW4 (Ch. HS 329). 198-10
$52 \mathrm{HIlU}, 52 \mathrm{HI} 2 \mathrm{U}$,
$52 \mathrm{HI} 3 \mathrm{U}, 52 \mathrm{HI} 4 \mathrm{U}$

52M3U (Ch. HS-300) . . . 188-10
$52 R 11,52 R 12,52 R 13$,
$52 R 14,52 R 15,52 R 16$
.188-11
(Ch. HS-289)
$52 \mathrm{RI1}, 52 \mathrm{R12}, 52 \mathrm{R13}, \ldots$
$52 R 14,52 R 15,52 R 16$
52R. HS-289A) (See
(Chodel 5211-Set $188-11$
Mol
52R11A, 52R12A, $52 R 13 A$.
52R14A. 52R15A.
52R16A (Ch. HS-317)..178—7
52 R11U, 52 R12U, $52 R 13 \mathrm{U}$,

57X11, 57×12 (Ch. HS-60)
58A11, 58 28- 25
(Ch. HS.158)

$\begin{aligned} & \text { 58R14, 58R15, 58R16 } \\ & \text { (Ch. HS-116) } \\ & \text { 58R11A, } 58 R 12 A, ~ 58 R 13 A, ~\end{aligned}$
58R11A, 58R12A, 58R13A,
58R14A, 58R15A.
$58 R 16 A(C h . H S-184) \ldots 69-11$
$\begin{array}{llll}\text { 58R16A (Ch. HS-184)... } & 69-11 \\ 58 \times 11, & 58 \times 12 \\ \text { (Ch. } & \text { HS } 125) & \ldots \ldots . & 53-15 \\ 59511 & (\mathrm{Ch} . & \text { HS-188)...... } & 68-12\end{array}$
59F11 (Ch. HS-188)...... 68-12
59H11U, $59 \mathrm{HI21U} \ldots$
(Ch, HS-210) 97-9

59R11, 59 R121, 5913 M ,

$\begin{aligned} & 59 \times 11,59 \times 121 \\ & \text { (Ch. HS.180) }\end{aligned} \ldots . . .81-11$
$59 \times 21 \mathrm{U}, \mathrm{HS9} \mathrm{\times 2210}$
(Ch. $\mathrm{HS}-192$) \ldots.
$98-6$

MOTOROLA-COnt.
$61 \mathrm{LI}, 61 \mathrm{L2}$ (Ch. HS.226)
Set 102.7)
62Cl (Ch. HS-299)189-12 62CIA (Ch. HS. 299) (See
Model 62 Cl Set 189.121 Model 62 Cl -Set 189.121
62 CZ (Ch. HS-299) 189—12 62C2A (Ch. HS-299) (See
Model $62 \mathrm{C} 2-$ Set 189.12) 62 C 3 (Ch. H5-299). ${ }^{2} . . .189$
62 C 3 A (Ch. H5-299) (See Model $62 \mathrm{C} 3-\mathrm{Sef}$ 189-12)
$62 \mathrm{CW1}(\mathrm{Ch} . \mathrm{HS}-324) \ldots$ 196-7 ${ }^{62111}, 6212 \mathrm{~L}$, , 2081 . . 183-10

$\begin{array}{ll}\text { S521 (Ch. HS-26) } & \text { 4-12 } \\ 65(11, & 65(12 \text { (Ch. HS-7). } \\ 8-22\end{array}$
$65 \mathrm{~T} 21,65 \mathrm{~T} 21 \mathrm{~B}$
$(\mathrm{Ch}, \mathrm{HS}-32)$.

65X14B, (Ch. HS. 2)....
$67 \mathrm{~F} 11,67 \mathrm{~F} 12,67 \mathrm{~F} 12 \mathrm{~B}$,

677611
67×11
67142
68
6811
6811
6811
$68 \times 12 \mathrm{~A}(\mathrm{Ch} . \mathrm{HS} .127 \mathrm{~A})$.
$\mathbf{5 6}$
69111 Ch
69×11 HS.175).....
$69 \times 11,69 \times 121$
$(\mathrm{Ch} . \mathrm{HS} .181)$
${ }_{72 \times M 21}$ (Ch. HS. 303) ... 176
$72 \times M 22$ (See Model

75 F 31 (Ch. HS-36)
$75 \mathrm{~F} 31 \mathrm{~A}, \mathrm{~B}$ (Ch. HS-36A),
76 F 31 (Ch. HS-98)
77FM21 (Ch. HS.89)
77FM22, 77 FM22M
77FM22WM, 77FM23
(Ch. HS.97)
$77 \times M 21,77 \times M 22$,
$77 \times M 228$ (Ch. HS-102). 34-12

$78 \mathrm{FM} 21,78 \mathrm{FM} 21 \mathrm{M}$ iCh
$\mathrm{HS} .132 \mathrm{I}, 78 \mathrm{FM} 22 \mathrm{M}$
$\mathrm{Ch}, \mathrm{HS} 1281, \ldots \ldots .59-13$

$88 F M 21$ (Ch. HS. 133)
91 FM21 (Ch. HS.230
(See Model 19FI-
Set 111 -9)
92FM21, A, B, BA
$(\mathrm{Ch} . \mathrm{HS} .316 \mathrm{~A})$
Model 21F1-Set 173-9)
$95 F 31,95 \mathrm{~F} 31 \mathrm{~B}$ (Ch. HS-39
95 F 33 (Ch. HS-38)
99FM21R (Ch. HS-170)... 80-10
107F31, 107F318.

$405(\mathrm{Ch} . \mathrm{AS}-13)$.
405 M (See Set $21-25$ and
405M (See Set $21-25$ and
Model $405-$ Set $3-8$) $\quad 38-12$
409 iSee Model 408-
38-12

505 (Ch. AS-14)37
508 39-13
509 (See Madel $508-$
Set 39.13)
60010
603 (See Mopar Model
603 (See Mopar Model
603 Set 65.9)
604 (See Mopar Mode
704 -Set $106-9$]
605 (Ch. AS-15) 5-1
606 (See Mopar Model
606 Sel 133-9)
607 (See Mopar Model
607 -Set 170-11)
608 (Maporl (See Mopar. 39—14
608 (Mapor) (See Mopar
Model 608 Sef 207-4)
609 (See Model 608 -
609 (See Model 608 -

804 (See Mopor Model
804 -Set $67-12$)
808 (See Mopar Model
814 (See Mopar Model
814 -Set 137.71
Ch. AS-13 (See Model 405)
Ch. AS-14 (
Ch . AS-15 (See Model 6051
Ch. AS-16 (See Model 705)
Ch. AS-22 (See Model BK-6)

MOTOROLA-COnt.
Ch . $\mathrm{BT}-2$
197-7
Ch. HS-2 (See Model
Ch. HS-6 (Soe Model 5Al)
Ch. HS.7 (See Model
Ch. HS .8 (S
45B12) (See Model
Ch. HS-15 (See Model 5A5
Ch. HS-18 (See Model
WR6)
Ch. HS-22 (See Model
Ch. HS-26 (See Model
Ch. HS. 30 (See Model
55F11)
Ch. HS-31
(See Model
Ch. HS. 32 (See Model
$\underset{C h,}{65 T 21)}$ (S5-36 (See Model
Ch, HS-36A (See Model
75F31A1
$\mathrm{Ch} . \mathrm{HS} .38$
Ch. HS. 38 (See Model
Ch. H5-39 (See Model
Ch. HS-50 (See Model
55×11A)
Ch. HS. 52 (See Model
Ch. HS. 58 (See Model
Ch. H5-59 (See Model
$67(11)$
$\mathrm{Ch} . \mathrm{HS}-60$ (See Model
$57 \times 11)$
Ch. HS. 62 (See Model
Ch. H5 S.62A (See Model
5A7A)
Ch. HS-63 (See Model
Ch. HS-64 (See Model
Ch. HS-69 (See Model
o7F 61 BN)
67F61BN)
Ch. HS.72 (See Modet
Ch. HS.87 (See Model
Ch. HS.89 (See Model
T7FM21)
Ch. HS-91 (See Model
75F21)
Ch. HS.94 (See Model
Ch. HS-97 (See Model
77FM22)
Ch. HS. 98
(See Model
76F31)
Ch. HS-102 (See Model
$77 \times M 21$)
HS
HS 108 (See Model
VK.101)
(See Model
HS-1) (See Model
Ch. HS-113 (See Model
48LII)
Ch. HS-114 (See Model
Ch. HS-114 (See Model
58LH1)
Ch. HS-116 (See Model
Ch. HRIII
Ch. HS-119 (See Model
68 HS 111
Ch.
H -122
(See Model
Ch. HS. 124 (See Model
Ch. HS-125 (See Model
58×11)
Ch.
HS-127 (See Model
68×111
h. HS.127A (See Model
68
Ch. HS -1 128 (See Model
$\mathrm{Ch}_{\mathrm{H}}^{\text {H8F-132 }}$ (See Model
Ch. HS. 133 (See Model
Ch. HSFM211
8. HS-137 (See Mode
VFIO2)
Ch. HS.I44
Ch. HS-144 (See Model
68T11)
HS.150 (See Model
Ch. HSF111) (See Model
Ch. HS-155 (See Model
Ch. HS-155
$\left.78 \mathrm{FH}_{1} 2 \mathrm{M}\right)$
Ch. HS. 158 (See Mo
Ch. HS-160 (See Model
58G11)
Ch. HS-167 (See Model
$59 R 111$
Ch. HS-168 (See Model
$70 \times M 21)$
Ch. HS. 170 (See Model
Ch. HS-175 (See Model
Ch. HS.178 (See Mode
H5-180
Ch. H5-180 (See Model
Ch. HS-181 (See Model
Ch. HS-183 (See Mode
Ch. HS.184 (See Model
58R11A) (See Model
Ch. HS-187 (See

59L110)

Ch. HS-188 (See Model
Ch. HS-192 (See Model
Ch. $58 \times 21 \mathrm{H}$) 210 (See Model
59 H 11 UI
Ch. HS.223
Ch. HS-223 (See Model
5MI)
$C h$. HS.224 (See Model
SJIU)
Ch. HS. 226 (See Model
6t1)

PHONOGRAPH SERVIC through the MAGIC of CERAMIC.

Direct replacement of crystal cartridges* with permanent ceramic in millions of record players is now feasible

* ELECTRO-VOICE NEW CERAMIC PHONO-CARTRIDGES ARE DIRECTLY INTERCHANGEABLE WITH SILENT-NEEDLE-TYPE CRYSTAL CARTRIDGES

(cartridges that do not use a thumb screw)
Through the Magic of Ceramic, these new E-V Cartridges offer many important advantages:

1. Virtually Indestructible-No worry about deterioration or performance, all year 'round.
2. Moisture Proof-Ceramic generating element cannot be dissolved by moisture. Ideal for extremely humid or dry areas.
3. No Heat Problem-Not dehydrated by high temperatures. Assures good reproduction in all climates, hot, temperate or cold.
4. High Compliance-Typical of modern E-V cartridges. It means less needle pressure (tracking force) and greater ability to follow the grooves-makes records last longer and sound better.
5. Wide Range-Low mass driving system allows wider response range due to the lighter weight of needle and mount.
6. High Output Voltage-Equal to or better than crystal cartridges.
7. Long Life-Without fear of deterioration, can be kept in the service kit and carried along on service calls for on-the-job replacement sales, or kept in stock on the shelf.
8. No Additional Cost-E-V Ceramic Cartridges are priced at no more than crystal. This makes the replacement sale even easier!

MODEL 43 CERAMIC. For 78,45 and $331 / 3 \mathrm{rpm}$. Plays all three speeds with a single 2.3 mil all. purpose heedle-tip. Output is .7 to 1.0 volt. Model 43, with Osmium Tip.......... List $\$ 6.50$ Model 43-s, with Sapphire Tip............. List $\$ 7.50$

MODEL 44 CERAMIC. Superb replacement in 45 and $331 / 3 \mathrm{rpm}$ record players. Uses 1 -mil needle. Ouput 7 volt
Model 44, with Osmium Tip............ List $\$ 6.50$ Model 44-S, with Sapphire Tip......... List $\$ 7.50$

NG REVOUUTIONIZED PERFECT PERFORMANCE EVEN AT THE TEMPERATURE OF BOILING WATER

Electro-Vorce Ceramic Cartridges provide high output and superior compliance. Note that crystal cartridges are rated at optimum temperature of approximately $70^{\circ} \mathrm{F}$. As room or equipment temperature rises, output of crystal cartridge falls. Ratings given for these ceramic cartridges are measured at $100^{\circ} \mathrm{F}$. at which temperature output is actually higher than most Rochelle Salt crystals. Frequency response is not temperature-dependent as is the case with Rochelle Salt.

E-V low-mass driving system gives substantially less mechanical impedance. The result is less record wear and less needle wear. The needle is easily replaced and will always be identically positioned, automatically.
The 3 ceramic models shown below are part of the famous E-V Basic 6 Preferred Types that make over 92% of all cartridge replacements.

REVOLUTIONIZED SERVICING BOOSTS SALES

Servicing is more convenient-installation is quick and easy-performance is more satisfying. With these 3 ceramic cartridges in the service kit, every serviceman is always prepared to make fast on-the-job replacement sales. Service-calls become more profitable.

MODEL 46-T CERAMIC TURNOVER. For 78, 45 and $331 / 3 \mathrm{rpm}$. Uses separate 3 -mil Osmium and 1 -mil $331 / 3 \mathrm{rpm}$. Uses separate $3-\mathrm{mil}$ Osmium and 7 -mil Sopphire Tip needles. Output 7 volt. With simple, Model 46. Without turnover mechanism. List $\$ 9.00$

PACKAGED FOR EASIER SALES AND SERVICE

Each Electro-Voice cartridge comes like a jewel in a rich two-tone transparent and golden yellow, self-stacking plastic box. Protects the cartridge, attracts the eye, helps make the replacement sale.

NEW HIGH FIDELITY CERAMIC CARTRIDGES

For Hi-Fi enthusiasts, broadcast and recording studios, Electro-Vorce has developed new Ultra-Linear, Wide-Range, Constant Amplitude Ceramic Phono-Cartridges. Require no preamp, no costly equalizing networks. Complete information is available on request.

FREE INTERCHANGEABILITY CHART

Write now for new free Phono-Cartridge Replacement Chart No. 170-A. Gives quick, handy, complete crossreference of cartridge interchangeability. Includes E-V cartridge specification table.

ElectroWoics

Reprints of these two pages are available to you in reasonable quantity without charge, for your use in promoting replacement sales. Simply write to ElectroVoice, Buchanan, Mich.

MOTOROLA-Cont.
Ch. HS-228
ISee Model
$\mathrm{Ch}_{5 \mathrm{C}, \mathrm{HS} \text { - } 228 \text { (See Model }}$

Ch. HS. 234 (See Model
$\mathrm{Ch}_{\mathrm{F}} \mathrm{HS} .242$ (See Model
Ch. HS-243 (See Model
Ch. HS-244 (See Model
C_{h}. HS-245 (See Model

Ch. HS. 247 (See Model
Ch. HS-249 (See Model
Ch. HS -2
Ch. HS-250 (See Model
Ch. HS-253
Ch. HSS-258 (See Model
$\mathrm{Ch}_{\mathrm{S} .}^{\mathrm{SC} 2)}{ }^{\mathrm{HS}} 25$
Ch. $\mathrm{HS.261}$
i 7 FF 5)
(See Model
Ch. HS. 262 (See Model
$C h . H S$.
OFII)
Ch (See Model
Ch. HS
7FII)
205
(See Model
Ch. HS-270 (See Model
Ch. HS-271 (See Model
Ch. HS-272 (See Model
Ch. HS. 283 (Soe Model
STM1UU
Ch. HS 289
Ch. HS-289, A (See Model
Ch. H5. 29
62 Cl) ${ }^{299}$ (See Model
Ch. H5-300 (See Madel
52 MlUF
$\mathrm{Ch} . \mathrm{HS} .302$
17F11) (See Made
T2xM21) (See Model
Ch. HS 305 (See Model
Ch. 52810306
Ch. H28. 306 (See Model
Ch. HS. 308
62llu) (See Model

52 Cl
Ch
HS.

$\mathrm{Ch} . \mathrm{HS} .310$ (See Model
52C6)
Cb. HS-313
Ch. H5-314 (See Model
82×1141
Cb. H5-315
Ch. HS-316 (5ee Model
Ch. HS-317 (5ee Model
$52 \mathrm{R} 11 \mathrm{~A})$
Ch. HS-319 (See Model
Ch. HS-324
Ch. HS-324 (See Model
62 CW 1)
$\mathrm{Ch}_{5} \mathrm{H}$ H-327 (See Model
Ch. HS.329 (See Model
Cr. HS. 357 (See Model
Ch. M-5 (See Model
AR96-23)
Ch. OB (See Model SROB)
Ch. PG-2
Ch. Pb-2 $\ldots \ldots \ldots \ldots$ 197-7
Ch. P8-2
Ch. TS-3
Ch. TS-3 (See Model
VT-101)
Ch. TS-4B Thru f (See
Model VT.71)
Ch. IS.4] Late (See
Ch. TS. 5 (See Model
VK101)
Ch. TS.7 (See Model
Ch. T5.8 (See Model VF103)
Ch. TS.9, TS-9A, TS-9B
TS.9C' (See Model
TS.
VIIO5)
VTS
Ch. TS-9D (See Model
Ch. TS-9E, TS-9E1
$\mathrm{Ch}^{\text {(See Model VK106) }}$

Ch. TS-15 (See Model
Ch. TS.15C, TS.15Cl (See
Ch. TS. 16 . A (See Mod
Ch. TS.18, A (See Model
iovF8B)
Ch. TS.18, A (See Model
Chivi)

Model 12 VK 111
Ch. TS. 30 , A (See Model
Ch. TS-52 (See Mode
Ch. TS. 53 (See Model
Ch. TS.60 (See Model
Ch. TS-67 (See Model
Ch TS-74 (See Model
Ch TS-88 (See Model

MOTOROLA-COnt. Ch. TS.94 (See Model $16 \mathrm{~K} 2 \mathrm{BH}]$	
Ch. TS. 95 (See Model 17K1A)	
Ch. TS. 101 (See Model 19K21	
Ch. TS-114 (See Model 14T3)	
Ch. TS-114A (See Model 14T3×1/	
Ch. TS-115 (See Model 14K18H)	
Ch. TS. 118 (See Model 17F1)	
Ch. TS-118A, B (See Model 1713×1)	
$\mathrm{Ch}_{\substack{\text { CS-119, } \\ 19 \mathrm{~K} 2 \mathrm{E})}}$	
Ch. TS. 1198 (See Model	
Ch. TS. $119 \mathrm{C}, \mathrm{Cl}, \mathrm{D}$ (See Model 20K3)	
Ch. TS- 172 (See Model 17K1BE)	
Ch. TS. 174 (See Model 17F6BC)	
Ch. TS-214 (See Model I7T5A)	
Ch. TS.216 (See Model 14T4)	
Ch. TS. 220 (See Model 17K9)	
Ch. T5-221, A, (See Model 17K5E)	
Ch. TS-228 (See Model 17F11)	
Ch. TS. 236 (See Model 17K8)	
Ch. TS-275 (See Model 14 P 2	
Ch. TS-292, A, B, (See Model 21C1)	
$\begin{aligned} & \text { Ch. TS-292Y (See Models } \\ & \text { 21C1 ond TK-19M) } \\ & \text { Ch. TS. } 307 \text { (See Model } \\ & 20 \mathrm{~K} 6 \text {) } \end{aligned}$	
Ch. TS-314A, B, TS-315A, B (See Model 17K10E)	
$\mathrm{Ch} . \mathrm{T}$ - $324, \mathrm{~A}, \mathrm{~B}$ (Seo Model 21 TAA	
Ch. TS-324Y (See Models 2174A and TK.19M1	
Ch. T5-325, A, TS-326, A (See model 17F12)	
Ch. TS-326Y (See Models 17F12 and VTK.17M)	
Ch. TS.351, A, B (Seo	
Ch. TS-395, ${ }_{\text {(See Model }}$	
Ch. TS-400A (See Model 17T11E)	
$\begin{aligned} & \text { Ch. TS-401 (See Model } \\ & \text { i/F12D) } \end{aligned}$	
Ch. TS.408A (See Model 17F13C)	
Ch. TS-408Y (See Models 17F13C and TK-19MI	
$\mathrm{Ch}_{\substack{\text {. TS-410A } \\ \text { iPti3) }}}^{\text {(See Model }}$	
Ch. TS-410Y (See Models 17F13 and TK-20M)	
Ch. TS-501A (See Model	
Ch. TS-501Y (See Models	
	21 T 3 and TK.24M)
Ch. 1A134-8	
Ch. $18136-11$	
Ch. 2A 197-7	
Ch. 2M 197-7	
Ch. 8A 46-16	
Ch. 10A 106-10	
MUNTZ	
M30 (Ch. TV.16A1) Tel. Rec. \qquad	
M31 (Ch. TVITA2) Tel. Rec. \qquad 116-10	
M3IR (Ch. TVITA3) Tel. Rec. [See Model M32 (Ch. TVI7A3)-Set 116.101	
M31R, M32 (Ch. TV-16A3) Tel. Rec. 108-8	
M32 (Ch. TVI7A2) Tel. Rec. 116-10	
M32, (Ch. TVI7A3) Tel. Rec 116-10	
M32R (Ch. TV17A3) Tel. Rec. [See Model M32 (Ch. TV17A3)Set 116 -10]	
Tel. Rec. \qquad	

OLDSMOBILE-Cant.
982579157-7
982697,982698 (See Model
982697,982698 (See Model
982544 Set 96.7)
$982699,982700 \ldots 150 \ldots 10$
OLYMPIC
DX-214, DX-215,
DX-216 Tel, Rec........ 10
DX-619, DX-620, DX. 621,10
DX. 622 Tel. Rec...... 10
DX-931, DX-932 Tel. Rec. 10
DX-950 Tel. Rec....... 10
RTU.3H (Duplicator)..... 6
TV.104, TV. 105 Tel. Rec.. 6
TV-106, TV. 107, TV. 108
Tel. Rec. (See Model
Tel. Rec. (See Mode)
TV.104-Set 67.15)
TV.922 Tel. Rec........ 58-14
V-922L Tel. Rec. 67-15
TV-922L Tel. Rec.
Set 58 -141
TV-944, TV. 945
Tel, Rec. Me..........67-15
IV-946 Tel. Rec. (See
Model TV.104-
Set 67.15)
TV- 947 Tel . Rec.
TV. 948 Tel,
Rec.
model IV-104
Set $67-151$
TV. 949, IV.9
TV. 949, IV. 950 Tel. Rec. 85-10
XL. $210, \mathrm{Xi}-211$ Tel. Rec.

$6-501,6-502,6-502-\mathrm{P}$,
6.501 V -U "See Model'
6.501W-U-Set 3-201 $6.501 \mathrm{~W}-\mathrm{U}, 6.502 . \mathrm{U}$
$6.504,6.504 \mathrm{~L}$
$6.504,{ }^{6}-5041$
$6.601 \mathrm{w}, 6.601 \mathrm{~V}, 6.602$

6-604W-110, ${ }^{6-604 W}$.
$150,6.604 \cdot 220$ (See
150, 6.604.220 (See
Model 6.604 Series-
Model 6.604
Set 22-21)
6.606
6.606
$6-606$.
6.717
6.717 is......................
6.6174 isee Model $6.617=$

Set
$7.421 \mathrm{~V}, 7.421 \mathrm{w}, ~ 7.421 \mathrm{x}$.

$7.421 \mathrm{~V}, 7.421 \mathrm{w}$,	7.421x. 57-13
7-435V, 7-435W	34-13
7.526	30-21
$7.532 \mathrm{~W}, 7-532 \mathrm{~V}$	32-15
7.537	37-13
7-622, 7.638	34-14

$\begin{array}{lll}7.724 & \text { See Model } 7.724 \\ 29\end{array}$
Set 29.19)
$7.925,7.934,7.936$,

$8-925,8.934,8-936$.
9.435 V
17 C Tei. Rec. ISee Model

752-Set 126-8)	
17C24, Tel. Rec. 17 C44 (Ch. TK17)	2-7
Tel. Rec	
Tel. Rec	196-9

Tel. Rec. .
170 Tel........... Rec.
196-9
17K31-Sef 126.81
$17 \mathrm{~K} 31,17 \mathrm{~K} 32$, Tel. Rec. $182-6$
$17 \mathrm{~K} 41,17 \mathrm{KA2}$
$(\mathrm{Ch}$. TK 17$)$
Tel. Rec. . K, Fi)
17 K 50 (Ch.
Tel. Rec.196-9
17T20. Te.. Rec.
17133, Tel. Rec.
17133, Tel. Rec. ..
17140 (Ch. TK17)

20c4. Rec. Ch (Ch.

Tel. Rec.
20 D 49 (Ch. Ti20)
Tel. Rec.
20 K 43 (Ch. Ti20) 196-9
Tel. Rec.
(Cl.......... 196-9
Tel. Rec. 7 20........... 196
Tel. Rec.
(Ch. Ti20)

$51.435 .{ }^{\text {W. }}$ (See Model
$9.435 \mathrm{~V}-$ Set 152.111
$752,752 \mathrm{U}, 753,753 \mathrm{U}$,

755, 755 U Tel. Rec. ... 126 -8
757 Tel. Rec. (See Model 752 -set 126 -8) Model
758 Tel. Rec. (See Model
752 -Set $126-8)$
762 Tel. Rec.139-11
$784,764 U$ Tel. Rec. 126-8
765, 768, Tel. Rec.
See Model 752 -

Set 128.81

787 Tel. Rec. 126-8
(See Model 752
Set 126.81
783 Tel. Rec.
785 Tel. Rec. 139 -
$782-$ Set $139-11$)
791,792 Tel. Rec. (See
Model 752 -Set 126.8)
967, 988, 970 Tel. Rec. 139-11
Ch. TKI7 (See Model I7140)

PHILCO-Con	Philco-Cont.
50.71403, 50.71404	838 (Code 124)
(Codes 121 and 12	3R2, CR33 Tel. Rec, 135-10
Tel. Rec. (See Prod. Chge Bul 29-Set	-T1870 (Code 121) (Ch 3P1 CPI Tel. Rec. 135-10
124.1 and Model 50.T1 104	
50-T1403	Rec
50.71404 , $50-11406$	-T1871, 51-T1872 ICo
${ }^{(C o d e s}$ 123, 124, 125)	${ }^{122)}$ (Ch. 35, CP1)
T1406 (Codes 121 and 122)	
I. Rec. ISee Prom	
29-Set 154-1 and	Ch. 3P1, (CP1) rel. Rec. 135
430 (Code 121)	(Ch. 35, F2] Tel. Rec... 132-10
I. Rec. (Also see	,
od. Chge. Bul. 29,	35, F21 Tel.
-11 121114	T2132 (Code 121)
(Code 122) (See	(Ch. 35, F2) Tel.
1	-T2133 (Code 121)
54.1 and Model	3R2, FR21 Tel Rec
	Ch. 35, F2) Tel. Rec. 132-10
Tel. Rec.	T2i36 (Code 124)
T1443 (Codes 122, 123)	Ch. 35, F21 Tei. Rec. 132-10
Tel. Rec. - 1 İ7\% ${ }^{\text {a }}$	38 (Code 124) (Ch
T14	3R2, FR21 Tel. Rec.
${ }_{\text {Stel }}^{50.714}$	70
Tel. Rec. $50-\mathrm{Tl482}$. . 128-11	
Tel. Rec. ${ }^{\text {S0, }}$ - 128	Mod
50.T1483 Tel. Rec.	-T2175, 51
50.11484 Tel. Rec.	(12)
50.11600	
(Code 121) 91a-	51.5
50.71600 (Code 122)	51-532
Tel. Rec. .a........ 110	51.534
.11606	51.537,
Rec. \|See	${ }^{51.629}$
Code	51.633
$50-\mathrm{T1} 630 \mathrm{Tel}$. Rec	51.632
50-71632, 50-11633	51, 930, 51-931, 51-932 153-11
Teluec	
$50 . \mathrm{T1} 1632,50.1$	51.330
${ }^{1221}$ Tel. Re	51-1730, 51.1730
50.520, 50.5201	51.731, 51.1732
50.522, $50-522-1,50.524$	$51.1733,51.1733$
$50-526$	51-1734
50.527, $50-527-1$	2.T1610 (Code 121
50.620	32, (1) Tell. Rec
${ }_{50}^{50.621} \ldots$	Model 51-T1601, Cod
50.920, $50.921,50.922$	
	52
$50-1420,50.1421$	32, ci) Tel. Rec. (See
$\begin{gathered} 50-1422,50-1423, \ldots, 97-11 \\ 50-1720 \end{gathered}$	$\begin{aligned} & \text { Model } 51 \cdot \mathrm{~T} 1601 \\ & 122-5 \mathrm{St} 138.7) \end{aligned}$
50.1721, 50.1723,	52-11802 (Code ${ }^{123}$
50.	Model 51-T18
${ }^{50-1726}$............ 91	Set 148.13)
${ }^{50-1727}$. $86-7$	H1802 (Code 124)
51-PT1207,	Ch
51-pti 234 Tell. Rec. ${ }^{\text {a }}$ - 136	
51-PT1282 Tel. Rec. ... 136-12	52. T1804 (Code 122) (Ch.
51.T14438, L, M, X,	$32, \mathrm{C} 21$ Tel. Rec. (5
(Code 121) (Ch. 31,	Model
(1)	${ }_{52 \text {-T1 }} 804$ (Code 123) (Ch.
17143 PW (Code 121)	37, C2) Iel. Rec. (See
(Ch. 3P1, APl) Tel.	
Rec. 123-11	Set 148.13)
$\text { T1601, I, } 51-\mathrm{T} 1602$	$52 . \mathrm{T1} 808$ (Code 121) (Ch.
(Code 121) (Ch. 33,	41, D1, DIA) T
T1601	$56-5$ et 190.1 ond
Code 122) (Ch. 32, C1)	
Rec	C21 Tel. Rec.
n604 Code 121	Tel. Rec.
(Ch. C, () Tel. Rec.	Set 148.13)
Set 134-1 and Model 50	52.T1810M (Code 122)
T1600-Set 110-10)	Ch. 33, (2) Tel. Rec...148-13
T1604 (Code 122)	2T18101, M (Co
(Ch. ${ }^{\text {B , }}$ It Tel. Rec.	
$20-5$ et $134-1$ and Model	(Ch. 33, C2) Tel. Rec.. . 148
11600-Set 110.10)	T1812 (Code 1231
\%06 (Codes 121 and 122)	(Ch. 37, C2) Tel. Rec... 148 52 T1820 (Code 121)
134	$(C h .41, \mathrm{DI}, \mathrm{D} \mid \mathrm{A})$
600-Set 110-10)	Tel. Rec. (See Prod.
T1006 (Code 131) Tel. Rec.	Chge. Bul. 56 - Set
$\begin{aligned} & \text { Model } 50-11600 \\ & 1-\text { Set } 914-101 \end{aligned}$	52.T2106-Set 171-91
T1600 (Code 132)	52-T1821, 52.
	(Code 124) (Ch. $71, \mathrm{GI}$
33, (1) Tel. Rec. .C.138-7	Chge Bul. $57-$
51-T1607 (Code 122) (Ch.	Sef 191-1)
32, (1) Tel. Rec. 138 .T1634 (Code 121 (Ch.	53, C2) Tel. Rec. (See
1 Tel. Rec. ISee	Model 51-T1800-
d. Chge. Bul. $20-$	${ }_{\text {52-II }}{ }^{\text {Sef }}$
Set 134.1 and Model T1000-Set 110.101	52-11, DI. DiA M Tel. Rec.
1-T1634 (Code 122) (Ch.	iSee Prod. Chge. Bul.
ond Model 50-T1600-	2.11839 (Codel 122) (Ch.
110.101	ee
	Sel 148.131
51-Ti634 (Code 124) (Ch.	52.11839 (Code 123) (Ch.
32, C1) Tel. Rec.....138-7	Model $51 . \mathrm{Tl} 800-$
51-T1800 (Code 121) (Ch. 33), C2) Tel. Rec. 148-13	I
51-T1800 (Code 122) (Ch.	S-T1840 (Code 121) (Ch. 41, D1, DIA Tel. Rec.
32. C2) Tel. Rec...... 148-13 51.71830 (Code 121) (Ch.	isee Prod. Chge. Bul.
33, C2) Tol. Rec.....148-13	
51.T1832 (Code 121) (Ch. ${ }_{\text {33, }}$	${ }_{52}$-11840 (Code 122) (Ch
	33, C2) Tel. Rec..... 148-13
51/1, CP1) Tel. Rec...135-10	52-71840 (Code 123) (Ch.14-13
51-11834 (Code 121) (Ch.	$52 . \mathrm{T1} 841 \mathrm{~L}$ (Code 1211 ich.
33, (2) Tel. Rec...... 148-13	${ }^{11}$, D1, DIA) Tel. Rec.
	(See Prod. Chge. Bul.
Tel. Rec. '..........135-10	52-12106-Set 171.9)
51-71836 (Code 123) Ch 34 C31 Tel Rec 148—13	52-T1841L (Code 123) (Ch.
51-11836 (Code 125) Ch. 33, C2) Tel. Rec.... 148-	$300-$

PHILCO-Cont.
Ch. 3R2, CR3) Tel. Rec. 135-10 51-T1870 (Code 121)
(Ch. 3P1, CPI) Tel. Rec. 135-10 $121)_{\text {(Ch. 3PI, CP1) Tel. }}^{135}$ 51-T1871, 51-T1872 (Code
122) (Ch. 35, CP1) Tel.
Rec.
51-T1874, L, 51 Ti875,
51. T1870
Ch. 3P1, (P1) Tel, Rec. 135-10
(Ch. 35, F2) Tel. Rec....132-10
Ch. 35, F2) Tel. Rec... 132-10
(Ch. 35, F2) Tel. Rec... 132-10
51-T2133 (Code 121) (Ch.
3R2, FR2) Tel. Rec....132-10
51-T2134 (Code 124)
(Ch. 35, F2) Tel. Rec. 132-10
51 . T2136, (Code 124)
(Ch. 35) F2) Tel. Rec. 132-10
51-T2138 (Code 124) (Ch.
3R2, FR2) Tel. Rec......132-10
51-T2170 (Code 121) (Ch
35, F2) Tel. Rec. (See
Model 5 (1.T2
Set 132-10)
51-T2175, 5)-T2176 |Cod
Tel (Ch. 35. F2)
Tel.
51.530 Rec.
51.53
51.53
51.537
51.629
51.631
51.631
51.632
51.930,
51.934,
51.1330
$51-1330$
$51-1730$,
51.1730 (
$51.1733,51.1733$ (i)
52.71810 (Code i22) CCh.

32, C1) Tel. Rec. (See
Model $51-\mathrm{T}$
1001. Code

122-Set 138.7)
52.71612 (Code 122) (Ch.
32, C11 Tele. Rec. (See
Model $51 . \mathrm{Ti} 801$. Code
122-Set 138.7)
37, C2) Tel. Rec. (See
Model 51-T1800-
Set 148.131
(Ch. 71, G1) Tel. Rec.
Bul. 57-Set 191-11 179-9 32, C2) Tel. Rec. (See Set 148-13)
52-T1804 (Code 123) (Ch. Model 51-T1800-
S.T1808 (Code 121) (Ch. 41, DI, DIA) Tel. Rec.
(See Prod. Chge. 8ul. ${ }_{52 \text {-T2 }}^{56}$ - 190 -Set 171-9) 2-T1808 (Code 122) (Ch $33, \mathrm{C} 2$) Tel. Rec. (See Set 148.13)
Ch. 33, (2) Tel. Rec...148-13
52-T18101, M (Code 123)
(Ch. 37, C2) Tel. Rec....148-13
52 T1812 (Code 122).
(Ch. 33, C2) Tel. Rec... 148-13
$52-T 1812$ (Code 123)
(Ch 37 C2) Tel Rec...148-13
52 T 1820 (Code 121)
(Ch. 41, D1, D1A)
Tel. Rec. (See Prod.
Chge. Bul. 56 -Set
190-1 and Model
$52.12106-$ Set 171-9)
(Code 124) (Ch. 71, GI)
 33. C2) Tel. Rec. (See Model 51-T1800-
52 - 11839 (Code 121) (Ch 45ee Prod. Chge. Bul.
$50-$ Set $190-1$ and Model
$52.12106-$ Set 171.9) 52.11839 (Code 122) (Ch
$33 . \mathrm{C}$) Tel. Rec. (See Model 51 -T1800

52-11839(Code 123) (Ch. Model 51.T1800Set 148.131
2-T1840 (Code 121) (Ch
41, D1, DIA) Tel. Rec $58-5 e l$
$52.12106-5 e^{+}$
171.9) 52 -T1840 (Code 122) (Ch.
33, C2) Tel. Rec......148-13 52 T1840 (Code 123) (Ch.
$37 . \mathrm{C} 2)$
Tel. Rec.....148-13 41, D1, D|A) Tel. Rec. 56 - Set $190-1$ and Model 2.T1841L (Code 1231 1 Ch . C2) Tel. Rec. (Se Sel 148-13)

PHILCO-Cont.
$52-T 1842$ (Code 121) (Ch.
41, DI, D1A) Tai.
(Sée Prod. Chge. Bul.
56-Set $190-1$ and Mode
$52.12106-5 e 4171.91$
52-T1842 (Code 122) (Ch.
 52-ti842L [Code 124] ©Ch 148-13 33, C2) Tel. Rec. (See Model 52-T18
Set 148-13)
Set $148-13$)
52 -T1844 (Code 121) (Ch. (See Prod. Chge. Bul. $56-S_{\text {et }} 190-1$ and Mode
$52-12106-$ Set $171-91$ 52-T1844 (Code 122) (Ch. 33, C2) Tel. Rec....... 148-13
52-T1844 (Code 123) (Ch. 37, (184) Tel. Rec.......
52 - 1844 (Code 12i) (Ch.
33, C2) Tel. Rec......148-13
52-Ti845 (Code 124)]
52-T1845 (Code 124))
(Ch. 71 , G1) Tel. Rec...-179-
$52-\mathrm{T} 1850$ (Code 121) (Ch. 41, DI, DIA) Tel) (Ch. (See Prod. Chge. Rul.
$56-$ Sot $190-1$ \& Model 52-T2106-Set 171.9)
52-T1850-W (Code 124)
Ch. 71, G1) Tel. Rec
[Also See Prod. Che
Bul. 57 - Set 191-1) . 179-9
52-T1882 (Code 121) (Ch.'
44, D4, D4A) Tel. Rec.
(Also See Prod. Chge.
Bul, 57 - Set 191-1)
52 -T1882 (Code 122) ${ }^{2}$ (Ch.
35, CP1) Tel. Rec. (Seo Módel $51 . \mathrm{T} 2102$ -
Set 132-10)
$52-11883$ (Code 121) (Ch.
44, D4, D4A) Tel (Rec. 44, D4, D4A) Tel. Re
(Aiso Soe Prod. Chge
Bul. 57 -Set 191-1) . 181-9 52-12106, $51-$ T2108,
52 -T2110 (Code 121) (Ch. 41, D1, D1A) To Rec. (Also Soe Prod.
Chge. Bul. $56-$ Set
$190-1)$ (Code 122) (Ch. 171 -
$52-\mathrm{T} 2110$ 35, F2) Tel. Rec. (See
Model 51-Tj102. Model 51-T2
Sot 132-10)
2.12120 (Code 121) (Ch.
41, D1, D1A) Toi. Rec.
(See Prod. Chge. Bul.
$57-$ Seet 190.1 and Model
$52-72106-$ Sel 171.91
52-T2106-Set $171-9$)
S2.12120 (Code
S2-r2120 (Code 124)
(Ch. 71 . GI) Tel. Rec
(Also see Prod. Chge.
Bul. 57 -Sof 190.1). 179-9
52. T2122 (Code 121)
52-T2122, (Code 121]
(Ch. 4i, Di D1A) Tel.
(Ch. 41. DI DIA) Tel.
Rec. (See Prod. Chee.
Bul. 56 - Set 190-1 and
Model 52 - 17106 -Set
171 21
152-T2140 (Code 121)
(Ch. 41, D1, DIA) Tel.
Rec. (Aiso See Prod.
Rec. (Aiso See Prod.
Chge. Bul, 56-

(11, DI, DIA) Tal. Rec.
(See Prod. Chgo. Bul.
56 - Set $190-1$ ond Model
$52.12106-5$ et 171.9)
52.12142 (Code 122) (Ch

35, F2) Tol. Roc. (See
Model 51-T210
Set 132-10)
52-T2144 (Code 1211 (Ch.
$41, ~ D 1, ~ D I A) ~ T e l ~$
(Also see Prod. Chge.
But. $56-$ Sot 190.1)....171-9
Tol. Rec. (C............159-1A
52.T2145X (Code 125)
2.T2145X (Code 125)
(Ch. 44, D4, D4A) Tel
(Ch. 44, D4, D4A] Tel.
Rec. [Aiso See Prod.
Chge. Bul 57-
Chge. Bul. 57
52-T2150, W, $52-\mathrm{T} 2151, i^{181-9}$
(Code i24) (Ch. 71, G1)
Tel. Rec. (Also see Prod.
Chges. Bul. 57 - Sot
2-T2151 (Code 121) C...179-9 (S.DI, DIA) Tol. Rec.
(See Prod. Chge. Bul.
56 -Set $190-1$ and Modal
2-12157 (Cobet 171.9)
$52-\mathrm{T} 2157$ (Code 125) (Ch.
42, G2) Tel. Rec.......186-10
$52-\mathrm{T} 1182$ (Code 121) (Ch.
44, D4, D4A) Tel. Rec.
(Aiso see Prod. Chge.
Bul. 57-191-i) … 181-9 $52-\mathrm{T} 2224$ (Code 121) (Ch.
41, D1, D1A) Tol. Rec. (Séo Prod. Chge. Rul. 56-Set $190-1$ and Model
$52 . \mathrm{T} 2106-$ Set 171.91
52 -T2244 (Code 121) (Ch.
41, D1, D1A) Tel., Rec.
(Aiso See Prod. Chge.
Bul. $56-$ Set $190-1)$
$52 . \mathrm{T} 2245$ (Code 121$)(\mathrm{Ch}$.
44.04 (44)
(Also see Prod Chec.
Bu1. 57-Sot 181.1)...181-9
52-I2252 (Code 121 (Ch.
41, D1, D1A) Tel. Rec.
See Prod. Chgel. Bul.
Set $191-1$)............
52.T2252 (Code 124) (Ch.
71, G1) Tel See Prod. Chec. (Als
57-Set 191.1)......179—9
PHILC

PHILHARMONIC

C. 6161 Tel. Rec.
T. 618 Tel. Rec.

Model $520-$ Set $173-10$)
$20 \mathrm{CD2B}$ Tel. Rec. (SSe
Model 520 -Set $173-10$)
Models20-Set $173-10$)
20728 Tel Rec. (See
Model 520 . Set 173 -10) 100 C
100 T
$149 . \mathrm{C}$

1
5
5
5
5
5
5
5
5
5
5
5
5
58
58
61
68
71
81
87
C

\section*{| 5200 |
| :--- |
| 5250 |
| 5400 |
| 5450 |
| 5800 |
| 5850 |
| 5700 |
| 5750 |
| 580 |
| 581 |
| 582 |
| 6120 |
| 681 |
| 7120 |
| 812 |
| 870 |
| Ch |
| P1 |
| (A |}

5400,
550
500,
5650
5700,
Tel
5750,
5800
5816
5820
8120
6810
120,
8120,
8701,
87
Ch.
C.
HII
(Als
3.62

3-81A48-20 PHILMORE CP.731D Tel. Rec.132-11

Phonola

PONTIAC	
984170	20-27
984171	14-22
984172	
984247	*
984248, 984249	*
984273	*
984296, 984570	95-4
984592	165
984688 (Soe Model 984592-Set 165-8)	
PORTO BARADIO (Also see Porto Products)	
PA. 510 (9008.A), PR-520 (9008-8)	33-16
PA-510, PB-520 (Revised)	48-21
PORTO PRODUCTS	
SR-600 [Ch. 9040A 'Smokerette') (See Porto Baradio Model PA-510-Set 33.16)	
PREMIER	
15tw	6-24
PURE OIL (See Puritan)	
PURITAN	

RCA VICTOR-COHt
$1 \times 591,1 \times 592$ (Ch

2T81 (Ch. KCS46 and Radio 111 -
Clo90) Tel. Rec
2T51-Set $111-11$, For
Radio Ch. See Model
4T141-Set 139.12$\}$

$2 \times 534(C h . R C 1121 A) .209-9$
2×621 (Ch, RC-1085B) . $199-9$
Tel. Rec. KCSo.......139-12
4T141 (Ch. KCSi and
Tl41 (Ch. KCS82 and
Radio Ch. RC1090)

Rec. (See Prod. Chae. Bul,
T54-Set 120-1 and Model
6T54 (Ch. KCS47, I) Tel.
Rec. (Also Soe Prod.
Chge. $8 u l$. 12 Set.
Chge. Bul. 12-Set
$120.1)^{1}$.............13-7
ST64, 6165 (Ch. KCSi7A
AT) Tet. Rec. (Also See
A) Tel. Rec. (Also See
Prod. Chge. Bul. $12-$

Tel. Rec. |Also' Sen
Prod. Chge. Bul. $12-$
Prod Chge. Bul. 12-113-7
Set 120-1).

(Also See Prod. Chge.
Bul. 12-Set 120-1). 113-7
6T84 (Ch. KCS $48, T$ T
Rodio Ch. RC-1090) Tol.
Rodio Ch. RC-1090) Tol.
Rec. (For TV Ch. See
Rec. (For TV Ch. See
Prod. Chge. Bul. $12-S e t$
$120-1$ and Model 6 T54-
Set $113-7$, For Rodio
Ch. See Model $4 \mathrm{~T} \mid 41$ ——
Sol $139-12$)
Set $139-12$)
6T86, 6787 (Ch. KCS $48, ~$
and
and Radio (Fh. RV Ch. See
Tol. Rec. (For TV.
Prod. Chge. But. 12-Set
120-1 ond Model ST54-
Set $113-7$, For Radio Ch.
STee Model 9T89-Set.122-8)
KCSA7B) Tel. Rec.
7T103B, 7 T104B (Ch. KCs 47F)
Tel. Rec. (Seee Prod. Chge
Bul. 2o-Set $148-1$ and
7IIIIB (Ch. KCS47GF-2)

Tel. Rec.
7 l 128 (Ch. XCS 47 G) Tel.
Rec. (See Prod. Chge. Bul
26 -Set 146-1 and Model
7T1128 (Ch. KCS 47GF-2)
Tol. Rec. (Soe Mode)
711118 - Set $156-11$)
KCS 47 Cl Tel. Rec. \ldots 134-9
KT1228, 7 TH 23 B (Ch.
$\mathrm{KCS} 47 \mathrm{G})$ Tel. Rec.
KCS 47 G) Tel. Rec.
(See Prod. Chge. Bul.
26-Set 146.1 and Model
7 T 122 - Set $134-9$)
$7 \mathrm{~T} 122 \mathrm{~B}, 7 \mathrm{~T} 1238 \mathrm{Ch}$.
KCS 47GF-2) Tol. Rec. (See Model $7 T$
Ste $156-11)$
7T124, 7T125 (Ch. KCS 47G)
Tel. ReC.
T124B, 7 TI 125 B iCh.
KCS 47 G Tel. Rec. (See
Prod. Chae, Bul. 26 Sel
146.1 and Model 7T124

7T132 (Ch. KCS47D)
Tei. Rec.
Rodio Ch. RC1092) Tel.
Rec. (For TV Ch. See Set
$134-9$, For Redio Ch. Soe
Model 9789-Set 122-8)
B84 (Ch. RC-1069)
8841 (Ch. RC-1069),
8 B 42 (Ch. RC-1069),
8B42 (Ch. RC-1069A),
8B43
(Ch. RC. 1069 B$) .76-16$
8848 (Ch. RC-1069C) (See
88×5
88×6
(Ch. RC-1059)
(Ch.
$8 B \times 6$ (Ch. RC-1040C)....
$88 \times 54,8 B \times 55$ (See Modal
$88 \times 5-5 \mathrm{et} 46-20$)

88×85
Set (See Model $8 \mathrm{AB} \mathrm{\times 6}$ -

Set 44.18)
8 F43 (Ch. RC-10378)

rCA victor－Cont．	CA VICTOR－
CS41，B，C（Ch．	17 T 154 （ $\mathrm{Ch} . \mathrm{XCS66)} \mathrm{Tel}$.
KCS24B－1，KRS20	Rec．（See Model 177153－
KRKA KRK2A KRS $21 / 1$.	Sot（58－11）
KRK4，KRK2A，KRS21A－1， RS123C）Tel Rec． \qquad 90－9	Ted．Rec．．．．．．．．．．．．．158－11
71 （Ch．RC．1060）	17 T 600 （Ch．KCS66）
8872（Ch．RC． 10000 A$). .53020$	
8R74，8R75，8R76（Ch． RC－1060，A）53－20	171162 （Ch．XCS66A）Tol． Rec．（See Model
81241，81243，8T244	17T153－Set 158－11）
（Ch．KCS28i Tel．Rec．．．74－8	177163 （Ch．KCS66C）
270 （Ch．KCS29	Tolal Rec．
$\mathrm{KCS529A}^{\text {Toll．}}$ Rec．	
8TC270，8TC271（Ch． KCS29，KCS29A）	Model 17ti $53-$ Sel 158.111
Tel．Réc．．．．．．．．．．．．．85－13	171172 K,
K29	17T174k（Ch．KCS660）169－13
Radio	Tol．Rec．
	17 triza （Ch．Kcsoba）
$8 T K 320$（Ch．KCS33A－1） （Radio Ch．RK－135A－1）	
Tel．Rec．	Ah．
R29（Ch．KCS32，B and	（Also Soo Prod．Che
	17 T 211 （Ch．KCS72）Tei．
8TS30（Ch．KCS20J－1）	
Tol．Rec．．．．．．．．．．．．． 54	Chere Bul． 59 － ot
яTV4i iCh．kessisdiol	193．1）
KCS25E－2，RK117	71220 （Ch．KC
RS．123A	（A
stV321，	Chge．Bul．59－Set 184
KCS30－1 and Radio ${ }_{\text {RC．}}$	$193.11 .$.
$\mathrm{RC}-616 \mathrm{~B}, \mathrm{C}, \mathrm{~J}, \mathrm{~K})$	17T250DE（Ch．KCS74） $193-8$
（Ch．RC－615）	7T261DE（Ch．KCS74）
del 77Y1－Set	Tel．Rec．
Ch	迷
	${ }^{\text {Telel．}}$ Rec
	17 Tel ，Rec．${ }^{\text {che }}$
	210305 U ich KCS81，
${ }_{8 \times 71} 8^{8 \times 72}$（RC－1070）．． 63	
$8_{8 \times 521}$（RC． 1066 ）．	2103
8×522（RC－1066A）．．．52－17	
$\times 541,8 \times 542$	D3
Ch．RC． 1065 ，RE－1065A） 59	210328，， 210
Model $8 \times 541-5450$	
$\begin{aligned} & \text { Model } 8 \times 541 \text { Set } 59-16) \\ & (5477 . ~ \end{aligned}$	$21 \mathrm{IL59}$（Сh． $\mathrm{KCS68C}$, E）
681．	Tel．Rec．（See Prod
［Ch．	
K5（Ch．RC－10598	Model 217176－Sot（57．8）
Soeg Model 8BX5－5et （Ch RC．1068）	
Y3（Ch．RS－132）	
	Tel Roc．ISoo Prod．Ch
K＜S24C．1，D，к8K．4，	el 211176－Set 157．8）
KRS20B－1，KRS21	T166DE（Ch．KC568F）
RS－123A）Tel．${ }^{\text {R }}$	Tei．Rec．（See Model
57 （Ch．KCS49，T） 122-8	
77 （Ch． Kcs 49	
at）Tel．Rec．	21T175DE（Ch．KCS68F）
（ IC．KCS49，A ，	Tol．Roc．（See Mo
AT．Th Tol．Rec．	21T1590．
39 （Ch	， $1176,217177.217178$,
Rodio Ch．RC1092）．122－8	215179 （Ch．KCS58C）
Tel．Rec．．．．．．．．．．．．．．122－8 105 （Ch．KCS498）Tel．	Prod．Chas．Bul． 50
Rec.134-9	Set i90－1）．．．
9 Tl 26 （Ch．KCS49C）Tel．	21T178DE（Ch． $\mathrm{KCSS8F}$ ）
Rec．．．．．．．．．．．．．．．．134－9	（A
147 （Ch．KCS	190
Radio Roc．	
134－9，For Redio Ch．Seo	
Model 9789－55et 122－8）	21T197DE（Ch．KCS
	Audio Ch．RS（41A）
9T246（Ch．Kcs 28 C ）	Tel．Rec．
Teld．Rec．Whal．．．．74－8	21 T207，G（Ch．KCsi2a）
$9 T 246$（Ch．KCS38）	
9T250（（Ch．KC538C）	and Model
Tel．R	Set 184.12 ）
	Rec．（Also Soe Prod．
	Chge．Bui．59
	21 T 217 217218 ${ }^{\text {c }} \mathrm{Ch}$
Tel．Rec．．．．．．．．．．．．93－9	KCs72A）Tel．Rec．（Also
9TC247（Ch．KCS34，B）	See Prod．Chge．Bul．59－184－12
9TC249（Ch．kcs $34, \mathrm{Bj}$	$21 \mathrm{~T}^{227,21 T 228, ~} 21 \mathrm{~T}^{229}$
Tel．Rec．${ }^{\text {a }}$（．．．．．．．93－	（Ch．KC572A）Tol．Rec．
$9 \mathrm{TC272,912} 275$（ Ch.	（A1s0 See Prod．Chge．${ }^{\text {（1）}}$
	${ }^{1714242}$（Ch．KCS720．1）and
9TW309（Ch．KCS 41.11 Radio Ch． RK 135C）Tol．	Radio Ch．RCl1178）
Rec．（For TV Ch．See Mod	Tel．Rec．．
8 8K29－Sel 88－9，For	21 1244（Ch．KCS720－2，
Rodio Ch．Seo Set 95A－11）	Radio Ch．RCls Audio Ch．RS141C）
W333（Ch．KCS330．1，	${ }_{\text {Tel．Rec．}}$
Radio Ch．RColon） Tel．Rerc．．．．．．．．．．．．74－8	21 1303，U（ch．KCS92，B）
W390 1Ch．kes31－1．	${ }_{2151313}^{\text {Tel }}$ Rec． 217314,
RC617A Tel．Rec．${ }^{\text {a }}$ 91A－11	
（101，9W102，9W103	（Ch．KCS82，B）Tel．Rec．207－7
（Ch．RC． $618 \mathrm{8C)}$ ）\ldots ．．．．．．73－10	
9w106（Ch．RC．622）．．．97－12	
9×561（Ch．RC－10798）	${ }^{45 E Y Y}$（Ch．RS－132F）．．．135－11
9×562（Ch．RC． 1079 C ） $101-9$	EY－2（Ch．RS－138，
9x571（Ch．RC．1079） 9×572（Ch．RC－1079A）107－7	45．EY－3
K641 1 ch. RC－ 10	45．EY－4（Ch．RSI 10 ）－． 1 133－11
9×642（Ch．RC－1080A） 87 －9	45EY15（Ch． RS －132H）．． 133511
9×651（Ch．RC－1085），	
9×652（Ch．RC－1085A） 104	45．W－10（Ch．RCIO94A）138－8
7 （Ch．10578）．．．．．．．75－13	5481， $5481 \cdot \mathrm{~N}, 54 \mathrm{B2}$ ，
9Y5（ $\mathrm{Ch}. \mathrm{RC.1077)} \mathrm{...}$.	$54{ }^{\text {¢ }}$（Ch．R＇C589）．
$9 \mathrm{YS10}$（Ch．RC1077A），131－13	5485 （Ch．RC1047）．．．．．17－25
$9 \mathrm{YS11}$（Ch．RC10778）．．．131－13	${ }^{554 U}$（ $\left.\mathrm{Ch} . \mathrm{RCl} 1017\right) \cdot . . .{ }^{2-16}$
	55 U （Ch．RC1017）．．．．．． $2-16$
T1150， 17 T 151 （Ch	55FA（See Model
KCS66C）Tel．Rec． 17 T 153 （Ch．KCS66）	Set 4.66$)$

59AVI，59V1（Ch．RC－605）6－25		
64F7，64F2（Ch，RC1037），		
65 （See Model 55 F － Set 4－6）		
65F（See Model 55F－		
65x1， 65×2（Ch．RC．1064）31－26		
65×1－Set 4－30）		
66BX（Ch．${ }^{\text {RC－1040，}}$ RC－1040A）		
66×11（Ch．RC． 1046 A），		
$66 \times 13,66 \times 14,66 \times 15$		
$67 \mathrm{~V} 1,67 \mathrm{AV}$		
68R1，68R2，68R3，68R4		
75×11， 75×12		
75×14， 75×15（Ch．RC． 1050 ）		
$75 \times 16,{ }^{75 \times 17, ~} 75 \times 18$,$75 \times 19$（Ch，RC－1050		
770（ $\mathrm{Ch} . \mathrm{RC-1057A)}$ ．．．．38－17		
$612 \mathrm{V4}$（See Model $612 \mathrm{VI}-$ Sef 17－27）		
${ }_{62175}$（Ch．KCS21－1） 78		
630 CS （Ch．KC520B） Tel．Rec． 54－18 \qquad		
${ }^{63015}$（Ch．KCS $20 A$ ）		
648PV（Ch．KCS24A－1，		
Sot 22．24）		
711 Va （Soe Model 711 V 2Sot 22－24）		
721 TS（Ch．KCS26－1，${ }^{\text {2）}}$		
$\begin{aligned} & \text { Tel. Rec. (See Similar } \\ & \text { ModelizuTvI-Seł } 70-7 \end{aligned}$		
$\underset{\text { and Radio Ch．RC6i0A）}}{\text { Tel．Rec．}}$		
	741 PCS （Ch．KCS248．1，	
	Tel．Rec．	
（See Model 630TS）		
$\mathrm{Ch}_{\text {（ }}^{\text {（Seee Mos Model }}$（307CS）		
$\mathrm{Ch}^{\text {（Seea Model }} \mathrm{KCS24-1}$ 621TS）		
（Soe Model 648 PTK ）		
（Seee Modal 8PCS41）		
$\mathrm{Ch}_{\text {（ } 5 \text { ee Model }}$ MPC41A）		
Ch．KCS2SA－1		
Ch．KCS2SE－2 ${ }_{\text {（Soe Model }}$		
Ch．KCS29，KCS29A （See Model 8T270）		
$\mathrm{Ch}_{\text {（Soe Model }}^{\text {KCS30－1 }}$ 8TV241）		
$\mathrm{KCS32B}, \mathrm{KCS32C}$ （Seo Madel BTK29）		

A victor－Cont．	RCA VICTOR－Cont．
Ch．KC533A－1	Ch ．RC．${ }^{\text {che }}$ 22
$\mathrm{Ch}_{\text {IS Kee Model }}$ K100）	Ch．RC．1011 ${ }_{\text {（Seo Model }} \mathbf{5 6 x}$ ）
Ch．KCS40，A，B	$\mathrm{Ch}^{\text {（SeC－} 1017}$
${ }^{\text {Ch．KCSA1A．1 }}$（Soe Model TA．129）	（See Model 65AU）
Ch．KCS42A	Ch．RC－10238
	Ch．${ }^{\text {（See }}$ M Mos－1034 ${ }^{\text {Model }}$ 58x10）
（See Modal TA169）	（See Model 65×1 ）
Ch．KCSA5，A （Soe Model 2T51）	Chir ${ }^{\text {RC．Moe Model }}$（4F1）
Ch ．KCS 47 ，A，A，AT，T	Ch．RC． 1037 B
$\mathrm{Ch} . \mathrm{KCS4} 7 \mathrm{~B}, \mathrm{C}$	Ch．RC． 1038 ，RC－1038
（See Model 7 7103）	（See Model 66×1 ）
Chis KCS47D ${ }_{\text {a }}$	
KCS47E	Ch．RC． 1040 C
	（Sea Model $\mathrm{CC-1045}$
	${ }^{\text {chis }}$ Rea Modal
Ch．KCS48	Ch．RC－1046，A，B
（See Madel 6T84）	ISea Model
KCS48A ${ }^{\text {a }}$（1431	Ch．RC－1047
（Soe Model 7 T143）	
KCS49，A，AT，${ }^{\text {T }}$ （See Model OT57）	${ }^{\text {che }}$（5ee Model 75×11 ）
	Ch．RC－1057A ${ }_{\text {（ }}$
（See Model 9⿴囗	（See Model 977）
Ch．KCS49CF	Ch．RC． 1059
（50es Model 91105）	（Seo Model 88×5 ）
Ch．KCS60，${ }^{\top}$ （See Model 9T89）	
Ch．KCSSOA	Ch．RC． 1060
（See Model 9T147） Ch． $\mathrm{KCS6}$ ）	
$\mathrm{Ch}_{\text {（SCSO Model }} \mathrm{KT101)}$	（See Model 8R72）
Ch．KCSS 2	Ch．RC－1081
（Seo Model 4T141）	（See Model 8x681）
is KCS60，Model 17 Tl 1531	Ch．RC－1064
（See Model 17T150）	（59e Model 65x1）
Ch．KCSobo	
Ch．KCSS68A（Seo Model	Ch．RC－1066
21 T1970 ${ }^{\text {P }}$	（See Model 8x521）
	Ch． FC .10088
（Sere Model 217159）	（See Model 98856）
	Ch．RC－1069A，${ }^{\text {B }}$
	Ch．RC－1070
（See Model U70）	（See Model 8x71）
（Soes Model 17T200）	
Ch．${ }^{\text {KCS } 724}$ A ${ }^{\text {a }}$	Ch．RC． 1077
（See Model 21T208）	（See Model $\mathrm{OY51)}$
KCS720－1	Ch．RC1077A，${ }^{\text {B }}$
（Soe Model 21T242）	（Soe Modal iYsio）
	Chisee Model ${ }^{\text {RC－1079 }}$ ¢ $\times 571$ ）
Ch．${ }_{\text {（See }} \mathrm{KCS74}$ Model $21 T 244$ ）	Ch．RC． 1079 Sc ，RC． 1079 C
（Saeo Model 17T2500 E）	（See Model 9X561）
$\begin{aligned} & \text { Ch. KCS78, B } \\ & \text { (See Model 171301, U) } \end{aligned}$	${ }^{\text {Chi }}$（Sece Model ${ }^{\text {Rel }}$（ $\times 591$ ）
Ch．${ }^{\text {KCS79 }}$	Ch．RC． 1080 C C $\times 611$
217303，U）	（See Model BX6）
	Ch．RC－1085，RC．1085A
（Seei Model 8PCS41）	（See Model A55）
Ch．KRK4 ${ }^{\text {a }}$（ ${ }^{\text {a }}$	
Ch．KRK－19，A	$\mathrm{Ch} . \mathrm{RC10898}$,
（See Model UIA）	（See Model X551）
	Ch．RCiogo 45141）
	Ch．RC－1092
（See Model SPCS41）	（See Model 9789）
Ch．KRS20B－1 （See Model 9PC41A）	
Ch ．KRS21A－1	Ch． RCl 1096
（See Model 8PCS41）	（Sob Model A．108）
	（See Model 45－W－10）
Ch．RC． 604 （Se Model	Ch．RC1098
（Sseo Model 58AV）	
Ch．RC－605 ${ }_{\text {（See Model }}$ 59AV1）	（Seeo Model B－411）
Ch．RC－606	${ }^{\text {Chi }}$ Soe Model 1 R81）
	Ch．RC－1104，－1，A，A－1，
Ch．${ }_{\text {（See Cobe Model }}$ 77V2）	
	Ch．RC－1110
Ch．RC． 810	${ }^{\text {（Seos Madel Px600）}}$
（See Model blovi）	25101
Ch．RCOIOA，RC6IOB （See Madal 730TVI）	Ch．RCIlllA（See Model 21T197DE）
Ch．RC610C ${ }^{\text {chel }}$	Ch．RC－1114 ${ }^{\text {a }}$
（Seo Modol blovi）	（See Model 28400）
Ch （SCees R Model 77 V 1 ）	Ch．${ }_{\text {（see }}^{\text {RC－1117A Model }}$ 2US7）
$\mathrm{Ch} . \mathrm{RC}$－616	Ch．RC． 1117 B
（iseo model sV111）	（See Model 217242）
Ch．RC． $618 \mathrm{~A}, \mathrm{RC}$.	$\mathrm{Ch}_{\text {isee Modal }}^{\text {RC－117C }}$
（See Model $8 \mathrm{Vq91)}$	（See Model 2US7）
$\mathrm{Ch} . \mathrm{RC}-616 \mathrm{~N}$	iS RC1119 Model 2R51）
（Se8 Model 9TW333）	Ch．RC． 1120 ，A
（See Model S1000）	（See Model 2C521）
Ch．RC．618，RC．618A	Ch．RC－1121 ${ }_{\text {（Soe Model }} \mathbf{2}$（F9）］）
ChiRC－618，B，C C ${ }_{\text {（See Model }}$	

RCA VICTOR-SCOTT (E. H.)

REGENCY
RC-600 Tel, UHF Conv... 200-_8
21, 1606, 1606-15,

REMLER

MP5-5-3	28
5300B, 5300B1, 53001	23-18
5310	40-17
5400, 5410	44-19
5500 ''Scottie Pup''	27-23
5505 ''Scottie Pup'" (See	
Model 5500-Set 27-231	
$5510^{\text {' }}$ 'Scostie Pup'	27-23
5515 "Scottie Pus" (See	
Model 5500-Set 27.23)	
5520, 5530 " Scontie	
Junior'	27-23
6000	77-9
ENARD	

REVERE (See Recorder Listing)

ROLAND

Scort (E, H.)-Cont.	SENTINEL-Cont.	heraton-Cont.
800bt Tel. Rec. (For TV	${ }_{2941}^{294}$ Series 294 N 294T \ldots.... 1-	
Ch. See Prod. Chge.		
Buil 4-Set 52		т30м Tel. Rec.176-1
$8^{800-\mathrm{B}-\mathrm{Set}} 14.27$)	302-1, 302 -T, $302-\mathrm{W} . . .{ }^{33}$	$17 \mathrm{MT20}$ (Ch. 5300 X
si7C, 817 CUS Tel. Rec	${ }^{305.1}$, $305 \cdot-1-3,305 . \mathrm{W}$,	Series) Tel. Rectio. 210-9
-9)	33	
817T, 817TU (See Model		
820 C -Set 178.9)	312PG, 312PW 103-15	$5300 \times$ Series) Tel. Rec. 210
820 C Tel. Rec. 178	313-1, 313-W 39	Mr10U 1 Ch
820 Cu Tel	314-E, 314-1, 314-W.... ${ }^{38}$	Series) Tel
820 CU (See Model	${ }^{315-1,315 . W}$ W $\cdots \cdots \cdots{ }^{40}$	Chassis $270 \cdot \mathrm{C}$
820 C -Set 178.9)	316 PM , 316PT $\ldots \ldots . .48$-22	(See Model C-268)
Mot, 8207U T	332 (See Made	
$910 \mathrm{Tel}^{\text {Model Rec. }}$ 820......150-11	333 (See Model 315-1-	
920 Tel. Rec.		
924		
		SIGNAL
1510181	339	
		AP232 ${ }_{\text {44-21 }}$
ScOit (${ }^{\text {(H. H.) }}$	55	${ }_{241}$. ${ }^{\text {a }}$............. 33-25
111-8 \ldots...........143-14	${ }_{343}^{343}$................ 212	
	183-14	
${ }_{210-\mathrm{B}}^{210 . A} \cdots \cdots \cdots \cdots \cdots \cdots \cdots{ }^{\text {a }}$ 145-15 ${ }^{\text {a }}$	209-11	SILVERTONE (Also see Changer
${ }_{211 . A}$	${ }_{401} 402$ Series Tel. Rec.	and Recorder Listing)
	${ }_{405 \text { IVM Tel. Rec. }}$	1, 2 (Ch. 132.878)101-10
220.A \ldots.............183-13	405 Series Tel. Re	
SEARS-Roebuck	400 Series tel. Rec	15, 16 (Ch. 132.884,
(See Silvertone)	409 Series Tel. Rec	2) 13.7 . $\cdot \ldots$ 141-12
seeburg	411 Series Tel. Rec. (See	
(See Record Changer Listing)	Model	(Ch. 4
sentinel	412.413. 414, 415 Seris	33 (ch. 548.363)
-284GA - 22 -25	YA, YB, re	41, 41A (Ch. 335.245) 10
14.2841 1 14.284 NA	Tel. Rec. (A) l o Soe	51, 53 (Ch. 132.887) $\cdots 112=8$
iU.284N, 1U-284W	Prod. Chge. Bul.	
85P	105-2) 100	
1 U -293CT	416 Yel. Rec.	Model $64-$ Set 11381
1U-2931, 1 W .293		69 (Ch. 100.201)
	421,422 Tel. Rec. ISee	72 Ch
	Prod. Chge. Bul.	101 (Ch. 549.100)
U312PG, 1U312PW 103	Set 126-1 and Model 412	
$1 \mathrm{U}-3131,14.313 \mathrm{~W} . . .{ }^{\text {a }}$ 39-21	-Sel 100.11)	101A (Ch.
1U-314E, 1 U-314	423, ${ }_{\text {See Prod. }}$	102 (Ch. 549.100 .2
		Tel. Rec.
-335PG, PI. PM, PW . 105-9	4238, 423-17 Tel. Rec.	102 A (Ch. 549. $100-3$
TU-335PG; P1, PM, PW . . 105	(See Prod. Chge	
1บ338-w ...n		10 S (Ch. 132.882)
U339-K111-12	4238-5et 124.9)	Tel. Rec.
U340.C129-10	424	106.107 (Ch. 132.888
1U342K $\ldots155-14$	Prod. Chge. Bul. 19-	, 107 ic
1 U 343 3 212	Set	Tel. Rec.
10.344211-12	424.17 lol Rec.	108 (Ch. 549.100)
$1 \mathrm{345P}$. ${ }^{1833-14}$	Proo. Chge. Bul	Tel. Rec. 102
14.346 209011		110, A (Ch. 478.303, A)
U419, 1 U 420 Tel . Rec... 1 15-9		
1 U 421 IU 422 Series	$429,430,431$ Tel. Rec.	111 (Ch. 110.700)
1U421. ${ }_{\text {Ya }}$ IU422 (Series	See Prod. Chge. Bul. 25	Tel. Rec.
Prod. Chge. Bul	-Set 144.7 and Model	${ }^{2}$ (Ch. 47
Set 126.1 and	$104208-5 \mathrm{et}$ 124-9)	
	Prod. Choce. Bul. 21-	Tel. Rec.
Tel. Rec	Set 136-1)127-10	14 (Ch. 478.302) Tel
Bul. 19- 5 et 132-17) . .124-9	435 Tel. Rec. (See Prod.	Rec. (See Model
Rec. (See Prod. Chgo.	and Model 425-Set	
Bul. $19-$ Set 132.	$4388.439,440$	1164 (Ch. 10.700.t
$\text { Sot } 124.9)$	444 (Series "xD, \times XD,	-10) Tel. Rec. $11 .+$ - 139
W424 Tel. Rec. (Also Seo		${ }^{20}$ ICh. ${ }^{\text {cel }}$ Rec.
od. Chgee. Bul. 19-		125 (Ch. 478.257)
	Model 438-Sot (57.9)	Tel. Rec. 104
Chge. Bul 19-S	452, 453 Tel. Rec. (500	1258 (Ch. 478.257-1)
132.-1 and Model 10424	Model 11U-447	127.12 (Ch. 110.700)
-425- Tel. Rec.127-10	454, 455, 456, 457, Tel.	Tel. Rec.
㤑		${ }^{31} 131 \mathrm{~A}$ (Ch .110 .7
Model 14425)127-10	Chge. Bul. $63-$	
4299, 10430,14431	$458,459,460,461 \mathrm{Tel}$.	Rec. (Soe Model 9123
Tel. Rec. (See Prod.		
144.1 and Model 1U420B	14.458-Set 199-1	133 (ch. 100.107 and
- Set 124-9)	462 , 463 (Ch .2 WA) 205	${ }_{\text {Rel. Rec. }}$
1U-432 Tel. Rec. (Also See	464,465.466 (See	134 (ch. 110.700 .2 , 20)
Set 136-1)127-10		
U435 Tel. Rec. (See	Ch. 2 WA (soe	84, B) Tel. Rec. ${ }^{\text {a }}$,
Prod. Set I3ge. and Model	Model 462)	(Ch. 549.100-1 ond
U425-Set 127-10)	SETCHELL-CARLSON	Redio Ch. (101.831-1).
	53 (Ch, 152) Tel. Rec... . 209-12	See Model lol-Set
Series ․xD, XxD	${ }_{150}$ Tel. Rec.	102-12, For Radio Ch .
$2 \times D^{\prime \prime}$) Tel. Rec. . . . $157-9$	151.A17 151. Al	See Mod
U446, 1U447	151.817, 151-817.[R,	
	151.C20, 151.C20-LR	
Rec. (See Model (1)438-	Tel. Rec. 1 155-15	Tel. Rec. (For TV Ch.
	${ }_{427}^{416} \ldots \ldots \ldots \ldots . . \cdots{ }^{\text {a }}$. ${ }^{21-14}$	See Model 102A-Set
1U449-A, 1U450.A, 178-10		See Model $8127-$
$1 \mathrm{U}-448,10.449,10.450$	${ }^{447} \ldots \ldots \ldots \ldots \ldots \ldots \ldots{ }^{40-20}$	Set 41-20)
(Series "XD, X X ${ }^{\text {a }}$, $2 \times \mathrm{D}$ ")	${ }_{469}^{458-R D} \ldots \ldots \ldots \ldots \ldots \ldots .{ }^{\text {a }}$	139 Tel. Rec.
Tol. Rec. (See Model		140 (ch. 110.700)
1U-454, 1U-455, 1U-456,	${ }_{570}$	${ }^{\text {Tel.t. Rec. }}$
$1 \mathrm{U}-457$ Tel. Rec. (Also	2500, 25001 Tel. Rec. . 144	141 (Ch. ${ }^{\text {Cel. }}$ Rec. $32.889-1$)
		141 (Ch. i32.889.2) 149
-458, 1U-459, 1U-460,	Ch. 152 (See Model 53)	Tel. Rec. 142 Cha 100 and 149-12
14.461 Tel. Rec. .iwal 199-10	SHAW	12 Rodio (Ch. 100.959)
1462,10463 (Ch. 2WA) 205 -9	224 (Runs 301, 302.	Tol. Rec.
$841,1.284 \mathrm{NA}, \mathrm{i}-284 \mathrm{Ni}$,	303, 304, 304.1, -2,	143 Tel. Rec. (See M
L.284NR, L.284W ... 23-19	305, 305.2) Tel. Rec. . 202-8	143A-Set 121.12)
	SHERATON	143A (Ch. ${ }_{\text {Tel. Rec. }}$
${ }_{2841}^{284}$	C.26B, M (Ch. 260.C)	4 (Ch. 478.312 and
285P $\ldots \ldots \ldots \ldots{ }^{60-27}$		Radio Ch. 478.240) 160-11
	C. 26824 (Ch. ${ }_{\text {Tel. }}$ Rec. $260 . \mathrm{C}$)	149 (Ch. 100.107 -1) Tel. ${ }^{\text {el }}$
292 K 16-30	C-26m24 (Ch. 260-C)	Rec. (See Model 133-
293 Series ${ }^{1014}$	Rec	Sef (Ch)
	,	-14 (Ch. 47

VERTONE-Cont.	SILVERTONE-Cont.
1.16, 151-17 (Ch	$171 \mathrm{Ch} .110 .700$
152.16, 16 A (Ch. 549.102 ,	$1173-20$ (Ch. $110.700-140)$
9, 102-2) Tel. Rec	Rec. 201
159 (Ch. 478.309)	7t.21 (Ch. 100.208)
	1181-20 (Ch. 110.700 Cl 1201
. Rec.1... 97a-12	20
161.16 (Ch. 100.112) $99 \text { A. } 10$	
$162-17$ (Ch. $110.700-10$)	1184-20 (Ch. 528.63
Tel. Rec. 139-13	Tel. Rec.
3.16 (Ch. 478.319)	88.21 (Ch)
	${ }_{1}^{\text {Pel. Rec. }} 188.20$ (Ch, 110.700140)
Tel. Rec.	Tel. Rec. 201
165.16 (Ch. 100.120$)$	1191.17 (Ch. 110.700.97)
166-16 (Ch. 478.339) Tel. Rec.	${ }^{1201}$ Tel. Rec.
16.17 (Ch. 478.339-A)	1261 (Ch. 45
Tel. Rec. .a.ale.	
167.16, 16	1266 (Ch. 456.150, -2)
16 (Ch. 549.1	1268-21 (Ch. 456.150.1)
Tel. Rec.	el. Rec.
99.16 (Ch. 549	70-2) [Ch
102	
0.16 ch. 549.	277-21
173-10 (Ch. $110.700 \cdot 10$)	1272.21 (Ch. $456.150-1)$
Tel. Rec. 139-13	Tel. Rec
5-16, A	1273.21 (c)
	1274.21 (Ch. 456.150-1)
176-19 (Ch. 549.100-6)	Tel Rec.
Tel. Rec. 10.70161 -9	1275-21 (Ch. 456.150-1)
7-19	Tel. Re
Tel. Rec. . $13139-13$	1300 Ch.
(Ch. 132.890 T Tel. Rec. 130-12	$1301 \text { (Ch. } 319.190 \text {) }$
185-16 (Ch. 549.101-2)	2001, 2002 (Ch. 132
Te.	
\%-19	
Tel.	203, 2004, 2005, 2006 211-13
13-16,	
	20092010
Set 139-131	2013 (Ch. 132.022) . . 196-14
89.16 (Ch	14, 2015. 2016
10) Tel. Rec. 1	(Ch. 132.021) \ldots..... 196-15
1.16 ICh. 110.70	2022 (Ch. 132.027
Rec	${ }^{2023,2024,2025}$
	${ }_{\text {S }} 2027$ Model 10-
210 (Ch. 132.880)	Set 14
215 (Ch. 528.174)	2028 (Ch. 528.230)
217.218 (Ch. 528.174)	2041 (Ch. 528.235) ... 20
(See	2056 (Ch. 132.026
	2060, 2061 (1
220 (Ch. 528.173) 110	101.861
222, 223, 224 (Ch. 528.173)	2063, 2064 (Ch. 101.8
11. 528	ICh.
237 (Ch. 488.237)145-10	-104) Tel. Rec. $201-8$
238 (Ch. 548.360-1.	01 (Ch. 64
$548.361)$ (See ${ }^{\text {N }}$	
239-Set 115-121,	
548.361)	2105 A (Ch. $132.024-3$, . 31)
245 (Ch. 548.358.1) ... 107-9	${ }^{\text {el. Rec }}$
	${ }^{2110 A}{ }^{\text {a }}$. 2111 A A
249 (Ch. $548.360 \cdot 1$, 115-12	
1017, 1018 (Ch. 528.210.	528.632 A
-1, -2)	Tel. Rec.
1032 (Ch. 528.196)	11581 Ch .528
1040, 1045 (Ch. 528.198	
1040A (Ch, 528.194.1)	
Set 181	,
1045A (Ch. 528.194-1)	Tel., Res.
ISee Model 1040-	$\begin{aligned} & 2145 \text { (Ch. } 132.024,-1,-2 .) \\ & \text { Tel. Rec. } 198-13 . . .1 \end{aligned}$
1052 (Ch. 132.011) 174-10	21454 ich. 132.024-3,
1052 A (Ch. 132.011-1)	Tel. Rec.
(See Model 1052-	$\begin{aligned} & 21458 \text { (Ch. 132.024-4) } \\ & \text { Tel. Rec. } \end{aligned}$
1053 (Ch. 132.011) 174 -10	2150 (Ch. 110.700-140)
1053A (Ch. 132.011-1)	Tel. Rec. $\ldots \ldots \ldots$, ${ }^{2}$
(See Model 1053-	
1054 (Ch. 132.012)173-12	-4, 5 ., Ch. 528.6
- 544 (ci 132012	2, -3,-5) Tel. Rec.. 21
del 1054-Set	160, 2162 lCh .528
1055 (Ch, 132.012$)$ \% $17173-12$	-4
	-1, $2,-3,-5)$ Tel. Rec.. 212 C
1058, 1059 (Ch, 101.860) 162-11	$2170-\mathrm{C}$ (ch. 100.2091
1062, 1063 (Ch .101 .860) 162 - 110	Tel. Rec. .e.e.
	2170.D. - E (Ch. 100.210. 207 -10
11117.17 (Ch. 110.700.	
$96)$ Tel. Rec.	${ }^{2172}$ (1, (3) Tel. Reci...... 207-10
1117.17 (Ch. 110, $700-$	2174 ($\mathrm{Ch}, 132.035$)
1130.17 (Ch. 110.700.96)	Ch
Tel. Rec.	and Radio Ch. ${ }^{\text {a }}$ (00.202-1)
130-17, 1130	Tel. Rec. (See Prod.
(Ch. 110.700-100,	Chge.
1135.17 (Ch. $110.700-96$) Tel. Rec.	and Model 1066 -Set.
$1141-20$ (Ch. $110.700 \cdot 93$)	162-10 for Radio Ch.)
Rec.	2200, 2202, 2203
${ }^{1141.20(C h . ~ 110.700-120) ~}{ }_{\text {Tel. Rec. }}$	
${ }_{1145-20 \text { (Ch. } 110.700-140)}$	
Tel. Rec. 201-8	2225 (Ch. 528.233) 208-12
$1150.14 \text { (Ch. } 478.361, ~ A)$	
1161-17 (Ch. 110.702-10)	106 (Ch. 132.045, -1)
Tel. Rec. . .l. 205-10	Tel. Rec. \ldots.........199-11
1162-16 (Ch. $110.700 \cdot 90$) Tel. Rec.	
62.17 (Ch. 110.700.96)	3145 iCh .13
Tel. Rec.	Tel. Rec. $\ldots 2198-13$
1162-17 (Ch. 110.700-100. .104) Tel. Rec.201-8	Tel. Rec. . .
1160.17 (Ch. 478.339-8)	3170.8 B Ch. 100.210, -1, 207-10
Tel. Rec.	${ }^{-3)}$ Tel. Rec..3-.... 207-10
1171-17 (Ch. 110.702-10, -501 Tel. Rec. 20	3174 (Ch. 132.035-2) Tel. Rec.

2IP-HI MAST - Corrosion-proof 16 gauge permatube ...easily assem. bled. . . in 2, 3, 4, 5 section models.

HEAVY DUTY BASE - Ruggedly constructed to fit all masts from $11 / 4^{\prime \prime}$ to 21/4"O.D.

RHDMBIC - Highest gain of all UHF anten nas... for fringe and super fringe areas.

the 山今RD

3×3 - Original development for UHF band composed of 3 stacked 3 element beams. Full wave spacing between bays... clean cut pattern with sharp forward lobe and no side lobes ... cut to frequency . . . unsurpassed for near fringe and fringe areas.

DIPLEXER - For separate UHF-VHF antennas . . or for set and converters with separate UHF-VHF terminals .. Foolproof . . easily installed.

BOW TIE - Peak-A-Bow design with the only adjustable screen on the market ... Available in single and stacked models.

CAN-CAN - New lazy H design for entire UHF band . . . uni-directional pattern... sturdy compact unit field tested and thoroughly proven.

CORNER REFLECTOR - For semi fringe areas . . . ruggedly designed to eliminate ghosts and vibrotion.

10 ELEMENT YAGI - Multi-channel series of 10 element UHF Yagis Excellent for fringe areas . .. very directional. . . completely pre-assembled - single and stacked madels.

SIIVERTONE－Cont．		Silvertone－Cont．
${ }^{8102 \mathrm{~B}}$（Ch．101．814－28）．	61－18	9129 （Ch． 110.4999 Te
8103 （Ch． 110.473 ）	56	Rec．（See Model 9
8104 （Soa Model 8086		Se
（1．18） 05，8105A		${ }^{1}{ }^{\text {Rec．}}$ See Model 9124
（Ch．101．833）．．．．．．．． 3	35－20	Sot 79．16）
${ }^{8106 .}$ A（Ch． 101.833 .1 A ）		9131 （Ch．478．210）
		Tel．Rec．
		9132 ［Ch．10．499－1］Tel．
07A，8108，8108A（C） $101.851), 8109$（Ch．		${ }_{\text {Rec．（ }}^{\text {Seee }}$（ Model 9124
	64－10	9133,9134 （Ch．101．866，
12， 8113 （500		Radio Ch．101．859）
815－Sot 62－18）		Tel．Roc．\ldots ．．．．．．．．．${ }^{\text {95－5 }}$
8115 （Ch．101．825－3D）．． 6	62－18	9139． 9140 （Ch．110．499．1）
15 A，B，CiCh．		Tet．Rec．［See
101.825 .41	62	9154－504 79．16）
8117 （Ch．101．825－3E）	62－18	${ }^{9153}$（Ch． 435.417 ）．．．． $67-16$
8117 （Ch．101．825－3E）	62－18	9181 （Ch．548．358）
8118 （Ch．101．825－3F）	62	8260 （C． 101.850 ）．．．．． 51
$18 \mathrm{~A}, \mathrm{~B}, \mathrm{C} / \mathrm{Ch}$ ．		9270 （Ch， 547.245 ）
101．825－41	62－18	8280 （Ch． 528.168 ）
24，8125， 8126 ，		Ch． 100.043
（Ch． 101.83		
101．831－17		100．107
27－Sel 4 （20）		（See Model（33）
${ }^{27}$ A A，B，C（Ch．		100．107
$101.831 \mathrm{~A}, \mathrm{8128}, \mathrm{A}, \mathrm{B}$,		（See model 149）
C（Ch． 101.831		100．111
Recorder Amp． 1017731		（Soo Model
101.773	41－20	
	－	Ch 100115
${ }^{132}$（ch．${ }^{\text {al }}$		Chi ${ }^{\text {Sog Modal }} 1421$
Tol．Roc．	66－15	
8133 （Ch．101．829．1，Ch． 101.846 ）Tol．Rec．		
8144 （Ch．431．199）	32－21	100．201
8145 （Ch．109．631）	45－23	（Soe Model 69）
8148 （Ch．109．632）	44－22	Ch． 100.202
8149 （Ch．109．633）	48－23	（See Model 1006）
8150 （Ch．109．634）．	32－22	Ch． 100.202
8152 （Ch．109．635）		（See Model 2195－21）
See Mode		isoea Model 178－211
53 （Ch．109．635）		00.208 .1
${ }_{81534}$［Ch．109．635－1］	42－22	（Seee Modol 2195－21）
8155 （Ch．463．155）．．．．．	57－17	Ch． 100.209
8160 （Ch．109．636A）	$50-17$	（Sae Model 217
8168 （Ch．109．638）	46－23	Ch．100．210，－1，
8169 （Ch．109．638）		（See Model 2130
See Mo		Ch． 100.959
Set 46－23）		${ }^{\text {i }}$ Seee Model 14
（Sos（Ch．101．800．28）		Chi 101.06001 l
${ }_{\text {LSoe }}$（Soe Model 6200		See Mo
Set 65．12）		
Set（Sao．Model 6200A		Ch.
		${ }^{\text {（Seeo Model }}$（ ${ }^{\text {a }}$
8220， 8221 （Ch．101．801－3D	D）	Ch．101．662－3C
Soee Model $6220-$		（Sea Model 6111］
Set 9－30］		Ch．101．662
22 （See Model 6220－		ISee Model
	59－18	iSee Model bl11A）
8231 Soe Model 8230		01.66
Set 59．18）		（See Model 6285A）
600（Ch．101．823－2B）		101．672．1A
		（See Model ${ }_{\text {cos }} 101.672-18$
Set 10.29 （Ch． 101		${ }^{\text {chi }}$ Seo Model 609
8270 A （Ch．101．822A）．	57－18	Ch． 101.6778
9000 （Ch．132．857）．．．	65	（See Model 6290）
9005 ，9006（Ch．132．858）	72－11	Ch． 101.773
9022 （Ch．132．871）．	76－17	（See Model 8127）
9054 （Ch．101．849）．．．．	63－16	Ch．101．800－1，－1A
9073，9073A（Ch．		（See Model 620
（Ch．135．244．－1）	83－10	$6200 \mathrm{~A}, \mathrm{Ch} .101 .800 .31$
（See Model 9073－		Ch．101．801，14
Set 83		（See Model 6230
9082 （Ch．135．245）．．．． 101	101－11	
（101（Ch． $101.809-3 C)$ （See Model $7080-$		101．807．A（See Model
（See Model Set 58－20）		70211
O2（See Model 7080－		Ch． 101.808
Set（58－20）${ }_{05}(\mathrm{Ch} .132 .875$ ）	89－14	（1．808－16
9107A（Ch．101．851．i］		（See Model 8052）
${ }^{\text {（Seeo Model }} 8107 \mathrm{~A}$		101．808－10
Sel 11.64 .1010 .110 .498 （		$\mathrm{Ch}^{\text {S See }} 101.809$ Model（See
Rec．（See Model 9123－		Model 7080，
Set ${ }^{\text {de－1 }}$（ch）		101．809－1A
Rec．（See Model 9124		（See Model 80
Set 79.161		Ch．101．809．18
Rec．${ }^{13}$（Ch． 110.499 ）Tel．		（Se8 Model
Rec．（See Model 9123－ Set 79－16）		${ }^{\text {Ch．}}$ See Modal ${ }^{\text {M }}$ 7080，
9114 （ Ch ． $110.499-11 \mathrm{~T}^{\text {Tel．}}$		Ch．101．809－2）
Rec．（See Model 8124－ Set 79.161		（Soe Model ${ }^{101.809-3 \mathrm{C}}$（101）
9115 （Ch．478．224）， 9116		Ch． 101.810
（Ch． 478.2211 Tel．Rec．	97－16	（Soe Model
16 （Ch． 478.221 ） Tel．Rec．		
9119,9120 ch．		Ch．101．813
101.8651 Tol．Roc．．．		（See Model 8050）
	＊	（Sos Model 7085）
9121 （Ch．101．887）		Ch．101．814－1A
Tel．Roc．${ }^{\text {a }}$		（Soo Model 7102 ）
9122 （Ch．101．864）		Ch．101．814．28
		Ch．${ }^{101.814 .38}$
9122A（Ch．101．868）		（See Model 8102 A ）
Tol．Rec．		$\mathrm{Ch}^{101.814 .5 C}$
23 （Ch．110．499） Tel．Rec．	79－16	Ch .101 .814 .6 C
9124 （Ch． $110.499-1)$		（See Model 8086A）
Tel．Rec．	79	${ }^{101.817}$
		（See Model 101.819 A
9125A（Ch．478．253）		（Soe Model 7226）
	104－10	Ch． 101.820
${ }^{9125 B}$（Ch．478．253．1）		（See Modol 7210）
Tel．Roc． 16.10 .3 （Ch． 110.499 .2$)$		isee Model 18090 ］
Tel．Rec．	79－16	101．822
27 （Ch．100．499－2）		（See Model 8270
Tel．Rec．（See Mo		101．822A
9128 A （Ch．101．868） Tel．Rec．		Ch．101．823， 1 （Seo Model 7166）

SIIVERTONE－Cont．
Ch ．101．823－A，－1A
（Se Model 7165 ） ［See Model 716
Ch i 101.825
（See Model 711
$\mathrm{Ch} 101.825-1 \mathrm{~A}$
iSee Model 711 Ch．${ }^{\text {（See Model }}$ M116）
Ch．101．825．1B Ch 101．825．18
（See Model 7117 ）
$\mathrm{Ch} .101 .825-2 \mathrm{C}$ Ch．101．825－2C Ch． $101.825-30$
（See Model 8115 ） $\mathrm{Ch}^{\mathrm{C}} 101.825 .3 \mathrm{E}$ （See Model 8117）
Ch． 101.825 .3 F
（See Model 8118 ） Ch． $101.825-4$ ． 8118 ）
（See Model 8097 A ）
Ch． 101.829
Ch． 101.829
（See Model 8100
iSee Model 8133）
Chiol．831
（See Model 8128 ）
Ch． $101,831 \mathrm{~A}$
（See Model 81

む 5

む む

U

む

－

む

U U

$$
00
$$

$$
0
$$

$$
0
$$

$$
\bar{u} \bar{u}
$$

$$
c^{c n}
$$

$$
5 \pm
$$

む U

E E

$\stackrel{4}{4}$

Ch． 110.499
（Seee Model 8103 ）
Ch． $110.49-1$ I
（See Model 91
Ch． $110.499-1$
Ch．110．499－1
（See Model 9124）
Ch． $110.49-2$
（See Model 9126 ）
Ch． 110.700
（ 1 See Model 11
Ch． $110.700-1$
$\mathrm{Ch} .110 .700-1$
iSee Model
［See Model
$\mathrm{Ch} .110 .700-2$
iSee Model
Ch． $110.700-10$
（See Model 116 ）
Ch． $110.700-20$
Ch． $110.700-20$
iSee Model 13
Ch． $110.700-40$
（See Model 177－19）
Ch． $110.700 .9 a$

Ch． $110.700-100$
（See Model 1117－17）
Ch． 110.700 .120
（See Model 1181－20）
（See Mods1 11
$\mathrm{Ch}_{1} 110.700 .140$
iSee Model 11

SPARTON-Con P.	SPARTON-Cont.
5088, 5089, 5090 (Ch.	Ch. PC-5-6-26
$265 \mathrm{D} 160,2650170$ and	([See Model 6AW26PA)
${ }_{\text {TV Cob }}$ TV. See Set 128.13.	Chi 2 2RD190 ${ }^{\text {See Model }} 5085$)
For Radio Ch. See Model	Ch. 250201
(1)	(See Mode
26SS170, P) Tel. Rec.	${ }^{\text {Ch. }}$ (See Model 4941)
(See Prod. Chge. Bul.	Ch. 3 TR10
22-Set 138.1 and Model	
104, 5105 (Ch. 265s1700,	(See Model 4900
P) Tel. Rec. (See Prod	Ch. 4 ELO (See Model 150)
Chge. But, 22-Sef 138 and Model 5025-	Ch. 5A7 (See Model 100) Ch. 5-06
Set 128-13)	See Model 3AWOC)
07. 5108 (Ch.	Ch. 5A10 (See Model 130
26S51700, 26S517000)	Ch. 5A10, A (See Model
${ }_{5107 \mathrm{X}}{ }^{\text {Rec. }}$ (Ch. 26ssizi)	Ch. ${ }^{2301} 5$
Tel. Rec. .a. ${ }^{\text {a }}$,	(See Model 5Allo)
5110 CCh. 26551700	$\mathrm{Ch}^{\text {c }}$ 5.26PS
	(See Model 5AM26PS)
265517000) Tel, Rec.	Ch. 689 (See Model 105)
52, 5153, 5154 \|Ch.	Ch. 6Lz (See Model 1030)
2655170, P)	Ch. 6.06
${ }_{2}$ See Prod. Chge. Bul.	(See Model 6AM06)
${ }_{5025}^{22-5 e t}$ Set 128.1 and 131	Ch. 717 (See Model 1010)
155,5156, 5157 (Ch.	isee Model 7am46
${ }^{26 S 0170 X, ~ X P) ~ T e l . ~ R e c . ~}$	Ch. 819 (See
(See Prod. Chge. Bul.	Ch. 8110 (See Model 141A)
${ }_{50}^{22}$ - Set 138.1 and Model	Ch. 8510 (See Model 4970)
	Ch. 8 W 10
Tel. Rec. (See Prod.	Ch. 8.46
Chge. Aul. $22-$ Set 138.1	isee
and Model 5025-Ser 128.131	Ch. 8.57 (See Model 1005)
$5162 \mathrm{X}, 5163 \mathrm{~K}$ ch.	Ch. 918 (Stee Model 1035)
2655171 A) Tel. Re	(See Model 4900TV)
655, 5166 X (Ch.	Ch. 10-77PA
${ }^{2650171) ~ T e l . ~ R e c . ~} \ldots$ 166-13	iSee Model 108W76P
5170, 5171 (Ch. 2550201. 2SD201) Tal. Rec.	Ch. 1217 (See Model 1000)
	Ch. 19TS10, 19TS10A (See Model 50101
STel. Rec. -atin . . . 166-13	Ch. 215172
5178X (Ch. 26SD171)	(See Model 5212)
	Ch. 215173-D
Ch. $2650170, \mathrm{P}$ and Radio	Ch. ${ }^{\text {(See }}$ M Model 215212 (See Model
Ch. $8 \mathrm{WW10}$) Tel. Rec, (For	Ch. 215213 (See Model 534
TV Ch. See Prod. Chge.	Ch. 23TB10
Bul. $22-$ Set 138.1 and M Model $5025-5 \mathrm{ef}$ 128-13,	(See Model 4964)
For Radio Ch. See Model	${ }^{23 T \mathrm{C}}$
$141 \times x$ - ${ }_{\text {et }}$ 126-12)	(See Model 4935)
91, 5192 (Ch. 255020	Ch. 23 TD10
2502011 Tel.	See Model
Model 5170-Set 147-111	
A) Tel. Rech. 5208 (65172 ,	
2074 (Ch. 25si72)	[See Model 4910]
Tel. Rec.	Ch. 24 TM 10
210 (Ch. 265S1728)	(See Model 4920)
	Ch. 24 TR10
212 (Ch. 21S172)	(See Model 5052)
Tel. Rec. 10 Oilici . .174-12	Ch. 24 TV 9
220 (Ch. 26SD172C)	(See Model 49397V)
Tel. Rec.	$\mathrm{Ch} .24 \mathrm{TV9C}$
Tei. Rec.167-14	$\mathrm{Ch}^{\text {iSee Model }} 25 \mathrm{CD} 202$
5240, 5241 (Ch .	(See Model 5288)
250.5252 5253.201-10	Ch. 25D213
(Ch. 215172) Tel, Rec. 174-12	
5262. 5263 (Ch. 2655172, 167	Ch. 25RD190 (See Model 5085)
	$\mathrm{Ch} .255172$
	(See Model 5207A)
5267. 5268 (Ch. $265 \mathrm{SD172}$,	
	Ch. 2550202
Tel. Rec. Al......167-14	(See Model 5290)
271 (Ch. 2650172C)	Ch. 25TK10A
Tel. Rec. See Model	(See Model S006X)
5207-Ser	isee Model
Tei. Rec. ${ }^{\text {a }}$	Ch. 2650170
	(See Model 5082)
Tei. Rec.201-10	Ch. 265 D 170 P
5288, 5289 (Ch.	(See Model 5182]
${ }^{25 C D 202) ~ T e l . ~ R e c . ~ . . .178-11 ~}$	
Tel. Rec.	(See Model S082)
	Ch. 2650171
5291, $5292.5293,5294$,	(See Model 5165 X)
Tel. Rec.178-11	
5298A, 5297A (Ch.	Ch. 2650172 C
25CD202) Tel. Rec. ...178-11 5296, 5297 (Ch. 255D202)	(See Model 5220)
5298 (Ch. 25CD202)	Ch. 2655160 L
Tel. Res. \ldots. ${ }^{\text {a }}$...178-11	(See Model 5035)
2989 (Ch. 25 CD 2021 Tel.	Ch. 2655170
Rec. (See Model 5298-	(See Model 5101)
Sol 178 1151	Ch. 2655170 D
Tel. Rec.201-10	
5340, 5341 (Ch. 215213)	(See Model 5107)
Tei. Rec. . .2...... 201-10	Ch. 2655170 P
S42A (Ch. 270213)	${ }^{\text {Ch. }}$ (Sees Model ${ }^{\text {a }}$ S 107 X)
Tel. Rec. . 2 210-11	Ch. $2655172, \mathrm{~A}, \mathrm{~B}$
5343 (Ch. 25D213)	(See Model ${ }^{\text {2207) }}$
5343A (Ch. 270213)	Ch. 270213
Tel. Rec.	Ch. 270213 - ${ }^{\text {a }}$ (${ }^{\text {a }}$
5380, 5381 (Ch. 215213)	(See Model 5382B)
Tel. Rec. ${ }^{\text {a }}$	Ch. 417
	(See Model 4AWI7)
5382 B ($\mathrm{Ch} .27 \mathrm{D} 213-\mathrm{A})$	${ }^{\text {Ch. }}$ (See Model 5AW17A)
Tel. Rec. ${ }^{\text {a }}$ (13.... 210-11	Ch. 666A
5383 A (Ch. 270213)	(See Model '6-66A)
2384 A (Ch. 270213) ${ }^{\text {a }}$	SpIEGEL (See Aircastle)
Tel. Rec.	Stark
5386A Tel Rech, Rec	410 $40-22$
$10352,10353(C h .270213)$ Tel. Rec.	1010 88-2

tarrett ${ }^{\text {ctemart-WARNER-Cont. }}$	
Gotham Tel. Rec. …...101-12 Henry Hudson, Henry Parks	
Rec. .l...... 92-7	
	$9103.8,-\mathrm{C}$
A17TG-1 (Ch. 1751)	
(eater	
${ }_{1851} 1$ Set 165.2 A$)$ Tel.' Rec.	
TG Ch .	$9126-4,-6$
1851-Sot 165.2A)	
20 Tol. Rec.	$9150 . \mathrm{B}, 9150.0 .9150 .0 z z^{140}$
${ }^{278 \mathrm{ml}}$ Tel. (Chc. 12513	
${ }^{29 \text { AMM }}$ Tel. Rec.	$9154 . C$, 9154
	$1100 \mathrm{AU} \mathrm{BU}, \mathrm{Cu}$,
	9161A, B, С C............110-12
	9162A, B.
39 ¢Mi (Ch. İsii)	91624 - 5 el 168-13)
Ch. 1251 (See Model 17BM1)	9165A, - B 193-11
C. C . 11551 (5 ee Model 208M1)	
steelman	20
AF1100 180	9202-A, -8 TThru Series
${ }_{3 \text { 3RP1 }}^{302}$	
200	194.15 ond Model 927
215	
${ }_{327}^{303}$.................. 182	
	Tei.
${ }_{357}^{350,351}$.178 ${ }^{21}$	
450, 451178-	'H', 'rei. Rec.
${ }_{517} 8$	DDA
595	"M") Tel. Rec. (Seo
597	
8_{602}................... ${ }^{185}$	
${ }_{5000}^{4000}$ …................ 1_{186-13}^{780-12}	${ }_{9202-\mathrm{FA}}^{\text {Se (Thru }}$ Series "B")
${ }_{5101}$ (.................162-	Tel. Rec, isee Model
stewart-warner	9202-FA A Thru Series
AVC1 (Code 9054B), AVC2 (Code 9054C1, AVTCode 9054-A) Tel. Rec. 64	Trel Recic
	硣
A-51T2 (Code 9020 . B),A513 (Code 9020)	$194-1$ and
	Series .H.NM ${ }^{\text {a }}$ Set 172
	9203A Tel. Rec.
A61CR1 (Code $9034 . C$), A61CR2 (Code 9034-D),A6) CR3 (Code 9034-E),	
	TSeries A, B,
Ab1P1 (Code $9036-4.1$.	
A61p3 (Code 9036-Cl). . 42-23	
A72T2 (Code 9026.B),	(See Recorder Listing)
	stratovox
A72T4 (Code 90260) .. 32 A92CR3, A92CR3S	579.58 A
(Code 9028-C). A92CRG, A92CR65 (Code 9028-F) 29-26	stromberg-car
BSITI, B51T2, B51T3 (Code 9044A B, C)	${ }_{\text {AMP }}{ }_{\text {AM }}$
872CR1 Code No. 9038A B92CR1, B92CR2, B92CR3	
	AR-425
B92CR4, B92CR8. B92CRO, B92CR10	${ }_{\text {AU- } 29}$
	${ }^{\text {AU. }} 33$
	${ }_{\text {AU }}{ }^{\text {AU } 35}$
	AU 36
	${ }_{\text {AU }}^{\text {Av. }}$ A 28.
	Chge, Bul
	TC-19 Tel. Rec. 97-17
	${ }^{\text {Tel }}$
200-9	TV-12 15
51746 (Code 9024 B). $51 T 56$ (Code 9024.C). . 39-24	Tve
	Only see Model TV.125-
	TV. 125
(e)	10^{16} Series Tiel Mec.135-12 ${ }^{135}$
62TC16 (Code 9023.D), ${ }^{62 T 26}$ (Code 9023.E)	17 Series Tel. Rec. ${ }^{24}$ Series Tel. Rec.
	117
	30.14

TELE-TONE-CONI.

215 (Ch. Series BD)
(See Model 205
228 (Ch. BL)
$73-12$
$144-13$

(See Model $205-$
Set 73-12)
$235(\mathrm{Ch} . \mathrm{BQ}) \ldots141$-14
Ch. Series A
(See Model 100
Ch . Series AA
Ch . Series AA
isee Model 159
(Soe Model 157)
Ch. Serina AG AG
(Ses Model 165)
Ch. Series AH
(See Model 185)
Ch. Series AI
(Seo Model 158)
Ch. Series AX (See Model
201)
Ch. Series $A Z$
(See Modal 190)
Ch. Series BD
Ch. Series BD
Ch . Series BH 205)
Ch. Series BH
(Soen Model 195)
Ch. $8 L$
[S. $\mathrm{Che}^{\mathrm{BQ}}$ Model 228]
(Soo Model 235)
Ch. Series C
ISeries C Model 134
Ch. Series CA
$\mathrm{Ch}^{\text {(See Model }}$ (33)
Ch (See Model (177A)
Ch. Series Model 135
(See Model 109)
Ch Series N
Ch. Series N
(See Model 138)
Ch. Series R
Ch. Series S
Ch. Series S
(See Model 14
Ch . Series I
Ch. Series T
(See Model 150)
Ch. TAA, TAB (See
Model TV-315)
Ch. TAC (See
Modei TV. 308)
$\mathrm{Ch}_{\text {(} 5 \text {. TA. }}{ }^{\text {is }}$ Model TV-316)
iSee Model TV.314)
Ch. TAM
(See Model TV-318)
(See Model TV-318
Ch. TAO
(See Model TV-330
(See Model TV-330)
Ch $^{\text {TAP TAP TAP-1, TAP-2 }}$
Ch. TSee Model TV-324)
Ch. TS
(See Model TV-255)
Ch. TW, TX
Ch. TW, TX
iSee Model TV-300]
See Model TV-306)
Ch. Series U
(See Model 156)
iSeo Model 156)
Ch. Series Y
(See Model 160)
$\mathrm{Ch} 8001,8002,8003$
(See Model TV. 355)
(See Model TV-355)
Ch. 8010
(See Model TV.355-U)
(See Model TV-355-U)
Ch. 8013
(See Model TV.385-U)
$C h .8015$
Ch. 8015
(See Model TV-385-U)
Ch. 8016
(See Model TV.355-U)
tele-vogue (See Muntz)

TELEVOX

TEL-VAR (See Audar)

TEMPLE

E-512, E-514 (See

TEMPLE-Cont.
G. 4108 (See Model
G. 418 -
Set 26.25) G. 7205 (Soer Model
G.722-
Sot
$24-27$) G.722-Sot 24.27,
H. 41 IT (See Model
H. G-521-set 28.33) 47-22

TV. TV.1778, TV.1779
Tel. Rec.
66-16

TEMPOTONE

TEMPLETONE (See Temple)
thordarson

T-30WO8A	$8{ }^{8-3}$
T-31 WIOA	
T.31 W10.A	
T.	
W	

THORENS
(See Record Changer Listing) tone pak
AC8HF
c. 2020, C-2420, CD2020

transvue
17XC, 17XT Tel. Rec.
(Similor to Chasis)....132-8 20xC, 20xT Tel. Rec.
(Similar to Chassis). ...132-8 100.1 (Ch. 12AX21)

Tel. Rec.
601 (Ch. 16 AX23, 25, 26)
Tel. Rec.
(Similor 10 Chassis),
710 (Ch. $18 A \times 23,25,26$) 10. Rec.
Tel.
(Similar to Chassis) 99-14 1400 T Tel. Rec.
(Similar to Chassis) . . . 132-8 (Similar to Chassis)132-8
1700C, T Tel. Rec.
(Similar to Chassis) 132-8 (Similar to Chassis) . . . 132-8
2000C Tol. Rec.
(Similar to Chassis) . . . 132-8
12AX21............
TRAV-LER (Also see
Record Changer Listing) 12 LSO , A Tel .
12 T Tel. Rec. 12 T Tel. Rec.
 16G50A Tel. Rec.
$16 R 50 \mathrm{~A}, 16 \mathrm{~T} 50 \mathrm{~A}$

 S4R50, $84 R 50-1$. Rec.
$64 R 50-2$ Tol. Rec.
$85 G 50$ - 111 O5G50, -1, 2 Tel. Rec.
(See Model 20A50Set 146.11)
$75 A 50,75 A 50-1$.
75A50-2 Tel. Rec..... . 146-11 $114-1 A,-2$ (Ch. 32 Al)
Tel. Rec. 117.3, -4, -6 (ch. 32 Al)
 217. $10,-11,-12,-14$
(Ch. 32 A 2) Tel. Rec...171-11
$217-15,217-16$ (Ch. $217-15,217.16$ (Ch.
$34 A 2)$ Tol. Rec.......170-14 34A2) Tol. Rec.
217-25. (Ch. $34 A 2$) Tel.
Rec. (Soe Model $217-15$
Set 170-14)
$219.8 \mathrm{~A}, 219$ (Ch.

${ }_{6050} 60$. ${ }^{49}$	
00, 70	59
03 (Ch. 501) 12-29	
7016.	
Ch. $11 A^{2}$	
(50e Model 219.8A)	
Ch. 32A	
${ }^{\text {(Soee }}$ Mo	
Ch . 33 A 2	
$\mathrm{Ch}^{\text {[59e }} 34 \mathrm{MO}$	
Soee Model	
(50101	
(See Model 5010)	
$\mathrm{ch}^{\text {(S. }} 500 \mathrm{~S}^{\text {Model }}$ 5002]	
(See Model 7003) Ch. 800	
(See Model 5021)	
trela	
HW301	14-28
truetone	
Dlo34A, B, C (5ee Model D1046A-Sa1 102-15)	
D1046A	102-
D104BB, C, D	
D1046A -	
0^{12404} …........... 187-12 ${ }^{18}$	
D1644 12	
01645 (Factory 6	
26476-65	
01752 (foctory 790i-14). 34-25	
25A86-856) …...... 44-25	
D1840 (fact. No.	
845 ……......... 31-31	
D1950, D1951 (500	
D1952 (See Model O1	
D1991, 8 Tel. Rec...... 77-11	
D1992 (factory No.	
D1994 Tol. Rec. 77-11	
D1996 Tel. Rec. (See Model D2983-Set 88-18)	
D1997A Tal. Rec. Di889A Tel. Rec.	
02020 …........... 100^{-15}	
D-2109A, D-2109A 199-14	
${ }_{0}^{\mathrm{D}} \mathrm{D} 222264 \mathrm{~A}$	
02255 ….......... 197	
${ }_{02263}$ …............190-14	
D22004 13-34	
D2805 (Factory Model2AW2)	
D2613 …........... 13-37	
$\begin{aligned} & \text { D2015 (factory } \\ & \text { Model } 6 \mathrm{D} 110)\end{aligned}$. 2-18	
D2616 (Factory _ ${ }^{\text {a }}$	
D2606-B Mo......... 31-32	
D2622D2623	
D2624 (Factory 27014.600) ${ }^{2-6}$D2626 (Fact. No. 457.2). $52-22$	
D2830 (factiory27014.602 lsue A) ... 1-10	
${ }_{\text {D2642 }}$ 2840 (Foctory No. 459). ${ }^{\text {43- }}$ 12-32	
D2644 (Factory No. 101C) 11-30	
02645 ${ }^{4}-39$	
02665 (Factory 48114	
O2710 (Factory24022-63088)	
${ }_{02745}^{02743}$ (see Model Diou4-- ${ }^{25-29}$	
Set 8.33$)$	

VAN-CAMP

VIDEO CORP. OF AMERICA
(See Videala
VIDEODYNE
10FM, 10TV, 12FM, 12TV
Tel. Rec. 69-15

videola

$\begin{array}{ccc}\text { V5-160, vS.161 Tel. Rec.. } & \text { 92-9 } \\ \text { VS-165, VS.166, VS-167. } & \text { V2-9 } \\ \text { VS.168 Tel. Rec. }\end{array}$

VIDEO PRODUCTS

630-DxC Tel. Rec. 176-13
$630-\mathrm{Dx} 44 \mathrm{C}$ Tel. Rec. . . 176 - 13

VIEWTONE
RC-201A, RRC. 201 11-32
VISION MASTER
14MC, MT Tel. Rec.
(Similar to Chassis).117-8 $16 \mathrm{MC}, 16 \mathrm{MT}, 16 \mathrm{MXC}$,
16 MXCS , I6MXT,
16 MXTS Tel. Rec.
(Similar to Chassis) \ldots. $117-8.8$
7 MC 17MT, 17 MXC .
17MXCS, IJMXT.
17MXTS Tel. Rec.
(Similor to Chassis)117-8 VIZ
RS.1
VOGUE

WARWICK (See clarion)

WATTERSON

WATTERSON	
ARC-4591A	16-36
PA.4585, APA. 4587	3-2
RC. 4581	16-35
4581	3-32
4582	6-34
4782	24-31
4790	16-34
4800	43-23

WEBCOR
(See Webster-Chicago)
Wesster-chicago (Also see
Changer and Recorder
Changer-chicago
Lisfings)

Listings)

B-123-1	204-12
8-124.1	203-16
B-134-1	205-12
B-135.1	210-14
B-136-1	207-12
F.123.1	204-12
F-134-1	205-12
F-136.1	207-12
T-136-1	207-12
66.1 A	34-26
100-608	121-14
100-621	113-11
130	119-13
161.1	55-23
166	159-16
288	117-14
362	105-12
760	112-12
	105-12

WEBSTER ELECTRIC

WESTINGhouse (Also see
Record Changer Listing)
Record Changer Listing)
H-104, H-105.........
H-104A, H-105A, H.107A,
H-108A (See Sel 21-36
H-108A (See Sel $21-10$
and Model H. 104 -
Set 4.
H-107, H-108, H-110,
H-111, H. $114, H-116$ ise
H-113,
Model H. 117 -

,117.	11-34
H-122	8-35
H-122A, B (See Model H.122-Set 6-35)	
-125, H-126	3-19
. 130	
	14-34

$$
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H} \\
& \mathrm{H} \\
& \mathrm{H} \\
& \mathrm{H} \\
& \mathrm{H} \\
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
$$

$$
\begin{array}{lll}
\\
\text { S. } 164 & {[\mathrm{Ch} .} \\
\mathrm{H} .2119-1] \ldots & \text { 36-28 } \\
\mathrm{H} \cdot 165 \\
\mathrm{H}-166 & \mathrm{H} .167
\end{array}
$$

$$
\begin{aligned}
& \text { [See Model H-164) } \\
& \mathrm{H}-168, \mathrm{H}-168 \mathrm{~A}, \mathrm{H}-168 \mathrm{~B} \\
& (\mathrm{Ch} . \mathrm{V}-2118)(50 e
\end{aligned}
$$

$$
\begin{aligned}
& \text { (Ch. V-2118) (See } \\
& \text { Model H-161). } 3 \text {. } 27 \text {. } \\
& \text { H-168B (Ch. V.21i8) } \\
& \text { (See Model H-168- } \\
& \text { Set } 34-27 \text {) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Set } 34-27 \text {) } \\
& \text { H-169 (Ch. V-2124-1) } \ldots \text { 37-24 } \\
& H-171 \text { (Ch. V-2103) } . . . \\
& \text { H-171A, C (Ch. V-2103) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { H-171 (Ch. V-2103) } \\
& \text { H-171A, C (Ch. V-2103) } \\
& \text { (See Model H-153- }
\end{aligned}
$$

$$
\begin{aligned}
& \text { H-196A (Ch. V-2130-1) } \\
& \text { Tel. Rec. (See Model } \\
& \text { H-197-Set } 65-17 \text {) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { H-197-Set } 65.1 \\
& \text { H-196A (DX) } \mathrm{Ch} .
\end{aligned}
$$

V-2130-110X or
V-2130.110X or
V-2130-120X) Tel. Rec. 84-13
H-198(Ch V-2137.2)

$\mathrm{H}-20$
$\mathrm{H}-20$
$\mathrm{H}-20$

 H207A (DXI ICh.
$\mathrm{Y}-2130-110 \mathrm{x}$ or
$\mathrm{V}-2130-120 \mathrm{x}$ and Radio
Ch. V-21 37) Tol. Rec... 84-13
H2078 (DX) (Ch. H 207 B (0 X) (Ch.
$\mathrm{V} .2130-210 \mathrm{x}$ or

V.2103.3)

H-217, A (Ch. V. 21 46-
$110 \mathrm{X}, \mathrm{V}-2137, \mathrm{~V}$-2149)
Tel. Rec. (See Set
99 A . 14 .
$99 \mathrm{~A}-14$ and Model
H. 217 B (Ch. V-2146-350X,

$\mathrm{H}-223$ (Ch. V-2150.01,
$\mathrm{V} .2150-02$) Tel. Rec..
H .225 (DX) (Ch.
$\mathrm{Y} .2130-310 \mathrm{O}$ or
V-21 $30-310 x$ or
V.2130.32DX) Tal. Rec, 84-17 $\mathrm{H}-226$ (Ch. V-2146-2110,
$.250 X, \mathrm{~V}^{2149) ~ T e l . ~ R o c ~}$

25DX, V-2149) Tel. Re
Set 91.14)
H. 231 (Ch. V-2150.51 and
V-2137.3 or
v-2137.35, v-2149-2)

$\mathrm{H}-251$ (Ch, V-2150-81.
-82, (84) Tel. Rec. (See
99A. 14 and Model
$\xrightarrow[\text { H-609F10- }]{\text { Set } 95.7)}$
Set 95.7)
$\mathrm{H}-300 \mathrm{~T} 5, \mathrm{H}-301 \mathrm{~T} 5$
H-300T5, H-301T5
(Ch. V-2148)......88-14
H-302P5 (Ch. V-2151-1)... $91-15$

$\mathrm{H}-307 \mathrm{~T} 7, \mathrm{H}-308 \mathrm{~T} 7$
(Ch. $\mathbf{V}-2136$)
$\begin{aligned} & \text { (Ch. V-2136) } \\ & \text { H. } 309 \mathrm{P}, \mathrm{H}-309 \mathrm{P} 5 \mathrm{U} \\ & \text { (Ch. V-2156)100-13101-16 }\end{aligned}$

WESTINGHOUSE-

WESTINGHOUSE-Cont

H-311T5, H-311T5U
(Ch. V-2161, V-216IU). 99-18 $\mathrm{H}-312 \mathrm{P} 4, \mathrm{H}-312 \mathrm{P} 4 \mathrm{U}$,
$\mathrm{H} .313 \mathrm{P} 4, \mathrm{H} .313 \mathrm{P} 4 \mathrm{U}$ H.313P4, H.313P4U, $\mathrm{H}-314 \mathrm{P} 4, \mathrm{H}-314 \mathrm{P} 4 \mathrm{U}$,
$\mathrm{H}-315 \mathrm{P} 4$,
$\mathrm{H}-135 \mathrm{P} 4 \mathrm{U}$ (Ch. V-2153-1)
$\left.4.316 \mathrm{CH}^{(\mathrm{Ch}} \mathrm{V}-2\right) 36-11$.112-13
H. 317 CZ (Ch. V.2136-1)
(See Model $\mathrm{H}-316 \mathrm{Cl}$
(See Modei H-315C7-
Set 112.13 (${ }^{\text {H18TS, } U}$
(Ch, V. 2157, U)117-15
H. 320 T5, U (Ch
H-32015; U).
H-321T5, U, H-322r5, US 117-15

V-2157-2, U)
V-2157-2, U)
$-324 T 7, H-325 T 7$
U.... 117-15

$\mathrm{H} .326 \mathrm{C7}$ (See Model
H .316 C 7 -Sel 112-13)
H .327 T 6 U (Ch.
V .2157 .3 U)

V.2164, U) (Also see
Prod. Chge. Bul.

Prod. Chge. Bul.
$52-\mathrm{Set} 186.11 . . .$.
H. 322 P 4 (See Model
H. 331 P4U-Set 171.12)
H. $333 \mathrm{P} 4, \mathrm{U}$
(Ch. V-2164, U]
(Also see Prod. (Also see Prod. Chge.
But. $52-$ Set 187.1). But. S2-Sel 187.11
H-334T7U, H-3357U
(Ch. V. 2136.5 U)
(35. H. 334 T7UR (Ch
V.
(

(Ch. V-2157U) ..
H-338T5U
(Ch. V-2157
H. 34 TSU 1 Ch.

V.2157.4U (See Model
$\mathrm{H}-338 \mathrm{~T} 5 \mathrm{U}$-Set 140.13)
H-348P5, H-349Ps (Ch
V-2156-1U) (See
V -2156-1.U) (See
Model H.342P5U-
Model H-342P
Set $138-131$
H. 350 H
(Ch. V.2180.1) see Prod. Chge. Bul.
52-Set 186.1). $\begin{aligned} & 52-\text { Set } 186.1) \\ & \text { H. } 354 \mathrm{C} 7(\mathrm{Ch}, \mathrm{V} .2180-2) \ldots 158-14 \\ & \mathrm{H} .355 \mathrm{~T}, \mathrm{H}, 35675\end{aligned}$
 H-359T5, H-360T5
iCh V.2157.6)
H. 161 T0 (Ch. V.2181.i) 191-21

H. $36895, \mathrm{H}-369 \mathrm{PS}$ (Ch.
V.2156-1U) (See Model
H. 342 P 5 U -Set 138.13)

1Ch. $\mathrm{V}-2180-8)$
$\mathrm{H} .372 \mathrm{P} 4, \mathrm{H}-373 \mathrm{P} 4$,
Ch. V. 2182.1 and $\mathrm{H} \cdot 377$
Oplional Pwr. Supply 188-14
374TS, H-375I5

and H 377 Optional
Power Supply
H. 377 (Power Supply)188-14
H. 37875 14
H. $37875, \mathrm{H}-379 \mathrm{~T} 5$,
H. 380 T 5 H. 381 T
$\begin{gathered}\text { (Ch, V. } 2184-1) \\ \mathrm{H}-385 \mathrm{H} 5, \mathrm{H}-38675\end{gathered} \cdots . . .211-17$
(Ch, V. 2157.11).
204-13
$\mathrm{H}-387 \mathrm{~T} 5$ (Ch. V.2157.1i)
(See Model H. 38575)
(See Model H.385T5-
Set 204-13)
H-39376 (Ch. V-2182-2). .210—15
H. $430 \mathrm{P4}, \mathrm{H} .401 \mathrm{P} 4$,
$\mathrm{H}-402 \mathrm{P}, \mathrm{H}-403 \mathrm{P} 4$

H-600T16 (Ch. V-2150-6i, $98-14$
H-6 $\begin{aligned} & \text { V150.411 Tel. Rec... } \\ & \text { H- } 603 \mathrm{C} 12 \mathrm{CCh} \text {. V. } 2151-01\end{aligned}$ 98-14
$\mathrm{H}-603 \mathrm{Cl} 2$ (Ch. V. V 2151-01
and -2149.3) Tel. Rec. 100-14
 $91 \mathrm{~A},-94,-94 \mathrm{~A}) \mathrm{Tel}$.
Rec. (See Set 99 A .14 . Mode! H-609T10-
Set 95.7)
$\mathrm{H}-605 \mathrm{~T} 12$ (Ch.
V. $2150-101$) Tel. Rec... 97-19
H-606K12 (Ch. V.2150.-

H-606K12 1 Ch . V-2150-

H-608C12 (Ch. V.2152-01.
V-2149-3) Tel, Rec. (See
Madel H-603
Set 100.14)
$\mathrm{H}-609 \mathrm{~T} 10 \mathrm{Ch}$
$\mathrm{V} .2150-94 \mathrm{Ci}$ Tel. Rec... 95-7
H-610T12 (Ch. V. 2150 .
136) Tel. Rec. 105 - 13 $\mathrm{H}-61 \mathrm{Cl} \mathrm{Cl}_{2}$ (Ch. V-2152-16)
Tel. Rec.

H.6'4 412 (Ch. V-2150...107-12
136 1
H. $\mathbf{O}^{\prime} \mathrm{SCl} 2$ ($\mathrm{Ch} . \mathrm{V}$ 2152.16)
Tel. Rec.
H. 6 -7r12 (Ch. V. 2150 -

176, U, -177U)
Tol. Rec. (Also See
Prod. Chge. Bul. 10
Prod, Chge. Bul. 10-
Set 116.1)103-17

WESTINGHOUSE-CORE
Tel. Rec. (See Prod.
and Model H-639117-
Set 133-15)
H-683T17 (Ch. V.2204)
Tel, Rec. (Also See

Tel, Rec. (Also See
Prod. Chge. Bul, $42-$
Set 176.1).154-15
665 T 16 (Ch. $\mathrm{V} 2206 \cdot 1)^{15}$
Tel. Rec. See Prod.
Set 176.1 and Model
H-648T20-Set 154.15)
H-667T17, H-668T17
(Ch. V-2216) Tel. Rec.
(A) so See Prod. Chge.
Bul. 40 -Set 172.1$\} \ldots 167-15$
H-673K21 $\left\{\begin{array}{c}\text { Ch. v-2217.1) }\end{array}\right.$
H-667T17 (See Model
H-676T21 (Ch. V-2217-1)
Tel. Rer. (See Model
$\mathrm{H}-667117 \frac{\text { Set }}{} 167.15$)
(Ch. V-2216-1, $-2,-3$)
Tel. Rec. (Also See Prod. Chge. Bu
40-Set 172.1, Prod.
Chge. Bul. $45-$ Set
179.1 and Prod. Chge

Tel. Rec. (See Prod.
Set 179.1, Prod. Chge.
Bul. 52-Set 186-1 a
Set 167-15)
(Also See Prod. Chge.
Bul. 52 Set 186.1)...174-14
(See Prod. Chge. Bul.
Chge. Bul. 58-Sed $192-1$
and Modet H-667117-
Set 167-15)
(Ch. V.2217-1) Tel. Rec.
(See Model H. 667 T 17 -
H. 692121 (Ch
3) Tel. Rec. (See Prod

Chge. Bul.
$177-1$.
Model $\mathrm{H}-667 \mathrm{~T} 17$ - on
Set 167-151
-3) Tel. Rec. See Prod
Set $177-1$, Prod. Chgo.
Bul. 52-Set 186-1 and
Set 167.15)
H-699K17 (Ch. V-2216-2,
-3) Tel. Rec. (See Prod
Chge. Bul. $40-\mathrm{Set}$
172.1, Prod. Chge.
Bul. 45-Set 179-
Set 186.1 and Model
H. 667 T 17 -Set 167.151
H.700117, H701T17 (Ch.
(See Prod. Chge. Bul. 40
Bul. 45-Set 179.1,
186.1 and Model H. 667 TI 17

H-701k21 (Ch. V
Tel. Rec. (See Prod
Chge. Bul. $43-S e$
177.1 and Model
H-667T17-Set 167.15)
Ch. $\mathrm{C}-2216-2, .31$
Chge. Bul. 40-Set 172-1,
Set 179.1, Prod. Chg Set 167-15)
4-704T17 (Ch, V.2216-2) Chge. Bul. $40-$ Set 172. et 179.1, Prod. Chge. Prod. Chge. Bul. 52 Set 186.1 ond Model
H.067T17-Set 167-15) -5) Tel. Rec. $2216 \cdot 4$, 202-10
3) Tel. Rec. ISee Prod.

Chge. Bul. $40-\mathrm{Sel}$
72 I, Prod. Chge.
Prod. Chge. B II. 52-
H-667T17-Set 167.15)
Tel. Rec. . . 193-12
-3, 11) Tel. Rec. ... 193-12
-3) Tel. Rec. (See Prod.
172.1, Prod 40 -Se

Prod. Chge. Bul. 43-
Mol. 52-Set 186-1 and
Set 167-15)
5) Tel. Rec V.2217-4, 202-10

WESTINGHOUSE-CONt,
H-711T21 (Ch. V-2217.2,
-3) Tel. Rec.
Chitel. Rec. (See Prod.
Chige. Bul. $40-$ Set 172 -1
Chge. Bul. $40-S e t$
Prod. Chge, Bul. $43-$
Set i 77.1 Prod. Chge Set 177.1, Prod. Chge Model H-667717-1
Sel 167-15).
H. 711721 (Ch, V-2217.4
-713K21 Rec. Vh, v-2217.2.202-10
3) Tel. Rec. (See Prod.

Chge. Bul. 40 -Ser
172-1, Prod, Chge. Bul.
43-Set 177-1, Prod.
Chge. Bul. 52 -Set 186.1 and Model H-667T17Set 167.15)
H-714K21 (Ch. V.2217-2,
-3) Tel. Rec. (See Prod.
-3) Tel. Rec. (See Prod.
Chge. Bul. $40-$ Set 172.1 , Prod. Chge.
Bul. 43 -Sot 177.1 ,

Prod. Chge. Bul. $52-1$
$\mathrm{~S}_{3} 186.1$ and Model
H-667T17-Set 177.15)
H-714K21 (Ch. V-2217-4,
-5) Tel. Rec.
-715
-3) Tel. Rec. (See Prod
Chge. Bul. 40 - Set
172.1, Prod, Chge. Bul.
$43-$ set 177-1, Prod.

43-Set 177-1, Prod
Chge. Bul. 52 -Set
186.1 and Model
H. 667 T17-Set 167.151
$\mathrm{H}-715 \mathrm{~K} 21$ (Ch. V. $2217-4$,
-5) Tel Re. R.22.2. 202-10
H-718K20 (Ch. V.2220-2)
Tel. Rec.
H-720K21 (Ch. V. $2217-2$
-3) Tel. Rec. (See
Prod. Chge. Bul. 40
Set i72.1, Prod. Chge.
Bul. 43-Set 177-1,
Prod. Chge. Bul. 52-
Set 186.1 and Model
Set 186.1 and Model
H. 667 T 17 -Set 167.15
H-720K21 (Ch. V.2217-4.
-5) Tel. Rec. 202-10
H. $721 \mathrm{K21}$ (Ch. V-2217.2,
-3) Tel. Rec, (See
Set 172-1, Prod. Chge
Bul. 43-Set 177.1 .
Prod. Chie. Bul. 52° -
Set 186.1 and Model
H. 667117 (-Set $167-15$)
H .721 K 21 (Ch.
$\mathrm{V} .2217-4$,

-3) Tel. Rec. (See
Prod. Chge. Bul. 40-
Set 172.1, Prod. Chge.
Bul. 43-Sel 177.1 ,
Prod. Chge. 8ul. 52 -
Set 186-1 and Model
H-667T17-Set 167-15)
$\mathrm{H}-722 \mathrm{~K} 21$ (Ch. $\mathrm{V}-2217-4$,
-5) Tel. Rec.
Tet, Rec.
H- $72420, ~ H 25 T 20 ~(C h . ~$
$\mathrm{V} 2220-2$) Tel. Rec. \ldots
$\mathrm{H}-730 \mathrm{C} 21$ (Ch. V. 2218.1
and Radio Ch. V-2180-9, 190-16
-10) Tel. Rec.
H-730C21 CC. V-2218.2
and Radio Ch. V-2180-9,
10) Tel. Rec. (Also See
Prod Chge. Bul. S9. Chge.
Set 193.1 and Prod. Chg 190-16
Bul. 68 -Set 205.1) 190
$\mathrm{H}-730 \mathrm{C} 21$ (Ch. V-2218.11
and Radio Ch. V-2180-9
$-10) \mathrm{Tel}$. Rec. (Also Se
Prod Chge. Bul. $59-$
Set 193.1).
H.
and Radio Ch. V-2180-9
and Tel, Rec. $10180-9$ 190-16
-10) T30

and Radio Ch. V. 2218.11
ald
$180-9$

- 101 Tel. Rec. 1 Also See

Set 193.1).
H-733C21 (Ch. V-2218-1...
and Radio Ch. V.2180.9,

H .733 C 21 Ch. V-2218-11
and Radio Ch. V. 2180.9
and Radio Ch. V. 2180.9
$-10)$ Tel. Rec. (Also Se
Prod. Chge. Bul. $59-1$
Set ig3.11.

H .7 T T $\mathrm{H}-7 \mathrm{~J}$ T H

$$
\begin{aligned}
& \mathrm{Hel} \text { Rec. } \\
& \text { H-740021. H-742k21. }
\end{aligned}
$$

H. 743 K 21 (Ch. V-2233-1)
Tel Rec.
H. 750 r 21 (Ch. V-2221-1)

Tel. Rec. ©................
H-750r21 (Ch.

-5) Tel. Rec.
$\mathrm{H}-751$ T21 (Ch

$\mathrm{H}-752 \mathrm{~T} 21$ (Ch. V-2217.4,
-5) Tel. Rec.

- 5 20.
H-752T21 [Ch. V.2233-2] 212-9
H-753K21 (Ch. V-2221-1)
H. 753 K 21 (Ch. V-2233-3)
H.754K21 (Ch. V.2217-4, 212-9

H-754K21 (Ch. V-2233-2) 202-10
H. 755 K 21 (Ch. V.2233.2]
Tel. Rec.
H. 756 K 2 (Ch, V-2217.4, 212-9
-5) Tel. Rec.

WESTINGHOUSE-CORT.
H-756K21 (Ch. V-2233-2)
Tel. Rec.

212-9

H .757 K 21 ($\mathrm{Ch} . \mathrm{V} \cdot 2217.4$.
-5) Iel. Rec.
H. 757 K 21 (Ch.
202-10
H-757K21 (Ch. V.2233-2)
Tel. Rec.
H.758k2I (Ch. V. 2217.4
H. 758121 (Ch. V.2217-4;
-55 Tell, Rec.
H-758221 (Ch. V. 2233 -2)

H-758K21 (Ch. V-2233-2)
Tel. Rec.
H-759K21 IC. V. 2217.4,
5) Tel. Rec.
H-759K2l Ch.
202-10
H-759K2l (Ch. V-2217.4, 212-9
5) Tel, Rec.
H-759K2l (Ch. V-2233-2) 202-10
Tel. Rec.
H.760T21 (Ch, V.2233-2) 212-9
Tel. Rec.
H-760TU21 (Ch, V-2233-2) 212-9

H-761TU21 (Ch. V.2233-2) 212-9
Tel. Rec.
$\mathrm{H}-802$ (Ch. V-11900-1, -2,
$-3,-4,-5, V-11213)$
Tel.
$\mathrm{H}-1251$
C
Ch. V-2102
iSee Model H-104
Ch. V-2lo2.1
(See Model H.138)
(See Model H.138\}
$\mathrm{Ch}, ~ \mathrm{~V}$ 2103
(See Model H-153)
Ch. V-2103-3
(See Model H-214)
(See Model H-214)
Ch V-2107
(See Model H-133)
Ch. V.2118
(See Model H-161)
Ch V-2119.1
(See Model H-164)
Ch. V.2120
(See Model H-165)
(See Model H-165)
Ch V.2122
(See Model H.1
(See Model H.157
Ch. V.2123
(See Model H.17
Ch) V.2124-1
Ch. V.2124-1
(See Model H-169)
Ch. V- 2127
(See Model H-183)
Ch. V.2128, V-2128.
(See Model H-182)
(See Model H-182)
Ch . V-2128.2
(See Model H-202)
Ch . V.2130-1
(See Model H-19
Ch . V - $130-110 \mathrm{~B}$,
H-196A [DX1]
Ch. V. $2130-21 \mathrm{DX}$,
.220 X [See Model
$\mathrm{H}-207 \mathrm{~A}(\mathrm{DX})]$
Ch.
$\mathrm{V}-2130-31 \mathrm{DX}$,
.320 X
$\mathrm{H}-225$ (See Model
Ch. $\begin{gathered}H-225(D X) \\ \text { (D. } \\ \text { (}\end{gathered}$
Ch. V. See Model H-185)
Ch. (See Model H-186M)
(See Model H-188)
(See Model H-190)
(See Model H-307T7)
Ch. V -2136-1
(See Model H-316C7)
(See Model H-324T7)
(See Model H-328C7)
Ch. V.2136-5R (See
Model H-334T7U
Ch. V. $2137-5 \mathrm{U}$ (See Model H. 334 T 7 U)
(See Model H-203)
Ch. V.2137-1
(See Model H-199)
Ch. V.2137.2
Ch. V - $2137-3$, $\mathrm{H} \cdot 19$
V.2137-35 (See
$\mathrm{Ch} . \mathrm{V}-2144, \mathrm{~V}-2144.1$
(See Model H.210)
Ch. $V .2146 .05$ (See
Model
Ch.
$\mathrm{V}-2146.110 \mathrm{X}$
(See
Model H-217)
$250 \times$ (See Model H-226)
(See Model H-217B)
Ch. V-2146-45
(See Model H300rs)
(See Model H-217B)
Ch. V-2149.1
${ }^{\text {Ch. }}$ (See Model H-2149.3
(See Model $\mathrm{H}-603 \mathrm{Cl} 2$)
Ch. (See Model V (H -223)
(See Model H-242)
Model H-601 k
(See Model H-231)
Ch. V-2150-61, A. B
(See Model H.600r16]
Ch. V-2150-91A

Model H-604T10, A)
Ch. V-2150-94C (See
Model H-609T10)
Ch. V-2150.101 (See
Model H.605T121
(See Model H-606K12)

WESTINGHOUSE-CONT.
(See Model H-610T12
Ch. Model H.613K16)
Ch. (See Model H- H - 2150.17 T 12 (See
Model H-617T12
Ch. V-2150-186, A, C, CA
(See Model H-618T16)
(See Model H-618T16)
Ch. V- $2150-197$
$\mathrm{Ch}_{\text {(See Model }}$
Ch. (See Model H-302P5)
Ch. V.2152.01 (See
Model H-603C12)
Model H-603C
Ch. V-2152-16
(See Model H-611C12
(See Model H303P4)
Ch. V.2153-1 (See
Model H-312P4)
(See Model H-309P5)
Ch. V. 2156.1 U
(See Model H-342PSU)
Ch. V-2157 U
(See Model H-318T5)
Ch. V-2157-1.
Ch. Vee Modei $\mathrm{H}-321 \mathrm{~T}$)
Ch. V. $2157-2,-2 \mathrm{U}$
(See Model H-323T5)
Ch . V-21 57.3U (See
Model H-327TOU
$\mathrm{Ch} . \mathrm{V}-2157.4 \mathrm{U}$
(See Model H338T5U)
C V- $2157-5$.
(See Model H-355T5)
Ch . V-2157.6
(See Model H-359T5)
Ch. V-2157-8
(See Model H-367T5)
$\mathrm{Ch}_{\text {V }} \mathrm{V} \cdot 2157-9$
(See Model H-374T5)
ISee Model H
Ch. V 2157.11
(See Model H-38575)
Ch . V -2161, V 2161 U
(See Model H-310T5)
Ch. $V-2164, U$ (See
Model H.331P4)
Ch. V-2164-2
Ch V-2171 (See
Model H-627K16
$\mathrm{Ch} . \mathrm{V}-2172$ (See
Model H.6
Ch.
V .2173
Ch (See Model H-633(17)
Ch . $\mathrm{V}-2175(5 e \mathrm{E}$
Model H .636 T 17$)$
(See Model H-641 K17)
Ch. V.2175.3, -4
(See Model
Ch.640T17)
Ch. V.2175-5
Ch. Vee Model H-641 K17)
Ch. See Model
(See Model H-637T14)
$\mathrm{Ch} . \mathrm{V}-2178,-1,3$ (See Model H- 638
$\mathrm{Ch} . \mathrm{V} .2180-1$
ISee Model
Ch.
$\mathrm{V} \cdot 2180-2$
(See Model
Ch V. $2180-3$
iSee Model
(See Model
Ch. $\mathrm{H}-2180 \mathrm{C}$ (17)
Ch. V-2180-5 H (See Model $\mathrm{H}-357 \mathrm{Cl} 0$)
Ch, V. $2180-8$ (Seee
Model H-370T7)
Ch. V.2180-9, 10

$\begin{array}{l}\text { (See Model } \\ \text { Ch. } \\ \text { V. } 2181-730 C 21) \\ \text { (See }\end{array}$

Ch. Model H-36
Chee Model H-393T6)
Ch. V.2184.1
Ch. V. 2184.1
Ch. S - 2192 Mod H-378T5
Model H-639T17)
C. $2192,-3,-4,-5,-6$
(Shee Model H-640T17A) $\begin{array}{cc}C_{h} \text { V-2194, V.2194A. } \\ \text { V-2194-1 } & \text { See }\end{array}$ V-2194-1 (See
Model H- 642 K 20 A Ch . V-2194.2,-3 (See Ch. V-2200-1 (See Ch. Model H-651 K17) Ch. V. 2202 (See Model H-653k24) Ch. V-2203.1 (See Ch. V.2204-1 (See
Ch. Model H-659T17) Model H-665T16) Ch. V.2207-1 ${ }^{\text {(See Model }}$ H-706T16) Ch. V-2208-1 (See Ch. V-2210-1 (See Mode! H. 653 K (See Model H-689T16) Ch. V.2215-1 (See Model H-681T17)
Ch. $V .2216-1$ (See Model H-667T17) Ch. V-2216-2,-3(See
Ch. V.2216-4, $\cdot 5$ (See Model H. 704 Tl 7) Ch . V.2217-1 (See Model H.673K21)
Ch. V-2217-2 -3 (See Ch. V-2217-2, $-3(\mathrm{See}$
Model H .692 T 21$)$ Ch. V-2217.4, 5 (See Model H.710T21)
Ch. V-2218.1, $2, ~ 11$
(See Model $H-730 \mathrm{C} 21$)

WESTINGHOUSE-Cont.
Ch. V.2219-1
Ch. V.2220.1 (See
Mor
Ch. V.2220.2 (See
Model H.718K20)

[See Model H. 750 T 21]
Ch V-2232-2
Ch. V-2233-1
(See Model H.740721)
Ch. V-2233.2
[See Model H. 751 T 21]
Ch. V-2233-3
(See Model H.750T21)

(See Model H-802)
Ch. V-11900.1, 2 2, $-3,-4$
5 (See Model H-802)

WILCOX-GAY

WILCOX-GAY
(Also see Majestic)
(Also see Recordio)
G-306, G-402, G.403,
G. 404 Tel. Rec. 1 See
Majestic Model 12 T 2 -

G .414 Tel
Majestic Model G-414-
Set $133-8$) Set 133-8)
G.426, G-427 Tel. Rec.
(See Mojestic Mode) (See Majestic Model
$12 T 2$ - Set 108.7)
G-614, G-624 Tel. Rec.
(See Majestic Madel
G.414-Set 133.8)
G. 914 Tel. Rec. (See
G. Majestic Model G.414-
Set $133-8$)
 Tel. Rec.
OD Series
(See Model OD-446M)
OI Series Tel.
90 Series Tel.
Willys-overiand
8030 (670777)
670777 (See Mod
670777 (See Model
8030 -Set $50-23$)

WILMAK
W-446 '"DENChum' 21-11
WIRE RECORDING CORP.
WIRE RECORDING CORP.
(See Recorder Listing)

woolarot

3-1A (Ch. 6-9022-1).	
3-3A (Code 7-9003-D)	6-38
3.5A	22-32
3-6A/5	24-32
3-9A, 3-10A	7-30
3-11A (Ch. 56A76)	8-33
3-12/3	23-33
3-13A, 3-14A, 3-15A,	
3.16 A	34-28
3-17A, 3-18A	34-29
3.20A	24-33
3-29A	7-31
3-61A (See Model	
3-714-Ser 36-291	
3.70 A	31-34
3.71 A	36-29
ZENITH (Also see Record Changer Listing)	
G503 (Ch. 5G41) 9 99-19	
G510, G510Y, (Ch.	
G511, G511W, G511Y	
G516 (Ch. 5G03)109-15	
G615, G615W, G615Y	86-14
G660, G663, G665	
(CH. \%G01) ...	
G723 (Ch. 7G04) 104-13	
G724 \{Ch. 7G02) 103-18	
6725 (Ch. 7601) 101-18	
G881, G882, G883, G884,	
G. 2322 (Ch, 23G22)	
Tel. Rec.	98-17
G. 23222 (Ch. 23G24)	
Tel. Rec, (See Ch.	
23G24-Set 914.13)	
G2322Z1 (Ch. 23G24Z1)	
Tel. Rec. (See Ch.	
23G24-Set 91A-13)	
G-23272 (Ch, 23G24)	
Tel. Rec. (See Ch.	
G-2340, R (Ch. 23G22)	
Tel. Rec. 98-17	
Tel. Rec. (See Ch.$23 \mathrm{G} 24-\text { Sel } 91 \mathrm{~A}-131$	
G2340Z1, G2340RZI (Ch.	
23G2421) Tel. Rec. (See	
G2346R (Ch. 23G22)	
Tel. Rec. (See Ch.	
23G24-Sel 91A.131	
Tel. Rec. (See Ch.	
23G24-Set 91A.13)	
G2353EZ1 (Ch. 23G24ZI)	
Tel. Rec. (See Ch.	
23G24-Set 91A-13)	
G2356E2 (Ch. 23G24)	
Tel. Rec. (See Ch.	
23024-Sel 9(A.13)	

ZENITH-Cont.
H664 (Ch, 6H02)149-15
H665, $R, R Z, Z$
 H723Z (Ch. 7H042).
H723Z1 (Ch. 7H0421)
H7
(See Model H724Z1—
Set 163-14)
Set 163-14)
H72322 (Ch. 7 H04Z2)
H72322(Ch. 7H04Z2)...
H724 (Ch. 7H02)......
H724Z (Ch. 7H02Z) (See H7242 (Ch. 7 (
Model H723)
Sel 134.14)

H 72422 (Ch. 7 H 0222)
$\mathrm{H} 725(\mathrm{CH} 7 \mathrm{CO}$
H725 (Ch. $7 \mathrm{GO} \mathrm{I}_{\mathrm{I}}$)
H880, H880R

H1083E (Ch. 10 H 20) (Se

Model H3467 Set $120-131$

Set 120-13\}
H 1086 R, H-1087R (Ch.
10H20) (See Model
H3467R-Set 120.13
H2029R, H2030E, H2030R
(Ch. 20H20) Tel. Rec... 144-15
H2O41R (Ch. 20 H 20)

20 H 20 , Tel. Rec.
$\mathrm{H} 2226 \mathrm{E}, \mathrm{R}, \mathrm{H} 2227 \mathrm{E}$,

Tel. Rec.
$\mathrm{H} 2242 \mathrm{E}, \mathrm{R}$ (Ch. 22H22)
Tel. Rec.
H2250R (Ch. 22 H 20)
H2252R, H2253E iCh.
$22 \mathrm{H} 21)$ Tel. Rec.
H 2254 R (Ch. 22 H 22 l
Tel, Rec.
H2255E (Ch. 22H20)

114-13
ZENITH-Cont.
$\mathrm{H} 3490 \mathrm{EQ}(\mathrm{Ch} .24 \mathrm{H} 21$ and
Radio Ch . 10 H 202) Tel.
Radio Ch. 10 H 2 OZ) Tel
Rex. (For TV Ch. See
120-13, For Radio Ch.
See Model H3273E-
Set 151-13)
$1402(\mathrm{Ch} .4 \mathrm{~J} 0$)

$1815, F, G, W, Y$
(Ch. 61051182-16-16
1616 (Ch. 6103)
$1644, \mathrm{~J} 605 \mathrm{E}, \mathrm{R}$

J880, J880R (Ch. 8H202).
J1083E, EZ (Ch. 10H202)
(See Model H3273E-
Set (51-13)
J1086, R, RZ (Ch. 10H20Z)
(See Modet H3273E-
(See Model H3273E-
Set 151-13)

Sel 151.13)

Rec. (See Model J 2026 R
Set $159-18$)
12032R (Ch. 20 J22) Tel.

Rec. Set $159-181$
$2040 \mathrm{E}, \mathrm{I}$
$2042 \mathrm{R}, \mathrm{J} 2043 \mathrm{R}$,

j2044E, R (Ch. 20321)
Tel. Rec.159-18
J2049R (Ch. 20J21) Tel.
Rec. (See Model J2027E
-Set 159.18)
$2050 \mathrm{R}(\mathrm{Ch} .20 \mathrm{~J} 21)$ Tel.
Rec. (See Model J2027E
12051E, J2053R, 32054R,

159-18

J2127E, R, J2129E, R,
$J 2130 \mathrm{E}, \mathrm{R}(\mathrm{Ch} .21 J 20)$

2868R (Ch. 20121 and
Ch. 8 H 202) Tel. Rec.
For TV Ch. See Set.
See Model 1888
Set $168-14$ \}
J2968R (Ch. $21 / 20$ and
Radio Ch. 8 H 20 Z) Tel.
Rec. (For TV Ch. See
Sel
Rec. (For TV Ch. See
Set $159-18$, For Radio
Ch. See Model $1880-$
Set 168.141
13069 E (Ch. 20121 and
Rodio Ch. 10 H 20 Z)
Tel. Rec. IFor TV
Ch. See Set 159-18,
For Rodio Ch. See
Model H3273E-5et
Model H3273E-Set
151.13).
13169 E (Ch. 21 J 20 and
3169 E (Ch. 21.120 and
Radio Ch. 10 H 202)
Rodio Ch. (For202)
Tel. Rec. (For TV Ch.
See Set $159-18$, For
Radio Ch. See Model
$H 3273 \mathrm{E}-$ Set 151.131
H3273E-Set
K412G, R, W, Y
(Ch. 4 KO 11 .
K 510 . K $510 \mathrm{~W}, \mathrm{~K} 10 \mathrm{Y}$,
Ch. $5 K 02$)
KSis (Ch. $5 K 03$) isee 181-15

K866R iCh. ©K02).
K725, F, G (Ch. 7 KO
K777E, R (Ch. $7 \mathrm{CK201}$....
K1812E, R (Ch. 19 K 221 !
Klel. Rec. Ch. 19 K 20)
Tel. Rec. Ch..........
KI $820 \mathrm{E}, \mathrm{R}$ (Ch.
Tel. Rec.
$K 1846 E_{\text {, }}$ R (Ch. $19 K 20$)
Tel, Rec.
$K 1850 E_{\text {, }}$ R (Ch. $19 K 20$)
Tel. Rec.
K1880R (Ch. 19k20)
Tel. Rec. WK..........
K229E (Ch.
Rer (See Model
Rec. (See Model
K1812E-Set 184.15)

K2230E, R $\{$ Ch. 21 K 20 \}	187-14
K2235E, R (Ch .19 K 23)	
K1812E-Set (84-15)	
K2240E, R (Ch. 21 K 20)	
Tel. Rec.	
K2258E (Ch. 19K23) Te	
Rec. (See Model	
K2258R-Sel 184-15)	
Tel. Rec.	
K2260R (Ch, 21 K 20)	
Tel. Rec.	
K2262R (Ch 19K23 Tel.	
Rec. (See Model	
K2263E (Ch. 21 K 20)	
Tel, Rec.	
2266, R (Ch. 21 K 20)	

ZENITH-Cont.	ZENITH-Cont.
Ch. 5COI, 5CO1Z (See Model 50011)	Ch. 8 KO 02
Ch. 5CO2, 5CO2Z	Ch. $6 \mathrm{KO} \mathrm{K}_{3}$
(See Model 5R080)	(Soe Model K622)
Ch. 5CO4	Ch. 7E01
(See Madel 5R080)	(See Model 7H820)
Ch. 5C40 \qquad	Ch. 7E02
Ch. 5C40Z	(See Model 7H822)
(See Modal 5G003Z)	Ch. 7E02Z
Ch. 5C402Z	
(See Model 5G003ZZ)	(See Model 7 R887)
Ch. 5C51	Ch. 7 FOT 1
(See Model 5G036)	(See Madel 7H920)
Ch .5 O 02 2	Ch. 7 FO 02 l
Ch (See Model 50810)	(See Model 7H922)
Ch. 5GO1 (See Model G511)	
Ch. 5G02	(See Model 7H918)
(See Model G510)	Ch. 7 F04
Ch. $5 \mathrm{GO3}$	Ch. 7 GOO
(Ses Model G516)	Ch. (See Model G725)
Ch. 5G40	Ch. $7 \mathrm{GO12}$ (${ }^{\text {a }}$
(See Madel G500)	(See Model H725)
Ch. 5G41 ${ }^{\text {a }}$ (${ }^{\text {a }}$	Ch. 7G02
Ch. $5 \mathrm{SHO1}$ (Seel G503)	(See Model G724)
Ch. 5 HOl (See Madel H5II)	Ch. 7 GO 04
Ch. 5 H 40	(See Model G723)
(See Model H500)	Ch. 7HO2
Ch. 5 H 41 (${ }^{\text {d }}$	Ch. ${ }^{\text {(H0e MO2 }}$
(See Modol H503)	(Soe Model H724Z)
Ch. 5103	Ch. 7 HO 02 Z (${ }^{\text {a }}$
(See Model J514)	(See Model H724Z1)
Ch. 5KO2 ${ }^{\text {(Sea Model K510] }}$	Ch. $7 \mathrm{HO2Z2}$
$\mathrm{Ch}{ }^{\text {(See Mo3 }}$ Model K510)	(Seo Model H724Z2)
Ch. 5 KO 3 (See Model K518)	Ch. 7 HO 4
Ch. 6 CO1	(See Model H723)
(See Model 6DO14)	Ch. 7H04Z
Ch. 6C05, 2	
(See Model 6DO15)	(See Model H72321)
Ch. 8C06	Ch. 7 H 0422 L
(See Model 7 R070)	(See Model H723z2)
Ch. ©C21 (See Modet 6R084)	Ch. $7 \mathrm{JO3}$
Ch. ${ }^{\text {(See M }}$ Modet 6R084)	(See Model J733)
(See Model 6 R087)	Ch. 7 K 01 (See Model K725)
Ch. 8 C 40	
(See Model 6G001)	(See Model K777E] Ch. 8COI
Ch. 6C41	(See Model 8H023)
(See Model 6G004Y)	Ch. 8C20
$\mathrm{Ch} .6 \mathrm{SC50}$	(See Model 8H032]
(See Model 6G038)	Ch. 8C21
Ch. 6 E02	(See Model 9H079)
(See Model 6R886)	Ch. 8C40
Ch. 6 E05	(Seo Model 8G005Y)
(See Model 80815)	Ch. 8C40T(Z)
Ch. 6E40	[See Model 8G005Yt(Z)]]
(See Modal 6G801)	Ch. 8C40T (Z2)
Ch. 6GO1 ${ }_{\text {(See Model G660) }}$	[See Model 8G005yt (22)]
(See Model G660)	Ch. 8E20
Ch. 6G05	(See Model $8 \mathrm{H832}$)
(See Model G615)	Ch. 8G20
Ch. 6G05Z1	(See Model G881)
(See Model H6152l)	Ch. 8G20/22 91A.13
Ch. 6G20 (See Modal G2957)	Ch. $8 \mathrm{H}_{20}$ (See Modol H880RZ)
Ch. 6 HOl (See Model H661E)	Ch. 8H20 Revised (Soe Model H880)
Ch. SHO^{2} (See Model H664)	Ch. 8H2OZ (See Model J880)
Ch. 6502 (See Madol J644)	Ch. 9E2I (See Model 9H881)
Ch. 6503	Ch. 9E212
(See Model J616)	(See Model 9H095)
Ch. 6105 (See Modal J615)	Ch. 9 F22 (See Model 9H984)

ZENITH-Cont.

RECORDCHANGERS
(CM-1) indicates service data also available in Howard W. Sams 1947 Record Changer Manual. (CM-2) indicates service data' available in Howard W. Sams 1948 Record Changer Manual. (CM-3) indicates service data available in Haward W. Sams 1949, 1950 Record Changer Manual. (CM-4) indicates service data available in Howord W. Sams 1951, 1952 Record Changer Manual.

ADMIRAL	
$\begin{aligned} & \text { RC-150, } \because(160 A, \quad \text { (CM-1) 26- } 31 \\ & \text { RC160, } \end{aligned}$	
RC200-Set 9 and Modal	
RC200-Set 9 and ModelRC.160-Set 21.371	
$\begin{aligned} & \text { RC.170, RC.170A. .(CM-1 } 31 \text { —2 } \\ & \text { RC.180, RC.181 .. (CM-2) 76-1 } \end{aligned}$	
RC-182 (See Model	
RC. 181 -Set 76.1 and	
Supplement-Set 76-2)	
(CM-2) ${ }^{\text {a }}$	
RC-200(CM-1)	
RC-210, RC211, RC212	
RC. $220, R C .221, R C .222,72$	
RC-320, RC-321, RC-322	
[See Set 79-1 and Changer	
in Set 108-2 (CM-3)]	
RC400(CM-4) 10	(CM-4) 104
RC500(CM-4) 132-2	
RC. 550 [Seo Madel RC. 500	
-Set 132-2 (CM-4) and	
-	
AERO	
464 ICM-1) 19-34 $^{\text {a }}$	
47A lcm-2\} 77-2 $^{\text {7 }}$	
AVIOLA	
100(CM-1) 33	
BELMONT	
C.9 (CM 2) 34-31	
COLLARO	
RC. $521, ~ R C .522 \ldots \ldots .205-4$3RC. $521, ~ 3 R C .522 \ldots . .205-4$	
columbia	
104 12124-2

MOTOROLA	SPARTON		
B24RC, B25RC, B27RC, B28RC ..(CM-1) 12-35	C48	.. (CM-2)	$87-11$
2C30 (CM-2) 80-9			
RC36, A (CM.4) 147-8	THORENS		
RC36C (See Model RC36-Sot 147.8)	CD-40	. . (CM-1)	39-29
RC37 $\times(C M .4) ~ 141-8$	TRAV-LER		
RC40 [See Model RC37-			
$\text { Sot } 141-8(\mathrm{CM}-4) \mathrm{J}$. (CM-3)	72-13
6666 (CM-1) 19-35	UNIVERSAL	CAMERA	
9201(CM-3) 111-10	100	... (CM-1)	36-30
PHILCO			
DIO, DIOA(CM-1) 14-21	UTAH		
M-4(CM-1) 25-30	550	(CM-1)	8
	650	. ${ }^{(C M-1)}$	22-34
M-8 (См.2) 83-7	7000	. (CM-1)	27-31
M-9C ${ }^{\text {c }}$. (CM-2) 74-7	7001	(CM -2)	83-15
M-12C(CM-3) 109-9	V -M		
M-20(CM-3) 103-11	200 - B	($\mathrm{CM}_{\text {M-1) }}$	15-36
M22(CM-4) 140-6	400	(CM-1)	26-33
RCA	400 (Late)	(CM-2)	90-13
RP168(CM-3) 72-10	$402,400 \mathrm{C}$	(CM-2)	$82-12$
RP-176(CM-1) 25-31	$402 \mathrm{D}, 400 \mathrm{D}$		87-14
RP-177 (SM-2) 44-27	404 (See Model 405		
RP.178(CM-2) 79-12	405 (CM-3)	
RP190 Series (CM-4) 144-7	406, 407	. (CM-3)	02-17
SEEBURG	800.	. (CM.1)	21-38
	800-D	. (CM-2)	84-12
11-36	802	. (CM.3)	77-12
((CM-1) 24-34	910(CM-3) 115-14		
	950 [See Set 107.13		
S, SQ(CM-2) 78-12	(CM-3) and Supplement-		
SILVERTONE	Set 131.17]		
101.761-2, 101762-2 (CM-2) 77-10	WEBSTER-CHICAGO		
$101.761-3$,	50	(CM-1)	24-35
101.762-3(CM-2) 83-11	56	. (CM-1)	17-36
101.762 .	70	.(CM-1)	29-28
101.763(CM-2) 88-11	77	(CM-4) 1	37-14

ZENITH

 S13675, S14002, 8 (CM-2) 85-15 S14006, 514008 (CM-2) 85-15
S14004, $514007 \ldots(\mathrm{CM}-2) 79-18$
 $\$ 14022$
S 14023

S 14026
S 14027
$\mathrm{~S}-1402$
$5-14028$ s. 14029
S.14030,
S-14031
S-14036 $\ldots \ldots(C M .4)$ 145-13

S-14036 $\ldots . . .(\mathrm{CM}-4)$ 145-13

MISCELLANEOUS

AMPRO

730.

731 (For electrical (CM.4) 133-4 Folder 166.5 , for unit see chanical unit see folder
731.R (See Model 731)

BRUSH SOUND MIRROR
BK-401
BK. 40
(CM-1) 42-25
$(\mathrm{CM}-2) 81-4$
BK.437, S-BK. 439
BK-441, BK-442
RUSH MAIL-A-VOICE
BK-501, BK-502
BK.501, BK-502.
CONCERTONE
1401 (401) CRESCENT
H-2AI Series
H-19 Series
(CM-4) 155-4
(CM-4) 130-5
(CM-3) 119-4
(CM-4) 122-3

CRESCENT-COMt.

GENERAL INDUSTRIES
R70, R90 …...(CM-1) 35-28

INTERNATIONAL ELECTRONICS
PI3 ….........CM-2) 88-4
KNIGHT
$96-144(C M .4)$
96.485 …...... 158 -6 $183-8$
$96-485$
$97-499$
$(C M-4) \cdot183-8$
$158=6$
LEAR DYNAPORT
WC.311.D …...(CM-2) 80—8
MAGNECORD AUDIAD
AD-IR \quad PH . \quad (CM-2) $84-7$ PTO-A, AH, AHX, AX, 190-6
PTOJ-A, AH, AHX, AX, 190-6

masco

DC37R (CM-4)
D 37 (CM-4)
D37 ${ }^{\text {(CM-4) ….........148-9 }} 148$
D37R 1037 (D37R(CM-4) 148-9
LD37, LD37R ...(CM-4) 148-9

PENTRON

PB A2, PB-1184.11

RCA
MI-12875 …....(CM-2) 85—12
RECORDIO (See Wilcox Gay) REELEST
CIA(CM-4) 123-13

RIVERE

T. 100(CM-4) 149-11

TR-200 (For électrical unit
see Folder 165-10; for
mechanical unit see
Folder 149.111
T-70153, T-70157,
T.70163, T.70167
T.70235, T. 70257
T.70263, т.70267,
T.77153, T-77157,

T-77163, ז-77167,

T.77253,
$\mathrm{T}-77263, ~$
$\mathrm{~T}-77257$

SILVERTONE

10 (Ch. 567.230,
$577.231)$
(CM-4) 121-11
771 (cm.1) 26-32
$101.774-2,101.774-4$
(CM-3) $114-10$
st. GEORGE
1100 Serias(CM-1) 40-24
TAPE MASTER
Tr.121 186-14
WEBSTER-CHICAGO
79.80
(CM-1) 37-28

$228 \cdot \cdots \cdot \cdots \cdot\left(\begin{array}{ll}(C M-4) \\ 156-13\end{array}\right.$
WEBSTER ELECTRIC
(See Ek otape)
WILCOX GAY
$2 A 10,2 A 10 B, 2 A 11$
2 A 118
$3 \mathrm{~A} 10,3 \mathrm{AI}$
WIRE RECORDING CORP
WP

ADDITIONAL PHOTOFACT BENEFITS

From time to time, PHOTOFACT Folder Sets include valuable "bonus" aids, as well as useful data of a special nature. The fol-
lowing materials are extra benefits incorporated in the PHOTO FACT Folder Sets indicated, at no additional cost.

1-RTMA Production Source Code (Jan. 1, 1952). 2—TRADE DIRECTORY- Parts Manufacturers 12 3-National Electrical Code on Antennas... 88 4-Record Changer Cross Reference by Monufacturer and Madel. 5-Mica Capacitor Color Codes........... . 48 6 -hion Trap Alignment..................... 62 7-'"Let's Look of the Sync Pulses". 64

8-Replocement of Disc \& Plate Type Serno Ceramic Capotitors 68
9-Certificate entilling subscriber to PHOTO FACT Volume labels for Vols. 1-10 ... 62
10-Certificate entitling subscriber to PHOTO FACT Volume Labels for Vals. 11-20. . . 102
11 -Certificate entitling subscriber to 100 Door Knob Hongers. 80 12-Photofact Television Course appearing serially in.

14-CR (Electromagnetic) Tube Characteristics Chart

QUAM-NICHOLS CO. 33rd Place and Cottage Grove, Chicago 16, III.

TV Replacement Transformers

built-to-fit electrically and mechanically

TWO NEW DEFLECTION YOKES (70 ${ }^{\circ}$)

CAT. No.	INDUCTANCE		DC RESISTANCE		$\begin{aligned} & \text { WT. } \\ & \text { IBS. } \end{aligned}$	$\begin{aligned} & \text { LIST } \\ & \text { PRICE } \end{aligned}$
	HORIZ.	VERT.	HORIZ.	VERT.		
TY-9	25 mh .	50 mh .	27 ohms	60 ohms	1	\$10.00
TY-10	25 mh .	3.3 mh .	27 ohms	4 ohms	1	10.50

FIVE NEW WIDTH AND LINEARITY COILS				
CAT No.	TYPE	INDUCTANCE	RESISTANCE	LIST PRICE
TW-4	Width	$.05-.5 \mathrm{mh}$.	.53 ohms	$\$ 1.00$
TW-5	Width	$.5-3.5 \mathrm{mh}$.	2.3 ohms	1.25
TW-6	Width with AGC	Pri. $2.6-7.5 \mathrm{mh}$. Sec. $4.0-28 \mathrm{mh}$.	1.2 ohms 32.0 ohms	1.75
TW-7	Width	$1.0-10.0 \mathrm{mh}$.	8.0 ohms	1.50
TL-4	Linearity	$5.0-40.0 \mathrm{mh}$.	32.0 ohms	1.25

FREE! TV Replacement Catalog

Write for your copy of CHICAGO'S latest Exact Duplicate TV Transformer Catalog-get acquainted with your complete guide to every replacement requirement. Do every job rightask your distributor for CHICAGO built-to-fit replacements.

CHICAGO TRANSFORMER

division of essex wire corporation 3501 ADDISON STREET, CHICAGO 18, ILL.

MOT•R○LA DETROITCO. one of the country's largest disfributors of television sets and appliances

SAYS

IS A PROFITABLE ITEM TO STOCK FOR 2 REASONS

1. TV SERVICEMEN BUY IT

"Our customers use K.rylon and plenty of it," reports MotorolaDetroit parts manager, Paul Wallace. "The spray nozzle makes it easy to insulate the complete chassis in a matter of minutes." Because of its high dielectric strength, Krylon helps prevent corona.

2. WE USE IT OURSELVES

Indoor service chief, John Workman, reports, "We use Krylon clear plastic coating to spray the bell part of metal picture tubes. Krylon stops dust from adhering to the tube and prevents arcing. We find Krylon is a mustin television service operations."

SHOP TALK

(Continued from page 5)
tely, whereas the highs of the green channel are distributed in equal measure to each receiving system. The signal of each color then actuates its own particular cathode-ray tube and the light from the three tubes are combined for the final image.

Consider carefully what happens to the highs. Each cathode-ray tube will produce the same fine detail on its screen and the combination of these three colors in the final image will produce either white, black, or intermediate shades of gray. This is true because the combination of the three primary colors, in equal amount, will produce white or its equivalent. Thus, in the " mixed-highs" systems, the fine detail of the image will appear in monochrome, and the larger objects will be in color.

The use of the "mixed-highs" principle, as described above, enabled RCA to reduce the bandpass of their color signal to 12.5 mc , as shown in Figure 3. This was in 1946.

While all this color television work was being carried on, black
and white television was in commercial operation and growing at a phenomenal rate. The expansion was so rapid, in fact, that it did not take long to realize that if and when color television was authorized, it would have to confine itself to the same 6 mc channel now utilized by black-and-white television. This was officially enunciated by the Federal Communications Commission in 1948.

Efforts to compress the 12.5 mc color signal of Figure 3 into a 6 mc channel proved fruitless and so an entirely new approach was developed. This turned out to be the dot sequential system which, after a number of changes, led to the present NTSC system. Some of the changes were wrought by RCA and some by other firms who were interested in evolving the best and most practical color system possible.

The name of dot sequential which was originally chosen by RCA is misleading since the system is basically a simultaneous one. At first, this latter feature went unrecognized. However, as a deeper insight into its operation was gained, and as refinements were added, its true simultaneous n ature became

Figure 2. Application of the "mixed-highs" principle to a color television system.
apparent. Today, the name of dot sequential is no longer heard; the system is either referred to as the NTSC system or as the ' ' band-shared simultaneous color television" system.

In the NTSC system, the full television signal (sound and video) is contained in a 6 mc channel. The system still makes use of the " mixed-highs" principle. It also contains the full black-and-white television signal and, in addition incorporates a color carrier and its sidebands.

The first question that comes to mind then, is: "How can all this be compressed into a 6 mc bandpass?" After all, it required 12.5 mc in the previous system and here 6 mc is enough. Where is the color signal placed?

The secret lies in the fact that a television signal does not occupy every "cycle" of the 6 mc band assigned to it. It was discovered as far back as 1929 (and then apparently forgotten) that the energy in a video signal is not uniformly spread over the 6 mc band but rather, that it appears in the form of bundles located near harmonics of the 15,750 cycle line scanning frequency. The energy is clustered around these points, leaving relatively wide gaps in-between. Since these empty gaps are not being used, there is no reason why they cannot be utilized for the transmission of additional information and this is specifically where the color information for the NTSC color television signal is placed. See Figure 4.

Thus, as matters stand now, we have a black-and-white television signal which is essentially identical to that transmitted by present television stations. This signal is.transmitted in black and white and is received in black and white. It is called the luminance signal and contains all the information that your present set receives.

Tothis is added the chrominance signal and this possesses all the color information of the picture. The energy for this signal is placed midway between the clusters of energy of the luminance signal. This is carried out in the following manner. A color subcarrier is

Little Devil:

type ab Noise-Free potentiometers
Tiny, yes . . but what dependability, rug. gedness, and stability! And they provide an extra margin of safety-being rated at 70 C rather than 40 C . Completely sealed and insulated by molded plastic, they meet all JAN-R-11 requirements . . . are available in $1 / 2,1$, and 2 -watt sizes in all RTMA values.

Because the resistance material in these units is solid-molded-not sprayed or painted on-continued use has practically no effect on the resistance. Often, the noise-level decreases with use ... and they provide exceptionally long, trouble-free service. Rated at 2 watts, with a good safety factor.

BROWN DEVIL® AND DIVIDOHM® RESISTORS

BROWN DEVIL fixed resistors and DIVIDOHM adjustable resistors are favorite vitreous. enameled units! DIVIDOHM resistors are available in 10 to 200 -watt sizes; BROWN DEVILS in 5 ,

The BIGGEST liitle

instrument of its kind

The 7"-square meter, with hair-line pointer, provides all the voltage (ACDC) and ohm ranges you could possibly want or need. Meter is electronically protected against overload.

Controls consist of on-off circuit switch, zero adjust, ohms adjust, besides switches built into probes for changing from DC to AC or ohms.

High voltage accessory probe gives readings to 30,000 volts $D C$.

Dealer net price . . . $\$ 95.00$

Ask your electronics distributor for information, or write us.

JACKSON

ELECTRICAL INSTRUMENT CO

"Service Engineered"
Test Equipment
DAYTON 2, OHIO

In Canada:

The Canadian Marconi Co.

Figure 3. By using the "mixed-highs" principle, the bandwidth of the color signal could be reduced to 12.5 mc . Compare this with Figure 1.
chosen which (at the present time) possesses a frequency of 3.583125 mc . This represents a figure which is the product of 7875 multiplied by 455. Now 7875 is one half of 15,750 and if we use an odd multiple of 7875 as a carrier, then it will fall between two harmonics of 15,750 cycles. If we used even multiples of 7875 , we would end up with 15,750 or one of its harmonics and this would place our second signal at the same points (throughout the band) as those occupied by the black-and-white signal. However, by taking an odd multiple of 7875 , we have this second signal fall in-between the bundles of energy produced by the first signal and the two do not interfere.

The color subcarrier with a frequency of 3.583125 mc is an old multiple (the 455th) of 7875 and so the energy contained in the subcarrier and its sidebands fall inbetween the bundles of energy of the monochromesignal. Technically, this is known as interleaving.

A complete color television signal, then, contains a black and white signal in conjunction with a color signal. The bandwidth of the color signal is considerably less than the black and white signal because only the larger objects in a picture are "colored"; the detail in a color picture is still presented in monochrome. This, of course, is the mixed-highs principle.

When the two interleaved signals are received by a black-andwhite receiver, the regular $0-4 \mathrm{mc}$ video signal produces a full picture. But the color subcarrier and its energy, falling at harmonics of the half-line frequency, produce patterns on successive pictures or frames which cancel out. In a color television receiver, the subcarrier is transferred to a desampler where its low frequency color signals are reobtained and then these signals
are fed either to separate color tubes or to a single 3-gun color tube.

In the foregoing discussion we have introduced (and explained) several new terms and concepts. The luminance signal, we know, is the namegiven to our regular black-and-white television signal. In a color television receiver, the luminance channel would thus carry this black-and-white signal. Also, if you consider carefully what our present black-and-white signaldoes you will see that it possesses the brightness information of the picture. After all, every monochrome video signal contains nothing but the variations in amplitude of the picture signal and these amplitude variations, at the picture tube, produce changes in light intensity at the screen. Thus, we could also call the black-andwhite signal a "brightness" signal and this is another name which is synonymous with luminance.

The color signal is called the chrominance signal and the circuits through which it passes are known as the chrominance channel. There are two other quantities that are sometimes employed in connection with the color signal and these are
hue and saturation. Hue is what the laymancalls color, that is red, green, yellow, blue, etc. Saturation is concerned with the depth or richness of particular hue or color, that is, how blue and how red it is. A color that is highly saturated is said to have a deep hue, as deep red, deep green, etc. Light red or pale green are less saturated or conversely, are diluted by white light.

It has been said, and rightly so, that the present system could be called "colored" television since to the full black and white picture we add our color. The black-and-white (i.e., brightness or luminance) signal is called the main or primary carrier whereas the color (or chrominance) signal is cast in the role of subcarrier. It is interesting to note that the system has been so designed that the color signal does not appreciably affect the picture brightness. For this reason the phrase color-minus-brightness is frequently seen.

The ideas that have been so briefly presented here are quite new and it will take some time to digest them. But a start has been made and before long we will be speaking of hue and saturation with the same familiarity that we now use for contrast and brightness.

REVIEW. Although much has been written about UHF antennas and converters, relatively little attention has been paid to the more fundamental aspects of circuit operation at these extremely high frequencies. Yet, for his immediate needs, knowledge of basic circuit behavior is of greater importance to the serviceman. This is because converter repair or antenna erection is more directly concerned with the

Figure 4. In the NTSC system, the color signal is interleaved with the black-and-white signal, enabling both to appear in the same $6-\mathrm{mc}$ channel.

and phonograph combinations which are equipped with, or which can effectively use Shure Crystal and Ceramic Pickup Cartridges. Shure Cartridges are superior or equivalent to the units

Askyour

SHURE
DISTRIBUTOR
for Manual
No. 66A they replace. This Replacement Manual covers the period from 1938 through 1952-and lists models by over 125 Manufacturers. The Magnetic Tape and Wire Recording Head listing indicates the Shure Tape Heads used in original equipment. It also illustrates Tape and Wire Recording Heads-and shows typical operating data for the Tape Recording Heads.

SHURE BROTHERS, Inc., Dept. $P \star \begin{gathered}\text { Manvfacturers of Microphones } \\ \text { and Acoustic Dovices }\end{gathered}$

DC-AC CONVERTER

These latest of all Carter DC to AC Converters are specially engineered for professional and commercial applications requiring a high capacity source of 60 cycle $A C$ from a DC power supply. Operates from storage batteries, or from DC line voltage. Three 'Custom'" models, delivering 300, 400 , or 500 watts 115 or 220 V . AC. Wide range of input voltage, 12, 24, $32,64,110$ or 230 V. DC. Unequalled capacity for operating professional recording, sound movie equipment and large screen TV receivers. Available with or without manual frequency control feafure.

WRITE TODAY FOR CATALOG
Carter Rotary Power Supplies are made in a wide variely of types and capacities for communications, laboratory and indusirial applications. Used in aircraft, marine, and mobile radio, geophysical instruments, ignition, timing, efc. WRITE TODAY for complete Dynamotor and Converter Catalogs, with specifications and performance charts on the complete line.

(Grater MOTOR CO.

 Chicago 47
effect of too long a piece of wire, or too large a component than it is with the overall operation of these units.

An analysis of UHF circuit behavior was recently given in an article entitled " Explanation of UHF Characteristics' ' which appeared in the February, 1953 issue of the Philco Service Supervisor. Another article, also very helpful, appeared in the May, 1949 issue of the C-D Capacitor. This was labeled, ' Inductive and Reactive Effects of Leads at Ultra-High Frequencies." Both articles will be reviewed below.

The Philco Service Supervisor is published by the Philco Corporation and is sent directly to authorized members of Philco Factory, Super vised Service. The C apacitor is published monthly by the CornellDubilier Electric Corporation, Hamilton Boulevard, South Plain field, N. J. There is no charge for this bulletin. Simply contact the company and indicate that you want your name added to the Capacitor mailing list.

Resistance: In AM radio work, we have always considered reasonably short lengths of connecting wire as possessing a negligible amount of resistance. That the same length of wire might also possess inductance is perhaps realized but regarded even more lightly than its resistance. Certainly these factors seldom if ever influence circuit operation, so why be concerned with them.

But when we raise the frequency of the currents flowing through the wire, we find that something happens which forces us to pay more and more attention to the same resistance and inductance that we could formerly ignore. Why is this so?

The reason for the change in wire resistance can best be understood if we consider what occurs within a length of wire when current flows through it. It is common know-

Figure 5. A small section of wire carrying a current.
ledge that current flow has, associat ed with it, a magnetic field in the form of lines of flux which are everywhere encircling the current. The definition of inductance depends upon these flux linkages and is given by the formula:

Inductance (Henries) $=$
Flux linkages encircling connector Current producing these linkages (in amps.) $\times 10^{-8}$

Consider now the end view of a small round section of wire that has current flowing through it. See F'igure 5. Each small section of current traveling through this wirehas magnetic lines of flux encircling it, but the sections of current at the outer surface of the wire have fewer lines of flux around them than the currents at the center of the wire. This is because the flux produced inside the wire by the central currents does not encircle the outer currents and so cannot influence their flow. However, the flux produced by the currents at the surface of the wire does encircle the currents at the center and hence exerts an influence upon them. From the foregoing definition of inductance, it is seen that, since there are more flux linkages encircling the center of the wire than the outer surface of this wire, the inductance will be greater at the center than at the surface.

As the frequency of the currents increase, the inductance at the center of the wire will present more opposition (reactance) than the outer sections of the wire where less inductance exists. The RF current, seeking the path of "least resistance ${ }^{\prime \prime}$, will tend to concentrate more at the surface (or skin) of the conductor. Hence, the current, which formerly spreaduniformly throughout the entire area, is now concentrated near the surface. In effect, this has reduced the useful crosssection area of the conductor and the resistance, due to this decrease in effective area, will rise. If the wire is used as a resistor, its overall resistance will change as the frequency varies, becoming greater as the frequency increases.

The total resistance of a wire, at high frequencies, is thus seen to consist of the normal DC resistance plus an additional amount which is dependent upon frequency. At frequencies above 300 mc , this latter factor becomes predominant and, at sufficiently high frequencies, is often many times the DC resistance.

Figure 6. Equivalent circuit of an ordinary resistor at the ultra-high frequencies.

In this respect, a large conductor, because of its increased surface area, shows lower high frequency resistance than a smaller sized one. Low values of high-frequency resistance are exhibited by tubular conductors in which the wall is thin as compared to the diameter of the tubing. The same is true of strip conductor and of completely -braided wire and strip.

Inductance: Consider, too, the effect that the inductance in the foregoing piece of wire might have on a circuit. For a straight round wire of non-ferrous metal such as copper, the inductance formula is:
$L(u h)=.00508 S\left(2.3 \log _{10} \frac{4 S}{d}-0.75\right)$
where
S = length of wire in inches
$d=$ diameter of the wire in inches.
Using the formula for a length of No. 20 wire, three inches long, we obtain an inductance of approximately .08 microhenries. At 1000 cycles, the impedance presented by this inductance is:

$$
\begin{aligned}
\mathrm{X}_{\mathrm{L}} & =2 \pi \mathrm{fL} \\
& =2 \times 3.14 \times 1000 \times .08 \times 10^{-6} \\
& =.00050 \mathrm{ohms}
\end{aligned}
$$

At 100 mc , the impedance becomes 50 ohms and, at 1000 mc 500 ohms. At this latter high frequency, then, a small 3 inch length of wire has a complex impedance consisting of an appreciable amount of resistance and inductance.

Another interesting example is the inductance and reactance of the pigtail leads of a conventional mica capacitor. In the postage-stamp-size molded capacitor, these leads are made of No. 20 round wire. Even when the capacitor is mounted into a circuit with $1 / 2$ inch of each pigtail, the total lead inductance is .021 micorhenry. This

Complete, up-to-date listings, illustrations, and descriptions of ERIE Electronic components are contained in the new ERIE CATALOG D-53.

This catalog assembles all the new items introduced since publication of our last catalog together with the long-time standard numbers.

Ask for it at your Distributors, or write Dept. D for your copy.

Figure 7. What happens when an open-wire (or otherwise unshielded) transmission line is run near a metal surface.

Figure 8. Stray capacitance existing between a wire and the nearby chassis.
pigtail inductance is sufficient to resonate an . 01 -mfd capacitor to 11 megacycles. Thus, at this frequency we have, instead of a simple capacitor, a tuned circuit. At lower frequencies, we have a capacitor, and at high frequencies the circuit acts as an inductor:

Or, consider a common resistor. At the low frequencies this presents only resistance; at the high frequencies inductance and shunting capacitance enter the picture, too. See Figure 6. In a carefully constructed resistor, the inductance arises solely from the inductance in the connecting leads. The shunting capacitance across the resistor is primarily the capacitance between these two leads. At sufficiently high frequencies, the shunting capacitance reduces the effective impedance of this circuit to relatively low values. Furthermore, due to the presence of the inductance and capacitance, the impedance is complex and not simply resistive any more.

Capacitance: The capacitance of any circuit may change because of stray couplings that might arise between adjacent wires, a wire and ground, points between which there exists a difference of potential, and in almost innumerable other ways that never were considered impor tant before.

An admonition, often given, is to keep transmission lines away from metallic surfaces. Suppose we forget to do this, what happens? Simply this. A transmission line consists of distributed inductance, resistance, and capacitance. These go to make up the characteristic impedance of the line and a change in
any one of these components will have avery definite effect on the line impedance.

Consider now the capacitance when the line is run near a metallic surface. See Figure 7. The normal capacitance across the line is augmented by the stray capacities C_{1} and C_{2}. In effect, C_{1} and C_{2} add to C_{L}, the normal line capacitance, and thereby increase the total capacitance at this point in the line. Result: Adecrease in characteristic impedance, leading to mismatching, standing waves, and loss of power.

We are also told that when a transmission line (of the unshielded type) becomes wet, its attenuation goes up. Why is this so? The equation for the attenuation constant of an open wire line is given by:

Attenuation $=\frac{R}{2 Z_{0}}+\frac{G Z_{0}}{2}$
where
$R=$ the resistance of the line, creat ed largely by skin effect.
$Z_{0}=$ characteristic impedance of line.
$\mathrm{G}=$ the leakage across the line, determined by the dielectric.

When a line becomes wet, the leakage increases because wet insulators or a wet dielectric become more conductive. In the above equa tion, the leakage factor " G '" is in the numerator of the fraction and
increased leakage will result in a higher attenuation factor:

In a UHF chassis, the capacity shunting effect also enters into the picture in a number of ways Capacitance exists between any two conductors separated by a dielectric. In the present instance, one conductor would be a wire in the circuit, while the other conductor might be the chassis itself. See Figure 8. The dielectric here is air. The extent of this capacitance is determined by the size of the wire and its distance from the chassis. Since the wire is quite small, the resultant capacitance is likewise s mall. At DC or low frequency $A C$ this capacitance is negligible. However, capacitive reactance decreases with frequency rise (i.e., $X_{c}=\frac{1}{2 \pi f C}$
and at UHF the impedance of this shunting path can be very low. With this condition existing, the placement and physical size of components be comes very important. If a component is replaced by one of different size, physically, or repositioned, or if the dressing of the wire is changed, the distributed capacitance existing between these components and nearby components on the chassis will be altered. This, in turn, will change the characteristics (perhaps the tuning) of the system. Even the warping of a chassiscan cause a change in the capacitive (and inductive, too) components of the circuit. So the precaution to proceed with care is one of the most important that you can observe whenever any work is done in UHF circuits.

MILTON S. KIVER

HORIZONTAL OUTPUT TRANSFORMERS

(Continued from page 13)
the wires in some manner is a good practice because of the high number of disconnections required. It saves circuit tracing later on. If a color code is not employed in the original circuit, or the colors are not distinguishable one from another, the wires may be marked in some other fashion, for example, with small tags and cellophane tape.)

Before the high voltage cage could be removed, it was necessary to remove the width coil from its bracket. This was done without too much trouble by releasing the snap catches which held it in place and allowing it to fall down out of the bracket. Next, the two wires to the fuse were unsoldered and their colors noted on the work sheet (Figure 2). The three tubes in the cage were removed for reasons of accessibility, and then the cage itself was dismounted and set out of the way. In
order to do this, the high voltage lead to the picture tube was detached from the tube's anode socket and fed back through the insulated opening in the cage wall to provide sufficient slack.

The width coil was disconnected from terminals 6 and 7 on the transformer and then all the other connections to the transformer were removed and the wires identified. Four self-tapping screws held the transformer to the chassis; these were taken out and the or iginal transformer was set aside. The replacement transformer had mounting holes spaced differently than the other unit. Consequently, the replacement unit was placed as shown in Figure 3 and three new mounting holes were drilled in the chassis bed with a No. 35 drill. Then the new transformer was mounted in position using the original four self-tapping screws.

There were two reasons for using a new width coil rather than

Figure 3. View of New Stancor A-8130 Horizontal Output Transformer Mounted with Final Connections Completed (Tubes Removed for Photograph).
the original. First, the instructions with the replacement transformer called for a width coil having a relatively high inductance ($4-39 \mathrm{mh}$). The original width coil was the low inductance type as determined by the ohmic resistance of that portion of the original transformer secondary across which the width coil was connected. This resistance was given in the Photofact folder as 0.7 ohm (refer to Figure 2); or if necessary it could have been found by actual measurement with an ohmmeter. As a general rule if the resistance of this tapped portion of the original transformer secondary is under 3 ohms, the width coil in the set is of the low inductance type. If the resistance is greater than 3 ohms, the width coil may be considered in the high inductance bracket. To serve as an additional basis of physical comparison, Figure 4 shows examples of the two types of width coils. Figure 4A is a high inductance width coil, while Figure 4B depicts a low inductance type of width coil. If, by mistake, the low inductance width coil were used in an application demanding the higher inductance unit, insufficient width would result in the picture and the excessive current through the width coil would probably burn it out.

The second reason for using a width coil other than the original in the television receiver was that an AFC feedback voltage was needed as indicated in the schematic of Figure 2. The replacement transformer had no extra winding for this function; therefore a width coil having a secondary winding to furnish AFC feedback voltage had to be chosen to replace the original coil. The Stancor WC-5, which is of the high inductance type and has the secondary winding, was selected. Since this unit had a coil form of larger diameter than the original part, the hole in the bracket mounting on the high voltage cage wall had to be enlarged by reaming.* Before the new width coil was snapped into position, however, the necessary connections to it were made.

To serve as a guide for making connections to the new horizontal output transformer and to the new width coil, an instruction sheet consisting of five schematic diagrams and various notes is packed with the
*Stancor has recently announced a reduced diameter coil form for the WC-5; the use of this unit would have made the reaming operation unnecessary.

Figure 4. Two Types of Width Coils, (A) High Inductance Type, (B) Low Inductance Type.

A-8130. Schematics No. 1 and No. 5 A were selected às being a pplicable to the case at hand. These schematics have been reproduced in Figure 5.

A problem was encountered in connecting the 1B3GT rectifier filament. In the original set-up the 2.2 ohms resistance was an intrinsic part of the filament lead itself. Therefore, with the new transformer it was necessary to add a $2.2 \mathrm{ohm}, 1$ watt resistor in series with the filament circuit. This resistor can be seen in Figure 3; one end was connected directly to a socket terminal of the 1 B 3 GT , the other end was held rigid by using an opening in the transformer's rear terminal board. (Once the details of the filament circuit have been permanently adopted the leads may be dressed considerably shorter than those shown in Figure 3.)

Proceeding according to the schematics of Figure 5, the technician made the following tentative connections:

TRANSFORMER

Terminal
No.
Lead
4 Green to damper plate 5 Red to deflection coils $6 \quad$ White to C 80
1 Yellow to fuse
On the new width coil, connections were made as follows:

WIDTH COIL

Terminal	Lead
Primary	
Blue dot	- To transformer terminal 8
Red dot	- To transformer ter minal 5

Secondary

Orange dot - Orange lead to Horizontal AFC

Black dot - Black lead to ground
Tube cap clips were transferred from the old to the new transformer to accommodate the 6BG6G and 1B3GT tube caps. Then the connections were completed to the fuse, the high voltage cage was set in place, the width coil snapped in position, and the set was turned on.

Securing Satisfactory Operation -

A picture was obtained, but it was immediately obvious that something was not right. Vertical synch ronization was satisfactory, but horizontally the picture appeared split in half down its center by the
horizontal blanking bar. The right side of the image appeared on the left side of the screen while the left portion appeared at the right. This phenomenon indicated that the polarity of the AFC feedback voltage was the reverse of what it should have been. To remedy this trouble, the technician interchanged the connections to the primary of the width coil; in other words, the blue dot terminal on the width coil was connected to transformer terminal 5 and the red dot, to transformer terminal 8. When the set was returned to operation, the horizontal displacement of the picture was found to have been corrected.

The next check on operation was performed with a voltmeter and a high voltage probe. The measurement was taken at the high voltage filter capacitor, and the voltage was

MILLIONS OF＂SAFE CENTER＂SELETRON RECTIFIERS IN USE IN RADIO AND TV！

Hedelfront－
 SELENIUM RECTIFIERS

When you specify Seletron＂Safe Center＂ Selenium Rectifiers you eliminate arc－over danger，short circuits and heating at the center contact point．Assembly pressure，or pressure applied in mounting the rectifier cannot affect its performance－a Seletron feature accomplished by deactivating the area of the plate under the contact washer．
The millions of Seletron Selenium Recti－ fiers in satisfactory service as original equip－ ment in the products of leading manufac－ turers are millions of reasons why you can specify Seletron and be safe！

Consult your local jobber！
（ \dagger ）Stud mounted－overall： 2 ，＂

MODEL NO．	PLATE SIZE	STACK THICKNESS	$\begin{aligned} & \text { MAX. INPUT } \\ & \text { VOLTAGE } \\ & \text { R.M.S. } \end{aligned}$	MAX．PEAK INVERSE voltage	MAX．D．E． OUTPUT CURRENT
1M1	1＂sq．	3／8＂	25	75	100 MA
$8 Y 1$	$1 / 3^{\prime \prime}$ sq．	量＂	130	380	20 MA＊
$16 Y 1$	$1 / 2^{\prime \prime}$ sq．	$18^{\prime \prime}$	260	760	20 MA＊
811	部＂ 5 q．	最＂	130	380	65 MA
5M4	1＂5q．	H＂	130	380	75 MA
5M1	1＂ 54.	7／8	130	380	100 MA
5 P 1	$1 \frac{3}{16}{ }^{\prime \prime} 59$.	7／8＂	130	380	150 MA
6P2	$1 \frac{3}{18}$＂ sq．$^{\text {d }}$	$13^{\frac{3}{16}}{ }^{\prime \prime}$	156	456	150 MA
5R1	$11 / 2^{\prime \prime} \times 11 / 4^{\prime \prime}$	$7 / 8{ }^{\prime \prime}$	130	380	200 MA
501	$11 / 2^{\prime \prime} \mathrm{sq}$ ．	11／8＂	130	380	250 MA
601	$11 / 2^{\prime \prime}$ sq．	11／8＂	156	456	250 MA
602	11／2＂ 5 q．	13＂	156	456	250 MA
604 （†）	$11 / 2^{\prime \prime}$ sq．		130	380	300 MA
5051	$11 / 2^{\prime \prime} \times 2^{\prime \prime}$	11／8＂	130	380	350 MA
6052	$11 / 2^{\prime \prime} \times 2^{\prime \prime}$	11／4＂	156	456	350 MA
581	$2^{\prime \prime}$ sq．	11／8＂	130	380	500 MA
652	2＂sq．	13／8＂	156	456	500 Ma

XcELITE H／and Tools pritrreid by the Expris TEMPER－SAVING TIP！ USE THIS＂BORROW＂－PROOF XCELITE Nut Driver Set

－Color－coded handles
－Lockable wall holder
Each of the seven husky， man－sized handles has its own color，telling you the own color，telling you the
size instantly．Deep sockets handle two nuts．Precision－

formed for good grip without slip！In lockable wall holder， only $\$ 7.85$ ．
Or buy XCELITE nut drivers separately－stubby to $6^{\prime \prime}$ shanks，for all nut sizes．
The handiest tools in your shop！ See your XCELITE DEALER TODAY！
XCELITE，INCORPORATED
（Formerly Park Matalware Co．，Inc．） DEPT． 0
ORCHARD PARK，N．Y

7 or
Originality took to XCELITE
－

All Channel UHF CONVERTER by Videon

> Proudly，we present the Navarre－the UHF Converter de－ signed and produced by the manufacturers of the popular Videon Boosters．Try it．Compare it with All others．

FEATURES：

Single knob tuning ．．．All Channel coverage， 14 thru 83 ．．．ENTIRELY SELF－POWERED ．．．NO INSIDE CONNEC． TIONS ．．．SIMPLE TO ATTACH ．．．COMPLETELY SHIELDED CONSTRUCTION ．．．PRESSED STEEL CABINET BEAUTIFULLY FINISHED IN MAROON ENAMEL ．．．and the price is especially appealing．

Figure 6. Partial Schematic of Horizontal Output Section After Replacement of Horizontal Output Transformer.
found to be 11.5 kilovolts with minimum setting of the brightness control. (Note: All high voltage measurements to follow were taken at the high voltage capacitor with minimum picture brightness.) The width of the picture, at the same time, was considerably too great; when this was reduced by means of the width coil slug adjustment, it was found that the high voltage fell to 10 kilovolts. Blooming of the picture with increase in brightness was very apparent.

A check was made of the screen voltage on the 6BG6G horizontal output tube. This measurement showed the presence of 360 volts on the screen, which was too high for proper operation of the tube. Consequently, the technician proceeded to increase the resistance of the screen dropping resistor, R85, until at a figure of 55 K ohms the screen voltage amounted to a near normal 300 volts. At the same time,
however, the high voltage output of the system dropped off even farther, to 9 kilovolts.

It seemed likely that a mismatch existed between the secondary of the horizontal output transformer and the horizontal deflection coils. Proceeding on this assumption, the technician changed the red lead to the deflection coils from terminal 5 on the transformer to terminal 8. This move brought about a marked reduction in the width of the picture and the high voltage was not high enough to properly operate the picture tube. A dim and blooming picture continued to prevail. Also, a resistance of 75 K ohms was needed in the screen circuit of the 6BG6G in order to drop the screen voltage to the 295 volt level.

As a check on the boost voltage, a voltmeter measurement was taken at the cathode of the 6W4 damper tube. A reading of 660 volts at that
point confirmed the fact that the boost voltage was indeed excessive; it should have been only 580 volts according to the schematic (Figure 2). In order to correct this situation, another change was made in the connections to the horizontal outpat transformer secondary. The green lead to the damper plate was shifted from transformer terminal 4 to terminal 5 . This move seemed to solve most of the troubles in the operation of the circuit. The voltage at the damper cathode was measured and found to be a permissible 610 volts. However, a 55 K ohm resistor was required in the screen circuit of the 6BG6G to bring the screen voltage down to 295 volts. After slight adjustments of the width control and the horizontal drive a very good picture was obtained with only slight blooming at increased brightness settings. The high voltage was found to be 13 kilovolts which, while not optimum, was sufficient to operate the picture tube normally.

At this point in the operation, about one kilovolt drop in high volt age was suddenly experienced. At the same time the telltale sputter of corona discharge was heard in the general area of the high voltage cage. Under reduced lighting, the technician tried to see the corona spark but was not successful. However, after turning off the set and discharging the residual high voltage with a screwdriver, he applied corona dope to various points on the 1B3GT socket terminals and to both ends of the 2.2 ohm filament resistor. This operation must have reached the seat
of the trouble since the corona was not present thereafter.

The final circuit connections are shown in the schematic of Figure 6. Actually the only component changes other than the transformer and width coill were the 55 K ohm screen resistor, R85, and the addition of the 2.2 ohm filament resistor, R87.

By way of summary, it can be stated that replacing a horizontal output transformer of the type dealt with in this report requires more than ordinary servicing ability. Yet by following the instructions which
are normally packed with the units and trying the various alternate connections suggested in these instruc tions, the service technician can perform avery satisfactory and lasting replacement. In many cases far fewer changes and trials are required for proper operation than were needed in the job described in this report. It is hoped that the material presented here may help to smooth out one of those rough spots in the path to efficient television servicing.

GLEN E. SLUTZ

UHF

(Continued from page 17)
instances improvement in tuning may be gained by adjustment of the fine tuning on the VHF tuner.

One important point must be observed when servicing this instrument. If the oscillator tube is removed, or replaced, the tube shield contactor must be put back in place to avoid tube failure.

SYLVANIA UHF CONVERTER

Sylvania Models C32M and

 C33M UHF Converters -Sylvania Models C32M and C33M are UHF converters which are very similar in design, therefore this description will be confined to the C33M unit. Sylvania Model C33M is a UHF converter that is continuously tunable over the full seventychannel UHF band. It is designed to

Figure 6. The Sylvania C33M UHF Converter.
operate with any television receiver capable of receiving channels 5 and 6. A cabinet view of this unit is shown in Figure 6. Two front panel controls are employed. On the left, the function switch uses three positions: OFF, VHF, and UHF. The tuning control at the right operates the concentric-line type tuning ele-
ment. Tuning is indicated on a slide-rule type dial graduated with channel indications.

Tofacilitate the installation of the converter in areas where strong UHF signals are present, the unit is supplied with a built-in UHF antenna. Where obstructions exist such as trees, buildings, and in low signal areas, it may be necessary to employ an external UHF antenna. This can be determined at the time of installation.

With the converter installed and ready for operation, the converter unit is turned to UHF position and the television receiver is tuned to channel 5 or 6 . (If a strong signal is normally received on one of these channels, the tuner should be tuned to the other channel.) Tuning in a UHF station is accomplished with the UHF converter tuning control.

A top chassis view of the converter is shown in Figure 7.

Figure 7. Top Chassis View of Sylvania C33M UHF Converter.

Figure 8. Bottom Chassis View of Sylvania C33M UHF Converter.

Figure 9A. Schematic of the Sylvania C32M UHF Converter.

Figure 9B. Schematic of the Sylvania C33M UHF Converter.

Figure 10. Westinghouse UHF Plug-in Receptor (H-802).

Figure 11. Westinghouse $\mathrm{H}-802$ Receptor With Cover Removed.

Critical lead dress and wiring arrangement is illustrated in Figure 8. For best operation, disturbance of the lead dress should be avoided.

Figure 9A is a schematic for Model C32M converter and Figure 9B a schematic for Model C33M. Since the only major difference between the two units is the incor pora tion of a different IF amplifier tube, a description of Model C33M should serve to illustrate the functioning of both units.

An examination of the converter circuits shows it to contain a three element tuning unit of the concentric -line type. L1 and L2 are the variable tuning inductors forming a double-tuned preselector circuit while the third inductor L3 is in the oscillator section. The preselector circuit is designed for maximumselectivity consistent with broad bandpass requirements. The local UHF oscillator employing a 6AF4 tube operates below the frequency of the incoming signal to provide the correct relationship between video and sound frequencies applied to the VHF tuner in the television receiver. Note in the schematic of Figure 9B that the oscillator signal is taken from the filament of the oscillator tube. In this instance, the interelectrode capacity existing between the cathode and filament (about 2.7 mmf) forms the coupling device for the signal. This method achieves a minimum of loading and interaction between the mixer and oscillator circuits, thus permitting more stable oscillator performance.

Signals from the UHF oscillator and from the preselector circuits are fed to the crystal mixer type 1 N 82 , resulting in a new frequency at the mixer output. This intermediate frequency is coupled by the input transformer, L 12 , to the IF a mplifier stage employing a 6CB6 tube.

The output circuit of the amplifier stage is designed for either a

300 ohm or 72 ohm impedance load, and is connected through the function switch to the UHF output terminals.

On the back of the converter is an AC receptacle. Its purpose is to supply power to the television receiver. When using this outlet, the receiver's On/Off switch may be left in ' On'" position permanently, and power toboth units is controlled by the converter unit function switch. If desired, the receiver's power cord may be inserted ina wall socket allowing power to both units to be controlled individually.

The function switch on the converter performs the following operations:

1. OFF Position. Power to the converter and to the AC receptacle is off.
2. VHF Position. Power to the converter and to the AC receptacle is turned on. The converter
filaments are on but the $\mathrm{B}+$ is removed from the IF amplifier and oscillator tubes. The VHF antenna is connected through the switching arrangement to the converter output terminals and to the TV receiver for normal VHF reception.
3. UHF Position. In this position, both filament and B+ volt ages are applied to the converter tubes, the VHF antenna is grounded, and the converter output signal is connected through the function switch contacts to the output terminals and to the antenna input terminals.

The converter power supply employs a selenium rectifier, power transformer and an RC filter network. One winding on the power transformer provides power to the converter filaments.

WESTINGHOUSE -

A variety of UHF tuner units are supplied for Westinghouse tele-

Figure 12. Schematic of Westinghouse H-802 UHF Receptor.

(A) Type V-11390-1;

(B) Types V-11390-2, and -3;

(C) Type V-11613-1.

Figure 13. Schematics of Three Westinghouse All-Channel Tuners.

vision receivers to provide UHF TV reception. The receivers in which the tuners can be installed are only those which contain provisions to accommodate these units. Covering a number of applications, these tuners are available as either single channel pre-tuned, plug-in receptors or as all-channel continuously tunable type. Since most of the receivers are equipped with provisions for plugging in two of the single channel receptors, it is possible to incorporate the more economical units individually as UHF stations go on the air within the receiving area.

The all UHF channel converter is available for those installations where this type unit is preferred. In those locations where several UHF stations are expected within a reasonable time, the all-channel units would provide the most useful service.

To facilitate the installation of any of these units there are a number of variations built into the tuners. The Model $\mathrm{H}-802$ is the single channel, pre-tuned receptor unit and is shown in Figure 10. The channel number is stamped on the end of the carton. This indicates the channel to which the unit is aligned at the factory. Since the Model H-802 can be preset within a limited range of UHF channels, the unit is supplied in six versions to cover the entire UHF television band. These various units are stamped with a part number illustrated in Table I, which indicates the tuning range of each unit. A photo and schematic of the Model H-802

Figure 15. Infernal View of Westinghouse H-803-1 Tuner.
with the cover shield removed are shown in Figures 11 and 12 respectively.

For the allUHF channel tuner, the variations are shown by the schematics in Figure 13. It is observed that there are three basic types of the all-channel UHF units. The correct tuner unit to obtain for a specific Westinghouse Receiver is given in Table II. To aid in obtaining the desired tuner, the carton is stamped with a suffix to the model number. The photo in Figure 14
shows the Model $\mathrm{H}-803-1$ using tuner part number V-11390-2,-3. Figure 15 shows a view inside this tuner. Model $\mathrm{H}-803-4$ using the V-11613 tuner is shown in Figure 16.

The V-11390-1 tuner employs a 6AF4 oscillator tube and a crystal mixer to provide the desired IF signal to the VHF tuner unit. V-11390-2 and -3 use similar circuitry except that a 6AN4 tube is employed as the mixer. The V-11613-1 tuner has a 6 J 6 twin triode tube functioning as a push - pull oscillator. In addition it

Figure 14. Westinghouse All-Channel UHF Tuner Model H-803-1.

Figure 16. Westinghouse All-Channel UHF Tuner Model H-803-4.

TABLE I
Frequency Ranges of Westinghouse H. 802 Receptors.

Receptors Marked	Can be Tuned to Channels
V-11900-1	14 through 29
V-11900-2	28 through 43
V-11900-3	43 through 58
V-11900-4	58 through 73
V-11900-5	73 through 83

uses a crystal in the oscillator doubler circuitry and a crystal as the mixer.

Although the electrical circuitry and components used in these tuners are different, their function is the same. In each instance, the UHF tuner by a single conversion process provides a 44 mc IF signal in the output. Signal gain is achieved by feeding this signal to the VHF tuner which in UHF position functions as a 44 mc 2 stage amplifier. To do this, the VHF local oscillator is disabled enabling the mixer tube to

[^1]become a straight amplifier. Thus signals are provided to the receiver's video IF circuits of a level comparable to that presented during VHF reception.

Installation of WESTINGHOUSE Single Channel Receptor Model H-802 -

To install the receptor, remove the rear cover from the television receiver. Plug the receptor into one of the two sockets at the back of the VHF tuner. If the receptor is plugged into the socket nearer the side of the chassis, the UHF position nearer channel 13 on the dial is employed. Plugging the
receptors are supplied pre-tuned, only slight adjustment of the trimmer should be required. Additional adjustments of the unit, if required,are given in the instructions supplied at the time of purchase.

Installation of WESTINGHOUSE All UHF Channel Tuner -

The installation of the all channel tuner in Westinghouse receivers is made with the chassis removed from the cabinet. Detailed installation instructions are supplied with the units and if carefully followed should provide an efficiently operating tuning system.

TABLE II

Receiver Models in Which Westinghouse All-Channel UHF Tuners May Be Used.		
Marking on outside of carton	Tuner Type	Receiver in which assembly may be used
H-803-1	$\begin{aligned} & \mathrm{V}-11390-1,-2, \\ & \text { or }-3 \end{aligned}$	21' ${ }^{\prime}$ models
H-803-2	$\begin{aligned} & \text { V-11390-1,-2 } \\ & \text { or }-3 \end{aligned}$	17" models except those with plastic cabinets
H-803-3	$\begin{aligned} & \mathrm{V}-11390-1,-2 \text {, } \\ & \text { or }-3 \end{aligned}$	$17^{\prime \prime}$ models with plastic cabinets
H-803-4	V-11613-1	21' models
H-803-5	V-11613-1	17" models except thos with plastic cabinets
H-803-6	V-11613-1	17' models with plastic cabinets

unit into the socket nearer the center of the chassis activates the UHF channel position next to channel 2 on the dial. When the receptor is plugged into the socket, the fine tuning drive wheel on the receptor must engage the wheel on the drive shaft, and the slots in the top of the receptor engage the top of the VHF tuner bracket. In the event that the center tongue on the tuner bracket is bent too far toward the back of the cabinet, it should be bent sufficiently to allow insertion of the receptor and to permit the sharp bend on the center tongue to bear on the top of the receptor.

The receptor is supplied tuned to a specified channel. When checking a new installation rotate the fine tuning wheel on the receptor to its center position. This is determined when the center hole in the rim is straight up. Touch up tuning, if required,by adjusting the oscillator trimmer on the receptor. Since the

Most of the work associated with the installation of an all-channel tuner is chiefly mechanical in nature. No soldering operations are necessary which aids in acceleration of the installation detail.

The plug from the UHF tuner is inserted in the socket back of the VHF tuner nearer the center of the chassis. This corresponds to the UHF position on the channel selector adjacent to channel 2.

The all-channel tuners are shipped pre-adjusted to receive UHF channels 14 through 83. In some instances, however, it may prove beneficial to adjust the IF trimmer on the all-channel tuner for best picture detail and sound.

A SMALL, HIGH QUALITY AMPLIFIER
(Continued from page 21)
important. If a minimum of dis tortion is to be had, a convenient method of balancing and checking the current drain of the output tubes is necessary. This is especially true when a high quality output transformer is used, for direct current unbalance in the primary must be held to a minimum. By means of a standard phone plug a milliammeter can be plugged into each jack in turn while adjusting the balance control to check for

Figure 5. Output Section Chicago BO-5, 4 ohm.

Figure 6. Output Section Chicago BO-5, 8 ohm.

Figure 7. Output Section Chicago BO-5, 16 ohm.
correct balance whenever necessary. Aging of the 6BL7GT can make this check worth while and it is a necessity when installing and selecting a new 6BL7GT.

The schematic in Figure 4 gives the correct connections for the Stancor A-8054 High Fidelity Cutput Transformer. If the socket connections and color-coded transformer leads are connected as shown the feedback loop will be correctly phased.

Figures 5, 6, and 7 show the connections of the Chicago BO-5 Full Frequency Range Output Transformer for outputs of 4,8 , and 16 ohms with the value of R15 changed to 82 K in 8 and 16 ohm output connections.

With the Chicago PSO-150 or PCO-150 PA Range Cutput Transformer installed the circuit in Figure 8 was followed. The PSO150 has numbered terminals and the PCO-150 has color-coded leads, as shown. A 500 mmf . capacitor, C7, and the 2700 ohm resistor, R16, were connected from Pins 1 and 5 of V1 to the junction of C2A and R5 to increase stability at high frequencies.

Figure 9 illustrates the connections used with the Merit A-3101 High Fidelity Output Transformer. The plate (red) primary leads of this transformer are not coded so phasing will have to be found by trial connection of these red leads. If these leads are reversed, making the feedback positive, a terrific oscillation will be set up which could tear up a loudspeaker, so care must be taken when first turning on the amplifier for this check. The green primary leads are not used in this application and should be insulated and secured to protect against accidental shorts.

Figure 10 is the output circuit used with the Tríad HSM-89 Hermetically Sealed Cutput Transform-

Figure 8. Output Section Chicago PSO150 and PCO-150.

Figure 9. Output Section Merit A-3101.

Figure 10. Output Section Triad HSM-89.

Figure 11. Output Section Triad S-48A.

Figure 12. Intermodulation Distortion Graph.
 neering, finest components, smart professional appearance, lifetime performance and rock-bottom economy - see and compare the EICO line at your jobber's today before you buy any higher-proced equipment! You'll agree with over 100,000 others that only EICO Kits and Instruments - no other - give you the industry's greatest values at lowest cost.

Write NOW for

 FREE Iatest Catalog PF-7

ELECTRONIC INSTRUMENT CO., Inc.
84 Withers Street, Brooklyn 11, N. Y.
er and Figure 11 that used with the Triad S-48A High Fidelity Cutput Transformer. In each case the value of R 15 is 82 K and C 7 and R16 were connected as shown for increased stability.

The power transformer shown in the schematic and illustrations is actually larger than necessary since the high-voltage secondary is rated at 90 milliamperes and the total plate current drain of the amplifier is only slightly more than half that amount. Installed while developing the amplifier, it will continue to be used since such under-running is an advantage. Conservative operation of all components contributes to continued stable operation of a unit such as this.

Some of the filter chokes in the parts list are potted, similar to the one in the illustrations, while others are shielded or open-frame construction. The various styles and models of chokes and transformers are listed since availability and personal preference are to be considered in their selection. All are satisfactory and their use will result in consistent stable operation.

A milliammeter should be plugged into the meter jacks, by means of a standard phone plug, to read the plate current of one and then the other section of the output tube V3, while adjusting the balance control R2 for identical readings in each section. It may be necessary to select another 6BL7GT if balance cannot be reached. Pushpull output tubes, in this case both in one envelope, should always be selected for balance, which is not as difficult as it might appear.

A signal input of less than one volt peak-to-peak is sufficient to drive the amplifier to a full power output in excess of three watts. This is good clean output essentially flat from 20 to 50,000 cps. The percentage of inter-modulation distortion, measured with a Measurements Corporation Model 31 Intermodulation Meter, is given in Figure 12.

The qualifications of this amplifier are such that it fulfills the oft-times heard, 'Wish I had a really good small amplifier."

See Page 103 for Parts List

New, Improued DAVIS SUPER VISION TELEVISION ANTENNA WIND-TESTED and WEATHERIZED

Trade Mark Reg.

"THE ORIGINAL ANTENNA SOLD WITH A MONEY-back guarantee" unbeatable for fringe area or dx

1. EXCELLENT FOR FRINGE AREA and DX RECEIVING - and broad band receiving with high gain on all channels-2 through 13.
2. Clearer pictures up to $\mathbf{1 2 5}$ miles or MORE-from the station.
3. GHOST PROBLEMS REDUCED or eliminated due to excellent pattern.
4. PROVIDES 10 DB OR MORE GAIN ON HIGh CHANNELS where gain is needed most.
5. EXCELLENT FRONt to back ratio on all channels. No co-channel interference.
6. MINIMIZES INTERFERENCE: Airplane Flutter - Diathermy and Ignition - F. M. - Neon Signs - X-Ray - Industrial - Etc.
7. eliminates double stacked arrays, and out-performs 2 bay yagis on low band and 4 bay yagis on high channels.
8. ONLY ONE TRANSMISSIONLINE NECESSARY.
9. NO WORRY OVER POSSIBLE CHANMEL CHANGES on either high or low channels.
10. CAN BE TIPPED WITHOUT TILTING MAST to take advantage of horizontal wave lengths.
11. Can be used with ANTENNA ROTOR.

WRITE FOR NEW LITERATURE \& TECHNICAL DATA SHEETS

ASK YOUR JOBBER -
"The Backbone Of Your Industry" FOR COMPLETE INFORMATION

DAVIS ELECTRONICS

AMERICA'S FASTEST GROWING ANTENNA MANUFACTURER

BOX 1247 BURBANK, CALIFORNIA

Yes sir, it's still the most complete line. Including types that meet JAN specs. Piek just the right mica capacitor from over two dozers different types.
Postage-stamp or tiny wafer types; high-valtage heavyduty types in different terminals and mountings; silver micas; porcelain-cased types; efc. Choice of tolerances.
Don't fumble, fuss or fume! Let Aerovox misas fit your particular needs.
Ask your distributor for Aerovox mica capacitors - the outstanding selection of types.

FOR RADIO-ELECTRONIC \mathcal{E}

INDUSTRIAL APPLICATIONS AEROVOX CORPORATION NEW BEDFORD, MASS., U.S. A. If Ganada: AEROVOX CANADA LTD.. Hamillon. ont. Export: 41 E. 22 nd St., New Yark 17. N. Y

Figure 3. Unmodulated Carrier at the Oscillator Stage (Test Point 4).

Tesco engineers developed the ULTRA-TENNA series for VHF-UHF. or UHF aione, to solve all antenna problems. Write now for complete information.

and just as sensitive!

TV PRODUCTS CO. SPRINGFIELD GARDENS NEW YORK TO 'FRISCO, .. IT'S TESCO

Figure 4A. Operation of the AVC Circuit with Medium Signal Input.
checked for a leaky or open capacitor or a bad resistor. However, if the signal generator is not producing an output of a true sine wave, the scope pattern will be distorted and might be misinterpreted as being improper operation of the AVC circuit. Therefore, it must be determined if the output of the generator is a true sine wave. The operation of the AVC circuit can be checked even though this condition is present.

The pattern on the scope should appear as is shown in Figure 4A. This is under the condition of medium output of the signal generator.

To check the operation of the AVC circuit, increase the output of the generator by first changing the step attenuator step-by-step. On each successive position of the attenuator, the sine wave should increase in amplitude without being distorted. There will be only a slight increase in amplitude due to the controlling action of the AVC circuit, if operating properly. Next, gradually increase the RF control of the signal generator. The amplitude of the pattern should increase slightly. If the pattern is still not distorted at maximum setting of the RF control, the AVC circuit can be considered to be operating properly. Figure 4B represents proper operating of the AVC circuit with maximum signal input.

If a receiver is producing a loud squeal in the output, the trouble may be in the AVC circuit. A quick

Figure 4B. Operation of the AVC Circuit with Maximum Signal Input.

Figure 5. Condition Due to an Open Filter Capacitor in the AVC Circuit.
check of this circuit can be made by connecting the vertical input of the scope to the AVC line. If the condition that is shown in Figure 5 appears on the scope, look for an open filter capacitor in the AVC circuit. If no signal is obtained at this point, a resistance check should be made to see if the AVC filter capacitor is shorted.

Another frequently encountered trouble is that of a defective power supply filter network. If it is suspected of poor filtering, the network can be checked with the aid of the scope. To make this check, set the scope for a frequency of approximately 20 cycles. To protect the scope from being damaged by high DC voltage, use a .25 mfd ., 600 volt, capacitor in series with the vertical input lead. Connect the capacitor to the input of the power supply filter network (Test Point 7). Adjust the scope for a stationary pattern. Figure 6 shows the waveform present at the input of the filter network.

To determine the efficiency of the power supply filter, transfer the vertical input lead of the scope to the output of the filter network (Test Point 8). If the filtering network is functioning properly, nearly all the input ripple will be smoothed out and a fairly straight horizontal line will appear on the screen of the scope. Figure 7 shows the output of the filter network used in the receiver shown in Figure 1. Comparing Figure 6 with Figure 7, note that the input ripple has been smoothed out

Figure 6. Input of Power Supply Filter (Test Point 7 in Figure 1).
considerably. If the ripple is still prominent in the output of the filter network, each section of the network should be checked for abad component.

A percentage of ripple of 1 per cent is considered passable in receivers of the AC-DC type in most cases. However, on the AC or higher quality receivers, the percentage of ripple should be .25 percent or better. The percentage of ripple can be calculated by use of the following formula.

$$
\text { Per cent } E_{r}=\frac{E_{r}}{E_{d c}} \times 35.7
$$

Where:

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{r}}= \text { peak-to-peak ripple } \\
& \text { voltage. }
\end{aligned}
$$

The 35.7 value is obtained from the ratio of 100 divided by 2.8 . The 2.8 factor changes the peak-topeak ripple voltage to the RMS value.

The amount of ripple in a power supply varies from receiver to receiver. The ripple factor is

Figure 7. Output of Power Supply Filter (Test Point 8 in Figure 1).
dependent upon the design of the receiver and the condition of the component parts of the filter network.

It must be remembered that the type of radio circuit used for presenting the foregoing trouble shooting procedures was a basic five tube AC-DC receiver. This type of receiver can be serviced quickly without too much difficulty. However, in servicing more complex receivers, trouble shooting becomes more difficult because of the greater number of stages and component parts. The procedure of trouble shooting these sets with the scope follows the same pattern but more steps are involved in localizing the exact stage in which the trouble is located. If the procedure is followed along the samelines as has been presented here, trouble shooting of any type radio receiver can be accomplished without too much difficulty.
C. P. OLIPHANT

tramate 935 HF

 record changer"Custom-Precision" quality for the discriminating buyer

The V-M 93511 F is a top quality high fidelity record changer throughout? Its many exclusive features will have tremendous appeal to ALL of your customers interested in life-like reproduction of recorded music.

MANUAL OPERATION - Allow changer to shut off automatically, place record on turntable and set speed, turn Control Knob to "ON" and place needle in lead-in groove.

1 laminated turntable with precision-formed concentricity, (exclusive in this price range) is weighted and balanced to assure constant-speed operation New motor mount and close-tolerance drive completely eliminate wow. Extra heavy flocking silences and cushions record drop. Turntable is mounted on a selected three-ball thrust bearing, with mirror-finished surfaces, for silent rumblefree performance.
2 gentle Tri-o-matic spIndLe protects records, eliminates record holders that grip the grooves. Records are moved at the center (point of perfect control) . . . are lowered, NOT dropped, to spindle shelf and flat, air-cushion dropped to turntable.
3 DIE CAST TONE ARM of aluminum, is sigid and resonance-free! Is balanced for easy, exact adjustment to needle pressures specified by needle or cartridge manufacturers.
4 TWO PLUG-IN TONE ARM HEADS (1 gold, 1 red, less cartridges) are included. Precision-fitted cast aluminum construction. Adaptable to: GE "turn-about" RPX050, GE RPX040, GE RPX041, Pickering single-play and turnover, and Clarkstan cartridges.*
5 A MINIMUM OF LATERAL PRESSURE is required to track and trip the friction-free V-M 935 HF changer. Cartridges requiring down to 5 grams needle pressure can be used with excellent results.
6 muting switch for absolute quiet during change cycle.
7 V-M 45 SPINDLE is included. Permits automatic play of up to fourteen large centerhole records.
8 EXCLUSIVE FOUR-POLE, FOUR-COIL MOTOR with surplus power for silent, con-stant-speed service, eliminates the source of electronic hum and rumble.
*Pre-amplification stage required.

ADDITIONAL FEATURES:

Gold base plate, burgundy accessories; complete, automatic shut-off; plays all speed, size records automatically; completely jamproof mechanism.

V-M 935 Mounting Board Pre-Cut. Measures $7 / 3^{\prime \prime} \times 16^{\prime 1} / 6^{\circ} \times 177^{\prime \prime}$

V-M 936HF Changer Attachment on metal pan has $6^{\prime} A C$ cord, 4^{\prime} phono cord with plugs. Underwriters' Approved.

WORLD'S LARGEST MANUFACTURER OF PHONOGRAPHS AND RECORD CHANGERS EXCLUSIVELY

V-M CORPORATION BENTON HARBOR 7, MICHIGAN

Write for illustrated literature telling ALL about the new V-M 935HF high fidelity changer.

Until the time the Autronic Eye was introduced to the automobile industry, the radio had been the only electronic item used in the car. Should the acceptance of the Autronic Eye continue to grow, it is very probable that the radio-television technician may be called upon to service these units. For this reason, the following discussion is presented to give the service technician a working knowledge of the operation of the Autronic Eye.

The Autronic Eye performs three basic functions during night driving which are:

1. The headlight beams of the car on which the Autronic Eye is insfalled are automatically changed from upper to lower position when the lights from an approaching car fall within range of the phototube.
2. The headlight beams are held in this position until all cars have passed.
3. The headlight beams are automatically returned to the upper beam position as soon as all approaching cars have passed.

By performing these three functions automatically, the selection of the proper beam is accomplished without human error.

With the use of the Autronic Eye safety, comfort, and courtesy are three resulting factors. Safety is achieved because headlights are quickly dimmed and the driver of an approaching car is not blinded by bright lights. Since the driver is relieved of the responsibility of switching the headlights, night driving is less strenuous, which adds to the driver's comfort. This also adds to the efficiency of the driver. Courtesy is evident to other drivers since the headlights are dimmed quickly when a car approaches. This tends to cause the driver of the approaching car to respond rapidly in dimming h is headlights.

Actually, the main resulting factor from the use of the Autronic Eye is safety.

The Autronic Eye consists of four components; phototube unit, amplifier unit, power relay, and auxiliary foot switch (see Figure 1). The primary function of each unit is as follows:

Phototube Unit. This unit consists of a photo-multiplier stage and an optical lens system. See Figure 2 for side view of phototube unit with cover removed. The lens farthest from the phototube is a light-gathering lens (condenser); while the one nearest the phototube is a filtering lens. The color of the filtering lens depends upon the tint of the windshield behind which the phototube unit is to be installed.

The photo-multiplier unit receives the incoming light rays and converts them into electrical impulses which, in turn, control the

Figure 1. Composite Photograph Showing the Four Units of the Autronic Eye.

Figure 2. Side View of Phototube Unit with Cover Removed.

Figure 3. Top View of Amplifier Unit Chassis.

Figure 4. Underneath View of Amplifier Unit Chassis.
headlight beams. It is mounted directly behind the windshield in the lower left-hand corner.

Amplifier Unit. This unit contains a control tube stage, a sensitive plate-circuit relay, and a vibrator type power supply that furnishes operating voltages for the phototube, the control tube, and the power relay. Refer to Figure 3 for top view of amplifier unit chassis. Figure 4 shows the underneath view of the chassis. The amplifier unit is installed under the hood in the engine compartment.

Power Relay. This unit is a heavy duty sealed relay that is energized by the operation of the amplifier unit. This, in turn, selects the proper beam position. The power relay unit is mounted near the amplifier unit in the engine compartment.

Auxiliary Foot Switch. This switch is a momentary contact, plunger type control which provides a means of obtaining the upper beam for purposes of signaling, or when the situation warrants more lighting. Under normal operation, this switch is in the open position and when closed it over-rides the control unit. When this switch is depressed, the headlights remain in the upper beam position regardless of the amount of light entering the phototube.

This unit is mounted on the floor board just above the standard foot dinımer switch.

Figure 5 shows the cabling layout of the component units of the Autronic eye plus the headlight switch and foot dimmer switch which
are recabled in the circuit. The foot dimmer switch is electrically reconnected in the Autronic Eye circuit for two purposes; (1) to provide a means of manually obtaining the lower beam position, and (2) to allow the automatic operation of the Autronic Eye when the switch is in the second position.

The operation of the circuit, which is shown in Figure 6, is as follows: The phototube V1 operates with a negative cathode potential of approximately 1000 volts DC. The plate load of V1 is R1, R2, and R3. These three resistances are also the grid return for the triode section of the control tube V2. For purposes of reference, assume that the circuit has been placed in operation and the headlights are in the upper beam position. At this time, no light is being admitted to the cathode of the phototube, which means that no current will flow from its plate. With no plate current flowing through the grid return of V2 there is a negligible voltage drop across R1 which places the grid of V2 practically at the same potential as its cathode. Consequently, the triode section of V2 conducts heavily. While V2 is conducting, the relay M2 is held closed, placing a short across R2 and R3. At the same time, the power relay M3 is de-energized, placing the headlights in the upper beam position.

When light strikes the cathode of the phototube, plate current begins to flow from V1 and varies in accordance with the intensity of the light. The magnitude of the final plate current is greatly increased from that of the original cathode emission by the action of the electron multiplier. The purpose of the
electron multiplier is to receive a small amount of current and increase it in multiples to a usable value. This process begins when light strikes the cathode of the phototube causing electrons to be emitted. These electrons are then picked up by the first dynode of the multiplier section. Secondary emission occurs from the first dynode to the second dynode, with the secondary electrons greatly outnumbering the primary electrons. This process is continued for each succeeding dynode, with the result that the secondary electrons are increased in multiples.

The flow of plate current from V1 causes a voltage drop across R1 which places a negative potential on the grid of V2. With the grid negative, plate current flow from V2 decreases. It decreases to the point where relay M2 is allowed to open, removing the short from across R2 and R3. The removal of this short provides a higher value of plate load for V1, with the result of driving the grid of V2 further negative. This insures V2 being held at cutoff and M2 remaining

Figure 5. Cabling Layout of the Com ponent Units of the Autronic Eye.

TAKE YOUR PICK

EITHER OF THESE VALUABLE SERVICING ITEMS...YOURS AT NO EXTRA COST... with purchases of Federal Picture Tubes!

 tools and tubes-you'll be proud to carry on all service calls.
Sturdy wood construction. covered with simuloted alligator leather (blue). Over-all size: $183 / 4$ inches long, $13 \frac{1}{4}$ inches high, 9 inches wide.
Brass-finished lock, hinges. cotches and corner guords. Compartments hold approximately 75 receiving tubes of various sizes. Opens into three separote, easilyaccessible sections. $\$ 9.50$ volue (A $\$ 14.95$ list value).

GUN FACTS:
Weller Model WD-135 (135 watts). Ideal for all types of soldering and dozens of household jobs. Instant heating. Dual heat increases tip life. High low heat as desired. Exclusive tip-fastening feature-full. constant heat. Low-cost, replaceable tips. Pre-focused spotlight. Longer reach-perfect bolance. Shatter-proo plastic housing. $\$ 10.95$ value! ($\mathrm{A} \$ 14.90$ list value).

How to get your choice-

With every purchase of a Federal "Best-in-Sight" Picture Tube, your participating Federal Distributor gives you one Federal Certificate. There are no restrictions on type of tube. You may buy one tube at a time, or as many as you need.

As soon as you have accumulated 10 certificates, deliver them to the distributor from whom you purchased your Federal Picture Tubes and he will exchange them for the Combination Tool and Tube Servicing Caddy OR the Weller Soldering Gun. (If you wish, both Caddy and Soldering Gun will be given in exchange for 20 Federal Certificates.)

See your Federal DISTRIBUTOR For Federal Tubes and Certificates!
This offer is void wherevel bruhfl-
ited or wherever any tax birense
or other restrictun is impusert.
(This offer expires August 31, 1953)

Start Ordering Federal Picture Tubes-Start Saving Federal Certificates!

Federal Telephone and Radio Corporation

Figure 6. Circuit of Autronic Eye Complete from Phototube Unit to Car Headlights.
open as long as any light strikes the cathode of the phototube. The phototube is also protected from excessive plate current drain with the increase of plate load. When relay M2 opens, relay M3 closes, placing the headlights in the lower beam position. The headlights will
remain in this position as long as light strikes the cathode of the phototube or until the auxiliary foot switch is used.

The function of the auxiliary foot switch M5 is to provide a means of obtaining the upper beam when it
is desired to signal an approaching driver. When the switch is depressed, the cathode circuit of the diode section of V2 is completed to ground and the second half of V 2 conducts, causing plate current flow through

* * Please turn to page 120 * *

the only lightning arresters with the strain relief lips are made by JFD. A patent is its proof!

JFI) MANUFACTURING CO., INC. BROOKLYN 4, N.Y.
World's largest manufucturer of TVantennas and accessories
in the LIPS:

"Little Giant"

LIGHTNING
 A R R E S T E R

for flat and oval jumbo twin lead No. AT105 (with hardware for wall or window sill mounting)
$\$ 1.25$ list
No. AT105S (with stainless steel strap for universal mounting) $\$ 1.50$ list

171) ${ }^{3} 50$

REPLACEMENT MEEDLES

BECAUSE YOU'RE IN
 BUSINESS TO MAKE MONEY!

and you make real money when

you install Walco diamond-tipped replacement needles because your profit runs as high as $\$ 10.00$ per needle and more. You do a good turn for your customer, too, because, play for play, he pays less and he preserves his precious records as well. Walco replacement needles cost you as much as 40% less than other brands because Walco manufactures needles. Many leading manufacturers use Walco-made needles as original equipment. You'll be ahead all-ways with Walco.

A TWO-FISTED WAY to beat T. V. I.

LF-601

HF-600

Television interference can be caused by amateur radio transmitting stations, diathermy equipment, X-Ray equipment, automotive ignition noises, etc. The basic problem of eliminating this interference is that of rejection of the signals received from these sources.
When interference is caused by harmonics from a transmitter, it can be greatly reduced or eliminated at the transmitter by use of a Bud LF-601 Low Pass Filter.
If interference is caused by any of the other sources of interference mentioned above, it can be eliminated by use of a Bud HF-600 High Pass Filter at the receiver.
Almost any one can make a television interference filter, but it takes real "know how" and experience to produce a unit that wesearch and development in this field. Wide acceptance of research and development is proof of their exceptionally high quality

```
LF-601 $23.30 List HF-600 $5.00 List
```

See them at your distributor. Name of your nearest Bud distributor and informative literature will be furnished upon request.

BUD RADIO, Inc.
2118 EAST 55th ST., CLEVELAND 3, OHIO DEPT. X

UHF OPERATIONAL SURVEY
 (Continued from page 31)

under the trees and should it prove successful it will result in a tremendous saving for your customer. Also you will agree the work involved in mounting an antenna two or three feet from the ground is considerably different than mounting a 50 to 60^{\prime} mast.

The dealers that we contacted stated that they had no success with built-in antennas. This may be due to the fact that the transmitting tower is not in the city itself but is located to the southwest. Thus, no homes in Jackson proper are within the shadow of the antenna tower. There are several other factors which may contribute to this condition, such as surrounding terrain, as well as the electrical and/or mechanical tilt of the transmitting antenna.

Many of the dealers have UHF installations which are 50 to 60 miles distant from the tower. A popular antenna for this type of installation is a 4 stacked 12 element Yagi cut for the specific channel of operation. Other antennas which are used successfully at this distance or slightly
less are the corner reflector, colinear, stacked bow-tie, conical with parabolic reflector and 4 bay conical with screen reflector. The terrain surrounding Jackson is by no means flat but it cannot be compared with the type of terrain that is encountered in UHF areas inthe east or in Portland, Oregon. There is some shading of certain areas behind hills in and around Jackson, but it is not as serious as that experienced in other UHF areas. The Jackson TV station is connected on the network so that it can provide live programming. Their signal quality is good and for the most part has been so since they came on the air last January. The main concern of the dealers in this area is that of slow sales. Perhaps since this is a new TV area, the sales will have a ' snow ball" effect and sales will be at their expected level shortly.

Mobile, Alabama

In December, 1952, WKAB-TV channel 48 commenced operation in Mobile, Alabama using a 100 watt driver as interim equipment. They plan to go on full power as soon as their final 12 KW amplifier is delivered in its entirety. This was one of the first UHF stations to come on
the air with such low power. The results obtained were far from gratifying.

Several thousand receivers had been installed in this area for VHF reception from the channel 6 station in New Orleans or any other station which might be received under certain atmospheric conditions. Since the New Orleans station is about 125 miles distant, good reception could not be had at all times. The consumers were fully aware of this situation and had learned to live with it. They rightfully expected that their days of looking at a snow filled picture would come to an end with the inauguration of local TV service. Totheir dismay it was found in many instances that reception from the local UHF station was not as good as that experienced from New Orleans. Only those locations within two or three miles of the transmitter could be assured of satisfactory reception. There were some installations at a greater distance that would receive a fair signal due to their particular locations. This conditionled to skeptism on the part of the potential television buyer. The average consumer expected that the quality of reception could be likened to their experiences
with AM reception. They had learned to expect that distant reception cannot always be had but that a local, station, even a low power 250 watter, should provide good reception in the immediate vicinity. The technician who is fully aware of the limitations of television reception can easily see why a range as small as that mentioned above is experienced. Unfortunately, this is not common knowledge on the part of the average consumer and a state of confusion has resulted.

Prior to the time of the starting date of the UHF station, the sale of television receivers was at a rapid pace. After the station came on the air and the buyers found what poor reception they were getting, the word was soon passed and television sales dropped practically to zero. The dealers were not only faced with the prospect of no sales but they had to appease their buyers of the receivers that had already been sold. In some cases this was an impossible tasksince UHF reception was guaranteed at the time of the sale.

The VHFstation in Mobile, WLAL-TV operating on channel 10 , came on the air about three weeks after the UHF station. This, too, proved to be a premature start, since the station came on the air using only a temporary antenna. The station was also plagued with failure of temporary equipment which they had put into service in order to commence operation at this time. With two stations operating in Mobile and neither of them providing satisfactory reception in some parts of the city and vicinity, the general public was even more confused. Realizing that the problems confronting the dealers was for the most part caused by the operation of the stations at reduced power, the management of both stations jointly sponsored an ad in the local newspaper stating the conditions under which they were operating. In this way it was hoped that much of the pressure which was put on the dealers and installers could be relieved. It was instrumental in doing this to a certain extent but many of the television set owners must wait until full power operation can be started before good reception can be had. We contacted the dealers in Mobile on May 11th and 12 th and at that time the permanent 12 bay antenna was nearing completion, and it was expected that it could be put into operation no later than May 15 th. This undoubtedly will eliminate many of the reception problems existing in Mobile. The UHF station, we
were told, has their final 12 KW amplifier and needs only one klystron to complete the installation. When this comes to pass, Mobile will be supplied with two full power television stations.

Since the reception conditions in Mobile were far different from those experienced in other areas, the techniques which were used could not be considered as the rule for other installations. Locations only a few miles distant from the transmitter were found to be in the fringe area, while under normal circumstances this same location would be in the primary service area. This required the installation of high gain antennas and it is of great concern as to what might happen with these installations after the station comes on with full power. It is hoped that no serious effect will be noted. In some cases, it might be necessary for the dealer to change the type of antenna and/or change its position, which will cause him added expense.

Needless to say, the dealers in Mobile are far from happy about the situation which existed there. They have tried to make installations which would provide satisfactory reception for their customers but have been forced to do so under a terrific handicap. Perhaps the Mobile operation will serve one purpose. It might discourage future telecasters from using similar " flea power" operation. It is very probable that by the time this report is in print, the Mobile UHF station will be on full power. This should help the situation immeasureably.

Antennas and Lead-Ins

The most frequently used antenna in the primary areas of the above cities is the bow-tie type. Where there is an existing installation it is usually possible to mount the bow tie somewhere on the exist ing mast. Of course when this is not possible, a separate mast must be used. The secondary area brought into use some bow ties, but usually a higher gain antenna was preferred; such as stacked bow ties, colinear arrays, and two and four bay conicals with reflectors. The fringe area bought into use the corner reflector, conical with parabolic reflector, some colinear arrays and four bay conicals, and for extreme sensitivity some dealers are four stacking 12 element Yagis. We talked with no dealers who related that they had tried any rhombic antennas. No
specific reason was given for this other than most dealers felt that they were getting satisfactory results with the antennas that they were using and felt that no experimentation with rhombics was needed. At both Jackson and Baton Rouge dealers pointed out that they have several installations from 50 to 60 miles from the station. For the most part though, the dealers are concentrating on sales in the primary and secondary areas.

Three types of lead-in are being used almost exclusively by the dealers in these areas. These are the tubular, oval and open wire. Dealers who had used both tubular and oval types said that they could not tell too much difference in the operation of the two. The type which they preferred was often decided by what type the jobber had on hand or by the preference of the individual installers. Some dealers stated that they were using no open wire, even in the very fringe areas, while one dealer wetalked to is using open wire exclusively, even on primary area installations. So it seems to be a matter of individual preference as to the type used. Our experiences in the testing of these types of lines showed that all three types are suitable for use at UHF frequencies. It was found, however, that the open wire type affords less attenuation and is recommended for use in fringe areas. One important consideration in the use of this line is that of proper impedance matching. Several of the open wire manufacturers are now offering 300 ohm open wire line, which presents no more matching problem than the other types.

We sincerely hope that this report will be successful in making your work easier by pointing out some of the experiences of dealers now engaged in making UHF installations. Should you at any time have any data concerning UHF installations that might be helpful to our readers, we would be pleased to hear from you.

Our thanks go out to those dealers and distributors who were so kind to spend the time with us to answer our many questions. Their cooperation has madethis report possible.

The TARZIAN UTPI (Single Channel) Translator for

- Self-powered.
- Two units may be attached to receiver to receive two UHF channels.
- Input alignable to any UHF station ($470-890 \mathrm{mc}$)
- Output info balanced 300 ohms, channels 2-6 inclusive
- Requires NO internal wiring changes.
- Easily attached.

COMPLETE RANGE OF FREQUENCIES AND ANTENNA SWITCHING POSSIBILITIES MAKE THE RECEPTOR

Completely Universal in Application

The UTPI is the answer to set owners anywhere within the range of one or two UHF stations.

Adaptable to any type receiver, the UTPI brings in the UHF station through one of the unused low channels, 2 to 6 . None of the 12 VHF channels is sacrificed.

The same high standards of engineering quality . . . design . . . and development which have made the TARZIAN Tuners famous - are embodied in the UTPI Receptor.

Moderately-priced to appeal to millions of present-day set owners. See your set dealer or service man or write for detailed information.

A SELENIUM RECTIFIER TESTER

(Continued from page 43)
made because this unit employs AC voltages and tests the rectifier under its rated current load.

The tester consists of two parts - the testing unit itself and an associated unit called the Sele-Rater.

The Sele-Rater (see Figure 3) provides a means of determining the ratings of a selenium rectifier even though the manufacturer's ratings have not been placed on the unit or the markings have been obliterated. The Sele-Rater provides a means of determining the appropriatetest settings for the testing unit.

It is a very simple procedure to use the Sele-Rater. Figure 4 (A and B) show the Sele-Rater being used. In Figure 4A, the correct space gauge is being determined. The correct procedure for doing this, as given by the manufacturer, is as follows:

Place the rectifier on the Sele-Rater in a manner that will permit you to see the space gauges between any two plates. When the gauge that corresponds to the air space between any two plates of a regularly spaced rectifier has been located you will note the two lines leading from the space gauge to the edge of the Sele-Rater. Note that one of these lines is marked 6-plate the other 8 -plate. These lines are the zerolines for rectifiers with that spacing. In the case of rectifiers with little or no spacing, use the solid white space marking asthe guide.

To determine the zero line that is to be used, count the number of cells or plates between the ter-
minals of the rectifier. The 6 -plate zeroline is to be used when the rectifier contains six plates and the 8 -plate zero line when the unit has 8 plates. All.single plate rectifiers will use the line marked ' single plate zero line''. It is well to note that when testing bridge or doubler rectifier stacks, each section is to be tested separately. When determining the zero line, count only the number of plates in each section.

After the zero line has been determined, the width of one plate is measured to determine the approximate current carrying capacity of the rectifier. (See Figure 4B). To measure the width of the plate, place the rectifier on the Sele-Rater with one edge of the plate at the correct zero line as determined above. Reading the number at the opposite edge of the plate will give the MA load setting to be used on the testing unit.

It is important to note at this point that the current rating as determined by the Sele-Rater may differ slightly from the actual manu facturer's rating, but will be sufficiently accurate for a quality test on the tester unit. This is because the current rating of selenium rectifiers depends on the actual surface area of the plates. The surface area of a 200 milliampere rectifier made by one manufacturer may differ from one made by another manufacturer. This could be due to the center contact of one rectifier covering less space than that of a different make rectifier. Or one manufacturer may rate his rectifier more conservatively than another manufacturer. When this is the case, the reading given by the Sele-Rater will be different. It is recommended, however, that when a rectifier reads above 150 milliamperes on the Sele-

Rater but below the 200 milliampere mark, the MA load pointer on the tester should be set at the 200 point. The rectifier should be considered as having a current rating of 200 milliamperes. This would also be true of readings between 250 and 300,350 and 400,450 and 500. This discrepancy of different readings becomes more noticeable at lower ratings of rectifiers. Such is the case of the 65 and 75 milliampere rectifiers. These rectifiers are de signed by most manufacturers with nearly the same specifications, however, they are rated with a difference of 10 milliamperes. Again, it is believed that it wouldn't make any difference if the rectifier tester is set at either 65 or 75 milliamperes when making a test since theyare rated so closely together.

The Jackson Model 710 Tester operates on $110-125$ volt, 60 cycle, AC. The unit is considered small and compact. The measurements of the unit are $7^{\prime \prime} \times 4-1 / 2^{\prime \prime} \times 3^{\prime \prime}$. The unit has four pre-set controls and a test switch. The pre-set controls are the on-off and line adjustment switch, the MA load, the range switch, and the voltage switch.

The on-off and line adjustment switch turns the power on and off and is a variable means of obtaining the correct transformer primary tap for the available line voltage. This variable switch is adjusted until the meter pointer falls at the center of the "line" marker on the dial of the meter.

The MA load control is a variable resistance that is set on the value that corresponds to the rating found on the rectifier, or to the rating that was obtainedfrom the use of the Sele-Rater. The scale of this

Figure 2. The Jackson Model 710 Selenium Rectifier Tester.

Figure 3. The Sele-Rater Used to Determine the Unknown Ratings of a Selenium Rectifier.

Figure 4A. Selecting the Space Gauge Between two Plates.

Figure 4B. Determining the Current Rating.
control ranges from 20 to 150 mil liamperes. The MA load control is used in conjunction with the range switch.

The range switch has two positions, one marked X1 and the other X 10 . When the range switch is in the position X1 the tester will handle rectifiers rated from 20 to $150 \mathrm{mil}-$ liamperes. When in the X10 position, the scale of the MA load is multiplied by 10 . This changes the range of the MA load from 200 to 1500 milliamperes. However, it is recommended by the manufacturer that 650 milliamperes be the maximum rating of a rectifier tested on this instrument. The accuracy of the tester takes a decided drop above the setting of 650 milliamperes.

The voltage switch is a variable control that is used to set the tester at the proper voltage rating of the rectifier to be tested. It obtains four different settings; namely, $25,130,160$, and 300 volts. The voltage switch is to be set at the position nearest the rated value of the rectifier. If the rated voltage is not known, a listing for different ratings according to the number of plates is given on the Sele-Rater.

The unit contains two test leads with alligator clips for attaching to the terminals of the rrctifiers. One lead is red and the other black. The red lead is placed on the positive or cathode terminal of the rectifier and the black lead on the negative terminal during a test. Correct polarity must be observed to avoid damage to the instrument. Figure 5 shows a test setup of a selenium rectifier out of the circuit.

If a rectifier is to be tested while it is still in the chassis, the positive (cathode) side of the rectifier must be disconnected from the circuit. Since the rectifier is disconnected when making a current draintest on the set the rectifier canvery easily be tested at the same time. However, make sure the line voltage to the receiver is off during the time of performing the test. Figure 6 represents a test setup when the rectifier is in the chassis. Note the disconnected positive lead of the rectifier.

For protection of the instrument, it is important to remember not to allow the alligator clips to touch each other while the instrument is turned on. When a metal bench
top is being used, remember that both test leads should not be placed on the metal top at the same time. A direct short would permanently damage the meter.

A momentary contact toggle switch is provided for the test switch. After the tester is set up according to the rating of the rectifier, this switch is pressed which places the meter in the testing circuit. From direct reading of this meter the condition of the rectifier under test can be determined.

The dial of the meter has a scale graduated in units of five from 0 to 50 . There are three major divisions; 0 to 10 - bad, 10 to 50 good, and 30 to $50-$ peak. (See Figure 7).

If the reading of the meter is 10 or above, the rectifier is considered to be satisfactory. If the reading is below 10 , the rectifier is considered bad. The area of the scale above 30 indicates rectifiers which have not gone through the aging process. This does not mean that a rectifier that produces a reading in this area is much better than one that produces a reading in the

Figure 5. Test Setup of a Selenium Rectifier out of the Circuit.

Figure 6. Test Setup of a Selenium Rectifier When the Rectifier is in the Chassis.
area between 10 and 30. Because of the difference in rating systems used by different manufacturers, the maximum reading of various rectifiers are different.

The indication of a shorted rectifier is vigorous vibration of the meter pointer at any place on the scale. The pointer may be in the area designated as good but if the pointer is vibrating, the rectifier is shorted. When this is the case, the test switch should be released instantly.

When a rectifier is open, the meter pointer will drop down to zero when the test switch is depressed and will remain there until the test switch is released.

Usually before an electrical test of a selenium rectifier a visual examination of the unit is made. A number of factors concerning the condition of the rectifier can be determined from this visual check.

A condition of "sparking" is sometimes encountered. This condition is accompanied by a crackling, popping sound. The sparking consists of blue-white sparks on the surface of the selenium alloy, which are caused by a much higher than rated inverse voltage appearing across the rectifier. If this surge of excessive voltage lasts for a

Figure 7. Meter of Selenium Rectifier Tester Showing the Reference Scale.
short period of time, the rectifier will not be permanently damaged. Round, black spots will appear on the alloy as a result of the sparking. These spots are self healing and will not short out the rectifier unit. If the sparking has been severe for a long period of time, the effective rectification area will be reduced. With further use during sparking the rectification area will be reduced to a point where the rectifier will become inoperative.

When the rectifier has been subjected to several times its normal forward current, the temperature rises above the melting point
of the alloy. This causes the alloy to soften and run, which is accompanied by decoloration of the surface of the plate. When this condition is found, the rectifier unit is consider ed useless for further operation.

Whenever a unit is found that has been decolorized and is spotted as the result of sparking, it is considered to have been completely destroyed.

It is well to keep in mind that the rectifier itself is not always the unit that is causing the trouble, but is usually another part in the circuit. Even if the Selenium Rectifier Tester does indicate a bad rectifier, the circuit should always be checked for possible troubles that could render the rectifier bad.

This Selenium Rectifier Tester should fill a longtime need of the service technician for a means of easily and quickly checking selenium rectifiers. It makes possible a positive check on the condition of the rectifier thus eliminating that helpless feeling of not knowing whether the selenium rectifier is at fault or whether some other component failure is causing excessive current drain.
C. P. OLIPHANT

A MULTIPLE ANTENNA SWITCHING DEVICE (Continued from page 41)

Figure 2. Schematic Diagram of "Tenna Switch," Model TS-1A.
switch in an out-of-the-way place. With the " Tenna Switch"' the control box canbe positioned at a convenient point so that the antenna switching can be accomplished without leaving the potential customer.

As another example of its use, it may be necessary to make an installation where it is desired to pick up three stations, each of them in different directions. It may be that two or three of them are quite dis -
tant, meaning that a high gain antenna must be used. In such a case, three high gain antennas (such as Yagis cut for the respective channels) could be installed. The "Tenna Switch" will then make possible the selection of the proper antenna which has been correctly orientated toward the station. Such an installation has two definite advantages. (1) It permits the use of high gain antennas for each of the three channels. (2)

It allows the viewer to make almost instantaneous selection of the proper antenna.

Since the switch mechanism is mounted on the mast, subjecting it to all weather conditions, it is enclosed in a weatherproof box. Ceramic switch wafers and silverplated contacts are employed to insure long life operation.

MERLE E. CHANEY

You wanted it... here it is THE RCA

 "SERVI-CHEST the truly portable "workshop" you'll be proud to take into the home
Look at these features

 $11^{\prime \prime} \times 16^{\prime \prime}$ working surface. Removable hinges for flexibility of use. Wedges provided for adiustment of mirror angle.SOLDERING GUN COMPARTMENT-Will accommodate all popular makes of soldering guns or irons.3 UTILITY DRAWER - Roomy enough for tools flashlight, large capacitors, high-voltage probes, etc.
RESISTOR DRAWER - Will hold large assortment of popular resistor sizes.
CAPACITOR DRAWER - Plenty of space for working supply of radio and TV types.
SPARE PARTS DRAWER - Suitable for smal components and tools. VOLTMETER COMPARTMENT-Designed to accommodate the popular RCA "VoltOhmyst"(®). Instrument can be operated without removal from compartment.

UTILITY COMPARTMENT-Suitable for sock =t wrench kit, drop cloth, carrying strap, etc.

PLUS THIS BIG BONUS

With every RCA "SERVI-CHEST" you earn, you get these seven RCA Technical Publications. 1. "Service Parts Directory for RCA Victor Radias." 2. "This Business of Radio and TV Servicing."
3. "RCA Receiving Tubes" booklet.
4. "RCA TV Replacement Guide."

DELUXE
CONSTRUCTION
Measures $131 / 4^{\prime \prime}$ high,
Measures $131 / 4^{\prime \prime}$ high,

How to get your RCA "SERVI-CHEST"

It took six months testing in the field to develop just the right kind of carry-all case for you . . . the RCA "SERVI-CHEST." It's the "little black bag" that identifies you as a "professional" Radio and Television Service Technician. The "SERVI-CHEST" is just what you asked for . . . and you can get yours without cost.

During the next three months, you will receive one RCA Silver Token from your RCA Tube Distributor for each RCA Kinescope or for each 25 RCA Receiving Tubes you purchase. When you have collected 30 Silver Tokens, present them to your RCA Tube Distributor and receive, without cost, the complete RCA "SERVICHEST:" Start earning yours today.

Now available from your RCA Tube Disfributor .. The famous RCA "TREASURE CHEST" a parfect companion piece to the RCA "SERVI-CHEST"

See your RCA Tube Distributor today for full details
RADIO CORPORATION OF AMERICA
GLECTROA TUEES
HARRISON, N.J.

Additional Data on Preamplifier and Control Unit

Due to many requests for the layout of components for the preamplifier and control unit, described in Audio Facts in PF Index and Technical Digest No. 33, we have prepared anunderside view of the chassis with call outs. This, with the photos in the original article, should answer most of the questions concerning the placement of parts.

The preamplifier section is located in one corner of the chassis away from the rest of the circuit to reduce the possibility of feed back.

All leads from the input jacks and tothe crossover -rolloff and channel selector switches are shield-
ed, with the shields grounded only at one end.

Resistors R8, R9, R10 and R11 with capacitors C4, C5, C6, C8, C9 and C10are mounted above the chassis directly on the crossover and rolloff switch.

Heater leads are twisted and dressed close to the chassis.

The ground bus, grounded only at the input jack, is important.

When using a magnetic phono cartridge, the resistor or resistor and capacitor combination, recommended by the manufacturer of the
cartridge, should be installed in the input circuit for correct loading and balanced response. For example - a 22 K ohm resistor, connected in parallel with R6, has given very good results with a GE variable reluctance cartridge.

Note the correction previously made in PF Index and Technical Digest No. 35. There is no connection from the bottom of R2B and the top of R2C of the IRC LC1 Loudness Control.

Also, on the schematic, C8 should be .005 mfd and C9, .004 mfd . The correct values appear in the parts list.

ONLY TELCO UHF ANTENNAS HAVE THE "WISHBONE"

A Alll NeV

Be sure to read this new 3-way approach to high-fidelity!

128 Pages

Over 100 Illustrations
81.50

JIIST OFF THE PRESS
This unique new Gernsback library Book discusses high-fidelity problems from three viewpoints. DESIGN includes audio waveform analysis, intermodulation distortion tests, crossover design, constant voltage lines, etc. CONSTRUCTION covers variaus types of amplifiers (including the Wiltiamson). MEASUREMENTS goes into detail on modern audio measurement techniques.
Buy a copy at your parts distributor today.
This book is an excellent companion volume to HIGH-FIDELITY TECHNIQUES, by James R. Langham. Gernsback Library Book 42, \$1.00

Gernsback Publications, Inc.
Publishers of
RADIO-ELECTRONICS

AUTRONIC EYE

(Continued from page 111)
the sensitive relay M2. This current energizes the relay and closes the contacts. This removes the energy from relay M3 which allows it to open, completing the circuit to the upper beam position. The circuit remains in this state until the auxiliary foot switch is released.

Capacitor C6 and Resistor R8 are incorporated to protect the contacts of relay M2 when the relay is opened and closed. Capacitor C1 is used to filter out power supply ripple.

The power supply is a nonsynchronous vibrator type operating from a 4 -volt supply. The 6 volts present at the battery are reduced to 4 volts by the ballast M7. At the center tap of the primary of T1 there are 4 volts. This voltage is adjusted to exactly 4 volts by the variable resistance R7. There are two secondary windings of T1. One furnishes a high-amplitude voltage which, after being rectified by V3, provides a negative 1000 volts DC to the cathode circuit of the phototube and the other winding furnishes 120 volts AC to the plate of the control tube V2. The . 1 microfarad capacitor (C5) is a buffer capacitor.

There are three controls that are manually set when the Autronic Eye is installed in the car. These are the sensitivity control, R9, located in the phototube unit; the hold control, R3, located in the amplifier unit; and the high voltage control, R4, also located in the amplifier unit. These controls are accessible from outside the cover of their respective units.

The sensitivity control changes the a mount of current in the voltage divider of the phototube unit. This, in turn, varies the response of the phototube. The hold control varies the load of the phototube and assures $V 2$ being held at cutoff until there is no light on the cathode of the phototube. The high voltage control is adjusted for correct operating voltage for the cathode of the phototube.

Current in the phototube unit flows from the high voltage supply to ground by two paths. One path is through potentiometer $R 9$ and re-
sistor R10. The other path is through potentiometer R9 and through the voltage dividing network. The voltage for each dynode of the phototube is divided evenly by the 200,000 ohm resistors. A small series resistor protects each dynode.

The rectifier and ballast tubes were especially developed for use in
this particular power supply. The type of phototube being used was not released by the manufacturer, probably because it was felt that replacement with factory-run tubes might tend to affect the operation of the circuit.
t the present, most servicing of the Autronic Eye is being done by
the installing company. It is felt, however, that as this unit becomes more and more accepted, the radiotelevision technician will be called upon for service. As a result, an added source of income for the technician is available.

EXAMINING DESIGN FEATURES

(Continued from page 27)

Figure 11. Horiz. Output Transformer and High Voltage Assembly Unit in Setchell-Carlson. Observe Hermetically Sealed Plastic Dome.
ceiver (See Figures 13 and 14). The most distinctive element noted in the construction of the receiver is the use of a plastic chassis instead of the usual metal type. Aside from certain advantages which may be exhibited in this method of chassis construction, the electrical circuitry is the same as that of previously produced models.

It is interesting to observe the variations which are possible in the construction technique, such as extensive molding of compartments, shelves, and tie points designed to facilitate the assembly procedure. Although metal chassis material could employ similar design in fabrication, the workability and economics of the use of plastic lend to its practicability.

A point in favor of a molded plastic chassis is that extensive insulating procedures are not required since the molded channels, etc., provide their own insulation.

Since this unit is an $A C / D C$ transformerless receiver, a floating ground is used. A bare wire, thread ed about the chassis, provides this ground continuity. Posts molded onto the chassis are used to anchor connecting leads against movement from vibration and to insure that the leads will not cause shorts.

Figure 12. Dehumidifying Elements Employed in Plastic Dome of Figure 11.

Figure 13. Westinghouse H-381T5 Radio Using Plastic Chassis (Top View).

Figure 14. Bottom View of Westinghouse Plastic Chassis Showing Parts Layout.

AUDELS TELEVISION SERVICE MANUAL covers T.V. information at your finger ends. Shows good receiver adjustment and How to Get Sharp, Clear Pictures, How to Install Aerials - Avoid Blurs, Smeare, Interference and How to Test. Explains Color Systeras and Methods to Test. Explains Color Systerns and Methods of Conversion. IT PAYS TO K NOW! Over 380 PAGES \& 225 ILLUSTRATIONS
explaining operating principles of Modera Tele-
 vision Receivers. 1001 FACTS 19 CHAPTERS Placement of TeleFision RecelversTest Patterns \& Adjest Patterns \& Adsion InterferenceInterference Traps -Television Antennas \& Transmission Lines-Master Antenna systemstion Procedure Television Broad-casting-Television Recelver Funda-mentals-Circuit Description of TyplCal Regelver-Tele--Projectlon Type Recelvers-TeleviBion Testing Instru-ments-Television Shooting - Color Television - Television Terms. GET THIS PRACTICAL ASSISTANCE TRIAL

AUDEL Publishers, 49 W. 23rd St., N.Y.

Easier, Faster, Exact Alignment with Valpey Type CM5 4.5 Mc ., 5.0 Mc . and 10.7 Mc . All $\pm .01 \%$ at $\$ 3.95$ each from your nearest distributor

DOLLARS \& SENSE

(Continued from page 47)
BELL TROUBLE. Early one morning the big bell in the spire of St. Joseph's Roman Catholic Church in Troy, N.Y. started tolling, and kept it up for an hour. Continued tolling at an odd hour is generally the solemnsignal of a priest's death, but Father Nolan assured telephoning parishioners that he was alive and well. An electrician was called. Climbing the bell tower to the relay control box, he found a bird's nest built right on top of the relay. The weight of the nest had moved the contacts enough to close the circuit and start the bell ringing.

A permanent cure of the trouble was achieved by removing the nest and blocking the birdhole entrance with wire screen.

THE WINNER. To aid track judges in calling the close ones at horse races, a special television system employing a long-persistence picture tube has been developed by New York City engineer Nelson J. Waterbury. A light beam is directed across the track just ahead of the finish line. When this is interrupted by the lead horse, the television camera at the finish line is unbiased just long enough to get a picture of the winning horse crossing the line. The image of this scene is retained for ten or more seconds on the picture tube being watched by the judges, enabling them to announce the winner without waiting for photos to be developed. The special long -persistence phosphor is the type used in radar cathode-ray tubes. First use of the system is expected to be made at the Laurel, Md. race track, according to Radio Daily.

HAWAIIAN TV. After boosting its VHF transmitter power from 25,000 watts to 47,000 watts, KNBH atop Mt. Wilson, California has received many reports of long-distance reception. Topping them all is one from Honolulu reporting consistent reception of both picture and sound with a standard receiving installation over a period of two weeks. Engineers now have logical explanations for such seasonal DX onover-water paths, but for the televiewer it's still athrill to see so far without benefit of microwave or coax.

LAW. The penalty in any state for careless servicing may be electrocution.
(Continued on next page)

microhmo scale - Detects
both shorted and open elements

- Tests all tubes from .75 v to 117
filament volts - Built-in roll chart - $41 / 2^{\prime \prime}$ meter.
Model 206P
.$\$ 83.50$
MODEL 204
Tube-Battery-Ohm Capacity Tester
- Tests all tubes including Noval and sub-miniature - Tests resistance to 4 megohms - Tests to 1 mfd. Tests al

batteries under rated load.
Madel 204 loak case). . . $\$ 55.90$ Write Dep't. PF-7 for latest FREE catalog.

IMSULINE BUILDING - 36-02 35th AVE. LONG ISLAND CITY, N. Y. West Coast Branch and Warehouse: 1335 South Flower Street, Los Angeles, Calif. Exclusive Canadian Sales Agents: CANADIAN MARCONI COMPANY, Toronto

a STOCK GUIDE FOR TV TUBES

The figures in the chart below have been revised to include production of TV receivers since the compilation of the chart which appeared in the last issue of the PF INDEX and Technical Digest. The chart represents the number of tubes of any given type that are now inservice in TV receivers as compared to the total number of tubes in service. The figures are based on a total of 1,000 units.

Note that two columns are included in the chart. The left column headed ' 46-53 Models' takes into
account all post-war TV receivers. The right hand headed '" $52-53$ Models'" is based on these recent TV models only. Tubes having a rating of less than one (except the indicated new types) are left out of the chart. Moreover, all ratings have been adjusted to the nearest whole number.

For additional information on the method of compilation and the recommended use of this chart for maintaining adequate tube stocks, refer to the PF INDEX and Technical Digest for May-June, 1953.

	$\begin{aligned} & \text { 46-53 } \\ & \text { Models } \\ & \hline \end{aligned}$	$\begin{aligned} & 52 \& 53 \\ & \text { Models } \end{aligned}$		46-53 Models	$\begin{aligned} & 52 \& 53 \\ & \text { Models } \\ & \hline \end{aligned}$		46-53 Models	52 \& 53 Models		46-53 Models	52 \& 53 Models
1B3GT	39	43	6AU5GT	4	5	6BZ7	2	3	6X5GT	2	1
1V2	1	-	6AU6	139	127	6 C 4	11	10	6 X 8	2	4
1X2	6	2	6AV5GT	2	4	6CB6	87	138	6Y6G	4	1
1X2A	4	6	6AV6	14	16	6CD6G	7	8	7C5	1	-
5U4G	45	46	6AX5GT	2	3	6C L6 *			7N7	3	1
5V4G	8	-	6 AX 4	2	-	6 J 5	3	3	12AT7	15	15
5Y3GT	3	1	6BA6	16	11	6J5GT	2	1	12AU6	1	-
$6 \mathrm{AB4}$	3	3	6BC5	11	8	6 J 6	35	31	12AU7	45	26
6 AC 7	9	9	6BE6	4	6	6K6GT	18	10	12AV7	4	5
6AF4 \#			6BF5	-	1	6S4	8	10	12 AX 4	2	4
6AG5	40	11	6BF6*			6SH7	1	-	12AX7	4	5
6AG7	3	4	6BG6G	15	6	6SL7GT	4	3	12AZ7	-	1
6AH4GT	1	2	6BH6	9	-	6SN7GT	80	90	12BH7	7	12
6AH6	7	10	6BJ6	2	-	6SQ7	3	3	12BX7 *		
6AK5	5	5	6BK5	-	1	6 T 8	15	15	12BY7	-	2
6AL5	80	80	6BK7	3	6	6 U 8	3	7	12SN7GT		5
6AQ5	13	13	6BL7GT	5	9	6 V 3	2	3	25BQ6GT	3	5
6AQ7GT		2	6BN6	2	2	6V6GT	23	21	25L6GT	6	6
6AS5	2	2	6BQ6GT	16	25	6W4GT	33	35	25W4GT	2	2
6AT6	4	3	6BQ7	6	15	6W6GT	7	12	25 Z6 5642	1	3
\# A stock of these tubes should be maintained in UHF areas. * New tubes recently introdu											

DOLLARS \& SENSE (Continued from page 122)

MAGNETICs. Average weight of the Alnico slugs that will go into an estimated $22,500,000$ loudspeakers in 1953 is $1-1 / 2$ ounces, according to RTMA. Contrast this with the $10-1 / 2$ pound Alnico magnet that Stromberg-Carlson is putting into its newest speaker for the high-fi trade.

Motorola has turned its loudspeaker design inside out, so that the magnet and associated parts are within the cone; this makes it possible to use a 7 -inch speaker in their newest portable radios, whereas the older design had a 4 -inch speaker.

If production predictions hold true, about $7 \mathrm{mil}-$ lion speakers will go into TV sets, 8 million into radios, and the rest will be split up among hi-fi, industrial, military and replacement markers.

ERAS. Do you remember when 7 -inch screens were all the vogue, way back in ' 48 and ' 49 ? 10inchers had their heyday a bit longer, going back into ' 47 and up into ' 50 . The 12 -incher lasted from mid1949 to mid-1951. The 14 -incher had the shortest life span of all, from 1951 to fall 1952 for its peak sales. Still going today, however, are the 16-17 inchers that started in early 1950 and the 20-21 inchers that took off near the end of 1950.

These figures along with price trends for cheapest table-model sets in each size, make interesting graphs in a recent issue of Electronics. A downward swoop in the price curve foretells the demise of each small set in turn. Conversely, a leveling-off price curves for the 17 and 21 -inch sets would seem to indicate that they are to be with us for a few more years.

JOHN MARKUS

Save time...effort... and equipment with Equipto Electronic Chassis and
Equipment Stand

Here's an ideal unit for transporting television sets, chassis, or other heavy equipment or for use as a portable stand to hold heavy testing equipment and television sets. It has a rugged all-steel construction and is the right height for full working convenience. It rolls noiselessly on big $21 / 2^{\prime \prime}$ rubber wheels. Finished in olive green, polymerized, shock-resistant enamel. Available without wheels, if desired.

Division of Aurora Equipment Company 830 Prairie Avenue, Aurora, lllinois Steel Shelving .. Parts Bins. . Drawer Units

TV SUPPLEMENTARY SHEET NO. 4

This supplementary sheet is for use as an up-to-theminute addition to your Clarostat RTV Manual. Manuals are available through your distributor or

AND TECHNICAL DIGEST

INDEX TO ADVERTISERS

July-fugust 1953 Issue

Advertiser Page No
Aerovox Corp. 104
American Phenolic Corp. 10
Astron Corp 36
Theo. Audel \& Co 122
Bud Radio, Inc. 112
Bussmann Mfg. Co 16
Carter Motor Co. 86
Centralab (Div. Globe-Union, Inc.). 12
Chicago Transformer Co. 82
Clarostat Mfg. Co., Inc. 125
Davis Electronics 102
Electro-Voice, Inc. Center Spread
Electronic Instrument Co., Inc(EICO)102
Electronic Measurements Corp. 122
Electrovox Company, Inc 112
Equipto 123
Erie Resistor Corp. 88
Federal Telephone \& Radio Corp. 110
General Cement Mfg. Co 120
Hickok Electrical Instr. Co 22
CBS-Hytron 18
insuline Corp. of America 122
International Resistance Co. 2nd Cover
Jackson Electrical Instrument Co $\quad 84$
Jensen Industries 100
JFD Manufacturing Co. 8, 11182
LaPointe Electronics, Inc. 30
Littelfuse, Inc. 4th Cover
The Macmillan C 44
P. R. Mallory \& Co., Inc 26
National Electric Products Cor.j. 34-35
Ohmite Mfg. Co 84
Phoenix Electronics, Inc 88
Planet Manufacturing Corp. 120
Precision Apparatus Co., Inc. 32
Quani-Nichols Company 81
Radiart Corporation 24
Radio Corp. of America 6, 40, 118
Radio Electronics 120
Radio Receptor Company, Inc 92
Rauland Corporation, The 98
Regency Div., I. D. E. A., Inc 4
Sams \& Co., Inc., Howard W. 50
Walter L. Schott Co. (Walsco) 124
Shure Bros., Inc 86
Simpson Electric Co. 14
Sprague Products 「ompany 48
Standard Transformer Corp 20
Sylvania Electric Products, Inc 3rd Cover
Sarkes Tarzian, Inc. 114
Technical Appliance Corp. 38
Telrex, Inc 42
Triplett Elect acal Instrument Co 28
T-V Product Company 104
Valpey Crysta ${ }^{\text {E }}$ Corp. 122
Videon Electrome Corp. 92
V -M Corporation 106-107
Ward Products Corp. 72
Xcelite, Inc 92

While every precauition is taken to insure accuracy, we cannot guarantee against the possibility of an occasional change or onissicg in the preparation of this Index.

+ More
 or Le
 ss -

Elsewhere in this issue is a report on UHF operations in Baton Rouge, La., Jackson, Miss. and Mobile, Ala. One thing which should be aprarent in this report is the difference in feeling on the part of the dealers did television owners in Mobile as compared tothose in Baton Rouge and Jackson. The stations in the latter cities are operating with considerably more power than the station in Mobile. This additional power has made it possible for the dealers there to make a great many more satisfactory installations than is possible in the Mobile area.

So, fewer instilations can be made in Mobile. Is that bad? Won't it be possible to make an even greater number of installations in Mobile after the station come: on with full power? The answer to the latter question will undoubtedly be yes. What then is wrong with operating temporarily on "flea power"' ? Is this not a service to those few who can enjoy the programming at the present time? Again the answer to the last question is yes. But what of those people who have purchased receivers only to find that the reception is very poor. Where do they go with their troubles? To the dealer, of course. After all was it not the dealer who pointed out all the features of the receiver? How could the dealer convince the buyer that because of the low power of the transmitter, his reception is poor but that it would be much better after the power of the transmitter is increased? The dealer has already promised something that he could not produce so it is human nature to be skeptical about any further promises, even though there is nothing wrong with the receiver. It is the weak signal which it is called upon to receive that is the cause of the trouble.

Is this the dealer's fault? Did he oversell? Anyone who has been in an area where a television station is about to come on the air knows of the promotional job that is done by the station. Almost daily, ads are run telling of the progress (or sometimes the lack of progress) of the construction and pointing out all of the programs which will be carried on the station. How then can the dealer be criticized for doing something which is a part of the plans of the station? Our thinking is that they cannot.

Thi situation is extremely bad when it is extended to UHF. The public knows that UHF is something new. He has found out that he cannot receive the new signal on his twelve channel receiver without spending some additional money. Is he wrong in expecting results? Again we think not. The public rightfully expects that any new system should be completely tried and pruved, but begins to wonder when he sees the poor results which are obtained.

Several of the dealers that we contacted in Mobile had lost money on many of the UHF installations which they had made. They had bitter experience with some of their customers because of the low signal strengih of the station. It would appear that if a dealer cannot be sure of results the would shy away from making installations. That is exactly what many of them are doing. Remember it is rather difficult to explain to Mr. John Q. Public why youcan get letter reception from a station 125 miles away than you can from one only 10 miles away.

The connecting link between the telecaster and the viewer s the television dealer. The dealer is in business to make a profit Arrough the sale of his merchandize and services. This can be carried on through a long period of time only through maintaining satisfied customers. When the dealer is confronted with a situation like tre one in Mobice, it taxes him to the utmost to do this. He is eager to increase his sales. This means more profit but only when he can maintain satisfied customers and make the in stallations without unnecessary expenses and call-backs. Thr situation ing Mobile should be used as a guide showing future tel

[^0]: * Trademark

[^1]: "I'm not complaining. Just wanted to compliment you on the quality of the music since you got the JENSEN NEEDLE!'

