

Jan. • Feb. • 1953 including

INDEX N®。

36
COVERING PHOTOFACT
folder sets 1 THRU 194

CONTENTS

Shop Talk
Milton S. Kiver
UHF and Your Test Equipment
W. William Hensler

UHF Antennas
Glen E. Slutz
UHF Transmission Lines and Accessories
Glen E. Slutz 33
UHF (Circuits and Equipment for UHF Reception)

Merle E. Chaney
Glossary of UHF Television Terms . 45
UHF Tubes
Merle E. Chaney47

Vertical Sweep Systems
C. P. Oliphant

Design Trends in VHF Tuners and Converters

Merle E. Chaney
Dollar and Sense Servicing
John Markus
PHOTOFACT Cumulative Index No. 36 Covering PHOTOFACT Sets
Nos. 1-194 Inclusive

+ More or Less - . . 126

HOW TO PLAN FAST-MOVING INVENTORIES AND REDUGE OBSOLESGENGE WITH IRC "BEST SELLERS"

Why Tie-up
Your Money
in Stagnant Stocks?
Resistors on your shelves won't bring you a cent-until you put them to use. If they're lazy movers they tie-up your money and your shelf space. And if they're shelf-squatters-gathering dust month after month until they become obsolete-they're actually money wasted. Yet a lot of servicemen continue to stock slow-moving parts because they haven't thought about the advantages of IRC "Best Seller" Resistors and Controls.

For Fast Stock

 Turnover Invest in IRC "BEST SELLERS"It's just as easy-easier in fact-to stock fast-moving, money-making parts as it is to load up with shelf-squatters. And it's certainly a lot more profirable. All you have to do is tell your Distributor's salesman that you want a realistic, commonsense inventory based on IRC "Best Sellers". He'll know what you mean, because ten-to-one your Distributor's own inventory is based on those very fast-moving parts.

"Best Seller" Resistors and Controls are those you use most often in radio and TV servicing. They're the indispensables-the ones you'll want on hand at all times. Of course there are others you'll need on occasion. But the great majority of parts essential in radio and TV divides into relatively few classifications regardless of brands or models of sets. Although IRC makes resistors and controls for every replacement need, careful analysis shows the greatest movement among a limited number of types and ranges. These "Best Sellers", listed here, provide a realistic base for establishing your parts inventory

IRC Advanced BT

Filament Type Resistors

In television sets you'll find more IRC Type BT's than any other types or makes of resistors. Fully insulated, they combine extremely low operating temperature and superior power dissipation. Not only do they easily meet the stiff requirements of television, they also beat Army-Navy Specifications in most characteristics. IRC supplies Advanced Type BT Resistors in a complete variety of ranges and sizes to meet every servicing need.

IRC Fixed and Adjustable

 PowerWireWound ResistorsThese rugged, long-life resistors are specially engineered for dependable heavyduty performance. Unlike ordinary resistors, IRC PWW's need no derating; they carty full wattage in any range. Special coating gives faster heat dissipation, and special lead-lug arrangement permits easier installation in crowded chassis. IRC Power Wire Wounds are available in a full range of sizes and resistance values and terminal types.

Most adaptable of all radio-TV technicians' volume controls, IRC Type Q Controls give you full replacement coverage with only nominal control stocks. IRC's exclusive Knob Master Shaft fits most push -on knobs without alteration except cutting to length. And IRC's Interchangeable Fixed Shaft feature allows fast control conversion to suit almost any radio or TV set. Handy IRC Volume Control Cabinet is the ideal way to buy and stock Q Controls. Cabinet stock of 18 controls handles over 90% of your single carbon control replacements.

Here are Your IRC "BEST SELLER"

Resistors and Controls listed in order of popularify

TYPE BT RESISTORS	
Type	Value
BTS $1 / 2$ watt	0.1 meg.
BTS $1 / 2$ watt	0.47 meg.
BTS $1 / 2$ watt	22,000 ohms
BTS $1 / 2$ watt	1.0 meg.
BTS $1 / 2$ watt	1000 hms
BTS $1 / 2$ watt	$10,000 \mathrm{ohms}$
BTS $1 / 2$ watt	1500 ohms
BTS $1 / 2$ waft	0.22 meg.
BTS $1 / 2$ watt	4700 ohms
BTS $1 / 2$ waft	100 ohms

POWER WIRE WOUND RESISTORS	
Type	Value
$13 / 4$ A 10 watts	10,000 ohms
$13 / 4$ A 10 watts	5000 ohms
$13 / 4$ A 10 watts	1000 ohms
$13 / 4 \mathrm{~A} 10$ watts	200 ohms
$13 / 4 \mathrm{~A} 10$ watts	100 ohms
13/4A 10 watts	75 ohms
$13 / 4$ A 10 watts	15,000 ohms
$13 / 4 \mathrm{~A} 10$ watts	2000 ohms
13/4A 10 watts	1500 ohms
$13 / 4$ A 10 watts	2500 ohms

REPLACEMENT CONTROLS		
Stock No.	Ohms	Taper
Q13-133	0.5 meg.	C
Q13-137	1.0 meg.	C
Q11.133	0.5 meg.	A
Q11-137	1.0 meg.	A
Q13-139	2.0 meg.	C
Q11-123	50 K	A
Q13-137X	1.0 meg.	H
Q11-128	0.1 meg.	A
Q13-139X	2.0 meg.	H
Q13-130	0.25 meg.	C

 sensible itiventory for you, based on these fast-moving units. Also, get Catalog Bulletins DC1, DC5 and DC8 on these parts from your IRC Distributor-or send postcard to us for your copies. IRC"Best Sellers" can save you money!

Pick of the Trade

MORE MARKETS --The industry's outlook for new markets in 1953 varies from as few as 25 to a top of 65.

With 18.7 million TV sets now in use, the industry could "get along" without new markets. From 60 to 75 per cent of all sales represent natural replacement of $7,10,12,14$ and 16 -inch sets traded in for 20 -inch and larger screens. There is a market developing for second sets. Owners keep the old smaller set for the bedroom, child's room or recreation room and buy one for the parlor.

DESPITE recent TV receiver price increases, due to rising labor and material costs, television's cost today in terms of picture size is lower than ever before. As is shown in the chart, this has been true in every year since 1947. Today the average price per screen inch is less than $\$ 10$, while in 1947 it was about $\$ 40$. A 7 -inch screen cost $\$ 300$ then, but today 20 and 21 -inch sets are available for $\$ 200$, giving three times the screen size for $1 / 3$ less cost.

The predominant TV picture for 1953 will probably be the 21 -inch size.

There are now 95 radio-TV-phonograph manufacturers, the highest number since 1950 .

Electronics, December, 1952

SERVICE MEN have found that better music is the concern of hundreds of thousands of folks. Shops across the nation have begun to stress audio, and to feature facilities for complete installation and servicing, as well as custom building. Modernization of old amplifiers and allied phono systems has proved to be quite an item, prompting many to specialize in conversions.

Audio has really begun to march on, and with quite a stride. L. W., in Service, November, 1952

MORE THAN 75 MILLION RADIO SETS, and 17 million TV sets were made in the five years from 1947 through 1951.

Auto set production rose from 17% of the total radio output in 1947 to 36 percent in 1951.

In 1947 home sets accounted for 70 percent of total production, while in 1951 for only 53 percent.

Console and consolette television production increased from 21 percent of the total in 1947 to 52 percent in 1951, largely at the expense of table model TV receivers.

Industry Statistics, from RTMA Industry Report

ABOUT THE COVER: For complete story about the cover on this issue, see More or Less, Page 126.

AND TECHNICAL DIGEST

VOL. 3 •NO. 1 JANUARY-FEBRUARY, 1953

JAMES R. RONK, Editor
Editorial Staff: Merle E. Chaney • Robert B. Dunham Ann W. Jones - Glenna M. McRoan - Glen E. Slutz Margaret Neff • L. H. Nelson • C. P. Oliphant Technical Director: W. William Hensler Arf Directors: Anthony M. Andreone - Pierre L. Crease Phofography: Robert W. Reed
Production: Archie E. Cutshall - Douglas Bolt Printed by: The WALDEMAR Press; Joseph C. Collins, Mgr.

CONTENTS

Shop Talk

Milton S. Kiver

UHF and Your Test Equipment
W. William Hensler 9
UHF Antennas
Glen E. Slutz 25
UHF Transmission Lines and Accessories Glen E. Slutz 33
UHF (Circuits and Equipment for UHF Reception) Merle E. Chaney 35
Glossary of UHF Television Terms 45
UHF Tubes
Merle E. Chaney 47
Vertical Sweep Systems
C. P. Oliphant 49
Design Trends in VHF Tuners and Converters Merle. E. Chaney 59
Dollar and Sense Servicing John Markus 63
PHOTOFACT Cumulative Index No. 36Covering PHOTOFACT Sets Nos. 1-194Inclusive65

+ More or Less - 126

HOWARD W. SAMS, Publisher

COPYRIGHT 1952 - Howard W. Sams \& Co., Inc. 2201 East 46 th Street - Indianapolis 5, Indiano

The PF (PHOTOFACT) INDEX and Technical Digest is published every other month by Howard W. Sams \& Co., Inc. at 2201 East 46th Street, Indianapolis 5, Indiana-and is included as a part of PHOTOFACT folders from PHOTOFACT Distributors without odditional cost.
SUBSCRIPTION DATA: For those desiring the convenience of delivery to their homes or shops, Howard W. Sams \& Co., Inc. will mail each issue of the INDEX direct, promptly upon publication. The subscription charge is $\$ 2.00$ for eight issues in the United States and U. S. possessions. Acceptance under Section 34.64 P. L. \& R. authorized at Indianapolis, Indiona.

no matter how you look at it...

the only choice is the

CONVERTER RC. 600 $\$ 49.95$ list

MILTON S. KIVER

A chart was printed recently in the March, 1952 issue of Sylvania News which sheda good deal of light oncertain as pects of UHF' operation. This table, reprinted here, gives the transmission line loss in db per 100 feet for today's most commonly used ransmission lines. It shows not only what happens to line loss as the frequency is raised, but also how each line is affected by the weather. And it brings forth this very revealing fact: That the 300 -ohm flat twinlead line which is soextensively used for VHF installations would be generally unsuitable for UHF operation should it become wet. At 500 mc , which is only at the doorstep of the UHF-TV band, the attenuation of the line, wet, is 20 db compared to 3.2 db when dry. Can you imagine what would happen to all but very powerful signals when it rained?

In contrast to this, consider the 300 -ohm tubular line. (A sample of this is shown in Figure 1.) Its db attenuation at 500 mc , when the weather is wet, rises only to 6.8 db .

The reason for this difference in behavior is explained by the tubular line manufacturer as follows. (See Figure 2.) In the flat twin lead line the field of energy exists, in large measure, outside of the polyethylene ribbon and hence will be affected by dielectric changes such as coating the ribbon with water. Other agents which also have an effect on line attenuation include snow, salt spray, and dirt.

In the tubular twin lead, the polyethylene plastic is shaped sothat the field of energy set up between the two conductors is largely confined within the surface of the plastic. This thus prevents changes in atmospheric conditions from affecting the line to the same extent as the flat twin lead.

From the viewpoint of attenuation, the $450-$ ohm open wire line is tops. Its .78 db at 500 mc and only 1.1 db at 1000 mc is below that of the other lines. Unfortunately, this line is the most difficult one to work with physically and for this reason is not used more widely. Its $450-$ ohm impedance is somewhat of a hindrance, too, since most antennas and receivers are designed for $300-$ ohm. However, this is not as serious as you might at first believe. There are practically no television receivers in which the input impedance remains constant at 300 ohms for all channels. The same is true of your so-called $300-$ ohm twin lead or your $300-$ ohm antennas. Thus, simply connecting the $450-$ ohm open line to the receiver directly, will frequently give you as good results as you would obtain by carefully matching the line to an impedance transformer and then making the connection to the receiver.

A 375 -ohm open-wire line was announced just as this article was being published and from the characteristic data made available by the manufacturer (The Gonset Company),

TABLE 1
Transmission Line Loss - - DB Loss Per 100 Feet

	100 MC		500 MC		1000 MC	
TYPE	Wet	Dry	Wet	Dry	Wet	Dry
450 ohm open wire*	\ldots	0.35	\ldots	.78	\ldots	1.1
300 ohm tubular	2.5	1.1	6.8	3.0	10.0	4.6
300 ohm flat	7.3	1.2	20.0	3.2	30.0	5.0
RF-59U	\ldots	3.8	\ldots	9.4	\ldots	14.2
RF-11U	\ldots	1.8	\ldots	5.0	\ldots	7.6
*Estimated values - unknown for wet conditions.						

F 0 R GREATEST CMPHENO -HEHE TV ANTENNAS
outstanding mechanical specifications

Port	Material	rield Strength	Sire	
		psi	o.d.	Wall
Mart (golv,	x." Thinwall Steal Conduir	32,000	0.922"	.0080
large Folded Dipole	$351 / 2 \mathrm{HAal}$.	19.000	500\%	.049"
Small Folded Dipole	35 \% H A	19.000	.375"	.048'
Renertor	35 h H Al.	18,000	.500 ${ }^{\circ}$.049*
Cronserm	3S H Al.	26.000	.875**	. $065^{\prime \prime}$
Center Supporl 合 ! Costing	Al. Alloy 45.000 pmi lensile strength			

EXCELLENT RADIATION PATTERMS

These are the radiation patterns of the AMPHENOL Inline antenna at 58 mc ., 66 mc ., and 88 mc ., in the low band, and $174 \mathrm{mc} ., 194 \mathrm{mc}$. , and 215 mc . in the high band. Notice the uniformity of these lobes at all frequencies. The lack of lobes off the sides and negligible ones off the back maintains high front-to-back and front-to-side ratios necessary for the rejection of various interferences. The

Horizontal iodiotion pattern of Amphenal TV Anrenna Model No. 114-00s.

Merizontal rediotian pattorn of Amphenal TV Antanne Model No 114.00 S
presence of a single forward lobe is usually a very desirable feature, especially when it is wide enough to provide adequate interception area for some differ ences in transmitter location, changes in the wave front's direction of travel, or physical movement of the antenna in high winds. Furthermore, it is not too critical of orientation. It is necessary only to aim it and forget it.

HIGHER GAIN

These gain curves of the AMPHENOL Inline antenna represent the intercepted voltage of the AMPHENOL Inline Antenna as plotted against the intercepted voltage of a reference folded dipole cut to the frequency being compared. There is no channel in either the low band or high band where there is more than a three decible change within the channel that can cause picture modulation or "fuzziness." Gain of the AMPHENOL Inline antenna is quite flat over all channels.

You will find more gain designed into the high band because of greater need for it, due to higher losses at these frequencies. Also, notice the drop-off on channel six. This is at the edge of the FM band and is subject to FM inter. ference, so the Inline's gain is purposely held down at that frequency.
The excellent broadband character. istics, impedance match, single forward lobe radiation patterns on all channels. maximum gain, lightning protection, and superior mechanical features of the AMPHENOL Inline Antenna make it the antenna for greatest TV picture quality!

for All the factors determining BETTER TV PICTURE QUALITY

Write for this book containing the characteristics and test performance dato of various types of antennas.

AMERICAN PHENOLIC CORPORATION
1830 SOUTH 54th AVENUE - CHICAGO 50, ILIINOIS

A visual method of checking impedance match is given in the review section of this column. With a sweep generator and a scope you can determine for yourself how well components, marked with the same impedance, match over a range of frequencies. The results are almost certain to change your outlook on stated impedance values.

The remaining transmission lines in Table 1 are two coaxial cables, the RG-59U and the RF-11U. Attenuation loss remains constant with weather conditions and the RG11 U is seen to compare favorably with the 300 -ohm flat twin lead. The RG-59U attenuation is quite high for UHF work and should only be employed if it is absolutely necessary.

There are a number of features which will crop up concerning UHFTV and wherever possible these will be covered in this column or in other sections of the Photofact Index. Our object is to keep all readers informed as quickly and as fully as possible of any UHF developments of interest.

While it is frequently unnecessary to carefully match 450 -ohm impedances to 300 -oh m impedances, the same is not true when a 75 -ohm impedance is to be connected to a 300 -ohm impedance. Here a careful match should be made because of the great disparity between the two values and also because 300 -ohm impedances are usually balanced while 75 -ohm impedances are not. One favorite matching network is shown in Figure 3. It consists of two quarter-wave sections of $150-$ ohm twin lead transmission line. (The length is generally chosen to be one-quarter wave long at the lowest operating frequency.) If it is desired to match 300 ohms at one end to 75 ohms at the other, then the two lines would be connected as shown in Figure 3. At the 75 -ohm end the two lines are connected in parallel. Thus, two 150 -ohm impedances in parallel produce a resultant impedance of 75 ohms .

At the other end of the lines, they are connected in series, producing the necessary 300 ohms. The impedance at one end can be balanced while it is unbalanced at the other end and the match is still effective. Or both ends can be balanced, or unbalanced, as desired.

This arrangement is simple, convenient, and quite easy to produce. Hence its popularity.

At the time of this writing, only the Portland, Oregon UHF station is on the air and there has
not been any extensive test of UHF, either for receivers, test equipment, or antennas. However, from reports drifting back from there, a number of useful opinions can be formed.

1. The placement of an antenna, both horizontally and vertically, is quite critical. This means that you not only have to probe along the roof, but you have to determine what the best height is, too. UHF field strength meters are, as yet, unobtainable but existing VHF field strength meters, like the Approved and Simpson units, use a Standard Coil tuner. This means that by inserting appropriate UHF strips, the same instrument can be used on VHF and UHF.
2. Watch the routing of unshielded lead-in lines very carefully. Both flat and tubular twin-lead have been used in Portland although the recently developed tubular twin lead is the preferredline. In either event, keep the lines away from metal surfaces, pipes, eaves, downspouts, vents, etc. Use stand-off insulators to keep the line firmly in place. Also avoid sharpbends. If a rather abrupt change in direction is necessary, try to use a gradual bend.
3. It is poor practice (even at VHF frequencies) to find that the lead-in line you estimated for the job was too short and that an additional length must be added. Breaks such as these in the line set up standing waves with resultant loss in signal.
4. Keep lead-in lines from separate VHF and UHF antennas away from each other. Any undesirable UHF signals picked up by the VHF array can be transferred to the UHF lead-in line by simple contact. Generally a distance of 6 inches is sufficient to prevent this transfer. (This fact that signals can be transferred from one lead-in line to a nother by placing them close to one another may be unknown to some service men. You might keep this fact in mind the next time you have one antenna and two television receivers to drive. Use one lead-in to bring the signal to one set. Then take a lead-in line from the other set and place it up against the first line. Scotch tape will serve to hold the lines together. Good results are obtainable if sufficient signal is available.)
5. If a shielded lead-in is required, use RF-11U in preference to RG-59U.
6. The type of antenna to use will often present a problem. Com bination arrays will, in general, be more economical than separate

Figure 3. An Impedance Matching Transformer Using Transmission Lines.

VHF-UHF arrays. However, make sure that the combination array will receive the signals you want received. Whenever you combine two antennas possessing widely differing responses, a certain amount of loss will be occasioned by both sections. If the combination antenna stems from the basic "V" array, then the angle of the antenna rods which is best for VHF reception will not oridnarily be best for UHF reception. By the same token, the best angle for UHF reception most often does not provide optimum VHF reception. And, as is most common, when you select a compromise intermediate position, then reception in both regions suffer.

The same logic will apply to all dual purpose arrays. Accept glowing reports with a grain of salt until you have had occasion to check for yourself in an actual test. The service men in Denver can tell you quite a story of a VHF-UHF array that was presented to them in glowing terms. Subsequent investigation showed the antenna to be quite unsuitable for UHF. Undoubtedly, more instances of this sort will appear.

The arrival of UHF will also bring to the service man the responsibility of servicing UHF converters. From the series of articles that have been running in this and previous issues of the Photofact Index, readers are fairly familiar with the circuitry of many UHF converters. The incoming signal is brought through a preselector circuit to a crystal mixer where it combines with a locally generated oscillator voltage. The difference frequency, generally falling within channels 5 or 6 , is then amplified by a cascode (or similar) amplifier and transferred to the VHF receiver input for treatment as any incoming VHF signal.

Converter circuits are simple and they are not expected to present any unusual servicing difficulties. Tubes would be a first item to check, together with the crystal mixer which, even at this early date, has already shown itself to be a frequent

* Please turn to Page 93 * *

W

hen was the last time
you were knocked

on your

It won't happen again with the

One of the things that is of extreme interest to the service technician, as far as UHF is concerned, is test equipment. Many service technicians have mastered the art of employing their test equipment in VHF alignment work, only to find that a new spectrum of frequencies places an even greater demand on the equipment which he now has.

The frequency spectrum for Channels 14 through 83 is from 470 to 890 megacycles. This, of course, is far beyond the range of alignment generators commonly employed for VHF alignment. The question that immediately comes to mind is ' Can I still use this equipment or will it soon be obsolete?" The answer should be obvious. This type of equipment will still retain its importance in service work. There will be more and more VHFstations coming on the air, and obviously Channels 2 through 13 will be with us from now on. This situation may be likened to the introduction of sweep generators for alignment of FM receivers. Inthis case, a new band of frequencies was opened up, but it did not lessen the requirements of an AM generator for alignment of broadcast receivers.

The next question that comes to the mind of a service technician is - "Will it be necessary for me to purchase a UHF sweep and marker generator to properly service UHF receivers or converters?' At this time, many of the manufacturers supplying units which provide U.HF reception recommend that the units be exchanged, or returned to the factory whenever it is definitely determined that alignment is required. This runs a parallel to the recommendations which were made for VHF tuners at the start of mass television production. At that time there was very little test equipment available to the service technician which provided a signal strong enough for tuner alignment. As a consequence, very little tuner alignment was being done. After the test equipment manufacturers made available suitable equipment for this work, the service technician could align and re-adjust tuners, which
prior to that time might have been returned to the factory.

It is very possible that a similar situation will exist on UHF tuning units. Since many of the manufacturers are now recommending that these units be returned for alignment, they will possibly continue to do so until the servicing field has suitable equipment available to do this type of work.

How can it be determined whether a UHF tuner requires alignment if no signal is available for checking purposes? In many cases, the present VHF equipment can be used for this purpose. Other than the frequencies involved, the theory behind the operation of the UHF tuner is no different than that employed for VHF reception. The fact that, in most cases, a silicon diode is used as a mixer, instead of a vacuum tube, does not change the basic theory of operation. Normally in the UHF tuner, there will be found two preselector circuits and an oscillator circuit. In those cases where the harmonics of the fundamental oscillator frequency are used, an additional tunedcircuit may be employed to tune these harmonics. Thus, it can be seen that there are approximately the same number of tuned circuits present per channel as there are in the VHF tuner.

One manufacturer sets forth the following requirements of the necessary equipment to perform UHF alignment -

1. AUHF sweep generator with a range of 470 to 890 megacycles.
2. AVHF sweep generator with a range from 70 to 90 megacycles.
3. A UHF marker generator for locating 480,630 , and 840 , megacycles.
4. A VHF marker generator capable of supplying $72.5,76.5,82.5$, 88.5 and 92.5 megacycle signals.

5. Ahigh gain oscilloscope.

6. A milliammeter with 0-5 ma. range.
7. A resistive pad for terminating the sweep generator cable.
8. A 300 ohm balanced detector.

This appears to be a pretty big order, but after careful study of the requirements, only Items 1 and 3 present any real problems. The requirements set forth in Items 2 and 4 are very easily satisfied with conventional VHF sweep generator equipment. The rest of the items are usually readily available except for Item 8. This detector can be constructed very easily, however, and the value of the components used will be defined in the service information covering the piece of equipment that requires alignment. Usually it will also be stated that if such alignment equipment is not available, no attempt should be made to align the receiver or converter.

What can be done about Items 1 and 3 ? Of course, equipment designed to operate within this range of frequencies can be purchased. At the present time, however, such equipment is not available at a cost consistent with the economy of the majority of the service shops. As was the case of the VHF tuner alignment equipment, however, the test equipment manufacturers will undoubtedly realize the need for such equipment and will strive to make it available to the servicing trade.

Let us investigate the possibilities of existing equipment in fulfilling the requirements of Items 1 and 3 to provide a stop-gap measure of servicing UHFreceivers and converters. All sweep generator equipment designed for VHF alignment provides signals which cover the IF frequencies as well as all 12 channel frequencies. The high band, from channel 7 through 13 , extends from 176 megacycles to 216 megacycles. It is the harmonics of these frequencies for the most part which are to be considered for UHF alignment purposes.

The method used in any given piece of equipment in obtaining these frequencies will determine to a great

Bill Clemens says-

Midget Radio Service (a 3-Man Shop) 129 S. Elizabeth St.,Lima, Ohio

"TRIPIETT 660 acues us 50 to 100 man howna

 per month."

1. ISOLATING THE TROUBLE-Plug the power cord of the chassis into LOADCHEK and note the reading. With your eye on the large meter remove the rectifier tube and you can tell immediately which side of the tube the trouble is on. You have already eliminated 50% of your probing time.

2. LOCATING THE SHORT-With Loadchek you can quickly check the shorted side, part by part, without laying down tools or picking up test leads. Here, the trouble was a short in the transformer, spotted without having to warm up set. Overloads are found the same way.

Locates trouble in a hurry

The above pictures illustrate but one of the many timesaving uses of Triplett 660 Loadchek. This versatile instrument accurately measures power consumption, enables you to see instantly any deviation from normal load, without disconnecting a single part... finds trouble in a hurry.

For Radio and TV servicing-for almost any kind of electrical trouble-shooting-LOADCHEK saves hours of painstaking work every day. At its moderate cost no service technician can afford to be without it. Try one today - and see! Write for free booklet.
triplett electrical instrument co., bluffion, ohio, u.s.a.

extent the success which can be had in using these harmonics.

A review of the basic theory of operation of the sweep signal generator should be helpful in understanding the problems encountered when using these harmonics. Figure 1 A is a simplified block diagram of a typical sweep generator employing a sweep driven oscillator with a variable center frequency. At one setting of the sweep frequency range selector, the fundamental frequency of the sweep oscillator is employed. In order to extend the range of the selector. The beat between the FM oscillator and the fixed frequency oscillator produces both the sum and different frequencies. Thus, the range of the equipment is extended. The exact frequency range of the sweep driven generator and the fixed frequency oscillator varies considerably in equipment of different manufacture. As would be expected, however, the frequency range which is provided by the fundamental FM oscillator frequency will usually be of greater amplitude than those provided by the beat frequency method. This is particularly true of the harmonics of those beat frequencies.

To illustrate the various frequencies which are employed in several of the popular brand signal generators, let us review the following chart which lists the range of the FM oscillator.

1. 75 to 115 megacycles.
2. 60 to 120 megacycles.
3. 140 to 260 megacycles.

Figure 1A. Block Diagram of Sweep Generator Employing a Variable Center Frequency FM Oscillator.

Figure 1B. Block Diagram of Sweep Generator Employing a Fixed Center Frequency FM Oscillator.

Figure 2. Block Diagram Illustrating the Various Response Curve "' Takeoff" Points.

Keeping in mind that the UHF range extends from 270 to 890 megacycles we can determine what order of harmonics will be required of the these listed oscillators to produce the desired frequencies. In the case of Number 1, the eighth harmonic will be required to produce the upper limit of the UHF band since the seventh harmonic of 115 megacycles would be only 805 megacycles. In the case of oscillator Number 2, the eighth har monic would also be required since the seventh harmonic would extend only to 840 megacycles. In the case of Number 3, only the fourth harmonic need be used since the upper limit of the fundamental frequency is at 260 megacycles. The fourth harmonic of $t h i s$ frequency would produce a 1040 megacycle signal.

Another system employedby many test equipment manufacturers to obtain a variable FM signal is illustrated in Figure 1B. With this method an FM oscillator having a fixed center frequency is employed. The output of this FM oscillator is beat against a variable RF oscillator and thus produces the desired FM signal.

What does this mean in the way of useability of these various pieces of equipment? Does it mean that some cannot be used for UHF alignment purposes? To the contrary, it is possible to use all of the listed equipment for this purpose, although it is true, that the eighth harmonic signal is of much lower amplitude than that of a lower order harmonic.

Our experience in using the equipment, however, has shown that a useable signal is available. In the case of any equipment, where a high order of harmonic must be used, greater care must be exercised in making sure that the correct harmonic is being used. Another problem, which presents itself; is that
of marker signals, which might be even more confusing in the first few attempts at performing this alignment work. The marker problem will be discussed later.

Since the amplitude of the har monic signal is low, the first consideration in performing an alignment is that of selecting a point in the receiver from where a useable, detected signal which is to be fed to the scope can be taken. Figure 2 shows, by means of a block diagram, the various points in the receiver where the scope can be connected. The first point shown is at the output of the UHF tuner or converter. This applies particularly to these cases where a converter is used. The signal at the output of the converter is not a detected signal, making necessary the use of some form of detector, preferably of the balanced type. Such a unit can be constructed using a germanium diode. The schematic of a typical unit of this type is shown in Figure 3. This detector has a 300 ohm balanced input with an unbalanced output. By connecting this detector to the output terminals of the converter, a detected signal representative of the passband of the converter can be had. Such a test setup usually does not provide a signal of sufficient amplitude to be useable, however, whenever harmonics are used as the signal source. In the event that this setup is tried, a scope having exceptionally high gain must be used if any degree of success is to be obtained.

Figure 3. A Balanced Input Detector.

The second takeoff point shown in Figure 2 is at the " looker" point on the VHF tuner. This particular point can be used only in those cases where a double conversion type of system is being employed. This situation will exist in practically all cases where a converter is being used with a conventional VHF receiver. In those cases where the VHF tuner functions as an IF amplifier, the VHF mixer in the tuner is converted to an amplifier stage. With it no longer functioning as a detector (mixer), there is no detected signal at the ''looker'' point.

Even though the signal at the " looker" point has a greater amplitude than that at the output of the UHF tuning device, it still is too weak to be usable with most signal and scope combinations. It is recommended that this setup be tried with your own equipment. A few trials will show whether or not it is practical. If at first the patterns obtained are confusing, or do not appear to be the correct ones, it would be wise to get the equipment setup by means of the following procedure and then move the scope connection back to the " looker" point and check the results.

The third point, shown in Figure 2 , is at the video detector. In practically every case a usable signal can be obtained at this point. There are, however, a few very important considerations which must be borne in mind when using this method of alignment. It must be remembered that, since the VHF tuner and the video IF amplifier are being used for signal amplification, any misalignment of these circuits will be reflected in the response curve at the video detector. This should present no serious problem because these circuits should be properly aligned for correct operation of the receiver. It is wise to check the alignment by injecting a signal at the input of the VHF tuner at whatever channel is being used for the double sonversion process (usually 5 or 6). When the UHF tuner or converter is properly aligned, the waveform at the video detector will be identical to that obtained when the signal was injected at the input of the VHF tuner. Another point to keep in mind
is that of bias considerations for the
video IF stages as well as the RF
amplifier in the VHF tuner. It is ad-
visable to apply the same amount of
bias as specified for video IF align-
ment. In those cases where a usable
pattern cannot be obtained with this
a mount of bias, it can be reduced,
taking special care to see that no

SWEEP AND MARKER GENERATOR FREQUENCY CHART

The purpose of this chart is to show several sets of frequencies whose harmonics produce the desired signals for UHF alignment work. The figures are presented in four columns (A, B, C and D) so that a reference system can be set up to show which set of figures should be used on each channel for any given type of signal generator. The frequencies shown for each channel cover a sufficient range so that almost all VHF generators can be used in connection with the frequencies shown.

The channel numbers are listed in the left column. The lower frequency limit, video carrier, sound carrier and upper frequency limit are shown in the next column. Columns A, B, C and D list the frequencies whose harmonics produce the desired frequencies shown in the second column. The numeral in parenthesis indicates what order of harmonic produces the desired UHF signal.

The highest frequencies shown in columens A, B, C or D which fall within range of the signal generator should be used. It is suggested that, after it is determined which column should be used for each channel to obtain the sweep signal, that column be boxed-in with blue pencil. The same thing can then be done for the marker frequencies, using a red pencil. After this is done, the chart will be very easy to use with your own signal generators. Elsewhere
in this article is a disoussion on the use of several brands of sweep and marker signal generators in connection with this chart. The discussion points out which columns should be used with each instrument.

Column C presents frequencies which are especially suited for use with TV-FM sweep generators covering the twelve VHF channels and the FM band. All frequencies shown in Column C fall within the range of such generators.

Column D contains frequencies from 94 to 120 megacycles which can be supplied by many AM generators now in the field. By using this type of generator as an auxiliary marker generator, markers can be provided throughout the UHF range. With some generators the 7th and 8th harmonics are quite weak and produce low amplitude markers which are rather difficult to see. Maintaining a maximum gain setting of the scope will aid in making the marker visable.

On some channels, two of the columns have the same frequencies listed. This was done to permit coverage of all 70 UHF channels using a minimum number of columns for any given signal generator.

It is suggested that the accompanying text be carefully read in order to better understand the procedure involving the use of this chart.

CHANNEL		Dial Settings (MC)							
NO.	FREQ. (MC)	A		B		C		D	
14	470	235	(2)	156.67	(3)	94	(5)	94	(5)
	471.25	235.63	(2)	157.08	(3)	94.25	(5)	94.25	(5)
	475.75	237.88	(2)	158.58	(3)	95.15	(5)	95.15	(5)
	476	238	(2)	158.67	(3)	95.2	(5)	95.2	(5)
15	476	238	(2)	158.67	(3)	95.2	(5)	95.2	(5)
	477.25	238.63	(2)	159.08	(3)	95.45	(5)	95.45	(5)
	481.75	240.88	(2)	160.58	(3)	96.35	(5)	96.35	(5)
	482	241	(2)	160.67	(3)	96.4	(5)	96.4	(5)
16	482	241	(2)	160.67	(3)	96.4	(5)	96.4	(5)
	483.25	241.63	(2)	161.08	(3)	96.65	(5)	96.65	(5)
	487.75	243.88	(2)	162.58	(3)	97.55	(5)	97.55	(5)
	488	244	(2)	162.67	(3)	97.6	(5)	97.6	(5)
17	488	244	(2)	162.67	(3)	97.6	(5)	97.6	(5)
	489.25	244.63	(2)	163.08	(3)	97.85	(5)	97.85	(5)
	493.75	246.88	(2)	164.58	(3)	98.75	(5)	98.75	(5)
	494	247	(2)	164.67	(3)	98.8	(5)	98.8	(5)
18	494	247	(2)	164.67	(3)	98.8	(5)	98.8	(5)
	495.25	247.63	(2)	165.08		99.05	(5)	99.05	(5)
	499.75	249.88	(2)	166.58	(3)	99.95	(5)	99.95	(5)
	500	250	(2)	166.67	(3)	100	(5)	100	(5)

Sweep And Marker Generator Frequency Chart (Continued).

overloading occurs. A good habit to form in this connection is to keep the gain of the scope at maximum (whenever possible) and inject only enough signal from the signal generator to provide a normal pattern on the scope with normal bias applied.

Termination of the output cable of the signal generator is of extreme importance in UHF alignment work. An improperly terminated cable may result in a very distorted pattern and ultimately cause improper alignment. Some instruments have a ter minating box which can be adjusted to provide the desired unbalanced or balanced output. Those generators having no termination box or terminating resistance in the cable will require the addition of a non-inductive resistor at the output terminals. Usually a value from 50 to 100 ohms will be required. By referring to the instruc tion manual, the output impedance of the generator can be determined, which will indicate the proper terminating resistance to be used. Some manufacturers have devices, either incorporated in the output cable or as an accessory item, which provide the means of obtaining the desired balanced output. For example, the Simpson Model 479 and 480 instruments employ a cable having a termination box, which, by changing the jumpers on the box provides the desired output impedance. The Triplett 3434 A is supplied with two output cables - one having an unbalanced output, the other having a balanced output, with the terminating resistors in the cable. In the way of an accessory item, Hickok supplies their type 75 termination pad which makes possibleabalanced or unbalanced output by means of reversing the plug incorporated in the pad.

Many of the UHF tuners or converters have an unbalanced input. When this is the case, the unbalanced cable canbe used, providing the proper terminating resistor h as been added. In those units having a balanced input or requiring the use of a "balun", which is an impedance matching device for converting an unbalanced input to a balanced input, a pad which will provide a balanced output should be used in connection with the signal generator. If the signal generator to be used does not have a balanced output, a pad can be constructed very easily. Such a unit is shown in Figure 4. All resistors used in constructing this pad must be carbon resistors. To calculate the value of the resistors to be used, the firststep is to determine the output impedance of the signal generator, which is represented by Rz in the
formula. This is usually stated in the operating manual supplied with the signal generator. For example, let us assume that the signal generator has an output impedance of 50 ohms - the value Rz would be 50 ohms. The other two resistors could then be calculated from the formula, 150 minus one-half Rz , which would be 150 minus 25 or 125 ohms. Thus, the value of the tworesistors leading to the output terminals would be 125 ohms each and the value of Rz would be 50 ohms. Such an arrangement provides a balanced output at 300 ohms. The values of these resistors are not as critical as it would appear that they might be. Thus the nearest standard value to the calculated value can be used. For example, in the previously discussed illustration the value of Rz could be 47 ohms. The value of the other two resistors could be 120 ohms. Although these do not conform exactly to the calcul ated values, no difference in performance can be noted.

Let us go through the procedure for setting up the equipment for UHF' alignment. It is suggested, that on the first attempt, that a properly aligned converter be used so the user can be more assured of proper results. Let us assume that the converter to be checked is designed to provide an output on channel 5 or 6 , and that the desired channel for alignment is channel 5. The first step would be to connect the signal generator to the antenna terminals of the receiver, connect a scope across the video detector load and inject a sweep signal at channel 5 . Apply proper bias to the AGC line in the receiver and observe the output wave form. If the receiver is properly aligned, a standard, convential IF alignment pattern will be obtained. Also it should be noted whether the high frequency side of the pattern is at the right or left. This pattern should be in the same relative position when checking the UHF converter unless, of course, there is an inversion in the signal generator it self between ranges. Normally this

Figure 4. An Unbalanced-to-Balanced Pad.

Sweep And Marker Generator Frequency Chart (Continued).

CHANNEL

NO. FREQ.

	(MC)	A		B	C		D	
32	578	289	(2)	192.67 (3)	192.67 (3)		115.6	(5)
	579.25	289.63	(2)	193.08 (3)	193.08	(3)	115.85	(5)
	583.75	291.88	(2)	194.58 (3)	194.58	(3)	116.75	(5)
	584	292	(2)	194.67 (3)	194.67	(3)	116.8	(5)
33	584	292	(2)	194.67 (3)	194.67	(3)	116.8	(5)
	585.25	292.63	(2)	195.08 (3)	195.08	(3)	117.05	(5)
	589.75	294.88	(2)	196.58 (3)	196.58	(3)	117.95	(5)
	590	295	(2)	196.67 (3)	196.67	(3)	118	(5)
34	590	295	(2)	196.67 (3)	196.67	(3)	118	(5)
	591.25	295.63	(2)	197.08 (3)	197.08	(3)	118.25	(5)
	595.75	297.88	(2)	198.58 (3)	198.58	(3)	119.15	(5)
	596	298	(2)	198.67 (3)	198.67	(3)	119.2	(5)
35	596	298	(2)	198.67 (3)	198.67 (3)	(3)	99.33	(6)
	597.25	298.63	(2)	199.08 (3)	199.08	(3)	99.54	(6)
	601.75	300.88	(2)	200.58 (3)	200.58 (3)	(3)	100.29	(6)
	602	301	(2)	200.67 (3)	200.67	(3)	100.33	(6)
36	602	301	(2)	200.67 (3)	200.67	(3)	100.33	(6)
	603.25	301.63	(2)	201.08 (3)	201.08	(3)	100.54	(6)
	607.75	303.88	(2)	202.58 (3)	202.58	(3)	101.29	(6)
	608	304	(2)	202.67 (3)	202.67	(3)	101.33	(8)
37	608	304	(2)	202.67 (3)	202.67	(3)	101.33	(6)
	609.25	304.63	(2)	203.08 (3)	203.08	(3)	101.54	(6)
	613.75	306.88	(2)	204.58 (3)	204.58	(3)	102.29	(6)
	614	307	(2)	204.67 (3)	204.67	(3)	102.33	(6)
38	614	307	(2)	204.67 (3)	204.67	(3)	102.33	(6)
	615.25	307.63	(2)	205.08 (3)	205.08	(3)	102.54	(6)
	619.75	309.88	(2)	206.58 (3)	206.58	(3)	103.29	(6)
	620	310	(2)	206.67 (3)	206.67	(3)	103.33	(6)
39	620	310	(2)	206.67 (3)	206.67	(3)	103.33	(6)
	621.25	310.63	(2)	207.08 (3)	207.08	(3)	103.54	(6)
	625.75	312.88	(2)	208.58 (3)	208.58	(3)	104.29	(6)
	626	313	(2)	208.67 (3)	208.67	(3)	104.33	(6)
40	626	313	(2)	208.67 (3)	208.67	(3)	104.33	(6)
	627.25	313.63	(2)	209.08 (3)	209.08	(3)	104.54	(6)
	631.75	315.88	(2)	210.58 (3)	210.58	(3)	105.29	(6)
	632	316	(2)	210.67 (3)	210.67	(3)	105.33	(6)
41	632	316	(2)	210.67 (3)	210.67	(3)	105.33	(6)
	633.25	316.63	(2)	211.08 (3)	211.08	(3)	105.54	(6)
	637.75	318.88	(2)	212.58 (3)	212.58	(3)	106.29	(6)
	638	319	(2)	212.67 (3)	212.67	(3)	106.33	(6)
42				212.67 (3)			106.33	(6)
	639.25	319.63	(2)	213.08 (3)	213.08	(3)	106.54	(6)
	643.75	321.88	(2)	214.58 (3)	214.58	(3)	107.29	(6)
	644	322	(2)	214.67 (3)	214.67	(3)	107.33	(6)
43	644	322	(2)	214.67 (3)	92	(7)		(6)
	645.25	322.63	(2)	215.08 (3)	92.18	(7)	107.54	(6)
	649.75	324.88	(2)	216.58 (3)	92.82	(7)	108.29	(6)
	650	325	(2)	216.67 (3)	92.86	(7)	108.33	(6)
44	650	325	(2)	216.67 (3)	92.86	(7)	108.33	(6)
	651.25	325.63	(2)	217.08 (3)	93.04	(7)	108.54	(6)
	655.75	327.88	(2)	218.58 (3)	93.68	(7)	109.29	(6)
	656	328	(2)	218.67 (3)	93.71	(7)	109.33	(6)

Sweep And Marker Generator Frequency Chart (Continued).

CHANNEL		Dial Settings (MC)							
	(MC)	A		B		C		D	
45	656	328	(2)	218.67	(3)	93.71	(7)	109.33	(6)
	657.25	328.63	(2)	219.08	(3)	93.89	(7)	109.54	(6)
	661.75	330.88	(2)	220.58	(3)	94.54	(7)	110.29	(6)
	662	331	(2)	220.67	(3)	94.57	(7)	110.33	(6)
46	662	331	(2)	220.67	(3)	94.57	(7)	110.33	(6)
	663.25	331.63	(2)	221.08	(3)	94.75	(7)	110.54	(6)
	667.75	333.88	(2)	222.58	(3)	95.39	(7)	111.29	(6)
	668	334	(2)	222.67	(3)	95.43	(7)	111.33	(6)
47	668	334	(2)	222.67	(3)	95.43	(7)	111.33	(6)
	669.25	334.63	(2)	223.08	(3)	95.61	(7)	111.54	(6)
	673.75	336.88	(2)	224.58	(3)	96.25	(7)	112.29	(6)
	674	337	(2)	224.67	(3)	96.29	(7)	112.33	(6)
48	674	337	(2)	224.67	(3)	96.29	(7)	112.33	(6)
	675.25	337.63	(2)	225.08	(3)	96.46	(7)	112.54	(6)
	679.75	339.88	(2)	226.58	(3)	97.11	(7)	113.29	(6)
	680	340	(2)	226.67	(3)	97.14	(7)	113.33	(6)
49	680	340	(2)	226.67	(3)	97.14	(7)	113.33	(6)
	681.25	340.63	(2)	227.08	(3)	97.32	(7)	113.54	(6)
	685.75	342.88	(2)	228.58	(3)	97.96	(7)	114.29	(6)
	686	343	(2)	228.57	(3)	98	(7)	114.33	(6)
50	686	228.67	(3)	171.50	(4)	98	(7)	114.33	(6)
	687.25	229.08	(3)	171.81	(4)	98.18	(7)	114.54	(6)
	691.75	230.58	(3)	172.94	(4)	98.82	(7)	115.29	(6)
	692	230.67	(3)	173	(4)	98.86	(7)	115.33	(6)
51	692	230.67	(3)	173	(4)	98.86	(7)	115.33	(6)
	693.25	231.08	(3)	173.31	(4)	99.04	(7)	115.54	(6)
	697.75	232.58	(3)	174.44	(4)	99.68	(7)	116.29	(6)
	698	232.67	(3)	174.50	(4)	99.71	(7)	116.33	(6)
52	698	232.67	(3)	99.71	(7)	174.50		116.33	
	699.25	233.08	(3)	99.89	(7)	174.81		116.54	(6)
	703.75	234.58	(3)	100.54	(7)	175.94	(4)	117.29	(6)
	704	234.67	(3)	100.57	(7)	176	(4)	117.33	(6)
53	704	234.67	(3)	100.57	(7)	176	(4)	117.33	(6)
	705.25	235.08	(3)	100.75	(7)	176.31	(4)	117.54	(6)
	709.75	236.58	(3)	101.39	(7)	177.44	(4)	118.29	(6)
	710	236.67	(3)	101.43	(7)	177.50	(4)	118.33	(6)
54	710	236.67	(3)	101.43	(7)	177.50	(4)	118.33	(6)
	711.25	237.08	(3)	101.61	(7)	177.81	(4)	118.54	(6)
	715.75	238.58	(3)	102.25	(7)	178.94	(4)	119.29	(6)
	716	238.67	(3)	102.29	(7)	179	(4)	119.33	(6)
55	716	238.67	(3)	179	(4)	179	(4)	102.29	(7)
	717.25	239.08	(3)	179.31	(4)	179.31	(4)	102.46	(7)
	721.75	240.58	(3)	180.44	(4)	180.44	(4)	103.11	(7)
	722	240.67	(3)	180.50	(4)	180.50	(4)	103.14	(7)
56	722	240.67					(4)		(7)
	723.25	241.08	(3)	180.81	(4)	180.81	(4)	103.32	(7)
	727.75	242.58	(3)	181.94	(4)	181.94	(4)	103.96	(7)
	728	242.67	(3)	182	(4)	182	(4)	104	(7)
57	728	242.67	(3)	183.50	(4)	183.50	(4)	104	(7)
	729.25	243.08	(3)	183.81	(4)	183.81		104.18	(7)
	733.75	244.58	(3)	184.94	(4)	184.94	(4)	104.82	(7)
	734	244.67	(3)	185	(4)	185	(4)	104.86	(7)

is not the case, but should the generator be so designed, this fact should be kept in mind.

The next step is that of connecting the converter to the receiver. Use a short piece of 300 ohm line for making the connection between the output of the converter and the input of the receiver. Many manufacturers of converters supply a length of lead which has been cut to the proper length to provide optimum performance with that particular converter. If such a lead-in is supplied, it should be used. Next connect the output of the signal generator to the input of the UHF converter, using a properly terminated cable.

There are two basic types of converters. One being the single channel, or switch type unit which provides reception on one two channels. The other type being the all-channel converter which provides reception for all channels from 14 through 83 , this being the continuous tuning type.

Let us assume that in the aforementioned set-up we are using a single channel type UHF converter, and letus assume that the unit is to be aligned to channel 27. Since the generator is not calibrated directly on the dial for an output at channel 27 , it is necessary to determine what frequency will provide har monics that fall in the channel 27 band. The Sweep and Marker Generator Frequency Chart which is included as a part of this article is intended to show these frequencies.

As anaidin determining which column of figures should be used, we have included in this article instructions for the use of several makes and models of signal generators, pointing out the correct column of frequencies to be used over the entire UHF range, as well as the band to be used on that particular instrument. We have also pointed out a few of the interference problems which might be encountered as a result of using the harmonics at the output of the signal generator cable.

It is suggested, that after the proper column to be used in any given group of channels is determined, this column be boxed-in with a red pencil, for instance, since only this group of figures will apply to your signal generator. For example, let us assume that the frequencies to be used with your particular signal generator on channels 14 through 44 fall in column B. By drawing a box

CBS-HYTRON IS FAMOUS ... EASY TO SELL. The magic letters "CBS" are plugged for you on radio and TV station breaks . . . 102 BILLION times a year! CBS is known and respected by all your customers. CBS-Hytron is the profitable brand with endless sales assistance.

ワCBS-HYTRON SPECIALIZES IN

 RECEIVING TUBES. Since 1921, CBS-Hytron has concentrated on receiving types. Practice makes perfect. Put those years of know-how to work for you. Let time-proved CBS-Hytron dependability cut call-backs . . . make more money for you.

3 CBS-HYTRON LEADS IN TV
TUBES. You know them. CBS-Hytron TV originals: $1 \mathrm{AX} 2,1 \mathrm{X} 2 \mathrm{~A}, 6 \mathrm{BQ} 6 \mathrm{GT}$, 12A4, 12B4, 12BH7, 12BY7, 12BZ7, 25BQ6GT, and the original rectangular 16RP4. Even CBS-Hytron standard TV tubes are designed-for-TV ...tested-for-TV ... to give you peak performance and profit.

CHANNEL		Dial Settings (MC)			
N	$\begin{aligned} & \text { FREQ. } \\ & (\mathrm{MC}) \end{aligned}$	A	B	C	D
58	734	244.67 (3)	183.50 (4)	183.50 (4)	104.86 (7)
	735.25	245.08 (3)	183.81 (4)	183.81 (4)	105.04 (7)
	739.75	246.58 (3)	184.94 (4)	184.94 (4)	105.68 (7)
	740	246.67 (3)	185 (4)	185 (4)	105.71 (7)
59	740	246.67 (3)	185 (4)	185 (4)	105.71 (7)
	741.25	247.08 (3)	185.31 (4)	185.31 (4)	105.89 (7)
	745.75	248.58 (3)	186.44 (4)	186.44 (4)	106.54 (7)
	746	248.67 (3)	186.50 (4)	186.50 (4)	106.57 (7)
60	746	248.67 (3)	186.50 (4)	186.50 (4)	106.57 (7)
	747.25	249.08 (3)	186.81 (4)	186.81 (4)	106.75 (7)
	751.75	250.58 (3)	187.94 (4)	187.94 (4)	107.39 (7)
	752	250.67 (3)	188 (4)	188 (4)	107.43 (7)
61	752	250.67 (3)	188 (4)	188 (4)	107.43 (7)
	753.25	251.08 (3)	188.31 (4)	188.31 (4)	107.61 (7)
	757.75	252.58 (3)	189.44 (4)	189.44 (4)	108.25 (7)
	758	252.67 (3)	189.50 (4)	189.50 (4)	108.29 (7)
62	758	252.67 (3)	189.50 (4)	189.50 (4)	108.29 (7)
	759.25	253.08 (3)	189.81 (4)	189.81 (4)	108.46 (7)
	763.75	254.58 (3)	190.94 (4)	190.94 (4)	109.11 (7)
	764	254.67 (3)	191 (4)	191 (4)	109.14 (7)
63	764	254.67 (3)	191 (4)	191 (4)	109.14 (7)
	765.25	255.08 (3)	191.31 (4)	191.31 (4)	109.32 (7)
	769.75	256.58 (3)	192.44 (4)	192.44 (4)	109.96 (7)
	770	256.67 (3)	192.50 (4)	192.50 (4)	110 (7)
64	770	256.67 (3)	192.50 (4)	192.50 (4)	110 (7)
	771.25	257.08 (3)	192.81 (4)	192.81 (4)	110.18 (7)
	775.75	258.58 (3)	193.94 (4)	193.94 (4)	110.82 (7)
	776	258.67 (3)	194 (4)	194 (4)	110.86 (7)
65	776		194 (4)	194 (4)	110.86 (7)
	777.25		194.31 (4)	194.31 (4)	111.04 (7)
	781.75		195.44 (4)	195.44 (4)	111.68 (7)
	782		195.50 (4)	195.50 (4)	111.71 (7)
66	782		195.50 (4)	195.50 (4)	111.71 (7)
	783.25		195.81 (4)	195.81 (4)	111.89 (7)
	787.75		196.94 (4)	196.94 (4)	112.54 (7)
	788		197 (4)	197 (4)	112.57 (7)
67	788		197 (4)	197 (4)	112.57 (7)
	789.25		197.31 (4)	197.31 (4)	112.75 (7)
	793.75		198.44 (4)	198.44 (4)	113.39 (7)
	794		198.50 (4)	198.50 (4)	113.43 (7)
68	794		198.50 (4)	198.50 (4)	113.43 (7)
	795.25		198.81 (4)	198.81 (4)	113.61 (7)
	799.75		199.94 (4)	199.94 (4)	114.25 (7)
	800		200 (4)	200 (4)	114.29 (7)
69	800		200 (4)	200 (4)	114.29 (7)
	801.25		200.31 (4)	200.31 (4)	114.46 (7)
	805.75		201.44 (4)	201.44 (4)	115.11 (7)
	806		201.50 (4)	201.50 (4)	115.14 (7)
70	806	100.75 (8)	201.50 (4)	201.50 (4)	115.14 (7)
	807.25	100.91 (8)	201.81 (4)	201.81 (4)	115.32 (7)
	811.75	101.47 (8)	202.94 (4)	202.94 (4)	115.96 (7)
	812	101.5 (8)	203 (4)	203 (4)	116 (7)

around all of the figures in that column which applies to your test equipment, it is very easy to find the correct frequency when setting up for any channel. This same thing can be done for the remaining channels.

Let us return to our alignment set-up for our single channel converter. Referring to the Sweep and Marker Generator Frequency Chart, we see that channel 27 operates between 548 and 554 megacycles. Let us assume that the particular signal generator employed in this set-up specifies that column B be used. This shows that the center frequency will be approximately 184 megacycles. The (3) indicates that the third harmonic of this frequency will produce the desired UHF frequency. After setting the center frequency at approximately 184 megacycles, a response curve should be visible on the scope. You will note, however, that the width of the response curve is quite narrow. This is brought about by the fact, that, since we are using the third harmonic of the sweep signal, the total frequency being swept is three times as great as the amount that is swept at the fundamental frequency. This makes it necessary to reduce the amount of frequency deviation to a point only about $1 / 3$ as wide as is required when using the fundamental frequency. Do not adjust the sweep deviation to too small a value or the sides of the pattern will not be visible. Atypical response curve is shown in Figure 5.

Figure 5. Typical Response Curve.

Figure 6. Response Curve Showing Marker at 50\% Point.
 Teleset Service Control, gives you each month service techniques as they are tested... production changes as they happen!
With the right information, minutes may save hours of troubleshooting. With the right parts, repair is simplified ... service is better... customer satisfaction builds confidence and reputation.

Both are at your local Du Mont Distributor. Look for the Du Mont SERVICE NEWS on your next call . . . and insist
on ORIGINAL TELEVISION PARTS.

REPLACEMENT SALES, CATHODERAY TUBE DIVISION, ALLEN B. DU MONT LABORATORIES, INC., CLIFTON, N. J.

Sweep And Marker Generator Frequency Chart (Continued).

CHANNEL		Dial Settings (MC)							
NO.	FREQ.								
	(MC)	A		B		C		D	
71	812	101.5	(8)	203	(4)	203	(4)	110	(7)
	813.25	101.66		203.31	(4)	203.31	(4)	116.18	(7)
	817.75	102.22	(8)	204.44	(4)	204.44	(4)	116.82	(7)
	818	102.25	(8)	204.50	(4)	204.50	(4)	116.86	(7)
72	818	102.25	(8)	204.50	(4)	204.50	(4)	116.86	(7)
	819.25	102.41	(8)	204.81	(4)	204.81	(4)	117.04	(7)
	823.75	102.97	(8)	205.94	(4)	205.94	(4)	117.68	(7)
	824	103	(8)	206	(4)	200	(4)	117.71	(7)
73	324	103	(8)	206	(4)	205	(4)	117.71	(7)
	825.25	103.16	(8)	206.31	(4)	200.31	(4)	117.89	(7)
	829.75	103.72	(8)	207.44	(4)	207.44	(4)	118.54	(7)
	830	103.75	(8)	207.50	(4)	207.50	(4)	118.57	(7)
74	830	103.75	(8)	207.50	(4)	207.50	(4)	118.57	(7)
	831.25	103.91	(8)	207.81	(4)	207.81	(4)	118.75	(7)
	835.75	104.47	(8)	208.94	(4)	208.94	(4)	119.39	(7)
	836	104.5	(8)	209	(4)	209	(4)	119.43	(7)
75	836			209	(4)	209	(4)	104.5	(8)
	837.25			209.31	(4)	209.31	(4)	104.66	(8)
	841.75			210.44	(4)	210.44	(4)	105.22	(8)
	842			210.50	(4)	210.50	(4)	105.25	(8)
76	842			210.50	(4)	210.20	(4)	105.25	(8)
	843.25			210.81	(4)	210.81	(4)	105.41	(8)
	847.75			211.94	(4)	211.94	(4)	105.97	(8)
	848			212	(4)	212	(4)	106	(8)
77	848			212	(4)	212	(4)	106	(8)
	849.25			212.31	(4)	212.31	(4)	106.16	(8)
	853.75			213.44	(4)	213.44	(4)	106.72	(8)
	854			213.50	(4)	213.50	(4)	106.75	(8)
78	854			213.50	(4)	213.50	(4)	106.75	(8)
	855.25			213.81	(4)	213.81	(4)	106.91	(8)
	859.75			214.94	(4)	214.94	(4)	107.47	(8)
	860			215	(4)	215	(4)	107.5	(8)
79	860	215	(4)	215	(4)	107.50	(8)	107.5	(8)
	861.25	215.31	(4)	215.31	(4)	107.66	(8)	107.66	(8)
	865.75	216.44	(4)	216.44	(4)	108.22	(8)	108.22	(8)
	866	216.50	(4)	216.50	(4)	108.25	(8)	108.25	(8)
80	865	173.2	(5)	216.50	(4)	108.25	(8)	108.25	(8)
	867.25	173.45	(5)	216.81	(4)	108.41	(8)	108.41	(8)
	871.75	174.35	(5)	217.94	(4)	108.97	(8)	108.97	(8)
	872	174.4	(5)	218	(4)	109	(8)	109	(8)
81	872	174.4	(5)	218	(4)	174.40	(5)	109	(8)
	873.25	174.65	(5)	218.31	(4)	174.65	(5)	109.16	(8)
	877.75	175.55	(5)	219.44	(4)	175.55	(5)	109.72	(8)
	878	175.6	(5)	219.50	(4)	175.60	(5)	109.75	(8)
82	878	175.6	(5)	219.50	(4)	175.60	(5)	109.75	(8)
	879.25	175.85	(5)	219.81	(4)	175.85	(5)	109.91	(8)
	883.75	176.75	(5)	220.94	(4)	176.75	(5)	110.47	(8)
	884	176.8	(5)	221	(4)	176.80	(5)	110.5	(8)
83	884	176.8	(5)	221	(4)	176.80	(5)	110.5	(8)
	885.25	177.05	(5)	221.31	(4)	177.05	(5)	110.66	(8)
	889.75	177.95	(5)	222.44	(4)	177.95	(5)	111.22	(8)
	890	178	(5)	222.50	(4)	178	(5)	111.25	(8)

The tuner now being adjusted is of the single channel type. To effect proper alignment, it is necessary to adjust the oscillator so that the video carrier marker is at the 50% point on the IF resnonse curve as shown in Figure 6. It is also necessary to adjust the two preselector circuits, or whatever number is being used in this particular converter, to provide maximum aplitude and proper wave shape. Since the passband of the preselector circuits are much greater than 6 megacycles in most cases, all that it is necessary to do is to adjust for maximum amplitude. Aslight tilt will be noted as the adjustment is made above and. below the correct frequency. This is shown in Figures 7A and 7B, which have the preselectors tuned above and below resonance. For the most part, however, correct adjustment is made when the maximum amplitude point is found.

It may be noted that there are several response curves on either side of the correct one. These may be caused by a heterodyning action of the VHF local oscillator, or UHF local oscillator against the output of the signal generator which produces other FM signals. They may also be caused by harmonics of the fixed center frequency FM oscillator as employed in the type generator illustrated in Figure 1B. When this type of interference is encounteredit will be noted that the response curve in question does not move as the sweep frequency dial is tuned. This is because of the center frequency of the

Figure 7. Waveforms Resulting From Preselector Circuits Being Tuned Too High (A) and Too Low (B). Note Tilt of Response Curve.

The resistance elements in RCA Lightning Arresters are made of a remarkable, new condactive rubeer that is noncorrosive and impervious to moisture . . . to provide lasting frctection to TV and FM installations. Cap covers contacts. Losses are negligible even under extremely tough weather conditions.

Just mount, unscrew cap, insert transmiasion line in slot, and replace cap. It's as easy as that. Ty $2 \in 21 \leq \mathrm{X} 1$ ior indecors, type 215 X 1 for outdoors. Both are listed by Uraeru-iter Laboratories, Inc.

See Your RCA Parts Distributor for
"the best lightning arrester to come down the line."

Sweep And Marker Generator Frequency Chart (Continued).

CHANNEL NO.	CHANNEL FREQ.(MC)	$\begin{gathered} \text { CHANNEL } \\ \text { NO. } \end{gathered}$	CHANNEL FREQ.(MC)
2	54	8	180
	55.25		181.25
	59.75		185.75
	60		186
3	60	9	186
	61.25		187.25
	05.75		191.75
	66		192
4	66	10	192
	67.25		193.25
	71.75		197.75
	72		198
5	76	11	198
	77.25		199.25
	81.75		203.75
	82		204
6	82	12	204
	83.25		205.25
	87.75		209.75
	88		210
7	174	13	
	175.25		211.25
	179.75		215.75
	180		216

FM oscillator does not change with the tuning of the FM oscillator dial. Such a response curve is shown in Figure 8A. The curve at the right is a result of the harmonic of the FM oscillator. The smaller curve at the left is the desired response curve. After changing the sweep generator dial setting, the waveform at 8 B was obtained. Note the curve on the right did not move, but the other curve did shift. In those cases where this type of interference falls within a range in which it is desirable to make an adjustment, the stationary harmonic can be used. As an example, a signal generator having a fixed center frequency FM oscillator operating at a 114 megacycles will produce inter ference on and near channel 30 . Since the frequency deviation can be set so that this harmonic covers several adjacent channels, alignment can be made on the harmonic of this fixed center frequency oscillator itself.

One of the chief interference problems that will be encountered in converter alignment is caused by the fundamental output of the FM generator falling in either channel 5 or 6. With the VHF tuner tuned to either of these channels, and the signal generator operating at that fundamental frequency, sufficient signal
goes through the converter and is accepted by the VHF tuner that a response curve of channel 5 or 6 is seen on the scope. This type of interference is illustrated in Figure 9. The response curve of channel 5 is shown at the left of the pattern and UHF response curve is on the right. Note that the UHF response curve is much narrower than the channel 5 curve due to the use of a harmonic of the signal. The same situation exists on those converters which have a channel 10 output, except that only those frequencies falling within channel 10 will cause this type of interference.

The same precaution as pointed out in connection with sweep generators must also be exercised with the marker generator. Since harmonics of the marker generator must be employed to provide markers in the UHF range, there is a possibility that the fundamental frequency of operation of the marker generator may fall within channels 5 , 6 or 10 , whichever the case might be, and cuase erroneous marker pips, or it may even completely swamp the FM signal.

Marker Injection -

Now let us consider the problem of injecting the marker for purposes
of determining the correct frequency setting of the oscillator of the UHF converter or tuner. As in the case of the sweep generator, harmonics of the marker generator must be used. Since many harmonic and beat frequencies are present in the circuit, care must be taken to be sure that the marker being viewed is the cor rect one. There are three simple tests which can be made to determine this:

1. The marker should shift on the pattern when the marker generator dial setting is changed.
2. The marker should stay stationary on the pattern as the sweep generator center frequency is changed. (The pattern and marker will move together.)
3. The marker should not move to left or right on the face of the scope tube as the UHF and/or VHF tuning knob is turned.

Figure 8. Interference C aused by Harmonic of Fixed Center Frequency FM Oscillator (Large Curve at Right). Note Shift of U HF Response Curve At A and B While Large Curve Remanins Stationary.

Figure 9. Channel 5 Response Curve at Left, UHF Response Curve at Right.

If the marker fulfills all three of these requirements, you can be assured that it is the correct marker.

A discussion of what these tests mean might be helpful in under standing the procedure for making them. In the case of Step 1, it is obvious that the marker pip should move on the response curve when the marker generator frequency is varied. There are some cases, however, when a marker will be visible which will not move on the response curve when the marker generator is varied, thus indicating an incorrect marker. This marker is usually caused by a harmonic of either an RF oscillator in the signal generator, or a harmonic of the local oscillator in the VHF tuner, or it may also be caused by a beat between any two of the many frequencies which are present in the entire tuning system.

The test prescribed under Step 2, that of shifting the center frequency of the FM oscillator, causes the response curve to move left or right on the face of the scope tube. The marker, however, should remain at the same relative point on the response curve. The reason that this must be so, can be more easily understood, if it is remembered, that the marker signal represents that of the transmitter, and that the response curve is fixed by the resonance of the tuned circuits in the receiver. Thus, as the center frequency of the sweep generator is varied, the marker stays in the same relative position on the response curve even though the response curve moves right or left. If the marker should move on the response curve, either forward or backward, it is an indication that the marker is an incorrect one.

Step 3 states that the marker must not move to the right or left on the face of the scope tube as the UHF and/or VHF tuning knob is turned. Again assuming that the marker represents a transmitted signal, a tuning of the UHF or VHF tuning knob causes the response curve to shift from one side to the other with respect to the transmitted signal. This, of course, is a normal condition. In some cases where an incorrect mar ker is being viewed, the marker will appear to move ahead of the response curve. In other words, as the tuning is done and the response curve moves to the left, - the marker may also move to the left, but at a faster rate.

These three steps for checking the marker are very easy to perform and the operator should get into the
habit of making the checks at each channel. After doing them a few times it will be found that they can be done very quickly. Figure 10 illustrates these three steps in chart form.

The Sweep and Marker Generator Frequency Chart included in this article is presented to show the settings of the generator which will provide a har monic which falls in the UHF range for use as a marker. Column D is so designed that it can be used with signal generators having a fundamental frequency r ange extending up to 120 megacycles. Some examples of this type of instrument are the Jackson 641 or 641A and the Triplett 3433. Only those generators having this frequency range at the fundamental frequency
should be used. Many instruments are calibrated up to these frequencies, but operate on the harmonics of a lower frequency oscillator. If an attempt is made to use this type of instrument, the high order of harmonics being used are of low amplitude and are not practical for use throughout the UHF range.

Some sweep generators incorporate a built-in marker generator which is suitable for UHF use. For convenience in determining which column of frequencies should be used, we have included under the discussion of marker and sweep generators, instructions for the use of this chart with some of the popular sweep generators. It was previously

- Please turn to Page 97 . .

STEP 1

STEP 2

VARY SWEEP GENERATOR SETTING

STEP 3

both response curve and marker move

RESPONSE CURVE SHIFTS MARKER DOES NOT MOVE to right or left

Figure 10. The Three Steps For Checking For Correct Marker.

For faithful tone reproduction . . . high fidelity at low volume level - use Centralab's Compentrol

Centralab components are safest for guaranteed servicing

YOU can stake your service reputation on the Centralab Compentrol. That's because this combination volume control and Printed Electronic Circuit faithfully reproduces the high-pitched tones of the operatic soprano or the deep bass notes of the boogie woogie beat. when volume is set at low level.

In fact, Compentrol was especially developed to better reproduce the apparent bass and treble response of radios, audio amplifiers, phonograph combinations and television sets. Use it as a business builder as well as for replacement service. It actually improves original performance! What's more, its low price will fit any pocketbook.

Because of its design CRL's Compentrol needs no additional amplification. There is no insertion loss when you use Compentrol.

The Centralab Compentrol is furnished in $1 / 2$ or 1 meg . -plain or switch types. Switch is SPST, and an insulated switch shield is furnished for a-c shielding. Most ampli fiers use a plain type. For complete details, ask your Centralab distributor, or write direct.

The Centralab Compentrol is only one of the more than 470 new items listed in Centralab's new Catalog 28. Get your copy of this 32 -page index to latest developments in the fast-changing electronic field, plus a 16 -page booklet telling the whole Compentrol story. See your distributor, or write direct.

Centralab

A Division of Globe-Union Inc.
942 E. Keefe Ave.
Milwaukee 1, Wisconsin
In Canada, 635 Queen Street East, Toronto, Ontario

> Make your Centralab distributor headquarters for exact electronic replacements

The advent of UHF on the television scene has been accompanied by a few design changes in receiving antennas. The changes have been necessary because it has been found that, except in strong signal areas, reception of UHF signals with VHF antennas is not very satisfactory. The gain of VHF antennas is quite variable over the UHF range (470 mc to 890 mc), and their directivity characteristics are poor at the high er frequencies. Annoying reflections and "ghosts" and generally poor performance have been experienced in trials conducted in the field.

A number of the UHF antennas which have appeared on the market to meet the demand for clear dependable reception are smaller and lighter than their VHF predecessors. This is understandable in the light of the shorter wavelengths involved in the UHF band. For example, a half wavelength at channel 7 frequency is approximately 33 inches while a half wavelength at channel 61 is only slightly over 7-1/2 inches. Spacings between elements are correspondingly less in UHF antennas than in VHF arrays. All of these features contribute toward a lighter antenna and one offering considerably less wind resistance. Installation requirements of these UHF antennas from the standpoint of structural strength are likewise less stringent.

Acertain percentage of the new antennas are appearing either arrayed in combination with larger VHF antennas or as modifications of existing VHF antennas. The manufacturers are claiming all-channel coverage (2 to 83) for these arrays. They are of a size and weight comparable to VHF artennas alone, and therefore the advantage of lightness and smallness, previously mentioned in connection with UHF antennas, does not hold true in their case.

UHF reception is being obtained onfive general types of antenna designs.

1. V-Dipole.
2. Rhombic.
3. Yagi.

by GLEN E. SLUTZ

4. Conical.

5. Fan Dipole.

Of these, the first four have their counterparts in the VHF field; the last one is a newcomer, although actually it could be considered a member of the conical family of antennas.

V-Dipole -

The type of antenna which goes under the name of "V-dipole" is distinctive because of its extremely broadband response, particularly at narrow angle settings of the V . The longer each side of the V becomes, compared to the operating wavelength, the narrower the angle between the two sides must be made to achieve the best directivity and gain. However, the choice of the narrower angles for the higher frequencies (UHF) does not affect the operation on the lower bands (VHF) by a serious amount. Therefore, the V-dipoles are well suited for allchannel reception.

Figure 1 is a photograph of the "Ultra V-Beam" (Model UHF 500) manufactured by the JFD Manufac turing Co., Inc. This antenna features two V's mounted in line horizontally. The V's are connected by open-wire phasing line in the form of two support bars. The open ends of the V's are turned toward the TV transmitter for strongest reception of the direct signal. The manufacturer states that this antenna will give sharp directivity and thereby minimize noise and co-channel interference. The insulators are made so that the elements can be set in either of two positions. The position making the widest angle in the $V^{\prime} \mathrm{s}$, according to the manufacturer, will result in the antenna having high gain on the VHF channels. The position in which the angle is narrower will provide good reception on all UHF and VHF channels from 2 to 83 .

The elements which make up the V^{\prime} s are constructed of $3 / 8^{\prime \prime}$ aluminum tubing reinforced with wooden dowels, and the support bars are made of $1 / 2^{\prime \prime}$ aluminum tubing.

Figure 1. JFD Ultra V-Beam, Model UHF 500. (Sample Courtesy of JFD Manufacturing Co., Inc.)

Figure 2 shows the "U-Vee" (Model TV-130) manufactured by the Ward Products Corp. This antenna is also a form of the V -dipole. It features a pair of V's with provision for three different angular settings for the V^{\prime} s. Position\#1 is the widest angle (90 degrees) and is recommended for reception of VHF signals only. Position \#3, the narrowest angle (45 degrees), is for the high end of the UHF band (channels 46 to 83). The intermediate setting, position \#2, is a 60 degree angle for installations

Figure 2. Ward U-Vee, Model TV130. (Sample Courtesy of Ward Products Corp.)

UP GO PROFITS

That's why...

...ARE THE REPLACEMENT CHOICE OF MORE AND MORE SERVICEMEN

Federal tubes are designed right, made right, factory-tested to the hilt . . . and BACKED BY A YEAR'S GUARANTEE!

Federal is fast-growing in demand as a profitable picture tube replacement, because Federal goes the limit to assure your customers steady satisfaction!

Every Federal tube must measure up to exacting standards of efficiency for breakdown and stray emission (at max. ratings), ion trap current, central grid cut-off, zero bias beam current, focus voltage current, highlight brightness, leakages, shorts, gas ratio, screen and glass quality ... plus other characteristics. Tests include the tough 500 -hour operation run.

Moreover, a unique, prior-to-shipment check-up follows a 24 hour minimum storage period-an extra provision for trouble-free performance!

Start now to protect your replacement profits with Federal picture tubes . . the tubes backed by decades of experience in producing highestquality vacuum tubes for broadcast, military communications and other major ues.

Consult your Federal distributor for full information and prices.
FEDERAL POPULAR-SIZE TUBES INCLUDE: $121 / 2$ and 16 -inch round; 14,16 , 17, 20 and 21 -inch rectangular. Write for your free copy of Federal's Television Picture Tube Data Book.

Federal

Telephone and Radio Corporation

VACUUM TUBE DIVISION • 100 KINGSLAND ROAD, CLIFTON, NEW JERSEY in Canada: Federal Electric Manufacturing Company, Lid., Montreal, P. Q. Export Distributors: International Standard Electric Corp., 67 Broad St, N. Y
"Federal always has made befter tubes"
where all-channel coverage of VHF and UHF is desired. These instructions are according to the manufacturer's literature on this antenna. High gain and sharp directivity are also emphasized in the manufacturer's literature.

Figure 3 is the "Trombone" (Model TV-132), also produced by the Ward Products Corp. It consists of four V's mounted on support bars that are bent back on themselves in a manner which undoubtedly was the inspiration for the name - "Trombone". The insulator mounts for each V are constructed similar to those in the Ward " U -Vee" antenna; they provide three positions for adjusting the V angle. However, only two of these positions are recommended in the manufacturer's instructions. The widest angle (90 degrees) is adyised for all four V's when reception of VHF only is desired. For all-channel (2-83) reception or UHF alone, the widest angle is recommended for the rear pair of V's (those nearest the bend) while the intermediate angle (60 degrees) is specified for the front pair of $V^{\prime} \mathrm{s}$. As with all V -dipoles, the antenna is directed so that the $\mathrm{V}^{\prime} \mathrm{s}$ open toward the transmitting station.

Near the looped end of the support bars on the Trombone there are three positions where connection to the transmission line may be made. The choice of the best feed position depends on the range of frequencies desired, and instructions with the antennatell the proper positiontouse.

An all-channel array manufactured by the LaPointe-Plascomold Corp., producers of the Vee-D-X line of antennas, is shown in Figure 4. This antenna goes under the name of the "Ultra-Q-Tee". The manufacturer emphasizes that it is a single antenna with a single transmission line and it will receive all 82 channels. The antenna uses a multisection printed circuit filter as an

Figure 3. Ward Trombone, Model TV-132. (Sample Courtesy of Ward Products Corp.)
isolating component between the VHF and UHF sections. This printed circuit unit permits both sections to be operated on the same transmission line, according to the manufacturer.

Going from left to right in the photograph of Figure 4, the V-dipole is the driven element of the UHF section; the straight element, which is next on the crossboom, acts both as a reflector for the UHF section and as a director for the VHF antenna; next is the VHF antenna composed of three closely spaced elements of varying lengths, and last is the reflector element for the VHF section.

The JFD Manufacturing Co., Inc., makes an antenna called the "UHF Double-Vee" (Model UHF 100). It features two V^{\prime} s stacked one above the other. According to the manufacturer, this antenna delivers superior broadband reception across the entire UHF spectrum, and stacking the V^{\prime} s tends to eliminate ghosts, ground reflections, and other interference. The angles of the V's are fixed at 55 degrees while the lengths of the dipole elements are 55 inches. The vertical separation of the two V^{\prime} s is approximately $1 / 2$ wavelength at the lowest operating frequency, which in the case of the UHF band is 470 megacycles. A phasing section connects the two $V^{\prime} s$, and the transmission line is attached to the midpoint of the phasing section.

Radio Merchandise Sales, Inc. (RMS) has announced a V-dipole antenna composed of two V's mounted in line horizontally in a beam type arrangement. This antenna is designated as Model VA - and is precut to specific channels. The channel number would be specified following the hyphen in the model number.

Another antenna built on the V-dipole principle is the " Ultra Vee" (Model 404) made by Channel Master Corp. The two V's are stacked one above the other; and, according to

Figure 4. Vee-D-X Ultra Q-Tee. (Sample Courtesy of LaPointe-Plascomold Corp.)

Figure 5. Channel Master Ultra Vee, Model 404. (Sample Courtesy of Channel Master Corp.)
the manufacturer, the antenna combines good UHF gain with low VHF gain. The Ultra Vee is pictured in. Figure 5.

Rhombic -

The rhombic never quite gained the popularity of many of the other types of antennas used to receive VHF. This was principally due to its size and the large space required for its installation. For example, a typical rhombic designed for reception on channels 2 to 13 has diagonal measurements of 40 feet and 16 feet. In the UHF band, however, wavelengths are shorter and the size of the rhombic can be correspondingly less. In UHF, therefore, a small sized rhombic may come into increasing use.

Figure 6 is a photograph of a rhombic antenna being produced by the JFD Manufacturing Co., Inc., for use in the UHF band. The acute angle which is formed by the sides of the rhombic is approximately 50 degrees. The element lengths correspond closely to those in the VHF V-type antennas.

The rhombic features narrowbeam horizontal directivity; for this reason, the manufacturer recommends its use where buildings, trees

Figure 6. JFD Rhombic, Model UHF 200. (Photograph Courtesy of JFD Manufacturing Co., Inc.)

and other obstructions cause reflections. The gain of the rhombic rises in step with increasing frequency; a property which compensates somewhat for the greater signal losses at the higher end of the UHF spectrum. The UHF rhombic in Figure 6 is directed so that the corner of the rhombic feeding the transmission line is farthest away from the station being received.

Yagi -
The Yagi is an antenna composed of a driven element and one or more director and reflector elements. All are mounted parallel to each other in the same horizontal plane. Generally the driven element is a folded dipole approximately a half wavelength long. The directivity of a Yagi is very sharp and its gain is high. However, it has a narrow frequency response; and in the UHF band, a coverage of nine or ten channels for a certain sized Yagi might be considered abetter-than-average frequency span.

Figure 7 is a photograph of a UHF 6 -element Yagi antenna (Model UHF 300) which is produced by the JFD Manufacturing Co., Inc. There are eight of these antennas; each is cut for a different group of UHF channels. The antenna which is designed to receive the channels near the high frequency end of the UHF band is quite small and the elements are short. The other antennas get progressively larger since they are made for the reception of lower frequency channels with longer wavelengths. Groups of from seven to ten channels are received by each antenna.

Telrex, Inc, has announced a Yagi antenna for use with UHF. It is the '"UHF Duplex Yagi" (Model 300) pictured in Figure 8. There are four elements in the array; two of them are folded dipoles coupled by means of a phasing section. The manufactu-

Figure 7. JFD UHF Yagi, Model UHF 300. (Sample Courtesy of JFD Manufacturing Co., Inc.)
rer claims an average gain of 9 db for this antenna and emphasizes flat terminal impedance, exceptional directivity, and a gain curve which rises with frequency.

Radio Merchandise Sales, Inc., (RMS) makes a line of Yagi antennas which are cut to specific UHF channels. The five element model is called the "Quintette" (Model TY-); the ''Yardarm'" (Model TYL8-) is the eight element job; and the " Pinpointer' (Model TYL10-) is a ten element Yagi. In the model number the channel would be specified follow ing the hyphen.

La-Pointe Plascomold Corp. (Vee-D-X) has announced a new combination UHF-VHF antenna under the name, Ultra Q-Tee Suburban, which features a VHF section similar to the one in their Ultra Q-Tee model (Figure 4). The UHF section, however, is an 8 -element Yagi antenna. The Yagi, according to the manufacturer, has broadband coverage and high gain. The Ultra Q-Tee Suburban requires only one transmission line and includes eight printed circuit channel separators in its construction.

Conical -

The conical family embraces a rather wide variety of antennas. The fan dipoles which are discussed in the next section of this article actually belong in the general category of conicals but are given special treatment because of their particular application to UHF reception.

The true conical is constructed of two cones having the same axis of

Figure 8. Telrex UHF Duplex Yagi, Model 300. (Sample Courtesy of Telrex, Inc.)

Figure 9. Taco UHF 4-Bay FanType Antenna, Catalogue No. 3005. (Sample Courtesy of Technical Appliance Corp.)
revolution and whose tips come together to feed the transmission line. Most of the antennas now called "Conical" are actually conical sections, which have most of the good features of the true conical without the bulkiness and high wind resistance of the latter.

The principal advantage of antennas in this group is their broad frequency response characteristic, which makes them very useful when multi-channel coverage is desired. They also have a relatively high gain and a fair degree of directivity.

A UHF antenna built on the conical principle by Technical Appliance Corporation (Taco) is shown in Figure 9. This is a 4-bay fan-type antenna (Catalogue No. 3005). It is twodirectional; in other words, it will receive equally from front and back. Each bay consists of elements arranged in the shape of an "X". The bays are connected by open wire phasing line, the line being crossed over itself to feed the top and bottom bays. The transmission line is connected to the center of the phasing section. Each " X " is approximately 16 inches wide and the total height of the 4 bays measures slightly over $2-1 / 3$ feet. These measurements give some idea of the small size of this antenna. According to the manufacturer the antenna will give between 7 and 11 db gain (above a reference dipole) across the entire UHF spectrum.

Telrex, Inc. is producing three types of conical antennas. The "UHF Conical-V-Beam' * (Model $1 \mathrm{X}-500$)

* Registered Trademark of Telrex, Inc.

Get More Jobs Done In A Day

There's no profit in sets waiting to be repaired. Profits depend on turning out more jobs . . . and cutting down on time wasting call-backs.

Midgetrols ${ }^{\circledR}$ are designed for fast, easy installation in any set, TV or radio.

Round tubular shafts can be cut accurately and quickly... fit split-knurl or flatted-type knobs.
$A C$ switches can be attached instantly without disassembling the control.

Their unique design simplifies inventory problems . . . always available from your Mallory Distributor.

Midgetrols are engineered to duplicate the precise characteristics of original equipment. They will give equat ... and often better performance and life than the original control.
Save time . . . find extra minutes to turn out more finished jobs . . . be sure of dependable, precision quality for all your T'V and radio repairs... ask for Mallory Midgetrols the next time you call your distributor.

Another time saver. Get your copy of the Mallory Control Guide. It is a complete cross reference between set manufacturers' part numbers and the equivalent Mallory control.

MALILORY

CAPACITORS - CONTROLS • VIBRATORS - SWITCHES • RESISTORS - RECTIFIERS • VIBRAPACK* POWER SUPPLIES •FILTERS

Rog. U.S. Pal. Off.
APPROVED PRECISION PRODUCTS
P. R. MALLORY \& CO. Inc., INDIANAPOLIS 6, INDIANA
shown in Figure 10, is designed for reception of UHF signals and the "UHF Double Conical-V-Beam" (Model 400) shown in Figure 11, is intended for operation over all 82 channels. The manufacturer claims for the latter antenna an average gain of 4 db in the VHF range and 8.5 db in the UHF range. Both of these antennas incorporate V dipole principles along with their conical design. The third antenna by Telrex is the "UHF 4XTV" (Model 200-2) which consists of a balanced, in-phase vertical stacking of two conical bays. Reception of UHF only is advised for this antenna. Gains up to 12.1 db are claimed.

Radio Merchandise Sales, Inc. (RMS) includes in their line a conical antenna (Model CVA-500) which they call the "Conical V Fringeleader". This antenna is made to receive all 82 channels and combines the conical principle with the V -beam style of antenna design.

Fan Dipole -

The group of antennas which we are arbitrarily placing under the classification of fan dipoles are actually members of the conical group. However, the relatively large number of these fan dipoles together with their single application to UHF reception merits their separate consideration in this report.

A fan dipole consists of two triangular pieces of metal mounted with apexes confronting each other and joining the transmission line. The fan dipole is very often referred to as a "bow-tie" because of its resemblance to this article of apparel. Its size will vary somewhat but will usually be slightly over a foot in overall length. Very oftenreflecting surfaces are employed with this antenna to increase its directivity. The fan dipole has some gain over a simple half-wave dipole but its use has generally been confined

Figure 10. Telrex VHF Conical-VBeam*, Model 1X-500. (Sample Courtesy of Telrex, Inc.)

Figure 11. Telrex UHF Double Con-ical-V-Beam*, Model 400. (Sample Courtesy of Telrex, Inc.)

* Registered Trademark of Telrex, Inc.
to strong signal areas where reflections are at a minimum. Two or more fans may be stacked vertically to achieve added gain when necessary. Thefan does possess excellent bandwidth and is frequently preferred for this characteristic alone.

Figure 12 is a photograph of the "Reflecto-Fan" (Model 4402) produced by the Walter L. Schott Co. (WALSCO). It consists of a pair of fan dipoles, each having a reflector screen, stacked one above the other. A phasing section connects the two fans and the transmission line is fed at the midpoint of the phasing section. The manufacturer claims that this antenna has gains of 5.5 to 8 db , above a reference dipole, across the UHF spectrum. Also it is maintained by the manufacturer that the screen reflector provides good directivity, both in the horizontal and vertical plane and that this feature will eliminate reflected ghosts and noise in almost all locations. The single fan with reflector has the model number 4400. The 4 -bay stack is Model 4404.

WALSCO has announced other fan dipole types. The Model 4450 is a fan dipole with a corner reflector screen. It is pictured in Figure 13. The corner reflector provides increased directivity. The manufacturer claims gains of 10 to 13 db over the UHF band for this antenna. Another antenna by WALSCO is their Horn antenna (Model 4430) which is designed for both UHF and VHF. The manufacturer lists the gain of the horn on VHF as from 1 to 3 db and the gain on UHF from 8 to 12 db .

The JFD Manufacturing Co., Inc., has announced various styles of fan dipole antennas in their line. The UHF 600 is a straight bow-tie with screen, which, according to the manufacturer, delivers between 4 and 6 db gain in the single array, with the gain

Figure 12. WALSCO Reflecto-Fan, Model 4402. (S a mple Courtesy of Walter L. Schott Co.)
climbing as frequency increases. JFD also has a corner reflector type (Model UHF 400). This fan dipole antenna offers up to 12 db in gain, it is stated, and features sharp directivity and broadband reception over the UHF spectrum.

An all-channel 2-83 antenna is JFD's JETenna* 283 which combines a conical VHF antenna with a fan dipole to receive UHF signals. The manufacturer states that this antenna will be widely used in multi-channel and UHF-VHF sections. The gain of the VHF conical section is about 9 db and the fan dipole's gain is between 4 and 5 db according to the manufacturer.

Another company which is producing fan dipole antennas is the Channel Master Corp. Their Ultra Fan (Model 413) is a conical VHF antenna with a fan-front for UHF reception. The manufacturer claims high gain over all 82 channels for this antenna. An isolating filter accord-
\#Registered Trademark of JFD Manu facturing Co., Inc.

- Please turn to Page 121 *

Figure 13. WALSCO Corner Reflector, Model 4450. (Photograph Courtesy of Walter L. Schott Co.)

DEALERS GETTING WESTINGHOUSE tubes profit from heavy loCAL ADVERTISING at No COST

Service dealers are getting powerful local arlvertising support from new Westinghouse RELIATRON ${ }_{\text {IM }}$ Tube Distributors. In cities now served by Westinghouse Distributors, dealers get local newspaper advertising, a complete kit of store display and imprinted mailing material.
All of it-local arls and kits-are designed to build TV-radio service busincss in the dealer's local area,
Best of all, none of it costs the dealer a penny!
You can get your store listed in two local newspaper als at no charge, and get a kit to boot. If Westinghouse Tubes are now sold in your area, see your Westinghouse Distributor and take advantage of this $\$ 900$ -

COMING YOUR WAY

If Westinghouse Tubes are not yet distributed in your area, be patient. Distributors are leing established in all market areas as fast as product availability and good scrvice permit.
You'll soon have the chance to buy RELIATRON Tubes. Keep this tremendous opportunity in mind: you'll get newspaper advertising at no cost! Imprinted material for mailings! Im. printed signs for your window!

All of it is local advertising which sells your service in your own area where it counts.
For the name of your Westinghouse Distributor, or the approximate date when Westinghouse Tubes will be available in your area, drop a postal card to Dept. K-201 or have your regular distributor contact Dept. K-201 for information on how he can better serve you.

ELECTMRONIC
TUBE DIVISSION
Westinghouse Electric Corporation

YOU CAN BE SURE ...IFIT'S Westinghouse

Box 284, Elmira, N. Y.

Operation in the new band of television frequencies from 470 to 890 megacycles, known as UHF (ultra-high-frequency), calls for more critical attention to losses between antenna and receiver than is observed in operating with the VHF television channels. Because the frequencies in the new band are so much higher, the dielectric losses in materials are greater, and the adverse effects of weather are more pronounced. In general, the quality of a UHF antenna installation must be of the highest, in order to insure satisfactory, dependable reception.

Among transmission lines there are several candidates for UHF use. The principal requirements are; that the line chosen, must have a low amount of loss per unit length, it should show a minimum increase in this loss whenwet, and the amount of stray pick-up along its length should be as little as possible.

Flat 300 ohm ribbon twin-lead, a very popular transmission wire in VHF work, meets the UHF requirement of low loss per unit length, approximately 3 db per hundred feet at 530 megacycles. However, the disadvantage inusing thistype of line is its poor performance when wet or when resting next to wet wood or metal surfaces. Also it is subject to interference and noise pick-up since it is not shielded. U H F reception is rarely affected by man-made noise however, so this is no serious detriment to the use of this line.

Another transmission line, which is more promising for UHF, is the 300 ohm tubular twin-lead pictured in Figure 1. This line, while it is made of the same polyethylene from which ribbon twin-lead is fashioned, is shaped in the form of a hollow tube with the conductors embedded in opposite sides of the tube. Such a construction results in very little difference in attenuation between dry and wet conditions. Wet tubular line has approximately the same attenuation figure as ribbon lead when dry, namely, about 3 db per hundred feet at 530 megacycles.

TRANSMISSION LINES \& ACCESSORIES

by GLEN E. SLUTZ

In preparing tubular line for connection to the antenna terminals it may be cut back in the manner shown in Figure 1. The length of the cut back section will seldom need to exceed $1-1 / 2$ to 2 inches. In all cases, however, the open end of the hollow tube should be sealed shut. This is done in order to keep the moisture inside the tube at a minimum. Sealing may be accomplished with either a hot soldering iron, or a flame of some sort. When the ployethylene reaches asticky consistency, it can be pressed in over the opening in the end of the line to form a tight seal. Even with the line closed off in this manner, moisture does condense inside the tube over a period of time. Provision for this eventuality is made by making a "drip loop" in the line prior to its entry into the dwelling. Then a small hole is made through the tube at the bottom of the loop to allow any moisture to drain out.

The 300 ohm tubular line which is pictured in Figure 1 is made by American Phenolic Corp. (Amphenol). It is designated as $14-076$ in their catalogue. There is another slightly smaller tubular twin-lead, listed under the number of 14-271. The principal difference in the two types is the higher RF power rating of the $14-076$, which makes it suitable for some transmitting applications.

Open wire transmission line, such as that illustrated in Figure 2, features low loss, and maintains high operating efficiency under adverse weather conditions. However, it is more difficult to install than many of the other types of transmission

Figure 1. 300 Ohm Tubular TwinLead. (Sample Courtesy of American Phenolic Corp.)

Figure 2. Open Wire Transmission Line. (S a mple Courtesy of T. V. Wire Products Co.)
lines. The separators are constructed of an insulating material, usually polystyrene, and the wires are spaced approximately an inch apart. The characteristic impedance of this type of line is generally between 450 and 500 ohms, and it is therefore adviseable to use some sort of matching arrangement when connecting to 300 ohm terminations. Very often a satisfactory match to 300 ohms may be made by removing the last three spacers in the open wire line and tapering the wires gradually down to the separation distance of 300 ohm line before making the connection.

A third type of transmission line which may be employed in UHF installations is the all-weather line developed by the Anaconda Wire and Cable Co., and the RCA Service Co., Inc. It is known as Anaconda ATV 270 , and details of its construction may be seen on the photograph of Figure 3. The conductors are high strength copperweld, and they are surrounded by polyethylene spiral threads which act to center the wires in their individual polethylene tubes.

- Please turn to Page 118 .

Figure 3. Anaconda ATV-2 70. (Sample Courtesy of Anaconda Wire and Cable Co., and the RCA Service Co., Inc.)

The Precision CR-30 should not be confused with mere adapters connecting to ordinary receiving tube testers which were never designed to meet the very specialized needs of CR tube checking. Similarly, it is not to be confused with neon-lamp units or similar devices of limited technical merit and which do not check all CR tubes or all tube elements.

GENERAL AND TECHNICAL SPECIFICATIONS

* Tests All Modern Cathode Ray Tubes:-Magnetic and Electrostatic, 'Scope Tubes and Industrial Types.
* Tests All CR Tube Elements:-Not just a limited few
* Absolute Free-Point 14 Lever Element Selection System, independent of multiple base pin and floating element terminations, for Short-Check, Leakage Testing and Quality Tests. Affords maximum anti-obsolescence insurance.
* True Beam Current Test Circuit checks all CR Tubes with Electron-gun in operation, It is the Electron Beam (and NOT total cathode emission) which traces the pictures or pattern on the face of the CR tube.
Total cathode emission can be very high and yet Beam Current (and picture brightness) unacceptably low. The CR- 30 will reject such tubes because it is a true
Beam Current tester. Conversely, total cathode emisBeam Current tester. Conversely, total cathode emission can be low and yet Beam Current (and plature brightness) perfectly acceptable. The CR- 30 will properly pass such tubes because it is a true Beam Current tester. The significance of the above rests in the fact
that Beam Current (and picture brightness) is primarily that Beam Current (and picture brightness) is primarily
associated with the condition of the center of the associated with the condition of the center of the
cathode surface and not the overall cathode area. cathode surface and n
(See illustration below)

* Voltage Requlated, Bridge TYpe VTVM provides the heart of the super-sensitive tube quality test circuit. Such high sensitivity is also required for positive check current anodes and deflection plates.
* Micro-Line Voltage Adjustment

Meter-monitored at filament supply.
\star Accuracy of test circuits closely maintained by use of factory adjusted internal calibrating controls; plastic insulated, telephone type cabled wiring; highest quality, conservatively rated components.

* Built In, High Speed, Roller Tube Chart.
* Test Circuits Transformer Isolated from Power Line.
* $45 / 8^{\prime \prime}$ Full Vision Meter with scale plate especially designed for $C R$ tube testing requirements
* Heavy Gauge Aluminum Panel etched and anodized. * PLUS many other "PRECISION" details and features.

SERIES CR-30-In hardwood, tapered portable case, with hinged removable cover. Extra-Wide Tool and Test Cable Compartment. Overall Dimensions $171 / 4 \times 133 / 4 \times 63 / 4^{\prime \prime}$. Com plete with standard picture tube cable, universal CR Tube Test Cable and detailed Instruction Manual.
Shipping Weight:-22 Ibs.
Code: Daisy NET PRICE:-\$99.75
See the $Q \mathbb{R} \mathbf{S O}$ on display at leading electronic equipment distributors. Order now to assure earliest possible delivery.

MOTOROLA MODEL TC-101
(Ch.TT-19)

Motorola Model TC-101 is a two-tube, continuously tuned UHF converter containing its own power supply. Used in conjunction with a television receiver capable of receiving channels 5 or /and 6, any available UHF television signal may be tuned. A photo of the Model TC-101 is shown in Figure 1.

Two front panel controls operate the Model TC-101 converter. The control on the right is the three-position function switch. Switch positions are marked "OFF - VHF - UHF". The circular tuning dial on the left is marked with UHF channel designations from 14 through 83, and is gear-driven by the shaft holding the tuning knob. More than eleven complete revolutions of the tuning knob are required to tune through the UHF TV band, providing an adequate degree of band-spread throughout this frequency spectrum.

On the back of the cabinet (see Figure 2) are two sets of antenna terminal strips. The VHF antenna connects to one strip marked "VHF" and the UHF antenna to the other strip marked 'UHF". A length of $300-\mathrm{ohm}$ twin lead, terminating in spade lugs, extends through the rear of the cabinet. The spade lugs connect to the antenna terminals on the television receiver.

In some instances where the UHF signal is very strong, it is possible to receive UHF stations with a VHF antenna. A jumper

A description of circuits and equipment for Ulira High Frequency reception.

by MERLE E. CHANEY

connector must be used in this case. The jumper consists of a short length of $300-\mathrm{ohm}$ twin lead with a $150-\mathrm{ohm}$ resistor in each lead. In those cases where a UHF antenna is required, the jumper should be discarded, and the UHF antenna lead connected to the converter UHF antenna terminals.

A photo of the chassis, Figure 3 , illustrates parts location in the TT-19 chassis. The cover is removed from this unit, showing all the tuned circuit elements contained in a box-like enclosure. This provides the required shielding. RF tuning is accomplished through the use of a quarter wave coaxial line, made up of the tubular structure shown in Figure 3 and labeled "M1". Immediately below the tubelike RF tuning unit is the oscillator tuner. The RF and oscillator tuner sections are ganged and driven by a rack and pinion gear, which in turn is linked by a series of gears to the tuning control shaft.

Another chassis view of the TT-19 UHF converter is shown in Figure 4.

The functional circuit for the TT-19 UHF converter is shown in the schematic diagram in Figure 5. A UHF signal is fed into a 300 -ohm balanced input. It is then loopcoupled to the coaxial-transmis-sion-line type of RF tuning unit. Since a shorted $1 / 4$ wave transmission line is resonant at a specific frequency, it acts as a tank circuit when tuning a UHF signal. An adjustable inner core is used to provide capacitive loading

Figure 1. Motorola Model TC-101 (Ch. TT-19) UHF Converter.

Figure 2. Rear View of Motorola Model TC-101 (Ch. TT-19).
for changing the electrical length of the transmission line. This presents an effective $1 / 4$ wavelength on any desired frequency within the UHF TV band. Tracking in the line is provided by two adjustments. (C4, C5) by capacitively loading the line at the low- and mid-frequency positions.

A crystal mixer, type CK-710, is tapped into the transmission line. Beating the oscillator signal with the incoming signal at the mixer provides an intermediate frequency.

Figure 3. Top Chassis View of Motorola Converter.

Figure 4. Bottom Chassis View of Motorola Converter.

ForPotection

of
Electrical Circuits and

Your Reputation

Every

To assure and maintain top quality and performance each individual BUSS fuse is tested in a highly sensitive electronic device. Fuses that are not correctly calibrated or not properly soldered or whose dimensions are not right are automatically rejected.

That is why a user can depend upon every BUSS fuse to operate properly under all service conditions-and the manufacturer or service man can rely on them to protect against complaints often caused by use of poor quality fuses.

When electrical protection is your problem turn first to BUSS

It is easy to select a fuse to do the job right for BUSS makes a complete line - and behind each BUSS fuse is the world's largest fuse research laboratory and fuse production capacity.

Fuses of Dual-Element (Fusetron slow blowing fuses), Renewable and One-Time types are available in many standard sizes - and many special designs are also obtainable to fit unusual protection needs.

It's "profit wise" to use BUSS fuses for Sales and Service

People everywhere accept BUSS fuses with confidence. So whether it is Sales or Service they know you are furnishing the best obtainable because in the past 37 years the millions and millions of fuses used in homes, stores, buildings and in industry as well as in electronic equipment, have firmly established the BUSS trademark as stonding for fuses of unquestioned quality.
Since BUSS Fuses are the "known" brand you will never be bothered with kicks and comebacks that occur when people, rightly or wrongly, blame troubles they have on the fuses you furnished them.

Thus the BUSS trademark protects your profits and goodwill as surely os it protects the user.

Figure 5. Schematic of Motorola Model TC-101 (Ch. TT-19).

The oscillator portion consists of a 6AF4 tube, employing a series-tuned modified Colpitts circuit. Metalized windings formed on a glass tubing make up the oscillator coil. Also at one end of the tubing, adjacent to the oscillator windings, is a solid metalized section. Two cores inside the glass tube are adjusted by the tuning mechanism for varying the oscillator frequency.

Note on the schematic (Figure 5) that a variable capacitance (C11) is shown in series with a fixed capacitance (C 12) which connects to a variable tap on the oscillator coil (L6). A glance at the physical construction of the oscillator-tuned circuits may not readily indicate how this is accomplished. C11 is the capacitance existing between the solid metalized section on the glass tubing and the inner core. As the core is moved in or out of the tube, the capacitance is varied.

C12 is in series with C11 and is shown as a fixed capacitance connected by a variable tap to the oscillator coil. This is explained in the following manner: C12 is formed by the capacitance existing between the second core in the glass tube and the metalized windings making up the oscillator coil. Since the capacitance of C12 is essentially constant, it acts as a fixed capacitor moving along the coil as the circuit is tuned.

Oscillator alignment is accomplished by adjusting the oscillator slug cores. To prevent "suck-out" within the tuning range, a series of copper rings are formed at the end of the core which adjusts the oscillator coil inductance. Their purpose is to keep the self-resonant frequency of the unused portion of the inductance higher than the desired operating frequency.

A wide-band IF amplifier stage employing a 6BK7 tube compensates for the use of a losser type mixer. This stage passes frequencies over the range covered by channel 5 and 6 and feeds through the function switch to the converter terminals marked "TO VHF TUNER".

The converter output is $300-$ ohm balanced-line and when connected to a TV receiver tuned to channels 5 or 6, UHF signals can be received.

MOTOROLA UHF

CONVERTER KITS TK-17M,
TK-19M, TK-20M, TK-22M, TK-23M, TK-24M

These Motorola Converter Kits are designed for installation in those Motorolas sets that are provided with a UHF cutout cover plate. This plate is located on the cabinet midway between the On-Off-Volume-Contrast Control and the Channel Selector Switch.

The operation of these converter units is identical to the Motorola Converter Unit Model TC-101 (Ch. TT-19) previously described. However, the converter kits do not have their own power supply, since they obtain the required operating voltages from the receiver in which they are incorporated.

The difference between the converter kits is in the required hardware, knobs and filament transformer. Kits designed for installation in Motorola receivers having parallel-wired filaments do not include a filament transformer. The transformer is supplied only with kits to be installed in receivers with series-wired filaments.

Installation procedures are included with each kit and no difficulties should be encountered if the proper kit is obtained for the television receiver.

Some of the Motorola receivers are equipped with a socket under the chassis to provide power to the converter. In these cases, the converter power cable is plugged into this socket. For those receivers that do not have this socket, a socket with leads is included with the converter kit. The exception to this is when the TK-22M is installed in a Motorola TS-119D chassis. Connector plug and socket are not used, and the converter leads are soldered directly into the circuits.

The table below identifies which converter kits are to be used with each Motorola receiver.

KIT	DESIGNED FOR MOTOROLA TV CHASSIS	MODEL UHF TUNER USED	TYPE FILA- MENT IN TV CHASSIS
	TK-17M	TS-214, 228, 236, 307 351, 401 (discard in- cluded fil. trans.)	TT-28M

To control converter operation, an arm and link assembly is mounted between the converter switch and the tuner channel selector shaft. When the chassis is installed in the cabinet, the UHFVHF switch lever is placed over the shaft and into slots in the arm and link assembly. A name plate marked UHF-VHF shows in which position the UHF-VHF switch lever should be set for the desired reception.

These converter kits are designed to accept UHF signals when the VHF channel selector switch is set at channels 5 or 6 . With the UHF-VHF switch in UHF position, stations are tuned in with the UHF tuning dial.

RCA MODELS U1A AND U1B

RCA Models UIA and UIB are small, compact, single channel UHF converters designed for installation on existing VHF receivers. Primarily designed for RCA receivers,
these UHF units are also readily adaptable to other makes of receivers. A photo of Model UIA (Figure 6) shows the VHF-UHF switch and the adaptor cable and socket. Components inside the chassis unit are shown in Figure 7.

These units a re powered by voltage taken from the audio output stage of the television receiver. To accomplish this, the units are supplied with a 52 -inch cable attached to an adaptor socket. The adaptor socket is plugged into the audio output tube socket and the output tube is then plugged into the adaptor. In this way, filament and $B+$ power is available to the converter unit.

Model UIA employs a 7-pin adaptor socket for sets using 6AQ5, while Model UIB has an octal socket for use in sets having a 6 K 6 GT or 6V6GT audio output tube.

To install one of these converters mount the converter on the
back cover of a television receiver with the adjustment screws facing up. It is important that the converter be mounted on the receiver in such a position that it may be reached either from the side or the top of the cabinet. This allows easy access to the VHF-UHF switch on the converter. Mount the VHF antenna terminal strip on the back of the cabinet.

To install the converter power cable, remove the back cover of the television receiver, remove the audio output tube, and insert the adaptor socket into the output tube socket. Then insert the output tube into the adaptor socket. The spade lug on one of the cable leads should be fastened under any convenient screw to provide the ground connection. Replace the back cover on the television cabinet, making sure that the power cable is not pinched.

The next step is to connect the UHF antenna to the UHF antenna socket of the converter. Then disconnect the VHF antenna leads from the receiver, and connect to the VHF antenna terminal strip from the converter. The output leads from the converter now connect to the antenna terminal strip on the receiver.

With the unit installed, it is necessary to preset the tuner adjustments to receive the desired UHF station. A table included in PHOTCFACT Folder Set 190-12, gives the number of turns which the primary (A1), secondary (A2), and oscillator (A3) adjustments should be turned to preset the unit to any UHF channel. The tabulation assumes that the converter is aligned to 670 MC , which adjustment is established originally at the factory. It is important that these alignment adjustments be made with the cover on the unit.

Figure 7. Inside the RCA Model U1A.

Figure 8. Schematic of RCA Model U1A.

If the desired channel lies between channels 14 and 44, the jumper across the oscillator coil L5 should be removed. For receiving channels between 45 and 83 the jumper is left on the coil.

After the converter unit alignment is changed to accept an available UHF signal, the television receiver should be turned on and the channel selector knob switched to channel 5 or 6 , whichever is not used in that area. The converter is switched to UHF position, the VHF receiver fine tuning knob is turned to mid-position, and the volume control turned until background noise is heard. Final adjustments are then made by turning the oscillator adjustment screw A 3 until sound is obtained and by adjusting A1 and A2 for best picture and sound.

Under some conditions, interfering beats may result between the UHF signal and harmonics of the VHF oscillator. Should this condition occur, one remedy is to turn the fine tuning control of the TV receiver for elimination of the beat, and adjusting the UHF oscillator adjustment (A3) for best picture and sound. In some situations, a harmonic beat can be eliminated by switching the VHF tuner to any sound channel from 2 , to 6 and readjusting the UHF oscillator for best picture and sound.

Approximately one minute of warmup time should stabilize the
oscillator to a point where the receiver fine tuning control can tune in a station, without the necessity of readjusting the UHF oscillator.

VHF reception is provided by switching the converter switch to VHF position. In this position, the television receiver can function in the usual manner for reception of stations between channels 2 and 13 .

A schematic of the UIA and UIB models is shown in Figure 8. A UHF signal is fed to a doubletuned preselector circuit. It is interesting to note that the inductance L1 consists of a plated circuit on a plastic base. The preselector inductances are tuned by A1 and A2. From this circuit the signal is applied to the crystal mixer. Also applied to the mixer is a signal from the UHF oscillator. The signal is applied from the 6AF4 oscillator cathode through a decoupling resistor to the mixer. C4 is an RF filter, L6 a peaking coil, and C5 a fixed trimmer across the primary of the output transformer, L7. By transformer action the intermediate frequency signal is applied through the selector switch to the leads connecting to the TV receiver antenna input terminals.

The plate load for the oscillator is R2. R3, R4 and R5 are voltage dropping resistors. The unit is designed to have a potential of 60 to 90 volts present at the junction of R2 and R5. The value of the applied B_{+}voltage at the power
cable determines whether R5, or R3 and R4 should be shunted by a jumper. Also an additional or different value resistor may be used as in parallel with R3 to obtain the desired voltage. PHOTOFACT Folder 190-12 points out the proper jumpers to use when connecting this converter to RCA receivers.

RCA MODEL U2

The RCA Model U2, shown in Figure 9, is a self-contained 2-

Figure 9. RCA Model U2.

Figure 10. Photo of Back of U2 Converter.

URRD

 antennas have all the UHF-VHF answers!UHF only for old installations

UHF-VHF for new installations

Add it to present VHF installations and you have a complete UHF-VHF Antenna . . . covers all UHF channels with high gain . . . small, neat and preassembled. $J A Z Z$ TROMBONE is the first new UHF only antenna . . . an exclusive WARD development.

Here is the sensational, new WARD Antenna that brings in all-channels, all-frequencies - both VHF and UHF-with one single Antenna... the completely universal WARD TROMBONE. For new installations nothing compares with WARD TROMBONE.

channel UHF converter. It employs two tubes, a crystal mixer, and a selenium rectifier. When connected to a television receiver tuned to channels 5 or 6, either of two UHF stations may be received. The unit is designed to be preset at the time of installation to any two UHF stations within the receiving range.

Any one of three types of antenna systems may be employed. If the UHF signal is strong at a given location, it is possible to use the present VHF antenna to receive UHF signals. The Model U2 will also accommodate UHF antenna systems employing either a $300-$ ohm twin lead transmission line or a 72 -ohm coaxial line. The rear view of the converter, Figure 10, shows the three antenna terminal strips and the antenna input fitting for 72 -ohm coaxial lines.

Selection of the preset UHF channels is accomplished with the selector switch, marked "OFF-VHF-UHF1-UHF2". To accomplish channel selection with a switching device, two identical preselectors are used along with two identical oscillator circuits. The mixer and IF amplifier are common to both UHF circuit outputs.

Electrically, the U2 converter employs lumped constants in-both the RF and oscillator tuned circuits. Lumped constants consist of inductors and capacitors possessing their own physical identity. At the frequencies of UHF television, circuits employing lumped constants are physically quite small. Also, since this unit provides for all adjustments to be preset, certain advantages of compactness and simplicity are achieved.

The input impedance of the converter is 72 ohms. A coaxial fitting is provided for connecting a $72-\mathrm{oh} \mathrm{m}$ coaxial transmission line. When this type of line is not employed, and the transmission line from the antenna is the $300-\mathrm{ohm}$ type, a "balun" or matching stub is used. The "balun" supplied with the U2 consists of two lengths of 150 -ohm line of fixed dimensions, so connected that correct matching between a 300 -ohm line and the 72 ohm input impedance of the converter is achieved.

The UHF signal fed to the converter input is coupled by a 3 mmf. capacitor to a terminal on the selector switch and through a shoe on the switch wafer to one of the preselector circuits. Note that the three wafers on the selector switch

Figure 11. Schematic of RCA Model U2.
protrude slightly through cutouts in the chassis so as to locate the switch contacts immediately adjacent to the desired tuned circuit. A shield is situated between the first and second preselector circuit. Coupling between these circuits is provided by a small slot in a portion of the shield. The signal from the second preselector circuit is fed to the series connected crystal mixer
through the switch contacts on the selector switch. The schematic of the U2 is shown in Figure 11.

Figures 12 and 13 show parts placement in the U2 converter.

The oscillator portion of the receiver is contained in a shielded compartment in one corner of the chassis. A type 6BQ7 dual triode

Figure 12. Top Chassis Photo of Model U2.

Figure 13. Bottom Chassis Photo of Model U2.
functions as a twin oscillator tube. Only one oscillator section is energized at any one time. This is determined by the setting of the selector switch. Both oscillatortuned circuits are identical. The fundamental frequency of the os cillator sections is between 200 and 300 megacycles. Harmonic tank coils positioned adjacent to the oscillator's tank circuits are tuned to the second harmonic (400 to 600 megacycles) of the fundamental to cover the lower half of the UHF TV band. The upper half of the band is tuned by using the third harmonic (600 to 900 megacycles) to the oscillator frequency. Coupling the harmonic signal to the crystal mixer together with the applied input signal yields the desired intermediate frequency at the mixer output.

Maintaining the oscillator injection voltage at the correct value for each channel to obtain desired crystal current of .75 millianiperes is vital to efficient converter performance. A large metal-headed tack extends through the oscillator compartment wall to provide pickup from the harmonic tank circuit. The spacing of this tack in reference to the harmonic tank determines the crystal mixer injection current. A wire lead on
top of the chassis may be unsoldered for inserting an 0-5 milliammeter when measuring crystal current. The tack is adjusted for the desired .75 ma . reading and is then soldered in position. This adjustment should be made with the oscillator compartment shield in place and with the circuits tuned to receive a station, but with no signal present. Do not adjust the injection to conipensate for a defective oscillator tube or crystal.

The mixer output signal is capacitively-coupled to the IF amplifier stage. This stage employs a 6 CB6 pentode tube, triode-connected, in a grounded-grid circuit. Twelve megacycle bandwidth is maintained in the amiplifier output covering the frequencies of channels 5 and 6.

RCA MODEL U70

The RCA Model U70, shown in Figure 14 , is a UHF converter which is continuously tunable over the full UHF TV band. It is designed to operate with any television receiver capable of receiving channel 5 or 6 .

Two front panel controls are employed on the Model U70, the
function switch and the tuning control.

Three types of antenna systems may be used with the converter to receive UHF signals. In some locations where signals are strong, it may be possible to use the VHF antenna system to pick up UHF signals. UHF antenna systems may be used that have either 300ohm transmission line or $72-$ ohm coaxial line. When $300-$ ohm transmission line is used, it is connected to the appropriate terminals at the back of the unit, and a "balun" is connected between the 300 -ohm line and the 72 -ohm input of the converter.

Converter tuning is accomplished by varying capacity in the

* Please turn to Page 107 *

Figure 14. RCA Model U70.

Figure 15. Top Chassis View of U70.

Figure 16. Bottom Chassis View of U70.

ATTENUATION: A decrease in the intensity of electrical energy.

BALUN: A device used with UHF devices to match a 300 ohm balanced line to a 72 ohm coaxial input.

BALANCED LINE: Atwin-lead transmission line that operates with both lines at the same level above ground.

BALANCED OUTPUT: A property of a UHF tuning system whereby the output connections are at the same potential above RF ground and designed for use with a balanced line.

BANDPASS FILTER: A combination of one or more inductors and capacitors selected to permit certain frequencies to pass unattenuated while blocking other frequencies.

BANDPASS: The characteristic of an RF circuit to pass uniformly a definite range of frequencies.

BANDWIDTH: The limitations of a tuned circuit to pass uniformly a range of frequencies.

BOW TIE: A fan dipole antenna used as a UHF antenna. It consists of two triangular pieces of metal, mounted with their apexes coming together and feeding a transmission line.

BROADSIDE ARRAY: An antenna having the elements mounted in the same plane with the maximum sensitivity in a direction perpendicular to that plane at the center of the array. The currents in all elements are in phase.

COLINEAR ARRAY: An antenna having the elements mounted end-to-end in a straight line.

CRYSTAL DIODE: A form of detector employing silicon, germanium or other substance possessing the property to pass a current in only one direction.

CRYSTAL MIXER: A device employing a crystal diode as a mixer in a superheterodyne circuit to obtain a beat frequency signal from two applied signals.

CRYSTAL NOISE: Interference covering a wide band of frequencies, also called random noise. It is generated within a crystal diode mixer when driven by an injection voltage from the local UHF oscillator. Crystal noise is also referred to as temperature noise.

CASCODE CIRCUIT: A circuit employing two triode stages in series, with the first a conventional grid driven stage and the second employing a grounded grid. Commonly used as an IF amplifier stage in a UHF tuning device.

CHARACTERISTIC IMPEDANCE: A term used in connection with transmission lines. A transmission line of infinite length presents the same impedance to the source if the line is terminated at any point on its length with a resistor, or load, equal to the impedance of the line. Impedance of a transmission line is a fixed value and depends on the spacing and the dimensions of the conductors. Also called surge impedance or line impedance.

CONCENTRIC RESONANT LINE: A section of transmission line, usually 1/4 wave length long, employed in tuned circuits. It is usually formed into a cylindrical shape to facilitate tuning by sliding contacts, and to reduce space requirements.

CONVERSION GAIN: An increase of the signal level in the mixer output, of a superheterodyne circuit, over that of the applied signal. This condition is common to circuits employing a vacuum tube mixer.

CONVERSION LOSS: A decrease of signal level in the output of a mixer circuit over that of the applied signal. This condition is present in UHF tuner units employing crystal mixers.

CROSS-MODULATION: An interference, with a desired received signal by an undesired signal from a station operating on a nearby channel. This interference is minimized because of the RF selectivity in the preselector.

COAXIAL LINE: A type of transmission line employing a conductor placed inside a circular metal tube.

CAVITY RESONATOR: Atuned resonant circuit used in UHF and higher frequency applications.

CORNER REFLECTOR: A type of UHF antenna which features a reflecting screen surface consisting of several parallel elements arranged in two intersecting planes. The driven element of the antenna lies within the angle formed by these planes.

DOUBLE CONVERSION: A method for reducing an incoming signal to the desired intermediate frequency by a double-step process employing two local oscillators and two mixers. In practice, most of the separate UHF converter units employed witt television receivers utilize this system.

DECIBEL (db): A unit of measurement to determine the ratio between two levels of power, voltage, or current.

DISTRIBUTED CONSTANTS: Capacitance, inductance and resistance existing throughout the area of a circuit as opposed to lumped constants existing in separate components.

DRIP LOCP: A loop formed ina transmission line at a point where it enters a building. Condensation of moisture and water that may form on the line will drip off at the loop and thus will not enter the building.

END-FIRE ARRAY: An antenna having the elements mounted parallel, and with the currents out of phase. The best sensitivity is in a direction on the plane of the elements and at right angles to the center of the elements.

FAN DIPOLE: An antenna constructed of two metal triangles lying in the same plane with apexes coming together to feed a transmission line. (Also "BOW TIE".)

IMAGE FREQUENCY: The image frequency is equal to the local oscil-

* Please turn to page 117 *

ULTRA Q-TEE
The sensational primary area all-channel UHF-VHF antenna
that employs patented* printed circuit channel separators and uses only one transmission line.

ULTRA Q-TEE Suburban Operates similar to Ultra Q-Tee (above) but is designed for all-channel VHF and fringe area UHF.

UHF COLINEAR
High gain broad band fringe area UHF antenna. Four models cover entire UHF range. Also available in side-by-side array with special stacking kit.

ALL-CHANNEL Q-TEE The brilliant all-channel VHF performer with patented printed circuit channel separators. Also may be stacked for additional gain.

UHF LONG JOHN MAGI Single channel eight-element ragi for both primary and in twelve-element tong long John with fiberglass boom.

UHF ''V'"
An all-channel primary area UHF antenna. Provided either plain or with Mighty Match present VHF antenna, using single transmission line.

don't be - v®분 •!

At it * Anternitis

UHF

LONG JOHN
The original eight-element high gain single channel yogi. Also the super high gain twelveelement Long Long John. Both series also available with econ-omy-priced Delta Match.

JV MAGI
The original, most popular and most powerful five-ele mont yagi. Also available in new low priced DC series.

MIGHTY MATCH MM-30 A small device destined to play VuFighty role in combinging with a single transmission line. Entirely automatic in operaEntirely automatic in operatimon. Patented*

Only VEE-D-X offers you a truly complete line of performance-proven anHennas and accessories for every area-every reception conditionevery possible combination of VHF and UHF stations.

* Antennitis-a present day epidemic of needless confusion concerning UHF-VHF antenna installations.

THE LaPOINTE-PLASCOMOLD CORPORATION Rockville, Connecticut

THE VEE-D-X UNIVERSAL MOUNTING BRACKET
The VEE-D-X Universal Mounting Bracket Model AB permits simple addition of UHF antennas to existing VHF installations. 3 methods of installation. Available with MM-30 Mighty Match.

PF INDEX - January - February, 1953

A PF INDEX

coverage

To date, there are two tubes that have been developed specifically for UHF television receivers. These are the 6AF4 and the 6AN4. Both are 7 pin miniature types employing double grid and plate connections to reduce lead inductance.

The chief items of concern in the engineering of tubes for UHF were cost of the finished product, efficiency, and compatibility to current design practice. To produce a tube to operate at ultra high frequencies was not a particularly difficult problem. Many years prior to UHF television, tubes had been developed to operate at microwave frequencies. Since these were primarily used for industrial or specific applications, the cost factor was not a primary concern.

On the other hand, it was necessary to remain mindful of the end purpose of the product. That is, tubes acceptable for television receivers would be those whose relative cost and adaptability to current production techniques closely paralleled that of present type tubes.

The 6AF4 is at present the most popular tube for use as the UHF local oscillator. It was developed through adaptation of an earlier tube design (6F4), whose characteristics and features were essentially those desired. The 6F4 is an acorn type oscillator triode for use at frequencies up to approximately 1200 megacycles. Its design ratings closely approximate those desired in a UHF oscillator tube.

Figure 1. 6AF4
It was not difficult then, to incorporate the desired features of the 6 F 4 acorn tube into the standard

- Please turn to Page 124 .

PHYSICAL SPECIFICATIONS

Base	Miniature Button 7 Pin
Bulb	T-51/2
Maximum Overall Length	$13 / 4$.
Maximum Seated Height	11/2'
Mounting Position	Any
Basing	7 DK

RATINGS	
Heater Voltage	6.3 Volts
Maximum Plate Voltage	300 Volts
Maximum Plate Dissipation	4 Watts
Maximum Cathode Current.	30 Ma .
Maximum Heater-Cathode Voltage (DC or Peak)	100 Volts
Maximum Grid Circuit Resistance:	
Fixed Bias................	1 Megohm
Cathode Bias...	5 Megohm

TYPICAL OPERATION

Class A Amplifier

MIXER SERVICE

Plate Voltage. .
Cathode Bias Resistor
Plate Current
Plate Current
Oscillator Injection Voltage (RMS)
Convrrsion Conductance
270 Ohms
7 Ma .
1.4 Voles
$2900 \mu \mathrm{mhos}$

APPLICATION

Miniature high mu triode designed for use as a grounded grid amplifier or mixer in u hf television applications.
uhf Oscillator Sylvania Type 6AF4

MECHANICAL DATA
Bulb
Base
Basing
Cathode.
Mounting Position

ELECTRICAL DATA
HEATER CHARACTERISTICS

Heater Voltage
Hearer Current

DIRECT INTERELECTRODE CAPACITANCES (Unshielded)

Output
$0.45 \mu \mu f$
RATINGS (Design Center Values)
UHF Oscillator Service
Plate Volrage 150 Volts Max.
Plate Input
Plate Dissipation
Negative Grid Voltage
150 Volts Max.
2.5 Watrs Max.

Grid Current
2.25 Watts Max

Cathode Current
50 Volts Max,
Cathod Curent 28 Ma Max.
Grid Circuir Voltage
28 Ma Max.
Grid Circuir Resistance
Fixed Bias .
Not Recommended
0.5 Megohm Max.

AVERAGE CHARACTERISTICS
Class $A_{\text {I }}$ Amplifier
Plate Voltage 80 Volts
Carhode Bias Resistor 150 Ohms
Plate Current
Iransconductance
16 Ma
Amplification Factor
$6600 \mu \mathrm{mhos}$
Plate Resistance
15 Ohms
TYPICAL OPERATION (Oscillator at 950 mc)
Plate Volrage
100 Volss
Grid Voltage (Self Bias) .
Grid Resistor
10000 Ohms
Plate Current
22 Ma
400 mamps

$R C P$ leads the field again ...with the finest... MIDGETSCOPE

MODEL 533 M WEIGHS ONLY 9 LBS.! SIZE: $113 / 4^{\prime \prime} \times 73 / 4^{\prime \prime} \times 51 / 8$

THE MIGHTY MIDGET-Here is a truly miniaturized professional oscilloscope for convenience of operation without loss of performance. A new concept in electronic oseilloscopes.
CHECK THIS PERFORMANCE!
SENSITIVITY; Vertical-20 millivolts $(.020$ volts for 1 " rms deflection on CRT face.) Horizontal- .6 volts.
FREQUENCY RESPONSE: 2 db from 20 cycles to 180 kilocycles. Excellent Transient Response.
PUSH-PULL DEFLECTION: For undistorted Response-Eliminates Par. allax. Full Vertical and Horizontal Expansion of Trace. INPUT IMPEDANCE: Vertical- .5 megohms shunted by 70 MMF. Horizontal- 5 megohms shunted by 70 MMF.
TUBE COMPLEMENT: 12AT7, 12AU7, 12AX7, 6J6, 117Z6, 3MPI CRT.
In metal case with leather handle-Etched panel
-Smart brushed aluminum face-Fuse pro-
tected-for 105 - 125 volt, 60 cycle AC operation MODEL 533 M -Complete, ready to operate

Model 740 - TV "DO-ALL" GENERATOR
HERE - AT LAST! One compact, efficient instrument - which gives the performance of several combined instruments. Each of which is higher priced and all of which are needed for properly servicing TV and FM Receivers.

The only single easily portable instrumenr that provides for testing and alignment of: Front Ends,

- SIGNAL GENERATOR
- Marker generator
- PATTERN GENERATOR

Sweeps, Size, Position, Focus Coil, Deflection Coil, Ion Trap.
Unusually fine circuit design, extreme stability, rugged mechanical construction. Smart looking unit with new brushed aluminum etched panel and dial. Size: $10^{\prime \prime} \times 6^{\prime \prime} \times 6^{\prime \prime}$. Wt. 8 lbs. MODEL 740 - Complete with output cable, ready \& $0,0,0$

Model 808-TV-Radio - CR - TUBE TESTER \& VTVM

REVOLUTIONARY DESIGN includes all the features of the famous RCP Model 323 Dynoptimum Tube Tester plus a Cathode Ray Tube Tester and Reactivator, plus a Vacuum Tube Voltmeter with Ohmmeter.

ALL IN ONE UNIT!

- A tUbe tester
- a cathode ray tube tester
- A REACTIVATOR
- A VT VOLTMETER (AC-DC)
- AN OHMMETER

Housed in handsome hand-rubbed oak carrying case with test leads, isolation probe, batteries, etc. Size: $121 / 2^{\prime \prime} \times 123 / 4^{\prime \prime} \times 43 / 4^{\prime \prime}$. Wt. 121/2 lbs.
MODEL 808-Complete, $\$ 0.9 .95$
ready to operate High Voltage Multiplier Probe for Model 808. Extends range of VTVM to 30.000 volts. MODEL No. HYMP-1......... $\$ 8.95$ Net

For the "Greatest Value per dollar in tv-radio TEST EQUIPMENT" see the RCP line of your dealer today. Send for your new colorful, fully illustrated 1953 catalog giving complete descriptions of all RCP instruments and probes. Write Dept. PF-2.

(Part 1)
The purpose of the vertical section of the television receiver is to provide a linear, vertical sweep which is synchronized with the vertical scanning in the camera at the transmitter. To accomplish these requirements, acircuit consisting of a filter network, a synchronized oscillator and asaw-tooth generator is employed. The saw-tooth pulse produced by this circuit, is either a current or voltage wave shape, de pending upon the type of deflection being employed. A saw-tooth sweep voltage must be applied to the picture tube when electrostatic deflection is used. In electromagnetic deflection, a saw-tooth sweep current must be used, since deflection of the beam is accomplished by an electromagnetic field produced at the neck of the picture field.

Vertical Pulse Filter -

After the sync pulses have been separated from the composite signal they must pass through a filter network to separate the vertical and horizontal pulses. The most common method of filtering the vertical sync pulse is through the use of a low-pass filter. Figure 7-1 is representative of a single-stage low-pass filter. This network, which is known as an "integrating" circuit, consists of a series resistance (R) and a capacitance (C), with the output being taken from across the capacitance.

In order to understand the operation of an integrating network, a brief discussion of the transmitted vertical pulses should be given. Figure 7-2 represents the vertical sync pulse interval and the leading and trailing equalizing pulses. Vertical blanking begins immediately after the last horizontal line of each field and continues for 15 to 22 lines, This time is to allow the beam to be returned from the bottom to the top of the screen. The vertical blanking period includes six leading equalizing pulses, six serrated vertical pulses and six trailing equalizing pulses. These are then followed by the horizontal synchronizing pulses.

Figure 7-1. A Single-Stage LowPass Filter.

The equalizing pulses are for the purpose of allowing the vertical pulse to produce equal synchronizing voltages for both the even and odd fields. The serrated vertical pulse is the pulse that is integrated to provide a triggering voltage to synchronize the vertical oscillator.

In order to show how the integrating network of Figure 7-1 is able to filter the vertical sync pulse from the horizontal sync pulse, the circuit in Figure 7-3A is employed. At the instant switch S1 is closed, a current begins to flow through resistance R and charges the capacitor C. The capacitor will continue to charge until its charge tends to reach the voltage of the battery. This condition will hold until switch S1 is opened and switch S 2 is closed. At this time the capacitor will discharge through resistance F and switch S 2 .

The charging and discharging time of the capacitor is determined by the values of R and C . The larger the values of R and C, the longer the charging and discharging time will be. This time is known as the time constant (RxC) of the circuit. The

F'igure 7-3. Operation of An Integrating Network. (A) Integrating Network With an Applied Voltage. (B) Voltage Across Capacitor C, Plotted Against Time. (C) Voltage Across C With Input of Varying Time. charging and discharging times are equal. The voltage curve (A) of Figure 7-3B shows the voltage across C during the charging and discharging intervals.

The voltage curve (B) in Figure 7-3B is the result of either

- Please turn to Page 53 . .

Figure 7-2. Vertical Sync Pulse Interval With Leading and Trailing Equalizing Pulses.

New master of tho

dements

The
NEPCO
Line - telc-
vision's new
"Master of the Ele-ments"-now meets the pressing demand for bet er electronic equipment. This complete line of quality -V Antennas, Mounting Accessories and Wire represents more built-in ruggedness than any now known-proves that only the best meets the test of time!

See the Nepco Line today. Examine its radically new design and construction. Prove to yourself that there's nothing finer on the market today-tha: it's the best by far at any price. Backed by the world's largest producer of electrical "rough-ing-in" materials, the Nepco Line carries National Electric's guarantee of quality, engineering and research. You can specify and ir.stall it with complete confidence of long-life installations and customer satisfaction
Write for details now. w: NEPCO ws
tends to prevent the erratic control of vertical retrace by random noise or static pulses. The time constant of each single section is designed to be equal to, or greater than, the duration of one vertical sync serration (27 microseconds).

Figure 7-6 shows the input and output waveforms of Figure 7-5. The waveform of Figure 7-6A was taken at point W1 and represents the signal as it appears at the output of the sync separator and sync amplifier circuit. The waveform, at this point, contains both the horizontal and ver tical sync pulses. The vertical pulses appear as widely spaced, sharp spikes. A large portion of the waveform is due to the action of the synchronized oscillator.

Figure 7-6B shows the waveform as it appears at the output of the integrating network of Figure 7-5 (point W2). Due to the action of the integrating network, this waveform is completely absent of any horizontal sync pulses. The actual vertical sync pulse is visible as a slight positive pip on the leading edge of the waveform. This sync pip is the controlling pulse of the synchronized oscillator. If it were not present, the image on the screen of the picture tube would roll either up or down, depending upon the setting of the vertical hold control. Again, a large portion of the waveform is due to the action of the synchronized oscillator.

In some receivers that have interchassis cabling, the integrating network is preceded by a singlestage differentiating network. This network is used to counteract the stray capacitance of the interchassis cabling which distorts the leading edge of the vertical sync signal.

Another method of filtering the vertical sync pulse that is being employed in some receivers is shown in Figure 7-7. By this method the sync signal is passed through a single-section low-pass filter and a vertical sync separator tube. The use of a sync separator tube is em-

Figure 7-5. A Cascaded Integrating Network.
ployed because the vertical sync pulses are attenuated by the circuit that is incorporated to improve horizontal sync stability under nòise (C 55, R82). By the use of a low-pass filter in conjunction with a sync separator tube, the vertical sync-tonoise ratio is improved.

The combined sync pulses are fed into the single-section filter, consisting of R67 and C57, where the vertical sync pulse is partially filtered from the horizontal sync pulse. The vertical pulse then passes directly into the vertical sync separator tube where it is further filtered and amplified. Since the vertical sync separator stage is designed to pass only the vertical sync pulses, the output consists of a smoothly integrated sync pulse, which is used to trigger a multivibrator.

Vertical Oscillators -

After being properly filtered, the vertical pulse is then coupled to a blocking oscillator or a multivibrator. In this stage, the vertical pulse is used to keep the scanning beam of the receiver in step with that of the transmitter. Each circuit must be able to respond to rapid changes from conduction to nonconduction in periods of controlled duration. When cost of production is taken into consideration, the multivibrator is usually employed because the added expense of a feedback transformer is not needed.

The nonsynchronized frequency of the oscillator must always be

Figure 7-6. Waveforms of Figure 7-5. (A) Input at W1. (B) Output at W2.

Figure 7-7. Vertical Sync Separation Circuit Which Employs the Use of a Single-Section Low-Pass Filter and a Vertical Sync Separator Tube.
lower than the frequency at which the oscillator is locked in by the sync pulses. In order toobtain proper lock-in, these two frequencies must be close together.

Blocking Oscillator: Figure 7-8 represents a typical blocking oscillator circuit employed in present day receivers. As is typical of all blocking oscillator circuits, the voltage feed-back is provided by the transformer, T2. The trace portion is formed when the tube connects.

This circuit employs the use of one-half of a 6SN7 operating with grid-leak bias. The operation of the circuit begins at the time power is applied to the plate of the tube. Upon the application of power, current begins to flow in the circuit because there is no bias, due to the action of the grid-leak arrangement. With the increase of plate current flow ing through the primary of the feed back transformer, a voltage is induced across the secondary of the transformer which is applied to the grid circuit. The secondary of the transformer is poled sothat the voltage induced by the current flowing through the primary drives the grid positive. The grid being driven positive increases the current through the tube, which, in turn, increases the current flowing through the primary of the transformer.

Figure 7-8. A Blocking Oscillator Employing One-Half of a 6SN7.

This drives the grid more positive until the tube reaches the saturation point. While the tube is reaching the saturation point, a negative charge is being placed on the grid side of capacitor, C48, due to grid current flow. The capacitor will hold that charge until after the point of saturation of the tube.

When the point of plate current saturation is reached, the magnetic field around the primary of T2 is no longer changing. Since the induction of voltage into the secondary depends upon the changing magnetic flux, there is no further increase in voltage at the grid. This tends to make the grid become less positive, reducing the plate current flow. This reduction in plate current flow causes the magnetic field to collapse, which will cause an instantaneous change of polarity across the secondary of the transformer. This reversal of polarity aids in the discharge of C48, which sends the ơrid further negative until the point of plate current cutoff is reached. From this point the grid potential follows an exponential curve of $\mathrm{R}-\mathrm{C}$ discharge until the point of plate conduction is again reached. In actual operation, this action of reversal of grid voltage and cutoff of plate current is instantaneous.

The RC combination of the capacitor C48 and the resistors R62 and R3 controls the frequency of operation of the oscillator. The values of these components are chosen so that the free-running frequency is adjusted slightly lower than the controlling frequency of the ver tical sync pulse. As a result, the oscillator is brought out of cutoff by the vertical pulse before C48 has dissipated all its charge. Therefore, the controlling factor of the oscillator is the vertical sync pulse. R3 is made variable so that the frequency of the oscillator can be manually changed for synchronization with the incoming vertical pulse. This resistor is the vertical hold control. The coupling capacitor,

Figure 7-9. Grid Waveform of a Blocking Oscillator with Vertical Sync Pulse.

C48, can be placed in the circuit to the right of the secondary of the blocking oscillator transformer, instead of, to the left as is shown. It produces a similar operation in either position.

F'igure 7-9 shows the waveform present at the grid of the blocking oscillator. The oscillator is operating at its natural frequency and will do so until the vertical pulse reaches the grid and triggers the oscillator. The dotted pulse shown in Figure 7-9 is the triggering pulse of the vertical sync. The photograph in Figure 7-10 is the waveform taken at point W 3 of Figure 7-8. It shows the actual operation at the grid of the blocking oscillator, with the vertical sync pulse triggering the oscillator at the sync frequency.

The output of the oscillator is taken from the primary side of the feed-back transformer and is fed to the saw-tooth forming capacitor. In the circuit of Figure 7-8 the sawtooth capacitor is C49. Across this capacitor the desirable sawtooth, which is to be used for vertical sweep, is for med. Some circuits employ another tube in conjunction with the discharge capacitor but this is not always necessary. As is the case of the circuit in Figure 7-8, the blocking oscillator tube is also used as the discharge tube. The addition of a discharge tube is for greater stability. If good stability is obtained with the use of the blocking oscillator tube alone, the additional discharge tube is not necessary.

Since the saw-tooth capacitor is effectively connected between plate and cathode of the blocking oscillator, the charge and discharge of the capacitor will be controlled by the operation of the blocking oscillator tube. With the controlling frequency of the oscillator being 60 cps, the charge and discharge time of the capacitor will be the same.

Figure 7-10. The Grid Waveform of the Blocking Oscillator of Figure 7-8, Taken at Point W3.

Figure 7-11. (A) Waveform Taken Across the Discharge Capacitor and Peaking Resistor of Figure 7-8. (B) An Expanded View of Photograph A. (C) Waveform Across The Discharge Capacitor. (D) Waveform Across the Peaking Resistor. (E) An Expanded View of Photograph D.

During the time the oscillator tube is cut off, the capacitor C49 is being charged and will continue to charge until the tube conducts. Dur ing the time of the short conduction of the tube, the capacitor has a relativelysmall resistive path through which it is able to discharge.

The purpose of R63 is to provide a peaking action to the discharge portion of the saw-tooth produced across C49 and R63. Since the deflection coil contains both resistance and inductance, the input voltage to the deflection coil must be a trapezoidal wave in order to provide a saw-tooth of current through

WEN "Leads the field" soldering gun

 the gun is hot and ready to do your soldering job. Because the tip is actually part of the electronic element it produces hear instantly and in great volume. The capacity of this unit is truly AMAZING. It really does a job.

Proven successful by thousands of satisfied users in factories, service stations and homes.

6 OUTSTANDING FEATURES

1. Heats instantly - 3 seconds.
2. Economical and safe to operate - heats only when trigger is pressed.
3. Perfectly balanced for ease of handling.
4. Straight-line design and built-in spotlight make for greater visibility.
5. Rigid, streamlined, nickel-plated "long reach" tip fits into tightest corners. Tip is so designed that with normal operation it will remain tinned indefinitely . . . burning and corrosion is materially retarded. Tip can be easily replaced with only $1 / 4$ turn of compression nut.
6. Sturdily constructed throughout-handle and case are both heat and shock resistant.

Model
250
Heat
Capacity up to
250
WATTS
120
VOLTS
AC ONLY

LIST PRICE

GUARANTEE
The WEN Soldering Gun is fully guaranteed against any defects in material and workmanship.

[^0]the coil. This is accomplished through the use of R63 placed in the discharge path of the capacitor C49.

The effect of the resistor is shown by referring to Figure 7-11. Photograph (A) is the waveform taken between point W4 and ground of Figure 7-8. Photograph (B) is the same waveform as in photograph (A), except the horizontal sweep of the scope was expanded so that the discharge portion of the waveform could be viewed. Since the trace time of the waveform is so much greater than the retrace time, the trace portion in photograph (B) becomes flat as a result of greatly increasing the horizontal sweep of the scope.

At point 1 , the charge portion of the waveform has been completed and the retrace portion is ready to begin. Between points 1 and 2 the voltage immediately drops to minimum because of the voltage drop developed across R63. At point 2 the discharge current starts to diminish at an exponential rate. The exponential discharge portion is shown between points 2 and 3. At point 3 the tube is cut off and the charge portion of the waveform begins. At the time the tube stops conducting, the plate voltage suddenly rises to point 4 . The capacitor then charges through the plate load resistance until point 1 is again reached.

The waveform in Figure 7-11C is the voltage wave that is present across C49. The waveform that is present across the peaking resistor is shown in Figure 7-11D. It is the addition of these two waveforms that make up the output waveform shown in Figure 7-11A. In order to show the actual pattern of the waveform across the peaking resistor, an expanded view of the waveform in Fig ure 7-11D is shown in Figure 7-11E.

The main requirement of the saw-tooth waveform is good linearity. Since the charging of the capacitor is usually non-linear over the entire portion of the charging cycle, only a small portion of the cycle must be used for the best results. The degree of linearity can be improved by placing a large series resistance in the charging path of the capacitor. In the circuit of Figure 7-8 this resistance consists of R64 and R7. Since the frequency of the charging and discharging of the capacitor is controlled by the operation of the blocking
oscillator, the amplitude to which the capacitor may charge can be controlled by making the charge resistance variable. In Figure 7-8 the variable resistor, R 7 is the height control of the receiver. Increasing R7 increases the time constant of the charge path and decreases the amplitude to which the capacitor is able to charge before the blocking oscillator begins to conduct. Decreasing the resistance makes the time constant of the circuit on the charge portion shorter and increases the amplitude to which the capacitor is able to charge. Figure 7-12A shows the effect upon the capacitor when the value of the charging resistance is changed. With R1 being the lowest of the three resistances, the voltage across the capacitor reaches the highest peak.

A boost voltage is applied at the center tap of the height control in the circuit of Figure 7-8. The purpose of this boost voltage is to increase the amount of the charge across the capacitor, so that a more linear portion of the charge curve may be used. Figure $7-12 \mathrm{~B}$ is representative of applying a boost voltage to the charging path of the capacitor. During the increment of time between T1 and T2 the portion of curve (B) is more linear than the portion of curve (A). Curve (B) is the result of boosting the voltage so that the curve will be more linear. The use of a boost voltage, in conjunction with the variable height resistor, aids in producing a linear saw-tooth voltage of the proper amplitude for driving the vertical output stage.

As was stated at the beginning of the discussion on the discharge circuit of the blocking oscillator, some receivers employ the use of a discharge tube in conjunction with the discharge capacitor. Whenever an increase of cost in production can be sacrificed for greater stability in the vertical sweep, the extra tube for the discharge circuit is used. Figure 7-13 is representative of a blocking oscillator circuit employing a discharge tube. The first half of the 6SN7 tube is used for the blocking oscillator and functions in the same manner as was described in the discussion of the blocking oscillator of Figure 7-8. The other half of the 6SN7 is used as the discharge tube in conjunction, with the discharge capacitor, C61.

Figure 7-12. (A) The Effect on the Charge of the Sawtooth Forming Capacitor with Different Values of Charging Resistance. (B) The Effect on the Charge of the Capacitor With the Application of a Boost Voltage.

Figure 7-13. Blocking Oscillator and Discharge Circuit Employing One-half of a 6SN7 to Discharge The Saw-tooth Capacitor.

Since the two grids of the tube are tied directly together, the discharge tube oper ates through the same cycle as the blocking oscillator. Any variation at grid 1 is present at the same time on grid 2. Whenever grid 1 is at cutoff grid 2 will also be at cutoff and no plate current will flow in the discharge tube. As before, when the discharge capacitor was connected from the plate to the cathode of the blocking oscillator tube, the discharge capacitor, C61, will acquire its charge from the power supply through the resistance combination R7 and R64. When the blocking oscillator plate is drawing current, the plate of the discharge tube, also, will draw current, placing the tube into oper ation. During this time the discharge capacitor will discharge through the low resistive path of the discharge tube. There is less chance of the operation of the blocking oscillator being inter rupted when the discharge path of the capacitor is through a section other than the blocking oscillator. This is the reason for greater stability when this type of circuit is employed.
C. P. OLIPHANT

Eventually, when large numbers of UHF stations are in operation, it is expected that television sets in production will be factory equipped with UHF tuning provisions. Currently, several manufacturers are offering two versions of their television receivers; one for VHF reception only, while the other is equipped for both VHF and UHF reception.

Two types of built-in tuning systems are now in evidence. One is employed in receivers equipped with turret tuners containing tuning strips. UHF tuning strips may be substituted in place of any VHF strips in positions where VHF signals are not received. These UHF strips are supplied for any specified channel.

The second type of built-in UHF tuning system employs separate VHF and UHF tuners, with the UHF tuner output fed into the VHF tuner and then to the video IF circuits. If the VHF tuner is unmodified, the UHF tuner output is usually accepted on channel 5 or 6 position, whichever is not used in the receiving area. Switching antennas and $B+$ to the UHF tuner is usually accomplished by a linkage assembly operated automatically or manually. A separate UHF tuner control is provided in this application.

Some television receivers employing built-in UHF systems use a VHF tuner, modified sothat it contains more than the usual 12 positions. One or two additional positions may be used on this type tuner. An advantage of the additional position on the VHF tuner is that a single conversion system is feasible. A block diagram is shown in Figure 4. The UHF signal may be converted in a single process to the frequency of the receiver $I F$ stages and the VHF tuner then becomes a two stage IF amplifier. Switching to UHF position also diables the local oscillator in the VHF tuner since it is not required in the tuner's application as an IF amplifier.

UHF channel indication is an important factor when tuning in a UHF station. One method is to use a drum type dial on a shaft concentric with the VHF tuner shaft and a drum or pulley arrangement to control its operation. To minimize the number of operating controls, the VHF fine-tuning control is usually employed to tune the UHF system.

Connecting $\mathrm{B}+$ and switching antennas inthis type of built-in UHF

Figure 4. Block Diagram of Built-in UHF System, Employing VHF Tuner as IF Amplifier (Single Conversion).
system is effected by, either a switch operated by a cam arrangement on an extension of the VHF tuner shaft, or by switch controls in the modified VHF tuner.

Specific descriptions of a number of UHF tuner units are given in this, and previous issues, of the PF INDEX and Technicial Digest. However, a description of these circuits collectively should aid in formulating a better understanding of UHF tuning devices as a whole. A breakdown, circuit-wise, of UHF tuning devices shows that each utilizes the following circuitry provisions.

1. Preselector.
2. Oscillator.
3. Mixer.
4. IF Amplification.
5. Power Provisions.
6. VHF-UHF Switch.

Preselector -

A preselector contained in a UHF tuner is an RF tank circuit. It provides the required selectivity for efficient performance. Usually two preselectors are used to obtain the necessary bandwidth. UHF tuners of the preset variety and builtin continuously tunable units whose output is fixed, require a minimum bandwidth of 6 megacycles. $12 \mathrm{meg}-$ acycles minimum bandwidth is required in the continuously tuned UHF converter units whose output frequency covers two channels of the VHF tuner.

Several types of preselectors are used. Some of these employ lumped constants (inductor and capacitor), while others use transmis-sion-line tuning, or RF cavity tuning in the tank circuit.

Lumped constants are most generally used in lower frequency applications. As the higher frequen-
cies are approached, the physical size of inductors and capacitors de crease to such an extent that efficient control of their operation over a wide band of frequencies becomes rather difficult. This has led to the use, in several converters, of sections of transmission lines in the RF circuit.

A transmission line cut to one fourth wave-length a nd shorted at one end acts as a parallel resonant circuit and may be efficiently employed in RF tuner applications. Variable tuning is achieved by lengthening or shortening the transmission line to provide resonance over a desired range of frequencies.

At the frequencies of UHF television channels, a one-fourth wave-length transmission line may be several inches in length. In order to tune the transmission line, its electrical length must be changed. This is done mechanically by means of a slider or shorting bar, or electrically by capacitance or inductance. Sometimes the configuration of the tuned line is in the form of aconcentric-shaped element, to minimize space requirements, and to facilitate shorting action by sliding contacts attached to a radial arm.

UHF Oscillator -

To effect the superheterodyne action in a UHF tuner, a local oscillator operating at the fundamental, half or third-frequency is provided. The most popular tube for UHF oscillator applications is the 6AF4, designed specifically for this purpose. In those instances where one of the current high production type tubes is used as the oscillator, it is designed to function at half-frequency in the continuously tunable converter units or at one-half or one-third frequency in the preset types.

In UHF tuning systems employing double conversion, it is customary for the UHF local oscillator to function below the frequency of the incoming signal to present the correct relationship between the video and sound carriers at the receiver IF circuits.

In built-in UHF tuning systems of the single conversion type, the local oscillator operates above the frequency of the incoming signal in the same manner as the local oscillator in a VHF tuner.

A problem common to oscillator circuits in all receivers, is that of radiation. To maintain oscillator radiation at a minimum, all oscillator circuits in UHF tuners are
completely shielded. Also, there is the problem of oscillator coupling back through the RF system to the antenna which could result in undesirable interference with other receivers. This difficulty is met in lower frequency tuning units by employing an RF stage of amplification between the mixer and antenna system which acts to block oscillator coupling to the antenna. Although RF amplification is not extensively employed in current UHF converter units, the problem of oscillator coupling to the antenna is minimized in another way. A crystal mixer is used, necessitating low oscillator injection voltages for correct mixing action. Thus, the comparatively weak signal applied to the mixer circuit, together with the shielding of the oscillator circuit, maintains radiation at a minimum.

UHF Mixer -

When the incoming UHF signal and the local oscillator signal are fed to the mixer circuit, the resultant heterodyne signal is the desiredintermediate frequency. Crystal diodes have been used extensively in this application. Three popular crystals for this purpose are the CK-710, IN72, and IN82. Features of crystal diodes as UHF mixers are: low cost, simplicity, and low noise figure. The main disadvantage of a crystal diode employed as a mixer is that a conversion loss of about 8 or 9 db results. This is usually compensated for by one or more stages of intermediate frequency amplification ahead of the receiver's IF circuits.

Efficient mixing action by a crystal diode demands that the oscillator injection voltage be uniform throughout the range of the UHF band. Continuously tunable UHF units are designed with this mind. However, the preset UHF converters can be provided with sufficient means to establish this voltage at the designated value. Injection voltage to the crystal mixer is measured by connecting a milliameter to measure crystal current. By varying the coupling between the oscillator and mixer the desired crystal current may be read on the meter.

IF Amplification -

Amplification of the IF signal from the mixer circuit, essential for efficient UHF television reception, is provided to compensate for the lack of RF amplification and the use of a ''losser" type mixer. As previously stated at the beginning of this
article, the UHF converter unit, when employed with a television receiver, connects in series between the VHF tuner and the antenna system. One function of the VHF tuner is to amplify the converted signal from the UHF unit. If double conversion is employed, it has a dual function. It amplifies the applied signal, and converts it to the frequency of the video IF circuits in the receiver. For single conversion systems, the VHF tuner functions strictly as an IF amplifier at the frequency of the video IF stages in the receiver.

In addition to the amplification provided by the above described method, many units incorporate one or two stages of IF amplification prior to application of the signal to the VHF tuner. Usually, these amplifier stages will be included in the separate self-contained UHF converters.

Tubes frequently used as IF amplifiers in U HF converters are the dual-triode type 6 BK 7 or 6 BQ 7 . They are usually employed in a cascode circuit, because of their inherent low noise characteristics. In some instances, one or two pentode type 6CB6 tubes are used.

Power Provisions -

Most of the externally connect ed UHF tuning devices are equipped with a built-in power supply. This feature facilitates the installation of the unit, since all inter-connections between the converter and receiver are external.

The power supply usually consists of a power transformer, rectifier (tube or selenium), and an RC filter network.

Built-in UHF tuners and some of the single channel preset converters receive power direct from the television receiver. The use of miniature type tubes and low power requirements of these units place only slight drain on the receiver power supply.

VHF - UHF Switch -

An important factor, contributing greatly tothe ease with which VHF or UHF bands may be selected is the VHF-UHF switch. It is de-
signed to select antennas, select the input to the VHF tuner, and switch B+ on or off to the UHF tuner. Additional switch positions are provided on separate, self contained converters to also turn power on and off to the television receiver. This last operation is made possible by plugging the television line cord into the AC receptacle at the back of the converter and plugging the converter line cord into a wall socket.

Typical operation of the function switch on most UHF converters is as follows:

1. Off Position - Power to both television receiver and converter is off.
2. VHF Position - Power is supplied to the television receiver. The VHF antenna is connected through the switch contacts to the antenna input terminals of the receiver, and power is supplied to the UHF converter tube filaments.
3. UHF Position - Power is supplied to the television receiver, and $\mathrm{B}+$ and filament power is applied to the converter. The VHF antenna is disconnected (grounded in some instances) and the converter output is connected through the switch contacts to the antenna input terminals of the TV set.

Successful operation of the UHF converters will depend a great deal on the care taken during installation. The higher frequencies of the UHF band will require close attention to details and the little additional effort required will pay off in cus tomer satisfaction. The interconnecting leads should not be excessively long and should be checked for good mechanical and electrical connection. Extra care should also be taken in the dressing of the connecting leads. After the installation is complete, the customer may also require instructions for the proper operation of the controls.

IDollar and Sense Servicing

1953 TV SET At year-end, a survey of tube type in TV receivers of 19 different manufacturers shows that certain tubes are favored for each stage. Results of this compilation, published in the first issue of the newly launched magazine Electronic Design, indicate that the typical 1953 TV receiver would use the following complement of tubes:
RF Amp.

6BK7

Osc. Conv. 6J6
Video IFthree 6CB6
Video Det.6AL5
Video Amp. 12AT7 or 6CB6
Sync. Amp., Sep., Clipper . . 12AU7
Vert. Osc. 6SN7
Vert. Output 6S4
Horiz. AFC6AL5
Horiz. Osc.6SN7
Horiz. Output6BQ6
Damper 6W4
H. V. Rect. 1B3
L. V. Rect. 5U4

Audio IF Amp., Limiter6AU6
AF Det. 6 AL5
AF Amp.6AV6
Audio Output 6V6 or 6W6

Of course, it is unlikely that any one receiver will actually have the above tube complement. Greatest variation will be found in video output amplifiers, where 11 different tube types were found to be servicing this function in only 22 different sets. On the other hand, chances will be 17 out of 22 th at the audio detector is a 6AL5. Models coming out early in 1953 may also affect the tube popularity picture.

SILENCER PAYS OFF: Somewhere out on Long Island, a night guard in a factory stood it as long as he could, then drew his trusty 45 and put a bullet through his TV screen to silence Abbott and Costello. In appreciation of his heroic act, or perhaps because it was just man-bites-dog news, CBS-TV put the guard on their Strike It Rich program a few days later, where he won $\$ 280$ for a new TV set.

DEAD ON ARRIVAL. While testing a power amplifier of a television transmitter, an employee of a large TV-radio manufacturer took the discharge of a capacitor bank that had been charged to 3,000 volts. He
w as knocked unconscious, and was dead by the time he had been moved to a local hospital. The transmitter was turned off, but he had apparently neglected to use the grounding stick provided for discharging the capacitors, or had accidentally touched one of their terminals before putting the stick on them. This particular man had been with the company for 16 years, working chiefly on highvoltage equipment as a test man, so he knew better. Moral: With high voltage, your first mistake may be your last.

SIAMASE TV. Marconi television transmitting equipment has been ordered for installation at Chulalongknorn University, Bangkok, which is to have the first TV station in southeast Asia.

DOUGHNUTS DISAPPEAR. To get at the tube socket terminals of a GE clock radio in 1951 , you hac to untwist locking tabs on top-ofchassis metal doughnuts that protected prying fingers from exposed dip-soldered terminals. GE didn't like the idea either, because it took time and money to make and install those five individual covers. Everybody will therefore be happy about the new safety cover on 1952 dipsoldered models: it's a single molded plastic piece that goes around all the tube and even has cutouts for the two IF transformers located between tubes. Loosen two screws and the entire cover comes off, exposing all terminals at once for troubleshooting.

TV SCRAPPING RATE. The number of years required for a TV set to travel from the factory to the junk heap is as yet unknown since the sets have been around in quantity for only 6 years, but a TV Digest survey comes up with the prediction that it' $l l$ be $8-1 / 2$ years. In more dignified technical language, this is known as the wearout and scrapping rate.

For radios, the accepted lifespan figure is 7 years. This is a good comparison to bring up when TV service charges are questioned on elderly sets; scrapping before retirement age is like throwing away
a half-smoked cigar. The same predicters say that the average retirement age of a picture tube is 5-1/2 years--a much higher figure than we've heard anywhere up to now. This too is good news for serviceman, as adding the price of a new picture tube onto legitimate labor charges for a TV service job almost invariably makes the customer unhappy.

Wear in picture tubes comes mostly from electrical shock to the gun and phosphors due to turning the set on and off, so caution your customers to leave their set on in between desired programs if they want their picture tube to last longer. Continuous hours of use have little effect on the life of the tube, in comparison to the damage done by the on-off switch. The same applies to the fluorescent lamps in your shop; leave them on through lunch hour or while out on calls, and they'll stay brighter longer.

DOW N PAYMENT. Serviceman Jim Kirk requires a down payment on repair charges for old radios. This avoids the nuisance of having the sets on his shelves for months or even forever, taking up space, repair time and money, just because the customer later forgets about sentiment and decides the old set isn't worth the amount of the repair charges.

When asked for a down payment, most set owners have proved willing to pay all or almost all of the total charge willingly befor ehand, and they then come for the set promptly. The set alone they may leave and forget, but set and down payment together--never! November 1952 Radio-Electronics was the source of this helpful business tip.

PIN-UP. Newest novelty hit is Motorola's pin-upclockradio, which can be hooked to a wall like a kitchen clock. Just the thing for dining room too, to bring morning news and weather to the breakfast-snatching commuter and time his bites so he' 11 just catch the last car of the 7:51 as it starts rolling on to the big city.

* Please turn to page 120 *

- You'll be proud to tave this completely new instrumient on your service bench!
- The result of a nationwide survey of radio and television technicians makes the new TO-4 Tel-Ohmike meet your capacitor test needs to a capital "T". Trim and trustworthy, it has instant push-button range selection, magic-eye bridge balarcing, safety discharge feature, direct meter readings of leakage current and insulation resistance, and a continuously adjustable test voltage for checking electrolytics at exact rated voltages.
- Two especially valuable features are the provision of a special low capacitance circuit for checking small ceramics and "gimmick" capacitors down to 1 mmf (in addition to a top capacitance range of $\mathbf{2 0 0 0} \mathbf{~ m f}$) ard the simplified insulation resistance circuit with a top reading of 20,000 megohms.
- See a demonstration of this new instrument at your distributor without delay!
- And the price of this new improved Tel-Ohmike is still the same Only

INDEX to PHOTOFACT

radio and television service data folders

HOW TO USE THIS INDEX
To find the PHOTOFACT Folder you need, first look for the name of the receiver (listed alphabetically below), and then find the required model number. Opposite the model, you will find the number of the PHOTOFACT Set in which the required Folder appears, and the number of that Folder. The PHOTOFACT Set number is shown in bold-face type; the Folder number is in the regular light-face type.

IMPORTANT- 1. The letter "A" following a Set number in the Index listing, indicates a "Preliminary Data Folder." These Folders are designed to provide you immediately with preliminary basic data on TV receivers pending their complete coverage in the standard, uniform PHOTOFACT Folder Set presentation.
2. Models marked by an asterisk (*) have not yet been covered in a standard Folder. However, regular PHOTOFACT Subscribers may obtain Schematic, Alignment Data or other required information on these models without charge by supplying make, model or chassis number and serial number. (When requesting such data, mention the name of the Parts Distributor who supplies you with your PHOTOFACT Folder Sets.) 3. Production Change Bulletins contain data supplementary to certain models covered in previously issued PHOTOFACT Folders, and are listed in this Index immediately following the listing of the original coverage of the model or chassis. These Bulletins should be filed with the Folders covering the models to which the changes apply.

	Set Folder No. No.
ADAPTOL	
CT. 1	48
ADMIRAL (Also see Record Changer Listing)	
Chossis UL5KI(See Chassis 5 K 1)...... 30	
Chassis UL7Cl	
Chassis 3A1 2-24	
Chassis 3C1 isee Ch. 20T1) (Also see Prod.	
Chge. Bul. 15-Set	
Chassis 4A1	
Chassis 4B1	24-1
Chassis 4D1	49
Chassis 4 HI	
Chassis 4JI, 4K1	
(See Ch. 20Al)	77
Chassis 4 $41,451$.	100
Chassis 4R1.	108
Chassis 4 Tl	143
Chassis 4WI	
Chassis 5A3	191
Chass is SBI (See Mod	
Chassis 5B1 Phono	4-24
Chassis 581A	18-1
Chassis 5B2 100	
Chassis 5D2(See Ch. 21B1)....... 118	
Chassis SE2	139-2
Chassis 5F1 57-	
Chassis 562137-2	
Chassis 5J2136-2	
Chossis 5 KI	30-1
Chassis 512 160	
Chassis 5M2157-1	
Chassis 5N1	31
Chassis 5R1 59	
Chassis ST1	68
Chassis 5W1 79	
Chassis 5×1	76
Chassis 5Y2 188	
Chassis 6Al	
(See Model 6TO1)	1
Chassis 642 103	
Chassis 6B1 48	
Chassis 6CI 53	
Chassis 6E1, 6E1N	
Chassis 6Fl	
Chassis 6. 22140	
Chassis 611	26
Chassis 6 M 2	
(See Ch. 6J2) 14	
Chassis 601	78
Chassis 6R1 54-1	
Chassis 651 107	
Chassis ov, 62	
Chassis owl 71	
Chassis oY1 75	
Chossis 781 18	
Chassis 7Cl 25	
Chassis 7E1 36-	
Chassis 7G1 54	
Chassis 8B1	
Chassis 8C1 (See Ch. 8D1) 67	
Chassis 8D1 67-1	
Chassis 981 49-	
Chassis 9E1	68
Chassis 10a1 3-30	
Chassis 19A1 Tel. Rec. (Also see Prod. Chge.	
Bul. 5-Set 106-11...... 59-2	
Chassis 19E1, 19F1A	
Chassis 19H1	*
Chassis 20A1, 20B1.	
Tel. Rec. (Also see	
Prod. Chge. Bul. 23,	
Chassis 20TI Tel. Rec. (Also see Prod. Chge. Bul. ${ }^{\text {S }}$-Set 126-1 \& Bul. 26-Sef 146-1)117-2	

Set Folder No. No.	Set Folder No. No.
ADMIRAL-Cont.	ADMIRAL-Cont.
Chassis 20VI Tel. Rec. (See Ch 20T1) (Also	Chassis 30A1 Tel. Receiver 57-2 Chassis 3081, 30 Cl
(See Ch. 20TI) (Also see Prod. Chge, Bul. 15-Set	Chassis 30B1, 3001 Tel. Rec......... $71-1$
$126-1$ and Bul. $26-$	Model 4D11, 4D12, 4DI3
Set 146-1)117	(See Ch. 4DI) \ldots...... 49
Chassis 20XI, 20Y1, 20 ZI	Models 4H15, 4H16, 4H17
Tei. Rec. (Also see Prod.	(A or B) Tel. Rec.
Chge. Bul. 7 -Set	(See Ch, 20A1)....... 77
110.11 - 100-1	Models 4H15, 4H16, 4H17,
(See Ch. 20A1) (Also see Prod. Chge. Bul.	Tel. Rec. (See Chassis 30B1) \qquad
23. Set 140-11...... 77	Models 4 H 18, 4 H 19 (C or
Chassis $2181,21 \mathrm{Cl}, 21 \mathrm{Dl}$,	CN) Tel. Rec. (See Ch.
21 El Tel. Rec. (Also	20A1) .-............ 77
$\begin{aligned} & \text { see Prod. Chge. Bul. } 25 \\ & \text { Set 144-i) } \ldots118 \quad 2 \end{aligned}$	Models 4 H 115 , 4HIl6, 4 H 117 (S or SN
Chassis 21F1, 21 GI . Tel.	Tel. Rec. (See Ch. 30b1) 71
Rec. \Also see Prod.	Models 4HI 26A, B, C or
Chge. Bul. 30-Set 156.2	CN Tel. Rec. (See Ch.
and Prod. Chge. Bul. 46	20A1) 77
	Model 4H126 (S or SN)
Rec. (See Ćh. 21B1).	Tel. Rec. (See Ch. 3081) 7
(Also see Prod. Chge.	Models Tel. Rec. (See Ch. 20A1) 47
Bul. 25 -Set 144-1).... 118	Model 4HI37 (S or SN)
Chassis $21 \mathrm{Kl}, 21 \mathrm{ll}$, Tel.	Tel. Rec. (See Ch. 30b1) 71
	Models $4 \mathrm{HI} 45,4 \mathrm{H} 146$
Bul. 46-Set 180-1)... 135	(C or CN) Tel. Rec.
Chassis 21M1, 21 NI Tel.	(See Ch. 20Al)....... 77
Rec. (See Ch. 21F1)	Models $4 \mathrm{H} 145,4 \mathrm{HI} 46$.
(Also see Prod. Chge.	4 H 147 (S or SN) Tel.
Prod 180-1) 135	Models 4HI46, 4 HI 47 (A or B) Tel. Rec.
Chassis 21P1, 21Q1 Tel.	(See Ch. 20A1)....... 77
Rec. (See Ch. 21F1)	Models $4 \mathrm{H} 155,4 \mathrm{H} 156$.
(Also see Prod. Chge.	$4 \mathrm{H1} 57$ (A or B) Te
Bul. 30-Sel 156.2 and	Rec. (See Ch. 20A1)... 77
Prod. Chge. Bul. 46- 135	Models 4H155, 4H156,
Chassis 21W Tel. Rec...177-2	
Chassis 21 Y 1 Tel. Ree. (See Ch. 21W1) 177	Models $4 \mathrm{H} 165,4 \mathrm{H} 166$. 4 HI 67 (A or B) Tel.
Chossis 21Z1, 21z1A Tel.	Rec. (See Ch. 20A1)... 77
Rec. (See Ch, 21W1). 177	
Chassis 22A2, 22A2A Tel. Rec. 180-2	(C or CN) Tel, Rec. (See Ch. 20A1)
Chassis 22C2	(See Ch. 20all....... 77
Chassis 22E2	models 4H $165,4 \mathrm{H} 166$,
Chossis 22 Ml Tel. Rec. (See Ch 22A2) . 180	Rec. (See Chassis 30B1). 71
	Models 4R11, 4R12
(See Ch. 22A2) 180	(See Ch. 4R1)........ 108
Chassis 24D1, 24E1, 24FT,	Model 4TII
$24 \mathrm{G1}$,24 Hl Tel. Rec.	(See Ch. 4T1)......... 143
(Also see Prod. Chge.	Models 4W18, 4 W19
Bul. 9 -Set 114-1)103-2	(See Ch. 4T1)........ 143

IMPORTANT PHOTOFACT INFORMATION

We want you to receive maximum benefits through your use of this Index and of PHOTOFACT Folders. To keep you fully informed about PHOTOFACT, we have prepared the table of informative subjects listed below. Be sure to read each item carefully.
Subject
Page No.

1. Explanation of letter ' A," asterisk (*), and Prod. Changes 65
2. How and where to buy PHOTOFACT Folders. 69
3. How to obtain a sample PHOTOFACT Folder 73
4. How to file PHOTOFACT Folders easily and quickly 77
5. How to obtain PHOTOFACT Volume Labels. 78
6. How to obtain Service Data on Pre-War Models 79

ADMIRAL-AIRLINE

AIRCASTLE-Cont.
XL750, XP775 Tel. Rec... 93A-1

AIRCASTLE-Cont.

Tel, Re. (Ch. $700-96$)
Tel.
Model 17C2)......... 151
17 C 7 (Ch. $700-96$) Tal.
Rec. (See Model 17C2). 151
$17 \mathrm{K1}$ (Ch. $700-96$) Tel.
Rec. (See Model 17 C 2) 151
17 K 1 C ($\mathrm{Ch}, 700.110$
17 KIC (Ch, 700.110,
700.130) Tel. Rec..... $150-2$
700.130) Tel. Rec...... $150-$
$17 \mathrm{M1}$ (Ch. 700.961
Tel. Rec. See
Model I 7 C 21) 151

Tel. Rec. (Seo Model 17C21	151
17 Tl (Ch. 700-96)	
Tel. Rec. (See Model 17C2)	
19 Cl Tel. Rec.	
20C1, 20 C 2 (Ch. 700.93)	
Tel. Rec. (See 17C2)	
20kI (Ch. 700-95)	
Tel. Rec. (See Model 17C21	
20 Ml ($\mathrm{Ch} .700-93)$	
Tel. Rec. (See Model 17C2)	
718 Rel. Rec. (See Madel 16C1)	121
800	66
2017R Tel. Rec........... 111	
4601 (See Model 4609)... 11	
4603	3
4604	
4604D (See Model 4604).	
4607, 4608	
4609, 4610 Early(See Model 4807)	
4609, 4610	$11-2$
4825 13-8	
4700 39	
4704 . ${ }^{\text {a }}$. 12	
5.	

AIR KNIGHT (SKY KNIGHT)

AIRLINE-Cont.	
54WG-1801A, 54WG.	
18018.	4-33
${ }_{2700 \mathrm{~A}}$	4-15
	3-34
S48R-916B (See Model	
硣	17
648R10sib (Sat Model	
$648 \mathrm{R1051}$ (A)	2
O4BR-1205A,	
048	
648R.15038, $648 \mathrm{BR}-1504 \mathrm{~B}$	
ISoe Models 548 BR -	
503A, B, C; 548 BR -	
04BR-1513A, B;	
64BR-1808A 16	
648RR2200A (Soe Model	
64BR-7000A ……... 51	
SABR.7300A, 64BR-7310A,	
64WG.10508, 1050 C 64 W	
(Seen ModelS4WG. 1050 A)	
$64 W \mathrm{~W} .105$	
64WG-1052B (Seo Model 64WG.1052A) 9 64WG.1207B	
64WG-1207B : 64WG..... 18-5	
64WG-1801C (See Models 54WG.1801A, B)	
S4WG.1804A, B.......	
64WG-180\%	
64WG-18094, 64 W	
S4WG. $1511 \mathrm{~A}, \mathrm{~B}, 64 \mathrm{WG}$.	
6WGG-2007	
64WG. 2009 A	
64WG-20108	
${ }^{\text {64WG-2500A }}$ (Soe ${ }^{\text {Model } 54 W \mathrm{~W}-2500 \mathrm{~A}) . .}$	
$64 \mathrm{WG} .2700 \mathrm{~A} \text {, }$	
\$4WG-2700' 1500	
Models $54 \mathrm{WG-2500A}_{i}$	
$748 \mathrm{R}-9168$	
$748 \mathrm{R} \cdot 1053 \mathrm{~A}$$748 \mathrm{R}-1055 \mathrm{~A}$	
7488-15018, 748 CR -15028.	
748R-18812A (See Model	
748R-2001A (Soa Modal	
74 BR -2702A (See Model	
$748 \mathrm{BR}-2708 \mathrm{~A}$	
4G5G-8400A,	
74656-8810A, ${ }^{\text {a }}$	
${ }_{\text {4KRR-1210A }}$	
WG-10528 (See	
Models 64WG-1052A, 8)	
MWG.1054A Mo.... 22	
AWG-1055A 29	
4WG.1207B (See Model 64WG.12078	
WG.1509A,	
WGG.15118, 74WG	
W/G-1802A A, B...... 25	
74WG.1803A (Soe Modol 25	
(WG-1804C See Models	
$\begin{aligned} & 18078 \text { (See Models } \\ & \text { 64WG-1807A, B) } \end{aligned}$	
74WG.2002A	
74WG-2004A	
74WG.2007B, 74WG2007C (See Models	
64WG-2007A, BI	
74WG.2009B (See Models64WG-2009	
WG.2010A (See Model 18	
74 WG-2010B	
54WG-2500A)7 4WG-2504A 28-1	

airline-Cont.
94WG-3022ATel. Rec. (See
Model 94WG-3006B) 85 94WG-3026A Tel. Rec. (See
Model 9AWG-3006B) 85 94WG.3028A Tel. Rec. (Seo
Model 81 WG- 3006) 94WG-3029ATel. Rec. (Seo
Model 94WG-3006B) 85

ALDENS

114G, 116G, 117G, 120G,
Tel.' Rec.
(Similar to Chassis) . . . 162-7

ALGENE

ARSU
AROU
$22-3$
altec lansing

ambassador

A) 7 CS, Al7TS Tel.
(See Model 20 PC .
(Soe Model 20PC)
A20CS Tel. Rec. (See
Model 20PC). A2IODOCS Tel. Ree A2 IQDCS Tel. Rec.
(Soe Model 20PC)
A24QDDCS Tel. Rec. $\begin{array}{lll}\text { A24QDCS Tel. Rec. } & \ldots . .178 \\ \text { (Sen Model 20PC) } & \ldots . .178\end{array}$
AMITC, CB, CIM, PT,
TIM TeI. Rec.
AM20C
TIM Tel. Rec. 17
AM20C, T, Tel. Rec
(See Model AM17C) $\ldots 17$
C1720, C2020, C2420,
C1720, C2020, C2420, ...171
CD2020, Tol. Rec.175-2
CD2020, Tol. Rec. 175
C2050 Tel. Rec.
(See Model C1720) . . . 175
(See Model C1720) $\ldots . .175$
C2150 Tel. Rec.
(See Model C1720) $\ldots 175$
(See Model C1720)
PLI7CB, CG, PG, IM
Tel, Rec. (See Model
Tel, Rec. (See Model
AM17C)............ 17
TSe, Mode' Cil720).....175
(SMC. MT, Tel. Rec......162-2
14 MC , MT, Tel. Rec.......162-2
14MT (2nd Prod.). 14 MTS
Tel. Rec.173-2

MXT, MXXTS Tél. Rec,
(See Model $14 M C$). 162
(See Model 14MC)
16MT (2nd Prod.). MTS
Tel. Rec. (See Model
I4MT (2nd Prod.)...... 17
$17 M C, M T$, MXC, MXCS,
$M X T$, MXTS Tel. Rec.
(See Model 14 MCl
17 MC (2nd Prod.), MCS,
17 MC (2nd Prod.), MCS,
MT (2nd Prod.) MTS
Tel. Rec. (See Model
14MT (2nd Prod.)..... 173
$17 P C$ 17PCS Tel Rec
(Soe Model 20PC) 17
(Soee Model 20PC).
17PT, 17 PTS Tel. Rec.
(See Model
(See Model 20PC) $\ldots 178$
20 C Tel. Rec. (Seo Modal
20MC, MCS, MT, MTS
Tel. Rec. (See Model

20PC, 20PCS, 20PCS2 $\begin{aligned} & 178\end{aligned}$
2ei. Rec.
20pT. 20PTRS, 20PTS
Tol. Rec. (Sem Model

$21 \mathrm{C2A}, 21 \mathrm{C} 2 \mathrm{AlO}$ Tel. Rec. 191 -
9120 , 10 Tel Rec.
9120, (See Model 21 C2A) $\ldots 191$
9820, (0, 9821,10 Tel.
Rec. (Seo Model 21 C2A) 191

AMC (AIMCEE)

IC23 Tel. Rec.
(Similar to Chassis)...139-11
1672 Tel. Rec. (C72 Tel. Rec.
(Similor to Chassis)...126-8
1771 Tel Rec.
 (Similar to Chassis) ... 126-8
17C, CB, T Tel. Recsis) . 126-8
(Similar to Chassis) . (Similar to Chassis)...126-8
17CG, 17C3, 17TG Tel.
Rec. (Similar to Chassis) 149-1 Rec. (Similar to Chassis) 149-13
17T20 Tel. Rec.
Similar to Chassis)...139-11 (Similar to Chassis)...139-11
$2062 \mathrm{~A},-1, \ldots . . .188-3$
$20 \mathrm{C22} 20 \mathrm{D}, \mathrm{DB},, 20 \mathrm{~T} 21$
(Similar to Chassis)...139-11
$20 \mathrm{CD}, 20 \mathrm{C} 1$, 20TG Tel. 20CD, 20C1, 20TG Tel.
Rec. (Similor to Chassis) $149-13$
$20 \mathrm{CD} 2 \mathrm{~A}, 1$. 1 Tel Rec. (See Rec. (Similor to Chassis) 149-1
20CD2A, 1 Tel. Rec. (See
Model 20C2A).......188-3
$20 T 2 A .1$ Tel Re. iSeo
 Model 20C2A)....... 18
24T2A, 1 Tel. Rec. (See
Model 20C2A)....... 18 Model 20C2A)......
114C, 114 T Tel. Rec.
(Similar to Chassis).
(Similar to Chassis).... 111-3
$116 \mathrm{C}, 116 \mathrm{CD}, 116 \mathrm{~T}$ Tal.

AMERICAN COMMUNICATIONS

AMPLIFIER CORP

ACA. 100 DC , ACA. 100 GE . 63-2
AMPLIPHONE
10
20
AMPRO (5ee Recorder Listing)

ANDREA

Tol. Rec.
(See Model C.v(17) . . . 152
BT-VLIT (Ch. Vい7)
(See Model C-V(17).... 152
O-V15
Co-VK15, covkio ich.
VKI51o, Tel. Rec. (Also
see Prod. Chge. Bul. 8
-Set 112-1)
COVK-125 Tol. Rec.
(See Model BT.VK12) . . 76

CO.Vilo (Ch. Vil9)
Tel. Rec.168-4
Tel. Rec. 1
C.VKig Tel. Rec (Supp. to
CO.VKIb] [Also see
Prod. Chge. Bul. 8 -

Prod Chge. BuI. 8-
Sel $112-11, \ldots$.

CVK-126 Tel. Rec.
(See Model BT.VK12)... 76
CVI. 16 (Ch V(16)
CVI-16 (Ch. VII
Tel. Rec. (See
Model COVL-16)
C-VLI7 (Ch. V117)

T-VK12 Tol. Rec. 21
(See Model BKI-VK12).. 76
TVK-127B, Mel. Rec.
TVK-127B, M Tel. Rec. . .
(See Model BT.VK12). 76
TVL-12 Tol. Rec.123-3
TVee Model BT-VK
$\begin{array}{ll}\text { TVL-12 } & \text { Tel Rec. } \\ \text { TVL. } 16 & \text { (Ch. VL.16) }\end{array}$
Tel. Rec. (Sea
Model COVL-16)
T-VLI7 (Ch. V 117)
Tel. Rec. (See
Model C-VLI7)
VJ-12, VJ-12-2 Tel. Rec.... 152
VJ-15 Tel, Rec.
2C-VII7 (Ch. Vili)

Tel. Rec. VL-20)
Ch. VK1516 (See Model
Ch. VK1516 (See Model 103
Ch. V116 (See Model 10.125
CovV.16)

Ch. VL19 (See $\begin{gathered}\text { Model CO.VI19) } 168\end{gathered}$

| Ch VL. 20 (See |
| :---: | :---: |
| Model $2 \mathrm{C}-\mathrm{VL}-20$) $\ldots . . .$. |

ANSLEY

APEX
485
192 A

9120,9121 Tel. Rec.
(See Model 817).
(Soe Model 817)...... 181
$9820,98208,9821$ Tel.
Rec. (See Model 817). . 181
APPROVED ELECTRONIC

FM Tuner	41-2
A-600AC	175-4
A 710	177-5
A-800	176-2
A-850	175-5

ARC
601
arcadia
37D14.600 9—3
ARIA
ARLINGTON
30T14A. 056 Tel. Rec.
(Similar to Chassis)....119-3
38 T12A. 058 Tel. Rec.
38112A. 058 Tel. Rec.
(Similar to Chossis). ...109-
317T3 Tel. Rec.
(Similar to Chassis).... 72-
18 T 4 Tel. Rec.
(Similor to Chassis).... 85-3
$\begin{aligned} & \text { (Simis. } \\ & 318 T 4 S \text { Tel. Rec. }\end{aligned}$
(Similar to Chassis).... 85-3
$318 T 4-872$ Tel. Rec.
(5i-
(Similor to Chassis).... 85-3
$\begin{aligned} & \text { (STóA Tel. Rec. } \\ & \text { (Similar to Chassis).... 85-3 }\end{aligned}$
(Similar to Chassis) 85-3
318ToA-850 Tel. Rec.
(Similar to Chassis).... 85-3
(Similap to Chassis).... 85-3
318T9A.900 Tol. Rec.
(Similor to Chassis) . . . 78 -4
$321 \mathrm{MS3IC}$.
(Similar to Chassis).... 78-4
321MS31C Tel. Rec.
Similar to chassis) 182-5
(18TOA Tel. Rec.
51876 Tel. Rec.
(Similar to Chassis).85-3
1819A-918 Tel. Rec.
(Simitar to Chassis).... $78-2$
(Simitor to Chassis)..... 78 -
$2318 T 6 \mathrm{~A} .954$ Tel. Rec.
(Similar to Chassis)....85-3
$2318 T 9$ - 1212 Tal. Rec.
ARTHUR ANSLEY

ARTONE-BRUNSWICK

artone
AR14L AR171 Tef. Rec. .. 172-3 AR-23TV-1 Tel. Rec...... $80-1$
MSTI2, MSTI4, Tel. Rec. $170-4$
 17 CD (1) Prod.) Tel. Rec.
(See Model MST12) ... 170 $7 C O$ (2nd Prod.) Tel. Rec. $17 C R R$ Mst Prod.) Tel. Rec. 170 ${ }_{17} 1$ CRe (2nd Prod.) Tel. Rec. (See Model AR14L)...... 172
17 ROG (1st Prod. T Tel) Rec (See Model MSTI2). Rec. 170 (See Model AR14L) K. 172 (See Model MSTI 2) Rec. 170
200 (2nd food.) Tel Rec. 170 ISee Model
20 R Tel
(See Model MST12) $\ldots 170$
i 2×1 Tel. Ree.
(See Model MST12).... 170
2030 (1st Prod.) Tel. Rec.
203D (1st Prod. Trel. Rec.
(See Model MSTI 170
2030 (2nd Prod.) Tel., Rec.
(See Model AR1 41).
312 Tel. Rec.

(See Model MST12).... 170
1000,1001 Tel. Rec.
(See Model AR1 4) 172 $163 C R$ R
(Soe Model MST12) 170
$8163 \mathrm{CR}, \mathrm{g} 993 \mathrm{CM}$ TeI Rec
(See Model MST12). . . 170

apuin

140-P (Ch. RE-209) 25-6
${ }_{(\text {Ch. }}$
SOTC, 151TC

RE-244, RE-254, RE-255,

250-P (Ch, RE-248).
253T, $254 \mathrm{~T}, 255 \mathrm{~T}, 25 \mathrm{O}$
(Ch. RE-252)......... 53
264 T , 265 T (Ch. RE-265) 64 2801 FM, 281 TFM

 358-T (Ch. RE-233)
(See Model 152-T)
360TFM, 361 TFM (Ch .
 444, 444A (Ch.
$444 \mathrm{AM},{ }^{444 \mathrm{M}}$
(Ch. RE-200M)
446 (Ch. RE-280)......23-3 450T, 451 T Kh. RE-28i). 110-3 $460 \mathrm{~T}, 461 \mathrm{~T}$ (Ch. RE-284).. $107-3$
$462 . \mathrm{CB}^{4}, 42 . \mathrm{CM}$ $\left.462-\mathrm{CB}, \mathrm{Ch}^{462 . \mathrm{CM}} \mathrm{ME}-287-1\right)$

$482 \mathrm{CFB}, 482 \mathrm{CFM}-277-1) 107-4$
(Ch. RE-288.)
540 C
(Ch. RE-278)
$540 T$ (Ch. RE-278)...... 143
542 T
(See Model 440 T)... 96

347A (Ch. RE-2421)...... 42-7
551T (Ch. Re-297).

RE-231); 555, 555

$554 \mathrm{CCB}, 554 \mathrm{CCM}$

582 CFB,
$(\mathrm{Ch}, \mathrm{RE} .310)$
(Ch. RE-310)
$650-\mathrm{P}$, (Ch. RE292)
664, 664A (Ch. RE-206).

665 (Ch. RE-229)........ 18-10
751 TB
75178 (See model 5siti). 15
${ }^{2120 \mathrm{CM}}{ }^{2} \mathrm{Ch}, \mathrm{TE} 289-2$,
Soe Prod. Chige. Bul. 20
-Set 134-1)
${ }^{2121 T M}$ (Ch. TE288-2,
TE289-3) Tel. Rec.
(See Model 2120CM)
(Also See Prod. Chge.
Bul. 20 .Set $134-1$).
2122 TM (Ch. TE-289)
${ }^{21231 M}$ (Ch. TE-289-2).
TE 288.3) Tel. Rac.
(See Model 2120CM)
Bul. 20 .Set 134.1)... 120

AUTOMATIC-Cont.	BEMDIX-Cont.
TV-1294 Tel. Rec.	5B1, 235M1 (Ch. Cod
(See Model TV-124)	
(Also See Prod. Chge. ${ }^{\text {a }}$	
-1605 Tel. Rec.	416 A 43
Model TV-1249) \ldots.... 103	$526 \mathrm{MA}, 526 \mathrm{MB}, 526 \mathrm{MC}$. . $29-3$
Model TV.1249) \... 103	
TV-1649, TV.1650,	$636 \mathrm{~A}, 636 \mathrm{C}$ …...... 15
TV-1651 Tol. Rec...... 143-5	636 D (See Model 636A).
TV.1694 Yel. Rec. (See	646A 2-28
Model TV-1249) 103	6564 2-31
TV. 5006 Tel. Rec........ 1454	676B, 676C, 6760....... 5-23
TV.5020 Tel. Rec........134-4	6874
TV-5061 Tel. Rec	
(See Model TV.5006). 145	${ }^{7368}$
(See Model TV.5006) . 145	
TV-5116R Tel. Rec.	
(See Model TV-5020).. 134	1217, 12178, 12170..... 29
TV. 5160 Tel . Rec.	12170 (tote) ….... 46
(See Model TV-5020).. 134	1518, 1519, 1524, 1525.. 37
$\times 313 \mathrm{Tel}$. Rec.	155
(See Model IV.707)... 60	1531, 1533 , 43
	2001, 2002 Tel. Rec. 84-4
601, 602 (Series A)...... 13-11	${ }^{\text {20, }}$ (See Model 2001188
601,602 (Series B)....... 22-5	2025 Tel. Rec............ 99-5
$612 \times$.............. ${ }^{1-34}$	2051 Tel. Rec. (AAso Se
613 X (See Model 612 X 614 X 616 X	Prod. Chge. Bul. 16
\%14x,610x	
820 ${ }^{12}$	2080 Tel.
640, Series B.......... 10, ${ }^{4}$	(See Model 2051)
	${ }_{\text {See Prot Prod. Chge. Bul. } 16} 16.111$
720 21 -	070 Tel. Rec
aviola (Also see Record	2071 Tel. Rec.
Changertisting)	(See Model 2051) (A
${ }_{511}^{509}$............... 7-3	See Prod. Chage. Bul.
${ }_{601} 511 \ldots \ldots \ldots \ldots \ldots$	3001, 3002 Tel. Rec.
	(5ee Model 2001)...... 84
612 (See Model 601).... 15	3030, 303
618 (See Model 608)..... 16	(See Model 2001)...... 84
BELL-AIR	(See Model 2025)...... 99
Ptize Tel. Rec.	S1 Tol. Rec.
(Similar to Chassis)....149-13	(See Model 2051) (A
Pl20 Siel. Rec. (Similar to Chasis)....149-13	Set 126 -1)
BELL SOUND SYStems	(Sea Model 20S]
B.23 75-4	See Prod. Chge
RC-47 (RE-CORD-O-FONE) 30	${ }_{6002} \mathbf{5}$ Tel. Rec
RT-65 130	6002 Tell Rec.
RT-65, в 17	003 Tel Rec.
${ }_{350}$................ 148	(See Model 205
	See Prod Chae, Bul
37455 151-6	Set 126-1) 111
	6090 Tel. Rec.
2075 100-5	(See Model 20
${ }_{2122}{ }^{122}$.............. 77	(See Model 2051) (Also
	see Prod.
	Set 126-1
$21599^{\text {a }}$..................	6920 rel. Rec.
3715 22-8	6990 Tel. Rec.
	俍 Model 2051 .
3750 31-5	
BELLTONE	see Prod. Chge.
500 5-33	16--Set 126-1)l11
	BOGEN (See David Bogen)
BELMONT (Also See Raytheon)	BREWSTER
A.60110 17-7	9-1084, 9.1085, 9-1086.. 2-13
${ }^{3 A W 7}$ [15 10-7	bROOK ELECTRONICS INC.
	3 B (1ssue 2), 3C184
4B112, 4B113 (Series A).. 10-6	$10 \mathrm{C} \ldots \ldots \ldots \ldots \ldots \ldots .{ }^{41}$
${ }^{50110}$ a $\ldots \ldots \ldots \ldots \ldots .2{ }^{22-10}$	
${ }_{50128}^{5015}$ (Series A) 9 - ${ }^{\text {a }}$	100 (See Model Ioci.... 41
${ }^{5 P 19}$ (Series A) ${ }^{\text {5P11 }}$ 9-5	$1_{124} 100$ (inode
60111 2-33	12A2, 12A3 (See Model
60120 24-12	12A-Set 89.3 and Model
	3C-Set 184-4)
	brooks electronic labs.
	Model ST-14A........... 183
BENDIX	browning
C172 Tel. Rec........... $134-5$	PF. 12. RJ-12
C174 Tel.	${ }_{R J-12 B}^{R 12 A} \cdots \cdots \cdots \cdots \cdots \cdots 146$
${ }^{\text {[5ee Model }}$ 2051]	RJ. 14 A
C176, B Tel. Rec.	(See Model RJ-12A) ... 56
${ }^{\text {C182 Tel. Rec. }} 15131$	
(See Model C1721.... 134	RJ. 22 (See Model RJ20).. 67
$\mathrm{Cl}^{192} 2 \mathrm{Tel}$. Rec.	RV-10 ${ }^{46}$
(See Modei C172).... 134	
${ }_{\text {C200 Fel. Rec. }}^{\text {(See Model }}$ (172) 134	RV-11 (See Model RV-10). 46
OAK3 Tel. Rec. 183 -2	brunswick
T170 Tel. Rec	BJ-6836 "Tuscany,"
(15ee Model 2051)111	C-3300 "Darby'" ${ }^{28-4}$
${ }_{\text {mil }}$	$0.1000,0.11001{ }^{56}$
T173 Tel. Rec. ${ }^{\text {(See }}$	
(See Model 2051)111	KP221 "Nantucket"
T190 Tel. Rec.	Tel. Rec.
OS See Model $20511 \ldots \ldots 111$	MA22 2 "Wedgewood
05260, 0526E, 0526F.. 1-22	T-4000, T-4000 $1 / 2 \cdots$ Buck.
PAR B0 39-3	insham" .a........ 29-5
21 KD Tel. Rec. ${ }^{\text {a }}$ (See Mol	T. 4400 . T. $44001 / 2 \ldots . .61-4$
(See Model OAK3) 183	T-600, T.6000
(See Model OAK3] 183	
2173 Tel. Rec.	(See Model T-4000) ... 29
(See Model OAK3) ... 183	T.9000 (See Model D-1000) 56
${ }^{21 \times 3}$ Tel. Rec.	512,513 Tel. Rec....... 163
	812, (See model 512)
55×4............... 58	911 Tel. Rec.
${ }_{65 P 4}$. 5^{52-4}	9228, M Tel. Rec.
${ }_{75 \text { 7PG, }} 75$ W 5 59-5	(Ssee Model 512) 163
	6165 Tel. Rec.
	$8125,8165 \mathrm{Tel}$. Rec. (See Model 512)

BRUSH SOUND MIRROR (See Recording Listing)	EHART-Cont.
	Mx (Ch. CT. 27) Tel.
BRUSH MAIL-A-VOICE (See Recording Listing)	Rec. (See Ch. CT-27). $331 \mathrm{BX}, \mathrm{MX}, 335 \mathrm{BX}, \mathrm{MX}$. 336CX, FX (Ch. CT-38)
	Rec
$\begin{aligned} & 980690,980733 \ldots \text { 18-9 } \\ & 9807444980745 \end{aligned}$	
980782 .	(Ch. Cx.33Fl Tel. Re
980797, 980798 59-6	(See Model 323M)
980888	See Prod. Chge. Bul.
980979 is	
98	$3388 \times 1 \mathrm{Ch}$. CT .
${ }_{98180888)}^{981111}$ (See Model $\ldots . . .104$	${ }_{\text {Rec. }}$ (Se
butier bros.	339 Mx (Ch. $\mathrm{CT}-38$)
(See Air Knight or Sky Rover)	
CADILIAC (Auto Radio)	Rec. (See Ch. CT-27).. 160
7241938	
7253207	$481 \mathrm{P}, 462 \mathrm{PI} 2 \mathrm{Tel}$. Reci.... 87-2
7256609	$501 \mathrm{P}, 502 \mathrm{P}, 504 \mathrm{P}$
7258155 **	
${ }_{7258755}$............. 109-2	135
7260205 (Soo	1351
725	610p, 651 P , 万661P Tel. Rec. 95A.1
726090405) 152	
Calbest	0 Sb
1651, 1652, 1653,1654	(Ch. (.287)132-5
Tel. Rec.	1007AM (Ch. C.318)150-5
1916, 1917 Tel. R	3001,3002 (Ch. CX
1920, 1921 Tel. Recter	99A.1
(See Model 1916).	01, 3002 (Ch. CX. 30 A
䢕	
se Model	$3004 . \mathrm{M}$ (Ch. CX-31, Prod. ${ }^{\text {a }}$
5. 2 M	Rec...... 93A-5
(see Model	$3005 \mathrm{lch} . \mathrm{Cx} 32$
20, 2021 Tel. Reci.	C-2791) Tel. Rec...... 93A.5
	$3000 . \mathrm{M}$ (Ch . CX-31, Prod
2024 Tel. Rec. (See Model 1916)	$\mathrm{C} .274) \mathrm{Tel}$. Rec. (See Model $3004-\mathrm{M}$)
CALLMASTER (See tyman)	3007 [Ch. CX-30, Prod.
CAPEMART	8
4-P16 Tel. Rec.	Model 3005) ${ }_{\text {a }}$
	30118, M, 30128, M
rc-20 (Ch. C-297)....... 132-4	(Ch. Cx-33) Tel. Rec. ${ }_{\text {a }}$
TC. 62 (Ch. CR-71)....... 192-4	$4001-\mathrm{M}$ ($\mathrm{Ch} . \mathrm{CX}-31$) Prod.
30	Rec. 'See
1 117mx (Ch. Ст-27) Tel.	Model 3004 -M) . ${ }^{\text {a }}$. 93
	${ }^{4002-M}$ ($\mathrm{Ch} . \mathrm{Cx}-31$
(Tr.52) Tei. Rec........ 187-3	Model 3004-M1
2 T 20 mx ($\mathrm{Ch} . \mathrm{CT}$-38)	C-312 (See Mod
${ }^{(58 e e ~ C h . ~ c l-27) . ~} 160$	C-318
Mx ($\mathrm{Ch} . \mathrm{CT}-27)$	Model 1007
Rec. (Soe Ch. CT-2	CR71 (See
2B, M (Ch. CT. 57)	
	CT- 27 (Ch. Series
128 mich cr-57) 187	(x-330x) Tel. Rec..... 160
Tel. Rec. (See Model	
	(See Ch. (T-27)...... 160
212 M (Ch. (T-57) Tel.	CT-45 (Ch Series
${ }_{\text {Rect }}$	(x-330x) Tf
${ }^{\text {6F2 }}$ Res (C. Cr. Cr.57) T	c1
${ }_{\text {Rec }}^{\text {Rec }} 1$ (See	
[12M ${ }^{\text {a }}$	1172
Rec. (See Model	Ch. $\mathrm{CT} .57 \mathrm{lCh} . \mathrm{Se}$
T172M1 187	CX-36) (See Model
2128 (Ch. (T-37) Tel.	
Rec. (See Model	(See Model 323M).... 112
$9 F 212 \mathrm{Mm}$ (Ch. cr-57) Tel.	CX-330X Series Tel. Re
Rec. (See Model	CX-36 (Soe Model
$1{ }_{1}^{172} 17$	iT172M) 187
W21 2 M (Ch. CTR 68) Tel.	itol
Rec. (For TV only	
Model ${ }^{\text {a }}$	-
W212M (Ch, CTS8/C305)	U-24
see Model 1 1172M) . 187	CARDWELL, ALLEN
$19 \mathrm{~N}, 21 \mathrm{P} 4,24 \mathrm{N4}, 24 \mathrm{P} 4$.	CE-26 14
	CAVENDISH (See Bell Air)
32P9, 33P9 64-3	CAVENDIS (See Bell air)
$34 \mathrm{Pl10}$ (See Model 32P9)... 64	CBS COLUMBIA (Also See
	Air King
114 N 4 , $116 \mathrm{NA} 4,116 \mathrm{P} 4$,	17C18, 17M18, 17 T 18 (Ch. 817,-1) Tel. Rec. . 188-5
19N4) 65	20M18, $20 \mathrm{~m} 28,2011$
	(Ch. $\left.8200^{-1}\right)^{-1}$ Tel.
9BX, MX (Ch. (T-27) Tel ${ }_{\text {Rec }}$ (See Ch. CT-27).. 160	(See Model 17C18) ... 188
$320-\mathrm{B}, 320 \mathrm{Mm}$ (Ch.	Tel, Rec. . .
(x.331) Tel. R	$\left.21 \mathrm{C} 21^{(\mathrm{Ch}} .1021\right) \mathrm{Tel}$.
(See Model 323M) (Also	See Model 21C11)
See Prod. Chase. Bul. ${ }^{13}$	$21 \mathrm{C31B}$ (Ch. 1021) Tel. Rec.
Sef 142-1) 112	21 C 41 (Ch. 10211 Tel Réec.
$320 \mathrm{BX}, \mathrm{Mx}(\mathrm{Ch}, \mathrm{CT}-27)$ Tel.	ee Model 21 C 11 .
	${ }^{21 T 11}$ (Ch. 1021$)$ Tel.
Tel. Rec. (See Ch.	817, -1 (See Model
cT-27) $1 \ldots \ldots \ldots \ldots 1$	
Rec. (See Model 323 M)	Ch .1021 Soe
(Also Soe Prod. Chige.	model $21 \mathrm{Cl} 11$. .
Bul. 24-Set 142-1) ${ }^{\text {a }} 1112$	
$322 \mathrm{RABX}, \mathrm{RAMX}$ (Ch . \ldots	Industrial Television)
CT-27) Tel. Rec.	226, 326 (Ch. 17.26R
	IT-35R, (T-39R, 1T-46R)
325F, 325-M (Ch. CX-33)	
,	It-21rj Tel.'Rec....... 97A.8
	CENTURY (20th)
142-1]112-3	100x, 101, 104.
${ }^{324 \mathrm{BX}}$ ($\mathrm{Ch} . \mathrm{CT}-27$) Tel	$200{ }^{200}$.............. ${ }^{21}$
Rec. (See Ch. CT- 27). 160 325 Fx ($\mathrm{Ch}, \mathrm{CT}-27$) Tel.	300 21
Rec. (See Ch. CT. 27). . 160	CHALLENGER
$326-\mathrm{Ml}$ (Ch. Cx-336) ${ }^{\text {T }}$	
el 323m)	CC18 67-7
Prod. Chase.	cc
I. 24 -Set 142-1) ... 112	

CONCORD	
IN434, IN435, IN436	
IN437 (Similar to Chossis) 121-2	
IN549 (Similar to Chossis) 38	s) 38-5
IN551 (Similar to Chossis)	
(Similar to Chassis). ... 55-10	
(Similar to Chassis)... 109-7	
IN559 (Similar to Chassis) 90	s) 90
IN560 (Similar to Ch	
IN561, IN562 (Similar to Chossis).... 97-8	
IN863 (Similar to Chassis) 136 - 10	
IN819 (Similar to Chassis) 69	s) 69-7
6C51B 19	
${ }_{6 \text { E 51 }} \mathrm{W}$ (See Model ${ }^{\text {a }}$	
6F26W 19-10	
6R3ARC 21	21
7R3APW (See ModelOR3ARC)	
6 661w 22	22
7G26C 20	
1-402, 1-403 4	45
1-411 48	
1-501 (See 6E51B)...... 20	
1.504 55	
$1-509,1.510$ (See 8C51b) 19	
1.601, 1.602, 1.603	
(See 7G26C) 20	20
1.606 45	
1-608 (See 6F28W) 19	
1-609 (See 6T6lW)...... 22	
$1.611 . . .$. 46	
2-105 (See 315WL)...... 53	
2-200, 2-201, 2-218,	
2-219, 2-232, 2-235,	
$2.236,2.23, ~$2.2392.240	
$325 \mathrm{WL}, 325 \mathrm{WM}$	
(See 2-106)	
CONRAC	
10.M-36, 10.W. 36 (Ch. 36) Tel. Rec. (See Ch. 36)........... 110	
11-B-36 (Ch. 36) Tel. Rec. (See Ch. 36) 110	
12-M-36, 12.W-36	
(Ch. 36) Tel. Rec (See Ch. 36)...	
13-8-36 (Ch. 36) Tel. Rec. (See Ch. 36).......... 110	
14-M-36, 14-W-36	
(Ch. 36) Tel. Rec.	
15.P. 36 (Ch. 36) Tel. Rec. (See Ch. 36)......... 110	
16-8-36 (Ch. 36) Tel. Rec. (See Ch. 36)......... 110	
17-P-39 (Ch. 39) Tel. Rec. (See Ch. 36)........ 110	
18-M.39, 18.W. 39 (Ch. 39)	
Tel. Rec. (See Ch. 36) . 110	
$20-\mathrm{M}-39,20-\mathrm{W}-39(\mathrm{Ch}, 39)$ Tel. Rec. (See Ch, 36) . . 110	
21-B-39 (Ch. 39) Tel. Rec. (See Ch, 36) 110	
$22 \cdot \mathrm{P}-39$ (Ch. 39) Tel. Rec. (Seo Ch. 36)......... 110	
23-M-390, 23-W-390	
See Ch. 36)......... 110	

CONRAC-Cont.

YOUR PHOTOFACT DISTRIBUTOR

The easiest way to own the world's finest Radio-TV Service Data is to subscribe to PHOTOFACT Folder Sets with your distributor, who will see to it that you receive each Set as published (issued 2 to 4 Sets per month).
PHOTOFACT Folder Sets, Each Only.
. $\$ 1.50$
DeLuxe Binders for filing PHOTOFACT Sets, Each Only. 3.39
Complete PHOTOFACT Volumes, Each Only.
18.39
(Each Volume includes 10 Sets of PHOTOFACT Folders in Deluxe Binder. Vol. 1 contains Sets 1-10; Vol. 2 contains Sets 11-20, etc.)

PHOTOFACT EASY-PAY PLAN. You can own a library of PHOTOFACT Volumes for a down payment of only.
Easy monthly payments--no interest or carrying charges. For full Easy-Pay details, see your distributor or write to Howard W. Sams \& Co., Inc.

CORONADO-Cont.	CORONADO-Cont.
05RA1-43.7901A	197 U (Soe Mo
OSRA2.43-8230A	(31-43-8115A) $^{1} 81$
O5RA 2-43-8515A	2027 (Soe Model 43.2027) 11
$05 \mathrm{RA4}-33.8935 \mathrm{~A}$ tol. Rec	5005 (Soe Model 43.5005) 28
43.9876 A	6301 (See Model 43-6301) 7
OSRA33-43-8120 A	6451 (See Model 43-6451) 10
05RA37.43-8360A	6485 (See Mod
OSTVI.43-8945A	
O5TVI-43.9006A Tel.	9
(ISoo Modal	1, 7602
05TV1-43.8945A) 145	(5ee Model (3.78018). 10
$05 \mathrm{TV1.43-90144}$ Tel. Rec. 12	76018
05TV2-43-8950A Tel. Rec. (See Model O5TV2.43.	7605A ISee Madel
	RA1.43-7605A) 65
OSTV2-43.9010A Tel. Rec. 1	7651 (See Model 43-7651) 9
OSTV2-43.9010B Tel. Rec	7652 (See Model 43-7651) 9
15RA1.43.7654A147-3	5RA1. 43.76544 A$)$
15RA1.43.7902A134-6	7656A, 76577 (See Model 73
15RAL-43-8230	
del	
,	OSRA
15RA33.43-82	7751
RRA33-43.836	94 RA -43-775
SRA37.43-9230	7851 (See mode
15TV1-43.81	7901
Tel. Rec. 162	OSRA1-43-7901A)115
$15 \mathrm{TV1} .43$-8958A, B Tel.	7902A
	5RA1-43-7902A) 134
ge.	8101 (Soe Model
	81
	94 A
	${ }^{\text {b }}$
TV1	03RA3-43-8120A) ...110
15 TV1.43	$8129 \mathrm{~A}, 8130 \mathrm{~A}$,
ISTV1	${ }^{8131, ~}{ }^{\text {a }}$ 81318
Rec	(500 Model
${ }^{43.8958 A)}$) (Also Soe	914RA4.43-8129A) ${ }^{\text {a }}$, 62
	${ }_{94 \mathrm{RA}}^{33-43-8130 C)}$
2-43-9012A, 15 TY2.	8160 (Sees Model 43.8160) 12
-9013A	8177 (See Model 43-8178) 21
15 TV2-43-90	${ }^{8,78}$ (See Model 43-8178) 21
STV2.43.9026A, B	8180 (See Model 43.8180) 10
Tel. Res.	8190 (See Model ${ }^{\text {P3.8190) }}$
$\begin{aligned} & \text { TV2. } 43 \\ & 120.010 \end{aligned}$	
15 TV 4.43 .8948 A.	230 A (See Model ${ }^{\text {a }}$
$15 T V 4.43$	OSRA 2.43 -8230A) 162
	8240,824
V2.43-9022A Tel. Rec. 183	(sae model (3.8240).. 12
43.2027 11-3	82454, 824
43-5005 28-36	
43.6451	${ }_{\text {model }}(43-8312 \mathrm{~A}) \ldots 8$
	8330 (50e Model 43-8330) 19
$\begin{aligned} & \text { 43-6730 (See Model } \\ & \text { 43-8885) } 11 \end{aligned}$	${ }_{8351} 83352$
3-7601, 43.7602 (5	
${ }^{\text {Model }} 43.760181$..... 10	
	8360 A (S00 Model
4	3360A) ... 102
43-76511	365 (Soo Model
43.7851 …........... 47	(A53.43-8365] $\quad .169$
	8420 (See Model 13-8120) 24
94RA31-43-8115A) ... 81	${ }_{8471}^{8470}$ (See Model ${ }^{\text {d3-8305 }}$) 8
	Model 43-8312A) $\ldots . .8$
${ }_{43-8130 \mathrm{Cl}}$...	aee Modol
8160 ….......... 12	$94 \mathrm{RA1}$-43-8510A) $\ldots 71$
43	${ }^{85108,853118(S e e ~ M o d e l ~}{ }^{\text {a }}$
43-8178)	
12	OSRA2-43-8515A) 110
${ }_{43-8180}$ (i).......... 19-11	768 / See
43-8201 (See 43-8178) ... 21	
213	
	8935 A Tel. Rec.
43-8312A	8940A Tel, Rec.
43-8330 19-12	(See
43.8351, 43.8352 12-9	94TV(-43-8940A)
43.8353. 43.8354	45 A Tel. Rec
43.8420	(STVL
43.8470 (See	OSTVL.43.8945A)145
43-8305)	$948 \mathrm{~A}, 8949 \mathrm{~A}$
$43-8471(5808)$ $43-83124)$	
.85788 ...	8950A Tel. Roc.
43.8965 Tel. Re	OSTV2-43-9010A)146
196	${ }^{\text {89533A Tel. Rec. }}$
13.9201	
	94TV6-43-8953A) 106
$94 \mathrm{PAI}-43-7$	$8957 \mathrm{~A}, 8$ Tel. Rec.
$94 \mathrm{RA1}$-43-7657	${ }_{\text {STV1-43-8957 }}$
RA1.43-7751A	
RA1-43-8510A	${ }^{\text {89, }}$ (Soe M Model ${ }^{\text {a }}$
948A1-43.8511A 71-7	\|STY1-43-8958A) 161
	8960 Tel. Rec......
94RA2-43-8230A (See	8965 Tel. Rec.
	8966 Tel
O5RA2-43.8230A) 162	89704, 8971
94RAA.43.8129AA ${ }^{\text {a }}$	
94RA4.43-8130A,	A
	89954 Tel. Rec.
4RA31-63-8115A, B,	9002 A Tel. Rec. ${ }^{\text {a }}$
94RA31-43-8116A $\ldots . .881-5$	9 (See Model
RA31.43.9841A \ldots..... 79-3	94 TV 1.43 .9002 A)
94RA33-43-813iC82-3	$9005 \mathrm{~A}, 9006 \mathrm{~A}$ Tel.
94 TV1.43.8940A Tel. Rec.	O5TV1 43-89454 . 145
94 TV1.43.9002A Tel. Rec.	0084 ${ }^{\text {al }}$
	9010 A Tel. Rec.
8971 A.	(See Model
94TV2.43.8973 ${ }^{\text {a }}$	O5TV2.43.9010A)146
94 T	108 Tel. Roc.
	05TV2-43-90108)153
94TV2-43-8993A	9014 A Tel. Rec.
$94 \mathrm{TV} 2.43-8995 A^{\prime}$	(1) 128
	$9012 \mathrm{~A}, 9013 \mathrm{~A}$ Tel. Rec..
Vo-43-8953A Tel. Roc. 106-3	9015 A
165 (See Model 94RA31-43-8115	$\begin{aligned} & \text { Tel. Rec. (See Modd } \\ & 15 \mathrm{TV} \text { I- } 43 \text {-8957A } \end{aligned}$

CROSLEY-Cont.

17CDC1, 17CDC2, 17 CDC3.
 331-1, 331.-2) Tel. Rec.
(Seo Model 1-42). 126

 $20 \mathrm{CDCl}, 20 \mathrm{CDC2} 20.3$ (
(Ch. 323-3, 323.4)

el. Rec.	
	15-5
56 PA, 56 PB	
$5674.1,56$	
56TD	
56 TJ	
Modeis 56TA-L, 56 TC - ${ }^{\text {a }}$	
Iz	
仿, 561	
57 TO (Soe Model 56 TZ)... 33	
58TCSBTKS	
66CA, 66CP, 66CQ [See Model sbCS]	
66TA, 66 TC, $66 T W$. 5- 15	
${ }_{68 C P}{ }^{\text {a }}$, 88 CR '	
${ }_{6814}{ }^{\text {a }}$, ORTW $^{\text {a }}$	
86CR, 86CS	
${ }^{87 \mathrm{CQ}}{ }_{\text {BCR }}$ (R.	
88CR (See Model 87	
TA, 88 IC	
${ }^{8874}$, 887 C (
106CP, 106CS	

307 TA ${ }^{\text {Tol. Rec. . . }}$
348 CP -TR1, $34 \mathrm{BCP} . \mathrm{TR2}$,
$348 \mathrm{CP}-\mathrm{TR} 3$ Tel.

$\mathrm{Ch}_{\mathrm{C}} \mathrm{Cl}^{\text {(Soe }}{ }^{\text {Model }}$ (11-301U) . 124
${ }^{\text {Ch. }}$ (See 320 Model (1-126U) . 125

 Ch. 323-3, 323-4 (See Model 20 CDD 1
$\mathrm{Ch}^{3} 323-6$ (Soe
Model S 20 CDC 1
$\mathrm{Ch}_{\text {Model }} \mathbf{3 2 5}$ S20CDC11 *
$\mathrm{Ch}_{\mathrm{Ch}}^{\text {(Soes Model }} \mathbf{3 3 0} \mathbf{1 1 . 4 4 6 \mathrm { MU }) . 1 2 6}$

Ch. Model Tol. Rec. (Seo

M. 360,361 Tel. Rec.
Ch. 380 Model DU-17PDB). 163

crosley car

CROYOON

ClifFM Tel. Rec. (Also see Prod. Chge. Bul.

CRYSTAL PRODUCTS
 CRYSTAL PRODU (See Coronet)

DALBAR

Barcombo Jr.,Barcombo	
M8 'Tonomatic'	8-34
100-1000 Series	10-15
400	$9-9$
DAVID BOGEN	
DB. 10	102
DP. 16	166-8
E66	85-4
E75	83
E1620	

DEWALD-Cont. DT-1020, DT-1020A Tel. Rec. (See Model DT-120) 100 DT-1030, DT-1030A Tel. Rec. (See Model DT-120) 100 DT-X. 160 Tel. Rec. (See Model DT-120) 100 ET.140, ET-141 Tel. Rec. (See Modal DT-162)... 118 ET-140R, ET-I41R Tel. Rec. (See Model DT-162R) (Also see Prod. Chge. Bul. 58-Set 192.11... 136 E-170, ET-171, ET-172 Tel. Rec. (See Model DT-1 62 R] (Also see Prod. Chge. Bul. 58-Set 192.1) ET-1900, R Tel. Rec. (See Madel DT-162R) (Also see Prod. Chge. Bul. 58-Set 192.11. 136 (See Model DT-162R) (Also see Prod. Chge. 	

DUMONT-Comt
Banbury Model RA-162.
B21 through B20 Model RA-160) 179
Beverly Model RA.165-B2
(See Model RA-164)...18
Bradford
(See Model RA-108A). 95
Brookville Model RA. 113 .
B1,-82 (See Model
Burlingame Model
RA-113.B5, -B6
(See Model RA-113) $\ldots 119$
Corlton Model
RA. 117-A3 (See Modal
RA. ${ }^{\text {R17A) }}$
Chorham Model RA.103). 13
(See Model RA.103)... 90
(See Model RA-147A). . 131
Clition Model RA.102).
Clinton Modal RA.164-Al
(See Model RA.164). . 189
Club 20 Model RA.164)... 189
(See Model RA. 106 A). . 99
(See Model RA. 105A). . 72 Devon Model
Model RA-160) 179
Davonshire
(See Model RA-101)...
Dynosty
(See Model RA-162)... 179
(See Model RA-110A).. 93
Flanders Model
RA.162-B5 (Soo Model Guilford Model
RA-111-A2, $\cdot A 5$ (See
Model RA-111A) 106
$\underset{\text { (See Model RA-101)... }}{\text { Mampshire }}$
Hanover Model
RA-109-A2, A6 (See
RA-109-A2, AA (See
Model RA.109A) 110
Hanover (See
Model RA. $109 A$-FAS) . . 110
Hastinge Mod RA-104A). . 93
(See Model RA-IO6A).. 99
Mansfield
(See Model RA-108A).. 95
Meadowbrook II
(See Model RA.147A). . 131
(See Model RA. 147A). . 131
Milford Model RA. 165 B -
Milford Model RA-165-B1
(See Model RA-164)... 189
RA.112.A3, A6 (See
Model RA.112A) 119
Newbury
[See Model RA.162) . . 179
Park Lane Model
RA-117.A7 (See Model
RA-117.A7 (See Model
RA-117A) 131
Parklane
(See Model RA-147A).. 131
[See Model RA-101\}...
Purman Model RA-1|1-AI
-A4 Tel. Rec. (See
Revere
(See Model RA-101)... *
Revere 11 Model
RA. 113 -B3 -
(See
everel13-B3,-84(See
RA- 113
Model RA- 13)
Ridgewood Model RA-165-B4
(See Model RA-164)...189
Royal Sovereign
(See Modal RA. 119 A) . . 156
Rumson
(5 ee Model RA-103D).. 93
Saroy (See Model RA-103) 90
Shefreld Madel RA-103D). 93
Shelburne Model RA-T65-BS
(See Model RA.164)... 189
Sherbrooke Models

RA-109-A3.-A7 (See
Models RA-109A)

Sherbrooke (See
Model RA. 109 A -FAS) . . . 110
Sherbrooke
(See Model RA-130A). . 175
Sherwood
(See Model RA-101)... *
Somerset
(See Model RA.162)... 179
Stratford
(See Model RA-105A). . 72
Strathmore Model
Model RA-1 17A) 131
Sumter Model
RA.117-A1 (Seo Model
RA.T17A) 131
Sussex
(See Model RA.105B). . 95 Tarrytown
RA-120)
(See Model
Tarrytown Models
RA-113-B7,-B8 (See
RA-113-B7, -B8 (See
Model RA-113)
Wal 19
Wakefield Model RA.155-B3
(See Model RA.164) .. 189
Wellington
(See Model RA-104A). . 93 Westerly Model

RA-112-A2, -AS (See
Model RA-112A)
119

Westbury
(See Model RA-105A). . 72
Westbury 11 (See
Model RA-109A.FAS) . . . 110
Westminster
(See Model RA-101)
Westminister II (See
Model RA
Westwood
Wespood
(See Model RA-110A). . 93
Whitehall
(See Modal RA-105A). . 72

DUMONT-COMt.

ECMOPHONE
(Also See Mallicrafters)

EICOR (Also see Recorder
Listing
EKOTAPE (See Recorder

ELCAR

ELECTONE
TSTS3 12-34
ELECTRO
ELECTROMATIC
APH301-A, APH301.C.... \quad 7- 11
606A, 607 A \ldots.
$5-32$
ELECTRO-TONE
${ }_{706}^{555} 712$ (See Model 555) ${ }_{13}^{13-16}$
ELECTRONIC CORP.
OF AMERICA (See ECA)

ELECTRONIC SPECIALTY CO.

 (5*e Ranger)E/L (ELECTRONIC LABS.)

EMERSON-CORT.
$529,529.9$ (Ch. 120028). 18-15
$530(\mathrm{Ch} .120000$.
 534 (Ch. 120007 ISee
Models 514 Ch . 1200071
 537 (Ch. 120051$]$ (See.
$\begin{aligned} & 538 \\ & \text { Model } 549 \mathrm{Ch} .120051\end{aligned}$

564 (Ch. 120027) (SSe.
Model 540 ACh . 20042) 20
565 (Ch. 120018B) 70 (See Model 556).
566 (Ch. 120051) (S
Model 549 Ch . 120051126
67 (Ch. 12001) (See
Model $560 \mathrm{Ch}, 120016) 25$
567 (Ch. 120042) (See 25

Television Receivar 46-25
Tol. Rec. (200 6 B)
571 (Ch. 1200888)
Tel, Rec.
572 (Ch. 120065) (See
Model 540 Ch . 120042) 20
5738 (Ch. 1200398)..... 42-11
574 (Ch. 120064)
(S5e Model 570 97
575 (Ch. 120068A,
$1200688)$. . . 85-
576 A (Ch. 120069A)..... 40-
577 B (Ch. 120012B).... 41-
578 (Ch. 120050) (See
Modal 547A Ch. 120050) 25
579 A (Ch. 120034 C
580 (Ch. 120064)

585 (Ch. $120088 \mathrm{~B}, \ldots$
$120090 \mathrm{~B}, 120090 \mathrm{O})$
Tel. Rec.
586 (Ch. 120023 B,
,

ERSO	MERSON-C
618 (Ch. 1200908,0) Tel.	5. B (Ch. 120131-B and
(Ch. 1200920) Tel	Radio Ch. 120130-8) 146
ac. isee Model 571	
	and Rodio Ch. 1201328)
Tel. Rec. (Isee Mod	
$571 \mathrm{Ch}^{\mathrm{Ch}} 120088 \mathrm{Bl} \ldots . .{ }^{76}$	(148-1) .1........133--5
(Ch. 120098) 108	$667 \mathrm{~B}, 668 \mathrm{~B}$ (Ch. 120134 B , G. H) Tel. Rec. (See
C	Model fol B) (Also see
el.	Chge. Bul. 48
Model 621] 108	
(See Model S90]...... 87	Sol (Ch. 1201298 . D)
4 (Ch. 1200878.D)	Chge. But. 24, Set
Tel. Rec. (See Mod	14
571 Ch. 120086B) 76	Bul. 47, Set 181.11....126-5
5 (Ch. 1201058)	(${ }^{\text {a }}$
Ch. 1201048 ,	
$1201048 J$]	8 (Ch .120137 .8$)$
(See Model 608A).... 84	6710 (Ch. 120137 D)
${ }^{\text {l }}$ (Ch. 120	See Model 67
${ }_{\text {chill Ch. }}$	
8 (Ch. 120098B)	Rec. ISee Model
Tel. Rec. (See	${ }^{6748}$ (Ch. $\left.1201348, \mathrm{G}, \mathrm{H}\right)$
Model 621).......... 108	Tel. Rec. ISe
ICh. 12011	${ }^{6618)}$
Rec. ISee Model	Choe. ${ }^{\text {B }}$
20120) Tel. Rec......119-6	
(Ch. 1201248)	Tel. Rec. (See Model
el. Rec.	669
Model 6211..... 108	676 B (Ch. 120140 B)
${ }_{\text {Rec }}^{1}$ (Ch. 120109) Tel. ${ }^{\text {a }}$	
632 Rec. ${ }^{\text {ch }} 120096 \mathrm{~B}$) 93A.6	隹(Ch. $120144 \mathrm{~B}, \mathrm{G}, \mathrm{H}$)
	${ }^{\text {rel. Rec. }}$
3 (Ch. 1201	182-11 138 -4
Rec. (See Mod	${ }^{676 F}$ (Ch. 1201438)
Ch.	Te
635 (Ch. 120108$)^{\text {a }}$..... 92-1	Prod. Ch
¢A (ch. 120106 A)	50-Sef 184-11 148
B. B, BC, CiCh. 12	6778, 6788 (Ch. 120
B, BC, C) Tel. Rec. (See Model 614)	G, H) Tel. Rec. (See Model 6ol B) (Also se
637 A (Ch. 120095-8) Tol.	ge. Bul
Rec. Tee Model	6798 (Ch. 130116-B)....142-7
Rec. (See Model 571). 76	6808 (Ch. 120144-B) Te
(Ch. 120103 B	e Model 6760) 138
Rec. (See Model	${ }^{680 \mathrm{~B}}$ (Ch. 120144G, H)
87	(See Model 6760).
18 (Ch. 1201258 B . ${ }^{\text {a }}$. ${ }^{93}$	6800 (Ch. 120140 Bl T
	Rec. (See Model 676 B$) .128$
$\left.3 A^{\text {(ch. }} 120111 \mathrm{~A}\right)$..... 91	${ }^{6800}$ (Ch. $120144 \mathrm{Br}, \mathrm{G}$, HI
4, B, BC. C (Ch. 120113,	6_{6750}) (Also see Prod.
See Model 614) 97	Set 182-11) $\ldots \ldots . .138$
(Ch. 120115) 94	681 B (Ch. 1201408)
646B (Ch, 120121 B) . 102	
B, BC, C (Ch. 120113 .	(${ }^{10}$ (Ch. $\left.1201448, \mathrm{G}, \mathrm{H}\right)$
	Als
Model 614).	Chge. Bul. 48,
为	
Rec. (See Model	IF (Ch, $1201438, \mathrm{H})$
Tel. Rec. ISee model	1el
661B) (Also see Prod.	Chge. Bul. 50 -Set
Chge. Bul, 48 ,	184.11 148
Set 182-1) $10 \ldots 1313$	6838 (Ch. 120141-B)
Tel. Rec 106-7	
650 (Ch. 120113 C$)$ T	
Rec. (See Model 614) (Ch. 120110)	See Model 6618)...
201188) Tel. Rec. -..113-2	6760) (A) (se see Prod.
O (Ch. 120123-B) Tel	
Rec. Also see Prod. Chge Bui d8,	Set 182-1) 138
Set 182.11 ${ }^{\text {a }}$	Rec. (Sees Model (768). 128
OF (Ch. 120138-B)	$686 \mathrm{~F}(\mathrm{Ch} .120143 \mathrm{~B}, \mathrm{H})$
	Tel. Rec. ISee Model
	676F) (Also see Prod.
(Ch. 120109) Tel.	$\left.{ }_{\text {Chge }} 184.11\right)$ Bul. 50-Ser
Rec. (See Model 631). . 93A	686 L (Ch. 20142 B) Tel.
C (Ch. 120124)	Rec. (See Model 6705)
Rec. (See Model 6290)	(Also see Prod. Chso
Rec. (See Model 629D) 116	
$652(\mathrm{Ch}, 120032 \mathrm{~B})$	${ }_{\text {Tel }}$ Rec. ISee Modei
See Model 642) 3 (Ch. 1200808)	676D) (AAso see Prod.
(See Model 642]...... 98	
	$687 \mathrm{D}(\mathrm{Ch}, 120140$ B) Tel.
	Rec. (See Model 6768). 128
(See Model 650) 113	687F (Ch. 1201438, H) Tel. Rec.
6540, 655D (Ch. 1201238)	${ }^{676 F}$) (Also see Prod.
Tel. Rec. (See	Chge. Bul. $50-\mathrm{Set}$
6500) Also see	$184-11.10$
Set i82.11 ${ }^{\text {che }} 10 . . .109$	687t (Ch. 1201428) Tel. Rec. (See Model 76 F)
654 F (Ch. 120138-8) Tel. Rec. (See Model 650F). 133-1A	
${ }_{6558}$ (Ch, 120123-B)	6888, $6898,690 \mathrm{ClCh}$
	$1201298)$ Tel. Rec. (See Model 669 (Also see
${ }^{655 F}$ (Ch. 120138.B) Tel-	Prod. Chge. Bul. 24, Set
Rec. (See Model 650F), 133-1A	4, 47 did
$6_{688 \mathrm{~B}}(\mathrm{Ch} .120124, \mathrm{~B}$) Tel.	
Rec. (See Model 6290) 116	28, 6938, 6948 /Ch.
658 C (Ch. 120124) Tel. Rec. (See Model 629D) 116	
$658 \mathrm{D}(\mathrm{Ch}, 120124 \mathrm{~B})$	see Prod. Chge. Bul. 24.
660B (Ch. 1201338)	142.1, and Prod.
$6618(\mathrm{Ch} .120134 \mathrm{~B}, \mathrm{G}, \mathrm{H})$	${ }_{6958}(\mathrm{Ch} .120146 . \mathrm{B}$) 162-5
	${ }^{6988}$ ($\left.\mathrm{Ch} .120144 \mathrm{~B}, \mathrm{G}, \mathrm{H}\right)$
Chge. Bul. 48, Set 182-1)137-4	Tel. Rec. (See Model 676D) (Also see Prod.
28, 6638 [C. $120127 . \mathrm{B}$,	Chge. Bul. 48,
0128-8) Tel. Rec.	Set 182-11 13
(els	696 (Ch. $120143 \mathrm{~B}, \mathrm{H}$) Tel. Rec. (See Model 676F)
664 B (Ch. 120133-B) Tel. Rec. (See Model 660B). 1	Chge.

EMERSON-Cont.	Emerson-cont.
6961 (Ch. 1201428) Tel.	120110E
Rec. (1see Model 676 Fj Ralso	
(Also see Prod. Chge. ${ }^{\text {a }}$	
6978 (Ch. 1201298, D)	Ch. 120114
Tel. Rec. (See Model	(See Model 631)..... 93
${ }^{\text {6096) (Also }}$ See Prod.	Ch. 1201148
	Chisee Model
88 (Ch. 12012781 Tel.	(See Model 650)..... 113
Rec. (See Model 662B). 125	Ch. 120120
6990 (Ch. 120160 - b)	(See Model 629B, C) . . 119
${ }^{\text {Tel. }}$ Rec. \ldots....	Ch. 120123 B
7008, 70181 Ch.	(See Model 650D).... 109
7000.7010 (Ch. $120158-8)$	
Tel. Rec. . ${ }^{\text {a }}$ (20....166-9	20124 B
O1F (Ch. 120143-8) Tel.	See Mo
Rec. (See Model 676F) . 148	Ch. 120124 B
702B (Ch. 120136-B]	See Model 658D)
(See Model 653b).	Ch. 120127-B, 12012
7038 (Ch. 120097-8)	See Mo
704 (Ch. 120154-8)	\|A ${ }^{\text {a }}$)
${ }^{706 \mathrm{~B},} 707 \mathrm{~B}$ (Ch . 170	${ }^{18,5 \mathrm{Set} 130-11 \text {, }}$
	Ch. $120129 . \mathrm{B}$ (See Model
B/Ch. $20165-\mathrm{B}$	66981 Also see Prod.
cmodel	Sef i42
	120131-B
108 (Ch. i20140-8) (See	Modet 6658] . . . 146
Model 695B] 162	Ch. 1201338 (See
$1 \mathrm{~B}, 712 \mathrm{iCh}$.	Model 6608) 131
20164-B1 Tel. Rec... 183-6	Ch. 1201348, G. H
F, 712F (Ch. 120169.8)	(See Model 6olb)
(See Model 711 B)	Ch. ${ }^{1201358}$
see Prod. Chge. Bul. 183	Model 666 B) (Also ${ }^{\text {a }}$
	Prod. Chge. Bul. 27
(See Model 7068) 176	Ch. 120136-8 isee Model
6D (Ch. 120163 - D)	6538) 159
Tel. Rec.	Ch. 120138-B (See Model
16F, 717 F (Ch. 120168-D)	650F)
	Ch. 1201408 ISee Model
17D (Ch. $120163 . \mathrm{D}$)	${ }^{6768)} 120141.3 . \cdots{ }^{128}$
Rec, (See Model 7160). 190	Ch, 120141-B (See Model
88 (Ch. 120150-8) ...191-7	6838)
19 D (Ch .120163 DJ) Tel.	Ch. 120142 c (See
(Rec. (See Model (16D). 190	Ch. $1201438, \mathrm{HiSe}$
Tel. Rec.	Model 676F) 148
208 (Ch. 120164 B)	
$7118)$............ 183	Ch. 1201446, H isee
20 C (Ch. $120169 . \mathrm{B}$)	67601
Rec. (See Model 7118)	Ch, 120148-B (See Model
(Also see Prod Chge	B698)
Bul. $56-\mathrm{Se}$	$\mathrm{Ch}^{\text {M }} 120150$
721 D (Ch. 120166.D)	del 71881
Ch, 120163-D] Tel	1208 ${ }^{\text {23-8 }}$ (S
Ree. (See Model 7160) 1	Ch .120154 .8 B (See
727 D (Ch. $120168-\mathrm{D})$	Model 704) 184
Tel. Rec.	Ch. 120158-8 (See Mode
880 (Ch. 1	7000, 701 D 1
Tel. Rec.	120160-8
${ }^{28}$ (Ch. 120169-B) Tel.	
Rec. (See Model 711 B) Also see Prod Che	Ch. 120162-A (See Model
7320 (Ch, 120164-8) Tei.	
Rec. (See Model 7lib) 183	Ch. 120164.8 (See
733 F ICh. 120160	Model 711818183
Radio Ch. 120152-F)	C. $120166 . \mathrm{D}$
48 (Ch. $1201609 . \mathrm{Bl}$ Te	$\mathrm{Ch}^{\text {chee } 120168 \mathrm{D} \text { (See }}$
Rec. (See Model 7118)	Model 716F)
(Also see Prod Chge	Ch. 120169.8/5ee
Bul. 56-Set 190-1)... 183	Model 711 F
	Ch. 120169 F (See
1003 (See Model 1002)... 16	Model 733F)
Ch. 120019	empress
$\mathrm{Ch}^{\text {(See Model }}$	S5, 56
Ch. ${ }^{12002581}$ (See Model 5851.... 61	55, 56 7-14
	ESPEY (Also see Philharmonic)
(See Model 618)	RRI3, RRI3L 13-17
Ch. 120047 (See Model	
545) Photofact Services 82	${ }_{18}^{7 C}$ 18............... 1^{153}
	${ }_{31}^{188} \times \cdots \cdots \cdots \cdots \cdots \cdots \cdot 103$
Ch. 1200668 B	511c................. 174
(See Model 571)......	512 68
. 1200668	
iSee Model 6091. 90	${ }_{581} 1: 14-10$
Ch. 1200868	621 \%.............. 10-17
(See Model S71)...... 76	641, $642 \ldots \ldots \ldots \ldots \ldots$ 8-11
. 1200878 -D	
(See Model 571)..... 76	${ }^{652}$, 653 (See Model 651) 9
${ }^{\text {Ch. }}$ (200 Model 585).	
Ch. 120089 B	$6514.6516,6517.6520$,
(See Model 1200908 A) \mathbf{B}^{4}	(Ch, Fiq7) See model
isee Model 585)	651
Ch. $120090 \mathrm{~B}, \mathrm{D}$	$6540,6541 \cdots \cdots \cdots \cdots . . .8$
(See Model 618)	${ }_{6 S 42}$ (Ch. FJ97)
Ch. 1200900	(See Model 651].....
${ }^{\text {C }}$ (See Model 571)..... 76	
Ch. 120092 D	6547 (See Models
(See Model 571)..... 76	6540,65411
Ch. 120094 A	6560 (Ch. F997)
(See Model 649A). 106 Ch. 120095-B	(Seee Model $6517 \ldots \ldots$ 0611.0612 .6613 .6614.
	$6011,6812,6613,6614$ $6615,6630,6631,6632$,
$\mathrm{Ch}^{1} 200968$ 8,	${ }^{6634,} \mathbf{6 6 3 5}$ (Ch. 97A). 18-16
	7541 (Chh FJJ97)
Ch. 120098 p	ESCUIRE
Ch. ${ }^{\text {(See Model }} 120099 \mathrm{~B}$ (1)..... 108	${ }_{60-10,05-4}$
(See Model 621)..... 108	511.
H20103B (See Model	517 (See Model 520) 163
${ }^{\text {600) (Also see Prod. }}$ Chat. But. 9 Set 114.1) 87	520 … 163-5
(See Model 6084) 84	FADA
Ch. 120107 B \{See Model 571\}...... 76	
Ch. 120109 (${ }^{\text {chee }}$	${ }_{\text {P82 }}^{\text {P80 }}$ P................... 27
(See Model 631)...... 93A-6	P100
Ch, $120110, \mathrm{~B}, \mathrm{BC}, \mathrm{C}$ (See Model 614, B, BC, C). . 97	P111 P. 130 ${ }^{2}$................................ 1385

FADA-Conf.
 R-1025 Tel. Rec........... 114
R-1050 Tel. Rec.
(See Model R.1025) 114
S4C20 Tel. Rec........... 142 S4C20 Tel. Rec............. 142
SAC40 Tel. Rec.
(See Model $\$ 4 \mathrm{C} 20$) $\ldots . .142$
S4TIS Tel. Rec.
(See Model S4C20) $\ldots . .142$ SA See Model. S4C20).... 142
SAT30 Tel. Rec. (See Model S4C20).... 142
SoC55 Tel. Rec........... 134 —7
S $6 C 70$ Tel. Rec. (See Model S6C55) 134
SoT'55 Tel. Rec. (See Model S6C55) $\ldots 134$
S7C20, $\$ 7 C 30$ Tel. Rec.
(See Model S6C55) 134 (See Model S6C55).... 134
S7C70 Tel. Rec.
(See Model S6C55) . . . 134 S7T65 Tel. Rec. $5(55) \ldots 134$
(See Model S6C55) 134
S9C10 Tol. Rec
 S20T20 Tel. Rec. See
Model SoC55)......... 134
 S1055, S1055X Tel. Rec.
(See Model SóC55)

 7C42 Tel. Rec.179-5
7 C 52 Tel. Rec.
(See Model 7C42)......179
7 T 32 Tel. Rec.177-7
20 T 22 Tel. Rec........ $180-3$
 24T10 Tel. Rec. (See
Model 20 C 22) $173 \mathrm{~T}, 175 \mathrm{C}, 177 \mathrm{CO}$
Tel, Rec.

FAIRMONT

FARNSWORTH—GLOBE

FIRESTONE-Cont.
13-G.107, 13-G-108 (Code 105-2-7001401 Tel. Rec. 13-G-109, A (Code
$105-2.700100,105.2$. 13-G-110) (Code 334-2 MS29A) Tel. Rec.2-180-4 13-G-110A (Code 334-2-
MS31CA) Tel. Rec. (Also MS31CA) Tel. Rec. (Also
see Prod. Chge. Bul. see Prod. Chge. Bul. . 182-5
80-Set 194.11. 182 13-G-114, A (Code
$105-2-8170$) (Ch. 817) Tel. Rec. 13 G- 115 - 110 (Code Rec. (See Model
13-G.110A) (Also Prod. Chge. Bul. $60-$ Set 194.1) 182
3-G-117 (Code
$105-2.8170$ (Ch. 817
Tel. Rec. (See Model
13.G.114)
13-G.119, 13.GG-120
(Code 334-2.M531CA)
Tel. Rec. (See Model
Tel. Rec. (See Model
13.G.110A) (Also see
Prod. Chae. Bul.
60 Sel 194.1).... 182
$13 . \mathrm{G} .122$ (Code 182
105.2.700140

5P . .

FORD GF890

GF890, E (OA-18805-B). . 109-5
$\mathrm{M} \cdot 1$ [8A-18805-A1]
$M-1 A(O A-18805-A 1)$
(See
M-1A (OA-18 M-1)
 Model M-1A-11.... OMF (OA-18805-A2).. OZF (OA-18805-B) (S
Model GF890).
 2BF (FAC-18805-A1) (See Model M4).
1CF743 [1A-18805-B]
 (See Model OCF75). 1 MF (1A-1805.A2)
2 MF (FAC-18805.A) 2MF (FAC-18805-A). 2CF754 (FAC.18805.B)
$6 M F 080(51 A .18805-A)$ GMFO8O (51A-18805-A1 ChF780 (51A-18805-AI)
GMF780-E (See Model OMF780) 8 PMF880 (8A. 18805B) 8MF881 (8C-18805B)
BMF980 (8A-18805B) 8MF983 (8A-188058.1), 8 CmF 983 E ($18 \mathrm{~A}-18805$)
$8 \mathrm{ZT}(8 \mathrm{~A} .18805-\mathrm{B})$ (See Model 8 MF881) 9 BF (8A-18805.A1) (See Model M.1)
9DF (8A-18805-A2) (See Model 8072) 9 MF (8A-18805-A3) (See Model 8072).
$92 \mathrm{~F}(8 \mathrm{~A} .18 \mathrm{BOO5}-\mathrm{BI})$ (See Model 8MF983) $7070(51 \mathrm{~A} .18805-\mathrm{B} 2)$.
$8072(8 \mathrm{~A}-18805-\mathrm{A})$.
freEd EISEMAN

$19001^{\prime} \mathrm{Tel}$. Rec.
916-16, 1916.19..

IMPORTANT

How to obfain a sample PHOTOFACT Folder

Service Technicians who have not yet enjoyed the advantages of the world's finest Radio-TV service data, may obtain a Free Sample PHOTOFACT Folder and see for themselves how they can save time and earn more. To get your free sample, simply state the PHOTOFACT Set Number and the Folder Number (not applicable to listings bearing suffix letter "A" or an asterisk *). Mail your request on your business letterhead (or enclose your business card) to:

HOWARD W. SAMS \& CO., INC Department P
 2201 East 46th Street Indianapolis, Indiana

This offer is limited to one sample Folder. (PHOTOFACT Distributors do not stock sample Folders.)

GENERAL ELECTRIC-Cont.

17C103, 17 Cl 104 ,

(Also see Prod. Chas
Bul. 32 -Sot is8-1). 141-6
$17 \mathrm{Cl} 107,17 \mathrm{C} 108,17 \mathrm{Cl} 109$
Tel. Rec.
(See Model 17Cl03)
(Also see Prod. Chge.
Bul. 32—Set is81)... 141
$17 \mathrm{Cl1} 10,17 \mathrm{Clil}$ (Early,

7Cli2 Tel Rec.
(See Model 17 (103)

17C113 Tel. Rec.
$17 \mathrm{Cl14}$ Tel. Rec.
(See Model 17 Cl 103)
(Also see Pred. Chas
(Also see Prod. Chge.
But. 32-Set 158.1). . 141
Bul.
17C1I5 Tel. Rec.
$15(1)$
17C117 Tel. Rec.
(See Model 17C113) . . . 166
(See Model 17Cl13\} ... 166
17Cl20 Tel. Rec.
(See Model 17C113) . . 166
(See Model 17C113)...
17T1, 17T2, 17T3 Tel. Rec.
(See Model $17 \mathrm{Cl} \mathrm{Cl}^{2}$)
Als see Prod. Chge.
(Also see Prod. Chge.
Bul. 32-S et 188.1) ... 14
7 T4, 17T5 17To Tol Rec.
17T4, 17T5, 17 TO Tol. Rec
(See Model 17C103)
(Also see Prod. Chge. Bul. 32 -Set $158.11 \ldots 141$
17 TV Tel. Rec. 17 Cl13) ... 166 19 Cl 101 Tel . Rec.
20 C 105,
20 Cl 106.
Tel. Rec.
$20 \mathrm{Cl} 50,20 \mathrm{Ci} 151$ Tel. Rec. 153 - 175
2012 Tel. Rec.
(See Model 20C105)... 176
21C200 Tel. Rec.
(See Model 20C105) ... 176
$21 \subset 201,21 \mathrm{C202,21C204}$,
$21 \mathrm{C} 206,21 \mathrm{C} 208$,
$21 \mathrm{C} 206,21 \mathrm{C} 208$,
21 C 214 Tel. Rec....... 194-2
21I Tel. Rec.
(See Madel 21C201). . 194

AL ELECTRIC-Cont.	
326, 327	
400, 401 ….......... 118	
404, 405	
11	
$417{ }^{422}$. ${ }^{1}$	
422, 423	175
505, 506, 507, 508, 509	
510, 511	
515F, 516F, $517 \mathrm{~F}, 518 \mathrm{~F}$	
521, 522	
(Seee Model S10F) 143	
530 (5ee M	
$601,003,60411$	
807, 808 (See Model 805) 145	
755	
757 (Soo Model 755)	
el 805)....	
(Pholofoct Servicer) 802 Tel, Rec... 78 91 A	
803 Tel. Rec......... 97A$805,808,807,809$	
Series Tel. Rec. ${ }_{53-7}{ }^{\text {8 }}$	
${ }^{811}$ Teli. Receiver......... 63.98	
815 Tel. Re	
${ }_{821}^{820}$ Te	
Early, Tel. Rec........ 81-9	
835 Early, Tel. Rec. (See Model 830 Early). .	
Teel. Rec.	
901 Tel. Recc.......... 910 Tel. Rec.	
801)	
GENERAL INDUSTRIES (5ee Changer and Recorder Listings)	
GENERAL INSTRUMENT (See Record Changer Listing)	
GENERAL MOTORS CORP. (GMC)	
2330	
general television	
$15 A 5$ (Ch. 1-1) (5ees	
19A5 (Ch. 1-1) (See Models 145, 2A5	
2486	
2585	
${ }_{27}^{2685}$	
gilfillan	
56A, 56 B $56 \mathrm{BCI}, 56 \mathrm{BCR}, 56 \mathrm{C}, 56 \mathrm{D}$, 56E (See Model 56A).. 1	
56E (See Model 56A).. 1 12	
$66 \mathrm{P}, 66 \mathrm{PM}$	
clobe	

hallicrafters-Cont.	Hallicrafters-Cont.	HOFFMAN-Cont.
740, 741 (Run 1) Tel. Rec. (See Model 680)...... 113	Ch. W1200D (See Madel 1010P1 188	21 M 903 (Ch. 213, M) Tel. Rec.
745 Tell Rec............105-4	Ch. X12000 (See	21 P 108 (Ch. 191)
	Model 1010P) 188	
760,761 Trel. Rec. (See	hamilton electronics	Tel. Rec.
Model 745	150.5..............	Pl23ich
${ }^{810}{ }^{805}$ Tel. Rel Rec.	H-50-25 16	Tel. Rec. ${ }_{\text {(See }}$
(See Model 805)...... . 136 $810 \mathrm{~A}, 811$ Tel. Rec.124-6	HAMILTON RADIO CORP. (See Olympic)	21P307B (Ch. 211, M) Tel. Rec.
815 tel. Rec.	hammarlund	(See Model 7811381
	HQ.129-X 8-18	
(SSee Model 810 A) ... 124	Sp.400-x 10-20	21 P505 (Ch. 191 i)
Tel. Rec.	harver-wells	Tol Rec
(Ses model 810 A)	AT-38-6, AT-38-12 \ldots. . 32-11	21 P508 iCh. 211,
${ }_{860} 8681$ Tel. Rec. ${ }^{\text {8 }}$	ATR-3-6, ATR-3-12 \ldots... $36-14$	
(Seoe Model 810A) 124	heath	21 P 702 (Ch. 191)
${ }^{870,871 ~ T e l . ~ R e c . ~}$	HBR.5 24-20	Tel. Rec.
	hoffman	P702 ${ }_{\text {leh }}$
(Sea Model 810A)	A-200 (Ch. 1031 ${ }^{4}$	pros lch. 192 ond
T	A-202 (Ch. 119) 11	dio Ch. ${ }^{182 \% \text { Tel. }}$
	A-300 \ldots.............. 4-41	P905 (Ch. 213, M)
(Ch, El1000 1003,1004	A. 3	
1005, 1000 (Ch. All 1000 D) ${ }^{\text {che }}$		${ }^{\text {Til }}$
Tei. Rec. . ${ }^{\text {a }}$		$24 \mathrm{m708}$ (Ch. 1878 , $\mathrm{B}, \mathrm{C})$
1007 (Ch. F1100D) Tel	${ }^{\text {A-501 (Ch. 1085T) }}$...... ${ }^{3-35}$	Tel. Rec. (See Model
Rec. (See Model 1002). 169	A.700 (Cb. 1105) 12-16	248707)
(che (X 0000)		522,524 (Ch. 138)
Rec. (See Model Io	${ }^{\text {B. } 1000}$.............. ${ }^{20}$	600, 601 (Ch. 154, 155)
K12000, W12000)		
Tel. Rec. 188-6	C.503 …............ 50-9	612 (Ch. 142) Tel. Rec.
1012 P (Ch. A. 120	C-504 (Ch. 123) 47	(See Model bl
K1200D, W120	C-506, C-507 49-10	613 (Ch. 149) Tel. Rec.
Tel. Rec. (Seee	C509, ${ }^{\text {c5 }}$	Model b10]...... 97a
Model (10p) . ${ }^{\text {a }}$. 188	$\mathrm{C}_{\text {C-511 }}$ (S50e Model C.501) 48	0, 631 (Ch. 159]
1013C (Ch. FT2000	C. 512 (Seo Model C-5	
Rec. (Seee Model	C-513 (See Model C.5	${ }^{6} 1$
1015, 1016,1017 , 1018 ,	C.514 (See Model C.504) 47	${ }_{632}{ }^{\text {Tel. Rec. }} 333$ ch 1601 . . . 150
Rec. (See Model loos). 177		${ }^{632}$ Teld Rec. ${ }^{\text {d }}$ (ch. 160)
019 (Ch. Z10000) Tel.	C1006, cioo7 54	632, 633, 634,63
Rea. (Soe Model 1000)	CT-800, (T-801, СТ-900,	(Ch. 1711
021 (Ch . D1200D. $11200 \mathrm{D}, \mathrm{X}_{1200 \mathrm{D}} \mathrm{Tel}$.		(See Model 030)....... 150 $634 \mathrm{~A}, 635 \mathrm{~A}$ (Ch. 173)
Rec. (See Model tol0p) 188	78110 (Ch. 2000 Tel). Rec.	Tel. Rec.
$022 \mathrm{C}(\mathrm{Ch} . \mathrm{Gl2000}) \mathrm{Te}$	$781108(\mathrm{Ch} .210, \mathrm{M})$	(See Model 830) 150
Rec. (Seem Model 1010P) 188	Tel. Rec. .e.......... *	${ }^{636}$ 637 (Ch. 183)
${ }_{\text {Rec }} 102 \mathrm{Ch}$ (Cl0000) Tel.	3 (Ch. 202) Tel.	Rec.
		Teĺ. Rec.
$112000, \times 120001$ T	78303 ch .1901 Tel. Rec	(See Model 208102)... 168
Rec. (See Model 1010.p) 188	$7 \mathrm{M103}$ (Ch. 1900) Tel. Rec.	${ }^{638,639}$ (Ch. 180)
	7M109 (Ch. 200) Tel Rec. Rec. $7 \mathrm{M1098}$ (Ch. $210, \mathrm{M})$	Tel. Rec. 816,817 (Ch. 145)
1111 P (Ch. Al 200D) Tel	Tel. Rec.	el. Rec.
Rec. (See Model lolop) 188	$7 \mathrm{Ml12}$ (Ch. 202) Tel.	$820,821,8$
13P (Ch. D12000) Tet.	7M112B (Ch. $212, \mathrm{M})$	Tel. Rec.
	Tel. Rec. See Model 7 P1	${ }_{\text {820, }}^{\text {8el. Rec. }} 8$.
Tel. Rec. 167-10	7 M 302 (Ch. 190) Tel. Rec.	830, 831 (Ch.' 'isil Teil.'
17804C Tel. Rec.......155-8	$7 \mathrm{7P} 105$ (Ch. 190) Tel. Rec. ${ }^{\text {Pr }}$. 6
17810 M Tel. Rec.	7 P 111 B (Ch. 210 M)	${ }^{\text {a }}$ (See Model 830)
17811-H Tel. Rec.......156-6	el. Rec. . 21.	336, 837 (Ch. 153)
17812. 17813, 17814.	7P1/4B (Ch. 212, M)	93
17815 -H Tel. R		840 (Ch. 1531 Tol. R
816, 7881 T Tel. Rec.		846 (Ch. 1511 Tel. Re
(Soe Model 17811-H)..156	102 (Ch. 1837) ${ }^{\text {T }}$	Model 8301.... 97 A
7819 Tel. Rec	Roc	$847,848,849$ (Ch. 156)
1Soe Model 17	${ }^{8102 F}$	
824 Tel. Rec. (See Model 17804C). . 155	Tel. Rec	$860,861,882$ (Ch.
17824-A Tel. Rec.......165-6	Rec. (See Model 208102) 168	$847)$. ${ }^{\text {a }}$ (1)......... 97A
17829 (Ch. Fllood) Tel.	$20 \mathrm{M101}$ (Ch. 183 T) Tel.	866, A, 867, A, 868,
Rec. (See Modei 1002). 169	Rec. (See Model 208102) 168	(Ch. 173) Tel. R
17838 Tel. Rec. (See Model 17804 C). 1		
7848, 17849, 17850 Tol .	MS00, 20 P 502	Tel. Rec. (See Model
Rece. (See Model 17804 c (${ }^{1837)}$ ' Tel. Rec	${ }_{80}^{6301} 877878 \cdots \cdots \cdots 150$
	${ }^{\text {(See Model }}$ 6368].... 168	370, 877, 878
Tol. Rec.	$\begin{aligned} & 21 \mathrm{B107}(\mathrm{Ch} .191) \mathrm{Tel} . \text { Rec. } \\ & 21 \mathrm{~B} 116(\mathrm{Ch} .196, \mathrm{M}) \end{aligned}$	(Ssee Model 630). 150
(See Modal 17811-H).. 156	fel. Rec.	876A, 877A, 878A
17905 Tel . Rec. (See Model 17810.M). 152	$21 \mathrm{B122}(\mathrm{Ch} .211, M)$	(Ch. 173) Tel. Rec. (See Model 630). 150
17906 Tel. Rec.	(See Model 7B1138) . . 194	880, 881, 882, 883, 884,
(Ssee Model 17824A)... 165	218301 (Ch. 191) Tel. Rec.	${ }^{885,} 886,887$ (Ch. 183)
17933, 17934 Tel. Rec	21 B 306 B (Ch. 211, M)	(Sees Model 636) 141
(5eee Model 17824A). 165	(See Model 781138). . . 194	8868, 8878 (Ch. 1838) Tel.
		Rec. (See Model 208102) 1 $890,891,892(\mathrm{Ch}$ 175)
20283 B (Ch .1900 D) Tel.	218504 (Ch. \|l1) Tell. Rec.	Tel. Rec. (See Model
Rec. (S5ee Model 14808) 167	218507 (Ch. 211, M)	$6^{601} \ldots \ldots \ldots .150$
20823 C Tel. Rec. (See Model 17824A). . . 165	Tel. Rec. (See Model 78113B)... 194	893, 894, 895, 896, 897 (Ch. 185) Tel. Rec.
20872 Tel. Rec. ${ }^{\text {\% }}$	218701 (Ch. 191) Tel. Rec.	(See Model 630)..... 141
	218901 (Ch. 192 and Radio	${ }^{8988,8978 ~[C h . ~} 1831 \mathrm{~T}$ Tel.
20990, 209905, $20994 \ldots$		
Tol. Rec. 154 -6	Tel. Rec. . ${ }^{\text {a }}$, ...	$137)$ Tel. Rec.
${ }^{21923}$ Tel. Rec.	21 M106 (ch. 191)	912.913 ($\mathrm{Ch}, 147$) Tol.
	Tel. Rec.	Rec. (See Model 826).. 95A
${ }^{21940}$ Tel. Rec.	$21 \mathrm{Ml21}$ (Ch. 211, M)	917.918 ($\mathrm{Ch}, 152$) Toi.
	Tel. Rec. (See Model 7B1138)	
		${ }^{920}$ (Seoe Model 830)...... 97 A
Ch. W10000 (See ${ }_{\text {Model }} 1000$) $18 . . .180$	Tol. Rec, $M 3051 \mathrm{Ch}$ 1	$946.947,948$ (Ch. 164)
	${ }_{\text {2 }} \mathbf{2 1 \text { M Mel. Rec. }}$ (Ch. 201)	
Model 1000) 180	21 M 305 B ($\mathrm{Ch} .211, \mathrm{M}$	950, 951, $952 \mathrm{ich}$.172).,
Ch. Z10000 (See Model 1000) 180	Tel. Rec. (See Model 7B113B). . . 194	$950 \mathrm{~A}, 951 \mathrm{~A}, 952 \mathrm{~A}$ (Ch. 174) Tel. Rec. ... 127
Ch. All Model 1000 (See M		${ }^{953,954,955 ~(C h . ~ 184) ~}$
h. A12000 15ee	21 M 503 (Ch. 'i9il	(See Model 636)..... 14
Model 1010P) 188	Tel. Rec.	960.961, 962. (Ch. $176{ }^{\text {j }}$
Ch. Dl200D (See Model 1010P) 188	21 M506 (Ch. 211, M) Tel. Rec.	Tel. Rec. (See
F12000 (See	(See Modal 781138).	963, 964,965 (Ch. 186)
Model 1010p) 188	21 M700 (Ch. 191)	Tel. Rec. (See Model 636) 141
Ch. GI2000 (See Model 1010P) 188	21 M 700 (Ch. $196 \mathrm{M} . \mathrm{T}$)	
Ch. $\mathrm{K} 120001500^{\text {che }}$		${ }^{\text {i See model }} 140$
Model 1010P) 188	Tel. Rec.	${ }^{\text {See M Model }}$
Ch. Model 1010P) 188	$21 \mathrm{M902}(\mathrm{Ch} .192$ and Radio Ch. 182) Tel.	(See Model A500).

MEDCO (S

MERCURY (Pacific-Mercury)
2013. 2080 (Ch. 150.2)

Chge Bul. $57-\ldots \ldots .172-6$
Set 190-1)
2081 (Ch. $150-4$ and
Rodio Ch. 155) Tel.
Rodio Ch. 155) Tel. Rec.
2113,2115 (Ch. 150.11. ${ }^{-81} 1$ I Tel. Rec. (See Model

 Te. Rec. (Sse Model
20i3) (Also see Prod.

 2192 (Ch. $150-10$ and

$2013)$ Al Aso see Prod
Chige Bul $57-1$.
 (See Model $20131 / 1 \mathrm{Also}$
see Prod. Chge. Bul.
see Prod. Chge. Bul.
s7-Set 190.1)
4120 (Ch. $150-2$) Tel. Rec.
(See Model 2013) (Also

4317 (Ch. 150.9) Tel. Rec. 112 4320 Ch. $150-2.15$ Toil.
Rec. (See Model 2013).
A. Also see Prod. Chge.
Bul. $57-$ Sel i91.1...172
442. (Ch. 150.81 T Tel.
Rec. (See Model 213)

Ch. $\begin{aligned} & \text { Rodio C } \\ & \text { 150-2 }\end{aligned}$
iSeee Model 2013) 172
Ch. $150-4$
(See Model 2081) $\ldots \ldots$ *
Ch 150.5
(See Model 2013) $\ldots . .172$

iSee Model 2013)..... 172
Ch^{150-31}
(See Model 2181)......
$\mathrm{Ch}^{150.51}$ (See Model 2013)..... 172

MIDL
M6B

motorola-Cont	
NHAC(ISee NoshaC-152) 184	
E6 (OIdsmobile)	
E2 (See Ch. 8A)........ 46 E6 (OIdsmobile)	
E8, OE9 (See Ch. 8A). . 46	
PC2 (See Ch. 8A)....... 46 PC6 (Pantiac)	
(See Model CT6) ${ }^{8}$	
$\begin{aligned} & \text { PCY-A (See Ch. 10A).... } 106 \\ & \text { SROB (Ch. OB)........ } 105 \text { - } \end{aligned}$	
SRIB (See Ch. 1B). SR6, SR8, SR9 ISee Ch.	
${ }_{\text {SRAA }}$ (See Ch. 10 A $\ldots . .106$	
TK.17M, TK. 19M, TK-20M,	
ond Rodio Ch. HS.317	
vkiol).	
106 (Ch. TS.9D) Tel.	
Rec. Photofact Servicer. 82 VK106, B, M (Ch. TS-9. A, B, C) Tel. Rec. (See	
Model VT105) ${ }^{\text {che }}$ (106, VK107 (Ch. TS-9E,	
TST.EE1) Tel. Rec...... 77-6	
TS.4] Lotel) Tel. Rec.... 71-12	
IS	
(Jee	
TS. VTIOSM Ch. TS.9,	
9A, TS-98, TS-9C)	
VT107 (Ch. TS-90) Tel.	
Rec. Photofact Servicer. 82	
VTI21 (Ch. TS.15)	
WRo (Ch. HS.18) 5-2	
WR7, WR8 (See Model	
WSIC (See Willys Model$6770121 \text { … } 6 . . .- \text {..... } 156$	
WS2C (15ee Willy$679517)$	
2MF (See Ford Model 2MFI 175	
${ }^{5 C 3}$ (Ch. HS 262)	
(See Model 5Cl). 5C4 (Ch HS.270)	
(See Model 5Cl) 116	
(Ssee Model SCl)..... 116	
1 (Ch. HS-250).	
511 (Ch. HS. 224).$2(\mathrm{Ch} . \mathrm{HS} .250), ~ a ~$	
(Ch. H5-224)	
(Ch. H5 -250), silu	
Model 511)	
512 (Ch. HS-250), 512 U	
(See Model 5J1) 100	
5R11A, $5 R 12 \mathrm{~A}, 5 \mathrm{5R13A}$,	
(Ch. HS-280) (See	
SR14U, SRISU, 5RI6U (Ch. HS-242)	
H51243)	
11. ${ }^{6 F 118}$	
1, 622 (Ch. HS.220) ... 102	
6x110, $6 \times 124.20 .10$	
F11, 7 F 1118	
M21, 8FM21B (Ch. HS-247)121-9	
FM21, 9 PM 218(Ch. HS .246)	
(e) (Ch. TS-18, A) Teli). 83	
9VT5 (Ch. TS.18, A)	
Model 7V11) 83	
10 T ($\mathrm{Ch} . \mathrm{TS}$-14B)	
Tel. Rec.	
10VK9 (Ch. TS-9E, TS-9EI) Tel. Rec. (See Models	
Vkkio (h. TS14 A Bj	
OVK12 (Ch. TS14, A, B) Tel Rec. (See Model	
10T2)	
OVK22 (Ch. TS14, A, B) Tel. Rec. (See Model 10121	

MOTOROLA-Cont.
10VT3 (Ch. TS.9E, TS.9E1) Tel. Rec. (See Model
VKi06). VK108)
IOVTIO (C
$\underset{\text { Tel }}{0 \text { VTIO (Ch. TSiA, A, B) }}$
Tel. Rec. (See Model
10T2)
10Vr2) (Ch. TSi i A, A, Bi
Tel. Rec. (See Model
Tol. Rec. (See Model 1012)
$2 \mathrm{~K} 1, \mathrm{~B}$
(Ch. TS-23B)

Tel. Rec. (See Model
12K2, $\mathrm{BiCh}^{\mathrm{KS}} \mathrm{TS}-23 \mathrm{~B}$
Tel. Rec. (See
Model 10721
$2 \mathrm{K2}$ (Ch. TS-53) 92
Tel. Rec. 115
Tel. Rec. (See Model
Tel. Rec. (See Model
10 T 2)
122
12 T 3 (Ch. TS-53) Tel.
Rec. (See Model 12K2). 115
Rec. (See Model
$12 \mathrm{VF4B}, \mathrm{R}, \mathrm{R}-\mathrm{C}$ (Ch.
TS-23, A and Radio
(See Model 1012). 92
$2 V F 26 B, B-C, ~ R, ~ R . C$.
2VF26B, B-C, R, R.C
(Ch. TS.
(Ch. TS.23A, B and
Radio Ch, HS 190 Al
Radio Ch. HS 190A)
Tel. Rec. (See Model

12 VKI ic
Tel. Rec
(See Model 10T2) 92
$2 V K 15$
2 VKIS (Ch. TS-30, A
Chge. Bul, 5 -Set 106-1) 93-7 2VK18B, 12 VKIRR (Ch .
TS-15C,
TS-15C, TS-15Cl) Tel.
Rec. (See Model VK106
Ch. TS-9E)
77

Tel. Rec.
See Model 10 T2)...... 92
$12 \mathrm{VT16} 12 \mathrm{VT16B}$,
12VT16R (Ch. TS.15C,
VKIO6 Ch. TS. 9 El

(Ch. TS-115) Tel. Rec. . 121-10
14P1B (Ch. TS-216) Tel.
Rec. (See Model 14T4). 158
Rec. (See Model 14T4). 158
14P2, 14P2U
14P2, 14P2U
(Ch. TS-275) Tel. Rec. . 174-9
14 TI , B (Ch. TS-88) Tel.
Rec. (See Model 14 Ki). 112
14 T 3 (Ch. TS.114)
4I3 (Ch. TS. Rec. (See
Model 14 KIBH) 121

IMPORTANT

Quick, Easy PHOTOFACT Filing Method

The preferred 30 -Second method for filing PHOTOFACT Folders
Your PHOTOFACT Folder Sets come to you in convenient envelopes. When you remove a Set from its envelope, you will find the Folders already arranged in proper filing order, and preceded by an Index Separator. This Separator lists each receiver covered in the Set, and has an index tab showing the Set number. To file, here's all you do:

3. Now, insert the TV folders in their respective manila jackets and your filing is complete.

To locate the folder you want, refer to instructions
on the first page of this index listing.
always refer to the photofact index

MOTOROLA-Cont.

17K1A, 17K1BA (Ch.
TS-95) Tel. Rec. (See
Model 14K1BH) 12
${ }^{17 K 1 B E}, 17 K 1 E(C h$.
TS-172) Tel. Rec.
(See Model 14 K 18 BH) .. 121
$17 \mathrm{~K} 2 \mathrm{BE}, 17 \mathrm{~K} 2 \mathrm{E}$ (Ch.
TS-172) Tel. Rec.
(See Model (4K1BH) .. 12
17 K 3.17 K 3 B (Ch .
TS.118) Tel. Rec.
(See Model 14 K 1 BH) .. 12
$17 \mathrm{~K} 3 \mathrm{~A}, 17 \mathrm{~K} 3 \mathrm{BA}(\mathrm{Ch}$.
TS.89) Tel. Rec.
(See Model 14 KiBH) .. 121
$17 \mathrm{K4A}(\mathrm{Ch}$. TS-95)

Rec. (See Model
14 KI (BH) $\ldots ~$
17 KS (Ch. TS-1i8)
Tel. Rec. (See
Model 14 KIBH)
17 K 5 C (Ch. TS-174).....
Te. Rec. (See
Model 14 KIBH)
17 K 5 C (Ch. TS $\mathrm{T}, \mathrm{I} 4$)
Tel. Rec.
Tel. Rec. (See
Madel 14 KIBH)121
$7 \times 5 \mathrm{C}$ (Ch. TS-221-A)
1785E (Ch. TS-221-A)
Tel. Rec, 159
17 kB (Ch. TS.118)
Tel. Rec. 15 ee

17X6C (Ch. TS-174)
Tel. Rec. (See
Model $14 \mathrm{~K} \mid \mathrm{BH}$)
7K7,B (Ch. TS-118) ${ }^{(C . . .} 12$
Tel. Rec. (See
Model $14 K 18 \mathrm{BH}$)
$7 \mathrm{~K} 7 \mathrm{BC}, \mathrm{C}$ (Ch. TS-174)
17K7BC,C (Ch. TS-174)
Tel. Rec. (See
Model 14 KIBH) $\ldots \ldots .12$

17 K 8 A . Rec. BA (Ch. $\mathrm{HS}-228$)
TSee Model 17F11)....
(7KO. B (Ch. TS-220) Tel.
Rec. (See Model 17K5E) 159
Rec. (See Model
$17 \mathrm{K9A}$, BA (Ch. TS-228)
Tel. Rec
(See Model 17F11).... 165
Tel. Reh. TS.221, A)
See Model 17 KKE) $\ldots 15$
$17 \mathrm{K10}$. M (Ch. TS. 228)
17 K 10 . M (Ch. TS 228)
Tel. Rec.
Tel. Rec.
(See Model 17F11).... 165
7KIOA (Ch. TS-174)
Tel. Rec. (See Model
14 K 1 BH)
7 K 10 E (Ch.
12
17K10E (Ch. TS-314A, B)
Tel. Rec.
17K11, B, C (Ch. TS-236)
Tel. Rec. (See Model
$17 \mathrm{K8}$) BA (Ch. TS.228)
17 K 11 A , BA
Tel. Rec.
(See Model 17F11) ... 165
(See Model 17F11) 16
$17 \mathrm{~K} 12, \mathrm{~A}, \mathrm{~B}, \mathrm{BA}, \mathrm{W}, \mathrm{WA}$

SS-326, A) Tel. Rec. 171
See Model $17 \mathrm{FI} 21, \ldots \mathrm{~K} 13 \mathrm{~A}$ (Ch. T5-326A, B)
17K13A (Ch. TS-326A, B)
Tel. Rec. (See Model
lijF12l
17K130 (Ch. TS.401)
Tel. Rec. (See Model
21F1) (Also see Prod.
Chge. Bul. 49 Set
$183-111$
17
1714, A, B, W CCh.
TS-395A, 02) Tel. Rec.
(See Model 17F131..... 19
17 K 15 , B (Ch. T5-395A.
17 K 15 , B [Ch. TS-395A,
-021 Tel. Rec.
(See Model 17F13).
17K16 (Ch. TS 395A.
-02) Tel. Rec.
(See Model 17F13).... 19
17T1. $17 \mathrm{Tl1B}$ (Ch. TS.118)
Tel. Rec. (See
Model 14 K 1 BH) 12
MT1A, 17118 A (Ch.
TS-89) Tel. Rec. (See
Model 14K1BH)....
17T2A, 17128 CA (Ch.
TS-891 Tel. Rec.
(See Model 14K1BH) . 12
(See Model 14K1BH) .12
17T2. 17T2B (Ch. TS.113)
7T2. ITR2B (Ch. TS.113)
Tel. Rec. (See
Model 14 K 18 H) $\ldots \ldots . . .121$
17T3 (Ch. TS-118)
Tel. Rec. (See
Model 14 K 1 BH)
17T3A (Ch. TS.89)
Tel. Rec. (See
Model 14 K 1 BH)
TT3G (Ch. TS-221, 12
Tel. Rec.
(See Model 17K5E) 15
$17 \mathrm{TJX1}$ (Ch. TS-118A, B)
Tel. Rec. (See Model
14 KIBH) 12
$7{ }^{714}$ (Ch. TS.118)
Tel. ReC. (See
Model 14 KIBH)
17T4C (Ch. TS.174)
Model $14 K 1$ BH) $\ldots . . .12$
17T4E (Ch. IS-221, A)
Tel. Rec.
(See Model 17KSE).... 15
17T5A (Ch. TS-214) Tel.
Rec. (See Model 17F1I) 16
17TSC (Ch. TS-228) Tel.
Rec. (See Model 17Fl I) 165
Rec. (See Model
17T5D (Ch. TS-236)
17T5D (Ch. TS. 236)
Tel. Rec. (See Model
Tel. Rec. (See Madel
17K8) 152-4A
17 T 5 E F (Ch TS............
ITT5E, $\mathrm{F}^{2} \mathrm{Ch}$. TS-314A, B,
(See Model 17K10E.... 167
17TGBD, C, D (Ch. TS. 236)
Tel. Rec. (See Model
17K8) $1152-4 A ~$

IMPORTANT

How to obfain PHOTOFACT Volume Labels

A certificate redeemable for a complete set of Volume Labels for PHOTOFACT Volumes 1 through 10, is included in PHOTOFACT Set No. 62. A certificate redeemable for a complete set of Volume Labels for Volumes 11 through 20, is included in PHOTOFACT Set No. 102.

Simply mail these certificates to Howard W. Sams \& Co., Inc., for your free Sets of Labels.

otorola	MOTOROLA-Cont.
Ch. HS-72 (See Model	Ch. HS-253 (See
Ch H5-87 (See Model	Ch. HS-258
	(See Model SC1).
Ch. H HSM21) 89 (Seo Model	issee Mode
Ch. Hs-9) (See Model	$\mathrm{Ch}^{\text {H }} \mathrm{HS} 5$-261) (See
75F21) (........... 19	Model 17F5)
Ch. HS-94 (See Model 56) (11)	Ch. HS-262 ${ }_{\text {(Sees Model }}$ S 11)..... 116
Ch. HS-97 isee Model	$\mathrm{Ch}_{\text {che }} \mathrm{HS}$-204
76F31) 29	(See Model 7Fl1].....113
Ch. HS. 102 (See Model 77 KM21) 34	Ch. CS H. 270
Ch. HS-108 isee Model	Ch. HS-271, HS-272
vk-1011 51	(Seee Model SC1)
Ch. HS-113 (See Madel 48(11) 47	Ch. HS-283 (See Model $\begin{gathered}\text { 51M1U) } 149\end{gathered}$
Ch. H5.114 (See Model 45	$\mathrm{Ch}_{\text {M }} \mathrm{HS} 2889$ (See
Ch. HS-116 [See Model ${ }^{\text {a }}$	Ch. HS-299
S8R11, ${ }^{\text {che }} 10$	
Ch. HS.119 (See Model ${ }_{\text {cilil) }}$	
Ch. H5.122 See Model	
67F14) $11 . . .{ }^{\text {a }} 55$	
Ch. HS-124 (See Model 68F111	
Ch . Hs. 123 (see Modal	Ch. Hs-309
58×111.1........ 53	(See Model 5281U).... 190
$\mathrm{Ch}_{68 \times 1 \mathrm{HS} 127}$ (See Model 56	Ch. H5. 300
$\mathrm{Ch}^{68 \times 117} \mathrm{HS} .127 \mathrm{~A}$ (See model ${ }^{\text {a }}$	Ch. HS-308 [See
(i8x114)	Model 821101 183
Ch. H5-128 1 ISee Model	Ch. HS 309
78FM22m)	Ch HSe Moder S2C1).
Ch. HS-132 (See Model 78FM21l 59	
Ch. H5-133 isee model	$\mathrm{Ch}_{\text {. }} \mathrm{HS}$ S 313 (Soe
88 FM 211 I........ 54	
Ch. HS-144 1 See Model	Ch. HS-315 (See Model
(8T11)............. 54	52811101 .
Ch. H5.150 (See Model 56	Ch. HS.310, A
	$\mathrm{Ch} .37{ }^{\text {a }}$ (See Model
	52R11A) 178
Ch. H5. 158 iSee Model ${ }^{\text {a }}$	$\mathrm{Ch}_{\text {h. }} \mathrm{HS}$-319 15 l ee
	Ch. HS .327 M ${ }^{\text {Model }}$
Ch. HS-160 (See Model ${ }_{58 \mathrm{Cl} 11}$	
$\mathrm{Ch}^{\text {H5S.167 }}$	Ch. H5. 357
(See Model 59R11].... 79	(See Model S2LI..... 190
HS. 1081	Ch. M. 5 (see Model
${ }_{\text {Model }}^{\text {HS } 170 \times M 21)}$....... 85	Ch. Ob (See Model SROBI) 105
. HS . 170	Ch. TS. 3 See Model
	Vk-101) 51
(See Model 89 l11].... 76	Ch. TS.4B Thru J
HS-178 (See	(See Model VT-711).... 55
Model 79FM21) 88	Ch. Ts.4J lote (See
	Ch. TS-5 (See Model
	Vk101)
(See Model 69×11).... 82	Ch. TS-7 (See Model
Ch. HS. 183	Vk101) 51
	Ch. Model VF1031, 73
	Ch. TS-9, TS-9A, TS-98.
Ch. HS-187	TS.9C (See Model
(Shee Model 59 LTO)... 78	
Ch. HS-188 (See Model 50F11)............... 68	VTIO5) Photofact
Ch. HS. 192	Servicer
(See Model 59\%21U)... 98	Ch. TS.901
Ch. H5. 210	Ch. TS-9E, TS-9ET ${ }_{\text {See Model }}$
	Ch. TS-14, A, B
5M1) 101	(See Model 10T2)
Ch. HS-224 (See Madel 511). 100	${ }^{\text {Ch. }}$ Sesel Model
Ch. H5.226 (See Model	Ch. TS. 15 A
$611)$	Ch. TS. 15 B
	$\mathrm{Ch}_{\text {H }} \mathrm{TS} .15 \mathrm{C}$, TS-15Cl
${ }_{\text {(See M Modelel }}^{\text {HS } 230}$ SC1) 116	(See Model 12Vk18B).. 77
isee Model 19F1)111	Ch. TS. 16, A
HS-234 See Model	Ch. TS. 18, A (See Model
	TVTI) Als......
(See Model 5R11U) 115	
	${ }^{\text {S }}$ See Model 12VK15) ... 93
HS. 244 (${ }^{\text {a }}$	Ch. T 5.52
(See Model SHIIU).... 117	isee Mo
h. HS. 245	(See Model 12K2).... 115
(See Model oxllu).... 112	Ch. TS. 60 (Seo Model
Ch. HS-246 (See Model 9FM21) $\ldots . .114$	16 FI 1
(See Model 9FM21) ... 114	$\mathrm{Ch}^{\text {TS. }}$ - 87
Ch. HS-247 (See Model 8FM21) 121	
Ch. H5-249 (See Model ${ }^{\text {a }}$	i6F1) 102
SM11 101	
$\mathrm{Ch} . \mathrm{HS} 5250$ 511 100	${ }_{\text {che }}^{\text {(See }}$ Madel 14 K 1$) \ldots . . .112$
(See Model 5J1) 100	$\mathrm{Ch}_{\text {isee }} \mathrm{TS}$-89 Model
	Ch. TS.94
	(5ee Model 16K2BH)
ne Labels	
S	Ch. T 5.1114 A
olume Labels	
	(Sees Model 14K18H) .. 121
PHOTO-	Ch. TS-118 (See Model $\mathrm{T}_{\mathrm{K}} \mathrm{K} 1 \mathrm{BH}$)... 121
r a complete set of	
20 , is included in	TS. 119
	C1, D (See Model 19K2) 12
. Sams \& Co., Inc.,	Ch. TS-174 (See Model 14K1BH) 121
	Ch. TS-216 (See

Philco-Cont.			
48.472 (Revised)	48-18		
48.482 48.485 $\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots{ }^{30} \mathbf{4 7}^{24}$			
-700 Tel. Rec........ 68-1			
48.1000 (Code 12i) ${ }^{\text {a }}$			
Tel. Rec.$48-1000,48.1000-5$			
${ }_{\text {(Code }}$ 122) Tel. Rec... 53-17			
48-1001, 48-1001-5 Code 121 \& 122) Tel. Rec. (See Model 48-1000			
Code 122)	53		
48-1050, 48.1050-5 (Code			
${ }^{121)}$ Tel. Rec. ${ }^{\text {Sees }}$			
model 48-1000 Code 12	53		
48-1200	29		
48.1201			
48.1253			
48.1256			
48.1260 iSee Mo			
48.1201) ${ }_{31}$			
48.1263			
48.1264			
48.1			
48.1270			
$48.1274,48.1276$$48.1282,48.1283$			
See	35		
48.1284	45		
48.1286			
48.1290	47		
48-2500, 48-2500.5 Tel.			
Rec. (Codes 121 and			
49.101	89		
49.500, 49-500.			
49-501, 49-501.1			
49.503 49.504,			
${ }_{49}^{49.506}$ (Seo Model 49-500)			
$\begin{aligned} & 49.601 \\ & 49.602 \end{aligned}$	4		
	41		
49.603	59		
49.900 .0 49.901 e, 49-900-1	49-16		
49-902	56.-19		
- 49.905			
$49-906$49.909			
49-1002 (Code 121) Tel. Rec.	914.10		
49-1040 (Code 121) Tel. Rec. (See Model 49.10021			
	914		
49-1040 (Code 123)			
	2		
49.1075 (Codos 121 and $122)$ Tel Rec.	93 A		
49.1076 (Code 122)			
$49.1077($ (Code 122)Til. Rec.			
1100 (See Model			
48-485)	47		
49.1101 (See Model			
49-11-1 (Soe Model			
49-1150 (Codes 122, 124) Tel. Rec.			
(Seee Model 49-1040).	92		
175 (Codes 1218			
${ }^{1231}$ Tel. Rec. ${ }^{\text {Model }} 49.1150$			
Model ${ }_{\text {Code }}$ 211	70		
Tel. Rec. (See Model 49.1040)			
49.1240 (Code 124) Tel. Rec.			
(See Model 49-1 040)$49.1275($ Code 121)			
Tel. Rec.			
49.1278 (Code 122)			
Rec.			
(See Model 49-1075) ... 93			
49-1278 (Code 123), 49-1279 (Code 122),			
49-1280 (Code 121)			
(See Model 49-1040)... 92			
49.1404 ISee Model			
49.1450 (Codes 121A or			
or B) Tel. Rec.i...... 77			
B, 123A or ${ }^{\text {B, }}$, 123T A orB) (See Model 49.1450) 77			
-1480 (Codes 121A			
B, 123A or B, 123T A or			
${ }_{49-1601}^{49-1600}$ is Model ${ }^{\text {a }}$			
49-1601600) Model	50		
$\begin{aligned} & 49-1606,49-1607 \ldots . .5 \text { 53-19 } \\ & 49.1609,49-1611 \end{aligned}$			
50.7701 (Code 121),			
$\begin{aligned} & \text { 50-1702 (Code 122) } \\ & \text { Tel. Rec. } 1 \end{aligned}$			
$50-71104 \text { (Code } 123 \text {) }$			
Tel. Rec. (Also see Prod. Chge. Bul. 29.			
$\begin{aligned} & 50 . \mathrm{T} 1105,50-\mathrm{Til} 10 \mathrm{o} \\ & \text { Tel. Rec. } \end{aligned}$			

PHiLCO-Cont.	Philco-Conf.
50-T1400, $50 . \mathrm{T} 1401$,	${ }^{51}$-T1634 (Code 123) (Ch.
0.11402 (Code 121)	
Model 50.T1104) (Also	Code 121) 138
see Prod. Chge. Bul. 114	-T1634 (Code 124) (Ch.
29, Set 154-1) 114	32, CII Tel. Rec.
50-T1 403, $50 . \mathrm{Tl} 1404$	
(See Model 50.T1104)	${ }^{51} \cdot 11800$ (Code
50 -T1403 (Code 12	(See
50-11404, 50-T1 406	Model 51-T1800, 148
Tel. Rec. ${ }_{\text {cold }}$	51 -T1830 (Code 121) Ch .
-T1406 (Code 121 and	
) 1 See	(See Model
So.t1104) (Also see	${ }_{51}$-17832 (Code 121) (Ch. ${ }^{\text {code }}$
15	$33, \mathrm{C} 21$ Tel. Rec.
50.T1430 (Code 121)	(See Model 51-T1800, 148
Tel. Rec. ${ }^{\text {Seee }}$	$51 . \mathrm{T} 1833$ (Code 12i) ${ }^{\text {chen. }}$
Prod. Chge.	,
29, Sat 154-1)... 114	,
see Prod. Chge. Bul. 114	51-T1835 (Code
T1432 (Code 124)	(Ch. 3R2,
del 50.11403$).$	Code 121$)$, ${ }^{\text {a }}$, 148
${ }^{50-T 1443(\operatorname{lodes} \text { (} 22,123)}$ 94-7	(Ch. 34, C3) Tel. Rec.
T1476, $50-\mathrm{T}$	1.T1800,
50-T14	Code 121
Tel. Rec.	51.183816
50-T1481, ${ }_{\text {Rec }}$ Seer Model	
$\begin{aligned} & \text { ec. (See Model } \\ & 0 \text { F1476) } \end{aligned}$	Code 121)
507. 1483 Tel. Rec...... 93A	51-T1838 (Code 12
${ }^{50-\mathrm{T} 1484 \text { Tel. Rec. }}$	(Ch. 3R2, CR3) Tel. Re
	Mode
${ }_{\text {(Code 121) }}$	51-T1870 (Code 121)
50-T1600 (Code 122)	(Ch. 3P1, CPP1) Tel. Reec
	(See Model 51-T1833,
50-T. 606 (Code	
(tel. Rec. See	51.T1871, 51-T1872 (Code
${ }^{50 . T 1630 ~ T e l . ~ R e c ~ 99 A .8 ~}$	Rec
50-71632, $50-\mathrm{T} 1633$ Tel.	51.-1833
(Rec. (See 50-T1600)... 914	51-T1871, 51-T1872 (Code
50-122) Tel. Rec. ISee	
Model $50718001 . .$.	51.t1833, Code 121). 135
	51-11874, L, 51.-1875,
	51-11976 (Code 121)
	Ch. ${ }^{\text {PP1, CPI) }}$ Tel Rec.
${ }_{50-620} \ldots \ldots \ldots \ldots \ldots .{ }^{85}$ - 11	Code 121) 135
$50.621 \quad 10.1$	51.T2102 (Code 122)
	(Ch. 35, F2) Tel. Rec
50.925 (Code 123$) 50-926$ 99-12 50.1420 50.1421	51 -T2130 (Code 121)
${ }_{50}^{50.1422,50-1423} \ldots$	
${ }_{50}^{501720 \ldots \ldots ~ 93-8 ~}$	(See Model 51-T2102, Code 122) 132
$\underset{50.1724}{50.1723,}$	51.12732 (code
50-1725 (See Model	(Ch. 35, F2) Tel. Rec.
50.17201 93	(See Model 51-T2102.
50.1726 (See Model	51-T2133 (Code 121) (Ch.
50-1727 86-7	3 32, FR2)
51-PF1207, 51-PT1208	Code 122) ….... 132
	51.T2134 (Code 124)
51-PTi234 Tel. Rec. (See Madel 51 -PT1 207) 136	(Ch. 35, F2) Tel. Rec.
$51 . \mathrm{PrI} 282$ Tel. Rec.	Code 122) 132
(See Model 51-PT1207) 136	51-T2136 (Code 124)
51. T1443B, L, M, X, Xl (Code 121)(Ch. 31, Al) el. Rec 125-10	(Ch. 35, F2) Tel. Rec. (See Model 51-T2102. Code 1221
51-T1443PL, 51-T1443, PM,	51-T21 38 (Code 124) (Ch.
51-T1443PW (Ch. 3P1. APt Tel. Rec. 123-11	3R2. FR2) Tel. Rec. (See Model SI.T2102.
51-T1601, T, 51-T1602	Code 122) 132
(Code 121) (Ch. 33, C1) \qquad	51-72170 (Code 121)
51-T1601, T, 51-T1602	(See Model S1-T2102,
(Code 122) (Ch. 32, ${ }^{\text {(1) }}$	Code 1221 132
	51-T2175, 51-T2176 (Code 124) $(\mathrm{Ch} .35, \mathrm{~F}) \mathrm{Tel}$.
51-T1604 (Code 121)/Ch.	kec.
Model 50.11600 Code	51-530122
120) (Also see Prod.	51-532 (See Model
	51.5301 122
51-T1604 (Code 122) Ch .	51-534 (See Model $51-5301$
B, L) Tel. Rec. (See	51-537, 51.5371126-10
	51-629 $\ldots \ldots \ldots \ldots \ldots . .136-13$
Chge. Bul. 20-	${ }_{51.631}$.............. 106-12
Set 134-1) 110	51.632 $51-6291$ See Model M
	51-930, $51.931,51.932 .153-11$
50-T1600 Code 122]	51-934 102-10
(Also See Prod. Chge. ${ }^{\text {(}}$	${ }_{51}^{1-1330} \ldots \ldots \ldots \ldots .130-11$
51-T1606 (Code 131) Tel.	
$\begin{aligned} & \text { Rec. (See Modei } \\ & 50-116001 \text { 91A } \end{aligned}$	$51.1733,51-1733 \text { (i). }$
51.11606 (Code 132) Tel. Rec.	52.71610 (Code 122)
51-T1007 Code 121) (ch.	(Ch. 32, C1) Tel. Rec. (See Model $51 . \mathrm{T} 1601$,
33, C1) Tel. Rec. (See Model 51-T1601.	Code 122)
Code 1211 138	52.71612 (Code 122) (Ch.
51.51607 (Code 122) (Ch.	$\begin{aligned} & \text { 32, C1) Tel. Rec. } \\ & \text { (See Model } 51 \text {-Ti601) . . } 138 \end{aligned}$
Model \qquad 1.T1 601. \qquad	2.11802 (Code 123)
138	
C, L) Tel. Rec. (See	
Model 50-T1600, Code	(Ch. 71, G1) Tel. Reec
122) (Also see P Chge. Bul. 20	Bul. 57-Sei 191-1)... 179
Set 134.1j 110	-T1804 (Code 122)
51-T1634 (Code 122) (Ch.	(Ch. 33, C2) Tel. Rec. (See Model 51-T1800). 148
Model 50-T1600) (Also see Prod. Chge. Bul. 20-Set 134-1)	$52-\mathrm{Tl} 804$ (Code 123) $\mathrm{Ch} .37, \mathrm{C} 2 \mid$ Tel. Rec. (See Módel 51-T1800). 1

PHILCO-Conf.
52 - 11808 (Code 121) (Ch. 41, D1, D1A) Tel. Rec.
(See Model $52-\mathrm{T} 2106$
(See Model $52-$ T2106,
Code 121) (Also see
Prod, Chge. Bul. 56-.... 171
52-T1808 (Code 122)
(Ch. 33. C2) Tel. Rec.
(See Model 51. T1 800). 148
(See Model Sl. 1800)
52 T1810M (Code 122)
(See Model 51-Tl800). 148
(See Model S1-T1800).
$52 . \mathrm{T1B10L}, \mathrm{M}$ (Code 123).
(Ch. 37, C2) Tel. Rec.
(See Model 51. T1800). 148

(Sce Model 51-T1800). 148
52 T1812 (Code 123)
(Ch. 37, C2) Tel. Rec.
(See Model 51-T1800). 148
52-T1820 (Code 121) (Ch.
(See Model 52-T2106
Code 121) (Also see
Prod. Chge. Bul.

124) (Ch. 71, G-1) Tel.

Rec. (See Model
52 -T1802, Code 124)
(Also see Prod. Chge.
Bul. 57-Set 191-1).
52 -T1831(Code 122)
(Ch. 33, C2) Tel. Re
(See Model $51-\mathrm{Tl} 800$). 148
$52 . \mathrm{T1} 839$ (Code 1211 (Ch.
41, DI. DIA) Tel. Rec.
41, DI, DIA) Tel. Rec.
(See Model 52 -T2106,
(See Model (Also see
Codel21) (A)
$56-$ Set $190-1)$...... 171
52-T1839 (Code 122)
(Ch. 33, C2) Tel. Rec.
(See Model 51 -T1 800). 148
52 -11839 (Code 123)
(See Model 51-T1800). 148
52 T1840 (Code 121) (Ch.
41, D1. DIA) Tel. Rec.
41, D1, DIA) Tel. Rec
(See Model 52 T 2106,
Code 121) (Also see
Prod. Chge. Bul.
50 . 5 et $190-1) \ldots 171$
$52-11840($ Code 122$) \quad 1$
52-T1840 (Code 122)
(Ch. 33, C2] Tel
(Ch. 33, C21 Tel. Rec.
(See Model $51-\mathrm{T} 1800$). 148
$52-\mathrm{T1} 1840$ (Code 123)
(Ch. 37 (2) Tel. Rec
(Ch. 37. C2) Tel. Rec.
(See Model 51 T1 800). 148
$52 . T 18411$ (Code 1211
(Ch. 41 , DI, DIA) Tel.
(Ch. 4!. DI, DIA) Tel.
Rec. (See Model
$52-\mathrm{T} 2106$, Code 121)
(Also see Prod. Chge.
Bul. 56 Set $190-11$). . 1
Bul. 56 - Set 190-1).
52 T1841L (Code 123).
(Ch. 37, C2) Tel. Rec.
(See Model 51-T1800). 148
52 T1842 (Code 121) (Ch.
41, DI, DIA) Tel. Rec.
(See Model $52 . \mathrm{T} 2106$.
(See Model S2.12108,
Prod. Chge. Bul.
$56-190.1$)
$52-\mathrm{T} 1842$ (Code 122)
(Ch. 33, C2) Tel. Rec.
(See Model 51. Tl 800). 148 52-T1842 (Code 123)
(Ch. 37, C2\} Tel. Rec.
See Model $51-\mathrm{T} 1800$). 148 52-T18421 (Code 124)
(Ch. 33, C2) Tel. R
(Ch. 33, C2) Tel. Rec.
(See Model $51 . \mathrm{Tl} 800$). 148
$52-\mathrm{T} 1844$ (Code 121) (Ch.
41. D1, DIA) Tel. Rec
(See Model 52 T2106)
(Also see Prod. Chge.
Bul. $56-$ Set 190.1) . . 171
52.TI844 (Code 122)
(Ch. 33, C2) Tel. Rec.
(See Modet 51-T1800). 148
52. T1844 (Code 123)
(Ch. 37, C2) Tel. Rec.
(See Model $51-\mathrm{T}) 800$). 148 52.T1844 (Code 124)
(Ch. 33 , C2) Tel. R
(Ch. 33, C2) Tel. Rec.
(See Model $51-\mathrm{T} 1800$). 148
52-T1845 (Code 124) (Ch
3R2. CR2) Tel. Rec.
(See Model 52-T1802). 179
52.1! 850 (Code 121) (Ch.

A1, D1, DIA) Tel. Rec
(See Model $52-T 2100$
(See Model S2-T2106.
Code 121) (Also see
Code 121) (Also see
Prod, Chge. Bul. $50-117$
Set i90.1)
52.T1850 (Code 124)
(Ch. 71, G1) Tel. Rec.
(Ch. 71, G1) Tel. Rec.
(See Mode! $52-\mathrm{Ti} 1802$.
Code 124) (Also see
Prod. Chge. Bul. $57-179$
Set 191.1)...............
52-T1882, 52-T1883 (Code
121) (Ch. 44, D4, A)
Tel. Rec. (Also see Prod

Tel. Rec. $A l$ Also see Prod.
Chge. Bul, 57 -Set
191.1)............181-9
52 -Y1882 (Code 122
(Ch. 35, CPI) Tel. Rec
(See Model 51.T2102). 132
52. T2106, 52-T2108,
52. T2110 (Code 121]
[Ch. $41, \mathrm{DI}, \mathrm{DIA}$ Tel.
(Ch. 41, D1, DIA) Tel
Rec. (Aiso see Prod.
Chge. Bul. S6-Set
190.11171-9
2-T2110 (Code 122)
(Ch, 35, F2) Tel. Rec.
(See Model 51-T2102). 132
(See Model 51-T2102)
52 -T2120 (Code 121)(Ch
41, D1, DIA) Tel. Rec
(See Model $52 . \mathrm{T} 2106$.
(See Model $52 \cdot \mathrm{~T} 2106$.
Code 121) (Also see
Code Chge. Bul.
Prod. Set 190-1).

PHILCO-COnf.
52.12120 (Code (24)
iSee Model 52 Ti Ti802,
Code 124) (Also see
Prod. Chge. Bul.
57 -Set 190.11 179
$52 \cdot \mathrm{~T} 2122$, L(Code $12 i$)
(Ch. 41 , D1. DIA) Tel.
Rec. (See Model
52 T2106, Code 121)
Bul. 56 -Set 190.1)... 171
52-T2140, 52-T2142 (Code
121) (Ch. 41, D1, D1A)
121) (Ch. 41, DI, D1A)
Tel. Rec. (See Model

52 Thlob, Code 121)
(Also see Prod Chae
(Also see Prod Chge.
Bul 56 -Set 190-11... 171
52-T2142 (Code 122)
(Ch. 35 , F2) Tel. Rec
(Ch. 35, F2) Tel. Rec.
(See Models 51.T2102). 13
52 . 2144 (Code 121) (Ch.
41, DI, DIA) Tel Rec
(See Model 52 T2 100
(See Model 52-T2106,
Code 121)(Also see

52-T2145X (Code 125)
(Ch. 44, D4, D4A) Tel. Rec. (See Model
$52 . \mathrm{T} 1882$, Code
52. 11882, Code 121)
(Also see Prod. Chge
(Also see Prod. Chge.
Bul. 57 -Set $191-1$) 18
$52 . \mathrm{T} 2150 \mathrm{~W} 52 . \mathrm{T} 215$,
 Tel. Rec. (See Model
$52 . \mathrm{T} 1802$, Code 124) $52 . \mathrm{T} 1802$, Code 124)
(Also see Prod. Chge.
(Also see Prod. Chge.
Bul. 57 Set ig1.1) 179
$52 . T 2151$ (Code 121) Ch.
41, D1, D1A) (See
Model 52-T2106, Code
121) (Also see Prod
121) (Also see Prod.

Chge. Bul. $50-\ldots . .$.
Set 190-1) 17
52.T2157 (Code 125)
(Ch. 42, G2) Tel. Rec... 186-10
$52-\mathrm{T} 2182(\mathrm{Code} \mid 21)(\mathrm{Ch}$.

52-T2182 (Code 121) (Ch.
44, D4, D4A1 Tel. Rec.
44, D4, D4A) Tel. Rec
(See Model 52 .Ti 882,
Code 121) (Also see
Prod. Chge. Bul.
$57-191-11$. 18
52 T2224 (Code 121 ich.
41, D1, DIA) Tel. Rec.
(See Model 52-T2106.
Code 121) (Also see
Prod. Chge. Bul.
$50-$ Set $190-1\}$
52 . 172224
52-T2244 (Code 121) ${ }^{\text {(Ch. }} 17$
41, D1, DIA) Tel. Rec.
42. DI, DIA) Tel. Rec
(See Model $52 . \mathrm{T} 2106$.

Prod. Chge. Bul. $190-11$
$50-$ Set 19017
52-T2245 (Code 121) (Ch.
44, D4, D4A) Tel. Rec.
44. D4, D4A) Tel. Rec
(See Model 52 T1882,

Code 121) (Also see
Prod. Chge. Bul. 18
$57-$ Set 191.1$)$
$52 . \mathrm{T} 2252($ Code 121$)(\mathrm{Ch}$.
52.T2252 (Code 121) (Ch.
41, D1, DIA) Tel. Rec.
(See Model 52.2106 .
(See Model 52.2106 ,
Code 121)(Also see
Code (21) (Also see
Prod. Chge. But.
$56-190-1$). 17
52.-2252 (Code 124)
(Ch. 71, G1) Tel. Rec
(Sh. M1, G1) Tel. Rec
Coe Model 52-Ti802,
Code 124) (Also see
Prod. Chge. Bul.
Prod. Chge. Bul.
57 -Set $191.11 \ldots . . .179$
57 -T2253 (Code 121) Ch.
44 D4 (D4A) Tel Rec.
44, D4. D4A) Tel. Rec.
(See Model 52 Tis82,
Code (21) (Also see
Prod. Chge. Bul.
$57-$ Sel $181-1)$
52. T2254 (Code 121) (Ch
41, D DIA) Del. Rec.
(See Model $52-T 2106$,

See Moded $52-\mathrm{T} 2106$
Code 121) (Also see
Prod. Chge. Bul. 56
Prod. Chge. Bul. 56-- 171
Set 190.1)..........
52.12256 (Code 1211 (Ch.
52-T2256 (Code 121 (Ch.
41, DI. DIA) Tel. Rec.
(See Model 52 -T2106
Code 121) (Also see
Code (Col) Also see
Prod. Cul. 56-... 171
Set 190.1).........
52-T2258 (Code i21) (Ch.
41, D1. DiA) Tel. Rec. 41, DI, D1A) Tel. Rec.
(See Model $52 . \operatorname{Til} 106$)
(Also see Prod Chge.
Bul. 56 -Set 190.1) ... 171
$52-\mathrm{T} 2259$ (Code 121) (Ch.
$41,01, ~ D 1 A) ~ T e l . ~ R e c . ~$ 41. DI, DIA) Tel. Rec.
(See Model $52-\mathrm{T} 2106$)
(See Model S2-T2108
(Also see Prod. Chge.
Bul. So-Set 190.1) . . 171
52-T2262 (Code 125)
(Ch. 42, G2) Tel
(Ch. $42, G 2$) Tel. Rec.
(See Model $52-\mathrm{T} 2157$
Code 125)
52-T2282, 52-T2283 (Code
2-T2282, $52-12283$ (Code
121 (Ch. 44, D4, D4A)
Tel. Rec. (See Model
$52-\mathrm{T} 1882$, Code 121)

$52-540,52-540-1,52-541$.
$52-541-1,52-542-1 \quad \ldots 154-10$
$52-544,52-544.1$.
52-544, 52-544.1,
$52-544,52-544 \cdot 1, \ldots \ldots .163-9$
$52-544 \cdot \mathrm{w} \ldots \ldots .153-12$
$52-640,52-641$
$52.643 \ldots \ldots \ldots .161-7$

52-944 (Codes 121, 122). 160-8
52-1340
$53-\mathrm{T} 1824,53-\mathrm{T} 1825$,
53-T1824, 53-T1825,
52-T1820 (Code 123)
(Ch. 81, H1) Tel. Rec.

RCA VICTOR-CONR.
6T74, 6T75, 6T76 (Ch.
KCS47A, AT) Tel. Rec.
(See Model oTS4) |A1so
See Prod. Chge. Bul.
12-Set 120-1)...... 113
6T84. (Ch. KCS48. T and Radio Ch. RC1090) Tel.
Rec. (See Mode) 6754 . Rec. (See Model oris
Set 113, and Model 9T57, Set 122)
6T86, $6 T 877$ (Ch. KCS48.
T and Radio Ch. RC1 10921
Tand Radio Ch. RC1092
Tel. Rec. (See Model
Tel. Rec. (See Model
GT54, Set 113 , and
Model 9 T57, Set 1221
7T103, 7T104 (Ch.
KCS47B) Tel, Rec.......134-9
7103B, 7 T104B (Ch.
KCS4TF) Tel. Rec. (See
Model 7T103) (Also See
Prod. Chge. Bul. 26 -

7T112 (Ch. KCSA7B Tel. 136
Rec. (See Model
7T112B (Ch. KCS47G) Tel.
Rec. (See Model 7T103).
Rec. (See Model 7Tl03)
(Also See Prod. Chge.
(Also See Prod. Chge.
Bul. $26-$ Set 146.1). 134

Tel. Rec, (See
Model 7 IIll1B)

7T122, 7T123, 7T124 Ch. 156
(See Model 7 TH 103) 134
T1228, $7 \mathrm{~T} 123 \mathrm{~B}, 7124 \mathrm{~B}$
Tel. Rec (See Model
7T103) (Also See Prod.
Chge. Bul. 26-Set
146.1) 134
$71228,7 \mathrm{~T} 123 \mathrm{~B}$ (Ch.
Kee Model 7 T 111 B)....156
7 T 132 (Ch. KCS47D)
Tel. Rec.143-12
Tel. Rec. K.................
7 Tl 43 (Ch. KCS4BA and
Radio Ch. RC1092] Tel.
Rec. (For TV Ch. See
Model 7 TI 103, Sel 134.9,
For Radio Ch. See Model
9157, Set 122-8)
8841 (Ch RC-1069)
8842 (Ch. RC-1069A)
8843 (Ch. RC-10898). . 76-16
8846 (Ch. RC-1069C)
(See Model 8B41)...
(See Model 8B41)....
8 BBx (Ch. RC. 1059).
$8 B \times 6$ (Ch. $R C-1040 \mathrm{C}$
$8 B \times 54,8 B \times 55(50 e$

$8 P C S 4), 8 P C S 41 \mathrm{~B}$,
$88 \times 65(\mathrm{~S} 2 \mathrm{M}$ Model $\mathrm{gBX6}) .44$
$8 F 43$ (Ch. RC-1037B)...... 97-13
$8 F 43(\mathrm{Ch}, \mathrm{RC}-1037 \mathrm{~B})$.
$8 \mathrm{CSSA1}, \mathrm{~B}, \mathrm{Ch}$.
KCS24B-1, KRS20A-1,
KRK1A-1, KCS24C-1
KRK4, KRK2A, KRS2
RSI 12 ,
,
RSI23C) Tel. Rec....... 90-9
$8 R 71$ (Ch. RC-1060),
$8 R 72$ (Ch. RC-1060A).. 53-20
$8 R 72(\mathrm{Ch} . \mathrm{RC} .1060 \mathrm{~A})$
$8 \mathrm{R} 74,8 \mathrm{R} 75.8 \mathrm{R} 76$ (Ch.
RC'1060, A)
(See Model 8R71)..... 53
$81241,81243,81244$
(Ch. KCS 28) Tel. Rec... 74-8
(Ch. KCS 28) Rel. Rec...
81270 (Ch, KCS29,
KCS29A) Tel. Rec....... 85-13
8TC270, 8TC271 (Ch.
KCS29, KCS29A) Tel.
Rec.
(See Model
8 T 2701
85
8TK29 (Ch, KCS32A, C and

(Rodio Ch. RK-135A-1)
Tel. Rec. (See Model
81270)............ 85
Radio Ch. RK135, A) Tel
Rec. (See Model 8TK29) 88
8TS 30 (Ch. KCS201.1) Tel)
Rec. (See Model 630 TS)
Rec. (See Model 630
BTV41 (Ch. KCS250.1,
KCS25E-2, RK117A,
8TV321, 8TV321B,
BTV323, $8 T V 323 \mathrm{C}$
(Ch.
BTV323, 8 TV3238 (C
KCS30-1) (Rodio Ch.
Ree. (See Model 87241) 74
R
RV7 (Ch. RC-615) (See
Model 77 V 1$)$)......... 38
$8 V 90$ (Ch. RC-618,
RC-618A), $8 V 91^{\prime}(C h$.

$8 \times 521(\mathrm{RC} \cdot 1066)$.
$8 \times 541,8 \times 542$
(Ch. RC. $1065, R C \cdot 1065 A) 59-16$
$8 \times 544 ., 8 \times 545,8 \times 546$.
8×547 (See Model $8 \times 541) 5$
8×547 (See Model $8 \times 541) 5$
$8 \times 681,8 \times 682$
(Ch. RC. 1061) $\ldots]^{6}$
$9 B \times 5(C h . R C-1059 B, C)$

9EY3 (Ch. RS-132).......158-10
9EY31, $9 E Y 32 \ldots10$
9PC4iA, B, C iC
9PC41A, B, C ICh.
KCS24C-1, D, KRK-4,
KRS20B.1) KRS21A.1,
RS-123A) Tel. Rec.
(See Model BPCS41)... 90
RS-123A) Tel. Rec.
OT57 (Ch. KCS49, T)
Tel. Rec. (C. KCS49A, 122-8
9T77, 9T79 (Ch.
(See Model 9T57) 122
rCA Victor-Cont.
9179 (Ch. KCS49, A
AT,T) Tel. Rec.
(See Model $9 T 57$) 12
وT89 (Ch. KCS60, 1 and
Rodio Ch. RC1092) Tel.
Rodio Ch. RCló92) Tel.
Rec. (See Model 9TS7). 12
Tlios ($\mathrm{Ch} . \mathrm{KC549B}$) Tel.
Rec. (See Model 7T103) 134 Rri26. (Ch. KCS49C) Tel.
Rec. (See Model 7T103) 134 9 ri28 (Ch. KCSA9C) Tel.
Rec. (See Model 7T103) 134 Rec. (See Model 7T103)
9 T147 (Ch. KCS60A and
Rec. IFor TV Ch. See
Rodel 7 T103, Set 134-9
For Radio Ch. See 9157.,
Set 122-8)
$91240, \mathrm{~K}$ (Ch. KC528, A)
Tel. Rec.
(See Model 8 r241).... 74
(See Model 8124)].... 74
91246(Ch. KCS28C) Tel.
Rec. (See Model 8 T 241) 74
Rec. (See Model 81241) 74
9T246 (Ch. KCS38) Tel.).
Rec. (See Model T100). . 93

Rec. (See Model T100). . 93
9 T 270 (Ch. KCS29)
Tel. Rec.
(See Model 81270).... 8
TC240 (Ch. KCS28B)
81241) (c. Ma.......... 74
9TC245
81241) CM. KCS34B) Tö. 74
9TC245 (Ch.
Rec. (See Model T100). 93

Rec. (See Model T100).. 93
$9 \mathrm{TC272,9TC275}$ (Ch.
KCSe Model 8 ST 270).... 85
(See Radio Ch. RK135C) Tel Rec. (For TV Chassis see Model 8TK29, Set 88 ,
for Radio Ch. See
9TW 309. Set 95 FA -11) 9TW333 [Ch. KCS30.1.
Rec. (See Model 8T241). 74
91 W 390 (Ch. KCS31-1,
RC6ITAI Tol. Rec.
(See Model S1000).
QWiol. OW 102 gWio3
(Ch. RC-6188), 9W105
(Ch. RC-6188), 9W105
(Ch. RC-618C).,......73-10
9 W106 (Ch. RC.622).
9 W106 (Ch. RC.622)
See Model A106).... 97
$9 \times 561(\mathrm{Ch}$. $\mathrm{RC} \cdot 1079 \mathrm{~B})$
$9 \times 562(\mathrm{Ch}, \mathrm{RC}-1079 \mathrm{C}) \cdot 101-9$
$9 \times 572(C h . ~ R C-1079 A) 107-7$
$9 \times 641(C h$
$9 \times 641(\mathrm{Ch} . \mathrm{RC}-1080)$,
9×642 (Ch. RC-1080A). 87-9
9×651 (Ch. RC-1085)
$9 \times 8 \times 52$ (Ch. RC-1085A). 104-9
$9 Y 7$ (Ch. RC. 1057 B)..... 75-1
$9 Y 7$ (Ch. RC. 1057B)....
OY51 $\mathrm{Ch} . \mathrm{RC-1077)} \mathrm{\ldots ..}$.
9Y 510 (Ch. RC1077A)
9Y511 (Ch. RC1077B)..131-13
$16 \mathrm{T152}$ (Ch. KCS47E)
Tel. Rec. K........160-1
171150, 17Tisi iCh.
KCS66C) Tel. Rac.......169-13
17 T 153 (Ch. KCS66)
Tel. Rec.
17T154 (KCS6) Tei........ 158-1
(See Model 17T153)... 158
(See Model 17T153)
171155 (Ch. KCS66)
Tel. Rec. (See Model
171153) 15
17 T 160 (Ch. KCS66) Tel.
Rec. (See Model
Rec. (See Madel
17T1S3). 15
171162 (Ch. KCSÓAA) Tel.
Rec. (See Model
171153
17115151
17 T 163 (Ch. KCS66C) Tel.
Rec. (See Model
Rece
17150) Model
17172,17 rita $1 \mathrm{Ch} . .$.
KCS66A) Tel. Rec.
(See Model i7T153)... 15
17T174K (Ch. KĆS660)
Tel. Rec.
Ssee Model 17T150)... 169
171174 (Ch. KCS66A)
Tel. Rec.
(
17 17T153) 17T201 M7T202
158
(Ch. KCST2) Tel. Rec.
(Also See Prod. Chge.
Bu1.59-Set $193-11$.... 184-12
7 T 211 (Ch. KCS72) Tel.
17 T 211 (Ch. KCS72) Tel.
Rec. (See Modal 17T200)

17 T220 (Ch. KCS72) Tel.
Rec. (See Model 17T200)
Rec. (See Model 17T200)
(Also See Prod. Chge.
Bul. 59-Set 193.11).. 184
Bul. 59-Ser 193.1)... 184
17T2500E (Ch. KCS74)
Tel. Rec. 193-8

Rec. (See Model
1772500 E) 193
21 T 159 (Ch. KCS68C, E)
Tel. Rec. (See Mode)
2IIIJb) (Also See
Prod. Chge. Bul. 56-1.
Set 190-1).
Set 190.1)...........
$21 \mathrm{T1590E}(\mathrm{Ch} . \mathrm{KCS} 88 \mathrm{~F})$

(See Model 21T176) 157
21 T 174 DE (Ch. KCS68F)
21T174DE (Ch. KCS68F)
Tel. Rec.
211176 21T177 217178.
$21176,21 T 177,217178$
217179 (Ch. KCS68C)
Tel. Rec. (Also See
Prod. Chge. Bul 56
Prod. Chge. Bul. 56-
Set 190-1).
21 17800 (Ch. KCS68F)
Tel. Rec.

RCA VICTOR-Con
Ch. RC-1120, A
isee Model 2C521).... 194
(See Model 2C521).... 194
Ch. RK.117
(See Model 711 V 2)....
Ch. RK-117A
(See Model 8TV41)....
Ch. RK.121
(See Model 612V1).... 17
Ch. RK-121A
(See Model 8PCS4I)... 90

Ch. RK-MSA-1
isee Model 81270)...... 85
ChR135C
iSee Model 91W309) . . $95 A$
(See Model 9TW309) .. 95
Ch. RK1350 (See
Model TA169)......... 108
Ch. RS. 123
(See Model 612 V 1)...... 17
Ch. RS-123A, B, C
Ch.RS-123A, B, C
(See Model BPCS41).... 90
$C h, R S-123 D$
(See Model RV151)....
Ch. RS-126

(See Model 9EY3) 158
Ch. RS-132F, H
(See Model 45EY1).... 135
Ch. RS.138, A, H
(See Model 45 -EY-2) $\ldots 165$
Ch. RS140 (See Model
45.EY-4] Model 4TIOI. 173
Bently (See Model

Bristol (See Model 17T153)
Coldwell (See Model
$17 \mathrm{~T} 162)$
17T162)
Calhoun (See Model
17T173, 17 T 173 K)
Clarendion (See Model
21 T 179)
Covington (See Model
17T172, 17 T 172 K)
Cumberland (See Model
2T60)
Donley (See Model 211177)
Fairfax (See Model 6T84) Fairfield (See Model 6771) 6T72. 7T122, 7 T122B)
Hampton (See Model Hampton (
$17 T 1601$
Harford (See Model ©T87)
Haywood (See Model
Haywood (See Model
$7 T 111 \mathrm{~B})$
Highland (See Model OTO5,
7T112, 7T112B) Hilisdclé (See Model 9777 Kent (See Model ST54,
7T104, 7T104B) Kendall (See Model
$17 \mathrm{~T} 174,17 T 17 \mathrm{~K}$)
Kingsbury (See Model
ST64) OT64)
Modern (See Model 6T75,
7 T 124) Newport (6T53, 7T103,
7 T103B) Northampton (See Model
9T79)
Preston (See Model 17T155) Preston (See Model 17T15
Provincial (See Model
$6 T 76,7 T 125 B, 9 T 128$)
Regency (See Model
6T74, $7 \mathrm{TT123} ,7 \mathrm{TT1238)}$
Rockingtonham (See Model Rockingtonham (See Model
21 IT178)
Rutland (See Model oT86, Rutland (See Model 6T86,
$7 T 143$)
Sedgwick (See Model 9T89, Sedgwick (Seo Model 9789
وT147)
Shelby (See Model 2T51) Somervell (See Model 2 T81,
$4 T 141$, Sufolk (See Model 211176)
Talbot (See Model 16 Tl 52) Whitfield (See Model 17 T 1541
Winston (S
Winston (See Model
7 TH 132)

York (See Model 9T57, 9T105)

RME

DB. 22 A HF10.20

HF10.20
VHF 2.11
YHF.152A
45
4
84.

RADIOLA

61.1, 61-2, 61
(ch RC 1011) 14-25
 61-8. 61.9 (Ch. RC. 1034) 27 27-21
$62-2$ (See RCA Model
 $76 Z \times 11,762 \times 12$ (Ch. . . . 36 36- 20 Ch. RC-1011
\qquad $\int_{\infty}^{\infty} \int_{i}^{0} \frac{1}{2} \frac{1}{2}$

C-1615A) Model 124 Tel. Rec. (See
Madel C-1615A) 12 C. 17 i 5 SA (Ch. 17AY24)
C-1715B (Ch. 17AY2 C-1715B (Ch. 17AY21)
Tal. Rec. (See
Madel C-1615A)12 C-1716A (Ch. 17AY24),
C-1716B (Ch. 17AY21)
Tel. Rec. (See
Model C-1615A)
$-1724 \mathrm{~A}(\mathrm{Ch} .17 \mathrm{AY} 21)^{2}$
Tel. Rec. (See
(Model C-1615A) (Also
see Prod. Chge. Bul. 19.
Set 132.1)......... 124
(Ch. I7AY21A)

C -2001A, C-2002A 20 CH .
20AY211 Tel. Rec.
(Also see Prod. Chge.
Bul. 43 Ser 177-1)...149-9
C. 2006 (Ch . 20 AY 21)
Tel. Rec. (See Model
C. 2001 A) (Also see

Prod. Chge. Bul. 43-
Set 177.11
C-2103A, C-2105A
(Ch. 21AY21) Tel. Rec. 173-1A
C-2108 (Ch. 21T1) Tel.
Ret. (See Model)

RAYTHEON-Cons.	REMLER-Cont.
Ch. $14 \mathrm{~A} \times 21$ Tel. Rec. (See Model C.1401)......... 123	
Ch, 16AX23, 25, 26	5505, 5510, 5515 " Scottie
${ }^{\text {(}}$ Seg Model ${ }^{\text {cli }} 602$)...	Pup' (See Model 5500). 27
C. 1615 LB) (Also See	
Prod. Chge. Bul.	Tee
-Set 132-1)	renard
Ch. 16 AY211) See Model	L-1A, PT-1A, 1BST-1 9-28
C.1015A) (Also See	REVERE (See Recorder
Prod. Chge. Bul. 19	Listing)
	ROYAL (Lee)
iSee Model M-1626) . . 165	AN150, AN160 179-11
17AY21 (See Model	${ }^{20 C P}$ (S, 207 T Tel. Re
C.16154) (Also See	(si
Prod. Chge. Bul. 19	SCOTT (E. H.)
Set 132-1)	Musicale
	Music Control, Dynamic
Ch. 17 AY24 (Seo Model	
C.1615A) (A) so See	
${ }^{\text {Prod. Chge. Bul. } 19} 124$	[Aíso See Prad. Chg
	Bul. 4-Set 105-2) 52-19
(See Model RC-1720A) 147	${ }_{164}$ A 40-18
h 1711	300 Tel. Rec............ ${ }^{\text {a }}$
See Model C-17354].. 189	310
isee Model C. 210	
Ch. 20ar21 (See	(See Model 6T1) (A)
Model C-2001A) 149	
21 AY 21 (5 ee	
Model C-	515
${ }^{\text {Chis }}$ (2 ee Model C-2108). 129	710, $710 \mathrm{~A}, 710 \mathrm{X}$ Tel. Rec
2172	
	720 Tel . Rec
(See Model (-2112A)	${ }_{8}^{800-B}$ 800BT Tel................ 14-27
RECORDIO (Wilsox-Gay)	Model bTll (Set 52)
1810 149	and Model 800B Sel
$1 \mathrm{C}-10$.............. 1^{146}	(Also See Prod. Chg
1110 (Ch. 111).......... 128	Set 105
${ }^{2} 410$ Recorder 163	820 C
6A10, 6A20 (Ch. 6A) ... 10	910
6810, $6820,6830,6832$... 8	Mode Ravens
7042, 7044 (Ch. 701)... 52-18	${ }^{9} 920$ Tel Reci liee
7E40, 7E44 47-20	920 Model ${ }^{\text {a }}$
${ }_{8}^{8110, ~} 8150$. 62617	920 Tel Rec. ${ }^{\text {a }}$
$9_{9640 M}^{9642}$....... 86-9	924W Tel. Rec. 176-11
	1000 180
Ch. Id (See Model 1 110). 128	1510
Ch. 64 (See Model 6Al01. 10	SCOTT ($\mathrm{H} . \mathrm{H)}$.
Ch. 701 (See Model 7042) 52	111-B
REELEST (See Recorder	112-8 144
Listing)	$120 \cdot \mathrm{~A}$ (See Model 214.A) 183
REGAL (TOK-FONE)	${ }_{210-A}$.............. ${ }^{79}$-15
Tok-Fone (20-watt Amp.) , 13-27	${ }_{210 . B}^{210 . B}$
AP40, ARP400, ARP $450 . .15-26$	
	220.A (See Model 214.A) 183
$\mathrm{C}_{\text {C-531 Tei. }}$	SEARS-ROEbuck
(See Model 16T31).... 80	(See silvertone)
${ }_{\text {CR761 }}{ }^{\text {COS }}$............... 50	SEE8URG (See Reco
	Changer Listing
1.76 5	Sentinel
	U-284GA (See Model
W700 (See Model W800). 14	284GA)
W800, W801 ${ }^{14}$	U-2841, 1U-284NA
w900, w901 ${ }^{13}$	$1 \mathrm{U}-284 \mathrm{NI}, 1 \mathrm{l}-$
16 T 31 Tel. Rec	(See Model 2841)
16736 Tel. Re	1U-285P (See Model 285
Tel. Rec. ${ }^{\text {cel }}$	
17T23, 17T220X Tel. Rec. 143	U-2931, 1U-293T.
$19 \mathrm{C} 31,19 \mathrm{C36}$ Tel. Rec.	1U-293W (See Model
19031.19036 Tol. Rec	$1{ }^{294}$ Series)
(Soé Model 17 HD 31) . 147	4T ISee Mod
20C22, 20C220X Tel. Re	294 Series)
(See model 1712. . ${ }^{\text {a }} 143$	1U312PG, 1U312PW ...103-15
(See Model	U-313I, 1U-313W (See Model 3131)..... 39
20022, $2002220 \times$ Tel. Rec.	1U.314E, 1U-3141,
(Soe Model 17T22) 143	1U-314W (See Model
20031,20036 Tel. Re.	314 E)
(See Model 17HD31)	U. $316 \mathrm{PM}, 1 \mathrm{LU} .316 \mathrm{PT}$
(See Model 17HD311. 147	
Ti22, 201220x Tel.	1U338-1, 1U338-R,
(See Model 17122)	1 U338-W
2017, 220170x, 220	1u339-k
$220190 \times$ Tel. Rec.	1U340-6 129.10
${ }_{205}^{\text {(See Model }}$ (7122).... ${ }^{\text {a }}$ 26-23	TU342K (See Model 345P) 183-14
208 (See Model W800) ... 14	1 U 416 Tel. Rec.117-12
	$1 \mathrm{U} 419,1 \mathrm{l} 420$ Tel. Rec... 115
717 and	
1007 Tel. Rec.......... 83	IU421, 10422 Tel. Rac.
	(See Model ${ }^{\text {4 }} 12$) (Also
1049 17-28	Set 126.1) 100
1107 41-19	1U423, 10424 Tel. Rec.
1207, 1208 T	See Mod
See Model 10071...... 83	(Also See Prod. Chae.
	Bul. 19-Set 132-1) ... 124
00	Tel. Rec. (See
07 Tol. Rec.	Model 144208) 124
1708.17080 XX Tel. Rec. ${ }^{\text {Sen }}$	10424.17 Tel. Rec
See Model 17T22).... 143	
1749 28-29	1 U 428 Tel. Rec. (See
	Model 14425) \ldots, $\ldots . .127$
2217, 22170X, 2219,	1U429, 14430, 14431
7152 70	(Also See Prod. Chis
7162 …............. 69-12	Bul. 25 -Set 144-1)... 124
7163 66-	1 U 432 Tel . Rec. (See
7251 40-16	Model 1U425) (Also S
Rembrandt	
80 Tol . Rec.	
${ }^{130}$ Tel. Rec	(See Model IU425) (A
${ }^{721} 1950$ Tel. Rec........ 65-11	See Prod. Chge, Bul. 21 \qquad
remler	1U438, 10439, 10440,
	1U441, 1U443, 14444 TSeries " "XD, XXD. 2×D") Tel. Rec

SILVERTONE-COnt.
9127 (Ch. 110.499-2)

Model 1421
(See Model 165.16) ... 144
Ch. 100.201 (See Madel
o9)
Ch 100.202 (See Mo............... 162
Ch. 100.202 .1
Ch. See Model
Ch .100 .208

Ch. 100.209 2195-21) ... 165
Ch. $101.060-1 \mathrm{~A}$. Model $2170-\mathrm{C}$. . 193
$\mathrm{Ch}_{\text {(See Model }} \mathrm{I} 01.6100$)..
i01.662-20, 101.662-3
(See Model 6105) \ldots

h. $101.666-1 \mathrm{~B}$
(See Model 6285A)....
Ch. $101.672-1 \mathrm{~A}, 101.672$
Ch. 18 (See Model 101.677 B (1092)... 10
(See Model 6290) 20
iSee Model 8127).....
Ch 101.800-1, 101.800.
1A (See Model 6200A).
Ch, $101.800-3$
(See Model 6200 A) \ldots.
(See Model 6200A) \ldots.
Ch. $101.801,101.801-1 \mathrm{~A}$
(See Model 6220)....
Ch . $101.802,101.802 .1$
(See Model 6230).
$\mathrm{Ch} 101.807,101.807 \mathrm{~A}$
(See Model 7021).....
Ch. 101.808
(See Model 7054) $\ldots .$.
$\mathrm{Ch} .101 .808-1 \mathrm{C}, 101.808$.
10 (See Model 8052).. 68
Ch. 101.809
Ch. $101.809-1 \mathrm{~A}, \mathrm{~B}, \ldots$
101.809-1 A, B,
(Si.809-2, $101.809-3 \mathrm{C}$
(See Model 7080).....

(See Model 7100) 17
Ch. 101.813
(ise. Model 8050)
(See Mode1 8050) $\ldots \ldots$. 13
h. $101.814,101.814-1 \mathrm{~A}$
isee Model 7085$\} \ldots \ldots 30$
(See Model 7085)......
Ch. $101.814-2 \mathrm{~B}$,
$101.814 .3 \mathrm{~B}, 101.814-5$
101.814 .6 C (See 2
$101.814-6 \mathrm{C}$ (See
Model 8086) 61

Ch. 101.819 A
(See Model 7226)..... 31
Ch. 101.820
iSee Model 7210)...... 32
Ch. 101.821
(See Model 8090).....
Ch. $101.822,101.822 \mathrm{~A}$
iSee Model $82701 . . .$.
Ch. $101.823,101.8234$
Ch. $101.823-1,101.823-1 \mathrm{~A}$
(See Model 7168$) \ldots \ldots .10$
Ch. $101.825,101.825-1 \mathrm{~A}$,
Ch. $101.825,101.825$

$3 \mathrm{D}, 101.825 \cdot 3 \mathrm{E}$,
$101.825-3 \mathrm{~F}, 101.825-4$

Ch.101.829.1 8100) 5
iSee Model 8132).... 66
$\mathrm{Ch} .101 .831,101.831 \mathrm{~A}$,

Ch. 101.833
(See Model 8105$) \ldots . .35$
Ch. 101.834
Ch. 101.834
(See Model 8072) 34
Ch. 107.835
Ch 101.835
(See Model 8230)..... 59
Ch. 101.839
(See Model 8051)

SILVERTONE Ch. 101.846 (See Model	
(See Model Ch. 101.849	8132).... 66
(See Model	9054)..... 63
Ch. 101.850	
(See Mode	9260).... 51
Sea Mod	4
$\mathrm{Ch}^{\text {che }} 101.852$	
(See Model	8080)..... 52
$\mathrm{Ch}_{\text {che }} 101.854$	
(See Madel Ch. 101.859	8132) $\ldots . .66$
(See Model 91	9133)...... 95
Ch. 101.859-1,	
(See Moid	
Ch. 101.860	(See Model 162
Ch. 101.864	
(See Mode	22
101.865	
See Model	11
101.86	
Seo Mo	9120A).
101.866	
Seim ${ }^{\text {ma }}$	
101.867	
See	
ise	9122A)
109.626	
See Model	7152).
109.627	
See Mode	7153).... 26
109.631	
See Mode	8145).
109.032	
See Mode	$\text { 8148) } 44$
109.033	8149
See Model	8149
See Model	815
109.635,	109.635-1
See Modol	81531.
109.636, 1	109.636A
Seo Model	8180).
109.838	
See Model	8168
110.451,	10.4
Ses	6051
.	
See Mode	1072).... 13
110.466 ,	10.460
M M	708
110.473	
See Mode	8103).... 56
110.499	
See Model	8123
110.499-1	
See Model	9124
110.499-2	
(See Model	91261..... 79
110.700.	1,-10
Mode	
$110.700-2$	
See Model	
110.700.90	
110.700-96	
(5ee Model	1116-1
132.01	
Model 1052)	
. 132.01215	
Model 1054)	1173
132.024 , -	-1, -2
31 (See Mod	Odel 21
132.03	
Model 21741	
132.044	
Model 31751	
Ch. 132.045 (S	
Model 31061	
Ch. $132.807-2$	
(See Model	7025
Ch. 132.816, 1	132.816A
	6011.
Ch. 132.818	
(See Model	60021.
Ch. 132.818-1	
[See Model	8003).
132.820	
See Model	16
132.825-4	
ISee Model	16050).... 15
Ch. $132.826-1$	
(See Model	6071)
Ch. 132.838	
[See Model	8000)..... 31
Ch. 132.839	
(See Model	8005)
132.840	
(See Modal	80101.... 40
Ch. 132.841	
(See Model	80
132.858	
(See Model	90
132.868	
[See Model	80211..... 70
:32.871	
iSee Model	902
Ch. 132.875	
(See Model	
Ch. 132.877	
132.878	
(See Model	
Ch. 132.880	
Model 210)	9
. 132.881	
(See Model	5)....... 144
. 132.882	
(See Model	
Ch. $132.884,{ }_{\text {chee }}$	
(See Model	15)....... 141
132.887	
(See Model	
Ch. 132.888	
Ch. 132.889-2 (See Model	$1061 \ldots . . .149$
Ch. 132.890	
Ch. 132.896 (See Model	

mplon	RTON-Con
CA.5 22-27	1051, 1052 (Ch. 689) ... 58-21
SKY KNIGHT (See Air Knigh	$\begin{gathered} 1058,1059,1060,10 \\ 1084,1071,1072 \end{gathered}$
SKYRIDER (See Hallicrafters)	Modet 12
SKYROVER	(See Model 4900TV)... 64
NS.RD-250 (9022-N),	80A (Ch. 81701
NS-RD-251 (19022.H1 $\cdots{ }^{6}{ }^{6-31}$	(1081 (Ch. 918 M)
N5-RD295 (Ch. 5A7) 21-30	(See Model 4900TV) . . 64
Sky weight	1081 A (Ch. 8110)
${ }^{818}$ ($\ldots \ldots \ldots \ldots \ldots \ldots \ldots$. 20-30	(See Model 141A).
$8^{82} \ldots \ldots \ldots \ldots \ldots \ldots \ldots{ }^{\text {a }}$ 13-13	1085, 1086 (Ch. 8w10)
SONOGRAPH	Model (141X)
81100 $122-10$	(See Model $141 \times X$) $\ldots 126$
${ }^{3} \mathrm{~W} 100$ (See Model	1210, 1211 (Ch. 8 WW
8L100) 122	(See Model 141 XX) 126
SONORA	49007 T ich
RBU-176	1016
RB. 207 (See Model RB.176) 5	
	Rec.
ROU^{209} - \ldots........... ${ }^{\text {3-29 }}$	4920, 4921, 4922 ch.
RET.2F	24 TM10)
RGMF-212, KGMF-230 ... 27 -26	(See Model 4916) 164
RKRU-215 (Ch. Rkru)	4935 (Ch. 23TC10)
RMR-219 ©	Tel. Rec. 133-1A
	4939 TV , 49407 TV , 4941 TV
RQU-222	(Ch. 24 4V9, 3TV9) Tel.
(1)-238 \ldots.......... 23-24	${ }^{\text {rec }}$ deoty model 64
RX-223 $\ldots \ldots \ldots \ldots \ldots \ldots$ 19-29	4942 (Ch. 23 TCiol
U. 243 27	${ }^{4} 4$
WBRU-239 ${ }^{32}$	Model $1333-14$
WCU-246 ${ }^{36}$	49444945 (Ch. Зтв10
	${ }^{24 \text { TB10) Tel. }}$. Rec. \ldots... 86
	4951, 4952 (Seo Model
WGFU-241, WGFU. $242 \ldots 24{ }^{\text {a }}$	4900TV) 84
WJU.252, w......... ${ }^{36-23}$	4954 (Ch. ${ }^{23 T C}$
WKRU-254A 34	Tel. Rec.
WLRU-219A \ldots......... 37-21	
WIRU-220A ISee Mode	4 Tol. Rec.
WIRU-219A) 37	Model 4935) 133-1A
WLRU-245A (See Model	4964, 4965 (Ch. 23 TBiO)
WXU-700,	Tei. Rec. 157
Tel. Rec.............. ${ }^{\text {. }}$	497
Yb-299112-9	(See Model 141A). ${ }^{\text {a }}$, 92
100 41-21	5002, ${ }_{\text {Tel. Rec. }} 5003$ (Ch. 23TDIO) 102-13
101 102	5006, 5007 (Ch. 23 TD 10)
171 . ${ }^{\text {a }}$.	Tel. Rec. (See Mo
172 (See Madel 171).... 109	5002) 102
302, 303 Tel. Rec....... 974	$5006 \times(\mathrm{Ch} .25 \mathrm{TK} 10 \mathrm{~A}$
305, Tel. Rec. 174	5007 X (Ch. $23 \mathrm{TK10A}$) Tel. ${ }^{\text {a }}$
	Rec. ISee Model
	500×1
332 Tel. Rec. (See	5010,5011 (ch. 19TSIO,
Model 305) 174	A) Tel. Rec.
350, 351 Tel. Rec. 173-	14, 5015 CCh
352 Tel. Rec. 182	A) Tel. Rec. 104
401 ….....	ISee model 5010)..... 104
402A (See Model RMR-219) 19	5025 (ch.
	26551601 Tel.
WLRU-219A) 37	50238 A Tol. Rec.
OUND, INC.	ISee Model S025) (A
"Intersound". ${ }^{\text {a }}$	-Set 138.1) 128
MB6P3, M86PG, MB6P3O, MB6R4 35--21	5026 Tel. Rec.
MB7E3 28-31	(See Model 5025) 128
	5029, 5030 (Ch.
5R2 . .f.f.e....... 28-32	26 SDl 60) Tel. Rec.
SPARK5-WITHINGTON (See 5parton)	5035, 5036, 5037 (Ch. 265S1601) Tel. Rec.
SPARTON (Also s	(Sea Model 5025) ... 12
Changer Listing)	5052 (Ch. 24TR10, 31R10) Tel. Rec. a7A 13
${ }^{4 A W 17}$ (Ch. 417), \ldots. 50-18	
	5056, 5057 (Ch. 19TSio. A) Tel. Rec.
$5 A H 06,5 A 106$ (See Model 5AW06)	(See Model 5010).... 104
54116 (Ch. 5.16) ….... 30	5064. 5065 (Ch. 23 TB10
5AM26-PS (Ch. 5-2	(See Model 4964) 157
6AM06 (Ch. 6.06) ….. 34-21	Model 4900TV) 64
	3071. 5072 (Ch. 19TSIO.
	A) Tel. Rec.
	See Model jovo..... 104
	50758 BA Tel. Rec
	(See Model 5025) (Als
7 BW 46 PA, $8 A M 46$	See Prod. Chge. Bul. 22.128
(See Model 7am46)	
10AB76-PA, $10 \mathrm{AM} 76 . \mathrm{PA}$,	5076 (Ch. 2655160,
	Model 50251 128
	5076BA Tol. Rec.
100. 101 (Ch. 5A7) 38-23	See Prod. Chge. Bul. 22
	Set 138-1) 128
${ }^{121}$ (Ch. 819)......... 57-19	
${ }_{122}^{122}$ (See Model 121)...5 57	
30, 132, 135, 139 (Ch. 5A10)........... 94-10	
141 (SSec Model 121).... 57	See Prod. Chge. Bul. 22
	-set 138.1) 128
	(Ses Model 5025 ($\ldots . .128$
142 (See Model 121).... 57	$5079,5079 \mathrm{~B}$ Tel. Rec. ${ }^{\text {a }}$
150, 151, 152, 155	(See Model 5025)
201 (Ch. 4E10) 91-12	See Prod. Chge. Bul.
$1000,1001,1003$	Set 138.1) 12
	5080, 5080 C Tel. Rec. (See Model S025) (Also
(Ch. 8.57) ….... 29-25	See Prod. Chige. Bul. ${ }^{22}$
1010 (Ch. 7 77) 35-22	
1015 (See Mode $108 W 7$ PPA)	5082, 5083 (Ch. $2650160,265170)$
1020, 1021, 1023	Tel. Rec. (See Model
See Model 10001.... 60	5025 Set 128 an
	Model (Also See Prod Chge.
(See Model 1030)..... 37	Bul. 222 -5et 1381)
1035A	85,5086 (Ch. 2 2R190,
1036A, 1037.	25RD1901 Tel. Rec. . . . 139-1
(Ch. '918) …........ 62-19	
1040xx, $1041 \times \mathrm{xich}$.	Tel. Rec. (See Model
$\begin{aligned} & 8 W 10) \text { (See } \\ & 141 \times X) \end{aligned}$	3025 Set 128 and Model $141 \times$ X Sef 128

SPARTON-Cont.
$5101,5102,5103,5104$,
5105 Tel. Rec.
(See Model 5025) (Also
See Prod. Chge. Bul. 22
-Se巾 $138.111 . \ldots . . .12$
5107
265S1700, 26SS170001
Tel. Rec.
5107 X (Ch. 26551711
Tel. Rec.
5110 (Ch. $26 S S 1700$,
26SS17ODD) Yel. Rec.
(See Model 5107).
$5125(\mathrm{Ch} .265 S 1700$.
$26 S S 170001$ Tel. Rec
(See Model 5107)......
$5152,5153,5154$ Tal. Rec.
(See Model 5025) (Also
See Prod. Chge. Bul. 22

26SD170X, 26SDI70xp)
see Prod. Chg. Bul.
22 -Set 138.1) $\ldots . .128$
5158 Tel. Rec.
(See Model 5025) (Also
See Prod. Chge. Bul. 22
Set 138.11 . 1 Ch .
$5162 \mathrm{x}, 5163 \mathrm{x}$
26SS171A) Tel. Rec
(See Model $5107 \times$)
$5165 \mathrm{X}, 5166 \mathrm{X}$ (Ch.
265 S 171 Tel. Rec.... 166-13
5170,5171 (Ch, $255 \mathrm{SD} 201,141$

$5175 \times$ (Ch. 26SD17I) Tel.
Rec. (See Model 5165X)
Rec. (See Model 5165X) 166
$5178 \times(\mathrm{Ch}$.26 SDI 71) Tel.
Rec. (See Model 5165 X) 166
5182,5183 Tel. Rec
(See Model 5025) (A)
See Prod. Chge. Bul. 22
Set 138.1)
Set 138 -1)
5188,5189 Tel. Re
5188,5189 Tel. Rec.
(See Model S025) (A)
(See Model S025) (Also
See Prod. Chige. Bul. 22
Set 138-1)
5191, 5192 (Ch
25SD201A, 2SD2011
Tel. Rec.
(See Model 5170$) \ldots$
5207,5208 (Ch. 2655172
A) 'Tel. Rec..........167-14

5207A (Ch. 25si72)
5210 (Ch. 26SSi72B) Tel.
Rec. (See Model 5207). 16
Rec. (See Model 5207). 167
5212 (Ch. 21S172)
Tel. Rec.
Tel. Rec.
5220 (Ch. 26 SDi72C) Tel. 174-
Rec. (See Model 5207). 167
S2SD172C) Tel. Rec.
267
(See Model 5207).....
$5250,5252,5253$
(Ch. 215172 Tel. Rec.
(See Model 5212). 174
5262,5263 (¿h. 2655172 ,
5262, 5263 (こh. 265S172,
A) Tel. Rec.
iSee Model 5207) 167
(See Model 5207)..... 16
5265 (Ch. 265D172, A)
(See Model 5207), 167
5267,5268 (Ch. 26SDI72,
5267. 5268 (Ch. 26SD172,
A) Tel Rec.
(See Model 5207).

Rec. (See Model 5207) 167
527) (Ch. 26 SD172C) Tel.
527 (Ch. 265 D 172 C) Tel.
Rec. (See Model 5207). 16
Rec. 15 See Model
5272,5273 (Ch.
26 SD 172 C .
26SD172C) Tel. Rec.
Rec. (See Model 5207). 167
5288,5289 (Ch.
5288,5289 (Ch.
$25 \mathrm{CD} 202)$ Tel. Rec. $\ldots 178 \quad 11$
$5290(\mathrm{Ch}, 255 \mathrm{D} 202)$

5295 (Ch. 25CD202)
Tel. Rec.
(SSee Model 5288)
$5296 \mathrm{~A}, 5297 \mathrm{~A}$ (Ch.
25 CD 202 . Tel. Rec.
25CD202) Tel. Rec.
(See Model 5288).
5296.5297 (Ch.
$25 S \mathrm{SD} 202$) Tel.

25SD202) Tel. Rec.
(S5ee Model 5290).
5298,5299 (Ch.
25 CD 202 T Tel. Rec.
(See Model 5288) ... 171
5342,5343 , (Ch. 250213)
Tel. Ree. (Ch. 250213)
5382, 5383, (Ch
Tel. Rec. (See
Model 5342)
Ch. PC-5-6-26
(See Model 6AW26PA). 3
Ch. 2 RDI 190 (See Model 5085) 139
$\mathrm{Ch.}_{5170 \text {) }}^{\mathrm{2SD} 201}$ (See Model 147
Ch. 3 TB10
isee Mod
(See Model 4944)..... 88
Ch. 3TR10(See Model
Ch. 3 3TV9, 3TV9C
$\begin{array}{cc}\text { (See Model 4900TV)... } 64 \\ \mathrm{Ch} & 4 \mathrm{El} 10 \text { (See Model 150) } 91\end{array}$
Ch. 5A7 (See Model 100).
Ch. 5A10 (See Model 130) 94
$\underset{\substack{\text { (See Model } \\ \text { Ch } \\ \text { 5.26PS }}}{ }$
(See Model SAM26PS)
Ch. 689 (See Model 1051) 58
Ch. 618 (See Model 1030) 37

Ch. 717 (See Model 1010) 3
(See Model 7AM46),
Ch. 819 (See Model 121), 57
Ch. 8110 (See Model 141A) 92
Ch. 8510 (See Model 141A) 92

ST. GEORGE (See Reco	srivania-Cont.
Lis	1-113, 1.114 Tel. Rec
StRatovox	See Model 1.075) (Also
579-1.58A 6-32	Set 182-11 92
Stromberg-Cat	24, 1.125 Tel.
AM.43 129	(See Model 1-075)
AM-48, AM-49 1313	${ }^{\text {see Prod. }}$ Chae.
	Rec. (Also see Prod.
AR-410 \ldots.............. 19	Chge. Bul. 49
AU. 29 ${ }^{\text {125-11 }}$	$183.11)$
AU.32 \ldots............133-12	1-128 (Ch. 1.108)
AU. 33 13	Rec. (See Model 1-076)
AU. 35 138	
AU-42 .o.l........137-12	49-Set 183.11 96
SR.401 $\ldots \ldots \ldots \ldots \ldots 191$ 18	(See Model 1-075) (Also
TC. 10 Tel. Rec. (Also	see Prod. Chge ${ }^{\text {a }}$
Prod.Chse. Bul. 1-Ser 79-17	
TC.19 Tel. Recu........... 97-17	(see
TC. 125 Tel. Rec......... 95A-13	1.197-1 (Ch. 1-186) Tel.
TS-15, TS-16,	See
Series Tol.	
TV.10t, TV.10tw (112020)	d9.-Set 183.11 113
	210 (Ch. 1.139$)$ Tel.
$2022)$ Tol. Rec.....	Model 1-075)
	(Also see Prod. Chge.
PHOTOFACT Servicer . 88	
-125 (Ch. TV-12)	Tel. Rec.
$10^{\text {Tel. Rec. }}$ Series Tel. Rec........ 135-12 ${ }^{68-16}$	(See Model 1-075)....
17 Series Tel. Rec.	1-245-1, 1-246-1
(See Series 16) 135	
${ }^{4}$ Series Tel. Rec....... 138 -	Also see Prod. Cha
32, Series Tol Rec.... 11-23	Bul. 49-Set 183-1) $\ldots 113$
116 Series Tel. Rec. (Seo io Series)....... 135	1.247 ($\mathrm{Ch} .1-168)$ Tel.
117 Series Tel. Rec.	Ree. (See Model
(See Model 119CDM) . . 130	${ }^{1-090)(A l s o ~ s e e ~ P r o d ~}$
${ }^{\text {OC Tel. Rec. (See Model }}$	183-1)
	1.247 .1 (Ch. 1.231)
Chge. Bul. 43--5et	
19 COM , 119 CM	250, 1.251, 1
Tol. Rec.......	
$19 \mathrm{MSA}, \mathrm{D}, \mathrm{G}, \mathrm{I}, \mathrm{M}, \mathrm{R}$	Tell Rec.
	2M (Ch. 1-387) Tel. Re
	Model 2221M1... 137
(See Model 119CDM). . 130	Tel. Rec Alis
317RPM, 317TM Tell. Rec. 146-10	Chg. Bul, 31-Set
$321 \mathrm{CF}, \mathrm{C} 2 \mathrm{M}, \mathrm{CD} 2 \mathrm{M}$, CD20 Tal. Rec.	174.1) . ${ }^{\text {a }}$-154-12
324 CDM , 324 CSM	22M-11 (Ch. 1-507.1) Tel
(Series 324) Tel. Rec. . 172-10	
CC5-M, $417 \mathrm{C} 5-0,417 \mathrm{C5}$	(Ch. 1-387-1)
Dec., 417 IX (Series 417) 178	(See Model 22M.1) (Also
$421 \mathrm{CDM}, \mathrm{CM}$ TX Tel.	See Prod. Chg. B
	See 178.1$)$
Cho	Rec. (See Model 228.11) 174
	$23 \mathrm{M}-11(\mathrm{Ch} .1-507.1)$ Tei
1020 (See Model	Rec. (See Model 228.11
	(Ch. 1-462-1)
$1101-\mathrm{HB}, 1101 . \mathrm{HI}$	Tel. Rec
(Ch. 112002), 1101-HM,	$24 \mathrm{M}-1, \mathrm{M} \cdot 3 \mathrm{CCh} .1-387-1)$
$1101-\mathrm{HW} .1101$ HY	Tel. Rec. (See Model
(Ch. 12001)	22M-1) (A) so See
	Prod. Chs. Bul. 41.
1105 (Series 10.11].... 18-29	Set 174-1) 154
(Series 10) 18-30	25M, M-1 (Ch. ${ }^{1-387-1}$
${ }^{20}$ (See Model 1220	Tel. Rec. (For TV Th.
Soriess .iw......	
1121.HW, IW, M1.0	(Also See Prod. Chg
PGM, PGW, PLM,	Bul. 41-Sot 174.11) 15
PSM '(Series 10-11.12)', 10-31	71M (Ch. 1.441$]$ Tel. Rc. (See Model 4120 M$)(\mathrm{Also}$
$1135 . P F$ M, $1135-\mathrm{PLM}$.	
135.PLW ISeries 1	5-Set 189-11...... 124
	M.1 Ch. 1-502
1202 (Series 10 55-21	(
$1210 \mathrm{M} 2 . \mathrm{Y}$. 1210 PGM .	(See Model 4120 M)
1210 PLM, 1210PGW (Series 10-11) 37-23	See Prod. Chge, Bul.
1220 series ${ }^{\text {a }}$ 50-19	Bul. 55-Set 189-1
1235 Series 49023	Rec. (See Model 71 M-1
1400 (See Model 1200) ... 57	(Also See Prod. Chg.
1409 Mz - $\mathrm{M} .1409 \mathrm{Mz}-\mathrm{Y}$. ${ }^{\text {a }}$	42-Set 178-1) $\ldots \ldots .16$
1409M3-M, i409PG-M,	
1 1409PG-W .l.l.l. ${ }^{\text {62-20 }}$	Chg. Bul. 42-Sel 176.1) 163
${ }_{1500}^{1500}$............132-15	2 M ICh. ${ }^{1-366) ~ T e l . ~ R e c . ~}$
1507 ${ }_{1608}^{133-13}$	(See Model 4120 M)
1608 $150-12$	
STUDEBAKER	$72 \mathrm{M}-1 \mathrm{CCh} .1-502.11{ }^{\text {a }}$
AC2111 (55127) 186-15	Tel. Rec. (See Model
	71M.11) (Also See Prod, 163
SUPREME (Lipan)	
$711.10 \ldots \ldots \ldots \ldots$.... 88-17	Rec. (See Model $71 \mathrm{M}-1$)
${ }_{733} 7125$............. ${ }^{63}$-17	[Also See Prod. Chg. 163
	But, 42-Set 176-1) ... 163
${ }_{750}^{73819}$.............. ${ }^{64}$	73 B (Ch. 1.366) Tel. Rec.
750 55-22	(See Model 4120 M) (Also
SWANK	${ }_{\text {See }} 55-$ Prod 189.11. $\ldots \ldots . .124$
5 Tube Radio-phono (DU101)	${ }^{738.5}$ (Ch. Ch .1 .437 .3$)$
ER61 17-33	Iel. Rec. (Ssee Mod
srivanja	Chg. Bul. 41-Set 174-1) 131
1.075 (Ch. 1-139)	38-11 (Ch. 1.502-3)
Rec. (Also see Prod.	7IM.1) (Also See Prod
Chge. Bul. 48-Set 92 -8	
\% (Ch. i.108) Tel.".	(See Model 4120M)
ec. (Also seee P	See Prod. Chge.
Chge. Bul. 2.5et.	8ul. 55 -Set (189.1)... 124
Bul. $49.5 \mathrm{Sel} 183-11$... $96-11$	
1.090 (Ch. 1-168) Tel.	(See Model 71 M -i)
Rec. (Also see Prod. Chge. Bul. 49-Set 1	Also See Prod. Chg. Bul. 42-Set. 176-1)

SYLVANIA-Cont.
73M-3,-5,-6, (Ch, 1-437.3) 5150 M) (Also See Prod.
${ }_{\text {Set }}^{\text {Chg. } 174 \text {-11 }}{ }^{\text {Bl- }}$.......... 131
$73 \mathrm{M}-11$ (Ch. 1-502.3)
Tel. Rec. (See Model
71M-1) (Also See Prod
Chg. Bul. 42-Set 176-1) 163
74 B (Ch. 1-356) Tel. Rec.
(See Model 5130 B) (Also
(See Model 5130B) (Also
See Prod. Chge. Bul.
55-Sef 189.1) 120
$74 \mathrm{~B}-1$ (Ch. $1-437.11$
$74 \mathrm{~B}-1$ (Ch. 1.437 .1)
Tel. Rec. (See Model
$5150 \mathrm{M})$ (Also See Prod.
${ }_{\text {Chg. }}{ }^{\text {Chul. }} 174$
Set $174-1131$
$74 \mathrm{~B}-2$
(Ch. $1.437-2$)
Tel. Rec. (See Model
5150 M) Also See Prod
Chg. Bul. 41 .
Set 174.1 .
Set $174.1 \ldots131$
74 M (Ch. 1.356) Tel. Rec.
(See Model 5130 B)... 120 (See Model 5130 B
$74 \mathrm{M}-1$ (Ch. ${ }^{\text {(}}$. 437.1)
74 M .1 (Ch. 1.437.1)
Tel. Rec. (See Model
5150 M) (Also See Prod.
Chg. Bul, 41 .
 Tel. Rec. (See Model
5150 m) (Also See Prod.
Chg. Bul. 41 .
Set 174.1 …............
$75 \mathrm{~B}, \mathrm{M}, \mathrm{M}-1$ (Ch. $1-437-1$
and Radio Ch. 1-603-1)
Tel. Rec. (For TV Chassis
only, see Model 5150 M ,
only, see Model 5150 M
Set 131)
105B, M (Ch. $1-504-1$)
Jel. Rec. (Ch. $1-504-2$)
105 BU , MU (C.
105 BU , MU KCh. I -504-2
Tel. Rec.
Rel. Rec. M, M iC
120B, BU,
1.510 .1
$1.510-21$
Tel. Rec.
126B, BU, $1, \ldots ~ M u ~$
126B, BU, L, LU, M, MU
(Ch. 1-510-1, $1-510-2)$
Tel. Rec.
Tel. Rec.
(See Model 120B)..
$150 \mathrm{~A}, \mathrm{t}$ (Ch. 1.437-3)
(Codes C06 and up)
(Codes C06 and up)
Tel. Rec.187-11
155A, L, $M(\mathrm{Ch}$, 1.437-3)
(Codes COS and Up)
(See Model I50A) 187
$172 \mathrm{~K}, \mathrm{KU}, \mathrm{M}$ (MU (CL

175B, BU, L, tu, M, Mu
(Ch. $1.508 .1,1.508-2$)
Tel. Rec.
$($ See Model 172 K) 192
176B, BU, L, IU, M, MU
(Ch. 1-508.1, 1.508-2)
Tel. Rec.
(See Model 172 K) 192
177B, BU, M, MU'(Ch.
$1-508-1,1-508-2)$ Tel.
Rec. (See Model 172 K). 192
Rec.
$1788, \mathrm{BU}, \mathrm{M}, \mathrm{MU}(\mathrm{Ch}$,
$1.508 .1,1-508.2) \mathrm{Tel}$.
1.508.1. 1-508.2) Tel.
Rec. (See Model 172K). 192
4301 (Ch. 1.254)...... 165

430 L (Ch, 1.254)......165-15
$510 \mathrm{C}, 510 \mathrm{H}, 510 \mathrm{~W}$
(Ch. 1.21'5)
(See Model 1-250) 103
$511 \mathrm{~B}, \mathrm{H}, \mathrm{M}, 512 \mathrm{SR}, \mathrm{CH}$.
GR, RE, YE
GR, RE, YE
(Ch. $1.601-11$
(Ch. 1-601-1) $\ldots \ldots .$.
$540 \mathrm{BA}, 540 \mathrm{H}, \mathrm{HA}$,
$540 \mathrm{M}, \mathrm{MA} \ldots .$.
160-12
540M, MA …...119-11
$541 \mathrm{~B}, \mathrm{H}, \mathrm{M}, 542 \mathrm{BR}, \mathrm{CH}$,
$G R, R E, Y E$
(Ch, 1.602-T)159-13
1110 X (Ch. 1-329) Tel.
Rec. (See Model 1210 X)
Rec. (See Model 1210X)
(Also see Prod. Chge.
Bul. 47-Set i81.1). 128
Bul. 47-Set (181.1). 12
1210X (Ch. 1-381) Tel.
1210x (Ch. 381 Tel.
Rec. (Also see Prod.
Chge. Bul. 44 -Set
$178-1$) $\ldots178-1$
$2130 \mathrm{~B}, \mathrm{M}, \mathrm{W}$ (Ch 1.462)
Tel. Rec. (See Model
5130 B) (Also See Prod.
Chge. Bul. $55-$
Set $189-1$)............ 120
$2140 \mathrm{~B}, \mathrm{M}$ (Ch. $1-462) \mathrm{Tel}$.
Rec. (See Model 5130 B)
(Also See Prod. Chge.
Bul. $55-$ Set 189-1)... 120
Bul. 55-Set 189-1) ... 120
2221 (Ch. 1-387)
Tel. Rec. 137-13
$4120 M$ (Ch. $1-260$) Tail.
Rec. (Also See Prod.
Rec. (Also See Prod.
189.1)...............124-10
$1-2 \delta 0)$ Tel. Rec. (See
Model 4120 M) (Also
See Prod. Chge. Bul.
55 -Set $189-1)$...... 124
$5130 \mathrm{~B}, \mathrm{M}$. W (Ch. 1-290) 12
Tel. Rec. (Also See
Prod. Chge. But. 17
$\begin{aligned} & \text { Set 128.1) } \\ & 51408 \text { M-.........120-10 }\end{aligned}$
5140B, M (Ch. 1-290) Tol.
Rec. (See Model 5130 B)
Rec. See Model 5130 B
(Also See Prod. Chge.
(Also See Prod. Chge.
Bul. 17 -Set 128-1).... 120
5150M (Ch. 1-274)
Tel. Rec...............131-15
Tel. Rec.................
o110x (Ch. 1.261 Tel.
Rec (See Model A120M)
Model 4120 M$)$
Bul. 55-Sel 189-1)... 124
$6120 \mathrm{~B}, \mathrm{M}, \mathrm{W}(\mathrm{Ch}, 1-261)$
Tel. Rec. (See Model
4120 M) (Also See Prod
4120 M) (Also See Prod.
Chge. Bul. $55-$
Chge, Bul. 55
Sot 189.1).

SYLVANIA-Cont.
$6130 \mathrm{~B}, \mathrm{M}$, W (Ch. 1.261$)$
4120 M)
Chge. Bul. 55-
Sor 188.1) 124
140 M , W (Ch 1.271 T.el 120
6140 M . W (Ch. 1.271) Tel.
Rec. (See Model 5130 B$) 120$ Rec. (See Model 5130 B) 120
110 X (Ch. 1.366) Tel. Rec. (See Model 4120 M) (Also See Prod. Chge.
Bul. 55-Set 189-1)... 124 Bul. 55-Set 189-1) ... 12 110×8 (Ch. 1.441) Tel.
Rec. (See Model 4120 M) (Also See Prod. Chge. (Also See Prod. Chge.
Bul. $55-$ Set $189-1) \ldots 124$ Bul. S5-Set (Ch. 1.366 .06) Tel.
Rec. (See Model 4120 M) Rec. (See Model 4120 M)
(Also See Prod. Chge.
(Also See Prod. Chge.
Bul. 55--Set 189.1)... 124 IOXFA (Ch. 1-442) Tel. Rec. (See
Model 5150 m) $111 \mathrm{M}(\mathrm{Ch})-441.)_{\mathrm{Tel}} \mathrm{Cl}^{2} 13$ Rec. (See Model 4120M) (Also See Prod. Chge.
Bul. 55 -Set i89-1)... 124 TIIMA (Ch. 1.366 Tel. Rec. (See Model 4120 M) Also See Prod. Chge.
Bul. 55-Set 189-1)... 124 Bul. 55-Set 189-1].... 124
120 B [Ch. 1.3661 Tel. 120 B (Ch. 1-366) Tel.
Rec. (See Model 4120 M) (Also See Prod. Chige.
Bul. $55-S e 1$ 189-1)... 124 7120 BF (Ch . 1.366 .66) Tel.
Rec. See Model 4120 M) Rec. (See Model 4120 M)
(Also See Prod. Chge. (Also See Prod. Chge.
Bul. $55-$ Set 189.1). 124 Bul. Sh. 1.366) Tel.
120 M (Ch .
Rec. See Model 4120 M) (Also See Prod. Chge.
Bul. 55-Set 189.1). 124 120 MF (Ch. 1.366 .66) Tel.
(Also See Prod, Chge.
Bul. 55-Sel $189-1$). . 124
7120 W (Ch. 1.360) Tel.
Rec. (See Model 4120 M)
Rec. (See Model 4120 M)
(Also See Prod, Chge.
Bul. 55 Set 189.11 . 124
120 WF ICh. $1-366-661$ Iel
120 WF (Ch. $1-366-661 \mathrm{Tel}$.
Rec. (See Model 4120 M)
$\xrightarrow{\text { (Also See Prod. Chgo. }}$ Bul. 55-Set i $89-1$)... 124
Bul. 55-Set 189-11.
7120 MFA (Ch. $1-442$).
Model 5150 M).......... 131
130 B (Ch. 1.366) Tel.
Rec. (See Model 4120M)
Rec. (See Model 4120M)
(Also See Prod. Chge.
Bul. S5-Sef 189.1) ... 12
130 BF (Ch. 1.366-66) Tel.
Rec. (See Model 4120 M)
(Also See Prod. Chge.
Bul. 55-Set i89-1). . 124
7130E, M (Ch. 1-366) Tel.
Rec. (See Model 4120M)
(Also See Prod. Chge.
Bul. 55-Set 189.1)... 124
7130 MF (Ch. 1.366-66) Tel.
Rec. (See Model 4120 M)
Rec. (See Model 4120 M)
(Also See Prod. Chge.
Bul. 55-Set 189-1). 124
Bul. 55-Set 189-1)...
7130 W (Ch. $1-366$ I Tel.
Rec. (See Model 4120 M)
(Also See Prod. Chge.
Bul. 55-Set 189-1)... 124
Bul. 55-Set 189-1)... 124
130 WF (Ch. T $366-66$) Tel.
Rec. (See Model 4120 M).
Rec. See Mrod. Chge.
(Also See Prod. Cul.
Bul. 55-Set i89.1). . 124
7130 MFA [Ch. 1-442]
Tel. Rec. (See
Model 5150 M) 131
MOM. W (Ch. 1.3561 Tel.
Rec. (See Model 5130 B).
(Also See Prod. Chge.
Bul. 55 -Set $189-1$)... 120
(Ch. 1-437) Tel. Rec
(Ch. 1-437) Tel. Rec.
(See Model 5150 M).... 131
7150 M (Ch. 1-357)
Tel. Rec. (See
Model 5) 50 M) $\ldots \ldots . . .131$
7160B (Ch. 1-357)
Tel Re. ${ }^{\text {Ree }}$
Model 5150 M$) \ldots131$

Model $1-0$
$\underset{\substack{\text { (See Model 1-125-1)... } 113 \\ \text { Ch. } 1 \text {-215 }}}{ }$
(See Model 1.250) 103
Ch. 1-254 [See Model
4301)
4301)
Ch. 1.260 (Siee Model
$4120 \mathrm{M})$
Ch................. 124
1.261
$4120 \mathrm{M})$
$\underset{\text { Ch. }}{\substack{\text { (See Model } \\ \text { Mind } \\ \text { (See }}}$
Model 5150 M)
h. 1.290
(See Madel 5130B).... 120
1.356 (See Model
51308) 120
h. $1-357$ isee

131
Ch. $1.366,1-366-60$ (See
Model 4120 M) $\ldots124$

Ch. 1 -387
(See Model 2221M).... 137
Ch. 1.387-1 (See $\begin{gathered}\text { Model } 22 \mathrm{M}-1 \text {) } 15\end{gathered}$
(See Model 5150 M) . . . 131

IVANIA-Cont.	TELE-KING-Cont.	TELE-TONE-Cont.	
h. 1-437-3 (Codes	919 CaF Tel, Rec.	TV.358, TV-359	
	${ }^{\text {(Far TV Che }}$, only, 141	(Seo Model TV.324)... 127	
	920 (Sh . TVG) Tel. Rec. ${ }^{\text {model }}$	Tel. Rec. (See	
(See Model 4120 M)... 124	See Model 201) 131	Model TV.355-U...... *	
Ch. 1-442 (Sees	1014 (Ch. TVG) Tel. Rec.	TV.360, TV-365 (Ch. 8001 ,	
	(See Model 201)..... 131	8002, 8003) T	
	1016 (Ch. TVG) Tel. Rec.	(See Model TV-330)... 145 TV.365-U (Ch. 8010	
Ch. 1-502-1	Ch. TVG Tel. Rec	8016 Tel . Rec.	
(See Model 71M-1) ... 163	(Soe Model 201)...... 131	${ }^{\text {(5ee Model }}$ MV. $355-\mathrm{U}$). *	
Ch. 1-502-2 (See Model 73 M -1)	TVJ	Ch.	
Ch. 1-502-3 (See	(See Model K21. 177		
Model 73M-11) 163	Lequip	Bul.	
	Ch. 12TR, 1	. 3	
(See Model		8.374 -U (Ch. 80	
iSee Mode	C316MF Tei. Rec	Model TV.355-U)	
1.507-1	C317mp Tel. Rec	TV-384-U ICh. 8010,	
See Model ${ }^{\text {a }}$	C320MF Tel. Rec.	${ }^{80161}$ Tel. Rec.	
(See Model ${ }^{\text {a }}$ - 72 K].... 192			
Ch. 1-510-1, ${ }^{2}$ 2	C5190 Tel. Rec	8013 , 80151 Tel. Rec.	
(See Model	C6170 Tel. Rec	(5ee Model TV-355.U)	
Ch. 1.601-1	C619D Tel. Rec.	100, 100.A, 101, 109	
(See Model 511B).... 160	C6200 Tel. Rec	(Ch. Series A) 39-26	
Ch. ${ }^{1.602 .-1}$	C7200 Tel. Rec.	109 (Ch. Series) $17 . . .{ }^{\text {a }}$ - ${ }^{\text {8-30 }}$	
Ch. (See Model 5418)159	${ }^{\text {C8200 }}$ Tel. Rec.	110 (See Model 117-A)... 1	
	T2160 Tel. Rec.		
TECH-MASTER 1930 Tel. Rec..........159-14	t217L Tel. Rec. T4160 Tel. Rec	119, 120 (See Model ${ }^{\text {a }}$	
1930 Tel. Rec........... 159-14	T417D Tel. Rec	\|17-A	\ldots.......
telechron	talimp Tel. Rec	${ }^{122}$, 123 (See Model 100) 39	
8H67 'Musalarm" 44-23	5135, 5136, 5140A 11-24	124 (See Model 117.A) ... ${ }^{125}$	
telecoin	telesonic (Medeo)	126 (See Model 117-A)..	
M5TS4 \ldots............. 25-28	1635 20-22	127, ${ }^{130}$, 13131	
feraft		132 (See Modol lili.A)	
30 T 14 A .056	1643 21-34	133 11-25	
(Similar to Chassis)....119-3	tele-tone	${ }_{135}^{134}$............... ${ }^{13-32}$	
38 T 12 A .058 Tel. Rec.	TELE-TONE	135 ane	
Similar to Chassis.].	TV149 Television Rec.... 56-22		
(Similar to Chassis) ... 72.4		139, 140, 141 (Ch. Series ${ }^{\text {a }}$	
318 T 4 Tel I. Rec.	TV208TR Tol, Rec......... 95-\%	142, 143, 144	
(Similar to Chassis).... 85-3		See Model 145)	
18 T 4 S Tel.	(See Model TV-249)		
(Similar to Chassis).... 85-3			
318T4-872 Tel. Rec. (Similar to Chassis). . . . 85-3	TV-210 Tel. Rec. ${ }^{\text {den }}$	(See Model 135)	
ITSA Tel. Rec.	(See Model TV.249)	${ }_{150}^{150}$ (Ch. Series T) 38-25	
Similar to Chassis).... 85-3	(Also See Prod. Chge. ${ }^{\text {(1) }}$		
Trisa-950 Tel. Rec.			
(Similar to Chassis).... 85-3 8T9A-900 Tel. Rec.	(Soo Model TV208	(See Model 145) 23	
(Similar to Chassis).... 78	TV. 245, 246 Tel TV	156 (Ch. Series U) 35-23	
51816 A Tel.	TV-249 (Also Severision Rec.	157 (Ch. Series H)	
(Similar to Chassisi).... 85-3	Aul. 21 - 5 et 136-11). $57-21$	157 (Ch. Series AEF. 49-24	
1899A-918 Tel. Re	TV-250 Tel. Rec......... 91-13	158 (Ch. Series AT)..... ${ }^{\text {a }}$ 39-20	
Similar to Chassis).	TV-254 Tel. Rec.	159 (Ch. Series AA)..... 38-26	
	(See Model TV-250).... 91	160 (Ch. Series Y)...... 36-24	
231816 A. 954 Tel. Rec.	TV-235, TV. 256	161, 162 (Ch. Series T)	
(similar to Chassis).... 85-3	TY259 Tel. Rec. Rec......101-13	163 , 164 (Ch. Series H)	
2318 T 9 A .912 Tel. Rec. (Similar to Chassis)... 78-4	(Soe Model TV249).... 57	(Sise Model 135)..... 14	
dimiar to Chassis.... 78-4	TV. 2882 Tel. Rec.......... 71-14	(165 (Ch. Series AG)..... $50-20$	
	-285).... 87	(See Model 157) 49	
K21 (Ch. TVJ) Tel. Rec... 177	TV. 284 Tel. Rec......... 93-10	167. 168, 171 (Ch. Series	
(See Model K21)..... 177		T) (See Model 150) 38	
K73L (Ch. TVJH Teol. Rec.	Rec. (See Model TV-284) 93	(See Model 156).	
(See Model K21]..... 177	TV 300 , TV. 301 (Ch. TAA,	174 (Ch. Series ()	
(See Model K21)...... 177	TVAB1 Tel. Rec......... 99A.12	(See Model 150) 38	
KCC1 (Ch. TVJ) Iell. Rec.	TVV-300, TWW) Tel. Rec..... 107-10	178(Ch. Series U)	
(See Model K21)...... 177	TV.304, TV. 305 (Ch. TAA,		
KD21M (Ch. TV]) Tel. Rec. 177		183 $53-24$	
${ }^{\text {KD22B (}}$ (Ch . TVA) Teil. Rec.		185 (Ch. Series AH1.... $52-21$	
(See Model K K1]..... 177		190 (Ch. Series AZ) $61-19$	
KD71 (Ch. TVJ) Tel. Rec. ${ }^{\text {See Model K21) }}$	Model TV-3001) 107	198 (Seo Model 1581)..... 59	
KD728 (Ch. TYj) Toil. Rec.	TV. 306, TV-307	200 (Ch. Series AZ)	
(See Model K21)....			
	TV-308 ICh. TACI	205 (Ch. Series BD) ${ }^{\text {73-12 }}$	
$16 C D 3 C$ R Tel. Rec. (For PB		${ }_{214}^{206}$ (Ch. Serios Az) ${ }^{\text {a }}$	
only See Model 1621.	Tel. Rec. A.........125-12	${ }^{214}$ (Shee Model Series Az)	
114 Tel. Rec............141-13	TV-315 (Ch. TAA, TAB)	215 (Ch. Series BD) ${ }^{\text {a }}$ (61	
(S. 116 Clel Tel. Rec.		(See Model 205)..... 73	
	TV. 316 (Ch. TAH)	228 (Ch. 84).......... 144-13	
Rec. (See Model 14). . 141		${ }^{232}$ (Sh. Series ${ }^{\text {b }}$ (S)	
17CA, CAF Tol. Roc.	TV318 (Ch. TAM)	235 (Ch. BQ$)$. ${ }^{\text {(Se. }}$.	
(For TV Ch. oniy, see Model 114) 141	Tel. Roc.	Ch . Series A	
162 Tel. Rec...........129-12	TV322, TV323 (Ch. TAM)	(See Model	
172 (ch. TVG) Tol. Rec.		Ch. Series AA	
(See Model 201) 131	TV324, TY325, TV326 ${ }^{\text {c }}$	Ch . Series AE	
174 (Ch. TVG) Tel. Rec. (See Model 201)....... 131	(Ch. TAP, TAP-1 127	(See Modal 157)..... 49	
201, 202 Iel. Rec........ 131-16	TV328, TV329 (Ch. TAP, ${ }^{\text {a }}$	Ch. Sories AG	
203 (Ch. TVG) Tol. Rec.	TAP-1, TAP-2] Tel.	Ch . Series AH	
(See Model 201)	Rec. (See Model	(See Model 185).	
310 Tel. Rec.. . ${ }^{\text {a }}$.	TV. 330, TV-331, TV-332, 12	iseries AT	
410 Tei. Rec............ 88-12	TV-333 (Ch. TAO)	$\mathrm{Ch}^{\text {(5ees Saries AX (}}$ (See Model	
${ }^{416 \text { Tel. Rec. }}$ (See Model 162)...... 129			
510 Tel. Rec.	TAP. 1, TAP. 21 Tol, Róc.	${ }^{\text {Che }}$ (Sees Mos Mol ${ }^{\text {a }}$ (90)..... 61	
(See Model 410)....... 88 512 Tel. Rec.	(Seee Model TV324) $\ldots 127$	Ch. Series 8 BD	
(S5eo Model 410) 88	TV340 Ch. TAP, TAP-1, TAP-2) Tel. Rec. (See	Ch. Series 8 H (Se Model 205).... 73	
516 Tel. Rec.	Model TV324) - .-... 127	(5ee Model 195).	
(e)	(345 (Ch. TAP, TAP.1)	Ch .8 Bl	
(Soer Modol 410) 88	TAP.2) Tel. Rec. (See 127	(See Model 228)...... 144	
0 Tel. Rec. (See Model 410)	TV348. TV349 (Ch. TAP.	${ }^{\text {Chi }}$ (See Model 235)..... 141	
${ }_{2}{ }^{\text {T Tol. Rec. }}$	${ }_{\text {a }}^{\text {(Soe Model }}$ (VV324) . . . 127	Ch. Series C	
Seen Model 410)..... 88	TV. 352 Tel. Rec	(See Model 134) 13	
6 Tel. Rec. (See Model 162). 129	(SVee Model TV. 324) . . 127	Series CA ${ }_{\text {Sodel }}$	
(S-3CR Tel. Rec.	TV-355 (Ch. 8001 8002,8003 Teí, Rec.	$\mathrm{Ch}^{\text {S Series }}$ D	
(For PB only See	(Seee Model TY. 330) . . 145	(See Model 117A)	
Model 1621 129	$355 . \mathrm{U}$ ICh. 8010,	Series H	
6C Tel. Rec. (See Model 152). 129	TV357 (Ch. 8001 Rec. 800		
	8003) Tel. Rec. ${ }^{\text {che }}$	iSee Model 109).	
	(SVee. Model TV-330) ... 145	Chee Model 138) 23	
910 C Tel. Rec. (See Model 114)....... 141	8016) Tel. Rec. (See Madel TY-355	Ch. Series ${ }^{2}$ (See Model 145)...... 23	

TELE-TONE-CO

Ch. Series S (See Model 148)...... 24	
Series T	
	e Mode
Model TV-315).	
Ch. TAC (See	
Ch. TAH	
Ch. TAJ (See todel TV314) \ldots. 125	
Ch. TAM (See Model TV318) 124	
Ch. TAO (See Model TV.330)	
Ch. TAP, TAP-1, TAP-2 (See Model TV324) ... 127	
(See Model TV.255)... 101	
Ch. TW, TX (See Model TV-300	
	Ch. TY, TZ (See Model TV
Ch. Series U	
Ch. Series Y	
Ch. 8001, 8002, 8003	
Ch. 8010	
Ch. 8013	
	(See Model TV.355-U).
Ch. 8015, 8016	
TV-355-U).	

televox

 TEL-VAR (See Audar)

TRAV-LER (Also see Record

TRELA

TRUETONE
D1034A, B, C
(See Model D1046A)... 102
D1048A, B102_15
D1046A, B 102
DIO46C, D
(See Model DIO48A). . 102
(See Model DIO48A).. 10
DIO90 Tel. Rec..........
D1090 Tel. Rec
D 1092 Tel. Rec.

D1994 Tel. Rec.	
D2020' 106-15	
D2025A iFact. Mod.	
${ }^{2649559061)}$......... 83 -14	
D2027A	
D2237A	
2AW2)	9-34
D2615 (Factory	2-18
616 (For	
${ }_{02623}^{02622} \ldots \ldots \ldots \ldots \ldots{ }^{1}{ }^{14-30}$	
02626 (Fact. No. 457-2).. 52-22	
02630 (Factory	
${ }_{27014.602 ~ i s s u e ~ A) ~ . . . ~}^{1-10}$	
D2634	
${ }_{\text {D2640 }} \mathbf{0} 2640$ (Factory No. 459) . ${ }^{43-21}$	
D2644 (Factory No. 101C)0264511-304	
${ }_{\text {d }}$	
Series A)	
D2710 2 (foctory No	
D2718 (Factory No.	
D2745 (See Model Di	
O2748 (Ch. 7156$) \ldots \ldots .$.D2806, 28807 (Factory	
Model 181) 44-26	
D2810 (Factiory$24024-730 \mathrm{~B}$)	
D2815 D2819 (Factory No.	
${ }^{284812-7381} \ldots \ldots \ldots .{ }^{35-24}$	
D2900 (Factory No. 189). . 69814	
22993 (Fact. No. 8DF21). ${ }^{59} 3$	
D2982 Tel. Rec........... *	
D2985 Tel. Rec... ${ }_{\text {d2987 }}^{\text {(See Model }} 1990$)	
Tel. Rec.2988,D 2989	
${ }^{\text {033630, }} 0363$	
${ }_{\text {D }} 03940$ (Fact Model	
D3910 (Fact. Model$140611)$	
04142A	
04620	
$\left.{ }_{25} \mathrm{C} 22.82\right)^{\text {. }}$. 47-25	
201089A Tei. Rec........ 11310	
D10898 Tel. Rec....... ${ }^{136}$-14	
201091 Tel. Rec... 2D1093A, 2D1094A	
Tel. Rece, 119-12	
$\begin{aligned} & 201095 \text { Tel. Rec.........134-11 } \\ & 201095 \mathrm{~A}(C \mathrm{~h} .10 \mathrm{~A} 27) \end{aligned}$	
Tel. Rec.	
D185A, B, C, D, E Tel. Rec. (Also see Prod.	
Chge. Bul. 46-Set 180 -1) 13	
2D1190A, B Tel. Rec......147-12 DII91A (Ch.	
BRC20AY22) Tel. Rec.. 15i-11	
${ }^{201195 A ~(C h t . ~}{ }^{164 \times 2161}$ Tel. Rec....	
-1224A (Ch. 20AY21)	
$201225 A$ cich. 214 A 21 Al	
D-1228A (Ch. 20AY21) Tel. Rec. (See Model 2D.1224A)	
2DI230B Te). Rec. (Also See Prod. Chge. Bul. 59-Set :93-1) 185-1	
20-1235A (Ch. 17MS 34s)	

TRUETONE-COIT.
202052 Tel. Rec.
(See Model 201095) . . 134
(See Model 2010
202052 A (Ch.
16 AY 210)
16 AY 210) Tei. Rec.
202052 C (Ch. 17 AY 23)
Tel. Rec. 1 Ch .
2020520, E
17 AY 28 Tel, Rec...... ${ }^{*}$
202053 Tel. Rec........11
202149 A (Ch. 17AY212)
202149A (Ch. 17AY212)
Tel. Rec.
202152 A (Ch. 17 AY 26)
Tel. Rec. \ldots.
202210A Tel. Rec.....
202215A (Ch. 21AY21A)

ULTRAD................... $4-1$
UNITED MOTORS SERVICE
(See Deleo or Buick,
Chevrolet, Oldsmobile
and Ponfíac)

U, S. TELEVISION

Cl0030 Tel. Rec.......... 99A-12
C19031 Tel Rec.
Cl 19031 Tel . Rec.
(See Model Ci8030)... 99a
T. 10823 Tel. Rec......... 89—15
T1 6030 Tel. Rec.
(Seee Model C16030).... 99
T19031 Tel Res
(See Model C16030) ... 99A
T1901 Tol. Rec.
(See Model C16030) . . 99A
5A16, 5B16, 5 C 16
(See Model 5 C 66 Early). 17
5A66,5B66,5C66

UNITONE
UNIVERSAL CAMERA (See
Record Changer Listing)
UTAH (See Record Changer

WEBSTER ELECTRIC (AISO
see Recorder Listing)
$81.1581-15 \mathrm{~A}$

WELLS-GARDNER

WESIERN AUIO (See Iruet WESTINGHOUSE (Also see Record Changer Lisfing)

Record Changer Listing)
$\mathrm{H}-104$, $\mathrm{H}-105$.

H.153, H.153A

6
$3-19$
6
$14-34$
6
$6-36$
$31-33$
$15-37$
15
WESTINGHOUSE-Cont.
$\begin{aligned} & \text { H. } 242 \text { (Ch. } 2150-31 \text {) Tel. } \\ & \text { Rec. } \\ & \text { H. } 251 \text { (Ch. V. } 2150.81, \ldots\end{aligned} 974-14$
H. 251 (Ch. V. 2150.81 ,
-82 , 84) Tel. Rec...... 99A.14
H300T5, H301T5

$\mathrm{H} 303 \mathrm{P} 4, \mathrm{H} 304 \mathrm{P} 4$
$(\mathrm{Ch}, \mathrm{V} 2153$)

H. $309 \mathrm{PS}, \mathrm{H}$-309PSiU
(Ch. V .2156)

H-310T5, H-310TSU
 H-313P4, H-313P4U
$\mathrm{H}-313 \mathrm{P} 4$,
$\mathrm{H}-314 \mathrm{P} 4, \mathrm{H}-314 \mathrm{P} 4 \mathrm{U}$,
$\mathrm{H}-315 \mathrm{P} 4, \mathrm{H}-315 \mathrm{P} 4 \mathrm{U}$

H. 317 Cl (Ch. V-2136.1) (See Modei H316C7) 112 H. 318 T 5 U U

H. 318 15, U
(Ch. V.2157, U)......117-15
H.320T5, U (Ch V. 2157
$\mathrm{H} .320 \mathrm{~T}, \mathrm{U}$ (Ch. V-2157,
U) (See Model H.31815) 117
H. $321 \mathrm{~T} 5, \mathrm{U}, \mathrm{H}-322 \mathrm{~T} 5, \mathrm{U}$
(Ch. V-2157.1, U)
(See Model H.318T5)., 117
-323T5, U(Ch. V-2157-2
$\mathrm{H}-323 \mathrm{~T} 5$, U (Ch. V-2157-2,
U) (See Model H-318T5) 117
U) (See Model H-318T5) 117
H. 324T7, H-325T7, U
(Ch.V. $2136-2] \ldots \ldots, 113-13$

H. 32716 U (Ch.
V. $2157-3 \mathrm{U}$.

H331P4U)
H. $333 \mathrm{P}, \mathrm{U}$
(Ch. V-2164, U)
(See Model H-331P4)
(Also see Prod. Chge.
Bul S2-Set 186.1).
H334T7U, H. 33577 C

H-336T5U, H-337T5U
(Ch. V-2157U)....
(Ch. V-2157U)......... 134-12
H-338T5U
(Ch. V.2157.4U)140-13
H-341T5U (Ch. V-2157-4U)
(See Model H.338T5UI. 140
H. $342 \mathrm{PSU}, \mathrm{H}-343 \mathrm{PSU}$

H-34515, $\mathrm{H}-346 \mathrm{~T}$ (Ch.
$\mathrm{V}-2157-4 \mathrm{U}$) (See Model
$\mathrm{H}-338 \mathrm{~F} 5 \mathrm{H}$)
H-338T5U) \because.
H-348P5, H-3495S (Ch.
V-2156.1U) (See Mode

V. 2156.1 IU) (See Model
$\mathrm{H} .342 \mathrm{~F} 5 \mathrm{U})$

H-350T7, H-35if
(Ch. V-2180-1) (Also
see Prod. Chge. Bul.
52 Set $186-1)$ 154-14
$\mathrm{H} 354 \mathrm{C7}$ (Ch. V-2180-2) , 158-13
$\mathrm{H}-355 \mathrm{~T} 5$; $\mathrm{H}-356 \mathrm{~T}, \mathrm{~S}$

$\mathrm{H}-357 \mathrm{Cl}, \mathrm{Ch} . \mathrm{V}-2$
$\mathrm{H} .359 \mathrm{H}, \mathrm{H} 0 \mathrm{~T}$

H .367 T 5 (Ch. V-2157.8)
$\mathrm{H} .368 \mathrm{P} 5, \mathrm{H}-369 \mathrm{P} 5$ (Ch.

(Optional Pwr.
Supaly)
H-374T5, H-375T5

A. 8) Tel. Rec............
V. 2150.411 Tel Rer

H. 603 Cl 2 (Ch. V. 2152.01
$\& ~ \mathrm{~V}-2149-3$) Tel. Rec... $100-14$
H. 604 T 10 H.

Tel. Rec. (Supp. to
$H-609110$, Set 95)
$\underset{\substack{\text { H.609110, Set 95) 99A. } 14 \\ \text { H. } 605 \mathrm{~T} 12 \text { (Ch. }}}{\substack{\text { (C) }}}$
V-2150-101) Tel. Rec... 97-19
H. 606 K 12 (Ch V.2150.
H. 11 , A) Tel. Rec.120-12
H. 607 K 12 (Ch. V-2150.
H. 607 K 12 (Ch. V-2150.
111, A) Tel, Rec.

H-62149-3) Tel. Rec.
V. ${ }^{\text {See Model }} \mathrm{H}-603(12$). 100
H. 609 T 10 (Ch. Tel. Rec...
V- $2150-94 \mathrm{C})$ Tel
V. $2150-94 \mathrm{Cl}$ Tel. Rec... 95-7
H. 10 T 12 (Ch. V. 2150 .
1361 Tel. Rec.
H. 611 Cl Tel. Rec. Ch . $2152-16$ 105-13

1461 Tel. Rec........
H .614 T 12
(Ch. V - 2150
136) Tel. Rec.
(See Model Hol0t12), 105
H. $615 \mathrm{Cl} 2(\mathrm{Ch}, \mathrm{V}-2152.16$)

Tel. Rec. (See
Model H-6T1C12)
H. 817 T 12 (Ch. V-2150
H. 617112 (Ch. V- 2150
176, U, 177 U) Tel.
Rec. (Also See Prod.

Rec. (Also See Prod.
Chge. Bul. $10-\mathrm{Set}$
$116.1)$
Chge. Bu
$116.1)$..
99A-1

USE-Con	ZENITH-Cont.
V. 2214.1 - ${ }^{\text {che }}$	G242-ROX 1 Ch .
(See Model H-689116). 167	${ }^{24 \mathrm{G} 20.0 X}$ O Tel. Rec. ${ }^{\text {a }}$
Ch. V.2215-1(See ${ }_{\text {Model }}^{\text {H-681II7) }}$.... 167	2... 93
Ch. V.2216.1	${ }^{16261 .}$
	(Ch. 24G24) Tel
Ch. V-2216-2. 3 (See Model H-678K17) ... 167	(Rec. (See Model G2322) 98
ch V 2216-4	
Ch	G244) RZ, Z ($\mathrm{Ch}, 24 \mathrm{C} 26$)
(21)	
Ch. V-2217	A
Model H-6922121) 167	
$\mathrm{Ch}_{\text {iSee Model }}$	2621) ${ }^{\text {Tel }}$
$\mathrm{Ch}^{\text {IS }} \mathrm{V}$ V M M 2217	E, R (Ch. $24 \mathrm{G22}$
See	$2{ }^{2}$
Ch. V.2218-1, -11 ${ }_{\text {See }}$	2442RI Tel. Rec.
Ch (Seee Modei V (219-1) $\mathrm{H}-730 \mathrm{C} 21$). 190	Tel. Rec Soe Mo
(Soes Model H-688K24). 174	G2442EZ1, R21 (Ch.
I	$24 \mathrm{G262111}$ Tol. Rel
See	((Ch. 24G22/24)
Ilcox	Rec
(Also Soe Majestic)	G2448RZ
So See Recordio)	
G.306, G-402, G.403,	(${ }^{\text {a }}$ Model G2437R2).. 91A
	G2448RZ1 (Ch. 24G26z1)
Majestic Model (1212).. 108	Tel. Rec
Mojestic Model (G-414) 133	454R
426, G-427 Tel.	${ }_{\text {rels }}$
oiestic Model	G.2454-ROX
	24 G 21.0 O
22	(See Model G2420E)... 93
(See Mal	
. 914 Tel. Rec. ${ }^{\text {S See }}$	
aiestic Model G-414) 133	G2957. R (Ch. 23 C 238
6M 10	Radio Ch. 6 G 201 Tol.
	Rec. (Soe Model C2322) 98
	G2958R (Ch. 23 G 238
	Radio Ch. 6 G201
See Model	G-
OL Series Tel. Rec.........	
Series Tel.	Seo Modol G23221
Llys-overlan	
8030 (670777) 50-23	See Model G2322)
670777 (See Model 8030)	3157 RZ , Z ICh. 23G24,
	8G20/22) Tel. Rec..... 91A.13
9517	15721, R21
WILMAK	
W. 446 "DENchum" 21-11	$8 G 20 / 221 \text { Tel. R }$
re recording cor	(See Model G3157R2). 91 A
(See Recorder Listing)	$3158 R 21$ (Ch. 23G2421)
laroc	G3173R2, 2 (Ch.
Ch.	$8 G 20 / 221$ Tel.
	G3174R2 (Ch. $23 \mathrm{CL24}$
3.6A/5 ………… 24-32	See Model G3157RZ), 91A
3.9A. 3.10A	G3259RZ (Ch. 24G26,
11 A (Ch. 56A76)	8G20/22) Tel. Rec... 91A-12, 13
${ }^{3.12 A / 3}$	$259 \mathrm{RZ1}$ (Ch. 24G26Z1)
3-13A, 3-14A, 3-15A,	Rec
A	G32627 (Ch
17A, 3.iba	B62
$\begin{aligned} & 20 A \\ & 29 A \end{aligned}$	(See Model G3259RZ).
${ }^{3.2914}$ (See Model $3.71 \mathrm{Al}{ }^{36}$	6326221 (Ch. 24G26Z1)
${ }^{3-704}$............... 31-34	G3275Rz ich. 24 G 2
3-714 …............ 36-29	$\left.{ }_{8 G} 20 / 22\right)$ Tel. Re
ZENITH (Also see R	(5ee Model G325
anger Listing)	8G20/22) Tel Re
G500 (Ch. 5G40)........ 83-16	See
	H.401
G510, G510Y (Ch, 5G02). 84-14	H500 (Ch .5 H 40)
Ch. 5601 W, G511r 85-14	3, Y (Ch . 5 H 41
G510 (Ch. 5G03)109-15	H511, H511W, H5lly
615, G615W, G615Y	
(Ch. 8 GO51 \ldots..... 86-14	H615z1 (Ch. 8 G05 $21 . \cdots$. . 178-16
(Ch. 660011 ,	H6O1E, H6OIR (Ch.
23^{\prime} Ch. 7 COOA	$6 \mathrm{HO11}$
724 (Ch. 7G02)........103-18	H664 (Ch. $6 \mathrm{HO2}$).
G725 (Ch. 7G01)......101-18	
G881, G882, G883,	
Tel. Rec. 322 İ.	H72321 (Ch. 7 HO 4
G23222 (Ch. 23 G 24)	(see Model H72421).. 163
Tel. Rec.	H72322 (Ch. $7 \mathrm{HO422)} \ldots$...178-17
232221 (Ch. 23 G 2	H724 (Ch. $7 \mathrm{HOR2)}$
2372 (Ch. 23G24)	H7242 (Ch. $7 \mathrm{HO22)}$
23272 (Ch. 23G24)	H. 72471 (Ch. $7 \mathrm{HO2211)}$. . 163
Model G23227)	H72422 (Ch. 7 HO 2721 . . 178
2340, R (Ch. 23G22)	H725 (Ch. 7G012)...... 135
Tel. Rec. (See Model	880, H880R (Ch. 8 H 20
G2322)	Revised) . .a....... 127-14
Tel Rec. ${ }^{\text {a }}$ (Ch. 23624)	H880R2 (Ch. 8H20) 114
Tel. Res. (Sae Model G23222). . . 91a	3 LCh 10 H 2 O
	Model H2437E)
G2421) Iol. Rec	H1086R, H1087R (Ch.
346R (Ch. 23622 I	Modol H2437E) 120
${ }_{\text {Tef }}^{\text {Tel }}$ (2322). Rece Model 98	H2029R, H2030E, H2O
2350Rt, z (Ch. 23 Cl 24$)^{\text {a }}$	$20 \mathrm{H2O}$ Tel. Rec. . 14
Tol. Rec.	(Ch . 20 H 20)
Soo Modol G2322z)... 91A	(Sea Model H2029R)... 144
el. Rec. (See Model	2052R, H2053E (Ch.
	OH2O) Tel. Rec
	(See Model H2029R) . . 144
Tel. Rec. (See Model G2322Z) .. 91A	
$2353 E Z 1$ (Ch. 23G242i)	Tel. Rec. ${ }^{\text {Hel }}$
Rec. ${ }^{\text {a }}$,	H2229R, H2230E, R
RZ (Ch. 23G24)	(Ch. $22 \mathrm{H21)}$) Tel. Rec... 151-1
(See Model G23227)... 91 A	H2241R (Ch. 22H21)
420E (Ch. 24G20) ... ${ }^{\text {a }}$	Tel. Ree. (Seo Mod
el. Rec.	R
420 -EOX	
24G20-OX) Tel. Rec. (See Model G2420E]... 93	H2229R) 151
20R (Ch. 24G20)	H2250R (Ch.
Tel. Rec. (See Model G2420E)...	22 H 2 O) Tel. Rec. (See Madel H2226R)... 1

ZENITH

ZENITH-Cont.	ZENITH-Cont.
$12027 \mathrm{E}, \mathrm{R}, \mathrm{J} 2029 \mathrm{E}, \mathrm{R}$,	K2288E (Ch. 19K23)
J2030E, R (Ch. 20J21)	Tel Rec. (See Model
Tel. Rec. (See Model	K1812E) 184
J2026R 159	K2290R (Ch. 21k20)
J2031R (Ch. 20J21)	Tel. Rec. (See Model
Tel. Rec. (See	K2230E) 187
Model J2026RJ 159	K2291E (Ch. 21 K 20)
J2032R (Ch. 20J22)	Tel. Rec. (See Model
Tel. Rec. (See	K2230E) 187
Model J2026R) 159	4G800 (Ch. 4E41) 35-27
J2040E, J2042R, J2043R,	$4 \mathrm{G} 800 \mathrm{WZ}, 4 \mathrm{4} 800 \mathrm{YZ}$,
J2044E, R (Ch. 20J21)	4G800Z (Ch. 4E412)... 52-23
Tel. Rec. (See Model	4G903, 4G903Y (Ch.
J2026R) 159	4F40) .-.......... 76-20
J2049R (Ch. $20 J 21)$	4K016 (Ch. 4C52) 6-39
Tel. Rec. (5ee	4K035 (Ch. 4C53) 6-40
Model 12026R) 159	50011, 50027
J2050R (Ch. 20J21)	(Ch. 5 $\mathrm{COO}, 5 \mathrm{CO1Z}$) ... 3-17
Tel. Rec. [See	50810 (Ch. 5E02) 54-21
Model J2026R) 159	56003 (Ch. 5C40) 17-35
J2051E, J2053R, J2054R,	$5 \mathrm{G0032}$ (Ch. 5C40Z),
J2055R (Ch. 20.j22) Tel.	$5 \mathrm{G003ZZ}$ (Ch. 5C402Z) 30-31
Rec. (See Model	$5 \mathrm{G036}$ (Ch. 5C51) 30-32
J20268) - .i....... 159	5R080-5R086
J2126R (Ch. 21J21) Tel.	(Ch. 5C02, 5C04) 4-4
Rec. (See Model	6D014, 60014W, 60029,
J2026R) 159	80029G (Ch. 6 C01) ... 9-35
J2127E, R, J2129E, R,	6D015, 60015Y, 6D030
J2130E, R (Ch. 21 J20)	(Ch. 8 CO5, 6 CO5Z) 3-24
Tel. Rec. (See Model	60815, 60815W.
J2026R) 159	6D815Y (Ch. 6E05).... 55-24
J2140E, J2142R, J2143R,	6G001, 6G001Y
J2144E, R (Ch. 21J20)	(Ch. 6C40) 3-14
Tel. Rec. (See Model	6G001YZ1 (See Model
J2026R) 159	6G001)
J2151E, J2153R, J2154R,	66004Y (Ch. 6C41) 20-35
J2155R (Ch. 21J21) Tel.	6G038 (Ch. 6C50) 32-30
Rec. (See Model	6G801 (Ch. 6E40)....... 53-26
J2026R1 159	6 6060
J2868R (Ch. 201218	6R084 (Ch. 6C21) 20-36
Radio Ch. 8H20Z) Tel.	6R087 (Ch. 6C22) 7-32
Rec. (See Model	6R886 (Ch. 6EO2) 34-30
J2026R) 159	7H820. 7 H 820 W
J2968R (Ch. 21 J 20 \&	(Ch. 7E01) 43-24
Radio (h. 8H20Z) Tel.	7H822 (Ch. 7E02),
Rec. \|See Model	7H822W\%, 7H822Z
J2026R) 159	(Ch. 7E02z) 55-25
J3069E (Ch. 20121 \&	7H918 (Chassis 7F03).... 75-18
Radio Ch. 10H20Z)	7H920, 7H920W (Ch.
Tel. Rec.	7F011 77-13
(See Model J2026R). . 159	7H921 (Chassis 7F04).... 73-16
J3169E (Ch. 21.1208	7H922 (Ch. 7F02)....... 87-15
Radio Ch. 10H20I]	78070 (Ch. 6C06) $37-25$
Tel. Rec.	7R887 (Ch. 7E22)....... 54-22
(See Model J2026R). . 159	8G005Y (Ch. 8C40) 7-33
K510, K510W, K510Y, 181-15	$8 \mathrm{GOOSYT}(21)(\mathrm{Ch} .8 \mathrm{BC40TY}$
(Ch. 5K02)181-15	[Z1), 8G005YT) (22)
K 515 ($\mathrm{Ch} .5 \mathrm{K03}$)	(Ch. 8C40T) (Z2)..... 53-27
(See Model 1514) 176	$8 \mathrm{H023}$ (Ch. 8CO1)....... 4-40
K 518 (Ch. 5J03)	8H032. 8 HO 033
(See Model J514) . . . 176	(Ch. 8С20) 1-33
K777E, R (Ch. 7 K 20) . . . 190-17	8H034 (See Model 8H023) 4
K1812E, R (Ch. 19K22)	8H05O, 8H051, 8H052.
Tel. Rec. 184-15	8H061 (See Model
K1815E, R (Ch. 19 K 201	84032) …......... 1
Tel. Rec. (See Model	8H832, 8H861 [Ch. 8E20) 52-24
K1812E) 184	9H079, 9H079E, 9H079R,
Tel. Rec. (See Model	$9 \mathrm{HOP8R}$ (Ch. BC21).... 7-34
K1812E) 184	$9 \mathrm{H} 881,9 \mathrm{HB82R}, 9 \mathrm{H} 885$,
K1846E, R (Ch. 19K20)	9H888R (Ch. 9E21) ... 43-25
Tel. Rec. (See Model	9H984, 9H984LP
K1812E) 184	(Ch. 9F22) 64-14
K1850E, R (Ch. 19K20)	9H995 (Chassis 9E21Z)... 74-12
Tel. Rec. (See Model	$12 \mathrm{HO9O}, 12 \mathrm{HO91}, 12 \mathrm{HO92}$,
K1812E) 184	12H093, 12 HOS 4
K1880R (Ch. 19 K 20) Tel .	(CH. 11' 21 I) 2-20
Rec. (See Model	14H789 (Ch. 13022) 41-24
K1812E) 184	271985R (Ch. 27F20) Tel.
K2229R (Ch. 19K23) Tel.	Rec. (See Model G295i) 95
Rec. (See Model 184	281925 E, R (Chassis 28F22)
K1812E] ${ }^{\text {d }}$ (184	Tel. Rec.............. . 64-15
K2230E, R (Ch. 21K20) 187-14	28T926E, 28T926R
K2240E, R (Ch. 21 K 20)	Tel. Rec. (Sea Model
Tel. Rec. (See Model	28T925) 64
K2230E) …....... 187	28T960, 28T961, 28T962.
K2258R (Ch. 19K23) Tel.	28 T 963 (Ch. 28F20,
Rec. (See Model	28F20Z, 28F21)
K1812E) 184	Tel. Rec. (See
K2260R (Ch. 21 k 20)	Model 28T925) 64
Tel. Rec. (See Model 187	281964 R (Chassis
K2230E) 187	28F23) Tel. Rec. 74-13
K2263E (Ch. 21K20) Tel. Rec. (See Model	371996 RLP (Ch. 28F23 9E21Z1 Tel
K2230E) (l........ 187	28F23, 9E2IZ) Tel. Rec. (See Models
K2286, R (Ch. 21 K 20)	42 T 999 RLP and 9H995). 74
Tel. Rec. (See Model	371998 RLPU (Chassis
K2230E) 12187	28F20, 9E21Z) Tel. Rec.
K2267E (Ch. 21 K 20)	[See Model 281925 (Sel
Tel. Rec. (See Madel K2230E	64) and Model 9 H 995
K2268R (Ch. 21 K 20)	-
Tel. Rec. (See Model	${ }^{42}$ (eadio Ch. 13022) Tel.
K2230E] 187	Rec. See Model
K 2270 H , R (Ch. 21 K 2 O)	281964R) 74
Tel. Rec. (See Model 187	Ch. 4 C52
K2230E) . 19 K 231187	(See Model 4k016)....
K2286R (Ch. 19 K 23)	Ch. 4C53 ${ }^{\text {a }}$ (${ }^{\text {a }}$
Tel. Rec. (See Model 184	(See Model 4 K 035)
K1812E) 184	Ch. 4 E41
K2287R (Ch 21 K 20)	(See Mode! 4G800).... 35
Tel. Rec. (See Model K2230E) K............. 187	Ch. 4E41Z (See Model 4G800Z)... 52

NITH-Cont.	ZENITH-Cont.
Ch. 4F40 (See Model 4G903)	Ch. 7H04 (See Model H723)
Ch. 4 H 40 (See Model H-401) . . . 156	Ch. 7H04Z (See Model H723Z)
Ch. 4J40 (See Model J402) 178	Ch. 7H04Z1 (See Model H72321)... 163
Ch. 4160 T (See Model J420T) 185	Ch. 7H0422 (See Model H72322) 178
Ch. 5COI, SCOIZ (See Model 5D011).... 3	Ch. 7103 (See Mode! J733)..... 186
Ch. 5CO2, 5CO2Z (See Model 5R080).... 4	Ch. 7K20 (See Madel K777E]. . . . 190
Ch. 5 CO 4 (See Model 5R080) ... 4	Ch. 8COI (See Model 8H023).... 4
Ch. 5C40 (See Model 5G003). .. . 17	Ch. 8C20 ISee Model 8H032)...
Ch. 5C4OZ, 5C40ZZ (See Model 5G003Z) ... 30	Ch. 8C21 (See Model 9HOT9).... 7
	$\mathrm{Ch}^{\text {S }} 8 \mathrm{Cl} 40$
(See Model 5G036).... 30	(See Model 8G005
Ch. 5E02 (See Model 5DB10)... . 54	Ch. 8C40T(21), 8C40T(22) (See Model 8G005YT(ZI) 53
Ch. 5GO1 (See Model G511) 85	Ch. 8E20 (See Model 8H832).... 52
Ch. 5GO2 (See Model G510) 84	Ch. 8G20 (See Model G881)..... 98
Ch. 5G03 (See Model G516)......... 109	Ch. 8G20/22 (See Model G3157RZ) 91A
Ch. 5G40 (See Madel G500) 83	Ch. 8H2O (See Model HB8ORZ) 114
Ch. 5G41 (See Model G503) 99	Ch. BH2O Revised (See Model H880) 127
Ch. 5HOI (See Model H51I]	Ch. 8 H 20 Z (See Model J880)..... 168
Ch. 5 H 40 (See Model H500) 152	Ch. 9 E 21 (See Model 9H881).... 43
Ch. 5H41 (See Model H503)	$\mathrm{Ch}, 9 \mathrm{E} 21 \mathrm{Z}$
	Ch. 9722
Model J514) 176 Ch. 5 KO 02 (See Model	(See Model 9H984) 64
k510)	Ch. 10H20 (See Model H2437E). . . 120
Ch. 5 KO 3 (See Model J514). 176	$\begin{aligned} & \text { Ch. } 10 \mathrm{H} 20 \mathrm{Z} \text { (See Model } \\ & \text { H2229R) } \end{aligned}$
Ch. 6 CO 1 (See Model 6DO14)	Ch. $11 \mathrm{C21}$. ${ }^{\text {a }}$ (2H090)
Ch. $6 \operatorname{COS}, 6 \operatorname{COSZ}$	(See Madel 12H090)... 2 Ch. 13022
Ch. 6 CO 6	(See Model 14H789)... 41 Ch. 19K20 (See Model
Ch. 6 C21	K1812E) $\ldots184$
[See Model 6R084].... 20	Ch. 19K22, 19K23 (5ee
Ch. 6C22 (See Model 6R087).... 7	madel K1812E) Ch. 20 H 20
Ch. 6C40	(See Model H2029R). . 144
(See Model 6GOO1).... 3	Ch. 20 J 21 (See Model 159
Ch. 6 C41 (See Model 6G004Y). . . 20	J2026R) Ch. $20 J 22$ (See Model
Ch. 6C50	J2026R) 159
(See Model 6G038) ... 32	Ch. 21120 (See Model
Ch. 6 E02	J2026R1 159
(See Model 6R886).... 34	Ch. 21122 (See Model
Ch. 6 EO5	J2026R)159
	Ch. 21 K 20 (See Model
(See Model SG801).... 53	Ch. 22H20 1 See
Ch. $6 \mathrm{GO1}$	Model H2226R) 114
(See Model G660)..... 96	$\mathrm{Ch}_{\text {che }}^{\mathbf{2} 22 \mathrm{H} 21}$ (See Model
(See Model G615).... 86	Ch. 22 H 22
Ch. 6G05Z1 (See Model H61521 178	(See Model H2229R)...151
$\mathrm{Ch}, 6 \mathrm{G} 20$ $\text { (See Model G2957) } 98$	Ch. 23G22 (See Model G2322) Tal. Rec....... 98
Ch. 6 HOL (See Madel H601E) 125	$\begin{aligned} & \text { Ch. } 23 G 23 \text { (See Model } \\ & \text { G2957) } \cdots \cdots \cdots \cdots \cdot 9.98 \end{aligned}$
Ch. 6H02 (See Model H664) \qquad 149	Ch. 23G24 (See Model G2322I) 91
Ch. 6102 [See Model J644)	Ch. 23G24Z1 (See Model G2322Z1).
Ch. 6J03 (See Model J616)	$\begin{aligned} & \text { Ch. } 23 \mathrm{H} 22,23 \mathrm{H} 22 \mathrm{Z} \\ & \text { (See Model } \mathrm{H}-2328 \mathrm{E} \text {) } 118 \end{aligned}$
Ch. 6105 (See Model J6151 182	Ch. 24G20 (See Model G2420E) 93
Ch. $7 E 01$ (See Model 7H820). .. 43	Ch. 24G20-OX (See Model G2420E) \qquad
Ch. 7E02, 7E022 (See Model 7H822).... 55	$\begin{aligned} & \text { Ch. } 24 \mathrm{G} 21 \\ & \text { G2454R) } \\ & \end{aligned}$
Ch. 7E22 (See Model 7R887). ... 54	$\begin{aligned} & \mathrm{Ch} .24 \mathrm{G} 21 \text {-OX } \text { (See Model } \\ & \text { G2454-ROX) } \end{aligned}$
Ch. 7FO1 (See Model 77	Ch. 24G22/23 (See Model G2441R)... 98
Ch. 7FO2 (See Model 7H922). . . 87	Ch. 24G24 (See Model G2441).... 98
Ch. 7FO3 \{See Model 7H918).... 75	$\mathrm{Ch} .24 \mathrm{G} 24 / 25$ (See Model 3059R)
$\mathrm{Ch}^{\text {(SFOe Model }}$ 7H921).... 73	$\mathrm{Ch} .24 \mathrm{G} 26$
Ch. 7GOt (See Model G725) 101	$\mathrm{Ch}, 24 \mathrm{G} 26 \mathrm{Z} 1$
Ch. 7GOIZ (See Model H725).... 135	Ch. $24 \mathrm{H} 2 \mathrm{O}, 24 \mathrm{H} 2 \mathrm{I}$ (See Model H2437E)... 120
Ch. 7G02 (See Model G724) 103	
Ch. 7G04 (See Model G723) 104	$\mathrm{Ch}^{\text {(See Model 28F20, 28F202, 28F21, }}$, ${ }^{\text {a }}$
	28F22 (See Model 28T925) 64
Ch. 7H02Z (See Model H724Z).... 134	Ch. 28f23 (See Model 28T964R). . 74
	Ch. 28F25 (See Model 28T925)... 64
Ch. 7H02Z2 (See Model H72422)	Ch .29 G 20 (See Model G2951).... 95

RECORDCHANGERS

(CM-1) indicates service data also available in Howard W. Sams 1947 Record Changer Manual. (CM-2) indicates service data available in Howard W. Sams 1948 Record Changer Manual. (CM-3) indicates service data ovailable in Howard W. Sams 1949, 1950 Recole Changer Manual. (CM-4) indicotes service data ovailable in Howard W. Sams 1951, 1952 Record Changer Manual.

ADMIRAL	
RC. 150	(CM-1) 26-31
RC-160, RC-160A, RC-161. RC. 161 A (Supplement to	
RC-200)	(CM-1) 21-37
RC-170, RC-170A.	.(CM-1) 31-2
RC-180, RC-181	(CM-2) 76
RC-182 Supplement	($(\mathrm{CM}-2) 76-2$
RC. 200	(CM-1) 9
RC210, RC211,	C212
	(CM-3) 72-1
RC.221, RC-222	(CM-3) 79

$\begin{aligned} & \text { AVIOLA } \\ & 100 \ldots . . \end{aligned}$	(CM-1)	33-32
BELMONT		
C-9	((CM-2)	34-31
COLUMBIA		
104		124-2
CRESCENT		
C-200	($\mathrm{CM}^{\text {-1) }}$	20-37
6 Series	(CM.3)	89-4
250 Series	(CM-2)	78-5
350 Series	(CM-2)	80-3

FARNSWORTH	GENERAL INSTRUMENT		
P.51, P56(CM-1) 13-36	204	[CM.1]	23-34
P.72. P73 (CM-2) 75-8	205	($\mathrm{CM}-1$)	10
GARRARD	LeAR		
RC-60 [CM-2] 81-7	PC-206A	($\mathrm{CM}-1$)	18-33
RC80(CM-4) 157-5	MAGUIRE		
GENERAL ELECTRIC	ARC-1	($\mathrm{CM}-1)$	7
P6(cm-2) 79-8	MARKEL		
GENERAL INDUSTRIES	70, 71	($\mathrm{CM}-2)$	$84-8$
	74, 75	(CM-3)	$91-7$
RCi30L (CM-I) 22-33	74, 75 Sup		131-11

SILVERTONE

$70(\mathrm{Ch} .567 .230$,
$567.2311 \cdots(\mathrm{CM}-4) \quad 121-11$
$771 \quad \cdots \cdots \cdot(\mathrm{CM} .1) 26-32$

ST. GEORGE
1100 Series(CM-1) 40-24
TAPE MASTER
T-121186-14 WERSTER CHICACO

79-80	(CM-1) 37-26
178	(CM-3) 113-12
210	(CM-4) 159-17
	156-1

WEBSTER ELECTRIC

See §kotape)
WILCOX-GAY
2A10, 2A10B, 2A11,
2A11B180-10
WIRE RECORDING CORP.

ADDITIONAL PHOTOFACT BENEFITS

From time to time, PHOTOFACT Folder Sets include valuable "bonus" aids, as well as useful data of a special nature. The fol-
lowing materials are extra benefits incorporated in the PHOTOFACT Folder Sets indicated, at no additional cost.

Set No.	Set No.	Set No.
1-RTMA Praduction Source Code (Jan. 1, 1952). 168	8-Replacement of Disc \& Plate Type Ceramic Capacitors 68	13-CR Tube Dimension Chart.............. IT2 14-CR (Electromagnefic) Tube
2-TRADE DIRECTORY- Parts Manufacturers 12	9 - Certificate entitling subscriber to PHOTO. FACT Volume labels for Vols. 1-10.... 62	Characteristics Chart 112
3-National Electrical Code on Antennas... 88 4-Record Changer Cross Reference by	10 -Certificate entitling subscriber to PHOTO. FACT Volume labels for Vols. 11-20... 102	16 - NPA maintenance and repair
Manufacturer and Model........... 118	11 -Certificate entitling subscriber to	information 130
5-Mica Capacitor Color Codes........... 48	100 Door Knob Hangers. 80	
6-Ion Trap Alignment. 62	12-Photofact Television Caurse	
"Let's Look at the Sync Pulses"........ 64	38-51, 54	18-General Electric Clock Daia. 160

 IN USE IN RADIO AND TV!

SELENIUM RECTIFIERS
When you specify Seletron "Safe Center" Selenium Rectifiers you eliminate arc-over danger, short circuits and heating at the center contact point. Assembly pressure, or pressure applied in mounting the rectifier cannot affect its performance-a Seletron feature accomplished by deactivating the area of the plate under the contact washer.

The millions of Seletron Selenium Rectifiers in satisfactory service as original equipment in the products of leading manufacturers are millions of reasons why you can specify Seletron and be safe!

Consult your local jobber!

* This rectifier is rated at 25 MA when used with a 47 ohm series resistor
(+) Stud mounted-overoll: $\mathbf{2}^{\prime \prime}$

TR SELETRON DIVISION RR RADID RECEPTDR COMPANY, INC.

Since 1922 in Redio and Electronics
Sales Department: 251 West ISth St, Mew York 11, M. Y. Factory: 84 Morth 9th St, Brooklyn 11, M. Y.
"'SHOP TALK" (cont'd from Pager)
source of trouble. Generally, a defective crystal shows up by producing an excessively snowy picture or, in the case of a complete breakdown, no picture at all.

A good many converters make provision for measuring the crystal current in the absence of a signal. The value of current obtained is a measure of two things; the condition of the mixer crystal and the strength of the oscillator output. In the high frequencies of the UHF band, it is quite possible for the oscillator output to fall below normal or for it to develop 'blind spots" at various points within the UHF region. If the crystal is good (perhaps as determined by substitution (then a normal crystal circuit current will indicate that the oscillator injection voltage is likewise normal. Generally, manufacturers specify aminimum current above which it is safe to assume the oscillator is functioning as it should.

If any defect other than those specified above is encountered, it will usually be found by voltage and/or resistance checks in the usual manner. Be particularly careful not to disturb the positioning of circuit components because, in the UHF band, a slight displacement can have a decided effect on tuner oper ation or alignment. Select replacement parts carefully and always air check a unit before returning it to its owner.

REVIEW. In brief, the review article describes a method for determining quite accurately whether the transmission line is matched to the antenna at one end, and to the receiver at the other. In weak signal areas, both at VHF and UHF, information of this type can be especially valuable. The article concerned is as follows:
''Sweep Generator Adjustment of Transmission Lines and Antennas" by John A. Cornell
Fadio \& Television News, September, 1949

Published by
Ziff-Davis Publishing Co. 366 Madison Ave., New York 17, N. Y.
Subscription Price $\$ 4.00$ per year. Direct all communications converning subscriptions to; Circulation Dept., 64 East Lake St., Chicago 1, Illinois.

* * *

Well known by now is the fact that to obtain the maximum signal
from an antenna, it is absolutely necessary that the complete system (down to the receiver) be matched as far as possible. If there are any impedance transformers within this system (either at the set or at the a.tenna), they must be matched, too.

Now, it is one thing to make such statements and quite another to carry them out. Ask the average service manhow he would determine whether a line is matched and his answer is likely to be vague. Very few technicians take the trouble to check the mismatch on an installation. But with the advent of UHF, matching will become more and more important because it will frequently mean the difference between a usable picture and one that is poor and unsatisfactory.

Amethod for checking the match or mismatch of a line requires a sweep generator, an oscilloscope, a crystal diode, and several resistors and capacitors. The circuit is shown in Figure 4. First, the sweep generator output is matched to the transmission line by connecting two $120-\mathrm{hhm}$ resistors and a $50-\mathrm{ohm}$ resistor as shown. (We are assuming here a 300 -ohm transmission line and a $50-\mathrm{ohm}$ generator output impedance.) Next, a crystal diode detector network is placed to the line. The other end of this detector attaches to the vertical input terminal of the scope. Connection is also made to the "GND" terminal on the scope. Finally, there is a wire which goes from the sweep generator to the horizontal inputterminal of the scope (not shown in Figure 4). This is for the purpose of driving the scope beam at the same rate (and in the same manner) as the sweep generator output. Usually this is a 60 -cycle voltage.

The equipment is now turned on. The sweep generator is set to sweep over a $6-\mathrm{mc}$ range at the frequency of one of the local channels, say No. 3 (60-66 mc). The oscillos cope is adjusted to provide a trace across its screen. At the start the vertical gain control is turned to mid-position. If the other end of the transmission line is properly ter-minated--say in a folded dipole-then the pattern on the screen should be a fairly straight line.

Suppose, however, that the other end of the line is open; i.e., it has nothing attached to it. Then what you will see on the scope is a pattern similar to that shown in Fig ure 5 A . If the other end of the line is short-circuited, the same type of pattern (reversed 180°) will appear.

Figure 4. Circuit for Measuring Antenna System Mismatch.

But if the impedance across the other end of the line is gradually made to approach 300 ohms , then the peaks and valleys in the wave will slowly come closer together. See Figure 5B. And when the impedance reaches 300 ohms, a straight line will again be obtained.

The straight line indicates a perfect match. On the other hand, waviness in the pattern indicates mismatch, and the greater the separation of the peaks and valleys, the greater the mismatch.

To understand the reason for this behavior, let us consider briefly the operation of a transmission line. When one end of the line is matched by an impedance equal to the line impedance, then the impedance "seen" at the other end is equal to the line impedance. Thus, suppose a line has a characteristic impedance of 300 ohms and one end is terminated in a $300-0 \mathrm{hm}$ resistor. Any circuit connected to the other end of the line will then "see" 300 ohms and this would be true for all frequencies fed into the line.

If the far end of the line is left open instead of having a 300 -ohm resistor connected across it, then the impedance "seen" or presented across the other end will depend upon the length of the line and the frequency of the signal fed into it. For example, a frequency which would make the line an even number of quarter-waves long would cause

(C)

Figure 5.

MODEL 215

"Extra Large ... Easy-to-Read Scales... a big TIME SAVER"

the hickok electrical instrument company
10566 DUPONT AVENUE
CLEVELAND 8, OHIO
the impedance at the sending end to be very high (actually infinite on a line with no losses). By the same token, a line which was short-circuited at one end would present zero impedance (or a very low impedance) at the other end when the frequency made the line an odd-number of quarter-w aves long. Intermediate. frequencies would cause intermediate impedance values to appear at the sending end.

When a sweep generator is connected to the line, as in Figure 4, and it sweeps over a range of frequencies, then the impedance it "sees" at its end (called the send ing end) will depend on what is connected across the other end of the line. If the line is properly terminated, i.e., matched, then the impedance at the generator end of the line will remain steady. But, if the opposite end is mismatched, then the impedance presented to the sweep generator will vary with each frequency in the sweep range. Now, if the generator output voltage is reasonably flat over the swept band, the RF voltage at the sending end of the line will vary in the same way that the line impedance varies. By connecting an RF detector across this point of the line, the variations can be detected and displayed on the scope screen. The result, for an open-ended line, is shown in Figure 5 A . Of course, if the line is matched, the impedance presented at the sending end will not vary, and the RF voltage will likewise remain steady. On the screen this will produce a straight line. Between these two extremes will be found patterns in which there are peaks and valleys and the distance between the peak and valley will be an indication of the extent of the mismatch. Your job will be to make this difference as small as possible.

In presenting the standing wave pattern on the scope screen, it is possible to show it as indicated in Figure 5 or to display it with a base or reference line. See Figure 6. For the latter case it is necessary that the sweep generator possess a blanking switch or control which will cut off the generator output on the return trace of the beam. In other words, the frequency is swept once across the band and then the sweep oscillator is cut-off dur ing the remaining half cycle of the driving voltage. In the oscilloscope the beam is active throughout the entire cycle. Hence, when the sweep generator is cut off, the beam forms the base line. This type of presentation is more effective than that

Figure 6
shown in Figure 5, but it does require a sweep generator with a blanking circuit.

It might be pointed out in passing that when any one of the patterns of Figure 5 is developed on the screen, the phasing control on the sweep generator should be adjusted until a single trace is obtained. Failure to do this will generally result in a double pattern and lead to confusion.

The first step in applying this method is to determine if the voltage output of the sweep generator is flat (or reasonably so) over the range it is to be used. Note that this does not mean it must be flat from one end of its dial to the other. Few generators are. All that is required is that the output be steady over the small region to be swept. Generally this is 6 mc .

The set-up to use is the same as shown in Figure 4 except that the transmission line is disconnected. The generator output voltage now feeds directly into the detector. Set the generator to the range desired and adjust its sweep for 6 mc . If straight line is obtained on the scope screen, the generator output voltage is steady over the sweep range. Check the generator output at all frequencies at which the transmission line is to be checked.

The next step is to check an actual system. Suppose we have the transmission line hooked up to a suitable antenna and we wish to determine whether the two match. At the receiver end of the line we would connect our equipment as shown in Figure 4. (The receiver is not attached to the line). The equipment is turned on and the generator is set to sweep over the desired channel. From the resultant pattern on the screen you can tell at a glance how well the antenna and the transmission line go with each other. It may be that you will find the mismatch considerable in which case you may want to change the line, the antennas, or the spacing of the antenna bars. Whatever you do, the result will be instantaneously visible on the screen.

FEATURES

- Accurate Peak -to -Peak measurements
- Portable, shock-resistant case
- Large 5", easy-to-read meter
- Zero-Center scale

RANGES

DC VOLTMETER

$$
\begin{aligned}
& \text { Volts: } 0-1200 \text { in } 7 \text { ranges } \\
& \text { Input Resistance: } 10 \text { megohms }
\end{aligned}
$$

OHMMETER
Design Center: 10 ohms
Readability: 0.2 ohm $10 \quad 1000$ meg.

AC VOLTMETER

$A C, R M S: 0-1200$ in 7 ranges
AC, Peak-to-Peak: $0-3200$ in 7 ranges
Frequency Characteristics: 40 cps to 3.5 MC . and to 250 MC with crystal probe Input Impedance: 30 meg. shunted by 150 uuf with dual-probe furnished.
This new HICKOK Model 215 provides laborafory quality, accurocy and dependabilify. Ideal for the radio-television monufocturer or service shop. Has wide applications in the electronic or industrial fields. Contains the sensitivity and ranges for fast, accurate measurements of sine or complex waves of electronic devices. Test leads are included. Write loday for complete information.
the hlckok electrical instrument co.
10566 Dupont Ave. * Cleveland 8, Ohio

there's no hacking, no cutting, no headache

FREE! TV Replacement Catalog
Write for your copy of CHICAGO'S latest Exact Duplicate TV Transformer Catalogget acquainted with your complete guide to every replacement requirement. Do every job right-ask your distributor for CHICAGO built-to-fit replacements.

Save time, save effort, eliminate costly callbacks-install the TV replacement transformer that fits. Years of making original transformers-and a reputation for building the world's toughest transformers-make chicago exact duplicates right for the job the first time. Ask your distributor for chicago exact replacements-and be sure.

TS0-7

Exact duplicate vertical
scanning output unit
for RCA No. 76431

Figure 7. Circuit of Figure 4 Adapted to a Coaxial Lead-in Line.

The same equipment can be used to determine if the transmission line is matched to the receiver. To proceed, connect the line to the receiver and then place the equipment at the other end of the line (with the antenna disconnected). If it is not practical to follow this procedure, then take a 50 -foot section (or more) of the line, connect one end to the receiver and the other end to the sweep generator and crystal detector. If the line is twin lead or otherwise unshielded, do not roll it up. How ever, if the line is shielded (such as coax), it is permissable to roll the line up.

Incidentally, the instrument set-up for coaxial line is just as simple as it is for twin lead. Figure 7 illustrates how the connections are made.

One final application of this method is the testing of impedance transformers. The most common type of impedance transformer is one that matches a 72 -ohm unbalanced line to a $300-\mathrm{ohm}$ balanced line. To determine how well a unit performs this function, take a 50 foot (or longer) section of coaxial cable and connect the sweep generator and crystal diode to one end, as in Figure 8. To the other end of the c able attach the transformer. The 72 -ohm side of the unit connects to the coaxial cable while a 300 -ohm resistor is placed across the other terminals on the transformer in order to terminate it properly. Now turn the test equipment on and observe whether any standing waves are produced over the channels for which this system is to be employed. A simple test like this, of a number of impedance transformers, will soon reveal how poorly designed many are.
''TEST EQUIP.(cont'd from Page23)
suggested that the frequencies which need be used as a center frequency of the sweep generator be enclosed in a box using a red pencil. The same can be done for the marker generator frequencies by using a blue pencil, since in some cases a different column of frequencies may be required, even though the sweep generator and marker generator are combined into a single unit. This is brought about by the fact that the two generators may not cover exactly the same range. Note that the lowest frequencies shown in the column D are above the upper limit of channel 6 . Thus, no channel 5 or 6 interference from the marker should be encountered whenusing an instru ment set at these frequencies. There is a possibility, however, of getting interference on channel 10 when the marker is set between 95 and 100 megacycles. When set within this range, the second harmonic falls on channel 10 , and should a converter having a channel 10 output be used, interference will be encountered.

Getting back to our original test set-up, and referring to column D of the chart, we find that a frequency of 109.6 megacycles will produce a 548 megacycle harmonic. Also that a 110.8 megacycle signal will produce a harmonic at 554 meg acycles. A frequency of $109.85 \mathrm{meg}-$ acycles produces a harmonic at 549.25 megacycles, which is the video carrier of channel 27. Also we can determine from the chart that a frequency of 110.74 megacycles produces a harmonic at 553.75 megacycles, which is the sound carrier of channel 27. Thus, by setting the marker generator to 109.85 megacycles, a marker will be produced which is equivalent to the video carrier of channel 27. The oscillator should then be adjusted to place the marker at the 50% point on the response curve. Be sure to make the three checks to determine whether the marker being viewed is the correct one. After the oscillator is properly set, the preselector units can then be adjusted for maximum amplitude.

The single channel type converter or tuner is the easiest to align of all converters, since there is no tracking problem. There is one pre caution, however, which must be taken, and that is to be sure that the oscillator is set on the low side of the incoming signal. Should the oscillator be set on the high side of the incoming signal, an inversion of the television signal will result. At the transmitter, the sound carrier is at
the higher end of the television channel and the video carrier is at the lower end of the channel. Should the oscillator be set above the incoming signal the relationship of these two signals will be inverted. This is the reason for checking whether the high frequency end of the band was at the right or left edge of the scope tube prior to starting the UHF alignment. Of course, once this is determined with any specific piece of test equipment, a check need not be made before each alignment. When the oscillator is properly set on the low side of the incoming signal, the response curve as viewed on the scope will be in the same position as it was when the channel 5 or 6 fre quency was injected at the antenna terminals.

A different procedure is used when checking alignment of continuously tuned UHF tuners or converters. Normally a low and high limit check point is given, as well as one or two check points somewhere in the frequency spectrum. Let us assume that the alignment instructions for a continuously variable tuner calls for a check at 470 megacycles, 890 meg acycles, and at 630 megacycles. The procedure would be, to inject a sweep frequency that will provide a harmonic falling in the region of channel 14 , and by tuning the UHF tuning knob or control, it should be possible to place the channel 14 video carrier marker at the 50% point on the response curve. If it cannot be placed at this point, the oscillator is not properly adjusted, since it does not give proper tuning range. A similar test is made at the high frequency end by injecting sweep and marker frequencies whose harmonics produce a signal at channel 83. By tuning the UHF tuning control it should be possible to place the channel 83 marker at the 50% point on the curve, indicating adequate tuning range. If this cannot be done, adjustment of the oscillator is necessary. The check point at 630 megacycles is made by injecting sweep and marker signals whose harmonics provide a 630 megacycle signal. The conver ter is then tuned so that this signal is accepted and a check is made of the amplitude and wave shape at that point. The maximum allowable variations of amplitude and calibra tion on the dial will usually be stated in the alignment instructions.

Another system which can be employed in checking a variable UHF tuner or converter is to start at one end of the band, and by tuning the generator sweep frequency dial as well as the UHF tuning dial, the re-
sponse curve can be viewed throughout the entire range. Whenever injecting a marker to check the calibration points along the dial, be sure to make the three checks to determine whether or not the correct marker is being used. Since this type of tuner covers the entire range there is a much greater possibility of obtaining an improper marker than in the case of the single channel unit. As would be expected, the tracking of a tuning device of this type is very critical. It is not uncommon, however, to find a few spots throughout the tuning range where a noticeable dip will be seen in the response curve. Do not condemn the alignment of the converter should these conditions occur. If, however, there is a completely dead spot throughout a portion of the tuning range, there probably is a defect in the tuning unit.

Usually it will be found that the attenuators on the sweep generator can be set so that a minimum signal is being put out by the unit. Conversely, it may be necessary in those cased where a built-in marker is being used, to set the marker output to provide maxımum output to produce a visable marker pip. A little experience in setting these attenuators will aid in eliminating any problems in this respect.

Whenusing an external marker generator, usually all that is necessary to do is to place the output cable near the input of the converter to obtain marker injection. If sufficient signal cannot be obtained inthis manner, the output cable of the marker generator may be directly connected to the input point on the converter, while noting if an appreciable change in the wave shape results. Usually all that will happen, will be a slight decrease in amplitude of the waveform. If the amplitude of the marker signal is too great, the waveform may be distorted. This is illustrated in Figure 11 A , which is a result of too much marker injection. Should this occur, the outputfrom the marker generator should be decreased or more loosely coupled. A waveform as shown in Figure 11B should then be obtained.

The condition shown in Figure 12 is caused by unsufficient bias on the IF stages, resulting in overload. Note the similarity of this waveform with that of Figure 11A. A portion at the left side of Figure 12, however, is free of noise or "grain" indicating an overload condition. The bias on the stages should be increased, or the output of the generator should

For free, attractive catalog on IMPS, write Dept. PI

1445 HUDSON BOULEVARD - NORTH BERGEN, NEW JERSĒY

Figure 11. Waveform Showing Results of Excessive Marker Injection (A) and Normal Curve Alter Marker Signal Level is Reduced (B).
be decreased. Whenever possible, the latter should be employed to correct this condition.

Another thing which is helpful in making the marker more distinct on the waveform, is the placement of a capacitor across the input terminals to the verticalamplifier in the scope. This tends to by-pass the higher frequencies associated with the beat between the sweep frequency and the marker generator frequency. At any time, should the marker not be clearly visible, a capacitor cculd be connected to see if it aids in making the marker more pronounced. The effect of this capacitor is shown in Figure 13. Figure 13A shows the waveform without the capacitor, and 13B with the capacitor. A value of from 1,000 to $10,000 \mathrm{mmf}$ is a nominal value for this application. This is not always helpful, however, since sometimes it may even decrease the amplitude of the marker.

Figure 12. Waveform Showing Effects of Overload.

Figure 13. Illustrating the Effect of The Addition of a Capacitor at Vertical Input Terminals of Scope. (A) Capacitor Removed. (B) Capacitor Connected.

It should be kept in mind that the alignment procedure using VHF equipment outlined in this article is intended to be used as a stop-gap measure until suitable UHF signal generating equipment is made available to the service industry. If proper precautions are taken, however, satisfactory servicing canbe accomplished with existing equipment.

SWEEP GENERATORS

Following is a list of several sweep generators which are suitable for UHF alignment. A discussion is given for each instrument showing which columns of the Sweep and Marker Generator Chart need be used to cover all 70 LHF channels. Also a general discussion on output cabie termination is given, as well as pointing out the proper setting of the band selector for each instrument.

HICKOK 6IO, 6IOA

Channels	Colunin	Range Selector
$14-30$	D	$75-115 \mathrm{mc}$
$31-34$	C	$150-230 \mathrm{mc}$
$35-49$	D	$75-115 \mathrm{mc}$
$50-51$	C	$75-115 \mathrm{mc}$
$52-54$	B	$75-115 \mathrm{mc}$
$55-69$	D	$75-115 \mathrm{mc}$
$70-74$	A	$75-115 \mathrm{mc}$
$75-83$	D	$75-115 \mathrm{mc}$

Figure 14. Hickok 610 A Sweep Generator.
(If the Hickok 610 or $610-\mathrm{A}$ is to be used for UHF alignnent, it is suggested that the columns shown be boxed-in on the Frequency Chart.)

The output cable should be terminated with the Type 75 Hickok Terminating Pad, or a 100 ohn carbon resistor can be used if an unbalanced output is required. A balanced output can be obtained from the Type 75 Pad by reversing the plug in the pad.

The fundamental frequency of operation of all oscillator settings specified are above channel 6 . Thus no channel 5 or 6 interference should be experienced.

When aligning a converter whose output is on channel 10 however, interference may be experienced on and near the following channels when using the frequencies specified above: 14 to 18,31 to 35 and 50 to 52 . This interference is caused by the second harmonic of the FM oscillator of the signal generator producing a channel 10 signal. Should this condition exist, colunn B of the chart should be used for channels 14 to 18 ; the frequencies between 82 and 86 mc (7 th harmonic) can be used for channels 31 to 35 ; and the frequencies between 85.7 to $88 \mathrm{mc}(8 \mathrm{th}$ harmonic) can be used for channels 50 to 52 . The use of these settings should eliminate channel 10 interference.

BUILT-IN MARKER

The high order of harmonics required to produce the desired UHF signals from the built-in marker generator in the Hickok 610 or 610A are of low amplitude and are not practical for use in the UHF range. An auxiliary generator may be used, however, to provide the desired markers. Several generators suitable for this purpose are listed under the Marker Generator Section

three nuts.s.ante OHMATE Lithe Duil

 RESISTOR ASSORTMENTS

ALL FOR THE PRICE OF RESISTORS ALONE!

Here's a handy all-plastic resistor cabinet that's a real time-saver. Five drawers, each with cight individually-labeled compartments, make it easy to locate the right resistor and to maintain visual stock control.

The $1 / 2$ watt assortment contains 150 carefully selected Ohmite "Little Devil," individually marked, insulated composition resistors. The 1 and 2 -watt assortments each contain 125 resistors. The assortments include the 40 values (10 ohms to 10 megohms) most frequently used by servicemen.

This cabinet is offered at the price of the resistors alone. See your jobber.

CABINETS CAN BE STACKED ON EACH OTHER A dovetail joint is provided on top and bottom of each cabinet so they can be stacked one on top of another.

OHMITE MANUFACTURING CO., 4871 W. Flournoy Street, Chicago 44, illinois

Be Right with
 OHMITE

RHEOSTATS•RESISTORS•TAP SWITCHES
which follows. The Hickok Models 292X and 680 are included in this listing.

JACKSON TVG-I, TVG-2

Figure 15. Jackson TVG-2 Sweep Generator.

Channels	Column	Sweep Range
$14-22$	C	A
$23-42$	C	B
$43-51$	C	A
$52-83$	C	B

(If the Jackson TVG-1 or TVG-2 generator is to be used for UHF alignment, it is suggested that the column shown above be boxed-in on the Frequency Chart.) The proper sweep ranges can also be noted on the chart, to facilitate the use of the chart with this particular instrument.

The output cable should be terminated with a 75 ohm carbon resistor. If a balanced output is required, a pad should be constructed as outlined in the text (use 75 ohm for the value of Rz).

When using the frequency settings in column C, no channel 5 or 6 interference should be experienced. However, interference on and near channels 30,49 and 68 may be encountered. This interference is caused by the 5th, 6th and 7th harmonics, respectively, of the fixed center frequency FM oscillator (114 mc). (See text.)

When aligning a converter whose output is on channel 10 , interference may be experienced on and near the following channels when using the frequencies specified above: 14 to 18,31 to 35,47 to 51 and 63 to 68 . By tuning the sweep generator to a lower frequency and using a higher harmonic, this interference can usually be avoided.

BUILT-IN MARKER

The high order of harmonics required to produce the desired UHF
signals from the built-in marker generator in the Jackson TVG-1 or TVG-2 are of low amplitude and are not practical for use in the UHF range. An auxiliary generator may be used, however, to provide the desired markers. Several generators suitable for this purpose are listed under the Marker Generator Section which follows. The Jackson 641 and 641-A are included in this listing.

SIMPSON 479, 480

Figure 16. Simpson 480 Genescope.

Channels Column FM Range

$14-21$	A	B
$22-49$	B	B
$50-64$	A	B
$65-83$	B	B

(If the Simpson 479 or 480 generator is to be used for UHF alignment, it is suggested that the columns shown above be boxed-in on the Frequency Chart. The proper FM Range can also be noted on the chart to facilitate the use of the chart with this particular instrument.)

The output cable of these generators are equipped with a terminating box. By connecting jumpers between the proper terminals, as outlined in the operator's manual, a balanced or unbalanced output can be obtained. To insure proper results, make sure the cable is properly terminated throughout the alignment.

All frequencies specified in the chart are above channel 5 and 6 , thus no interference from this should be experienced. When aligning converters having an output on channel 10 , interference may be experienced on and near the following channels; 30 to 35 and 65 to 68 . By tuning the sweep generator to a lower frequency and using a higher harmonic, this interference can usually be avoided

BUILT-IN MARKER

Channels Column AM Range 14-83 D C
(If the Simpson generator is to be used for UHF alignment, it is suggested that the column shown above be boxed-in on the Frequency Chart. The AM Range could also be noted on the chart to facilitate the use of the chart with this particular instrument.)

Separate attenuators for the AM and Sweep generators are incorporated in this instrument. The sweep attenuator should be set so that just enough sweep signal is generated to obtain sufficient deflection. (Keep scope gain at maximum allowable setting.) Set the AM attenuators so that the marker is just visible. Excessive markersignal may swamp the response pattern.

When aligning converters having the output on channel 10 , interference may be experienced when the marker is tuned between 95 and 100 mc . If this occurs tune to a lower frequency and use the next higher harmonic.

The marker amplitude is quite low when using the 5th and 8th harmonics, particularly above 800 mc . The setting of both attenuators at the upper channels is much more critical than at the lower channels, If after careful setting of the attenuators, the marker cannot be seen on the higher channels, an auxiliary marker generator can be used.

An alternate method for setting the end limit at the high end of the band, which does not require the direct use of a marker, can be used very successfully with these generators. If the upper end limit is specified as 920 mc , for instance, it may be found that the marker cannot be seen at this frequency. Since the 4th harmonic of the FM oscillator is being used, by checking the accuracy of the setting at the 3 rd harmonic (the marker can be seen at this point), we can also be assured of the accuracy at the 4th harmonic. By dividing 920 by four we find that the fundamental frequency of the FM oscillator is 230 me. The 3 rd harmonic of this frequency is 680 mc . Tune the converter so that the marker is centered on the waveform as shown in Figure 5 B in the text. Now adjust the sweep generator dial setting so that the waveform is exactly centered on the scope. The sweep width (frequency deviation on sweep generator) should

TECHNICAL APPLIANCE CORPORATION
Sherburne, N. Y.
In Canada: Stromberg-Carison Co., Ltd., Toronto 4, Ont.
be decreased so that the response curve itself occupies the complete sweep trace on the scope. This allows greater accuracy in centering the response curve. With these conditions fulfilled, the center of the trace represents 690 mc and 920 mc .

Leave the sweep generator at this setting and tune the converter to the upper end limit. The converter oscillator is properly set when the response curve is centered on the scope.

This procedure can also be used for presetting the oscillator on single channel converters when the marker is not visible on the upper channels. An additional all-channel converter will be required, however, to check the setting at the 3 rd harmonic.

Actually, the sweep gene rator itself, can be calibrated with the aid of the built-in logging scale. After the correct settings are known, the above procedure can be used to quick check the converter at the end limit, or at any calibration point by setting the sweep generator frequency so that the response curve is centered on the scope. The fundamental frequency can then be used on the dial and the harmonic frequency can be calulated.

SYLVANIA 500

Figure 17. Sylvania 500 Sweep Generator.

$$
\text { Channels Column } \quad \text { Band }
$$

$14-51$	B	D
$52-54$	C	D
$55-83$	B	D

(If the Sylvania 500 generator is to be used for UHF alignment, it is suggested that the columns shown above be boxed-in on the Frequency Chart. The proper band can also be noted on the chart to facilitate the use of the chart with this particular instrument.)

The output cable provides an unbalanced output and should be terminated with a 75 ohm carbon resistor. If a balanced output is required, construct a pad as outlined in the text (use 75 ohm for the value of Rz .)

No channel 5 or 6 interference should be experienced when using the above specified frequencies. When aligning a converter whose output is in channel 10, however, interference may be experienced on and near the following channels; 30 to 35 and 63 to 67 . If this occurs, tune the sweep generator to a lower frequency and use a higher order harmonic, thus avoiding the interference.

This instrument employs a fixed center frequency FM oscillator, harmonics of which will cause interference near channels 22, 43 and 65. This difficulty is also experienced when aligning UHF tuners having a 127 mic IF. The text outlines a procedure whereby this harmonic can actually be used for alignn ent purposes.

MARKER

The Sylvania 500 does not incorporate a built-in marker generator. An auxiliary generator should be used to provide the desired marker. Several generators suitable for this purpose are listed under the Marker Generator Section which follows. The Sylvania 501 is included in this listing.

TRIPLETT 3434, 3434A 3435

Figure 18. Triplett 3434A Sweep Generator.

Channels Column Sweep Band 14-83 D B
(If one of the above listed Triplett generators is to be used for UHF alignment, it is suggested that the columns shown above be boxed-in
on the Frequency Chart. The proper band can also be noted on the chart to facilitate the use of the chart with this particular instrument.)

Two output cables are supplied with these instruments, one with balanced output and the other unbalanced. The balanced cable is properly terminated while the unbalanced cable requires the addition of a carbon resistor (50 to 75 ohms) for proper termination.

All frequencies specified are above channel 6 , thus no channel 5 or 6 interference should be experienced. When aligning converters having the output on channel 10 , interference may be encountered on all dial settings between 95 and 100 mc. Should this occur, tune the sweep generator to a lower frequency and use the next higher harmonic. This should make it possible to avoid this type of interference.

BUILT-IN MARKER

The high order of harnonics required to produce the desired UHF signals from the built-in marker generator in the Triplett Models 3434 and 3434 A are of low amplitude and are not practical for use in the UHF range. An auxiliary generator should be used with these instruments, as well as the Model 3435, to provide the desired markers. Several generators suitable for this purpose are listed under the Marker Generator Section which follows. The Triplett 3433 is included in this listing.

MARKER GENERATORS

AM signal generators which operate on the fundamental at 94 to 120 mc can be used as an auxiliary generator for the purpose of supplying markers during UHF alignment. Column D of the Sweep and Marker Frequency Chart shows the fundamental frequencies within this range whose harmonics produce the desired UHF signals.

Needless to say, the accuracy of the signal generator is of extreme importance in this operation. Any error in calibration at the fundamental frequency is multiplied by the order of harmonics which is being used. A good source of a frequency standard for checking the generator within this range is an FM station. Tune an FM receiver to a station of known frequency. Loosely couple the signal generator to the receiver and tune the generator for a zero beat. The calibration of the instrument can then be checked.

now specific type FIYBACKS by HALLDORSON service

 $1 \begin{gathered}\text { DIFFERENT } \\ \text { ADMIRAL } \\ \text { IV MODELS }\end{gathered}$

HALLDORSON FB405 and FB406 Horizontal Sweep and H. V. Flyback Coil Assemblies

Think of it! Two parts that are not makeshift arrangements but specific replacements for 115 popular TV models made during the last two years by Admiral. You get them as complete coil assembly replacements ready for quick installation. Keep a few FB405's and FB406's on hand for quick service and extra profits!

FB405 and FB406 are now available at your Distributor. Ask also for literature describing hundreds of other Halldorson TV and Electronic components for making your work easier, quicker, and more profitable. See your Distributor ... today!

HALLDORSON TRANSFORMER COMPANY 4500 N. Ravenswood Ave. . Chicago 40, Illinois Write Dept. PF1

MOTOROLADETROITCO.
one of the country's largest distributors of television sefs and appliances

SAYS

IS A PROFITABLE ITEM TO STOCK FOR 2 REASONS

1. TV SERVICEMEN BUY IT

"Our customers use Krylon and plenty of it," reports MotorolaDetroit parts manager, Paul Wallace. "The spray nozzle makes it easy to insulate the complete chassis in a matter of minutes." Because of its high dielectric strength, Krylon helps prevent corona.

Indoor service chief, John Workman, reports, "We use Krylon clear plastic coating to spray the bell part of metal picture tubes. Krylon stops dust from adhering to the tube and prevents arcing. We find Krylon is a must in television service operations."

Several signal generators which are suitable for marker use are included in the following listing. Instructions for use of each generator in connection with the chart is given.

In most cases sufficient coupling can be obtained by merely placing the marker generator lead near the sweep generator lead. If more coupling is required, use a very small value capacitor (approximately 10 mmf .) for coupling. At times it may be necessary to make a direct connection to the sweep generator lead. If any direct connection is made, observe the waveforms to be sure that its shape is not affected.

Always allow the marker generator to warm up for ten to fifteen minutes before using. This will provide a more accurate and stable signal.

HICKOK 292X

Figure 19. Hickok 292X Signal Generator.
Channels Column Band

$14-44$	B	H
$45-49$	D	G
$50-51$	B	H
$52-78$	C	H
$79-81$	B	H
$82-83$	C	H

The above recommended frequencies allow the use of frequencies up to 220 mc which this instrument is capable of producing. Thus a low order of harmonics is required to cover the UHF band.

An alternate method is the use of column D as specified below. This allows the use of only one column in the chart, but requires higher harmonics for UHF coverage.

ALTERNATE FREQUENCIES

Channels
14-83
Column Band
D
G
(If this generator is to be used as a marker generator, it is suggested that the columns be boxed-in on the Frequency Chart. The proper band can also be noted on the chart to facilitate the use of the chart with this particular instrument.

When aligning a converter having the output on channel 10 , interference may be experienced on and near channels 31 to 35 and 63 to 67. If this is the case, use a lower frequency and a higher order harmonic for these channels.

HICKOK 680

Figure 20. Hickok 680 Marker Generator.

Channels Colun•n Range

$14-22$	(See Chart Below)	
$23-43$	B	High (Red)
$44-51$	Use l/ 10 of	
	Freq.	Low (Black)
$52-78$	C	High (Red)
$79-83$	A	High (Red)

(Note: The UHF frequencies up to 868 mc are calibrated directly on the dial of this instrument. The use of the specified frequencies on the chart, however, removes the need of interpolating the video and sound carrier frequencies.)

Channel	Frequency
14	$58.75(8)$
	$58.91(8)$
	$59.47(8)$
15	$59.5(8)$
	$59.5(8)$
	$59.66(8)$
16	$60.22(8)$
	$60.25(8)$
	$60.25(8)$
	$60.41(8)$
17	$60.97(8)$
	61
	$61.1(8)$
	$61.16(8)$
	$61.72(8)$
	$61.75(8)$

Channel	Frequency
18	$61.75(8)$
	$61.91(8)$
	$62.47(8)$
	$62.5(8)$
19	$62.5(8)$
	$62.66(8)$
	$63.22(8)$
	$63.25(8)$
20	$63.25(8)$
	$63.41(8)$
	$63.97(8)$
21	$64(8)$
	$64 .(8)$
	$64.16(8)$
	$64.72(8)$
22	$64.75(8)$
	$64.75(8)$
	$64.91(8)$
	$65.47(8)$
	$65.5(8)$

(If this generator is to be used for UHF alignment, it is suggested that the columns specified be boxedin on the Frequency Chart. The frequencies listed for channels 14 to 22 should also be added between columns to facilitate the use of this generator with the chart.)

This generator incorporates a crystal oscillator which permits checking of the calibration at each 2.5 mc point. This should be done regularly to insure accurate UHF markers.

JACKSON 64I, 64IA

Figure 21. Jackson 641A Signal Generator.
Channels Column Band

$$
14-83
$$

D

A
(If this generator is to be used for UHF alignment, it is suggested that column D be boxed-in on the Frequency Chart. The range can also be noted on the chart to facilitate the use of this instrument with the chart.)

Channel 10 interference may be encountered on and near channels 15 to 17 when aligning a converter having the output on channel 10. If this occurs, use a lower fundamental frequency and a higher harmonic.

SYLVANIA 50I

Figure 22. Sylvania 501 Marker Generator.

C
(If this generator is to be used for UHF alignment, it is suggested
that column D be boxed-in on the chart. The range can also be noted on the chart to facilitate the use of the chart with this instrument.)

When aligning a converterhaving the output on channel 10 , interference may be encountered on and near channels 15 to 17 . Should this occur, use a lower frequency and the next higher harmonic.

TRIPLETT 3433

Figure 23. Triplett 3433 Signal Generator.

Channels
Column
Band
(If this generator is to be used for UHF alignment, it is suggested that column D be boxed-in on the chart. The range can also be noted on the chart to facilitate the use of the chart with this instrument.)

When aligning a converter having the output on channel 10 , interference may be encountered on and near channels 15 to 17 . If this occurs, use a lower frequency and the next higher harmonic.

We wish to acknowledge the cooperation of the following test equipment manufacturers in providing us with the equipment that was used in the preparation of this article:

The Hickok Electrical Instrument Co.
The Jackson Electrical Instrument Co.
The Simpson Electric Co.
Sylvania Electric Products, Inc.
The Triplett Electrical Instrument Co.
14-83 D J
W. WILLIAM HENSLER

A HOT Little BOOSTER for HOT Front Ends

VIDEON JR. won't oscillate with the hot front ends of new sets!

PERFORMANCEWISE—It's tops

PRICEWISE—It's right . . . and as for customer satisfaction, you cut costly call backs when you install a VIDEON JR.

Write For Descriptive Folder And Name Of Your Distributor

Coming Soon -
The New Videon UHF Converter

Planet Capacitors "Engineered for Quality"
1 year service guarantee

"UHF" (cont'd from Page44)

preselector circuits, and by a combination of capacitive and inductive tuning in the oscillator circuit. The tuning mechanism consists of brass cores attached to nylon rods which in turn are fastened to the adjustment plate. The tuning shaft is threaded so that rotation of the shaft moves the brass cores in or out of the tuned elements of the preselector and oscillator circuits.

An examination of the brass cores shows that they are tapered. The dual purpose of the taper is to achieve tracking and, more specifically to effect bandspread at the upper half of the UHF band.

The preselector circuits are located on top of the chassis and are shown in Figure 15. The UHF signal is applied to the converter at the 72 -ohm coaxial input and fed to a tap on the first preselector circuit. Coupling between the first and second preselectors is provided by a strip of metal formed into a rectangle shape and rivited in a position between the two circuits to provide loop coupling. Note the small slot in the top of the coupling loop. This accommodates an alignment screwdriver blade for rotating the loop to adjust the bandpass of the preselectors.

A crystal mixer is tapped into the second preselector circuit and its output fed to the IF amplifiers.

The Model U70 oscillator section is contained in a compartment under the chassis and shown in Figure 16. Tapered brass cores, one for varying capacitance and the other for varying inductance, are used in the oscillator circuit. When low frequency UHF channels are tuned, the brass core is completely out of the inductance and only the brass core for the capacitance is effective in changing oscillator frequency. As mid-positions are approached, the brass core begins to enter the inductance, thus decreasing the inductance, and the tapered portion of the capacitor core is employed for decreasing the capacitance. L7 and C9 form the variable capacitance and inductance in the oscillator circuit.

An intermediate frequency results when the oscillator signal and the incoming UHF signal are beat together at the crystal mixer. The schematic diagram of the Model U70 is shown in Figure 17.

Two stages of IF amplification are used in the Model U70. Both stages employ type 6 CB6 pentode tubes. However, in the first stage,
the 6 CB 6 is connected to operate as a grounded-grid triode while the second tube is connected in the conventional fashion.

Twelve megacycle bandwidth is maintained in the IF amplifier stages to provide an output signal at the frequencies of either channel 5 or 6. Bandwidth adjustment is accomplished by two capacitors, C11 and C21. They consist of a piece of wire soldered to one terminal of each IF transformer and the free end inserted into a ceramic tube capacitor. Adjusting is done by pushing or pulling the free end further in or out of the ceramic tube capacitor.

Installation of the converter to a television receiver may be readily accomplished. The required antenna systems are connected to the appropriate terminals on the back of the converter and the converter output is fed to the VHF receiver antenna input terminals with a short length of $300-\mathrm{ohm}$ line. Plugging the TV receiver line cord into the receptacle at the back of the converter and plugging the converter into the AC wall socket completes the installation.

Initially both converter and VHF receiver are turned on indiv-

Figure 17. Schematic of RCA Model U70.

Corner Reflector Model 4450

Reflecto-Fan Model 4400

Gain in db. ${ }^{*}$			
Freq.	Mod.	Mod.	Mod.
MC	4400	4402	4450
500	6.1	8.4	7.8
600	7.6	10.6	8.9
700	8.9	11.9	11.
800	7.9	11.3	12.9
900	7.0	9.0	11.8

*Measured gain over tuned folded dipole List Price
Model 4400 (Single Bay) $\$ 6.75$
Model 4402 (Dual Stack) 14.25
Model 4450 (Single Bay)............ 14.50

whlsco

Walter L. Schott Company
3225 Exposition Place
Los Angeles 18, California

Figure 18. Top Chassis Photo Showing 13 Position Tuner Employed In Sylvania Chassis 1-508-2.
idually. Subsequent operation is facilitated by leaving the TV receiver ON-CFF switch in "ON" position and controlling power to both units with the function switch on the converter.

The operation of the function switch is as follows:

1. CFF position. Power to both receiver and converter is off.
2. VHF position. Power is supplied to converter filaments and to the TV receiver, and the VHF antenna is connected through the switch to the TV receiver. In this position, the TV receiver functions in the usual manner to receive VHF stations.
3. UHF position. $\mathrm{B}+$ power is applied to converter tubes, and the converter output is connected to the VHF receiver antenna input terminals. With the TV receiver set to receive either channel 5 or 6 , UHF stations tuned by the converter are accepted by the television receiver.

When tuning in UHF stations, tune for best picture and sound. However, if interference is noted, turn the VHF receiver fine tuning control until the interference disappears and retune the converter tuning knob for best picture and sound.

The Model U70 may be checked by tuning to a weak UHF signal. If s now is excessive, the crystal may be defective and should be replaced. If this procedure is followed and a new crystal does not effect a reduction in snow, it is probable that the RF circuits need
readjustment to compensate for the new crystal.

SYLVANIA BUILT-IN VHF-UHF TUNING SYSTEM

Sylvania has incorporated in some of their current runs of television receivers a built-in, allchannel, tuning system. Chassis 1-508-2 employs such a system. A partial top view of the 1-508-2 chassis (Figure 18) shows the VHF tuner. The UHF unit is mounted beneath the chassis, and is shown in Figure 19.

Essentially, this tuning system utilizes a 13 -position VHF turret tuner and a UHF tuner which is coupled by a dial-cord arrangement to the fine tuning control of the turret tuner. Twelve positions of the turret tuner are used for re^{-} ception of VHF signals in the accustomed manner, while the thirteenth position of the turret establishes the setting to tune in UHF stations. Simultaneously, when the turret is rotated to the thirteenth, or UHF position, a cam arrangement on an extension of the turret shaft actuates a VHF-UHF switch. This switch performs the following functions:

VHF POSITION: The VHF antenna is connected through the switch contacts to the input of the turret tuner. B+ is removed from the UHF unit, and the UHF output connection is opened.

UHF POSITION: The VHF antenna is grounded. B+ is applied to the UHF tuner, and the

Figure 19. Bottom Chassis View Showing VHF and UHF Tuning Units.

UHF output is applied to the turret tuner input.

The tuning system is designed for a single conversion process in both VHF and UHF positions. Thus, in both instances, the tuner outputs are at a frequency in the 40 megacycle range.

The output of the UHF unit is fed through the turret tuner. The turret tuning strip for this position is designed to accept 40 megacycle signals. $B+$ is removed from the local oscillator when the turrettuner is turned to UHF position. Thus, the turret tuner, in UHF position, functions as a two-stage amplifier. Signals applied to the video IF strip in the receiver. are therefore essentially alike for both VHF or UHF reception.

Figure 20 is an illustration of the tuning knobs employed on the Sylvania 1-508-2 chassis. Note that the turret selector knob is marked with VHF channel numbers and has a window opening between positions 2 and 13. As previously stated, this position switches the circuits to accept the output from the UHF tuner. UHF channel markings are then visible through the window, and UHF channels may be tuned in by turning the VHF fine tuning knob. As the fine tuning control is rotated, a gear and pulley arrangement tunes the UHF unit.

The UHF tuner employs double-tuned preselector circuits, a local oscillator, and an oscillatordoubler circuit. $R F$ tuned circuits are of the transmission-line type. They consist of quarter-wave, endtuned, coaxial lines. For high

The stars show quality ascendant in the TV set owner's mind. Follow your stars-give the set owner the best picture tube replacement-Rauland. Your Rauland jobber anticipates your need today with a complete stock. The Rauland Corporation, 4245 N. Knox Avenue, Chicago 41, Illinois. MUlberry 5-5000.

RAUUAND

R E S E A R C H

Figure 20. Concentric Shaft VHF-UHF Tuning System.

Figure 21. Silver Plated UHF Tuner Used In Sylvania Chassis.

Figure 22. Schematic of Sylvania Chassis $1-508-2$ VHF and UHF Tuning Units.

FRII DISE GERAMMGONS.

801

817

816

821

812

822

826

E
RIE offers a complete line of Disc Ceramicons in By-Passing, Temperature Compensating, and High Voltage types. A distinguishing feature of Erie Disc Ceramicons is high capacity - up to .02 mfd in extremely compact size. Also, High Voltage Disc Ceramicons are available in ratings up to 8000 volts D. C. working. Basic diameter sizes are $5 / 16^{\prime \prime}, 3 / 8^{\prime \prime}$, 19/32'", and $3 / 4^{\prime \prime}$ maximum.

They are amazingly easy to install in small spaces they simplify soldering and wiring operations, and speed up the service line. Erie Disc Ceramicons consist of round flat dielectrics with fired on silver plates, and leads of tinned copper wire firmly soldered to silver electrodes. The units are given a protective coating of phenolic and vacuum wax impregnation. Dual discs are available in both shielded and non-shielded construction.

Such simplicity of construction results in low series inductance and unusual efficiency in high frequency by-passing.

Write for complete information regarding your specific needs, and samples.

ERIE RESISTOR CORPORATION
\qquad Main Offices: ERIE, PA.
\qquad
 foctoriey: EnIE, PA. . LONDON, ENGLAND - TORONTO, IANAD

XCELIEE,Hand Tools
 prithred by the exprexis WHICH

 Screwdriver Would You Use?(answer below)

No. 1 Point?

 No. 2
Point? No. 2
Point?

1

Repeatedly using too small a point can damage both screw and point! The \#6 Phillips screw, shown actual size, takes the \#2 Phillips point for snug fit. But if you picked the \#1 point (as so many do!) follow this rule: always try a larger point than you picked first.
Another good rule; always use XCELITE, the quality line with all the sizes you need!

XCELITE, INCORPORATED

(Formerly Park Metalware Co., Inc.) Look to XreLite

efficiency, the entire UHF unit is silver-plated.

To electrically lengthen the tuned lines to effect a resonant condition at any frequency within the UHF band, capacitive tuning is employed at the open end of the line. The variable ganged capacitor used in this application (see Figure 21) is of a type similar to those used in conventional low frequency applications. Each line is tuned by four rotor plates. The two outer plates for each line are slotted to permit point-by -point corrections of passband characteristics, while the inner two plates are solid. The solid rotor plates may be used to compensate for general overall trends in tuning characteristics. Trimmers are provided to set the high-frequency end in the RF sections.

Figure 22 is a schematic of the VHF and UHF tuners used in this chassis. The section enclosed in dotted lines at the lower left of the UHF schematic is a pictoral drawing of the tuned lines in the tuner. The item numbers of the components in this pictoral drawing correspond to the item numbers of the electrical symbols in the schematic. Since the push-pull oscillator tuning section is comprised of a conventional splitstator capacitor, it is not included in the pictoral drawing.

The UHF local oscillator employs a twin-triode 6 J 6 tube in a push-pull circuit. This circuit is also tuned by rotor plates on the ganged tuning element. The halffrequency signal from the local oscillator circuit is loop-coupled to the oscillator doubler. Note in schematic Figure 22 that a crystal diode is employed in series with the coupling loop to provide rectification of the oscillator signal and thus effect more efficient doubling action.

The input of the UHF tuner is designed to match a 300 -ohm lead. Interstage coupling in the RF circuits is by means of two loops which are used in this application to provide sufficient bandwidth over the tuning range.

A 40-megacycle intermed-iate-frequency signal is obtained by feeding the incoming and oscillator signals to the crystal mixer, type 1 N 82 . This crystal is contained in a shielded compartment on the tuner, and may be reached by removing two screws holding the shield in place.

The entire UHF unit is provided with shields to minimize radiation. Also, to maintain uniform characteristics, the UHF unit is initially assembled on a metal base plate which in turn is mounted on the television receiver chassis. This provision minimizes any tendency to strain, or distort positioning of the tuned elements in the tuner when screwing the base plate to the television receiver chassis.

SUTCO COMBINATION BOOSTER AND UHF CONVERTER

Sutton Electronic Company, Inc., has developed a combination Booster and UHF Converter designated as Sutco Model 21A. It provides in a single, compact cabinet all the advantages of a booster for VHF operation, plus the additional feature of a UHF converter continuously tunable over the entire UHF band.

Three knobs on the front of the cabinet (Figure 23) control the operation of the Model 21A. The knob on the left is the booster tuning control, tuning VHF channels from 2 through 13. The knob at the lower center operates the selector switch, whose positions are indicated as follows:

1. OFF
2. VHF 2-6
3. VHF 7-13
4. UHF

On the right is the UHF tuning control knob.

The booster section of the unit employs a 6 J 6 tube in a pushpull wide-band amplifier circuit, designed to amplify television signals on channels 2 through 13. Either 300 -ohm balanced line or 75 -ohm coaxial line may be employed at both input and output terminals of the booster section. In positions 2 and 3 of the selector switch the unit functions as a booster on the VHF channels. The operation is the same as if the UHF section were not contained as part of the unit.

The UHF converter section employs a three-gang tuned element consisting of concentric resonant lines. It is continuously tunable over the full UHF TV band. A single tube, type 6AF4, is used in this section, and functions as the UHF local oscillator.

Figure 23. Sutco Model 21A.
With the selector switch in UHF position the booster section operates as an IF amplifier stage between the UHF converter output and the input to the television receiver.

A better understanding as to the operation of the Sutco Model 21 A is obtained by observing the block diagrams in Figure 24. These diagrams illustrate the functioning of the booster and UHF converter for each position of the selector switch. Note in position 1, or "OFF" position (Figure 24A), that both the UHF and booster sections are inoperative and that the VHF antenna connects to the television receiver for VHF reception. Figure 24B illustrates the operation in positions 2 and 3 , or positions marked "VHF 2-6" and "VHF 7-13", of the selector switch. In these positions the booster is connected between the VHF antenna and the television receiver to provide additional signal gain on channels 2 through 13. In position 4, or "UHF" position, of the selector switch, the booster remains connected to the television receiver and the UHF converter output is applied to the booster input. The converter output, designed to fall on the frequency of channel 5 or 6, is accepted by the booster section which is adjusted to channel 5 or 6. In

(A) POS.I OF SELECTOR SW-UHF \& BOOSTER INOPERATNE

Figure 24. Block Diagram Illustrating Function of Selector Switch.

FREE Sguipt CATALOG! Especially Designed for the ELECTRONICS Industry

BENCHES
CHASSIS STANDS
SALES COUNTERS
SHELVING

How to save time and money in radio-TV SERVICING

RADIO \& TV HINTS gives you over 300 ideas, short cuts and gim. micks which can make servicing faster, easier and more profitable.

112 Pages
Ondy $\$ 1.00$
132 lllustrations
Now you can get the full benefit of on-the-job tricks of the trade worked out by hundreds of practical service technicians. Years and years of experience crammed into one book! Seven sections cover Test Instruments, Tools, Television, Radio Servicing, Audio, Amateur and Miscellaneous. A treasury of tips as useful as any tool on your service bench. A real buy for a dollar!
Buy a copy at your parts distributor today.

[^1]
independent

survey by leading publisher shows

SERVICE

 TECHNICIANS HOW PREFER gensen 4 rol

Figure 25. Top Chassis View of Sutco Model 21A.
turn, the television receiver tuner is set at channel 5 or 6 position to receive the booster output.

Topand bottom chassis photos of the Sutco Model 21 A are shown in Figures 25 and 26 respectively to illustrate the layout of the unit.

A schematic of the Model 21A is shown in Figure 27. L1, L2, and L3 form the three-gang concentric resonant lines for tuning the UHF TV band. L1 and L2 are employed in the double-tuned preselector circuits. The preselector output is fed to the crystal mixer, type CK-710.

L3, the third section of the three-gang tuning element, is em-

Figure 26. Bottom Chassis View of Sutco Model 21A.
ployed in the oscillator circuit. The oscillator frequency is maintained at 76 to 88 megacycles below that of the incoming signal to establish the desired intermediate frequency out of the crystal mixer at channel 5 or 6 frequencies ($76-88 \mathrm{mega}$ cycles).

The $1,000 \mathrm{mmf}$. capacitor and $470-\mathrm{ohm}$ resistor (shown dotted) in the crystal mixer output circuit are for alignment purposes only. If alignment is required, these two components may be added temporarily.

The crystal mixer output is transformer-coupled by L10 to terminals on the selector switch. With the switch in "UHF" position
as shown on the schematic, the intermediate frequency signal from the crystal mixer is applied to the booster input coil L17. This signal is amplified by the 6 J 6 tube in a push-pull amplifier circuit, and applied through additional switch positions to the output terminals 4 and 5 on the terminal strip, located on the back of the unit. To accept the intermediate frequency signal by the booster circuits, the booster tuning knob should be set at channel 5 or 6 position.

Another function of the selector switch in "UHF" position is to apply B+ to the UHF oscillator tube. This is provided by a shoe on the switch wafer SW1B, rear. Note also that the VHF antenna is disconnected at switch wafers SW1A, front, and rear, in "UHF" position.

Turning the selector switch one position in the direction of the arrows removes $B+$ from the UHF tuner section, disconnects the crystal mixer output from the booster, and connects the VHF antenna to the booster input. This position of the switch provides booster action on the high VHF channels (7-13). A portion of both L17, input coil for the booster, and L18, output coil,

* Please turn to Page 123 *

Figure 27. Schematic of Sutco Model 21A.

For better, quicker (2) servicing Television Servicing

- gives you detailed, illustrated trouble-shooting procedures for every flaw or failure you're likely to encounter.

A COMPLETE MASTER INDEX and separate lists of trouble symptoms for each circuit defect make it easy to locate any particular trouble and the exact procedures for correcting it. Unusual, hard-to-find flaws as well as all common trouble
are dealt with. are dealt with.
THE LATEST CIRCUITS are explained and illustrated, including servicing techniques for UHF and VHF.
ORIGINAL PHOTOGRAPHS show actual symptoms that appear on the TV screen when defects occur. Hundreds of circuit diagrams, il lustrations of station defects, scope patterns, and other illustrations aid in the identification and
location of circuit faults.
and these are only a few of the features that make this the most belpful, practical, and complete service manual yet to be published.
$\$ 5.50$

Are these outstanding

 radio \& TV aids on your working reference shelf?
Radio and TV Mathematics

by Fischer. Step-by-step solutions for hundreds of typical problems, arranged under radio and electronic headings for quick reference. Shows what formulas to use, what numerical values to
substitute, how to solve each. $\$ 6.75$

Television for Radiomen

by Noll. Very clear, non-mathematical explanation of all principles and full instruction on installation, alignment, adjustment, and troubleshooting.
37.75

Television \& FM Antenna Guide

by Noll \& Mandl. A basic course on theory plus a complete handbook on all types of antennas and installation procedures.
$\$ 6.25$

Movies for TV

by Battison. Practical information on all equipment and experienced advice on the do's and don'ts of making newsreels, commercials, features, titles, special effects, cartoons, etc. $\$ 5.00$
Now. mare than ever. you'll want these expert serucceaids

For solving special problems as they arise on radio and TV jobs; for license exams; for professional training-you can confidently turn to these books.

Look them over at your dealer's or write us for copies on approval

MACMIILAN, 60 Fith Ave., N. Y. 11

can you tell...

which transformer is the RAM?

If you can't tell any difference between the original and replacement flybacks these days, there's good reason. They're TWINS-they're BOTH RAMS!

Yes, the great majority of famous TV set manufacturers order their original flybacks built to their own specifications by RAM. They know that a RAM-built original surpasses their every quality and performance standard.
Under the special RAM twin-transformer manufacturing technique, in most instances the originals destined for the TV set maker and the replacements destined for the RAM-brand and your jobber's shelf are both made at exactly the same time, during the identical production runl

That's why you can be certain-9 times out of 10-1hat a RAM-brand replacement is the best replacement, for highest efficiency and durability. And that's why RAM components are lowest-priced in the industry, for highest profits for you. ONLY RAM manufactures 29 types of transformers, 10 types of deflection yokes and 15 types of linearity and width coils-the industry's most complete, most diversified sweep replacement line. See them at your local distributor.
FREE! RAM 1953-edition Replacement \& Conversion Manual-over 5000 sweep component listings-most complete in the industry. Write Dept. PF-1

 sets © All functions compietely electronic scale deflection of $11 / 2$ volts for both AC-DC volts. SPECIFICATIONS
DC VOLTAGE: Input resistance 16.5 megs or $12 / 3$ megohms per volt. Ranges: 0 to $1.5,10,100,300$, 1000 up to $30,000 \mathrm{v}$. (with accessory probe). AC VOLTAGE: Input resistance 2 megohms. Ranges: 0 to $1.5,10,100,300,1000$. Frequency response flat from: 25 to 100,000 cycles.
OHMS: $1000-10,000100,00010$ megohms, 1000 megohms. Compact, portable bakelite case measures $41 / 4 \times$ $51 / 4 \times 21 / /^{\prime \prime}$
MODEL 106
$\$ 35.90$
Wrife Depf. PFI for latest FREE catalog.

The right part when you need it for service
This permanent, hard cover Official Buying Guide of the electronic-TV parts and equipment industry with its comprehensive detailed index, eliminates the need for maintaining files of small catalogs and manufacturers' literature. Radio's Master catalogs 90% of TV and electronic equipment. Not merely part number listings complete descriptions, specifications and illustrations written and compiled by each manufacturer. Enables you to make comparisons or substitutions right now!

UNITED CATALOG PUBLISHERS, INC 110 Lafayette St., New York 13

GLOSSARY OF UHF TV TERMS (Continued from page 45)

lator frequency plus the intermediate frequency in a superheterodyne receiver having the oscillator operating above the desired signal. In a receiver having the oscillator operating below the incoming signal, the image frequency is equal to the local oscillator frequency minus the intermediate frequency. In either case, an undesirable signal will be received at the image frequency unless it is rejected in pre-selector circuits ahead of the mixer.

IMPEDANCE MATCH: Acondition whereby the impedance of the load is equal to the impedance of the source.

INCREMENTAL TUNING: The addition of small inductors or capacitors to an RF circuit to change its resonant frequency. Used frequently in switch type tuning systems.

INFINITE IMPEDANCE: A condition equivalent to an open circuit. Theoretically, a parallel resonant circuit without any resistance exhibits the properties of an infinite impedance or open circuit.

IMAGE REJECTION: A term pertaining to the attenuation of the image signal. The use of preselector circuits is instrumental in providing image rejection.
INSERTION LOSS: Effectively all losses in a UHF tuning unit lie in the crystal mixer circuit. Only a fraction of the power supplied by the incoming signal is obtained as an intermediate frequency signal in the mixer output. This loss is usually expressed in decibels, as a ratio of the power applied to the mixer to the power obtained in the output.

LECHER WIRE: A modified transmission line, usually provided with a shorting bar, which is used either as an RF tank circuit in receiving devices, or adapted in such a manner that accurate frequency measurement may be performed by measuring the distance between the loops of standing waves along the wire.
LINE IMPEDANCE: See "CHARACTERISTIC IMPEDANCE".

LOOPS: Points along a transmission line having standing waves where maximum potentials exist.

LOSSER: A circuit having less power in the output as compared to the power applied to the input is considered a losser. This term is
particularly applicable to mixers. A equal to the impedance of the crystal crystal mixer is a losser.

LUMPED CONSTANTS: The resistance, capacitance or inductance TRANSIT TIME: As applied to a which is provided by the addition of vacuum tube, transit time is the time an individual component, such as a required for an electron to go from resistor, capacitor or inductor, is one element to another.
considered a lumped constant. In
UHF work, lumped constants are employed to augment the distributed constants in the circuits.

SINGLE CONVERSION: Converting the frequency of an incoming signal to an intermediate frequency in a single step process constitutes a single conversion. The process is frequently employed in the built-in type UHF tuning devices.

STANDING WAVE: Standing waves result from a condition where an impedance mismatch between the source, line or load results in energy being reflected from the load back into the transmission line to form stationary loops.

STANDING WAVE RATIO: The ratio of the maximum voltage (or current) to the minimum voltage (or current) along a line is the standing wave ratio.

SURGE IMPEDANGE: See "CHARACTERISTIC IMPEDANCE".

SLOTTED ANTENNA: A type of transmitting antenna having slots approximately one-half wavelength long which act as radiators of the signal.

SPURIOUS FREQUENCIES: Any undesired signals, such as images, cross-modulation, parasitic oscillations and harmonic interference may be considered spurious frequencies. When these signals fall within the passband of the tuned circuits, and are of sufficient amplitude, they appear in the output along with the desired signal.

SPURIOUS RESPONSE: A condition in a receiving device whereby the circuits are resonant to frequencies other than those for which it is designed.

SUCKOUTS: A hole in the response pattern of a tuned circuit due to self resonances of components at certain frequencies.

TEMPERATURE NOISE: A condition in a crystal mixer or vacuum tube diode, whereby noise effects are introduced into succeeding stages. It is defined as the temperature that would be assigned to a resistance

TUBE NOISE: Noise of random nature generated within a vacuum tube and covering a wide range of frequencies. It limits the possible amplification obtainable in the input circuits of a receiving device.

TWIN-LEAD, RIBBON: A type of transmission line of flat construction consisting of two parallel conductors imbedded in a phenolic base.

TWIN-LEAD, TUBULAR: A type of transmission line employing two parallel conductors separated bya tubular material. The hollow construction of this transmission line adapts it for use in damp climates. The presence of moisture has but slight effect on its characteristics.

UNBALANCED LINE: Atransmission line having the conductors operating at a different level of potential above ground.

UNBALANCED OUTPUT: The output of a tuning device designed to connect to an unbalanced line.

UHF: Means Ultra-High-Frequency. The entire UHF spectrum extends 300 megacycles to 3000 megacycles. The UHF TV band occupies a portion of this spectrum (470 to 890 megacycles).

V ANTENNA: An antenna composed of elements in the shape of a V . The transmission line couples to the apex of the V, and the directivity is toward the open end of the V.

VARIABLE IF: The condition whereby the output of a mixer in a superheterodyne circuit can be selected over a desired range. A separate UHF converter whose output can be made to fall at either channel 5 or 6 is a form of variable IF system.

WAVEGUIDE: A modified, hollow transmission line designed to carry Ultra-High-Frequency signals to the antenna, or to propogate the energy into space at the end of the line. Waveguides are usually rectangular, and are so constructed to be resonant at the frequency which they are to operate.
WAVELENGTH: The distance traveled by an alternating type of electrical energy in the time of one cycle.

Made under Western Electric license agreement, these carbon-deposit resistors serve a real need in test equipment and laboratory-grade instruments.
Packed and sealed in plastic tubes to insure quality-control accuracy. 1/2, 1 and 2 watts.
Also available in metal-cased hermeti-cally-sealed construction for superlative stability under the most adverse climatic conditions. $1 / 2,1$ and 2 watts.
Aerovox also offers popular resistor types such as insulated-molded carbons and wire-wounds.
Ask your Aerovox distributor for Carbofilm precision resistors, as well as popular insulated-molded carbons and wire-wounds. Stocked for your convenience!

FOR RADIO-ELECTRONIC \mathcal{E}
INDUSTRIAL APPLICATIONS AEROVOX CORPORATION
NEW BEDFORD, MASS., U. S. A. Canada: AERovox CANADA LTD., Hamilton. On Export: 41 E. 42 nd St., New York 17. N. Y.
''TRAN. LINES" (cont'd from Page33

In this manner the separation of the wires themselves is kept constant and accurate. The brown polyethylene jacket protects the line against the weather and abrasive damage. The characteristic impedance of the line is 270 ohms and its attenuation per 100 feet of length is 3.6 db at 500 mc and 5.1 db at 900 mc . Best installation practice calls for sealing the ends of this line in much the same manner as mentioned before with 300 ohm tubular line.

That is the story on a few of the different types of transmission lines and how they fit into the new UHF field. In summation it can be siad that the choice of a low loss, weather-resistant line from antenna to receiver is of special importance for the satisfactory reception of UHF television signals.

A number of accessories are on the market for use with these transmission lines. Their suitability in installations for UHF reception is yet to be fully proven in many cases. However, from the experience of installers in the Fortland area, it would seem, for one thing, that stand-off insulators should be of the 7 inch variety or longer. This is due to the desireability of keeping the transmission line as far away from sur rounding surfaces as possible.

Lightning arrestors may also be had to fit each style of transmis sion line. There have been some reports that mostlightning arrestors seriously impair the reception of UHF signals; for this reason, until further tests have been made in UHF areas, the subject of lightning arrestors will be bypassed.

The material in this article has been gathered from reports out of Portland, Oregon, and from manu facturer's literature on the equipment mentioned. We expect to have additional field reports in the near future, and at that time more detailed information on UHF antenna installations can be published.

GLEN E. SLUTZ

Set Your Own Pace With This Practical Program!
Your present knowledge of radio and proven, practical T.C.I. training can help you cash in on UHF-TV opportunities. Here is non-mathematical training that's complete. . . down-tocases. . . up-to-the-minute. Here is training you take in your spare time. Here is training that can help you on your present job! You learn TV set conversion, master antenna installation, the latest in UHF-TV, money-making short cuts and much more. You learn to trouble shoot, test and repair TV sets the only practical way.
LEARN BY DOING!
You work on a large screen, modern TV receiver furnished with the course and yours to keep.
get two weeks of field experience with one of Chicago's largest independent $T V$ servicing organizadependent T servicing organizabut by actually doing the work yourself, you get the knowledge you need to qualify for opportunities in UHF-TV SERVICING!
Age is no barrier. Many T.C.I. students are over 40 ! Write for full facts, FREE Catalog and SAMPLE LEESSON NOW!
TE 5 ? 1 COMMUNICATIONS INSTITUTE
205 W. Wacker Dr.,. Dept. PC-5, Chicago 6, III.

ELECTRONTC MARDWARE IV HINGED COVER PLASTIC BOXES

TV HARDWARE - 240 different items-in these sturdy, re-
usable Hinged Cou'er plastic boxes. Make your work bench neater, handier. Look for ask for . . . insist upon G-C hardware in the Hinged Cover Line!
buy where you see the G-C HARDWARE DISPLAY in Hinged cover boxes!

[^2] 0 回

TV SUPPLEMENTARY SHEET NO. 1

This supplementary sheet is for use as an up-to-theminute addition to your Clarostat RTV Manual. Manuals are available through your distributor or directly from Clarostat, Price $\$ 1.00$.

CLAROSTAT MFG. CO., INC. DOVER, NEW HAMPSHIRE

ARCO ELECTRONICS INC.
103 LAFAYETTE ST., N. Y. 13, N. Y.

Dollar and Sense (Continued From Page 63)

BUSINESS OUTLOOK. Today things are good at practically all levels of business, and there's enough steam in the boiler to carry this boom well into next year, according to Business Week publisher Elliott V. Bell. But there are definite signs of a recession, due either in 1953 or 1954. Production, income and employment are all at historic peaks; profit margins have been narrowing for over a year; inventories are high (except TV sets); houses are being built faster than young people are getting married; the peak of armament spending is only about six months ahead; new autos no longer sell themselves; finally, for the first time since 1929 we have a boom in industry along with world-wide weakness in commodity prices.

For a servicing business, this means it will be wise to look farther ahead than tomorrow. Avoid overconfidence. Get on safe financial ground for weathering a recession. If it doesn't come so soon, you' ve lost nothing; if it does come, you may have saved your business by looking ahead now. In General Eisenhower's own words, now is the time to restore " frugality, thrift, and efficiency' ${ }^{\prime \prime}$, in business as well as in government.

COMMUNITY TV NEWS. In Minot, North Dakota, an A-M radio station has a community TV system which it feeds with programs from itss own studio instead of taking them off the air, as no station signals are available. Remote pickups include local baseball, basketball and football games. If nothing else is available, they'll even televise their radio announcer playing records for 3 hours a day. Plans call for building a TV station eventually, to capitalize on programming experience obtained.

In other small localities, radio stations are beginning to think seriously about community TV systems of their own also, but for use in place of transmitters. Such wired systems are cheaper than construction and operation of a regular transmitter, and give listeners a choice of several good signals.

UMPIRE. A special industrial TV setup known as the TV Automatic Umpire is announced by Radio Receptor Co. of Brooklyn. The camera scans the path of each ball thrown, and associated equipment interprets the resulting signal as a strike or

TELLS HDW TO SOLVE TV TROUBLES AND ANJWERS

AUDELS TELEVISION SERVICE MANUAL covers T.V. information at your finger ends. Shows a. Shows good receiver adjustment and how to Get Sharp, Clear Pictures, How to Install Aerials -Avoid Blurs, Smears, Interference and How to Test. Explains Color Systems and Methods of Conversion. T PAYS TO K NOW Over 380 PAGES \& 225 ILLUSTRATIONS explaining operating principles of Modern Tele
 19 CHAPTERS Placement of TeleVision ReceiversTest Patterns \& Ad justments-Televi slon InterferenceInterference Traps -Televtition Antennas \& Transmission LennasystemsAntenna Installa tlon Procedure Televiston Broad-casting-Television Receiver Funda-mentas-Circuit Descriptionor TypiVislon Pleture Tubes -Projection Type Recelvers-Televislon Testing Instru-ments-Television
Servicing-Trouble Shooting - Color Television - Television Terms. GET THIS PRACTAYS FREE TRIAL

AUDEL, Publishers, 49 w. 23 rd St. N.Y Mail me postpaid for 7 Days exammation

Scientifically engineered for MAXIMUM SAFETY!

TELEVISION LIGHTNING ARRESTERS

Fastest selling lightning arresters in the
country. Precision made to assure maximum country. Precision made to assure maximum washers to eliminate necessity of stripping insulation.
Model 6113-Attach to any convenient base. Can be used indoors, too.
Model 6114-Includes metal strap
for securing to metal pipes of $1 / 2^{\prime \prime}$
to $21 / 2^{\prime \prime}$ diameter. Write Dept. PF
 for Latest Catalog

insuline

CORPORATION OF AMERICA INSULINE BUILDING - 36-02 35th AVENUE LONG ISLAND CITY, N. Y.
West Coast Branch and Warehouse
1335 South Flower Street, Los Angeles, Calif. Exelusive Canadian Sales Agents: CANADIAN MARCONI COMPANY, Toronto
ball. Flans call for demonstrations to major league ball clubs during the next spring training season.

FREDICTION. Enthusiastic DuMont sales manager Dan Halpin sees in his crystal ball three TV sets per family--one for the parents, one for the children, and one for the mother-in-law.

ROUNDS GO OUT. Less than half of 1 percent of all picture tubes sold to set manufactures are roundscreen tubes today. The rest are rectangular, with the industry standardizing for 1953 on 17, 21, 24 and 27 -inch sizes.

BEST PAPER. For reasons unknown, people are more prompt with payments for TV sets than for auto, furniture, refrigerator or stove payments. Banks and finance companies therefore consider as "the very best" the "paper'" which they hold on TV sets sold on time payments.

Estimates indicate that 2 out of 3 TV sets are sold on an installment basis, at an average debt of about $\$ 275$ per set. Putting it all together, this country still owes some $\$ 750,000,000$ on the TV sets at which it is looking today.

WHAT'S MY LINE? If I work with female patch jumpers, baby scoops, four-way barn doors and lazy boys, what would be my job? Here's a tip--they' re all listed in DuMont's new Television Equipment Components booklet. Thefemale costs $\$ 9.50$, the scoop $\$ 32.45$, the door $\$ 15$ and the boy $\$ 40$. The last three have something to do with studio lighting, but we couldn't figure out what the female patch jumper was good for.

PREVIEW TV. Now they announce a patented gadget that tantalizingly turns on a TV set for four minutes at the beginning of each half hour program, then turns it off and lights up a sign announcing how much. (usually 25¢) has gotta be put in the coin slot in order to see the rest of that program. During this freesample timethe patron can see what's on other channels too. A number of motels are reported to have signed up for installation of sets having this business-getter, on claims that it'll increase the coin take six-fold over ordinary coinoperated TV sets.

JOHN MARKUS
"ANTENNAS" (cont'd from Page31)
ing to the manufacturer, is used to eliminate interaction between the two sections of the antenna and to enable the use of a single transmission line to the TV receiver.

Channel Master's Ultra Bow with Screen Reflector (Model 403) features a bow-tie with a flat screen reflector. This antenna is pictured in Figure 14. A pair of these fan dipoles may be stacked one above the other for increased gain.

Telrex, Inc., has announced a "U UFF Corner Reflector"' (Model 600) which, it is claimed, has an average gain of 14.7 db over the UHF range. The antenna has an effective range of from 10 to 60 miles according to the manufacturer's literature.

Unclassified Types of UHF Antennas -

In addition to the antennas already described, there are a few which should be added to the general group of UHF antennas. LaPointePlascomold Corp. (Vee-D-X) has announced a UHF Colinear which, though much like a Yagi in performance, has a different physical construction. The Colinear will be used principally in fringe areas where gain is a primary consideration. The manufacturer states that this antenna will deliver a maximum gain of 16 db . He also states that although the Colinear is a "cut to frequency" antenna, it will cover 20 UHF channels with only a slight loss of gain. The UHF Colinear has four bays, each consisting of a full wave radiator and reflector. The spacing is adjusted at the factory for optimum gain at the desired channel.

Radio Merchandise Sales (RMS) has announced their Model COR which

Figure 14. Channel Master Ultra Bow With Screen Rejector, Model 403. (Sample Courtesy of Channel Master Corp.)

Figure 15. Telrex Bat Wing, Model BW-1. (Sample Courtesy of Telrex, Inc.)
consists of a folded dipole and a corner array reflector. This antenna may be obtained cut to a specific channel or for a group of channels.

Telrex, Inc., has an indoor antenna of special design which they designate as their Bat Wing, Model BW-1 (See Figure 15), for UHF and VHF reception at distances of from 5 to 10 miles. Another of their models is the " UHF Clover-V-Beam" (Model 100) which resembles a pair of figure 8's on their sides, one above the other. A photograph of the array appears in Figure 16. Allchannel reception in both UHF and VHF spectrums is claimed for this antenna, which includes some of the features of both the V dipole and the conical in its design and construction.

This completes the list of UHF antennas which have been or are now appearing on the market. The whole field of UHF antenna development is still in a state of flux and new designs are being brought forth regularly so that this listing is complete only to the extent of the data available at the time of writing.

GLEN E. SLUTZ

Figure 16. Telrex UHF Clover-VBeam, Model 100. (Sample Courtesy of Telrex, Inc.)

YOU BUILD
EIGD
KITS
IN ONE
EVENING-

22 Kits and 24 Instruments the Indusiry's most complete line of MATCHED
\qquad 5 K Multimerer tit $\$ 7.95$. 20,000 ohers / roll. TEST INSTRUMENTS!
Over $1 / 4$-million EICO In struments are now in use the world over! That's the proof of EICO's leadership in Value to the Serviceman!
For latest precision engineering, finest components, smart professional appearance, lifetime performance and rock-bottom economy - see and compare the EICO line at your jobber's today before you buy any higher-proced equipment! You'll agree with over 100,000 others that only EICO Kits and Instruments - no other - give you the industry's greatest values at lowest cost.

Write NOW for FREE latest Catalog PF-1.

Laboratory

 Precision at Lowest Cost Prices 5% highat on weis conat.
(92932 INSTRUMENTS \& KITS ELECTRONIC INSTRUMENT CO., Inc. 84 Withers Street, Brooklyn 11, N. Y.
"SHOP TALK" (Cont'd. from Page 96)

Figure 8. A Test Set-Up For Impedance Transformers.
Undoubtedly the reader will end of the transformer with a $72-$ recognize that the transformer could ohm resistor. Use the method most also be tested by using a $300-$ ohm convenient to your facilities. line and terminating the unbalanced MILTON S. KIVER

Dan't Waste valuable time waiting for a replacement-carry it in stock!

STANCOR CHOKES	$\begin{aligned} & \mathrm{C}-2325 \\ & \mathrm{C}-2326 \\ & \mathrm{C}-2327 \end{aligned}$	COVER 70\% of your TV REPLACEMENTS*
STANCOR DEFLECTION YOKES	DY-1 DY-8 DY-9	COVER 70\% of your TV REPLACEMENTS*
HORIZONTAL DEFLECTION OUTPUTS	$\begin{aligned} & A-8127 \\ & A-8128 \\ & A-8130 \end{aligned}$	COVER 45\% of your TV REPLACEMENTS*
VERTICAL DEFLECTION OUTPUTS	$\begin{aligned} & A-8112 \\ & \text { A-8 } 115 \\ & \text { A-8 } 123 \end{aligned}$	COVER 70\% of your TV REPLACEMENTS*
VERTICAL BLOCKING OSCILLATORS	$\begin{aligned} & A-81 \\ & A-81 \\ & A-81 \\ & A-81 \end{aligned}$	COVER 65\% of your TV REPLACEMENTS*

* Based on a statistical analysis of all replacement recommendations in the Stancor TV Replacement Guide. Stancor Traasformers are listed in HOWARD W. SAMS' Photofact Folders and JOHN RIDER'S Tek-Files.

Stancor's new 24-page catalog listing over 475 transformers and related components for all types of electronic opplicotions. Includes
over 100 TV units. Get your free copy from your Stoncor distrib over 100 TV units. Get your free copy from your Stancor distrib.
utor or write Stoncor direct!

STANDARD TRANSFORMER CORPORATION
3594 elston avenue, chicago
18, ILLINOIS

"UHF" (cont'd from Page 115)

are shorted to provide tuning at the frequencies of the high VHF channels.

With the selector switch in Position 2, the booster connects as an amplifier for VHF channels 2-6. The short is removed from L17 and L18 for the lower-frequency operation. The circuit shows that the booster operates the same in Positions 2 and 4 , except that the VHF antenna connects to the booster input instead of the crystal mixer output.

Position 1 (Off) turns power off for both the UHF and booster selection, and routes the VHF antenna directly to the receiver input; thus, when tuning VHF stations from which strong signals are available, the booster is out of the circuit and cannot overload receiver circuits.

One main feature of the Sutco Model 21 A is the combining of a VHF booster and a UHF converter. The input can, therefore, help out on VHF fringe work in addition to making possible UHF reception on conventional VHF receivers.

MERLE E. CHANEY

c.D's Blue Beaver

- The only electrolytic capacitor designed and built specifically for servicemen.
- 50% "safety factor" - makes allowance for changes in set caused by previous servicing, aging of components, etc.
- Eliminates costly comebacks. Millions in use!
- Write for Bulletin 200C, Department Cornell-Dubilier Elec. Corp., South Plainfield, N. J. Your local Classified Phone Directory lists your nearest C-D jobber.

[^3]
for Professional Installations and wher Interference is intense.
Precision-engineered. Incarporate a dual set of coils and condensers centertapped to ground for greater efficiency Very easy to install and balance.

Model $\#$	Interference Rejected
SW-10	10 meter band
SW-20	20 meter bond
DT	Diathermy
FM	FM
List $\$ \mathbf{2 月 5}^{\mathbf{7 5}}$	each

8E PREPARED: Keep 1 of each type of filter in your Tool Kit at all times!
for complete Grayburne Catalog and name of your neares distributor, write NOW to Dept. ZD.

GRAYBURNE
 Grayburne means Quality Electronic Components

In the Model 115 "Challenger" Tube Tester, the famous Jackson Dynamic ${ }^{\circledR}$ test principle is employed. Separate voltages are applied to each tube element. Tests can be made under actual use conditions.
A feature of this instrument is the high voltage power supply. It affords more accurate results because of high plate voltages-over 200 v . for some types of tubes.

Spare socket positions are provided for future use, thus avoiding obsolescence. Push-button and selector switch controls simplify operation. The 4 -inch-square meter is easy to read. The instrument gives complete short tests. It is applicable to over 700 types of tubes including TV amplifiers and rectifiers. The built-in roll chart is frequently revised to provide data on new tubes. This service is free for one year.

Finish is attractive Challenger Green with harmonizing knobs, meter cover, and push-buttons. Size, as of all "Challenger" instruments, is $13^{\prime \prime} \times 91 / 2^{\prime \prime} \times 51 / 2^{\prime \prime}$. Weight, 11 lbs .

> JACKSON
> ELEGTRCAL INSTRUMENT CO
> "Service Engineered" Test Equipment
> DAYTON 2, OHIO
> In Canada:
> The Canadian Marconi Co.

"TUBES" (cont'd from Page47)

7 pin miniature construction. By closely examining the inside of a 6AF4 tube, it is observed that the element structure occupies only the lower half of the tube envelope and the upper half is vacant. (See Figure 1). The reason for this, is that it was necessary to position the elements in the tube so as to maintain lead length at a bare minimum for efficient operation at UHF frequencies.

One requirement must be met for the use of a 6AF4 tube as an oscillator, and that is, the tube socket must firmly secure the tube in position and provide good connection to the pins. If the tube is not securely held, the resultant oscillator frequency may vary as much as 10 megacycles. It is recommended, therefore, that a suitable tube shield and clamping arrangement be employed on the 6AF4 tube when used in UHF applications.

Another tube recently brought on the scene is the type 6AN4. It is a triode, designed for service as a UHF mixer or amplifier. One problem in the design of UHF tuning devices has been that no RF amplification could be provided, chiefly due to the lack of a suitable tube. Preselection provided the required selectivity, and crystals provided the first detector action. However, up to this point there was an appreciable loss in signal, which was usually compensated for by the use of intermediate frequency amplifiers prior to application of the signal to the receiver's video IF stages. The 6AN4 is designed to function in the UHF tuner to provide a signal gain in the $R F$ and/or mixer circuits instead of a loss. Therefore, when a 6AN4 tube is employed in UHF tuners, it may be found that intermediate frequency amplification is not employed in the tuner. In these instances, the signal from the crystal mixer may be fed directly to the video IF circuits in the receiver. It is observed, however, that in one application of a 6AN4 tube in a UHF tuner, that a single conversion process is incorporated. In this particular unit, the UHF tuner output is fed to the VHF tuner which, in UHF position, becomes a 2 stage IF amplifier ahead of the existing video IF stages in the receiver.

[^4]tube as a mixer or RF amplifier. It will depend upon the design required for the specific application.

Charts 1 and 2 show physical and operational specifications of the BAF4 and 6AN4 type tubes. These tubes are comparatively new and their specifications do not appear in many tube manuals. They are reproduced here for your use through the courtesy of Sylvania Electric Products, Inc.

The previously described tubes are those which have been especially designed for UHF tuner applications. However, an examination of current UHF receiving devices shows that in some instances VHF receiving tubes are employed. An illustration of this is the use of a 6 J 6 twin triode as the local oscillator in a UHF tuner. In this application, the 6 J 6 operates as a push-pull, half-frequency oscillator.

Another illustration of the use of VHF type tubes in UHF application is the use of a dual triode tube, type 6BQ7, as twin local oscillators in a UHF tuner. This tuner is the preset switch type providing service on any two previously chosen UHF channels. Each triode section of the 6BQ7 functions as a separate oscillator. The fundamental frequency of either triode could be established anywhere between 200 and 300 megacycles. A harmonic tank coil, positioned closely to the fundamental tank coil, is adjusted to the second harmonic to provide the required signal to the crystal mixer for reception of UHF channels occupying the lower half of the UHF band. For signals available at the upper half of the UHF band, the harmonic tank coil is adjusted to the third harmonic of the fundamental. Thus, a tube designed primarily for lower frequency service was utilized to provide efficient performance in a UHF tuning device.

The ultimate in television receiver design will be achieved when the same tubes are used in a tuner for both VHF and UHF reception. The great strides which have been taken in tube design in recent years seem to indicate that such will be forthcoming.

"In Arizona, my ranch is well beyond the fringe area-TV reception seemed out of reach, but I found that
with a Keqency Booster I got an excellent picture.'

Eduin I. Guthman

Eduin I.
Presiden
Edwin 1. Guthman \& Co, Inc
Chicago, Illinois and Attica. Indiana

AND TECHNICALDIGEST

INDEX TO ADVERTISERS January-February 1953 Issue

+ More or Less -

It has been our usual practice to identify and describe the service activities, pictured on the cover of each issue of the PF INDEX and Technical Digest, on the following right-hand, or title, page. Because of the interest evidenced in shop layouts pictured previously, and also in view of several features apparent in the cover photograph, we are including the complete letter which accompanied the illustration.

We are indebted to Mr. Rod Harley, who operates the Rod Harley Personalized Radio \& Television Service \& Sales, 220 Seabright Avenue, Santa Cruz, California, for supplying us several illustrations of his shop. We selected one which we felt most representative (reproduced above) for cover use.

Mr. Harley's letter, detailing features of the shop layout, follows:
"I have been in the radio service business since 1932. When you brought out the PHOTOFACT service, I immediately subscribed to it and have been receiving every issue ever since, as the enclosed photograph will testify.
'We really needed your service. I have been watching, with great pleasure, the pictures of servicemen's benches on the front cover of your PF INDEX. In the past, I have seen many service benches which appeared small or crowded and poorly lighted. Having been in the same predicament up to a few weeks ago, I decided on a new bench, and the enclosed pictures will show what I came up with.
"Afew of the interesting points about the bench are:

1. There is bronze screening directly underneath the Masonite top, which extends to the rear up the back and then underneath all of the instruments.
2. Two bread boards underneath the top on which sets can be check ed when the bench is loaded; or they are handy for holding PHOTOFACT manuals during the service operation.
3. The placement of lights with the two Flex lamps at each end. These lamps can be moved to any position on the panel.
4. The entire bench is mounted on castors for various placements in the shop.
5. Heavy çonstruction employing $4 \times 4^{\prime}$ s and 2×6 's. The long spans of 13^{\prime} allow for additional instruments..just cut the required hole in the front panel and set it alongside those already there.
6. The two openings underneath the instruments to hold odds and ends in order that the bench top will be free.

7. Plenty of drawer space.

8. Large mirror at the right end for viewing television sets at the rear of the chassis.
9. Last, but not least, plenty of reserve space for additional Sams PHOTOFACT manuals.
' Hoping you like this layout as well as I do, I am

Sincerely yours, Rod Harley"

We do like it . . . we found it of extreme interest and felt that others may also want to study it.
J.R.R.

Only Sylvania tubes showed NO FAILURES after 1400 hours . . . at accelerated voltages

Exhaustive tests conducted under the supervision of an outside impartial laboratory, the United States Testing Company, showed Sylvania Picture Tubes lasted longer than any others tested.

These tests included the picture tubes of nine leading manufacturers. All tubes were placed in identical test racks and tested under identical accelerated voltages. At the end of 1400 hours, only the Sylvania

Picture Tubes showed no failures. These tests definitely establish the outstanding dependability of Sylvania Picture Tubes. They prove that these tubes will best uphold your reputation for fine performance in the sets you manufacture, sell or service. Send today for complete details about Sylvania Picture Tubes. Sylvania Electric Products Inc., Dept. 3R-1601, 1740 Broadway, New York 19, New York.

radio tubes; television picture tubes; electronic PRODUCTS; ELECTRONIG TEST EQUIPMENT; FLUORESCENT tUBES, FIXTURES, SIGN TUBING, WIRING DEVICES; LIGHT bulbs; PhOtOLAMPS; television sets

littelfuse

 means Bqual-i-ty and ser-vice INFUSES

LITTELFUSE, INC.

DES PLAINES, ILLINOIS

Ask your jobber for
Littelfuse TV
Replacement Guide

[^0]: *and ask about
 FERALOY EXTRA LONG LIFE TIPS Last 20 times as long. Price 504 each.
 PLASTIC TILE CUTTING TIPS
 Cut fast, smooth - straight lines, curves, shapes.

[^1]: Published by the publishers of RADIO-ELECTRONICS Magazine gernsback publications, inc.

[^2]: G.Q. Dept. A
 GENERAL CEMENT MFG. CO.
 903 Taylor Ave.

[^3]: CANTS IN SO. PLAINFIELD, N.J. AEW BEDFORD, WORCESTER AND CAMBRIDGE, MASS. - PROVIDENCE,

[^4]: Any number of combinations may be incorporated in a receiver employing a UHF tuner with a 6AN4

