FILING INSTRUCTIONS

PLEASE FIIE IMMEDIATELY

RULES \#553

PARTS PAGES CHANGES
73 AMS $13 \quad 73.184$ (a) and (b) revised
14 No change
15 73.184(d) revised
16 73.184(f) "
16a add General information re: new Metric Groundwave Field Strength Curves
$16 b$ add Sample Field Strength Measurement Form. If used, may
Graphs Remove old graphs 1 through 19 and replace with new graphs 1 through 19a

Note - The enclosed groundwave curves become effective on February 1, 1987 and all studies filed with FCC must use the new curves.
Remove blue page filed opposite page 7 of Part 73 TVS, also " 12aI of Part 73H

Please place this instruction sheet in front of Rules book preceding all other material. If for some reason the last preceding numbered sheet is found to be missing, inform us, and it, with amendments will be mailed inmedistely.

FILING INSTRUCTIONS

PLEASE FILE IMMEDIATELY

RULES \# 552

PARTS	PAGES	CHANGES
0	72	0.465 (a) 2nd and 4th sentence deleted; note revised; (b) revised; old (c)(1) now (e) and now on new page 72aa; (c)(2) now (c)(1) and revised; (c)(3) now (c) (2
	72 a	0.465 note added to (c)(2); (c)(4) now (c)(3); (d)(1) and (d) (3) revised
	72 aa	0.465 (d) (4) added; (e) revised
1	8	1.52 revised
	$\begin{aligned} & \mathrm{a} 24 \\ & 24 \end{aligned}$	no change was old page 24 1.115(e)(3) revised
2	75	2.933(a) last sentence added
	76	2.936 (b) and (c) paragraph numbers changed
	762	2.939(a)(1) paragraph numbers changed
	78	2.967(c) revised
	79aa	2.977(d) added. Remove blue page opposite
	a87a 88	
73AM	27 a	Should this page be missing, please file. No change
	$\begin{aligned} & 230 a \\ & 40-45 \end{aligned}$	73.38(b) note added $73.127(f)$ 2nd line, number (6) deleted
73H	9	73.1225(c) revised
	9 a	73.1225 (d) revised, remove blue page opposite
	$\begin{aligned} & 12 \mathrm{aI} \\ & 12 \mathrm{a} \mathrm{~V} \end{aligned}$	$73.1660(b) ~ a m d ~(d) ~ l a s t ~ s e n t e n c e ~ a d d e d ~$ 73.1690 (b) (1) and (2) deleted, (b) (3), (4) and (5) no
	12 V	(b) (1), (2) and (3) 73.1690(e) revised, remove blue page opposite, docket \#86-264 dated 7/14/86
74	79d	74.913(b)(3)(ii) deleted; (d) note 3 added.

Please place this instruction sheet in front of Rules book preceding all other material. If for some reason the last preceding numbered sheet is found to be missing, inform us, and it, with amendments will be malled immediately.
73.181 Introduction .
83.182 Engineeringistandards of allocation
73.183 Groundwave signals
73.184 Groundwave field strenght charts
73.185 Computation of interference and overlap
73.186 Establishment of effective field at one mile
73.188 Location of transmitters
73.189 Minimum antenna heights or field strength requirements 73.190 Engineering charts

$$
73.192(3)(1)-(i i i)
$$

SMANMAPD BROADCAST TECONICAI STANDAROS

73.182 Encineerinc standards of allocation. (a) Sections 73.21 to 73.37 inclusive, rovern ellocation of facilities in the An broancast band of 535 to $1605 \mathrm{kc} / \mathrm{s}$. Section 73.21 establishes three classes of channels in this bend, namely, clear channels, regional channels for the use of medium powered stations, and local channels for the use of low-powered stations. The classes and power of A? broadenst stations which will be assimer to the various channels are set forth in 73.?.1. the classification of the AM broadcast stations are as follows:
(1) Class I stations are dominant stations operating on clear channels with powers of not less than 10 or more than 50 kw . These stations are designed to render primary and secondary service over an extended area and at relatively long distances, hence have their primary service areas free from objectionalbe interference from other stations on the same and adjacent channels and secondary service areas free from objectionable interference from stations on the same channels. (The secondary service area of a Class I station is not protected from adjacent channel interference. However, it it is desired to make a determination of the area in which adjacent channel groundwave interference (10 kBz removed) to skywave service exists, it may be considered as the area where the ratio of the desired 50% skywave of the Class I station to the undesired groundwave of a station
10 kc removed is 1 to 4). From an engineering poin: of view, Clasj I siaich, may be divided into 3 groups and, hereafter, for tie purpose of convenience, ine 3 groups of Class I stations will be termed Class I-A, I-B or I-N in accordance with the assignment to channels allocated by $\S 73.25(a)$ or (b).
(i) The Class I station in Group I-A are those assirned to the channels allocated by Section 73.25(a). The power of these stations shall be 50 kW . The Class I stations in this group are afforded protection as follows:
(A) DAYTIME: To the $0.1 \mathrm{mV} / \mathrm{m}$ groundwave contour from stations on the same channel, and to the $0.5 \mathrm{mV} / \mathrm{m}$ groundwave contour from stations on adjacent channels.
(B) NIGHTTIME, To the $0.5 \mathrm{mV} / \mathrm{m} 50 \%$ skywave contour from stations on the same channel, and to the $0.5 \mathrm{mV} / \mathrm{m}$ groundwave contour from stations on adjacent channels.
(ii) The Class I stations in group I-B are those assigned to the channels allocated by $73.25(b)$, on which duplicate operation is permitted, that is, other Class I or Class II stations operating unlimited time may be assigned to such channels. During nightime hours in operation a Class I-N station is protected to the $100 \mathrm{uV} / \mathrm{m} 50$ percent skywave contour and a Cl ass I-B station of this group is protected to the $500 \mathrm{uV} / \mathrm{m} 50$ percent skywave contour. During daytime hours of operation Class I-B and Class I-N stations are protected to the $100 \mathrm{uV} / \mathrm{m}$ groundwave contour from stations on the same channel. Protection in given to the $500 u \mathrm{~V} / \mathrm{m}$ groundwave contour from stations on adjacent channels for both day and nightime operation. The operating powers of Class I stations on these frequencies shall be not less than 10 kN nor more than 50 kIV .
(iii) In Alaska there is a third group of Classl stations, designated as ClassI-N. These station operate on channels allocated by 73.25(a) or Section $73.25(b)$ with a minimum power of 10 kW and antenna efficiency of 175 mV / m for 1 kN . Stations operating on these channels in Alaska which have not been designated as Class $I-N$ stations in response to licensee request will continue to be condidered as Class II stations. During daytime hours a Class $I-N$ station receives protection to the $100 \mathrm{uV} / \mathrm{m}$ groundwave contour from cochannel stations. During nithttime hours a Class I-N station receives protection to the $100 \mathrm{uV} / \mathrm{m} 50$ percent skywave contour from cochannel stations. protection is given to the $500 \mathrm{uV} / \mathrm{m}$ groundwave contour from stations on adjacent channels for both day and nighttime operation.

Note: In the Report and Order in mm Docket No. 83-807, the Commission designated 15 stations operating on U.S. clear channels as Class I-N stations. Eleven of these stations already have Class I-N facilities and are to be protected accordingly. Permanent designation of the other four stations as Class $I-N$ is conditioned on their constructing minimum Class I-N facilities no later than December 31, 1989. During this period, until such facilities are obtained, temporary designation as Class I-N stations shall be applied and calculations involving these stations should be based on existing facilities but with an assumed power of 10 klN . Therefore, these stations are to be protected based on their actual Class I-N facilities. If any of these stations does not obtain Class I-N facilities in the period specified, it is to be protected as a Class II station based on its actual facilities. These four stations may increase pow®r to 10 kW without regard to the impact on Class II co-channel stations. However, increases by these stations beyond 10 k (N (or by existing Class I-N stations beyond their current power level) are subject to applicable protection requirements for co-channel ClassuI stations. Other stations not on the original list but which meet applicable requirements may obtain Class I-N status by seeking such designation from the Commission. If a power increase or other change in facilities by a station not on the original list is required to obtain minimum Class I-N facilities, any such application shall meet the interference protection requirements applicable to a Class I-N proposał on the channel.
(2) Class II stations are secondary to stations which operate on clear channels with powers not less than 250 watts nor more than 50 kW , except that Class II-A stations shall not operate nighttime with less than 10 kW , and Class II-B stations coming within Section 73.21(a)(2)(ii)(C) shall not operate with nighttime power exceeding 1 kW . Class II stations are required to use directional antennas or other means to avoid causinf: interference within the normally protected service areas of Class I stations or other Class II stations. (For special rules concerning Class II-A stations, see Section 73.22.) These stations normally render primary service only, the area of which depends on the geographical location, power, and frequency. This may be relatively large but is limited by an subject to such interference as may be received from Class I stations. However, it is recommended that Class II stations be so located that the interference received from other stations will not limit the service area to greater than $2.5 \mathrm{mV} / \mathrm{m}$ groundwave contour nighttime and $0.5 \mathrm{mV} / \mathrm{m}$ groundwave contour daytime, which are the values for the mutual protection of this class of stations with other stations of the same class. There are three exceptions:
(i) Class II-A stations are normally protected at night to the limit imposed by the co-channel Class I-A station;
(ii). Class II-B stations coming within Section 73.21(a)(2)(ii)(D) are or Class $I-N$ station or the higner limit, any, imposed by previously authorized facilities of other stations: and
(iii) Class II-B stations coming within Section 73.21(a)(2)(ii)(C) are normally protected at nighttime to their $10 \mathrm{mV} / \mathrm{m}$ groundwave contour, or the higher limit, if any, imposed by previously authorized facilities of other stations.
(3) Class III stations operate on regional channels and normally render primar service to the larger cities and the rural area contiguous thereto. They operate with powers not less.than 0.5 kW and not more than 5 kW and are normally protected to the $2500 \mathrm{uV} / \mathrm{m}$ groundwave contour nighttime and the $500 \mathrm{uV} / \mathrm{m}$ groundwaver contour daytime; provided, that Class IV stations in the 48 conterminous United States may, during nighttime hours, treat all stations assigned in Alaska, Hawaii, Puerto Roco and the U.S. Virgin Islands on $1230,1240,1340,1400,1450$ and 1490 kHz as if they were Class IV stations.

Note 1 - Class III stations in Alaska, Hawaii, Puerto Roco and The U.S. Virgin Islands are permitted a maximum power of 50 kW day or night. Use of such higher power is subject to amendment of the U.S.Mexican Agreement and final disposition of NARBA. Pending such amendment, the maximum power permitted stations in these localities may not exceed 15 kW . Stations in the above-names places that are reclassified from Class IV to Class III stations under 73.26(b) shall not be authorized to increase power to levels that, under the RSS procedure and the 50% exclusion rule in $73.182(0)$, would increase the nighttime interferencefree limit of cochannel Class IV stations in the conterminous U. S.

Note 2 - Stations that were classified as Class III-B, before the distinctions between Class III-A and Class III-B stations were removed, shall-insofar as AM applications filed before March 10, 1986 are con-cerned--remain normally protected during nighttime hours to their 4000 $u V / m$ contour.
(4) Class IV stätions operate on local channels, normally rendering primary service or rural areas, contiguous thereto, with powers not less than 0.25 kW , nor more than 1 kW , except as provided in 73.21(c) (1) (for restrictions on daytime power of stations near the Mexican border see Note 2 in 73.21. Such stations are normally protected to the 0.5 mVm contour daytime. On local channels the separation required for the daytime protection shall also determine the nightime seperation. Where directional antennas are employed daytime by Class IV stations operating with more than 0.25 kW power, the seperation required shall in no case be less than those necessary to afford protection, assuming nondirectional operation with 0.25 kW . In no case will $0.25 \mathrm{k}!\mathrm{V}$ or greater nightime power be authorized to a station unable to operate nondirectionally at 0.25 kW in the daytime. The actual nightime limitation will be calculated.

NOTE: The following approximate method may be used. It is based on the assumption of 0.25 wavelength antenna height and $88 \mathrm{mv} / \mathrm{m}$ at one mile effective field for 250 watts power, using the 10% skywave field intensity curve of Figure 2 of \$7\%.190. Zones defined by circles of various radị specified below are drawn about the desired station and the interfering 10% skywave signal from each station in a given zone is considered to he the value tabulated below. The effective interferinc 10% skywave signal is taken to be the RSS value of all signals originating within these zones. (Stations beyond 500 miles are not considered.)

these zones.	Stations beyond		
Inner Radius		Outer Radius	lo percent skywave signal (mv/m)
ZONE		-	0.10
A	60	60	.12
B	80	80	.14
C	100	250	.16
D	250	350	.14
E	350	450	.12
F	450	500	.10
G			

Where the power of the interfering station is not 2.50 watts, the 10% skyway ci c nal should he adjusted by the square root of the ratio of the power to 250 watt:.
(b) The c:lass of any station is determined by the channel assignment, -the power, and the field intensity contour to which it renders service free of interference :rom other st,ations as determined by these standards. No station will be permitued . 1 . change to a class normally protected to a contour of less intensity than the cront.jur to which the station actually renders interference-free service. Any station of a cilass nommally protected to a contour of less intensity than that to which the station actually render interference-free service, will be automaticlly reclassified according to the class normally protected, the minimum consistent with ti:: pwer and channel assignment. Likewise, any station to which the interference is reduced so that service is rendered to a contour normally protected for a higher class will be automatically changed to that class if consistent with its power and channel assignment.
(c) Reserved. :
(d) When a station is already limited by interference from other stations to a contour of higher value than that normally protected for its class, this contour shall be the established standard for such station with respect to interference from all other stations.
(e) The several classes of broadcast stations have in general three service areas; namely, primary, secondary, and intermittent service area. (see 873.11 for the definitions of primary, secondary, and intermittent service areas.) Class I stations render service to all three service areas. Class II stations render service to a primary area but the secondary and intermittent service areas may be materially limited or destroyed due to interference fromother stations depending on the station assignments involved. Class III and IV stations usually have only primary service araas as interference from other stations generally prevents any secondary service and may limit the intermittent service area. However, complete intermittent service may be obtained in many cases depending on the station assignments involved.
(f) The groundwave signal strength required to render primary service is $2 \mathrm{nV} / \mathrm{m}$ for commulies with populations of 2,500 or more; and $0.5 \mathrm{mV} / \mathrm{m}$ for communities with populations of less then 2,500. See 73.184 for curves showing distance to various groundwav field strength contours for different frequencies and ground conductivities and also see 73.183, "Groundwave Signals."

$$
\vec{k} 3.132(\mathrm{k})-73.182(\mathrm{k})
$$

($)^{\circ}$) The FCC will authorize the directional antenna for a Class IV station for daytime operation only with power in excess of $0.25 \mathrm{k}!$. computing the desrees of protection which such antenna will aford, the radiation produced by this antenna will be assumed to be no less, in and direction, than that which would result from non-directional operation using a single element of the directional arrat with 0.25 kW .
(h) All classes of brcadcast stations have primary service areas subject ta limitation by fading and noise, and interference from other stations to the contours set out for each class of station.
(i) Secondary service is delivered in the areas where the skywave for 50% or more of the time has a field strength of $0.5 \mathrm{mV} / \mathrm{m}$ or greater (0.1 mVm in Alaska).

It is not considered that satisfactory secondary service can be rendered to cities unless the skywave approaches in value the Froundwave required for primary service. The secondary service is necessarily subject to some interference and extensive fadinf whereas the primary service area of a station is subject to no objectionable interference or fading. Class I stations only are assigned on the basis of rendering secondary service.

NOTE: Standards rave not been established for objectionable fading as such standards wouid necessarily depend on the receiver characteristics which have been changed considerably in this regard during the last several years. Selective fading causing audio distortion and the signal fading below the noise level are the objectionable characteristics of fading on modern design receivers. The AVC circuits in the better designed modern receivers in general maintain the audio output sufficiently corstant to be satisfactory during most fading.
(j) The irtermittent service is rendered by the groundwave and begins at the outer boundary of the primary service area and extends to the value of signal where it may be considered as having no further service value. This may be down to onily a few microvolts in certain areas and up to several millivolts in other areas of high: noise level., interference from other stations, or objectionable fading at right. The intermittent service area may vary widely from day to right and generally varies from time to time as the name implies. Only Class I stations are assigned for protection from interference from other stations into the intermittent service area.
(k) Sectior 3.23 proviles that the several classes of broadcast stations may be licensed to operate unlimited time, limited time, daytime, sharing time, ard specified hours, with full explanation given in the section (see §3.38 for restriction on limitei time authorizations.
1/9/85 73A:S -5-

$$
\$ 73.182(k)(1)-73.182(0)(4)
$$

(1) Section 73.24 sets out the general requirements for obtaining an increase in facilities of a licensed station and for a new station. Sections 73.24 (b) and 73.37 concern the matter of interference that may be caused by a new assignment or increase in facilities of an existing assignment.
(m) (Reserved.)
(n) (Reserved.)
(o) Objectionable interference from a station on an adjacent channel shall be considered to exist to a station when, at the normally protected contour of a desired station, the field strength of the ground wave of an undesired station operating on an adjacent channel (or the root-sum-square value of the ffeld strengths of two or more such undesired stations operating on the same adjacent channel) exceeds a value specified in paragraph (u) of this section.
(1) With respect to the root-sum-square values of interfering field intensities referred to herein, except in the case of Class IV stations on local channels, calculation is accomplished by considering the signals in order of decreasing magnitude, adding the squares of the values and extracting the square root of the sum, excluding those signals which are less than 50% of the RSS value of the higher signals already included.
(2) The RSS value will not be considered to be increased when a new interfering signal is added which is less than 50% of the RSS value of the interference from existing stations, and which at the same time is not greater than the mallest signal included in the RSS value of interference from existing stations.
(3) It is recognized that application of the above " 50% exclusion" method of calculating the RSS interference may result in some cases in anomalies wherein the addition of a new interfering signal or the increase in value of an existing interfering signal will cause the exclusion of a previously included signal and may cause a decrease in the calculated RSS value of interference. In order to provide the Commission with more realistic information regarding gains and losees in service (as a basis for determination of the relative merits of a proposed operation) the following alternate method for calculating the proposed RSS values of interference will be employed wherever applicable.
(4) In the cases where it is proposed to add a new interfering signal which is not less than 50% of the RSS value of interference from existing stations or which is greater than the smallest signal already included to obtain this RSS value, the RSS limitation after addition of the new signal shall be calculated without excluding any signal previously included. Similarly, in cases where it is proposed to increase the value of one of the existing interfering signals which has been included in the RSS value, the RSS limitation after the increase shall be calculated without excluding the interference from any source previously included.
(5) If the new or increased ignal proposed in such cases in ultinately authorized, the RSB values of interference to other etations affected will thereafter be calculated by the " 50% excluaion" mothod without regard to this alternate method of calculation.
(6) Examples of RSB interforence calculation:
(1) Existing interforences:

$$
\begin{aligned}
& \text { Station No. } 1--1.0 \mathrm{mv} / \mathrm{m} \\
& \text { Station No. } 2-0.60 \mathrm{mv} / \mathrm{m} \\
& \text { Station No. } 3-0.59 \mathrm{mv} / \mathrm{m} \\
& \text { Station No. } 4
\end{aligned}
$$

The RSS value from Nos. 1,2 and 3 is $1.31 \mathrm{mv} / \mathrm{m}$: therefore interference from No. 4 is excluded for it is less than 50% of $1.31 \mathrm{mv} / \mathrm{m}$.
(11) Station A receives interference from:

Station No. 1 -- $1.0 \mathrm{mv} / \mathrm{m}$
Station No. $2-0.60 \mathrm{mv} / \mathrm{m}$
Station No. 3 -- $0.59 \mathrm{mv} / \mathrm{m}$
It 1s proposed to add a new limitation- $-0.68 \mathrm{~min} / \mathrm{m}$. This is more than 50% of $1.31 \mathrm{mv} / \mathrm{m}$, the FSS value of Nos. 1,2 and 3 . The RSS value of Station No. 1 and the proposed station vould be $1.21 \mathrm{mv} / \mathrm{m}$ which is more than twice as large as the limitation from Station No. 2 or No. 3. However, under the above provision the now signal and the three existing interferences are nevertheleas calculated for purposes of comparative studies, resulting in an RgS value of $1.47 \mathrm{mv} / \mathrm{m}$. However, if the proposed station is ultimately authorized, only No. 1 and the now signal are included in all aubsequant calculations for the reason that Nos. 2 and 3 are leas than 50% of $1.21 \mathrm{mV} / \mathrm{m}$, the RSB value of the new Iganl and Ho. 1 .
(111) Station A receives interference from:

> Btation No. $1--1.0 \mathrm{mv} / \mathrm{m}$
> Station No. $2-0.60 \mathrm{mv} / \mathrm{m}$
> Station No. $3-0.59 \mathrm{mv} / \mathrm{m}$

No. 1 proposes to increase the linitation it ispomen on Station A to $1.21 \mathrm{mv} / \mathrm{m}$. Although the limitations from tations Nom. 2 and 3 are less than 50% of the $1.21 \mathrm{mv} / \mathrm{m}$ limitation, under the above provision they are nevertheless included for comparative studies, and the RSS limitation is calculated to be $1.47 \mathrm{mv} / \mathrm{m}$. However, if the increase proposed by 6 tation Fo. 1 is authorized, the FBB value then calculated is $1.21 \mathrm{mv} / \mathrm{m}$ because Stations Nos. 2 and 3 are excluded in view of the fact that the limitations they impose are less than 50% of $1.21 \mathrm{mv} / \mathrm{m}$.
(p) Objectionable interference from a station on the same channel shall be raidered to exist to a station when, at the field intensity contour specified in paragraph (v) of this section with respect to the class to which the station belongs, the field intensity of an interfering station (or the root-aum-square ralue of the field intensities of two or more interfering stations) operating on the same channel, exceeds for ten (10) percent or more of the time the value of the permissible interfering signal set forth opposite such class in paragraph (v) of this section.
(q) Objectionable interference from a station on an adjacent channel shall he considered to exist to a station when, at the normally protected contour of a aesired station, the field intensity of the ground wave of an madesired station operating on an adjacent channel (or the root-sum-square value of the field intensities of two or more such undesired stations operating on the eame adjacent
(r) For the purpose of estimating the coverage and the interfering effects of stations in the absence of field strength measurements, use shall be made of Figure 8 of 73.190 , which describes the estimated effective field for one kilowatt power input of simple vertical omnidirectional antennas of various heights with ground systems of at least 120 one-quarter wave-length radials. Certain approximations, based on the curve or other appropriate theory, may be made when other than such antennas and ground systems are employed, but in any event the effective field to be employed shall not be less than given in the following:

Class of Station

In case a directional antenna is employed, the interfering signal of a broadcasting station will vary in different directions, being greater than the above values in certain directions and less in others depending upon the design and adjustment of the directional antenna system. To determine the interference in any direction the measured or calculated radiated field (unabsorbed field intensity at 1 kilometer from the array) must be used in conjunction with the appropriate propagation curves. (See 73.185 for further discussion and solution of a typical directional antenna case.)

Note - For Class III stations in Alaska, Hawaii, Puerto Rico and the U.S.Virgin Islands, $241 \mathrm{uV} / \mathbb{M}$ shall be used.
(s) The existence or absence of objectionable groundwave interference from stations on the same or adjacent channels shall be determined by actual measurements made in accordance with the method described in 73.186 , or, in the absence of such measurements, by reference to the propagation curves of 73.184 . The existence or absence of objectionable interference due to skywave propagation shall be determined by reference to the appropriate formulas set forth in 73.190 and the appropriate propagation curves in Figure la, lb or Figure 2 of 73.190.
(t) Computation of Skywave Field Strength Values: (l) Fifty Percent Skywave Field Strength Values (Clear Channel). In computing the fifty percent skywave field strength values of a Class I-A or I-B clear channel station, use shall be made of Figure la of 73.190 entitled "Skywave Field Strength" for 50 percent of the time. In computing the fifty percent Skywave field strength values of a Class I-N station (in Alaska), use shall be made of the formula in 73.190(c)(1) for deriving such values:
(2) Ten Percent Skywave Field Strength Values (Clear Channel). In computing the 10% skywave field strength for stations on clear channels on a single signal basis, the curve in Figure la and the formula in 73.190 (b) (2) shall be used unless one or both of the stations being considered are in Alaska: in such a case, the formula included in 73.190 (c) (2) should be used to calculate the 10% values for both stations. In computing the 10% skywave field strength for stations on clear channels on an RSS basis, the formula in 73.190(c)(2) shall be used in computing the RSS of a station in Alaska. In computing the RSS of a station not in Alaska, the formula in 73.190 (c) (2) shall be used in computing the contribution from stations in Alaska, and the formula in $73.190(\mathrm{~b})(2)$ shall be used in computing contributions from stations not in Alaska.
(3) Regional and Local Channels. In computing the 10% skywave field strength values for stations on a regional channel, on an RSS basis, the formula in 73.190(c)(2) shall be used in computing the RSS of a station in Alaska. In computing the RSS of a station not in Alaska, the formula in 73.190 (c)(2) shall be used in computing the contribution from stations in Alaska, and the appropriate curve in Figure 2 shall be used in computing contributions from stations not in Alaska. (In the case of Class IV stations on local channels, simplifying assumptions may be made. See Note in paragraph (a)(4) of this section.)
(4) Determination of Angles of Departure. In calculating skywave field strength for stations on all channels, the pertinent vertical angle shall be determined by use of the formulas in 73.190(d).
(u) The distance to any soecified groundwave field intensity contour for any frequency may be determined from the aopropriate curves in 73.184 entitled "rround wave field Intensity vs. Distance."
(v) Protected service contours and permissible interference signals for broadcast stations are as follows (for Class I and Class II-A stations, see paragraph (a) of this section:

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Class of station} \& \multirow[t]{2}{*}{Class of channet used} \& \multirow[t]{2}{*}{Permissible power} \& \multicolumn{2}{|l|}{Signal strength contour of area protected from objectionable} \& \multicolumn{2}{|l|}{Permissible interfering signal on same channel \({ }^{2}\)} \\
\hline \& \& \& Day \({ }^{\text {a }}\) \& Night \& Day \& Night * \\
\hline I-A....................... \& Clear \& \multirow[t]{2}{*}{\begin{tabular}{l}
50 kW \(\qquad\) \\
10 kW to 50 kW \(\qquad\)
\end{tabular}} \& \multirow[t]{4}{*}{\begin{tabular}{l}
SC \(100 \mu \mathrm{~V} / \mathrm{m}\). AC \(500 \mu \mathrm{~V} /\) m. \\
SC \(100 \mu \mathrm{~V} / \mathrm{m}\). AC \(500 \mu \mathrm{~V} /\) m. \\
SC \(100 \mu \mathrm{~V} / \mathrm{m}\). AC \(500 \mu \mathrm{~V} /\) m. \\
\(500 \mu \mathrm{~V} / \mathrm{m}\).
\end{tabular}} \& \multirow[t]{4}{*}{\begin{tabular}{l}
SC \(500 \mu \mathrm{~V} / \mathrm{m}(50 \%\) skywave).' AC 500 \({ }^{\mu}{ }^{\mu}{ }^{5}\). \\
SC \(500 \mu \mathrm{~V} / \mathrm{m} 50 \%\) skywave. AC \(500 \mu \mathrm{~V} /\) \(\mathrm{m}^{3}\). \\
SC \(100 \mu \mathrm{~V} / \mathrm{m} 50 \%\) skywave. AC \(500 \mu \mathrm{~V} /\) m. \\
\(500 \mu \mathrm{~V} / \mathrm{m}^{3}\).
\end{tabular}} \& \multirow[t]{2}{*}{\begin{tabular}{l}
\(5 \mu \mathrm{~V} / \mathrm{m}\). \\
\(5 \mu \mathrm{~V} / \mathrm{m}\)
\end{tabular}} \& \multirow[t]{2}{*}{\(25 \mu \mathrm{~V} / \mathrm{m}\).

$25 \mu \mathrm{~V} / \mathrm{m}$.}

\hline I-B.............. \&do \& \& \& \& \&

\hline I-N... \&do..................... \& 50 kW \qquad \& \& \& $5 \mu \mathrm{~V} / \mathrm{m}$. \& $5 \mu \mathrm{~V} / \mathrm{m}$.

\hline II-A... \&do \& 0.25 kW to 50 kW (daytime). 10 kW to 50 kW (nightime). \& \& \& $25 \mu \mathrm{~V} / \mathrm{m}$. \& $25 \mu \mathrm{~V} / \mathrm{m}$.

\hline H-B. \& \multirow[t]{2}{*}{\[
\left\lvert\, $$
\begin{array}{|c|}
\hline d o . ~
\end{array}
$$\right.

\]} \& \multirow[t]{2}{*}{| 0.25 kW to 50 kW |
| :--- |
| 0.25 kW to 1 kW |} \& \multirow[t]{2}{*}{| $500 \mu \mathrm{~V} / \mathrm{m}$. |
| :--- |
| $500 \mu \mathrm{~V} / \mathrm{m}$ |} \& \multirow[t]{2}{*}{$2,500 \mu \mathrm{~V} / \mathrm{m}^{3}{ }^{3}{ }^{8}$} \& \multirow[t]{2}{*}{......do ...} \& \multirow[t]{4}{*}{\[

$$
\begin{aligned}
& 125 \mu \mathrm{~V} / \mathrm{m} . \\
& 500 \mu \mathrm{~V} / \mathrm{m} . \\
& \text { Not prescribed. } \\
& \text { Do. }
\end{aligned}
$$
\]}

\hline II-C. \& \& \& \& \& \&

\hline H1-D...
H-S. \&do..................... \& 0.25 kW to 50 kW (daytime) \& $500 \mu \mathrm{~V} / \mathrm{m}$. \& Not prescribed. \&do. \&

\hline II-S. \&do.................... \& 0.25 kW to 50 kW (daytime) less than 0.25 (nighttime). \& $500 \mu \mathrm{~V} / \mathrm{m} . ~$ \&do............... \& do. \&

\hline M1........................... \& \multirow[t]{2}{*}{Regionat \qquad Local \qquad} \& \multirow[t]{2}{*}{| 0.5 kW to 5 kW . \qquad |
| :--- |
| 0.25 to 1 kW \qquad |} \& \multirow[t]{2}{*}{| $500 \mu \mathrm{~V} / \mathrm{m}$. \qquad |
| :--- |
| $500 \mu \mathrm{~V} / \mathrm{m}$. |
| $500 \mu \mathrm{~V} / \mathrm{m} . ~$ |} \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{$125 \mu \mathrm{~V} / \mathrm{m}$. Not prescribed.}

\hline IV. \& \& \& \& \& \&

\hline
\end{tabular}

${ }^{1}$ When a station is already limited by interference from other stations to a contour of higher values than' that normally protected for its class, this contour shall be the established standard for such station with respect to inferference from all other stations.
${ }_{2}$ For adjacent channet, see paragraph (w) of this section.
Groundwave.

- Skywave theld strength for 10 percent of more of the time.
${ }^{5}$ These values are with respect to interference from all stations except Class $1-B$, which stations may cause interference to a field strength contour of higher value. However, it is recommended that Class if stations be so located that the interference received from Class i-8 stations will not exceed these values. If the Class il stations are limited by Class I-B stations to higher values, then such values shall be the established standard with respect to protection from all other stations.

See paragraph (a)(4) of this section and Note 1 to paragraph (a)(3).
${ }_{-}^{7}$ Class $t-A$ srations on channels reserved for the exclusive use of one station during nightime hours are protected from co-channel interference on that basis.
${ }^{8}$ Applies only to nighttme operations of Class $\| 1-\mathrm{C}$ stations coming within $\$ 73.21$ (a) (iit), and to the operation of limited-lime Class $\|$ I-D stations during nightime hours other than those during which they were authorized to operate as of June 1, 1980.
Rico and the US. Virgin Istands as it sthey
Note.-SC=Same charnel. $\mathrm{AC}=$ Adjacent channel.
(w) The following table is to be used for determining the minimum ratio of the field intensity of a desired to an undesired signal for interference free service. In the case of a desired groundwave signal interfered with by two or more skywave signals on the same frequency, the RSS value of the latter is used. From the table, it is apparent that in many cases stations oper ating on channels 10 and 20 kilocycles apart may be operated with antenna systems side by side or otherwise in proximity without any indications of interference if the interference is defined only in terms of permissable ratios listed in this paragraph. As a practical matter, serious interference problems may arise when two or more stations with the same general area are operated on channels 10,20 and 30 kilohertz apart.

${ }_{\text {Feparat }}{ }^{\text {Frequency }}$			Desired 50 percent skywave
desired to undesires signals	Desired groundwave		
			to unde -
	Undesired	Undesired	sired 10
	ground-	10 percent	percent
	wave	skywave	skywave
$0 \mathrm{kHz} \mathrm{------}$	20:1	20:1	20:1
10 kHz -...-	1:1	1:5	(1)

(1) The secondary service area of a Class 1 station is not protected from zdjacent channel interference. However, if it is desired to make a determination of the area in which adjacent channel groundwave interference (10 kHz removed) to skywave service exists, it may be considered as the area where the ratio of the desired 50 percent skywave of the Class I station to the undesired groundwave of a station 10 kc removed is 1 to 4 .
(x) Two stations, one with a frequency twice that of the other, should not be assigned in the same ground wave service area unless special precautions are taken to avoid inter ference from the second harmonic of the lower frequency. In selecting a frequency, consideration should be given to the fact that occasionally the frequency assignment of two stations in the same area may bear such a relation to the intermediate frequency of some broadcast receivers as to cause so-called "image" interference. However, since: this can usually be rectified by readjustment of the interme diate frequency of such receivers, the Commission in general will not take this kind of interference into consideration in allocation problems.
(y) Two stations operating with synchronized carriers and carrying the identical program will have their goundwave service subject to some distortion in areas where the signals from the two stations are of comparable intensity. For the purpose of estimating coverage of such stations areas in which the signal ratio is between 1 to 2 to 1 will not be considered ashaving satisfactory service.

NOTE: Two stations are considered to be operated synchronously when the carriers are maintained within one -fifth of a cycle per second of each other and they transmit identical programs.

$$
\$ 73.183(a)-73.103(c)
$$

§73.183 Groundwave sigrals.-(a) Interference that may be caused by a proposed assignment or an existing assignment during day time hours should be determined pihen possible, by measurements on the frequency involved or on andther frequency over the same terrain and by means of the curves in $\$ 73.184$ entitled "Ground Wave Field strength versus Distance".
(b) In dermining interference based upon field intensity measurements, it is necessary to do the following: First, establish the outer boundary of the protected service area of the desired station in the direction of the station that may cause interference to it. Second, at this boundary, measure the interfering signal from the undesired station. The ratio of the desired to the undesired signal given in $\$ 73.182(w)$ should be applied to the measured signals and if the required ratio is observed, no objectionable interference is foreseen. When measurements of both the desired and undesired stations are made in one area to determine the point where objectionable interference from groundwave signals occur or to establish other pertinent contours, several measurements of each station shall be made within a few miles of this point or contoaz. The effective field of the antennas in the pertinent directions of the stations must be established and all measurements must be made in accordance with $\S 73.186$.

NOTE: International agreement in the matter of standards for good engineering practice concerning determination of ground conductivity by field intensity measurements has not deen arrived at as contemplated by NARBA, and the United States has no established procedures for reciprocal consideration of such measurements with any country except Canada. Therefore, groundwave field intensity measurements will not be accepted or considered for the purpose of establishing that interference to a station in a foreign country other than Canada, or that signal intensity at the border thereof, would be less than indicated by the application of the ground conductivity maps and 'engineering standards contained in this part and applicable international agreements. Satisfactory groundwave measurements offered for the purpose of demonstrating values of conductivity other than those shown by Figure M-3 of $\$ 73.190$ in problems involving protection of Canadian stations or the Canadian border will be considered only if, after review thereof, the appropriate agency of the Canadian government notifies the Commission that they are acceptable for such purpose.
(c) In all cases where measurements taken in accordance with the requirements are not available, the groundwave strength must be determined bu means of the pertinent map of ground conductivity and the groundwave curves of field strength, versus distance. The conductivity of a given terrain may be determined by measurements of any broadcast signal traversing the terrain involved. Figure M3 (see Note 1) shows the conductivity throughout the United States by general areas of reasonably uniform conductivity. When it is clear that only one conductivity value is involved, Figure R3 of 73.190, which is a replica of Figure M3 and contained in these standards, may be used; in all other situations Figure M3 must be employed. It is recognized that in areas of limited size or over a particular path, the conductivity may vary widely from the values given; therefore, these maps are to be used only when accurate and acceptable measurements have not been made. (For determinations of interference and service requiring a knowledge of ground conductivities in Mexico, Annex XIV-C to the Agreement Between the United States of America and the United Mexican States Concerning Radio Broadcasting in the Standard Broadcasting Band ($535-1605 \mathrm{kHz}$), Mexico, D.F., 1968, may be used. Similarly, for values of ground conductivity in Canada, a map issued by the Department of Communications, Government of Canada entitled "Ground Conductivity Map," dated January, 1980, may be used. Where different conductivities appear in the maps of two countries on opposite sides of the border, such differences are to be considered as real, even if they are not explained by geophysical cleavages. A uniform ground conductivity of 10 millimhos per meter may be assumed for Cuba.).
3.183(c)(Note 1) - 73.183(d)

NOTE 1. Figure R3 in 73.190 is a replica of Figure M3. Figure M3, which is incorporated in these Standards by reference, was derived by indicating ground conductivity values in the United States on the United States Albers equal area projection map (based on standard parallels 29-1/2 ${ }^{\circ}$ and $45-1 / 2^{\circ}$; North American datum; scale 1/2,5000,000).

NOTE 2. Copies of "Ground Conductivity Map" May be obtained by contacting the Chief, Broadcast Applications Engineering Division, Department of Communications, 300 Slater Street, Ottawa, Ontario KIA OC8, Canada. Cost is $\$ 100.00$, Canadian. Remittance should be made by check or money order payable to Receiver General for Canada.
(d) Example of determining interference by the graphs in 73.184:

It is desired to find whether objectionable interference exists between a 5 kW Class III station on 990 kHz and a 1 kW Class III station on the adjacent channel of 1000 kHz . The spacing between the two stations is 165 kilometers and both stations operate nondirectionally with antenna systems which produce an effective field of $282 \mathrm{mV} / \mathrm{kW}$ at one kilometer. (See 73.185 in case of use of directional antennas.) The conductivity at each station and of the intervening terrain is determined to be $6 \mathrm{mS} / \mathrm{m}$. The protection to Class III stations during daytime is to the $500 \mathrm{uV} / \mathrm{m}$ $(0.5 \mathrm{mV} / \mathrm{m})$ contour. The distance to the $0.5 \mathrm{mV} / \mathrm{m}$ contour of the 1 kW station is determined by the use of the appropriate curve in 73.184, Graph 12. Since the curve is plotted for $100 \mathrm{mV} / \mathrm{m}$ at 1 kilometer, to find the distance to the $0.5 \mathrm{mV} / \mathrm{m}$ contour of the 1 kW station, it is necessary to determine the distance to the $0.1773 \mathrm{mV} / \mathrm{m}$ contour.

$$
(100 \times 0.5 / 282=0.1773)
$$

Using the 6 mSm curve, the estimated radius of the $0.5 \mathrm{mV} / \mathrm{m}$ contour is seen to be 64.5 kilometers. Subtracting this distance from the distance between the two stations leaves 100.5 kilometers. Using the same propagation curve, the signal from the 5 kW station at this distance is seen to be $0.251 \mathrm{mV} / \mathrm{m}$. Since a protection ratio of one to one, desired to undesired signal applies to stations separated by 10 kHz , the undesired signal could have a value up to $0.5 \mathrm{mV} / \mathrm{m}$ without causing objectionable interference. Consequently, there would be no mutually objectionable interference between the two stations. Had the undesired signal been found to be greater than $0.5 \mathrm{mV} / \mathrm{m}$, objectionable interference would then have existed. For co-channel operation, a desired to undesired signal ratio of no less than 20 to 1 is required to avoid causing objectionable interference.
(e) Where a signal traverses a path over which different conductivities exist, the distance to a particular groundwave field intensity contour shall be determined by the use of the equivalent distance method. Reasonably accurate results may be expected in determining field intensities at a distance from the amtenna by application of the equivalent distance method when the unattenuated field of the antenna, the various ground conductivities and the location of discontinuities are known. This method considers a wave to be propagated across a given conductivity according to the curve for a homogeneous earth of that conductivity. When the wave crosses from a region of one conductivity into a region of a second conductivity, the equivalent distance of the receiving point from the transmitter changes abruptly but the field intensity does not. From a point just inside the second region the transmitter appears to be at that distance where, on the curve for a homogeneous earth of the second conductivity, the field intensity equals the value that occurred just across the boundary in the first region. Thus the equivalent distance from the receiving point to the transmitter may be either greater or less than the actual distance. An imaginary transmitter is considered to exist at that equivalent distance. This technique is not intended to be used as a means of evaluating unattenuated field or ground conductivity by the analysis of measured data. The method to be employed for such determinations is set out in $\$ 73.186$.
(f) An example of the equivalent distance method follows: It is desired to determine the distance to the $0.5 \mathrm{mV} / \mathrm{m}$ and 0.025 mV / m contours of a station on a frequency of 1000 kHz with an inverse distance field of $100 \mathrm{mV} / \mathrm{m}$ of one kilometer being radiated over a path having a conductivity of $10 \mathrm{mS} / \mathrm{m}$ for a distance' of 20 kilometers. $.5 \mathrm{~ms} / \mathrm{m}$ for the next 30 kilometers and $15 \mathrm{mS} / \mathrm{m}$ thereafter. Using the appropriate curve in 73.184 , Graph 12 at a distance of 26 kilometers on the $10 \mathrm{mS} / \mathrm{m}$ curve, it is seen that the field strength is $2.86 \mathrm{mV} / \mathrm{m}$. On the $5 \mathrm{mS} / \mathrm{m}$ curve, the equivalent distance to this field strength is seen to be 14.9 kilometers, which is $5.1(20-14.9)$ kilometers nearer to the transmetter. Continuing on this propagation curve, the distance to a field strength of $0.5 \mathrm{mV} / \mathrm{m}$ is seen to be 36.4 kilometers. The actual length of the path travelled, however, is $41.5(36.4+5.1)$ kilometers. Continuing on this propagation curve to the conductivity change at 44.9 ($50-5.1$) kilometers, it is seen that the field strength is $0.257 \mathrm{mV} / \mathrm{m}$. On the $15 \mathrm{mS} / \mathrm{m}$ propagation curve, the equivalent distance to this field strength is seen to be 94 kilometers, which changes the effective path length by 49.1 (94-44.9) kilometers. Continuing on this propagation curve, the distance to a field strength of $0.025 \mathrm{mV} / \mathrm{m}$ is seen to be 231 kilometers. The actual length of the path travelled, however is 187 ($231+5.1$ - 49.1) kilometers.

73.184(a) - (b) note

73.184 Groundwave field strength graphs. (a) Graphs 1 to 19 show, for each of $\overline{20}$ frequencies, the computed values of groundwave field strength as a function of groundwave conductivity and distance from the source of radiation. The groundwave field strength is here considered to be that part of the vertical component of the electric field which has not been reflected from the ionosphere nor from the troposphere. These 20 families of curves are plotted on log-log graph paper and each is to be used for the range of frequencies shown thereon. The curves themselves were generated by straight-line connection of the plotted computed values of groundwave field strength as a function of distance. The computed and plotted points are sufficiently numerous and closely spaced that the error introduced by straight-line interpolation is negligible. Computations are based on a dielectric constant of the ground (referred to air as unity) equal of 15 for land and 80 for sea water and for the ground conductivities (expressed in $m s / m$) given on the curves. The curves show the variation of the groundwave field strength with distance to be expected for transmission from a vertical antenna at the surface of a uniformly conducting spherical earch with the groundwave constants shown on the curves. The curves are for an antenna power of such efficience and current distribution that the inverse distance (unattenuated) field is $100 \mathrm{mV} / \mathrm{m}$ at 1 kilometer. The curves are valid at distances large compared to the dimensions of the antenna for other than short vertical antennas.
(b) The inverse distance field ($100 \mathrm{mV} / \mathrm{m}$ divided by the distance in kilometers) corresponds to the groundwave field intensity to be expected from an antenna with the same radiation efficiency when it is located over a perfectly conducting earth. To determine the value of the groundweve field intensity corresponding to a value of inverse distance field other than $100 \mathrm{mV} / \mathrm{m}$ at $1 \mathrm{Kilometer}$, oil these graphs by the desired value of inverse distance field at l kilometer divided by 100; for example, to determine the groundwave field strength for a station with an inverse distance field of $2700 \mathrm{mV} / \mathrm{m}$ at 1 kilometer, simply multiply the values given on the charts by 27. The value of the inverse distance field to be used for a particular antenna depends upon the power input to the antenna, the nature of the ground in the neighborbood of the antenna, and the geometry of the antenna. For methods of calculating the interrelations between these variables and the inverse distance field, see "The Propagation of Radio Waves Over the Surface of the Earth and in the Upper Atmosphere." Part II, by IIr. K. A. Torton, Proc. I.R.E., Vol. 25, September 1937, pp. 1203-1237.

NOTE -- The computed values of field strength versus distance used to plot Graphs 1 to 19 are available in tabular form. Copies of these tabulations may be ordered from the FCC official copy center whose name and address may be obtained by calling or writing the Consumer Affairs Office, P ederal Communications Commission, Washington, D.C. 20554. (202)632-7000.
(c) At sufficiently short distances (say less than 35 miles), such that the curvature of the earth does not introduce an additional attenuation of the waves, the graphs were computed by means of the plane earth formulas given in the paper, "The propagation of Radio Waves Over the Serface of the Earth and in the Upper Atmonphere", Part I, by Mr. K. A. Norton, Proc. I.R.E., Vol. 24, October 1936, pp.1367-1387. At larger distances the additional attenuation of the waves which is introduced by the effect of the curvature of the earth was introduced by the methods outlined in the papers, "The Diffraction of Electromagnetic Waves from an Electrical Point Source round a Finitely Conducting Sphere, with Applinations to Radiotelegraphy and the Theory of the Rainbow," by Balth van der Pol and H. Rremmer, Part I, Phil. Mag., Vol. 24, p. 141, July 1937, Part II, Phil. Mag., Vol. 24, p. 825, Suppl., November 1937, "Ergebnisse einer Theorie ueber die Fortpflanzung elektron magnetischer Wellen ueber eine Kugel endlicher Leitfahigkeit," by Balth van der Pol and H. Bremmer, Hochfrequenztechnik and Elektroakustick, Band 51, Heft 6, June 1938, "Further Note on the Propagation of Radio Waves over a Finitely Conducting Spherical Earth," by Balth van der Pol and H. Bremmer, Phil Mag., Vol. 27, p. 261, March 1939. In order to allow for the refraction of the radio waves in the lower atmosphere due to the variation of the dielectric constant of the air with height above the earth, a radius of the darth equal to $4 / \mathrm{s}$ the actual radius was used in the computations for the effect of the earth's curvature in the manner suggested by C. R. Burrows, "Radio Propagation over Spherical Earth", by Proc. I.R.E., May 1935; i.e., the distance corresponding to a given value of attenuation due to the curvature of the earth in the absence of air refraction was multiplied by the factor $(4 / 3) 2 / 3=1.21$ The amount of this refraction varies from day to day and from season to season, depending on the air mass conditions in the lower atmosphere. If k denotes the ratio between the equivalent radius of the earth and the true radius, the following table gives the values of k for several typical air masses encountered in the United States.

Air mass type	k	
	Sumper	Winter
Tropical Gulf-T ${ }_{\text {c }}-$----	1.53	1.43
Polar Continental-P c^{---}	1.31	1.25
Superior-S-- -..--. --. -	1.25	1.25
Average		

It is clear from this table that the use of the average value of $k=4 / 3$ is justified in obtaining a single correction for the systematic effects of atmospheric refraction. (21FR2947)
(d) Provided the value of the dielectric constant is near 15, the curves of Graphs 1 to 19 may be compared with experimental data to determine the appropriate values of the ground conductivity and the inverse distance field intensity at 1 kilometer. This is accomplished by simply plotting the measured fields on transparent log-log graph paper similar to that used for Graphs 1 to 19 and superimposing this chart over the graph corresponding to the frequency involved. The log-log graph sheet is then shifted vertically until the best fit is obtained with one of the curves on the graph; the intersection of the inverse distance line on the graph with the 1 kilometer abscissa on the chart determines the inverse distance field strength at lilometer. For other values of dielectric constant, the following procedure may be used for a determination of the dielectric constant of the ground, conductivity of the ground and the inverse distance field strength at 1 mile. Before the results of such determinations are submitted to the F.C.C., they must be converted to equivalent metric units. Graph 20 gives the relative values of groundwave field strength over a plane earth as a function of the numerical distance p and phase angle b. On graph paper with coordinates similar to those of. Graph 20 , plot the measured values of field strength as ordinates versus the corresponding distances from the antenna expressed in miles as abscissae. The data should be plotted only for distances greater than one wavelength (or, when this is greater, fives times the vertical height of the antenna in the case of a single element, i.e., nondirectional antenna or 10 times the spacing between the elements of a directional antenna) and for distances less than $50 /(\mathrm{fmhz}) 1 / 3$ miles (i.e., 50 miles at 1 Mhz). Then, using a light box, place the sheet with the data plotted on i.t over the sheet with the curves of Graph 20 and shift the data sheet vertically and horizontally (making sure that the vertical lines on both sheets are parallel) until the best fit with the data is obtained with one of the curves on Graph 20. When the two sheets are properly lined up, the value of the field strength corresponding to the intersection of the inverse distance line of Graph 20 with the 1 mile abscissa on the data sheet is the inverse distance field strength at l mile, and the values of the numerial distance at 1 mile, pl , and of b are also determined. Knowing the values of b and $p l$ (the numerical distance at 1 mile), we may substitute in the following approximate formulas to determine the appropriate values of the ground conductivity and dielectric constant.

$$
\underset{(1)}{x=\left(\pi / p_{1}\right) \cdot(R / \lambda)_{1} \cos b}
$$

$(R / \lambda)_{1}=$ Number of wavelengths in 1 mile.
$\sigma_{\text {e.m.u. }}=\left\{\chi^{f M H z} / 17.9731\right) \cdot 10^{-14}$
(2)
$\sigma_{\text {n.m.u. }}=$ Conductivity of the ground
expressed in electromagnetic units. ...
$\mathrm{MHIz}=$ frequency expressed in megacycles. $e=x \tan b-1$ $\epsilon=$ dielectric constant of the ground referred : to air as unity.

First solve for x by substituting the known volucs of $p_{\text {, }}$ (R / λ) t and cos b
in equation (1). Equation (2) may then be solvcd-for and equation (3) in equation (1). Equation (2) may then be solvod for and equation (3) for ϵ. At distances greater than $50 / \mathrm{fmz}$ miles the curves of Graph 20 do not give the correct relative values of field strength since the curvature of the earth weakens the field more rapidly than these plane earth curves would indicate. Thus, nno attempt should be made to fit experimental data to these curves at the larger distances.

NOTE -- For other values of dielectric constant, use can be made of the computer program which was employed by the FCC in calculating the points used for plotting the curves in Graphs 1 to 19. A printout of this program can be ordered from the FCC official copy center whose name and address may be obtained by calling or writing the Consumer Affairs Office, Federal Communications Commission, Washington, D.C. 20554, (202) 632-7000.

$$
73.184(e)-(f)
$$

(e) At sufficiently short distances (say less than 35 miles at broadcast frequencies), such that the curvature of the earth does not introduce an additional attenuation of the waves, the curves of Graph 20 may be used for determining the ground wave field intensity for transmitting and receiving antennas at the surface of the earth for any radiated power, frequency, or set of ground constants in the following manner: -First, lay off the straight inverse distance line corresponding to the power radiated on transparent log-log graph paper similar to that of Graph 20, labelling the ordinates of the chart in terms of field intensity, and the abscissae in terms of distance. Next, by means of the formulas given on Graph 20, calculate the value of the numerical distance, p, at 1 mile , and the value of b. Then superimpose the log-log chart over Graph 20, shifting it vertically until the inverse distance lines on both charts coincide and shifting it horizontally until the numerical distance at 1 mile on Graph 20 coincides with 1 mile on the log-log graph paper. The curve of Graph 20 corresponding to the calcujated value of b is then traced on the log-log graph paper giving the field intensity versus distance in miles.
(f) This paragraph consists of the following Graphs I to 19a and 20.

NOTE -- Graphs will not be published in the CFR. Copies are available by calling or writing the Consumer Affairs Office, Federal Communications Commission, Washington, D.C. 20554, Telephone: (202) 632-7000.

National Association of Broadcasters

This package contains a complete set of all graphs published by the FCC in 73.184. These graphs have been printed using original materials generated by FCC computers. Great care has been taken to assure accuracy of reproduction.

These graphs and graph paper should not be copied. Office copiers introduce geometric distortions which will affect accuracy. Copies for submission to the FCC and station files should only be made after all data have been plotted.

The Field Strength Measurement Form on the next page may be reproduced for use in taking measurements.

Additional sets of graph paper may be purchased from NAB Services. Call 800-368-5644.

GENERAL REQUIREMENTS FOR MEASUREMENTS*

All measurements should be made during the daylight hours in the absence of interference, and special temporary authority may be required prior to the commencement of measurements for a new authorization. For established stations, the FCC Rules permit considerable flexibility in operation during periods of making antenna system field strength measurements.

It is FCC policy that the measurement observations to be recorded and utilized as a basis of analysis of the inverse distance radiation values are those observed with the field strength meter oriented towards the station. The maximum indication can occur when the meter is oriented away from the transmitting source. This phenomenon can be caused by many factors including null depth on the measured radial. These factors vary from local effects surrounding or adjacent to the measuring point, nonuniform conditions inherent in the propagation path and can be affected by the position of the observation point on a rapidly changing portion of the directional pattern.

A record must be kept of the measurement data, including each point number, the field strength observations, dates and times of the measurements, the pattern under investigation, a description of each point location, the name of the individual taking the measurements, the general weather conditions, the field strength instrument utilized and the date of its last calibration. A sample form is provided for tabulating the field measurement data.

Graphical Analysis

The inverse distance field or unattenuated field strength at a reference distance kilometer (1 km) is the field strength predicted at that distance from the transmitting antenna if the earth were to behave as a perfect conductor. As the wave energy travels away from the antenna, the unattenuated field strength reduces by the inverse pro-
portion to the distance from the antenna. For example, if the value of the unattenuated field at 1 km is 100 mV / m, its value at 2 km will be one-half that value or $50 \mathrm{mV} / \mathrm{m}$, and at 10 km , its value will be one-tenth of the 1 km value or $10 \mathrm{mV} / \mathrm{m}$. The effects of attenuation on field strength are shown by families of curves for field strength vs distance for various values of ground conductivity. These graphs are included in Section 73.184 of the FCC Rules. The actual field will be diminished by this inverse distance factor as well as the losses attributable to ground conductivity.

The FCC, in its conversion to the metric system, redetermined the frequency curves. In addition, the FCC used its computer program and determined additional conductivity values for each frequency chart. The dielectric constant for all curves except for sea water, is 15 . For sea water the calculations are based upon a dielectric constant of 80 .

There are 19 sets of frequency dependent propagation graphs that encompass the frequencies from 540 to 1610 kHz . Curves for each frequency group are drawn on two graphs. One graph shows the uppermost portion with conductivity curves normalized for $100 \mathrm{mV} / \mathrm{m} / \mathrm{km}$ from one-tenth to 50 km and the bottom portion reflects the conductivity curves for 10 to 5000 km . The second graph is an expanded version of the uppermost portion of the first graph to allow for easier determination of the inverse distance field and conductivity values for measurements less than 50 km from the transmitting antenna.

After the distances from the transmitting antenna to each of the measuring points have been determined and tabulated opposite the observed field strength values, the measured field strength values can be plotted on log-log graph paper. The ordinate (vertical scale) is field strength, expressed in mV / m, and the abscissa (horizontal scale) is distance in kilometers. Data can be plotted on groundwave field intensity graph paper available through NAB. This paper has the same logarithmic scale as the expanded version of the FCC curves.

Plotting Data

For the logarithmic coordinate system, (log-log graph paper) the inverse distance field strength plots as a straight line. The conductivity curves are drawn for the case of an inverse distance field of $100 \mathrm{mV} / \mathrm{m}$ at 1 km , but their use is not limited to that value. If an inverse distance field strength is $200 \mathrm{mV} / \mathrm{m}$ (twice the reference value) or 50 mV / m (one-half the reference number) or some other value at 1 km , and if all points on the curve are multiplied by the ratio of the actual inverse distance field strength to $100 \mathrm{mV} / \mathrm{m}$, the effect would be the equivalent of moving the curves by that amount on the logarithmic coordinate paper. This is the basis on which field strength measurements are analyzed. The appropriate conductivity
values for the frequency involved are made by matching the abscissa of the data with that of the FCC graph and sliding the ordinate information data vertically to obtain the "best fit"' of measured field strength values to the conductivity curves. By this method, both the unattenuated field at 1 km and the conductivity values along the radial path can be determined. The use of a light table will assist in aligning and moving the two sheets of paper.

An individual attempting to analyze measurement data for the first time and without the benefit of experienced supervision can find this a frustrating experience. One approach is to take $\log -\log$ graph paper for the appropriate frequency (either the regular or expanded scale) and plot the measurement point values normalized to $100 \mathrm{mV} /$ km . For example, if the non-directional 0.25 kW operation is expected to possess an RMS field at 1 kW of 91 mV / m (70 degrees [0.194 of a wavelength] electrical height tower with a normal ground system-see Figure 8, Section 73.190 of the FCC Rules), it has a field $91 / 100$ less than the FCC log-log conductivity graph. Therefore, multiply all values (divide all values if the expected field
is greater than $100 \mathrm{mV} / \mathrm{m}$) of the measurement data by the ratio of $100 / 91$ to normalize it to $100 \mathrm{mV} / \mathrm{m}$. Plot the normalized data. The plotted values can be viewed in relation to the conductivity values if the assumption of the inverse distance field is correct. If the normalized data appear to be over the inverse distance line, then the radiation value is higher than assumed and conversely if the normalized data appear normally low, the assumed radiation value selected is too high.

This approach can be useful when the non-directional measurements out to 3 km in the various directions have been taken and a quick evaluation of the conductivity values/radiation efficiency around the site is desired. It also will help to assess whether or not the non-directional radiation pattern is being influenced by other adjacent towers in the directional antenna system.

[^0]

KILOMETERS FROM ANTENNA

KILOMETERS FROM ANTENNA

KILOMETERS FROM ANTENNA

O

KILOMETERS FROM ANTENNA

KILOMETERS FROM ANTENNA
\bigcirc
 KILOMETERS FROM ANTENNA
MILLIVOLTS/METER
KILOMETERS FROM ANTENNA

5000

$+$

$$
73.185(a)-(e)
$$

73.185 Computation of interference and overlap. (a) Measured values of radiation are not to be used in calculating overlap, interference, and coverage.
(1) In the case of an antenna which is intended to be non-directional in the horizontal plane, and ideal non-directional radiation pattern shall be used in determining interference, overlap, and coverage, even if the antenna is not actually nondirectional.
(2) In the case of an antenna which is directional in the horizontal plane, the radiation which shall be used in determining interference, overlap, and coverage is that calculated pursuant to 73.150 or 73.152 , depending on whether the station has a standard or modified standard pattern.
(3) In the case of calculation of interference or overlap to (not from) a foreign station, the notified radiation shall be used, even if the notified radiation differs from that in paragraphs (a)(1) or (2) of this section.
(b) For signals from stations operating on clear channels, skywave interference shall be determined from the appropriate formulas and Figures la (or lb) and 6 a contained in 73.190.
(c) For signals from stations operating on regional and local channels, skywave interference is determined from the formulas and Figures 2 and $6 a$ of 73.190. (Certain simplifying assumptions may be made in the case of Class IV stations on local channels. See note to 73.182(a)(4).
(d) The formulas in 73.190(d) depicted in Figure 6a of 73.190, entitled "Angles of Departure versus Transmission Range" are to be used in determining the angles in the vertical pattern of the antenna of an interfering station to be considered as pertinent to transmission by one reflection. To provide for variation in the pertinent vertical angle due to variations of ionosphere height and ionosphere scattering, the curves 4 and 5 indicate the upper and lower angles within which the radiated field is to be considered. The maximum value of field strength occurring between these angles shall be used to determine the multiplying factor to apply to the 10% skywave field intensity value determined from the formulas in 73.190 (b)(2), 73.190 (c)(2), of Figure 2 of 73.190 as appropriate. The multiplying factor is found by dividing the maximum radiation between the pertinent angles by $100 \mathrm{mV} / \mathrm{m}$. (Curves 4 and 5 include factors which represent the variation due to variation of the effective height of the E-layer and scattering.)
(e) Example of the use of skywave curves for stations operating on clear channels: Assume a Class II station with which interference may be expected is located at a distance of 724 kilometers from a proposed Class II station. The critical angles of radiation as determined from Figure 6 a of 73.190 are 9.60 and 16.3°. If the vertical pattern of the antenna of the proposed station, in the direction of the other station, is such that between the angles of 9.6° and 16.3° above the horizon the maximum radiation is $260 \mathrm{mV} / \mathrm{m}$ at one kilometer, the value of the 50% field, as read from Figure la of 73.190 , is multiplied by 2.6 to determine the interfering field intensity of the location in question. In order to obtain the value of the 10% field, this value is then increased by 9 dB. For calculations involving Class I-N stations, Figure 1 b and 13 dB are employed instead of Figure la and 8 dB .
(f) For stations operating on regional and local channels, interfering skywave field intensities shall be determined in accordance with the procedure specified in (d) of this section and illustrated in (e) of this section, except that Figure 2 of 73.190 is used in place of Figure la and lb and the formulas of 73.190. In using Figure 2 of 73.190 , one additional parameter must be considered, i.e., the variation of received field with the latitude of the path.
(g) Figure 2 of $\$ 73.190$, " 10 percent Skywave Signal Range Chart," shows the signal as a function of the latitude of the transmission path, which is defined as the geographic latitude of the mid-poinit between the trassmitter and receiver. When using Figure 2 of $\$ 75.190$, latitude 35° should be used in case the mid-point of the path lies below 35° North and latitude 50° should be used incase the mid-point of the path lies above 50° North.
(h) In the case of an antenna which is intended to be non-directional in the horizontal plane, the vertical distribution of the relative fields should be computed pursuant to section 73.160. In the case of an antenna which is directional in the horizontal plane, the vertical pattern in the great circle direction towards the point of reception in question must first be calculated. In cases where the radiation in the vertical plane, in the pertinent azimuth, contains a large lobe at a higher angle than the pertinent angle for one reflection, the method of calculating interference will not be restricted to that just described, but each such case will be considered on the basis of the best knowledge available.
(i) Example of the use of skywave curves for stations operating on regional and local channels: It is desire to determine the amount of interference to a Class III station at Portland, Oregon, caused by another Class III station of Los Angeles, California. The Los Angeles station is radiating a signal of $901 \mathrm{mV} / \mathrm{m}$ at 1 kilometer, in the horizontal plane, in the great circle direction of Portland, using a 0.5 wavelength antenna. The distance is 1328 kilometers. From Figure 6a of 73.190 , the upper and lower pertinent angles are 70° and 3.5° and, from Figure 5 of 73.190 , the maximum radiation within these angles is 99% of the horizontal radiation or $892 \mathrm{mV} / \mathrm{m}$ at one kilometer. The mid-point latitude of the transmission path is 39.80 N and, from Figure 2 of 73.190 , the 10% skywave field at 1328 kilometers is $0.050 \mathrm{mV} / \mathrm{m}$ for $100 \mathrm{mV} / \mathrm{m}$ radiated. Multiplying by $892 / 100$ to adjust this value to the actual radiation gives $0.277 \mathrm{mV} / \mathrm{m}$ as to the interfering signal strength. At 20 to 1 ratio, the limitation to the Portland station is to the $5.5 \mathrm{mV} / \mathrm{m}$ contour.
(j) When the distance is large, more than one reflection may be involved and due consideration must be given each appropriate vector in the vertical pattern, as well as the constants of the earth where reflection takes place between the transmitting station and the service area to which interference may be caused.
(k) In performing calculations to determine permissible radiation from stations operating pre-sunrise or post-sunset in accordance with $\S 73.99$, calculated diurnal factors will be multiplied with the values of skywave signals for such stations obtained from Figure la or Figure 2 of $\S 73.190$.
(1) The diurnal factor is determined using the time of day at the mid-point of path between the site of the interfering station and the point at which interfegence is being calculated. Diurnal factors are computed using the formula $D_{f}=a+b F+c F^{2}+d F^{3}$ where: D_{f} represents the diurnal factor, F is the frequency in MHZ, a, b, c, and d are constants obtained from the tables in paragraph (k)(2). A diurnal factor greater than one will not be used in calculations and interpolation is to be used between calculated values where necessary. For reference purposes, curves for pre-sunrise and post-sunset diurnal factors are contained in Figures 12 and 13 of $\$ 73.190$.

7/24/85 73AMS -18-
(2) Constants used in calculating diurnal factors for the pre-sunrise and postsunset periods are contained in paragraph (k)(2)(i) and (ii) rspectively. The columns labeled $T_{m p}$ represents the number of hours before and after sunrise and senset at the path midpoint.
(i) Presunrise Constants

$\mathrm{T}_{\text {m }}$	a	b	c	d
-2...............	1.3084	. 0083	-. 0155	. 0144
-1.75...........	1.3165	-. 4919	. 8011	--. 1884
-1.5............	1.0078	. 0286	. 1488	-. 0452
-1.25..........	. 7773	. 3751	-. 1911	. 0738
-1...............	. 6230	. 1547	. 2854	-. 1008
-.75.............	. 3718	. 1178	. 3632	-. 1172
-.6..............	2151	. 0737	. 4167	-. 1413
-.25.....	. 2027	-. 2580	. 7269	-. 2577
SR...........	. 1504	-. 2325	. 5374	-. 1729
+.25............	. 1057	-. 2092	. 4148	-. 1238
+5...............	. 0642	-. 1285	. 2583	-. 0699
+.75............	. 0446	-. 1002	. 1754	-. 0405
+1...............	. 0148	. 0135	. 0462	. 0010

(ii) Post Sunset Constants

T_{m}	!	b	c	d
1.75 9495	-. 0187	. 0720	-. 0290
1.5...............	. 7198	. 3583	-. 2288	. 0811
1.25.	. 6756	. 1518	. 0279	-. 0163
1.0......	. 5486	. 1401	. 0952	-. 0288
.75......	3003	. 4050	-. 0961	. 0256
.5......	. 1188	. 4281	-. 0799	. 0197
.25.....	. 0382	. 3706	-. 0673	. 0171
SS.	. 0002	. 3024	-. 0540	. 0086
-. 25.	. 0278	. 0458	. 1473	-. 0486
-.5.......	. 0203	. 0132	. 1166	-. 0340
-.75.....	. 0152	-. 0002	. 0786	-. 0185
-1.0....	-. 0043	. 0452	-. 0040	. 0103
-1.25....	. 0010	. 0135	. 0103	. 0047
-1.5.........	. 0018	. 0052	. 0069	. 0042
-1.75...........	-. 0012	. 0122	-. 0076	. 0078
-2.0............	-. 0024	. 0141	-. 0141	. 0091

$$
73.186(\mathrm{a})(1)-(2)(\mathrm{ii})
$$

73.186 Establishment of effective field at one mile. (a) Section 73.45 provides that certain minimum field strengths are acceptable in lieu of the required minimum physical heights of the antennas proper. Also, in other situations, it may be necessary to determine the effective field. The following requirements shall govern the taking and submission of data on the field strenath produced:
(1) Beginning as near to the antenna as possible without including the induction field and to provide for the fact that a broadcast antenna is not a point source of radiation (not less than one wave length or 5 times the vertical height in the case of a single element, i.e., nondirectional antenna or 10 times the spacing between the elements of a directional antenna), measurements shall be made on eight or more radials, at intervals of approximately 0.2 kilometers up to 3 kilometers (1.87 miles) from the antenna, at intervals of approximately 1 kilometer from 3 kilometers (1.87 miles) to 10 kilometers (6.2 miles) from the antenna, at intervals of approximately 3 kilometers from 10 kilometers (6.2 miles) to 25 or 34 kilometers (15.5 miles or 20 miles) from the antenna, and a few additional measurements if needed at greater distances from the antenna. Where the antenna is rurally located and unobstructed measurements can be made, there shall be as many as 18 measurements on each radial. However, where the antenna is located in a city where unobstructed measurements are difficult to make, measurements shall be made on each radial at as many unobstructed locations as possible, even thought the intervals are considerably less than stated above, particularly within 3 kilometers of the antenna. In cases where it is not possible to obtain accurate measurements at the closer distances (even out to 8 or 10 kilometers due to the character of the intervening terrain), the measurements at greater distances should be made at closer intervals. (It is suggested that "wave titlt" measurements may be made to determine and compare locations for taking field strength measurements, particularly to determine that there are no abrupt changes in ground conductivity or that reflected waves are not causing abnormal strengths.
(2) The date required by subparagraph (1) of this paragraph should be plotted for each radial in accordance with either of the two methods set forth below:
(i) Using log-log coordinate paper, plot field intensities as ordinate and distance as abscissa.
(ii) Using semi-log coordinate paper, plat field intensity times distance as ordinate on the \log scale and distance as abscissa on the linear scale.

$$
\text { §73.186ta)(3) -73.186(b) }(7)
$$

(3) However, regardless of which of the methods in paragraph (a) (2) of this section is employed, the proper curve to be drawn throught the points plotted shall be determined by comparison with the curves in 73.184 as follows: Place the sheet on which the actual points have been plotted over the appropriate Graph in 73.184 , hold to the light i.f necessary and adjust until the curve most closely matching the points is found. This curve should then be drawn on the sheet on which the points were plotted, together with the inverse distance curve corresponding to that curve. The fieldat kilometer for the radial concerned shall be the ordinate on the inverse distance curve at 1 kilometer.
(4) When all radials have been analyzed in accordance with paragraph (2)(3) of this section, a curve shall be plotted on polar coordinate paper from the fields obtained, which gives the inverse distance field pattern at 1 kilometer. The radius of a circle, the area of which is equal to the area bounded by this pattern, is the e.ffective field. (See 73.14).
(5) In analyzing the results of a partial proof of performance as defined in $\$ 73.154$ when the data are insufficient for independent graphical analysis, either of two analysis methods may be used. In such cases, either the arithmetic average or logarithmic average of the ratios of field strength at each measurement point along each radial to the corresponding field strength in the latest complete proof of performance may be utilized to establish the inverse distance fields. (The logarithmic averape for each radial is the antilogarithm of the mean of the logarithms of the ratios of field strength (new to old) for each measurement location along a given radial.)
(6) The antenna power of the station shall be maintained at the authorized level during all field measurments. The nower determination will be made using the direct method as described in 73.51(a) with instruments of acceptable accuracy soecified in 73.1215.
(b) Complete data taken in conjunction with the field intensity measurements shall be submitted to the Commission in affidavit form including the following:
(1) Tabulation by number of each point of measurement to agree with the map required in (2) below; the date and time for each measurement, the field strength (E) the distance from the antenna (D) and the product of the field strengthand distance (ED) (if data for each radial are plotted or semi-logarithmic paper, see above) for each point of measurement.
(2) Map showing each point of measurement numbered to agree with tabuLation required above.
(3) Description of method used to take fieldstrength measurements.
(4) The family of theoretical curves used in determining the curve for each radial properly identified by conductivity and dielectric constants.
(5) The curves drawn for each radial and the field strength pattern.
(6) The antenna resistance at the operating frequency.
(7) Antenns current or currents maintained during field streng th measure-
ments.
3/13/86 73AMS -20-
73. 187 Linitation on daytime radistion. (a)(1) Except as othermise orovided in paragraphs (a)(2) and (3) of this section, no authorization will be granted for Class II facilities if the proposed facilities would radiate during the period of critical houea (the two hours after local sunrise and the two hours before local sunset) toward any point on the $0.1 \mathrm{mV} / \mathrm{m}$ contour of a co-channel U.S. Class, I-A or I-B station, at or below the pertinent verticalangle determined from Curve 4 of Fioure 6a of 73.190, values in excess of those obtained as provided in oaragraph (b) of this section.
(2) The limitation set forth in paragraoh (a)(1) of this section shall not aooly in the following cases:
(i) Any Class II facilities authorized before November 30, 1959; or
(ii) For Class II stations authorized before November 30, 1959, subsequent changes in facilities which do not involve a change in frequency, an increase in radiation toward any point on the $0.1 \mathrm{mV} / \mathrm{m}$ contour of a co-channel U.S. Class I-A or I-B station, or the move of transmitter site materially closer to the 0.1 mVm contour of such Class I-A or I-B station.
(3) If a Class II station authorized before November 30, 1959, is authorized to increase its daytime radiation in any direction toward the $0.1 \mathrm{mV} / \mathrm{m}$ contour of a comehnnel Class I-A or I-B station (without a change in frequency or a move of transmitter site materially closer to such contour), it may not during the two hours after local sunrise or the two hours before local sunset, radiate in such directions a value exceeding the higher of;
(i) The value radiated in such directions with facilities last authorized before November 30, 1959, or
(ii) The limitation specified in paragranh (a) (i) of this section.
(b) To obtain the maximum permissible radiation for a Class II station on a given frequency (f_{kc}) from $640 \mathrm{kc} / \mathrm{s}$ through 990 kHz multiply the radiation value obtained for the given distance and azimuth from the 500 kc chart (Figure 9 of $\$ 73.190$) by the appropriate interpolation factor shown in the K500 column of paragraph (c) of this section; and multiply the radiation value obtained for the given distance and azimuth from the 1000 kHz chart (Figure 10 of $\$ 73.190$) by the appropriate interpolation factor shown in the Kl000 column of paragraph (c) of this section. Add the two products thus obtained; the result is the maximum radiation value applicable to the Class I station in the pertiant directions. For frequencies from 1010 kHz to 1580 kHz obtain in a similar manner the proper radiation values from the 1000 kc and 1600 kc charts (Figures 10 and 11 of \$73.190), multiply each of these values by the appropriate interpolation factor in the $K^{\prime} 1000$ and $K^{\prime} 1600$ coliums in paragraph (c) of this section, and add the products.

$$
\$ 73.187(c)-{ }^{〔}(2)
$$

(c) Interpolation factors.
(1) Frequencies below 1000 kHz

$f \mathrm{kHz}$	K 500	K 1000	fkHz	K 500	K 1000
640	0.720	0.280	780	0.440	0.560
650	0.700	0.300	800	0.400	0.600
660	0.680	0.320	810	0.380	0.620
670	0.660	0.340	820	0.360	1
680	0.640	0.360	830	0.340	0.0 .0
690	0.620	0.380	840	0.320	0.680
700	0.600	0.400	850	0.300	0.700
710	0.580	0.420	860.	0.280	0.720
720	0.560	0.440	870	0.260	0.740
730	0.540	0.460	880	0.240	0.760
740	0.520	0.480	890	0.220	0.780
750	0.500	0.500	900	0.200	0.800
760	0.480	0.520	940	0.120	0.880
770	0.460	0.540	990	0.020	0.980

(2) Frequencies above 1000

$$
873.189(\mathrm{a})-573.189(\mathrm{~b})(2) \text { (iii) }
$$

\$73.189 Kinimom antenn heifhts or field strength requirements. -(a) section 573.45 requires that all applicants for new, additional, or different broadeast fucilities and all licensees requesting authority to move the tranamitter of an existing station; shall specify a radiating system, the efficiency of which complies with the requirements of good engineering practice for the class and power of the atation.
(b) The specifications deemed necescary to meet the requirements of good engineering practice at the present atate of the art are set out in detall below.
(1) The ilcensee of a standard broadcast station requesting a change in power, time of operstion, frequency, or tranamitter location mast also request autnority to install a new antenn aystem or to make changes in the existing antenna system whicn will meet the minimum height requirements; or submit evidence that the present antenna aystem meets the minimum quirements with respect to field intensity, defore favomble consideration will be given thereto. (See §73.106). In the event it is proposed to maxe substantial changes in an existing antenna system, the changes shall be such as to meet the minimum heieht requirements or will be permitted subject to the submisaion of field intensity masurements showing that it meets the mindmum requiremate with respect to effective field intensity.
(2) These minimum actual physical vertical heichte of antennas permitted to be installed are shown by curves A, B, and C of Figure 7 of 573.190 as follows:
(i) Class IV stations and stations in Alaska, Hawaii, Puerto Roco and the U.S.Virgin Islands on 1230, 1240, 1340, 1400, 1450 and 1490 kHz that were formerly Class IV and were redesignated as Class III pursuant to Section 73.26 (b), 45 meters or a minimum effective field strength of $241 \mathrm{mV} / \mathrm{m}$ for $1 \mathrm{~kW}(121 \mathrm{mV} / \mathrm{m}$ for 0.25 kW$)$. (This height applies to a Class IV station on a local channel only. Curve A shall apply to any Class IV stations in the 48 conterminous states that are assigned to Regional channels).
(ii) Class I-N and Class II stations, and Class III stations other than those covered in Section $73.189(b)(2)(i)$, a minimum effective field strength of $282 \mathrm{mV} / \mathrm{m}$ for 1 kW .
(iii) Class I-A, and I-B stations, a minimum effective field strength of $362 \mathrm{mV} / \mathrm{m}$ for 1 kW .

$$
73.189(b)(3)-(6)
$$

(3) The beighte given on the cruph for the antenna apply regardless of whether the antenna is located on the cround or on a bullding. Except for the reduction of ehadows, locating the antemon an bullding does not necessarily increase the efficiency and where the height of the building is in the order of a quarter wave the efficiency may be meterially reduced.
(4) At the present development of the art, it is considered that where a vertical radiator is employed with its base on the ground, the ground system should consist of buried radial wires at least one-fourth wave length long. There should be as many of these radials evenly spaced as practicable and in no event less than 90 . (120 radials of 0.35 to 0.4 of a wave length in length and spaced 3° is considered an excellent ground system and in case of high base voltage, a base screen of suitable dimensions should be employed.)
(5) In case it is contended that the required antenna efficiency can be obtained with an antenna of heifot or cround syotea less than the minimum specified, a complete fleld intensity survey mist be aupplied to the Commisision showing that the field intengity at a mile vithout aborption fulpilis the minimum requirements. (See \$73.186). This fleld survey mut be made by a qualified engineer using equipment of acceptable accuracy.
(6) The main element or elements of a directionsl antenna system shall meet the above minimum requirements with respect to heifor or effective fieli intensity. No directional antenna system will be approved which is so desigued that the effective field of the array is less thas the minimum prescribed for the class of station concerned, or in case of a Class I station less than 90 percent of the ground wave fleld which would be obtained fram a perfect antenna of the height specifled by Figure 7 of $\$ 73.190$ for operation on frequencies below $1000 \mathrm{klilo-}$ cycles, and in the case of a Class II or III station less than 90 percect of the ground wave field which would be obtained from a perfect antenna of the height specified by Figure 7 of $\$ 73.190$ for operation on frequencies below 750 kllocyc les.

```
$73.190(a) - (e)
```

73.190 Engineering charts and related formulas. (a) This section consists of the following Figures: la, 1b, 2, r3, 5, 6a, 7, 8, 9, 10, 11, and 13. Additionally, formulas that are directly related to graphs are included.
(b) Tigure la depicts 50% field strength values ($F(50$)). (1) For distances greater than 4250 kilometers, the following formula may be used to compute 50% field strength values:

where: $F=50 \%$ skywave field strength values [$\mathrm{F}(50)$]
$d^{e}=$ path distance in kilometers
(2) 10\% field strength values $[F(10)]$ are derived from Figure 1a by the following formula:
$F(10)=F(50)+8 d B . d B(1 m V / m)$
(3) The field strength value in Figure 1a at 100 km also is to be used for distance less than 100 km . However, the actual great-circle distance is to be used in determining angle of departure.
(c) Figure 1 b depicts 50% field strength values $F(50)$ for calculations involving Alaskan stations.
(1) The following formula also may be used for computing field strength values for such applications:
$F_{c}=95-20 \log _{d}-20((\mathrm{~d}+300) / 1000) 1 / 2 \mathrm{~dB}(1$ $\mathrm{uV} / \mathrm{m} \mathrm{J}$
where:
$F=50 \%$ skywave filed strength values $F(50)$ in $\mathrm{dB}(1 \mathrm{LV} / \mathrm{m})$
$\mathrm{d}^{\mathrm{c}}=$ path distance in kilometers
(2) 10% field strength values $\mathrm{F}(10)$ are derived from Figure 1b from the following formula:
$F(10)=F(50)+13 \mathrm{~dB}$ microvolts per meter
(d) Figure 6a depicts angles of departure versus transmission range.
These angles may also be computed using the following formulas:
$\theta=\tan ^{-1}\left(K_{n} \cot +\quad \begin{array}{cc}d & d \\ 444.54 & d 44.54\end{array}\right.$ degrees
(e) In the event of disagreement between computed values using the formulas shown above and values oblained directly from the figures, the computed values will control.
Where:
dis distance in kilometers
$\mathrm{n}=1$ for 50% field strength values
$\mathrm{n}=2$ or 3 for 10% field strength values
and Where:
$\mathrm{K}_{1}=0.00752$
$\mathrm{K}_{2}=0.00938$
$K_{3}=0.00565$
Note.-Computations using these formulas should not be cairied beyond 0.1 degree.

Note - It might not hurt to check with FCC first to see if the charts as reproduced here in, due to their small scale, may be used in connection with material submitted to them.

Figure la

PERMISSIBLE DAYTIME RADIATION FOR CLASS II STATIONS

PERMISSIBLE DAYTIME RADIATION FOR CLASS II STATIONS

Figure 13

0

0

0

FW TECHNICAL STANDARDS
73.310 EV definitions.
73.311 Field strength contours.
73.312 Topographic data.
73.313 Prediction of coverace.
73.314 Field strength measurements.
73.315 Eransmitter location.
73.316 FM antenna systems.
73.317 Transmission system requirements.
73.318 FM blanketing interference.
73.319 F multiplex subcarrier technical standards.
73.320 Indicating instruments - specifications.
73.322 FW sterophonic sound trensmission standards.
73.333 Engineering charts.

573.310 FM broadcast technical definitions.

(a) Antenna height above average terrain (HAAT). HAAT is calculated by: determining the average of the antenna heights above the terrain from 3 to 16 kilometers (2 to 10 miles) from the antenna for each 45 degrees of azimuth starting with True North (a different antenna height will be determined in each direction from the antenna): and computing the average of these separate heights. In some cases less than eight directiond may be used. (See 73.313(d).) Where circular or elliptical polarization is used, the antenna height above average terrain must be based upon the height of the radiation of the antenna that transmits the horizontal component of radiation.

Antenna power gain. The square of the ration of the root-mean-square (RMS) free space field strength produced at 1 kilometer in the horizontal plane in millivolts per meter for 1 kW antenna input power to $221.4 \mathrm{mV} / \mathrm{m}$. This ratio is expressed in decibels (dB). If specified for a particular direction, antenna power gain is based on that field strength in the direction only.

Conter frequency. The torm "center frequoncy" moan:
(1) The average frequancy of the enitted vave when modulated by a ainusoidal signal.
(2) The frequency of the omitted wave without modulation.

Composite baseband signal. A signal which is composed of all program and other communications signals that frequency modulated the FM carrier.
sffoctive radiated power. The term "effective rediated power" means the product of the antenna pover (traneaitter output pover less transmiasion line loss) times (1) the antenna pover gain, or (2) the antenna field gain squared. Where circular or elliptical polarization is onployed, the torm effective rediated powor is applied separately to the horizontal and vertical components of rediation. For allocation purposes, the offective radiated powor authorized is the horizontally polarized component of rediation only.

Equivalent Isotropically radiated power (EIFP). The term "equivalent isotropically radiated power (also known as "effective radiated power above isotropic) means the product of the antenna input power and the antenna gain in a given direction relative to an isotropic antenna.

FM Blanketing. Blanketing is that form of interference to the reception of other broadcast stations which is caused by the presence of an $F M$ broadcast signal of 115 dBu ($562 \mathrm{mV} / \mathrm{m}$ or greater signal strength in the area adjacent to the antenna of the transmitting station. The 115 dBu contour is referred to as the blanketing contour and the area within this contour is referred to as the blanketing area.

$$
12 / 14 / 94 \quad 735 \mathrm{~ms} \quad-1-
$$

FM broadcest band. The band of frequencies extending from 88 to 108 mernertz, which includes those assigned to noncoumercial educational broedoenting.

FM broadcast channel. A band of frequencies 200 kHz wide and desigatod by its center frequency. Channels for MM broadcast stations begin at 88.1 MIX and continue in sucnessive ateps of 200 k Hz to and including 107.9 M Hz .

FM broadcast station. A station employing frequency modulation in the FM broadcast band and licensed primarily for the transmission of radiotelephone emissions intended to be received by the general public.

Field etrongth. The electric field strongth in the horisontal plano. point in the abmence of waves reflected from the earth that vould arist at a fecte.

Frequency departure. The amount of variation of a carrier frequency or center frequency from its assigned value.

Frequency deviation. The peak difference between the instantaneous frequency of the modulated wave and the carrier frequencv.

Frequency Modulation. A myten of modulation where the instantaneoue redio frequency varies in proportion to the instantaneous anplitude of the modulating sigaal (amplitude of modulating aigaal to be meanured after pre-emphasis, if uned) and the instantaneous radio frequency in independent of the frequency of the modulating signal.

Frequency swing. The peak difference between the maximum and the minimum values of the instantaneous frequency of the carrier wave during modulation.

Multiplex transmission. The term "multiplex transmission" means the simultaneous transmission of two or more signals within a single channel. Multiplex transmission as applied to FM broadcast stations neans the transmission of facsimile or other signals in addition to the regular broadcast signals.

Percentage modulation. The ratio of the actual frequency deviation to the frequency deviation defined as 100% modulation, expressed in percentage. For FM broadcast stations, a frequency deviation of $\pm 75 \mathrm{kHz}$ is defined as 100% modulation.
(b) Stereoohonic sound. The radio information carried by plurality of channels arranged to afford the listner a sense of the apatial distribution of sound sources. Sterophonic sound broadcasting includes, but is not limited to, biohonic (two channel), triohonic (three channel) and quadrophonic (four chanriel) orogram service.

```
73.310(b) - (d)
```

Sterepphonic sound broadcasting. Cross talk. An undesired signal occurring in one channel caused by an electrical signal in another channel. FM stereophonic broadcasting. The transmission of stereophonic p:ogram by a single FM broadcast station utilizing the main channel and a stereophonic subchannel.

Left (or right signal. The electrical output of a microphone or combination of microphones placed so as to convey the intensity, time, and location of sounds originating predominately to the listen.r's left
(or right) of the center of the performing area.
Left (or right) stereophonic channel. The left (or right) signal
as electrically reproduced in reception of FM stereophonic broadcasts.
Main channel. The band of frequencies from 50 to $15,000 \mathrm{~Hz}$. which frequency modulate the main carrier.

Pilot subcarrier. A subcarrier that serves as a control signal for use in the reception of $\overline{F M}$ stereophonic sound broadcasting.

Stereophonic seperation. The ratio of the electrical signal caused in sound channel A to the signal caused in sound channel B by the transmission of only a channel B signel. Channels A and B may be any two channels of a stereophonic sound broadcast transmission system.

Stereophonic sound subcarrier. A subcarrier within the FM broadcast baseband used for transmitting signels for stereophonic sound reception of the main broadcast program service.

Stereophonic sound subchannel. The band of frequencies from 23 KHz to 99 kHz containing sound subcarriers and their associated sidebands. Facsimile. Available line. The portion of the total length of scanning line that can be used specifically for picture signals., Index of cooperation. The product of the number of lines per inch, the available line length in inches, and the reciprocal of the line-use ration (e.g.. 105x8.2×8/7-984).

Line-use ratio. The ration of the available line to the total length of scanning line. Optical density. The logarithm (to the base 10) of the radio of indicent to transmitted or reflected light. Rectilinear scanning. The process of scanning an area in a predetermined sequence of narrow straight parallel strips.
(c) Visual transmissions. Communications or message transmitted on a subcarrier intended for reception and visual presentation on a viewing screen, teleprinter, facsimile printer, or other form of graphic display or record.
(d) Control and telemetry transmissions. Signels transmitted on a multiplex subcarrier intended for any form of control and switching functions or for equipment status data and aural or visual alarms. 73. 311 Field strength contours. (a) Applications for FM broadcast authorization must show two field strength contours. These are the 70 dbu $(3.16 \mathrm{mv} / \mathrm{m}), 60 \mathrm{dbu}(1 \mathrm{mv} / \mathrm{m})$. These contours indicate only the approximate extent of coverage over average terrain and in the absence of interference. Under actual conditions, the true coverage may vary greatly from these esimates because the terrain over any specific path is expected to be different from the average terrain on which the field strength chart was based. Because of these factors the estimated contours give no assistance of service to any specific percentage of receiver

$$
\$ 73.319(a)-73.312(d)
$$

locations within the distances indicated.
(b) The field strength contours provided for in this section shall be considered for the following purposes only:
(1) In the estimation of coverage resulting from the selection of a particular transmitter site by an applicant for an FM broadcast station.
(2) In connection with problems of coverage arising out of application of $\$ 73.240$.
(3) In determining compliance with $\$ 73.315(\mathrm{a})$ concerning the minimum field strength to be provided over the principal community to be served.
§73.312 Topographic data. (a) In the preparation of the profile graphs previously described, and in determining the location and height above mean sea level of the antenna site, the elevation or contour intervals shall be taken from United States Geological Survey Topographic Quadrangle Maps, United States Army Corps of Engineers Maps or Tennessee Valley Authority maps, whichever is the latest, for all areas for which such maps are available. If such maps are not published for the area in question, the next best topographic information should be used. Topographic data may sometimes be obtained from state and municipal agencies. The data from the Sectional Aeronautical Charts (including bench marks) or railroad depot elevations and highway elevations from road maps may be used where no better information is available. In cases where limited topographic data can be obtained, use may be made of an altimeter in a car driven along roads extending generally radially from the transmitter site.
(b) The Commission will not ordinarily require the submission of topographical maps for areas beyond 15 miles from the antenna site, but the maps must include the principal city or cities to be served. If it appears necessary, additional data may be requested.
(c) The U.S. Geological Survey Topography Quadrangle Sheets may be obtained from the U.S. Geological Survey Department of the Interior, Washington, D. C. 20240. The Sectional Aeronautical Charts are available from the U.S. Coast and Geodetic Survey, Department of Commerce, Washington, D. C. 20235. These maps may also be secured from branch offices and from authorized agents or dealers in most principal cities.
(d) In lieu of maps, the average terrain elevation may be computer generated except in cases of dispute, using elevations from a 30 second point or better topographic data file. The file must be identified and the data processed for intermediate points along each radial-using linear interpolation techniques. The height, above mean sea level of the antenna site must be obtained manually using appropriate topographic maps.

$$
73.313(a)-73.313(c)(1)
$$

$\$ 73.313$ Prediction of coverage. (a) All predictions of coverage made pursuant to this section shall be made without regard to interference and shall be made only on the basis of estimated field strengths.
(b) Predictions of coverage shall be made only for the same purposes as relate to the use of field strength contours as specifisd in \$73.311.
(c) In predicting the distance to the field strength contours, the $F(50,50)$ field strength chart, Figure 1 of $\S 73.333$ must be used. The 50% field strength is defined as that value exceeded for 50% of the time.
(1) The $F(50,50)$ chart gives the estimated 50% field strengths exceeded at 40% of the locations in dB above $1 \mathrm{uV} / \mathrm{m}$. The chart is based on an effective power radiated from a half-wave dipole antenna in free space, that produces an unattenuated field strength at 1 kilometer of about 107 dB above $1 \mathrm{uV} / \mathrm{m}(221.4 \mathrm{mV} / \mathrm{m})$.

\cdots (.) (

-
1

Q

$$
\$ 73.313(c)(2)-(d)(4)
$$

(2) To use the chart for other povers, the sliding scale associated with the chart should be trimed and used as the ordinate acalo. This aliding acale is placed on the chart with the appropriate gredation for powar in line with the horizontal 40 db line on the chart. The right edge of the acale is piaced in ine with the appropriate antenna height gradations, and the chart then beccues direct reading (in uv/r and in ab above $1 \mathrm{uv} / \mathrm{E}$) for this power and antenne moleht. Whore the antenns height is not one of those for which a acale is provided, the aigal etrength or distance is determinod by interpolation between the curres coanecting the equidistant scale. Dividers may be used in liou of the sliding scale. In predicting the distance to the field etrength contours, the effective rediated power to be used is that in the horizontal plane in the pertinent direction. In predicting other field strengths over areas not in horizontal plane, the offective rediated power to be used is the pover in the direction of such aroan; the appropriate vertical plane radiation pattern must, of course, be considered in determinizg this power.
(d) The antenna height to be used with this chart is the height of the radiation center of the antenna above the average terrain along the radial in question. In determining the average elevation of the terrain, the elevations between 3 and 16 kilometers from the antenna site are used.
(1) Profile graphs must be drawn for eight radials beginning at the antenna site and extending 16 kilometers therefrom. The radials should be drawn for each 45° of azimuth starting with True North. At least on radial must include the principal community to be served even though it may be more than 16 kilometers from the antenna site. However in the event none of the evenly spaced radials include the principal community to be served, and one or more such radials are drawn in addition, these radials must not be used in computing the antenna height above average terrain.
(2) Where the 3 to 16 kilometers portion of a radial extends in whole or in part over a large body of water or extends over foreign territory but the $50 \mathrm{uV} / \mathrm{m}$ contour encompasses land area within the United States beyond the 16 kilometers portion of the radial, the entire 3 to 16 kilometers portion of the radial must be included in the computation of antenna height above average terrain. However, where the $5 \mathrm{u} u \mathrm{~V} / \mathrm{m}$ contour does not so encompass United States land area and (i) the entire 3 to 16 kilometers portion
1 of the radial extends over large bodies of water or foreign territory, such radial must be completely omitted from the computation of antenna height above average terrain, and (ii) where a part of the 3 to 16 kilometers portion of a radial extends over large bodies of water or foreign territory, only that part of the radial extending from the 3 kilometers sector to the outermost portion of land area within the United States covered by the radial must be used in the computation of antenna height above average terrain.
(3) The prfile graphs for each radial should be plotted by contour intervals of from 12 to 30 meters and, where the data permits, at least 50 points of elevation (generally uniformly spaced) should be used for each radial. In instances of very rugged terrain where the use of contour intervals of 30 meters would result in several points in a short distance, 60 or 120 meter contour intervals may be used for such distances. On the other hand, where the terrain is uniform or gently sloping the smallest contour interval indicated on the topographic map should be used, although only relatively few points may be available. The profile graph should indicate the topography accurately for each radial, and the graphs should be plotted with the distance in kilometers as the abscissa and the elevation in meters above mean sea level as the ordinate. The profile graphs should indicate the source of the topographical data used. The graph shoull also show the elevation of the center of the radiating system. The graph may be plotted either on rectangular coordinate paper or on special paper that shows the curvature of the earth. It is not necessary to take the curvature of the earth into consideration in this procedure as this factor is taken care of in the chargs showing signal strengths. The average elevation of the 13 kilometer distance between 3 and 16 kilometers from the antenna site should then be determined from the profile graph for each radial. This may be obtained by averaging a large number of equally spaced points, by using a planimeter, or by obtaining the median elevation (that exceeded for 50% of the distance) in sectors and averaging those values.
(4) Examples of HAAT calculations:
(i) The heights above average terrain on the eight radials are as follows:

$$
73.313(\mathrm{~d})(4)-(\mathrm{h})
$$

The antenna heigh above terrain (defined in $\S 73.310(a))$ is computed as follows: $(120+125+185+90-10-85+40+85) / 8=85$ meters.
(ii) Same as (i), except the 0^{0} radial is entirely over sea water. The antenna height above average terrain is computed as follows (note that the divisor is 7 not 8): $(255+185+90-10-85+40+85) / 7=80$ meters.
(iii) Same as (i), except that only the first 10 kilometers of the 90° radial are in the United States; beyond 10 kilometers the 90° radial is in a foreign country. The height above average terrain of the 3 to 10 kilometer portion of the 90° radial is 105 meters. The antenna height above average terrain is computed as follows (note that the divisor is 8 not 7.5):
$(120+255+105+90-10-85+40+85) / 8=75$ meters.
(e) In cases where the terrain in one or more directions from the antenna site departs widely from the average elevation of the 3 to 16 kilometer sector, the prediction method may indicate contour distances that are different from what may be expected in practice. For example, a mountain ridge may indicate the practical limit of service although the prediction method may indicate otherwise. In such cases, the prediction method should be followed, but a supplemental showing may be made concerning the contour distances as determined by other means. Such supplemental showings should describe the procedure used and should include sample calculations. Maps of predicted coverage should include both the coverage as predicted by the regular method and as predicted by a supplemental method. When measurements of area are required, these should include the area obtained by the regular prediction method and the area obtained by the supplemental method. In directions where the terrain is such that antenna heights less than 30 meters for the 3 to 16 kilometer sector are obtained, an assumed height of 30 meters must be used for the prediction of coverage. However, where the actual contour distances are critical factors, a supplemental showing of expected coverage must be included together with a description of the method used in predicting such coverage. In special cases, the FCC may require additional information as to terrain and coverage.
(f) The effect of terrain roughness on the predicted field strength of a signal at points distant from an FM transmitting antenna is assumed to depend on the magnitude of a terrain roughtness factor (h) which, for a specific propagation path, is determined by the characteristics of a segment of the terrain profile for that path 40 kilometers in length located between 10 and 50 kilometers from the antenna. The terrain roughness factor has a value equal to the distance, in meters, between elevations exceeded by all points on the profile for 10% and 90% respectively, of the length of the prfile segment. (See §73.333, Figure 4.)
(g) If the lowest field strength value of interest is initially predicted to occur over a particular propagation path at a distance that is less than 50 kilometers from the antenna, the terrain profile segment used in the determination of terrain roughness factor over that path must be that included between points 10 kilometers from the transmitter and such lesser distances. No terrain roughness correction need be applied when all field strength values of interest are predicted to occur 10 kilometers or less from the transmitting antenna.
(h) Profile segments prepared for terrain roughness factor determinations are to be plotted in rectangular coordinates, with no less than 50 points evenly spaced within the segment using data obtained from topographic maps with contour intervals of approximately 15 meters (50 feet) or less it available.
(i) The field strength charts (73.333. Figures 1-la) were developed assuming a terrain roughness factor of 50 meters; which is considered to be representative of average terrain in the United States. Where the roughness factor for a particular propagation path is found to depart appreciably from this value, a terrain roughness correction (Δ f) should

$$
73.313(\mathrm{i})-73.314(\mathrm{~b})(2)
$$

be applied to field strength values along this path, as predicted with the use of these charts. The magnitude and sign of this correction, for any value of $\Delta \mathrm{h}$, may be determined from a chart included in Section 73.333 as Figure 5 .
(j) Alternatively, the terrain roughness correction may be computed using the following formula:

$$
\Delta F=1.9-0.03(\Delta h)(1+f / 300)
$$

Where: A $F=$ terrain roughness correction in $d B$
$k=$ terrain roughness factor in meters $f=$ frequency of signal in megahertz (MHz)
73.314 Field strength measurements. (a) Except as provided for in 73.209, FM broadcast stations shall not be protected from any type of interference or propagation effect. Persons desiring to submit testimony, evidence or data to the Commission for the purpose of showing that the technical standards contained in this subpart do not properly reflect the levels of any given type of interference or propagation effect may doso only in appropriate rule making proceedings concerning the amendment of such technical standards. Persons making field strength measurements for formal submission to the Commission in rule making proceedings, or making such measurements upon the request of the Comission, shall follow the procedure for making and reporting such measurements outlined in paragraph (b) of this section. In instances where a showing of the measured level of a signal prevailing over a specific community is appropriate, the procedure for making and reporting field strength measurements for this purpose is set forth in paragraph (c) of this section.
(b) Collection of field strength data for propagation analysis.
(1) Preparation for measurements.
(i) On large scale topographic maps, eight or more radials are drawn from the transmitter location to the maximum distance at which measurements are to be made, with the angles included between adjacent radials of approximately equal size. Radials should be oriented so as to traverse representative types of terrain. The specific number of radials and their orientation should be such as to accomplish this objective.
(ii) Each radial is marked, at a point exactly 16 kilometers from the transmitter and, at greater distances, at successive 3 kilometer intervals. Where measurements are to be conducted over extremely rugged terrain, shorter intervals may be used, but all such intervals must be of equal length. Accessible roads intersecting each radial as nearly as possible at eacn 3 kilometer marker are selected. These intersections are the points on the radial at which measurements are to be made, and are referred to subsequently as measuring locations. The elevation of each measuring location should approach the elevation at the corresponding 3 kilometer marker as nearly as possible.
(2) Measurement procedure. All measurements must be made utilizing a receiving antenna designed for reception of the horizontally polarized signal component, elevated 9 meters above the roadbed. At each measuring location, the following procedure must be used:

$$
73.314(\mathrm{~b})(2)(\mathrm{i})-(\mathrm{b})(3)(\mathrm{iii})
$$

(i) The instrument calibration is checked.
(ii) The antenna is elevated to a height of 9 meters.
(iii) The receiving antenna is rotated to determine if the strongest signal is arriving from the direction of the transmitter. (iv) The antenna is oriented so that the sector of its response pattern over which maximum gain is realized is in the direction of the transmitter.
(v) A mobile run of at least 30 meters is made, that is centered on the intersection of the radial and the road, and the measured field strength is continuously recorded on a chart recorder over the length of the run.
(vi) The actual measuring location is marked exactly on the topographic map, and a written record, keyed to the specific location, is made of all factors which may affect the recorded field, such as topography, height and types of vegetation, buildings, obstacles, weather, and other local features.
(vii) If, during the test conducted as described in paragraph (b)(2)(iii) of this section, the strongest signal is found to come from a direction other than from the transmitter, after the mobile run prescribed in subparagraph (b)(2)(v) of this section is concluded, additional measurements must be made in a "cluster" of at least five fixed points. At each such point, the field strengths with the aıtenna oriented toward the transmitter, and with the antenna oriented so as to receive the strongest field, are measured and recorded. Generally, all points should be within 60 meters of the center point of the mobile run.
(vi,i) If overhead obstacles preclude a mobile run of at least 30 meters, a "cluster" of five spot measurements may be made in lieu of this run. The first measurement in the cluster is identified. Geıerally, the locations for other measurements must be within 60 meters of the location of the first.
(3) Method of reporting measurements. A report of measurements to the Commission shall be submitted in affidavit form, in triplicate, and should contain the following information:
(i) Tables of field strength measurements, which, for each measuring location, set forth the following data:
(a) Distance from the transmitting antenna.
(b) Ground elevation at measuring location.
(c) Date, time of day, and weather.
(d) Median field in dBu for $d B k$, for mobile run or for cluster, as well as maximum and minimum measured field strengths.
(e) Notes describing each measuring location.
(ii) U.S. Geological Survey topographic maps, on which is shown the exact location at which each measurement was made. The original plots shall be made on maps of the largest available scale. Copies may be reduced in size for convenient submission to the Commission, but not to the extent that important detail is lost. The original maps shall be made available, if requested. If a large number of maps is involved, an index map should be submitted.
(iii) All information necessary to determine the pertinent characteristics of the transmitting installation, including frequency, geographical coordinates of antenna site, rated and actual power output
of transmitter, measured transmission line loss, antenna power gain, height of antenna above ground, above mean sea level, and above average terrain. The effective radiated power should be computed, and horizontal and vertical plane patterns of the transmitting antenna should be submitted.
(iv) A list of calibrated equipment used in the field strength survey, which, for each instrument, specifies its manufacturer, type, serial number and rated accuracy, and the date of its most recent calibration by the manufacturer, or by a laboratory. Complete details of any instrument not of standard manufacture shall be submitted.
(v) A detailed description of the calibration of the measuring equipment, including field strength meters, measuring antenna, and connecting cable.
(vi) Terrain profiles in each direction in which measurements were made, drawn on curved earth paper for equivalent 4/3 earth radius. of the largest available scale.
(c) Collection of field strength data to determine FM broadcast service in specific communities.
(1) Preparation for measurement. (i) The population (P), of the community, and its suburbs, if any, is determined by reference to an appropriate sourge, e.g.. the 1970 U.S. Census tables of populations of cities and urbanized areas.
(ii) The number of locations at which measurements are to be made shall be at least 15, and shall be approximately equal to $0.1(P)^{\frac{1}{2}}$, if this product is a number greater than 15.
(iii) A rectangular grid, of such size and shape as to encompass the boundaries of the community is drawn on an accurate map of the community. The number of line intersections on the grid included within the boundaries of the community shall be at least equal to the required number of measuring locations. The position of each intersection on the community map determines the location at which a measurement shall be made.
(2) Mifeasurement procedure. All measurements must be made using a receiving a., tenna designed for reception of the horizontally polarized signal component, elevated 9 meters above ground level.
(i) Each measuring location shall be chosen as close as feasible to a point indicated on the map, as previously prepared, and at as nearly the same elevation as that point as possible. 1 (ii) At each measuring location, after equipment calibration and elevation of the antenna, a check is made to determine whether the strongest signal arrives from a direction other than from the transmitter.
(iii) At 20 percent or more of the measuring locations, mobile runs, as described in paragraph (b) (2) of this section shall be made with no less than three such mobile runs in any case. The points at which mobile measurements are made shall be well separated. Spot measurements may be made at other locations.
(iv) Each actual measuring location is marked exactly on the map of the community, and suitably keyed. A written record shall be maintained, describing for each location, factors which may affect recorded field, such as the appropriate time of measurement, weather

$$
9 / 14 / 83 \quad 73 \mathrm{FM} \text { Standard } \quad-5 \mathrm{C}-
$$

$$
73.314(c)(2)(i v)-73.315(c)
$$

topography, overhead wiring, heights and types of vegetation, buildings and other structures. The orientation with respect to the measuring location shall be indicated of objects of such shape and size as to be capable of causing shadows or reflections. If the strongest signal recorded was found to arrive from a direction other than that of the transmitter, this fact shall be recorded.
(3) Method of reporting measurements. A report of measurements to the Commission shall be submitted in affidavit form, in triplicate, and should contain the following information:
(i) A map of the community showing each actual measuring location, specifically identifying the points which mobile runs were made.
(ii) A table keyed to the above map, showing the field strength at each measuring point, reduced to $d B u$ for the actual effective radiated power of the station. Weather, date, and time of each measurement shall be indicated.
(iii) Notes describing each measuring location.
(iv) A topographic map of the largest available scale on which are marked the community and the transmitter site of the station whose signals have been measured, which includes all areas on or near the direct path of signal propagation.
(v) Computations of the mean and standard deviation of all measured field strengths, or a graph on which the distribution of measured field strength values is plotted.
(vi) A list of calibrated equipment used for the measurements, which for each instrument, specifies its manufacturer, type, serial number, and rated accuracy and the date of its most recent valibration by the manufacturer, or by a laboratory. Complete details of any instrument not of standard manufacture shall be submitted.
(vii) A detailed description of the procedure employed in the calibration of the measuring equipment, including field strength meters, measuring antenna, and connecting cable.
73.315 Transmitter location. (a) The transmitter location shall be chosen 57 that, on the basis of the effective radiated power and antenna height above average terrain emoloyes, a minimum field strength of 70 dB above one uV / m, or $3.16 \mathrm{mV} / \mathrm{m}$, will be provided over the entire orincipal community to be served.
Note - The requirements of paragraph (a) of this section do not apply to noncommercial educational FM broadcast stations.
(b) The transmitter location should be chosen to maximize coverage to the city of license while minimizing interference. This is normally accomplished by locating in the least populated area available while maintaining the provisions of parapraph (a) of this section. In general, the transmitting antenna of a station should be located in the nost sparsely populated area available at the highest elevation available. The location of the antenna should be so chosen that line-of-sight can be obtained from the antenna over the principle city or cities to be served; in no event should there be a major obstruction in this path.
(c) The transmitting location should be selected so that the $1 \mathrm{mv} / \mathrm{m}$ contour encompasses the urban population with in the area to be served. It is recognized that topography, shape of the desired service area, and population distribution may make the choice of a transmitter location difficult. In such cases consider-

4/8/86 73 Fms -5d-
graphical location of the transmitter is permitted; however, the necessity for a high elevation for the antenna may render this problem difficult. In general, the transmitting antenna of a station should be located at the most central point at the highest elevation available. In providing the best degree of service to an area, it is usually preferable to use a high antenna rather than a lower antenna with increased transmitter power. The location should be so chosen that line-of-sight can be obtained from the antenna over the principal city or cities to be served; in no event should there be a major obstruction in this path.
(c) The transmitting location should be selected so that the $1 \mathrm{mv} / \mathrm{m}$. contour encompasses the urban population with in the area to be served. It is recognized that topography, shape of the desired service area, and population distribution may make the choice of a transmitter location difficult. In such cases consider-

$$
\$ 3.315(c)-73.316(\mathrm{~d})
$$

ation may be given to the use of a directional antenna system, although it is generally prefereable to choose a site where a nondirectional antenna may bue ur ployed.
(d) In cases of questionable antenna locations it is desirable to ccriuzt propagation tests to indicate the field intensity expected in the principal iity or cities to be served and in other areas, particularly where severe shadci proiolems may be expected. In considering applications proposing the use of such locations, the Comision may require site tests to be made. Such tests should include measurements made in accordance with the mea surement procedures described in73.314 and full data thereon shall be supplied to the Commission. The test transmitter should employ an antenna having a height as close as possible to the proposed antenna height, using a ballon or other support if necessary and feasible. Information concerning the authorization of site tests may be obtained from the Commission upon request.
(e) Cognizance must of course be taken regarding the possible hazard of the proposed antenna structure to aviation and the proximity of the proposed site to airports and airways. Procedures and standards with respect to the Commission's consideration of proposed antenna structures which will serve as a guide to persons intending to apply for radio station licenses are contained in Part 17 of this chapter (Construction, Marking, and Lighting of Antenna Structures).
§73.316 Antenna aystems. (a) It shall be stapdard to employ horizontal polarization; however, circular or elliptical polarization may be employed if desired. Clockwise or counterclockwise rotation may be used. The is:pplemental vertically polarized effective radiated power required for circular or elliptical polarization shall in no event exceed the effective radiated power authorized.
(b) Deleted.
(c) Directional antennas. A directional antenna is considered to be an antenna that is designated or altered for the purpose of obtaining a noncircular radiation pattern. Directional antennas may not be used for the purpose of reducing minimum mileage separation requirements but may be employed for the purpose of improving service or for the purpose of using a particular aite; directional antennas with a ratio of maximum to minimum radiation in the horizontal plane of more than 15 decibels will not be permitted.
(d) Applications for directional antennas. Applicatinns proposing the use of directional antenna systeme must be accompanied by the following:

$$
873.316(d)-873.316(h)
$$

(1) Complete description of the proposed antenn system, including: (1) A description of the means whereby the directivity is proposed to be obtained, and
(11) The means (such as rotatable reference antenna) whereby the operational antenna pattern will be determined prior to licensed operation and maintained within proper tolerances thereafter.
(2) Horizontal and vertical plane rediation patterns showing the free space field strength in mv/m at 1 mile and effective radiated power in dbk for each direction. If directivity was computed, the mathod by which the radiation patterns were computed, including formulee used, sample calculations and tabulations of data. If the directivity was measured, the method employed should be fully described, including the equipment used and the resultant measured data shall be tabulated. Sufficient vertical patterns shall be included to indicate clearly the radiation characteristics of the antenna above and below the horizontal plane. Complete information and patterns shall be provided for andes of $t 10^{\circ}$ from the horizontal plane and sufficient additional information included on that portion of the pattern lying between $f 10^{\circ}$ and the zenith and -10° and the madr, to conclusively demonstrate the absence of undefirable lobes in these areas. The horizontal plane pattern shall be plotted on polar coordinate paper with reference to True North. The vertical plane pattern shall be plotted on rectangular coordinate paper with reference to the horizontal plane.
(3) Name, address, and qualifications of the engineer making the calculations.
(e) Applications proposing the use of FM transmitting antennas in the immediate vicinity (i.e. 60 meters or less) of other FM or TV broadcast antennas must include a showing as to the expected effect, if any, of such approximate operation.
(f) In cases where it is proposed to use a tower of a standard broadcast station as a supporting structure for an FM broadcast antenna, an application for construction permit (or modifl cation of construction permit) for such standara broadcast station must be filed for consideration with the FM application, only in the event the overall height of the standard broadcast station tower changes. Applications may be required for ouher classes of stations when their towers are to be used in connection with FM stations.
(g) When an FM broadcast antenna is mounted on a nondirectional standard broadcast antenna, new resistance measurements must be made of the standard broadcast antenna after installation and testing of the FM broadcast antenna. During the installation and until the new resistance determination is approved, the standard broadcast station licensee should
operate by the indirect method of power determination. The FM broadcast license application will not be considered until the application form concerning resistance measurements is filed for the standard broadcast station.
(h) When an FM broadcart antenna is mounted on an element of a standard broadcast directional antema, a full engineering study concerning the effect of the FM broadcast antenna on the disectional pattern must be filed with the application concerning the standard broadcast station. Depending upon the

$$
73.316(h)-73.318
$$

individual case, the Commission mav require readjustment and certain field intensity measurments of the standard broadcast station following the completion of the FM broadcast antenna system.
(i) When the proposed FM antenna is to be mounted on a tower in the vicinity of an AM station directional antenna system and it appears that the operation of the directional antenna aystem may be affected, an engineering study must be filed with the FM application concerning the effect of the FM antenna on the AM directional radiation pattern. Field measurements of the AM station may be required prior to and following construction of the FM station antenna, and readjustments made as necessary.
(j) Information regarding data required in connecting with standard broadcast directional antenna systems may be found in 573.150 of this chapter. (See also Standard Broadcast Technical Standars.)
73.317 FM transmission system requirements. (a) FM broadcast stations employing transmitters authorized after January 1, 1960 must maintain the bandwidth occupied by their emissions in accordance with the specification detailed below. FV broadcast stations employing transmitters installed or type accepted before January 1, 1960, must achieve the highest degree of compliance with these specifications practicable with their existing equipment. In either case, should harmful interference to other authorized stations occur, the licensee shall correct the problem promptly or cease operation.
(b) Any emission appearing on a frequency removed from the carrier by between 120 kHz and 240 kHz inclusive must be attenuated at least 25 dB below the level of the unmodulated carrier. Compliance with this requirement will be deemed to show the occupied bandwidth to be 240 kHz or less.
(c) Any emission appearing on a frequency removed from the carrier by more than 240 kHz and up to and including 600 kHz must be attenuated at least 35 dB beldw the level of the unmodulated carrier.
(d) Any emission appearing on a frequency removed from the carrier by more than 600 kHz must be attenuated at least 43 plus $10 \mathrm{Iog}_{10}$ (Power, in watts) dB below the level of the unmodulated carrier, or 80 dB , whichever is the lesser attenuation.
(e) Preemphasis shall not be greater than the impedance-frequency characteristics of a series inductance resistance network having a time constant of 75 microseconds. (See upper curve of Figure 2 of 73.333.)
73. 318 FM blanketing interference. Areas adjacent to the transmitting antenna that receive a signal with a strength of $115 \mathrm{dBu}(562 \mathrm{mV} / \mathrm{m})$ or oreater will be assumed to be blanketed. In determining the blanketed area, the 115 dBu contour is determined by calculating the inverse distance field using the effective radiated power of the maximum radiated lobe of the antenna without condidering its vertical radiation pattern or height. For directional antennas, the effective radiated power in the pertinent bearing shall be used.

$$
73.318(a)-(d)
$$

(a) The distance to the 115 dBu contour is determined using the following equation:
$D($ in kilometers $)=0.394 \mathrm{~V} / \rho$
$D($ in miles $)=$
Where 0 is the maximum effective radiated power (ERP), measured in kilowatts, of the maximum radiated lobe.
(b) Permittees or licensees who commence program tests, replace their antennas orrequest facilities modifications and who are issued a new Construction Permit on or after January 1, 1985, must satisfy all comolaints of blanketing interference which are received by the station during a one year period. The period begins with the commencement of program tests, or commencement of programming utilizing the new antenna. Resolution of complaints shall be at no cost to the complainant. These requirements specifically do not include interference complaints resulting from malfunctioning or mistuned receivers, imporperly installed antenna systems, or the use of high gain antennas or antenna booster amplifiers. Mobile receivers and non-RF devices such as tape recorders or hi-fi amolifiers (ohonographs) are also excluded.
(c) A permittee colleocating with one or more existing stations and beginning orogram tests on or after January 1, 1985, must assume full financial responsibility for remedying new complaints of blankering interference for a period of on year. Two or more permittees that concurrently collocate on or after January 1, 1985, shall assume shared responsibility for remedying blanketing comolaints within the blanketing area unless an offending station can be readily determined and then that station shall assume full financial responsibility.
(d) Following the one year period of full financial obligation to satisfy blanketing complaints, licensees shall provide technical information or assistance to complainants or remedies for blanketing interference.

$$
73.319(a)-73.319(f)
$$

73.319 FM multiplex subcarrier technical standards. (a) The technical specifications in this Section apply to all transmissions of FM multiplex subcarriers excent those used for steronhonic sound broadcasts under the
(b) Modulation. Any form of modulation may be used for subcarrier operation.
(c) Subcarrier baseband. (1) During monophonic program transmissions, multiplex subcarriers and their significant sidebands must be within the range of 20 kHz to 99 kHz .
(2) During sterophonic sound program transmissions (see 73.322), multiplex subcarriers and their significant sidebands must be within the range of 53 kHz to 99 kHz .
(3) During periods when broadcast programs are not being transmitted, multiplex sigebands must be within the range of 20 kHz to 99 kHz .
(d) Subcarrier injection. (1) during monophonic orogram transmissions. modulation of the carrier by arithmetic sum of all subcarriers may not exceed 30% referenced to 75 kHz modulation deviation. However, the modulation of the carrier by the arithmetic sum of all subcarriers above 75 kHz may not modulate the carrier by more than 10%.
(2). During stereophonic program transmissions, modulation of the carrier by the arithmetic sum of all subcarriers may not exceed 20% referenced to 75 kHz modulation deviation. However, the modulation of the carrier by the arithmetic sum of all subcarriers above 75 kHz may not modulate the carrier by more than 10%.
(3) During periods when no broadcast orogram service is transmitted, modulation of the carrier by the arithmetic sum of all carriers may not exceed 30% referenced to 75 kHz modulation deviation. However, the modulation of the carrier by the arithmetic sum of all subcarriers above 75 kHz may not modulate the carrier by more than 10%.
(4) During periods when no broadcast program service is transmitted,
modulation of the carrier by the arithmetic sum of all subcarriers above 75 kHz may not exceed 10% and modulation of the carrier by the arithmetic sum of all subcarriers may not exceed 30%, referenced to 75 kHz deviation.
(e) Subcarrler generators may be installed and used with a type accepted FM broadcast transmitter without specific authorization from the FCC provided the generator can be connected to the transmitter without requiring any mechanical or electrical monifications in the transmitter FM exciter circuits.
(f) Stations installing multiplex subcarrier reansmitting equipment must ensure the proper suppression of spurious or harmonic radiations. See 73.317, 73.1590 and 73.1690. If the subcarrier operation causes the station's transmissions not to comply with the technical provisions for FM Briadcast stations or causes harmful interference to other communication services, the licenses or permittee must correct the problem promptly or cease operation. The licensee may be required to verify the corrective measures with supporting data. Such data lust be retained at the station and be made available to the FCC upon request.

$$
73.320-73.322(c)
$$

73.320 Indicating insturments-Specifications. See 73.1215 (Subpart H). 73.321 Deleted.
73.322 FM Steronophonic sound transmission standards. (a) An FM Broadcast station shall not use 19 kHz plus or minus 20 Hz , except as the sterophonic system meeting the following parameters:
(1) The modulating signal for the main channel consists of the sum of the right and left signals.
(2) The pilot subcarrier at 19 kHz plus or minus 2 Hz , must frequency modulate the main carrier between the limits of 8 and 10 percent.
(3) One sterophonic subscrrier must be the second harmonic of the pilot subcarrier (i.e. 38 kHz) and must cross the time axis with a positive slope simultaneously with each crossing of the time axis by the subcarrier. Additional sterophonic subcarriers are not precluded.
(4) Double sideband, suppressed-carrier, amplitude modulation of the sterophonic subcarrier at 38 kHz must be used.
(5) The sterophonic subcarrier at 38 kHz must be suppressed to a level less than 1% modulation of the main carrier.
(6) The modulating signal for the required sterophonic subcarrier must be equal to the difference of the left and right signals.
(7) The following modulation levels apply: (i) When a slgnal exists in only one channel of a two channel (biphonic) sound transmission, modulation of the carrier by audio components within the baseband range of 50 kHz shall not exceed 45% and modulation of the carrier by the sum of the amplidude modulation subcarrier in the baseband range of 23 kHz to 53 kHz shall not exceed 45%.
(ii) When a signal exists in only one channel of a sterophonic sound transmission having more than one sterophonic subcarrier in the baseband, the modulation of the carrier by audio components within the audio baseband range of 23 kHz to 99 kHz shall not exceed 53% with total modulation not to exceed 90%.
(b) Stations not transmitting stereo with the method described in (a), must limit the main carrier deivation caused by any modulating signals occupying the band 19 kHz plus or minus 20 Hz to 125 Hz .
(c) All stations, regardless of the sterophonic transmission system used, must not exceed the maximum modulation limits specified in 73.1570 (b) (2). Stations not using the method described in (a), must limit the modulation of the carrier by audio components within the audio baseband range of 23 kHz to 99 kHz to not exceed 53%.
73.333 Engineering charts.

5/26/86
73FMS
-18-
Sliding Scale for use with Figures 1 and la
 with Figure 1 \& 1 a.

[^1] ith Figure 181 a.

fig. la

FM CHANNELS

ESTIMATED FIELD STRENGTH EXCEEDED AT SO PERCENT
of the potential receiver locations for at least 10 percent of the time at a receiving antinna height of 9 meters

TV TECHNICAL STANDAEDS

73.681 Definitions.
73.682 Transmission standards and changes.
73.683 Field strength contours.
73.684 Prediction of coverage.
73.685 Transmitter location and antenna system.
73.686 Field strength measurements.
73.687 Transmission system requirements.
73.688 Indicating instruments.
73.689 Operating power.

MONITORING EQUIPMENT

73.690 Frequency measurements.
73.691 Mosulation monitors.
73.692 Reserved.
73.693 Reserved.
73.694 Requirements for type approval of TV modulation monitors. 73.695 - . 697 Reserved.
73.698 Tables.
73.699 Engineering charts.

TV TECHNICAL STANDARDS
73.681 Definitions. Amplitude modulation (AM). - A system of modulation in which the envelope of the transmitted wave contains a component similar to the wave form of the signal to be transmitted.

Antenna electrical beam tilt. The shaping of the radiation pattern in the vertical plane of a transmitting antenna by electrical means so that maximum radiation occurs at an angle below the horizontal plane.

Antenna height above average terrain. The average of the antenna heights above the terrain from two to ten miles from the antenna for the eight directions spaced evenly for each 45 degrees of aximuth starting with True North. (In general, a different antenna height will be determined in each direction from the antenna. The average of these various heights is considered the antenna height above the average terrain. In some cases less than 8 directions may be used. See $73.684(d)$. Where circular or elliptical polarization is employed the antenna height above average terrain shall be based upon the height of the radiation center of the antenna which transmits the horizontal component of radiation.

Antenna mechanical beam tilt. The intentional installation of a transmitionit, antenna so that its axis is not vertical, in order to change the normal angle of maximum radiation in the vertical plane.

Antenna power gain. The squre of the ratio of the root-mean-square free .pace field intensity produced at one mile in the horizontal plane, in millivol:..; per meter for one kilowatt antenna input power to $137.6 \mathrm{mv} / \mathrm{m}$. This ratio should be expressed in decibels (db). (If specified for a particular direction, antenna power gain is based on the field strength in that direction only.)

Aspect ratio. The ratio of picture width to picture haight as transmitted.
Aural transmitter. The radio equipment for the transmission of the aural signal only.

Aural center frequency. (a) The average frequency of the emitted wave when modulated by a sinusoidal signal; (2) the frequency of the enitted wave without. modulation.

BTSC. Broadcast Television systems committe recommendation for multichannel television sound transmission and audio processing as defined in FCC. Bulletin OST 60.

Baseband. Aural transmitter input signals between 0 and 120 kHz .
Blanking level. The level of the signal during the blanking interval, except the interval during the scanning symchronizing pulse and the chrominance subcarrier synchronizing burst.

Chrominance. - The colorimetric difference between any color and a reference color of equal luminance, the reference color having a specific chromaticity.

Chrominance subcarrier. - The carrier which is modulated by the chrominance information.

Color transmision. - The transmission of color television signals which can be reproduced with different values of hue, saturation, and luminance.

Effective radiated power. The product of the antenna input power and the antenna power gain. This product should be expressed in $k N$ and in dB above 1 KN . (If specified for a particular direction, effective radiated power is based on the antenna power gain in that direction only. The licensed effective radiated power is based on the maximum antenna power gain. When a station is authorized to use a directional antenna beam tilt, the direction of the maximum effective radiated power will be soecified.) Where circular or elliptical polarization is employed, the term effective radiated power is applied separately to the horizontally and vertically polarized components of radiation. For assignment purposes, only the effective radiated power authorized for the horisontally polarized component will be considered.tvs ,

3/29/35
73TVS

$$
\$ 73.681(\mathrm{E})-(\mathrm{L})
$$

Equivalent isotrophically radiated power (EIRP). The term "equivalent isotropically radiated power" (also known as "effective radiated power above isotropic") means the product of the antenna input power and the antenna gain in a given direction relative to an isotropic antenna.

Field. Scanning through picture area once in chosen scanning pattern. In the line interlaced scanning pattern of 2 to 1 , the scanning of alternate lines of the picture area onoe.

Frame - Scanning all of the picture area once. In the line interlaced scanning pattern of two to one, a ffame consists of two fields.

Free space field strenath - The field strength that would exist at a point in the absence of waves reflected from the earth or other reflecting objects.

Frequency departure. The amount of variation of a carrier frequency or center frequency fram its assigned value.

Frequency deviation. The peak difference between the instantaneous frequency of the modulated wave and the carrier frequency.

Frequency modulation (FM) - A system of modulation where the instantaneous radio frequency varies in proportion to the instantaneous ampltude of the modulating signal (amplitude or modulating signal to be measured after pre-emphasis, if used) and the instantaneous radio frequency of the modulating siqnal.

Frequency swing. The peak difference between the maximum and the minimum values of the instantaneous frequency of the carrier wave during modulation.

Interlaced scanning - A scanning process in which successively scanned lines are spaced an integral number of line widths, and in which the adjacent lines are scanned during successive cycles of the field frequency.

IRE Standard Scale - A linear scale for measuring, in IRE units, the relative amplitudes of the components of a television signal from a zero reference at blanking level, with picture information falling in the positive, and synchronizing information in the negative domain.

NOTE: When a carrier is amplitude modulated by a television signal in accordance with $\$ 73.682$, the relationship of the IRE standard scale to the conventional measure of modulation is as follows:

Level	IRE. Standard Scale (units)	Modulation Percentage
Zero carrier	120	0
Reference white	100	12.5
Blanking	0	75
Synchronizing peaks (maximum carrier level)) -40	100

Luminance - Luminance flux emitted, reflected, or transmitted per unit solid angle per unit projected area of the source.

$$
73.681(M)-(S)
$$

Main channel. The band of frequencies from 50 to 15,000 Hertz which frequency modulate the main aural carrier.

Monochrome transmission - The transmission of television signals which can be reproduced in gradations of a single color only.

Multichannel Television Sound (MTS). Any system of aural transmission that utilizes aural baseband operation between 15 kHz and 120 kHz to convey information or that encodes digital information in the viedo portion of the television signal that is intanded to be decoded as audio information.

Multiplex transmission (aural) - A subchannel added to the regular aural carrier of a television broadcast station by means of frequency modulated subcarriers.

Negative transmission \downarrow Where a decrease in initial light intensity causes an increase in the transmitted power.

Peak power - The power over a radio frequency cycle corresponding in amplitude to synchronizing peaks.

Percentage modulation. As applied to frequency modulation, the ratio of the actual frequency deviation to the frequency deviation defined as 100% modulation expressed in percentage. For the aural transmitter of TV broadcast stations, a frequency deviation of ± 25 kHz is defined as 100% modulation.

Pilot subcarrier. A subcarrier used in the reception of TV sterophonic aural or other subchannel broadcasts.

Polarization - The direction of the electric field as radıated from the transmitting antenna.

Program related data signal - A signal, consisting of a series of pulses representing data, wich is transmitted simultaneously with and directly related to the accompanying television program.

Reference black level - The level corresponding to the specifieci ma:ilmum excursion of the luminance signal in the black direction.

Reference white level of the luminance signal. The level correspunding to the specified maximum excursion of the luminance signal in the white direction.

Scanning - Process of analyzing successively, according to a presieter mined method, light values of picture elements constituting total picture area.

Scanning line - A single continuous narrow strip of picture area containing highlights, shadows, and halftones, determined by the process of scanning.

$$
8: 3.681(s)-\$ 73.682(a)(5)
$$

Standard telovision sigasl. - A signal which conforms to the televiaion tranamission standards.

Synchronization. - The mantenance of one operation in step vith another.
Television broadcast band. - The Prequencies in the band extending from 54 to806 megahertz which are asagnable to television broadcast stations. These frequencies are 54 to 72 aegahertz (channels 2 through 4), 76 to 88 megahertz (channels 5 and 6), 174 to 216 raegahertz (channels 7 through 13), and 470 to 806 megahertz (channels 14 through 69).

Television broadcast station. - A station in the television broadcast band transmitting simultaneous ∇ isual and aural signals intended to be received by the general public.

Televiaion channel. - A band of Prequencies 6 negahertzwide in the tele. vision broadcast band and designated either by number or by the extreme lower and upper frequencies.

Television transmisaion standards. - The standards which determine the characteriatics of a television sigasi as radiated by a televiaion broadast station.

Television transmitter. - The radio transmitter or transmitters for the transmission of both pimal and aural signals.

Vestigial sideband transmission. - A sybtem of trangmisaion wherein one of the generated sidebands is partially attenuated at the tranemitter and radiated only in part.

Visual carrier frequency. - The frequency of the carrier which is modulated by the picture information.

V1sual transmitter. - The radio equipment for the transaission of the visual signal only.

Visual transmitter power. - The peak power output when transmitting a straiard television signal.
§73.682 Transmission standards. (a) Transmission standards.
(1) The wideth of the television broadcast channel shall be 6 MHz .
(2) The visual carrier frequency shall be nominally 1.25 MHz above the lower boundary of the channel.
(3) The aural center frequency shall be 4.5 MHz higher than the visual carrier frequency.
(4) The visual transmission amplitude characteristic shall be in accordance with the chart designated as Figure 5 of $\$ 73.699$: Provided, however, That for stations operation on channel 15-69and employing a transmitter with maximum peak visual power output of 1 kilowatt or less the visual transmission amplitude characteristic may be in acoordance with the chart designated as Figure 5 (a) of $\$ 73.699$.
(5) The chrominance subcarrier frequency is $63 / 88$ times precisly 5 MHz $3.57954545 \ldots$ MHz). The tolerance $1 \mathrm{~s} \pm 10 \mathrm{~Hz}$ and the rate of frequency drift not excedd 0.1 Hz per second (cycles per second squared).

$$
73.682(a)(6)-73.682(a)(14)
$$

(6) For monochromeand color transmissions the number of scanning lines perfeame shall be 525, interlaced two to one in successive fields. The horizontal scanning frequency shall be $2 / 455$ times the chrominance subcarrier frequency; this corresponds nominally to 15,750 herts (with an actual value of 15,734.264 ± 0.044 hertz). The vertical scanning frequency is $2 / 525$ times the horizontal scanning frequency; this corresponds nominally to 60 hertz (the actual value is 59.94 hertz). For monochrone transmissions only, the nominal values line and field frequencies may be used.
(7) The aspect ratio of the transmitted television picture shall be 4 units horizontally to 3 units vertically.
(8) During active scanning intervals, the scene shall be scanned from left to right horizontally and from top to bottom vertically, at uniform velocities.
(9) A carrier shall be modulated within a single televiaion channel for both picture and synchronizing signals. The two signals comprise different modulation ranges in amplitude in accordance with the following:
(i) Monochrome transmissions shall comply with synchronizing waveform specifications in Figure 7 of 73.699.
(ii) Color transmissions shall comply with the synchronizing waveform specifications in Figure 6 of 73.699 .
(iii) All stations operating on Channels 2 through 14 and those stations operating on Channels 15 through 63 licensed for a peak visual transmitter output power greater than one kilowatt shall comply with the picture transmission amplitude characteristics shown in Figure 5 of 73.699 .
(iv) Stations operating on Channels 15 throuxh 69 licensed for a peak visual transmitter output power of one kilowatt or less shall comply with the picture transmission amplitude characteristic shown in Figure 5 or $5 a$ of 73.699 .
(10) A decrease in iritial light fritenaity grail calise ar irirease in radiated power (negative tranemiagion).
(11) The reference black lerel stall be representad k : a deinnte carrier level, independent of 11 ght and shade in the picture.
(12) The blanking level shall be tranamitted at 75 ± 2.5 percent of the peak carrier level.
(13) The reference white ievel of the luminarce algnal shall be $12.5+2.5$ percent of the peak carrier lerel.
(14) It shall be standard to employ horızontai polarization. Fowever, circular or elliptical polarization may be omrloyed if desired. in which case clockwise (right hand) rotation, as defined in the IEEE Standard Definition 42A55-3E2, and transmission of the horizontal and vertical components in time and space quadrature shall be used. For either omnidirectional or directional antennas the licensed effective radiated power of the vertically polarized component may not exceed the licensed effective radiated power of the hotizontally polarized component. For directional antennas, the maximum effective radiated power of the vertically polarized component shall not exceed the maximum effective radiated power of the hotizontally polarized component in anv specified horizontal or vertical direction.
(15) The effective radiated power of the aural transmitter must not exceed 22% of the peak radiated power of the visual transmitter.
(16) The reak-to-peak vailation of transmitter output within ane frame of video signal due to all causes, including hum, noise, and low-frequency responee, measured at both scanning synchronizing peak and blanking level, ahall not exceed 5 percent of the average scanning synchronizing peak aignal amplitude. This provision is subject to change but is considered the beat practice under the present state of the art. It will not be enforced pending a further detarmination thereof.
(17) The reference black level shall be separated from the blanking level by the setup interval, which shall be 7.5 ± 2.5 percent of the video range from blanking level to the reference white leveI.

$$
\$ 73.682(a)(18)-73.682(a)(20)
$$

(18) For monochrome transmission, the transmitter output shall vary in substantially inverse logarithmic relation to the brightness of the subject. No tolerances are set at this time. This provision is subject to change but is considered the best practice under the present state of the art. It will not be enforced pending a further determination thereof.
(19) The color picture signal shall correspond to a luminance component transmitted as amplitude moculation of the picture carrier and a simultaneous pair of chrominance components transmitted as the amplitude modulation sidebands of a pair of suppressed subcarriers in quadrature.
(20) Equation of complete color signal.
(i) The color picture signal has the following composition:

Where:
$E_{M}=E_{Y^{\prime}}+\left\{E_{Q^{\prime}} \sin \left(\boldsymbol{w} t+33^{\circ}\right)+E_{I^{\prime}} \cos \left(\boldsymbol{w} t+33^{\circ}\right)\right\}$

For color-difference frequencies below 500 kHz (see (iii) below), the signal can be represented by:
$E_{M}=E_{Y^{\prime}}+\left\{\frac{1}{1 \cdot 14}\left[\frac{1}{1 \cdot 10}\left(E_{B^{\prime}}-E_{Y^{\prime}}\right) \sin \boldsymbol{W}_{t}+\left(E_{R^{\prime}}-E_{Y^{\prime}}\right) \cos \right.\right.$
(ii) The symbols in subdivision (i) of this subparagraph have the following significance:
E_{M} is the total video voltage, corresponding to the scanning of a particular picture element, applied to the modulator of the plecture
E_{Y} ' is the gamma-corrected voltage of the monochrome (black and white) portion of the color picture signal, corresponding to the given picture element.

NOTE: Forming of the high frequency portion of the monochrome signal in a different manner is permissible and may in fact be desirable in order to improve the sharpness on saturated colors.
E^{\prime}, and E^{\prime}, are the amplitudes of two orthogonal components of the chrominance signal corresponding respectively to narrow-band and wide-band axes.
$\mathrm{E}_{\mathrm{R}}{ }^{\prime}, \mathrm{E}_{\mathrm{G}}{ }^{\prime}$, and $\mathrm{E}_{\mathrm{B}^{\prime}}$ are the gamma-corrected voltages corresponding to red, green, and blue signals during the scanning of the given picture element.
\boldsymbol{W} is the angular frequency and is 2π times the frequency of the chrominance subcarrier.
§73.682(a)(20)-§73.682(a)(00)

The portion of each expression between brackets in (i) represents the chrominance subcarrier signal which carries the chrominance information.

The phase reference in the E_{M} equation in (i) is the phase of the burst $+L \mathcal{E} O^{\prime}$ as shown in Figure 8 of $\S 73.699 .{ }^{M}$ The burst corresponds to amplitude modulation oi a continuous sine wave.
(iii) The equivalent bandwidth assigned prior to modulation to the color differerce signals E_{Q}, and $E_{I^{\prime}}$ are as follows:

Q- channel bandwidth:
At 400 kHz less than 2 db down.
At 500 kHz less than 6 db down.
At 600 kHz at least 6 db down.
O- channel bandwidth:
At 1.3 mHz less than 2 db down.
At 3.6 nHz at least 20 db down.
(iv) The gamma corrected voltages $E_{R^{\prime}}, E_{G}$, and $E_{B^{\prime}}$ are suitable for a color picture tube having primary colors with the following chromaticities in the CIE system of specification:

and having a transfer gradient (gamma exponent) of 2.2 associated with each primary color. The voltages $E_{B^{\prime}}, E_{G^{\prime}}$ and $E_{B^{\prime}}$ may be respectively of the form $E_{R^{\prime}} / 4, E_{B} l / q$ and E_{B} l $/ \%$, although other forms may be used with advances in the state of the art.

NOIE: At the present state of the art it is considered inadvisable to set a tolerance on the value of gamma and correspondingly this portion of the specification will not be enforced.
(v) The radiated chrominance subcarrier shall vanish on the reference white of the scene.

NOTE: The numberical values of the signal specification assume that this condition will be reproduced as $C I E$ Illuminant $C(x=0.310, y=0.316)$.
(vi) $E_{Y},{ }^{\prime}{ }^{\prime}, E_{I^{\prime}}$, and the components of these signals shall match each other in time to $0.05 \mu \operatorname{secs}$.
(vii) The angles of the subcarrier measured with respect to the burst phase, when reproducing saturated primaries and their complements at 75 percent of full amplitude, shall be within $\pm 10^{\circ}$ and their amplitudes shall be within ± 20 percent of the values specified above. The ratios of the measured amplitudes of the subcarrier to the luminance signal for the same saturated primaries

$$
873.682(\mathrm{a})(20)(\text { vii) - 73.68つ(つつ)(ij) }
$$

1d their complements shall fall between the l imits of 0.8 and 1.2 of the alues specified for their ratios．Closer tolerance may prove to be practicable and desirable with advance in the art．
（21）The interval beginning with line 17 and continuing through line 20 of the vertical blanking interval of each field may be used for the transmission of test signals，cue and control signals and identification signals，subject to the conditions and restrictions set forth below． Test signals may include signals designed to check the performance of the overall．trandmission system or its individual components．Cue and con－ trol signals shall be related to the operation of the TV broadcast station． Identification signals may be transmitted to identify the broadcast mater－ ial or its source and the date and time of its origination．Figures 6 and 7 of Section 73.699 identify the numbered lines referred to in its subpara－ graph．
（i）Modulation of the TV transmitter by such signals shall be confined to the area between the reference white level and the blanking level，except where test signals include chrominance subcarrier frequencies，in which case positive excursions of chrominance components may exceed reference white，and negative excursions may extent into the synchronizing area．In no case may the modulation excursions produced by test signals extend beyond peak－of－ sync，or to zero carrier level．
（ii）The use of test，cue and control signals shall not result in signifi－ cant degradation of the program transmissions of the TV broadcast station， nor produce emissions outside of the frequency band occupied for normal program transmissions．
（iii）Test signals or cue and control signals may not be transmitted during hat portion of each line devoted to horizontal blanking．
（iv）Regardless of other provisions of this subparagraph，line 19，in each field，may be used only for the transmission of the reference signal described in Figure 16 of 73．699．
（？2）（i）All of Line 21，Field 1 and the first half of Line 11 ，Field 2 may be used for the transmission of a propram related data sipnal which，when decoded，provides a visual dediction of information simultaneously beine nresented on the aural channel．Such data signal shall conform to the format described in Figure 17a of Section 73.699 and may be transmitted durine all neriods of rerular operation．
（A）A reference pulse for a decoder associated adaptive multionth eaualizer filter may replace the data signal every eighth frame．The reference pulse shall conform to the format described in Firure 17 b of Section 73．699．
（B）．A decoder test simnal consistine of data representinf a repeated series of alphanumeric characters may be transmitted at times when no nro－ लram related data is being transmitted．
（C）A framing code to be used by the data decoder may be trensmitted durine the first half of Line 21，Field 2 when data，reference pulse and test simnals are oresent．See Fimure 17c of Section 73.699 for a description of the format for the framine code．
（D）The data simnal shall be coded using a non－return－to－zero（NRZ） format and shall employ standard ASCII 7 bit plus parity character codes．
（ii）At times when Line 21 is not being used to transmit a promram related data sipnal，data signals which are not program related mav be tronsmitted，PROVIDED：the same data format is used and the information to水 displeyed is of a broadcast nature．
$8 / 25 / 81$
73 TV STANDARDS
$-6 a-$

$$
73.682(22)(\text { iii })-73.682(24)(v i)
$$

(iii) The use of Line 21 for transmission of other data sionnls conform
 Commission.
(iv) The data signal shall cause no significant derradation to nn nortion of the visual signal nor produce emissions outside the authorized television channel.
(v) Transmission of visual emergency messafes pursuant to nection 73.675 shall take precedence and shall be cause for interruotin" transmission of data signals permitted under this subdararraph.
(23) Specific scanning lines in the vertical blanking interval may be used for the purpose of transmitting telecommunications signals in accordance with 73.646 , subject to certain conditions:
(i) Telecommunications may be transmitted on Lines 10-18 and 20, all of Field 2 and Field 1. Modulation level shall not exceed 70 IRE on lined 10. 11 and 12: and. 80 IRE on lines 13-18 and 20.
(ii) No observable degratation may be cauded to any mortion of the visual or aural signals.
(iii) Telecommunications signals must not produce emissions outside the authorized television channel bandwidth. Digital data pulses must be shaped to limit spectral energy to the nominal video baseband.
(iv) Transmission of emergency visual messapes oursuant to 73.150 must take precedence over and shall be cause for interrupting a service such as teltext that provides a visual depiction of information simultaneously transmitted on the aural channel.
(v) A reference pulse for a decoder associated adaptive equalizer filter designed to improve the decoding of telecommunications signals may be inserted on any portion of the vertical blanking interval authorized for data service, in accordance with the signal levels set forth in paragraph (a)(23)(i) of this section.
(vi) all limes authorized for telecommunications transmission may be used for other ourposes upon prior approval by the Commission.
(b) Subscriotion TV technlical sustems. The FCC may specify, as nart of the advance apnrovel of the technicel system for transmittine encoded subscription nrorrammine, ceviations from the nower determination procedures, overntine bower levels, eural or video beseband simals, modulation levels or other characteristics of the transmitted simal as otherwise snecified in this Gubnart. Anv decision to apnrove such operatine deviations shall be solely at the discretion of the PCC.
(c) TV multiplex subcarrier/sterophonic aural transmission standards.
(1) The modulating sional for the main channel shall consist of the sum of the sterophonic (biphonic, quasraphonic, etc.) input signals. (2) The instantaneous frequency of the baseband sterophonic subcarrier must at all times be within the range 15 kHz to 120 kHz . Either amplitude or frequency modulation of the sterophonic subcarrier may be used.
(3) One or more pilot subcarriers between 16 kHz and 120 kHz may be used to swj.tch a TV receiver between the sterophonic and monophonic reception modes or to activate a sterophonic audio indicater light and one or more subcerriers between 15 kHz and 120 kHz may be user for any other authorized purpose except that stations employins the BTSC system of sterophonic sound transmission and audio processinm may transmit a pilot subcarrier at $15,734 \mathrm{~Hz} \pm 2 \mathrm{~Hz}$. Other methods of multiplex subcarrier or sterophomic aural transmission systems must limit energy at $15,734 \mathrm{~Hz} \pm 20 \mathrm{~Hz}$, to no more then $\pm 0.125 \mathrm{kFz}$ sural carrier deviation.
(4) Aural baseband information above 120 kHz must be attenunted 40 dB referenced to 25 kHz main channel deviation of the aural carrier.
(5) For required trensmitter performance, all of the requirerents of $73.687(b)$ shall apply to the main channel, with the transmitter in the multiolex subcarrier or sterophonic aural mode.
(6) For electrical performance standards of the transmitter, the requirements of 73.687 (b) apply to the main channel.
(7) Wultiplex subcarrier or sterophonic aural transmision systems must not exceed $\pm 25 \mathrm{kHz}$ main channel deviation of the aural carrier.
(9) The arithmetic sum of non-multiphonic baseband signals between ${ }^{-1}$ 15 kHz and 120 kHz must not exceed $\pm 50 \mathrm{kHz}$ deviation of the aural carrier. (9) Total moduIation of the aural carrier must not exceed $\pm 1 / \mathrm{bHz}$.
§73.683 Field strength contours. (a) In the authorization of TV stations, two field strength contours are considered. These are specified as Grad A and Grade B and indicate the approximate extent of coverage over average terrain in the absence of interference from other television stations. Under actual conditions, the true coverage may vary greatly from these estimates because the terrain over any specific path is expected to be different fram the average terrain on which the field strength charts were based. The required field strength, $F(50-50)$, in decibels above one micro-volt per meter (dBu) for the Grade A and Grade B contours are as follows:

	Grade	Grade
	A (dBu)	B (dBu)
Channels 2-6	68	47
Channels $7-13$	71	56
Channels $14-69$	74	64

(b) It should be realized that the $F(50-50)$ curves when used for Channels 14-69are not based on measured data at distances beyond about 30 miles . Theory would indicate that the field strengths for Channels 14-69 should decrease more rapidly with distance beyond the horizon than for Channels 2-6, and modification of the curves for Channels 14-69may be expected as a result of measurements to be made at a later date. For these reasons, the curves should be used with appreciation of their limitations in estimating levels of field strength. Further, the actual extent of service will usually be less than indicated by these estimates due to interference from other stations. Because of these factors, the predicted field strength contours give no assurance of service to any specific percentage of receiver locations within the distances indicated. In licensing proceedings these variations will not be considered.
(c) The field strength contours will be considered for the following purposes only:
(1) In the estimation of coverage resulting from the selection of a particular transmitter site by an applicant for a TV station.
(2) In connection with problems of coverage arising out of application of §73.3555.
(3) In determining compliance with $\$ 73.685$ (a) concerning the minimum field strength to be provided over the principal community to be served.
$\$ 73.684$ Prediction of coverage - (a) All predictions of covernge made puraunt to this section shall be made without regard to interference and shall be made only on the basis of eatimated field intenaities. The peak power of the visual signal is used in making predictions of coverage.
(b) Predictions of coverage shall be made only for the ane purposes as relate to the use of field strength contours as specified in 873.683 (c).
a.
(c) In predicting the distance to the field strength contours, the $\mathrm{F}(50-50)$ field strength charts (Figures 9 and 10 of $\$ 73.699$) shall be used. If the 50% field strength is defined as that value exceeded for 50% of the time, the $F(50-50)$ charts give the estimated 50% field strengths exceeded at 50% of the locations in $d B$ above $1 \mathrm{mV} / \mathrm{m}$. The charts are based on an effective power of 1 kW radiated from a halfwave dipole in free space, which produces an unattenuated field strength at 1 mile of about 103 dB above $1 \mathrm{mV} / \mathrm{m}$ (137.6 millivolts per meter). To use the charts for other powers, the sliding scale associated with the charts should be trimmed and used as the ordinate scale. This sliding scale is placed on the charts with the appropriate gradation for power in line with the horizontal 40 dB line on the charts. The right edge of the scale is placed in line with the appropriate antenna height gradations, and the charts then become direct reading (in $u V / m$ and in $d B$ above $1 \mathrm{uV} / \mathrm{M}$) for this power and antenna height. Where the antenna height is not one of those for which a scale is provided, the signal strength or distance is determined by interpolation between the curves connecting the equidistant points. Dividers may be used in lieu of the sliding scale.
(1) In predicting the distance to the Grade A and Grade B field strength contours, the effective radiated power to be used is that radiated at the vertical angle corresponding to the depression angle between the transmitting antenna center of radiation and the radio horizon as determined individually for each azimuthal direction concerned. The depression angle is based on the difference in elevation of the antenna center of radiation above the average terrain and the radio horizon, assuming a smooth spherical earth with a radius of 5,280 miles, and shall be determined by the following equation:

$\mathrm{Aq}=0.0153 \sqrt{\mathrm{H}}$

Where:
An is the depression angle in degrees.
H is the height in feet of the transmitting antenna radiation center above average terrain of the $2-10$ mile sector of the pertinent radial. This formula is empirically derived for the limited purpose specified herein. Its use for any other purpose may be inappropriate.
(2) In cases where the relative field strength at the depression angle determined by the above formula is 90% or more of the maximum field strength developed in the vertical plane containing the pertaining radial, the maximum radiation shall be used.
(3) In predicting field strengths for other than the Grade A and Grade B contours, the effective radiated power to be used is to be based on the appropriate antenna vertical plane radiation pattern for the aximuthal direction concerned.
(4) Applicants for new TV stations or changes in the facilities of existing TV stations must submit to the FOC a showing as to the location of their stations' or proposed stations' predicted Grade A and Grade B contours, determined in accordance with $\$ 73.684$. This showing is to include maps showing these contours, except where applicants have previously submitted material to the FCC containing such information and it is found upon careful examination that the contour locations indicated therein would not change, on any radial, when the locations are determined under this Section. In the latter cases, a statement by a qualified engineer to this effect will satisfy this requirement and no contour maps need be submitted.
(d) The antenna height to be used with these charts is the height of the radiation center of the antenna above the average terrain along the radial in question. In determining the average elevation of the terrain, the elevations between 2 and 10 miles from the antenna site are employed. Profile graphs shall be drawn for 8 radials beginning at the antenna site and extending 10 miles therefrom. The radials should be drawn for each 45 degrees of azimuth starting with True North. At least one radial must include the principal campunity to be served even though such community may be more than 10 miles from the antenna site. However, in the event none of the evenly spaced radials include the principal community to be served and one or more such radials are drawn in addition to the 8 evenly spaced radials, such additional radials shall not be employed in computing the antenna height above average terrain. Where the 2 to 10 mile portion of a radial extends in whole or in part over large bodies of water as specified in paragraph (e) of this section or extends over foreign territory but the Grade B intensity contour encompasses land area within the United States beyond the 10 mile portion of the radial, the entire 2 to 10 mile portion of the radial shall be included in the computation of antenna height above average terrain. However, where the Grade B contour does not so encompass United States land area and (l) the entire 2 to 10 mile portion of the radial extends over large bodies of water or foreign territory, such radial shall be completely omitted from the computation of antenna height above average terrain, and (2) where a part of the 2 to 10 mile portion of a radial extends over large bodies of water or over foreign territory, only that part of the radial extending from the 2 mile sector to the outermost portion of land area within the United States covered by the radial shall be dmployed in the computation of antenna height above average terrain. The profile graph for each radial should be plotted by contour intervals of from 40 to 100 feet and, where the data permits, at least 50 points of elevation (generally uniformly spaced) should be used for each radial. In instances of very rugged terrain where the use of contour intervals of 100 feet would result in several points in a short distance, $200-400$ foot contour intervals may be used for such distances. On the other hand, where the terrain is uniform or gently sloping the smallest contour interval indicated on the topographic map (see paragraph (g) of this, section) should be used, although only relatively few points may be available. The profile graphs should indicate the topography accurately for each radial, and the graphs should be plotted with the distance in miles as the abscissa and the elevation in feet above mean sea level as the ordinate. The profile graphs should indicate the source of the topographical data employed. The graph should also show the elevation of the center of the radiating system. The graph may be plotted either on rectangular coordinate paper or on special paper which shows the curvature of the earth. It is not necessary to take the curvature of the earth into consideration in this procedure, as this factor is taken care of in the charts
showing signal intensities. The average elevation of the 8 -mile distance between 2 and 10 miles from the antenna site should then be determined from the profile graph for sach radial. This may be obtained by averaging a large number of equally spaced points, by using a planimeter, or by obtaining the median elevation (that exceeded for 50 percent of the distance) in sectors and averaging those values.

NOTE The Commisaion will, upon a proper showing by an existing station that the application of this rule will result in an unreasonable power reduction in relation to other stations in close proximity, consider requests for adjustment in power on the basis of a common average terrain figure for the stations in question as determined by the Commisaion.
(e) In instances where it is desired to determine the area in square miles within the Grade A and Grade B field intensity contours, the area may be determined from the coverage map by planimeter or other approximate means; in computing such areas, exclude (1) areas beyond the borders of the United States, and (2) large bodies of water, such as ocean areas, gulf's, sounds, bays, large lakes, etc., but not rivers.
(f) In cases where the terrain in one or more directions from the antenna site departs widely from the average elevation of the 2 to 10 mile sector, the prediction method may indicate contour distances that are different from what may be expected in practice. For example, a mountain ridge may indicate the practical limit of service although the prediction method may indicate otherwise. In such cases the prediction method should be followed, but a supplemental showing may be made concerning the contour distances as determined by other means. Such supplemental showing should describe the procedure employed and should include sample calculations. Maps of predicted coverage should include both the coverage as predicted by the regular method and as predicted by a supplemental method. When measurements of area are reguired, these should include the area obtained by the regular prediction method and the area obtained by the supplemental method. 1 In directions where the terrain is such that negative antenna heights or heights below 100 feet for the 2 to 100 mile sector are obtained, an assumed height of 10 feet shall be used for the prediction of coverage. However where the actual contour distance are critical factors, a supplemental showing of expected coverage must be included togather with a description of the method employed in predicting such coverage. In special cases, the Commission may require additional information as to terrain and coverage.
(g) In the preparation of the profile graphe previously described, and in determining the location and height above sea level of the antenna site, the elevation or contour intervals shall be taken from the United States Geological Survey Topographic Quadrangle Maps, United States Army Corps of Engineers maps or Tennessee Valley Authority maps, whichever is the latest, for all areas for which such maps are avallable. If such maps are not published for the area in question, the next best topographic information should be used. Topographic data may sometimes be obtained from State and municipal agencies. Data from Sectional Aeronautical Charts (including bench marks) or railroad depot elevations and highway elevations from road maps may be used where no better information is available. In cases where limited topographic data is available, use may be made of an altimeter in a car driven along roads extending generally radially from the transmitter site. Ordinarilly the Commission will not require the submission of topographical maps for areas beyond 15 miles from the antenna site, but the maps must include the principal community to be served.

$$
3 / 28 / 85 \quad \text { 73TVS } \quad-10-
$$

If it appears necessary, additional data may be requested. United States Geological Survey Topographic Quadrangle Maps may be obtained from the Department of the Interior, Geological Survey, Washington, D.C. Sectional Aeronautical Charts are available from the Department of Commerce, Coast and Geodetic Survey, Washington, D.C.
In lieu of mans, the average terrain elevation may be computer generated, except in cases of dispute, using elevations from a 30 second, point or better topographic data file. The file must be identified and the data processed for intermediate points along each radial using linear interpolation techniques. The height above mean sea level of the antenna site must be obtained manually using approoriate topographic maps.
(h) The effect of terrain roughness on the predicted field strength of a signal at points distant from a television broadcast station is assumed to depend on the magnitude of a terrain roughness factor ($\Delta \mathrm{h}$) which, for a specific propagation path, is determined by the characteristics of a segment of the terrain profile for that path 25 miles in length, located between 6 and 31 miles from the transmitter. The terrain roughness factor has a valueequal to the difference, in meters, between elevations exceeded by all points on the profile for 10 percent and 90 percent, respectively, of the length of the profile segment (see 73.699 Figure 10d).
(i) If the lowest field strength value of interest is initially predicted to occur over a particular propagation path at a distance which is less than 31 miles from the transmitter, the terrain profile segment used in the determination of the terrain roughness factor over that path shall be that included between points 6 miles from the transmitter and such lesser distance. No terrain roughness correction need be applied when all fieldstrength values of interest are predicted to occur 6 miles or less from the transmitter.
(j) Profile segments prepared for terrain roughness factor determinations should be plotted in rectangular coordinates with no less than 50 points evenly spaced within the segment, using data obtained from topographic maps, if available, with contour intervals of 50 feet, or less.
(k) The field strength charts (73.699 Figs. 9-10c) were developed assuming a terrain roughness factor of 50 meters, which is considered to be representative of average terrain in the United States. Where the roughness factor for a particular propagation path is found to depart appreciably from this value, a terrain roughness correction (ΔF) should be applied to field strength values along this path as predicted with the use of these charts. The magnitude and sign of this correction, for any value of $\Delta \mathrm{h}$, may be determined from a chart included in 79.699 as Figure l0e, with linear interpolation as necessary, for the frequency of the UFF signal under consideration.
(1) : Alternatively, the terrain roughness correction may be computed using the following formula:

$$
\Delta F=C-0.03(\Delta h)(1+f / 300)
$$

$$
73.684(k)(1)-73.685(c)
$$

Where:

> $\Delta \mathrm{F}=$ terrain roughness correction in $d B$
> $C=a$ constant having a specific value for the use with each set of field strength charts:

1.9 for TV channels $2-6$
2.5 for TV Channels $7-13$
4.8 for TV channels $14-69$

$h=$ terrain roughness factor in meters
$f=$ frequency of signal in megahertz (mHz).
§73.685 Transmitter location and antenna system.-- (a) The transmitter location shall be chosen so that, on the basis of the effective radiated power and antenna height above average terrain employed, the following minimum field strength in decibels above one $u V m$ ($d B u$) will be provided over the entire principal comminity to be served:

Channels 2-6 Channels 7-13 Channels.14-69
$74 \cdot \mathrm{dBu} \quad 77 \mathrm{dBu} \quad 80 \mathrm{dBu}$
(b) Location of the antems at a point of high elevation is necessary to reduce to a minimia the shadow effect on propagation due to hills and buildings which may reduce materially the intensity of the station's sigals. In general, the transmitting antenna of a station ahould be located at the most central point at the lifhest elevation available. To provide the best degree of service to an area, it is usually preferable to use a high antenna rather than a low antenna with increased transmitter power. The location should be so chosen that line-of-sight can be obtained from the antenna over the principal comamity to be served; in no event shauld there be a mijor obstruction in this path. The antenna mist be constructed so that it is as clear as possible of surrounding buildings or objects that would cause shadow problems. It is recognized that topography, shape of the desired service area, and population distribution may make the choice of a transmitter location difficult. In such cases, consideration may be given to the use of a directional antenna syster, although it is generally preferable to choose a site where a non-directional antenna may be employed.
(c) In cases of questionable antenna locations it is desirable to conduct propagation tests to indicate the field intensity expected in the principal comanity to be served and in other areas, particularly where severe shadow problems may be expected. In considering applications proposing the use of such locations, the Comaission may require site tests to be made. Such tests should be made in accordance with the measurement procedure in $\$ 73.686$ and full data thereon must be supplied to the Cormission. Test transmitters should employ an antenns having a height as close as possible to the proposed anteme height, using a balloon or other support if necessary and feasible. Information concerning the authorization of site tests may be obtained from the Comasion upon request.
(d) Present information is not sufficiently complete to establish "blanket areas" of television broadcast stations. A "blanket area" is that area adjacent to a transmitter in which the receiption of other stations is subject to interference due to the strong signal from this station. The authorization of station construction in areas where blanketing is found to be excessive will be on the basis that the applicant will assume full responsibility for the adjustment of reasonable complaints arising from excessively strong signals of the applicant's station or take other corrective action.
(e) An antenna designed or altered to produce a noncircular radiation pattern in the horizontal plane is considered to be a directional antenna. Antennas purposely installed in such a manner as to result in the mechanical beam titlting of the major vertical radiation lobe are included in this category. Directional antennas may be employed for the purpose of improving service upon an appropriate showing of need. Stations operating on Channels 2-13 will not be permitted to employ a directional antenna having a ratio of maximum to minimum radiation in the horizontal plane in excess of 10 decibels. Stations operating on Channels 14-69 with transmitters delivering a peak visual power output of more than 1 kilowatt may employ directive transmitting antennas with a maximum to minimum radiation in the horizontal plane of not more than 15 decibels. Stations operating on Channels 14-69 and employing transmitters delivering a peak visual power output of 1 kilowatt or less are not limited as to the ratio of maximum to minimum radiation.
(f) Applications proposing the use of directional antenna systems must be accompanied by the following:
(1) Complete description of the proposed antenna system, including the manufacturer and model number of the proposed directional antenna.
(2) Relative field horizontal plane pattern (horizontal polarization only) of the proposed directional antenna. A value of 1.0 should be used for the maximum radiation. The plot of the pattern should be oriented so that 0^{0} corresponds to true North. Where mechanical beam tilt is intended, the amount of tilt in degrees of the antenna vertical axis and the orientation of the downward tilt with respect to true North must be specified, and the horizontal plane pattern must reflect the use of mechanical beam tilt.
(3) A tabulation of the relative field pattern required in (2), above. The tabulation should use the same zero degree reference as the plotted pattern, and be tabulated at least every 10°. In addition, tabulated values of all maxima and minima, with their corresponding azimuths, should be submitted.
(4) Horizontal and vertical plane radiation patterns showing the effective radiated power, in dBk, for each direction. Sufficient vertical plane patterns must be included to indicate clearly the radiation characteristics of the antenna above and below the horizontal plane. In cases where the angles at which the maximum vertical radiation varies with aximuth, a separate vertical radiation pattern must be provided for each pertinent radial direction.
(5) All horizontal plane patterns must be plotted to the largest scale possible on unglazed letter-size polar coordinate paper (main engraving approximately $7^{\prime \prime} \times 10^{\prime \prime}$) using only scale divisions and subdivisions of $1,2,2.5$, or 5 times $10-n t h$. All vertical plane patterns must be plotted on unglazed letter-size rectangular coordinate paper. Values of field strength on any pattern less than 10% of the maximum field strength plotted on that pattern must be shown on an enlarged scale.
(6) The horizontal and vertical plane patterns that are required are the patterns for the complete directional antenna system. In the case of a composite antenna composed of two or more individual antennas, this means that the patterns for the composite antenna, but not patterns for each of the individual antennas, must be submitted.
(g) Applications proposing the use of television broadcast antennas within 61.0 meters (200) feet of other television broadcast antennas operating on a channel within 20 percent in frequency of the proposed channel or proposing the use of television broadcast antennas on Channels 5 or 6 within 61 , 0 meters (200) feet of FM broadcast antennas, must include a showing as to the expected effect, if any, of such proximate operation.
(h) Where a simultaneous use of antennas or antenna structures is proposed, the following provisions shall apply:
(1) In cases where it is proposed to use a tower of a standard broadcast station as a supporting structure for a television broadcast antenna, an appropriate

$$
73.685(h)(1)-73.686(b)(1)(\text { ii })
$$

application for changes in the radiating system of the standard broadcast station must be filed by the licensee thereof. A formal application (FCC Form 301) will be required if the proposal involves substantial change in the physical height or radiation characteristics of the standard broadcast antennas; otherwise an informal application will be acceptable. (In case of doubt, an informal application (letter) together with complete engineering data should be submitted.) An application may be required for other classes of stations when the tower is to be used in connection with a television station.
(2) When the proposed TV antenna is to be mounted on a tower in the vicinity of an AIA station directional antenna s.ystem and it appears that the operation of the directional antenna system may be affected, an engineering study must be filed with the TV application concerning the effect of the TV antenna on the AM directionel radiation pattern. Field measurements of the AM stations may be required prior to and following construction of the TV station antenna, and readjustments made as necessary.
(1) Deleted.
73.686 Field strength measurements. (a) Except as provided for in 73.612, television broadcast stations shall not be protected from any type of interference or propagation affect. Persons desiring to submit testimony, evidence or data to the Commission for the purpose of showing that the technical standards contained in this subpart do not properly reflect the levels of any given type of interference or propagation effect may do so only in appropriate rule making proceedings concerning the amendment of such technical standards. Persons making field strength measurements for formal submission to the Commission in rulemaking proceedings, or making such measurements upon the request of the Commission shall follow the procedures for making and reporting such measurements outlined in paragraph (b) of this section. In instances where a showing of the measured level of a signal prevailing over a specific community is ap prioriate , the procedure for making and reporting field strength measurements for this purpose is set forth in paragraph (c) of this section.
(b) Collection of field strength data for propagation analysis.
(l) Preparation for measurements.
(i) On large scale topographic maps, eight or more radials are drawn from the transmitter location to the maximum distance at which measurements are to be made, with the angles included between adjacent radials of approximately equal size. Radi als should be oriented so as to traverse representative types of terrain. The specific number of radials and their orientation should be such as to accomplish this objective.
(ii) At a point exactly 16.1 kilometers (lomiles) from the transmitter, each radial is marked, and at greater distances at successive 3.2 kilometers (2 mile) intervals. Where measurements are to be conducted at UHF, or over extremely rugged terrain, shorter intervals may be employed, but all such intervals shall be of equal length Accessible roads intersecting each radial as nearly as possible at each 3.2 kilometer (2 mile) marker are selected.

$$
73.686(b)(l)(i i)-\quad \text { (b) (3) (i) (d) }
$$

These intersections are the points at which measurements are to be made, and are referred to subsequently as measuring locations. The elevation of each measuring location should approach the elevation at the corresponding 3.2 kilometer (2 mile) marker as nearly as possible.
(2) Measurement procedure. The field strength of the visual carrier shall be measured with voltmeter capable of indicating accurately the peak amplitude of the synchronizing signal. All measurements shall be made utilizing a receiving antenna designed for reception of the horizontally polarized signal compoennt, elevated 9.1 meters (30 feet) above the roadbed. At each measuring location the following shall be employd.
(i) The instrument calibration is checked.
(ii) The antenna is elevated to a height of 30 feet.
(iii) The receiving antenna is rotated to determine if the strongest signal is arriving from the direction of the transmitter.
(iv) The antenna is oriented so that the section of its response pattern over which maximum gain is realized is in the direction of the transmitter.
(v) At mobile run of at least 30.5 meters (100 feet) is made, which is centered on the intersection of the radial and the road, and the measured field strength is continuously recorded on a chart recorder over the length of the run.
(iv) The actual measuring location is marked exactly on the topographic map, and awritten record, keyed to the specific location, is made of all factors which may affect the recorded field, such as topography, height and type of vegetation, buildings, obstacles, weather, and other local features.
(vii) If, during the test ∞ nducted as described in paragraph (b) (2) (iii) of this section, the strongest signal is found to come from a direction other than from the transmitter, after the mobile run prescribed in paragraph (b)(l)(v) of this section is concluded, additional measurements shall be made in a "cluster" of at least five fixed points. At each such point, the field strengths with the antenna oriented toward the transmitter, and with the antenna oriented so as to receive the strongest field, are measured and recorded. Generally, all points should be within 51.0 meters (200 feet) of the center point of the mobile run. (viii) If overhead obstacles preclude a mobile run of at least 100 feet, a "cluster" of five spot measurements may be made in lieu of this run. The first measurement in the cluster is identified. Generally, the locations for other measuraments shall be within 61 meters (200 feet) of the location of the first.
(3) Method of reporting measurements. A report of me asurements to the Commission shall be submitted in affidavit form, in triplicate, and should contain the following information.
(i) Tables of field strength measurements, which, for each measuring location, set forth the following data:
(a) Distance from the transmitting antenna.
(b) Ground elevation at measuring location.
(c) Date, time of day, and weather.
(d) Median field in $d B u$ for 9 dBk , for mobile run or for cluster, as well as maximum and minimum measured field strengths.
(e) Notes describing measuring location.
(ii) U.S. Geological Survey topographic maps, on which is shown the exact location at which each measurement was made. The original plots shall be made on maps of the largest available scale. Copies may be reduced in size for convenient submission to the Commission, but not to the extent that important detail is lost. The original maps shall be made available, if requested. If a large number of maps is involved, an index map should be submitted.
(iii) All information necessary to determine the pertinent characteristics of the transmitting installation, including frequency, geographical coordinates of antenna site, rated and actual power output of transmitter, measured transmission line loss, antenna power gain, height of antenna above ground, above mean sea level, and above agerage terrain. The effective radiated power should be computed, and horizontal and vertical plane patterns of the transmitting antenna should be submitted
(iv) A list of calibrated equipment used in the field strength survey, which, for each instrument, specifies its manufacturer, type, and serial number and rated accuracy, and the date of its most recent calibration by the manufacturer, or by a laboratory. Complete details of any instrument not of standard manufacture shall be submitted.
(v) Detailed descriptions of the calibration of the measuring equipment, including field strength meters, measuring atenna, and connecting cable.
(vi) Terrain profiles in each direction in which measurements were made, drawn on curved earth paper for equivalent $4 / 3$ earth radius, of the largest available scale.
(c) Collection of field strength data to determine television service in specific communities.
(1) Preparation for measurement. (i) The population (P) of the community, and its suburbs, if any, is determined by reference to an appropriate source, e.g.. the 1970 U.S. Census tabl es of population of cities and urbanized areas.
(ii) The number of locations at which measurements are to be made shall be at least 15 , and shall be approximately equal to $0.1(P) \frac{1}{2}$, if this product is a number greater than 15.
(iii) A rectangular grid, of such size and shape as to encompass the boundaries of the community is drawn on an accurate map of the community. The number of line intersections on the grid included within the boundaries of the community shall be at least equal to the required number of measuring locations. The position of each intersection on the community map determines the location at which a measurement shall be made.
(2) Measurement procedure. The field strength of the visual carrier shall be measured, with a voltmeter capable of indicating accurately the peak amplitude of the synchronizing signal. All measurements shall be made utilizing a receiving antenna designed for reception of the horizontally polarized signal component elevated 30 feet 9.1 meters above street level.
(i) Each measuring location shall be chosen as close as feasible

$$
73.686 \text { (c) (2) (i) - (c) (3) }
$$

to a point indicated on the map, as previously prepared, and at as nearly the same elevation as that point as possible.
(ii) At each measuring location, after equipment calibration and elevation of the antenna, a check is made to determine whether the strongest signal arrives from a direction other than from the transmitter.
(ii) At 20 percent or more of the measuring locations, mobile runs, as described in paragraph (b) (2) of this section shall be made, with no less than three such mobile runs in any case. The points at which mobile measurements are made shall be well separated. Spot measurements may be made at other measuring points.
(iv) Each actual measuring location is marked exactly on the map of the community, and suitable keyed. A written record shall be maintained, describing, for each location, factors which may affect the recorded field, such as the approximate time of measurement, weather topography, overhead wiring, heights and types of buildings, vegetation, and other structures. Theorientation with respect to the measuring locations shall be indicated of objects of such shape and size as to be capable of causing shadows or reflections. If the strongest signal received was found to arrive from a direction other than that of the transmitter, this fact shall be recorded.
(3) Method for reporting measurements. A report of measurements to the commission shall be submitted in affidavit form, in triplicate, and should contain the following information.
(i) A map of the community showing each actual measuring location, specifically identifying the points at which mobile runs were made.
(ii) A table keyed to the above map, showing the field strength at each measuring point, reduced to dBu for the actual effective radiated power of the station. Weather, date, and time of each measurement shall be indicated.
(iii) Notes describing each measuring location.
(iv) A topographic map of the largest available scale on which are marked the community and the transmitter site of the station whose signals have been measured, which includes all areas on or near the direct path of signal propagation.
(v) Computations of the mean and standard deviation of all measured field strengths, or a graph on which the distribution of measured field strength values is plotted.
(vi) A list of calibrated equipment used for the measurements, which for each instrument, specifies its manufacture, type, serial number and rated accuracy, and the date of its most recent calibration by the manufacturer, or by a laboratory. Complete details of any instrument not of standard manufacture shall be submitted.
(vii) A detailed description of the procedure employed in the calibration of the measuring equipment including field strength meters measuring antenna, and connecting cable.

$$
73.687(a)-(a)(2)
$$

73.687 Transmission System requirements. (a) Visual transmitter.
(1) The field strength or voltage of the lower sideband, as radiated or dissipated and measured as described in paragraph (a)(2) of this section, shall not be greater than -20dB for modulating frequency of 1.25 MHz or greater and in addition, for color, shall not be greater than -42 dB for a modulating frequency of 3.579545 MHz (the color subearrier frequency). For both monochrome and color, the field strength or voltage of the upper sideband as radiated or dissipated and measured as described in parapraph (a) (2) of this section shall not be greater than -20 dB for a modulating frequency of 4.75 MHz or greater. For stations operating on channels 15-69 and employing a transmitter delivering maximum peak visual power output of 1 kW or less, the field strength or voltage of the upper and lower sidebands, as radiated or dissipated and measured as described in paragraph (a) (2) of this section, shall depart from the visual amplitude characteristic (Figure 5a of 73.699) by no more than the following amounts:

The field strength or voltage of the upper and lower sidebands, as radiated or dissipated and measured as described in paragraph (a) (2) of this section, shall not exceed a level of -20 dB for a modulating frequency of 4.75 MHz or greater. If interference to the reception of other stations is caused by out-of-channel lower sideband emission, the technical requirements applicable to stations operating on Channels 2-13 shall be met.
(2) The attenuation characteristics of a visual transmitter shall be measured by application of a modulating signal to the transmitter input termirals in place of the normal composite television video signal. The signal applied shall be a composite signal composed of a synchronizing signal to establish feak output voltage plus a variable frequency sine wave voltage occupying the interral between synchronizing pulses. (The "synchronizing signal" referred to in this section means either a standard synchronizing wave form or any pulse that will properly set the peak.) The axis of the sine wave in the composite signal observed in the output monitor shall be maintained at an amplitude 0.5 of the voltage at synchronizing peaks. The amplitude of the sine wave input shali be held at a constant value. This constant value should be such that at no modulating frequency does the maximum excursion of the sine wave, observed in the composite cutput signal monitor, exceed the value of 0.75 of peak output voltage. The amplitude of the 200 kilohertzsideband shall be measured and designated zero $d b$ as a basis for comparison. The modulation signal frequency shall then be varied over the desired range and the field strength or signal voltage of the corresponding sidebands measured. As an alternate method of measuring, in those cases in which the alitomatic $d-c$ insertion can be replaced by manual control, the above characteristic may be taken by the use of a video sweep generator and without the use of pedestal synchronizing pulses. The d-c level shall be set for midcharacteristic operation.

$$
5 / 26 / 86 \quad 73 \text { TVS } \quad-16-
$$

$$
73.697(a)(3)-73.687(b)(3)
$$

(3) A sine wave, introduced at those terminals of the transmitter wrisck are normally fed the composite color picture signal, shall produce a radiated signal having an ervelope delay, relative to the average envelope delay between 0.05 , and 0.20 MHz of zero microseconds up to a frequency of 3.0 MHz \& then lireariy decreasing to 4.18 MHzo as to be equal to -0.17 N secs at 3.58 MHz . The tolerance on the envelope delay shall be $\pm 0.05 \mathrm{Necs}$ at 3.58 MHz . The tolerance shall increase linearly to $+0.1 \mu \mathrm{sec}$ down to 2.1 MHzand remain at $+0.1 \mu \mathrm{sec}$ down to 0.2 KHz (Tolerances for the interval of 0.0 to 0.2 are not specified at the present time.) The tolerance shall also increase linearly to $\pm 0.1 \mathrm{Nsec}$ at 4.18 MHz .
(4) The radio frequency, signal, as radiated, shall have an enveiope as would be produced by a modulating signal in conformity with $\$ 73.682$ and Figure 6 or 7 of $\S 73.699$, as modified by vestigial sideband operation specified in Figure 5 of $§ 3.699$. For stations operating on Channels $15-69$ the radio frequency signal as radiated, shall have an envelcpe as would be produced by a modulating signal in conformity with $\$ 73.682$ and Figures 6 or 7 of $\$ 73.699$.
(5) The time interval between the leading edges of successive horizontal pulses shail vary less than one half of one percent of the average interval. However, for color trainmissions, $\$ 73.682(a)(5)$ and $\S 73.682(a)(6)$ shall be controlling.
(5) The rate of change of the frequency of recurrence of the leading edges of the horizontal symchronizing signals shall be not greater than 0.15 percent per second, the frequency to be determined by an averaging process carried out over a period of not less than 20, nor more than 100 lines, such lines not to include any portion of the blanking interval. However, for color transmissions, §73.68c)(a)(5) and $\S 73.682(a)(6)$ shall be controlling.
(b) Aural transmitter. (1) Pre-emphasis shall be employed as closely as practicable in accordance with the inpedance-frequency characteristic of a series inductance-resistance network having a time constant of 75 microsecands. (See uoper curve of Fig. 12, 73.699.)
(2) If a limiting or compression amplifier is employed, precaution .liould bc maintained in its connection in the circuit due to the use of pre-emphasis in the transmitting system.
(3) Aural modulation levels are specified in 73.1570. consistent
$1 / 31 / 85$
73TVs
(c) Requirements applicale to both visual and aural tranamitters. (1) Automatici means shall be provided in the visual transmitter to mantain the carrier frequency within E one kilohertaf the authorized frequency; automatic means shall be provided in the aural transmitter to maintain the carrier frequency 4.5 megacycles above the actual visual carrier frequency within k one kiloherts
(2) The transmitters shall be equipped with suitable indicating instruments for the determination of operating power and with other instruments necessary for proper adjustment, operation, and maintenance of the equipment.
(3) Adequate provision shall be made for varying the output power of the transmitters to compensate for excessive variations in line voltage or for other factors affecting the output power.
(4) Adequate provisions shall be provided in all component parts to avoid overheating at the rated maximum output powers.
(d) Constriction. In general, the transmitters shall be mounted either on racks and panels or in totally enclosed frames protected as required by the provisions of the National Electrical Code concerning transmitting equipment at radio and television stations, and as set forth below:

$$
73.687(d)(1)-73.627(d)(4)
$$

(1) Neans shall be provided for making all tuming adjuetments, requiring voltages in excess of 350 volts to be applied to the circuit, from the front of the panele with all access doors closed.
(2) Proper bleeder resistors or other automatic means shall be ins iniled across all the capacitor banks to lower any voltage winch may remain aceecsiole with access door open to less than 350 volts within two seconds after the access door is opened.
(3) All plate supply and other high roltage equipment; inciuding trans. formers, filters, rectifiers and motor generatcrs, shall be protiected so as to prevent injury to operating personnel.
(1) Comantator guards shall be provided on all kigh voltage r tating machinery. Coupling guards should be previded on motor generators.
(ii) Power equipment and control panels of the transmitters shal: meet the above requirements (exposed 220 -volt A.C. switching equipment on the front of the power control panels is not recomended but is not prohibited).
(1i1) Power equipment located at a television broadcast station not directly associated with the transmitters (not purchased as part of same), such as power distribution panels, are not subject to the provisions of this subpart.
(4) The following provisions shall be applicable to metering equipment:
(1) All instruments having more than 1,000 volts potential to ground on the movement shall be protected by'a cage or cover In addition to the regular case. (Some instruments are desigmed by the manufacturers to operate safely with voltages in excess of 1,000 volts on the movement. If it can be shown by the manufacturer's rating that the instrument will operate safely at the applied potential, additional protection is not necessary.)
(11) In case the piate voltmeters are located on the low potential side of the miltiplier resistors with the Migh potential terminal of the instruments at or less than 1,000 volts above ground, no protective case is required, However, it is good practice to protect voltmeters subject to more than 5,000 volts with suitable

$$
\mathrm{g} 73.687(\mathrm{~d})(4)(\mathrm{ii})-73.687(\mathrm{~g})
$$

over-voltage protective devices across the instrument terminals in case the winding opens.
(iii) Transmission line meters and any other radio frequency instrument which may be necessary for the operator to read shall be so installed as to read easily and accurately without the operator having to risk contact with circuits carrying high potential radio frequency energy.
(e) Wiring and shielding. (1) The transmitter panels or units shall be wired in accordance with standard practice, such as insulated leads properly cabled and supported, coaxial cables, or rigid bus bar properly insulated and pro:ected.
(2) Wiring between units of the transmitters, with the exception of circuits carrying radio frequency energy or video energy, shall be installed in conduits or approved fiber or metal raceways to protect it from mechanical injury.
(3) Circuits carrying radio frequency of video energy between units shall be coaxial cables, two wire balanced lines, or properly shielded lines.
(4) All stages or units shall be adequately shielded and filtered to prevent interaction and radiation.
(f) Deleated and reserved.
(g) Installation. (1) The installation of transmitting equipment shall be made in suitable quarters.
(2) Suitable facilities shall be provided for the welfare and comfort of the operator.
(h) Reserved.

$$
\$ 73.687(1)-73.688(c)
$$

(i) Operation.--(l) Spurious emissions, including radio frequency harmonics, shall be maintained at as low a level as the state of the art permits. As measured at the output terminals of the transmitter (including harmonic filters, if required) all emissions removed in frequency in excess of 3 Mc above or below the respective channel edge shall be attenuated no less than 60 db . below the visual transmitted power. (The 60 db . value for television transmitters specified in this rule should be considered as a temporary requirement which may be increased at a later date, especially when more higher-powered equipment is utilized. Stations should, therefore, give consideration to the installation of equipment with greater attenuation than 60 db .) In the event of interference caused to any service greater attenuation will be required.
(2) If a limiting or compression amplifier is used in conjunction with the aural transmitter, due operating precautions should be maintained because of preemphasis in the transmitting system.
(j) Studio equipment. --Studio equipment shall be subject to all the above requirements where applicable, except, as follows:
(1) If properly covered by an underwititer's certificate, it will be considered as satisfying safety requirements.
(2) The pertinent provisions of the National Electrical Code concerning transmitting equipment at radio and television stations shall apply for voltages only when in excess of 500 volts.
(3) No specific requirements are made relative to the design and acoustical treatment of studios. However, the design of studios, particularly the main studio, shall be compatible with the required performance characteristics of television
§73.688 Indicating instruments. (a) Each TV broadcast station shall be equipped with indicating instrements which conform with the specifications described in $\$ 73.1215$ for measuring the operating parameters of the last radio stage of the visual transmitter and with such other instruments as are necessary for the proper adjustment,operation and maintenance of the visual transmitting system.
(b) The function of each instrument shall be clearly and permanently shown on the instrument itself or on the panel immediately adjacent thereto.
(c) In the event that any one of these indicating instruments becomes defective, when no substitute which conforms with the required specifications is available, the station may be operating without the defective instrument pending its repair/replacement for a period not in excess of 60 days without further authorization of the Commission, Provided,
8/9/85 73TVS -21-
(1) If the defective instrument is the transmission line meter used for determining the output power by the direct method, the operating power shall be determined or maintained by the indirect method whenever possible or by using the operating parameters of the last radio stage of the transmitter during the time the station is operated without the transmission line meter.
(2) If conditions beyond the control of the licensee prevent the restoration of the meter to service within the above allowed period, informal request in accordance with 73.3549 may be filed with the Engineer in Charge of the radio district in which the station is located for such additional time as may be required to complete repairs of the defective instrument.

S73.689 Operating power.
(a) Determination. See 73.663.
(b) Maintenance. See 73.1560.
(c) Reduced power. See 73.1560.
$73.690 \frac{\text { Frequency measurements. }}{\text { See } 73.1540}$
73.691 Visual modulation monitors.

Each TV station must have measuring equipment for determining that the transmitted visual signal conforms to the provisions of this Subpart. The licensee shall decide the monitoring and measurement methods or procedures for indicating and controlling the visual signal.
73.692 Reserved.
73.694 Deleted.
73.695-73.698 Reserved.
73.698 Tables. See next page.

Tanle:

Minutes	Degrees	Minutee	Deprea
	0.01607		0. 61607
2	. 08888	82	988
3	. 05	88	
4	. 06807	84	
5	. 08398		
6	. 10	36	-0
7	. 11007	87	61687
8	. 18898		88
-	. 15	89	
10	. 16687	40	
11	. 18338	41	
12	. 20	42	. 70
18	. 21687	48	. 71607
14	. 23888	4	T8388
18	. 28		75
16	. 20687		. 76097
17	. 28838	47	. 78088
18	. 80	48	. 80
19	. 81607	49	. 81807
20	. 89888	50	. 88885
21	. 36	81	E8
22	. 86687	52	88667
28	. 88383	68	88838
24	. 40	64	
25	. 41687	85	. 01687
26	. 48883	50	. 03838
97	. 46	57	08
28	. 40007	E8	ceey
20	. 40383 -		. 88388
	. B_{0}	60 .-	1.00

Tanle I-Coatinued

§73.699 Figures. Consists of figures 1, 2, 5 through 17 inclusive.

FCC 8 73.699, FIGURE 1
Feb. 1954
\square

FCC 8 73.699, FIGURE 5
IDEALIZED PICTURE TRANSMISSION
AMPLITUDE CHARACTERISTIC

Sliding Scale for use with Figures 9 and 10

with Figures $9 \& 10$.

Sliding scale for use

FCC 73.699 Figure 9
ESTMAATED PED STRENGTH EXCEEDEO AT 50 PERCENT
OF THE POTENTLAL RECEVER LOCATIONS FOR AT LEAST 50 PERCENT OF THE TME AT A RECENIG ANTENU HEGHT OF O METERS

FCC 73.699 Figure 9a
ESTMATED RELD STRENOTH EXCEEDED AT 50 PERCENT
OF THE POTENTLA RECENER LOCATIONS FOR.AT LEAST EA-PERCER $\| 0{ }^{c} / 0$
OF THE TME AT A RECENAG ANTEWA HEGHT OF O METERS

CC 73.699 Figure 10
ESTMATED RELD STRENGTH EXCEEDED AT 60 PERCENT
OF THE POTENTLL RECENER LOCATONS FOR AT LEAST 60 PERCENT
of the tme at a recenng antenna heght of a meters

FCC 73.699 Figure $10 a$
ESTMMATED RELD STRENGTH EXCEEDED AT 60 PERCEST
OF THE POTENTLAL RECEVER LOCATIONS FOR AT LEAST \&O-mEnCENT / O O/O of the tma at a.recenvg antenna hegrt of 9 METERS

TRANSMITTING ANTENNA HEIGHT IN METERS

FCC 73.699 Figure 10c
ESTMATED FEID STRENGTH EXCEEDED AT 80 PERCENT
OF THE POTENTLAL RECENER LOCATIONS FOR AT LEAST Gepranemi $/ 0$ o Of THE TME at a Recenng intenna hechr of o meters
§73.699

TERRAIN ROUGHNESS CORRECTION for use with estimated $F(50,50)$ and $F(50,10)$ field strength curves

ASSUMED IDEAL DETECTOR OUTPUT

FIGURE 11

Figures 13,14 and 15 deleted and reserved

Whes the Chrominance Raforence and tha Progom Color Murst have the anm Shase.

horizontal dimensicns not to scale
1 Data "l" = 50ire units, data "O" = 0
2 Data pulse rise time $=2 T$ bat rise time
3 Data time base $=32 f_{H}$ (050349650 MHz)
4 Data bit interval $=\mathrm{H} / 32$ (1.986uS
5 Nagative going zero crossings of clock
are coherent with data transitions
6 Data and clock run-in coherent with H

BROADCAST SERVICE BUREAU

 (INCORPORATED)RULES AND REGULATIONS OF FEDERAL COMMUNICATIONS COMMISSION PARTS:

$$
0,1,2,5,13,17,73,74,76 \text { and } 78
$$

This index is designed to give Broadcasters a "descriptive word" quick-search index direction to the rules, regulations and standards of the Federal Communications Commission pertinent to the establishment and operation of their stations.

The entire FCC Rules are divided into 40 specifically numbered Parts. All of these Parts are broken down into numbered section references containing a decimal point, with the numbers to the left of the decimal point corresponding to the part number of the Rules. The numbers to the right of the decimal bear the number of the section in the part. For example $\$ 73.9$ of the FCC Rules is section 9 of part 73 ; 873.182 is section 182 of Part 73; $\$ 17.33$ is section 33 of part 17, and so on. Thus each section of the entire FCC Rules is designated by one specific number containing the part in which it is found, and the part section to the right of the decimal point.

Broadcast Service Bureau deals only with those ten Parts of interest to the Broadcasting Industry and is an exact duplication of these parts by section reference. Hence, the coverage of this index, with the FCC Part designation in parentheses, is as follows:

A

AM (STANDARD) BROADCAST STANDARDS
Allocation
Class of station, determination of
Class I
Class I in Group I-A
Class I in Group I-B
Class II
Class III
Class III-A
Class III-B
Class IV
Daytime Radiation
Ergineering charts
Field intensity measurements
Field intensity requirements
General explanation of
croundwave field intensity charts
Groundwave signals
Interference
estimation of
from adjacent channel
from directional antenna
from same channel
objectional
objectional groundwave
permissible signals
skywave field intensity (50\% - 10\%)
Intermittent service
Man-made noise, overcoming
Minimum antenna heights
primary service, signals necessary for
protected service contour
RSS value, calculations
Secondary service
Service areas
Transmitter, location of
AM (STANDARD) BROADCAST STATIONS
Affiliation
exclusive
option time
term
territorial
Alternate main transmitter
Anterna, directional
Anterra input power, how determined
Anterra inpat power, maintenance of
Antenna monitors
Antenna system
Antenna monitors, type approved
Anterna resistance and reactance; how
determined
sampling system for
Anterna systems, showing required
Applications for
antensa system, showing required
broadcast facilities, showing required
notification of filing of

Part	Page	Section
73AM	$46-$	$73.150-$
	49	73.152
73AM	25	73.51
73AM	26	73.52
73AM	30 ac	73.69
73AM	20	73.45
73AM	26	73.55
73AM	26 b	73.54
73AM	230 a	73.68
73AM	10	$73.33(\mathrm{a})$
73AM	10	$73.33(\mathrm{~b})$
73AM	12	73.37
73AM	3 a	73.18

 processing of
 action to be withheld on certain types
 general
 Mexican agreement
 NARBA (North American Regional
 Broadcast Agrecment)
 Assignment of Class II Stations
ludio recordings, retnetion of
nutomntic transmission system (AIS), use of
fnil-safe transmitter control for
nutomotic transmission system facilities
$1 \quad 65 \quad 1.569$
$1 \quad 69 \quad 1.571$
$1 \quad 67 \quad 1.540$
$1 \quad 65 \quad 1.570$
73AM 5. 73.22
73А:- 43a 73.127
iutonetic transmission system monjtoring and
Clarm points
Auxiliary transmitter
Broadcast facilities
Candidates. political
Channels
assignment of stations to
classes of
Classes of stations

1	65	1.569
1	69	1.571
1	67	1.540
1	65	1.570
73AM	5	73.22
73a:"	43a	73.127
$73 \wedge \mathrm{r}$	46	72.140
$73 \mathrm{A!}$	45b	73.14/4
73A:	45\%	72.14\%
73AI:	45 c	172.146

See Transmitters, this topic

Broadcast facilities
Candidates. political
Channels
assignment of stations to
classes of
Classes of stations
Clear Channels defined
frequency designation
operating power, classes I and II stations
Conductivity (field tests)
Control of Stations
Cross reference to rules in other parts
Definition of
Definitions, in general
Directional antenna system, data required
Discontinuance of operation

		Part	Page	Section
	Interference	73AM	33	73.88
	Licenses - period of	73AM	10	73.34
\bigcirc	posting of	73AM	33	73.92
	sunrise and sunset	73AM	32	73.79
	Local channels - defined	73AM	4a	73.21 (c)
	frequency designation Class Iv Stations	73AM	7a	73.27
	Location of stations	73AM	9	73.30
	Logs	73AM	37 bbb	73.111-. 116
	Lotteries	73H	5	73.1211
	Minimum separation between stations	73AM	12	73.37
	Modulation	73AM	27	73.55
	Modulation monitors-commission approval of	73AM	24	73.50
	requirements of	73AM	27 a	73.56
	Monitors antenna (Phase)	73AM	30aa	73.69
	Monitors, sampling system for	73AM	a30a	73.68
	Multiple ownership or control	73AM	11	73.35
	New equipment, restrictions	73AM	28	73.61
	Operating power - maintenance of and how determined (input and output)	73AM	25-26	73.51-.52
	Operation - discontinuance of	73AM	33	73.91
	during emergency	73 AM	37	73.98
	during experimental period	73AM	30d	73.72
	limited time of	73AM	12c	73.38
	remote control and authorization	73AM	29a-30a	73.66-.67
	Minimum schedule	73AM	30d	73.71
	time of	73 AM	5	73.23
	Operators, requirements	73 AM	34	73.93
	Ownership, contracts for sale of	73AM	45	73.139
	Ownership of station			
	Personal attacks; political attacks	73AM	43	73.123
	Power - authorized	73AM	5	73.22 (c)
	operating	SEE O unde	peratin this	Power topic
	Presunrise service authority	73AM	37b	73.99
	Program			
	origination	73AM	9	73.30
	tests	73AM	36b	73.96
	transmission, times and modes of	73AM	33	73.87
	Prohibited overlap	73AM	12	73.37
	Rebroadcast	73H	2	73.1207
	Regional channel,			
	Class IIIA and IIIB stations	73AM	7 a	73.26
	Class IV stations on	73AM	8	73.29
	Defined	73AM	4	73.21 (b)
	frequency designation	73AM	7 a	73.26
	Remote reading antenna and common point ampete	73AM	27a	73.57
	Remote control	SEE u	der ope	eration
	Reservation of time, contracts for	73AM	45	73.139
	Sale of station, contracts for	73AM	45	73.139
	Schedule, departure from	73AM	32	73.82
-	Secondary station, operation of	73AM	32	73.80

AM (STANDARD) BROADCAST STATIONS (Cont'd)
Sharing time
Special equipment test authorization
Specified hours
Sponsorship identification
Studio equipment
Studio, main, moving of
Time,
reference
contracts for reservation of
of operation of the several classes of
sharing
Transmitters
acceptability for licensing
alternate main
auxiliary, authorization for
construction of
design of
determination of
equipment changes
equipment performance measurements
general
installation of
maximum rates carrier power
radiating system
wiring and shielding of
weather warning
White areas, minimum service
AMMETER-ANTENNA, REMOTE READING
AMMETER, THERMOCOUPLE TYPE
AMPLITUDE MODULATION (AM) definition of
ANNOUNCEMENTS OF SPONSORED PROGRAM
Telephone conversation, broadcast of ANTENNA
aeronautical study
Criteria for FAA
Ammeter (remote reading, AM)
Applications, general
AM stations
experimental radio services
Cleaning and repainting
Common antenna structure, use of
Construction, alteration and/or removal report of
Current, technical definition of
Definitions
Directional, and field strength measurements
Emergency, FM broadcast

Part	Page	Section
73AM	31	73.74-73.78
73AM	53	73.157
73AM	31	73.73
73AM	40	73.119
73AM	19	73.40 (f)
73AM	9	73.31
73AM	32	73.83
73AM	45	73.139
73AM	5	73.23
73 AM	31	73.34-73.78
73AM	20	73.46
73AM	21	73.48
73AM	30	73.64
73AM	29	73.63
73AM	17	73.40 (b)
73AM	15	73.40 (a)
73AM	19	73.42
73AM	19	73.43-73.44
73AM	21	73.47
73AM	20	73.46
73AM	18	73.40 (d)
73AM	19	73.41
73AM	20	73.45
73AM	18	73.40 (c)
73AM	34	73.90
73AM	5	73.22
73AM	14	73.39 (d)
73AM	13a	73.39 (c)
73TVS	1	73.681
73AM	40	73.119
73H	2	73.1206
SEE a	also app	ropriate type
1	8	$1.61 \text { (c) }$
17	2-4	17.7-17.17
73AM	14	73.39 (d)
1	8	1.61
73AM	10	73.33
5	4 a	5.55 (b)
17	15	17.50
74	4	74.22
17	17	17.57
73AM	2	73.14 (h)
17	1	17.2
73AM 73FM	46-49 19 a	$\begin{aligned} & 73.150-.152 \\ & 73.273 \end{aligned}$

Existing (prior to rules)
painting and lighting
structures
Farm areas
establishment of antenna
designated antenna
antennas over 1,000 feet
Height
above average terrain, definition of
FM broadcast
TV broadcast
minimum, AM broadcast
TV broadcast
Input power, how determined
maintenance of
International broadcast stations,
field intensity ratio
Lights and lighting
equipment
high intensity; skeletal structures up to and includine 300' through 1000'
height of improper function or extinguishment of maintenance rated voltage recording of (station records) time exhibited warning lights, temporary
Location, TV broadcast translator stations
TV broadcast booster stations
Marking
Monitors, requirements for type approval
New painting and lighting
Painting specification
Power
definition of
measurement of to determine operating power
Power gain, definition of
proposed structure, air hazard
Resistance, definition of
Resistance and reactance, how determined
Site
Structure
Systems
changes in
FM broadcast stations
International broadcast stations
Noncommercial FM broadcast stations TV broadcast stations directional
data required
measurements, performance
modification of
showing required
standards for $F M$ broadcast stations TV broadcast stations

17	$13 e$	17.43
17	4	17.17
17	2	17.8
17	3	17.9
17	3	17.10

73.313 (d)

		$73.310(\mathrm{a})$
73FMS	$1 \& 4$	73.681
73TVS	1	73.681
73AMS	24	73.189
73TV	24	73.614
73AM	25	73.51
73AM	26	73.52
		73.753
73INT	9	73.1213
73 H	7	16.53
17	16	17.

17 13a-3 17.39-.42
17 4-13 17.21-17.38
$17 \quad 14 \quad 17.48$
$17 \quad 14 \quad 17.47$
$17 \quad 17 \quad 17.56$
$17 \quad 17 \quad 17.54$
$17 \quad 15 \quad 17.49$
$17 \quad 15 \quad 17.50$
$17 \quad 14 \quad 17.45$
$74 \quad 58 a \quad 74.737$
$74 \quad 72 \quad 74.837$

SEE painting this topic

73	26	73.53
17	$13 e$	17.43

174 17.21-17.23
73AM 273.14 (f)
$1 \quad 62 \quad 1.546$
$73 T V S 1 \quad 73.681$
$17 \quad 1 \quad 17.4$
$73 \mathrm{AM} \quad 2 \quad 73.14(\mathrm{~h})$
73AM 26b 73.54

SEE Appropriate type station
73AM 29a 73.65

73FM	16	73.257
73INT	11	73.759
73ED	10	73.557
73TV	33	73.639
73AM	46	73.150
73AM	48	73.151
73AM	49	73.152
73AM	10	73.33
73FNS	6	73.316
73TVS	11	73.685

	Part	page	Section
Inconsistent	1	55	1.518
Indicating instruments, operation without	1	64	1.549
Informal, defined	1	58c	1.531
Information furnished to the commission substantial and significant changes in	1	9	1.65
International broadcasting processing of	1	74	1.574
Involuntary assignment or transfer	1	61	1.541
Lands and reservation under U.S. government	1	9 a	1.70
License to use former main transmitter or antenna as an auxiliary	1	60	1.537
License, simultaneous modification	1	85b	1.601
Modification of license	1	60	1.538
Multiple	1	55	1.520
North American Regional Broadcasting Agreement	1	67	1.570
Operating power (measurement) of	1	62	1.546
Operation pending on renewal, action on	1	9	1.62
Operator's license	13	$3 \mathrm{a}-\mathrm{b}$	13.11-13.13
Operators, use of lesser grade	1	63	1.547
period of construction permit	1	85b	1.598
1-_Pre-grant procedures	1	75	1.580
Processing of applications, generally	1	64a-80	1.561-1.587
2-_Public notice as to	1	64a	1.564 (c)
Remote control (application)	1	63	1.548
Renewal of license	1	60	1.539
Repetitious applications	1	55	1.519
Retentions of	1	86	1.605
Who may sign	1,76\&78	54,7,8a	$\begin{gathered} 1.513-76.16, \\ 78.16 \end{gathered}$
SAFETY AND SPECIAL SERVICES			
Applications and Proceedings	Subpar	t F ind	ex page 40-1
Special service authorization	1	62	1.543
Special waiver related to	1	86	1.603
Specifications of facilities	1	54	1.516
Staff consideration, action by commission	1	64a	1.561
no action by commission	1	64a	1.562
Station license	1	59	1.536
Student authorizations	5	27	5.402
Submission of technical information for application	2	64	2.591
Television broadcast processing of	1	72	1.572
Temporary authorization	1	61	1.542
Transfer and assignment of	1	84	1.597
Transfer of control	1	61	1.540
Voluntary assignment of control	1	61	1.540
When required	1	53	1.511
APPROACH SURFACES			
Definition of	17	1	17.2 (c)
Length of	17	1	17.2 (c) (1)
Slope	17	2	17.2 (c) (3)
Width of	17	1	17.2 (c) (2)
ASPECT RATIO			
Definition of	$73 T V S$	1	73.681
ASSIGNMENT	See al cont	lso tran rol	sfer of
Of channels			
noncommercial education FM station 1---Procedures	73 ED 2	$\frac{1}{71-74}$	$\begin{gathered} 73.501-73.502 \\ 2.309-.925 \end{gathered}$
2--Records, public insp.by non educational app	11. 1	58c	1.527

	Part	Page	Section
TV broadcast stations, table of	73TV	2-12	73.606
Of Class 2A stations Of control	73AM	5	73.22
applications	SEE applications		
Of license, Experimental Radio Services	5	5	5.55 (i)
Of station authorization, Experimental			
Radio Services	5	3	5.5
Of stations to channels	73AM	7 a	73.28
ASSOCIATED TV BROADCAST			
Station, definition of	74	47	74.631 (a)
			NOTE
AURAL CENTER FREQUENCY, definition of	73TVS	1	73.681
AURAL TRANSMITTER, definition of	73TVS	1	73.681
AUTHORIZED FREQUENCY, defined	5	1	5.3 (a)
AUTHORIZED POWER', defined	5	1	5.3 (b)

C (cont:d)
CHANNELS (cont'd)

Designation
Utilization
CHARGES PROHIBITED
Developmental broadcast station
Experimental facsimile broadcast stations
Experimental TV stations
CHARTS
Engineexing
CHIFF CABLE TELEVISION BUREAU
Authority delegated
Function of the Bureau
CHIEF ENGINEER, OFFICE OF
Authority delegated to
Functions of
CHIEF HEARING EXAMINER
Appeals from
General provisions
Oppositions and replies
Oral arguments before
Review of rulings by
Rulings, time for action
CHROMENANCE, definition of
CHROMINANCE SÜBCARRIER, definition of
CIV式 AIRWAYS, definition of
CLASS OF STATION
CLEAR CHANNEL, defined
CLEAR CHANNELS, definition of
CODE TESTS
COLOR TRANSMISSION, definition of
COMBINED AUDIO HARMONICS,
Technical definition of
COMMERCIAL RADIO OPERATOR'S EXAMINATION

Fees

COMMISSION, location of and hours
Organization of
practice and procedure
COMMON ANTENNA SITE
Use of, FM station
COMMON CARRIER BUREAU
Authority of
Organization and duties of
COMMON CARRIER SERVICE; Fees

Part Page Section

Part Page Section

> CONICAL SURFACE, definition CONFLICTING APPLICATIONS CONSOLIDATION OF CAUSES CONSTRUCTION, APplication for

CONSTRUCTION PERMIT

Experimental facsimile Broadcast Station
Experimental Radio Service (other than Broadcast)
assignment of 5
construction period 5
extension of time 5
Mobile station, application for 5
modification of
statements with application
transfer of corporate control
Experimental Television Station
Extensions of
74

5
5
5
5
5 74
1

17 2
See Applications
$130 \quad 1.227$

SEE Applications and appropriate type station.

12
74.212
5.55 (i)
5.61
$5.55(\mathrm{~h})$
5.55 (c)
5.55 (e)
5.57
5.55(j)
74.112
1.534

CONSTRUCTION PERMIT (CONT'D)

- Developmental Broadcast Station

Forfeiture of
Grants of
Modification of
Perimd of
TV Broadcast Translator Stations
TV Pickup Station, new
Waiver of, student authorizations
CONTINUANCES
CONTRACTS
Brokers sale of time 1
Network service
Ownerskip =f iontrol of
Resexvatio: of time in sale of stations

Suibsidiary Communications Authorizations operatiors of

CONTROL POINT

D

DAYTIME, definition of
DEATE of Permittee
DEFECTIIE APPLICATIONS
Experimental radio services
DEFENSE AND EMERGENCY PREPAREDNESS DELEGATION
DEFENSE AND EMERGENCY PREPAREDNESS FUNCTIONS
Defense Commissioner
Emergency communications, office of
Emergency relocation board
Executive Director
Field liaison, office of
Responsibilities of bureau andustaff officers
DEIEGATION OF AUTHORITY
Broadcast Bureau, Chief of
Chief Cable Television Bureau
Chief Engineer
Chief Hearing Examiners
Chief, Office of Opinion and Review
Commissioners
Common Carrier bureau
Engineer in Charge
Executive Director
Exercise of
Field Engineering and Monhtoring Bureau
General Provisions
General Counsel
Hearing Exainizer
Operation extur
person, paral or board
Reconsideration and review of actions taken, pursuant to
Review board
Safety and special radio services bureau
u -112

D (Cont'd)
DESIENATED AIR TRAFFIC CONTROL AREAS DESIENATION OF CHANNELS (NONCOMMERCIAL)
DEVELOPMENTAL BROADCAST STATIONS
Announcements required
Applications for

Charges prohibited
Construction permit for
Definition of
Emission authorized
Equipment changes
Frequency assignment
Frequency monitors
Frequency tolexance
Identification
Inspection
License
License Period
License renewal
Operatiof, time of
Operator license, posting of
operator requirements
power limitations
Program service
Rebroadcasts
Renewal of license
Station identification
Station licenses, posting of
requirements for
Station records
Time of operation
DIRECTIONAL ANTENNA
DISABIIITY OF PERMITTEE
DISASTER COMMUNICATIONS
DISMTSSAL OF APPLICATIONS

DISPATCH POINT

DISTANCE BETWEEN STATIONS
Computation
DISTRESS COMMUNICATIONS
DOMINANT STATION, definition of
DISCOVERY AND PRESERVATION OF EVIDENCIE Depositions
Documents-inspection and copying Ganeral
Parties, interrogatories to
Protective orders

Part
Page
SEcivion

| DEPOSITIONS, Verification, by officer (cont'd) | | | |
| :--- | :--- | :--- | :--- | :--- |
| \quad witness | 1 | 44 | 1.316 |
| DUAL LICENSES | 13 | 1 | 13.3 |
| DUPLICATE LICENSES | 13 | 14 | 13.71 |

E

EDUCATIONAL FM BROADCAST STATIONS
Applications for, processing of

EDUCATIONAL INSTITUTIONS
 Applications for authorization in experimental research
 EFFECTIVE FIELD, definition of
 EFFECTIVE RADIATED POWER, definition of

ELIGIBILITY, for new license EMERGENCY

Operation during, Experimental radio serv. EMERGENCY ANTEN:NA
EMERGENCY BROADCAST SYSTEM
Attention Signal
Attention Sirnal Fauipment, acceptorbility of
Authenticator Word Lists
Basic EBS Plan
Closed Circuit Tests of Approved NationalLevel Interconnecting Systems and

Facilities of EBS
Common Program Control Stations (CPCS)
Day-to-Day Emergencies Posing a Threat to the Safety of Life and property; State-Level and Operational (Local) Area-Level Emergency Action Notification 73EBS 9

Denoder devices

Dissemination of Emergency Action Notification

154 1.573.
SEE also Non-Commercial Educational
$73 E B S$
73EBS 3
73.962
5.57
73.14 (b)
73.681
73.310 (a)
13.5
5.159

SEE Antenna
73EBS $1 \quad 73.906$
173ER 12 73.942
73EBS 273.910
73EBS 273.911
73.916

Emergency Broadcast System (EBS)
Emergency Action Notification (EAN)
Emergency Action Termination
Encoder Devices
EBS Authorization
EBS Checklist
EBS Operation During a National-Level Emergency
EBS Operation During a State-Level Emergency
EBS Operation During an Operational (Local)
Area Emergency
.EBS Programming Priorities
Individual Construction of Encoders and Decoders
License
NIAC order
Non-Participating Station (non EBS)
Objectives of Subpart
Operational (Local) Area
Originating Primary Relay Stations
(Orig. Pri. Relay)
Participation b.y Communications Common Carriers
Participation in the EBS
Primary Station (Primary)
Primary Relay Station (Pri Relay)
Radio Monitoring and Attention Signal
Transmission Requirements
Scope of Subpart
Standard Operating Procedures (SOP's)
State EBS Operational Plan
State Network Primary Control Station State Relay Network
Tests of the EBS Procedures

Part	Pace	Section
73EBS	1	73.903
$73 E B S$	1	73.905
73 EBS	2	73.907
73 EBS	10	73.94 .0
73EBS	3	73.913
73EBS	2	73.908
73EBS	7	73.933
73EBS	9	73.936
73EBS	10	73.937

73EBS $4 \quad 73.922$

73EBS	12	73.943
73EBS	1	73.904
73EBS	3	73.912
73EBS	3	73.918
73EBS	1	73.902
73EBS	4	73.920
$73 E B S$	3	73.917
$73 E B S$	5	73.927
$73 E B S$	4	73.926
$73 E B S$	3	73.914
$73 E B S$	3	73.915
$73 E B S$	6	73.932
$73 E B S$	1	73.901
$73 E B S$	2	73.909
73EBS	4	73.921
73EBS	4	73.924
73EBS	4	73.919
73EBS	12	73.961


```
E (cor.t.X)
```

EVIDENCE

Cumulatıve	1	47d	1. 352
Discovery and presentation of	1	33	1. 250
Documents (materialty)	1	48	1.354
foreign language	1	48	1.355
Exhibits			
copies	1	48	1.356
mechanical reproduction	1	48	1.357
Further	1	48	1.353
Official records			
copy of	1	48	1.359
lack of proof	1	49	1. 360
p ¢onf of	1	49	1.361
production of statement	1	49	1. 362
Rules	1	47d	1.351
Tariffs as and Commercial	1	48	1.358
MINATION, AMATEUR AND COMMERCIAL OPERATORS			
ICENSES	13	4-5	13.21-13.25
Places where given	0	74	0.485

EXISTTNG FACiLITIES, use of
EX PARTE PRESENTATIONS

Decision making Commission personnel
Restricted adjudicative proceedings
Restricted rule making proceedings
Definitions
Disclosure of information
Permissible ex parte communications
SEE Applications

Procedures for handling ex parte communications - Oral
Written
Prohibited Presentations
Designated for hearing
Restricted applications prior to their designations for hearing
Restricted adjudicative proceedings
Restricted rule making proceedings Sanctions
Solicitation
EXPERIMENTAL AUTHORIZATION AM (SPECIAL)
EXPERIMENTAL AND AUXILIARY BROADCAST
Cross reference
Equipment test
License period
Notification of filing of application
Operation during operating emergency
Services or program tests
Temporary extension of station licenses
Use of common antenna structure
EXPERIMENTAL FACSIMILE BROADCAST STATIONS
Applications for

Charges prohibited
Construction permit for
Definition of
Emission authorized

Equipment changes
Frequency assignment
Frequency monitors
Frequency tolerance
Identification
Inspection
License

License period renewal

Logs

Part	Page	Section
74	14	74.251
74	11	74.202
74	14	74.262
74	14	74.261
SEE Station	identification	
74	15	74.264
SEE Operator license, Sta-		
tion Licenses, etc.		
74	2	$74.15(a)$
SEE Renewal		
SEE Station records,		
this topic		

$\frac{F}{F}$ (Cont d)
FARM AREA
Definition

FCC

FCC RULES--coples required by licensee of TV Broadcast Transiator Station
F:
General exceptions
General rule
Payment of
Return or refund of
Schedule of fees for radio broadcast serv.
Witness
FTELD, Definition of
FIELD Operations Bureau
Authority of
Organization and duties of
FJELD STRENGTH. definition of
Contours
FIELD INTENSITY CONTOURS
Prediction of coverage
FIELD INTENSITY MEASUREMENTS
FIELD INTENSITY MEASUREMENTS, in support of
Zpplication.
FIELD OFFICES, location of
FIELD STRENGTH SURVEYS, request for
FIELD TEST INTENSITY AUTHORIZATION
FILING WITH COMMISSION
Annual employment report
Brokers, sale of time to
Contracts
Financial. reports
Network service
Ownership contracts
Personnel
Reports, ownership
Subsidiary Communication operations
TIme sales
FINAL APPROACHMINIIUM FLIGHT ALTITUDE
Definition of
FIPAMCIAL REFORT

```
ATXHT STATION, definition of
```

? \because MOADCAST BAND, definition of
FM Broadcast Stations
Antenna
emergency
power and height
marking and lighting
Applications, processing of
notification of filing
Authorizations
administrative changes in
AUTOMATIC TRANSMISSION SYSTEMS (ATS), use of
facj.lities
fail-safe transmitter control for
monitorine and alarm points
Auxiliary transmitter

	F (cont'd)	Part	Page	Section
\square	FM BROADCAST Stations (cont'd)			
\square	Candidates for Public Office			
	broadcasts by	73FM	248	73.290
	records of, public inspection	73FM	25	73.290 (d)
	Channels, availability of	73FM	2	73.203
	Channel designation	73FM	1	73.201
	International agreement \& restrictions	73FM	2	73.204
Class A Station ${ }^{\text {a }}$ (a)				
	defined	73FM	3	73.206(a)
	frequencies	73FM	3	$73.206(\mathrm{a})$
Class B Station				
	defined	73FM	3 a	73.206(a) (4)
	frequencies	73FM	38	73.206(a)(5)
	Common antenna site	73FM	10	73.239
Construction				
	permit, extension of time	73FM	5	73.215
	forfeiture	73FM	5	73.215
	Contracts, for reservation of time upon sale	73FM	11 a	73.241
	Croiss reference	73FM	4 g	73.214
	Definition of	$\begin{gathered} 73 \text { FMS } \\ 2 \end{gathered}$	1	$\begin{aligned} & 73.310(a)(b)(c) \\ & 2.1 \end{aligned}$
	Distance computations	73FM	4 a	73.208
	Dual network operation	73FM	10	73.237
	Emerency antenna	73FM	19a	73.273
Equipment				
	tests during construction	73FM	5	73.216
\square	Extention meters	78 FI	aago	73.276
	Fraudulent billing	73FM	29	73.299
	Frequencies available	73FM	1	73.201
Frequency 735 M				
	Monitor	73 FM	13	73.252
	tolerance	73FM	19a	73.269
	Indicating instruments	73FM	16	73.258
$\begin{array}{lll}\text { Interna } \pm \text { ional agreement on use of channels } & 73 \mathrm{FM} & 2\end{array} 73.204$				
Licenseperiod $\quad 73 \mathrm{FM} \quad 6 \mathrm{l}$				
	policies	73FM	9-11	73.231-41
	Logs, pertaining to	73FM	20a-22	73.281-73.286
	Lotteries, prohibition against	73FM	26	73.292
	Mechanical reproductions	73FM	23	73.288
	Mileage separation, Co-channel \& adjacent channel	73FM	3a	73.207
	Modulation	73FM	19a	73.268
	monitor	73FM	13a	73.253
	Multiple ownership	73FM	10	73.240
	Multiplex transmission	73 FM	19	73.266
	Network prohibitions	73FM	9-1la	73.231-73.241
	Operating power	73FM	19	73.267
Operation				
	discontinuance of	73FM 73 FM	$\begin{aligned} & 19 a \\ & 28 \end{aligned}$	$\begin{aligned} & 73.271 \\ & 73.298 \end{aligned}$
	experimental	73FM	17	73.262
	time of	73FM	17	73.261

F (cont. ${ }^{\text {d }}$)	Part	Page	Sectior:
TM BROADCAST Stations (cont ${ }^{\text {d }}$)			
Operator license, posting of	73FM	al 7 a	73.264
Operator requirements .	73FM	17 a	73.265
Option time	SEE in	twork s	upra
Ownership			
multiple	73FM	10	73.240
Permissible transmission	73FM	20	73.276
Personal attacks			
Program origination	73FM	4 b	73.208
tests	73FM	6	73.217
Programing duplication of AM-FM	73FM	12	73.242
Protection from interference	73FM	4 c	73.209
Reference point	73FM	4 a	73.208
R duced power	73FM	19a	73.267(c)
Remote control authorizations	73FM	19a	73.274
Rosurvation of time, contracts for	73FM	20	73.275
Spacing below the minimum separations	73FM	lla	73.241
Special field test authorization	73FM $73 F M$	a220a	73.213
Sponsorship identification; related requirements	73\%		
Station identification inspection	78 H	6 7	$\begin{aligned} & 73.1912 \\ & 73.1201 \end{aligned}$
license, posting	73 FM	17	73.263
location	73FM	17	73.264
Stereophonic broadcasting	73FM	$4 \mathrm{4b}$	73.208
Subsidiary Communications authorization (SCA)	73 FM 73 FM	28	73.297
Table of assignments	73 FM	26-28	73.293-73.295
Teiephone conversation; Broadcast of	73 FM 73 FM	1 a	73.202
Transmitter	73FM	28	73.296
accepcaniulity for licensing	73FM	12	73.250
auxiliary main	73FM	15	73.256
performance required	73FM	15	73.255
Zones	73 FM	14	73.254
FM Broadcast Booster and Translator Stations			
additional orders	74	120	74.1268
antenna locations	74	115	74.1237
copies of rules	74	121	74.1269
definitions	74	111	74.1211
eligibility and licensing requirements	74	110	74.1201
Emissions and bandwidth requer	74	113	74.1232
equipment and installation	74 74	115	74.1236 74.1250
changes	74	118	74.1251
frequency assignments	74	110	74.1202
monitors and measurements	74	119	74.1262
interference	74	119	74.1261
marking and lighting of antenna structures	74	111	74.1203
operator requirements	74 74	120	74.1267 74.1266

```
posting of station license
power limitations
purpose and permissible service
rebroadcasts
station identification
inspection
records
time of operation
unattended operation
FM BROADCAST STL STATION
```

Frequency assignment
Licensing requirements
Service authorized
FM INTERCITY RELAY STATION

```
Frequency assignment
Licensing requirements
Service authorized
FM TECHNICAL STANDARDS
Antenna systems
Auxiliary transmitters
    frequency monitors at
    Definitions
```

Part Page Section


```
F(cent!a)
```


FREQLENCY SWING

```
    Defined (STL)
    Definition of
```

FREQCENCY TOLERANCE
Developmental broadcast stations
Experime:tal facsimile broadeastetations
Experimental Radio services (other thas
Broadcant)
Experimental TV Broadcast stations
FM Enoadcast Stations
FM izetszeity Relay
$\begin{array}{ll}\text { STMAXiliary Stations } & 74 \\ \text { Fi }\end{array}$
Tr Ereadcast Translator stations
S zoverment contracts affecting con-
ERAPFS, CROUNDWAVE FTEID AFTHERSIIY
GRTD NODUEAMION, Definition
GROLNDWAVE SIENALS, interference

5	7	$5.57(2)$
$73 A M S$	13	73.184
$73 A M$	3	$73.14(q)$
$73 A M S$	11	73.183

보

30 74．436（a）Nごさ
$1 \quad 73.320(a)$
2 73．681

20

74．36I
14
74．261

E voverment contracts affecting cen－
struction permit
ERAPFS，CROUNDWAVE FIEID TRIWESIITY GROLNDWAVE SIENALS，interference

HEARINGS AND DECISIONS
1
Anerdment before
Appea＝ance
Cnanging issues
closing of hearing
Conferences，prehearing and hearing
Sonsolidation of cause
co：tinuance
Jecisions
appeal and review
exceptions
final
initial and recomended
devices capable of causing
- 74
74

5

74
73FM
8ES 8TL
74
74
74
74
731 MS
73178
－ 74
74

73AM
73AMS

INDICATING INSTRUMENTS (cont'd) Specifications for

AM Broadcast	73AM	13	73.39
FM Broadcast	73FMS	18	73.320
TV	73MS	21	73.688

INFOMAL APPLICATIONS, EXPERIMENTAL RADIO SERVICES
INSPECTION
$5 \quad 6 \quad 5.55(k)$ SEE appropriate type station: and Station Inspection, this Index
INSTRUCTIONAL TEIEVISION FIXED STATION Acceptability of equiprent for
licensing
Additional orders
Admiristrative procedure
cross reference (See 184.11 to 4.16) 74
Antennas
Cupies of the rules Definitions

Eligibility and licensing requirements Emissions and bandwidth
Equipment changes
Equipment performance and installations
Frequency assignments
Frequency tolerance
Frequency moritors and measurements
Interference
License period
Logs
74
74
74
74
74
74

Marking and lighting of antenra strictures
Modulation limits
74
Nodilation monitors and measurements Operator requirements 74
$\begin{array}{ll}\text { Operator requirements } & 74 \\ \text { posting of station and operator licenses } & 74\end{array}$
power limitations 74
Purpose and permissible service 74
Remote control operations 74
Ratransmissions 74
Station identification 74
Station inspection 74
Time of operation 74
Transmission standards 74
Unattended operations 74
ITF's Response stations
$84 a \quad 74.952$
$87 \quad 74.968$
$79 \quad 74.911$
82.83 74.937
$87 \quad 74.969$
$78 \quad 74,90 亡$
$80 \quad 74.932$
$82 \quad 74.936$
$84 a \quad 74.951$
83.84 74.950
78.79 74.902
$85 \quad 74.961$
$85 \quad 74.962$
$79 \quad 74.903$
$3 \quad 74.15(f)$
$87.88 \quad 74.981$
$87 \quad 74.967$
$87 \quad 74.970$
$87 \quad 74.971$
86.87 74.966

86 74.965
$82 \quad 74.935$
79.80 74.931
$81 \quad 74.933$
$88 \quad 74.984$
$88 \quad 74.982$
$85 \quad 74.964$
$85 \quad 74.963$
$83 \quad 74.938$
$81,8274.934$
$83 \quad 74.939$
I (cont' ${ }^{\prime}$)
INSTRTMENI APPROACH AREA, Defi-itior.
NUERFERENCE

INTERNATEONAL BROADCASTINE STATMONT Applications

for corstruction	73ENT	6	73.7i1-73.712
for equipment tests	735NT	7	73.716
	73エス\%	11	73.759
Eenna			
changes	73INT	$1 i$	73.759
mariking and iighting	733.2ve	12	73.768
requirements	3-wn	9	75.753
ss reference to rules in other patrs	$731 N T$	96	73.710
firitions	-3-7	1	73.701
loyment equal opportunities	-8\%9	16	7.3 .793
changes	73-292	12	73.739
tests	73INr	7	73.716

	I (cont'd)	Part	Page	Section
\square	INTERNATIONAL BROADCASIITIG SIATION (cont'd) Field intensity latitude and longitude calculations	73INT	5	73.703
	Frequencies assignment and use	73INT	2	73.702
	control	737NT	9	73.752 73.704
	daily hour availability table	73ITI 73 INT	12	73.704 73.766
	modulation	73INT	9	73.754
	tolerance	73INT	12	73.767
	License period covered	73nNT	7	73.718
	pericy relating to	7317T	7	73.731
	posting	73nnT	12	73.763
	renewal-supplemental report	73INT	16	73.791
	Logs	73INT	14	73.785
	form	73INT	14	73.784
	kept by	73nNT	13	73.783
	required	73nNT	13	73.781
	retention of	73INT 73 INT	13	73.782 73.786
	$\xrightarrow{\text { rough }}$	73nNT	12	73.766
	Modulation	73INT	9	73.755
	Power requirements	73INT	9	73.751
5	Operation	73IIT	12	73.769
	power	73INT	12	73.765
	rebroadcast	73INT	15a	73.790
	sponsored and commercial programs	73INT	$14-15$	73.788-73.789
	time	73INT	11	73.761
	Operator requirements	73INT	12	73.764
	Power	73EIT	12	73.765
	Station ${ }_{\text {identification }}$	73INT	14	73.787
	inspection of	73DNT	12	73.762
	Transmitters	73INT	11	73.758
	alternate main	731nTr	10	73.757
	performance	73INT	9	73.756
	World map zones	73DNT	17	73.792
	INTERVENTION	See	ex pa	36

I (cont'd)
INVOLUNTARY ASSIGMMENT OR TRANSFER
K
\underline{L}
LANDING AREA, defined
IAND STATION, definition of
IAST RADIO STAGE, definition of LICENSES

Part Page Section
SEE Applications

LICENSES, PERIOD OF
IINEAR SCALE INSTRUMENTS, Specifications
IINE-USE RATIO, Definition of
IOCAL CHANNEL
Assignment of station frequencies to Definition of
LOGS
Duty of operator to keep
IOTTERIES - Prohibited
LOW LEVEL MODULATION, Definition of
LOW POWER AUXILIARY STATIONS
LOW POWER BROADCAST AUXILIARY STATIONS
Special rules relating to
LUMINANCE, Definition of
M
MAIN STUDIO
Location of TV Broadcast Moving of AM Broadcast

\underline{M} (cont' ${ }^{\text {d }}$)	Part	Page	Section
MAXIMUM-MODULATION, Definition of	73AM	3	73.14 (n)
MAXIMUM RATED CARRIER POWER, Definition of	73AM	2	73.14 (e)
MEAN POWER OF RADIO TRANSMITTER, Defined	5	2	5.3 (m)
MINIMUM FLIGET ALTITUDE, Definition of	17	3	17.2 (m)
MINIMUM SEPARATIONS BETWEEN STATIONS	73AM	12	73.37
MINIMUM SERVICE TO "WHITE AREAS"	73AM	12	73.37
MOBIIE RADIO STATIONS			
Exclusive control required	5	15	5.154
MOBILE STATION			
Construction permit application experimental services	5	5	5.55(c)
Definition	5	2	5.3(1)
Exclusive control required	5	15	5.154
Remote pickup	74	24	74.401
MODIFICATION			
Of licenses and permits	1	15	1.87
MODULATED STAGE, Definition	73AM	2	73.14(k)
MODULATION LTMITS			
Aural transmitter	74	87	74.970 (b)
Visual	74	87	74.970 (a)
MODULATION MONITORS	SEEE A	ropria	type Standards
MODUIATOR STAGE, Definition	73AM	2	73.14 (j)
MONITORING STATIONS			
Location of	0	16-17	0.121
MONITORS	SEE A	ropria	type Station
MON CHROME TRANSMISSION			
Definition of	73TVS	2	73.681
MOTIONS ${ }_{\text {To }}$ enlarge, change, or delete issues	1	30	1.229

M (cont'd)
MOTIONS COMMISSIONER (cont'd)
MUITIPLE OWNERSHIP
MUIMIPLEX TRANSMISSION, Definition
FM Broadcast Stations

N

NARBO

NATIONAL DEFENSE
NATIONAL RADIO ASTRONOMY OBSERVATORY Notification of applications required

NEGATIVE TRANSMISSION Definition
NETWORK
Affiliation agreements; general

Connections by telephone

Dual network operations
Exclusivity of stations

```
        of territory
```

Option time

Ownership, be network

Program rejection, rights of

Rates, control of

Term of affiliation

Part	Page	Section
SEE	Ownership and appropriate	
type Station		
73FMS	2	73.310a
73FM	19	73.266

SEE North American Regional Broadcasting Agreement SEE Emergency

73AM	3	73.18
73FM	5	73.215
73ED	3	73.515
73TV	27	73.623
74	1	4.12
5	10	5.69
$73 T V S$	2	$73.68 i$
		73.658
73TV	38	
		$40-41$
73TV	73.658	
73EBS	5	73.971

$73 I V \quad 41 \quad 73.658(\mathrm{~g})$

73IV	40	$73.658(\mathrm{a})$
73AM	$\mathbf{4}$	73.132
73FM	8	73.232
73TV	40	$73.658(\mathrm{~b})$

$73 I V \quad 41 \quad 73.658(\mathrm{~d})$
73IV 41 73.658(f)
$73 I V \quad 41 \quad$ 73.658(e)
73TV $41 \quad 73.658(h)$
$73 I V \quad 40 \quad 73.658(c)$

N (cont'd)	Part	Page	Section
NIGHTTIME			Section
Definition of	73 AM	1	73.7
NON-COMMERCIAL EDUCATIONAL FM			
Antenna			
changes	73ED	10	73.557
heighth and power required	73En	2 e	73.511
marking and lighting	73ED	14	33.570
systems	73Fn	2 e	73.510
notification of filing of personal attacks	73ED	3	73.515
political editorials	73 ED	22	73.598
processing of	1	73	1.573
remote control	$73 E D$	14	73.572
subsidiary communications	73ED	19a	73.593 (b)
Assimments under the U.S.-Mexico FM			
Rroadcast Asreement	73En	2 b	73.50?
Aludio recordines, retention of	73ED	24	73.500
Automatic transmission system (ATS),	73Eת	6	72.9.40
facilities	73 ED	6	73.542
fail-safe transmitter control for	73ED	6 a	73.544
monitoring and alarm points	73En	6b	72.545
Candidates, public office	73ED	18	73.590
Channels			
assignment of	73ED	1	73.501
availability	73ED	1	73.501
statewide plans	73 ED	1	73.502
use of	73ED	2	73.504 (c)
Cross reference	73ED	23	73.514
Educational channels, classes of	73 ED	2c	73.506
Employment equal opportunities	73ED	22	73.599
Enfineering practice, standard of Equipment	73ED	2 d	73.503
Equipment changes	73ED	10	73.557
indicating instruments	73 ED	11	73.558
tests	$73 E D$	3 a	73.516
Extention Meters	73En	14b	73.574

Facilities	73ED	2	73.504 (d)
Frequency . 7300 73.552			
measurements	73 ED	$7 \mathrm{7a}$	73.552
tolerance	73ED	14	73.569
Interference, protection from 7	73ED	2 e	73.509
Licenses			
period covered	73 ED	4	73.518
posting	73 ED	12	73.564
requirements	73ED	1	73.503
Logs			
correction, retention of	73 ED	16b	73.585
form, maintenance of	73ED	16a	73.584
operating	73 ED	15c	73.583
program of	$73 E D$	15	73.582
required	$73 E D$	15	73.581
retention of	73 ED	17 a	73.585
availability and records of	73ED	17a	73.586
Minimum distance separations between			
Modulation	73ED	7 a	73.553
required	73ED	14a	73.568
Nature of SCA	73ED	19a	73.594
Operation of 14			
discontinuance	73 ED	14	73.571
during an emergency	73ED	21	73.597
experimental	73ED	12	73.562
on unreserved channels	73ED	2a	73.506
remote control	73ED	14a	73.572-73.573
schedule	73 ED	11	72.561
standards, good engineering practice	- 73ED	2 a	73.505
under the SCA	73 ED	19as	73.595
Operators requirements of	73ED	12	73.565

N (cont'd) Part Page section			
NON-COMMERCIAL EDUCATIONAL FM BROADCAST (Cont'	, $\frac{\text { Part }}{}$	Page	Section
Personal attacks			
Power			
determination and maintenance	738 D	13.b	73.567
Program tests	73ED	4	73.517
Records maintained for public inspection by non-commercial			
non-commercial educational applicants	7350	58c	73.567 (c)
Remote control, authorization	73ED	14	73.572
Station			
classes	73 ED	2	73.504 (b)
identification	73H	1	73.1201
inspection	73ED	12	73.563
Stereographic broadcast	73ED	20	74.596
Telephone conversation; Broadcast	73ED	19	73.592
Transmitters			
acceptability	73ED	7	73.550
alternate main	738 D	10	73.556
auxiliary	73ED	9 a	73.555
performance	73 ED	9	73.554
Zones	73 ED	2	73.504 (a)
NON-PARTIES ${ }^{\text {a }}$. ${ }^{\text {a }}$			
Participation by	SEE	inge	Index p. 24
NORTH AMERICAN REGIONAL BROADCASTING AGREEMENT	- 73AM	3	73.15
Applications involving	1	67	1.570
NOTICE 1.51			
Of designation of hearing	I	28	1.221
Of hearing	1	28	1.221
Of rule making (proposed)	SEE R	$\begin{aligned} & \text { e'Mak } \\ & \text { roced } \end{aligned}$	g Practice e, Index 37
O			
OPERATING LOG	SEE T	Sta	on
OPERATING POWER	SEE-	$\begin{aligned} & \text { appr } \\ & \text { ion } P \end{aligned}$	priate type ge 34
Definition of	73AM		73.14 (c)
Determination of			
AM bröadcast	73AM	-26	73.51-73.54
FM Broadcast	73FM	19	73.267
International Broadcast	73INT	12	73.756
Non-Comercial Educational Broadcast	73 ED	13a	73.567
TV Transmitters	73TVS	22	73.689
Mainteñance of			
AM Broadcast	73AM	27	73.57
FM Broadcast	73 FM	19	73.267
Non-Comercial Educational FM Broadcast	73ED-	13	73.565 (c)
OPERATION	$\operatorname{SEE}_{\mathrm{ty}}$	und stat	appropriate
During an emergency	74	3a	74.21
Over-the-air television	$73 T \mathrm{~V}$	35	73.641-44
Pending action on renewal application	1	9	1.62

O (cont'd)
OPERATION (cont'd)
Time of
AM Broadcast
Developmental Broadcast
Experimental Facsimile Broadcast
Experimental TV Broadcast
FM Broadcast
FM Inter City Relay
International Broadcast
Non-Commercial E ucational FM Broadcast
STL
TV Broadcast

TV Broadcast Translator Station 1

OPERATORS, COMMERCIAL
APplications for license
posting of duplicate or renewal
Authwrity of licensed operators Classes of Operators 11censes Code tests Dual licenses
Duplicate licenses Eligibility for operators license Examination for licenses
Iicenses
applications
authority granted by
Authority of each class
Cancelling and issuance of new
classification and endorsements
defined
dual
eligibility
examination for
miscellaneous provisions as to
posting of
renewal
requirements
suspension of
term of
when required
Iog, duty to keep
Place of duty
Posting of license
Provisional radio certificate

Part	Page	Section
731M	5	73.23
74	20	74.363
74	15	74.263
74	9	74.163
73FM	17	73.261
STE STL,	this Toplc,	Page 45
7315 T	11	73.761
73m	11	73.561
74	34	74.532 (c)
T32V	35	73.651 .
74	6%	74.763

13 13 13 13 13 13 13 13131

$3 n-b$	$13.11-13.13$
$13-14$	$1.83-1.84$
14	13.72
7	13.61
1	13.2
7	13.41
1	13.3
14	13.71
2	13.5
$4-5$	$13.21-13.25$
3	13.11
$13-14$	$1.83-1.84$
7	13.61
7	13.61
6	13.26
1	13.2
1	13.1
1	13.3
2	13.5
$4-7$	$13.21-13.28$
14	13.71
3	13.6
6	13.28
$4-5$	$13.22-13.25$
14	1.85
2	13.4
1	18.1
15	13.75
3	13.7
3	13.6
140	13.74
3	13.8

Part Eage section

ADMINISTRATIVE LAW JUDGES, PRESIDING OFFICERS 0
Applications, place of filing 0
Broadcast Bureau
Cable Television Bureau, function of 0
Classified material, public availability General, Downgrading, Declassification and Classified Materials
CATV Task Force Function of
Certificate of Compliance Division
Chief, Bruadcast Bureau--authority delegated
Chief Engineer, Office of
Commissioners, Board of
Common Carrier Bureau, function of
Chief, Cable Television Bureau
Chief, Authority in radio matters
Defense coordination, Office of
Delegation Authority, exercise
Executive advisory board
Executive director, office
Field Operations Bureau authority delegated
Forms and documents available
General Counsel, office of
General Information
General Operation, dewcription
Hearing examiners, office of
Information compiled by Commission
Information \& Inspection of records (pub)
Office of Plans and Policy, function of 0
Options and review, office of
Ownership reports
Places for making submittals or requests for filing applications and for taking examinations
Policy Review and Development Division
Printed Publications
Reaearch Division
Privacy Act, regulations
Review Board, function of
Safety \& special radio service bureau
Special Relief and Microwave Division
Spectrum Management Task Force
Standing Committee of the Commission
Units of the Bureau
OWNERSHIP
Contracts
Multiple
AM Broadcast

20
0.150

73a-75
0.481-0.493

11-12 0.71-0.81
12-a
0.84-0.90

0
$0 \quad 76-79 \quad 0.501-0.542$
$\begin{array}{ll}76-79 & 0.501-0.542 \\ 12 & 0.84-0.90 \\ 12 & 0.87\end{array}$
$\begin{array}{ll}76-79 & 0.501-0.542 \\ 12 & 0.84-0.90 \\ 12 & 0.87\end{array}$
$\begin{array}{ll}76-79 & 0.501-0.542 \\ 12 & 0.84-0.90 \\ 12 & 0.87\end{array}$
$\begin{array}{ll}76-79 & 0.501-0.542 \\ 12 & 0.84-0.90 \\ 12 & 0.87\end{array}$
0
0

0
0
0
0
0
0
0
0
0

0
0
0
0
0

0
1
32-36 0.282
4-6 0.31-0.38
28a-29a 0.212-0.218
12-66 0.91-0.99
$36 \quad 0.288$
36a 0.291
21-25 0.181-0.183
$28 \quad 0.204$
lc 0.6
lc-3 0.11-0.12
13-18 0.111-0.121
39-43 0.311-0.317
58-59 0.421-0.423
6-9 . 0.41-0.47
53-56 0.401-0.406
10.5

20 0.151-0.152
59-62 0.431-0.434
61-73 0.441-0.467
20.21
$21 \quad 0.171$
891.615

0	73 a	$0.471-0.475$
0	12 a	0.89
0	$56-58$	$0.411-0.420$
0	12 a	0.90
0	$81-88$	$0.551-0.561$
0	21	0.161
0	18	0.131
0	12	0.88
0	6	0.38
0	1	0.4
0	12	0.85

73AM 11
73.75

P('cont'd)
PEAK TONER, DEftrition of
PERCENTAGE MODULATION
(Amplitude) Definition of
Definition of
Defirition of
PERMETS
PERSON, Defined
PERSONAL A'TTACKS, Political editorials
PETTITIONS, Rule MEking
PLACE OF DU'IY
PLATE INFUT PONER, Definition of
PLATE MODULATION, Definition of POLARIZATION, Definition of

FOSTITIG OF LICEISE

POWER

FOWER LIMITATTIONS
AM Sroadcast
Developmental Broadcast Stations
Experinerial Facsimile Broadcast Stations
Experimental TV Broadeast Stations
FM Pruadeast
FM Tatercity Relay Stations
intemational Broadcast
STL
Stiadert authorizations
TV Auxiliary Stations
TV Brcadcast
TV Broadcast Booster Stations
TV Broadcast Translator Stations
PRIMARY SERYICE AREA AM, Defined
PRIMARY STATION

PROCEDURE

Appearance
Application detailed
Attorneys, representation by
Availability of station logs and records
Briefs, copies, number of specification of service of verisfication of

Part	Page	Section
73TVS	2	73.681
5	2	5.3(n)
73AM	3	73.14(1)
73FMS	2	73.310(a)
73TVS	2	73.681
SEE Applications and tijpe of station involved		
5	2	5.3(0)
SEE appropriate stations		
SEE Rule	Makin	actice and
Procedure, Index pgs 40 \& 41		
13	3	13.7
73AM	2	73.14(e)
73AM	3	73.14(p)
73TVS	2	73.681
13	3	13.6
13	14 a	13.74
SEE also type of Station involved		
$\frac{\operatorname{SEE}}{74} \text { also }$	58	te type station 74.735
73AM	. 5	73.22
73 AM	19	73.41
74	19	74.332
74	13	74.232
74	7	74.132
73FMS	8	73.317
SEE STL	index	45
73INT	9	73.751
74	39	74.534
5	28	5.405
74	50	74.636
73TV	24	73.614
74	71	74.835
74	58	74.735
73AM	1	73.11(a)
SEE TV Broadcast Translator Static Index page 51		

$1 \quad 4 \quad 1.26$
$1 \quad 10 \quad 1.77$

SEE also applications

1	$3-4$	$1.22-1.25$
1	2	1.6
1	8	1.51
1	7	1.50
1	6	1.47
1	8	1.52

Part Page Section

P(continued
Public Service Broadcast

R

Radiotelegraph Operators License and Permits
Radiotelephone Operations Perkit (restricted)
Radio Service, defined
Rates
Network control prohibited

See Emergency-index p. 13

13	$7-11$	13.61
13	3 b	13.11
5	2	$5.3(\mathrm{~g})$

See Network - index p. 30

REBROADCASTS

Developmental Broadcast	74	23	74.384	
Experimental Facsimile Broadcast	74	17	74.284	
Experimental TV Broadcast	74	11	74.184	
International Broadcast		$73 I N T$	$15 a$	73.790
Non-Commercial Educational FM Broadcast	73 ED	18	73.591	
TV Broadcast Translators	74	64	74.784	

RECORDS
FOr Public Inspection
Licenses
Student authorizations

RECTILINEAR SCANNING
Definition of
REEXAMINATION OF FOR LICENSE
REFERENCE BLACK LEVEL, definition of
REFERENCE WHITE LEVEL OF THE LUMINANCE SIGNAL
Definition of
REGIONAL CHANNEL
Class IV station on
Defined
Frequency designation of
RECONSIDERATION OF AN ORDER DESIGNATING A CASE
FOR HEARING
REJECTION OF PROGRAMS
REMOTE CONTROL OPERATION

| See also station records, | | |
| :--- | :---: | :---: | :---: |
| | Index p. | 43. |
| 1 | 58 c | $1.526-.527$ |
| 13 | 15 | 13.75 |
| 5 | 28 | 5.410 |

73FMS	2	$73.310(\mathrm{c})$
13	6	13.27
73TVS	2	73.681
73TVS	2	73.681
73AM	8	73.29
73AM	4	$73.21(\mathrm{~b})$
73AM	7 a	73.26
I	22	1.111
SEE Network,	p. 30	
SEE Subtopic under parti-		
cular type of station		
concerned		

REMOTE PICKUP BROADCAST STATIONS

Additional orders	74	35L	74.470
Authorized bandwidth and emissions	74	35h	74.462
Cross reference	74	31	74.411
Definitions	74	24	74.401
Equipraent changes	74	35 g	74.452
Frequency assignment	74	25	74.402
Frequency monitors and measurements	74	351	74.465
Frequency selection to avoid interference	74	27	74.403
Frequency tolerance	74	35j	74.464
Licensing requirements and procedures	74	34	74.432
Logs and records	74	35L	74.481
Modulation requirements	74	351	74.463
Operator requirements	74	35k	74.468
Painting and lighting of antenna structure	74	35L	74.469
Posting of licenses	74	35k	74.467
Remote control operations	74	35c	74.434

Special requirements for automatic relay
stations
74 35e
74.436

Special rules applicable to remote pickup stations

7431
74.431

Station identification
74
Station inspections
74
Temporary authorizations
74
Transmitter power
Type acceptance of equipment

74
74
05%
74.482

35j 74.466
35b
35h
35 f
73.433
74.461
74.451

RENEWAL APPLICATION
$\begin{array}{llll}1 & 9 & 1.62\end{array}$
RENEWAL LICENSE
SEE also appropriate type station
Developmental broadcast stations
7418
74.313

Experimental Facsimile broadcast stations
74
74
12
74.213

Experiemntal TV Broadcast stations
TV pickup stations, new
REPETITIOUS APPLICATIONS
SEE Applications Index p. 7.
REPORTS AND INFORMATION, OFFICE OF Responsibilities of
$0 \quad 10 \quad 0.61$

REQUEST FOR STAY
1 4a
1.43

RESERVATION OF TIME

> Sale of Station with - AM Broadcast
> FM Broadcast
> TV Broadcast

73AM $45 \quad 73.139$
73FM 11 73.241
73TV 42
73.659
0210.161

REVIEW BOARD, functions of
REVIEW PROCEEDINGS, Delegation of
REVOCATION
RSS Value
RULES APPLICABLE IN COMMON TO BROADCAST
STATIONS - SUBPART H
APPLICATIONS AND REPORT FORMS $\quad 73 \mathrm{H} \quad 17$ 73.3500-.3615
Also see Table of Contents, pages II \& III of Subpart 73H

	PART	PAGE	SECTION
AGREEMENTS BETWEEN PARTIES FOR AMENDMENT OR			
DISMISSAL OF, OR FAILURE TO PROSECUTE,			
BROADCAST APPLICATIONS	73H	21	73.3525
AM BROADCAST STATION APPLICATIONS INVOLVING			
OTHER NORTH AMERICAN COUNTRIES	73H	43	73.3570
APPLICATIONS			
acceptance of	73H	17	73.3500
amendment of	73H	40	73.3564
amendment for renewal, assignment or transfer of control	73H	48	73.3578
content of	73H	19	73.3514
contingent	73H	20	73.3517
defective	73H	40	73.3566
dismissal of	73H	40a	73.3568
EXTENSION OF CONSTRUCTION PERNIT OR FOR CON-STRUCTION PERMIT TO REPLACE EXPIRED CON-			
STRUCTION PERMIT	73H	33	73.3534
FORMS FOR AUTHORITY TO CONSTRUCT A NEW STATION			
OR MAKE CHANGES IN AN EXISTING STATION	73H	32	73.3533
FREQUENCIES ADJACENT TO CLASS 1-A CHANNELS	73H	41	73.3569
INCONSISTENT OR CONFLICTING	73H	20	73.3518
INVOLUNTARY ASSIGNMENT OF LICENSE OR TRANSFER			
OF CONTROL	73H	35	73.3541
LICENSE TO COVER CONSTRUCTION PERMIT	73H	33	73.3536
LOCAL PUBLIC NOTICE OF FILING OF BROADCAST	73H	49	73.3580
MODIFICATION OF LICENSE	73H	33	73.3538
MULTIPLE	73H	20	73.3520
OPERATE BY REMOTE CONTROL	73H	37	73.3542
PERMIT TO DELIVER PROGRAMS TO FOREIGN COUNTRIES	S 73H	36	73.3545
PROCEDURES ON TRANSFERS AND ASSIGNMENT	73H	58	73.3597
PROCESSING AM BROADCAST STATION	73H	44	73.3571
TV broadcast and translator stations	73 H	46	73.3572
FM broadcast and translator stations	73H	47	73.3573
International braodcast stations	73H	48	73.3574
RENEWAL OF LICENSE	73H	34	73.3539
RENEWAL OR MODIFICATION OF SPECIAL SERVICE AUTHORIZATION			
REPETITIOUS	73 H	20	
REQUIRED	73H	18	73.3511
RETENTION IN HEARING STATUS AFTER DESIGNATION			
SPECIAL WAIVER PROCEDURE RELATIVE TO	73H	18	73.3511
STAFF CONSIDERATION WHICH REQUIRES ACTION BY			
STAFF CONSIDERATION WHICH DOES NOT REQUIRE			
ACTION BY THE COMMISSION	73H	40	73.3562
TEMPORARY AUTHORIZATION FOR	73H	36	73.3542
WHO MAY FILE	73H	19	73.3513

R (Cont'd.)
antenna structure, marking and lighting
AUXILIARY ANTENNAS
Transmitters
AVAILABILITY to FCC OF STATION LOGS AND RECORDS
broadcast by candidates for public office of lottery information
of telephone conversation
of taped filmed or recorded data
BROADCASTING EMERGENCY INFORMATION
CARRIER FREQUENCY DEPARTURE TOLERANCE
CARRIER FREQUENCY MEASUREMENTS
CONDITIONED GRANT
CROSS REFERENCE TO RULES AND OTHER PARTS
dESIGNATION FOR HEARING
EMERGENCY ANTENNA
EQUAL EMPLOMMENT OPPORTUNITIES
EQUIPMENT TESTS
EXPERIMENTAL AUTHORIZATIONS
EXTENSION METERS
FAIRNESS DOCTRINE
FILING OF CONTRACTS
FINANCIAL REPORT
FORFEITURE OF CONSTRUCTION PERMIT
GENERAL REQUIREMENTS RELATING TO LOGS
maintenance
operating
program
public inspection of program retention of
INTERNATIONAL BROADCASTING AGREFMENTS
LICENSEE - CONDUCTED CONTESTS
LOCAL PUBL C NOTICE OF DESIGNATION FOR HEARING
LOCAL PUBLIC INSPECTION FILE OF COMMERCIAL STATIONS
IOCAL PUBLIC INSPECTION OF NONCOMMERCIAL STATIONS
MAIN TRANSMITTERS
MODULATION LEVELS: AM., FM AND TV
NOTIFICATION CONCERNING INTERFERENCE TO RADIO ASTRONOMY, RESEARCH AND RECEIVING INSTALLATIONS
OPERATION FOR TESTS AND MAINTENANCE
OPERATING HOURS
broadcast day
daytime
discontinuance of operation
minimum operating schedule
presunrise service authority (PSA)
share time
specified hours
time of operation
unauthorized operation
unlimited time
OPERATING POWER TOLERANCE

PART	PAGE	SECTION
73H		73.1213
73H	12aII	73.1675
73H	12aI	73.1670
73H	9 a	73.1226
73H	13	73.1940
73H	5	73.1211
73H	2	73.1206
73H	4	73.1208
73H	9 b	73.1250
73 B	11	73.1540
73H	11	73.1540
73H	11	73.1540
73Has	$1{ }^{1}$	73.1540
738	1 CaIII	73.1680
73 H	16	73.2080
73H	12	73.1610
73 H	9 c	73.1510
73H	112	73.1550
73H	120	73.1910
73H	62	73.3613
73H	62	73.3611
73H	60	73.3599
73H	12e	73.1800
73H	12 L	73.1830
73H	12j	73.1820
73H	12 e	73.1810
73H	12 n	73.1850
73H	12m	73.1840
73H	128	73.1650
73 H	8	73.1216
73H	55	73.3594
73H	24	73.3526
73H	28	73.3527
73H	12aI	73.1665
73H	11 c	73.1570

73H aal 73.1030

73 H	12 b	73.1700
73 H	12 b	73.1720
73 H	12 d	73.1750
73 H	12 c	17.1740
73 H	12 c	73.1737
73 H	12 b	73.1715
73 H	12 c	73.1730
73 H	12 b	73.1705
73 H	12 d	73.1745
73 H	12 b	73.1710
73 H	116	73.1560

R (Cont'd.)

PERIOD OF CONSTRUCTION	73 H	60	73.3598
PERSONAL ATTACKS	73H	120	73.1920
PETITIONS TO DENY	73H	53	73.3584
POLITICAL EDITORIALS	73 H	120	73.1930
PORTABLE TEST STATIONS (Definitions)	73 H	11	73.1530
POSTING OF STATION AND OPERATOR LICENSES	73 H	96	73.1230
PROGRAM TESTS	73H	12	73.1620
PUBLIC NOTICE OF LICENSEE OBLIGATION	73H	la	73.1202
REBROADCAST	73H	2	73.1207
REFERENCE TO TIME	73H	4	73.1209
REQUESTS FOR EXTENSION OF AUTHORITY TO OPERATE WITHOUT REQUIRED NONITORS, INDICATING IN-			
REQUESTS FOR NEW OR MODIFIED CALL SIGN	73H	38	73.3549
ASSIGNMENTS	73H	38	73.3550
REQUESTS FOR TEMPORARY PERMISSION TO USE LESSER GRADE OPERATORS OR A PRO-TEM CHIEF			
OPERATOR	73H	37	73.3547
SCOPE	73 Ha		73.1001
SIMULTANEOUS MODIFICATION AND RENEWAL OF LICENSE	73H	61	73.3601
SPECIFICATION FOR INDICATING INSTRUMENTS	73H	7	73.1215
SPECIFICATIONS OF FACILITIES	73 H	19	73.3516
SPECIAL FIELD TEST AUTHORIZATION	73H	9 c	73.1515
SPONSORSHIP IDENTIFICATION; LIST RETENTION; RELATED REQUIREMENTS	73H	6	73.1212
STATION INSPECTION BY FCC	73H	9 a	73.1225
STATION IDENTIFICATION	73H	1	73.1201
STAmION LICENSE PERIOD	73Ha	al	73.1020
STATION LOCATION	73 H	bl	73.1120
STATION MAIN STUDIO LOCATION	73H	ala	73.1125
STATION PROGRAM LOCATION	73H	ala	73.1130
TRANSFERRING A LOCATION	73H	ala	73.1150
TYPE ACCEPTANCE OF BROADCAST TRANSMITTERS	73H	12aI	73.1660
WHERE TO FIIE; NUMBER OF COPIES	73H	18	73.3512
RULE MAKING PRACTICE AND PROCEEDINGS general			
notice	1	50	1.412-1.41
petitions for	1	49-50	1.401-1.407
proceedings after notice of proposed ruling	1	51-52	$1.415-1.427$
additional procedures amendment of $F M$ and TV table of assignments	1	51	1.420

S

SAFETY AND SPECIAL SERVICES
Applications and Proceedings
Applications required amateur radio license amendments of assignment of file numbers commencing of operations

1	91	1.911
1	100	1.934
1	$94 a$	1.918
1	100	1.952
1	94	1.921

S SAFEIY AND SPECIAL SRRVICES (cont'd)	
Construction permits	
	Defestive
Designation for hearing	
Disclosures of	
Distributions of	
Extention of construction permit	
	Forms of
Forfeitures against ships and masters	
Grants without a hearing	
Installation or removal of apparatus	
Petitions to deny specified categories of	
Processed	
Processing of, generally	
Radio fees	
Radio station authorization	
Renewal of license	
Rented communication equipment	
Repetitions of	
Reports, annual and semi-annual	
Resubmitted	
Shared use of broadcast antenna	
Ship radio inspection	
Temporary authorization of	
Temporary waiver of annual inspection	
I ime station must be placed in operation	
Transfer ofcontrol, voluntary and involuntary	
Where filed	
Who may sign	
SAFEIY AND SPECIAL RADIO SERVICES BUREAU Authority delegated, action taiken under	

SALE

SCA
SGANNING, Definition of
SCANNING LINE, Definition of Schemite

AM Broadcast
departure from
minimum
secondary station
FM broadcast
International Broadcast
Non-cormercial Educational FM Broadcast
IV Broadcast
SECONDARY SERVICE AREA, Defined
SECONDARY STATION, Defined
Operation of

Part	Page	Secisicr
1	95	1.023
1	104	1.955
1	107	1.973
1	94	1.914
1	104	1.961
1	100	1.951
1	99	1.931
1	95	1.922
1	108	1.991
1	106	1.971
1	100	1.933
1	105	1.962
1	102	1.953
1	100-106	1.951-1.962
1	112	1.1115
1	94	1.921
1	97	1.926
1	103	1.956
1	94	1.916
1	107	1.981
1	104	1.959
1	94	1.915
1	98-99	1.927-1.930
1	97	1.925
1	99	1.930
1	99	1.932
1	96	1.924
1	92	1.912
1	93	1.913
0	43-46	0.331-0.337
0	18-19	0.131-0.132

SEE Transfer of Control, Index pg.
SRE Subsidiary Communication
Authorization,s Index page 45

73TVS	2	73.681
73TVS	2	73.681

73AM	31	73.77
73AM	32	73.82
73AM	30 a	73.71
73AM	32	73.80
73FM	17	73.261
73 INT	11	73.761
73 ED	11	73.561
73 TV	35	73.651
73AM	1	$73.11(\mathrm{~b})$
73AM	1	73.5
73AM	32	73.80

S (Continued)
SECRETARY, OFFICE OF (FCC)
Organization and duties of SEPARATION OF STATIONS AND ASSIGNMENTS SERVICE AREA

Definition of
SHARING TIME
SOIL CONDUCTIVITY
Special Test authorization for
SPECIAL AERONAUTICAL STUDY
SPECIAL PROVISIONS
Common Antenna Structure, use of
Operations during an emergency
STANDATD BROADCAST BAND, defined
STANDARD BROADCAST CHANNEL, defined
STANDARD BROADCAST STATION

STANDARD BROADCAST STL STATION
Defined
STANDARD BROADCAST TECHNICAL STANDARDS
STANDARD TELEVISION SIGNAL, definition of STANDARDS

AM

FM
TV
STATION AUTHORIZATION, defined
STATION IDENTIFICATION
AM Broadcast Stations
Developmental Broadcast Stations
Experimental Facsimile Broadcast Stations
Experimental Radio Services (other than Broadcast)
Experimental TV Broadcast Stations
FM Broadcast
FM Intercity Relay Stations
International Broadcast Stations
Non-Commercial Educational FM Broadcast Stations

Part Page Section

0	9-10	0.51-0.56
73 TV	- 20	73.610
73AM	1	73.11(a)
73AM	31	73.74-73.78
73AM	11a	73.36
SEE topic under Antenna		
74	4	74.22
74	3 a	74.21
73AM	1	73.2
73AM	1	73.3

SEE AM (Standard) Broadcast Station Index p. 1
SEE Also STL, index p. 44
$74 \quad 36 \quad 74.501$ (b)
SEE AM (Standard) Broadcast Standards
73TVS $3 \quad 73.681$
SEE AM (Standard) Broadcast Standards, Index
p. 1.

SEE FM Technical Standards Index p. 2la
SEE TV Technical Standards Index p. 50
525 5.3(r)
$\begin{array}{lll}\mathrm{H} & 1 & 73.1201\end{array}$
$74 \quad 23 \quad 74.383$
$\begin{array}{lll}74 & 16 & 74.283\end{array}$
$5 \quad 14 \quad 5.152$
$74 \quad 10 \quad 74.183$
H $\quad 1 \quad 73.1201$
SEE STL
73INT $14 \quad 73.787$
$\mathrm{H} \quad 1 \quad 73.1201$

\underline{S} (cont'd)	Pert	Page	Section
STATION DENTIFICATION (cont'd) -			
Remote Plckup Broadcast Station \& Low Power Aux.	74	$24-35 n$	74.401-. 482
SIL	74	42	74.582
IV Auxiliary Broadcast Stations	74	53	74.682
IV Broadcast Booster Stations	74	76	74.883
IV Broadcast Stations	73IV	36	73.652
IV Broadcast Translator Stations	74	64	74.783
Station licenises	Ster Also	under appr	ppriate Station
Grants of	1	92	1.68
Modification of	1	15	1.87
Partial grants of	1	22	1.110
Posting of	73AM	34	73.92
STATION LICEMSESS, POSITNG OF			
AM Standard Broadcast Stations	73AM	34	73.92
Developmental Broadcast Station	74	21	74.365
Experimental Facsimile Broadcast Btations	74	15	74.265
Experimental Radio Services	5	16	5.157
Experimental IV Broadcast Stations	74	9	74.165
FM Broadcast Stations	73 FM	17	73.264
FM Intercity relay	SEIES SIL,	Index page	44
International Broadcast Stations	73DIT	12	73.763
Non-Cammercial Educational FM Broadcast Stations	731010	12	73.564
Remote Plckup Broadcast Station	74	see index	'pg. 39-40
SIL	74	41	74.564
TV Auxiliary Stations	74	52	74.664
IV Broadcast Booster Stations	74	75	74.865
IV Broadcast Stations	73IV	43	73.660
TV Broadcast Translator Station	74	62	74.764
STATION LOG	SINE Stat	Ion Records	, this page
SIATION FIECORDS			
AM Broadcast Stations	73N4	37b-38b	73.111-73.116
Commission inspection of	1	2	1.6
Developmental Broadcast Stations	74	22	74.381
Experimental Radio Services			
contents of	5	18	5.163
form of	5	19	5.164
retention of	5	19	5.165
Experimental Facsimile Broadcast Stations	74	16	74.261
Experimental TV Broadcast Stations	74	10	74.181
FM Broadcast Stations	73 m	20s-22	73.281-73.286
SIL Intercity Relay Stations	74	42	74.581
International Broadcast Stations	73DIT	13-14	73.781-73.786
Low power broadcast auxiliary Stations	74	24-35n	74.401-.482
Non-cowmercial Educational FM Broadcast	73nd	15-16b	73.581-73.586
Public inspection of, re candidetes for public officeris			
AM Broadcast	73AM	41	73.120(d)

S (cont'd)

STUDIO EQUIPNENT

FM Broadcast, standards for
TV Broadcast, Standards for STUDIO TRANSMITYIER LINK SUBPOENAS

Forms
Issuance, how and by whom
Quashing; motion
Request for lesuance of
Rulings of
Service of
Witnesses; attendance of
Witnesses, fees
SUBEIDIARY COMMUNICATIONS AUTHORIZATIONS
FM Broadcast
ED Broadcast nature of SCA operations under SCA
SUBSIDIARY COMMUNICATIONS MULTIPLEX OPERATIONS

Engineering standards of
SUNRISE AND SUNSET, Defined
SERVICE AREAS, Defined
SYNCHRONIZATION, DEfinition of SUBSCRIPTION TELEVISION

Over the air operations
73FMS
73AM
73AM
73TVS
$73 T V$
73TV

73H
2
73.1206

T (cont'd)
TEMPORARY AUTHORIZATION
Experimental radio services
TEMPORARY LOCATION, Operation at
Experimental radio services
TEMPORARY STATION LICEMSES
Extentions of
TEERM OF LICENSE

Part		Page	
5	6	5.56	
5	9	5.65	
74	$3 a$	74.16	

SEEE Appropriate license. Period of

SEEE Equipment tests, Index
pg. 13a, EBS
SEE Program tests, Index pg. 37
SEE Transfer of Control, this page SEE Operation, Time of, Index pg. 33
73AM $31 \quad 73.74-73.78$
SEE topic under Antenna Structure

73 AM	45	73.139
5	3	5.5
73 FM	11	73.241
1	53	
73 AM	45	73.139
73 FM	11	73.451
73 IV	42	73.659
73 TV	42	73.659
1	27	1.202
1	28	1.10
17	3	$17.2(\mathrm{n})$
	1	$2.201(\mathrm{a})$
2	1	

8145 index page 50

73 MM	18 a	73.329
5	$\cdot 14$	5.153

SEEE appropriate type Station

1	60	1.537
73IVS	17	$73.687(\mathrm{~b})$
73TVS	18	$73.687(\mathrm{c})$

SEE appropriate type Station
T (continued)
TRANSMITrERS (continued)
Construction
Control requirements, experimental radio
services
Construction standards, FM
Electrical performance standards, FM
Identification card, Experimental Radio
Services
Installation of
Licensing acceptability
Location of AM
of FM
of TV
Measurements, Experimental Radio Services
Operated under part 73
Other technical data
Operated in the Instructional TV Fixed
Service
Portable, defined
Performance required
Power of
Spare tubes, FM
Specifications for, TV
Visual (TV), specifications for
Wirina and shielding standards, FM
TV AuxILIARY BRoADCAST sTATIONS
Classes of stations
Common channels
Emissions and bandwidth
Equipment changes
Frequency
assignment
monitors
selection .
tolerance
Interference
License period
Licensing requirements
Operation unattended
Operator licenses, posting of
Operator requirements
Power limitations
Remote control operation
Remote pickup broadcast stations, use of
Service authorized
Sound channels
Station identification
T (continued)
Construction

Control requirements, experimental radio Construction standards, FM
Electrical performance standards, FM
Identification card, Experimental Radio
Services
Installation of
Licensing acceptability
Location of AM
of FM
Of TV
Operated under part 73
Other technical data
Operated in the Instructional TV Fixed
Service
portable, defined
Performance required
Power of
Spare tubes, FM
Specifications for, TV
Visual (TV), specifications for
Wirinq and shielding standards, FM
Classes of stations 74
$74 \quad 46 \quad 74.604$ (c)
$74 \quad 50 \quad 74.637$
74 50a 74.651
$74 \quad 43 \quad 74.602$
$74 \quad 51 \quad 74.662$
$74 \quad 46 \quad 74.604$
$74 \quad 51 \quad 74.661$
$74 \quad 46 \quad 74.604$
$74 \quad 3 \quad 74.15$ (c)
74
74
74
74
74
74
74
74
74
74
Part Page Section
SEE appropriate type
Station

5	13	5.106
73FMS	14	73.31
73FMS	8	73.317 (a)
5	16	5.157
73FMS	15	73.317 (d)
SEE appropriate type Station		
73AMS	21 a	73.188
73 FMS	5	73.315
$73 T V S$	11	73.685
5	13	75.107
2	12a	2.811
73 FMS	15	73.317 (e)
2	128	2.813
73AM	2	73.12
SEE appropriate type station		
SEE appropriate type station		
73FMS	15	73.317 (e)
73TVS	15	73.687
73TVS	15b	73.687 (a)
73TVS	18	73.687 (c)
73FMS	15	73.317 (c)

74	43	74.601
74	46	$74.604(c)$
74	50	74.637
74	$50 a$	74.651
74	43	74.602
74	51	74.662
74	46	74.604
74	51	74.661
74	46	74.604
74	3	$74.15(c)$
74	$47 a$	74.632
74	49	74.635
74	52	74.664
74	52	74.665
74	50	74.636
74	48	74.634
74	46	$74.603(\mathrm{~d})$
74	$45-46$	$74.603(\mathrm{~b})(\mathrm{c})$
74	45	74.603
74	53	74.682

T (Cont'd)	PART	PAGE	SECTION
TV AUXILIARY BROADCAST STATIONS (cont'd)			
Station licenses, posting of	74	52	74.664
Station records (logs)	74	53	74.681
Temporary operation	74	48	74.633
Transfer relay stations	74	43	74.601
Time of operations	74	74	74.863
Type acceptance	74	51	74.655
TV BROADCAST STATIONS			
Administrative changes in authorization	73TV	35	73.615
Affiliation agreement	73 TV	40	73.658
Antenna changes	73 TV	33	73.639
Antenna-Common site	73 TV	31	73.636
Antenna height	$73 T V$	24	73.614
Antenna marking and lighting	$73 T \mathrm{~V}$	42a	63.662
Applications			
educational stations (noncommercial)) 73 TV	26	73.621
for sharing TV channels	73 TV	26aaa	73.623
Notification of filing	73 TV	26	73.624
Assignment of channels	73 TV	2	73.606
Candidates, broadcast by	$73 T \mathrm{~V}$	39	73.657
Channels			
Assignment of	73TV	2	73.606
Availability	73TV	19	73.607
designation, numerical	73 TV	1	73.603
station separation	73 TV	20	73.610
zones	73 TV	19	73.609
Common antenna sites	$73 T \mathrm{~V}$	31	73.635
Cross references	73TV	a81	73.602
	73TVS	1	73.681
Designation of channels	73 TV	1	73.603
Determining operating power	73 TV	42	73.663
Distance between stations-computation	73 TV	21	73.611
Employment, equal opportunities	73TV	48	73.680

I (cont'd)	Part	Page	Station
BROADCAST STATIONS (cont'd)			
Equipment tests during construction	73 TV	27	73.628
Experimental	SEE Experimental TV Broadcast Stations		
Extention meters	73.7	47	73.678
Fraudulent billing	73 H	2	73.1205
Frequency			
assignments	$73 T V$	81	73.603
tolerance	73 TV	43	73.668
Height of antenna	73 TV	24	73.614
International agreement	73 TV	19	73.608
Interference-protection from	$73 T V$	23	73.613
License			
expiration	73 TV	29	73.630
period covered	73 TV	29	73.630
posting	73 TV	42	73.660
Logs, pertaining to	73 TV	43-45a	73.669-73.674
	SEE	Station	ecords,
		this inde	, Pg. 41
Lotteries, prohibited	73 TV	38 a	73.656
Main studio, location of	73 TV	24	73.613
Multiple ownership	73 TV	32	73.636
Network program practices	73 TV	40	73.658
Operation requirements			
discontinuance	73 TV	43	73.667
during emergency	73 TV	45 b	73.675
experimental	73 TV	42 a	73.666
mechanical reproduction	73TV	37	73.653
over-the-air subscription television	73 TV	35-35d	$73.641-.644$
rebroadcast	73 H	2	73.1207
remote control authorizations	73 TV	46 b	73.677
remote control	73 TV	46	73.676
sponsorship identification	73 H	6	73.1212
stdtion identification	73 TV	36	73.652
time of	73 TV	35 e	73.651
Operating requirements	73 TV	$35 b$	73.843
Operators, requirements	$73 T V$	42	73.661
Ownership, multiple	$73 T V$	32	73.636
Personal attacks, political editorials	73 TV	47 a	73.679
Power limits	73 TV	24	73.614
Program tests during construction	$73 T V$	28	73.629
Reference points and distance	$73 T V$	21	73.611
Sale of station, time contracts	73 TV	42	73.659
Separation of stations and assignments	$73 T V$	20	73.610
Special field test authorization	73TV	27 a	73.627
Station identification	73 H	1	73.1201
Station inspection	73 TV	42 a	73.665
Station separations	73 TV	20	73.610
Table of assignments	$73 \mathrm{TV}$	$1-8$	73.606
amendment of	73 TV	20-24	73.610-73.612
Telephone conversation, broadcast of	73 H	2	73.1206
Transmitters, acceptability for alternate main	73 TV	32.c	73.637
auxiliary	73 TV	32.	73.638
licensing	73TV	34	73.640

T (cont'd)
I'V BROADCAST BAND, Definition of TV CHANNEL, Definition of

Width of
TV INTERCITY RELAY STATION

Service authorized TV PICKUP STATION
Construction permit for
Definition of
Permissible service
Renewal of license for
TV STANDARDS
TV TECHNICAL STANDARDS
Antenna system
Auxiliary transmitters
Definitions
Engineering Charts
Field intensity contours
Frequency measurements
Indicating instruments
Modulation monitors
Operating power
Other tebhnical data
Prediction of coverage
Field strength measurements
Studio equipment
Tables
Transmission standards
Changes in
Transmitters
aural
construction
installation
location
operation
visual
wiring, shielding of
Type approval
modulation monitors
TV TRANSMISSION STANDARDS
Changes in
Definition of
In general
TV TRANSMITMER, Definition of

Definition of
Permissible service
Renewal of license for
IV STANDARDS
IV TECHNICAL STANDARDS
Auxiliary transmitters
Definitions
ngineering Charts
Frequency measurements
Indicating instruments
Modulation monitors
Operating power
Other tebhnical data
Prediction of coverage
Field strength measurements Studio equipment
Tables
Transmission standards
Changes in
ansmitters
construction
installation
location
operation
visual
wiring, shielding of
Type approval
modulation monitors
V TRANSMISSION STANDARDS
Changes in
Definition of
In general
TV TRANSMITTER, Definition of

Part	Page		Section
73TVS	3		73.681
73IVS	3	73.681	
73IVS	3	$73.682(a)$	

SEE also TV Auxiliary Broadcast Stations for other topics affecting. Index pg. 47-8

74	43	$74.601(c)$
74	46	$74.631(c)$

SEE also IV Auxiliary Broadcast
Stations for other topics affecting.

74	48	$74.632(\mathrm{c})(\mathrm{d})$
2	11	2.1
74	43	$74.601(\mathrm{a})$
74	46	74.631
74	48	$74.632(\mathrm{c})(\mathrm{d})$

SEE TV Technical Standards

73TVS	llc	73.685
73IVS	20	$73.687(\mathrm{f})$
73IVS	1	73.681
73TVS	33	73.699
73TVS	8	73.683
73TVS	24	73.690
73TVS	21	73.688
73IVS	24	73.691
73TVS	22	73.689
73TVS	20	73.687 h
73IVS	8	73.684
73IVS	13	73.686
73IVS	21	$73.687(j)$
73IVS	$29-32$	73.698
73TVS	$3-7$	73.682
73TVS	7	$73.682(\mathrm{~b})$

73TVS	$17-18$	$73.687(\mathrm{~b})(\mathrm{c})$
73TVS	18	$73.687(\mathrm{~d})$
73TVS	20	$73.687(\mathrm{~g})$
73TVS	11 c	73.685
73TVS	21	$73.687(\mathrm{i})$
73TVS	$15-18$	$73.687(\mathrm{a})(\mathrm{c})$
73TVS	20	$73.687(\mathrm{e})$

73IVs 25,27
73.692-73.694

73IVs 7
73.682(b)

73TVS 3
73TVS $3-7$
73TVS 3

```
T (cont'd)
TV BROADCAST TRANSIATOR STATIONS
Antenna location
Definition of
Emissions and bandwidth
Expiration date
Frequency
assignment
monitors
tolerance
Inspection
Instellation and maintenance
Interference
License period
Licensing requirements
Modification of transmission svstem
Operation time
Operations unattended
Operator licenses, posting of
Power limitations
Primary station
Purpose of
Rebroadcasts
Remote control operation
Rules, copies required
Service permissible
Station
identification
licenses, posting of
records
Time of operation
Transmissions and associated equiptment Operator requirements
UHF Translator signal booster
TV STL STATION
```

Definition of
Service authorized
TYPE APPROVAL acceptance certification
U
UNATTENDED OPERATION

V
VESTIGIAL SIDEBAND TRANSMISSION, Definition
VIOLATIONS
Notice of
Report of

Part Page

58a $\quad 74.731$
$54 \quad 74.7 \mathrm{Cl}$
58a $\quad 74.736$
$3 a \quad 74.15(e)$
$54 \quad 74.702$
$62 \quad 74.762$
$62 \quad 74.761$
74
6la
74.752

62a 74.764
$55 \quad 74.703$
2 74.5(d)
61
56a
62a
57a
62a
58
54
56
64
57a
63
56
64
63
63
74.783
74.765
74.781

74
SEEE operation time, Index pg. 33
$74 \quad 59 \quad 74.750$
$\begin{array}{lll}74 & 63 & 74.766\end{array}$
$\begin{array}{lll}74 & 57 & 74.733\end{array}$
SKE also TV Auxiliary Broadcast Stations for other topics affecting. Index page 48

74	43	$74.601(\mathrm{~b})$
74	46	$74.631(\mathrm{~b})$
2	$77-79$	$2.961-.969$
2	$-79-87 \mathrm{~b}$	$2.981-.10 \mathrm{c} 5$
2	$87 \mathrm{~b}-89 \mathrm{a}$	2.1031 .1045

SEE "Operation" under particular type of Station concerned

73TVS 3
73.681

1	16	1.89
0	54	0.407

V (cont'd)
VISUAL GARRIER FREQUENCY Definition of
VISUAL TRANSMITIER
Definitior of
VISUAL TRANSMITIER POWER
Definition of
W

WIINESSES
Attendance of
Right to counsel
$\underline{X}-\underline{Y}-\underline{Z}$

Part	Page Section	
73IVS	3	$7 \times .6 \times 1$
73 TVE	3	$7 . .681$
73 IVS	3	75.69_{2}

[^0]: *From "AM Field Strength Measurements and Proof of Performance" by Donald G. Everist, in the NAB Engineering Handbook, 7th Edilion, 1985.

[^1]: Sliding scate for use

