Flykir

 THE INTERNATIONAL JOURNAL FOR RECREATIONAL ELECTRONICS APRIL 1992
Top-ofthe Range FM Tuner

Comb Generator
AD232 Converter
Generic Array Logic
Two Meter Receiver
Red-light Diode Lasers
Super Sign
ss

Review of Pulsar

6

OCEAN STATE ELECTRONICS

PROFESSIONAL, AMATEUR, OR COMMERCIAL - WE'RE YOUR ONE STOP ELECTRONIC SOURCE CALL OR WRITE FOR OUR FREE 112 PAGE CATALOG 1-401-596-3080

April 1992

Volume 2
Number 6

In next month's issue (among others):

- NICAM decoder
- Z80 card
- Review of Analyser III
- Digital short-range radio
- 12C display
- GAL programmer
- Elements of passive electronic components
- The NICAM system

Front cover

The FM tuner described in a series of articles that started last month has specifications that challenge those of the best commercial tuners available. Shown is the finished main tuner board. The (ready-made) tuner module used prevents problems with building and adjusting the RF circuitry.

ELEKTOR ELECTRONICS USA (US ISSN 1051-5690) is published monthly except August at $\$ 28$ per year; $\$ 50$ for two years by Audio Amateur Publications, Inc., 305 Union St., Peterborough NH 03458 USA. Second class postage paid at Peterborough NH and an additional mailing office.

POSTMASTER: Send address changes to Elektor Electronics USA, Caller Box 876, Peterborough NH 03458.0876.

REVIEW: PULSAR-software for logic circuit simulation
Design by K. Walraven

DESIGN IDEAS	
$\mathbf{3 8}$	Super sign by Dr. K. A. Nigim
$\mathbf{5 4}$	PRENERAL INTEREST Design by K. Walraven
$\mathbf{y 8}$	Antomatic NiCd charger Design by L. Pijpers

RADIO, TELEVISION \& COMMUNICATIONS
14 PROJECT: Comb generator
by J. de Belie
40 PROJECT: FM tuner-Part 2
Design by H. Reelsen
43 PROJECT: 2-meter FM receiver
Design by J. Barendrecht and L. Lemmens

SCIENCE \& TECHNOLOGY

31 Understanding waverform harmonics by Dr. K. A. Nigim

AD232 converter-p. 17

TEST \& MEASUREMENT

17 PROJECT: AD232 converter
Design by Ing. B. C. Zschocke and A. Arnold
36 PROJECT: LCD for Inductance/capacitance meter Design by L. Pijpers
58 PROJECT: Milliohm measurement adaptor
Design by Ing. B. C. Zschocke

MISCELLANEOUS INFORMATION

Electronics Scene 12, 13; New Books 61; Letters 62-68; Advertisers' Index 68; Readers Services 69; Terms of Business 70.

2-meter FM receiver-p. 43

Red-light diode lasers-p. 34

CASGETTES

A HISTORY OF MUSIC
 CAS1
 $\$ 89.50$
 OF THE WESTERN WORLD, 1100-1980
 Sussex Tapes/Audio-Forum

In this series of twelve deluxe, gift-boxed audio cassettes, informative discussions by world-renowned authorities are followed immediately by authentic musical examples created by major international orchestras and chamber groups, enabling the musical past to be presented in a single, easily-listened-to format. Sorry, cassettes not sold separately.

Contents: Cassette \#1 1-New Arts for Old: Music of Medleval Times, 1100-1480. Side One: Chriatopher Page explains the earty domination of Gregorian chant, and takes the listener from the flowering of bove poetry in France to the development of polyphonic music in the 13th contury. 12 examples. Side Two: From the Ars Nova of France the listener turns to Landini's Italy and the England of John Dunstable. Liberal use of musical examples helps to convey the extrovert boldness and exctiement of medieval music. 10 xamples.

Cessette "2--Musick's Feaste: Music of the Renaissance, 1480-1600. Side One: Anthony Rootey talks about the musical renaissance in Europe and traces the spread of the Flomish School through France to Italy. 9 examples. Side Two: The discussion concentrates on the English renaissance and shows how the Flemish style was absorbed by English composers. 10 examples.

Cassette "3-A Pear Distorted: Mustc of the Baroque Perrod, 1600-1750. Side One: What does "beroque" mean? Christopher Hogwood and Michael Oliver discuss the different types of music which this complex period ombraces and show how, in goographical terms also, the ora coverod a very large area. 8 examples. Side Two: Opera is considered as the great dramatic spectacto of baroque entertainment, and the current interest in authenticty of musical performance is examined. 7 examples.

Cassette \#4-Sonata and the Creathe heal: Mustc of the Classical Period, 17501830. Side One: Alan Hacker fhst explains the principle and importance of classical sonata form, with the ald of keytoard examples played by Richard Burnett on an eighteenth-century traveling equare piano. 6 examples. Side Two: The listener moves to Vienna, for the artist the "richest, happiest, and most agreeabte residence in Europe." as Peter Wuson discusses opera and the reforms of Gluck before looking ahead to the Romantic pertod through the mustc of Schubert and Weber. 8 examples.

Cassette \#5-Expression and Extravagance: Mustc of the Romantic Perrod, 18301900. Side One: Conductor Norman Del Mar and critic John Amis discuss the meaning of "romantictsm" in music. In addition, they oxamine the role of the virtuoso and compare large-scale opera wth the comprossed drama of the Lied. 13 examples. Side Two: The speakers look at the rise of nationalism within the period and trace the development of the orchestra. 12 examples.

Cassefte "6--Reaction and Revoluthon: The Modem Pertod, 1900-1945. Sido One: Wilfrid Mellers takes the listener from Wagner to Schoenberg, as ho discussos the changes in musical language around 1900. 8 examples. Side Two: The speaker considers some of the loss radical elements of twentieth contury music, finishing with the plece of jazz in the pertod. 8 examples.

Cassette "17-Music Now: Contemporary Muslc, 1945-1980. Side One: Hugh Wood appraises the entire post-Worid War II period. with lillustrations from the music of composers such as Boulez and Stockhousen. 11 oxamples. Side Two: As above, 9 oxamples.

Cassette "B-Approaches to Popular Mustc. What is popular music? Edward Lee and Graham Vulluarry explore popular music as culture and book at its masthotics, as they trace the impeat of Afro-American mustic on traditional classical European music to produce an entirety different musical form and discover that different musical traditions noed to be evalualed againat different criteria. Illustrations by the speakers themselves.

Cessette \#Q-From Cave to Cavem: The History of Percussion Instruments. Side One: James Blades shows the importance of ihythym to all cultures, and then traces the history of percuasion instruments through the Middie Ages and Renaissance to the Classical Poriod. Side Two: How the ninetoenth century demanded marked changes of color in the percussion section is shown, induding the ernergence of tuned percussion. Blades then brings the listener up-to-date with a consideration of the increased technical requirements which the twenteth century has made on old and now percussion

instruments. 10 examples.
Cessette : 10--lslands in the Sun: The Story of Reggae and Calypso. Side One: Felix Cross traces the progression of music in the Caribbean from Rhythym and Blues to Reggae. Side Two: An outtine history of the calypso form of music, ending with a demonstration of how a simple calypso tune can be composed and performed. 7 examplos.

Cassette \#11-A Jug of This: An Introduction to English Folk Music. Side One: Roy Palmer explores the history of English folk music, as well as its functions in ritual, work, and recreation. 8 examples. Side Two: Folk songs as an illustration and illumination of social history, dealing for examplo with love, marriage, and affairs. Palmer also recog nizes our debt to the foik song collectors of the early twentieth century. Examples on both sides of the tape range from Elizabethan times up to the modern period. 7 examplos.

Cassette \#12--Instruments Around the Wortd. Side One: Andy Jackson presents a collection of examples from musical instruments from around the world, including the quena (Andean flute), koto (Japanese zither), atumpan (talking drum from Ghana), duda (Hungarian bagpipe), didjeridu (Australian trumpel), and sitar. Side Two: As above, with gender (Indonesian metal xylophono), mbira (Zimbabwean linguaphone), sheng (Chinese mouth organ), peyote water drum, and hardanger fiddie (Nonwegian folk violin).

CDs

DIGITAL TEST: 106 DIGITAL TESTS AND CDPV/2 DEMONSTRATION TRACKS
 \$37.95
 Disques Pierre Verany

After painstaking research and several trial pressings, here is the most complete and functional test package available. Created in the studios of Pierre Verany, with the collaboration of the French audiophile magazine Compact, the final product was submitted to the creators of the CD concept--Philips of The Netherlands. Their verdict: "a beautiful piece of work!"

Contonts: CD \#1, DEMONSTRATIONS--[1] Firoworks. [2] Rumanian folk music. [3] Bluegrass. [4] Guitar. [5] Contemporary music with brass and percussion. [6] Voico. [7-8] Anclent instruments. [9] Flute concerto. [10] Philharmonic orchestra. [11] Baroque organ. [12] Great symphonic organ. CD \#1, TESTS--[13] Maximum cutting level. [14-15] Leftright identification and channol separation. [16-17] Frequency response 20Hz20 kHz . [18-32] Harmonic distortion measurements. [33-34] Signal-to-noise ratio moasurement. [35-38] Analog de-emphasis clrcult control. [39-42] Transient response on squarewave signals and tone bursts. [43-46] Audible differences in quantization: 16. 15-, 14, and 8 -bit-oncoded music. [47-48) Intermodulation by crosstalk. [49-51] Intermodulation distortion measurements. [52-56] Digita/analog converter overload effoct.

CD \#2. TESTS--[1-6] Variations of linear culting velocity. [7-11] Variations of voloctyytrack pitch. [12] Roturn to normal parameters. [13-18] Variations of track pitch. [19-24] HF detection levol. [25-38] Dropout tests. [39] Return to normal parameters. [40-43] Dropout size variations/minimum track pltch. [44-50] Ability to correct succossive dropouts.
From France; two discs; 73:47, 50:00. Verany \#PV88031/32 (AD124). 65-page French/English companion booklet included. Also available in Special CDPV/S elsewhere in this section.

COMPACT TEST: DEMONSTRATIONS AND TESTS CDPV/3 Disques Pierre Verany
 $\$ 18.95$

Contents: MUSICAL TRACKS--[1] Steam train. [2] Blg band ("Tribute to Benny." Walker Jazz Band). [3] Porcussions ("Rhythmotom 1," Mamba Percussions Ensemble). [4] Paraguayan harp ("Pajaro Campaa," Ignacto Aldereto). [5] Country music ("Rattlosnake." Banjo Express Ensemble). [6] Provence (sourthern France) mustc ('Bon Joseph, Ecoute-Mol, Flour de Rose Ensemble). (7) Nightingales ("Dawn on Saint John's Day"). [8] Drgan and orchestra (Vivaldi: "Concerto in G Minor Op. IV No. 6," Munich Pro Arto Orchestra). [9] Harpsichord (Soler: "Sonata No. 99 in C Major: Rondo Pastoril," Jean-Marie Pull). [10] Baroque organ (Clerambault: "Sulte du Promber Ton: Basse ot Dossus de Trompete," Pierre Bardon). [11] Choirs (Poulenc: "The Face of Man: With Laughter for the Sky and Planets," Ensombla Vocal de Provence). [12] Ancient music (Alphonso le Sage: "De Grad'a Santa Maria." Polyphonia Antiqua Ensombla). [13] Romantic organ (Uszt: Fantasy and Fugue on "Ad Nos, Ad Salutarem Undam," Chantal de Zoouw).

TECHNICAL TRACKS--[14] Locating of left and right channels; diaphony tost. [15] Dynamics and noise. [16] Loudspeaker phasing. [17] White nolso. [18] Pink noiso. [19] Response curve of the equipment (sinusoidal signals). [20] Colorations and resonances: equalizer adjustment; loudspeaker testing.
From France; one disc; 57:39. Verany \#PV784031 (AD100). 19-page French/English companion booklet included. Also available in Special CDPV/S elsewhere in this section.

OLD COLONY GOUND LA:

CDV TEST: HOW TO SET UP YOUR AUDIO-VIDEO EQUIPMENT
 CDPV/4 \$18.95

Disques Pierre Verany

Contents: AUDIO DEMONSTRATIONS--[1] Philharmonic orchestra (Moussorg-skURimaki-Korseakov: "Une Null sur te Mont Chauve" lextract), Pays de la Love Philharmonkc Orchestra). [2] L'Épde Muskc Box (Planquette: "Cornoville Bells"). [3] Gilardenghi monic Orchestra). [2] L'Epee Music Box (Planquetto: "Cornovile Boils"). (3) Gilardenghi barroi orchestrion (Tradrinnal itahan Ars). [4] Idratit cardiboard coin-operated orchestrion [6] Identification signal to be heard on the right. [7] Fititered sound, in phase. [8] Filtered sound, out of phase. [9-28] Room resonance and speaker remoteness from walls (sound measuring signais): $1 \mathrm{k}, 16,20,25,31.5,40,50,63,80,100,125,160,200,250,315$, $400,500,630,800,1 \mathrm{k} \mathrm{Hz}$. VIDEO TESTS--(29] Absoluto white. [30] Absolute black. [31] Contrast control and adjustment (gray scale). [32] Color rendering control (color bar pattern). [33] Streaking and focusing (dot pattern). [34] Convergence and geornotric distortion (black and white grid).
From France, in collaboration with Stéréo HiFi-Vidéo; one disc; 21:55. Verany \#PV789032 (AV100). 23-page French/English companion booklet included. Please note that this disc has been designed to be read by all CDV players sold in Europe and manufactured to the European standard. It is not compatible with NTSC-standard devices such as those made in Japan, Canada, and the USA. Also available in Special CDPV/S elsewhere in this section.

PIERRE VERANY TEST CD SET SPECIAL!

CDPV/S Disques Pierre Verany
$\$ 69.95$
The complete Verany Test CD Set (CDPV/2, CDPV/3, CDPV/4), at a savings of $\$ 5.90$ I From France; four disks, three booklets.

CD-1 COMPACT TEST DISC

CD1 CBS Records
$\$ 45.00$
The CBS Records CD- 1 test disc is a highly accurate signal source specifically designed for those interested in making a full range of demanding performance measurements on CD players. Because of the convenient nature of the CD medium and high quality of the recorded signals, the disc is also suitable for use as a source for testing a variety of audio systems or components, including tape recorders, amplifiers, and speakers. All 16-bit digital audio test signals contained in the 21 tracks and over 71 minutes of playing time have been computer-generated and transferred in digital form to the CD. The latest knowledge and technology in digital audio engineering has been used to provide a comprehensive set of test signals in a format with user requirements in mind. This arrangement includes all Electronic Industries Association (EIA)-specified test signals, plus CBS Records enhancements which allow the concerned evaluator the ability to obtain even more critical performance data than required by the corresponding EIA measurement standard.

Contents: [1] Reference, L \& R, OdB, 1kHz. [2] Left separation, OdB, 1k, 125, 4k, $10 \mathrm{k}, 16 \mathrm{k} \mathrm{Hz}$. [3] Right separation, OdB, 1k, 125, 4k, 10k, 16 k Hz . [4] Signa//noiso, L \& R, Infinty zero w/o omphasis. [5] Dynamic range, L \& $R, 1 \mathrm{kHz},-60 \mathrm{~dB}$ w/o omphasis. [6] Frequency response, L\& R, OdB, 4, 8, 17,31 Hz. [7] 61, 127, 251, 499 Hz. |8] 997 , 1999, 4001, 7993 Hz . [9] 10,007; 12,503; 16,001; 17,989 Hz. [10] 19,997 Hz (also used for pltch error). [11] Swoop frequency rosponse, OdB, $5 \mathrm{~Hz},-22.05 \mathrm{kHz}$. [12] Do-omphasis orror, L\& R, $1 \mathrm{k} \mathrm{125,4k,10k16k} \mathrm{~Hz} \mathrm{}. \mathrm{[13]} \mathrm{Intermodulation} \mathrm{distortion} \mathrm{(SMPTE}$, twintone), L\& R, $80 \mathrm{~Hz}+7 \mathrm{kHz}, 11 \mathrm{kHz}+12 \mathrm{kHz}$. [14]] Wow and flutter, L \& R, $0 \mathrm{~dB}, 3150 \mathrm{~Hz}$. [15] Accoss time, L\& R. OdB, 317Hz. [16] Squarewave, L \& R, OdB, 1002.27Hz. [17] Impuise and polarty test, L \& R, OdB. [18] Lnearity, $997 \mathrm{~Hz}, \mathrm{~L} \& \mathrm{R}, \mathrm{OdB},-1,-3,-6,-10$, $-20,-30,-39.99,-49.97,-59.94,-70.31,-80.77,-90.31 \mathrm{~dB}$. ADDITIONAL TEST TRACKS: [19] Linearty with dither, L\& $\mathrm{A}, 997 \mathrm{~Hz},-70.31,-80.77,-90.31,-100 \mathrm{~dB}$.
 10 LSB.
One disc; 71:00+. CBS \#CD-1. 8-page companion booklet included.

TEST DISC II: MUSIC, SOUND EFFECTS, MIC TECHNICUES, ANECHOIC, AMBISONICS, TEST SIGNALS
 Hi-Fi News \& Record Review

Produced by Martin Colloms and Trevor Butler, this comprehensive test disc offers a unique package of music tracks and test signals designed for both subjective and objective analysis of hi-fi systems or components. Although the technical section provides a uniquely comprehensive and up-to-date signal source for laboratory measurement of hi-fi equipment, this disc will be invaluable for even the most nontechnical enthusiast who wants a range of suitable material for setting up, evaluation, and comparison.

Contents: [1] Ambisanic and channel identification. [2] Spoken channel phasing. [3] Hodgson: "Base Desires." [4] The making of "Base Deslres." [5] Loulss: "Blues for Klook." [6] Sousa: "Stars and Stripes Forever," The Wallace Collection. [7] Holst: "Neptune" from "The Planets," Philharmonla Orchestra. [8] Britten: "Aria Italiana," "Bourre Classique," from "Variations on a Theme of Frank Bridge," English String Orchestra. [9] Beethoven: "Cortolan Overture," Hanover Band. [10-18] Denon anechoic orchestral music recording. RECOFDING TECHNIQUES--[10] Mozart: Bars 1-18, Overture, "Lo Nozze di Figaro," Minco Clvic Hall, Osaka. [11]"Le Nozze," with addition of Vienna Musilkvereinssaal's reverberation. [12] "Le Nozze," with addition of Amster dam Concertgobouw's reverberation. [13] "Lo Nozze," with addition of Boston Symphony Hall's reverberation. MICROPHONE TECHNIQUES--[14] "Le Nozze," with omni/single pickup miking. [15] "Le Nozze," with single mic and time coherence. [16 Le Nozze," with single unidirectional mic. [17] "Le Nozze." with muni-mic pickup. [18 Le Nozze," with multi-mic and time coherence. [19] Handel: "Entry of the Queen of Sheba," Scottish Chamber Orchestra. [20] "Entry," London Festival Orchestra. [21] Bie Ben. [22] Fenny poppers (cannonades). PRECISION SIGNAL GENERATOR TRACKS - - $23-25$] Balance and phasing. [26-39] Calibrated levels. [40-66] Spot frequency response. [67-69] Swept frequency response. [70-71] Signal/noise ratio test. 72 Impulse test, L \& R. [73-74] Intermodulation test. [75-79] Pro-emphasis check. [80] Fade-to-noise test. [81-92] Noise signals. [93-95] Tape recorder test signals. [96] Monotonicity (10 levels). [97] 1 kHz toneburst, L \& $R, 0 \mathrm{~dB}$. [98] 100 Hz squarewave, L \& R, -15 dB . [99] 1 kHz squarowave, $L 8 \mathrm{R},-5 \mathrm{~dB}$.

From the United Kingdom; one disc; 73:51. HFN \#015. 8-page companion booklet included.

STEREOPHILE TEST CD	CDSTPH
Stereophile	$\$ 9.95$

Produced by John Atkinson and Robert Harley, Stereophile's test CD contains channel identification and phasing tests, but not with the usual boring test tones or pink noise. Publisher Larry Archibald's dog Ralph provided a healthy bark for these tests. Perhaps the most interesting part of this disc is the microphone comparisons, for which Stereophile founder and The Audio Glossary author J. Gordon Holt reads from his 1963 article, "Why Hi-Fi Experts Disagree." Eighteen different mics are used in succession, and even those who are not amateur recordists will find the widely varying sounds of these professional recording mics highly educational.

Contents: [1] Reference tone, L\& R, mono. [2] Channel identification. [3] Channol phasing. [4] Pink noise at -20dB, L \& R, uncorrelated for 1:04 of 2:15. [5] Why H1-Fi Experts Disagres," mic comparison, mono. [6] E.E. Bagley: "The National Emblem," Nether Providence High School Band, mono. [7] Theodore Dubols: "Les Sept Paroles du Christ," Philadelphia Oratorio Choir, excerpt. [8] Maurice Ravel: "Chanson Hóbräique," absolute polarity test. [9] Armas Järnefolf: "Praeludium, Dolaware Symphony Orchostra. [10] Frederic Chopin: "Scherzo in B-Flat Op. 31," piano. [11] Jerome Korn: "I'm Old Fashioned," acoustic guitar. [12] Bruce Dunlap: "Throedledum," guitar and double bass. [13] George Gershwin: "Summertirne," soprano, Stereophile maga zine's "The Lesloy Test." [14] Robert Schumann: "Romance, Op. 94, No. 1," thte and piano. [15] "Romanco, Op. 94, No. 2," fluto and plano. [16] "Romanco, Op. 94, No. 3," flute and piano, $128 \times$ oversampling AV. [17] "Romanco, Op. 94, No. 3, "flute and plano Sony PCM 1630 AD. [18] "Romance, Op. 94, No. 3," flute and piano, ADC comparison. [19] J.S. Bach: "Concorto in D," organ. [20-31] 1/3-octave warble tone tracks for teating loudspeakers and rooms: -20dB; 20, 25, 31.5, 40,50,63,80,100, 125, 160, 200Hz, 1 kHz .
One disc; 70:54. Stereophile \#STPH 002-2. 15-page companion booklet included.

OLD COLONY GOUND LAB

AUDIO TEST CD-1:
 CDJAS
 91 TEST SIGNALS FOR HOME AND LABORATORY USE Japan Audio Society
 $\$ 31.95$

An extremely well thought out package, this disc contains a number of tests not found on other test CDs, and the individual track numbers on each tone and test make it a pleasure to use. Although this disc was intended for testing various playback signal characteristics of CD players, it is also useful as a versatile sound source for testing numerous characteristics of tape decks, amps, speakers, and other components, as well as the acoustics of listening rooms. The contents of the disc were prepared under extensive scrutiny and approved by both the Technical Audio Research Committee of the Electrical Industries Association of Japan and the Technical Measurement Committee of the Japan Audio Society.

Contonts: [1-4] Channel check signais. [5-7] 1 kHz sinewave reference signals. [8-38] Spot sinowavo signals. $20 \mathrm{~Hz}-20 \mathrm{kHz}$ [39-44] Sweep signals, 20Hz-20kHz. [45] Step signals, $4 \mathrm{~Hz}-125 \mathrm{~Hz}$. [46-47] Double tones for measuring intermodulation distortion, OdB , -10 dB . [48] White noise signal, -20dB. 149] Pink noise signal, -20dB. [50-52] Weighted noise signals, -20dB: United Statos of America Standards Institute (predecessor to ANSI): Intornational Electrotoctinical Commission Publication 268-1; Electronic industries Association of Japan Specticalion RC-7603. [53-82] 1/3-octave band noise signals, -20 dB . [63] Band noise aignal $200 \mathrm{~Hz}-800 \mathrm{~Hz}$. [84] Band noise signal, $100 \mathrm{~Hz}-8 \mathrm{kHz}$. [85] Electrical Industries Association/lnstitute of High Fidelity tone bursts, 1kHz. [86] Tone bursts, $-10 \mathrm{~dB}, 20 \mathrm{~Hz}-11.025 \mathrm{kHz}$. [87] Peep signals, tone bursts limited by humming window, $-10 \mathrm{~dB}, 20 \mathrm{~Hz}+11.025 \mathrm{kHz}$. [88] Raised cosine wave, -10 dB . [89-90] Impulse signals, OdB, L 8 R. 190 Startor's prstol, anechoic.
From Japan; one disc; 58:44. JAS \#YDDS-2. 34-page Japanese/English companion booklet included.

AUDITORY DEMONSTRATIONS
 Institute for Perception Research;
 Northern Illinois University;
 Acoustical Society of America

CDAC
\$27.95

In 1978, a set of auditory demonstration tapes was released by the Laboratory of Psychophysics of Harvard University. These demonstrations had been prepared by a team led by Professor David M. Green and were sponsored by a grant from the National Science Foundation. The tape set, which contained 20 recorded demonstrations on psychoacoustics plus an explanatory booklet, became so popular that all copies were quickly distributed and the set was no longer available.

In 1984, the Acoustical Society of America's Committee on Education in Acoustics requested T.D. Rossing and W.D. Ward to look into the feasibility of re-issuing the "Harvard tapes." The decision was made to update the demonstration material and to issue it on a high-quality sound reproduction medium. The Institute for Perception Research (IPO) in Eindhoven (The Netherlands) was engaged to produce the audio material. Both the Eindhoven University of Technology and the Philips Company, the joint sponsors of IPO, made manpower available for the project. Philips Polygram and Philips \& DuPont Optical (PDO) agreed to handle

the digital tape mastering and the production of a CD. Northern Illinois University supported the project through a grant for improvement of undergraduate education, and the Acoustical Society of America agreed to provide further financial backing for the project. Among many, A.J.M. Houtsma, T.D. Rossing, and W.M. Wagenaars can be singled out for their production contributions.

Contents: (1] Canceled harmonics. [2-6] Critical bands by masking. [7] Critical bands by loudness comparisons. [8-11] The decibel scale. [12-16] Filtered nolse. [17-18] Frequency response of the ear. [19-20] Loudness scaling. [21] Temporal intogration. [22] Asymmatry of masking by pulsed tones. [23-25] Backward and forward masking. [26] Pulsation threshold. [27-28] Dependence of pitch on intensity. (29) Pitch salience and tone duration. [30] Influence of masking noise on pitch. [31] Octave matching. [32] Stretched and compressed scales. [33] Frequency difference limen (DL) or just noticeable difference (JND). [34-35] Logarithmic and linoar frequency scalos. [36] Pich stroaming. [37] Virtual pitch. [36-39] Shift of virtual pitch. [40-42] Masking spoctral and virtual pitch. [43-45] Virtual pitch with random harmonics. [46-47) Strike note of a chime. [48] Analytic versus synthotic pitch. [49-51] Scales with ropeltion pitch. [52] Circularity in pitch judgment. [53] Effoct of spectrum on timbro. [54-56] Effoct on tone envelope on timbro. [57] Change in timbre with transposition. [58-61] Tone and tuning with stretched partials. [62-63] Primary and socondary beats. [64-67] Distortion. [68-69] Aural combination tones. (70) Efrect of echoes. (71] Binaural beats. [72-74] Binaural latoralization. [75-79] Masking level diftioronco. [80] An auditory illusion.

From The Netherlands; one disc; 64:55. Philips \#1126-061. 93-page, extremely detailed and referenced companion booklet included.

DEMONSTRATION OF STEREO MIKING TECHNIQUE CDSM Performance Recordings
 $\$ 21.95$

Produced by James Boyk, Mark Fischman, Greg Jensen, and Bruce Miller, this disc allows you to hear not only the very different images produced by various mikings, but also how different types of microphones give different images with the same miking. Each miking occupies two tracks: the first identifies it and the second lets you hear it. This enables the second track to be used by itself for blind testing.

Contents: SPOKEN INTRODUCTION--[1] Title. [2] Description of sound sourco. [3] Placement of microphone arrays. [4] Image accuracy. [5] Variation of nominally identical arrays. [6] Differences in character of sound. [7] Sound variation, off-axis vorsus on-axis. [8] How best to use your own microphones. [9] Dynamic tost of channel matching. [10] Miking not a science. [11] Introduction. EIGHTEEN MIKINGS (Principle, Geomatry of Steroo Array)--[12-13] Condenser, cardiotds at 90 degrees. [14-15] Condonser, cardiolds at 120 degrees. [16-17 Condenser, hypercardiotds at 90 degrees. [18-19] Condenser, M-S: cardioid plus figure 8. [20-21] Ribbon, M-S: two figure 8s. [22-23] Condenser, figure 8s at 90 dogrees ("Blumlein"). [24-25] Condenser, figure 8 s at 85 degroes ("Blumioin"). [26-27 Ribbon, figure 8s at 90 degrees ("Blumiein"). [28-29] Condonser, two omnidiractionals 6 feet apart. [30-31] Condensor, three omnidirectionals, 6 feet span. [32-33] Condenser, ORTF: cardioids at 110 degrees, 17 cm apart. [34-35] Condenser, NOS: cardiolds at 90 degrees, 30 cm apart. [36-37] Dynamic, cardioids at 90 degrees. [38-39] Dynamic, cardioids at 120 degrees. [40-41] Condenser, two omnidirectionals 6 foel apart. [42-43] Dynamic, ORTF: cardioids at 110 dogrees, 17 cm apart. [44-45] Dynamic, NOS: cardiolds at 90 degreos, 30 cm apart. [46-47] Condenser, two figure 8s at zero degreos, 17 cm apart.
One disc; 19:18. Performance Recordings \#PR-6-CD. Companion booklet included, which contains Quick-Start Guide, "About Microphones \& Stereo" primer, complete transcript of spoken introduction, and computer graphics of microphone patterns.

DLDCDLDNY GDUND LAB

VIDEOS

"ELECTRONICS AND YOU"
 VIDEO ELECTRONICS COURSES
 UCANDO VCR Educational Products Company

These high-quality, computer-animated VHS videos are among the best we have seen, suitable for at-home selt-instruction as well as for classroom use. In color. Also available in other formats--please inquire.

Purchasing options available:

- VDVT201 PART 1-DC: Series and parallel circuits; Ohm's Law; digital multimeters; converting series-parallel circuits into simple equivalent circuits; using the DMM to measure voltage, current, and resistance. 53:00.
$\$ 34.95$
- VDVT202 PART 2--AC: Coils; transformers; capacitors; the difference between effective, average, peak, and peak-to-peak voltage; calculating values for coils and capacitors in series and paraliel. 71:00.
$\$ 34.95$
- VDVT205 PART 3-SEMICONDUCTORS: Basic semiconductor theory; 15 different devices; how diodes, phototransistors, FETs, SCRs, and other voltage-controlling devices are designed to perform specific tasks; how an IC is designed and built. 47:00.
$\$ 34.95$
- VDVT206 PART 4-POWER SUPPLIES: Different sections of a PS; half-wave, full-wave, and bridge rectifiers; filter circuits; shunt, series, and current regulators; overvoltage protection circuits such as crowbar; troubleshooting power supplies. 55:00.
$\$ 34.95$
- VDVT207 PART 5-AMPLIFIERS: Basic amplifier circuits such as Class A, B, C; operational amplifiers; amplifier use in audio, video, and testing equipment. 54:00. $\$ 34.95$
- VDVT208 PART 6--OSCILLATORS: Resonant LC tank circuits; LC, RC, crystal oscillators; Hartley, Colpitts, UltraAudion, collector-coupled, emitter-coupled, UJT relaxation, tunnel diode oscillators; multivibrator circuits. 54:00. $\$ 34.95$
- VDVTXXX COMPLETE SIX-PART "ELECTRONICS AND YOU" COURSE, as above, at a savings of \$29.75! \$179.95

BOTTLES: THE TUBE AMP VIDEO Corax Productions

 the lis and tion--low distortion, clear midrange and treble, extreme ruggedness, and tremendous surge-power ability, plus the maturity of a classic technology. Produced by Eric Barbour, this video is about tube amplification-types and brands, applications, and a user's manual for the care and feeding of "bottles." A great owner's reference, it deals with all the details of owning a vacuum-tube amplifier. Subjects covered include: the history of tube high-fidelity equipment; a short look at the history of tube guitar amps; speakers for tube amps; owner maintenance; modifications for tube equipment; a summary of common audio tubes; and safety consid erations. The history section in the first half is especially interesting showing many classic tube amplifiers and preamps from the late ' 40 s right up through today. VHS, color/NTSC format, 85:00.
ELECTRONIC KIT BUILDING MADE EASY
 VDETD
 Edward T. Dell, Jr.
 \$19.95

In careful production for several years, this striking 30-minute VHS video cassette introduces kit building techniques to newcomers to elec tronics. Narrated by Ed Dell of Audio Amateur Publications, the presen tation takes the viewer step-by-step through construction of a simple two-way electronic crossover, explaining the concept in simple terms, defining the basic concepts of circuit action and component function. The advantages of electronic crossovers versus passive ones (used in most loudspeaker systems) are discussed. Basic tools, soldering, circuit board use, component mounting, wiring, layout, and drilling of the enclosure, as well as final assembly, are all demonstrated clearly. Although the demonstration project is used for upgrading speaker systems, the tech niques are applicable for building almost any electronic project, whether from a prepackaged kit or parts and supplies purchased separately Suggestions for other resources and where to find more assistance in the form of plans, components, kits, and literature complete the program VHS, color, 30:00. IN PRODUCTION; PLEASE INQUIRE ABOUT AVAIL ABILITY.

PROFESSIONAL AUTOSOUND
 VDAEV2 INSTALLATION TIPS
 \$19.95
 Scosche

This training video follows an autosound installation from beginning to completion, providing detailed "how-to" information which examines the subtie and not so subtle differences between a competent, professionalquality job and a "slap-shop" one. The format is light and easy to watch and foliow. Topics covered include Pre-Planning, Front Speakers, Wiring Tips, Rear Speakers, Amplifiers, and Head Units. VHS, color, 27:00.

EIA/CEG CAR STEREO VIDEOS

Electronic Industries Association/Consumer Electronics Group

These videos offer an introduction to car stereo installation, with VOBIV oriented more toward setting up a shop and dealing with customers while VDPIV delves more into actual installation techniques. Features include: outfitting a shop; car stereo chassis styles and sizes; recommending a particular size; preventing noise problems; an after-installation checklist; and installation kits and how to get them. VHS, color. VDBIV: 25:49; VDPIV: 27:30.

Purchasing options available:

- VDBIV Basic Car Audio Installations \$27.95
- VDPIV Professional In-Dash Car Stereo Installation \$27.95
- VDSIV Complete EIG/CEG 2-Video Set (VDBIV, VDPIV), at a savings of $\$ 3.95$ I
$\$ 51.95$

OLD CDLDNY GOUND LAB

VINYL

SEVEN STEPS TO BETTER LISTENING
 LSTR101 CBS Laboratories
 $\$ 8.95$

Through easy-to-make tests and simple narrative, this $331 / 3$-rpm LP will help you to blend electronic components, room acoustics, and the characteristics of your own ears into one well-tuned system for the enjoyment of all recorded sound. You will be able to assure yourself that your LP-playing equipment functions properly, as well as learn how to "tune" your player to your own hearing and to the acoustics of the room in which you are listening. Program notes by Audio's noted reviewer Edward Tatnall Canby. 1964.

Contenta: [1] Leftright sound identification: proper placement and connection of speakers and/or console for trive rendition of stereo sound image. [2] Loudspeaker connection: using a simple sequence of tones to determine proper speaker connections. [3] Loudspeaker balance: simple adjustment. [4] Tone contro: adjusting the tone [3] Loudspoaker balance: simple adjustment. [4]. Tone contro: adjusting the tone controis until pilot tones and test tones correspond. [5] Leflyright separation: eliminating
test tone blend to ensure orgination at proper speaker. [6] Elimination of buzzes and ratties: detection and remedy methods. [7] Reduced record wear: tips and tests for peak pickup pertormance.

One vinyl LP with jacket. CBS Laboratories \#STR-101. 16-page companion booklet included. Limited quantities available: TELEPHONE ORDERS ONLY, PLEASE.

NAME
COMPANY
STREET
CITY ST
DAYTIME TELEPHONE
PAYMENT BY:
Q CHECK / MONEY ORDER
Q MASTERCARD Q

SHIPPING:

USA: $\$ 2$ first item, $\$.75$ each additional.
Canada: $\$ 4.50$ first item, $\$.75$ each additional.
Overseas Surface: $\$ 6$ first item, $\$.75$ each additional
Overseas Air: $\$ 9$ first item, $\$.75$ each additional.

OLD COLONY SDUND LAB
PO Box 243, Department E92
Peterborough, NH 03458-0243 USA
24-Hour Lines
Telephone: (603) 924-6371 or (603) 924-6526
FAX: (603) 924-9467

Connect Muscle Wires ${ }^{\text {TW }}$ to a battery or other power source and watch them contract in length up to five percent！ Remove power，and they relax and are ready for millions more cycles．
Create direct linear action without heavy gears，coils，or motors．Use Muscle Wires in robots，models，planes， railroads－anywhere you need small， strong all－electric motion．
Get our new 96 page Book and moving Muscle Wire Sample Kit．It includes 20 cm of $50 \mu \mathrm{~m}$ ，and 40 cm each of 100 and $150 \mu \mathrm{~m}$ diameter Muscle Wire（1 meter total），crimps and complete instructions－everything you need to get moving today！
Order Toll Free， 24 hours：

What Are Muscle Wires？
Muscle Wires are highly processed strands of a nickel－titanium alloy called nitinol．Al room tenperature they are easilly stretched by up to 5 of their lenglh．When conducting an electric current they heat and return to their orginat ＂unsiretched＂shape＇with a force thousands of timess their own weight．
How strong are Muscle Wires？
The force a wire pulls with saries with size， from 35 to 330 grams．For more strength，use －
How fast can Muscle Wires activate？ They contract as fast as they are heated－as
quickly as 11000 of a second quickly as 11000 of a second．To retax，the whe must cool again．Rates up to several cycl
per second are possible with active cooling．

Flexingl Musde Wire Specifications

Wire Diometer $50 \mu \mathrm{~m} \quad 100 \mu \mathrm{~m} \quad 150 \mu \mathrm{~m}$
 Controct force 35 groms 150 groms 330 groms Typitol Curreat $50 \mathrm{~mA} \quad 180 \mathrm{~mA} \quad 400 \mathrm{~mA}$
How much power do Muscle Wires need？ Power varies with wire diankeler，length．and surrounding conditions．At room temperature typical currents range from 50 to 400 ma ． Power levets can the higher．hut once the wire has fully shortened，power should be reduced to prevent overheating．
What are the advantages of Muscle Wires？ Muscle Wires have many achantages over motors or solenoids including small size，light weight．low power，very high strength 10 －weight ratio．precise control，AC or DC activation．long die and direct linear action．
These topics and dozens more are covered in detail in our new 96 page hook．Working with Shape Nemon＇Wires．Book and Mondo ${ }^{\text {fronics }}$ 800－374－5764

2476 Verna Court Phone：510－351－5930 San Leandro，CA 94577 Fax：510－351－6955

F［日ロ月5溒

P－C－B ARTWORK MADE EASY I

Create and Revise PCB Art in a Flash
＊For IBM＇s \＆COMPATIBLES
＊HERC，CGA，EGA，VGA，SUPER－VGA
＊AUTO GROUND PLANES
＊DOT－MATRIX，LASER and PLOTTER ART
＊GERBER and EXCELLON OUTPUT
＊CREATE YOUR OWN FILMS with 1XART
＊LIBRARIES＊HELPSCREENS＊MENUS
＊DOWNLOAD DEMOS from 24 hr ．BBS！
PCBoards－layout program 99.00
PCBoards HP or HI PEN PLOTTER DRIVER 49.00 PCBoards CERBER \＆EXCELION Disk 49.00
PCRoute－autorouter 99.00 SuperCAD－schematic ．．．starts at 99.00 Demo Pkg．－（demos of all 3 programs） 10.00 Call or write for more information

PCBoards

2110 14th Ave．South，Birmingham，AL 35205 1 （800）473－PCBS／（205）933－1122 BBS／FAX（205）933－2954

P．O．Box 567 －Van Nuys，CA 91408
INFRARED Remote A．C．SWITCH
 good signal to noise ratio． operates on 2 to 10 Voc． Ideal for telephones，tape recorders，noise－activated alarms and other applica－ tions． $0.39^{\prime \prime}$ dia $\times 0.31^{\prime \prime}$ high． CAT：MIKE－10 854 each 200 pes $\$ 150.00$（ 754 each）

TRWIOptron \＃OPB5447－2 IR emitter／sensor pair in rectan－ gular package with 28° color
coded leads．CAT OSR－4 coded leads．CATH OSP－4

2 for $\$ 1$

Surface Mount Green LED

Sufface mount

LED chip．
Clear when off，
green when lit
Very tiny－whole unit is 0.115° $\times 0.055^{\circ} \times 0.05^{-}$thick． 1 mm （ 0.04° ）lens diameter．Gold－plated mounting surfaces for superior mounting surfaces for superior
conductivity．CAT SmLED－2
10 for $\$ 2$

100 for $\$ 18.00 \cdot 1000$ for $\$ 140.00$

12 VDC COOLING FANS

Toyo Fan：TFD8012RXAL 12 VDC． 0.114 cooling fan． 3.175° square $\times 0.92^{\prime \prime}$ thick Plastic frame． 7 blades． 11° long pigtail leads． CATH CF－124 $\$ 6$ 10 for $\$ 50.00$ eqeh

PHOTORESISTOR
1 K ohms light， 16 K ohms dark
0.182 dia X
0.182^{2} dia．X
0.08 high． 0.18° long lead
CATK PRE－ 7
2 for $\$ 1.00$
100 tor $\$ 45.00 \cdot 1000$ for $\$ 400.00$

TOLL FREE ORDER LINES

 1－800－826－5432CHARGE ORDERS to Visa，MastarCard or DIscover
TERMS：Minimum order $\$ 10.00$ ．Shipoing and handling for the 48 continental U．S．A $\$ 3.50$ per order．All others including AK，MI，PR or Canada must pay full shipping．All orders delivered in CALIFORNU must inciude stare sales tax（7 1／4． 7 1／2． 7 3／4 or 8 1／4\％）． Quantitios Limited．NO C．O．D．Prices subject to change without notice．
CALL OR WRITE FOR OUR FREE 64 PAGE CATALOG ALL ELECTRONICS CORPORATION
P．O．Box 567 • Van Nuys，CA • 91408

NOW THAT YOU‘VE SEEN OUR NEWEST TREASURE . . .

WHY NOT HAVE A LOOK AT THE REST?

The newest publication from the folks who bring you Audio Amateur and Speaker Builder

Glass Audio features the best vacuum tube designs for audio reproduction-past and contemporary. The new designs take advantage of improved components and control techniques that make the end results far superior to anything possible during the early days of audio's rebirth after World War II.

That's why tubes are having such a renaissance of interest as a perfectionist approach to good sound. And that's why tubes are reappearing in original equipment, in high end consumer and professional audio systems.
Published quarterly, Glass Audio will inform you about new innovations in the field and about parts sources. We'll also include modification projects, reviews of technical basics and regular columns such as Tube Troubles, Tube Tips and much more.

Subscribe today!

GLASS AUDIO

$\begin{array}{ll}\square \text { Two years, (8 issues) } & \mathbf{\$ 3 5} \\ \square \text { One year, (4 issues) } & \mathbf{\$ 2 0}\end{array}$
Canada add $\$ 4$ per year postage

The innovative, independent audiophile journal for the thoughtful and capable music lover

Audio Amateur's articles deal with how audio equipment works, as well as how to build or modify it. Construction and modification articles are plentiful, supplying all needed parts, performance and assembly details. Exceptionally high quality designs.
Audio Amateur offers a number of features in each issue that abound with useful ideas. The Letters column is an open forum for problem solving and information interchange; Classic Circuitry reprints schematics of state-of-the-art gear-old and new Audio Aids relates readers' experience with simple modifications to equipment and construction techniques. We also feature many useful and practical hi-fi accessories you can build to further your audio enjoyment.
For a small investment you can make your music system sound better-very probably a lot better

AUDIO AMATEUR

\square Two years, (8 issues)	$\mathbf{\$ 3 5}$
\square One year, (4 issues)	$\$ 20$
Canada add $\$ 4$ per year postage	

Speaberibuildey

The magazine

 that finally deals seriously with the art and craft of speaker buildingThe Art of building a speaker is to optimize that mixture of design and engineering to balance all the parameters for the most beautiful sound possible. The Craft is knowing how and why. Speaker Builder gives you knowledge-from driver parameters and crossovers to woodwork-ing-to develop and refine your techniques, and to get the most out of your system.

Speaker Builder helps you explore new designs with how-to construction articles, and can show you how to modify your old speakers and make them sound better than ever. Learn from our writers who turn abstract theory into practical approaches, and from the experience of other readers who have been down the road before you. Speaker Builder is the best investment you can make in your system-six issues per year filled with stimulating and exciting ideas.

SPEAKER BUILDER

\square Two years, (12 issues)	$\mathbf{\$ 4 5}$
\square One year, (6 issues)	$\mathbf{\$ 2 5}$
Canada add $\$ 6$ per year postage	

Canada add $\$ 6$ per year postage

NAME		
STREET \& NO	STATE	2
CITY		2IP
MC OR VISA NUMBER	EXPIRE	

AUDIO AMATEUR PUBLICATIONS
 PO Box 576, Dept. E92, Peterborough, NH 03458-0576 • (603) 924-9464 • FAX: (603) 924-9467

Answering machine for credit card orders only: before 9:00 a.m., after 4:00 p.m. and weekends. Have all information plus MC/VISA available.

ENGINEERS' RETREATS

One of the pleasures of living in our town of Peterborough, New Hampshire is not only the scenery of two rivers meeting downtown and the view of our surrounding mountains, but also a private, 400 acre farm that for nearly a century has been a retreat for working artists in literature, music and the plastic arts. The MacDowell Colony is strictly off limits to ordinary mortals all year long save for one August Sunday when a medal is conferred on a distinguished artist.
On that day anyone with the price of lunch can attend the ceremonies which are generally entertaining, informative and culturally refreshing. The Colony was founded because Edward MacDowell needed a quiet place to compose. His compositions are a pleasant addition to American music in the well-behaved late nineteenth century European-aping style. His wife Marian was the real energy behind the idea to turn a farm into a major retreat for artists.

Every quarter a new group of some forty persons come to Peterborough to take up residence at the Colony to work on some favorite project. They each have a cottage of their own in which to work. A central residence offers sleeping quarters and meals are provided. All this is supported by a growing endowment, built over the years from contributions by successful artists as well as interested individuals who believe in supporting the arts.

Over the years the foundation has grown, and some forty cottages were built one at a time, sometimes by an interested group's fundraising efforts, throughout the untouched 400 acres. Talented folks of every description have spent uncluttered, uninterrupted weeks with all their needs met without thought or care for life's necessaries.
The place has so many memories scattered about its paths through the woods and hills that lists of what has been written, finished, or begun there reads like an honors list of America's artists. The "our town" I mentioned above is, in fact, Thornton Wilder's play, Our Town. Its drugstore setting, with its druggist narrator, was one Wilder visited often while at MacDowell. The book for Porgy \& Bess was written at MacDowell by a couple who first met at the Colony, married, and returned to complete the classic there. Leonard Bernstein wrote parts of "West Side Story" during one of his many visits.
The value of MacDowell to American drama, art, music and literature is incalculable. A simple idea: give people with talent a place to work uninterrupted, and for an unbroken space of time and see what can be accomplished.

Why has it never occurred to anyone that American technology, which at its core is an imaginative process, needs a place of quiet for uninterrupted work-without telephones, faxes, business lunches or other distractions. I know that companies send selected people on sabbatical study leaves, sometimes for up to a year. Such leaves are generally spent in some academic venue, which these days is not exactly a retreat from the frenetic world we all seem to inhabit. It seems to me that thinking time is becoming more and more difficult to find in our hyper-enabled world where one can send faxes from a laptop to a sales staff of 20 flying at 32,000 feet over Kansas City.
While the MacDowell Colony equips its cottages with a variety of appurtenances including pianos, print-making gear, potter's wheels and photo labs, audio engineering types need only bring a laptop and a few books for a three month stint that might produce something innovative if only they had the time and opportunity. Breakfast is ready for hours each morning for colonists, cottages are within walking distance and lunch is delivered to each doorstep every noontime.

Every worthwhile human endeavor, it seems to me, requires such an environment for the best growth and development. I don't know what is happening these days at Bell Labs in New Jersey, but I devoutly hope that Judge Green's dismantling order hasn't forced AT\&T into such a competitive mode that no one has the time or leisure to spend days or weeks just thinking. The largesse of the Bell Laboratories establishment when AT\&T"s "monopolistic status" gave it the "luxury" of pure research, has benefited every resident of this country in countless ways. Not the least of these being the transistor.
Many companies who design and market audio equipment have made remarkable amounts of money over the half-century of modern sound development's growth. But no one seems to be investing in the future of audio-or putting aside any "seed corn" for what is to come next. Lots of product development and market research but no one taking a larger look at the needs and the possibilities.

Can't more be done than merely getting the next new "breakthrough" ready for CES? Is audio forever to remain a hand-to-market annual cycle? And if we cannot find ways to start a MacDowell for audio technology, are the resourceful, promising people being given sabbaticals to do some original work and thinking about audio reproduction. I can think of several people whom audio has treated very well. Perhaps it is time for them to give something back.-E.T.D.

Published by Audio Amateur Publications	European Offices:
Edftor/publisher: Edward T. Dell, Jr.	Elektuur BV
Edhorial Offlees:	Postbus 75
305 Union St., P.O. Box 876	6190 AB BEEK
Peterborough, NH 03458-0876 USA	The Netherlands
Telephone: 603-924-9464 (National)	Telephone: 0113146389444
or +1 (603) 924-9464 (International)	FAX: 0113146370161
FAX: (603) 924.9467 (National) or +1 (603) 924-9467 (International)	Managing Dirsetor: M.M.J. Landman
Advertising: Maureen E. McHugh	Overseas Editions:
Telephone: (603) 358-3756	FRANCE
FAX: (603) 924-9467	Elektor sart
Subscriptions: Katharine Gadwah	Les Trois Tilleuis
Elektor Electronics USA	B.P. 59; 59850 NIEPPE
Post Office Box 876,	Editors: D.R.S. Meyer
Peterborough, New Hampshire 03458	G.C.P. Raedersdorl
Subscriptions to Elektor Electronics USA are available ONLY in the fifty United States,	GERMANY
Canada, Puerto Rico, the Virgin Islands and	Elektor Verlag GmbH
those Pacific territories administered by the	Susterield Strasse 25
United States of America.	5100 AACHEN
International Advertising:	Editor: E.J.A. Krempelsauer
Uitgeversmaatschappij Elektuur b.v.	
P.O. Box 75	GREECE
6190 AB BEEK	Elektor EPE
The Netherlands	Kariskaki 14
Telephone: +3146389444	16673 Voula-Athena
FAX : + 3146370161	Editor: E. Xanthoulis

HUNGARY
Elektor Elektronikai tolyoirat
1015 Budapest
Batthyany U. 13
Edltor: Lakatos Andras

INDIA

Elektor Electronics PVT Lid
Chhotani Building
52C, Proctor Road, Grant Road (E)
BOMBAY 400007
Editor: Surendra lyer

ISRAEL

Elektorcal
PO Box 41096
TEL AVIV 61410
Publisher: M. Avraham

NETHERLANDS

Elektuur BV
Peter Treckpoelstraat 2-4
6191 VK BEEK
Editor: P.E.L. Kersemakers

PAKISTAN

Electro-shop
35 Naseem Plaza
Lasbella Chawk
KARACHI 5
Editor: Zain Ahmed

portugal

Ferreira \& Bento Lda.
R.D. Estel-83-ni, 32-1 ${ }^{\circ}$

1000 LISBOA
Edltor: Jeremias Sequeira

SPAIN

Resistor Electronica Aplicada
Calle Maudes 15 Entio C.
28003 MADRID
Editor: Agustin Gonzales Buelta

SWEDEN

Electronic Press AB
Box 5505
14105 HUDDINGE
Editor: Bill Cedrum

UNITED KINGDOM

Elektor Electronics (Publishing)
P.O. Box 1414

Dorchester DT2 8YH
England
Editor/Publlsher: Len Seymour

Printed in the United Slates of America.
ISSN: 1051-5690

Startek International offers two new bar graph frequency counters. Small enough to fit in your shirt pocket, but with performance matching much larger units. Both contain a $2^{\prime \prime}, 10$-segment LED signal strength bar graph, which can function independently from the digital frequency counter, but will indicate the relative strength of an input sig. nal at any frequency from $500 \mathrm{kHz}-3.5 \mathrm{GHz}$.
The Model $15-\mathrm{BG}^{\prime}$ s range is 1 MHz 1.5 GHz and the Model $35-\mathrm{BG}$'s range goes up to 3.2 GHz from 1 MHz . The only performance differences are frequency bandwidth and the $35-\mathrm{BG}$'s sensitivity above 500 MHz . Resolution is 1 kHz at 0.25 seconds, 100 Hz at 2.5 seconds, and 10 Hz at 25 seconds. The factory-installed internal NiCad battery pack and 110 V AC adapter/charger are standard.
The Model 15 -BG costs $\$ 220$; the Model $35-\mathrm{BG}$ is $\$ 265$. Options include the TA-90 Telescoping Antenna for $\$ 12$ or the CC-90 Carrying Case for $\$ 12$.

Contact Startek International Inc., 398 NE 38th St., Ft. Lauderdale, FL 33334, (305) 561-2211, FAX (305) 561-9133.

CALL FOR PAPERS

The Fall Technical Conference of the SMPTE, to be held November 10-13, 1992 in Toronto, Ontario, has issued a call for papers on the theme "Images in Motion-The Second Century." Speakers will explore innovations in imaging and examine directions in established technologies and are welcome to use supplemental audio-visuals. Seminars and exhibits will accompany the event.
To participate, submit your name, company affiliations, address, and telephone number along with a 500 -word synopsis by June 15, 1992, to SMPTE Headquarters, Program Coordinator, 595 W. Hartsdale Ave., White Plains, NY 10607.

EDIT PCBs
Logical Systems Corporation announces EZ-View, part of the Gerber Toolkit that lets you edit ten layers of PCB artwork on screen. The Toolkit includes editing, printing and panelization facilities. EZ-View simplifies and reduces production costs by placing several layers on one sheet of film and using multi-design PCB panels. Aperture substitution automatically replaces oblong apertures with their rotated equivalent.
EZ-View is available for $\$ 150$ or as part of the Gerber Toolkit for $\$ 250$. The Toolkit includes EZ-View as well as GerberJet, the printing utility, and five other utilities.

Contact Logical Systems Corp., PO Box 6184, Syracuse, NY 13217-6184, (315) 478 0722, FAX (315) 475-8460.

CATENARY TWEETER

Polydax Speaker Corporation, a subsidiary of Audax Industries in France, introduces the TW 025 A 1 " soft-textile dome tweeter. It is available in two models, with or without ferrofluid, and features a "catenary" profile. The shape of the dome profile resembles a chain suspended from two equidistant points in space. The faceplate design is streamlined, the voice coil is two layers, the diaphragm is replaceable, and the frequency range is $5 \mathrm{kHz}-20 \mathrm{kHz}$. It has a sensitivity of 92 dB $1 \mathrm{~W} / 1 \mathrm{~m}$ and power handling is 50 W RMS.
Contact Polydax Speaker Corp., 10 Upton Dr., Wilmington, MA 01887, (508) 658-0700, FAX (508) 658-0703.

PROTECT YOUR AMP
Ameritron announces their new QSK-5 T/R switch ($\$ 349$) for linear amplifiers, an easy-to-install external adapter, that adds full break-in operation to your high-power amplifier. The adapter is silent, functions six times faster than mechanical vacuum relays and can be switched over to your new amplifier for station equipment upgrading.

Hot switching of the amp is eliminated; TVI, RFI, key clicks, and damage to your linear amp is minimized. The Amp Saver feature turns off your amplifier's plate current between dots, dashes, and words.

Capable of handling 2,500W PEP and $2,000 \mathrm{~W}$ in normal amateur service, and 750 W on continuous modes like, RTTY, SSTV, and FM. Model QSK-5 is for 120 V AC: Model QSK-5X for 240V AC.

For your nearest dealer, contact Ameritron, 921 Louisville Rd., Starkville, MS 39759, (601) 323-5869, (800) 647-1800, FAX (601) 323-6551.

Catalog of special items

Global Specialties offers a 16 -page color catalog featuring PC instrumentation and data-acquisition products. Virtual instruments, accessories, documentation, and program examples are backed by Global Specialties' 20 years' experience providing innovative test instrumentation.
For your free copy of the catalog, contact Global Specialties, 70 Fulton Terrace, New Haven, CT 06512, (800) 572-1028.

AUTO ANSWERING

Midland LMR offers a new, built-in, dualmode Voice Storage/Message Relay option that enables Midland's Syn-Tech two-way mobile radios to be used as automatic answering machines and to extend the range of portable radios.
In Voice Storage Mode a user can record a status message before leaving the vehicle. The stored message is automatically transmitted when the mobile is called, while the user is away, and the caller can leave a message for the user to replay upon return.
In Relay Mode the low-power transmissions from the portable are temporarily stored and automatically retransmitted at the full power of the mobile when the channel is clear.
For details, contact Midland LMR, Marketing Department, 1690 N. Topping, Kansas City, MO 64120, (800) MIDLAND, ext 1690.

DATA CARD
Global Specialties announces a multi-function, digital and analog I/O card, the Model ADC-42. This card provides 24 digital inputs or outputs, two channels of analog output, 16 channels of single-ended analog input for eight channels of differential analog input), and a programmable interrupt generator. The 12 -bit AC/DC converter's speed is 12 msec and input ranges can be selected from $10 \mathrm{~V}, 5 \mathrm{~V}$, or 2.5 V full-scale by on-board jumpers. The short card format occupies a standard I/O slot in IBM PC-compatibles.
The Model ADC-42 costs $\$ 595$. For details, contact Global Specialties, 70 Fulton Terrace, New Haven, CT 06512, (800) 572-1028.

\square

DESKTOP ENCODER

Communications Specialists Inc. announces the PE-1000 Paging Encoder, a desktop unit for small paging systems of up to 1,000 calls, that adds DTMF remote control capability as an option. By adding the new RC-1, the PE-1000 can be addressed via DTMF from a remote location. The unit costs $\$ 224.95$ and the RC-1 adapter is $\$ 49.95$.
For details, contact Communications Specialists Inc., 426 West Taft Ave., Orange, CA 92665-4296, (800) 854-0547, (714) 998-3021, FAX (714) 974-3420.

VIDEO PHONE IC CHIP

PMC Products announces a 48 -pin, DIP IC, DRAM memory interface chip. The new chip provides still-frame, high-resolution, B/W video (under \$500) for Phonvu telephone systems. These systems are about the size of a paperback book and transmit still video images over standard phone lines in twelve seconds. Other features are: resolution 200×242.5; gray scale, 50 levels; display format, NTSC (B/W) with PAL available, and a 30 Kbps data rate. Applications include teleconferencing, videofax, database retrieval, remote video surveillance, and storing video images on audio tape.
For details, contact PMC Products, 4742A La Villa Marina, Marina Del Ray, CA 90292, (800) 423-6377, FAX (213) 822-2257.

ELECTRONICS SCENE

AES CONFERENCE

The 11th Audio Engineering Society International Conference will be held in Portland, OR, May 29-31, 1992, at the Marriott Hotel. It will focus on a wide variety of measurement areas, including measurements on analog and digital electronics, acoustics, transducers and low-bit-rate coders. Participants include Bruce Hofer of Audio Precision, Cal Perkins of Harman Electronics, Bob Finger of Matsushita Electric, Louis Fielder of Dolby Laboratories, and Vance Dickason of Voice Coil.
For AES members, the registration fee is $\$ 150$, in advance, or $\$ 225$ at the door; nonmembers pay $\$ 200$ in advance or $\$ 275$ at the door. Student members pay $\$ 50$ in advance; or $\$ 100$ on-site. Advance registrations must be received by May 8th. Contact Audio Engineering Society Inc., 60 East 42nd St., New York, NY 10165-2520, (212) 661-8528, FAX (212) 682-0477.

DEMODULATE SIGNALS

Optoelectronics announces a self-tuning radio, for testing mobile voice and signaltone FM transmitters. The model R-10 Communications Test Receiver offers a 30 MHz to 1 kHz carrier, $50 \mathrm{~Hz}-5 \mathrm{kHz}$ demodulation, search and lock-on modes, AFC lock and indicator, built-in speaker and BNC jack output. The R-10 automatically determines and locks onto the strongest carrier signal within a 100 foot range.
For DTMF (dual-tone multi-frequency) and CTCSS (continuous tone-coded squelch systems), the audio output is evaluated on a frequency counter or oscilloscope with two modes of operation. Other features include squelch, audio gain, power and low battery indicators. Antenna input impedance is 50Ω; power is supplied by an internal 9 V battery.
For more information contact Optoelectronics, Inc., 5821 NE 14th Ave., Ft. Lauderdale, FL 33334, (305) 771-2050, (800) 327 5912, FAX (305) 771-2052.

BALANCED LINE RECEIVER

Analog Devices offers the SSM-2143 balanced line receiver that complements its companion SSM-2142, a balanced line driver. It's a fully integrated and balanced receiver system for audio and industrial designs requiring high immunity from EMI. Combined, these two units form a compact solution to driving and receiving audio signals over long, noisy cable runs.
Two gain options make the monolithic SSM-2143 flexible enough for applications requiring a gain of $1 / 2$, where its input stage is designed to handle signals as large as +28 dBu . A gain of 2 can be realized by reversing the input and reference connections. With a gain of -6 dB , it offers 90 dB commonmode rejection at 60 Hz and 85 dB at 20 kHz .
For details, contact Analog Devices, Precision Monolithics Division, 1500 Space Park Dr., Santa Clara, CA 95052، (408) 562-7513.

FIBER OPTICS PRIMER

Industrial Fiber Optics announces Optical Voice Link, a kit that provides an introduction to the science of light transmission through optical fiber. The assembled kit has a transmitter module, for converting voice signals into light and a receiver module, for converting the collected light into an audio signal.
Operation requires two 9V batteries and no additional components. Available in assembled form (IF-OVL10A costs $\$ 79.95$) and unassembled (IF-OVL10 costs $\$ 49.95$). The kit includes printed wiring boards, switches, electronics, microphone, 8Ω speaker, 10^{\prime} of plastic fiber cable, tutorial guide, and step-by-step assembly instructions.
Contact Industrial Fiber Optics, PO Box 3576, Scottsdale, AZ 85271، (602) 731-8459.

COMB GENERATOR

Abstract

The name of the test instrument described here is based on the frequency spectrum it produces. The circuit will be particularly valued by owners of (ex-surplus trade) spectrum analyzers, because it produces hundreds of harmonics of 1 MHz or 10 MHz , of which the first 45 or so have the same output level within 3 dB .

Design by J. de Belie

Here's something to put your hair in order! Comb-type output spectrum from DC to aboui 1 GHz (VHF mode).

INSERTING a filter between the output of the comb generator and the input of a spectrum analyser allows you to ascertain, and, if necessary, adjust, the filter characteristic. Similarly, the comb generator allows the frequency characteristic of an ex-surplus trade spectrum analyzer to be checked

Basic operation

A comb generator is basically a circuit that generates a very short pulse periodically. Its operation is predicted (or, if you like, confirmed), by Fourier analysis.

Assuming that a purely digital pulse is generated with a duty factor of 1% ($t_{\text {on }} / t_{\text {off }}=0.01$), the amplitudes of the harmonics are weighted to $(\sin x) / x$ (sine rolloff). This means that
the amplitude of the first couple of harmonics will be 1% of that of the original pulse;
the amplitude does not drop to:
-1 dB up until the 26th harmonic;
-2 dB up until the 37th harmonic;
-3 dB up until the 44th harmonic;
-5 dB up until the 55th harmonic;
-10 dB up until the 74th harmonic.
The attenuation will be infinite (in principle) at the 100th harmonic, and multiples thereof. In practice, the deviation from the theoretical model is small (for a change), in particular in the HF section of the present generator.

Circuit description

The recently introduced family of AC (Advanced CMOS) logic devices allows very fast pulses to be generated at relatively high output power levels. Here, the fundamental generator frequencies are 1 MHz (HF mode) and 10 MHz (VHF mode).

HF pulse generator
With reference to the circuit diagram in Fig. 1, when switch S_{1} is set as shown, the VHF part of the circuit is disabled via gate IC2a. One section of dual decade ripple counter IC 3 divides the $10-\mathrm{MHz}$ clock signal by 10 . The $1-\mathrm{MHz}$ output signal is buffered
by an ACL gate, IC2c, to make sure that the signal edges are sufficiently steep. The output of the buffer is loaded with an R-C network that results in $7.6-\mathrm{ns}$ long'low' levels of the $1-\mathrm{MHz}(1 \mu \mathrm{~s})$ output signal. A further ACL gate, IC2d, is used to provide sufficient drive power at the HF output, K_{2}. Capacitor

C19 in combination with resistors R13 and R14 provides a termination impedance of about 50Ω.

The use of AC logic means that the duty factor of the output signal depends to a small extent on the supply voltage and the ambient temperature. Fortunately, this does not seem

to be a problem for the first tens of harmonics, whose level was found to remain virtually constant. Here, a slightly higher than normal IC supply voltage is used (5.7 V) to keep duty factor reduction as small as possible. Remember, the speed of the gates increases with the supply voltage, so that the duty factor would become smaller; this in turn would cause a lower pulse level.

The -3 dB roll-off frequency of the HF section lies at about 50 MHz . The first minimum occurs at about 130 MHz . The output level, about -25 dBm , will be sufficient for most applications (in RF design, 0 dBm equals 1 mW into 50Ω).

The level of the multiples of the second harmonic may deviate by a maximum of $\pm 3 \mathrm{~dB}$. This effect may be reduced to a minimum by decoupling the 74AC11000 supply pins. If necessary, relocate C_{1} (a $1-\mu \mathrm{F}$ tantalum capacitor) from its normal position on the board to the underside, where it is soldered directly across the supply pins of the 74AC11000.

VHF pulse generator

When VHF mode is selected with switch S1, divider IC3 is disabled to prevent subharmonics occurring in the output spectrum. The clock buffer is followed by a fast switching transistor Type BSX20 (T_{1}), which is operated in class C. The transistor stage produces a $10-\mathrm{MHz}$ output signal with a power of about 50 mW . The transistor drives the pulse shaper proper via an inductor, L1.

An old trick is rehashed to generate a pulse with a very short, accurately defined, length. Here, $1 \mathrm{~ns}\left(1 \times 10^{-9} \mathrm{~s}\right)$ is required. The pulse shaper is formed by a short-circuited length of $50-\Omega$ coax cable plus a fast diode. The length of the coax cable is calculated from

$$
1 / 2 \cdot 0.6 \cdot 3 \times 10^{8} \cdot 1 \times 10^{-9}=0.09 \mathrm{~m} .
$$

in this equation, the factor 0.6 is the velocity factor of the coax cable, and 3×10^{8} is the speed of light in a vacuum.

A number of diodes were tried out in position D1. Remarkably, the inexpensive and fairly common Type BA482, a VHF band switching diode, was found to give the best results.

The output level of the VHF section is about -20 dBm . This level drops by -2 dB at about 200 MHz , and by -8 dB at about 400 MHz . The first minimum occurs at about 1 GHz , the second at 2 GHz , etc. This means that no further filters are required to prevent base line shift when the comb generator is used with the popular HP8551 spectrum analyser.

Construction

The repeatability of the circuit is pretty good when constructed on the printed circuit board shown in Fig. 2. All parts are fitted with the shortest possible lead lengths. The metal film resistors are preferably from the SFR25 series (Philips Components). All nonelectrolytic capacitors are ceramic types, al-

Fig. 1. Circuit diagram of the comb generator. The 1-ns pulse shaper in the VHF section is formed by a piece of coax cable and a fast switching diode.
though MKT or polycarbonate will also work for the larger values (47 nF and 100 nF).

Do not use sockets to fit the ICs, and take care not to overheat the trimmer and the quartz crystal when soldering. The centre pins of the BNC sockets, K_{1} and K_{2}, are soldered directly on to the board, and the threaded parts of the shafts are secured to the PCB with a clamp.

The coax stub is cut to a length of 9 cm . One end is short-circuited, the other soldered to the points marked 'K3' on the PCB (the coax braid is soldered direct to the PCB ground plane).

The inductor, L 1 , consists of 9.5 turns of 1 mm dia. (SWG20) silver-plated wire. The inductor has an internal diameter of about 21 mm , and is conveniently wound on a tube lighting starter. Wind the 9.5 turns closespaced, and remove the former you have used. Next, draw out the coil, and spread the turns evenly (introductory photograph). A tap is made at 3 turns from one side. Solder
the inductor on to the PCB, and correct the spacing if necessary. Make sure that the turns can not touch the ground plane at the component side of the board, and fix them with a small amount of candle wax.

The circuit must be screened all around by a $25-\mathrm{mm}$ high piece of tin-plate. The shape of the screen is indicated by the dashes on the printed circuit board. Drill an $8-\mathrm{mm}$ hole to enable the coax stub to pass through, and two $9-\mathrm{mm}$ holes for the BNC sockets. Solder the screen securely to the board with the aid of a powerful soldering iron. The screen and the PCB together form a box, for which a lid is easily made from a $75 \times 95-\mathrm{mm}$ piece of tin plate (bend approx. $2.5-\mathrm{mm}$ at the four edges to enable it to be clamped on to the screen on the PCB). The lid is drilled to hold the HF/VHF switch. The positive power supply connection is preferably made via a $1-\mathrm{nF}$ feedthrough capacitor fitted into one of the sides of the box. The unit thus made may be fitted into another, larger, enclosure that may also contain the $15-\mathrm{V}$ power

Fig. 2. Double-sided printed circuit board design for the comb generator.
supply. Alternatively, you may want to fit the PCB into a diecast (Eddystone) enclosure, from which the BNC sockets protrude.

The unit must be powered by a regulated $15-\mathrm{V}$ source. A 'classic' supply based on the 7815 will be adequate for this purpose. Current consumption is smaller than 50 mA .

Adjustment

The adjustment of the comb generator is straightforward, and involves only one trimmer. Connect a spectrum analyzer to the VHF output, and peak C12 for highest signal level. Lacking a spectrum analyzer, connect

COMPONENTS LIST

Resistors:		
2	47Ω	R1;R3
1	150Ω	R2
2	100Ω	R4;R6
1	68Ω	R5
2	$1 \mathrm{k} \Omega$	R7;R12
1	22Ω	R8
1	$2 \mathrm{k} \Omega 2$	R9
1	$1 \mathrm{M} \Omega$	R10
1	$10 \mathrm{k} \Omega$	R11
1	120Ω	R13
1	82Ω	R14
Capacitors:		
1	$1 \mu \mathrm{~F} 15 \mathrm{~V}$ tantalum	C1
2	$10 \mu \mathrm{~F} 25 \mathrm{~V}$	C2;C3
5	47 nF ceramic	$\begin{aligned} & \mathrm{C} 4 ; \mathrm{C} 5 ; \mathrm{C} 7 \\ & \mathrm{C} 14 ; \mathrm{C} 17 \end{aligned}$
1	$10 \mu \mathrm{~F} 16 \mathrm{~V}$	C6
2	150pF ceramic	C8;C11
1	1nF ceramic	C9
1	10 nF ceramic	C10
1	100pF trimmer	C12
1	82pF ceramic	C13
2	39 pF ceramic	C15;C16
1	15pF ceramic	C18
1	100 nF ceramic	C19
1	$1 \mu \mathrm{~F} 16 \mathrm{~V}$ radial	C20

Inductor:
L1 Made from 1-mm dia. (SWG20)
silver-plated wire; for construction
details see text.
Semiconductors:

1	BA482	D1
1	1N4148	D2
1	BSX20	T1
1	7805	IC1
1	$74 A C 11000 \mathrm{~N}$	IC2
1	$74 H C(T) 390$	IC3

Miscellaneous:	
$2 \quad$ BNC socket	K1;K2
10 cm RG58 500 coax, velocity	factor 0.6
1	miniature on/off switch

an oscilloscope via a 10:1 probe to the collector of T1 (test point '1'). Adjust C12 for best sine shape and highest amplitude of the waveform. In most cases, this adjusiment will be entirely satisfactory, although the trimmer may have to be set to a slightly larger capacitance afterwards to compensate the probe capacitance.

Finally, for advanced users: if you require a smaller frequency interval, change the divisor (IC3; VHF output), or (better) change the crystal frequency. In most cases, it will also be necessary to change the pulse duration appropriately; if this is not done, the output level will almost certainly drop. Note, however, that although increasing the pulse duration keeps the output power at the old level, it lowers the maximum usable frequency.

AD232 CONVERTER

The well-known ICL7106

 A-D converter IC has been with us in many generations of digital multimeter. A special version of it, the ICL7109, offers the same accuracy, comes at a low price also, but sports a parallel interface instead of a 7-segment driver. The ICL7109 requires only a handful of components to build a versatile measuring box with an RS232 interface that is easy to manage thanks to some hardware tricks. Software for IBM PCs and compatibles is available to control this unit, which is basically a multiplexed A-D converter with an RS232 interface.Design and software by Ing. B.C. Zschocke and A. Arnold

THE concept of the circuit is illustrated in the block diagram in Fig. 1. At the left are three input blocks with low-pass filter characteristics, marked $\mathrm{HI}^{\prime}, \mathrm{HI}$ and LO . The

HI and LO blocks represent eight input channels, each of which can be selected individually by the block marked 'select'. The part behind the input selection circuitry

Fig. 1. Block diagram of the RS232-controlled A-D converter.

TEST AND MEASUREMENT

sample slowly varying measuring quantities at kHz rates.

The ICL7109 ADC used here differs from the ubiquitous ICL7106 by the digital interface only. The input circuitry is almost identical for both ICs.

Interface parameters can be a real problem when implementing an RS232 link and keeping to the standards. For instance, the link will work correctly only if the transmitter and the receiver are set to the same data format (number of data bits and start/stop bits), but also to the same data rate (in bits per second, or baud). Many of you will know the difficulties and frustrations in setting up a serial link, with obstacles such as DIP switches, configuration files, MODE commands, and long series of parameters.

Here, the RS232 link is used in a nonstandard way to avoid some of the problems mentioned above. Data is conveyed via CTS, and clocked by another handshaking line, RTS (ready to send). Four good reasons can be given for this choice:

- The control software determines when and how fast data is conveyed. It is not necessary to configure the serial port. This is particularly attractive when the interface is used for several different peripherals.
- Conveying data via a 'standard' RS232 link requires either special interfacing circuits with internal or external oscillators, or complex discrete alternatives.
- The AD232 board can be linked to interfaces that are not fully RS232 compatible, or directly to a microcontroller.
- The component count is quite low.

Details

The circuit diagram is given in Fig. 2. A quadruple opamp, IC6, forms the RS232 interface. Circuits IC4, IC7 and IC8 form a simple input multiplexer. IC1 is the ADC proper. The two 74 HCT 166 s , IC2 and IC3, form a 16-bit shift register for the parallel-toserial conversion. The four XOR gates in the 74 HC 02 package, IC5, control the timing of the A-D conversion, and generate a clock signal for the shift registers.

The power supply takes its input voltage from the RS232 interface in the PC, and provides the stabilized $\pm 5 \mathrm{~V}$ rails for the converter circuitry. The analogue-to-digital conversion starts when a level transition is detected at the RTS input. Opamp IC6a makes the RTS signal TTL compatible, and its output signal causes bistable IC5c-IC5d to toggle. The high level at pin 10 of IC 5 triggers the A-D conversion in IC1. When the conversion result is available, the ICL7109 supplies a $\overline{\text { LOAD }}$ signal to the shift register, IC2, via gates IC5a and IC5b. First, the high (most significant) byte is loaded into IC2, then the low (least significant) byte into IC3. The signals $\overline{\text { HBEN }}$ (high byte enable) and LBEN (low byte enable) are treated in an unusual manner here. When low, these signals switch the associated register from shifting to loading. Because $\overline{\mathrm{HBEN}}$ and $\overline{\mathrm{LBEN}}$ can never be low

Fig. 2. Circuit diagram of the measurement system. The two input multiplexers are optional, an
at the same time, and the clock inputs of the registers are interconnected, this results in the shift registers being in opposite mode all the time, i.e., when one loads, the other shifts. This has no significance for the loading of the high byte, while the high byte is shifted one position in IC3 during loading. Bits 7 and 8 in the high byte, which are not used by the converter, are made permanently high. This is done to bring about a
level change on the CTS line after the shifting, when the low byte is loaded. This change can be used as an interrupt request in the PC, or as a 'conversion ready' status signal when the CTS line is 'polled' (i.e., continuously monitored).

Before the software can read the content of the shift registers with the aid of 16 clock pulses on the RTS line, it is necessary to wait 1.5 clock cycles (about $30 \mu \mathrm{~s}$) for the $\overline{\mathrm{LBEN}}$

constructed on separate printed circuit boards. Note that the entire circuit is powered via the RS232 link to the PC

signal to return to high. This time can be used, for instance, to switch the multiplexer to the right channel.

The function of the bits in the datastream is shown in Table 1. The first clock pulse sets bistable IC5c-IC5d. This causes the RUN input to return to logic high, whereupon the A-D converter starts a new conversion cycle. The bistable is reset by a high level on the status line of $\mathrm{IC}_{1}(\operatorname{pin} 2)$. The high level at the
serial input of the low-byte shift register ensures that the output returns to high $(-12 \mathrm{~V}$ on the CTS line) after the value has been read.

The ICL7 109

The ICL7109 is a low-cost 12-bit dual-slope A-D converter with additional polarity and overflow outputs. Figs. 3 and 4 shed light on
the operation of the digital part of the converter. First, Fig. 4: the upper signal represents the voltage at the capacitor (C3; the component numbers in brackets refer to the actual circuit). Below, some signals of the ICL7109, the internal clock, the clock signal of the output latch, the status output and the RUN/Hold input.

The conversion is started when a high level appears at the RUN input. During the

Fig. 3. Timing diagram of the data and command transfer protocol used.
conversion, the status output is held logic high. First, the integrator capacitor (C3) is charged with a current, I_{c} :

$$
I_{\mathrm{c}}=\left(U_{\mathrm{HI}}-U_{\mathrm{LO}}\right) / R 3
$$

This takes 2,048 internal clock cycles (oscillator frequency divided by 58). Subsequently, C 3 is discharged with a constant current, I_{d} that is proportional to the input voltage:

$$
I_{\mathrm{d}}=U_{\mathrm{ref}} / R 3
$$

During the discharging, the number of internal clock pulses is counted. The first leading edge of the internal clock that occurs after the capacitor voltage drops below 0 V causes the counter state to be transferred to the output register. Next, the status output changes from high to low, and so indicates the end of the conversion. Thus, we have:

$$
\text { counter state }=2,048 U_{\text {in }} / U_{\text {ref }} .
$$

If the RUN input remains high during the conversion, a new conversion cycle is started after the auto-zero phase. Conversely, if RUN remains low, the new conversion starts 7 internal clock pulses after a new high level is present.

Figure 3 illustrates the handshaking of the ICL7109 with the external circuits, when the Mode and Sense inputs are held logic high. To the signals shown in Fig. 4 are added LOAD, HBEN, LBEN and the data lines. A low level on HBEN signals the presence at the output of the high byte of the counter state and the status signals Overrun and Polarity. The high byte can be copied on the leading edge of the $\overline{\text { LOAD }}$ signal. The subsequent transfer of the low byte is similar.

Table 1. Overview of bit functions in dataword (16 clock pulses)

Clock on RTS	Function
1	Overrun (OR)
2	Polarity (POL)
3	B12
4	B11
5	B10
6	B9
7	High
8	B8
9	B7
10	B6
11	B5
12	B4
13	B3
14	B2
15	B1
16	High

The input of the ICL7109 may be considered symmetrical within the bounds of the supply voltage, and has an input resistance of the order of a few giga-ohms. To make sure that sufficient charge reserve is available for the switches in the analogue part of the converter, the voltage source to be measured must be buffered by a low-loss capacitor. This means that capacitor C 1 must be connected in parallel with the two inputs when measurements are made without the multiplexer. This is achieved by fitting jumper J4. For measurements on symmetrical voltages, the voltages (with reference to ground) at the two inputs must lie within the bounds of the supply voltage of the ICL7109. For asymmetrical measurements, the LO input can be tied to ground by fitting jumper J1. Resistor R1 prevents discharging via the measured voltage source.

More inputs, more channels

A multiplexer is provided for those of you who want to measure more than one voltage source. The multiplexer consists of IC7 for the selection of the Hi line, and IC8 for the se-

Fig. 4. ICL7109 analaogue-to-digital conversion timing.

```
Uses Crt;
CONST
    PosOver=MaxInt; { value for pos. overflow }
    NosOver-MaxInt;
VAR
    SIOAdr:Word;
{ value foz pos. overflow
    | to be assigned with 8250 base address |
    e.g. COM1: SIOAdr: =$3f8 }
    e.g. COM1: SIOAdr: =$3f8 }
| set channel for next conversion: }
        PROCEDURE SetChannel (Channel:Byte)
CONST
    PulseBytes:ARRAY[1..5] OF Byte= (0,14,51,21,85); { -> 1 - 5 pulses to TX }
                PROCEDURE WaitTx;
BEGIN
        wait until transmit shift zegister is free }
    l wait until transmit shift register is
END;
BEGIN
    IF Channel>5 THEN { 2 characters required? }
        BEGIN
            WaitTx; POrt[SIOAdr] :=PulseBytes[5];
            WaitTx; Port[SIOAdr]:=PulseBytes[Channel-5];
        Waittx;
    ELSE IF Channel>0 THEN { 1 character required? )
            BEGIN
            WaitTx; Port[SIOAdr]:=PulseBytes[Channel];
            WaitTx;
            END
        ELSE; { no pulse foz Channel 0 }
END;
{Read value from shift registers. Call only when conversion is ready !!}
                FUNCTION ReadAD:Integer;
BEGIN
```



```
Inline(
lol
lem/>0002/
$33/$DB/
$B5/$10/
$B1/$04/
$24/SED/
$24/SED/
$0C/01
$EE/
$B9/>$1F4/
$E2/$EE/
$59/
$0C/$02/
$24/$FE/
SEE/
$51/
$B9/>$1F4/
$E2/$FE/
$59/
$80/SFD/$0A/
$74/$0A/
$ $03/SD6/
SEC/
$ED/SEO/
SF5/
$F5//$D3/
$2B/$D6/
SFE/SCD/
$75/$D4/
$D1/SEB/
SE0/SFT/$10/
SE6/$C7/$20/
SF6/SC7/$
$E6/$C7/$10/
$74%/$F7/$
$80/$F7/$10/
SE7/$DB/
SEB/S0F/$90/
$56/$C7/$10/
$75/$06/
$BB/>POSOvez/
$EB/$04/$90/
$BB/>NegOver/
$89/$5E/$FE):
END;
Inline(
        ELSE;
```



```
{ check if a valid result is available: }
        FUNCTION AD232_Ready:Boolean;
BEGIN
    AD232_Ready:=POrt[SIOAdr+6] AND 16<>0;
END;
{ Initialisation of AD232. No timeout; endless loop created when AD232 is not found! }
            PROCEDURE AD232_Init;
VAR
VAR Dummy;Integer;
    Port [SIOAdr+4]:=2;
                            | only DTR low }
                                    \ { only DTR low }
        Port[SIOAdr+4]:=2;
    REPEAT UNTIL AD232_Ready; { wait for first result |
    REPEAT UN
    Delay(1);
    Delay(1);
    { discard result }
END;
```

Fig. 5. A 'bare bones' control program for the converter (Pascal with in-line assembler).

The multiplexers also allow symmetrical measurements to be made within the bounds of the converter's supply voltage. When asymmetrical measurements are performed, the inputs of multiplexer IC 9 must be tied to ground, for instance, by fitting jumpers on header K3.

Unfortunately, the 4051 and the high converter input resistance of the converter introduce an offset voltage that differs from
channel to channel. Although the asymmetrical construction reduces the effect of the offset to a minimum, it can not be eliminated completely. For very accurate measurements, this means that the multiplexer must either not be used, or replaced by one with better specifications. For 'everyday' use, however, a correction in software of the measured voltage with the aid of a zero calibration is perfectly adequate.

RS232 level changer

The four opamps in IC6 are used as voltage level converters. Actually, they function as inverting switches, and so provide the inverting function defined in the RS232 standard. Diodes D1-D4 and resistors R10 and R15 limit the signal to +5 V and ground. $R-C$ combinations $\mathrm{R} 9-\mathrm{C} 8$ and $\mathrm{R} 14-\mathrm{C} 10$ ensure that the input capacitances formed by IC5 and IC4

Fig. 6. Single-sided printed circuit board (track layout and component mounting plan) for the AD232.

need not charge via R10 and R15, and so reduce the effects of the relatively low slew rate of the opamps. Opamp IC6c is not strictly required for the correct function of the circuit. However, fit jumper J2 if you wish to feed the 'end of conversion' signal to your PC via the RxD line (for use with an appropriate interrupt routine).

Power supply

As already mentioned, the AD232 board is powered by the RS232 port of the computer it is connected to. The minimum requirement for this to be achieved is that the PC holds one RS232 line at +12 V and another at -12 V . Since the TxD line is at -12 V when it is not active, the +12 V supply will have to be supplied by the RTS and/or the DTR line. Diodes D6-D11 and capacitors C12 and C13 add and buffer the line levels to provide two discrete regulators with their input voltages. The voltage across the capacitors is also used to power the quadruple opamp. By omitting jumper JP3, the loading of the interface can be made as small as possible, if it can not supply enough current.

The voltage regulators in the $\pm 5 \mathrm{~V}$ supply are low-drop, high efficiency, types built from discrete components. The negative regulator consists of a pseudo-zener diode with a series transistor formed by T 3 and a green LED, D12. Adjustment of the negative output voltage is not necessary because the A-D converter has a fairly large negative voltage range. Not so with the positive supply, where the pinch-off voltage of a FET serves as the reference. Although this voltage is reasonably stable, it has a fairly high device tolerance, and needs to be adjusted with the aid of P 2 . To save on parts, protection against overvoltage as a result of an incorrect adjustment is not provided. This means that the wiper of P 2 must be turned to ground before calibrating the AD232 board.

The $+5-V$ voltage must be adjusted with the nominal load connected.

Construction and adjustment

The single-sided PCB designed for the circuit is shown in Fig. 6. The construction will be mostly plain sailing. The multiplexers are built as separate units, and connected to the ADC proper in accordance with the component overlay. The HI^{\prime} input serves for initial tests without the multiplexer. It is important to ensure adequate screening of all signal lines-remember, the high input resistance makes the circuit sensitive to noise. Hum suppression will be optimum when a quartz crystal of 2.969600 MHz is used. Unfortunately, this is not a standard frequency, whence the use of a $3-\mathrm{MHz}$ crystal here.

The adjustment of the ADC by Pl depends on the application. In principle, the fine adjustment can be done by programming. The external circuitry around the ADC is designed for a maximum input voltage of about 400 mV . For other voltages, R3 must be changed:

$$
\mathrm{R} 3=U_{\max } / 20 \mu \mathrm{~A}
$$

The reference voltage, $U_{\text {ref, }}$, should be a little higher than $U_{\max } / 2$, because the converter produces an overflow when $U_{\max } \geq 2 U_{\text {ref }}$.

Connect the AD232 board to the PC, and advance preset $P 2$ slowly until the positive regulator supplies +5 V .

The software package

Although the routines listed in Fig. 5 can be expanded into a full-blown control program for the AD 232 board, you will be pleased to know that such a program is available on a disk supplied that can be ordered through our Readers Services (order code 1691).

This program is completely menudriven, runs in colour, accepts mouse as well as keyboard control, and is written to run on IBM PCs and compatibles, from XTs to 486based machines. A colour video card (EGA or VGA) is not strictly required, although you will miss a lot of the presentation graphics' power when you have monochrome video only.

Installation

The program can be run from floppy disk or hard disk. When it is run from floppy disk, make sure the write protection is removed, because the program writes a configuration file on the disk. An installation proper is not required-simply copy all files to your working disk, or to the hard disk.

Running the program

The AD232 control program is started by typing MULTI from the DOS prompt. First, go the (M)iscellaneous option, and select the serial port to which the AD232 board is connected. On leaving this menu, the voltmeter should work, indicating the voltages on all eight channels by means of horizontal bars and an absolute readout. (see Fig. 7). When fewer than eight channels are used, the screen is automatically enlarged.

Options (configuration menu)
The channel settings are not limited to switching on and off. Measuring ranges, multipliers and units (mV ; V , etc.) can be taken into account in the graphics readout. The bar that indicates the magnitude of the measured voltage can be asymmetrical or symmetrical, and linear or logarithmic. Use 'symmetrical' for measured quantities that can go positive and negative. The menu also includes program options for offset calibration and a smoothing (delta) factor to stabilize the display.

Protocol

Apart from being shown on the screen in the form of horizontal bars, the measured values may also be sent to a file or an output device such as a printer. All output is in straight ASCII to a simple protocol, which makes further processing by other software easy.

Extras

All screen elements (text, highlighted text, borders, background) can be displayed in a number of user-selectable colours (VGA/EGA). Irrespective of your whereabouts in the program, a scientific (UPS compatible) desktop calculator and context sensitive help are always to hand. The help texts used in the program are stored in a file called MULTI.HLP, which is generated by adding WINHELP.TXT and MULTIHLP.TXT on the diskette, as explained in README.DOC. All files and menus are in English.

GENERIC ARRAY LOGIC (GAL)

based on an original article by D. Gembris

Innthe development of Programmable Array Logic (PAL) devices, the design target was to make available to the user/designer as many 'free' logic gates on the device as possible. Lattice Semiconductor Corporation has further developed the device into the Generic Array Logic-GAL. In essence, both devices are electrically erasable CMOS memory ICs that provide the user with reconfigurable logic and bipolar performance. This makes the GAL suitable for a wide variety of applications. Note that a PAL IC can be programmed only once, whereas a GAL IC can be programmed time and again. This makes the use of GAL ICs much more cost effective than PAL ICs.

The internal design of GALs is practically identical to that of PALs: both devices have a large programmable AND matrix to which a number of fixed OR gates may be connected. The connections between the AND and OR gates are made in silicon. In contrast, a PROM (Programmable Read Only Memory) has a fixed AND matrix and programmable OR gates.

The design

The availability of EEPROM (Electrically Erasable Read Only Memory) ICs was of fundamental importance in the development of GAL ICs. Apart from being erasable and reprogrammable, the GAL ICs from Lattice are guaranteed for a minimum of 100 erasure/write cycles with data retention up to 20 years.

To further make the user's life easy, GAL ICs have provision for an individual 'signature' of up to eight bytes. This may be used, for instance, to give the device a specific code.

Like PAL devices, GAL ICs can be protected against unwanted reading by actuating a specific cell (through the software). It must be said, however, that this protection is much more effective in PAL than in GAL devices. This is because the fusing of a link in a PAL IC is permanent, whereas in a GAL IC it can be erased, after which the device can be reprogrammed or read.

The logic diagram of a Type 16 V 8 GAL IC is shown in Fig. 1 and that of a Type 20V8 in Fig. 2. Each type has 8 programmable output logic macrocells (OLMCs) that allow the user to configure each output as desired. The figures in the type numbers refer to the design: the first, 16 or 20 , is the number of inputs, and the second, the number of outputs.

The following data refer to the 16 V 8 (see Fig. 1). The eight inputs (pins 2-9) are available at the AND matrix in either original or inverted form and thus give rise to 16 columns. The other 16 columns are connected to the outputs, which are also inverted or non-inverted. There are thus a total
of 32 signals available.
When the IC is erased, there is no contact between the 64 rows (eight OR-gated rows per output) and the 32 columns. Therefore, changes at the inputs have no effect on the outputs. Only when programming is begun will the connections be restored. Each connection represents an AND gate.

Output Logic Macro Cells

The key to the universality of GAL ICs lies in the output logic macrocells (OLMCs). The design of such a cell is shown in Fig. 3. The distinct configuration of an OLMC is laid down in an Architecture Control Word (see Fig. 10). Bits SYN, AC0 and $\mathrm{ACl}(\mathrm{n})$ determine the status of the output of the cell. The SYN and AC0 bits take effect on all outputs
simultaneously, but the $\mathrm{ACl}(\mathrm{n})$ bit can be set for each output individually. Because of this, only two of the four possible configurations can be realized in a GALIC at the same time as shown below.

Normal output- $\mathrm{SYN}=1 ; \mathrm{AC} 0=0 ; \mathrm{ACl}(\mathrm{n})=0$ (Fig. 4).

Three-state output with disable via a product term and output return. Of the eight rows, only the lower seven are OR-gated, while the eighth determines whether the result will be shown at the output or not. $S Y N=0$ or 1 ; $\mathrm{AC} 0=1 ; \mathrm{ACl}(\mathrm{n})=1$ (Fig. 5).

Three-state output with disable, output return and register. The result will be at the output only when a clock pulse is applied to pin I

Fig. 1. Logic diagram of the 16V8 GAL IC.
WorldRadioHistory

Fig. 2. Logic diagram of the 20V8 GAL IC.

Fig. 3. Output Logic Macro Cell of 16V8 GAL IC.
(CLK) and pin 11 is low. $\mathrm{SYN}=0 ; \mathrm{AC} 0=1$; $\mathrm{ACl}(\mathrm{n})=0$ (Fig. 6). There are two possible versions of this output (see Fig. 7)

Input: $\mathrm{SYN}=1 ; \mathrm{AC} 0=0 ; \mathrm{ACl}(\mathrm{n})=1$ (Fig. 8).

Programming

Apart from the supply line connections, each pin of a GAL IC has two different functions. Which function is active depends on whether the IC is being programmed (Edit mode) or operates in normal mode. The pin functions of both the 16 V 8 and the 20 V 8 are shown in Fig. 9: the inner ones give the Edit mode functions and the outer ones, the normal operating functions. In the Edit mode, which is set by applying 16.5 V DC to pin 2 , the IC can be read, programmed or erased.

A GAL IC is internally divided into 64 rows, as shown in the row address map in Fig. 10. There are 36 unique row addresses available to the user when programming the device

Row addresses $0-31$ each contain 64 bits of input term data. This is the user array where the custom logic pattern is programmed. Row 32 is the electronic signature word. It has 64 bits available for any user-defined purpose.

Rows 33-59 are reserved by the manufacturer and are not available to the user.

Row 60 contains the architecture and output polarity information. The 82 bits within this word are programmed to configure the device for a specific application-see Fig. 11.

When row 61 (security cell, see Fig. 10) is programmed, the enabling array is disabled, preventing further programming or verification of the array.

When row 63 is addressed during a programming cycle, the entire array and the architecture programming word are erased.

The outputs of the AND array are fed into an OLMC, where each output can be set individually to active high or active low with combination (asynchronous) or registered (synchronous) configurations respectively. A common output enable can be connected to all outputs, or separate inputs or product terms can be used to provide individual output enable controls.

The various configurations of the OLMC are controlled by programming cells SYN, $\mathrm{AC}, \mathrm{ACl}(\mathrm{n})$ and the $\mathrm{XOR}(\mathrm{n})$ polarity bits within the 82-bit architecture control word (see Fig. 10).

The SYN bit determines whether or not a device will have registered output capability or will have purely combinational outputs. It also replaces the AC0 bit in the two outermost macrocells, OLMC (12) and OLMC(19).

Architecture control bit AC0 and the eight $\mathrm{ACl}(\mathrm{n})$ bits direct the outputs to be wired always on, always off (as an input), have common OE control (pin 11), or to be three-state controlled separately from a product term. The architecture control bits also determine the source of the array feedback term through the FMUX, and select either combinational or registered outputs.

The five valid macro cell configurations are shown in Fig. 4-8. In all cases, the eight XOR(n) bits individually determine each output's polarity. The truth table associated with each figure shows the bit values of the SYN, AC0 and ACI(n) that set the macro cell to the configuration shown.

If a product term is allocated a 0 , it is ignored during the OR gating. The product term censures PAL compatibility, even with older PALs that have fewer than 64 product terms. PAL listings are transformed into GAL listings.

The rows are addressed by means of an internal shift register. The transfer protocol is
Pin $P / \bar{V}: 1=$ writing; $0=$ reading.
RAGO-5: row selection.
$\overline{S T R}$, SCLK, SDOUT:
reading - the shift register is loaded with an STR pulse and the data are read by a clock SCLK at SDOUT;
writing - the data at SDOUT are clocked into the shift register with SCLK, whereupon the selected row is written into with a 10 ms $\overline{\text { STR }}$ pulse.
Jump to RAGO-5 as long as no registers are being read or written to.

Compared with that of PALs, this protocol is trivial. This is one of the reasons that GALs have become inexpensive and this in turn has contributed to the wide use of these devices. Of late, some other manufacturers have also entered the GAL market, particularly SGS-Thomson and AMD. The latter bring out their GAL ICs under the name PALCE.

Row address map description

Details of the various row addresses are given below.

Electronic signature word

An electronic signature word is provided with every GAL 16 V 8 chip. It resides at row 32 and contains 64 bits of reprogrammable memory that can contain user-defined data. The signature data is always available to the user independent of the state of the security cell.

Architecture control word

All of the various configurations of the GAL 16V8 ICs are controlled by programming cells within the 82-bit architecture control word that resides at row 60 . The location of specific bits within the architecture control word is shown in Fig. 10. The function of the SYN, AC 0 and $\mathrm{ACl}(\mathrm{n})$ bits have already been explained. The eight polarity bits determine each output's polarity individually by selectively correct logic. The numbers below the $\operatorname{XOR}(\mathrm{n})$ and $\mathrm{ACI}(\mathrm{n})$ bits in the architecture control word diagram show the output device pin number that the polarity bits control.

Security cell

Row address 61 contains the security cell (one bit). This cell is provided on all GAL 16 V 8 devices as a deterrent against unauthorized

Fig. 4. Dedicated combinational output.

Fig. 5. Combinational output.

Fig. 6. Combinational output in a registered device.

Fig. 7. Registered active high or low output.

920017-17

Fig. 8. Dedicated input mode.

Fig. 9. Pinout of the 16 V 8 and 20 V 8 - see text for symbol identification.

Fig. 10. Row address map block diagram.

copying of the array configuration patterns. Once programmed, the circuitry enabling array access is disabled, preventing further programming or verification of the array (rows $0-31$). The cell can be erased only in conjunction with the array during a bulk erase cycle, so the original configuration can never be examined once this cell is programmed. Signature data is always available to the user.

Bulk erase mode

By addressing row 63 during a programming cycle, a clear function performs a bulk eras of the array and the architecture word. In addition, the electronic signature word and the security cell are erased. This mode resets a previously configured device back to its virgin state.

References:

1. "GAL Data Book," Lattice Semiconductor Corporation, 1988.
2. "Field Programmable Logic Arrays,"

Elektor Electronics USA, Oct. 1991, p. 41.
3. "Programmable Array Logic," Elektor Electronics USA, May 1985, p. 52.

PREVIEW

SPEAKER BUILDER

Issue 2, 1992

- 75W Two-way satellite speaker system
- Stable satellite swivels
- Caps for crossovers
- Two-way crossovers
- Constructing a bandpass enclosure
- Twenty foot dipole ribbon loudspeaker
- Review of The Audio Glossary

Mike's EXCELLENT Kits

Voice Scrambler, Motor Oil Tester, Versatile Electronic Crossover and more. All kits under $\$ 35$. Educator inquiries are welcome. Free Literature also describes SpeakerCAD, our low-cost speaker \& crossover design softwar 3 . Decade. 2302 5th St. NE, Salem, OR 97303 , (503) 363-5143, FAX: (503) 399-9747

Fig. 11. Architecture control word diagram.

INTERMEDIATE PROJECT

A series of projects for the not-so-experienced constructor. Although each article will describe in detail the operation, use, construction and, where relevant, the underlying theory of the project, constructors will, none the less, require an elementary knowledge of electronic engineering. Each project in the series will be based on inexpensive and commonly available parts.

AUTOMATIC NICAD BATTERY CHARGER

Abstract

Although it is bound to be replaced within a foreseeable period by environmentally safer types, the nickel-cadmium (NiCd) battery is still the most popular around when it comes to powering anything that is portable and electronic. This article describes a low-cost charger that gives the best possible protection to your NiCd batteries by incorporating a timer and two constant current sources.

by L. Pijpers

ONE of the most common causes of 'early death' of a NiCd battery is wrong charging. Both the charging time and the charging current are critical, and often not observed in inexpensive chargers, which appear to work all right when used with new NiCd batteries. In the long run, however, the batteries seem to lose power, and suddenly, often within days, give up the ghost. On investigating such chargers, they often have a current source with poor regulation characteristics. It also happens that they lack a timer, in which case you (the user) are to blame for forgetting to turn the charger off after the recommended charging time.

The present charger is fully automatic in that it provides a current sources that can be geared to the battery type, and a fairly accurate timer offering three charge periods with automatic switch-off. Both provisions serve to prevent any risk of overcharging.

Practical realisation

The circuit diagram, Fig. 1, shows that the charger consists of three parts: a power supply, a clock circuit, and two current sources. Two identical current sources are used to enable the charger to charge up to 12 batteries at the same time.

The power supply is as simple as it could be. The circuit is powered by a mains adapter with a direct output voltage of about 15 V . This voltage is fed directly to the two current sources. A voltage regulator, IC3, supplies a regulated supply voltage of 10 V for the clock (timer) circuit.

Fig. 1. Circuit diagram of the NiCd charger.

The clock circuit is formed by two ICs Type CD4060. As shown insert in the circuit diagram, the 4060 contains an oscillator and a 14 -stage ripple counter, which is essentially a chain of 14 bistables, each of which divides by two. The oscillator section on board the CD4060 is only used with IC1. Capacitor C3 and resistors R1-R4 are external parts required to make the oscillator operate. The components that determine the oscillator frequency are C3 and the resistor connected to pin 10 of the CD4060. The circuit diagram shows that we have a choice of three oscillator frequencies, which, after dividing, result in an equal number of charging times.

If you would calculate the CD4060 oscillator frequency on the basis of the component values given, you may wonder why this is so high. Could it not be made lower, so that fewer dividers are required for the same charging time? The answer is negative, because a low-frequency oscillator based on the CD4060 is far less stable than a high-frequency one. This is mainly owing to the loss of the timing capacitor (C3), which would
take rather unwieldy values were the oscillator designed to work at a low frequency (say, 10 Hz). Also, low-loss large value capacitors are expensive and difficult to obtain. Briefly, an extra CD4060 solves this problem elegantly, and will not cause too large a hole in your pocket.

Given the oscillator frequency, a total of 24 dividers is necessary to arrive at the three possible charging periods of 24 hours, 14 hours and 5 hours. The total divide factor is, therefore, 2^{24}. Since a CD4060 contains only 14 dividers, two of these ICs are used here, the 'slowest' output of the first IC1) being connected to the clock input of the second (IC2).

To make sure that the charging process stops after the predetermined time, output Q9 of IC_{2} is connected to the clock input of IC_{1} via diode D2. When output Q 9 of IC_{2} goes high (after 2^{24} oscillator periods), the oscillator is disabled, which causes the current state of all dividers to be 'frozen' until pushbutton S_{1} is pressed.

When Si_{1} is pressed, the reset inputs of the two ICs are taken logic high, which resets all

Table 1. Dimensioning the current sources in accordance with the battery type and the charging period.

Normal (14 hours) and long (24 hours)		Fast (5 hours)		
Penlight	45 mA	$22 \Omega / 0.25 \mathrm{~W}$	147 mA	$6.8 \Omega / 0.25 \mathrm{~W}$
Baby	179 mA	$5.6 \Omega / 1 \mathrm{~W}$	455 mA	$1.8 \mathrm{~W} / 1 \mathrm{~W}$
Mono	370 mA	$2.2 \Omega / 1 \mathrm{~W}$	1 A	$1 \Omega / 3 \mathrm{~W}$ *
9-V PP3	10 mA	$100 \Omega / 0.25 \mathrm{~W}$	30 mA	$33 \Omega / 0.25 \mathrm{~W}$
* or $2 \times 2.2 \Omega / 1 \mathrm{~W}$ in parallel				

dividers to zero. Evidently, since we do not want to start at an undefined time in the charging period, IC_{1} and IC_{2} must be reset also, when the charger is first switched on. The power-on reset circuit is formed by capacitor C 5 and resistor R5. During the charging time of the capacitor, the reset inputs of the CD4060s are held high briefly after switching the unit on. This ensures that the clock always starts to count from zero.

The current sources

The moment the clock is reset, output Q9 of IC2 goes low to signal that the batteries may be supplied with their charge current. This signal is processed via transistor T 1 . Since the Q9 output is 'low', a base current is allowed to flow. Consequently, the collector of T 1 will swing to a level virtually equal to the emitter voltage (approx. 10 V). This voltage enables a current to flow through the LEDs via R7 and R8. At the same time, a part of the current is sent into the base of the transistors connected in parallel with the LEDs. The resulting emitter current supplied by T_{2} and T 3 is the charge current for the battery. Actually, the charge current is the sum of the (small) base current and the emitter current. The value of the emitter current depends on the value of $\mathrm{R} \times 1$ or $\mathrm{R} \times 2$ and the threshold voltage of a red LED.

Referring to the circuit around T_{2}, the base of the transistor is held at a fixed voltage of about 1.6 V . The base-emitter junction of the transistor then acts as a conducting diode, and it is readily seen that the emitter will be at about $1.0 \mathrm{~V}(1.6 \mathrm{~V}-0.6 \mathrm{~V})$. This value is fixed because it is derived from the forward drop across diodes, and therefore

Fig. 2. Suggested component layout on UPBS-1.
causes a fixed voltage across Rx1. This, in turn, results in a constant current. The charge current is supplied by the transistor, and the current through the base-emitter junction gives rise to a collector current whose value causes a voltage drop of 1 V across Rx1 (again, to be precise, the voltage across $R \times 1$ is the result of the base current and the emitter current).

Should the current through Rx1 become larger (for whatever reason), the voltage across this resistor rises, and so reduces the base-emitter voltage. This can only happen when the base current, and with it the collector current, is reduced accordingly.

From the above it can be deduced that the value of resistor Rx is calculated from

$$
\mathrm{Rx}=1 \mathrm{~V} / \mathrm{I}_{\text {charge }} .
$$

As indicated in the circuit diagram, the maximum number of $1.5-\mathrm{V} \mathrm{NiCd}$ batteries that can be charged simultaneously via one current source is six. More is not possible because the total battery voltage would then be so high that the current sources become unstable (remember, the input supply voltage is about 15 V). For instance, when 9 batteries are connected in series, they supply more than 13 V , to which must be added the voltage across Rx. This gives a total of more than 14 V , leaving only 1 V for the collector-emitter junction of the series transistor. This is a value that can not be achieved or guaranteed even when the transistor is driven with the maximum base current. Hence, the current source will fail, and the output current drop.

COMPONENTS LIST		
Resistors:		
1	47 kR	R1
1	27 kd 2	R2
2	10st	R3:R6
1	$1 \mathrm{M} \Omega$	R4
1	$100 \mathrm{k} \Omega$	R5
2	$1 \mathrm{k} \Omega 5$	R7;R8
Rx1;Rx2: see Table 1		
Capacitors:		
2	$1 \mu \mathrm{~F} 40 \mathrm{~V}$ radial	G1;C2
2	100 nF	C3;C4
Semiconductors:		
2	1N4148	D1;02
2	red LED	D3;D4
1	BC557B	T1
2	BD241	T2;13
2	CD4060	IC1;1C2
1	7810	IC3
Miscellaneous:		
1	SPST push-button	S1
1	Printed circuit board	UPBS-1
1	Mains adapter 15V DC	out

A useful feature of the charger is that the LEDs go out when the battery is disconnected. TFis happens because the collector current is then interrupted, leaving only the base current to flow through $\mathrm{R} \times 1$. This causes a voltage drop that is much smaller than 1 V , so that the base voltage drops below the minimum level at which the LED lights.

Charge current and time

As already mentioned, resistors R_{x} allow us to determine the charge current, while the charge period is selected by connecting the appropriate resistor to pin 10 of IC 1 .

If you have a set of brand new batteries, it is best to give them an initial charge period of 24 hours (connect point A to pin 10). When the batteries have been used for some time, the charge period is reduced to 'normal^{\prime}, or 14 hours (B to pin 10). The 5-hour
period (C to pin 10) is used only if the battery type is suitable for fast charging.

The recommended charge current depends on the type of battery, and is often printed on it. The associated values of $R x$ are listed in Table 1 for 'long', 'normal' and 'fast' charging. Note that fast charging is not possible with all batteries; when in doubt see the battery specifications, or ask your supplier.

Soldering and testing

The NiCd charger is not difficult to build. Figure 2 shows a suggested components arrangement on universal prototyping board size ' 1 ' (UPBS-1), which is available readymade through our Readers Services. Start the construction by fitting the wire links. Use insulated wire for the longer ones, and uninsulated wire for the shorter ones. Proceed with fitting the IC sockets, the resistors and the capacitors. The semiconductors are mounted last. Make sure you mount the diodes and the transistors the right way around. Lastly, insert the ICs into their sockets, also observing the orientation.

After a close inspection of your solder work, the completed circuit is ready for testing. First, check the current sources. Connect a battery pack in series with an ammeter. The LED in the current source used should light. Check this on the other source also. Measure the current, and check it against the relevant value from Table 1.

Next, check the operation of the timer. Temporarily move the wire to pin 3 of IC_{1} to the test point marked ' TP^{\prime} '. This shortens the charge period by a factor 1,024 , so that the original charging periods of 24 hours, 14 hours and 5 hours are reduced to $84 \mathrm{sec}-$ onds, 49 seconds and 18 seconds respectively, which are easily checked with a watch. If they are correct, return the wire link to its original position.

The charger may be built into a suitable plastic enclosure. A rotary switch may be worthwhile if the current selection (value of $R x$) needs to be changed often. Similarly, a switch may be used to select between the three charging periods.

SCIENCE \& TECHNOLOGY

UNDERSTANDING WAVEFORM HARMONICS

by Dr K. A. Nigim

Many is the time when a strange, unexpected or distorted waveform appears on your oscilloscope screen. A lot of head scratching and book searching s usually needed to solve the mystery. However, these days, with the rapid advances in Computer Aided Engineering (CAE) software, only a few steps or drag and click with the mouse attached to the computer are required to give you the answer instantly.

Among the easy electronic circuit analyser software available at moderate cost and not too complex is the Micro-cap III electronic circuit package (about $£ 120$ or $\$ 200$ student version). The program is exceptionally easy to operate in entering the electrical/electronic circuit into the PC (AT with math coprocessor advised). Simulation is performed on the circuit with realistic results. A feature included in the package is Fourier Analysis, which evaluates the discrete Fourier transform of many distorted waveforms.

It is not the aim of this article to focus on the software, but rather use its programming facility to demonstrate and simplify the theory behind waveform harmonic content.

Background

Fourier analysis is the mathematical ground for analysing the periodic or repetitive (and perhaps distorted) waveforms. Fourier theory simply breaks the waveform into several ideal sinusoidal waves that each has its own period and amplitude.

Consider the waveform shown in Fig. la. It is said to consist of the two ideal waves shown in Fig. 1b. The first large wave is called the fundamental component and has an amplitude of, say, 100% at a frequency of 50 Hz . The second, smaller, wave is called the third harmonic with an amplitude of 30% at a frequency of 150 Hz .

In general, any periodical or repetitive waveform is defined by:
repetitive wave $=\mathrm{DC}$ component $\left(A_{0}\right)+$ fundamental component $\left(\boldsymbol{F}_{\mathrm{f}}\right)+$ harmonics $\left(E_{3}\right)$

In Fig. 1, the waveform is represented mathematically by:

$$
e_{\mathrm{r}}=A_{0}+A_{1} \sin \omega t+A_{3} \sin 3 \omega t .
$$

If $A_{3}=1 / 3 A_{1}$, the distorted wave is said to have 30% third harmonic.

Mathematically, any periodical wave can be represented in the form:

$$
\begin{aligned}
& Y(\omega t)=A_{0}+A_{1} \sin (\omega t)+A_{2} \sin (2 \omega t)+\ldots \\
& +A_{n} \sin (n \omega t)+B_{1} \cos (\omega t)+B_{2} \cos (2 \omega t)+\ldots \\
& +B_{n} \cos (n \omega t),
\end{aligned}
$$

where

A_{0} is the direct (constant) component; $A_{1} \ldots A_{n}$ is the fundamental and odd harmonic components;
$B_{1} \ldots B_{n}$ is the fundamental and even harmonic components.

Odd components exist when the wave is shaped by identical positive and negative cycles, that is, symmetrical around its axes. Even components occur when the wave is shaped by non-symmetrical half cycles.

Many CAE software packages present the wave by its vector form, which is then plotted in two informative scales. The first scale gives the magnitude and phase angle of the discrete harmonic components shaping the waveform. The second scale gives the cosine and sine values of the discrete harmonics. Both scales are related and either scale will be sufficient to determine the ex-
tent of distortion. Mathematically, these scales are represented as follows.

$$
\begin{aligned}
& Y(t)=A_{n} \sin (n \omega t)+B_{n} \cos (n \omega t) \\
& =Y_{n} \sin \left(n \omega t+\Phi_{n}\right)
\end{aligned}
$$

$$
Y_{n}=\sqrt{A_{n}^{2}+B_{n}^{2}} \Rightarrow \text { magnitude }
$$

$$
\Phi_{n}=\arctan \left(\frac{B_{n}}{A_{n}}\right) \Rightarrow \text { phase }
$$

The terms A_{n} and B_{n} can be found from

$$
\begin{aligned}
& A_{n}=\frac{1}{\pi} \int_{0}^{2} Y(\omega t) \sin (n \omega t) \mathrm{d}(\omega t) \\
& B_{n}=\frac{1}{\pi} \int_{0}^{2} Y(\omega t) \cos (n \omega t) \mathrm{d}(\omega t)
\end{aligned}
$$

The DC component, if present, is given by:

$$
A_{0}=\frac{1}{2 \pi} \int_{0}^{2 \pi} Y(\omega t) \mathrm{d}(\omega t)
$$

But wait. Do we really need to go into inte-

gration and vector calculations to understand waveform distortion? Relax, not in the 90s. By using software available on the market and, of course, basic practice in electronic circuit analysis, it is quite possible to analyse almost any waveform and in effect produce the proper optimally designed system and this could be by introducing filters or by modifying the control concept.

Sinusoidal waves

In this section, several AC shaped waves, produced by a rectifier or phase-controlled power device, are presented and their harmonic content is simplified.

The ideal or smooth waveform is the sinusoidal wave that is produced by large generators in power stations. Figure 2 shows its waveform and its Fourier analysis is presented in the shape of the harmonic magnitude and the phase angle. The cosine and sine terms discussed in the previous section are plotted at the right. The analysis shown is the screen printout of the Micro-cap III software Fourier analysis section.

It can be seen from Fig. 2 that the wave contains no DC nor any sort of harmonic, either odd or even. Thus, the fundamental component dominates the wave shape.

The absence of distortion means that no filtering is required and that all the generated energy is effectively transferred to its destination. Although such pure waveforms exist along the electrical power lines, they may not be so pure any more by the time they reach domestic or industrial power outlets, because the mass of electrical and electronic equipment connected to these outlets nowadays generates a myriad of spurious frequencies that are transferred to the power lines. One apparatus that is very sensitive to impure mains power is the computer, which is why a power conditioner or UPS is normally recommended for its protection

Selected practical waveforms are compared with the ideal wave in Table 1.

Wave I lists the ideal wave with its clear position of transmitting faithfully 100% power to the load without any distortion.

Wave II shows a phase-controlled AC source as found in many light-dimmer circuits using bi-directional semiconductor devices to produce the desired variable AC source as the one shown. For a 50% control ratio, that is, half the power transmitted, the print screen of the Fourier analysis shown in Fig. 3 reveals a handful of harmonics despite the fact that only half the power is transmitted. Practically,the level of harmonics can be neglected as long as its magnitude does not exceed 20% of that of the fundamental component.

It is important to realize what this distortion might cause. High-frequency, high-level harmonics cause excessive heat loss and disturbance in the performance of the controlled system. All industrial and domestic systems are designed to operate from the ideal supply wave shape and frequency. If a mains supply with a high content of harmonics is used to

	1	11	111	IV	V	V I
dc	0	0	63.5	150	70	150
Fund.	100	100	100	100	100	100
2	-	-	42	20	37	18
3	-	54	-	8	23	-
4	-	-	8	-	17	27
5	-	18	-	-	14	90
6	-	-	-	-	18	27
7	-	18	-	-	9	-
8	-	-	-	-	-	-
9	-	10	-	-	-	23
10	-	11	-	-	-	63

Table 1. Fourier analysis of 'sinusoidal' waves.

Fig. 2. Sinusoidal wave (ideal shape).

Fig. 4. Half-wave rectified wave.

Fig. 6. Controlled (full) rectified wave.

Fig. 3. Phase-controlled AC wave.

Fig. 5. Full-wave rectified wave.

Fig. 7. PWM rectified wave.
power, say, a universal motor such as hand drill or food mixer, the motor is faced with several AC supply signals at high frequencies and at different phase angles. This causes a good deal of extra heat in the motor windings, noise and a drop in efficiency.

More high-level harmonics contained in the wave cause excessive radio interference and requires wide-band filters. Moreover, when a complex power source is supplied across a circuit containing inductance and capacitance, it may happen that the circuit resonates at one of the harmonic frequencies, which is called selective resonance. It is es-
sential, therefore, to include chokes or more complex filters or change the power source, both of which add to the final cost of the product.

Wave III is a half-wave rectified wave that has a $61 \% \mathrm{DC}$ level (amplitude $/ \pi$) and a handful of odd harmonics. Simply connecting a capacitor across the load is normally enough to reduce the harmonics to an acceptable level. The Fourier analysis is plotted in Fig. 4.

Wave IV is a full-wave rectified wave. Its DC level is 150% of the fundamental, that is

Table 2. Fourier analysis of DC or pulsed waveforms.

Fig. 8. Fourier plot of square wave.

Fig. 10. Quasi-square periodical wave.

Fig. 9. Fourier plot of periodical DC wave.

Fig. 11. Quasi-sinusoidal wave.
twice amplitude/ π and. again. a handful of odd harmonics that are, however, of a lower level than those in the half-wave rectified wave. Again, a capacitor across the load will reduce the harmonic level substantially. The Fourier analysis is plotted in Fig. 5.

Ware V is a full-wave rectified wave under phase control, resulting practically in a variable DC source. At a 50% control ratio. the DC level is 67% and the harmonic content is worse than in Wave III. The Fourier analysis is plotted in Fig. 6. Although this yields a variable DC source, there is a problem in the filter selection: the smoothing capacitor chosen must be capable of by-passing high frequencies up to five times the supply frequency.

Wave VI is produced by pulse-width modulation (PWM) techniques to generate a variable DC source. Depending on the rate of on/off switching, the harmonic content rises alarmingly, indicating the importance of well-designed filter elements for a wide range of frequencies. Te Fourier analysis is plotted in Fig. 7. As the switching frequency increases, the harmonic level shifts to the higher frequencies which makes it difficult to attenuate them by simple filters.

From these examples, it is seen that distortion is at its worst when the supply changes state suddenly as in Waves III and VI. A smooth transition and composition of the wave has the least distortion and this makes filtering straightforward.

DC or pulsed waveforms

In this section, we look at harmonics in DC or pulsed waveforms-see Table 2.

Wave VII is, again, the ideal sine wave.
Wave VIII is a square wave as produced by, for instance, a multivibrator oscillator. By inspection, the average value is half the amplitude for 50% mark-space ratio. The fundamental is equal to twice the amplitude divided by π. Only odd harmonics (all cosine terms are zero) are present owing to the nature of the wave. A low-pass filter with a transfer function equal to zero at high frequencies will by-pass high-order harmonics but will introduce phase distortion in the output. Fourier analysis is plotted in Fig. 8.

Wave $I X$ is a periodical DC wave, typical of that generated by many commercial transistorized inverters. An inverter is a circuit to convert a DC voltage into a periodical waveform. The Fourier analysis is plotted in Fig. 9. High-level third, fifth and seventh harmonics contribute to the shape of the wave. Note that the more higher harmonics are contained, the sharper the wave will be.

It is difficult to filter out the third and fifth harmonics as both are at high level and close to the fundamental. The filter design must be a good compromise between inductance and capacitance values. Large induc-
tances and small capacitances cause the inverter regulation to become poor. Small inductances and large capacitances improve regulation but increase the current through the inverter. Regulation is the ratio between no-load and full-load output voltage.

Wave X is, again, the inverter waveshape but with a different control. Its Fourier analysis is plotted in Fig. 10. The waveform, which has fewer harmonic peaks, is known as a quasi-square-wave. The analysis shows the existence of a small percentage of third harmonic content, but the fifth and seventh are not noticeable.

Wave $X I$ is a quasi-sinusoidal wave that can
be detected in many industrial motor drive controller. The distortion over a wide frequency spectrum contains 20% fifth and 13% seventh harmonics, but at low level. Single filterelements are, therefore, effective in many cases. If the smoothing filter in the DC path is capacitive, the system is called a constant-voltage source; if it is inductive, the system is a constant-current source. The Fourier analysis is plotted in Fig. 11.

Summary

Most pulse-shaped waves contain odd harmonics. If the periodical amplitude swings between equal positive and negative peaks, the average DC component is nought. If the
amplitude remains above the zero level, there is always a DC component.

The waveforms shown in this article are, unfortunately, all real-life shapes used intensively in the motion control of electric machines. Simple filters have not much effect, and are often bulky and expensive. The existence of harmonics produces torque pulsation in motors, which causes extra heat, vibration and noise.

With the advances of microprocessorcontrolled inverters, harmonic attenuation by pulse-width modulation is now available. As always, however, one should consider complexity and cost against performance.

RED-LIGHT DIODE LASERS

based on an original article by S. von Fehren

DIODE lasers that operate from the nearultraviolet to well into the infra-red region are commonplace and used, among others, in optical fibre communication, optical memories and compact-disc players. Until a few years ago, the only lasers producing visible light were He-Ne lasers. Some of the He -Ne lasers emit a deep red light at a wavelength of 632.8 nm , that is in the visible light region, while others operate at $1.15 \mu \mathrm{~m}$ or $3.39 \mu \mathrm{~m}$. In spite of the fact that they are (relatively) large, require a power source of kilovolts, cannot be modulated and are highly sensitive to mechanical phenomena, these gas lasers have become very popular because they are inexpensive and easy to manage.

These lasers now have a serious competitor in a diode laser, announced by Toshiba in 1987, but not commercially available until recently, that operates at 660 nm (red light).

Diodes that emit visible light have, of course, been available for many years. Such light-emitting diodes (LEDs) are made from a variety of semiconductor material to obtain a particular colour of light. Gallium-arsenide (GaAs) for near-infra-red; gallium-ar-senide-phosphide (GaAsP) for red and yellow; gallium-phosphide (GaP) for green and blue. See Table 1 for light and near-light wavelengths and associated colours.

Without repeating its derivation (see Ref. 1), the formula from which the wavelength, λ, can be calculated is

$$
\begin{equation*}
\Delta E=h \nu=h c / \lambda \tag{1}
\end{equation*}
$$

where ΔE is the energy released when an electron passes from one energy level to another, h is the Planck constant ($4.14 \times 10^{-15} \mathrm{eV} \cdot \mathrm{s}$), v is the frequency of radiation, c is the speed of light in a vacuum and λ is the wavelength (colour) of the emitted light. The quantity $h v$ is a quantum of energy commonly called
a photon.
From formula [1], it is seen that, since h and c are constants, the wavelength depends entirely on ΔE. In semiconductors, energy difference is called the energy gap, expressed in eV (electronvolts). One $\mathrm{eV}=1.60210^{-19}$ joule (J). The energy gap cannot be measured: it is determined empirically, that is, by measurement. The energy gap between gallium and arsenide is 1.4 eV . Entering the various quantities in formula [1] results in a wavelength:

$$
\begin{aligned}
& \lambda=h c / \Delta E= \\
& =4.14 \times 10^{-15} \times 3 \times 10^{8} / 1.4= \\
& =8.86 \times 10^{-7} \mathrm{~m}=886 \mathrm{~nm},
\end{aligned}
$$

which is in the near-infra-red region.
To obtain shorter wavelengths (that fall in the visible region), different materials must be used.

Standard laser diodes are made from gal-lium-aluminium-arsenide (GaAlAs), which has an energy gap of 1.6 eV , corresponding to a wavelength (computation as before) of 775 nm . Because of high production quantities and standardized manufacture, these diodes cost only about a few pounds ex-factory. They are used extensively in CD players and laser printers.

New techniques

Thenew laserdiodes, Toshiba Types TOLD9220 and TOLD9222, are made from indium-gal-lium-aluminium-phosphide (InGaAIP), which has an energy gap of about 1.9 eV to give a wavelength of 660 nm . Prices of these devices have been coming down rapidly.

Currently, Toshiba research scientists are working on a laser diode that will emit blue light ($500-445 \mathrm{~nm}$). The difficulty, as before, is finding suitable semiconductor materials
that can be doped appropriately to yield a p-n junction with the required energy gap of about 2.2 eV .

The (index-based) construction of the TOLD9220 is shown in Fig. 1. Its major parameters (at $25^{\circ} \mathrm{C}$) are

- wavelength, $\lambda: 660 \mathrm{~nm}$
- threshold current, $I_{\mathrm{th}}: 75 \mathrm{~mA}(\max .90 \mathrm{~mA})$

Fig. 1. Layer construction of the new Toshiba laser diodes.

Fig. 2. Pinout of the TOLD9220.

- operating current, $I_{0}: 85 \mathrm{~mA}(\max .100 \mathrm{~mA})$
- break-down voltage, $U_{\mathrm{p}}: 1.5 \mathrm{~V}$
- operating voltage, $U_{0}: 2.5 \mathrm{~V}(\max 3.0 \mathrm{~V})$

Fig. 3. Artist impression of the cross-sectional view of the new Toshiba diodes.

Fig. 4. Simple control circuit for CW operation of the new Toshiba laser diodes.

- luminous power, $P_{\mathrm{L}}: 3 \mathrm{~mW}$
- max. housing temperature: $+40^{\circ} \mathrm{C}$.

The pin-out of the TOLD9220, shown in Fig. 2, corresponds to that of CW (continuous wave) laser diodes, which emit light constantly. As in LEDs, the light emission may be raised by increasing the current. However, that also increases the dissipation, which, in LEDs, because of their relatively large emission surface, can be tolerated for some time, but which in laser diodes can be fatal. This is because the actual emission surface in laser diodes is tiny: only $2.5 \mu \mathrm{~m}^{2}$.

A semiconductor crystal emits light not only forward, but also from its backplane. This back emission, amounting to about 5% of the forward emission, falls on to a photodiode whose resistance varies in direct proportion to the luminous intensity. This makes it possible for a circuit controlled by the photodiode to regulate the current through the laser diode, and thus its dissipation. In other words, the temperature of the laser diode is, to some degree, controlled by the light emission.

An artist's impression of a cross-sectional view of the diode is shown in Fig. 3. The laser diode chip (A) is the semiconductor crystal shown in Fig. 1. Although the photodiode is contained in the same housing, the whole construction is referred to as the 'laser diode'. The construction is typical of CW diodes, which nowadays are produced in far greater numbers than pulse lasers.

Control circuit

A suitable circuit for controlling the new Toshiba laser diodes is given in Fig. 4. Zener diode D_{2} holds the voltage at the emitter of T_{1} at 2.2 V with respect to earth. Provided that the photodiode receives no light, its resistance is a maximum. The base of T_{1} is connected across that resistance and the preset is, therefore, at minimum voltage. Since T_{1} is a p-n-p type, it is switched on, whereupon its collector current drives T_{2} also into conduction. The latter transistor thereupon switches on the laser diode, which then draws a current that is limited by R_{3}.

The laser diode emits the maximum permissible light flux, part of which is received by the photodiode. The resistance of the photodiode decreases, whereupon the base

Fig. 5. Focusing of rays of light and consequent light-intensity diagram.
potential of T_{1} rises. This causes a decrease of the current through T_{1} and T_{2}, and thus through the laser diode. In that way, the light emission of the laser diode is kept at a more or less constant value, which depends on the setting of P_{1} (the voltage across D_{1} is, of course, the reference). The current through the laser diode is inversely proportional to the active resistance of P_{1}. Resistor R_{3} prevents the current rising above the maximum permissible value of 100 mA .

Since the laser diode operates in CW mode, it reaches its maximum operating temperature of $40^{\circ} \mathrm{C}$ within about a minute. Because of this rapidity and in spite of the control circuit, it is recommended that the laser diode is mounted on a suitable (TO-5 or TO-39) heat sink.

Sample of the new Toshiba laser diodes.

Applications

Red-light laser diodes can be used in many applications, because, compared with $\mathrm{He}-\mathrm{Ne}$ lasers, their operation and installation are far less complicated (and, moreover, they are cheaper). A glance at Fig. 4 and at a comparable circuit for an $\mathrm{He}-\mathrm{Ne}$ laser will verify this.

An important industrial application is in barcode readers, which, already in use in thousands of shops and other business, will be almost universal before the end of this decade. Such readers scan the black and white bars of a barcode: the white ones reflect the light, which is then applied to a photodiode, whereas the black ones absorb it. The contrast between the reflected and absorbed light becomes greater as the wavelength becomes smaller; wavelengths above 780 nm cannot be used in barcode readers. Red-light diode lasers are, therefore, very suitable. Moreover, because of their small size, they can be used in portable and mobile barcode readers, which is not really possible with (the rather larger) $\mathrm{He}-\mathrm{Ne}$ lasers.

At this point, it should be borne in mind that, apart from coherence and power density, monochromaticity, that is, the absence of all other wavelengths, is the advantage of laser light over traditional light. Barcode readers and $C D$ players cannot function properly with polychromatic (multi-colour) light.

Another interesting application is in the light pointer as used nowadays on projected images in lectures, film shows, and soon. The red-light laser diode is far more suitable than the He-Ne laser for fitting into a reasonably small tubular holder terminated in a convex (focusing) lens. Moreover, it can be powered by alkaline batteries. Such a pointer would cost about a third of the price of an $\mathrm{He}-\mathrm{Ne}$ laser, and be only a third of the size and weight of an $\mathrm{He}-\mathrm{Ne}$ laser.

Use in compact and video disk players?

Believe it or not, the price of a compact or video disk player is determined to a larger extent than generally known by the laser it uses. Why this is so will be clear from the following.

In Fig. 5, light falls on to a convex lens of diameter d. The lens concentrates the light at principal focus F, which is a distance f (the focal length) from the optical centre of the lens. The ray of light along the principal axis passes unhindered through the lens to F, but most other rays are refracted to F. Some rays, however, are refracted to points other than F on the focal plane by an angle, α, with respect to the principal axis. From the curve at the right of Fig. 5 it is seen that the light-intensity varies around F. Indeed, when focusing is poor (normally caused by a cheap lens), light at F is not a sharply defined point, but a disc of diameter a around the principal focus. This disc

colour	wavelength $(\mathbf{n m})$
infra-red	$1000-740$
red	$740-620$
orange	$620-585$
yellow	$585-575$
green	$575-500$
blue	$500-445$
indigo	$445-425$
violet	$425-390$
ultraviolet	$390-5$

is bright at its centre and becomes virtually dark at the nulls. Note that by convention the null below the principal axis is negative and that above is positive.

The angle of aberration, α, is found from

$$
\begin{equation*}
\tan \alpha=(\mathrm{a} / 2) / f \tag{2}
\end{equation*}
$$

where $\mathrm{a} / 2$ is the distance between the nulls and the principal axis.

The angle is also related to the wavelength of the light in the formula
$\sin \alpha=1.22 \lambda / d$.
These two formula can be combined, provided α is small (the normal case) into

$$
a=2.44 f \lambda / d
$$

$$
a=2.44 \lambda .
$$

To ensure error-free scanning of the pits on the compact or video disc, the focal disc of the light must not be larger than the pits or wider than the tracks between the pits. This has two important consequences.

First, since the wavelength of the light determines the diameter of the focal disc, nonchromatic light will cause several (overlapping) discs. Only a laser will thus give one focal disc.

Second, the smaller the wavelength, the smaller the diameter of the focal disc, and the smaller the pits and track-width of the compact or video disk can be.

Currently, the wavelength of the laser light in CD players is 780 nm . This makes possible a distance of $1.9 \mu \mathrm{~m}$ between tracks and, consequently, about 18000 tracks on the 33 mm wide recording surface of a $C D$. If the wavelength of the laser light is brought down to 660 nm , the number of tracks on a CD , and thus the playing time, can be increased by 18%. The same applies to video disks and CD-ROM.

References:

1. "Lasers: An Overview," Elektor Electronics USA, July/August 1987, p. 27.
2. "'The Compact Disc,"' Elektor Electronics USA, July/August 1987, p. 39.

In an ideal lens, $f=d$, so that the diameter of the focal disc is

LCD FOR INDUCTANCE/CAPACITANCE METER

Design by L. Pijpers

The liquid crystal display described in this article and shown in the photograph below is intended primarily for usewith the indutance-capacitance meter published last month

IN the design of a $31 / 2$ digit voltmeter module, IC Type ICL7106 has attained virtually the same status as a 555 : universally known and suitable for almost any application. It has nearly everything needed on board: an analogue-to-digital (A-D) converter with automatic zero-setting and the required display drivers. All that is needed additionally are a reference voltage source and some passive components.

The signal that renders the display black must be in anti-phase with the signal at the back-plane (BP) of the display. The same is true for that controlling the decimal points and the LoBat indication. Unfortunately, the 7106 does not provide these signal and, therefore, transistor T_{1} has been added to invert the BP signal. By connecting board pins dp_{n},
$d d_{p}$, and bat to $B P$, the associated parts of the display become visible.

If non-connected pins or the LoBat indication pick up noise that cause the relevant information to become visible, the former can be linked to pin 40 (AC) direct and the latter via a $10 \mathrm{M} \Omega$ resistor.

The input circuit is a low-pass filter with a cut-off frequency of 16 Hz that refrains any noise at the input from reaching the A-D converter.

The clock that 'motivates' the 7106 has a frequency, determined by C_{2}, that makes two measurements per second possible.

Resistor R_{4} and capacitors $\mathrm{C}_{3}-\mathrm{C}_{5}$ form part of the A-D converter circuit.

The supply voltage is high enough to ensure that the reference voltages, connected

PARTS LIST

Resistors:

$\mathrm{R} 1=28 \mathrm{M} \Omega$
R2, R5 = $1 \mathrm{M} \Omega$
R3 $=100 \mathrm{k} \Omega$
R4 $=470 \mathrm{k} \Omega$
$\mathrm{R} 6=18 \mathrm{k} \Omega$
$\mathrm{R} 7=10 \mathrm{k} \Omega$
P1 $=10$-turn preset, $4.7 \mathrm{k} \Omega$
Capacitors:
$\mathrm{C} 1=10 \mathrm{nF}$
$\mathrm{C} 2=150 \mathrm{pF}$
C3, C6, C7 $=100 \mathrm{nF}$
$\mathrm{C} 4=47 \mathrm{nF}$
$\mathrm{C} 5=220 \mathrm{nF}$
C8, C9 $=330 \mathrm{nF}$
C10, C11 $=100 \mu \mathrm{~F}, 25 \mathrm{~V}$, radial
Semiconductors:
T1 = BS170
$I C 1=I C L 7106$
IC2 $=78 \mathrm{~L} 05$
IC3 $=79 \mathrm{~L} 05$
Miscellaneous:
LCD1 $=31 / 2$ digit display 40 -pin low-profile IC holder 2 off 20 -pin terminal strip PCB 920018
to $V+$ and $C o m m$ of IC_{1}, are sufficiently stable for the A-D conversation to be accurate to 1 digit. This assumes, of course, that the reference voltages, REF HI and REF LO, have been preset correctly with P_{1}. The voltage between ref hi and ref lo must be half the full-scale value, that is, here 1 V . Presetting is easiest by applying a voltage of 1.9 V to the input and adjusting P_{1} till the display indicates the same value as the meter with which the input voltage is measured. Do not make the input voltage much higher, because if P_{1} is then turned a little too far, IC_{1} will indicate an 'overload' which complicates the setting.

To make the circuit suitable for supply voltages of $\pm 8- \pm 20 \mathrm{~V}$, it has been provided with two voltage regulators, IC_{2} and IC_{3}, which provide a supply of $\pm 5 \mathrm{~V}$. If such a supply is already available, $\mathrm{IC}_{2}, \mathrm{IC}_{3}$ and $\mathrm{C}_{8}-\mathrm{C}_{11}$ may be omitted.

The circuit is best built on the printedcircuit board shown in Fig. 2. Start the construction with the wire links and end with placing the display into its holder. Since the display is mounted over IC ${ }_{1}$, it is important that the 7106 is fitted in a low-profile holder. If the display does not fit properly on to the two terminal strips, plug another pair of terminal strips into the first and then the display into the second pair.

It is, perhaps, interesting to note that the type of display specified is also suitable for (diffused) back lighting.

PARAMETERS

Metering range
Accuracy
Supply voltage
Display connections
$\pm 2 \mathrm{~V}$ with respect to earth
± 1 digit (see text)
Regulated: $\pm 5 \mathrm{~V}$
Unregulated: $\pm 8- \pm 20 \mathrm{~V}$
dp1-dp3; ddp (:); LoBat

DESIGN IDEAS

The contents of this column are based solely on information supplied by

 the author and do not imply practical experience by Elektor Electronics
SUPER SIGN

by Dr K. A. Nigim

Whether you are advertising your merchandise, welcoming your mother-in-law, or celebrating a day of success, SUPER SIGN will add light to the occasion.

mains supply through a suitable triac, whose rating depends on how many lamps the particular group contains. For example, if ten lamps rated at 100 W each are connected in parallel, the r.m.s. load current will be 5 A ; whereas if ten 10 W lamps are used, the load current will be 0.5 A .

The table gives a rough guide between the number of lamps connected in parallel, the wattage per lamp and the suggested triac. It is good practice to mount the triac on a suitably rated heat sink a little distance from the logic control circuit.

The gate of each triac is connected to the relevant output of IC_{4} via zero-crossing optoisolators $\mathrm{IC}_{1}-\mathrm{IC}_{3}-$ see Fig. 3. This arrangement ensures that the control circuit is buffered and isolated from the mains. At the same time, triggering of the triac at the zerocrossing points greatly reduces radio/TV interference.

Construction and testing

A 12 V DC regulated power supply, rated at

Fig. 1. Three-line super sign.

number of lamps per group	wattage per lamp	RMS current per group	triac type (on heat sink)
10	10	0.5	C206D
10	60	3.0	C226D
10	100	5.0	SC146D

Fig. 2. Automatic/manual control circuit.

Fig. 3. Circuit of power triacs.

PART 2: QUARTZ FILTERS, POWER SUPPLY AND ADJUSTMENT

This second part of the article was originally intended to deal with the adjustment of the main tuner board only. However, following many readers' enquiries, we will first give some additional information on the quartz filters used in the design.

The shape of the filter is apparent from this month's front cover photograph: the TQF-2599 from Toyocom is a small block made of nickel-plated steel. The dimensions of the device are: 31 mm long, 21 mm wide and 18 mm high (approx. $17 / 32 \times 13 / 16 \times 11 / 16$ inch). At the underside of the device are five solder terminals that allow it to be fitted direct on to a printed circuit board. The solder pins are located at the short sides of the enclosure: one side has two pins, the other, three.

Figure 6 shows the electrical equivalent of the quartz filter. Two terminal pairs are connected to the input and the output inductors. The remaining terminal is connected to the filter enclosure. Note that the input in-

Fig. 6. Internal diagram of TQF-2599.

Fig. 7. Filter test circuit.

ductor allows a balanced connection, while the output of the filter is single-ended (unbalanced or asymmetrical) because the 'lower' end of the output coupling inductor is connected to the enclosure (i.e., to ground).

Between the input and the output sit two quartz crystals, whose resonance frequencies differ by an amount equal to the filter bandwidth. The input and output inductors serve to reverse the phase, and to match the crystal impedances. They also determine to some extent the pass-band ripple and the bandwidth. In the present FM tuner, the TQF-2599 meets the requirement for a filter with a small pass-band ripple and good phase linearity. The selectivity, i.e., the rejection of frequencies outside the pass-band, is not a prime requirement, but can be made so by using a number of these filters in series.

The measurement circuit shown in Fig. 7 produces the pass-band characteristic and the pass-band ripple characteristic shown in Figs. 8 and 9 respectively. Although the pass-band curve (Fig. 8) is not entirely symmetrical, the pass-band ripple is very small indeed (Fig. 9): less than 1 dB . Further technical data on the TQF-2599 is given in

Table 1. Note that the 'attenuation' shown in Figs. 8 and 9 is relative to the insertion loss of the filter.

As already mentioned, the filters are used two by two to achieve the required skirt steepness. When four filters are cascaded as in the present tuner, the $-40-\mathrm{dB}$ bandwidth is reduced to $\pm 180)-\mathrm{kHz}$, while an attenuation of 60 dB is reached at $\pm 300 \mathrm{KHz}$ already. The use of four filters significantly reduces the dip in the pass-band of an individual filter at about +350 kHz , and in addition ensures an image rejection that obviates the use of additional devices to ensure sufficiently high receiver selectivity.

Construction

The main tuner board is fairly large, but simple to populate. This month's front cover shows the finished prototype. All parts must have the correct terminal spacing (pitch) to ensure the shortest possible connections. As always, start with the wire links, of which there are only two on the present PCB. The FD12 tuner module may be fitted with the aid of solder pins, which are soldered on to

Table 1. TQF-2599 main technical data

Centre frequency:	$10.7 \mathrm{MHz} \pm 9 \mathrm{kHz}$
-3-dB bandwidth:	240 kHz min.
-20-dB bandwidth:	600 kHz min.
$-30-\mathrm{dB}$ bandwidth:	-400 kHz to +450 kHz max.
-40-db bandwidth:	-450 kHz to +550 kHz max.
Insertion loss:	-7 dB max.
Pass-band ripple:	1 dB max.
Source and load impedance:	$900 \Omega \pm 10 \% ; 10 \mathrm{pF} \pm 2 \mathrm{pF}$ parallel

the contact fingers on the edge connector that protrudes from the underside of the unit (see the introductory photograph in part 1 of this article).

The dual varicap used in the demodulator circuit, D_{1}, is a device that looks very much like a transistor in a TO-92 enclosure. The two outer terminals are the anodes, the inner terminal is the common cathode. Although we did not use IC sockets on the prototype, it may be safer to do so. A second prototype built with IC sockets showed no problems.

The two voltage regulators on the board are fitted vertically, and bolted on to a common heatsink. Insulating washers are required for both regulators to prevent short-circuits should the heatsink touch the tuner enclosure, which is at ground potential.

After populating the board, give it a final, thorough, check as quite a few components are involved.

Power supply

The main tuner board works from an adequately smoothed direct voltage of between 23 V and 32 V , which need not be regulated. This supply must be capable of sourcing a maximum current of about 300 mA . The main supply voltage is connected to the PCB terminal marked ' + '. The LM317T on the board reduces the unregulated voltage to a stabilized supply of 20 V for the FD12 tuner module. The $20-\mathrm{V}$ supply rail is also connected to the input of the second voltage regulator, an 7815 (IC5), which powers all ICs on the board. The tuning circuit in addition requires a supply voltage of which the maximum value lies between 30 V and 33 V .

Figure 10 shows a suggested power supply that caters for a regulated 32 -V output for the main board and the tuning circuit, as well as a $5-V$ output for the synthesizer (to be described next month). The $+32-V$ output of the supply may be connected to the supply terminals marked ' $+33 \mathrm{~V}^{\prime}$ and ' + ' on the tuner board. The tuning voltage proper varies between about 3 V and 30 V , and is determined by the synthesizer. For an initial test of the tuner, the synthesizer is not required, and the tuning voltage, U_{TUNE} may be taken from the wiper of a multiturn potentiometer connected between ground and +33 V .

Connection and wiring

Apart from the supply connections mentioned above we have the antenna cable, which is connected to the input marked 'Ant.', and the input cable of the stereo amplifier, which is connected to the R-OUT and L-OUT terminals on the tuner board. Both the antenna and the audio connections have separate ground pins on the board to connect the cable screening.

The remainder of the wiring is for the indicator LEDs and the MODE control of the stereo decoder and the audio processor. The signal strength (S-meter) terminals are pro-

Fig. 8. TQF-2599 selection characteristic (measured with test circuit shown in Fig. 7).

Fig. 9. TQF-2599 attenuation characteristic within pass-band. The ripple is quite small at less than 1 dB .
visionally connected to a multimeter.
Circuits IC2 and IC3 indicate their current mode with the aid of LEDs. The cathode of the 'STEREO' LED is connected to resistor R47, and the cathode of the 'MUTE' LED to R46. The anodes of these LEDs are connected to +15 V . The LED drivers in IC3 are con-stant-current types. The cathodes of the ' P STEREO' (pseudo-stereo) and 'BASIS-B' (widened image) LEDs are connected to ground, and the anodes to the respective PCB terminals.

The mode setting of IC_{2} and IC3 is effected by a combination of logic levels applied to the corresponding control inputs. The stereo decoder, IC2, switches to mono when a voltage greater than about 3 V is applied to the 'MONO' input. The operation of the 'MUTE' input is similar. By contrast, the
switching levels at the MODE SELECT A and MODE SELECT B inputs are TTL-compatible, i.e., 'low' (L) corresponds to $<0.8 \mathrm{~V}$, and 'high' (H) to $>2.4 \mathrm{~V}$. This allows the different modes to be set as follows:

Normal operation:	$A=L$
	$B=$ irrelevant
Wide image:	$A=H ; B=H$
Pseudo stereo:	$A=H ; B=L$

When the inputs are left open (i.e., not connected), they are internally pulled to +5 V . This causes the 'wide image' mode to be selected.

The audio outputs on the board may be connected to any hi-fi amplifier or preamplifier via line (type 'RCA' or 'phono') sockets and a conventional stereo screened cable.

Fig. 10. Suggested power supply for the main tuner board and the synthesizer.

Table 2. Main tuner board connection overview

Table 2 provides an overview of all board connections and their functions.

Adjustment: easy!

For an initial adjustment of the tuner it is sufficient to connect the main supply only to the tuner board. First, check the output voltages (+20 V and +15 V) of the two regulators. Next, fit wire jumper ' C ' to switch on the onboard $10.7-\mathrm{MHz}$ reference oscillator. Connect a voltmeter to pin 6 of IC6, and adjust the core in filter Fit until the meter reads about 7 V . A tip: turn the core downward if the measured voltage is initially smaller than 7 V , or upward if the voltage is higher than 7 V. Next, turn the core in Fi2 to the same depth as that in Fin.

From then on, the quadrature demodulator circuit will keep itself centred at 10.7 MHz. Remove jumper ' C ' to switch off the auxiliary oscillator.

Switch off, and prepare the tuner for 'real' FM reception. 'MODE SELECT' is set to 'normal' by wiring terminals ' A ' and ' B ' to ground. The 'MONO' and 'MUTE' terminals may be left open. Further, connect the antenna cable (a $75-\mathrm{cm}$ long straight piece of wire soldered to 'Ant.' will also function if you are not too far away from an FM transmitter). Lastly, connect the tuning voltage via the (temporary) multiturn potentiometer, and, of course, the audio amplifier. Set P_{1} and P_{2} to their mid-way positions.

Switch on again, and tune to a relatively strong FM stereo station. Adjust the PLL centre frequency (P 2) until the stereo LED lights. Next, turn the wiper of P2 alternately left and right, and note the positions where the 'STEREO' LED goes out. Set the wiper in between these two positions. This concludes the adjustment of the stereo PLL.

Finally, adjust preset P_{1} for optimum channel separation. For this you either have to wait for a stereo test transmission, or have access to a stereo test generator. Failing both, leave the preset at the centre of its travel, when the channel separation is at least 40 dB .

Next month: description of the synthesizer.

2-METER FM RECEIVER

The 2-meter band has been popular for three decades and longer for short, medium-range and mobile communication between radio amateurs, and it is usually pretty crowded in and around large cities, with activity centering around repeater stations. The predominant mode for local traffic is FM, and listening in can be a great way to expand your knowledge of electronics as well as get to know fellow enthusiasts. The receiver presented here is
 aimed at those of you who are not yet bitten by the 'radio' bug. Alternatively, for hams already on the air, the present design is an excellent stand-by receiver to monitor band activity.

design by J. Barendrecht and L. Lemmens

TTHE receiver described is remarkably compact, based on three ICs only, and fairly simple to build since a well-designed printed circuit board is available readymade.

The block diagram (Fig. 1) of the receiver shows that it is a 'classic' superheterodyne with a single intermediate frequency (IF) of 10.7 MHz . The antenna signal is amplified and passed through a band filter before it is applied to an integrated double-balanced mixer. The local oscillator signal is supplied
by a varicap-tuned voltage-controlled oscillator (VCO). The IF signal at 10.7 MHz is passed through a crystal filter to ensure the required selectivity of the receiver. Next, it is amplified and filtered again. One integrated circuit combines the functions of demodulator (FM only), squelch (automatic muting) and S-meter driver. It is followed by an AF amplifier capable of driving a pair of headphones or a small loudspeaker.

Practical circuit

The circuit diagram of the 2-metre receiver, Fig. 2, follows the block diagram quite closely. At the RF input there is a low-noise
preamplifier based on the BF981 dual-gate MOSFET. The antenna signal is connected to a $50-\Omega$ tap on inductor L1. The amplifier output signal is coupled inductively to the IF amplifier via $\mathrm{L}_{4}-\mathrm{C}_{9}$ and $\mathrm{L}_{5}-\mathrm{C}_{11}$. These two VHF L-C tuned circuits form a critically coupled bandpass filter with a bandwidth of about 2 MHz to give the receiver the initial preselection required to cope with strong out-of-band signals.

The NE612 (IC1) is an integrated doublebalanced mixer and oscillator from Signetics (Philips Components). It is an improved version of the NE602, on which design notes were published in Ref. 1. The block diagram of the NE612 is given in Fig. 3. Here, the on-

Fig. 1. Block diagram of the receiver: a classic superheterodyne.

Fig. 2. Circuit diagram of the 2-metre FM receiver. Note that the IF amplifier, limiter, FM demodulator, S-meter driver and squelch functions are all combined in a single IC, the NE604.

Fig. 3. Block diagram of the NE612 integrated double-balanced mixer (courtesy Signetics).
chip oscillator is connected to an $L-C$ tuned circuit of which the resonant frequency is determined by a pair of variable capacitance diodes. The tuning voltage is supplied by a combination of a multiturn potentiometer, P_{1}, a fixed resistor, R6, and a preset potentiometer, P2. Correctly aligned, the VCO has a tuning range from about 133 MHz to 135.5 MHz , which covers the 2 metre band adequately. Depending on the setting of P_{2} and the value of C17, the VCO range can be made larger, for instance, in the USA where the 2 -metre band extends from 144 MHz to 148 MHz (note, however, that the lower end of the band is not used for FM traffic).

The IF output signal is taken singleended from the mixer output and fed to the $10.7-\mathrm{MHz}$ IF quartz filter via a coupling capacitor, C 19 . The input and the output of the quartz filter, XF 1, are matched by tuned circuits L12-C24 and L13-C25 respectively.

As already mentioned, the NE604 (IC2) combines a number of functions in this circuit. The block diagram in Fig. 4 tells the whole story. A $10.7-\mathrm{MHz}$ ceramic filter, FL , is inserted between the output of the first IF amplifier and the limiter input of the second IF amplifier on board the NE604. The quadrature (FM) detector is connected to a readymade $10.7-\mathrm{MHz}$ inductor, L15, via coupling capacitors C_{1} and C 2 . Pin 7 of the NE604 supplies the demodulated signal ahead of the mute circuit (see the block diagram). This unmuted signal may be used for AFSK decoders and other equipment (packet radio TNC) that must always work, irrespective of the set mute level. The signal is brought out to a jumper block marked D, which allows ready connection to a screened cable.

The mute (squelch) level is set by potentiometer P3, with preset P_{4} acting as a 'coarse' control. The S -meter (signal strength) driver consists basically of a FET, T2, and two anti-parallel diodes, D2-D3, connected across a moving-coil meter, M1. The meter may be given a meaningful range by adjusting presets balancing presets, P_{5} and P6.

The demodulated FM signal is taken through a de-emphasis section, C4-R10-C3, and is then applied to a FET stage that pro-
vides sufficient drive for the AF output amplifier, IC3. An $L-C$ series filter is included in the signal path to suppress frequencies above 3 kHz . The audio output signal is fed to a loudspeaker, or to a pair of headphones via an external jack socket with a break contact, J . When a plug is inserted in the headphones socket, the loudspeaker is automatically disconnected.

The receiver has an on-board 8-V supply based on a low-drop voltage regulator Type L4885CV, which enables input voltages down to about 10 V to be used (battery operation!). Where the L4885CV can not be obtained, it may be replaced by an 7808, which works with input voltages of 12 V and higher. The $8-\mathrm{V}$ supply voltage is decoupled at a number of places in the circuit with the aid of small ferrite chokes and ceramic capacitors to ground. The current consumption of the receiver depends on the output volume, and lies between 45 mA and about 200 mA .

Construction

It is strongly recommended to build the receiver on the ready-made double-sided printed circuit board supplied through the Readers Services. This board, of which the artwork is shown in Fig. 5, is pre-tinned, double-sided, pre-drilled, and has a component layout printed on the component side. Start the construction by winding the inductors as indicated in Table 1. Next, insert the coffin-style capacitor, C_{6}, into its slot in the PCB. The 'shoulders' of this capacitor should rest on the component side of the PCB. Solder the device carefully at the two sides, and check that it does not form a short circuit. Put the MOSFET, T_{1}, in the hole, and align its terminals over the three copper tracks (gate 1; gate 2, drain). The type indication printed on the MOSFET is legible from the component side. If necessary cut the g 1 and g 2 terminals. Solder all four terminals. The source terminal is soldered direct on to the ground plane.

Use pliers to bend the stator terminals of all five foil trimmers horizontally. Fit trimmer C 5 , and solder the stator terminal flush on to the copper track to g 1 of the MOSFET. The two rotor terminals are soldered at the
solder side of the board. The g2 biasing resistors, R1 and R2, are soldered direct to the g2 side of the coffin capacitor. Similarly, the drain resistor, R3, is soldered direct to the copper track for the drain. C_{2} is 'in the air' between the drain track and the tap at the earthy ('cold') side of L . . The solder junctions between the trimmers, the matching inductors and the input and output terminals of the quartz filter are also 'in the air'.

The 'hot' side of L4 and L5 is soldered direct to the stator terminal of the respective trimmer capacitor, C 9 and C 11 . The air-cored inductors, L1, L4 and L5, are stretched by spacing the turns evenly. After soldering, the toroidal core inductors, L12 and L13, are secured to the PCB with a drop of wax. Do not yet mount the screening can of the VCO inductor, L .

The remainder of the construction is fairly straightforward. All components are mounted with the shortest possible lead length. IC sockets must no be used. Fit solder pins for the connections to the external parts.

Inspect your work so far, paying particular attention to short-circuits between component terminals and the copper ground plane.

Next, cut and bend a $20-\mathrm{mm}$ wide piece of tin plate or thin brass, and place it vertically on the dashed outline printed on the component side of the PCB , outside the solder pins in the four corners. Look at the position of the input BNC connector, and make a clearance in the screening large enough to pass over the teflon shaft. Another clearance is required where the screen passes over the tracks to potentiometer P_{3}.

Solder the screening all around to the ground plane. Next, cut three $50-\mathrm{mm}$ long, $20-\mathrm{mm}$ high, pieces of the same material, and align these between the long sides of the screening, over the dashed lines on the PCB. Look at where the screen passes over the drain track of T , and make a small clearance to prevent a short circuit. Similarly, the screen that separates the input and output of the quartz crystal filter must have a clearance at one side for the quartz filter. Do not solder the screen to the quartz filter enclosure, as the device is easily damaged by overheating.

Fig. 4. Block diagram of the NE604A FM IF system (courtesy Signetics).

Fig. 5. Component side and solder side layouts (mirror images), and component mounting plan of the PCB for the 2-metre receiver.

COMPONENTS LIST

Finally, secure K_{1} to the PCB surface by bolting it down with a clamp.

Adjustment

The adjustment of the receiver requires a VHF signal generator and a frequency meter. If you do not have access to a signal generator, you may need to call in the help of a local radio amateur willing to set up a test signal 'on the air'

Connect the external controls, the loudspeaker and the S-meter to the board. In-
itially, set all trimmers and presets to the centre of their travel. Connect the signal generator (or the antenna) to the receiver input.

First, concentrate on the VCO. Apply power, and check that the board supply voltage is 8 V . Couple the frequency meter inductively to L 9 (with a small coupling loop), or capacitively (with 10 pF or so) to pin 7 of IC . Adjust the core in L 9 until you are roughly at 134 MHz , then adjust P_{2} until the VCO range is about 133 MHz to 135 MHz . If necessary, stretch or compress the turns of L9 carefully until the desired VCO frequency
range is obtained (remember, the IF is 10.7 MHz). In some cases, it may be necessary to change the value of C 7 , or increase the number of turns of L9 from 1.5 to 2.

Switch off, fit the screening can on L. 9 and measure the VCO range again. Redo the above adjustments as required to compensate the effect of fitting the can. Do not solder the tabs at the sides of the can until you are satisfied with the VCO range.

Tune the demodulator to 10.7 MHz by turning the core in L15 for highest noise output (you may have to adjust the squelch control, P3, to hear the FM noise). Next, peak C24 and C_{25} for maximum noise output also.

Apply an FM-modulated 2-m test signal to the RF input. Start with a fairly high level, say, $500 \mu \mathrm{~V}$. Tune the receiver to this signal, and adjust $\mathrm{C}_{5}, \mathrm{C}_{9}$ and C_{11} for minimum noise. Reduce the signal level as you approach the optimum setting of these trimmers. In particular the $2-\mathrm{m}$ band filter will be found to be pretty selective, i.e., critical to adjust.

If necessary redo the adjustment of L15 for undistorted output (it is best to use a test tone for this).

Reduce the RF input level until the signal is just about audible. Again peak the IF and RF trimmers for minimum noise, and if necessary 'throttle' the RF signal even further. Our prototype was adjusted in this way, and achieved a sensitivity of between $0.1 \mu \mathrm{~V}$ and $0.15 \mu \mathrm{~V}$ for an S / N (signal-tonoise ratio) of about 12 dB . This was found comparable to the performance of a typical commercial-grade receiver as used in mobile 2-metre transceivers (the test was made against an FT227RA mobile rig from Yaesu).

Finally, adjust the two presets at either side of the S-meter connections until the meter gives a sensible indication of the signal strength (switch the generator between low and high output levels). Since S-reports have little meaning in FM communication, and the standards used to indicate and compare signal strength are a subject of hot debate between radio amateurs, it makes little sense to try and calibrate the meter in S points.

Reference:

1. "NE602 Primer," Elektor Electronics USA, January 1992, p. 20

Table 1. Inductors

Position L1;L5	Description VHF air-cored	Core none	No. of turns L2;	Wire dia. 1mm CuAg	Note(s) Tap at 2 turns from cold end; internal diameter $6 \mathrm{~mm} ; ~ s p a c e ~ t u r n s ~ t o ~ f i t ~ P C B . ~$

8051/8032 ASSEMBLER COURSE

PART 3: HARDWARE EXTENSIONS FOR THE 80C32 SBC

by Dr. M. Ohsmann

Abstract

After our first dealings with programming in assembly language, we now present

Abstract

an intermezzo in the course. Some useful firi extensions are proposed for the 80C32 single-board computer described roughly a year ago this magazine. All extensions are accommodated on a single printed circuit board.

The extension board is simply connected to the 64 -way DIN a-c plug on the single board computer (SBC). All inputs and outputs of the present extension card are conveniently located at the edge of the PCB, and have suitable connectors where these are useful. The combination of the SBC and the extension card forms a simple and versatile microcomputer system based on a MCS52 microcontroller IC. The many possibilities of the extension card will be discussed with reference to the circuit diagram in Fig. II.

The interfaces

Reset

Push-button SI resets the SBC. After a reset, all four LEDs D1-D4 light. When the SBC runs the courseware monitor program, EMON51, the reset key must be pressed before a download operation to start the monitor.

Serial interface

The SBC has a serial interface that can be used to link the board to a terminal (or 'console') or the RS232 port of a PC running communication software. The interface transmits data via the TxD line (pin c8 on the 64 -way DIN plug), and receives data via the RxD line (pin c7). The link to a PC is readily made by connecting $\mathrm{TxD}, \mathrm{RxD}$ and ground to the appropriate pins of a 9 way sub-D connector, and fitting jumper ${ }^{\mathrm{JP}} \mathrm{P}_{1}$ in position ' A ', and jumper JP_{2} in position ' B '. With some other applications, the TxD and RxD lines of the SBC may be used for MIDI communication, in which case the jumpers must be removed altogether.

Port P1

The bidirectional driver used on port Pl of
the SBC allows the whole port to be used as an input or an output only, i.e., input/output programming of individual lines is not possible. On the extension board, port Pl is used as an output. The port line functions are listed in Table 1.

Table 1. Port P1 bit functions
 P1.0 Serial output (JP1=B), or MIDI $(\mathrm{JP3} 3=\mathrm{B})$
 P1.1 Loudspeaker output
 P1.2 Positive edge triggers monostable IC8a
 P1.3 Not used
 P1.4 LED D1
 P1.5 LED D2
 P1.6 LED D3
 P1.7 LED D4

MIDI input

Socket K6 supplies the MIDI signal to a fast optocoupler, IC7. The output signal of the optocoupler is fed to jumper JP_{2} via a Schmitt-trigger. When the MIDI is used, jumper JP2 must be set to position ' A ' to enable the MIDI signal to be conveyed to the serial interface of the SBC. In some cases, voltage divider $\mathrm{R}_{20}-\mathrm{R}_{21}$ on the SBC may attenuate the signal to the extent where it is no longer TTL-compatible. Should this happen, R20 may be reduced to I k Ω. Fortunately, this was not necessary on our prototype.

MIDI output

Jumper JP3 allows you to determine which signal is taken to the MIDI output, socket K5. In position ' A ', the TxD signal of the serial interface on the SBC is used, in posi-
tion ' B ' bit 0 of port PI. The latter option may be useful when the internal serial interface of the 80 C 32 is used for other functions. The MIDI output signal on PI. 0 is then generated by software simulating a serial output device.

Memory-mapped I/O

The SBC reserves the address range above 0 C 000 H in the external data memory for input/output operations. Decoders IC and IC2 'map' the address range as shown in Table 2.

Table 2. Address functions in I/O range		
COOOH	Read:	data in latch IC9
	Write:	value to DAC
C001H	Read:	LCD command status
	Write:	LCD commands
C002H	Read:	data in IC3
	Write:	data to IC5
C009H	Read:	data from LCD
	Write:	data to LCD

These options can be used for the I/O functions listed below.

D-A and A-D converter

Resistors $R_{12}-\mathrm{R}_{26}$ and R_{31} form an $R-2 R$ network that functions as a digital-to-analogue (D-A) converter in combination with IC9 and IC6a. The content of latch IC9 (which is addressable at 0 C 000 H) is available as an analogue value at the output. The maximum value of the output voltage is reached when IC9 contains 0 FFH , which corresponds to about 2.5 V . The D-A out-
put voltage is also applied to comparators $\mathrm{IC}_{6 \mathrm{~b}}, \mathrm{IC} 6 \mathrm{c}$ and IC 6 d . These allow the output voltage to be compared to three levels at the analogue inputs. The comparator outputs may be read via address 0 C 000 H , which creates a simple 3 -input ADC. The individual functions of the ADC bits at 0 C 000 H are listed in Table 3.

Keys and monostable

The functions of the remaining bits stored at address 0 C 000 H are shown in Table 3.

As you can see, four switches (or pushbuttons) are available for your own applications, e.g., for starting certain functions. Monostable IC8a makes it possible to implement a simple capacitance meter. The capacitor to be measured is connected to K9. Software is used to trigger the monostable via bit 2 on port P1, and then read the time that lapses before the monostable toggles again. This can be monitored by reading bit 3 at address 0 C 000 H . See also the assembler file EBTST6.A51 on your course disk!

Table 3. I/O bit functions

Read IC10; address $=\mathrm{COOOH}$

Bit 0: High when $U_{\text {in }}$ (input 1) $>U_{\text {DAC }}$
Bit 1: High when $U_{\text {in }}$ (input 2) $>U_{\text {DAC }}$
Bit 2: High when $U_{\text {in }}$ (input 3) $>U_{\text {DAC }}$
Bit 3: High when monostable active
Bit 4: High when key S5 not pressed
Bit 5: High when key S4 not pressed
Bit 6: High when key S3 not pressed
Bit 7: High when key S 2 not pressed

Parallel 8-bit input/output

The eight logic levels (bits) at connector K 3 may be read at address 0 C 002 H . The same address is also used to output 8 -bit datawords via latch ICs and connector K4. This creates byte-wide input/output interfaces.

LC display

A liquid crystal display (LCD) may be connected to Kı. The LCD types that may be used, and their connection details, are shown in the inset. Although the control signals generated by the extension board do not meet the exact timing requirements of the LCDs, they caused no problems in our set-up. The timing may be more critical, however, with displays other than the types listed. The LCD signals (on connector K_{1}) and their functions are listed in Table 4.

Power supply

The extension board is conveniently powered by the $5-\mathrm{V}$ regulator on board the SBC. Make sure that the regulator is sufficiently cooled when further loads such as LEDs or relays are connected.

Construction and test

The construction of the extension board is mostly straightforward soldering work.

Fig. 11. Circuit diagram of the extension board for the $80 C 32$ single-board computer.

Fig. 12. Track layouts (component side and solder side; mirror images) and component overlay of the printed circuit board.

COMPONENTS LIST

Resistors:		
9	$10 \mathrm{k} \Omega \quad \mathrm{R}$	$\begin{aligned} & \text { R1-R4;R27-R30; } \\ & \text { R32 } \end{aligned}$
1	$47 \mathrm{k} \Omega$ R5	R5
1	8 -way $10 \mathrm{k} \Omega \mathrm{SIL}$ R6	R6
5	470』 R7	R7-R11
9	20k 21% R	R12-R19;R31
7	$10 \mathrm{k} \Omega 1 \%$ R2	R20-R26
2	220Ω R3	R33;R34
1	470k	R35
1	100Ω R3	R36
1	$1 \mathrm{k} \Omega$ R3	R37
1	10k 2 linear $\quad P 1$	P1
Capacitors:		
8	100 nF (C1;C7-C13
4	1 nF C2	C2-C5
1	$220 \mu \mathrm{~F} 16 \mathrm{~V}$	C6
Semiconductors:		
4	rectangular LED D1	D1-D4
3	1 N 4148 D	D5;D6;D7
2	74HC138 IC	IC1;1C2
2	74HC541 IC	IC3:IC10
1	$74 \mathrm{HCl4}$ IG	164
2	74HC574 IC	IC5;IC9
1	LM324 IC	IC6
1	6N+36 IC	$1 \mathrm{C7}$
1	74HC123 IC	1C8
Miscellaneous:		
1	14 -way box header	K1
1	64 -way a-c row, female, angled, DIN	, K2
3	8 -way pin header	K3; K4; K8
2	5 -way PCB-mount DIN socket	K5;K6
1	9-way PCB-mount female sub-D connector	Kle
1	2-way PCB-mount termina block, pitch 5 mm	ninal K9
1	Push button SPST	S1
4	Switch SPST	S2-S5
	8Ω miniature loudspeaker	ker LS1
1	Printed circuit board	910109

Table 4. LC display connections

Pin	Function
1	Ground
2	+5 V
3	Contrast (adjust with P1)
4	RS; register select $=10 A 3$ 0 = command 1 = data
5	RD; read (active high) $0=\text { write }$ $1=\text { read }$
6	E; enable (active high when address selected)
	$0 \mathrm{C} 001 \mathrm{H}=$ command transfer to/from LCD
	$0 \mathrm{C} 009 \mathrm{H}=$ data transfer to/from LCD

7 to 14 Databus bit 0 to 7

LCDs: types and connections

An LCD module has 14 connections, arranged in a single row of solder points, or in two rows of 7 at either side of the PCB. It is best to solder these points directly to a piece of 14 -way flatcable. Pin 1 is marked by a ' 1 ' on the display board. Attention: when there are two connection rows, the solder points are numbered in pairs (see drawing above).
The wire numbers 1-14 at the other end of the flatcable are connected to the corresponding pin numbers on header K1 on the extension board via an IDC socket (see drawing). Wire ' 1 ' in the flatcable should go to the side with the marker on the IDC socket as shown.

The artwork of the double-sided PCB is shown in Fig. 12. It is recommended to use IC sockets because the board will be connected frequently to experimental circuits, which may not work as expected, and damage ICs on the extension board quite easily. Along the same train of thought, it is better not to fit the SBC and the extension board in an enclosure. The introductory photograph shows our prototype with the two boards fitted on a length of perspex-a readily accessible system!

Although you may follow this course without building the proposed hardware extensions, it must be noted that the programming examples that make use of the added hardware (files EBTST*.* on the course disk) are an excellent introduction to practical harware-software interfacing, ranging from simple input/output devices (push-buttons and LEDs) to more complex applications: a capacitance meter, ADC and DAC control, and, of course, LCD control.

Likewise, some of you may be interested in the present hardware only to extend the possibilities of the 80 C 32 computer or a similar MCS52 microcontroller system. The following procedure is recommended to test the extension board if this is used independent of the programming course. First, test the output function of port Pl . This is easiest done by driving the loudspeaker, and making the LEDs flash. Next, check the function of the serial interface after fitting the jumpers appropriately. Proceed with the DAC: output a sawtooth via address 0 C 000 H , and use an oscilloscope to check the waveform and the peak amplitude (approx. 2.5 V). Apply a test voltage between 0 V and 2.5 V to the analogue inputs, and check the function of the comparators by reading the data at ad-
dress 0 C 000 H . The correct function of keys S_{2} to S_{5} is verified similarly. Next, carry out a couple of read and write operations to and from 0 C 002 H to check that the parallel input/output interfaces (K_{3} and K4) work. Finally, test the LCD and the MIDI interface with the aid of small programs. Suitable examples to do so may be found on the course disk.

Next time: we continue the course with assembly language programming.

JOIN THE COURSE!

What you need to follow this course:

- a 8032/8052AH-BASIC single board computer as described in Elektor Electronics May 1991. The preferred CPU is a 8051 or a 80 C 32.
Alternatively, any other MCS52-based microcontroller system (but read part 1 of the course);
- a course diskette (order code ESS 1661) containing programming examples, utilities, and an assembler;
- a monitor EPROM (order code ESS 6091).
- an IBM PC or compatible operating under MS-DOS, or an Atari ST with a monochrome display.

Appeared so far:

Part 1: Introduction (February 1992);
Part 2: First 8051 instructions (March 1992).

PULSAR - A REVIEW

by Mike Wooding G6IGM

DESIGNERS of digital equipment are fully aware of the difficulties of testing their designs to confirm that the logic of the design works according to plan. Even more difficult, rather as with computer programs, is the ability to conduct the infinite number of tests to prove that there are no bugs or glitches in the design some of which may only appear when an unusual set of conditions exists, or perhaps only once every billion clock pulses or so.

Furthermore, it is very expensive in time and labour to build breadboarded prototypes to conduct the tests on. The probability of destroying expensive digital devices is even more off-putting! However all is not lost! A recent addition to the professional software packages produced by Number One Systems Ltd. is 'PULSAR' a digital logic circuit simulator program.

Pulsar is a full featured simulator that allows designs to be tested without the need of constructing those expensive breadboards and prototypes. The circuit design can be tested on your PC and modifications made until the circuit functions as required - all without using a soldering iron in anger, or blowing up any expensive ICs.

Pulsar

Pulsar is a digital logic circuit analyser program that runs on PC/XT/AT/286/386/ or 486 computers running under MS-DOS 3.0 or later and with either EGA or VGA graphics, preferably colour. The minimum

RAM requirement is 512 KBytes , and the software is supplied on both $5.25^{\prime \prime}$ and $3.5^{\prime \prime}$ format floppy discs.

It is almost imperative to have a hard disk drive, as the program keeps a high proportion of its temporary data on disk during operation, and if using a floppy-only based machine the operation of Pulsar will be extremely slow.

The program also supports the use of a mouse and a choice of either 9 or 24 -pin dot-matrix printers or HP Laserjet II printers.

The user manual

The comprehensive user manual is packaged in an A5 ring binder, which will allow for the easy insertion of upgrade instructions, personal notes, etc. The opening pages of the manual deal with the installation and running of the program.

The next section in the manual is called 'First Impressions' and gives an overview of the screen presentations and some of the basic commands used to manipulate these screens and move around in them. Once the user is familiar with these basic commands then it's on to the next section, 'The Grand Tour'.

The 'Grand Tour' comprises the greater part of the user manual and takes the user through a step-by-step simulation; from entering the initial design netlist, to the final proven circuit. To assist with the instruction, a predesigned divide-by-three circuit is used as a practical example, from

which a netlist is compiled.
Note: a netlist is simply a file of logic connections between the various devices within a digital circuit and their relative logic states. The libraries available within Pulsar contain netlist outlines for basic logic gates, 74 LS series and 4000 CMOS series devices.

After the chapter dealing with the netlist editor and the making of a netlist for the circuit, the section explaining how to actually run the analyser is reached. Firstly, selecting a signal source, or generator, for the input, is dealt with and then a detailed look at the simulated circuit follows.

The 'Grand Tour' then goes on to deal with modifying the circuit to correct any faults, creating generators, selecting printers, combining circuits and using the libraries.

The remaining sections of the user manual deal with customising Pulsar to your exact requirements, using DOS within the program and using the DOS shell. Finally, there are lists and explanations of the three built-in libraries of Pulsar, which will be discussed later.

The analyser

Once a circuit netlist has been created and a suitable generator selected, Pulsar simulates the circuit operation and displays on the screen a timing diagram, such as one sees on a conventional logic analyser. As with a conventional logic analyser, one can also see if any spurious signals are present on the timing waveforms. However, here the similarity really ends.

The display screen is divided into three main areas. The top of the screen contains the main menu, showing Pulsar's top-level commands, with the currently active mode highlighted. The program defaults to the analyser mode on start-up. The other modes are:

Configuration
Generators Libraries
!DOS
F1Help
Quit

Customises Pulsar. Sets up Pulse Generators. Maintains Component libraries. Manipulates Files and Directories On-line help information. Leave Pulsar.

Also shown in the menu area are the file name and cursor control characters.

Configuration: this command selects a set of menus which allow the default parameters for Pulsar to be set according to the users choice. The default search paths for
files, the time and date format, etc., can all be preset by the user and the configuration saved.

Generators: this menu allows generators (input signals) to be modified or developed according to the requirements of the simulation.

Libraries: the library command allows the various libraries to be scanned and manipulated.
!DOS: selecting this command displays a menu of basic DOS commands which are available for use without leaving Pulsar. Also selectable is a DOS Shell, which allows you to exit Pulsar to the DOS prompt, but without losing any data currently held in Pulsar. Quitting the DOS Shell returns you to Pulsar, exactly where you left it.

F1HELP and Quit are self-explanatory.

The main area of the screen is devoted to the analyser display, with the two moveable cursors.

At the bottom of the screen is a submenu of control commands and the time readouts for the cursor positions and the time scale factor of the display area.

With Pulsar you are not limited to how many pods (connecting ports) are available (conventional logic analysers have 8 or 16 , sometimes 32, but we are talking expensive here!), as the display shows all the input, clock and output waveforms detailed in the netlist. If you want to see the timing diagram at a particular point in the circuit, you simply add it to the netlist.

Furthermore, another feature of Pulsar which makes it superior to a conventional analyser is that it is not limited to a window in time; i.e., conventional analysers are, to all intents and purposes, not real-time machines, the display is limited to a particular period of time. However, with Pulsar the simulation is continuous, and you can zoom in or out in time, so that even glitches that occur very seldom can be captured.
n essential feature of the zoom facility is that, because you can expand the displayed time zone down to a few nanoseconds if you wish, the actual widths of any glitches or pulses can be measured accurately. To enable this to be achieved Pulsar has two moveable cursors on the display; an 'Absolute' one and a 'Relative' one. Both cursors are easily positioned anywhere on the display by simple keyboard/mouse actions, and at the bottom of the display time values for each cursor are displayed.

The 'Absolute' cursor time display is given as the cursor position in time from the start of the simulation. The 'Relative' time display is given as the difference in time, positive or negative, between the two cursors.

Thus, by positioning the "Absolute" cursor at the start of a pulse or whatever, and then positioning the 'Relative' cursor at the end of the pulse or zone to be measured, the pulse width or the elapsed time can be read directly. Facilities to enable quick positioning of the cursors are available. A 'Snap' command will ensure that the cursor being moved will align itself exactly with the nearest leading/trailing edge to the mouse/keyboard pointer when moved. A 'Scroll' facility is also available to quickly move the active cursor (the one selected for moving) across the display. A 'Pan' command always centres the display around the currently active cursor, so that when zooming in or out the selected area of the display will always be visible.

An important aspect of Pulsar is the ability to define the signal source, or generator. From a simple 50:50 mark:space square wave at any defined frequency, to an extremely complicated pulse train can be used. When specifying the generator, simply typing anything beginning with a number and containing the letters ' HZ ' is interpreted as a simple frequency generator. Typing in anything else will prompt Pulsar to search for a generator file with that name.

Complex generators can be created in the Generator screen and saved with an appropriate file name for use whenever required. Generators in use at any time can be modified in the generator screen, and the effect of the changes on the circuit under analysis displayed immediately on the analyser display screen.

There are more features of Pulsar than I have covered here, but to attempt to explain them and their uses is somewhat pointless as you really need to have Pulsar 'live' in front of you to understand their actions. Suffice it to say that they are well explained in the user manual.

The libraries

As I mentioned earlier there are three inbuilt libraries in Pulsar, which make the creating of netlists much quicker. The libraries are:

1. PRIM.LIB; a library of primitive logic elements, such as buffers, inverters, AND gates, OR gates, latches, etc.
2. 74LS(I).PLB AND 74LS(2).PLB; a library of over 120 component models covering the low-power Schottky TTL family.
3. $4000 . \mathrm{PLB}$; a library of over 90 component models covering the 4000 CMOS family.

When building up netlists for a circuit, then by naming the component type being used, Pulsar responds by reading the pin and parameter information from the library for the device. All you have to do is enter the various connection details.

Circuit blocks previously designed and tested can be added to the libraries, which is a useful feature if you are using a common circuit time and time again.

A useful feature of the basic logic elements found in the PRIM.LIB is that the transition delay through an element can be varied to emulate circuit and design conditions. A sub-menu from the Generator menu gives various delay parameters that can be modified. A feature of the delay modifiers is that the delays, both minimum and maximum, can be set to values which exceed the nominal values for the device(s) in the circuit. Another useful feature is that the delays can be modified on a global basis, thus allowing the simulation of the circuit to show the results of using different families of logic devices.

Conclusions

Creating a netlist for a circuit design is not as daunting as it may first appear, and never having done so before I followed the instructions, and in a very short time got to grips with the concept and created the netlist for the example circuit. Following the instructions I then connected my generator. Pulsar simulated the circuit and presented the results on the screen.

Upon running the analyser and playing with the many and varied features, it soon became evident that the facilities available are quite extensive. The versatility of the package as a design testing tool is unquestionable. Having used conventional logic analysers in the past I can imagine that in a development environment Pulsar would be far more ideal. The fact that a design circuit does not actually have to be built would be one great advantage. That, coupled with the ability of Pulsar to detect glitches down to 1 picosecond per week for example, proves that the system is a must for digital designers.

Although I barely scraped the surface of Pulsar's capabilities, I can recommend it to anyone engaged in digital design and testing work. Armed with his/her trusty PC and this software, a designer should be able to clear all but the most deeply nested bugs in any complex logic circuit. Highly recommended.

I wish to thank Mr. Espin and the staff of Number One Systems Limited for their help and advice, and for the review software.

PULSAR is priced at $\$ 342.00+\$ 9.00$ shipping and handling and is available from: Number One Systems, Harding Way, St. Ives, Huntingdon, Cambs PE17 4WR, England. Telephone: (0480) 61778. Fax: (0480) 494042.

MOTOR SPEED LIMITER

Design by K. Walraven

Abstract

Small, compact motors as used in circle saws, lawn mowers and other small electric tools burn out when overloaded. Before that happens, its speed will drop appreciably. If, therefore, the speed is monitored carefully by the circuit described here, burning out of the motor may be prevented.

SMALL motors used in domestic tools are often required to carry out tasks for which they were not designed: a lawn mower mowing a lawn that should have been done a month previously; a circle saw that uses a blade that should have been replaced a dozen or more kerfs ago. As a consequence, the motor is overloaded and gets hot. The thermal protection, if fitted, is then actuated and the motor must be given time to cool off. In many apparatuses, the thermal protection is not close to the motor, but elsewhere in the appliance where it monitors the motor current. Since that current increases proportionally with the load, overload can, indeed, be detected this way.

However, this arrangement does not monitor the temperature of the motor, so that consequently the motor still overheats in spite of three or four cooling-off periods. Nevertheless, the thermal protection will enable the motor (since the current has dropped to a 'safe' value) and the result is often that after a little while the insulation of the copper wire in the motor gives up the ghost. In general, that means that the motor is a writeoff; it can be rewound, but that is usually almost as expensive as a new motor.

The circuit described here ensures that the situation does not develop to its fatal end. Even before the motor begins to get warm, the protection becomes active, because it monitors the speed of the motor with the aid of an electronic sensor. When the speed drops as a result of overload, an alarm indicator is actuated. If the user ignores this, the motor is switched off automatically. This ensures that, provided the circuit is set up properly, the motor can never get too hot.

Circuit description

The circuit in Fig. 1 was designed in the first instance for use with squirrel-cage motors that have a nominal speed of $2600 \mathrm{rev} / \mathrm{min}$. Under no-load conditions, this speed will rise to about $2900 \mathrm{rev} / \mathrm{min}$. Below $2500 \mathrm{rev} / \mathrm{min}$, the motor is clearly overloaded and will get warm. There are, of course, squirrel-cage motors with a different nominal speed: for these, the parameters of monostable $\mathrm{IC}_{1 \mathrm{~b}}-\mathrm{IC} 1 \mathrm{c}$ must be altered slightly. The same applies to the small series-motors used in electric hand-tools. The nominal speed is invariably marked on the housing of the appliance.

Sensor IC_{3} is a reflection sensor that de-

tects the passing of a white dot that the user must place on the motor spindle. Every time the light of the LED reflected by the white dot falls on to the sensor, the motor has travelled one revolution. This (reflected) light causes thesensor's transistor to conduct briefly, whereupon the transistor's collector potential drops. This voltage pulse is converted into a digital pulse by network $\mathrm{T}_{1}-\mathrm{IC}_{1 \mathrm{a}}-\mathrm{R}_{2}-\mathrm{R}_{3}-\mathrm{C}_{1}$, which is used as a clock for $\mathrm{IC}_{2 \mathrm{a}}$. A nominal motor speed of $2500 \mathrm{rev} / \mathrm{min}$ (which is a normal speed of motors running with a nominal load) corresponds to a pulse rate of about 42 Hz (period= 24 ms).

Since the duty factor depends, among others, on the width of the white dot, the signal is divided by two by bistable (flip-flop) $\mathrm{IC}_{2 \mathrm{a}}$. The output signal of this bistable is a square wave.

Gates $\mathrm{IC}_{1 \mathrm{~b}}$ and $\mathrm{IC}_{1 \mathrm{c}}$ form a monostable, whose period is determined by $\mathrm{C}_{2}-\mathrm{R}_{4}-\mathrm{P}_{1}$. The time during which the output of the monostable is low is set by P_{1} : a good, practical value when a motor with a minimum speed (overload limit) of $2400 \mathrm{rev} / \mathrm{min}$ is used, is about 24 ms .

The output of the monostable is processed by comparator $\mathrm{IC}_{2 \mathrm{~b}}$. The monostable clocks the bistable at a first transition (rising edge). If the input to the bistable at that instant is still high, its Q output also goes high. This

PARTS LISTS
Resistors:
R1 $=330 \Omega$
$\mathrm{R} 2=470 \mathrm{k} \Omega$
$R 3=2.2 \mathrm{M} \Omega$
$R 4=10 \mathrm{k} \Omega$
$R 5=10 \mathrm{M} \Omega$
$R 6=3.9 \mathrm{M} \Omega$
R7 $=1 \mathrm{M} \Omega$
R8 $=220 \mathrm{k} \Omega$
$R 9=220 \Omega$
$\mathrm{P} 1=25 \mathrm{k} \Omega$
Capacitors:
$\mathrm{C} 1=1 \mu \mathrm{~F}, 63 \mathrm{~V}$
$\mathrm{C} 2=2.2 \mu \mathrm{~F}, 63 \mathrm{~V}$
C3, C6 $=1 \mu \mathrm{~F}, 63 \mathrm{~V}$
$\mathrm{C} 4=1 \mu \mathrm{~F}$
$\mathrm{C} 5=10 \mu \mathrm{~F}, 63 \mathrm{~V}$

Semiconductors:

D1-D3 = 1N4001
D4 = LED
$\mathrm{T} 1=\mathrm{BC} 560 \mathrm{C}$
T2 $=$ BC517
$I C 1=4093$
IC2 $=4013$
IC3 $=$ CNY70

Miscellaneous:

S1 = SPST switch
$\mathrm{Re} 1=12 \mathrm{~V} / 10 \mathrm{~A}$ coil, c/o contact
indicates that the motor speed has dropped too low and that an error message must be given. The exact motor speed at which an error must be indicated can be set with P_{1}. The longer the mono-time, the lower the motor speed can drop before an error is indicated.

When the supply voltage is switched on, the comparator, $\mathrm{IC}_{2 \mathrm{~b}}$, is reset automatically, so that power can be supplied to the motor. If the motor takes longer than eight seconds (standard) to come to full revs, some extra seconds can be obtained by pressing reset switch S_{1}. As long as that switch is operated, the protection circuit cannot disable the supply to the motor.

Networks $\mathrm{R}_{8}-\mathrm{C}_{6}$ and $\mathrm{R}_{5}-\mathrm{C}_{3}$ integrate the output of the bistable in the comparator. If the error persists for more than two seconds, the alarm indicator, D_{4} will light, and after eight seconds, the motor is switched off altogether. In this way, it should be virtually impossible for a motor to burn out. But ...

Construction

The circuit is best constructed on a small prototyping board. The reflection sensor must be mounted in the motor housing close to the spindle. The distance between the white
dot and the detector must not exceed a few millimetres. If the spindle is a light colour, so that a white dot would not give enough contrast, try a black dot, or make the spindle black (black insulation tape). Use screened cable toconnect the sensor to the circuit to prevent the circuit action being degraded by noise pulses emanating from the motor.

It is also possible to use an optocoupler as the light barrier. A disc with a hole in it must then be mounted securely on to the motor spindle. At each and every revolution of the motor, the LED will then briefly illuminate

Alternative reflection sensors

Sharp	GP2S04
Toshiba	TLP903
	TLP904
TRW	OPB125A
	OPB253A
	OPW703A
	OPW708
	OPW709
Texas	TIL138
	TIL139

the phototransistor. As with the reflection sensor, the optocoupler provides the necessary pulses for proper operation of the circuit.

Output relay Re_{1} is connected between the mains supply and the motor. Extremecaution must, therefore, be observed when the relay is energized: touching the mains supply may be fatal!

Fit the circuit in a small, man-made-fibre case. The circuit can be powered simply via a $9-\mathrm{V}$ mains adaptor. Omission of an on-off switch is deliberate: since the motor runs when the relay is not energized, it is easy to forget to switch on the protection circuit. Therefore, never forget to plug the adaptor into a mains socket. It makes good sense to connect the adapter to the mains in parallel with the motor, for instance, by linking it to the supply cable of the protected appliance between the mains plug and the appliance's on-off switch.

> Mention Elektar When You Patronige Our Adwertisers!

APPLICATION NOTE

The content of this note is based on information received from manufacturers in the electrical and electronics industries and does not imply practical experience by Elektor Electronics or its consultants.

LAMP/SOLENOID DRIVER UGQ5140K

TTHEUGQ5140K unipolar Hall effect switch is a monolithic IC designed for magnetic attenuation of low-power incandescent lamps or inductive loads such as relays or solenoids. Included on the chip is a darlington power output that is capable of continuously sinking more than 300 mA . Internal protection circuitry limits surge (lamp turnON) or fault currents to about 900 mA . A sensitive magnetic threshold allows the device to be used in conjunction with inexpensive magnets or in applications that require relatively large operating distances.

Each sensor/driver includes a magnetic

Fig. 1. Pinout viewed from branded side.
sensing Hall voltage generator, opamp, Schmitt trigger, voltage regulator and an open-collector, high-gain darlington power output stage. The regulator allows use of the device with supply voltages of $4.5-28 \mathrm{~V}$. Onchip compensation circuitry stabilizes switch-

Fig. 2. Allowable power dissipation vs temperature characteristic.
point performance over temperature.

Circuit description

The UGQ5 140K merges state-of-the-art Hall effect sensing and power driving technologies to allow precision non-contact actuation of incandescent lamps or inductive loads. It is rated for operation over a temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ as typically required in automotive applications.

Magnetic operation. As shown in Fig. 3, the output of the device (pin 2) switches low when the magnetic field at the Hall sensor exceeds the operate point threshold (B_{op}). At this point, the output voltage is $V_{\text {outsat) }}$. When the magnetic field is reduced to below the release point threshold (B_{RP}), the device goes high. The difference in the magnetic operate and release points is called the hysteresis (B_{H}) of the part. Thisbuilt-in hysteresis allows clean switching of the output even in the presence of external mechanical vibration and electrical noise.

Current and thermal limiting. Output short circuits may be caused by faulty connectors, crimped wiring harnesses, or blown loads. In such cases, current and thermal limit circuitry will protect the output transistor against destruction.

Current through the output transistor is sensed with a low-value on-chip aluminium resistor. The voltage drop across this resistor is fed back to control the base drive of the

Fig. 3. Typical transfer characteristics at $\mathrm{T}_{\mathrm{A}}=+2{ }^{\circ} \mathrm{C}$.
output stage. This feedback prevents the output transistor from exceeding its maximum current density rating by limiting the output current to about 900 mA . It may also the output voltage to increase*. In this mode, the device will dissipate an increased amount of power**, and the output transistor will be thermally stressed. This stress, unless protected against (as in the UGQ5140K), will cause the device junction temperature to rise until it fails catastrophically.

Thermal stress protection is provided in two manners: delta temperature protection and junction temperature protection. Under worst-case conditions (Fig. 4 and Fig. 5) if

Fig. 4. Output current under short-circuit

Fig. 5. Output voltage vs output current.

Fig. 6. Typical lamp driver application.
the output is shorted to supply, the output transistor will heat up much faster than the rest of the IC. This condition could cause localized failure in the output transistor. To prevent damage, a delta temperature limiting scheme is used. If a large thermal gradient is sensed across the device, the output transistor base drive is reduced to lower the output current. This reduces the power (heat) generated by the output transistor.

When thermal stresses cause the junction temperature to reach about $+165^{\circ} \mathrm{C}$, a linear thermal limiting circuit is activated. This circuit linearly reduces the base drive of the output transistor to maintain a constant junction temperature of $+165^{\circ} \mathrm{C}$. In this mode, the output current will be a function of the heat dissipating characteristics of the package and its environment. Linear thermal limiting eliminates the low-frequency thermal oscillation problems experienced by thermal shutdown (ON-OFF) schemes.

The output characteristics are shown in Fig. 4 and Fig. 5. Note the three distinct op-

Fig. 7. Lamp current vs time.
erating regions: peak limit, delta limit, and thermal limit. In practice, the output voltage and current may exhibit some oscillations during peak current limiting owing to output load characteristics. These oscillations are of very short duration (typically 50 ms) and may be damped with an external capacitor between pins 2 and 4.

When the fault condition that caused the output overload is corrected, the device returns to normal operating mode.

Typical applications

Incandescent lamp driver. High incandescent lamp turn-ON currents (commonly called in-rush currents), can contribute to poor lamp reliability and destroy semiconductor lamp drivers. Warning resistors protect both driver and lamp but use significant power when the lamp is OFF, while current-limiting resistors waste power when the lamp is ON. Lamps with steady-state current ratings to 300 mA can be driven by the UGQ5140K
(Fig. 6) without the need for warming or current limiting resistors. In applications using several sensor/drivers to control multiple lamps, the internal clamp diodes may be connected together to an appropriate cur-rent-limiting resistor and simple 'lamp test' switch.

As shown in Fig. 7, when an incandescent lamp is initially turned ON , the cold filament is at minimum resistance and will normally allow $\mathrm{a} \times 10$ to $\times 12$ peak in-rush current. As the lamp warms up, the filament resistance increases to its rated value and the lamp current is reduced to its steady-state rating. When switching a lamp with the UGQ5140K, the internal current-limiting circuitry limits the peak current to about 900 mA . The device will stay in the current limit and delta temperature limit modes until the lamp resistance increases to its rated steady-state value (Fig. 7). A side-effect of this currentlimiting feature is that lamp turn-on times will increase. Typical lamp turn-on times are shown in Fig. 8.

Inductive load driver. Connecting the internal clamp diode ($\operatorname{pin} 3$) to the positive supply allows relays or other inductive loads to be driven directly, as shown in Fig. 9. The internal diode prevents damage to the output transistor by clamping the high-voltage spikes that occur when an inductive load is turned OFF. An optional external zener diode can be used to increase the flyback voltage, providing a much faster inductive load turnOFF current decay, resulting in faster dropout (reduced relay contact arcing), and improved performance. The maximum zener voltage, plus the load supply voltage, plus the clamp diode forward voltage should not exceed 35 volts.

$$
\begin{aligned}
& * V_{\text {out }}=V_{\mathrm{BB}}-\left(I_{\mathrm{LIMIT}} \times R_{\mathrm{L}}\right) \\
& * * P_{\mathrm{D}}=V_{\text {out }} \times l_{\mathrm{LIMIT}}
\end{aligned}
$$

Source: Data sheet 27695: Sensor Integrated Circuit UGQ5140K; Sprague Semiconductor Group, 70 Pembroke Road, Concord, New Hampshire 03301, USA.

Fig. 9. Typical relay/solenoid driver application.

MILLI-OHM MEASUREMENT ADAPTOR

Prices of digital multimeters have come down to a level where they are affordable by almost any hobbyist. Although most multimeters offer a fair number of measurement ranges, including, on some of the latest models, frequency and capacitance, they are not really suited to measuring very small resistance values, say, in the milli-ohm range. The adaptor described here overcomes this problem.

Design by Ing. B.C. Zschocke

RESISTANCE values smaller than 10Ω or so are notoriously difficult to measure because multimeters often lack a suitable range, or run into tolerances so high that measurement results are at best 'approximate'. Examples of low-value resistors are shunts used with moving-coil meters, and emitter resistors in transistor power amplifiers and power supplies. Typically, such resistors have values in the milli-ohm range, and are almost impossible to measure accurately with the aid of a normal multimeter.

Since low-value resistance measurements will not be required too often, most of you will be reluctant to buy a dedicated milli-ohm meter. Therefore, a simple circuit is described that functions as a $\mathrm{m} \Omega$-adaptor for use with any $31 / 2$-digit digital multimeter. The measurement ranges created by the adaptor are $20 \Omega, 2 \Omega$ and 0.2Ω for full-scale deflection. The accuracy that can be achieved depends on the multimeter used and the tolerance of the reference resistor in the adaptor.

The resistor to be measured is connected to the multimeter (set to the 200 mV d.c. range) as well as to the adaptor. This creates a four-point resistance measurement.

The basics

The basic operation of the circuit is easily explained with reference to Fig. 1. As soon as
the resistor to be measured, R_{x}, is connected into the circuit, opamp IC1, power FET T1 and resistor R1 supply a reference voltage U_{1}. This means that a measurement current U_{1} / R_{1} flows through the opamp and R_{x}. In the present circuit, a reference voltage of 100 mV is used, in combination with selectable reference resistors of $10 \Omega, 1 \Omega$ and 0.1Ω. This results in measurement currents of $10 \mathrm{~mA}, 100 \mathrm{~mA}$ and 1 A . The multimeter is set to the $200-\mathrm{mV}$ range, and connected in

Fig. 1. Principle of four-point resistance measurement. The opamp is assumed ideal here.
parallel with the test sockets on the adaptor.
When the multimeter has an accuracy of 0.1 mV , a resistance of
$0.1 \mathrm{mV} / 1 \mathrm{~A}=100 \mu \Omega$
can be measured in the highest current range. The simplicity of this type of measurement has one disadvantage: the measurement result can not be read directly from the multimeter, which gives a mV indication. Depending on the selection of the reference voltage and the reference resistor, the conversion boils down to a simple multiplication with 0.001 (or 1 for $\mathrm{m} \Omega$ values), 0.01 or 0.1 . For example, a meter indication of 167.8 mV in the $20-\Omega$ range corresponds to a resistance of 16.78Ω.

Practical circuit

The circuit diagram in Fig. 2 is the practical implementation of what has been discussed above concerning the principle of four-point resistance measurement. In fact, the circuit diagram is hardly more complex than Fig. 1: only the range resistor selection and the reference source are added.

A pseudo-zener diode Type TL431C is used as the reference source. The zener takes its unregulated input voltage from a $9-V$ (PP3) battery. The reference voltage at the input of the opamp is set by a multiturn

Fig. 2. Circuit diagram of the $\mathrm{m} \Omega$ adaptor for digital multimeters.
preset, P , which forms part of a potential divider connected across the reference source. To eleminate the off-set voltage introduced by the opamp, the voltage at the input is set to 100 mV minus the off-set voltage. All voltages in the circuit are referenced against the cathode of the TL431C.

The opamp adapts the gate drive of FET Ti until the voltage drop across the selected reference resistor ($\mathrm{R} 1, \mathrm{R} 2$ or R 3) equals the reference voltage. When this is achieved, the current through Rx is either $1 \mathrm{~A}, 100 \mathrm{~mA}$ or 1 mA .

An $R-C$ network, R6-C3, and a capacitor, C_{2}, ensure a high d.c. amplification of the opamp, while keeping the a.c. amplification as small as possible to prevent instability.

There are good reasons for using a less than common opamp in this circuit. The TLC2201 from Texas Instruments offers a large drive margin right up to about 0.1 V below the supply voltage, while its off-set voltage remains stable despite changes in the ambient temperature and the supply voltage. Also, its input bias current is very small thanks to the use of input FETs. The large drive margin is essential here to ensure sufficient gate drive for the FET at a relatively
low supply voltage (battery operation).
Given the relatively high measuremen currents, the contact resistance of the range switch must be taken into account. That is why the opamp input, pin 3 , is connected to the selected measurement resistor via R_{6} and an extra deck on switch S_{1}, rather than directly to the pole of Sta (point ' A ').

The functions of the rest of the components in the circuit are easily explained. Resistor R4 reduces the power dissipation in the FET. It can be made smaller when high contact resistances are to be compensated in the measurement circuit. Push-button S_{2} and resistor R10 are included to check the correct function of the adaptor and the multimeter ('battery test'). The $1.5-\mathrm{V}$ battery marked 'Batt.1' in the circuit diagram may be a 'mono' (IEC R20) or 'baby' (IEC R14) type, or a 'mignon'-size (IEC R6) NiCd battery. The internal resistance of all these three battery types is sufficiently small. The battery marked 'Batt.2' is a 9-V PP3 (IEC 6F22) power pack.

Diode D2 protects the circuit against back e.m.f. produced when inductances are measured. A protection against external voltages is not provided. Also, be careful

Table 1. DMM indication to value conversion

Measurement range (adaptor)	Indication (DMM)	Resistance (Rx)	Conversion
0.2Ω	200 mV	$200 \mathrm{~m} \Omega$	readout $\times 1 \mathrm{~m} \Omega / \mathrm{mV}$
2.0Ω	200 mV	2Ω	readout $\times 0.01 \Omega / \mathrm{mV}$
20Ω	200 mV	20Ω	readout $\times 0.1 \Omega / \mathrm{mV}$

MAIN SPECIFICATIONS

- Suitable for all digital multimeters with a $\mathbf{2 0 0}-\mathrm{mV}$ d.c. range
- Added measurement ranges: $20 \Omega, 2 \Omega, 0.2 \Omega$
- Resolution: $\mathbf{1 0} \mathrm{m} \Omega, \mathbf{1} \mathrm{m} \Omega, \mathbf{0 . 1} \mathrm{m} \Omega$
- Measurement error: $\mathbf{0 . 1 \%}, \mathbf{0 . 2 \%}$, 0.5% (depending on DMM tolerance)
- Four-point resistance measurement
when measuring the resistance of transformer windings-the voltage induced in the primary winding may be dangerous!

Construction and adjustment

The adaptor is built on a small single-sided printed circuit board, of which the artwork is shown in Fig. 3. Because of the relatively high measurement current, it is recommended to use fairly thick wires (e.g., $0.75 \mathrm{~mm}^{2}$ multi-strand wire). Do not use solder terminals-instead, solder the wires directly to the board, the battery holder and the terminal posts on the front panel. The terminal posts (or 'wander sockets' as they are sometimes called) are types with a horizontal through hole in the threaded shaft. These holes are used to clamp down the wires of the resistor to be measured, while the probes of the multimeter are inserted into the vertical cylinders in the terminals.

To adjust the adaptor, set it to the highest measurement range (reference resistor R3, switch Sla to position ' 4 '). Short-circuit the measurement posts. Connect the multimeter probes directly across reference resistor R3, and adjust preset Pı until the DMM indicates 100 mV . It is recommended to repeat this adjustment from time to time.

In principle, the adaptor may also be adjusted in any of the two other ranges. However, adjustment in the $20-\Omega$ range will provide the highest accuracy because the measurement resistor in this range has the smallest tolerance (0.1%). In any case, fit new batteries before adjusting the adaptor.

A few remarks on the battery voltages: the BUZ10 (T1) starts to conduct at gate voltages between 2.1 V and 4 V . A drain current of 1 A requires a gate-source voltage of 4.5 V or more. In practice, this means that the battery voltage of Batt. 2 must not drop below 7 V . Theoretically, the lowest voltage of Batt. 1 is

$$
\begin{aligned}
& I_{\max }\left(R_{4}+R_{1}+R_{\max }\right)= \\
& 1(0.47+0.1+0.2)=0.77 \mathrm{~V} .
\end{aligned}
$$

Again in practice, the minimum battery voltage will higher at about 1 V to allow for the drain-source voltage ($U_{\mathrm{d}-\mathrm{s}}$) of T 1 , wire losses,

Fig. 3. Track layout (mirror image) and component mounting plan of the adaptor PCB.

920020 - F
Fig. 4. Suggested front panel design.
nected to the terminal posts on the front panel of the milli-ohm adaptor. The reading on the DMM is converted into a resistance value as shown in Table 1.

As already mentioned, care should be taken when measuring inductive components such as large chokes and transformer windings. When an inductive component is disconnected from the adaptor, it may pro-

COMPONENTS LIST				
Resistors:			emiconductors:	
1 0 ${ }^{1} 10.5 \%$	R1	1	TL431C D1	
$11 \Omega 0.2 \%$	R2	1	1N4001 D2	
1 10ת 0.1\%	R3	1	BUZ10 T1	
$10 \Omega 47 \mathrm{TW}$	R4	1	TLC2201 IC1	
1100Ω	R5			
$110 \mathrm{k} \Omega$	R6	Miscellaneous:		
2 2k ${ }^{1}$	R7; R 8	1 3-pole 4-way PCB mount		
$182 \mathrm{k} \Omega$	R9	rotary switch		S1
11Ω	R10	1 SPST push-button		S2
$12 \mathrm{k} \Omega$ multiturn preset	P1	19 V battery with clip $1 \quad 1.5 \mathrm{~V}$ battery with holder		Batt. 1
				Batt. 2
Capacitors:		1 Heat-sink for T1.		
$2{ }^{2} 47 \mu \mathrm{~F} \mathrm{16V} \mathrm{radial}$	C1; C5	1 ABS enclosure, size approx. $145 \times 90 \times 30 \mathrm{~mm}$		
110 nF	C2			
2100 nF	C3;C4	1 Terminal post black		
$110 \mu \mathrm{~F} 16 \mathrm{~V}$ radial		1 Terminal post red 1 Printed circuit board		
		920020		

duce an induced voltage. In the interest of safety, keep to the following order: (1) connect the unknown inductor to the adaptor; (2) connect the multimeter; (3) switch on the adaptor with S1. The opposite order applies when the measurement is finished: (1) turn off the adaptor; (2) disconnect the multimeter; (3) disconnect the inductor. Large inductances, for example, power transformers, are best short-circuited before disconnecting.

Fortunately, the above connection and disconnection order need not be observed when purely resistive components are measured.

Extensions

It is, of course, possible to extend the present adaptor into a dedicated milli-ohm meter: all that is required to do so is a separate power supply and a conventional DVM module. The inputs of the DVM are then connected directly between the pole of Slb and the ground. In this way, the DVM measures the ratio of the unknown resistance to the reference resistance, independent (within limits, of course) of the measurement current, which makes adjustment unnecessary. The accuracy of the instrument thus depends on the accuracy of the DVM module and that of the reference resistor.

ESSENTIAL CIRCUITS

REFERENCE GUIDE

by John Markus and Charles Weston
ISBN 007-040-4631
528 pages
Price $\$ 29.95$ (hardcover)
In well over 500 pages, hundreds of electronic circuits are presented in more than 60 logical sections for browsing or reference by electronics engineers, technicians, students, enthusiasts, and experimenters.
Each circuit has type numbers or values of all significant components, an identifying title, brief description, performance data, and suggestions for other applications. The component values are a great help in reading the circuit and redesigning it to meet various other requirements.
Finding a particular circuit is made very easy by an alphabetically arranged table of contents and, if that does not lead you to the wanted circuit, an excellent index will. The book also includes a list of sources, including addresses, which is very convenient if you need more details on a particular circuit.
Essential Circuits Reference Guide is part of the McGraw-Hill Engineering Reference Guide Series that aims at making a wide variety of engineering information and data available to professionals, students, and enthusiasts.
It is very useful as an on-the-job tool and should, therefore, be in the library of everyone interested in, and concerned with, electronics, audio engineering, radio engineering, and computer technology.
To order books directly from McGraw-Hill, call (800) 2MC-GRAW.

PRINTED CIRCUIT BOARD DESIGN WITH MICROCOMPUTERS

by T. J. Byers
ISBN 007-009-5582
320 pages
Price $\$ 39.95$
To our knowledge, this is the first book to show how to use the newest PC-based schematic capture and PCB layout programssuch as OrCAD. Schema, and EE Designerto make professional PCBs.
As can be imagined, this is a book for the practical engineer, designer, and amateur enthusiast. It provides answers to most, if not all, questions that arise during circuit design
and board layout on the computer. The only pity is that it restricts itself to IBM or compatible equipment whereas many professional design departments, and a growing number of hobbyists, now use Macintoshes. Nevertheless, many hints in the book can, no doubt, be used with Apple equipment.

This practical book, liberally illustrated with scores of PCB screens, is a must for anyone involved in the design of PCBs.
To order books directly from McGraw-Hill, call (800) 2MC-GRAW.

ENGINEERING THE HUMANCOMPUTER INTERFACE Edited by Andy Downton
 ISBN 007-707-3215
 438 pages
 Price $\$ 58.95$ (hardcover)
 Engineering the Human Computer Interface is

 one of the Essex Series in Telecommunication and Information systems which provides a range of modern and forward-looking texts on important topics in this field. Based on the highly regarded postgraduate industrial short courses offered by Essex University, the series emphasizes fundamental concepts and avoids overly mathematical treatment of its subjects.With the increasing use of computer systems in all walks of life, human-computer interaction has become a vital aspect of the design of any computer-based system. Readers are introduced to design and design tools.
The book also includes an overview of relevant theory and experimental evidence from cognitive psychology and the human sciences. Drawing from the very latest theories and grounded on experimental evidence, the book, written from the technologist's point of view, is essential reading for all computer programmers and engineers. To order books directly from McGraw-Hill, call (800) 2MC-GRAW.

[^0](ATE). Many people, including electronics engineers and technicians, are not quite clear just what ATE entails. This book will tell them.
In a lucid style, the author takes the reader from an explanation of what ATE is, to types of test equipment, test strategies, and the various buses. These buses are important, because an automatic test equipment system is really a computer system that is interlinked by buses.
The book should be of use and interest to anyone who needs to know and compare the main categories of ATE and make an informed choice which of the many to buy to the best advantage of his workshop or company. Nevertheless, engineers, technicians, and students should also benefit from this general-purpose book, which is at the same time a reference book.
Butterworth-Heinemann
80 Montvale Ave.
Stoneham, MA 02180
(800) 366-2665

DESIGN AND BUILD ELECTRONIC POWER SUPPLIES
by Irving M. Gottlieb
ISBN 08306-8540-5
176 pages-illustrated
Price $\$ 26.95$ (hardcover)
After a long(ish) period of basically standardized techniques, the designer of power supplies now has access to new techniques (away from the almost traditional pulsewidth modulation) and new components that allow high switching rates with no significant loss in performance. Consequent changes in the author's approach are not changes for changes' sake: the new techniques promise greater operating efficiency, more watts per unit volume, better power line factor, reduced electromagnetic and RF interference, extended reliability, and lower cost.
The book provides much useful guidance and insights to those who are technically knowledgeable and in a position to profit from experimentation and creative engineering in a changing field. As such, it is a must for the engineer, technician, and hobbyist who wants (or needs) a complete and detailed overview of these important changes.
TAB Books
Blue Ridge Summit, PA 17294
(800) 822-8138 ext. 276

MEDIUM POWER AF AMPLIFIER

Since we published the "Medium Power AF Amplifier" (EEUSA 10/91, p. 54 and 11/91, p. 44), our design laboratories have received some new, more sophisticated test instruments. Among them is an audio analyzer that gives more precise measurements of THD, IM, TIM, and so on. The internal distortion of this instrument is way below $0.001 \%(20 \mathrm{~Hz}-20 \mathrm{kHz})$. The instrument also has a two-channel FFT analyzer (sample frequency 192 kHz) with built-in 24 -bit signal processors. This enables very accurate and rapid analyses of distortion.
Since the instrument was not available during the design of the "Medium Power AF Amplifier," our engineers felt it worthwhile to subject their prototypes to an analysis with the new instrument. Some of the results are shown in Fig. 1-5.
It has become apparent that the power transistors specified, that is, the BD911 and BD912 in practice have a much larger spread than we were led to believe by the manufacturers' data sheets. A number of readers have reported that because of this their amplifiers have broken down spontaneously. The reason for this is that one of the three parallel-connected transistors
draws a larger current than the other two and that's the end of the transistors.
To ensure that such mishaps cannot occur, the characteristics of the transistors should be measured before the devices are taken into use. A suitable instrument for this is the "High Current $\mathrm{h}_{\text {FE }}$ Tester" (EEUSA 9/90, p. 40). It is advisable to use three transistors whose characteristics do not deviate from one another by more than about 20%.
It is, of course, also possible to use different types of transistors, for instance, the BDT95 and BDT96, or the BDT85 and BDT86. Furthermore, it cannot be overstressed that before the amplifier is tested, power resistors of $15-22 \Omega$ are inserted into the supply lines. No damage can then ensue and you can ascertain the current split between the three transistors (by means of the voltage across the 0.27Ω emitter resistors).

THE COMPLETE PREAMPLIFIER

In response to a number of requests from readers, here is a list of technical data for Parts 1 and 2 of "The Complete Preamplifier," (EEUSA 1/91, p. 44; EEUSA 3/91, p. 18).

THE COMPLETE PREAMPLIFIER-TECHNICAL DATA

INPUT SENSITIVITY

Microphone input	2.4 mV RMS
Line inputs	150 mV RMS
INPUT IMPEDANCE	
Microphone input	$47 \mathrm{k} \Omega$
Line inputs	$47 \mathrm{k} \Omega$
NOMINAL OUTPUT VOLTAGE	1 V RMS
OUTPUT IMPEDANCE (TAPE \& LINE)	<100,
MAXIMUM OUTPUT VOLTAGE	95 V RMS
BANDWIDTH ($10 \mathrm{k} \Omega$ LOAD)	
Microphone input	$20 \mathrm{~Hz}-20 \mathrm{kHz}(\pm 0.3 \mathrm{~dB})$
Line inputs	$5 \mathrm{~Hz}-1 \mathrm{MHz}(\pm 0.5 \mathrm{~dB})$
SIGNAL-TO-NOISE RATIO (INPUTS SHORTED)	
Microphone input	$>80 \mathrm{~dB}$ (linear)
Line inputs	$>100 \mathrm{~dB}$ (linear)
CHANNEL SEPARATION (ZSOURCE $<600 \Omega$)	$>100 \mathrm{~dB}(1 \mathrm{kHz})$
(line inputs)	$>70 \mathrm{~dB}(20 \mathrm{kHz})$
CROSSTALK BETWEEN INPUTS	$>100 \mathrm{~dB}(1 \mathrm{kHz})$
(unused inputs terminated in 6008)	$>80 \mathrm{~dB}(20 \mathrm{kHz})$
HARMONIC DISTORTION (1V OUTPUT) (line inputs)	$>0.003 \%(20 \mathrm{~Hz}-20 \mathrm{kHz})$
INTERMODULATION DISTORTION (IV OUTPUT) (line inputs)	<0.005\% $(250 \mathrm{~Hz} / 4 \mathrm{kHz} ; 4: 1)$

NTSC-PAL-SECAM TRANSLATOR

I am writing to congratulate you on a fine electronics magazine. It is one of the best I've seen for years. The quality of the articles is very high and there seems to be no shortage of variety. Keep up the good work.
I would like to suggest an article for future issues. The article would have an international flavor and I'm sure many people would like to see it. The subject

Fig. 1. Harmonic distortion at 1 kHz . Expressed as a percentage: 0.004%.

Fig. 2. THD from 20 Hz to 20 kHz at an output voltage of $2.83 \mathrm{~V}(1 \mathrm{~W}$ into $8 \Omega)$.

Fig. 3. Frequency characteristic at an output voltage of 2.83 V .
would be about building a converter for the different TV systems. In other words, a need exists for converting a recorded VCR tape from one format to another. For example, an NTSC format to a PAL or vice versa. I'm sure that several readers would find such a project just what they are looking for (on both sides of the ocean). I shouldn't think that this is outside the scope of readers or your staff to produce. In these days, the world is very small and several instances will occur for such a need. I hope to see such an article in the future.

James Creviston
Chanute, KS

Editor replies:

A thought I personally find very attractive. Unfortunately, its execution is rather more complex than would appear. Commercially, it is, of course, a nonstarter: manufacturers the world over are not in the least interested in standardization or their customers' interest. A little while ago, it seemed that

Fig. 4. Intermodulation distortion 500 Hz : 7 kHz; power ratio 4:1.

Fig. 5. Harmonic distortion vs the drive voltage to the output amplifier stages.
some sense was beginning to prevail, when the International Radio Consultative Committee stated: ". . . The long-term future of HDTV lies in the digital domain, and equally, the long-term future of HDTV standards should lie with a unique worldwide standard." Alas, politicians, spurred on by manufacturers (voters, money!) have overruled this wisdom and that one worldwide standard does not look likely in our children's lifetime. That, of course, brings us back to your suggestion which, in the light of what I just said, becomes even more important. I will discuss it with our technical
boffins; in the meantime, any readers who have bright ideas on the subject, please let us know.

MAKING YOUR OWN PCBs

I am interested in creating my own PCBs and have bought plain copper-clad boards and attempted to coat them with positive photoresist. I use "Electrolube RP50 Positive Photoresist" spray and caustic soda as the developer. I have the problem of not knowing exactly how long to

decoder

Semiconductor types Very often, a large number of equivalent semiconductors exist with different type numbers. For this reason, 'abbreviated' type numbers are used in Elektor wherever possible:

- '741' stand for $\mu A 741$. LM 741, MC 741, MIC 741 . RM 741, SN 72741, etc.
- 'TUP' or 'TUN' (Transistor, Universal, PNP or NPN respectively) stand for any low frequency silicon transistor that meets the following specifications:

UCEO, max	20 V
IC, max	100 mA
hfe, \min	100
Ptot, \max	100 mW
IT, \min	100 MHz

Some 'TUN's are: BC 107. BC 108 and BC 109 families; 2N3856A, 2N3859, 2N3860, 2N3904, 2N3947, 2N41 24. Some 'TUP's are: BC 177 and BC1 78 families; BC 179 family with the possible exception of BC 159 and BC 179; 2N2412. 2N3251, 2N3906, 2N4126, 2N4291.

- 'DUS' or 'DUG' (Diode Universal, Silicon or Germanium respectively) stands for any diode that meets the following specifications:

	DUS	DUG
UR, max	25 V	20 V
IF, max	100 mA	35 mA
IR, max	$1 \mu \mathrm{~A}$	$100 \mu \mathrm{~A}$
$P_{\text {tot, max }}$	250 mW	250 mW
CD, max	5 pF	10 pF

Some 'DUS's are: BA 127, BA 217, BA 218, BA 221, BA 222, BA 317, BA 318, BAX 13, BAY 61, 1N914. 1N4148.

Some 'DUG's are: OA 85 OA 91, OA 95, AA 116.

- 'BC 107B', 'BC 2378', 'BC 547B' all refer to the same 'family' of almost identical better-quality silicon transistors. In general, any other member of the same family can be used instead.

BC 107 ($-8,-9$) families
BC $107(-8,-9)$, BC $147(-8,-9)$,
BC 207 ($-8,-9$), BC 237 ($-8,-9$),
ВС 317 ($-8,-9$), BC $347(-8,-9)$, BC 547 ($-8,-9$), BC $171(-2,-3)$, BC $182(-3,-4)$, BC $382(-3,-4)$, BC $437(-8,-9)$, BC 414
BC 177 ($-8,-9$) families
BC 177 (-8, -9), BC 157 (-8, -9),
BC $204(-5,-6)$, BC $307(-8,-9)$,
BC $320(-1,-2)$, BC $350(-1,-2)$,
BC 557 (-8, -9), BC 251 ($-2,-3$),
BC $212(-3,-4)$, BC $512(-3,-4)$, BC $261(-2,-3)$, BC 416.

Resistor and capacitor values

 When giving component values, decimal points and large numbers of zeros are avoided wherever possible. The decimal point is usually replaced by one of the following abbreviations:p (pico- $=10^{-12}$
n (nano-) $=10^{-9}$
$\mu($ micro- $)=10^{-6}$
m (milli-) $=10^{-3}$
k (kilo.) $=10^{3}$
M (mega-) $=10^{6}$
G (giga-) $=10^{9}$
A fow examples:
Resistance value 2k7: 2700Ω. Resistance value 470: 470Ω, Capacitance value $4 \mathrm{p} 7: 4.7 \mathrm{pF}$, or 0.0000000000047 F. Capacitance value 10 n : this is the international way of writin writing $10,000 \mathrm{pF}$ or $.01 \mu \mathrm{~F}$. since 1 n is 10^{-9} farads or 1000 pF .

Resistors are $1 / /$ Watt 5\% carbon types, unless otherwise specified. The DC working voltage of capacitors (other than electrolytics) is normally assumed to be at least 60 V As a rule of thumb, a safe value is usually approximately twice the DC supply voltage.

Test voltages

The DC test voltages shown are measured with a $20 \mathrm{k} \Omega / \mathrm{V}$ instrument, unless otherwise specified.

U, not V
The international letter sym-
bol ' U ' for voltage is often used instead of the ambiguous ' V '. ' V ' is normally reserved for 'volts'. For instance: $\mathrm{U}_{\mathrm{b}}=10 \mathrm{~V}, \operatorname{not} \mathrm{~V}_{\mathrm{b}}=10 \mathrm{~V}$.

Mains voltages

No mains (power line) voltages are listed in Elektor circuits. It is assumed that our readers know what voltage is standard in their part of the world
Readers in countries that use 60 Hz should note that Elektor circuits are designed for 50 Hz operation. This will not normally be a problem: however, in cases where the mains frequency is used for synchronisation some modification may be required.
expose the board to the UV source and upon developing the board different areas seem to develop at different rates so that when one part of the board is fully developed, other parts are not. I have tried between five and fifteen minute exposures to UV light but have not had much luck
I have also tried "Seno Positiv 100 Photoresist" and "Seno Develop 111 Soft" applicators, but have not had much luck with them either. After exposing the board to UV light, I have attempted to develop the board using the soft developer but I cannot tell when the board is fully developed. The tracks appear as very light green, but when etched in ferric chloride, there still seemed to be some photoresist on other parts of the board that slowed down the etching.
I have considered buying the precoated boards, but the extra cost means that I would rather, if at all possible, coat the boards myself to save the money. Are the pre-coated boards worth buying for their better quality or is it possible to get just as high quality results from home coated boards?
Any advice or help is appreciated.

Howard Price

Newport, Gwent

Technical Editor replies:

We cannot see why with all the work you have put into it, you have not been able to obtain satisfactory results. One comment is that the etching tray should be rocked gently during the initial and final stages of etching. Have you studied our article "Make Your Own PCBs" in the September 1990 issue? Are there any other readers who have had and solved, difficulties similar to Mr. Price's? Please let us know.

DISAPPOINTED. . .

I wish to express my disappointment with your publication. I once subscribed to your English issue, which I really enjoyed. So when the USA version debuted, I quickly subscribed. I have had absolutely no luck with any of the articles in any of the issues to date. The closest has been the latest (EEUSA 1/92). The [PC connectors] chart on computer interfaces
would be great if you reissue it with the errors corrected.

1. Connect pin 20 to pin 4 in the DB25 to DB9 cable.
2. Put the door open connection for some floppies.
3. Indicate that the twist in the special IBM ribbon cables is to allow all disk

AED parts kit service

We have been advised that AED of York, who have been running a parts kit service for our projects for some time, have had to discontinue this service owing to lack of demand.

Enquiry from unknown reader

We have received a letter with a number of enquiries from a reader who unfortunately did not state his name and address. The enquiries pertain to the 'Test pattern generator', 'Floppy disk monitor', 'Logic analyser', 'Universal I/O interface', 'Multifunction measurement card', '8032-8052 single-board computer', and 'Wattmeter'. Will this reader please let us know his name and address so that we can reply to his queries.

Electronic control of astronomical instruments

Some time ago, we received a letter from Mr S.J. Dearden of Vernaison, France, asking us to PLEASE publish one or more articles on the electronic control of astronomical instruments, such as a sidereal clock, a star tracker and image camera based on CCD technology, complete with interface, controller, and image processing software, an accurate telescope control system, operated by a remotely located microcomputer, computer-controlled photometer, a model planetarium, and more. At the time, since none of our in-house designers is competent in this field, we wrote to several free-lance designers/authors for possible contributions.

Since the response has been lukewarm, we now use these columns to ask readers, particularly in America (since there is much more activity there in the electronics cum astronomy field than in Europe) if they have any possible contributions as outlined above.
drives to be strapped as B drives. So much more could have been on the chart.
The other almost article was the CD construction article (EEUSA 1/92, p. 36). How can one build a CD player when you can buy a beauty with IR remote for under $\$ 100$. I thought it was going to be how the under $\$ 100$ goodie could be made with a digital interface to the IBM as a CD ROM reader and give a source code for software to read the result.

Travis Brackeen

St. Louis, MO

Editor replies:

I regret your disappointment, but your letter does not really indicate the source of it. The first two comments on the PC connectors chart are additions rather than corrections, but point 3 is well taken and an indication to that effect would have been useful. As to your comments on the CD player, indeed, there are $C D$ players on the market for under $\$ 100$, but what is their quality? Our research indicates that finding a (new) $C D$ player with a deck of the quality of CDM-4 for under $\$ 200$ is miraculous. Apart from that, for most home constructors the fun of the project lies in the doing it yourself. Interfacing to the IBM as a CD ROM reader is something for the future(?)

. . . AND DELIGHTED

I appreciate my subscription to EEUSA, especially for the practical applications: these are useful in my courses (the writer is an associate professor in electrical and computer engineering-Ed).
I am wondering if you could append a one-paragraph biographical sketch of each author at the end of each article. A photo of the author would enhance it even more. I believe this might serve to inspire your readers even more.

Allen Drake

Durham, NH

Editor replies:

How pleasing to read that our articles are used not only for individual pleasure, but also for educational/training purposes. The

Continued to page 66

WOULD YOU LIKE TO ...

SUBSCRIBE?

YES! Just check the appropriate boxes in the "renew" section and fill in name and address.

RENEW?

Fill in the appropriate sections below. For faster service use your mailing label and subscriber number.
1 year at $\$ 28$
2 years at $\$ 50$Check/MO enclosed Charge MC/VISA

Subscriber

 ServicesComplete the applicable section(s) below and mail to:
Elektor Electronics USA
PO Box 876
Peterborough, NH
03458-0876

NAME

STREET \& NO

CITY ST ZIP

Canada add $\$ 8$ per year postage
Remit in US \$ only

\square GIVE A GIFT?

What a thoughtful idea! Fill out your name and address above, the recipient's name and address to the right. We'll even send a gift card announcing your gift.

\square TELL YOUR FRIENDS ABOUT US?

Print their names and addresses below or photocopy this form for them. We'll take care of the rest.

NAME		
STREET \& NO		
CITY	ST	

COMPLAIN ABOUT YOUR SUBSCRIPTION?

Yes, it sometimes happens. We try to avoid it at all costs, but it you have a problem, we want to know. Call or write with all pertinent information.

Continued from page 64
use of short biographical sketches of authors, with or without photograph, is far more widespread in the USA than in Europe, where, in fact, it is virtually un known, except in the journals of learned societies. I find it a commendable practice and will, therefore, endeavor to introduce it. There is a practical problem, often the author is not the designer of a project, particularly if the design originates in our own laboratories, when the article is written by a technical writer on our staff. However, problems exist to be overcome!

S-VHS/CVBS TO RGB CONVERTER

With reference to the above article, published in your October 1990 issue, can you confirm that the Toko inductor (L_{2}) type listed is correct? Cirkit (Distribution) insist this has never existed and said it probably should have read "119LN-5873." However, that is only
$15 \mu \mathrm{H}$, whereas L_{2} is shown as $50 \mu \mathrm{H}$. Is L_{2} critical or would any $50 \mu \mathrm{H}$ inductor be safe to use?
G. Franklin

Canvey Island, Essex

Editor replies:

Contrary to what Cirkit advises, Toko inductor Type 110LNA5783 does exist and its nominal value is $50 \mu H$. The type indication on the can of the inductor used to build our prototype of the converter reads "A5783" and the device is certainly one from Toko's 119 LN series. If you still have problems getting this component, it is available ex-stock from C-I Electronics , PO Box 22089, 6360AB, Nuth, Holland, Fax + 31-45-241-877.

Although the adjustment of this inductor is fairly uncritical, a 119LN5873 would not work as its inductance is too low.
As an aside, the adjustment of P_{l} appears to have caused problems to a number of con-
structors. It appears that the PLL will not lock and $I C_{7}$ cuts off all the video when the frequency is set only a couple of hertz above the target frequency of $16,625 \mathrm{~Hz}$. The best setting of P_{1} is, therefore, a little too low (clockwise), whereupon the picture will appear after a few seconds.

DIGITAL STORAGE SCOPE?

I have read your magazine for some time now and find the standard and coverage of constructional articles excellent.
However, having recently started the microcomputer-controlled logic analyzer as a long-term project (money is tight), I thought that a matching digital storage oscilloscope with a full set of bells and whistles (so to speak) would make a good series of articles: using the computing power of a PC would make a very versatile instrument. I haven't enough knowhow to design such a device-1 leave that

FIND THE LATEST ISSUE OF

ELEKTIR
EIECTRONIGS
USA

AT THESE LOCATIONS

Tri-Tek
9014 N 23 rd Ave 11
Phoenix, AZ
Gateway Electronics 9222 Chesapeake Dr San Diego, CA
Henry Radio
2050 S Bundy Dr Los Angeles, CA
HSC Electronic Supply 4837 Amber Lane Sacramento, CA HSC Electronic Supply
3500 Ryder St
Santa Clara, CA
Gateway Electronics 2525 N Federal Blvd Denver, C0
Tapco Engineering 1639 47th St NE Cedar Rapids, IA

RJM Electronics 4204 Overland Rd Boise, ID
Gateway Electronics 8123 Page Blvd St Louis, M0 Cody Books Ltd. 1122 Fir Ave Blaine, WA RP Electronic Co 2113 W 4th Ave Vancouver, BC CaNada
Powell's Technical Books 33 NW Park Portland, OR

If you prefer bome delivery use the handy subscription card enclosed.

ELEKTDR BINDERS

Keep your valuable copies in perfect condition in these Elektor Binders. Each binder holds 11 issues with wires so you don't have to punch holes in your magazines. High quality, book binder cloth construction. The logo is stamped in gold on a dark green background.

each \$12 three or more, $\$ 10$ each

Shipping: Postpaid in US.
Canada and Caribbean, please add $\$ 4$ for one, $\$ 2$ for each additional binder.
Overseas, please add $\$ 4$ per binder.
to greater minds-but wonder if you would give it some thought.

Ian Beeby
Bolton, Lanes
Editor replies:
Another bright idea, but I cannot say if and when we can bring it to fruition. We'll do our best. Thanks for your good wishes.

RC-5 CODE IR RECEIVER

I would like to express my gratitude for your article in the January 1992 issue entitled "Universal RC5-code Infra-red Receiver.' I have been curious as to exactly how they work for some time. and found that information regarding operation was somewhat bare, I have had ideas for controlling my audio/visual components, most of which seem best adapted for using pre-existing control
functions through infra-red links. Yours is the first magazine that has dealt with and explained this topic. During the time that I have been a subscribing member, I have found your magazine to have the most relevant, well-applied articles of electronics magazines. It is nice to know that what I'm reading is also being read in at least thirteen different countries. I hope that you maintain the level of excellence that you have so far exhibited.

David G. Burd
Miami, Florida

Editor replies:

Thanks for letting us know that you appreciate our magazine-letters like yours make producing the magazine even more worthwhile than it already is. To make it even nicer to know: the articles are read in at least 50 different countries /they are written in one of four languages and translated into nine others.)

SAVE DECODER

Sir-I am still waiting for part 2 of the "SAVE decoder" that you promised a very long time ago. Also a long time ago, you said that in the near future you would publish a multi-standard MAC decoder. Please tell me why you have still not published either of these interesting projects.
C. D. Nielsen

Roskilde, Denmark

Editor replies:
We are under legal restraint not to publish the second part of "SAVE decoder" as advised in the March 1990 issue.
As regards the multi-standard MAC decoder, development has been delayed because of the hesitant attitude of the European Commission on the introduction of the MAC system.
The Commission has only just confirmed that it will adopt a number of proposals

We Enjoy Hearing From You.

Elektor Electronics USA is a place for readers to meet and discuss ideas, projects, and challenges. When you write, please include a self-addressed envelope with stamp attached with a clip if you expect a reply. If the author lives outside of the US, please include two International Postal Reply coupons (available at your post office) instead of stamps on your envelope. Because of space limitations, we do reserve the right to edit all letters. Although we read and note all letters, only those of general interest are selected for publication. When responding to an article, please cite the issue of the magazine, the name of the article or department and the page number. Address all correspondence to:

Letters Department
Elektor Electronics USA
Box 876
Peterborough, NH 03458-0876

ARE YOU MOUIUG?

Remember to include us on your mailing list to keep us in your mailbox. Let us know about your new address four to six weeks in advance, that way you won't miss one exciting issue of

ELEKTOR ELECTRONICS USA..
WRITE US!
Elektor Electronics USA PO Box 876
Peterborough, NH 03458-0876
CALI US!
(603) 924-9464

RECOMMENDED SOURCES FOR ELEKTOR ELECTRONICS USA EUROPEAN PARTS

Borbely Audio Emo Borbely

Melchior Fanger Strasse 34A
8031 Neu-Gilching
Germany
Tel 49-8105-5291
FAX 49-8105-24605 (24H)
Bull Electrical
250 Portland Road
Hove
Sussex BN3 5QT
United Kingdom
Tel 44-0273-203500
FAX 44-0273-23077
C-I Electronics
PO Box 22089
6360 AB Nuth
The Netherlands
FAX 31-45-241877
DIL Elektronika
Jan Ligthartstraat 59-61
3083 AL Rotterdam
The Netherlands
FAX 31-10-4841150

EasyTech, Inc.
2917 Bayview Dr.
Fremont, CA 94538
Tel (800) 582-4044
FAX (800) 582-1255

ELV France

BP 40

F-57480 Sierck-les-Bains
France
Tel 33-82-83-72-13
FAX 33-82-83-81-80

Meek It Electronics

Rob Planken
Paveljoensgracht 35A
2515 BL Den Haag
The Netherlands
Tel 31-70-609554
FAX 31-70-397-9707
Technomatic
Technohouse
486 Church Lane
London NW9 8UF
United Kingdom
Tel 44-081-205-9558
FAX 44-081-205-0190

BUT LET US KNOW. Please send us your new address.
made in this respect by the European Parliament. It is now saying that existing satellite stations must, in addition to whatever system they are now using, simultaneously broadcast in D2-MAC as from 1 January 1995.

Development of the decoder is now going ahead as a matter of some urgency.

EXPENSIVE PCBs

By the way, you're doing a great job. Best magazine of this type since Popular Electronics in the mid 50 s . Don't change a thing. One small suggestion, though: is there any way to lower the costs of PC boards related to your projects? Quantity discounts? Something like discounts on college meal tickets or gift certificates.

V. Goodwin

Charlotte, NC
Editor replies:

Thanks for your kind words-we'll do our best to keep up the standards. Your comments as to prices for PCBs have been passed to our commercial department.

TEACHING VALUE OF PROJECTS

Although many projects in your magazine have considerable teaching value, some of that may be lost through lack of including (or at least mentioning) variants or (even at a later date) possible add-ons.

J. Trethowan

Bradford, UK

Editor replies:

This is an aspect pointed out to us before by a number of teachers. Quick action may not be possible, but the point has been made to our designers and technical staff.

AM BROADCAST RECEIVER

I was most interested in the "AM Broadcast Receiver" article (EEUSA 10/91, p. 52) send congratulations to the author for presenting such a novel approach to the subject. I am considering the construction of the circuit, but would appreciate clarification of two points regarding Fig. 5:

1. C47 and C48: I can find no detail on these capacitors in the text as the asterisks suggest there should be.
2. IC3 4046 phase-locked loop: the connections shown for the 4046 suggest that
only the phase comparators I and II sections of the IOC are used in this application, but not the VCO and source follower. Is this correct? If so, I do not understand the function of the "inhibit control" (pin 5) as my understanding is that this control.only has effect on the VCO and source follower sections of the IC and not the phase comparator sections.
3. Finally, will the PCBs be made available?

P. F. Claret

Staines, UK

Technical Editor replies:

1. Capacitors C47 and C48 may have a value of up to 100 pF , but they may not be necessary at all with some types of 455 kHz resonator. This can only be established by trial and error in any particular case.
2. Your analysis of the operation of the 4046 PLL in this circuit is correct. In this application, however, the INH pin of the IC has no function and may be tied permanently to the positive supply rail to reduce the current drain. Nevertheless, the connection suggested in the article is not incorrect in any way.
3. Regrettably, PCBs will not be available for this project.

EPROM PROGRAMMER

I have read your magazine with interest for over a year and for some time now
have been hoping to see an article on an EPROM programmer for an IBM-compatible PC. Is anything of this nature planned for the near future? If not, could you please consider it some time?

Tony Hughes
Redditch, Worcs., UK
Editor replies:

I regret there is no EPROM programmer in our plans for the next six months, but we will bear your request in mind for the six months after that. In the meantime, have you considered the "Mini EPROM Programmer" (EE, 1/90, p. 14)?

PAL PROGRAMS

It is very frustrating that you don't publish the full program of the PAL ICs for some of your designs. To me, it makes the whole design seem incomplete. If a particular program is too long to publish in your magazine, would it be possible for me to order it in the usual way?

G. Wilson

Christchurch, New Zealand

Editor replies:

We have had letters with the same complaint from quite a few readers. There are a number of reasons we cannot publish these programs; size you have mentioned already. Another is copyright. You and other readers may note that, if we can legally do so, we will supply such programs if they are ordered on the order form elsewhere in this issue.

READERS SERVICES

All orders, except for subscriptions, should be sent to Old Colony Sound Lab: by mail to PO Box 243, Peterborough NH 03458-0243: Visa/ MasterCard charge orders by FAX to (603) 924-9467 (24 hours) or by voice B-4 weekdays to (603) 924-6526 or 6371. Please use the form opposite for all orders. All prices are postpaid to customers in the fitty states except for books Please add $\$ 200$ for the frst booh and 750 for each additional book ordered. Canadians, please add $\mathbf{5 4 . 5 0}$ US for the first book, and $75 ¢$ for each additional one. Outside North America, please add 20\%. Canadians may expect Canadian duty charges on shipments of any items except books and

subscriptions.
 SUBSCRIPTIONS

Subscriptions can be provided anywhere in the United States and its territories as well as Canada by sending mail subscriptions to Elektor Electronics USA, PO Box 876, Peterborough NH 03458-0876. Visa/MasterCard orders may be telephoned directly to (603) 924-9464 between 8 and 4 on business days and to our machine recorders at other hours and on weekends. Orders may be FAXed at any time to (603) 924-9467. US subscription rates: $\$ 28$ for one year (11 issues): $\$ 50$ for 2 years Canadian rate: $\$ 3880$ for one year Student rate to full-time registered students, $\$ 15$ per year (photocopy of student ID required)

PAST ISSUES

Back issues of the British Elektor from Julyl August 1987 onward are available from Worldwide Subscription Service Ltd., Unit 4, Gibbs Reed Farm, Pashley Road, Ticehurst TN5 7HE, England, United Kingdom. Single copies are $\$ 4.50$ surface mail, $\$ 7.50$ airmail. Back issues of Elektor Electronics USA from October 1990 onward (except 2/91) are available from Old Colony for $\$ 4$ postpaid, $\$ 6$ for July/August or December double issues

PAST ARTICLES

Photocopies of articles from the British Elektor from January 1979 onward are available from Old Colony Sound Lab for $\$ 5$ each (multi-part articles: $\$ 5$ per part); $\$ 6$ in Canada. Indexes are available. Send a stamped (504), self-addressed businesssize envelope to Old Colony, at the address above, for EACH YEAR desired. A complete set of indexes for 1979-91 is available for $\$ 7.50$ postpaid. Also available postpaid. Digital model train (13 parts) $\$ 15.00$

The following Elektor books are currently available from Old Colony Sound:
301 Circuits
$\$ 12.50$
303 Circuits
304 Circuits
Data Sheet Book 2
Databook 3
Databook 5: Application Notes
$\$ 19.95$
$\$ 16.50$
$\begin{array}{r}. \\ . \\ \hline 17.95\end{array}$
. $\$ 17.95$
$\$ 17.95$
. $\$ 17.90$ Microprocessor Data Book

Blue heavy-duty Elektor vinyl shelf box (holds 6 issues)

PC Connectors (1/92)
................... $\$ 3$ postpaid; 2/\$5; 5/\$1

FRONT PANEL FOILS			
PROJECT	No.	Price $\$$	Issue
Video mixer	87304-F	33.00	1-4/90
The complete preamplifier	890169-F	15.00	3/91
All solid-state	890170-F1	33.50	12/89
preamplifier	890170-F2	18.50	1/90
LF/HF signal tracer	890183-F	18.50	12/89
0 meter	900031-F	23.00	4/90
Budget sweep/ function generato	900040-F	20.00	5/90
High current $h_{\text {FE }}$ tester	900078-F	28.00	2/91
400 W lab power supply	900082-F	35.00	10-11/90
Variable AC PSU	900104-F	28.00	$6 / 91$
Universal battery charger	900134-F	11.00	$6 / 91$
Milliohmmeter	910004-F	28.00	12/90
Wattmeter	$910011-\mathrm{F}$	16.50	4/91
Digital phase meter	910045-F	20.00	6/91
Timecode interface	910055-F	15.00	9/91
Digital funct. gen.	910077-F	18.00	$10 / 91$
Economy PSU	910111-F	18.00	12/91
CD player	910146-F	20.50	1/92

ancanur sum us ORDER FORM
TELEPWONE CHARGE ORDERS (603) 924-6371, 924-6526 Answering machine before 9 a.m., FAX: (603) 924-9467, 24 hours

CUSTOMER ADDRESS

NAME
STREET \& NO.
CITY STATE ZIP
$\overline{\text { MAGIC NUMBER (FROM SUBSCRIPTION LABEL) }} \overline{\text { CITY }}$
SHIPPING ADDRESS IF DIFFERENT

NAME
COMPANY
STREET \& NO STATE ZIP

PAYMENT METHOD FOR CHARGE CARD ORDERS UNDER \$10. PLEASE ADD $\$ 2$.
\square CHECK
\square MONEY ORDER
\square MASTERCARD
\square VISA
CARD NUMBER
EXPIRES
AUTHORIZED SIGNATURE
DAYTIME PHONE

Qty.	Part Number and Description	Price	Total
	CALL OR WRITE FOR YOUR FREE OLD COLONY CATALOG!		
	upply the following: For PCBs, front panel foils, EPROMs, and caste the part number and description; for books, state the full title; for es of atticles, state full name of the article and month and year of . Please use block capitals.	SUBTOTAL SHIPPING TOTAL	

M
LC

Measurement amplifier

LC meter			

EPROMSIPALSIMICROCONTROLLERS
PROJECT
Multifunction No. Price Issue measurement card for PCs
MIDI control unit $\quad 570 \quad 20.00 \quad 6.7 / 90$
$(1 \times 27 C 64)$
(1 $\times 27 \mathrm{C} 64$)
Digital model
(1×2764)
Darkroom cloc
Darkroom cloc
(1×27128)
(lave indication
for I.T.S. $(1 \times 8748 \mathrm{H})$
$\begin{array}{lll}\text { EPROM emulator } & 70130.00 \quad 12 / 89\end{array}$
($1 \times 8748 \mathrm{H}$)
$(1 \times 8748 \mathrm{H})$
Microcontroller-d power supply
(1×8751)
$\begin{array}{lll}\text { Autonomous } 1 / \mathrm{O} & 704 \quad 95.00 & 12188\end{array}$
controller (1×8751)
Video mixer (1×2764) $586120.00 \quad 1-4 / 90$
$\begin{array}{llll}\text { Four-sensor } & 592120.00 & 6 / 90\end{array}$
sunshine recorder
(1×27128)
${ }_{\mu}{ }^{\text {P }}$-controlled $\quad 5941 \quad 26.00 \quad 10 / 90$
telephone exchange
(1×27128)

| $\left.\begin{array}{ll}(1 \times 27128) \\ \text { MIDI program } & 5961 \\ \text { 26.00 } & \\ \hline\end{array}\right)$ |
| :--- | :--- | :--- | :--- |

changer (1×2764)
$\begin{array}{llll}\text { Logic analyzer } & 5971 & 14.00 & 1-2,4 / 91\end{array}$
(IBM interface)
($1 \times$ PAL 16L8)
MIDI-Io-CV interface $\begin{array}{lll}5981 & 26.00 & 2 / 91\end{array}$
$\begin{array}{llll}\text { Multifunction I/O } & 5991 & 14.00 & 7-8 / 91\end{array}$

for PCs

$(1 \times$ PAL 16L8)
$11 \times$ PAL 16 L 8
Amiga mousel
joystick switch
joystick switch
$(1 \times G A L$ 16V8)
Stepper motor board $6011 \quad 14.00 \quad 6 / 91$
(1) $(1 \times 16 \mathrm{~L} 8)$

8751 emulator incl. $6051 \quad 50.00 \quad 3 / 92$
system EPROM
Connect 4
$(1 \times 27$ C64 $)$

PC-controlled weather 1641 13.00 1/92 station (3)
8051/8032
assembler
$\begin{array}{llll}\text { course (IBM) } \\ \text { A-DID-A and I/O for } & 1671 \quad 13.00 \quad 3 / 92\end{array}$
A-DID-A a
$I^{2} \mathrm{C}$ bus
$\begin{array}{llll}I^{2} \mathrm{C} \text { bus } \\ 8051 / 8032 \text { assembler } & 1681 \quad 13.00\end{array}$
2/92
course (Atari)
$\begin{array}{llll}\text { AD232 converter } & 1691 \quad 13.00 \quad 4 / 92\end{array}$

PROJECT
 No. Price

CD player
Fast, precise thermometer
Low-frequency counter
input board
input board
display board
display board
Mini Z80 system
Mini Z80 systern
Prototyping board for
Prototyping board for
IBM PCs
IBM PCs
UniverasI RC5 code
infrared receiver
PC-controlied weather $\quad 900124-5 \quad 17.00$ station (3)

FEBRUARY 1992

$\begin{array}{ll}\text { FEBRUARY } 1992 \\ \text { Audio/video switching unit } & 91013020.00\end{array}$
$\mathrm{I}^{2} \mathrm{C}$ interface for PCs
Measurement amplifier Mini squarewave generator 91014423.00 RAM extension for mini Z80 system
Switch-mode power supply $920001 \quad 7.50$

MARCH 1992

8751 emulator
A-DID-A and I/O for $I^{2} \mathrm{C}$ bus 910131-2 10.50
AF drive indicator $\quad 92001620.50$
Centronics line booster 91013310.00
FM tuner $\quad 92000536.00$
LC meter
MIDI optical link
APRIL 1992
80 C 32 SBC extension 91010923.00
$\begin{array}{lll}2 \text { 2-meter FM receiver } & 910134 & 17.50 \\ & 920003 & 14.50\end{array}$
Comb generator
AD232 converter
Automatic NiCd charger
LCD for L-C meter
Milliohm meter adaptor
91014614.00 91008114.50

910149-1 8.50 910149-2 11.00 91006018.00 91004936.00 9101378.00 91014423.00 $910151 \quad 9.00$ 9100734.00
92000536.00

9200121500 92001410.50
92000314.50

920010	21.00
UPBS-1	3.90

9200188.00

TERMS OF BUSINESS

PRICING

Prices, except as noted, include shipping in the continental USA. The minimum order is $\$ 10$. A $\$ 2$ ser vice charge will be added to orders of less than $\$ 10$ Prices are subject to change as our costs change. WE RESERVE THE RIGHT TO MAKE PRICE CHANGES WITHOUT NOTICE

TELEPHONE ORDERS

Telephone orders are welcome between the hours of 9:00 a.m. and 4:00 p.m. EDT, Monday-Friday. Orders for parts are to be made on the ORDER FORM provided. Payment for telephone orders is by MC/VISA only. Our TELEPHONE ORDER NUMBER IS (603) 924-6371 or 924-6526. Our answering machine for MC/VISA orders during non-business hours is (603) 924-6371. FAX: (603) 924-9467 (24 hours)

PAYMENT
All remittances MUST BE IN US FUNDS DRAWN ON A US BANK. Payment for telephone orders must be made by MasterCard or VISA. Mail order payment may be made by MC/VISA, money order, cashier's check or personal check. If payment is made by personal check, allow up to 2 weeks for clearance before order is shipped. Should check be returned for any reason, there will be a $\$ 10$ charge.

SHIPPING

Unless noted, freight is prepaid by Old Colony. All orders shipped USPS first class mail or by UPS. Allow two to three weeks for delivery. Please inquire about appropriate funds for special handling (UPS next day or second dayl. UPS requires a street address. If you cannot receive UPS delivery, please in-
clude an extra $\$ 2$ for insured service via Parcel Post. We cannot accept responsibility for safety or delivery of uninsured Parcel Post shipments. Absolutely no COD shipments.
BOOKS, RECORDINGS, CDs, and SOFTWARE The shipping/handling charge for the US is $\$ 2.00$, plus $75 \$$ each additional item. In Canada, please add $\$ 4.50$ for the first item, $75 \uparrow$ each additional. For orders to be shipped outside North America, add 20% to the total order to cover shipping. No returns. According to the Connecticut Dept. of Revenue Services, Regulation \#27, Section 12-426-27, in order to sell software to residents of Connecticut, we must register with the department as well as collect taxes for the state from the purchaser. We regret to inform customers that we will not sell software to anyone from Connecticut.

BOOKS FROM ELEKTOR ELECTRONICS USA

301 CIRCUITS

This book follows the theme of the first in this series, 300 Circuits (now out of print). It contains over 300 assorted circuits first published in the 1979, 1980, 1981 summer issues of Elehtor Electronics.
The circuits range from the simple to the more complex and are described and explained in straightforward language. The book is a comprehensive source of ideas and construction projects for anyone interested in electronics.

ISBN 0-905705-12-2

BKAA11 Price $\$ \mathbf{1 2 . 5 0}$
302 CIRCUITS
The popularity of this book is shown by its having been reprinted no fewer than three times. It offers a selection of the most interesting articles from the 1982, 1983, 1984 summer issues of Elektor Electronics.

In it you will find circuits for audio and video; car, cycle, and motorcycle; home and garden; receivers and aerials; hobbies and games; measuring and testing; oscillators and generators; current sources and power supplies; microcomputers and music electronics; and a miscellany of other interesting subjects.
ISBN 0-905705-25-4

BKAA12 Price $\$ 12.50$

303 CIRCUITS

Like its predecessors, 303 CIRCUITS offers a comprehensive collection of practical ideas concepts, and developments in the gamut of electronics. Unlike its predecessors, the book is arranged in 11 subject sections to make it easier for the reader to find that long-sought circuit
in well over 300 pages, the book offers 32 Audio and Hi-Fi projects; 14 circuits for Car and Bicycles; 43 Computer \& Microprocessor circuits; 11 Electrophonic projects; 24 HF and VHF circuits; 16 circuits for a number of hobbies and pastimes; 54 projects for Home and Garden; 29 Power Supply circuits; 29 circuits for Test and Measurement equipment; nine TV and Video projects; as well as 42 Design Ideas.
IV and Video projects;

BKAA13 Price $\$ 15.90$

304 CIRCUITS

The latest in Elektor's famous '300' series, BKAA18 contains 304 innovative circuits and descriptions broken down as follows: 36 audio/video, 19 high frequency, 36 hobby, 36 home and garden, 9 music/electrophonics, 32 computer/microprocessor, 19 generator/oscillator, 33 test and measurement, 30 power supply, 13 car electronics, and 41 miscellaneous. Arranged by subject for ease of use.
ISEN 0-905705-34-3
BKAA18 Price $\$ 19.95$

DATA SHEET BOOK 2

Like its predecessor (now out of print), this book offers concise, relevant, and rapidly ac cessible information, which is both practical (e.g., the pin-out of a device) and informative

The book contains data on integrated circuits as well as on discrete transistors and diodes Moreover, it gives an introduction to fast (HCMOS) devices and a review of the new sym bolic logic as laid down in British Standard BS3939: Section 21 (IEC Standard 617-12).
The final part of the book deals with a number of computer chips, such as memory devices (including programming information for these) and VO circuits. This section also includes data on a number of non-digital discrete and integrated devices, such as op amps, as well as on some microprocessor peripherals (e.g., the 6522 VIA, the 6580 ACIA, and the 8355A PPI)

ISBN 0-905705-27-0
 BKAA14 Price $\$ 16.50$

DATABOOK 3: PERIPHERAL CHIPS

This book lists the most important design data of peripheral chips whose type numbers and functions relate them unambiguously to a microprocessor in the same family. All listed devices form part of families based on widely used microprocessors or microcontrollers. Their mos evident application will therefore be in conjunction with the associated microprocessor. This should, however, not be taken to mean that a peripheral cannot be used in another application Far from it, as witness the familiar type MC146818A rear-time clock and the type MC6845 cathode-ray tube controller. It deserves a place on the bookshelf of anyone concerned with the design, maintenance and servicing of microprocessor-controlled electronic equipment ISBN 0-905705-30-0 ISBN $0-9$
BKAA15

MICROPROCESSOR DATA BOOK

This book has come about because of a need by Elektor Electronics engineers, technicians, and editorial staff of a ready reference work on the most important microprocessors. This mplies that it does not only contain information on the latest devices, such as the transputer, but also on older, well-established types, such as the $\mathbf{Z} 80$ and the 6800 .
A general description, hardware block schematic, software structure, DC characteristics, and instruction sets are given for over 70 microprocessors. To prevent the book from becoming unwieldy (and to keep costs down), timing diagrams and AC characteristics have, however, been omitted. The detailed information on all manufacturers mentioned will, however, enable any additional information to be obtained quite readily
Included in the book are, among others, the 68000 series; the 6502 family; the $\mathbf{Z 8 0}, 8080$, and 8085; Intel's 8086, 80186, 80188, 80286, and 80386; the NS32XXX series, and the INMOS transputers.

SEN 0-905705-28-9

BKAA16 Price $\$ 17.90$

DATABOOK 4: PERIPHERAL CHIPS II

This further volume in Elektor Electronics' Microprocessor Data Book series deals with general peripheral chips that, at least as far as their type-coding is concerned, do not belong to a specific family of microprocessors. There are so many of these, however, that onty a portion of them can be dealt with in one book. Those contained in this collection have been chosen carefully on the basis of their practical application and frequency of use. Comptete data are given for coprocessors from the 80 series (AMD, Cyrix, ITT, Intel, Weitek); real-time clocks from MEM, OKI, Statek, National Semiconductor, and Dallas Semiconductor; transmitters and receivers of serial interiaces RS232, 422, 423, 485 from Motorola, Newport Components, Maxim, Texas Instruments, National Semiconductor, Dallas Semiconductor, and Linear Technology; UARTS, DUARTS, and QUARTS (i.e., programmable ICs intended for data transfer); and the CS8221 set of ICs from Chips \& Technology that are used in a great number of PC mother boards (also included is the data sheet of associated software LIM 4.0 for the management of the Extended Memory System).
Apart from the actual data, the book contains much other useful information, such as comparisons between and second sources for all important IC families; addresses of manufacurers and their representatives; and overviews of all peripheral chips (including many that could not be included in this book) that are available from various manufacturers.
ISBN 0-905705-32-7

BKAA17 Price $\$ 17.95$

DATABOOK 5: APPLICATION NOTES

This book presents a series of application notes and design briefs that cover a wide variety of subjects. Apart from a number of applications related to specific components, the book also includes articles on basic design theory and the practical use of certain components. For example, there is an article reprint from Advanced Micro Devices that provides information on programming the motion of a stepper motor with the aid of a PAL (programmable array logic). Similarly, an article reprint from Motorola presents an overview of protocols and conventions used for serial communication between computers.
The application notes complement the theoretical sections by discussing the use of components related to current electronics technology. In a number of cases, this technology is ahead of the practical application, and the product is so new that an application note has not yet been published by the manufacturer-for examples, Analog Devices' description of a Continuous Edge Graphics (CEG) digital-1-analog converter (DAC), and that of a NICAM (near instantaneous companding audio multiplex) decoder chip developed by Micronas of Finland. Given the complexity of the practical circuits that could be developed on the basis of these ICs, all the relevant data sheets are included for easy reference. The book also includes a short list of manufacturers' logos that should be helpful in identifying unknown components, as well as a worldwide address list of manufacturers and distributors/representatives for the products which are discussed
ISBN 0-905705-33-5
BKAA24 Price $\$ 17.95$

SPECIALS!

BKAAZ/1 BKAA11, 12, 13, 18: all 4 for $\$ 49.00$ (Save $\$ 11.85$!)
BKAAZ/2 BKAA14, 15, 16, 17, 24: all 5 for $\$ 74.95$ (Save $\$ 13.30$)
BKAAZIS Complete Elektor library: all 9 for $\$ 114.95$ (Save \$34.15!)

These books are all available direct from Elektor Electronics USA through the Readers Services, from a number of bookshops and electronics retailers in the US and Canada, and from selected bookshops throughout the world. Special prices are those of EEUSA only.

PC BOARDS

- $24 \mathrm{hr} . \mathrm{d} . \mathrm{s} / 72 \mathrm{hr} . \mathrm{m} . \mathrm{l}$.
- Prototype to Production

FR-4, Plated-Thru Teflon, Polyimide UL Recognized

I.M.P.A.C. ${ }^{\oplus}$

Call us for an instant quote
24 hr.modem for easy tansler of Drill \& CAD files.
Free Tooling On First Order! Superior Quality at Competiove Prices!
CAPITAL ELECTRO-CIRCUITS
7845-J Airpark Road
Gaithersburg, MD 20879
(301) $977-0303$

Fax: (301) 990-6715

SATELLITE RECEPTION ELECTRONICS

356 pages, 8.5×11

- Design, operation and repair of satelite receivers, modulators, antennas, feeds \& LNBs
- Complete circuit diagrams of four satellite TV receivers
- Encryption \& scrambling methods TO ORDER - Send $\$ 40$ plus $\$ 3 \mathrm{~s} / \mathrm{h}$ to: Baylin Publications
1905 Mariposa, Boulder, CO 80302
CREDIT CARD orders also accepted 303-449-4551

Request our FREE CATALOG of other books about Satellite \& Private Cable TV

HEAR EVERY SOUND MILEAWAY!

Simply attach the VT-75 microtransmitter to any 3 V to 12 V battery and you can hear every sound in an entire house over 1 mile away! Super-sensitive circuit on a single chip even picks up footsteps from across a large room. Tunable from 80 to 130 MHZ Hear everything on any FM radio or wideband scanner tuned to the "secret" fre quency you select. Unlimited uses for security, baby monitor, remote mic, etc Nat a foy. The VT-75 meets many U.S. Gov't Military Specs and with 100 mW RF output, it is the smallest, most powerful miniature transmitter you can buy. Easily assembled even by a youngster in only 5 minutes and performs so well that it is the only minialure transmitter available anywtere that comes with a full unconditionol moneyback guorontee! Complete kit includes VT-75 microtransmitter chip, miniature microphone, 9 V battery connector and instructions - $\$ 49.95+\$ 1.505 \$ H$ or save- buy 2 for $\$ 45.00$ each with free S\&H! Call toll free or send money order, Visa, or MC acc't number for immediate shipping by U.S. Mail. COD's add $\$ 4$. Checks allow 21 days.

1-800-759-5553 U.S. ONLY ALL OTHER 914-232-3878

ELECTRONICENCLOSURES

Everything to complete your project From initial concept to finished product!

Rack Mount

Universal

Split Case

Complete line of Enclosures in Aluminum, Steel or ABS, Hardware, Silkscreening, Tools, Custom Fabricating Call for our FREE Full Color Catalog (800) 800-3321 or (216) 425-8888 (216) 425-1228 Fax

word of MOUTH

Helps us grow, means a stronger publication that can do more of the things that need doing in the pursuit of better electronic systems. If you have friends, associates, relatives or even enemies who share your enthusiasm for ELEKTOR ELECTRONICS tell us their names and addresses, and we will send the word along. THANKS

EUROPEAN TRANSISTORS

Yes, EasyTech will be expanding its range of European devices continuously. Keep watching for the parts you need for your Elektor project.

Order \#	Price	Polarity	Vce	$\underset{(\mathrm{mA})}{\text { IC }}$	Peak (W)	Ft (MHz)	Package
BC328	. 25	PNP	. 25	.800.	.0.8.	... 100	TO-92
BC547	. 20	NPN..	... 45	..100..	.0.5	. 300	.TO-92
BC549	. 20	NPN.		. 100.	.0.5...	300	TO-92
BC549C	. 30	NPN..		.. 100.	.0.5...	. 300	TO-92
BC557	. 20	PNP	45	. 100.	.0.3...	. 150	TO-92
BC558	. 20	PNP.	. 25 .	.. 100.	.0.3..	. 150	TO-92
BC639	. 45	NPN.		... 1000	.. 1	. 130	TO-92
BC640	. 45	PNP		... 1000	.. 1	. 50	TO-92
BD139	. 55	NPN	. 60	... 1000	8	. 250	TO-126
BD140	. 55	PNP	... 80	... 1000	. 8	. 75	TO-126
BD681	1.05	NPN....	. 100	... 4000	. 40	.. 1	TO-126
BD682	1.05	PNP....	. 100	... 4000	. 40	.. 1	TO-126
BF199	. 95	NPN.	25 25.	..0.23.		TO-92
BF469	. 95	NPN.	. 250 50	...1.8...	. 60 ..	TO-126
BF470	. 95	PNP	. 250	. 50	1.8	. 6	TO-126

DATAK - PHOTO ETCH ${ }^{\text {™ }}$
ER4 PHOTO ETCH ${ }^{\top}$
Printed Circuit Kit (Complete)
Use this kit to generate your own 1:1 artwork, then use the patented Pos-Neg ${ }^{\text {TM }}$ process to make a photo negative sensitize and expose a blank copper board, then develop and etch it. Like to build magazine projects? Make a film positive and negative from the magazine PC art illustration, expose your sensitized copper board and etch. The magazine page is not destroyed in this process. No darkroom or camera
 required.

All necessary materials are included - steel $5^{\prime \prime} \times 6^{\prime \prime}$ print frame, Pos-Neg film, film processing pack, yellow fitter, 4 Oz . negative-acting etch resist, 16 oz . resist developer, blank copper circuit boards, dry concentrated etchant, 1:1 resist patterns and tapes, and complete instructions. Shipped via UPS ground only.

ER19 - Photo Etch Light Bulb Set (To suit ER4)

Why search for the special bulbs you need to expose the Pos-Neg ${ }^{\text {rm }}$ copy film and photo resist contained in DATAK's ER4 set? This bulb set contains both the $3400^{\circ} \mathrm{K}$ white light and the $4800^{\circ} \mathrm{K}$ long wave UV content flood-lamps recommended by the manufacturer. Buy this set with your ER4 to insure perfect results every time.

Order \#	Price	Description
ER4	34.95	PHOTO ETCH
ER19 Printed Circuit Kit (Complete) 3.93 lbs.		
16.45	Exposure Lamps (Light Bulb Set).............................. 5 oz.	

"KESTER" SOLDER

KS4027/4053 Exceilent Wetting Non-Corrosive -Non-Conductive Flux Formula

KS041

Features 60% tin, 40% lead alloy, with " 44 " rosin \mid A unique 62% tin, 36% lead, 2% silver alloy with flux. Specifically designed for repairs to a rosin flux core. Specially formulated for electronic components or circuit boards which soldering small, silver-coated surface mount are sensitive to excess heat. Also features a components to circuit boards. The .020" low melting temperature ($374^{\circ} \mathrm{F}$) and a unique diameter is well-suited for the close spacing of fluxing action.
Order \# 1-9 10+ Description components.

Order \#	1-9	10+	Description	Gauge	Weight
KS4027	10.95	9.95	60/40 Rosin	21	
KS4053	10.95	9.95	60/40 Rosin	. 18	
KS0415	3.45	2.95	Silv	24	

TEST LEAD KIT

This kit is an essential addition to your tool kit, whether you are a field technician, student or hobbyist. Remember all those occasions when you needed that extra test lead or two!!

(6 Lead Set)

CONTENTS - TLK1

- 2 each: BNC to 1 each red \& black Test Clip - 1 each: red Banana Plug to red Banana Plug - 1 each: black Banana Plug to black Banana Plug - 1 each: red Test Clip to red Banana Plug - 1 each: black Test Clip to black Banana Plug

Order \#	Price	Description
TLK1	19.95	Test Lead Kit ... 8 oz.
TL108	6.49	BNC to 2 Test Clips... 3 oz.

CERAMIC TRIMMER CAPACITORS

Specifications
-Ins. Res.: >10ms@100Vdc
-Max. Volt.: 220Vdc
-Oper. Volt.: 100VDC
-Rotat. Torque: 20 to $15 \mathrm{~g} / \mathrm{cm}$

Order \#	1-9	10+	Capacitance (pF)		$\begin{gathered} \text { Q Factor @ } \\ 10 \mathrm{MHz} \end{gathered}$	Cap Color
			min.	max.		
CVSSA0301	. 79	. 69	1.5	3.0	>300	Black
CVSSA0701	. 79	. 69	2.5	7.0	>300	Blue
CVSSA1001	. 79	. 69	2.7	10.0	>300	White
CVSSC2001	. 79	. 69	4.2	20.0	>300	Red
CVSSE3001	. 88	. 78	5.5	30.0	>200	Green
CVSSG5001	. 88	. 78	8.0	50.0	>200	Orange

TOGGLE SWITCHES (125Vac)

 E1002 . 99 . 89 On/Off1.02" $\times 0.55^{\prime \prime}$.... 4 (Solder)DPST E1003 1.19 1.09 On/On3.....1.02" $\times 0.55^{\prime \prime}$.... 6 (Solder)DPDT E1004 1.49 1.39 On/Off/On ...6......1.39" $\times 0.79^{\prime \prime}6$ (Screw)DPDT

2917 Bayview Drive Fremont, CA 94538

Easy Order: 1-800-582-4044 Easy Fax: 1-800-582-1255 International Fax: $\quad 1-510-770-2346$ Customer Service: $1-510-770-2345$ $\sqrt{\text { COD }}$ CO personal checks, US funds (\$5.00 Surcharge) \checkmark USPS $\sqrt{ }$ UPS $\quad \checkmark$ Federal Express $\quad \sqrt{ }$ Airborne Add opprox. 5% of total for shipping UPS Ground ($\$ 3.00$ min.).

Actuol shipping charges based on weight.
Call or write today for your free copy of our 32 page catalog.

> Colifornina residemts, edd appropriate soles tax
> 12 momith worrenty on all EasyTed prodects.
> 30 doy money back gwaranted.
> We reserve the right to substitute mamefuctorers.

[^0]: AUTOMATIC TEST EQUIPMENT by Keith Brindley
 ISBN 075-060-1302
 280 pages
 Price $\$ 70$ (hardcover)
 This new book by Keith Brindley demystifies
 the concept of automatic test equipment

