electronics

engineering issue

Transistors Fix Heart Block...p 80

signal generators 10 to 21,000 MC!

11 TO CHOOSE FROM

With -bp-signal generators, frequencies are directly set and read on one dial. Output voltage is directly set and read. No calibration charts are required. Most -hp-generators offer internal pulse, FM or square wave modulation ; some include external pulsing and FM'ing. New - $b p-626 \mathrm{~A}$ (10 to 15.5 KMC) and 628A (15 to 21 KMC) offer 10 mw output, SWR 1.2.
-hp-signal generators outsell other signal sources by approximately $2: 1$. Engineers report the reasons are simpler operation, versatility, trouble-free performance, and exceptional value.

Instrument	Frequency Range	Characteristics	Price
-hp-608C	10 to 480 MC	Output $0.1 \mu v$ to $1 v$ into 50 ohm load. CW, pulse or AM mod. Direct calibration.	\$ 950.00
-hp-608D	10 to 420 MC	Output $0.1 \mu \vee$ to 0.5 vinto 50 ohm load CW, pulse or AM mod. Direct calibration and crystal calibrator check	1,050.00
-hp-612A	450 to 1,230 MC	Output $0.1 \mu v$ to $0.5 \vee$ into 50 ohm load. Pulse, CW or amplitude modulation to 5 MC Direct calibration.	1,200.00
-hp-614A	800 to 2,100 MC	Output $0.1 \mu v t o 0.223 v$ into 50 ohm load. Pulse, CW or FM modulation. Direct calibration.	1,950.00
-hp-616A	1,800 to 4,000 MC	Output $0.1 \mu v$ to 0.223 v into 50 ohm load. Pulse, CW or FM modulation. Direct calibration.	1,950.00
-hp-618B	3,800 to 7,600 MC	Output $0.1 \mu v$ io $0.223 \vee$ into 50 ohm load. Pulse, CW, FM or square wave modulation. Direct calibration.	2,250.00
-hp-620A	7,000 to $11,000 \mathrm{MC}$	Output $0.1 \mu \mathrm{v}$ to 0.223 v into 50 ohm load. Pulse, CW, FM or square wave modulation. Direct calibration.	2,250.00
-hp-623B	5,925 to $6,575 \mathrm{MC}$; 6,575 to $7,175 \mathrm{MC}$; 7,175 to $7,725 \mathrm{MC}$	Output $70 \mu \vee$ to $0.223 \vee$ into 50 ohm load. FM or square wave modulation. Separate power meter and wave meter section.	1,900.00
-hp-624C	8.500 to 10.000 MC	Output $3.0 \mu \vee$ to $0.223 \vee$ into 50 ohm load. Pulse, FM or square wave modulation. Separate power meter and wave meter section.	2,265.00
-hp-626A	10,000 to 15,500 MC	Output $1 \mu \mu w a t t$ to 10 mw . Internal or external pulse, FM, or square wave modulation. Direst calibration.	3,250.00
-hp-628A	15,000 to $21,000 \mathrm{MC}$	Output $1 \mu \mu$ watt to 10 mw . Internal or external pulse, FM, or square wave modulation. Direct calibration.	3,250.00

Your -hp- field engineer has complete data on all -hp- generators. Or, write direct.

HEWLETT-PACKARD COMPANY

4055A PAGE MILL ROAD - PALO ALTO, CALIFORNIA, U. S. A. CABLE "HEWPACK" • DAVENPORT 5-4451 field engineers in all principal areas

complete coverage, outstanding value

electronics

H. W. MATEER, Publisher

JAMES GIRDWOOD, Associate Publisher
W. W. MaeDONALD, Editor

Managing Editor, John M Carroll.

Feature Editor, John Markus.
Associate Editors: John M. Kinn, Jr., Frank Leary, Michael F. Tomaino, Howard K. Janis, Sylvester P. Carter, Haig A. Manoogian, Roland J. Charest, William P. O'Brien, George Sideris, Edward DeJangh, John F. Mason, William E. Bushor, Ronald K. Jurgen, Thomas Emma, Samuel Weber.

Pacific Coast Editor (Los Angeles) Harold C. Hood; Midwestern Editor (Chicago) Harold Marris; New Eng. land Editor (Boston) Thomas Maguire.

Art Director, Harry Phillips, Roy Thompsen.

Production Editor, John C. Wright, Jr., Bernice Duffy, Jean 1 Matin.

Research, Charles B. Graham, Marilyn Koren

Editorial Assistants: Gloria J. Filippone, Arlene Schilp, Patricia Landers, Catherine McDermott, Eleanor Schoefer, Carol Weaver

JAMES GIRDWOOD, Advertising Sales Manager, R. S. Quint, As sistant Advertising Sales Manager and Buyer's Guide Manager. Fred Stewart, Promotion Manager. Frank H. Ward, Business Manager. George E. Pomeroy, Classified Manager. Hugh J. Quinn, Acting Circulation Manager.

New York: Donald H. Miller, Henry M. Shaw, Martin J. Gallay, Boston: Wm. S. Hodgkinson. Philadethhia: James T. Hauptli. Chicago: Bruce Winner, Harvey W. Wernecke. Cleveland: Warren H Gardner, San francisco: T. H. Carmody, R. C. Alcorn. Los Angoles: Carl W. Dysinger, D. A. McMillan. Denver: J. Patten. Atlanta: M. Miller. Dallas: Gordon 1 Jones, Robert T. Wood. London: E. E. Schirmer. Frankfurt: Michas R. Zeynol.

Issue at a Glance

Rear-View Road-Scanner Tv. Driver glances at tv screen showing wide-angle view of road seen by tv camera mounted in trunk. Sec p 73. . COVER
Business Briefs 7
Electronics Newsletter 7 New Scismic Amplifier 14
Figures of the Wcek 7 New Unit Guards Shopping Center 16
Tv Aids Airport Simulation Financial Roundup 16
Soviet Discloses Lunar Probe Gear. 8 NEREM Spotlights Design
Techniques 16
Latest Monthly Figures
Gas Pipers to Bay Morc Gear.... 18
Washington Outlook Airline Installs Rescrving Unit. 18
New Plastics Uscs Coming....... I 4 X-Ray Amplifier 18
Military Electronics 14 Meetings Ahead 18
Electronics and the American Automobile. Devices and systems destined tochange design emphasis of car makers are summarized.p 73
By William E. Bushor

Two-Transistor Amplifier Corrects Heart Block. Pulse amplifier substitutes for vital nervous connection between heart chambers bring beat rhythm back to normal p 80 By G. F. Vanderschmidt

Staggered Rep Rate Fills Radar Blind Spots. Blind speeds occurring at certain target radial velocities in a moving targer indicator are eliminated by staggering the prf.

By S. E. Perlman

Boosting Power Transistor Efficiency. Better than 98 percent efficiency is achieved in transistorized power converter.

Using Markerless Pulsc Trains to Commmicate. Replica of the original modulation waveform is reconstructed by a markerless pulse train demodulator in single-channel communication system
p 89 By M. Davidson, H. Joseph and N. Zucker

DIGEST continued

Tones Find Data in High-Speed Tape System. Two-part searcher employsdigital timing generator to record discreet time addresses on multichan-nel tape and magnetic tape search unit for scanning tape at high speedsto recover desired information
By Reuben Wasserman and Panl Hurney
D-C Amplifiers for Control Systems. Typical direct-coupled, high-gain am- plifiers systems for boosting gain and equalizing d-c and low-frequency signals p 96
By Larry S. Klivans
Electrons At Work p 100
Trap Improves Ty Picture. 100 By Gordon C. Field
Speed Indicator '「esls Aircraft.... 102 102
By Kun-Mu Chen
Control Unit Uses X-Ray T 107
Oscillator Measures Frequenc 108
New Tracker 109
Component Design p 112
Around-the-Mast Rotary Joint. . . . 112 By Henry S. Keen
Wafte-Iron Waveguide Filter 1
Slidewire Pot Has Digital Readout 115
Transducer Test Program. 116
Production Techniques p 118
Turntables Feed Tube Assembler. 118 Catalyst, Heat keep Epoxy Fluid. . 121 Computer Matches Diodes. 118 AN-Comector Wrench. 123
Gas Tests Components for Shorts 123
New Products p 124
Literature of the Week p 152
Plants and People p 154
News of Reps p 159
New Books p 160
Comment p 166
Index to Advertisers p 176

electronics

Nov. 21, 1958 Vol. 31, No. 47

Published weekly, with alternating engineering and business issues and with a BUYERS' GUIDE issue in mid-June, by McGraw-Hill Publishing Company, Inc., James H. McGraw (1860-1948) Folnder.

Executive, Editorial, Circulation and Advertis. ing Offices: MeGraw. Hill Building, 330 W. 42
St. New York 36. St. New York 36, N. Y. Longacre +3000 .
Publication Office: $99-129$ North Broadway, Publication Office: 99-129 North Broadway, See panel helow for directions regarding subscriptions or change of address. Donald C. McGraw, President; Joseph A. Gerardi, Executive Vice President; L. Keith Goodrich, Vice President and Treasurer; John J. Cooke. Secretary; Nelson L. Bond. President, Publications Division; Shelton Fisher, Senior Vice President; Ralph B. Smith, Vice President and Editorial Director: Joseph H. Allen, Vice President and Director of Advertising Sales; A. R. Venezian, Vice President and Circulation Coordinator.

Single copies $\$ 1.00$ for Engineering Issue and 50 for Business Issue in United States and possessions, and Canada; $\$ 2.00$ and $\$ 1.00$ for all other foreign countries. Buyers' Guide $\$ 3.00$. Subscription rates-United States and possessions, $\$ 6.00$ a year; $\$ 9.00$ for two years; $\$ 12.00$ for three years. Canada, $\$ 10.00$ a year; $\$ 16.00$ for two years; $\$ 20.00$ for three years. All other countries, $\$ 20.00$ a year: $\$ 30.00$ for two years; $\$ 10.00$ for three years. Second class postage paid at Albany, N. Y. Printed in U.S.A. Copyright 1958 by McGrawHill Publishing Co., Inc-All Rights Reserved. Title registered in U. S. Patent Office. BRANCH OFFICES: 520 North Michigan Avenue, Chicago 11 ; 68 Post Street, San Francisco 4; McGraw. Hill House, London E. C. 4; 15 Land-grat-Wilhelm, Frankfurt/Main; National Press Bldg., Washington 4, D. C.; Six Penn Center Plaza, Philadelphia 3; 1111 Henry W. Oliver Bldg., Pittsburgh 22; 55 Public Square, Cleve. land 33; 856 Penobscot Bldg., Detroit 26; 3615 Olive St., St. Louis 8; 350 Park Square Bldg., Boston 16; 1321 RhodesHaverty Bldg., Atlanta 3; 1125 West Sixth St., Los Angeles 17; 1740 Broadway, Denver 2. ELECTRONICS is indexed regularly in The Engineering Index.

Postmaster: please send form 3579 to Electronics, 330 W. 42nd St., New York 36, N. Y.

[^0]

A new 20 ampere model of the popular Variac types W2, W5, and W50. Wrought metallic parts for improved mechanical properties. Better heat transfer between coil and base brush and radiator. Ball bearing models are stock items. Motor Drives are available. All with exclusive DURATRAK Contact surfaces for long, trouble-free life with low maintenance.

	$\begin{gathered} \text { W20 } \\ \text { Uncased } \end{gathered}$	$\begin{aligned} & \text { W2OM } \\ & \text { Cased } \end{aligned}$	$\begin{aligned} & \text { W20MT3 } \\ & \text { Portable } \end{aligned}$	$\underset{\substack{\text { wnooh } \\ \text { Uncased }}}{\text { cos }}$		W2OHMT3 Porlable
Inpul Votioge	115	115	115	230	230	230
Load Rating (kva)	3.0	${ }^{\text {3.0 }}$		2.4	2.4	
Output Yolage	0.135	0.135	0.135	0.270	0.270	0.270
Rated Curent (amp)	20	20	20	8	8	8
Maximum Curent (amp)*	26	26	20	10.4	10.4	8
No.Load Loss a 160 c . (m)	27	27	27	27	27	27
Dial Caibrationst	$\begin{aligned} & 0.115 \\ & 0.135 \end{aligned}$	${ }_{0}^{0.1155}$	0.135	0.230 0.270	0.230 0.270	0.270
Angle of Rotation (deg.)	320	320	320	320	320	320
No. Turns or Winding	170	170	170	340	340	340
D.C Resistance of Winding (t)	0.21	0.21	0.21	1.6	1.6	1.6
Driving Torque (02. in.)	55.110	55.110	55.110	55.110	55-110	55.110
Net Weight (lls,)	21/2	24/3	28\%	201/	23/2	27
Code Word	fedal	feder	FEDOM	mepal	meper	MEPOM
Price	\$45.00	\$58.00	${ }^{877.00}$	347.00	300.00	\$85.00

\qquad rections and have corresponding dial scired les. Line yoltage connec
lions and diais supplied on special orde:.

Type W2O Yariac 115-Volt Input; 3 KVA; 25 Amp. Max. Current (W2OH similar except for terminals and dial) on switchboards or built into cther equipment. Also usable on table or bench.

Type W20G3M Cased Model in aluminum case, gray

Type W20мт3 Variac
(Type W2OHMT3 similar except for dial) NEW Portable Mode', cased, 3-wire output receptacle, ON-OFF switch, overline cord and plug.
 2-Gang Type Nz0
(W20HG2 similar except for terminals)

		W20G2 Uncased	$2 \cdot 90$	w20G2M Cosed	$\underset{\text { Uncos }}{\text { w2o }}$	$\mathrm{cos}_{\mathrm{sod}}$	W20G3M Cosed		W20E:G: Uncasemí	2 ana	W2OHG2M Gosed	$\mathrm{W}^{\text {W } 20 \mathrm{O}}$		w20hgis Cored
Input Valtage	115	115	230	Same 51 W20G2	115	230	$\begin{aligned} & \text { Someot } \\ & \text { W20G3 } \end{aligned}$	230	230	460	Same as	230	460	Same as w20nO3
Load Rating (kyal	$\begin{gathered} 6 \\ \text { (parallel) } \end{gathered}$	5.2	$\stackrel{6}{\text { (Series) }}$	$\begin{aligned} & \text { Sume of } \\ & \text { w20G } 2 \end{aligned}$	$\begin{gathered} 9 \\ \text { (Parallel) } \end{gathered}$	$\begin{aligned} & 10.4 \\ & \text { ("y") } \end{aligned}$	Same as W2063	$\begin{gathered} 4.8 \\ \text { (Paralle1) } \end{gathered}$	$\begin{gathered} 4.2 \\ (0 . \mathrm{cha}) \end{gathered}$	$\underset{(S, i x i t s)}{4,8)}$	Same as W20HE?	$\begin{gathered} 7.2 \\ \text { (Parallel) } \end{gathered}$	$\begin{aligned} & 8.3 \\ & (" \Psi ") \end{aligned}$	Some ox W2OHG3
Dial Calibrations	0.10			0.10	0.10		010	0. [0]			0.10	0.10		0.10
Driving Torque (0z.-in.)	110.220			110.220	165.330		165.330	110.220			110.220	165.330		165.330
Net We.ght (lbs.)	431/2			48	642/3		71	41			45	61		67
Code Word	FEDAL			FEDAL	$\begin{aligned} & \text { FEDAL } \\ & \text { GANTY } \end{aligned}$		${ }_{\substack{\text { FEDAL } \\ \text { BONTY }}}$	MEFAL			$\begin{aligned} & \text { MEPAL } \\ & \text { BONDU } \end{aligned}$	GAEP		MEPAL
Price	\$100.00			\$125.00	\$147.00		\$175.00	\$104.00			\$129.00	5153		\$181.00

 Variac and one on each side for conduit or armored cable. Front half of case easily benct or behind pane.

Type W20G2 Variac

GENERAL RADIO Company
275 Massachusetfs Avenue, Cambridge 39, Mass., U. S. A. Warranty WE SELL Dirgct. Our Distitet Saios
Offices are statied by engineers especially trained to help you in the selection of instruments and measting systems best suited
to your needs. We welcome your inquiries -
will help solve ycur problems. to your needs We welcome your inquiries -
will help solve ycur problems.

a multi-plant organization, with the most up-to-date equipment and the greatest experience... produces the nation's widest range of Industrial Slides priced right every time.
7-10 days from request to delivery of prototypes. 2-3 weeks for production.

FAST DELIVERY:
Prototypes - 7 to 10 days, Production - $2-3$ weeks.

RESEARCH \& DEVELOPMENT Constantly designing, testing, improving.

UNCONDITIONAL GUARANTEE All Grant Slides guaranteed against defects in workmanship and materials.

TREMENDOUS VARIETY OF SLIDES Standard and Special Types ... priced right every time, too.

The nation's first and leading manufacturer of slides. GRANTINDUSTRIALSLIDES

Write for your copy of Grant's Indusirial Slide Reference Catalogue.

GRANT PULLEY \& HARDWARE CORP., 23 HIGH STREET, WEST NYACK, N. Y. 944 LONG BEACH AVENUE, LOS ANGELES 21, CALIF.

Transistorized Power Supplies

Nine models available in 6, 12 or 28 V nominal outputs, $2: 1 \mathrm{adj}$, range, output power levels approx. 15,30 and 50 watts.

Ripple: $.01 \%$ maximum
Response time: 50 microseconds
Regulation: $\pm 1 / 4 \%$ for line and load change combined

Meters: Optional on 50 watt units
Prices: from $\$ 165$ to $\$ 240$ depending on model and rack or cabinet mount

LOW-VOLTAGE HIGH-CURRENT DC POWER SUPPLIES

with the PERFORMANCE of ALL-TRANSISTOR CIRCUITRY

DC sources of utmost reliability, minimum ripple, and very fast response in lighter, smaller packages. And these new, compact power packs are fitted with the Zener diode referende circuit that assures the $\pm 0.25 \%$ regulation accuracy and high stability. The 2 to 1 output voltage range gives these supplies an application range that is unsurpassed. The all semi-conductor design provides the excellent ripple and response propetties that rule out line and load transients. An exclusive protective circuit preyents short-circuit damage to the transistors. 15 and 30 watt units come in single or dual rack mount, or in cabinets. 50 watt units have provision for remote sensing. 100 and 200 watt units will be available shartly (90 days).

Full information on this important advance in low voltage, high current technology is now in print. Ask your Sorensen representative for full data, or let us mail it to you directly.

SORENSEN \& COMPANY, Inc. Richards Avenue, South Norwalk, Connecticut

SILICON RECTIFIERS

for missile and other highly critical applications

Raytheon Solid State Diffused Junction Silicon Rectifiers offer you:

- demonstrated dependability of performance throughout the industry
- precise junction gradient for specific applications
- flat junctions for uniform control of characteristics
- ready availability in production quantities
- minus $65^{\circ} \mathrm{C}$ to plus $165^{\circ} \mathrm{C}$ operating temperature
- storage temperature up to $175^{\circ} \mathrm{C}$
- welded hermetic seal

SILICON AND GERMANIUM DIODES aND TRANSISTORS - SILICON reCtifiers
NEW YORK:. 589 Fifth Ave., PLaza 9-3900
CHICAGO: 9501 Grand Ave., Franklin Park, NAtional 5-6130
LOS ANGELES: 5236 Santa Monica Blyd., NOrmandy 5-4221

BUSINESS BRIEFS

ELECTRONICS NEWSLETTER

ARMY will start testing next spring at Laplata, Md., a "tapered aperture horn antenna" that will be 844 ft long, 506 ft wide and 253 ft high. Design, says the Army Signal Corps, is a radical break with conventional curtain antennas. It was developed by Developmental Engineering Corp. for the Army's strategic long-range communications circuits, with particular cmphasis on anti-jamming characteristics.

DATA HANDLING systems on order by savings banks will be transistorized by 1960, Teleregister Corp. tells Electronics. Firm says three castern banks that had ordered systems using tubes and magnetic drum memories have agreed to wait two years for the new equipment. Systems planned are ou-line; they will process deposit and withdrawal transactions as they take place.

MANNED SPACE CAPSULE CONTRACT may be awarded after January 1, 1959, according to the National Aeronautics and Space Administration. NASA was host earlier this month to 38 firms for a discussion of preliminary specifications. They were invited to submit proposals for long-term development of a space capsule suitable for manned satellite flight.

SPACEBORNE magnetic tape recorder, small enough to be held in one land but able to
store three million pieces of chata, has been announced. Lockheed Missile Systems division, the developer, said the device could record and store vital data when a spacecraft was out of radio contact with the earth and then, on command, unload the information in onc-sixth the time it takes to record it.

GOVERNMENT demand for data processing svs tems is growing, with strong emphasis on information storing and retrieval units. This was reported at the recent 1958 Computer Application Symposium in Chicago sponsored by the Armour Research Founclation. At the end of last year some 120 systems were reportedly in use by the U.S. Covernment, involving about $\$ 30$ million in annual rentals and $\$ 9$ million worth of purchased equipment. As of last June, more than 150 data systems were in the approved or advanced planning stages.

TWELVE COMPUTER CENTERS are being established for university scientists on a regional basis by the National Science Foundation. Fiscal '59 budget of NSF includes $\$ 1.5$ million for university computing facilitics, and the agency expects the program to rum two additional years. First center will be set up at the University of North Carolina with a $\$ 500,000$ grant for purchase of a Univac 1105

FIGURES OF THE WEEK

RECEIVER PRODUCTION

(Source: EIA)	0ct. 31, ${ }^{\prime} 58$	Oct. 24, 58	Nov. 1, '57
Television sets, total	121,465	121,267	152,306
Radio sets, total	306,977	310,148	399,196
Auto sets	56,071	75,073	131,327
STOCK PRICE AVERAGES			
(Source: Standard \& Poor's)	Nov. 5, '58	Oct. 29, 58	Nov. 6, '57
Radio-tv \& electronics	66.41	62.99	41.79
Radio broadcasters	77.48	73.39	50.79

FIGURES OF THE YEAR
Totals for first nine months

	1958	1957	Percent Change
Receiving tube sales	291,718,000	341,663,000	-14.6
Transistor sales	30,387,277	18,842,300	+61.3
Cathode-ray tube sales	5,844,665	7,308,552	-20.0
Television set productio	3,572,189	4,589,164	-22.2
Radio set production	8,178,821	10,764,454	-24.0
TV set sales	3,468,090	4,452,041	-22.1
Radio set sales (excl. auto)	4,903,676	5,840,372	- 16.0

Tv camera picks up model of airport runway lighting, projects to pilot in trainer

Tv Aids Airport Simulation

Combination of flight-trainer techniques and industrial television is hclping Airways Modernization Board check out proposed systems for runway and approach lighting.

Approach, landing and takcoff simulator, built for AMB by Doman Helicopter, was unveiled late last month at National Aviation facilities Experimental Center in Atlantic City, N. J.

Simulator, dubbed Dalto, is made up of three major subsystenis. Curtiss-Wright P3A part-task trainer (wlich "flies" like a B-25) is one end of the svstem. The other is a $57-\mathrm{ft}-3$-in. moving belt on which various runvay lighting configurations are set up. Connecting the two is a television system provided by General Precision Laboratories.

Runway lights are simulated by
raised fluorescent dots which are illuminated by ultraviolet light. Strobe beacons are simulated by a row of small neon bullbs which are flashed by a set of commutating contacts under the belt.
Belt movement is controlled by the trainer, simulating craft's ground speed. The camera (forcground in the picture) is also slaved to the trainer through three synchro chamucls, providing azimuth, roll and pitch. CurtissWright developed the conversion kit that slaves the camera and belt to the trainer.
A translucent filter (background in the picture) simulates conditions of fog, laze and other weather. Forward visibility can be varicd from 300 to $2,600 \mathrm{ft}$. Aircraft altitude of 0 to 300 ft can be simul lated; if the craft is higher, the pilot
sces no picture at all.
The picture as scen by the camcral is projected onto al 10 -by-$10-\mathrm{ft}$ screen in front of the trainer, where the pilot sees it through his windscreen. The 57 ft of belt provide $17,000 \mathrm{ft}$ of airspacc- $3,000 \mathrm{ft}$ of approach, $10,500 \mathrm{ft}$ of runway, and the rest black. First use will be to clieck out five different lighting configurations now under consideration. Actual pilot "touchdowns" and pilot opinion will both be considercd in cvaluating the patterns.
The Dalto system, excluding the trainer and conversion kit, sells for "under $\$ 50,000$." The conversion kit costs in the neighborhood of \$7,500.

Soviet Discloses Lunar Probe Gear

Sovier lunar probe instrumentation was recently disclosed by a Danish Communist newspaper whiclı quoted Moscow Planctarium scientist Vitaliy Bronshten.

Bronsliten told the paper that Soviet scientists were working energetically on a moon rockct which they expect to fire soon, that the rocket would be similar in size to the Sputnik II rocket, weighing about a half ton, and that two rocket variations were being readied.

He said one was intended to land on the moon, the other to orbit the moon and return to carth.

The Russian was quoted as enumerating these instruments:

- Gear for determining the moon's mass and conductivity of heat and electricity.
- Apparatus for investigating the moon's surface and discovering (Continued on p 12)

TRANSISTOR AND TUBE SALES, MONTHLY

(Source: EIA)	Sept., '58	Aug., '58	Sept., '57
Transistors, units	5,076,443	4,226,616	3,231,000
Transistors, value	510,811,412	\$9,975,935	\$6,993,000
Receiving tubes, units	40,061,000	30,456,000	44,382,000
Receiving tubes, value	\$33,951,000	\$25,442,000	\$35,545,000
Picture tubes, units	891,803	713,458	1,071,662
Picture tubes, value	517,704,289	\$14,190,878	\$20,819,036

EMPLOYMENT AND EARNINGS

(Source: Bur. Labor Statistics)	Aug. '58	July, '5s	Aug. '57
Prod. workers; comm. equip....	354,900	340,600	409,800
Av. wkly. earnings, conm.	$\$ 82.39$	$\$ 80.75$	577.81
Av. wkly. earnings, radio	$\$ 81.40$	$\$ 80.39$	$\$ 75.81$
Av. wkly. hours, comm.	39.8	39.2	39.9
Av. wkly. hours, radio	39.9	39.6	39.9

LAMBDA'S ALL-TRANSISTOR LINE

Delivered now • Guaranteed for five years

FOUR NEW POWER SUPPLIES

1-AMP and 2-AMP - CONVECTION COOLED

No internal blowers • No moving parts | $0-32$ VDC | | | | |
| :---: | :---: | :---: | :---: | :---: |
| $0-1$ AMP | $0-2$ AMP | | | |

- Compact. Only 31/2" panel height.
- Short-circuit proof.
- Protected by magnetic circuit breakers.
- Hermetically-sealed transformer. Designed to MIL-T27A.
- Ambient $50^{\circ} \mathrm{C}$ at full rating.
- High efficiency radiator heat sinks.
- Silicon rectifier.
- 50-400 cycles input.
- Special, high-purity foil, long-life electrolytics.
Mode! LT 1095
\$285
Model LT 1095M (metered)
$\$ 315$
Model LT 2095
\$365
Model LT 2095M (metered) \$395

CONDENSED DATA

Voltage Bands	0-8, 8-16, 16-24, 24-32 VDC
Line Regulation	Better than 0.15 per cent or 20 millivolts (whichever is greater). For input variations from 105-125 VAC.
Load Regulation	Better than 0.15 per cent or 20 millivolts (whichever is greater). For load variations from 0 to full load.
AC Input.	105-125 VAC, 50-400 CPS

Electrical Overload Protection

Thermal Overload Protection
size $31 / 2^{\prime \prime} \mathrm{H} \times 19^{\prime \prime} \mathrm{W} \times 143 / 8^{\prime \prime} \mathrm{D}$.

Send for complete LAMBDA L-T data.

11-11 131 STREET COLLEGE POINT 56, NEW YORK
INDEPENDENCE $1-8500$

WESTON INSTRUMENTS: STANDARDS OF STABILITY IN SCIENCE AND INDUSTRY

USE WESTON INDUCTRONIC ${ }^{\circ}$ components and systems

The Weston Inductronic System of D-C amplification is a precise method of low-level measurement and regulation. It is designed for industrial and laboratory processes requiring high standards of service . . . stability . . . sensitivity . . . speed of resolution. Coupled with appropriate transducers, Inductronic units can achieve many unusual applications which would otherwise be impractical. Review and comment by Weston engincers on any special requirements are offered without obligation.

INDUCTRONIC D-C AMPLIFIER (MODEL 1411) is the basic component of Weston Inductronic Systems . . . the electronic equivalent of a potentiometric system. Plug-in Standards are available for ranges from 2 microamps to 1 milliamp, or 10 microvolts to 1 millivolt. Accuracies run as high as 0.1%. Output is bi-directional. Either side may be grounded. On most ranges, response time is 20 milliseconds or less. Model 1411 is not sensitive to line voltage variations, input frequency disturbance, or tube characteristics-due to its unique method of full feedback null-balance.
INDUCTRONIC PRODUCT RESOLVER (MODEL 1482) is a precise A-C to D-C transfer standard. It provides an output proportional to the product of two independently varying A-C or D-C voltages. Even
at low power factor, rate accuracy falls within 0.2%. An electrodynamometer instrument mechanism is used as the translational device operating into a full feedback amplifier (similar to Model 1411). Its field coils are rated in single ranges from 50 milliamps to 5 amps . Voltage ranges are 20 ohms per volt. The response time of the entire system is approximately 20 milliseconds.

Write for Weston Catalog B-36, containing detailed information on these and other Inductronic systems and components. Address: Weston Instruments, Division of Daystrom, Inc., Newark 12, N. J. In Canada: Daystrom Lid., 840 Caledonia Rd., Toromio 10, Ont. Export: Daystrom Int'l., 100 Empire St., Newark 12, N.J.

November 21, 1958 - ELECTRONICS engineering issue

The New ARNOLD $6 T$ Aluminum-Cased Tape Cores

give you 4 BIG ADVANTAGES ... at no added cost!

NEW COMPACTNESS in Aluminum-Cased Cores permits you to design for greater miniaturization, yet retain the distortion-free strength of an aluminum case that resists winding stresses Overall dimensions are smaller than older types of aluminum cases and comparable in size wich plastic-cased cores.

HERMETICALLY SEALED, with Bulit-in Protection against shock and vibration, Arnold 6T Cores provide the most complete protection against deterioration of magnetic properties available on the market. Strain-sensitive core materials are completely surrounded by an inert shock absorbent, hermetically sealed within the cases. Trouble-free performance is virtually assured, even over long standby periods. 6T Core design further guarantees that you can vacuum-impregnate your coils.
(3) 1000 -VOLT BREAKDOWN GUARANTEED:

The Arnold 6T Core employs a strong, inert covering with hard gloss finish which carries a 1000 -volt breakdown guara ntee. Suitable radii and the elimination of sharp corners insure against cutting the winding wire's insulation. Its hard non-cold-lowing finish protects the covering against cuts. Bort features guarantee against shorted wiring.
(4) MEETS Military "specs" for Operating Temperatures and Temperature Rise.
The Arnold 6 T Core fully meets the requirements of military specifications Mil-T-5383 or Mil-T-7210, wherever applicable. These specifications call for case construction to withstand ambient temperatures to $170^{\circ} \mathrm{C}$, and a $25^{\circ} \mathrm{C}$ temperature rise.

Arnold GT Tape Cores are available in all standard sizes, and special sizes may be made to order. . . all guaranteed for size, hermetic seal, dielectric strength and temperature of operation.

- We'll welcome your orders for prompt delivery of pilot or production quantities.

THE
 Arnold Engineering
 Company

Main Office \& Plant: Marengo, Illinois

Repath Pacific Division Plant: 641 East blst Street, Los Angeles, Calif.
District Sales Offices:
Beston: 49 Waltham St., Lexington Los Angeles: 3450 Wilshire Blyd.
New York: 350 Fifth Ave. Washington, D.C.: 1001-15th St., N.W.
possible landing places for mancarrying space vehicles.

- Instruments for determining whether the moon has a magnetic field similar to that of the earth and the sun.
- Tv apparatus for viewing the far side of the moon.

Paper spews out at 6 ft a minute as...

Army Installs Speedy Printer

Eiectrostatic printing techniques go to work for U.S. Army Signal Corps in an electronic teletypewriter demonstrated last month by the Army and developer Burroughs Corp.

The high-speed unit, dubbed Beta by Burroughs, can operate at 3,000 words al minute. Signal Corps will run it at only 750 wpm .

Beta combines keyboard sending and electrostatic recording, uses the Baudot start-stop code. Each character is clectrostatically formed by a 5 -by- 7 matrix of wires. Paper passes between the line of 72 matrices and a grounding plate (or "anvil"), receives the 72 sets of charges making up a single line of type, then steps to an inking station. Powdered ink is picked up by the charged areas, then bonded to the paper by a heated roller.

Each character is set up in all 72 matrices at once; a coincident positioning pulse supplied to the anvil selects the head or heads which print. The charges for a whole line are deposited in considerably less time than it takes to step the paper from one line to the next (at $3,000 \mathrm{wpm}$, the machine prints 3 to 4 lines al second).

Theoretical top speed for the de-

WASHINGTON OUTLOOK

National Aeronautics and Space Administration, only two months old but already the center of a lusty controversy over its proposal to absorb the Army's space scientists, this week finds itself with disenchantment on another front.

The Aircraft Industries Association charges that there are "restrictive provisions on patent rights" in the new space agency law. The Association wants Congress to put NASA patent policy in line with what it regards as the Defense Department's more liberal provisions.

Space Act of 1958 setting up NASA provides that any invention which evolves from performance of work under NASA contracts-with minor excepfions-is the Government's exclusive property. On the other hand, Pentagon rules generally allow contractors to retain title to an invention, with the military services holding licensing rights.
Just last month the Pentagon liberalized its procurement regulations to provide contractors even greater protection for trade secrets-that is, "proprietary rights" to processing methods, treatment and chemical composition of materials, plant layout and tooling and other manufacturing sccrets.

Pentagon concern over this problem was stressed again last week at a special Washington conference called to spur R\&D effort in the critical field of molecular electronics. Maj. Gen. M. C. Demler, Air Force director of R\&D, said that proposals from industry might involve proprictary ideas. He emphasized that the armed services were aware of responsibilities in protecting industry rights.

NASA is now drafting a set of procurement regulations to govern its industrial contract work. For the most part, NASA's new rulcs will follow policies set forth in the long-established Armed Services Procurement Regulations, including such matters as contract negotiations and administration, and allowable costs and profits.

- Long-simmering controversy over the Rencgotiation Act, under which so-called "cxcessive" profits are retrieved from defense contractors, is now moving from the courts back to Congress.

In the rush to adjourn last August, Congress renewed the law for six months to June 1959 without hearing all of industry's proposals to revise the act. However, the lawmakers did make plans for a major study of the law next year before voting on its extension again.

Professional staffers on the Joint Congressional Committec on Internal Revenue will begin informal talks next month with industry spokesmen. Open hearings will probably start a month or so later.

Sweeping Democratic gains in the new Congress have discouraged the hopes of some defense contractors for major modifications of the law-including exemptions for incentivetype contracts, the right to appeal beyond the Tax Court, and a more definitive yardstick for determining so-called excessive profits.

VERSATILE, RELIABLE DIGITAL INSTRUMENTS

> DC digital voltmeter offers maximum reliability... 0.01% accuracy... single-plane readout....and many other advanced features

The Model 401 offers four-digit display with automatic polarity indication and decimal placement... Measures . 0001 to 999.9 volts with $0.01 \% \pm 1$ digit accuracy... Adjustable least digit sensitivities of $.1,1,10 \mathrm{mv} .$. Average reading time of one second... Continuous, automatic standard cell calibration . . . 10 megohms input impedance . . . Built-in printer drive . . . 10 times longer readout bulb life . . No circuitry in readout for easy remote mounting... Extra long relay life assured by DC drive. Price: $\$ 2100$.

KIN TEL manufactures an exceptionally complete line of digital instruments. These "digital building blocks" permit measurement of AC, ohms, ratios, and automatic scanning of multiple inputs. Preamplifiers increase digital voltmeter sensitivity to 1 microvolt DC and 10 microvolts AC. Buffers permit driving typewriters, tape punches and printers. Complete digital systems for data logging, missile checkout and production testing are also available. The reliability and accuracy of these precision instruments are assured by KIN TEL's experience in designing and manufacturing more than 10,000 "standard cell accuracy" DC instruments. Sales and service are available nationwide. KIN TEL Engineering Representatives in all major cities.

All-electronic digital voltmeter measures millivolt to kilovolt with 0.1% accuracy
... costs only $\$ 960$

Four ranges: 0.000 to $1.599 ; 00.00$ to $15.99 ; 000.0$ to 159.9 ; 0000. to 1000 volts (manual ranging and polarity)... No moving parts... Digital in-line readout... 70 millisecond conversion time... Adjustable display time... Input completely floating and isolated... 0.1% of full scale accuracy ... Direct voltage conversion circuit. . . Wide range of models.

KIN TEL's Model 801A all-electronic digital voltmeter measures DC from 0.001 to 1000 volts with 0.1% of full scale accuracy... and in less than $1 / 10$ second, presents the measured voltage clearly on an in-line digital readout that even unskilled personnel can read with ease. Direct voltage measurement by successive approximation provides accuracy and sensitivity previously obtainable only in delicate, complex and expensive instruments. Extremely stable opera-tion-continuous calibration against an internal reference. (Input impedance of the Model 801 A is 20,000 ohms per volt. The Model 802A, priced at $\$ 1190$, has an input impedance of 10 megohms on all ranges. In other models, the binary coded decimal and decimal outputs are externally available to permit driving printers and tape punches.)
vice (if the elcetrostatic teclinique were used without external limitations of paper feed) is in the neighborhood of 500.000 vp m, the Army says. Unit can also be used as an adjunct to computers

Character spacing is 10 to the inch, and line spacing is 5 to the vertical inch. The unit requires 1.2 kilowatts, most of which is consumed by paper-transport mechanism and heater in bouding roller.

New Plastics Uses Coming

Chicago-Two years of progress in plastics materials, products and maclinery were rounded up for the Society of the Plastics Industry's bieunial National Plastic Exposition, which closed herc todav.

In the more than 300 new products shown at the exposition or discussed in conference sessions. there seemed to be something for evervbody.
For electronics, Minnesota Mining \& Manufacturing is completing work on a two-part foaming encapsulating epoxy designed to protect electronic gear from shock. Its clensity is seven lbs per cur ft.

There is also considerable activity in one-part resins for temperatures ranging from -100 C to 150 C. One resin will be extrusionwrapped around coils, like thick tape, and then cured in place.

Dow Corning said it is working on room-temperature vulcanizing silicone rulbers for encapsulating. It's also developing solventlcss silicone resins with various fillers for high temperature purposes.
Plastics machinery firms came up with some new automatic transfer molding machines, vacuum molding machines for encapsulating and forming cases from sheet extruders.

Cadillac Plastics \& Chomical slowed a new gun for spraying-up rcinforced plastics of chopped glass fiber and resin simultaneously.
Several electronics firms were represented among the exhibitors. These included manufacturers of radioisotope thickness gages, laboratory and production test and control devices, vacuum metalizers, dielectric heating and sealing maclines and a few component firms.

MILITARY ELECTRONICS

- A terminal guidance system for Nike-Zeus anti-ICBM missile is being developed by Sylvanial.
- Army has completed its Reclstone missile test program with a successful 250 -mi shot across the Atlantic test range. Over the past two years, $3+$ out of 37 launchings have been satisfactory.
Army plans to sloot a rocket directly toward the moon and create a mau-made, $30-\mathrm{lb}$ planet that will orbit the sun if it misses the moon, Wernher von Braun revealed. First attempt may be made in the first week in December. Chances of success are oue in two.
- Airborne compass systems can now be calibrated clectronically by
"rotating thic earth's magnetic field" around a parked aircraft. This new system may climinate the old, costlv and often inaccurate method of moving the plane in 15 -degree stages around a concrete compass rosc.
Developed by Sperry under the sponsorship of USAF's Wright Ait Development Center, the electronic system provides calibration accurate within onc-tentlo degrce

Equipment needed includes an electrical console, a tripod and a simple transit modified to include a special magnetic sensing device The total weight comes to 90 pounds

Sperry secs a big market in the system in both military and commercial aircraft.

Geophysicist uses solar converter to power . . .

New Seismic Amplifier

Alletransistor seismic amplifier system announced recently will make it easier for geophysical crews to get about while searching for oil and ore in remote regions of the world.

The system, made by Texas Instruments, aveighs about 100 pounds. The $2 t$-chamncl seismograph is packed in a 57 -pound case and the power supply and battery case weighs 45 pounds.

A lightweight, 12 -volt aircraft battery is sufficient since the
seismograph draws only 6 amps during most of its operating cycle. When TI introduced the system at the Society of Exploration Gcophysicists' convention in San Antonio last month, sumlight provided the power.

An 8 by 15 -inch silicon solar converter charged the battery. The conserter charged at 250 milliamps at 12 volts. About 10 hours cxposure to the sum was sufficient.

The seismograph is stable over a temperature range of -40 F to

new performance levels set by Hughes precision crystal filters

Hughes Products now offers high performance crystal filters previously availahle only for special military developmental contracts and Hughes-built systems. Utilizing unique design and advanced manufacturing techniques, these Hughes crystal filters provide a degree of performance previously unattainable.

With center frequencies of 30 kc to 30 me and fractional bandwidths of 0.01% to 6%, these crystal filters have seven distinct advantages:

1. High frequency filtering
2. High selectivity
3. Low passband ripple
4. Low insertion loss
5. Small size and weight
6. Excellent temperature stability
7. Excellent shock and vibration stability

SPECIFIC PERFORMANCE CHARACTERISTICS FOR TYPICAL FILTERS

For further information please write hughes products, Crystal Filters, International Airport Station, Los Angeles 45, Calif.

140 F . Each channel contains 22 germanium transistors and 4 silicon diodes. In all, 591 transistors and 103 diodes are used, along with tantalum capacitors and deposited carbon precision resistors.

Development of the system was based on first-hand need. Through a subsidiary, Geophysical Service Inc., TI operates exploration crews in some 18 countries. Sustem will be available to other prospectors.

Another transistorized system from the same firm is designed for industrial dlata collection and remote control of on-off devices. It consists of a receiver at a central operating point, a field selector which can read or control 100 or 1,000 locations, a common analog input for all analog output transducers, and transducers and control elements.

Stations are interrogated by dialing their code numbers. Transducer output is decoded, displayed on the receiver and may be logged. The information and the station dialed are verified before the information is displayed. Signals can be transmitted by wire or radio. Transistors are used to minimize maintenance.

New Unit Guards Shopping Center

Electronic security system costing $\$ 100,000$ has been activated in a $\$ 200$-million shopping center in Minneapolis.

The system uses more than 1,200 photoclectric cclls for light detcc-

FINANCIAL ROUNDUP

- General Telephone \& Electronics will be one of the giant firms of the electronics industry if the proposed merger of Sylvania and General Telephone is approved by stockholders.

GTE is the proposed name of the combined company. But the name Sylvania will not vanish from our industry. Firm will be operated as a subsidiary of GTE. Shares will be exchanged on a one-for-one basis. Sylvania stockholders would get about one-sixth interest.

Combined firm will have sales of more than $\$ 800$ million and assets in excess of $\$ 1.8$ billion. Sylvania contributes sales of about $\$ 340$ million, nearly $\$ 250$ million in assets.

A big common interest behind the merger is the growing importance of electronic telephone communications. GT is second only to the Bell System in size; Sylvania provides electronics know-how, R\&D capabilitics.
Another common interest is the industrial electronics market. Much of Sylvania's receiving tube sales are to industrial users and the firm is well along in rescarch and development of other industrial products. GT has a toehold in industrial electronics through its manufacturing
subsidiary Automatic Electric and would like to expand further in this area. General Telephone's financial resources cement the mutual interests and activities of the two firms.

- Telecomputing Corp., diversified Los Angeles electronics firm, acquires a controlling interest in Frank R. Cook Co. of Denver, Colo., through an exchange of stock. The Denver firm makes batteries used as a power source in many guided and ballistic missiles. Telecomputing aims to broaden its activities in the missile field.
- Astron Corp., capacitor manufacturer of East Newark, N. J., purchases for cash all stock of Minitronics Corp. of New York City. Minitronics has been preparing to manufacture a solid tantalum capacitor. Acquisition ties in with Astron's policy of getting a bigger slare of military components business through development of miniaturized and high reliability components.
- G-L Electronics, Camden, N. J., issues 75,000 shares of common stock through Woodcock, Hess, Moyer \& Co. of Philadelphia. G-L makes magnetic components.
tion, ultrasensitic rise-of-heat indicators, and a two-way audio system that listens during the night and transmits music during day.

From a central control room a single guard can detect fires or intruders in any of the $800,000 \mathrm{sq}$ ft area's 70 stores. He can also opcratc cxit doors, lighting, and internal sccurity communications in the two-level building.

Desigucrs, G. R. Willet \& Co., Chicago, point out that the lowvoltage clectrical system operating the "watchdog" required no special conduit installations. Further savings have been possible by using electronic heat detectors, eliminating water sprinkler systems.
A console in the central control room (photo) allows security personnel to keep the area under constant scrutiny at all times.

NEREM Spotlights Design Techniques

BOSTON--In electronics, New England is frequently a "jumping off point"-idea-wise-for devices which often go into production in other parts of the country.

Section's impact on design enginecring was cvident here this week in cxhibits and papers at NEREM (Northeast Electronics Rescarch and Engineering Meeting).

In second year of its graduation into circle of national shows, NEREM more than tripled size of two-day technical program with 43 papers.

Heavy cmphasis this year was on computers and information theory-nearly one-third of papers were in this field; and circuit devel-

Sprague's new smaller size Koolohm Resistors are designed to meet modern industrial requirements for insulatedshell power wirewound resistors that will perform dependably under the severe duty cycles encountered in heavy duty industrial electronic equipment.

NEW CONSTRUCTION IMPROVEMENTS

1. Leads are welded to drawn metal cap ends.
2. Ceron (ceramic insulated) resistance wire wound under controlled tension on special ceramic core. Makes possible multi-layer non-inductive windings as well as very high resistance value conventional windings.
3. Finished resistance elements are given unexcelled mechanical protection by non-porous ceramic outer shells-sealed with high temperature silicone end cement.
4. Insulated shell permits mounting in
direct contact with chassis or "live" components.
5. Aged on load prior to final test and inspection to stabilize resistance value and assure outstanding performance on load-life tests!
The advanced construction of these improved Koolohm Resistors allows them to operate at "hottest spot" temperatures up to $350^{\circ} \mathrm{C}$. You can depend upon them to carry maximum rated load for any given physical size.
opment-eight papers.
Displays featured components, techniques rather than systems.

Papers on circuits outlined design criteria for automatic phase control systems; application of a novel null-detection method on a new impedance bridge; development of a selective calling device for tactical voice communications.
An entire session on circuits was devoted to amplifiers, with reports on an auxiliary signal method of reducing plate dissipation in audioamplifiers; differential amplifiers; a chopper-stabilized transistor amplifier; and progress on climinating limitations of distributed amplifiers.

Unusual feature of scssion on reliability and testing was paper exploring concept of reliability insurance, provided either by insurance firm or equipment producers. W. B. Bishop of AF Cambridge Rcsearch Center said preliminary study indicates risks involved in reliability insurance are calculable with suffcient accuracy to be economically acceptable. He added that techniques used to measure and predict electronic equipment reliability are similar to insurance methods for determining magnitude of risk and appropriatc premiums.

Bishop's stucly was concerned principally with the government as an electronics uscr, but he said concept could be applied equally to industrial users.

Gas Pipers to Buy More Gear

The natural gas pipcline industry "now spends millions" for electronic equipment and "will be spending several times more in five years."

This prediction comes this week from F. Vinton Long, chicf of the Texas Eastern Transmission Corp.'s communications section.

The firm recently unveiled its first remotely controlled gas compressor station. Situated in Linden, N. J., the station is controlled from a facility 50 miles west, in Lambertville.
"This is one of the first uses of unattended operation techniques in natural gas service," says A. J.

Shoup, TE vice president and chicf engineer. He adds that his firm plans to open four more such stations next year.

The new equipment's duplex controls are designed to operate on either microwave or leased telephone lines. The electronic-elcetrical equipment cost $\$ 30,000$ to $\$ 40,000$, firm said.

About 15 companies, 10 considered large, are now in the natural gas piping inclustry.

Airline Installs Reserving Unit

A COAST-TO-COAST electronic seat reservation system is now in operation at Trans World Airlines.

The system links separate electronic data processing units in New York, Chicago and Los Angeles with a space inventory control unit in Kansas City. San Dicgo and San Francisco are tied in with the L.A. system, Milwaukee with Clicago.

The three data processors store space availability information on all TUVA domestic and international flights. The system was built for TWA by Telcregister Corp., which has installcd elcctronic reservation systems with scven airlines.

X-ray Amplifier

Industrial image amplifier enables x-ray inspection of devices with moving parts. Above, Picker XRay Corp. shows how its system would be used to inspect a gear. The television monitor permits remote viewing

MEETINGS AHEAD

Nov. 17-21: Space Flight Engineering Conf. and Exposition, American Rocket Society, Statler-Hilton Hotel, N. Y. C.

Nov. 19-21: Electrical Techniques in Medicine and Biology, AIEE, ISA, PGME of IRE, Nicollet Hotel, Minneapolis.

Dec. 2-4: Reliable Electrical Connections, EIA, Statler-Hilton Hotel, Dallas.

Dec. 2-4: Airlines Electronic Engineering Committee, Winter Meeting, AEEC, Ilotel Statler, Washington, D. C.

Dec. 3-5: Global Communications, AIEE, PGCS of IRE, Colonial InnDesert Ranch, St. Petersburg, Fla.

Dec. 3-5: Eastern Joint Computer Couf, AIEE, ACM, IRE, BellevueStratford Hotel, Philadelphia.

Dec. 4.5: Vehicular Communications, Annual Meeting, PGVC of IRE, Hotel Sherman, Chicago.

Dec. 9-11: Mid-America Electronics Convention, MAECON, Municipal Auditorium, Kansas City, Mo.

Jan. 12-14: Reliability and Quality Control, National Symposium, PGRQC of IRE, ASQC, EIA, BellevueStratford Hotel, Philadelphia.

Jan. 21-23: Southwest Electronic Exhibit, Arizona State Fairgrounds, Ploonix, Ariz.

Fcb. 1-6: American Institute of Electrical Engineers, Winter General Meeting, Statler Hotel, New York City.

Feb. 12-13: Transistor \& Solidl-State Circuit Conf., AIEE, PGCT of IRE, Univ. of Pensylvania, Philadelphia.

Mar. 3-5: Western Joint Computer Conf., AIEE, ACM, IRE. Fairmont Hotel, San Francisco.

Mar. 23-26: Institute of Radio Engineers, IRE National Convention, Coliseum \& Waldorf-Astoria Hotel, N. Y. C.

Mar. 31-Apr. 2: Millimeter Waves Symposium, Polytechnic Inst. of Brooklyn, USAF, ONR, IRE, USA Signal Research, Engineering Societies Bldg., N. Y. C.

Apr. 5-10: Nuclear Congress, sponsored by over 25 major engineering and scientific societies, Public Auditorium, Cleveland.

KW heat problems coming up?

Estimate cooling requirements for your project now!
This helpful, cooling load calculating Nomograph gives you a quick, easy way to analyze potential heat sources, enables you to make

Write for your copy today!

Ellis and Watts Products, Inc.

P.O. B.ox 3,3 E, Cincinnati 36, Ohio

Designers and bujlders of specialized air conditioning equipment:
MIL-AC Units, refrigerated liquid coolers, computer cooling equipment,
dewpoint control equipment, electronic console coolers, air to
liquid coolers and large capacity dehumidifiers.?

This new Dot Nylon Push-in Nut offers additional design and performance advantages over our currently available plastic snap-in nuts. These advantages are:
(1) Straight legs permit easy insertion in square, punched holes and do not distort the holes even in soft aluminum or thin-gauge steel. (2) Burrs do not impede the nut or prevent proper seating. (3) Tapered screw hole causes legs to spread when screw is inserted and results in greatly increased pull-out resistance isee drawing Al.
Ordinary sheet metal screws cut clean, strong threads in the molded nylon and the nut is both re-usable and highly resistant to vibration.
Used as a nut or as a spacer, Dot's Nylon Push-in Nut has wide application in all products where sheet metals or plastics are employed. They can be supplied with a moisture resistant sealer and special nuts can be designed to your specifications if volume warrants. Currently available in eleven sizes. Full information on request.

CARR FASTENER COMPANY
 Division of United-Carr Fastener Corp., Cambridge 42, Mass.

$\begin{array}{ll}13 / 8^{n} \times 37 / 64^{n} & .000 \\ & \end{array}$

New amplifier battles "noise"

BE SURE...BUY E-LITES engineered especially for computers, control systems, military applications

You can mount almost any E-lite in a $3 / 8^{\prime \prime}$ hole. These tiny units save precious space in computer data-processing systems, aircraft and industrial control systems, instruments, test equipment, telemetering systems wherever long life and dependable operation are essential. They'll fit your system application exactly because
they're tailor-made for the job by system engineers. Choose from many replaceable-lamp or permanent-lamp types, with neon or incandescent lamps, with or without resistors, and in a variety of lens styles, colors and data readout capacities. 100% electrical and mechanical inspection assures you of full E-lite quality in every unit.

TWO-WEEK DELIVERY ON 1560

STANDARD VARIATIONS
Special Prices On Volume Orders

REPLACEABLE-LAMP TYPES Single-lamp holders for neon or incandescent lamps. Variety of lins lypes. 10 H holder shown.

LOW-COST INDICATORS Neon and incandescent panel illumination, readout, etc. Bound or flat lens. Lens marking available. Push-on retainer furnished. Models 1B (neon) and $1 K$ (incandescent) shown.

ROUND-LENS INDICATORS With neon or incandescent lamps Model IAG (neon) shown.

DUAL LAMP HOLDER
Holds two lamps to provide dou. ble check on circuit operation. Monitors key circuitry in a variety of ways. Model 1 FH.

MORE THAN 1500 SATISFIED USERS:
IBM Burroughs General Electric
Electro-Data Bendix Hughes Brush Instruments
Magnavox Ampex....and others!

Write for 6-page bulletin with photos, descriptions, dimension drauings for the complete line. Sales representatives in principal cities. Submit your pecial problem for our engineered solution.

C O R PORATION

1805 Belcroft Avenue, El Monte, Calif. A subsidiary of Genisco, Incorporated

How far can an engineer go at

Someday your name may go on the door of a top-management office of the AC Division . . . or of the General Motors Corporation. This is part of GM's "open door" policy. This means that not only is every GM door open to every employee, but that every open door represents opportunity. Today $A C$ helps fulfill the large demand for inertiol gruidance systems (with the AChiever) and many other electro-mechanical, optical and infra-red devices. In the future $A C$ will supply even more instrumentation needs -both military and commercial-for the "space era." Your long-range prospects at AC can hardly be equaled. You'll gain invaluable experience working shoulder to shoulder with recognized experts on many assignments. You'll enjoy highest professional status, which can be enhanced by working on advanced degrees at engineering schools located near AC facilities. You can work at AC facilities actross the country or around the world. In short, if you are a graduate engineer in the electronic, electrical or mechanical fields, you can go places at AC, because AC is going places. This is worth looking into. Just write the Director of Scientific and Professional Employment: Mr. Robert Allen, Oak Creek Plant, Dept. A, Box 746, South Milwaukee, Wisconsin; or Mr. M. Levett, Dept. A, 1300 N. Dort Highway, Flint 2, Michigan. It may be the most important letter of your life.

Inertial Guidance Systems - Afterburner Fuel
Contrals - Bombing Navigational Computers
Gun-Bomb-Rocket Sights - Gyro-Accelerometers
Gyroscopes - Speed Sensitive Switches - Speed
Sensors • Torquemeters * Vibacall - Skyphone

There's a "one-best voltmeter" for every job... and you'll find it here!

Makeshift measurement-where you stretch a faithful but outmoded instrument to or beyond its limitations - this takes time. Save engineering time by choosing and ordering now the "one-best" -hp- voltmeters fitting your measurement need. -hp-offers a complete array of precision, dependable voltmeters, each specifically suited to a given type of voltage measuring job. Check the brief data here, then ask your -hp-representative for demonstrationon your bench and on your problems!

WIDE RANGE- 10 cps to 4 MC
$-h p-400 \mathrm{D}$, probably the best $-h p$ voltmeter ever built. Covers all frequencies 10 cps to 4 MC . Extremely sensitive, accurate within $\pm 2 \%$ to 1 MC , measures 0.1 mv to 300 v . Direct reading in dbm. 10 megohm input impedance insures negligible loading on circuits under test. New amplifier circuit with 56 db feedback insures maximum stability and freedom from change due to external conditions. $\$ 225.00$.

MULTI-PURPOSE to 600 KC - \$200
$-h p$ - 400 AB , unique value, broad utility and long-term dependability in a low cost laboratory instrument. Covers 10 cps to 600 KC , measures from 0.3 mv to 300 v in 11 ranges. High stability, high sensitivity, accuracy $\pm 2 \%$ full scale from 20 cps to 100 KC .10 megohm input impedance; $25 \mu \mu \mathrm{f}$ shunt. Meter reads direct in volts and dbm. $\$ 200.00$.

EXTREME ACCURACY of 1%
$-h p-400 \mathrm{H}$, designed for users who need highest accuracy within \pm 1% to $500 \mathrm{KC}, \pm 2 \%$ to 1 MC and $\pm 5 \%$ full range. Covers frequency range 10 cps to +MC . Has 5 " meter with mirror scale, measures voltages 0.1 mv to 300 v . High 10 megohm resistance minimizes circuit disturbances; amplifier with 56 db feedback insures lasting stability. Direct reading in db or volts. Extremely high quality throughout. $\$ 325.00$.
-hp- also offers a broad variety of voltmeter accessories including voltage dividers, connectors, shunts and multipliers to extend the useful range of your equipment. Details on request from your -hp- representatives or direct; or see page 46 of current -hp-catalog.

STANDARD OF INDUSTRY-

 20 cps to 700 MC-hp-4108, perhaps the most widely used of all precision voltmeters. In addition to 20 cps to 700 MC ac coverage, serves as a dc voltmeter with over 100 megohms input impedance. Also is ohmmeter for measurements 0.2 ohms to 500 megohms. For ac measurements, input capacity $1.5 \mu \mu \mathrm{f}, 10 \mathrm{meg}$ ohms input impedance, employs radical-hp-developed diode probe which virtually $e^{l i m i n a t e s}$ circuit loading. $\$ 2+5.00$.

NEW!
 $-h p-400 \mathrm{~L}$ Logarithmic Voltmeter

High accuracy

10 cps to 4 MC
$5^{\prime \prime}$ true log voltage scale
Linear 12 db scale 10 db range steps
Generous scale overlap
New, convenient $-h_{p-4} 400 \mathrm{~L}$ is a unique instrument combining a specially designed logarithmic meter movement with the many desirable features of $-h p$ 400 D and 400 H voltmeters.

Model 400L's logarithmic voltage scale plus unusually long scale length provides an instrument of maximum readability and an accuracy which is a constant percentage of the reading. Voltage scales are more than $5^{\prime \prime}$ long, with a 12 db scale spread across the full scale length. The meter is mirror backed for maximum accuracy. A range switch changes voltage sensitivity in 10 db intervals. This feature, together with the 12 db scale, provides generous overlap and is of particular convenience in work involving decibel levels.

Other features of the new 400 L include exceptional long term stability, high sensitivity, high input impedance, large overload capacity, compact size and highest quality construction.

Model 400 L may also be used as a stable amplifier.

SPECIFICATIONS -hp- 400L

Voltage Range:	0.3 mv to $300 \mathrm{v}, 12$ ranges, 1-3-10-30 sequence.
Frequency Range:	10 cps to 4 MC
Accuracy:	$\pm 2 \%$ of reading, or $\pm 1 \%$ of full scale, whichever is more accurate, 50 cps to 500 KC ; $\pm 3 \%$ of reading, 20 cps to 1 MC ; $\pm 5 \%$ of reading, 10 cps to 4 MC (Includes line voltage changes 103 to 127 volts.)
Long Term Stability:	G_{m} reduction in amplifier tubes to 75% nominal causes less than 0.5% error, 20 cps to 1 MC
Calibration:	Calibrated in RMS value of sine wave. Log voltage scale, 0.8 to 3 v and 0.3 to 1 v . Db scale -12 to +2 db .10 db intervals between ranges.
Input Impedance:	10 megohms shunted by $15 \mu \mu \mathrm{f}, 1$ to 300 v . $25 \mu \mu \mathrm{f}$ shunt on 0.001 to $0.3 \vee$ range.
Amplifier Usage:	Output terminals permit 400 L to amplify small signals or monitor waveforms with an oscilloscope.
Power Supply:	$115 / 230 \vee \pm 10 \%, 50 / 1,000 \mathrm{cps}$, approx. 100 watts.
Price:	-hp-400L (cabinet) \$325.00. hp- 400LR (rack) \$330.00.

Voltage Range: Range Accuracy:

Long Term Stability:
Calibration:
Input Impedance: Amplifier Usage: Price:

.3 mv to 300 v , 12 ranges, $1-3-10-30$ sequence.
4 MC
$\pm 2 \%$ of reading, or $\pm 1 \%$ of full scale, whichever is more accurate, 50 it 4 MC KC, 3% of 20 cps to 1 MC
Calibrated in RMS value of sine wave. Log voltage scale, 0.8 to 3 v and 0.3 to 10 megohms shunted by $15 \mu \mu \mathrm{f}, 1$ to 300 v . $25 \mu \mu \mathrm{f}$ shunt on 0.001 to 0.3 v range. Output terminals permit 400 L to amplify small signals or monitor waveforms with an oscilloscope.
-hp- 400L (cabinet) $\$ 325.00$. hp- 400LR (rack) $\$ 330.00$.

For your Magnetic Shielding Problems ... MUMETAL is the answer:

Write for your copy "MAGNETIC MATERIALS"
This 32 -page book contains val. uable data on all Allegheny Ludlum magnetic materials, silicon steels and special electrical alloys. Illustrated in full color, includes essential information on properties, characteristics, applications, etc. Your copy gladly sent free on request.

ADDRESS DEPT. E-11

Mumetal shields will give instant relief to interference caused by extraneous magnetic fields. This material can cure many troublessolve many a problem for you.

Use it where high permeability is required at low flux densities, such as in input and microphone transformers, hearing aid diaphragms, instruments, wire and tape recorders, etc. For properly heat treating Mumetal, we can also offer commercial hydrogen annealing facilities.
A fund of technical data on shields
and other applications for Allegheny Ludlum Mumetal is available -let us help with your problems.

In addition to Mumetal and other high-permeability alloys, we offer a range of magnetic and electrical alloys and steels that is unmatched in its completeness. Our services also include the most modern facili. ties for lamination fabrication and heat treatment. - Let us supply your requirements. Allegheny Ludlum Steel Corporation, Oliver Building, Pittsburgh 22, Pa.

STEELMAKERS to the Electrical Industry Allegheny Ludlum

OO LOOK AT THEIR DESIGN

IRC 2W's are designed with a one-piece nickel silver center terminal and collector ring. Resistance wire is wound by specially designed IRC machines and bonded to the core by a special coating to prevent wire shifting even under most unfavorable conditions.

O○ LOOK AT THEIR ADAPTABILITY

You name it-the IRC 2W has it: Single control: single with SPST, DPST or SPDT switch; duals, concentric duals, with or without switch; 3-gang or 4-gang, waterproof shaft and bushing.
IRC 2W's are available with most any shaft and bushing style, including a "shaft locking" type bushing. For your further convenience there is a wide selection of standard and special locating lugs.

OO LOOK AT THEIR PERFORMANCE

IRC 2W Controls exceed MIL-R-19A specifications of 3% maximum and $11 / 2 \%$ average change for $40^{\circ} \mathrm{C}$ load life at 1000 hours. Resistance change is less than 2% maximum after 25,000 cycles under rated load.

OO LOOK AT THEIR CHARACTERISTICS

2W Controls may be obtained in resistance values from 1 to 50,000 ohms, and in tolerances of 10% and 5%; lower tolerances are available on special request.

Standard taper is linear; modified logarithmic or special tapers are available.

O○ LOOK AT THEIR APPLICABILITY

IRC 2 W Controls are widely used in circuits for servo-mechanisms, test instruments, measuring instruments, automatic controls, military equipment, and many other electronic devices where high stability and low cost are necessary factors.
O○ LOOK AT BULLETIN A-3a
for complete details of construction and specifications; derating, taper and resolution charts. Write for it today.

Nickelonic News

First commercial atomic clock . . . waveguides of low permeability Monel "403" hold down signal distortion

No problem fabricating these waveguides of Monel " 403 " low permeability alloy, reports National. The intricate tubes carry microwaves in the Atomichron atom-regulated frequency standard.
Heart of the "clock" - a cesium beam tube - Monel "403" alloy provides the tube's pole assemblies with excellent mechanical properties plus low magnetic permeability Manufactured by National Company, Inc., 61 Sherman Street, Malden 48, Mass

Nickel leads, welded directly to tantalum, boost capacitor ruggedness

Dallas, Tex.: For maximum reliability, new Texas Instruments tan-TIcap $p^{* *}$ capacitors depend on leads of Electronic Grade "A" Nickel. This strong, tough nickel wire, welded soundly and easily to the tantalum stubs, helps provide the good connections needed to withstand mechanical and thermal shock.
Electronic Grade "A" Nickel is highly resistant to oxidation and corrosion. What's more, it provides tight hermetic seals (note figure at right) and speeds unit installation. Another Nickelcontaining alloy, Kovar***, is also used to assure tight metal-to-glass seals.
Pertinent Literature: Write for Inco Technical Bulletin T-15.

For outstanding vacuum properties, key parts of the Mark 1-T4 accelerator are made of Electronic Grade "A" Nickel. Built by Applied Radiation Corp., Walnut Creek, Cal. Applied Radiation Corp., Walnut Creek, Cal.

**T. M. of Texas Instruments Incorporated

Lead wires of Electronic Grade "A" Nickel strengthen this new tan-Tl-cap Solid Tantalum Electrolytic Capacitor.

...clock generates frequencies accurate to 5 parts in 10 billion!

Malden, Mass. : You can now tell time accurately down to 100 millionths of a second with the Atomichron \dagger, first commercial atom-regulated "clock."

How it works

Waveguides feed a tuned microwave signal through a stream of cesium atoms. As signal reaches the atoms' resonant frequency, it changes some atoms in internal structure. This change is sensed by a detector and signalled to a servo system, which regulates the frequency of a basic oscillator at precisely the atomic resonance value. By means of electronic multipliers and dividers, this oscillator produces standard output frequencies of $0.1,1.0,5$ 10 , and 100 megacycles - the required "clocking" action.
Designers chose Monel "403"* low permeability nickel-copper alloy for the waveguides, radio frequency sections and magnet pole assemblies, because it provides magnetic permeability so low that atomic resonance remains free from distortion. Monel " 403 " alloy offers excellent vacuum and mechanical properties, is readily machined and formed into intricate shapes.
Like all Inco Nickel Alloys, Monel " 403 " alloy is freely available.
Pertinent Literature: W rite for "Basic Data-Monel '403' Low Permeability Nickel-Copper Alloy."
\dagger Tr. M. of The Sational Company, Ine

Nickel materials keep electrons
Walnut Creek, Calif.: Intense electron, neutron and X-ray beams are generated by this new ARCO linear electron accelerator. In order to operate at very high vacuums -10^{-7} to $10^{-8} \mathrm{~mm}$ Hg -its vacuum envelope must be degassed by baking out at $400^{\circ} \mathrm{C}$. ARCO designers specify Electronic Grade "A" Nickel for the envelope because it provides the excellent vacuum properties required. This metal also resists oxidation, corrosion and retains its strength at operating temperatures well above $400^{\circ} \mathrm{C}$.
in line" in new linear accelerator

Nickel plating improves seals

All metal surfaces of the envelope's metal-ceramic seals are plated with Incc Nickel. Inco Nickel is easily brazed, protects parts from oxidation. Its purity facilitates the elimination of all organic products from the vacuum envelope, permitting excellent radiofrequency operation.
Pertinent Literature: Write for "Inco Nickel Alloys for Electronic Uses."
"Registered trademark, The International Nickel Company, Inc.

ThE INTERNATIONAL NICKEL COMPANY, INC. • 67 Wall Street • New York 5, N. Y.

Box K 101
Kuthe Laboratories Inc: ITT Components Division 730 South 13th Street Newark 3, New Jersey
international telephone and telegraph corporation for most severe environmental requirements in switch and network discharge applications.
The KU-73 shown here is a $25 \mathrm{kv} / 1000$ amp. peak thyratron, comparable in ratings to glass type $5948 / 1754$, more than three times its size. It is only $53 / 4^{\prime \prime}$ high and $31 / 2^{\prime \prime}$ in diameter . . . while its glass counterpart is $153 / 4^{\prime \prime}$ high by $5 \frac{1}{8^{\prime \prime}}$. Because it is ceramic, the KU-73 has far greater ability to stand shock and vibration. It can operate at ambient temperatures up to $125^{\circ} \mathrm{C}$. Ratings can be substantially increased by air or oil cooling . . . readily accomplished because of the efficient dissipation possible with this compact, thermally efficient design.

The KU-73 incorporates an internal low temperature hydrogen reservoir for long life and highly stable performance characteristics. Jitter is less than 1 millimicrosecond.

Write today for complete data and application information.

In financial aid to education .. . What Should Business Do Now?

Now that the federal government is entering the field, should lusiness firms stop giving financial aid to our colleges and universities?

This question is now being discussed by business directors throughout the country. The discussion is prompted by the near-billion-dollar program of federal aid to education passed by Congress a few months ago. For if the federal government, with its access to billions in taxes, is assuming responsibility for the financial welfare of education, should not business get out of the way and let the government take over? This is the general way the question is being asked.

The answer is a resounding NO.

What The Federal Program Does

The new federal program makes it possible for the government to spend the imposing total of $\$ 900$ million for aid to education over the next four years. There are still many loose ends in the program. But already it's quite clear what such funds will - and will not - do to help relieve the financial plight of our colleges and universities.

First of all, the program is not going to solve any financial problems in education overnight.

The program is just barely underway. So far no money has actually been allocated, and Congress has appropriated only $\$ 40$ million - less than 5% of the total.

More important, there is very little in the total program which will result in direct aid to colleges and universities. The program does set up fellowships to train college teachers. But most of the aid will eventually be chameled through the states to primary and secondary schools. The main focus of the program is education for national defense - strengthening science, mathematics and foreign languages in elementary and secondary schools, together with grants for counseling, testing and research.

The one big item for higher education is a $\$ 295$ million student loan program, which will help needy students pay tuition and other fees. But tuition rarely covers the full cost to the college of educating a student. So the net result could well be an additional financial strain on our institutions of higher learning.

For the three most pressing financial needs - faculty salaries, scholarship grants and new plant and equipment-colleges and universities must still rely heavily on help from the business conmmity. And it would indeed be a major
misfortune if the recent actions of the government put a blight on this growing and substantial support to higher education.

In the last ten years, business has expanded its financial aid to education by more than four fold. In 1948 , contributions were only $\$ 24$ million. In 1957, such aid reached an estimated $\$ 125$ million. Moreover, corporations have been putting a larger proportion of their total charitable gifts into education. In 1950, the percentage was only 17%. By pre-Sputnik 1956, the share had already increased to 34%, according to figures recently released by the Council for Financial Aid to Education.

Why Business Must Help

The most compelling reason for increasing business aid to higher education - at an even faster rate-is that our colleges and universities desperately need financial help. It is that simple. Private contributions to higher education must average at least $\$ 400$ million over the next ten years if our colleges are to meet rising operating costs and raise faculty salaries to decent levels. Despite the growth in business contributions, we are still well below that goal.

If our colleges cannot solve their mounting financial difficulties through voluntary help from business firms, alumni and communities - then it is to be expected that federal aid ultimately will be mobilized in a big way. In principle, if not in dollars, the 85th Congress has paved the way. Indeed, a large federal scholarship program was squeezed out of this year's legislation only in the course of last-minute compromises. And Arthur S. Flemming, Secretary of Health, Education and Welfare, has urged that the next session of Congress restore the scholarship program.

About any federal rescue operation for higher education, two things are quite clear:
(1) Such aid will come too late to prevent irreparable harm resulting from the current shortage of funds. The need for help is urgent and immediate.
(2) With federal taxes taking over half of all corporate income, any federal program in the end will be financed in large part by the business community.

An Opportunity

So, viewed narrowly, it is in the selfish interest of business firms to aid our colleges and universities now, rather than wait and be forced to pay later on. By doing so, they ensure that business will have a continuing supply of well-trained graduates. They take advantage of the tax laws for charitable contributions which mean the government in effect assumes more than half the cost of business aid to education. And they win gratitude for a voluntary and generous act.

Viewed in the broad public interest, the business community has an opportunity to perform a financial rescue mission in education which could well be the key to successful survival, not only of our present system of higher education, but also of the nation itself.

As previous editorials in this series have pointed out, a very small share of the net income of business firms - about 1% - would do the job. Certainly business must not le distracted from this opportunity by the new venlure of the federal government in financial aid to education.

This message is one of a series prepared by the McGraw-Hill Department of Economics to help increase public knowledge and understanding of important nation-wide developments. Permission is freely extended to newspapers, groups or individuals to quote or reprint all or parts of the text.

DenardCTuclmant

PRESIDENT
McGRAW-HILL PUBLISHING COMPANY, INC.

Now... Ratings > 120 kw for rectifiers made with

 DU PONT SILICON

 DU PONT SILICON}
compact units can eliminate need for dc lines

A wide range of rectifiers made with Du Pont Hyperpure Silicon-with ratings from a few microwatts to> 120 kw per cell-are now available. Manufacturers cite efficiencies up to 99% in units operated at 60 cps , operation at temperatures from -65° to $175^{\circ} \mathrm{C}$., rectification ratios as high as 10 million with negligible reverse conductance, and the elimination of special dc lines when these compact rectifiers are used in bridges.

Du Pont, pioneer and first commercial producer of silicon, supplies manufacturers of rectifiers, diodes and transistors with several grades of Hyperpure Silicon. (Du Pont does not produce devices.)

Write today for our free booklet containing full data on Du Pont Silicon: E. I. du Pont de Nemours \& Co. (Inc.), 2420 Nemours Bldg., Pigments Department, Wilmington 98, Delaware.
35% LIGHTER!

！タヨTH○1」 か゚己を

A new design in Cannon Plugs. The new ALRF line consists of aluminum versions of the standard N and SC plugs designed for installation wherever weight-saving is a critical design criteria. To provide further flexibility for the ALRF line Cannon has available a new series of ALA cable adapters for use with semi-rigid aluminum RF cables. The new Cannon ALRF plugs offer 35% lighter material weight plus many important improvements in design characteristics, including: - Superior Electrical Performance achieved by a new internal design in which the braid is crimped to the coliett providing optimum bond, I Improved Moisture Sealing Characteristics due to an improved design of the silicone rubber gromet, providing a tighter bond with the cable jacket, - Improved Clamping Mechanism for more positive gripping action without distortion of the outer braid. . Improved Resistance to Corrosion through a black anodized finish giving superior resistance to corrosive elements. In the ALSC series a reversal of pins and sockets can be specified. All of these design advantages are available in the new Aluminum RF Line from Cannon Electric Company-3208 Humboldt Street, Los Angeles 31, Calif. Write for Cannon Catalog ALRF-1-Please refer to Department 120. Factories in Los Angeles, Santa Ana, Salem, Toronto, London, Paris, Melbourne and Tokyo. Distributors and Representatives in the principal cities of the world.

NEW!

all electronic A-D converters

 and digital voltmetersfor medium and high speed applications

The 7000 Series

for high-speed conversions. Up to $1000 /$ second $\cdot 1$ megohm input impedance - Automatic polarity • 3and 4 -digit models - Sensitivity and resolution 0.01% - Transistorized logic circuits - Transistorized direct-reading indicators.

The 8000 Series

for medium-speed conversions • Maximum balance time 100 milliseconds • 1000 megohms input impedance at balance - Automatic ranging • Automatic polarity - 4-digits • Sensitivity and resolution 0.01%. Totally transistorized.

Both the 7000 and 8000 Series develop voltage state $B C D$ outputs for data recorder entry. Standard code is 2, 4, 2, 1; other codes available on special order.

means a

System of Weapons Management

Temco's capabilities in electronic research and development . . in systems management . . are making Temco a leader in the electronics field. Take Temco's work in autopilot development, for example. While converting several Army Signal Corps L-17s to radio controlled reconnaissance drones, Temco found no suitable "commercial" autopilot. So Temco engineers developed their own. . an inexpensive, simplified unit that met all special requirements . . provided wide-range reliability and control.

Then Temco engineering came up with a low-drift d-c servo: system and a low-power d-c "pecking" amplifier . . took the basic autopilot they had developed. . miniaturized and repack. aged it for use in Temco's rocket-powered transonic Teal target drone. The result: "Teal" became the first "missile" of its type to be successfully launched from a swept-wing aircraft and to operate effectively at altitudes up to 50,000 feet.

Today this know-how is directing development of "Corvus". . the Navy's highly classified "stand-off" air-to-ground missile . . with Temco as weapon system manager. It is being used in the development and production of special flush-mounted antenna systems .. microwave devices . . advanced guidance systems . . airborne TV systems and many classified projects.

Temco's complete systems management capabilities are ready to meet your challenge.

Flexible Laboratory Sweeping Oscillator - 10 mc to 950 mc

Catalog No. 111-A

The Kay Mega-Sweep 111-A is a two-band beat frequency sweeping oscillator specifically designed for improved performance in the UHF range. The Mega-Sweep 111-A provides wide frequency sweep widths and operates over a wide frequency range from 10 mc to 950 mc . Both sweep width and center frequency are continuously variable.

The Mega-Sweep 111-A employs two X-band klystrons in a waveguide mixing circuit. Suitable buffers, matching devices, and a directional coupler minimize both coupling between oscillators and load effects. A precision absorption-type frequency meter indicates the output frequency; a continuously variable microwave attenuator provides truly broadband adjustment of the output level.

A drive mechanism mounted on the front panel automatically tracks the klystron repeller electrode voltage with klystron operating frequency. One mode of klystron operating voltage is maintained with the klystron operating at or near the peak of the mode. The entire range of operating frequencies can be covered by rotating a single knob. A calibrated dial indicating center frequency $\pm 10 \%$ is attached to the tuning mechanism; since the sweep widths are very wide, this indication is close enough for easy location of the bandpass to be displayed.

* A moditied unit, Catalog No. 112-A, provides a fequency range of $800-1200 \mathrm{mc}$
\dagger With the addition of a Kay Vitra-Former UHF matching transformer, an output of 0.3 V rms into a balanced 300 ohm load will be delivered between 450 and 900 mc .
- Wide Sweep Width up to 40 mc
- Variable Sweep Rate with Line "Lock-in"
- All-Electronic Sweep
- Negligible Leakage
- Constant RF Output over Sweep
- Zero Level Baseline
- Precision Wavemeter
- Low Harmonic Distortion

SPECIFICATIONS

Frequency Range: Two bands; 10 mc to 500 mc and 400 mc to 950 mc .*
Sweep Width: Continuously variable, 50 kc to 40 mc .
Sweep Rate: Variable around 60 cps ; locks to line frequency.
RF Output: High, approx. 0.15 V rms into nom 70 ohins. $\frac{1}{6}$
Low, approx. 0.07 V rms into nom 70 ohms.
Amplitude Modulation: Less than $0.1 \mathrm{db} / \mathrm{mc}$ over frequency sweep.
Output Waveform: Less than 5\% harmonic distortion at full output; less than 2% at half output.
Attenuator: Uncalibrated microwave attenuator continuously variable to 26 db . Attenuation characteristic flat over output frequency range.
Frequency Measurements: Mid-point frequency of sweep may be pre-set, or
frequency indicated at any point on oscilloscope display within $\pm 5 \mathrm{mc}$ by use of the precision micrometer-controlled wavemeter.
Sweep Output: Regular sawtooth; amplitude 20 V approx.
Power Supply: Input approx. 110 watts, 117 V ($\pm 10 \%$), $50-60 \mathrm{cps}$ ac. $\mathrm{B}+$ electionically regulated.
Dimensions: $10^{1 / 2 \prime \prime} \times 18^{1 / 2 \prime} \times 12^{\prime \prime}$.
Weight: 35 lbs.
Price: $\$ 595.00$, f.o.b. factory.

Other bonded diodes
A 0.002 -inch whisker of precious metal is micro.fed under a force of less than 0.5 gram into light contact with the germanium.
Shock or temperature variation can break this contact.

CBS-Hytron bonded diodes A heavier 0.005.inch whisker of rigid tungsten wire with a sharp point is pressed against the germanium under a force of 16 grams. This results in a contact pressure of about 400,000 pounds per square inch. Positive contact is assured during manufacture and use.

Now...

 COMPUTER DIODES designed to eliminate opens and shortsComputer diodes must be reliable . . . with a small fraction of 1% failures. Opens and shorts usually account for the majority. CBS-Hytron bonded junction diodes are designed to eliminate such catastrophic failures. See illustrations.

More reliable products through Advanced-Engineering
semiconductor .

Comparative Shock Test CBS-Hytron bonded computer diodes are designed to withstand shock and vibration during printed-circuit assembly and during life. See illustration of CBS-Hytron shock test . . . more severe than military shock and vibration tests. Note the distribution curves comparing diodes subjected to this "paper jogger" test.

The inherent ruggedness of the CBS-Hytron line of bondedjunction computer diodes can free you from catastrophic failures. Let us supply you with engineering samples designed for your applications. Ask for Bulletin E-314. Call or write today.

New Amplitron tube nearly doubles radar range. Copper tone shows increased coverage.

In radar tubes, in breaker contacts, electrically and structurally...
The COPPER METALS meet

THE CHALLENGE OF RELIABILITY

Increased maintenance costs and the increased complexity of most military and commercial products have laid greater stress on the reliability of electrical and electronic components. What the customers want, essentially, is predictable service life without maintenance. The designer faces the problems of temperature, corrosion, material and joint strength, fatigue and many others. His answer is frequently found among the copper metals - whether or not conductivity is also needed. Here are a few design problems where reliability was vital, and where copper or a copper alloy contributed to the solution:

Design Problem-Radar booster tube

Raytheon's Amplitron* is a new type of tube capable of power amplification at microwave frequencies. It boosts the output power of an existing radar installation by 8 to 14 times, and nearly doubles its range. Dependable performance is essential, whether used for military aircraft detection or commercial aircraft guidance. The design problems included extreme mechanical accuracy, durable connections, heat dissipation and vacuum retention. The solution to all of these was
oxygen-free, high-conductivity copper.
The anode cavity (diagram above) depends on very tight tolerances for proper performance. Yet in some models it can be formed out of a solid blank of copper by cold forging - with a single press stroke. Copper's malleability makes this possible. The many connections can be brazed reliably because of copper's good joining properties.

With an output above 4 megawatts, heat could be a problem. Copper's thermal conductivity handles it. The good high temperature characteristics of this copper are enhanced by its freedom from oxygen traces, eliminating oxidation, scale formation and conductivity losses. The very high ($50-70 \%$) electrical efficiency of the tube depends, of course, on copper's electrical conductivity.

Vacuum retention in a tube of such complex geometry depends on two other characteristics of this grade of copper. The metal is nonporous, and its high purity eliminates the formation of gaseous products. The vacuum envelope is therefore secure, because nothing seeps in and nothing is generated within it.

Raytheon says, "Without, copper, the Amplitron would have been impossible."

Design Problem-Plug-in breaker connections

Federal Pacffic Electric Company's "STABreaker" circuit breakers plug right into the panelboard to permit changing units and ratings without bolting and unbolting. Dependable performance of the connectors is essential to circuit continuity and to avoid heating and false tripping. The design problems included high fatigue strength, spring qualities, easy cold working, reliable welded connections and, of course, electrical conductivity. The solution to the problem was found in Phosphor Bronze 5\%. The result was an excellent electrical connection and a dependable one.

Design Problem - Yours

Whenever reliability determines design, the copper metals should be investigated. They have many properties besides conductivity that can help enhance the maintenance-free service life of your product. The Copper \& Brass Research Association, 420 Lexington Ave., New York 17, N. Y., will be happy to cooperate in your investigation.

"STABreaker" plugs into panelboard. Enduring spring qualities of Phosphor Bronze 5% assure a reliable contact.

THERE'S A NEW FRONTTER IN...
 GOPPER BRASS BRONZE

SIMPLE, regulated DC power supply

Emerson said,""To be simple is to be great," and that perfectly describes the Sola Constant Voltage DC Power Supply. If you want to keep your apparatus as simple as you can (especially if it's basically complicated) this de supply will do it.

You needn't worry about manual adjustments or maintenance in the field. There are no moving or expendable parts . . . no tubes. The entire supply is a unique combination of three components: 1) A special Sola Constant Voltage Transformer, 2) a
semiconductor rectifier, and 3) a highcapacitance filter. It's that simple. It's extremely dependable.

Regulation is $\pm 1 \%$ against line voltage variations up to $\pm 10 \%$. Ripple is within $1 \% \mathrm{rms}$. Outputs are in the "ampere range." It's particularly well-suited for use on apparatus with pulse, intermittent, or variable loads. Efficiency is high.

The Sola Constant Voltage DC Power Supply is simple, compact, very reliable, and moderately priced.

Fixed output - six rat. ings available from stock

Adjustable output six ratings from stock

Custom-designed units produced to your specs

Write for Bulletin 7K-DC-235

Sola Electric Co., 4633 W. 16th St., Chicago 50, Ill., Blshop 2-1414•Offices in principal cities • In Canada, Sola Electric (Canada)Ltd., 24 Canmotor Ave., Toronto 18, Ont.

IINID TEFLON
 FLUOROCARBON RESINS Better Things for Bover , Living, . through Chemistry

Design of $3 \frac{1}{8}$-inch coax switch to handle 55 KW made possible by Du Pont TEFLON ${ }^{\text {® }}$

TV TRANSMITTER SWITCH handles high powers with very low loss thanks to a machined layer of TFE-fluorocarbon resin. Reverse side of connector plate shows coaxial core connections through layer of TFE resin. A flat metal bar (not shown) switches power from top input connection to three outputs. Graph of properties shows why dielectric losses remain low regardless of operating tempera. tures. Switch is made by Thompson Products, Inc., Electronics Division, Cleveland, Ohio; and distributed by Andrew Corp., Chicago, III.

When increased power allocations by the FCC resulted in the need for a switch to handle greater powers and higher frequencies, engineers of Thompson Products, Inc., were faced with a major redesign problem. It looked as though the higher requirements would make their new multi-position switch for $31 / 8^{\prime \prime}$ rigid coaxial line obsolete. Needed were models that could handle 55,000 watts of average RF power and could cover the full UHF band to 1000 megacycles. The problem was solved by changing to a TFE-fluorocarbon resin for the dielectric.

Both electrical and mechanical properties of TFE resins proved important in this design. The resin is used to make sheet dielectric for backing the grounded connector plate and a strong shaft for turning the switching bar. One of the biggest problems-impact cracking-was entirely eliminated. In addition to their unique UHF properties, TFE resins have a Class H temperature rating. $260^{\circ} \mathrm{C}$. continuous rating permits increased operating temperatures in the switch. The extremely low dielectric constant of TFE resins is a natural for this microwave design. TFE resins have a minimum dissipation factor, unexcelled by any other solid. Characteristic curves for these electrical factors show that they remain flat with regard to both temperature (see graph) and frequency (60 cps to 3000 mc).

This remotely controlled, motor-operated switch is another example of the use of Du Pont TFE resins to assure RELIABILITY and SAFETY in electronic operations. We will be glad to send you information covering design data and applications of these outstanding dielectric materials.

Write to: E. I. du Pont de Nemours \& Co. (Inc.), Polychemicals Dept., Room 1711, Du Pont Building, Wilmington 98, Delaware.
In Canada: Du Pont Company of Canada (1956) Limited, P. O. Box 660, Montreal, Quebec.

TEFLON ${ }^{\text {® }}$

is a registered trademark...
TEFLON is Du Pont's registered trademark for its fluorocarbon resins, including the TFE (tetra. fluoroethylene) resins discussed herein.

New environmental lab provides rigid in-plant testing of all Westinghouse electronic transformers

Westinghouse Specialty Transformer Department has established a new qualification testing laboratory in the Greenville, Pennsylvania, plant. It is fully equipped for in-plant environmental testing-humidity, altitude and temperature cycling-as well as shock and vibration testing.

Specifically designed for testing the complete line of Westinghouse MIL-T-27A electronic transformers, these facilities are also available for all other Westinghouse electronic transformers-whether for MIL-specs or non-military applications. Here is extra assurance that you get the same rugged dependability in all Westinghouse electronic transformers-regardless of use.

The test lab permits in-plant testing of all types of electronic transformers-hermetically sealed to open type-according to MIL-T-27A and MIL-T-9219 specifications for Grades 1 through 6. These units include the Westinghouse hermetically sealed MIL-T-27A transformers, Grades 1 and 4, and the Westmold, Westseal and molded case transformers, MIL-T-27A, Grades 2 through 6, or MIL-T-9219.

Located at the point of manufacture, this laboratory now means single responsibility by Westinghouse for design, manufacture and testing of the MIL-specs transformers-and non-military transformers-with less delays and faster delivery.

Call your Westinghouse representative for the full story of how in-plant testing in this new laboratory can aid your production. Ask, too, about the Westinghouse MIL-T-27A electronic transformers.

J-70897

Westinghouse electronic transformers being shock-tested according to specifications of MIL-T-27A with new in-plant qualification testing equipment.
P. K. Goethe, Specialty Transformer Engineering Manager at the Greenville plant, observes shake-down run of vibration test equipment in new laboratory

Particularly designed for power applications involving 60-400 cycles, the Westinghouse hermetically sealed MIL-T-27A transformers are available in the complete line of standard MIL-T-27A case sizes.

New low reflective absorbents makes free space tests more reliable

Ten times lower reflection is now available with all B. F. Goodrich Microwave Absorbents. This 0.1% material gives reliability to measurements previously unattainable for testing of guided missiles in a free space chamber.

You can now be sure, by selecting the proper B. F. Goodrich material, that you will get this 0.1% performance at any point on the microwave frequency spectrum.

In addition to this outstanding quality, the B. F. Goodrich absorbent is light-weight, fire-retardant, easy to install. It will not deteriorate in performance when walked upon and has excellent water and weather resistant

List of B. F. Goodrich Broadband Absoments

	Lowest		Maximum Designation
Frequency*			

Most of the above absorbents can be furnished with 0.1% maximum reflection at selected points in the frequency band.
*All perform up to $30,000 \mathrm{mc}$
properties. For darkroom use, a special white compound can be applied to the surface of the pads to increase light reflectance.

When you're investing thousands, start right - specify B. F. Goodrich the company with the longest experience and record for consistently high quality microwave material. For new booklet on these absorbents write The B. F. Goodrich Company, 486 Derby Place, Shelton, Connecticut.

New Edo Engineering and Administration Building-ultra modern, air-conditioned, on the u:口ber al College Point, L. I.

With new Half-Millinn-Tollar Building, L.I. Electronics and Aeronautical Firm Increases Staff To Handle \$III,IIII,IIID Backlay of Irders

Edo Corporation, Long Island manufacturer of electronic, aeronautical and mechanical equipment, moves this month into its new $\$ 500,000$ Engineering and Administration Building.

Edo, specializing in the design and manufacture of underwater acoustical detection equipment, anti-submarine devices, aircraft components and related equipments, is increasing its engineering staff by one-third with the availability of new facilities. Completion of the new building releases some 18,000 square feet in the present Edo plant for an expanded manufacturing program.

As prime contractor to the U. S. Government, Edo is a major producer of sonar, radar, loran and other com-
plex electronic systems. Edo Airborne Loran, first such equipment to be developed for commercial use since World War II, has been ordered by most of the major international airlines as basic long range navigation equipment in their jet fleets.

Edo is aiso the world's foremost manufacturer of aircraft floats, designer of advanced aircraft hulls and of the first amphibious helicopter conversion.

In addition to the home plant at College Point, L. I., Edo operates two wholly owned subsidiaries-Edo (Canada) Ltd., at Cornwall, Ontario, and Electro-Ceramics, Inc., Salt Lake City, Utah.

ATTENTION ENGINEERS:

Edo has urgent need of engineers with experience in the electronic and aero-mechanical fields. Career opportunities are unlimited with this solid, growing firm. You're invited to phone for interview or send resume to
C. L. Fenn, Chief Engineer Edo Corporation
College Point, L. I., N. Y.
Hlckory 5-6000

miniature pulse magnetron FOR MISSILES DELLVERS 4 KW

This is a Litton Industries magnetron, one of a remarkable family of thirty small, lightweight pulse tubes delivering up to 4 kw . The family has recorded hundreds of thousands of hours of reliable service.
The range of performance characteristics of these magnetrons has enabled them to demonstrate their reliability in navigational radar and communications, as beacon interrogators and transponders, in airborne fire control systems, in classified missile applications, and in other miniaturized systems.
These are better tubes because of what pediatricians call TLC-tender, loving care. We put more than the normal number of man hours into the construction
of each miniature magnetron. The result is a higher than normal tube yield. High yield in production has been statistically proved to produce measurably higher reliability in the field... and longer life, If you would like more information on these and others of our wide line of electron tubes - information that may change your planning of new system designs - we have recently published a new electron tube catalog. Litton Industries Electron Tube Division, Office E2, 960 Industrial Road, San Carlos, California. If you would like information on our company as a place where you can enjoy an atmosphere wherein there are isolated areas of nearly pure vacuum - we'd like to hear from you.

Multi-channel-telegraph A1 or telephone A3

STABLE

High stability (. 003%) under normal operating conditions

Components conservatively rated. Completely tropicalized

Here's the ideal general-purpose high frequency transmitter! Model 446, suitable for point-to-point or ground-to-air communication. Can be remotely located from operating position. Coaxial fittings to accept frequency shift signals.

This transmitter operates on 4 crystal-controlled frequencies (plus 2 closely spaced frequencies) in the band 2.5-24.0 Mcs (1.6-2.5 Mcs available). Operates on one frequency at a time; channeling time 2 seconds. Carrier power 350 watts, Al or A3. Stability $.003 \%$. Nominal 220 volt, $50 / 60$ cycle supply. Conservatively rated, sturdily constructed. Complete technical data on request.

Now! Complete-package, 192 channel, H.F., 75 lb. airborne communications equipment by Aer-O-Com! Write us today for details!

BROADEN DESIGN HORIZONS whth new pmp difit transistors

TYPICAL APPLICATIONS

TV CIRCUITS
FM RADIOS

SHORT WAVE RADIOS
high frequency oscillators
YERY hig speed
SWITCHIMG devices

WFITE TODAY FOR GULLETIN G.180 INCLUDING COMPLETE MECHANICAL AND
MECHANICAL
SPECIFICATIONS,
DIMENSIONAL DRAWINGS:
GRAPHS AND ENGINEERINE 'DATA.

SEVEN NEW DRIFT TRANSISTORS FOR HIGH SPEED SWITCHING AND HIGH FREQUENCY AMPLIFIER APPLICATIONS

General Transistor's new 2N602, 2N603, 2N604 provide the design engineer with guaranteed switching parameters such as gain-bandwidth and DC current gain, while the $2 \mathrm{~N} 605,2 \mathrm{~N} 606$, 2N607 and 2N608 provide guaranteed power gains at high frequencies.
In addition to the great speed advantages offered by the drift transistor at no sacrifice of gain, such additional features as higher voitages and lower capacity are ayailable. Thus one can now drive higher impedance loads with no sacrifice of speed or pulse power.
The complete control of G. T.'s Drift Transistor assures longer life and maximum performance while possessing complete reliability.
Other features include: high input-circuit efficiency, excellent high-frequency operating stability, good signal-to-noise ratio, good automatic-gain-control capabilities and the rugged mechanical construction of a positive hermeticaliy sealed JETEC 30 case.
all transistors can now be supplied in full compliance with mil.t-19500A.

DC Current Gain			Gain XBandwidth		$\begin{gathered} \hline \text { Power Gain } \\ K_{p} \end{gathered}$		
$\begin{aligned} & \text { 2N602 } \\ & \text { 2N603 } \\ & \text { 2N604 } \end{aligned}$	$\begin{aligned} \mathrm{V}_{\mathrm{CE}} & =1 \mathrm{~V} \\ \mathrm{I}_{\mathrm{I}} & =0.5 \end{aligned}$	25-100	$\begin{aligned} V_{C a} & =5 \mathrm{v} \\ \mathrm{I}_{\mathrm{c}} & =5 \mathrm{ma} \end{aligned}$	$\begin{aligned} & 10.30 \mathrm{mc} \\ & 30-50 \\ & 50.70 \end{aligned}$	$\begin{aligned} & \text { 2N605 } \\ & \text { 2N606 } \\ & \text { 2N607 } \end{aligned}$	$\begin{aligned} \mathrm{Vaf}_{\mathrm{c}} & =7.5 \mathrm{v} \\ \mathrm{I}_{\mathrm{c}} & =1 \mathrm{ma} \\ \mathrm{f} & =2 \mathrm{mc} \end{aligned}$	$\begin{aligned} & 20-25 \mathrm{db} \\ & 25-30 \mathrm{db} \\ & 30.35 \mathrm{db} \end{aligned}$

* represents range value for complete transistor family and net for one particular transistor

GENERAL TRANSISTOR

$$
91.27 \text { I } 3 \text { BTHPLACE JAMAJCA } 35 \text { • NEW YORK }
$$

IM CANADA: DESSERE.E LTD., 441 St. FRANCIS XAVIER, MONTREAL , dUEBEC
FOR IMMEDIATE DELIVERY FROM STOCK, CONTACT YOUR NEAREST AUTHPRIZED TRANBISTOR DIETRIBUTOR OR GENERAL TRANEISTOR DISTRIBUTING CORP., $91-27$ 13ETH PLACE JAMAICA 35, NEW YORK FOR EXPORT: GENERAL TRANSISTOR INTERNATIONAL CORP.. 91-27 13ETM PLACE, LAMAICA 35, NEW YORK

The electronics BUYERS' GUIDE.

A "COOPERATIVE EFFORT" Between Industry and Publication Throughout 18 Years Achieves

ACCURACY • COMPLETENESS • AUTHENTICITY

Give-and-take between the publishers of electronics BUYERS' GUIDE and the electronics industry over the years produced the detailed wealth of information contained in the GUIDE'S product listings.

The BUYERS' GUIDE is literally the electronics industry's own data and buying book, for manufacturers, users and service groups have made as positive contributions to its evolution as have dedicated editors and researchers. There are countless examples in the files where the breakdown of electronics components, materials, services and equipment for easy reference has required years of refinement before manufacturers were satisfied with nomenclature, and where in the GUIDE their products were listed. And it has taken patient policing by the research staff to make certain that all products fall into correct categories, with those categories broken down wherever necessary for clarification. (Since producing the GUIDE is a full time, year around operation, questionnaires are already being processed for the 1959 issue.)

These years of cooperation and experience result in the BUYERS' GUIDE of today needed and used by the electronics industry because it simplifies buying in a complicated, intricate field.

QUICK FACTS FOR YOU TO EVALUATE THE 1958-59 BUYERS ${ }^{\text {G }}$ GUIDE

- Advertiser Acceptance- 667 advertisers used the current BUYERS' GUIDE to sell their products, materials and services.
- Product histings-More than 2,000 electronic and allied product categories, with advertisers' names in boldface type. More than 4,000 manufacturers and service organizations.
- Editorial Content-Handbook-type, reference material of lasting valuc on components, circuits, etc. with accompanying schematics, charts and graphs.
- Guaranteed Distribution-Copies go to the more than 52,000 paying subscribers to electronics - a great American business publication.

FIRST

LONG DISTANCE

 TROPO SCATTER
SYSTEM

 PROVES
- SSB best for long tropo hops

- Longer high-quality hops now feasible
- High power is no problem with G-E amplifier

Klystron power amplifier of new design, featuring higher efficiency, reliability and lower operating cost. The entire system was designed by MIT Lincoln Laboratory in conjunction with Air Force Air Research and Development Command.
 system has been designed for ease of maintenance and operation to cope with extreme weather conditions.

Operation of the world's first long distance single sideband tropospheric scatter system proves the practicality of SSB for over-thehorizon hops of several hundred miles. Spanning 640 miles between sites near Boston and Winston-Salem, multi-channel voice and teletype communications are maintained with high reliability.

* With this system General Electric demonstrates the inherent advantages of SSB for long distance transmission: the ability to get more wide-band signal over long one-hop distances with less power, at less cost.

When considering long-distance communications, remember General Electric's many years of experience in the design and manufacture of high power amplifiers, a key limiting factor in tropo scatter system design. And G-E engineers possess the practical system "know-how" so essential in the design and installation of long-range communication systems. Call these engineers to study your requirements. Military-Industrial Sales Technical Products Department, General Electric Company, Electronics Park, Syracuse, New York.

Progress /s Our Most Important Product GENERAL SLECTRIC

STEREO STEREO STEREO STEREO

12W high slope miniature pentode

This medium power, high fidelity tube is particularly suitable for stereo equipment. Its high slope of $11,300 \mu \mathrm{mhos}$ allows two EL84s in push-pull to give over 10 W output power at less than 1% distortion -all achieved for only 16 V of grid to grid drive.
The EL84 may also be used for the more economical higher powered equipments. Two tubes will provide an output of up to 17 W at an overall distortion of 4%.
A single EL84 will provide an output of nearly 6 W . It has a maximum plate dissipation of 12 W .
Typical performance details for this tube are given here-for further information and supplies write to one of the distributors listed below.

MEDIUM POWER

Distributed load conditions (screen grid
taps at 43% of primary)

			v_{a}	300	v
V^{3}	300	v	$\mathrm{V}_{\mathrm{g} 2}$	300	v
$\mathrm{V}_{\mathrm{g} 2}$	300	\checkmark	R_{k}	130	Ω
$\mathrm{I}_{\mathrm{k}(0)}$	2×40	mA	$\mathrm{R}_{\mathrm{a}-\mathrm{a}}$	8.0	$k \Omega$
I_{k} (max.sig.)	2×45	mA	$\mathrm{I}_{\text {a }}(\mathrm{O})$	2×36	$m A$
\mathbf{R}_{k} (pervalve)	270	Ω	I_{a} (mag. sig.)	2×46	$m A$
$\mathrm{V}_{\text {in (} \mathrm{l} \text { I-gl) } \mathrm{r}, \mathrm{m}, \mathrm{s} \text {. }}$	16	\checkmark	$\mathrm{I}_{\mathrm{g} 2(0)}$	2×4.0	$m A$
$\mathbf{R}_{\text {a-a }}$	8.0	k Ω	$\mathrm{I}_{\mathrm{g} 2}$ (max.sig.)	2×11	$m A$
	11	W	$\mathrm{V}_{\text {in(ti-gl) } \text {, m.s }}$	20	V
$\mathrm{D}_{\text {tot }}$	0.7	\%	$\mathrm{P}_{\text {out }}$	17	W
			$\mathrm{D}_{\text {tot }}$	4.0	\%

HIGHER POWER
Two valves in class $A B$ push pull

Supplies available from:
In the U.S.A.
International Electronics Corporation Dept. E9, 81 Spring Street, N.Y.I2, New York, U.S.A.

In Canada

Rogers Electronic Tubes \&
Components
Dept. II, 116 Vanderhoof Avenue, Toronto 17, Ontario, Canada.

Mullard

ELECTRONIC TUBES used troughout the world
"Mullard" is the Trade Mark of Mullard Limited and is registered in most of the principal countries of the world.

mullard overseas ltd, mullard house, torrington place, london, englano

WHAT THE "SYSTEMS CONCEPT" MEANS AT HUGHES

COMMUNICATIONS SYSTEMS

Projects underway include the development of systems capable of deflecting their signals from meteors, artificial satellites, and even the moon. Still another area is the development of systems which transmit intelligence through media impervious to radio frequencies.

AIRBORNE SYSTEMS

Made up of advanced radars, computers, automatic flight control, communication and navigation equipment, these Hughes systems are designed to meet the ever-increasing operational and flight demands of supersonic flight.
the West's leader in advanced electronics
© ; sbe, hughes aircraft company

GUIDED MISSILE SYSTEMS

A combination of most of the advanced technologies in a number of fields, the Hughes guided missile development and study programs include Ballistic Missiles, Air-to-Air Missiles, AICBM, and Surface-to-Air Missiles.

Diversification and expansion by the Hughes Research \& Development Laboratories into unexplored new areas have created more engineering openings than ever before existed! Engineers or Physicists, with degrees from accredited universities may investigate by writing directly to:

Dr. Allen Puckett, Associate Director, Systems Development Laboratories
\square
Hughes Airrraft Co., Culver City 25, Calif.

TRON fuses make it possible to have the fuse as an integral part of miniaturized circuits, controls, electronic devices, and electrical equipment. There is no need to sacrifice space to provide built-in protection.

TRON fuses have such small physical dimensions that they can be easily incorporated into miniaturized devices or components.

The fuse element is hermetically sealed in a glass tube. Contact is made by pig-tail lead-in wires.

TRON fuses are not affected by atmospheric or surrounding conditions because the hermetic seal protects the fuse element from contact with them.

This means - TRON fuses may be potted or encapsulated, if desired, without any danger of the potting or surrounding material affecting the operation of the fuse.

Or TRON fuses can be installed anywhere in the circuit as they are self-protecting and operate without exterior flash or venting.

Likewise, TRON fuses may be teamed
in one capsule or replaceable unit with such components as resistors - or anywhere that sensitive protection is desired.

TRON fuses are made in two types. GLN TRON fuses, made to carry 100% load indefinitely and to open within 10 seconds at 200% load. Available in $1 / 20$ to $1 / 2$ amperes.

GLX TRON fuses made to carry 100% load indefinitely and to open within 10 seconds at 150% load. Available in $2 / 10$ to 5 amperes.

Both GLN and GLX TRON fuses will operate properly on circuits of 125 volts or less capable of delivering 50 amperes or less. The fuse body measures $.140 \times .300$ inches. Standard pig-tails are one inch long of No. 24 copper wire.

When designing an electrical or electronic circuit - where space is of importance - consider the many advantages of TRON fuses. Send us the details of your requirements and our fuse engineers will gladly work with you.

BUSSMANN MFG. DIVISION, McGrow-Edison Co.
University at Jefferson, St. Lovis 7, Mo.

with $R M C$ miscaps

H MICRO SWHTCH Precision Swirthes

Five switches of special interest to Electronic Engineers Three of them are

NEW

ultra-small super-sensitive

mercury switch AS603A1
This new switch, designed for vertical gyros, stable platforms, missiles and rockets, is the most precise mercury switch available. Differential angle-. 150° max. Mass shift-. 085 gm . cm. SPDT. It operates reliably at temperatures as low as $-65^{\circ} \mathrm{F}$. Hermetically sealed contacts. Switch is unaffected by water vapor, dust, dirt, fungus and corrosive fumes. It is rated at .225 amps., $30 \mathrm{vac}, 400 \mathrm{cps}$ resistive load. Weight- 3.5 grams (including leads). Ask for data sheet No. 153.

NEM
"SX" series
sub-subminiature
switches
These all-new switches combine extremely small size with "regular size" electrical capacity and excellent reliability. They present a new set of possibilities to the designer of compact devices. $5 \mathrm{amps} .250 \mathrm{vac}, 30 \mathrm{vdc}$. Two mounting holes accept No. 2 screws. Weight-1/28 oz. Ask for data sheet No. 148.

Subminiature door interlock switch 7AC1-T
Cuts off power in equipment cabinets when service door is opened. Manually pulling the rod actuator to maintained contact position closes circuit for checking. When door is next closed, switch returns to normal ... re-sets itself to safety position. Ask for data sheet No. 108.

NEW

"1PB600" series
"One Shot" switches
These new switch assemblies produce a one-and-only-one pulse output. Miniature package includes pushbutton switch and potted one-shot circuit. Eliminates need for designing special pulse input circuits for high
 speed electronic devices. The square wave pulse width is factory adjustable from .5 to 2.5 micro seconds, and the amplitude from 3
 to 60 volts. Both width and amplitude are independent of speed of operation of switch. Ask for data sheet No. 150 .

"SE" series environment-free subminiature switches

"SE" Series switches are the smallest and lightest environ-ment-free switches available. Construction is completely sealed. Operate reliably from -65° to $+350^{\circ} \mathrm{F}$. Pin plunger actuation. Choice of contact arrangements. Rating 5 amps . 125 or $250 \mathrm{vac} .28 \mathrm{vdc}-15$ amps. inrush; 4 amps. resistive; 3 amps. inductive.
 Weight--. 24 oz. (without leads). Ask for Catalog 77.
Engineering assistance in switch applications is available from the Micro Switch branch office near you. Consult the yellow pages of your telephone book.

MICRO SWITCH . . FREEPORT, ILLINOIS
A division of Honeywell
In Canada: Honeywell Controls, Ltd., Toronto 17, Ontario

high reliability . . extreme compactness

IN THE

If you want a practical direct writing system for straightforward recording in the range from DC to 100 cps - such as computer readout, telemetry recording - look what the new Sanborn " 850 " offers in compactness, reliability and operating convenience. A complete 8-preamplifier module with power supply, plus an 8 -channel flush-front recorder package containing power amplifiers and power supply at rear, oecupy only $241 / 2$ " of " 850 " panel space.

PERFORMANCE characteristics of an " 850 " include flat frequency response $0-70 \mathrm{cps}$, down 3 db at 100 cps (10 div. peak-to-peak amplitude) . . thermal drift eliminated by current feedback power amplifiers . . . limiting at input to prevent amplifier saturation or cut off, so that damping is never lost . . . drift less than 0.2 div. for 20° to $40^{\circ} \mathrm{C}$. changes, line voltage changes from 103 to 127 volts . . gain stability better than 1% with $20^{\circ} \mathrm{C}$. and 20 volt changes . . . linearity 0.2 div. over 50 divisions . . . clear, permanent, inkless recordings in true rectangular coordinates.

IN RELIABILITY, " 850 " features include fully transistorized power amplifiers and power supply . . rugged galvanometers with low impedance, high current, enclosed coil assemblies and velocity feedback damping . . JAN components wherever practical, such as MIL-T-27 hermetically sealed power transformers, MIL-approved electrolytics in power supplies, etc. . . forced filtered air cooling for stable operation.

And in operating CONVENIENCE, an " 850 " system provides such advantages as nine electrically controlled chart speeds, selected by pushbuttons . . . a choice of interchangeable Preamplifiers (DC Coupling and Phase Sensitive Demodulator presently available, with others in development) . . . remote control of chart drive, speeds, timer and marker . . . monitoring connection points . . . a Recorder that loads from front and has built-in paper take-up and paper footage indicator.

Why
 Labllis a powerful link in the communications chain

Speed and reliability make LABIL, Stromberg-Carlson's new data link, ideal for automatic transmission of flight information from light aircraft to ground receiving and control locations.
Into the link the pilot or observer can enter 13 types of data regarding flight and target. When the ground control group wants the information, a lamp on the panel of the airborne equipment lights. The pilot or observer presses the transmit key, and the entire stored message is automatically transmitted over his existing voice communications equipment.
Greatly increased reliability is achieved by transmitting each character twice.
At the receiving end the message is checked for errors
due to noise interference. The error detector examines the two transmissions for complete agreement, then prints the message out on a teletypewriter. Speed of transmission is limited only by the bandwidth of the communications equipment and printout device.

The standard format and digital nature of each transmission make LaBR easily adaptable to large-scale operational control systems in which automatic data handling is a requirement.

Complete technical data on Stromberg-Carlson's Light Aircraft Binary Information Link is available on request.
"There is nothing finer than a Stromberg-Carlson"

Is one of these FOUR
 DUPLEXER TECKINIQUES right
 for your...

To secure optimum performance and reliability in your duplexer system you now have a choice of five basic techniques.

Microwave Associates is in a position to give you completely unbiased recom. mendations because we design and manufacture all types of gas tube and ferrite devices for duplexer applications.

If you have a current problem in this field our application engineering ser. vice is at your disposal.
...OR
do you need OUR NEW FERRITE DUPLEXER?

Write or call...

BALANCED DUPLEXER: A ATR's, DIODE PROTECTOR, SHUTTER

BALANCED DUPLEXER: DUAL TR, SHUTTER

BALANCED DUPLEXER: DUAL PRE-TR, DIODE PROTECTOR, SHUTTER

BRANCHED DUPLEXER: ATR, TR, SHUTTER

Shutter wost

FERRITE DUPLEXER: DIODE PROTECTOR, SHUTTER

When a jet screams down the runway fully loaded with fuel and ammo... reliability is the Key to safety and "mission accomplished".

Here's where warring of system failures is vital....where Leach reliability proves itself again and again.

LEACH RELAY

District Offices and Representatives in Principal Cities of U. S. and Canada EXPORT: LEACH CORPORATION, INTERNATIONAL DIVISION

WHITE ALICE

POLE VAULT

DEW LINE

TEXAS TOWERS

EIMAC KLYSTRONS performance proved in original Tropo-Scatfer systems

Eimac klystrons are used in nearly every major military and commercial tropo-scatter system in the world. The list is impressive: Pole Vault, Texas Towers, Dew Line, White Alice, SAGE, NATO, Florida-Cuba TV, and numerous commercial networks. They have been selected for systems from Norway to North Africa, from the Arctic Circle to the Andes, from the United States to the Far East.
In most of these systems Eimac klystrons are used exclusively. The reason is simple: Eimac-pioneered external-cavity klystrons make it possible to generate high power at ultra-high frequen. cies simply, reliably and at low cost. With the Eimac externalcavity system, tuning cavities, couplers and magnetic aircuitry are all external to and separate from the tube. This permits ex-
ceptionally wide tuning range and simplifies equipment design. Cost is lowered because this external circuitry is a permanent part of the transmitter and is not repurchased when tubes are replaced.
The reliability of these high-performance devices is exceptional. Some of the original Eimac klystrons installed in Project Pole Vault-the first major tropo-scatter network ever estab-lished-are still going strong with more than 25,000 hours of air time logged to their credit.
Eimac manufactures a complete line of amplifier and pulse klystrons covering the most important areas of the UHF spectrum. Write our Application Engineering Department for specific information.

Cable address EIMAC San Carlos

New printed circuit connector with protective taper tab enclosure increases reliability

Continental Connectors

A unique molding on Continental Connector's new Series PCA15-78 printed circuit connector provides uniform spacing and insulation, and eliminates bending, twisting or shorting of contacts during assembly. For additional ease of assembly, contact terminations accommodate AMP " 78 " taper tab receptacles for solderless wiring. Connectors are supplied with patented and exclusive "Bellows Action" contacts in bifurcated construction. Coil spring action of "Bellows" design results in 100% contact area without loss of retention even with undersized or oversized tolerance boards.

For complete technical information and other printed circuit literature write Electronic Sales Division, DeJUR-Amsco Corporation, 45-01 Northern Boulevard, Long Island City 1, N. Y. (Exclusive Sales Agent)

Enlarged cross-section illustrates taper tab wiring and shows special molded body as an integral part of the connector. The body cavities insulate and assure uniform spacing of contacts.

You're
 always
 (1) with

electronic components

Hamzian F Series Silicon Rectifiers...

... in Ultra Small Size
 . . . in Low Price

research, engineering and production know-how have combined to develop the "utmost" in a small size, very low cost silicon rectifier with giant performance. If your problem is miniaturization, or cost, or tough application, the solution is in the Tarzian F series.

Send for
 Design Note \#31

Sarkes Tarzian, Inc., RectifierDivision

 DEPT. D-5, 415 NORTH COLLEGE AVE., BLOOMINGTON, INDIANA

Standard Coil Forms with screw thread mounting are LS-3, LS-4, LS-5, LS-6, LS-7, LS-8, LS-M, and LS-T. The LS-5, -6, -7 . -8 , and -T are available with Perma-Torq ${ }^{\circledR}$.

Coil up with this Form!

There's a guaranteed Cambion ${ }^{\circledR}$ coil form for every coil winding problem! The CAMBION stock of standard coil forms provides a reliable source for any quantity you need, and Cambion custom components carry the same guaranteed performance.

Standard Cambion coil forms are compactly designed and carefully manufactured to withstand the most severe working conditions. They mount with a screw thread, are available with a variety of locking devices, including unique PermaTorq ${ }^{\circledR}$ which allows locking of tuning cores while still tunable.

CAMBION printed circuit coil forms are ideal for use in printed and transistorized circuits. Time-saving coil leads can be soldered to circuitry when the component is mounted. Available in a wide range of sizes and materials-and you can rely on their performance.

Get guaranteed performance from every single coil by ordering Cambion coils. Write Cambridge Thermionic Corporation, 437 Concord Avenue, Cam-
bridge 38, Massachusetts. West Coast stocks handled by E. V. Roberts and Associates, Inc., 5068 West Washington Blvd., Los Angeles 16, California. In Canada: Cambridge Thermionic of Canada Limited, Montreal, P. Q. Cambion products now available from leading distributors throughout the U.S. and Canada.

Cambion shielded coil forms are specially designed to give top performance in "tight spots." The LS-9 is $/ / / 6^{\prime \prime}$ in diameter, $1 / /^{\prime \prime}$ high. LS- 10 is $5 /^{\prime \prime}$ in diameter, $15 / 11^{\prime \prime}$ high. LS- 11 is $5 / / 6^{\prime \prime} \times 17 / 22^{\prime \prime}$. The LS-14 is double ended, $1 / 2^{\prime \prime}$ O.D., and $13 / 4^{4 \prime}$ overall. Al are highly shock resistant.

Makers of guaranteed electronic components, custom or standard

ALLEN-BRADLEY PRESENTS...

N5M ME[D CRTD

$1 / 4,1 / 2$, and 1-WATT
PRECISION RESISTORS

Far exceed MIL Specs for film and wire-wound resistors

Allen-Bradley's new, truly accurate, metal grid resistors are now available in $1 / 4,1 / 2$, and 1 -watt ratings, producing test results that are a substantial improvement over the MIL Specifications for wircwound and film type precision resistors. They combine remarkable stability, under load and on the shelf, with an exceptionally low temperature coefficient. The metal alloy grid is noninductive, providing excellent high frequency characteristics. They also have an exceptionally low noise level ... comparable to that of wire-wound units. Each unit is individually calibrated and marked with nominal resistance vahe, tolerance (± 0.1 to 1%), and temperature coefficient. Provided with gold plated leads for flawless soldering. Considering their superior characteristics, these new resistors justly qualify under the Allen-Bradley trademark of Quality.

The construction of the $1 / 4,1 / 2$, and 1 -walt resistors is identical. At the upper left is an enlarged view of the metal alloy grid, mounted on glass, which forms the resistance element. (A) Actual size of l-watt element, (B) encapsulating epoxy resin body, (C) finished unit hermetically sealed in ceramic tube,

222 W. Greenfield Ave., Milwaukee 4, Wis. In Canada: Allen-Bradley Canada Ltd., Galt, Ont.

Type GAH
1 Watt at $100^{\circ} \mathrm{C}$ ± 0.1 to 1%

ALLEN-BRADLEY

a new idea

in the elimination of high frequency radiation

ALLEN-BRADLEY CASEADED CERAMIG FEEDTHRU FLTEERS

(PATENT PENDING)

NOW . . . out of the Allen-Bradley research laboratories comes a completely new and far more effective line of high frequency filter elements . . . especially designed to eliminate radiation from low power circuits operating in the frequency range from 50 mcs to 5000 mcs .

Employing an entirely different concept, these new filter elements have a phenomenal filtering efficiency . . . that actually increases tremendously with frequency, as illustrated in the graph at left.
These filter elements display none of the detrimental internal resonance characteristics of standard tuhular capacitors . . . and cascading elements permit an increase in effective capacity far beyond that practical even with discoidal design.

Filters are available in voltage ratings up to 500 v , DC at temperatures up to $125^{\circ} \mathrm{C}$. Max. RF current is 0.25 amp , and max. DC or low frequency current is 5 amp .
Technical information available upon request.
TYPE SMFO
(FULL SIZE)

Now, Immediate Delivery from Stock on CENERABEEAMMCS SBECML -UR-OSE FEREITE COBES

F784
3

F303

F188/F187

Inches 1
\qquad

Rusin
this
a
materials for in various materials for development and design engineers to cover specific frequency bands of operation from 1 KC to 50 megacycles. General Ceramics provides extrafast service on sample quantities for development and will make prompt delivery on production parts in reasonable quantities. Call, wire or write General Ceramics Corporation, Keasbey, New Jersey. Please direct inquiries to Dept. E.

application	DESIRED PROPERTIES	Frequency	FERRAMIC Body	SHAPES
Filter Inductors	High $\mu \mathrm{Q}$, magnetic stability, sometimes adjustable	$\begin{aligned} & \text { up to } 200 \mathrm{kcs} \\ & 200 \mathrm{kcs}-10 \mathrm{mcs} \\ & 10 \mathrm{mcs}-80 \mathrm{mcs} \end{aligned}$		Cup cores, toroids, C-cores, E-cores, slugs
IF Transformers	Moderate Q, high μ, magnetic stability, adjustable	$\begin{aligned} & 465 \mathrm{mcs} \\ & 40 \mathrm{mcs} \\ & \text { other } \end{aligned}$	$\begin{aligned} & \text { "a-1" } \\ & { }^{4} \mathrm{Q}-2 \text { " } \end{aligned}$ Materials for filter inductors apply	Cup cores, threaded cores, toroids
Antennae Cores	Moderate Q, high μ, magnetic stability	$\begin{aligned} & .5 \cdot 10 \mathrm{mcs} \\ & 10.50 \mathrm{mcs} \end{aligned}$	$\begin{aligned} & \text { "Q-1" } \\ & \text { " } \mathrm{Q}-2 \text { " } \end{aligned}$	Rods, flat strips
Wide Band Transformers	High μ, moderately low loss	$\begin{aligned} & 1 \mathrm{kc}-400 \mathrm{kcs} \\ & 1 \mathrm{kc}-1 \mathrm{mc} \\ & 200 \mathrm{kcs}-30 \mathrm{mcs} \\ & 10 \mathrm{mcs}-100 \mathrm{mcs} \end{aligned}$	$\begin{aligned} & \text { "O-3"',"T-1" } \\ & \text { "H" } \\ & \text { "Q1" } \mathrm{Q}-1 " \\ & \text { "Q-2" } \end{aligned}$	Cup cores, toroids, C-cores, E-cores
Adjustable Inductors	$\text { High } \mu \text {, moderately }$ low loss	Same as Wide Band Transformers	Same as Wide Band Transformers	Rods, threaded cores, tunable cup cores
Tuners	High μ, moderate to high Q, magnetic stability, as much as 10 to 1 adjustability with mechanical or biasing methods	Up to 100 mcs	For high Q selective circuits, materials under filter inductors apply. For others, materials under wide band transformers apply	Threaded cores or rods for mechanical tuning. Toroids, C-cores, E-cores for biasing methods
Pulse Transformers	High μ, low loss, high saturation	Puise	Materials under wide band transformers apply	Cup cores, toroids. C-cores, E-cores
Recording Heads	High μ, low loss, high saturation, resistance to wear	Audio, pulse	$\begin{aligned} & \text { "H" } \\ & \text { "0.3", "T.1" } \end{aligned}$	

GEVERAL GERAMOS

Industrial Ceramics for Industrial Progress... Since 1906

In direct recording systems ONLY brush GIVES YOU writing method.

When you need precise, permanently visible measurements of electrical or physical phenomena, make your logical choice of equipment from the newest Brush designs in ultralinear recording systems. For your specific application, now choose ...

The writing method! Because different problems demand different writing methods, Brush gives you your choice...ink... electric ... thermal writing.

The trace presentation! Brush offers curvilinear and rectilinear readout. Both methods produce ultralinear traces-elear . . . sharp . . . easy to read.

The configuration! Choose from vertical or horizontal writing tables, rack mounted or portable models, widest selection of chart speeds available from $50^{\prime \prime} / \mathrm{sec}$. to $10^{\prime \prime} /$ day, providing optimum resolution on all signals. Electrically controlled chart drive

FREEDOM OF CHOICE

 trace presentation ... configuration

Not a Hat Pin-But a NEW/ Capacitor

...Tiniest Tantalum Ever

Here's a capacitor that sets a new standard for tiny size and big performance. It's the new Mallory HAT tantalum. Only $.070^{\prime \prime}$ in diameter and $.200^{\prime \prime}$ long (over insulating sleeve), it's the latest member of the Mallory family of microminiature components.
The HAT gets superior characteristics from sintered pellet anode construction, pioneered by Mallory in the first and only tantalum capacitors rated at $200^{\circ} \mathrm{C}$ for military use. For the first
time, this construction makes possible, in a microsize capacitor, exceptionally low leakage (1 microampere max.) and low power factor . . . at a price competitive with wire anode miniature types.
The new HAT line is available in ratings of 16 to 1 mfd . at 1 to 16 volts, suitable for new ultraminiature hearing aids, instruments, radiation detectors and other new types of tiny portable electronic equipment. Write today for complete data.

Expect more...get more from

NOVEMBER 21, 1958

Steering, accelerating and braking operations are all done by moving single stick in GM's Unicontrol system

Illuminated sign actuated by RCA's roadside signaling system advises driver his car is exceeding speed limit

Electronics and the American Automobile

Abstract

Current development programs directed towards the use of electronics to improve safety, performance, reliability and sales appeal of cars promise big, new market. Devices and systems discussed here represent results to date

By WILLIAM E. BUSHOR, Associate Editor, ELECTRONICS

This article summarizes known applied and experimental electronic developments related to American passenger cars.

Control Systems

GM Research has developed an electronic system, termed Unicontrol, which takes over the functions of the conventional steering wheel and those of the brake and accelerator pedals as shown in photo.

Sidewise motion of the springcentered control stick controls steering; fore and aft motion controls the engine throttle or the brakes. Intracardinal stick displacements permit various degrees
of braking and accelerating during turns. A 20 -degree rotation about the vertical axis in either direction puts car in reverse, an 80 degree turn puts car in park.

Stick motion operates two potentiometers either singly or jointly. One feeds a voltage to an electronic analog computer in the steering system, the other feeds a command signal to a servo system controlling either the throttle or the brakes.

The steering computer combines a potentiometer signal with one from a tachometer generator indicating car velocity and another from a detector indicating front wheel positions. The resulting sig-
nal is fed to an electrohydraulic valve which regulates flow of highpressure oil to the power piston used to turn the front wheels. Front wheel angle for a given stick displacement varies inversely as the square of the speed.

Voltages applied to the brake servo regulate hydraulic pressure in the wheel cylinders. Braking torque is directly proportional to the displacement angle of the stick. A sensing element automatically detects premature wheel slowdown and maintains proper line pressure to prevent brake lockup.

A second independent but less complicated electrical steering sys-
tem is available tor emergency use which is also operated through the Unicontrol stick. A foct pedal is provided to switch in auxiliary steering system and to actuate an emergency braking device.

Unicontrol can be complemented with a device called Cruisecontrol which automatically maintains road speed at any preset value. Command signals from the speed selector, car speed feedback signals from the tachometer generator and signals from a throttle position indicator are fed into an analog computer. Signals required to maintain car speed are calculated and used to operate an electrohydraulic control valve in a throttle servo.
Ford is experimenting with an electronic system which will control steering. The system replaces the conventional steering wheel and transmission shift lever with tiller controls as shown in Fig. 1.

Right or left turns are made by moving the steering control in the corresponding direction. A potentiometer wiper arm connected to the stick generates a signal which is compared with a positioning signal from a slave on the Pitman arm of the steering linkage. If the position of the wheels does not correspond to the command position, an error signal equal to the difference between the potentiometer and the slave signals is generated. The error signal is then boosted by a servo amplifier and the output applied to a torque motor which operates a hydraulic valve controlling the front wheels.

Highway Guidance Systems

RCA has demonstrated the possibility of controlling highway traffic using visual roadside signaling, radio signaling and automatic guidance techniques. The roadside system, shown in photo, consists of an array of wire loops imbedded in a highway, with associated electronic equipment buried on the shoulder.

The rectangular 20 by 6 -fout loops consist of two turns of plastic insulated trench wire spaced at intervals from center to center slightly longer than an automobile. A plan-view block diagram of the system is given in Fig. 2A.

Each loop is excited by one volt at 300 kc . As a car passes the loop inductance changes, varying the phase relationship between the loop voltage and the excitation voltage. This difference is sensed by a phase detector which produces a d-c output proportional to the change in inductance of the loop. The weak detection signal is applied to a d-c amplifier whose output is used to actuate a relay

FIG. 1-Ford's control system uses two tiller sticks. Right is for steering, left controls automatic transmission
controlling the operation of roadside or in-vehicle equipment.
By adding selection circuits, the signals can be used to activate a series of lights along the edge of the highway. Thus, a car can have a visible tail of light following some 400 feet or more behind which warns following drivers they are approaching the preceding vehicle.

To provide drivers with information on the movement of cars ahead when visibility is poor, or to automatically brake the car under collision conditions, the roadside signal can be supplemented or replaced with radio signals. In addition to the equipment used with the roadside signaling system, the radio signaling system requires an elec-

[^1]tronic control unit and an antenna for each loop as shown in Fig. 2B.

Single Antenna Signalling

The simplest system uses antennas which extend back along the highway any desired distance. As a car passes over a loop, a roadside signaling relay is actuated. Output of the relay triggers a transistor switch in the electronic control unit, which permits a $110-\mathrm{kc}$ signal to be applied to the antenna. Since the antenna is open-ended, the radiation intensity at any point is a function of the distance to the loop. If the auto is equipped with a properly tuned receiver the signals can be detected, amplified and used to operate dashboard lights, to sound a buzzer, or to control the accelerator or brakes.

Length of the radio "tail" is determined by the on time of the transistor switch. This interval can be controlled by presetting a timing device to turn off the transistor switch after a desired time lapse. Also, the interval can be controlled by the speed of the vehicle through a circuit in the electronic control which will switch off the transistor switch of the preceeding electronic control. Thus, as a car moves from one loop to the next it will successively energize the antenna associated with the loop it is over but cut off the signal to the antenna associated with the preceeding loop.

Chain Antenna Signalling

A more complex system involves the use of an antenna chain in which each antenna is a car length long, terminated at one end to ground and at the other end through resistive coupling to the preceeding antenna. As a car passes over a loop it triggers the transistor switch in the associated electronic control, causing a maximum r-f signal to be applied to its antenna. Before reaching the preceeding antenna; however, the signal is attenuated by the coupling to 90 to 95 percent of its original strength. This process continues down the chain of antennas until the radiated signal is too small to be detected.

Another transmission scheme is to transmit a constant carrier and modulate it with a frequency whose

FIG. 2-Roadside signaling system layout (A) does not require aux liary equipment in cars. Radio signaling system (B) produces radio frequency signals which operate lights or buzzers in equipped cars
amplitude is proportional to the "tail" signal transferred from loop to loop. This technique gives higher radiation intensity at the end of the "tail" and reduces sensitivity requirements of receivers.
Late last year, RCA demonstrated a form that automatic guidance could take by blind-driving an auto over a special test highway. A high-frequency current applied to a cable made of insulated trench wire imbedded in the center of the road was used as the guidance reference source. A pickup coil attached to each side of the vehicle straddled the cable and sensed the r-f radiation. By arranging the signals in voltage opposition, a differential signal was generated which registered on a meter in the dashboard; left or right deflections indicated to the driver in which direction to steer the car.

GM Research has developed an electromechanical link which eliminates driver control, as shown in Fig. 3. The guidance wire is located in a slot cut into the road surface and is excited with lowpower audio frequency. Current flowing in the wire creates a circular magnetic field extending the length of the cable. Two pickup

FIG. 3-GM Research's Autoguide system takes over steering function from driver In demonstration auto above, driver retains control of brake and acselerator
coils mounted on the front bumper are tuned to the frequency of the guidance wire excitation voltage.

In operation, the coil straddles the magnetic field around the guidance wire; therefore, the voltage across the output terminals of the pickup coils is proportional to the magnetic field strength sensed. If the car deviates laterally from the guidance wire path, voltages are induced in the coils which are different by a function of the cyclically varying magnetic fields received. Positional error is proportional to the difference in voltage magnitudes. This error signal is fed to the steering computer in the Unicontrol system and the car steered as though signals were coming from the control stick. If the signal is lost for any reason, or if the hydraulic pressure in the servo drops, a buzzer warns the driver.

In GM's experimental gas turbine car Firebird III the driver can put the car completely under electronic control by using Autoguide and Cruisecontrol together. These systems provide steering, braking and throttling control while allowing driver to retain the prerogative of overriding through an emergency foot pedal.

Garage Guidance System

A guidance system developed by Polarad Electronics permits drivers to maneuver in and out of a garage without striking the sides. The car is provided with a loop antenna mounted on the front part of the roof as shown in Fig. 4A. Two loop antennas, wound to produce oppositely phased inductive fields, are mounted to the garage sides near the back and the same height above the floor.
Both garage transmitting antennas are simultaneously excited by a $60-\mathrm{cps}$ source and the receiving
antenna is connected to the car radio as shown in Fig. 4B. If the car moves away from the centerline between garage antennas, an audible signal is heard whose volume corresponds to the amount of lateral deviation. It is also possible to excite the garage loops with an r-f source modulated by oppositely phased a-f signals. Circuit configuration for the arrangement is shown in Fig. 4C.

Warning Systems

Bendix Research has built an experimental model of a proximity radar system which requires less power than a radio. It is capable of warning drivers that collisions are imminent with other moving vehicles or stationary objects.

Since the radar is forward-looking, the antenna is set into the front grillwork of the auto as shown in Fig. 5. An electronic control unit housing radar circuits and a computer is located directly behind the antenna. A driving condition selector and a tone generator are mounted under the dashboard.

As the equipped vehicle moves along the road, the antenna sends out a narrow-beam radiation pat-

FIG. 4-Garage guidance system provides driver with audible signal if approach is skewed (A). Audio excitation requires auto's loop antenna to be connected directly to audio section of car radio (B); r-f excitation requires use of entire radio except for ave circuit (C)

FIG. 5-Small antenna of Bendix Research's radar warning system is mounted in grillwork

FIG. 6-Photocell for brake light warning system that warns an overtaking driver he is too close
tern. Signals reflected from vehicles or obstacles ahead are detected by the radar circuits and fed into the computer. Relative speed and distance relationships between the vehicle and reflecting surface are calculated and the result compared against a predetermined range of parameters known to be safe. If the closure rate exceeds the safe range, the computer energizes the tone generator, producing a sequence of $400-\mathrm{cyc}$ cle bursts of sufficient loudness to alert the driver. The computer output can also automatically halt the vehicle.

Antenna Beam

Although the antenna is small, beam width is adequate for adjacent lane discrimination. The system is designed to eliminate any return from an obstacle which is beyond the safe stopping distance of the vehicle. For sharp turns into driveways and at intersections the system is disabled.

When the equipped car is approaching a stalled or slowly mov-

ing vehicle which is a great distance away, the 400 -cps warning signal is of low intensity, indicating a moderate degree of collision danger. As the closure distance decreases, the warning signal becomes louder, indicating a more dangerous situation. A scheme for using lights to indicate less hazardous conditions and an incessant, imperative sound to warn of critical conditions is being studied.

Ford has demonstrated a device that flashes a warning to a following motorist when he is approaching an equipped vehicle too rapidly from behind. It consists of a photocell mounted as shown in Fig. 6 and a computer. If the forward vehicle is equipped with the system, the photocell will detect the intensity of headlight illumination from the following vehicle. The computer operates on this information, calculating distance and closing velocity. When separation distance is less than a predetermined safe following distance, the brake lights on the equipped car
are flashed on to alert the following driver.

Studebaker-Packard told ElecTronics it is presently developing a brake warning system, but gave no details. (Another warning device, about which little is known at present, is an electronic atmosphere sampler invented by a Dane. If the driver has been drinking or is under the influence of narcotics, the device shuts off the engine; if carbon monoxide is present it shuts off the engine and blows the horn.)

Headlight Controllers

A headlight dimmer that automatically turns off the high beam and turns on the low beam whenever light strikes a photocell has been designed by Polarad Electronics. When the device fails to respond properly the headlight system is automatically returned to its original condition, allowing the headlights to be controlled in the conventional manner. The driver may dim his lights at any time and leave them dim. Also, the circuit arrangement assures that once the lights have been dimmed they will not return to the high beam as a result of a momentary reduction in the intensity of light striking the photocell. See Fig. 7A.

Guide Lamp recently transistorized the Autronic Eye circuit. The new system will hold the low beam setting even if the approaching driver dims his headlights. When light is completely removed from phototube, the headlamps are returned to high beam. However, street lights are sufficient to keep system on low beams (Fig. 7B).

Chrysler is offering an electronic headlight dimmer as optional equip-

FIG. 7-Headlight dimming circuit developed by Polarad (A) is rela 'ivoly insensitive to battery voltage fluctuations. Guide Lamp's new headlight dimmer (B) uses self-excited, 20-kc transistor oscillator. RCA's headlight dimmer (C) uses an a-c amplifier

FIG. 8--Demonstration model of Westinghouse's electroluminescent lighting display system
ment on all 1959 cars. Novel aspect of system is that it responds not only to white light from headlights of cars approaching in adjacent lane, but also to red light from taillights of cars in the driver's lane. The latter feature switches headlights to low beam when car ahead is close enough to be affected by glare from high beams.

Photocell output is fed to an amplifying and selection circuit housed in a box mounted under the instrument panel. Two transistors and an electron tube are used which will operate from a 12 -volt car battery without a special transformer. The circuit can be adjusted to switch on low beams when approaching headlights are within a range of 900 to 1,200 feet or when tail lights of car ahead are within a range of 200 to 500 feet.

RCA's Semiconductor Division has developed a dimming system using semiconductor devices and a relay. A block diagram of the system is shown in Fig. 7C. A 2N109 transistor is used as a phase

FIG. 9-Electroluminescent radio dial developed for use in American Motor's Rambler
shift oscillator and provides a 400 cps signal to either a cadmium sulphide or cadmium selenimide photocell in a voltage divider circuit.

The photocell acts as a variable coupling device whose amplitude modulates the oscillator signal. The composite waveform is then fed to a high-gain, narrow-bandwidth, a-c amplifier composed of one or two R-C coupled 2N217 transistors. The signal is then rectified by a point-contact 1 N38A diode and applied to a d-c switch employing a 2N561 transistor. When the photocell is made to conduct by the presence of headlight glare, the signal level becomes high enough to actuate the $d-c$ switch which energizes the relay, switching on low beams.

Delco Radio's electronic light control built for Firebird III automatically actuates various sections of the lighting system, depending on external ambient light intensity. Three externally mounted lightsensitive pickups control the low and high beam headlamps, the parking and tail lights, and also vary the intensity of the instrument panel lighting. The light sensitive cells are regulated to measure real daylight and are not activated by momentary light changes when shadows pass over the car.

Interior Lighting

Electroluminescent lamps will probably begin to replace conventional incandescent bulbs used in dashboard, dome and courtesy lighting by 1960 .

Westinghouse's Rayescent lamp is made by coating a thin glass plate with a transparent, electrically conductive film. Over this is spread a layer of phospher imbedded plastic which is then capped with an aluminum overlay. When the two conducting layers are excited the phosphor emits light. Westinghouse has also developed a method for applying the phosphors to a plastic, nylon or steel-mesh base which allows the lamp to be bent into any desired shape.

The application of such lamps has been extended by devising an electroluminescent display system which presents glowing letters and numbers as shown in Fig. 8. The
characters are selected by digital techniques and are bright enough for daylight use.

Sylvania's Panelescent lamp is made by firing a layer of solid ceramic material similar to white porcelain onto a vitreous-enameled steel electrode which has been cut to final form. Another layer of ceramic material, in which is suspended the light producing electroluminescent phosphor, is then applied over the solid ceramic coating. The two ceramic layers serve as the dielectric. A transparent conducting layer, serving as the second electrode, is then applied and over this is placed a layer of glass. Electrical connections can be made to any point on the two electrodes. Only use of electroluminescent technique in autos to date has been the Panelescent radio dial in American Motor's Rambler shown in Fig. 9.

FIG. 10-Pen-shaped "ultrasonic key" opens door of GM's Firebird III from 15 feet away

Sylvania has also developed an alectroluminescent display system which converts electrical or optical signals into dots of light. The image created can be held or erased at will. The device could be used to display speedometer and clock dial readings in digital form.

AC Spark Plug has developed an electroluminescent instrument panel for Firebird III. Figures used on the speedometer, tachometer, clock, preset timer, and fuel gage are silhouetted against an electroluminescent band which moves up and down.

Ultrasonic Key

GM Research has developed an ignition "key" which can also be used to open locked doors on the Firebird III as shown in Fig. 10. When vibrated within a 10 to 15 foot radius of the vehicle the key emits an ultrasonic signal which is detected by microphones concealed externally on the car's body. The

FIG. 11-Electric Auto-Lite's low-voltage, high-frequency ignition system uses transistor oscillator circuit (\bar{A}) and sur-face-discharge spark plug (B)
signal is then fed through an amplifier to a door actuating mechanism.

Ignition Systems

Electric Auto-Lite has developed an ignition system which uses a transistorized excitation circuit and a surface-discharge spark plug. A schematic of the ignition system is shown in Fig. 11A.

The transistor oscillator generates a high-frequency, low-voltage current which is stepped up to 500 to 5,000 volts, converted to d-c, and applied across the center and ground electrodes of the surface discharge plug shown in Fig. 11B. The spark arcs from the center to the ground electrode along the surface of the plug and ionizes the semiconductor materials in its path.

High-voltage capacitor discharge systems of 20 to 25 kv have also been built and tested. Electronics hears that a Denver firm intends to develop a practical ignition system of this design using transistors.

Clevite Transistor Products is experimenting with an ignition

FIG. 12-Each switching transisior in Delco Radio's 120 -watt d-c to d-c converter uses a 7 in . by 7 in . by $1 / 8 \mathrm{in}$. aluminum heat sink
system using the Harkness method of banging barium titanates to produce a discharge. Commonwealth Engineering has a new ignition system which eliminates breaker points. Sarkes Tarzian is developing a transistorized ignition system using silicon rectifiers.

Converters

A 120 -volt d-c to d-c converter for 12 -volt auto systems has been developed by Delco Radio. A schematic is given in Fig. 12. This company has also developed a converter for use with car tv sets which develops a square-wave voltage at a frequency of approximately 200 cps , using a pair of high-power transistors. The square wave is converted into 245 v d-c by a silicondiode bridge rectifier.

Delco-Remy has developed a silicon diode full-wave rectifier for converting a-c from their 12 -volt three-phase automobile generator into d-c required to charge the battery. Sylvania has developed a d-c to d-c converter especially for supplying voltage and frequency requirements of electroluminescent panels. Unit reportedly delivers 200 v at 250 cps .

A d-c to d-c transistor oscillator power converter is being developed by National Union Electric specifically for use with gas-discharge-tube instruments and indicators in motor vehicles. This power supply will provide a means for varying the duty cycle and thereby contro!ling the brillance of the display.

Fuel Controllers

Delco-Remy has developed an electronic governor for maintaining the speed of the auxiliary engine driving the $12-\mathrm{v}$ a-c generator in Firebird III. The device compares the output of a tachometer generator with a reference voltage indicating speed and uses the difference voltage to control the throttle valve in the engine's carburetor.

Bendix's Electrojector system for automatically sensing engine fuel requirements as driving conditions vary was described in Electronics, (Feb. 57, p 192).

Voltage Regulators

Delco-Remy recently announced the development of a new a-c to d-c

FIG. 13-Completely transistorized volt. age regulator circuit developed by Delco-Remy to handle output of new a-c generator
voltage regulator designed to operate with a new 12 -volt a-c generator. Power rectifier outputs have been controlled to within ± 0.1 volt in an installation. A schematic is given in Fig. 13.

Electronic Horn

GM Research has developed an electronic horn which consists of a continuous-belt tape recorder, a horn-type speaker and a control switch. The recorder runs whenever the ignition switch is on but feeds the speaker only when the horn control switch is depressed. Any warning sound can be recorded on the tape and changed as desired. Power requirements compare favorably with those of an auto radio.

Rear-View Mirror Positioners

A device for automatically flipping a day-night rear-view mirror to the night position when glare from headlights of following vehicles becomes excessive is being marketed by Instrument Research. This unit was described in ElecTronics (July 57, p 196).

Although circuit details are not yet available, Instrument Research indicates a transistorized mirror positioner which will eliminate the need for a high-voltage $B+$ supply has been developed. Huppower Division of the Hupp Corporation will

FIG. 14-Photocell in Chrysler's automatic mirror positioner is mounted behind mirror aperture

FIG. 15-Glow discharge bulbs used for single tell-tale instrument-panel word (A) multiple tell-tale word (B), temperature indicating system (C) speedometer (D) and fuel gage (E)
undertake production and distribution of the device.

Chrysler is offering an automatic rear-view mirror positioning device as optional equipment on 1959 cars. The electronic unit is mounted to the rear of the mirror, located above the dashboard as shown in Fig. 14. An aperture in the mirror's surface allows light to impinge on a photocell mounted behind. Current generated by the photocell is amplified by subminiature electron tubes and applied to the coil of an electromagnet. When glare from headlights of following cars is excessive, the current increases sufficiently to energize the electromagnet, pulling the mirror up to the night position.

Temperature Controls

Harrison Radiator has developed an electronic control which automatically maintains heating, air conditioning and defrosting temperatures at any desired level. Three thermistors sense the temperature of the passenger compartment and outside ambient air, and generate signals corresponding to

FIG. 16-Electronically controlled instrument panel in Firebird IIP
these thermal levels. The signals are sent to an electronic control circuit which regulates the proportions of recirculating air, hot air from the radiator and incoming atmospheric air required to assure correct heating, air conditioning and defrosting temperatures.

Indicators and Instruments

National Union Electric has developed gas-discharge devices consisting of a collection of variously formed metallic elements sealed within a glass bulb which is evacuated and filled with a suitable discharge gas. Simple tell-tale illuminated signals or instructions can be formed as shown in Fig. 15A. This arrangement is especially useful when a single word or group of short words are simultaneously illuminated. Multiple tell-tales can be made up as shown in Fig. 15B. Here two or more words oriented in an in-line configuration are read through the same frame opening and are illuminated one at a time.

A typical tell-tale system is shown in Fig. 15C. When temperature surrounding the thermistor is low, its resistance is high and a large voltage drop appears across it. This drop is sufficient to cause the Cold tell-tale to illuminate, however, the нот tell-tale cannot light because the voltage drop across the resistor is too low. If the thermistor is heated, its resistance decreases appreciably extinguishing the COLD tell-tale and raising the voltage across the resistor sufficiently to light the HOT tell-tale.

Analog readout systems can also be designed in which the length of illumination in a tubular bulb is proportional to current flow. A simple speedometer can be built as shown in Fig. 15D. A fly-ball governor coupled to the transmission controls the amount of supply voltage V_{0} applied the tube by positioning variable resistors R_{1} and R_{2}. As the speed of the governor increases, the resistance across the glow discharge circuit decreases. Since excitation voltage V_{1} becomes larger as the governor rotates faster, the bar is illuminated lengthwise in direct proportion to the car's speed.

If pulsating d-c is used as supply voltage V_{o}, a moving core in an inductance coil can be used as

1

FIG. 17-Entire chassis of back-seat auto tv developed by Delco Radio can be removed and used conventionally
a fuel-level indicator as shown in Fig. 15 E . Since voltage V_{1} is highest when the core is fully inserted in the coil and lowest when core is withdrawn, the bar of light will expand proportional to float level.
AC Spark Plug has developed electronic indicators for the Firebird III control panel shown in Fig. 16. Outputs from the car speed, engine speed and fuel-level transducers are converted by transistor amplifiers into electrical signals which position gage mechanisms in the instrument panel. Each gage mechanism consists of two drums about which is wrapped a tape. Half the tape is made of electroluminescent material which gives off colored light when excited by a-c. As the drums are positioned by the command signal from the amplifier, the colored band of light on the tape -red for the speedometer, orange for the tachometer and blue for the fuel gage-is moved up or down behind a transparent, calibrated scale.

A transistorized tachometer which does not require a "sender," and can be mounted under or in the dashboard has been developed by Radson Engineering. This unit was described in Electronics (Aug. 15, 1958, p. 92).

Rear Seat TV Receiver

Delco Radio has developed a portable tv receiver for Oldsmobile which has been experimentally installed in a car as shown in Fig. 17. Tube heaters are directly connected to the car battery; a small d -c to d -c converter in the trunk supplies the plate voltage. Built in relays automatically connect the heater and power supply circuits for proper operation off 117-v lines when unit is removed.

Dog with artificially induced heart block exhibited typical sluggishness until normal circulation was restored by pulse amplifier

FIG. 1-Pair of electrodes supported on flat polyethylene insulator sewn to right auricle (top). Pair is being sewn to ventricle (bottom)

Two-Transistor Amplifier

SEvERANCE of the beat-rate control link between chambers of the heart results in an affliction known as heart block. The pulse amplifier and output devices described here have corrected this condition in dogs and are being ised for emergency treatment of numan patients. ${ }^{1}$

In normal hearts, the auricle produces an electrical impulse which is carried by the nervous system to the ventricle. The impulse stimulates the ventrical causing it to contract with sufficient force to pump blood throughout the circulation system. If the nervous pathway between chambers is broken, the ventricle beats at a natural rhythm which is not rapid enough to supply the body with an adaquate amount of blood.

To bypass the block and reestablish normal beat rhythm, pickup electrodes are sewn to the auricle and ventricle, the control pulse from the auricle is amplified,
and the resulting output used to stimulate the ventricle to contract. Electrodes are constructed of stainless steel mesh one cm^{2} in area and are attached to the outer wall of the chambers as shown in Fig. 1.

Pulse Amplifier

The pulse amplifier shown in Fig. 2 is used to provide adequate stimulating voltage to the ventricle. Input from the auricle is a 10 -millivolt pulse having the waveform shown in Fig. 3. To insure

FIG. 2-Pulse amplifier circuit. Power is supplied by $6.5-\mathrm{v}$ mercury cell connected to circuit by spring clips. Battery must be taken out to deenergize circuit
continuous coordinated beating of the ventricle and auricle, the amplifier must supply an output pulse with a minimum peak voltage of 500 millivolts. This condition was met by designing the circuit to have a maximum gain of 200 when operating from a 5,000 -ohm source and supplying a 1,000 -ohm load. Use of a-c coupling permits acceptance of pulses with plus or minus polarity.

Body tissue between the input and output electrodes exhibits an extremely low resistance; therefore, a certain fraction of the output signal is fed back to the amplifier input. Since the output of the amplifier has the same polarity as the input, a feedback signal will add to the input signal and increase the gain. If the magnitude of the feedback exceeds the signal generated by the auricle, the amplifier becomes unstable and oscillates.

Feedback amplitude is deter-

FIG. 3-Reverse polarity oscillograph of output pulses from right auricle of dog

FIG. 4-Pulse output circuit. Power is supplied by miniature $15-\mathrm{v}$ battery

Pulse amplifier. Gain control in center of unit can be screwdriver adjusted

Abstract

Pulse amplifier reestablishes proper circulation of blood in heart-block patients by driving ventricle at beat rate dictated by auricle. Command pulses picked up by electrodes on auricle are amplified 200 times without waveform distortion. Output pulses applied to ventricle electrodes produce normal pumping rhythm. Supplementary output circuit boosts voltage to overcome scar-tissue resistance developed under ventricle electrodes

By G. H. VANDERSCHMIDT, Consulting Physicist, Belmont. Mass.

Corrects Heart Block

mined by the gain of the amplifier, input and output impedance of the amplifier, and resistance of body tissue and the electrodes. In practice the gain control is set to zero, input and output leads connected to the ampliner and the gain increased until amplification is sufficient to cause contraction of the ventricle.

Because tissue resistance is constantly changing and cannot be controlled, no advantage would be realized by including a gain compensation circuit.

Pulse Output Circuit

If the scar tissue developed under the output electrodes over a period of time introduces too much load resistance, the ventricle will not respond to the largest pulse available from the amplifier. To overcome this condition, the pulse output circuit shown in Fig. 4 is used in conjunction with the amplifier to increase the stimulating
voltage. Tandem operation is arranged by connecting the output of the pulse amplifier to the input of the pulse output circuit.

When triggered by a positive pulse similar to that shown in Fig. 3 , the pulse output circuit produces a constant-voltage, positivegoing pulse having a maximum amplitude of 15 volts and a duration of 0.1 sec . An input of 2.5 mv or more applied by the auricle to the input of the amplifier is sufficient to trigger the pulse output circuit. The pulse from the auricle must be positive with respect to the grounded electrode.

Noise Sources

Although shielded cables are used between the amplifier and the body surface, noise from local power lines, nearby electrical machinery and the like is introduced by way of the unshielded stainlesssteel wires in the body cavity. To minimize pickup, the unshielded
wires should be made as short as possible particularly in the region where they leave the body cavity and connect to the shielded cables. Since the pulse amplifier and pulse output circuit are battery operated and well shielded, the only internally produced spurious voltage present is thermal noise with amplitudes in the microvolt region.

Special Connection

Because the stainless steel leads existing at the skin surface will not solder to the wire strands in shielded cables used with the amplifier, a special method of junctioning is required. This technique consists of wrapping the stainless steel wire around a thicker copper wire, silver-soldering them together, and then soft soldering the copper wire to the copper strands in the shielded cables.

Reference

(1) Electronics Gives Beat, Electronres, p 24 , Mar. 1958.

Blind speeds in a moving target indicator are relocated by staggering the pulse repetition frequency. Limitations of an moving-target-indicator radar system are investigated and a staggered prf circuit described. Clutter fluctuation in staggered prf is compared with response to clutter fluctuation in a convention mti system

By S. E. PERLMAN, Senior Project Engineer. Laboratory for Flectronics Inc., Roston, Massachusetts

Staggered Rep Rate Fills

MOVIng TARGET indicator systems, discriminate against stationary targets so that moving targets, which are masked by land masses in a normal system, can be detected. The system has an inherent deficiency which results in zero response to certain radial target velocities. The critical radial velocities are called blind speeds. For instance, in an X -band radar with a prf of $5,500 \mathrm{cps}$, blind speeds will occur in a progression at 160,320 knots, etc. In some radar applications, these blind speeds appear at velocities of interest. Blind speeds can be changed to other velocities by changing the basic prf of the radar. Here, however, the limitation of second-time targets enters the picture. A technique that relocates the blind speeds is a staggered prf of alternate periods T_{1} and T_{2}.

System Transform

The transfer characteristic of an mti system can be derived from the equation, $e_{s}(t)=e_{t}(t)-$ $e_{i}(t-T)$ where $e_{o}(t)$ is mti output, $e_{i}(t)$ is mti input, and T is repetition interval of the radar. If $e_{1}(t)$ has a radial Doppler envelope of $\sin 2 \pi f t$ the equation becomes $e_{0}(t)=\sin 2 \pi f t-\sin [2 \pi f(t-$ $T)$]. It can be rewritten as $e_{0}(t)=$ $2 \sin \pi f t \cos [2 \pi f(t-T / 2)]$.

With a time average of $e_{0}(t)$, the first term determines the frequency response. This is the comb filter characteristic as shown in Fig. 1. The characteristic is zero to zero

FIG. 1-Velocity response of simple mti
frequency and all multiples of $1 / T$. To change the variable f to velocity, $\sin \pi f T=\sin \pi v\left(2 T f_{n} / c\right)$ where v is radial velocity, f_{o} is transmitter frequency and c is the velocity of light. Blind velocities are then

$$
V_{o}=\frac{V C}{2 T \int_{o}}
$$

Staggered prf can be visualized as a combination of the output of two mti radars, each having a blind speed corresponding to its prf. The first over-all blind speed will occur when the nth null of the first radar velocity response coincides with the m th null of the second.

The rms signal response of a staggered prf system is given by the equation $v_{\phi}(\mathrm{rms})=\sqrt{\sin ^{2}}$ $\left(\omega_{d} T_{1} / 2\right)+\sin ^{2}\left(\omega_{d} T_{s} / 2\right)$ where ω_{d} equals $2 v \omega_{0} / c, T_{1}$ is the shorter repetition interval, T_{n} is the longer repetition interval and ω_{0} is transmitted radian frequency. Letting $v_{o}^{\prime}=2 \pi c / T_{p} \omega_{o}$ where $T_{p}=T_{1}+T_{v}$, $R=T_{1} / T_{p}$, and $1-R=T_{n} / T_{p}$ the previous equation becomes:

$$
V_{\phi}(\mathrm{rms})=\frac{\sqrt{\sin ^{2}\left(2 \pi \frac{V}{V_{o}^{\prime}} R\right)+}}{\sin ^{2}\left[2 \pi \frac{V}{V_{o}}(1-R)\right]}
$$

A plot of this response for two
stagger ratios $2 / 3$ and $7 / 8$ is shown in Fig. 2. The curves are normalized with respect to $T_{\nu} / 2$.

Velocity Response
The stagger ratio determines the location of the first blind speed. However, another factor must be considered. As the ratio $T, / T_{=}$approaches unity, not only does the first blind speed move out to a higher velocity, but variations in the response curve become greater.

FIG. 2-Response of a staggered primin for stagger ratios of $2 / 3$ and $7 / 8$

FIG. 3--Probability of seeing a target on normal radar, normal mti and staggered pri mti systems

Prf staggering switch relocates blind speeds in mi system. Short lead dress is constant with military and hif specifications

Radar Blind Spots

A compromise between the first desired blind speed and the magnitude of the velocity response ripples that can be tolerated must be made.

Radar Transmitter

Before modifying an existing radar with the staggered prf technique any possible radar and mti degradation must be investigated. The effects of a staggered prf on functioning of the radar transmitter, mti response to clutter fluctuations, cancellation loss due to scanning modulation, mti response to targets in the clear and complexity of radar will be discussed.

In general, the range of the radar will determine how staggering is accomplished. If a loss in range time can be tolerated then a stagger ratio can be taken with the existing T as the mean of the two periods. Average power transmitted will be the same as for the mean period.

If range time is a problem then the existing repetition interval can become T_{1} the smaller of the two periods. A loss in transmitted power will result.

Frequency Shifts

It is necessary that no pulse-tooulse transmitter frequency shift sist in an mti radar. A shift prouces a pulse-to-pulse change in the phase detector output, degrading cancellation. The high voltage charge in the pulse forming network must remain a constant for the firing times associated with T_{1} and T_{2}.

Allowable pulse-to-pulse frequency shift is given by:

$$
\text { Cancellation Ratio }=\frac{0.187}{\Delta f_{0} \delta}
$$

where Δf_{o} is change in transmitter frequency and δ is pulse width. With a $0.5-\mu \mathrm{sec}$ pulse, a frequency shift of only 3.7 kc can be tolerated for a cancellation ratio of 40 db .

Clutter Response

Clutter signals are the radar returns from land masses, trees, buildings, and similar objects. Variations in these signals resulting

FIG. 4-Block diagram of prf staggering switch and trigger selector
from perturbations such as wind are called clutter fluctuations. The frequency or velocity spectrum of clutter fluctuations consists mainly of low velocities. Clutter fluctuations appear on the mti velocity response curve as narrow spectrums about zero velocity and all side bands of the transmitted pulse.

At first sight the staggered system appears to have a greater response to clutter fluctuation than
a normal mti, since where the cluttex spectrum appears for T_{1} there is a gain in the response for T_{2}. This is not strictly true, because on one sweep the clutter response depends upon the velocity characteristic of the T_{1} period while on the next sweep the clutter response depends upon the velocity characteristic of the T_{2} period. These are then summed in the indicator. Therefore, the clutter fluctuation response of the staggered system should be no worse than that of a mti operating at the mean prf.

Another approach is to assume that the clutter fluctuations may have all velocities with equal probability. The rms response is

$$
V_{\phi(r m s)}=\sqrt{\frac{1}{\beta} \int_{0}^{\beta}\left(V_{\phi(r m s)}\right)^{2} d x}
$$

where x is normalized velocity and β is clutter velocity. When β approaches infinity, $V_{\text {doluter }}$ is equal to one. This is the same rms expected response as a simple mti.

Cancellation Loss

When a radar antenna scans past a target, the signal returns from the target are amplitude modulated by the antenna azimuth pattern. If the a-m is below the limit level in the phase detector it will degrade cancellation.

The allowable cancellation ratio $(C R)$ is given by the equation,

$$
C R=-10 \log _{10}\left[\frac{6.183\left(1+r^{2}\right)}{\left(P_{B W^{2}}\right)(1+r)^{2}}\right]
$$

where $P_{n \mid v}$ is the number of pulses per beam width and $r=T_{a} / T_{1}=$

FIG. 5-Staggered pri timing diagram
$(1-R) / R$. The equation is based on the assumption that $\sin x / x$ one way antenna pattern is obtained, $P_{B W}>4$, the target returns have not been limited prior to phase detection, the target is a large number of antenna aperture diameters away from the antenna, and the signal echo phase angle is that required for maximum phase detection output. If this condition is not met, the cancellation ratio will be higher.

The cancellation degradation due to scanning modulation caused by the $3 / 5$ stagger ratio is a fraction of $a \mathrm{db}$ more than that of a simple
mti operating at the mean prf. For example, with $P_{b w}=20$, the allowable $C R$ in a single period mti is 21.08 db . and the allowable $C R$ in a staggered prf, mti for $r=5 / 3$ is 20.86 db .

Targets In The Clear

One method of assessing the effect of staggered mti on targets in the clear is to determine the probability of detecting these targets. Assuming an equal probability of all velocities occurring, the probability that a target return exceeds a given first level is determined. The results are compared with a normal radar and a simple mti.

The probability distribution curve is plotted in Fig. 3 as a function of the ratio of input signal to minimum detectable signal, where the minimum detectable signal was taken as some arbitrary level A. The probability distribution for the staggered case lies between that for the simple mti and the normal systems. It is greater than the simple mti for the higher ratio values because there are fewer velocities that the staggered system is actually blind to.

For smaller input ratios the
probability curve is lower than that for the simple mti. This can be explained by the fact that around optimum velocity points, $v_{o} / 2$ in the simple mti, the simple mti has a slightly higher gain.

To modify an existing radar for staggered prf a unit similar to a cancellation unit must be added and some modification of the existing timing unit is necessary.

Radar Complexity

In a particular application it was desired to have the first blind speed at 300 knots for an X-band radar with a basic prf of $2,300 \mathrm{cps}$. Since a loss in range time could be tolerated, a stagger ratio of $3 / 5$ was chosen with $2,300 \mathrm{cps}$ as the mean prf. With this ratio, the alternate periods are 324 and $545 \mu \mathrm{sec}$. The blind speeds associated with each repetition period are 100 and 60 knots respectively giving the first over-all velocity null at 300 knots.

In designing the staggered triggers some means must be made for realigning the returning video so that it can be processed in a video cancellation unit. A prf staggering switch that performs both of these functions is shown in Fig. 4.

FIG. 6-The prf staggering switch realigns the returning video so that it can be processed in the video cancellation unit

The prf staggering switch consists basically of a $109-\mu \mathrm{sec}$ delay line that is alternately switched in and out of the unit. The radar mti video, modulates the carrier at the input to the unit and, after being either delayed $109 \mu \mathrm{sec}$ or not, depending on switch condition, is sent directly to the cancellation unit.

Referring to the block diagram of Fig. 4 and the timing diagram Fig. 5, the basic, stable $2,300-\mathrm{cps}$ trigger is established by slaving the system repetition rate to the $435 \mu \mathrm{sec}$ delay line in the canceller. A circulating trigger is derived from the basic oscillator and fed to the prf staggering switch every 435 $\mu \mathrm{sec}$ to $\mathrm{a}-\mathrm{m}$ the carrier prior to being passed through the delayed or undelayed channel.

Staggering Operation

Assume that the channel is in the undelayed position. The first circulating trigger is applied through the undelayed channel and then to the trigger selection unit. The trigger selector produces an output which is used as a switching trigger for the switch tube in the prf staggering switch and also as the radar modulating trigger.

Therefore, after the first trigger is sent through the undelayed channel, the switch is moved to the delayed position. The next circulating trigger to be selected by the trigger selection unit is applied through the delayed channel. After this second rirculating trigger, the switch is moved back to the undelayed position and the process is repeated. Staggered prf triggers are therefore generated with alternate repetition intervals of 326 and $544 \mu \mathrm{sec}$.

The function of the trigger selector unit is to detect the triggers at the output of the staggering switch and use them to generate the switching trigger and the system trigger. It must discriminate against the trigger that occurs 109 μ sec after the undelayed trigger.

As mentioned previously, the radar video must be realigned prior to the actual cancellation process. Realignment is also performed by the prf staggering switch. A circulating trigger that has been delayed $109 \mu \mathrm{sec}$, flips the switch to the undelayed position and one that
comes through undelayed diips the switch to the delayed position. Video returns from a delayed trigger therefore are undelayed, and those from an undelayed trigger are delayed. This realigns the video.

Staggering Switch Circuit

Referring to the schematic diagram of the prf staggering switch Fig. 6, the mti video frequency modulates the $60-\mathrm{mc}$ carrier by a reactance tube V_{1}. The carrier is amplitude modulated by the circulating trigger at delay line driver V_{3}
is switched to the delayed position, the first circulating trigger comes through $109 \mu \mathrm{sec}$ later. This is a superfluous trigger and the selector unit must reject it. If the recovery time of the blocking oscillator is adjusted so it will not fire on the extraneous $109 \mu \mathrm{sec}$ pulse, it will not fire reliably on the $324 \mu \mathrm{sec}$ pulse. To eliminate the superfluous trigger the blocking oscillator was designed with a fast recovery time and the recovery waveform phaseshifted and applied to the parallel triggering tube and the previous

FIG. 7-Fast recovery time of blocking oscillator in trigger selector circuit eliminates unwanted trigger
and sent to both the $109-\mu$ sec line and, after being attenuated, to the undelayed channel. The delayed signal is amplified by three $60-\mathrm{mc}$ amplifiers $V_{i}, V_{\text {s }}$ and $V_{\text {t. }}$ Actual switching or channel selection is accomplished by the multivibrator V_{13}, the undelayed channel switch tubes V_{*} and V_{5} and the delayed channel switch tubes V_{10} and V_{11}. Twin switch tubes are required in each channel to insure that the feed through signal is greater than 50 db down. To minimize cancellation deterioration, agc is used to equalize the gains of both channels.

The second switch tubes for each channel V_{5} and V_{11} have a common load which is fed to the output tube V_{g}. The output carrier is sent to the delayed and undelayed channels of the cancellation unit and to the trigger selector unit. In the trigger selector unit, Fig. 7, V_{1} amplifies the 60 mc amplitude-modulated carrier from the prf staggering switch. The circulating trigger is diode detected, amplified in video amplifier $V_{1,}$ and fires the blocking oscillator $V_{r m}$.

When the prf staggering switch
stage $V_{1: 3}$. The phase shift is adjusted so the $109-\mu$ sec trigger does not fire the blocking oscillator.

Test Results

A video cancellation figure of 30 db for a $0.4 \mu \mathrm{sec}$ pulse was obtained by keeping interchannel leakage in the prf staggering switch to -100 db. Individually shielding the delayed and undelayed channels kept the leakage down to this level.

A qualitative test of the effect of staggered prf on clutter, made by comparing the clutter response of the staggered system with a simple mti operating at the mean prf showed little difference. This was done by disabling the switch in the prf staggering switch so that only the undelayed channel was energized. The video cancellation achieved was 30 db .

The work of developing the staggered prf canceller was done on Rome Air Development Center Air Force Contract AF 30 (602)-1175.

References

[^2]

Transistorized power converter in center unit supplies drive motor of miniaturized tape recorder mechanism at left

Boosting Power

Abstract

Precise control of transistor instantaneous voltage and current produces operating efficiencies that approach the ideal. Since peak power dissipation in a single transistor occurs in the middle of a transition between on and off states, transition time is kept small

By JOHN W. CALDWELL* and T. C. GORDON WAGNER**
Minneapolis Honeywell Regulator Co., Davies Laboratories Division, Beltsyille, Maryland

EFFICIENCIES exceeding 98 percent have been obtained from two power transistors used to drive a 400 -cps synchronous motor of a portable tape transport. High efficiency is obtained by carefully controlling the instantaneous voltage and current through the transistor.

Power may be lost in a transistor when it is conducting, when it is off, or during the transition between the on and off states. The thermal time constant of even a large power transistor may be around $50 \mu \mathrm{sec}$ or less, so the instantaneous power dissipation must be carefully controlled for optimum transistor protection.

If a pair of transistors is employed to switch a purely resistive load, the peak power dissipation of one transistor will occur in the middle of each transition and will have a value one-half the total average power delivered to the load by both transistors. The dissipation averaged over the period of a single transition will be one-third the power delivered to the load. Thus if the transition time is not small compared to the thermal time constant, the power handling capabilities of a pair of transistors with a resistive load is limited to three times the transistor rating.

In most cases where the tran-
sistors see a resistive load, the average dissipation is principally a result of transition loss. If the load presented to the transistors is reactive, the losses may become much greater, but with the proper reactance and the proper drive much improvement may be realized.

Instantaneous Power Loss

The instantaneous power lost is given by the instantaneous product of the voltage across the transistor and the current through it. During the conduction period the dissipated power is small because the

* Now at Diamond Oranance Fuze Labs. **Also at The University of Maryland

Pair of power transistors is at upper left

System comprises transport (left), and recording amplifiers and power converter (right)

Transistor Efficiency

voltage is essentially \%ero. In order that the instantaneous power lost during the transition be small, it is necessary that the current passing through the transistor be small.

This can be accomplished by the simple expedient of cutting the transistor current off quickly while slowing down the voltage change during the transitions. The quick cut off may be obtained from an external source, and the voltage control during transition may be achieved by the addition of a capacitor. This serves to reverse the voltage across the transformer much the same as does the timing capacitor of a vibrator supply.

Circuit Operation

A typical circuit is shown in Fig. 1. The two power transistors are operated with grounded collectors. They supply their own base power through a tertiary winding on the output transformer. Without the synchronizing pulses the circuit would be free running at a frequency below 400 cps .

Negative synchronizing pulses at 800 cps are applied to the base of Q_{s} to produce positive pulses at the bases of Q_{1} and Q_{2}, thus cutting
them off quickly. The reversal of voltage across the output transformer is controlled by C_{1} and the 1N93 diodes to prevent an overswing when both transistors are cut off. The $800-\mathrm{cps}$ signal is derived from a precision oscillator to maintain constant motor speed.

FIG. 1-Siraplified schematic of transistor power converter

In the circuit analysis, neglect the reactive component of the motor load and consider the transformer losses to be included as part of the load. In Fig. 2A are shown the voltage across and the current through one of the transistors in the ideal case. It is important that the current be zero
before the voltage across the transistor has any appreciable value.

The difference in the currents of the two transistors is shown in Fig. 2B. Neglecting the current flowing through the capacitor, this is the current which is effectively flowing in the transformer primary. It has two principal components, a magnetizing current which might be described as a symmetrical sawtooth, and the load current.

Magnetizing Current

To ensure proper circuit operation, the magnetizing current must be large enough to store energy in the transformer sufficient to reverse the voltage stored in it during the transitions. A large magnetizing current, however, will increase the transistor losses during the conduction period. The average conduction losses are proportional to $i_{l}{ }^{2}+i_{3}{ }^{2} / 3$, where i_{l}, is the load current and i_{y} is the peak magnetizing current, which must be at least equal to the load current. In this type of operation, conduction losses are increased by a factor of at least $4 / 3$.

A magnetizing current value of twice the load current is not exces-

FIG. 2-Ideal waveforms (A) of current and voltage of single transistor, and difference of the currents (B) flowing, through transistors of Fig. 1
sive. At the end of a transition neither transistor is conducting, and an overswing of the transformer voltage is prevented by the conduction of one of the diodes. At the end of the synchronizing pulse one of the transistors will be put in a conducting condition. In the early portion of the cycle it is likely that the transistor will be conducting in the reverse direction. An alloyed-junction transistor may conduct in the reverse direction even in common-collector or com-mon-emitter service.

Conduction in the reverse direction is not normally intended, but since the semiconductor is essentially symmetrical it will function as a reverse transistor. Relatively large currents can be passed by a $p n p$ transistor with both emitter and base negative with respect to the collector. In this case the emitter and collector exchange roles, and a small current from base to collector will enable a large current from collector to emitter. The reverse current is clearly observable in the oscillogram of Fig. 3A, which shows the emitter current for a transistor connected in the circuit of Fig. 1.

Circuit Design

There are a few practical considerations about this circuit. The common - collector arrangement simplifies mounting problems. The base drive is supplied during conduction by the transistors themselves. A certain fraction of the power output must be supplied as base input, and the actual circuit
configuration cannot affect the overall electrical performance to any great degree. The self-excitation feature of the circuit is not a necessity, but it is easier to obtain the proper base drive this way.

The circuit design is straightforward. Starting with the required power output, the motor in this case, including transformer losses, requires 24 w . With a $20-\mathrm{v}$ supply, the load current referred to one-half the primary will be 1.2 amp. With a peak magnetizing current of 1.5 times the load current or 1.8 amp , the peak transistor current is 3 amp .

From the characteristics of the transistor, a peak base current of 0.4 amp and a base-to-emitter voltage of 2.5 v is required. If we allow 5.5 v reverse base-to-emitter voltage when the transistor is in the off condition, the base-to-base voltage is 8 v more than the emitter-to-emitter voltage. With a $20-\mathrm{v}$ supply the latter is 40 v and the turns ratio of the emitter winding to base winding is $40 / 48$.

Component Valves

At the end of the cycle the voltage across R_{n} is the difference between the voltage across half the base winding and the forward base-to-collector voltage. This is $24-$ $2.5=21.5 \mathrm{v}$. The current through R_{B} will be the sum of the $0.4-\mathrm{amp}$ forward base current and 0.2 amp

FIG. 3-Current waveform (A) of one transistor when load is not purely resistive, and transistor voltage as a function of current (B) and of time (C) for circuit of Fig. 1
to w - supplied by the synchronizing pulse. Thus $R_{B}=36$ ohms.

The value of the timing capacitor is not critical and may be determined experimentally. It may also be calculated by examining the transient response of the circuit when the conducting transistor is turned off. Then $C=G t /\left[2 \log _{\text {e }}\right.$ $(K+1) /(K-1)]$, where G is the load conductance referred to onehalf the transformer primary, t is the duration of a transition and K is the ratio of the peak magnetizing current to the load current.

In the example given $G=0.06$ mho, $t=62.5 \mu \mathrm{sec}$ and K is taken as 1.5. Substituting these values in the equation, C becomes $0.96 \mu \mathrm{f}$, the capacitance referred to one-half the primary. Then C_{1} is $0.24 \mu \mathrm{f}$.

Similarly the inductance of onehalf the primary is calculated from $L=T / 2 K G$, where T is the period each transistor conducts. In the given case T is $1,250 \mu \mathrm{sec}$ and L then becomes 8.33 mh . The total inductance from emitter to emitter is therefore 33.3 mh .

Since it is not possible to cut off transistors instantaneously, perfectly ideal conditions cannot be achieved. Relatively large values of t / T, on the order of 5 or 10 percent, will make practical circuit conditions approach the ideal.

Ideal Operation

The degree to which the ideal may be approached is shown in Fig. 3B. If the transistor loss were zero, a plot of transistor voltage against current would be two straight lines. In Fig. 3B the current is shown on the horizontal axis and the voltage on the vertical axis. There is a time when the peak dissipation is approximately 1.5 w or about 6.5 percent of the load power, but the average dissipation is much lower. The section of reverse current is also observable. Transistor current and voltage as functions of time are shown in Fig. 3A and C with the motor as the load.

Due to the magnetizing current, conduction losses of the transistor are increased by a $7 / 4$ factor. With a saturation resistance between 0.05 and 0.2 ohm , the conduction loss will lie between 0.25 and 1 percent of the load power for each transistor.

FIG. l-Waveforms illustrate differences between the three forms of modulation

FIG. 2-Waveforms in (C) are close derivatives of (A). Left set shows ppm by linear waveform, right sel by step waveform

Using Markerless Pulse Trains to Communicate

Abstract

Three types of markerless pulse train modulation are compared. Circuitry for demodulating a markerless pulse train, containing low frequency audio information as a time interval variation between pulses, is described

By M. DAVIDSON, * H. JOSEPH and N. ZLCKER,
Avion Division, ACF Industries, Inc., Alexandria, Virginia

PULSE MODULATION for communication purposes often involves time sharing of a single transmission channel by several sets of pulse trains ${ }^{1,2,3}$.

Pulses of a particular train occur within time limits set by marker pulses. These marker pulses are used in the demodulation process to direct each pulse into its proper channel and to reconstruct the original waveform ${ }^{4}$.

Occasionally a communications problem arises which requires single-channel pulse modulation, and consequently marker pulses are theoretically not needed.

Pulse Train Types

Markerless pulse trains can be generated from three types of pulsetrain modulations: pulse-frequency
modulation-pfm; pulse phase or position modulation - ppm; and pulse period or interval modulation - $\mathrm{p} \pi \mathrm{m}$. The pulse train modulations are analogous to the corresponding continuous-wave types of modulation. In fact, a continuous-wave may be clipped, differentiated, and applied to a blocking oscillator to obtain these pulse-modulated trains. If the modulation is reduced to zero, the c-w becomes a single-frequency carrier and the pulses are emitted at a constant rate designated the average sampling frequency. This frequency must be greater than twice the highest modulation frequency to be transmitted.
For example, an audio channel has a 5 -ke upper frequency limit the pulse sampling rate must be greater than 10 kc . Period modu-
lation of $\mathrm{c}-\mathrm{w}$ is unconventional but the pulse train equivalent is useful in the build-back process which will be described.

Characteristics

The type of pulse modulation is identified by the property of the pulse train which varies proportionally with the modulating signal. Equations for the modulator characteristics of the three types are

$$
\begin{array}{ll}
\operatorname{ppm} & \Delta \phi=K_{m p} \Delta A_{m} \tag{1}\\
\operatorname{pfm} & \Delta f=K_{m f} \Delta A_{m}
\end{array}
$$

where $\Delta \phi$ is the change in phase, Δf the change in frequency, Δ_{τ} the change in period, $\Delta A_{\text {w }}$ the atidio modulating signal amplitude and

[^3]

FIG. 3 Nonlinear distortion results when a pfm signal with large recurrencefrequency derivation is demodulated by α prm demodulator
$K_{m}(p, f, \tau)$ the modulator gain constants.

Markerless ppm and pfm trains are formed from phase- and fre-quency-modulated cw's as mentioned above. A p-m train can be formed from a free-running multivibrator whose grid discharge voltage is varied by the modulating signal. The trailing edge of the rectangular waveform at the plate will jitter in $\mathrm{p}_{7} \mathrm{~m}$ fashion. The freerunning period of the multivibrator will be the average sampling period. A positive modulation will reduce the magnitude of the (negative) grid bias and thus reduce the discharge time, and thereby the period between successive pulses.

The modulation characteristic of this type modulator is negative. For this reason a negative sign is used with K_{m}.

Application of the two-step modulation waveform shown in Fig. 1 illustrates the differences between the three forms of modulation. The pulse repetition frequency of both pfm and prm changes in discrete steps. Due to the inverse relationship between frequency and period, the frequency shift is different. Step modulation in ppm causes a phase shift of the pulses but the average pulse repetition frequency remains unchanged.

The step modulated pulse trains of Fig. 1 show that the time interval between pulses is determined by the modulating signal amplitude for both pfm and $\mathrm{p}-\mathrm{m}$. Hence a separate set of marker pulses is not needed to reproduce or build back the step modulating signal. Each pulse serves as a marker for the
next pulse. tions apply to pinu and prm pulses modulated by complex waveforms.

This is not the case however for ppm. When each pulse of a phasemodulated train is used as a marker for the succeeding pulse, the demodulated output obtained by a build-back process based on pulse interval measurements is a differentiated form of the modulating signal. The waveforms shown in Fig. 2C are nearly the derivatives of Fig. 2A. Such a system exhibits high-pass filter characteristics.

Buildback of a ppm train with markers is usually accomplished by converting the marker-to-pulse intervals to a new set of durationmodulated pulses. The pdm pulses are converted to pulse-amplitude modulation and then to a replica of the original amplitude ${ }^{6}$.

Pтm Demodulation of Pfm

Corresponding to the definition of modulation type, demodulation type is designated by that characteristic of the input pulse train which when varied produces a proportional variation in the output amplitude. A $\mathrm{p}_{7} \mathrm{~m}$ demodulator follows the law

$$
\begin{equation*}
\Delta \boldsymbol{A}_{d}=K_{d} \Delta \tau \tag{4}
\end{equation*}
$$

where: ΔA_{d} is the amplitude of the demodulated signal increment, $\Delta \tau$ is the change in pulse repetition period and K_{*} is the demodulator gain constant.

Equating Eq. 3 and 4

$$
\begin{equation*}
\Delta A_{d}=-\kappa_{m} \tau K_{d} \Delta A_{m} \tag{5}
\end{equation*}
$$

which within the bandpass of $K_{m} \tau \times$ K_{d} is independent of frequency.

FIG. 4 Sequence of waveforms in the buildback process for prm modulation wave (A), pulse-period modulated train (B), delayed prm train (pulses widened) (C), notched sarv-tocth build back (D) and boxcar peak-detected signal (E)

For pfm applied to a p-m demodulator with period expressed in terms of frequency and combining Eq. 2 and 4

$$
\begin{equation*}
\Delta A_{d}=-K_{m f} K_{d} \Delta A_{m} / f^{2} \tag{6}
\end{equation*}
$$

Where f is the average sampling frequency if ΔA_{d} and ΔA_{n} are small.

Fig. 3 shows the nonlinear distortion that results when a pfm signal with relatively large recurrence frequency deviation is demodulated by a $\mathrm{p}_{\mathrm{r}} \mathrm{m}$ demodulator. When the percentage deviation, $\Delta f / f_{0}$, is small, linear demodulation of pfm occurs. Conversely, p \boldsymbol{m} applied to a pfm demodulator would be

FIG. 5 Block diagram of a pulse period demodulator
limited to small period deviations for linear operation. In both cases signal polarity is reversed.

Pim Buildback Process

Fig. 4 shows the sequence of waveforms in the build-back process for $p_{\tau} m$. A sinusoidal modulation waveform is shown in (A). The corresponding $\mathrm{p}_{\mathrm{m}} \mathrm{m}$ pulse train is shown in (B).
The first step to be taken in building back the audio content from (B) is to generate another train of pulses (C) which are delayed with respect to (B) by some convenient time interval, for example 10 to $20 \mu \mathrm{sec}$, to provide time for resetting the boxcar detector. This delay is constant and involves no loss of modulation content. For convenience, the delayed pulses are widened, by forming them with a delay multivibrator so that they remain constant in both width and amplitude. The maximum width adjustment must be such that no two adjacent pulses touch when the intervals between the pulses of (B) and the interval deviation are minimum.

The varying time intervals be-
tween the pulses of (C) are then converted to linear saw-tooth waveforms of constant rate-of-rise, as shown in (D). Peak amplitudes of (D) are proportional to the intervals between pulses in (C). By peak-detecting the saw-tooth waveform (E), a stepped waveform resembling the original modulation signal is obtained.

This stepped waveform is then passed through a low-pass filter which smooths it into a replica of the original modulation waveform. The light vertical lines in waveforms (D) and (E) represent notches which are discussed later.

Increased demodulation sensitivity in the $\mathrm{p}_{\boldsymbol{T}} \mathrm{m}$ buildback process can be obtained without additional amplifying stages by increasing the saw-tooth rate-of-rise. When the minimum interval deviation of the pulse train is significantly less than the average sampling period, say by 25 percent, then delaying the start of each saw-tooth a fixed amount after each sampling instant permits an increased rate-of-rise without increasing the saw-tooth generator B-supply voltage.

PTm Demodulator

The demodulator was designed for operation at a $2,500 \mathrm{pps}$ average sampling rate. It has a sensitivity, $K_{d}=A_{d} / \Delta \tau$, of $0.33 \mathrm{v} / \mu \mathrm{sec}$ and is capable of generating up to $40-\mathrm{v} \mathrm{rms}$ sinusoidal signals over a frequency range of 16 to 800 cps . It uses both sweep delay and sweep clipping to increase gain.
The $\mathrm{p}_{7} \mathrm{~m}$ demodulator block diagram and schematic are shown in Fig. 5 and 6. An input prm train of negative $10-\mu$ sec pulses is applied to the grid of the phase-splitter, V_{3}.
Negative $10-\mu$ sec pulses from the cathode of V, are applied to delay multivibrators V_{2} and V_{3}. The first multivibrator generates a positive $20-\mu$ sec pulse. The second multivibrator is triggered by the trailing edge of this pulse and generates a positive 120μ sec rectangular pulse. This waveform is applied to the saw-tooth generator V_{4}. The saw-tooth is generated during the negative portion of the waveform, when $V_{t A}$ is cut off. Therefore, the saw-tooth starts $140 \mu \mathrm{sec}$ after the occurrence of the $10-\mu \mathrm{sec}$ negative pulse and ends $30 \mu \mathrm{sec}$ after the

FIG. 6 Pulse period demodulator circuit for markerless pulse trains
occurrence of the next $10 \mu \mathrm{sec}$ input pulse.

Bootstrap feedback through $V_{1 B}$ linearizes the saw-tooth waveform. The output saw-tooth, taken from the saw-tooth amplitude potentiometer, is positive going. It is fed to the control grid of V_{s}, which interrupts or notches the saw-tooth voltage for the duration of an input pulse. The notching is accomplished by applying the negative pulse from the cathode of V_{1} to the suppressor grid of V_{5}.

In addition, V_{5} removes most of the saw-tooth waveform which is below the minimum peak amplitude that occurs for a given maximum percentage of p -m. Amplitude clipping is achieved by biasing V_{s} to cut off at the unwanted level of the saw-tooth waveform appearing on the control grid.

The resultant notched saw-tooth appears inverted at the plate of V_{5}. The waveform is reinverted by $V_{B A}$ to a positive-going notched sawtooth and applied to the boxcar detector $V_{0 \beta}, V_{i A}$. The detector samples the waveform at chosen intervals and maintains the sampled amplitude until the succeeding sample is taken. Output of the boxcar detector is a sequence of ascending and descending steps.

Cathode-follower $V_{8 \beta}$ has a cathode d-c return path only through the plate of $V_{T A}$. During the time the saw-tooth notch drives the grid of $V_{N B}$ down, a positive pulse from V_{1} is applied to the grid of $V_{i A}$. The
grid of $V_{i A}$ is normally biased off by grid rectification. Thus, when the positive pulse occurs, plate conduction takes place. Since $V_{8 \beta}$ is cut off during the notch interval, the capacitor in the cathode of $V_{0 n}$ discharges through $V_{z i}$ almost to ground potential. The notch pulse and the discharging pulse occur simultaneously since both are derived from the input pulse.

The saw-tooth applied to the grid of $V_{B B}$, however, continues for an additional $20 \mu \mathrm{sec}$ to recharge the cathode capacitor through $V_{0 B}$ to the peak voltage of the saw-tooth. This voltage is maintained across the capacitor until the next discharge pulse occurs. The result is a staircase waveform which closely approximates the original modulation waveform. The staircase waveform is fed to a cathode-follower which drives an m-derived low-pass filter. The filter smooths the staircase waveform and removes the high-frequency sampling pulse rates. A replica of the original modulation signal is obtained.
The circuit described was developed as part of the work done under a Signal Corps contract.

References

[^4]
Tones Find Data in

> Companion digital timing generator and magnetic-tape search unit give automatic, high-speed access to selected data from multichannel magnetictape instrumentation systems. Tone modulated recording and signal integration recovery techniques permit reliable operation regardless of tape defects

By REUBEN WASSERMAN and PAUL HURNEY, Hycon Eastern, Inc., Cambridge, Mass.

MagNetic tape data processing systems currently in use require fast access, easily controlled search equipment for efficient operation. The searcher described here was specifically designed to take full advantage of controlled search features of nighperformance tape recorders.

The szarcher consists of two separate and electrically unrelated assemblies. One, the digital timing generator, operates during recording periods and generates, displays and records on a magnetic tape channel precise digital records of elapsed time. The other, the magnetic tape search unit, operates during data reduction periods and provides automatic location and

controlled playback of data sequences selected on the basis of elapsed time addresses previously recorded by the timing generator.

Digital Timing Generator

Time is recorded on a single channel of the multichannel magnetic tape and the signal is made up of 24 sequential tone bursts at one of two different frequencies. One frequency corresponds to the binary digit one the other to zero (see Fig. 1A and 1B). Time is in hours, minutes, and seconds, and is recorded in binary-coded decimal form. In addition to the 24 tone bursts or bits, 6 other bits are generated as identification markers and control bits.

FIG. 1-Binary zero in searcher system is represented by single amplitude tone burst shown at right in (A). Center shows binary one while left shows start-stop marker. Actual tone burst of zero-zero-one chain is shown left to right in (B). Word format used by digital timing generator is shown in (C)

Format of the timing word shown in Fig. 1C consists of three parts: the start marker, composed of a ZERO, a ZERO and a ONE formed simultaneously, and a 0 NE ; a bin-ary-coded decimal representation of time in 24 -time bit form; and the stop marker which is the mirror image of the start marker. Mirror imaging enables search in both directions.

Frequency and duration of the tone bursts are direct functions of tape speed as shown in Table I. This relationship keeps the bit length on the tape constant regardless of the tape speed; therefore, the magnetic tape search unit can be operated at any desired playback speed and is independent of the recording speed used.

Time information continunusly displayed on the timing generator is in synchronism with the time recorded on the magnetic tape. A horizontal array display is used consisting of six illuminated indicators capable of reading out in Arabic numerals.

Generator Circuit

A block diagram of the digital timing generator is shown in Fig. 2. Timing indices are derived from an 800 pps square wave generated by a tuning-fork oscillator and a Schmitt trigger. The 800 pps square wave is frequency divided by complement-type flip-flops into square waves of $400,200,100,50$, 25 and $12 \frac{1}{2} \mathrm{pps}$. These square waves serve as digit sync pulses and are

High-Speed Tape Systems

Engineer inserts 60 - and 30 -ips speed playback band-pass filter into magnetic tape search unit. Digital timing generator is below search unit
used to control the rate at which the time bits are recorded on magnetic tape. A tape speed switch permits selection of the correct digit sync bit rate.

Basic Time Pulse

In addition to serving as the digit bit rate at one particular tape speed, the 100 pps from the frequency divider is reduced to 1 pps by two decade dividers. This 1 pps pulse is used to advance the digital clock one step each second and also serves as the basic time pulse for the rate at which a complete time word of 30 bits is recorded. Record or word rate is also controlled directly from the tape speed selector switch. One of the four different word rates shown in Table I can be selected depending on the tape speed used.

The digital clock consists of six multideck stepping switches connected to count in hours, minutes, and seconds, or in seconds only. Functionally, the step switches actuate the count to the visual display and transfer the count in binarycoded decimal form to a magneticcore shift register. Time information is accepted in parallel by the shift register and is read out serially, low order-bit first.

Word rate is selected from tapoffs at various positions on the unit-seconds step switch or wordrate counter. This switch, in conjunction with the tape speed selector switch, controls the rate of the read-in driver which feeds time
information to the digital clock which then transfers it to the shift register.

Information in the shift register is shifted out serially at a given digit bit rate by the read out driver.

A Schmitt trigger is used as a gate control to distinguish between the binary one and zero and to flip the one and zero gates off or on. The gates control Wien bridge oscillators used to convert the ones and zeros in the time signal into frequency bursts. Since the carrier frequencies are also a function of the tape speed, the tape speed selector switch is used to insert correct $\mathrm{R}-\mathrm{C}$ values corresponding to a particular tape speed.

Magnetic Tape Search Unit

The magnetic tape search unit operates during data reduction pe-

Digital timing generator generates reference time base, records time in hours. minutes and seconds on magnetic tape and displays time information in Arabic numerals
riods on time information previously recorded on tape by the digital timing generator. This unit provides for automatic search and controlled playback of data sequences selected on the basis of manually set time addresses and displays to the operator the time addresses associated with the data being searched or played back.

During automatic search and playback operations, the magnetic tape search unit controls the tape transport mechanism. Normally, the start and stop times, which represent the beginning and end of a desired data sequence, are manually set into the start and stop selector switches.

When the tape drive mechanism is started, the search unit scans the tape at high speed in the proper direction until the start time

Table I-Frequency and Duration of Tone Burst to Tape Speed Relationship

Tape Speed in Ips	Digit Rate in Bits Per Sec	Carrier Frea for ene in Kc	Carrier Freq for zero in Ke	Timing Word Repetition Period in Sec	Arbitrary Digits Available Between Timing Words
120	800	30	20		
60	400	15	10	1	370
30	200	7.5	5	1	170
15	100	3.75	2.5	1	70
$71 / 2$	50	1.87	1.25	2	70
$33 / 4$	2.5	0.937	0. 625	5	95
17/8	12.5	0.469	0.312	10	95

FIG. 2-Block diagram of digital timing generator. The generator is self-timed permitting search and playback decoding to be dependent only upon the time signals
is located on the tape. At this point, tape speed is automatically reduced to desired playback speed and selected data read from the tape for processing by other equipments. Upon reaching the desired stop time, the tape halts and waits for another operation instruction. Time information read from the magnetic tape is continuously displayed during search and playback.

Search Circuit

A block diagram of the magnetic tape search unit is shown in Fig. 3. Time information read from the magnetic tape consists of a serial composite of signals of one of two frequencies corresponding directly to the binary digits ONE and zero. These frequencies are amplified and then separated by m-derived passband filters into sevarate channels. Pass-band filters insure system re-
liability since they only accept information recorded by the timing generator. Separate playback passband filters are inserted for each given playback speed.

Each carrier signal is detected by rectification and level selection. The detector employs a signal integration technique, which results, within limits, in reliable operation even in the presence of tape defects or drop outs. Detector outputs are then shaped into square waves which trigger the zero or ONE decoder flip-flops. The output from the decoder flip-flops is the binarycoded decimal representation of the time address as originally produced by the digital timing generator.

Start time, set manually into the start time selector switch, is transferred in binary-coded decimal form to a magnetic-core shift register. The output of the one flip-

FIG. 3-Block diagram of magnetic tape search unit. Start and stop markers permit the search unit to detect the beginning and end of a series of time bits
flop, which is the tape time in serial form, is compared serially with the information that was manually stored in the shift register of the serial comparator.

Final Location

If the number in the output of the decoder, which represents tape time, is greater than the number stored in the shift register, a control signal is sent to the tape transport mechanism which reverses the direction of the tape motion. If, however, the decoder output is less than the number stored in the shift register, the tape continues in a forward direction until the location of the desired data sequence is indicated by equality comparison. The tape speed is then reduced to playback speed, and the filters are switched automatically from the search to the playback filter.

During playback, the stop time, previously inserted manually into the stop time selector switches, is transferred into the shift register and compared continuously with the binary-coded decimal output from the decoder flip-flop. When the output from the decoder is equal to the desired stop time, the tape transport mechanism halts and the search units wait for another pair of search addresses.

While the information from the register is being shifted out serially for comparison, the time information from the decoder is shifted into the register. When completely filled with the time information from the tape, the register transfers the information in parallel to a thyratron-relay tree converter which actuates the decimal time display. This action permits con-

FIG. 4-With segment ahead of pickup (A), tape is read in forward direction. Cycle for segment behind pickup is as in (B)

ZERO TONE GATE

FIG. 5-Tone gate and mixer circuits. Tone bursts from dual triode V are mixed by output transformer common secondary

FIG. 6-Detector circuit. Difference between level setting of R_{1} and R_{z} establishes hysteresis or backlash in the detector
tinual display of time during search and playback.

To prevent overshooting of the tape transport when the timing word is reached, the sequence of operation shown in Fig. 4 is used.

Component Circuits

A clamped bistable multivibrator used in conjunction with multiple diode gating accomplishes all required digital functions. A type 5965 vacuum tube is used exclusively with the 1 N 98 germanium diode for clamping, and a 1 N 67 A diode is used for gating.
The one-zero gates and mixer are shown in Fig. 5. Each Wien bridge oscillator produces a continuous output which is applied to
gates V_{1} and V_{2}. Each gate is a dual triode arranged symmetrically to suppress any pedestal effect. Gating voltages from either the one flipflop or zero flip-flop are applied between grids and cathodes. During ON gating, the triodes are cut-off; during off gating, the triodes are conducting. Bias voltages and gate signal amplitude are adjusted by precision resistors to make the two tube currents identical; therefore, the quiscent output voltage level remains constant. Tone bursts are mixed through the dual triode V_{3} and the output transformer.

Recovery of the time signal is accomplished during playback by the detector circuit shown in Fig. 6. After the two tone-modulated
frequencies are amplified and separated by pass-band filters into separate channels, each signal is fed to its respective detector. Inverter amplifier V_{1} couples the signal to full-wave rectifier V_{2}. Filter smoothing of the rectified signal is done with an R-C network which is coupled direct!y to d-c level discriminator V_{4} and V_{5} by second cathode follower V_{3}

The discriminator is a precise amplitude detector whose set and reset levels are predetermined by potentiometers R_{1} and R_{2}. Discriminator output is fed directly into a difference feedback amplifier, made up of V_{6} and $V_{\text {s }}$ which is d-c coupled to V_{s}, Schmitt trigger that is used for shaping.

D-C Amplifiers for Control Systems

Abstract

Typical direct-coupled, high-gain amplifier systems which boost gain and equalize d-c and low-frequency signals are described. Circuits and sample applications provide desired performance characteristics for control systems

By LARRY S. KLIVANS, Manager, Electronic Support Dept., Radioplane Co., Van Nuys, California

TWO-TUBE POWER-SUMMING AMPLIFIER-First stage in a three stage, subminiature, two-tube d-c amplifier is common cathode coupled; the second is a conventional gain stage and the third is a current limited cathode follower. Open-loop gain is greater than 2.000 and the maximum voltage swing is $\pm 10 \mathrm{v}$ into a 2,000 -ohm load. The minimum closed-loop gain $R_{1 b} / R_{i n}$ should be 0.1 and the maximum should be 50 for good stability. Zero drift referred to the amplifier input is less than 20 mv with constant power-supply voltages.

Circuit is best suited for laboratory applications where it is necessary to drive a 2,000 -ohm eleçtrohydraulic servo-valve coil, or for straight resistance summing of several input signals. Use of positive feedback to obtain open-loop gain may require selection of R_{1}

BALANCED DIFFERENTIAL OPERATIONAL AMPLIFIER-Using three stages with subminiature dual triodes. this amplifier has low drift characteristics because all stages are common-cathode coupled.

The plate and cathode power supplies of $\pm 150 \vee$ permit the output to operate above and below zero potential. Open-loop gain is greater than 5,000 into a 10,000 ohm load and good stability and summing accuracy is possible with closed-loop gains of 0.1 to 100 . Zero drift referred to the amplifier input is less than 20 mv after temperature cycling of -40 to +185 F .

The amplifier is well suited for essentially no-load, one-megohm or higher, applications where $\pm 50-\mathrm{v}$ swing is required and space is a premium. Other applications include integrating or differentiating in airborne or ground based electronic control systems. Phase lag of 5 deg at 20 cps with closed-loop gain of 10 limits applications to low-frequency control systems

TELEMETERING CONVERSION SUMMING AMPLIFIER-Two volt-age-gain stages with a cathode-follower output are used. The first stage is a differential dual-triode amplifier with the output foeding a second voltage-gain stage and a current and voltage-limited cathode follower. The follower limits the amplifier output swing between 0 and $\pm 5 \mathrm{v}$. An open-loop gain of 2,000 is obtained with positive feedback in the last two stages.

Principal applications for the amplifier are in airborne or ground based electronic systems. In these systems it is necessary to amplify d-c or low-frequency signals, isolate transducers or other sensors, change scale factors or shift the operating mean potential of d-c signals
(continued on page 98)

HERE'S WHY P\&B's PR POWER RELAY IS PREFERRED

for high current / voltage switching

HEAVY DUTY construction means long-term dependability when switching up to 20 amperes (double break contacts). Here is a ruggedly built relay, packed with high quality features, yet economically priced.
The $P \mathbb{R}^{\prime}$ s full floating movable contact carrier, for example, provides excellent contact pressure and ample wipe for self-cleaning contact action. The coil is centrifugally impregnated with top-grade varnish to eliminate moisture traps.

Contact arrangements up to DPDT are available. The PR has been adapted for printed eircuitry and heavy duty plug-in applications.

All standard AC actuated PR relays may earry the UL and Canadian Standards Association seals of approval. Write or call for complete information.

PR रelay with magnetic blow w-outs Models PR3 and PRT can be supplied with alnico masnets to suppress arcs on DC loads oveif 1200 wotts.

GENERAL SPECIFICATIONS:
Breakdown Voltoge: 1500 volts rms min. between all elsments and ground.
Ambient Temperature: $D C=55^{\circ}$ to $+85^{\circ} \mathrm{C}$
Terminals: Heary duty screw type. Standard printed circuit pins or plug-in on request.
Enclosures: PR dust cover:
Enclosures: PR dust cover:

CONTACTS:

Arrangements: Up to 2 Form C (DPDT)
Material: $5 / 16^{\circ}$ dia. silver or silver codmium oxide.
Load: Singre break: (Others available)
5 volts 60 ceak: 15 anps; Double break: 20 amps at AUKILIARY CONTACTS
Arrangemeits: 1 form A, B or C

Naterial: $3 / 16^{\prime \prime}$ diometer silver
Rating: 5 amps of 115 volts 60 cycle $A C$ resistive.
COILS:
Resistance: 64,000 ohms maximum
Power: 1.8 wotts $D C ; 9.8$ valt-amps $A C$.
Duty: Consinuous $A C$ or $D C$ ($D C$ coils will wstand 10 walts at $25^{\circ} \mathrm{C}$).
Insulation: Centrifugally impregnated with high quality varnish.
Mountings: 2 holes $.187^{\prime \prime}$ diameter $17 / \mathrm{B}^{\prime \prime}$ o.c.
PR Relays Approved By Underwriters' Laboratorles ams Caradion Standards Association
Type Contact Type Contact
PRIAY Arrangement* PR5AY Arrangement* SPST-NO
PR2AY SPST-NC
FR3AY SPDT.NO.DM
FRAAY SPDT-NC.DB
These relays are available PRIIAY DPST-NC perating voltaces- 6 . 12 in any of the following aperating volisases: $-6,12,24,48,115,208,230$, or 440
volts $50 / 60$ cycles $A C$. volts $50 / 60$ cycles $A C$.
The contocis are rated af: 13 omps, 115 volts AC. 6.5 amps, 230 volts AC. 1 hp for 115 or 230 volt AC motors. Any relays deviating electrically or physically from these stondord models will not carry U/L or CSA approval.
*Read: NO normally open, NC normally closed, DB couble break, DM double make.

P\& STANDARD RELAYS ARE AVAILABLE AT YOUR LOCAL ELECTRONIC PARTS DISTRIBUTOR

SINGLE FOLE DOUBLE THROW VERSION
PR 5 [SPDT] has all the heavy-duty features of other models in this suries.

PR WITH AUXILIARY CONTACTS
All PR modets can be equipped with ouxilliary con tacts in 1 Form A, B, or C orrangements.
$\mathbf{P O T V E R}$
E BRUMEIELD INC

D-C Amplifiers for Control Systems (continued from page 96)

THREE-TUBE 400-CPS SUMMING \& POWER AMPLIFIER-The fourstage d-c amplifier has two differential double-triode gain stages, a conventional single-triode gain stage and a cathode-follower output stage.
The open-loop gain is greater than 5.000, and the voltage swing is $\pm 10 \mathrm{v}$ into a 1,500 ohm load and $\pm 25 \mathrm{v}$ into a 5,000 ohm load. Internal equalization allows the amplifier to have less than 5 deg phase shift from d-c to 400 cps .

Amplifier is applicable to 60 or $400-\mathrm{cps}$ control systems where several signals must be summed and amplified in a precise manner. It is also used for broadband equalization where the load impedance is lower than 25,000 ohms and the phase lag must be held to a minimum

MODULATED 400-CPS CARRIER D-C AMPLIFIER—This amplifier uses a 400 -cps electromechanical chopper and an a-c amplifier. The chopper modulates the incoming d-c signal; the resulting $\alpha-c$ signal is amplified and then demodulated by the chopper. The circuit has three gain stages and a cathode-follower output stage with a d-c to d-c conversion gain of greater than 5,000 .

A dpdt or synchronous chopper is required for stability. Circuit is suitable for high-gain, low-level d-c amplifier applications, such as strain gage or thermocouple signals, where amplifier drift must be minimized, regulated power supplies are not available and d-c balancing is not desirable

OPERATIONAL D-C AMPLIFIER FOR ANALOG COMPUTERS Amplifier has an open-loop gain greater than 15,000 . It has a differential double-triode input stage and a pentode second stage. Third stage is a dual-triode cascade amplifier acting as cathode-follower. The output swings $\pm 100 \mathrm{v}$ into a 20.000 -ohm load. Usable signal frequency is d-c to 20 kc at unity closed-loop gain.

Amplifier is well suited for control systems or analog computer applications because of broad passband and large control-system response characteristics. Amplifier may be used with all passive equalization networks to obtain desired response

BALANCING D-C AMPLIFIER-A d-c amplifier (A) with a gain of 300 uses one dual triode, α two stage a-c amplifier and an electromechanical chopper. When used with an operational amplifier (B), the amplifier produces a d-c gain of 3×10^{6}.

An R-C filter with $\tau=0.47$ must filter the output as the primary purpose of the balancing amplifier is to detect slow changes at the operational-amplifier summing point, amplify the drift voltage and supply an opposite-polarity signal to the second input grid of the operational amplifier. Action is similar to a null-seeking servo mechanism in that any low-frequency variation of the summing point voltage is always driven back to zero.

Long-term drift of the operational amplifier is reduced from 20 mv , referred to the input grid, without balancing amplifier, to less than 0.2 mv . Operational amplifier should use balancing d-c amplifier for long period integration or low drift summing with large closed-loop gain

ONE BEST BET in 1959

Beginning in January, electronics will have the same editorial format each week.

Technical articles that have distinguished the magazines since 1930 as the leading publication in its field will be increased in number and will be joined by business articles we now know have wide appeal and usefulness.

We learned in 1957 that there was a need for this additional material; we learned in 1958 that it was needed weekly. So our planned standardizadion of issues should better serve readers in research, design, production and management. And we hope it will make electronics compulsory reading for many others.

Subscribers gained 400 additional editorial pages in 1957 , more than 550 in 1958 . They will bendfit again in the year just ahead, both in quantity and in quality, as we further broaden our scope and coverage without taking our eye off the engineering ball.

Thus electronics keeps pace with its growth industry. If it's about electronics, read it in electronics-repackaged as a straight weekly.

Publisher

Trap Improves Tv Picture

By GORDON C. FIELD Television Engineering Dept., Dominion Electrohome Industries, Ltd., Kitchener, Ontario

FIG. 1-Trap increases carrier slope

FIG. 2-Linear plot shows standard vestigal sideband signal

Recently, high-attenuation series traps have been incorporated in monochrome ty receivers. Their purpose is to suppress adjacentchannel interference in $40-\mathrm{mc}$ i-f amplifiers.

Although these traps have accomplished their purpose, they have had some undesirable effects. The use of bifilar T traps is suggested to accomplish the same function without some of the drawbacks.

The series traps now in use have reduced frequency response between 45.75 and 47 mc . This reduction causes a serious increase in slope at the picture carrier frequency of 45.75 mc , as shown in Fig. 1.

The increased slope causes poorer picture detail and accentuates preshoot and overshoot. In addition, white snowballs trailing black noise

FIG. 3-Logarithmic plot of standard vestigal sideband signal
pulses have resulted.
The original idea of vestigalsideband transmission has been kept in mind in using these traps. The sum of the upper and lower sidebands have been made equal to unity for the video frequency range from zero to 1.25 mc . However, the presence of the quadrature component in unsymmetrical sideband detection has been neglected.
To achieve bandwidth at the expense of increasing the quadrature component, it was established that the picture carrier should be at the 50 -percent point on the i-f slope of the passband. (Linear and logarithmic plots of standard vestigal sideband signals are shown in Fig. 2 and 3.) This was found to result in best overall performance.

However, under this condition,
maximum tolerable quadrature component exists. Therefore, it appears that further increase in the quadrature component will degrade the picture.

Basic Theory

Amplitude of the quadrature component varies directly as the difference in amplitude of the sidebands. This difference, in turn, is directly proportional to the slope at the picture carrier for the linear portion of the response. This can be seen from the expansion for the quadrature component.
$e_{\theta}=\left(B_{1}-B_{2}\right) \sin (2 \pi \mathrm{ft}-\theta)$ where B_{1} is amplitude of lower sideband, B_{e} is amplitude of upper sideband, f is modulating frequency and θ is angle between sidebands and carrier.

Amplitude of the quadrature component is also dependent on amplitude of the picture carrier and percentage modulation. Considering the relationship between quadrature component and reproduction of a unit function, the smaller the value of θ_{Q}, the more exact is the transient response of a unit step function.

Where cochennel sound reception fades, it becomes necessary to tune the picture carrier down the i-f response curve to increase sound sensitivity. In such cases, there will be a smaller effect on picture performance for i-f amplifiers with a minimum slope at the picture carrier. (Minimum slope is defined as $0.4 \mathrm{v} / \mathrm{mc}$.)

Bifilar 1 Trap

General picture tuning will also be improved with minimum slope, because of the balance of varying amounts of the quadrature component and the extreme change of picture carrier level.

To achieve high attenuation at 47.25 mc (the adjacent lower channel sound carrier) and still retain minimum slope at the picture carrier frequency, use of bifilar T traps becomes desirable ${ }^{1}$. Such a trap is shown in Fig. 4.

Overall i-f response may then ap-

REGULATION and STABILITY
 \section*{VOLTAGE REGULATED POWER SUPPLIES}

MOOEL	OUTPUT VOLTS OC	OUTPUT AMPERES DC	OUTPUT IMPEDANCE		SIZE		
			$\begin{aligned} & \text { oc. } \\ & \text { ikc. } \end{aligned}$	$\begin{aligned} & 1 \mathrm{KC} \\ & 100 \mathrm{KC} \end{aligned}$	W	H	0
SC－18－0．5	0.18	0－0．5	． 04	． 4	81／4＂	4／32＂	135／8＂
SC－18－1	0－18	0－1	． 02	． 2	81／4＂	45／32＂	135／\％＇
SC－18－2	0.18	0－2	． 01	． 1	81／4＂	4 $3 / 32^{\prime \prime}$	135／8＂
SC－18－4	0.18	$0-4$	． 005	． 05	19＂	31／2＂	13＂
SC－36－0．5	0.36	0－0．5	． 08	． 8	81／4＂	4／32 ${ }^{\prime \prime}$	135／8＂
SC－36－1	0.36	0－1	． 04	． 4	81／4＂	$43 / 32^{\prime \prime}$	135／8＂
SC－36－2	0－36	0.2	． 02	． 2	19＂	31／2＂	13＇
SC－3672－0．5	36.72	0－0．5	． 15	1.0	81／4＂	45／32 ${ }^{\prime \prime}$	135／8＂
SC－3672－1	$36-72$	0－1	． 08	． 8	19＂	31／2＂	$13^{\prime \prime}$

Patent Pending

（TUBELESS） TRANSISTORIZED SHORT CIRCUIT PROTECTED

REGULATION： 0.1% for line changes 105.125 volts at any output voltage in the range minimum to maxi－ mum．
0.1% or 0.003 volt for toad changes 0 to maximum （whichever is greater）at any output voltage in the range minimum to maximum．
RIPPLE： 1 mv RMS．
R RECOVERY TIME： 50 microseconds．
STABILITY：（for 8 hours） 0.1% or 0.003 volt（which ever is greater）．
＊AMBIENT OPERATING TEMPERATURE： $50^{\circ} \mathrm{C}$ maximum． Over temperature protection provided．Unit turns off when over－temperature occurs．Power－on－off switch on front panel resets unit．
－TEMPERATURE COEFFICIENT：Output voltage changes less than 0.05% per ${ }^{\circ} \mathrm{C}$ ．
－SHORT CIRCUIT PROTECTION：No fuses，circuit breakers or relays！Designed to operate continuously into a short circuit．Returns instantly to operating voltage when overload is removed，Ideal for lighting lamps and charging capacitive loads．
© OVER－CURRENT CONTROL：Can be set from 0 to 120% of full load．Current is limited to preset value for any load including short circuit．

KEPCO

LABORATORIES，INC．
131.38 sanford avenue ．flushing 55，n．y． INDEPENDENCE 1.7000

Model SC－18－2－M

Rack Adapter RA－2

REMOTE PROGRAMMING at 1000 ohms per volt is provided．Remote programming allows mounting a voltage control at a remote point．

REMOTE ERROR SIGNAL SENSING is provided to maintain stated regulation directly at load

圐 CONSTANT CURRENT OPERATION：These units can be set up for constant current operation without in－ ternal modification．

圈 POWER REQUIREMENTS： 105.125 volts， $50-65$ cycles 400 cycle units available

國 OUTPUT TERMINATIONS：DC terminals are clearly marked on the front panel．All terminals are isolated from the chassis．Either positive or negative terminal of each DC output may be grounded．A terminal is provided for connecting to the chassis．The DC termr． nals，the remote programming terminals and the re－ mote error signal sensing terminals are brought out at the rear of the unit

CONTROLS：Power－on－off switch，one turn voltage con trol，on front panel．Over－current control on rear of unit．Ten turn voltage control available on special order．
娄 Continuously Variable Output Voltage．No voltage switching．
国 Suitable for square wave pulsed loading．
Either positive or negative can be grounded．
－Units can be series connected．
－High efficiency Low heat dissipation
－Compact，light weight For bench or rack use．
Color：Gray hammertone．（Special finishes available）．

ORDERING INFORMATION：

Units without meters use model numbers indicated in table．To include meters add M to the Model No．（e．g． SC－18－1－M）．
＂Rack adapter for mounting any two $81 / 4^{\prime \prime} \times 4 \frac{5}{32}$＂units is available．Model No．RA2 is $51 / 4^{\prime \prime}$ high $19^{\prime \prime}$ wide．
＂Rack adapter for mounting any one $81 / 4^{\prime \prime} \times 4 \frac{5}{32^{\prime \prime}}$ unit is available．Model No．RA3 is $51 / 4^{\prime \prime}$ high $19^{\prime \prime}$ wide．

AN O．OI\％SERIES 19 AVAILABLE IN 13 NEW MODELS KEPCO OFFERS MORE THAN 120 STANDARD VOLTAGE REGULATED POWER SUPPLIES COVERING A WIDE RANGE OF MAGNETIC．TUBE AND TRANSISTOR TYPES．MOST MODELS AVAILABLE FROM STOCK． SEND FOR BROCHURE B－587

FLEXIBLE SHAFT DRIVE AND CONTROL IDEAS FOR ENGINEERS

Quick, Easy Changes of drilling patterns are possible by using S.S.WHITE Flexible Shafts as spindles for this multiple drill press. In any equipment, flexible shafts provide a much greater degree of design and operational freedom.

Reliability of Control is provided by S.S. WHITE Remote Control Flexible Shafts, shown here installed on aircraft radio equipment. For any control application, you can always depend on S.S.WHITE shafts to give superior performance.

WRITE FOR LITERATURE
Bulletin 5601-"Flexible Shafts for Drive and Control"
Bulletin 5608 - "Standard Flexible Shafts"
S.S.WHITE INDUSTRIAL DIVISION 10 East 40 th Street New York 16, New York Western Office: 1839 West Pico Blvd. Los Angeles 6, Calif. Dept. E CIRCLE 68 READERS SERVICE CARD

FIG. 4-Bifilar T trap at 47.25 mc results in minimum slope

$$
I-F(M C)
$$

FIG. 5-Comparison shows improvement in slope with bifilar T trap
proach the vestigal-sideband requirement with minimum slope at the picture carrier frequency. Yet this arrangement maintains 60 db attenuation at 47.25 mc . It is believed that this cannot be obtained with present-day low-impedance high-Q series traps.

Slopes using the traps of Fig. 1 and 4 are shown in Fig. 5.

Reference

(1) RCA Bulletins LB950, 961. 998.

Speed Indicator Tests Carrier Aircraft

Electro-optical system measures aircraft horizontal velocity just prior to engagement with the arresting gear on an aircraft carrier. The system can also be used to measure horizontal velocity of catapult launchings.

The Naval Air Test Center,

light Data and Control Engineers

Cross new fromtiers in srstem dectronics at The Gurrett Corporation. High-level assignments in the design and development of system electronics are arailable for engineers in the following specialties:

1. electronic and flight DATA SYSTEMS AND CONTROLS A wide choice of opportunities exists for creative R\&D) engincers having specialized experience with control devices such as: transducers, flight data computers, Mach sensors, servomechanisms, circuit and analog computer designs utilizing transistors, magamps and vacuum tubes.
2. SERVO-MECHANISMS AND ELECTRO-MAGNETICS Requires engineers with experience or academic training in the advanced design, development and application of magamp inductors and transformers.

3. FLIGHT INSTRUMENTS AND

 TRANSDUCERS1) DESIGN ANALYSIS Rerfuires engineers capable of performance analysis throughout preliminary design with ability to prepare and coordinate related proposals.
2) DEVELOPMENT Requires engineers skilled with the analysis and synthesis of dynamic sys. tems including design of miniature mechanisms in which low friction freedom from vibration effects and compensation of thermo expansion are important.
4. PROPOSAL AND QUALTEST ENGINEER For specification review, proposal and qualtest analysis and report writing assignments. Three years electronic, electrical or mechanical experience required.

Forward resume to:

Mr. G. D. Bradley

9851 S. Sepulveda Blvd.
DIVISIONS: Los Angeles 45, Calif.

AiResearch Manufacturing-Los Angeles AiResearch Manufacturing-Phoenix

AiResearch Industrial
Rex - Aero Engineering
Airsupply - Air Cruisers
AiResearch Aviation Service

...supplyns the following anmor airplane subeystems: Autopilot, fir Inaueticn, Armanent Connrol, Navigation. Surfece Controls, Cockpit haticatior. anà Pneamatic Static Pressure Correction.

The AiResearch centralized air data computing system integrates pneumatie, electronic, electrical and mechanical components on one of the Navy's fastest jets. It senses, measures, and automatically corrects all air parameters affecting flight. It supplies air data information to the pilot and all major airplane subsystems.

This centralized combination of trans. ducers, computers and indicators is the
most complete air data computing system ever devised. It emables aircraft to operate at maximum efficiency continuously.

Eliminating duplication of components, the AiReseareh centralized tir data computing system cuts down space and weight requirements over decentralized systems by many times. Its principal functions: angle of attack, true static pressure (electrical and preumatic), true air speed,
true Mach, altitude, rate of climb, total temperature, dynamic pressure and altitude and Mach crror.

AiResearch has been the leader in the development of centralized computing systems. The r4H-l installation is the first, single package air data computer possessing completely interchangeable, modnlar construction.
Your inquiries are invited

Alrpax

For DC INSTRUMENT AMPLIFIERS

Synchronous modulator - demodulator functions are performed in a single Type 600 DPDT chopper. Full wave demodulation permits high conversion efficiency.

Split reed construction with total contact isolation permits use in stabilized DC Instrument Amplifiers.

Airpax Type 600 operates from a 6.3 VOLT, 400 CPS source. Contact action is BBM. Permanently adjusted contacts insure long trouble-free life.

THE AIRPAX PRODUCTS COMPANY
l'atuxent River, Md., developed the s.stem to test the suitability of new types of aircraft for carrier use.

The speed-over-deck indicator consists of two identical detector units separated by a known distance. An optical system projects thin vertical fields of modulated light through which the aircraft passes.

A trihedral or retroflective mirror mounted on the aircraft reflects the light of each field back to its respective detector. The detectors provide start and stop commands for an electronic timer.

The time registered is used in computing aircraft velocity in traversing the distance between the two fields of light.

Trigger Stabilizes Frequency Divider

By KUN-MU CIIEN
Hiv. of bongineering and Applied 1 hysics, Harvard Univ, (ambridge 38, Mass.

FIG. 1-Conventional phantastron irequency divider is triggered by pulse train with triggers of only one polarity

FIG. 2-Points A and C in conventional divider are fixed, but point B is unstable, particularly at low frequencies

Phantastrons can be used ats frequency dividers at frequencies of several hundred kc with adequate stability. With minor modificafions, a phantastron "all divide froquencies lurer than several humdral "ps with high stability

The comventional phantast ron frequency divider is shown in Fig. 1,

HOW TO SIMPLIFY CIRCUIT DESIGN WITH BURNELL CRYSTAL FILTERS

Through advanced crystal filter production techniques and circuitry by Burnell \& Co., it is now possible to overcome numerous design problems formerly believed insoluble with even the best individual toroidal components.

FREQUENCY RANGE EXTENDED

Depending on band width and frequency, filters may be composed entirely of crystals or in complex networks, combine quartz crystal elements with stabilized toroidal coils to produce the desired band width and shape factor. Frequency has been extended from low range up to 20 megacycles.

TRANSISTOR TO PENTODE OPERATION

Economy is achieved with standardized complex designs of lattice networks and their three terminal network derivatives. Packaging encompasses a wide range in standard, miniature and sub-miniature sizes with considerable latitude in permissive impedance range from transistor usage to pentode operation.

STANDARD DESIGN OR CUSTOM ENGINEERED

Whether you need crystal filters of standard design or custom units engineered to specifications of center frequency, band width, selectivity and impedance level, the facilities of Burnell \& Co. are at your disposal. Write for new Burnell Crystal Filter Bulletin XT-455.

pIoneers in toroids, fllters and related networks

TYPICAL RESPONSE CURVES INDICATING THE VARIOUS SHAPE FACTORS AVAILABLE IN STANDARDIZED BURNELL CRYSTAL FILTERS

WIDE BAND CRYSTAL FILTER

NARROW BAND CRYSTAL FILTER
North Chicago, Illinois
Please send me your Bulletin 6.120 on the new Fansteel BLU-CAP TANTALUM Capacitor.
Name..
Firm...Title.
Address
City. \qquad Zone
State

This Coupon Will Bring You the Complete Facts About
FANSTEEL'S NEW BLU-CAP*

Today's BIGGEST VALUE In TANTALUM CAPACITROS

FANSTEEL METALLURGICAL CORPORATION
North Chicago, Illinois

FIG. 3-Modified phantastron is trig gered by train with both positive and negative pulses

FIG. 4-With pulse train containing both positive and negative pulses, point B is fixed

FIG. 5-Phantastron operating with 360 cps train containing pulses of both polarities develops waveforms shown in photograph
and the waveforms are shown in Fig. 2. The beginning and end of a cycle (A and C) are fixed by two negative trigger pulses.

Point B in Fig. 2, however, is not fixed. Its location is determined by circuit parameters, including C_{1}, R_{1} and power-supply voltage. If the circuit is operating near the a-c power frequency, this frequency can also affect the location of point B.

Improved Circuit

A double-triggering method is proposed to make point B more stable. An input trigger is used that has both positive and negative pulses. In the usual frequencydivider chain, such a trigger can
be gotten by differentiating the cathode or screen grid voltage from the previous stage.

In the circuit in Fig. 3, the trigger pulse train is fed to the plate through the diode and the control grid through an $r-c$ coupling circuit (C_{1} and R_{1}).

In Fig. 4, negative trigger pulses 1 and 7 fix points A and C, respectively. As control grid voltage nears cutoff, positive pulse 6 helps the tube to switch. This positive pulse fixes point B.

In most cases, variable resistor $R_{:}$in Fig. 1 can be eliminated.

This circuit divides 360 cps to obtain 60 cps , and its waveforms are shown in Fig. 5.

Control Unit Uses X-Rcy Tv

QUaLity control unit unveiled this week combines x-ray techniques with tv pickup methods to allow fluoroscopic product inspection on an assembly line basis.

The new x-ray sensitive camera tube allows direct transfer of x-ray energy to electron energy at levels suitable for display on a tv monitor. Pickup camera consists of an x-ray image pickup tube, horizontal and vertical sweep subchassis and preamplifier unit.
Control unit for the new system incorporates rectifier, regulator, video, sync and blanking subchassis. Each is easily removed for servicing.

System monitor has a horizontal resolution of 46 lines per inch (min.) at center. Vertical resolution is 37 lines per inch at center. Video high frequency response is flat to $8 \mathrm{mc} \pm 1 \mathrm{db}$, less than 10 percent tilt of peak-to-peak amplitude with 60 cps square wave. Modulated signal output for use with conventional tv receivers is 0.1 v rms video-modulated r-f into 75 ohms, tunable to standard tv channels 2 to 6 , double sideband radio frequency.

Increased Brightness

Brightness 10,000 times higher than a conventional fluoroscope image is claimed for the system by General Electric, developer. Fur-

FANSTEEL METALLURGICAL CORPORATION

 North Chicago, IllinoisPlease send me the Bulletins checked below:

Bulletin 6.100 PP type Tantalum Capacitors	Bulletin 6.111 HP type Tantalum Capacitors
Bulletin 6.113 VP Type Tantalum Capacitors	Bulletin 6.112 STA Capacitors
Name...	
Firm.	Title
Address	
City	State

PP type Tantalum Capacitors
\square Bulletin 6.112
STA Capacitors
VP Type Tantalum Capacitors

This Coupon Will Bring You the Latest Bulletins On

FANSTEEL'S
 PP, VP, HP and S.T.A. TANTALUM CAPACITORS

PP Type for temperature range from $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Bulletin 6.100

HP Type for high temperatures to $125^{\circ} \mathrm{C}$ and for vibration-resistant applizations. Bulletin 6.111

VR Type for excessive vibration or shock requirements. Bulletin 6.113

STA Type Solid Tantalum Capacitor, voltage ranges up to 60 Volts (wvdc), Bulletin 6.112

FANSTEEL METALLURGICAL CORPORATION North Chicago, Illinois

C5811A
RELIABLE TANTALUM CAPACITORS SINCE1930

minus four seconds..."

IN JUST FOUR SEGONDS IT WILL BE TOO LATE FOR GUARANTEES OR REPLACEMENTS

When the count-down reaches zero, thousands of missile components are called upon for one brief life-ordeath function. At this vital point, the reliability built into each, determines the success or failure of the whole - the millions of dollars as well as of man-hours. There is no "recall" signal!

This is the kind of reliability built into Fansteel Silicon Rectifiers. We call it a "reliability salety factor," and there's no secret nor magic about how we achieve it. We spend the time required for painstaking thoroughness. Instead of spot-checking, every rectifier is tested at each stage of production. And then each completed unit is given a final and thorough checkout. Atmosphere is controlled to a dew point of $-100^{\circ} \mathrm{C}$. No check, no test, no precaution is omitted; no standard is ever too high.

Translated to a "user" viewpoint, this reliability sufety factor means simply this: when you specify Fansteel Silicon Rectifiers, you need make no allowance for failure; you get 100 good rectifiers out of every hundred!

Write for Bulletin 6.302

NEW FANSTEEL IN SERIES SILICON RECTIFIERS

- Rated at 750 milliamperes, yet so small in size
- Peak reverse voltage range 50.600 volts
- Reliable performance in temperatures up to $165^{\circ} \mathrm{C}$.
ther advantage is that inspection can be made from remote locations to protect operators from exposure to $x-1 \ddot{y}$. s . 'This permits safe use of any x-ray intensity necessary for adequate penetration up to the limit of the associated x-ray generator. 'The viewing monitor provides (ullality contron inspertors with an image size electronically variable from $\frac{1}{2}$ to 3 times the size of the original object.

The x-ray tv system can be used with any ordinary x-ray generating apparatus.

Oscillators Measure Broadcast Frequency

Extension of the commercial broadcast spectrum upwards toward $1,000 \mathrm{mc}$ and increase of frequency assignments in the vhf and uhf regions are aggravating certain technical problems in broadcasting.

To avoid mutual interference, the FCC assigns each broadcaster a specific carrier frequency and carefully specifies accuracy. Accuracy is customarily stated as plus or minus a certain number of cycles around the specified frequency.

FIG. l-Transfer ocillator output with transmitter frequency provide sum and difference frequencies that can be beat against harmonic series. Transmitter frequency can then be corrected

To achieve specified accuracy, the brodcaster must refer his frequency to a frequency or time standard whose accuracy is appreciably better. For the a-m, f-m and tv bands, periodic reference to a national frequency standard such as WWV is required, as well as continuous comparison to a frequency-deviation monitor having at least twice
the accuracy of the transmitter.
A basic system for checking transmitter frequency is shown in Fig. 1. Either of two crystal-controlled harmonic series can be injected into a diode. One is spaced at $10-\mathrm{mc}$ intervals extending upwards of $1,000 \mathrm{mc}$; the other at $10-\mathrm{kc}$ intervals upwards of 10 mc . The unknown frequency, F_{x}, is injected into the same mixer diode. F_{x} can be set equal to any harmonic of either harmonic series by adjusting for zero beat in the phones.

Sum or Difference

Above 10 mc , however, the only values of F_{x} are exact multiples of 10 mc , of which there are very few.

To apply the necessary resolution of the 10 -kc harmonic series to the region above 10 mc , the fiequency under measurement must be considered as the sum or difference of two frequencies. One is a multiple of 10 mc ; the other a multiple of 10 kc but less than 10 mc .

For example, if 193.24 mc is modulated with either 3.24 or 6.76 mc , one of the frequencies generated will be an exact multiple of 10 mc . It will therefore be at zero beat with one of the $10-\mathrm{mc}$ harmonics.

The transfer oscillator in Fig. 1 can be set accurately by means of the 10 -ke harmonic series. By injecting both F_{x} and this accurately calibrated transfer frequency into the diode, sum and difference frequencies will be generated. Switch-

Phototube Sextant

Plectronics technician adjusts canmera assembly of Fàrand's photoelectric sex tant now being evaluated on Uss Compass Island. Sensing device is image orthicon tube

For Highest Dependability

FANTEEL

SELENIUM RECTIFIERS

First in Preference, because of

- High Reliability
- Wide Range of Sizes, Ratings, Circuits
- Quick Delivery
(Many stack sizes available from stock)
Write for Bulletins
FANSTEEL METALLURGICAL CORPORATION
North Chitago, Ilimois, U.S.A.
E゙ロGCA
DEPENDABLE RECTIFIERS SINCE 1924

RELIABILITY. THE SOLUTION TO YOUR ELECTRONIC COMPONENT PROBLEMS

Designing reliability into electronic components and instrumentation is Borg Equipment Division's business.
Borg's reliable engineering, research and production facilities are at your service for commercial or military projects. Bring your component reliability problems to Borg. You'll enjoy working with our cooperative, creative engineering staff. The result will be a sound, practical and reliable solution at a considerable saving of time and money. Here are just a few of the products manufactured by Borg

FREQUENCY STANDARDS

AIRCRAFT INSTRUMENTS
POTENTIOMETERS
MULTI-TURN COUNTING DIALS
(1) FRACTIONAL H. P. MOTORS

SPECIAL DESIGNS

WRITE FOR COMPLETE ENGINEERING DATA

BORG EQUIPMENT DIVISION

The George W. Borg Corporation JANESVILLE, WISCONSIN
CIRCLE 77 READERS SERVICE CARD
ing over to the $10-\mathrm{mc}$ series, any beat note heard in the phones will indicate an error in F_{x}. The error can be corrected by adjusting F_{x} for zero beat.

Accuracy

Accuracy of this system is determined by accuracy of the crystal oscillator controlling the harmonic series. At the time of measurement, this oscillator must be set to zero beat with a sufficiently accurate standard such as WWV.

Initial accuracy of the transfer oscillator is not significant, since it can be set in terms of the calibrator. Short-term stability sufficient to enable the measurement to be made is necessary, however. It must be able to maintain its frequncy within a cycle or two for the few seconds it takes to switch the calibrator from $10-\mathrm{kc}$ to 10 -mc.

The usual difficulty of setting to precise zero beat would limit the precision of setting F_{s} to perhaps 50 cps . Resolution of better than one cycle can easily be achieved by offsetting the transfer oscillator frequency from its calculated value by some arbitrary amount.

Improving Resolution

F_{x} is adjusted so that the beat notes against both harmonic series have the same frequency and the same sign. The particular beat frequency does not matter.

The beat signal is applied to one pair of deflection plates of an oscilloscope and an audio oscillator to the other pair. With the calibrator set to 10 kc and with the transfer oscillator detuned slightly, a recognizable Lissajous figure is obtained by adjusting either oscillator. The (alibrator is switched to 10 mc and F_{r} adjusted for the same pattern. The audio oscillator and oscilloscope serve as memory during the switching process.

Having obtained the desired resolution, the offset frequency is changed slightly and the two beat frequencies are checked to determine that they stay matched. This checks that the direction offset is the same for both beat notes.

This material was abstracted from a Wescon conference paper l心 (\%. A. Cady and W. P. Bunck of General Radio Co.

STROMBERG-GARLSON

Type "A" Relays with

Plug-in mountings

For fast, easy removal and replacement you can get Stromberg-Carlson Type "A" Relays with plug-in mountings.

The Stromberg-Carlson Plug (illustrated above) automatically locks the relay in place and guarantees a low-resistance connection between plug and socket. Its 36 terminals provide enough connections for practically all relay applications. Coils and contacts are wired to terminals as your needs dictate. Contacts can be furnished in silver, palladium, gold alloy or palladium-silver alloy.

Spring combinations possible with this assembly are 17 Form A or Form B; 10 Form C or Form D.

Also available in an "A" Relay is a plug used with commercial radio type sockets. It can mount relays with $8,9,12$ or 20 connections.

For technical details and ordering information, send for Bulletin T5000 R , available on request. Write to:

STROMBERG-CARLSON
division of general gynamice corporation TELECOMMUNICATION INDUSTRIAL SALES 114 Carlson Road, Rochester 3, N. Y.
Wlectronic and communication products for home, industry and defense

BORG MICROPOTS...

the Ultimate in Multi-Turn Precision Potentiometers

1100 Series MICROPOTS
A precision MICROPOT that offers your products a price advantage in today's competitive markets. Lug or lead type terminals. Accurate ... dependable... long lived.

990 Series Trimming MICROPOTS
Small in size, lightweight, rugged and dependable. Three types of terminals ... printed circuit, solder lugs or insulated wire leads.

Borg offers a complete line of high-precision, linear potentiometers called MICROPOTS. Precision is Borg's business . . . that's why MICROPOTS offer so many exclusive advantages. Superior design and production methods make Borg MICROPOTS available in any quantity. Write today for the name of your nearest Borg Jobber or "Tech-Rep."

Standard ten-turn and threeturn models to fit mostspecial design needs. Extremely accurate and dependable under adverse environmental conditions including severe vibration and shock.

205 Series MICROPOTS

A quality MICROPOT. Designed for both military and commercial applications. Proven in many different mobile and stationary types of electronic circuitry.

WRITE FOR COMPLETE ENGINEERING DATA - CATALOG BED-A9O

BORG EQUIPMENT DIVISION the george w. borg corporation

Around-the-Mast Rotary Joint

FIG. 1-Basic coaxial choke joint

Microwave rotary joints are used to maintain electrical continuity between a stationary r-f generator and a continuously rotating antenna system. Many variations appear in the design of these units for radar applications. The particular one chosen depends msually on the requirements of the radar antenna system.

Until the around-the-mast type of joint was developed, available designs provided only a limited number of rotary channels. The antenna had to be designed for the rotary joint. The multiple-feed an-
tenna offered more information through lobe comparison. But it could be used only with remotely controlled r-f switching, mounted on the rotating system or with a rotary platform on which the entire system is mounted.

Basic Rotary Joint

The basic rotary joint as shown in Fig. 1 is of the familiar coaxial form. It consists of two collinear sections operating in the TEM mode coupled by quarter-wavelength noncontacting chokes. A successful alternative design using circular waveguide operating in the TM_{01} mode is useful for highpower applications but is not adaptable to around-the-mast techniques.

The problem of multiple-channel continuity in a rotary-joint system has led to the annular design. In this system, identical units can be combined into a microwave slipring assembly. In order to combine rotary units in this manner, an opening must be provided through the center of the assembly. This opening must be large enough to pass as many transmission lines as there are channels. Complications arise when one of these channels must be a waveguide carrying the higher power from the transmitter. Resulting transverse dimensions will almost certainly be measured in wavelengths. Under these conditions, higher-order modes become a definite possibility with resulting
variations in transmission characteristics as the joint is rotated.

The tendency to establish undesired modes must first be minimized by feeding the necessarily large-diameter basic coaxial joint at points equally spaced about its circumference. These points must be separated by less than a halfwavelength. Signals that are fed to the coaxial section in this manner must be identical in both phase and amplitude. Such signals are obtained best by a binary feed system consisting of a series of teejunction power dividers in strip transmission line.

Binary Feed

Design of the binary feed, Fig. 2 , is simple. Quarter-wavelength impedance-matching transformers are combined with the tee junctions. As a result, energy at the 50 -ohm input is divided equally between eight 40 -ohm output points. To insure phase equality, path lengths from the input to any of the eight output points must be identical. Impedance-matching transformers are arranged in back-toback pairs, to increase bandwidth.

Any traces of higher-order modes that might survive the feed precautions described are further attenuated by a system of built-in mode filters located in the basic coaxial section of the joint. These filters consist of a series of slots in the outer conductor of the basic

FIG. 2-Binary feed system

FIG. 3-Cross-sectional view of the rotary joint

Diffused Alloy OWER TRANSISTORS

Because no other transistor offers this combination of features and uses, you will want to try out the DAP transistor in your circuits. Get full details now on new Bendix diffused alloy power transistors by writing semiconductor products, bendix aviation corporation, long branch, new jersey.

	Ratings		Typical Performance			
	Vdc	$\begin{gathered} \mathrm{PC} \\ \left(25^{\circ} \mathrm{C}\right) \end{gathered}$	$(\mathrm{Ic}-5 \mathrm{Adc})$	$\begin{gathered} V_{s} \\ (1 \mathrm{c}-5 \mathrm{Adc}) \end{gathered}$	$f \alpha$	rbb'
2N1073	40	35 W	40	0.5 Vdc	1.5 mc	2 ohms
2N1073A	80	35 W	40	0.5 Vdc	1.5 mc	2 ohms
2N1073B	120	35 W	40	0.5 Vdc	1.5 mc	2 ohms

West Coast Office: 117 E. Providencia Ave., Burbank, Calif. Canodian Distributor:
Computing Devices of Canada, Lrd., P. O. Box 508, Ottawa 4, Ontario Export Sales and Service:
Bendix International Division, 205 E. 42 nd St., New York 17, N. Y.

for molybdenum furnaces
This transformer has a 10,000 Ampere secondary with a maximum of
5 volts. The primary taps are extended to reduce secondary to 0.75 volts. The secondary copper is $3 / 8^{\prime \prime}$ thick and $16^{\prime \prime}$ long, over which is connected and built-in a 5 Ampere current transformer. This special transformer is made for air-blast cooling as the physical size had to be kept extremely small.
The heating transformer, a new member of the well-known family of NWL custom-built Transformers, is made to fit the particular needs of the user.

Each Nothelfer transformer is individually tested for core loss polarity, voltage, corona, insulation breakdown and aging characteristics and must meet all customer's requirements before shipment. We shall be glad to receive your specifications and quote you accordingly,

ESTAELISHED 1920

nothelfer winding laboratories, Inc., P. O. Box 455, Dept. E-11, Trenton, N. J. (Specialists in custom-building)
coaxial section parallel to the axis of rotation. Circumferential currents inherent in the higher-order modes are attenuated effectively by lossy magnetic material which fills the slots.

The method of feeding the basic coaxial section by the multipoint binary feed shown in Fig. 3 is unusual. Inner conductors of the feed system connect to the outer conductor of the basic coaxial section. A quarter-wavelength choke, located at the feed points, electrically frees the outer conductor making this method of feed possible.

Although the original design was evolved for a power level compatible with receiving service, increased ground-plane spacing and elimination of dielectric from points of intense field strength will lead to a joint of transmitting possibilities.

FIG. 4-Exploded view of single joint
Typical characteristics of an Lband joint give an insertion loss of less than 0.2 db , wow with rotation under 0.1 db and negligible phase shift for most applications. Bandwidth varies with the swr requirements but a value of 1.25 has been obtained over a bandwidth of 15 percent. A slight relaxation of the swr requirements can double this figure. An exploded view of a single joint is shown in Fig. 4.

Waffle-Iron Waveguide Filter

Effective screening out of unwanted high-frequency signals is made possible by a new filter design

developed by Stanford Research Institute for the Hewlett-Packard Co.

The new filter has a waffe-iron grid design made up of a carefully computed pattern of slots cut across lengthwise grooves. The design passes microwaves in the 10 - to $15.5-\mathrm{kmc}$ band. Higher frequencies with shorter wavelengths are trapped by the grid design and reflected to the power source.

Slidewire Pot Has Digital Readout

Basic active elements of a new potentiometer produced by The Howell Instrument Co., Fort Worth,

Texas, is a resistance-wire bonded within the edge of a laminated Mylar tape. The wire may be either straight or in helical form depending upon the total resistance required. It is available in lengths of 120 in . Resistance ranges obtainable are from 100 to 100,000 ohms.

Readout is direct through a window on the front of the case of the potentiometer. With the calibration stamped on the tape, any linear or nonlinear calibration can be obtained. Typical applications include direct digital reading of tempera-

Centralab. Ps series

Sub-Miniature

Ceramic Insulated

Rotary Switches

Your electronic parts distributor has these centralab units in stock for immediate delivery. Equal in electrical ratings to much larger and heavier switches, these PS Series switches are your best choice for high reliability applications where space is limited.
military specification MIL-S-3786 and other MIL specifications can be met by the PS Series switches on special order. Contact your distributor for details.

SPECIFICATIONS

Weight: Less than one ounce.
Insulation: centralab Grade L-5A
Rating: 0.5 amp . at 6 V. D.C., 100 ma . at 110 V.A.C. (make and break, resistive load). Current carrying capacity, 5 amp .

Insulation Resistance: Exceeds $\mathbf{1 0 , 0 0 0}$ megohms.

FrEE-Centralab Catalog 30 listing the PS Series switches and hundreds of other switches, controls, ceramic capacitors and PEC couplates-all immediately available from your industrial electronics parts distributor.

Centualab,

A DIVISION OF GLOBE-UNION, INC 914-L E. KEEFE AYE. - MILWAUKEE I, WIS In Canada: 804 Mt. Pleasant Rd. - Toranto, Ontarii

VARIABLE RESISTORS • PACKAGED ELECTRONIC CIRCUITS • ELECTRONIC SWITCHES CERAMIC CAPACITORS - ENGINEERED CERAMICS - SEMI-CONDUCTOR PRODUCTS

WHATEVER YOUR UHF ATTENUATION NEEDS...

at-104: 12 Position step attenator

 USING AT-50 ELEMENTS.DC TO 4000 MC.

Empire's UHF attenuators are resistive coaxial networks for the frequency range from DC to 4000 MC .

Accuracy is held to $\pm 1 / 2 \mathrm{DB}$, VSWR is better than 1.2 to 1 . Any attenuation values up to 60 DB (120 DB for Model AT-106), are available. Deposited carbon elements are used for stability and operations at higher pulse levels. Standard impedance is 50 ohms, other values upon request. These units have excellent temperature characteristics and are vibration and shock resistant. Standard connectors are type " N ", attenuator pads are also available with type " C ".
The attenuators may be obtained as individual pads (AT-50, AT-60), or as multi-position step attenuators AT-103 (six positions) and AT-104 (twelve positions). For even greater flexibility, Attenuator Panels, Model AT-106 (two or three step attenuators in series connected) are recommended.

For complete technical information about attenuators for your laboratory or production needs, write for free catalog.

A COAXIAL UNIT FROM
EMPIRE DEVICES
WILL Meet
YOUR REQUIREMENTS

 EMPIRE DEVICES products corporation AMSTERDAM, NEW YORK

Telephone: Victor 2-8400
manufacturers of
FIELD INTENSITY METERS - DISTORTION ANALYZERS - IMPULSE GENERATORS - COAXIAL ATTENUATORS - CRYSTAL MIXERS
ture with any type of thermocouple, square-root extraction when used with differential-pressure transducers for flow measurement and hyperbolic and logarithmic functions encountered in analysis and radiation systems.

Each Ta'Pot is calibrated automatically by a system that compares the unit under test with a master tape $60-\mathrm{ft}$ long. Digital values, as specified, are printed on the tape automatically during calibration. For the 120 -in tape, 1,000 calibration points are printed.

Conformity between true resistance value and specified function of the calibration is 0.05 percent. Resolution is better than 0.01 percent; total resistance tolerance, 0.25 percent and end resistance less than 0.05 ohm. Power rating is two watts at 25 C .

Transducer Test Program

RESEARCH, development and testing of telemetering transducers is the basis of a program being carried out at the National Bureau of Standards.

The program provides data on performance of transducers over significant ranges of such ambient conditions as temperature, temperature shock, pressure, vibration, acceleration, humidity, pressure shock and acoustic vibration. A special shock tube for testing transducers provides a pressure stepfunction of known value which can be applied to the transducer pressure gage under study. Response of the gage is detected by an oscilloscope and recorded photographically for further analysis.

Accelerometers

Calibration of accelerometers presents no problems at frequencies
from 10 to several hundred cps. But the frequency of interest often lies below this range. One procedure for calibration at lower frequencies involves rotation of the accelerometer in the earth's gravitational field. The other makes uses of a specially designed centrifuge.

Diaphragm being inserted between com. pression and expansion chambers

Both methods provide a known frequency input to the accelerometer. A response curve represents the dynamic characteristics of the device.

Shock Tube

The special shock tube constructed is of flanged steel sections. It has a working cross-sectional area three in. square, a compression chamber variable in length from 3.4 to 12 ft and an expansion chamber eight ft in length. The tube is equipped with three pairs of optical glass windows. Each pair is provided with a schlieren system and multiplier phototube arranged to give a pulse at the time of passage of the shock wave. Auxiliary equipment measures initial expansion of chamber pressure accurately and determines transit time of the shock wave between schlieren stations.

The shock tube gives pressure steps lasting four to five millisec. Expansion-chamber pressures up to 350 psi and compression-chamber pressures up to 1,000 psi can be selected. Shock step heights may be generated up to about 600 psi by using air on both sides of the diaphragm.

The perfect answer for $400-\mathrm{cps}$ airborne or missile applications where maximum cooling with a minimum of space and weight loss is mandatory. Air delivery of 120 cfm free air is obtained from a fan only $3^{\prime \prime}$ in diameter by $1.4^{\prime \prime}$ in depth. Weight is 6 ounces.

Variation in driving motors includes constant speed $20,000-\mathrm{rpm}$, $10,000-\mathrm{rpm}$ and Altivar versions. The latter automatically vary their speeds inversely with density and thereby approach constant cooling with a minimum of power drain and noise.

Simplicity of mounting is achieved by provision of "servo" type rims at either end of the venturi. Airflow is easily reversible by turning the fan end-for-end. Electrical connection is made to a compact
 terminal block. Power requirement is $400 \mathrm{cps}, 1$ or 3 phase, sinusoidal or square wave.

Write today for complete technical information to . . .

ROTRON:

WOODSTOCK, NEW YORK
In Conada: The Hoover Co., Ltd., Hamilton, Ont.

Turntables Feed Tube Asssembler

Electronic tube cage assembly machine in use at Sylvania Electric Corporation's new plant in Altoona, Pa., represents an application of Detroit-type automation to a delicate operation. Its assembly rate for most common tube types is 1,800 an hour.

At each of the several stations is an inserting device, fed by a turntable which in turn is fed by an operator. The turntables are designed to simplify the operator's work.

At the first station, for example, the operator fits an unpunched mica spacer into loading forms. As the turntable revolves, the mica is punched and its thickness sensed. Then it is passed onto the machine's central conveyor, where it is gripped in position and passed along to the next station.

Cathode Loading

At the second station, an operator drops cathodes through a funnel to the apexes of conical supports carried on another turntable. The machine picks the cathodes off this turntable and inserts them in the spacers. A similar procedure is followed with the grids, plates, shield and top mica spacer. At the last station, the cathode tabs are wolded in place.

Each station is provided with sensing devices so that the absence of the necessary part will either stop the line and sound an alarm, or will cause the incomplete assembly to be picked off the line and rejected. The operations of adding

Cathode loading station. Girl drops cathode onto turntable through funnel

At top speed, this tube cage assembly machine represents a production rate of more than 100 assemblies an hour for each operator required
heater and getter, and joining cage to stem, are performed manually. Hand methods are used on tubes not assembled in large quantity.

A number of other machines were designed to step up production at the plant by about 25 percent, while keeping its work force at 900 -odd. The plant is the latest outcome of a 12 -year, $\$ 40$ million Sylvania effort to mechanize component production.

Grid winding machines wind continually on support bars. But the method used does not require the operator to unwind grid turns to bare sections of the supports for mounting clearance.

The machine winds the number of turns specified for a particular grid, then jumps the wire over the

Heaters are wound at right, trimmed at left and trayed by arm at bottom
support clearance space. The grid wire jump is burned through at each end and the excess is sucked off by air. Meanwhile, the supports are notched and the turns of wire are peened to the supports.

In the next 3 stations, the machine swages the ends of the supports into their mounting shape, hot-stretches the grids and clips then apart. At the final station, the grid is pneumatically drawn over a cold-stretching sleeve for final shaping. The grids are then dropped into miniature buckets on a conveyor and carried to an automatic traying station. One operator monitors, loads and unloads 4 to 6 of these machines.

Heater Winder

One operator can also handle several of the heater spadewinders. The machine not only winds, but also cuts the heaters apart, picks them up, puts them in trays and stacks the loaded trays. It can wind over 4,000 of the simpler types of heaters an hour. As the heaters are wound, they are grasped by the jaws of heads on a turntable, which carry them through finishing operations to the unloading point. They are unloaded by an oscillating gripper arm which transfers them to trays. The trays are moved so that the arm finds an open tray slot.

Stem maker places leads in posi-

Now Available in Production Quantity

EOM

Scintilla Division of Bendix developed and has in production the E - 315 family of E-nvironmental resistant capacitors to aid in satisfying the fast growing requirement for high temperature components in the high speed aircralt and missile fields.

The E-315 capacitor offers proven stability of operation over the temperature range of -55° to $+315^{\circ}$ Centigrade* with no voltage derating and low capacitance variation. Of rugged hermetically sealed construction and nonstrategic materials, this capacitor is built for high altitude and severe environmental operation.

This nonpolarized capacitor is available in a variety of sizes in a capacity range of from 0.05 to 4.0 microfarads at 600 VDC . It is also available in higher voltage ratings. Performance data and operating characteristics are given in Technical Bulletin SL-61 which is supplied upon request.
*Confirmed by qualification test of 1000 hours at 100% rated voltage over ambient temperature range of -55° to $+315^{\circ} \mathrm{C}$.

DESIGN FEATURES

Temperature Range . . -55° to $+315^{\circ} \mathrm{C}$. Capacitance . . . 0.05 to 4.0 uf at 600 VDC . Voltage Range . . . 600 V to 3000 V per section. No Voltage Derating, Low Capacitance and Power Factor Variation, Environmental Resistant, Hermetically Sealed, Rugged Construction, Nonstrategic Materials, Minimum Size and Weight, High Altitude Operation.

Scintilla Division

Sidney, New York

LAPP STAND-OFF INSULATORS FOR MODERATE OR HEAVY DUTY

For years, Lapp has been a major supplier of stand-off insulators to radio, television and electronics industries. Wide knowledge of electrical porcelain application, combined with excellent engineering and production facilities, makes possible design and manufacture of units to almost any performance specification. The insulators shown on this page are representative of catalog items-usually available from stock-and certain examples of special stand-offs. The ceramic used is the same porcelain and steatite of which larger Lapp radio and transmission insulators are made. Hardware is brass or bronze; brush nickel plating is standard.

Write for Bulletin 301 with complete description and specification data. Lapp Insulator Co., Inc., Radio Specialties Division, 148 Sumner St., Le Roy, N. Y.

Closeup shows how unloading arm picks heaters from jaw of turntable head

Shaping and clipping section of grid winder. Grids move from left to right
tion and drops a glass collar around the leads. The collar is formed into a disk by heat and pressure so glass surrounds the leads. After annealing, a series of crimping and clinching stations automatically bend and shape the leads for connection to electrodes. There are some 3 dozen crimping heads to form leads. Each head works on only 1 wire at a time. Its rate is also 1,800 an hour and 1 operator can monitor and load 2 or more machines.

Computer Matches Reference Diodes

COMPUTER ASSISTS in coding and classifying the 3 Zener reference diodes which make up Zener reference elements produced by Hoffman Electronics Corp., Semiconductor Division, Evanston, Ill.

After assembly, the diodes are mounted in racks which connect each diode to a voltmeter. The diodes are tested in oil baths at temperatures of $-55 \mathrm{C}, 25 \mathrm{C}$ and 100 C . The computer, in association with the voltmeter, records on tape the performance of each diode.

Acceptable diodes with similar performance ratings are then matched in groups of 3 . The groups
are placed in a drawer-like file, until assembly into elements. The elements are temperature tested at maximum tolerance of ± 0.2 percent from -55 C to 100 C .

Racks of diodes are tested in oil baths

Jig bends leads of diodes into position

Elements are temperature tested

Catalyst, Hot Air Keep Epoxy Fluid

FULL DAY's supply of epoxy compound for encapsulating resistors is kept fluid through use of a heated reservoir and anhydride curing agents. The cylindrical reservoir has a built-in fan and heater which circulates hot air around the reservoir to adjust the epoxy's viscosity for optimum flow.

The setup is in experimental use at Electronic Plastics Corp. (Eastern Precision Resistor Corp.), New

Applications for

- Transistor and Vacuum Tube Circuits
- Coupling
- By-Pass
- Filtering
- Frequency Determining

- Radio
- Television
- Computing Devices
- Instruments
- Business Machines
- Navigation

Equipment

- Radar
- Guided Missiles
- Communications Equipment

ERIE is supplying the electronics industry with a wide variety of general and special purpose Disc Ceramicons to meet the needs of tomorrow's equipment today.

The four types in which ERIE Disc Ceramicons are available are offered in a wide range of values. Low inductance metallic silver electrodes are intimately fused to the ceramic dielectric at high temperatures. Excellent moisture protection is obtained by high vacuum wax impregnation of the thermosetting phenolic coating. Heavily tinned copper leads provide superior solderability.

TRANSISTOR Disc Ceramicons are tailored to the high capacitance and critical space requirements associated with transistorization. Available to .1 mfd . Rated at 100 VDC.
GENERAL PURPOSE Disc Ceramicons have excellent electrical characteristics and provide effective performance for all applications requiring from 1.5 mmf to .033 mfd . Rated at 500 VDC.

HIGH VOLTAGE Ceramicons employ the same basic diameters and design that have been standardized in 500 volt ceramic capacitors. Conservative ratings from 1 KV to 6 KV D.C.W. are based on extensive life test data.

TEMPERATURE COMPENSATING Disc Ceramicons offer a wide combination of temperature coefficient and capacitance values. These low loss Ceramicons are available in capacity ranges from 1.5 to 4700 mmf , at 500 V.D.C.W. and temperature coefficients ranging from P120 through N5600. Capacitance tolerances as close as $\pm 1 \%$ 。

Write for complete description and specifications of ERIE Disc Ceramicons

a prize pair

The TW 251

The TW 201

... of toroidal winders

The rw 201 ...economical production winder with minimum manual operation. Efficient, easy to set up and operate . . absolute dependability built into each machine.

The rw 251 . . NEW . . . low-cost packaged unit, complete and ready for operation. A slowerwinding laboratory machine, usable in production like the TW 201 by addition of pre-determined turns coùnter.

Blower on reservoir adjusts encapsulant viscosity with heat

York. A foot-controlled needle valve is presently used to dispense epoxy, leaving the operator's hands free to position the encapsulating fixture. Timing and indexing devices would automate the operation.

Casting Fixture

The fixture encases the resistors in Teflon so they may be easily released after the epoxy has cured. One side of the fixture is lined with Teflon sheet. After the encapsulating shells are positioned on the sheet, the bobbins are centered in the shells by Teflon tubing. Teflon washers go on top of the assembly. The other side of the fixture is snugged down with bolts.

Fixture holds 6 resistors in Teflon for easy parting after cure

The epoxy is poured into a slot cut in the shell. The same epoxy formulation is used for the bobbin, shell and encapsulant to assure homogeneity, preventing a spread of electrical tolerances. Rods from which the bobbins and shells are machined are cast in copper tubing.

The anydride curing agents are used to extend the pot life of the epoxy and improve its workability. Two types are used: hexahydrophthalic anhydride, a solid which melts on heating, and motinyl
TW 201 . . .
Semi-automatic toroidal coil winder . . . core oscillated manually . . . clamped mechanically . . . winds standard size coils without additional attachments . . . interchangeable shuttle heads.

TW 251 ...
Semi-automatic toroidal coil winder . . . similar to TW 201 but has builtin non-predetermined turns counter ... AC drive variable up to 1000 rpm . . . can use all accessories avail. able for TW 201.

You get the BEST from BOESCH

Nadic anhydride, a liquid produced by National Aniline division, Allied Chemical Corp., New York. Both are compatible with almost any epoxy resin.

Low viscosity and long gelation period of the encapsulant permits entrapped air to escape before the epoxy hardens. Rods less than $\frac{1}{4}$ inch diameter, however, are vacuum cast to prevent porosity.

Specialized wrenches for assembling or disassembling Cannon, Bendix Scintilla or Amphenol AN connectors have been developed by Spec Tool Co., in cooperation with Cannon Electric Co. Each of the combination type male or female wrenches will grip 12 sizes of connectors. Photo shows how the male wrench is used with a pair of pliers. In the background are a female wrench and a single-size wrench.

Gas Tests Circuit Component Shorts

Freezone-type gas sprayed on circuitry will locate intermittent shorts which are caused by changes in ambient temperature. The gas creates a rapid change in the physical body of the component or solder joint. In the resulting contraction and expansion, the intermittent contact will be detectable. The area of the chassis in which the short is located can be quickly determined by spraying the chassis in sections. The gas is available in pressure spray can, under the name Zero-Mist, from General Cement Mfg. Co., Rockford, III. The firm also has developed a spray-on silicone compound which assists in insulation and heat transfer between transistors and chassis.
 meters . . . rotating components . . . breadboard parts

NEW PRODUCTS

D-C Power Supply wide voltage range

Perkin Engineering Corp., 345 Kansas St., El Segunclo, Calif., has devcloped a wide voltage range d-c power supply with magnetic amplifier regulation. Model M-1193 provides a d-c output of $5-50 \mathrm{v}$ at 50 amperes from an a-c imput of 110,220 or $440 \mathrm{v}, 60 \mathrm{cps}$, single phase. The wide output voltage
range is accomplished by means of a rotary switch which provides three separate ranges which are used in conjunction with a potentiometer to supply smooth continuous voltage adjustment over each range. Regulation accuracy is ± 1 percent for line variations of ± 10 percent and ± 1 percent for load changes of 10 percent full load to full load. For additional information request catalog E-59.

Resolver
 for servo testing

Solartron, Inc., 530-532 Cooper St., Camden 2, N. J. A now resolver emables accurate reference phase controls during test of servo components and svstems. Model JX746A features a four-phase imput

of 10 v rins per phase and a fourphase output of 10 v or 50 v rms
per phase at any phase angle from $0-360$ deg. Input impedance is 100,000 ohms; output impedance is less than l ohm per phase. Maximum output current is 7 ma rms/phase. Output phasing accuracy is ± 1 deg, assuming no error in input intelligence. Circle 300 on Reader Service Card.

Power Amplifier miniaturized

Rheem Mfg. Co., 777 Imdustry Ave., Rivera, Calif. A ruggedized, miniature r-f power amplifier only $5 \frac{1}{3}$ by $3 \frac{1}{2}$ by 3 in . increases signal power significantly in the 215 mc to 260 mc telemetering band. Model REL-10 can be used with
most presently available f-m transmitters and delivers from 10 to 100 w of r-f power with ? w of drive. The tiny high-output unit is highly reliable in adverse environments of shock, vibration, and temperature and features a self-contained cooling system. It meets the environmental requirements of missilebornc instrumentation sys-

tems. Circle 301 on Reader Service Card.

Trigger Tubes fast-switching

CBS-Hytron, 100 Endicott St., Danvers, Mass. A new line of coldcathode trigger tubes, known as Krytrons, have been designed to replace relays, thyratrons and other devices in simplified circuits for reliable military and industrial equipment. Designed to operate

under extreme conditions of heat, slock and vibration, the tubes con-
trol up to 500 amperes with input currents of less than $20 \mu \mathrm{a}$. Ambient temperature range is from -55 to +85 C. Anode delay times are from 1.6 to $4.0 \mu \mathrm{sec}$, dependent upon the type, with a maximum variation of $0 .+\mu \mathrm{sec}$. Minimum trigger voltage for a $2-\mu \mathrm{sec}$ pulse is 230 v . Holdoff voltages range from 1,000 to 3,000 v. Circle 302 on Reader Service Card.

V-R Power Supply transistorized

Kepco Laboratories, Inc., 131-38 Sanford Ave., Flushing 55, N. Y. Model SC-36-1 tubeless transistorized voltage regulated power supply delivers 0 to $36 \mathrm{v}, 0$ to 1 amperc. Regulation for line or load is less
than 0.1 percent or 0.003 v , whichever is greater. Ripple is less than 1 mv rins. Recovery time is less than $50 \mu \mathrm{sec}$. Stability for 8 hr is less than 0.1 percent or 0.003 v , whichever is greater. Operating ambient temperature is 50 C maximum. Temperature coefficient is less than 0.05 percent per deg C ;

Nen advancid
DES/GN "B"' $1 / N E$
60 AND 400 CPS

HIGH POWER TRANSISTUR MAGNETIE SERVD AMPL/FIER

For AC servo motor control 50 watts to 3000 watts

FEATURING

- Extreme reliability
- Wider ambient temperature range
- Faster response
- Smofler size at higher power ratings
- Higher gains
- Improved core design
- Silicon rectifiers used exclusively
- Greater flexibility
- Ideally suited for operating with Diehl Servo Motors Signal Input AC or DC Military Specifications Provisions for System Feedback - Completely Static - Output I15V AC Phase Reversible

For complete 60 cps and 400 cps specs request Bulletin 5-961.

MA

 AMPLIFIERS, INC.632 tinton avenue - hew york 5S, n. Y. - cypress 2.6610 West Coast Division
136 WAShington st. - EL SEGUNDD, CAL. - OREGON 8-2665 CIRCLE 91 READERS SERVICE CARD
output impedance is less than $0.0+$ ohm. Circle 303 on Reader Service Card.

Test Equipment Cart ruggedly built

Northeastern Engineering, Inc., 25 South Bedford St., Manchester, N. H. A new test equipment cart is designed to accommodate frequency counters, scopes and similar major test units. Formed and welded from slieet metal it is strong enough to take severe usage and still protect the expensive test gear. It can be rolled about on its rubber-tired casters effortlessly: Circle 304 on Reader Service Card.

Multipliers
 standard frequency

General Radio Co., 275 Massachusetts Ave., Cambridge 39, Mass. Accurate measurements of microwave frequencies are facilitated by use of the new type 1112 standard

KEY ENGINEERING OPENINGS

ATVOUGHT

ELECTRONICS

Electronics activities are broad and fastgrowing at Chance Vought. Projects involve advanced guidance and control and fire control systems for missiles and highperformance manned aircraft. They begin with investigations and theory and progress through systemization and packaging to detailed hardware design. Key responsibilities await additional men who are qualified in these areas. Advanced degrees are preferred. Following are 4 openings in this area:

Stability and Control Engineer. E.E.. M.E., or A.E. with emphasis on flight stability and control problems or dynamics. (Special consideration given graduate study or extensive experience in transients or closed loop stability analysis.) To assist in design of autopilot and control systems for high-performance missiles and aircraft.

Antenna Design Engineer. E.E., or Physics Degree with demonstrated aptitude for antenna design. To join active projects involving design of flush-mounted, recessed and external antennas at all frequencies for very high-performance aircraft and missiles.
Fire Control and Microwave Systems Engineer. Requires E.E.. or Physics Degree: at least 2 years experience in radar, data link, or fire control systems; and strong ability in this work.

Test Equipment Engineer. Requires E.E.. or Physics Degree and at least 2 years experience in this or related field. (Desirable: broad background in electronics design with emphasis on digital computers or microwave systems.) To join in the design of complete checkour systems for missiles and associated subsystems.

Qualified engineers and scientists who would like to join Vought's projects in electronics are inviled to inquire.

James F. Reagan
Chief Engineer - Electronics
Dept. R-12

DALLAS. TEXAS

Vought Vocabulary

$\mathrm{aC}^{\prime} \mathrm{CU} \cdot \mathrm{ra} \cdot \mathrm{Cy}$: guided all the way, this long-range missile pinpoints distant, hard-to-hit targets

This nuclear-armed "bird" is the supersonic missile with which the U.S. can retaliate against the toughest of enemy targets - distant, hard-to-hit military fortifications
Chance Vought's Regulus II provides the extra margin of accuracy that enables the Navy to zero in on such "small" - and deadly - strongholds as H-bomb storehouses, submarine pens, ballistic missile bases.
The instant Regulus II launches, its advanced guidance system takes control... constantly compensating, correcting ... keeping this Mach 2 missile on target to the instant of impact.

In production now, Regulus $I I$ provides double deterrence: the power to help forestall nuclear war pinpoint accuracy to deter localized trouble.

Scientists and engineers: pioneer with Vought in new missile, manned aircraft, and electronics programs. For details on select openings write to: C. A. Besio, Supervisor, Engineering Personnel, Dept. R-12.

CHANCE
OUGBHT AIRBMRABT
, NCOPDORATED. DALLAS, rexAS

When you wat 'em ...you've got 'am!

Cooutall
 CAPACITORS
 now available at LOCAL DISTRIBUTORS

ARLINGTON, VIRGINIA Industry Services, Inc. Key Electronics Division
BALTIMORE, MARYLAND
Kann-Ellert Electronics, Inc. BATTLE CREEK MICHIGAN Electronic Supply Corp. CAMBRIDGE, MASSACHUSETTS Electrical Supply Corp.
CAMDEN, NEW JERSEY General Radio Supply Co CHICAGO, ILLINOIS Lukko Sales Corporation Newark Electric Company
CLEVELAND, OHIO Pioneer Electronic Supply Co. CLIFTON, NEW JERSEY Eastern Radio Corp.
DALLAS, TEXAS
Engineering Supply Co.
DAYTON, OHIO
Srepco, Inc.
FORT WAYNE, INDIANA
Ft. Wayne Electronics Supply, Inc.
HOUSTON, TEXAS
Harrison Equipment Co., Inc.
INDIANAPOLIS, INDIANA Graham Electronics Supply, Inc.
KANSAS CITY. MISSOURI Burstein-Applebee Co.
LAFAYETTE, INDIANA Lafayette Radio Supply, Inc. MIAMI, FLORIDA Electronic Equipment Co., Inc.
MINEOLA, NEW YORK Arrow Electronics, Inc. MUNCIE, INDIANA Muncie Electronics Suppty, Inc.
NEW YORK, NEW YORK Arrow Electronics, Inc. arrow Eles Center, Inc.
SAN DIEGO, CALIFORNIA Shanks and Wright
ST. LOUIS MISSOURI Interstate Supply Corp. SPRINGFIELD, MASSACHUSETTS T. F. Cushing, Inc.

TULSA, OKLAHOMA
Dil Capitol Electronics Corp. WATERBURY, CONNECTICUT Bond Radio Supply Co., Inc. WILMINGTON, DELAWARE Delaware Electronic Supply Co., Inc.

[^5]frequency multipliers with a crys-tal-controlled frequency standard. These multipliers generate sinewave signals of $1,10,100$ and 1,000 me and greatly extend the useful range of conventional frequency standards such as the type $1100-\mathrm{A}$. The instruments are characterized by low noise and by almost complete frcedom from sul)-multiple-frequency spurious signals. In addition, the phase stability of the output signals is maintained at a high value. Circle 305 on Reader Servicc Card.

Magnetic Clutches lightweight, compact

Helipot Division of Beckman Instruments, Inc., Fullerton, Calif., has available two new models of miniature magnetic clutches for electrical control of scrvo sustem rotary mechanical functions. Both are the clry-clisk, fixed-coil type of solenoid controlled clutches which use no slip rings. Inputs of 24 or 48 v may be specified. A 48 -pitch, $14 \frac{1}{2}$ in. pressure angle stainless stcel input gear is furnished with each clutch; or special input gears may be substituted. Circle 306 on Reader Service Card.

Magnetrons for missile radar

Sylvania Electric Products Inc., 1740 Broadway, New York 19, N. Y., amounces three new K_{n} band ($33-36 \mathrm{kmc}$) magnetrons especially ruggedized for missile applications. The now types-M4063, M4064 and M4155-plus the carlier 5789 and 6799 , cover a power range from 20 to 100 kw . The tubes are
used for radar equipment where very high resolution is required. As the source of the pulsed outgoing signal, they are the heart of a radar set. Typical applications are in cloud-fincling, mapping, and missile guidance equipment. Circle 307 on Reader Service Card.

A-C/D-C Voltmeter wide range

Southwestern Industrial Electronics Co., 2831 Post Oak Road, Houston 19, Texas. The new model R-2 a-c/cl-c voltmeter measures a-c (10 cps to 1 mc) and d-c (+ or -) voltages from 1 mv to $1,000 \mathrm{v}$ in 14 ranges, and resistances from 10 ohms to 10 megohms midscale in 7 ranges. It is accurate within 2 percent on all functions. A "d-c distend" feature allows the upper 10 percent or 1 percent of any d-c range to be expanded to cover the full meter movement. This is particularly useful in such applications as measuring the regulation of power supplics. Circle 308 on Reader Service Card.

Mv Meter Indicator analog-to-digital

B\&H Instrument Co., Inc., 3479 W. Vickery Blvd., Ft. Worth 7, Texas, amounces a new digital indicating millivolt meter with laboratory accuracy. Containcd in a
case $3 \mathrm{in}$. by 5 in . by $53 / 8 \mathrm{in}$. deep, this miniature instrument has a guaranteed accuracy of 0.1 percent with infinite resolution slidewire. It weighs less tham 3 lb . It is a continuous null-balance, servo-driven, sliclewire potentiometer with transistorized amplifier and Zener referenced power supply. Circle 309 on Reader Service Card.

Marker System single package

Telonic Industries, Inc., Beech Grove, Ind. Model SSX-2 swecp and signal generator covers the entire low r-f and common i-f frequencies. It simplifies testing of amplificrs and other l-f devices by combining functions of sweep generator, signal gencrator, pulsed $\mathrm{c}-\mathrm{w}$, and marker generator into one compact, precision instrument. Circle 310 on Reader Service Card.

Ground Station pam/pwm

Applied Science Corp. of Princeton, P. O. Box 44, Princeton, N. J. New telemetry decommutation equipment that can handle sampling rates from 24 to 3,600 $\mathrm{p} \mid \mathrm{s}$ in both pulsc amplitude (pam) and pulse width (pwn) coding is

....and now for
 the sealing test!

If the pots you need must function in a dust or sand environment, you could build 'em yourself to make sure they stay clean! But before you move heaven and earth while testing your creation, exactly what have you planned, to give you a tight seal, yet low torque? And if that isn't enough of a problem, how do you keep foreign matter out of the bearings?

But why move heaven and earth, mostly earth, to test your own dirtfree pot, when Ace has the pots with the dust-free features? Special O-rings seal sand, dust and other foreign matter eliminating abrasion damage. Our wound nylon packing delivers excellent sealing with lowest torque. Also, a special silicone-type grease, located in shaft pockets, captures foreign particles before they ever get a chance to do any damage. So if grit's a problem for you, come to Ace for the answer. See your ACErep!

This 3" AIA Acepot (shown 1/3-scale), meeting all MIL spec's on sealing, incorporates these exclusive anti-dirt and dirt-trapping fealures. Mandrels are also fungicide-varnished, to insure long life.
now in production. The new equipment is a more compact and flexible version of the M -series decommutation and display equipment which has been used in missile and aircraft development programs. Besides the dual pam/pwm capacity and the wide sampling rate capability, the equipment also features: long term system accuracy of better than ± 0.5 percent, including any system nonlinearity and drifts; an undecommutated but thoroughly corrected output for convenience in digitizing. Circle 311 on Reader Service Card.

Image Orthicon highly rugged

Westingiouse Electronic Tube Division, P.O. Box 284, Elmira, N. Y. The WL-7198 image orthicon tube operates throughout the range of vibration specified in MIL-E-5272A, Paragraph 4.7, Prococlure I , which demancls 10 g 's acceleration up to 500 cps . At 5 g's acccleration (50 to 500 cps), the tube shows horizontal resolution of at least 350 lines with 3 X 10^{-2} foot-candles illumination on the photocathode. Thirty g's shock does not impair subsequent tube performance. The WL-7198 is also a very sensitive tube. At least 250 lines horizontal resolution may be obtained with only 0.0003 footcandles illumination on the photocatliocle of the tube. Circle 312 on Reader Service Card.

Diffusion Pump
 high capacity

NRC Eguipment Corp., 160 Charlemont St., Newton Highlands 61, Mass. Model H-32-P, a 32 -in. vacuum oil diffusion pump
has a top speed above $50,000 \mathrm{cfm}$ (24,000 liters per sec) at an inlet pressure of $1 \times 10^{-4} \mathrm{~mm} \mathrm{Hg}$ (atmosplacric pressure $=760 \mathrm{~mm} \mathrm{Hg}$) and speeds above $30,000 \mathrm{cfm}$ at pressures betwcen 3.5×10^{-4} and 6 x $10^{-8} \mathrm{~mm} \mathrm{Hg}$. Untrapped blank-off is less than $1 \times 10^{-6} \mathrm{mmm} \mathrm{Hg}$ and tolerable forepressure greater than 0.2 nlmm Hg. Price is $\$ 3,575$. Circle 313 on Reader Service Card.

Capacitors
 tubular-type

Connenser Research Corp., 715 S. Oesting St., Scymour, Ind. New tubular-type capacitors are engineered for coupling, by-pass, and filter applications in computers, servomechanisms, airborne elcctronics equipment, and guided missiles. They are available in Mylar and Polystyrene in standard capacitics from 0.001 to $1.0 \mu f$; in Tcflon from 0.001 to 0.47 , and in metalized Mylar from 0.005 to 10.0 . Circle 314 on Reader Service Card.

Double-Stub Tuner radial design

Don-Lan Electronics, Inc., 1101 Olympic Blvd., Santa Monica, Calif. A new subminiature doublestub tuncr for transmission lines and other r-f equipment provides a variable susceptance over the 1,000 to $10,300 \mathrm{mc}$ frequency range. Because of the unit's radial

New Speed...Versatility ... Reliability...

Optimum performance in virtually all tape handling applications

The advanced design of the completely transistorized Potter Model 906 Tape Handler provides improved performance in virtually any tape handling application.

Replaceable Capstan Panel permits use as Perforated Tape Reader with a remarkable new brake capable of stopping on the stop character at speeds up to 1000 characters per second. Using a small vacuum loop buffer, Model 906 features:

- Complete front accessibility-single Capable of continuous cycling at any panel construction
- Pinch rollers capable of 100 million start-stop operations frequency from 0 to 200 cps without flutter
- Rewind or search at 300 ips
- In-line threading, end of tape sensing and tape break protection
- Better than 3 ms starts
- Better than 1.5 ms stops
- Speeds up to 150 ips
- Tape widths to 1-1/4"
- As many as 4 speeds forward and Up to 47 channels reverse
- All functions remotely controllable

The 906 may be supplied with a transistorized Record-Playback Amplifier featuring a separate module for each channel. Electronis switching from record to playback function is available as an optional feature.

Potter also manufactures a complete line of Magnetic Tape Handlers, Perforated Tape Readers, High Speed Printers, Record-Playback Amplifiers and Record-Playback Heads.

Contact your Potter representative or call or write direct for further information.

POTTER INSTRUMENT COMPANY, INC.
Sunnyside Boulevard, Plainview, N. Y. OVerbrook 1-3200
The mark of
Engineering Quality
Potter has career opportunities for qualified engineers who
like a challenge, and the freedom to meet it.

THE NRG-200 SERIES OF LOW-INDUCTANGE THERMONUCLEAR ENERGY-STORAGE CAPACITORS

NマG-200 SEFIES SPECIFICATIONS				
$\underset{\text { Tre }}{\text { To }}$	$\begin{array}{\|l\|l\|l\|} \text { Watt } \\ \text { Seconds } \end{array}$	Rating		Self Inductance (Microhenries)
		Nrd.	DC P'eak	
Whag-201	1000	5.0	20 KV	. 04
4FG-202	1500	7.5	20 KV	. 045
TFG-203	2000	10.0	20 KV	055
4FG-204	3000	15.0	20 KV	06

Tobe now announces the availability of a series of reliable, low-cost energystorage capacitors for thermonuclear equipment and similar applications. The NRG-200 series capacitors have a minimum life expectancy of 1000 operations, and may be operated at ambient temperatures up to $40^{\circ} \mathrm{C}$. Maximum permissible reversal voltage is 90%. They can be discharged into a very low-impedance load with complete safety.

'For further technical information or engineering aid, write Tobe Deutschmann Corporation, Norwond, Mass.

Specify
TOBE
design a 2.7 in . by 0.50 center to center adjustment is afforded by the two stubs. Once the radial adjustment has bcen set, an external lock-screw can be tightened and the tuncr used in permanent installation. Unit is priced at $\$ 78.50$ each with standard type N connectors. Circle 315 on Reader Service Card.

Relays compact units

Struthers-Dunn, Inc., Pitman, N. J. Frame 19 relays feature small size and low operating power. This, coupled with their reasonable price, aids materially in reducing sizc, weight and cost of many control panel assemblies. They are designed for long, trouble-free performance on the order of 20 million operations. The relavs are mechanically protected by sturdy plastic covers and are designed with plug-in construction for easy scrvicing. Circle 316 on Reader Service Card.

P-C Connectors reliable devices

Armel Electronics, Inc., $8+0$ Fifth Ave., Brooklyn 32, N. Y. Reliability and versatility are mated in the new DEP series printed cir-
cuit connectors. Compatible with the 0.100 by 0.100 grid system, automatic assembly and dip-soldering processes, either the plong or receptacle or both may be board mounted. The precision machine contacts gold plated over silver plate with a MIL approved insula tion are positively polarized by layout and guide pins. An illustrated brochure gives pertinent information on the size and variations of connectors available. Circle 317 on Reader Service Card.

Decade Counters ten electrical outputs

Burrougis Corp., P.O. Box 1226 , Plainfield, N. J., amnounces new llo-ke decade counters with 10 clectrical outputs. Types DC-106A and DC-106-13 have been designed for military and commercial applications. Units are of modular printed circuit construction, with a shielded beam switching tube for maximom reliability. The ton outputs will: (1) operate both local and remote Nixie indicators; (2) provide direct operation of decimal printing devices or matrices; (3) function as pre-set counters by the addlition of gating circuitry. Power requirements are 15 ma of current at 300 v . Price ranges from $\$ 75$ to $\$ 100$ depending on type and quantity. Circle 318 on Reader Service Card.

Tantalum Capacitors extended ratings

P. R. Mallory \& Co., Inc., Indianapolis 6, Ind. The TAP2 series tantalum capacitors provide a broad range of ratings in sulomimiature size appreciably smaller than previously available. Only 0.226 in . in diameter and 0.625 in . long, they come in ratings covering the range from $140 \mu \mathrm{f}, 6 \mathrm{v} \mathrm{cl}-\mathrm{c}$ to 11 $\mu \mathrm{f}, 90 \mathrm{v} \mathrm{d}-\mathrm{c}$. They are rated for ambient temperatures from -55 to +85 C , and will meet the 2,000 cycle, 20 g vibration requirements

Another new Raytheon development in microwave ferrite devices...

Specifications and Performance Data-Low.Power K_{E} Band Ferrite Circulators

FREQUENCY RANGE... 13 to $14 \mathrm{KMC/S}$ MAXIMUM VSWR...... 1.2 IN ANY PORT INSERTION LOSS 0.5 DB MAX ISOLATION 0.5 DB MAX. .20 DB MIN.
aVERAGE POWER 5 WATTS WEIGHT... 6.2 OZ. LENGTH2K8 IN. TEMPERATURE RANGE... -55 to 130 C

5 -Watt K, band circulator weighs only $6 \mathbf{o z}$.

Microwave system designers:
Raytheon's new line of three-port circulators has now been extended to meet the rapidly growing need for K_{E} band components and equipment.

Like other Raytheon circulators, this $2 \frac{3}{1}$-inch K_{E}-band unit of permanent magnet design reduces requirements for filters and klystron isolation common to systems using T-junction duplexers.

You'll want to learn about this and other new microwave ferrite devices including isolators, ferrite switches, modulators and side-band generators.

. . . . FOR COMPLETE DATA FILE

 giving specifications and performance data on 12 isolators, 2 circulators, new X-band switch and ferrite materials, please write today to address below.RAYTHEON MANUFACTURING COMPANY Special Microwave Device Group River Building No. 2, Waltham 54, Mass.

Excellence in Electronics

One source for your MIL-C-0025B (USAF) capacitors for all airborne electronic equipments and missile applications.

For details and expert technical assistance on all MIL Type capacitors write or wire
Applications Engineering Department...
of specification MIL-C-3965 B. Circle 319 on Reader Service Card.

Phase Shifter 400-cycle unit

Knopp Inc., 1307 66th St., Oakland 8, Calif. Type Q-4 phase shifter provides any plase shift from 90 deg leading to 90 deg lagging in the testing of electronic equipment and their control circuits, watthour meters, rotating standards, wattmeters, power-factor indicators, induction relays, and instrument transformers. It is rated at 1,000 va, continuous duty; input, $120 / 240 \mathrm{v}$; output, 120 or 240 v , thrce phase. Circle 320 on Reader Service Card.

Ohmmeter
 low resistance

J. W. Dice Co., Englewood, N. J. Resistance values as low as 1 mi crohm can be measured within 2 percent accuracy with a new test set. The portable test set consists of a model 151-S Microlm Meter plus a transistor type model SM rectifier for supplying both a 10 ampere d-c and a 100 ampere d-c current source. In addition, the Microlm Mcter has its own selfcontained 10 -ampere battery power
supply which permits using the instrument in locations where power lines are not available or are de-energized. Circle 321 on Reader Service Card.

Snap-Acting Switches sealed, subminiature

Uninax Switch Division, The W. L. Maxson Corp., Ives Road, Wallingford, Conn., has available a line of sealed subminiature snapacting switches developed for use in applications where very small size, reliability, safety in explosive atmosphere, and scaling against moisture and dirt are cssential. Circle 322 on Reader Service Card.

Helix Monitor Tees used with twt's

T. E. M., Inc., 71 Okncr Parkway, Livingston, N. J., announces a new line of helis monitor tees. They are employed to monitor helix interception current in traveling wave tules or to apply modulation to a twt. The monitor tees are available to cover octave frequency ranges from 250 to $12,000 \mathrm{mc}$. A d-c blocking capacitance may be supplied in the r-f output arm. They are supplied with type N, TNC, or BNC connectors. Circle 323 on Reader Service Card.

Precision Resistors metal film type

Ohinite Mfg. Co., 3695 Howard St., Skokie, Ill. Series 77 metal film resistors are now smaller yet offer higher maximum resistance than the previous models. Resistance range is now 25 ohms to 400 K ohms. Standard tolerance is ± 1 percent but tolerances as low as 0.1 percent can be furmished. A lower standard temperature coefficient of resistance is now provided -0 ± 25 $\mathrm{ppm} / \mathrm{dcg} \mathrm{C}(0 \pm 0.0025$ percent/

Developed under U. S. Signal Corps technical requirements for the national crystal testing standardization program. They measure resonance and anti-resonance resistance of quartz crystals, including those covered by MIL.C-3098B, for determination of capacitance, induct ance and performance index (PI).

MODEL 531
 Price $\$ 860$.

MODEL 1207 (AN/TSM-15) covers range of $75-200 \mathrm{mc}$ for $10-125$ ohm crystals. Crystal voltage at series resonance is measured within 10%, effective resistance within ± 5 ohms, and the power calculated. 18 Co cancellation inductances and 6 variable resistors supplied; operates from $115 / 230 \mathrm{v}, 50-1000 \mathrm{cps}$ line. Price $\$ 1245$.
MODEL 531 (TS-683/TSM) Crystal Impedance Meter covers range of $10-140 \mathrm{mc}$. for $10-150$ ohm crystals. Twelve fixed calibrating resistors of $10,22,30,40,51,60,68,82,91,100,120$ and 150 ohms, plus a 100 -ohm var. resistor for determining crystal resistance. Anti-resonance adapter also provided. Operates from $115 / 230 \mathrm{v}$, $50-1000 \mathrm{cps}$ source. Price $\$ 590$.
MODEL 541 A (TS-710/TSM) for $10-1100 \mathrm{kc}$ range crystals with resistances from 200 ohms to 0.5 megohms. An internal load capacitance is calibrated from 15 to 105 mmf with accuracy better than $\pm 0.5 \mathrm{mmf}$. Power dissipated in crystal measured by built-in VTVM and ohmmeter. For $115 / 230 v, 50-1000 \mathrm{cps}$ operation.

MODEL 459A (Improved TS-330/TSM) covers 800 kc to 15 mc range; employs new $\pm 0.1 \mu \mu \mathrm{f}$ load capacitors for testing 0.002% crystals; four resistance decades cover range of 0-9900 ohms. Operates from 115/230v, 500-1000 cps. rice $\$ 1125$.
Performance of all models is rigidly guaran-
teed. Prices are net ł.o.b. Boonfon, N.J. and subject to change without notice.

Radio Frequency

Boonton, New Jersey, U.S. A.

At Hallicrafters22,000 hours a week of superior engineering talent are applied to the design of advanced military electronics

(h) hallitrafiters

4401 W . Fifth Ave., Chicago 24, III.
$\operatorname{deg} \mathrm{C}$) over the very wide temperature range of -55 C to +190 C (25 C reference ambient). The resistors may be used at full $\frac{1}{4}$ w rating in an ambient temperature of $150 \mathrm{C}, \frac{1}{2} \mathrm{w}$ at 105 C or derated to 0 at 190 C . Circle 324 on Reader Service Card.

Time Delay Relay telephone type

Magnecraft Electric Co., 3350 B W. Grand Ave., Chicago 51, Ill. Increased time delay, combined with great coil power and service life are claimed to be featured in a new heavy-duty telephone-type relay, the class 66 S . Great coil space for a relay of this size makes practical the use of long slugs for operate delay up to 0.15 sec and release delay up to 0.25 sec . Circle 325 on Reader Service Card.

Delay Lînes three new types

Technitrol Engineering Co., 1952 E. Allegheny Ave., Philadelphia, 34, Pat, has developed three now distributed parameter electrical delay lines having delay periods ranging from 0.05 to $1.0 \mu \mathrm{sec}$ per 6-in. length. Types $25 \mathrm{E}, 25 \mathrm{~F}$, and 25 G dclay lines are available in a variety of standard case stvles including hermetically-sealed metal cans and epoxy encapsulated sticks permitting either plug-in or pig-tail mounting. 'They are available in a special design that will withstand severe envirommental conditions, mecting the requirements of all military specifications. Standard

"SNIP OR CLIP" TAB TERMINALS

Snip the lead, or clip the tab... get the exact terminal type you need! Save space and eliminate the need to stock two types of resistors. This unique feature is on General Electric 5 -, 10 -, and 20 -watt resistors. For your vitreous-enameled resistor catalog, follow reader service instructions below. General Electric Co., Roanoke, Va.
${ }^{78+12}$

Progress /s Our Most Important Product

GENERAL ELECTRIC

CIRCLE 233 READERS SERVICE CARD

Unique combination of performance, size and price

OVER 1000 TIMES AS SENSITIVE as galvanometer recorders ... and Varian's nullbalance potentiometer needs no power from the source being measured. Rugged, stable mechanism allows ink or inkless recording-easy-to-read rectilinear chartsource impedances of up to 100,000 ohms.
LESS THAN HALF AS WIDE as a standard 19-inch rack. Two Varian G-11A's mount side by side on a rack panel $103 / 8$ inches high. Or as a portable, the G-11A is an easy-to-handle 15 pounds. The G-10 sits on less than one square foot; its horizontal chart is handy for jotting notes.
MORE VERSATILE AND ADAPTABLE than any similar recorder - adjustable zero, adjustable span (from 9 to 100 mv on the G-11A), multiple chart speeds (up to four an the G-11A), and plug-in input chassis for different recording requirements.
PRICES THAT BEGIN AT $\$ 340$ for the G-10 and $\$ 450$ for the G-11A. Because unneeded performance costs money, Varian has intentionally designed for 1% limit of error and 1 -second balancing time. Thus, Varian provides needed ruggedness, dependability and operating features at moderate cost.

WRITE TODAY FOR COMPLETE
SPEGIFICATIONS AND STANDARD OPTIONS

VARIAN associates
INSTRUMENT DIVISION PAIOATIO T. CALICORNIA
tolerance on delav time is ± 5 percent and several windings may be cascaded to produce longer delay periods. Circle 326 on Reader Service Card.

Power Supplies variable frequency

Empire Devices Products Corp., Amsterdam, N. Y., has available two new variable frequency power supplies, the VP-410 and VP-1000. The units have excellent regulation (vary less than 2 percent from no load to full load), and low harmonic clistortion (less than 1 percent up to $2,000 \mathrm{cps}$, less than 3 percent up to $6,000 \mathrm{cps}$). Other features include fast recovery under fluctuation of line voltage and applied load and arrangements for external drive so that these instruments may be used as power amplifiers where phasing with the external source is necessary. Circle 327 on Reader Service Card.

Soldering Terminals for Nylon bobbins

American Molded Products Co., 2727 W. Chicago Ave., Chicago 22, Ill., has developed an innovation in soldering terminals for its stock Nylon bobbin line. The InsuLug terminal has the advantage of locing imbedded in the Nylon This provides positive insulation and eliminates all exposed edges

CIRCLE 205 READERS SERVICE CARD

Multi-Channel Link Test Equipment

The three groups of instruments featured below are representative equipments from the wide variety of Marconi measuring facilities for both baseband and rf circuits in multichannel links. These designs have been specifically evolved by Marconi engineers to meet the exacting test requirements in this specialized field of telecommunications.

White noise test set

OA 1249
Noise generator and receiver for the measurement of baseband intermodulation and noise by slot technique covering from $24-$ to 960 - channel bands (12 kc to 4028 kc).

U.H.F. TEST SET OA 1248

Signal generator, receiver and noise generator for general rf tests in the $1700-$ to $2300-\mathrm{Mc}$ band.

Send for leaflet B130A

MARCONI INSTRUMENTS

derivative test SET OA 1259

Sweep generator and display unit for fast and accurate adjustment of linearity controls on modulator and demodulator stages. Sweep width: $\pm 20 \mathrm{Mc}$; center frequency, 65 to 75 Mc .

111 CEDAR LANE ENGLEWOOD NEW JERSEY
 Telephone: LOwell 7-0607

CANADA: CANADIAN MARCONI CO • 6035 COTE DE LIESSE • MONTREAL 9 MARCONI INSTRUMENTS LTD • ST. ALBANS • HERTFORDSHIRE • ENGLAND

A new subminiature crvstal is packaged in the military case, $\mathrm{HCl} 8 / \mathrm{n}$, with the crystal wafer suspencled between the two teminals. The crystals are operative from 300 kc to 125 mc and their use in frequency control and filter applications results in simplification of manufacture and great reduction in size when many crystals are involved in a single unit. Circle 330 on Reader Service Card.

Actuator Packages solenoid controlled

Waldorf Fluid Systems Div., Waldorf Instrument Co., Huntington Station, N. Y., announces a new line of solenoid controlled actuator packages which are presently being used in the missile field. An outstanding feature of these packages, other than their light weight and compactness, is their extremely low leakage-even with Helium. Units can be obtained for pressure ranges to 3,000 psi, and for continuous duty temperatures to +500 F . Circle 331 on Reader Service Card.

Tape Recorder

 stereo playbackTelectrosonic Corp., 35-18 37th St., L. I. C., N. Y. Model 300 professional tape recorder features complete stereo facilities for the playback of either stereo tape or disk. It offers a 3 -speed, pushbutton, multi-speaker, recorder/reproducer, with a 4-track head, for the price of $\$ 189.95$. Pushbutton controls allow for stop, record, rewind, wind, play and pause to provide for ease of operation and complete flexibility. Unit has two complcte built-in preamplifier and

TRANSFORMERS by TECHNITROL

Wound on ferrite cores, the Type M series is available in a variety of windings to cover pulse widths from 2 microseconds down to .05 microsecond, wound inverting or non-inverting.

While the M series is particularly adapted to subminiature and transistor circuits, we design and build pulse transformers to fit specific circuits or to meet definite mechanical or thermal requirements, including MIL-T-27A.
Additionally, Technitrol makes a complete line of lumped and distributed parameter Delay Lines and a variety of electronic test equipment.

For additional information, write today for our bulletin

amplifier systems, and features a separate 8 -w pushpull amplifier for each channel so that no additional electronic equipment is required for stereo. Circle 332 on Reader Service Card.

Core Buffer Memory high reliability

Telemeter Magnetics, Inc., 2245 Pontius Ave., Los Angeles 64, Calif. Type 1092-BQ8A buffer stores up to 1,092 characters of eight bits each and operates at a 100 -ke rate. Characters are loaded and unloaded sequentially with all bits of each character being handled simultaneously. Solid state elements-ferrite cores, transistors. and diodes-are used throughout Circle 333 on Reader Service Card.

Relay frequency sensing

G-V Controls Inc., 28 Hollywood Plaza, East Orange, N. J. Auto-

BEEDE
 ELECTRICAL INSTRUMENTS

SMALLER THAN A GOLF BALL

The Model 5 has our new Magcentric design that is self-shielded and has a total weight of less than 2 ounces. This new addition to our instrument line provides more complete fulfillment of our customers' requirements and is an excellent solution for difficult panel problems.

CIRCLE 209 READERS SERVICE CARD

AMCl
TYPE 1038-R SHOWN

For use in Rigid Coaxial Transmission lines at VHF and UHF

- VSWR is under 1.05 over rated frequency range: 0-450 mc for the Type 1038 61/8" Coaxial Switch; 0-500 mc for the Type 1136 31/8" Coaxial Switch.
- CW rating is approximately that of the mating transmission lines.
- Switches are available in either motor-driven or manually operated models.

DETECTS EXPLORER I'S SKIN TEMPERATURE IN OUTER SPACE

One of the critical pieces of information relayed from space by Explorer I was the external skin temperature of the satellite as it orbited from sun to shadow around the earth. This exacting job of sensing temperature variations was assigned to a standard General Electric RF-111 high temperature thermistor.
Thermistors are thermal-sensitive semi-conductors with large negative temperature coefficients of resistance. In some types of G-E thermistors, it is possible to double the resistance with a temperature change of as little as $20^{\circ} \mathrm{C}$.

In addition to temperature measurement, control, and compensation, G-E thermistors can suppress initial current surges which damage filaments or trip relays. They also are used in time delay, sequence switching, and voltage regulating devices.
General Electric thermistors can be supplied with resistance values from 1 to $10,000,000$ ohms and temperature coefficients of resistance from -1% to -5% at $25^{\circ} \mathrm{C}$. For more technical infor-mation-or the assistance of a G-E engineer - write: Magnetic Materials Section, General Electric Company, 7806 N . Neff Road, Edmore, Michigan.

Progress /s Our Most Imporrant Product
GENERAL
electric
CIRCLE 211 READERS SERVICE CARD

'DIAMOND H'

NEW . . . High Speed Polarized Relays

Fast action with freedom from bounce, plus high sensitivity and consistent operation with low distortion, are provided by small, rugged Series P Polarized Relays. SPDT, with two independent coils, they will handle over 1,000 pulses per second. Various coil resistances up to 5,000 ohms each coil. Contact ratings vary with switching speed but range from 60 MA to 2 A with voltages to 120 AC or DC , dependent upon amperages employed.

Aircraft-Missile Series R \& S Relays

Miniature, hermetically sealed 4PDT, Series R \& S relays provide excellent reliability over their long service life. Electrically and physically interchangeable, the two series differ only in that Series S coils are separately sealed within the sealed cases, with organic matter eliminated from the switch mechanism for greatest reliability in dry circuits. Contacts MA to 10 A .

General Purpose AC, DC Relays

Series W Power Relays are DPDT, double break-double make; measure only $1^{1 / 2 "} \mathrm{x}$ $11 / 2^{\prime \prime} \times 17 / 8^{\prime \prime}$, but are rated to 25 A , resistive, at $112-230 \mathrm{~V}, \mathrm{AC}, 1 \mathrm{HP} 115 \mathrm{~V}, \mathrm{AC}, 2 \mathrm{HP}$, 230 V, AC. Socket, panel and sidewall mountings are standard; others available to meet special needs. 12 possible contact arrangements, including sequencing.

"Diamond $\mathrm{H}^{\prime \prime}$ engineers are prepared to work with you to develop variations on these relays to meet your specific requirements. Tell us your needs . . . by phone or letter.

THE

HART

MANUFACTURING

 COMPANY
matic protection of clectronic equipment against damage due to low supply frequencies is provided by a new frequency sensing relay. Unit consists of a higl-pass filter feeding a thermal sensing relay. Model BS-5003 is designed for use on $115 \mathrm{v}, 400 \mathrm{cps}$ systems, and has a nominal cut-off frequency of 370 cps. Operating point is held within a tolerance of $\pm 10 \mathrm{cps}$ over the ambient temperature range of-65 C to +85 C and over an applied voltage range of $115 \mathrm{v} \pm 5 \mathrm{v}$. Circle 334 on Reader Service Card.

Connectors

snap-in contacts

The Deutsch Co., 7000 Avalon Blvd., Los Angeles 3, Calif., has introduced a new DS series of miniature electrical connectors with snap-in contacts. They are equipped with silicone inserts for high-temperature operation. Units withstand extremes from - 100 F to temperatures in excess of 300 F . Crimp-type terminations are used to eliminate soldering and greatly reduce installation time. Comectors feature an exclusive ball-lock coupling ring and are available in a wide range of shell sizes. They meet or exceed requirements of MIL-C-5115. Circle 335 on Reader Service Card.

Test Set
 portable unit.

Avtron Mfg. Inc., 10409 Mecch Ave., Cleveland 5, Ohio. Line voltage and line frequency can be measured and indicated, and voltage modulation and frequency modu-
lation of the output of an electrical generating system can be measured to 0.5 percent or better accuracy with the model T-75A test set. It is available to test systems with a range of operating voltage from 24 v to 600 v , and operating frequency from 300 cps to $4,000 \mathrm{cps}$. Circle 336 on Reader Service Card.

Stepping Switch high-speed device

Imtra Corp., 11 University Road, Cambridge 38, Mass. A high-speed stepping switch called the Miniature Uniselector is designed for use in automatic switching and timingcontrol circuits. It will operate at speeds up to 80 steps per sec on impulse drive (80 percent make, 20 percent break) from a power supply of 24,50 or 110 v (1-c. U_{p} to 12 banks can be fitted, each having 30 individual contacts mounted in a complete circle. When only seven or less banks are required, a sequence switch can be fitted. Circle 337 on Reader Service Card.

Termination
 for resistance wire

Reon Resistor Corp., 117 Stanlcy Ave., Yonkers, N. Y., has developed a new method of terminating the resistance wire of precision wire wound resistors that is claimed to be far superior to the old mothods. Using a pure silver basc, a casting is made around the termination that bonds to both the wire and the terminal, making one solid mass. Since no extreme heat or pressure is used, the diameter of the wire is not deformed; thus the

From General Electric . . .

PLAIN TALK ON TANTALYTIC* CAPACITOR AVAILABILITY

It's time for plain talk on the facts of tantalum electrolytic capacitor availability. There is no "availability" problem as far as General Electric is concerned.
Here's why:

- No metal shortage-Stocks of capacitor-grade tantalum have doubled within the past year.
- No production capability shortage-General Electric's production facilities have tripled in the past year.
- No delivery bottlenecks-General Electric's improved manufacturing processes and techniques have virtually eliminated production rescheduling.
- Few military directive priorities-Since the supply of Tantalytic capacitors has met demand, the military requirements can be met without directive priorities.
This is why we say-now and in the future, General Electric will continue to provide Tantalytic capacitors in the types and ratings you want-when you want them.
For specific information on Tantalytic capacitor ratings, prices, deliveries, contact your nearest General Electric Apparatus Sales Office or write to General Electric Co., Section 449-4, Schenectady 5, N. Y.

Shalleross BRIDGES

Types 6100 and 6101 dc RESISTANCE MEASUREMENTS

\dagger Except 6178 and 6171 $\pm 0.1 \% \pm 0.01 \Omega$.
strength is at least twice that of a weld, and has an extremely low contact resistance. It will not in any way loosen the contact when dipped into a solder pot for any length of time. Circle 338 on Reader Service Card.

Delay Line adjustable

Deltime Inc., 608 Fayctte Ave., Mamaroncek, N. Y. Type 140 delay line is designed for studies and applications calling for longer time delays. It is based on the magnetostrictive principle and provides for continuously-adjustable pickups in the $130 \mu \mathrm{sec}$ range, juxtapositioned to $20 \mu \mathrm{sec}$ and pulse widths of from $0.25 \mu \mathrm{sec}$ to d-c. Circle 339 on Reader Service Card.

Headers

high temperature
Mitronics Inc., 1290 Central Ave., Hillside, N. J., introduces a new line of high temperature headcrs made of metallized alumina. These headers will function at temperatures above $1,000 \mathrm{C}$. Illus trated is the header assembled to alumina cup, which is completely hermetic. Circle 340 on Reader Service Card.

Pressure Transducer
 low-cost unit

Ramm Instruments, Division of American Machine and Metals, Inc., 65 Rushimore St., WVestbury,
N. Y. A new low-cost T series pressure transducer has a 50 -percent over-pressure feature with less than 1 percent zero shift and embodies rugged construction and high perfomance with small size (1.63 in . diameter). Unit is designed to mect aircraft and missile high vibration and shock applications and will handle corrosive media in the ranges $0-100$ psig to $0-5,000$ psig. Circle 341 on Reader Service Card.

Thyratron Controller packaged circuit

Hanson-Gorrill-Brian, Inc., 85 Hazel St., Glen Cove, N. Y. Ncwly packaged thyratron grid circuit eliminates costly circuit development when using thyratrons for inclustrial controllers. The ThyriPulse will smoothly control thyratrons of all types and sizes. Control input can be a variable resistance or variable $\mathrm{a}-\mathrm{c}$ or $\mathrm{d}-\mathrm{c}$ voltage or current. The unit can be used in half-wave, full-wave and three phase circuits. Mounting feet and screwtype barrier terminal strips are suitable for industrial front-of-panel wiring. Internal d-c with superimposed a-c bias eliminates line transient misfiring. Circle 342 on Rcader Service Card.

Digital Recorder for traffic counting

Fischer \& Porter Co., 911 Jacksonville Road, Hatboro, Pa., announces a new digital recorder for traffic counting. Traffic flow during any preselected time interval may be readily measured. Oper-

Plugged into printed circuits. or mounted on conirol panels, this new $1 / 3^{\prime \prime}$ pot speeds adjustments by letting you see what you've set. Its dual-calibrated dial tells at a glance slider location, shaft angle and voltage percentage. The 300° winding angle is equally graduated from 0 to 10 . Zero on the dial lines up with a scribe line on the side of the pot at 0° rotation. Terminals are located on a standard $0.1^{\prime \prime}$ grid, as used in printed circuits.
RESISTANCE RANGE is from $1 / 2$ to 250 K with a tolerance of $\pm 5 \%$. For resistances up to 20 K , over-all length of APD $1 / 2$ is $1 / 2^{\prime \prime}$; up to 100 K , over-all length is $5 / 8^{\prime \prime}$;
up to 250 K , over-all length is $81^{\prime \prime \prime}$. The $1 / 2^{\prime \prime}$ diameter is the same for all resistances.
ENVIRONMENTAL SPECIFICATIONS meet MIL-E-5272A, MIL-R-19, and others as applicable.

BULLETIN APD $1 / 2$ gives

 you complete details about standard and optional electrical and mechanical specifications. Write to Waters at Wayland.

KLEIN shear cutting plier

Patent applied for

207-5C shear culting oblique plier $5^{1 / 2}$ inches long. Coil spring keeps jaws apart ready for use.

Here is the greatest advance in oblique cutters. This new Klein tool with shear blades is ideal for cutting hard wire such as tungsten filament or dead soft wire. Also recommended for cutting small bundles of wire. The shearing action assures easy, positive cutting at all times.

Regular cutters at the nose give added usefulness and convenience. The shear blade is easily replaceable. Plier never needs sharpening.

This plier is supplied with a coil spring to keep the handles in open position. Can also be had with Plastisol dipped handles if desired.

Write for full information

FREE POCKET TOOL GUIDE

A free copy of the
new Klein Pocket Tool Guide will be sent on request without obligation.

LONG NOSE

SHEAR CUTTING PLIERS

208-6C long nose shear cutting plier. A $61 / 2$-inch long nose plier with shear blades. Point of nose 1/16-inch diameter. Coil spring keeps jaws open ready for use.

208-6 NC. Similar in design to 208-6C but reverse side designed to pul a positive $3 / 16$-inch hook on the end of a resistor wire. Smooth one-motion operation saves production time on every felevision or radio sel.

ASK YOUR SUPPLIER

Foreign Distributor: International Standard Electric Corp. New York

Mathias
Established 1857
ated by electrical impulses from a conventional road treadle, the recorder produces a permanent record on punched paper tape. The tape recorder is easily interpreted visually or is suitable for use with automatic clata processing machines. Circle 343 on Reader Service Card.

LVDT

rugged unit
Schaevitz Engineering, Route 130 and Schaevitz Blvd., Pennsauken, N. J., has developed a new linear variable differential transformer for heavy industrial use. It consists of a shielded lvdt potted in an anodized aluminum case with four mounting holes in integral flanges. Space is provided in the case for loousing additional components such as temperature-compensating networks, plase-shifting networks and the like. Input and output comections are screw-type terminals. Circle 344 on Reader Service Card.

TV Camera automatic unit

Dage Television Division, Thompson Products, Inc., Michigan City, Ind. Weighing only 10 1 lb , and measuring $6 \frac{3}{3} \mathrm{in}$. higli by $5 \frac{1}{8} \mathrm{in}$. wicle by $11 \frac{3}{18} \mathrm{in}$. long, this new model 63A telcvision camera is completely self-contained and completely automatic. Designed for inclustrial, military and educational
applications, it automatically adjusts lens stops, and beam, target and electrical focus circuits to optimum values. Circle 345 on Reader Service Card.

Silicone Lubricant for plastic molding

Para Products, 5200 River Road, Washington 16, D. C., has developed Paralese, a new silicone spray mold release and lubricant. Formulated with a very high Siliconc-toFreon ratio, it is said to give more Siliconc per shot affording quality coverage and elimination of sticky and marked molds. Particularly applicable in the plastics field, it is also being cmployed in the shell molding, die casting, electronics, rubber and epony fields. Circle 346 on Reader Servicc Card.

Power Pulser transistorized

Airtronics, Inc., 5522 Dorscy Lane, Bethesda, Md. The DK +0 ? Mod I power pulser is a fully transistorized, high current magnetic memory matrix driver with current pulses up to 400 ma . The printed circuit card contains four separate two-transistor blocking oscillator pulsers. The pulser "on" time is determined by the controlled rate of flux-switching in a square loop magnetic core. Each of the four pulsers is capable of switching 400 ma for a maximum period of $10 \mu \mathrm{sec}$ at a $20-\mathrm{kc}$ repetition rate at 25 C ambient temperature. Circle 347 on Reader Service Card.

D-C Voltmeter transistorized

Consolidated Electronynaviics Corp., 300 North Sierra Madre Villa, Pasadena, Calif. Model 30 A

. . . specify REVERE TEFLON* CABLE

Electronic cables, the "nerves" of monitoring and testing systems in missiles, rockets and aircraft, are constantly being stressed by the searing heat around jet engines . . . the sub-zero cold of the stratosphere ... immersion in fuels, chemicals or solvents. Revere Teflon Cable meets these high service requirements . . . and those of computer and radar applications, too.
Revere Teflon Cables are available with 2 or more teflon-insulated, silver or nickel plated, stranded copper conductors, rated for continuous operation from $-90^{\circ} \mathrm{C}$. to $+210^{\circ} \mathrm{C}$. Cables are shielded with silver or nickel plated copper as required. Jackets to suit application-silicone treated glass braid, teflon, Kel-F**, vinyl, nylon, etc.
Conductor size: 28 to 16 gage in .008" (300 volt), $.010^{\prime \prime}\left(600\right.$ volt) and $.015^{\prime \prime}$ (1000 volt) wall thicknesses. Ten and fifteen mil wall conductors meet applicable requirements of MIL-W-16878, Type E and EE.
*E.I. du Pont trademark **M.W. Kellogg trademark \dagger wire passes 500 hr . Wire passes $250^{\circ} \mathrm{C}$ heat-aging test ... also cold bend test

TYPICAL SPECIFICATIONS - Single Conductor Tefion Insulation

Spark Test Voltage 3000 volts	Write today
Insulation Resistance . Greater than 10^{4} megohm/1000 ft.	for Engineerin
Continuous Operating Range $-90^{\circ} \mathrm{C}$. to $+210^{\circ} \mathrm{C}$. (\dagger)	Bulletin 1905 de
Dielectric Constant @ 1 MC/Sec 2.5 maximum	Revere TEFLON CA
Power Factor@1 MC/Sec Less than 0.0003	
Flammability Does not support combustion	
Shrinkage Less than $1 / 8^{\prime \prime}$ in $18^{\prime \prime} @ 250^{\circ} \mathrm{C}$ for 96 hrs.	
Abrasion (per MIL-T-5438) Passes 38' ${ }^{\prime \prime} 400 \mathrm{grit}$,	
aluminum oxide, $1 / 2 \mathrm{lb}$. weight	
Moisture Absorption ... 0.0\%	
Specific Gravity ... 2.2 average	
Chemical and Solvent ResistanceExcellent	

REVERE CORPORATION OF AMERICA

Wallingford, Connecticut
a subsidiary of neptune meter company

CIRC-E 218 READERS SERVICE CARD

CHECKS OUT TRANSISTOR CIRCUIT DESIGNS-in minutes!

CHEMICAL CORPORATION

[^6] rocket propellants, plasticizers, and other chemical products.
d-c clectronic voltmeter requires no warmup time. It features eight ranges, $\pm 50 \mathrm{mv}$ to 150 v with accuracy ± 3 percent of full-scale. The battery operated portable unit weighs 10 lb complete. Circle 348 on Reader Service Card.

Parametric Amplifier

 for uhf receiversZenith Radio Corp., 6001 W. Dickcus, Chicago 39, Ill., has developed a fast wave parametric amplifier for use in uhf and microwave receivers. Tube is based on new concepts that involve the removal of noise from a fast wave on a stream of clectrons which carries the signal, and the parametric amplification of that wave. Typical performance data: a noise figure about 1 db ; and a gain up to 30 db . Circle 349 on Reader Service Card

Transformers

very small units
Palo Alto Engineering Co., 620 Page Mill Road, Palo Alto, Calif., offers a new line of miniature transfomers engincered to customer specifications. Designed for both commercial and military application, the new transformers are particnlarly useful in transistorized missile circuits. Size is so small that 20 units occupy only 1 cu in.; weight is 175 units per lb. 'The manufacturer offers uncased, encapsulated or molded plug-in design. Circle 350 on Reader Service Card.

Quality is not an accident \&

Product Representatives in Most Principal Cities

It cannot be copied. It is not attained over night.

Quality is built into E-A Recorders by specialists-workmen whose livelihood depends upon quality and who have spent their lives making just this one product

For over 50 years, E-A has made the best for those who want only the best in recorders.

Ask for Catalog 657

The ESTERLINE•ANGUS Company, Inc.
Pioneers in the Manufacture of Graphic Instruments DeptE., P. O. Box 596, INDIANAPOLIS 6, INDIANA

CIRCLE 220 READERS SERVICE CARD

ILLINOIS NDD_MWME

ELECTROLYTIC CAPACITORS

NAVIGATIONAL BEACONS \& AIDS

SIGNAL GENERATORS

RF PRE-SELECTORS AND FILTERS

FORMS THE BASIS OF A MIGROWAVE, GRYSTAL CONTROLLED LOCAL OSCILLATOR.

WIDE FREQUENCY RANGE:
Covers entire spectrum
use of funing contols.
EASE OF OPERATION:
A flick of the switch delivers the full speetrum. A switch provides a choise of 50 mc or 100 mc spocing. The amplitude
of the marker signals are adjusted by an output level control ACCURATE:
ACCURATE
input power variations.
Built to the suGged; LIGHT WEIGHT:

CIRCLE 222 READERS SERVICE CARD

Missiles must no: fail to Eunction instan:ly, on demand NICAD Sintered Plate Batterie:-with al outstanding record of prover reliability under severe env rommental conditions-were chosen for use on several missiles to provide the powe- that guarantees ready x rformance. This same reliablity has made NICAD 3atteries first choice in other fields whe-e there caln be no compromise with perfect functior . . . on guidance syitems cemmunications and data processing equipment ... alarm and signal systems . . . aircraft engine starting
NICAD Sintered Plate Batteries are available in capacities from $t / 2$ ampere hour and feature sustained voltage at heavy discharge rates. They are capable of rapid charge acceptance . . . have a maximum discharge current up to 25 times the rated ampere hour capacity. Internal resistance is extremely low, and vibration resistance is excestent. They can be discharged in any position. Charge retention is exceptionally high, and there is no known limitation either to cycle or storage life.
NICAD Batteries are "missile quality"- delivering high level performance adaptable for :a wide range of purposes.
Ask us for complete information. NICAD Division, Gould-National Batteries, Inc., Easthampton, Mass. Offices in New York, Chicago, San Francisco.

Literature of

MATERIALS

Picture Tube Phosphor. Sylvania Electric Products Inc., 1740 Broadway, New York 19, N. Y. A new technical bulletin, "Svlvania CR405 Phosphor," describes a blend of silver-activated zine and zinc cadmium sulfides designed especially for use in aluminized to picture tubes. Circle 375 on Reader Servise Card.

COMPONENTS

Transformers. Microtran Co., Inc., 145 E. Mineola Ave., Vallev Stream, N. Y. A t-page brochure lists such types of transformers as transistor power supply, driver. ontput, low level chopper input, and d-c/d-c converter transformers. Circle 376 on Reader Service Card.

Motor Shields. Magnetic Shield Division Perfection Mica Co., 132? No. Elston Ave., Chicago 22. 111., has issucd data sheet 139 illustrating and describing the new 3 -laver Co-Netic Netic small motor shield. Circle 377 on Reader Service Card.

Microwave Catalog. Amerac, Inc., Dunham Road, Beverly, Mass. A recent short form catalog contains an illustrated description and technical speeifications of a line of microwave cavities and accessory microwave products. Circle 378 on Reader Service Card.
'Transient Filters. ERA Electric Corp., 67 East Centre St., Nutlev, N. J. Catalog No. 302 covers the Slim-Tran transient filters which are intended for all trpes of tramsistor switching applications. Circle 379 on Reader Service Card.

Relays and Switches. Automatic Electric Co., Northlake, Ill. A 100 page catalog covers the company's full line of telephone type relays and rotary stepping switches for industrial control applications. More than 200 photos, drawings, momnting cliagrams, circuits and charts are included. Circle 380 on Reader Service Card.

the Week

Industrial Tubes. Tung-Sol Elec tric Inc., 95 Eighth Ave., Newark 4, N. J., has published a new 30 page "flip-style" chart showing electrical and physical characteristics for the most important electron tubes having industrial, special purpose and military applications. Circle 381 on Reader Service Card.

EQUIPMENT

Instruments. Electronics Division, Van Norman Industries. Inc. 186 Granite St.. Manchester. N. II. has published a catalog of its Transitron linc of electronic instruments. Signal and sweep gencrators, a video translator, a frequency standard and an insulation tester are included Circle 382 on Reader Service Card.

Gyro Test Equipment. Sterling Precision Corp., 17 Matinecock Ave., Port Washington, N. Y. An 8-page folder illustrates and describes the company's clectronic gyro test equipment modular components. Circle 383 on Reader Service Card.

Digital Indicating Instrunents. Performance Measurements Co. 15301 W. McNichols, Detroit 35 Michigan. Principles and applications of servo null-balance digital indicating instruments are disculssed in bulletin No. 1758. Circlc 384 on Reader Service Card.

CCTV. General Electric Co. Sclenectady 5, N. Y. Bullctin GEA-6833, six pages, describes in text, tables and pictures the uses and advantages of GE closcl-circuit tv for use in military applications. Circle 385 on Reader Servicc Card.

FACILITIES

Radio Frequency Interference. Teclunical Wire Products, Iuc., 48 Brown Ave., Springfield. N. J., has available a design data file on Tecknit radio frequency interference gasketing. A complete free-design engineering service is cliscussed. Circle 386 on Reader Service Card.

Vibration... with frequencies up to 500 cycles per second and up to 15 G's... might prove to be a shattering experience for some servo motors. But not for a G-M Servo!

CBS Labs Opens R\&D Center

A million-dollar Rescarch Center was recently dedicated by CBS Laboratories on a 23 -acre site in Stamford, Conn. The glass-enclosed aluminum and steel structure's facilities include the most up-to-date scientific equipment and environment for research and development in many fields. These include audio-video systems, audio and acoustics, mignetics, solidstate physics, physical chemistry, optics, vacuum tules, data processing systems and electronics for communications and other uses.

The Research Center serves as both administrative and scientific headquarters for CBS Laboratories,
which had previously been located mi the CBS Building at 485 Madison Ave., New York City.
Construction of the new facilitics was described by Frank Stanton, president of Columbia Broadcasting System, Inc., as an important step "to provide broader research and development services for industry and govermment". He salid that the prograin of the Lab)oratories was expanding in three areas: improved audio and video techniques, electronics projects under government contract for military and otlier purposes, and more comprehensive applied research for industry.

Lippert Joins Victoreen

Appointment of Gcorge R. Lippert as director of technical services of The Victoreen Instrument Co. has been announced.

Lippert comes to Victoreen from I-L-S Instrument Corp., where he recently scived as vice president, and previously for six ycars as chicf engincer. He will spearhead Victoreen's cxpanding program in large muclear monitoring systems, telemetering and computing, and world-wide measurement of radioactive fallout.

He will also lrandle liaison between Victoreen and government agencics, as weH as industrial users
of electronic and nuclear equipment.

Librascope Gets New Department

Acquisifion of Precision Technology, Inc., Livermore, Calif., was recently amounced by Librascope, Inc., Glendale, Calif.

In making the announcement, Librascope's president, Lewis W Imm, said Precision Technology, Inc., has been incorporated into Libralscope's Engineering Division, establishing a new cnginecring department.

The Precision Technology Department will expand Librascope's research and technical capabilities in special nuclear wapons instrumentation, proximity scorers, exploding bridgewire ordnance components and systems, arm-safe switches, and high-speed image converter cameras for special purpose photography

Name Director At CEC Div.

Everett J. Long was recently promoted from assistant director for operations to director of the Transclucer Division, Consolidated Electroclynamics Corp., Monrovia, Calif.

Joining CEC in 1952, he wals manager of the Special Products Division before becoming production manager of the Transducer Division in 1956.

In his new post, Long will direct all activities of the division which designs and manufactures sensing devices used in dynamic and static

remember your...

call on HIJ LENCD for capacitors ... with proved Performance and Quality! high insulation resistance, high dielectric strength.

CERAMIC DISC CAPACITORS with TEST-PROVED RELIABILITY!
In the field of capacitors, the name of El-Menco stands head and shoulders above all others. Its ceramic disc capacitors dominate in quality . . . in performance . . . in creative engineering . . . are unmatched for high Q value

WRITE TO EL-MENCO for latest bulletin and samples on Ceramic Disc Capacitors ... the Mighty Midgets with EXTRA Ruggedness and Stamina.
Superior Features of El-Menco Ceramic Disc Capacitors

- Working V.D.C. 500 . . . available also in 1,000 working volts and 2,000 test volts D.C. per E.I.A. specs. RS-165.
- Wax impregnated with low-loss phenolic coating. - Flat design assures reduced self-inductance. - Insulation resistance far exceeds the 10,000 megohm minimum requirements. - Available with straight leads 1/4" minimum. Or manufactured with crimped leads for printed circuit applications.

MIGHTY MIDGETS BY EL-MENCO JNCLUDE:

El-Menco TC - Temperature Compensating - for resonant circuit application.
El-Menco TS - Temperature Stable - designed for applications where a minimum capacitance change with temperature is required.
El-Menco SS - Semi-Stable - general purpose with stability.
El-Menco GP - General Purpose - for bypassing, coupling or filtering applications . . . space saving, provide high capacity in relation to size.
Write for Bulletin on Ceramic Discs

EL-MENCO CERAMIC DISC CAPACITORS MEET OR EXCEED E.I.A. SPECS. RS-198.
LOQK TO THE LEADER . . . LOOK TO EL-MENCO . . . for capacitors to serve all your needs. Investigate, too, El Menco Dur-Mica Capacitors, the longest-living capacitors ever made.

THE ELECTRO MOTIVE MFG. CO., INC. WILLIMANTIC CONNECTICUT
 Manufacturers of El-Menco Capacifors

- molded mica- dipped mica - mica trimmer - dipped paper
- tubular paper - ceramic - silvered mica films - ceramic digcs

Arco Electronics, Inc., 64 White St., New York 13, N. Y.
Exclusive Supplier To Jobbers and Distributors in the U.S. and Canada

TELREX LABORATORIES

NEW!
 Broad-Band Conical Dipole Corner Reflector Assembly

210 TO 620 MC. WITH 2 ADJUSTMENTS

Model

XCR 210-620
Gain: 8 to 11 db .
F/B ratio: 18 db with no appreciable side lobes.
V/S/W/R: Less than 2 to 1 over the 210 mc . to 620 mc . range. 50 ohm transmission line feed through a special broad-band "Balun" (supplied).

Mounting: Horizontal or vertical onto a $2^{1 / 2} 2^{\prime \prime}$ dia. mast. Can be fitted for other diameter masting at extra cost.
Weight: 18 Ibs. (approx.). All dural construction with stainless steel fittings.

Descriptive literature on request

Telrex is equipped to design and supply to our specifications or yours, Broadband or single frequency, fixed or rotary arrays for communications, FM, TV, scatterpropagation, etc.

Consultants and suppliers to communication firms, universities, propagation laboratories and the Armed Forces.

TELREX ALSO DESIGNS AND MANUFACTURES

COMMERCIAL SERVICE "BEAMED-POWER" ARRAYS
testing systems and is active in the area of telemetry and in the development of basic missilc-control deviccs.

WacLine Elects

New Director

John J. Velesky has been elected a director and vice president of WacLine, Inc., Dayton, Ohio. He is also chicf engineer for the company

Prior to becoming associated with WacLine in 1953, Velesky was chicf engincer of Frampton Electric Co. of Dayton. He was formcrly associated with RCA in Bloomington, Ind., and with Wright Air Derclopment Center at VrightPatterson AFB.

WacLinc manufactures clectrical indicating meters, tachometer gencrators, electric adjustable speed drives, and microwave components.

Gabriel Division Expands

Movement of the Bohanan Mfg. Division of The Gabriel Co., Los Angeles, into a new plant in Compton, Calif., was recently announced by John H. Briggs, president of Gabriel.
Expansion into the new facilities, located on a 13 -acre site and totaling more than $52,000 \mathrm{sc} \mathbf{f t}$, is necessitated by the increasing back-

times a year!

EVERY 30 seconds, somewhere in the free world, an aircraft makes a touchdown with the aid of the ITTdeveloped "ILS"-instrument lowapproach system-produced domestically by Federal Telephone and Radio Company, ITT's largest U.S. manufacturing unit.

This famed landing system is only one of many vital products made in Federal's million-square-foot plant. Federal also produces Tacan, Vortac, Data Link, missile guidance and command systems, automatic checkout and ground test equipment, data processing computers, countermeasures, direction finders, fire control and radar simulators, radio transmitters and receivers, ATC transponders, microwave equipment and other electronic and telecommunications systems for air navigation and military use.

Men of ambition and skill will find Federal's diversity a fertile field for challenging and rewarding opportunities... in country-like atmosphere ... only minutes away from the heart of New York City!

For further information on opportunities
at Federal-located in Clifton, New Jer-
sey-write to ITT Technical Placement
Office, 67 Broad Street New York 4 N Office, 67 Broad Street, New York 4, N. Y.
FEDERAL TELEPHONE AND RADIO COMPANY

A Division of

international telephone AND TELEGRAPH CORPORATION 67 Broad Street. New York
\log of orders from the aircraft and missile indlustries which has risen to al current $\$ 2,700,000$ from approximately $\$ 1,000,000$ in February of this vear.

Johnson Joins Photocircuits

New manager of customer engineering in the sales department of Photocircuits Corp., Glen Cove, N. Y., is George F. Johnson. In this capacity he will serve as liaison between the company's production, engineering and research departments, and customers with specific problems in these arreas.
Johnson was manager of the plated circuit engincering department of Motorola, Inc., for the past eight vears, following engincering assignments with Westinghouse, Majestic and Zenith.

Eimac Promotes D. H. Preist

Electron-power tube manufacturer, Eitel-McCullough, Inc., San Carlos, Calif., recently named Donald H. Prcist associate director of research. In this post he is responsible for the overall guidance of the technical plases of the company's research and development program.

Preist joined Eimac in 1946 as research engineer after an association with the British Government Service in radar development. In

SPEGIFY 701 METERS

FOR YOUR APPLICATIONS

No. 653 (Illustrated). 21/2, $31 / 2,4,41 / 2$ inch, anti-static treated, AC or DC meters with clear polystyrene cases for modern installations. Feature standard or matched colors on lower frosted panel for appearance and functional identification.

Be sure of the highest accuracy, dependability, and readability PLUS economy with HOYT precision AC and DC instru-ments-the complete line of Panel Meters, Moving Coil, rectifier, and repulsion types available in a wide variety of sizes, ranges, cases, and colors. Also, custom-designed to meet your most rigid specifications for a quality instrument.

Wrile to Export Manager regarding world-twide a'ailubility for original equipment and replacement we.

Sales Division:
BURTON-ROGERS COMPANY 42 Carleton St., Combridge 42, Mass., U.S.A.

precision molded in NYLON

Precision parts in NYLON are rapidly replacing metal parts in scores of industries.
Swenson engineers have overcome major difficulties in adapting injection moldings to precision production of gears, sleeves, collars, rings, etc. that were hereto-fore considered impossible to produce.
Great savings in manufacturing can be effected by the use of injection molded plastic parts. Swenson engineers can quickly tell you the extent to which your parts can be replaced by NYLON for better service to your customers and more profit to you.

Write today for new folder. Send rough sketches, drawings or samples of parts you
would like to produce in plastic for engineers recom. mendafions and quotation.
"Engineers in Plastics"

v. H. Swenson co., inc.

556 Elm Street Arlington, N.J.
CIRCLE 229 READERS SERVICE CARD

1952 he was named klystron project coordinator at Eimac and later served as chief research engineer concerned with the development of high power tubes and circuits

Elect Rempt To High Post

At their annual meeting at the U. of California in Santa Barbara, Calif., the Institute of Navigation elected Henry Rempt president

The Institutc was founded in $19+5$ to establish a common meeting ground for those professionally concerned with the science and art of navigation. In addition to celestial, magnctic, and electronic navigation for surface and air, it is active in the fields of polar navigation, space navigation, actodesy, cartography, meteorology, and occanography.

Rempt presently directs the Elec tronics and Armancut Svstems Division for the Lockheed Aircraft Corp. at Burbank, Calif.

Lycoming's Kerr Heads Avco RAD

New president of Avco Research and Advanced Development Division, Wilmington, Mass., is James R. Kerr, who continues as president of Lycoming Division also and a vice president of Avco Corp.

As head of Avco RAD, Kerr succecds Dr. Lloyd P. Smith, who moves to Avco headquarters in New York as vice president in charge of
corporation's rescarch planning.
Kerr, former Air Force officer and Air Materiel Command exccutive, joined Avco in 1954 as director of West Coast divison and assistant general manager of Avco RAD.

News of Reps

Fiberglass-epoxy tubing lincs of Lamtex Industrics, Inc., Westbury, N. Y., will be handled in northern California bv Jack Kaufman.
V. T. Rupp Co., Los Angeles engineering rep firm, is named by G. M. Giannini and Co., Inc., to handle its line of potentiometers, Rotosteppers and pressure switches, in southern California, New Mex ico, and Arizona.

James L. Highsmith and Co. of Charlotte, N. C., is appointed by Navigation Computer Corp., Philadelphia, Pa., to handle its cligital data handling products in North and South Carolina, and in Virginia except Fairfax County.

Computer Engincering Associates, Inc. appoints Michael S. Coldwell, Inc. as reps for Mainc, Vermont, New Hampshire, Massachusetts, Rhode Island and Comnecticut.

Digitronics Corp., Albertson, L. I., N. Y., will be represented in southcrin New Jersey and the state of Pennsylvania by Lew Slubin \& Co. of Philadelphia for the sale of lumped constant delay lines and clectromechanical clutches and brakes.

WacLine, Inc., Dayton, Ohio, manufacturer of clectrical panel meters, tachometer generators and microwave components, announces four new rep agreements.
R. Edward Stemm of Chicago, 111., will handle the products in Indiana, Illinois, lowa, Minnesota and Wisconsin. Standard Products, Inc., of Wichita, Kan., handles the account in Kansas and Missouri. ElectroRep of Detroit, Mich., covers Michigan, Ohio, Kentucky and western Pennsylvania. The Jack Miller Co. of Forest Hills, N. Y., will serve in northern New Jersey.

SIGMUND COHN CORP. 121 So. Columbus Ave. . Mt, Vornon, N. Y.

CIRCLE 231 READERS SERVICE CARD

Trans Electronics, Inc.

7349 CANOGA AVNUE CANOGA PARK, CALIFORNIA Dlamand 0.3334

DESIGNERS AND MANUFACTURERS OF POWER SUPPLIES AND SEMI-CONDUCTOR TEST EQUIPMENT

SANDERS Model 2 Phase Comparator

...can be used as a modulator, demodulator or switch

This compact, rugged comparator is hermetically sealed in an inert gas and packaged for mounting in a standard octal socker. 'Two full-wave bridge rectifiers are used to obtain a high degree of stability and balance.

As phase sensitive comparators, these units can be used to measure the amplitude or phase of an input signal with respect to a reference signal. As demodulators, DC output can be obtained either single-ended or push-pull with respect to ground. Suitable for all military applications.

SPECIFICATIONS

Frequency Response: 0 to 5000 CPS; Max. Reference Voltage: 120 V , RMS; Max. Output Voltage: $\pm 50 \mathrm{~V}$. DC; Dynamic Range: 46 db ; Load: Max. 200 K ohms, - Min. 20 K ohms; Input Impedance: Approx. 200 K ohms with 200 K ohms load and 1:1 transformer. Size: $1^{\prime \prime}$ dia. x $3^{\prime \prime}$; Weight: 2 ozs.

Write for data sheets to Dept. E NASHUA, NEW HAMPSHIRE
Dayton, Ohio - Inglewood, Califarnia Washington, D.C.
CIRCLE 233 READERS SERVICE CARD

NEW BOOKS

Feedback Theory And Its Applications

BY P. H. HAMIMOND
The Macmillan Co., New York, $1958,3+8$ p, $\$ 7.00$

Importance of fecdback in many arcas of cugincering is well known; worthy of particular notc, however, are tivo branches of electrical cnginecring whore fcedloack plays an especially important role--Hecelback amplificrs and control systems. The subject matter of this book concerns itsclf witl those electronic devices and control systems which in some form incorporate feedback Thic trcatment extcuds to a discussion of well-tried lincar as well as nonlincar methods of analysis and design.

Basic Mathematics-The first two chapters are clevoted to a review of the solution of linear differential equations (using the Laplace transform method) and the basic fcedback principles with particular attention directed to response time, gain stability ancl distortion infuences. This is followed by a discussion of the Routh criterion and its limitations, whercupon the Nyquist criterion is introduced as a more useful gage of stability

Twenty pages are devoted to a bricf but interesting treatment of the frequency response of system and loop transfer functions as well as stabilization networks.
The foregoing material constitutes the common core of the book; the remainder is then deroted to al study of the devices and systems in which these principles are applied. Thus, in the area of feedback amplifiers a fairly thorough examination is made of the cathode follower, the difference amplifier and the high gain d-c amplifier used as a computing amplifier. Careful attention is given to such items as gain, output and imput impedance, loading effects and methods of stabilization
Servomechanisms-Almost the cutire seconcl half of the book is deroted to linear as well as nonlinear serromechanisms with one brief clapter dealing with simula tion of nonlinear control systems using the clectronic analog com puter

ANY TYPE TERMINAL for RADIO, TELEVISION, COMMUNICATIONS and ELECTRONIC APPLICATIONS

Malco supplies terminals for all standard and special requirements. Send blueprint or specifications for specific information and prompt quotation.

REQUEST

 bULLETIN552

Tllalco Trool and MANUFACTURING co.
4023 W. LAKE 5T. . CHICAGO 24, ILL. CIRCLE 234 READERS SERVICE CARD

Basic arrangement consists of R.F. amplificr, mixer, local oscillator, I.F. amplifier (A.G.C. controlled), cathode follower output stage. Tuning indicator (EM 34) is stage. Tuning indicator (EM 34) is
also fitted to receiver. The standard also litted to receiver. The standard
forms: one for airborne racking with special separate power supply unit, the other on larger chassis including power supply unit (convenlional $19^{\prime \prime}$ Iront panel). Stathlard specification: $420-470 \mathrm{M} / \mathrm{cs}$ frequency range, $4 \mathrm{M} / \mathrm{cs}$ overall bandwidth, approximately 10 db noise factor; approximately 70 ohms input impedance, 200-250 V and $50-60 \mathrm{c} / \mathrm{s}$ input supply. lnput is unbalanced, output is via low impedance (cathode follower) stage.

Of the 'Loop' type, suitable for measurements of RF power and Standing Wave Ratio in coaxial cables. Directional properties are largely unaffected by frequency changes, so coupler may be used to help obtain optimum termination of a 52 olim coaxial system up to $600 \mathrm{M} / \mathrm{cs}$ coaxial system up to $600 \mathrm{M} / \mathrm{cs}$. Standard specification: Size $7^{\prime \prime} \times 4^{\prime \prime} \times 2 \frac{1^{\prime \prime}}{}$; weighs 4 lbs. 3 ozs.: Power Measwement Range is Low range Iw.cw.max. High ran b 5 w.cw.max.; less than 1% attenuation; better than 2\% accuracy at frequency of calibration.

All devices are adaptable to suit customers' own requirements. For further information consult:

AWA ELECTRONICS

SIR W. G. ARMSTRONG WHITWORTH AIRCRAFT LTD. Baginton, Coventry, England
MEMBER OF THE HAWKER SIDDELEY GROUP
CIRCLE 235 READERS SERVICE CARD

One of the strong points of the book is the rather complete and well illustrated treatment of nonlinear servomechanisms. Both the phase plane and the describing function method of analvsis are covered.
Although the phase plane method is restricted to the secondorder system, the techniques are applied to a system which has output rate feedlack as wel! as primary position feedback. The anallysis is carried out in dimensionless form, thus making the results applicalble in general. Pluasc-plane diagrams are included for such nomlinearities as saturation, backlash and coulomb friction
In the clapter dealing with the describing function method of analysis, a table lists the describing function of eight different kinds of symmetrical, amplitude nonlincarities including claracteristics with changing slopes.
Also appearing in the book is a thorough treatment of the on-off servo which includes a discussion of methods for reducing or eliminating steady-state oscillations by dead-zone front-lash stabilization as well as rate feedback.

Nonlinear Servos-Analysis of nonlinear servos is a major topic of the book. It is surprising that the author has not directlv reflected this in the title. As a matter of fact it is not at all apparent why the author has chosen the topics he has, while omitting others, which could just as easily have been included. For example, since lualf the book is concerned with servomechanisms, it is unfortunate that no mention is made of the simple but powerful root locus method.

By statement of the author (who resides in England) the book is intended for post-graduate engincering and physics students who want an introduction to the subject. However, most of the material with the possible exception of that dealing with nonlinear servos is to be found in undergraduate curricula in the U.S.A. One of the weaker points of the book concerns the treatment of linear-servo analvsis. Here an expansion of the introductory material as well as a few more illustrations on linear stabilization techniques could have been

SANDERS MINICUBE BLOWER

rusgedly constructed for use on aircraft and guided missiles

The Sanders Minicube Blower contains both miniature blower and motor in a rugged, $1^{\prime \prime}$ cube. A single package, it is designed for use on aircraft and guided missiles operating under severe environmental conditions. It is operable over wide ranges of vibration, acceleration and temperature, and is suitable for many exacting applications.

The Sanders Minicube Blower can be used to:

- Eliminate hor spors in subminiature equipment
- Prevent fogging of lens or viewing glasses
- Cool Klystrons and other electronic tubes and devices
- Maintain uniform flow of air in restricted space

SPECIFICATIONS

Output; 2.2 cubic feet of air/minute Inpuf: $400 \mathrm{cps}, 31 / 2$ watts Volrage: Model 1:6 volts Model 2: 26 volts
For defailed specifications write Dept. E

5月ПロER5
AS5OCIATES, I ПC.
NASHUA, NEW HAMPSHIRE
Doyton, Ohio - Inglewood, Colifornio - Washington, D. C.
CIRCLE 236 READERS SERVICE CARD

YOU STAND TO GEIN...

Advanced techniques and experience at PACIFIC MOULDED in precision molding such as fig. A, have proven extremely beneficial to users of volume moldings or extrusions.
Precision quality in volume production such as fig. B, is but one of the advantages of PACIFIC MOULDED, developed thru serving precision industry and volume producers everywhere.

Why not take advantage of our engineering, research, and production capabilities for all of your rubber and silicone and siicone
components?

A. PRECISION ELECTRONIC PLUG WITH 223 MATING CONTACT CAVITIES MOLDED AT 45° ANGLE.
B. HIGH VOLUME TOY MUSIC BOX BELT.

New IOW IOSS Soliol Ultrasonic Delay hines

This new series of solid ultrasonic delay lines, in range 2 to 50 mi croseconds, employs special barium titanate transducers to reduce loss level. Loss levels, into 100 ohm terminations, range from 6 to 10 db compared to 35 db for conventional types.
TYPICAL CHARACTERISTICS OF A 2 USEC. BLILEY LOW LOSS LINE

- Delay time: 2 usec.
- Type: double ended absorber
- Center frequency: 30 mc .
- Termination: 500 ohms.
- Capacity: 385 mmf .
- Insertion loss to first reflected

Third time signal: down 30 db

- Delay time variation from -20 to $+60^{\circ} \mathrm{C}$. ± 01 uses.

Request Bulletin \#513 for details.

BLILEY ELECTRIC COMPANY UNION STATION BUILDING - ERIE, PENNSYLVANIA

CIRCLE 241 READERS SERVICE CARD

RIBBONS.STRIPS
\star PURE TUNGSTEN
\star MOLYBDENUM
and OTHER METALS
IN
ULTRA THIN SIZES
to
TOLERANCES CLOSER THAN COMMERCIAL STANDARDS
by

OUR SPECIAL ROLLING TECHNIQUE

Note: for highly engineered applications-strips of TUNGSTEN and some other metals can be supplied

ROLLED DOWN TO . 0003 THICKNESS

- Finish: Roll Finish-Black or Cleaned
- Ribbons may be supplied in Mg. weights if required

For HIGHLY ENGINEERED APPLICATIONS
DEVELOPED AND MANUFACTURED BY
H.CROSS CO.
is BEEKMAN ST., N. Y. 38, N. Y TELIPMON: WOrth 2-2044 EIEPONS COrtlondt 7.0470

FOR PRINTING

of
 ELECTRONIC COMPONENTS

 of almost any shape:
REJAFIX MARKING

 MACHINESHand-operated, semi-automatic and fully automatic models
Why not send us samples of your products. They will be test-printed and returned to you for your examinatian!

Est. 1922
POPPER \& SONS, INC.
300 Fourth Ave. New York 10, N. Y CIRCLE 244 READERS SERVICE CARD

.. Electrical Coil Windings

For 40 years . . specializing in all types of coils to customers' specifications. Design or engineering assistance available on request.

65 Pavilion Avenue Providence 5, Rhode Island

Business School, Boston 63, Mass., $1958,269 \mathrm{p}, \$ 10.00$. After providing the background of the nature of production line mechanization, this book briefly describes the automation programs of 13 plants. The impact of automation on maintenance, the skill requirements of the work force in the high automated plant, the sales effort and management itself are considered.

Applied Statistics for Engineers. By Vm . Volk, McGraw-Hill Publishing Co., Inc., New York, 1958, 250 $\mathrm{p}, \$ 9.50$. Covering statistical techniques, rather than theory, this book is intended for the practicing enginecr and as a text. It deals with the treatment of engineering data for correlation, presentation and analysis of experimental factors. A review of probability theory and frequency distribution is included along with detailed discussions of curvilinear correlation, analysis of the variance and interpretation of the analysis of the variance

Conductance Curve Design Mannal. By K. A. Pullen, Ir.. John F. Rider Pul). Inc., New York, 1958, 128 p, S+.25. An original techuique for designing circuitry using conductance curves of 70 most representative vac num tubes. With these graplis, de sigus using suluall-sigual parameters can be used to predict large-sigual performance

Electron Tube Materials. American Society for Testing Materials, Pliilaphia, Pa.. 1958, 242 p, $\$ 3.50$. This first edition contains +1 standards relating to cathode materials, insulators, wire, metallic and nonmetallic seals and miscellancous materials.

Program for an Electronic Digital Computer. By V. V. Wilhes. D. J Wheeler and Stanley Gill, IddisonIt esley Publishing Company. Inc. Reading, \ass., 1957, 238 p. $\$ 7.50$ (sccond edition). Written for those who program for, initiate operation of, or assess applications of electronic digital computers, this book covers elements of program design, subroutine development, input-output techniques, program error diagnosis and automatic programming in gencral, while library subroutines and complete prograins for EDSAC are given in cletail

Table for the Solution of Cubic Equaltions. By H. E. Salzer, C. H. Richards and 1. Arsham, McGraw-Hill Pub. Co., Inc., New York, 1958, 176 p, \$7.50. For engineers, physicists and applied mathematicians, this table sapersedes other tables in number of decimal places, range, interval, required labor for finding all three roots and convenience in use.

Recent Raytheon achievement in Radar

MOVING-TARGET INDICATOR
is just one of the many dramatic achievements Raytheon engineers are making in radar every day. This development applies the electronic memory of a recording storage tube to a standard plan-position indicator (PPI).
ADVANTAGES: (1) trail of the moving target is displayed on the scope to permit immediate analysis of target course without the necessity of manual plotting. (2) Scope brightness is uniform and at a sufficient level for lighted area viewing!
HOW IT WORKS: both live and stored data are shown on a twolayer, two-color phosphor CRT on a time-shared basis - the stored pattern being read out onto the scope in the time between successive PPI sweeps. A yellow dot indicates the target and a blue-white trail depicts the history of its motion.

To the man who is looking for FRONTIER PROJECTS IN ELECTRONICS:

As an engineer or scientist who wants to accomplish more in 1958, you naturally want to be where new things are happening.
Whatever your specialized background and interests, chances are you'll find a current Raytheon project that offers exceptional opportunity for you to put your scientific skill and creative imagination to work.
Raytheon's constant expansion during 1958 covers advanced activities in:
COMMUNICATIONS (Commercial and Military) scatter, microwave relay, multiplex, mobile transistorized equipment.

COUNTERMEASURES-radar countermeasures equipment, advanced study projects.

RADAR (Pulse and CW Systems)-search, fire control, bombing, navigation, and guidance, airtraffic control, weather and marine, military and commercial.
MARINE EQUIPMENT - submarine, ship and airborne sonar, depth sounders, direction finders, radars.

GUIDED MISSILES - prime contracts:
Navy Sparrow III (air-to-air)
Army Hawk (ground-to-air)
MICROWAVE TUBES - "Amplitrons," magnetrons, klystrons, traveling wave tubes, storage tubes, backward wave devices.

SEMICONDUCTORS-devices, materials and techniques; silicon and germanium.

For interview at your convenience, please write to:
E. H. Herlin, Professional Personnel Section
P.O. Box 237, Brighton Station, Boston 35, Mass.

PROTECTS SMALL, DELICATE ELECTRONIC COMPONENTS IN PRODUCTION AND SHIPMENT

RONDO, a unique handling and packaging system, holds inserted objects by a spring. clip action of its fluted partitions.

Miniature and sub-miniature tubes, capacitors, diodes, resistors, and other electronic components are "snapped" into RONDO flutes. Convenient in production, inspection, storage, shipment, and also on the receiving end. The same RONDO unit will serve throughout all the different stages of handling.

RONDO IS A PAPER PRODUCT. SOLD AT PAPER PRICES
Holds objects from 5/16" to 1 " in diameter. Tooling for larger sizes possible. More information and our suggestions sent on request.

Please specify your requirements.

RONDO PROCESS AND DESIGNS PATENTED IN ALL MAJOR COUNTRIES

AMERICAN RONDO CORPORATION 100 A SANFORD ST, HAMDEN 14, CONN.
Representatives: C. S. Shotwell, 527 S . Alexandria Ave., Las Angeles 5, Cal., Phonei Dunkirk 8.8879
Brown \& Scratch, 664 N . Michigan Ave., Chicago II, tll. Phone, SUperior 7.2973 CIRCLE 246 READERS SERVICE CARD

CIRCLE 247 READERS SERYICE CARD

COMMENT

Micromiles and Megafeet
I have noticed a tendency lately, even in your estcemed publication, to employ hyperfine units when secking to create the impression of sensitivity (relays operate on 750 milliwatts), high-frequency capability (transistors switch in 500 millimicroseconds) and the like. Translating up and down scalcs by a factor of 1,000 each time, I discover that thesc figures mean $\frac{3}{4}$ watt and $\frac{1}{2}$ microscond respectively

Frankly, after an elapsed time of 38,100 seconds between leaving the house at an unearthly hour of the morning and returning in time for supper, allowing for traveling 413,012 inches cach way to and from work, this irritates me.

Honestly, now, docs it really make sense to specify a simple quantity like $\frac{3}{4}$ of one imit or $\frac{1}{2}$ of another (especially when thicse may be fincr gradations than the facts warrant) in terms of many lumedreds of a unit a thousand times smaller? Grauted that engineers use milliwatts in much of their work, and certainly understand millimicroseconds whether they commonly use them or not, what is gained by this parading of tiny units when you need a basketful of them to say the same thing that could have been said with simple fractions (and sometimes whole numbers) of the larger unit?

Once in a while there's an excuse, as in talbles of transistor characteristics, where collector current is expressed in milliamperes because this is a common and appropriate unit for most of them, even though occasional types may ratc 3,000 or 5,000 milliamperes. Let's sce if we can inhibit this trend before the national debt hits $30.000,000,000,000$ cents, which probably isn't far off.

Willian C. Sciemacher Glevnale, N. Y.

Probably abont 30,000 microcenturies, by our calculations.

Magnet Power Supply

In vour Oct. 17 issue (p 31) you ran a new product announce-
ment on our magnet supply, model M25. Please note that vou made a typograplical crror in the output specification. You give the current as 100 ampercs, whereas it should be 10 amperes.

At the same time, an oversight on our part had the price at $\$ 395$; it should be $\$+95$.

Martin Seroy
Manson Laboratories
Stamford, Conn.

The College Market

Your Oct. 3 issue indicated (in "College Market Grows," p 16) that "a device that can focus four ultrasound beams from four separate irradiators inside the hmman brain on a target no larger than the diameter of a lead pencil" was built at the State University of Iowa. Unfortunately this statement is incorrect.
The equipment referred to was designed and built at the Biophysical Research Laboratory of the University of Illinois.

For the past ten years the Bioplivsical Research Laboratory, under the direction of William J. Fry, has been conducting a research program on the effects of highintensity focused ultrasound on the central nervous system. This program includes basic biological and plysiological studies on amimals als well as an intensive instrmentation program. As a result of this work, a technique was dereloped here for applying high-intensity ultrasound to homans with certain dysfunctions of the central nervous system.

Dr. Russell Mvers, head of the department of neurosurgery of the State University of Iowa hospitals, and professor Fry of this Laboratory, then entered into a cooperative program for application of this technique to sclected patients. A special so-called portable ultrasonic irradiator was designed and built here at the University of Illinois and transported to Iowa. Several staff members from both this Laboratory and the SUI department of neurosurgery are directly concerned in applying this instrument to human neurosonic surgers

Elizabeth Kelly University of Illinois
Urbana, Ill

ENGINEER OPPORTUNITIES AT RAYTHEON

FLIGHT TEST READY TO START as Raytheon engineer conducts final check. He works with some of our country's top design engineers on aircraft navigational and guidance systems.

Help design new coherent radar systems for aircraft navigation and guidance

Small project groups with full systems responsibility, working on the most interesting and advanced radar and navigational problems of the day - this is the atmosphere at Raytheon's Maynard Laboratory.
A company with many engineer-managers-experienced executives with young ideas-tends to create an exceptional environment for your professional development Other Raytheon benefits: excellent starting salaries, regular reviews for merit increases; town or country living in beautiful New England.
We now have opportunities for men at all experience levels in:

```
MICROWAVE SYSTEMS ANALYSIS &
        DESIGN
ANTENNA DESIGN
ELECTRONIC PACKAGING
ADVANCED CIRCUIT DESIGN
SYSTEMS ANALYSIS \& ENGINEERING
TECHNICAL WRITING SPECIFICATIONS WRITING
```

For complete details on engineering positions in any of Maynard's project groups, please write John J. Oliver, P.O. Box 87E, Raytheon Maynard Laboratory, Maynard, Mass.

RAYTHEON MANUFACTURING COMPANY Maynard, Massachusetts

Are you the one man in three?

MAYNARD LABORATORY I

IBM KINGSTON

... probing electronic frontiers
 for tomorrow's break-throughs

Research into uses of magnetic thin-film components in advanced electronic equipment is typical of the many exciting creative opportunities now available at IBM Kingston. IBM research teams are also investigating other problems, such as: The use of magnetic materials in liquid-helium memory systems... and the evolution of new fabrication methods based on vacuum deposition techniques. This is a fine opportunity to satisfy unfulfilled ambitions to do really original work among creative, constantly inquiring minds.

IBM, a recognized leader in the electronic computer field, offers a stable balance of military and commercial work. You will find ground-floor opportunities for professional achievement at IBM Kingston. Liberal company benefits set standards for industry today, and salaries are commensurate with your abilities and experience. Kingston, N. Y., is a pleasant Hudson River valley community. It combines country living with easy proximity to New York and other metropolitan areas.

ASSIGNMENTS

open in these development areas:

- Cryogenics
- Digital Computer Design and Programming
- Guidance and Detection System Analysis
- Magnetic Devices
- Optical Systems for Data Presentation
- Solid-State Physics

There are other openings in related fields to broaden your skills and knowledge.

QUALIFICATIONS: B.S., M.S., or Ph.D. Degrees in Electrical Engineering, Physics, Mathematics or related disciplines. Industrial experience is desirable.

Write, outlining qualifications and experience, to:
Mr. D. H. Hammers, Dept. 554Y
IBM Corporation
Military Products Division
Kingston, N. Y.

ENGINEERS-OPPORTUNITIES

SYSTEMS ENGINEER to develop complex devices in fields of servomechanisms, radar, or computers, and integrate these elements in weapons systems. Must have three to five years' experience in such activity and two years' experience in over-all systems analysis. Assignment involves design and analysis of closed-loop systems, consisting of inertial and radar equipment, display materials, and digital or analog computers
Qualifications: B. S. or Advanced Degree in E.E. or A.E.

RADAR ENGINEER to analyze ultimate limits of present techniques and develop new concepts of providing topographical sensors for advanced airborne and space systems; to design airborne radar pulse, microwave and deflection circuitry; to analyze Doppler radar systems in order to determine theoretical accuracy and performance limitations.
Qualifications: B.S. or Advanced Degree in E.E. and 3 to 5 years' experience in radar systems development, including display equipment and circuits, control consoles, and Doppler or search radar design.

CIRCUIT ENGINEER to undertake advanced circuit design based on transistor diode logic for digital systems; to review new circuits for application in digital control systems; to define basic techniques for improving performance characteristics; to participate in advanced analytical studies associated with application of transistor circuitry to pulse and digital systems.
Qualifications: B.S. or Advanced Degree in E.E. and 2 years' experience with pulse circuitry, transistor circuit design, or digital techniques.

COMPUTER ENGINEER to undertake logical design of airborne digital computer equipment, transistorizing computer circuitry for size and weight reduction. Assignment entails: Mechanization of computer circuitry and packaging; interpreting problems for solution with the IBM 704.
Qualifications: B.S. or Advanced Degree in Engineering or Physics and 3 to 5 years' experience in design of digital or analog computer equipment. Experience also desirable in transistor technology, computer logic, programming, instrumentation, computer system evaluation, or servo-mechanism design.

ADVANTAGES OF IBM

A recognized leader in the electronic systems field... products used for both military and commercial work...advancement on merit... company-paid relocation expenses s. . liberal company benefits . . . salary commensurate with ability and experience.

Immediate openings at Owego, N. Y.
WRITE, outlining qualifications and experience, to:
Mr. P. E. Strohm, Dept. 554 Y
Military Products Division
IBM Corporation, Owego, N. Y.

EleCTRONC ENGINEER
(Senior)

QUALITY CONTROL

- Develop test equipment, methods and procedures for determining conformance of complex electronic equipment with Company and Air Force specifications.
- Contact various electronic manulacturers to determine and purchase equipment as required to test and simulate flight operations of radar, navigation, fire control and similar electronic systems.
- Also develop procedures for use of electronic test equipment. Conduct investigatory work and recommend corrective action and changes. EE degree required.

Salary rommensurate with alilily.
In addition to other advantages Republic offers a comprehensive benefit program among the finest in industry.

Send Resume in Confilence to Mr. Wi. Walsh
Employment Office

MEPRETERTE

AEMATHEN
Farmingdale, Long Island, N. Y.

WinCHEDNC MNCDNWISS

Research \& Development
Move ahead with a young, rapidly expanding organization in Hicksville, LI, N. Y.

project engineers
 SENIOR ENGINEERS engineers

B.S. in E.E. or Physics

We need at once for lifetime careers-addi. tional zrained personnel, at all levels, experienced in circuitry and equipment design or applicable exp to work on UHF \& VHF systems, wide band knowledge desirable; for challenging assignments on electronic countermeasure systems for military application and electronic instruments for civilian use

Salaries commensurate with ability.
Excellent benefits including Profit Sharing Retirement Trust Plan.

Call for interview J. V. Hicks OVerbrook 1-7100 or send resume in confidence to

INSTRUMENTS FOR INDUSTRY, INC.

[^7]
HAVE SENSORS ...WILL TRAVEL

Flying at 50,000 feet, probing the heavens up to 150,000 feet, Bendix personnel during the years immediately ahead will be finding out more about the world's weather than man has ever known. A new project, to be undertaken by Bendix Systems Division for the U. S. government, will employ jet aircraft, flying distances up to 4,500 miles at Mach 0.95 to measure cloud formations and look inside storms with radar sweeps extending 150 miles from the plane.

Using rocketsondes, dropsondes, computers and new aircraft sensors the system will collect and analyze atmospheric phenomena on a global scale from the earth's surface well
into the stratosphere. Officially designated the AN/AMQ-15 Air Weather Reconnaissance Program, the new project will be carried out in cooperation with Boeing Aircraft Company and six other Bendix divisions, under the Bendix Systems Division's general supervision.

The new program offers an outstanding opportunity for qualified scientific and management personnel in the fields of physics, chemistry and meteorology with upper atmosphere and air sampling background.

[^8]

Bendix Systems Division

FOR

ADDITIONAL INFORMATION

About Classified Advertising

Contact

The McGraw- Hill
Office Nearest You
ATLANTA, 3
1301 Rhodes-Haverty Bldg.
JAckson 3-6951
M. H. MILLER

BOSTON, 16
350 Park Square
HUbbard 2-7160
D. J. CASSIDY

CHICAGO, 11
520 No. Michigan Ave.
MOhawk 4-5800
W. J. HIGGENS
D. C. JACKMAN

CLEVELAND, 13
1164 Illuminating Bldg.
SUperior 1-7000
W. B. SULIIVAN

DALLAS, 1
1712 Commerce St.,
Vaughn Bldg.
Rlverside 7-5117 GORDON JONES F. E. HOLLAND

DETROIT, 26
856 Penobscot Bldg.
WOodward 2-1793
D. M. WATSON

LOS ANGELES, 17
1125 W. 6 St.
HUntley 2-5450
R. L. YOCOM

NEW YORK, 63
500 Fifth Ave.
OXford 5-5959
D. T. COSTER

R P LAWLESS
PHILADELPHIA, 3
Six Penn Center Plaza
LOcust 8-4330
T. W. MCCLURE
H. W. BOZARTH

ST. LOUIS, 8
3615 Olive St.
JEfferson 5-4867
SAN FRANCISCO, 4
68 Post St.
DOuglas 2-4600
R. C. AlCORN

ELECTRONIC ENGINEERS

Heath Company, a Division of Daystrom, Inc., has challenging opportunities in a progressive engineering program. Immediate openings for Project Engineers to design and develop new products in Amateur Radio and Marine equipment lines. B.S.E.E. in Electronics or the equivalent in practical experience. Knowledge of SSB and transistors desirable. Should have amateur license. Send complete resume to D. J. McNamara, Personnel Manager.

HEATH COMPANY
Benton Harbor, Michigan

DISENCHANTED ENGINEERS

if your present employer has finiled to uilize your lull potential, why not permit us to explore the paraineters for your personal qualiticationg with the many dynamic young companies in aviation, electronics, missiles and rodkopeninge now have in excers of the $\$ 8,000$ to $\$ 40,000$
open bracket, all of which are fee paid. Why wait? Send resume in duplicute at once to:-

FIDELITY PERSONNEL
1218 Chestnut Street, Philadelphia 7, Pa.

YOUR BEST TALENTS

Are they used in your present position? Is your salary right? Do you have proper recognition?-If not, our services can help you to relocate in a choice position. S.E.E. (a non-profit organization) serves growth companies throughout the nation. We help them to find able professional men who really want to get ahead.

Send resume for appraisal \& full information.

SCIENTISTS, ENGINEERS

\& EXECUTIVES, INC.
1026 Seventeenth Street N. W.,
Washington 6, D. C.

SPACE TECHNOLOGY

SALARIES TO $\$ 20,000.00$ PER YEAR EE-S or Physicists to work in the following areas-
Gaseous Phenomena, Plasmas, Re entry Plasmas Gaseous Phenomena, Plasmas, Re entry Plasmas,
Theological Dynamics. Materials \longrightarrow Pyograthite $\underset{\text { Theological Dynamics. Materials, Pyograthite. }}{\text { Niobates, etc. Space systems-nassive and active }}$ Niobates, etc. Space systems- nassive and active
sattedite communications. Our company clicnts will assume all employntent expense.

MONARCH PERSONNEL
28 East Jackson Blud., Chicago 4, Illinois

More than

The ratio of 8.3 acceptances for every 10 engineers invited to join Norden Laboratories' professional staff is unusually high, especially in the opportunity-rich electronics industry. We went right to the source and checked new members of our engineering groups, who revealed these factors impelling their decision in favor of Norden:

- Pioneering Nature of the Work in Diversified Electronic Areas
- Small R \& D Groups Fostering Individual Accomplishment
- Close Contact With Management
- Flexibility of Assignments
- 30-Year Company History of Achievement in Precision Electronics

If this partial description of the professional environment at Norden Laboratories appeals to you, look into these immediate openings on a variety of advanced projects at both White Plains, New York and Stamford, Connecticut locations:

TELEVISION \& PASSIVE DETECTION - TV Display Circuitry

- TV Camera Circuit Design. TV Transistor Circuitry

Also openings for recent EE grads
RADAR \& COMMUNICATIONS Design \& Development openings ins the following areas: Antennas•Microwave Systems • Microwave Components • Receivers . Transmitter Modulators • Displays

- Pulse Circuitry (VT \& Transistors) • AMTI • Data Transmission • ECM

DIGITAL • Digital (Senior) Design: Logical, Circuit, Magnetic Storage
QUALITY ASSURANCE • Reliability Analysis • Standards

- Environmental Test

ENGINEERING DESIGN • Electronic Packaging
STABILIZATION \& NAVIGATION • Stabilization Servos

- Amplifiers \& Electronics

FUTURE PROGRAMS • PROPOSAL ENGINEER (SENIOR) -
Diversified systems experience (TV, Radar, Electronics) Excellent advancement opportunity - SENIOR ENGINEER - Cost development for R\&D proposals. Require broad technical experience in electromechanical \& electronic systems
PROJECT ENGINEERING • SENIOR ENGINEERS - engineering program management. Handle project from customer contact through technical \& component phase of program
SYSTEMS ENGINEERING • Synthesis, Analysis \& Integration of Electronics \& Electromechanical Systems. Require broad experience analytical work \& systems component integration

- Descriptive Brochure Available Upon Request

After-hour interviews arranged at your convenience.
Send resume in confidence to: TECHNICAL EMPLOYMENT MANAGER
NORDEN LABORATORIES
NORDEN DIVISION - UNITED AIRCRAFT CORP. 121 Westmoreland Avenue - White Plains, New York

White Plains, New York
Stamford, Connecticut

HIGH LEVEL
 TECHNICAL
 EXECUTIVE

An expanding industrial organization with annual sales of electronic, electrical and precision mechanical devices exceeding $\$ 50,000,000$ seeks to strengthen its central management group by addition of a resourceful Electric Engineer or Physicist combining high technical competence with broad industrial experience. Working at the top level of the Company, this man will play a key role in the continuing expansion of the Company's activities in the consumer, industrial and scientific fields.

His ability and personality must command the respect of highly qualified directors of present and future operating divisions.

He must have the vision and critical judgment to contribute forcefully to expansion plans involving either acquisitions or new products arising from a research and development program of long tradition and exceptional depth.

Some traveling in this country will be required in addition to European visits for evaluation of know-how available to our Company.

Our organization knows of this advertisement

Please reply, in confidence, to

Box 339B, 300 West 43 St., New York 36, N. Y.

PHYSICISTS - CHEMISTS

We are offering important opportunities as project leaders in applied research in semiconductors and electron tubes. If you have had several years experience in either of these fields and know you are ready to tackle a responsible position with people who place as much emphasis on initiative as ability, write or call D. Bellat, Personal Director, for appointment,

TUNG-SOL ELECTRIC INC

200 Bloomfield Ave.,
Pilgrim 8-8700
Bloomfield, N. J.

New McGRAW-HILL Books

NONLINEAR CONTROL SYSTEMS

Just Pubished-Gives practical guidance and theory essential to analysis, testing, and design of modern control systems. Treats such subjects as describing function (effective gain). determining response, systems excited by random input signals, application of switching circuits, etc. By R. \mathcal{L}. Cossriff, The Ohio State U. 328 pp.. 205 charfs. tables and illus., $\$ 9.00$.

APPLIED MATHEMATICS for ENGINEERS and PHYSICISTS

2nd Edition Just Published-Provides you with the principal mathematical techniques needed to analyze mathematical problems that arise in practice and to understand important current technical papers. Carefully revised to include essential, up-to-date material, 2 nd Ed. By L. A. Pipes,
California, L.

TABLE for the SOLUTION of CUBIC EQUATIONS

Just Published-Supersedes all other such tables in number of decimal places, range, interval, required labor in finding all three roots, and conrenience in use. Witb this book you can obtain all three ioots of any equation using nothing more complicated than a desk calculator. By H. E. Salzer and C. H. Richirds, Convair Astronautics: and I. Arghim, Diamond Ordnance Fuze Laboratories. $176 \mathrm{pp}, \$ 7.50$.

ELECTRONIC SEMICONDUCTORS

Just Published-A useful introduction to semiconductor physics as related to rectilier and transistor problems. Precisely defined basic concepts lead to the physice of crystal amplifiers, imperfection equilibria, and bounclary layers in semiconductors. By F. Spenke. Translated by I. Jenny, II. Kroener. F. Gi. Ramberg, and A. II. Sommer, RCA Labs, Primceton, N. J. 430 口и., 163 illus., \$11.00.

An Introduction to the Theory of RANDOM SIGNALS and NOISE

Just Published-Takes up step by step the theory of probability and statistics essential to fanclon simnals and noises. Discusses to fanclonn signals and noises. Discusses applications in such areas as shot noise gen-
erated in thermionic vacuum tubes, space-charge-limited tubes, noise in amplifiers. radar, etc. By W. is. Wavemport. Ir. and W. L. Koot. both of M.I.T. 393 pp-, 69 charts, graplis, and tables, $\$ 10.00$.

Minimum 5 years practical experience maintaining and installing standard commercial communications equipment. Emphasis on V.H.F. fixed and mobile radio transmitters and receivers, both broad band and narrow band. Some experience desirable with carrier equipment, HF mobile equipment, HF fixed stations transmitters and receivers, and television equipment. For work in Saudia Arabia.
Salary to $\$ 830$. per month, according to ability. Liberal benefits provided.
Write outlining personal history and work experience. Please include telephone number.
Recruiting Supervisor, Box 297
\section*{ARABIAN AMERICAN OIL COMPANY}
505 PARK AVENUE
NEW YORK 22, NEW YORK

ELECTRONIC ENGINEER

Manufacturer of automatic controls lo cated in northwest suburb of Chicago is seeking a young man age 30 to 40 . with college degree in Electronics or Electrical Engineering plus 6 to 8 years experience in design and development in the electronic field, with special em. phasis on control systems or servo mechanisms.
Exceptional opportunity for one desiring responsibility for an electronic develop ment program now in its infant stage.
This is an AAA-I company with modern facilities and complete employee bene fits.
Give full information concerning education, experience, personal data and salary.

P-9274, ELECTRONICS
520 N. Michigan Ave.
Chicago 11, III.

RATES

"Employment Opportunities"

Displayed-The advertising inch is $\$ 28.67$ per inch for all advertising appearing on other than a contract basis. Contract rates quoted on request.
An advertising inch is measured 7/8" ver tically on a column- 3 columns- 30 inches to a page.
Subject to Agency Commission.
Undisplayed- $\$ 2.40$ per line, minimum 3 lines. To figure advance payment count 5 average words as a line.
Discount of 10% if full payment is made in advance for 4 consecutive insertions. Not subject to Agency Commission.
Send NEW ADS to ELECTRONICS, Class. Adv. Div., P. O. Box 12, New York 36 N. Y.

RCA PHOTOELECTRONICS

beams a whole new light on your engineering future

As RCA photosensitive devices work new and ever more amazing wonders with light . . . further dark corners in science and technology loom ahead awaiting exploration by RCA engineers. Yours could be one of the many engrossing careers to be built in RCA tube design, development and application.
Electrical Engineers-For Design, Development, and Application of electron tubes. Special emphasis on tube fabrication processes and circuitry. B.S., M.S. or Ph.D. degree.

Physicists-Specialists in fields of solid-state (high-temperature phenomena, photosensitive materials, glass technology), instrumental analysis, radioactive tracing techniques and electron optics. B.S., M.S. or Ph.D. degree.

Lancaster... Ideal Career Location-You'll find in growthminded Lancaster all of a college town's unique cultural advantages. Philadelphia is only two hours away. There's a real satisfaction in the professional atmosphere of RCA's modern Lancaster plant ... plus planned advancement, liberal benefits, tuition refunds for advanced study. RCA pays interview and relocation expenses.
To arrange confidential interview, contact: Mr. E. F. Stevens, Manager, Employment, Radio Corporation of America, New Holland Pike, Lancaster, Penna., Attention Dept. G-12L. Or phone: EXpress 3-3661.

Tomorrow is here today

at RCA

RADIO CORPORATION of AMERICA electron tube division plant LANCASTER, PA

Navigation Systems Communication Systems	CAPFFR ODPORTNUTES
	With a company making premium grade electronic equipment for aircraft for ove 30 years. Located in the beautiful lake region of Northern New Jersey, less than 35 miles from New York City.
	- Transistor Circuit Engineer
	- Tacan Engineers
	- Receiver Engineers
Servos	- Transmitter Engineers (VHF \& UHF Frequencies)
Transistors	- Navigation Equipment Engineers
Transmiters	- Antenna Design Engineer
Receivers	- Technical Writers
Antennas	Enjoy the pleasure of working in a new laboratory in a company whose products are known as the highest quality in the industry.
	Write or call collect: Personnel Manager ARCRAFT RADIO CORPORATION Boonton, N. J. DE 4-1800-Ext. 238

ENGINEERS

If several years of practical experience have given you the youthful maturity that requires more than just a job, it may be to your advantage to investigate the career opportunities with our company.

We are now interviewing electrical engineers with practical experience in TV circuitry or radio tube production.
If you have such experience and would like to discuss your future plans and ambitions with us, please call in person or write to D. Bellat, Personnel Director c/o Tung-Sol Electric Inc., 200 Bloomfield Avenue, Bloomfield, New Jersey. Pilgrim 8-8700.

SEARCHLIGHT SECTION

A MICROWAVE \& TUBE GOLD MINE!

3 Cm RF HEAD

 of the APS23
RADAR

Consisting of
Microwave Plumbing 35 TUBES including 4J52 Magnetron 2 Klystrons also 3 Silicon crystals, 2 Germanium diodes, 7 Relays and countless other parts.

Motor with blower, various transformers, 60 Megacycles IF Strip, 10 MC band-width etc.
(Government cost for tubes alone over 500 dollars.) Your price with all tubes as above

$\$ 195.00$

Complete with 6510 Magnetron and all other tubes Ruggedized type $\$ 245.00$.

klystron oscillator

Practically every type of microwave and radar test equipment. Also magnetrons, klystrons, receiving and transmitting tubes of every description.

CAPACITORS

Practically All Types, Kinds, Sizes, Shapes and Capacities, in Stock in Quantity for Immediate Shipment See our ad in the October 10 ih issue.

MONMOUTH

RADIO LABS
Box 159 Capital 2-0121 Oakhurst, N. J. Art Hankins, Owner

An
 Investment

Productive advertising is an IN. VESTMENT rather than an EX. PENDITURE.
"Searchlight" advertisers almost invariably report prompt and satisfactory results.
BE CONVINCED-send us your advertisement TODAY.

Address
Classified Advertising Division

ELECTRONICS

P. O. Box 12,

New York 36, N. Y.
 GLEASON-AVERY
1800 RPM synchronous motor 115 F 18 watt... $\$ 4.50$
 RELAY CONTACT BURNISHERS .59-2 for $\$ 1.00$

MOST POWERFUL TELECHRON
MOTOR MADE - 6 watts-
 CRAMER 44 spl. 45 sec. using 4 TPM 6 w TELE

Che
We are the oldest and one of the 200
authorized Micro Switch Distributors.
We have the largest stock of Potter \&

include POSTAGE
64 G Dey St.
New York 7. N. Y.

RADALAB Inc.

87-17 124th St., Richmond Hill 18, N. Y.
Phone Vlrginia 9-8181-2-3
AN/GSQ-1 NAVY TYPE PF SPEECH SCRAMBLER This is a unit designed to be attached to either a radio or telephone circuit to seramble speech or
code. This equipment utilizes coded cards in each terminal equipment. Unless the properly numbered card is insertel on the receiving end the speech can not be unserambled. Complete equipuent available. 24 VDC input. Spare parts avail.

SCR-399 GRC-26

Semiportable high power radio set. Frea. 2-18 MC Power out 350 watts. GRC-26 uses teletype operation. Complete sets readly
plant $\mathrm{PE} \cdot 95$ also in stock.

AN/ASQ-1 AIRBORNE

MAGNETOMETER
This is an airborne chart recording magnetometer head set consists of an ampifier, oscillator, detector equipment has a sensitivity of 2 gamnia The The ASQ-I records on an Esterline angus recorder dis. turbance in the earth's magnetic feld. An indicator is provided that gives a bearing on a magnetic
disturbance. Input is 28 v DC. Weight about 130 lis.

AN/TPS-1B

200 MILE AIR SEARCH RADAR The TPS-IB is a very late type L-hand molsite or craft up to 200 miles and up to $\mathbf{1 0 , 0 0 0} \mathrm{ft}$. The set is composed of small portable carrying cases that arc bolted together to make up the set. A $7^{\prime \prime} P$. P. 1 and a $5^{\prime \prime}$ "A" scope are provided. This set is in
use by the Air Force and Marine Corps. Complete sets availahle. P.O.R.

AN/TPS-3-AN/TPQ-3
Airsearch or artillery shell tracking radar. The AN/TPS -3 is a 600 mc airsearch portable radar. The set has a range of 120 miles on aircraft "p to $40,000 \mathrm{ft}$. This set has a $7^{\prime \prime}$ P.P.l. and a 5 " " A "
scope. r " $\mathrm{AN} / \mathrm{TPQ}-3$ is a modification of the AN/TPS-3 to provide mortar and artillery shell

SEND FOR OUR NEW CATALOG

MODELS $330-\mathrm{A}$ and $330-\mathrm{M}$

FEATURING

 -ULTRA-LOW FREQUENCY COVERAGE -100,000 to 1FREQUENCY RANGE IN ONE INSTRUMENT -DIRECT FREQUENCY CALIBRATION

The Krohn-Hite Filter Line

Model	Type	Frequency Range	Price
$310-\mathrm{AB}^{*}$	Band Pass	20 cps to 200 kc	$\$ 295.00$
$330-\mathrm{A}^{*}$	Band Pass	.02 cps to 2 kc	$\$ 475.00$
$330-\mathrm{M}^{*}$	Band Pass	0.2 cps to 20 kc	$\$ 475.00$
$340-\mathrm{A}$	Servo	.01 cps to 100 cps	$\$ 385.00$
$350-\mathrm{A}^{*}$	Rejection	.02 cps to 2 kc	$\$ 475.00$
$360-\mathrm{A}^{*}$	Rejection	20 cps to 200 kc	$\$ 295.00$

-Available for rack mounting at $\$ 5.00$ additional.
For further information on:

- Filters
- Power Supplies
- Oscillators
- Power Amplifiers
write for our free catalog D

Krohn-Hite CORPORATION 580 MASSACHUSETTS AVENUE GAMBRIDEE 39, MASS., U. S. A.

[^9]
INDEX TO ADVERTISERS

*AC Electronies IDivision
*Ace Electronics Associates Int
23
Acronantical Commonications Elfinment lic.
Aerovox Corp
Aircraft Armaments, Ine

* Airpax Prodiuts Co.

Alford Mtg. Co
Allegheny Ludlum Steel Corp
*Allen-Ibratiley Co.
Corp.
i7. 18
American Rondo Corp
Armstrong Whitworth Mireraft Itil. Sir W. G

* Arnold Engincering Co.. The
* Armold Magneties Corp.
* Iheede Electrial Instrmment Co., Ine.a. 141

Bell 'Telephome Laboratories. 21
Brandix Avition Corp. Kud IBink IDis. Srintilla Ibiv.
Bliley Ehectric Co
163
*Boesch Mfg. Co., Inc
122

* IBorg Corporation, George W........110. 111] *Brush Instruments. Dis. of Clivitu Corl

Co. ...
 * Cambridge Thermionic Corp.

* Carr Fastener Co. IDiv. Enited-Carr Fintener Corp.
Cedeo Electronios
*Centralab. A Ibivision of Gilobe-lilion.
Inc.
115
Chance Vought Aircraft..............126, 12
* Coln Corp., Sigmund.
* Control Electronics Co.. Inc.

Copper \& Brass Kesearch Association,

* Cornell-Dibilier Electrie Corp. 125
*Cornell-Dnbilier klectrie Corp........... 125
*Cornisl Wire Co., Inc
* Coto-Coil Co.. Ine 163
*Dedur-Amseo Corporation
Driver. Wilber B .
dir Pont fies Nrmours \& Co. (Inc.) E. I.
Plgments Dept.
*Eastern Ifulust rieg, Ine 45
Edo Corporationt
Eitel-McCullongh, Inc.
Elama Corporation
Eleftro Instruments. Ine
Eftro Instruments ine 34
*Etectro Motive Nifg. Co., Ine
34
Ellis w What le
155
* Empire Deviers Iroducts Corporation . 116
* Erie Filectronlag Divinion. Erie Resistor Corp.
Waterline-Angus Compans. Ind

Fansteel Metallurgical Corp. . 106, 10\%. 108
Frenclitown Porcelain Co
(G II Laboratories, Inc
Garratt Corporation, The
102. 10:
*See advertisement in the 1958-1959 ELECTRONIC5 BUYERS' GUIDE for complete line of produc:s or services.

OHIO SEMICONDUCTORS, INC. 1035 W. Third avenue, columbus b, ohio

CIRCLE 254 READERS SERVICE CARD

Men on the Move

Now available in a new edition... with new figures.

This popular booklet points up the important sales problem of personnel turnover in industry. Out of every 1,000 key men (over a 12 -month period) 343 new faces appear . . . 65 change titles . . 157 shift . . . and 435 stay put. These figures are based on average mailing address changes on a list of over a million paid subscribers to McGraw-Hill magazines.

Write us for a free copy

Company Promotion Department
McGraw-Hill Publishing Co., Inc. 330 West 42nd Street,
New York 36, New York
 Matynetie
Resistors
Trealia pird.

aeral Transiator (corp
Gond-All Electric: Mfg. (ie
Goodrich Company, 13. F., The. 44
(brabt Polley d Hardware Corb

Hallicrafters Company. The 13f, Is:

* Hart Manutiacturing Co.................. I4;
*Haydon ('o., Inc', A. W. . 14%
178
Helipot Corp.. Div, of Beckman Instraments, Inc. $1 \geqslant 3$
* Hewlett-I ackard Company 2 nd Cover
*ILoyt Electriatil Instrumerits 15 \% * Hughes I'ruducts, a Div. of Hughogs Air-
*T T Components Livision. 157
*IHinoin Condensar Co
1.1

International Nirkel Co. Ine 28
International Kesistance Co ?
*International Tel. © T\&l. Corb.........ent 157

* Limbla Electronices Corp.

Litup Insulator Co., Ince
o., in

120
Leath Corporation
Leath \& Gurner . 1 fis
Litton Industriess 47
*Magretic Impliffers, Ine. $1 \% 6$
Mialeo Tool N Mfg. Co 160
Mallory and Co.. Inc'., P. R i2
Mirconi Instruments, Itd

* McCoy Electronics formpany 138

MeGraw-llill l'ublishing Co. 30, 31, sll. is
Micro Switeh a Div. of Minneapolis-
Honterwell Regulatior Co.
*Mularal Overseas, Ltd.

National Electronicm Laboratories, Ime. Lisl
Nothelfer Winding Laboratories, Ine... 114

Ohio Samlcondurtor Prorlacts. 176

* Pitcifie Aloulded Prodncts Cn

Popper \& Nons, Inc
16%
Popper a sons, The. . 6.1

Potter \& Ibrimfield, lne. . $\%$
*Potter Instrimment Co., Inc

Radio Corporation of Americattht Cover
*Radio Fredueney Laboradorites, Ine.... 135 Radio Materials Corp
Kaytheon Mify. Company......fi, 133. 165, 16%
Revere Corporation of Imerica 149
Retron Manufarturing foriea

* Sunborit Compatiy

Sanders Associates, Ine
Sarkes Tarzian Ine
155
*See advertisement in the 1958-1959 ELECTRONICS BUYERS' GUIDE for complete line of products or ervices.
 weight, or shape, a McCoy erystal will deliver the utmost in stability under extreme conditions of shock and vibration. Frequency range of M-1, M-4 and M-5; 200 kc. to 200 mc: M-20, M-21 and M-23; 3.0 mc. to 200 mc .

Free...
illustrated catalog Send for Your Copy Today

KEY to your assembly planning...

MOLCOTE ${ }^{\oplus}$ Metallized Coating for Ceramics

Now is a good time to get acquainted with Molcote in your assembly planning. A metallized coating firmly bonded to ceramic, Molcote presents a surface to which a metal part or other metallized ceramic parts may be soldered or brazed easily, quickly ... effectively.

Molcote is ideal for a wide variety of assembly applications. For example, it
... can be used effectively with copper brazing.
. . . can be immersed in a wide variety of molten brazing alloys for extended periods of time.
...permits excellent dimensional control.
... offers high bond strength,

Molcote surfaces are supplied ready for use for soldering and brazing applications in any temperature range up to $2000^{\circ} \mathrm{F}$. Molcote bonds are exceptionally strong with a tensilc strength exceeding $10,000 \mathrm{psi}$.

Frenchtown Engineering Bulletin 1155 contains complete details and data on Molcote Metallized Cpating for Ceramics. We'd be pleased to send you a copy for use in your assembly planning. A good time to write for it is NOW:

Gula cross Nifg. 10 144
Surensen \& Co. 5
Spramie Electric Co 1.5
Stromberg-Carlson Company (60) 130
Sivenson Co., Ine., A. W. 1: $: 8$
Trefmitrol Engiluering (o) 1411
Telrex I aboratories A,
*Texam Instrmments Imeormorated . . 3nd (om
*Tobe Ibeutsebmann Corp 18:
*Trathe Electronics, Itic 159
Vatiatl A-stecintes 137
Waters Manufacturing, Ine 14.
Weinsehed lingineering is y 40. $4: 3$
Weston Instrument Corp.. a Division of 11
White Dentill Mfg. Co.. S.S 102
106
CLASSIFIED ADVERTISING
F. J. Eberle. Business Mgr.SPECIAL SERVICES174
EQUIPMENT
(Used or Surplus New)
For Sale$.174,175$
ADVERTISERS INDEX
Aircraft Radio Corporation 174
Arabian American Oil Company 173
Barry Electronics Company 174
Bendix Aviation Corp.. Bendix Systems 170
Division
Blan 175
Cotter, Hermon E. 174
Engineering Associates 174
Fidelity Personnel Service 17.1
Gizmos \& Such 174
Heath Company 171
Instruments for Industry Inc 169
International Business Machines Corp.168,
175
Liberty Electronics Inc.
Monarch Personne 171
175
Norden Laboratories 171
Radalab Inc. 175
Radio Corporation of America
Republic Aviation Corp. 173
169
Scientists, Engineers \& Executives, Inc. 171
Suplex Lamps Ltd. 174
Technical Systems
Tung-Sol Electric 175
174
*See advertisement in the 1958-1959 ELECTRONICS BUYERS' GUIDE for complete line of products or services.

This index is published as a service. Every care is taken to make it accurate, hut ELECTRGNICS assumes no responsililities for errors or omissiens.

You get true clipping action with TI 1N1816-series double anode voltage regulators. A full line of regulators with dissipation ratings to 10 watts is available in 5 or 10% tolerances over a 13 to 91 -volt range.

These stud-mounted silicon voltage regulators give you guaranteed zener impedance, -65 to $150^{\circ} \mathrm{C}$ operation, and are designed to meet or exceed strict military (MIL-T-19500A) requirements.
This new 1 N 1816 -series provides greater design flexibility for your shunt regulator, surge protection, operating bias, and are suppression applications. Select from 105 types . . 16 voltage ratings . . 5 or 10% tolerances .. . cathode-to-stud or anode-to-stud polarity.

	$\begin{gathered} \text { Zener } \\ \text { Voltage } \end{gathered}$	$\begin{aligned} & \text { Measured } \\ & \text { at } I_{2} \end{aligned}$	Zener Impedance
Type	$\begin{gathered} v_{Z} \\ \text { volts } \end{gathered}$	$\begin{aligned} & I_{z} \\ & m A \end{aligned}$	$\begin{gathered} a t I_{z} \\ z_{2}(\text { max }) \\ \text { ohms } \end{gathered}$
1 N1816	13	500	2
1N1817	15	500	2
1N1818	16	500	3
1N1819	18	500	3
1N1820	20	250	3
1N1821	22	250	3
1N1822	24	250	3
1N1823	27	250	3
1N1824	30	250	4
1N1825	33	150	4
1N1826	36	150	5
1N1827	39	150	5
1N1828	43	150	6
1N1829	47	150	7
1N1830	51	150	8
1N1831	56	150	9
1N1832	62	50	12
1N1833	68	50	14
1 N1834	75	50	20
1N1835	82	50	22
1N1836	91	50	35

1N1816C - IN1836C CLIPPER

Types IN1816C-IN1836C are specifically designed to clip, and exhibit true double anode characteristics. Each zener is held within 10% tolerance of the specified voltage. See "Typical Clipper Characteristics" curve at left.

WORLD'S LARGEST SEMICONDUCTOR PLANT

Texas Instruments
I NCORPORATED
SEMICONDUCTOR.COMPONENTS DIVISION POST OFFICE BOX 312 • 13500 N. CENTRAL EXPRESSWAY DALLAS, TEXAS

RCA is now in mass production of silicon rectifiers of the diffused-junction type for use in electronic applications. The two types now available are the initial units of a broad line intended for power supplies of entertainment, industrial, and military equipment.

These RCA Silicon Rectifiers Offer You:

- Low Cost-specifically priced for entertainment applications.
- Electrical Uniformity-precision controlled diffusion process forms superior junctions.
- Welded Hermetic Seal-each unit individually pressure-tested to provide complete protection against moisture and contamination.
- Rugged Construction-industrial-type "top-hat" design with axial leads for soldering-in applications; may also be mounted in standard fuse clip.

TYPE	maximum ratings			* characteristics		application
	$\begin{array}{\|l\|l} \text { Peak } \\ \text { Inverse } \\ \text { Volts } \end{array}$	$\begin{aligned} & \text { RMS } \\ & \text { Supply } \\ & \text { Volts } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { OC } \\ \text { Forward } \\ \text { Ma } \end{array}$	Max, Reverse Cur. rent at Indicated Peak Inverse Volts	Max. Instantaneous Forward Voltage at indicated in. stantaneous forward Current	
1N1763	400	140	500	$\begin{aligned} & 100,12 \mathrm{a} \text { velts } \\ & \text { at } 400 \text { volt } \end{aligned}$	3 volts at 15 amperes	Black-and.white TV, radios. phonographs and other electronic equipment operating di. rect from power line
1N1764	500	175	500	$\begin{aligned} & 100,12 \\ & \text { at } 500 \text { volts } \end{aligned}$	3 volts at 15 amperes	Color TV, radios, phonographs and other electronic equipment operating trom the power line through a step.up transformer \qquad

* At ambient temperature of $25^{\circ} \mathrm{C}$

New RCA "100 Production Pack" savestime and motion. Package is specially designed for quick, convenient, operator handling. Saves inventorycontrol time; simplifies the "count"

For sales information, contact your RCA Field Representative at any of these offices:

EAST: 744 Broad Street Newark, N.J. HUmboldt 5-3900
EAST CENTRAL: 714 New Center Bldg., Detrait 2, Mich. TRinity 5 5600 WEST: 6355 E. Washingion
BIvd., Las Angeles 22 , Colif. Blvd., Los Angeles
RAymond 3.8361

NORTHEAST: 64 " A " Street Needham Heights 94, Mass. Hillerest 4.7200

GOV't: 224 N . Wilkinson SI. Doyton, Ohio
BAldwin 6.2366
Washington S., N. W Dlstrict 7-1260
CENTRAL: Suite 1154, Merchandise Mart Ploza Chicago 54, III., WHitehall 4.2900

RCA Silicon Rectifiers are also available at your local authorized RCA Distributor!
New Designer's Data-Sheets Ready Now! Write RCA Commercial Engineering, Sectionl-19-NN-3, Somerville, New Jersey.

[^0]: Member $A B P$ and $A B C$

[^1]: THE FRONT COVER - An experimental rear-view road-scanner tv system developed by Universal Broadcasting íor the Buick Centurion solves the blind spot problem inherent in mirror arrangements.

 The trunk-mounted camera is equipped with a wide-angle lens which gives a greater field of vision than a rear-view mirror. A true image of the road behind the car is displayed on a 4 in . by 6 in . tinted screen on the dashboard receiver unit.

 The electrenic control unit behind the rear seat uses special locked-in stabilizing circuits designed to hald adjustment of conventional internal tr receiver controls for a year. System power requirements compare favorably with auto radio.

[^2]: (1) Final Engineering Report on the MTI Measurement Problem, I.FF $1!t, j 1$ +518 , E F F Interval Reports $=476$ and

[^3]: * Now with The Johns Hopkins Univ., Silver Spring, Ma.

[^4]: (1) H. S. Black, "Morlulation Theory",
 1453. Van Nostrand. Modutation Theory", Telemetry', 19.56 , John Wiley \& Sons. (3) E . I Marton, Advances in Electronics, Vol., IV, "Multichannel Radio Telemetering", b. 301 ff, Academic Press. Technique", Starr "Radio and Radar (5) Pef. p. 30 1.953, Pitman \& Sons
 (a) Ref. 1, chap. 4.

[^5]: GOOD-ALL ELECTRIC MFG. CO. Distributors' Div.
 26 Rittenhouse PI. Ardmore, Pa.

[^6]: ©Registered Trademark of Thiokel Chemical Corp. for its liquid polymers, synthetic rubbers,

[^7]: 101 New South Rd. Hicksville, LI, N. Y.

[^8]: For complete details, write Technical Personnel Department B1121, Bendix Systems Division, 3300 Plymouth, Ann Arbor, Michigan.

[^9]: CIRCLE 251 READERS SERVICE CARD

